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Abstract

In the wake of terrorism and natural disasters, assessing networked systems for vulnerability

to failures that arise from these events is essential to maintaining the operations of

the systems. This is very crucial given the heavy dependence of daily social and

economic activities on networked systems such as transport, telecommunication and

energy networks as well as the interdependence of these networks. In this thesis, we

explore methods to assess the vulnerability of networked systems to element failures

which employ connectivity as the performance measure for vulnerability. The associated

optimisation problem termed the critical node (edge) detection problem seeks to identify

a subset of nodes (edges) of a network whose deletion (failure) optimises a network

connectivity objective. Traditional connectivity measures employed in most studies of

the critical node detection problem overlook internal cohesiveness of networks and the

extent of connectivity in the network. This limits the effectiveness of the developed

methods in uncovering vulnerability with regards to network connectivity. Our work

therefore focuses on distance-based connectivity which is a fairly new class of connectivity

introduced for studying the critical node detection problem to overcome the limitations

of traditional connectivity measures.

In Chapter 1, we provide an introduction outlining the motivations and the methods

related to our study. In Chapter 2, we review the literature on the critical node

detection problem as well as its application areas and related problems. Following this,

we formally introduce the distance-based critical node detection problem in Chapter 3

where we propose new integer programming models for the case of hop-based distances
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and an efficient algorithm for the separation problems associated with the models.

We also propose two families of valid inequalities. In Chapter 4, we consider the

distance-based critical node detection problem using a heuristic approach in which we

propose a centrality-based heuristic that employs a backbone crossover and a centrality-based

neighbourhood search. In Chapter 5, we present generalisations of the methods proposed

in Chapter 3 to edge-weighted graphs. We also introduce the edge-deletion version of the

problem which we term the distance-based critical edge detection problem. Throughout

Chapters 3, 4 and 5, we provide computational experiments.

Finally, in Chapter 6 we present conclusions as well future research directions.

Keywords: Network Vulnerability, Critical Node Detection Problem, Distance-based

Connectivity, Integer Programming, Lazy Constraints, Branch-and-cut, Heuristics
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Chapter 1

Introduction

Many real life systems and dynamics occurring within them are often represented as

networks. Simply put, a network is a “collection of objects in which some pairs of

these objects are connected by links” (Easley & Kleinberg 2010, p 2). These objects

often referred to as nodes (or vertices) could be any entity such as human beings,

cities, airports, computer servers, power generators etc while the links (or edges) reflect

relationships, communication and transmission that occur between them. The ability

to represent systems as networks provides tools for understudying natural systems with

the aim of addressing interesting issues that arise in practice. One of such issues entails

identification of parts of a system that are critical to the maintenance of performance

of the system. This is crucial because many functions or operations that occur within

a network are influenced by a fraction of its nodes (or edges) whose failure would cause

a significance degradation of network performance. For example, in a social network

context, the speed of diffusion of information across members of a given social network

is largely dependent on a few “influential” individuals. Hence, for a case of malicious

information in a social network, the spread could be curtailed by identifying those

influential individuals for monitoring or temporal removal from the network.

Furthermore, economic and social infrastructures such as energy, health, transportation,

telecommunication etc are largely interdependent. The implication of this is that a

major disruption in one of these infrastructures would have a cascading effect on other
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infrastructures which further impacts the entire economy. For instance, natural disasters

such as flood and hurricane not only disrupt transport systems such as rail and road

network but sometimes lead to power outages which further impact telecommunication

networks. Given the uncertainty of these events as well as the widespread disruptions

they have on social and economic activities, disaster management planners are becoming

more strategic and proactive. One important strategy is the assessment of network

infrastructures for potential vulnerabilities. This primarily involves identifying important

elements (nodes and/or arcs) of a network whose loss would lead to the worst degradation

of the network performance so as to fortify them. Depending on the definition of network

performance, different notions of node importance have appeared in literature. Popular

notions common in literature include: most vital nodes (Corley & David 1982), most

influential nodes (Kempe et al. 2005), key players (Borgatti 2006) and critical nodes

(Arulselvan et al. 2009). This research focuses on identification of critical nodes which

are nodes that are important in ensuring connectivity in a network. The associated

optimisation problem is termed the critical node detection problem (CNDP) formally

defined as follows:

Given a network G = (V,E) with n = |V | nodes and m = |E|edges,

identify a subset of nodes of a specified cardinality B whose deletion achieves

optimum objective with respect to predefined connectivity measure

A major aspect of the critical node detection problem lies in the definition of appropriate

connectivity measure which is largely influenced by the application objective being

considered. Thus, a node might be part of a critical node set for one application

problem but in another problem it is not critical. Network connectivity metrics in

foremost studies on the critical node detection problem have an underlying objective

of fragmentation whereby disconnection is restricted to the absence of a path between

pairs of node in a network. This definition of disconnectivity is limiting since in many

application contexts, if the path(s) connecting nodes in a network have a sufficiently

large length, then such nodes could be seen as practically disconnected. For instance,

in a transportation network problem, while a source-destination route might exist, if
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the duration of a trip via the available route precludes attainment of a time-bound

activity, then such is a practical disconnection. Another interesting application is in

biological networks where the length of a path between two nodes is analogous to the

number of steps it takes to complete a biochemical process. Thus, a chemical reaction

cannot effectively take place if the biochemical process is slow enough (Aringhieri et al.

2019). Also, in communication and telecommunication network, speed and coverage are

key operational issues for assessing connectivity and both of these issues are related to

distance between nodes in the network.

In this research, we focus on distance-based connectivity metrics in the study of the

critical node detection problem. We present motivations for the research problem and

introduce important methods that inform the methodological framework of our research.

We then formalise our research question and our major research contributions. Finally,

we conclude the chapter with an outline of the thesis.

1.1 Motivation

Networks are ubiquitous in real world. Transportation networks (rail, air, and road)

provide a means of commuting people and goods from one location to another.

Telecommunication networks allow seamless communication between individuals and

groups of individuals located across different continents as well as access to financial

transactions. Energy networks give us daily access to energy supply. The volume of

people and information exchange on different social networks such as facebook, twitter

etc is an indication of the quest for connection. With the capacity for reachability

that network affords us comes the price of vulnerability to attacks. While networks are

built and maintained to establish ease in connection, unscrupulous agents are exploring

the world’s “connectedness” to spread malicious items through these networks leading

to system breakdown and security compromise. Besides targeted attacks by enemies,

natural occurrences like environment hazards also pose a threat to economic infrastructures.
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Network designers are beginning to consider the overarching issue of survivability which

has given rise to research efforts in the area of survivable network design (see discussions

and references in Gouveia & Leitner (2017) and Gouveia et al. (2018)). For existing

networks, vulnerability assessment becomes a pro-active step towards curtailing the

impact of attacks and failures on the overall network performance. A very useful strategy

for assessing vulnerability in networks is to identify elements of a network whose deletion

(caused by failure or attacks) would compromise network connectivity. These network

elements are termed critical nodes and edges. When the elements being considered

are nodes, the associated optimisation problem is the so-called critical node detection

problem (Arulselvan et al. 2009).

The growing interest on node and edge deletion problems in networks and in particular

the critical node detection problem (CNDP) is motivated by its application to varieties

of real life problems springing from different fields. In disease epidemiology where an

outbreak of infectious disease must be contained, the CNDP find useful application.

Interventions would either be vaccination of susceptible persons or removal of infected

persons to contain the spread of the disease. In both cases, we are constrained by

the number of persons to vaccinate or infected persons to remove owing to cost or

availability of vaccines and ethical issues surrounding isolating individuals. Thus, a

realistic strategy would be to identify members of the population to vaccinate or isolate in

order to minimise the spread. Specific optimisation objectives in relation to this include

minimisation of the number of infected-susceptible node connections and minimisation

of the total number of susceptible nodes connected to one or more infected nodes (Nandi

& Medal 2016). This is also similar in telecommunication networks, where critical nodes

(servers) need to be disconnected to stop the spread of a virus (malware) through the

network. In the study of covert terrorist network, key individuals of the terrorist network

would be targeted for “neutralisation” so as to dismantle communication between groups

or individuals in the network (Arulselvan et al. 2009). The CNDP has also been

identified as potentially useful for drug design applications in the study of protein-protein

interactions networks (Boginski & Commander 2009). In transportation network context,

4



edge deletion has also been applied. For instance, given some source-destination points

(s−t), road segments or highways whose disruption would maximally compromise traffic

flow from source to destination represent critical edges (Matisziw & Murray 2009).

Inspired by these application problems, researchers in mathematical optimization have

developed mathematical models to study the critical node detection problem with the

underlying objective being to optimise some connectivity measure. Common objectives

of traditional models for the critical node detection problem include minimisation of

the total number of connected node pairs in the resultant subgraph (Arulselvan et al.

