
 INVESTIGATING EFFECTIVE INSPECTION OF OBJECT-
ORIENTED CODE

SUBMITTED TO THE DEPARTMENT OF COMPUTER AND
INFORMATION SCIENCES,

UNIVERSITY OF STRATHCLYDE, GLASGOW

FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY.

By

Alastair Peter Dunsmore

June 2002

The copyright of this thesis belongs to the author under the terms of the United
Kingdom Copyright Acts as qualified by University of Strathclyde Regulation 3.51.
Due acknowledgement must always be made of the use of any material contained

in, or derived from, this thesis.

 Copyright 2002

Abstract

Since the development of software inspection over twenty-five years ago it has become

established as an effective means of detecting defects. Inspections were originally

developed at a time when the procedural paradigm was dominant but, with the Object-

Oriented (OO) paradigm growing in influence and use, there now exists a lack of guidance

on how to apply inspections to OO systems. Object-oriented and procedural languages

differ not only in their syntax but also in a number of more profound ways - the

encapsulation of data and associated functionality, the common use of inheritance, and the

concepts of polymorphism and dynamic binding. These factors influence the way that

modules (classes) are created in OO systems, which in turn influences the way that OO

systems are structured and execute. Failure to take this into account may hinder the

application of inspections to OO code. This thesis shows that the way in which the object-

oriented paradigm distributes related functionality can have a serious impact on code

inspection and, to address this problem, it develops and empirically evaluates three code

reading techniques.

The results from an investigation into the characteristics of “hard to find” defects, in

combination with a literature review and an industrial survey, revealed that one of the main

difficulties affecting the inspection of OO code was the inherent delocalisation that

occurred – OO features distributing closely related information throughout a system. From

this, a systematic, abstraction-driven reading technique was developed, focusing on

constructing abstract specifications, and evaluated by an empirical study. The results from

this led to the development and evaluation of two further reading techniques – one based on

a checklist and the other based on a more dynamic approach centered on the route that a

use-case takes through a system – along with a refinement of the original systematic

technique.

The results indicate that, where practical, object-oriented inspections should be based

on teams of inspectors using a combination of at least two techniques. Using a

combination of reading techniques, such as those presented in this thesis, seems to offer the

potential to deal with recurring defect types, defects that may require deeper insights, and

defects that are associated with features of object-orientation that can distribute

functionality throughout a software system.

Acknowledgements

I would like to thank Dr. Marc Roper and Dr. Murray Wood for their excellent supervision.

Their comments, criticisms, and advice have helped guide and shape the development of

this thesis. Without their experience and scathing wit, this thesis would never have reached

completion.

Through my time in the department, several individuals have provided encouragement

and feedback on the work contained within this thesis. I would like to thank Fraser

Macdonald, James Miller, and Douglas Kirk for their comments and encouragement

through the course of the thesis. I would also like to thank the support personnel within the

department - Ian Gordon, Gerry Haran, and Kenny Forte - for providing technical

assistance.

Finally, I would like to acknowledge the encouragement and support given to me over

many years by my parents, Helen and Peter, and many friends (Monty, Sam, Gordon,

Stuart and Claire). Without it I would have failed long ago. I would also like to say a

special thanks to my girlfriend Claire, for her patience and for pushing me over the final

finishing line.

The research contained in this thesis was supported by a Graduate Teaching Assistant

position with the Department of Computer Science, University of Strathclyde. The support

of the Department and the Faculty of Science is gratefully acknowledged concerning travel

to conferences. I would also like to add special thanks to Professor Paddy Nixon for help

with financial support during the final months of the thesis.

List of Publications

From the work carried out in this thesis there have been a number of publications. These

are:

• M. Roper and A. Dunsmore, Problems, Pitfalls and Prospects for OO Code Reviews,

7th European International Conference on Software Testing, Analysis and Review,

EuroSTAR99, 1999.

• A. Dunsmore, M. Roper, and M. Wood, The role of comprehension in software

inspection, Journal of Systems and Software, 52, pp. 121-129, 2000.

• A. Dunsmore, M. Roper, and M. Wood, Object-Oriented Inspection in the Face of

Delocalisation, appeared in Proceedings of the 22nd International Conference on

Software Engineering 2000, pp. 467-476, June 2000.

• A. Dunsmore, M. Roper, and M. Wood, M., Systematic Object-Oriented Inspection –

An Empirical Study, appeared in Proceedings of the 23rd International Conference on

Software Engineering 2001, pp. 135-144, May 2001.

• A. Dunsmore, M. Roper, and M. Wood, M., Practical Code Inspection for Object-

Oriented Systems, in proceedings of the 1st Workshop on Inspection in Software

Engineering, published by Software Quality Research Lab, McMaster University, pp.

49-57, July 2001.

• A. Dunsmore, M. Roper, and M. Wood, Further Investigations into the Development

and Evaluation of Reading Techniques for Object-Oriented Inspection, appeared in

Proceedings of the 24th International Conference on Software Engineering 2002, pp.

47-57, May 2002.

vi

Contents

1 INTRODUCTION 1

1.1 OVERVIEW 1
1.2 CONTRIBUTION OF THESIS 3
1.3 THESIS OUTLINE 3

2 SOFTWARE INSPECTION AND OBJECT-ORIENTED PITFALLS 5

2.1 INSPECTION 5
2.1.1 The Inspection Process 5
2.1.2 Reading Techniques 10

2.1.2.1 Ad-hoc 10
2.1.2.2 Checklist 10
2.1.2.3 Step-wise Abstraction 12
2.1.2.4 Scenario-Based Reading 12
2.1.2.5 Perspective-Based Reading 13
2.1.2.6 Summary 15

2.2 OBJECT-ORIENTED PROBLEMS AND PITFALLS FOR INSPECTION 15
2.3 CURRENT STATE OF OBJECT-ORIENTED INSPECTION 18
2.4 SUMMARY 20

3 INVESTIGATION OF OBJECT-ORIENTED CODE INSPECTION 22

3.1 EXPERIMENTAL SOFTWARE METHODOLOGY 22
3.2 AN EXPERIMENT INVESTIGATING OBJECT-ORIENTED CODE INSPECTION 25

3.2.1 Introduction 25
3.2.2 Experimental Goals and Hypotheses 25
3.2.3 Experimental Plan 25
3.2.4 Experimental Procedures 31
3.2.5 Experiment Results 32
3.2.6 Experimental Design Lessons 39
3.2.7 Summary 40

3.3 SURVEY OF OBJECT-ORIENTED DEFECT-DETECTION APPROACHES 40
3.3.1 Survey Design 40
3.3.2 Survey Results 44
3.3.3 Summary 48

3.4 THE PROBLEM OF DELOCALISATION 49
3.5 INADEQUACY OF CURRENT INSPECTION APPROACHES 52
3.6 WAYS TO IMPROVE OBJECT-ORIENTED INSPECTION 55
3.7 CONCLUSIONS 56

4 SYSTEMATIC, ABSTRACTION BASED OBJECT-ORIENTED CODE
INSPECTION 57

4.1 SYSTEMATIC INSPECTION 58
4.2 AN EMPIRICAL STUDY OF SYSTEMATIC OBJECT-ORIENTED

INSPECTION 62
4.2.1 Introduction 62
4.2.2 Experimental Goals and Hypotheses 62
4.2.3 Experimental Plan 64
4.2.4 Experimental Procedures 68
4.2.5 Experimental Results 68
4.2.6 Experimental Design Lessons 83
4.2.7 Interpretation of Results 84

vii

4.3 CONCLUSIONS 87

5 DEVELOPMENT AND EVALUATION OF THREE TECHNIQUES FOR OBJECT-
ORIENTED CODE INSPECTION 88

5.1 THREE INSPECTION READING TECHNIQUES 88
5.1.1 Checklist 89
5.1.2 Use-case 92
5.1.3 Systematic 96

5.2 EMPIRICAL EVALUATION 98
5.2.1 Introduction 98
5.2.2 Experimental Goals and Hypotheses 98
5.2.3 Experimental Plan 99
5.2.4 Experimental Procedures 103
5.2.5 Experimental Results and Analysis 104
5.2.6 Interpretation of Results 118

5.3 CONCLUSIONS 121

6 CONCLUSIONS AND FUTURE WORK 123

6.1 THESIS SUMMARY 123
6.2 LESSONS FOR THE INSPECTION OF OBJECT-ORIENTED CODE 125

6.2.1 The Problem of Delocalisation 125
6.2.2 Reading Technique Overhead 127
6.2.3 Chunking 128

6.3 ADVICE ON PRACTICAL OBJECT-ORIENTED CODE INSPECTION 129
6.4 FUTURE WORK 131

6.4.1 Replication Guidance 133
6.5 CONCLUSIONS 135

BIBLIOGRAPHY 136

A EXPERIMENT ONE MATERIAL 144

A.1 LIBRARY PROBLEM STATEMENT 144
A.2 EXPERIMENTAL MATERIAL 146

A.2.1 Inspection Defect Form 147
A.2.2 Inspection Instructions 148
A.2.3 Program Specification 149
A.2.4 Library System - Class Hierarchy Diagram 151
A.2.5 Code – Group A 152
A.2.6 Code – Group B 154
A.2.7 Defects – Group A 157
A.2.8 Defects – Group B 159

A.3 RAW EXPERIMENTAL RESULTS 162
A.4 EXAMPLE OUTPUT OF C5.0 (RULE INDUCTION SYSTEM) 165
A.5 ALL OUTPUT FROM C5.0 168

B INDUSTRIAL SURVEY 174

C EXPERIMENT TWO MATERIAL 179

C.1 HOTEL PROBLEM STATEMENT 179
C.2 AD-HOC INSPECTION MATERIAL 182

C.2.1 Gym Extension 182
C.2.1.1 Inspection Instructions 182
C.2.1.2 Inspection Introduction/Extension Specification 183
C.2.1.3 Class Diagram 185
C.2.1.4 Booking.java 186
C.2.1.5 BookingDate.java 188

viii

C.2.1.6 List of Defects 189
C.2.1.7 Web Page 190

C.2.2 Conference Room Extension 191
C.2.2.1 Instructions 191
C.2.2.2 Inspection Introduction/Extension Specification 192
C.2.2.3 Class Diagram 194
C.2.2.4 ConferenceRoom.java 195
C.2.2.5 Function.java 196
C.2.2.6 FunctionDate.java 197
C.2.2.7 Delegate.java 198
C.2.2.8 List of Defects 199
C.2.2.9 Web Page 200

C.2.3 Ad-hoc Questionnaire 201
C.3 AD-HOC RAW RESULTS 203

C.3.1 Group A – Gym Code 203
C.3.2 Group B – Conference Code 205

C.4 SYSTEMATIC LECTURE MATERIAL 207
C.5 SYSTEMATIC INSPECTION MATERIAL 218

C.5.1 Web Page - Week 10 - Conference Room 218
C.5.2 Web Page - Week 10 - Gym Extension 219
C.5.3 Blank Method Specification Sheets – ConferenceRoom 220
C.5.4 Blank Method Specification Sheets – Gym 226
C.5.5 Systematic Questionnaire 228

C.6 SYSTEMATIC RAW RESULTS 231
C.6.1 Group A – Conference Code 231
C.6.2 Group B – gym Code 233

C.7 ALL OUTPUT FROM C5.0 235
C.7.1 Ad-hoc Output 235
C.7.2 Systematic Output 238

D EXPERIMENT THREE MATERIAL 244

D.1 AIRLINE PROBLEM STATEMENT 244
D.2 LECTURE MATERIAL 246
D.3 EXPERIMENTAL MATERIAL 274

D.3.1 Class Diagram 275
D.3.2 Code 276
D.3.3 Defects with the Code 278
D.3.4 Checklist 281

D.3.4.1 Instructions 281
D.3.4.2 Technique Instructions 282
D.3.4.3 Checklist 283
D.3.4.4 Web Material 284

D.3.5 Systematic 294
D.3.5.1 Instructions 294
D.3.5.2 Technique Instructions 295
D.3.5.3 Reservation.java Blank Method Specification sheets 296
D.3.5.4 reservationCollection Blank Method Specification Sheets 298
D.3.5.5 Web Material 301

D.3.6 Use-case 306
D.3.6.1 Instructions 306
D.3.6.2 Technique Instructions 307
D.3.6.3 Blank Scenario sheet 309
D.3.6.4 Web Material 310

D.4 RAW EXPERIMENTAL RESULTS 315

Chapter 1

Introduction

1.1 Overview

This thesis shows that the way in which the object-oriented paradigm distributes related

functionality can have a serious impact on code inspection and, to address this problem, it

develops and empirically evaluates three code reading techniques.

Software inspection has, over the last twenty-five years, established itself as an effective

and efficient technique for finding defects. Inspections were originally introduced in the

late 1970’s by Fagan [30] as a "formal, efficient, and economical method of finding errors

in design and code". The effectiveness of inspections has been established through a large

number of controlled experiments and industrial case studies. Fagan [31] reported that it

was possible for inspection to find between 60-90 percent of all defects and that the

feedback obtained from the inspections was proving useful in helping programmers avoid

making the same mistakes. Russell [82] reported savings of nearly 33 hours of

maintenance due to every hour spent on inspection.

Inspections, as originally defined by Fagan [30], usually involve four or more people

and are made up of several phases: (1) an introduction, where participants are presented

with a general overview of the area being addressed; (2) preparation, where individual

participants try to understand the artifact under inspection; (3) group inspection, where

participants get together as a group and attempt to find as many defects as possible; (4)

rework, where defects found are dealt with by the designer or implementor of the artifact;

and (5) follow-up, where all issues and concerns are verified as being dealt with.

From their initial use as a code-based technique, inspections are now applied to a wide

range of document types including requirements and designs documents [8], [70], [93]. As

well as expanding the scope of documentation covered by inspection, the application of the

technique and the supporting materials have been refined and honed and there is active

interest in continually developing the concept.

Chapter 1: Introduction 2

In inspection, the focus for detecting defects has moved away from being a group

activity to being part of an inspector’s individual preparation for the group phase [53], [72],

[94]. This refocus has lead to the reading technique (a set of guidelines used by inspector’s

to acquire a deep understanding of the inspection artifact) becoming a key aspect of the

inspection process. Adequate support for inspectors, via the reading techniques, is

necessary to help them be efficient and effective in their search for defects.

In spite of their broad application, there is a significant lack of information indicating

how inspections should be applied to object-oriented code. Until recently, most of the

research carried out in connection with reading techniques, and inspection in general has

related to inspections carried out with procedural languages, the predominant paradigm

used when inspections were originally proposed. The last ten years have seen the object-

oriented paradigm growing in influence and use – particularly since the introduction of

C++ and Java. Laitenberger et al. [48] commented that "over the past decade object-

oriented development methods have replaced conventional structured methods as the

embodiment of software development, and are now the approach of choice in most new

software development projects".

The lack of guidance on how to apply inspections to object-oriented code is disturbing.

Object-oriented languages differ from procedural ones in a number of profound ways – the

encapsulation of data and associated functionality, the common use of inheritance, and the

concepts of polymorphism and dynamic binding – to name but a few. These factors

influence the way that modules (classes) are created in object-oriented systems, which in

turn influences the way that object-oriented systems are structured and execute. The key

features of the object-oriented paradigm may have a significant impact on the ease of

understanding of program code and failing to adapt to this paradigm may inhibit the

effective application of inspections to object-oriented systems.

This thesis shows that the way the object-oriented paradigm distributes related

functionality can have a serious impact on the effectiveness of code inspection and, to

address this problem it develops and empirically evaluates three code reading techniques.

Each of the three reading techniques address the problem of distributed functionality in

different ways, offering the potential to deal with a wide range of defect types.

Chapter 1: Introduction 3

1.2 Contribution of thesis

The work presented in this thesis makes the following contributions to the area of object-

oriented code inspection:

• An investigation of the issues that confound object-oriented code inspection and the

identification of three significant issues to be addressed: chunking, reading strategy and

dealing with the distribution of functionality (described in Chapter 3 as the problem of

‘delocalisation’) .

• The development of three different reading techniques for the inspection of object-

oriented code – a systematic, abstraction driven technique, a use-case based approach

and a modified checklist – that attempt to address the problems of reading strategy and

delocalisation.

• Two controlled empirical experiments to investigate the effectiveness of the three

reading techniques developed specifically for object-oriented code.

• A set of lessons, based on the results of the three controlled experiments that can be

used to guide current object-oriented code inspection.

1.3 Thesis Outline

The remainder of this thesis is structured in the following way:

Chapter 2: Review of Software Inspection and Object-Oriented Pitfalls

The thesis begins with a review of the relevant literature, discussing the basic principles

behind inspection, the different reading techniques that are available to inspectors, the

problems caused by object-oriented characteristics, and the current work in the area of

object-oriented inspection.

Chapter 3: Investigation of Object-Oriented Code Inspection

An overview of experimentation is presented, highlighting what is considered best

practice for preparing and running a software engineering experiment in the context of

inspection. This is followed by an experiment investigating the issues surrounding how

the object-oriented paradigm impacts on the inspection of object-oriented code. The

results from the experiment as well as evidence from a small -scale survey shows that

delocalisation is a real problem, and several areas are highlighted that need to be

addressed.

Chapter 1: Introduction 4

Chapter 4: Systematic, Abstraction Based Object-Oriented Code Inspection

A systematic, abstraction based reading technique that attempts to address some of the

issues raised from the first experiment is presented and then evaluated by a controlled

experiment. The results show no statistical difference in defect detection between

systematic and ad-hoc reading techniques, although further analysis of the results show

that the systematic technique appears to offer some potential benefits, that with

refinement, could help address the problem of delocalisation.

Chapter 5: Further Investigating Reading Techniques for Object-Oriented Code

Inspection

Three reading techniques are developed to further investigate the issues concerning

object-oriented code inspection - an updated version of the systematic technique, a more

traditional checklist technique modified to focus more on object-oriented

characteristics, and a use-case driven approach which takes a more dynamic view. This

is followed by a controlled experiment that compares the defect detection rates of the

three reading techniques. The results suggest that each reading technique has the

potential to deal with different defect types.

Chapter 6: Conclusions and Future Work

The final chapter of the thesis contains a summary of the work presented and discusses

what lessons can be learned for the practical inspection of object-oriented code. Areas

for future work include verification through replication and further refinements to the

reading techniques. The conclusion of this thesis is that delocalisation is a significant

problem for the effective inspection of object-oriented code, and that where possible,

inspections should be based on the use of at least two different reading techniques.

Chapter 2

Software Inspection and Object-Oriented
Pitfalls

Much research has been carried out in the area of software inspection since Fagan's original

description in 1976. There have been many variations proposed on the traditional

inspection process that he first described. Tools have been created to help inspectors find

more defects and co-ordinate their efforts in more cost-effective ways. Defect detection

aids (e.g. reading techniques) have been defined for different software development

artifacts (requirements, code, etc.).

This chapter provides a brief introduction to inspection by describing Fagan's original

inspection process. It shows how the focus of detecting defects has moved away from

being a group activity to one that is carried out by the individual inspector. This refocus

makes the reading technique used by the inspector to help prepare and find defects within

an inspection artifact one of the key parts of the inspection process. An overview is

presented of the various reading techniques currently available for individual inspectors.

This is followed by a review of the literature highlighting the problems that may be caused

by object-oriented characteristics, and how these characteristics might have an impact upon

code inspection. This chapter concludes with a summary of the current work in the area of

object-oriented inspection.

2.1 Inspection

2.1.1 The Inspection Process

Fagan originally defined his inspection process in 1976 [30], later updating it in 1986 [31].

Inspections, as originally discussed by Fagan [30], are a "formal, efficient, and economical

method of finding errors in design and code". Fagan went on to define an error, or as is

now commonly termed, a defect, as “any condition that causes a malfunction or that

precludes the attainment of expected or previously specified results” . As an example, a

deviation between a specification and the corresponding code document is a defect.

Chapter 2: Software Inspection and Object-Oriented Pitfall s 6

Inspections can be carried out at many of the stages in the software development

process. As well as being used for code documents, inspections are applied to a wide range

of artifacts including software requirements, design documents, test plans, and test cases

[8], [31], [70], [93].

Code inspections are non-execution based, i.e. the inspector is never allowed to execute

or compile the code during the inspection. This allows inspection to be applied to code

documents long before tests are designed or even run [36]. It has also been found that if

the code is executed and tested before an inspection, the motivation of the inspectors may

be reduced and make the inspection process appear redundant [82], [96]. Humphrey [40],

in the Personal Software Process (PSP), states that as part of the process to ensure a quality

product, inspections should take place before the first compile or test. Taking the opposite

view, Gilb and Graham [36] and Strauss and Ebenau [90] consider sending code to a

compiler as one of the many different entry criteria that have to be passed before an

inspection can begin. The reason for the clean compilation check is that it is cheaper for

the compiler (or other automatic tools) to find those kinds of defects, than the more

expensive inspector.

In Fagan’s original description of inspection [30], there should, under ideal conditions,

be four people in an inspection team, each having a specific role. These roles include the

Moderator (a competent programmer, sometimes from a different project, to manage the

inspection team and offer guidance), Designer (person who produced the program design),

Coder / Implementor (person who translated the design into code), and Tester (person

responsible for testing the product). In Fagan’s original inspection process [30] he defines

five main steps (shown in Figure 2.1):

1. Overview – The designer uses this phase to present all the participants involved in

the inspection with a general overview of the area being addressed, followed by

more specific information on the artifact to be inspected. For code inspections, the

overview phase is considered optional.

2. Preparation – This phase is carried out individually. Participants should understand

the artifact under inspection using the design documentation. The inspection team

are aided in this process by the use of ranked distributions of error types based on

recent inspections, as well as checklists containing clues on finding these errors.

3. Inspection – All participants in the inspection group get together. The moderator

controls the meeting, making sure that it stays focussed, so that it does not get out of

hand or stray off course. All related documentation should be available during the

Chapter 2: Software Inspection and Object-Oriented Pitfall s 7

inspection. With the design of the artifact under inspection understood (in the

previous preparation phase), the main objective in this phase is to find defects. This

occurs as the “reader” , chosen by the moderator (usually the coder) takes the team

through the inspection artifact. Once a defect is found, no attempt should be made

by the inspectors to find a solution. Defects are noted by one of the group members

given the task of being meeting scribe (either the tester or someone with no other

task).

4. Rework – All the defects noted in the inspection report from the previous phase are

resolved by the designer or implementor.

5. Follow-up – All i ssues and concerns are verified as being followed-up. If more than

5% of the material inspected has in some form had to be reworked, the inspection

team should regroup and carry out a full re-inspection of the material.

Figure 2.1 – The five steps in Fagan’s or iginal inspection process

Since Fagan's original inspection process, there have been many variations attempting

to improve the performance of inspections. Active Design Reviews [69] were originally

created to ensure complete coverage of design documents and advocate several small ,

focused inspection meetings rather than one large meeting involving a lot of people. In

each of these smaller meetings, inspectors are assigned a specific role to look for different

types of defect. In N-Fold Inspections [83] not one, but many parallel inspections are

performed by different teams on the same artifact. The assumption is that a single

inspection team will only find a fraction of the defects, and that multiple teams will not

significantly duplicate each other’s efforts. Phased Inspections [45] divide the normal

Overview

Preparation

Follow-up

Rework

Inspection

(Individual)

(Whole team)

(Whole team)

Chapter 2: Software Inspection and Object-Oriented Pitfall s 8

inspection into several smaller phases. These phases can be carried out by one or more

inspectors. Each phase focuses on one specific type of defect (compared to more

traditional inspections, which look for all types of defect in one big inspection). If more

than one inspector is involved, they meet to create one definitive defect list. Phases are

carried out in sequence, meaning that the next phase is not reached until the previous one

has been completed. Sample-Driven Inspections [92] is a method designed to reduce the

effort during an inspection session by concentrating the inspection effort on the software

artifacts that contain the most defects. The defect searching is divided into two parts. A

pre-inspection occurs where samples of the artifacts are inspected to estimate which

artifacts contain the most faults. Secondly, the main inspection is carried out on the

selected artifacts. These alternative processes have varied such elements as the number of

steps in the inspection process, the number of inspectors, and the roles of inspectors.

Although each variation has made alterations to the inspection process or altered

characteristics of the phases, the inspection phases of preparation, inspection, and

rework/follow-up from Fagan's original description have remained [50].

There have been many reports on the successes achieved through the use of inspections.

Fagan [31] commented that inspection was detecting between 60 to 90 percent of defects.

Ackerman et al. [1] reported that inspections were two to ten times more efficient at defect

removal than testing. Russell [82], based on 2.5 mill ion lines of high-level code, found that

if inspection was correctly implemented, then approximately one defect was found for

every man-hour invested. Russell claims this was two to four times faster than detecting

defects by testing. Reports by Weller [96], Grady and Slack [37], have also supported the

use of inspection, detailing improvements to the process and suggestions for achieving

widespread use.

In Fagan's original inspection process [30], the preparation phase was used by

inspectors to obtain an understanding of the inspection artifact and the inspection phase

was used by the inspectors as a group to carry out defect detection. A series of recent

empirical studies investigating the group aspect of the inspection process have cast doubt

on its relevance as a focus for defect detection. Votta [94] suggests that inspection

meetings are no longer required since the number of extra defects discovered in the

meeting over those found in the individual phase is relatively small (average 4%), and they

are not cost effective due to the time delay in preparing, organising, and holding the

inspection meetings. Meetings should be replaced by either small deposition meetings

(used to collect reviewers’ f indings and comments), or defect lists should be collected by

Chapter 2: Software Inspection and Object-Oriented Pitfalls 9

other verbal or written media (e.g. electronic mail, telephone). It was found that meetings

help reduce the number of false positives (potential defects which turn out not to be actual

defects). Land et al. [53] found that the strength of inspection meetings is not in finding

defects, but discriminating between true defects and false positives. They found that only a

small number of extra defects were found by inspectors when working in a group. Porter

and Johnson [72] found that far more issues are generated by individual defect detection

compared to group-based defect detection, but this comes at the cost of higher rates of false

positives and defect duplication. The current goals of the group aspect of inspection are

now for the inspectors to agree upon a final list of defects based upon those found

individually, and to reduce the number of false positives in the final report [51]. The main

focus for the preparation phase of inspection is now the detection of defects [51], [73].

Porter and Votta [74] found that defect detection results have less to do with the

particular inspection process used, and have more to do with the techniques and technology

supporting individual inspectors. Giving support to individual inspectors to find defects

may increase their effectiveness.

With the re-emphasis of the defect detection part of the inspection process on the

individual preparation phase, there has been a shift in inspection research. Basili [9]

pointed out that reading was by far the most important activity for successful individual

defect detection. Basili also highlighted the lack of research examining the technologies

that underlie the reading process. One reason for this lack of research was that until

recently, much of the research into inspection has been focused on the inspection process

[73], [79]. Adequate support for the defect detection activity of inspectors (i.e. reading

strategies) has the potential to dramatically improve the effectiveness and efficiency of

inspection [51]. The more the inspector can understand the material to be inspected, the

greater the chance of finding defects [79].

Although the most recent work on inspection reading techniques has focused on design

and requirements documents, in industry the inspection of code documents is still

predominant [50]. Laitenberger et al. [51] concludes that this makes the improvement of

reading techniques for code documents a high priority. The next section presents a

summary of the reading techniques and looks at how they attempt to help the inspector find

defects.

Chapter 2: Software Inspection and Object-Oriented Pitfall s 10

2.1.2 Reading Techniques

Laitenberger and DeBaud [50] described a reading technique as a “ series of steps or

procedures whose purpose is for an inspector to acquire a deep understanding of the

inspected software product” . In Fagan's original inspection process he suggested the use of

checklists [30]. As well as checklists, another popular technique in industry has been ad-

hoc inspection [27], [36]. With the emphasis of defect detection being placed on the

preparation phase of inspection [51], [73] and a realisation that reading is important for

defect detection, there has been a renaissance in the development of reading techniques.

The following describes some of the more prominent reading techniques currently

available.

2.1.2.1 Ad-hoc

One of the simplest reading techniques, ad-hoc, provides no support for inspectors, i.e. no

guidelines or direction. Inspectors have to rely on their own knowledge and experience,

reading the inspection artifact, whether they are specifications or code, in their own

preferred way. Although the ad-hoc approach offers no guidance to inspectors, it is

considered to be a reading technique [50], [71].

A strength of the ad-hoc technique is that more experienced inspectors have the freedom

to use their knowledge and abilities to find defects, free from any technique overhead that

may intrude upon their thinking. The main weakness of the ad-hoc technique is that with

no support, the performance of the less experienced inspectors may suffer, since they do

not have the experience to guide them.

2.1.2.2 Checklist

Checklists, which have been around since the early use of inspections in the late 70’s, are

straightforward to use and offer stronger guidance to inspectors than ad-hoc reading. They

are based upon a series of specific questions that are intended to focus the inspector’s

attention towards common sources of defects. The questions in a checklist are there to

guide the inspector through the document under inspection. To make it clear that a

potential defect has been found, the questions are phrased in such a way that if the answer

is ‘No’ , then a potential defect has been discovered. According to Gilb and Graham [36]

and Humphrey [40], checklists should be based on localised historical information and

should not be general checklists obtained from elsewhere as they can lose their relevance.

An excerpt from an example C++ code review guideline and checklist by Humphrey [40]

Chapter 2: Software Inspection and Object-Oriented Pitfall s 11

can be seen in Figure 2.2. Checklists, along with ad-hoc reading are still thought of as the

most frequently used defect detection methods [36], [73]. Checklists have been used to

inspect many different documents, including design, specification, and code.

Although checklists have been well promoted [31], [40], there are several weakness

which have been identified. Laitenberger et al. [50] summarised a list of the weaknesses of

the checklist technique from the literature. Firstly, that the questions are often too general

or based upon checklists created from the defect experience of others. Similarly, Tervonen

[91] commented that one of major problems facing checklists is their generality, that they

are not sufficiently tailored to a particular development method or phase in a specific

project. Second, instructions guiding inspectors on how to use a checklist are rarely

available, i.e. it is often unclear when and based on what information an inspector is to

answer a particular checklist question. Finally, the questions of a checklist are often

limited to the detection of defects which belong to particular defect types. Since the defect

types are based on past information [19], inspectors may not focus on defect types not

previously detected and, therefore may miss whole classes of defects (a problem only

slightly reduced by the constant revision that should occur with checklists).

Figure 2.2 - C++ Checklist, from Humphrey [40]

Initialisation Check variable and parameter initialisation:
• At program initiation
• At start of every loop
• At function/procedure entry

Calls Check function call formats:
• Pointers
• Parameters
• Use of ‘& ’

Strings Check that all strings are
• identified by pointers and
• terminated in NULL.

Pointers Check that:
• pointers are initialised NULL,
• pointers are deleted only after new, and
• new pointers are always deleted after use.

Output Format Check the output format:
• Line stepping is proper.
• Spacing is proper.

Logic
Operators

Verify the proper use of ==, =, ||, and so on.
Check every logic function for proper ().

Chapter 2: Software Inspection and Object-Oriented Pitfall s 12

2.1.2.3 Step-wise Abstraction

The step-wise abstraction reading strategy offers more structured and focused instructions

on how to read code. The technique was based on the step-wise abstraction technique of

reading developed in the late 70's by Linger, Mills and Witt [59]. In step-wise abstraction,

the aim is to start with the simplest components in the code, understand them, and abstract

out a higher level description of their functionality [3]. This process is repeated, combining

higher and higher levels of functionality, until a final description of the code is obtained.

