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Abstract

Synchronisation is an important process for different kinds of systems, such as

biological, chemical, physical and social. Among the related synchronisation prob-

lems, consensus has received high attention because of the distributed properties

shown by its models and the possibility they offer for controlling complex systems.

When dealing with consensus processes in social networks, we known from em-

pirical evidence that the formation of opinions is not free from being influenced

by people around every actor, and more, it is well known that some of the actors

may play a leading role and guide a social system to a final state different from

the pure average consensus. A main paradigm while modelling interactions among

actors in social networks is that every actor receives and transmits information

from and to her nearest neighbours, thus implicitly assuming that the decisions of

a given actor only are influenced by their directly connected peers, and not taking

into account indirect influences coming from not directly connected peers in the

same social network, for example, the influence coming from the friend’s friend of

a friend.

Our work studies consensus processes in the presence of influence coming from not

only those directly connected actors, but from other ones in the same network. We

call this influence peer pressure (PP). We propose a consensus model that takes

into account direct and indirect PP modelled as a function of the social distance

among actors. We apply this consensus model to different real social networks

assuming three different decay laws for the strength of the PP, and in the presence

of leaders and without them. We choose those nodes acting as leaders according

to different centrality criteria, as well as randomly, and compare their performance

for driving the system. Since it is natural that different leaders may diverge in

their positions, we introduce a divergence parameter among the initial states of the
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leaders with respect to the average consensus of the system, to take this feature

into account in our model. We then analyse the effects of PP on two different real

cases of diffusion of innovations processes.

We show that as the strength of indirect PP increases, the centrality criteria used

to select the leaders has a decaying effect on the effectiveness of such leaders to

better drive a consensus process, allowing random leaders to be as good as those

with better centrality. Our work also shows that, despite divergence among leaders

induces higher times for reaching consensus, this effect is reduced for stronger levels

of PP present in the system. For the case of diffusion of innovations our model

reproduces the behaviour of the empirical data, and we demonstrate that certain

levels of PP are necessary to match the results coming from two different studies,

supporting our hypothesis that indirect PP is an important factor to be taken into

account when modelling opinion formations in social networks.

Leaders emerging by global centrality criteria in networks with tightly connected

groups can be counterproductive. This can be tackled by selecting node-leaders

in a local basis. This effect is also reduced when indirect PP is allowed to be

higher. This finding points to the fact that distance among nodes is an important

characteristic for consensus processes. For the purpose of studying this structural

feature, we propose a distance-sum heterogeneity index based on a fictional con-

sensus process. We conjecture that an special type of graph, that we call complete

split graph, is related with the maximization of the index, and based on this con-

jecture we study the relative distance-sum heterogeneity of random graphs and

different real-world networks, which allows us to characterise them. We propose a

spectral representation of the distance-sum heterogeneity index for networks that

we call S-plots. We also study the relation between the time for consensus and the

distance-sum heterogeneities in complex networks from different nature.
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INTRODUCTION

There is a concept that pervades our daily lives and is changing the way people

approach science, medicine, economics, business, and even the study of intelligence

in natural and artificial systems: complexity. Diverse real-life phenomena can be

represented as complex systems models that reproduce, with certain amount of

success, situations like cellular interactions, chemical reaction-diffusion systems,

the dynamics of stock markets, motorway traffic, neuronal interactions, the form-

ation of opinions in social systems, power grids flows, the dynamics of the internet,

air lane transportation, street plans, among many others.

But, what complex systems are? They are systems that comprise many intercon-

nected parts with the ability to interact and generate a new quality of collective

behaviour through self-organization, i.e., the spontaneous formation of temporal,

spatial or functional structures [1]. Complex systems are much more than a sum

of their parts, they are often characterised as having extreme sensitivity to initial

conditions as well as emergent behaviours that are not readily predictable or even

completely deterministic [2].

The recent advances in technology allow collecting and processing great amounts of

data from different systems and have facilitated the ability to synthesize networked

systems that resemble, at some point, their natural counterparts in terms of their

functional and operational complexity [3]. Since we live in a complex interconnec-

ted world, it has become very important to understand more deeply the role that

those inter-part interactions play in the collective functionality of the systems and

in the emergence of different global properties. “There are people studying the

nature of the parts or components of the systems, and there are also people inter-

ested in the nature of the connections, but there is a group of people that studies

the aspect of the pattern of connections between components (the structure) which
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is fundamental to the behaviour of the whole system” [4]. Network Science has

become a powerful framework for modelling, analysing, simulating and designing

such complex systems. A network can be defined as a diagrammatic representa-

tion of a system consisting of nodes or vertices, which represent the entities of the

system. These nodes are joined by links or edges that represent a particular kind

of interconnection among them [5]. Networks are graphs that represent something,

they are a representation or model of observable reality. A central idea in this field

is: the structure and attributes of the network influence its dynamical properties.

When we abstract away the complex interaction geometries of a system associated

with the actors or agents by representing them as nodes and encoding their interac-

tions as edges the advantage of applying network science methods for the analysis

and synthesis of these systems is evident: the set of tools from network science

provides a handful way to examine how the structure of the underlying interaction

topology among agents disembogue to distinct global behaviour. A graph-based

abstraction of a complex networked system contains high-level descriptions of the

networked topology in terms of nodes and edges, even though it sacrifices some

information about what exactly is shared among the elements of the system.

Complex networks are the skeleton of complex systems and their language is the

language of graph theory [5], thus in order to get the most of them we need to

go through all the vast machinery of this mathematical area that in combination

with the theory of dynamical systems build a powerful framework from which

many questions pertaining complex systems can be answered.

The common thread of these systems is the presence of an underlying network that

has influence on the behaviour of the complete system, so we can think that such

networked systems present some similar characteristics that make them suitable

for being modelled by network science:

• They consist of dynamic units.

• The dynamic units posses decision making capabilities.

• The units can receive and transmit information among themselves.

• The system presents a signal exchange network.
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The realization of the signal exchange network depends on the kind of system

and can be through wired or wireless protocols for engineering systems, chemical

reactions for biological systems, or psychological and sociological interactions for

social systems. The configuration of the exchange network can vary according

to the characteristics of the system and can be, in general, from three different

types: [3]

1. Static networks: In these kind of networks the edges are static, that means,

the edge set will not be time varying. This can resemble for example a

situation when a static communication network has been established and

through which the information flows.

2. Dynamic, state-dependent networks: For this networks, the edge set is time

varying, this characteristic allows that edges may disappear at one time, and

reappear at another time, as a function of the underlying state of the network

components (nodes). This might be the case of a network of mobile robots

with range sensors, as they move their state might change according to their

sensory range, which can make edges to appear or disappear, meaning that

some robots can be within their sensor range while others not.

3. Random networks: In this special class of networks the existence of an edge

is given by a probability distribution rather than some deterministic condi-

tion. A situation that can show this characteristic is in the communications

settings when the quality of the communication channels can be modelled as

being probabilistic in nature.

Among others, synchronisation is one of the most captivating phenomena in com-

plex systems, it has been observed in biological, chemical, physical, engineered

and social systems, where it has been shown to be an important process for their

function. Visual and acoustic interactions make fireflies flash, crickets chirp, and

an audience clap in synchrony (see illustrations in fig 0.0.1) [6]. One form of syn-

chronisation is to reach an agreement on a certain state-value of the system where

it is necessary for all of the nodes to calculate some function of certain parameters.

When all nodes in a network calculate the same function of the initial values in

the system, they are said to reach an state agreement or consensus [6].
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(a) (b)

Figure 0.0.1: Illustrations of collective behaviour. (a) Representation of fireflies
flashing in synchrony. Image courtesy of suphakit73 at FreeDigitalPhotos.net (b) A colony of bats
flying together. Image courtesy of Exsodus at FreeDigitalPhotos.net

In networks of agents (or dynamic systems), consensus means to reach an agree-

ment regarding a certain quantity of interest that depends on the state of all

agents. A consensus algorithm is an interaction rule that specifies the information

exchange between an agent and all of its neighbours on the network [7] .

Many examples of opinion consensus are well documented across the social sciences,

these include examples of behavioural flocking in popular cultural styles (cloth-

ing, hair, and music), emotional contagion, collective decision making and walking

behaviour of pedestrians, among others (see fig. 0.0.2a as illustration) [8–11]. Con-

sensus also is important in engineering systems consisting of many simple parts

communicating to each other. In these systems, consensus must be reached for

performing a global task, such as spacecraft alignment, multi-vehicle formation

control or distributed sensor fusion [3, 8, 12]. The problem is particularly challen-

ging because communication channels have limited range and experience fading

and dropout [13], thus, it is important to design reliable and appropriate models

for cooperative control on networked systems which allow them to reach consensus

on shared information in the presence of limited and/or unreliable information

exchange, and even dynamically changing interaction topologies [8].

The coordination of multi-agent networked systems using control and graph the-

oretic tools offers the possibility of steering complex systems by controlling some
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of their elements [3, 7, 12, 14]. The consensus algorithm has been used to control

such systems by means of a cooperative exchange of information process where the

graph Laplacian plays an important role [8,15–20]. This process has been applied

under the nearest neighbour paradigm, but empirical evidence shows that long

range interactions in networks can be taken into account to analyse the impact

they can produce in the dynamics of complex systems [21,22].

Networks have been used extensively in the social sciences to represent interper-

sonal relationships [23]. In these cases, the vertices correspond to individuals in a

group or society, and the edges join pairs of individuals that are related in some

way, for example, there is a link between individuals x and y if x likes, hates, agrees

with, avoids, or communicates with individual y. Such representations have ex-

tended to relationships between groups of individuals, and have proved useful in

a number of contexts ranging from kinship relations in certain primitive tribes to

relationships between political parties [23]. The representations are called social

networks, and they also have been used in political sciences to study international

relations, where nodes correspond to nations or group of nations, and the edges join

pair of nations that are allied, maintain diplomatic relations, agree on a particular

strategy, among other reasons.

(a) (b)

Figure 0.0.2: Illustration of social networks. (a) Protestors gathered at Victory
Monument in Bangkok, Thailand. Image courtesy of duron123 at FreeDigitalPhotos.net (b)
Representation of the leader-follower situation in a group, one actor can play a
key role and influence the behaviour of the rest of them. Image courtesy of renjith krishnan

at FreeDigitalPhotos.net
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In social networks, the study of information flow and sharing is of primary interest,

some questions related with this area are for example, how the structure of the

network may impact individuals to form their opinions, or how fast an information

can be spread trough the network, or how a group of people can agree on a point

of view regarding a particular situation [9, 11, 24–29]. In these situations, one or

multiple actors can play a leading role during the consensus process, these actors

are called leaders and guide the dynamics of consensus by means of the effect they

produce on the rest of the group who follows them, which are called followers

(see fig. 0.0.2b as illustration) [30]. In a leader-follower consensus process with a

single leader, actors try to reach an agreement that is biased to the state of the

leader, while in the case of multiple (stationary) leaders all followers converge to

the convex hull formed by the leaders’ states.

Our work deals with one important question: What is the role played by the

combination of direct and indirect social influences on the collective decisions made

by a social group? By applying network and linear dynamical systems theories, we

present a model that captures the elusive concept of peer pressure (PP) exerted

over a social actor to reach consensus in a complex social system. Using real-world

(simple and undirected) social networks we show that the level of PP determines

how fast a global consensus is reached in a social group. The leaders emerging over

different levels of PP differ substantially in the position they occupy in the group.

PP can also overcome the barriers imposed to a global consensus by the existence

of tightly connected communities with local leaders or the existence of leaders with

poor cohesiveness of opinions. Even a moderate level of PP is necessary to explain

the rate at which innovations are diffused through a variety of social groups.

As distance among driver-nodes shows to be an important characteristic in con-

sensus processes when leaders emerge in structures with communities, we analyse

the distance-sum distribution on random graphs and real networks, and propose a

mathematical index based on a hypothetical consensus process to study this aspect

on complex networks.

We have structured the present thesis in two main parts. In part I we present the

theoretical background used to build our proposals and analysis, the body of the

first part is constituted of 2 chapters. In Chapter 1 we present general concepts

from graph theory, networks, dynamical systems and consensus models. Chapter
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2 shows a literature review that includes the main works used on this thesis, and

shows the path that has helped building the actual theory on consensus protocols:

from distributed algorithms, to the agreement problem and ending on the average

consensus model. A brief mention about the latest works (at the time this thesis

is written) on controllability of complex networks has been added at the end due

to the close relation with the work presented here.

The second part of the thesis comprises the results and findings coming from our

published works. Chapter 3 presents our results on consensus under peer pressure

in social networks, and its impact in processes like leadership emerging and diffu-

sion of innovations. Chapter 4 gives an analysis of some structural characteristics

that play a key role when trying to reach consensus, and sets the necessity of

studying the heterogeneities in distance among nodes.

In Chapter 5, we tackle the problem of studying the distance-sum heterogeneities

by introducing a new index that takes into account this feature. We also correlate

the new index with the times for consensus for different real networks. Finally,

Chapter 6 presents our conclusion and final remarks, as well as future works that

can be directly derived from our current steps. We have included at the end the

numerical results in tables, figures and scropts used for our work in appendices A,

B and C. All references are listed at the last part of this thesis.
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Part I

Theory
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Chapter 1

STRUCTURE AND DYNAMICS

OF NETWORKS
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Structure of Networks
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In order to be able to have a conversation with the complex networks, we need to

speak their language: graph theory. We use the word network to mean a graph

that carries some numerical information which depends on the application we are

dealing with and it may consists of values associated to the edges and to the

vertices relevant to the application under consideration, i.e., a network conveys

additional quantitative information [23]. Thus, the structural part of a network is

modelled by a graph, which consists of nodes and links, and a mapping function

that defines how nodes connect to each other. These characteristics give enough

information to draw a diagram using dots as nodes and lines as links. Then we start

by introducing, and formally defining, some concepts and properties of graphs that

will be used through the rest of the chapters and that will allow us to understand

what the networks are telling us about the systems they represent.

1.1 Graphs

There are many situations when we may use a group of points joined together

either by lines or arrows to represent something of our interest. These points may

stand for people, places or atoms, and the lines or arrows may be kindship rela-

tions, pipelines or chemical bounds. These kinds of diagrams are known under

different names: sociograms (psychology), simplexes (topology), circuit diagrams

(physics), organisational structures (economics), communication networks (engin-

eering), family trees, etc. [31]

1.1.1 Sets, binary relations and graphs

To define a graph we need to use some concepts and notations from the theory of

sets. We do not intend to develop all the basic concepts of sets, as this out of our

scope, but only broadly introduce a few of them in order to be able to establish a

brief set-based definition of graphs.

A set is a collection of objects of any nature which are called its elements or

members [31]. For convenience, sets are represented by upper case letters (A, S,

X ) and their elements by lower case letters (a, b, x, z ). A set can be defined
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by enumerating its elements or by writing a property characteristic of them, a

membership law, for example S = {a2| a is an integer, 1 < a < 10}.

We write a ∈ S and b /∈ S to indicate that a is element of S, and that b is not

element of S. |S| denotes the number of elements of S, also called the order of S.

If all elements of S are also elements of T, then S is a subset of T, written S ⊆ T .

The notation S ⊂ T means that S is a subset of T but is nor identical to T, so

that T has at least one element that is not in S.

If S and T are two sets, then S ∪ T means the union of S and T, the set of

everything that is either a member of S or a member of T (or both), and S ∩ T is

the intersection, the set of common elements. The set-theoretic difference S \ T ,

also called the relative complement of T in S, consists of all elements of S that

are not members of T. The Cartesian product S × T is the set of all ordered

pairs {a, b}, where a is a member of S and b is a member of T. Both union and

intersection satisfy the commutative and associative laws for any sets R, S and T:

S ∪ T = T ∩ S (1.1.1)

S ∪ T = T ∪ S (1.1.2)

S ∩ T = T ∩ S (1.1.3)

R ∪ (S ∪ T ) = (R ∪ S) ∪ T (1.1.4)

R ∩ (S ∩ T ) = (R ∩ S) ∩ T. (1.1.5)

To prove that two sets are equal, we often prove that every member of one set

is an element of the other, and conversely [32]. This is, if we want to show that

A = B, first we prove that A ⊆ B and then prove that B ⊆ A. For example, if we

want to prove R ∩ (S ∩ T ) = (R ∩ S) ∩ T , first we observe that any member w of

R ∩ (S ∩ T ) is both a member of R and a member of S ∩ T , and the latter means

that x belongs to both S and T. So all w ∈ R, w ∈ S and w ∈ T are true. From

these arguments we see that both w ∈ R and w ∈ S are true, so are w ∈ R ∩ S,

and w ∈ T , therefore w ∈ (R ∩ S) ∩ T and we actually have shown what we were

looking for: R ∩ (S ∩ T ) = (R ∩ S) ∩ T .

Binary relations occur frequently in mathematics and are present in everyday
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life [32]. For example, the ordinary mathematical relations <, =, >, ≤ and ≥ are

binary relations on number sets, the ⊂ and ⊆ are binary relations on collections of

sets, and so forth. Then, if we let S to be the set of all living people, the statement

“is the cousin of ” is a binary relation on S. Formally, a binary relation ∼ on a

set S is a rule that stipulates, given any elements w and z of S, whether w has a

certain relationship with z (written as w ∼ z) or not (written as w � z).

We can represent any binary relation on a set S by a diagram where the elements

of S are shown as points (vertices), and if the binary relation w ∼ z, w ∈ S, z ∈ S
is true, then we draw a line (edge) from w to z with its direction indicated by an

arrow at the end of the line (see fig. 1.1.1b), and provided that S is finite, then

all information about any binary relation on S can be shown in a diagram. This

diagram is called a directed graph or digraph. Moreover, of we have that w ∼ w is

true for any w ∈ S, the diagram is a looped digraph.

(a) (b)

Figure 1.1.1: Example of diagrams for different binary relations among a set of
three elements x, y and z. (a) Graph: symmetric binary relation with no arrows
(b) Digraph: non-symmetric binary relation with arrows.

The binary relation ∼ on S is called reflexive if w ∼ w is true for all w ∈ S, and

antireflexive if w ∼ w is never true (equivalently, if w � w is true for all w ∈ S).

Additionally, if z ∼ w is true whenever w ∼ z is true for all w, z ∈ S, then ∼ is

called symmetric, and if the relation is symmetric, the arrows can be omitted from

its diagram (see fig. 1.1.1a).Then, building from these definitions, we can state

the following definition: [32]

The diagram of a symmetric, antireflexive binary relation on a finite set is called

a graph.
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As an example, suppose we have the following binary relations defined on the set

S = {1, 2, 3, 4}.

x > y means x is greater than, x

x ∼ y means x = y ± 1

x ≈ y means y = 2x

x • y means x = y2

These relations have the corresponding subsets

S> = {(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3)}
S∼ = {(1, 2), (2, 1), (2, 3), (3, 2), (3, 4), (4, 3)}
S≈ = {(1, 2), (2, 4)}
S• = {(4, 2), (1, 1)}

We can represent these relations by diagrams which are shown in figure 1.1.2. The

diagrams of these binary relations give us the visual version of them and constitute

what we call graphs.

(a) > (b) ∼

(c) ≈ (d) •

Figure 1.1.2: Diagrams of binary relations defined on the set S = {1, 2, 3, 4}. a)
x > y b) x ∼ y c) x ≈ y d) x • y

14



1.1.2 Graph theory and networks

The theory of networks has recently witnessed a growing interest and development

among different scientific sectors that have produced several works trying to con-

dense all this knowledge into a general framework. The work from Estrada, E.

(2011) [5], which we mainly follow for defining the necessary concepts from net-

work theory to build this thesis, provides a formal, broad and deep view of the field

suitable for the different scientific areas studying complex networks. It is worth to

mention that due the close relation between graph theory and network theory, the

words graph and network are used indistinctly in practice, and so do we trough

the rest of the thesis.

Our definition of graph would not be useful if we would like to take into account

the way each pair of nodes are linked together which can lead to a different types

of networks (see fig. 1.1.3):

1. Simple networks: every pair of nodes are connected by a simple segment of

line.

2. Directed networks: the links connecting every pair of nodes start in a given

node and end in another one (directionality).

3. Pseudo networks: there is more than one link between a pair of nodes (multi-

links) and even some links can join a node to itself (self-loops).

4. Weighted networks: the links joining the nodes have real numbers assigned

to them (weights).

Then, a general definition of network that accounts for the last considerations is:

a network is the triple G = (V, E, f) where V is a finite set of vertices or nodes,

E ⊆ V × V = {e1, e2, ..., em} is a set of edges or links and f is a mapping which

associates some elements of E to a pair of elements of V, such as that if vi ∈ V
and vj ∈ V then f : ep → [vi, vj] and f : eq → [vj, vi]; and a weighted network is

the triple G = (V, W f) defined by replacing the set of edges E by a set of edges

weights W = {w1, w2, ..., wm} such that wi ∈ R.

Now, taking as starting point our last definition of networks, we are going to

define more concepts from graph and network theories that will be used trough
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the thesis and that complement the necessary background for us to speak the

network-language.

1.1.2.1 Some basic definitions

• Adjaceny and incidence: We say that two nodes u and v are adjacent if they

are joined by a link e = {u, v}. The nodes u and v are said to be incident

with the link e, and the link e is said to be incident with the nodes u and

v. In a similar way, two links e1 = {u, v} and e2 = {v, w} are considered

adjacent if they are both incident with at least one node.

• Neighbourhood : The neighbourhood N(vi) ⊆ V of the node vi is the set

{vj ∈ V | vivj ∈ E} which corresponds to the set of all nodes that are adjacent

to vi.

• Degree: The degree of a node v is the number of of links incident with v.

• Walk : A (directed) walk of length k is a succession of (not necessarily differ-

ent) k links of the form uv, vw, wx, ..., yz. This walk is denoted by uvwx...yz

and is referred to as a walk between u and z.

• Path: A path is a walk in which all the links and all the nodes are different,

otherwise is called a trail.

• Connected : A graph is connected if there is a path between each pair of

nodes, and is disconnected otherwise.

• Connected component : Every disconnected graph can be split up into a num-

ber of connected subgraphs called components.

• Strongly connected : A directed graph is strongly connected if there is a

directed path from u to v and a directed path from v to u for every pair of

distinct nodes.

1.1.2.2 Special types of graphs

• Regular. A graph is regular if all its nodes have the same degree. A regular

graph is r -regular (or regular of degree r) if the degree of each node is r.
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(a) Simple network (b) Directed network

(c) Pseudo network (d) Weighted network

Figure 1.1.3: Different types of networks. (a) Community of dolphins (b) Food
web St. Martin (c) Chemical elements in the atmosphere of the star Titan (d)
Random weighted network. The thickness of the edges are proportional to their
weight
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• Complement. The complement of a graph G is the graph Ḡ created by taking

all the nodes in G and joining two nodes whenever they are not linked in G.

• Complete graph. A complete graph is a graph in which each node is joined

to each of the others by exactly one link. The complete graph with n nodes

is denoted by Kn.

• Null graph. A null graph is a graph with no links. The null graph with n

nodes is denoted by Nn. The null graph with n nodes is regular of degree 0.

• Cycle graph. A cycle graph is a graph consisting of a single cycle of vertices

and edges. The cycle graph with n nodes is denoted by Cn.

• Subgraph. A graph Gs = (Vs, Es) is called subgraph with respect to a given

graph G = (V, E) if Vs ⊆ V and Es = {{vi, vj} ∈ E | vi, vj ∈ Vs}. In other

words, the subgraph Vs consists of the vertices in the subset Vs of V and

edges in G that are incident to vertices in Vs.

• Bipartite graph. A bipartite graph is a graph whose set of nodes can be split

into two subsets V1 and V2 in such a way that each edge of the graph joins

a node in V1and a node in V2.

• Complete bipartite graph. A complete bipartite graph is a bipartite graph

in which each node in V1 is joined to each node in V2 by just one link. The

complete bipartite graph with r nodes in V1 and s nodes in V2 is denoted by

Kr,s. The graph Kr,s is the same as Ks,r and it has r + s nodes (r node of

degree s and s nodes of degree r) and rs links.

• Trees. A tree is a connected graph with no cycles. In this graph, there is at

least a path between each pair of nodes.

• Spanning tree. A spanning tree if a graph is a subgraph of this that includes

every node and is a tree.
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(a) (b)

(c) (d)

Figure 1.1.4: Examples of graphs. (a) Regular. (b) Complete. (c) Null. (d) Cycle

(a) (b)

Figure 1.1.5: Examples of graphs. (a) Bipartite. (b) Tree

1.1.2.3 Structural properties of networks

Degree distributions

For any network, we can represent the degrees of its nodes as a vector which we

call the vector degree k. From this vector degree we can derive an important
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quantity in the study of complex networks, this is called the average node degree

and is defined as k̄ = 1
n
1Tk = 1

n

∑n
i=1 ki. When the degrees are arranged in a

non-increasing order, then this array is referred to as the degree sequence of the

network. One useful way of representing the information about node degrees is

with the diagonal matrix K known as the degree matrix of the network which

contains the degree of the nodes in the main diagonal.

The distribution of the node degrees provides some properties of the structure of a

network. If we represent with p(k) the probability that a node, chosen uniformly

by random, has degree k in a network, then this quantity is equal to p(k) = n(k)
n

where n(k) is the number of nodes having degree k and n is the total number

of nodes (or size) of the network. A plot of p(k) vs k gives us the form of the

degree distribution of the network, and if we plot this relation in a log-log scale

we can have an idea about the kind of statistical distribution that these node

degrees follow. There are some degree distributions commonly found in the study

of complex networks which are shown in figure 1.1.6. Nonetheless, this information

should be taken with caution because sometimes the information available to study

the degree distribution of a network, i.e. the number of points to depict the plot

p(k) vs k, is limited due the variability of node degrees in general is not so high

compared to the size of the network, this makes difficult to accurately fit the data

to a well known probability distribution.

There is one degree distribution that has attracted the attention of the scientific

community: the power-law degree distribution. The characteristic of this distri-

bution is that the probability of finding a node with degree k decays as a negative

power of the degree (see fig. 1.1.6). Its expression is p(k) ∼ k−γ which means that

the probability of finding a high-degree nodes is relatively small compared with the

high probability of finding low-degree nodes. The networks that show this form

of degree distribution are called “scale-free” networks referring to the existence of

a power-law relation p(k) = Ak−γ between the probability and the node degree

which when scaling the degree by a constant factor c results in a proportionate

scaling of the function p(k, c) = A(ck)−γ = Ac−γ · p(k) .

As with all degree distributions, power-law relations can be represented on a log-

arithmic scale, this representation resembles a straight line of the form ln p(k) =

−γ ln k + lnA where −γ is the slope and lnA is the intercept of the function.
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Frequently when plotting p(k) vs k in a log-log scale (see fig. 1.1.7) the tail of the

distribution is very noisy. One approach to reduce this noise is to use instead

the cumulative distribution function CDF defined as P (k) =
∑∞

k′=k p(k
′), which

represents the probability of choosing at random a node with degree greater than,

or equal to k. For the case of power-law degree distributions P (k) also exhibits a

power-law decay of the form P (k) ∼
∑∞

k′=k k
′−γ ∼ k−(γ−1), this means that the

log-log plot of P (k) vs k will be a straight line too for the scale-free networks.

(a) (b)

(c) (d)

Figure 1.1.6: Some common degree distributions in networks. (a) Poisson dis-
tribution (b) Gaussian distribution (c) Exponential distribution (d) Power-law
distribution
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(a) (b)

Figure 1.1.7: (a) Probability distribution function and (b) cumulative distribution
function of a network with power-law degree distribution

Degree-degree correlations and assortativity

There exist different kinds of degree-degree correlations in complex networks, these

correlations give information about the way nodes with a certain degree are con-

nected in a network. One approach to measure this characteristic was proposed

in [33] by Newman and it was called assortativity coefficient which is based on

the Pearson coefficient of the degree-degree correlation, this means that the as-

sortativity coefficient calculates the correlation the correlation coefficient for the

degrees of the existing nodes at both sides of every link in a network. Formally, if

we let e(kikj) be the faction of links connecting a node of degree ki to a node of de-

gree kj, the probability that a node selected by random in the network has degree

kj is equal to p(kj). For mathematical convenience, in formulating the concept,

Newman considered the degree minus one instead of the degree of the nodes, and

called this “excess degrees”. Thus, the distribution of the excess degree of a node

at the end of link chosen by random is

q(kj) =
(kj + 1) p(kj + 1)∑

i ki p(ki)
. (1.1.6)
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Then the assortative coefficient is defined as

r =

∑
kikj

kikj[e(kikj)− q(ki)q(kj)]
σ2
q

(1.1.7)

where σ2
q is the standard deviation of the distribution q(kj). This coefficient is

undefined for the case when the standard deviation is equal to zero, this is when

all nodes have the same degree, i.e., the case of regular networks. When positive

values are obtained from the coefficient it is said that the network displays assort-

ative mixing of degrees and when the values obtained are negative, we say that the

network displays dissasortative mixing of degrees. The first case, assortative mix-

ing, means that low-degree nodes are preferentially attached to other low-degree

nodes and high-degree nodes are preferentially joined to other high-degree nodes

(see fig. 1.1.8a). For the second case, dissasortative mixing, those nodes with

high degree are preferentially linked to low-degree nodes (see fig. 1.1.8b). This

degree mixing characteristic has implications for network resilience to intentional

attacks, epidemic spreading, synchronisation, cooperation and diffusion (see [5]

and references therein).

(a) (b)

Figure 1.1.8: Example of networks with assortative and dissasortative mixing of
degrees. The radii of the nodes have been drawn proportionally to their degrees.
(a) Drugs users network shows assortative mixing (b) Component of the Internet
in 1997 shows dissasortative mixing
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Shortest path distance

For an undirected network, the shortest path distance d(u, v) is the number of

links in the shortest path between the nodes u and v. When those nodes u and

v belong to different connected components, the distance between them is set to

infinite, this is d(u, v) :=∞. The values of distance among all nodes in a network

can be presented in matrix form, the result, for an undirected network, is a square

symmetric matrix known as the distance matrix D, and the distances between

any node v and the rest of them are given at the vth row (or column) of the

matrix. For the case of directed networks, D is not necessarily symmetric and it

may contain entries equal to infinite. The eccentricity of a node in a network is

the maximum value in the correspondent row (or column) of the distance matrix,

this is for the node v [5]:

e(v) = max
x∈V (G)

{d(v, x)} . (1.1.8)

The maximum eccentricity among the nodes of a network is known as the diameter

of the network, and it is defined as

diam(G) = max
x,y∈V (G)

{d(x, y)} . (1.1.9)

The radius of the network is the minimum eccentricity of the nodes. A node is

called central if its eccentricity is equal to the radius of the network, and the centre

of the graph is constituted by the set of all central nodes [5].

The sum of all entries of a row (column) of the distance matrix D is referred to

as the distance sum of the correspondent node, and is defined as

s(u) =
∑

v∈V (G)

d(u, v) (1.1.10)

this quantity is also know as the total distance or status of the node.
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Average path length

A common metric related to the shortest paths from a vertex u to any other vertex

v in G = (V, E) is the average distance between vertices referred to as the average

path length d̄ defined as

d̄(G) =
1

n(n− 1)

∑
u,v∈V,u6=v

d(u, v) (1.1.11)

where the average is taken considering only those pairs of nodes for which there is

a path connecting them. The average path length is bounded as 1 ≤ d̄(G) ≤ n+1
3

,

where the lower bound is reached for the complete network and the upper bound

happens for the path with n nodes [5].

Clustering coefficient

A metric that is commonly used in complex networks analysis is the clustering

coefficient, this concept was originally proposed by Watts and Strogatz in 1998 [34].

The idea behind this metric is: in a network G = (V, E) we want to see for a given

vertex v ∈ V , to what extent the neighbours of v are also neighbours of each other,

this is to what extent the vertices adjacent to v as also adjacent to each other [35].

Formally, for a given node i, the clustering coefficient is the number of triangles

connected to this node |C3(i)| divided by the number of triples centred on it: [5]

Ci =
2 |C3(i)|
ki(ki − 1)

(1.1.12)

where ki is the degree of the node i. The average value of the clustering for all

nodes n in a network, commonly referred to as the average clustering coefficient,

is then defined as

C̄ =
1

n

n∑
i=1

Ci. (1.1.13)
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There is an alternative coefficient defined by Newman in 2001 [36], this globally

characterises the cliquishness of a network by considering that each triangle con-

sists of three different connected triples, one with each of the nodes at the centre [5].