2009), maximisation of the total number of connected components in the residual graph

(Shen & Smith 2012) and minimisation of the size of the largest connected component in

the residual graph (Shen et al. 2012). Although these objectives represent relevant real

life applications, the associated optimisation models are not very effective in uncovering

vulnerability in some other applications. In the rest of the section, we present some

limitations of these fragmentation CNDP objective that constitute the motivations for

our research.

Distance-based connectivity

Traditional models for critical node detection problem have the underlying goal of

network fragmentation. Thus popular objectives such as minimisation of number of

connected node pairs and maximisation of number of connected components in the

residual graph are only concerned with whether or not there exist a path between node

pairs. However, for some real-world applications such as in social and communication

networks, “nodes do not have to be truly disconnected in order to be practically disconnected

- if distances are long enough, the nodes can be seen as effectively separated” (Borgatti

2006). The practical influence of distance-based connectivity is evident in our daily

or weekly choice of a mode of transport and service provider. For example, recall the

last time you had to book a flight to a new unfamiliar destination t or for a business

trip. Although there were several options to your destination, some of them were

undesirable due to number of stops or duration (including layovers). Thus, those options
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that involved long haul flights with many stops, long wait times at the connecting

airports and hence late night arrivals at an unfamiliar destination could be seen as

practical disconnection. Another important distance-based connectivity objective is

diffusion speed or communication efficiency. Communication efficiency is assumed to be

inversely proportional to distances between nodes. Thus, individuals who are directly

connected to information sources are more likely to have quicker and more reliable access

to information than those with many intermediaries in between. In telecommunication

Figure 1.1: Graphical illustration of where a single node deletion based on fragmentation

objectives could lead to sub-optimal solution for a distance-based application (Adapted

from Veremyev, Prokopyev & Pasiliao (2014))

network design problems, quality of service (QoS) is very crucial for service providers

and hop distance (number of edges) of a path is used as a measure of the level of service

(such as bandwidth, delay etc) specified for each commodity (see e.g Balakrishnan &

Altinkemer (1992), Guérin & Orda (2002), Chemodanov et al. (2018)). For an empirical

illustration of the relevance of distance-based connectivity metrics, consider the graph

in Figure 1.1 in which a maximum of one node is to be deleted. Based on the goal

of network fragmentation, deletion of either node 4 or 7 achieves equal value on all
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fragmentation-based objectives. In particular, deletion of either nodes results in a

subgraph consisting of 2 connected components, 25 connected node pairs and largest

component size of 6. Consider however, a case where service levels requirement for

specified commodities is hop distance at most 3. It is easy to see that deletion of node

4 compromises this quality of service for commodity (3, 5) whereas deletion of node 7

does not. Similarly with respect to commodity (8, 12), node 7 is critical whereas node 4

is not. Hence, in such applications, use of fragmentation-based metrics would result in

sub-optimal solutions which could have grave consequence for the decision maker.

Figure 1.2: Graphical illustration of where a node deletion based on fragmentation does

not take into account internal structure/distances (Adapted from Borgatti (2006))

The importance of distance-based metrics in network vulnerability assessment has

been reported in literature. In a study on network robustness, Schieber et al. (2016),

concluded through empirical analyses that distance-based metrics were more consistent

in capturing structural deviations from the input network suggesting the importance of

distance-based connectivity. Similarly, Borgatti (2006) observed that fragmentation-based
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objectives overlook the internal structure of components formed. This is illustrated in

Figure 1.2. Fragmentation-based metrics would indeed see the network in Figure 1.2(a)

as equally fragmented as the network in Figure 1.2(b). However, one can see that

distances (representing transmission lag or transportation time) are much higher in the

latter network whose connected components are line graphs.

Infeasibility and budgetary limitations

Due to cohesive topological structures of certain input network, it is not possible to

totally fragment a network by removal of a few nodes. Sometimes, a large proportion

of nodes would need to be deleted to achieve the goal of fragmentation which might

be “expensive” in practice. It has been argued that the topological structure of input

networks and budgetary restriction on critical node set impact the possibility as well

as the ease of solving associated instances of the CNDP (Veremyev, Prokopyev &

Pasiliao 2014). So, when it is infeasible or rather expensive to achieve the goal of

fragmentation, an alternative means of identifying nodes that are critical to maintaining

network connectivity becomes imperative. The distance-based critical node detection

problem provides a range of alternative metrics for evaluating what nodes are more

critical than others without an explicit requirement of network fragmentation.

The aforementioned limitations of traditional fragmentation-based connectivity metrics

for the critical node detection problem provide some motivations for this research project.

The scope of the research is on the distance-based critical node detection problem

(DCNDP) which was first introduced by Veremyev et al. (2015). In a nutshell, the

DCNDP seeks a subset of nodes of specified cardinality whose deletion optimises some

distance-based connectivity metric in the residual graph. Unlike the traditional CNDP,

the distance-based critical node detection problem does not just consider whether or not

nodes are connected but accounts for the extent or cost of connections. In comparison

to the traditional fragmentation-based critical node detection problem, research on the

distance-based critical node detection problem is quite limited. This is partly due to the
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the fact that the distance-based CNDP has only been in existence for five years with only

two computational studies which further motivates the direction of this research. Our

methodological approach to studying the DCNDP is motivated by the computational

limitation of the existing model as well as the need for extensive empirical analyses to

support decision makers in their choice of appropriate connectivity metric for different

network types. These additional motivations are discussed hereafter.

Efficient computational methods

In Veremyev et al. (2015), an integer programming (IP) model for the distance-based

critical node detection problem was proposed. The IP model implementation was

only able to compute optimal solutions for small to medium size network instances.

Moreover, the model is sensitive to edge-dense topological structures hence struggles

computationally as the size of such graphs grows. By exploiting the structure of the

problem, we propose new mixed integer programming models for the DCNDP. We

demonstrate through computational experiments the competitiveness of the developed

models in comparison with the existing compact model. The models proposed in this

research can handle all distance-based connectivity objectives defined in Veremyev et al.

(2015) and are easily extended to edge weighted graphs as well as the edge deletion

version which have not been considered previously in literature.

The distance-based critical node detection problem like many combinatorial optimisation

problems is “hard”, thus exact solution methods are only able to solve small and medium

instances in reasonable time. This opens up the need for the development of heuristic

algorithms that would provide sufficiently good solutions in reasonable time. Moreover,

solutions from such heuristic algorithms can be used in conjunction with the exact

methods either as warm start solution or to routinely guide the optimisation process

which could have strong improvement in the solution time. To this end, we propose a

new heuristic framework for the distance-based critical node detection problem.
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Computational guide for decision makers

An essential aspect in the study of the critical node detection problem is providing

appropriate definitions of the concept of critical nodes that lead to feasible solutions

and useful outcomes (Borgatti 2006). This entails identifying metrics for determining

what nodes (edges) constitute the critical node (edge) set for a given network topology

and budget restriction. It is important to note that the variety of studies on the critical

node detection problem is due to this issue of metric definition besides the overarching

issue of computational burden of solving the problem. While different metrics have been

proposed in literature, there is no consensus amongst researchers as to which best defines

the critical node set for a given network topology. Existing literature does not provide

adequate computational tests on different metrics across a range of network instances

such that the suitability of each metric for specific network type might be uncovered.

To this end, we provide extensive computational experiments on both real-world and

synthetic networks of varied topological structure comparing different metrics for the

critical node detection problem.

1.2 Networks and combinatorial optimisation

In this section, we present the crucial elements of the methodological framework underpinning

our research. We begin with the nature of optimisation problems in networks with

particular emphasis on combinatorial optimisation. We then present some of the basic

building blocks of mathematical optimisation as well as solution methods to mathematical

optimisation problems.

Researchers in the fields of network analysis and network optimisation study networks

and underlying optimisation problems. Network analysis focuses on examination of

the internal structures of networks, exploring relationships and associations between

objects as well as patterns in networks. One of the most popular and perhaps oldest

studies involving network analysis is found amongst the social and behavioural science

community. It involves analysis of social networks having its focus on relationships
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among social entities such as individuals and groups as well as the patterns and implications

of such relationships (Wasserman & Faust 1994, p 3). Social Network Analysis (SNA)

is popular for its many interesting applications. For example, it has been employed

to explore the spread of diseases as well as to understand diffusion of news, rumours

and innovations (Kitsak et al. 2010). Other network analysis studies involve biological

networks, for instance protein-protein interactions networks are being studied to understand

the nature of different interactions between proteins with a view of improving drug design

(Boginski & Commander 2009). Indeed, many problems encountered in various life

endeavours can be modeled as optimisation problems in networks. For example finding

shortest paths from origin points to destination points, assigning nurses to shifts and

assessing vulnerability of networks to disconnection resulting from node or link failures.

Network optimisation is concerned with analysing (modelling and solving) optimisation

problems in networks. In other words, network optimisation does not only analyse a

network against a defined goal or behaviour, but also seeks to do so in an optimal way.

