
Robust Lot Sizing with Remanufacturing: Theory

and Practice

Öykü Naz Attila

Department of Management Science

University of Strathclyde

Glasgow, UK

2019

A thesis presented in fulfilment of the requirements for

the degree of Doctor of Philosophy.

Declaration

This thesis is the result of the author’s original research. It has been composed by

the author and has not been previously submitted for examination which has led

to the award of a degree.

The copyright of this thesis belongs to the author under the terms of the United

Kingdom Copyright Acts as qualified by University of Strathclyde Regulation 3.50.

Due acknowledgement must always be made of the use of any material contained

in, or derived from, this thesis.

Signed: Öykü Naz Attila Date: March 2, 2020

i

Publications

Parts of this dissertation have been published in, submitted to for publication, or

are in the process of being submitted to for publication in peer-reviewed journals

and conference proceedings, as listed below:

• Attila, Ö.N., Agra, A., Akartunalı, K., Arulselvan, A. (2017). A decompo-

sition algorithm for robust lot sizing problem with remanufacturing option.

In International Conference on Computational Science and Its Applications

(pp. 684-695). Springer, Cham.

• Attila, Ö.N., Agra, A., Akartunalı, K., Arulselvan, A., Robust formulations

for economic lot-sizing problem with remanufacturing. Second round revision

submitted to European Journal of Operational Research.

• Attila, Ö.N., Agra, A., Akartunalı, K., Arulselvan, A., A min-max decompo-

sition approach for the robust two-level, multi-component lot sizing problem

with remanufacturing, Working paper to be submitted to INFORMS Journal

on Computing on January 2020.

ii

Acknowledgements

I would like to show my gratitude for my supervisors Kerem Akartunalı, and

Ashwin Arulselvan for their guidance and encouragement throughout the course

of my PhD. Kerem and Ashwin have always been a tremendous source of support

and inspiration for me. Through their supervision I have not only learned what

I know about mixed integer linear programming today, but also how to become

a better researcher. I am very grateful to have had their support not only while

conducting the studies that led to this thesis, but also in many other aspects of

academia and life. I cannot thank you enough for your incredible support!

A very special thank you to Agostinho Agra for his continuous guidance and sup-

port. I am very happy for the fruitful discussions we had on robust optimization,

to which I owe a considerable part of my knowledge in this domain.

I am very grateful to Ayşe Akbalık for her continuous support. Her encouragement

and guidance inspire me tremendously to become the curious researcher I aspire

to be today.

I would like to express my thanks to Hakan Gültekin for introducing me to the

world of mathematical programming, for his support and for having inspired me

to become a researcher in this field.

I would also like to show my gratitude to the University of Strathclyde for making

this PhD thesis possible by providing me with a fully-funded scholarship.

iii

My close friends Sera, Ilkim, Ilayda and Doruk have always shown me their sup-

port, even from hundreds and thousands of miles away. A very special thank you

to Shona for always being there for me and supporting me throughout my PhD

journey. I would also like to thank Emma for her continuous support, and our fun

weekend trips. I am very happy to have had our fun lunchtime discussions and

badminton sessions with Daniel, Orion, Ross, Chirsty, Andrew, Piero, and Ben.

I am very thankful to Dagmar, Gökhan, Ayşe, Esra and many other friends that

I have met here at Strathclyde who were always happy to help, and have shown

an incredible amount of support, both in and out of campus. I greatly appreciate

their continuous encouragement, which enhanced my PhD journey vastly.

Finally, I would like to express my gratefulness to my parents, for everything they

have done for me and for always being by my side. Their unconditional love and

encouragement inspire me immensely. I am beyond grateful to have you.

iv

To my parents...

Fügen & Doğan’a

Abstract

With the increasing importance of means of recovering items, practices such as

reuse, recycling and remanufacturing have been gaining increasing importance

in production systems. In this thesis, we aim to explore methods to obtain cost-

efficient production plans for manufacturing systems that employ remanufacturing.

A crucial challenge here is regarding parameter uncertainty. Commonly, de-

cision makers have to tackle uncertainties on aspects such as operational costs,

demands and in the case of production recoveries, the number of items returned

by customers. Our work aims to address these challenges through the framework

of robust optimization, where we impose uncertainty on demands and/or returns.

In Chapter 1, we provide an introduction outlining the methods and formula-

tions related to our study. In Chapter and 2, we review the literature on lot sizing

problems, and the implications of remanufacturing. Following this, we introduce

a robust lot sizing problem with remanufacturing in Chapter 3, where we consider

uncertainties in both customer demand and return and implement a min-max de-

composition approach for this problem. In Chapter 4, we propose a novel approach

which employs extended reformulations for the master problem, while addressing

computational challenges. In Chapter 5, we consider a different setting for the lot

sizing problem with remanufacturing, where a two-level multi-component variation

is considered. We consider the case where fixed costs are imposed on components

and only variable costs are considered for the end-item. This is then followed

by a robust formulation for and a min-max decomposition approach. We show

that certain optimality properties have to be enforced to derive costs correctly. In

Chapter 6, we consider the two-level multi-component problem with fixed costs on

the end-item level. We show certain optimality conditions for this problem, and

show how these properties can be exploited in the dynamic programming setting

introduced in Teunter et al. [2006]. Throughout Chapters 4 and 5, we provide

extensive computational experiments.

vi

Finally, in Chapter 7, we provide future research directions and conclusions,

where potential advantages and limitations are discussed.

Keywords: Integer Programming, Lot-Sizing, Remanufacturing, Robust Op-

timization, Decomposition

vii

Abbreviations

2-MCR Two-level Multi-component Lot Sizing with Remanufacturing

2-MCR-C 2-MCR with Fixed Costs on Component Level

2-MCR-CR Robust 2-MCR

2-MCR-CRA Adjustable Robust 2-MCR

AP Adversarial Problem

DMP Decision Maker’s Problem

DMP-EFAG Extended Aggregated Reformulation for DMP

DMP-EFAP Approximate Extended Reformulation for DMP

EOQ Economic Order Quantity

ERP Enterprise Resource Planning

GLB Global lower bound

GUB Global upper bound

MILP Mixed Integer Linear Programming

MIP Mixed Integer Programming

MRP Material Requiriements Planning

IP Integer Programming

LB Lower bound

LP Linear programming

viii

LS Lot-sizing

LSR Lot-sizing with remanufacturing

LSR-D Deterministic Lot Sizing Problem with Remanufacturing

RLSR Robust Lot Sizing Problem with Remanufacturing

UB Upper bound

WW Wagner and Whitin

ix

Notation and Symbols

Rn
+ The n-dimensional space of non-negative real numbers.

Zn+ The n-dimensional space of non-negative integer numbers.

[0, 1]n The n-dimensional space of binary numbers.

NP Complexity class NP .

O() Big-O notation indicating problem complexity.

Conv(P) Convex hull for points P .

projX (P) Projection of P onto X

∀ Equation/inequality applied for all indices in the indicated set.

∃ Element exists in the given set.

x

List of Figures

1.1 Branching decisions in the branch and bound algorithm. 7

1.2 Network flow diagram for the dynamic lot sizing problem. 9

1.3 Network flow diagram for the dynamic lot sizing problem with back-

logging. 11

1.4 Total setup and variable costs incurred for various production quan-

tities. 11

1.5 Network flow diagram for the multi-level dynamic lot sizing problem

for L = 2. 13

1.6 Flow diagram for the two-level multi-item (component) lot sizing

problem for a given period t. 15

1.7 Stages of item recovery in production systems. Figure adapted from

Thierry et al. [1995]. 17

3.1 The production process with returns and remanufacturing 38

4.1 Decomposition approach. 50

4.2 (DMP-EFAP) with P = 1 and T = 5 62

4.3 Percentage increase in the lower bound for DMP-EFAG with respect

to DMP for J̃D = 1, for different levels of returns (R̄ ∈ R̄H , R̄M , R̄L)

when K ∈ KV (red), K ∈ KH (blue) and K ∈ KM (green). 68

4.4 Percentage increase in the lower bound for DMP-EFAG with respect

to DMP, for different levels of returns: R̄ ∈ R̄H , R̄M , R̄L when K ∈ KL 68

4.5 Percentage of instances (over datasets with K ∈ KH , KM , KL) that

are solved to optimality, where the MIP gap tolerance is set as 1%. 69

4.6 Average P s for various manufacturing factors, where K ∈ KM , KL

and R̄ ∈ RL (straight), RM (dashed), RH (dotted). 70

4.7 Average P s for various manufacturing factors, where K ∈ KH , and

R̄ ∈ RL (straight), RM (dashed), RH (dotted). 70

xi

4.8 Average P s for various manufacturing factors for T = 50, where

K ∈ KV , and R̄ ∈ RL (straight), RM (dashed), RH (dotted). 71

5.1 Deterministic (2-MCR) problem. 74

5.2 Example with T = 1 and C = 1 . 84

5.3 Percentage of instances solved to optimality for instances where h0

is restricted (left) vs. unrestricted (right) 91

5.4 Percentage of instances solved to optimality in DMP where K ∈
KM , R̄ ∈ R̄M and R̂ ∈ R̂H , R̂M under the specified time limit for

datasets where h0 is restricted. 92

5.5 % of instances solved to optimality under the given computational

time for DMP including instances with K ∈ KH , where h0 is re-

stricted. 93

5.6 % of instances solved to optimality under the given computational

time for DMP including instances with K ∈ KM , where h0 is re-

stricted. 93

5.7 Percentage of instances with an initial MIP % value below the spec-

ified amount for AP on the first iteration, classified by the level

of nominal returns (left), setup cost (middle), and return deviation

(right) where h0 is restricted. 95

5.8 Number of instances with R̄ ∈ R̄M an initial MIP % value within

the specified range for AP on the first iteration, sorted by different

levels of setup costs and return deviations where h0 is restricted. . . 96

5.9 % of instances solved to optimality under the given computational

time for DMP where K ∈ KH and h0 is unrestricted. 99

5.10 % of instances solved to optimality under the given computational

time for DMP where K ∈ KM and h0 is unrestricted. 99

5.11 Percentage of instances with an initial MIP % value below the spec-

ified amount for AP on the first iteration, classified by the level

of nominal returns (left), setup cost (middle), and return deviation

(right) where h0 is unrestricted. 101

5.12 Percentage of instances with an initial MIP % value within the

specified range for AP on the first iteration, sorted by different

levels of setup costs, return deviations, and medium (left) and high

(right) nominal return levels where h0 is unrestricted. 102

xii

List of Tables

1.1 Decision variables for variations of the LSR problem. 15

3.1 Decision variables for the deterministic LSR problem. 39

4.1 Decision variables for (DMP-EFAG). 55

4.2 Average computational time (in sec.) and average number of it-

erations required to reach convergence (given in italic, excluding

instances where the time limit is reached) for DMP with T = 50 for

all datasets. 64

4.3 Average computational time (in sec.) and average number of iter-

ations required to reach convergence (given in italic, excluding in-

stances where the time limit is reached) for DMP-EFAG with T=50

for all datasets. 66

4.4 Average computational time (in sec.) and average number of iter-

ations required to reach convergence (given in italic, excluding in-

stances where the time limit is reached) for DMP-EFAP with T=50

for all datasets, using the maximum interval approach to determine

P . 66

5.1 Average computational time (in sec.) and number of iterations

(given in italic) required to reach convergence for DMP with T = 50

and C = 5 for all datasets where h0 is restricted. 90

5.2 Average computational time (in sec.) required to reach convergence

for AP with T = 50 and C = 5 for all datasets where h0 is restricted. 94

5.3 Average computational time (in sec.) and number of iterations

(given in italic) required to reach convergence for DMP with T = 50

and C = 5 for all datasets where h0 is unrestricted. 98

xiii

5.4 Average computational time (in sec.) required to reach convergence

for AP with T = 50 and C = 5 for all datasets where h0 is unrestricted.100

xiv

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Mixed Integer Linear Programming 4

1.3 Production Planning Models . 8

1.4 Product Recovery and Remanufacturing 15

1.5 Parameter Uncertainty . 18

1.6 Outline of the Thesis . 21

2 Literature Review 23

2.1 Classical Production Planning Problems 23

2.2 Lot Sizing with Remanufacturing 26

2.3 Parameter Uncertainty . 28

2.3.1 Robust Optimization . 28

2.3.2 Production Planning Under Parameter Uncertainty 32

2.4 Mixed-Integer Linear Programming 34

3 Implementing Uncertainty 36

3.1 Introduction . 36

3.2 Problem Definition . 37

3.2.1 Deterministic LSR Formulation 37

3.2.2 Robust LSR Formulation . 40

3.3 Concluding remarks . 47

4 Decomposition and Reformulations 48

4.1 Introduction . 48

4.2 Min-Max Decomposition Approach 49

4.3 Extended Reformulations . 52

xv

4.3.1 Extended Aggregated Reformulation 53

4.3.2 Approximate Extended Reformulation 57

4.4 Computational Results . 63

4.5 Concluding Remarks . 71

5 Multiple Components Case Under Uncertainty 73

5.1 Introduction . 73

5.2 (2-MCR) with Fixed Costs on Component Level (2-MCR-C) 74

5.2.1 Deterministic Problem . 75

5.2.2 Robust Formulation . 77

5.2.3 Decision Maker’s Problem 82

5.2.4 Adversarial Problem . 85

5.3 Computational tests . 88

5.3.1 Instance generation . 88

5.3.2 Instances where h0 is restricted 89

5.3.3 Instances where h0 is unrestricted 95

5.4 Concluding remarks . 101

6 Deterministic Multiple Components Case 103

6.1 Introduction . 103

6.2 Problem formulation . 104

6.3 Problem analysis and resolution . 105

6.3.1 Optimality properties . 105

6.3.2 Dynamic programming algorithm 110

6.4 Concluding remarks . 113

7 Conclusion and Future Research 114

A Codes 131

A.1 Decomposition Algorithm (LSR-R) 131

A.2 Decomposition Algorithm (2-MCR-CRA) 160

A.3 Instance Generation (LSR-R) . 178

xvi

Chapter 1

Introduction

1.1 Motivation

An everlasting challenge for production companies is to ensure cost-efficiency, de-

spite the complex nature of production systems. A common way of accomplishing

this is to find standardized procedures that are designed to assist decision mak-

ers in determining the right number of items to produce, while considering any

accompanying decisions, including those that are related to inventory levels, work-

force levels and scheduling of such resources. Often, achieving this involves finding

methods that aim to use system resources optimally, such that the resulting de-

cisions are able to respond to a wide and diverse range of customer demand. An

important and challenging task here is to detect and enforce relevant restrictions

on how and/or when the operations within the production system are allowed to

be carried out. This often involves limitations such as production capacities, envi-

ronmental concerns, and any other structural restrictions on resource usage, which

may vary according to type of manufacturing system at hand.

Given the complex nature of production systems and the diversity of decisions

involved, the variety of methods that aim to determine optimal production opera-

tions is vast. An effective methodology that is useful for determining such decisions

efficiently is mathematical programming, which involves representing production

systems using objective(s), constraint(s) and variable(s). Likewise, a vast number

of methods and models exist within this domain, which aim to detect such op-

timal operational decisions. While the models within this domain may focus on

decisions on the operational level, some are also commonly used to make decisions

1

on a wider scale, including strategic and tactical decisions in supply chains (Mula

et al. [2010] for a review of mathematical models used in supply chain and trans-

port problems). Developing and improving such methods are crucially important

for decision makers, since these approaches are efficient procedures through which

substantial cost savings are achieved. Moreover, the high complexity of today’s

production systems adds onto the importance of utilizing standardized and effec-

tive methods, such that human error is minimized while maintaining efficiency,

both in terms of solution quality and time requirements.

In order to manage decisions related to such extensive variety of production

operations as a whole, decision makers have been utilizing systems such as ERP

(Enterprise Resource Planning), and its predecessors MRP (Material Requirements

Planning, Plossl and Orlicky [1994]) and MRP II. An essential part of these sys-

tems requires mathematical programming models and methods to generate optimal

solutions. This helps provide insights regarding numerous requirements for pro-

duction planning and beyond. More specifically, in this thesis we will particularly

examine decisions related to production sizes (to which we often refer to as “lot

sizes”, or “lot sizing” to define the wider range of problems that address the is-

sue of finding optimal production sizes) using mixed integer linear programming

formulations and relevant solution methods.

In addition, it is crucial to acknowledge that ERP systems have been evolving

continually to answer manufacturers’ changing needs (Jacobs and Weston [2007]).

This calls for a need to amend mathematical models used for production planning

to construct models that represent production systems today more accurately.

Throughout this thesis, we will study the implications of considering the following

challenges in classical lot sizing problems.

Environmental concerns

Undoubtedly, with growing concerns regarding the negative impact of pro-

duction activities and waste on the environment, means of recovering used

and old products have come into play in production companies in recent

years. As a consequence, one of the main challenges faced by manufactur-

ing companies today is to establish an environmentally friendly production

system. This does not only imply that changes are implemented in produc-

tion procedures themselves (such as incorporating reuse of old and defective

products), but also that a substantial change is required in the mathemat-

2

ical models used for production planning purposes. As a result, developing

mathematical programs that consider not only the traditional operations

in production environments, but also the decisions associated with environ-

mentally friendly means of production is of both practical and environmental

importance. This, of course, is crucial to maintain cost savings, since disre-

garding such elements can lead to significant losses in profit, as well as in-

accurate planning of resources. Throughout this thesis, we will be exploring

production planning models that are able to tackle the additional decisions

that come with product recovery. More specifically, we examine the option

of remanufacturing, for which a formal description will be given in Sections

1.4 and 2.2. In these sections, we will also discuss the importance of reman-

ufacturing in terms of its overall positive impact on the environment. In

addition to this, we will address the challenges and changes that come with

integrating decisions that are related to remanufacturing to traditional lot

sizing models.

Uncertainty

With growing complexity of production systems, acquiring accurate infor-

mation on the operations carried out within such systems is becoming an

increasingly difficult task. As a consequence, building accurate mathemati-

cal models has become a major challenge to tackle. This is not only because

of the wide range of aspects that need to be taken into account, but also be-

cause of the individual uncertainty around these aspects (such as uncertainty

in lead times, workforce availability, type and level of customer demand). Es-

timating such fundamental elements inaccurately can lead to a great risk of

deteriorating the accuracy of mathematical models, since these play a crucial

rule while generating optimal production plans. Specifically, such inaccura-

cies can produce production plans that overuse or underuse resources (which

often leads to significant problems such as: increase in operational costs,

loss of profit, and inaccurate resource allocation estimations). Therefore, it

is crucial to account for the uncertainty around such parameters while con-

structing mathematical models for production planning purposes. In this

thesis, we present formulations that consider the simultaneous impact of de-

mand and return (i.e. items that are returned to the system, which can

3

be used to perform remanufacturing) uncertainty in Chapters 3 and 4. In

Chapter 5, we consider the case where only the number of items returned by

customers are unknown. Finally, we proivde a detailed review of production

planning problems where uncertainty is present, as well as relevant methods

for modelling uncertainty in Chapter 2.

As discussed above, the main motivation behind this thesis is not only related to

tackling the challenge of finding optimal lot sizes, but also providing formulations

that are able to adapt to manufacturers’ up-to-date needs. In this regard, the

studies presented in this thesis are intended to address the issue of uncertainty

in production systems, as well as the impact of incorporating remanufacturing in

these systems.

As we will examine in further detail in the upcoming chapters, these formula-

tions are intended to portray a general representation of production systems. Due

to the favorable aspect of mathematical programs being flexible, these models can

easily be altered to meet the particular needs and structure of a specific produc-

tion system. Likewise, the general findings and methods presented throughout

this thesis can provide useful insights while tackling similar challenges in different

mathematical models.

1.2 Mixed Integer Linear Programming

Before we introduce the mathematical formulations that serve as basis for this

thesis, we present the fundamental methods used to solve mixed integer linear

programming problems. These methods create the very basis for the procedures

used to solve the formulations that are presented throughout this thesis.

Among fundamental studies in the field of linear programming is the Simplex

Algorithm (Dantzig [1951]). This work is of crucial importance for most meth-

ods used to solve both linear and mixed integer linear programs. Although this

method has a fundamental role in solving mixed integer linear programs, it does

not consider integrality restrictions on mathematical programs.

However, imposing integrality restrictions on linear programs is essential for

most applications in practice. In order to comply with this, further studies were

conducted, which investigate the ways through which integrality constraints may

be considered in linear programs. Among preliminary studies that made a re-

4

markable contribution to the field of Integer Programming include the works of

Gomory et al. [1958], Land and Doig [1960] and the references given in the work of

Lawler and Wood [1966], where the concept of generating cuts and branching are

introduced. These concepts serve as an essential part for most IP solvers today.

In the remainder of this section, we provide a general definition of Mixed Integer

Linear Programs (MILPs), while defining some of the essential theoretical prop-

erties of MILPs. For a complete review of methods, formulations and properties,

we refer the reader to Wolsey [1998] and Wolsey and Nemhauser [1999].

A MIP has a linear objective function and a set of constraints that need to

be satisfied. In addition to this, we consider that we have different sets of de-

cision variables. Firstly, we have the decision variables that are defined to take

on continuous values, represented as x := (x1, x2, . . . , xn). Another set of deci-

sion variables are those that are restricted to take on integer values, defined as

y := (y1, y2, . . . , yp). Under this setting, we may define a mixed integer linear

programming problem as the following:

min cx+ hy (MILP)

Ax+By ≤ b (1.1)

x ∈ Rn, y ∈ Zp (1.2)

which can also be shown as:

min{cx+ hy : Ax+By ≤ b, x ∈ Rn, y ∈ Zp} (1.3)

Here, c and h are row vectors of size n and p, respectively. b is a column vector

of size m. Likewise, we define A and B as matrices of sizes n × m and p × m,

respectively. Note that if the integrality restriction on variable y is relaxed, the

problem becomes a linear programming (LP) program. Moreover, if all variables

are restricted to only take on values 0 or 1, the problem can be classified as a “0-1

Program” (or a “Binary Program”).

As we will see in the next section, a wide range of lot sizing problems can be

classified as a MILP. Thus, in the remainder of this section, we particularly focus

on properties of MILPs.

Definition 1.2.1. Let C ⊆ Rn denote a set of points. If the convex combination

of any two points in C is in set C, then C is called a convex set.

5

Definition 1.2.2. For a convex set C, Conv(C) is the convex hull of C, which is

the set of all convex combinations of points in C.

Based on the explanations given above, let us state the following definitions,

through which we define the concept of feasibility for a MILP.

Definition 1.2.3. C is called a polyhedron if the points in C satisfy a finite number

of linear inequalities.

A strong property to notice here is that a polyhedron is a convex set of points.

This observation is crucial for the solution procedures for linear programming

problems. Specifically, consider the following observation for MILPs:

Proposition 1. Let X denote the feasible region of a MILP, and Conv(X) denote

the convex hull over X . Then, solving this MILP over Conv(X) is sufficient to

solve this MILP.

In other words, this property suggests that the we may find a solution in

Conv(X) using linear programming to obtain an integer optimal solution to an

MILP, given that Conv(X) is known. This is a very favorable observation, since

it allows us to disregard the integrality restrictions on integer variables. However,

in most cases, this property is not applicable, since identifying Conv(X) is often

a very difficult task, due to its complex structure.

Furthermore, a concept that plays a crucial role while solving MILPs is obtained

by removing the integrality constraints. We formally define this as follows.

Definition 1.2.4. Consider the MILP program:

min{cx+ hy : Ax+By ≤ b, x ∈ Rn, y ∈ Zp}

Then, the LP relaxation to this MILP is given as:

min{cx+ hy : Ax+By ≤ b, x ∈ Rn, y ∈ Rp}

where the integrality conditions on y are removed.

The concept of LP relaxations has an important role while finding optimal

solutions to MILPs, as discussed further below. In addition, the optimal value of

the objective function values of LP relaxations for different MILPs can provide

meaningful insights while comparing the tightness of formulations.

6

0

XLP
0

1

XLP
1

2

XLP
2

y i
≤
⌈ y∗ i⌉

y i
≤
⌈ y∗ i⌉ y

i ≥ ⌊
y ∗
i

⌋
y
i ≥ ⌊

y ∗
i

⌋

Figure 1.1: Branching decisions in the branch and bound algorithm.

A well-known method for solving MILPs is the “Branch-and-Bound” algo-

rithm. The main idea behind this algorithm is to solve the LP relaxation of the

MILP, while various combinations of integrality restrictions on integer variables

are searched, such that the optimal objective function value improves throughout

the search. More specifically, at the root node, the branch and bound algorithm

solves the LP relaxation a given MILP, where:

XLP
0 : min{cx+ hy : Ax+By ≤ b, x ∈ Rn, y ∈ Rp}

The branching process begins by considering the optimal solution for this LP

relaxation. Let us indicate this solution with (x∗, y∗). Then, a branching variable

is chosen. Let us indicate this variable with y∗i . Based on the optimal value for the

branching variable, a branching decision is made. More specifically, the algorithm

eliminates fractional solutions to the branching variable. In order do this, the

condition by∗i c ≤ y∗i ≤ dy∗i e is imposed on the LP solution at the root node, as

shown in Figure 1.1.

One way to implement this is to branch on variable y∗i such that the algorithm

seeks for the optimal values for the following LP programs:

• Node 1: XLP
1 : min{cx+ hy : Ax+By ≤ b, yi ≤ dy∗i e , x ∈ Rn, y ∈ Rp}

• Node 2: XLP
2 : min{cx+ hy : Ax+By ≤ b, yi ≥ by∗i c, x ∈ Rn, y ∈ Rp}

The branch and bound algorithm continues the search in this manner until

a solution is found, such that the solution is not only feasible but also optimal,

including integrality restrictions.

Based on the introductory properties and methods introduced under this sec-

tion, we provide an overview of production planning models that are formulated

7

as MILPs in the next section.

1.3 Production Planning Models

A crucial challenge that has to be tackled by production companies is to seek for

efficient ways of generating effective production plans. As we have discussed in

the previous section, mathematical programming models are used widely for this

purpose. Throughout this section, we will provide a general introduction to such

mathematical models, as well as relevant solution methods to solve these problems.

The specific set of problems that we examine under this section aim to find optimal

decisions related to production sizes. We call the general class of such problems

“lot sizing problems”, which serves as the basis for the formulations presented

throughout this thesis.

Lot sizing problems are an essential part of the broad set of mathematical mod-

els used for production planning purposes. Generally speaking, lot sizing problems

seek for the optimal quantity and time for producing items, while minimizing op-

erational costs related to activities such as production, holding items in inventory,

and setup of machines. As we will discuss in greater detail, an important property

of lot sizing problems is that such models are able to take system requirements

into consideration (e.g. restrictions on production capacities, magnitude of cus-

tomer demand etc.) by considering the combinatorial structure of a vast number

of relevant decisions. This is a very favorable property, since the decisions involved

in production systems are hard to analyze, due to their sophisticated structure.

One of the most well-known formulations that still serves as the foundation of

most lot sizing problems today is the “Dynamic lot-sizing model” of Wagner and

Whitin [1958], which can be formulated as follows:

min
T∑
t=1

(htIt +Ktyt) (WW)

It−1 + xmt = It +Dt ∀t = 1, . . . , T (1.4)

xmt ≤Mtyt ∀t = 1, . . . , T (1.5)

xm, I ≥ 0 (1.6)

y ∈ {0, 1}T (1.7)

8

xmtx
m
t

It−1It−1 ItIt It+1It+1

xmt+1xmt+1 xmt+2xmt+2

DtDt Dt+1Dt+1 Dt+2Dt+2

. . .

Figure 1.2: Network flow diagram for the dynamic lot sizing problem.

Our main objective in this formulation is to find the minimum total inventory

and setup cost (represented as ht and Kt, respectively, for time period t). To do

this, we need to determine the optimal values of the decision variables involved

in the formulation above (manufacturing, inventory and setup decisions, indicated

as xmt , It and yt for time period t, respectively). Here, we use equation (1.4) to

represent the flow of items, where a customer demand of Dt has to be satisfied on

time period t. Another essential element in (WW) that is often used in most lot

sizing models today is the setup constraint given in (1.5). This constraint suggests

that manufacturing on a given time period can only take place if a setup is carried

out on the same time period. To enforce this, we define yt as binary, where

yt =

0, if xmt = 0

1, otherwise

In order to obtain the optimal total cost, the aforementioned decision variables

are optimized for the whole set of discrete time periods {1, . . . , T }. We refer to

this set as the “planning horizon”. The number of periods considered here can

be altered according to the needs of the production facility (e.g. daily, weekly,

monthly planning). This problem can also be represented as a network (see Figure

1.2).

Undoubtedly, the dynamic lot-sizing model has provided the foundation for a

large number of lot sizing problems being studied today. Throughout the remain-

der of this section, we will examine several extensions to the dynamic lot-sizing

model in further depth, particularly those that closely align with the fundamental

structure of the models we present in this thesis.

9

More specifically, we focus on the following concepts:

1. Backlogging

The first extension we consider is the addition of the option of backlogging,

which was primarily studied in by Zangwill [1966] and Zangwill [1969]. Here,

customer demand is allowed to be backlogged, which suggests that inventory

levels are allowed to take on negative values (i.e. the case where the number

of items present at a given time period t is insufficient to satisfy Dt). Since

unsatisfied customer demand leads to loss of profit, performing backlogging

incurs a penalty cost. Thus, we may write the general formulation for the

dynamic lot-sizing model with backlogging as follows:

min
T∑
t=1

(h+
t I

+
t + h−t I

−
t +Ktyt)

I+
t−1 + I−t + xmt = Dt + I+

t + I−t−1 ∀t = 1, . . . , T (1.8)

xmt ≤Mtyt ∀t = 1, . . . , T (1.9)

xm, I+, I− ≥ 0 (1.10)

y ∈ {0, 1}T (1.11)

Here, the main difference in comparison to (WW) is the new inventory vari-

ables, I+
t and I−t , which represent the positive inventory level at the end

of period t, and the number of items backlogged on period t, respectively.

Note that replacing the old inventory variables with the new ones results in

a change in the objective function, where positive inventory and backlogging

decisions have separate costs of h+
t and h−t , respectively. Considering the op-

tion of backlogging, we may update the network flow representation as given

in Figure 1.3. As the figure suggests, a positive value on the newly added

backlogging variables I−t allow customer demand to remain unsatisfied.

10

xmtx
m
t

I+t−1I+t−1 I+tI
+
t I+t+1I+t+1

I−t−1I−t−1 I−tI
−
t I−t+1I−t+1

xmt+1xmt+1 xmt+2xmt+2

DtDt Dt+1Dt+1 Dt+2Dt+2

. . .

Figure 1.3: Network flow diagram for the dynamic lot sizing problem with back-
logging.

Items produced

Total cost

4321

K

m

Figure 1.4: Total setup and variable costs incurred for various production quanti-
ties.

2. Variable costs

Another common element that we observe in lot sizing models is the variable

cost component associated with producing items. Unlike setup costs, this

cost accounts for the individual costs incurred for producing items.

As seen in Figure 1.4, the setup cost incurs a “fixed cost” that is indepen-

dent from the size of production, whereas the total variable cost incurred is

dependent on the number of items produced.

The main difference with regards to including variable costs is related to the

objective function, where a production cost of mt for period t is incurred for

every item manufactured on t. Thus, we may rewrite the objective function

as:

min
T∑
t=1

(h+
t I

+
t + h−t I

−
t +mtx

m
t +Ktyt) (1.12)

Note that the subscript t is dropped if production costs are time-independent

11

(i.e. production costs are equivalent across different time periods).

3. Multi-echelon Production

Another crucial extension to the dynamic lot-sizing model is the concept of

multi-echelon lot sizing (which is also often referred to as “multi-level lot

sizing” in the literature). The general idea behind multi-level lot sizing is

that there exist multiple levels of production (e.g. raw material processing,

component processing, end-item processing etc.), where the output to a given

level provides the input for another. This setting is relevant from a prac-

tical point of view, since in most production systems, items that are being

produced in a given workstation are very likely to interact with others. More-

over, distinguishing different levels of production allows us to define specific

costs for each level, which often leads to a more accurate representation of

costs. Preliminary work on generating optimal production quantities in a

multi-level setting include the works of Clark and Scarf [1960] and Zangwill

[1969]. Taking these studies as basis, we provide a general representation of

the multi-level dynamic lot sizing problem as follows:

min
L∑
l=0

T∑
t=1

(hltI
l
t +ml

tx
l
t +K l

ty
l
t)

I0
t−1 + x0

t = Dt + I0
t ∀t = 1, . . . , T (1.13)

I lt−1 + xlt = xl−1
t + I lt ∀t = 1, . . . , T , ∀l = 1, . . . ,L (1.14)

xlt ≤Mty
l
t ∀t = 1, . . . , T ,∀l = 0, . . . ,L (1.15)

x, I ≥ 0 (1.16)

y ∈ {0, 1}T ×L+1 (1.17)

In the multi-level setting given above, we have additional variables to define

the production quantities for each level in the set {0, . . . ,L}, denoted as xlt

for level l and period t. Similarly, we define inventory and setup decisions for

each level as I lt and K l
t, respectively. Note that we define level 0 as the level

for the end-item, where customer demand needs to be satisfied (since this

formulation does not include the option of backlogging). Additionally, we do

not consider any independent demand on levels {1, . . . ,L}. In Chapters 5

12

x0tx
0
t x0t+1x0t+1 x0t+2x0t+2

x1tx
1
t x1t+1x1t+1 x1t+2x1t+2

x2tx
2
t x2t+1x2t+1 x2t+2x2t+2

I0t−1I0t−1 I0tI
0
t I0t+1I0t+1

I1t−1I1t−1 I1tI
1
t I1t+1I1t+1

I2t−1I2t−1 I2tI
2
t I2t+1I2t+1

DtDt Dt+1Dt+1 Dt+2Dt+2

. . .

. . .

. . .

Figure 1.5: Network flow diagram for the multi-level dynamic lot sizing problem
for L = 2.

and 6, we consider special cases for the multi-level lot sizing problem, which

is often classified as a two-level lot sizing problem. As we will further examine

in detail, the two-level lot sizing problem has a total of two production levels

(which are defined as levels 0 and L = 1 in our work). As shown in the

network flow diagram given in Figure 1.5, the output for a given level l is

used as input for the previous (upper) level, l − 1, where l ∈ {1, . . . ,L}.

4. Multi-item Production

Another fundamental practice that is often observed in production systems

is multi-item production, which has been long studied in lot sizing prob-

lems (we refer the reader to the works of Karmarkar and Schrage [1985] and

Afentakis and Gavish [1986] for primary studies on multi-item models). In

particular, multi-item production refers to systems where more than one type

of item is produced. While these items may be produced under a single-level

structure, they may also be part of multi-level production systems. Below,

we introduce an introductory multi-level, multi-item formulation for a par-

ticular setting that aligns with our model assumptions (especially to those

introduced in Chapters 5 and 6). More specifically, we are interested in

the two-level multi-item lot sizing problem (which we also refer to as the

13

two-level multi-component lot sizing problem), where we consider multiple

components, which are then assembled in order to produce a single final-

item product (i.e. the item required to satisfy customer demand). Figure

1.6 demonstrates the flow of items, components and demand. Given this set-

ting, we introduce the following mathematical formulation for the two-level

multi-component lot sizing problem:

min
T∑
t=1

(h0
t I

0
t +m0

tx
0
t +

C∑
c=1

(mc
tx
c
t + hctI

c
t +Kc

t y
c
t))

I0
t−1 + x0

t = Dt + I0
t ∀t = 1, . . . , T (1.18)

Ict−1 + xct = x0
t + Ict

∀t = 1, . . . , T
∀c = 1, . . . , C

(1.19)

xct ≤Mty
c
t

∀t = 1, . . . , T
∀c = 1, . . . , C

(1.20)

x, I ≥ 0 (1.21)

y ∈ {0, 1}T ×C (1.22)

Here, {1, . . . C} is the set of components that need to be produced in order to

perform final assembly for the end item product. We denote the production

quantities for components and end item assembly as xct and x0
t , respectively,

where c ∈ {1, . . . , C}. Since this formulation considers two production levels,

the inventory balance constraints show certain similarities to the Multi-level

lot sizing problem introduced previously. Specifically, constraints (1.18) and

(1.19) ensure the flow conversion for the end-item level, and the component

level, respectively. Note that we do not consider independent demands on

the component level. Since this is the case, the only “demand” that we

need to satisfy for each component is equivalent to x0
t , for a given period

t. Finally, we have the traditional setup constraints defined in (1.20). Note

that in this specific formulation, we do not consider setup decisions on the

end-item level.

The extensions and formulations introduced above constitute for the basis for

the formulations studied in this thesis. We provide a complete list of main variables

presented in this section in Table 1.1, which are also used in the formulations

14

x1tx
1
t x2tx

2
t xC−1

tx
C−1
t xCtx

C
t

x0tx
0
t

DtDt

I0tI
0
tI0t−1I0t−1

I1t−1I1t−1 I1tI
1
t I2t−1I2t−1 I2tI

2
t IC−1

t−1IC−1
t−1 IC−1

tI
C−1
t

ICt−1ICt−1 ICtI
C
t

. . .

Figure 1.6: Flow diagram for the two-level multi-item (component) lot sizing prob-
lem for a given period t.

xmt Number of items manufactured in t (components are not considered).
It Serviceables inventory cost in t (components are not considered).
yt 1 if setup occurrs in t, and 0 otherwise (components are not considered).
xct Number of components manufactured in t for c = {1, ..., C}.
Ict Serviceables inventory cost in t for component c = {1, ..., C}.
yct 1 if setup occurrs in t for component c = {1, ..., C}.

Table 1.1: Decision variables for variations of the LSR problem.

considered in the remainder of this thesis. In the next section, we provide a

detailed study on how the concept of remanufacturing can be implemented to

these models. Before we explore these formulations, a general introduction to the

concept of product recoveries is given in the next section, where their importance

and role in production planning systems are discussed.

1.4 Product Recovery and Remanufacturing

Having introduced various traditional lot sizing models in Section 1.3, we now

briefly describe the concept of product recovery, and examine how it can be incor-

porated into traditional lot sizing problems.

The concept of product recovery has been gaining interest in manufacturing

15

environments. Since production recovery reduces the need for producing items

from scratch, such processes have an overall positive impact from an environmental

perspective. In this sense, product recovery can be seen as a way of allowing

manufacturers to reduce the total carbon emission related to production, which has

been of interest to a majority of manufacturers due to increasing awareness on the

need of maintaining sustainable means of production, and due to carbon emission

restrictions imposed on manufacturers. Such restrictions involve carbon emission

taxes and related policies, such as the carbon cap and trade policy. Undoubtedly,

such practices have a considerable importance in terms of production planning,

where various studies in the literature have addressed such problems (see Akbalik

and Rapine [2014], Helmrich et al. [2015], Absi et al. [2016, 2013] and the references

therein).

Integrating production recovery processes as a supplementary way of produc-

tion to traditional manufacturing makes it very favourable for most manufacturers

today, not only because it constitutes for an effective way of reducing waste, but

also as it allows a reduction in the total production cost (Walsh et al. [2015]).

Among many other means of recovering products, remanufacturing is one of

the practices that is being employed more frequently (Rogers and Tibben-Lembke

[2001]). As a result of this, remanufacturing is practiced for a wide range of items

in various sectors (De Brito et al. [2005], Agrawal et al. [2015], Guide Jr and

Van Wassenhove [2009]). Such observations indicate the importance of studying

methods that consider the option of integrating remanufacturing into traditional

supply chain and production planning activities.

In order to do this, it is important to understand the characteristics of returned

items and the process of embedding these items in traditional production environ-

ments. While there exists a considerable number of processes through which re-

turns can be integrated into the traditional production flow (Thierry et al. [1995]),

we specifically consider the option of remanufacturing throughout our study. Re-

manufacturing can be described as a practice that aims to recover returned prod-

ucts such that they are brought up to the standards of serviceable goods (i.e. items

that are of as-good-as-new quality). As seen in Figure 1.7, remanufactured items

are recovered such that these items are able to satisfy customer demand.

An important aspect to notice here is regarding the uncertainty around items

that have been returned by customers. In most cases, the number of items re-

turned by customers is highly random, where this can be due to the randomness

16

Parts Assembly Product Customers

Recycling Remanufacturing

Figure 1.7: Stages of item recovery in production systems. Figure adapted from
Thierry et al. [1995].

of the time of defection, or the unpredictability of the age of the product (Guide Jr

and Van Wassenhove [2001], Thierry et al. [1995]). However, uncertainty around

returned items is not only limited to the timing and quantity of returns, but also

often related to the condition of the items returned. As a consequence, such uncer-

tainties affect to which extent returns can be used. In the formulations presented

under Chapters 3 and 4, we mainly address the issue of return uncertainty with

regards to the timing and quantity of returns. In Chapter 5, we consider a slightly

different setting where returns are recovered into components. The formulations

presented under this chapter can be easily adapted so that they are able to handle

various magnitudes of uncertainty around different components.

When it comes to integrating remanufacturing into traditional lot sizing prob-

lems, it becomes an important task to establish how remanufacturing is integrated

to the traditional manufacturing process. One of the crucial aspects to determine

is regarding the setup requirements for remanufacturing. In our work, we assume

that a “joint setup” is carried over to produce items, where we have:

yt =

0, if xmt + xrt = 0

1, otherwise
(1.23)

where xmt indicates the number of items manufactured on a given period t, and xrt

indicates the quantity of returns remanufactured.

It is important to note that an alternative setup setting that is also often

utilized is the “separate setup” setting, where we have:

ymt =

0, if xmt = 0

1, otherwise
(1.24)

17

and

yrt =

0, if xrt = 0

1, otherwise
(1.25)

Note that the setup variables in this case are defined independently for manu-

facturing and remanufacturing as ymt and yrt , respectively.

In the next section, we provide details regarding different types of parame-

ter uncertainties and relevant methods, as well as a detailed description on our

assumptions regarding parameter uncertainty.

1.5 Parameter Uncertainty

Uncertainty is an inevitable challenge to tackle in most practical situations. As a

result of this, uncertainty is undoubtedly a major issue to consider in mathematical

programs. Ignoring the uncertainty around problem parameters can cause severe

inaccuracies and infeasibilities in mathematical programs. In order to demonstrate

the importance of considering parameter uncertainties, let us consider the follow-

ing example from the work of Ben-Tal and Nemirovski [2000], which illustrates

the impact of parameter uncertainty on the feasibility of a LP program from the

NETLIB library:

Example 1.5.1. Consider the following LP program:

min{cTx : Ax ≤ b, x ∈ Rn}

and let us consider the following constraint in row i and the optimal solution to

x = x∗:

Aix
∗ ≤ bi

in the nominal case (i.e. the case where the values for Ai are known to certainty)

this constraint has the following form in the optimal solution:

Aix
∗ = 23.387405

In their example, Ben-Tal and Nemirovski [2000] show that imposing a negative

perturbation as small as 0.1% on some of the values in Ai can lead to a significant

18

violation of this constraint. Doing so implies the following constraint:

Aix
∗ = −81.5498

The significant impact of parameter uncertainty is evident from the large differ-

ence in the right hand side of the two cases given above, where a violation of
23.387405−(−81.5498)

23.387405
≈ 450% is observed.