This final description is then compared with the original specification. This way any

differences between the original specification and the derived specification highlight

potential defects. Stepwise abstraction has been most commonly used as a code reading

technique by the Cleanroom community [84] (the Cleanroom development method is a

technical and organisational approach to developing software with certifiable reliability).

Based upon evidence from the literature, Laitenberger et al. [51] believed that

inspectors utilising the step-wise abstraction technique were forced into a more rigorous

examination of the code than using either the ad-hoc or checklist reading techniques.

2.1.2.4 Scenario-Based Reading

The scenario reading strategy was created by Porter et al. [70] to address a perceived lack

of effectiveness in the use of ad-hoc and checklist methods for Software Requirements

Specifications (SRS). The work builds on the inspection process Active Design Reviews

by Parnas and Weiss [69], who argued for the need for different and specific roles for

inspectors to systematically inspect a document. Porter et al. described a scenario as a

"collection of procedures that operationalise strategies for detecting particular classes of

defects". Each inspector is given one scenario, which differs from the scenarios given to

the other inspectors in the inspection team. Each scenario contains a set of questions and

instructions informing the inspector how to perform the inspection of the SRS. Multiple

inspectors are required to obtain a reasonable level of coverage from the document. The

scenarios generated by Porter et al. [70] were derived from available defect classes.

The success of this technique relies heavily on the effectiveness of the designed

scenarios. Several variations on the scenario approach have been developed, each varying

the way the scenarios are created. In defect-based reading by Porter et al. [70], the

scenarios are derived from defect classes with a set of questions the inspector has to

answer. For scenario-based reading by Cheng and Jeffrey [18], the scenarios are based on

Function Point Analysis (scenarios are developed around a software system defined in

Chapter 2: Software Inspection and Object-Oriented Pitfall s 13

terms of its inputs, files, enquiries, and outputs). In perspective-based reading by Basili et

al. [8], the inspection artifact is inspected from the perspective of different stakeholders.

Each of these reading techniques provide a generic process for inspecting requirements

documents, although the material generated by the processes for use in inspections are

target specific (to a particular development environment).

The last of these techniques, Perspective-based reading, has continued to be refined and

has been implemented not just for requirements documents but for code documents as well.

2.1.2.5 Perspective-Based Reading

Perspective-based reading (PBR), first presented by Basili et al. [8], evolved from the work

carried out on scenarios. PBR, compared to the Scenario technique, offers a more detailed

set of instructions (scenarios) for inspectors. The perspective-based scenarios are an

algorithmic set of instructions informing inspectors how to read an artifact under

inspection. Inspectors understand the artifact by constructing an appropriate abstraction

defined by the scenario. Laitenberger and DeBaud [47] claim that a focused understanding

of the document obtained through the use of PBR should be more effective than either an

ad-hoc or a checklist based reading technique. Ad-hoc and checklist based reading

techniques are thought of as non-systematic in nature [73]. They do not offer a set of

concrete reading instructions, meaning that inspectors’ experience has a significant impact

on the number of defects found [47].

The PBR technique continues to be refined, giving better instructions on the creation

and content of scenarios [48]. A PBR scenario contains three parts. The first explains to

inspectors their interest/perspective on the inspection artifact. The second part consists of a

set of activities that inspectors have to perform. This allows them to extract the required

information out of the inspection artifact. In the final part, inspectors then apply a series of

questions to this information to verify its correctness. An example of a code scenario for

the C programming language is shown in Figure 2.3, created by Laitenberger et al. [51]. In

an inspection, each inspector has a different scenario to allow the artifact to be looked at

from different views, e.g. analyst, maintainer, tester, etc. By following the scenario the

inspectors should build up an understanding of the artifact. Although the early work on

PBR was carried out on requirements documents [8], some of the more recent work has

focused on C code documents [47], [51].

Basili et al. [8] found through experimentation that less experienced inspectors learned

to apply PBR better, and that the perspectives helped them focus more whereas more

Chapter 2: Software Inspection and Object-Oriented Pitfall s 14

experienced inspectors were more li kely to revert to their more traditional or previously

learned techniques.

Figure 2.3 – The tester scenar io for C code documents, from Laitenberger et al. [51]

An experiment by Laitenberger et al. [51], investigated the effectiveness and cost per

defect ratio of PBR compared to checklists for C code documents. The results showed that

two-person inspection teams were more effective using PBR than checklists. Applying

PBR was found to increase subjects understanding of the code, but was found to require

greater effort from inspectors. This improved understanding was also found to have helped

to reduce the cost of defects for PBR compared to checklists during the meeting phase.

With a greater understanding in the meeting, it took less effort on the inspectors’ behalf to

explain the defect they had found to the other inspectors, as well as taking less effort to

resolve false positives. It should be noted however, that the checklist used during the

experiment was a general one, based upon an existing checklist [66] and books on C

programming [23], [43]. This goes against the currently available advice [36], [40], which

states that checklists are most effective when based upon historical data.

Tester Scenar io

Assume you have the role of a tester. As a tester you have to ensure that the functionali ty
implemented in the code is correct.

In doing so, take the code document and determine the functions that are implemented in this
code module. Determine the dependencies among these functions and document them in the
form of a call graph.

Starting with the functions at the leaves of the call graph, determine for each function, a set of
test cases that allow you to stimulate the operation of the function. The set of test cases should
allow you to check each branch of the function as well as the loops. Document some of the test
cases.

Assume you are executing the function with your test cases as input values (mental simulation).
Verify whether each function behaves according to its specification and the comments given in
the code. If differences occur, check whether there is a defect or not. Document each defect you
detect on the defect report form.

While following the instructions, ask yourself the following questions:

1. Do you have the necessary information to identify a test case (e.g., are all constant values
and interfaces defined)?

2. Are branch conditions used in a correct manner?

3. Can you generate test cases for each branch and each loop? Can you traverse all branches by
using specific test cases?

4. Is allocation and de-allocation of memory used correctly?

Chapter 2: Software Inspection and Object-Oriented Pitfalls 15

Although most of the experiments investigating the effectiveness of using PBR have

been positive, there has recently been one experiment (based upon a lab package by Basili

et al. [10]) investigating its effectiveness and efficiency with relation to requirements

documents [78]. The results showed that there was no significant difference in the defect

coverage of the three perspectives, suggesting that a combination of multiple perspectives

may not result in a higher defect coverage compared to reading with only one perspective.

This contradicts the earlier work on PBR. Regnell et al. [78] provide no other reasons for

the results, other than to highlight certain threats to the validity of the experiment. The

threats included the setting may not be realistic, the perspectives may not be optimal,

subjects may not be motivated or trained enough, and the number of subjects may be too

small.

2.1.2.6 Summary

Reading techniques have evolved from offering no support and minimal guidance to

inspectors into detailed task driven processes that encourage inspectors to attain a good

understanding of the artifact under inspection. More recent reading techniques have also

introduced the notion of inspecting artifacts from different views (perspectives). This

allows inspectors to focus on different aspects and different defect types in greater detail.

The increased understanding promoted by recent reading techniques is achieved through

clear, unambiguous instructions that guide the inspector in extracting and querying the

required information from the inspected artifact. It is the development of this good

understanding of the code that is key to a successful inspection. The main drawback to

these more process driven techniques is the extra work required to be done by the

inspector.

2.2 Object-Oriented Problems and Pitfalls for Inspection

The object-oriented paradigm has gained widespread acceptance [17] and, it has been

argued, has delivered many benefits to the programmer such as better structured and more

reliable software for complex systems, greater reusability, more extensibility, and easier

maintainability [44]. With these claimed successes, there have also arisen new problems to

be tackled. In 1994, Jones [41] listed some of the gaps in information about the object-

oriented paradigm. One of those gaps was in the area of inspection. Jones noted that

"Since formal inspections are the most effective known way of eliminating software defects,

Chapter 2: Software Inspection and Object-Oriented Pitfall s 16

software quality assurance personnel are anxiously awaiting some kind of guidance and

quantitative data on the use of inspections with object-oriented projects".

There is a significant body of literature developing that suggests that the characteristic

features of the paradigm can make object-oriented code more difficult to understand

compared to the procedural equivalent – an issue that has direct impact on code inspection.

Much of this literature centres on experience gathered from the software maintenance

domain. The problems encountered in maintenance can apply equally to the task of

inspection - both require sections of code to be read and understood (it is assumed that

inspection performance is closely related to comprehension – see [26], [51], [79]).

According to Gamma et al. [35], the structure of an object-oriented program at run-time

is vastly different to that of its code structure, "In fact, the two structures [run-time and

compile-time] are largely independent. Trying to understand one from the other is like

trying to understand the dynamism of living ecosystems from the static taxonomy of plants

and animals, and vice-versa." Where the code structure is frozen at compile-time, the run-

time structure consists of rapidly changing networks of communicating objects. This

makes it very difficult to understand one from the other.

Dependencies exist in all code, but their number are increased by object-oriented

languages [17], [97]. Wilde and Huitt [97] described a dependency in a software system as

“A direct relationship between two entities in the system X → Y such that a programmer

modifying X must be concerned about possible side effects in Y” . Wilde and Huitt

suggested that using polymorphism and inheritance hierarchies dramatically increases the

kinds of dependencies that need to be considered. Some of the dependencies they

highlighted include Class-to-Class, Class-to-Methods, Class-to-Message, Class-to-

Variable, Method-to-Variable, Method-to-Message, and Method-to-Method. Chen et al.

[17] described three kinds of dependencies found in object-oriented languages, message

dependence (relationship between a method and its callers), class dependence (inheritance,

aggregation and association relationships) and declaration dependence (relationship

between classes (types) and objects (variables)).

Dynamic binding is a specific example of a characteristic of object-oriented programs

that increases the complexities and dependencies in a program. This concept, closely

associated with polymorphism, involves not knowing the type of a particular object

referenced by a variable, as this is only determined at run time [14], [61]. When a method

invocation occurs, only at run time can the type of an object be correctly identified. All the

associations created through the use of polymorphism and dynamic binding usually mean

Chapter 2: Software Inspection and Object-Oriented Pitfalls 17

that more than one class needs to be looked at (especially in the case of a class which is

part of a deep inheritance hierarchy) in order to fully understand how one small fragment

of code works. Wilde and Huitt suggested that tracing these dependencies is vital for

effective software maintenance [97]. Lejter et al. [55] claimed that dynamic binding (along

with inheritance) made object-oriented programs much more difficult to maintain and

understand. This view is also supported by Crocker and von Mayrhauser [20].

The structure of object-oriented programs differs from that of conventional programs

[97]. Method sizes may be very small as a natural consequence of good object-oriented

design [57], [98]. Daly et al. [22] found that unconstrained use of inheritance may result in

understanding difficulties. When investigating the difficulties experienced programmers

encountered learning and using the Smalltalk programming language, Nielsen and Richards

[67] found that the distributed nature of the code caused problems when attempting to

understand a system. Together with inheritance, this distribution may result in traversing

up and down inheritance hierarchies and across class boundaries in an attempt to locate

where the work is carried out and build up a complete understanding of the task. This

problem is illustrated in Figure 2.4.

Figure 2.4 - Chain of message invocations

Many of the problems that have been mentioned have also created difficulty for other

areas of software engineering outside of software maintenance, such as comprehension

[54], component reuse [32], testing [65], [42], and visualisation [54]. Each area has had to

re-evaluate how it achieves its objectives, and in many cases redesign its processes. Binder

[13] in his review of testing for object-oriented software highlighted that most believe the

features of object-oriented systems (inheritance, polymorphism, abstract super classes,

work
done

message

Chapter 2: Software Inspection and Object-Oriented Pitfalls 18

encapsulation) will require the development of new approaches to be able to achieve

adequate levels of testing.

2.3 Current state of Object-Oriented inspection

With the rise in popularity of object-orientation, the research community has turned to

adapting inspections to this new paradigm and its particular artifacts. So far, the work

carried out has focused on the inspection of object-oriented requirements and design

artifacts. Although some initial work has been positive, there has been a lack of research

regarding how the key features of the object-oriented paradigm may impact on the

inspection of object-oriented code.

Figure 2.5 – Reading techniques in Traceability-Based Reading (TBR),

from Travassos et al. [93]

Travassos et al. [93] found that there was a lack of guidance on how to inspect object-

oriented design documents and carried out a preliminary investigation. The main focus

was on designs described by UML diagrams. They developed a technique called

Traceability-Based Reading (TBR) that evolved from the experience gathered from the

development of reading techniques for requirements documents [70]. TBR is a two step

process. The first step involves the correctness and consistency checks on requirements

Requirements Ar tifacts

Design Ar tifacts

* - techniques that have been evaluated via feasibility study

 Requirements Ar tifacts

Hor izontal reading

* (sequence)
*

Design Ar tifacts

* *

Class
Diagrams

Package
Diagrams

Class
Descriptions

State Machine
Diagrams

Interaction
Diagrams

Requirements
Description

Use-Case Diagrams /
Scenarios Description

Vertical
reading

Chapter 2: Software Inspection and Object-Oriented Pitfalls 19

documents that have traditionally occurred. This is described as horizontal reading. The

second step is described as vertical reading, and differs from the traditional process, in that

requirements documents are compared with design documents to ensure consistency. This

is illustrated in Figure 2.5, based on a diagram by Travassos et al. [93].

An experiment carried out using TBR found encouraging, but not conclusive results.

Horizontal and vertical reading were found on average to highlight different types of

defect. Vertical reading found slightly more defects concerning omission and

inconsistency (between diagrams and requirements), where horizontal reading found more

defects concerning ambiguity and inconsistency (between diagrams). An important finding

was that the technique forced more focus on semantic information (an understanding of the

meaning of the document), similar to the focus encouraged by the scenarios of PBR. In its

current state, the technique relies too much on syntactic information, making sure that

certain words and attributes in one diagram appear in their correct location elsewhere.

Another drawback is that the technique was found to be time consuming.

Laitenberger and Atkinson [48] presented an adaptation of Perspective-Based Reading

(PBR) for any object-oriented development artifact. They provided a generally applicable

definition of the technique, describing instructions on how to generate PBR scenarios. An

experiment [49] was carried out to investigate the effectiveness of PBR for UML design

documents in comparison to checklists. The results of the experiment showed that PBR

scenarios help improve inspectors understanding of the inspection artifacts. This was

found to reduce the cost of defects in the group phase (as a collation exercise) for PBR in

comparison to checklists. The checklists used were designed along the lines discussed by

Chernak [19], but the questions, due to the lack of other such checklists for object-oriented

design documents that could be reused, were developed from scratch.

The majority of research carried out in the area of object-oriented inspection has so far

been aimed at the development of reading techniques to help inspectors find defects in

requirements and design documents. These techniques have tried to address a perceived

lack of reading guidance, but have not fully investigated how the key features of the object-

oriented paradigm impact upon code inspections. Tervonen [91] has found that existing

object-oriented checklists are focused primarily on design issues and are therefore not

suitable for code inspection.

It is generally understood that the earlier an inspection occurs, the cheaper the cost of

repairing the defect [37], [85]. This is what has lead to the greater emphasis in developing

reading strategies for early development artifacts. However, as highlighted by

Chapter 2: Software Inspection and Object-Oriented Pitfalls 20

Laitenberger et al. [50], code inspections are still the most commonly occurring in industry

and, as such, this makes the improvement of reading techniques for code documents a high

priority [51]. This takes on even greater importance when taking into consideration the

lack of research regarding how the key features of the object-oriented paradigm may

impact on the inspection of code.

2.4 Summary

Inspections are an effective method used to find defects in many different documents

generated throughout the lifetime of a software project. Recently, the focus for detecting

defects has moved away from the group inspection activity. Instead, the focus for detecting

defects is the preparation phase, where the individual inspector reads the artifact in

preparation for the group phase (which is now used for defect collation).

With the focus for detecting defects in inspection moved to the preparation phase, the

reading technique used by the inspector to help prepare and find defects within an

inspection artifact has become one of the key aspects of the inspection process. Adequate

support for inspectors is necessary to help them be as efficient and as effective as possible.

Reading techniques have evolved from offering no support and minimal guidance to

inspectors (e.g. ad-hoc and checklist) into detailed task driven processes that encourage

inspectors to attain a good understanding of the artifact under inspection (e.g. scenarios and

perspective-based reading). It is the development of this good understanding of the code

that is key to helping inspectors increase their effectiveness.

Within the last decade, the object-oriented programming paradigm has grown both in

influence and use. Many of the key characteristics of object-oriented languages -

inheritance, dynamic binding, polymorphism, and small methods complicate matters.

Many of these characteristics lead to closely related information being distributed

throughout the code, significantly impacting upon the ease of understanding.

To date, much of the work carried out investigating the inspection of the object-oriented

paradigm has concentrated on requirements and design documents. None of this work has

addressed the issues regarding how the key features of the object-oriented paradigm may

impact on the inspection of code. Currently available reading techniques were developed

at a time when the procedural paradigm was dominant, meaning they may not address

effectively the features of the object-oriented paradigm.

Chapter 2: Software Inspection and Object-Oriented Pitfalls 21

With code inspections dominant in the software industry, there is a clear need to

investigate the effect of the object-oriented paradigm. This is likely to have an important

impact on the development of future code reading techniques.

Chapter 3

Investigation of Object-Oriented Code
Inspection

This chapter presents an investigation of how the object-oriented paradigm impacts on the

inspection of object-oriented code. It begins with an overview of experimentation and

highlights what is considered best practice for preparing and running a software

engineering experiment in the context of inspection. A controlled experiment is then

presented that investigates how the object-oriented paradigm impacts on the inspection of

object-oriented code. A detailed analysis of the characteristics of the ‘hard to find’ defects,

together with the results of a small -scale survey of software engineering professionals,

suggests that ‘delocalisation’ - the distribution of closely related information throughout

the code - is a major problem. The chapter concludes by looking at how current reading

techniques for code inspection deal with the problem of delocalisation, and highlights

chunking, reading strategy, and ‘ localising the delocalisation’ as areas that need to be

addressed.

3.1 Experimental Software Methodology

Empirical research in the context of software engineering is conducted to help evaluate,

predict, understand, control and improve the software development process or product [5].

In software engineering experimentation there are a variety of methods a researcher can

utilise in order to gather information and evaluate their notions and hypotheses. Methods

available include interviews, questionnaires, observation, case studies, and controlled

experiments [24].

A significant amount of research has been carried out investigating various aspects of

inspection, e.g. process [45], [69], reading strategy [51], [70], tool development [62], [77],

numbers of inspectors [73], [96], the need for group meetings [72], [94], etc. Much of this

research has been achieved by designing and running empirical studies.

Lott and Rombach [60] detailed an experiment characterisation scheme that can be used

as a basis for empirical software engineering research. The scheme permits the comparison

Chapter 3: Investigation of Object-Oriented Code Inspection 23

of results from similar experiments and establishes a context for cross-experiment analysis.

This issue has become more important with the ever-growing amounts of experimental data

and the desire to compare experimental results [63]. The scheme is also a good guide to

designing experiments. There are four parts to the experimental characterisation scheme.

They are, (1) the goals and hypotheses that motivate an experiment, (2) the plan to conduct

the experiment, (3) the procedures to be used during the experiment, and lastly, (4) the

results which detail the raw data collected during the experiment and any analysis carried

out. The following briefly summarises each:

1. Goals and Hypotheses

The goals and hypotheses should be used to quantify the expected outcomes of an

experiment, and be used to aid in the design and running of the experiment [5]. To help

focus the development of the goals and hypotheses the Goal Question Metric (GQM)

paradigm can be used as described by Solingen and Berghout [87] (originally developed by

Basili and Weiss [4] and augmented by Basili and Rombach [6]). The GQM shifts the

emphasis away from metrics to goals. The goals create a focus for the important issues of

an experiment. These goals are then specified in more detail by defining questions, which

in turn suggest the appropriate metrics to be measured. With the goals for an experiment

stated explicitly, the data collected and the evaluation of that data are based on well-

specified rationale.

2. Plan

The plan for the experiment details all the design decisions made. The plan includes the

goals and hypotheses already generated, along with such elements as subjects used,

material used, e.g. code, diagrams, and defects inserted in code. All of these have to be

justified within the frame of the goals of the experiment. The variables being investigated

by the experiment are usually detailed in the plan. There are two kinds of variables,

independent and dependent. Independent variables are those that are believed to have an

influence on the result of the experiment, e.g. reading strategy or code to which reading

strategies are applied. Dependent variables measure the effects of the manipulation of the

independent variables, e.g. number of defects found by subjects or time taken.

A very important part of the experimental plan is the validity section. This details two

kinds of validity, internal and external. An empirical study can suffer from influences

which may affect the experimental variables without the knowledge of the researcher

(internal validity), e.g. selection effects, plagiarism, subjects’ enthusiasm, or learning

Chapter 3: Investigation of Object-Oriented Code Inspection 24

effect. Threats to external validity limit the ability to generalise any results from an

experiment to a wider population, e.g. representative subjects, code and defects used, or

process used.

3. Experimental Procedures

The procedures to be used during an experiment include details of how the experiment will

proceed. A timetable is given describing what events will occur, e.g. lectures, training,

assessments, and when they will occur. Also detailed here is the material that will be

available for each part of the experiment, e.g. code documents, forms, and questionnaires.

4. Results

The results section contains a detailed description of the raw data collected during the

experiment, the results of any statistical analysis based on the raw data, and an

interpretation of these results.

Having a detailed collection of resources allows for repeated experiments (replication).

Replication allows for the verification and validation of previous results, building up a

supportive body of knowledge and understanding, which can be used to justify the

usefulness of techniques and new methodology. As discussed by Basili et al. [7], "In

examining and adapting reading techniques, we go through a systematic process of

evaluating the candidate process and refining its implementation through lessons learned

from previous experiments and studies".

In many cases students in the university environment are used to evaluate initial theories

and techniques [39]. There are several reasons for this, (1) they are a relatively cheap

resource, (2) there are usually a sufficiently large number of students, and (3) it is cheaper

for a technique to fail in the lab using students than out in industry with industrialists. This

style of development follows an iterative approach. A technology can be tested with

students to explore initial ideas and theories. The technology can go through several

revisions, each time being refined by the results of the previous experiment before being

evaluated in industry.

Daly [21] proposed that a multi-method approach should be taken towards empirical

software engineering to address the challenges created by the human element and problems

of experimental validity. An example would be to use different techniques, e.g.

questionnaires and interviews, to identify hypotheses or validate results with different

subject groups, e.g. industry.

Chapter 3: Investigation of Object-Oriented Code Inspection 25

3.2 An Experiment investigating Object-Oriented Code Inspection

3.2.1 Introduction

The object-oriented programming paradigm has grown both in influence and use. Many of

the key characteristics of object-oriented languages - inheritance, dynamic binding,

polymorphism, and small methods complicate matters. With a lack of research regarding

how the object-oriented paradigm may impact on the software inspection process, a

controlled experiment was designed to investigate how the characteristics of object-

oriented code effect code inspection.

The experiment was motivated by a question posed by Laitenberger and De Baud [50]:

“How can inspection, a static analysis process, ensure the quality of artifacts involving the

use of such non-static features as dynamic binding?” . What are the issues that arise when

reading and understanding object-oriented program code with the aim of detecting defects?

What are the ‘hard to find’ defects, and why are they so hard to find?

3.2.2 Experimental Goals and Hypotheses
The goal of the experiment was to investigate the possible link between defect

characteristics and ease of detection. To do this, the experiment was designed to be a

qualitative investigation. This did not require the generation of specific hypotheses, since

no statistical analysis was required.

3.2.3 Experimental Plan

The experiment was based on a code inspection exercise that was solely concerned with the

effort of the individual - no group component was carried out. As the experiment focused

on the number of actual defects found by subjects, the number of false positives generated

by the inspectors was not investigated (defects listed by subjects during the inspection that

were not actual defects).

To inspect the code, subjects used the ad-hoc reading strategy. “Ad-hoc does not mean

that inspection participants do not scrutinise the inspected product systematically. The

word ‘Ad-hoc’ only refers to the fact that no support is given to them. In this case defect

detection fully depends on the skill, the knowledge, and the experience of the inspector

which may compensate for the lack of reading support” [50].

The code inspection was paper based, no tool support was provided. Aids such as

checklists, other reading strategies or inspection tools were not used because they may have

introduced confounding factors into the experiment, making any analysis more difficult.

Chapter 3: Investigation of Object-Oriented Code Inspection 26

A copy of all the material used in the final experiment can be found in Appendix A.

Figure 3.1 – Class hierarchy diagram for library system

Subjects

Subjects were participants in a 3rd year Honours Computer Science Software

Engineering course run at the University of Strathclyde. 47 subjects were participating in

the class. Subjects had previous experience with the programming languages of Scheme,

C, C++, Eiffel, and Java (the three months preceding the experiment). The subjects had

I temCollection

Library I tem (Abstract)

Borr owable(Abstract)
(Abstract)

Reservation

CDRom Journal Repor t ReferenceVideo

Reservable (Java Interface)

Book

Implements Implements ImplementsImplements

Authored (Java Interface)

UserCollection

Person (Abstract)

UserAdministrator

CLASS KEY DIAGRAM KEY

Developed by subjects prior to Inheritance
experiment

Implements
Developed by subjects and
used for inspection practice

Association

Unseen by subjects and used
for inspection experiment

Implements

Chapter 3: Investigation of Object-Oriented Code Inspection 27

limited knowledge of Software Requirement Specification (SRS) document inspection, and

no experience with code inspections.

Prior to the experiment, subjects were given a problem statement describing a simple

library system (the original problem statement can be found in Appendix A.1). The library

system has a number of different items that can be borrowed, e.g. books, reports, CDRoms

and also contains reference material that cannot be borrowed. Subjects were given six

weeks to derive a semi-formal specification and design for the system. Once this was

completed, subjects were provided with a design prepared by the course lecturer (the class

hierarchy for the system is shown in Figure 3.1). From this, subjects were given a further 6

weeks to code the library system using Java. The experiment took place after the coding of

the system was complete.

For the inspection exercise, two groups of subjects were created, group A and group B,

where subjects in each group were of approximately equal ability (based on previous

programming courses). This was done to allow two groups of defects to be seeded,

increasing the number of defects investigated.

Code

The language chosen for the experiment was Java. This was for two reasons, (1) the

language had to be object-oriented, (2) the subjects had been using Java in the months

preceding the experiment in the software engineering course.

The code presented to the subjects for inspection was approximately 200 lines in length.

This was chosen as a maximum limit. Fagan [31] suggested that a maximum of 125 non-

commentary source statements per hour are read. Weller [96], from information gathered

from over 400 inspections, suggested no more than 200 lines of code per hour. Gilb and

Graham [36] suggested at most one and a half pages (approximately 90 lines of code) per

hour. Although there is no clear consensus on inspection rates, the literature generally

agrees that inspecting too much code reduces the effectiveness of code inspections. A

maximum of 100 lines of code per hour was chosen for the inspection, bearing in mind the

subjects were 3rd year Computer Science students, not professional inspectors.

The experiment was split into two phases, practice and experiment proper (these are

described in Chapter 3.2.4, Experimental Procedures). For the practice session of the

experiment subjects were presented with part of the system that they had previously coded

but that was now written by the class lecturer. For the actual experiment the library system

was extended and extra functionality, written by the class lecturer, added. This extra

Chapter 3: Investigation of Object-Oriented Code Inspection 28

functionality entailed the implementation of a video class and the need for a reservation

class (in order to be able to reserve a video for a specific date). The subjects had not

previously seen any code or design for the extension.

Defects

The experiment required a selection of defects to be seeded in the code. The review of the

literature presented in Chapter 2.2 highlighted potential problem areas that may be used as

the basis for some seeded defects in object-oriented code: dynamic binding, polymorphism,

small methods, and inheritance. There is, however, currently very little material in the

literature discussing object-oriented code inspections or typical defect categories for object-

oriented code.

Duncan et al. [25] carried out a review of testing techniques and taxonomies which

highlighted that only a small amount of work had been carried out in the area of fault

classification for the object-oriented paradigm, and that there was a lack of experiments to

show what faults were commonly occurring. Extrapolating from a category of

classification for non-object-oriented code, Duncan et al. suggested that potential sources

of object-oriented faults might be in instance variables, methods, modules and classes

implemented but not used within the program, incorrect state models, incorrect messages,

branching errors, algorithmic, and logical faults. They also highlighted that preliminary

work on object-oriented systems suggested that the majority of faults occurred in the

interface between objects and not intra-object.

Hayes [38] made an attempt at a taxonomy of object-oriented defect types by

consolidating the defect types found in the literature. To do this, Hayes examined several

sources of object-oriented defects [33], [76]. Each of these sources investigated object-

oriented defects and put forward possible test methods that could be applied to find the

defects.

Chapter 3: Investigation of Object-Oriented Code Inspection 29

Figure 3.2 – Defect Classification for object-or iented code based on literature review

From these sources of information, a list was drawn up of all possible defects suggested

for object-oriented code. Taking into account any overlap between defect types, these were

abstracted and narrowed down to a list of four groups of defect type. These four groups,

along with illustrative sub-classifications are shown in Figure 3.2. The classification is an

approximation only, and in many cases, defects can fall into one or more of the groups.

For the experiment, the defects created fitted into the derived categorisation (Figure

3.2). Some of the defects used were naturally occurring, i.e. were identified in the code

during development by the course lecturer, the others were seeded in the code based on the

information gathered from the literature review. Two sets of defects were prepared for the

experiment to maximise the number of possible defects seeded. Ten defects were present

in the code given to group A and ten defects were present in the (same) code given to group

B. One defect was present in both groups, with three other defects being similar in nature,

but the syntax varying between the groups. 30% of the defects seeded were general defects

(based upon historical experience of the course lecturer) and the remaining 70% were

related to object-oriented code characteristics. A full list of the defects present in group A

and group B can be found in Appendix A.2.7 and Appendix A.2.8.

Data Collection

Data from the inspections was collected via a defect report form (an example can be found

in Appendix A.2.1). When a subject found a defect in the code they would record the time

Defect Classification

(A) Instance Variables
• initialisation - improper initialisation of class instance variables
• improper values - incorrect/invalid value assigned to instance variable moving system

to incorrect state
• improper usage - instance variable used at an incorrect place

(B) Methods
• returns incorrect value
• faults with algorithm in method
• if / while / other conditional faults, etc. - faults with structure of conditional statements

(C) Relationship
• hierarchy - class incorrectly placed within hierarchy
• failures associated with inheritance, implementation, method overriding

(D) Message / Interfaces
• correct message to wrong object
• incorrect message to right object

Chapter 3: Investigation of Object-Oriented Code Inspection 30

it was discovered, its location in the code, and a textual description that accurately

described the defect. The defect report form was tested during the initial training phase of

the experiment.

Data Analysis

Since the goal for the experiment was exploratory in nature, the results were

investigated through the analysis of the qualitative information gathered.

Threats To Experimental Validity

An empirical study can be distorted by influences that may affect the experimental

variables without the knowledge of the researcher. This possibility should be minimised as

much as possible. Possible threats to internal validity included:

• Selection effects that may occur through variations in the natural performance of

individual subjects. As part of an earlier exercise in the class, the subjects had

been split into 12 groups of roughly average ability. For the inspection exercise,

groups 1 to 6 were then assigned to group A, and groups 7 to 12 were assigned to

group B. This should have minimised much of the possible effect.

• Plagiarism was not a concern as the experiment was carried out under exam

conditions.