This index is known as network transitivity and is defined as

C =
3 |C3|
|P2|

(1.1.14)

this is, the ratio of three times the number of triangles C3 divided by the number

of connected triples P2 (2-paths).

It is worth to point out that a network with large average clustering (C̄) is not

necessarily a high clustered network if measured by C, this is, a network can be

highly clustered at a local level but not on a global scale [5].

1.2 Matrices and networks

Matrices are useful constructs when dealing with large arrays of numbers, and are

a key tool for the study of complex networks. There are some matrices that

frequently appear in networks and give important structural information: the

adjacency and the Laplacian matrices, in this section we define both matrices

as they play a key role in our work.

1.2.1 Adjacency matrix

The adjacency information of the nodes of a network G = (V, E) can be repres-

ented by the adjacency matrix A defined as

Aij =

1 if i, j ∈ E

0 otherwise
(1.2.1)

the dimension of this matrix is |V | × |V |. For an undirected network, the vth row

(column) of the adjacency matrix has exactly kv entries which corresponds to the
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number of links or nearest neighbours the node v has, this is the degree of the

node. The column vector of node degrees k can be obtained from the matrix A

and a |V | × 1 all-one vector 1 as follows:

k = (1TA)T = A1. (1.2.2)

For a directed network, the adjacency matrix could be not symmetric as the ele-

ment Aij is equal to one if there is a link pointing from i to j, this characteristic

implies that the product 1TA is not necessarily equal to A1, which lead us to have

two distinct types of node degrees: the in-degree and the out-degree. For a node

i the first node degree corresponds to the number of links that are pointing to i,

and the second one corresponds to the number of links coming from i. Both node

degrees can be obtained in vector form as

kin = (1TA)T (1.2.3)

kout = A1. (1.2.4)

When the network is weighted, the entry Aij of A corresponds to the weight wij

associated to the link between nodes i and j and for this case, the weighted in- and

out- degrees can be computed following the expressions (1.2.3) and (1.2.4) with A

being the weighted adjacency matrix of the network.

There is another matrix which has a close relation with the adjacency matrix, this

is called the incidence matrixB and has elements Bvie = 1 if the node vi is incident

with the link e, the dimension of B is |V | × |E|. Then, the adjacency matrix A is

related with the incidence matrix B and the degree matrix K (defined on page 20)

in the following way:

A = BBT −K. (1.2.5)

The adjacency and degree matrices of a network are related with the average node
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degree in a lemma, known as the handshaking lemma, which states that the sum

of all node degrees is equal to twice the number of links [5], this is

1TA1 = KT1 =
n∑
i=1

ki = 2 |E| (1.2.6)

thus, the average node degree is

k̄ =
2 |E|
n

. (1.2.7)

1.2.2 Laplacian matrix

The first recognizable appearance of the Laplacian matrix may be in what has

come to be know as Kirchhoff’s matrix tree theorem and it has been referred to as

Kirchhoff matrix, matrix of admittance, information matrix, Zimm matrix, Rouse-

Zimm matrix, connectivity matrix and vertex-vertex incidence matrix, among other

names depending on the application field [37]. But perhaps the origins of the

justification for the name Laplacian comes from a study of vibrations of membranes

related with the question whether one could “hear the shape of a drum” posed by

Mark Kac in 1966 [37,38].

This matrix is important for the study of networks because of the application

of its spectral properties to tackle problems like clustering, pattern recognition,

consensus algorithms, synchronisation, information theory, expanders, among oth-

ers [39].

The concept of the continuous Laplacian operator ∆ = ∇2 can be extended to the

field of networks trough the definition of a derivative as the limit of differences [40]

f ′(a) = lim
x→a

f(x)− f(a)

x− a
. (1.2.8)

This extension of the Laplacian operator to the discrete case of networks is known

as the graph Laplacian.
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1.2.2.1 Definition

Let f be a function defined at the node v of a network G = (V, E) with arbit-

rary orientation of every link. We can represent the network trough an oriented

incidence matrix ∇(G) defined as

∇ij =


+1 if node vi is the positive end of link ej

−1 if node vi is the negative end of link ej

0 otherwise

. (1.2.9)

This matrix represents the gradient operator for the network which gives the max-

imum rate of change of the function f . Then if we let f : V → R be an arbitrary

function, then ∇f : E → R is given by [5]

(∇f) (e) = f (u)− f (v) (1.2.10)

where u and v are, correspondingly, the starting and ending points of the oriented

link e.

We recall that a vector field is a function on the interval with an orientation. For

this case, the interval corresponds to the link in the network, which together with

its orientation forms a vector field. Thus, the continuous analogous of ∇(G) is the

gradient (∇f) = ∂f
∂x1
, ∂f
∂x2
, . . . , ∂f

∂xn
, which gives the maximum rate of change of the

function with direction.

We now consider the operator Lf = −∇ · (∇f), which is the nertwork version of

the Laplacian operator

∇2f =
∂2f

∂x2
1

+
∂2f

∂x2
2

+ · · ·+ ∂2f

∂x2
n

. (1.2.11)

Then the Laplacian operator acting on L : R|V | → R|V | is defined as

(Lf) (u) =
∑
u∼v

[f(u)− f(v)] , (1.2.12)
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which in matrix form is given by

Luv =
∑
e∈E

∇eu∇ev =


−1 if uv ∈ E

ku if u = v

0 otherwise

. (1.2.13)

The graph Laplacian can also be written in terms of the adjacency matrix by

taking into account (1.2.13) as

L = K −A (1.2.14)

being A the adjacency matrix of the network G and K the degree matrix of the

same network.

1.2.2.2 Spectra and properties of the Laplacian matrix

The tools of algebraic graph theory associate algebraic objects such as matrices

and polynomials, to graphs, and provide algebraic techniques for their study. From

this association, it has been constituted the study of spectral properties of matrices

representing graphs that we know as spectral graph theory [3]. This branch of graph

theory focuses on the study of the eigenvalues associated with the matrix repres-

entation of graphs. Regarding the Laplacian matrix, its spectrum and eigenvalues

can reveal important properties for dynamical problems on networks [39].

From (1.2.5) we have that L = K − A = BBT . This matrix is symmetric and

positive semidefinite, this makes its spectrum real, which is defined as the set of

its eigenvalues together with their multiplicities [40]. We can order its eigenvalues

as

µ1(L) ≤ µ2(L) ≤ · · · ≤ µn(L) (1.2.15)

with µ1(L) = 0,

then its spectrum can be written as
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SpL =

(
µ1(L) µ2(L) · · · µn(L)

m(µ1(L)) m(µ2(L)) · · · m(µn(L))

)
(1.2.16)

where m(µ1(L)), m(µ2(L)), · · · , m(µn(L)) are the multiplicities of the corres-

pondent eigenvalues.

The eigenvalues of L are bounded as

0 ≤ µj(L) ≤ 2kmax (1.2.17)

and

µn(L) ≥ kmax (1.2.18)

being kmax the maximum node degree of the network.

The multiplicity of 0 as an eigenvalue of L is equal to the number of connected

components in a network and the second smallest eigenvalue, µ2(L), is commonly

referred to as the algebraic connectivity of the network [41].

Theorem 1.1. The graph G is connected if and only if µ2(L) > 0.

Proof. Since the null spaces of BT and L are the same, it suffices to show that

the null space of BT has dimension one when the graph G = (V, E) is connected.

Suppose that there exists a vector z /∈ span{1}, with 1 being the vector with ones

in all its entries, such that

zTB = 0,

that is, when uv ∈ E then zv−zu = 0. However, since G is connected, this implies

that zv = zu for all u, v ∈ V and z ∈ span{1}. Thus, the dimension of the null

space of BT is one if and only if the geometric, and hence algebraic, multiplicity

of the zero eigenvalue of the Laplacian, namely µ1(L), is one [3].
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Some expressions for the spectra of different kinds of simple graphs are: [5]

Path Pn : µj(L) = 2− 2 cos
(
π(j−1)
n

)
, i = 1, . . . , n.

Cycle Cn : µj(L) = 2− 2 cos
(

2πj
n

)
.

Star Sn : Sp(L) = {0nn−2 n}.

Complete Kn : Sp(L) = {0nn−1}.

Complete (bipartite) Kn1,n2 : Sp(L) =
{

0nn2−1
1 nn1−1

2

}
.

Analysing the eigenvectors associated to the eigenvalues of L is also part of spectral

graph theory. If we let Λ be a diagonal matrix of eigenvalues of the Laplacian

matrix ordered as in the expression(1.2.15), then [5]

Λ = diag (µ1(L), µ2(L), . . . , µn(L)) (1.2.19)

and let Φ be a matrix whose columns are orthonormal eigenvectors φ1, φ2, . . . , φn.

Then the spectral decomposition of the Laplacian matrix is give by:

L = ΦΛΦT . (1.2.20)

The eigenvector of L associated with the 0 eigenvalue in a connected network

is φ1(L) = 1√
n
1, and if 0 6= µ < n is an eigenvalue of the Laplacian, then the

eigenvector associated with µ takes the value 0 on every node of degree n− 1 [5].

The eigenvectors of the Laplacian contain useful information related to the struc-

ture of a network. The spectrum of this important matrix leads to the concept of

algebraic connectivity of a network which is assigned to the eigenvalue µn−1, and

the eigenvector associated with this value has an important property.

Theorem 1.2. (Fiedler’s theorem of connectivity of spectral graph parti-

tions) Suppose G = (V, E) is a connected network with graph Laplacian L whose

second smallest eigenvalue is µn−1 > 0. Let x be the eigenvector associated with

µn−1. Let r ∈ R to partition the nodes in V into two sets
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V1 = { i ∈ V |xi ≥ r } , V2 = { i ∈ V |xi < r } .

Then the subgraphs of G induced by the sets V1 and V2 are connected.

This result provides a method for partitioning a network in a symmetric way

assuring that such partitions are still connected. One form of choosing r is to

be the median value of x, this guarantees that the clusters are evenly sized. The

vector x is referred to as the Fiedler vector.

33



Dynamics on Networks
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The concept of dynamical system is rather general, it refers to anything which

evolves with time. A communication network is a dynamical system, vehicles such

as aircraft, spacecraft, motorcycles, cars, among others, are dynamical systems.

Other examples include machines, robots, chemical plants, electrical circuits, even

structures like bridges (think of a structure subject to strong winds or an earth-

quake). But the concept of dynamical system is not restricted to engineering

systems, it can be applied to plants, group of animals, human beings or the eco-

nomy of one or more countries. The interactions among the parts that constitute

a network are dynamical processes, which can be considered in a continuous or

discrete time basis. Here we present a brief overview of dynamical systems (com-

plete information can be consulted from the references given), and two examples

of how these kind of processes can be represented on networks: epidemic spreading

and synchronisation. We finish this part by setting the theoretical grounds of the

main model used in this thesis, the consensus protocol.

1.3 Dynamical Systems

A dynamical system can be defined as a triple S = (T, W, B), where T is a subset

of R, called the time axis, W is a set called the signal space, and B is a subset of

WT called the behaviour1 [42].

The set T specifies the set of times instances relevant to our problem. Usually T
equals R or R+ in continuous-time systems, and Z or Z+ in discrete-time systems.

The set W specifies the way in which the outcomes of the signals produced by the

dynamical system are formalised as elements of a set, this is, these outcomes are

the variables whose evolution in time we are describing [42]. The behaviour B is a

family of time trajectories taking their values in the signal space, in other words,

the elements of B are the trajectories compatible with the laws that govern the

system. In most models the behaviour is described by equations, and then this set

is formed by those elements satisfying a set of equations which often take the form

of differential equations for continuous-time models, and difference equations for

discrete-time models.

1WT is standard mathematical notation for the collection of maps from T to W [42]
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Then a dynamical system can be thought of as any system whose state, repres-

ented by some set of quantitative variables, changes over time according to some

given rules or equations [4]. A simple example of a continuous dynamical sys-

tem described by a single real variable x(t) that evolves according to a first-order

differential equation is

dx

dt
= ẋ = f(x), (1.3.1)

where f(x) is some specified function of x. Commonly, there is an initial condition

that specifies the value of variable x at some initial time t0, and is expressed as x0.

A system interacts with its environment through inputs and outputs. Inputs can

be considered to be exerted on the system by the environment, whereas outputs are

exerted by the system on the environment. A fundamental concept for describing

the behaviour of a dynamical system is the state of the system.

When casting a situation into a mathematical expression, we need to identify the

salient features of the situation and attaching mathematical objects to them, this

means, we try to associate a number or collection of numbers with the situation

which characterises it [43]. For convenience, we think of these numbers as vec-

tors in Rn which can contain n numbers associated to properties of interest from

the situation under analysis. In this case, each conceivable situation corresponds

to a point in Rn (or some subset of it). We called the set of all points in Rn

corresponding to a conceivable situation the state space.

As change is an inherent feature of our world and the situations we encounter, in

general the state space description of an input-output system usually involves a

time variable t and three sets of variables:

• State variables: x1,x2, . . . , xn

• Input variables: u1, u2, . . . , um

• Output variables: y1, y2, . . . , yp

The basic representation for linear systems is the linear state-equation written in

the standard form as
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ẋ(t) = A(t)x(t) +B(t)u(t)

y(t) = C(t)x(t) +D(t)u(t)
. (1.3.2)

The n×1 vector function of time x(t) is called the state vector, and its components,

x1(t), . . . , xn(t), are the state variables. The input signal is the m×1 function u(t),

and y(t) is the p× 1 output signal, assuming that p, m ≤ n [44].

The default assumption on the coefficients matrices in (1.3.2) is that their entries

are continuous, real-valued functions defined for all t ∈ [0, ∞), thus the expression

(1.3.2) is referred to as linear time varying system. In a continuous-time system,

the time-variable t can be any real number, and for a discrete-time system, the

time-variable only takes integer values.

For the case when the entries of the coefficients matrices are constant, the expres-

sion (1.3.2) is expressed as

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(1.3.3)

which is called linear time invariant system, and in scalar terms is described by:

ẋ1 = a11x1 + · · ·+ a1nxn + b11u1 + · · ·+ b1mum
...

ẋn = an1x1 + · · ·+ annxn + bn1u1 + · · ·+ bnmum

(1.3.4)

and

y1 = c11x1 + · · ·+ c1nxn + d11u1 + · · ·+ d1mum
...

yp = cp1x1 + · · ·+ cpnxn + dp1u1 + · · ·+ dpmum

. (1.3.5)

The group of equations in (1.3.4) are referred to as the state-equations, and the

group (1.3.5) are referred to as the output-equations.

A system with no inputs is described by
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ẋ = Ax (1.3.6)

which is called autonomous because the right-hand side of the equations do not

depend explicitly on time t.

1.3.1 Discrete dynamical systems

Since our work deals with a discrete model of consensus, we briefly review some

concepts of discrete dynamical systems. The idea of being discrete is directly

related with the concept of discrete time, this is, we suppose that we measure time

in discrete units, these units might be hours, seconds, tenths of a second, years,

centuries or any other period of time which, once fixed, we only allow ourselves to

consider integer multiples of them.

We represent the state of a system at time t = 0 by x(0) and the state of the

system at the k-th time step as x(k). A discrete dynamical system is a system in

which the state at any time depends only on the state a the time before [43], then

a discrete dynamical system can be expressed as

x(k + 1) = f (x(k)) , (1.3.7)

where f is a function from Rn to Rn non explicitly dependent on k.

Discrete dynamical systems arise from continuous dynamical systems by assuming

that rates of change are constant over some small time interval, so the moment we

choose at ∆t, we transform a continuous time dynamical system ẋ = f(x) (1.3.1)

into the discrete time dynamical system

x(k + 1) = x(k) + (∆t) f (x(k)) (1.3.8)

with time unit equal to ∆t. It is worth to note that this expression means, in a

more simplistic way, that the new or future value of the variable x depends on its

old or past value:
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xnew = xold + (∆t)x′old. (1.3.9)

One way of converting a continuous time dynamical model to a discrete time form

is by applying a finite difference approximation [45]. We describe the general

process for obtaining the discrete time version of a dynamical system as this is the

form we use for our performing our simulations.

Consider a nonlinear differential equation

dx(t)

dt
= f(x, u) (1.3.10)

where x is the output variable and u is the input variable. The previous equitation

can be numerically integrated by introducing a finite difference approximation for

the derivative. For our purposes, lets consider the first order difference approxim-

ation to the derivative at t = k∆t, this is

dx(t)

dt
u
x(k)− x(k − 1)

∆t
(1.3.11)

were ∆t is the integration interval (specified by the user) and x(k) denotes the

value of x(k) at t = k∆t. Substituting equation 1.3.10 into equation 1.3.11, and

evaluating f(x, u) at the previous values of x and u, i.e., x(k − 1) and u(k − 1),

gives

x(k)− x(k − 1)

∆t
u f(x(k − 1), u(k − 1)) (1.3.12)

or, in other form

x(k + 1) = x(k) + (∆t)f(x(k)), u(k) (1.3.13)

which is the discrete time form of equation 1.3.8 used for the simulations in this

thesis.
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A solution for a discrete time dynamical system is a sequence (x(0), x(1), · · · )
which satisfies the expression x(k + 1) = f (x(k)). A fixed state vector referred to

as xe is called an equilibrium state, which is constant for all k, this means that

x(k) ≡ xe. (1.3.14)

The equivalent version of (1.3.3) for the discrete time case is

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)

, (1.3.15)

where the n-vector x(k) is the state vector at time k, the m-vector u(k) is the

input vector at time k, and the p-vector y(k) is the output vector at time k. The

matrix A is generally referred to as the system matrix and its dimension is n× n.

The matrices B, C and D have, respectively, dimensions n×m, p× n and p×m.

This means that in scalar terms we have

x1(k + 1) = a11x1(k) + · · ·+ a1nxn(k) + b11u1(k) + · · ·+ b1mum(k)
...

xn(k + 1) = an1x1(k) + · · ·+ annxn(k) + bn1u1(k) + · · ·+ bnmum(k)

(1.3.16)

and

y1 = c11x1 + · · ·+ c1nxn + d11u1 + · · ·+ d1mum
...

yp = cp1x1 + · · ·+ cpnxn + dp1u1 + · · ·+ dpmum

. (1.3.17)

Thus, a system with no inputs is described by

x(k + 1) = Ax(k). (1.3.18)
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1.4 Dynamical processes on networks

Many real world phenomena can be represented as dynamical systems on networks,

for example, the spread of information among a group of people, the movement of

money in a country’s economy, the traffic on roads, the flow of electricity over a

grid, the evolution of population in a ecosystem, among other situations [4].

Two main approaches are adopted when dealing with dynamical processes on net-

works [46]. In the first approach, we can identify each node of the network with

a single individual or element of the system, and in the second approach, we con-

sider dynamical entities such as people, information packets, energy or matter

flowing through a network whose nodes identify locations where the dynamical

entities transit. In both approaches, the dynamical description of the system can

be achieved by introducing for each node i a corresponding variable xi that char-

acterises its dynamical state.

Then, if each node represents a single individual, the variable xi may describe a

particular attribute of the individual. For the case of dynamical entities moving

in a network, the state variable xi generally depends on the entities present at

that node. We can enumerate all possible states xi = 1, 2, . . . , κ for each node,

and the knowledge of the state variable of all nodes in the network defines the

(microscopic) state of the system [46].

Thus, we can denote a particular configuration of the network at time t by the set

x(t) = (x1(t), x2(t), . . . , xn(t)), where n is the number of nodes in the network.

It is common that when referring to dynamics on networks we consider to have

independent dynamical variables on each node and that they are coupled together

along the edges of the network, this is, when writing an equation for the time

evolution of a variable xi the individual terms appearing in that equation involve

xi, other variables on vertex i, or one or more variables on a vertex adjacent to i

in the network [4].

In real systems, adding the dimension of dynamics to the characterisation of net-

works allows a better comprehension of the systems under analysis through con-

sidering the interplay between structural and dynamical aspects [47]. We briefly
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describe the general reasoning existing under a couple of well known examples of

dynamics on networks: the epidemic spreading and synchronisation models.

1.4.1 Epidemic spreading

Epidemic spreading has to do with the modelling for the spread of a particular

infectious disease in a population, with the objective of reproducing the actual

dynamics of the disease, thus being able to design proper strategies for controlling

and possibly eradicating the infection. One of the first works studying the effects

of the network topology on the patterns of a disease spread was form Pastor-

Satorras and Vespignani [48] where they analysed the effects of the topology of

the internet on the spreading of viruses. For disease spreading, there are two

models that commonly arise when studying this topic: the susceptible-infected-

removed (SIR) and the susceptible-infected-susceptible (SIS) models. We briefly

describe the ideas behind these models.

The approach for modelling epidemic spreading is based on compartmental models,

which are those models in which the individuals in a population are divided into

a set of different groups. The SIR model describes the phenomenon of diseases as

a result of the immunisation or death of infected individuals, assuming that each

of them can be in one out of three possible sates:

1. Susceptible (S): these are healthy people that can catch the disease if ex-

posed to infected persons.

2. Infected (I): those individuals that already have the disease.

3. Removed (R): this term referrers to individuals that cannot get (or passes

it on) the disease, either because she becomes immune or dies.

Once an individual catches the infection, she moves into the infected class. This

model is based on two parameters: the transmission rate t and the recovery rate

r, and it assumes that the individuals live at the sites of a given network. Then

the process starts via infection of neighbouring individuals, which happens with a

rate t and is expressed as
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S(i) + I (j)
t−→ I(i) + I(j), (1.4.1)

where i and j are neighbours, and the recovery occurs with a rate r and is expressed

as

I(i)
r−→ R(i). (1.4.2)

Since in reality not all diseases confer immunity to their survivors, an individual

can catch the same disease more than once, this situation is reproduced by the SIS

model by considering only two states in the process: susceptible (S) and infected

(I). In the SIS model, susceptible individuals catch the infection and move into

the infected state, becoming again susceptible after a period of time in which they

recover, and finally, they are again exposed to the epidemic. The expressions for

the SIS model are

S(i) + I (j)
t−→ I(i) + I(j) (1.4.3)

which reflects the infectious part of the process, and

I(i)
r−→ S(i) (1.4.4)

that accounts for the consideration that an infected individual becomes susceptible

after a period of time.

These two models have different dynamics once an infection is introduced into a

population. For the SIR model, the maintenance of the infection in a closed pop-

ulation is impossible due to the depletion of susceptible as the epidemic spread

through the population, meanwhile in the SIS model the disease can persist in-

definitely circulating around the population. As these dynamics are different, the

information obtained by the models is also different. In the SIR model we may

be interested in the fraction of individuals (with respect to the size of susceptible

people) who have caught the disease after it declines to zero, and in the case of SIS
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model we might be interested in the boundary between values of the parameters

in which the disease persists and those in which it does not. There is evidence

that shows that the behaviour of both models occurring on complex topologies is

the same as far as the existence of critical points and the nature of transition is

concerned [47].

1.4.2 Synchronisation

Collective dynamics and synchronisation in large networks is a topic widely studied

in different contexts, from biology to electronic circuits, and even the collective

human behaviour present in some situations. In the synchronisation phenomenon

many actors or components of a system adjust a given property of theirs, due to

a suitable coupling configuration, or to an external force.

Synchronisation can be studied by applying the so called master stability function

approach which was introduced for arrays of coupled oscillators and extended

to the case of complex networks of dynamical systems coupled with arbitrary

topologies [47, 49].

In this approach, a generic network of n coupled dynamical entities is considered.

Each unit i has a m-dimensional vector field associated called xi ruled by a local

set of ordinary differential equations

ẋi = fi(xi), (1.4.5)

which defines the equation of motion

ẋi = fi(xi)− c

n∑
j=1

CijH(xj), i = 1, . . . , n (1.4.6)

where H : Rm → Rm is a vectorial output function, c is the coupling strength,

and Cij ∈ R are the elements of a n × n symmetric connectivity matrix C with

strictly positive terms in the main diagonal, this matrix specifies the strength and

topology of the underlying connection linking. The coupling matrix is suitable
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related with other matrices used for defining the topology of the network such as

the adjacency and the Laplacian matrices [47].

The main assumption is that the network is made of identical systems, this means

that the evolution function f is the same for all the nodes in the network, thus

ensuring the existence of an invariant set xi(t) = x(t) for all i that represents the

complete synchronisation manifold S [47]. For the case of C being symmetric, we

let λi[vi] the set of real eigenvalues (of associated orthonormal eigenvectors) such

that C vi = λivi. Then the zero-row condition ensures that:

• the spectrum is semi-positive: λi ≥ 0 ∀i,

• λ1 = 0 with associated eigenvector v1 = ± 1√
n
{1, 1, . . . 1}T that defines the

synchronisation manifold S ,

• the rest of eigenvalues λi, i = 2, . . . , n, have associated eigenvectors vi span-

ning all the other directions of the m×n dimensional phase space transverse

to S .

Master stability function arguments are used as a framework for the study of

synchronised behaviours in complex networks, and mainly for gaining knowledge

about the interplay between complexity in the overall topology and local dynamical

properties of the coupled units. There are many situations, such as pulse-coupled

networks of neurons, and the interest in these phenomena has lead to the study

of non-linear coupled systems with the same aim of relating topology to the syn-

chronisation properties of the network.

Collective behaviours in networks of ordinary differential equations have been used

to model chemical reactions, ecological systems, electronic circuits, neurons and

cardiac cells systems, self-organisation phenomena, travelling waves, opinion form-

ation in social networks, consensus processes, among others [47].

1.5 Consensus

One of the fields where consensus problems in groups of experts were first formally

studied is management science and statistics, being one of the most cited works
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in this area the article “Reaching a consensus” from DeGroot, M. H. published

in 1974 [24]. Another field where consensus problems have been largely studied is

computer science, and from this interest, the foundations of what we now know as

distributed computing, were established [6].

With the advent of technological means (miniaturisation of computing, commu-

nication, sensing, and actuation) that allow massive collections of data, the results

from systems and control theories on consensus, have being applied to analyse,

simulate and synthesise different kinds of networked systems where cooperative

behaviour is an important feature for their performance [13]. These theories, to-

gether with network theory, form a powerful alternative framework from which

such systems can be studied.

In networks of agents or dynamic systems, “consensus” means to reach an agree-

ment regarding a certain amount of interest that depends on the state of all agents.

A “consensus algorithm” (or protocol) is an interaction rule that specifies the in-

formation exchange between an agent and all of its neighbours on the network [7].

Agreement or consensus is one of the fundamental problems in synchronisation of

complex systems, where their constituents are to agree on a joint state value. For

this purpose, different models (also called algorithms or protocols) have been de-

veloped like the Axelrod [50] and the voter models [51]. In the Axelrod model it is

assumed that the more similar two actors are, the more alike they are (homophily),

this model shows both consensus and fragmentation into clusters as possible equi-

libria states [52]. The voter model is an stochastic approach that assumes that an

actor has two opinions and its dynamics consists of randomly selecting one node

and assigning an opinion to it, which are represented by the spins values ±1, of

one of its nearest neighbours, which in turn are selected also by random [53].

One of the works that offers a graph theoretic perspective of the problem is the one

from Mesbahi and Egerstedt [3], which we mainly follow to stablish the general

framework of the consensus model on simple undirected networks.

1.5.1 Consensus model and agreement state

As starting point, we consider the well know meet-for-dinner problem [13]. This

problem formulates the situation when a group of friends decides to meet for dinner
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at a particular restaurant or place, but fail to specify a precise time to meet. On

the afternoon of the dinner appointment, all of the individuals realise that they

are uncertain about the time the group will meet. A centralised solution for this

problem would be for the group to have a conference call, to poll all individuals

regarding their preferred time for dinner, and to average the times proposed to set

a time when the group would meet that takes into account all the proposals.

A distributed solution to the problem would be for each individual to call, one

at a time, a subset of the group. Given his/her current estimate of the time,

i.e., his/her instantiation of the coordination variable, the individual may update

his/her estimate of the meeting time to be a weighted average of his/her current

meeting time and that of the person with whom he/she is conversing. The question

is to determine under what conditions this strategy would enable the entire team to

converge to a consistent meeting time. The coordination variable in the meet-for-

dinner problem is the time when the group will meet. The particular time is not

what is important, but rather that each individual in the group has a consistent

understanding of that information.

This problem has been shown in [13] to be solved by the distributed strategy,

pointing out that for such strategy to be effective, the group must act in a cooper-

ative way so they can agree on the value of the variable of interest: they reach

consensus. The information consensus guarantees that the group sharing inform-

ation over a network topology have a consistent view of information critical to

the coordination task. To achieve consensus, there must be a shared variable of

interest, called the information state, as well as appropriate rules (algorithm or

protocol) for negotiating to reach consensus on the value of that variable.

The significance of the agreement protocol is twofold. On one hand, agreement

has a close relation to a host of networked problems such as flocking, rendezvous,

swarming, distributed estimation, among others. On the other hand, this protocol

provides a concise formalism for examining means by which the network topology

dictates properties of the dynamic process evolving over it [3].

A networked system is a collection of n dynamic units that interact over an inform-

ation exchange network for its operation. This network can be modelled through

a graph G = (V, E) where nodes represent agents and edges are inter-agent in-

formation exchange links. For the system to reach consensus, there must be an
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agreement protocol for the exchange of information among the nodes trough the

relative information-exchange links. The rate of change in the state of each node

is lead by the sum of its relative states with respect to a subset of other nodes

(neighbours).

To illustrate this situation, let the network G = (V, E) be the one represented in

figure 1.5.1. In this network, for example, node 1 has as neighbours nodes 2 and 3,

thus it has links with both nodes meaning that there is an exchange of information

between them. The relative state of this node, x1, with respect to the state of node

2, x2, is given by the difference (x2 − x1). Similarly, the relative state of node 1

with respect to node 3 is (x3 − x1). The rate of change of the states of node 1,

denoted as ẋ1, is given by the sum of the relative states of node 1 with respect to

its neighbours, this is, ẋ1 = (x2 − x1) + (x3 − x1).

Figure 1.5.1: Illustration of the agreement protocol over a network.

Denoting the scalar state of node i as xi ∈ R, we have

ẋi(t) =
∑
j∈N(i)

(xj(t)− xi(t)) , i = 1, . . . , n, (1.5.1)

where N(i) is the set of nodes neighbours of node i in the network.

If we consider a simple, undirected network, the adjacency matrix of such network

is symmetric, thus we can express the rate of change of the states of node i as

ẋi(t) = −
n∑
j=1

aij(t) (xi(t)− xj(t)) , i = 1, . . . , n, (1.5.2)
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where aij(t) is the (i, j) entry of the adjacency matrix A associated with G at

time t. We can see that aij = 0 would denote that node i cannot exchange

information with node j, otherwise aij = 1. Since we are considering a fixed

communication topology, the values of aij are time invariant, and the overall system

can be represented by

ẋ(t) = −L(G)x(t), (1.5.3)

where the positive semidefinite matrix L(G) is the Laplacian of the underlying

interaction network for the nodes of the system, and x(t) = (x1(t), . . . , xn(t))T ∈
Rn is the vector of states values of the nodes at time t. We call the expression

(1.5.3) the agreement dynamics or consensus model.

In this consensus model, the dynamics of each vertex in the network is pulled

toward the states of the neighbouring vertices, and all the elements of the system

asymptotically reach a weighted average of their initial states, which corresponds

to the fixed point of their collective dynamics (see example in fig. 1.5.2). This

state of agreement or consensus is formally defined as follows.

Definition 1.3. The agreement set A ⊆ Rn is the subspace span {1}, that is,

A = {x ∈ Rn |xi = xj, for all i, j } . (1.5.4)

Figure 1.5.2: Example of consensus process on a star-like network with 50 nodes.
Each node were assigned their number-label as initial state, i.e., node 1 has 1 as
initial state value, node 2 has 2 as initial state value, and so forth. All the system
reach the agreement value of 25 as consensus.
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1.5.2 Convergence

We now review the mechanism by which the dynamics described on the previous

page, over simple undirected networks, guides the nodes of the system to the

agreement state or consensus [3].