This example is a clear indicator that even the smallest misinterpretation of

problem parameters can lead to significant inaccuracies. Certainly, this is appli-

cable to production planning problems as well, since parameters such as costs,

quantity of customer demands and returns are highly impacted by uncertainty in

practical cases.

A wide range of studies in the field of mathematical programming have ad-

dressed the issue of uncertainty, where various methods and assumptions around

how parameter uncertainties are proposed. In order to provide an overview of how

uncertainties can be modelled in mathematical programs, we provide a brief intro-

duction to the following approaches that are commonly used to model parameter

uncertainty: stochastic optimization, chance-constrained optimization and finally

robust optimization, which forms the basis for the formulations given throughout

this thesis.

Stochastic optimization

In stochastic programming, we have the following structure:

min cTx+ EξQ(x, ξ) (1.26)

st. Aixi ≤ bi, ∀i = {1, ..., n} (1.27)

xi ≥ 0, ∀i = {1, ..., n} (1.28)

In the formulation above, ξ is defined as a random variable, and Eξ represents

the expectation associated with the outcome ξ.

The main difference between stochastic and robust optimization is with re-

gards to how uncertainty is defined. While stochastic optimization considers

distributional and probabilistic assumptions on uncertain parameters, robust

optimization does not impose any distributional or probabilistic restrictions

on these parameters. We refer the reader to Birge and Louveaux [2011] for

19

a complete review of methods and formulations used in stochastic program-

ming.

Chance-constrained optimization

Another well-known method that is utilized to model uncertainties is chance-

constrained optimization. The main idea here is to model constraints such

that these are allowed to hold with a given probability. Among preliminary

work in this area includes the study of Charnes et al. [1958], where we have

constraints of the form:

P (Aixi ≤ bi) ≥ αi (1.29)

where αi is defined as the confidence coefficient and xi is a random vari-

able. Under this setting, chance-constrained optimization models seek for a

solution that satisfies constraints of this type with probability αi. Birge and

Louveaux [2011] provide the general structure and solution methods for such

problems.

Robust optimization

In robust optimization, we consider that uncertain parameters are defined

as parts of uncertainty sets, where we have the following structure:

min {cTx : Aixi ≤ bi, (c, A, b) ∈ U ,∀i ∈ {1, ..., n}} (1.30)

In this formulation, problem parameters (c, A, b) are unknown. We assume

that the realization of these parameters lay in the uncertainty set U . Given

this structure, solutions to this mathematical program have to remain fea-

sible for any realization in U , where no particular information is accounted

for regarding the likelihood of a given scenario occurring. This results in an

approach where the “worst-case-scenario” is sought, where remaining feasi-

ble for this particular scenario implies that the scenarios in U are taken into

account. As we will further discuss in detail in Chapter 2, a wide variety of

methods in literature aim to solve problems of this nature.

The variety of methods used to model uncertainty in literature is vast and

certainly not only limited to the examples provided above. The main advantage

of using robust optimization over other methods listed above is with regards to

20

its non-probabilistic assumptions. Since robust optimization does not impose any

specific distributional information on uncertain parameters, it is widely applicable

in practice. This is because in most practical situations, the distributional infor-

mation on uncertain parameters is unknown (or if known, difficult to validate).

From the perspective of remanufacturing, robust optimization is also favourable,

since the rate, timing and condition of returns is highly random, as we have dis-

cussed in Section 1.4. Since our work aligns closest with robust optimization, we

particularly focus on introducing methods in this domain in Chapter 2.

Although robust optimization is favorable from the points of view discussed

above, it certainly has limitations with regards to its dependency on the uncer-

tainty sets. Accurate definition of these sets is crucial to derive correct solutions

and costs. As a result, failing to identify these sets correctly can easily lead to

incorrect formulations and reformulations.

1.6 Outline of the Thesis

Following the introduction provided under this chapter, a literature review on

relevant mathematical models and methods is given in the Chapter 2.

In Chapter 3, the deterministic and robust lot sizing formulations with reman-

ufacturing are formally stated. In addition to this, the structure and properties of

uncertainty sets considered in these formulations are examined in detail.

Chapter 4 is dedicated to a min-max decomposition approach that can be

used to solve the robust lot sizing problem with remanufacturing introduced in

Chapter 3. Upon presenting this method and providing details regarding how this

method can be implemented, further reformulations for the master problem are

proposed. Following this, a wide range of computational tests are presented, where

the performance of these formulations is compared.

Chapter 5 considers a different setting for the lot sizing problem with reman-

ufacturing, where two production levels and multiple components are required to

produce the item demanded by customers. Under this section, we present a robust

formulation for this case, along with the relevant uncertainty sets. In addition,

we examine a production rule that holds for this problem and discuss its impor-

tance under a min-max decomposition framework. Finally, we provide computa-

tional experiments where various observations regarding the impact of different

cost structures on the problem performance are made.

21

Chapter 6 also focuses on the two-level multi-component case. In this section,

we only provide the deterministic problem for a different variation to the prob-

lem introduced in Chapter 5, and present several optimality conditions that hold

for this problem. As shown under this chapter, such conditions can be used in

the dynamic programming framework proposed by Teunter et al. [2006] to derive

solutions to this problem.

Finally, conclusions regarding the formulations, assumptions and computa-

tional experiments are presented in Chapter 7. In addition, future research di-

rections and open questions are provided.

22

Chapter 2

Literature Review

In this chapter, we provide a literature review on production planning problems

and their applications. We then provide a review on the implications of imple-

menting remanufacturing on such traditional problems. Next, we present a review

on parameter uncertainty and discuss methodologies that aim to tackle such prob-

lems, including robust optimization methods. Finally, we provide an overview

of studies where robust optimization is used to address parameter uncertainty in

production environments.

2.1 Classical Production Planning Problems

Finding cost-efficient production plans has been a problem of interest in production

environments since early 1900s. The work of Harris [1913] is among preliminary

work that tackles this problem, where the Economic Order Quantity (EOQ) model

is introduced. Although the EOQ model is of fundamental importance, most of

its assumptions are no longer applicable to many manufacturing systems today.

Specifically, examples to the assumptions made in the EOQ model involve that

the customer demand is stationary and time invariant order costs. Given the

complexity of manufacturing environments today, such assumptions are likely to

lead to an inaccurate representation of the production planning environment.

The dynamic lot-size model discussed earlier under Chapter 1 is undoubtedly

among significant preliminary studies on lot-sizing models. Among other prelimi-

nary work of crucial importance is Zangwill [1966, 1969], where the dynamic lot-size

model is extended to one where the option of backlogging is allowed. Moreover,

23

Florian et al. [1980] has further extended the classical dynamic lot sizing model,

where production capacities are imposed. Their work also provides insights regard-

ing the complexity of this problem, where the case with varying capacity levels is

shown to be NP-hard. Given the high computational requirements for solving

problems of this nature, several preliminary studies have proposed heuristics to

solve the lot sizing problem with capacities. Some examples to such heuristics

include Diaby et al. [1992] and Kirca and Kökten [1994].

Due to the growing interest on lot sizing models, the variety of assumptions

and settings considered in production planning problems today is extensive (we

refer the reader to Pochet and Wolsey [2006] for a thorough review and the ref-

erences therein), where the volume of studies related to production systems are

continually growing Brahimi et al. [2017]. In the remainder of this review, we

primarily focus on studies that consider MIP models to formulate classic lot sizing

models and discuss the advancements on different extensions for the classical lot

sizing problem.

As Pochet and Wolsey [2006] demonstrate in their excellent review of math-

ematical models developed for lot-sizing problems, the body of research devoted

to the topic is extensive, covering a rich set of tools including. Among crucial

methods that are utilized to solve lot sizing problems optimally include studies

that tackle the problem of generating strong valid inequalities and description of

the convex hull. The work of Barany et al. [1984] derives strong valid inequal-

ities for the capacitated, multi-item lot sizing problem, as well as facet defining

inequalities for the uncapacitated case when a single item setting is considered.

Moreover, Agra and Constantino [1999] consider uncapacitated production with

backlogging where a single item is considered with Wagner-Within costs. Other

studies that consider an uncapacitated setting involve Van Hoesel et al. [1994],

where a single item is considered with setup costs. In their work, Van Hoesel et al.

present strong valid inequalities for this problem, which are shown to provide a

complete description of the convex hull.

In more recent work that explore the polyhedral properties of lot sizing models

include Akbalik and Pochet [2009], where the single item case with step-wise pro-

duction costs are considered. In their work, Akbalik and Pochet present a new class

of valid inequalities and define conditions that lead to facet-defining inequalities.

Moreover, Küçükyavuz and Pochet [2009] provide strong valid inequalities for the

uncapacitated case with backlogging, where these are shown to define the convex

24

hull of the feasible solutions to the problem. In addition, the work of Zhang et al.

[2012] consider a different setting, where multiple echelons with independent inter-

mediate demands are considered under an uncapacitated setting, for which strong

valid inequalities are derived. A thorough survey on recent theoretical advances

in single item lot sizing methods is given in Brahimi et al. [2017].

Another important aspect to obtain computationally efficient formulations is

to analyze problem bounds and extended reformulations. Crucial contributions in

this regard involve the work of Van Vyve et al. [2014], which considers multiple

variations of the lot sizing problem with two-levels, for which strong relaxations

are given. Additionally, Anily et al. [2009] consider a multi-item setting with joint

setup costs, for which tight linear reformulations are given. Moreover, Krarup

and Bilde [1977] introduce the facility location formulation for lot sizing problems.

Among other examples that have introduced such reformulations include Eppen

and Martin [1987], where a shortest path reformulation is given.

There have been numerous studies in the field that aim further provide strong

properties for lot sizing problems, which can then be used to derive efficient opti-

mization procedures for solving these problems. Such studies include the work of

Wu et al. [2011], proposing formulations for the capacitated, multi-level case lot

sizing problem with backlogging, where the LP relaxations obtained from these

models provide good lower bounds on this problem. Furthermore, Akartunalı and

Miller [2012] provide lower bounds for the multi-level case, where big bucket ca-

pacities are considered. A different setting is considered in Brahimi et al. [2006]

where multiple items, capacities and time windows are taken into account, for

which various relaxations of the problem are given. In addition to such methods,

decomposition techniques can be used to solve lot sizing problems. For instance,

the study of Jans and Degraeve [2004] employs a decomposition approach for de-

riving strong lower bounds for the capacitated lot sizing problem with setup times.

In addition to the exact methods used to solve such problems, numerous studies

have considered non-exact methods such as heuristics Stadtler [2003], Akartunalı

and Miller [2009], Wu et al. [2018] customized for use with real-world instances

inherent in manufacturing systems.

Finally, we refer the interested reader to Brahimi et al. [2017] for a thorough

review of single-item problems, and to Doostmohammadi and Akartunalı [2018]

for a recent overview on complex multi-item lot-sizing problems. Besides exact

solution methods, we refer to Jans and Degraeve [2007], providing a thorough

25

review on meta-heuristics that have been developed to solve lot sizing problems.

Lastly, a review of modelling of lot sizing problems used in industrial applications

is given in the work of Jans and Degraeve [2008].

2.2 Lot Sizing with Remanufacturing

Often, the extensions studied in production planning problems is motivated by

shifts in production-related applications in practice, encouraging the studies to

expand further. Remanufacturing is among the practices that have been gaining

increasing interest over the recent years. Consequently, various papers have ad-

dressed the issue of considering customer returns in production planning problems.

Remanufacturing is employed in a wide range of industries. To name a few,

automotive, electronics, medical equipment and white goods sectors are among

examples where remanufacturing has an active role in production. As an exam-

ple, a company that actively remanufactures its products is Apple. The company

encourages their customers to return their used products, which can then be re-

manufactured into an as-good-as-new item for a much smaller cost. Other exam-

ples involve remanufacturing activities for automobile parts such as generators,

starters, pumps and automatic transmissions. BMW is among companies that

directly sell such refurbished parts, through which costs can be cut up to 50%.

Another well-known automobile manufacturer that remanufactures parts of their

products is Toyota. The company also offers repairs using remanufactured parts

and components.

Remanufacturing is a type of product recovery, where items that are no longer

functioning are collected from customers back into the production system. Upon

the collection of these returned items (or “returns” in short), they are inspected,

disassembled, reassembled and fed back into the regular production process (Thierry

et al. [1995], Vlachos and Dekker [2003]). More simply, remanufacturing involves

the process of recovering used products by repairing and replacing worn out com-

ponents so that a product is created at least at the same quality level as a newly

manufactured product, providing not only an environmentally sustainable alter-

native to classical manufacturing, saving tonnes of landfill every year, but also

offering many industries from car engines to office copiers the potential for sig-

nificant savings through the exploitation of used product inventories and many

precious raw materials that are becoming scarcer (Ijomah [2009]). Remanufactur-

26

ing can be operated either under a dedicated system (i.e., remanufacturing only)

or a hybrid system (remanufacturing combined with manufacturing), and most

remanufacturing operations in European countries, as noted by Li et al. [2009],

employ a hybrid system. In the context of lot-sizing, hybrid models also vary

between different industries and also different products, some of which allow pro-

duction setups to occur jointly for manufacturing and remanufacturing, referred

to as “joint setup” systems, and others requiring separate production setups, re-

ferred to as “separate setup” system. The formulations presented in this thesis

investigate a hybrid system with joint setups.

The influence of remanufacturing on lot sizing problems is very recent as its

practical applications are also relatively new. The earlier works of Fleischmann

et al. [1997] discussed the implications of the emerging reuse efforts with a review

of the mathematical models proposed in the literature. Further preliminary work

on integrating remanufacturing to mixed integer programs includes the work of

Jayaraman et al. [1999]. In their work, they present a closed-loop logistics system

and optimize the total costs associated with decisions regarding the transporta-

tion, remanufacturing, as well as facility opening and operating costs. On the other

hand, the work of Richter and Sombrutzki [2000] and Richter and Weber [2001]

are among the first studies that have specifically focused on lot sizing problems

with remanufacturing, where the Wagner-Whitin algorithm is applied to remanu-

facturing systems. In their first study, all costs are assumed to be stationary and

traditional manufacturing activities are ignored, whereas the work of Richter and

Weber [2001] has extended these assumptions by considering time-variant costs

and joining manufacturing with remanufacturing.

Another common practice in remanufacturing environments is to dispose of

the returns for a given cost. This option was initially integrated into the lot sizing

problem with remanufacturing by Golany et al. [2001], where the problem was

shown to be NP-complete for general concave costs. For the linear cost case of

this problem, they provide a network flow model formulation, and a dynamic pro-

gramming algorithm that runs in O(T 3). Further studies on the complexity of the

problem involve the work of Retel Helmrich et al. [2014], where it is shown that

the problem is NP-hard for most general configurations, including settings that

consider separate and joint setups on manufacturing and remanufacturing, and

time invariant separate setup costs. Additionally, a shortest path reformulation is

presented for the problem, which is shown to outperform the original formulation

27

of the problem. An important contribution to solving LSR problems efficiently

was made by Teunter et al. [2006], where a polynomial time algorithm with O(T 4)

time is presented for the joint setup case with time invariant costs, as well as mod-

ifications to the well-known “Silver-Meal”, “Least Unit Cost” and “Part Period

Balancing” heuristics. The capacitated version of the problem was studied by Pan

et al. [2009], where the problem is shown to be equivalent to the traditional capac-

itated lot sizing problem when capacities are assumed to be constant. More recent

studies on the capacitated version of the problem involve work of Akartunali and

Arulselvan [2016], where two classes of valid inequalities are introduced for the

problem. Further complexity results were provided by Yang et al. [2005] for the

case of concave costs, by Pan et al. [2009] for constant capacities, by Akartunali

and Arulselvan [2016] for special cost structures and by Pineyro and Viera [2010]

for the case with a disposal option. We also remark some recent and effective

heuristics for practical size problems as presented in Baki et al. [2014], Sifaleras

and Konstantaras [2017], the recent polyhedral study of Syed Ali et al. [2018] com-

paring various reformulations and valid inequalities, and the recent work of Kilic

and van den Heuvel [2019] showing optimality properties and how these can be

used to decompose the problem.

Although various studies address the option of remanufacturing, studies that

consider uncertainties in such settings is very scarce. The formulations consid-

ered in this thesis aim to contribute to this research gap through utilizing robust

optimization methods.

2.3 Parameter Uncertainty

2.3.1 Robust Optimization

As discussed in Chapter 1, robust optimization is a widely-used and effective

methodology for handling uncertainties in mathematical models. The prelimi-

nary studies in this domain date back to 1970s, with the work of Soyster [1973].

Although there have been several extensions following this study (such as the pa-

pers of Falk [1976] and Singh [1982]), the vast majority of literature in this field

is relatively recent.

More specifically, there has been many advances in the field of robust optimiza-

tion over the last 15 years since the papers of Ben-Tal and Nemirovski [1998, 1999],

28

where uncertainty sets are defined as ellipsoids. These studies are also among the

first to present the robust counterpart approach, which is a deterministic problem

that is used to implement the uncertainty sets to the original problem. They also

show that the robust counterpart problem obtained by ellipsoidal uncertainty sets

is tractable. However, robust counterpart problems of this type are non-linear,

which limits the applicability of this approach greatly.

A common observation in robust optimization problems is that due to the

general structure of robust problems, such formulations are defined as NP-hard

(Ben-Tal et al. [2004], Ben-Tal and Nemirovski [1998]). Generally, the complexity

of these problems depends strongly on the tractability of the robust counterpart

associated with the problem. This raises a fundamental challenge, since practical

application of such problems are heavily dependent on their computational per-

formance. As a consequence, there have been a vast variety of studies that have

addressed methods and uncertainty sets to obtain effective robust counterparts

and robust solutions. In this section, we mainly focus on approaches that have

been utilized commonly within the literature. We refer the reader to Gorissen

et al. [2015], Bertsimas et al. [2011], Gabrel et al. [2014], which include a thorough

overview of the methods and uncertainty sets that are used within this paradigm.

The common idea behind these methods is to define uncertainty sets for un-

known or semi-known problem parameters, and to find procedures to obtain mean-

ingful solutions that remain feasible within such uncertainty sets. In order to do

this, uncertainty sets are integrated into the problem of interest through ensur-

ing that the problem remains feasible for all elements in these sets. However,

by constructing a problem that is immune against all potential parameter values

often worsens the optimal solution greatly for the sake of maintaining feasibility.

This phenomenon is often referred to as “conservativism” in the literature, and

numerous studies have been introduced to address this problem. The first papers

that undertake the issue of over-conservativism include the work of El Ghaoui and

Lebret [1997], where convex second-order cone programming is used to overcome

conservative solutions. Furthermore, El Ghaoui et al. [1998] considers semidefinite

programs where problem constraints remain feasible for with a high probability

while generating robust solutions.

The methods and uncertainty sets proposed in the papers of Bertsimas and Sim

[2004, 2003] have been widely used to define and solve robust optimization prob-

lems, where uncertainty sets are defined as budgeted polytopes to handle problems

29

with discrete variables more effectively. More specifically, these studies have made

crucial contributions to the field by introducing a new robust counterpart approach

that is formulated as a linear program. This is not only crucial from the perspective

of problem tractability, but also important to overcome over-conservativism. Es-

sentially, the idea here is to introduce new parameters, Γ, which limits the number

of variables that are allowed to take extreme values, thus preventing conservative

solutions. As we will further discuss in detail, the structure of uncertainty sets

provided in the study of Bertsimas and Sim [2004] play an essential role for the

uncertainty sets considered throughout this thesis.

One of the approaches that is used commonly in the literature is adjustable

robust optimization. This involves a multi-stage procedure, where robust decision

variables are modelled as functions of the revealed data. Through defining these

decisions as functions of such realizations, we are able to obtain much less con-

servative robust counterparts while maintaining tractability Ben-Tal et al. [2004],

Chen and Zhang [2009]. This setting provides a useful/meaningful structure for

dynamic problems, where decisions are time independent. In this regard, appli-

cations of adjustable robust optimization include Ben-Tal et al. [2005], looking

into finding optimal quantities for supplier-retailer contracts. In addition to this,

the work of Atamtürk and Zhang [2007] considers a two-stage setting with uncer-

tain demand, while showing applications to classical lot-sizing problems, including

those with multiple levels.

Another interesting aspect considered in adjustable robust optimization prob-

lems is to use affine decision rules introduced in Ben-Tal et al. [2004], where its

applications in supply chain problems are studied by Aharon et al. [2009]. On

the other hand, methods that focus on increasing the efficiency of general classes

of robust problems is the work of Koster et al. [2013], where a set of cutset in-

equalities are introduced. In addition, there has been interest in combining the

tractability of robust optimization with the framework of stochastic optimization

Fischetti and Monaci [2009].

An area that has been receiving much attention in literature recently is dis-

tributionally robust optimization. The main idea behind distributionally robust

optimization is to apply the paradigm of robust optimization to a given set of

distrubtions, where the distributionally robust solution remains feasible for the

worst-case solution among a given set of given distributions. This becomes a

favourable approach in practical problems, in cases where the distributional struc-

30

ture of the unknown parameters is not known to certainty. Fundamental studies

in this domain include the work of Wiesemann et al. [2014], providing a general

framework and tractable ambiguity sets, as well as Goh and Sim [2010], where

formulations for such problems are provided, including multistage settings.

It is also important to note that a crucial element for constructing efficient and

precise robust optimization problems is to determine tractable and precise uncer-

tainty sets. Examples that aim to further improve the solution quality through

managing conservativeness and increasing users’ control over the uncertainty sets

while retaining a polyhedral structure is the works of Büsing and D’Andreagiovanni

[2012] and Büsing et al. [2014], where multiband uncertainty sets are introduced.

Here, we consider the typical budgeted uncertainty sets in bands, where we are

able to determine the exact number of robust variables in each band. In addition,

methods for constructing data-based uncertainty sets have also been studied. An

example is the work of Bandi and Bertsimas [2012], where central limit theorem

is used to derive uncertainty sets from historical data. Other data-driven uncer-

tainty sets involve using the coherent risk measures Bertsimas and Brown [2009],

introduced by Artzner et al. [1999].

Another common approach to solve robust problems is to use cutting plane

methods to eliminate solutions that are not feasible over the uncertainty sets.

This approach is known to be tractable for solving noncompact problems, where

in cases that utilize polyhedral uncertainty sets, such methods are known to re-

sult in a similar performance when compared to other static robust optimization

approaches (Fischetti and Monaci [2012], Bertsimas et al. [2016]). More specifi-

cally, the general idea of cutting plane approaches is to generate cuts to eliminate

non-robust solutions. A variation of this approach is often referred to as the “ad-

versarial approach”, where the robust problem is solved for a subset of points in a

given uncertainty set. Then, an “adversarial” (or “auxiliary”) problem seeks for a

new point in from the original uncertainty set, which violates the optimal solution

to the restricted uncertainty set. Usually the adversarial problem here consists

of one where the worst-case scenario is sought. Often, the adversarial problem

involves a contradictory objective to the original problem, as the main objective

here is to worsen the solution to the original problem. There have been numerous

studies that have addressed this approach, such as the work of Mutapcic and Boyd

[2009], where pessimistic oracles for the auxiliary problem are examined in detail.

Furthermore, the work of Zeng and Zhao [2013] considers a cutting plane approach

31

that can be used to solve two-stage robust problems, where procedures of gener-

ating optimality cuts and the corresponding complexity measures are examined.

Further examples to studies that consider cutting plane approaches include Thiele

et al. [2009], where a two-stage setting is examined, and a cutting-plane approach

based on Kelley’s algorithm is proposed.

Among crucial contributions that seek for robust solutions through generating

cuts is the work of Bienstock and Özbay [2008], where an adversarial approach for

computing basestock levels is introduced. Specifically, the problem considered in

this paper involves unknown demands in supply chains, where the main objective of

the decision maker is to minimize total costs. Since the adversarial problem seeks

for the worst-case scenario, its objective is to maximize the scenario-dependent

inventory and backlogging costs. This approach can be seen as a variation of

Benders’ decomposition, as it involves generating problem-specific cuts to obtain

a robust solution. As we will examine in further depth in the upcoming chapters,

their study plays an essential role for the formulations that we consider in this

thesis.

The following section focuses on production planning problems under param-

eter uncertainty, where an overview of the existing literature on applications of

robust and stochastic optimization are presented.

2.3.2 Production Planning Under Parameter Uncertainty

Since production planning problems are heavily dependent on information that are

often not known exactly such as costs, customer demand (and in case of remanu-

facturing, customer returns), methods that focus on implementing parameter un-

certainties have been studied extensively in literature. In this section, an overview

of methods for solving production planning problems is presented.

The volume of studies that have considered parameter uncertainty in produc-

tion planning problems is very extensive, especially when compared to ones that

take remanufacturing into account. Among studies that have considered a stochas-

tic setting is the work of Guan and Miller [2008b], where a polynomial time algo-

rithm is proposed to solve the stochastic uncapacitated lot sizing problem under

uncertain demand. In addition, other studies that consider a similar setting in-

clude Halman et al. [2009], where a single-item stochastic problem is considered

where demands are identified as independent random variables. In their work,

32

the problem is shown to be NP-hard, where approximation algorithms to solve

this problem are proposed. Furthermore, Guan et al. [2006] consider a multi-stage

stochastic setting integer programming setting, showing that (l, S) inequalities

for the deterministic case of the problem are valid under stochastic assumptions.

These inequalities are given as∑
i∈S

xi +
∑
i∈S̄

dilyi ≥ d1l

and the sets are given as l ∈ {1, 2, . . . , T}, S ⊆ {1, 2, . . . , l}, S̄ = {1, 2, . . . , l} \ S
where dij =

∑j
k=i dk is given. Following this, they present a new set of valid

inequalities, which are then utilized to derive a branch-and-cut procedure for this

problem.

In addition to the studies where stochastic assumptions are made on the un-

known parameters themselves, See and Sim [2010] have analyzed the setting where

instead of assuming exact distributional information on uncertain demands, only

limited information on several characteristics of demands are given. Another sim-

ilar example to this is the work of Liyanage and Shanthikumar [2005], addressing

the issue of demand uncertainty for the newsvendor inventory control problem,

where the distribution of demands is assumed to belong to a family of distribu-

tions.

Whereas the majority of production planning and inventory problems focus

on the minimization of the total operational cost, other studies have considered a

different setting, which allows the decision maker to apply other types of uncer-

tainty measures. An example to this is the study of Ahmed et al. [2007], which

considers a linear-cost inventory problem, where the objective function is defined

as a coherent risk measure, and demand is defined as a random process.

In addition to the studies where complete or partial stochastic assumptions are

made, various studies consider classical lot sizing and inventory problems under

robust settings. The study of Bertsimas and Thiele [2006] considers a classical

lot sizing problem with demand uncertainty. The uncertainty sets and methods

presented in their study considers the budgeted polytope setting given in Bertsimas

and Sim [2004]. Moreover, Bienstock and Özbay [2008] presents a decomposition

framework to determine optimal robust basestock levels. Although the setting

considered in this work is in a larger scale in comparison to lot sizing models, most

of the concepts that are unique to lot sizing problems (such as setup and production

33

costs) can be solved using this approach. Among studies that employ this setting is

the work of Agra et al. [2016], which considers the budgeted uncertainty polytope.

Here, a dynamic programming approach for the adversarial problem is given. Their

work also presents applications of this approach to classical lot sizing problems.

As seen from the examples given above, the number and variety of studies

that consider uncertainty (in particular, uncertainty on demands) in inventory

and lot sizing problems is large. While the studies on production planning prob-

lems have been studied in a robust setting (Aloulou et al. [2014] for a survey of

non-deterministic lot sizing models), there are very few studies that consider re-

manufacturing systems under this framework. Under robust assumptions, the only

study that we are aware of is Wei et al. [2011], where the robust lot sizing problem

with remanufacturing is solved through employing the methods and uncertainty

sets given in the work of Bertsimas and Sim [2004]. However, it is worth noting

that there have been few studies that consider remanufacturing in a stochastic

setting. Examples to this include the work of Macedo et al. [2016], where uncer-

tainty is imposed on customer demands, returns and setup costs, and Hilger et al.

[2016], where customer demand and return are uncertain and defined as random

variables.

Under the given overview of existing literature, our main contribution is to

introduce efficient robust optimization formulations to solve the robust lot sizing

problem with demand and return uncertainties, where no probabilistic assumptions

are made. As we further discuss in the upcoming chapters, our work closely aligns

with the robust decomposition framework given in Bienstock and Özbay [2008].

2.4 Mixed-Integer Linear Programming

In this section, a brief overview of the methods and relevant concepts in the area

of mixed-integer linear programming is presented. The main focus of this section

is to address methods that are consulted in order to solve the problems we present

in the upcoming chapters.

Following the work of Dantzig [1951], incorporating integrality constraints on

classical linear programming problems have started gaining significant interest.

This is due to the highly applicable nature of discrete variables on practical prob-

lems. Consequently, the volume of methods proposed to solve and improve MILPs

is vast. We refer the reader to Wolsey [1998], Wolsey and Nemhauser [1999],

34

Schrijver [1998] for a thorough overview of the methods used to solve and improve

MILPs, and Jünger et al. [2009], where the progression of fundamental methods

and concepts in the domain of MILP are presented.

Preliminary studies in this domain include Gomory et al. [1958], Gomory [1960],

where the idea of generating cutting planes to obtain integer solutions is presented.

This concept is crucially important and widely used while solving most MILPs

today, due to their highly complex nature.

The cutting plane approach involves generating valid inequalities that aim to

eliminate fractional solutions, while ensuring feasibility for original problem con-

straints. In literature, there have been numerous studies that addressed the prob-

lem of generating valid inequalities. Undoubtedly, generation of such cuts is an

interesting concept for production planning problems. We refer the reader to

Pochet and Wolsey [2006] for a thorough discussion on the use and generation of

valid inequalities for production planning problems.

Another approach that is able to generate effective solutions to MILPs is Ben-

ders’ decomposition (Benders [1962], Geoffrion [1972]). The idea here is to decom-

pose the original MILP problem into two subproblems, where a subset of decision

variables are solved for a fixed feasible solution in the master problem. Using

the solution generated to this problem, a cut is generated, and fed back into the

master problem. This process is continued until convergence is achieved. Given

this structure, Benders’ deocmposition is highly applicable to various problems,

and constitutes for an efficient method for finding optimal solutions to large-scale

problems. Rahmaniani et al. [2017] provides a thorough review on combinatorial

optimization problems that employ Benders’ decomposition method. As previously

discussed in Section 2.3, Benders’ decomposition method is also utilized within the

context of robust optimization by Bienstock and Özbay [2008].

35

Chapter 3

Implementing Uncertainty

3.1 Introduction

Although there is extensive literature on lot-sizing problems, the main focus has

been on deterministic problems, where problem parameters such as demands have

been assumed to be known a priori. When uncertainties are present and they

cannot be sufficiently described using probability distributions (e.g., due to short-

age of reliable data, or data not properly fitting into any distribution), robust

optimization offers a solution that will be feasible for any realization taken in the

so-called uncertainty set, i.e., the collection of all possible realizations.

The uncertainties are in particular critical in the remanufacturing setting,

where both returns (numbers and product qualities) and demands are unknown,

affecting both levels of the operations and their interactions in between. Although,

robust approaches have been considered for classical lot-sizing problems e.g. Ben-

Tal et al. [2005], Bertsimas and Thiele [2006], Bienstock and Özbay [2008], we are

only aware of the work of Wei et al. [2011] in this area, who consider a lot-sizing

problem with uncertain demands and returns, and use a robust linear program-

ming formulation. However, the robust formulation is based on the static approach

introduced for inventory problems by Bertsimas and Thiele [2006] which is known

to produce very conservative solutions for some instances, as noticed in Bienstock

and Özbay [2008].

Our recent preliminary study presented in Attila et al. [2017] proposed an ex-

act approach, and therefore, less conservative than the one from Wei et al. [2011],

which is known as adversarial approach (see Gorissen et al. [2015]) and was intro-

36

duced by Bienstock and Özbay [2008]. This is a decomposition approach where

a robust optimization min-max problem is decomposed into a master (minimiza-

tion) subproblem and an adversarial (maximization) subproblem. By exploring the

properties of the adversarial problem for budgeted polytopes, Agra et al. [2016]

proposed a general robust optimization dynamic programming framework that is

shown to work effectively in lot-sizing problems. However, for many practical lot

sizing problems, as the one considered here, the master subproblem is computa-

tionally harder to solve than the adversarial subproblem and, to the best of our

knowledge, there is no work in this area studying the underlying mathematical

structures for the master subproblems, such as the polyhedral characteristics or

extended reformulations, which are essential ingredients in many lot-sizing algo-

rithms developed in deterministic problems. On the other hand, it is worth to

remark that stochastic programming has been used for such understanding, albeit

in a very limited sense, e.g., see Guan and Miller [2008a]. Thus, there is clear

potential to gain invaluable insights in the remanufacturing problems by studying

their mathematical properties using robust optimization.

3.2 Problem Definition

In this section, we first introduce the deterministic lot-sizing problem with re-

manufacturing (LSR) option, where we introduce our notations and specify our

assumptions on cost structures, inventories and handling of returned items. We

then introduce the uncertainty involved in returned items and demands and for-

mally define the robust LSR (RLSR) problem. We then provide a formulation

using a min-max approach to obtain a robust production plan. A schematic dia-

gram providing an overview of the production process can be seen in Figure 3.1.

3.2.1 Deterministic LSR Formulation

We now consider LSR presented in the preliminary study of Attila et al. [2017]. In

this problem, we consider a time horizon T , a set of deterministic demands, D =

{D1, D2, . . . , DT}, and a set of deterministic returns, R = {R1, R2, . . . , RT}, over

the time horizon. Demands are to be satisfied by items that are produced, which

can be achieved either by manufacturing an item from scratch or remanufacturing a

returned item. We consider the setting where the costs involved are time invariant.

37

Manufacturing
Serviceables
Inventory

Demand

Returns
Inventory

Returns

Remanufacturing

Figure 3.1: The production process with returns and remanufacturing

At every time period, we incur a variable cost of m (resp. r) per item manufactured

(resp. remanufactured) and a fixed joint set up cost of K if an item was produced

in that period. Note that all costs are positive. We assume that both manufactured

and remanufactured items, referred to as “serviceable items”, achieve the minimum

quality level necessary for satisfying the demand. In a given time period, the

serviceable items at hand can be in excess or short of the demand at that period.

Excess serviceable items are carried over as serviceable inventory at a cost of hs

per item to the subsequent time period and can be used to satisfy future demands.

Unsatisfied demands are backlogged at a cost of b per item from the subsequent

time period and have to be satisfied by serviceable items that are produced at a

future time period. At each time period, we have the option to remanufacture the

returned items at hand or carry them over to the next time period as unprocessed

returns in the “return inventory” at a cost of hr per item, or dispose them at a

cost of f per item.

The output of LSR comprises of a production plan that satisfies the demand

at every time period and minimizes the overall costs involved. A production plan

needs to specify the amount of manufactured and remanufactured items, return

and serviceable inventory levels, amount of backlogged and disposed items for

every time period over the planning horizon. Table 3.1 presents a complete list of

the decision variables.

We define the vectors xm := (xm1 , x
m
2 , . . . , x

m
T), xr := (xr1, x

r
2, . . . , x

r
T), d :=

(d1, d2, . . . , dT), y := (y1, y2, . . . , yT), sm := (sm1 , s
m
2 , . . . , s

m
T), and

sr := (sr1, s
r
2, . . . , s

r
T) associated with production (manufacturing and remanufac-

turing), disposal, setup and inventory (serviceable and return) variables, respec-

tively. Let x := (xm, xr, d, y). Then, the objective is to minimize the total opera-

tional cost defined by:

38

xmt Number of items manufactured in period t.
xrt Number of items remanufactured in period t.
Hs
t Serviceables inventory cost incurred in period t.

Hr
t Returns inventory cost incurred in period t.

yt 1 if setup occurred in period t, and 0 otherwise.
dt Number of returns disposed in period t.

Table 3.1: Decision variables for the deterministic LSR problem.

θD,R(x) +
T∑
t=1

(Hs
t +Hr

t), (3.1)

where

θD,R(x) =
T∑
t=1

(Kyt +mxmt + rxrt + fdt) (3.2)

W.l.o.g., we assume initial inventory levels are zero. Then, a mixed integer

program (MIP) formulation for LSR is as follows:

min θD,R(x) +
T∑
t=1

(Hs
t +Hr

t) (LSR-D)

st.

Hs
t ≥ hs

t∑
i=1

(xmi + xri −Di) ∀t = 1, . . . , T (3.3)

Hs
t ≥ −b

t∑
i=1

(xmi + xri −Di) ∀t = 1, . . . , T (3.4)

Hr
t ≥ hr

t∑
i=1

(Ri − xri − di) ∀t = 1, . . . , T (3.5)

Mtyt ≥ xmt + xrt ∀t = 1, . . . , T (3.6)

xm, xr, d ≥ 0, (3.7)

y ∈ {0, 1}T (3.8)

The above formulation implies that demand is satisfiable through manufac-

turing (xm) and/or remanufacturing (xr), whose sum is referred to as “service-

39

ables”. Constraints (3.3) and (3.4) determine the total holding and backlogging

cost for serviceables in period t. Note that, for a given time period t, at most one

of these two constraints’ right hand side can be non-negative, making the other

constraint redundant. Returns inventory cost is determined by constraint (3.5).

Constraint (3.6) ensures a joint set up when manufacturing and/or remanufactur-

ing takes place in a given time period t, with an appropriate choice of Mt. Finally,

constraints (3.7) and (3.8) enforce nonnegativity and integrality restrictions on the

variables. For a fixed y, it is easy to observe that the problem reduces to a network

flow problem.

3.2.2 Robust LSR Formulation

Determining accurate values for the input parameters of the problem is often a

challenging task in practice. In addition, many input parameters in realistic ap-

plications are naturally uncertain (e.g., any quantities in the future), and there is

often a danger that an optimal solution may become severely infeasible or expensive

even when small changes occur in input parameters (see Ben-Tal and Nemirovski

[2002]). Although stochastic optimization is very effective in some cases, it makes

the critical assumption that the uncertainty has a probabilistic description, which

is not realistic in many applications. In such cases, robust optimization provides

a suitable framework for handling parameter uncertainties by defining them as

parts of predefined uncertainty sets. We refer the interested reader to Ben-Tal

and Nemirovski [2002], Bertsimas et al. [2011] for a detailed discussion on general

motivations for choosing a robust optimization approach for tackling input uncer-

tainty. As noted by Bienstock and Özbay [2008], complexities in manufacturing

systems varying from long production leadtimes to complex supply chains result in

significant inadequacy of demand data, which often dictates the use of uncertainty

sets for most effective treatment of uncertainties. Moreover, return of items for

remanufacturing purposes entail further complications such as customer behavior

or variation in the levels of use of the products, further motivating the case for a

robust optimization framework.

A robust solution is defined as a solution that remains feasible over the entire

uncertainty set. Such solution assumes that the production quantities represent

“here and now” variables, corresponding to decisions taken before the uncertain

parameters are revealed while the inventory levels are adjustable to the material-

40

ized parameters. Although such solutions provide immunity to all eventualities,

considering an exhaustive number of cases may lead to solutions which may be

poor for most of the reasonable scenarios. Such a solution, in order to retain

feasibility, has to potentially accommodate extreme case scenarios that have a

negligible chance of realisation. In order to avoid this, we employ the method

introduced by Bertsimas and Sim [2004], which controls the number of scenarios

in the uncertainty set using budgeted polytopes, as discussed below. Moreover,

uncertainty sets of this type are known to be tractable and computationally easier

to handle.

Following the approach of Attila et al. [2017], we model the uncertainty in

demands and returns as budgeted polytopes. Although implementing other types

of uncertainty sets (such as ellipsoids) would be relevant for the problem of interest,

using budgeted polytopes is favorable since uncertainty sets of this nature are

tractable. We assume the uncertainty in demands and returns are independent of

each other. Assuming that demands and returns uncertainty sets are independent

from one another is a favorable assumption since the dependency of returns on

demands (for both the magnitude and timing of returns) is often very dependent

on the product(s) and often follow a very ambiguous and diverse pattern. For

each time period, t = 1, . . . , T , we are provided with the nominal demands (resp.

returns) D̄t (resp. R̄t) and the maximum possible deviation from the nominal value

D̂t (resp. R̂t). In other words, the uncertain demand (resp. return)Dt (resp. Rt) in

time t takes a value in the interval [D̄t, D̄t+D̂t] (resp. [R̄t, R̄t+R̂t]). For each time

period, t, we introduce the variables zDt ∈ [0, 1] (resp. zRt ∈ [0, 1]), in order to model

the proportion of deviation we have from the nominal demand (resp. return),

namely Dt = D̄t + D̂tz
D
t (resp. Rt = R̄t + R̂tz

R
t). Only positive deviations are

considered as this corresponds to the worst case for demands (where the production

is lower than expected leading to backlogged demands), and for returns we can

show that feasibility implies that only the expected minimum number of items can

be used, which allows to conclude that the case of positive deviations is equivalent

to the case of negative deviations. In order to avoid over-conservative estimation of

the parameters, we introduce the parameters ΓDt (resp. ΓRt) in order to constrain

zDt (resp. zRt):

ZD(ΓD) := {zD ∈ [0, 1]T :
t∑
i=1

zDi ≤ ΓDt , ∀t = 1, . . . , T} (3.9)

41

ZR(ΓR) := {zR ∈ [0, 1]T :
t∑
i=1

zRi ≤ ΓRt , ∀t = 1, . . . , T} (3.10)

Then, the independent uncertainty sets for demands and returns, respectively, can

be defined as follows:

UD(ΓD) := {D ∈ RT
+ : Dt = D̄t + D̂tz

D
t , z

D ∈ ZD(ΓD)} (3.11)

UR(ΓR) := {R ∈ RT
+ : Rt = R̄t + R̂tz

R
t , z

R ∈ ZR(ΓR)} (3.12)

We will sometimes refer to the uncertainty set given in (3.11) and (3.12) as

UD+(ΓD) and UR+(ΓR) to indicate we are considering positive deviations from the

nominal value.

Uncertainty sets (3.11) and (3.12) limit the cumulative deviation from nominal

values of demands and returns. Here, considering cumulative deviations is partic-

ularly interesting for these uncertainty sets, since this allows the consecutive time

periods to be considered at once, for varying number of time periods. Although

these uncertainty sets are known to be tractable, they might not be able to capture

specific trends and seasonality of demands and returns.