• The learning curve for the subjects associated with the programming language used

(in this case Java). Prior to this class subjects had previously used the object-

oriented languages of Eiffel and C++. To reduce any possible effect due to the use

of a new language, earlier sections of the class had the subjects (in groups of 3 or

4) code a small program (approximately 8 pages in length). This was followed

later by a more substantial l ibrary system. The average number of classes created

for this task was 21 (ranges of 13 - 40) with an average length of 2755 lines of

code (ranges of 1200 - 4500). The ranges vary so much due to some groups

implementing a full graphical interface. The code used for the inspection exercise

proper was an extension to this system.

• There was no monitoring of subjects prior to the experiment while they worked in

groups. Some of the subjects may have worked at different rates, taking on more,

or less, responsibility. This could have lead to an imbalance of subjects’

knowledge and understanding of the system and perhaps skewing some of the

experiment results.

Chapter 3: Investigation of Object-Oriented Code Inspection 31

Threats to external validity limit the ability to generalise any results from an experiment

to a wider population. These threats included:

• The subjects of the experiment (3rd year Computer Science students) may not be

representative of the general software engineering population. This could not be

avoided due to time and resource constraints.

• The Java code may not be representative (in complexity or stylistically) of

industrial software. In this case, the code inspected was part of a substantially

larger software system, diminishing some of the complexity arguments.

• The defects seeded in the code may not be representative of the problems currently

experienced in industry. As was mentioned earlier, a thorough search of the

literature was carried out, the results of which were used to base decisions on types

of appropriate defects.

• The inspection process used during the experiment may not have been

representative of industrial software practice. This experiment focused only on the

individual defect detection phase and used the ad-hoc method as a baseline for

code inspection. It did not involve any presentational overview by the author as

the subjects were already familiar with the general system and the group collation

phase was not relevant to the aims of the study.

3.2.4 Experimental Procedures
Training

In week one, an introductory lecture and training phase were carried out before the

experiment proper. The lecture lasted approximately fifty minutes and introduced the basic

premise behind inspections, their uses and problems. The training phase, which was

carried out the day after the lecture, lasting approximately two hours, was run informally to

allow subjects to ask questions and overcome any conceptual problems about the ad-hoc

inspection process. The experiment proper was held one week after the training exercise.

Conducting the Experiment

In week two, the experiment proper was held. No lecture was given in week two. Subjects

were given up to a maximum of two hours to complete the inspection. They were supplied

with a booklet containing the inspection task material (code, specification, class diagram,

defect report form). If subjects went beyond the two-hour limit for the inspection, they

Chapter 3: Investigation of Object-Oriented Code Inspection 32

were asked to stop working. The inspection task was completed under exam conditions to

ensure that subjects worked independently.

3.2.5 Experiment Results

As a result of attrition, group A was reduced from 23 to 18 subjects, and group B was

reduced from 24 to 23 subjects. The experimental results are summarised in Table 3.1.

Group A B
No. of subjects 18 23
No. of defects in code 10 10
Average no. of defects found by
subjects

6.28 6.65

Average time for inspection (min) 76.93 80.04

Table 3.1 – Summary of Inspection results

Figure 3.3 shows the mean rate of defect discovery by both groups. It shows that the

performance of both groups, A and B, was similar. This suggests that the balance of defects

for both groups was similar. What can also be seen is that beyond the 60-minute mark,

there was an average of only 0.5 defects found per subject.

Figure 3.3 – Mean rate of defect discovery for groups A and B

Time (in minutes)

1201101009080706050403020100

A
ve

ra
ge

 n
um

be
r

of
 d

e
fe

ct
s

fo
un

d

10

9

8

7

6

5

4

3

2

1

0

Group A

Group B

Chapter 3: Investigation of Object-Oriented Code Inspection 33

Inspection Strategy

When subjects identified a defect in the code they noted the time at which it was

discovered. This allowed a picture to be built up of the order and time at which defects

were found. This timing information also provided an indication of how subjects carried

out their inspection.

Figure 3.4 and Figure 3.5 show boxplots of the times the defects were found. Defects

are listed in the order in which they appear in the code handed to the subjects.

Figure 3.4 – Boxplot of defect discovery times for Group A

In general, the first three defects (defects 8, 9 and 1) in group A (Figure 3.4) were found

in order. At least during the beginning of their inspection, subjects seemed to be reading

through the code in the order it was provided.

The next defect that group A subjects should have found was defect 2. Five of the six

subjects who managed to find this defect discovered it much later on. This particular defect

involved the incorrect placing of a call to a method called purge. The call should have

been several lines later in the code. In order to notice that the method call was misplaced,

subjects had to gain a greater understanding of the code presented to them, including the

role of the purge method, which appeared later in the code. This also suggests that

subjects read through the code in order, rather than jumping to a method definition when it

was called in the code.

89169126171818N =

DEFT6DEFT7DEFT5DEFT4DEFT3DEFT2DEFT1DEFT9DEFT8

80

75

70

65

60

55

50

45

40

35

30

25

20

15

10

5
0

 T
im

e
di

sc
ov

er
ed

 (
m

in
ut

es
)

 Median

 Highest/lowest
 excluding outliers

 Outlier

 Extreme outlier

Chapter 3: Investigation of Object-Oriented Code Inspection 34

Defect 4, the other defect discovered out of presentation order concerned an out of date

reservation (the defect is discussed later in Section 3.4, and is shown in Figure 3.11).

For the remaining defects (3, 5, 7 and 6), their standard deviation (shown in Figure 3.4)

is larger than that for the first few defects. Although it appears that, in the main, these

defects were found in their presentation order, this cannot be stated with as much certainty.

For both sets of defects, following defect 3 should have been defect 10, but it does not

appear in either Figure 3.4 or Figure 3.5 because no subject discovered it. This was a

particularly subtle defect involving iterating through a vector whilst deleting its elements.

Figure 3.5 – Boxplot of defect discovery times for Group B

Looking at Figure 3.5, the first defect in group B's code handout was defect 9, but it was

the first defect found by only four of the eleven subjects who correctly identified it. The

others found this defect beyond the 30-minute mark, possibly suggesting that they found

this defect during a second pass through the code. This defect involved one class,

Reservation, implementing the Enumeration interface1 (a predefined Java

interface). The Reservation class erroneously provides the methods

1 Java allows only single inheritance, but supports the use of interfaces. These specify a reference
type, consisting of a type name and a set of abstract method declarations. A single class may
implement many interfaces.

211717201117201911N =

DEFT7DEFT6DEFT5DEFT4DEFT3DEFT2DEFT1DEFT8DEFT9

100
95
90
85
80
75
70
65
60
55
50
45
40
35
30
25
20
15
10
5
0

T
im

e
di

sc
ov

er
ed

 (m
in

ut
es

)

 Median

 Highest/lowest
 excluding outliers

 Outlier

 Extreme outlier

Chapter 3: Investigation of Object-Oriented Code Inspection 35

hasMoreElements and nextElement, which have to be defined by a class

implementing the Enumeration interface.

Although there are a few outliers, Figure 3.5 suggests that group B also worked through

the code and discovered defects sequentially in the order it was provided.

For the subjects that found the most defects (two subjects with 9/10 and seven subjects

with 8/10) the average inspection time was 71 minutes. There was a very strong indication

that these subjects read through the code in the order provided. Both of the subjects with

9/10 and one with 8/10 found all their defects in their presentation order and in their first

pass through the code. The timing information from the remaining subjects suggests that

they also read through the code in its presentation order, but that they required multiple

passes through the code to find all their defects.

For the subjects that found the least number of defects (1 subject with 2/10, one with

3/10 and 5 with 4/10) the average inspection time was 89 minutes. It was difficult to see

any pattern or strategy employed by these subjects with the information gathered, although

there was some small i ndication that like their colleagues, they made multiple passes

through the code in the order it was presented to them.

The results indicate that both groups of subjects read the code in sequential order -

which would not be surprising given that they were new to inspection and were using an

ad-hoc reading approach. This was also found to be true by Laitenberger et al. [52], who

commented that “without any guidance on what to check, most of the inspectors often

perform their scrutiny sequentially. They start their checking activity at the beginning of

the document and read through the document page after page ” . Those defects that were

discovered out of presentation order (defects 2 and 4 in group A and defect 9 in group B)

had a relatively low discovery rate. It may have been that defects that required more than

sequential reading were harder to find. It may also have been the case that weaker subjects,

by making more passes through the code, were finding the more difficult defects in later

passes.

The Defects

To investigate possible links between defect characteristics and ease of detection, it was

first necessary to group the defects. To do this all defects from groups A and B were

brought together. This is presented in Figure 3.6, which shows the percentage of subjects

(y-axis) who found each particular defect (x-axis) and which group the defect belonged to

(the colour of the bar). This clearly shows which defects were discovered relatively easily

Chapter 3: Investigation of Object-Oriented Code Inspection 36

and those that were harder to identify. To investigate whether there was any common

factors between defects with similar detection rates, a series of characteristic words was

compiled for each defect reflecting its key features (brief descriptions are shown in Figure

3.7). Figure 3.8 shows the keyword characteristics for the defects in percentage response

order.

Figure 3.6 - Percentage of subjects finding each defect during the inspection

To investigate whether there was any similarity of characteristics between defects with

similar percentage response rates, particularly the ‘hard to find’ defects, the information

contained within in Figure 3.8 was entered into C5.0 [16], a data-mining tool. A data-

mining tool attempts to draw out patterns from a set of provided data, allowing an objective

view to be taken of the data set, free of any human preconceptions. The tool also allows

experimentation with different groupings of data, to see how the generated patterns are

affected. An example of its use can be found in Appendix A.4 and all the output generated

from C5.0 can be found in Appendix A.5. From information generated by C5.0, and the

information contained in Figure 3.8 the following points were observed:

• Locality of defects was well mixed, but harder to find defects tended to have class

or system locality (see Figure 3.7 for definition of these terms).

• Defects involving class libraries and wrong messages tended to be harder to find.

• Method sizes were mixed but no harder to find defects appeared in small methods.

• Defects involving inheritance, overriding and design mismatches tended to be hard

to find unless there was supporting domain knowledge.

8 9 1 7 5 1 4 8 2 5 6 3 4 7 9 3 6 2 10A 10B
* * * * * * * * *

100 100
94 91 89 87 87 83

74 74 74
67

50 50 48 48
42

33

0 0
0

10
20
30
40
50
60
70
80
90

100

Defect Number

Group A Group B Defects with non-local
 characteristics

*

P
er

ce
nt

ag
e

R
es

po
ns

e

Chapter 3: Investigation of Object-Oriented Code Inspection 37

• Defects involving a domain knowledge clash or instance variables had a very high

probabili ty of being found.

• Defects which had no domain knowledge clash but had diagram conflicts (i.e.

involved inheritance, overriding, abstract classes etc.) had a less than 50% chance

of being found.

Figure 3.7 – Descr iption of defect features

In Figure 3.6, all of the defects with '* 's at the bottom of their columns all contain non-

local characteristics. Information outside the 200 lines of code being inspected, but still

available to them, was needed for a full understanding of the defect. Defects 8A and 7B

were considered easy to find as they involved diagram mismatches and clashed with

inspectors’ domain knowledge (shown in Figure 3.8), and defect 5B, although requiring

some non-local information could be guessed by making reasonable assumptions about the

method where the defect resided. The remaining defects with non-local characteristics had

a discovery rate of 50% or less.

Locali ty - area of code required to be looked at to identify the defect
(M)ethod - information required to identify defect is present in one method
(C)lass - information required to identify defect is present in one class
(S)ystem - information required to identify defect is distributed across multiple classes

Algor ithm/computation - defect due to an error in the algorithm

Use of library class - defect requires understanding of class libraries

Wrong object - defect caused by sending message to wrong object

Wrong message - defect caused by sending incorrect message

Data flow error - defect caused by lack of variable usage or variable mis-usage
 (variable used in incorrect way)

Method size - size of method where defect present
S = 0-4 lines of code
M = 5-10 lines of code
L = 11+ lines of code
- = defect does not reside within a method (e.g. class definition or missing method)

Instance var iable misuse - defect due to assigning incorrect values to instance variables

Omission - defect associated with missing code

Commission - defect associated with incorrect or superfluous code

Inheritance/implementation - defect associated with inheritance/implementation

Overr ide - defect associated with method overriding

Diagram mismatch - defect associated with inconsistency between code and documentation

Domain knowledge - defect associated with a clash between subject's knowledge of the domain and the code

C
hapter 3: Investigation of O

bject-O
riented C

ode Inspection
38

10B

S

X

X

M

X

0

10A

S

X

X

M

X

0

2A

C

X

L

X

33

6A

S

-

X

X

X

42

3B

M

X

X

M

X

48

9B

S

-

X

X

X

48

7A

S

X

X

X

M

X

50

4A

S

X

X

M

X

50

3A

M

X

X

L

X

67

6B

M

X

X

M

X

74

5B

M

X

M

X

74

2B

M

X

L

X

74

8B

M

X

S

X

X

83

4B

S

M

X

X

87

1B

M

X

L

X

87

5A

S

M

X

X

89

7B

S

S

X

X

X

X

91

1A

M

X

S

X

94

9A

M

X

M

X

100

8A

S

-

X

X

X

X

100

Locality (M, C, S)

Algorithm/computation

Use of class library

Wrong object

Wrong message

Data flow error

Method size (S, M, L)

Instance variable misuse

Omission

Commission

Inheritance/implementatio
n
Override

Diagram mismatch

Domain knowledge

%

F
igure 3.8 - D

efects described by their features

T
able N

otes

L
ocality:
(M

)ethod
(C

)lass
(S)ystem

M
ethod size:
(S) 0-4
(M

) 5-10
(L

) 11+
(-) N

o size available

Chapter 3: Investigation of Object-Oriented Code Inspection 39

Amongst the harder to find defects (i.e. found by less than 50% of subjects) there were

only two that had local characteristics, defects 3B and 2A. Defect 3B involved a data flow

error (a variable was passed as a parameter then never used), but was completely local to

the method. Defect 2A was an algorithmic error, with the misplacing of a method call in a

series of if-else statements. There are no similar characteristics between these two

defects.

3.2.6 Experimental Design Lessons
This section highlights some of the lessons learned from running the experiment and

suggests ways in which it could have been improved.

Subjects used the defect report forms to record when they found each defect. This

allowed the order and timing of defect discovery to be investigated. However, it was

impossible to be able to accurately describe the order in which subjects read through the

code. Only suggestions could be made, based upon the defect discovery times. To build

up a more complete picture of subjects reading strategy, more timing information must be

gathered, e.g. gathering the time subjects begin to read a method.

During the inspection, subjects were also allowed to use some form of Java reference

material, e.g. a Java code book, the on-line reference guide for JBuilder (a Java

programming environment), or the on-line reference guide provided with Java for its class

library. This material may have helped subjects find some of the seeded defects. During

the experiment, subjects were not monitored on a one-on-one basis due to the large number

of participants. Because of this, no comments could be made on the usefulness of the

reference material available.

One way to help gather this kind of information would be the use of verbal protocols. A

subject is monitored through an entire experiment and verbally states what he/she is

thinking and doing. All this is recorded (via either audio or video equipment or a

supervisor taking notes) and properly reflects the cognitive process employed by subjects

during an experiment. There are however some down sides to using verbal protocols.

They require at least one supervisor per subject. This is because in most cases the

supervisor has to prompt the subject, gently reminding them that they are supposed to be

verbalising their thoughts. Also, because a supervisor is required for each subject, this

limits the number of subjects that may be recorded. A cheaper solution to this problem

may be to use questionnaires given to subjects after the completion of the experiment.

Chapter 3: Investigation of Object-Oriented Code Inspection 40

3.2.7 Summary

Through the creation of a key word classification index for each defect and the utilisation

of a rule induction system, the experimental results suggest a major contributor to difficult

to discover defects is that information required to understand the defects is not available

locally. Instead, the information is distributed throughout the code by the features of the

object-oriented language. The study of reading strategies used by subjects found that most

appeared to read the code sequentially. Object-oriented code is not naturally sequential. It

is unclear if this disparity may affect the detection of defects with non-local characteristics.

3.3 Survey of Object-Oriented Defect-Detection Approaches

The experiment described in the previous section suggested that several object-oriented

features such as message passing, class libraries, interfaces and method overriding could

make defects difficult to detect. To further investigate the problems object-orientation can

cause for code inspection and to obtain confirmatory evidence for the previous experiment

(following the multi-method approach suggested by Daly [21]), a survey was created to

obtain the opinions professionals in industry.

3.3.1 Survey Design

The following describes the creation of the survey, stating the initial objectives, justifying

the chosen method of delivery, style, and layout of the survey, as well as the questions to

be included.

Objectives

The objectives of the survey were:

• Investigate current practices in industry concerning removal of defects from

object-oriented code.

• Find out if inspections are being carried out on object-oriented code, and if so,

how.

• Investigate further some of the key findings from the experiment described in the

previous section.

• Gain a better understanding of the features of defects that are causing problems

for object-oriented software developers.

Chapter 3: Investigation of Object-Oriented Code Inspection 41

Survey Method

Various methods can be used to gather information. These include personal interviews,

telephone interviews, postal surveys, etc. Due to limitations on the time available, locali ty

of businesses, and availability of willing participants, it was decided that interviews would

not be practical, and that some form of survey would be more suitable.

It was further decided that the surveys used to elicit the desired information would be

sent via email rather than by post. The reasons for using email to deliver the surveys

include:

• Cost - no paper or envelopes are involved.

• Response time - since the information is passed electronically, delays should be

kept to a minimal.

• Extra space - unlike paper based surveys, making extra space for answers in an

electronic survey is not a problem.

There are however several disadvantages to using surveys to gather information. These

include:

• Follow on questions - unlike in an interview, you cannot ask a respondent to

refine their answer, or to probe further. See the next section on survey

construction for more on this.

• Low response rates - there is a danger when sending out surveys that you get a

low response rate. For mail based questionnaires, Edwards [29] found a response

rate of 20-30%, and in a software maintenance study, Lientz and Swanson [58]

only received a 24.6% response rate. In an attempt to reduce this problem various

companies were contacted prior to the completion of the survey, via University of

Strathclyde graduates now in their employment, to see if they would be interested

in participating.

Survey Construction

The time required to complete the survey was chosen to be approximately thirty minutes.

Anything over thirty minutes and it was judged that respondents might have been less

motivated to reply.

Oppenheims’ template for survey construction [68] was used as the basis for this

survey. Oppenheims’ template consists of several sections, (1) a prologue used to inform

the respondent of the topic, (2) a classification section used to obtain personal details about

Chapter 3: Investigation of Object-Oriented Code Inspection 42

the respondent, (3) an information section containing the questions on the topic under

consideration, and finally (4) a closing section thanking respondents for participating and

providing instructions for returning the survey. In this survey, the classification section

enquires about the respondent's history and experience with object-oriented languages;

personal details li ke name and age were not required, and instructions on how to return the

survey were included in the introduction section, as well as the closing section.

As indicated previously, a survey was being carried out, not an interview. Probing

respondents on a response or asking them to clarify a point is not usually carried out with

surveys, especially if the respondents are anonymous. For this reason, an extra question

was added to the closing section asking respondents if they wouldn't mind answering one

or two follow-on questions if the need arose, and to include their email address.

The main body of the survey, the information section, contained the core questions.

This section was further split into two sub-sections; the first contained questions dealing

with methods of defect detection and further asked the respondent if they carried out code

inspections, the second contained questions dealing with defects and their characteristics.

When writing the questions for the survey, there were many points that had to be taken

into account. Questions should only ask for one piece of information, question wording

should not imply a desired answer, question wording should not have a double meaning,

and should not use abbreviations that may not be understood [12]. Sinclair [86] stated that

questions should be understandable and unambiguous, and that they should be as short as

possible. Other important points on the art of question construction for surveys can be

found in [11], [34].

Survey Questions

For the purposes of the survey, the classification section was used to detail the

respondent’s current job position and duties, as well as the object-oriented languages

encountered and what their roles have been in relation to object-oriented software, e.g.

programmer, designer, or tester. This information was used to highlight respondents’

experience with object-oriented software as well as the languages used within industry.

The second section dealt with the process of defect detection. It was important to get an

idea of the current processes used within industry to remove defects from code. The

remainder of the second section was dedicated to questions on one specific defect removal

technique, code inspection.

Chapter 3: Investigation of Object-Oriented Code Inspection 43

Based upon the experiment described in Chapter 3.2, Roper and Dunsmore [81]

suggested several aids that could be used to help inspectors with the more awkward/hard to

find defects in object-oriented code. These aids included:

• Checklists - a series of questions that guide programmers to aspects of code that

have a high probability of containing defects.

• Perspective based reading - multiple inspectors, each using a different perspective,

e.g. tester, designer.

• Visualisation - can be as simple as modifying the size, colour and style of code, or

involve diagrams showing relationship between classes, objects, method calls, etc.

• Contextual access - the use of hypertext links (commonly used in web pages) to

access related information from the code under inspection.

• Experience base - a database of lessons learned from defect detection techniques,

defect models, as well as project specific lessons.

Several questions relating to these aids were placed in the survey to obtain the views of

professional software engineers, and to gauge whether, in their opinion, any of these aids

were worth further investigation.

The third and final section investigated object-oriented defects and their characteristics.

The first few questions were designed to elicit the knowledge of the respondent on what

they believed were characteristics of hard to find defects, and their views on what helped

them find these types of defects. The remainder of this section presented respondents with

a list of characteristics, which could be associated with defects. This list was derived from

the characteristics of the defects used in the experiment described in Chapter 3.2. This

would allow a comparison between the characteristics of problematic defects in that

experiment and the defect characteristics found to cause problems for professionals in

industry.

Once the survey was completed, a trial run was carried out using several postgraduate

students and lecturers from the Computer Science Department at University of Strathclyde.

From the trial run, several questions were reworded and modified. These initial results

were not included in the final analysis of the survey. Once the modifications were

completed, the survey was sent via email to those industrial contacts that had expressed an

interest in participating. The survey was also posted to two of the main newsgroups for

software engineering (comp.software-eng and comp.software.testing). A full copy of the

survey can be found in Appendix B. The next section summaries the responses received.

Chapter 3: Investigation of Object-Oriented Code Inspection 44

3.3.2 Survey Results

Object-Oriented Background

Thirteen responses were obtained, at least half from senior software engineers or managers.

Although thirteen responses are insufficient to draw significant conclusions, there are

enough responses to obtain an insight into the current state of industrial practice. The

average length of time respondents had been working with object-oriented code was 4.8

years (ranging from 1 to 12 years). Most respondents had participated in all aspects of the

software development process. All had used C++, with four having used Java. Table 3.2

shows a list of all the object-oriented languages used by respondents.

Language Number of
respondents

Ada95 4
C++ 13
Eiffel 2
Forte (Transaction Object-Oriented Language) 1
G2 1
Java 4
Modula-3 1
Object Pascal 1
Objective C 1
Perl 2
Python 1
Visual Basic 1

Table 3.2 - Object-oriented languages used by survey respondents

Defect Detection

Respondents were then asked what approaches they had used to detect defects in software

and at what particular stages in the software lifecycle. Replies showed a multitude of

techniques used over many parts of the software lifecycle. A summary of the replies are

shown in Figure 3.9.

1. Analysis/Design
Fagan reviews, Checklists, Databases, Walkthroughs, Individual & Team Reviews,
Requirements review, System design review
2. Code
Reviews, Fagan Inspections, Debuggers, Memory debuggers, Complexity analysis tools, other
commercial tools, e.g. Pro Lint
3. Testing
Unit testing, Integration testing, Acceptance testing, System testing, Dedicated test applications,
Alternate compilers, Functionality testing, Coverage testing, Commercial tools (e.g. Purify),
Peer testing, Custom/generic testing set-ups, Site testing

Figure 3.9 - Defect detection approaches used in industry

Chapter 3: Investigation of Object-Oriented Code Inspection 45

From the thirteen that replied, twelve had carried out a code inspection or review of

object-oriented code. Table 3.3 summarises the aids used to help carry out object-oriented

code inspection. In some cases respondents stated more than one aid. The most popular

inspection aid was the checklist, followed by Perspective Based Reading. Three

respondents used no aids at all.

Aids for inspection Number of
respondents

Checklists 5
Perspective Based Reading 2
References to Design Documents and
Requirements

1

Compiled Code 1
Tool (Prolint) 1
Code Walkthroughs 1
None 3
No Answer 2

Table 3.3 - Aids used to carry out object-oriented code inspections

When carrying out code inspections, respondents used several reading strategies;

sequential (7), top down (4), bottom up (1), class wise (1), and two subjects stated that they

used no particular reading strategy. In some cases, respondents used more than one reading

strategy.

The amount of code inspected and the time taken to inspect varied enormously. For

half the respondents, inspections usually took no more than two hours. In those two hours

anywhere between 50 to 1000+ lines of code were inspected, where the code included full

classes, important methods, functional units, etc. In several cases, inspections were carried

out sporadically and in bulk, leaving half or a full day to do all the inspections for several

weeks work.

Respondents were presented with five techniques that could be used to help with object-

oriented code inspection and were asked to indicate the extent to which they thought those

techniques would be beneficial (ranging from strongly disagree to strongly agree). Table

3.4 shows the results for the twelve respondents who carry out object-oriented code

inspections. Although in general most seem to believe that all the suggested methods can

be useful, visualisation appears to have the strongest support, followed by checklists. A

brief description of each of the techniques shown below can be found in Question 12 of

Appendix B.

Chapter 3: Investigation of Object-Oriented Code Inspection 46

Grading
Technique Strongly

disagree
Disagree Neutral Agree Strongly

agree
Checklists 0 0 1 6 5
Perspective Based
Reading

0 1 2 6 3

Visualisation 0 0 1 5 6
Contextual access 0 1 4 5 2
Experience base 0 0 3 5 4

Table 3.4 - Possible aids for object-oriented inspection

Following on from the previous question, respondents were asked for any views or

comments on any of the five techniques. Figure 3.10 summarises their responses.

Checklists
• Eventually are built into development procedure – more effective as prevention than

detection
• Useful for novice programmers
Perspective based reading
• Used for requirements and design
• Too expensive for coding
• Always use some form of perspectives in code review
Visualisation
• Useful in code reviews
• A risk is that the picture is the subject of the review/inspection rather than the code
Contextual Access
• Would require extensive case tool and not guaranteed to help find more defects
Experience base
• Could become unwieldy and difficult to find information in
• Useful, although this is people dependent rather than technology dependent
Other comments
• Easier to review on paper
• Any additional information which helps with understanding is useful

Figure 3.10 - Comments on possible aids for object-oriented inspection

Defects

The survey asked respondents to list any object-oriented features that were a common

cause of defects or created difficulties in understanding code, as well as to list any

techniques/tools that may be useful in those circumstances. The responses are summarised

in Table 3.5 (first row problems; second possible aids, if any). Two respondents listed

inheritance and another highlighted multiple inheritance as features liable to cause defects.

Other features listed by respondents relating to difficulties in understanding object-oriented

code include multitude of dependencies, deep hierarchies, and dynamic binding.

Chapter 3: Investigation of Object-Oriented Code Inspection 47

Respondents were then presented with a list of characteristics that could be used to

describe a defect and asked to select those that they felt caused the most problems. These

were based on characteristics identified in the experiment described in Chapter 3.2. Table

3.6 shows the number of survey respondents who highlighted each particular defect

characteristic.

1 Call dispatches, fulfilling requirements (operation doing too much or too little)
Comments in code

2 Multiplicity of connections making analysis difficult
Simple public interfaces, classes should be as stand alone as possible

3 Flow of execution, deep hierarchies, use of exceptions
Debugger (allowing line by line step through), good documentation

4 Dynamic binding, difficulty in following flow of control
-

5 Inheritance
Tags in Emacs

6 Multiple inheritance, location of variable definitions, i.e. which class?
-

7 Inheritance, complicated objects (records)
Reviews on design (models) and code reviews

8 Runtime control flow fragmentation across small functions, use of simple methods does
not make methods themselves simple, complexity resurfaces in interactions between
objects, sometimes not clear what code is executing given a particular set of inputs
Browser tools to allow definitions and references to methods, and variables help navigate
round the code

9 Incorrect class modelling, complexity of C++
More time spent on design, C++ best mastered with experience

Table 3.5 - Object-oriented features that were a common cause of defects (first rows)
and potential aids (second rows)

Twelve of the thirteen respondents reported that problematic defects had information

required to identify them distributed across multiple classes, and ten respondents claimed

that features of inheritance could cause problems. Several respondents also claimed that

control flow was a problem when attempting to understand object-oriented code, especially

due to the presence of many small methods. Other high responses were for problems with

the algorithm, inconsistency between the documentation and code, variable misuse, and

missing code. When asked if there were any other characteristics that may cause problems

for object-oriented code, documentation was a recurring problem, whether it be

documentation of the code under inspection or code belonging to third party libraries.

Chapter 3: Investigation of Object-Oriented Code Inspection 48

3.3.3 Summary
From the information gathered it appears that a variety of different techniques are used at

different stages in the software lifecycle in an attempt to remove defects, from the original

design documentation, right through to testing and deployment. Twelve of the thirteen

respondents had carried out object-oriented code inspections, most of which seem to be

using the same ideas and aids that have been used previously for procedural code

inspections.

Characteristics Number of
respondents

All information required to identify a defect is distributed across
multiple classes

12

Defect associated with inheritance 10
Defect is due to an error in an algorithm 7

Defect associated with inconsistency between code and
documentation

7

Defect caused by variable misuse (data flow) 6
Defect associated with missing code 6
Defect associated with a conflict between requirements and code 5
Defect requires understanding of class libraries 4
Defect is in a method of size greater than 10 lines 3
Defect caused by sending message to wrong object 2
Defect caused by sending incorrect message 1
All information required to identify a defect is present in one class 1
All information required to identify a defect is present in one method 0
Defect is in a method of size less than 5 lines 0
Defect is in a method of size 5 - 10 lines 0

Table 3.6 - Characteristics of problem defects

Evidence from the survey appears to suggest that non-local information can be a real

problem. Twelve of the thirteen respondents reported that problematic defects had

information required to identify them distributed across multiple classes, and ten

respondents claimed that features of inheritance could also cause problems. Several

respondents also claimed that control flow was a problem when attempting to

understanding object-oriented code, especially due to the presence of many small methods.

Although this was a small-scale survey, its use of professionals from industry provides

complementary evidence for the literature and further supports the experimental findings

presented in Section 3.2 that non-local information within object-oriented code causes

many of the current problems for object-oriented code inspection.

Chapter 3: Investigation of Object-Oriented Code Inspection 49

3.4 The Problem of Delocalisation

The results of both the experiment and survey suggest that a major feature of difficult to

discover defects is that the information necessary to understand the defect is not in one

location but instead distributed throughout the code. Understanding a piece of code

requires following a trail of method invocations through many classes, moving up and

down the inheritance hierarchy [97] (see Figure 2.4). The evidence gathered from both the

experiment and the industrial survey suggest that many of the more difficult to discover

defects in object-oriented code contain this characteristic.

Soloway et al. [88] first observed this in the context of program comprehension. They

described a ‘delocalised plan2’ as "where the code for one conceptualised plan is

distributed non-contiguously in a program". Soloway goes on to say "Such code is hard to

understand. Since only fragments of the plan are seen at a time by a reader, the reader

makes inferences based only on what is locally apparent - and these inferences are quite

error prone". Wilde and Huitt [97] argue that features such as inheritance, polymorphism,

and dynamic binding are major contributors to the manifestation of delocalised information

within object-oriented code. To illustrate the concept of delocalised information with

respect to defect detection, Figure 3.11 shows a piece of Java code that was part of the

library system for reserving a video used in the experiment in Chapter 3.2.