We recall from (1.2.15) that the spectrum of the Laplacian matrix for a connected

undirected network G = (V, E) has the form 0 = λ1 ≤ λ2 ≤ · · · ≤ λn with 1

as the eigenvector corresponding to the zero eigenvalue λ1. We note that L(G)

is symmetric and that L(G)1 = 0 for an arbitrary undirected network G. Let

Φ = [φ1φ2 · · · φn] be the matrix consisting of normalised and mutually ortho-

gonal eigenvectors of L(G), corresponding to its ordered eigenvalues, as defined

in (1.2.2.2). Furthermore, let Λ = diag (λ1, λ2, . . . , λn) be the diagonal matrix of

eigenvalues of the Laplacian (as defined on page 32).

Using the spectral factorisation of the Laplacian, one has

e−L(G)t = e−(ΦΛΦT )t = Φe−ΛtΦT = eλ1tφ1φ
T
1 +eλ2tφ2φ

T
2 + · · ·+eλntφnφTn . (1.5.5)

So, the solution of (1.5.3) with initial values x(0) = x0 is

x(t) = e−L(G)tx0 (1.5.6)

which can be decomposed along each eigen-axis as

x(t) = eλ1t(φT1 x0)φ1 + eλ2t(φT2 x0)φ2 + · · ·+ eλnt(φTnx0)φn. (1.5.7)

The following theorem states the convergence of the agreement protocol for static

undirected networks where λ2 plays a key role [3].

Theorem 1.4. Let G = (V, E) be a connected graph. Then the (undirected)

agreement protocol (1.5.3) converges to the agreement set (1.5.4) with a rate of

convergence that is dictated by λ2(L).
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Proof. The proof follows directly from (1.5.7) by observing that for a connected

graph λi > 0 for i ≥ 2; as always, λ1 = 0. Thus

x(t)→
(
φT1 x0

)
φ1 =

1Tx0

n
1 (1.5.8)

as t → ∞, and hence x(t) → A (see fig. 1.5.3). As λ2 is the smallest positive

eigenvalue of the graph Laplacian, it dictates the slowest mode of the convergence

in (1.5.8).

As the states of the vertices evolve toward the agreement set, we have

d

dt

(
1Tx(t)

)
= 1 (−L(G)x(t)) = −x(t)TL(G)1 = 0. (1.5.9)

As such, the quantity 1Tx(t) =
∑

i xi(t), which means, the centroid of the network

states, evaluated for any t ≥ 0, is a constant of motion for the agreement dynamics

(1.5.3). Furthermore, the proof of theorem (1.4) indicates that the state trajectory

generated by the agreement protocol converges to the projection of its initial state,

in the Euclidean norm, onto the agreement subspace, since

arg min
x∈A
‖x− x0‖ =

1Tx0

1T1
1 =

1Tx0

n
1. (1.5.10)

Figure 1.5.3: Illustration of the trajectory of the agreement protocol, which retains
the centroid of the states of the nodes as its constant of motion.
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The general form of the solution to the agreement dynamics (1.5.7), indicates

that in order to have convergence to the agreement subspace from an arbitrary

initial condition, it is necessary and sufficient to have λ2 > 0. Since positivity

of λ2 corresponds to the connectivity of the network, we can conclude that the

minimum order structure needed for asymptotic convergence to consensus is an

interconnected network containing a spanning tree.

Proposition 1.5. A necessary and sufficient condition for the agreement protocol

(1.5.3) to converge to the agreement subspace (1.5.4) from an arbitrary initial con-

dition is that the underlying graph contains a spanning tree.

Considering the previous analysis, the (average) consensus value for a network

under the last conditions is a convex combination of the initial states of the nodes,

and we say that consensus is achieved or reached by the nodes of the network if, for

all the initial states xi(0) and all i, j = 1, . . . , n, |xi(t)− xj(t)| → 0, as t→∞ [13].

1.5.3 Discrete time model of consensus

When the communication among the agents or actors in the network occurs at

discrete instants, the information state is updated using a difference equation.

The most common discrete-time consensus model is of the form [3,6–8,13,15]

xi(k + 1) = xi(k) + ε
∑
j∈Ni

aij (xj(k)− xi(k)) (1.5.11)

where xi(k) denotes the state of node i at the communication event k, ε > 0 is the

step size and aij is defined as the (i, j) entry of the adjacency matrix A associated

with the network G.

The discrete collective dynamics of the network under this model can be written

as

x(k + 1) = Px(k). (1.5.12)
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The matrix P , know as the Perron matrix [7], is constructed as

P = I − εL (1.5.13)

where I is the identity matrix of order n. The following lemma from [7] states the

properties of matrix P :

Lemma 1.6. Let G = (V, E) be a digraph with n nodes and maximum degree

∆ = maxi

(∑
j 6=i aij

)
. Then the Perron matrix P with parameter ε ∈

(
0, 1

∆

]
satisfies the following properties.

1. P is a row stochastic non-negative matrix with a trivial eigenvalue of 1;

2. All eigenvalues of P are in a unit circle;

3. If G is a balanced graph2, then P is a doubly stochastic matrix;

4. If G is strongly connected and 0 < ε < 1
∆

, then P is a primitive matrix.

Proof. Since P = I − εL, we have P1 = 1− εL1 = 1 which means the row sums

of P is 1. Moreover, 1 is a trivial eigenvalue of P for all graphs. To show that P is

non-negative, notice that P = I − εK + εA due to the definition of the Laplacian

matrix (1.2.14), εA is a non-negative matrix. The diagonal elements of I − εK
are 1 − εki ≥ 1 − ki

∆
≥ 0 which implies I − εK is non-negative. Since the sum

of two non-negative matrices is a non-negative matrix, P is a non-negative row

stochastic matrix.

To prove part 2, we notice that all eigenvectors of P and L are the same. Let λj

be the j th eigenvalue of L, then the j th eigenvalue of P is

µj = 1− ελj. (1.5.14)

Based on Gershgorin theorem (see Appendix on page 162), all eigenvalues of L are

in the disk |s−∆| ≤ ∆. Defining z = 1− s
∆

, we have |z| ≤ 1 which proves part 2.

2A directed graph is called balanced if, for every node, its in-degree is equal to its out-degree.

53



If G is a balanced digraph, then 1 is the left eigenvector of L, or 1TL = 0. This

means that 1TP = 1T − ε1TL = 1T which implies the column sums of P are 1.

If we combine this result with the result in part 1, we have proved part 3.

To prove part 4, we note that if G is strongly connected, then P is an irreducible

matrix [54]. To prove that P is primitive, we need to establish that it has a single

eigenvalue with maximum modulus of 1. For all 0 < ε < 1
∆

, the transformation

µ = 1− εs maps the circle |s−∆| = ∆ into a circle that is located strictly inside a

unit disk passing trough the point µ = 1. This means that only a single eigenvalue

at µ1 = 1 can have modulus of 1.

1.6 Leader-Follower Consensus

Leader-follower models were initially used for solving problems related with con-

trolling networks of interacting agents, like mobile robots that need to perform

a task in a coordinated fashion [55, 56]. The problem is approached by consider-

ing the concept of heterogeneous networks, which means, the set of agents in the

system is partitioned into two subgroups: the group of leaders and the group of

followers. The idea is that the followers execute a relatively simple and decentral-

ised control protocol, designed with the purpose of keeping the team together, and

at the same time, the leaders are assumed to have access to global information and

their movements are to be defined in such a way as to take an overall performance

objective into account [57].

Then, if we consider that a network has one or more nodes that drive the system to

a certain state, consensus is then referred to as leader-follower consensus. The dif-

ference between a leaderless consensus process as stated in (1.5.3) and a consensus

with one or multiple leaders is that the first converges to the average of the initial

values of the states of the agents while a consensus with one leader converges to

the leader state (reference state), and for a consensus with multiple leaders the

system converges to the convex hull spanned by the states of the nodes acting as

leaders [30], this problem is known as controlled agreement and is formulated in

the following way [58].

If we consider a network G = (V, E) with n nodes, m edges, and bidirectional
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communication links having weight equal to one, the state of node i at time t is

represented by xi(t) whose dynamics is described as

ẋi(t) = ui(t), i = 1, . . . , n, (1.6.1)

being ui(t) the control input for node i. If we let node i to have access to the

relative state of information with respect to its neighbours N(i), this can be used

to compute its own control input. Lets assume that the control input takes the

form

ui(t) =
∑
j∈N(i)

(xj(t)− xi(t)) , i = 1, . . . , n, (1.6.2)

which allows node i to access the relative state of information with respect to

its neighbours and leads to the solution of the rendezvous problem [30]. This

control input happens to be the expression (1.5.1) for the consensus model, so the

dynamics (1.6.1) and the control input (1.6.2), can be represented together as

ẋ(t) = −L(G)x(t), (1.6.3)

being x(t) the state vector of the system, and L the associated Laplacian L(G),

which has the properties as described on page 50.

For a system with multiple stationary leaders3, the complete set of nodes of the

system is divided into two disjoint sets: the set of leaders Vl ⊂ V and the set of

followers Vf ⊂ V . Lets consider that we label all the nodes in such a way that the

first nf < n represent those nodes called the followers and the rest nl = n − nf
are the leaders, being the total number of agents or actors n = nf + nl. Then we

have the vector of nodes states

x =

[
xf

xl

]
(1.6.4)

3These nodes can also be called anchors or nonconformist agents, depending on the context
the model is used.
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where xf ∈ Rnf are the states of the followers and xl ∈ Rnl are the states of the

leaders. Leadership designations induce a partition of the incidence matrix B(G)

as

B(G) =

[
Bf

Bl

]
, (1.6.5)

where Bf ∈ Rnf×m, and Bl ∈ Rnl×m are the incidence matrices of the subgraphs

induced by the partition of the node set V into followers and leaders. The un-

derlying assumption of this partition, without loss of generality, is that leaders

are indexed last in the original network. As a result, the correspondent graph

Laplacian L(G) of the system can be partitioned as

L(G) =

[
Lf lfl

lTfl Ll

]
. (1.6.6)

where Lf = BfB
T
f ∈ Rnf×nf , Ll = BlB

T
l ∈ Rnl×nl and lfl = BfB

T
l ∈ Rnf×nl .

Then, the control system is the controlled agreement dynamics, also called leader-

follower system, where followers evolve trough the Laplacian-based dynamics

ẋf (t) = −Lfxf (t)− lflu(t), (1.6.7)

where u(t) = xl(t) is the exogenous control signal dictated by the leaders to the

followers system.

Since we consider the leaders are stationary, the states of these remain unchanged

and their dynamics are given by

u̇i(t) = 0, for all i ∈ Vl, (1.6.8)

and this consideration leads us to the form of the dynamic of the controlled system

expressed in matrix form as
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[
ẋf (t)

u̇(t)

]
= −

[
Lf lfl

0 0

][
xf (t)

u(t)

]
. (1.6.9)

The last expression corresponds to zeroing-out the rows of the original graph Lapla-

cian associated with the leaders, this transformation can be accomplished via a

reduced identity matrix Qr, with zeros at the diagonal elements that correspond

to the leaders, with all other diagonal elements being kept as one, this is,

[
Lf lfl

0 0

]
= QrL(G), (1.6.10)

where

Qr =

[
Inf 0

0 0

]
, (1.6.11)

and all the zero matrices are of proper dimensions.

The following theorem states the equilibrium point for the dynamics of the leader-

follower system with stationary leaders, the proof of this theorem is not included

here but can be consulted in [59].

Theorem 1.7. Given fixed leader positions xl, the equilibrium point under the

follower dynamics in (1.6.7) is

xf = −L−1
f lflxl, (1.6.12)

which is globally asymptotically stable.

As a result of the previous theorem, and considering that all leaders are stationary,

the followers would asymptotically approach the equilibrium point

xef = −L−1
f lflxl. (1.6.13)
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Since xef is an equilibrium, we have that

ẋei = 0 = −
∑
j∈N(i)

(
xei − xej

)
(1.6.14)

for all nodes followers4. This means that

xei =
1

|N(i)|
∑
j∈N(i)

xej , (1.6.15)

and this is, the equilibrium point xei for a node follower i lies in the convex hull

spanned by its neighbours (may the be leaders or followers).

Now, considering the complete system, if every follower ends up in the convex hull

spanned by its neighbours, and the only nodes who do not need to satisfy this are

the leaders, every follower will end up in the convex hull, denoted by Ωl, spanned

by the leaders (see fig. 1.6.1). This result was established and proved in [30, 60],

and formalised in the following lemma:

Lemma 1.8. Given a connected, static network topology with multiple static lead-

ers, the followers will asymptotically end up in the convex hull spanned by the

leaders, i.e.

xei ∈ Ωl, i = 1, . . . , nf . (1.6.16)

4The notation implies that if node j is a leader, then xej represents its static position, even
though, strictly speaking, is not an equilibrium point, but a static input.
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Figure 1.6.1: Convergence of followers (small blue dots) to the convex hull spanned
by the leaders’ states (red squares) in a network with six leaders. The convex hull
is shown by the discontinuous line segments connecting the leaders. The lines
between followers denotes edges.

Summary

The aim of this chapter was to briefly cover two main aspects for the study of

networks: their structure, and their dynamics. We started by defining some basic

concepts from graph theory which will be used through this work. Regarding

the dynamics on networks, we have briefly defined what a dynamical system is,

and we have showed some examples of the possible dynamics that can modelled

on a network, such as an epidemic spreading process. Finally we have dedicated

more extensive part to define the basis of the consensus model, its convergence

conditions and its variant to take into account the case when some actors take

a leadership role. These concepts will serve as basis for our generalised leader-

follower consensus model and the analysis of the impact of peer-pressure in the

system. All the theory presented can be studied more deeply by going into the

references provided.
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In the following chapter we will present a review of some of the most known

works on distributed algorithms, the agreement problem, multiagent systems, and

cooperative control that paved the way to what is currently known as distributed

control for multi-agent systems, and from which, the consensus model used in this

thesis, comes from.
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Chapter 2

CONSENSUS AND

COOPERATIVE CONTROL IN

NETWORKED SYSTEMS - A

REVIEW

Consensus models have been studied by different areas, but perhaps distributed

computation was one of the first ones where consensus-like models were used for

tackling problems where cooperative behaviour among different parts of a system

is needed. The recent availability of big amounts of data, an increasing interest in

controlling unmanned vehicles, and the development of network science framework

have contributed to a new wave of research dealing with cooperative behaviour in

complex systems, where consensus has attracted the attention of many researches.

We review some of the most important works that provided the grounds for what

we now call cooperative control of networked systems (see figure 2.0.1). We start

by touching the roots with the definition of distributed algorithms, following by

some works on the agreement problem in multiagent systems, and finally the main

theme of the thesis: the consensus protocol in networks, which is the result of

applying the theory of distributed algorithms and agreement problems, to mul-

tiagent networked systems. The knowledge coming from these contributions is

being used for studying different kinds of complex systems, such as physiological

systems, large-scale energy systems, fleets of vehicles, diffusion of information in
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online social networks, to mention a few. Here network science offers a very handy

set of tools that has been playing an important role in modelling, simulating and

analysing such kind of systems.

Figure 2.0.1: Main areas of knowledge contributing to the cooperative control of
multiagent networked systems field.

2.1 Distributed algorithms

Problems of reaching an agreement between different parts of a system have been

discussed among different areas, but one of the first disciplines where these prob-

lems arouse was related with distributed algorithms, a research area that has been

called Distributed Computing, which grounded the framework for studying distrib-

uted systems [61].

The fundamental problem here is to develop algorithms that let a set of processes

to seek cooperative behaviour on some common task, this is due, in modern com-

puting, a program usually is executed on several processes [62]. To cooperate on

62



some common task, the processes need to exchange messages or information using

some communication network. From this perspective, processes are considered as

abstractions that may represent different elements like a computer, a processor

within a computer, or a thread of execution (a sequence of instructions that may

execute in parallel with each other) within a processor. The major difficulty in

the area is to design an algorithm that allows a system to reach a robust kind

of cooperation, despite failures or disconnections of some processes that are in-

herent to most distributed environments. When a subset of processes fails or got

disconnected, all those processes that are still operating have the challenge to syn-

chronize their activities in such a way that remain consistent, or in other words,

the cooperation process must allow to tolerate partial failures.

As a mean for designing distributed algorithms, the underlying physical system is

abstracted as a relation of two sets: processes which are the active entities that

perform computations, and links, being the exchanging of messages trough some

physical or logical communication network. Describing the relevant components

on an abstract way, identifying their intrinsic properties, and characterising their

interactions leads to what is call a system model [62]. Thus, given a system

model, the aim is to build abstractions that capture recurring interaction patterns

in distributed applications. This kind of cooperation among processes can often

be modelled as a distributed agreement problem and its corresponding proposes

of solution are called distributed algorithms. A distributed algorithm is conceived

as a collection of distributed automata (one automaton per process). A definition

of what an automaton is would be: [63]

Let Q and A be non-empty finite sets. A finite automaton is a 5-tuple A =

(Q,A, f, q0,F) where:

1. Q is a finite set of states.

2. A is a finite set of input alphabet.

3. f : Q× A→ Q is the transition function.

4. q0 ∈ Q is the start or initial state.

5. F ⊆ Q is the set of accepting or final states.
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Where, for each possible combination of state and input symbol, the transition

function f specifies exactly one next state. It is important to note that the auto-

maton A must have at least one initial state, but for its set of final states can be

empty, in which case it is said that the automaton has no accepting states. A way

of representing an automaton is by a graph called state diagram, as can be seen

in figure 2.1.1.

Figure 2.1.1: State diagram of a simple vending machine to represent the process
of receiving coins. All possible states are represented by nodes and the possible
ways for reaching them are represented by directed links. The initial state here
is represented by node 0c with an arrow to its left side, while the final state is
represented by a double circled node.

An automaton regulates the way that a process executes its computational steps,

i.e. how it reacts to a message. The behaviour of each peer, characterized by the

set of messages that is capable of producing and accepting, the format of each

message, and the legal or accepted sequences of messages, is called protocol. The

purpose of a protocol is to guarantee the execution of a distributed algorithm. It is

not assumed that processes have access to any sort of physical clock but, however,

it is still possible to measure the passage of time on the transmission and delivering

of messages: time is defined with respect to communication (the moment when

the message is produced and received) and is called logical time.
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Then, as the aim is to build appropriate abstractions, the protocol must succeed in

capturing the recurring interaction patterns in distributed applications, this task

has been reached by the protocol for distributed agreement or consensus, which

has been used to model situations where the parts of a system need to agree on a

value related to a variable of interest.

2.2 Agreement problem and multi-agent systems

This problem was first defined in 1982 as “The Byzantine Generals Problem” [64]

where the problem of handling malfunctioning components in computer systems

were modelled in terms of a group of generals of the Byzantine army camped with

their troops around an enemy city. Communication was only trough a messenger,

and the generals were required to agree upon a common battle plan. However, it

was considered that one or more of these generals could be traitors and would look

to confuse the others, then the problem was to find an algorithm to ensure that

the loyal generals would reach agreement. The use of graphs in analysing different

solutions for this problem was a constant.

Later Lynch in 1996 [61] published a work on distributed algorithms where merged

different concepts in a general framework and used the concept of network to denote

the abstraction of the systems studied, applying graph theory tools for analysing

distributed algorithms. In this work, the consensus problem is also indistinctly

refereed to as the agreement problem, and is formulated as follows:

Assume that the system or network is an n-node connected undirected graph with

processes 1, . . . , n, where each process knows the entire graph. Each process starts

with an input from a fixed value set V in a designated state component; also assume

that, for each process, there is exactly one start state containing each input value.

The goal for the processes is to eventually output decisions from the set V, by

setting special decision state components to values in V. Links were assumed to

be perfectly reliable, i.e. all the messages that were sent were also delivered.

Agreement problems must satisfy some properties: [62]

• Termination: every correct process eventually decides some value.
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• Validity: If a process decides x, then x was proposed by some process.

• Integrity: No process decides twice.

• Agreement: no two correct processes decide differently.

So, each process has an initial value that proposes for the agreement, trough the

first, or primitive, proposition. The primitive values are provided to the processes

and the act of proposing values is local. This act activates a transmission of events

through which the processes exchange their proposed values in order to eventually

reach an agreement or consensus.

Distributed algorithms, and mainly agreement processes models were later used

in artificial intelligence for analysing the dynamics of autonomous agents. One

definition of what an autonomous agent represents was given by Franklin and

Gasser in 1997 [65]: “An autonomous agent is a system situated within and as

part of an environment that senses that environment and acts on it, over time, in

pursuit of its own agenda and so as to effect what it senses in the future.”

The definition of agent points out an intrinsic characteristic of this object: its

ability to act on its own environment, which leads to the property of being able to

interact with other agents within the same system. Here, the analysis of dynamic

behaviour of different complex systems conceptualised as multi-agent systems is

achieved by applying the network systems framework to model the underlying

interactions among agents. Multi-agent systems are characterized by a set of

autonomous agents, each with local information, and the ability to perform an

action looking to coordinate their own decisions with the decisions taken by the

rest of the agents, in order to achieve a desired global behaviour. Then, consensus

is a suitable tool to model and simulate the collective behaviour of this particular

kind of systems where reaching an agreement is important for their operation.

Automatic negotiation is useful in multi-agent systems as it provides a method

of aggregating distributed knowledge. That is, in a problem where each agent

has different local knowledge, negotiation can be an effective method for finding

the desired global course of action which maximizes the utility without having to

aggregate all local knowledge in a central location. This metaphor of autonomous

agents cooperating in such a way, looking to solve a problem that cannot be solved
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by any one agent by itself (due to limited abilities or knowledge) was the central

metaphor from which the field of distributed artificial intelligence, later known as

multi-agent systems, appeared [66].

Another work on agents states that the aim of multi-agent systems is to find

methods that make possible to build complex systems composed by autonomous

agents who, despite of operating on local knowledge and having limited abilities,

are capable of reaching the desired global behaviours [67].

A common assumption about preferences of agents is that they are captured by

an utility function that provides a map from the states of the world (all possible

states) to a real number. Thus, if we let V be the set of states in the world the

agent can perceive, then the utility function of agent i can be stated as

ui : V→ R (2.2.1)

The states are defined as those pertaining to the world and that the agent can

perceive. Given an utility function for an agent, an order of preference can be

defined for the choices of the agent over the states of the world, by comparing the

utility values of two states so it can be determined which one is preferred by the

agent. This preference order has the following properties:

• Reflexive: ui(s) ≥ ui(s).

• Transitive: If ui(a) ≥ ui(b)andui(b) ≥ ui(c) then ui(a) ≥ ui(c).

• Comparable: ∀a, beither ui(a) ≥ ui(b) or ui(b) ≥ ui(a).

The utility functions can be used to describe the behaviour of agents and also is

useful for capturing the various trade-offs that an agent must make, along with

the value or expected value of its actions.

2.3 Consensus in networked systems

Convergence to a common value regarding a certain variable of interest among

the components of a system is called consensus or agreement. This model has
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been proposed as a solution to coordination and distributed control of complex

systems where cooperative behaviour is the central paradigm, thus the concept

of cooperative control has been coined among the scientific community to referrer

to this kind of problems. Cooperative control is concerned with systems that

can be characterised as a collection of decision-making components with limited

processing capabilities, locally sensed information, and limited inter-component

communications, all seeking to achieve a collective objective [68]. The primary

distinguishing feature of a cooperative control system is distribution of information,

and a secondary feature is complexity. The recent boom on research motivated

by the application of mobile unmanned systems operating with either complete

autonomy or semi-autonomy has been reflected in the number of works on the

area.

We can trace the origins of the recent interest on modelling distributed cooperative

behaviour back to Reynolds’ work [69]. He proposed a model for simulating the

aggregate motion of a flock of birds, a herd of land animals or a school of fishes.

The way he approached the problem was based on considering every animal being

a particle (called boid) and all the group’s motion being a distributed behavioural

model where each particle would be an independent actor navigating according to

its local perception of the dynamic environment, thus the aggregate motion of the

entire flock, herd or school was the result of the interaction of the relatively simple

behaviours of the individual simulated animals or boids ruled by three principles

(see fig. 2.3.1):

1. Obstacle avoidance: avoid collisions with nearby flockmates.

2. Alignment/velocity matching: attempt to match alignment/velocity with

nearby flockmates.

3. Flock cohesion: attempt to stay close to nearby flockmates.
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Figure 2.3.1: Illustration of the rules for Reynolds model. The boids try to: (left)
avoid obstacles within certain radius (centre) match their alignment/velocity to
other boids within certain radius (right) stay close to other boids within certain
radius

Later, Vicsek et al. proposed a discrete mathematical model of n autonomous

agents moving in the plane with the same time speed but different headings (dir-

ections) following the work of Reynolds. The only rule of the model was “at each

time step a given particle driven with a constant absolute velocity assumes the

average direction of motion of the particles in its neighbourhood of radius r with

some random perturbation added” (see fig. 2.3.2) [70]. They provided results

from computational simulations which demonstrated that the proposed nearest

neighbour rule lead all agents to eventually move in the same direction despite the

absence of centralised coordination and despite the fact that each agent’s set of

nearest neighbours changed with time as the system evolved.
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Figure 2.3.2: Illustration of Vicsek model. Any given particle (blue dot) assumes
the average direction of motion of the particles in its neighbourhood of radius r
(green dots). Those particles out of the neighbourhood (red dots) do not make
any influence.

Although the concept of consensus was previously studied by DeGroot [24], the

modern theoretical framework, including graph theoretic methods proposed for

solving consensus problems for networked dynamic systems, was introduced by

Olfati-Saber and Murray [15], following the PhD dissertation of Fax [71], and

other previous works of Fax and Murray [12], Jadbabaie et al. [72], Mesbahi. [73],

and Olfati-Saber [74]. These works, containing different concepts from distributed

algorithms, consensus protocols, graph theory, multi-agent systems and control

theory, were among the first modern attempts to show a multidisciplinary ordered

set of tools for analysing the distributed control of complex systems. From these

publications, one of the first general definitions of consensus (and its protocol) in

networked systems was given:

“In networks of agents or dynamic systems, consensus means to reach an agree-

ment regarding a certain amount of interest that depends on the state of all agents.

A consensus algorithm (or protocol) is an interaction rule that specifies the inform-

ation exchange between an agent and all of its neighbours on the network” [7].

Shamma compiled different works on cooperative control of networked systems

including the formal definition of consensus previously given by Olfati-Saber and

Murray [68]. In this work it is stated that one of the main motivations for the

growing number of research groups studying cooperative control of systems was

a (U.S.) National Research Council committee’s study on Network Science for
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Future Army Applications in 2005, which stated that the Army asked the NRC

to conduct a study to define advanced operating models and architectures for

future Army laboratories and centres focused on network science, technologies, and

experimentation (NSTE). Some of the members of the committee were: Albert-

Laszlo Barabasi, Richard M. Murray and Duncan J. Watts, and from this, the

close link between cooperative control and network science on recent years can be

explained.

Mesbahi in previous works pointed out that the graph Laplacian and its spec-

tral properties were important concepts that played a central role in convergence

analysis of consensus and alignment algorithms, reinforcing the idea that the in-

teraction geometry or structure of the systems has an important position in the

analysis and synthesis of networked multi-agent systems. He also had proposed

the dynamic extension of the theory of graphs as a framework to model distributed

dynamic systems where the topology of the interaction among its elements evolves

in time [73].

Other works applying graph theoretic techniques for mathematical analysis of

emergent behaviours were those from Fax and Murrray [75] and Desai et al. [76].

They defined the notion of an average heading vector in terms of graph Lapla-

cians, and showed that this idea lead to the Vicsek et al. model as well as to other

decentralised control models. In their approach, they modified Vicsek et al. model

by adding one agent labelled as 0, which acted as the group’s leader, moving at

the same constant speed but with fixed heading θ0.

There was an explosion of publications related with distributed cooperative control

of multiagent systems from the early 2000’s, a vast review of such works that

provide a broad picture about consensus problems in networks is given by Mesbahi

and Egerstedt [3], Olfati-Saber, Fax and Murray [7], Ren, Beard and Akins [8],

Ren and Beard [13], and Kocarev [6] which summarise the results from many

previous works and give a compact set of theoretical tools for boarding this research

question.

In order to understand the role of cooperation in performing coordinated tasks,

it has been pointed out that we need to distinguish between unconstrained and

constrained consensus problems [7]. An unconstrained consensus problem is simply

the alignment problem in which it suffices that the state of all agents asymptotically
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be the same. In contrast, in distributed computation of a function f(z), the state of

all agents has to asymptotically become equal to f(z), meaning that the consensus

problem is constrained. Olfati-Saber, Fax and Murray refer to this problem as the

f -consensus problem. The authors state that solving the f -consensus problem is

a cooperative task and it requires the willing participation of all the agents. So,

cooperation can be interpreted as “giving consent to providing one’s state and

following a common protocol that serves the group objective”.

The general consensus model on networks was proposed on the works of Olfati-

Saber and Murray [7]: the interaction topology of agents is represented using a

directed graph G = (V,E), with the set of nodes V = {1, 2, . . . , n} and edges

E ⊆ V × V . The neighbours of agent i are denoted by Ni = {j ∈ V : (i, j) ∈ E}.
According to the authors, a simple consensus algorithm that looks to reach an

agreement regarding the state of n integrator agents with dynamics ẋi = ui can

be expressed as a nth-order linear system on a graph

ẋi(t) =
∑
j∈Ni

(x(t)j − xi(t)) + bi(t), xi(0) = zi ∈ R, bi(t) = 0, (2.3.1)

and the collective dynamics of the group following the last protocol is written as

ẋ = −Lx, (2.3.2)

where L = [lij] is the graph Laplacian of the network and its elements are defined

as

lij =

−1 j ∈ Ni

|Ni| j = i
, (2.3.3)

being |Ni| the number of neighbours of node i (or the out-degree of node i).

They stated that an equilibrium of the system (2.3.2) is a state in the form

x∗ = (α, . . . , α)T = α1 where all nodes agree, and they showed that x∗ is a

unique equilibrium of (2.3.2) for connected graphs. Moreover, the consensus value
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is α = 1
n

∑
i zi, that is, equal to the average of the initial states. This implies

that, irrespective of the initial states of each agent, all agents reach an asymptotic

consensus regarding the value of the function f(z) = 1
n

∑
i zi. The role of pro-

tocol (2.3.1) is to provide a systematic consensus mechanism in large networks to

compute the average f(z).

The iterative version of a consensus model corresponding to the discrete case of

system (2.3.1) was formulated as

π(k + 1) = π(k)P, (2.3.4)

being P = I − εL, I is the identity matrix of corresponding dimension, and ε > 0.

In this model, the ith element of the row vector π(k) denotes the probability of

being in state i at iteration k. For any arbitrary graph G with Laplacian matrix

L and sufficiently small ε, the matrix P satisfies the property
∑

j pij = 1, with

pij ≥ 0, ∀ i, j. Hence P is a transition probability matrix for (2.3.4), which is a

Markov chain.

Matrix P has been referred to as Perron matrix of graph G with parameter ε [7],

and its properties were stated in the following lemma:

Lemma 2.1. Let G be a directed graph with n nodes and maximum degree ∆ =

maxi

(∑
j 6=i aij

)
. Then, the Perron matrix P with parameter ε ∈

(
0, 1

∆

]
satisfies

the following properties:

i) P is row stochastic nonnegative matrix with a trivial eigenvalue of 1.

ii) All eigen values of P are in a unit circle.

iii) If G is a balanced graph, then P is a doubly stochastic matrix.

iv) If G is strongly connected and 0 < ε < 1
∆

, then P is a primitive matrix.

Olfati-Saber and Murray pointed out that the condition ε < 1
∆

in iv) is necessary,

and that if an incorrect step-size is used, then P would not longer be a primitive

matrix because it could have multiple eigenvalues of modulus 1.

Another important result was the convergence analysis of the discrete-time con-

sensus model, which relies on the lemma:
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Lemma 2.2. (Perron-Frobenius) Let P be a primitive nonnegative matrix with

left and right eigenvectors w and v, respectively, satisfying Pv = v, wTP = wT ,

and vTw = 1. Then limk→∞P
k = vwT .

The convergence and group decision properties of the iterative consensus model

with stochastic Perron matrix was stated in the following result: [7]

Theorem 2.3. Consider a network of agents xi(k+1) = xi(k)+ui(k) with topology

G applying the distributed consensus algorithm

xi(k + 1) = xi(k) + ε
∑
j∈Ni

aij (xj(k)− xi(k)) ,

where 0 < ε < 1
∆

, and ∆ is the maximum degree of the network. Let G be a

strongly connected digraph. Then

i) A consensus is asymptotically reached for all initial states.

ii) The group decision value is α =
∑

iwixi(0) with
∑

iwi = 1.

iii) If the digraph is balanced (or P is doubly-stochastic), an average-consensus is

asymptotically reached and α =
(
∑
i xi(0))
n

.