For the number of returns, we can use the implicit balance constraints

sri−1 +Ri = di + xri + sri , ∀i = 1, . . . , T (3.13)

to derive the following (since sr0 = 0)

srt =
t∑
i=1

(Ri − di − xri), ∀t = 1, . . . , T. (3.14)

Non-negativity of srt implies

t∑
i=1

(Ri − di − xri) ≥ 0, ∀t = 1, . . . , T. (3.15)

Under the robust setting, if the returns R belong to a given uncertainty set U

then, for all t = 1, . . . , T, (3.15) becomes

t∑
i=1

(di + xri) ≤ min{
t∑
i=1

Ri|R ∈ U}. (3.16)

42

The following proposition establishes that there is no loss of generality in con-

sidering positive deviations. Consider the uncertainty set with negative deviations:

UR−(ΓR) := {R ∈ RT
+ : Rt = R̄t − R̂tz

R
t , z

R ∈ ZR(ΓR)} (3.17)

Proposition 2. Let At = max{
t∑
i=1

R̂iz
R
i |zR ∈ ZR(ΓR)} and let S̄1 = R̄1 − A1,

S̄t =
∑t

i=1 R̄i −At −
∑t−1

i=1 S̄i for t = 1, . . . , T and Ŝt = R̂t for t = 1, . . . , T. Then,

the following equalities hold:

a) minR∈UR−(ΓR)

∑t
i=1 Ri = minS∈UR+(ΓR)

∑t
i=1 Si.

b) maxR∈UR−(ΓR)

∑t
i=1Ri = maxS∈UR+(ΓR)

∑t
i=1 Si.

Proof. Since the proof of (a) and (b) are similar we prove only (a).

min
R∈UR−(ΓR)

t∑
i=1

Ri = min
zR∈ZR(ΓR)

t∑
i=1

(R̄i − R̂iz
R
i)

=
t∑
i=1

R̄i + min
zR∈ZR(ΓR)

(−R̂iz
R
i) =

t∑
i=1

R̄i − max
zR∈ZR(ΓR)

R̂iz
R
i =

t∑
i=1

R̄i − At

=
t∑
i=1

S̄i = min
zR∈ZR(ΓR)

t∑
i=1

(S̄i + Ŝiz
R
i) = min

S∈US+(ΓR)

t∑
i=1

Si

Example 3.2.1. Consider T = 3 and Γi = 1, ∀i = 1, ..., T . Let R̄ = (5, 5, 5)

R̂ = (1, 2, 3). Here we provide a numerical example for case a) from Proposition

2, where:

A1 = max
zR∈[0,1]1

{zR1 |zR1 ≤ 1} = 1

A2 = max
zR∈[0,1]2

{zR1 + 2zR2 |zR1 + zR2 ≤ 1} = 2

A3 = max
zR∈[0,1]3

{zR1 + 2zR2 + 3zR3 |zR1 + zR2 + zR3 ≤ 1} = 3

In order to represent the minimum of a returns uncertainty set with negative

deviations as one with positive deviations, we need to compute S. From Proposition

2, we have the following:

S̄1 = R̄1 − A1 = 5− 1 = 4

43

S̄2 =
2∑
i=1

R̄i − A2 − S̄1 = (5 + 5)− 2− 4 = 4

S̄3 =
3∑
i=1

R̄i − A3 −
2∑
i=1

S̄i = (5 + 5 + 5)− 3− (4 + 4) = 4

In this case, the minimum number of cumulative returns for the uncertainty set

S ∈ UR+(ΓR)
∑3

i=1(S̄i + Ŝiz
R
i) is

∑3
i=1 S̄i = 12, in which case zR = (0, 0, 0).

This is equivalent to the number of minimum cumulative returns derived from the

uncertainty set where R ∈ UR−(ΓR), which can be calculated as
∑3

i=1 R̄i − A3 =

(5 + 5 + 5)− 3 = 12.

Hence we focus only on positive deviations, that is, when U = UR+(ΓR). In

this case inequalities (3.16) can be written as follows

t∑
i=1

(R̄i − di − xri) ≥ 0, ∀i = 1, . . . , T. (3.18)

A favourable aspect of considering only positive deviations is that the decision

maker has one absolute optimal production plan (since production variables are

scenario independent). This is also favourable from a computational point of view,

since the number of variables considered when we only have positive deviations is

significantly less compared to the case where both negative and positive deviations

are considered.

An alternative characterisation for these uncertainty sets can be provided in

terms of the convex hull of its extreme points as follows, where JD (resp. JR)

indicates the number of extreme points for demands (resp. returns):

ZD(ΓD) := Conv({zD1

, zD
2

, . . . , zD
JD})

ZR(ΓR) := Conv({zR1

, zR
2

, . . . , zR
JR})

and

UD(ΓD) := Conv({D1, D2, . . . , DJD})

UR(ΓR) := Conv({R1, R2, . . . , RJR})

The tth component of vector Dj (resp. Rj) is given by Dj
t = D̄t + D̂tz

Dj

t and

Rj
t = R̄t + R̂tz

Rj

t , for all j = 1, . . . , JD (resp. j = 1, . . . , JR).

44

Under this setting, the RLSR problem seeks a solution that is feasible for any

demand D ∈ UD(ΓD) and return R ∈ UR(ΓR). As constraints (3.3)–(3.5) are

affected by parameter uncertainty in LSR-D, we rewrite these constraints, so that

a solution would be feasible for all D̃ ∈ UD(ΓD), R̃ ∈ UR(ΓR) resulting in the

following robust formulation for the RLSR problem:

min θD,R(x) + π (LSR-R)

s.t.

π ≥
T∑
t=1

(Hsj
t +Hri

t)
∀j = 1, . . . , JD,

∀i = 1, . . . , JR
(3.19)

Hsj
t ≥ hs

t∑
i=1

(xmi + xri −D
j
i)

∀t = 1, . . . , T ,

∀j = 1, . . . , JD
(3.20)

Hsj
t ≥ −b

t∑
i=1

(xmi + xri −D
j
i)

∀t = 1, . . . , T ,

∀j = 1, . . . , JD
(3.21)

Hrj
t ≥ hr

t∑
i=1

(Rj
i − xri − di)

∀t = 1, . . . , T ,

∀j = 1, . . . , JR
(3.22)

t∑
i=1

(R̄i − di − xri) ≥ 0 ∀t = 1, . . . , T (3.23)

(3.6)− (3.8)

Here, the variables Hsj
t (resp. Hrj

t) correspond to the cost of serviceable in-

ventory or backlogging (resp. return inventory) incurred at time t for the demand

Dj (resp. return Rj). The variable π stores the highest cost of inventory and

backlogging incurred by any demand or return. Constraint (3.23) is elaborated on

earlier as it is equivalent to (3.18), and enforces feasibility of a production plan for

all possible realisations of returns, ensuring we do not remanufacture or dispose

more than the nominal return levels. Constraints (3.20) - (3.22)are defined for

all demand and return vectors corresponding to extreme points of the budgeted

uncertainty sets UD(ΓD) and UR(ΓR). Hence, we have exponentially many con-

straints in our formulation. We handle this using a decomposition approach, in a

similar fashion to the approach of Bienstock and Özbay [2008], to obtain robust

solutions to RLSR, which we will further discuss in the next chapter.

An important observation in (LSR-R) is that the worst costs for returns can

be generated in advance of solving the robust problem. In order to find the worst-

45

case scenario for returns, we introduce the variable Hrw
t , which denotes the worst

total cost associated with returns inventory. The justification for this replacement

follows from the following proposition.

Proposition 3. Let, for all t = 1, . . . , T,

Hrw
t = max

j=1,...,JR
hr

t∑
i=1

(Rj
i − xri − di) (3.24)

and suppose zRw is the optimal solution to

max
zR∈ZR(ΓR)

T∑
t=1

(T − t+ 1)R̂tz
R
t . (3.25)

Then,
T∑
t=1

Hrw
t =

T∑
t=1

hr
t∑
i=1

(R̄i + R̂iz
Rw
i − di − xri)

Proof.
T∑
t=1

Hrw
t =

T∑
t=1

max
j=1,...,JR

hr
t∑
i=1

(Rj
i − xri − di)

= hr
T∑
t=1

max
zR∈ZR(ΓR)

t∑
i=1

(R̄i + R̂iz
R
i − xri − di)

= hr
T∑
t=1

t∑
i=1

(R̄i − xri − di) + hr max
zR∈ZR(ΓR)

T∑
t=1

t∑
i=1

R̂iz
R
i

Observing that

max
zR∈ZR(ΓR)

T∑
t=1

t∑
i=1

R̂iz
R
i = max

zR∈ZR(ΓR)

T∑
t=1

(T − t+ 1)R̂tz
R
t

which obtains the maximum when zR = zRw (from (3.25)) we obtain

hr
T∑
t=1

t∑
i=1

(R̄i − xri − di) + hr max
zR∈ZR(ΓR)

T∑
t=1

t∑
i=1

R̂iz
R
i

= hr
T∑
t=1

t∑
i=1

(R̄i − xri − di) + hr
T∑
t=1

t∑
i=1

R̂iz
Rw
i

46

= hr
T∑
t=1

t∑
i=1

(R̄i + R̂iz
Rw
i − di − xri)

3.3 Concluding remarks

In this chapter, the robust lot sizing problem with remanufacturing with joint

setups was formally introduced. In addition, the uncertainty sets, which are mod-

elled as budgeted polytopes are given in detail. For returns uncertainty sets, it

is shown that the worst case costs can be found in advance of solving the ro-

bust problem. In the next chapter, we provide an implementation of the min-max

decomposition framework and provide reformulations for the master problem.

47

Chapter 4

Decomposition and

Reformulations

This chapter provides further insights as to how the robust lot sizing problem with

remanufacturing is solved using the min-max decomposition under the robust op-

timization framework (Bienstock and Özbay [2008]) based on the uncertainty sets

and robust properties presented in Chapter 3. In addition to this, two additional

reformulations for the master problem in the min-max framework are introduced,

where the computational performance of each formulation is examined in detail.

4.1 Introduction

In this chapter, we primarily aim to extend the decomposition approach presented

in the previous chapter, for a two-stage robust lot-sizing problem with remanu-

facturing and backlogging. We propose two extended reformulations for the com-

putationally challenging master problem of the decomposition, where we propose

first aggregating the separate production variables but extend them in the clas-

sical facility location formulation fashion, and then we propose an approximate

extended reformulation. We discuss some key aspects of these reformulations (also

in comparison to the basic formulation), and then present an extensive computa-

tional analysis in order to identify specific strengths and weaknesses of different

formulations, as well as to support our theoretical claims. More specifically, we are

extending the ideas of Van Vyve and Wolsey [2006] in order to solve the robust

version of the lot sizing problem with returns and remanufacturing option. In

48

order to effectively handle the size of the master model which increases with the

number of scenarios, we make the key observation on the formulation that the flow

conservation only on the last scenario’s demand is sufficient, which significantly

reduces the size of the formulations. To the best of our knowledge, this is the first

use of an extended formulation technique for multiple scenarios under a robust

setting. In addition, we provide a thorough study of the structure associated with

the returns and, in particular, we observe the equivalence between the uncertain

sets with positive and negative deviations from the nominal values for the case

of returns. Finally, from a computational perspective, we present comprehensive

numerical results on the tightness of the extended formulations by providing a

threshold value for the parameter P for various input classes, when the lower

bound improvement tails off.

In the next section, we present first a deterministic formulation of the problem

with a detailed explanation of the practical setting, and then propose the robust

version of this. Then, in Section 4.3, we propose two extended reformulations

of the robust problem, and also remark the theoretical strength of using these in

comparison to the basic formulation. We then present the results of thorough com-

putational experiments in Section 4.4, which evaluates the proposed reformulations

from a number of perspectives, including computational times, lower bounds and

sensitivity to input parameters. Finally, we conclude with some key remarks and

potential future research directions in Section 4.5.

4.2 Min-Max Decomposition Approach

Our min-max approach involves iteratively solving a restricted version of LSR-R,

which is referred to as the “Decision Maker’s Problem” (DMP), where only a subset

of extreme points, denoted by ŨD ⊆ UD(ΓD) and ŨR ⊆ UR(ΓR), are considered.

A new demand (resp. return) point is added to the subset ŨD (resp. ŨR) at

every iteration by solving a certain maximization problem that we refer to as the

“Adversarial Problem (AP)”. Given an optimal production plan, AP seeks the

demand D ∈ UD(ΓD) and return R ∈ UR(ΓR) vectors with the highest inventory

and backlogging cost for this specific production plan. These demand and return

vectors are then used to update ŨD and ŨR respectively, see also Attila et al.

[2017], Bienstock and Özbay [2008], Zeng and Zhao [2013]. A schematic diagram,

which details the decomposition approach is provided in Figure 4.1. Let J̃D and

49

Decision
Maker’s
Problem

Global lower bound

Adversarial
Problem

Local upper bound
Current

production plan

Uncertainty sets

New scenario
with worse

costs

Restricted
Uncertainty Set

Add new
scenarios

Solve

Terminate

UB - LB difference
is smaller than ε

Figure 4.1: Decomposition approach.

J̃R be the number of extreme points in the sets ŨD and ŨR, respectively. Then,

DMP can be stated as follows:

min θD,R(x) + π (DMP)

s.t. π ≥
T∑
t=1

(Hsj
t +Hrw

t) ∀j = 1, . . . , J̃D (4.1)

Hsj
t ≥ hs

t∑
i=1

(xmi + xri − (D̄i + D̂iz
Dj
i))

∀t = 1, . . . , T ,

∀j = 1, . . . , J̃D
(4.2)

Hsj
t ≥ −b

t∑
i=1

(xmi + xri − (D̄i + D̂iz
Dj
i))

∀t = 1, . . . , T ,

∀j = 1, . . . , J̃D
(4.3)

Hrw
t = hr

t∑
i=1

(R̄i + R̂iz
Rw
i − di − xri) ∀t = 1, . . . , T (4.4)

(3.6)− (3.8), (3.23)

Here, the main difference between inventory and backlogging cost constraints

in (LSR-R) and (DMP) formulations is that constraints (4.2) – (4.4) are written

for a subset of demand and return points, rather than the complete uncertainty

set. Also note that the entire constraint set (3.22) was replaced by the single

constraint (4.4).

In the following discussion, we will omit the subscriptD from the parameter JD,

50

as we are now only enumerating the extreme points of the uncertain demand set in

our formulation. Also, we let Dj
i := D̄i + D̂iz

Dj

i , for all i = 1, . . . , T, j = 1, . . . , J .

Next, we define the Adversarial Problem (AP). Here, the aim is to find a

specific demand vector that implies a higher total inventory and backlogging cost

for a given production plan. As such a maximum is given by (3.25) for returns,

AP only seeks a new demand vector. Under this setting, the optimal production

plan u∗ = (xm∗, xr∗, d∗, y∗) of DMP is the input to AP. For notational simplicity,

let X∗t =
t∑
i=1

(xm∗i + xr∗i). Then, AP can be defined as:

max π (AP)

s.t. π ≤
T∑
t=1

Hs
t (4.5)

Hs
t = max

{
hs(X∗t −

t∑
i=1

(D̄i + D̂iz
D
i)),

− b(X∗t −
t∑
i=1

(D̄i + D̂iz
D
i))

}
∀t = 1, . . . , T (4.6)

t∑
i=1

zDi ≤ ΓDt ∀t = 1, . . . , T (4.7)

0 ≤ zDt ≤ 1 ∀t = 1, . . . , T (4.8)

The optimal π value indicates the worst total inventory and backlogging costs

in the uncertainty sets (3.11) and (3.17), as enforced by constraints (4.7) and

(4.8), as well as (3.25). Note that the true total worst cost can be computed

as π +
T∑
t=1

(Hs
t + Hrw

t). Since Hrw
t is a constant in (AP), we do not include this

term in constraint (4.5). To linearize constraint (4.6), a new binary variable st ∈
{0, 1}, ∀t = 1, . . . , T is introduced, which is 1 if Hs

t represents the inventory cost,

and 0 in case of backlogging. Then, the following constraints are added to AP,

where Dmax
t =

t∑
i=1

(D̄t + D̂t) and Dmin
t =

t∑
i=1

D̄t :

Hs
t ≤ hs(X∗t −

t∑
i=1

(D̄i + D̂iz
D
i)) +M1t(1− st) ∀t = 1, . . . , T (4.9)

51

Hs
t ≤ −b(X∗t −

t∑
i=1

(D̄i + D̂iz
D
i)) +M2tst ∀t = 1, . . . , T (4.10)

X∗t −
t∑
i=1

(D̄i + D̂iz
D
i) ≤ st(X

∗
t −Dmin

t) ∀t = 1, . . . , T (4.11)

−X∗t +
t∑
i=1

(D̄i + D̂iz
D
i) ≤ (st − 1)(X∗t −Dmax

t) ∀t = 1, . . . , T (4.12)

Constraints (4.11) and (4.12) ensure the correct setting of the st variables, and

then either constraint (4.9) or (4.10) is dominated, incurring either serviceables

holding or backlogging cost, respectively. We note that M1t and M2t can be defined

as follows:

M1t = −b(X∗t −Dmax
t)− hs(X∗t −Dmax

t) ∀t = 1, . . . , T (4.13)

M2t = hs(X∗t −Dmin
t) + b(X∗t −Dmin

t) ∀t = 1, . . . , T (4.14)

Finally, we remark that convergence is ensured through constraint (4.1) in (DMP),

which ensures that a production plan with higher total serviceables and returns

inventory cost is obtained in each iteration. In such setting, the optimal value for

the objective function for (DMP) determines the global lower bound (GLB). On

the other hand, the optimal objective value for (AP) provides a local upper bound

in each iteration. In order to find the global upper bound on a given iteration J̃D,

we determine GUB = min
j∈{1,...,J̃D}

{π∗j+ θ∗j,D,R(u∗)}, where π∗j indicates the optimal

value for π in (AP) (for iteration j) and θ∗j,D,R(u∗) is the optimal production and

disposal costs of (AP) solved in iteration j. We define ε = GUB−GLB
GLB

to represent

the magnitude of convergence.

4.3 Extended Reformulations

Although the min-max approach is an effective method for obtaining robust op-

timal solutions, its computational efficiency is heavily dependent on the DMP,

as initially observed in the preliminary test of Attila et al. [2017] and also fur-

ther discussed in Section 4.4. Therefore, in this section, we present two extended

reformulations to DMP: “Aggregated Extended Formulation” (DMP-EFAG) and

“Approximate Extended Formulation” (DMP-EFAP). We provide a detailed ex-

52

planation on the structure of both formulations, while discussing their strengths

and limitations. We will empirically support our claims in the Section 4.4 and

provide a detailed account of our computational experience.

4.3.1 Extended Aggregated Reformulation

We consider a facility location reformulation for DMP, which was originally pro-

posed by Krarup and Bilde [1977]. For this purpose, we introduce the following

set of decision variables:

xEF := {x̃ ∈ R(T+1)×(T+1)
+ :

T+1∑
t=1

x̃it = xmi + xri , ∀i = 1, . . . , T}, (4.15)

where the new variables, x̃it, indicate the total amount of items that have been

manufactured and remanufactured in time period i, in order to satisfy the demand

in period t. Throughout the paper, we refer to this quantity as the “aggregated

production” quantity. This results in (T + 1) new variables for each time period

t, where the aggregated production in the (T + 1)th period indicates the amount

manufactured and remanufactured after the planning period and backlogged to

satisfy the demand in a period inside the planning horizon. More specifically, we

only need variables x̃(T+1)i, for all i, in order to account for such backlogging.

Note that we use the same objective function as in DMP, along with the original

production variables xmt and xrt .

In order to keep the formulation size reasonable and effective, we consider

to apply our extended variables only to one demand scenario, namely, the one

introduced in the most recent iteration J . For any production plan, the idea

is to create an aggregated production plan corresponding to the J th scenario,

while tightening the constraint (3.6) by using the aggregated decision variables.

We also define separate H̃s
t and B̃t variables in order to account for the holding

and backlogging costs of serviceables in the J th scenario. For all other iterations

j = 1...J−1, we preserve the structure from DMP, with serviceables inventory cost

defined through the original variables. Next, we state the extended reformulation

formally.

53

min θD,R(x) + π (DMP-EFAG)

s.t. π ≥
T∑
t=1

(Hsj
t +Hrw

t) ∀j = 1, . . . , J (4.16)

Hsj
t ≥ hs

t∑
i=1

(xmi + xri −D
j
i)

∀t = 1, . . . , T

∀j = 1, . . . , J − 1
(4.17)

Hsj
t ≥ −b

t∑
i=1

(xmi + xri −D
j
i)

∀t = 1, . . . , T

∀j = 1, . . . , J − 1
(4.18)

H̃s
t = hs

t∑
i=1

T+1∑
k=t+1

x̃ik ∀t = 1, . . . , T (4.19)

B̃t = b
t∑
i=1

T+1∑
k=t+1

x̃ki ∀t = 1, . . . , T (4.20)

HsJ
t ≥ H̃s

t + B̃t ∀t = 1, . . . , T (4.21)

T+1∑
i=1

x̃it = DJ
t ∀t = 1, . . . , T (4.22)

T+1∑
i=1

x̃ti = xmt + xrt ∀t = 1, . . . , T (4.23)

x̃tk ≤ DJ
k yt

∀t = 1, . . . , T ,

∀k = 1, . . . , T
(4.24)

Hsj
t , x

m
t , x

r
t , dt ≥ 0

∀t = 1, . . . , T

∀j = 1, . . . , J
(4.25)

x̃it ≥ 0 ∀i, t = 1, . . . , T+1 (4.26)

y ∈ {0, 1} (4.27)

(3.23), (4.4)

In the formulation above, constraints (4.17) and (4.18) indicate the service-

ables holding and backlogging costs for scenarios where j 6= J . For iteration J , we

define constraints (4.19) and (4.20), which indicate the total serviceables holding

and backlogging cost for period t, respectively, and these costs are then linked

to the variable HsJ
t through constraint (4.21). We ensure that the demand in a

given period t is satisfied through the sum of items manufactured and remanufac-

tured (including backlogs from beyond the planning horizon) in constraint (4.22).

54

x̃it Number of items produced on i to satisfy the demand on t.

H̃s
t Serviceables holding cost incurred in t through x̃.

B̃t Backlogging cost incurred in t through x̃.

H̃sJ
t Total inventory and backlogging cost in t for the last scenario, J .

Table 4.1: Decision variables for (DMP-EFAG).

Constraint (4.23) is used to link the original manufacturing and remanufacturing

variables with the aggregated production variable x̃it, and finally setup periods

are determined through constraint (4.24). The observation we make here is that

any production plan is a feasible production plan, because we allow backlogging to

the final period. Therefore, which scenario’s demand is assigned to the x̃-variables

is insignificant, as this can be realised as a different production plan for another

scenario and consequently, its corresponding cost calculated. Table 4.1 presents

the list of variables that are introduced in (DMP-EFAG).

We refer to the polytope corresponding to the LP relaxation of DMP (resp.

DMP-EFAG) as PDMP
J (resp. PDMP−EFAG

J), where the subset of extreme points

of the uncertainty, indexed by set J, have been considered in the formulation of

DMP (resp. DMP-EFAG). We slightly abuse the notation here by referring both to

the index set and the index of the last scenario in the index set by J , but we could

distinguish them by context easily. We let Hs to denote the vector (Hs1
1 , . . . , H

sJ
T).

For a polytope P := {(u, x) ∈ U ×X}, where U and X are vector spaces, we define

the projection of polytope P onto the x-space (or onto X) as

projx(P) := {x ∈ X : ∃u ∈ U : (u, x) ∈ P}.

Proposition 4. For any index set J , projx,d,y,Hs,π(PDMP−EFAG
J) ⊂ PDMP

J

Proof. It is easy to show that for any feasible solution to PDMP−EFAG, projecting

out the xEF variables results in a feasible solution to PDMP . The first thing to

note is that the only difference in the two formulations is with respect to scenario J .

Thus, we need to show that any solution (x, d, y,Hs, π) ∈ projx,d,y,Hs,π(PDMP−EFAG
J)

satisfies constraints (4.2) and (4.3), implying (x, d, y,Hs, π) ∈ PDMP
J . First, note

that, for a specific t and in an extreme point solution, either H̃s
t or B̃t in con-

straints (4.19) and (4.20) will be zero (as this could be perceived as a flow along a

negative cost cycle and hence cancelled by sending flow in the opposite direction).

55

Hence, for a given t, let B̃t = 0. Then,

HsJ
t ≥ H̃s

t + B̃t

= hs
t∑
i=1

T∑
k=t+1

x̃ik = hs
t∑
i=1

(
T∑
k=1

x̃ik −
t∑

k=1

x̃ik)

= hs
t∑
i=1

(
(xmi + xri)−

t∑
k=1

x̃ik

)
(due to constraint (4.23))

= hs

(
t∑
i=1

(xmi + xri)−
t∑

k=1

t∑
i=1

x̃ik

)
(rearranged terms)

≥ hs

(
t∑
i=1

(xmi + xri)−
t∑

k=1

DJ
k

)
(due to constraint (4.22))

= hs
t∑
i=1

(
(xmt + xrt)−DJ

i

)
The argument is analogous in the case when H̃s

t = 0. Next, consider constraint (4.24).

For a given t, summing up the constraint over all k, we obtain

xmt + xrt =
T+1∑
k=1

x̃tk ≤
T∑
k=1

DJ
k yt ≤Mtyt (4.28)

The first equality follows from constraint (4.23) and the last inequality follows

from the fact that Mt needs to be chosen so the formulation is feasible for any

scenario. This concludes the proof for projx,d,y,Hs,π(PDMP−EFAG
J) ⊆ PDMP

J .

In order to show that it is a proper subset, let us consider a specific feasible

solution to DMP with HsJ
t = 0, dt = R̄t, i.e., we have no inventory and backlogging

of serviceables at any time period for scenario J , and all nominal returns are

immediately disposed. For the sake of simplicity, assume that all nominal demands

are strictly positive. Then, yt > 0 holds for all t = 1 . . . T to maintain feasibility.

Then, the following condition will hold for any solution to x in DMP:

DJ
t ≤ xmt + xrt ≤

T∑
i=t

(D̄i + D̂i)yt ∀t = 1, . . . , T (4.29)

A feasible solution satisfying this condition is when DJ
t = xmt + xrt =

T∑
i=t

(D̄i +

56

D̂i)yt, which implies yt = DJ
t /

T∑
i=t

(D̄i + D̂i). This produces the feasible solu-

tion
(
xm = (DJ

1 , . . . , D
J
T), xr = (0, . . . , 0), HsJ = (0, . . . , 0), y = (DJ

1 /
T∑
i=1

(D̄i +

D̂i), . . . , D
J
T/(D̄T + D̂T))

)
to DMP.

Solutions of this type cannot be obtained by projection of any feasible solution for

DMP-EFAG because constraints (4.22) and (4.24) cannot be satisfied simultane-

ously. From constraint (4.22), we have

T+1∑
i=1

x̃it = x̃tt = DJ
t (4.30)

The first equality is due to the fact that we have no backlogging or serviceable

inventory for scenario J . From constraint (4.24), we have

x̃tt ≤ DJ
t yt = DJ

t

DJ
t

T∑
i=t

(D̄i + D̂i)

< DJ
t (4.31)

4.3.2 Approximate Extended Reformulation

Even though we are able to obtain tighter lower bounds using DMP-EFAG, the

excessive number of variables can deteriorate computational performance. For

this reason, preserving a relatively tight lower bound while introducing a smaller

number of variables is crucial for improvement in computational times. For DMP-

EFAG, one way of achieving this is to eliminate aggregated production variables

that are likely to take a value of zero in the optimal solution. This is mostly the

case for x̃it when |i − t| is too high. Thus, we implement a partial formulation

for DMP-EFAG, where a predefined parameter P is used to define the intervals

for which x̃it is introduced in a similar fashion to Van Vyve and Wolsey [2006].

Ideally, we would like to choose P such that it represents an estimation for the

number of periods between consecutive setup periods.

In our study, we exploit the iterative procedure involved in the min-max ap-

proach, where we derive P by tuning its value according to the structure of the

optimal solutions from previous iterations. More specifically, for iteration j, let

57

T = {t1, t2, ..., ts} be an ordered set of increasing indices with active setup periods

in the solution of iteration j−1, i.e., yt = 1, ∀t ∈ T and ti < ti+1, ∀i = 1 . . . s−1.

Then, we set P = max{t2 − t1, t3 − t2, ..., ts − ts−1} for the current iteration j.

Note that for the first iteration, P is chosen arbitrarily as P = 3, motivated by

the results given in Section 4.4.

Once P is determined, x̃ti is introduced for a subset of time periods, where

∀t ∈ {1, . . . , T+1}, and i ∈ SPt such that SPt =
{

max{1, t−P}, ...,min{t+P, T}
}

.

Under these assumptions, demands in periods i 6∈ SPt are not allowed to be satisfied

through the aggregated production variables. Note that we will also introduce non-

extended variables to allow that Dj
i : i 6∈ SPt may be satisfied through production

in period t, as follows:

v1s
t :

Number of items produced in period t to satisfy demand in any period in the

interval [t+ P + 1, . . . , T], through keeping serviceables inventory.

v1b
t :

Number of items produced in period t to satisfy demand in any period in the

interval [1, . . . , t− P − 1], through backlogging.

v2s
t :

Amount of demand in period t satisfied through v1s
i : i = [1, . . . , t − P − 1]

variables.

v2b
t :

Amount of demand in period t satisfied through v1b
i : i = [t + P + 1, . . . , T]

variables.

In order to account for the inventory decisions taken through these variables, we

introduce additional variables:

wst :
Items that are kept in serviceables inventory in period t through the use

of v1s, v2s.

wbt : Items that are backlogged in period t through the use of v1b, v2b.

HsPJ
t :

The total serviceables holding and backlogging cost associated with the

variables wst and wbt .

58

Then, we present the formulation formally as follows, which we discuss in detail

next.

min θD,R(x) + π (DMP-EFAP)

s.t. π ≥
T∑
t=1

(HsJ
t +HsPJ

t +Hrw
t) (4.32)

π ≥
T∑
t=1

(Hsj
t +Hrw

t) ∀j = 1, . . . , J-1 (4.33)

H̃s
t = hs

t∑
i=at

bt∑
j=t+1

x̃ij ∀t = 1, . . . , T (4.34)

B̃t = b
t∑

i=at

bt∑
j=t+1

x̃ji ∀t = 1, . . . , T (4.35)

HsPJ
t = H̃sP

t + B̃P
t ∀t = 1, . . . , T (4.36)

H̃sP
t = hs(wst +

smax
t∑

i=smin
t

v2s
i+P+1) ∀t = 1, . . . , T (4.37)

B̃P
t = b(wbt +

bmax
t∑

i=bmin
t

v2b
i) ∀t = 1, . . . , T (4.38)

wst−1 + v1s
t = wst + v2s

t+P+1 ∀t = 1, . . . , T -P -1 (4.39)

wst−1 = wst ∀t = T -P, . . . , T (4.40)

wbt−1 + v2b
t−P−1 = wbt + v1b

t ∀t = P+2, . . . , T (4.41)

DJ
t =



v2b
t +

bt∑
i=at

xit,

v2s
t + v2b

t +
bt∑
i=at

xit,

v2s
t +

bt∑
i=at

xit,

bt∑
i=at

xit,

∀t = 1, . . . , v2
min

∀t = P+2, . . . , T -P

∀t = v2
max, . . . , T

if P+2 > T -P,

∀t =

v2
min+1, . . . , v2

max-1

(4.42)

59

xmt + xrt =



v1s
t +

bt∑
i=at

xti

v1b
t +

bt∑
i=at

xti

bt∑
i=at

xti

v1s
t + v1b

t +
bt∑
i=at

xti

∀t = 1, . . . , v1
min

∀t = v1
max, . . . , T

if P+2 > T -P -1

∀t =

v1
min+1, . . . , v1

max-1

∀t =

P+2, . . . , T -P -1

(4.43)

x̃it ≤ (D̄t + D̂t)yi
∀i = 1, . . . , T

∀t ∈ SPi
(4.44)

xmt + xrt ≤Mtyt ∀t = 1, . . . , T (4.45)

v1s
t ≤

T∑
i=t+P+1

(D̄i + D̂i)yt ∀t = 1, . . . , T -P -1 (4.46)

v1b
t ≤

t−P−1∑
i=1

(D̄i + D̂i)yt ∀t = P+2, . . . , T (4.47)

Hrj
t , x

m
t , x

r
t , xit, dt ≥ 0 (4.48)

yt, binary (4.49)

(3.23), (4.17)− (4.21)

Here, we have three different types of inventory costs. The first set arise from

the original variables in DMP and hence presented again by constraints (4.17)

and (4.18), through which we decide the inventory levels for demand scenarios

j = 1...J − 1, and therefore, the total serviceables inventory cost as Hsj.

Secondly, there is inventory cost incurred through variables x̃it and constraints

(4.34) and (4.35), by which the inventory levels for the last scenario J are decided.

These individual costs are linked to the variable Hsj
t by constraint (4.21).

Thirdly, we consider the inventory costs incurred through the non-extended

variables, where the total inventory cost is given by HsPJ
t in constraint (4.36).

Constraints (4.37) and (4.38) indicate the independent serviceables inventory and

backlogging costs, respectively, and we define the following measures to determine

the specific variables that contribute to these costs, based on the values of t and

P :

• [smin
t , smax

t] where smin
t = max{1, t− P} and smax

t = min{t, T − P − 1}: De-

60

termines the interval, in which serviceables holding cost is incurred through

v2s
t for period t.

• [bmin
t , bmax

t] where bmin
t = max{1, t − P} and bmax

t = min{t, T − P}: De-

termines the interval, in which backlogging cost is incurred through v2b
t for

period t.

Here, smin
t , smax

t , bmin
t , bmax

t are used in constraints (4.37) and (4.38). Constraint

(4.32) is used to determine the total serviceables inventory and backlogging cost

for the last scenario J , where all three types of inventory costs are summed. As

the remaining demand points are handled through the constraints in DMP-EFAG,

we indicate the total inventory costs for scenarios j = 1...J − 1 through constraint

(4.33).

Flow conservation of non-extended variables are achieved through constraints

(4.39)-(4.41). The set of constraints in (4.42) ensure that demand is satisfied in

each time period. Here, we have four different cases, depending on the specific

values of t and P as aggregated production variables are only introduced for the

interval [t− P, t+ P]. Under this setting, demand can either be satisfied by both,

none or only one of the approximate and aggregated production variables. In order

to determine the exact intervals for each of these cases, we introduce the following:

• v2
min = min{T − P, P + 1}: Determines the period until which demand can

be satisfied through v2b
t and approximate extended production variables.

• v2
max = max{T −P + 1, P + 2}: Determines the period from which demand

can be satisfied through v2s
t and approximate extended production variables.

Similarly, the flow conservation constraints given in (4.43) for production vari-

ables vary for specific combinations of t, P and T . In this case, the value of the

original production variables xmt and xrt is either equal to the sum of the extended

production variables, x̃it, or slip between the sum and v1s
t and/or v1b

t . The sum of

extended production variables is given as
bt∑
i=at

xti, where at = max{1, t − P} and

bt = min{t + P, T + 1}. Here, at and bt are used to ensure that the approximate

variables at the beginning and end of the planning horizon remain in the set SPi .

The intervals for each case is determined according to the following values:

61

DK
1 DK

2 DK
3 DK

4 DK
5

xm1 + xr1xm1 + xr1

HsJ
1H
sJ
1

xm2 +xr2xm2 +xr2

HsJ
2H
sJ
2

xm3 + xr3xm3 + xr3

HsJ
3H
sJ
3

xm4 + xr4xm4 + xr4

HsJ
4H
sJ
4

xm5 + xr5xm5 + xr5

HsJ
5H
sJ
5

v1s1v
1s
1 v1s2v

1s
2 v1s3v

1s
3

v2b1v
2b
1 v2b2v

2b
2 v2b3v

2b
3

v2b4v
2b
4

v2s5v
2s
5v2s4v

2s
4v2s3v

2s
3

ws
1w
s
1 ws

2w
s
2 ws

3w
s
3 ws

4w
s
4 ws

5w
s
5

wb
3w
b
3 wb

4w
b
4 wb

5w
b
5

v1b3v
1b
3 v1b4v

1b
4 v1b5v

1b
5

Figure 4.2: (DMP-EFAP) with P = 1 and T = 5

• v1
min = min{T −P − 1, P + 1}: Determines the period until which the total

production (through original production variables xm and xr) is distributed

between approximate extended production variables (x̃it) and v1s
t .

• v1
max = max{T −P, P +2}: Determines the period from which the total pro-

duction is distributed between approximate extended production variables

and v1b (until the last period T).

Figure 4.2 illustrates an example for the use of approximate variables, where T = 5

and P = 1. In contrast to DMP-EFAG, the value of the original manufacturing

and remanufacturing variables are not only distributed between the aggregated

production variables, but also v1s and v1b, where applicable. Note that Figure 4.2

only illustrates the decisions taken on the serviceables level, as decisions related

to returns and remanufacturing remain unchanged.

Finally, we ensure that a joint setup cost is incurred when production takes

place in constraints (4.44) - (4.47). As v1s
t is only used to satisfy demand points

in time periods [t + P + 1, . . . , T], we set Mt =
T∑

i=t+P+1

(D̄i + D̂i) for constraint

(4.46). Similarly, for constraint (4.47), as demands that are backlogged through

the non-extended variables are defined as v1b
t are in the interval [1, . . . , t− P − 1],

we define Mt =
t−P−1∑
i=1

(D̄i + D̂i).

62

4.4 Computational Results

The computational experiments presented in this section are conducted with datasets

that have been generated and used in the study presented in Attila et al. [2017].

Moreover, we follow the same Benders’ framework presented in Attila et al. [2017].

In this framework, the initial upper bound (UB) and lower bound (LB) are set

to ∞ and 0, respectively. Then, LB is updated at every iteration after the DMP

is re-solved with a new scenario, while UB is updated only if the AP improves

UB, where the minimum of the current UB and the cost corresponding to the new

scenario will be taken as the new UB.

For all datasets, the nominal demand is generated within the interval D̄ =

[Dmin, Dmax], where Dmin = 50 and Dmax = 100, and the serviceables holding cost

is generated in the interval hs = [5, 10]. The manufacturing and remanufacturing

cost are defined as m = mf ∗ hs and r = 2 ∗ hr, where we refer to mf as the

manufacturing factor, which is set as mf = 2 for all datasets used in the compu-

tational tests given below (Tables 4.2, 4.3 and 4.4). We set the backlogging cost

as b = 4 ∗ hs. Note that we may set the backlogging cost for the last time period

higher than b in order to account for the setup and production costs outside the

planning horizon, where bT = kb, such that k > 1. Furthermore, we identify the

following key parameters and their variations in order to obtain a broad variety of

problem characteristics:

• Very high, high, medium and low levels of the setup cost, KV = 200∗hs∗Dmax

, KH = 5 ∗ hs ∗ Dmax, K
M = 2 ∗ hs ∗ (Dmax+Dmin

2
), KL = 0.1 ∗ hs ∗ Dmin,

respectively.

• High, medium and low levels of nominal returns, R̄H ∈ [0.7 ∗ Dmin, 0.7 ∗
Dmax], R̄

M ∈ [0.5∗Dmin, 0.5∗Dmax], R̄
L ∈ [0.3∗Dmin, 0.3∗Dmax], respectively.

• High, medium and low probability of constraint violation caused by Γt, p
H =

0.1, pM = 0.05, pL = 0.01, respectively, where the probability measures are

calculated in the same fashion as proposed in Bertsimas and Sim [2004],

where we use the approximation p = 1−Φ(Γt−1√
t

) to obtain the values for ΓDt

and ΓRt according to desired levels of probability.

• Disposal cost, either less or greater than the remanufacturing cost, set as

fL = r
2
, fG = 2 ∗ r, respectively.

63

KV KH

p, d R̄H R̄M R̄L R̄H R̄M R̄L

H,G 12.0, 2.0 11.4, 2.0 9.1, 2.0 − − −
H,L 11.3, 2.0 8.9, 2.0 10.9, 2.0 9724.4, 3.0 − −
M,G 11.7, 2.0 11.8, 2.0 9.1, 2.0 − − −
M,L 10.8, 2.0 9.8, 2.0 10.3, 2.0 9362.9, 3.0 − −
L,G 14.4, 2.0 12.7, 2.0 10.9, 2.0 9144.7, 3.0 6143.3, 3.2 8725.9, 3.0
L,L 11.9, 2.0 10.3, 2.0 9.7, 2.0 5899.9, 3.2 8034.6, 3.3 8959.2, 3.0

Mean 12.0, 2.0 10.8, 2.0 10.0, 2.0 9024.2, 3.1 9030.7, 3.3 9615.3, 3.0

KM KL

p, d R̄H R̄M R̄L R̄H R̄M R̄L

H,G 4808.6, 4.8 3302.3, 5.3 2948.0, 4.6 45.2, 10.6 12.2, 9.0 12.5, 9.2
H,L 1631.0, 4.6 6378.9, 5.0 4909.3, 5.0 11.4, 8.4 17.9, 10.6 17.9, 10.2
M,G 2888.4, 3.5 1235.8, 5.0 2578.7, 5.0 56.4, 9.0 15.6, 8.8 12.3, 7.4
M,L 3999.2, 4.3 1407.9, 4.8 3794.7, 5.2 15.4, 10.4 25.3, 10.6 21.0, 10.4
L,G 2707.4, 3.8 1270.4, 4.8 166.0, 3.8 92.7, 10.4 20.8, 10.0 18.9, 9.4
L,L 973.8, 5.0 442.2, 4.6 1789.0, 4.6 16.1, 8.6 22.1, 9.2 17.0, 8.2

Mean 2834.7, 4.3 2339.6, 4.9 2697.6, 4.7 39.5, 9.6 19.0, 9.7 16.6, 9.1

“−” indicates that time limit was reached for these instances be-
fore reaching the desired optimality gap.

Table 4.2: Average computational time (in sec.) and average number of iterations
required to reach convergence (given in italic, excluding instances where the time
limit is reached) for DMP with T = 50 for all datasets.

This experimental design resulted in 72 different combinations and hence 72 datasets

were generated, with five instances in each dataset. We also note that the param-

eter deviations for a given period t, i.e., D̂t and R̂t, are set as 0.1∗ D̄t and 0.1∗ R̄t,

respectively, for all datasets.

All instances were solved as MIPs using Java API for CPLEX 12.7 on an Intel

Core i5, 3.30 GHz CPU, 3.29 GHz, 8 GB RAM machine. The terminating condition

is met when either the time limit of 10,000s is reached, or a robust optimal solution

is found, where ε = 0.01. In order to tackle the excessive time requirements while

solving the DMP, the MIP gap tolerance for earlier iterations were kept higher,

while the final iteration has a relative MIP gap optimality tolerance of 1%. As the

last iteration cannot be determined in advance, the MIP gap tolerance is reverted

to 1% when ε ≈ 0.01 is achieved, and kept unchanged until a robust optimal

solution is found.

We begin presenting the computational results for DMP, through which we

highlight the strengths and weaknesses of the extended reformulations DMP-EFAG

and DMP-EFAP. Before discussing detailed results, we note that a common ob-

servation for all three formulations is that an optimal solution to the adversarial

64

problem is achieved under a maximum of 20 seconds for all instances and datasets.

