INVESTIGATING EFFECTIVE INSPECTION OF OBJECT-
ORIENTED CODE

SUBMITTED TO THE DEPARTMENT OF COMPUTER AND
INFORMATION SCIENCES,

UNIVERSITY OF STRATHCLYDE, GLASGOW
FOR
THE DEGREE OF DOCTOR OF PHILOSOPHY.

By
Alastair Peter Dunsmore
June 2002

P 4\ [INIVERSITY OF
e €9\ §TRATHCLYDE

The copyright of this thesis belongs to the author under the terms of the United
Kingdom Copyright Acts as qualified by University of Strathclyde Regulation 3.51.
Due acknowledgement must always be made of the use of any material contained
in, or derived from, this thesis.

[J Copyright 2002

Abstract

Since the development of software inspection over twenty-five yeas ago it has bemme
established as an effedive means of detecting defects. Inspedions were originally
developed at a time when the procedural paradigm was dominant but, with the Objed-
Oriented (OO) paradigm growing in influence and wse, there now exists alack of guidance
on hawv to apply inspections to OO systems. Objed-oriented and procedural languages
differ not only in their syntax but aso in a number of more profound ways - the
encapsulation of data and associated functiondlity, the common wse of inheritance, and the
concepts of polymorphism and dynamic binding. These fadors influence the way that
modues (classes) are created in OO systems, which in turn influences the way that OO
systems are structured and exeaute. Failure to take this into account may hinder the
application o inspectionsto OO code. This thesis shows that the way in which the object-
oriented paradigm distributes related functionality can have a serious impad on code
inspection and, to address this problem, it develops and empirically evaluates three mde
reading techniques.

The results from an investigation into the characteristics of “hard to find’ defeds, in
combination with aliterature review and an industrial survey, reveded that one of the main
difficulties affeding the inspection of OO code was the inherent delocalisation that
occurred —OO features distributing closely related information throughou a system. From
this, a systematic, abstraction-driven reading technique was developed, focusing on
constructing abstract specifications, and evaluated by an empiricd study. The results from
this led to the development and evaluation of two further reading techniques — one based on
a dhedlist and the other based on a more dynamic gpproach centered on the route that a
use-case takes through a system — along with a refinement of the origina systematic
tedhnique.

Theresultsindicate that, where practical, object-oriented inspections sould be based
on teams of inspectors using a @mbination d at least two tedhniques. Using a
combination d reading tedhniques, such as those presented in this thesis, seems to offer the
potential to ded with recurring defect types, defects that may require deeper insights, and
defects that are aswociated with feaures of objed-orientation that can dstribute
functionality throughou a software system.

Acknowledgements

| would like to thank Dr. Marc Roper and Dr. Murray Wood for their excellent supervision.
Their comments, criticisms, and advice have helped guide and shape the development of
thisthesis. Without their experience and scathing wit, this thesis would never have reached
completion.

Through my time in the department, several individuals have provided encouragement
and feedback on the work contained within this thesis. | would like to thank Fraser
Macdonald, James Miller, and Douglas Kirk for their comments and encouragement
through the course of the thesis. | would aso like to thank the support personnel within the
department - lan Gordon, Gerry Haran, and Kenny Forte - for providing technical
assistance.

Findly, | would like to acknowledge the encouragement and support given to me over
many years by my parents, Helen and Peter, and many friends (Monty, Sam, Gordon,
Stuart and Claire). Without it | would have failed long ago. | would also like to say a
specia thanks to my girlfriend Claire, for her patience and for pushing me over the final

finishing line.

The research contained in this thesis was supported by a Graduate Teaching Assistant
position with the Department of Computer Science, University of Strathclyde. The support
of the Department and the Faculty of Science is gratefully acknowledged concerning travel
to conferences. | would also like to add specia thanks to Professor Paddy Nixon for help

with financial support during the final months of the thesis.

List of Publications

From the work caried aut in this thesis there have been a number of publications. These

are:

* M. Roper and A. Dunsmore, Problems, Pitfalls and Prospects for OO Code Reviews,
7th European International Conference on Software Testing, Analysis and Review,
EuroSTAR99, 1909.

* A. Dunsmore, M. Roper, and M. Wood, The role of comprehension in software
inspection, Journal of Systems and Software, 52, p. 121129, 2000.

e A. Dunsmore, M. Roper, and M. Wood, Object-Oriented Inspedion in the Face of
Delocalisation, appeaed in Proceedings of the 22™ International Conference on
Software Engineering 2000, pp.467-476,June 2000.

e A. Dunsmore, M. Roper, and M. Wood, M., Systematic Object-Oriented Inspection —
An Empirical Study, appeared in Proceedings of the 23" International Conference on
Software Engineering 2001, pp.135-144,May 2001.

e A. Dunsmore, M. Roper, and M. Wood, M., Practical Code Inspedion for Object-
Oriented Systems, in proceedings of the 1% Workshop on Inspection in Software
Engineering, published by Software Quality Research Lab, McMaster University, pp.
4957, Jduly 2001.

« A. Dunsmore, M. Roper, and M. Wood, Further Investigations into the Development
and Evaluation of Reading Techniques for Object-Oriented Inspedion, appeared in
Proceedings of the 24™ International Conference on Software Engineering 2002, pp.
47-57,May 2002.

Contents

1INTRODUCTION
1.1 OVERVIEW

1.2 CONTRIBUTION OF THESIS
1.3 THESISOUTLINE

2.1 INSPECTION

Vi

211 The Inspection Process
212 Reading Techniques
2121 Ad-hoc

2122 Checklist

2123 Step-wise Abstraction
2124 Scenario-Based Reading
2125 Pergpective-Based Reading
2126 Summary

3.1 EXPERIMENTAL SOFTWARE METHODOLOGY

3.2 AN EXPERIMENT INVESTIGATING OBJECT-ORIENTED CODE INSPECTION

321 Introduction

322 Experimental Goals and Hypotheses
323 Experimental Plan
324 Experimental Procedures

325 Experiment Results

3.26 Experimental Design Lessons
327 Summary
3.3 SURVEY OF OBJECT-ORIENTED DEFECT-DETECTION APPROACHES

331 Survey Design
3.3.2 Survey Results
333 Summary
34 THEPROBLEM OF DELOCALISATION

3.5 INADEQUACY OF CURRENT INSPECTION APPROACHES
36 WAYSTOIMPROVE OBJECT-ORIENTED INSPECTION

3.7 CONCLUSIONS

4 SYSTEMATIC, ABSTRACTION BASED OBJECT-ORIENTED CODE
INSPECTION

41 SYSTEMATICINSPECTION

4.2 AN EMPIRICAL STUDY OF SYSTEMATIC OBJECT-ORIENTED
INSPECTION

421 Introduction

422 Experimental Goals and Hypotheses

423 Experimental Plan
424 Experimental Procedures

425 Experimental Results
4.2.6 Experimental Design Lessons
4.2.7 Interpretation of Results

4.3 CONCLUSIONS

5DEVELOPMENT AND EVALUATION OF THREE TECHNIQUES FOR OBJECT-

511
512

ORIENTED CODE INSPECTION
51 THREEINSPECTION READING TECHNIQUES
checist, =~

Usecase

S Mt C

513

52 EMPIRICAL EVALUATION

521
522
523
524
525
526

5.3 CONCLUSIONS

6.1 THESISSUMMARY
6.2 LESSONSFOR THE INSPECTION OF OBJECT-ORIENTED CODE

6.2.1
6.2.2
6.2.3

6.3 ADVICE ON PRACTICAL OBJECT-ORIENTED CODE INSPECTION
64 FUTURE WORK

6.4.1

6.5 CONCLUSIONS
BIBLIOGRAPHY

A EXPERIMENT ONE MATERIAL

A.1 LIBRARY PROBLEM STATEMENT
A.2 EXPERIMENTAL MATERIAL

A2l
A22
A23
A24
A25
A2.6
A2.7
A28

A4 EXAMPLE OUTPUT OF C5.0 (RULE INDUCTION SYSTEM)

A5 ALL OUTPUT FROM C5.0
B INDUSTRIAL SURVEY

C EXPERIMENT TWO MATERIAL
C.1 HOTEL PROBLEM STATEMENT

c21l
C2l1
C212
C213
C214
C215

Vii

146
147
148
149
151
152
154
157
159
162
165
168

174

179

179
182
182
182
183
185
186
188

C.2.1.6 Listof DefeCts
G2 LT WD PAOC
C.2.2 Conference Room EXtension
C.2. 2. L INSTUCHIONS
C.22.2 Inspection Introduction/Extension Specification
C.2.2.3 Class Diagram
C.2.24 ConferenceROOM.java
C.2.25 FUNCHiON. VA
C.2.2.6 FunctionDate java.

C 2.2 DE OO AV
C.2.2.8 Listof DeEfeCts.
C.2.2.9 WD PAOC
c.23 Ad-hoC QUES I ONNE T €
C.3 AD-HOC RAW RESULT S
C31 GroUP A — GYM GO0
C3.2 GroupB —ConferenCe COO

C51
C5.2
C.53
C54
C55

Co6.1l
C.6.2

C71
C7.2

D.1 AIRLINE PROBLEM STATEMENT
D.2 LECTURE MATERIAL

D.3.1
D.3.2
D.3.3
D.34
D.34.1
D.34.2
D.343
D.344
D.35
D.351
D.352
D.353
D.354
D.355
D.3.6
D.3.6.1
D.3.6.2
D.3.6.3
D.3.6.4

viii

189
190
191
191
192
194
195
196
197
198
199
200
201
203
203
205
207
218
218
219
220
226
228
231
231
233
235
235
238

244

244
246
274
275
276
278
281
281
282
283
284
294
294
295
296
298
301
306
306
307
309
310
315

Chapter 1

Introduction

1.1 Overview

This thesis $hows that the way in which the object-oriented paradigm distributes related
functionality can have aserious impad on code inspection and, to addressthis problem, it
develops and empirically evaluates three @de reading techniques.

Software inspedion hes, over the last twenty-five yeas, established itself as an effective
and efficient technique for finding defects. Inspections were originaly introduced in the
late 1970's by Fagan [30] as a "formal, efficient, and economical method of finding errors
in design and code'. The dfectivenessof inspections has been established through alarge
number of controlled experiments and industrial case studies. Fagan [31] reported that it
was possible for inspection to find ketween 6090 percent of al defects and that the
feedbadk obtained from the inspections was proving useful in helping programmers avoid
making the same mistakes. Rus«l [82] reported savings of nearly 33 haurs of
maintenance due to every hou spent oninspection.

Inspedions, as originally defined by Fagan [30], usualy involve four or more people
and are made up d severa phases: (1) an introduction, where participants are presented
with a general overview of the aea being addressed; (2) preparation, where individual
participants try to understand the atifact under inspection; (3) group inspection, where
participants get together as a group and attempt to find as many defects as possble; (4)
rework, where defects foundare dealt with by the designer or implementor of the atifact;
and (5) follow-up, where dl issues and concerns are verified as being dealt with.

From their initial use & a mde-based technique, inspedions are now applied to a wide
range of document types including requirements and designs documents [8], [70], [93]. As
well as expanding the scope of documentation covered by inspection, the goplication of the
technique and the supporting materials have been refined and haned and there is adive

interest in continuall y devel oping the ancept.

Chapter 1: Introduction 2

In inspedion, the focus for detecting defects has moved away from being a group
adivity to being part of an inspedor’sindividual preparation for the group phase [53], [72],
[94]. Thisrefocus has leal to the reading technique (a set of guidelines used by inspector’s
to acquire a deg understanding of the inspedion artifact) beacoming a key asped of the
inspection process Adequate support for inspectors, via the reading techniques, is
necessary to help them be dficient and effective in their search for defects.

In spite of their broad application, there is a significant ladk of information indicating
how inspections sould be gplied to abject-oriented code. Until recently, most of the
research carried ou in conrection with reading techniques, and inspedion in general has
related to inspections carried out with procedural languages, the predominant paradigm
used when inspections were originally propcsed. The last ten years have seen the object-
oriented paradigm growing in influence axd use — particularly since the introduction of
C++ and Java. Laitenberger et al. [48] commented that "over the past decade object-
oriented development methods have replaced conventional structured methods as the
embodiment of software development, and are now the approach of choice in most new
software development projects”.

The lack of guidance on how to apply inspections to oljed-oriented code is disturbing.
Object-oriented languages diff er from procedural ones in a number of profound ways — the
encapsulation of data and associated functionality, the coommon wse of inheritance, and the
concepts of polymorphism and dynamic binding — to name but a few. These factors
influence the way that modues (classes) are created in objed-oriented systems, which in
turn influences the way that object-oriented systems are structured and exeaite. The key
features of the object-oriented paradigm may have asignificant impad on the ease of
understanding of program code and failing to adapt to this paradigm may inhibit the
effedive gplication of inspections to cbjed-oriented systems.

This thesis $ows that the way the objed-oriented paradigm distributes related
functionality can have aserious impad on the dfectiveness of code inspection and, to
addressthis problem it develops and empirically evaluates three @de reading tedniques.
Each of the three reading techniques address the problem of distributed functionality in
different ways, offering the potential to deal with awide range of defed types.

Chapter 1: Introduction 3

1.2 Contribution of thesis

The work presented in this thesis makes the following contributions to the aeaof object-

oriented code inspection:

An investigation of the issues that confound dyject-oriented code inspedion and the
identificaion of threesignificant isauesto be addressed: churking, reading strategy and
deding with the distribution o functionality (described in Chapter 3 as the problem of
‘delocalisation’).

The development of three different reading techniques for the inspection of object-
oriented code — a systematic, abstraction diven technique, a use-case based approach
and amodified chedlist — that attempt to addressthe problems of reading strategy and
delocalisation.

Two controlled empirical experiments to investigate the dfectiveness of the three
reading techniques developed specificdly for objea-oriented code.

A set of lesons, based onthe results of the three ontrolled experiments that cen be

used to guide aurrent object-oriented code inspection.

1.3 Thesis Outline

The remainder of thisthesisis gructured in the following way:

Chapter 2: Review of Softwar e Ingpection and Object-Oriented Pitfalls

The thesis begins with areview of the relevant literature, discussng the basic principles
behind inspection, the different reading techniques that are available to inspectors, the
problems caused by object-oriented characteristics, and the airrent work in the areaof

obj ect-oriented inspection.

Chapter 3: Investigation of Object-Oriented Code I nspection

An overview of experimentation is presented, highlighting what is considered best
practice for preparing and running a software engineering experiment in the context of
inspection. Thisisfollowed by an experiment investigating the issues surrounding how
the object-oriented paradigm impads on the inspection of object-oriented code. The
results from the experiment as well as evidence from a small-scde survey shows that
delocalisation is a rea problem, and several areas are highlighted that need to be
addressed.

Chapter 1: Introduction 4

Chapter 4: Systematic, Abstraction Based Object-Oriented Code I nspection
A systematic, abstraction based reading technique that attempts to address some of the
issues raised from the first experiment is presented and then evaluated by a controlled
experiment. The results show no statistical difference in defect detection between
systematic and ad-hoc reading techniques, although further analysis of the results show
that the systematic technique appears to offer some potential benefits, that with
refinement, could help address the problem of delocalisation.

Chapter 5. Further Investigating Reading Techniques for Object-Oriented Code

I nspection
Three reading techniques are developed to further investigate the issues concerning
object-oriented code inspection - an updated version of the systematic technique, a more
traditional checklist technique modified to focus more on object-oriented
characteristics, and a use-case driven approach which takes a more dynamic view. This
is followed by a controlled experiment that compares the defect detection rates of the
three reading techniques. The results suggest that each reading technique has the
potential to deal with different defect types.

Chapter 6: Conclusions and Future Work
Thefina chapter of the thesis contains a summary of the work presented and discusses
what lessons can be learned for the practical inspection of object-oriented code. Areas
for future work include verification through replication and further refinements to the
reading techniques. The conclusion of this thesis is that delocalisation is a significant
problem for the effective inspection of object-oriented code, and that where possible,

inspections should be based on the use of at least two different reading techniques.

Chapter 2

Software Inspection and Object-Oriented
Pitfalls

Much research has been carried out in the aea of software inspection since Fagan's original
description in 1976. There have been many variations proposed on the traditional
inspection processthat he first described. Tools have been created to help inspectors find
more defects and co-ordinate their efforts in more wst-effective ways. Defect detection
aids (e.g. reading techniques) have been defined for different software development
artifads (requirements, code, €etc.).

This chapter provides a brief introduction to inspection by describing Fagan's origina
inspection process It shows how the focus of detecting defects has moved away from
being a group activity to ore that is carried out by the individua inspector. This refocus
makes the reading technique used by the inspector to help prepare and find defects within
an inspection artifact one of the key parts of the inspection process. An overview is
presented of the various reading techniques currently available for individua inspedors.
Thisisfollowed by areview of the literature highlighting the problems that may be caised
by objed-oriented characteristics, and how these characteristics might have an impad upon
code inspedion. This chapter concludes with a summary of the airrent work in the aeaof

object-oriented inspection.

2.1 Inspection

2.1.1 The Inspection Process

Fagan ariginaly defined his inspection processin 1976 [30], later updating it in 1986[31].
Inspedions, as originally discussed by Fagan [30], are a "formal, efficient, and economical
method of finding errors in design and code'. Fagan went on to define an error, or asis
now commonly termed, a defect, as “any condition that causes a malfunction or that
precludes the attainment of expected or previously specified results’. As an example, a

deviation between a specification and the correspording code document is a defect.

Chapter 2: Software Inspedion and Objed-Oriented Fitfalls 6

Inspedions can be carried ou at many of the stages in the software development
process Aswell asbeing used for code documents, inspedions are gplied to awide range
of artifacts including software requirements, design dacuments, test plans, and test cases
(8], [31], [70], [93].

Code inspections are non-exeaution based, i.e. the inspector is never alowed to exeaite
or compile the code during the inspection. This allows inspection to be gplied to code
documents long before tests are designed o even run [36]. It has also been foundthat if
the code is exeauted and tested before an inspection, the motivation of the inspectors may
be reduced and make the inspection processappear redundant [82], [96]. Humphrey [40],
in the Personal Software Process(PSB, states that as part of the process to ensure aquality
product, inspedions sould take placebefore the first compile or test. Taking the opposite
view, Gilb and Graham [36] and Strauss and Ebenau [90] consider sending code to a
compiler as one of the many different entry criteria that have to be passed before an
inspection can begin. The reason for the dean compilation ched is that it is chegper for
the compiler (or other automatic toadls) to find those kinds of defects, than the more
expensive inspector.

In Fagan’'s origina description of inspection [30], there should, under ided conditions,
be four people in an inspection tean, ead having a specific role. These roles include the
Moderator (a cmpetent programmer, sometimes from a different project, to manage the
inspection team and offer guidance), Designer (person who produced the program design),
Coder / Implementor (person who trandated the design into code), and Tester (person
responsible for testing the product). In Fagan's original inspection process[30] he defines
five main steps (shown in Figure 2.1):

1. Overview — The designer uses this phase to present all the participants involved in
the inspedion with a general overview of the area being addressed, followed by
more spedfic information onthe artifact to be inspected. For code inspections, the
overview phaseis considered optional.

2. Preparation — This phase is carried out individually. Participants should urderstand
the artifact under inspection using the design dacumentation. The inspection team
are aided in this process by the use of ranked distributions of error types based on
reaent inspections, aswell as checkli sts containing clues onfinding these arors.

3. Inspedion —All participants in the inspection group get together. The moderator
cortrols the meding, making sure that it stays focussed, so that it does not get out of
hand or stray off course. All related documentation should be available during the

Chapter 2: Software Inspedion and Objed-Oriented Fitfalls 7

inspection. With the design of the artifact under inspection urderstood (in the
previous preparation phase), the main dojective in this phase isto find defects. This
occurs as the “reader”, chosen by the moderator (usualy the aoder) takes the team
through the inspection artifact. Once adefect is found,no attempt shoud be made
by the inspectors to find a solution. Defects are noted by one of the group members
given the task of being meding scribe (either the tester or someone with no other
task).

4. Rework — All the defects noted in the inspection report from the previous phase are
resolved hy the designer or implementor.

5. Follow-up —All i ssues and concerns are verified as being followed-up. If more than
5% of the material inspected has in some form had to be reworked, the inspection
tean shoud regroup and cary out afull re-inspection of the material.

ovenian J4- (wnolete)

Preparation

4 (Ind|V|dLla|)

Inspedion

............. (Whole team)

Follow-up

Figure 2.1 — Thefive stepsin Fagan’soriginal inspection process

Since Fagan's original inspedion process, there have been many variations attempting
to improve the performance of inspedions. Active Design Reviews [69] were originally
created to ensure complete coverage of design dacuments and advocae several small,
focused inspection medings rather than one large meding involving a lot of people. In
ead of these small er medings, inspedors are asigned a specific role to look for different
types of defed. In N-Fold Inspedions [83] nat one, but many parallel inspections are
performed by different teans on the same atifact. The asaumption is that a single
inspection team will only find a fraction o the defeds, and that multiple teams will not
significantly dugicate each other’s efforts. Phased Inspedions [45 divide the normal

Chapter 2: Software Inspedion and Objed-Oriented Fitfalls 8

inspection into several smaller phases. These phases can be arried out by one or more
inspectors. Eacdh phase focuses on one specific type of defect (compared to more
traditional inspections, which look for al types of defect in one big inspection). If more
than one inspector is involved, they med to create one definitive defect list. Phases are
caried out in sequence, meaning that the next phase is not reached until the previous one
has been completed. Sample-Driven Inspedions [92] is a method designed to reduce the
effort during an inspection session by concentrating the inspection effort on the software
artifads that contain the most defects. The defect seaching is divided into two parts. A
pre-inspection occurs where samples of the artifacts are inspected to estimate which
artifads contain the most faults. Seoondly, the main inspection is carried out on the
selected artifacts. These aternative processes have varied such elements as the number of
steps in the inspection process the number of inspectors, and the roles of inspectors.
Althowgh each variation has made dterations to the inspection process or altered
charaderistics of the phases, the inspection phases of preparation, inspection, and
rework/follow-up from Fagan's original description have remained [50].

There have been many reports on the successes achieved through the use of inspections.
Fagan [31] commented that inspection was deteding between 60to 90 percent of defects.
Ackerman et al. [1] reported that inspections were two to ten times more dficient at defed
removal than testing. Russal [82], based on 25 millionlines of high-level code, foundthat
if inspedion was corredly implemented, then approximately one defed was found for
every man-hou invested. Russell claims this was two to four times faster than detecting
defects by testing. Reports by Weller [96], Grady and Slac [37], have also supported the
use of inspection, cttailing improvements to the process and suggestions for achieving
widespread use.

In Fagan's origina inspection process [30], the preparation phase was used by
inspectors to dotain an understanding of the inspedion artifact and the inspection phase
was used by the inspedors as a group to carry out defed detection. A series of recent
empirical studies investigating the group aspect of the inspection process have cat doubt
on its relevance & a focus for defect detection. Votta [94] suggests that inspection
medings are no longer required since the number of extra defects discovered in the
meding over those found in the individual phase is relatively small (average 4%), and they
are not cost effective due to the time delay in preparing, organising, and holding the
inspection medings. Meetings sould be replaced by either small deposition medings
(used to collect reviewers findings and comments), or defect lists sould be wlleded by

Chapter 2: Software Inspection and Object-Oriented Fitfalls 9

other verba or written media (e.g. electronic mail, telephone). It was found that meetings
help reduce the number of false positives (potential defects which turn out not to be actual
defects). Land et al. [53] found that the strength of inspection meetings is not in finding
defects, but discriminating between true defects and false positives. They found that only a
small number of extra defects were found by inspectors when working in a group. Porter
and Johnson [72] found that far more issues are generated by individual defect detection
compared to group-based defect detection, but this comes at the cost of higher rates of false
positives and defect duplication. The current goals of the group aspect of inspection are
now for the inspectors to agree upon a final list of defects based upon those found
individually, and to reduce the number of false positives in the final report [51]. The main
focus for the preparation phase of inspection is now the detection of defects [51], [73].

Porter and Votta [74] found that defect detection results have less to do with the
particul ar inspection process used, and have more to do with the techniques and technol ogy
supporting individual inspectors. Giving support to individual inspectors to find defects
may increase their effectiveness.

With the re-emphasis of the defect detection part of the inspection process on the
individual preparation phase, there has been a shift in inspection research. Basili [9]
pointed out that reading was by far the most important activity for successful individual
defect detection. Basili also highlighted the lack of research examining the technologies
that underlie the reading process. One reason for this lack of research was that until
recently, much of the research into inspection has been focused on the inspection process
[73], [79]. Adequate support for the defect detection activity of inspectors (i.e. reading
strategies) has the potential to dramatically improve the effectiveness and efficiency of
inspection [51]. The more the inspector can understand the material to be inspected, the
greater the chance of finding defects [79].

Although the most recent work on inspection reading techniques has focused on design
and requirements documents, in industry the inspection of code documents is still
predominant [50]. Laitenberger et al. [51] concludes that this makes the improvement of
reading techniques for code documents a high priority. The next section presents a
summary of the reading technigques and looks at how they attempt to help the inspector find
defects.

Chapter 2: Software Inspedion and Objed-Oriented Fitfalls 1C

2.1.2 Reading Techniques

Laitenberger and DeBaud [50] described a reading technique & a “ series of steps or
procedures whose purpose is for an inspector to acquire a deep uncerstanding of the
inspected software product”. In Fagan's original inspedion processhe suggested the use of
checklists [30]. Aswell as chedlists, another popular technique in industry has been ad-
hoc inspection [27], [36]. With the enphasis of defect detection being placed on the
preparation phese of inspection [51], [73] and a redlisation that reading is important for
defect detection, there has been a renaissance in the development of reading techniques.
The following describes some of the more prominent reading techniques currently

avail able.

2.1.2.1 Ad-hoc

One of the simplest reading techniques, ad-hoc, provides no support for inspectors, i.e. no
guidelines or direction. Inspectors have to rely on their own knowledge and experience
reading the inspection artifact, whether they are specifications or code, in their own
preferred way. Although the ad-hoc goproach dffers no guidance to inspedors, it is
considered to be areading technique [50], [71].

A strength of the a-hoc technique is that more experienced inspectors have the freedom
to use their knowledge and abilities to find defeds, freefrom any technique overhead that
may intrude upontheir thinking. The main wedness of the ad-hoc technique is that with
no support, the performance of the less experienced inspectors may suffer, since they do

nat have the experienceto guide them.

2.1.2.2 Checklist

Chedlists, which have been around since the early use of inspedions in the late 70's, are
straightforward to use and offer stronger guidanceto inspectors than ad-hoc reading. They
are based upon a series of spedfic questions that are intended to focus the inspedor’s
attention towards common sources of defeds. The questions in a checklist are there to
guide the inspector through the document under inspection. To make it clear that a
patential defed has been found, the questions are phrased in such away that if the answer
is ‘No’, then a potential defect has been discovered. According to Gilb and Graham [36]
and Humphrey [40], chedlists should be based on locdised historical information and
shoud na be general checklists obtained from elsewhere as they can lose their relevance

An excerpt from an example C++ code review guideline and chedklist by Humphrey [40]

Chapter 2: Software Inspedion and Objed-Oriented Fitfalls 11

can be seen in Figure 2.2. Chedlists, along with ad-hoc realing are still thought of as the
most frequently used defect detection methods [36], [73]. Chedklists have been used to
inspect many different documents, including design, spedfication, and code.

Although chedlists have been well promoted [31], [40], there are severa wedkness
which have been identified. Laitenberger et al. [50] summarised alist of the weaknesss of
the chedklist technique from the literature. Firstly, that the questions are often too genera
or based upon chedlists created from the defect experience of others. Similarly, Tervonen
[91] commented that one of major problems facing chedlists is their generality, that they
are not sufficiently tailored to a particular development method @ phase in a spedfic
projed. Second, instructions guiding inspectors on hav to use achedlist are rarely
available, i.e. it is often unclea when and based on what information an inspector is to
answer a particular chedlist question. Finaly, the questions of a cedlist are often
limited to the detedion of defects which belong to particular defect types. Sincethe defect
types are based on past information [19], inspectors may nat focus on defect types not
previously detected and, therefore may miss whole classes of defeds (a problem only
dlightly reduced by the constant revision that should accur with checkli sts).

Initialisation Check variable and parameter initi alisation:
* At programinitiation

» At start of every loop

« At function/procedure entry

Cdls Check function cdl formats:
* Pointers
e Parameters
e Useof ‘&’

Strings Check that al strings are

* identified by pointers and

e terminated in NULL.

Pointers Check that:

e pointersareinitialised NULL,

e pointers are deleted only after new, and
» new painters are dways deleted after use.
Output Format | Check the output format:

* Linesteppingisproper.

* Spadngis proper.

Logic Verify the proper use of ==, =, ||, and so on.
Operators Check every logic function for proper ().

Figure 2.2 - C++ Checklist, from Humphrey [40]

Chapter 2: Software Inspedion and Objed-Oriented Fitfalls 12

2.1.2.3 Step-wise Abstraction

The step-wise astradion reading strategy off ers more structured and focused instructions
on how to read code. The technique was based onthe step-wise astradion technique of
reading developed in the late 70's by Linger, Mills and Witt [59]. In step-wise éstraction,
the am is to start with the ssimplest comporentsin the wde, understand them, and abstract
out a higher level description of their functionality [3]. This processis repeated, combining
higher and higher levels of functionality, urtil afina description d the cde is obtained.
This final description is then compared with the original specification. This way any
differences between the origina specificaion and the derived specification highlight
potential defeds. Stepwise abstraction has been most commonly used as a cde reading
technique by the Cleanroom community [84] (the Cleanroom development method is a
technical and organisational approach to developing software with certifiable reiability).
Based uwpon evidence from the literature, Laitenberger et al. [51] believed that
inspectors utilising the step-wise abstraction technique were forced into a more rigorous

examination of the cde than using either the al-hoc or chedklist reading techniques.

2.1.2.4 Scenario-Based Reading

The scenario reading strategy was created by Porter et al. [70] to address a perceived lack
of effectivenessin the use of ad-hoc and chedlist methods for Software Requirements
Spedfications (SRS). The work builds on the inspection grocess Active Design Reviews
by Parnas and Weiss [69], who argued for the need for different and specific roles for
inspectors to systematically inspect a document. Porter et al. described a scenario as a
"collection of procedures that operationalise strategies for detecting particular classes of
defects'. Each inspector is given ore scenario, which dffers from the scenarios given to
the other inspectors in the inspedion team. Each scenario contains a set of questions and
instructions informing the inspector how to perform the inspection of the SRS. Multiple
inspectors are required to dbtain a reasonable level of coverage from the document. The
scenarios generated by Porter et al. [70] were derived from available defect classes.

The success of this technique relies heavily on the effediveness of the designed
scenarios. Several variations on the scenario approad have been developed, each varying
the way the scenarios are aeded. In defect-based reading by Porter et al. [70], the
scenarios are derived from defect classes with a set of questions the inspector has to
answer. For scenario-based reading by Cheng and Jeffrey [18], the scenarios are based on

Function Point Analysis (scenarios are developed around a software system defined in

Chapter 2: Software Inspedion and Objed-Oriented Fitfalls 13

terms of its inputs, files, enquiries, and autputs). In perspective-based reading by Basili et
al. [8], the inspection artifact is inspected from the perspedive of different stakeholders.
Each of these reading techniques provide ageneric process for inspecting requirements
documents, athough the materia generated by the processes for use in inspedions are
target specific (to a particular development environment).

The last of these techniques, Perspective-based reading, has continued to be refined and

has been implemented na just for requirements documents but for code documents as well.

2.1.2.5 Perspective-Based Reading
Perspedive-based reading (PBR), first presented by Basili et al. [8], evolved from the work

caried out on scenarios. PBR, compared to the Scenario technique, offers a more detailed
set of ingtructions (scenarios) for inspectors. The perspective-based scenarios are an
algorithmic set of instructions informing inspedors how to read an artifact under
inspection. Inspectors understand the atifact by constructing an appropriate abstraction
defined by the scenario. Laitenberger and DeBaud [47] claim that a focused understanding
of the document ohtained through the use of PBR should be more effedive than ether an
ad-hoc or a dedlist based reading technique. Ad-hoc and chedklist based reading
techniques are thought of as nonsystematic in nature [73]. They do ot offer a set of
concrete reading instructions, meaning that inspectors' experience has a significant impad
onthe number of defeds found [47].