Mesbahi and Egerstedt [3] showed that when the notion of adjacency in a network

is symmetric, the overall system can be represented as in equation (2.3.2), but

when the adjacency is asymmetric, the correspondent expression for the agreement

dynamics becomes

ẋ(t) = −L(D)x(t), (2.3.5)

here D is the underlying directed interconnection, that is, the weighted digraph

of the network. In both cases, symmetric and asymmetric, the dynamics of each

vertex is “pulled” toward the states of neighbouring vertices, so all vertices would

asymptotically reach some weighted average of their initial states, which corres-

ponds to the fixed point of their collective dynamics. Such state of agreement,
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called the agreement set, is defined as the set A ⊆ Rn which is the subspace

span{1}, that is, A = {x ∈ Rn|xi = xj, ∀i, j}.

They proved that for a connected undirected graph, the convergence rate of the

consensus model was related with the smallest positive eigenvalue of the graph

Laplacian and so this value would dictate the slowest mode of convergence. They

also stated as necessary and sufficient condition that this eigenvalue would be pos-

itive in order to have a convergence to the agreement subspace from an arbitrary

initial condition. As positivity of the second eigenvalue of the Laplacian corres-

ponds to the connectivity of a graph G, then they concluded that the minimum

order structure needed for asymptotic convergence to agreement is an interconnec-

ted network containing a spanning tree.

These authors generalised the convergence analysis for the agreement protocol

done for undirected and unweighted graphs, to those weighted and directed ones,

and provided the following theorem for the convergence of the agreement protocol

for a digraph:

Theorem 2.4. For a digraph D containing a rooted out-branching, the state tra-

jectory generated by (2.3.2) initialised from x0, satifies

limt→∞x(t) =
(
p1q

T
1

)
x0,

where p1 and q1 are, respectively, the right and left eigenvectors associated with

the zero eigenvalue of L(D), normalised such that p1q
T
1 = 1. As a result, one has

x(t)→ A for all initial conditions if and only if D contains a rooted out-branching.

They, observed that if a digraph contains a rooted out-branching and is balanced,

then the common value reached by the agreement protocol is the average value of

the initial nodes, that is the average consensus. This remark lead to the following

theorem:

Theorem 2.5. The agreement protocol over a digraph reaches the average con-

sensus for every initial condition if and only if its weakly connected and balanced.

There are many problems involving interconnection of dynamic systems in various

areas of science and engineering and despite their differences, inherent to the proper
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areas of application, they are closely related to consensus problems for multi-agent

systems. Such kind of problems were divided as: [7]

1. Synchronization of Coupled Oscillators: The problem of synchronization of

coupled oscillators has been studied by many scientists from different fields

such as physics, biology, neuroscience, and mathematics. The most known

model for this phenomenon was proposed by Kuramoto in 1975 [77], this

model is now known as the Kuramoto model. The authors considered the

generalized Kuramoto model of coupled oscillators on a graph with dynamics

θi = k
∑
j∈Ni

sin (θj − θi) + ωi,

where θi and ωi are the phase and frequency of the ith oscillator. This

model is the nonlinear extension of the consensus model in (2.3.1) and its

linearisation around the aligned state θ1 = · · · = θn is identical to system

(2.3.2) plus a nonzero input bias bi = (ωi−ω̄)
k

with ω̄ = 1
n

∑
i ωi after a change

of variables xi = (θi−ω̄t)
k

.

2. Flocking Theory: Different works on flocking theory have been developed,

these behaviour has been studied on animals, people and mobile agents

[69, 78–80]. Flocks of mobile agents equipped with sensing and communica-

tion devices can serve as mobile sensor networks for the task of distributed

sensing in an environment. A theoretical framework for design and analysis

of flocking algorithms for mobile agents with obstacle-avoidance capabilit-

ies was developed by Olfati-Saber [81]. The role of consensus algorithms in

particle-based flocking is related with the situation where an agent is looking

to match its velocity with respect to its neighbours. In this work, the author

demonstrated that flocks are networks of dynamic systems with a dynamic

topology. This topology is a proximity graph that depends on the state of all

agents and is determined locally for each agent, i.e., the topology of flocks is

a state-dependent graph.

3. Fast Consensus in Small-Worlds: The design of networks for achieving faster

consensus algorithms has attracted important attention from researchers that

try to to accomplish this characteristic in a network. This goal leads to look

for ways of increasing the connectivity of a network which is a measure of
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speed of convergence of consensus algorithms. [82–85]. One approach is to

keep the weights of the links fixed and design the topology of the network in

such a way that allows achieving high algebraic connectivity. In [86] a ran-

domized algorithm was proposed for designing this kind of networks, based

on the random rewiring idea of Watts and Strogatz and their small-world

model [34]. The random rewiring of existing links of a network would give rise

to considerably faster consensus algorithms. This is due to multiple orders

of magnitude increase in algebraic connectivity of the network in comparison

to a lattice type nearest-neighbour graph.

4. Rendezvous in Space: Another form of consensus problems is rendezvous in

space [30, 87–91]. This is equivalent to reaching a consensus in position by

a number of agents with an interaction topology that is position induced

(i.e., a proximity graph) [92]. This type of rendezvous is an unconstrained

consensus problem that becomes challenging under variations in the net-

work topology [93]. Flocking is somewhat more challenging than rendezvous

in space because it requires both inter-agent and agent-to-obstacle collision

avoidance.

5. Distributed Sensor Fusion in Sensor Networks: Another application of con-

sensus problems is the distributed sensor fusion in sensor networks [8,94,95],

as these systems have become cheaper, the problem of allocating resources

within a network, in a distributed fashion, is matter of design and imple-

mentation [96]. This process of allocating sensors in this way it has been

done by multi-agent systems techniques by posing various distributed aver-

aging problems which requires implementing a Kalman filter, approximate

Kalman filter or linear least-squares estimator as average-consensus prob-

lems [97]. Low-pass and high-pass consensus filters are also developed to

dynamically calculate the average of their inputs in sensor networks.

6. Distributed Formation Control: This problem is one of the best studied by

the Engineering field [12,76] as multivehicle systems are considered a special

category of networked systems that is important due to their commercial

and military applications. There are two main approaches to distributed

formation control:

(a) Representation of formations as rigid structures and the use of gradient-
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based controls obtained from their structural potentials [71,98].

(b) Representation of formations using the vectors of relative positions of

neighbouring vehicles and the use of consensus-based controllers with

input bias [99–102].

The second approach is related with consensus problems as moving in form-

ation is a cooperative task and requires consent and collaboration of every

agent in the formation.

2.4 Controllability and networks

With the advent of network science, there has been an increasing interest in the

study of complex dynamical systems and their control as a means for guiding or

forcing the network to achieve a desired behaviour, i.e. reaching a desired state.

In practice, controlling every single node might be impossible for a network with

huge number of nodes, and also this task might be unnecessary [103]. Then, diverse

control strategies have been proposed to achieve the goal of controlling a network.

Among these strategies, the so called pinning strategy offers a way to control an

entire systems by adding control inputs to a fraction of selected nodes.

The topic of controllability is not new, and comes from the initial work of Lin

in 1974 [104] where the concept of structural controllability was introduced for a

linear time-invariant system of the form

ẋ = Ax+ bu

with x ∈ Rn, u ∈ R. The matrices A ∈ Rn×n and b ∈ Rn are assumed to have

compatible dimensions and time invariant. Then the author defined the graph of

the systems:

Given a pair (A, b), the graph G of this system is that one which contains exactly

n + 1 nodes, v1, v2, . . . , vn+1, and all of whose edges are obtained as follows: For

every non-zero entrey cij of the n × (n + 1) matrix (Ab), the graph contains the
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oriented edge (vj,vi) (an arrow going from vj to vi). The node vn+1, which corres-

ponds to the n+ 1th column of (Ab), will be called the origin of G. The set which

contain all the nodes of G was called the vertex set of G. For every oriented edge

(vj, vi) in G, the node vj was called the origin of this edge; a node v in the vertex

set of G was called the final node if v was not the origin of any oriented edge in

G.

The property of controllability of the pair (A, b) was reduced to a property of the

graph representing the system: “a system is structurally controllable if and only if

the graph of the system is spanned by a cactus” [104]. The structure called cactus

was the key structure for his definition of controllability (see fig. 2.4.1).

Figure 2.4.1: Illustration of Lin’s proposed cactus structure. A cactus is conformed
of stems and buds. Every bud (marked with a letter B) has an associated initial
node-stem (marked with a letter e).

Later, Tanner [56] derived necessary and sufficient conditions for a group of systems

interconnected via nearest neighbour rules, to be controllable by one of them acting

as a leader. He stated that connectivity seemed to have an adverse effect on

controllability.

Different works studying the controllability problem for multi-agent systems have

appeared in recent years [16, 17, 30, 59, 60, 71, 72, 105–113], the resurgence of this

topic was boosted by a work of Liu et al. [14] on controllability of complex net-

works, where the starting of a framework on controlling complex self-organised
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systems was proposed. They stated in their work that the number of driver nodes

is determined mainly by the network’s degree distribution, and showed that sparse

inhomogeneous networks are the more difficult to control according to their ap-

proach. They also pointed out that the driver nodes tend to avoid the high-degree

nodes. These authors used the concept of structural controllability from Lin to

build their analysis.

The work of Lui et al. has stimulated the development of different studies of this

topic [20,103,114–126], leading to many discussions on the possibility of controlling

complex systems, but the debate is still open by the time we write these lines.

Summary

We have presented some of the works that have contributed to the current field of

cooperative control of multiagent systems. We started by the roots, which were

established by the area of distributed computing, which studied the problem of

designing algorithms that allow computational processes to work in a cooperative

way. This problem was latter formulated as an agreement problem among auto-

mata, and due to its interacting nature, the concept of a network of automata

was introduced. These works from distributed algorithms were later used by the

field of artificial intelligence to study the dynamics of multiagent systems trying

to reach an agreement during the execution of common tasks. Finally, the studies

on the agreement problem were used as a solution to the more recent problem of

coordinating and distributively controlling systems where cooperative behaviour

is the central paradigm, thus the concept of cooperative control was coined.
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Part II

Results and Discussion
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Chapter 3

CONSENSUS, LEADERSHIP

AND DIFFUSION OF

INNOVATIONS UNDER PEER

PRESSURE IN SOCIAL

NETWORKS

The social group’s pressure on an individual - peer pressure (PP) - has attracted

the attention of scholars in a variety of disciplines, spanning sociology, economics,

finance, psychology, and management sciences [127–130]. In analysing PP we

should consider not only those individuals directly linked to a particular person,

but also those who exert indirect social influence over other persons as well [131–

134]. Although PP is an elusive concept, it can be considered a decreasing function

of a given individual’s socio-cultural distance from the group. Thus, an individual’s

opinion may be influenced more strongly by the pressure exerted by those socio-

culturally closer to her.

The main question we deal with in our work is: What is the effect of the combined

direct and indirect social influences - peer pressure - on a social group’s collective

decisions? One of the main contributions of our work is the development of a model

that captures PP as a function of the socio-cultural distance between individuals
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in a social group. The contents of this chapter come from our published work [135].

Our model builds upon the concept of consensus on social networks which is well

documented across the social sciences, with examples ranging from behavioural

flocking in popular cultural styles, emotional contagion, collective decision making,

pedestrians’ walking behaviour, and others [7, 9–11].

3.1 Consensus under peer pressure

3.1.1 Consensus with leaders in social networks

For modelling consensus on social networks, we consider a social group of n actors

who will accomplish a certain goal or reach an agreement. Every actor in the

group is represented by an element of the node set V = {1, . . . , n} of a network

G = (V,E), in which links (edges) E ⊆ {V × V } represent the relationships

(friendship, any form of communication) among the actors. The set of neighbours

of the actor i is denoted by Ni = { j ∈ V : (i, j) ∈ E}. Let A = [aij] ∈ Rn×n and

L(G) = [lij] ∈ Rn×n be the adjacency matrix and Laplacian matrix, respectively,

associated with graph G. The Laplacian matrix is defined as in 1.2.14 on page 30.

According to the consensus model (1.5.3), the information states of the actors

evolve according to the single-integrator dynamics given by ẋi(t) = ui, i = 1, . . . , n,

where xi(t) is the information state at time t, ui is the information control input,

and xi(0) = zi is the initial state for actor i. We consider initial states of all actors

to be assigned at random.

The continuous time consensus model is given by

xi =
∑
j∈Ni

aij (xj(t)− xi(t)) , i = 1, . . . , n, (3.1.1)

where aij is the (i, j) entry of the adjacency matrix A. The information state of

each actor is driven toward those of her neighbours. Equation (3.1.1) describes the

collective dynamics of the social group. Then, we can model consensus in a social
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group by encoding the state of each individual at a given time t in a vector x(t).

The group reaches consensus at t→∞ when |xi(t)− xj(t)| → 0 for every pair of

individuals, and the collective dynamics of the system is modelled in matrix form

as dx(t)
dt

= −Lx(t), x(0) = x0 (see 1.5.3 on page 49), where x(t) = [x1, . . . , xn]T is

the vector of the states of the actors in the system at time t, and L is the linear

Laplacian operator previously defined, which captures the topology of the social

network.

For the system represented by its associated network, the interaction among actors

is considered to occur at a discrete time, thus the information state is updated

using the discrete time consensus model given by

xi(t+ 1) = xi(t) + ε
∑
i

aij (xj(t)− xi(t)) i = 1, . . . , n, (3.1.2)

where aij is as before and ε is the time step (see 1.5.11 on page 52). The information

state of each actor is updated as the weighted average of her current state and those

of her neighbours. Equation (3.1.2) is then written in matrix form as x(t + 1) =

Px(t), and the matrix P is obtained as in 1.5.13 on page 53.

3.1.1.1 About the time for consensus

The second smallest eigenvalue of the Laplacian matrix, i.e., the graph connectiv-

ity µ2, is known to have a main role in the convergence time of consensus models as

it has been determined that the convergence speed of the average consensus is dic-

tated by this eigenvalue [86], which also influences the performance and robustness

properties of dynamical systems operating over a network.

Since we are interested in analyzing the influence of the algebraic connectivity on

the time of consensus tc, i.e., the time for which |~xi − ~xj| ≤ δ, where δ is a given

threshold, we state the following theorem:

Theorem 3.1. Theorem: Let G be a connected graph with n nodes. Let 〈tc〉
be the time of consensus averaged for all the nodes in the graph. Let µ2 be the

algebraic connectivity of G and ~φ2 the corresponding Fiedler vector. Then
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〈tc〉 ≥
1

nµ2

n∑
p=1

ln

∣∣∣∣∣∣
φ2 (p)

(
~φ2 · ~x0

)
δ

∣∣∣∣∣∣ .
Proof. First, we write the spectral consensus equation for a given node p as

~xt (p) =
n∑
q=1

~x0 (q)
n∑
j=1

~φj (p) ~φj (q) e−tµj , (3.1.3)

which represents the evolution of the state of the corresponding node as time

evolves. Now, let us consider that the time tends to the time of consensus t→ tc,

where tc is the time at which xt →
(
~φT1 ~x0

)
~φ1. Let us designate this time by t−c

~xt−c (p) =
1

n

n∑
q=1

~x0 (q) +
n∑
j=2

(
~φj (p) e−t

−
c (p)µj

n∑
q=1

~φj (q) ~x0 (q)

)
, (3.1.4)

here t−c (p) means the time at which the node p is close to reaching the consensus

state. Let 〈~x0〉 = 1
n

∑n
q=1 ~x0 (q) and let us write 3.1.4 as follows

~xt−c (p)− 〈~x0〉 =
n∑
j=2

(
~φj (p) e−t

−
c (p)µj

n∑
q=1

~φj (q) ~x0 (q)

)
. (3.1.5)

Let us select a node p such that ~φ2 (p) gives the maximum value of the product
~φ2 (p)

(
~φ2 · ~x0

)
.

Since µ2 corresponding to j = 2 is the smallest eigenvalue in the sum on the right

hand of the expression, this terms tends to 0 slower than the terms for the other

values of j. This means that, if we choose a small enough value of δ, the values

of tc and thus t−c will be very large. Thus, we can ensure that the left side of the

equation is small enough that
n∑
j=3

(
~φj(p)e

−t−c (p)µj( ~φj · ~x0)
)
< 0. This implies that

(
~xt−c (p)− 〈~x0〉

)
< ~φ2 (p) e−t

−
c (p)µ2

(
~φ2 · ~x0

)
. (3.1.6)
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Now, because
∣∣~xt−c (p)− 〈~x0〉

∣∣ ≥ δ we have

δ ≤
∣∣~xt−c (p)− 〈~x0〉

∣∣ < ∣∣∣~φ2 (p) e−t
−
c (p)µ2

(
~φ2 · ~x0

)∣∣∣ . (3.1.7)

Then, the time at which the consensus is reached tc (p) is bounded by

tc (p) ≥ t−c (p) ≥ 1
µ2

ln

∣∣∣∣∣∣
~φ2 (p)

(
~φ2 · ~x0

)
δ

∣∣∣∣∣∣ . (3.1.8)

Finally, the average time of consensus is bounded by

〈tc〉 ≥
1

µ2n

n∑
p=1

ln

∣∣∣∣∣∣
~φ2 (p)

(
~φ2 · ~x0

)
δ

∣∣∣∣∣∣ , (3.1.9)

which proves the result.

If we are using a discrete-time approach like the one given in 3.1.2 then

〈tc〉 ≥
1

εµ2n

n∑
p=1

ln

∣∣∣∣∣∣
~φ2 (p)

(
~φ2 · ~x0

)
δ

∣∣∣∣∣∣ . (3.1.10)

This last expression allows to analytically bound a priori the average time for

consensus for a given network, provided the condition µ2 < µ3 holds, based on

the knowledge of a few parameters which have been shown to be structurally and

dynamically important for analyzing consensus processes [86, 136–139], i.e. the

eigenvalue µ2 and its corresponding associated eigenvector φ2 of the Laplacian

matrix L(G).

From the last results, we have two lower bounds for the times for consensus:

expression 3.1.8 gives a bound for the highest time for consensus given by the time

when the state of the last node of the network reaches the consensus value of the
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system, while expression 3.1.9 provides a lower bound for the average time for

consensus, which is given by the average of all the times of the nodes at consensus.

For illustration purposes, we calculated the average time for consensus for 12 real-

world networks and found the values of the two bounds for these times. The first

bound (tavgB) is calculated following 3.1.9, and the second bound (thighB) with

expression 3.1.8,were we selected the node p as the one giving the maximum of the

product ~φ2 (p)
(
~φ2 · ~x0

)
.

These values are reported in table 3.1.1. The parameters for these calculations

were δ = 10−4 with random vector of initial states ~x0 for each simulation. The

values presented are the average of the results of 30 repetitions for each network.

Name nodes Type time tavgB thighB
thighB

tavgB

time
tavgB

time
thighB

Benguela-A 29 eco 6.10 4.52 5.01 1.11 1.35 1.22

StMarks-A 48 eco 3.77 2.77 3.38 1.22 1.36 1.12

PRISON-SymA 67 soc 21.04 15.73 16.70 1.06 1.34 1.26

BridgeBrook-A 75 eco 11.80 8.66 8.72 1.01 1.36 1.35

Ythan1-A 134 eco 6.88 3.42 5.94 1.73 2.01 1.16

ElVerde-A 156 eco 8.01 3.79 6.39 1.68 2.11 1.25

LittleRock-A 181 eco 5.98 1.35 5.13 3.80 4.42 1.16

GD-mainA 249 inf 43.30 24.56 37.22 1.52 1.76 1.16

neurons-A 280 bio 6.26 2.72 5.54 2.03 2.30 1.13

Transc-yeast-mainA 662 bio 209.86 120.65 150.46 1.25 1.74 1.39

Software-VTK-main-sA 771 tec 70.05 38.36 43.86 1.14 1.83 1.60

Roget-mainA 994 inf 23.14 4.28 7.62 1.78 5.41 3.04

Table 3.1.1: Values of time for consensus and bounds for 12 real-world networks.
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Figure 3.1.1: Normalised times for consensus and bounds for 12 real-world net-
works. Blue line: actual time for consensus. Green line: tavgB. Red line: thighB.

In figure 3.1.1 we can see that both bounds are always below the actual times for

consensus, and that the second bound is tighter than the first one. The values of

times were normalised to the highest value.

In figure 3.1.2 we have plotted the normalised times for consensus given in figure

3.1.1, and we have added the ratios of the actual time to every bound for com-

parison, confirming that the values of thighB are tighter than the values of tavgB,

for the 12 networks analysed. The gap between the values of the ratios show the

actual gap between the bound and the actual time for consensus, this means that

the closer the value of the ratio is to 1, the better the bound is for that case, thus,

in general, the bound given by 3.1.8 appears to be better for the network analysed.
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Figure 3.1.2: Normalised times for consensus and bounds for 12 real-world net-
works: blue line) actual time for consensus, green line) tavgB, red line) thighB.

Ratios are given by stem plots: red filled circle)
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3.1.1.2 Consensus with leaders

Consensus is known to be influenced by a small group of leaders who guides the

behaviour of the whole network [140–147]. The role of these drivers in the system

controllability, and in particular their position in the network, has received great

importance recently [14, 103, 111, 118, 122, 124, 148, 149]. In this situation a group

of leaders indicates and/or initiates the route to the consensus, and the rest of the

group readily follows their attitudes.

To take into account the influence of nodes acting as drivers we start from model

(3.1.2). We consider that there exist one or multiple leaders who guide the entire

group to the consensus through the effect produced by the rest of the group,

which follows them [30]. In a leader–follower structure with a single leader, actors

attempt to reach an agreement that is biased to the state of the leader, whereas in

the case of multiple (stationary) leaders, all followers converge to the convex hull

formed by the leaders’ states (see 1.6.16 on page 58). We consider that leaders are
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stationary, which means that their opinion is available for the other actors but is

not modified during the process.

The set of all actors is divided into two subgroups: leaders and followers and, as a

result, the vector of the states of all actors can also be divided into two parts: the

states of leaders, xl, and the states of followers, xf . For a system with multiple

stationary leaders, all the nodes can be labeled such that the first nf represents the

followers and the remaining nl represent the leaders. The total number of actors

in the system is then n = nf + nl, such that the Laplacian matrix associated with

the social network G is partitioned as L(G) =

[
Lf lfl

lfl Ll

]
, where Lf ∈ Rnf×nf ,

Ll ∈ Rnl×nl , and lfl ∈ Rnf×nl (see 1.6.6 on page 56).

We consider here that the leaders are stationary, thus their dynamics are given

by ẋl(t) = 0, i = nf + 1, . . . , n, and the dynamics of the system is then

[
ẋf

ẋl

]
=

−Lpx = −

[
Lf lfl

0 0

][
xf

xl

]
(see 1.6.9 on page 57), which can be expressed in its

discrete time version as x(t+1) = (In−εLp)x(t), with x(t) = [x1(t), . . . , xn(t)]T , In

is the identity matrix of size n× n, and Lp is the Laplacian matrix of the network

G, with each entry of the jth row equal to zero for j = nf + 1, . . . , n.

3.1.2 Modelling peer pressure

The consensus dynamic modelling assumes that the actors only interact with their

directly connected neighbours to cooperatively achieve an agreement in the system

[13]. However, in many real-world situations, the actors are exposed not only

to their closest contacts but also to individuals who are socio-culturally close to

them despite not being directly connected. For instance, this situation appears in

actors’ attitudes toward copying others. The predisposition of an actor to copy a

behaviour depends not only on her friends’ adoption of such behaviour but also

on other, socio-culturally close people having a positive predisposition to that

behaviour. For instance, adolescents adopt “binge drinking” not only by copying

their mates but also by observing similar behaviour among others of a similar

age, education, and social class. Then, we argue that this socio-cultural distance
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can be captured in a model by considering the shortest path distance between

two actors in their social group, being such shortest path distance the number of

steps in the shortest path connecting the two actors. The influence that an actor

receives/produces from/for others in her social network, i.e., peer pressure, decays

as a function of this socio-cultural distance, which separates the two actors [21].

Peer pressure can then be modelled by considering the generalized Laplacian mat-

rix which is based on the path matrices that characterize the existence of shortest

paths between pairs of nodes in a graph [39]. These matrices were motivated by

the problem of determining whether every node vi of a graph can be visited by

means of a process consisting of hopping from one node to another separated at

distance (d) k from it. To construct this kind of Laplacian matrix, we need to take

into account some definitions.

Definition 3.2. A k-hopping walk of length l is any sequence of (not necessarily

different) nodes v1, v2, . . . , vl, vl+1 such that di,i+1 = k for each i = 1, 2, . . . , l. This

k-hopping walk is referred to as a k-hopping walk from vl to vl+1.

This generalizes the concept of walk because a walk of length l is a 1-hopping walk

of length l.

Definition 3.3. A k-hopping connected component in a graph G = (V,E) is a

subgraph G′ = (V ′, E ′), V ′ ⊆ V , E ′ ⊆ E, such that there is at least one k-hopping

walk that visit every node vi ∈ V ′.

In order to solve the problem, the author generalizes the combinatorial Laplacian

matrix of a graph, and for this purpose, he stated the next definition

Definition 3.4. The k-path degree δk(vi) (k ≤ dmax) of a node vi is the number

of irreducible shortest-paths of length k having vi as an endpoint (see figure as

example).

We have to note that δ1(vi) corresponds to the classical node degree, which is the

number of edges incident to vi.
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Figure 3.1.3: Illustration of the k-path degree of a node. Suppose we need to
determine the k-path degree of length 2 for the node j. The total number of
shortest paths that end in node j are three (one from node a and two from node
i), but two of them start from node i, which are considered redundant. Thus, the
number of non-redundant shortest paths ending in node j are two, so the k-path
degree of length 2 for node j is then 2.

Then, the generalized Laplacian matrix is defined as follows:

Definition 3.5. The k-Laplacian matrix Lk (k ≤ dmax) of a connected undirected

graph G = (V,E) is defined as the square symmetric n × n matrix whose entries

are given by

Lk(i, j) =


−1 dij = k,

δk(i) i = j,

0 otherwise.

(3.1.11)

Here, L1 = L is the combinatorial Laplacian matrix of a graph defined as in

(1.2.14). The k-path Laplacian matrices are positive semidefinite, and as for the

case of the combinatorial Laplacian, the path Laplacian matrices are singular M -

matrices.

Consequently, the consensus dynamics model of equation (3.1.2) can be written as

x(t+ 1) =
(
In − ε

(∑
∆dLd

))
x(t), (3.1.12)

where
∑

d ∆dLd involves the d-Laplacian matrices and the coefficients indicate

the strength of the interactions at distance d ≤ dmax(G), with dmax(G) being the
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maximum distance between any two nodes, or the diameter, of graph the G. Then

for our case, d-Laplacian matrix is defined as

Ld(i, j) =


−1 dij = d

νd i = j

0 otherwise

, (3.1.13)

where the expression νd(i) is the d-path degree of node i, i.e. the number of

non-redundant shortest paths of length d having i as an endpoint.

The coefficients ∆d should account for the decay in peer pressure for the socio-

cultural distance between the actors of ∆d ∼ f(d)−1, where f(d) represents a

function of the distance d. These coefficients are expected to give more weight

to shorter interactions than to the longer ones, so the influence of an actor over

another decays with the separation among them. For our analysis we consider

three different decay laws: [21, 39]

• Physical influences. This kind of interactions are present in situations where

the communication among actors in a system displays a sort of spatial decay,

this means that the effectiveness of transmission of information is better for

two actors that are spatially closer. An example of this kind of situation is

sensor systems, where these devices display low signal-to-noise ratio due to

the spatial decay of the signal energy [150], another example can be found

during earthquakes, where the aftershocks follow a spatial decay [151]. The

interconnectivity between some neurons in mammalian neocortex decays ex-

ponentially with the inter-somatic distance [152]. Thus, we can consider two

forms of decay where the strength of interactions would fade as the distance

d between two actors grows.

-Power-law: ∆d = d−α

-Exponential: ∆d = e−βd

• Social interactions. This kind of interactions, unlike the previous ones, would

account for the benefits of a link between two actors in a network. This decay

93



was proposed in [21] as a way to account for the social contacts among nodes

when a long-range interaction is present. The idea behind this factor is

that if two individuals influence each other, then they have larger chance of

becoming friends than two others which have null mutual influence. The new

tie is considered to be created as an “investment” for the future, as an analogy

of the future value of a growing annuity given in quantitative finance [153],

so the mutual influence between two nodes separated at certain distance d is

given by the future value of the investment that a new link created represent

to them.

-Social: ∆d = dδd−1

The last expressions account for different situations where the influence between

two actors decays as a function of the distance between them, and the parameters

α, β, and δ can be adjusted to consider the different strengths of peer pressure in

the social network.

3.2 Leadership under peer pressure

The study of leadership in social groups has always intrigued researchers in the

social and behavioural sciences [25, 140–143, 149]. Specifically, the way in which

leaders appear in social groups is not well understood [144]. Leaders may arise

either randomly in response to particular historical circumstances or from the

individual having the most prominent position (centrality) in the social network

at any time.

The centrality of an actor in her social group can be considered in several ways.

The concept of actor centrality is related to the question “Which are the most

important or central nodes in a network?” We study five centrality measures as

criteria for potential leaders to come up from among the actors in a social group.

The centrality measures considered are as follows: [5]

• Degree centrality (DC): This measure is considered the simplest in a network

defined as the number of edges connected to a node. It has been used as-

suming that nodes with connections to many other nodes might have more
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influence or access to information than those with few connections.The de-

gree of a node can be expressed in a matrix as

κi = (A1)i, (3.2.1)

where 1 is a column vector of ones and A is the adjacency matrix of the

network.

• Eigenvector centrality (EC): This measure appears as an extension of the

degree of centrality. Eigenvector centrality is based on the question that not

all neighbours are equivalent because, in some cases, the importance of a

node is related to (and increased by) its neighbours, which may themselves

be important. Thus, instead of giving only one point for each neighbour, this

measure gives each node a score proportional to the sum of its neighbour’s

scores. The eigenvector centrality of node i is given by the ith entry of the

principal eigenvector of the adjacency matrix

ϕi =

(
1

λ1

Aϕ1

)
i

. (3.2.2)

• Closeness centrality (CC): This index measures the inverse of the mean dis-

tance from a node to other nodes and characterizes the nodes according to

their distance to all other nodes in the network. The closeness is defined as

CC(v) =
n− 1

s(v)
, (3.2.3)

where s(v) =
∑

w∈V (G) d(w, v) is the distance sum of node v as defined in

(1.1.10).

• Betweenness centrality (BC): This concept measures the extent to which a

node lies on paths between other nodes. The nodes with high betweenness

centrality may have considerable influence within a network because of their

control over information passing through them.The index can be defined as

BC =
∑
i

∑
j

ρ(i, k, j)

ρ(i, j)
, i 6= j 6= k, (3.2.4)
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where ρ(i, j) is the number of shortest paths from node i to node j, and

ρ(i, k, j) is the number of these shortest paths that pass through node k.

• Subgraph centrality (SC): This measure is based on the notion that the im-

portance of a node can be characterized by considering its participation in

all closed walks for which it is the starting point. Subgraph centrality has

been defined as

EE(i) =

(
∞∑
i=0

Al

l!

)
ii

=
(
eA
)
ii
. (3.2.5)

To capture the influence of PP over the arising of leaders in social groups, we con-

sider that the pressure that an individual p receives from q deteriorates proportion-

ally with the social distance between p and q. The social distance is captured by

the number of links in the shortest path connecting p and q. Mathematically, we

model the mobilizing power between two individuals at distance d as ∆d ∼ f(d)−1,

where f(d) represents a function of the social distance (see equations (3.1.12) and

(3.1.13)). The collective dynamics of the network under peers’ mobilizing effects

is described by the following generalization of the consensus model

dx(t)

dt
= −

(∑
d

∆dLd

)
x(t), x(0) = x0, (3.2.6)

where Ld captures the interactions between individuals separated by d links in

their social network, ∆d ∼ 1
dα

where the parameter α accounts for the strength of

the PP pulling an individual into the consensus.

We consider that leaders’ opinions may differ from the group’s average opinion.