On the other hand, for certain instances and datasets, a disproportionate amount

of time is required to solve the decision maker’s problem. For this reason, we

assume that the total time requirements for the decomposition algorithm is repre-

sentative of the time requirements for solving the decision maker’s problem.

As the results in Table 4.2 indicate, there exists a significant difference in

the computational times when setup costs vary. We first observe that the in-

stances with very high (K ∈ KV) and low (K ∈ KL) setup costs are solved very

quickly, whereas the computational times are significantly higher for instances

with medium setup costs (K ∈ KM) and the majority of instances with high

setup costs (K ∈ KH) even exhaust the time limit of 10,000s. When setup costs

are decreased towards zero, one would naturally expect the problem to become

much easier to solve, since the binary decisions become almost obsolete as one

may set all or almost all of them to 1. On the other hand, increasing setup costs

from very low up to a certain level naturally complicates the solution procedure,

as the combinatorial nature of setup decisions becomes much more dominating as

a result of the competition between such decisions. However, once setup costs are

significantly increased, then the problem would again become naturally easy to

solve, as setups become prohibitive and hence almost all setup variables will be

set to 0. We also observe that the computational times in general decrease as the

probability of constraint violation decreases from high (pH) to low (pL). This is

not unexpected, as lower probability of constraint violation would naturally ease

the search process for feasible solutions. Finally, although we observe a significant

variation in times when nominal return levels vary between R̄ ∈ R̄H , R̄M and R̄L

or disposal costs vary between fL and fG, we can not observe a clear tendency

as to when the computational times would increase or decrease. However, this

does not mean that we should exclude their impact, because it may be possible to

observe a pattern after controlling other factors.

Next, in the same fashion, we present the computational times for the extended

aggregate reformulation (DMP-EFAG) and approximate extended reformulation

(DMP-EFAP) in Tables 4.3 and 4.4, respectively. In comparison to previous re-

sults, DMP-EFAG has a vast improvement on the overall time performances for

datasets with K ∈ KH , where we are now able to solve all instances except one

within the time limit. Although the average time requirements remain similar for

K ∈ KM , some datasets such as those with the probability pL are solved much

65

KV KH

p, d R̄H R̄M R̄L R̄H R̄M R̄L

H,G 1.6, 2.0 0.8, 2.0 0.8, 2.0 854.2, 2.8 472.9, 2.4 167.8, 2.4
H,L 1.6, 2.0 0.9, 2.0 0.8, 2.0 295.9, 2.2 2.0, 2.2 2.8, 2.2
M,G 1.6, 2.0 1.2, 2.0 0.7, 2.0 923.9, 2.4 1.7, 2.0 3.2, 2.4
M,L 1.3, 2.0 0.8, 2.0 0.7, 2.0 3.6, 2.4 3.2, 2.2 651.1, 2.6
L,G 1.0, 2.0 0.9, 2.0 0.7, 2.0 5.4, 2.4 4.3, 2.2 3372.1, 2.5
L,L 0.9, 2.0 0.8, 2.0 0.8, 2.0 3.7 , 2.2 3.4, 2.2 5.2, 2.6

Mean 1.3, 2.0 0.9, 2.0 0.8, 2.0 347.8, 2.4 81.3, 2.2 700.4, 2.5

KM KL

p, d R̄H R̄M R̄L R̄H R̄M R̄L

H,G 3140.5, 4.3 1122.9, 3.8 152.6, 3.2 12.3, 6.2 12.9, 6.4 13.6, 6.4
H,L 1603.3, 3.4 620.1, 3.2 1770.7, 3.8 18.4, 6.4 16.8, 7.2 12.7, 6.0
M,G 2646.4, 3.3 2036.4, 3.3 3516.4, 3.5 15.1, 6.2 12.9, 5.8 29.8, 6.8
M,L 3566.6, 3.3 459.3, 4.2 894.8, 3.4 12.0, 5.2 12.3, 6.0 13.5, 6.4
L,G 17.4, 3.0 25.8, 3.2 4.8, 3.2 12.0, 4.8 11.3, 5.4 16.2, 6.8
L,L 70.9, 3.8 8.8, 3.4 27.4, 3.4 13.6, 6.0 18.2, 7.0 22.9, 7.6

Mean 1840.8, 3.5 712.2, 3.5 1061.1, 3.4 13.9, 5.8 14.1, 6.3 18.1, 6.7

Table 4.3: Average computational time (in sec.) and average number of iterations
required to reach convergence (given in italic, excluding instances where the time
limit is reached) for DMP-EFAG with T=50 for all datasets.

KV KH

p, d R̄H R̄M R̄L R̄H R̄M R̄L

H,G 3.2, 2.0 2.4, 2.0 2.3, 2.0 17.4, 2.6 1099.2, 3.0 145.7, 2.4
H,L 2.9, 2.0 2.5, 2.0 2.3, 2.0 33.9, 2.6 2.7, 2.4 95.0, 2.6
M,G 2.4, 2.0 2.4, 2.0 2.2, 2.0 2.3, 2.0 2.8, 2.6 2.5, 2.4
M,L 2.5, 2.0 2.6, 2.0 2.4, 2.0 4.8, 2.8 830.9, 2.4 2001.7, 2.3
L,G 2.7, 2.0 2.5, 2.0 2.3, 2.0 4.3, 2.4 2.4, 2.0 2.5, 2.2
L,L 2.5, 2.0 2.4, 2.0 2.3, 2.0 4.3, 2.4 2.4, 2.0 2.4, 2.0

Mean 2.7, 2.0 2.4, 2.0 2.3, 2.0 11.2, 2.5 323.4, 2.4 375.0, 2.3

KM KL

p, d R̄H R̄M R̄L R̄H R̄M R̄L

H,G 6073.2, 4.5 2407.5, 3.5 248.7, 3.0 11.5, 7.2 14.7, 7.2 25.2, 8.8
H,L 2649.5, 4.2 2409.3, 3.8 8002.5, 2.0 11.2, 7.0 18.8, 8.2 14.3, 7.0
M,G 2069.1, 3.3 1645.5, 3.2 2069.6, 4.5 10.7, 5.8 18.3, 6.8 22.7, 8.0
M,L 2016.3, 2.8 43.7, 3.4 4032.7, 3.0 11.7, 6.2 16.0, 7.8 19.5, 7.6
L,G 19.6, 2.8 12.8, 3.0 4.2, 2.8 11.8, 6.2 17.4, 6.4 12.8, 6.8
L,L 21.1, 2.8 14.8, 3.2 4.8, 3.0 13.6, 6.6 24.7, 8.4 15.2, 6.2

Mean 2141.5, 3.4 1088.9, 3.3 2393.8, 3.1 11.8, 6.5 18.3, 7.5 18.3, 7.4

Table 4.4: Average computational time (in sec.) and average number of iterations
required to reach convergence (given in italic, excluding instances where the time
limit is reached) for DMP-EFAP with T=50 for all datasets, using the maximum
interval approach to determine P .

66

more efficiently, within only 243 seconds. Similar to previous results, datasets with

low values of setup costs can still be solved very fast.

As the results in Table 4.4 indicate, DMP-EFAP has even further improved

the computational times for datasets with K ∈ KH in comparison to DMP-

EFAG, where the average time requirement across datasets is now 11.2 seconds

for R̄ ∈ R̄H , contrary to the time performance of 347.8 seconds for DMP-EFAG.

One possible reason for this can be observed in Figure 4.7, where we observe that

for low values of the manufacturing factor mf , low values of P are sufficient to

improve the lower bound so that DMP-EFAG does not have an advantage over

the approximate extended formulation DMP-EFAP. Although the approximate

extended reformulation has achieved worse times in the set K ∈ KM when the

high probability pH of infeasibility parameter is applied, it has a better or similar

time performance in comparison to DMP-EFAG for pM and pL. The inferential

observation from Tables 4.3 and 4.4 is that the variation in computational times

with respect to varying levels of setup costs and returns is similar to DMP. Al-

though the computational times for instances with high setup costs (K ∈ KH) are

significantly reduced, instances with medium level setup costs (K ∈ KM) are the

most challenging for extended reformulations.

Another interesting aspect to remark here is the number of scenarios needed to

reach convergence. We observe that the total number of iterations mainly varies

for different levels of the setup cost. As the results in Tables 4.2, 4.3 and Table 4.4

suggest, lower levels of setup costs tend to increase the number of scenarios required

to reach convergence for all three formulations. All instances for K ∈ KV have

managed to reach a robust optimal solution in 2 iterations, whereas this number

is much higher for K ∈ KL. More specifically, instances with lower setup costs

require on average ≈ 9.5 iterations to converge in DMP, whereas this decreases

to ≈ 6.3 for DMP-EFAG and to ≈ 7.1 for DMP-EFAP. This behavior is also

observed for setup costs where K ∈ KH , KM . However, the difference between

reformulations is less significant for these classes of datasets, where DMP requires

on average ≈ 3.9 iterations, while this amount is ≈ 2.9 for DMP-EFAG and ≈ 2.8

for DMP-EFAP.

Another important consideration is with respect to the improvement in lower

bounds when extended reformulations are applied. Figure 4.3 indicates the per-

centage improvement of the lower bounds at the root node in DMP-EFAG with

respect to DMP. We can observe that the most significant gains are achieved for

67

R̄ ∈ R̄H R̄ ∈ R̄M R̄ ∈ R̄L
40

60

80

%
In

cr
ea

se

Figure 4.3: Percentage increase in the lower bound for DMP-EFAG with respect to
DMP for J̃D = 1, for different levels of returns (R̄ ∈ R̄H , R̄M , R̄L) when K ∈ KV

(red), K ∈ KH (blue) and K ∈ KM (green).

R̄ ∈ R̄H R̄ ∈ R̄M R̄ ∈ R̄L
2

4

6

8

10

%
In

cr
ea

se

Figure 4.4: Percentage increase in the lower bound for DMP-EFAG with respect
to DMP, for different levels of returns: R̄ ∈ R̄H , R̄M , R̄L when K ∈ KL

datasets with high setup costs, where we are able to obtain an improvement of

≈ 75% over varying levels of returns. On the other hand, the gains in lower

bounds are slightly less when the setup cost levels are medium, though they are

still very effective with an improvement of ≈ 60% over varying levels of returns.

In a similar fashion, we present the improvements in lower bounds for low

setup cost datasets in Figure 4.4. The tendency of increasing improvements as

returns level move towards high can also be observed in this case. However, in

comparison with previous results, low setup costs result in less significant gains,

with the improvements achieving at most a maximum of 8.0%. This is likely to

occur as the fractionality in setup variables in the LP relaxation of DMP would

not result in significant cost improvement compared with the integer solution since

the setup cost associated with these variables are themselves low.

Another interesting aspect for comparison is the computational behaviour when

the extended reformulations are applied, as demonstrated in Figure 4.5. With the

68

tolerance for the MIP gap set to 1%, we are able to obtain optimal solutions for

(DMP) for 71.9% of the instances among all datasets, whereas this percentage

shows a considerable increase to 97.8% and 94.4% for (DMP-EFAG) and (DMP-

EFAP), respectively. In addition, we observe that only 34.8% of the instances were

solved under 100 seconds for (DMP), majority of which are those with K ∈ KL (as

seen in Table 4.2 before), as they constitute 33.3% of the total number of instances

(excluding instances where K ∈ KV). On the other hand, for (DMP-EFAG)

and (DMP-EFAP), we observe a vast increase in the number of instances solved

under 100 seconds, with 80.4% and 84.4% of the instances, respectively. This

clearly implies a strong improvement in the overall computational performance for

both reformulations. Another point to note here is that the variance among the

computational time requirements for instances that are solved quickly (under 100

seconds) is very small for all formulations.

0 0.2 0.4 0.6 0.8 1

·104

0

20

40

60

80

100

Computational time (in sec.)

%
of

In
st

an
ce

s
S
ol

ve
d

DMP

DMP-EFAG

DMP-EFAP

Figure 4.5: Percentage of instances (over datasets with K ∈ KH , KM , KL) that
are solved to optimality, where the MIP gap tolerance is set as 1%.

Although the computational time requirements for both (DMP-EFAG) and

(DMP-EFAP) have shown a significant improvement, we observe that as computa-

tional time increases, (DMP-EFAG) becomes the more effective method, achieving

a higher percentage of instances solved in comparison to (DMP-EFAP), which is

observed when the time requirement surpasses 2079 seconds. On the other hand,

for cases requiring less computational time, (DMP-EFAP) is the method of choice,

achieving a higher percentage of instances solved. In addition, we remark that the

choice of P plays a crucial role in the computational time performance for (DMP-

EFAP), and thus has an impact on the resulting computational time performance.

69

Next, we analyze the impact of our choice of mf and P in (DMP-EFAP) on

the optimal objective value obtained from its LP relaxation. As we increase P ,

this results in an increase in the number of extended variables and constraints

(4.44), which enable us to obtain tighter relaxations. However, as P increases, the

LP relaxation value of (DMP-EFAP) increases towards the LP relaxation value

of (DMP-EFAG). Hence, we define P s as the P value for which this increase

becomes negligible. We classify the increase as negligible when the difference in the

optimal objective function value between two LP relaxations is below 0.001. The

manufacturing factor mf plays a crucial role in the value of P s. As mf increases,

remanufacturing and backlogging naturally become more favorable. This would

result in a greater number of extended variables becoming active, and hence a

higher value of P s is needed.

20 40 60

5

10

15

P
s

20 40 60 20 40 60

mf

Figure 4.6: Average P s for various manufacturing factors, where K ∈ KM , KL

and R̄ ∈ RL (straight), RM (dashed), RH (dotted).

20 40 60

5

10

15

P
s

20 40 60 20 40 60

mf

Figure 4.7: Average P s for various manufacturing factors, where K ∈ KH , and
R̄ ∈ RL (straight), RM (dashed), RH (dotted).

From Figures 4.6 and 4.7, we can observe that the rate of increase in P s varies

with respect to the levels of returns and setup costs, as expected from our discus-

sion above. As seen in Figure 4.7 for high setup costs, P s remains fairly low for

low values of mf (till around an average value of 18.6) and it starts increasing with

70

20 40 60

15

20

25

30

P
s

20 40 60 20 40 60

mf

Figure 4.8: Average P s for various manufacturing factors for T = 50, where K ∈
KV , and R̄ ∈ RL (straight), RM (dashed), RH (dotted).

mf . This average value of mf till which P s remains low drops to 10.6 for medium

and low setup costs, as seen in Figure 4.6. On the other hand, since an increase in

returns allows higher rates of remanufacturing rather than backlogging (and hence

we can expect a decrease in extended production variables), we would expect a

slower rate of increase for P s with higher returns. This behavior can be observed

in Figures 4.6 and 4.7, where it is easy to see that P s starts increasing with mf

but with a gentler slope for datasets with R ∈ RH (dotted), in comparison to the

those with R ∈ RM , RL (dashed and straight lines, respectively). On the other

hand, as seen in Figure 4.8, datasets with K ∈ KV have a much greater overall P s

value due to the significant increase in the setup cost. An interesting behaviour

we observe here, unlike the previous cases, is the decrease in the value of P s as mf

increases. As a result of very expensive setup costs, only a very limited number of

setups is expected in the optimal solution, and we observe this often with a single

setup taking place in the optimal solutions of these instances. As mf increases,

we observe that the setup periods start to split the horizon more equally in order

to balance remanufacturing and backlogging costs, which in turn decreases the P s

value. We also observe that occasionally a significantly higher mf value results in

an additional setup period, again contributing to the decrease in P s.

4.5 Concluding Remarks

In this paper, we study a lot-sizing problem with the remanufacturing option,

where uncertainties exist simultaneously for demand and return parameters. Fol-

lowing the setting of our previous work (Attila et al. [2017]), we define parameter

uncertainties in the form of polyhedral uncertainties. After a discussion of de-

71

terministic problem formulation, we present in detail a min-max decomposition

approach. The framework iteratively solves a decision maker’s problem that eval-

uates a limited number of scenarios to generate a production plan, and an adver-

sarial problem that generates a scenario that has not yet been considered by the

decision maker using the proposed production plan. As the computational chal-

lenge of this framework primarily lies in the decision maker’s problem, we then

investigate this problem further in order to improve computational performance.

In particular, we propose a novel approach for formulating the robust lot sizing

problem with remanufacturing, which employs two different reformulations. As

detailed computational results demonstrate, these extended reformulations are ca-

pable of improving the computational performance immensely, in particular the

case where setup costs are high. We also present a thorough understanding on

the impact of a range of problem parameters, which we believe are invaluable to

researchers not only in the area of lot-sizing but also in the broader community

of robust optimization. In near future, we would like to address the complexity

issues of the adversarial problem. We would like to address a few cost structures

that we have not considered in this work. For instance we would like to introduce

a variable costs component for our manufacturing costs and make the costs time

variant.

72

Chapter 5

Multiple Components Case

Under Uncertainty

5.1 Introduction

In this chapter, we consider a two-level, multi-component setting where a single

type of end-item has to be produced to satisfy customer demand. Here, we assume

that this demand is deterministic, and only belongs to a single type of item. We

refer to this item as the “end-item”. Throughout this chapter, we refer to the

number of demands associated with this item as the “end-item demand”. Further-

more, we consider the case where the end-item level has an independent demand

of D = (D1, D2, . . . , DT) that needs to be satisfied until a specific time period

for the whole planning horizon {1, . . . , T }. Since this is the case, to satisfy the

end-item demand on a given time period t, a minimum of Dt of items have to

be available at the beginning of period t, since backlogging is not allowed. The

multi-level structure of this problem arises from the assumption that the end-item

can only be produced only after a certain set of components have been produced

and assembled into the end-item. More specifically, we assume that the end-item

is only available to the decision maker if the components in {1, . . . , C} have been

assembled into the end-item.

This arises additional decisions that need to be taken with regards to the

availability of components. As we will be discussing in further detail, we are inter-

ested in finding optimal production and inventory quantities for these components,

where backlogging is not allowed. As a result, the components that are needed to

73

I01 I02

R1 R2 R3

D1 D2 D3

q11q
1
1 q12q

1
2 q13q

1
3

x1
1x
1
1

x2
1x
2
1

x3
1x
3
1

x1
2x
1
2

x2
2x
2
2

x3
2x
3
2

x1
3x
1
3

x2
3x
2
3

x3
3x
3
3

q21q
2
1 q22q

2
2 q23q

2
3

q31q
3
1 q32q

3
2 q33q

3
3

x01x
0
1 x02x

0
2 x03x

0
3

Figure 5.1: Deterministic (2-MCR) problem.

assemble the end-item have to be produced before they are required for assembly.

Component demand occurs due to the assembly decisions that are taken to

meet the end-item demand. In order to meet component demand, the decision

maker can either choose to manufacture items from scratch, or to remanufacture

items that have been returned to the production facility by customers. Note that

we do not consider independent demand on components, meaning that the only

demand for components is the one that is caused by the assembly decisions for the

end-item. Figure 5.1 illustrates the decisions corresponding to each level considered

in the 2-MCR problem. Finally, we refer to the decisions taken with regards to

meeting components’ demand as ones that are taken on the “components level”.

5.2 (2-MCR) with Fixed Costs on Component

Level (2-MCR-C)

We firstly consider a variation of (2-MCR) where a setup has to be performed in

order to produce components (2-MCR-C). In this problem, we assume that there

are no setup decisions associated with the end-item level. Instead, we consider

linear production costs on the end-item level.

In the following sections, we further provide details about the specific decision

74

variables and assumptions made for both the deterministic and the robust version

of (2-MCR-C).

5.2.1 Deterministic Problem

In advance of introducing the robust setting, we first introduce the deterministic

formulation for (2-MCR-C).

In order to generate an optimal production plan, we need to determine the

quantities of components to manufacture, remanufacture and the number of items

to keep in inventory. These amounts have to be determined for each component

that is required to produce the end-item, for the whole planning horizon. We

define the set {1, . . . , C} to indicate the set of components that are required to

produce a single end-item. In the remainder of this paper, we use index c = 0 to

indicate decisions related to the end-item level. We use the set {1, . . . , T } to define

the planning horizon, which includes a finite number of discrete time periods.

Moreover, we denote our manufacturing and remanufacturing decisions with

x := ((x1
1, x

1
2, . . . , x

1
T), (x2

1, x
2
2,. . . ,x2

T), . . . , (xC1 , x
C
2 , . . . , x

C
T)) and q := ((q1

1, q
1
2, . . . , q

1
T),

(q2
1, q

2
2, . . . , q

2
T), . . . , (qC1 , q

C
2 , . . . , q

C
T)), respectively (see Figure 5.1 for an illustration

of the use of these decision variables).

Our decision of producing a component on a given time period (through per-

forming manufacturing and/or remanufacturing) is dependent on whether a setup

decision has been made for this component on the given time period. More specif-

ically, we ensure that the following condition holds in an optimal production plan:

yct =

1 if xct + qct > 0, ∀c = 1, ..., C

0 otherwise
(5.1)

Note that the setup decisions for each component are independent from each

other. Additionally, we consider a “joint setup” setting, where a single setup is

performed for manufacturing and remanufacturing. In addition to decisions related

to production and setup of components, various types of inventory levels need to

be decided. More specifically, we consider the following inventory levels:

• Components inventory: Components inventory indicates the number of com-

ponents held in inventory once they have been produced (i.e. once manu-

factured or remanufactured). We define the following to indicate the inven-

75

tory levels available at the end of a given time period for each component:

I := ((I1
1 , I

1
2 , . . . , I

1
T), (I2

1 , I
2
2 , . . . , I

2
T), . . . , (IC1 , I

C
2 , . . . , I

C
T)).

• End-item inventory: Likewise, the end-item can be held in inventory once

assembled. We indicate these decisions with I0 := (I0
1 , I

0
2 , . . . , I

0
T).

• Returns inventory: This refers to the number of unprocessed returns held

in inventory at the end of a given time period. In the formulations given

under this section, we consider that every component in {1, . . . , C} can be

recovered for remanufacturing fully. In other words, we assume that the

number of remanufacturable returns is equivalent for every component.

In addition to the decisions associated with inventory levels and producing

components, the optimal number of end-items to produce in each time period

need to be determined. For this purpose, we define x0 := (x0
1, x

0
2, . . . , x

0
T), which

indicates the number of end-item level items produced on each time period. Note

that there is no setup decision involved with the end-item level.

We consider that a time-invariant cost is incurred for each one of the decisions

given above. Specifically, we represent these costs as m := (m1,m2, . . . ,mC), r :=

(r1, r2, . . . , rC), h := (h1, h2, . . . , hC), w := (w1, w2, . . . , wC), K := (K1, K2, . . . , KC),

m0 and h0 for manufacturing, remanufacturing, components inventory, returns in-

ventory, setup, end-item assembly and end-item inventory costs, respectively. We

assume that all costs are time-invariant. Additionally, we make the assumption

that manufacturing a given component is more expensive than remanufacturing

(i.e. mc > rc, ∀c ∈ {1, . . . , C}). Note that the decisions on the component level

have a specific cost component for each component in the set {1, . . . , C}.
Following this setting, we may write the deterministic (2-MCR-C) formulation

as given below, where our objective is to minimize the total operational cost:

min
T∑
t=1

(
m0x0

t + h0I0
t + (2-MCR-C)

C∑
c=1

(hcIct + wc
t∑
i=1

(Ri − qci) +mcxct + rcqct +Kcyct)
)

(5.2)

x0
t + I0

t−1 = I0
t +Dt

∀t = 1, ..., T
∀c = 1, ..., C

(5.3)

76

xct + qct + Ict−1 = Ict + x0
t

∀t = 1, ..., T
∀c = 1, ..., C

(5.4)

t∑
i=1

(Ri − qci) ≥ 0
∀t = 1, ..., T
∀c = 1, ..., C

(5.5)

xct + qct ≤Mty
c
t

∀t = 1, ..., T
∀c = 1, ..., C

(5.6)

x, q, I, I0 ≥ 0 (5.7)

y ∈ {0, 1}T ×C (5.8)

Constraint (5.3) ensures that the flow balance is conserved for the end-item

level. Similarly, constraint (5.4) is used to ensure that the flow balance for compo-

nents, with a demand of x0
t on period t. Constraint (5.5) ensures that the returns

inventory level is non-negative. Finally, constraint (5.6) is the setup constraint

for components, where a joint setup cost of Kc is incurred if setup takes place for

component c in a given time period.

Note that, w.l.o.g., we assume for the sake of simplicity that one unit of each

component is required to assemble one unit of the end-item. This assumption can

be easily relaxed by replacing the constraint (5.4) with xct + qct + Ict−1 = Ict + ucx0
t ,

where uc indicates number of components of type c needed to assemble one unit

end-item.

5.2.2 Robust Formulation

Following the deterministic formulation, we now present a robust variation of (2-

MCR-C), where we assume that the returns level is uncertain. In order to define

the uncertainty around returns, we introduce the following budgeted polytope, as

introduced in the work of Bertsimas and Sim [2004] and Bertsimas and Thiele

[2006].

Z(Γ) := {z ∈ [−1, 1]T :
t∑
i=1

|zi| ≤ Γt, ∀t = 1, . . . , T } (5.9)

U(Γ) := {R ∈ RT+ : Rt = R̄t + R̂tzt, z ∈ Z(Γ)} (5.10)

Here, we assume that the level of returns can vary in the interval [R̄t− R̂t, R̄t+

R̂t]. In order to determine a particular scenario realization in U(Γ), we use the

variable zi. While zi = 0 implies a scenario where the level of returns is equivalent

77

to its nominal realization R̄t, cases where |zi| = 1 suggest that either the positive

(when zt = 1) or the negative extreme (when zt = −1) is realized.

We are interested in formulating the case where the decision maker has to in-

cur an additional holding cost for scenarios where the number of returns held in

inventory at a given time period is greater than that of nominal returns’ inventory

level. On the other hand, if the returns inventory level drops below the nominal

returns’ inventory level, the decision maker has to manufacture additional compo-

nents in order to meet the number of items held in the component level inventory

(since these returns will no longer be available in the given scenario). The latter

results in an increase in costs, since we assume that remanufacturing is a cheaper

alternative to manufacturing components.

Furthermore, let the following define the extreme points in the set U(Γ). In

a robust setting, we are interested in finding an optimal solution that remains

feasible for the extreme points of the following set:

U(Γ) := Conv({R1, R2, . . . , RS}) (5.11)

In order to do this, we need to ensure feasibility through the entire uncertainty

set U(Γ) for constraints where returns are present. One way of implementing

this is by changing constraint (5.5) from the deterministic (2-MCR-C) formulation

into one which remains feasible for the extreme points of Conv({R1, R2, . . . , RS}).
Doing so, we obtain the following robust formulation:

min
T∑
t=1

(
m0x0

t + h0I0
t + (2-MCR-CR)

C∑
c=1

(hcIct + wcQc
t +mcxct + rcqct +Kcyct)

)
(5.12)

x0
t + I0

t−1 = I0
t +Dt

∀t = 1, ..., T
∀c = 1, ..., C

(5.13)

xct + qct + Ict−1 = Ict + x0
t

∀t = 1, ..., T
∀c = 1, ..., C

(5.14)

Qc
t ≥

t∑
i=1

(Rs
i − qci)

∀t = 1, ..., T
∀c = 1, ..., C
∀s ∈ ξ

(5.15)

78

xct + qct ≤Mty
c
t

∀t = 1, ..., T
∀c = 1, ..., C

(5.16)

Q, x, q ≥ 0 (5.17)

y ∈ {0, 1}T ×C (5.18)

The main difference between (2-MCR-CR) and (2-MCR-C) is regarding the

returns flow balance constraint. While (2-MCR-C) is only feasible for a given

value of returns, the decisions in (2-MCR-CR) have to be feasible for the returns

scenario set ξ = {1, . . . ,S}. For this purpose, we repeat constraint (5.15) for each

extreme point in U(Γ).

A crucial observation with regards to (2-MCR-CR) is that the production deci-

sions in this formulation are static and cannot be adjusted to the specific scenario

realized. As we will further discuss below, this results in (2-MCR-CR) to be un-

usable for the given uncertainty sets under this setting. This is because for each

scenario in the returns uncertainty set ξ, a production rule has to be satisfied.

This suggests that the production quantities need to be adjustable according to

the specific scenario considered.

Thus, we define production variables to be adjustable according to the specific

scenario realized, where:

Wt,ξ = max
s∈ξ
{
C∑
c=1

(wcQc,s
t +mcxc,st + rcqc,st)} (5.19)

which indicates the maximum total production and returns inventory cost in

the restricted uncertainty set. According to this, we may present the robust ad-

justable formulation as follows:

min
T∑
t=1

(
m0x0

t + h0I0
t +Wt,ξ +

C∑
c=1

(hcIct +Kcyct)
)

(2-MCR-CRA)

x0
t + I0

t−1 = I0
t +Dt

∀t = 1, ..., T
∀c = 1, ..., C

(5.20)

xc,st + qc,st + Ict−1 = Ict + x0
t

∀t = 1, ..., T
∀c = 1, ..., C

(5.21)

79

Qc,s
t =

t∑
i=1

(Rs
i − q

c,s
i)

∀t = 1, ..., T
∀c = 1, ..., C
∀s ∈ ξ

(5.22)

xc,st + qc,st ≤Mty
c
t

∀t = 1, ..., T
∀c = 1, ..., C
∀s ∈ ξ

(5.23)

Q, x, q ≥ 0 (5.24)

y ∈ {0, 1}T ×C (5.25)

Note that usually formulations with adjustable variables (such as (2-MCR-

CRA)) need to satisfy non-anticipativity constraints in order to ensure consis-

tency among scenarios. In our work, we show that the above formulation satisfies

a specific production rule, through which the non-anticipativity of adjustable pro-

duction variables is satisfied. This production rule is specified in Proposition 5.

In order to examine this production rule, let us rewrite the implicit return

balance constraint

t∑
i=1

(R̄i + R̂iz
s
i − q

c,s
i) ≥ 0 (5.26)

as

R̄t + R̂tz
s
t − q

c,s
t + pc,st−1 = pc,st (5.27)

where pc,st stands for the number of returns kept in returns inventory on period t

for a given scenario s. We make the observation that ∀s ∈ ξ such that xc,st p
c,s
t = 0

holds.

Proposition 5. xc,st p
c,s
t = 0, ∀s ∈ ξ holds in an optimal solution to (2-MCR-CRA)

when mc > rc, ∀c = 1, . . . , C.

Proof. Let a and b indicate two consecutive setup periods in a given production

plan, where ya = 1, yb = 1, a < b and yt = 0, ∀t ∈ {a+ 1, .., b− 1}. We will show

that there exists an alternative solution with a smaller total cost when xc,sa p
c,s
a 6= 0.

Consider the following cases:

1. Available returns on time period a are kept in returns inventory and never

used for remanufacturing.

80

In order to satisfy component level demand, we have xc,sa > 0,∃s ∈ ξ since

qc,sa = 0. Remanufacturing an additional item on period a reduces the total

returns holding cost by wc(T − a + 1), and the total production cost by

(mc− rc), leading to a total cost reduction of wc(T − a+ 1) + (mc− rc) > 0

when mc > rc and wc > 0. Since there is a joint setup decision, this does

not affect the total setup cost incurred.

2. Available returns on time period a are kept in inventory and used for reman-

ufacturing on time period b.

We have xc,sa > 0 to satisfy component level demand since qc,sa = 0. Reman-

ufacturing one less return on period b reduces the total returns holding cost

between time periods a and b by wc(b−a). On the other hand, this increases

production costs on b by (mc − rc) since component level demand has to be

satisfied. As this item can now be used to remanufacture an additional item

on a, this will lead to a reduction in total production costs by (mc − rc) on

period a. As a result, the resulting difference in the total cost can be given

as: −wc(b−a)+(mc−rc)− (mc−rc) = −wc(b−a) < 0, given that b−a > 0

and wc > 0, leading to an overall cost reduction of wc(b− a).

Thus, in both cases we have an alternative solution where costs can be reduced.

A well-known method for obtaining such extreme points while keeping track

of the optimal solution for the production plan is to implement an iterative de-

composition framework studied in the work of Bienstock and Özbay [2008]. This

method is often referred to as the min-max approach (or the decomposition ap-

proach), where we consider two sub-problems: the Decision Maker’s Problem and

the Adversarial Problem. The objective of the Decision Maker’s Problem is to

generate an optimal production plan for a subset of extreme points in U(Γ). On

the other hand, the Adversarial Problem seeks for a new extreme that worsens

the total operational cost found in the Decision Maker’s problem. Once a new ex-

treme point is found, it is fed back into the Decision Maker’s Problem, where this

procedure is continued until a new extreme point that worsens the total cost can

not be found. In the remainder of this section, we present the Decision Maker’s

Problem (DMP) and the Adversarial Problem (AP).

81

5.2.3 Decision Maker’s Problem

The decision maker’s problem seeks for an optimal production plan that is feasible

for a finite, restricted set of return scenarios. We indicate this set of scenarios as

ξR = {1, . . . ,S}. More specifically, manufacturing and remanufacturing variables

are defined for each scenario in DMP. In the remainder of this section, we provide

further details regarding this issue.

min
(
π +

T∑
t=1

(
m0x0

t + h0I0
t +

C∑
c=1

(hcIct +Kcyct)
))

(DMP)

π ≥
T∑
t=1

C∑
c=1

(wc
t∑
i=1

(R̄i + R̂iz
s∗
i − q

c,s
i) +mcxc,st + rcqc,st) ∀s ∈ ξR (5.28)

t∑
i=1

(R̄i + R̂iz
s∗
i − q

c,s
i) ≥ 0

∀s ∈ ξR

∀t = 1..T
∀c = 1..C

(5.29)

x0
t + I0

t−1 ≥ I0
t +Dt ∀t = 1..T (5.30)

xc,st + qc,st + Ict−1 = Ict + x0
t

∀s ∈ ξR

∀t = 1..T
∀c = 1..C

(5.31)

xc,st + qc,st ≤Mty
c
t

∀s ∈ ξR

∀t = 1..T
∀c = 1..C

(5.32)

Here, π represents the largest total returns inventory, manufacturing and re-

manufacturing costs among scenarios s ∈ ξR. Note that zs∗t is an input to DMP,

where this indicates the optimal solution obtained for variables zt in AP. Con-

straint (5.29) ensures that the returns inventory is non-negative for period t and

scenario s. The remaining constraints are used to ensure the aforementioned con-

ditions and flow conversions are maintained. Specifically, constraint (5.30) ensures

that final-level item demand is satisfied, while constraint (5.31) is the flow balance

constraint for the component level, where the demand for each component in the

set {1, ..., C} has to be satisfied.

Note that we may rewrite constraint (5.32) in the following form (due to con-

82

straint (5.31)):

Ict + x0
t − Ict−1 ≤Mty

c
t ∀t = 1..T , ∀c = 1..C (5.33)

By doing so, we are able to eliminate the need for repeating constraint (5.32)

for each scenario: ∀s ∈ ξR.

In this formulation we introduce scenario-based manufacturing and remanu-

facturing variables on the component level instead of using common production

variables across scenarios. This is mainly because having common remanufacturing

variables in constraint (5.29) suggests that the optimal remanufacturing amounts

have to be limited to the smallest number of returns available to us. However, we

are interested in relaxing this assumption, since we would like to evaluate the case

where the decision maker will be able to remanufacture these items in scenarios

where these returns are available. Below we provide an example problem with

T = 1 and C = 1 with common manufacturing and decision variables, in order to

motivate the reasons behind introducing scenario-based variables:

Example 5.2.1. Consider the following example where T = 1, C = 1, R̄1 = 5,

R̂1 = 5 and D1 = 80.

In the example shown above, we initially consider the first scenario where the

nominal return R1
1 = 5 is realized. Thus, this amount will be fully remanufactured

(since remanufacturing is cheaper than manufacturing), which implies q1
1 = 5. In

the second iteration, let us assume that the return scenario generated by AP is

R2
1 = 0. In order to satisfy constraint (5.29), we now have to remanufacture the

smallest amount of returns available to us regardless of the scenario considered,

enforcing q1
1 = 0 even though q1

1 = 5 is still feasible for the first scenario. As a re-

sult, there exists the risk of calculating the total cost incorrectly (or suboptimally)

for some scenarios. Introducing scenario-based production variables eliminates

this problem through allowing an interchangable use of the manufacturing and

remanufacturing variables to satisfy component-level demand. This ensures that

the production plan will imply the smallest cost for the worst-case return scenario

in DMP. Below we provide the same example with scenario-based variables to

demonstrate the changes in costs:

As seen from Figure 5.2, introducing scenario-based production variables allows

us to remanufacture all returns available to us for each given scenario. As a

83

Iteration 1 (R1
1 = 5)

D1 = 80

x0
1 = 80

q1,1
1 = 5

R1
1 = 5

x1,1
1 = 75

s = 1 : π ≥ 0 + m175 + r15

Iteration 2 (R1
1 = 5,R2

1 = 0)

D1 = 80

x0
1 = 80

q1,1
1 = 5, q1,2

1 = 0

R1
1 = 5, R2

1 = 0

x1,1
1 = 75, x1,2

1 = 80

s = 1 : π ≥ 0 + m175 + r15
s = 2 : π ≥ 0 +m180 + 0

Figure 5.2: Example with T = 1 and C = 1

result, we are allowed to remanufacture as much as the returns available in a given

scenario, regardless of the return realizations in other scenarios.

A crucial observation here is regarding the production rule given in Proposition

5, which is also satisfied in an optimal solution to (DMP).

According to the production rule given in Proposition 5, in an optimal solution,

the decision maker will remanufacture as much as possible in order to meet the

component demand. As a result of this, manufacturing is only performed when no

returns are left on a given time period (i.e. the number of returns kept in inventory

on this time period will be zero, which can be shown with pc,st = 0). As we will

further discuss in detail, this production rule plays a crucial rule in formulating

AP.

Note that since this production rule holds in an optimal solution, it is sufficient

to provide the decision maker with the optimal total number of items produced

on each time period (i.e. the total amount of items manufactured and remanufac-

tured for each component in c ∈ {1, . . . , C} for the whole planning horizon). This

is because the decision maker can implement this production rule based on the

specific scenario realized. Thus, having different optimal values for the scenario-

based production variables does not arise any problems in terms of deciding the

specific production plan to provide to the decision maker. This is also a desirable

property for the AP, since the input to AP can also be represented as an aggregated

number of components produced in this case. As we will discuss in detail in the

next section, providing an input of this type to AP requires that the production

rule is accounted for in the AP.

84

5.2.4 Adversarial Problem

As stated previously, the Adversarial Problem (AP) generates a new return sce-

nario that worsens the total cost in (DMP). In order to formulate (AP), we first

need to identify the outputs from (DMP) that will be used in (AP) as inputs. We

define these inputs as follows:

• yc∗t : Optimal setup decision for component c in time period t, based on the

production plan obtained in (DMP).

• x0∗
t : Optimal assembly quantity for time period t according to the production

plan acquired from (DMP).

• Ic∗t : Optimal inventory level for component c on time period t, based on the

optimal assembly and production decisions in (DMP).

Note that the optimal values for these inputs are equivalent across different

scenarios in (DMP). For this reason, we do not need to make a decision regard-

ing which specific scenario to feed into (AP). Instead, to determine the specific

manufacturing and remanufacturing quantities in (AP), we define manufacturing

and remanufacturing decisions as decision variables in (AP). However, defining

manufacturing and remanufacturing levels as decision variables in (AP) does not

necessarily imply that the condition given in Proposition 5 will hold in (AP). When

this is the case, the optimal return scenario found in (AP) is under the risk of mis-

interpreting the total cost, since some feasible solutions in (AP) may disregard

this production rule. In order to achieve the correct total cost and to avoid any

inconsistencies between (DMP) and (AP), we impose this rule on (AP) manually

through introducing new constraints and variables.

Let us define the decision variables for manufacturing and remanufacturing as:

• xct : Number of components c manufactured in order to achieve the worst

total production and returns inventory cost in (AP).

• qct : Number of components c remanufactured in order to achieve the worst

total production and returns inventory cost in (AP).

In addition, in (AP) we explicitly define returns inventory levels by introducing

the decision variable p := ((p1
1, p

1
2, . . . , p1

T), (p2
1, p

2
2, . . . , p

2
T), . . . , (pC1 , p

C
2 , . . . , pCT)).

85

Note that since the output for (AP) is a single return scenario (which is not

dependent on any of the previous scenarios generated), we drop the subscript s

from the production variables. We represent the optimal return scenario obtained

from (AP) through the optimal value of the decision variable z := ((z1, z2, . . . , zT),

as discussed previously.

Under this setting, we write (AP) as:

max π (AP)

π =
T∑
t=1

C∑
c=1

(wcpct +mcxct + rcqct) (5.34)

xct + qct + Ic∗t−1 = x0∗
t + Ic∗t ∀t = 1 . . . T , ∀c = 1 . . . C (5.35)

pct−1 + R̄t + R̂tzt = qct + pct ∀t = 1 . . . T , ∀c = 1 . . . C (5.36)

M2
t a

c
t ≥ pct ∀t = 1 . . . T , ∀c = 1 . . . C (5.37)

M1
t (1− act) ≥ xct ∀t = 1 . . . T , ∀c = 1 . . . C (5.38)

xct + qct ≤M1
t y

c∗
t ∀t = 1 . . . T , ∀c = 1 . . . C (5.39)

− 1 ≤ zi ≤ 1 ∀t = 1 . . . T (5.40)

t∑
i=1

|zi| ≤ Γt ∀t = 1 . . . T (5.41)

act ∈ {0, 1}T ×C (5.42)

In the formulation given above, our objective is to maximize the total pro-

duction (i.e. manufacturing and remanufacturing) and returns inventory cost,

which is denoted by π and constraint (5.34). We include constraint (5.35) to

ensure that the production variables in (AP) are feasible by allowing the pro-

duction and inventory decisions to be worsened for the current production plan.

On the other hand, we ensure flow conversion for the returns via constraint

(5.36). Likewise, constraint (5.39) ensures that the setup decisions are followed

in (AP). In this constraint M1
t and M2

t are sufficiently large numbers, where we

set M1
t = max{

∑T
i=tDi,

∑t
i=1(R̄i + R̂i)} and M2

t =
∑t

i=1(R̄i + R̂i). Furthermore,

constraints (5.40) and (5.41) are used to define the returns uncertainty set.

An important point to note here is the use of decision variables xct and qct in

AP. These decision variables are not acquired from DMP, nor are they used as an

86

input to DMP. The sole use of these production variables is to ensure that the

production rule is satisfied in AP.

We introduce constraints (5.37) and (5.38) in order to implement the produc-

tion rule pctx
c
t = 0, ∀t = 1, . . . , T , ∀c = 1, . . . , C. To do this, we introduce the

binary decision variable act , which is used to ensure that only one of the following

cases is realized in (AP) for a given component c and period t:

1. Number of returns at the beginning of t is sufficient to satisfy x0
t , thus com-

ponent c does not need to be manufactured on t i.e. xct = 0, pct ≥ 0

2. Number of returns at the beginning of t is insufficient to satisfy x0
t . Then,

the returns available to us on period t will be depleted (i.e. pct = 0), and

manufacturing has to be performed in order to meet the demand of x0
t , i.e.

xct ≥ 0.