The PBR technique continues to be refined, giving better instructions on the aeation
and content of scenarios [48]. A PBR scenario contains threeparts. The first explains to
inspectors their interest/perspective on the inspection artifact. The second art consists of a
set of activities that inspectors have to perform. This allows them to extract the required
information out of the inspedion artifact. In the fina part, inspectors then apply a series of
guestions to this information to verify its corredness. An example of a code scenario for
the C programming language is shown in Figure 2.3, created by Laitenberger et al. [51]. In
an inspection, eadh inspedor has a different scenario to allow the artifact to be looked at
from different views, e.g. analyst, maintainer, tester, etc. By following the scenario the
inspectors should build up an understanding of the artifad. Although the early work on
PBR was caried aut on requirements documents [8], some of the more recent work has
focused onC code documents [47], [51].

Basili et al. [8] foundthrough experimentation that less experienced inspedors learned
to apply PBR better, and that the perspedives helped them focus more wheress more

Chapter 2: Software Inspedion and Objed-Oriented Fitfalls 14

experienced inspectors were more likely to revert to their more traditional or previously

learned techniques.

Tester Scenario

Assume you have the role of atester. As atester you have to ensure that the functionality
implemented in the codeis corred.

In doing so, take the cde document and determine the functions that are implemented in this
code module. Determine the dependencies among these functions and dacument them in the
form of a cdl graph.

Starting with the functions at the leaves of the cdl graph, determine for ead function, a set of
test cases that all ow you to stimulate the operation of the function. The set of test cases should
allow you to check ead branch of the function as well asthe loops. Document some of the test
cases.

Assume you are executing the function with your test cases asinput values (mental simulation).
Verify whether ead function behaves acordingto its gedfication and the momments givenin

the mde. If differences occur, check whether thereis a defed or not. Document ead defect you
deted on the defed report form.

Whil e following the instructions, ask yourself the foll owing questions:

1. Do you have the necessary information to identify atest case (e.g., are dl constant values
and interfaces defined)?

2. Arebranch conditions used in a crred manner?

3. Canyou generate test cases for ead branch and ead loop? Can you traverse dl branches by
using spedfic test cases?

4. lsalocaion and de-al ocation of memory used corredly?

Figure 2.3 —Thetester scenariofor C code documents, from Laitenberger et al. [51]

An experiment by Laitenberger et al. [51], investigated the dfectivenessand cost per
defect ratio of PBR compared to chedlists for C code documents. The results showed that
two-person inspection teans were more effective using PBR than chedlists. Applying
PBR was fourd to increase subjeds understanding of the code, bu was foundto require
greder effort from inspedors. Thisimproved understanding was also foundto have helped
to reduce the st of defects for PBR compared to chedlists during the meding phase.
With a greater understanding in the medting, it took lesseffort on the inspedors behalf to
explain the defed they had found to the other inspectors, as well as taking less effort to
resolve false positives. It shodd be noted however, that the checklist used during the
experiment was a general one, based upon an existing chedlist [66] and bodks on C
programming [23], [43]. This goes against the airrently avail able advice [36], [40], which
states that chedklists are most effective when based upan historical data.

Chapter 2: Software Inspection and Object-Oriented Fitfalls 15

Although most of the experiments investigating the effectiveness of using PBR have
been positive, there has recently been one experiment (based upon a lab package by Basili
et al. [10]) investigating its effectiveness and efficiency with relation to requirements
documents [78]. The results showed that there was no significant difference in the defect
coverage of the three perspectives, suggesting that a combination of multiple perspectives
may hot result in a higher defect coverage compared to reading with only one perspective.
This contradicts the earlier work on PBR. Regnell et al. [78] provide no other reasons for
the results, other than to highlight certain threats to the validity of the experiment. The
threats included the setting may not be redlistic, the perspectives may not be optimal,
subjects may not be motivated or trained enough, and the number of subjects may be too

small.

2.1.2.6 Summary

Reading techniques have evolved from offering no support and minimal guidance to
inspectors into detailed task driven processes that encourage inspectors to attain a good
understanding of the artifact under inspection. More recent reading techniques have also
introduced the notion of inspecting artifacts from different views (perspectives). This
allows inspectors to focus on different aspects and different defect types in greater detail.
The increased understanding promoted by recent reading techniques is achieved through
clear, unambiguous instructions that guide the inspector in extracting and querying the
required information from the inspected artifact. It is the development of this good
understanding of the code that is key to a successful inspection. The main drawback to
these more process driven techniques is the extra work required to be done by the

inspector.

2.2 Object-Oriented Problems and Pitfalls for Inspection

The object-oriented paradigm has gained widespread acceptance [17] and, it has been
argued, has delivered many benefits to the programmer such as better structured and more
reliable software for complex systems, greater reusability, more extensibility, and easier
maintainability [44]. With these claimed successes, there have a so arisen new problemsto
be tackled. In 1994, Jones [41] listed some of the gaps in information about the object-
oriented paradigm. One of those gaps was in the area of inspection. Jones noted that

"Snce formal inspections are the most effective known way of eliminating software defects,

Chapter 2: Software Inspedion and Objed-Oriented Fitfalls 16

software quality assurance personnel are anxiously awaiting some kind of guidance and
guantitative data on the use of inspections with object-oriented projects’.

There is a significant body of literature developing that suggests that the characteristic
features of the paradigm can make object-oriented code more difficult to understand
compared to the procedural equivalent — an isdle that has direct impad on code inspection.
Much of this literature centres on experience gathered from the software maintenance
domain. The problems encountered in maintenance can apply equally to the task of
inspection - bath require sections of code to be read and understood (it is assumed that
inspection performanceis closely related to comprehension —see[2€], [51], [79]).

According to Gamma et al. [35], the structure of an object-oriented program at run-time
is vastly different to that of its code structure, "In fact, the two structures [run-time and
compile-time] are largely independent. Trying to understand one from the other is like
trying to understand the dynamism of living ecosystems from the static taxonomy of plants
and animals, and vice-versa." Where the code structure is frozen at compil e-time, the run-
time structure consists of rapidly changing networks of communicating objects. This
makes it very difficult to urderstand ore from the other.

Dependencies exist in all code, but their number are increased by object-oriented
languages [17], [97]. Wilde and Huitt [97] described a dependency in a software system as
“A direct relationship between two entities in the system X - Y such that a programmer
modifying X must be concerned about possible side effects in Y'. Wilde and Huitt
suggested that using polymorphism and inheritance hierarchies dramaticaly increases the
kinds of dependencies that need to be wnsidered. Some of the dependencies they
highlighted include Classto-Class Classto-Methods, Classto-Message, Classto-
Variable, Methodto-Variable, Methodto-Message, and Methodto-Method. Chen et al.
[17] described three kinds of dependencies found in object-oriented languages, message
dependence (relationship between a method and its call ers), class dependence (inheritance,
aggregation and association relationships) and declaration dependence (relationship
between classes (types) and dojeds (variables)).

Dynamic binding is a specific example of a charaderistic of object-oriented programs
that increases the mmplexities and dependencies in a program. This concept, closely
aswociated with pdymorphism, involves not knowing the type of a particular object
referenced by avariable, asthisis only determined at runtime [14], [61]. When a method
invocdion occurs, only at runtime can the type of an object be correctly identified. All the

asciations created through the use of polymorphism and dynamic binding usually mean

Chapter 2: Software Inspection and Object-Oriented Fitfalls 17

that more than one class needs to be looked at (especialy in the case of a class which is
part of a deep inheritance hierarchy) in order to fully understand how one small fragment
of code works. Wilde and Huitt suggested that tracing these dependencies is vital for
effective software maintenance [97]. Lejter et al. [55] claimed that dynamic binding (along
with inheritance) made object-oriented programs much more difficult to maintain and
understand. Thisview isalso supported by Crocker and von Mayrhauser [20].

The structure of object-oriented programs differs from that of conventional programs
[97]. Method sizes may be very small as a natural consequence of good object-oriented
design [57],[98]. Daly et al. [22] found that unconstrained use of inheritance may result in
understanding difficulties. When investigating the difficulties experienced programmers
encountered learning and using the Smalltalk programming language, Nielsen and Richards
[67] found that the distributed nature of the code caused problems when attempting to
understand a system. Together with inheritance, this distribution may result in traversing
up and down inheritance hierarchies and across class boundaries in an attempt to locate
where the work is carried out and build up a complete understanding of the task. This

problemisillustrated in Figure 2.4.

/| ~l_
/ ~<
/ ~<
7/, \\\

A > >

: I | work
I done
/

message

Figure 2.4 - Chain of message invocations

Many of the problems that have been mentioned have also created difficulty for other
areas of software engineering outside of software maintenance, such as comprehension
[54], component reuse [32], testing [65], [42], and visuaisation [54]. Each area has had to
re-evaluate how it achieves its objectives, and in many cases redesign its processes. Binder
[13] in his review of testing for object-oriented software highlighted that most believe the

features of object-oriented systems (inheritance, polymorphism, abstract super classes,

Chapter 2: Software Inspection and Object-Oriented Fitfalls 18

encapsulation) will require the development of new approaches to be able to achieve
adequate levels of testing.

2.3 Current state of Object-Oriented inspection

With the rise in popularity of object-orientation, the research community has turned to
adapting ingpections to this new paradigm and its particular artifacts. So far, the work
carried out has focused on the inspection of object-oriented requirements and design
artifacts. Although some initial work has been positive, there has been a lack of research
regarding how the key features of the object-oriented paradigm may impact on the
inspection of object-oriented code.

. Requirements Artifacts
Vertical
reading Requirements Use-Case Diagrams/

Description Scenarios Description
¥ T* 4 \
/ \ Design v Artifacts \
Class Package Class State Machine Interaction
Diagrams Diagrams Descriptions Diagrams

g

Horizontal reading

* - techniques that have been evaluated via feasibility study

Figure 2.5 —Reading techniquesin Traceability-Based Reading (TBR),
from Travasoset al. [93]

Travassos et al. [93] found that there was a lack of guidance on how to inspect object-
oriented design documents and carried out a preliminary investigation. The main focus
was on designs described by UML diagrams. They developed a technique called
Traceability-Based Reading (TBR) that evolved from the experience gathered from the
development of reading techniques for requirements documents [70]. TBR is a two step

process. The first step involves the correctness and consistency checks on requirements

Chapter 2: Software Inspection and Object-Oriented Fitfalls 19

documents that have traditionally occurred. This is described as horizontal reading. The
second step is described as vertica reading, and differs from the traditional process, in that
requirements documents are compared with design documents to ensure consistency. This
isillustrated in Figure 2.5, based on a diagram by Travassos et al. [93].

An experiment carried out using TBR found encouraging, but not conclusive results.
Horizontal and vertica reading were found on average to highlight different types of
defect. Vertica reading found dlightly more defects concerning omission and
inconsistency (between diagrams and requirements), where horizonta reading found more
defects concerning ambiguity and inconsistency (between diagrams). An important finding
was that the technique forced more focus on semantic information (an understanding of the
meaning of the document), similar to the focus encouraged by the scenarios of PBR. Inits
current state, the technique relies too much on syntactic information, making sure that
certain words and attributes in one diagram appear in their correct location €sewhere.
Another drawback is that the technique was found to be time consuming.

Laitenberger and Atkinson [48] presented an adaptation of Perspective-Based Reading
(PBR) for any object-oriented development artifact. They provided a generally applicable
definition of the technique, describing instructions on how to generate PBR scenarios. An
experiment [49] was carried out to investigate the effectiveness of PBR for UML design
documents in comparison to checklists. The results of the experiment showed that PBR
scenarios help improve inspectors understanding of the inspection artifacts. This was
found to reduce the cost of defects in the group phase (as a collation exercise) for PBR in
comparison to checklists. The checklists used were designed along the lines discussed by
Chernak [19], but the questions, due to the lack of other such checklists for object-oriented
design documents that could be reused, were devel oped from scratch.

The majority of research carried out in the area of object-oriented inspection has so far
been aimed at the development of reading techniques to help inspectors find defects in
requirements and design documents. These techniques have tried to address a perceived
lack of reading guidance, but have not fully investigated how the key features of the object-
oriented paradigm impact upon code inspections. Tervonen [91] has found that existing
object-oriented checklists are focused primarily on design issues and are therefore not
suitable for code inspection.

It is generally understood that the earlier an inspection occurs, the cheaper the cost of
repairing the defect [37], [85]. Thisiswhat has lead to the greater emphasisin developing
reading strategies for early development artifacts. However, as highlighted by

Chapter 2: Software Inspection and Object-Oriented Fitfalls 20

Laitenberger et al. [50], code inspections are still the most commonly occurring in industry
and, as such, this makes the improvement of reading techniques for code documents a high
priority [51]. This takes on even greater importance when taking into consideration the
lack of research regarding how the key features of the object-oriented paradigm may

impact on the inspection of code.

2.4 Summary

Inspections are an effective method used to find defects in many different documents
generated throughout the lifetime of a software project. Recently, the focus for detecting
defects has moved away from the group inspection activity. Instead, the focus for detecting
defects is the preparation phase, where the individual inspector reads the artifact in
preparation for the group phase (which is now used for defect collation).

With the focus for detecting defects in inspection moved to the preparation phase, the
reading technique used by the inspector to help prepare and find defects within an
inspection artifact has become one of the key aspects of the inspection process. Adequate
support for inspectors is necessary to help them be as efficient and as effective as possible.

Reading techniques have evolved from offering no support and minimal guidance to
inspectors (e.g. ad-hoc and checklist) into detailed task driven processes that encourage
inspectors to attain a good understanding of the artifact under inspection (e.g. scenarios and
perspective-based reading). It is the development of this good understanding of the code
that is key to helping inspectors increase their effectiveness.

Within the last decade, the object-oriented programming paradigm has grown both in
influence and use. Many of the key characteristics of object-oriented languages -
inheritance, dynamic binding, polymorphism, and small methods complicate matters.
Many of these characteristics lead to closdy related information being distributed
throughout the code, significantly impacting upon the ease of understanding.

To date, much of the work carried out investigating the inspection of the object-oriented
paradigm has concentrated on requirements and design documents. None of this work has
addressed the issues regarding how the key features of the object-oriented paradigm may
impact on the inspection of code. Currently available reading techniques were devel oped
at a time when the procedural paradigm was dominant, meaning they may not address

effectively the features of the object-oriented paradigm.

Chapter 2: Software Inspection and Object-Oriented Fitfalls 21

With code inspections dominant in the software industry, there is a clear need to
investigate the effect of the abject-oriented paradigm. This is likely to have an important

impact on the development of future code reading techniques.

Chapter 3

Investigation of Object-Oriented Code
Inspection

This chapter presents an investigation of how the object-oriented paradigm impads on the
inspection of object-oriented code. It begins with an overview of experimentation and
highlights what is considered best pradice for preparing and running a software
engineaing experiment in the antext of inspection. A controlled experiment is then
presented that investigates how the object-oriented paradigm impads on the inspection d
object-oriented code. A detailed anaysis of the characteristics of the ‘hard to find' defects,
together with the results of a small-scde survey of software engineering profesgonas,
suggests that ‘delocaisation’ - the distribution of closely related information throughout
the code - is a mgjor problem. The chapter concludes by looking at how current reading
techniques for code inspection dea with the problem of delocdisation, and highlights
churking, reading strategy, and ‘localising the delocdisation’ as areas that need to be
addressed.

3.1 Experimental Software Methodology

Empirical research in the mntext of software engineering is conducted to help evaluate,
predict, understand, control and improve the software development process or product [5].

In software engineering experimentation there are avariety of methods a researcher can
utilise in order to gather information and evaluate their notions and hypotheses. Methods
available include interviews, questionnaires, observation, case studies, and controlled
experiments[24].

A significant amourt of research has been carried aut investigating various aspects of
inspection, e.g. process[45], [69], reading strategy [51], [70], tod development [62], [77],
numbers of inspeaors[73], [96], the need for group medings [72], [94], etc. Much o this
research has been achieved by designing and running empirica studies.

Lott and Rombach [60] detailed an experiment characterisation scheme that can be used

as abasis for empirical software engineering research. The scheme permits the mmparison

Chapter 3: Investigation of Objed-Oriented Code Inspedion 23

of results from simil ar experiments and establishes a amntext for crossexperiment analysis.
Thisisaue has become more important with the ever-growing amourts of experimental data
and the desire to compare experimental results [63]. The scheme is aso a good guide to
designing experiments. There are four parts to the experimental charaderisation scheme.
They are, (1) the goals and hypaotheses that motivate an experiment, (2) the plan to conduct
the experiment, (3) the procedures to be used duing the experiment, and lastly, (4) the
results which detail the raw data cllected duing the experiment and any analysis caried

out. Thefollowing briefly summarises ead:
1. Goalsand Hypotheses

The goals and hypotheses should be used to quantify the expected outcomes of an
experiment, and be used to aid in the design and running of the experiment [5]. To help
focus the development of the goals and hypotheses the Goal Question Metric (GQM)
paradigm can be used as described by Solingen and Berghout [87] (originally developed by
Basili and Weiss[4] and augmented by Basili and Rombad [6]). The GQM shifts the
emphasis away from metrics to goals. The goals create afocus for the important issues of
an experiment. These goals are then specified in more detail by defining questions, which
in turn suggest the gpropriate metrics to be measured. With the goals for an experiment
stated explicitly, the data wlleded and the evaluation d that data ae based on well-
specified rationale.

2. Plan

The plan for the experiment details all the design decisions made. The plan includes the
goals and hypotheses aready generated, along with such elements as subjects used,
material used, e.g. code, diagrams, and defects inserted in code. All of these have to be
justified within the frame of the goals of the experiment. The variables being investigated
by the experiment are usually detailed in the plan. There ae two kinds of variables,
independent and dependent. Independent variables are those that are believed to have an
influence on the result of the experiment, e.g. reading strategy or code to which reading
strategies are applied. Dependent variables measure the dfects of the manipulation o the
independent variables, e.g. number of defects found by subjects or time taken.

A very important part of the experimental plan is the validity sedion. This details two
kinds of validity, internal and external. An empirical study can suffer from influences
which may affect the experimental variables without the knowledge of the researcher

(internal validity), eg. selection effeds, plagiarism, subjeds enthusasm, or leaning

Chapter 3: Investigation of Object-Oriented Code Inspection 24

effect. Threats to external validity limit the ability to generalise any results from an
experiment to a wider population, e.g. representative subjects, code and defects used, or

process used.
3. Experimental Procedures

The procedures to be used during an experiment include details of how the experiment will
proceed. A timetable is given describing what events will occur, e.g. lectures, training,
assessments, and when they will occur. Also detailed here is the materia that will be

available for each part of the experiment, e.g. code documents, forms, and questionnaires.
4. Results

The results section contains a detailed description of the raw data collected during the
experiment, the results of any dstatistical analysis based on the raw data, and an

interpretation of these results.

Having a detailed collection of resources allows for repeated experiments (replication).
Replication allows for the verification and validation of previous results, building up a
supportive body of knowledge and understanding, which can be used to justify the
usefulness of techniques and new methodology. As discussed by Basili et al. [7], "In
examining and adapting reading techniques, we go through a systematic process of
evaluating the candidate process and refining its implementation through lessons learned
from previous experiments and studies’.

In many cases studentsin the university environment are used to evaluate initial theories
and techniques [39]. There are severa reasons for this, (1) they are a relatively cheap
resource, (2) there are usually a sufficiently large number of students, and (3) it is cheaper
for atechnique to fail in the lab using students than out in industry with industrialists. This
style of development follows an iterative approach. A technology can be tested with
students to explore initial ideas and theories. The technology can go through severa
revisions, each time being refined by the results of the previous experiment before being
evaluated in industry.

Daly [21] proposed that a multi-method approach should be taken towards empirical
software engineering to address the challenges created by the human element and problems
of experimental validity. An example would be to use different techniques, eg.
guestionnaires and interviews, to identify hypotheses or validate results with different

subject groups, e.g. industry.

Chapter 3: Investigation of Objed-Oriented Code Inspedion 25

3.2 An Experiment investigating Object-Oriented Code Inspection

3.2.1 Introduction

The object-oriented programming paradigm has grown bah in influence and use. Many of
the key characteristics of objed-oriented languages - inheritance dynamic binding,
polymorphism, and small methods complicate matters. With alack of research regarding
how the object-oriented paradigm may impad on the software inspection process, a
controlled experiment was designed to investigate how the daracteristics of objed-
oriented code eff ect code inspection.

The experiment was motivated by a question posed by Laitenberger and De Baud [50]:
“How can inspection, a static analysis process, ensure the qudity of artifacts involving the
use of such nan-static features as dynamic binding?’. What are the issues that arise when
reading and urderstanding object-oriented program code with the aim of detecting defects?
What are the ‘hard to find’ defects, and why are they so hard to find?

3.2.2 Experimental Goals and Hypotheses
The goa of the eperiment was to investigate the possible link between defed

charaderistics and ease of detection. To do this, the experiment was designed to be a
qualitative investigation. This did not require the generation of specific hypotheses, since
no statistical analysis was required.

3.2.3 Experimental Plan

The experiment was based on a de inspection exercise that was lely concerned with the
effort of the individual - no group comporent was carried aut. As the experiment focused
on the number of adual defeds found ly subjects, the number of false positives generated
by the inspectors was not investigated (defects listed by subjects during the inspection that
were not actual defects).

To inspect the code, subjects used the al-hoc reading strategy. “Ad-hoc does not mean
that inspection participants do rot scrutinise the inspected product systematically. The
word ‘Ad-hoc’ only refers to the fact that no support is given to them. In this case defect
detection fully depends on the skill, the knowledge, and the eerience of the inspedor
which may compensate for the lack of reading suppat” [50].

The code inspection was paper based, no tool support was provided. Aids such as
chedlists, other reading strategies or inspectiontools were not used because they may have

introduced confounding fadors into the experiment, making any analysis more difficult.

Chapter 3: Investigation of Object-Oriented Code Inspection

26

A copy of al the materia used in the final experiment can be found in Appendix A.

UserColleadion

\

IltemColledion

\

Person (Abstract) Library Item (Abstract)
I I
Administrator User
Borr owable(Abstract)
Reservation
Video CDRom Journal Book Report Reference
Implgments Impl&ments Implements Implepents

Reservable (Java I nterface)

Authored (Javalnterface)

CLASSKEY

Developed by subjects prior to
experiment

Developed by subjects and
used for inspection practice

Unseen by subjects and used
for inspection experiment

DIAGRAM KEY

Z% Inheritance

lmpleiments Implements

| Association

Subjects

Figure 3.1 —Classhierarchy diagram for library system

Subjects were participants in a 3 year Honours Computer Science Software

Engineering course run at the University of Strathclyde. 47 subjects were participating in

the class. Subjects had previous experience with the programming languages of Scheme,

C, C++, Eiffd, and Java (the three months preceding the experiment). The subjects had

Chapter 3: Investigation of Object-Oriented Code Inspection 27

limited knowledge of Software Regquirement Specification (SRS) document inspection, and
no experience with code inspections.

Prior to the experiment, subjects were given a problem statement describing a simple
library system (the original problem statement can be found in Appendix A.1). Thelibrary
system has a number of different items that can be borrowed, e.g. books, reports, CDRoms
and aso contains reference materia that cannot be borrowed. Subjects were given six
weeks to derive a semi-formal specification and design for the system. Once this was
completed, subjects were provided with a design prepared by the course lecturer (the class
hierarchy for the system is shown in Figure 3.1). From this, subjects were given afurther 6
weeks to code the library system using Java. The experiment took place after the coding of
the system was compl ete.

For the inspection exercise, two groups of subjects were created, group A and group B,
where subjects in each group were of approximately equal ability (based on previous
programming courses). This was done to alow two groups of defects to be seeded,

increasing the number of defects investigated.

Code

The language chosen for the experiment was Java. This was for two reasons, (1) the
language had to be object-oriented, (2) the subjects had been using Java in the months
preceding the experiment in the software engineering course.

The code presented to the subjects for inspection was approximately 200 linesin length.
This was chosen as a maximum limit. Fagan [31] suggested that a maximum of 125 non-
commentary source statements per hour are read. Weller [96], from information gathered
from over 400 inspections, suggested no more than 200 lines of code per hour. Gilb and
Graham [36] suggested at most one and a half pages (approximately 90 lines of code) per
hour. Although there is no clear consensus on inspection rates, the literature generally
agrees that inspecting too much code reduces the effectiveness of code inspections. A
maximum of 100 lines of code per hour was chosen for the inspection, bearing in mind the
subjects were 3 year Computer Science students, not professional inspectors.

The experiment was split into two phases, practice and experiment proper (these are
described in Chapter 3.2.4, Experimental Procedures). For the practice session of the
experiment subjects were presented with part of the system that they had previously coded
but that was now written by the class lecturer. For the actual experiment the library system

was extended and extra functionality, written by the class lecturer, added. This extra

Chapter 3: Investigation of Object-Oriented Code Inspection 28

functionality entailed the implementation of a video class and the need for a reservation
class (in order to be able to reserve a video for a specific date). The subjects had not

previoudy seen any code or design for the extension.

Defects

The experiment required a selection of defects to be seeded in the code. The review of the
literature presented in Chapter 2.2 highlighted potential problem areas that may be used as
the basis for some seeded defects in object-oriented code: dynamic binding, polymorphism,
small methods, and inheritance. There is, however, currently very little materia in the
literature discussing object-oriented code inspections or typical defect categories for object-
oriented code.

Duncan et al. [25] carried out a review of testing techniques and taxonomies which
highlighted that only a small amount of work had been carried out in the area of fault
classification for the object-oriented paradigm, and that there was a lack of experiments to
show what faults were commonly occurring. Extrapolating from a category of
classification for non-object-oriented code, Duncan et al. suggested that potential sources
of object-oriented faults might be in instance variables, methods, modules and classes
implemented but not used within the program, incorrect state models, incorrect messages,
branching errors, agorithmic, and logical faults. They also highlighted that preliminary
work on object-oriented systems suggested that the mgjority of faults occurred in the
interface between objects and not intra-object.

Hayes [38] made an attempt at a taxonomy of object-oriented defect types by
consolidating the defect types found in the literature. To do this, Hayes examined several
sources of object-oriented defects [33], [76]. Each of these sources investigated object-
oriented defects and put forward possible test methods that could be applied to find the
defects.

Chapter 3: Investigation of Object-Oriented Code Inspection 29

Defeda Classfication

(A) Instance Variables
* initiaisation - improper initialisation of class instance variables
» improper values - incorrect/invalid val ue assigned to instance variable moving system
to incorrect state
e improper usage - instance variable used at an incorrect place
(B) Methods
e returnsincorrect value
« faultswith algorithm in method
» if / while/ other conditional faults, etc. - faults with structure of conditional statements
(C) Relationship
» hierarchy - classincorrectly placed within hierarchy
» failuresassociated with inheritance, implementation, method overriding
(D) Message/ Interfaces
e correct message to wrong object
e incorrect message to right object

Figure 3.2 — Defect Classification for object-oriented code based on literature review

From these sources of information, alist was drawn up of al possible defects suggested
for object-oriented code. Taking into account any overlap between defect types, these were
abstracted and narrowed down to a list of four groups of defect type. These four groups,
along with illustrative sub-classifications are shown in Figure 3.2. The classification is an
approximation only, and in many cases, defects can fall into one or more of the groups.

For the experiment, the defects created fitted into the derived categorisation (Figure
3.2). Some of the defects used were naturally occurring, i.e. were identified in the code
during development by the course lecturer, the others were seeded in the code based on the
information gathered from the literature review. Two sets of defects were prepared for the
experiment to maximise the number of possible defects seeded. Ten defects were present
in the code given to group A and ten defects were present in the (same) code given to group
B. One defect was present in both groups, with three other defects being similar in nature,
but the syntax varying between the groups. 30% of the defects seeded were general defects
(based upon historical experience of the course lecturer) and the remaining 70% were
related to object-oriented code characteristics. A full list of the defects present in group A
and group B can be found in Appendix A.2.7 and Appendix A.2.8.

Data Collection
Data from the inspections was collected via a defect report form (an example can be found

in Appendix A.2.1). When a subject found a defect in the code they would record the time

Chapter 3: Investigation of Objed-Oriented Code Inspedion 30

it was discovered, its location in the cde, and a textua description that accurately
described the defect. The defect report form was tested during the initia training phase of

the experiment.

Data Analysis
Since the goa for the experiment was exploratory in rneture, the results were
investigated through the analysis of the qualitative information gathered.

Threats To Experimental Validity
An empirica study cen be distorted by influences that may affect the experimenta
variables without the knowledge of the researcher. This possibility should be minimised as

much as possible. Paossible threatsto internal validity included:

» Sdlection effeds that may occur through variations in the natura performance of
individual subjects. As part of an ealier exercise in the class, the subjects had
been split into 12 groups of roughly average ility. For the inspedion exercise,
groups 1 to 6 were then assigned to group A, and groups 7 to 12 were assgned to
groupB. This dould have minimised much of the possible eff ect.

* Plagiarism was not a oncen as the experiment was carried ou under exam
condtions.

» Thelearning curve for the subjeds associated with the programming language used
(in this case Java). Prior to this class subjeds had previously used the objed-
oriented languages of Eiffel and C++. To reduce any paossible effect due to the use
of a new language, earlier sections of the dasshad the subjects (in groups of 3 o
4) code asmall program (approximately 8 pages in length). This was followed
later by a more substantial library system. The average number of classes created
for this task was 21 (ranges of 13 - 40) with an average length of 2755lines of
code (ranges of 1200 - 4500. The ranges vary so much due to some groups
implementing a full graphical interface. The ade used for the inspection exercise
proper was an extension to this g/stem.

* There was no monitoring of subjects prior to the experiment while they worked in
groups. Some of the subjects may have worked at different rates, taking on more,
or less resporsibility. This could have lead to an imbalance of subjects
knowledge and undrstanding o the system and perhaps skewing some of the

experiment results.

Chapter 3: Investigation of Object-Oriented Code Inspection 31

Threats to external validity limit the ability to generalise any results from an experiment

to awider population. These threatsincluded:

« The subjects of the experiment (3" year Computer Science students) may not be
representative of the general software engineering population. This could not be
avoided due to time and resource constraints.

 The Java code may not be representative (in complexity or stylistically) of
industrial software. In this case, the code inspected was part of a substantialy
larger software system, diminishing some of the complexity arguments.

» The defects seeded in the code may not be representative of the problems currently
experienced in industry. As was mentioned earlier, a thorough search of the
literature was carried out, the results of which were used to base decisions on types
of appropriate defects.

* The inspection process used during the experiment may not have been
representative of industrial software practice. This experiment focused only on the
individual defect detection phase and used the ad-hoc method as a baseline for
code inspection. It did not involve any presentational overview by the author as
the subjects were already familiar with the general system and the group collation

phase was not relevant to the aims of the study.

3.2.4 Experimental Procedures

Training

In week one, an introductory lecture and training phase were carried out before the
experiment proper. The lecture lasted approximately fifty minutes and introduced the basic
premise behind inspections, their uses and problems. The training phase, which was
carried out the day after the lecture, lasting approximately two hours, was run informally to
allow subjects to ask gquestions and overcome any conceptual problems about the ad-hoc

inspection process. The experiment proper was held one week after the training exercise.

Conducting the Experiment

In week two, the experiment proper was held. No lecture was given in week two. Subjects
were given up to a maximum of two hours to complete the inspection. They were supplied
with a booklet containing the inspection task material (code, specification, class diagram,

defect report form). If subjects went beyond the two-hour limit for the inspection, they

Chapter 3: Investigation of Object-Oriented Code Inspection 32

were asked to stop working. The inspection task was completed under exam conditions to

ensure that subjects worked independently.