We call this difference the divergence ∇L, which is represented by the circumradius

of the regular polygon (for a two-dimensional case) that covers all opinions of the

leaders (see fig. 3.2.1). If the concerned problem is multidimensional, that is, if

we are considering more than two opinions in the system, then the divergence is

the circumradius of a hypersphere that covers the opinion of all leaders. A value

of ∇L = 0 indicates that the leaders do not have difference on their states and are

equal to the average consensus of the system.
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We applied our model to two simple undirected random graphs and 15 real social

(simple undirected) networks described in the dataset table on page 164. We

allowed for every actor to have two opinions that were considered independent

from each other, enabling a two-dimensional decoupled consensus process. The

initial states of the followers were randomly assigned for every process with values

in the range (0, 1).

For visualization purposes we selected, either randomly or from among the most

central actors, only six leaders in every network. Their initial positions were

assigned to have divergences of 0.1 and 0.2 from the average value of consensus. We

considered that consensus was reached when the difference between two consecutive

measures of disagreement was less than or equal to the threshold 1e - 07. We

simulated consensus processes with and without PP. The normalised values of

every network are reported in the tables on page 171 (see also in the same page

171 an explanation for reading the entries of the tables and the procedure for

obtaining the times for consensus). Every value is the average of 50 repetitions

and we used Matlab c, to code and run the simulations (the code can be consulted

in appendix C on page 198).

To illustrate our findings, we present the results obtained from the simulations for

the network of workers in a sawmill (Sawmill network). First, we simulated the

consensus process with no divergence in leaders initial positions. We computed the

times for consensus with no PP and with different values of peer pressure according

to the decays given on page 93. We chose leaders both randomly and by centrality

criteria. All values were normalised to the highest value (see table 3.2.1).
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Random selection

No PP
PL-decay Exp-decay Social

α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5
1.00 0.22 0.15 0.88 0.72 0.49 0.20 0.06

Centrality-based selection

No PP
PL-decay Exp-decay Social

Centrality α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5
BC 0.80 0.21 0.14 0.73 0.62 0.43 0.19 0.05
CC 0.84 0.21 0.14 0.77 0.65 0.45 0.19 0.05
DC 0.83 0.21 0.14 0.76 0.64 0.45 0.19 0.06
EC 0.96 0.23 0.15 0.87 0.73 0.50 0.20 0.06
SC 0.89 0.23 0.14 0.85 0.69 0.46 0.20 0.06

Table 3.2.1: Normalised consensus time for the Sawmill network with no divergence
on leaders positions with respect the average consensus. All initial states of the
leaders are equal to the average consensus.

Then we allowed a divergence on leaders positions with respect to the average

consensus. This divergence ∇L took the values of 0.1, 0.2 and 0.5, and the con-

ditions for consensus (selection of leaders, peer pressure decay functions) were as

stated before. The results for all the set of networks used for this analysis can be

consulted in the correspondent appendix on page 171.
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Figure 3.2.1: Leaders with divergence. Distribution of leaders positions (blue
points) around the average consensus value of the system (red point), which rep-
resents the centroid of the convex hull spanned by the leaders.

3.2.1 Simulations results

We compare the hypotheses about the random arising of good leaders - those who

significantly reduce the time for reaching consensus in a network - to those in

which leaders come out from the most central individuals. In general, we observe

that the leaders coming from the most central individuals are better in leading the

consensus than those coming out randomly. However, when there is certain level

of PP over the actors, the situation changes dramatically (see fig. 3.2.2). First,

the time to reach consensus significantly decreases to less than 20% of the time

needed when no PP exists. Second, a leader randomly selected in the network

could be as good as one selected from the most central actors when PP exists in

the system.

In roughly half of the 15 social networks studied (see tables on page 171) we

observed the following pattern: randomly chosen leaders in these networks are
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better in leading the consensus than those selected from the most central indi-

viduals. This is the case of the friendship network of injected drug users in figure

3.2.2c. The last situation appears when the network has the leaders distributed

through diverse communities in the network.

A community is a group of individuals who are more tightly connected among

themselves than with the other actors in the network [5]. Actors in one of these

communities reach consensus among themselves easily, but it is difficult to reach

consensus between different communities. Most central actors in such networks

are frequently located in a single community. When they arise as leaders, they

drive consensus only in their community but not in the global network. In contrast,

when leaders arise randomly, they more likely come out simultaneously in different

communities, a situation that favours global agreement in the network.

In order to corroborate the last observation, we constructed a random network

with communities as illustrated in figure 3.2.3. In this network we were able to

control the number of communities as well as the connectivity within and among

each community. These random network with communities comprised a simple,

undirected random graph with 500 nodes and 10 communities. For constructing

this kind of graph we used the C program for generating benchmarks for com-

munity detection given in [154].

In our simulations with the network with 10 communities, we first allowed 10

leaders to be selected randomly, and then by their global highest centrality values.

We recorded the average time for consensus of 50 repetitions. Next, we allowed

the existence of 10 community-based leaders, which means that this time leaders

were chosen by their local highest centrality values. This procedure lead to having

one leader in each community, which corresponded to the one with the highest

centrality in the community. The results of the simulations are shown in tables

3.2.2 and 3.2.3.
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(a) (b)

(c) (d)

Figure 3.2.2: Random and centrality-based selection of leaders. The performance
of nodes leading consensus is analysed according to randomness (Rnd), between-
ness (BC), closeness (CC), degree (DC), eigenvector (EC), and subgraph (SC)
centrality. The peer pressure is modelled by ∆d ∼ 1

dα
,with α equal to 1.5 and

2.0. The third line corresponds to no peer pressure. (a) Communication network
among workers in a sawmill. (b) Elite corporate directors. (c) Friendship net-
work of injected drug users in Colorado Springs. (d) Random network having
communities.
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Random selection

No PP
PL-decay Exp-decay Social

α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5
0.15 0.01 0.01 0.12 0.06 0.04 0.01 0.003

Centrality-based selection

No PP
PL-decay Exp-decay Social

Centrality α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5
BC 0.26 0.01 0.01 0.18 0.09 0.06 0.01 0.003
CC 0.46 0.01 0.01 0.32 0.16 0.10 0.02 0.002
DC 0.44 0.01 0.01 0.32 0.16 0.10 0.02 0.003
EC 1.00 0.01 0.01 0.62 0.27 0.16 0.03 0.003
SC 0.59 0.01 0.01 0.34 0.15 0.09 0.02 0.004

Table 3.2.2: Normalised consensus times for a random graph with 10 communities
(10 leaders) with and without PP. Leaders were selected according to their global
centrality values.

Random selection

No PP
PL-decay Exp-decay Social

α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5
1.00 0.06 0.04 0.77 0.41 0.27 0.08 0.02

Centrality-based selection

No PP
PL-decay Exp-decay Social

Centrality α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5
BC 0.54 0.07 0.04 0.42 0.28 0.17 0.06 0.02
CC 0.40 0.07 0.04 0.31 0.22 0.14 0.06 0.02
DC 0.30 0.07 0.05 0.26 0.20 0.13 0.07 0.02
EC 0.43 0.07 0.04 0.34 0.25 0.15 0.06 0.02
SC 0.29 0.07 0.04 0.25 0.19 0.12 0.06 0.02

Table 3.2.3: Normalised consensus times for a random graph with 10 communities
(10 leaders) with and without PP. Leaders were selected according to their local
centrality values (by community).

When the leaders were selected from the global highest centrality, we observed the

previously described pattern of leaders being selected by random: they better lead

the consensus than those coming from the most central individuals (see fig. 3.2.2d).

This situation was modified when the leaders were selected from the community-
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based centrality. In this case, the leaders coming from the most central local nodes

were significantly better at reaching consensus than those coming out randomly.

These results suggest the necessity of considering community leaders in social net-

works as effective mobilizers of actors throughout the network. We have observed

that the leaders arising on the basis of their community positions exhibit greater

success in reaching consensus than those randomly arising in the network. How-

ever, when appropriate PP exists, leaders who effectively reach consensus arise

regardless of their position in their communities.

The leaders in a social group do not always exhibit a high level of cohesiveness.

We posit that the leaders’ capacity to lead the consensus in a network depends

on their divergence of opinions. A cohesive group of leaders can more effectively

lead the social group than leaders with larger divergences among their opinions.

To model leader cohesiveness we used the divergence parameter ∇L previously

defined on page 96.

The effects of the divergence in the system dynamics, can be seen on the sim-

ulation results for the social network Sawmill with different PP intensities. We

increased the value of divergence on leaders’ opinions from zero to a maximum

of 0.5 and computed the consensus times for all divergence values. The complete

results are reported in the corresponding tables in appendix B on page 171. For

the case of randomly selected leaders, times increased along with divergence from

13.18% to 80.24% (see table 3.2.4). We highlight that PP influenced the traject-

ories of followers’ opinions, precisely directing them toward the consensus space.

At the consensus point, the final positions were more cohesive, indicating more

homogeneous final opinions in the system (see fig. 3.2.5).

103



Figure 3.2.3: Random network with communities generated with the benchmarks
for testing community detection algorithms. The parameters were set to get 10
well defined communities in a network of 500 nodes.

104



Divergence Average time for consensus % Increase in time for consensus
0 1,026.80 -

0.1 1,162.18 13.18
0.2 1,372.40 33.65
0.5 1,850.72 80.24

Table 3.2.4: Comparison of time for consensus for the Sawmill network with dif-
ferent values of divergence. The effect of the variation on divergence is reflected
in the percentage of increase in time.

To examine the influence of the leaders’ cohesiveness on consensus we use the

results for the friendship network of workers in the sawmill (see fig. 3.2.5) with

either no PP (left plots) or with PP modelled by ∆d ∼ 1
d2 (right plots). The

values of leader divergence range from 0.0 to 0.2. The lack of leader cohesiveness

significantly increases the time to consensus when there is no PP as we can see

in table 3.2.4. In addition, the cohesiveness of the group, measured by the stand-

ard deviation at consensus ∇G, is very poor for large values of ∇L (∇G=154.6,

183.6, and 226.9 for ∇L=0.0, 0.1, and 0.2, respectively), which indicates highly

heterogeneous group opinions. However, when PP exists, the situation dramat-

ically changes. First, the time to consensus does not increase as drastically with

the decrease of leader cohesiveness. Second, group cohesiveness at the consensus

is very high even for the lowest leader cohesiveness (∇G=27.0, 35.4, and 33.0, for

∇L=0.0, 0.1, and 0.2, respectively). In short, when PP is absent, leader cohesive-

ness plays a fundamental role in the time needed to reach consensus and in group

cohesiveness at the consensus. When PP is present, the time needed to reach con-

sensus and group cohesiveness are largely independent of the degree of divergence

in the leaders’ opinions, and the consensus is driven primarily by the influence of

the nearest neighbours and PP.

Due to the recent results about the role of low-degree nodes in controlling complex

networks [14] we also tested the role of PP over these potential drivers. Our

results show again that nodes can be good leaders regardless of their centrality in

the network when PP exists in the system as shown in figure 3.2.6, and in contrast

with previous results [14,118,124]. In other words, under the appropriate PP any

individual in a social group could be a good leader independently of her position

in the network. This result adds a new dimension to the problem of network
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controllability [14,111,122,148] by demonstrating that PP is a major driving force

in determining that potential controllers can appear in the network independently

of their centrality (see fig. 3.2.4) and degree distribution (see fig. 3.2.6).

(a) (b)

Figure 3.2.4: Influence of PP on selection of leaders among the nodes with high,
medium and low degree centrality. (a) The HighTech network and (b) the network
of social dating (social3).
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Figure 3.2.5: Leaders’ cohesiveness and consensus. Analysis of the influence of
leaders cohesiveness on the time to reach consensus in the communication network
among workers in a sawmill without (left plots) and with (right plots) PP. The
leaders’ divergences used in this figure are: 0.0 (top), 0.1 (middle), and 0.2 (bot-
tom). The time to reach consensus (in blue) relative to a total time of 1,500 units
is showed as insets.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.2.6: Cumulative degree distribution (cdf) of social networks. (a) BF23,
(b) ColoSpg, (c) Corporate, (d) Dolphins, (e) MathMethod, and (f) Prison.
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3.3 Diffusion of innovations under peer pressure

Another area that has received great research attention is the diffusion of innova-

tions [155–158]. The essence of the diffusion process is the information exchange

by which one individual communicates a new idea to one or several others; thus,

diffusion is a special type of communication concerned with the spread of messages

perceived as new. In its most elementary form, the main elements in the diffusion

process are: [155]

• An innovation (message or information);

• Communication channels, through which messages are conveyed from one

individual to another;

• Time of diffusion; and

• The social system through which the process occurs - a set of interrelated

units engaged in joint problem solving to accomplish a common goal.

The members or units of a social system may be individuals, informal groups,

organizations, and/or subsystems. All members cooperate at least to the extent

of seeking to solve a common problem. This common objective binds the system.

Most innovations have a sigmoid-shaped (S-shaped) rate of adoption. The slope

of the curve varies with every innovation. Certain new ideas diffuse relatively

rapidly, and its S-curve is quite steep. Other innovations may have a slower rate

of adoption, reflected by a more gradual S-curve. This behavior indicates the

rate of adoption, i.e., the number of adopters of the new idea throughout time.

The behavior of the adopters builds the form of the innovation process as follows

[155]: Initially, few individuals adopt the innovation in each period; these are the

innovators. Soon, the diffusion curve begins climbing as an increasing number of

individuals adopt. Then, the trajectory of the rate of adoptions begins to level
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off, as fewer individuals remain who have not yet adopted. Finally, the S-curve

reaches its asymptote and the diffusion process is complete.

Most individuals do not evaluate an innovation on the basis of scientific studies

regarding its consequences; most people primarily depend on a subjective evalu-

ation from individuals such as themselves who previously adopted the innovation,

i.e., a dependency on the communicated experience of near peers.

In diffusion networks, certain individuals play different roles in a social system, and

these roles affect diffusion. Certain members of the system function as opinion

leaders: individuals who can influence others, and who are often identified and

used to assure better diffusion of the information.

Here we consider the hypothesis that PP plays a fundamental role in innovation

adoption or rejection. To test our hypothesis, we studied two datasets in which

some diffusion of innovations process was followed for different periods of time.

• The network from the study Mathematical Method (MathMethod) [159]:

This innovation concerns the diffusion of a new mathematics method in

the late 1950s. It was instigated by top mathematicians and sponsored by

the U.S. National Science Foundation and the U.S. Department of Educa-

tion. The diffusion process was successful because most schools adopted the

new method. The example traces the diffusion of the modern mathematical

method among school systems that combine elementary and secondary pro-

grams in Allegheny County (Pennsylvania, U.S.). All school superintendents

who were in office for at least two years were interviewed. Among other

things, the superintendents were asked to indicate their friendship ties with

other superintendents in the county through the following question: Among

the chief school administrators in Allegheny County, who are your three best

friends? The researcher analyzed the friendship choices among superintend-

ents who adopted the method and who were in office for at least one year

before the first adoption, indicating that they could have adopted earlier.

Unfortunately, the researcher did not include the friendship choices by su-

perintendents who did not receive any choices themselves. In our study, the

network represents the friendship ties among the 30 superintendents who

were part of the connected component, and the times for adoption represent
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the year in which the adopter chose the new mathematical method: 1-1958,

2-1959, 3-1960, 4-1961, 5-1962, and 6-1963.

• Networks from the study Brazilian Farmers [160]: “Diffusion and Adoption

of Innovations in Rural Societies, 1952–1973,” was a longitudinal study on

how Brazilian farmers (BF) adopted hybrid seed corns. The study was part

of a broader, three-phase research project concerned with the spread of mod-

ern technology in Brazil, Nigeria, and India. The data files reflect the second

phase, which examined personal factors influencing farmers’ innovative agri-

cultural behavior. Villages were selected from the total sample of Phase II

villages. The groups of people were divided into different communities ac-

cording to different variables, and the social networks of friends among the

people in each community were retrieved. The dataset used for our study

includes the social network of friendship ties and the cumulative number

of adopters of the new technology over 20 years among the individuals in

the giant connected component for three different communities of the study,

identified as communities 23, 70, and 71 [161].

We applied our consensus model to these networks, and the average time of 50

repetitions was divided, into six intervals for the Mathematical Method, and into

20 intervals for the BF networks. We then counted the number of actors or nodes

that had reached the value of average consensus at every time step by measuring

the difference between every node’s position and the average consensus. As a

general rule, when the absolute value of this difference was less than or equal to a

certain value $ (for out case, $=0.04), we considered the node to be in agreement.

This process was conducted with and without PP, and considering a power-law

decay to simulate the strength of PP.

The cumulative average number of nodes in agreement at every interval is shown in

tables 3.3.1-3.3.4, for every empirical network studied. We also have included the

empirical cumulative number of adopters for every diffusion process. We varied the

values of the parameter α to obtain behaviors that more effectively would follow

the empirical patterns. We divided these values into two classes: moderate PP

(5.0 ≤ α ≤ 6.0) and high PP (3.0 ≤ α ≤ 4.0).

From our results, we can see in figure 3.3.1 the number of actors that adopted the

respective innovations at different times for 2 of the networks studied (the complete
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set of figures is shown in appendix B on page 193). These values correspond to the

number of adopters observed empirically in field studies. The simulations follow

perfect sigmoid curves and we can observe that when there is no PP effect, the dif-

fusion curves predict slower rates of adoption than those empirically observed. For

example, the empirical evidence demonstrates that 50% of schools adopted the new

math method in roughly three years, whereas the simulation without PP predicts a

period of four years of a total of six years. In the case of the Brazilian farmers, the

empirical time for 50% of the farmers to adopt the innovation is roughly 12 years,

whereas the simulation without PP predicts 16 years of a total of 20 years. When

the model uses strong PP, the diffusion curves display very rapid adoption rates,

which are far from the reality of the empirical evidence in both cases. However,

using a moderate PP predicts very well the outputs of the empirical results in

both studies. These PP values are found by a reverse engineering method, but the

important message is that a certain PP level is necessary to describe the empirical

evidence on the diffusion of innovations in social groups. These results demonstrate

that interpersonal communication alone cannot sufficiently explain the process of

innovation adoption in a social group. The pressure exerted by the social group

plays a fundamental role in shaping this important social phenomenon. Our model

describes effectively PP’s role in these and other important phenomena, consistent

with our intuition and with the existing empirical evidence.
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(a) (b)

Figure 3.3.1: Diffusion of innovations under PP. (a) Adopters of a new mathem-
atical method among US colleges in a period of 6 years (αmoderate = 5, αhigh = 4).
(b) Adopters of the use of hybrid seed corns among Brazilian farmers (BF23) for
a period of 20 years (αmoderate = 5.9, αhigh = 4). Experimental values are given
as stars and the simulation with no (broken red line), moderate (continuous blue
line) and strong (dotted green line) PP are illustrated.

Periods Adopters (empirical)
Avg. Adopters (simulation)
No PP α = 4 α = 5

1 1 1.1 1.3 1.1
2 5 2.7 9.0 4.7
3 14 7.7 25.6 13.7
4 26 23.6 29.8 27.8
5 29 28.3 30 29.4
6 30 30 30 30

Table 3.3.1: Cumulative average nodes in agreement for the Mathematical Method
network (MathMethod) with and without PP, and empirical values of the adopting
process.
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Periods Adopters (empirical)
Avg. Adopters (simulation)
No PP α = 4 α = 5.9

1 1 0.8 1.0 0.8
2 1 1.3 1.8 1.2
3 1 1.2 2.0 1.1
4 1 1.5 3.0 1.5
5 3 1.8 7.2 1.7
6 3 2.0 15.8 2.2
7 3 2.3 23.4 2.4
8 4 2.5 26.0 4.1
9 4 4.0 32.3 9.0
10 6 5.6 35.9 10.9
11 6 7.2 37.2 11.5
12 11 8.9 38.5 12.5
13 13 9.5 38.9 13.5
14 15 10.3 38.9 15.8
15 19 12.3 38.9 17.3
16 23 13.4 38.9 19.8
17 33 19.0 38.9 24.6
18 33 24.9 38.9 26.9
19 37 26.4 38.9 30.4
20 38 27.1 38.9 32.9

Table 3.3.2: Cumulative average nodes in agreement for the Brazilian Farmers,
community 23 network (BF23) with and without PP, and empirical values of the
adopting process.

114



Periods Adopters (empirical)
Avg. Adopters (simulation)
No PP α = 4 α = 5.6

1 0 0.9 0.8 0.7
2 0 1.7 3.2 1.8
3 0 1.8 9.5 3.0
4 0 3.3 14.3 4.5
5 14 4.9 23.4 5.6
6 14 4.7 36.2 8.6
7 15 5.8 45.4 13.7
8 18 6.4 47.7 16.5
9 20 6.6 47.8 18.9
10 28 8.3 47.8 21.0
11 29 10.2 47.8 23.5
12 31 11.8 47.8 25.9
13 31 14.0 47.8 28.4
14 36 16.5 47.8 30.7
15 38 19.1 47.8 33.1
16 42 22.7 47.8 37.8
17 44 27.3 47.8 42.1
18 44 31.7 47.8 45.6
19 45 35.4 47.8 47.4
20 46 39.0 47.8 47.5

Table 3.3.3: Cumulative average nodes in agreement for the Brazilian Farmers,
community 70 network (BF70) with and without PP, and empirical values of the
adopting process.
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Periods Adopters (empirical)
Avg. Adopters (simulation)
No PP α = 4 α = 6.6

1 0 0.5 0.7 0.7
2 1 0.9 1.9 1.1
3 1 1.2 4.0 1.4
4 1 1.1 7.3 1.6
5 5 1.0 11.8 3.2
6 5 1.2 21.6 5.5
7 5 2.1 32.2 6.4
8 5 2.9 37.3 6.6
9 5 3.6 46.0 7.0
10 11 4.6 47.8 7.9
11 11 6.1 48.4 9.6
12 22 8.5 48.4 12.7
13 24 11.7 48.4 17.3
14 27 16.4 48.4 23.8
15 30 21.9 48.4 31.5
16 34 26.6 48.4 38.2
17 37 30.8 48.4 43.1
18 39 36.2 48.4 45.9
19 39 40.8 48.4 47.4
20 48 44.5 48.4 47.6

Table 3.3.4: Cumulative average nodes in agreement for the Brazilian Farmers,
community 71 network (BF71) with and without PP, and empirical values of the
adopting process.
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Summary

In this chapter we proposed a way to explore influence of the combined action

of direct and indirect peer pressure on the dynamics of social groups trying to

reach consensus. We have extended a basic model of consensus by introducing a

generalised Laplacian matrix which allows the actors to interact those peers that

are not directly connected to them. We proposed the use of three different decay

factors that can be tuned to adjust the strength of such long-range interactions. We

applied our model to different social networks and confirmed that peer pressure

is an important factor to take into account while studying consensus processes,

leadership and diffusion of innovations. Some of the main results are that the

leadership role of some actors in a social network can be faded with the presence

of peer pressure. We also found that the adverse effect on reaching consensus

due to the presence of communities in the structure of the network vanishes as the

strength of peer pressure increases. Finally, by studying the diffusion of innovations

processes we found that a certain amount of peer pressure is necessary to reproduce

the empirical results coming from two studies on the field.

As a result of our theoretical analysis, we have derived mathematical expressions

of two lower bounds for the consensus time for any network in terms of the second

eigenvalue of the Laplacian matrix, which has been proved to dictate the rate

of convergence of the consensus model. We analysed the case of 12 real-world

networks for illustrating the behaviour of these bounds. The results point to the

fact that the bound given by 3.1.8 can be the best, although a more extensive

analysis must be carried out to confirm this.
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Chapter 4

ON THE TIME FOR

CONSENSUS AND THE

STRUCTURE OF COMPLEX

NETWORKS

Our empirical results from chapter 3 support the intuitive idea that the effect-

iveness of those nodes acting as drivers (leaders) on a consensus process depends

largely on the structure of a network, i.e. if the structure presented communities, a

good distribution of leaders among the communities would benefit the consensus.

Here we explore correlations between the time for consensus and some general char-

acteristics of networks. To enrich the study we expanded our dataset to take into

account different kinds of real networks in addition to the social networks studied

in the last chapter. We see that among all the characteristics, those related to the

size and distance show stronger correlations with the time for consensus.
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4.1 Time for consensus and some structural in-

dices from networks.

We explore possible correlations between the time for consensus and different struc-

tural indices in complex networks. We divide these indices between two groups:

the first group comprises the average node degree, density, average clustering coef-

ficient and transitivity, while the second group includes the average path length,

algebraic connectivity, diameter and average distance-sum. The reason of this di-

vision is twofold: first, we try to keep most degree-related and distance-related

indices separated from each other, and second by dividing the complete set we can

gain better visualisation of their behaviour. We briefly recall the formal definition

of some of these concepts.

4.1.1 Structural characteristics.

We briefly remind the definitions for some structural characteristics of a network

used for the present analysis.

• Average node degree: The average node degree of network is defined on

page 20 as k̄ = 1
n
1Tk = 1

n

∑n
i=1 ki.

• Density: The density of a graph is defined as:

% =
2m

n(n− 1)
(4.1.1)

where m is the number of edges.

• Average (Watts-Strogatz) clustering coefficient: From 1.1.13 on page 25 we

have that the average clustering coefficient of a network is: C̄ = 1
n

∑n
i=1Ci,

where Ci is the clustering coefficient of node i as defined in 1.1.12 on page 25.

• Transitivity: In 1.1.14 on page 26, transitivity is defined as C = 3|C3|
|P2| , this

metric relates the number of triangles C3 with the number of connected

triples P2 (2-paths).
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• Average path length. The definition of this metric comes from 1.1.11 on

page 25 d̄(G) = 1
n(n−1)

∑
u,v∈V d(u, v), du,u = 0.

• Algebraic connectivity: on page 31 it is mentioned that the second smallest

eigenvalue, µ2(L) of the Laplacian matrix is commonly referred to as the

algebraic connectivity of the network which has been related with dynamical

properties of networks [41].

• Diameter. From 1.1.9 on page 24 we have that the diameter of a network is

diam(G) = maxx,y∈V (G) {d(x, y)}.

• Average distance-sum of a node. 1.1.10 on page 24 gives the definition of

distance-sum of a node u as s(u) =
∑

v∈V (G) d(u, v).

We take the arithmetic mean of the distance-sum values of all nodes in a network

as a parameter of this characteristic for our analysis purposes, thus we have that

s̄(u) =
s(u)

n
(4.1.2)

.

4.1.2 Correlations between time for consensus and some

structural characteristics.

We analyse the set of social networks used in chapter 3 plus other types of networks

for enriching our results: biological (14), technological (12), informational (5), and

ecological (17). This makes a total of 64 networks. We obtained the average time

for consensus of 100 repetitions for all the dataset, keeping the parameter of 6

randomly selected leaders for each simulation. We used the statistical analysis

software SPSS© to create the scatter plots in figures 4.1.1 and 4.1.2.

We can see in fig. 4.1.1 that among the structural characteristics considered,

density is the one that seems to have stronger (negative) correlation with the

time for consensus, indicating that the higher the density, the lower the time

taken for reaching consensus in a system. We confirm this visual output by the
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correspondent numerical result given in table 4.1.1 where we can see that the

Pearson coefficient is -0.957. This not surprising result can be explained by the

fact that a denser network implies more number of edges, which for diffusion

processes means more channels for sharing information among nodes, and thus

a better promotion of an agreement in the system. It is worth noticing that

all the characteristics in this table show negative correlations with the time for

consensus, and positive correlations among themselves. Regarding the relation

with the clustering coefficient, we know that this metric is a measure of the number

of mutual neighbours of adjacent nodes, which can affect the synchronisation of a

network. Large values of clustering mean that there are many triangles, and this

enhances consensus in a network.
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Figure 4.1.1: Log-log matrix scatter plots for time of consensus versus average
node degree, density, average clustering coefficient and transitivity for 64 networks
analysed. The black line shows the best linear fit for every case.
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Figure 4.1.2: Log-log matrix scatter plots for time of consensus versus diameter, al-
gebraic connectivity, average pathlength and average distance-sum for 64 networks
analysed. The black line shows the best linear fit for every case.

As for the second group of structural characteristics, we can see stronger correla-

tion values for all of them, where the average distance-sum is the one with higher

(positive) correlation, as can be noticed from the output in table 4.1.2. The cor-

relation coefficient between the time for consensus and the average distance-sum

is 0.964. For the case of algebraic connectivity µ2, we have that the correlation is

negative, indicating that the higher the algebraic connectivity, the lower the time

for consensus. Algebraic connectivity has been related with dynamic properties of

networks, indicating how easily the network would synchronise, hence how easy a
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network can reach consensus. We know that an upper bound for the value of the

algebraic connectivity of a network of size n is given by [162]

µ2 ≤
8kmax
diam2

log2
2n. (4.1.3)

where kmax and diam are respectively the maximum degree and the diameter of

the network.

If we consider the above relation together with the analytical result given in ?? on

page ?? for the time for consensus, then this confirms that the time for consensus

is directly proportional to the diameter of a network in agreement with the result

in table 4.1.2. It is also evident from 4.1.3 that the diameter provides an inverse

measure of the vertex connectivity, this means that two nodes are weakly connected

if their shortest connection is through many other nodes, i.e. if the diameter is

large.

Like the diameter, the average path length among nodes is an inverse measure for

the connectivity of the network, which can be noticed in the following bound [163]

1

µ2

≤ (n− 1)d̄

2
− n− 2

4
, (4.1.4)

here we can see that networks with small number of nodes n and small average

pathlength d̄ show small inverse algebraic connectivity, which makes them present

better properties for reaching consensus. Moreover, from the lower bound [163]

(⌊
2d̄(n− 1)− n
2n ln(n− 1)

⌋
− 1

4

)
4

kmax
≤ 1

µ2

, (4.1.5)

we see that if n is small and d̄ is relatively large, the bound is also large and a

consensus would be more difficult to reach in the network. The maximum degree

kmax can also affect the consensus process, in other words, larger degrees make

consensus easier.
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Table 4.1.1: Correlations of time for consensus for all networks studied and their
correspondent average degree, density, average clustering coefficient, and transit-
ivity.

Table 4.1.2: Correlations of time for consensus for all networks studied and their
correspondent diameter, algebraic connectivity, average path length, and average
distance-sum.
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From the inspection of the above correlations between the time for consensus and

different structural characteristics, we can see that two main features appear to be

important when trying to promote consensus: the way the nodes are connected and

the total distance among them. For the case of the relation between the patterns

of connections and the time necessary for reaching consensus, we know that those

nodes with high degree may have a key role during the consensus process [14], thus

we can relate the performance of a system when trying to reach agreement and

its degree distribution. Degree distributions are well studied in the literature of

network analysis (see references on page 19). We have a broad characterisation of

networks according to the heterogeneity of these distributions, which may be, for

example, power-law or Poisson-like distributions. There are works studying the

relation between the ways nodes are connected, their degree distributions, and the

time for reaching consensus [164–166], but to our knowledge, there are not works

analysing the same for the case of distances. As we can see in the current chapter,

distances among nodes also seem to play an important role for the consensus

dynamics, so this characteristic deserves to be considered in a deeper way.

For the sake of illustrating the role that distances among nodes can play on the

dynamics of consensus, let’s consider the following example. Suppose that we have

a network of n nodes with a structure of a path, just like the one shown in fig.

4.1.3, trying to reach agreement dictated by the model (see 2.3.2 on page 72)

˙x(t) = −Lx(t), x(0) = x0. (4.1.6)

1 2 3 n

Figure 4.1.3: Illustration of a consensus process in a network with path-like struc-
ture

Let us assume that our network has node the 1 acting as a leader with an initial

stationary state equal to 1, and the remaining n − 1 nodes acting as followers,

with identical initial states equal to zero. While the process executes, in the first
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time-step the information of node 1 has been shared with node 2 and this node has

approached its state to the leader’s one. In the second time-step, node 2 shares

its new state with node 3, which in turn modifies its state to move towards the

leader’s state. This process continues for the next time-steps until a consensus is

reached. Evidently, the time necessary for the system to reach consensus depends

not just on the number of nodes, but on the distance among them, which for our

case it increases as the number of nodes n → ∞, thus playing an important role

during the diffusion of the information.

4.2 Distance-sum distributions in complex net-

works.

Our previous results show that the total distance between any node and the rest

of them is an important characteristic to be taken into account when studying

complex networks and consensus processes. Thus, it is worth to devote some

space to include a study of the distance-sum distributions on networks.