This ensures that variables pct and xct are not mutually positive in a given

time period t for a specific component c. Under this setting, enforcing the origi-

nal flow balance constraints is sufficient to assure that the production levels (i.e.

manufacturing and remanufacturing levels) generated in (AP) does not result in

an infeasible production plan to (DMP). Therefore, under this setting, the total

inventory and production costs for (AP) are estimated correctly, by eliminating

solutions that result in an overestimation of the total cost in (DMP).

Finally, we note that constraint (5.41) may be linearized by introducing the

following constraints:

bt ≥ zt ∀t = 1 . . . T (5.43)

bt ≥ −zt ∀t = 1 . . . T (5.44)

bt ≤ 1 ∀t = 1 . . . T (5.45)

and by replacing constraint (5.41) with the following:

t∑
i=1

bi ≤ Γt (5.46)

to ensure that bt = |zt|.

87

5.3 Computational tests

In this section, we present the results of the computational tests conducted for

DMP and AP. All the runs presented under this section are restricted to a time

limit of 2 hours (7200 seconds). Additionally, an iteration limit of 20 is enforced for

the decomposition algorithm. Specifically, this time limit restricts the total time

taken to solve DMP and AP to optimality (including all iterations). In addition,

we set the UB-LB gap for the decomposition algorithm, ε as 0.01 for all datasets

and instances.

5.3.1 Instance generation

The instances used in the computational tests were generated randomly, for various

levels/assumptions for the following inputs. A total of five instances were generated

in each dataset (for each combination of the levels/assumptions given below),

leading to a total of 324 datasets and 1620 instances. Note that demand values

have been generated randomly within the interval Dt ∈ [Dmin, Dmax] where we set

Dmin = 20 and Dmax = 30 for all datasets. In addition, let Dmed = Dmax+Dmin

2
,

which indicates the middle value in [Dmin, Dmax]. We present the specific sets that

have been generated below, including the ranges and measures used for each set.

• Nominal returns (R̄t): low (R̄t ∈ [0.3 ∗Dmin, 0.3 ∗Dmax] ∈ R̄L
t), medium

(R̄t ∈ [0.8 ∗Dmin, 0.8 ∗Dmax] ∈ R̄M
t), high (R̄t ∈ [2 ∗Dmin, 2 ∗Dmax] ∈ R̄H

t).

• Probability of constraint violation: low (pL = 0.01), medium (pM =

0.05) and high (pH = 0.10). These probabilities are used to compute Γt, in

a similar fashion to Bertsimas and Sim [2004].

• Setup costs for components (Kc): low (Kc = d0.1 ∗ hc ∗Dmine ∈ KL),

medium (Kc =
⌈
2 ∗ hc ∗Dmed

⌉
∈ KM) and high (Kc = d5 ∗ hc ∗Dmaxe ∈

KH).

• Manufacturing cost for the end-item level (m0): low (m0 = 0.1 ∗ h0 ∈
m0L) and medium (m0 = 2.0 ∗ h0 ∈ m0M).

• Deviation level for returns (R̂t): low (R̂t =
⌈
0.1 ∗ R̄t

⌉
∈ R̂L), medium

(R̂t =
⌈
0.5 ∗ R̄t

⌉
∈ R̂M) and high (R̂t = R̄t ∈ R̂H).

88

• Whether the condition h0 >
∑C

c=1 h
c holds. We consider the two differ-

ent cases given below. In both cases, the value for hc is generated randomly

in the intervals hc,low ∈ [1, 30], hc,med ∈ [50, 150] and hc,high ∈ [250, 500],

where hc ∈ hc,low, hc+1 ∈ hc,med and hc+2 ∈ hc,high, ∀c = 1, . . . , C − 2. By fol-

lowing this procedure, we are able to consider various cost ranges for different

components.

1. The end-item level inventory cost is determined as h0 = f
∑C

c=1 h
c,

where f is a constant and f > 1, which implies that the condition is

met. In the following computational tests, this value is set as f = 1.2

for datasets where this condition is met. Throughout the remainder of

this section, we refer to these datasets as ones where “h0 is restricted”.

2. The condition h0 >
∑C

c=1 h
c is not necessarily satisfied, and the end-

item level inventory cost is generated randomly in the interval h0 ∈
[1, 500]. Likewise, we refer to these datasets as ones where “h0 is unre-

stricted”.

The remaining costs are determined as mc = 1.5hc, rc = 1.2hc and wc = 0.5hc

for all instances.

5.3.2 Instances where h0 is restricted

Firstly, let us consider the datasets where h0 is restricted. As seen in Figure 5.3

and Table 5.2, the AP is solved to optimality for the vast majority of the datasets

where h0 is restricted, whereas only 83% of the instances were solved to optimatily

for DMP under the time limit. This is also clear from the total time requirements

for the decomposition algorithm (DMP+AP) shown in Figure 5.3, since there is

not a major difference in the percentage of instances solved between DMP and

DMP+AP.

As we will further investigate later on in this section, the time performance

for datasets where h0 is unrestricted vary considerably from those where h0 is

restricted. Consequently, the difference between the percentage of instances that

were solved to optimality under the time limit of 7200 seconds in these two classes

of datasets are considerably different, as seen in Figure 5.3. Overall, we observe

that the number of instances that are solved to optimality decrease considerably

when the value of h0 is unrestricted. Specifically, the DMP is only able to solve

89

KH KM KL

p,m0 R̄H R̄M R̄L R̄H R̄M R̄L R̄H R̄M R̄L

R̂ ∈ R̂H

H,M 3.7,2.0 − 21.3,1.0 1.0,2.0 1023.2,6.6 0.9,1.0 0.1,2.0 0.3,2.0 0.1,1.0
H,L 3.7,2.0 − − 0.9,2.0 4954.3,10.01.2,1.0 0.1,2.0 0.4,2.0 0.4,2.0
M,M 3.5,2.0 − 66.6,1.4 1.0,2.0 2127.8,11.60.7,1.0 0.1,2.0 0.3,2.0 0.1,1.0
M,L 3.7,2.0 − − 1.1,2.0 2156.9,8.4 1.0,1.0 0.1,2.0 0.3,2.0 0.4,2.0
L,M 4.8,2.4 − 5637.4,1.8 1.1,2.0 233.0,9.4 0.8,1.0 0.1,2.0 0.3,2.0 0.2,1.4
L,L 3.3,2.0 − 5807.4,1.8 0.8,1.8 2589.1,10.68.4,2.4 0.1,2.0 0.3,2.0 0.4,2.0

Mean 3.8,2.1 − 4322.1,1.5 1.0,2.0 2180.7,9.4 2.2,1.2 0.1,2.0 0.3,2.0 0.3,1.6

R̂ ∈ R̂M

H,M 5.6,2.0 − 12.3,1.0 1.1,2.0 2942.1,4.6 0.8,1.0 0.1,2.0 0.2,1.8 0.1,1.0
H,L 4.4,2.0 − 1497.3,1.0 1.2,2.0 7146.8,4.0 1.1,1.0 0.1,2.0 0.5,2.0 0.1,1.0
M,M 4.6,2.0 − 43.9,1.0 1.1,2.0 7098.2,6.0 0.9,1.0 0.1,2.0 0.3,2.0 0.1,1.0
M,L 4.2,2.0 − 1346.1,1.0 1.1,2.0 7187.9,3.2 1.3,1.0 0.1,2.0 0.4,2.0 0.1,1.0
L,M 3.5,2.0 − 17.8,1.0 0.9,2.0 4840.6,7.2 0.8,1.0 0.1,2.0 0.3,2.0 0.1,1.0
L,L 4.2,2.0 − 2898.2,1.2 0.9,2.0 7164.4,5.0 1.3,1.0 0.1,2.0 0.4,2.0 0.4,2.0

Mean 4.4,2.0 − 969.3,1.0 1.0,2.0 6063.3,5.0 1.0,1.0 0.1,2.0 0.4,2.0 0.2,1.2

R̂ ∈ R̂L

H,M 6.6,2.0 − 22.0,1.0 1.1,2.0 2.3,1.0 1.1,1.0 0.1,2.0 0.1,1.0 0.1,1.0
H,L 11.7,2.0 − 4363.5,1.0 1.6,2.0 2.7,1.0 1.4,1.0 0.1,2.0 0.2,1.2 0.1,1.0
M,M 6.2,2.0 7060.2,1.0 13.5,1.0 0.9,2.0 2.3,1.0 0.9,1.0 0.1,2.0 0.1,1.2 0.1,1.0
M,L 6.5,2.0 − 1464.7,1.0 1.4,2.0 2.7,1.0 1.2,1.0 0.1,2.0 0.2,1.4 0.1,1.0
L,M 4.7,2.0 − 21.9,1.0 1.3,2.0 2.6,1.0 0.9,1.0 0.1,2.0 0.1,1.0 0.1,1.0
L,L 7.9,2.0 5778.7,1.0 2911.4,1.0 1.2,2.0 2.8,1.0 1.3,1.0 0.1,2.0 0.3,1.6 0.1,1.0

Mean 7.3,2.0 6939.8,1.0 1466.2,1.0 1.2,2.0 2.6,1.0 1.1,1.0 0.1,2.0 0.2,1.2 0.1,1.0

“−” indicates that the time limit was reached for these instances before reaching the desired optimality gap.

Table 5.1: Average computational time (in sec.) and number of iterations (given
in italic) required to reach convergence for DMP with T = 50 and C = 5 for all
datasets where h0 is restricted.

only 54% for these datasets (while this amount is much higher with 83% when h0

is restricted, as described above). Unlike DMP, the AP was solved to optimality

for a vast number of instances, even for datasets where h0 is unrestricted. More

specifically, the AP was solved to optimality for 97% of the instances where h0 is

unrestricted. However, it is clear from Figure 5.3 that the overall time require-

ment is much higher for solving the AP for instances where h0 is unrestricted, in

comparison to those where h0 is restricted.

5.3.2.1 Computational performance of DMP

The time requirements for DMP (where h0 is restricted) show a considerable differ-

ence across different datasets (as shown in Table 5.1). While all the instances with

K ∈ KL were solved under a second, part of the instances in datasets with higher

setup costs (mainly K ∈ KH) exhaust the time limit before reaching optimality.

More specifically, these include instances with medium level of nominal returns

(R̄ ∈ R̄M), where all the instances with high and medium level of returns devia-

tion (R̂ ∈ R̂H and R̂ ∈ R̂M) have failed to reach optimality within the time limit.

Similarly, the majority of instances with low returns deviation (R̂ ∈ R̂L) have

reached the time limit before obtaining an optimal solution, with the exception of

90

1,000 3,000 5,000 7,000
0

20

40

60

80

100

Time spent (sec.) (h0 is restricted)

%
of

In
st

an
ce

s

AP

DMP

DMP+AP

1,000 3,000 5,000 7,000
0

20

40

60

80

100

Time spent (sec.) (h0 is unrestricted)

AP

DMP

DMP+AP

Figure 5.3: Percentage of instances solved to optimality for instances where h0 is
restricted (left) vs. unrestricted (right)

a total of 2 instances out of 30.

In addition, we make the observation that the time requirements vary signif-

icantly for instances with medium setup costs and medium nominal return level

(where K ∈ KM and R̄ ∈ R̄M). This is especially the case for instances where

returns deviation level is either set as high or medium (R̂ ∈ R̂H , R̂M), since the

instances with low returns deviation level (R̂ ∈ R̂L) have similar time require-

ments, where all instances were solved under 5 seconds. The high variance of the

time requirements for instances with K ∈ KM , R̄ ∈ R̄M and R̂ ∈ R̂H , R̂M can be

observed from Figure 5.4, where 47% of these instances were not solved to opti-

mality under the time limit, while a total of 11% was solved as quickly as under

100 seconds.

Another interesting aspect to observe here is the impact of our choice of m0

on the computational performance. For instances where time requirements are

considerably higher, low levels of m0 require a much longer amount of time to

reach optimality in comparison to those with medium levels of m0. Examples to

this include datasets with high setup costs with medium and low levels of returns

deviation (K ∈ KH with R̄ ∈ R̄M , R̄L), as well as instances with medium levels of

setup costs, medium nominal returns, high and medium levels of returns deviation

(K ∈ KM with R̄ ∈ R̄M and R̂ ∈ R̂H , R̂M).

This trend is clear to observe from Figures 5.5 and 5.6, which both demonstrate

that a greater number of instances with m0 ∈ m0M were solved in comparison to

91

1,000 3,000 5,000 7,000
0

20

40

60

Time spent in DMP (sec.)

%
of

In
st

an
ce

s

Figure 5.4: Percentage of instances solved to optimality in DMP where K ∈ KM ,
R̄ ∈ R̄M and R̂ ∈ R̂H , R̂M under the specified time limit for datasets where h0 is
restricted.

those with m0 ∈ m0L in the specified datasets. In the case of K ∈ KH , while

only 51% of the instances with low levels of m0 were solved under the time limit,

this number shows an increase to 65% for instances with medium levels of m0.

This trend holds for instances with K ∈ KM as well, where 86% of the instances

were solved to optimality under the time limit when m0 ∈ m0L, which shows a

substantial increase to 93% for instances with m0 ∈ m0M . Likewise, a significant

portion of the instances with m0 ∈ m0M in K ∈ KH , KM were solved under

100 seconds (with 81%), whereas this amount drops to 75% for instances where

m0 ∈ m0L. Overall, these percentages also demonstrate that a greater number of

instances were solved to optimality for medium levels of setups, in comparison to

high setup levels.

5.3.2.2 Computational performance of AP

Unlike DMP, the time performances for AP do not vary significantly across differ-

ent instances for datasets where h0 is restricted (as shown in Table 5.2). Moreover,

the number of instances solved to optimality is also significantly higher for AP,

where 97% of the instances were solved as quick as under 100 seconds, and only

1 of the instances was not solved to optimality under the time limit. The results

shown in Table 5.2 and Figure 5.3 exclude the time requirement for solving AP for

instances where the time limit is reached while solving DMP in the first iteration.

Datasets where this is the case for all the instances are marked with only *. Like-

92

1,000 3,000 5,000 7,000
0

20

40

60

80

100

Time spent solving DMP (sec.)

%
of

In
st

an
ce

s

m0 ∈ m0L

m0 ∈ m0M

Figure 5.5: % of instances solved to
optimality under the given compu-
tational time for DMP including in-
stances with K ∈ KH , where h0 is
restricted.

1,000 3,000 5,000 7,000
0

20

40

60

80

100

Time spent solving DMP (sec.)

%
of

In
st

an
ce

s

m0 ∈ m0L

m0 ∈ m0M

Figure 5.6: % of instances solved to
optimality under the given compu-
tational time for DMP including in-
stances with K ∈ KM , where h0 is
restricted.

wise, datasets where the time performance is marked along with * indicate that

DMP exhausted the time limit on the first iteration for only part of the instances.

As Table 5.2 suggests, all the instances where setup costs are high were solved

to optimality in just a few seconds. Whereas this is the case for a great number

of instances with medium and low levels of setup costs, there exists instances

that require a relatively longer amount of computational time to reach optimality.

More specifically, these include those with medium levels of nominal returns with

high and medium return deviations. On the other hand, we do not observe a

considerable difference between the computational performance of instances with

different levels of manufacturing cost for the end-item (m0 ∈ m0M and m0 ∈ m0L)

unlike DMP.

An interesting aspect to examine in AP is regarding the impact of different

parameter levels on the UB-LB gap at the root node. As seen in Figure 5.7,

we observe different MIP gap percentages at the root node for varying levels of

nominal returns, setup costs and returns deviations. Specifically, we observe that

when nominal returns are set as low (R̄ ∈ R̄L), the majority of instances have an

overall tighter initial MIP gap, where 97% of the instances have a gap percentage

below 100%. Although only 35% of the instances with R̄ ∈ R̄H have an initial MIP

gap percentage below 100%, the majority of these instances have a much tighter

MIP gap compared to those with R̄M , where only 2% of the instances are below

93

KH KM KL

p,m0 R̄H R̄M R̄L R̄H R̄M R̄L R̄H R̄M R̄L

R̂ ∈ R̂H

H,M 0.3 * 0.0 0.3 185.4 0.0 0.7 81.4 0.0
H,L 0.3 * 0.0* 0.2 84.8 0.0 0.7 25.3 0.0
M,M 0.2 * 0.0 0.2 77.6 0.0 0.8 18.0 0.0
M,L 0.2 * 0.0* 0.2 37.4 0.0 0.7 19.4 0.0
L,M 0.3 * 0.0 0.2 21.7 0.0 0.8 12.2 0.0
L,L 0.2 * 0.0* 0.2 27.0 0.1 0.8 10.7 0.0

Mean 0.2 * 0.0 0.2 72.3 0.0 0.8 27.8 0.0

R̂ ∈ R̂M

H,M 0.1 * 0.0 0.1 64.5 0.0 0.0 1627.9 0.0
H,L 0.1 * 0.0* 0.1 82.0 0.0 0.0 321.4 0.0
M,M 0.1 * 0.0 0.1 54.4 0.0 0.1 52.8 0.0
M,L 0.1 * 0.0 0.1 57.3 0.0 0.0 856.7 0.0
L,M 0.1 * 0.0 0.1 154.9 0.0 0.0 68.9 0.0
L,L 0.1 * 0.0* 0.1 55.3 0.0 0.1 25.1 0.0

Mean 0.1 * 0.0 0.1 78.1 0.0 0.0 492.1 0.0

R̂ ∈ R̂L

H,M 0.0 * 0.0 0.0 0.1 0.0 0.0 0.3 0.0
H,L 0.1 * 0.0* 0.0 0.1 0.0 0.0 0.1 0.0
M,M 0.0 0.1* 0.0 0.0 0.1 0.0 0.0 0.2 0.0
M,L 0.1 * 0.0 0.0 0.1 0.0 0.0 0.1 0.0
L,M 0.1 * 0.0 0.0 0.1 0.0 0.0 0.1 0.0
L,L 0.1 0.1* 0.0* 0.1 0.1 0.0 0.0 0.3 0.0

Mean 0.1 0.1* 0.0 0.0 0.1 0.0 0.0 0.2 0.0

“*” indicates datasets where DMP has exhaused the time limit in the first iteration (i.e. AP was not solved).

Table 5.2: Average computational time (in sec.) required to reach convergence for
AP with T = 50 and C = 5 for all datasets where h0 is restricted.

94

100%. In datasets with medium nominal returns, we also observe an overall wider

variety across instances. For instance, while some instances have an initial MIP

gap percentage value as low as 40%, for others this amount is significantly higher

with 1700%. Unlike nominal return levels, we observe that the initial MIP gap

percentage for different levels of setup costs and return deviations are distributed

more homogeneously across different datasets. Specifically, it is clear from Figure

5.7 that higher levels of setup costs have led to a tighter initial MIP gap percentage

in the AP, while higher levels of return deviations have led to a weaker MIP gap.

300 900 1,500
0

20

40

60

80

100

%
of

In
st

an
ce

s

R̄ ∈ R̄H

R̄ ∈ R̄M

R̄ ∈ R̄L

300 900 1,500
0

20

40

60

80

100

Initial MIP UB-LB gap %

K ∈ KH

K ∈ KM

K ∈ KL

300 900 1,500
0

20

40

60

80

100

R̂ ∈ R̂H

R̂ ∈ R̂M

R̂ ∈ R̂L

Figure 5.7: Percentage of instances with an initial MIP % value below the specified
amount for AP on the first iteration, classified by the level of nominal returns (left),
setup cost (middle), and return deviation (right) where h0 is restricted.

Furthermore, we investigate the datasets with medium and high levels of nom-

inal returns to gain further insight into the specific characteristics of datasets that

lead to weaker and tighter MIP gaps for the AP. As seen in Figure 5.8, we ob-

serve that lower setup costs lead to an overall weaker initial MIP gap percentage

for datasets with R̄ ∈ R̄M . On the other hand, the impact of the setup level on

datasets with R̄ ∈ R̄H is less significant in comparison to those with R̄ ∈ R̄M .

A crucial observation we make for both R̄ ∈ R̄M and R̄ ∈ R̄H is regarding the

impact of returns deviation level. For all levels of setup costs, we observe that

higher return deviations lead to a weaker MIP gap percentage. Note that these

observations align with our previous analysis of Figure 5.7.

5.3.3 Instances where h0 is unrestricted

Next, we consider datasets where h0 is unrestricted. In most practical situa-

tions, end-item level inventory cost is most likely to be larger than the sum of

95

0 500 1,000 1,500

5

10

15

K
H

R̂ ∈ R̂H

R̂ ∈ R̂M

R̂ ∈ R̂L

0 500 1,000 1,500

5

10

15

K
M

0 500 1,000 1,500

5

10

15

Initial MIP gap percentage (R̄ ∈ R̄M)

K
L

0 200 400 600

10

20

30
R̂ ∈ R̂H

R̂ ∈ R̂M

R̂ ∈ R̂L

0 200 400 600

10

20

30

0 200 400 600

10

20

30

Initial MIP gap percentage (R̄ ∈ R̄H)

Figure 5.8: Number of instances with R̄ ∈ R̄M an initial MIP % value within the
specified range for AP on the first iteration, sorted by different levels of setup costs
and return deviations where h0 is restricted.

96

all component level inventory costs, since this item is made up of its components.

Consequently, the assumption h0 >
∑C

c=1 h
c is more favorable from a practical

point of view. Although the datasets considered under this section do not neces-

sarily satisfy this condition, investigating datasets of this kind is interesting from

a computational point of view. This is because our choice of h0 (as well as how

it compares to components’ costs) has considerable implications on the overall

computational performance, as further discussed under this section.

5.3.3.1 Computational performance of DMP

As previously observed from Figure 5.3, the overall time requirements for solving

DMP and AP where h0 is unrestricted is considerably different from those instances

where h0 is restricted. The first observation we make for cases where h0 is unre-

stricted is that the overall time required to solve DMP for datasets with K ∈ KH

and K ∈ KM is significantly higher. Most instances that have exhausted the time

limit of 7200 in DMP when h0 is restricted have exceeded the time limit for cases

where h0 is unrestricted as well, as seen in Table 5.3. Furthermore, we observe

that the overall time requirements for datasets with R̄ ∈ R̄M , R̄L are significantly

higher compared to those with R̄ ∈ R̄H . Contrary to this significant difference,

datasets with low levels of setup (K ∈ KL) are still solved more efficiently, where

all instances were solved under 190 seconds.

As previously examined for datasets where h0 is restricted, the level of m0 has

an impact on the computational performance of DMP. This is the case for instances

where h0 is unrestricted as well as shown in Figures 5.9 and 5.10. We make

the observation that a greater number of instances could be solved to optimality

under the time limit where m0 ∈ m0M than those where m0 ∈ m0L in both setup

settings. For cases where K ∈ KH , 14% of the instances with m0 ∈ m0L were

solved to optimality under 7200 seconds, while this increases to 22% when m0 ∈
m0M . Similarly, for medium setup levels these amounts show a relative increase

to 41% and 48% for m0 ∈ m0L and m0 ∈ m0M , respectively. These amounts are

considerably less compared to instances where h0 is unrestricted, where up to 65%

and 93% instances could be solved to optimality for high and medium setup cost

settings, respectively. Finally, Figures 5.9 and 5.10 also demonstrate that a greater

number of instances with medium setups could be solved to optimality under the

time restrictions in comparison to those with higher setup costs (as we may also

97

KH KM KL

p,m0 R̄H R̄M R̄L R̄H R̄M R̄L R̄H R̄M R̄L

R̂ ∈ R̂H

H,M 2925.4,3.6 − − 485.1,9.2 7198.3,1.6 4393.3,1.0 40.5,? 94.3,? 0.2,1.4
H,L 1564.6,3.6 − − 705.4,7.8 7198.2,1.8 5761.7,1.0 10.1,5.6 75.9,16.4 0.4,2.0
M,M 1488.9,5.8 − − 372.8,8.2 7197.2,1.6 4324.4,1.4 7.2,5.6 37.3,9.2 0.4,1.8
M,L 693.2,4.2 − − 1629.9,12.0 − 4343.7,1.4 14.3,7.8 94.2,12.8 0.4,2.0
L,M 2931.2,3.6 − − 611.5,9.4 7198.8,2.0 5763.7,2.2 22.2,11.6 32.3,9.2 0.5,2.0
L,L 4363.1,8.6 − − 248.8,7.0 7199.0,1.8 5763.5,1.2 28.6,12.8 34.2,9.2 0.4,2.0

Mean 2327.7,4.9 − − 675.6,8.9 7198.6,1.8 5058.4,1.4 20.5,10.6 61.4,12.8 0.4,1.9

R̂ ∈ R̂M

H,M 4338.6,2.2 − − 3544.4,11.27196.9,1.6 5760.3,1.2 25.5,12.4 22.4,7.0 0.1,1.0
H,L 5795.2,2.6 − − 1439.3,4.2 7199.6,1.2 5761,1.0 7.4,5.6 54.7,12.4 0.1,1.0
M,M 3164.6,2.4 − − 2725.8,9.8 7198.3,1.2 5762.9,1.4 0.3,2.8 32,8.4 0.1,1.0
M,L 4403.0,4.4 − − 2208.4,9.0 7198.0,1.4 6075.2,1.0 26.2,12.8 60.1,15.0 0.2,1.4
L,M 4346.5,1.4 − − 205.5,7.6 7190.7,1.8 4324.5,1.2 30.7,16.4 42.4,11.2 0.2,1.2
L,L 5768.2,6.6 − − 1076.2,11.8 − 5762.7,1.0 24.8,12.8 86.2,16.4 0.7,2.0

Mean 4636.0,3.3 − − 1866.6,8.9 7197.2,1.4 5574.4,1.1 19.2,10.5 49.6,11.7 0.2,1.3

R̂ ∈ R̂L

H,M 2915.9,2.0 − − 13.5,2.8 2764.8,1.0 2919.2,1.0 1.7,3.8 0.1,1.0 0.1,1.0
H,L 5773.2,1.8 − − 113.8,4.0 5788.6,1.0 5763.5,1.0 21.7,7.0 0.2,1.2 0.2,1.0
M,M 2850.3,2.6 − − 30.3,4.0 − 1452.4,1.0 18.3,7.6 0.1,1.0 0.1,1.0
M,L 5761.1,1.2 − − 16.2,3.0 5764.0,1.2 5789.9,1.0 8.3,7.8 0.1,1.0 0.1,1.0
L,M 2815.2,3.0 − 5804.1,1.0 1435.8,3.6 2885.9,1.0 7108.9,1.0 2.8,7.0 0.1,1.0 0.1,1.0
L,L 5772.6,2.4 − − 2867.4,7.2 5760.6,1.0 4325.0,1.0 19.4,11.0 0.4,1.8 0.1,1.0

Mean 4314.7,2.2 − 6967.4,1.0 746.2,4.1 5027.3,1.0 4559.8,1.0 12.0,7.4 0.2,1.2 0.1,1.0

“−” indicates that the time limit was reached for these instances before reaching the desired optimality gap.
“?” indicates that the iteration limit was reached for these instances.

Table 5.3: Average computational time (in sec.) and number of iterations (given
in italic) required to reach convergence for DMP with T = 50 and C = 5 for all
datasets where h0 is unrestricted.

observe from the total time requirements for DMP given in Table 5.3). Note that

this is also the case for datasets where h0 is restricted, as examined previously.

Finally, it is important to highlight that the percentages given in Figures 5.9

and 5.10 are calculated according to the number of instances that have been solved

to optimality (where the MIP gap is < 1%) in the corresponding datasets, with

respect to the total number of instances found in these datasets. For instance, the

percentages indicated in red in Figure 5.9 show the percentage of instances solved

to optimality for instances that satisfy the conditions m0 ∈ m0M and K ∈ KH .

This amount is different from the number of entries observed in Table 5.3, as

these indicate the average performance for each dataset (containing five instances),

instead of the performance of individual instances.

5.3.3.2 Computational performance of AP

While lower levels of setup costs result in much quicker solution times for DMP, this

isn’t the case for AP when h0 is unrestricted. As seen in Table 5.4, a considerable

amount of time was spent solving AP for most instances where K ∈ KL. On the

other hand, we observe that all instances with R̄ ∈ R̄L were solved very quickly,

where the maximum amount of time spent on these instances is as low as 0.08

98

1,000 3,000 5,000 7,000
0

20

40

60

80

100

Time spent solving DMP (sec.)

%
of

In
st

an
ce

s

m0 ∈ m0L

m0 ∈ m0M

Figure 5.9: % of instances solved to
optimality under the given computa-
tional time for DMP where K ∈ KH

and h0 is unrestricted.

1,000 3,000 5,000 7,000
0

20

40

60

80

100

Time spent solving DMP (sec.)

%
of

In
st

an
ce

s

m0 ∈ m0L

m0 ∈ m0M

Figure 5.10: % of instances solved to
optimality under the given computa-
tional time for DMP where K ∈ KM

and h0 is unrestricted.

seconds. Another crucial aspect to notice here is that a high number of instances

have exhausted the time limit while solving DMP on the first iteration. As a result

of this, AP was not solved for a significant number of instances.

Next, we examine the initial MIP percentage values for AP for instances where

h0 is unrestricted. As demonstrated in Figure 5.12, higher levels of return devi-

ations have led to an overall increase in the initial MIP gap percentage values.

Furthermore, we observe that lower levels of setups have resulted in a weaker ini-

tial MIP gap percentage. As previously examined, this is also the case for datasets

where h0 is restricted (see Figure 5.8).

One of the main differences between datasets where h0 is restricted and unre-

stricted is the impact of high nominal return levels on the initial MIP gap percent-

age for AP. As we have previously examined from Figures 5.7 and 5.8, datasets

where R̄ ∈ R̄H have an overall tighter initial MIP gap in comparison to those

with R̄ ∈ R̄M . However, this difference is not as clear for instances where h0

is unrestricted, since these datasets have a much greater variety in terms of the

initial MIP gap percentage values as seen in Figure 5.11). In addition to this,

we also make the observation that return deviation levels for these datasets have

less impact on the initial MIP gap percentage, as for all three deviation levels the

MIP gap percentage values vary greatly. For instance in the case of high setup

levels and high nominal return levels (where h0 is unrestricted), the percentages

fall within the intervals [254.7, 1418.5]%, [112.3, 1086.3]% and [31.4, 833.2]% for

99

KH KM KL

p,m0 R̄H R̄M R̄L R̄H R̄M R̄L R̄H R̄M R̄L

R̂ ∈ R̂H

H,M 0.9* * * 40.9 15.4* 0.0* 234.0 4606.5 0.0
H,L 0.5* * * 24.9 9.5* 0.0* 167.0 3710.8 0.0
M,M 1.8 * 0.0* 123.2 8.3* 0.0* 36.9 1563.9 0.0
M,L 0.7 * * 64.9 * 0.1* 1589.6 263.5 0.0
L,M 2.0* * 0.0* 150.2 8.7* 0.1* 2262.9 1426.4 0.0
L,L 2.1 * * 83.6 5.7* 0.0* 1003.4 309.6 0.1

Mean 1.3* * 0.0* 81.3 9.5* 0.0* 882.3 1980.1 0.0

R̂ ∈ R̂M

H,M 1.1* * * 49.9 9.5* 0.0* 483.5 3026.3 0.0
H,L 0.4* * * 5.6 3.8* 0.0* 23.2 4288 0.0
M,M 0.5* * * 75.5 11.5* 0.0* 1.2 2560.1 0.0
M,L 1.2 * * 64.4 5.3* 0.0* 255.8 3857.1 0.0
L,M 0.2* * 0.0* 12.8 68.0* 0.0* 1110.7 3393.9 0.0
L,L 1.4* * * 96.2 * 0.0* 706.7 2011.5 0.0

Mean 0.8* * 0.0* 50.7 19.6* 0.0* 430.2 3189.5 0.0

R̂ ∈ R̂L

H,M 0.2 * * 0.9 0.1* 0.0* 15.6 0.2 0.0
H,L 0.3* * * 4.7 0.0* 0.0* 766.7 0.4 0.0
M,M 0.4* * * 4.3 * 0.0* 1459.4 0.1 0.0
M,L 0.2* * * 0.6 0.1* 0.0* 115.8 0.1 0.0
L,M 0.4* * 0.0* 11.3 0.1* 0.0* 92.2 0.1 0.0
L,L 0.2* * * 29.6 0.1* 0.0* 3960.8 0.2 0.0

Mean 0.3* * 0.0* 8.6 0.1* 0.0* 1068.4 0.2 0.0

“*” indicates datasets where DMP has exhausted the time limit in the first iteration (i.e. AP was not solved).

Table 5.4: Average computational time (in sec.) required to reach convergence for
AP with T = 50 and C = 5 for all datasets where h0 is unrestricted.

100

high, medium and low levels of return deviations, respectively. These intervals

are considerably larger from those we obtain from instances where h0 is restricted,

with [31.9, 327.5]%, [120.5, 286.7]% and [0, 108.5]%, respectively.

300 900 1,500
0

20

40

60

80

100

%
of

In
st

an
ce

s

R̄ ∈ R̄H

R̄ ∈ R̄M

R̄ ∈ R̄L

300 900 1,500
0

20

40

60

80

100

Initial MIP UB-LB gap %

K ∈ KH

K ∈ KM

K ∈ KL

300 900 1,500
0

20

40

60

80

100

R̂ ∈ R̂H

R̂ ∈ R̂M

R̂ ∈ R̂L

Figure 5.11: Percentage of instances with an initial MIP % value below the speci-
fied amount for AP on the first iteration, classified by the level of nominal returns
(left), setup cost (middle), and return deviation (right) where h0 is unrestricted.

5.4 Concluding remarks

In this chapter, we have presented the deterministic and robust formulations for the

two-level multi-component lot sizing problem with remanufacturing. Specifically,

we assume uncertainties on customer returns only, where demands are assumed

to be deterministic. We make the observation that a production plan holds in

an optimal solution to the adjustable case of the robust formulation. Upon this

observation, the impact of such production rules on the (AP) are investigated,

along with a detailed description on how such production rules can be enforced

on (AP). Following this, we present thorough computational tests on a wide class

of datasets, for varying levels and assumptions on problem parameters. Here, we

show that the time requirements for both (DMP) and (AP) vary greatly on the

structure of costs, as well as assumptions on the end-item level inventory cost,

h0. In addition to this, an analysis on the influence of various cost and parameter

levels on the initial MIP gaps achieved for (AP) is provided.

101

0 500 1,000 1,500

5

10

15

K
H

R̂ ∈ R̂H

R̂ ∈ R̂M

R̂ ∈ R̂L

0 500 1,000 1,500

5

10

15

K
M

0 500 1,000 1,500

5

10

15

Initial MIP gap percentage (R̄ ∈ R̄M)

K
L

0 500 1,000 1,500 2,000

5

10

15 R̂ ∈ R̂H

R̂ ∈ R̂M

R̂ ∈ R̂L

0 500 1,000 1,500 2,000

5

10

15

0 500 1,000 1,500 2,000

5

10

15

Initial MIP gap percentage (R̄ ∈ R̄H)

Figure 5.12: Percentage of instances with an initial MIP % value within the spec-
ified range for AP on the first iteration, sorted by different levels of setup costs,
return deviations, and medium (left) and high (right) nominal return levels where
h0 is unrestricted.

102

Chapter 6

Deterministic Multiple

Components Case

6.1 Introduction

The formulation considered in this section does not imply any uncertainty on de-

mands or returns. Instead, we consider a deterministic setting for the two-level

multi-component problem with setups on the end-item level only (i.e. no setup

restrictions on the component level). Specifically, we provide certain optimality

properties that hold under certain cost assumptions. Following this, we show that

these properties can be used in the dynamic programming approach presented

in the work of Teunter et al. [2006] to derive solutions. In their work, Teunter

et al. [2006] consider a single level setting, whereas in this chapter, we are inter-

ested in exploring the two-level multi-component extension of this problem. As

further discussed under this chapter, our problem has different assumptions with

regards to returns inventory and production (setup, assembly, manufacturing and

remanufacturing) decisions.

This setting is particularly relevant for production environments where setups

are not required for every single one of the components. Although no fixed costs

are considered for the component level, we do consider variable manufacturing and

remanufacturing costs for components. We follow our assumption of remanufac-

turing being less costly than manufacturing (i.e. rc < mc ∀c ∈ {1, . . . , C}). In

addition to this, we also make the assumption that the sum of holding costs for

the components is lower than that of the assembled item (i.e. h0 >
∑C

c=1 h
c).

103

This assumption naturally stems from practice, since assembling components to-

gether for a final product adds value to the cumulative value of components, often

significantly, and this value dictates holding costs.In a similar fashion, we also as-

sume that holding unprocessed returns is cheaper than holding components (i.e.

wc < hc, ∀c ∈ {1, . . . , C}). This assumption is also realistic from a practical per-

spective, since processing (i.e. remanufacturing) a returned component adds value

to the component as betterment.

6.2 Problem formulation

Let us begin by introducing the deterministic two-level multi-component lot sizing

problem given below.

min
T∑
t=1

(
Kyt +m0x0

t + h0I0
t + (2-MCR-E)

C∑
c=1

(hcIct + wc
t∑
i=1

(Rc
i − qci) +mcxct + rcqct)

)
(6.1)

x0
t + I0

t−1 = I0
t +Dt ∀t = 1, ..., T (6.2)

xct + qct + Ict−1 = Ict + x0
t

∀t = 1, ..., T
∀c = 1, ..., C

(6.3)

t∑
i=1

(Rc
i − qci) ≥ 0

∀t = 1, ..., T
∀c = 1, ..., C

(6.4)

x0
t ≤Mtyt ∀t = 1, ..., T (6.5)

y ∈ {0, 1}T (6.6)

In the formulation above, our objective is to minimize total costs associated

with assembly, production, inventory and setup. The main difference between (2-

MCR-E) and (2-MCR-C) is that we no longer consider binary setup decision vari-

ables for components. Instead, we are now utilizing variables y := (y1, y2, . . . , yT)

to define our setup decisions for the end-item level. In this new setting, we are

only able to assemble an end-item only if a setup cost of K has been incurred. Due

to this modification, we rewrite the setup constraint as (6.5), which ensures that

the setup decision is taken according to the assembly levels. Note that the flow

104

balance constraints for components and the end-item level remain unchanged.

6.3 Problem analysis and resolution

Following this formulation, we now present several optimality properties for

the deterministic (2-MCR-E). Note that throughout the next section, we use pct =∑t
i=1(Rc

i − qci) to define the returns inventory level for component c on period t.

6.3.1 Optimality properties

In this section, we present various optimality properties for (2-MCR-E), which

are then used to derive the dynamic programming algorithm given in Section

6.3.2. Throughout this section, we make the following assumptions with regards

to problem costs:

• End-item holding cost is strictly greater than that of the summation of all

components in {1, . . . , C}, where h0 >
∑C

c=1 h
c.

• Manufacturing a component is costlier than remanufacturing a returned item,

such that mc > rc, ∀c = 1, . . . , C.

• Similarly, the cost of holding a component in inventory is strictly greater

than that of returns, where hc > wc, ∀c = 1, . . . , C.

Furthermore, in advance of defining the specific optimality properties, we pro-

vide the following definitions, which play a crucial role for the optimality conditions

derived throughout this section.

Definition 6.3.1. Zero inventory property (ZIP) is satisfied in a solution if for

each time period t, both the production decision and the inventory decision cannot

be strictly positive.

Definition 6.3.2. We define (i, j) as a setup pair, which denotes the setup decision

that satisfies the demands in periods i, ..., j, where yi = 1, yj+1 = 1 and yt =

0, ∀t = i+ 1, ..., j.

Examples for feasible setup patterns for T = 10 include: {(1, 3), (4, 7), (8, 10)}
(where setup periods are t = 1, 4, 8) and {(1, 1), (2, 2), (3, 10)} (where setup periods

are t = 1, 2, 3). Notice that we always have y1 = 1, since backlogging is not allowed.

105

Following the definitions given above, let us introduce the first optimality prop-

erty for (2-MCR-E):

Proposition 6. In an optimal solution, zero inventory property (ZIP) holds for

the end-item level, i.e., x0
t I

0
t−1 = 0 when h0 >

∑C
c=1 h

c and mc > rc.

Proof. Consider the following setup pairs: {(t0, t1 − 1), (t1, t2 − 1), (t2, t3)} where

t0 < t1 < t2 < t3. Consider a solution where we produce an additional item on

t1 to satisfy the demand on t2. We will show that an alternative solution with

smaller costs exists for the solution where an additional item is assembled on t1 in

order to satisfy the demand on t3, where ZIP is not satisfied, since I0
t2−1 = 1.

Assembling an additional item on t1 implies that x0
t1

=
∑t2−1

i=t1
Di + 1 and

x0
t2

=
∑t3

i=t2
Di − 1. This does not cause any change in the total assembly cost,

since the total number of items assembled in both production plans remain the

same and costs are time invariant. For this reason, we do not take the total

assembly costs into account in the remainder of this proof. Note that for each

case presented below, we have an additional cost of h0(t2− t1) due to carrying an

additional item on the end-item level inventory between periods t1 and t2.

Regarding the components level, consider the following cases. In order to

assemble the additional item on t1, we may decide to:

• manufacture a set of additional components, A ⊆ {1, .., C} on t1, which would

have been remanufactured on t2. Remaining components, B = {1, .., C}\A
would have been manufactured on t2.

Since we are no longer remanufacturing the components in set A, we have a

total change of
∑

c∈A(mc−rc) > 0 in production costs. The total production

cost for components in set B remains unchanged, since manufacturing a com-

ponent in t1, instead of t2 makes no difference in terms of production costs.

Having assembled an additional end-level item, we have an overall positive

holding cost of h0(t2 − t1) > 0. Finally, components in set A have to be car-

ried in returns inventory (since these returns are no longer remanufactured

on t2), leading to a minimum positive cost change of
∑

c∈Aw
c(t3 − t2) > 0

• remanufacture a set of additional components, B ⊆ {1, .., C} on t1, which

would have been manufactured on t2. Remaining components, A = {1, .., C}\B
would have been remanufactured on t2.

Remanufacturing components that belong to set B on t1 causes a reduction

106

of −m + r in the total production cost due to having remanufactured an

additional component on t1, and having manufactured a component less on

t2. However, for us to be able to remanufacture an additional component

on t1, an additional return has to be carried over until t1 from an earlier

time period. This implies that one less component can be remanufactured

at the preceding setup period, t0 (since this return is now carried over onto

t1). As a result, an additional component needs to be manufactured on t0,

in order to meet the demand on this time period. These changes in the

production amounts on t0 cause an increase of m − r in the total produc-

tion cost. As a result, the overall production cost remains unchanged, since

−m + r + m − r = 0. In addition, having assembled an additional item on

t1, we have the extra end-item level inventory holding cost of h0(t2− t1) > 0.

Finally, since carrying a return over in order to perform remanufacturing at

a later time period implies a positive change in the returns inventory cost

(as also shown in Proposition 7), we have the additional returns holding cost

of (t1 − t0)
∑

c∈B w
c > 0. On the other hand, remanufacturing the compo-

nents in set A on t1 does not cause a change in the overall production costs.