3.2.5 Experiment Results

As aresult of attrition, group A was reduced from 23 to 18 subjects, and group B was
reduced from 24 to 23 subjects. The experimental results are summarised in Table 3.1.

Group A B
No. of subjects 18 23
No. of defectsin code 10 10
Average no. of defects found by | 6.28 6.65
subjects

Average time for inspection (min) | 76.93 | 80.04

Table 3.1 —Summary of Inspection results

Figure 3.3 shows the mean rate of defect discovery by both groups. It shows that the
performance of both groups, A and B, was similar. This suggests that the balance of defects
for both groups was similar. What can also be seen is that beyond the 60-minute mark,

there was an average of only 0.5 defects found per subject.

10

Group A

-
-

Average number of defects found
N

Group B

0O 10 20 30 40 50 60 70 80 90 100 110 120

Time (in minutes)

Figure 3.3 —Mean rate of defect discovery for groups A and B

Chapter 3: Investigation of Object-Oriented Code Inspection 33

I nspection Strategy
When subjects identified a defect in the code they noted the time at which it was
discovered. This alowed a picture to be built up of the order and time at which defects
were found. This timing information also provided an indication of how subjects carried
out their inspection.

Figure 3.4 and Figure 3.5 show boxplots of the times the defects were found. Defects
arelisted in the order in which they appear in the code handed to the subjects.

!

6 12 9 16 9 8

80
75+
70
65 -
60
55 - *
50 4
45 4
40
354

o]
30+
254
20+
15+
10«
| I
= 18 18 17

= Median

I Highest/lowest
excluding outliers

O Outlier

* Extreme outlier

Time discovered (minutes)

0
N

DEFT8 DEFT9 DEFT1 DEFT2 DEFT3 DEFT4 DEFT5 DEFT7 DEFT6

Figure 3.4 —Boxplot of defect discovery timesfor Group A

In general, thefirst three defects (defects 8, 9 and 1) in group A (Figure 3.4) were found
in order. At least during the beginning of their inspection, subjects seemed to be reading
through the code in the order it was provided.

The next defect that group A subjects should have found was defect 2. Five of the six
subjects who managed to find this defect discovered it much later on. This particular defect
involved the incorrect placing of a call to a method called pur ge. The call should have
been several lines later in the code. In order to notice that the method call was misplaced,
subjects had to gain a greater understanding of the code presented to them, including the
role of the pur ge method, which appeared later in the code. This also suggests that
subjects read through the code in order, rather than jumping to a method definition when it
was called in the code.

Chapter 3: Investigation of Objed-Oriented Code Inspedion 34

Defect 4, the other defect discovered out of presentation ader concerned an ou of date
reservation (the defed is discussed later in Sedion 3.4, and is shown in Figure 3.11).

For the remaining defects (3, 5, 7and 6), their standard deviation (shown in Figure 3.4)
is larger than that for the first few defects. Although it appears that, in the main, these
defects were found in their presentation order, this cannot be stated with as much certainty.
For both sets of defects, following defea 3 should have been defeda 10, hut it does not
appear in either Figure 3.4 or Figure 3.5 because no subjed discovered it. This was a

particularly subtle defect involving iterating through a vedor whilst deleting its elements.

100

95 —— o o

90+

851 o

80+ ;

iy 8 Median

704 .

651 I Highest/lowest

60- excluding outliers
O Outlier

* Extremeoutlier

Time discovered (minutes)

5«
0

N

2-0 1-7 1-7 2-1
DEFT9 DEFT8 DEFT1 DEFT2 DEFT3 DEFT4 DEFT5 DEFT6 DEFT7

551

50

451

404

354 *
304

251 *
201

154

] —

= 1-1 1-9 2-0 1-7 1-1

Figure 3.5 —Boxplot of defect discovery timesfor Group B

Looking at Figure 3.5, the first defect in groupB's code handaut was defea 9, hut it was
the first defect found by only four of the eleven subjects who correctly identified it. The
others foundthis defect beyond the 30-minute mark, possbly suggesting that they found
this defect during a second pass through the cde. This defect involved ore class,
Reservation, implementing the Enurmeration interface’ (a predefined Java

interface). The Reservation class erroneously provides the methods

! Java dlows only single inheritance, but supparts the use of interfaces. These spedfy a reference
type, consisting of a type name and a set of abstrad method dedarations. A singe dass may
implement many interfaces.

Chapter 3: Investigation of Objed-Oriented Code Inspedion 35

hasMor eEl enents and next El enent, which have to be defined by a class
implementing the Enunrer at i on interface

Although there ae afew outliers, Figure 3.5 suggests that group B also worked through
the code and discovered defects squentialy in the order it was provided.

For the subjects that foundthe most defeds (two subjects with 910 and seven subjects
with 8/10) the average inspectiontime was 71 minutes. There was a very strong indication
that these subjects read through the ade in the order provided. Both of the subjects with
9/10 and ore with 810 found all their defects in their presentation order and in their first
passthrough the code. The timing information from the remaining subjeds suggests that
they also read through the @de in its presentation order, but that they required multiple
passs through the aode to find all their defects.

For the subjects that foundthe least number of defeds (1 subject with 2/10, one with
3/10 and 5with 4/10) the average inspection time was 89 minutes. It was difficult to see
any pattern or strategy employed hy these subjects with the information gathered, although
there was ©ome small indication that like their colleagues, they made multiple passes
through the aodein the order it was presented to them.

The results indicate that both groups of subjects read the ade in sequential order -
which would not be surprising gven that they were new to inspection and were using an
ad-haoc reading approach. This was also foundto be true by Laitenberger et al. [52], who
commented that “without any guidance on what to check, most of the inspectors often
perform their scrutiny sequentially. They start their checking activity at the beginning of
the document and read through the document page after page ”. Those defects that were
discovered out of presentation order (defects 2 and 4 in group A and defect 9 in group B)
had arelatively low discovery rate. It may have been that defeds that required more than
sequential reading were harder to find. It may also have been the ase that wedker subjects,
by making more passes through the code, were finding the more difficult defects in later

pasEs.

The Defects

To investigate possible links between defect characteristics and ease of detection, it was
first necessary to group the defeds. To do this al defeds from groups A and B were
brought together. This is presented in Figure 3.6, which shows the percentage of subjects
(y-axis) who foundead particular defect (x-axis) and which group the defect belonged to
(the colour of the bar). This clearly shows which defects were discovered relatively easily

Chapter 3: Investigation of Objed-Oriented Code Inspedion 36

and those that were harder to identify. To investigate whether there was any common
factors between defeds with similar detection rates, a series of charaderistic words was
compil ed for each defed refleding its key feaures (brief descriptions are shown in Figure
3.7). Figure 3.8 shows the keyword characteristics for the defects in percentage response

order.
100190
B 100 9 a1 gg 8787
S 9f H H] — 83
sod H U 4 74 74
g SO0
X 60 H 50—50—18—as
Q 50H H H 42
2 o HH TH 33
*G-C)' I0H H H —
20H H H —
o o4 H H — H 6—6
g %
2

8 9 17 5 14 8 2 5 6 3 47 9 3 6

*

10A 10B
Defect Number

GroupA [] GroupB [Defectswith non-local «
characteristics

Figure 3.6 - Percentage of subjectsfinding each defect during the inspection

To investigate whether there was any simil arity of characteristics between defects with
similar percentage response rates, particularly the ‘hard to find' defects, the information
contained within in Figure 3.8 was entered into C5.0 [16], a data-mining todl. A data-
mining toadl attemptsto draw out patterns from a set of provided data, allowing an dbjedive
view to be taken of the data set, free of any human preconceptions. The tod also alows
experimentation with different groupings of data, to see how the generated patterns are
affeded. An example of itsuse @an be foundin Appendix A.4 and all the output generated
from C5.0 can be found in Appendix A.5. From information generated by C5.0, and the
information contained in Figure 3.8the following points were observed:

e Locdity of defeds was well mixed, bu harder to find defects tended to have class
or system locality (see Figure 3.7 for definition d these terms).

» Defectsinvolving class libraries and wrong messages tended to be harder to find.

» Method sizes were mixed but no harder to find defects appeared in small methods.

» Defectsinvolving inheritance, overriding and design mismatches tended to be hard

to find unlessthere was supporting domain knowledge.

Chapter 3: Investigation of Objed-Oriented Code Inspedion 37

» Defectsinvolving a domain knowledge dash or instance variables had a very high
probability of being found.

» Defects which had no domain knowledge dash but had diagram corflicts (i.e.
involved inheritance, overriding, abstrad classes etc.) had a less than 50% chance

of being found.

L ocality - area of code required to be looked at to identify the defect

(M)ethod - information required to identify defect is present in one method
(C)lass- information required to identify defect is present in one class
(S)ystem - information required to identify defect is distributed acrossmultiple classes

Algorithm/computation - defect due to an error in the algorithm
Useof library class - defect requires understanding o classlibraries
Wrong object - defect caused by sending message to wrong object
Wrong message - defect caused by sending incorrect message

Data flow error - defect caused by lad of variable usage or variable mis-usage
(variable used in incorrect way)

Method size - sizeof method where defect present

S = 0-4 lines of code
M =5-10 lines of code
L =11+ lines of code

= defect does not reside within a method (e.g. classdefinition or missng method)
Instance variable misuse - defect due to assgning incorrect values to instance variables
Omisson - defect associated with missing code
Commisson - defect assciated with incorrect or superfluous code
I nheritance/implementation - defect associated with inheritance/implementation
Override - defect asociated with method overriding
Diagram mismatch - defect assciated with inconsistency between code and documentation

Domain knowledge - defect assciated with a dash between subject's knowledge of the domain and the code

Figure 3.7 — Description of defect features

In Figure 3.6, dl of the defects with *'s at the bottom of their columns all contain non-
local characteristics. Information autside the 200 lines of code being inspected, hut till
avail able to them, was nealed for a full understanding of the defect. Defects 8A and B
were onsidered easy to find as they involved diagram mismatches and clashed with
inspectors domain knowledge (shown in Figure 3.8), and defect 5B, athough requiring
some nonlocd information could be guessed by making reasonable assumptions about the
method where the defed resided. The remaining defects with nonlocd characteristics had

adiscovery rate of 50% or less.

seunyes} Y1 Aq paqiiosep s1eeq - g'¢8nbi-

< —]
TTZuv% Uvg=g [
g P a®8 E _,(_Q_ = @
G- 22 [z
0. + = . % 3 [}
B N 2 ?
@
2
9.
®
8A | 9A | 1A | 7B | 5A | 1B | 4B | 8B | 2B | 5B | 6B | 3A | 4A | 7A | 9B | 3B | 6A | 2A | 10A | 10B
Locality (M, C, S) S M M|SsS|sSs|M|S| M|M|M|M|M|S|S|s|M|s]|cC S S
Algorithm/computation X X X X X X X
Use of classlibrary X | X X X
Wrong object X
Wrong message X | X | X X
Dataflow error X X | X X | X X
Method size (S, M, L) - M s|{s|M|L|M|[S|L|M|M|L|M|M|-|M - L M M
Instance variable misuse X X | X
Omission X X X X
Commission X X X | X | x| x| X X | X | X X | X | X X X X
I nheritance/implementatio X X
Override X X
Diagram mismatch X X X X
Domain knowledge X X
% 100 | 100 | 94 | 91 | 89 | 87 | 87 | 83 | 74 | 74 | 74 | 67 | 50 | 50 | 48 | 48 | 42 | 33 | © 0

uonoedsu| 8poD PRIBLID-198[qO Jo uoeBnsaAu| i€ Jeideyd

8¢

Chapter 3: Investigation of Object-Oriented Code Inspection 39

Amongst the harder to find defects (i.e. found by less than 50% of subjects) there were
only two that had local characteristics, defects 3B and 2A. Defect 3B involved a data flow
error (a variable was passed as a parameter then never used), but was completely local to
the method. Defect 2A was an algorithmic error, with the misplacing of a method call in a
series of i f - el se statements. There are no similar characteristics between these two
defects.

3.2.6 Experimental Design Lessons
This section highlights some of the lessons learned from running the experiment and

suggests ways in which it could have been improved.

Subjects used the defect report forms to record when they found each defect. This
alowed the order and timing of defect discovery to be investigated. However, it was
impossible to be able to accurately describe the order in which subjects read through the
code. Only suggestions could be made, based upon the defect discovery times. To build
up a more complete picture of subjects reading strategy, more timing information must be
gathered, e.g. gathering the time subjects begin to read a method.

During the inspection, subjects were also allowed to use some form of Java reference
material, e.g. a Java code book, the on-line reference guide for JBuilder (a Java
programming environment), or the on-line reference guide provided with Java for its class
library. This material may have helped subjects find some of the seeded defects. During
the experiment, subjects were not monitored on a one-on-one basis due to the large number
of participants. Because of this, no comments could be made on the usefulness of the
reference material available.

One way to help gather this kind of information would be the use of verba protocols. A
subject is monitored through an entire experiment and verbally states what he/she is
thinking and doing. All this is recorded (via either audio or video equipment or a
supervisor taking notes) and properly reflects the cognitive process employed by subjects
during an experiment. There are however some down sides to using verbal protocols.
They require at least one supervisor per subject. This is because in most cases the
supervisor has to prompt the subject, gently reminding them that they are supposed to be
verbalising their thoughts. Also, because a supervisor is required for each subject, this
limits the number of subjects that may be recorded. A cheaper solution to this problem

may be to use questionnaires given to subjects after the completion of the experiment.

Chapter 3: Investigation of Object-Oriented Code Inspection 40

3.2.7 Summary

Through the creation of a key word classification index for each defect and the utilisation
of arule induction system, the experimental results suggest a major contributor to difficult
to discover defects is that information required to understand the defects is not available
locdly. Instead, the information is distributed throughout the code by the features of the
object-oriented language. The study of reading strategies used by subjects found that most
appeared to read the code sequentially. Object-oriented code is not naturally sequential. It
isunclear if this disparity may affect the detection of defects with non-local characteristics.

3.3 Survey of Object-Oriented Defect-Detection Approaches

The experiment described in the previous section suggested that several object-oriented
features such as message passing, class libraries, interfaces and method overriding could
make defects difficult to detect. To further investigate the problems object-orientation can
cause for code inspection and to obtain confirmatory evidence for the previous experiment
(following the multi-method approach suggested by Daly [21]), a survey was created to

obtain the opinions professionalsin industry.

3.3.1 Survey Design

The following describes the creation of the survey, stating the initial objectives, justifying
the chosen method of delivery, style, and layout of the survey, as well as the questions to
be included.

Objectives
The objectives of the survey were:
* Investigate current practices in industry concerning remova of defects from
object-oriented code.
Find out if inspections are being carried out on object-oriented code, and if so,
how.
* Investigate further some of the key findings from the experiment described in the

previous section.

* Gain a better understanding of the features of defects that are causing problems

for object-oriented software devel opers.

Chapter 3: Investigation of Objea-Oriented Code Inspedion 41

Survey Method
Various methods can be used to gather information. These include persona interviews,
telephane interviews, postal surveys, etc. Due to limitations on the time avail able, locdity
of businesses, and availability of willing participants, it was decided that interviews would
nat be practical, and that some form of survey would be more suitable.

It was further decided that the surveys used to dicit the desired information would be
sent via email rather than by post. The reasons for using email to deliver the surveys

include:

» Cost - no paper or envelopes are involved.

» Resporse time - since the information is passed electronically, delays sould be
kept toaminimal.

» Extra space - unlike paper based surveys, making extra space for answers in an

electronic survey is not a problem.

There ae however several disadvantages to using surveys to gather information. These

include:

e Follow on questions - unlike in an interview, you canna ask a respondent to
refine their answer, or to probe further. See the next section m survey
construction for more onthis.

» Low response rates - there is a danger when sending out surveys that you get a
low resporse rate. For mail based questionnaires, Edwards [29] founda response
rate of 20-30%, and in a software maintenance study, Lientz and Swanson [58]
only received a 24.6% resporse rate. In an attempt to reduce this problem various
companies were mntacted prior to the completion of the survey, via University of
Strathclyde graduates now in their employment, to seeif they would be interested
in participating.

Survey Construction
The time required to complete the survey was chosen to be gproximately thirty minutes.
Anything over thirty minutes and it was judged that respondents might have been less
motivated to reply.

Oppenheims’ template for survey construction [68] was used as the basis for this
survey. Oppenheims template consists of several sections, (1) a prologue used to inform
the respondent of the topic, (2) a classification section used to dbtain personal details abou

Chapter 3: Investigation of Objea-Oriented Code Inspedion 42

the respondent, (3) an information section containing the questions on the topic under
consideration, and finally (4) a dosing section thanking respondents for participating and
providing instructions for returning the survey. In this survey, the dassification section
enquires about the respondent's history and experience with object-oriented languages,
personal details like name and age were not required, and instructions on haw to return the
survey were included in the introduction sedion, as well as the closing section.

As indicated previously, a survey was being carried aut, not an interview. Probing
respondents on a response or asking them to clarify a point is not usualy caried ou with
surveys, especialy if the respondents are anonymous. For this reason, an extra question
was added to the closing sedion asking respondents if they wouldn't mind answering one
or two follow-on questions if the need arose, andto include their email address

The main bod; of the survey, the information sedion, contained the cre questions.
This section was further split into two sub-sedions; the first contained questions dealing
with methods of defed detection and further asked the respondent if they carried ou code
inspections, the second contained questions dealing with defects and their characterigtics.

When writing the questions for the survey, there were many points that had to be taken
into aacourt. Questions shoud ony ask for one pieceof information, question wording
shoud na imply a desired answer, question wording shoud not have adouble meaning,
and should not use abbreviations that may not be understood[12]. Sinclair [86] stated that
questions dhould be understandable and urambiguous, and that they should be & sort as
possible. Other important points on the at of question construction for surveys can be
foundin [11], [34].

Survey Questions

For the purposes of the survey, the dassification section was used to detal the
respondent’s current job paition and duies, as well as the objed-oriented languages
encountered and what their roles have been in relation to ocbjed-oriented software, e.g.
programmer, designer, or tester. This information was used to highlight respondents
experience with object-oriented software as well as the languages used within industry.

The second section dealt with the process of defect detection. It was important to get an
idea of the arrent processes used within industry to remove defects from code. The
remainder of the seaond section was dedicated to questions on one specific defed removal

technique, code inspection.

Chapter 3: Investigation of Object-Oriented Code Inspection 43

Based upon the experiment described in Chapter 3.2, Roper and Dunsmore [81]
suggested severa aids that could be used to help inspectors with the more awkward/hard to
find defectsin object-oriented code. These aidsincluded:

e Checkligts - a series of questions that guide programmers to aspects of code that
have a high probability of containing defects.

» Perspective based reading - multiple inspectors, each using a different perspective,
e.g. tester, designer.

e Visudlisation - can be as simple as modifying the size, colour and style of code, or
involve diagrams showing relationship between classes, objects, method calls, etc.

e Contextua access - the use of hypertext links (commonly used in web pages) to
access related information from the code under inspection.

e Experience base - a database of lessons learned from defect detection techniques,

defect models, as well as project specific lessons.

Severa questions relating to these aids were placed in the survey to obtain the views of
professional software engineers, and to gauge whether, in their opinion, any of these aids
were worth further investigation.

The third and final section investigated object-oriented defects and their characteristics.
The first few guestions were designed to €licit the knowledge of the respondent on what
they believed were characteristics of hard to find defects, and their views on what helped
them find these types of defects. The remainder of this section presented respondents with
alist of characteristics, which could be associated with defects. This list was derived from
the characterigtics of the defects used in the experiment described in Chapter 3.2. This
would alow a comparison between the characteristics of problematic defects in that
experiment and the defect characteristics found to cause problems for professionas in
industry.

Once the survey was completed, a trial run was carried out using several postgraduate
students and lecturers from the Computer Science Department at University of Strathclyde.
From the trial run, several questions were reworded and modified. These initial results
were not included in the final analysis of the survey. Once the modifications were
completed, the survey was sent via email to those industrial contacts that had expressed an
interest in participating. The survey was also posted to two of the main newsgroups for
software engineering (comp.software-eng and comp.software.testing). A full copy of the

survey can be found in Appendix B. The next section summaries the responses received.

Chapter 3: Investigation of Object-Oriented Code Inspection 44

3.3.2 Survey Results
Object-Oriented Background

Thirteen responses were obtained, at least half from senior software engineers or managers.
Although thirteen responses are insufficient to draw significant conclusions, there are
enough responses to obtain an insight into the current state of industrial practice. The
average length of time respondents had been working with object-oriented code was 4.8
years (ranging from 1 to 12 years). Most respondents had participated in all aspects of the
software development process. All had used C++, with four having used Java. Table 3.2
shows alist of all the object-oriented languages used by respondents.

Language Number of
respondents
Adad5 4
C++ 13
Eiffel 2
Forte (Transaction Object-Oriented L anguage) 1
G2 1
Java 4
Modula-3 1
Object Pascal 1
Objective C 1
Perl 2
Python 1
Visual Basic 1

Table 3.2 - Object-oriented languages used by survey respondents

Defect Detection

Respondents were then asked what approaches they had used to detect defects in software
and at what particular stages in the software lifecycle. Replies showed a multitude of
techniques used over many parts of the software lifecycle. A summary of the replies are

shown in Figure 3.9.

1. AnalysigDesign

Fagan reviews, Checklists, Databases, Walkthroughs, Individua & Team Reviews,
Requirements review, System design review

2. Code

Reviews, Fagan Inspections, Debuggers, Memory debuggers, Complexity analysis tools, other
commercial tools, e.g. Pro Lint

3. Testing

Unit testing, Integration testing, Acceptance testing, System testing, Dedicated test applications,
Alternate compilers, Functionality testing, Coverage testing, Commercia tools (e.g. Purify),
Peer testing, Custom/generic testing set-ups, Site testing

Figure 3.9 - Defect detection approaches used in industry

Chapter 3: Investigation of Object-Oriented Code Inspection 45

From the thirteen that replied, twelve had carried out a code inspection or review of
object-oriented code. Table 3.3 summarises the aids used to help carry out object-oriented
code inspection. In some cases respondents stated more than one aid. The most popular
inspection aid was the checklist, followed by Perspective Based Reading. Three
respondents used no aids at all.

Aidsfor inspection Number of
respondents

Checklists 5
Perspective Based Reading 2
References to Design Documentsand | 1
Requirements

Compiled Code 1

Tool (Prolint) 1

Code Walkthroughs 1

None 3

No Answer 2

Table 3.3 - Aids used to carry out object-oriented code inspections

When carrying out code inspections, respondents used severa reading strategies;
sequential (7), top down (4), bottom up (1), class wise (1), and two subjects stated that they
used no particular reading strategy. In some cases, respondents used more than one reading
strategy.

The amount of code inspected and the time taken to inspect varied enormously. For
half the respondents, inspections usually took no more than two hours. In those two hours
anywhere between 50 to 1000+ lines of code were inspected, where the code included full
classes, important methods, functional units, etc. In several cases, inspections were carried
out sporadically and in bulk, leaving half or a full day to do all the inspections for several
weeks work.

Respondents were presented with five techniques that could be used to help with object-
oriented code inspection and were asked to indicate the extent to which they thought those
techniques would be beneficial (ranging from strongly disagree to strongly agree). Table
3.4 shows the results for the twelve respondents who carry out object-oriented code
inspections. Although in general most seem to believe that all the suggested methods can
be useful, visualisation appears to have the strongest support, followed by checklists. A
brief description of each of the techniques shown below can be found in Question 12 of

Appendix B.

Chapter 3: Investigation of Objed-Oriented Code Inspedion 46

Grading
Technique Strongly | Disagree | Neutra Agree | Strongly
disagree agree

Checklists 0 0 1 6 5
Perspedive Based 0 1 2 6 3
Reading

Visuali sation 0 0 1 5 6
Contextual access 0 1 4 5 2
Experience base 0 0 3 5 4

Table 3.4 - Possible aids for object-oriented inspection

Following on from the previous question, respondents were asked for any views or

comments on any of the five techniques. Figure 3.10summarises their responses.

Checklists
e Eventualy are built into development procedure — more dfedive @ prevention than
detedion

e Useful for novice programmers

Per spective based reading

e Used for requirements and design

e Too expensive for coding

« Always use some form of perspedivesin code review

Visualisation

e Useful in code reviews

* Ariskisthat the picture is the subjed of the review/inspedion rather than the wde
Contextual Access

* Would require extensive cae tool and not guaranteed to help find more defeds
Experience base

¢ Could beacome unwieldy and dfficult to find information in

» Useful, althoudh thisis people dependent rather than technology dependent
Other comments

e Easier to review on paper

« Any additional information which helps with urderstandingis useful

Figure 3.10 - Comments on possible aidsfor object-oriented inspection

Defects

The survey asked respordents to list any object-oriented features that were a common
cause of defects or creaed difficulties in understanding code, as well as to list any
techniques/tools that may be useful in those circumstances. The responses are summarised
in Table 3.5 (first row problems; second pssible dds, if any). Two respondents listed
inheritance and another highlighted multiple inheritance as features liable to cause defeds.
Other features listed by respondents relating to difficulties in urderstanding object-oriented
code include multitude of dependencies, deep hierarchies, and dynamic binding.

Chapter 3: Investigation of Object-Oriented Code Inspection 47

Respondents were then presented with a list of characteristics that could be used to
describe a defect and asked to select those that they felt caused the most problems. These
were based on characteristics identified in the experiment described in Chapter 3.2. Table
3.6 shows the number of survey respondents who highlighted each particular defect

characteristic.

1 Call dispatches, fulfilling requirements (operation doing too much or too little)
Commentsin code

2 Multiplicity of connections making analysis difficult

Simple public interfaces, classes should be as stand alone as possible

3 Flow of execution, deep hierarchies, use of exceptions

Debugger (allowing line by line step through), good documentation

4 Dynamic binding, difficulty in following flow of control

5 Inheritance

Tagsin Emacs

6 Multiple inheritance, location of variable definitions, i.e. which class?

7 Inheritance, complicated objects (records)

Reviews on design (models) and code reviews

8 Runtime control flow fragmentation across small functions, use of simple methods does
not make methods themselves simple, complexity resurfaces in interactions between
objects, sometimes not clear what code is executing given a particular set of inputs
Browser tools to alow definitions and references to methods, and variables help navigate
round the code

9 Incorrect class modelling, complexity of C++

More time spent on design, C++ best mastered with experience

Table 3.5 - Object-oriented featuresthat werea common cause of defects (first rows)
and potential aids (second rows)

Twelve of the thirteen respondents reported that problematic defects had information
required to identify them distributed across multiple classes, and ten respondents claimed
that features of inheritance could cause problems. Several respondents also claimed that
control flow was a problem when attempting to understand object-oriented code, especially
due to the presence of many small methods. Other high responses were for problems with
the algorithm, inconsistency between the documentation and code, variable misuse, and
missing code. When asked if there were any other characteristics that may cause problems
for object-oriented code, documentation was a recurring problem, whether it be

documentation of the code under inspection or code belonging to third party libraries.

Chapter 3: Investigation of Object-Oriented Code Inspection 48

3.3.3 Summary
From the information gathered it appears that a variety of different techniques are used at

different stages in the software lifecycle in an attempt to remove defects, from the original
design documentation, right through to testing and deployment. Twelve of the thirteen
respondents had carried out object-oriented code inspections, most of which seem to be
using the same ideas and aids that have been used previously for procedural code

inspections.

Characteristics Number of
respondents
All information required to identify a defect is distributed across 12
multiple classes

Defect associated with inheritance 10
Defect is due to an error in an algorithm

Defect associated with inconsistency between code and
documentation

Defect caused by variable misuse (data flow)

Defect associated with missing code

Defect associated with a conflict between requirements and code
Defect requires understanding of classlibraries

Defect isin a method of size greater than 10 lines

Defect caused by sending message to wrong object

Defect caused by sending incorrect message

All information required to identify a defect is present in one class
All information required to identify a defect is present in one method
Defect isin amethod of sizelessthan 5 lines

Defect isin amethod of size5 - 10 lines

OO0, |IFLINW~lOIO|O

Table 3.6 - Characteristics of problem defects

Evidence from the survey appears to suggest that non-local information can be a rea
problem. Twelve of the thirteen respondents reported that problematic defects had
information required to identify them distributed across multiple classes, and ten
respondents claimed that features of inheritance could also cause problems. Severa
respondents also claimed that control flow was a problem when attempting to
understanding object-oriented code, especially due to the presence of many small methods.

Although this was a small-scale survey, its use of professionas from industry provides
complementary evidence for the literature and further supports the experimental findings
presented in Section 3.2 that non-local information within object-oriented code causes

many of the current problems for object-oriented code inspection.

Chapter 3: Investigation of Objed-Oriented Code Inspedion 49

3.4 The Problem of Delocalisation

The results of both the experiment and survey suggest that a major feature of difficult to
discover defects is that the information recessary to understand the defect is not in one
location kut instead distributed throughou the wmde. Understanding a piece of code
requires following a trail of method invocaions through many classes, moving up and
down the inheritance hierarchy [97] (seeFigure 2.4). The evidence gathered from both the
experiment and the industrial survey suggest that many of the more difficult to discover
defectsin object-oriented code contain this characteristic.

Soloway et al. [88] first observed this in the context of program comprehension. They
described a ‘delocaised plan” as "where the code for one conceptualised plan is
distributed non-contiguoudly in a program”. Soloway goes on to say "Such codeis hard to
understand. Since only fragments of the plan are seen at a time by a reader, the reader
makes inferences based only on what is locally apparent - and these inferences are quite
error prone'. Wilde and Huitt [97] argue that features such as inheritance, polymorphism,
and dynamic binding are major contributors to the manifestation of delocali sed information
within object-oriented code. To illustrate the mncept of deocalised information with
resped to defed detection, Figure 3.11 shows a piece of Java ade that was part of the

library system for reserving a video used in the experiment in Chapter 3.2.

private void purge()

{
Gregori anCal endar today = new G egori anCal endar () ;
t oday. rol | (Cal endar . DATE, f al se);
for(int i=0; i<reservations.size(); i++)

if (today.after((Reservation)reservations.elenentAt(i)))
{
reservations. renoveEl enent At (i);
date = 0;
}
}
}

Figure 3.11 - Defect with delocalised information

2 etovsky and Soloway [56] “use the term goal to denote intentions and the term plan to denote
techniques for realising intentions’. A plan can be thought of as arelated set of adions that together
adchieve aprogramming goa .

Chapter 3: Investigation of Objed-Oriented Code Inspedion 50

In Figure 3.11, the pur ge method chedks elements of the r eser vat i ons vedor to
see if any reservation has beame out of date. The G egori anCal endar method
after shoud have been passed a date (taken from the reservation currently being
referenced inther eser vat i ons vedor). Instead, the reservation itself was passed to the
af t er method. The argument was misdng the part which retrieved the reservation cate

from the aurrently seleded reservation,el ement At (i)).getDate())).

The code had been compil ed with the Java compil er, so there were no syntax errors and
the code could be exeaited. The Reser vati on class belonged to part of the library
system under development, whereas the Vect or and Gr egori anCal endar classes
belonged to the Java dasslibrary.

To be aleto fully appreciate this defect, a variety of sources of delocalised information

have to be examined:

« Vector -Vector methodel enent At () was used to retrieve an element from
aspecific locationin the collection of reservations.

e G egorianCal endar - Gregori anCal endar method af t er was used to
compare two dates. The reason the wde compiled was that the method accepted
anything of type Obj ect - the base classin the Java class hierarchy (all classes
derive from the Cbj ect class). So in this case, the method af t er accepted an
object of type Reservati on because a Reservati on object was, through
inheritance, aso o type Cbj ect .

* Cal endar — Gregori anCal endar is a subclass of Cal endar and inherits
much of its (quite mmplex) functionality as aresult.

 Reservati on class - was used in the Pur ge methodto cast the object removed
from the vedor r eser vat i ons. The mising methodcall should have been made

tothe Reservat i on methodget Dat e() .