Mathematical optimisation entails finding the “best” possible outcome (with regards to

some criteria) from a set of available alternatives under given conditions. An optimisation

problem involves three basic components: decision variables, set of constraints and an

objective function. The decision variables are the elements of a system that we have

control over and which we need to decide on, they form the solution to an optimisation

problem. This could range from simple decisions such as how many units of a product to

transport from facility points to demand points to more complex decisions such as how

and when to schedule crew for offshore facility maintenance. The set(s) of constraints

constitute conditions that must be satisfied by any solution of the optimisation problem.

Depending on the context of the problem, the conditions or limitations range from

physical limitations to government policies that businesses must abide by. Examples

include production capacity of a plant, warehouse space, health and safety restrictions

on maximum hours staff can work per shift and contractual agreements on minimum

units to supply to a customer. Also, constraints on decision variables could indicate

whether variables must be integer values or continuous. The objective function is the
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goal that needs to be actualised. An optimal solution to an optimisation problem is the

set of values of decision variables that gives the ”best” possible objective function value,

where best is either maximum or minimum depending on the problem context.

Many interesting decision problems that occur in networks involve finding a “best

solution out of a very large but finite number of possible solutions” (Consoli & Darby-Dowman

2006). Such problems are classified under a branch of optimisation and discrete mathematics

called combinatorial optimisation. Examples include Network Flow Problems (e.g. Shortest

Path Problem, Minimum Spanning Tree Problem, Maximum Flow Problem), Set Covering

Problem, Vertex/ Edge Colouring Problem, Knapsack Problems, Bin-Packing Problem,

Network Design Problems (e.g. Survivable Network Design Problem, Steiner Tree Problem),

and Traveling Salesman Problem. Because the solution space of combinatorial problems

in general is usually very large, most of them are NP-hard, i.e it has not been proven

that a polynomial-time algorithm exist to solve them. Hence, for such problems, much

research effort is geared towards developing “better” formulations and intelligent algorithms

that are specially tailored to solve them. The critical node detection problem on

general graph which we study in this research falls under this computationally difficult

class of combinatorial problems thus making it an interesting research problem from a

computational perspective. It is worth noting that although combinatorial optimisation

problems are inherently difficult, there are some easy CO problems whose algorithmic

ideas are key in the development of state-of-the-art algorithms for solving the more

difficult problems. These “easy” class of network optimisation problems possess some

nice structures that make them amenable to be formulated as linear programs and

thus solved efficiently. They often appear as subproblems in many complex network

optimisation problems. In particular, the shortest path problem and the maximum flow

problem constitute subproblems in algorithms for many complex and difficult network

problems such as the steiner tree problem, traveling salesman problem and survivable

network design problem (e.g, see Hernández-Pérez & Salazar-González (2004), Ljubić

et al. (2006), Gouveia et al. (2018)). Our algorithmic development for the distance-based

critical node detection problem (see Chapter 3) is derived by repeatedly solving the
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shortest path problem as subproblems.

1.2.1 Mixed integer linear programming

In this section, we present the fundamental methods used for modelling and solving

combinatorial optimisation problems. These methods form the basis of procedures

used to address the problem presented in this thesis. Linear programming is one of

the foremost field in mathematical programming with the Simplex algorithm (Dantzig

1951) being fundamental to methods used to solve both linear and mixed integer linear

programming problems. A linear programming (LP) model is a mathematical formulation

having its objective function and constraint sets as linear functions of the decision

variables. An LP is of the form:

LP

min cx (1.1)

s.t. Ax ≤ b (1.2)

x ∈ Rn+ (1.3)

where c is an n-dimensional row vector, x an n-dimensional column vector of variables,

A is an m x n matrix and b an m-dimensional column vector. In general, decision

variables in a linear program are assumed continuous however in practice, many application

problems require integer variables. For instance, in a nurse rostering problem, you cannot

assign 4.2 nurses to a roster. This leads us to mixed integer linear programming model

written as:

MILP

min cx+ hy (1.4)

s.t. Ax+Gy ≤ b (1.5)

x ∈ Rn+, y ∈ Zp+ (1.6)

where G is an m x n matrix, h is a p-dimensional row vector and y is a p- dimensional

column vector of integer variables. If all variables are restricted to be integers, then the
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formulation becomes an integer programming (IP) model and the special case where

only 0− 1 values are allowed then, we have a binary integer programming (BIP) model.

Most combinatorial optimisation problems on networks are often formulated as mixed

integer or binary integer programs. A given combinatorial optimisation problem can

be formulated in different ways giving rise to what is generally known as alternative

formulations. By exploring alternative ways of formulating a given problem, sufficient

progress can be made towards solving difficult optimisation problem.

Definition 1.2.1. Given points x1, x2, . . . , xk, a convex combination of x1, x2, . . . , xk is

given by x = λ1x1 + λ2x2 + · · ·+ λkxk,where
∑k

i=1 λi = 1, λi ≥ 0.

Definition 1.2.2. Given a set X ⊂ Rn, the convex hull of X denoted by conv(X) is the

set of all convex combinations of points in X.

Definition 1.2.3. P ⊂ Rn is a polyhedron if P is described by a finite set of linear

inequalities that is P = {x ∈ Rn : Ax ≤ b}

Proposition 1.2.1. conv(X) is a polyhedron.

Proposition 1.2.2. All extreme points of conv(X) lie in X.

Propositions 1.2.1 & 1.2.2 indicate that for an integer program represented by IP:

{min cx : x ∈ X}, solving the equivalent linear program {min cx : x ∈ conv(X)}

results in integral optimal solution. Thus, by solving the LP over conv(X), the IP is

solved. However, the ideal formulation {min cx : x ∈ conv(X)} for an IP is usually

practically prohibitive since the description of the conv(X) requires an exponential

number of inequalities which are not easy to characterise. Since, the difficulty in solving

an integer programming problem is directly linked to the number of constraints in a

formulation, formulations with more constraints are likely to be more difficult to solve

(leading to more computational time) than those with fewer constraints. Thus, for

many large combinatorial optimisation problems, one pragmatic approach is to construct

formulations whose constraint set consists of many trivially satisfied constraints with

only a few active constraints. These constraints which are known as lazy constraints are
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dynamically generated only when violated hence the formulation size eventually becomes

much less. Another advantage of the lazy constraint formulation is that since the initial

model size is small, the equivalent linear programming relaxation is easily solved thus

providing quick dual bounds. The concepts of bounds are useful in proving optimality

and are crucial components of the exact algorithms discussed hereafter. We refer the

reader to Wolsey (1998) and Wolsey & Nemhauser (1999) for a review of formulations

and methods for solving integer programming problems.

Definition 1.2.4. Consider the integer program:

min{cx : Ax ≤ b, x ∈ Zn+}

Then, the linear programming relaxation to the IP is given as

min{cx : Ax ≤ b, x ∈ Rn+}

Branch-and-Bound algorithm

One of the popular global optimisation algorithms for integer and mixed integer programming

problems is the branch-and-bound algorithm (Land & Doig 1960). The algorithm is

based on the divide and conquer principle wherein a given problem is partitioned into

smaller subproblems which when solved and aggregated together provide solution to the

original problem. The basic idea of the branch-and-bound algorithm is as follows:

(i) partition the feasible set into smaller convex sets,

(ii) find lower and upper bounds for each subset

(iii) form global lower and upper bounds;

(iv) if the global lower and upper bounds are close enough quit, else, refine the partition

and repeat

The branch-and-bound algorithm relies on the computation of lower and upper bounds

since the bounds provide information to prune the branches thus reduce the computational

cost of enumerating the tree.
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Proposition 1.2.3. Let X = X1 ∪ · · · ∪XK be a decomposition of X into smaller sets,

and let zk = min{cx : x ∈ Xk} for k = 1, . . . ,K, zk be an upper bound on zk and zk be

a lower bound on zk. Then, z = minkz
k is an upper bound on z and z = minkz

k is a

lower bound on z .

Since LPs are more like IPs without the integrality restrictions, linear programming

relaxations provide dual bounds when solving IPs with the branch-and-bound algorithm.

The branch-and-bound algorithm solves the LP relaxation of an IP. More specifically,

at the root node, the LP relaxation XLP
0 : {min cx : Ax ≤ b, x ∈ Rn} of a given IP

is solved. This gives rise to a lower bound z. As no feasible solution to the IP exist

yet, we take as upper bound z = ∞. Ideally, −∞ 6= z and z < z, so the algorithm

needs to divide the feasible region (branch) by selecting a branching variable usually an

integer variable with the most fractional value say xi. This splits the problem into two

subproblems about the fractional value x∗i of the branching variable yielding two new

LP problems:

• XLP
1 : {min cx : Ax ≤ b, xi ≥ dx∗i e, x ∈ Rn}

• XLP
2 : {min cx : Ax ≤ b, xi ≤ bx∗i c, x ∈ Rn}

Each of the subproblems is evaluated for their lower bound {z1, z2} and upper bounds

{z1, z2}. Based on the bounds of the subproblems, the global lower and upper bounds

are updated respectively as follows: z = min{z1, z2} and z = min{z1, z2}. Using these

bounds, we can then prune the branch-and-bound tree thereby reduce the number of

further decomposition and hence subproblems to be examined. If the optimal solution to

the LP problems XLP
i is integer, then the associated integer problem is solved hence XLP

i

is pruned by optimality. If zi ≥ z, then the branch Xi of the tree is pruned by bound.