We start by defining the probability p(s) of selecting uniformly at random a node

with distance-sum s in a network [167]:

p(s) =
n(s)

n
, (4.2.1)

where n(s) is the number of nodes having distance-sum equal to s, and n is the

size of the network. Then, the plot of p(s) versus s represents the probability

distribution function (PDF) of the distance-sum in a network. The cumulative

distribution function (CDF) can be obtained by plotting the probability P (s) of

choosing at random a node with distance-sum larger or equal than s versus the

distance-sum, where

P (s) =
∞∑
s′=s

p (s′) (4.2.2)
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We studied the CDF instead of the PDF for the distance-sum of the nodes. The

main reason is that the PDF is very noisy for both random and real-world networks,

which makes difficult to find good fits for the distribution.

We start by studying several random networks with different degree distributions.

The first class corresponds to the ‘classical’ random networks built by using the

Erdös-Rényi (ER) model [168]. The second group corresponds to networks with

power-law degree distributions, known as ‘scale-free’ (SF) networks [169], which

were constructed by using the algorithm developed by Hagberg et al. [170]. In the

ER graphs a group of nodes are connected randomly forming a graph with Poisson

degree distribution. In the case of SF model, the resulting graph displays a power-

law degree distribution of the type p(k) ∼ k−γ, where p(k) is the probability of

finding a node of degree k in the graph. We generated SF random networks with

exponents γ = 1.8, 2.5, 3.0. The last ones are known as the Barabási-Albert (BA)

networks [169,171].

In figure 4.2.1 we illustrate the cumulative distance-sum distributions (CDSD) for

the networks with the previously mentioned topologies and having 1000 nodes and

average degree k̄ = 8. As we can see in this figure the shapes of the CDSDs for

all the random networks studied here are very similar to each other. The best

fits obtained for these cumulative distributions (displayed as a continuous line)

correspond to cumulative normal distributions for a normal random variable with

mean s̄ and variance σ2:

P
(
s, s̄, σ2

)
=

1

2

[
1 + erf

(
s− s̄
σ
√

2

)]
, (4.2.3)

where

erf (s) =
2√
π

πˆ

0

e−t
2

dt. (4.2.4)

The fits in figure 4.2.1 were obtained by using the Distribution Fitting Tool c,

contained in Matlab c, which uses the Maximum Likelihood Estimates (MLE)

method to estimate the best parameters of a distribution for a given data. The
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parameters for the best fits of all distributions in figure 4.2.1 are given in table

4.2.1.

The situation is more complex when we consider the cumulative distance-sum dis-

tributions of some real-world networks. For the sake of illustration we show in

figure 4.2.2 the CDSD for the networks representing the food web of Benguela, a

social network of injecting drug users in Colorado Spring, the food web of Skipwith

pond and the protein-protein interaction of Drosophila melanogaster. The best fits

found for such distributions are given in the same figure as solid lines. In no one

case the best fit corresponds to the normal distribution but to Log-Logistic, Gen-

eralized extreme value, Weibull and Log-Normal distributions. The expressions

for these cumulative distributions are given in table 4.2.2.

Network µ σ
ER

(
k̄ = 8

)
3552.34 20.19

SF(γ = 3.0) 8053.17 393.96
SF(γ = 2.5) 4580.65 165.75
SF(γ = 1.8) 2288.79 45.89

Table 4.2.1: Fitting parameters for all CDSD of random networks and real net-
works represented in previous figure.
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(a) ER (b) SF γ = 3.0

(c) SF γ = 2.5 (d) SF γ = 1.8

Figure 4.2.1: Cumulative distance-sum distributions (CDSD) for random networks
with different topologies: (a) ER , (b) scale-free graphs with exponent 3.0, (c)
exponent 2.5 and (d) exponent 1.8. The best fits for normal CDF are displayed as
solid lines.
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(a) (b)

(c) (d)

Figure 4.2.2: Cumulative distance-sum distributions (CDSD) for some real net-
works: (a) Bengela food web (b) social networks of injecting drug users at Colorado
Springs, USA, (c) food web of Skipwith pond and (d) protein-protein interaction
network of Drosophila melanogaster. The best fits for the normal CDF are dis-
played as solid lines, which correspond to Log-Logistic, Generalized extreme value,
Weibull and Log-Normal, respectively.
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Log-Logistic Generalized extreme value

P (s) = 1

1+( sα)
−β P (s) = e−t(x), t(x) =

{[
1 + ξ

(
s−s̄
σ

)]−1
ξ , ξ ∈ R

e−
(s−s̄)
σ

Weibull Log-Normal

P (s) = 1− e−( sλ)
k

P (s) = 1
2

+ 1
2
erf

[
ln s−s̄√

2σ2

]
Table 4.2.2: Expressions for the cumulative distributions for (top-left) Bengela
food web, (top-right) social network of injecting drug users at Colorado Springs,
(bottom-left) food web of Skipwith pond, and (bottom-right) protein-protein in-
teraction network of Drosophila melanogaster.

The analysis of the real-world networks provides a very good example of the dif-

ficulties that arise when statistical distributions are used as a way to quantify

the distance-sum heterogeneity in networks. For instance, how can we compare

distributions so mismatched as the ones found for only four real-world networks?

Moreover, if we would like to set any relation with these distance-sum distri-

butions and the times for consensus for the networks in fig. 4.2.2 (tBengela =

257.70, tColorado Springs = 21946.34 tSkipwith = 85.18 and tDrosophila = 197708.37),

the problem is more challenging. This difficulty points out to the necessity of

having an alternative way of quantifying this important characteristic. We tackle

this situation in the next chapter by introducing an index for the distance-sum

heterogeneity in networks.

Summary

This chapter provided an analysis of the correlation between some structural chara-

teristics of different kinds of networks, and the time they need to reach consensus.

We found that the average distance-sum presented the highest correlation value

pointing to the fact that the distance is a key characteristic that deserves atten-

tion while studying consensus processes, thus we dedicated some space to study

the distribution of distances in random graphs and complex networks. The results

of the study on distance distributions showed the problems that arise when trying

to fit well known distributions to those coming from real networks, and sets the

grounds for the next chapter, where we propose a way to tackle such difficulties.
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Chapter 5

DISTANCE-SUM

HETEROGENEITY IN

RANDOM GRAPHS AND

COMPLEX NETWORKS

In chapter 3 we have seen that the effectiveness of those nodes acting as drivers

(leaders) depends largely on the kind of structure the network presents, and even

more, if this structure shows well defined communities the best strategy is to

let those leaders to emerge from the local communities so that they can better

promote consensus in the complete system, i.e., they are better distributed on the

network. Chapter 4 showed that the total distance between any node and the

rest of them is an important aspect for studying complex networks and consensus

processes. The study of this characteristic is challenging since it is difficult to

quantify the heterogeneity of distances by looking into their distributions, pointing

to the necessity of having an alternative way for doing this. In this chapter we

propose a new index to characterise the distance-sum heterogeneity of networks

[167] which gives more insights about this important structural characteristic on

random and real networks.

One important challenge for the study of complex networks is that many techniques

developed for the analysis of small graphs are computationally intractable for
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gigantic complex networks found in the real-world. On the other hand, some

statistical approaches developed so far for the analysis of these huge networks are

not applicable to small graphs. An example of the last situation is the analysis of

degree heterogeneity in networks [172], which is frequently carried out by studying

the distributions of node degrees [169,173,174]. In large networks it is possible to

analyse the distribution of the probabilities p(k) of finding a node with degree k

as a function of the node degree, but if in this network there are only nodes with

degree a and b we would have only two points for the distribution and this would

be meaningless. However, in a small graph there is not enough data points as

for having a good fit for these distributions. Other difficulties found in studying

degree distributions include the selection of the best fit, and the way to compare

the heterogeneity of networks with different types of distributions [172,174].

Statistical distributions of other graph-theoretic parameters have also been studied

for complex networks, such as the eigenvalue distributions [175] and the node-node

distance distribution [176–178]. The distance-based analogous of the node degree

distribution in a network is the distance-sum distribution. This kind of distribution

has not previously been studied for networks. It consists of the distribution of the

probabilities p(s) of finding a node with distance-sum equal to s, where s is the

sum of all distances from a given node as defined in 1.1.10 on page 24.

Distance-sum is an important characterisation of a node that can be found in many

graph-theoretic invariants such as the Wiener [179] and Balaban [180] indices,

average shortest path [34] and closeness centrality [181].

The Wiener index is defined as follows [179,182]

W (G) =
∑
i

∑
j>i

d (i, j) =
1

2

n∑
i=1

s (i) . (5.0.1)

The Balaban index is defined as [180]

J (G) =
m

C + 1

∑
(i,j)∈E

(sisj)
− 1

2 , (5.0.2)

where C = m− n+ 1 is the cyclomatic number.
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The average path length is defined as [5]

l̄ =

∑n
i=1 s (i)

n (n− 1)
=

2W (G)

n (n− 1)
. (5.0.3)

The so-called ‘small-world’ effect is present in a given network when l̄ is small

compared to the size of the network, i.e., l̄ ∼ lnn [34]. The small-world effect

impacts directly on the properties of networked systems and dynamical processes

in networks, particularly those related with communications and synchronization

[183].

Another graph-theoretic measure related to the distance-sum of a given node is

the closeness centrality ( 3.2.3 on page 95) CC (i) = n−1∑
j∈V (G) d(i,j)

= n−1
s(i)

,which

characterizes how close a node is from the rest of nodes in a network [181,184].

In a similar way to the analysis of any kind of statistical distributions for the nodes

of a graph, distance-sum distributions are difficult to find for small graphs where

the number of data points is very scarce as well as the other difficulties mentioned

before. In those cases where the distributions can be found the previously stated

difficulties for analysing the heterogeneity of networks also apply to the analysis

of distance-sums. Consequently, we propose here the derivation of an index quan-

tifying the distance-sum heterogeneity of a graph/network in such a way that it

can be applicable for a graph of any size.

5.1 Distance-sum heterogeneity in graphs and

complex networks

We start by establishing the grounds for our analysis. We consider a simple,

undirected and unweighted graph G = (V,E) with n = |V | vertices and m = |E|
edges. This graph has an associated square and symmetric adjacency matrix A

with entries 0 and 1 as defined in 1.2.1 on page 26. The graph has an associated

Laplacian matrix L = K−A, as defined in 1.2.14 on page 30. We remember that

the Laplacian is positive semidefinite with eigenvalues 0 = µ1 < µ2 ≤ · · · ≤ µn for

a connected graph.
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Recall that the degree of the node i is given by ki =
∑n

j=1Aij and that the density

of a graph is defined as % = 2m
n(n−1)

. We also know that among all the paths

between two nodes v1 and vl+1, the ones having the minimum length are called

shortest-paths, and that the length of a shortest path between vi and vj is called

the shortest-path distance (or simply the distance di,j) between nodes vi and vj .

As defined on page 24, the distance matrix D of the graph G is a square, symmetric

n× n matrix whose i, j entry is given by dij = d(i, j). The distance-sum s(i) of a

node i is defined as , and a vector of distance-sums can be obtained as s = 1TD,

being 1 a column vector of ones.

5.1.1 Distance-sum heterogeneity index

In order to tackle the problem previously set on page 132, we propose a new

approach to quantify the distance-sum heterogeneity of networks which is encoded

in what we have called the distance-sum heterogeneity index. This index shows

some important differences in the distance-sum heterogeneity of random and real-

world networks.

To introduce the distance-sum heterogeneity index we start by considering a hy-

pothetical process in which the nodes of a given network reach a consensus about

their distance-sums. That is, let G = (V,E) be a simple, undirected and un-

weighted graph with distance-sum of the nodes given by the vector s. Let f (si)

be a function of the distance-sum of node i. In the hypothetical consensus pro-

cess every pair of connected nodes tries to ‘equalize’ their functions f = f (si) of

distance-sums by a consensus process. The final consensus state is reached if, for

all fi (0) and all i, j = 1, . . . , n, |fi (t)− fj (t)| → 0 as t → ∞ [7]. We know that

the consensus model has the form df
dt

= −Lf , f(0) = f0, where L is the Laplacian

matrix of the network. In order to control the evolution of the consensus process

in the network a disagreement function ϕ (f) is defined as [7]

ϕ (f) =
1

2
fTLf =

1

2
〈f |L| f〉 (5.1.1)

such as that the consensus model can be written as the gradient-descent algorithm

[7]

136



df

dt
= −∇ϕ (f) , f (0) = f0 (5.1.2)

Now, returning to the quadratic form (5.1.1), we remark that it can be written as

ϕ (f) =
1

2

∑
(i,j)∈E

(fi − fj)2 (5.1.3)

indicating that ϕ(f) measures the ‘heterogeneity’ in the distance-sum function f

in every time-step of the consensus process.

Here we are not concerned with the time evolution of the ‘heterogeneity’ function

in the consensus process, but mainly on how much heterogeneity a given graph

has. That is, we are interested in finding ϕ(f) only for time zero of the consensus

process. For the sake of convenience we select our function f to be a power of

the distance-sum, i.e., f = f (si) = sαi . This is a general form that can embrace

such indices like the Wiener index and closeness centrality (α = 1), as well as

the Balaban index (α = −1
2
) one. In closing, the distance-sum heterogeneity of a

graph is given by the following formula:

ϕ (G) =
1

2

∑
(i,j)∈E

(
sαi − sαj

)2
=

1

2
(sα)T Lsα (5.1.4)

5.1.1.1 Properties of the distance-sum heterogeneity index

For the following analysis of the distance-sum heterogeneity index (5.1.4) we will

consider only the case α = −1
2
, which relates the our proposed index with the

Balaban index for a given graph.

Let ϕ (G) be the heterogeneity index of a simple, undirected, unweighted graph G

and let α = −1
2
. Then, it can be easily shown that

ϕ (G) =
n∑
i=1

ki
si
− 2

∑
(i,j)∈E

(sisj)
− 1

2 , (5.1.5)
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where ki is the degree of the node i. Note that the term in the second part of the

right-hand side of (5.1.5) corresponds to the Balaban index except for the factor
m

(C+1)
.

The term ki
si

in the expression (5.1.5) has the following interpretation. Let us

consider a walker living at node i who can visit every node j of the connected

graph by using the shortest paths from i to j. Let us consider a discrete-time

process in which the time needed by the walker for going from one node to a

nearest neighbour is t = 1. Here we consider independent visits to the nodes of

the graph. That is, if a walker at node i visits the node j at distance dij it is

assumed that the walker returns to i before he visits another node v. Thus, the

total time needed by a walker living at node i for independently visiting every

node of the network is tT (i) = 2si. On the other hand, the time needed for

independently visiting every nearest neighbour of node i is given by tnn (i) = 2ki.

Consequently, the fraction of the total time needed by the walker to independently

visiting all his nearest neighbours is given by:

rt (i) =
tnn (i)

tT (i)
=
ki
si
, (5.1.6)

which defines a new centrality index for the nodes of a network.

If we consider n walkers living at the n nodes of a network, the average fraction

of time needed by them to independently visiting their nearest neighbours is rt =
1
n

∑n
i=1 rt (i). Using these expressions we can rewrite the Balaban J (G) index [185]

in terms of the average fraction of time rt and the distance-sum heterogeneity index

as

J (G) = γ [nrt − ϕ (G)] , (5.1.7)

where γ = 2m
(C+1)

.

It is evident from (5.1.4) that the lower bound for the distance-sum heterogen-

eity index is zero, which is reached when the graph has the value of si for every

node. In order to search for the maximum of this index a computation-based

search among all connected graphs with 4 to 24 nodes was carried out using the
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AutoGraphiX system for finding extremal graphs [186] which uses the variable

neighbourhood search metaheuristic to complete the task as a problem of combin-

atorial optimisation. The variable neighbourhood search differentiates itself from

other methods for solving combinatorial optimisation problems, i.e. simulated an-

nealing, tabu search and genetic algorithms, in the sense that the last methods

perform a sequence of local changes in an initial solution which improve the value

of the objective function each time until a local optimum is found [187], while the

first one does not follow a trajectory, but explores increasingly distant neighbours

of the current incumbent solution, jumping from this to a new one if and only if

an improvement is reached, thus avoiding being trapped in local optima [188].

For graphs with n = 4, 5 the maximum of the distance-sum heterogeneity index is

reached for the star graph. For graphs with n = 6, 7, 8 the maximum is reached

for the graphs having the structures illustrated in figure 5.1.2. These graphs are

easily constructed from a star graph S1,n−1 by making a duplicate copy of the node

having degree n− 1. These type of graphs have been called ’agave’ in allusion to

the plant from which Tequila is produced [167]. For graphs with n =9 to 24, the

maximum is given by a structure called complete split graphs [189], like the ones

shown in fig. 5.1.3. The parameters for these kind of graphs that maximise the

distance-sum heterogeneity index ϕ(G) are given in table 5.1.1.

n 4 5 6 7 8 9 10 11 12 13 14
α 3 4 4 5 6 6 7 8 9 9 10

n 15 16 17 18 19 20 21 22 23 24
α 11 11 12 13 14 14 15 16 16 17

Table 5.1.1: Parameters n and α for which the complete split graph SKn,α max-
imises the distance-sum heterogeneity index for 3 ≤ n ≤ 24. These values were
obtained with the AutoGraphiX system.

A complete split graph SKn,α is the graph obtained from an empty graph on α

vertices, K̄α, and a clique on n − α vertices, Kn−α, by adding all possible edges

between the independent set and the clique (see for example fig. 5.1.3). We point

out to the fact that in the case where α = n−2, the complete split graph SKn,n−2

gives the agave graph. For this particular case, an agave graph with n vertices,

the distance-sum heterogeneity index is given by
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ϕ(SKn,n−2) = (2n− 4)

(
1√
n− 1

− 1√
2n− 4

)2

=
3n− 5

n− 1
− 2

(
2− 2

n− 1

) 1
2

.

(5.1.8)

For the case of the distance-sum heterogeneity for the complete split graph, let us

use the illustration on fig. 5.1.1. We know that the distance-sum heterogeneity

index for any graph G(V,E) is given by

ϕ(G) =
1

2

∑
(i,j)∈E

(
1
√
si
− 1
√
sj

)2

. (5.1.9)

Lemma 5.1. The distance-sum heterogeneity index of SKn,α is ϕ(SKn,α) = α(n−

α)

(
1√
n−1
− 1√

2(n−1)−α

)2

Proof. For a complete split graph SKn,α like the one in fig. 5.1.1, we can identify

two types of nodes:

1. n− α nodes which are part of the clique (dark grey nodes).

2. α nodes which are not part of the clique (light grey nodes).

Thus, we have that

si = α + 2(n− α− 1) = α + 2n− 2α− 2 = 2n− α− 2 = 2(n− 1)− α, (5.1.10)

sj = (n− α− 1) + α = n− 1, (5.1.11)

and taking the expressions 5.1.13 and 5.1.14 into 5.1.9 leads to

ϕ(SKn,α) = α(n− α)

(
1√
n− 1

− 1√
2(n− 1)− α

)2

. (5.1.12)
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i

n-α j

α

Figure 5.1.1: Illustration of a complete split graph. The dark grey nodes form a
clique of size n − α. The α light grey nodes are connected to the clique but are
not connected among them.

The structure of a complete split graph (see fig. 5.1.1) has adjacency matrix given

by the following general structure

A(SKn,α) =

[
Kn−α Jn−α,α

Jα,n−α 0α,α

]
, (5.1.13)

and their correspondent Laplacian matrix L(SKn,α) has a spectrum

SKn,α : Sp(L) = {µ1(L), (α− 1)(µ2(L)), (n− α)(µ3(L))} , (5.1.14)

where µ1 = 0.

Let α∗ be the value for which ϕ(SKn,α) is maximum for α ∈ {1, 2, . . . , n− 1}. An

inspection of the values in table 5.1.1 gives us that α∗ =

⌈√
n(n−1)

2

⌉
. We conjecture
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that the complete split graph maximizes the distance-sum heterogeneity index for

graphs having n ≥ 4 nodes.

Conjecture 5.2. Among the graphs having n ≥ 4, the complete split graph SKn,α∗

has the maximum distance-sum heterogeneity index.

(a) (b)

Figure 5.1.2: Illustration of the agave graphs with (a) 6 nodes and (b) 7 nodes.

3

2

1

9

8

7 6

5

4

Figure 5.1.3: Illustration of the complete split graphs with 9 nodes.

The distance-sum heterogeneity index can be expressed in terms of the ‘optimal’
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values of the index given by the SKn,α∗ graphs. The following formula expresses the

distance-sum heterogeneity as a percentage of the conjectured maximum possible

value of distance-sum heterogeneity:

ϕrel =
100 · ϕ(G)

ϕopt(G)
. (5.1.15)

5.1.2 Spectral representation of the distance-sum hetero-

geneity index

We study the spectral representation of the distance-sum heterogeneity index.

We start by considering the uj orthonormal eigenvector of the Laplacian matrix

associated with the µj eigenvalue. The cosine of the angle formed between this

eigenvector and the vector of distance-sum s−
1
2 for a given network is expressed as

cos θj =
s−

1
2 · uj∥∥∥s− 1

2

∥∥∥ , (5.1.16)

where
∥∥∥s− 1

2

∥∥∥ is the Euclidean norm that can be written as
∥∥∥s− 1

2

∥∥∥ =
√∑

i s
−1
i . Let

0J−1 =
∑n

i s
−1
i . Then, using the Euler theorem (see page 457 of ref. [190]) we can

represent the distance-sum heterogeneity index in terms of the eigenvalues of the

Laplacian and the cosines θj as follows

ϕ(G) =
1

0J−1

n∑
j=2

µj cos2 θj. (5.1.17)

The term cos2 θj represents the similarity between the normalised distance-sum

vector and the corresponding eigenvector (or vice versa). For instance, cos2 θj = 0

means that the vector s−
1
2 is perpendicular to the Laplacian eigenvector uj, and

no “duplicated” information is contained in both vectors, which means that they

are dissimilar.
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Now we can consider a graphical representation of the distance-sum heterogeneity

of a network if we take a coordinate system with origin at µ1 = 0. We can represent

the other eigenvalues of the Laplacian for a given network as points in this system

in the following way: we consider that the eigenvector µj>1 is represented by a

point whose distance from the origin of coordinates O is given by B =
√
µj>1. The

segment OB forms an angle θj with the y axis of coordinates, which determines

the full position of the point in the coordinate system. It can be seen that the

projection of
√
µj>1 on the x axis is given by xj =

√
µj>1 cos θj, and the projection

of
√
µj>1 on the y axis is given by yj =

√
µj>1 sin θj. This means that the distance-

sum heterogeneity index ϕ(G) can be written as

ϕ(G) =
(

0J−1

)−1
n∑
j=1

x2
j . (5.1.18)

We can use this kind of plot to represent the distance-sum heterogeneity of a

network in a graphical form by plotting xj vs. yj for all values of j. Thus the

distance-sum heterogeneity index is given by the sum of the squares of the projec-

tions of all these points on the abscissa. Obviously, all projections on y-axis are

positive but those on x-axis can have positive and negative signs. We call these

plots distance-sum heterogeneity plots or simply S-plots.

5.1.3 Distance-sum heterogeneity index for random and

real-world networks

5.1.3.1 Distance-sum heterogeneity in random networks

As we previously showed, the cumulative distance-sum distributions for random

graphs do not display any significant difference in the distance-sum heterogeneity

of networks with quite different topologies. We calculated the distance-sum het-

erogeneity index for the same random graphs displayed in figure 4.2.1 as well as

their values relative to the conjectured maximum heterogeneities and the results

are given in table 5.1.2.
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Random Network ϕ(G) ϕrel(G)
SF γ = 1.8 0.05487 4.8102
SF γ = 2.5 0.00684 0.0599
SF γ = 3.0 0.00295 0.0258
ER 0.00103 0.0090

Table 5.1.2: Distance-sum heterogeneity index and their relative values for different
random graphs.

As we can see in table 5.1.2, the degree distribution induces distance-sum hetero-

geneity in the random networks. The ER network displays the lowest distance-sum

heterogeneity with a value of ϕrel(G) close to zero. This indicates that most of the

nodes in an ER network have approximately the same distance-sum displaying a

remarkable regularity. As soon as the degree distribution becomes more skewed

there are some nodes that concentrate much more links than the rest, i.e., the

hubs of the networks. As a consequence, the hubs have a larger number of small

shortest paths than the poorly-connected nodes. This unbalance makes that the

distance-sum heterogeneity increases in these networks.
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(a) ER (b) SF γ = 3.0

(c) SF γ = 2.5 (d) SF γ = 1.8

Figure 5.1.4: S-plots for different random networks: (a) ER, (b) scale-free with
exponent 3.0, (c) scale-free with exponent 2.5, and (d) scale-free with exponent
1.8.

Graphically, these heterogeneities can be better observed by using the S-plots for

these networks. In figure 5.1.4 we illustrate the S-plots for the random networks

studied and it can be seen that the ER network has a very homogeneous S-plot,

which covers practically all the values of xj in the interval [−1, 1]. The networks

with SF topologies display very narrow S-plots in which most of the xj values

are concentrated around the zero value. A further characterization of these plots

would add more value to the analysis of distance-sum heterogeneity in networks.

However, we will not consider such kinds of quantitative characterizations in this

thesis.
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5.1.3.2 Distance-sum heterogeneity in real-world networks

Now we study the distance-sum heterogeneity of 64 real-world networks represent-

ing biological (B), ecological (E), informational (I), social (S) and technological

(T) systems. The description of all these networks can be found in appendix B on

page 164.

Among these networks, we have biological networks that include the neural net-

work of C. elegans ; the transcription networks of yeast, E. coli and urchins; the

PPI networks of D. melanogaster, H. pylori, A. fulgidus, B. subtilus, E. coli, mal-

aria parasite, Kaposi sarcoma herpes virus, human and yeast. Ecological networks

include food webs like Benguela, Coachella Valley, Reef Small, Shelf, Skipwith

pond, St. Marks seagrass, Stony stream, Bridge Brook, Canton Creek, Chesapeake

Bay, El Verde rainforest, Scotch Broom, Grassland Little Rock, St. Martin and

Ythan estuary with and without parasites. Informational networks represent sys-

tems such as a network of the Roget thesaurus ; a citation network consisting of

papers published in the Proceedings of Graph Drawing in the period 1994–2000;

a semantic network of the Online Dictionary of Library and Information Science

(ODLIS ); a citation network in the field of “small-world”. Among those social net-

works considered we have the social networks of corporate elite in USA, inmates in

prison, the friendship network between physicians (Galesburg), the friendship ties

among the employees in a small hi-tech computer firm which sells, installs, and

maintains computer systems (high-tech), and a sawmill communication network;

the social networks of injecting drug users, a social network among college students

in a course about leadership and the Zachary karate club; persons with HIV infec-

tion during its early epidemic phase in Colorado Springs, a scientific collaboration

network in the field of computational geometry, and a sexual network consisting of

heterosexual relationships. Finally, among the technological networks we included

three electronic sequential logic circuits parsed from the ISCAS89 benchmark set;

the software network of Abi, Digital, MySQL, VTK and XMMS ; the USA airport

transportation network of 1997; two versions of Internet at autonomous system of

1997 and 1998.

According to our calculations, real-world networks do not display very large distance-

sum heterogeneity indices. The average value of the relative distance-sum hetero-

geneity is about 2.5%. However, there are significant variations of this index for
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individual networks. For instance, the food webs of Skipwith and Bridge Brooks

have relative distance-sum heterogeneities of 29% and 11.5%, respectively, and the

citation network of ‘small-world’ has a value of near 1.5%. On the other side of the

coin there are 3 networks with relative distance-sum heterogeneities smaller than

0.009%, which are accordingly very close to those observed for random networks

with Poisson degree distributions. In figure 5.1.5 we illustrate the values of the

relative distance-sum heterogeneity indices for all the real-world networks studied.
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Figure 5.1.5: Values of relative distance-sum heterogeneity indices for the 64 real-
world networks studied.

When the average relative distance-sum heterogeneity is considered for all networks

in the different functional classes, i.e., B, E, I, S and T, we find some interesting

observations. First, the largest distance-sum heterogeneity is observed for the
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ecological networks, which display an average of about 6% of the conjectured

maximum value for this index. The removal of the two networks with the largest

distance-sum heterogeneity does not change very much this situation. For instance,

after removing the food webs of Skipwith and Bridge Brooks the remaining food

webs have an average of 4% of relative distance-sum heterogeneity, which is still

four times of those observed for the networks in the other groups. Technological

networks have average relative distance-sum heterogeneity of about 0.10% and the

other three groups are very close to each other with percentages between 0.75%

(I) and 1.12% (S) (see figure 5.1.6).
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Figure 5.1.6: Average relative distance-sum heterogeneity for all networks grouped
into different functional classes: Biological (B), Ecological (E), Informational (I),
Social (S) and Technological (T).

The reason why food webs display more relative distance-sum heterogeneity is
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not clear. These are networks with higher densities than the rest of the networks

studied here. For instance, the densities of the food webs analysed are about 6

times larger than the average of the rest of the networks. As a consequence, there

is a linear correlation between the density and the relative distance-sum hetero-

geneity of the networks studied. It displays a Pearson correlation coefficient of

0.92 indicating that the denser networks are also the most distance-sum hetero-

geneous. However, it is easy to be fooled by this kind of correlations as we can

build networks with high density and very poor distance-sum heterogeneity (think

for instance about the complete graph). In fact, if we remove all food webs from

the previous correlation, the correlation coefficients drops to 0.89, indicating that

there is no such kind of strong dependence and that the previous observation ap-

pears to be biased by the presence of food webs. Thus, it is plausible that there is

some kind of functional cause for the appearance of distance-sum heterogeneity in

food webs. A review of two examples of networks with some of the largest relative

distance-sum heterogeneities gives some important hints. Lets take for example,

the networks Skipwith and Bridge Brooks. It is evident from figure 5.1.7 that these

food webs resemble very much the type of graphs we have conjectured to display

the largest values of distance-sum heterogeneity. This type of structure can ap-

pear naturally in the evolution of food webs, where there could be a central core

of species with trophic relations among them, surrounded by one or more layers

of species that have trophic relations with the central core but not among them.

This could be the case, for example, of parasites that have trophic interactions

with other species but not among them. In closing, we have found that the type of

topological structure that maximizes the distance-sum heterogeneity of any graph

can appear naturally in ecological food webs, where they can explain some of the

structural and dynamical properties of such ecological systems.
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(a) (b)

Figure 5.1.7: Illustrations of two food webs with some of the largest relative
distance-sum heterogeneities: (a) Skipwith and (b) Bridge Brooks. Nodes represent
species and links represent trophic interactions (who-eat-who) in the ecosystem.

We also explored the relationship between the relative distance-sum heterogeneity

index and the average path length. We have found that the relative distance-sum

heterogeneity index decays as a power-law with the average distance. Accordingly,

ϕrel(G) = 0.7434 · l̄−2.126 with correlation coefficient equal to 0.91 (see fig. 5.1.8).

This relationship indicates that the networks with large relative distance-sum het-

erogeneity have small average path length. From an inspection to the form of

the complete split graph, we can infer that the star graph has the largest average

shortest path distance, and that the star is the initial stage for the generation of

graphs with maximum distance-sum heterogeneity, and that in every further step

we are adding links in a way that decreases the average distance among nodes.

For example, the average path length in the star graph with n nodes is given by

l̄(Sn) = 2− 2

n
. (5.1.19)

It is straightforward to realize that l̄(Sn)→ 2 as n→∞, and as the density of the

graphs increases the average path length drops quickly. Consequently, the graphs

which have high relative distance-sum heterogeneity necessarily have small average

path length.
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Figure 5.1.8: Relation between the relative distance-sum heterogeneity index and
average shortest path distance for the 64 real-world networks studied. The plot
is in log-log scale to illustrate the power-law relationships existing between both
parameters.