As well as examining other classes in the system and the classes from the Java dass
library, system documentation is another source of information (illustrated in Figure 3.12).
All of thisinformation has to be understood kefore the defect can be correctly identified,
and nae of it is available locdly within the method and class under inspection. This
situation is by no means unusual, as object-oriented programming is based around such
message passng and the use of other classes. Thiskind of delocali sation has been reported

as causing problems for software maintenance[80], [98], and testing [46].

Chapter 3: Investigation of Objed-Oriented Code Inspedion 51

It shoud be noted that the problem of delocalisation also exists in a well-modularised
procedural system, bu that the key features of abject-oriented languages make this

problem much more pronourced.

Classs availablein Java
Classlibrary Other system classes
Cal end Reservation
enaar
\
\
Vi deo |~
GregorianCal endar | __——| purge ()

) D
Documentation for
pur ge method

Vect or

System documentation

Figure 3.12 —Highlighting isaues of delocalisation

In discusdng good style for aobject-oriented programs, Lieberherr and Holland [57]
presented the ‘Law of Demeter’. The goal of the law is to restrict the message sending
structure of methods (e.g. nested message sending), therefore reducing the number of
dependencies between classes. It does this by restricting messages to ‘neighbous’, where
neighbous are instance variables, method parameters, global variables, or objects created
directly via a onstructor. Although this reduces the delocalisation to immediate
neighbous, it does not reduce the functionality that has to be looked at in order to
understand what the ade is doing. Thisis sown in Figure 3.13 where before gplying
Demeter, methodA in the Client class calls methodX on its instance variable X, which
returns an object of type Y, which then accepts a call to methodY. After applying Demeter,
methodA in the Client classcalls other X onits instance variable X, and method other X in
class X calls methodY on its instance variable Y. Althowgh applying Demeter reduces
Clients dependencies to class X, the same functionality is gill present, ony moved to

methodother X in classX.

Chapter 3: Investigation of Object-Oriented Code Inspection 52

Other problems that can arise from following the law include an increase in the number
of methods, an increase in the number of arguments passed to methods, and a decrease in
code readability [57]. Potential advantages of using the law are that code can become easier

to understand and maintain [57].

Before Demeter J/ Client
methodA () {
Client X.methodX (). methodY ();
X }
methodA() /] Class X
methodX () {
... Il returns object of type Y
}
Class X ClassY
v Il Class Y
methodX () methodY () method¥ () {
}
After Demeter
Client I/l Client
X methodA () {
methodA() }X .otherX();
/I Class X
otherX
Class X Ot
Y Y .methodY ();
otherX () }
/l Class Y
methodY (){
ClassY }"'
methodY ()

Figure 3.13 — A dependency graph and code showing the outcome of applying the Law
of Demeter

3.5 Inadequacy of Current Inspection Approaches

There are various reading techniques available that can be used by individua inspectors
during the inspection of code. How much do currently available reading techniques help
inspectors deal with the issue of delocalisation? Two of the oldest reading techniques are
ad-hoc and the checklist (still regularly used), with Perspective Based Reading (PBR) a
relatively new technique.

Chapter 3: Investigation of Object-Oriented Code Inspection 53

Consider the example shown in Figure 3.14. There are severd flaws in the structure of
the cancel Reser vat i on method. Given aperson and a date, the method was supposed
to remove the associated reservation that had previously been made for a particular video.

The flaws in the method were;

public void cancel Reservati on(Person u, GegorianCal endar d)
{

Reservation r = new Reservation(u,d);

for(int i=0; i<reservations.size(); i++)

if (reservations.renpveEl ement(r))

System out. println("Reservation Cancelled");
el se

System out. println("Cancellation Failed");

Figure 3.14 — Example of a delocalised defect

* Theuseof af or loop when none was required.

* An assumption placed on comparisons made between the date held in d and
the datesheldinther eser vat i ons vector. The specification for the method
stated that only the year, month and day were to be taken into account when
comparing dates. However, the Vector method r enoveEl enment compares
two objects using their equals method, meaning that in this case, the hour,
minute and seconds values in both these objects were also considered in the

comparison.

The ad-hoc reading technique offers no support to the inspector, instead the inspector
relies on their own knowledge and experience and reads the code in their own preferred
way. It offers no guide to help focus an inspector on parts of the code or help them
comprehend the code. Whether any of the delocalised information is traced depends solely
on what the inspector does. This suggests that ad-hoc reading may have poor results when
dealing with delocalised information, and depends heavily on the individua inspectors. It
certainly provides no active support to address delocalisation.

Checklists offer more support than ad-hoc in the form of a series of questions (see
Figure 3.15 - from [40Q]), which must be answered by the inspector. One drawback of using
a checklist is that it "provides little support to help an inspector understand the inspected
artifact" [50]. It is unlikely that a checklist would highlight incorrect use of the date storage

class G egori anCal endar in Figure 3.14 as the code is, in itsef, functionaly correct

Chapter 3: Investigation of Objed-Oriented Code Inspedion 54

but contains the hidden assumption relating to the number of fields used in the date
comparison. Although Porter et al. [70] commented that checklists might be thought of as
systematic because they define reviewers responsibilities and ways to identify faults, they
argue that the generality of the questions and lad of concrete strategies for answering the
questions makes chedli sts a nonsystematic reading strategy. Chedklists do nd encourage
inspectorsto follow the trail of delocdisation, they encourage locali sed, as-needed reading

(seefoll owing section).

Complete Verify that the code covers al the design.
Strings Chedk that al strings are
identified by pointers and
terminated in NULL
{} Pairs Ensurethe{} are proper and matched
Cals Chedk function cdl formats:
Pointers
Parameters
Useof ' &'
File Open and | Veifythatall filesare
Close . Properly declared,
opened and,
closed

Figure 3.15—Typical chedlist questions, [40]

PBR, the newest code reading tednique, has the goa to "examine the \arious
descriptions of a software artifact from the perspectives of the artifact's various
stakeholders for the purpose of identifying flaws." [48]. Each inspector is given ore
perspective, each of which is different from the rest of the inspectors on the team.
Examples of perspectives include designer, tester, and maintainer. Multiple inspectors are
required to oltain a ‘reasonable’ level of coverage of the document. Each perspective
contains instructions on extracting the relevant information for examination (in respect to
their perspective), and is followed by a series of questions to be answered based on the
information collected. In this way, PBR encourages a better understanding of the code but,
like checklists, it doesn’t adively encourage inspectors to follow the delocalisation trail .

Another weaknessof al three approaches — ad-hoc, chedlist and PBR —is that nore of
them help reduce the amournt of code that would have to be understood if delocalisation
trails were followed. Following the trailsis necessary for a sufficient understanding of the
code to help identify delocalised defects. An inspection on 200 lines of objed-oriented
code could easily swell by an order of magnitude due to inter-class dependencies. All of the
approadhes assume that a manageable quantity of code (e.g. 100 lines per hou) can be

easily isolated.

Chapter 3: Investigation of Objed-Oriented Code Inspedion 55

Thus the reading techniques ad-hoc, chedlist and PBR are not designed to cope with
defects where the information required to understand and identify them is delocalised.
They neither encourage inspectors to follow the trail s of delocalisation ror help reduce the
amourt of code to be rea if the delocalisation trail is followed. New techniques and aids

are neaded to address these problems.

3.6 Ways to Improve Object-Oriented Inspection

There ae two general strategies that can be used when trying to urderstand program code.
These ae systematic and as-needed urderstanding that Soloway et al. [88] described in the
context of comprehending a program for the purpose of maintenance:

Systematic Strategy: Programmers using this strategy started at the beginning of the
program and documentation and traced the flow of the entire program, using various
forms of simulation (e.g. symbolic, actually plugging in values) [88].

As-nealed Strategy: Programmers using this strategy chose to study portions of the
code and documentation, which they believed would be useful for constructing their
enhancement. They read those portions as they decided that they needed them [88].

The problem of delocalisation means that the information required to spot defeds can
be spread over many classes, methods and libraries, and can even involve dependencies on
code that hasn't yet been written. This creaes the effect shown in Figure 2.4, that to fully
understand what one method is doing, a string of method invocations have to be followed,
perhaps up and dowvn a class hierarchy, and dramatically exploding the anourt of code that
hasto be looked at.

Systematically inspecting (and urderstanding) al code and its dependencies would
provide the understanding required to identify delocalised defects. However, due to the
size of real systems, thiswould be expensive andtime @mnsuming. Also, due to limitations
on the anount of information that can be usefully retained at one time in short-term
memory, it would be unredlistic for one person to urderstand an entire system. More
practicdly, when inspecting object-oriented code, an as-nealed reading approach has to be
adopted to deal with the possibly large anounts of delocalised information. This would
alow ingpectors to select the parts of the system they believed were necessary to develop
their understanding. However, the danger is that an as-needed approach will force
inspectors to make unverified assumptions that lead to the kinds of defectsillustrated in the

previous experiment being missed.

Chapter 3: Investigation of Object-Oriented Code Inspection 56

A related problem is how to select the code to be inspected. Due to the large number of
dependencies within object-oriented code, it becomes very difficult to isolate an
appropriately sized chunk of code. Selecting by size alone is ingppropriate due the many
links and dependencies one class may have. The aim must be to limit these dependencies.

For inspections to be effective for object-oriented code, techniques and aids need to be
developed that specifically address delocalisation. In particular the following issues must
addressed:

(1) Chunking - The many dependencies and links between classes make it very difficult
to isolate even one or two classes for inspection, and delocalisation complicates this
further. How you partition the code for inspection defines what an inspector gets to
inspect. Two issues in this respect need to be addressed: (1) the identification of
suitable chunks of code to inspect, and (2) decide how to break the chunk free of the
rest of the system, minimising the number of dependencies and the amount of
delocalisation.

(2) Reading Strategy - How should object-oriented code be read, especialy if
systematic reading of code isimpractical? Is there areading strategy that could help
inspectors deal with delocalisation? Can checklists or PBR be modified to address
delocalisation or are new reading strategies required?

(3) Localising the delocalisation - A way has to be found to abstract the delocalised
information for the inspector, providing the benefits of systematic reading without
the unrealistic requirement that everything is read.

3.7 Conclusions

The chapter has presented a consistent body of evidence using existing literature, an
inspection experiment, and a small-scale survey of industrial practice that suggests
delocalisation is a significant problem for the application of traditional inspection
techniques to object-oriented code. Well-structured object-oriented code makes it difficult
to isolate independent chunks of code for inspection and totally unredistic to fully
comprehend all such chunks in isolation. The following chapters present further

investigations that attempt to address the issues facing object-oriented code inspection.

Chapter 4

Systematic, Abstraction Based Object-

Oriented Code Inspection

Through the examination d the literature, an empirica experiment, and a survey of
indwstrialists it has been established that some of the key features of object-oriented
languages — inheritance, dynamic binding, pdymorphism, and small methods — may have a
significant impad on the eae of understanding of the resulting program code. These
object-oriented features, by distributing closely related information throughout the code,
create the problem of delocalisation — the information required to understand one line of
code, a method, o even a dass is not completely contained within the code under
inspection, bu spread throughou other methods, classes, systems, or libraries.
Well-structured object-oriented code makes it difficult to isolate independent churks of
code for inspection and totally unredistic to fully comprehend such churks in isolation.
Based on the results of the previous experiment and indwstrial survey, three aeas were

highli ghted as needing attention to improve object-oriented code inspections:

e Churking — how to partition a system for inspedion
¢ Redling strategy — how to read ead ‘ chunk’
e “Locdising the ddocdisation” — howv to make available necessary nonlocd

information

This chapter presents a systematic, abstraction-based reading strategy for object-
oriented code inspection that concentrates on addressing the latter two pdnts. Due to the
relatively small size of the @de inspected and time @nstraints, the problem of chunking is
nat explicitly addressed in this experiment. How this problem may be dedt with when
scding-up the gproach is discussed at the end d the next section.

A description of the systematic reading strategy is presented along with an empirical
evaluation, which takes the form of a controll ed experiment comparing the defect detection
rates of systematic reading versus the al-hoc reading strategy.

Chapter 4: Systematic, Abstradion Based Objed-Oriented Code Inspedion 58

4.1 Systematic Inspection

The moativation for the proposed technique was the need to address the challenge of
“localising the delocdisation” — i.e. to find a way to resolve the references to non-locd
information by providing many of the benefits associated with thorough systematic reading
(aacuracy and completenessof information), but in an efficient manner.

The basic goproach drects inspedors to read the code in a well-defined order, and as
they dothis, to reverse engineer abstract specifications for eaty method. Inspedors follow
method cdls and other outside information, where necessary, to develop a sufficient
understanding. The essential ideais that the creation of abstradions forces a deeper
understanding of the code and provides a summary of the method for reference in future
inspections. The aeation d abstractions is not seen as a duplication of work as it is not
common to find class gecifications with that level of detall being generated by the design
process

The systematic technique atempts not to placeunrealistic constraints on what support
documentationis avail able. It only assumes that code, the Java online APl documentation,
and class diagrams are available.

The foll owing describes the technique in more detail:

» Interdependencies (couplings) within the whole system are analysed and those
classes with least dependencies are inspected first.

* Methods within classes are analysed and those methods with least dependencies are
inspected first.

This gives the order in which to insped the classes in the system and, for eadh

inspection, the reading order for each method. During the inspection:

» Classes and methods are inspected using an abstraction driven realing strategy.
Thisinvolves reverse engineering an abstract specification for each method.

e During inspection any references to external classes whose understanding is
necessary to write the astract specification must be traced. This may involve
reading and urderstanding other methods, documentation, or previoudy created
abstractions.

As the inspection of the overall system proceals more and more of the dasses will
aready have astract specifications. This ould limit the need to spend time

understanding other classes during future inspections.

Chapter 4: Systematic, Abstradion Based Objed-Oriented Code Inspedion 59

The ordering of methods within classes is based on the following features, ranked in

order of increasing del ocalisation:

» Method call to method previously inspected - including class library.

* Method hes a parameter that is atype defined by ancther class.

» Method casts an objed to atype defined by another class.

* Methodcal in classcurrently under inspection.

» Methodcall to classlibrary method nd previoudy looked at.

e Methodcall outside airrent class bu in other classes under inspection.
¢ Method call outside aurrent classand rot under inspection.

The ranking was developed by the aithor through experience gained while creating the
systematic reading technique. It may not be possible in al situations to generate asingle,
unique ordering. Where this occurs, a best fit approach should be taken.

To develop the ebstract specification a degp understanding of each methodis required.
All aspects of the method should be read and undxstood. All linksto ather classes sould
be understood as far as possible. Development of this deeper understanding may reved
more of the hard to find defects.

The systematic technique does not emphasise Soloway’ s tracing the “flow of the entire
program”, as this would be impracticd given the dynamic characteristics of object-oriented
software. It might be impossble in some situations to be able to read al methods when
following the trail of delocalisation —there may be too many. In these @ses, the trail
shoud be followed urtil a sufficient understanding has been obtained to allow the adstract
specification to be written.

The abstract specification for each method should identify any changes of state (i.e.
changes to attributes / instance variables) and outputs (return values or messages) in terms
of inputs and rior state (i.e. changes to attributes / instance variables). These are more
than just interfacedescriptions.

The specification generated shoud be:

» Brief (as dort as possible while caturing all aspects of the method).

e Dedarative (describe what the method des, not how it does it) and there should be
no mention of programming language @nstructs (eg. i f or whil e) and no
mention d temporary variables.

* Complete (cover al aspects of the method's functionality including that derived

from references to other classes, including inheritance).

Chapter 4: Systematic, Abstradion Based Objed-Oriented Code Inspedion 60

The User Col | ecti on maintains a list of the people currently registered for
the system. People can be added to or removed from the collection. A check
can also be performed to see if a person is a registered user of the library
system.

Figure 4.1 — Specification for UserCollection class

What follows is a brief example (containing one defect) showing the processof writing
an abstract specification for the method i sRegi st ered from a User Col | ecti on
class. The specificationfor the User Col | ect i on classis $1own in Figure 4.1, with the

codefor thei sRegi st er ed methodshown in Figure 4.2

When reading the method, the inspector needs to be awvare of the delocalisation that
exists within it. These are issues that require further understanding in order to develop the

abstraction. In this example, some of the delocalisationissues are;

* UsesVect or methodel enent At (i nt) —what does this do and what type does
it return?

* Uses Per son method get Ermai | () — what does this do and what type does it
return?

e Uses method equal s(String) associated with result of

Per son. get Emai | () . Isthisdefined or isit inherited from Cbj ect ?

public bool ean isRegistered(String e)

bool ean found = fal se;
for (int i=0; i< theUsers.size() & !found; i++)
if ((((Person)theUsers.elementAt(i)).getEmail ()).equals(e))
found = fal se;
return found;

}

Figure 4.2 — Java code for isRegistered method

Inspedors can inspect the ade for the method in whatever way they choose —
sequentially, inside out, etc., but must resolve delocalisation when encountered. The
following shows how an inspector can build upan urderstanding of the methodfollowing a

stepwise reading approach. Linger, Mills and Witt [59] devel oped the stepwise abstraction

Chapter 4: Systematic, Abstradion Based Objed-Oriented Code Inspedion 61

technique of reading in the late 70's. Laitenberger [51] has aso used a similar approach as
part of a code analyst perspective aimed at procedural code.

e ((Person)theUsers. el enent At (i) gets theith element from the vedor
t heUser s andcastsit to aPer son instance. Can all users be st to Per son?

e (((Person)theUsers.elenmentAt(i)).getEmail ()) getsthe anall (a
St ri ng) of theith element in the vector t heUser s.

e (((Person)theUsers.elementAt(i)).getEmil ()).equal s(e))
Compare theinput St ri ng e with the email of the ith element in the vector using
String equal s(),whichreturnst r ue if thetwo St ri ng instances consist of
identicd characters.

« for loopiterates through al eementsin the vedor (0 to size() —1) only while the
bool ean f ound remainsfalse.

* Loop iterates through the vedor an element at a time, while there ae dements
remaining and the bool ean found remains fal se, setting the bool ean
found tofal se [sic] if theinput String e consists of the same dharaders as

the email of the aurrent Per son object in the vedor.

Returns false if the input String e matches the email address of one of the
Person elements in the user collection, otherwise returns false.

Figure 4.3 —Final abstraction

From all of this, a final abstract spedfication can be written for the i sRegi st er ed
method, and is hown in Figure 4.3, This may be adightly simplistic example, but it
highli ghts how the process of abstradion may encourage the inspector to develop a greater
understanding of the code, making it lesslikely that assumptions or misinterpretations are
made. Further examples of abstrad specifications can be foundin the lecture material used
to present the systematic technique (see Appendix C.4).

An important consideration is how the proposed tedhnique would scale up to deal with
large anourts of program code. The general guidance in the literature is that limits sould
be placead in both the anourt of code in any one ingpection (to around 200lines of non
commented code) and the time dl ocated (to around two hous) [31], [36], [96]. Following
these guidelines means larger amounts of code must be partitioned o ‘chunked’. This

shoud be carried out with care in order that interdependencies are minimised. The

Chapter 4: Systematic, Abstradion Based Objed-Oriented Code Inspedion 62

systematic tedchnique proposed would attempt to partition the system into churks that
minimised interdependencies, ideally nat splitting a class over more than one inspection.
Classes shoud be ordered so that those with |east interdependencies are inspected first. As
inspections progress more and more &stractions are generated — ideally saving the
inspector the effort of chasing delocalisation (by only reading the dstractions). It is worth
nating that no other inspection technique proposes a method that addresses the issue of
partitioning large anourts of code into ‘inspectable’ churks.

4.2 An empirical Study of Systematic Object-Oriented Inspection

4.2.1 Introduction

In an attempt to evaluate the systematic, abstraction-driven inspection reading strategy, a
further controlled experiment was designed that compared its defed detection cgpability
with that of ad-hoc reading.

The foll owing sections present the design of the experiment, the results obtained, and an
interpretation of those results. A copy of al the material used for the actual experiment,
including detail s of the defeds used can be found in Appendix C.

4.2.2 Experimental Goals and Hypotheses

The aims of the experiment were focused using the Goal Question Metric (GQM) paradigm
as described by Solingen and Berghout [87]. The GQM shifts the emphasis away from
metrics to goals. The goals create afocus for the important issues of the experiment.
These goals are then specified in more detail by defining questions, which in turn suggest
the appropriate metrics to be measured. With goals for an experiment stated explicitly,
then data mllected and the evaluation of that data ae based on well-spedfied rationale.
This makes sure that al the necessary information is collected and that all measures
required are being made — a leson learned from the first experiment where not enough
information was recorded to alow an accurate description of subject reading strategy.

The style used here to describe the foll owing experimental goals is based onthat found
in Solingen and Berghou [87].

Goal 1
Analyse the dfectiveness of ad-hoc and systematic technique for the purpose of
comparison with respect to their detedion of defects from the viewpoint of a reseacher

in the context of a University lab course using Java.

Chapter 4: Systematic, Abstraction Based Object-Oriented Code I nspection 63

Thisisthe main goal of the experiment, evaluating the suggested systematic technique
as an aid for defect detection during inspection of object-oriented code. To meet this goal

requires answering the following question:

QL.1: Is there any difference in the number of defects found by either ad-hoc or
systematic inspection?

This question may be answered by collecting data for the following metrics:
M1.1.1 Number of defects found, classified by inspection technique

Testable hypotheses are derived from the statement of goals, the questions and the metrics

asfollows:
H1: The null hypothesis can be described as:

Ho: There is no significant difference in the number of defects found by those
subjects performing ad-hoc inspection compared to those performing systematic

inspection of object-oriented code.
The alternative hypothesis, Hj, is:

H:: There is a dsignificant difference in the number of defects found by those
subjects performing ad-hoc inspection compared to those performing systematic

inspection of object-oriented code.

Goal 2
Analyse the effect of delocalisation for the purpose of understanding with respect to
subjects reading strategy from the viewpoint of aresearcher in the context of a University
lab course using Java.

This second goa of the experiment is more exploratory and is aimed at further
investigating the nature of delocalised defects and their affect on the reading strategy for
the inspection of object-oriented code.

Mesting the above goal requires answering the following questions:
Ql: What way did subjects read through the code?
These questions may be answered by collecting data for the following metrics:

M1.1: Order that classes/methods were read
M1.2: Reading strategy used

Chapter 4: Systematic, Abstradion Based Objed-Oriented Code Inspedion 64

Testable hypaotheses are derived from the statement of goals, the questions and the metrics

asfollows:

H2: --: No testable hypothesis — results explored via qualitative analysis.

4.2.3 Experimental Plan
Since the a-hoc reading technique ladks any explicit methoddogy, it was chosen as the

basdline technique with which to compare defect detection results for the systematic
tedchnique.

To investigate the two inspection reading techniques required two groups of subjects to
inspect asingle mde document, ore using the al-hoc reading approach, the other using the
systematic approach. This was achieved by assgnment of 64 subjects into two groups, A
and B, of approximately equal ability (based on previous programming courses). To rule
out any interferencein the results due to subject ahility, the subjects had to inspect a second
code document, this time using the alternative gproach. Both code documents were
similar in terms of size and complexity. Table 4.1 shows the dlocation of groups to code
documents for the inspection experiment. No group comporent was carried ou, as the
main focus of the experiment was the performance of the individual inspectors. The code
inspections were paper-based, no tool support was provided (to avoid introducing

confounding factorsinto the experiment).

Ad-hocinspedion | Stepwise inspedion
GroupA | Code Document 1 | Code Document 2
GroupB | Code Document 2 | Code Document 1

Table 4.1 —Allocation of groupsto code documents

Subjects
Subjects were participants in a 3 yea Honaurs Computer Science Software Engineering
course run at Strathclyde University. It shoud be noted that these subjects were a
completely different set from the first experiment. Subjeds had previous experience with
the programming languages Java and C, had limited knowledge of Software Requirements
Spedfication (SRS) document inspection, and noexperience with code inspections.

Prior to the experiment, subjeds had been given a problem statement describing a hotel
bodking system (the original problem statement can be fourd in Appendix C.1). From this

initial specification, subjeds were given six weeks to derive aspecification for the system.

Chapter 4: Systematic, Abstraction Based Object-Oriented Code I nspection 65

Once completed, subjects were then provided with a specification prepared by the course
lecturer. From this, subjects were given a further six weeks to code the hotel booking

system using Java. It was after this stage in the course that the experiment took place.

Code
Java was used again because the experiment required an object-oriented language and it
was the language most subjects knew the best (having used it for the preceding 2.5 years).

In this experiment subjects were required to inspect code segments that were of the
order of 200 lines in 90 minutes, bearing in mind that the subjects were students. The
amount of code inspected isin line with established practice (see Section 3.2.3 - Code).

For the practice sessions of the experiment, subjects were presented with material used
in the first experiment. For the remaining sessions of the experiment, the material used
represented extensions onto the hotel booking system. The two extensions were a gym
booking facility (code document 1, consisting of one Java class) and a conference room
booking facility (code document 2, consisting of three Java classes). The two extensions
were of similar length and complexity. Subjects had not previousy seen any code

documents or specifications for these extensions.

Defects

The defects used were derived from a number of sources. defects with similar
characteristics to those used in the first experiment, the literature, the industrial survey, and
a selection of naturally occurring defects (defects discovered in the code written by the
course lecturer). In total ten defects were seeded into code document 1 and ten different
defects into code document 2. Since the experiment was investigating the effects of
delocalised defects, half the defects seeded (five defects) in each code document had
delocalised features.

Web Material
As well as the paper-based material provided for the inspection, extra material was made

availableto inspectors viaalocal web page. This page contained links to the following:

e All code under inspection

« All available code for the rest of the hotel system
* TheJavaclasslibrary APl page

e Theoriginal hotel system specification

Chapter 4: Systematic, Abstradion Based Objed-Oriented Code Inspedion 66

* Abstradions for other system classes that would have drealy been inspected had
the overall strategy of inspecting those classes with least dependencies first been
followed (only avail able for systematic inspections)

All code made available was in plain text and contained nospecial highlighting, comments

or hypertext links.

Data Collection

For ad-hoc inspections, inspedors were provided with a defect report form in which to
record defects found and a @mde bodklet containing the code to be inspected. To record
subjects’ realing order, a coll ection of boxes were placed above eat methodin the cde
documents. Each time asubject began to read a method, they would write the time in the

next avail able box (an example of this can be seenin Figure 4.4).

L e N A e A A AR A KA S A
public bool ean reserve (Del egate del, int num FunctionDate start,
Functi onDate stop, Set wantedFacilities)
{

Function f;

if (this.isReserved(start, stop) | this.isNaneUsed(del.getNanme()))
return fal se;

el se

{
f = new Function(del, num stop, start, wantedFacilities);
del . set Function(f);
return true;

}

}

Figure 4.4 — Example of code and time boxes

A questionnaire was prepared and given to subjects uponcompletion of the al-hoc and
systematic inspedions. The am of the questionnaire was to gather extra information on
resources used and problems encountered by subjeds during their inspections. A copy of
the questionnaires can be foundin Appendix C.2.3 (for ad-hoc inspection) and Appendix
C.5.5(for systematic inspection).

For systematic inspections, inspectors were given bah a defect report form and code
bodklet (exactly as for ad-hoc inspection) and were also given method specification sheets.
These contained baxes in which subjects were to write their abstract specifications for the
inspected code. Systematic subjects were dso given a questionnaire which, as well as

asking abou resources used and poblems encountered, explored opinions on the

Chapter 4: Systematic, Abstradion Based Objed-Oriented Code Inspedion 67

systematic tedchnique and perceived advantagesdisadvantages compared to ad-hoc
inspection.

Data Analysis
The goals of the experiment feature both a testable hypothesis and an exploratory analysis.
Where gpropriate, SPSSwas used to test the experimental hypothesis (to determine
whether there was a significant differencein defects found by ad-hoc inspection compared
to systematic inspection of object-oriented code) using an independent sample t-test (this
was used because the two groups being compared had diff erent subjeds).

The remaining goal that was exploratory in nature was investigated through the analysis
of the qualitative information gathered during the experiment and from the post inspection

questionnaires.

Threats To Validity
Potential threas to internal validity included:

» Sdlection effeds - subjects were split into two groups of equal ability based on
previous classmarksin an attempt to minimise this effed as much as possible.

* Leaning effects - due to passhle learning effects, ad-hoc inspections had to be
caried out by both groups of subjects before systematic inspedion (necessitating
the use of both sets of code each week — seenext paint).

e Plagiarism was a @ncern in the experiment since both sets of code documents
were used in both the ad-hoc and systematic inspections (weeks 2 and 4), providing
an opportunity for collaboration among subjeds. Thiswas minimised by retaining
al paper material after each experiment. Subjects were dso never informed,
before or after the experiments, of any specifics about the mde being used for the
experiment, other than that it was an extension d the hotel bodking system.

* Lossof enthusiasm - for four weeks subjects were carrying out an inspedion per
week. It is possible that subjeds found this repetitive and interest dropped off
towards the end. To try and counteract this, course credit was awarded to subjects

for completing the inspection exercise and the questionnaire.

The potential threats to the external validity were the same & those for the first
experiment (use of students, scale of problem inspected, defects seeded and overall

inspection process).

Chapter 4: Systematic, Abstraction Based Object-Oriented Code I nspection 68

4.2.4 Experimental Procedures

Based on the experimental plan, the following timetable was used to arrange the

experiment:

Week 1: L ecture and Practice inspection (using ad-hoc technique)

Week 2: Inspection of hotel system extensions (using ad-hoc technique)
Week 3: L ecture and Practice inspection (using systematic technique)
Week 4: Inspection of hotel system extensions (using systematic technique)

Training for the experiment occurred in weeks 1 and 3, and consisted of an introductory
lecture and training session. Each lecture lasted approximately 50 minutes and introduced
all of the relevant information and techniques. The next day, a training session lasting 1.5
hours was held and was run informally to alow subjects to ask questions and to overcome
any conceptual problems about the inspection process and techniques used.

For the experiment in weeks 2 and 4, subjects were given up to a maximum of 90 minutes
to complete the inspection. Subjects were presented with a booklet containing the
inspection materia (instruction sheet, specification, class diagram, code booklet, defect
report form, and method specification sheets for systematic inspections). Once subjects
had finished the inspection task or the 90 minutes were up, they were supplied with the
guestionnaire. Subjects were given approximately 20 minutes to complete this. Both the
inspection task and the questionnaire were completed under exam conditions to ensure that

subjects worked independently.

4.2.5 Experimental Results

64 subjects participated in the experiment. Due to reasons of attrition from the practice run
the results are based on 53 subjects. Three other defects were discovered for the gym code
document (code document 1) which were not originally seeded by the author, but were
highlighted by subjects during the inspection. The following sections describe the results

of the various e ements of the inspection exercises.

Defect Detection

Table 4.2 presents a summary of the defect detection results obtained from all parts of the
experiment. It shows that for both the Gym and Conference Room extensions there is a
small improvement in the mean number of defects found by subjects using the systematic

inspection technique when compared to ad-hoc inspection. Using an independent sample t-

Chapter 4: Systematic, Abstraction Based Object-Oriented Code I nspection 69

test, the difference between the two means (ad-hoc and systematic) is not datisticaly
significant (at the 5% level) for both code documents (shown in Table 4.3). This means we
cannot regject the null hypotheses, Ho, for goal 1 (see Chapter 4.2.2): there is no significant
difference in the number of defects found by those subjects performing ad-hoc inspection

compared to those performing systematic inspection of object-oriented code.

Gym Conference Room
Code Document 1 2
Technique Ad-hoc Systematic Ad-hoc Systematic
Group A B B A
No. of classes 1 1 3 3
No. of Subjects 25 28 28 25
No. of defectsin code 13 13 10 10
No. of defects found (mean) 3.44 3.86 3.04 3.44
No. of defectsfound (St. dev) | 2.0632 2.4603 1.7947 1.4166
No. of defects found (St. error) | 0.4126 0.4649 0.3392 0.2833
Time (mean) (minutes) 84 88 89 88
False positives (mean) 5.08 3.61 471 4.28
False positives (St. dev) 3.4147 2.6852 2.9796 2.0314
False positives (St. error) 0.6829 0.5075 0.5631 0.4063

Table 4.2 —Inspedion Summary of defect detection results

Table 4.2 also shows the mean time taken by each group of subjects for their inspection.
In general, most subjects, no matter the technique or code document, used the full time of
the inspection (90 minutes).