The reasoning follows from the fact that z is an upper bound to the optimal objective

value z of the original integer programming problem as seen in proposition 1.2.3. Thus,

no optimal solution can lie in the set Xi. If there exist Xi for which none of the conditions

for pruning applies, the branch is considered active and branching is done. The algorithm

continues the search in this manner until no active problem exists and the global upper
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bound is returned as the optimal value with the corresponding solution as an optimal

solution. A feasible solution can also be obtained using a heuristic algorithm to kick start

the branch-and-bound process as well as to provide primal (upper) bounds periodically

all through the branch-and-bound process.

Branch-and-Cut algorithm

From the description of the branch-and-bound algorithm, we can see that obtaining

good primal and dual bounds (values that are close to the optimal objective value)

would help the algorithm to converge faster. As have been noted, LP-relaxation provides

dual bounds to an integer program. However, bounds obtained from the LP-relaxation

solution might be far from the optimal objective value which makes the branch-and-bound

tree slower. The cutting plane method provides a way to strengthen the bounds of

LP through an iterative addition of valid inequalities that are satisfied by all integer

feasible solutions but are violated by the current LP-relaxation solution. The idea is

that the addition of generated inequalities (or cuts) cuts off many fractional solutions.

This is with the hope that the feasible region of the LP relaxation is reduced to one

whose extreme points are integer and hence solving the resultant LP solves the IP

(Huang et al. 2009). However, it could require an exponential number of steps to

encounter an integral extreme point, thus the cutting plane method on its own is

not a very efficient way to solve difficult integer programs in practice. In practice,

the branch-and-bound algorithm is usually combined with the cutting plane method

to solve difficult integer programming problems. This is the so-called branch-and-cut

algorithm which is a branch-and-bound method in which cutting planes are generated

all through the branch-and-bound tree (Wolsey 1998). The underlying idea of the

branch-and-cut algorithm is to work towards getting tighter dual bounds in each node of

the tree by adding appropriate cutting planes thereby reduce the number of subproblems

(nodes) in the search tree. In solving many difficult problems, the implementation of

a branch-and-cut algorithm also involves the construction of good feasible solutions

based on primal heuristics that incorporate information from LP-relaxation solutions.
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Thus, successfully solving combinatorial optimisation problems in practice requires an

intelligent combination of formulation of good integer programs, fast feasible solutions,

cutting planes etc.

Research Question

Based on the research issues and motivations introduced with respect to the critical node

(edge) detection problem, our research question is defined thus: How can we efficiently

identify nodes (edges) of networks of varied sizes and topological structures that are

critical to network connectivity objectives relevant for real-world networks?

Research contributions

The contributions of our research consist of the following:

• New mathematical programming models and exact algorithm for various distance-based

connectivity objectives which are relevant to real-life application. Our models are

more computationally efficient than the existing compact model particularly as the

input network grows in size and cohesiveness.

• Efficient heuristic that provides good solutions in reasonable time particularly for

the challenging problem instances unsolved by exact methods.

• Extensive empirical results that compare different connectivity metrics which would

provide useful insights to decision makers in choosing appropriate metric for their

application contexts.

1.3 Outline of thesis

The rest of the report is organized as follows. In Chapter 2, a comprehensive review of

literature on the topic of node and edge deletion problems in networks is presented. In

Chapter 3, a formal description of the distance-based critical node detection problem
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is presented along with the integer programming model by Veremyev et al. (2015). We

then present our proposed mixed integer programming models and exact branch-and-cut

algorithm for the edge-unweighted distance-based critical node detection problem. Chapter 4

focuses on heuristic algorithm for the distance-based critical node detection problem.

In Chapter 5, we present generalisations of the distance-based critical node detection

problem to edge-weighted distances where we propose two mixed integer programming

models. We also present models for the edge-deletion version (which we term the

distance-based critical edge detection problem). Conclusion and future research directions

are presented in Chapter 6.
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Chapter 2

Literature Review

In this chapter, we present a critical review of existing research. We begin with studies

on node and edge deletion problems in networks, where we look at different contexts

and applications for both node and edge deletions. We then focus on studies on node

deletions with specific emphasis on critical node detection problem which is the problem

that seeks nodes in network whose removal minimise some connectivity measure in the

residual network. We review studies on the complexity of the critical node detection

problem as well as different classification and variants that have appeared in literature.

We conclude the review with overview of solution methods developed for the critical

node detection problem.

2.1 Node and edge deletion problems

Studies on node and edge deletion problems can be traced back to the late 1970’s with the

works of Yannakakis (1978) and Krishnamoorthy & Deo (1979). Given a graph property

π, the general node (edge) deletion problem is to identify the minimum number of nodes

(edges), whose deletion results in a subgraph satisfying property π (Yannakakis 1978).

Krishnamoorthy & Deo (1979) proved the NP-completeness of node-deletion problems

for 17 different graph properties including the induced subgraph being complete, a tree,

planar, and bipartite amongst others. This complexity result was generalised by Lewis &
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Yannakakis (1980) for a broad class of properties namely properties that are hereditary

on induced subgraphs including requiring that the induced subgraph be connected. For

the edge version, the authors showed that same generalisations do not hold, however

for many common properties (e.g. planar, line-graph) the edge-deletion problem is

NP-complete. Subsequent studies on node and edge deletion problems built upon

these complexity results with particular focus on the property of “connectedness” in the

induced subgraph. The emphasis on the property of “connectedness” is largely motivated

by the importance of connectivity in many real-world problems that are modelled on

networks. Indeed many network problems are concerned with the issue of whether or

not nodes (or specific node pairs) are connected as well as the extent (measured in terms

of multiple paths availability, shortest path length) of their connection.

Network interdiction is one such network problem with interesting application in security

and defense operations especially for combating drug trafficking. In its simplest form,

network interdiction problem can be seen as an adversary-interdictor game which takes

the form of the well-known max flow-min cut theorem (Ford Jr & Fulkerson 1962). An

adversary seeks to maximise the flow of a commodity from source node s to destination

node t in a directed network while the interdictor tries to break (delete) arcs in the

network in order to eliminate all possible paths for the enemy. Associated with each

arc (i, j) is a resource requirement rij required to break the arc and the interdictor

wishes to use minimum total resource to disrupt all s − t paths (Wood 1993). Here,

we see the interdictor’s aspect of the problem as a classical edge deletion problem

involving the minimisation of the enemy’s maximum flow achievable along unbroken

edges of the network using no more than R available resources. Other kinds of network

interdiction problems have also been studied. The shortest path network interdiction

where the goal of the interdictor is to maximise the shortest path length of an attacker’s

origin-destination pair (Israeli & Wood 2002, Bayrak & Bailey 2008). Other versions

include partial arc interdiction (Israeli & Wood 2002, Sadeghi et al. 2017), stochastic

interdiction (Cormican et al. 1998, Morton 2010)) and multi-objective network interdiction

(Rocco & Ramirez-Marquez 2010, Rocco et al. 2010). For a review on models and
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algorithms for network interdiction problems, we refer the interested reader to the recent

survey by Smith & Song (2020).

Node and edge deletion problems have appeared in the context of network vulnerability

and risk assessment following investigations of responses of complex networks to failures

and attacks (Albert et al. 2000, Holme et al. 2002). These studies revealed that real-life

networks while being robust to random failures are vulnerable to targeted attacks.

While these studies provided useful insights as to the behavioural changes and hence

vulnerability of complex networks to different events (failures and attacks), they did not

seek to identify those nodes and/or edges that made the networks most vulnerable to

attacks. This is important since the goal of vulnerability assessment does not just lie in

knowing whether or not a network is vulnerable but in identifying the main sources of

its vulnerability so as to fortify them against any disruption. This brings us to a very

important class of node and edge deletion problems namely the critical node detection

problem (CNDP) introduced by Arulselvan et al. (2009) which we now focus in the rest

of this review chapter.