Remanufacturing these returns at an earlier time period causes a returns

inventory cost reduction of (t2 − t1)
∑

c∈Aw
c. However, since an additional

item is assembled, we have an additional end-item level inventory cost of

h0(t2 − t1) > 0. In this case, the overall change in total cost is positive due

to condition h0 >
∑

c∈A∪B={1,...,C}w
c (since hc > wc, ∀c ∈ {1, ..., C}), with a

total change of h0 −
∑

c∈Aw
c > 0.

• manufacture and/or remanufacture a set of additional components on some

time period t0, and use these components to assemble an additional item on

some t ≥ t0, where this item is not used to satisfy any future demand.

Let Sm and Sr be the set of components that have been manufactured and re-

manufactured on t0, respectively. Note that Sm∩Sr = ∅ (since a component

is either manufactured or remanufactured) and Sm ∪ Sr = {1, ..., C} (since

we require all components to be produced in order to assemble an end-item).

First, let us consider the case where t0 < t. Then, having produced a set

of additional components in advance of time period t, we have an additional

cost of C = (t − t0)
∑C

c=1 h
c (due to holding these components in inventory

until t). In addition, we have the additional holding cost of D = (T −t+1)h0

107

until the end of the planning horizon, due to the additional item assembled.

Since a set of these components have been remanufactured, we no longer

have to carry them in the returns inventory until the end of the time hori-

zon. This reduces the total cost by A + B, where A = (t − t0)
∑

c∈Sr wc

(returns inventory cost until t) and B = (T − t + 1)
∑

c∈Sr wc (returns

inventory cost from t, until the end of the planning horizon). Then, we

have a total change in costs of C + D − A − B. This change is positive

since C − A > 0, as (t − t0)(
∑C

c=1 h
c −

∑
c∈Sr) w

c > 0 and D − B > 0, as

(T − t+ 1)(h0 −
∑

c∈Sr wc) > 0. Finally, when t = t0 we have A = 0, C = 0

leading to a total change of D − B > 0. Note that in both cases, we incur

an additional cost of m0 +
∑

c∈Sm mc +
∑

c∈Sr rc due to the extra production

and assembly decisions.

Proposition 7. Components are remanufactured as early as possible when mc > rc

holds. In other words, manufacturing components implies that no returns will be

carried over onto the next time period, i.e. xctp
c
t = 0.

Proof. Consider two consecutive setup periods, t1 > t2. We will show that given

a production plan and an additional return on period t1, remanufacturing the

additional return on t1 for components S ⊆ {1, ..., C} is less costly than reman-

ufacturing these on t2. Consider the case where we carry this return over to

t2. Then, we have to incur an additional cost of (t2 − t1)
∑

c∈S w
c in order to

carry these returns over to period t2, with a total change in production costs of∑
c∈S(rc −mc). Therefore, having this return remanufactured on t1 implies a re-

duction of (t2− t1)
∑

c∈S w
c in the total cost, where the total change in production

costs remain unchanged, since costs are time-invariant.

Proposition 8. When hc > wc, the condition Ict = 0, ∀c ∈ {1, . . . , C}, ∀t ∈
{1, . . . , T } is satisfied in an optimal solution ∀c ∈ {1, .., C}, which implies that

xct = 0 and qct = 0 for time periods where yt = 0. Consequently, we have xct + qct =

x0
t , ∀c ∈ {1, ..., C} for time periods where yt = 1.

Proof. We will show that an alternative solution with better costs exists for the

following cases. Consider the consecutive setup periods: t0 > t1 > t2 and a solution

where we produce additional components on t1 to satisfy the end-item demand on

t2. Note that since the end-level assembly and inventory levels are unchanged in

108

the following scenarios, we will not take the costs on end-item level into account.

Let us define set S ⊆ {1, ..., C} as a subset of components.

• Manufacturing additional components in S in period t1 in order to satisfy

end-level item demand on t2.

Let B indicate the set of items that would have been manufactured on t2,

and set A = S\B indicate those that would have been remanufactured on t2.

Manufacturing the components in set B in t1 instead of t2 does not cause any

change in the total production costs. In this case, the only change in costs we

have is regarding the component level inventory, where (t2−t1)
∑

c∈B h
c > 0.

As for the components in set A, we now have a positive change in total pro-

duction costs (since we have swapped remanufacturing with manufacturing),

where mc−rc > 0. Similarly, we also have the additional component holding

cost of (t2−t1)
∑

c∈A h
c > 0. Additionally, since we are no longer remanufac-

turing the items in set A on period t2, this also causes a minimum increase

of
∑

c∈Aw
c in the total returns inventory holding cost.

• Remanufacturing additional components S in period t1 in order to satisfy

end-level item demand on t2.

Similarly, let B indicate the set of items that would have been manufactured

on t2, and set A = S\B indicate those that would have been remanufactured

on t2. Then, remanufacturing the items in set B on t1 causes a reduction of∑
c∈B(−mc+rc) in the production costs. However, in order to remanufacture

additional components on t1, an additional set of returns need to be carried

over until t1. This also means that we will need to remanufacture one less

item on t0 (and to manufacture an additional one in order to meet end-item

demand), increasing the production costs by
∑

c∈B(mc − rc). As a result

of this, we have no cost change due to production, since
∑

c∈B(−mc + rc +

mc − rc) = 0. In addition, these returned items have to be held in returns

inventory until t1, causing an additional returns inventory holding cost of

(t1 − t0)
∑

c∈B w
c. Having produced an additional component for items in

this set, we also have the additional holding cost for the component level,

(t2 − t1)
∑

c∈B h
c. Secondly, remanufacturing the components in set A does

not cause any change in the total production cost. However, remanufacturing

an additional item on t1 implies a reduction of (t2 − t1)
∑

c∈Aw
c (as these

returns no longer have to be carried over). Contrarily, having these returns

109

remanufactured, we now have an additional cost of (t2−t1)
∑

c∈A h
c to incur,

leading to an overall increase in costs, since (t2 − t1)
∑

c∈A(hc − wc) > 0.

6.3.2 Dynamic programming algorithm

Using the properties given in Section 6.3.1, we are able to compute the man-

ufacturing, remanufacturing and inventory levels for different setup patterns. We

can then calculate the total cost associated with each one of them to find the

optimal production plan. The procedures detailed under this section, as well as

the notations for sets and costs follow the dynamic programming framework in-

troduced in the study of Teunter et al. [2006].

Due to Proposition 6, we are able to compute the optimal assembly levels for

a given (i, j) as:

x0
i,j =

j∑
t=i

Dt (6.7)

Similarly, due to Propositions 7 and 8, we are able to calculate the exact

manufacturing and remanufacturing amounts for each one of the components for

a given value of x0
i,j, where:

xci(n
c) = max{0, x0

i,j − qci (nc)} (6.8)

which suggests that demand is satisfied through remanufacturing first (as much as

the current returns inventory allows), and any remaining items will be manufac-

tured to satisfy the remaining demand. Then, we may calculate the total number

of component c remanufactured as:

qci (n
c) = min{nc +Rc

i , x
0
i,j} (6.9)

Here, nc is the number of returns that are carried over onto period i through

returns inventory (for component c), and Rc
i is the number of returns that become

available at the beginning of period i (for component c). Note that when returns

are sufficient to cover the end-level item demand we have qci = x0
i,j, which implies

xci = 0 due to x0
i,j − qci = 0 (as also shown in Proposition 7).

Furthermore, let us define n = (n1, n2, ..., nC) to indicate the amounts of returns

110

available (due to returns inventory) for components {1, ..., C}. We denote the cth

component in n as nc, which stands for the returns available for a given component

c. Then, we may calculate the number of component return inventory available

at the end of period j (given a setup pair (i, j) and returns inventory level of nc

available on period i− 1) as

v = (v1, v2, . . . , vC), where vc = pci(n
c) +

j∑
t=i+1

Rc
t (6.10)

and pci(n
c) = nc +Rc

i − qci (nc), c ∈ {1, . . . , C} (6.11)

here nc stands for the returns available in the return inventory for component

c from the previous time period i − 1, and
∑j

t=i+1 R
c
t is the number of returns

that will be kept in inventory until the next setup period (due to Proposition 8,

returns from period i+ 1 until j are not remanufactured). Note that pci(n
c) gives

the total number of returns that will be available at the end of period i (in other

words, we may describe this amount as the number of remaining returns after

remanufacturing is performed on time i). Then, we can represent the complete set

of resulting returns (i.e. number of returns held at the end of period j) for (i, j)

as:

Si,j =
⋃

n∈Si−1

{v = (v1, v2, . . . , vC) : n = (n1, n2, ..., nC)} (6.12)

Here, Si,j contains the set of returns that may be available at the end of period

j for the setup pair (i, j), for each n ∈ Si−1.

Furthermore, we define Sj as

Sj =

j⋃
i=1

Si,j (6.13)

Sj contains the set of returns available at the end of period j (which can be

derived from the setup pairs (i, j) where i ≤ j).

Once Si,j is determined, the corresponding production, setup and inventory

costs can be calculated as

fi,j(v) = fi−1(n) +K +m0x0
i,j + h0

j∑
t=i+1

j∑
k=t

Dk +
C∑
c=1

(mcxci(n
c) + rcqci (n

c))+

111

C∑
c=1

wc
j∑
t=i

(pci(n
c) +

t∑
k=i+1

Rc
k) ∀n ∈ Si−1

(6.14)

where

fj(n) = min
i=1,...,j

fi,j(n), n ∈ Si,j (6.15)

indicates the minimum total cost that can be achieved until time period j, when

the set of returns in n are realized.

Note that we define:

f0(n) = 0, n ∈ S0,0 = {0} (6.16)

Since setup has to be carried out for each setup pair (i, j), fi,j(v) includes

K (the setup cost). As the total production in period i covers the demands in

periods {i, ..., j}, a total of h0
∑j

t=i+1

∑j
k=tDk has to be incurred due to the

total number of end-item level items held. Furthermore, a component produc-

tion cost of
∑C

c=1(mcxci(n
c) + rcqci (n

c)) is incurred on setup period i. Finally,∑C
c=1w

c
∑j

t=i(p
c
i(n

c) +
∑t

k=i+1R
c
k) is the total returns holding cost, where pci(n

c)

is the returns inventory at the end of period i for a given component c when n

is realized in the preceding time period. Note that this amount is always non-

negative due to (6.9). Additionally, we may calculate the number of returns held

at the end of a given time period t where i ≤ t ≤ j as: pci(n
c) +

∑t
k=i+1 R

c
k for

component c. In this case, returns from periods i + 1 until t will only be kept in

inventory, since none of these returns will be remanufactured for the setup pair

(i, j) due to Proposition 8.

Algorithm 1 Dynamic programming framework for the lot sizing problem with
remanufacturing (see Teunter et al. [2006])

1: Set i, j := 1, S0 := {(0, ..., 0)}, St := ∅ ∀t = 1, ..., T , f0(n) = 0, n ∈ S0,0 = {0}
2: while j ≤ T do
3: for i = 1, ..., j do
4: Compute Si,j and fi,j(n).

5: Compute Sj and fj(n).
6: j ← j + 1

112

The output for the algorithm given above are the total costs given as ft(n),

where the optimal production plan can be found by determining the minimum

value for ft(n) where t = T , and n ∈ Si,j.

6.4 Concluding remarks

In this chapter, we provided optimality properties for the two-level multi-component

lot sizing problem with remanufacturing under certain assumptions on problem

costs, where these are time invariant. Using these properties, we implement the

dyanmic programming algorithm given in Teunter et al. [2006]. Furthermore, the

dyanmic programming algorithm is derived for the case where the number of re-

turns may be different for each component. This assumption can easily be relaxed,

where the number of returns considered for each component is consistent across

different components.

113

Chapter 7

Conclusion and Future Research

In this thesis, we have studied the robust lot sizing problem with remanufacturing.

Initially, a general framework for MIP approaches, remanufacturing practices and

its implementation in lot sizing problems are given. We have discussed potential

variations of such problems, and their implications. In addition to this, we have

provided detailed descriptions and examples to how parameter uncertainties affect

problem feasibility and optimality. We state that uncertainty plays a crucial role

where remanufacturing is considered, since the number of customer returns is often

random and mostly unknown.

In Chapter 3, we formally state the robust lot sizing problem with remanufac-

turing and provide a detailed explanation on how demand and return uncertainty

can be incorporated into the deterministic version of this problem. The specific

assumptions and structure of the deterministic version of this problem are given.

Following this, we state the uncertainty sets for demands and returns, which are de-

fined as budgeted polytopes. An assumption we make here is that the uncertainty

sets for demands and returns are defined independently from one another. This

implies that the uncertainty set for demands is independent from that of returns.

Given such independent uncertainty sets, we further investigate the characteristics

of the returns uncertainty sets, and show that the worst-case costs for returns can

be computed a priori. Another crucial feature here is that only positive deviations

are considered to model the uncertain parameters. As part of this discussion, we

show that a given returns uncertainty set with negative deviations can be written

as one where only positive deviations are considered. These properties are crucial

for the decomposition algorithm presented in Chapter 4, since the structure of

uncertainty sets play a crucial role in formulating AP.

114

Following this, in Chapter 4 a min-max decomposition framework is presented

for the robust lot sizing problem with remanufacturing. More specifically, here we

present the Decision Maker’s Problem (DMP) and the Adversarial Problem (AP),

which are solved iteratively to obtain a robust optimal solution. We address some

of the computational challenges while solving (DMP), and propose two extended

reformulations for this problem, the Extended Aggregated Reformulation (DMP-

EFAG) and Approximate Extended Reformulation (DMP-EFAP). In particular,

these reformulations are implemented only for the last scenario of the restricted

uncertainty set in (DMP). As discussed in detail in the computational experiments

section, the extended reformulations are able to improve the computational time

requirements for (DMP) significantly. Another interesting observation we make

regarding the computational aspects of the decomposition algorithm is that the

time requirements for solving (AP) are very low.

Chapter 5 considers a different extension of the robust lot sizing problem with

remanufacturing, where two production levels and multiple components are con-

sidered. Particularly, we assume that there exists an end-item under deterministic

customer demand. In order to produce this item, we make the assumption that a

known, finite set of components have to be produced, which are then assembled

into the final item. We assume that these components can either be manufactured

from scratch or remanufactured from customer returns. The robust assumptions

under this setting stem from the uncertainty in returns. Specifically, we ana-

lyze the case where excessive customer returns result in additional holding costs,

whereas lack of returns causes more items to be manufactured. The latter results

in an increase in overall costs, due to our assumption of manufacturing costs being

costlier than those of remanufacturing. Under this setting, we provide a produc-

tion rule that holds for the optimal case, and show its importance while deriving

robust solutions. Particularly, we show that optimality conditions or production

rules that are implied by the original problem have to be accounted for in the

decomposition framework. This is important especially for (AP), since failure to

do so results in under-estimation of costs. This observation is not only important

for the particular case presented in this chapter, but also for future works in a

more general setting (i.e. formulations where robustness is implemented through

the min-max decomposition algorithm).

Finally, in Chapter 6 we consider a deterministic two-level multi-component

setting. In particular, we relax the setup requirements on components, and inves-

115

tigate the case where setup is only imposed on the end-item level (i.e. assembly

of end-items). We explore certain optimality conditions that hold for this specific

case, under particular cost assumptions. These optimality properties are mostly

relevant for many lot sizing problems with remanufacturing, where similar cost as-

sumptions are made. In this sense, the optimality properties presented throughout

this section provide meaningful insights as to how other variations of this problem

may be solved. This does not necessarily have to involve an exact approach (since

general classes of lot sizing problems with remanufacturing are known to be NP-

hard, as shown in Retel Helmrich et al. [2014]). In such cases, these properties

can provide insights as to how to derive strong valid inequalities, or good lower

bounds on different variations of this problem.

Although the results gathered from these studies provide meaningful insights

for formulating optimal production plans in remanufacturing environments, there

are certainly further future research directions to follow, which may provide valu-

able information about robust lot sizing problems with remanufacturing.

An important assumption that is valid for formulations presented under Chap-

ters 3 and 4 is that customer demand can be indifferently satisfied via manufactur-

ing and remanufacturing. An interesting aspect to consider for future research is to

adjust this assumption, such that customer demand is satisfied through new prod-

ucts (i.e. manufacturing) while remanufacturing faces an independent demand. In

practical situations, it is common to encounter such settings, thus implementing

the min-max approach to this extension is undoubtedly an interesting direction

for future research.

In terms of cost assumptions, an interesting direction for future research is to

assume different holding costs for manufactured and remanufactured goods, since

the handling costs that are associated with remanufacturing can lead to different

holding costs. An interesting variation of this is the case where only manufactured

items have a holding cost, causing returns to be remanufactured as quickly as

possible. Specifically, this is an interesting special case of the problem, since

environmentally friendly production plans can be derived using cost assumptions

of this nature.

One of the essential assumptions that we are making in Chapters 3 and 4 is

that returns uncertainty is only defined for positive deviations. Although this

results in a formulation that is consistent and computationally favourable, it is

certainly interesting to explore the option where returns deviations are defined for

116

both negative and positive deviations, such that −1 ≤ zRt ≤ 1. Further to this,

investigating the specific properties of an uncertainty set of this nature is also

certainly crucial to build a formulation of this nature. In this regard, the insights

provided on Chapter 5 are certainly useful, as a similar uncertainty set setting

is considered for the two-level multi-component lot sizing problem given in this

chapter.

Another interesting direction for research here is to investigate the option of

dependent uncertainty sets. More specifically, cases such as where demands and

returns are dependent on one another, or uncertainty sets with time-dependency of

demands and/or returns are among interesting and relevant concepts to consider.

Moreover, investigating the implications of such uncertainty sets in a min-max

decomposition framework can be an interesting aspect to investigate. In this sense,

it would also be worthwhile to examine whether such uncertainty sets can be

written in the form of another.

Moreover, our formulations have considered a hybrid system with a joint setup

setting. It is certainly interesting to further extend the formulations presented in

this thesis to the separate setup case for remanufacturing, where other optimality

properties may hold. A general formulation of this nature can be written as:

min
T∑
t=1

(Km
t y

m
t +Kr

t y
r
t +mtx

m
t + rtx

r
t + hstI

s
t + hrIrt)

Ist−1 + xmt + xrt = Dt + Ist ∀t = 1, . . . , T (7.1)

Irt−1 +Rt = xrt + Irt ∀t = 1, . . . , T (7.2)

xmt ≤Mty
m
t ∀t = 1, . . . , T (7.3)

xrt ≤Mty
r
t ∀t = 1, . . . , T (7.4)

xm, xr, Is, Ir ≥ 0 (7.5)

ym, yr ∈ {0, 1}T (7.6)

The formulation above differs considerably from the joint setup structure con-

sidered in this thesis. Note that under such setting, the setup costs are defined

independently for manufacturing and remanufacturing variables, which may result

in specific optimality properties under certain cost structures. As discussed in

Chapter 5, such properties are essential while formulating the robust version of

this problem, and should not be disregarded. In such formulations, deciding the

117

cost structure of the separate setups is also crucial, since certain special conditions

that provide specific optimality properties may exist in this case as well.

In the formulations presented throughout this thesis, we have considered time

invariant costs. It would be an interesting future research direction to relax this

assumption, so that costs are time variant. In particular, an interesting aspect to

examine here would be to investigate whether any production rules hold under this

case, or under special cost structures. Another assumption we make on problem

costs is that they are deterministic. This is yet another interesting assumption

to relax, where manufacturing/remanufacturing/inventory costs may be defined

as uncertain, i.e. as parts of uncertainty sets. This is particularly interesting

for the remanufacturing case, since the condition of returned product might have

an impact on the cost required to recover the item, which may not be known to

certainty in advance.

Another interesting aspect that is specific to remanufacturing systems is the

potential dependence between demands and returns. Since returns have to be

derived from past demands, it can be argued that the number of returns can be

estimated from past sales. From a robust optimization perspective, it may be

possible to define returns uncertainty sets as ones that are derived from past de-

mands, by using past data that detail product characteristics such as the product’s

lifecycle and durability.

Finally, in Chapter 6, an interesting aspect to further investigate is regarding

the size of sets Si,j, as well as the tractability and complexity of the recursive algo-

rithm. Although this algorithm is presented for the general setting of returns (i.e.

where different return quantities are allowed to be considered for each component),

this variation of the algorithm may suffer from large set sizes, especially when the

number of components considered is large.

118

Bibliography

Nabil Absi, Stéphane Dauzère-Pérès, Safia Kedad-Sidhoum, Bernard Penz, and

Christophe Rapine. Lot sizing with carbon emission constraints. European

Journal of Operational Research, 227(1):55–61, 2013.

Nabil Absi, Stéphane Dauzère-Pérès, Safia Kedad-Sidhoum, Bernard Penz, and

Christophe Rapine. The single-item green lot-sizing problem with fixed carbon

emissions. European Journal of Operational Research, 248(3):849–855, 2016.

Panayotis Afentakis and Bezalel Gavish. Optimal lot-sizing algorithms for complex

product structures. Operations research, 34(2):237–249, 1986.

A. Agra and M. Constantino. Lotsizing with backlogging and start-ups: The case

of wagner-whitin costs. Operations Research Letters, 25(2):81–88, 1999.

Agostinho Agra, Marcio Costa Santos, Dritan Nace, and Michael Poss. A dynamic

programming approach for a class of robust optimization problems. SIAM Jour-

nal on Optimization, 26(3):1799–1823, 2016.

Vishal V Agrawal, Atalay Atasu, and Koert Van Ittersum. Remanufacturing,

third-party competition, and consumers’ perceived value of new products. Man-

agement Science, 61(1):60–72, 2015.

Ben-Tal Aharon, Golany Boaz, and Shtern Shimrit. Robust multi-echelon multi-

period inventory control. European Journal of Operational Research, 199(3):

922–935, 2009.

Shabbir Ahmed, Ulaş Çakmak, and Alexander Shapiro. Coherent risk measures in

inventory problems. European Journal of Operational Research, 182(1):226–238,

2007.

119

Kerem Akartunali and Ashwin Arulselvan. Economic lot-sizing problem with re-

manufacturing option: complexity and algorithms. In International Workshop

on Machine Learning, Optimization, and Big Data, pages 132–143. Springer,

2016.

Kerem Akartunalı and Andrew J Miller. A heuristic approach for big bucket multi-

level production planning problems. European Journal of Operational Research,

193(2):396–411, 2009.

Kerem Akartunalı and Andrew J Miller. A computational analysis of lower bounds

for big bucket production planning problems. Computational Optimization and

Applications, 53(3):729–753, 2012.

Ayse Akbalik and Yves Pochet. Valid inequalities for the single-item capacitated

lot sizing problem with step-wise costs. European Journal of Operational Re-

search, 198(2):412–434, 2009.

Ayse Akbalik and Christophe Rapine. Single-item lot sizing problem with carbon

emission under the cap-and-trade policy. In 2014 International Conference on

Control, Decision and Information Technologies (CoDIT), pages 030–035. IEEE,

2014.

Mohamed Ali Aloulou, Alexandre Dolgui, and Mikhail Y Kovalyov. A bibliogra-

phy of non-deterministic lot-sizing models. International Journal of Production

Research, 52(8):2293–2310, 2014.

Shoshana Anily, Michal Tzur, and Laurence A Wolsey. Multi-item lot-sizing with

joint set-up costs. Mathematical programming, 119(1):79–94, 2009.

Philippe Artzner, Freddy Delbaen, Jean-Marc Eber, and David Heath. Coherent

measures of risk. Mathematical finance, 9(3):203–228, 1999.

Alper Atamtürk and Muhong Zhang. Two-stage robust network flow and design

under demand uncertainty. Operations Research, 55(4):662–673, 2007.

Öykü Naz Attila, Agostinho Agra, Kerem Akartunalı, and Ashwin Arulselvan.

A decomposition algorithm for robust lot sizing problem with remanufacturing

option. In International Conference on Computational Science and Its Applica-

tions, pages 684–695. Springer, 2017.

120

M Fazle Baki, Ben A Chaouch, and Walid Abdul-Kader. A heuristic solution

procedure for the dynamic lot sizing problem with remanufacturing and product

recovery. Computers & Operations Research, 43:225 – 236, 2014.

Chaithanya Bandi and Dimitris Bertsimas. Tractable stochastic analysis in high

dimensions via robust optimization. Mathematical programming, 134(1):23–70,

2012.

Imre Barany, Tony J Van Roy, and Laurence A Wolsey. Strong formulations for

multi-item capacitated lot sizing. Management Science, 30(10):1255–1261, 1984.

Aharon Ben-Tal and Arkadi Nemirovski. Robust convex optimization. Mathemat-

ics of operations research, 23(4):769–805, 1998.

Aharon Ben-Tal and Arkadi Nemirovski. Robust solutions of uncertain linear

programs. Operations research letters, 25(1):1–13, 1999.

Aharon Ben-Tal and Arkadi Nemirovski. Robust solutions of linear programming

problems contaminated with uncertain data. Mathematical programming, 88(3):

411–424, 2000.

Aharon Ben-Tal and Arkadi Nemirovski. Robust optimization — methodology

and applications. Mathematical Programming, 92:453—-480, 2002.

Aharon Ben-Tal, Alexander Goryashko, Elana Guslitzer, and Arkadi Nemirovski.

Adjustable robust solutions of uncertain linear programs. Mathematical Pro-

gramming, 99(2):351–376, 2004.

Aharon Ben-Tal, Boaz Golany, Arkadi Nemirovski, and Jean Philippe Vial.

Retailer-supplier flexible commitments contracts: A robust optimization ap-

proach. Manufacturing & Service Operations Management, 7(3):248–271, 2005.

Jacques F Benders. Partitioning procedures for solving mixed-variables program-

ming problems. Numerische mathematik, 4(1):238–252, 1962.

Dimitris Bertsimas and David B Brown. Constructing uncertainty sets for robust

linear optimization. Operations research, 57(6):1483–1495, 2009.

Dimitris Bertsimas and Melvyn Sim. Robust discrete optimization and network

flows. Mathematical programming, 98(1-3):49–71, 2003.

121

Dimitris Bertsimas and Melvyn Sim. The price of robustness. Operations Research,

52(1):35–53, 2004.

Dimitris Bertsimas and Aurélie Thiele. A robust optimization approach to inven-

tory theory. Operations Research, 54(1):150–168, 2006.

Dimitris Bertsimas, David B. Brown, and Constantine Caramanis. Theory and

applications of robust optimization. SIAM Review, 53(3):464–501, 2011.

Dimitris Bertsimas, Iain Dunning, and Miles Lubin. Reformulation versus cutting-

planes for robust optimization. Computational Management Science, 13(2):195–

217, 2016.

Daniel Bienstock and Nuri Özbay. Computing robust basestock levels. Discrete

Optimization, 5(2):389–414, 2008.

John R Birge and Francois Louveaux. Introduction to stochastic programming.

Springer Science & Business Media, 2011.

N. Brahimi, N. Absi, S. Dauzère-Pérès, and A. Nordli. Single-item dynamic lot-

sizing problems: An updated survey. European Journal of Operational Research,

263(3):838–863, 2017.

Nadjib Brahimi, Stéphane Dauzère-Pérès, and Najib M Najid. Capacitated multi-

item lot-sizing problems with time windows. Operations Research, 54(5):951–

967, 2006.

Christina Büsing and Fabio D’Andreagiovanni. New results about multi-band un-

certainty in robust optimization. In International Symposium on Experimental

Algorithms, pages 63–74. Springer, 2012.

Christina Büsing, Fabio D’Andreagiovanni, and Annie Raymond. 0–1 multiband

robust optimization. In Operations Research Proceedings 2013, pages 89–95.

Springer, 2014.

Abraham Charnes, William W Cooper, and Gifford H Symonds. Cost horizons

and certainty equivalents: an approach to stochastic programming of heating

oil. Management science, 4(3):235–263, 1958.

122

Xin Chen and Yuhan Zhang. Uncertain linear programs: Extended affinely ad-

justable robust counterparts. Operations Research, 57(6):1469–1482, 2009.

Andrew J Clark and Herbert Scarf. Optimal policies for a multi-echelon inventory

problem. Management Science, 6(4):475–490, 1960.

George B Dantzig. Application of the simplex method to a transportation problem.

Activity Analysis and Production and Allocation, 1951.

Marisa P De Brito, Rommert Dekker, and Simme Douwe P Flapper. Reverse

logistics: a review of case studies. In Distribution Logistics, pages 243–281.

Springer, 2005.

Moustapha Diaby, Harish C Bahl, Mark H Karwan, and Stanley Zionts. A la-

grangean relaxation approach for very-large-scale capacitated lot-sizing. Man-

agement Science, 38(9):1329–1340, 1992.

Mahdi Doostmohammadi and Kerem Akartunalı. Valid inequalities for two-period

relaxations of big-bucket lot-sizing problems: Zero setup case. European Journal

of Operational Research, 267(1):86 – 95, 2018.

Laurent El Ghaoui and Hervé Lebret. Robust solutions to least-squares problems

with uncertain data. SIAM Journal on matrix analysis and applications, 18(4):

1035–1064, 1997.

Laurent El Ghaoui, Francois Oustry, and Hervé Lebret. Robust solutions to uncer-

tain semidefinite programs. SIAM Journal on Optimization, 9(1):33–52, 1998.

Gary D Eppen and R Kipp Martin. Solving multi-item capacitated lot-sizing

problems using variable redefinition. Operations Research, 35(6):832–848, 1987.

James E Falk. Exact solutions of inexact linear programs. Operations Research,

24(4):783–787, 1976.

Matteo Fischetti and Michele Monaci. Light robustness. In Robust and online

large-scale optimization, pages 61–84. Springer, 2009.

Matteo Fischetti and Michele Monaci. Cutting plane versus compact formulations

for uncertain (integer) linear programs. Mathematical Programming Computa-

tion, 4(3):239–273, 2012.

123

Moritz Fleischmann, Jacqueline M Bloemhof-Ruwaard, Rommert Dekker, Erwin

Van der Laan, Jo AEE Van Nunen, and Luk N Van Wassenhove. Quantita-

tive models for reverse logistics: A review. European Journal of Operational

Research, 103(1):1–17, 1997.

Michael Florian, Jan Karel Lenstra, and AHG Rinnooy Kan. Deterministic produc-

tion planning: Algorithms and complexity. Management science, 26(7):669–679,

1980.

Virginie Gabrel, Cécile Murat, and Aurélie Thiele. Recent advances in robust

optimization: An overview. European journal of operational research, 235(3):

471–483, 2014.

Arthur M Geoffrion. Generalized benders decomposition. Journal of optimization

theory and applications, 10(4):237–260, 1972.

Joel Goh and Melvyn Sim. Distributionally robust optimization and its tractable

approximations. Operations research, 58(4-part-1):902–917, 2010.

Boaz Golany, Jian Yang, and Gang Yu. Economic lot-sizing with remanufacturing

options. IIE Transactions, 33(11):995–1004, 2001.

Ralph Gomory. An algorithm for the mixed integer problem. Technical report,

RAND CORP SANTA MONICA CA, 1960.

Ralph E Gomory et al. Outline of an algorithm for integer solutions to linear

programs. Bulletin of the American Mathematical society, 64(5):275–278, 1958.

Bram L Gorissen, İhsan Yanıkoğlu, and Dick den Hertog. A practical guide to

robust optimization. Omega, 53:124 – 137, 2015.

Yongpei Guan and Andrew J Miller. Polynomial-time algorithms for stochastic

uncapacitated lot-sizing problems. Operations Research, 56:1172–1183, 2008a.

Yongpei Guan and Andrew J Miller. Polynomial-time algorithms for stochastic un-

capacitated lot-sizing problems. Operations Research, 56(5):1172–1183, 2008b.

Yongpei Guan, Shabbir Ahmed, George L Nemhauser, and Andrew J Miller. A

branch-and-cut algorithm for the stochastic uncapacitated lot-sizing problem.

Mathematical Programming, 105(1):55–84, 2006.

124

V Daniel R Guide Jr and Luk N Van Wassenhove. Managing product returns for

remanufacturing. Production and operations management, 10(2):142–155, 2001.

V Daniel R Guide Jr and Luk N Van Wassenhove. The evolution of closed-loop

supply chain research. Operations research, 57(1):10–18, 2009.

Nir Halman, Diego Klabjan, Mohamed Mostagir, Jim Orlin, and David Simchi-

Levi. A fully polynomial-time approximation scheme for single-item stochastic

inventory control with discrete demand. Mathematics of Operations Research,

34(3):674–685, 2009.

Ford W Harris. How many parts to make at once. 1913.

Mathijn J Retel Helmrich, Raf Jans, Wilco van den Heuvel, and Albert PM Wagel-

mans. The economic lot-sizing problem with an emission capacity constraint.

European Journal of Operational Research, 241(1):50–62, 2015.

Timo Hilger, Florian Sahling, and Horst Tempelmeier. Capacitated dynamic pro-

duction and remanufacturing planning under demand and return uncertainty.

OR spectrum, 38(4):849–876, 2016.

Winifred L Ijomah. Addressing decision making for remanufacturing operations

and design-for-remanufacture. International Journal of Sustainable Engineering,

2(2):91–102, 2009.

F. Robert Jacobs and F.C. Weston. Enterprise resource planning (ERP) - A brief

history. Journal of Operations Management, 25(2):357–363, 2007.

R. Jans and Z. Degraeve. Improved lower bounds for the capacitated lot sizing

problem with setup times. Operations Research Letters, 32:185–195, 2004.

Raf Jans and Zeger Degraeve. Meta-heuristics for dynamic lot sizing: A review and

comparison of solution approaches. European journal of operational research, 177

(3):1855–1875, 2007.

Raf Jans and Zeger Degraeve. Modeling industrial lot sizing problems: a review.

International Journal of Production Research, 46(6):1619–1643, 2008.

Vaidyanathan Jayaraman, V Daniel R Guide Jr, and Rajesh Srivastava. A closed-

loop logistics model for remanufacturing. Journal of the operational research

society, 50(5):497–508, 1999.

125

Michael Jünger, Thomas M Liebling, Denis Naddef, George L Nemhauser,

William R Pulleyblank, Gerhard Reinelt, Giovanni Rinaldi, and Laurence A

Wolsey. 50 Years of integer programming 1958-2008: From the early years to

the state-of-the-art. Springer Science & Business Media, 2009.

Uday S Karmarkar and Linus Schrage. The deterministic dynamic product cycling

problem. Operations Research, 33(2):326–345, 1985.

Onur A Kilic and Wilco van den Heuvel. Economic lot sizing with remanufacturing:

structural properties and polynomial-time heuristics. IISE Transactions, pages

1–14, 2019. doi: 10.1080/24725854.2019.1593555.

Ömer Kirca and Melih Kökten. A new heuristic approach for the multi-item

dynamic lot sizing problem. European Journal of Operational Research, 75(2):

332–341, 1994.

Arie MCA Koster, Manuel Kutschka, and Christian Raack. Robust network design:

Formulations, valid inequalities, and computations. Networks, 61(2):128–149,

2013.

Jakob Krarup and Ole Bilde. Plant location, set covering and economic lot size:

An 0 (mn)-algorithm for structured problems. In Numerische Methoden bei

Optimierungsaufgaben Band 3, pages 155–180. Springer, 1977.

Simge Küçükyavuz and Yves Pochet. Uncapacitated lot sizing with backlogging:

the convex hull. Mathematical Programming, 118(1):151–175, 2009.

AH Land and AG Doig. An automatic method of solving discrete programming

problems. Econometrica, 28(3):497–520, 1960.

Eugene L Lawler and David E Wood. Branch-and-bound methods: A survey.

Operations research, 14(4):699–719, 1966.

Jianzhi Li, Miguel González, and Yun Zhu. A hybrid simulation optimization

method for production planning of dedicated remanufacturing. International

Journal of Production Economics, 117(2):286–301, 2009.

Liwan H Liyanage and J George Shanthikumar. A practical inventory control

policy using operational statistics. Operations Research Letters, 33(4):341–348,

2005.

126

Pedro Belluco Macedo, Douglas Alem, Maristela Santos, Muris Lage Junior, and

Alfredo Moreno. Hybrid manufacturing and remanufacturing lot-sizing problem

with stochastic demand, return, and setup costs. The International Journal of

Advanced Manufacturing Technology, 82(5-8):1241–1257, 2016.

Josefa Mula, David Peidro, Manuel Dı́az-Madroñero, and Eduardo Vicens. Math-

ematical programming models for supply chain production and transport plan-

ning. European Journal of Operational Research, 204(3):377–390, 2010.

Almir Mutapcic and Stephen Boyd. Cutting-set methods for robust convex op-

timization with pessimizing oracles. Optimization Methods & Software, 24(3):

381–406, 2009.

Zhendong Pan, Jiafu Tang, and Ou Liu. Capacitated dynamic lot sizing problems

in closed-loop supply chain. European Journal of Operational Research, 198(3):

810–821, 2009.

Pedro Pineyro and Omar Viera. The economic lot-sizing problem with remanu-

facturing and one-way substitution. International Journal of Production Eco-

nomics, 124:482–488, 2010.

George W Plossl and Joseph Orlicky. Orlicky’s material requirements planning.

McGraw-Hill Professional, 1994.

Yves Pochet and Laurence A Wolsey. Production planning by mixed integer pro-

gramming. Springer, 2006.

Ragheb Rahmaniani, Teodor Gabriel Crainic, Michel Gendreau, and Walter Rei.

The benders decomposition algorithm: A literature review. European Journal

of Operational Research, 259(3):801–817, 2017.

Mathijn J Retel Helmrich, Raf Jans, Wilco van den Heuvel, and Albert PM Wagel-

mans. Economic lot-sizing with remanufacturing: complexity and efficient for-

mulations. IIE Transactions, 46(1):67–86, 2014.

Knut Richter and Mirko Sombrutzki. Remanufacturing planning for the reverse

wagner/whitin models. European Journal of Operational Research, 121(2):304–

315, 2000.

127

Knut Richter and Jens Weber. The reverse wagner/whitin model with variable

manufacturing and remanufacturing cost. International Journal of Production

Economics, 71(1-3):447–456, 2001.

Dale S Rogers and Ronald Tibben-Lembke. An examination of reverse logistics

practices. Journal of Business Logistics, 22(2):129–148, 2001.

Alexander Schrijver. Theory of linear and integer programming. John Wiley &

Sons, 1998.

Chuen-Teck See and Melvyn Sim. Robust approximation to multiperiod inventory

management. Operations research, 58(3):583–594, 2010.

A. Sifaleras and I. Konstantaras. Variable neighborhood descent heuristic for

solving reverse logistics multi-item dynamic lot-sizing problems. Computers &

Operations Research, 78:385 – 392, 2017.

C Singh. Convex programming with set-inclusive constraints and its applications to

generalized linear and fractional programming. Journal of Optimization Theory

and Applications, 38(1):33–42, 1982.

Allen L Soyster. Convex programming with set-inclusive constraints and appli-

cations to inexact linear programming. Operations research, 21(5):1154–1157,

1973.

H. Stadtler. Multilevel lot sizing with setup times and multiple constrained re-

sources: Internally rolling schedules with lot-sizing windows. Operations Re-

search, 51(3):487–502, 2003.

Sharifah Aishah Syed Ali, Mahdi Doostmohammadi, Kerem Akartunalı, and

Robert van der Meer. A theoretical and computational analysis of lot-sizing

in remanufacturing with separate setups. International Journal of Production

Economics, 203:276 – 285, 2018.

Ruud H Teunter, Z Pelin Bayindir, and Wilco Van Den Heuvel. Dynamic lot sizing

with product returns and remanufacturing. International Journal of Production

Research, 44(20):4377–4400, 2006.

Aurélie Thiele, Tara Terry, and Marina Epelman. Robust linear optimization with

recourse. Technical Report, pages 4–37, 2009.

128

Martijn Thierry, Marc Salomon, Jo Van Nunen, and Luk Van Wassenhove. Strate-

gic issues in product recovery management. California Management Review, 37

(2):114–136, 1995.

CPM Van Hoesel, Albert Peter Marie Wagelmans, and Laurence A Wolsey. Poly-

hedral characterization of the economic lot-sizing problem with start-up costs.

SIAM Journal on Discrete Mathematics, 7(1):141–151, 1994.

Mathieu Van Vyve and Laurence A. Wolsey. Approximate extended formulations.

Mathematical Programming, 105(2-3):501–522, 2006.

Mathieu Van Vyve, Laurence A Wolsey, and Hande Yaman. Relaxations for two-

level multi-item lot-sizing problems. Mathematical Programming, 146(1-2):495–

523, 2014.

Dimitrios Vlachos and Rommert Dekker. Return handling options and order quan-

tities for single period products. European Journal of Operational Research, 151

(1):38–52, 2003.

Harvey M Wagner and Thomson M Whitin. Dynamic version of the economic lot

size model. Management Science, 5(1):89–96, 1958.

Ben Walsh, Rachel Waugh, and Harry Symington. Remanufacturing study -—

circular economy evidence building programme, summary report. Technical

report, Technical Report, Zero Waste Scotland, Stirling, UK, 2015.

C. Wei, Y. Li, and X. Cai. Robust optimal policies of production and inven-

tory with uncertain returns and demand. International Journal of Production

Economics, 134(2):357—-367, 2011.

Wolfram Wiesemann, Daniel Kuhn, and Melvyn Sim. Distributionally robust

convex optimization. Operations Research, 62(6):1358–1376, 2014.

Laurence A Wolsey. Integer programming. Wiley, 1998.

Laurence A Wolsey and George L Nemhauser. Integer and combinatorial optimiza-

tion, volume 55. John Wiley & Sons, 1999.

Tao Wu, Leyuan Shi, Joseph Geunes, and Kerem Akartunalı. An optimization

framework for solving capacitated multi-level lot-sizing problems with backlog-

ging. European Journal of Operational Research, 214(2):428–441, 2011.

129

Tao Wu, Zhe Liang, and Canrong Zhang. Analytics branching and selection for

the capacitated multi-item lot sizing problem with nonidentical machines. IN-

FORMS Journal on Computing, 30(2):236–258, 2018.

Jian Yang, Boaz Golany, and Gang Yu. A concave-cost production planning prob-

lem with remanufacturing options. Naval Research Logistics, 52(5):443–458,

2005.

Willard I Zangwill. A deterministic multi-period production scheduling model with

backlogging. Management Science, 13(1):105–119, 1966.

Willard I Zangwill. A backlogging model and a multi-echelon model of a dynamic

economic lot size production system — A network approach. Management Sci-

ence, 15(9):506–527, 1969.

B. Zeng and L. Zhao. Solving two-stage robust optimization problems using a

column-and-constraint generation method. Operations Research Letters, 41(5):

457–461, 2013.

Minjiao Zhang, Simge Küçükyavuz, and Hande Yaman. A polyhedral study of

multiechelon lot sizing with intermediate demands. Operations Research, 60(4):

918–935, 2012.