False positives are defects noted during the experiment which turn out not to be defects.
The results indicate that for both code documents, there was a reduction in the mean
number of false positives recorded by the systematic subjects compared to the ad-hoc
subjects. Thisis aso reflected in the standard deviation and standard error results. This
may be due to the systematic technique encouraging inspectors to obtain a greater level of
understanding. The reduction in false positive figures may also be due to the subjects

gaining more experience in inspection.

Significance (2-tailed)
Gym .505
Conference Room | .365

Table 4.3 —Results of an independent samplet-test

Chapter 4: Systematic, Abstraction Based Object-Oriented Code I nspection 70

Shown in Figure 4.5 and Figure 4.6 are the mean defect detection rates for the two hotel
system extensions. Each figure compares the average number of defects found by all the
ad-hoc inspectors over the 90 minutes with the average number of defects found by al the
systematic inspectors.

— Ad-hoc
Systematic

Average number of defects found

0

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
Time (in minutes)

Figure 4.5 — Gym defect detection rate

In Figure 4.6 there is a large difference between the initial defect detection rate. This
could be due to the fact that the conference room extension was written in three classes.
Following the systematic technique meant reading through the classes in a certain order.
The firgt class they would have read only had one defect and the second class only had
three (out of a possible ten). Those who were inspecting the three classes via the ad-hoc
method were given the classes in one of six different orderings. This could account for the
higher difference between the two techniques when compared to the gym extension in
Figure 4.5 (which only had one class and so no alternative orderings), where the defect
rates for the two techniques are fairly close. For both code documents, the systematic

technique at some point obtains a better detection rate than the ad-hoc technique.

Chapter 4: Systematic, Abstradion Based Objed-Oriented Code Inspedion 71

o - Ad-hoc
o *== Systematic

Average number of defects found

0 -
lllllll . »

0O 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Time (in minutes)

Figure 4.6 — Conference Room defect detection rate

Reading Strategy

This section investigates the sesaond god of the experiment, looking at the reading strategy
employed by subjects when reading the code. To help gauge subjects reading strategy,
they had to fill in the time they began reading a methodin baxes provided within the code
documents (an example is shown in Figure 4.4). This information was then compiled and
entered into asmall purpose built tool to help visualise how subjects read through the code.
A screen captured from the tool showing an ad-hoc subjed’s reading order is shown in
Figure 4.7. It shows in what order the dasses and methods were read as well as
approximately how long was gent reading them. This particular subjed read through the
code using a cmmbination of two techniques. The subject began by reading the wde in the
order presented to them, bu then would follow method calls to other methods within the
class or methods in ather classes. Figure 4.8 shows an example of a systematic subjeds
reading order. This subjed read the @de in the order presented to them, and read each

method orly once

Chapter 4: Systematic, Abstraction Based Object-Oriented Code I nspection

72

1]
100 T
95 !
a0
25 ——— T
|
Ll T i
75 : I
70 !
4]
a0
55
A0
45 |
|
40 T
1
35
B e —
25
20 T
15
10
g |
o |
1 2 3 4 i a T 8 a 10 11 12 13 14 15 16
|CmﬂerweRoom Fmction, FnctionDate
1. CovferenceRoom/it Set) 3. getOrgandser() 15. eqquals(Obiject)
2. reserve(Delegute ot PmctionDate FimctionDate Set) 9. getthomDelegates() 16. halfDaysBetmeaFumctionDate)
3. remve Bockingy String) 10, get Start()y
4. is Suitableiie, Set) 11, getStop()
5. isReserved(FmctionDate FuvctionDate) 12, getFmction Charge()
6. isHane Used(String) 13, PanctionDrate()
7. PmctioniDelegate ot PunctionDate PonctionDate Set) 14, PrnctionDate(ie vt fnt e =
[¥]
| woan | oispiay || Pt || our |
Figure 4.7 — Screen shot of an ad-hoc subject’ sreading strategy
_ O] =]
100 r
95 I
Q0 !
25 ks
&0
75
o
65
60
A5
50
45
0
35
0
25
7 i
15
10
ol
a
1 2 K 4 5 L] 7 2 a 10 11 12 1z 14 15 16
|F\mmmDm Function CorfranceRoom
1. PrwctionDarel) 2. gesan) 13, isFasumedrFmcrionDate FzactionDiate)
2. PoactiomDate(ie ot ot i) 9. getStop) 16. reserve(Delegate ot PunctionDate FanctionDate Set)
3. equalstOhject) 10. getFmction Charge()
4 ha¥DaysBunmeaFimeiosDate) 11. ComfirenceRocengine, Set)
5. PmctioeDrelegate ot FioctionDate PicticeDate Set] 12, is Suitable(int Set)
6. get Orgamiser() 13, isHume Used(String)
T getthmm Delegatec) 14 remoweBooking] Sming) T
a [v]

| Load || Display H Print H Quit |

Figure 4.8 — Screen shot of a systematic subjects’ reading strategy

Chapter 4: Systematic, Abstradion Based Objed-Oriented Code Inspedion 73

Figure 4.9 shows a graph detailing number of times the amde to be inspected was real
against percentage of subjects. It shows that those carying out ad-hoc inspections were
always reading the ade more than orce, and in nearly 50% of the cases real the @mde two
to three times. In comparison, 3040% of subjects using the systematic reading technique
read the code only once, with the vast majority of the rest reading through the code once
and then rereading only a few select methods. When inspecting via the systematic
technique, subjects were spending longer reading methods as they attempted to fully
understand what they were doing and create their abstract specifications. Whereas with ad-
hoc inspections, subjects would repeatedly browse through the @de multiple times,

sometimes appearing to spend very little time cncentrating on each method.

60
50
40 mGym (Ad-hoc)
% - I Conf (Ad-hoc)
E mGym (Syst)
£ 20 O Conf (Syst)
10
0 n

<1 1 1-2 2 2-3 3>

Number of Timesread through code

Figure 4.9 — Number of times aubjeds read through the code

Further analysis of the timing information gathered indicates that more than half of the
subjects in bath ad-hoc inspedion groups began reading the code in the order presented to
them. After reading through the mde at least once, subjects then used this information to
revisit methods for further inspection. It appeas that in the later stages of the inspection,
the subjeds’ reading order is not affeded by code order or method calls.

Most of the remaining ad-hoc subjects read the code by following method calls. After
having read through al the code this way, at least once subjects again decided which

methods to revisit.

Chapter 4: Systematic, Abstradion Based Objed-Oriented Code Inspedion 74

Only 17% of all ad-hoc subjeds read through the ade in the order presented and stuck
to that reading order through the entire inspection.

For the systematic inspection, subjects were told to read the ade in the order presented
The code had been specificaly ordered to
minimise dependencies. About half read the mde in the suggested order for the entire
inspection, the other half read most of the code in the order suggested, but occasionaly

to them (for both methods and classes).

jumped to another method before returning to the given order. More time was gent by all
subjects reading methods for the first time than was the case with ad-hoc inspedion.

Through looking at the timing information gathered and the defects found ty subjects, it
appears that 9% of the systematic subjects failed to complete their inspection of the code
(i.e. were nat able to read al the methods in the mde within the given time).

Morethan half the | Morethan half the | Same number of
defeds found on defeds found on defeds found on
first runthrough subsequent runs first and subsequent
code through code runs
Gym (ad-hoc) 54% 21% 25%
Gym (syst) 75% 4% 21%
Conference (ad-hoc) 54% 32% 14%
Conference (syst) 100% 0% 0%

Table 4.4 —When, during theinspection, subjedsfound defeds (in relation to their
reading strategy)

Table 4.4 shows when subjeds were more likely to find defects during the inspection.
For those carying out ad-hoc inspection, just over 50% were finding more than half of
their total defects in their first passthrough the amde. Roughly a quarter of the remaining
subjects found more defects on subsequent runs through the ade. This is not surprising
considering that ad-hoc inspectors were making multiple passes through the @mde (see
Figure 4.9). For systematic inspection, %% of subjects for the single class code document
(gym) and 1004 of subjects for the multi ple dasscode document (conference) found more
than half their defects onthe first pass through the mwde. Very few subjedsin either group
found more defects on subsequent passes through the mde. This significant increase in
finding more defects in the first passthrough the ade indicates that there is perhaps not
quite such a strong need to make the multi ple passes through the mde (as seems to be the
case with ad-hoc inspedion —shown in Figure 4.9), but fewer, more concentrated and
focused pas<es.

While carrying out their inspections subjects had access to the online Java

documentation. The post-inspection questionnaire asked subjects what online

Chapter 4: Systematic, Abstraction Based Object-Oriented Code I nspection 75

documentation they had accessed. Results show that very few subjects (in most some cases
no more than 25%) who were reading the relevant online documentation associated with a
defect were aso finding the defect. The online documentation was the standard JavaDoc
documentation supplied with Java. Subjects had access to it for the previous two years.
The results suggest that either subjects are not very proficient a using the online
documentation, or the online documentation itself is at fault (perhaps due to a lack of

detailed information or poor presentation). No definite conclusions can be made.

Code No. of defects | Code Document | No. of defects | % of defects
Document found (systematic found (comparing

_ (ad-hoc (ad-hoc) inspection) (systematic) both
inspection) inspections)
Gym 7/13 Conference 6/10 54% : 60%
7113 2/10 54% : 20%
6/13 5/10 46% : 50%
6/13 4/10 46% : 40%
6/13 4/10 46% : 40%
6/13 5/10 46% : 50%
Conference 7/10 Gym 9/13 70% : 69%
6/10 6/13 60% : 46%
6/10 7113 60% : 54%
6/10 8/13 60% : 62%
5/10 4/13 50% : 31%
5/10 5/13 50% : 38%

Table 4.5 —Number of defects detected by the top ad-hoc subjects and their
systematic defect detection results

Table 4.5 shows for each of the ad-hoc subjects who performed well in either the gym
or conference code documents, the number of defects the subjects went on to find using the
systematic technique. Thaose subjects who performed well during the ad-hoc inspection did
not significantly improve their performance when carrying out the systematic inspection.
Eight of the twelve subjects abtained approximately the same percentage of defects for
both inspections, the other four subjects performed notably worse during the systematic
inspection than in the ad-hoc inspection. This possibly indicates that the systematic
technique was constraining the natural abilities of the better subjects, perhaps by forcing
them to read the code in a certain order. It is aso possible that these subjects felt they had
less freedom to look back at code aready inspected, instead always reading forward
through the code in order. Conversaly, Table 4.6 shows for nine of the poorest subjects in

ad-hoc inspection, al but one improved their defect detection rate during the systematic

Chapter 4: Systematic, Abstradion Based Objed-Oriented Code Inspedion

76

inspection. The gplication d a technique to guide the inspection process appears to help

those wedker subjeds.

Code No. of Code No. of defeds | % of defeds
Document defeds Document found (for both

_ (ad-hoc found (ad- (systematic (systematic) inspedions)

inspedion) hoc) inspedion)

Gym 0/13 Conference 2/10 0% : 20%
1/13 4/10 8% : 40%

1/13 1/10 8% : 10%

1/13 3/10 8% : 30%

Conference 0/10 Gym 2/13 0% : 15%
0/10 2/13 0%: 15%

1/10 4/13 10%:31%

1/10 0/13 10%: 0%

1/10 2/13 10%: 15%

Table 4.6 —Number of defects detected by the wor st ad-hoc subjects and their
systematic defect detection results

Just under half of those subjeds who performed well (shown in Table 4.5 during ad-
hoc inspection (over both code documents) read the code by following method calls, the
rest read the code in the order it was presented to them. All of the subjects who did na
perform as well during the ad-hoc inspection (shown in Table 4.6) read the ade in the

presentation order.

The Defects

The two charts in Figure 4.10 show the percentage of subjects (y-axis) who found each
particular defect (x-axis) and which code document the defect belonged to (colour of the
bar) for each of the two inspection techniques. This clearly shows which defects were
For the a-hoc
inspections, the three defects that were not found by any subjects al have delocalised
features (all were found ty systematic inspectors — Defect 4¢ by 32%, Defect 9¢c by 12%,
and Defed 13g by 18%). Most of the remaining delocalised defects were found ly less
than 39% of subjects. Defects 4, 5and 13 for the gym code document were not seeded by
the authors, but were found ly subjects during the inspection. One of those, defect 13, was

discovered relatively easily and those that were harder to identify.

only found ty the systematic inspection technique.

Chapter 4: Systematic, Abstraction Based Object-Oriented Code | nspection 77

Ad-Hoc Defect Results

90*

80’ 2
70 1 64 Gym []
60 1] Conference- T
50 A —

43 40 39
40 —

32 32 29

30 1 — o
201 N 1212 13
0‘ T

6100102005730 s .12@5 4 3@‘.

Defed Number

Per centace Resnonse

Note: For last three defects, code base highlighted by letter, e.g. g - gym, ¢ - conference

O - delocalised defects

Systematic Defect Results

©
o
|

Gym]

) 6_4 Conference-]
AG
o 43 43
’ LU || & 3232 323232 32
= 25
RN EN 18
1212 17 11 11 8
) L] L IIDD[

@mmz@sgs@@@67..® 9 4 61209 5

Defed Number

(0]
o
I

~
o

D
o
I

()]

F:

N
o

Per centage Response
w al
S o

=N
o O
I

o
|

Figure 4.10 — Percentage of subjedsfinding each defect for both code documentsand
defect detection techniques

Chapter 4: Systematic, Abstraction Based Object-Oriented Code | nspection

78

om]
Conference l

13
S
L
X

4
C
L
X

0

4

5
M
L
X

12
C
L
X

8

12

12

20

24

24

32

2
C
L
X

11
S
L
X

32

40

64

10
M
L
X

\Y

N'rona obiect

NoG
Ala/Comp

\Y

Omission

72

Figure 4.11 - Defed characteristicsin percentage response order (both code sets) —

Ad-hoc inspection

Chapter 4: Systematic, Abstraction Based Object-Oriented Code | nspection

79

11

11

11

R V2 QU X g
o 0 x| X X &
- 0 by b &
N) bey % &

43 | 43

46

om]
Conference l

Ala/Comp
N'rona obiect
Nrona message

Deted NO

Omission

64 | 46

Figure 4.12 - Defed characteristicsin percentage response order (both code sets) —

Systematic inspedion

Chapter 4: Systematic, Abstradion Based Objed-Oriented Code Inspedion 80

One delocalised defect, defect 1, in the al-hoc inspection of the conference code
document was found ty 79% of subjects (see top picture in Figure 4.10. The defect
concerned a methodin the Funct i on class calling an incorrect method (day sBet ween
in the Hot el Dat e classinstead of hal f DaysBet ween in the Funct i onDat e class).
This high response rate may have been dwe to a dash with the dass gecification or class
diagram provided to subjects during the experiment, or it may be that the subjects noticed
there was a method urused in ore of the related classes they were inspecting
(hal f DaysBet ween inthe Funct i onDat e clasy.

For each of the defects (23 in total) over both code documents, a list was drawn up of
their charaderistics, similar to those used in the previous experiment (see Figure 3.7).
Figure 4.11 and Figure 4.12 show for both reading techniques, the daracteristics for the
defects in percentage resporse order. The characteristics listed were similar to those used
in the previous experiment but included two other headings. specification clash (defed
highlighted by clash with spedfication) and delocalised (defect contains characteristics
which made it delocalised in nature).

The defect characteristic information from Figure 4.11 and Figure 4.12 was again
entered into C5.0, a rule induction system (the output generated can be foundin Appendix

C.7). Thefallowing points were observed from the rules that were generated:

» For both inspection methods, defects involving wrong object and instance variable
misuse were difficult to find. Also, defects involving data flow errors and class
library access were for the most part difficult to find, with ore or two exceptions.

e There were dight improvements from ad-hoc to systematic inspection for defects
with wrong message and use of class library characteristics.

» Defectsinvolving a dash with the specification were in the higher resporse end of
the tables for both inspection methock.

» Defectsinvolving omisdon were never found ty more than 46% of the subjects and
proved dfficult for both inspection techniques.

« Thereisadlight rise in resporse rates via the use of the systematic technique. The
different gradients for the two techniques can be seen in Figure 4.1Q For the top
graph, the gradient is fairly steep, hitting percentages in the 20's by mid way and
ending on a zero response rate. The bottom graph, representing the systematic
results shows a arve (after asharp initial drop) with a more gradual dedine, by half

way still having percentages in the 30's, and ot ending on a zero resporse rate.

Chapter 4: Systematic, Abstraction Based Object-Oriented Code I nspection 81

Figure 4.13 highlights the frequency of detection of defects in both code documents.
Each axis represents the percentage of subjects who found the defects (data points) for a
certain inspection technique. Defects of interest are those not near the line, but are nearer
the axis lines, indicating that one technique was more successful at finding that defect.
There are severa defects for both code documents that fit into this category, as the ratio of
comparison between the two techniques is 2:1 or worse (defects 3, 4, 5, 6, 8, and 13 for

gym, and defects 3, 4, 6, and 9 for conference).

80

75 10
*
70
65 1-)2'
60
55
50
45
= 40 %2 Gym code document
o 35 1 %
(4] *
& 30
? 25 g 3
B 20 g
S 15 12 8
Q 5
g0 x4
*
2 o0 13
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
Systematic (% of subjects)
85
801 6 ;'(-
751 *
701
65 1
60 1
551
501
451 10
401 8 Conferencecode
[2]
T 357 document
'.g 301 %5
2 251 *7
© 20
(=]
3\/ 151 2
[*
guo1 24
X
20 9 4

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Systematic (% of subjects)

Figure 4.13 —Frequency of detedion for defectsin both code documents

Chapter 4: Systematic, Abstraction Based Object-Oriented Code I nspection 82

Of the six defects mentioned for the gym code, defects 8 and 13 were delocalised,
appeared in large methods, had system locality (information required to identify the defect
is distributed across multiple classes), and both were found more by systematic inspectors.
The systematic technique may have helped with these defects due to the increased
understanding subjects were encouraged to obtain through the creation of the abstractions,
and being forced to follow the trails of delocalisation. From the remaining four, three were
related to defects of omission, and one relating to extraneous code. Two of the omission
defects were found more by ad-hoc inspectors, the other two defects were found more by
systematic i nspectors.

Three of the four defects for the conference code were delocalised defects (two dealt
with omission, the other using a wrong method from the class library), and all were found
by substantially more systematic inspectors than ad-hoc. The remaining defect, defect 6,
involved parameters being sent via a method call in the wrong order. This defect was
found by substantially more ad-hoc inspectors (more information concerning conference

room defect 6 can be found in Chapter 4.2.7, Interpretation of Results).

Questionnaire Results

A guestionnaire was given to each subject after the completion of each inspection exercise
(for both ad-hoc and systematic reading). A copy of the questionnaires can be found in
Appendix C.2.3 (for the ad-hoc inspection) and Appendix C.5.5 (for the systematic
inspection). The following summarises the questionnaire responses for each of the

inspection techniques.

Ad-hoc inspection

With the ad-hoc inspection technique nearly half of all subjects read through the codein
sequential order presented and the other half read through code trying to follow execution
path/method calls. Subjects using the ad-hoc inspection technique stated that it was less
time consuming (twenty-one subjects), less restrictive in its reading order, e.g. left to their
own devices (fifteen subjects) and easier compared to the systematic technique (six
subjects). The problems with ad-hoc inspection were that it did not help with
understanding (six subjects), presented less structure to the inspector and subsequently
there was more jumping around the code (twenty-two subjects). Other problems for one or
two subjects that arose during the ad-hoc inspection included dealing with classes from the
Javaclasslibrary that subjects had not previously seen and coding style.

Chapter 4: Systematic, Abstradion Based Objed-Oriented Code Inspedion 83

When asked what could be done to improve ad-hoc inspections, subjects' responses
included accessto tools and aids (two subjeds), more practice (four subjects), ordering of

code (six subjects) and more structure to the technigue (two subjects).

Systematic inspection

With the systematic technique subjects found that reading the code in the suggested
order meant there was less jumping around (twenty-two subjects), they gained an improved
understanding (fourteen subjects), and that the process was more structured/focused (seven
subjects). The down side found by following the ordering was that it took longer to read
through the code (five subjects). One or two subjeds commented that it could sometimes
fed restrictive and major methods were being left to the end of the ordering.

When creating the abstractions, subjects suggested that it encouraged understanding and
made you read each line of code (thirty subjects), that instead of having to re-read methods
you could rea your previously written abstractions (six subjects), and that subtle defeds
were easier to identify (threesubjects). The problems with the abstractions were that they
were time @nsuming (twenty-nine subjects), there was too much to write (five subjects),
and that in several cases it was difficult to write natural language specifications based on
the code (twelve subjects).

When asked what could be done to improve systematic inspections, subjects main
concerns were more time (six subjects), more practice (three subjeds), and more

information/exampl es at the lecture (three subjects).

4.2.6 Experimental Design Lessons

One matter that was very apparent from the questionnaires given to subjects after each
experiment was that they desired more practice with inspection. In this experiment
subjects were only given ore week of practice with a tednique before the assessed part of
the experiment the following week. Subjects only had acess to two examples of the
application d the systematic inspection reading technique, one presented in the lecture and
one from the pradice session. To improve the validity of the experiment it is important
that subjects understand and feel comfortable with any reading technique they have to
apply. Infuture experiments there should be more examples and/or more practice sessions
for subjects.

Chapter 4: Systematic, Abstradion Based Objed-Oriented Code Inspedion 84

4.2.7 Interpretation of Results

Themain interpretation o these resultsis that there is no significant difference between the
systematic technique and the ad-hoc technique in terms of the average number of defects
discovered (seeFigure 4.5 and Figure 4.6), athough there is a small i mprovement for bath
code samples using the systematic goproach. This means we @nnd reject the null
hypothes's, Ho, for goal 1: there is no significant difference in the number of defects found
by those subjects performing ad-hoc inspedion compared to those performing systematic
inspection of object-oriented code.

On the other hand the results suggest that the systematic technique is no worse than ad-
hoc in terms of defect detedion and there may be anumber of potential benefits from the
use of the systematic gpproach:

a) The systematic goproach found al the defects, the al-hoc goproach did not. Ad-hoc
inspectors did not find three of the ten delocalised defects (one in gym and two in
conference). Although no group comporent (collation of defeds by individual
inspectors) was caried out, the fact that the systematic technique fourd all the
defects might suggest that the group componrent would be more successful.

b) The systematic goproach produced abstractions for every method as a by-product. It
is intended that these astract spedfications can be used in future inspections to
save the inspector, or other inspectors, the dfort of reading the class or method
again when another class makes a delocalised reference to that class (eg. via
inheritance, variable declaration, method invocaion,...). Further reseach is
necessary to investigate the usefulness of these abstract specifications. In
particular, it is important to investigate the level of formality required —would the
precision and conciseness of semi-formal or formal specifications provide overall
benefits in terms of remaoving ambiguity compared to natural language?

¢) There is anecdotal evidence from the subjects questionreires that the task of
creating abstract specifications encouraged a greater understanding of the code
under inspection. It is reasonable to assume that a greater understanding may lead to
better defed detection, especially of more subtle defects. The fact that the
systematic inspedors found al the defects also provides some support for this view.

d) The systematic gpproach provides an ardering for the reading strategy to deal with
the delocdised, distributed nature of object-oriented software. Again the
guestionnaire data suggested that inspectors appredated the rigour impaosed by this

ordering. Without such an ordering it is possible that inspectors may ‘wander off’

Chapter 4: Systematic, Abstradion Based Objed-Oriented Code Inspedion 85

into the rest of the system chasing a thorough understanding but, without grea care,
there is a danger that a thorough and complete @verage of the classes under
inspectionwill not be adieved.

Related to points ¢) and d is the suggestion that the technique helped the weaker
subjects improve their defed detection. An analysis of the nine poorest subjects in
ad-hoc inspection over the two sets of code documents sowed that all but one
improved their defect detection rate during the systematic inspection. Alternatively
this could be & a result of a learning effed. On the other hand there is similar
evidence that the systematic method may have inhibited the natural abilities of the
stronger subjects.

Interpreting the results also leads to suggestions for potentia refinements to the systematic
method

a)

b)

The systematic inspectors tended to make one, or at most two, relatively slow
passs through the ade. The systematic goproach seemed to take time to build up
momentum (see Figure 4.6) when inspecting the multi-class code (the Conference
room extension). The questionreire data suggests that subjeds foundthat there was
too much to write during systematic inspection and that they found it difficult to
write the required netural language specifications. This suggests that thereis aneed
to make the @strading process more efficient — the astractions sould be as
focussed and brief as possible, but balanced against the neeal for future inspectors
to be ale to use them as an efficient aternative to reading the dass

There gpeared to be area requirement for more training in the systematic
approadh. Subjects were given a 1-hour lecture and a 2-hou pradical session onits
application. The questionreires siggested a need for more lecture examples and
more practical experience with the technique. Increased experience with the
systematic approadch, particularly with the process of creating spedfications, may
improve the dficiency and effediveness of the gproac.

Related to a) is the possibility that tool suppat may help make the aeation of
abstract specifications more efficient e.g. by automaticdly identifying state dhange
variables and autput values for which the inspector must write specifications.
Several subjects’ questionraires also suggested difficulties with the variety of
documents to be managed duing an object-oriented inspection e.g. code sheets,
problem spedfication, classdiagram, defect report form, abstradion sheet, as well

Chapter 4: Systematic, Abstradion Based Objed-Oriented Code Inspedion 86

as having to accessthe Java Class library APl on-line. Again, it is possible that the
processmay be made more dficient by appropriate tod support.

d) The systematic epproach imposed a reading order that minimised
interdependencies — basically methods and classes are ordered so that they are read
in order of increasing coupling. However the graph-based nature of object-oriented
interactions means that al dependencies cannat be read and urderstood before they
are used. The method reeds to prescribe how to deal with such situations. For
example, ore particular defect (defect 6 — Conference mde — see Figure 4.10
highli ghted this type of prablem. It involved the incorred ordering of parameters
in a call to a method. The method being called had already been inspected. If
subjects had looked at the method in the other class, or looked at their abstraction
sheet, they shoud have noticed the defect. 75% of ad-hoc inspectors found dfea
6, compared to 3% for systematic. The ad-hoc inspectors had more freedom to
move aound the amde. It is possible that the systematic method may have

discouraged inspedors from looking badk.

A key finding was that ad-hoc inspectors seaned to perform multiple (two o thre@
passes through the ade following a mmbination of code ordering and tradng dynamic
method invocations. This was in contrast to the more methodcal, single pass (or so) of the
systematic inspedors. In this study the former approach appears to have been as eff ective
at defect detection as the systematic approach. The mmplete systems were relatively small
(a few thousand lines of code). An interesting question for further study is how well the
two strategies would cope with a more realistic scenario where inspectors are reviewing
200 line ‘churks from significantly sized dbject-oriented systems where delocalised
references could lead deq into the rest of the system.

One potential wegknessof the systematic strategy adopted for this study may be that it
is based on a static view of the ade. Specificaly, the subjects are encouraged to read the
code in alinear order (where that order is such that, as far as possible, dependencies are
read before they are used). However the dynamic view of object-oriented code is quite
different from the static view, as found by Gamma et al. [35] (see Chapter 2.2), who stated
that the two are largely independent of each other. This makes it very difficult to
understand ore from the other.

These findings suggest that the systematic goproach offers a number of benefits: a
rigorous reading strategy, paentia to help address delocalisation through abstract

specifications, potential to encourage deeper understanding and to dscover different

Chapter 4: Systematic, Abstradion Based Objed-Oriented Code Inspedion 87

defects from an ad-hoc gpproach. On the other hand the systematic goproach doesn’t
adequately address the highly dynamic nature of object-oriented software, may be more
time consuming and may restrict the natural ability of experienced or skilful inspedors.

A find interpretation of the resultsis that they provide further confirmatory evidence of
the problems caused by delocdisation during object-oriented inspection. Figure 4.10
shows that the delocalised defeds are, in the main, to the right (found ly lessthan 39% of
subjects). Theinductive analysis suggested that characteristics of delocalisation — wsing the
wrong object and class library acaess — were anongst the dharaderistics of difficult to
discover defects. The results also show that very few subjects who actualy read the
relevant online documentation actually foundthe associated defect (in the main less than
25%).

4.3 Conclusions

This chapter described the evaluation of a systematic, abstraction-driven inspedion
technique for object-oriented code that was developed to address the problems of reading
strategy and ‘localising the delocalisation’. No significant diff erence was found in terms of
the number of defects discovered when compared to an ad-hoc method d inspection.
However some potential benefits were discovered which, with further refinement of the
approach, may help address the problems of delocalisation and provide asuitable reading
strategy for object-oriented code. This experiment also urcovered further evidence that the
delocalised nature of objed-oriented code is areal problem during software inspection.

More research is required to investigate whether refinement of this g/stematic gpproach
can provide a pragmatic reading strategy that helps address delocalisation (as well as
addressing the problem of how to break a large object-oriented system into ‘churks for
inspection). On the other hand, it may be that the dynamic nature of object-oriented
systems hinders the effediveness of such a systematic goproach. The next chapter
describes an investigation d an alternative code reading strategy that is more in tune with
the dynamic nature of olbject-oriented systems, and an investigation of whether refinements
of the systematic goproach can provide apragmatic realing strategy that helps address
delocalisation.

Chapter 5

Development and Evaluation of Three
Techniques for Object-Oriented Code

Inspection

Through a @ntrolled experiment three significant issies important to the successful
inspection of object-oriented code were identified: churking, reading strategy, and
‘localising the delocdisation’. From this, a second controlled experiment investigated a
systematic abstraction-driven inspection technique developed to address the problems of
reading strategy and delocalisation. It was found that the systematic approach dffered a
number of benefits: a rigorous reading strategy which encouraged a degper understanding
of the cde mmbined with the patential to address delocalisation through the credion of
abstract specifications. However, the systematic approach dd na appear to address
adequately the problem of defects associated with the highly dynamic nature of object-
oriented software. The main findings from the secnd experiments were that del ocalisation
of information and the difference between the static and the dynamic views appear to be
very red problems for the practica applicaion d software inspection to dbject-oriented
code.

This chapter presents three diverse reading techniques that were developed for object-
oriented code inspection: an updated version of the systematic technique, a cedlist
modified to encourage inspectors to develop an urderstanding of the aode and focus more
on djed-oriented issues, and a use-case driven approach which takes a dlice through the
system in order to gain a more dynamic view of the code. These techniques are then

evaluated through a controlled experiment.

5.1 Three Inspection Reading Techniques

To further address the problems of delocalisation and reading strategy, three reading
techniques were developed: a systematic abstradion-based technique; a modified chedli t;
and a strategy based on se-cases.

Chapter 5: Development and Evaluation of Three Techniques for Objed-Oriented Code Inspedion 89

The systematic abstraction-driven approach aims to support an understanding of the
code in arigorous, but sequential, fashion. It has the benefit of addressing delocalisation
and encouraging a degoer understanding of the aode. However, progress through code
documents can be slow, and the systematic goproach enforces a particular strategy and
reading order, which consequently, can lead to some gparently simple defects being
missed.

To balancethe systematic reading technique and combat the potential flaws, a dhedklist-
based approach was selected. The dhecklist approach aims to address defects missed by
the systematic technique's linear strategy. This is one of the more traditional inspection
techniques that are widely used in industry [27], [36], [73]. Using the chedklist technique
also alows for a comparison between the effectiveness of a traditional technique with
techniques that have been developed to deal with the specifics of object-oriented code.

From the results of the previous experiment, it emerged that addressing the dynamic
aspects of object-ariented code may be beneficial for inspedion. In response to this, a use-
case driven reading strategy was developed as the third reading technique. Use-cases form
part of the Unified Modelling Language (UML) and more information on use-cases may be
foundin [15], [75], [89]. Theremainder of this section presents a description of each of the

three reading techniques.