2.2 Critical node detection problem

The critical node detection problem comes as a natural problem in vulnerability and

risk assessment of complex networks. Network vulnerability relates to the degradation

of network performance due to failures of nodes (edges) in the network. Critical nodes are

those whose deletion significantly degrades the overall network connectivity. Thus the

performance metric used to assess network vulnerability in the study of the critical node

detection problem is that of connectivity. Defining appropriate connectivity metric is of

great importance in determining what nodes are critical in a given network. Indeed it has

been noted that an essential aspect of the study of the critical node detection problem

is the definition of appropriate metric (Borgatti 2006, Chen 2015). This is because the

defined objective metric affects the feasibility of the associated problem as well as the

usefulness of obtained solutions (Borgatti 2006). Thus, defining an appropriate metric
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helps to describe how the resultant subgraph must be disconnected once the nodes have

been deleted leading to an accurate determination of the concept of criticality for a

given input problem (Lalou et al. 2018). With respect to network connectivity, different

objective metrics have been defined for the study of the critical node detection problem.

These can be grouped into two broad classes: fragmentation-based critical node detection

problem and distance-based critical node detection problem.

2.2.1 Fragmentation-based critical node detection problem

Network fragmentation is the underlying goal of earlier set of studies on critical node

detection problem. The goal of network fragmentation is to break the input network into

as many components as possible since nodes in different components cannot establish

a connection. Fragmentation-based critical node detection problem finds application in

a variety of problems such as in the dismantling of terrorist network by breaking down

communication between individuals in the network (Arulselvan et al. 2009). Variants of

the fragmentation-based critical node detection problem that have appeared in literature

are hereby reviewed.

Critical node problem (CNP)

The pioneer study on the critical node detection problem is the critical node problem

(CNP) proposed by Arulselvan et al. (2009). With the goal of network fragmentation in

mind, the authors defined the problem as follows:

“Given a graph G = (V,E) and an integer B, the objective of the critical

node problem (CNP) is to find a set of B nodes whose deletion results in

the maximum network fragmentation in other words minimise the pair-wise

connectivity between the nodes in theB-vertex deleted subgraph.”(Arulselvan

et al. 2009)

The authors established the NP−completeness of the decision version of the problem.

They proposed a linear integer programming formulation which consists ofO(n3) triangular-inequality
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constraints. Due to the computational limitation of the proposed model, they proposed

a heuristic that exploits the structure of the maximum independent set problem to

solve instances of up to 150 nodes. The computational limitation of the IP model

proposed by Arulselvan et al. (2009) gave rise to further research efforts that were

geared towards developing more efficient models and algorithms as well as identifying

polynomial solvable classes of the CNP. Among them are the works of Di Summa et al.

(2011), Di Summa et al. (2012), Addis et al. (2013) and Veremyev, Boginski & Pasiliao

(2014). In particular, Di Summa et al. (2011) studied the weighted version of the CNP

over trees and proved that the CNP over trees in general is still NP-complete. However,

they show that for unit connection costs that is wij = 1 ∀(i, j) ∈ E, the CNP on trees

is polynomial solvable and proposed a dynamic programming algorithm for it. They

also proposed an enumeration scheme for trees with unit node weights and non-negative

connection costs. However, computational test was limited to instances of up to 100

nodes due to space complexity of the algorithm.

In Addis et al. (2013), the authors studied the unweighted version of the CNP on some

graph classes and established the hardness of the CNP over split and bipartite graphs.

Using a tree decomposition of the input graph, they proposed a dynamic programming

algorithm through which they showed that the CNP on graphs with bounded treewidth

is solvable in polynomial time.

In Di Summa et al. (2012), a path-based integer linear programming (ILP) model

for the CNP was proposed. Although the number of constraints in the path-based

ILP was potentially exponential, the authors showed that they could be separated in

polynomial time by solving an all-pairs shortest path problem on an auxiliary weighted

graph. The authors derived valid inequalities on special structures such as cliques and

cycles which were implemented in a branch-and-cut framework to solve instances of the

Barabasi-Albert and uniform random graphs of up to 100 nodes. They also proposed a

quadratic reformulation for the problem although no empirical result was presented.

The current state-of-art IP model for the critical node problem on sparse graphs is

attributed to Veremyev, Boginski & Pasiliao (2014). The authors proposed a compact
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IP model that requires fewer constraints in comparison to the model by Arulselvan et al.

(2009) along with some reformulations and valid inequalities to enhance the proposed

model. They were able to solve real-world sparse networks of sizes 10 times larger than

have been solved by previous exact methods. Their computational experiments also

show CPU time for their formulation to be 1000 times faster than prior existing models.

Some researchers have also studied the edge version of the critical node problem where

edges (arcs) rather than nodes are deleted. In Matisziw & Murray (2009), an alternative

flow interdiction model was developed to assess the availability of connection between

source and destination (s, t) pairs upon failure of certain number of arcs. The model

incorporates path aggregation constraints to overcome the computational burden of path

enumeration inherent in previous related models. Computational experiment based on

the formulation was carried out on the Ohio interstate highway network having 23 nodes.

Shen et al. (2013) showed that the edge version of the CNP which they termed critical

link disruptor problem is NP-complete on general graphs as well as on special graphs

specifically unit disk and power-law graphs. They proposed an LP-based rounding

algorithm which was implemented on both real-world and synthetic networks. The

stochastic and robust versions of the critical node problem have also been studied for

example in Naoum-Sawaya & Buchheim (2016) and Hosteins & Scatamacchia (2020).

CC-CNP and β−disruptor problem

The classical critical node detection problem which minimises total pairwise connectivity

is suitable when the decision maker has prior information on the size of the critical node

set or is constrained by a given budget. However, when assessing network vulnerability, it

might be desirous to ascertain the number of node (or edge) failures necessary to cause a

certain level of disruption in a network. It might also be the case that specifying a budget

value might be too restrictive for some network topological structures thereby hampering

the possibility and ease of obtaining a feasible solution. Thus, we can direct the objective

focus on identifying the minimum set of critical nodes whose deletion achieves certain

levels of fragmentation (pairwise disconnections) in the residual graph. By altering the
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fragmentation levels, the decision maker can assess the robustness of a network. This is

the motivation behind two additional variants of the fragmentation-based critical node

detection problem namely cardinality constrained critical node problem (CC-CNP) and

β- disruptor problem. In the former, the objective is to minimise the number of nodes

whose deletion results in connected components of size less or equal to some specified

value. The latter deals with both node and edge deletions and seeks to minimise

the number of deleted nodes (or edges) such that the proportion of connected node

pairs in the remaining subgraph is bounded by a threshold β. Like the CNP, the

cardinality-constrained CNP is NP-complete on general graphs as shown in Arulselvan

et al. (2011). Subsequently, the authors proposed a genetic algorithm with local search

procedures for the CC-CNP. A more compact model that provides exact optimal solutions

for larger real-world sparse network instances was proposed by Veremyev, Boginski &

Pasiliao (2014). Similar to the CC-CNP, the β-disruptor problem is NP-complete for

both node and edge versions (Dinh et al. 2012). A closely related version to the CC-CNP

is the component-cardinality-constrained critical node problem (3C-CNP) defined and

studied by Lalou et al. (2016) as well as Lalou & Kheddouci (2019).

MaxNum and MinMaxC

Alternative fragmentation objectives that have also appeared in literature are those that

respectively maximise the number of connected components (MaxNum) and minimise

the largest component size (MinMaxC). The aim of these objectives is to avoid network

fragmentation that results in many isolated nodes with a giant component in the subgraph.

This is because such resultant subgraph cannot be seen as effectively disconnected in

practical contexts such as covert network since members of the giant component can

still communicate and co-ordinate a terrorist attack. Shen et al. (2012) established the

NP-hardness of both the MaxNum and MinMaxC on general graphs. The authors

developed MIP formulations and derived valid inequalities as well as objective bounds

for the MIPs based on dynamic programming solutions of k-hole subgraphs of the input

graph. They also introduced a new CNP variant which they termed the MaxMinLR.
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The goal of this less-studied variant is to maximise the minimum cost required to

reconnect the graph after node deletions given a set of edge construction cost. In Shen

& Smith (2012), the authors studied the MaxNum and MinMaxC on special graphs

namely trees and series-parallel graphs. They developed a polynomial-time dynamic

programming algorithm to solve these problems on randomly generated tree instances

having a maximum of 12 levels and average of 4102 nodes. We refer the interested reader

to the survey by Lalou et al. (2018) for a more detailed review on fragmentation-based

critical node detection problems.

It is worth noting that the aforementioned studies on the fragmentation-based critical

node detection problem are restricted to individual node removals and hence do not

consider the structural relationships between members of the critical node set. A new

paradigm that generalises the fragmentation-based critical node detection problem is the

so-called critical node structure detection problem where the set of nodes to be deleted

form a specific structure (Walteros et al. 2019). Thus, the underlying problem becomes

further constrained depending on the desired structure of the critical node set such as

cliques and stars giving rise to the new terms critical cliques and critical stars.