Figure 3.11 - Defect with delocalised information

2 Letovsky and Soloway [56] “use the term goal to denote intentions and the term plan to denote
techniques for realising intentions” . A plan can be thought of as a related set of actions that together
achieve a programming goal.

private void purge()
{
 GregorianCalendar today = new GregorianCalendar();
 today.roll(Calendar.DATE,false);
 for(int i=0; i<reservations.size(); i++)
 {
 if (today.after((Reservation)reservations.elementAt(i)))
 {
 reservations.removeElementAt(i);
 date = 0;
 }
 }
}

Chapter 3: Investigation of Object-Oriented Code Inspection 50

In Figure 3.11, the purge method checks elements of the reservations vector to

see if any reservation has become out of date. The GregorianCalendar method

after should have been passed a date (taken from the reservation currently being

referenced in the reservations vector). Instead, the reservation itself was passed to the

after method. The argument was missing the part which retrieved the reservation date

from the currently selected reservation, elementAt(i)).getDate())).

The code had been compiled with the Java compiler, so there were no syntax errors and

the code could be executed. The Reservation class belonged to part of the library

system under development, whereas the Vector and GregorianCalendar classes

belonged to the Java class library.

To be able to fully appreciate this defect, a variety of sources of delocalised information

have to be examined:

• Vector - Vector method elementAt() was used to retrieve an element from

a specific location in the collection of reservations.

• GregorianCalendar - GregorianCalendar method after was used to

compare two dates. The reason the code compiled was that the method accepted

anything of type Object - the base class in the Java class hierarchy (all classes

derive from the Object class). So in this case, the method after accepted an

object of type Reservation because a Reservation object was, through

inheritance, also of type Object.

• Calendar – GregorianCalendar is a subclass of Calendar and inherits

much of its (quite complex) functionality as a result.

• Reservation class - was used in the Purge method to cast the object removed

from the vector reservations. The missing method call should have been made

to the Reservation method getDate().

As well as examining other classes in the system and the classes from the Java class

library, system documentation is another source of information (il lustrated in Figure 3.12).

All of this information has to be understood before the defect can be correctly identified,

and none of it is available locally within the method and class under inspection. This

situation is by no means unusual, as object-oriented programming is based around such

message passing and the use of other classes. This kind of delocalisation has been reported

as causing problems for software maintenance [80], [98], and testing [46].

Chapter 3: Investigation of Object-Oriented Code Inspection 51

It should be noted that the problem of delocalisation also exists in a well-modularised

procedural system, but that the key features of object-oriented languages make this

problem much more pronounced.

Figure 3.12 – Highlighting issues of delocalisation

In discussing good style for object-oriented programs, Lieberherr and Holland [57]

presented the ‘Law of Demeter’ . The goal of the law is to restrict the message sending

structure of methods (e.g. nested message sending), therefore reducing the number of

dependencies between classes. It does this by restricting messages to ‘neighbours’ , where

neighbours are instance variables, method parameters, global variables, or objects created

directly via a constructor. Although this reduces the delocalisation to immediate

neighbours, it does not reduce the functionality that has to be looked at in order to

understand what the code is doing. This is shown in Figure 3.13, where before applying

Demeter, methodA in the Client class calls methodX on its instance variable X, which

returns an object of type Y, which then accepts a call to methodY. After applying Demeter,

methodA in the Client class calls otherX on its instance variable X, and method otherX in

class X calls methodY on its instance variable Y. Although applying Demeter reduces

Clients dependencies to class X, the same functionality is still present, only moved to

method otherX in class X.

Other system classes

System documentation

Classes available in Java
Class library

Video

purge ()

Vector

Calendar

GregorianCalendar

Reservation

Documentation for
purge method

Chapter 3: Investigation of Object-Oriented Code Inspection 52

Other problems that can arise from following the law include an increase in the number

of methods, an increase in the number of arguments passed to methods, and a decrease in

code readability [57]. Potential advantages of using the law are that code can become easier

to understand and maintain [57].

Figure 3.13 – A dependency graph and code showing the outcome of applying the Law
of Demeter

3.5 Inadequacy of Current Inspection Approaches

There are various reading techniques available that can be used by individual inspectors

during the inspection of code. How much do currently available reading techniques help

inspectors deal with the issue of delocalisation? Two of the oldest reading techniques are

ad-hoc and the checklist (still regularly used), with Perspective Based Reading (PBR) a

relatively new technique.

// Client
methodA() {
 X.methodX().methodY();
}

// Class X
methodX() {
 ... // returns object of type Y
}

// Class Y
methodY() {
 ...
}

Before Demeter

Chapter 1 A
fter
Demeter

// Client
methodA() {
 X.otherX();
}

// Class X
otherX() {
 ...
 Y.methodY();
}

// Class Y
methodY(){
 ...
}

After Demeter

Client
X

methodA()

Class X
Y

methodX()

Class Y

methodY()

Class Y

methodY()

Client
X

methodA()

Class X
Y

otherX()

Chapter 3: Investigation of Object-Oriented Code Inspection 53

Consider the example shown in Figure 3.14. There are several flaws in the structure of

the cancelReservation method. Given a person and a date, the method was supposed

to remove the associated reservation that had previously been made for a particular video.

The flaws in the method were:

Figure 3.14 – Example of a delocalised defect

• The use of a for loop when none was required.

• An assumption placed on comparisons made between the date held in d and

the dates held in the reservations vector. The specification for the method

stated that only the year, month and day were to be taken into account when

comparing dates. However, the Vector method removeElement compares

two objects using their equals method, meaning that in this case, the hour,

minute and seconds values in both these objects were also considered in the

comparison.

The ad-hoc reading technique offers no support to the inspector, instead the inspector

relies on their own knowledge and experience and reads the code in their own preferred

way. It offers no guide to help focus an inspector on parts of the code or help them

comprehend the code. Whether any of the delocalised information is traced depends solely

on what the inspector does. This suggests that ad-hoc reading may have poor results when

dealing with delocalised information, and depends heavily on the individual inspectors. It

certainly provides no active support to address delocalisation.

Checklists offer more support than ad-hoc in the form of a series of questions (see

Figure 3.15 - from [40]), which must be answered by the inspector. One drawback of using

a checklist is that it "provides little support to help an inspector understand the inspected

artifact" [50]. It is unlikely that a checklist would highlight incorrect use of the date storage

class GregorianCalendar in Figure 3.14 as the code is, in itself, functionally correct

public void cancelReservation(Person u, GregorianCalendar d)
{
 Reservation r = new Reservation(u,d);
 for(int i=0; i<reservations.size(); i++)
 {
 if (reservations.removeElement(r))
 System.out.println("Reservation Cancelled");
 else
 System.out.println("Cancellation Failed");
 }
}

Chapter 3: Investigation of Object-Oriented Code Inspection 54

but contains the hidden assumption relating to the number of f ields used in the date

comparison. Although Porter et al. [70] commented that checklists might be thought of as

systematic because they define reviewers responsibilities and ways to identify faults, they

argue that the generali ty of the questions and lack of concrete strategies for answering the

questions makes checklists a non-systematic reading strategy. Checklists do not encourage

inspectors to follow the trail of delocalisation, they encourage localised, as-needed reading

(see following section).

Figure 3.15 – Typical checklist questions, [40]

PBR, the newest code reading technique, has the goal to "examine the various

descriptions of a software artifact from the perspectives of the artifact's various

stakeholders for the purpose of identifying flaws." [48]. Each inspector is given one

perspective, each of which is different from the rest of the inspectors on the team.

Examples of perspectives include designer, tester, and maintainer. Multiple inspectors are

required to obtain a ‘ reasonable’ level of coverage of the document. Each perspective

contains instructions on extracting the relevant information for examination (in respect to

their perspective), and is followed by a series of questions to be answered based on the

information collected. In this way, PBR encourages a better understanding of the code but,

li ke checklists, it doesn’ t actively encourage inspectors to follow the delocalisation trail .

Another weakness of all three approaches – ad-hoc, checklist and PBR – is that none of

them help reduce the amount of code that would have to be understood if delocalisation

trails were followed. Following the trails is necessary for a sufficient understanding of the

code to help identify delocalised defects. An inspection on 200 lines of object-oriented

code could easily swell by an order of magnitude due to inter-class dependencies. All of the

approaches assume that a manageable quantity of code (e.g. 100 lines per hour) can be

easily isolated.

Complete Verify that the code covers all the design.
Strings Check that all strings are

• identified by pointers and
• terminated in NULL

{} Pairs Ensure the {} are proper and matched
Calls Check function call formats:

• Pointers
• Parameters
• Use of ' &'

File Open and
Close

Verify that all files are
• Properly declared,
• opened and,
• closed

Chapter 3: Investigation of Object-Oriented Code Inspection 55

Thus the reading techniques ad-hoc, checklist and PBR are not designed to cope with

defects where the information required to understand and identify them is delocalised.

They neither encourage inspectors to follow the trails of delocalisation nor help reduce the

amount of code to be read if the delocalisation trail is followed. New techniques and aids

are needed to address these problems.

3.6 Ways to Improve Object-Oriented Inspection

There are two general strategies that can be used when trying to understand program code.

These are systematic and as-needed understanding that Soloway et al. [88] described in the

context of comprehending a program for the purpose of maintenance:

Systematic Strategy: Programmers using this strategy started at the beginning of the

program and documentation and traced the flow of the entire program, using various

forms of simulation (e.g. symbolic, actually plugging in values) [88].

As-needed Strategy: Programmers using this strategy chose to study portions of the

code and documentation, which they believed would be useful for constructing their

enhancement. They read those portions as they decided that they needed them [88].

The problem of delocalisation means that the information required to spot defects can

be spread over many classes, methods and libraries, and can even involve dependencies on

code that hasn't yet been written. This creates the effect shown in Figure 2.4, that to fully

understand what one method is doing, a string of method invocations have to be followed,

perhaps up and down a class hierarchy, and dramatically exploding the amount of code that

has to be looked at.

Systematically inspecting (and understanding) all code and its dependencies would

provide the understanding required to identify delocalised defects. However, due to the

size of real systems, this would be expensive and time consuming. Also, due to limitations

on the amount of information that can be usefully retained at one time in short-term

memory, it would be unrealistic for one person to understand an entire system. More

practically, when inspecting object-oriented code, an as-needed reading approach has to be

adopted to deal with the possibly large amounts of delocalised information. This would

allow inspectors to select the parts of the system they believed were necessary to develop

their understanding. However, the danger is that an as-needed approach will force

inspectors to make unverified assumptions that lead to the kinds of defects illustrated in the

previous experiment being missed.

Chapter 3: Investigation of Object-Oriented Code Inspection 56

A related problem is how to select the code to be inspected. Due to the large number of

dependencies within object-oriented code, it becomes very difficult to isolate an

appropriately sized chunk of code. Selecting by size alone is inappropriate due the many

links and dependencies one class may have. The aim must be to limit these dependencies.

For inspections to be effective for object-oriented code, techniques and aids need to be

developed that specifically address delocalisation. In particular the following issues must

addressed:

(1) Chunking - The many dependencies and links between classes make it very difficult

to isolate even one or two classes for inspection, and delocalisation complicates this

further. How you partition the code for inspection defines what an inspector gets to

inspect. Two issues in this respect need to be addressed: (1) the identification of

suitable chunks of code to inspect, and (2) decide how to break the chunk free of the

rest of the system, minimising the number of dependencies and the amount of

delocalisation.

(2) Reading Strategy - How should object-oriented code be read, especially if

systematic reading of code is impractical? Is there a reading strategy that could help

inspectors deal with delocalisation? Can checklists or PBR be modified to address

delocalisation or are new reading strategies required?

(3) Localising the delocalisation - A way has to be found to abstract the delocalised

information for the inspector, providing the benefits of systematic reading without

the unrealistic requirement that everything is read.

3.7 Conclusions

The chapter has presented a consistent body of evidence using existing literature, an

inspection experiment, and a small-scale survey of industrial practice that suggests

delocalisation is a significant problem for the application of traditional inspection

techniques to object-oriented code. Well-structured object-oriented code makes it difficult

to isolate independent chunks of code for inspection and totally unrealistic to fully

comprehend all such chunks in isolation. The following chapters present further

investigations that attempt to address the issues facing object-oriented code inspection.

Chapter 4

Systematic, Abstraction Based Object-

Oriented Code Inspection
Through the examination of the literature, an empirical experiment, and a survey of

industrialists it has been established that some of the key features of object-oriented

languages – inheritance, dynamic binding, polymorphism, and small methods – may have a

significant impact on the ease of understanding of the resulting program code. These

object-oriented features, by distributing closely related information throughout the code,

create the problem of delocalisation – the information required to understand one line of

code, a method, or even a class is not completely contained within the code under

inspection, but spread throughout other methods, classes, systems, or libraries.

Well-structured object-oriented code makes it difficult to isolate independent chunks of

code for inspection and totally unrealistic to fully comprehend such chunks in isolation.

Based on the results of the previous experiment and industrial survey, three areas were

highlighted as needing attention to improve object-oriented code inspections:

• Chunking – how to partition a system for inspection

• Reading strategy – how to read each ‘chunk’

• “Localising the delocalisation” – how to make available necessary non-local

information

This chapter presents a systematic, abstraction-based reading strategy for object-

oriented code inspection that concentrates on addressing the latter two points. Due to the

relatively small size of the code inspected and time constraints, the problem of chunking is

not explicitly addressed in this experiment. How this problem may be dealt with when

scaling-up the approach is discussed at the end of the next section.

A description of the systematic reading strategy is presented along with an empirical

evaluation, which takes the form of a controlled experiment comparing the defect detection

rates of systematic reading versus the ad-hoc reading strategy.

Chapter 4: Systematic, Abstraction Based Object-Oriented Code Inspection 58

4.1 Systematic Inspection

The motivation for the proposed technique was the need to address the challenge of

“ localising the delocalisation” – i.e. to find a way to resolve the references to non-local

information by providing many of the benefits associated with thorough systematic reading

(accuracy and completeness of information), but in an efficient manner.

The basic approach directs inspectors to read the code in a well -defined order, and as

they do this, to reverse engineer abstract specifications for each method. Inspectors follow

method calls and other outside information, where necessary, to develop a sufficient

understanding. The essential idea is that the creation of abstractions forces a deeper

understanding of the code and provides a summary of the method for reference in future

inspections. The creation of abstractions is not seen as a duplication of work as it is not

common to find class specifications with that level of detail being generated by the design

process.

The systematic technique attempts not to place unrealistic constraints on what support

documentation is available. It only assumes that code, the Java online API documentation,

and class diagrams are available.

The following describes the technique in more detail:

• Interdependencies (couplings) within the whole system are analysed and those

classes with least dependencies are inspected first.

• Methods within classes are analysed and those methods with least dependencies are

inspected first.

This gives the order in which to inspect the classes in the system and, for each

inspection, the reading order for each method. During the inspection:

• Classes and methods are inspected using an abstraction driven reading strategy.

This involves reverse engineering an abstract specification for each method.

• During inspection any references to external classes whose understanding is

necessary to write the abstract specification must be traced. This may involve

reading and understanding other methods, documentation, or previously created

abstractions.

As the inspection of the overall system proceeds more and more of the classes wil l

already have abstract specifications. This should limit the need to spend time

understanding other classes during future inspections.

Chapter 4: Systematic, Abstraction Based Object-Oriented Code Inspection 59

The ordering of methods within classes is based on the following features, ranked in

order of increasing delocalisation:

• Method call to method previously inspected - including class library.

• Method has a parameter that is a type defined by another class.

• Method casts an object to a type defined by another class.

• Method call in class currently under inspection.

• Method call to class library method not previously looked at.

• Method call outside current class, but in other classes under inspection.

• Method call outside current class and not under inspection.

The ranking was developed by the author through experience gained while creating the

systematic reading technique. It may not be possible in all situations to generate a single,

unique ordering. Where this occurs, a best fit approach should be taken.

To develop the abstract specification a deep understanding of each method is required.

All aspects of the method should be read and understood. All li nks to other classes should

be understood as far as possible. Development of this deeper understanding may reveal

more of the hard to find defects.

The systematic technique does not emphasise Soloway’s tracing the “flow of the entire

program”, as this would be impractical given the dynamic characteristics of object-oriented

software. It might be impossible in some situations to be able to read all methods when

following the trail of delocalisation – there may be too many. In these cases, the trail

should be followed until a sufficient understanding has been obtained to allow the abstract

specification to be written.

The abstract specification for each method should identify any changes of state (i.e.

changes to attributes / instance variables) and outputs (return values or messages) in terms

of inputs and prior state (i.e. changes to attributes / instance variables). These are more

than just interface descriptions.

The specification generated should be:

• Brief (as short as possible while capturing all aspects of the method).

• Declarative (describe what the method does, not how it does it) and there should be

no mention of programming language constructs (e.g. if or while) and no

mention of temporary variables.

• Complete (cover all aspects of the method’s functionality including that derived

from references to other classes, including inheritance).

Chapter 4: Systematic, Abstraction Based Object-Oriented Code Inspection 60

Figure 4.1 – Specification for UserCollection class

What follows is a brief example (containing one defect) showing the process of writing

an abstract specification for the method isRegistered from a UserCollection

class. The specification for the UserCollection class is shown in Figure 4.1, with the

code for the isRegistered method shown in Figure 4.2.

When reading the method, the inspector needs to be aware of the delocalisation that

exists within it. These are issues that require further understanding in order to develop the

abstraction. In this example, some of the delocalisation issues are:

• Uses Vector method elementAt(int) – what does this do and what type does

it return?

• Uses Person method getEmail() – what does this do and what type does it

return?

• Uses method equals(String) associated with result of

Person.getEmail(). Is this defined or is it inherited from Object?

Figure 4.2 – Java code for isRegistered method

Inspectors can inspect the code for the method in whatever way they choose –

sequentially, inside out, etc., but must resolve delocalisation when encountered. The

following shows how an inspector can build up an understanding of the method following a

stepwise reading approach. Linger, Mills and Witt [59] developed the stepwise abstraction

public boolean isRegistered(String e)
{
 boolean found = false;
 for (int i=0; i< theUsers.size() & !found; i++)
 if ((((Person)theUsers.elementAt(i)).getEmail()).equals(e))
 found = false;
 return found;
}

The UserCollection maintains a list of the people currently registered for
the system. People can be added to or removed from the collection. A check
can also be performed to see if a person is a registered user of the library
system.

Chapter 4: Systematic, Abstraction Based Object-Oriented Code Inspection 61

technique of reading in the late 70’s. Laitenberger [51] has also used a similar approach as

part of a code analyst perspective aimed at procedural code.

• ((Person)theUsers.elementAt(i) gets the ith element from the vector

theUsers and casts it to a Person instance. Can all users be cast to Person?

• (((Person)theUsers.elementAt(i)).getEmail()) gets the email (a

String) of the ith element in the vector theUsers.

• (((Person)theUsers.elementAt(i)).getEmail()).equals(e))

Compare the input String e with the email of the ith element in the vector using

String equals(), which returns true if the two String instances consist of

identical characters.

• for loop iterates through all elements in the vector (0 to size() –1) only while the

boolean found remains false.

• Loop iterates through the vector an element at a time, while there are elements

remaining and the boolean found remains false, setting the boolean

found to false [sic] if the input String e consists of the same characters as

the email of the current Person object in the vector.

Figure 4.3 – Final abstraction

From all of this, a final abstract specification can be written for the isRegistered

method, and is shown in Figure 4.3. This may be a slightly simplistic example, but it

highlights how the process of abstraction may encourage the inspector to develop a greater

understanding of the code, making it less li kely that assumptions or misinterpretations are

made. Further examples of abstract specifications can be found in the lecture material used

to present the systematic technique (see Appendix C.4).

An important consideration is how the proposed technique would scale up to deal with

large amounts of program code. The general guidance in the literature is that limits should

be placed in both the amount of code in any one inspection (to around 200 lines of non-

commented code) and the time allocated (to around two hours) [31], [36], [96]. Following

these guidelines means larger amounts of code must be partitioned or ‘chunked’ . This

should be carried out with care in order that interdependencies are minimised. The

Returns false if the input String e matches the email address of one of the
Person elements in the user collection, otherwise returns false.

Chapter 4: Systematic, Abstraction Based Object-Oriented Code Inspection 62

systematic technique proposed would attempt to partition the system into chunks that

minimised interdependencies, ideally not splitting a class over more than one inspection.

Classes should be ordered so that those with least interdependencies are inspected first. As

inspections progress more and more abstractions are generated – ideally saving the

inspector the effort of chasing delocalisation (by only reading the abstractions). It is worth

noting that no other inspection technique proposes a method that addresses the issue of

partitioning large amounts of code into ‘ inspectable’ chunks.

4.2 An empirical Study of Systematic Object-Oriented Inspection

4.2.1 Introduction

In an attempt to evaluate the systematic, abstraction-driven inspection reading strategy, a

further controlled experiment was designed that compared its defect detection capability

with that of ad-hoc reading.

The following sections present the design of the experiment, the results obtained, and an

interpretation of those results. A copy of all the material used for the actual experiment,

including details of the defects used can be found in Appendix C.

4.2.2 Experimental Goals and Hypotheses

The aims of the experiment were focused using the Goal Question Metric (GQM) paradigm

as described by Solingen and Berghout [87]. The GQM shifts the emphasis away from

metrics to goals. The goals create a focus for the important issues of the experiment.

These goals are then specified in more detail by defining questions, which in turn suggest

the appropriate metrics to be measured. With goals for an experiment stated explicitly,

then data collected and the evaluation of that data are based on well-specified rationale.

This makes sure that all the necessary information is collected and that all measures

required are being made – a lesson learned from the first experiment where not enough

information was recorded to allow an accurate description of subject reading strategy.

The style used here to describe the following experimental goals is based on that found

in Solingen and Berghout [87].

Goal 1

Analyse the effectiveness of ad-hoc and systematic technique for the purpose of

comparison with respect to their detection of defects from the viewpoint of a researcher

in the context of a University lab course using Java.

Chapter 4: Systematic, Abstraction Based Object-Oriented Code Inspection 63

This is the main goal of the experiment, evaluating the suggested systematic technique

as an aid for defect detection during inspection of object-oriented code. To meet this goal

requires answering the following question:

Q1.1: Is there any difference in the number of defects found by either ad-hoc or

systematic inspection?

This question may be answered by collecting data for the following metrics:

M1.1.1 Number of defects found, classified by inspection technique

Testable hypotheses are derived from the statement of goals, the questions and the metrics

as follows:

H1: The null hypothesis can be described as:

H0: There is no significant difference in the number of defects found by those

subjects performing ad-hoc inspection compared to those performing systematic

inspection of object-oriented code.

The alternative hypothesis, H1, is:

H1: There is a significant difference in the number of defects found by those

subjects performing ad-hoc inspection compared to those performing systematic

inspection of object-oriented code.

Goal 2

Analyse the effect of delocalisation for the purpose of understanding with respect to

subjects reading strategy from the viewpoint of a researcher in the context of a University

lab course using Java.

This second goal of the experiment is more exploratory and is aimed at further

investigating the nature of delocalised defects and their affect on the reading strategy for

the inspection of object-oriented code.

Meeting the above goal requires answering the following questions:

Q1: What way did subjects read through the code?

These questions may be answered by collecting data for the following metrics:

M1.1: Order that classes/methods were read

M1.2: Reading strategy used

Chapter 4: Systematic, Abstraction Based Object-Oriented Code Inspection 64

Testable hypotheses are derived from the statement of goals, the questions and the metrics

as follows:

H2: --: No testable hypothesis – results explored via qualitative analysis.

4.2.3 Experimental Plan
Since the ad-hoc reading technique lacks any explicit methodology, it was chosen as the

baseline technique with which to compare defect detection results for the systematic

technique.

To investigate the two inspection reading techniques required two groups of subjects to

inspect a single code document, one using the ad-hoc reading approach, the other using the

systematic approach. This was achieved by assignment of 64 subjects into two groups, A

and B, of approximately equal ability (based on previous programming courses). To rule

out any interference in the results due to subject ability, the subjects had to inspect a second

code document, this time using the alternative approach. Both code documents were

similar in terms of size and complexity. Table 4.1 shows the allocation of groups to code

documents for the inspection experiment. No group component was carried out, as the

main focus of the experiment was the performance of the individual inspectors. The code

inspections were paper-based, no tool support was provided (to avoid introducing

confounding factors into the experiment).

Ad-hoc inspection Stepwise inspection
Group A Code Document 1 Code Document 2
Group B Code Document 2 Code Document 1

Table 4.1 – Allocation of groups to code documents

Subjects

Subjects were participants in a 3rd year Honours Computer Science Software Engineering

course run at Strathclyde University. It should be noted that these subjects were a

completely different set from the first experiment. Subjects had previous experience with

the programming languages Java and C, had limited knowledge of Software Requirements

Specification (SRS) document inspection, and no experience with code inspections.

Prior to the experiment, subjects had been given a problem statement describing a hotel

booking system (the original problem statement can be found in Appendix C.1). From this

initial specification, subjects were given six weeks to derive a specification for the system.

Chapter 4: Systematic, Abstraction Based Object-Oriented Code Inspection 65

Once completed, subjects were then provided with a specification prepared by the course

lecturer. From this, subjects were given a further six weeks to code the hotel booking

system using Java. It was after this stage in the course that the experiment took place.

Code

Java was used again because the experiment required an object-oriented language and it

was the language most subjects knew the best (having used it for the preceding 2.5 years).

In this experiment subjects were required to inspect code segments that were of the

order of 200 lines in 90 minutes, bearing in mind that the subjects were students. The

amount of code inspected is in line with established practice (see Section 3.2.3 - Code).

For the practice sessions of the experiment, subjects were presented with material used

in the first experiment. For the remaining sessions of the experiment, the material used

represented extensions onto the hotel booking system. The two extensions were a gym

booking facility (code document 1, consisting of one Java class) and a conference room

booking facility (code document 2, consisting of three Java classes). The two extensions

were of similar length and complexity. Subjects had not previously seen any code

documents or specifications for these extensions.

Defects

The defects used were derived from a number of sources: defects with similar

characteristics to those used in the first experiment, the literature, the industrial survey, and

a selection of naturally occurring defects (defects discovered in the code written by the

course lecturer). In total ten defects were seeded into code document 1 and ten different

defects into code document 2. Since the experiment was investigating the effects of

delocalised defects, half the defects seeded (five defects) in each code document had

delocalised features.

Web Material

As well as the paper-based material provided for the inspection, extra material was made

available to inspectors via a local web page. This page contained links to the following:

• All code under inspection

• All available code for the rest of the hotel system

• The Java class library API page

• The original hotel system specification

Chapter 4: Systematic, Abstraction Based Object-Oriented Code Inspection 66

• Abstractions for other system classes that would have already been inspected had

the overall strategy of inspecting those classes with least dependencies first been

followed (only available for systematic inspections)

All code made available was in plain text and contained no special highlighting, comments

or hypertext links.

Data Collection

For ad-hoc inspections, inspectors were provided with a defect report form in which to

record defects found and a code booklet containing the code to be inspected. To record

subjects’ reading order, a collection of boxes were placed above each method in the code

documents. Each time a subject began to read a method, they would write the time in the

next available box (an example of this can be seen in Figure 4.4).

Figure 4.4 – Example of code and time boxes

A questionnaire was prepared and given to subjects upon completion of the ad-hoc and

systematic inspections. The aim of the questionnaire was to gather extra information on

resources used and problems encountered by subjects during their inspections. A copy of

the questionnaires can be found in Appendix C.2.3 (for ad-hoc inspection) and Appendix

C.5.5 (for systematic inspection).

For systematic inspections, inspectors were given both a defect report form and code

booklet (exactly as for ad-hoc inspection) and were also given method specification sheets.

These contained boxes in which subjects were to write their abstract specifications for the

inspected code. Systematic subjects were also given a questionnaire which, as well as

asking about resources used and problems encountered, explored opinions on the

// [:] [:] [:] [:] [:] [:] [:]
 public boolean reserve (Delegate del, int num, FunctionDate start,
 FunctionDate stop, Set wantedFacilities)
 {
 Function f;
 if (this.isReserved(start, stop) | this.isNameUsed(del.getName()))
 return false;
 else
 {
 f = new Function(del, num, stop, start, wantedFacilities);
 del.setFunction(f);
 return true;
 }
 }

Chapter 4: Systematic, Abstraction Based Object-Oriented Code Inspection 67

systematic technique and perceived advantages/disadvantages compared to ad-hoc

inspection.

Data Analysis

The goals of the experiment feature both a testable hypothesis and an exploratory analysis.

Where appropriate, SPSS was used to test the experimental hypothesis (to determine

whether there was a significant difference in defects found by ad-hoc inspection compared

to systematic inspection of object-oriented code) using an independent sample t-test (this

was used because the two groups being compared had different subjects).

The remaining goal that was exploratory in nature was investigated through the analysis

of the qualitative information gathered during the experiment and from the post inspection

questionnaires.

Threats To Validity

Potential threats to internal validity included:

• Selection effects - subjects were split into two groups of equal ability based on

previous class marks in an attempt to minimise this effect as much as possible.

• Learning effects - due to possible learning effects, ad-hoc inspections had to be

carried out by both groups of subjects before systematic inspection (necessitating

the use of both sets of code each week – see next point).

• Plagiarism was a concern in the experiment since both sets of code documents

were used in both the ad-hoc and systematic inspections (weeks 2 and 4), providing

an opportunity for collaboration among subjects. This was minimised by retaining

all paper material after each experiment. Subjects were also never informed,

before or after the experiments, of any specifics about the code being used for the

experiment, other than that it was an extension of the hotel booking system.

• Loss of enthusiasm - for four weeks subjects were carrying out an inspection per

week. It is possible that subjects found this repetitive and interest dropped off

towards the end. To try and counteract this, course credit was awarded to subjects

for completing the inspection exercise and the questionnaire.

The potential threats to the external validity were the same as those for the first

experiment (use of students, scale of problem inspected, defects seeded and overall

inspection process).

Chapter 4: Systematic, Abstraction Based Object-Oriented Code Inspection 68

4.2.4 Experimental Procedures

Based on the experimental plan, the following timetable was used to arrange the

experiment:

Week 1: Lecture and Practice inspection (using ad-hoc technique)

Week 2: Inspection of hotel system extensions (using ad-hoc technique)

Week 3: Lecture and Practice inspection (using systematic technique)

Week 4: Inspection of hotel system extensions (using systematic technique)

Training for the experiment occurred in weeks 1 and 3, and consisted of an introductory

lecture and training session. Each lecture lasted approximately 50 minutes and introduced

all of the relevant information and techniques. The next day, a training session lasting 1.5

hours was held and was run informally to allow subjects to ask questions and to overcome

any conceptual problems about the inspection process and techniques used.

For the experiment in weeks 2 and 4, subjects were given up to a maximum of 90 minutes

to complete the inspection. Subjects were presented with a booklet containing the

inspection material (instruction sheet, specification, class diagram, code booklet, defect

report form, and method specification sheets for systematic inspections). Once subjects

had finished the inspection task or the 90 minutes were up, they were supplied with the

questionnaire. Subjects were given approximately 20 minutes to complete this. Both the

inspection task and the questionnaire were completed under exam conditions to ensure that

subjects worked independently.

4.2.5 Experimental Results

64 subjects participated in the experiment. Due to reasons of attrition from the practice run

the results are based on 53 subjects. Three other defects were discovered for the gym code

document (code document 1) which were not originally seeded by the author, but were

highlighted by subjects during the inspection. The following sections describe the results

of the various elements of the inspection exercises.