5.2 Distance-sum heterogeneity and consensus

in complex networks

As stated in chapter 4, the total distance among nodes in a network plays a key

role when trying to reach consensus, but since we lacked of a metric that could

give some insights about this characteristic, we derived an index that can be used

now for testing this hypothesis. First we plot the times for consensus for our

64 networks versus their relative distance-sum heterogeneity obtained with the

expression 5.1.15. For analysis purposes we normalised the times for consensus by

the number of nodes n so we can compare two normalised properties. As we can see

in fig. 5.2.1, these variables show a decay close to the form trel = 1.0976ϕ−0.5686
rel ,

with correlation coefficient of 0.7. This relation points to the idea that consensus

is better achieved for those networks with larger distance-sum heterogeneity. This

result might seem counter intuitive, but if we recall from the previous section, large
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relative distance-sum does not imply necessarily that the the distance among nodes

is large, it implies that the difference in the total distance among nodes is large,

which could be the case that there may be nodes strongly connected to other

nodes, but those nodes may not be connected among them, this is the case of

the structure of a complete split graph, which was conjectured it maximises the

distance-sum heterogeneity index ϕ(G).
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Figure 5.2.1: Log-log plot of relative time for consensus versus the relative distance-
sum heterogeneity for the 64 networks studied

From a consensus process point of view, low distance-sum heterogeneity seems

to be counterproductive due the structural characteristics this implies. In fig.

5.2.1 the left-hand extreme points are the networks power grid (fig. 5.2.2 a) and

Drosophila PIN (fig. 5.2.2 b), and the right-hand extreme points are the networks

Skipwith (fig. 5.2.2 c) and Shelf (fig. 5.2.2 d). If we review their S-plots (see

figs. 5.2.3 and 5.2.4) we would expect the first two networks to present structural

similarities (low distance-sum heterogeneities), and the last two would also be

structurally similar (high distance-sum heterogeneities). Taking a close look to

their structural characteristics, given in table 5.2.1, we can see that both power

grid and Drosophila PIN show low average degree, large diameter, large average

path length, low density and low algebraic connectivity, all with negative impact for
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consensus, whereas the other two networks, Skipwith and Shelf show the opposite:

high average degree, low diameter, low average path length, relative high density

and high algebraic connectivity, all with positive impact for consensus.

(a) (b)

(c) (d)

Figure 5.2.2: Illustration of networks: (a) power grid, (b) Drosophila PIN, (c)
Skipwith and (d) Shelf
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Network average

time for

consensus

average

degree

diameter average

path

length

density algebraic

connectivity

power grid 276221.87 2.669 46 18.98 0.001 0.001

Drosophila-PIN 197708.37 2.408 27 9.43 0.001 0.001

Skipwith 85.18 20.171 3 1.417 0.593 7.604

Shelf 254.03 35.827 3 1.573 0.448 7.542

Table 5.2.1: Structural characteristics of the networks power grid, Drosophila-PIN,
Skipwith and Shelf
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Figure 5.2.3: S-plots for the left-hand extreme networks: (a) power grid (b)
Drosophila-PIN
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Figure 5.2.4: S-plots for the right-hand extreme networks: (a) Skipwith (b) Shelf

Summary

We have introduced a mathematical index as a way to overcome the difficulties that

arise when trying to characterise complex networks according to their distance-sum

distributions. This index, called distance-sum heterogeneity index, was applied to

study this feature in different kinds of networks, and we provided some interesting

results regarding the behavior of the index: in general all the networks studied

presented low values of heterogeneity in distance-sum, and for some reason that is

not clear, food webs showed the highest values of this index. We also proposed a

visualisation of this characteristic by the use of the so-called S-plots, which makes

use of spectral methods.

The results of the correlations between the time for consensus and some structural

characteristics obtained in the previous chapter support those given in table 5.2.1.

When analysing a consensus process in a network we can verify every single struc-

tural characteristic in order to stablish whether or not such network would make

easier/harder reaching consensus. What is interesting from our results is that the

distance-sum heterogeneity index induces an order that is closely related to these
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structural characteristics, that we have showed are important for the dynamics of

consensus: average degree, diameter, average path length, algebraic connectivity.

Thus, we may use this distance-based parameter, together with the S-plots, to get

a pretty good idea in the first instance about how hard/easy could be reaching

consensus in a network regardless its nature. Of course, a more complete analysis

would require further review of the structure of the network, but the distance-sum

heterogeneity index can be useful for analysing consensus or other synchronisation

processes in complex networks.
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Chapter 6

CONCLUSIONS

We have presented a model to address the unexplored influence of the combined

action of direct and indirect peer pressure on the dynamics of social groups. Our

model considers that the consensus dynamics is controlled not only by the agree-

ment between directly connected peers, but also by the influence of those peers

which are socially or culturally close to them. The results obtained with this gen-

eralised consensus model highlight the important role played by the indirect peer

pressure on the processes of consensus, leadership and diffusion of innovations in

social groups.

Consensus is known to be influenced by a small group of actors playing a driv-

ing role, these actor are called leaders and can guide the behaviour of the entire

network. The function of this drivers in the system controllability, an in partic-

ular their status or position in the complex network, has recently received great

attention. As expected, the presence of leaders reduces significantly the time for

reaching consensus in the network. In terms of controlling the system, our findings

show that appropriate levels of indirect peer pressure allows that randomly emer-

ging leaders could be as good as those occupying special positions or centrality in

the network.

We have also studied two important factors that directly impact the controllability

processes of a network. The first factor is the role played by the presence of tightly

connected groups or communities of nodes in the system. The other one is the

cohesiveness of the leaders trying to drive the consensus of the while network. In
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both cases, our results show that if the level of indirect peer pressure is relatively

weak, local leaders and leaders with strong cohesiveness are the best groups for

controlling the network. However, as the indirect peer pressure increases, the

barriers imposed by the communities and leaders’ cohesiveness vanish, and the

networks are easily controlled, even by leaders emerging from random positions.

Another area in which we have found indirect peer pressure plays an important

role is in the diffusion of innovations process. In this case our results, based on

real-world data coming from two studies on diffusions of innovations in different

scenarios, show that a moderate indirect peer pressure is needed in order to repro-

duce the rates of diffusion of these innovations, independently of the social scenario

in which they took place. Our findings offer a new perspective for the analysis of

consensus process in social groups, and also place some important questions about

the role that indirect peer pressure plays in controlling or driving social networks.

When analysing the impact of having tightly connected groups in a network, we

have to consider two well known structural characteristics: the degree of nodes,

and the distance among nodes. Different works have studied the number of con-

nections a node has in a network, and have proposed metrics based on this value

to characterise complex topologies. For the case of the distances among nodes,

we studied the distance-sum heterogeneity of artificially constructed random net-

works, as well as real-world networks.

The distance-sum value forms part of different graph-theoretic invariants used for

studying graphs and networks in different fields. Our work first provides an analysis

of the distance-sum cumulative distributions, as a natural extension of what has

been widely done for the degree of the nodes among the works on networks. In

this part we have shown that these distance-sum distributions dot not account for

the heterogeneity in the distance-sums of random and real-world networks. As a

result of the last finding, we have proposed and introduced an index of distance-

sum heterogeneity based on a hypothetical consensus process where all nodes look

to agree on their distance-sums vales. Derived from this model, our index takes a

quadratic form of the Laplacian matrix of the graph under analysis. This distance-

sum heterogeneity index allows an interpretation of the Balaban index of a graph

to be the contribution of the average time needed by n walkers to independently

visiting their neighbours minus the contribution of the distance-sum heterogeneity
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of the graph.

From a computational analysis, we conjecture that the maximum value of the

distance-sum heterogeneity index for a graph with n nodes is reached for the so

called complete split graph. Using the distance-sum heterogeneity values of the

complete split graphs we proposed an index of relative distance-sum heterogeneity,

and we have shown that this index differentiates random graphs with different

degree distributions, as well as real-world networks from different nature and dif-

ferent topologies. Moreover, this new index can give good insights about how fast

consensus can be reached in a particular network regardless its nature, this is due

the distance-sum heterogeneity correlates good with different structural properties

which are important for any consensus process.

Two lower bounds for the time for consensus were derived and tested for some

networks, the results point to the idea that the higher bound thighB might be more

appropriated to bound the time for consensus for networks, although this is just

a preliminary insight and further analysis must be carried out.

6.1 Future work

Our work opens opportunities for further analysis as future work: naturally, and

derived from the kind of topologies explored in this thesis, the studies should

continue with the inclusion of directed networks, as well as changing topologies,

consensus processes with delays or faults in transmission of information. For the

case of analysing the effects of indirect peer pressure on social networks, the study

can be adapted and performed using other models for social dynamic opinion

formation. The extension of the present work will take us to the ground of non-

linear dynamics, which would enrich the recent findings.

The evidence provided highlights the importance of the information coming from

the analysis of the relative distance-sum index, this additional information should

be taken into account while carrying out structural analysis of networks. The

complete split graph SKn,α∗ with n nodes has m = (n−α∗)(n+α∗−1)
2

links, however,

most real-world networks have different (perhaps lower) densities than a complete

split graph with the same number of nodes. Consequently, our future steps go in
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the direction of finding the graphs that maximize the distance-sum heterogeneity

index for a given number of nodes and a given number of links. It is worth it to

continue walking on this avenue to propose methods and algorithms looking to

solve questions like why food webs and possibly other ecological networks display

larger distance-sum heterogeneity than other kind of networks. A further charac-

terisation of the spectral representation of the distance-sum heterogeneity index

should give more interesting insights about it. A good approach for analysing

the influence of the distance-sum heterogeneity index in a consensus would be to

consider a consensus process for a complete split graph SKn,α and then rewire the

links until we have a ER random network.

From our analysis we can see that two main structural characteristics play import-

ant roles in the dynamics of the leader-follower consensus when peer pressure is

present: the degree and the total distance among nodes. We envision that a com-

bined analysis of these characteristics, i. e. the “clumpiness” of a network, would

provide valuable insights for the study of these kind of phenomena and will build

on the open question about which nodes would be structurally the best drivers for

controlling networks.

Finally, the analysis of the lower bounds derived in this work (see 3.1.9 and 3.1.8)

shows that the bound given by 3.1.8 could be the best one when trying to known

a priori the time for consensus, thus a more extensive analysis with a larger set of

networks must be carried out to confirm this.
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Appendix A

Theorems

A.1 Gershgoring’s Theorem.

Let A ∈ Cn×n and suppose that X−1AX = D+F where D = diag(d1, . . . , dn) and

F has no nonzero diagonal entries. Then the eigenvalues of A lie in the union of

the disks ∆1, ∆2, . . . , ∆n where

∆i =

{
z ∈ C : |z − di| ≤

n∑
j=1

|fij|

}
.

If we choose X carefully we often get tight bounds on the locations of the eigen-

values. Simple choices of X can also be useful. Note that if the disks are disjoint

they each contain a single eigenvalue of A.

A.2 Perron’s theorem

Suppose A ∈ Rn×n and A > 0. Let ρ and σ be respectively the spectral radius

and the spectrum of A. Then A has an eigenvalue λ that satisfies the following

properties.

1. λ = ρ(A).
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2. If µ ∈ σ(A) and µ 6= λ then |µ| < λ.

3. λ has algebraic multiplicity 1.

4. If Ay = λy then y = ax where x > 0 and α ∈ C.

A.3 Perron-Frobenius theorem

If A is fully indecomposable and nonnegative, then the properties listed in the

Perron theorem still hold. If it is irreducible, then 1, 3 and 4 are guaranteed to

hold.
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Appendix B

Datasets description, tables and

figures

B.1 Datasets description.Networks used for the

different analysis in this work (see [5] and

references therein).

Name nodes Type Description

Benguela 29 ecological Marine ecosystem of Bengela, off the

south-west coast of South Africa.

Bridge Brook 75 ecological Pelagic species from the largest of set

of fifty Adirondack Lake (NY) food

webs.

BF23, BF70,

BF71

40, 48, 49 social Networks of friendship ties from the

communities identified as 23, 70, and

71 from the Brazilian Farmers

longitudinal study on the adoption of

a new corn seed.
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Name nodes Type Description

Canton 108 ecological Primarily invertebrates and algae in a

tributary, surrounded by pasture, of

the Taieri River in the South Island of

New Zealand.

Centrality-

literature

118 informational Citation network of papers published

in the field of Network Centrality.

Chesapeake 33 ecological The pelagic portion of an eastern US

estuary, with an emphasis on larger

fish.

Coachella 30 ecological Wide range of highly aggregated taxa

from the Coachella Valley desert in

Southern California.

Colorado

Springs

324 social The risk network of persons with HIV

infection during its early epidemic

phase in Colorado Springs, USA, using

analysis of community-wide

HIV/AIDS contact tracing records

(sexual partners) during 1985-99.

Corporate 1586 social American corporate elite formed by

the directors of the 625 largest

corporations that reported the

compositions of their boards, selected

from the Fortune 1,000 in 1999.

Dolphins 62 ecological Social network of a bottlenose

dolphins (Tursiops truncates)

population near New Zealand.

Drosophila PIN 3039 biological Protein-protein interaction network in

Drosophila melanogaster (fruit fly).

Drugs 616 social Social network of injecting drug-users

(IDUs) who have shared a needle in

the last six months.
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Name nodes Type Description

Electronic1A 122 technological Electronic sequential logic circuits

parsed from the ISCAS89 benchmark

set, where nodes represent logic gates

and flip-flops.

ER 150 random Simple undirected random graph

generated from the Erdos-Renyi model

implemented in the toolbox

CONTEST.

BA 150 random Simple undirected random graph

generated from the preferential

attachment model implemented in the

toolbox CONTEST.

Electronic2A 252 technological Electronic sequential logic circuits

parsed from the ISCAS89 benchmark

set, where nodes represent logic gates

and flip-flops.

Electronic3A 512 technological Electronic sequential logic circuits

parsed from the ISCAS89 benchmark

set, where nodes represent logic gates

and flip-flops.

El Verde 156 ecological Insects, spiders, birds, reptiles, and

amphibians in a rainforest in Puerto

Rico.

Galesburg 31 social Friendship ties among 31 physicians.

GD 249 informational Citation network of papers published

in Proceedings of Graph Drawing

during the period 1994-2000.

Geom 3621 social Collaboration network of scientist in

the field of computational gemoetry.

HighTech 33 social Friendship ties among the employees

in a small high-tech computer firm

which sells, installs, and maintains

computer systems.
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Name nodes Type Description

Hpyroli 710 biological Protein-protein interaction network in

H. pyroli.

HS 69 social Heterosexual contacts, extracted at

the Cadham Provincial Laboratory; a

six-month block data from November

1997 to May 1998.

Internet 1997 3015 technological The internet at the Autonomous

System (AS) level, as of September

1997.

Internet 1998 3522 technological The internet at the Autonomous

System (AS) level, as of April 1998.

KSHV 50 biological Protein-protein interaction network in

Kaposi sarcoma herpes virus.

Little Rock 181 ecological Pelagic and benthic species,

particularly fish, zooplankton,

microinvertebrates, and algae in Little

Rock Lake, Wisconsin, USA.

Malaria PIN 229 biological Protein-protein interaction network in

P. falciparum (malaria parasite).

Math Method 30 social This network concerns the diffusion of

a new mathematics method in the

1950s. It traces the diffusion of the

modern mathematical method among

school systems that combine

elementary and secondary programs in

Allegheny County (Pennsylvania,

USA.) .

Neurons 280 biological Neuronal synaptic network of the

nematode C. elegans.
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Name nodes Type Description

ODLIS 2998 informational Vocabulary network of words related

by their definitions in the Online

Dictionary of Library and Information

Science. Two words are connected if

one is used in the definition of the

other.

Afulgidus PIN 32 biological Protein-protein interaction network in

A. fulgidus.

Bsubtilis PIN 84 biological Protein-protein interaction network in

B. subtilis.

Ecoli PIN 230 biological Protein-protein interaction network in

E. coli.

Human PIN 2783 biological Protein-protein interaction network in

human.

Prison 67 social Social network of inmates in prison

who chose “Which fellows on the tier

are you closest friends with?”

Reef Small 50 ecological Caribbean coral reef ecosystem in

Puerto Rico/Virgin Island shelf

complex.

Roget 994 informational Vocabulary network of words related

by their definitions in Roget’s

Thesaurus of the English language.

Two words are connected if one is

used in the definition of the other.

Sawmill 36 social Social communication network within

a sawmill, where employees were asked

to indicate the frequency with which

they discussed work matters with each

of their colleagues.
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Name nodes Type Description

Scotch Broom 154 ecological Trophic interactions between the

herbivores, parasitoids, predators, and

pathogens associated with broom,

Cytisus scoparius, collected in Silwood

Park, Berkshire, England.

Skipwith 35 ecological Invertebrates in an English pond.

Small World 233 informational Citation network papers which cite

Milgram’s 1967 Psychology Today

paper or include Small World in the

title.

Social3 32 social Social network among college students

participating in a course about

leadership. The students choose which

three members they want to have on a

committee.

Software Abi 1035 technological Software network development for Abi.

Software Digital 150 technological Software network development for

Digital.

Software

MySQL

1480 technological Software network development for

MySQL.

Software VTK 771 technological Software network development for

VTK.

Software XMMS 971 technological Software network development for

XMMS.

St. Marks 48 ecological Mostly macroinvertebrates, fish, and

birds associated with an estuarine

seagrass community, Halodule

wrightii, at the St. Marks Refuge,

Florida, USA.

St. Martin 44 ecological Birds and predators and arthropod

prey of Anolis lizards on the island of

St. Martin in the northern Lesser

Antilles.
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Name nodes Type Description

Stony 112 ecological Primarily invertebrates and algae in a

tributary, surrounded by pasture, in

native tussock habitat, of the Taieri

River in the South Island of New

Zealand.

Transc. Yeast 662 biological Transcriptional regulation between

genes in Saccaromyces cerevisiae.

Transc. Ecoli 328 biological Transcriptional regulation between

operons in Escherichia coli.

Transc. Urchin 45 biological Developmental transcription network

for sea urchin endomesoderm

development.

USAir97 332 technological Airport transportation network

between airports in the US in 1997.

YeastS 2224 biological Protein-protein interaction network in

S. cerevisiae (yeast).

Ythan1 134 ecological Mostly birds, fish, invertebrates, and

metazona parasites in a Scottish

estuary.

Ythan2 92 ecological Reduced version of Ythan1, without

parasites.

Zackary 34 social Social network of friendship between

members of the Zackary karate club.
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B.2 Tables of simulation results

The times for consensus where calculated as the number of steps needed to reach

consensus among the nodes of a network. The simulations follow the discrete

time model for consensus with peer pressure 3.1.12. It was considered that a

network had reached consensus when the between two consecutive measures of

disagreement was less than or equal to the threshold 1e - 07. The initial states

for all the nodes were randomly assigned with values between 0 and 1. Regarding

the way the actors where allowed to interact, we considered 2 cases: 1) no peer

pressure (No PP) which means that the interactions among actors where only with

those directly connected, 2) peer-pressure. For the last case, the strength of the

peer-pressure was changed according to the decays proposed in 3.1.2, 3.1.2 and

3.1.2, where actors were allowed to interact with neighbours beyond those directly

connected. For each case, we considered 6 leaders, and averaged the results of 50

repetitions. The code used for calculating these times is given in Appendix C on

page 200.

All the results for a particular network where summarized in tables divided into

two main parts: at the top part of the table (Random selection) we present the

average times for consensus corresponding to all the cases considered: No PP, PL-

decay (with parameter α equal to 2 and 1.5), Exp-decay (with parameter β equal

to 2 and 1.5), and Social (with parameter δ equal to 0.1, 0.025 and 0.5), and for

all these cases, the node-leaders where randomly selected.

The second part of the table (below the Random selection part) has the heading

Centrality-based selection, which contains the results of the simulations for the

same decay cases as in the previous part, but the selection of the node-leaders

was according to their centrality in the network (the centralities considered are

those given in 3.2 on page 94), this means, those nodes with higher centrality were

considered as leaders (six leaders for our case).

The values of time for consensus in each table are normalised to the highest value

among all the cases (considering both, Random selection and Centrality-based

selection) for comparison purposes, thus, the case of higher time for consensus

shows value 1.
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We also changed the parameter of divergence (as defined on page 96) among the

positions (or states) of the leaders with respect to the average consensus value of

the system, with values of 0.1 and 0.2 for all the networks, and values of 0, 0.1,

0.2 and 0.5 for the Sawmill social network (this network was used for illustrating

the effects of PP when there is divergence among leaders).

B.2.1 Normalised consensus times for random networks

and real networks for the study consensus under

peer pressure (times were computed with a diver-

gence value of 0.1)

• BA - random network

Random selection

No PP
PL-decay Exp-decay Social

α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5

1.00 0.44 0.31 0.75 0.67 0.84 0.38 0.13

Centrality-based selection

No PP
PL-decay Exp-decay Social

Centrality α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5

BC 0.89 0.33 0.26 0.73 0.61 0.41 0.23 0.09

CC 0.91 0.34 0.27 0.78 0.65 0.42 0.22 0.08

DC 0.89 0.33 0.26 0.75 0.62 0.41 0.23 0.09

EC 0.93 0.34 0.27 0.77 0.64 0.42 0.22 0.08

SC 0.90 0.34 0.27 0.76 0.63 0.41 0.22 0.08
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• ER - random network

Random selection

No PP
PL-decay Exp-decay Social

α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5

1.00 0.34 0.23 0.90 0.75 0.61 0.31 0.10

Centrality-based selection

No PP
PL-decay Exp-decay Social

Centrality α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5

BC 0.81 0.10 0.06 0.67 0.47 0.28 0.10 0.05

CC 0.81 0.10 0.06 0.67 0.46 0.27 0.09 0.02

DC 0.81 0.10 0.06 0.69 0.48 0.28 0.10 0.03

EC 0.82 0.13 0.08 0.69 0.48 0.30 0.11 0.03

SC 0.82 0.13 0.08 0.68 0.48 0.31 0.11 0.02

• Corporate social network

Random selection

No PP
PL-decay Exp-decay Social

α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5

1.00 0.36 0.22 0.96 0.92 0.94 0.37 0.11

Centrality-based selection

No PP
PL-decay Exp-decay Social

Centrality α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5

BC 0.67 0.02 0.01 0.52 0.35 0.27 0.08 0.01

CC 0.70 0.03 0.01 0.54 0.35 0.28 0.09 0.01

DC 0.69 0.05 0.04 0.52 0.36 0.29 0.10 0.02

EC 0.67 0.02 0.01 0.52 0.36 0.27 0.08 0.01

SC 0.68 0.02 0.01 0.51 0.35 0.27 0.08 0.01
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• Drugs social network

Random selection

No PP
PL-decay Exp-decay Social

α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5

1.00 0.17 0.12 0.89 0.64 0.53 0.24 0.08

Centrality-based selection

No PP
PL-decay Exp-decay Social

Centrality α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5

BC 0.97 0.07 0.04 0.79 0.51 0.40 0.12 0.02

CC 0.79 0.08 0.05 0.73 0.50 0.40 0.12 0.02

DC 0.77 0.04 0.06 0.66 0.45 0.36 0.13 0.06

EC 0.80 0.11 0.08 0.71 0.53 0.43 0.13 0.04

SC 0.80 0.11 0.08 0.72 0.50 0.42 0.13 0.04

• Prison social network

Random selection

No PP
PL-decay Exp-decay Social

α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5

1.00 0.26 0.19 0.93 0.70 0.49 0.23 0.08

Centrality-based selection

No PP
PL-decay Exp-decay Social

Centrality α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5

BC 0.93 0.17 0.11 0.85 0.68 0.45 0.17 0.04

CC 0.97 0.17 0.11 0.86 0.66 0.45 0.17 0.04

DC 0.95 0.17 0.10 0.85 0.65 0.44 0.17 0.04

EC 0.98 0.17 0.11 0.84 0.68 0.44 0.17 0.04

SC 0.94 0.17 0.10 0.85 0.65 0.43 0.17 0.04
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• Zackary social network

Random selection

No PP
PL-decay Exp-decay Social

α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5

1.00 0.27 0.19 0.94 0.67 0.39 0.19 0.08

Centrality-based selection

No PP
PL-decay Exp-decay Social

Centrality α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5

BC 0.73 0.22 0.17 0.63 0.51 0.32 0.16 0.06

CC 0.75 0.22 0.16 0.66 0.50 0.32 0.15 0.06

DC 0.76 0.22 0.17 0.64 0.51 0.32 0.16 0.06

EC 0.75 0.21 0.17 0.64 0.50 0.33 0.16 0.05

SC 0.76 0.22 0.17 0.65 0.49 0.31 0.16 0.06

• Colorado Springs social network

Random selection

No PP
PL-decay Exp-decay Social

α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5

0.83 0.22 0.15 0.76 0.62 0.56 0.37 0.13

Centrality-based selection

No PP
PL-decay Exp-decay Social

Centrality α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5

BC 1.00 0.11 0.07 0.87 0.69 0.53 0.25 0.04

CC 0.90 0.07 0.03 0.82 0.53 0.27 0.27 0.04

DC 0.89 0.13 0.09 0.82 0.65 0.50 0.24 0.06

EC 0.85 0.13 0.06 0.75 0.62 0.47 0.22 0.04

SC 0.95 0.17 0.12 0.86 0.69 0.54 0.28 0.07

175



• Dolphins social network

Random selection

No PP
PL-decay Exp-decay Social

α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5

0.82 0.25 0.16 0.76 0.61 0.38 0.20 0.08

Centrality-based selection

No PP
PL-decay Exp-decay Social

Centrality α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5

BC 0.77 0.17 0.11 0.70 0.56 0.37 0.15 0.06

CC 0.92 0.17 0.12 0.65 0.64 0.43 0.18 0.05

DC 0.72 0.18 0.12 0.64 0.57 0.39 0.17 0.06

EC 0.96 0.21 0.14 0.99 0.79 0.52 0.21 0.06

SC 1.00 0.22 0.14 0.97 0.77 0.54 0.21 0.06

• Galesburg social network

Random selection

No PP
PL-decay Exp-decay Social

α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5

0.83 0.23 0.16 0.71 0.59 0.39 0.17 0.06

Centrality-based selection

No PP
PL-decay Exp-decay Social

Centrality α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5

BC 0.81 0.21 0.14 0.73 0.59 0.37 0.16 0.05

CC 0.98 0.24 0.16 0.87 0.66 0.40 0.16 0.05

DC 0.98 0.23 0.16 0.84 0.64 0.41 0.17 0.05

EC 1.00 0.23 0.17 0.86 0.65 0.41 0.17 0.06

SC 1.00 0.24 0.17 0.87 0.68 0.41 0.17 0.06
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• HS social network

Random selection

No PP
PL-decay Exp-decay Social

α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5

0.75 0.20 0.16 0.69 0.51 0.35 0.18 0.07

Centrality-based selection

No PP
PL-decay Exp-decay Social

Centrality α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5

BC 0.65 0.18 0.14 0.56 0.43 0.28 0.15 0.06

CC 0.99 0.20 0.13 0.81 0.60 0.35 0.14 0.06

DC 0.69 0.17 0.11 0.59 0.46 0.27 0.13 0.07

EC 0.99 0.21 0.15 0.81 0.57 0.34 0.14 0.04

SC 1.00 0.21 0.15 0.78 0.59 0.34 0.14 0.04

• High Tech social network

Random selection

No PP
PL-decay Exp-decay Social

α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5

0.93 0.25 0.19 0.83 0.67 0.41 0.18 0.07

Centrality-based selection

No PP
PL-decay Exp-decay Social

Centrality α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5

BC 0.78 0.22 0.16 0.70 0.56 0.37 0.16 0.06

CC 0.97 0.24 0.17 0.84 0.66 0.41 0.18 0.06

DC 0.93 0.24 0.18 0.83 0.67 0.40 0.18 0.06

EC 0.98 0.25 0.19 0.88 0.68 0.42 0.19 0.07

SC 1.00 0.27 0.19 0.88 0.68 0.44 0.19 0.06
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• Math Method social network

Random selection

No PP
PL-decay Exp-decay Social

α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5

0.87 0.26 0.19 0.77 0.61 0.41 0.19 0.07

Centrality-based selection

No PP
PL-decay Exp-decay Social

Centrality α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5

BC 0.63 0.22 0.16 0.59 0.50 0.35 0.17 0.06

CC 1.00 0.26 0.19 0.87 0.71 0.47 0.19 0.07

DC 0.98 0.26 0.18 0.86 0.70 0.46 0.19 0.07

EC 0.96 0.27 0.18 0.90 0.74 0.45 0.20 0.07

SC 1.00 0.26 0.19 0.86 0.71 0.44 0.20 0.07

• Sawmill social network

Random selection

No PP
PL-decay Exp-decay Social

α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5

1.00 0.24 0.17 0.88 0.68 0.45 0.20 0.07

Centrality-based selection

No PP
PL-decay Exp-decay Social

Centrality α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5

BC 0.72 0.19 0.13 0.65 0.54 0.38 0.17 0.05

CC 0.75 0.19 0.12 0.70 0.56 0.40 0.17 0.05

DC 0.74 0.19 0.12 0.71 0.59 0.40 0.17 0.05

EC 0.99 0.22 0.15 0.92 0.68 0.45 0.18 0.05

SC 0.82 0.20 0.13 0.76 0.62 0.41 0.18 0.05
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• Social3 social network

Random selection

No PP
PL-decay Exp-decay Social

α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5

0.92 0.33 0.24 0.81 0.67 0.46 0.24 0.11

Centrality-based selection

No PP
PL-decay Exp-decay Social

Centrality α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5

BC 0.92 0.31 0.24 0.79 0.68 0.42 0.21 0.07

CC 0.98 0.32 0.23 0.84 0.70 0.45 0.22 0.08

DC 1.00 0.33 0.25 0.87 0.70 0.45 0.23 0.08

EC 0.96 0.32 0.24 0.88 0.74 0.46 0.23 0.08

SC 0.92 0.32 0.25 0.86 0.69 0.46 0.22 0.09
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B.2.2 Normalised consensus times for random networks

and real networks for the study consensus under

peer pressure (times were computed with a diver-

gence value of 0.2)

• BA - random network

Random selection

No PP
PL-decay Exp-decay Social

α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5

1.00 0.42 0.29 0.94 0.85 0.79 0.33 0.11

Centrality-based selection

No PP
PL-decay Exp-decay Social

Centrality α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5

BC 0.69 0.28 0.22 0.60 0.51 0.34 0.18 0.08

CC 0.74 0.29 0.22 0.64 0.54 0.35 0.18 0.08

DC 0.70 0.28 0.22 0.60 0.50 0.33 0.19 0.08

EC 0.72 0.28 0.23 0.63 0.53 0.34 0.18 0.07

SC 0.71 0.28 0.22 0.62 0.53 0.34 0.18 0.08
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• ER - random network

Random selection

No PP
PL-decay Exp-decay Social

α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5

1.00 0.27 0.18 0.88 0.70 0.45 0.20 0.07

Centrality-based selection

No PP
PL-decay Exp-decay Social

Centrality α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5

BC 0.67 0.21 0.16 0.57 0.46 0.33 0.18 0.07

CC 0.78 0.22 0.14 0.67 0.54 0.32 0.14 0.03

DC 0.70 0.22 0.18 0.58 0.45 0.36 0.20 0.08

EC 0.74 0.20 0.14 0.63 0.50 0.32 0.15 0.05

SC 0.75 0.23 0.17 0.64 0.51 0.36 0.18 0.07

• Corporate social network

Random selection

No PP
PL-decay Exp-decay Social

α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5

1.00 0.19 0.11 0.78 0.64 0.45 0.17 0.04

Centrality-based selection

No PP
PL-decay Exp-decay Social

Centrality α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5

BC 0.22 0.01 0.00 0.17 0.11 0.09 0.03 0.002

CC 0.28 0.02 0.02 0.23 0.15 0.11 0.03 0.002

DC 0.24 0.04 0.03 0.20 0.13 0.12 0.04 0.007

EC 0.22 0.01 0.00 0.18 0.11 0.09 0.03 0.002

SC 0.23 0.01 0.00 0.18 0.11 0.09 0.03 0.002
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• Drugs social network

Random selection

No PP
PL-decay Exp-decay Social

α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5

1.00 0.15 0.09 0.76 0.45 0.44 0.19 0.05

Centrality-based selection

No PP
PL-decay Exp-decay Social

Centrality α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5

BC 0.69 0.06 0.04 0.52 0.34 0.25 0.06 0.02

CC 0.47 0.07 0.05 0.44 0.30 0.23 0.07 0.01

DC 0.46 0.04 0.05 0.37 0.24 0.20 0.08 0.04

EC 0.51 0.08 0.06 0.42 0.31 0.21 0.08 0.03

SC 0.51 0.08 0.06 0.40 0.32 0.21 0.08 0.03

• Prison social network

Random selection

No PP
PL-decay Exp-decay Social

α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5

1.00 0.29 0.20 0.91 0.73 0.50 0.24 0.08

Centrality-based selection

No PP
PL-decay Exp-decay Social

Centrality α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5

BC 0.81 0.15 0.10 0.74 0.56 0.38 0.15 0.03

CC 0.83 0.15 0.09 0.73 0.57 0.39 0.15 0.04

DC 0.82 0.15 0.09 0.83 0.55 0.39 0.14 0.05

EC 0.90 0.15 0.10 0.79 0.58 0.39 0.15 0.03

SC 0.85 0.15 0.09 0.74 0.56 0.39 0.14 0.05
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• Zackary social network