2.2.2 Distance-based critical node detection problem

Fragmentation-based critical node detection problem have been well studied in literature

as seen by the volume of research output on this problem, all seeking to develop more

efficient model and solution methods for larger instances. However, as pointed out earlier

in Section 1.1, the CNDP whose goal is network fragmentation may not be appropriate

for some network applications where the extent of connection is important. This is

because fragmentation-based CNDP merely cares about the existence of a path between

pairs of nodes. Hence, in the objective function, equal level of connectivity is assigned

to any pair of nodes with a connecting path regardless of the length of the shortest path

connecting them. Moreover, depending on the topology of the input graph, for instance,

in dense networks where fragmenting the network under imposed budgetary constraints

is infeasible, achieving a sufficiently large increase in pairwise distances can be seen as
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practical disconnection. Thus, to address such application contexts, Veremyev et al.

(2015) introduced a new variant of the critical node detection problem that accounts

for actual pairwise distances. This is the distance-based critical node detection problem

(DCNDP), which minimises distance connectivity objectives by incorporating into its

objective a distance function f(d) for the shortest path length between any pair of

nodes. The authors specified 5 distance-based connectivity objectives otherwise referred

to as classes of the distance-based critical node detection problem namely:

(i) Minimise the number of node pairs connected by a path of length at most k

(ii) Minimise the Harary index (equivalently, the efficiency)

(iii) Minimise the sum of power functions of distances

(iv) Maximise the generalized Wiener index (equivalently, the characteristic path length)

(v) Maximise the shortest path length between nodes s and t

They also proposed a generic integer linear programming model that admits all 5 distance

connectivity objective as well as an exact algorithm that iteratively resolves simpler

versions of the IP model. The first class of the DCNDP which minimises the number of

node pairs connected by path of length k reduces to the classical critical node problem

when k = n − 1. Since, the classical CNP is NP-complete on general graphs, it

therefore follows that class (i) of the DCNDP on general graphs is equally NP-complete.

Building on existing complexity studies of the CNP, Aringhieri et al. (2019) analysed

the complexity of classes (i), (iii) and (iv) of the DCNDP on special graph classes

such as paths, trees and series-parallel graphs. They observed that the presence of a

distance-based cost function in the objective makes the complexity analyses of DCNDP

more complicated when compared to the simple pairwise-connectivity CNP. Thus, under

certain conditions such as unit node deletion cost and/or non-negative edge weights, they

identified polynomial and psuedo-polynomial solvable classes of DCNDP. They proposed

dynamic programming algorithms for such classes however no empirical experiment was

presented. In Hooshmand et al. (2020), a complementary MIP formulation and a Benders
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decomposition algorithm were proposed for the DCNDP class (iv). More recently, in an

independent study by Salemi & Buchanan (2020), new integer programming formulations

for the first distance based connectivity objective (i) were proposed. Their solution

technique uses warm-start solutions obtained from a heuristic as well as a preprocessing

procedure that identifies “non-critical” nodes for which corresponding variables are fixed

to zero.

Variants of both the fragmentation-based and the distance-based critical node detection

problems along with relevant literature references are summarised in Table 2.1. Unlike

fragmentation-based critical node detection problem, studies on the distance-based critical

node detection problem have been quite limited partly due to its recent definition.

Our research was aimed towards exploring this new frontier of node and edge deletion

problems primarily from a computational perspective so as to provide more efficient

methods to solve the problem.

2.2.3 Multi-objective critical node detection problem

It is worthy to note that there is no consensus amongst existing studies as to the most

suitable metric for studying the critical node detection problem since application contexts

influence the suitability of each metric. Thus, some researchers have attempted to

capture more than one metric in their objective giving rise to what can be classified

as multi-objective critical node detection problem. The first study in this direction

is that of Veremyev, Prokopyev & Pasiliao (2014) who were motivated by the failure

of fragmentation-based CNDP metric to capture cohesiveness property in the residual

graph. Thus they proposed a weighted bi-objective integer programming model which

minimises both connectivity and cohesiveness metrics. The connectivity and cohesiveness

metrics were assumed to be increasing functions of sizes of connected components and

node degrees respectively. Thus, the model could be seen as a unifying model for

fragmentation-based CNDPs with the added advantage of incorporating a cohesiveness

term in its objective function. A striking conclusion drawn from this study is that

standard MIP solvers are able to handle reasonable size of real-world instances depending

29



C
N

D
P

C
la

ss
ifi

c
a
ti

o
n

C
N

D
P

V
a
ri

a
n
t

O
b

je
c
ti

v
e

C
it

a
ti

o
n

F
ra

gm
en

ta
ti

on
-b

as
ed

C
N

D
P

C
N

P
M

in
im

is
e

p
ai

rw
is

e
co

n
n
ec

ti
v
it

y
b
y

d
el

et
in

g
a

su
b
se

t

of
n
o
d
es

of
sp

ec
ifi

ed
co

st
B

A
d
d
is

et
al

.
(2

01
6)

,
A

ri
n
gh

ie
ri

et
al

.
(2

0
16

a
,b

),
A

ru
ls

el
va

n
et

a
l.

(2
00

9)
,

B
og

in
sk

i
&

C
om

m
an

d
er

(2
00

9)
,

D
i

S
u
m

m
a

et
al

.
(2

01
1,

20
12

),
M

at
is

zi
w

&
M

u
rr

ay
(2

00
9)

,
M

y
u
n
g

&
K

im
(2

00
4)

,
S
h
en

et
al

.
(2

01
3)

,
P

u
re

v
su

re
n

et
al

.
(2

01
6)

,
L

i
et

al
.

(2
01

9)
,

V
en

tr
es

ca

&
A

le
m

an
(2

01
4,

20
15

),
V

en
tr

es
ca

(2
01

2)
,

V
er

em
ye

v
,

B
o
gi

n
sk

i
&

P
as

il
ia

o
(2

01
4)

,
V

er
em

ye
v
,
P

ro
ko

p
ye

v
&

P
a
si

li
a
o

(2
01

4)
,
Z

h
ou

et
al

.

(2
01

8)
,

Z
h
an

g
et

al
.

(2
02

0)
,

P
u
ll
an

(2
01

5
)

C
C

-C
N

P
L

im
it

th
e

m
ax

im
al

co
m

p
on

en
t

si
ze

to
a

gi
ve

n
b

ou
n
d

b
y

m
in

im
is

in
g

th
e

to
ta

l
co

st
of

n
o
d
e

d
el

et
io

n

A
ri

n
gh

ie
ri

et
al

.
(2

01
6a

),
A

ru
ls

el
va

n
et

a
l.

(2
01

1
,
20

0
7)

,
L

al
ou

et
al

.

(2
01

6)
,

V
er

em
ye

v
,

B
og

in
sk

i
&

P
as

il
ia

o
(2

0
14

),
Z

h
ou

et
a
l.

(2
0
18

)

M
in

M
ax

C
M

in
im

is
e

th
e

la
rg

es
t

co
m

p
on

en
t

si
ze

b
y

d
el

et
in

g
a

su
b
se

t
of

n
o
d
es

of
sp

ec
ifi

ed
co

st
B

S
h
en

&
S
m

it
h

(2
01

2)
,

S
h
en

et
al

.
(2

01
2)

,
V

er
em

ye
v
,

P
ro

ko
p
ye

v
&

P
as

il
ia

o
(2

01
4)

,
A

ri
n
gh

ie
ri

et
al

.
(2

01
6a

),
N

gu
ye

n
et

al
.

(2
01

3
)

M
ax

N
u
m

M
ax

im
is

e
th

e
n
u
m

b
er

of
co

n
n
ec

te
d

co
m

p
on

en
ts

b
y

d
el

et
in

g
a

su
b
se

t
of

n
o
d
es

of
sp

ec
ifi

ed
co

st
B

S
h
en

&
S
m

it
h

(2
01

2)
,

S
h
en

et
al

.
(2

01
2)

,
V

er
em

ye
v
,

P
ro

ko
p
ye

v
&

P
as

il
ia

o
(2

01
4)

,
A

ri
n
gh

ie
ri

et
al

.
(2

01
6a

),
V

en
tr

es
ca

et
al

.
(2

01
8)

β
-d

is
ru

p
to

r

p
ro

b
le

m

B
ou

n
d

p
ai

rw
is

e
co

n
n
ec

ti
v
it

y
to

so
m

e
sp

ec
ifi

ed

th
re

sh
ol

d
b

et
a

b
y

m
in

im
is

in
g

th
e

to
ta

l
co

st
of

n
o
d
e(

ed
ge

)
d
el

et
io

n

A
ri

n
gh

ie
ri

et
al

.
(2

01
6a

),
D

in
h

et
al

.
(2

01
2
),

D
in

h
&

T
h
ai

(2
0
15

)

D
is

ta
n
ce

-b
as

ed
C

N
D

P

D
C

N
D

P
cl

as
s

1
M

in
im

is
e

th
e

n
u
m

b
er

of
n
o
d
e

p
ai

rs
co

n
n
ec

te
d

b
y

a
p
at

h
of

le
n
gt

h
at

m
os

t
k

b
y

d
el

et
in

g
a

su
b
se

t
of

n
o
d
es

of
sp

ec
ifi

ed
co

st
B

V
er

em
ye

v
et

al
.
(2

01
5)

,
A

ri
n
gh

ie
ri

et
al

.
(2

01
9
),

A
lo

zi
e

et
al

.
(2

02
1)

D
C

N
D

P
cl

as
s

2
M

in
im

is
e

th
e

H
ar

ar
y

in
d
ex

or
effi

ci
en

cy
b
y

d
el

et
in

g

a
su

b
se

t
of

n
o
d
es

of
sp

ec
ifi

ed
co

st
B

V
er

em
ye

v
et

al
.
(2

01
5)

,
A

ri
n
gh

ie
ri

et
al

.
(2

01
9
),

A
lo

zi
e

et
al

.
(2

02
1)

D
C

N
D

P
cl

as
s

3
M

in
im

is
e

su
m

of
p

ow
er

fu
n
ct

io
n
s

of
d
is

ta
n
ce

s
b
y

d
el

et
in

g
a

su
b
se

t
of

n
o
d
es

of
sp

ec
ifi

ed
co

st
B

V
er

em
ye

v
et

al
.