Defect Detection

Table 4.2 presents a summary of the defect detection results obtained from all parts of the

experiment. It shows that for both the Gym and Conference Room extensions there is a

small improvement in the mean number of defects found by subjects using the systematic

inspection technique when compared to ad-hoc inspection. Using an independent sample t-

Chapter 4: Systematic, Abstraction Based Object-Oriented Code Inspection 69

test, the difference between the two means (ad-hoc and systematic) is not statistically

significant (at the 5% level) for both code documents (shown in Table 4.3). This means we

cannot reject the null hypotheses, H0, for goal 1 (see Chapter 4.2.2): there is no significant

difference in the number of defects found by those subjects performing ad-hoc inspection

compared to those performing systematic inspection of object-oriented code.

Gym Conference Room

Code Document 1 2
Technique Ad-hoc Systematic Ad-hoc Systematic
Group A B B A
No. of classes 1 1 3 3
No. of Subjects 25 28 28 25
No. of defects in code 13 13 10 10
No. of defects found (mean) 3.44 3.86 3.04 3.44
No. of defects found (St. dev) 2.0632 2.4603 1.7947 1.4166
No. of defects found (St. error) 0.4126 0.4649 0.3392 0.2833
Time (mean) (minutes) 84 88 89 88
False positives (mean) 5.08 3.61 4.71 4.28
False positives (St. dev) 3.4147 2.6852 2.9796 2.0314
False positives (St. error) 0.6829 0.5075 0.5631 0.4063

Table 4.2 – Inspection Summary of defect detection results

Table 4.2 also shows the mean time taken by each group of subjects for their inspection.

In general, most subjects, no matter the technique or code document, used the full time of

the inspection (90 minutes).

False positives are defects noted during the experiment which turn out not to be defects.

The results indicate that for both code documents, there was a reduction in the mean

number of false positives recorded by the systematic subjects compared to the ad-hoc

subjects. This is also reflected in the standard deviation and standard error results. This

may be due to the systematic technique encouraging inspectors to obtain a greater level of

understanding. The reduction in false positive figures may also be due to the subjects

gaining more experience in inspection.

Significance (2-tailed)
Gym .505
Conference Room .365

Table 4.3 – Results of an independent sample t-test

Chapter 4: Systematic, Abstraction Based Object-Oriented Code Inspection 70

Shown in Figure 4.5 and Figure 4.6 are the mean defect detection rates for the two hotel

system extensions. Each figure compares the average number of defects found by all the

ad-hoc inspectors over the 90 minutes with the average number of defects found by all the

systematic inspectors.

Figure 4.5 – Gym defect detection rate

In Figure 4.6 there is a large difference between the initial defect detection rate. This

could be due to the fact that the conference room extension was written in three classes.

Following the systematic technique meant reading through the classes in a certain order.

The first class they would have read only had one defect and the second class only had

three (out of a possible ten). Those who were inspecting the three classes via the ad-hoc

method were given the classes in one of six different orderings. This could account for the

higher difference between the two techniques when compared to the gym extension in

Figure 4.5 (which only had one class and so no alternative orderings), where the defect

rates for the two techniques are fairly close. For both code documents, the systematic

technique at some point obtains a better detection rate than the ad-hoc technique.

Time (in minutes)

908580757065605550454035302520151050

A
ve

ra
ge

 n
um

be
r

of
 d

ef
ec

ts
 fo

un
d

5

4

3

2

1

0

Ad-hoc

Systematic

Ad-hoc

Systematic

Chapter 4: Systematic, Abstraction Based Object-Oriented Code Inspection 71

Figure 4.6 – Conference Room defect detection rate

Reading Strategy

This section investigates the second goal of the experiment, looking at the reading strategy

employed by subjects when reading the code. To help gauge subjects’ reading strategy,

they had to fill in the time they began reading a method in boxes provided within the code

documents (an example is shown in Figure 4.4). This information was then compiled and

entered into a small purpose built tool to help visualise how subjects read through the code.

A screen captured from the tool showing an ad-hoc subject’s reading order is shown in

Figure 4.7. It shows in what order the classes and methods were read as well as

approximately how long was spent reading them. This particular subject read through the

code using a combination of two techniques. The subject began by reading the code in the

order presented to them, but then would follow method calls to other methods within the

class or methods in other classes. Figure 4.8 shows an example of a systematic subjects’

reading order. This subject read the code in the order presented to them, and read each

method only once.

Time (in minutes)

908580757065605550454035302520151050

A
ve

ra
ge

 n
um

be
r

of
 d

ef
ec

ts
 fo

un
d

5

4

3

2

1

0

Ad-hoc

Systematic

Ad-hoc

Systematic

Chapter 4: Systematic, Abstraction Based Object-Oriented Code Inspection 72

Figure 4.7 – Screen shot of an ad-hoc subject’ s reading strategy

Figure 4.8 – Screen shot of a systematic subjects’ reading strategy

Chapter 4: Systematic, Abstraction Based Object-Oriented Code Inspection 73

Figure 4.9 shows a graph detailing number of times the code to be inspected was read

against percentage of subjects. It shows that those carrying out ad-hoc inspections were

always reading the code more than once, and in nearly 50% of the cases read the code two

to three times. In comparison, 30-40% of subjects using the systematic reading technique

read the code only once, with the vast majority of the rest reading through the code once

and then re-reading only a few select methods. When inspecting via the systematic

technique, subjects were spending longer reading methods as they attempted to fully

understand what they were doing and create their abstract specifications. Whereas with ad-

hoc inspections, subjects would repeatedly browse through the code multiple times,

sometimes appearing to spend very li ttle time concentrating on each method.

Figure 4.9 – Number of t imes subjects read through the code

Further analysis of the timing information gathered indicates that more than half of the

subjects in both ad-hoc inspection groups began reading the code in the order presented to

them. After reading through the code at least once, subjects then used this information to

revisit methods for further inspection. It appears that in the later stages of the inspection,

the subjects’ reading order is not affected by code order or method calls.

Most of the remaining ad-hoc subjects read the code by following method calls. After

having read through all the code this way, at least once, subjects again decided which

methods to revisit.

0

10

20

30

40

50

60

<1 1 1-2 2 2-3 3>

Gym (Ad-hoc)

Conf (Ad-hoc)

Gym (Syst)

Conf (Syst)

Number of Times read through code

P
er

ce
nt

ag
e

Chapter 4: Systematic, Abstraction Based Object-Oriented Code Inspection 74

Only 17% of all ad-hoc subjects read through the code in the order presented and stuck

to that reading order through the entire inspection.

For the systematic inspection, subjects were told to read the code in the order presented

to them (for both methods and classes). The code had been specifically ordered to

minimise dependencies. About half read the code in the suggested order for the entire

inspection, the other half read most of the code in the order suggested, but occasionally

jumped to another method before returning to the given order. More time was spent by all

subjects reading methods for the first time than was the case with ad-hoc inspection.

Through looking at the timing information gathered and the defects found by subjects, it

appears that 9% of the systematic subjects failed to complete their inspection of the code

(i.e. were not able to read all the methods in the code within the given time).

More than half the
defects found on
first run through
code

More than half the
defects found on
subsequent runs
through code

Same number of
defects found on
first and subsequent
runs

Gym (ad-hoc) 54% 21% 25%
Gym (syst) 75% 4% 21%
Conference (ad-hoc) 54% 32% 14%
Conference (syst) 100% 0% 0%

Table 4.4 – When, dur ing the inspection, subjects found defects (in relation to their
reading strategy)

Table 4.4 shows when subjects were more likely to find defects during the inspection.

For those carrying out ad-hoc inspection, just over 50% were finding more than half of

their total defects in their first pass through the code. Roughly a quarter of the remaining

subjects found more defects on subsequent runs through the code. This is not surprising

considering that ad-hoc inspectors were making multiple passes through the code (see

Figure 4.9). For systematic inspection, 75% of subjects for the single class code document

(gym) and 100% of subjects for the multiple class code document (conference) found more

than half their defects on the first pass through the code. Very few subjects in either group

found more defects on subsequent passes through the code. This significant increase in

finding more defects in the first pass through the code indicates that there is perhaps not

quite such a strong need to make the multiple passes through the code (as seems to be the

case with ad-hoc inspection – shown in Figure 4.9), but fewer, more concentrated and

focused passes.

While carrying out their inspections subjects had access to the online Java

documentation. The post-inspection questionnaire asked subjects what online

Chapter 4: Systematic, Abstraction Based Object-Oriented Code Inspection 75

documentation they had accessed. Results show that very few subjects (in most some cases

no more than 25%) who were reading the relevant online documentation associated with a

defect were also finding the defect. The online documentation was the standard JavaDoc

documentation supplied with Java. Subjects had access to it for the previous two years.

The results suggest that either subjects are not very proficient at using the online

documentation, or the online documentation itself is at fault (perhaps due to a lack of

detailed information or poor presentation). No definite conclusions can be made.

Code
Document

(ad-hoc
inspection)

No. of defects
found

(ad-hoc)

Code Document
(systematic
inspection)

No. of defects
found

(systematic)

% of defects
(comparing

both
inspections)

Gym 7 / 13 Conference 6 / 10 54% : 60%
7 / 13 2 / 10 54% : 20%
6 / 13 5 / 10 46% : 50%
6 / 13 4 / 10 46% : 40%
6 / 13 4 / 10 46% : 40%
6 / 13 5 / 10 46% : 50%

Conference 7 / 10 Gym 9 / 13 70% : 69%
6 / 10 6 / 13 60% : 46%
6 / 10 7 / 13 60% : 54%
6 / 10 8 / 13 60% : 62%
5 / 10 4 / 13 50% : 31%
5 / 10 5 / 13 50% : 38%

Table 4.5 – Number of defects detected by the top ad-hoc subjects and their
systematic defect detection results

Table 4.5 shows for each of the ad-hoc subjects who performed well in either the gym

or conference code documents, the number of defects the subjects went on to find using the

systematic technique. Those subjects who performed well during the ad-hoc inspection did

not significantly improve their performance when carrying out the systematic inspection.

Eight of the twelve subjects obtained approximately the same percentage of defects for

both inspections, the other four subjects performed notably worse during the systematic

inspection than in the ad-hoc inspection. This possibly indicates that the systematic

technique was constraining the natural abilities of the better subjects, perhaps by forcing

them to read the code in a certain order. It is also possible that these subjects felt they had

less freedom to look back at code already inspected, instead always reading forward

through the code in order. Conversely, Table 4.6 shows for nine of the poorest subjects in

ad-hoc inspection, all but one improved their defect detection rate during the systematic

Chapter 4: Systematic, Abstraction Based Object-Oriented Code Inspection 76

inspection. The application of a technique to guide the inspection process appears to help

those weaker subjects.

Code
Document
(ad-hoc

inspection)

No. of
defects

found (ad-
hoc)

Code
Document
(systematic
inspection)

No. of defects
found

(systematic)

% of defects
(for both

inspections)

Gym 0 / 13 Conference 2 / 10 0% : 20%
1 / 13 4 / 10 8% : 40%
1 / 13 1 / 10 8% : 10%
1 / 13 3 / 10 8% : 30%

Conference 0 / 10 Gym 2 / 13 0% : 15%
0 / 10 2 / 13 0% : 15%
1 / 10 4 / 13 10% : 31%
1 / 10 0 / 13 10% : 0%
1 / 10 2 / 13 10% : 15%

Table 4.6 – Number of defects detected by the worst ad-hoc subjects and their
systematic defect detection results

Just under half of those subjects who performed well (shown in Table 4.5) during ad-

hoc inspection (over both code documents) read the code by following method calls, the

rest read the code in the order it was presented to them. All of the subjects who did not

perform as well during the ad-hoc inspection (shown in Table 4.6) read the code in the

presentation order.

The Defects

The two charts in Figure 4.10 show the percentage of subjects (y-axis) who found each

particular defect (x-axis) and which code document the defect belonged to (colour of the

bar) for each of the two inspection techniques. This clearly shows which defects were

discovered relatively easily and those that were harder to identify. For the ad-hoc

inspections, the three defects that were not found by any subjects all have delocalised

features (all were found by systematic inspectors – Defect 4c by 32%, Defect 9c by 12%,

and Defect 13g by 18%). Most of the remaining delocalised defects were found by less

than 39% of subjects. Defects 4, 5 and 13 for the gym code document were not seeded by

the authors, but were found by subjects during the inspection. One of those, defect 13, was

only found by the systematic inspection technique.

Chapter 4: Systematic, Abstraction Based Object-Oriented Code Inspection 77

Ad-Hoc Defect Results

Note: For last three defects, code base highlighted by letter, e.g. g - gym, c - conference

 - delocalised defects

Systematic Defect Results

Figure 4.10 – Percentage of subjects finding each defect for both code documents and
defect detection techniques

P
er

ce
nt

ag
e

R
es

po
ns

e

Defect Number

0

10

20

30

40

50

60

70

80

90

1 10 10 2 11 3 9 5 1 7 4 6 7 8 8 13 3 9 4 6 12 2 5

Gym

Conference

80

68
64

46 46 43 43
36

32 32 32 32 32 32
25

18
12 12 11 11 11 8

4

79
75 72

64

43 40 39
32 32 29

25 24 24
20

12 12 11 8
4 4

0 0 0
0

10

20

30

40

50

60

70

80

90

1 6 10 11 10 2 8 1 9 5 7 3 7 6 8 12 2 5 4 3 13g 4c 9c

Defect Number

P
er

ce
nt

ag
e

R
es

po
ns

e

Gym

Conference

C
hapter 4: S

ystem
atic, A

bstraction B
ased O

bject-O
riented C

ode Inspection
78

9

S

L

X

X

X

X

X

0

4

S

M

X

X

X

X

0

13

S

L

X

X

X

0

3

M

M

X

X

X

X

X

4

4

C

L

X

X

X

4

5

M

L

X

X

X

8

2

S

M

X

X

X

X

X

11

12

C

L

X

X

X

12

8

S

L

X

X

X

X

X

12

6

M

L

X

X

X

X

X

20

7

S

L

X

X

X

X

24

3

C

L

X

X

X

24

7

M

M

X

X

X

X

25

5

C

M

X

X

X

29

9

C

M

X

X

32

1

S

L

X

X

X

X

32

8

S

M

X

X

X

X

X

39

2

C

L

X

X

X

40

10

M

M

X

X

43

11

S

L

X

X

X

X

64

10

M

L

X

X

X

72

6

S

M

X

X

75

1

S

L

X

X

X

X

79

Defect No.

Locality (M,C,S)

Method (S,M,L)

Alg/Comp

Use of class library

Wrong object

Wrong message

Data flow error

Instance variable
misuseSpecification clash

Omission

Commission

Delocalised

%

F
igure 4.11 - D

efect characteristics in percentage response order (both code sets) –
A

d-hoc inspection

G
ym

C
onference

C
hapter 4: S

ystem
atic, A

bstraction B
ased O

bject-O
riented C

ode Inspection
79

5

M

L

X

X

X

4

2

S

M

X

X

X

X

X

8

4

C

L

X

X

X

11

6

M

L

X

X

X

X

X

11

12

C

L

X

X

X

11

3

M

M

X

X

X

X

X

12

9

S

L

X

X

X

X

X

12

13

S

L

X

X

X

18

8

S

L

X

X

X

X

X

25

1

S

L

X

X

X

X

32

7

S

L

X

X

X

X

32

4

S

M

X

X

X

X

32

6

S

M

X

X

32

7

M

M

X

X

X

X

32

8

S

M

X

X

X

X

X

32

5

C

M

X

X

X

36

3

C

L

X

X

X

43

9

C

M

X

X

43

2

C

L

X

X

X

46

11

S

L

X

X

X

X

46

10

M

L

X

X

X

64

10

M

M

X

X

68

1

S

L

X

X

X

X

80

Defect No.

Locality (M,C,S)

Method (S,M,L)

Alg/Comp

Use of class
libraryWrong object

Wrong message

Data flow error

Instance variable
misuseSpecification
clashOmission

Commission

Delocalised

%

F
igure 4.12 - D

efect characteristics in percentage response order (both code sets) –
System

atic inspection

G
ym

C
onference

Chapter 4: Systematic, Abstraction Based Object-Oriented Code Inspection 80

One delocalised defect, defect 1, in the ad-hoc inspection of the conference code

document was found by 79% of subjects (see top picture in Figure 4.10). The defect

concerned a method in the Function class calling an incorrect method (daysBetween

in the HotelDate class instead of halfDaysBetween in the FunctionDate class).

This high response rate may have been due to a clash with the class specification or class

diagram provided to subjects during the experiment, or it may be that the subjects noticed

there was a method unused in one of the related classes they were inspecting

(halfDaysBetween in the FunctionDate class).

For each of the defects (23 in total) over both code documents, a list was drawn up of

their characteristics, similar to those used in the previous experiment (see Figure 3.7).

Figure 4.11 and Figure 4.12 show for both reading techniques, the characteristics for the

defects in percentage response order. The characteristics listed were similar to those used

in the previous experiment but included two other headings: specification clash (defect

highlighted by clash with specification) and delocalised (defect contains characteristics

which made it delocalised in nature).

The defect characteristic information from Figure 4.11 and Figure 4.12 was again

entered into C5.0, a rule induction system (the output generated can be found in Appendix

C.7). The following points were observed from the rules that were generated:

• For both inspection methods, defects involving wrong object and instance variable

misuse were difficult to find. Also, defects involving data flow errors and class

library access were for the most part difficult to find, with one or two exceptions.

• There were slight improvements from ad-hoc to systematic inspection for defects

with wrong message and use of class library characteristics.

• Defects involving a clash with the specification were in the higher response end of

the tables for both inspection methods.

• Defects involving omission were never found by more than 46% of the subjects and

proved difficult for both inspection techniques.

• There is a slight rise in response rates via the use of the systematic technique. The

different gradients for the two techniques can be seen in Figure 4.10. For the top

graph, the gradient is fairly steep, hitting percentages in the 20’s by mid way and

ending on a zero response rate. The bottom graph, representing the systematic

results shows a curve (after a sharp initial drop) with a more gradual decline, by half

way still having percentages in the 30’s, and not ending on a zero response rate.

Chapter 4: Systematic, Abstraction Based Object-Oriented Code Inspection 81

Figure 4.13 highlights the frequency of detection of defects in both code documents.

Each axis represents the percentage of subjects who found the defects (data points) for a

certain inspection technique. Defects of interest are those not near the line, but are nearer

the axis lines, indicating that one technique was more successful at finding that defect.

There are several defects for both code documents that fit into this category, as the ratio of

comparison between the two techniques is 2:1 or worse (defects 3, 4, 5, 6, 8, and 13 for

gym, and defects 3, 4, 6, and 9 for conference).

Figure 4.13 – Frequency of detection for defects in both code documents

Systematic (% of subjects)

7065605550454035302520151050

A
d-

ho
c

(%
 o

f s
ub

je
ct

s)

80
75

70

65

60

55
50

45

40

35

30
25

20

15

10

5
0 13

12

11

10

9

8

7
6

5
4

3

2

1
Gym code document

Systematic (% of subjects)

80757065605550454035302520151050

A
d-

ho
c

(%
 o

f s
ub

je
ct

s)

85
80

75

70

65

60

55

50

45

40

35

30

25
20

15

10

5
0

10

9

8

7

6

5

4
3

2

1

Conference code
document

Chapter 4: Systematic, Abstraction Based Object-Oriented Code Inspection 82

Of the six defects mentioned for the gym code, defects 8 and 13 were delocalised,

appeared in large methods, had system locality (information required to identify the defect

is distributed across multiple classes), and both were found more by systematic inspectors.

The systematic technique may have helped with these defects due to the increased

understanding subjects were encouraged to obtain through the creation of the abstractions,

and being forced to follow the trails of delocalisation. From the remaining four, three were

related to defects of omission, and one relating to extraneous code. Two of the omission

defects were found more by ad-hoc inspectors, the other two defects were found more by

systematic inspectors.

Three of the four defects for the conference code were delocalised defects (two dealt

with omission, the other using a wrong method from the class library), and all were found

by substantially more systematic inspectors than ad-hoc. The remaining defect, defect 6,

involved parameters being sent via a method call in the wrong order. This defect was

found by substantially more ad-hoc inspectors (more information concerning conference

room defect 6 can be found in Chapter 4.2.7, Interpretation of Results).

Questionnaire Results

A questionnaire was given to each subject after the completion of each inspection exercise

(for both ad-hoc and systematic reading). A copy of the questionnaires can be found in

Appendix C.2.3 (for the ad-hoc inspection) and Appendix C.5.5 (for the systematic

inspection). The following summarises the questionnaire responses for each of the

inspection techniques.

Ad-hoc inspection

With the ad-hoc inspection technique nearly half of all subjects read through the code in

sequential order presented and the other half read through code trying to follow execution

path/method calls. Subjects using the ad-hoc inspection technique stated that it was less

time consuming (twenty-one subjects), less restrictive in its reading order, e.g. left to their

own devices (fifteen subjects) and easier compared to the systematic technique (six

subjects). The problems with ad-hoc inspection were that it did not help with

understanding (six subjects), presented less structure to the inspector and subsequently

there was more jumping around the code (twenty-two subjects). Other problems for one or

two subjects that arose during the ad-hoc inspection included dealing with classes from the

Java class library that subjects had not previously seen and coding style.

Chapter 4: Systematic, Abstraction Based Object-Oriented Code Inspection 83

When asked what could be done to improve ad-hoc inspections, subjects’ responses

included access to tools and aids (two subjects), more practice (four subjects), ordering of

code (six subjects) and more structure to the technique (two subjects).

Systematic inspection

With the systematic technique subjects found that reading the code in the suggested

order meant there was less jumping around (twenty-two subjects), they gained an improved

understanding (fourteen subjects), and that the process was more structured/focused (seven

subjects). The down side found by following the ordering was that it took longer to read

through the code (five subjects). One or two subjects commented that it could sometimes

feel restrictive and major methods were being left to the end of the ordering.

When creating the abstractions, subjects suggested that it encouraged understanding and

made you read each line of code (thirty subjects), that instead of having to re-read methods

you could read your previously written abstractions (six subjects), and that subtle defects

were easier to identify (three subjects). The problems with the abstractions were that they

were time consuming (twenty-nine subjects), there was too much to write (five subjects),

and that in several cases it was difficult to write natural language specifications based on

the code (twelve subjects).

When asked what could be done to improve systematic inspections, subjects’ main

concerns were more time (six subjects), more practice (three subjects), and more

information/examples at the lecture (three subjects).

4.2.6 Experimental Design Lessons

One matter that was very apparent from the questionnaires given to subjects after each

experiment was that they desired more practice with inspection. In this experiment

subjects were only given one week of practice with a technique before the assessed part of

the experiment the following week. Subjects only had access to two examples of the

application of the systematic inspection reading technique, one presented in the lecture and

one from the practice session. To improve the validity of the experiment it is important

that subjects understand and feel comfortable with any reading technique they have to

apply. In future experiments there should be more examples and/or more practice sessions

for subjects.

Chapter 4: Systematic, Abstraction Based Object-Oriented Code Inspection 84

4.2.7 Interpretation of Results

The main interpretation of these results is that there is no significant difference between the

systematic technique and the ad-hoc technique in terms of the average number of defects

discovered (see Figure 4.5 and Figure 4.6), although there is a small i mprovement for both

code samples using the systematic approach. This means we cannot reject the null

hypothesis, H0, for goal 1: there is no significant difference in the number of defects found

by those subjects performing ad-hoc inspection compared to those performing systematic

inspection of object-oriented code.

On the other hand the results suggest that the systematic technique is no worse than ad-

hoc in terms of defect detection and there may be a number of potential benefits from the

use of the systematic approach:

a) The systematic approach found all the defects, the ad-hoc approach did not. Ad-hoc

inspectors did not find three of the ten delocalised defects (one in gym and two in

conference). Although no group component (collation of defects by individual

inspectors) was carried out, the fact that the systematic technique found all the

defects might suggest that the group component would be more successful.

b) The systematic approach produced abstractions for every method as a by-product. It

is intended that these abstract specifications can be used in future inspections to

save the inspector, or other inspectors, the effort of reading the class or method

again when another class makes a delocalised reference to that class (e.g. via

inheritance, variable declaration, method invocation,…). Further research is

necessary to investigate the usefulness of these abstract specifications. In

particular, it is important to investigate the level of formality required – would the

precision and conciseness of semi-formal or formal specifications provide overall

benefits in terms of removing ambiguity compared to natural language?

c) There is anecdotal evidence from the subjects’ questionnaires that the task of

creating abstract specifications encouraged a greater understanding of the code

under inspection. It is reasonable to assume that a greater understanding may lead to

better defect detection, especially of more subtle defects. The fact that the

systematic inspectors found all the defects also provides some support for this view.

d) The systematic approach provides an ordering for the reading strategy to deal with

the delocalised, distributed nature of object-oriented software. Again the

questionnaire data suggested that inspectors appreciated the rigour imposed by this

ordering. Without such an ordering it is possible that inspectors may ‘wander off’

Chapter 4: Systematic, Abstraction Based Object-Oriented Code Inspection 85

into the rest of the system chasing a thorough understanding but, without great care,

there is a danger that a thorough and complete coverage of the classes under

inspection will not be achieved.

e) Related to points c) and d) is the suggestion that the technique helped the weaker

subjects improve their defect detection. An analysis of the nine poorest subjects in

ad-hoc inspection over the two sets of code documents showed that all but one

improved their defect detection rate during the systematic inspection. Alternatively

this could be as a result of a learning effect. On the other hand there is similar

evidence that the systematic method may have inhibited the natural abilities of the

stronger subjects.

Interpreting the results also leads to suggestions for potential refinements to the systematic

method:

a) The systematic inspectors tended to make one, or at most two, relatively slow

passes through the code. The systematic approach seemed to take time to build up

momentum (see Figure 4.6) when inspecting the multi -class code (the Conference

room extension). The questionnaire data suggests that subjects found that there was

too much to write during systematic inspection and that they found it difficult to

write the required natural language specifications. This suggests that there is a need

to make the abstracting process more efficient – the abstractions should be as

focussed and brief as possible, but balanced against the need for future inspectors

to be able to use them as an efficient alternative to reading the class.

b) There appeared to be a real requirement for more training in the systematic

approach. Subjects were given a 1-hour lecture and a 2-hour practical session on its

application. The questionnaires suggested a need for more lecture examples and

more practical experience with the technique. Increased experience with the

systematic approach, particularly with the process of creating specifications, may

improve the efficiency and effectiveness of the approach.

c) Related to a) is the possibility that tool support may help make the creation of

abstract specifications more efficient e.g. by automatically identifying state change

variables and output values for which the inspector must write specifications.

Several subjects’ questionnaires also suggested difficulties with the variety of

documents to be managed during an object-oriented inspection e.g. code sheets,

problem specification, class diagram, defect report form, abstraction sheet, as well

Chapter 4: Systematic, Abstraction Based Object-Oriented Code Inspection 86

as having to access the Java Class library API on-line. Again, it is possible that the

process may be made more efficient by appropriate tool support.

d) The systematic approach imposed a reading order that minimised

interdependencies – basically methods and classes are ordered so that they are read

in order of increasing coupling. However the graph-based nature of object-oriented

interactions means that all dependencies cannot be read and understood before they

are used. The method needs to prescribe how to deal with such situations. For

example, one particular defect (defect 6 – Conference code – see Figure 4.10)

highlighted this type of problem. It involved the incorrect ordering of parameters

in a call to a method. The method being called had already been inspected. If

subjects had looked at the method in the other class, or looked at their abstraction

sheet, they should have noticed the defect. 75% of ad-hoc inspectors found defect

6, compared to 32% for systematic. The ad-hoc inspectors had more freedom to

move around the code. It is possible that the systematic method may have

discouraged inspectors from looking back.

A key finding was that ad-hoc inspectors seemed to perform multiple (two or three)

passes through the code following a combination of code ordering and tracing dynamic

method invocations. This was in contrast to the more methodical, single pass (or so) of the

systematic inspectors. In this study the former approach appears to have been as effective

at defect detection as the systematic approach. The complete systems were relatively small

(a few thousand lines of code). An interesting question for further study is how well the

two strategies would cope with a more realistic scenario where inspectors are reviewing

200 line ‘chunks’ f rom significantly sized object-oriented systems where delocalised

references could lead deep into the rest of the system.

One potential weakness of the systematic strategy adopted for this study may be that it

is based on a static view of the code. Specifically, the subjects are encouraged to read the

code in a linear order (where that order is such that, as far as possible, dependencies are

read before they are used). However the dynamic view of object-oriented code is quite

different from the static view, as found by Gamma et al. [35] (see Chapter 2.2), who stated

that the two are largely independent of each other. This makes it very difficult to

understand one from the other.

These findings suggest that the systematic approach offers a number of benefits: a

rigorous reading strategy, potential to help address delocalisation through abstract

specifications, potential to encourage deeper understanding and to discover different

Chapter 4: Systematic, Abstraction Based Object-Oriented Code Inspection 87

defects from an ad-hoc approach. On the other hand the systematic approach doesn’ t

adequately address the highly dynamic nature of object-oriented software, may be more

time consuming and may restrict the natural ability of experienced or skilful inspectors.

A final interpretation of the results is that they provide further confirmatory evidence of

the problems caused by delocalisation during object-oriented inspection. Figure 4.10

shows that the delocalised defects are, in the main, to the right (found by less than 39% of

subjects). The inductive analysis suggested that characteristics of delocalisation – using the

wrong object and class library access – were amongst the characteristics of difficult to

discover defects. The results also show that very few subjects who actually read the

relevant online documentation actually found the associated defect (in the main less than

25%).

4.3 Conclusions

This chapter described the evaluation of a systematic, abstraction-driven inspection

technique for object-oriented code that was developed to address the problems of reading

strategy and ‘ localising the delocalisation’ . No significant difference was found in terms of

the number of defects discovered when compared to an ad-hoc method of inspection.

However some potential benefits were discovered which, with further refinement of the

approach, may help address the problems of delocalisation and provide a suitable reading

strategy for object-oriented code. This experiment also uncovered further evidence that the

delocalised nature of object-oriented code is a real problem during software inspection.

More research is required to investigate whether refinement of this systematic approach

can provide a pragmatic reading strategy that helps address delocalisation (as well as

addressing the problem of how to break a large object-oriented system into ‘chunks’ for

inspection). On the other hand, it may be that the dynamic nature of object-oriented

systems hinders the effectiveness of such a systematic approach. The next chapter

describes an investigation of an alternative code reading strategy that is more in tune with

the dynamic nature of object-oriented systems, and an investigation of whether refinements

of the systematic approach can provide a pragmatic reading strategy that helps address

delocalisation.

Chapter 5

Development and Evaluation of Three

Techniques for Object-Oriented Code

Inspection
Through a controlled experiment three significant issues important to the successful

inspection of object-oriented code were identified: chunking, reading strategy, and

‘ localising the delocalisation’ . From this, a second controlled experiment investigated a

systematic abstraction-driven inspection technique developed to address the problems of

reading strategy and delocalisation. It was found that the systematic approach offered a

number of benefits: a rigorous reading strategy which encouraged a deeper understanding

of the code combined with the potential to address delocalisation through the creation of

abstract specifications. However, the systematic approach did not appear to address

adequately the problem of defects associated with the highly dynamic nature of object-

oriented software. The main findings from the second experiments were that delocalisation

of information and the difference between the static and the dynamic views appear to be

very real problems for the practical application of software inspection to object-oriented

code.