Random selection

No PP
PL-decay Exp-decay Social

α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5

1.00 0.27 0.21 0.83 0.64 0.40 0.19 0.08

Centrality-based selection

No PP
PL-decay Exp-decay Social

Centrality α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5

BC 0.72 0.23 0.18 0.62 0.49 0.30 0.14 0.07

CC 0.72 0.23 0.18 0.61 0.48 0.30 0.14 0.06

DC 0.72 0.22 0.17 0.60 0.47 0.29 0.16 0.06

EC 0.70 0.22 0.17 0.59 0.48 0.31 0.15 0.05

SC 0.73 0.22 0.18 0.59 0.48 0.29 0.15 0.06

• Colorado Springs social network

Random selection

No PP
PL-decay Exp-decay Social

α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5

0.70 0.27 0.16 0.63 0.57 0.64 0.40 0.11

Centrality-based selection

No PP
PL-decay Exp-decay Social

Centrality α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5

BC 1.00 0.11 0.07 0.86 0.63 0.50 0.20 0.04

CC 0.84 0.07 0.04 0.74 0.58 0.49 0.21 0.03

DC 0.81 0.13 0.09 0.73 0.56 0.43 0.20 0.05

EC 0.71 0.17 0.09 0.62 0.46 0.34 0.16 0.03

SC 0.91 0.17 0.11 0.85 0.64 0.49 0.24 0.06
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• Dolphins social network

Random selection

No PP
PL-decay Exp-decay Social

α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5

0.84 0.24 0.18 0.76 0.59 0.41 0.19 0.08

Centrality-based selection

No PP
PL-decay Exp-decay Social

Centrality α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5

BC 0.72 0.16 0.11 0.65 0.52 0.32 0.14 0.06

CC 0.92 0.16 0.10 0.82 0.60 0.40 0.14 0.05

DC 0.67 0.15 0.10 0.63 0.50 0.34 0.14 0.06

EC 0.94 0.19 0.12 0.84 0.63 0.41 0.17 0.05

SC 1.00 0.18 0.12 0.84 0.65 0.45 0.17 0.06

• Galesburg social network

Random selection

No PP
PL-decay Exp-decay Social

α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5

0.81 0.24 0.18 0.71 0.56 0.38 0.18 0.07

Centrality-based selection

No PP
PL-decay Exp-decay Social

Centrality α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5

BC 0.80 0.20 0.15 0.70 0.56 0.36 0.15 0.06

CC 0.93 0.22 0.16 0.83 0.62 0.39 0.16 0.05

DC 0.94 0.22 0.16 0.83 0.64 0.39 0.16 0.06

EC 0.97 0.23 0.18 0.85 0.65 0.41 0.16 0.06

SC 1.00 0.24 0.17 0.84 0.64 0.40 0.17 0.06
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• HS social network

Random selection

No PP
PL-decay Exp-decay Social

α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5

0.76 0.23 0.17 0.65 0.51 0.37 0.20 0.08

Centrality-based selection

No PP
PL-decay Exp-decay Social

Centrality α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5

BC 0.60 0.20 0.16 0.51 0.39 0.27 0.16 0.07

CC 0.99 0.21 0.16 0.83 0.60 0.34 0.15 0.06

DC 0.66 0.14 0.11 0.53 0.43 0.25 0.13 0.07

EC 0.99 0.23 0.17 0.82 0.62 0.35 0.15 0.05

SC 1.00 0.24 0.17 0.81 0.60 0.34 0.15 0.05

• High Tech social network

Random selection

No PP
PL-decay Exp-decay Social

α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5

0.93 0.28 0.22 0.81 0.65 0.42 0.20 0.08

Centrality-based selection

No PP
PL-decay Exp-decay Social

Centrality α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5

BC 0.76 0.22 0.17 0.69 0.56 0.35 0.16 0.06

CC 0.94 0.25 0.18 0.81 0.64 0.40 0.17 0.05

DC 0.95 0.24 0.19 0.82 0.66 0.40 0.17 0.07

EC 0.97 0.27 0.20 0.84 0.67 0.41 0.18 0.07

SC 1.00 0.27 0.20 0.86 0.69 0.42 0.18 0.06
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• Math Method social network

Random selection

No PP
PL-decay Exp-decay Social

α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5

0.79 0.25 0.19 0.76 0.62 0.43 0.20 0.08

Centrality-based selection

No PP
PL-decay Exp-decay Social

Centrality α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5

BC 0.60 0.23 0.18 0.56 0.49 0.32 0.16 0.06

CC 1.00 0.26 0.18 0.90 0.68 0.43 0.19 0.07

DC 0.98 0.25 0.18 0.87 0.69 0.42 0.19 0.07

EC 0.96 0.25 0.18 0.85 0.71 0.42 0.20 0.06

SC 0.93 0.25 0.18 0.85 0.70 0.43 0.19 0.06

• Sawmill social network

Random selection

No PP
PL-decay Exp-decay Social

α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5

0.96 0.23 0.16 0.87 0.66 0.43 0.19 0.06

Centrality-based selection

No PP
PL-decay Exp-decay Social

Centrality α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5

BC 0.63 0.17 0.12 0.59 0.46 0.33 0.14 0.05

CC 0.66 0.16 0.12 0.58 0.49 0.33 0.14 0.04

DC 0.64 0.15 0.10 0.60 0.48 0.33 0.14 0.04

EC 1.00 0.19 0.13 0.85 0.63 0.37 0.15 0.05

SC 0.75 0.17 0.12 0.65 0.51 0.35 0.14 0.04
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• Social3 social network

Random selection

No PP
PL-decay Exp-decay Social

α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5

0.94 0.37 0.29 0.83 0.71 0.50 0.28 0.13

Centrality-based selection

No PP
PL-decay Exp-decay Social

Centrality α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5

BC 0.90 0.35 0.27 0.83 0.70 0.43 0.23 0.08

CC 0.97 0.34 0.27 0.87 0.73 0.45 0.22 0.09

DC 0.90 0.36 0.27 0.87 0.72 0.45 0.22 0.08

EC 1.00 0.31 0.25 0.87 0.73 0.44 0.23 0.09

SC 0.94 0.33 0.24 0.83 0.70 0.44 0.21 0.11
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B.2.3 Normalised times for consensus - for Sawmill net-

work with six leaders with divergences of 0.0, 0.1,

0.2, and 0.5.

• No divergence

Random selection

No PP
PL-decay Exp-decay Social

α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5

1.00 0.22 0.15 0.88 0.72 0.49 0.20 0.06

Centrality-based selection

No PP
PL-decay Exp-decay Social

Centrality α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5

BC 0.80 0.21 0.14 0.73 0.62 0.43 0.43 0.05

CC 0.84 0.21 0.14 0.77 0.65 0.45 0.45 0.05

DC 0.83 0.21 0.14 0.76 0.64 0.45 0.45 0.06

EC 0.96 0.23 0.15 0.87 0.73 0.50 0.50 0.06

SC 0.89 0.23 0.14 0.85 0.69 0.46 0.46 0.06

• Divergence 0.1

Random selection

No PP
PL-decay Exp-decay Social

α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5

1.00 0.24 0.17 0.88 0.68 0.45 0.20 0.07

Centrality-based selection

No PP
PL-decay Exp-decay Social

Centrality α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5

BC 0.72 0.19 0.13 0.65 0.54 0.38 0.17 0.05

CC 0.75 0.19 0.12 0.70 0.56 0.40 0.17 0.05

DC 0.74 0.19 0.12 0.71 0.59 0.40 0.17 0.05

EC 0.99 0.22 0.15 0.92 0.68 0.45 0.18 0.05

SC 0.82 0.20 0.13 0.76 0.62 0.41 0.18 0.05
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• Divergence 0.2

Random selection

No PP
PL-decay Exp-decay Social

α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5

0.96 0.23 0.16 0.87 0.66 0.43 0.19 0.06

Centrality-based selection

No PP
PL-decay Exp-decay Social

Centrality α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5

BC 0.63 0.17 0.12 0.59 0.46 0.33 0.14 0.05

CC 0.66 0.16 0.12 0.58 0.49 0.33 0.14 0.04

DC 0.64 0.15 0.10 0.60 0.48 0.33 0.14 0.04

EC 1.00 0.19 0.13 0.85 0.63 0.37 0.15 0.05

SC 0.75 0.17 0.12 0.65 0.51 0.35 0.14 0.04

• Divergence 0.5

Random selection

No PP
PL-decay Exp-decay Social

α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5

1.00 0.23 0.16 0.87 0.67 0.40 0.17 0.06

Centrality-based selection

No PP
PL-decay Exp-decay Social

Centrality α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5

BC 0.59 0.15 0.11 0.53 0.43 0.27 0.11 0.04

CC 0.60 0.14 0.11 0.52 0.41 0.27 0.11 0.04

DC 0.60 0.12 0.08 0.54 0.43 0.27 0.10 0.03

EC 0.99 0.17 0.12 0.83 0.59 0.35 0.13 0.04

SC 0.72 0.14 0.10 0.60 0.47 0.29 0.11 0.04

189



B.2.4 Normalised times for consensus for a random graph

with 10 communities (10 leaders) with and without

PP. Leaders selected from their global centrality val-

ues and from their local (community) centrality.

• Leaders selected from global centrality

Random selection

No PP
PL-decay Exp-decay Social

α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5

0.15 0.01 0.01 0.12 0.06 0.04 0.01 0.003

Centrality-based selection

No PP
PL-decay Exp-decay Social

Centrality α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5

BC 0.26 0.01 0.01 0.18 0.09 0.06 0.01 0.003

CC 0.46 0.01 0.01 0.32 0.16 0.10 0.02 0.002

DC 0.44 0.01 0.01 0.32 0.16 0.10 0.02 0.003

EC 1.00 0.01 0.01 0.62 0.27 0.16 0.03 0.003

SC 0.59 0.01 0.01 0.34 0.15 0.09 0.02 0.004

• Leaders selected from local centrality

Random selection

No PP
PL-decay Exp-decay Social

α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5

1.00 0.06 0.04 0.77 0.41 0.27 0.08 0.02

Centrality-based selection

No PP
PL-decay Exp-decay Social

Centrality α = 2 α = 1.5 β = 2 β = 1.5 δ = 0.1 δ = 0.25 δ = 0.5

BC 0.54 0.07 0.04 0.42 0.28 0.17 0.06 0.02

CC 0.40 0.07 0.04 0.31 0.22 0.14 0.06 0.02

DC 0.30 0.07 0.05 0.26 0.20 0.13 0.07 0.02

EC 0.43 0.07 0.04 0.34 0.25 0.15 0.06 0.02

SC 0.29 0.07 0.04 0.25 0.19 0.12 0.06 0.02
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B.2.5 Distance-sum heterogeneity, and their correspond-

ent relative values, for the networks studied in the

distance-sum heterogeneity study.

Name ϕ(G) ϕrel(G)

Benguela 0.03230 9.646150

Bridge Brook 0.09850 11.451445

BF-23 0.00201 0.4375678

BF-70 0.00223 0.405278

BF-71 0.00232 0.4133079

Canton 0.01975 1.5984305

Centrality-literature 0.02940 2.1781903

Chesapeake 0.00595 1.5621755

Coachella 0.03660 10.552538

Colorado Springs 0.00050 0.0148677

Corporate 0.00395 0.0218380

Dolphins 0.00390 0.5479117

Drosophila-PIN 0.00030 0.0009246

Drugs 0.00275 0.0391287

Electronic1 0.00120 0.0853288

Electronic2 0.00085 0.0295300

Electronic3 0.00055 0.0094133

El Verde 0.03755 2.1049636

Galesburg 0.00720 2.008844

GD 0.00260 0.0914166

Geom 0.00285 0.0069486

High Tech 0.01285 3.3737739

Hpyroli 0.00390 0.0481461

Internet 97 0.00940 0.0273592

Internet 98 0.00940 0.0234145

HS 0.03350 0.6244568

KSHV 0.00935 1.6262342

Little Rock 0.07995 3.8637143

Malaria 0.00665 0.2542088
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Name ϕ(G) ϕrel(G)

Math Method 0.00535 1.5425280

Neurons 0.0175 0.5332277

ODLIS 0.01575 0.0476017

Afulgidus-PIN 0.00455 1.2316740

Bsubtilis-PIN 0.00425 0.4418100

Ecoli-PIN 0.00640 0.2436192

Prison 0.00330 0.4296770

power grid 0.00004 0.0000751

Reef Small 0.05490 9.5486909

Roget 0.00230 0.0202852

Sawmill 0.00785 1.8935078

Scotch Broom 0.01455 0.8263308

Skipwith 0.12005 29.726216

Shelf 0.10315 11.108376

Small World 0.03865 1.4522468

Social3 0.00760 2.0573017

Abi-software 0.00280 0.0238358

Digital-software 0.00290 0.1690637

MySQL-software 0.00320 0.0190939

VTK-software 0.00370 0.0420647

XMMS-software 0.00130 0.0117373

St Marks 0.01450 2.6256156

St Martin 0.02360 4.2734157

Stony 0.02960 2.3086843

Yeast-transc 0.00225 0.0297890

Ecoli-transc 0.00335 0.0894588

Urchin-transc 0.00905 1.7472690

USAir97 0.03170 0.8363734

YeastS 0.00345 0.0136029

Ythan1 0.02535 1.6540355

Ythan2 0.02985 2.8320625

Zachary 0.01625 4.1387456
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B.3 Figures

B.3.1 Trajectories for consensus processes with divergences

0.0, 0.1, 0.2 and 0.5 without PP and with PP (power-

law decay with exponent 2) for the Sawmill social

network with six leaders.

No PP, divergence = 0 PP, divergence = 0

No PP, divergence = 0.1 PP, divergence = 0.1
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No PP, divergence = 0.2 PP, divergence = 0.2

No PP, divergence = 0.5 PP, divergence = 0.5
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B.3.2 Diffusion curves for the four empirical social net-

works studied for the consensus under peer pres-

sure study.

BF23 BF70

BF71 Math Method
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B.3.3 Cumulative degree distribution for the set of 15 so-

cial networks studied for the consensus under peer

pressure study.

BF23 BF70 BF71

Corporate Dolphins Drugs

Galesburg High Tech HS
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Math Method Prison Sawmill

Social Zackary Colorado Springs
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Appendix C

Matlab c, scripts used for

calculations

C.1 Script for calculating the distance-sum het-

erogeneity index ϕ(G).

index.m

1 %% Distance -sum heterogeneity index

2 % This program computes the distance -sum heterogeneity

3 % index for all nodes in a given network

4 % with adjacency matrix A

5 function results=index(A);

6 A=A-diag(diag(A));

7 %Number of nodes

8 n=length(A);

9 %Identity matrix

10 I=eye(n,n);

11 %Matrix of distances

12 D=pathlength(A);

13 %Distance -sum vector

14 S=ones(1,n)*D;
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15 S2= S.^( -1/2);

16 %Laplacian matrix

17 L=diag(ones(1,n)*A)-A;

18 %Distance -sum Heterogeneity Index

19 DSHI =0.5*( S2*L*S2 ’);

20 results=DSHI ’;

C.2 Script for generating the S-plots to repres-

ent the distance-sum heterogeneity of a net-

work.

spectral.m

1 %% Spectral representation of distance -sum

2 % This program generates the S-plots for the spectral

3 % representations of the distance -sum heterogeneity of a

4 % given network with adjacency matrix A

5

6 % Set parameters

7 A=A-diag(diag(A));

8 n=length(A);

9 u=ones(1,n);

10 % Get Laplacian matrix

11 k=u*A;

12 K=diag(k);

13 L=K-A;

14 % Get Distance matrix and vector of distances

15 D=pathlength(A);

16 S=ones(1,n)*D;

17 S2= S.^( -1/2);

18 % Get spectral projections of values

19 [V,L]=eig(L);

20 angles=acosd(S.^( -0.5)*V/norm(S.^( -0.5)));

21 hipoth=real(diag(L).^0.5);

22 CA=cosd(angles).*hipoth ’;

23 CO=sind(angles).*hipoth ’;

24 % Normalise and plot values
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25 nor=(sum(S.^-1)/(n-2*(n-1) ^0.5))^0.5;

26 maxA=max(nor*CA);

27 minA=min(nor*CA);

28 divA=max(maxA ,abs(minA));

29 maxO=max(nor*CO);

30 minO=min(nor*CO);

31 divO=max(maxO ,abs(minO));

32 plot((nor*CA)/divA ,(2* nor*CO)/divO ,’o’,’MarkerSize ’ ,10);

33 xlabel(’x_j’);

34 ylabel(’y_j’);

35 axis square;

36 axis ([-1 1 0 2]);

37 xmean=mean((nor*CA)/divA);

38 ymean=mean ((2* nor*CO)/divO);

39 xstd=std((nor*CA)/divA);

40 ystd=std ((2* nor*CO)/divO);

41 centre =[ xmean ymean];

42 x_length =2* xstd;

43 y_length =2* ystd;

44 max=max(x_length ,y_length);

45 min=min(x_length ,y_length);

46 ratio=min/max;

C.3 Script for calculating basic average time for

consensus for a given network with and without

peer pressure.

consensus.m

1 %% Time for average consensus

2 % Calculate the consensus with/without peer pressure

3 % Allows leader -nodes selection

4 % Generates random initial labels for leaders and

5 % random initial states for every process and repeats

6 % the simulations to get average values

7 %Inputs:

8 % -Name of file to be imported which contains
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9 % the adjacency matrix of the network (must be in the

10 % same folder)

11 % -dismax: maximum difference between agent ’s states

12 % -Epsilon value: value of the parameter epsilon to

13 % be used with the stochastic matrix P

14 % -k Factor: the number of k-range interactions allowed

15 clear all;

16 tic;

17 clc;

18 %Loop to open the required file of Adj -matrix

19 fid = -1;

20 msg = ’’;

21 while fid < 0

22 disp(msg);

23 filename = input(’Open file "name.extension ":\n ’, ’s’);

24 fid ,msg] = fopen(filename);

25 end

26 clear fid msg;

27

28 %Asign the imported file to the variable Matrix "A"

29 Aoriginal=load(filename);

30 %Eliminate any self -loops to make it simple graph

31 A=Aoriginal -diag(diag(Aoriginal));

32 %Size of matrix A (number of nodes ’n’)

33 n=length(A);

34 clear filename;

35

36 %Input the maximum disagreement factor

37 dismax=input(’disagreement max: ’);

38 %Input the number of loops for calculating average consensus

39 num_loops=input(’Number of loops: ’);

40

41 %Calculate Distance matrix(A)

42 DM=pathlength(A); %Use the function "pathlength"

43 kmax=max(max(DM));

44 %Calculate the diameter of A

45 str = fprintf(’The graph has diameter= %d \n’,kmax);

46 %Input the value of k factor

47 k=input(’k-neighbours factor to be considered: ’);

48

49 %Get vector of k-Laplacians and deltas_max

50 L=[];
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51 for q=1: kmax

52 [KLM ,~,delta_max ]=klp(n,q,DM); %use function "klp"

53 L(:,:,q)=KLM; %Vector of k-Laplacians matrices

54 deltas(q,1)=delta_max;

55 end

56 clear q KLM DM A delta_max;

57

58 KLMsum=L(:,:,1);

59 sumEps=deltas (1,1);

60

61 if k>1

62 %Here select kind of decay

63 INTERACTION=input(’Interaction to be considered (100= PW 200= EXP

300= SOC) :’);

64 switch INTERACTION

65 case 100

66 %CHOICE_1

67 %Calculate summation for Power -lay decay

68 %Input the value of exponent alfa >0

69 alfa=input(’value of alfa (>0) to be considered: ’);

70 for p=2:k

71 KLMsum =(p.^(-alfa)).*(L(:,:,p))+KLMsum;

72 sumEps=deltas(p,1)+sumEps;

73 end

74 Xfactor =0;

75 clear p;

76 case 200

77 %CHOICE_2

78 %Calculate summation for Exponential decay

79 %Input the value of exponent alfa >0

80 alfa=input(’value of alfa (>0) to be considered: ’);

81 for p=2:k

82 KLMsum =(exp(-alfa*p)).*(L(:,:,p))+KLMsum;

83 sumEps=deltas(p,1)+sumEps;

84 end

85 Xfactor =0;

86 clear p;

87 case 300

88 %CHOICE_3

89 %Calculate summation for Social interactions

90 %Input the value of X factor

91 Xfactor=input(’Value of x factor: ’);
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92 for p=2:k

93 KLMsum =(p.*( Xfactor ^(p-1))).*L(:,:,p)+KLMsum;

94 sumEps=deltas(p,1)+sumEps;

95 end

96 alfa =0;

97 clear p;

98 otherwise

99 warning(’Unexpected value ...’)

100 end

101 else

102 INTERACTION =0;

103 Xfactor =0;

104 alfa =0;

105 end

106 clear L deltas;

107

108 %Value of Epsilon

109 str=fprintf(’Epsilon value between 0 and %.7f:\n’ ,(1/( sumEps)));

110 eps=input(’:’);

111 %Stochastic matrix P

112 P=eye(n) -(eps.*( KLMsum));

113

114 variable =1;

115 %Start loop for realizations

116 while variable < num_loops +1

117

118 %Random Vector of Initial X-states

119 x0=(rand(1,n));

120 xti=x0;

121

122 %Disagreement vector

123 Xdisagreement_vector =[];

124 disx=(xti*KLMsum*xti ’);

125 Xdisagreement_vector (1,:)=disx;

126 xt=0; yt=0;

127 x(1,:)=x0;

128

129 %Calculate consensus as x(k+1)=P*x(k)

130 while ((disx)>dismax)

131 xtf=(P*xti ’); %Vector of X-states at time ’t>0’

132 xti=xtf ’;

133 xt=xt+1;
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134 tim(1,xt+1)=xt;

135 disx=(xtf ’* KLMsum*xtf);

136 x(xt+1,:)=xtf ’;

137

138 %Optional: Plot in real time every step

139 clf;

140 h=plot(tim ,x);

141 axis square;

142 xlabel(’time(s)’);

143 ylabel(’states ’);

144 title(’Agreement ’)

145 drawnow;

146 hold off;

147 pause (.09)

148

149 end

150

151 Xdisagreement_vector(xt ,:)=disx;

152 if disx >0

153 FINALX_dis(variable ,1)=disx;

154 TIME_for_CONSENSUS(variable ,1)=xt -1;

155 X0(variable ,:)=x0;

156 X_states (:,:, variable)=x;

157 clc;

158 ciclo=variable;

159 variable=variable +1;

160 else

161 end

162

163 end

164

165 MEANtime=mean(TIME_for_CONSENSUS);

166 str = fprintf(’Time for consensus: %.4f s\n’,MEANtime);

167 str = fprintf(’Interaction: %i \n’,INTERACTION);

168 str = fprintf(’k: %i \n’,k);

169 str = fprintf(’alpha: %f \n’,alfa);

170 str = fprintf(’x: %f \n’,Xfactor);

171 toc
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[53] Suchecki, K., Egúıluz, V. M., and San Miguel, M. Physical Review E 72(3),

036132 (2005).

[54] Horn, R. A. and Johnson, C. R. Matrix analysis. Cambridge university

press, (2012).

[55] Tanner, H. G., Pappas, G. J., and Kumar, V. Robotics and Automation,

IEEE Transactions on 20(3), 443–455 (2004).

[56] Tanner, H. G. In Decision and Control, 2004. CDC. 43rd IEEE Conference

on, volume 3, 2467–2472. IEEE, (2004).

208



[57] Björkenstam, S., Ji, M., Egerstedt, M. B., and Martin, C. F. (2006).

[58] Borsche, T. and Attia, S. A. In Control and Decision Conference (CCDC),

2010 Chinese, 102, (2010).

[59] Ji, M., Muhammad, A., and Egerstedt, M. In American control conference,

1358–1363, (2006).

[60] Ferrari-Trecate, G., Egerstedt, M., Buffa, A., and Ji, M. In Hybrid Systems:

Computation and Control, 212–226. Springer (2006).

[61] Lynch, N. A. Distributed algorithms. Morgan Kaufmann Publishers, San

Francisco, Calif., (1996).

[62] Guerraoui, R. and Rodrigues, L. Reliable Distributed Programming, volume

138. Springer, (2006).

[63] Joyner, D., Van Nguyen, M., and Cohen, N. Google Code (2010).

[64] Lamport, L., Shostak, R., and Pease, M. ACM Transactions on Program-

ming Languages and Systems (TOPLAS) 4(3), 382–401 (1982).

[65] Franklin, S. and Graesser, A. Lecture Notes in Computer Science 1193(3),

21–35 (1997).

[66] Davis, R. and Smith, R. G. Artificial intelligence 20(1), 63–109 (1983).

[67] Vidal, J. M. http://www.multiagent.com/fmas 1 (2007).

[68] Shamma, J. S. Cooperative control of distributed multi-agent systems. Wiley

Online Library, (2007).

[69] Reynolds, C. W. SIGGRAPH Comput. Graph. 21(4), 25–34 August (1987).

[70] Vicsek, T. Physical Review Letters 75(6), 1226–1229 (1995).

[71] Fax, J. A. Optimal and cooperative control of vehicle formations. PhD thesis,

California Institute of Technology, (2001).

[72] Jadbabaie, A., Lin, J., and Morse, A. S. Automatic Control, IEEE Transac-

tions on 48(6), 988–1001 (2003).

209



[73] Mesbahi, M. In American Control Conference, 2002. Proceedings of the 2002,

volume 2, 1234–1239. IEEE, (2002).

[74] Olfati-Saber, R. CaltechCDSTR (2003).

[75] Fax, J. A. and Murray, R. M. CaltechCDSTR (2001).

[76] Desai, J. P. Journal of Robotic Systems 19(11), 511–525 (2002).

[77] Kuramoto, Y. and Araki, H. (1975).

[78] Zavlanos, M. M., Jadbabaie, A., and Pappas, G. J. In 46th Conference on

Decision and Control, 2919, (2007).

[79] Li, C.-T. and Lin, S.-D. In Proceedings of the 17th ACM SIGKDD interna-

tional conference on Knowledge discovery and data mining, 765, (2011).

[80] Tanner, H. G., Jadbabaie, A., and Pappas, G. J. Automatic Control, IEEE

Transactions on 52(5), 863–868 (2007).

[81] Olfati-Saber, R. Automatic Control, IEEE Transactions on 51(3), 401–420

(2006).

[82] IEEE. Average consensus over small world networks: A probabilistic frame-

work, (2008).

[83] Hovareshti, P. and Baras, J. S. In Unifying Themes in Complex Systems,

98–105. Springer (2008).

[84] IEEE. Small world phenomenon, rapidly mixing Markov chains, and average

consensus algorithms, (2007).

[85] Wang, X. F. and Chen, G. International Journal of Bifurcation and Chaos

12(01), 187–192 (2002).

[86] Olfati-Saber, R. In American Control Conference, 2005. Proceedings of the

2005, 2371–2378. IEEE, (2005).

[87] Dimarogonas, D. V. and Kyriakopoulos, K. J. Automatic Control, IEEE

Transactions on 52(5), 916–922 (2007).

[88] Lin, Z. et al. Chinese Journal of Aeronautics 28(1), 191–199 (2015).

210



[89] AIAA Reston, VA. Trajectory planning for coordinated rendezvous of un-

manned air vehicles, volume 4369, (2000).

[90] ACM. Rendezvous: An architecture for synchronous multi-user applications,

(1990).

[91] Smith, S. L. Strategies for rendezvous and formation stabilization of multi-

agent systems. PhD thesis, University of Toronto, (2005).

[92] Cortés, J., Mart́ınez, S., and Bullo, F. Automatic Control, IEEE Transac-

tions on 51(8), 1289–1298 (2006).

[93] Lin, J., Morse, A. S., and Anderson, B. D. SIAM Journal on Control and

Optimization 46(6), 2096–2119 (2007).

[94] Pereira, S. S. Distributed Consensus Algorithms for Wireless Sensor Net-

works. PhD thesis, Ph. D. dissertation, Universitat Politecnica de Catalunya-

Barcelona Tech, To be published, (2011).

[95] IEEE. A scheme for robust distributed sensor fusion based on average con-

sensus, (2005).

[96] Lesser, V., Ortiz Jr, C. L., and Tambe, M. Distributed sensor networks: A

multiagent perspective, volume 9. Springer Science & Business Media, (2012).

[97] Dhillon, S. S. and Chakrabarty, K. Sensor placement for effective coverage

and surveillance in distributed sensor networks, volume 3. IEEE, (2003).

[98] IEEE. Distributed multi-robot task assignment and formation control, (2008).

[99] Gu, D. and Hu, H. International Journal of Systems Science 40(5), 539–552

(2009).

[100] Ji, M. and Egerstedt, M. B. (2006).

[101] Lin, Z., Wang, L., Han, Z., and Fu, M. Automatic Control, IEEE Transac-

tions on 59(7), 1765–1777 (2014).

[102] IEEE. Graph rigidity and distributed formation stabilization of multi-vehicle

systems, volume 3, (2002).

211



[103] Su, H. and Wang, X. Pinning control of complex networked systems:

Synchronization, consensus and flocking of networked systems via pinning.

Springer, (2013).

[104] Lin, C.-T. Automatic Control, IEEE Transactions on 19(3), 201–208 (1974).

[105] Cao, Y. and Ren, W. In Decision and Control, 2009 held jointly with the

2009 28th Chinese Control Conference. CDC/CCC 2009. Proceedings of the

48th IEEE Conference on, 3014, (2009).

[106] Di Cairano, S., Pasini, A., Bemporad, A., and Murray, R. M. In American

Control Conference, 2008, 1362, (2008).

[107] Dong, W. and Guo, Y. In Cooperative Systems, 369–386. Springer (2007).

[108] Jiang, F., Wang, L., Xie, G., Ji, Z., and Jia, Y. In American Control Con-

ference, 2009. ACC’09., 5665, (2009).

[109] Jin, Z. Coordinated control for networked multi-agent systems. PhD thesis,

California Institute of Technology, (2007).

[110] Lozano, R., Spong, M. W., Guerrero, J. A., and Chopra, N. In Decision and

Control, 2008. CDC 2008. 47th IEEE Conference on, 3713, (2008).

[111] Rahmani, A., Ji, M., Mesbahi, M., and Egerstedt, M. SIAM Journal on

Control and Optimization 48(1), 162–186 January (2009).

[112] Sontag, E. D. In Mathematical system theory, 453–462. Springer (1991).

[113] Zengqiang, C., Linying, X., and Zhuzhi, Y. In Control Conference, 2008.

CCC 2008. 27th Chinese, 494, (2008).

[114] Banerjee, S. J. and Roy, S. arXiv preprint arXiv:1209.3737 (2012).

[115] Cornelius, S. P., Kath, W. L., and Motter, A. E. Nature Communications 4

June (2013).

[116] Cowan, N. J., Chastain, E. J., Vilhena, D. A., Freudenberg, J. S., and

Bergstrom, C. T. PLoS ONE 7(6), e38398 June (2012).

[117] Delpini, D., Battiston, S., Riccaboni, M., Gabbi, G., Pammolli, F., and

Caldarelli, G. Scientific Reports 3 April (2013).

212



[118] Galbiati, M., Delpini, D., and Battiston, S. Nature Physics 9(3), 126–128

(2013).

[119] Jia, T. and Barabási, A.-L. Scientific Reports 3 August (2013).

[120] Jia, T., Liu, Y.-Y., Csóka, E., Pósfai, M., Slotine, J.-J., and Barabási, A.-L.

Nature Communications 4 June (2013).

[121] Li, Z., Ren, W., Liu, X., and Fu, M. International Journal of Robust and

Nonlinear Control 23(5), 534–547 March (2013).

[122] Nicosia, V., Criado, R., Romance, M., Russo, G., and Latora, V. Scientific

Reports 2 January (2012).

[123] Onnela, J.-P. J. Science 343(6177), 1325–1326 March (2014).
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