(2
01

5)

D
C

N
D

P
cl

as
s

4
M

ax
im

is
e

th
e

W
ie

n
er

in
d
ex

b
y

d
el

et
in

g
a

su
b
se

t
of

n
o
d
es

of
sp

ec
ifi

ed
co

st
B

V
er

em
ye

v
et

al
.

(2
01

5)
,

A
ri

n
gh

ie
ri

et
al

.
(2

0
19

),
H

o
o
sh

m
an

d
et

a
l.

(2
02

0)

T
ab

le
2.

1:
V

ar
ia

n
ts

of
th

e
C

N
D

P

30



on the following three factors viz: (i) the type of objective function (ii) the specified

budgetary limitations (iii) the topology of the input graph. This buttresses the motivating

points for our research particularly on the need to develop more efficient exact and

heuristic solution methods for the CNDP especially the distance-based objectives where

computational studies are limited. In Ventresca et al. (2018), a bi-objective CNDP that

seeks to maximise the number of connected components in the residual graph while

minimising the variance of the component sizes was proposed. Through computational

comparisons of 6 common multi-objective evolutionary algorithms on 16 synthetic benchmark

problem instances, the authors identified the non-dominated sorting genetic algorithm

II (NSGAII) as the most promising algorithm. The proposed bi-objective CNDP might

be seen as extending fragmentation-based CNDP since it is only concerned with sizes

of connected component with no recourse to cohesiveness unlike the one proposed by

Veremyev, Prokopyev & Pasiliao (2014). Other bi-objective approaches are those by Li

et al. (2019) and Zhang et al. (2020) both of which seek to simultaneously minimise

pairwise connectivity of the induced graph and the cost of removing the critical nodes.

Thus both studies are primarily focused on the classical fragmentation-based CNDP

with the added opportunity to optimise the cost of node deletion which is important

when the budget on the critical node set is not known apriori.

2.3 Solving the critical node detection problem

We now review solution methods for the critical node detection problem existing in

literature. Specifying a mathematical programming formulation for a combinatorial

optimisation problem is the first step towards understanding the structure of the problem

and analysing its complexity. It is upon such analyses and understanding that algorithm

development is built. Solution methods for the critical node detection problem on

complex networks can be classified into either exact or heuristic algorithms.
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2.3.1 Exact algorithms for the critical node detection problem

Exact approaches for the critical node detection problem comprise mainly solving proposed

integer and mixed integer programming models using default algorithms in popular

optimisation solvers such as CPLEX (Cplex 2009) and Gurobi (Gurobi Optimization

2018). Examples of such studies include those by Arulselvan et al. (2009), Veremyev,

Prokopyev & Pasiliao (2014) and Veremyev, Boginski & Pasiliao (2014). Default algorithms

in commercial solvers use generic cutting planes which might not be effective since they

lack understanding of the problem structure. By exploiting special structures of the

different variants of the critical node detection problem, researchers have devised efficient

cutting planes which are employed within a branch-and-bound framework. In Di Summa

et al. (2012), valid inequalities based on cliques and cycles were proposed for the classical

critical node problem. In Veremyev et al. (2015), an exact truncate-and-resolve algorithm

which iteratively solves a series of simpler integer programs was proposed for the distance-based

critical node detection problem. Benders decomposition approach was used for both the

classical critical node detection problem (Naoum-Sawaya & Buchheim 2016) and for a

class of the distance-based critical node detection problem (Hooshmand et al. 2020).

Solution approaches for the critical node detection problem on special graph structures

such as trees are largely based on dynamic programming. Examples of these include

Di Summa et al. (2011), Shen et al. (2012), Shen & Smith (2012) and Aringhieri et al.

(2019).

2.3.2 Heuristic algorithms for the critical node detection problem

Due to the computational complexity of the critical node detection problem, research

have been advanced in the direction of heuristics to provide good solution to larger

instances in reasonable time. In Ventresca (2012), a population based incremental

learning (PBIL) heuristic and simulated annealing heuristic were proposed to solve

instances of the classical critical node problem with size ranging between 250 − 5000

nodes. Ventresca & Aleman (2015) also proposed a greedy algorithm that is based

on a modified depth first search for the classical critical node problem (minimisation
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of pairwise connectivity). Their algorithm which runs in O(k|V | + |E|) time was able

to compute set of critical nodes for graphs with up to 23, 133 nodes. Their algorithm

provided solutions with better (smaller) objective function values in comparison with

popular centrality-based algorithms such as Degree and PageRank although at the cost

of longer running time. Aringhieri et al. (2016b) developed solutions for the classical CNP

based on an improved variable neighbourhood search (VNS). The new neighbourhood

structures were shown to be more computationally efficient than traditional two node

exchange neighbourhood structure. A hybrid constructive heuristic was developed in

Addis et al. (2016) for the classical CNP. The heuristic combines greedy algorithms and

local search techniques by first identifying a vertex cover then modifies the identified

cover for objective function improvements until the budgetary constraint is satisfied. A

genetic algorithm for the classical CNP and its cardinality-constrained variant was also

proposed by Aringhieri et al. (2016a). A Greedy Randomised Adaptive Search Procedure

(GRASP) with Path Relinking (PR) mechanism was proposed for the classical CNP by

Purevsuren et al. (2016). In comparison with 3 existing CNP heuristics, the GRASP-PR

algorithm outperformed two of the algorithms (PBIL and simulated annealing) developed

by Ventresca (2012) for all 16 benchmark instances. It also provided better solutions

than its competitor VNS (Aringhieri et al. 2016b) for 13 out of the 16 test instances.

In Zhou et al. (2018), the authors developed a memetic algorithm for the classical CNP

and demonstrated extension of the framework to the cardinality-constrained CNP. The

algorithm maintains a population of promising solutions generated through a combination

of double backbone-based crossover, a component-based neighbourhood search procedure

and a rank-based pool updating strategy. The double backbone-based crossover procedure

generates promising offspring solutions by inheriting both common and exclusive elements

of its parent solutions. The component-based neighbourhood uses a node weighting

technique for node selection from a reduced neighbourhood (large connected components)

thus making the neighbourhood search more efficient. Computational experiments on 42

benchmark instances (26 real-world and 16 synthetic instances) show the effectiveness

of the proposed memetic algorithm over existing ones including an iterative local search
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algorithm (Addis et al. 2016), variable neighbourhood search heuristic (Aringhieri et al.

2016b) and genetic algorithm (Aringhieri et al. 2016a). In particular, the proposed

memetic algorithm matches 18 previous best-known upper bounds and discovers 21 new

ones, falling short in only 3 of the instances. There is yet no existing heuristic algorithm

for any of the classes of the distance-based critical node detection problem hence our

research (Chapter 4) is aimed at addressing this gap.

2.4 Critical node detection problem: application and related

problems

We end this chapter with a review of interesting applications of the critical node detection

problem as well as network problems that are closely related to the critical node detection

problem.

2.4.1 Applications of critical node detection problem

As have been previously noted, research on the critical node detection problem is inspired

by a variety of areas in which it can be applied. Some of these areas are reviewed.

Computational Biology

The critical node detection problem has been applied to study the interaction of proteins

in biological networks. Biological organisms such as bacteria consist of sets of interconnected

proteins whose interactions form protein-protein interaction networks with nodes as

proteins and interactions as edges (Lalou et al. 2018). Thus, critical nodes in the

context of protein-protein interaction networks are the proteins that are important to the

connectivity of the network. In Boginski & Commander (2009), the authors employed

the cardinality-constrained critical node problem (CC-CNP) variant to identify critical

proteins whose removal would destroy the primary interactions leading to a neutralisation

of harmful organisms such as bacteria. The authors proposed that the application of the

CNDP in protein-protein interaction networks is potentially useful in drug design. This
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was later investigated by Tomaino et al. (2012) in the context of human protein-protein

interaction network. Applying the classical CNP variant on a human cancer protein

network, critical proteins were identified as hub proteins that are responsible for the

overall connectivity of the graph whose mutation can lead to cancer and other diseases.