This chapter presents three diverse reading techniques that were developed for object-

oriented code inspection: an updated version of the systematic technique, a checklist

modified to encourage inspectors to develop an understanding of the code and focus more

on object-oriented issues, and a use-case driven approach which takes a slice through the

system in order to gain a more dynamic view of the code. These techniques are then

evaluated through a controlled experiment.

5.1 Three Inspection Reading Techniques

To further address the problems of delocalisation and reading strategy, three reading

techniques were developed: a systematic abstraction-based technique; a modified checklist;

and a strategy based on use-cases.

Chapter 5: Development and Evaluation of Three Techniques for Object-Oriented Code Inspection 89

The systematic abstraction-driven approach aims to support an understanding of the

code in a rigorous, but sequential, fashion. It has the benefit of addressing delocalisation

and encouraging a deeper understanding of the code. However, progress through code

documents can be slow, and the systematic approach enforces a particular strategy and

reading order, which consequently, can lead to some apparently simple defects being

missed.

To balance the systematic reading technique and combat the potential flaws, a checklist-

based approach was selected. The checklist approach aims to address defects missed by

the systematic technique’s linear strategy. This is one of the more traditional inspection

techniques that are widely used in industry [27], [36], [73]. Using the checklist technique

also allows for a comparison between the effectiveness of a traditional technique with

techniques that have been developed to deal with the specifics of object-oriented code.

From the results of the previous experiment, it emerged that addressing the dynamic

aspects of object-oriented code may be beneficial for inspection. In response to this, a use-

case driven reading strategy was developed as the third reading technique. Use-cases form

part of the Unified Modelling Language (UML) and more information on use-cases may be

found in [15], [75], [89]. The remainder of this section presents a description of each of the

three reading techniques.

5.1.1 Checklist

Checklists are a straightforward and commonly used reading support mechanism (they

have been around since the early use of inspections in the late 70’s) used by individual

inspectors for the purpose of preparation. Checklists are based upon a series of specific

questions that are intended to focus the inspector’s attention towards common sources of

defects. Gilb and Graham [36] and Humphrey [40] recommend that checklists should not

be composed of general, potentially irrelevant questions obtained from elsewhere.

Laitenberger et al. [50] summarised a list of the weaknesses of the checklist technique.

Firstly, the questions are often general and not sufficiently tailored to a particular

development environment. Secondly, concrete instructions on how to use a checklist are

often missing, i.e. it is often unclear when and based on what information an inspector is to

answer a particular checklist question. Finally, the questions of a checklist are often

limited to the detection of defects that belong to particular defect types. Since the defect

types are based on past information [19], inspectors may miss whole classes of previously

Chapter 5: Development and Evaluation of Three Techniques for Object-Oriented Code Inspection 90

undiscovered defects (a problem that the recommended constant revision of checklists

attempts to address).

To overcome the first checklist problem concerning general and unrelated questions, the

questions in the checklist were based on historical defect data. The historical information

came from the two previous controlled experiments investigating the inspection of object-

oriented code (presented in Chapter 3 and Chapter 4).

Combining the defects from the previous two empirical studies created a list of forty-six

defects (of which nineteen contained delocalised features). For each of the defects a series

of specific questions were derived that should have helped an inspector find that defect.

Gilb and Graham [36], state that a checklist does not need to contain every single

question, and should instead concentrate on questions which will turn up major defects and

all of which fit onto one page (approx. 25 items). This limit is also agreed upon by

Chernak [19], although there are some checklists that do not always adhere to this [2], [66].

The questions were then reviewed, and in some cases merged or generalised as they

covered similar areas, to produce a final l ist of eighteen questions.

The format of the checklist follows that used by Laitenberger et al. [51] and suggested

by Chernak [19]. It consists of two components, “where to look” and “how to detect” . The

first component is a list of potential “problem spots” that may appear in the work product,

and the second component is a list of hints on how to identify a defect in the case of each

problem spot. This provides more concrete instructions on how to use the checklist. The

eighteen derived questions were reviewed and grouped by the area of code they focused on,

e.g. inheritance, data referencing, and method overriding.

A final step applied to the construction of the checklist was ordering the questions to

support the inspector in building up a thorough understanding of the code and minimise

context switches.

As the inspector moves through the different groups of questions (e.g. method, object

messaging) they successively move from a more high level and general perspective,

towards a more detailed and fine-grained perspective. Each group of questions requires

more and more understanding of each method, and so the final question in the method

section, “Does the method match the specification?” should be easier to answer once all the

other questions have been applied. To support this strategy further, interdependencies

(degrees of coupling) within the code under inspection were analysed and those classes

with least dependencies were inspected first.

Chapter 5: Development and Evaluation of Three Techniques for Object-Oriented Code Inspection 91

For each class:
Feature Question

1 Inher itance Is all i nheritance required by the design implemented in
the class?

2 Is the inheritance appropriate?
3 Class Constructor Are all i nstance variables initialised with meaningful

values?
4 If a call to super is required in the constructor, is it

present?
 For each method:

5 Data Referencing Are all parameters used within a method?
6 Are the correct class constants used?
7 Are indices of data structures (arrays, etc.) operating

within the correct boundaries?
8 Object Messaging Is the correct method being called on the correct object

(including the possibility of casting)?
9 Are the correct values passed as parameters in the

correct order?
10 Object

Referencing
Should a reference to an object be used instead of a
distinct copy (or vice versa)?

11 Selection and
I teration (if, while,
etc)

Are all relational and logical operators sufficient and
correct?

12 Is the correct sequence of code executed for any
condition outcome?

13 Is the use of an iterator or loop appropriate when
destructive operations are occurring on a collection?

14 Method Behaviour Are all assignments and state changes made correctly?
15 For each return statement, is the value returned and its

type correct?
16 Does the method match the specification?

For each class:
17 Method Overr iding If inherited methods need to behave differently, are they

overridden?
18 Are all uses of method overriding correct?

Figure 5.1 – Final version of der ived checklist

This principle was also applied to the “where to look” component and the questions

were categorised into three sections:

1. Class – this section is concerned with inheritance and constructor issues.

2. Method – the middle section of questions deals with issues surrounding methods,

e.g. data referencing, object messaging and referencing, selection and iteration, and

method behaviour.

Chapter 5: Development and Evaluation of Three Techniques for Object-Oriented Code Inspection 92

3. Class – the final section deals with issues surrounding method overriding – these

final class questions appear at the end of the checklist since the answers should be

easier to find with an understanding of all the methods in the class.

Humphrey [40] commented that when using checklists, inspectors might find

themselves jumping back and forth through the code (as if following method calls). If this

happens, the mental context that is created as one method is read will be lost once the

inspector switches to reading another. Context switching takes time and often causes

errors, increasing the likelihood of a low defect detection rate. When programs are even

moderately complex, it is better to review each separate part as a unit. Humphrey

suggested that, to reduce the amount of unnecessary context switching, inspectors should

complete the entire checklist for each part (method) before they proceed to the next. In the

instructions provided to inspectors (found in Appendix D.3.4.2), they are told to apply the

method section of the checklist to each method under inspection in turn.

The final version of the derived checklist is shown in Figure 5.1.

5.1.2 Use-case

The use-case reading technique attempts to support inspection of the dynamic execution of

object-oriented systems. The aim of the technique is to check that each object is capable of

responding correctly to all the possible ways in which it might be used. In other words, is it

a good citizen of the system? More precisely, with respect to the use-cases in which the

object participates, it seeks to verify that:

• The correct methods are being called.

• The decisions and state changes made within each method are correct and consistent.

The technique also has the benefit of being an explicit check of the code against the

requirements.

The basic approach is to devise a number of scenarios from the use-case and examine

how the class under inspection deals with these scenarios. Scenarios are particular

instances of a use-case that test possible variations. The principle behind the technique is

that it forces the inspector to consider the context in which an object is used. This

approach is li kely to highlight defects associated with missing or incorrect method calls or

erroneous state changes. These are aspects that may be missed if the class was examined in

a more general context, e.g. with a checklist. On the other hand, a potential weakness is

that some parts of a class may go unchecked because they do not participate in the use-case

Chapter 5: Development and Evaluation of Three Techniques for Object-Oriented Code Inspection 93

that is driving the current inspection. Due to this, the approach should be complemented

by other reading techniques to ensure complete coverage of a class.

The following briefly describes the steps that should be followed by inspectors when

applying the use-case technique.

Creating the scenar ios:

• The inspector should take each use-case in turn and devise a series of brief scenarios

based on the preconditions, success and failure conditions, and the exceptions

described in the use-case. For each scenario the anticipated final outcome in

relation to changes in state or output should be noted (see Figure 5.2).

Figure 5.2 – Example of a use-case scenar io sheet

Scenar io Sheet

Name: Example

Use-Case: cancel booking

Scenar ios:

1. Seat booking successfully cancelled
2. No such booking held in the system
3. Flight has departed or departs today

For each scenario, note below the anticipated final outcome in relation to changes in state or outputs for the class under
inspection. While carrying out the inspection, note any state changes and outputs in the intermediate state column.
Once finished the inspection in relation to the scenario, note the final state or outputs for the class under inspection and
compare with anticipated end state.

Scenario Anticipated End
State/ Output

Intermediate States/Outputs End State/Output after
inspection

1 Seats booked on plane
are cancelled.

No change in state for
Flight class

getDepartureTime (Flight) – return
departure time of flight

cancelSeats (Flight) – cancel seats on
flight

cancelBooking (Plane) – remove no. of
seats from total seats booked

(might do a second time if ticket is for a
return flight)

Seats booked on plane are
cancelled.

2 No change in state Assume classes are never reached since
ID should not match any in system

No change in state

3 No change in state getDepartureTime (Flight) – return
departure time of flight

Assume that this information is correctly
used by callee

No change in state

Chapter 5: Development and Evaluation of Three Techniques for Object-Oriented Code Inspection 94

Using the scenar ios:

• The scenario should be traced on the sequence diagram by following the message

calls between objects.

• On encountering the class under inspection, the inspector should switch their

attention from the sequence diagram to the code, having verified that the expected

methods are being called to support the scenario.

• When inspecting the method code any decisions and state changes made should be

verified to make sure they are correct and consistent with respect to the scenario.

Any intermediate state changes and outputs should be noted (see Figure 5.2). Any

method calls made should be followed to verify that they are the correct ones.

• When inspecting a method any method calls made should be followed to verify that

they are the correct ones.

- If the method called is in the class under inspection, the call should be

followed and the method code read, otherwise the sequence diagram

should be followed.

• Having walked through a scenario, the final state should be compared with the one

anticipated and any differences noted as a defect.

Figure 5.3 – Example of sequence diagram notation used

Instance variable
table is of type
timeTable

Generic object of type
Flight (e.g. from
some collection)

Chapter 5: Development and Evaluation of Three Techniques for Object-Oriented Code Inspection 95

Figure 5.3 shows an example of the sequence diagrams used. Other features of the

sequence diagrams used included:

• Sequence messages detail the name of the method called, the name of any

information passed as a parameter, and the type of any return value.

• Sequence message parameters do not show type and are just names to represent the

information being passed.

• Complete sequence calls are only shown for the first occurrence, e.g. as shown for

the getFlight method call shown in Figure 5.3.

• Generic objects have no name (only a ‘ -‘) showing only a type. These objects

generally occur when an item is accessed in a collection of some sort. Objects with

names are instance variables.

The use-case technique, unlike the systematic technique described in the previous

chapter, assumes that, as part of the design process, certain material is generated, e.g. a

collection of use-cases and sequence diagrams. The sequence diagrams should not be

reverse engineered from the code as it may contain defects which are then transferred to the

sequence diagrams.

The remainder of this section presents a brief example showing the processes and

concepts involved with the technique.

Given the cancel booking use-case shown in Figure 5.4, the following set of scenarios

should be derived:

1. Seat booking successfully cancelled

2. No such booking held in the system

3. Flight has departed or departs today

Pr imary Actor : Customer
Goal: Cancel seat booking previously made.
Preconditions: Person has already booked seat(s) and flight must leave tomorrow at the

earliest.
Success Condition: Seat booking is successfully cancelled and 50% refund on cost is made.
Failure Condition: -
Tr igger: Customer asks to cancel booking.
Notes: Information returned to operator (credit card no. and amount to refund) and is

dealt with off -line.
Exceptions: Booking could not be found or flight date is earlier than tomorrow.
Steps: 1. Get booking reference(s) to be cancelled from customer

2. Cancel bookings
3. Make 50% refunds

Figure 5.4 – Cancel Booking use-case

Chapter 5: Development and Evaluation of Three Techniques for Object-Oriented Code Inspection 96

In this particular example the class being inspected is the planeCalender class. The

anticipated state changes or outputs in relation to the developed scenarios are as follows:

1. No state changes, method should return false

2. No interaction expected

3. No state changes, method should return true

Next, the inspector should follow through the sequence diagram (shown in Figure 5.6),

keeping in mind the state of the system (repeating this step individually for each of the

derived scenarios). Once a method in the class under inspection is reached (in this case

isEarlierThanTomorrow() shown in Figure 5.5), the inspector should switch to the

code and inspect it, making any notes on changes in state or return values. Finally, once all

methods have been reviewed and the sequence diagram has been completely worked

through, the inspector should note in the scenario sheet the final state of the class and then

verify whether the actual outcomes/state changes match those anticipated at the start.

Figure 5.5 – isEarlierThanTomorrow()method code

5.1.3 Systematic

The basic systematic technique and its strategy were not significantly altered for use in this

experiment (originally presented in Chapter 4.1). Minor adjustments were made based

upon feedback and observations from its first usage. Instructions given to subjects were

made clearer and more specific (via an instruction sheet provided to subjects during the

exercise), and more training and examples were provided for subjects. The amount of

information subjects had to write on the abstraction sheets was reduced to help speed up

the process. Subjects no longer had to list inherited methods and instance variables. This

information was provided for inspectors, since it could be auto-generated prior to the

inspection.

 public boolean isEarlierThanTomorrow()
 {
 planeCalendar today = new planeCalendar();
 if(this.get(Calendar.YEAR) == today.get(Calendar.YEAR) &
 this.get(Calendar.MONTH) == today.get(Calendar.MONTH) &
 this.get(Calendar.DATE) == today.get(Calendar.DATE))
 return true;
 else
 return false;
 }

Chapter 5: Development and Evaluation of Three Techniques for Object-Oriented Code Inspection 97

Figure 5.6 – Sequence diagram for Cancel Booking use-case

Chapter 5: Development and Evaluation of Three Techniques for Object-Oriented Code Inspection 98

5.2 Empirical Evaluation

5.2.1 Introduction

To compare the three reading techniques, a controlled experiment was devised to evaluate

them primarily in terms of defects detected, but also to consider factors such as efficiency

and usability. A copy of all the material used for the actual experiment, including details of

the defects used can be found in Appendix D.

5.2.2 Experimental Goals and Hypotheses

The aims of the experiment were again focused using the Goal Question Metric (GQM)

paradigm as described by Solingen and Berghout [87].

Goal 1

Analyse the effectiveness of the checklist, systematic, and use-case reading techniques for

the purpose of comparison with respect to their detection of defects from the viewpoint

of a researcher in the context of a University lab course using Java.

This is the main goal of the experiment, evaluating the three reading techniques as an

aid for defect detection during inspection of object-oriented code. To meet this goal

requires answering the following question:

Q1.1: Is there any difference in the number of defects found by either the checklist,

systematic, or use-case based inspection?

This question may be answered by collecting data for the following metrics:

M1.1.1 Number of defects found, classified by inspection technique

Testable hypotheses are derived from the statement of goals, the questions and the metrics

as follows:

H1: The null hypothesis, H0, for the experiment can be described as:

There is no significant difference between the number of defects found by those

subjects performing checklist, systematic or use-case based inspection of object-

oriented code.

The alternative hypothesis, H1, is:

Chapter 5: Development and Evaluation of Three Techniques for Object-Oriented Code Inspection 99

There is a significant difference between the number of defects found by those

subjects performing checklist, systematic or use-case based inspection of object-

oriented code.

Goal 2

This second goal of the experiment is more exploratory in nature and is aimed at

investigating the affect of the delocalised defects on the different reading techniques, as

well as looking at the different types of defect found by each technique.

Since the second goal is exploratory and relies on a quali tative analysis, no testable

hypotheses are derived.

5.2.3 Experimental Plan

The experiment used a between subjects design, with three groups of twenty-three students

of approximately equal abil ity based upon marks from previous classes (see Table 5.1).

Each group was assigned just one of the reading techniques. This choice of design was

made for practical reasons. The experiment was to be carried out within in a third year

software engineering course and had to fit within the time constraints of this class. The

drawback of this approach as compared with a 3x3 factorial design is that fewer data points

would be available, but it had the advantage that ordering effects (due to using different

reading techniques) did not have to be dealt with.

In response to a weakness identified in the design of the previous experiment, subjects

were given two weeks of education and practice in their assigned reading technique. This

consisted of a one-hour lecture on that group’s technique and two laboratory sessions

where they were able to practice using the technique and ask any questions. In the second

week of practice, the group phase of the inspection process was introduced. This group

phase was carried out by creating groups composed of all three reading techniques and

asking them to create a final defect list through the usual process of document reading and

discussion. The group phase served two purposes. It allowed subjects to form opinions on

the other reading techniques and their effectiveness (this was necessary for a report they

were required to write-up individually after the experiment - see Data Collection section),

and secondly, it gave students a more complete experience in inspections. Before the group

phase began all individuals experimental data was copied to maintain its integrity. Since

the focus of the experiment was the performance of the individual inspector, the group

results have been omitted from the formal analysis (more on this can be found in [28]).

Chapter 5: Development and Evaluation of Three Techniques for Object-Oriented Code Inspection 100

Reading technique Number of subjects
Group A Checklist 23
Group B Systematic 23
Group C Use-case 23

Table 5.1 – Inspection order

The experiment proper was carried out in the third week and lasted for one afternoon,

consisting of the individual phase lasting ninety minutes, followed by the group phase

(with a short break in between). The code inspections carried out were paper-based, with

some material available via a web browser (e.g. sequence diagrams, use-cases, class

specifications). No tool support was provided.

Subjects

Subjects were participants in a 3rd year Honours Computer Science Software Engineering

course run at Strathclyde University. 69 subjects were participating in the class. Subjects

had previous experience with the programming languages of Java (two out of twelve first

year credits and three out of twelve second year ones) and C (one out of twelve second year

credits). The subjects had limited knowledge of Software Requirements Specification

(SRS) document inspection, and no experience with code inspections. It should be noted

that these subjects were a completely different set from the previous two experiments.

Prior to the experiment, subjects were given a problem statement describing an airline

booking system (the original problem statement can be found in Appendix D.1). From this

initial specification, subjects were given six weeks to derive a specification for the system.

Once completed, subjects were then provided with a specification prepared by the course

lecturer. From this subjects were given a further six weeks to code the airline booking

system using Java. It was after this stage in the course that the experiment took place.

Statistical Power

Statistical power analysis is a method that can be used to increase the probability that an

effect has been found in an experiment (more information regarding statistical power can

be found in Miller et al. [64] and Welkowitz et al. [95]). It reduces the chances of falsely

rejecting the null hypothesis or falsely accepting the null hypothesis. If a test does not have

sufficient statistical power, then the experiment may not have enough information to allow

Chapter 5: Development and Evaluation of Three Techniques for Object-Oriented Code Inspection 101

any reliable conclusions to be made using statistical significance testing. The effect size

represents the degree to which the phenomenon under study is present in the population.

The larger the effect size, the greater the probability the effect will be detected, and the null

hypothesis rejected. Unfortunately, the results from the previous experiment did not have

any conclusive results, therefore a large effect size cannot be assumed for this experiment.

Based on the recommendations by Miller et al. [64] and because of the inconclusive

results from the previous experiment, a medium effect size of 0.5 will be assumed. In this

experiment, the hypothesis is assumed to be two-tailed, since the direction of the result is

not known (∝ = 0.05). The sample size or the harmonic mean for this experiment was

derived to be 23. From this, the power of this experiment was found to be 0.4. A potential

issue with this experiment is the lack of power. With an approximate power level of 0.5

and assuming a medium effect size (0.5), the number of subjects required in each group

would have to be 31 to be able to obtain a significant result. This experiment only had 23

subjects using each technique. For this number of subjects to be acceptable, the effect size

would have to have been 0.59. It should be noted that a significant result could still be

obtained with fewer subjects, but that the chances of falsely accepting or rejecting the null

hypothesis will increase. This has to be kept in mind when considering the results.

Code and Defects

Java was used again because the experiment required an object-oriented language and the

subjects had been using the language for the proceeding 2.5 years. As with the previous

experiments, the code document used for inspection were approximately 200 lines in

length, to be inspected in 90 minutes. The amount of code inspected is in line with

established practice (see Chapter 3.2.3).

For the practice sessions of the experiment, subjects were presented with material taken

from a sample solution prepared for the airline booking system. For the recorded session

of the experiment, the material used represented an extension to the airline booking system

which allowed for reservations to be made. The extension consisted of two Java classes.

Subjects had not previously seen any code documents or specifications for this extension.

The defects were based on several sources; two previous experiments investigating

object-oriented inspections presented in Chapter 3 and Chapter 4, information collated

from the literature (Chapter 2), an industrial survey (Chapter 3), and a selection of naturally

occurring defects (i.e. appeared in the code when written by the author). In total fourteen

different defects were seeded into the code document. Since the experiment was interested

Chapter 5: Development and Evaluation of Three Techniques for Object-Oriented Code Inspection 102

in investigating the effects of delocalised defects, eight of the defects seeded had

delocalised features.

Paper and Web mater ial

For each individual inspection, subjects were presented with a booklet containing the

relevant material (inspection and reading technique instructions, support material such as

checklists, scenario sheets or abstraction sheets, code listings, and defect report forms). As

well as the paper based material provided for the inspection, extra material was made

available to inspectors via a local web page. This page differed depending on the technique

used and is summarised in Table 5.2. All code made available via web pages was in plain

text and contained no special highlighting, comments or hypertext links.

Technique Material Available
Checklist Class diagram

Specifications for all classes in system
Any code previously inspected

Systematic Class diagram
Specifications for all classes in system
Abstractions for other system classes that would
have already been inspected had the overall
strategy of inspecting those classes with least
dependencies first been followed
Any code previously inspected

Use-case Class diagram
Specifications for all classes in system
Use-cases to be inspected
Sequence diagrams for use-cases
Any code previously inspected

Table 5.2 – Web mater ial made available dur ing inspections

Data Collection

For all inspection techniques, inspectors were provided with a defect report form on which

to record defects found. For systematic inspections, inspectors were given method

specification sheets. These contained boxes in which subjects were to write their abstract

specifications for each method. Use-case inspectors were provided with a scenario sheet

on which to record their derived scenarios for a specific use-case, as well as the anticipated,

intermediate and final state changes and return values.

Chapter 5: Development and Evaluation of Three Techniques for Object-Oriented Code Inspection 103

After the inspection exercise was complete, subjects were given a week to write a report

on the individual phase of the inspection.

They were asked to include:

• A comparison and analysis of the defects discovered by the different techniques.

• A description of the way they applied their technique (including any deviations

made and problems encountered).

• A consideration of the defects their technique failed to discover.

• General comments about the strengths, weaknesses and possible improvements for

their technique.

The primary purpose of the report was for assessment purposes, but they were also

scrutinised for any insightful comments on the techniques.

Data Analysis

The goals of the experiment feature both a testable hypothesis and exploratory analysis.

Since there was one independent variable (the reading technique), three experimental

conditions (i.e. the three reading techniques used by subjects), different subjects within the

three reading technique groups, and the data was non-parametric in nature, the Kruskal-

Wallis test was used (using SPSS) to determine whether the defect results for the three

techniques were significantly different.

The remaining goal that was exploratory in nature was investigated through the analysis

of the qualitative information gathered during the experiment and from the post experiment

subject reports.

Threats to Validity

The potential threats to the internal and external validity of the experiment were the same

as those for the previous experiments.

5.2.4 Experimental Procedures

The following timetable was used:

Week 1: Introductory lecture on inspection.

Week 2: Lectures and practice for each of the three individual reading techniques.

Lectures lasted approximately 50 minutes and subjects attended a different

lecture depending on their assigned reading technique. The practice consisted of a

Chapter 5: Development and Evaluation of Three Techniques for Object-Oriented Code Inspection 104

90 minute training session the following day. The training session was run

informally to allow subjects to ask questions and to overcome any conceptual

problems about the inspection process and the technique they were using.

Week 3: Lecture for group activity and practice with individual and group inspection. The

practice session consisted of a 60-minute individual inspection task (with subjects

using their assigned technique) and was followed by a 45-minute group activity

task. The session was again run informally to help subjects overcome any

problems encountered.

Week 4: Inspection experiment proper (individual inspection followed by group

inspection). Subjects were given up to a maximum of 90 minutes to complete the

inspection. Once subjects had finished the inspection task, they were allowed a

10-minute break before forming into their groups for the group activity. Subjects

were given up to 45 minutes to complete this part of the experiment. The

individual inspection task was completed under exam conditions.

5.2.5 Experimental Results and Analysis

The results are based upon the 69 subjects who participated. The following sections

describe the results of the various elements of the inspection experiment.

Inspection Technique

Checklist Systematic Use-case
Number of subjects: 23 23 23

Defects (out of 14): Mean 7.3043 6.1739 5.7391
Std. Deviation 2.4943 2.2290 2.3973

Std. Error .5201 .4648 .4999
Minimum 2 3 2
Maximum 11 10 10

False Positives: Mean 3.4348 3.2174 2.8696
Std. Deviation 2.6939 2.8116 1.9841

Std. Error .5617 .5863 .4137
Minimum 0 0 0
Maximum 12 10 7

Inspection Time: Mean 72.1739 77.0000 81.9130
Std. Deviation 12.9568 9.7933 9.2830

Table 5.3 – Summary of results for third experiment

Defect Detection (Individual Performance)

The main results of the experiment are contained within Table 5.3. The results show that

the checklist reading technique subjects were finding the most defects, compared to the

Chapter 5: Development and Evaluation of Three Techniques for Object-Oriented Code Inspection 105

systematic and use-case subjects. Both the standard deviation and standard error results for

the number of defects found for all the techniques are within a similar range, with no

technique showing erratic results (which might have suggested a problem either with the

subject partitioning or one of the reading techniques). The maximum and minimum

number of defects found by subjects using each technique were also similar. This indicates

that no one technique was significantly superior or inferior to any of the others – some

subjects performed badly, other performed well, no matter the technique.

Figure 5.7 – Defect response rates

False positives are defects noted during an inspection which turn out not to be defects.

The results show that out of the three reading techniques, subjects using the use-case

technique were writing down the least number of false positives. This is reflected in the

mean, standard deviation, error and maximum values. In comparison, the checklist

technique had the highest number of false positives. One possible reason for this may be

related to the level of understanding enforced by the technique. The checklist does not

particularly encourage understanding, whereas the systematic and use-case techniques both

require understanding or a mental execution of the code, perhaps leading to a reduction in

the creation of false positives. Alternatively, the reason for the difference may be due to

technique overhead. The checklist had the lowest technique overhead, perhaps allowing

subjects to spend more time re-reading the code and identifying false positives.

Time (in minutes)

9080706050403020100

A
ve

ra
ge

 n
um

be
r

of
 d

ef
e

ct
s

fo
un

d

8

7

6

5

4

3

2

1

0

Checkli st

Systematic

Use-Case

Chapter 5: Development and Evaluation of Three Techniques for Object-Oriented Code Inspection 106

The defect detection rates for each of the three reading techniques are shown in Figure

5.7. The x-axis shows the time during the inspection, the y-axis shows the average number

of defects found, and the three lines in the graph represent each of the reading techniques.

Subjects using the checklist technique find more defects and at a quicker rate, although

performance levels drop off sharply after the first 60 minutes. The defect detection rates of

the systematic and use-case subjects appear to be fairly similar, with systematic subjects’

performance levelling off towards the end of the 90 minutes. The use-case subjects’

performance does not appear to be levelling off in the same way. This may suggest that

defects were still being found at the end of the 90 minutes. Subjects using the checklist

technique appeared to find defects quicker than those using the other reading techniques.

This may be because the checklist does not have the technique overheads of the other two

(e.g. writing abstractions or developing scenarios).

Figure 5.8 – Overall defect detection performance of each reading technique

For this experiment there was one independent variable (the reading technique), three

experimental conditions (i.e. the three reading techniques used by subjects), and there were

different subjects within the three reading technique groups. Due to the non-normal nature

of the results it was not possible to apply parametric statistical tests to determine whether

the defect results for the three techniques were significantly different. Instead the Kruskal-

Wallis test was used. The results generated by the software package SPSS are shown in

232323N =

14

12

10

8

6

4

2

0

Checklist Systematic Use-case

Inspection Reading Technique

N
um

be
r

of
 d

ef
ec

ts

Chapter 5: Development and Evaluation of Three Techniques for Object-Oriented Code Inspection 107

Table 5.4. For 2 degrees of freedom3, a chi-square result of 4.871 was generated. This

results in a significant result at the 10% level (chi-square result > 4.6), but not at the 5%

level (chi-square result would have to be > 5.99). The overall defect detection performance

of the three reading techniques is shown in the boxplots in Figure 5.8.

In relation to the experiment hypothesis, the null hypothesis, (that there is no significant

difference between the number of defects found by those subjects performing checklist,

systematic or use-case based inspection of object-oriented code), may be rejected, and the

alternate H1 accepted, but only at the 10% level of significance.

For 3 techniques
Chi-Square 4.871
Df 2
Asymp. Sig. 0.088

Table 5.4 – Results of Kruskal-Wallis test

Figure 5.9 shows the comparative effectiveness in terms of defect detection for each of

the three reading techniques. Those defect numbers along the bottom surrounded by a box

are defects with delocalised characteristics. It should be noted that one defect (defect 10)

was not found by any inspectors using any of the reading techniques (this was a

particularly subtle defect involving the use of a class library). It was also noticed that

defects involving some form of omission appear difficult to find (defects 6, 13 and 14).

Figure 5.9 – Average technique effectiveness per defect

3 Degrees of freedom = number of experimental conditions – 1 = 3 – 1 = 2.

Comparison of Techniques

0
10
20
30
40
50
60
70
80
90

100

D1 D2 D4 D8 D13 D14

Defect

P
er

ce
n

ta
g

e
re

sp
o

n
se

Checklist Systematic Use-case Delocalised defects

D12D11D10D9D7D6D5D3

Chapter 5: Development and Evaluation of Three Techniques for Object-Oriented Code Inspection 108

All the reading techniques have strong points, and there is not one dominant technique,

although the checklist technique performs consistently well. It is noticeable that except in

the cases of defect 3, 6, and 10 (which all techniques found elusive), the systematic

technique performs consistently well in terms of detecting defects with delocalised

characteristics. This is shown better in the three graphs of Figure 5.10, one for each

technique (re-imaging the information shown in Figure 5.9). Both the checklist and use-

case techniques have a less regular pattern of delocalised defect detection, perhaps

reflecting the less exhaustive and more focused nature of these approaches.