5.1.1 Checklist

Chedligts are a straightforward and commonly used reading support mechanism (they
have been around since the early use of inspections in the late 70's) used by individual
inspectors for the purpose of preparation. Checklists are based upona series of specific
questions that are intended to focus the inspector’s attention towards common sources of
defects. Gilb and Graham [36] and Humphrey [40] recommend that chedklists swould not
be composed of general, paentially irrelevant questions obtained from el sewhere.
Laitenberger et al. [50] summarised alist of the weaknesses of the checklist technique.
Firgtly, the questions are often general and not sufficiently tailored to a particular
development environment. Secoondly, concrete instructions on hav to use achedlist are
often misdng, i.e. it is often urclear when and based onwhat information an inspedor isto
answer a particular chedklist question. Finaly, the questions of a dedlist are often
limited to the detedion of defects that belong to particular defed types. Since the defect
types are based on past information [19], inspectors may misswhole dasses of previously

Chapter 5: Development and Evaluation of Three Techniques for Objed-Oriented Code Inspedion 90

undscovered defeds (a problem that the recmmended constant revision of chedklists
attempts to address).

To overcome the first checklist problem concerning general and unrelated questions, the
questions in the decklist were based on historicd defect data. The historical information
came from the two previous controlled experiments investigating the inspection of object-
oriented code (presented in Chapter 3 and Chapter 4).

Combining the defects from the previous two empirical studies created alist of forty-six
defects (of which nineteen contained delocdised feaures). For each of the defects a series
of spedfic questions were derived that should have helped an inspector find that defed.

Gilb and Graham [36], state that a chedklist does not need to contain every single
guestion, and should instead concentrate on questions which will turn upmajor defects and
al of which fit onto one page (approx. 25 items). This limit is also agreed upon by
Chernak [19], although there are some thedklists that do nd always adhere to this[2], [66].
The questions were then reviewed, and in some caes merged or generalised as they
covered simil ar areas, to produce afinal list of eighteen questions.

The format of the chedklist follows that used by Laitenberger et al. [51] and suggested
by Chernak [19]. It consists of two comporents, “whereto look” and “how to detect”. The
first comporent is alist of potential “problem spots’ that may appea in the work product,
and the second comporent is a list of hints on how to identify a defect in the aase of each
problem spot. This provides more @ncrete instructions on how to use the checklist. The
eighteen derived questions were reviewed and grouped by the areaof code they focused on,
e.g. inheritance, data referencing, and method overriding.

A final step applied to the mnstruction o the dedlist was ordering the questions to
suppat the inspedor in building up a thorough uncerstanding of the code and minimise
context switches.

As the inspector moves through the different groups of questions (e.g. method, dject
messaging) they successvely move from a more high level and general perspective,
towards a more detailed and fine-grained perspective. Each group of questions requires
more and more understanding of each method, and so the final question in the method
sedion, “ Does the method match the spedfication?” should be eaier to answer onceall the
other questions have been applied. To support this strategy further, interdependencies
(degrees of coupling) within the ade under inspection were analysed and those dasses

with least dependencies were inspected first.

Chapter 5: Development and Evaluation of Three Techniques for Objed-Oriented Code Inspedion 91

For each class:

Feature

Question

1| Inheritance

Is al inheritance required by the design implemented in
the class?

Isthe inheritance gopropriate?

3 | ClassConstructor

Are dl instance variables initialised with meaningful
values?

If a cdl to super is required in the constructor, is it
present?

For each method:

5

Data Referencing

Are all parameters used within a method?

6 Arethe @rrect classconstants used?

7 Are indices of data structures (arrays, €tc.) operating
within the corred bourdaries?

8 | Object Messaging | Is the correct method leing cdled onthe wrred object

(including the possibility of casting)?

9 Are the arrect values passed as parameters in the
correct order?
10 | Object Shoud a reference to an object be used instead of a
Referencing distinct copy (or vice versa)?
11 | Selection and Areadll relational and logical operators aufficient and
Iteration (if, while, | correct?
€etc)
12 Is the orrect sequence of code executed for any
condtion autcome?
13 Is the use of an iterator or loop appropriate when
destructive operations are occurring on a @llection?
14 | Method Behaviour | Are dl assignments and state changes made @rrectly?
15 For each return statement, is the value returned and its
type correct?
16 Does the method match the specification?

For each class:

17 | Method Overriding

If inherited methods need to behave differently, are they
overridden?

18

Areall uses of method overriding correct?

Figure 5.1 —Final version of derived checklist

This principle was aso applied to the “where to look” comporent and the questions

were categorised into threesedions:

1. Class—this sction is concerned with inheritance and constructor issues.

2. Method —the middle section of questions deals with issues surrounding methods,

e.g. datareferencing, object messaging and referencing, selection and iteration, and
method kehaviour.

Chapter 5: Development and Evaluation of Three Techniques for Objed-Oriented Code Inspedion 92

3. Class— the final section deas with isues surrounding method overriding — these
final classquestions appea at the end of the chedklist sincethe answers sould be

easier to find with an understanding of all the methodsin the dass

Humphrey [40] commented that when using chedklists, inspectors might find
themselves jumping badk and forth through the ade (as if following method cdls). If this
happens, the mental context that is created as one method is read will be lost once the
inspector switches to reading another. Context switching takes time and dten causes
errors, increasing the likelihood of a low defect detection rate. When programs are even
moderately complex, it is better to review each separate part as a unit. Humphrey
suggested that, to reduce the anourt of unnecessary context switching, inspectors sould
complete the entire checklist for each part (method) before they proceed to the next. In the
instructions provided to inspectors (foundin Appendix D.3.42), they are told to apply the
method section of the hedklist to eadr method undy inspectionin turn.

Thefina version d the derived chedlist is shown in Figure 5.1

5.1.2 Use-case

The use-case reading technique attempts to support inspection o the dynamic exeadtion of
object-oriented systems. The aim of the technique is to check that each dbject is capable of
responding correctly to all the possible ways in which it might be used. In ather words, isit
a good citizen of the system? More precisaly, with respect to the use-cases in which the

object participates, it seeksto verify that:

» The correct methods are being cdled.

» Thedecisonsand state changes made within each methodare wrred and consi stent.

The technique dso has the benefit of being an explicit ched of the mde against the
requirements.

The basic goproach is to devise anumber of scenarios from the use-case and examine
how the dass under inspection ceals with these scenarios. Scenarios are particular
instances of a use-case that test possible variations. The principle behind the technique is
that it forces the inspector to consider the mntext in which an doject is used. This
approad is likely to highlight defects associated with missing or incorrect method calls or
erroneous date changes. These are aspects that may be missed if the dasswas examined in
a more general context, e.g. with a checlist. On the other hand, a potential weekness is

that some parts of a classmay go urchedked because they do nd participate in the use-case

Chapter 5: Development and Evaluation of Three Techniques for Objed-Oriented Code Inspedion 93

that is driving the aurrent inspection. Due to this, the gproach should be complemented
by other reading techniques to ensure mmplete coverage of a dass

The following briefly describes the steps that should be followed by inspedors when
applying the use-case technique.

Creating the scenarios:

* Theinspector should take each use-case in turn and devise a series of brief scenarios
based on the preconditions, success and failure anditions, and the eceptions
described in the use-case. For ead scenario the anticipated final outcome in
relationto changes in state or output shoud be noted (see Figure 5.2).

Scenario Sheet

Name: Example
Use-Case: cancel booking

Scenarios:

1. Seat booking successfully cancelled
2. Nosuch booking held in the system
3. Flight hasdeparted or departstoday

For each scenario, note below the anticipated final outcome in relation to changes in state or outputs for the classunder
inspection. While carying out the inspedion, note ay state changes and outputs in the intermediate state column.
Once finished the inspection in relation to the scenario, note the final state or outputs for the classunder inspection and
compare with anticipated end state.

Scenario | Anticipated End Intermediate States/Outputs End State/Output after
State/ Output inspedion

1 Seatsbooked on plane | getDepartureTime (Flight) — return Seats booked on pane are
are cancelled. departure time of flight cancelled.

No changein statefor | cancelSeats (Flight) — cancel seatson
Flight class flight

cancelBooking (Plane) — remove no. of
seats from total sees booked

(might do a second timeiif ticket isfor a

return flight)

2 No changein state Asaume clases are never reached since | No changein state
ID should not match any in system

3 No changein state getDepartureTime (Flight) — return No changein state

departure time of flight

Asaume that thisinformation is correctly
used by cdlee

Figure 5.2 — Example of a use-case scenario sheet

Chapter 5: Development and Evaluation of Three Techniques for Object-Oriented Code Inspection 94

Using the scenarios:

The scenario should be traced on the sequence diagram by following the message
calls between objects.

On encountering the class under inspection, the inspector should switch their
attention from the sequence diagram to the code, having verified that the expected
methods are being called to support the scenario.

When inspecting the method code any decisions and state changes made should be
verified to make sure they are correct and consistent with respect to the scenario.
Any intermediate state changes and outputs should be noted (see Figure 5.2). Any
method calls made should be followed to verify that they are the correct ones.

When inspecting a method any method calls made should be followed to verify that
they are the correct ones.

- If the method called is in the class under inspection, the call should be
followed and the method code read, otherwise the sequence diagram
should be followed.

Having walked through a scenario, the fina state should be compared with the one
anticipated and any differences noted as a defect.

Instance variable Generic object of type
t abl e isof type Fl i ght (eg. from
ti meTabl e some collection)

T~ ™~

-
getFlight{depart, dest, datei:Flight

initial table ;
planeSystem timeTahle Flight
boal [[
oo E.S“J_ getFlight(depart, dest dated:Flight

"7

isEatlierThanTamarrow(): hoolean

freeSeatsihusinessiint

>D freeSeats(l

[
L _ |
isFlightidepart,dest date):boolean | squalsidat
getDepartureTimed:planeCalendar
|
f
|
|
; |
|
|
|
|

Figure 5.3 — Example of sequencediagram notation used

Chapter 5: Development and Evaluation of Three Techniques for Objed-Oriented Code Inspedion 95

Figure 5.3 shows an example of the sequence diagrams used. Other fedures of the

sequence diagrams used included:

» Sequence messages detal the name of the method called, the name of any

information passed as a parameter, and the type of any return value.

» Sequence message parameters do not show type and are just names to represent the

information being passed.

» Complete sequence als are only shown for the first occurrence, e.g. as shown for

theget Fl i ght methodcall shown in Figure 5.3,

» Generic objects have no reme (only a ‘-*) showing only a type. These objects

generally occur when an item is accessed in a @llection of some sort. Objects with

names are instance variables.

The use-case tedhnique, unlike the systematic technique described in the previous

chapter, assumes that, as part of the design process, certain material is generated, e.g. a

collection of use-cases and sequence diagrams. The sequence diagrams shoud not be

reverse engineered from the ade asit may contain defects which are then transferred to the

sequence diagrams.

The remainder of this section presents a brief example showing the processes and

concepts involved with the technique.

Given the cancel booking use-case shown in Figure 5.4, the following set of scenarios

shoud be derived:

1. Sed booking succesdully cancelled
2. No such booking held in the system

3. Hight has departed or departs today

Primary Actor:

Customer

Goal:

Cancd sed bodking previously made.

Preconditions:

Person hes already bodked sed(s) and flight must lease tomorrow at the
ealiest.

Success Condition:

Sea bodkingis successfully cancdled and 50% refund on cost is made.

Failure Condition:

Customer asks to cancd bodking.

Trigger:

Notes: Information returned to operator (credit card no. and amount to refund) and is
dedt with off-line.

Exceptions: Booking could not be found or flight date is eali er than tomorrow.

Steps: 1. Get boking reference(s) to be cancdled from customer

2. Cancd bodkings
3. Make 50% refunds

Figure 5.4 — Cancel Booking use-case

Chapter 5: Development and Evaluation of Three Techniques for Object-Oriented Code Inspection 96

In this particular example the class being inspected isthe pl aneCal ender class. The

anticipated state changes or outputs in relation to the devel oped scenarios are as follows:

1. No state changes, method should return false
2. No interaction expected
3. No state changes, method should return true

Next, the inspector should follow through the sequence diagram (shown in Figure 5.6),
keeping in mind the state of the system (repeating this step individually for each of the
derived scenarios). Once a method in the class under inspection is reached (in this case
i searlier ThanTonor row() shown in Figure 5.5), the inspector should switch to the
code and inspect it, making any notes on changes in state or return values. Finally, once all
methods have been reviewed and the sequence diagram has been completely worked
through, the inspector should note in the scenario sheet the final state of the class and then
verify whether the actual outcomes/state changes match those anticipated at the start.

publ i ¢ bool ean isEarlierThanTonorrow()
{
pl aneCal endar today = new pl aneCal endar () ;
i f(this.get(Cal endar. YEAR) == today. get (Cal endar. YEAR) &
t his. get (Cal endar. MONTH) == t oday. get (Cal endar. MONTH) &
t hi s. get (Cal endar. DATE) == today. get (Cal endar. DATE))
return true;
el se
return false;
}

Figure 5.5—i sEar | i er ThanTonor r ow) method code

5.1.3 Systematic

The basic systematic technique and its strategy were not significantly altered for usein this
experiment (originaly presented in Chapter 4.1). Minor adjustments were made based
upon feedback and observations from its first usage. Instructions given to subjects were
made clearer and more specific (via an instruction sheet provided to subjects during the
exercise), and more training and examples were provided for subjects. The amount of
information subjects had to write on the abstraction sheets was reduced to help speed up
the process. Subjects no longer had to list inherited methods and instance variables. This
information was provided for inspectors, since it could be auto-generated prior to the

inspection.

97

Chapter 5: Development and Evaluation of Three Techniques for Object-Oriented Code Inspection

X

customer

cancelBooking(hook D). Siri

initial
planeSysterm

bhookings

bookingColizction Booking

LY

cancelBooking(hook S.mﬁmm

cancelBookingihoo kD) St

]
|
|
41

rin
==

Called a second time

ifa return flight

il
|

izBooking(hookDy:hoolean
getFlighteFlight

getDepartureTime) plane Calendar

hookedFlight
Flight

departTime,
planeCalendar

hookedCustomer

Custamer

flightPlane

Flane

o

isEarlierThanTomaorrow () boolean |

i

amountToRefund(:double

getCustomen Customer

™1

getCreditCard(Eiring

cancelBookingwoid

¥

Business represents whether
the seatis a business seat ot
an economy seat

cancelSeatsinumofEeatsAooked Business) wgn_mmhi

removeBooking Jovoid

g

cToﬁmmamaaxma,mcmv:mmmw_.ggmm:

iﬁ: cancelBookinain

)

|
|
.
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
m
=]
|
|
|
|
|
|
|
|
|
|
|

Figure 5.6 — Sequence diagram for Cancel Booking use-case

Chapter 5: Development and Evaluation of Three Techniques for Object-Oriented Code Inspection 98

5.2 Empirical Evaluation

5.2.1 Introduction

To compare the three reading techniques, a controlled experiment was devised to evaluate
them primarily in terms of defects detected, but also to consider factors such as efficiency
and usability. A copy of all the material used for the actual experiment, including details of
the defects used can be found in Appendix D.

5.2.2 Experimental Goals and Hypotheses

The aims of the experiment were again focused using the Goa Question Metric (GQM)
paradigm as described by Solingen and Berghout [87].

Goal 1
Analyse the effectiveness of the checklist, systematic, and use-case reading techniques for
the purpose of comparison with respect to their detection of defects from the viewpoint
of aresearcher in the context of a University lab course using Java.

This is the main goal of the experiment, evaluating the three reading techniques as an
aid for defect detection during inspection of object-oriented code. To meet this goal

requires answering the following question:

QL.1: Is there any difference in the number of defects found by either the checklist,

systematic, or use-case based inspection?
This question may be answered by collecting data for the following metrics:
M1.1.1 Number of defects found, classified by inspection technique

Testable hypotheses are derived from the statement of goals, the questions and the metrics

asfollows:
H1: The null hypothesis, Ho, for the experiment can be described as:

There is no significant difference between the number of defects found by those
subjects performing checklist, systematic or use-case based inspection of object-

oriented code.

The alternative hypothesis, Hy, is:

Chapter 5: Development and Evaluation of Three Techniques for Objed-Oriented Code Inspedion 99

There is a significant difference between the number of defects found by those
subjects performing chedlist, systematic or use-case based inspection d object-

oriented code.

Goal 2

This second goal of the experiment is more exploratory in neture and is aimed at
investigating the affect of the delocalised defects on the different reading techniques, as
well aslooking at the different types of defect found ty each technique.

Since the second goal is exploratory and relies on a qualitative analysis, no testable

hypotheses are derived.

5.2.3 Experimental Plan

The experiment used a between subjects design, with threegroups of twenty-three students
of approximately equal ability based upon marks from previous classes (see Table 5.1).
Each group was assigned just one of the reading techniques. This choice of design was
made for practical reasons. The experiment was to be arried ou within in a third yea
software engineering course and hed to fit within the time @nstraints of this class. The
drawback of this approach as compared with a 3x3 factorial design is that fewer data points
would be available, but it had the advantage that ordering effects (due to using different
reading techniques) did not have to be dealt with.

In resporse to a weaknessidentified in the design of the previous experiment, subjects
were given two weeks of education and practicein their assgned reading technique. This
consisted of a one-hou lecture on that group's technique and two laboratory sessions
where they were ale to practice using the technique and ask any questions. In the second
week of practice the group plase of the inspection processwas introduced. This group
phase was carried out by creating goups compased of al three reading techniques and
asking them to create afinal defect list through the usual processof document reading and
discussion. The group phase served two purposes. It allowed subjeds to form opinions on
the other reading tedhniques and their eff ectiveness (this was neaessary for a report they
were required to write-up individually after the experiment - see Data Collection section),
and secondly, it gave students a more mmplete experiencein inspections. Before the group
phase began al individuals experimental data was copied to maintain its integrity. Since
the focus of the experiment was the performance of the individual inspector, the group

results have been amitted from the formal analysis (more onthis can be foundin [28]).

Chapter 5: Development and Evaluation of Three Techniques for Object-Oriented Code Inspection 100

Reading technique | Number of subjects
Group A Checklist 23
Group B Systematic 23
Group C Use-case 23

Table 5.1 —Inspedion order

The experiment proper was carried out in the third week and lasted for one afternoon,
consisting of the individual phase lasting ninety minutes, followed by the group phase
(with a short break in between). The code inspections carried out were paper-based, with
some material available via a web browser (e.g. sequence diagrams, use-cases, class

specifications). No tool support was provided.

Subjects

Subjects were participants in a 3 year Honours Computer Science Software Engineering
course run at Strathclyde University. 69 subjects were participating in the class. Subjects
had previous experience with the programming languages of Java (two out of twelve first
year credits and three out of twelve second year ones) and C (one out of twelve second year
credits). The subjects had limited knowledge of Software Requirements Specification
(SRS) document inspection, and no experience with code inspections. It should be noted
that these subjects were a completely different set from the previous two experiments.

Prior to the experiment, subjects were given a problem statement describing an airline
booking system (the original problem statement can be found in Appendix D.1). From this
initial specification, subjects were given six weeks to derive a specification for the system.
Once completed, subjects were then provided with a specification prepared by the course
lecturer. From this subjects were given a further six weeks to code the airline booking

system using Java. It was after this stage in the course that the experiment took place.

Statistical Power

Statistical power analysisisamethod that can be used to increase the probability that an
effect has been found in an experiment (more information regarding statistical power can
be found in Miller et al. [64] and Welkowitz et al. [95]). It reduces the chances of falsely
regjecting the null hypothesis or falsely accepting the null hypothesis. If atest does not have

sufficient statistical power, then the experiment may not have enough information to allow

Chapter 5: Development and Evaluation of Three Techniques for Object-Oriented Code Inspection 101

any reliable conclusions to be made using statistical significance testing. The effect size
represents the degree to which the phenomenon under study is present in the population.
Thelarger the effect size, the greater the probability the effect will be detected, and the null
hypothesis rgjected. Unfortunately, the results from the previous experiment did not have
any conclusive results, therefore alarge effect size cannot be assumed for this experiment.
Based on the recommendations by Miller et al. [64] and because of the inconclusive
results from the previous experiment, a medium effect size of 0.5 will be assumed. In this
experiment, the hypothesis is assumed to be two-tailed, since the direction of the result is
not known (O = 0.05). The sample size or the harmonic mean for this experiment was
derived to be 23. From this, the power of this experiment was found to be 0.4. A potential
issue with this experiment is the lack of power. With an approximate power level of 0.5
and assuming a medium effect size (0.5), the number of subjects required in each group
would have to be 31 to be able to abtain a significant result. This experiment only had 23
subjects using each technique. For this number of subjects to be acceptable, the effect size
would have to have been 0.59. It should be noted that a significant result could till be
obtained with fewer subjects, but that the chances of falsely accepting or rejecting the null

hypothesiswill increase. This hasto be kept in mind when considering the results.

Code and Defects

Java was used again because the experiment required an object-oriented language and the
subjects had been using the language for the proceeding 2.5 years. As with the previous
experiments, the code document used for inspection were approximately 200 lines in
length, to be ingpected in 90 minutes. The amount of code inspected is in line with
established practice (see Chapter 3.2.3).

For the practice sessions of the experiment, subjects were presented with material taken
from a sample solution prepared for the airline booking system. For the recorded session
of the experiment, the material used represented an extension to the airline booking system
which allowed for reservations to be made. The extension consisted of two Java classes.
Subjects had not previously seen any code documents or specifications for this extension.

The defects were based on several sources; two previous experiments investigating
object-oriented inspections presented in Chapter 3 and Chapter 4, information collated
from the literature (Chapter 2), an industria survey (Chapter 3), and a selection of naturally
occurring defects (i.e. appeared in the code when written by the author). In total fourteen

different defects were seeded into the code document. Since the experiment was interested

Chapter 5: Development and Evaluation of Three Techniques for Object-Oriented Code Inspection 102

in investigating the effects of delocalised defects, eight of the defects seeded had
delocalised features.

Paper and Web material

For each individual inspection, subjects were presented with a booklet containing the
relevant material (inspection and reading technique instructions, support material such as
checklists, scenario sheets or abstraction sheets, code listings, and defect report forms). As
well as the paper based materia provided for the inspection, extra material was made
availableto inspectorsviaalocal web page. This page differed depending on the technique
used and is summarised in Table 5.2. All code made available via web pages wasin plain

text and contained no special highlighting, comments or hypertext links.

Technique Material Available

Checklist Class diagram

Specifications for al classesin system

Any code previously inspected

Systematic Class diagram

Specifications for al classesin system
Abstractions for other system classes that would
have aready been inspected had the overall
strategy of inspecting those classes with least
dependenciesfirst been followed

Any code previously inspected

Use-case Classdiagram

Specifications for al classesin system

Use-cases to be inspected

Sequence diagrams for use-cases

Any code previously inspected

Table 5.2 —Web material made available during inspections

Data Collection

For al inspection techniques, inspectors were provided with a defect report form on which
to record defects found. For systematic inspections, inspectors were given method
specification sheets. These contained boxes in which subjects were to write their abstract
specifications for each method. Use-case inspectors were provided with a scenario sheet
on which to record their derived scenarios for a specific use-case, as well as the anticipated,

intermediate and final state changes and return values.

Chapter 5: Development and Evaluation of Three Techniques for Object-Oriented Code Inspection 103

After the inspection exercise was compl ete, subjects were given aweek to write areport

on theindividual phase of the inspection.
They were asked to include:

« A comparison and analysis of the defects discovered by the different techniques.

* A description of the way they applied their technique (including any deviations
made and problems encountered).

» A consideration of the defects their technique failed to discover.

» Genera comments about the strengths, weaknesses and possible improvements for

their technique.

The primary purpose of the report was for assessment purposes, but they were also

scrutinised for any insightful comments on the techniques.

Data Analysis
The goals of the experiment feature both a testable hypothesis and exploratory analysis.
Since there was one independent variable (the reading technique), three experimental
conditions (i.e. the three reading techniques used by subjects), different subjects within the
three reading technique groups, and the data was non-parametric in nature, the Kruskal-
Wallis test was used (using SPSS) to determine whether the defect results for the three
techniques were significantly different.

The remaining goal that was exploratory in nature was investigated through the analysis
of the qualitative information gathered during the experiment and from the post experiment

subject reports.

Threatsto Validity
The potentia threats to the internal and external validity of the experiment were the same

as those for the previous experiments.

5.2.4 Experimental Procedures

The following timetable was used:

Week 1. Introductory lecture on inspection.

Week 2: Lectures and practice for each of the three individua reading techniques.
Lectures lasted approximately 50 minutes and subjects attended a different
lecture depending on their assigned reading technique. The practice consisted of a

Chapter 5: Development and Evaluation of Three Techniques for Object-Oriented Code Inspection 104

90 minute training session the following day. The training sesson was run
informally to alow subjects to ask questions and to overcome any conceptual
problems about the inspection process and the technique they were using.
Week 3. Lecture for group activity and practice with individual and group inspection. The
practice session consisted of a 60-minute individual inspection task (with subjects
using their assigned technique) and was followed by a 45-minute group activity
task. The session was again run informally to help subjects overcome any
problems encountered.
Week 4: Inspection experiment proper (individual inspection followed by group
inspection). Subjects were given up to a maximum of 90 minutes to complete the
inspection. Once subjects had finished the inspection task, they were allowed a
10-minute break before forming into their groups for the group activity. Subjects
were given up to 45 minutes to complete this part of the experiment. The

individual inspection task was completed under exam conditions.

5.2.5 Experimental Results and Analysis

The results are based upon the 69 subjects who participated. The following sections

describe the results of the various elements of the inspection experiment.

Inspedion Tedhnigue
Checklist Systematic Use-case
Number of subjeds: 23 23 23
Defeds (out of 14): Mean 7.3043 6.1739 5.7391
Std. Deviation 2.4943 2.2290 2.3973
Std. Error .5201 4648 4999
Minimum 2 3 2
Maximum 11 10 10
False Positives: Mean 3.4348 3.2174 2.8696
Std. Deviation 2.6939 2.8116 1.9841
Std. Error .5617 .5863 4137
Minimum 0 0 0
Maximum 12 10 7
Inspedion Time: Mean 72.1739 77.0000 81.9130
Std. Deviation 12.9568 9.7933 9.2830

Table 5.3 —Summary of resultsfor third experiment

Defect Detedion (Individual Performance)
The main results of the experiment are contained within Table 5.3. The results show that

the checklist reading technique subjects were finding the most defects, compared to the

Chapter 5: Development and Evaluation of Three Techniques for Objed-Oriented Code Inspedion 10¢&

systematic and use-case subjects. Both the standard deviation and standard error results for
the number of defects fourd for al the techniques are within a smilar range, with no
technique showing erratic results (which might have suggested a problem either with the
subject partitioning or one of the reading techniques). The maximum and minimum
number of defects found ly subjects using ead technique were also similar. Thisindicates
that no me technique was sgnificantly superior or inferior to any of the others — some

subjects performed bedly, other performed well, nomatter the technique.

8
VL Ry ST
_g [e it :;’ ''''
2 ’ .-
@ Bfmeeemmmmmmm e 7'—--.--‘ -----
o At
7} A
_______________________ YA
g ¢ &
G 4 o
aj S o -/-0 --------------------- -
_g Pres Chedklist
AP -
2o B
c ,". .
% 5 Systematic
I .l.g:
L ol AY Use-Case

Time (in minues)

Figure 5.7 — Defect response rates

False positives are defects noted during an inspedion which turn aut not to be defeds.
The results dow that out of the three reading techniques, subjects using the use-case
technique were writing down the least number of false positives. This is reflected in the
mean, standard deviation, error and maximum values. In comparison, the checklist
technique had the highest number of false pasitives. One possible reason for this may be
related to the level of understanding enforced by the technique. The cedlist does nat
particularly encourage understanding, whereas the systematic and wse-case techniques both
require understanding or a mental exeaution of the ade, perhaps leading to a reduction in
the creation of false positives. Alternatively, the reason for the difference may be due to
technique overhead. The dhecklist had the lowest technique overhead, perhaps alowing

subjects to spend more time re-reading the code and identifying fal se positives.

Chapter 5: Development and Evaluation of Three Techniques for Objed-Oriented Code Inspedion 10¢€

The defect detection rates for each of the threereading techniques are shown in Figure
5.7. The x-axis shows the time during the inspedion, the y-axis shows the average number
of defectsfound and the threelinesin the graph represent each of the reading techniques.

Subjects using the chedlist technique find more defects and at a quicker rate, although
performancelevels drop off sharply after the first 60 minutes. The defect detection rates of
the systematic and use-case subjects appear to be fairly similar, with systematic subjeds
performance levelling off towards the end of the 90 minutes. The use-case subjects
performance does not appear to be levelling off in the same way. This may suggest that
defects were still being found at the end d the 90 minutes. Subjects using the dhecklist
technique gpeaed to find defects quicker than thase using the other reading techniques.
This may be becaise the checklist does not have the technique overheals of the other two

(e.g. writing abstradions or devel oping scenarios).

14

12+

10+

Number of defeds

0 T L] L]
N = 23 23 23
Checklist Systematic Use-case

Inspedion Reading Technique
Figure 5.8 —Overall defed detection performance of each reading technique

For this experiment there was one independent variable (the reading technique), three
experimental conditions (i.e. the threereading techniques used by subjects), and there were
different subjects within the threerealing technique groups. Due to the non-normal nature
of the results it was not possible to apply parametric statistical tests to determine whether
the defect results for the three techniques were significantly different. Instead the Kruskal-
Wallis test was used. The results generated by the software padkage SPSSare shown in

Chapter 5: Development and Evaluation of Three Techniques for Objed-Oriented Code Inspedion 107

Table 5.4 For 2 degrees of freedom®, a chi-square result of 4.871was generated. This
results in a significant result at the 10% level (chi-square result > 4.6), but not at the 5%
level (chi-square result would have to be>5.99). The overall defect detedion performance
of the three reading techniquesis sown in the boxplotsin Figure 5.8,

In relation to the experiment hypothesis, the null hypathesis, (that there is no significant
difference between the number of defects found by those subjects performing chedlist,
systematic or use-case based inspection of object-oriented code), may be rejected, and the
alternate H; accepted, but only at the 10% level of significance.

For 3 techniques
Chi-Square 4871
Df 2
Asymp. Sig. 0.088

Table 5.4 —Results of Kruskal-Wallistest

Figure 5.9 shows the comparative dfectiveness in terms of defect detection for each of
the threereading techniques. Those defect numbers along the bottom surrounded by a box
are defects with delocalised characteristics. It should be noted that one defect (defect 10)
was not found by any inspectors using any of the reading techniques (this was a
particularly subtle defect involving the use of a classlibrary). It was also noticed that

defectsinvolving some form of omisson appear difficult to find (defects 6, 13and 14).

Comparison of Techniques

D Checklist mSystematic [JUse-case | |[]Delocalised defects

100

o 90 I
i— "

§60

3 20 | 1 E

£ o I

D1 D2 (D3| D4 |D5 || D6 || D7| D8 | D9 |'|D10|‘|D11||D12| D13 D14

Defect

Figure 5.9 — Average technique dfectivenessper defed

% Degrees of freedom = number of experimental conditions— 1=3 -1 = 2.

Chapter 5: Development and Evaluation of Three Techniques for Object-Oriented Code Inspection 108

All the reading techniques have strong points, and there is not one dominant technique,
although the checklist technique performs consistently well. It is noticeable that except in
the cases of defect 3, 6, and 10 (which al techniques found elusive), the systematic
technique performs consistently well in terms of detecting defects with delocalised
characteristics. This is shown better in the three graphs of Figure 5.10, one for each
technique (re-imaging the information shown in Figure 5.9). Both the checklist and use-
case techniques have a less regular pattern of delocalised defect detection, perhaps

reflecting the less exhaustive and more focused nature of these approaches.