130

Appendix A

Codes

A.1 Decomposition Algorithm (LSR-R)

import java.io.*;

import java.lang.management.ManagementFactory;

import java.lang.management.MemoryUsage;

import java.nio.file.Files;

import java.nio.file.Paths;

import java.util.*;

import ilog.concert.IloException;

import ilog.concert.IloIntVar;

import ilog.concert.IloLinearNumExpr;

import ilog.concert.IloNumVar;

import ilog.concert.IloNumVarType;

import ilog.concert.IloRange;

import ilog.cplex.IloCplex;

public class UNCAP_Original_SingScnrioBnd {

//Choice of dataset

public static String ReturnChoice="High";

public static String GammaChoice="High";

public static String SetupChoice="High";

public static String DisposalChoice="Greater";

public static String[] changeReturnChoice = {"","High","Med","Low"};

public static String[] changeGammaChoice = {"","High","Med","Low"};

131

public static String[] changeSetupChoice = {"","VHigh","High","Med","Low"};

public static String[] changeDisposalChoice = {"","Greater","Less"};

public static boolean breakit=false;

public static int flowcover=0;

public static int gomory=0;

public static int covercuts=0;

public static int MIRcuts=0;

public static int sltnindex=0;

public static double RootNodeObj_Original=0;

public static int finalnodesize=0;

public static double prev_best_obj=0;

public static double prev_gap=0;

public static double prev_optimal=0;

public static double timelim=10000;

public static String dmstatus;

public static String advstatus;

public static double initialmipgap=0.2;

public static double k_backlog=10;

public static double mipgap=initialmipgap;

public static double epsilon=0.01; //Defining convergence

public static int maxiteration=20; //Max. number of iterations in each run

public static int initial_servicables_inv=0;

public static int initial_returns_inv=0;

public static int t=50;

public static double K=0; //Setup cost

public static double m=0; //Manufacturing cost per item

public static double r=0; //Remanufacturing cost per item

//Defined as an array to test the impact of changing backlogging cost in the last time

period

public static double[] backlog_cost = new double [t+1];

public static double dis=0; //Disposal cost per item

public static double totaladvtime=0;

public static double totaldmtime=0;

public static double avgadvtime=0;

public static double avgdmtime=0;

public static double avgiteration=0;

132

public static double prodcosts=0;

public static double dm_local_objective=0;

public static double dmtime_ineachrun=0;

public static double advtime_ineachrun=0;

public static double worstrettime_ineachrun=0;

public static double singlesctime_ineachrun=0;

public static double chs = 0; //Servicables’ holding cost

public static double chr = 0; //Returns’ holding cost

public static double[] bigM_dm_setup= new double [t+1];

public static double[] bigM1_adv = new double [t+1];

public static double[] bigM2_adv = new double [t+1];

public static double rhspi_adv=0;

public static double rhspi_dm=0;

public static double[] dbar = new double [t+1];

public static double[] rbar = new double [t+1];

public static double[] dcap = new double [t+1];

public static double[] rcap = new double [t+1];

public static double[] gammaD = new double [t+1];

public static double[] gammaR = new double [t+1];

public static double[][] zd_set = new double [t+1][maxiteration+1];

public static double[] zr_worst = new double [t+1];

public static double[] singlescenario_optimal = new double [maxiteration+1];

public static double singlesc_maximum=0;

public static double[] xm_set = new double [t+1];

public static double[] xr_set = new double [t+1];

public static double[] d_set = new double [t+1];

public static double[] b_set = new double [t+1];

public static double[] theta_set = new double [t+1];

public static double ADVobjective;

public static double DMobjective;

public static int numberofiterations=0;

public static double optimal_pi_DM=0;

public static double optimal_pi_ADV=0;

public static double gap=0;

public static double finalmipgap=0;

public static double ADVub=0;

public static double DMlb=0;

133

public static int addtocases=0;

public static int runmanytimes=0;

public static long dmtimestart=0;

public static long dmtimeend=0;

public static long advtimestart=0;

public static long advtimeend=0;

public static long worstrettimestart=0;

public static long worstrettimeend=0;

public static long singlesctimestart=0;

public static long singlesctimeend=0;

public static int breaknow=0;

public static void main(String[] args) throws Exception, Exception {

float countconvergence=0;

float countnonconvergence=0;

File sltns_rootnode = new

File("Kblog_"+k_backlog+"UNCAP_Org_SinSc_RootNode_Sltns_"+t+".txt");

//Run for many instances

for (int runmnyret=1; runmnyret<=3; runmnyret++) {

//Change returns dataset

ReturnChoice=changeReturnChoice[runmnyret];

for (int runmnygam=1; runmnygam<=3; runmnygam++) {

//Change gamma dataset

GammaChoice=changeGammaChoice[runmnygam];

for (int runmnyset=1; runmnyset<=1; runmnyset++) {

//Change setup cost dataset

SetupChoice=changeSetupChoice[runmnyset];

for (int runmnydisp=1; runmnydisp<=2; runmnydisp++) {

DisposalChoice=changeDisposalChoice[runmnydisp];

for (runmanytimes=1; runmanytimes<=5; runmanytimes++) {

singlesctime_ineachrun=0;

worstrettime_ineachrun=0;

dmtime_ineachrun=0;

134

advtime_ineachrun=0;

ADVub=0;

DMlb=0;

addtocases=0;

File f = new File("C:\\Users\\npb15184\\Desktop\\LSRData\\"+ReturnChoice

+GammaChoice +SetupChoice +DisposalChoice +"\\DataR" +ReturnChoice

+"Gamma" +GammaChoice +"K" +SetupChoice +"Disposal" +DisposalChoice

+runmanytimes +".txt");

BufferedReader freader = new BufferedReader(new FileReader(f));

String s;

int myt=1;

while ((s = freader.readLine()) != null && myt<=t) {

String[] st = s.split(" ");

ArrayList<String> results_without_blanks = new ArrayList<String>();

for (String current_string : st) {

if (current_string != null && !current_string.isEmpty()) {

results_without_blanks.add(current_string);

}

}

if (results_without_blanks.size()>0) {

if (results_without_blanks.get(0).startsWith(""+myt+"")){

dbar[myt]=Math.ceil(Double.parseDouble(results_without_blanks.get(1)));

rbar[myt]=Math.ceil(Double.parseDouble(results_without_blanks.get(2)));

dcap[myt]=Math.ceil(Double.parseDouble(results_without_blanks.get(3)));

rcap[myt]=Math.ceil(Double.parseDouble(results_without_blanks.get(4)));

K=Double.parseDouble(results_without_blanks.get(5));

chs=Double.parseDouble(results_without_blanks.get(6));

chr=Double.parseDouble(results_without_blanks.get(7));

for (int time=1; time<=t; time++) {

backlog_cost[time]=Double.parseDouble(results_without_blanks.get(8));}

gammaD[myt]=Double.parseDouble(results_without_blanks.get(9));

gammaR[myt]=Double.parseDouble(results_without_blanks.get(10));

m=Double.parseDouble(results_without_blanks.get(11));

r=Double.parseDouble(results_without_blanks.get(12));

dis=Double.parseDouble(results_without_blanks.get(13));

myt++;

}

135

}

}

backlog_cost[t]=k_backlog*backlog_cost[1];

long startTime=0;

for (int mm=1; mm<=maxiteration; mm++) {

if (mm==1) {

numberofiterations=0;

zd_set = new double [t+1][maxiteration+1];

startTime = System.currentTimeMillis();

}

numberofiterations++;

if (numberofiterations==1) { //Only run this once.

zr_worst = new double [t+1];

returns_precompute();

mipgap=initialmipgap; //Reset mipgap to initial mipgap

}

facloc_singlescenario (); //Find the opt. sltn. to single scenario case

to potentially generate good initial MIP sltns.

preret_decisionmakers ();

singlesc_maximum=0; //Reset

preret_adversarial () ;

advtimeend=0; //Reset

advtimestart=0;

dmtimeend=0;

dmtimestart=0;

worstrettimeend=0;

worstrettimestart=0;

if (breakit==true) {

breakit=false;

break;

}

if (numberofiterations==1) {

mipgap=initialmipgap; //Start from higher MIP gap tolerances for

earlier scenarios

}

if (gap<= epsilon && mipgap<=0.01) {

136

mipgap=initialmipgap; //Reverse mipgap tolerance to a greater value

singlesctime_ineachrun=0;

worstrettime_ineachrun=0;

dmtime_ineachrun=0;

advtime_ineachrun=0;

System.out.println("Number of iterations "+numberofiterations);

avgiteration+=numberofiterations;

System.out.println("--------------");

countconvergence++;

break;

}

else

if (mm==maxiteration) {

long endTime = System.currentTimeMillis();

MemoryUsage heapMemoryUsage =

ManagementFactory.getMemoryMXBean().getHeapMemoryUsage();

countnonconvergence++;

System.out.println("Max iteration reached");

} else {

if (gap<=epsilon) {

mipgap=0.01;

}

}

if (gap>=5*epsilon && mipgap>0.01) {

//Gap is still too large, reduce mipgap tolerance by a greater value

mipgap=mipgap*0.7;

} else

{ //Gap is smaller, reduce mipgap tolerance by a slightly smaller value

if (mipgap>0.01){

mipgap=mipgap*0.9;}

}

}

} //Instance

} //Disposal options

} //Setup costs

} //Gamma

} //Returns

137

}

public static void preret_adversarial () throws FileNotFoundException {

advtimestart = System.currentTimeMillis();

double[] xm_f = new double [t+1]; //Manufactured items

double[] xr_f = new double [t+1]; //Remanufactured items

double[] d_f = new double [t+1]; //Disposed returns

//Fixed Variables for the Adversarial Problem

for (int i=1; i<=t; i++) {

xm_f[i] = xm_set[i];

xr_f[i] =xr_set[i];

d_f[i]=d_set[i];

}

try {

IloCplex cplex = new IloCplex();

File advlog = new File("Kblog_"+ k_backlog+ "UNCAP_SingleScenario_MIPgap_"

+initialmipgap +"_v127_ADVLOG_MILP_" + ReturnChoice+ GammaChoice+ SetupChoice+

DisposalChoice+ t+ ".txt");

PrintWriter advwrite = new PrintWriter(new BufferedWriter(new FileWriter("Kblog_"+

k_backlog+ "UNCAP_SingleScenario_MIPgap_"+ initialmipgap+ "_v127_ADVLOG_MILP_"+

ReturnChoice+ GammaChoice+ SetupChoice+ DisposalChoice+ t+ ".txt", true)));

advwrite.println(" ");

advwrite.print("INSTANCE "+runmanytimes+" ITERATION "+numberofiterations+" ");

advwrite.close();

FileOutputStream oFile = new FileOutputStream(advlog, true);

cplex.setOut(oFile);

cplex.setParam(IloCplex.Param.TimeLimit, (Math.max((timelim-

(worstrettime_ineachrun+ dmtime_ineachrun+ advtime_ineachrun) /1000),0)));

String[] ZDname = new String [t+1];

String[] HSname = new String [t+1];

String[] HRname = new String [t+1];

String[] sname = new String [t+1];

//Decision Variables

for (int names=0; names<=t; names++) {

ZDname[names] = "ZD_" + names;

HSname[names] = "HS_" + names;

HRname[names] = "HR_" + names;

138

sname[names] = "s_" + names;

}

IloNumVar[] HS = cplex.numVarArray (t+1,-Double.MAX_VALUE,Double.MAX_VALUE,

IloNumVarType.Float,HSname);

IloNumVar[] zd = cplex.numVarArray (t+1,0,Double.MAX_VALUE,

IloNumVarType.Float,ZDname);

IloNumVar pi_adv = cplex.numVar(0, Double.MAX_VALUE, IloNumVarType.Float, "pi_adv");

IloIntVar[] s = cplex.boolVarArray (t+1,sname);

//Objective Function

IloLinearNumExpr obj = cplex.linearNumExpr();

obj.addTerm(1, pi_adv);

cplex.addMaximize(obj);

//Constraints

Arrays.fill(bigM1_adv,0);

Arrays.fill(bigM2_adv,0);

double rhs2=0, rhs3=0, rhs4=0, rhs5=0, rhs6=0, rhs7=0, rhs8=0, rhs10=0, rhs11=0;

//set big m values

for (int setms=1; setms<=t; setms++){

if (setms==1) {

bigM2_adv[setms]= (chs*(xm_f[setms]+ xr_f[setms]- (dbar[setms]- dcap[setms])))+

(backlog_cost[setms]* (xm_f[setms]+ xr_f[setms]- (dbar[setms]-

dcap[setms])));

bigM1_adv[setms]= (-backlog_cost[setms] *(xm_f[setms]+ xr_f[setms]-

(dbar[setms]+dcap[setms]))) -(chs*(xm_f[setms]+ xr_f[setms]-

(dbar[setms]+dcap[setms])));

} else {

bigM2_adv[setms]=bigM2_adv[setms-1]+ (chs*(xm_f[setms]+ xr_f[setms]-

(dbar[setms]- dcap[setms])))+ (backlog_cost[setms]* (xm_f[setms]+

xr_f[setms]- (dbar[setms]- dcap[setms])));

bigM1_adv[setms]= bigM1_adv[setms-1]+ (-backlog_cost[setms]*

(xm_f[setms]+xr_f[setms] -(dbar[setms]+dcap[setms]))) -(chs*(xm_f[setms]+

xr_f[setms]- (dbar[setms]+dcap[setms])));

}

}

//-1- Pi Constraint

IloLinearNumExpr lhs1 = cplex.linearNumExpr(); //Setting LHS

for(int i=1; i <= t; i++) {

139

lhs1.addTerm(-1,HS[i]);

}

lhs1.addTerm(1,pi_adv); //...more variables (LHS)

IloRange con1 = cplex.addLe(lhs1,rhspi_adv);

rhspi_adv=0;

lhs1.clear();

//HS_t first constraint (GE), case of holding inventory

IloLinearNumExpr lhs10 = cplex.linearNumExpr(); //Setting LHS

for(int i=1; i <= t; i++) {

lhs10.addTerm(1,HS[i]);

for(int tt=1; tt <= i; tt++) {

lhs10.addTerm(chs*dcap[tt], zd[tt]);

rhs10+=(chs*(xm_f[tt]+xr_f[tt]-dbar[tt])); //RHS

}

rhs10+=chs*initial_servicables_inv;

IloRange con10 = cplex.addGe(lhs10,rhs10);

rhs10=0;

lhs10.clear();

}

//HS_t second constraint (GE), case of backlogging

IloLinearNumExpr lhs11 = cplex.linearNumExpr(); //Setting LHS

for(int i=1; i <= t; i++) {

lhs11.addTerm(1,HS[i]);

for(int tt=1; tt <= i; tt++) {

lhs11.addTerm(-backlog_cost[tt]*dcap[tt], zd[tt]);

rhs11+=(-backlog_cost[tt]*(xm_f[tt]+xr_f[tt]-dbar[tt]));

}

rhs11+=-backlog_cost[i]*initial_servicables_inv;

IloRange con11 = cplex.addGe(lhs11,rhs11);

rhs11=0;

lhs11.clear();

}

//HS_t first constraint, case of holding inventory

IloLinearNumExpr lhs2 = cplex.linearNumExpr(); //Setting LHS

for(int i=1; i <= t; i++) {

lhs2.addTerm(1,HS[i]);

lhs2.addTerm(bigM1_adv[i], s[i]);

140

for(int tt=1; tt <= i; tt++) {

lhs2.addTerm(chs*dcap[tt], zd[tt]);

rhs2+=(chs*(xm_f[tt]+xr_f[tt]-dbar[tt]));

}

rhs2+=chs*initial_servicables_inv+bigM1_adv[i];

IloRange con2 = cplex.addLe(lhs2,rhs2);

rhs2=0;

lhs2.clear();

}

//HS_t second constraint, case of backlogging..

IloLinearNumExpr lhs5 = cplex.linearNumExpr();

for(int i=1; i <= t; i++) {

lhs5.addTerm(1,HS[i]);

lhs5.addTerm(-bigM2_adv[i], s[i]);

for(int tt=1; tt <= i; tt++) {

lhs5.addTerm(-backlog_cost[tt]*dcap[tt], zd[tt]);

rhs5+=(-backlog_cost[tt]*(xm_f[tt]+xr_f[tt]-dbar[tt]));

}

rhs5+=-backlog_cost[i]*initial_servicables_inv;

IloRange con5 = cplex.addLe(lhs5,rhs5);

rhs5=0;

lhs5.clear();

}

//HS_t third constraint

IloLinearNumExpr lhs6 = cplex.linearNumExpr();

for(int i=1; i <= t; i++) {

for(int tt=1; tt <= i; tt++) {

lhs6.addTerm(-dcap[tt], zd[tt]);

lhs6.addTerm(-1*(xm_f[tt]+xr_f[tt]-dbar[tt]+dcap[tt]), s[i]);

rhs6+=(-1*(xm_f[tt]+xr_f[tt]-dbar[tt]));

}

IloRange con6 = cplex.addLe(lhs6,rhs6);

rhs6=0;

lhs6.clear();

}

//HS_t fourth constraint

IloLinearNumExpr lhs7 = cplex.linearNumExpr();

141

for(int i=1; i <= t; i++) {

for(int tt=1; tt <= i; tt++) {

lhs7.addTerm(dcap[tt], zd[tt]);

lhs7.addTerm(-1*(xm_f[tt]+ xr_f[tt]- dbar[tt]- dcap[tt]), s[i]);

rhs7+=(dcap[tt]);

}

IloRange con7 = cplex.addLe(lhs7,rhs7);

rhs7=0;

lhs7.clear();

}

for (int i=1; i<=t; i++) { //Forall t=1..T

cplex.addGe(zd[i],0);

cplex.addLe(zd[i],1);

}

//Gamma constraint

IloLinearNumExpr lhs3 = cplex.linearNumExpr(); //LHS

for (int j=1; j<=t; j++) { //Forall t=1..T

rhs3=gammaD[j];

for (int i=1; i<=j; i++){

lhs3.addTerm(1,zd[i]);

}

cplex.addLe(lhs3, rhs3);

rhs3=0;

lhs3.clear();

}

//Solve

if (cplex.solve()){

int constraints=cplex.getNrows();

int variables=cplex.getNcols();

optimal_pi_ADV=cplex.getValue(pi_adv);

advtimeend = System.currentTimeMillis();

totaladvtime=totaladvtime+ advtimeend - advtimestart;

advstatus=" "+cplex.getStatus()+" ";

//Local UB

System.out.println("ADV objective "+ cplex.getObjValue());

//Global UB

if (numberofiterations==1) {

142

ADVub=(cplex.getValue(pi_adv)+prodcosts);

}

ADVub = Math.min(ADVub,(cplex.getValue(pi_adv)+prodcosts));

System.out.println("pi_ADV "+cplex.getValue(pi_adv)+" ");

if(DMlb>=ADVub) {

gap=((ADVub-dm_local_objective)/dm_local_objective);//use local lb

} else {

gap=((ADVub-DMlb)/DMlb);//use global lb

}

try {

PrintWriter outcases = new PrintWriter(new BufferedWriter(new

FileWriter("Kblog_"+ k_backlog+ "UNCAP_SingleScenario_MIPgap_"+

initialmipgap+ "_v127_MILP_"+ ReturnChoice+ GammaChoice+ SetupChoice+

DisposalChoice+ t+".txt", true)));

if (numberofiterations==1 && runmanytimes==1) {

outcases.write("RUN ");

outcases.write("ITERATION ");

outcases.write("GLOBAL_LB ");

outcases.write("PI_DM ");

outcases.write("GLOBAL_UB ");

outcases.write("LOCAL_UB ");

outcases.write("PI_ADV ");

outcases.write("GAP ");

outcases.write("FINAL_NODE_SIZE ");

outcases.write("TIME_TAKEN_DM ");

outcases.write("TIME_TAKEN_ADV ");

outcases.write("TIME_TAKEN_WRZ ");

outcases.write("TIME_TAKEN_SINGLE_SCENARIO ");

outcases.write("FINAL_MIP_GAP ");

outcases.println(" ");

}

outcases.print(runmanytimes+" ");

outcases.print(numberofiterations+" ");

outcases.print(DMlb+" ");

outcases.print(optimal_pi_DM+" ");

outcases.print(ADVub+" ");

143

outcases.print((cplex.getValue(pi_adv)+prodcosts)+" ");

outcases.print(optimal_pi_ADV+" ");

outcases.print(gap+" ");

outcases.print(finalnodesize+" ");

outcases.print(dmtimeend - dmtimestart+" ");

singlesctime_ineachrun+=singlesctimeend - singlesctimestart;

worstrettime_ineachrun+=worstrettimeend - worstrettimestart;

dmtime_ineachrun+=dmtimeend - dmtimestart;

advtime_ineachrun+=advtimeend - advtimestart;

if (gap<=epsilon){

outcases.print(advtimeend - advtimestart+" ");

outcases.print(worstrettimeend - worstrettimestart+" ");

outcases.print(singlesctimeend - singlesctimestart+" ");

outcases.print(finalmipgap+" ");

outcases.print("DM_STATUS : "+dmstatus+" ");

outcases.print("ADV_STATUS :"+advstatus+" ");

outcases.print("FINAL_GAP :"+mipgap+" ");

outcases.println(numberofiterations+" ");

} else {

outcases.print(advtimeend - advtimestart+" ");

outcases.print(worstrettimeend - worstrettimestart+" ");

outcases.print(singlesctimeend - singlesctimestart+" ");

outcases.print(finalmipgap+" ");

outcases.print("DM_STATUS : "+dmstatus+" ");

outcases.println("ADV_STATUS :"+advstatus+ " ");

}

outcases.close();

} catch (IOException e) {}

dmtimeend=0;

dmtimestart=0;

advtimeend=0;

advtimestart=0;

worstrettimeend=0;

worstrettimestart=0;

singlesctimeend=0;

singlesctimestart=0;

for (int i=1; i<=t; i++) {

144

zd_set[i][numberofiterations]=cplex.getValue(zd[i]);

}

cplex.end();

}

}

catch (IloException exc) {

exc.printStackTrace();

} catch (IOException e1) {

e1.printStackTrace(); }}

public static void preret_decisionmakers () throws FileNotFoundException {

dm_local_objective=0;

dmtimestart = System.currentTimeMillis();

double[] zd_f = new double [t+1];

//Fixed Variables for the Decision Maker’s Problem

for (int i=1; i<=t; i++) {

zd_f[i]=zd_set[i][numberofiterations-1];

}

try {

IloCplex cplex = new IloCplex();

File dmlog = new File("Kblog_"+k_backlog+ "UNCAP_SingleScenario_MIPgap_"

+initialmipgap+ "_v127_DMLOG_MILP_" +ReturnChoice+ GammaChoice+ SetupChoice+

DisposalChoice+ t+".txt");

PrintWriter dmwrite = new PrintWriter(new BufferedWriter(new FileWriter("Kblog_"+

k_backlog+ "UNCAP_SingleScenario_MIPgap_"+ initialmipgap+ "_v127_DMLOG_MILP_"+

ReturnChoice+ GammaChoice+ SetupChoice+ DisposalChoice+ t+ ".txt", true)));

dmwrite.print("INSTANCE "+runmanytimes+" ITERATION "+numberofiterations+" ");

dmwrite.close();

FileOutputStream o2File = new FileOutputStream(dmlog, true);

cplex.setOut(o2File);

cplex.setParam(IloCplex.Param.MIP.Tolerances.MIPGap, mipgap);

cplex.setParam(IloCplex.Param.TimeLimit,

(Math.max((timelim-(worstrettime_ineachrun+dmtime_ineachrun+advtime_ineachrun)/1000),0)));

String[] HSname = new String [t+1];

String[] HRname = new String [t+1];

String[] xmname = new String [t+1];

String[] xrname = new String [t+1];

145

String[] dname = new String [t+1];

String[] yname = new String [t+1];

//Decision Variables

for (int names=0; names<=t; names++) {

HSname[names] = "HS" + names;

HRname[names] = "HR" + names;

xmname[names] = "xm" + names;

xrname[names] = "xr" + names;

dname[names] = "d" + names;

yname[names] = "y" + names;

}

IloNumVar[] xm = cplex.numVarArray (t+1,0,Double.MAX_VALUE, IloNumVarType.Int,

xmname);

IloNumVar[] xr = cplex.numVarArray (t+1,0,Double.MAX_VALUE, IloNumVarType.Int,

xrname);

IloNumVar[] d = cplex.numVarArray (t+1,0,Double.MAX_VALUE, IloNumVarType.Int,dname);

IloIntVar[] y = cplex.boolVarArray (t+1,yname);

IloNumVar[][] HS = new IloNumVar[t+1][];

for (int i = 1; i <= t; i++) {

HS[i] = cplex.numVarArray(numberofiterations+1, Double.MIN_VALUE,

Double.MAX_VALUE);

}

IloNumVar pi_dm = cplex.numVar(0, Double.MAX_VALUE, IloNumVarType.Float, "pi_dm");

//Objective

IloLinearNumExpr obj = cplex.linearNumExpr();

obj.addTerm(1, pi_dm);

for(int i=1; i<=t; i++){

obj.addTerm(K, y[i]);

obj.addTerm(m, xm[i]);

obj.addTerm(r, xr[i]);

obj.addTerm(dis, d[i]);

}

cplex.addMinimize(obj);

//Constraints

double rhs2=0, rhs3=0, rhs4=0, rhs6=0;

//-1- Pi Constraint

146

IloLinearNumExpr lhs9 = cplex.linearNumExpr(); //LHS

for(int prev_iterations=1; prev_iterations <= numberofiterations; prev_iterations++)

{

for(int i=1; i <= t; i++) { //sum i=1 ... T

lhs9.addTerm(-1,HS[i][prev_iterations]);

for(int tt=1; tt <= i; tt++) { //sum 1..i

lhs9.addTerm(chr, d[tt]);

lhs9.addTerm(chr, xr[tt]);

rhspi_dm+=(chr*(rbar[tt]+(rcap[tt]*zr_worst[tt]))); //RHS

}

}

lhs9.addTerm(1,pi_dm); //...more variables (LHS)

IloRange con9 = cplex.addGe(lhs9,rhspi_dm);

rhspi_dm=0;

lhs9.clear();

}

//-2- HS Balance Constraint - Case of holding inventory

IloLinearNumExpr lhs2 = cplex.linearNumExpr(); //LHS

for(int prev_iterations=1; prev_iterations <= numberofiterations; prev_iterations++)

{

for(int i=1; i <= t; i++) { //i=1 ... T

for(int tt=1; tt <= i; tt++) { //sum 1..i

lhs2.addTerm(-chs, xm[tt]);

lhs2.addTerm(-chs, xr[tt]);

rhs2+=(-chs*(dbar[tt]+(dcap[tt]*zd_set[tt][prev_iterations-1]))); //RHS

}

rhs2+=chs*initial_servicables_inv;

lhs2.addTerm(1,HS[i][prev_iterations]);

IloRange con2 = cplex.addGe(lhs2,rhs2);

rhs2=0;

lhs2.clear();

}

}

//-3- HS Balance Constraint - Case of backlogging

IloLinearNumExpr lhs3 = cplex.linearNumExpr(); //LHS

for(int prev_iterations=1; prev_iterations <= numberofiterations; prev_iterations++)

{

147

for(int i=1; i <= t; i++) { //i=1 ... T

for(int tt=1; tt <= i; tt++) { //sum 1..i

lhs3.addTerm(backlog_cost[tt], xm[tt]);

lhs3.addTerm(backlog_cost[tt], xr[tt]);

rhs3+=(backlog_cost[tt]* (dbar[tt]+(dcap[tt]*

zd_set[tt][prev_iterations-1]))); //RHS

}

rhs3+=-backlog_cost[i]*initial_servicables_inv;

lhs3.addTerm(1,HS[i][prev_iterations]);

IloRange con3 = cplex.addGe(lhs3,rhs3);

rhs3=0;

lhs3.clear();

}

}

Arrays.fill(bigM_dm_setup,0);

double sumofds=0;

for(int tt=1; tt<=t; tt++){

sumofds=sumofds+dbar[tt] + dcap[tt];

}

Arrays.fill(bigM_dm_setup,sumofds);

System.out.print("bigM = [");

for (int tt=1; tt<=t; tt++) {

System.out.print(bigM_dm_setup[tt]);

if (tt != t) {

System.out.print(","); } else {

System.out.println("]");

}

}

//-5- Setup constraint

IloLinearNumExpr lhs5 = cplex.linearNumExpr(); //LHS

for (int j=1; j<=t; j++) {

lhs5.addTerm(bigM_dm_setup[j], y[j]);

lhs5.addTerm(-1, xm[j]);

lhs5.addTerm(-1 , xr[j]);

cplex.addGe(lhs5, 0);

lhs5.clear();

}

148

//-6- Returns nonnegativity

IloLinearNumExpr lhs6 = cplex.linearNumExpr();

for(int i=1; i <= t; i++) {

for(int tt=1; tt <= i; tt++) { //sum 1..i

lhs6.addTerm(chr, xr[tt]);

lhs6.addTerm(chr, d[tt]);

rhs6+=(chr*(rbar[tt]));

}

IloRange con6 = cplex.addLe(lhs6,rhs6);

rhs6=0;

lhs6.clear();

}

/*Setting branching priority*/

int mypri=t;

for(int pri=1; pri<=t; pri++){

cplex.setPriority(y[pri], mypri);

mypri--;

}

cplex.setParam(IloCplex.Param.Emphasis.MIP, 3);

//Solve

cplex.setParam(IloCplex.IntParam.AdvInd,2);

cplex.readMIPStarts("optimal_sltn_iteration_" +(numberofiterations-1) +"_run_"

+runmanytimes +".sol");

if (cplex.solve()){

finalmipgap = cplex.getMIPRelativeGap();

prodcosts = cplex.getObjValue() - cplex.getValue(pi_dm);

prev_best_obj=cplex.getBestObjValue(); //Gets the best bound at optimal.

prev_gap=mipgap;

prev_optimal=cplex.getObjValue();

int constraints=cplex.getNrows();

int variables=cplex.getNcols();

DMobjective = cplex.getObjValue();

optimal_pi_DM=cplex.getValue(pi_dm);

dmtimeend = System.currentTimeMillis();

File mipstart_dm = new File("optimal_sltn_iteration_" +numberofiterations+

"_run_"+ runmanytimes+ ".sol");

mipstart_dm.delete();

149

cplex.writeMIPStarts("optimal_sltn_iteration_" +numberofiterations+ "_run_"+

runmanytimes+ ".sol");

File mystart= new File("optimal_sltn_iteration_"+ numberofiterations+ "_run_"+

runmanytimes+ ".sol");

String search = "MIPStartEffortLevel=\"0\"";

String replace = "MIPStartEffortLevel=\"2\"";

try{

FileReader fr = new FileReader(mystart);

String s;

String totalStr = "";

try (BufferedReader br = new BufferedReader(fr)) {

while ((s = br.readLine()) != null) {

totalStr += s + "\n";

if (s.length() >= 17) {

if (s.substring(0, 17).equals(" solutionIndex")) {

Scanner in = new Scanner(s).useDelimiter("[^0-9]+");

sltnindex = in.nextInt();

}

}

}

totalStr = totalStr.replaceAll(search, replace);

FileWriter fw = new FileWriter(mystart);

fw.write(totalStr);

fw.close();

}

}catch(Exception e){

e.printStackTrace();

}

finalnodesize=cplex.getNnodes();//final node size

} else{

breakit=true;

}

System.out.println("DM STATUS : "+cplex.getCplexStatus());

dmstatus=" "+cplex.getCplexStatus()+" ";

System.out.println("DM objective "+ cplex.getObjValue());

dm_local_objective=cplex.getObjValue();

150

DMlb = Math.max(DMlb,cplex.getObjValue());

System.out.print(" pi_DM "+cplex.getValue(pi_dm)+" ");

totaldmtime=totaldmtime+dmtimeend - dmtimestart;

for (int i=1; i<=t; i++) {

xm_set[i]=cplex.getValue(xm[i]);

xr_set[i]=cplex.getValue(xr[i]);

d_set[i]=cplex.getValue(d[i]);

}

cplex.end();

}

catch (IloException exc) {

exc.printStackTrace();

}

catch (IOException e) {

e.printStackTrace(); }}

public static void returns_precompute () throws FileNotFoundException {

worstrettimestart = System.currentTimeMillis();

try {

IloCplex cplex = new IloCplex();

File worstretlog = new File("Kblog_"+ k_backlog+ "UNCAP_RetPreComp_MIPgap_"+

initialmipgap+ "_v127_WORSTRETLOG_MILP_"+ ReturnChoice+ GammaChoice+ SetupChoice+

DisposalChoice+ t+ ".txt");

PrintWriter worstretwrite = new PrintWriter(new BufferedWriter(new

FileWriter("Kblog_"+ k_backlog+ "UNCAP_RetPreComp_MIPgap_"+ initialmipgap+

"_v127_WORSTRET_MILP_"+ ReturnChoice+ GammaChoice+ SetupChoice+ DisposalChoice+

t+ ".txt", true)));

worstretwrite.println(" ");

worstretwrite.print("INSTANCE "+runmanytimes+" ITERATION "+numberofiterations+" ");

worstretwrite.close();

FileOutputStream o2File = new FileOutputStream(worstretlog, true);

cplex.setOut(o2File);

cplex.setParam(IloCplex.Param.TimeLimit, (Math.max((timelim-

(worstrettime_ineachrun+ dmtime_ineachrun+ advtime_ineachrun)/1000), 0)));

String[] worstretname = new String [t+1];

//Decision Variables

for (int names=0; names<=t; names++) {

151

worstretname[names] = "wzr" + names;

}

IloNumVar[] wzr = cplex.numVarArray (t+1,0,1, IloNumVarType.Float, worstretname);

//Objective

IloLinearNumExpr obj = cplex.linearNumExpr();

for(int i=1; i<=t; i++){

obj.addTerm((t-i+1)*rcap[i], wzr[i]);

}

cplex.addMaximize(obj);

//Constraints

double rhs=0;

//-1- Gamma constraint

IloLinearNumExpr lhs = cplex.linearNumExpr();

for(int i=1; i <= t; i++) {

for(int tt=1; tt <= i; tt++) {

lhs.addTerm(1, wzr[tt]);

}

rhs = gammaR[i];

IloRange con = cplex.addLe(lhs,rhs);

rhs=0;

lhs.clear();

}

//Solve

if (cplex.solve()){

worstrettimeend = System.currentTimeMillis();

}

else{

breakit=true;

}

for (int i=1; i<=t; i++) {

zr_worst[i]=cplex.getValue(wzr[i]);

}

cplex.end();

}

catch (IloException exc) {

exc.printStackTrace();

} catch (IOException e) {

152

e.printStackTrace();

}}

public static void facloc_singlescenario () throws FileNotFoundException {

singlesctimestart = System.currentTimeMillis();

double[] zd_f = new double [t+1];

for (int i=1; i<=t; i++) {

zd_f[i]=zd_set[i][numberofiterations-1];

}

try {

IloCplex cplex = new IloCplex();

File dmlog = new File("Kblog_"+ k_backlog+ "UNCAP_SingleScenario_MIPgap_"+

initialmipgap+ "_v127_SINGLESCLOG_MILP_OurDataSets_"+ ReturnChoice+ GammaChoice+

SetupChoice+ DisposalChoice+ t+ ".txt");

PrintWriter dmwrite = new PrintWriter(new BufferedWriter(new FileWriter("Kblog_"

+k_backlog +"UNCAP_SingleScenario_MIPgap_" +initialmipgap

+"_v127_SINGLESCLOG_MILP_OurDataSets_" +ReturnChoice +GammaChoice +SetupChoice

+DisposalChoice +t +".txt", true)));

dmwrite.print("INSTANCE "+runmanytimes+" ITERATION "+numberofiterations+" ");

dmwrite.close();

FileOutputStream o2File = new FileOutputStream(dmlog, true);

cplex.setOut(o2File);

cplex.setParam(IloCplex.Param.TimeLimit,

(Math.max((timelim-(singlesctime_ineachrun+worstrettime_ineachrun+dmtime_ineachrun+advtime_ineachrun)/1000),0)));

String[] HSname = new String [t+1];

String[] HRname = new String [t+1];

String[] xmtildename = new String [t+2];

String[] xrtildename = new String [t+2];

String[] xmname = new String [t+1];

String[] xrname = new String [t+1];

String[] dname = new String [t+1];

String[] yname = new String [t+1];

String[] hstildename = new String [t+1];

String[] hrtildename = new String [t+1];

String[] btildename = new String [t+1];

//Decision Variables

for (int names=0; names<=t; names++) {

153

HSname[names] = "HS" +names;

HRname[names] = "HR" +names ;

xmname[names] = "xm" + names;

xrname[names] = "xr" + names;

dname[names] = "d" + names;

yname[names] = "y" + names;

hstildename[names]= "hstilde" + names;

hrtildename[names] = "hrtilde" + names;

btildename[names] = "btilde" + names;

}

for (int names=0; names<=t+1; names++) {

xmtildename[names] = "xmtilde" + names ;

xrtildename[names] = "xrtilde" + names;

}

IloNumVar[] HS = cplex.numVarArray (t+1,0,Double.MAX_VALUE, IloNumVarType.Float,

HSname);

IloNumVar[] HR = cplex.numVarArray (t+1,0,Double.MAX_VALUE, IloNumVarType.Float,

HRname);

IloNumVar[] B = cplex.numVarArray (t+1,0,Double.MAX_VALUE, IloNumVarType.Float,

HRname);

IloNumVar[] xmtot = cplex.numVarArray (t+1,0,Double.MAX_VALUE, IloNumVarType.Float,

xmname);

IloNumVar[] xrtot = cplex.numVarArray (t+1,0,Double.MAX_VALUE, IloNumVarType.Float,

xrname);

IloNumVar[] d = cplex.numVarArray (t+1,0,Double.MAX_VALUE, IloNumVarType.Int,dname);

IloIntVar[] y = cplex.boolVarArray (t+1,yname);

IloNumVar[][] xm = new IloNumVar[t+2][];

for (int i = 1; i <= t+1; i++) {

xm[i] = cplex.numVarArray(t+2, 0, Double.MAX_VALUE, IloNumVarType.Int,

xmtildename);

}

IloNumVar[][] xr = new IloNumVar[t+2][];

for (int i = 1; i <= t+1; i++) {

xr[i] = cplex.numVarArray(t+2, 0, Double.MAX_VALUE, IloNumVarType.Int,

xrtildename);

}

154

IloNumVar pi_dm = cplex.numVar(0, Double.MAX_VALUE, IloNumVarType.Float, "pi_dm");

//Objective

IloLinearNumExpr obj = cplex.linearNumExpr();

obj.addTerm(1, pi_dm);

for(int i=1; i<=t; i++){

obj.addTerm(K, y[i]);

for (int mm=1; mm<=t; mm++) {

obj.addTerm(m, xm[mm][i]);

obj.addTerm(r, xr[mm][i]);}

obj.addTerm(dis, d[i]);

}

cplex.addMinimize(obj);

//Constraints

double rhs2=0, rhs3=0, rhs4=0, rhs5=0, rhs13=0, rhs14=0;

IloLinearNumExpr lhsxmsum = cplex.linearNumExpr();

IloLinearNumExpr lhsxrsum = cplex.linearNumExpr();

lhsxmsum.clear();

lhsxrsum.clear();

for (int i=1; i<=t; i++) {

for (int tt=1; tt<=t+1; tt++) {

lhsxmsum.addTerm(-1, xm[i][tt]);

lhsxrsum.addTerm(-1, xr[i][tt]);

}

lhsxmsum.addTerm(1, xmtot[i]);

lhsxrsum.addTerm(1, xrtot[i]);

cplex.addEq(lhsxmsum,0);

cplex.addEq(lhsxrsum,0);

lhsxmsum.clear();

lhsxrsum.clear();

}

IloLinearNumExpr lhspi = cplex.linearNumExpr();

for(int i=1; i <= t; i++) { //sum i=1 ... T

lhspi.addTerm(-1,HS[i]);

lhspi.addTerm(-1,HR[i]);

lhspi.addTerm(-1,B[i]);

}

155

lhspi.addTerm(1,pi_dm); //...more variables (LHS)

IloRange con9 = cplex.addGe(lhspi,0);

lhspi.clear();

//-2- HS Balance Constraint - Case of holding inventory

IloLinearNumExpr lhs2 = cplex.linearNumExpr(); //Setting LHS of our constraint..

for(int i=1; i <= t; i++) { //i=1 ... T

for(int tt=1; tt <= i; tt++) { //sum 1..i

for (int tt2=i+1; tt2 <= t+1; tt2++) { //sum i+1..T+1

lhs2.addTerm(-chs, xm[tt][tt2]);

lhs2.addTerm(-chs, xr[tt][tt2]);

}

}

lhs2.addTerm(1,HS[i]);

IloRange con2 = cplex.addEq(lhs2,0);

con2.setName("HSTilde_LastIt_Inv_"+numberofiterations);

lhs2.clear();

}

//-3- Returns inventory

IloLinearNumExpr lhs3 = cplex.linearNumExpr();

for(int i=1; i <= t; i++) {

for(int tt=1; tt <= i; tt++) {

lhs3.addTerm(chr, d[tt]);

rhs3+=chr*(rbar[tt]+(rcap[tt]*zr_worst[tt]));

for (int tt2=1; tt2 <= t+1; tt2++) {

lhs3.addTerm(chr, xr[tt][tt2]);

}

}

lhs3.addTerm(1,HR[i]);

IloRange con3 = cplex.addEq(lhs3,rhs3);

con3.setName("HRTilde_LastIt_"+numberofiterations);

lhs3.clear();

rhs3=0;

}

// -4- Backlogging

IloLinearNumExpr lhs4 = cplex.linearNumExpr();

for(int i=1; i <= t; i++) {

for(int tt=1; tt <= i; tt++) {

156

for (int tt2=i+1; tt2 <= t+1; tt2++) {

lhs4.addTerm(-backlog_cost[tt2-1], xm[tt2][tt]);

lhs4.addTerm(-backlog_cost[tt2-1], xr[tt2][tt]);

}

}

lhs4.addTerm(1,B[i]);

IloRange con4 = cplex.addEq(lhs4,0);

con4.setName("Blog_"+numberofiterations);

lhs4.clear();

}

// -5- Demand Satisfaction

IloLinearNumExpr lhs5 = cplex.linearNumExpr();

for(int i=1; i <= t; i++) {

for(int tt=1; tt <= t+1; tt++) {

lhs5.addTerm(1, xm[tt][i]);

lhs5.addTerm(1, xr[tt][i]);

}

rhs5=dbar[i]+(dcap[i]*zd_set[i][numberofiterations-1]);

IloRange con5 = cplex.addEq(lhs5,rhs5);

con5.setName("Demand_Satisfaction_"+numberofiterations);

rhs5=0;

lhs5.clear();

}

// -6- Setup Constraint (Extended Formulation Version)

IloLinearNumExpr lhs6 = cplex.linearNumExpr(); //Setting LHS of our constraint..

for(int i=1; i <= t; i++) {

for(int tt=1; tt <= t; tt++) {

lhs6.addTerm(1, xm[i][tt]);

lhs6.addTerm(1, xr[i][tt]);

lhs6.addTerm(-(dbar[tt]+dcap[tt]), y[i]);