Figure 5.10 – Average effectiveness per defect, split by technique

Checklist

0
10
20
30
40
50
60
70
80
90

100

D12 D4 D8 D2 D9 D11 D1 D5 D7 D14 D13 D6 D3 D10

Defects

P
er

ce
n

ta
g

e
re

sp
o

n
se

Systematic

0
10
20
30
40
50
60
70
80
90

100

D4 D11 D12 D5 D9 D7 D2 D1 D13 D8 D14 D3 D6 D10

Defects

P
er

ce
nt

ag
e

R
es

po
ns

e

Use-case

0
10
20
30
40
50
60
70
80
90

100

D4 D12 D2 D5 D11 D1 D6 D9 D7 D14 D8 D13 D3 D10

Defects

P
er

ce
n

ta
g

e
re

sp
o

n
se

 Delocalised defects

Chapter 5: Development and Evaluation of Three Techniques for Object-Oriented Code Inspection 109

Figure 5.10 shows that the systematic technique was the only technique to miss more

than one defect (defect 6 – consisted of a missing method call). For use-case subjects,

defect 6 was highlighted by their sequence diagrams. For checklist subjects, they were

encouraged by one of their questions to check the method against the supplied specification

(available on the web) – a process that should have highlighted the defect. Systematic

inspectors should also have compared their final generated method specification with the

online class specification. It may be that there was not enough encouragement for them to

do this.

Figure 5.11 – Venn Diagram of defect over lap for techniques (where defects found by
more than 50% of subjects)

Figure 5.11 presents a Venn diagram, that shows for each reading technique, the defects

found with a detection level greater than 50% (in other words, defects that would have a

good chance of being found using a particular technique). This shows that all these defects

were found by the checklist technique, while the systematic technique found all the

delocalised defects but only one local defect. The use-case technique found a mixture of

local and delocalised defects.

One reason for the high response rates for the checklist compared to the other reading

techniques may be related to the construction of the checklist questions. The questions for

the checklist were generated from defect information gathered from the two previous

studies. Although the questions generated were generalised, a threat to the validity of the

experiment may be that the defects seeded into the code were too similar to the defects

used to generate the checklist. Eleven of the fourteen defects were similar in style to those

in the first two experiments. On the other hand, the results can be viewed as being positive

7
8

1
9

2

4 11 12

Systematic

Use-case

Checklist

5

Local defects

Delocalised defect

Chapter 5: Development and Evaluation of Three Techniques for Object-Oriented Code Inspection 110

for the continued use of checklists, showing that a checklist based on historical information

can be effective.

The time that each inspector started and finished his or her inspection was recorded and

the results are shown in Figure 5.12. Checklist inspectors were quicker at their inspections

and were more li kely to have finished before the time limit (indicating a possible reason for

the drop in detection rate shown in Figure 5.7). Most of the use-case and systematic

inspectors were more inclined to use most, if not all, of the time available. This may have

been related to the extra material and thought involved with the technique.

Figure 5.12 – Finishing times for subjects by technique

Defect Analysis

Each of the defects was characterised according to the list of criteria shown in Figure 5.13

(an evolution of the version used in the previous two experiments). The purpose of this

was to identify if there was any correlation between defect characteristics and their

discovery rate. The characteristics of each defect (columns) ordered by defect discovery

rates for each of the three reading techniques (ordered from left to right, starting with the

easiest to find defects), are shown in Figure 5.14.

It was observed that all three reading techniques had problems with defects exhibiting

the characteristics of wrong object used (D3) and omission (D6, D8, D13, and D14).

Defects of omission are very severe and also difficult to detect. Having a checklist

question along the lines of “ Is all code present?” is not helpful. The question offers no

support or guidance on how to identify defects of omission. The systematic approach

focuses on understanding what is present, so may only notice omissions when compared

232323N =

Reading Technique

Use-caseSystematicChecklist

T
im

e
(in

 m
in

ut
es

)

100
95
90
85
80
75
70
65
60
55
50
45
40

Chapter 5: Development and Evaluation of Three Techniques for Object-Oriented Code Inspection 111

with external references (e.g. class or method specifications). Although not evident from

the defect results, the use-case technique has the best chance of finding defects of omission

as the technique provides an independent source of comparison for the code with software

requirements (in the form of scenarios, use-cases and sequence diagrams). Using external

sources of comparison appears to offer the best solution to finding defects of omission

(although this assumes that the external sources themselves are correct).

Defects involving the use of class library (D7, D10) were found to be difficult for both

checklist and use-case techniques, but more evenly spread for the systematic technique.

Figure 5.13 – Classification scheme for defect character istics in third experiment

Defects that were delocalised in nature were spread through the range of results for both

checklist and use-case responses, but were less spread out and bunched more towards the

better response end of the table for the systematic responses. Curiously, for the systematic

responses, defects that were not considered to be delocalised in nature (the local defects)

Defect Descr iptors

Use of library class - requires understanding of class libraries

Wrong object used - sending message to wrong object

Wrong method called - sending incorrect message

Incorrect parameter in method call - incorrect parameters in method call

Algor ithm/computation - error in the algorithm (e.g. step missing or in wrong order)

Data flow error - incorrect/missing variable or incorrect value

Specification clash - clash with specification

Omission - missing code

Commission - incorrect or superfluous code

Locali ty - area of code required to be looked at to spot the defect

(M)ethod - information required to identify defect is present at the method level
(C)lass - information required to identify defect is present at the class level
(S)ystem - information required to identify defect is distributed across multiple classes

Method size - size of method where defect present

S = 0-4 lines of code
M = 5-10 lines of code
L = 11 + lines of code

Sequence diagram clash - defect clashes with sequence diagram given to use-case inspectors

Chapter 5: Development and Evaluation of Three Techniques for Object-Oriented Code Inspection 112

were grouped at the lower end of the response scale. It may be the case that the systematic

technique helps more with the delocalised defects, but at the expense of the local defects.

Checklist

Defect No. 12 4 8 2 9 11 1 5 7 14 13 6 3 10
Use of class library X X
Wrong object used X
Wrong method called X X X
Incorrect parameter in
method call

X X X

Algorithm/Computational X X X X X X
Data flow error X X X X X X X X
Specification clash X X X X X X X
Omission X X X X
Commission X X X X X X X X X X
Locality (M,C,S) S M M C S S C S S C C S S S
Sequence diagram clash X X X X X X
Method (S, M, L) M S L M L L M S L M M S M L
Delocalised D L L L D D L D D L L D D D
% response rate 96 91 83 61 61 61 57 52 52 48 35 26 9 0

Systematic

Defect No. 4 11 12 5 9 7 2 1 13 8 14 3 6 10
Use of class library X X
Wrong object used X
Wrong method called X X X
Incorrect parameter in
method call

X X X

Algorithm/Computational X X X X X X
Data flow error X X X X X X X X
Specification clash X X X X X X X
Omission X X X X
Commission X X X X X X X X X X
Locality (M,C,S) M S S S S S C C C M C S S S
Sequence diagram clash X X X X X X
Method (S, M, L) S L M S L L M M M L M M S L
Delocalised L D D D D D L L L L L D D D
% response rate 91 83 78 65 65 61 44 39 30 26 22 13 0 0

Use-case

Defect No. 4 12 2 5 11 1 6 9 7 14 8 13 3 10
Use of class library X X
Wrong object used X
Wrong method called X X X
Incorrect parameter in
method call

X X X

Algorithm/Computational X X X X X X
Data flow error X X X X X X X X
Specification clash X X X X X X X
Omission X X X X
Commission X X X X X X X X X X
Locality (M,C,S) M S C S S C S S S C M C S S
Sequence diagram clash X X X X X X
Method (S, M, L) S M M S L M S L L M L M M L
Delocalised L D L D D L D D D L L L D D
% response rate 96 87 74 61 61 39 30 30 26 26 22 17 4 0

Figure 5.14 – Defect character istics in percentage response order for each reading
technique

Chapter 5: Development and Evaluation of Three Techniques for Object-Oriented Code Inspection 113

What were unexpected about the results for the use-case technique were the results

concerning defects highlighted by the sequence diagram (see Figure 5.14). Those results

are spread over the response range (high, middle and low). This may indicate that subjects

found it difficult to appreciate the sequence diagrams (due to lack of experience), did not

realise that they could be used to compare against the actual code, or were just not using

them.

There was one defect predominantly found by the checklist technique compared to both

systematic and use-case techniques (defect 8). The defect related to an unused parameter

in a method declaration that should have been used. 83% of checklist subjects found defect

8, whereas only 26% of systematic inspectors and 22% of use-case inspectors found the

defect. There was a question in the checklist that highlighted this kind of defect, e.g. “Are

all parameters used within a method” . Since use-case and systematic inspectors did not

have a specific question to answer, they either did not consider an unused parameter a

defect or as something that would cause the code to malfunction.

Relationship between Technique and Ability

Figure 5.15 shows, for each of the three reading techniques, the defect detection results of

each individual inspector, ordered by their ability levels (based on previous programming

class marks) from highest on the left to lowest on the right. The numbers of subjects in

these graphs is slightly reduced due to the unavailability in some cases of previous marks

on which to base the ranking. Overlapping each of the three graphs is a linear trend line

(added using a feature of Microsoft Excel) that shows the general trend of defect detection

from the more capable subjects to the less capable. It was expected that for all the

techniques, the more able subjects would tend to do slightly better than the less able ones.

This was found to be the case for both the checklist and use-case techniques. The trend

line for the use-case technique shows a steeper gradient, possible suggesting that the

technique was harder to apply.

Notably, the trend line goes in the opposite direction for the systematic technique,

suggesting that the more capable subjects were not being as effective as the less capable

ones. This was similar to the result found in the first use of the systematic technique in the

previous chapter, where it was found that the systematic technique appeared to help the

weaker subjects but confound or hinder the natural abili ties of the more capable subjects.

Chapter 5: Development and Evaluation of Three Techniques for Object-Oriented Code Inspection 114

Figure 5.15 – Defect detection results of subjects ordered by ability for each reading
technique

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Subjects

N
um

be
r

of
 D

ef
ec

ts

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Subjects

N
um

be
r

of
 D

ef
ec

ts

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Subjects

N
um

be
r

of
 D

ef
ec

ts

Checklist – subjects ranked on previous programming marks – highest on the left

Systematic – subjects ranked on previous programming marks – highest on the left

Use-case – subjects ranked on previous programming marks – highest on the left

Chapter 5: Development and Evaluation of Three Techniques for Object-Oriented Code Inspection 115

These graphs demonstrate that although there is evidence for an ability effect, it is not

the primary factor when it comes to explaining the defect detecting ability of a technique –

the technique itself has significant influence.

Review of Subject Reports

After the inspection exercise was complete, subjects were given a week to write a report

on the individual phase of the inspection (more detail on the report can be found in Chapter

5.2.3).

Sixty-eight of the sixty-nine subjects handed in a report (the missing one belonged to

the use-case inspection technique). The following summarises the report results, grouped

by reading technique.

Checklist (based on 23 reports)

Subjects were asked to discuss how they applied the checklist reading technique in

comparison with the guidelines supplied. Five subjects reported no deviation in application

of the technique. Other variations included reading the code at the start to get a general

view/understanding of the code (six subjects), finding defects then trying to fit them to an

appropriate question (five subjects – in doing this they must have been simply reading the

code and not applying any specific reading strategy, e.g. ad-hoc), applied one question at a

time to the whole class under inspection (five subjects). One subject reported simply

reading the code and ignoring the checklist, another read the code at regular intervals

without the checklist.

The strengths of the checklist were that it was quick (ten subjects) and straightforward

to use (eighteen subjects). Other comments were that it had structure, that it was based on

past experiences and that it was less reliant on other forms of documentation.

Weaknesses of the checklist included that it was not good at detecting defects associated

with missing lines of code (twelve subjects), that it does not encourage understanding the

code being inspected (eight subjects), and that the checklist questions can be too vague

(five subjects). Other weaknesses included that it relied too much on the preparation of an

appropriate set of questions, is susceptible to human error, does not help with the bigger

picture (e.g. the closer you get the less you see), can get tedious and repetitive, and that

there is no encouragement to read supplementary documentation.

Chapter 5: Development and Evaluation of Three Techniques for Object-Oriented Code Inspection 116

Possible improvements to the checklist included making the questions more specific and

with subsections (five subjects) and forcing the inspector to get a better understanding of

the code (four subjects).

Many subjects (eleven) suggested that the failure of the checklist technique to find

defects was not the fault of the checklist itself, but due to their relative inexperience. Other

suggestions included that the checklist should be used in conjunction with at least one other

technique, e.g. systematic technique (three subjects), while several others suggested that

the checklist does not deal with object messaging well enough (three subjects).

Systematic (based on 23 reports)

In applying the systematic reading technique (in comparison with the guidelines supplied),

fourteen subjects reported no deviation in application of the technique. Variations on the

application of the technique included occasionally making assumptions about what the

code was doing, not always reading an abstraction if it was available, reading all the code

at the start before applying the technique, assuming the function of external methods, and if

a defect was spotted easily no comparison was made with the provided class specification.

The main strength of the systematic technique was that it promoted a deep

understanding of the code under inspection (eleven subjects). Other strengths were that as

a by-product, method specifications were created for later use, that every line of code was

looked at, that it was easy to use, and that the systematic technique was good at helping

with defects related to incorrect procedure calls.

The main weakness of the systematic technique was that it was not good at detecting

defects associated with missing lines of code (seven subjects). Other weaknesses included

the difficulty of writing the natural language method specifications, that the technique was

too time consuming, following external references was time consuming and produced a

cognitive overload, and defects on a global scale are not dealt with well. Two comments

were made relating to the class specifications supplied during the inspection. Subjects

reported that these specifications were not detailed enough, and that the systematic

technique relied too much on comparison with these specifications.

A further weakness concerned the writing of method specifications where defects had

already been found. Currently, even if a defect has been found before the method

specification has been written, it has to be incorporated into the method specification. The

presence of the defect may complicate the description that has to be written, slowing the

inspector. It may be that it is not prudent to write the method specification, since at some

Chapter 5: Development and Evaluation of Three Techniques for Object-Oriented Code Inspection 117

later stage it would have to be re-written to accommodate the corrected code. But, on the

other hand, if the specification was not written, other defects still within the method may be

missed.

Possible improvements to the systematic technique included revising the contents of the

method specifications to be longer and more detailed, having a more efficient way of

tracing external references, recording defects and abstractions electronically, making use of

sequence diagrams, or reading less during inspections and concentrating more effort

towards non-trivial methods. One other suggested improvement to the systematic

technique was to apply aspects of the checklist technique to each method before writing

each method specification.

Many subjects (eleven) suggested that the failure of the systematic technique to find

defects was not the fault of the systematic technique itself, but due to their relative

inexperience. Subjects suggested that the systematic technique complimented the other

reading techniques used (two subjects) and that it relied too much on the ability of the

programmer (three subjects). Two subjects commented that the documentation available

was too basic.

Use-case (based on 22 reports)

Six subjects reported no deviation in application of the technique. Six subjects claimed

that they had a general read through the code to spot any obvious defects before they

started using the technique. Five subjects stated that they did not write down any state or

intermediate state information during their inspection. One subject continually asked

themselves lots of questions (which were subsequently found to appear on the checklist)

when reading the code. Two other subjects claimed that they stopped using the technique

in mid inspection (possibly due to running out if time) and just read the code.

The main strength of the use-case technique was that methods were dealt with within

the context of the system executing (five subjects). Other comments included that the

technique complimented the object-oriented nature of the code (three subjects), that it was

easy to use (two subjects), and that a better understanding of various aspects of the code

was achieved (three subjects). One or two subjects responded positively to the opportunity

to use sequence diagrams, and suggested that the technique had potential to help highlight

missing method calls (dependent on the quality of the sequence diagrams).

The main weaknesses of the use-case reading technique were that it was slow and time

consuming (ten subjects), not all the code was covered (eight subjects), and that there was

Chapter 5: Development and Evaluation of Three Techniques for Object-Oriented Code Inspection 118

too much jumping around between different documents and diagrams (seven subjects).

Other weaknesses included finding the recording of state information annoying (four

subjects), that the use-case technique had problems with defects associated with missing

code (four subjects), and the technique relied too much on user generated scenarios (two

subjects). One subject commented that the inspector could end up generating a large list of

intermediate states for complex scenarios. Seven subjects had difficulty with the

presentation and readability of the large sequence diagrams used (stating a desire for a

paper copy). One subject commented that there was not enough detail in the sequence

diagrams.

The main improvement suggested by eight subjects to the use-case technique was the

introduction of a checklist in some form. Other improvements included grouping all

methods together for a particular sequence diagram (to help reduce jumping around), and to

reduce the amount of writing. Several comments concerned the generation of the

scenarios, one suggestion being that the scenarios should be pre-produced before the

inspection, another suggesting that the scenarios should be generated by at least two

people. One subject thought that the sequence diagram and the code should be integrated

together. Another suggestion was that the sequence diagrams should be provided in paper

form (not ideal since in the preparation for the experiment it was found that many sequence

diagrams could become very large and unwieldy on paper). One other comment suggested

producing the scenarios and defect lists electronically.

Many subjects (twelve) suggested that the failure of the use-case technique to find

defects was not the fault of the use-case technique itself, but due to their relative

inexperience. Five subjects suggested that the use-case technique should be used in

combination with other techniques. Finally, one subject claimed that the technique was

vaguely defined when compared to the checklist technique.

5.2.6 Interpretation of Results

The main result of the experiment is that there is evidence of a significant difference

between the number of defects found by those subjects performing checklist, systematic or

use-case based inspection of object-oriented code when working at the 10% level of

significance. The checklist approach was the most effective reading technique, followed

by the systematic approach, which showed signs of dealing with delocalised defects better.

The remainder of this section looks at each of the reading techniques, highlighting the

positive and negative aspects, and the potential benefits and weaknesses.

Chapter 5: Development and Evaluation of Three Techniques for Object-Oriented Code Inspection 119

Checklist

Potential benefits of the checklist technique included:

• The checklist was found to be the most effective technique, even when being used

by less able subjects.

• Anecdotal evidence from subject reports suggests that the subjects found the

technique to be easy and straightforward to use.

• The timing information shows the checklist to be the quickest technique to apply.

There may be some weaknesses surrounding the use of the checklist reading technique:

• It does not deal well with defects related to missing lines of code (this is in

common with the other techniques).

• It fail s to push inspectors towards a deep understanding of the code under

inspection (although in this case it does not seem to have a too detrimental effect).

• The questions have to be phrased in a way that is neither too general nor too

specific.

Suggestions for improvements to the checklist by subjects include forcing inspectors to

obtain a better understanding of the code and making the questions more specific.

Systematic

Some of the potential benefits of the systematic technique included:

• There was evidence that the systematic technique was effective at dealing with

delocalised defects.

• There was anecdotal evidence from the subjects’ reports that the systematic

technique encouraged a deeper level of understanding of the code under inspection.

• The systematic technique produced abstractions for every method as a by-product

of the approach. These abstractions can be used in future inspections to save the

inspector, or other inspectors, the effort of reading the class or method again when

another class makes a delocalised reference to that class.

• The systematic technique appeared to help the weaker subjects but suppress the

defect detection abilities of the more able subjects (a result similar to that found in

the first application of the systematic technique in the second experiment).

Chapter 5: Development and Evaluation of Three Techniques for Object-Oriented Code Inspection 120

Weaknesses that could affect the use of the systematic reading technique include:

• It does not deal well with defects related to missing lines of code.

• It relies on the presence of a class specification against which the derived

abstractions are compared.

• The detail and content, as well as the full benefit of the generated abstractions have

yet to be fully evaluated.

• Currently, even if a defect has been found before the method specification has been

written, it has to be incorporated into the method specification. Including the

defect may complicate the abstraction and would require the abstraction to be re-

written once the defect has been removed. Not writing the specification may mean

that other defects within the method could be missed.

Suggestions for improvements to the systematic technique suggested by subjects included:

• Supplying some form of optional checklist to help inspectors verify that they have

covered all the important aspects of the code.

• Evaluate the contents of the derived abstract specifications (making sure they are

relatively quick and easy to derive, but contain enough information to be useful in

the future).

Use-case

The main potential benefit of the use-case technique:

• Encourages inspection of code from a dynamic viewpoint and provides a technique

that explicitly compares code against requirements (via scenarios, use-cases, and

sequence diagrams).

Although the use-case technique did not perform as well as the checklist and systematic

techniques, it has the potential to offer an independent source of comparison for the code

against requirements (via use-cases, generated scenarios, and sequence diagrams) to help

highlight defects. This may also help with defects of omission.

Weaknesses that could affect the use of the use-case reading technique included:

• The technique was slower and more time consuming than the others.

• Due to the inspection being driven by use-cases, it may be that the technique does

not cover all the code.

Chapter 5: Development and Evaluation of Three Techniques for Object-Oriented Code Inspection 121

• Subjects found that there was too much jumping around between the various

documents (scenario sheet, sequence-diagram, code).

• Dependent on the creation of good scenarios.

• More subjects using this technique deviated from the recommended application,

possibly suggesting a lack of confidence in the technique.

Suggestions for improvement to the use-case technique included:

• Clearer instructions should be given to the inspectors, as well as more substantial

examples in the training phase, particularly in the creation of scenarios, which

some of the subjects appeared to find difficult.

• Many subject reports suggested incorporating the checklist as part of the process.

5.3 Conclusions

The experiment presented in this chapter explored the use of a systematic, abstraction-

driven strategy, a specially created checklist and a use-case driven strategy to address the

problems of reading strategy and delocalisation.

The checklist technique was found to be the most efficient and effective of the three

reading techniques. The results suggest that if checklists are tailored to the particular

development environment using historical defect data and augmented with questions that

target object-oriented features then they can be an effective aid for object-oriented code

inspection. Subjects also commented that the checklist technique was the least complicated

technique and had fewer overheads. However, the usefulness of the checklist relies heavily

on the construction of appropriate questions.

The systematic technique provided encouraging results with respect to the detection of

delocalised defects. The technique offers a potential long-term advantage through the

creation of abstract specifications for each method (but at the cost of a higher technique

overhead). Further work is required to determine the long-term benefit of the abstractions

in terms of reducing the need to read associated code.

Although the overall results for the use-case technique were relatively weak, it has the

benefit of allowing inspectors to read the code from a dynamic model viewpoint. The use-

case technique supports a closer examination of inter-class relationships, and through use-

cases, generated scenarios, and sequence diagrams, provides a technique that explicitly

compares code against requirements. With subjects finding this technique very demanding,

further work is required to refine this approach into a practical reading technique.

Chapter 5: Development and Evaluation of Three Techniques for Object-Oriented Code Inspection 122

The next chapter presents a summary of the main contributions and results of this thesis

and a set of recommendations concerning the issues surrounding the inspection of object-

oriented code.

Chapter 6

Conclusions and Future Work

This thesis has shown that the way in which the object-oriented paradigm distributes

related functionality can have a serious impact on code inspection and, to address this

problem, it has developed and empirically evaluated three reading techniques.

6.1 Thesis Summary
Although there have been several reading techniques developed to help individual

inspectors obtain an understanding of the code under inspection, all were developed at a

time when the procedural paradigm was dominant. Object-oriented and procedural

languages are different – the encapsulation of data and associated functionality, the

common use of inheritance, and the concepts of polymorphism and dynamic binding.

These key features may have a significant impact on the ease of understanding of program

code and therefore impact upon the effectiveness of inspection.

An investigation of the issues arising from the inspection of object-oriented code found

that the characteristics of the ‘hard to find’ defects included use of class libraries, sending

wrong messages to objects, inheritance, overriding and design mismatches. Many of the

problem characteristics identified by the investigation were also highlighted by an

industrial survey. The key features of object-orientation were found to have a significant

impact on the ease of understanding of the resulting program by distributing closely related

information throughout the code. To understand a piece of code, trails of method

invocations had to be followed through many classes, moving both up and down the

inheritance hierarchy. Soloway et al. [88] first observed this in the context of program

comprehension, describing a ‘delocalised plan’ as “ where the code for one conceptualised

plan is distributed non-contiguously in a program” . Soloway continues, “Such code is hard

to understand. Since only fragments of the plan are seen at a time by a reader, the reader

makes inferences based only on what is locally apparent – and these inferences are quite

error prone” .

Three significant issues were identified requiring further research:

• Chunking – how to partition a system for inspection

Chapter 6: Conclusions and Future Work 124

• Reading Strategy – the order in which the code is read

• Delocalisation – how inspections address the frequent references that object-oriented

code makes to parts of the system that are not part of the current inspection focus

To address the latter two points, a systematic abstraction-driven reading technique was

developed. The systematic technique forced inspectors to follow the trail of delocalisation,

building up their understanding of the code. As this is achieved, inspectors create abstract

specifications of each method. These can then be referenced by current inspections, future

inspections, etc. An evaluation of the systematic reading technique comparing it against

the ad-hoc reading technique found that there was no significant difference between the

number of defects found by ad-hoc subjects compared to systematic subjects. However,

some interesting issues emerged.

Defects with delocalised characteristics still appeared difficult to find. Subjects using

the systematic technique found all the defects, whereas those using the ad-hoc technique

missed several delocalised defects. As a by-product the systematic technique produced

abstractions that can be reused at a later date for re-inspection. By generating the

abstractions subjects found that they obtained a greater understanding of the code. Subjects

commented favourably on the systematic techniques more structured process and ordering

of the code when compared to the ad-hoc strategy, but found that the process of generating

the abstractions required a lot of time. The systematic technique was found to help the

weaker subjects, improving their defect detection ability, but was also found to inhibit the

natural abilities of the stronger subjects. A potential weakness of the systematic technique

was found to be its reliance on the static view of object-oriented code. The dynamic nature

of object-oriented systems may hinder the effectiveness of such a static reading approach.

Three reading techniques were developed and compared to investigate these issues – a

checklist (a traditional inspection approach), a systematic reading technique (evolved from

the first evaluation), and a technique based upon use-cases (reads the code from a dynamic

model viewpoint).

An evaluation of the three reading techniques found a significant difference (at the 10%

level) in the number of defects detected between the reading techniques. The delocalised

defects that were seeded in the experiment were more evenly distributed within the results

for all the techniques.

The checklist technique was found to have the best overall performance, although

subjects using the systematic technique were more effective at finding delocalised defects.

Subjects noted that the checklist technique was easy and straightforward to use, however,

Chapter 6: Conclusions and Future Work 125

several subjects suggested that the checklist did not deal with object messaging well

enough.

Those who used the systematic technique stated that it encouraged a greater level of

understanding. Subjects with different ability levels using the checklist performed

reasonably well . The systematic technique was again found to help the defect detection

ability of weaker subjects, but still seemed to constrain the ability of stronger subjects.

Weaker use-case subjects appeared to struggle (possibly due to the complexity of the

technique). In general subjects found this technique very demanding. This may be a result

of using students rather than subjects with more industrial experience. Some subjects

suggested that one way to improve the use-case technique would be to introduce some form

of checklist.

Roughly half of all the subjects using each reading technique suggested that the failure

of the technique to find defects was not the fault of the particular technique itself, but due

to their relative inexperience.

6.2 Lessons for the Inspection of Object-Oriented Code

This thesis has presented a large amount of information regarding the inspection of object-

oriented code. Based upon this work, a series of recommendations can be made concerning

object-oriented code inspection, as well as some general comments concerning reading

techniques for inspection.

6.2.1 The Problem of Delocalisation

Effective reading techniques for object-oriented code inspection must address the issue of

delocalised information. There is a substantial amount of evidence from the li terature and

the work presented in this thesis to support this view. Many of the features introduced by

object-orientation, e.g. inheritance, polymorphism, dynamic binding, the use of small

methods, all promote the distribution of information. Trying to understand one method

becomes very difficult when so many other sources of information have to be investigated.

Defects that involve ‘delocalised’ characteristics are the source of many of the ‘hard to

find’ defects. For these defects, the amount of information that has to be read for the defect

to be completely understood can become overwhelming and distracting. The reading

techniques developed for this thesis attempted to address the problem of delocalisation,

each taking a different approach.

Chapter 6: Conclusions and Future Work 126

The checklist is an established technique with a very simple procedure to follow – apply

the questions in the checklist to the document under inspection. To address the issue of

delocalisation, the questions used in the checklist were not general questions, but were

derived from the historical defect information collected from the two previous experiments.

This focused the questions in the checklist on areas of object-oriented code that were more

likely to be associated with defects of a delocalised nature. The checklist was found to

perform reasonably well for all defect types, suggesting that if checklists are tailored to the

particular environment using historical defect data, and integrate questions that target

object-oriented features, then they can be an effective aid to object-oriented code

inspectors.

The systematic technique attempted to reduce the problem of delocalisation through the

application of a reading order and the creation of abstractions. The reading order attempted

to minimise interdependencies when reading the code. Creating abstractions forced

inspectors to follow the trails of delocalisation and build up a sufficient understanding of

the code. Subjects commented that, by using the systematic technique, they obtained a

better understanding of the code. The systematic technique provided encouraging results

concerning the detection of delocalised defects. The generated abstractions also provide a

further way to reduce the problem of delocalisation. Once created, they can be reused in

future inspections, localising the information required by inspectors and reducing the

amount of code that has to be examined.

The use-case reading technique attempted to address delocalisation through the use of

use-cases and sequence diagrams. Using these, the inspector is forced to consider the

context in which an object is used. The technique also attempted to verify that the

decisions and state changes made within each inspected method were correct and

consistent. The results for the use-case technique were weaker than the other two

techniques, possibly due to its increased complexity. More capable subjects may have

been able to use the sequence diagrams and generated scenarios more effectively.

However, the use-case technique does provide an independent source of comparison for the

code with software requirements (in the form of use-cases, scenarios and sequence

diagrams), which may help highlight defects of omission, which may themselves be

delocalised in nature.

Chapter 6: Conclusions and Future Work 127

6.2.2 Reading Technique Overhead

Several recent publications have advocated the importance of inspectors understanding

what they are inspecting [50], [79]. This has led to some recent reading techniques making

inspectors carry out some form of task, i.e. creating use-cases, test cases, or class

specifications. Comments from subjects participating in the three experiments presented in

this thesis show that they prefer some form of guidance or structure when carrying out their

inspections, and that this may help their understanding of the code. Although structure and

guidance in reading techniques are useful in helping inspectors understand the artifacts

under inspection, care must be taken not to overburden the inspector either with additional

material or tasks to be performed.

The use-case technique was the most complicated out of the three investigated in the

third experiment and was found to have the poorest defect detection performance. Subjects

had to prepare a series of scenarios from the use-case, use each of the scenarios in turn to

guide them through a sequence diagram, inspect methods in the code under review as they

are found in the sequence diagram, and keep a note of system state information. Subjects

found that the use-case technique was too slow and time consuming, that there was too

much jumping between different inspection documents, and the generation of state

information could become annoying and unwieldy. Subjects also found the sequence

diagrams problematic, since their size restricted the amount visible at any one time on a

monitor screen. All of this may explain the relatively low defect detection results that were

found. It may be that, due to this complexity, the use-case technique is not one that can be

used by novices and requires a more experienced software engineer.

The systematic reading technique was not as heavy on tasks or extra material as the use-

case technique, but required subjects to follow the trails of delocalisation, build up a

sufficient understanding of what the code was doing, and to write abstractions for each

method. These abstractions could then be re-used in other inspections to help reduce the

problem of delocalisation. Subjects commented both positively and negatively about the

structure and strategy enforced by the systematic technique. The technique was found to

help weaker subjects, improving their defect detection performance, but the structure

imposed by the technique was found to inhibit the capabilities of the stronger subjects.

Although the systematic technique has a higher overhead than the checklist, it has the

added benefit of producing a set of abstractions that can be reused in later inspections and

can help reduce the problem of delocalisation.

Chapter 6: Conclusions and Future Work 128

In comparison to the systematic and use-case technique, the checklist technique did not

ask subjects to generate any extra material. Instead, it guided subjects to potential problem

areas in the code via its questions. Subjects found this technique relatively quick and easy

to use (possibly due to its low overhead). However, the checklist does not encourage the

development of a deep understanding of the code.