Checklist

Percentage response

Defects

Systematic

[] Delocalised defects

Percentage Response

0

Defects

Use-case

Percentage response
N
o

D4 D2 |D5 ||D11 | D1 |D6 || D9 || D7 |D14 D8 D13 DlO

Defects

Figure 5.10 — Average effectivenessper defect, split by technique

Chapter 5: Development and Evaluation of Three Techniques for Objed-Oriented Code Inspedion 10¢

Figure 5.10 shows that the systematic tedhnique was the only technique to miss more
than one defect (defect 6 — consisted of a missing method cdl). For use-case subjects,
defect 6 was highlighted by their sequence diagrams. For chedklist subjects, they were
encouraged by one of their questionsto chedk the method against the supgied specification
(available on the web) — a process that should have highlighted the defect. Systematic
inspectors ould also have compared their final generated method specification with the
online class gedfication. It may be that there was not enough encouragement for them to
dothis.

Chedlist Systematic

Locd defeds

Delocdised defea

Use-case

Figure 5.11 —Venn Diagram of defect overlap for techniques (where defeds found by
mor e than 50% of subjects)

Figure 5.11 presents a Venn diagram, that shows for each reading technique, the defects
foundwith a detection level greater than 50% (in other words, defects that would have a
good chanceof being found using a particular technique). This sows that al these defects
were found ly the decklist technique, while the systematic technique found all the
delocalised defects but only one local defect. The use-case technique found a mixture of
local and delocalised defeds.

One reason for the high resporse rates for the chedklist compared to the other reading
techniques may be related to the construction of the chedklist questions. The questions for
the chedlist were generated from defect information gathered from the two previous
studies. Although the questions generated were generalised, a threa to the validity of the
experiment may be that the defects seeded into the code were too similar to the defects
used to generate the checklist. Eleven o the fourteen defects were similar in style to those

in the first two experiments. On the other hand, the results can be viewed as being positive

Chapter 5: Development and Evaluation of Three Techniques for Objed-Oriented Code Inspedion 11C

for the continued use of chedklists, showing that a checkli st based on historicd information
can be dfective.

The time that ead inspector started and finished his or her inspection was recorded and
the results are shown in Figure 5.12. Checklist inspectors were quicker at their inspections
and were more likely to have finished before the time limit (indicaing a possible reason for
the drop in detection rate shown in Figure 5.7). Most of the use-case ad systematic
inspectors were more inclined to use most, if not all, of the time available. This may have

been related to the extra material and thought involved with the technique.

100
95
90
85
80
75
70
65
60
55
50

45
40

N= 23 23 23
Checklist Systematic Use-case

Time (in minutes)

Reading Technique

Figure 5.12 —Finishing timesfor subjects by technique

Defect Analysis

Eadh of the defects was characterised accrding to the list of criteria shown in Figure 5.13
(an evolution d the version wsed in the previous two experiments). The purpose of this
was to identify if there was any correlation between defect characteristics and their
discovery rate. The characteristics of each defect (columns) ordered by defect discovery
rates for eat o the threereading techniques (ordered from left to right, starting with the
easiest to find defects), are shown in Figure 5.14.

It was observed that all three reading techniques had problems with defects exhibiting
the charaderistics of wrong objed used (D3) and amisdon (D6, D8, D13, and D14).
Defects of omisson are very severe and also difficult to detect. Having a dedlist
guestion along the lines of “Is al code present?” is not helpful. The question dffers no
suppat or guidance on hav to identify defeds of omisson. The systematic goproach

focuses on understanding what is present, so may only natice omissons when compared

Chapter 5: Development and Evaluation of Three Techniques for Object-Oriented Code Inspection 111

with external references (e.g. class or method specifications). Although not evident from
the defect results, the use-case technique has the best chance of finding defects of omission
as the technique provides an independent source of comparison for the code with software
requirements (in the form of scenarios, use-cases and sequence diagrams). Using external
sources of comparison appears to offer the best solution to finding defects of omission
(although this assumes that the external sources themselves are correct).

Defects involving the use of class library (D7, D10) were found to be difficult for both

checklist and use-case techniques, but more evenly spread for the systematic technique.

Defed Descriptors

Useof library class- requires understanding of class libraries

Wrong dbjed used - sending message to wrong object

Wrong method called - sending incorrect message

Incorrect parameter in method call - incorrect parametersin method call
Algorithm/computation - error in the algorithm (e.g. step missing or in wrong order)
Data flow error - incorrect/missing variable or incorrect value

Spedfication clash - clash with specification

Omisgon - missing code

Commission - incorrect or superfluous code

L ocality - area of code required to be looked at to spot the defect

(M)ethod - information required to identify defect is present at the method level
(C)lass- information required to identify defect is present at the class level
(S)ystem - information required to identify defect is distributed across multiple classes

M ethod size - size of method where defect present

S = 0-4 lines of code
M =5-10lines of code
L =11 + lines of code

Sequencediagram clash - defect clashes with sequence diagram given to use-case inspectors

Figure 5.13 - Classification schemefor defect characteristicsin third experiment

Defects that were delocalised in nature were spread through the range of results for both
checklist and use-case responses, but were less spread out and bunched more towards the
better response end of the table for the systematic responses. Curioudly, for the systematic
responses, defects that were not considered to be delocalised in nature (the local defects)

Chapter 5: Development and Evaluation of Three Techniques for Object-Oriented Code Inspection 112

were grouped at the lower end of the response scale. It may be the case that the systematic
technique helps more with the del ocalised defects, but at the expense of the local defects.

Checklist
Defect No. 12 4 8 2 9 11 1 5 7 14 13 6 3 10
Use of class library X X
Wrong object used X
Wrong method called X X X
Incorrect parameter in X X X
method call
Algorithm/Computational X X X X X X
Data flow error X X X X X X X X
Specification clash X X X X X X X
Omission X X X X
Commission X X X X X X X X X X
Locality (M,C,S) S M M C S S C S S C C S S S
Seqguence diagram clash X X X X X X
Method (S, M, L) M S L M L L M S L M M S M L
Delocalised D L L L D D L D D L L D D D
% response rate 96 91 83 61 61 61 57 52 52 48 35 26 9 0
Systematic
Defect No. 4 11 12 5 9 7 2 1 13 8 14 3 6 10
Use of class library X X
Wrong object used X
Wrong method called X X X
Incorrect parameter in X X X
method call
Algorithm/Computational X X X X X X
Data flow error X X X X X X X X
Specification clash X X X X X X X
Omission X X X X
Commission X X X X X X X X X X
Locality (M,C,S) M S S S S S C C C M C S S S
Seqguence diagram clash X X X X X X
Method (S, M, L) S L M S L L M M M L M M S L
Delocalised L D D D D D L L L L L D D D
% response rate 91 83 78 65 65 61 44 39 30 26 22 13 0 0
Use-case
Defect No. 4 12 2 5 11 1 6 9 7 14 8 13 3 10
Use of class library X X
Wrong object used X
Wrong method called X X X
Incorrect parameter in X X X
method call
Algorithm/Computational X X X X X X
Data flow error X X X X X X X X
Specification clash X X X X X X X
Omission X X X X
Commission X X X X X X X X X X
Locality (M,C,S) M S C S S C S S S C M C S S
Seguence diagram clash X X X X X X
Method (S, M, L) S M M S L M S L L M L M M L
Delocalised L D L D D L D D D L L L D D
% response rate 96 87 74 61 61 39 30 30 26 26 22 17 4 0

Figure 5.14 — Defect characteristicsin percentage response or der for each reading
technique

Chapter 5: Development and Evaluation of Three Techniques for Objed-Oriented Code Inspedion 112

What were unexpected about the results for the use-case technique were the results
concerning defects highlighted by the sequence diagram (see Figure 5.14). Those results
are spread over the resporse range (high, middle and low). This may indicate that subjeds
foundit difficult to appreciate the sequence diagrams (due to lack of experience), did na
redise that they could be used to compare against the actual code, or were just not using
them.

There was one defect predominantly found ty the chedklist technique cmmpared to both
systematic and wse-case techniques (defect 8). The defect related to an urused parameter
in amethod declaration that should have been used. 83% of chedklist subjects found defect
8, whereas only 26% of systematic inspedors and 29 of use-case inspectors found the
defect. There was a questionin the chedlist that highlighted this kind of defect, e.g. “Are
all parameters used within a method'. Since use-case ad systematic inspedors did na
have a specific question to answer, they either did not consider an urused parameter a

defect or as smething that would cause the ade to malfunction.

Relationship between Technique and Ability

Figure 5.15shows, for each o the threereading techniques, the defect detection results of
ead individual inspector, ordered by their ability levels (based on previous programming
class marks) from highest on the left to lowest on the right. The numbers of subjeds in
these graphs is dightly reduced due to the unavail ability in some caes of previous marks
on which to base the ranking. Overlapping each o the threegraphsis alinear trend line
(added using a feature of Microsoft Excel) that shows the general trend of defect detection
from the more cgable subjects to the less capable. It was expected that for al the
techniques, the more ale subjects would tend to dodlightly better than the less able ones.
This was found to be the cae for both the chedklist and wse-case techniques. The trend
line for the use-case technique shows a steger gradient, possible suggesting that the
technique was harder to apply.

Notably, the trend line goes in the oppasite direction for the systematic technique,
suggesting that the more capable subjects were not being as effective @ the less capable
ones. Thiswas similar to the result found in the first use of the systematic technique in the
previous chapter, where it was found that the systematic technique gpeared to help the
weeker subjects but confoundor hinder the natural abilities of the more cgpable subjects.

Chapter 5: Development and Evaluation of Three Techniques for Objed-Oriented Code Inspedion 114

'_\
N

=
N

H
Q
1

Number of Defeds

OI\)-b‘CDOD
1
\
[
[
[
[
\
[
[
[
[
I

12345 6 78 9101112 131415161718
Subjeds
Checklist — subjeds ranked on previous programming marks — highest on the

eft

14

12

———

1 23 4567 89 1011121314 15161718 19
Subjeds
Systematic — subjeds ranked on previous programming marks — highest on the left

!

Number of Defeds
oN MO o 5
\

=
N

=
N

=
Q

Number of Defeds

o N s o
\
\
\

U %__ﬂ] |

T T T T T T T T T T T T T T T T T

1 234567 89101112 1314151617 181920
Subjeds
Use-case — subjeds ranked on previous programming marks — highest on the left

Figure 5.15—Defect detedion results of subjects ordered by ability for each reading
technique

Chapter 5: Development and Evaluation of Three Techniques for Objed-Oriented Code Inspedion 11F

These graphs demonstrate that although there is evidence for an ability effect, it is not
the primary factor when it comes to explaining the defect detecting ability of atedchnique —

thetedhnique itsalf has sgnificant influence.

Review of Subject Reports

After the inspection exercise was compl ete, subjects were given aweek to write areport
ontheindividua phase of the inspection (more detail on the report can be foundin Chapter
5.2.3.

Sixty-eight of the sixty-nine subjects handed in a report (the missng one belonged to
the use-case inspection technique). The following summarises the report results, grouped

by reading technique.

Checklist (based on 23 reports)

Subjects were asked to discuss how they applied the checklist reading technique in
comparisonwith the guidelines aupplied. Five subjects reported nodeviationin application
of the technique. Other variations included reading the code & the start to get a general
view/understanding of the code (six subjects), finding defects then trying to fit them to an
appropriate question (five subjeds — in doing this they must have been simply realing the
code and ot applying any spedfic reading strategy, e.g. ad-hoc), applied one question at a
time to the whole class under inspection (five subjects). One subject reported simply
reading the cde and ignoring the checklist, another read the @de at regular intervals
without the chedlist.

The strengths of the dhecklist were that it was quick (ten subjects) and straightforward
to use (eighteen subjects). Other comments were that it had structure, that it was based on
past experiences and that it was lessreliant on aher forms of documentation.

Wedaknesses of the chedlist included that it was not good at detecting defects associated
with missing lines of code (twelve subjects), that it does not encourage understanding the
code being inspected (eight subjects), and that the dhedklist questions can be too vague
(five subjeds). Other weaknesses included that it relied too much onthe preparation of an
appropriate set of questions, is susceptible to human error, does nat help with the bigger
picture (e.g. the closer you get the lessyou sed, can get tedious and repetitive, and that

there is no encouragement to read supplementary documentation.

Chapter 5: Development and Evaluation of Three Techniques for Object-Oriented Code Inspection 116

Possible improvements to the checklist included making the questions more specific and
with subsections (five subjects) and forcing the inspector to get a better understanding of
the code (four subjects).

Many subjects (eleven) suggested that the failure of the checklist technique to find
defects was not the fault of the checklist itself, but due to their relative inexperience. Other
suggestions included that the checklist should be used in conjunction with at least one other
technique, e.g. systematic technique (three subjects), while severa others suggested that
the checklist does not deal with object messaging well enough (three subjects).

Systematic (based on 23 reports)

In applying the systematic reading technique (in comparison with the guidelines supplied),
fourteen subjects reported no deviation in application of the technique. Variations on the
application of the technique included occasionally making assumptions about what the
code was doing, not always reading an abstraction if it was available, reading all the code
at the start before applying the technique, assuming the function of external methods, and if
adefect was spotted easily no comparison was made with the provided class specification.

The main strength of the systematic technique was that it promoted a deep
understanding of the code under inspection (eleven subjects). Other strengths were that as
a by-product, method specifications were created for later use, that every line of code was
looked at, that it was easy to use, and that the systematic technique was good at helping
with defects related to incorrect procedure calls.

The main weakness of the systematic technique was that it was not good at detecting
defects associated with missing lines of code (seven subjects). Other weaknesses included
the difficulty of writing the natural language method specifications, that the technique was
too time consuming, following external references was time consuming and produced a
cognitive overload, and defects on a global scale are not dealt with well. Two comments
were made relating to the class specifications supplied during the inspection. Subjects
reported that these specifications were not detailed enough, and that the systematic
technique relied too much on comparison with these specifications.

A further weakness concerned the writing of method specifications where defects had
already been found. Currently, even if a defect has been found before the method
specification has been written, it has to be incorporated into the method specification. The
presence of the defect may complicate the description that has to be written, dowing the

inspector. It may be that it is not prudent to write the method specification, since at some

Chapter 5: Development and Evaluation of Three Techniques for Object-Oriented Code Inspection 117

later stage it would have to be re-written to accommodate the corrected code. But, on the
other hand, if the specification was not written, other defects still within the method may be
missed.

Possible improvements to the systematic technique included revising the contents of the
method specifications to be longer and more detailed, having a more efficient way of
tracing external references, recording defects and abstractions electronically, making use of
sequence diagrams, or reading less during inspections and concentrating more effort
towards non-trivial methods. One other suggested improvement to the systematic
technique was to apply aspects of the checklist technique to each method before writing
each method specification.

Many subjects (eleven) suggested that the failure of the systematic technique to find
defects was not the fault of the systematic technique itself, but due to their relative
inexperience. Subjects suggested that the systematic technique complimented the other
reading techniques used (two subjects) and that it relied too much on the ability of the
programmer (three subjects). Two subjects commented that the documentation available

was too basic.

Use-case (based on 22 reports)

Six subjects reported no deviation in application of the technique. Six subjects claimed
that they had a general read through the code to spot any obvious defects before they
started using the technique. Five subjects stated that they did not write down any state or
intermediate state information during their inspection. One subject continually asked
themselves lots of questions (which were subsequently found to appear on the checklist)
when reading the code. Two other subjects claimed that they stopped using the technique
in mid inspection (possibly due to running out if time) and just read the code.

The main strength of the use-case technique was that methods were dealt with within
the context of the system executing (five subjects). Other comments included that the
technique complimented the object-oriented nature of the code (three subjects), that it was
easy to use (two subjects), and that a better understanding of various aspects of the code
was achieved (three subjects). One or two subjects responded positively to the opportunity
to use sequence diagrams, and suggested that the technique had potential to help highlight
missing method calls (dependent on the quality of the sequence diagrams).

The main weaknesses of the use-case reading technique were that it was slow and time

consuming (ten subjects), not all the code was covered (eight subjects), and that there was

Chapter 5: Development and Evaluation of Three Techniques for Object-Oriented Code Inspection 118

too much jumping around between different documents and diagrams (seven subjects).
Other weaknesses included finding the recording of state information annoying (four
subjects), that the use-case technique had problems with defects associated with missing
code (four subjects), and the technique relied too much on user generated scenarios (two
subjects). One subject commented that the inspector could end up generating alarge list of
intermediate states for complex scenarios. Seven subjects had difficulty with the
presentation and readability of the large sequence diagrams used (stating a desire for a
paper copy). One subject commented that there was not enough detail in the sequence
diagrams.

The main improvement suggested by eight subjects to the use-case technique was the
introduction of a checklist in some form. Other improvements included grouping all
methods together for a particular sequence diagram (to help reduce jumping around), and to
reduce the amount of writing. Several comments concerned the generation of the
scenarios, one suggestion being that the scenarios should be pre-produced before the
inspection, another suggesting that the scenarios should be generated by at least two
people. One subject thought that the sequence diagram and the code should be integrated
together. Another suggestion was that the sequence diagrams should be provided in paper
form (not ideal since in the preparation for the experiment it was found that many sequence
diagrams could become very large and unwieldy on paper). One other comment suggested
producing the scenarios and defect lists electronically.

Many subjects (twelve) suggested that the failure of the use-case technique to find
defects was not the fault of the use-case technique itself, but due to their reative
inexperience. Five subjects suggested that the use-case technique should be used in
combination with other techniques. Finally, one subject claimed that the technique was

vaguely defined when compared to the checklist technique.

5.2.6 Interpretation of Results

The main result of the experiment is that there is evidence of a significant difference
between the number of defects found by those subjects performing checklist, systematic or
use-case based inspection of object-oriented code when working at the 10% level of
significance. The checklist approach was the most effective reading technique, followed
by the systematic approach, which showed signs of dealing with delocalised defects better.
The remainder of this section looks at each of the reading techniques, highlighting the

positive and negative aspects, and the potential benefits and weaknesses.

Chapter 5: Development and Evaluation of Three Techniques for Objed-Oriented Code Inspedion 11¢

Checklist
Potential benefits of the dedklist tedhnique included:

» The checklist was fournd to be the most €ff ective technique, even when being used
by lessable subjects.

* Anedota evidence from subject reports suggests that the subjects fourd the
tedchnique to be easy and straightforward to use.

» Thetiming information showsthe checklist to be the quickest technique to apply.

There may be some wegknesses surrounding the use of the dedlist reading technique:

* It does not ded well with defects related to missng lines of code (this is in
common with the other techniques).
e It fails to push inspectors towards a deep undystanding of the code under
inspection (athough in this case it does not sean to have atoo detrimental effect).
* The questions have to be phrased in a way that is neither too general nor too
specific.
Suggestions for improvements to the checklist by subjects include forcing inspectors to
obtain a better understanding of the cde and making the questions more specific.

Systematic
Some of the potential benefits of the systematic technique included:

e There was evidence that the systematic technique was effective at dealing with
delocalised defects.

* There was aneddotal evidence from the subjeds reports that the systematic
technique encouraged a deeper level of understanding of the @de under inspedion.

e The systematic technique produced abstractions for every method as a by-product
of the goproach. These astractions can be used in future inspections to save the
inspector, or other inspectors, the effort of reading the dassor method again when
another classmakes a delocalised referenceto that class.

* The systematic technique gopeared to help the wedker subjects but suppress the
defect detection abilities of the more éle subjeds (a result similar to that foundin

thefirst application of the systematic technique in the second experiment).

Chapter 5: Development and Evaluation of Three Techniques for Object-Oriented Code Inspection 120

Weaknesses that could affect the use of the systematic reading technique include:

e It does not deal well with defects related to missing lines of code.

» It relies on the presence of a class specification against which the derived
abstractions are compared.

* Thedetal and content, as well as the full benefit of the generated abstractions have
yet to be fully evaluated.

* Currently, even if a defect has been found before the method specification has been
written, it has to be incorporated into the method specification. Including the
defect may complicate the abstraction and would require the abstraction to be re-
written once the defect has been removed. Not writing the specification may mean
that other defects within the method could be missed.

Suggestions for improvements to the systematic technique suggested by subjectsincluded:

e Supplying some form of optional checklist to help inspectors verify that they have
covered all the important aspects of the code.

» Evauate the contents of the derived abstract specifications (making sure they are
relatively quick and easy to derive, but contain enough information to be useful in
the future).

Use-case

The main potential benefit of the use-case technique:

» Encourages inspection of code from a dynamic viewpoint and provides atechnique
that explicitly compares code against requirements (via scenarios, use-cases, and

sequence diagrams).

Although the use-case technique did not perform as well as the checklist and systematic
techniques, it has the potential to offer an independent source of comparison for the code
against requirements (via use-cases, generated scenarios, and sequence diagrams) to help
highlight defects. This may also help with defects of omission.

Weaknesses that could affect the use of the use-case reading technique included:

* Thetechnique was dower and more time consuming than the others.
» Due to the inspection being driven by use-cases, it may be that the technique does

not cover all the code.

Chapter 5: Development and Evaluation of Three Techniques for Object-Oriented Code Inspection 121

e Subjects found that there was too much jumping around between the various
documents (scenario sheet, sequence-diagram, code).

* Dependent on the creation of good scenarios.

e More subjects using this technique deviated from the recommended application,

possibly suggesting alack of confidence in the technique.
Suggestions for improvement to the use-case technique included:

» Clearer ingructions should be given to the inspectors, as well as more substantia
examples in the training phase, particularly in the creation of scenarios, which
some of the subjects appeared to find difficult.

* Many subject reports suggested incorporating the checklist as part of the process.

5.3 Conclusions

The experiment presented in this chapter explored the use of a systematic, abstraction-
driven strategy, a specially created checklist and a use-case driven strategy to address the
problems of reading strategy and delocalisation.

The checklist technique was found to be the most efficient and effective of the three
reading techniques. The results suggest that if checklists are tailored to the particular
development environment using historical defect data and augmented with questions that
target object-oriented features then they can be an effective aid for object-oriented code
inspection. Subjects aso commented that the checklist technique was the least complicated
technique and had fewer overheads. However, the usefulness of the checklist relies heavily
on the construction of appropriate questions.

The systematic technique provided encouraging results with respect to the detection of
delocalised defects. The technique offers a potential long-term advantage through the
creation of abstract specifications for each method (but at the cost of a higher technique
overhead). Further work is required to determine the long-term benefit of the abstractions
in terms of reducing the need to read associated code.

Although the overall results for the use-case technique were rdatively weak, it has the
benefit of allowing inspectors to read the code from a dynamic model viewpoint. The use-
case technique supports a closer examination of inter-class relationships, and through use-
cases, generated scenarios, and sequence diagrams, provides a technique that explicitly
compares code against requirements. With subjects finding this technique very demanding,

further work isrequired to refine this approach into a practical reading technique.

Chapter 5: Development and Evaluation of Three Techniques for Object-Oriented Code Inspection 122

The next chapter presents a summary of the main contributions and results of this thesis
and a set of recommendations concerning the issues surrounding the inspection of object-

oriented code.

Chapter 6

Conclusions and Future Work

This thesis has $iown that the way in which the object-oriented paradigm distributes
related functionality can have aserious impad on code inspedion and, to address this

problem, it has devel oped and empirically evaluated three reading techniques.

6.1 Thesis Summary
Although there have been severa realing techniques developed to help individual

inspectors obtain an urderstanding of the ade under inspection, al were developed at a
time when the procedura paradigm was dominant. Object-oriented and procedura
languages are different — the encapsulation of data and associated functionality, the
common wse of inheritance, and the @ncepts of polymorphism and dynamic binding.
These key features may have asignificant impad on the ease of understanding of program
code and therefore impad uponthe dfectivenessof inspection.

An investigation of the issues arising from the inspection of object-oriented code found
that the characteristics of the ‘hard to find' defects included use of classlibraries, sending
wrong messages to dojeds, inheritance, overriding and design mismatches. Many of the
problem characteristics identified by the investigation were also highlighted by an
indwstrial survey. The key features of object-orientation were foundto have asignificant
impad on the ease of understanding of the resulting program by distributing closely related
information throughou the code. To understand a piece of code, trails of method
invocdions had to be followed through many classes, moving bath up and dowvn the
inheritance hierarchy. Soloway et al. [88] first observed this in the mntext of program
comprehension, describing a ‘ delocdised plan’ as “ where the @de for one conceptualised
planisdistributed nan-contiguously in aprogram’. Soloway continues, “ Such codeis hard
to urderstand. Snce only fragments of the plan are seen at a time by a reader, the reader
makes inferences based only on what is locally apparent — andthese inferences are quite
error prone”.

Threesignificant issues were identified requiring further research:

* Churking — how to partition a system for inspedion

Chapter 6. Conclusions and Future Work 124

» Redaling Strategy — the order in which the codeisread
» Delocdlisation — hav inspedions address the frequent references that object-oriented
code makes to parts of the system that are nat part of the current inspection focus

To addressthe latter two pants, a systematic abstraction-driven reading technique was
developed. The systematic technique forced inspectors to follow the trail of delocdisation,
building up their understanding of the cde. Asthisis achieved, inspectors create abstract
specifications of each method. These can then be referenced by current inspections, future
inspections, etc. An evaluation d the systematic reading technique comparing it against
the ad-hoc reading technique found that there was no significant difference between the
number of defects found ly ad-hoc subjects compared to systematic subjects. However,
some interesting issues emerged.

Defects with delocalised charaderistics still appeared dfficult to find. Subjects using
the systematic technique foundall the defects, whereas those using the ad-hoc tedhnique
missed several delocalised defects. As a by-product the systematic technique produced
abstractions that can be reused at a later date for re-inspection. By generating the
abstractions aubjects foundthat they obtained a greater understanding of the mde. Subjects
commented favourably on the systematic techniques more structured processand adering
of the ade when compared to the ad-hoc strategy, bu found that the processof generating
the abstractions required a lot of time. The systematic technique was found to help the
weeker subjects, improving their defect detection ability, but was also found to inhibit the
natural abilities of the stronger subjects. A potential weakness of the systematic technique
was found to beitsreliance on the static view of object-oriented code. The dynamic nature
of object-oriented systems may hinder the eff ectivenessof such a static reading approach.

Threereading techniques were developed and compared to investigate these isales — a
chedklist (atraditional inspection approach), a systematic reading technique (evolved from
the first evaluation), and a technique based uponuse-cases (reads the @mde from a dynamic
model viewpoint).

An evaluation of the threereading tedchniques founda significant difference (at the 10%
level) in the number of defects detected between the reading techniques. The delocalised
defects that were seeded in the experiment were more evenly distributed within the results
for al the techniques.

The checklist technique was found to have the best overal performance athough
subjects using the systematic technique were more effective & finding delocalised defects.
Subjects noted that the checkli st technique was easy and straightforward to use, hawever,

Chapter 6. Conclusions and Future Work 12t

several subjects suggested that the dhecklist did not ded with dbject messaging well
enough.

Those who used the systematic technique stated that it encouraged a greater level of
understanding. Subjects with dfferent ability levels using the decklist performed
reasonably well. The systematic technique was again found to help the defect detection
ability of wedker subjects, but still seemed to constrain the aility of stronger subjects.

Wedker use-case subjects appeared to strugge (possibly due to the complexity of the
technique). In general subjects foundthis technique very demanding. This may be aresult
of using students rather than subjects with more indwstrial experience. Some subjects
suggested that one way to improve the use-case technique would be to introduce some form
of chedlist.

Roughly half of all the subjects using ead reading technique suggested that the failure
of the technique to find defects was not the fault of the particular technique itself, but due

to their relative inexperience

6.2 Lessons for the Inspection of Object-Oriented Code

Thisthesis has presented a large anourt of information regarding the inspection of object-
oriented code. Based upon this work, a series of recommendations can be made mncerning
object-oriented code inspedion, as well as ome general comments concerning reading

techniques for inspection.

6.2.1 The Problem of Delocalisation

Eff ective reading techniques for object-oriented code inspection must addressthe isaue of
delocalised information. There is a substantial amourt of evidence from the literature and
the work presented in this thesis to suppat this view. Many of the feaures introduced by
object-orientation, e.g. inheritance, polymorphism, dynamic binding, the use of small
methods, all promote the distribution of information. Trying to undrstand one method
bemmes very difficult when so many other sources of information have to be investigated.
Defects that involve ‘delocalised’ characteristics are the source of many of the ‘hard to
find' defects. For these defects, the anourt of information that has to be read for the defect
to be completely understood can become overwhelming and dstracting. The reading
techniques developed for this thesis attempted to address the problem of delocalisation,
ead taking a diff erent approacd.

Chapter 6. Conclusions and Future Work 12¢€

The checklist is an established tedhnique with a very simple procedure to follow — apply
the questions in the decklist to the document under inspection. To address the isaue of
delocalisation, the questions used in the dhedlist were not general questions, but were
derived from the historical defect information coll ected from the two previous experiments.
This focused the questions in the cdhedlist on areas of object-oriented code that were more
likely to be associated with defects of a delocalised neture. The dedklist was foundto
perform reasonably well for all defect types, suggesting that if chedlists are tailored to the
particular environment using historical defect data, and integrate questions that target
object-oriented features, then they can be an effective ad to odbject-oriented code
inspectors.

The systematic technique atempted to reduce the problem of delocalisation through the
application d arealing order and the credion o abstractions. The reading order attempted
to minimise interdependencies when reading the awde. Creaing abstractions forced
inspectors to follow the trails of delocalisation and kuild up a sufficient understanding of
the code. Subjects commented that, by using the systematic technique, they obtained a
better understanding of the ade. The systematic technique provided encouraging results
concerning the detection of delocalised defects. The generated abstradions aso provide a
further way to reduce the problem of delocalisation. Once created, they can be reused in
future inspections, localising the information required by inspectors and reducing the
amourt of code that hasto be examined.

The use-case realing technique attempted to address delocalisation through the use of
use-cases and sequence diagrams. Using these, the inspector is forced to consider the
context in which an dbject is used. The technique aso attempted to verify that the
dedsions and state danges made within each inspeded method were correct and
consistent. The results for the use-case technique were wedker than the other two
techniques, possibly due to its increased complexity. More pable subjects may have
bee able to use the sequence diagrams and generated scenarios more dfectively.
However, the use-case technique does provide an independent source of comparisonfor the
code with software requirements (in the form of use-cases, scenarios and sequence
diagrams), which may help highlight defects of omisson, which may themselves be
delocalised in nature.

Chapter 6. Conclusions and Future Work 127

6.2.2 Reading Technique Overhead

Several recent publications have advocated the importance of inspectors understanding
what they are inspecting [50], [79]. This hasled to some recent reading techniques making
inspectors carry out some form of task, i.e. creating use-cases, test cases, or class
specifications. Comments from subjects participating in the three experiments presented in
this thesis show that they prefer some form of guidance or structure when carrying out their
inspections, and that this may help their understanding of the code. Although structure and
guidance in reading techniques are useful in helping inspectors understand the artifacts
under ingpection, care must be taken not to overburden the inspector either with additional
material or tasksto be performed.

The use-case technique was the most complicated out of the three investigated in the
third experiment and was found to have the poorest defect detection performance. Subjects
had to prepare a series of scenarios from the use-case, use each of the scenarios in turn to
guide them through a sequence diagram, inspect methods in the code under review as they
are found in the sequence diagram, and keep a note of system state information. Subjects
found that the use-case technique was too dow and time consuming, that there was too
much jumping between different inspection documents, and the generation of state
information could become annoying and unwieldy. Subjects also found the sequence
diagrams problematic, since their size restricted the amount visible at any one time on a
monitor screen. All of this may explain the relatively low defect detection results that were
found. It may be that, due to this complexity, the use-case technique is not one that can be
used by novices and requires a more experienced software engineer.

The systematic reading technique was not as heavy on tasks or extra material as the use-
case technique, but required subjects to follow the trails of delocalisation, build up a
sufficient understanding of what the code was doing, and to write abstractions for each
method. These abstractions could then be re-used in other inspections to help reduce the
problem of delocalisation. Subjects commented both positively and negatively about the
structure and strategy enforced by the systematic technique. The technique was found to
help weaker subjects, improving their defect detection performance, but the structure
imposed by the technique was found to inhibit the capabilities of the stronger subjects.
Although the systematic technique has a higher overhead than the checklist, it has the
added benefit of producing a set of abstractions that can be reused in later inspections and
can help reduce the problem of delocalisation.