IloRange con6 = cplex.addLe(lhs6,0);

con6.setName("Setup_"+numberofiterations);

lhs6.clear();

}

}

/*Setting branching priorities*/

int mypri=t;

157

for(int pri=1; pri<=t; pri++){

cplex.setPriority(y[pri], mypri);

mypri--;

}

//Solve

if (cplex.solve()){

if (numberofiterations==1) {

File mystart= new File("optimal_sltn_iteration_" +(numberofiterations-1)

+"_run_" +runmanytimes +".sol");

mystart.delete();

int index = 1;

PrintStream fileStream = new PrintStream(mystart);

fileStream.println("<?xml version = \"1.0\" encoding=\"UTF-8\"

standalone=\"yes\"?>");

fileStream.println("<CPLEXSolutions version=\"1.2\">");

fileStream.println(" <CPLEXSolution version=\"1.2\">");

fileStream.println(" <header");

fileStream.println(" problemName=\"ilog.cplex\"");

fileStream.println(" solutionName=\"m1\"");

fileStream.println(" solutionIndex=\"0\"");

fileStream.println(" MIPStartEffortLevel=\"0\"");

fileStream.println(" writeLevel=\"2\"/>");

fileStream.println(" <variables>");

for (int myt=1; myt<=t; myt++) {

fileStream.println(" <variable name=\"y"+myt+"\" index=\""+index+"\"

value=\""+(int)Math.round(cplex.getValue(y[myt]))+"\"/>");

index++;

index++;

index++;

fileStream.println(" <variable name=\"d"+myt+"\" index=\""+index+"\"

value=\""+(int)Math.round(cplex.getValue(d[myt]))+"\"/>");

index++;

}

fileStream.println(" </variables>");

fileStream.println(" </CPLEXSolution>");

fileStream.print("</CPLEXSolutions>");

fileStream.close();

158

}

else {

File mystart= new

File("optimal_sltn_iteration_"+(numberofiterations-1)+"_run_"+runmanytimes+".sol");

RandomAccessFile f = new RandomAccessFile(mystart, "rw");

byte b;

long length = f.length() - 1;

do {

length -= 1;

f.seek(length);

b = f.readByte();

} while(b != 10 && length>0);

f.setLength(length+1);

f.close();

int index = 1;

PrintStream fileStream = new PrintStream(new FileOutputStream(mystart, true));

fileStream.println(" <CPLEXSolution version=\"1.2\">");

fileStream.println(" <header");

fileStream.println(" problemName=\"ilog.cplex\"");

fileStream.println(" solutionName=\"mSce\"");

fileStream.println(" solutionIndex=\""+(sltnindex+1)+"\"");

fileStream.println(" MIPStartEffortLevel=\"0\"");

fileStream.println(" writeLevel=\"2\"/>");

fileStream.println(" <variables>");

for (int myt=1; myt<=t; myt++) {

fileStream.println(" <variable name=\"y"+myt+"\" index=\""+index+"\"

value=\""+(int)Math.round(cplex.getValue(y[myt]))+"\"/>");

index++;

index++;

index++;

fileStream.println(" <variable name=\"d"+myt+"\" index=\""+index+"\"

value=\""+(int)Math.round(cplex.getValue(d[myt]))+"\"/>");

index++;

}

fileStream.println(" </variables>");

fileStream.println(" </CPLEXSolution>");

fileStream.print("</CPLEXSolutions>");

159

fileStream.close();

}

singlescenario_optimal[numberofiterations] = cplex.getObjValue();

singlesctimeend = System.currentTimeMillis();

cplex.end();

}

}

catch (IloException exc) {

exc.printStackTrace();

} catch (IOException e) {

// TODO Auto-generated catch block

e.printStackTrace();

}}}

A.2 Decomposition Algorithm (2-MCR-CRA)

import java.util.*;

import java.io.*;

import java.lang.management.ManagementFactory;

import java.lang.management.MemoryUsage;

import java.nio.file.Files;

import java.nio.file.Paths;

import ilog.concert.IloException;

import ilog.concert.IloIntVar;

import ilog.concert.IloLinearNumExpr;

import ilog.concert.IloNumVar;

import ilog.concert.IloNumVarType;

import ilog.concert.IloRange;

import ilog.cplex.IloCplex;

public class MLCR_MinMax_AdjustableProd {

public static String ReturnChoice="High";

public static String GammaChoice="High";

public static String SetupChoice="High";

public static String m0Choice="Med";

public static String rcapChoice="High";

public static String[] changeReturnChoice = {"","High","Med","Low"};

160

public static String[] changeGammaChoice = {"","High","Med","Low"};

public static String[] changeSetupChoice = {"","High","Med","Low"};

public static String[] changem0Choice = {"","Med","Low"};

public static String[] changercapChoice = {"","High","Med","Low"};

public static boolean breakit=false;

public static int flowcover=0;

public static int gomory=0;

public static int covercuts=0;

public static int MIRcuts=0;

public static int rootnode=0;

public static double RootNodeObj_Original=0;

public static int finalnodesize1=0;

public static double timelim=7200;

public static String dmstatus;

public static String advstatus;

public static double initialmipgap=0.01;

public static double mipgap=initialmipgap;

public static double firstsltnmipgap_dmp=0;

public static double firstsltnmipgap_ap=0;

public static double epsilon=0.01;

public static int maxiteration=20;

public static int initial_servicables_inv=0;

public static int initial_returns_inv=0;

public static int t=50;

public static int comp=5; //Number of components

public static double[] K = new double [comp+1]; //Setup cost

public static double[] m = new double [comp+1]; //Manufacturing cost

public static double[] r = new double [comp+1]; //Remanufacturing cost

public static double totaladvtime=0;

public static double totaldmtime=0;

public static double avgadvtime=0;

public static double avgdmtime=0;

public static double avgiteration=0;

public static double prodcosts=0;

public static double dm_local_objective=0;

public static double dmtime_ineachrun=0;

public static double advtime_ineachrun=0;

161

public static double chs = 0; //Servicables’ holding cost

public static double m0 = 0; //Servicables’ holding cost

public static double chr[] = new double [comp+1]; //Returns’ holding cost

public static double chc[] = new double [comp+1]; //Returns’ holding cost

public static double[] bigM_dm_setup= new double [t+1];

public static double[] bigM_adv_rets = new double [t+1];

public static double[] bigM_adv_dems = new double [t+1];

public static double rhspi_dm=0;

public static double[] dbar = new double [t+1];

public static double[] rbar = new double [t+1];

public static double[] rcap = new double [t+1];

public static double[][] gamma = new double [t+1][comp+1];

public static double[][] zr_set = new double [t+1][maxiteration+1];

public static double[] x0_set = new double [t+1];

public static double[][] hc_set = new double [t+1][comp+1];

public static double[][] y_set = new double [t+1][comp+1];

public static double ADVobjective;

public static double DMobjective;

public static int numberofiterations=0;

public static double optimal_pi_DM=0;

public static double optimal_pi_ADV=0;

public static double gap=0;

public static double finalmipgap=0;

public static double ADVub=0;

public static int runmanytimes=0;

public static long dmtimestart1=0;

public static long dmtimeend1=0;

public static long advtimestart=0;

public static long advtimeend=0;

public static int breaknow=0;

public static void main(String[] args) throws Exception, Exception {

//Run for many instances

for (int runmnyret=1; runmnyret<=1; runmnyret++) {

//Change returns dataset

ReturnChoice=changeReturnChoice[runmnyret];

for (int runmnygam=3; runmnygam<=3; runmnygam++) {

162

//Change gamma dataset

GammaChoice=changeGammaChoice[runmnygam];

for (int runmnyset=1; runmnyset<=1; runmnyset++) {

SetupChoice=changeSetupChoice[runmnyset];

for (int runmnym0=1; runmnym0<=2; runmnym0++) {

m0Choice=changem0Choice[runmnym0];

for (int runmnyrcap=1; runmnyrcap<=1; runmnyrcap++) {

rcapChoice=changercapChoice[runmnyrcap];

for (runmanytimes=1; runmanytimes<=1; runmanytimes++) { //1..5

dmtime_ineachrun=0;

advtime_ineachrun=0;

ADVub=0;

Arrays.fill(bigM_dm_setup,0);

File f = new File("C:\\ Users\\ npb15184\\ Desktop\\ MLCRData_h0urs\\"

+ ReturnChoice + GammaChoice + SetupChoice + m0Choice + rcapChoice

+ "\\MLCR_R" + ReturnChoice + "Gamma" + GammaChoice + "K" +

SetupChoice + "m0" + m0Choice + "rcap" + rcapChoice + runmanytimes

+ ".txt");

boolean demandstart=false;

BufferedReader freader = new BufferedReader(new FileReader(f));

//Reading datasets

String s;

int myt=1;

double nextone=0;

while ((s = freader.readLine()) != null && myt<=t) {

String[] st = s.split(" ");

ArrayList<String> results_without_blanks = new ArrayList<String>();

if (s.equals("t Demand NominalReturn ReturnMaxDeviation Gamma "))

{demandstart=true;}

for (String current_string : st) {

if (current_string != null && !current_string.isEmpty()) {

results_without_blanks.add(current_string);

}

}

if (results_without_blanks.size()>0) {

if (results_without_blanks.get(0).startsWith(""+myt+"") &&

demandstart){

163

dbar[myt]=Double.parseDouble(results_without_blanks.get(1));

rbar[myt]=Double.parseDouble(results_without_blanks.get(2));

rcap[myt]=Double.parseDouble(results_without_blanks.get(3));

for(int cc=1; cc<=comp; cc++){

gamma[myt][cc]=Double.parseDouble(results_without_blanks.get(4));

}

myt++;

}

if (nextone==1) {

nextone=0;

m0=Double.parseDouble(results_without_blanks.get(0));

chs = Double.parseDouble (results_without_blanks.get (1));

for (int mycomp=1; mycomp<=comp; mycomp++) {

chc[mycomp] = Double.parseDouble (results_without_blanks.get

((5 * (mycomp-1)) + 2));

m[mycomp] = Double.parseDouble (results_without_blanks.get

((5 * (mycomp - 1)) + 3));

r[mycomp] = Double.parseDouble (results_without_blanks.get

((5 * (mycomp - 1)) + 4));

chr[mycomp] = Double.parseDouble (results_without_blanks.get

((5 * (mycomp - 1)) + 5));

K[mycomp] = Double.parseDouble (results_without_blanks.get

((5 * (mycomp - 1)) + 6));

}

}

if (results_without_blanks.get(0).startsWith("m0")){

nextone=1;}}}

for (int mm=1; mm<=maxiteration; mm++) {

if (mm==1) {

numberofiterations=0;

zr_set = new double [t+1][maxiteration+1];

}

numberofiterations++;

if (numberofiterations==1) {

mipgap=initialmipgap;

}

164

decisionmakers ();

if (rootnode==0) {

adversarial () ; }

advtimeend=0;

advtimestart=0;

dmtimeend1=0;

dmtimestart1=0;

if (breakit==true) {

breakit=false;

break;

}

if (rootnode==0) {

if (gap<= epsilon && mipgap<=0.01) {

break;

}

else if (mm==maxiteration) { System.out.println("Max iteration

reached");} }

}

} //Instances

} //Rcap

} //m0

} //Setup costs

} //Gammas

} //Returns

}

public static void adversarial () throws FileNotFoundException {

advtimestart = System.currentTimeMillis();

double[] x0_f = new double [t+1]; //Assembled items

double[][] hc_f = new double [t+1][comp+1]; //Forward inventory

double[][] y_f = new double [t+1][comp+1]; //Setup

//Fixed Variables for the Adversarial Problem

for (int i=1; i<=t; i++) {

x0_f[i] =x0_set[i];

for (int cc=1; cc<=comp; cc++) {

hc_f[i][cc] =hc_set[i][cc];

hc_f[0][cc] = 0; // Initial inventory is zero.

165

y_f[i][cc]=y_set[i][cc];

}

}

try {

IloCplex cplex = new IloCplex();

//Variables

IloNumVar pi_adv = cplex.numVar(0, Double.MAX_VALUE, IloNumVarType.Float, "pi_adv");

IloNumVar[][] I = new IloNumVar[t+1][];

for (int i = 0; i <= t; i++) {

I[i] = cplex.numVarArray(comp+1, 0, Double.MAX_VALUE);

for(int c=1; c<=comp; c++) {

I[i][c].setName("I+"+i+","+c);

}

}

IloNumVar[][] xr = new IloNumVar[t+1][];

for (int i = 1; i <= t; i++) {

xr[i] = cplex.numVarArray(comp+1, 0, Double.MAX_VALUE);

for(int c=1; c<=comp; c++) {

xr[i][c].setName("xr"+i+","+c);

}

}

IloNumVar[][] xm = new IloNumVar[t+1][];

for (int i = 1; i <= t; i++) {

xm[i] = cplex.numVarArray(comp+1, 0, Double.MAX_VALUE);

for(int c=1; c<=comp; c++) {

xm[i][c].setName("xm"+i+","+c);

}

}

IloNumVar[] zr = cplex.numVarArray(t+1, -1, 1);

IloNumVar[] b = cplex.numVarArray(t+1, 0, 1);

IloIntVar[][] a = new IloIntVar[t+1][];

for (int i = 1; i <= t; i++) {

a[i] = cplex.boolVarArray(comp+1);

for(int c=1; c<=comp; c++) {

a[i][c].setName("a"+i+","+c);

}

}

166

//Objective Function

IloLinearNumExpr obj = cplex.linearNumExpr();

obj.addTerm(1, pi_adv);

cplex.addMaximize(obj);

//Constraints

Arrays.fill(bigM_adv_rets,0);

Arrays.fill(bigM_adv_dems,0);

double rhs4=0;

for (int i=1; i<=t; i++) {

bigM_adv_rets[i]=bigM_adv_rets[i-1]+rbar[i]+rcap[i];

bigM_adv_dems[i]=bigM_dm_setup[i];

}

System.out.print("Bigmadvs= ");

for (int tm=1; tm<=t; tm++) {

System.out.print(bigM_adv_rets[tm]+",");

}

//-1- Pi Constraint

IloLinearNumExpr lhs1 = cplex.linearNumExpr();

for(int i=1; i <= t; i++) {

for(int c=1; c<= comp; c++) {

lhs1.addTerm(-chr[c],I[i][c]);

lhs1.addTerm(-m[c],xm[i][c]);

lhs1.addTerm(-r[c],xr[i][c]);

}

}

lhs1.addTerm(1,pi_adv); //...more variables (LHS)

IloRange con1 = cplex.addEq(lhs1,0);

con1.setName("Pi_Constraint");

lhs1.clear();

//-2- Production quantities should equal "demand from upper level"

IloLinearNumExpr lhs2 = cplex.linearNumExpr();

for(int i=1; i <= t; i++) {

for(int c=1; c<= comp; c++) {

lhs2.addTerm(1, xr[i][c]);

lhs2.addTerm(1, xm[i][c]);

IloRange con2 = cplex.addEq(lhs2,x0_set[i]+hc_set[i][c]-hc_set[i-1][c]);

con2.setName("Production_plan_"+i+"_"+c);

167

lhs2.clear();

}

}

lhs2.clear();

//-3- Initial inventories are zero

IloLinearNumExpr lhs3 = cplex.linearNumExpr();

for(int c=1; c<= comp; c++) { //sum 1..comp

lhs3.addTerm(1, I[0][c]);

}

IloRange con3 = cplex.addEq(lhs3,0);

con3.setName("Initial_inventories_are_zero");

lhs3.clear();

//-4- Balance constraint

IloLinearNumExpr lhs4 = cplex.linearNumExpr();

for(int i=1; i <= t; i++) { //sum i=1 ... T

for(int c=1; c<=comp; c++) {

lhs4.addTerm(1,I[i-1][c]);

lhs4.addTerm(rcap[i],zr[i]);

lhs4.addTerm(-1,I[i][c]);

lhs4.addTerm(-1,xr[i][c]);

rhs4+=-rbar[i];

IloRange con4 = cplex.addEq(lhs4,rhs4);

con4.setName("InvBalance_"+i);

rhs4=0;

lhs4.clear();

}

}

IloLinearNumExpr lhs7 = cplex.linearNumExpr();

for(int i=1; i <= t; i++) {

for(int c=1; c<=comp; c++) {

lhs7.addTerm(bigM_adv_rets[i],a[i][c]);

lhs7.addTerm(-1,I[i][c]);

IloRange con7 = cplex.addGe(lhs7,0);

con7.setName("act=1_"+i);

lhs7.clear();

}

}

168

IloLinearNumExpr lhs8 = cplex.linearNumExpr();

for(int c=1; c<=comp; c++) {

for(int i=1; i <= t; i++) {

lhs8.addTerm(-bigM_adv_dems[i],a[i][c]);

lhs8.addTerm(-1, xm[i][c]);

IloRange con8 = cplex.addGe(lhs8,-bigM_adv_dems[i]);

con8.setName("act=0_"+i);

lhs8.clear();

}

}

IloLinearNumExpr lhs9_1 = cplex.linearNumExpr();

for (int c=1; c<=comp; c++) {

for (int j=1; j<=t; j++) {

for (int i=1; i<=j; i++){

lhs9_1.addTerm(1,b[i]);

}

cplex.addLe(lhs9_1, gamma[j][c]);

lhs9_1.clear();

}

}

IloLinearNumExpr lhs9_2 = cplex.linearNumExpr();

for (int j=1; j<=t; j++) {

lhs9_2.addTerm(-1,b[j]);

lhs9_2.addTerm(1, zr[j]);

cplex.addLe(lhs9_2, 0);

lhs9_2.clear();

}

IloLinearNumExpr lhs9_3 = cplex.linearNumExpr();

for (int j=1; j<=t; j++) {

lhs9_3.addTerm(-1,b[j]);

lhs9_3.addTerm(-1, zr[j]);

cplex.addLe(lhs9_3, 0);

lhs9_3.clear();

}

IloLinearNumExpr lhs10 = cplex.linearNumExpr();

for (int c=1; c<=comp; c++) {

169

for (int i=1; i<=t; i++) {

lhs10.addTerm(1,xm[i][c]);

lhs10.addTerm(1,xr[i][c]);

cplex.addLe(lhs10, bigM_adv_dems[i]*y_f[i][c]);

lhs10.clear();

}

}

cplex.setParam(IloCplex.Param.MIP.Limits.Solutions,1);

firstsltnmipgap_ap=0;

cplex.setOut(null);

if (cplex.solve()){

double bestobj_ap=cplex.getBestObjValue();

double bestint_ap=cplex.getObjValue();

firstsltnmipgap_ap=round(((bestobj_ap-bestint_ap)/bestint_ap)*100,2); }

cplex.setParam(IloCplex.Param.MIP.Limits.Solutions,

cplex.getDefault(IloCplex.Param.MIP.Limits.Solutions)); //Back to default

File advlog = new File("MIPgap_" + initialmipgap + "_MLCR_ADVLOG_" + ReturnChoice +

GammaChoice + SetupChoice + m0Choice + rcapChoice + t + "_" + comp + ".txt");

PrintWriter advwrite = new PrintWriter(new BufferedWriter(new FileWriter("MIPgap_" +

initialmipgap + "_MLCR_ADVLOG_" + ReturnChoice + GammaChoice + SetupChoice +

m0Choice + rcapChoice + t + "_" + comp + ".txt" , true)));

advwrite.println(" ");

advwrite.print("INSTANCE "+runmanytimes+" ITERATION "+numberofiterations+" ");

advwrite.close();

FileOutputStream oFile = new FileOutputStream(advlog, true);

cplex.setOut(oFile);

cplex.setParam(IloCplex.Param.TimeLimit,

(Math.max((timelim-(dmtime_ineachrun+advtime_ineachrun)/1000),0)));

if (cplex.solve()){

optimal_pi_ADV=cplex.getValue(pi_adv);

advtimeend = System.currentTimeMillis();

totaladvtime=totaladvtime+ advtimeend - advtimestart;

advstatus=" "+cplex.getStatus()+" ";

if (numberofiterations==1) {

ADVub=(cplex.getValue(pi_adv)+prodcosts);

}

ADVub = Math.min (ADVub , (cplex.getValue(pi_adv) + prodcosts));

170

double localgap=0, globalgap=0;

localgap=(((cplex.getValue(pi_adv)+prodcosts)-dm_local_objective)/dm_local_objective);

globalgap=((ADVub-dm_local_objective)/dm_local_objective);

try {

PrintWriter outcases = new PrintWriter(new BufferedWriter(new

FileWriter("MIPgap_" + initialmipgap + "_" + ReturnChoice + GammaChoice +

SetupChoice + m0Choice + rcapChoice + t + "_" + comp + ".txt", true)));

if (numberofiterations==1 && runmanytimes==1) {

outcases.write("RUN ");

outcases.write("ITERATION ");

outcases.write("DMP_OBJ ");

outcases.write("GLOBAL_UB ");

outcases.write("LOCAL_UB ");

outcases.write("PI_ADV ");

outcases.write("GAP ");

outcases.write("FINAL_NODE_SIZE ");

outcases.write("TIME_TAKEN_DM ");

outcases.write("TIME_TAKEN_ADV ");

outcases.write("FINAL_MIP_GAP ");

outcases.write("FRSTSLTN_MIP_GAP(DMP) ");

outcases.write("FRSTSLTN_MIP_GAP(AP) ");

outcases.write("DM_STATUS ");

outcases.write("ADV_STATUS ");

outcases.println(" ");}

outcases.print(runmanytimes+" ");

outcases.print(numberofiterations+" ");

outcases.print(dm_local_objective+" ");

outcases.print(ADVub+" ");

outcases.print((cplex.getValue(pi_adv)+prodcosts)+" ");

outcases.print(optimal_pi_ADV+" ");

outcases.print(gap+" ");

outcases.print(finalnodesize1+" "); //Print final node size on DM.

outcases.print(((double)dmtimeend1 - (double)dmtimestart1)/1000+" ");

outcases.print((((double)advtimeend - (double)advtimestart)/1000)+" ");

outcases.print(finalmipgap+" ");

outcases.print(firstsltnmipgap_dmp+" ");

171

outcases.print(firstsltnmipgap_ap+" ");

outcases.print(dmstatus+" ");

outcases.print(advstatus+" ");

advtime_ineachrun+=advtimeend - advtimestart;

outcases.print("FINAL_GAP :"+mipgap+" ");

outcases.println(numberofiterations+" ");

outcases.close();

} catch (IOException e) {}

dmtimeend1=0;

dmtimestart1=0;

advtimeend=0;

advtimestart=0;

for (int i=1; i<=t; i++) {

zr_set[i][numberofiterations]=cplex.getValue(zr[i]);

}

cplex.end(); } else {

System.out.println("InfeasibleADV"); }}

catch (IloException exc) {

exc.printStackTrace(); }

catch (IOException e1) {

e1.printStackTrace(); }}

public static void decisionmakers () throws FileNotFoundException {

dm_local_objective=0;

try {

IloCplex cplex = new IloCplex();

String[] HSname = new String [t+1];

String[] x0name = new String [t+1];

//Decision Variables

for (int names=0; names<=t; names++) {

HSname[names] = "HS" + names;

x0name[names] = "x0" + names;

}

IloNumVar[] x0 = cplex.numVarArray (t+1,0,Double.MAX_VALUE, IloNumVarType.Float,

x0name);

IloNumVar[] HS = cplex.numVarArray (t+1,0,Double.MAX_VALUE, IloNumVarType.Float,

HSname);

172

IloNumVar pi_dm = cplex.numVar(0, Double.MAX_VALUE, IloNumVarType.Float, "pi_dm");

IloNumVar[][][] xm = new IloNumVar[t+1][comp+1][];

for (int tt = 1; tt <= t; tt++) {

for (int c=1; c<= comp; c++) {

xm[tt][c] = cplex.numVarArray(numberofiterations+1, 0, Double.MAX_VALUE,

IloNumVarType.Float);

for (int s=0; s<=numberofiterations-1; s++) {

xm[tt][c][s].setName("xm"+tt+","+c+","+s);

}

}

}

IloNumVar[][][] xr = new IloNumVar[t+1][comp+1][];

for (int tt = 1; tt <= t; tt++) {

for (int c=1; c<= comp; c++) {

xr[tt][c] = cplex.numVarArray(numberofiterations+1, 0, Double.MAX_VALUE,

IloNumVarType.Float);

for (int s=0; s<=numberofiterations-1; s++) {

xr[tt][c][s].setName("xr"+tt+","+c+","+s);

}

}

}

IloNumVar[][] y = new IloNumVar[t+1][];

for (int tt = 1; tt <= t; tt ++) {

y[tt] = cplex.boolVarArray(comp+1);

for (int cc=1; cc<=comp; cc++) {

y[tt][cc].setName("y"+tt+","+cc);

}

}

IloNumVar[][] HC = new IloNumVar[t+1][];

for (int tt = 0; tt <= t; tt ++) {

HC[tt] = cplex.numVarArray(comp+1, 0, Double.MAX_VALUE);

for (int cc=1; cc<=comp; cc++) {

HC[tt][cc].setName("HC"+tt+","+cc);

}

}

//Objective

IloLinearNumExpr obj = cplex.linearNumExpr();

173

obj.addTerm(1, pi_dm);

for(int i=1; i<=t; i++){

obj.addTerm(m0, x0[i]);

obj.addTerm(chs, HS[i]);

for(int lv=1; lv<=comp; lv++) {

obj.addTerm(K[lv], y[i][lv]);

obj.addTerm(chc[lv], HC[i][lv]);

}

}

cplex.addMinimize(obj);

cplex.addEq(HS[0], 0);

for (int lvls=1; lvls<=comp; lvls++) {

cplex.addEq(HC[0][lvls],0); }

//-1- Pi constraint

IloLinearNumExpr lhs1 = cplex.linearNumExpr();

double rhs1=0;

for(int sc=0; sc<=numberofiterations-1; sc++) {

for (int tt=1; tt<=t; tt++) {

for (int c=1; c<=comp; c++) {

for (int i=1; i<=tt; i++) {

lhs1.addTerm(chr[c], xr[i][c][sc]);

rhs1=rhs1+(chr[c]*(rbar[i]+(rcap[i]*zr_set[i][sc]))); }

lhs1.addTerm(-m[c], xm[tt][c][sc]);

lhs1.addTerm(-r[c], xr[tt][c][sc]); }}

lhs1.addTerm(1, pi_dm);

IloRange con1 = cplex.addGe(lhs1, rhs1);

lhs1.clear();

rhs1=0;

}

//-2- Inventory balance for components

IloLinearNumExpr lhs2 = cplex.linearNumExpr();

for(int lvls=1; lvls<=comp; lvls++) {

for (int i=1; i<=t; i++) {

for (int sc=0; sc<=numberofiterations-1; sc++){

lhs2.addTerm(1, HC[i-1][lvls]);

lhs2.addTerm(1, xr[i][lvls][sc]);

lhs2.addTerm(1, xm[i][lvls][sc]);

174

lhs2.addTerm(-1, x0[i]);

lhs2.addTerm(-1, HC[i][lvls]);

IloRange con2 = cplex.addEq(lhs2, 0);

lhs2.clear();

}

}

}

//-3- Inventory balance for end item

IloLinearNumExpr lhs3 = cplex.linearNumExpr();

for (int i=1; i<=t; i++) {

lhs3.addTerm(1, HS[i-1]);

lhs3.addTerm(1, x0[i]);

lhs3.addTerm(-1, HS[i]);

IloRange con3 = cplex.addEq(lhs3, dbar[i]);

lhs3.clear();

}

double sumofdemands=0;

for (double j : dbar) {

sumofdemands=sumofdemands+j; }

double sumofrets=0;

for (int tt=1; tt<=t; tt++){

sumofrets=sumofrets+rbar[tt]+rcap[tt];

bigM_dm_setup[tt]=Math.max(sumofrets, sumofdemands);

sumofdemands=sumofdemands-dbar[tt]; }

//-4- Setup constraint

IloLinearNumExpr lhs4 = cplex.linearNumExpr();

for (int j=1; j<=t; j++) {

for (int c=1; c<=comp; c++) {

for (int sc=0; sc<=numberofiterations-1; sc++){

lhs4.addTerm(bigM_dm_setup[j], y[j][c]);

lhs4.addTerm(-1, xm[j][c][sc]);

lhs4.addTerm(-1 , xr[j][c][sc]);

cplex.addGe(lhs4, 0);

lhs4.clear(); }}}

//-5- Remanufacturing

IloLinearNumExpr lhs5 = cplex.linearNumExpr();

double rhs5=0;

175

for(int sc=0; sc<=numberofiterations-1; sc++) {

for (int j=1; j<=t; j++) {

for (int c=1; c<=comp; c++) {

for (int ii=1; ii<=j; ii++) {

lhs5.addTerm(1,xr[ii][c][sc]);

rhs5+=(rbar[ii]+(rcap[ii]*zr_set[ii][sc]));

}

cplex.addLe(lhs5, rhs5);

rhs5=0;

lhs5.clear(); }}}

/*Setting branching priorities*/

int mypri=t*comp;

for(int pri2=1; pri2<=comp; pri2++){

for(int pri=1; pri<=t; pri++){

cplex.setPriority(y[pri][pri2], mypri);

mypri--; }}

cplex.setParam(IloCplex.Param.Emphasis.MIP, 3);

if (rootnode == 0) {

firstsltnmipgap_dmp=0;

cplex.setOut(null);

cplex.setParam(IloCplex.Param.MIP.Limits.Solutions,1);

if (cplex.solve()){

double bestobj_dmp=cplex.getBestObjValue();

double bestint_dmp=cplex.getObjValue();

firstsltnmipgap_dmp=round(((-bestobj_dmp+bestint_dmp)/bestint_dmp)*100,2);

}

dmtimestart1 = System.currentTimeMillis();

if (numberofiterations>1) {cplex.readMIPStarts ("dmpsltn_" +

(numberofiterations-1) + "_run_" + runmanytimes + ".sol");}

File dmlog = new File("MIPgap_" + initialmipgap + "_DMLOG_" + ReturnChoice +

GammaChoice + SetupChoice + m0Choice + rcapChoice + t + "_" + comp + ".txt");

PrintWriter dmwrite = new PrintWriter(new BufferedWriter(new FileWriter("MIPgap_"

+ initialmipgap + "_DMLOG_" + ReturnChoice + GammaChoice + SetupChoice +

m0Choice + rcapChoice + t + "_" + comp + ".txt" , true)));

dmwrite.println(" ");

dmwrite.print("INSTANCE "+runmanytimes+" ITERATION "+numberofiterations+" ");

dmwrite.close();

176

FileOutputStream o2File = new FileOutputStream(dmlog, true);

cplex.setOut(o2File);

cplex.setParam(IloCplex.Param.MIP.Tolerances.MIPGap, mipgap);

cplex.setParam(IloCplex.Param.TimeLimit,

(Math.max((timelim-(dmtime_ineachrun+advtime_ineachrun)/1000),0)));

cplex.setParam(IloCplex . Param . MIP . Limits . Solutions , cplex . getDefault (

IloCplex . Param . MIP . Limits . Solutions)); //Back to default

if (cplex.solve()){

finalmipgap = cplex.getMIPRelativeGap();

prodcosts = cplex.getObjValue()-cplex.getValue(pi_dm);

DMobjective = cplex.getObjValue();

optimal_pi_DM=cplex.getValue(pi_dm);

dmtimeend1 = System.currentTimeMillis();

dmtime_ineachrun+=dmtimeend1 - dmtimestart1;

File mipstart_dm = new File("dmpsltn_" + (numberofiterations) + "_run_" +

runmanytimes + ".sol");

mipstart_dm.delete();

cplex.writeMIPStarts("dmpsltn_" + (numberofiterations) + "_run_" + runmanytimes

+ ".sol");

File mystart= new File("dmpsltn_" + (numberofiterations) + "_run_" +

runmanytimes + ".sol");

String search = "MIPStartEffortLevel=\"0\"";

String replace = "MIPStartEffortLevel=\"2\"";

try{

FileReader fr = new FileReader(mystart);

String s;

String totalStr = "";

try (BufferedReader br = new BufferedReader(fr)) {

while ((s = br.readLine()) != null) {

totalStr += s + "\n";

}

totalStr = totalStr.replaceAll(search, replace);

FileWriter fw = new FileWriter(mystart);

fw.write(totalStr);

fw.close();

}

}catch(Exception e){

177

e.printStackTrace();

}

finalnodesize1=cplex.getNnodes();//final node size

}else{

System.out.println("InfeasibleDM");

breakit=true; }

dm_local_objective=cplex.getObjValue();

totaldmtime=totaldmtime+dmtimeend1 - dmtimestart1;

for (int i=1; i<=t; i++) {

x0_set[i]=cplex.getValue(x0[i]);

for (int cc=1; cc<=comp ; cc++) {

hc_set[i][cc]=cplex.getValue(HC[i][cc]);

y_set[i][cc]=cplex.getValue(y[i][cc]);}}

cplex.end();}}

catch (IloException exc) {

exc.printStackTrace();}

catch (IOException e) {

e.printStackTrace();}}

private static double round (double value, int precision) {int scale = (int)

Math.pow(10, precision);

return (double) Math.round(value * scale) / scale;}}

A.3 Instance Generation (LSR-R)

import java.util.*;

import java.io.*;

import org.apache.commons.math3.distribution.*;

public class Generate {

public static void main(String[] args) throws Exception, Exception {

List<String> ReturnList = Arrays.asList("High", "Med", "Low");

List<String> GammaList = Arrays.asList("High", "Med", "Low");

List<String> SetupList = Arrays.asList("VHigh", "High", "Med", "Low");

List<String> DisposalList = Arrays.asList("Greater", "Less");

String ReturnChoice="", GammaChoice="", SetupChoice="", DisposalChoice="";

for (int mm=1; mm<=ReturnList.size(); mm++){

for (int j=1; j<=GammaList.size(); j++){

for (int k=1; k<=SetupList.size(); k++){

178

for (int l=1; l<=DisposalList.size(); l++){

ReturnChoice=ReturnList.get(mm-1);

GammaChoice=GammaList.get(j-1);

SetupChoice=SetupList.get(k-1);

DisposalChoice=DisposalList.get(l-1);

int T=50;

double[] dbar = new double [T+1]; //Nominal demand (d bar)

double[] rbar = new double [T+1]; //Nominal return (r bar)

double[] dcap = new double [T+1]; //Max. deviation of demand (d cap)

double[] rcap = new double [T+1]; //Max. deviation of return (r cap)

double[] d_gamma = new double [T+1]; //Gamma for demands

double[] r_gamma = new double [T+1]; //Gamma for returns

double K,chs,chr,b,d,m,r; //Costs

//Change these parameters to redefinine Low, Med, High

double demand_upper=100, demand_lower=50; //Upper/lower limits for dbar

double demand_deviation=(demand_upper-demand_lower)/2;

double demand_nominal=demand_lower+demand_deviation;

double K_Vupper_percentage=200, K_upper_percentage=5, K_med_percentage=2,

K_lower_percentage=0.1;

double Gamma_e_upper=0.1;

double Gamma_e_med=0.05;

double Gamma_e_lower=0.01;

double r_percentage_upper=0.7; //Upper value for r_percentage

double r_percentage_med=0.5; //Med value for r_percentage

double r_percentage_lower=0.3; //Lower value r_percentage

double chs_upper=10; //Upper limit for servicables’ holding cost (hs)

double chs_lower=5; //Lower limit for servicables’ holding cost (hs)

double d_cap_percentage=0.1; //What % of nominal demand is going to be dcap?

double r_percentage=0; //What % of demand should be considered as those of

returns?

double m_percentage=2; //m=hs*m_percentage

double rmf_percentage=2; //r=hr*rmf_percentage

double dis_percentage=2; //if DisposalChoice = "Greater" d=r*dis_percentage

else, d=r/dis_percentage

double returns_holding_cost_percentage=0.1;

//hr=hs*returns_holding_cost_percentage

179

double backlog_cost_percentage=4; //b=hs*backlog_cost_percentage

double r_cap_percentage=0.1; // Percentage of returns’ deviation

double e_demand=0;

double e_return=0;

double z_demand=0;

double z_return=0;

if(ReturnChoice=="Low") {

r_percentage=r_percentage_lower; }

if(ReturnChoice=="Med"){

r_percentage=r_percentage_med; }

if(ReturnChoice=="High"){

r_percentage=r_percentage_upper;

}

if(GammaChoice=="Low") {

e_demand=Gamma_e_lower;

e_return=Gamma_e_lower;}

if(GammaChoice=="Med"){

e_demand=Gamma_e_med;

e_return=Gamma_e_med;}

if(GammaChoice=="High"){

e_demand=Gamma_e_upper;

e_return=Gamma_e_upper; }

for (int generatemany=1; generatemany<=5; generatemany++) {

//Find gamma

NormalDistribution normdist = new NormalDistribution();

z_demand=normdist.inverseCumulativeProbability(1-e_demand);

z_return=normdist.inverseCumulativeProbability(1-e_return);

for (int t=1; t<=T; t++){

d_gamma[t]=Math.min(t,Math.ceil((z_demand*Math.sqrt(t))+1));

r_gamma[t]=Math.min(t,Math.ceil((z_return*Math.sqrt(t))+1)); }

for (int i=1; i<=T; i++) {

Random rdemand =new Random();

Random rreturn =new Random();

180

dbar[i] =demand_lower + (demand_upper - demand_lower) *

rdemand.nextDouble();

rbar[i] =(demand_lower*r_percentage) + (r_percentage*(demand_upper -

demand_lower)) * rreturn.nextDouble();

dcap[i]=d_cap_percentage*dbar[i];

rcap[i]=r_cap_percentage*rbar[i];

}

Random storagecost =new Random();

chs=(chs_lower) + (chs_upper - chs_lower)*storagecost.nextDouble();

chr=chs*returns_holding_cost_percentage;

b=chs*backlog_cost_percentage;

m=chs*m_percentage;

r=chr*rmf_percentage;

if(DisposalChoice=="Greater") {

d=r*dis_percentage; }

else {

d=r/dis_percentage;}

if(SetupChoice=="Low") {

K=Math.ceil(chs*(demand_nominal-demand_deviation)*K_lower_percentage);}

if(SetupChoice=="Med"){

K=Math.ceil(chs*(demand_nominal)*K_med_percentage);}

if(SetupChoice=="High"){ K=Math.ceil(chs * (demand_nominal +

demand_deviation) * K_upper_percentage); }

if(SetupChoice == "VHigh") { K=Math.ceil(chs * (demand_nominal +

demand_deviation) * K_Vupper_percentage);}

for (int t=1; t<=T; t++) {

try {

File file = new File("C:\\ Users \\npb15184 \\Desktop \\LSRData_Rev

\\"+ ReturnChoice +GammaChoice +SetupChoice +DisposalChoice

+"\\DataR" +ReturnChoice +"Gamma" +GammaChoice +"K" +SetupChoice

+"Disposal" +DisposalChoice +generatemany +".txt");

file.getParentFile().mkdirs();

PrintWriter outcases = new PrintWriter(new BufferedWriter(new

FileWriter(file,true)));

if (t==1) { outcases.println("Dataset for LSR problem with joint

setup costs and T=200");

181

outcases.println("(Uniformly distributed)

Demand=["+demand_lower+","+demand_upper+"]");

outcases.println("(Uniformly distributed)

Returns=["+r_percentage+"*"+demand_lower+" ,

"+r_percentage+"*"+demand_upper+"] ("+ReturnChoice+")");

outcases.println("K = "+K+" ("+SetupChoice+")");

outcases.println("(Uniformly distributed) chs =

["+chs_lower+","+chs_upper+"]");

outcases.println("chr = "+returns_holding_cost_percentage+"*chs");

outcases.println("b = "+backlog_cost_percentage+"*chs");

outcases.println("m = "+m_percentage+"*chs");

outcases.println("r = "+rmf_percentage+"*chr");

outcases.println("Disposal cost (d) is "+DisposalChoice+" than

the remanufacturing cost.");

outcases.println("Disposal cost is calculated as

d=r*"+dis_percentage+ " (when disposal costs are greater)

"+"d=r/"+dis_percentage+" otherwise.");

outcases.println("Dcap and Rcap are "+d_cap_percentage+" and

"+r_cap_percentage+" times the nominal demand value

respectively (for each time period)");

outcases.println("Gamma_D and Gamma_R have a probability of

"+e_demand+" for generating a better solution than the actual

cost realization ("+ GammaChoice + ")");

outcases.println(" ");

outcases.write("t ");

outcases.write("NominalDemand ");

outcases.write("NominalReturn ");

outcases.write("DemandMaxDeviation ");

outcases.write("ReturnMaxDeviation ");

outcases.write("SetupCost ");

outcases.write("Chs ");

outcases.write("Chr ");

outcases.write("BackloggingCost ");

outcases.write("GammaD ");

outcases.write("GammaR ");

outcases.write("ManufacturingCost ");

outcases.write("RemanufacturingCost ");

182

outcases.write("DisposalCost ");

outcases.println(" ");

}

outcases.print(t+" ");

outcases.print(dbar[t]+" ");

outcases.print(rbar[t]+" ");

outcases.print(dcap[t]+" ");

outcases.print(rcap[t]+" ");

outcases.print(K+" ");

outcases.print(chs+" ");

outcases.print(chr+" ");

outcases.print(b+" ");

outcases.print(d_gamma[t]+" ");

outcases.print(r_gamma[t]+" ");

outcases.print(m+" ");

outcases.print(r+" ");

outcases.println(d+" ");

outcases.close();

} catch (IOException e) {}}}}}}}}}

183

	Introduction
	Motivation
	Mixed Integer Linear Programming
	Production Planning Models
	Product Recovery and Remanufacturing
	Parameter Uncertainty
	Outline of the Thesis

	Literature Review
	Classical Production Planning Problems
	Lot Sizing with Remanufacturing
	Parameter Uncertainty
	Robust Optimization
	Production Planning Under Parameter Uncertainty

	Mixed-Integer Linear Programming

	Implementing Uncertainty
	Introduction
	Problem Definition
	Deterministic LSR Formulation
	Robust LSR Formulation

	Concluding remarks

	Decomposition and Reformulations
	Introduction
	Min-Max Decomposition Approach
	Extended Reformulations
	Extended Aggregated Reformulation
	Approximate Extended Reformulation

	Computational Results
	Concluding Remarks

	Multiple Components Case Under Uncertainty
	Introduction
	(2-MCR) with Fixed Costs on Component Level (2-MCR-C)
	Deterministic Problem
	Robust Formulation
	Decision Maker's Problem
	Adversarial Problem

	Computational tests
	Instance generation
	Instances where h0 is restricted
	Instances where h0 is unrestricted

	Concluding remarks

	Deterministic Multiple Components Case
	Introduction
	Problem formulation
	Problem analysis and resolution
	Optimality properties
	Dynamic programming algorithm

	Concluding remarks

	Conclusion and Future Research
	Codes
	Decomposition Algorithm (LSR-R)
	Decomposition Algorithm (2-MCR-CRA)
	Instance Generation (LSR-R)