Reading techniques require a balance, one that allows inspectors to concentrate on

understanding the code and perhaps produce some useful documentation for later use, but

without a large, distracting overhead.

6.2.3 Chunking

One of the three issues highlighted by the first experiment was that of chunking – how to

partition a system for inspection. Due to the large number of dependencies within object-

oriented code and the restrictions on the amount of code that can be looked at during

inspection, it is difficult to isolate a reasonably sized section of code. To concentrate the

subsequent experiments on the areas of reading strategy and delocalisation, the issues

surrounding chunking were not investigated further. In the later experiments, for the most

part, an arbitrary chunking solution was selected based upon inspecting classes as a

complete unit. This was done for experimental reasons, to allow a fair comparison of the

defect detection results between different reading techniques. This was achieved by

making sure that each technique would roughly cover the same amount of code, or at least

cover the same areas of the code where defects were present.

The use-case technique was the only technique that directly addressed the chunking

issue. From use-cases, inspectors generated a series of scenarios, which were then traced

on the sequence diagram by following the message calls between methods (moving

horizontally through the system). On encountering a method for a class under inspection,

the inspector switched their attention form the sequence diagram to the code. For a class

under inspection, it was possible that not all the methods would be read, only those that

were used by any one scenario.

The systematic technique did not directly address the issues of chunking, but did

provide an inspection ordering for methods and classes in a system which attempts to

minimise their interdependencies (coupling) by inspecting those classes and methods with

least dependencies first. It was also suggested that, when minimising interdependencies, a

class should not be split over more than one inspection. Although this does not exactly

define what classes to chunk together to inspect, this provides a rough ordering with which

Chapter 6: Conclusions and Future Work 129

to inspect the classes within a system and help inspectors build up an understanding of the

system, especially when used in conjunction with the abstractions created by the process.

The checklist technique, as with the systematic technique, did not directly address the

chunking issue, but the checklist technique was partially modified to be applicable to

classes. This modification was based on ordering the questions in the checklist and

grouping them into three categories: class (dealing with inheritance and constructor issues),

method (dealing with all i ssues surround class methods), class (dealing with method

overriding).

The work carried out in this thesis has not fully explored the issues and difficulties

concerning the selection of code for object-oriented inspection. It may be that the best way

to address the chunking issue is to select arbitrary classes, and let the reading technique

deal with the consequences. More research is required to determine how best to chunk

code, minimise the number of dependencies involved, and consider its impact upon the

problem of delocalisation.

6.3 Advice on Practical Object-Oriented Code Inspection

The work presented in this thesis has made an initial investigation into the issues facing the

effective inspection of object-oriented code. The main indication is that for inspections to

continue to be effective, they must take into account the effect of delocalised information

and the difference between the static and dynamic representation of code.

Checklist, despite their criticisms in the literature, can be very effective at this task.

They are a relatively straightforward to use and have very few overheads. If checklists can

be tailored to the development environment using historical defect data and include

questions that specifically target object-oriented characteristics then they have the potential

to be an effective aid to object-oriented inspections. However, it should be noted that this

limits the checklist to recognised defect characteristics, and reduces the chances of finding

new or unexpected defects. The questions used within the checklist should also try to

encourage a more detailed understanding of the code and, in particular, its relationship with

the rest of the system. This would help avoid the more traditional ‘ lightweight’ checklist

questions that only superficiall y probe the code.

The systematic technique provided encouraging results concerning the detection of

delocalised defects. The technique offers a potential long-term advantage through the

creation of abstractions. However, it has a higher overhead than checklists and may fail to

adequately deal with some localised defects. Although the generated abstractions require

Chapter 6: Conclusions and Future Work 130

further evaluation to establish their most effective form and usefulness, the ordering of

code for inspection and the use of stepwise abstraction to help with delocalisation are

aspects of the technique that can be recommended.

Although the results for the use-case technique were weaker, it has several potential

strengths. Inspectors read the code from a dynamic model viewpoint and the technique

offers an independent source of comparison for the code with software requirements (in the

form of use-cases, scenarios and sequence diagrams). The technique better focuses on

inter-class relationships as well as state information and has the potential to deal with

defects of omission. This was found to be the most demanding of all the reading

techniques, and it may be that it is a technique that can only be used by those with more

industrial experience. However, it should be remembered that due to the nature of the

technique, some parts of a class may go unchecked because they do not participate in the

use-case that is driving the current inspection. It may be necessary to compliment this

reading technique with another to ensure complete coverage of a class.

Where practical, object-oriented inspections should be based on teams of inspectors

using at least two different reading techniques. The checklist was found to have a strong

overall performance, but the systematic technique was found to be more effective at finding

delocalised defects. A problem with the checklist is that its performance can heavily rely

on the relationship between the questions and the context it is used in, whereas other

techniques have less reliance on context and may give a more consistent performance. The

work in this thesis also suggests that there is a need to take into account the dynamic model

viewpoint.

Using a combination of reading techniques is a view similar to the one advocated by the

developers of the Perspective Based Reading (PBR) technique, where different

perspectives are used to represent different stakeholders, e.g. tester or code analyst. Each

of these perspectives is expected to highlight different types of defects. If a PBR approach

was to be adopted, it is suggested that one of the perspectives should specifically focus on

object-oriented issues.

A further important consideration is how the techniques would scale up to deal with

large amounts of program code. General advice in the literature suggests that the amount

of code to be looked at in any one inspection should be limited to around 200 lines of non-

commented code and the time allocated for this be around two hours. These restrictions

should not change, no matter the size or scale of the system.

Chapter 6: Conclusions and Future Work 131

The systematic technique partitions a system in such a way as to minimise

interdependencies, ideally not splitting a class over more than one inspection. Classes are

ordered so that those with least interdependencies are inspected first. As inspections

progress more and more abstractions are generated – ideally saving the inspector the effort

of chasing delocalisation (by only reading the abstractions). A problem with the systematic

technique may be that in larger systems, initially following the trails of delocalisation may

be quite time consuming. This problem wil l however be reduced as more of the system is

inspected and more abstractions are generated.

The checklist in this thesis was designed to be applied to a complete class, but can be

applied to parts of classes as well. The key to the success of the checklist is the need for a

well -maintained set of historical defect data being kept. The questions of the checklist are

the main focus, and as such, scaling is not as much of an issue.

The use-case technique provides a dynamic, horizontal view of a system. The technique

may encounter problems when scaling up to larger systems due to its use of sequence

diagrams. The sequence diagrams may become large and unwieldy due to the increase in

system size, and the time taken to traverse through them may become prohibitive. This

does not prevent the technique being applied to systems of modest size. This issue may be

alleviated by further tool development.

It should be noted that the reading techniques presented in this thesis do not attempt to

address the issue of deciding which parts of the system should be prioritised for inspection.

The reading techniques merely show ways in which the code can be read once selected.

Combining reading techniques, such as those highlighted in this thesis, offers a good

degree of robustness and the potential to deal with many different defect types - the

recurring defects, defects that require deeper insights, and defects associated with the

features of object-orientation that distribute functionality throughout a system. However,

this constrains the inspection process. A minimum number of inspectors are now required

for complete coverage of the code.

6.4 Future Work
From the work carried out in this thesis there are several issues that require further

investigation and experimentation.

For each of the three experiments, the subjects used were students participating in a

third year computer science software engineering course. Using students can make results

harder to generalise to a larger population, whereas using industrial subjects can greatly

increase the validity of experimentation (due to their experience). One of the next steps in

Chapter 6: Conclusions and Future Work 132

evaluating the usefulness of the reading techniques presented in this thesis is to use them in

an industrial environment. A cost benefit analysis should be carried out to evaluate the

effectiveness of the reading techniques, taking into consideration the amount of effort that

is required, both to prepare the material necessary for the inspection and the amount of

effort required by inspectors to use the techniques to inspect the code. This also presents a

further opportunity to investigate the types of defect discovered by each technique.

As mentioned in the previous section, out of the three main issues identified as

important to the successful inspection of object-oriented code, the issues of chunking – the

selection of code for inspection – has not been fully investigated. The complete systems

used in the experiments were relatively small (a few thousand lines of code). An interesting

question for further study is how well the reading techniques would cope with a more

realistic scenario where inspectors are reviewing 200 line ‘chunks’ fr om significantly sized

object-oriented systems where delocalised references could lead deep into the rest of the

system. More research is required to evaluate the impact chunking has on the inspection of

object-oriented code, and to determine how best to chunk code, minimise the number of

dependencies involved, and consider its impact upon the problem of delocalisation.

The systematic technique has shown encouraging results regarding the detection of

delocalised defects. There are aspects of the technique that require further investigation:

• The systematic technique was found to hinder the natural abilities of stronger

subjects, and at the same time helped the weaker subjects improve their defect

detection. The reasons for the poor performance by stronger subjects are currently

unclear, although it may be due to the systematic nature of the technique. Further

work is required to investigate how this may impact on its use by industriali sts.

• It is currently unknown what level of formality is required in the abstractions

created during the inspection. Currently, natural language abstractions are

generated by the technique. Further experimentation is required to decide if these

are sufficient, or whether the precision and conciseness of semi-formal or formal

specifications would provide greater benefits in terms of removing ambiguity.

• Further work is required to evaluate whether the abstractions are useful in reducing

the problem of delocalisation and the amount of code that has to be examined.

• Tool support may make the creation of abstract specifications more efficient and

reduce the burden of having to deal with the variety of documents that have to be

managed during an object-oriented code inspection.

Chapter 6: Conclusions and Future Work 133

The use-case technique showed some potential as a candidate reading strategy but was

found to be the most demanding of the reading techniques. The lack of knowledge and

experience of student subjects compared to industrialists may have affected this technique

more than the other two. Aspects that require further attention include:

• The technique was found to be overly complex due to its many different aspects:

reading use-cases, generating scenarios, following sequence diagrams, and

recording state information (some options to simplify the technique are highlighted

in the following replication section).

• Novice inspectors appeared to struggle with the technique. A controlled experiment

could compare the usage of the technique by novice and experienced inspectors and

investigate whether the use-case technique requires a more advanced user.

• A tool may help reduce the complexity of the technique bringing together all the

different sources of information and linking them together in a hypertext fashion,

removing the paper overload that exists. A tool could also help make the sequence

diagrams that are often large and difficult to navigate easier to read.

6.4.1 Replication Guidance

As well as further refining the reading techniques, it is important to explore the validity of

the results that are presented in this thesis. This can be achieved via experimental

replication (since this will require controlled experimentation, this will most likely be in a

university environment) and then comparing the results with those contained in this thesis.

To help with this all experimental materials, including all lecture and practice material have

been collected together for each experiment and made available via the web for download

at:

http://www.cis.strath.ac.uk/research/efocs/reports.html

Although these experiments can be replicated as is, there are several aspects that should

be improved and modified.

In the third experiment, investigating three techniques at the one time reduced the

number of subjects that were available. By not making the final experiment a 3x3 factorial

design and having experimental subjects use just one technique the amount of data

available to interpret was reduced. This was necessary due to time constraints. All of this

helped reduce the reliability of the experimental results. It is suggested that any future

experiments should only involve a maximum of two reading techniques and use a 2x2

Chapter 6: Conclusions and Future Work 134

factorial design (as was done for the second experiment in Chapter 4), especially if subject

numbers are limited. This would allow for a detailed examination of two reading

techniques with a reasonable amount of data to interpret. It should be noted that this type

of experiment can have problems with a learning effect that can occur by subjects using

more that one reading technique.

The code and the defects used in this thesis were created specifically for the

experiments. The defects seeded were based on types highlighted in the literature and an

industrial survey. To improve the validity of any future experiments, it would be

preferable to use code and defects from an industrial source.

A constraint on future replication concerns the amount of practice required for reading

techniques. Subjects using the systematic and use-case reading techniques in the second

and third experiments commented that they would have liked more practice using the

technique and more examples. In future replications, at least two practice sessions should

be carried out per reading technique. As well as this, future experiments may benefit from

having extra examples available for subjects.

In any future replication using the checklist technique, care must be taken with its

content. The questions used in the checklist in this thesis were developed from a set of

historical defect data. To be used in any other development environment, the questions

should be based on historical defects from that environment. The notion of ordering the

questions to help inspectors build up an understanding should be kept, as well as

continuing to have questions specifically aimed at delocalised and object-oriented defect

characteristics.

The use-case technique was found to be very demanding on the experimental subjects.

An important area that requires further investigation is whether, due to its complexity, the

use-case technique should only be used by more experienced software engineers. It may be

that novices just require more practice in the technique, or that through simplification, the

technique may become more manageable. One way to simplify may be to group all the

methods together for a particular sequence diagram (to help reduce jumping around), and to

reduce the amount of writing. Another way may be to assume that the scenarios for the

system were developed as part of the requirement documents (along with the use-cases).

This would reduce the time spent by inspectors reading the use-cases and generating the

scenarios. However, this may also reduce the inspectors understanding of the system states

and would assume that any scenarios previously developed as part of the requirements

documents were correct.

Chapter 6: Conclusions and Future Work 135

One issue concerning the generation of abstractions in the systematic technique is what

should be done where writing a method specification where defects have already been

found. Including the defect may complicate the description that has to be written, and until

the defect is removed, would remain in the abstraction (a problem if the abstraction was re-

used in a later inspection). On the other hand, if the specification was not written, other

defects still within the method may be missed. It is recommended that for any future

replication, even if a defect is found, subjects should continue to create the abstraction, but

should highlight the parts of it that are affected by the discovered defect(s). If an

abstraction is read as part of another inspection before the defect is corrected, the inspector

should assume that the method works correctly, but if any defects are subsequently

highlighted, should detail any assumptions made based on abstractions used.

Future replication should also concentrate on several factors highlighted in the previous

section concerning the systematic technique, i.e. validity and content of abstractions and

the poor performance by strong subjects.

6.5 Conclusions

This thesis has shown that the way in which the object-oriented paradigm distributes

related functionality can have a serious impact on code inspection and, to address this

problem, it has developed and empirically evaluated three reading techniques.

Using a combination of reading techniques offers the potential to deal with many

different defect types - the recurring defects, defects that require deeper insights, and

defects associated with the features of object-orientation that distribute functionality

throughout a system.

Bibliography
[1] A. F. Ackerman, L. S. Buchwald, and F. H. Lewski, Software Inspections: An

Effective Verification Process, IEEE Software, 6(3), pp. 31-36, 1989.

[2] J. T. Baldwin, An Abbreviated C++ Code Inspection Checklist, John T. Baldwin,

University of Illi nois, Department of Computer Science, October 1992 (available at

http://www2.ics.hawaii.edu/~johnson/FTR/Bib/Baldwin92.html).

[3] V. R. Basili and H. D. Mills, Understanding and Documenting Programs, IEEE

Transactions on Software Engineering, 8(3), pp. 270-283, 1982.

[4] V. R. Basili and D. M. Weiss, A Methodology for Collecting Valid Software

Engineering Data, IEEE Transactions on Software Engineering, 10(6), pp. 728-

738, 1984.

[5] V. R. Basili , R. Selby, and D. Hutchens, Experimentation in software engineering,

IEEE Transactions on Software Engineering, 12(7), pp. 733-743, 1986.

[6] V. R. Basili and H. D. Rombach, The TAME Project: Towards Improvement-

Oriented Software Environments, IEEE Transactions on Software Engineering,

14(6), pp. 758-773, 1988.

[7] V. R. Basili and S. Green, Software Process Evolution of the SEL, IEEE Software,

pp.58-66, July 1994.

[8] V. R. Basili , S. Green, O. Laitenberger, F. Lanubile, F. Shull, S. Sørumgård, and

M. Zelkowitz, The Empirical Investigation of Perspective-Based Reading,

Empirical Software Engineering, 2(1), pp. 133-164, 1996.

[9] V. R. Basili , Evolving and Packaging Reading Technologies, Journal of Systems

and Software, 38(1), pp. 3-12, 1997.

[10] V. R. Basili , S. Green, O. Laitenberger, F. Lanubile, F., Shull, S. Sørumgård, and

M. Zelkowitz, Lab Package for the Empirical Investigation of Perspective-Based

Reading, 1998. Available at

http://www.cs.umd.edu/projects/SoftEng/ESEG/manual/pbr_package/manual.html

[11] W. A. Belson, The Design and Understanding of Survey Questions, Aldershot &

Gower, 1981.

[12] D. R. Berdie, J. F. Anderson, and M. A. Niebuhr, Questionnaires: Design and Use,

2nd Edition, The Scarecrow Press, 1986.

[13] R. V. Binder, Testing Object-Oriented Software: a Survey, Software Testing,

Verification and Validation, Vol. 6, pp. 125-252, 1996.

Bibliography 137

[14] G. Booch, Object-Oriented Analysis and Design with Applications, Second

Edition, Benjamin/Cummings Publishing Company, Inc., 1994.

[15] G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling Language User

Guide, Addison-Wesley, 1999.

[16] C 5.0, www.rulequest.com

[17] X. Chen, W. Tsai, and H. Huang, Omega - An Integrated Environment for C++

Program Maintenance, International Conference on Software Maintenance, pp.

114-123, 1996.

[18] B. Cheng and R. Jeffrey, Comparing Inspection Strategies for Software

Requirements Specifications, in Proceedings of the 1996 Australian Software

Engineering Conference, pp. 203-211, 1996.

[19] Y. Chernak, A Statistical Approach to the Inspection Checklist Formal Synthesis

and Improvement, IEEE Transactions on Software Engineering, 22(12), pp. 866-

874, 1996.

[20] R. T. Crocker, and A. von Mayrhauser, Maintenance Support Needs for Object-

Oriented Software, in Proceedings of COMPSAC’93, pp. 63-69, 1993.

[21] J. Daly, Replication and a Multi-Method Approach to Empirical Software

Engineering Research, PhD thesis, Department of Computer and Information

Science, University of Strathclyde, Glasgow, UK, 1996.

[22] J. Daly, A. Brooks, J. Miller, M. Roper, and M. Wood, Evaluating Inheritance

Depth on the Maintainability of Object-Oriented Software, Empirical Software

Engineering, 1(2), pages 109-132, 1996.

[23] H. Deitel, and P. Deitel, C How to Program, second ed. Prentice Hall, 1994.

[24] M. Denscombe, The Good Research Guide, Open University Press, 1998.

[25] I. Duncan, D. Robson, and M. Munro, Defect Detection in Code, Testing Research

Group, Computer Science, University of Durham, 1996.

[26] A. Dunsmore, M. Roper, and M. Wood, The role of comprehension in software

inspection, Journal of Systems and Software, 52, pp. 121-129, 2000.

[27] A. Dunsmore, M. Roper, and M. Wood, Object-Oriented Inspection in the Face of

Delocalisation, appeared in Proceedings of the 22nd International Conference on

Software Engineering 2000, pp. 467-476, June 2000.

[28] A. Dunsmore, M. Roper, and M. Wood, Further Investigations into the

Development and Evaluation of Reading Techniques for Object-Oriented

Bibliography 138

Inspection, appeared in Proceedings of the 24th International Conference on

Software Engineering 2002, pp. 47-57, May 2002.

[29] B. Edwards, Statistics for Business Students, First Edition, Collins, 1972.

[30] M. E. Fagan, Design and code inspections to reduce errors in program

development, IBM Systems Journal, 15(3), pp. 182-211, 1976.

[31] M. E. Fagan, Advances in Software Inspections, IEEE Transactions in Software

Engineering, 12(7), pp. 744-751, 1986.

[32] R. G. Fichman and C. F. Kemerer, Object Technology and Reuse: Lessons from

Early Adopters, IEEE Computer, 30(10), pp. 47-59, 1997.

[33] D. G. Firesmith, Testing Object-Oriented Software, published in Proceedings of

the 11th International Conference on Technology of Object-Oriented Languages

and Systems (TOOLS USA, '93), 1993.

[34] W. Foddy, Constructing Questions For Interviews and Questionnaires: Theory &

Practice in Social Research, Cambridge University Press, 1993.

[35] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of

reusable object-oriented software, Addison-Wesley Publishing Company, 1994.

[36] T. Gilb and D. Graham, Software Inspection, Addison-Wesley, 1993.

[37] R. B. Grady and T. Van Slack, Key Lessons In Achieving Widespread Inspection

Use, IEEE Software, 11(4), pp. 46-57, July/August 1994.

[38] J. H. Hayes, Testing of Object-Oriented Programming Systems (OOPS): A Fault-

Based Approach, International Symposium on Object-Oriented Methodologies and

Systems (ISOOMS '94), 1994.

[39] M. Höst, B. Regnell, and C. Wohlin, Using Students As Subjects – A Comparative

Study of Students and Professionals in Lead-Time Impact Assessment, Empirical

Software Engineering, 5, pp. 201-214, 2000.

[40] W. H. Humphrey, A Discipline for Software Engineering, Addison-Wesley, 1995.

[41] C. Jones, Gaps in the object-oriented paradigm, IEEE Computer, 27(6), June 1994.

[42] P. Jüttner, S. Kolb, and P. Zimmerer, Integrating and Testing of Object-Oriented

Software, in Proceedings of EuroSTAR'94, 13/1-13/14, 1994.

[43] B. Kernighan and D. Ritchie, Programming in C, Hanser Verlag, 1990.

[44] E. H. Khan, M. Al-A'ali , and M. R. Girgis, Object-Oriented Programming for

Structured Procedural Programmers, IEEE Computer, 28(10), pp. 48-57, October

1995.

Bibliography 139

[45] J. C. Knight and E. A. Myers, An Improved Inspection Technique,

Communications of the ACM, 36(11), pp. 51-61, 1993.

[46] D. Kung, J. Gao, and P. Hsia, Developing an Object-Oriented Software Testing

Environment, Communications of the ACM, 38(10), pp. 75-87, 1995.

[47] O. Laitenberger and J-M. DeBaud, Perspective-Based Reading of Code Documents

at Robert Bosch GmbH, Special Issue on Information and Software Technology,

vol. 39, pp. 781-791, 1997.

[48] O. Laitenberger and C. Atkinson, Generalising Perspective-based Inspection to

handle Object-Oriented Development Artifacts, in Proceedings of the 21st

International Conference on Software Engineering 1999, pp.494-503, 1999.

[49] O. Laitenberger, C. Atkinson, M. Schlich, and K. El Emam, An Experimental

Comparison of Reading Techniques for Defect Detection in UML Design

Documents, The Journal of Systems and Software, 53(2), pp. 183-204, 2000.

[50] O. Laitenberger and J-M. DeBaud, An Encompassing Life-Cycle Centric Survey of

Software Inspection, Journal of Systems and Software, 50(1), pp. 5-31, 2000.

[51] O. Laitenberger, K. El-Emam, and T. G. Harbich, An Internally Replicated Quasi-

Experiment Comparison of Checklist and Perspective-Based Reading of Code

Documents, IEEE Transactions on Software Engineering, 27(5), pp. 387-421,

2001.

[52] O. Laitenberger and K. Kohler, The Systematic Adaptation of Perspective-Based

Inspections to Software Development Projects, in proceedings of the 1st Workshop

on Inspection in Software Engineering, published by Software Quality Research

Lab, McMaster University, pp. 105-114, July 2001.

[53] L. P. W. Land, C. Sauer, and R. Jeffery, Validating the Defect Detection

Performance Advantage of Group Designs for Software Reviews: Report of a

Laboratory Experiment Using Program Code, In 6th European Software

Engineering Conference, pp. 294-309, 1997.

[54] D. B. Lange and Y. Nakamura, Object-Oriented Program Tracing and

Visualisation, IEEE Computer, 30(5), pp. 63-70, 1997.

[55] M. Lejter, S. Meyers, and S. P. Reiss, Support for Maintaining Object-Oriented

Programs, IEEE Transactions on Software Engineering, 18(12), pp. 1045-1052,

1992.

[56] S. Letovsky and E. Soloway, Delocalised Plans and Program Comprehension,

IEEE Software, 3(3), pp. 41-49, May 1986.

Bibliography 140

[57] K. J. Lieberherr and I. Holland, Assuring Good Style for Object-Oriented

Programs, IEEE Software, 6(5), pp. 38-48, 1989.

[58] B. Lientz and E. Swanson, Software Maintenance Management, First Edition,

Addison-Wesley, 1980.

[59] R. Linger, H. Mills, and B. Witt, Structured Programming: Theory and Practice,

Addison-Wesley, 1979.

[60] C. M. Lott and H. D. Rombach, Repeatable Software Engineering Experiments for

Comparing Defect-Detection Techniques, Empirical Software Engineering: An

International Journal, 1(3), pp. 241-277, 1996.

[61] F. Macdonald, J. Mil ler, A. Brooks, M. Roper, and M. Wood, Applying Inspection

to Object-Oriented Software, Software Testing, Verification and Reliability, Vol. 6,

pp. 61-82, 1996.

[62] F. Macdonald and J. Miller, A Comparison of Tool-Based and Paper-Based

Software Inspection, Empirical Software Engineering, 3, pp. 233-253, 1998.

[63] J. Miller and F. Macdonald, An empirical incremental approach to tool evaluation

and improvement, The Journal of Systems and Software, 51, pp. 19-35, 2000.

[64] J. Miller, J. Daly, M. Wood, M. Roper, and A. Brooks, Statistical power and its

subcomponents – missing and misunderstood concepts in empirical software

engineering research, Information and Software Technology, 39, pp. 285-295,

1997.

[65] G. C. Murphy, P. Townsend, and P. S. Wong, Experiences with Cluster and Class

Testing, Communications of the ACM, 37(9), pp. 39-47, 1994.

[66] National Aeronautics and Space Administration, Software Formal Inspection

Guidebook, Technical Report NASA-GB-A302, National Aeronautics and Space

Administration, 1993, http://satc.gsfc.nasa.gov/fi/fipage.html

[67] J. Nielsen and J. Richards, Experience of Learning and Using Smalltalk, IEEE

Software, 6(3), pp. 73-77, May/June 1989.

[68] A. Oppenheim, Questionnaire design, interviewing, and attitude measurement,

Pinter Publishers, new edition, 1992.

[69] D. L. Parnas and D. M. Weiss, Active Design Reviews: Principles and Practice,

proceedings of 8th International Conference on Software Engineering, pp. 132-136,

1985.

Bibliography 141

[70] A. A. Porter, L. G. Votta, and V. R. Basili, Comparing Detection Methods for

Software Requirements Inspections: A Replicated Experiment, IEEE Transactions

on Software Engineering, 21(6), pp. 563-575, 1995.

[71] A. A. Porter, H. P. Siy, and L. G. Votta, A Review of Software Inspections,

Advances in Computers, 42, pp. 39-76, 1996.

[72] A. A. Porter and P. M. Johnson, Assessing Software Review Meetings: Results of a

Comparative Analysis of Two Experimental Studies, IEEE Transactions on

Software Engineering, 23(3), pp. 129-144, 1997.

[73] A. A. Porter, H. P. Siy, C. A. Toman, and L. G. Votta, An Experiment to Assess

the Cost-Benefits of Code Inspections in Large Scale Software Development, IEEE

Transactions in Software Engineering, 23(6), pp. 329-346, 1997.

[74] A. Porter and L. Votta, What Makes Inspections Work, IEEE Software, 14(6), pp.

99-102, 1997.

[75] M. Priestley, Practical Object-Oriented Design with UML, McGraw-Hill , 2000.

[76] J. A. Purchase and R. L. Winder, Debugging Tools for Object-Oriented

Programming, Journal of Object-Oriented Programming, 4(3), pp. 10-27, June

1991.

[77] M. Putaala and I. Tervonen, Inspecting Postscript documents in an object-oriented

environment, 5th European Conference on Software Quality, 1997.

[78] B. Regnell , P. Runeson, and T. Thelin, Are the Perspectives Really Different? -

Further Experimentation on Scenario-Based Reading on Requirements, Empirical

Software Engineering: An International Journal, 5(4), pp. 331-356, 2000.

[79] S. Rifkin and L. Deimel, Applying Program Comprehension Techniques to

Improve Software Inspections, 19th Annual NASA Software Engineering

Laboratory Workshop, Maryland, 1994.

[80] M. P. Robillard and G. C. Murphy, Concern Graphs: Finding and Describing

Concerns Using Structural Program Dependencies, appeared in Proceedings of the

24th International Conference on Software Engineering 2002, pp. 406-416, May

2002.

[81] M. Roper and A. Dunsmore, Problems, Pitfalls and Prospects for OO Code

Reviews, EuroSTAR’99, 1999.

[82] G. W. Russell, Experience with Inspection in Ultralarge-Scale Developments,

IEEE Software, 8(1), pp.25-31, 1991.

Bibliography 142

[83] G. M. Schneider, J. Martin, and W. T. Tsai, An experimental study of fault

detection in user requirements documents, ACM Transactions on Software

Engineering and Methodology, 1(2), pp. 188-204, 1992.

[84] R. W. Selby, V. R. Basili, and F. T. Baker, Cleanroom Software Development: An

Empirical Evaluation, IEEE Transactions on Software Engineering, 13(9), pp.

1027-1037, 1987.

[85] F. Shull, I. Rus, and V. Basili, How Perspective-Based Reading Can Improve

Requirements Inspections, IEEE Computer, 33(7), pp. 73-79, 2000.

[86] M. Sinclair, Subjective assessment, in J. Wilson and E. Corlett, editors, Evaluation

of Human Work: A practical ergonomics methodology, pp. 58-88, Taylor and

Francis, 1990.

[87] R. Van Solingen and E. Berghout, The Goal/Question/Metric Method, McGraw-

Hill, 1999.

[88] E. Soloway, J. Pinto, S. Letovsky, D. Littman, and R. Lampert, Designing

Documentation to Compensate for Delocalised Plans, Communications of the

ACM, 31(11), pp. 1259-1267, 1988.

[89] P. Stevens with R. Pooley, Using UML – Software Engineering with Objects and

Components, Addison-Wesley, Updated Edition, 2000.

[90] S. H. Strauss and R. G. Ebenau, Software Inspection Process, McGraw Hill

Systems Design and Implementation Series, 1993.

[91] I. Tervonen, Consistent Support for Software Designers and Inspectors, Software

Quality Journal, 5, pp. 221-229, 1996.

[92] T. Thelin, H. Petersson, and C. Wohlin, Sample-Driven Inspection, in proceedings

of the 1st Workshop on Inspection in Software Engineering, published by Software

Quality Research Lab, McMaster University, pp. 81-91, July 2001.

[93] G. H. Travassos, F. Shull, M. Fredericks, and V. R. Basili, Detecting Defects in

Object Oriented Designs: Using Reading Techniques to Increase Software Quality,

Conference on Object-Oriented Programming, Systems, Languages, and

Applications (OOPSLA), 1999.

[94] L. G. Votta, Does Every Inspection Need a Meeting?, ACM Software Engineering

Notes, 18(5), pp. 107-114, 1993.

[95] J. Welkowitz, R. B. Ewen, and J. Cohen, Introductory Statistics for the Behavioral

Sciences, Second Edition, Academic Press, 1976.

Bibliography 143

[96] E. F. Weller, Lessons from Three Years of Inspection Data, IEEE Software, 10(5),

pp. 38-45, September 1993.

[97] N. Wilde and R. Huitt, Maintenance Support for Object-Oriented Programs, IEEE

Transactions on Software Engineering, 18(12), pp. 1038-1044, 1992.

[98] N. Wilde, P. Matthews, and R. Huitt, Maintaining Object-Oriented Software, IEEE

Software, 10(1), pp. 75-80, 1993.