Chapter 6. Conclusions and Future Work 12¢

In comparison to the systematic and wse-case technique, the dedklist technique did not
ask subjects to generate any extra material. Instead, it guided subjects to potential problem
areas in the mde viaits questions. Subjects found this technique relatively quick and easy
to use (possibly due to its low overhead). However, the chedklist does not encourage the
development of adeep understanding of the mde.

Realing techniques require a balance, ore that alows inspectors to concentrate on
understanding the mde and perhaps produce some useful documentation for later use, but

without alarge, distrading overhead.

6.2.3 Chunking

One of the threeisaues highlighted by the first experiment was that of churking — how to
partition a system for inspection. Due to the large number of dependencies within adoject-
oriented code and the restrictions on the amourt of code that can be looked at during
inspection, it is difficult to isolate areasonably sized sedion of code. To concentrate the
subsequent experiments on the aeas of realing strategy and delocalisation, the issues
surrourding churking were not investigated further. In the later experiments, for the most
part, an arbitrary churking solution was slected based upon inspecting classes as a
complete unit. This was dore for experimental reasons, to allow a fair comparison of the
defect detection results between different reading techniques. This was achieved by
making sure that each technique would roughly cover the same anourt of code, or at least
cover the same aeas of the amde where defects were present.

The use-case tedhnique was the only technique that directly addressed the chunking
issue. From use-cases, inspectors generated a series of scenarios, which were then traced
on the sequence diagram by following the message calls between methods (moving
horizontally through the system). On encountering a method for a class under inspection,
the inspedor switched their attention form the sequence diagram to the @wde. For a class
under inspection, it was possible that not all the methods would be read, ory those that
were used by any one scenario.

The systematic technique did not directly address the issues of churking, bu did
provide an inspection ordering for methods and classes in a system which attempts to
minimise their interdependencies (coupling) by inspecting thase classes and methods with
least dependencies first. It was also suggested that, when minimising interdependencies, a
class dould na be split over more than one inspection. Although this does not exadly

define what classes to churk together to inspect, this provides arough ordering with which

Chapter 6. Conclusions and Future Work 12¢

to inspect the dasses within a system and Felp inspectors build upan understanding of the
system, espedally when used in conjunction with the abstractions created by the process

The checklist technique, as with the systematic technique, did na directly address the
churking isaue, but the chedlist technique was partially modified to be gplicable to
classes. This modificdion was based on ardering the questions in the dcedklist and
groupng them into threecategories. class(dealing with inheritance and constructor issues),
method (dealing with al issues surround class methods), class (dealing with method
overriding).

The work caried out in this thesis has nat fully explored the issues and dfficulties
concerning the selection of code for object-oriented inspection. It may be that the best way
to addressthe chunking isdle is to sdlect arbitrary classes, and let the realing technique
ded with the mnsequences. More research is required to determine how best to churk
code, minimise the number of dependencies involved, and consider its impad upon the

problem of delocalisation.

6.3 Advice on Practical Object-Oriented Code Inspection

The work presented in this thesis has made an initia investigation into the issues facing the
effedive inspection d objed-oriented code. The main indication is that for inspections to
cortinue to be effective, they must take into acaunt the dfect of delocalised information
and the difference between the static and dynamic representation of code.

Chedlist, despite their criticisms in the literature, can be very effective a this task.
They are ardlatively straightforward to use and have very few overheads. If chedklists can
be tailored to the development environment using historical defect data and include
questions that specifically target objed-oriented charaderistics then they have the potential
to be an effective dd to object-oriented inspections. However, it should be noted that this
limits the chedklist to recognised defed characteristics, and reduces the chances of finding
new or unexpected defects. The questions used within the cecklist should also try to
encourage amore detailed understanding of the code and, in particular, its relationship with
the rest of the system. This would help avoid the more traditional ‘lightweight’ chedklist
guestions that only superficialy probe the ade.

The systematic technique provided encouraging results concerning the detedion o
delocalised defects. The technique offers a potential long-term advantage through the
creation of abstractions. However, it has a higher overhead than chedli sts and may fail to
adequately ded with some localised defeds. Although the generated abstractions require

Chapter 6: Conclusions and Future Work 130

further evaluation to establish their most effective form and usefulness, the ordering of
code for inspection and the use of stepwise abstraction to help with delocaisation are
aspects of the technique that can be recommended.

Although the results for the use-case technique were weaker, it has severa potential
strengths. Inspectors read the code from a dynamic model viewpoint and the technique
offers an independent source of comparison for the code with software requirements (in the
form of use-cases, scenarios and sequence diagrams). The technique better focuses on
inter-class relationships as well as state information and has the potential to deal with
defects of omission. This was found to be the most demanding of all the reading
techniques, and it may be that it is a technique that can only be used by those with more
industrial experience. However, it should be remembered that due to the nature of the
technique, some parts of a class may go unchecked because they do not participate in the
use-case that is driving the current inspection. It may be necessary to compliment this
reading technique with another to ensure compl ete coverage of aclass.

Where practical, object-oriented inspections should be based on teams of inspectors
using at least two different reading techniques. The checklist was found to have a strong
overall performance, but the systematic technique was found to be more effective at finding
delocalised defects. A problem with the checklist is that its performance can heavily rely
on the relationship between the questions and the context it is used in, whereas other
techniques have less reliance on context and may give a more consistent performance. The
work in thisthesis also suggests that there is a heed to take into account the dynamic model
viewpoint.

Using a combination of reading techniquesis aview similar to the one advocated by the
developers of the Perspective Based Reading (PBR) technique, where different
perspectives are used to represent different stakeholders, e.g. tester or code analyst. Each
of these perspectives is expected to highlight different types of defects. If a PBR approach
was to be adopted, it is suggested that one of the perspectives should specifically focus on
object-oriented issues.

A further important consideration is how the techniques would scale up to dea with
large amounts of program code. General advice in the literature suggests that the amount
of code to be looked at in any one inspection should be limited to around 200 lines of non-
commented code and the time allocated for this be around two hours. These restrictions

should not change, no matter the size or scale of the system.

Chapter 6. Conclusions and Future Work 131

The systematic technique partitions a system in such a way as to minimise
interdependencies, ideally not splitting a class over more than one inspection. Classes are
ordered so that those with least interdependencies are inspected first. As inspections
progressmore and more aistractions are generated —ideally saving the inspector the effort
of chasing delocalisation (by only reading the astractions). A problem with the systematic
technique may be that in larger systems, initially following the trail s of delocdisation may
be quite time cnsuming. This problem will however be reduced as more of the system is
inspected and more abstractions are generated.

The checklist in this thesis was designed to be applied to a complete class but can be
applied to parts of classes aswell. The key to the success of the chedlist isthe nead for a
well-maintained set of historical defed data being kept. The questions of the cdhedlist are
the main focus, and as auch, scding isnot as much of anisse.

The use-case technique provides a dynamic, harizontal view of asystem. The technique
may encourter problems when scaling up to larger systems due to its use of sequence
diagrams. The sequence diagrams may bemme large and urwieldy due to the increase in
system size, and the time taken to traverse through them may bewme prohibitive. This
does not prevent the technique being applied to systems of modest size. Thisisaue may be
aleviated by further tod development.

It shoud be noted that the reading techniques presented in this thesis do nd attempt to
addressthe issue of deciding which parts of the system should be prioritised for inspection.
The reading tedhniques merely show ways in which the mde can be read once selected.

Combining reading techniques, such as those highlighted in this thesis, offers a good
degree of robustness and the potentia to dea with many different defect types - the
reaurring defects, defects that require deeper insights, and defects associated with the
features of aobject-orientation that distribute functionality throughou a system. However,
this constrains the inspedion process. A minimum number of inspectors are now required

for complete mverage of the mde.

6.4 Future Work
From the work caried out in this thesis there ae severa issues that require further

investigation and experimentation.

For each of the three experiments, the subjects used were students participating in a
third yea computer science software engineeing course. Using students can make results
harder to generalise to a larger population, whereas using industrial subjects can greatly

increase the validity of experimentation (due to their experience). One of the next stepsin

Chapter 6. Conclusions and Future Work 132

evaluating the usefulness of the reading techniques presented in this thesisisto use themin
an industrial environment. A cost benefit analysis sould be carried ou to evaluate the
effediveness of the reading techniques, taking into consideration the anount of effort that
is required, both to prepare the material necessary for the inspection and the anourt of
eff ort required by inspectorsto use the tedhniques to inspect the code. Thisalso presents a
further opportunity to investigate the types of defect discovered by each technique.

As mentioned in the previous section, ait of the three main issues identified as
important to the successful inspection of object-oriented code, the issues of chunking — the
selection of code for inspedion —has nat been fully investigated. The complete systems
used in the experiments were relatively small (afew thousand lines of code). An interesting
question for further study is how well the reading techniques would cope with a more
redli stic scenario where inspectors are reviewing 200line ‘churks’ from significantly sized
object-oriented systems where delocdised references could lead deep into the rest of the
system. Morereseach isrequired to evaluate the impad churking has on the inspection of
object-oriented code, and to determine how best to churk code, minimise the number of
dependenciesinvolved, and consider itsimpad upon the problem of delocdisation.

The systematic technique has srown encouraging results regarding the detection of
delocalised defects. There are aspects of the technique that require further investigation:

e The systematic technique was found to hinder the natura abilities of stronger
subjects, and at the same time helped the weaker subjeds improve their defect
detection. The reasons for the poor performance by stronger subjects are arrently
unclear, although it may be due to the systematic nature of the technique. Further
work isrequired to investigate how this may impad onits use by industriali sts.

e It is currently unknown what level of formality is required in the astractions
created duing the inspection. Currently, natural language astractions are
generated by the technique. Further experimentation is required to decide if these
are sufficient, or whether the precision and conciseness of semi-forma or formal
specifications would provide greater benefits in terms of removing ambiguity.

» Further work is required to evaluate whether the adstractions are useful in reducing
the problem of delocalisation and the anount of code that hasto be examined.

* Tool suppat may make the creation d abstrad specifications more dficient and
reduce the burden of having to deal with the variety of documents that have to be

managed duing an objed-oriented code inspection.

Chapter 6: Conclusions and Future Work 133

The use-case technique showed some potential as a candidate reading strategy but was
found to be the most demanding of the reading techniques. The lack of knowledge and
experience of student subjects compared to industriaists may have affected this technique
more than the other two. Aspects that require further attention include:

* The technique was found to be overly complex due to its many different aspects:
reading use-cases, generating scenarios, following sequence diagrams, and
recording state information (some options to simplify the technique are highlighted
in the following replication section).

» Noviceinspectors appeared to struggle with the technique. A controlled experiment
could compare the usage of the technique by novice and experienced inspectors and
investigate whether the use-case technique requires a more advanced user.

» A tool may help reduce the complexity of the technique bringing together al the
different sources of information and linking them together in a hypertext fashion,
removing the paper overload that exists. A tool could also help make the sequence

diagrams that are often large and difficult to navigate easier to read.

6.4.1 Replication Guidance

As well as further refining the reading techniques, it is important to explore the validity of
the results that are presented in this thesis. This can be achieved via experimenta
replication (since this will require controlled experimentation, this will most likely be in a
university environment) and then comparing the results with those contained in this thesis.
To help with thisall experimental materias, including all lecture and practice material have
been collected together for each experiment and made available via the web for download
at:

http://www.cis.strath.ac.uk/research/efocs/reports.html

Although these experiments can be replicated as is, there are several aspects that should
be improved and modified.

In the third experiment, investigating three techniques at the one time reduced the
number of subjects that were available. By not making the final experiment a 3x3 factorial
design and having experimental subjects use just one technique the amount of data
available to interpret was reduced. This was necessary due to time constraints. All of this
helped reduce the reiability of the experimenta results. It is suggested that any future

experiments should only involve a maximum of two reading techniques and use a 2x2

Chapter 6. Conclusions and Future Work 134

factoria design (as was done for the second experiment in Chapter 4), especidly if subject
numbers are limited. This would allow for a detailed examination of two reading
techniques with a reasonable amount of data to interpret. It should be noted that this type
of experiment can have problems with a learning effect that can occur by subjects using
more that one reading technique.

The code and the defects used in this thesis were created specificaly for the
experiments. The defects seeded were based on types highlighted in the literature and an
industrial survey. To improve the validity of any future experiments, it would be
preferable to use code and defects from an industrial source.

A constraint on future replication concerns the amount of practice required for reading
techniques. Subjects using the systematic and use-case reading techniques in the second
and third experiments commented that they would have liked more practice using the
technique and more examples. In future replications, at least two practice sessions should
be carried out per reading technique. Aswell as this, future experiments may benefit from
having extra examples available for subjects.

In any future replication using the checklist technique, care must be taken with its
content. The questions used in the checklist in this thesis were developed from a set of
historical defect data. To be used in any other development environment, the questions
should be based on historical defects from that environment. The notion of ordering the
guestions to help inspectors build up an understanding should be kept, as well as
continuing to have questions specifically aimed at delocalised and object-oriented defect
characteristics.

The use-case technigue was found to be very demanding on the experimental subjects.
An important area that requires further investigation is whether, due to its complexity, the
use-case technique should only be used by more experienced software engineers. It may be
that novices just require more practice in the technique, or that through simplification, the
technique may become more manageable. One way to simplify may be to group al the
methods together for a particular sequence diagram (to help reduce jumping around), and to
reduce the amount of writing. Another way may be to assume that the scenarios for the
system were developed as part of the requirement documents (along with the use-cases).
This would reduce the time spent by inspectors reading the use-cases and generating the
scenarios. However, this may al so reduce the inspectors understanding of the system states
and would assume that any scenarios previoudy developed as part of the requirements

documents were correct.

Chapter 6: Conclusions and Future Work 135

One issue concerning the generation of abstractions in the systematic technique is what
should be done where writing a method specification where defects have already been
found. Including the defect may complicate the description that has to be written, and until
the defect is removed, would remain in the abstraction (a problem if the abstraction was re-
used in a later inspection). On the other hand, if the specification was not written, other
defects still within the method may be missed. It is recommended that for any future
replication, even if a defect is found, subjects should continue to create the abstraction, but
should highlight the parts of it that are affected by the discovered defect(s). If an
abstraction is read as part of another inspection before the defect is corrected, the inspector
should assume that the method works correctly, but if any defects are subsequently
highlighted, should detail any assumptions made based on abstractions used.

Future replication should also concentrate on several factors highlighted in the previous
section concerning the systematic technique, i.e. validity and content of abstractions and

the poor performance by strong subjects.

6.5 Conclusions

This thesis has shown that the way in which the object-oriented paradigm distributes
related functionality can have a serious impact on code inspection and, to address this
problem, it has devel oped and empirically evaluated three reading techniques.

Using a combination of reading techniques offers the potential to dea with many
different defect types - the recurring defects, defects that require deeper insights, and
defects associated with the features of object-orientation that distribute functionality
throughout a system.

Bibliography

(1]

(2]

(3]

[4]

(5]

(6]

[7]

(8]

[9]

[10]

[11]

(12

[13]

A. F. Ackerman, L. S. Buchwald, and F. H. Lewski, Software Inspedions. An
Effective Verificaion Process |EEE Software, 6(3), pp. 3136, 1989.

J. T. Baldwin, An Abbreviated C++ Code Inspection Chedlist, John T. Baldwin,
University of Illi nois, Department of Computer Science, October 1992 (available at
http://www?2.ics.hawaii.edu/~johrsor/FTR/Bib/Baldwin92.html).

V. R. Basili and H. D. Mills, Understanding and Documenting Programs, |EEE
Transactions on Software Engineering, 8(3), pp. 270283, 1982.

V. R. Badli and D. M. Weiss, A Methodology for Collecting Vaid Software
Engineaing Data, IEEE Transactions on Software Engineering, 10(6), pp. 728
738, 1984.

V. R. Baslli, R. Selby, and D. Hutchens, Experimentation in software engineering,
| EEE Transactions on Software Engineering, 12(7), pp.733743, 1986.

V. R. Badili and H. D. Rombach, The TAME Project: Towards Improvement-
Oriented Software Environments, |IEEE Transactions on Software Engineering,
14(6), pp. B8-773, 1988.

V. R. Basili and S. Green, Software ProcessEvolution of the SEL, |EEE Software,
pp.5866, July 1994.

V. R. Basili, S. Green, O. Laitenberger, F. Lanubile, F. Shull, S. Serumgard, and
M. Zelkowitz, The Empirica Investigation o Perspective-Based Realing,
Empirical Software Engineering, 2(1), pp.133164, 1996.

V. R. Baglli, Evolving and Packaging Reading Tednologies, Journal of Systems
and Software, 38(1), pp.3-12, 1997.

V.R. Badlli, S. Green, O. Laitenberger, F. Lanubile, F., Shull, S. Serumgard, and
M. Zelkowitz, Lab Package for the Empirical Investigation of Perspective-Based
Reading, 1998. Available &

http://www.cs.umd.eduw/projeds/ SoftEng/ESEG/manual/pbr__package/manual.html
W. A. Belson, The Design and Understanding of Survey Questions, Aldershot &
Gower, 1981.

D. R. Berdie, J. F. Anderson,and M. A. Niebuhr, Questionnaires: Design and Use,
2" Editi on, The Scarecrow Press 1986.

R. V. Binder, Testing Objed-Oriented Software: a Survey, Software Testing,
Verification and Validation, Vol. 6, pp.125-252, 1996.

Bibliography 137

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]
[25]

[26]

[27]

[28]

G. Booch, Objeda-Oriented Analysis and Design with Applications, Second
Edition, Benjamin/Cummings Publishing Company, Inc., 1994.

G. Booch, J. Rumbaugh, and |. Jacobson, The Unified Modeling Language User
Guide, Addison-Wedley, 1999.

C 5.0, www.rulequest.com

X. Chen, W. Tsai, and H. Huang, Omega - An Integrated Environment for C++
Program Maintenance, International Conference on Sdtware Maintenance, pp.
114-123, 1996.

B. Cheng and R. Jeffrey, Comparing Inspection Strategies for Software
Requirements Specifications, in Proceedings of the 1996 Australian Sftware
Engineering Conference, pp. 203-211, 1996.

Y. Chernak, A Statistical Approach to the Inspection Checklist Formal Synthesis
and Improvement, |IEEE Transactions on Software Engineaing, 22(12), pp. 866-
874, 1996.

R. T. Crocker, and A. von Mayrhauser, Maintenance Support Needs for Object-
Oriented Software, in Proceedings of COMPSAC' 93, pp. 63-69, 1993.

J. Day, Replication and a Multi-Method Approach to Empirical Sdtware
Engineering Research, PhD thesis, Department of Computer and Information
Science, University of Strathclyde, Glasgow, UK, 1996.

J. Daly, A. Brooks, J. Miller, M. Roper, and M. Wood, Evaluating Inheritance
Depth on the Maintainability of Object-Oriented Software, Empirical Software
Engineering, 1(2), pages 109-132, 1996.

H. Deitel, and P. Deitel, C How to Program, second ed. Prentice Hall, 1994.

M. Denscombe, The Good Research Guide, Open University Press, 1998.

I. Duncan, D. Robson, and M. Munro, Defed Detectionin Code, Testing Research
Group, Computer Science, University of Durham, 1996.

A. Dunsmore, M. Roper, and M. Wood, The role of comprehension in software
inspection, Journal of Systems and Sditware, 52, pp. 121-129, 2000.

A. Dunsmore, M. Roper, and M. Wood, Object-Oriented Inspection in the Face of
Delocalisation, appeared in Procealings of the 22" International Conference on
Sdtware Engineering 200, pp. 467-476, June 2000.

A. Dunsmore, M. Roper, and M. Wood, Further Investigations into the
Development and Evaluation of Reading Techniques for Object-Oriented

Bibliography 13€

[29]
[30]

[31]

[32]

[33]

[34]

[35]

[36]
[37]

(38

[39]

[40)
[41]
[42]

[43]
[44]

Inspedtion, appeared in Proceedings of the 24" International Conference on
Sdtware Engineering 2002, pp.47-57,May 2002.

B. Edwards, Statistics for Business Sudents, First Edition, Collins, 1972.

M. E. Fagan, Design and code inspedions to reduce erors in program
development, IBM Systems Journal, 153), pp. 182211, 1976.

M. E. Fagan, Advances in Software Inspections, IEEE Transactions in Software
Engineeing, 127), pp.744-751, 1986.

R. G. Fichman and C. F. Kemerer, Object Technology and Reuse: Lessons from
Early Adopers, IEEE Computer, 30(10), pp.47-59, 1997.

D. G. Firesmith, Testing Objed-Oriented Software, pulished in Procealings of
the 11" International Conference on Technology of Object-Oriented Languages
and Ystems (TOOLSUSA, '93), 1993.

W. Foddy, Constructing Questions For Interviews and Questionnaires. Theory &
Practicein Sa@ial Research, Cambridge University Press, 19%.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns. Elements of
reusable objed-oriented software, Addison-Wesley Publi shing Company, 1994.

T. Gilb and D. Graham, Sdtware Inspection, Addison-Wesley, 1993.

R. B. Grady and T. Van Sladk, Key Lessns In Achieving Widespread Inspedion
Use, IEEE Software, 11(4), pp.46-57, July/August 1994.

J. H. Hayes, Testing of Object-Oriented Programming Systems (OOPS): A Fault-
Based Approach, International Symposium on Object-Oriented Methodologies and
Systems (ISOOMS'94), 199.

M. Host, B. Regnell, and C. Wohlin, Using Students As Subjects— A Comparative
Study of Students and Profesgonas in Lead-Time Impad Assessment, Empirical
Sdtware Engineering, 5, pp.201-214, 2000.

W. H. Humphrey, A Discipline for Software Engineeiing, Addison-Wesley, 1995.
C. Jones, Gaps in the object-oriented paradigm, IEEE Computer, 27(6), June 19%.
P. Juttner, S. Kolb, and P. Zimmerer, Integrating and Testing of Objed-Oriented
Software, in Proceedings of EuroSTAR 94, 131-13/14,1994.

B. Kernighan and D. Ritchie, Programming in C, Hanser Verlag, 1990.

E. H. Khan, M. Al-A'di, and M. R. Girgis, Object-Oriented Programming for
Structured Procedural Programmers, IEEE Computer, 2810), pp. 4857, October
1995.

Bibliography 139

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

J C. Knight and E. A. Myes, An Improved Inspection Technique,
Communications of the ACM, 36(11), pp. 51-61, 1993.

D. Kung, J. Gao, and P. Hsia, Developing an Object-Oriented Software Testing
Environment, Communications of the ACM, 38(10), pp. 75-87, 1995.

O. Laitenberger and J-M. DeBaud, Perspective-Based Reading of Code Documents
at Robert Bosch GmbH, Specia Issue on Information and Software Technology,
vol. 39, pp. 781-791, 1997.

O. Laitenberger and C. Atkinson, Generalising Perspective-based Inspection to
handle Object-Oriented Development Artifacts, in Proceedings of the 21%
International Conference on Software Engineering 1999, pp.494-503, 1999.

O. Laitenberger, C. Atkinson, M. Schlich, and K. El Emam, An Experimental
Comparison of Reading Techniques for Defect Detection in UML Design
Documents, The Journal of Systems and Software, 53(2), pp. 183-204, 2000.

O. Laitenberger and J-M. DeBaud, An Encompassing Life-Cycle Centric Survey of
Software Inspection, Journal of Systems and Software, 50(1), pp. 5-31, 2000.

O. Laitenberger, K. EI-Emam, and T. G. Harbich, An Internally Replicated Quasi-
Experiment Comparison of Checklist and Perspective-Based Reading of Code
Documents, |[EEE Transactions on Software Engineering, 27(5), pp. 387-421,
2001.

O. Laitenberger and K. Kohler, The Systematic Adaptation of Perspective-Based
Inspections to Software Development Projects, in proceedings of the 1% Workshop
on Inspection in Software Engineering, published by Software Quality Research
Lab, McMaster University, pp. 105-114, July 2001.

L. P. W. Land, C. Sauer, and R. Jeffery, Validating the Defect Detection
Performance Advantage of Group Designs for Software Reviews. Report of a
Laboratory Experiment Using Progran Code, In 6" European Software
Engineering Conference, pp. 294-309, 1997.

D. B. Lange and Y. Nakamura, Object-Oriented Program Tracing and
Visualisation, IEEE Computer, 30(5), pp. 63-70, 1997.

M. Lejter, S. Meyers, and S. P. Reiss, Support for Maintaining Object-Oriented
Programs, |EEE Transactions on Software Engineering, 18(12), pp. 1045-1052,
1992.

S. Letovsky and E. Soloway, Delocalised Plans and Program Comprehension,
| EEE Software, 3(3), pp. 41-49, May 1986.

Bibliography 14C

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

K. J. Lieberherr and I. Holland, Assuring Good Style for Object-Oriented
Programs, | EEE Software, 6(5), pp.38-48, 1989.

B. Lientz and E. Swanson, Software Maintenance Management, First Edition,
Addison-Wesley, 1980.

R. Linger, H. Mills, and B. Witt, Sructured Programming: Theory and Practice,
AddisonWesley, 1979.

C. M. Lott and H. D. Rombadh, Repeatable Software Engineering Experiments for
Comparing Defed-Detection Tedniques, Empirical Software Engineering: An
International Journal, 1(3), pp.241-277, 1996.

F. Maddondd, J. Miller, A. Brooks, M. Roper, and M. Wood, Applying Inspedion
to Objed-Oriented Software, Software Testing, Verification and Reliability, Vol. 6,
pp. 6182, 1996.

F. Madonald and J. Miller, A Comparison of Tool-Based and Paper-Based
Software Inspedion, Empirical Software Engineering, 3, pp. 233253, 1998.

J. Miller and F. Macdoreld, An empirical incremental approach to tool evaluation
and improvement, The Journal of Systems and Software, 51, pp.19-35, 2000.

J. Miller, J. Daly, M. Wood, M. Roper, and A. Brooks, Statistical power and its
subcomporents — missng and misunderstood concepts in empirical software
engineaing research, Information and Software Technology, 39, pp. 285295,
1997.

G. C. Murphy, P. Townsend, and P. S. Wong, Experiences with Cluster and Class
Testing, Communications of the ACM, 37(9), pp. 39-47, 1994.

National Aeronautics and Space Administration, Software Formal Inspedion
Guidebok, Technicd Report NASA-GB-A302, National Aeronautics and Space
Administration, 1993, http://satc.gsfc.nasa.gov/fi/fipage.html

J. Nielsen and J. Richards, Experience of Learning and Using Smalltalk, |IEEE
Software, 6(3), pp. 7377, May/June 1939.

A. Oppenhem, Questionnaire design, interviewing, and attitude measurement,
Pinter Publishers, new edition, 1992.

D. L. Parnas and D. M. Weiss Active Design Reviews: Principles and Practice

proceedings of 8" International Conference on Software Engineering, pp 132136,
1985.

Bibli ography 141

[70]

[71]

[72]

[73]

[74]

[79]

[76]

[77]

(78]

[79]

[80)

[81]

[82]

A. A. Porter, L. G. Votta, and V. R. Basili, Comparing Detection Methods for
Software Requirements Inspedions. A Replicated Experiment, |EEE Transactions
on Software Engineering, 21(6), pp. 563575, 1995.

A. A. Porter, H. P. Sly, and L. G. Votta, A Review of Software Inspedions,
Advancesin Computers, 42,pp.39-76, 1996.

A. A. Porter and P. M. Johrnson, Assessing Software Review Meetings: Results of a
Comparative Analysis of Two Experimental Studies, IEEE Transactions on
Software Engineering, 23(3), pp.129-144, 1997.

A. A. Porter, H. P. Siy, C. A. Toman, and L. G. Votta, An Experiment to Assess
the Cost-Benefits of Code Inspectionsin Large Scale Software Development, |EEE
Transactions in Software Engineering, 23(6), pp.329-346, 1997.

A. Porter and L. Votta, What Makes Inspedions Work, |IEEE Software, 14(6), pp.
99102, 1997.

M. Priestley, Practical Object-Oriented Design with UML, McGraw-Hill, 2000.

J. A. Purchase and R. L. Winder, Debugging Toos for Object-Oriented
Programming, Journal of Object-Oriented Programming, 4(3), pp. 10-27, June
1991.

M. Putadla and |. Tervonen, Inspeding Postscript documents in an object-oriented
environment, 5" European Conference on Software Quality, 1997.

B. Regnell, P. Runeson, and T. Thelin, Are the Perspedives Redly Different? -
Further Experimentation on Scenario-Based Reading on Requirements, Empirical
Software Engineering: An International Journal, 5(4), pp. 33:356, 2000.

S. Rifkin and L. Deimel, Applying Program Comprehension Techniques to
Improve Software Inspedions, 19" Annual NASA Software Engineering
Laboratory Workshop, Maryland, 1994.

M. P. Robillard and G. C. Murphy, Concern Graphs: Finding and Describing
Concerns Using Structural Program Dependencies, appeared in Proceedings of the
24" International Conference on Software Engineering 2002, pp 406416, May
2002.

M. Roper and A. Dunsmore, Problems, Pitfals and Prospects for OO Code
Reviews, EuroSTAR' 99, 199.

G. W. Russell, Experience with Inspedion in Ultraarge-Scde Developments,
| EEE Software, 8(1), pp.2531, 1991.

Bibliography 142

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

G. M. Schneider, J. Martin, and W. T. Tsai, An experimental study of fault
detection in user requirements documents, ACM Transactions on Sftware
Engineering andMethodology, 1(2), pp. 188-204, 1992.

R. W. Sdby, V. R. Basili, and F. T. Baker, Cleanroom Software Development: An
Empirica Evaluation, IEEE Transactions on Sftware Engineering, 13(9), pp.
1027-1037, 1987.

F. Shull, I. Rus, and V. Basili, How Perspective-Based Reading Can Improve
Requirements Inspections, |EEE Computer, 33(7), pp. 73-79, 2000.

M. Sinclair, Subjective assessment, in J. Wilson and E. Corlett, editors, Evaluation
of Human Work: A practical ergonamics methodaology, pp. 58-88, Taylor and
Francis, 1990.

R. Van Solingen and E. Berghout, The Goal/Question/Metric Method, McGraw-
Hill, 1999.

E. Soloway, J. Pinto, S. Letovsky, D. Littman, and R. Lampert, Designing
Documentation to Compensate for Delocalised Plans, Comnunications of the
ACM, 31(11), pp. 1259-1267, 1988.

P. Stevens with R. Pooley, Using UML — Sdtware Engineering with Objeds and
Comporents, Addison-Wesley, Updated Edition, 2000.

S. H. Strauss and R. G. Ebenau, Software Inspection Process McGraw Hill
Systems Design and Implementation Series, 1993.

|. Tervonen, Consistent Support for Software Designers and Inspectors, Software
Quality Journal, 5, pp. 221-229, 1996.

T. Thelin, H. Petersson, and C. Wohlin, Sample-Driven Inspection, in proceedings
of the 1% Workshop onlnspection in Software Engineering, published by Software
Quality Research Lab, McMaster University, pp. 81-91, July 2001.

G. H. Travassos, F. Shull, M. Fredericks, and V. R. Basili, Detecting Defects in
Object Oriented Designs: Using Reading Techniques to Increase Software Quality,
Conference on Object-Oriented Programming, Sstems, Languages, and
Applications (OOPSLA), 1999.

L. G. Votta, Does Every Inspection Need a Meeting?, ACM Software Engineeing
Notes, 18(5), pp. 107-114, 1993.

J. Welkowitz, R. B. Ewen, and J. Cohen, Introductory Statistics for the Behavioral
Sciences, Second Edition, Academic Press, 1976.

Bibliography 143

[96] E. F. Wdler, Lessons from Three Years of Inspection Data, |EEE Software, 10(5),
pp. 38-45, September 1993.

[97] N. Wilde and R. Huitt, Maintenance Support for Object-Oriented Programs, |EEE
Transactions on Software Engineering, 18(12), pp. 1038-1044, 1992.

[98] N. Wilde, P. Matthews, and R. Huitt, Maintaining Object-Oriented Software, |EEE
Software, 10(1), pp. 75-80, 1993.