Contagion control

Another important area where the critical node detection problem finds application is

in contagion control. Connectivity is a very crucial phenomenon in the outbreak of

infectious diseases, computer virus or rumours within human or computer networks.

Thus, breaking or limiting connections between nodes of the networks is necessary to

contain the spread of these undesirable events. The classical CNP has been proposed

as an efficient strategy for immunisation of populations against diseases (Arulselvan

et al. 2009). Since vaccinating an entire population is impracticable, immunising or

isolating the identified critical nodes provides a cost-effective way to halt infection

propagation. The authors maintained that the proposed strategy is efficient and better

than previously existing immunisation strategies. Because existing CNP models consider

all nodes to be from the same set, they are not well suited for direct application to the

context of infection control. Hence, in Nandi & Medal (2016), the authors gave specific

attention to the problem of minimising the spread of infection through link removal and

divided the node set into susceptible and infected nodes. They proposed four different

connectivity-based network interdiction models. The four models which were formulated

as mixed integer linear programs minimise

• the number of connections between infected and susceptible nodes

• the number of susceptible nodes having one or more connections with infected

nodes

• the total number of paths between infected and susceptible nodes

• the total weight of the paths between infected and susceptible nodes
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The motivation for link removal is based on the fact that in some network application,

node removal is more expensive. For example, it is more feasible and less expensive to

temporarily cancel flights between two specific airports than to completely shut down

an entire airport during a global pandemic. A combination of both node and link

removal have also been proposed for infection control (He et al. 2011). Also, for some

newly developing infection for which vaccines are unavailable and complete isolation

is not feasible or desirable, the distance-based CNDP variants could be potentially

useful as a means of limiting distance between members of a population. The 2 metres

social distancing policy introduced in the United Kingdom during the 2020 coronavirus

pandemic could be viewed as an intuitive application of distance-connectivity measure

in slowing the spread while allowing for “essential” activities. This is also relevant for

contagions that require “very close” contact with infected persons to propagate across the

network. The cardinality constrained version (CC-CNP) was proposed to be a potential

model for the case of complex contagion spreading which requires interaction with atleast

t > 1 infected individuals for an individual in the network to be infected (Lalou et al.

2018). In which case, given a cardinality constraint t on size of components, deletion

of the critical nodes leaves each component with at most t nodes either all of which are

already infected or at least one of the t nodes is not infected and thus the contagion

cannot spread.

Disaster vulnerability assessment and management

Economic and social activities are heavily dependent on operations of network infrastructures

such as highways, electrical power grids, telecommunication systems. The loss or failure

of one or a few of the facilities can result in wide-range service disruption. One way of

curtailing such disruptions is to identify the critical elements of these networked systems

in order to fortify them against attack. This helps disaster management planners to

reduce the worst-case risk of a disaster. Moreover, identifying the critical facilities can

reduce the burden of planning for disaster recovery since budgetary resources are limited.

The classical CNP has been applied in the context of disaster vulnerability assessment
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and management to identify network facilities that are most vital to system flow. For

instance, models for arc deletion versions of the CNP have been proposed as a means

of identifying the facilities (roads) of a networked system associated with the worst-case

impact to system flow (Myung & Kim 2004, Murray et al. 2007, Matisziw & Murray

2009). The enhanced path model by Matisziw & Murray (2009) was applied to the

Ohio’s interstate system to assess the vulnerability of its trucking activity (as a measure

of system performance) to interstate disruption. Most of these studies that apply the

CNDP to vulnerability assessment of critical infrastructures assume that system flow

is ensured by availability of an s − t path, hence use CNDP models that are based

on fragmentation. The Distance-based critical node detection problem can be used to

address network vulnerability where the length of available paths is equally important.

A classical example is in telecommunication network where quality of service (usually

modelled by hop distance) is a crucial element of service delivery which internet service

providers consider in vulnerability assessment (Elsayed 2004, Gouveia & Leitner 2017).

2.4.2 Network problems related to critical node detection problem

Key player problem

The key player problem (Borgatti 2006) in social network is the problem of identifying

actors/individuals that are important for the network. According to Borgatti (2006),

there are fundamentally two classes of key player problem namely key player problem/negative

(KPP-Neg) and key player problem/positive (KPP-Pos). KPP-Neg is defined in terms

of the cohesiveness which the key players maintain in the network, thus it measures the

reduction in cohesiveness of the network in the absence of the key players. It is easy

to see that the KPP-Neg is closely related to the critical node detection problem since

both problems seek nodes of the network whose absence (removal) would compromise the

cohesion of the network. Infact, the metrics proposed for the KPP-Neg in Borgatti (2006)

appear as connectivity objective functions in some of the mathematical programming

models developed for both fragmentation-based CNDP (e.g CNP, MinMaxC, CC-CNP)

and the distance-based CNDP (e.g Harary index, Wiener index). Thus, the models
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which were developed for the critical node detection problem can be applied to the key

player problem/Negative in social networks.

The second key player problem KPP-Pos examines the extent to which key players

are connected to and embedded in the network thus they are nodes which are maximally

connected to the rest of the nodes in the network. The KPP-Pos is useful in applications

requiring quick diffusion of information or practices to members of a social network using

a few individuals as seeds. The goal of the KPP-Pos can be seen as the opposite of that

of the CNDP. Nevertheless, as the KPP-Pos is inherently combinatorial and deal with

speed of diffusion, the distance-based CNP variant would be the closest related CNDP

variant to the KKP-Pos.

Maximum s-club problem

Another class of graph problems that is closely related to the critical node detection

problem is the s-club problem (Mokken et al. 1979). Given an unweighted graph

G = (V,E), an s-club is defined as a subset S ⊂ V of nodes whose induced subgraph

G[S] has a diameter at most s. The maximum s-club problem therefore is to identify

an s-club of maximum cardinality, that is, to find a maximum cardinality subgraph

with pairwise distance at most s. The maximum s-club problem is one of the most

useful distance-based clique relaxation models for identifying cohesive subgroups in social

networks (Shahinpour & Butenko 2013). In Veremyev et al. (2015), the authors showed

adaptation of their compact model for the distance-based critical node detection problem

to the s-club problem indicating the potential for adapting the models proposed in this

thesis to the maximum s-club problem.

Survivable network design problem

The devastating effects and frequency of natural disasters on communication networks

motivated the problem of survivable network design (Grötschel et al. 1995). A network

is said to be survivable if it can establish communications between its nodes even after

failures of a pre-defined number of nodes or links while vulnerability relates to changes
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in the distance between pairs of nodes as a result of edge or node removals (Gouveia

& Leitner 2017). The survivable network design problem is the problem of designing

minimum cost networks that satisfy certain connectivity requirements (Grötschel et al.

1995). In earlier studies, the connectivity requirements which represent network survivability

were modelled using well-known graph problems such as Steiner tree and minimum cost

k−connected network problems. Due to the importance of quality of service, recent

studies in survivable network design combine survivability and quality of service by

imposing hop-constraints (see e.g Gouveia et al. (2006), Mahjoub et al. (2013), Gouveia

& Leitner (2017)). One of such problems that relates to the critical node detection

problem is the network design problem with vulnerability constraints (NDPVC) proposed

by Gouveia & Leitner (2017). The NDPVC seeks a minimum cost subgraph in which

for every commodity (s, t), there is a path of length at most Hst and after removal

of k − 1 edges, the resulting graph has a path of length at most H
′
st. In the NDPVC,

vulnerability is associated with changes in hop distance between node pairs after deletion

of edges from the network. The NDPVC considers all possible edge deletions that is,

the minimum cost subgraph has to be robust to any edge deletion making the concept

of “critical” edge not important. Notwithstanding, it relates to the edge version of

the distance-based critical node detection problem since the actual distances between

pre-defined commodities (s, t) is accounted for as well as number of edges to be deleted.

2.5 Concluding remarks

In this chapter, a review of literature on node and edge deletion problems was presented.

Beginning with the history of node and edge deletion problems, we reviewed problems

that relate to a very important property in network which is connectivity. One of such

problems is the network interdiction problem which come in different flavours including

the minimum cost flow interdiction, shortest path interdiction etc. Each of these flavours

of the network interdiction problem is constituted by an edge deletion problem at its

defender’s level. We then presented a detailed review of the problem of interest of
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this thesis which is the critical node detection problem. Under the two broad groups

of the critical node detection problem namely fragmentation-based and distance-based,

different objective metrics were considered. Models and algorithms for different variants

of the critical node detection problems were reviewed. The review showed that the

fragmentation-based critical node detection problem has been well-solved both from

an exact algorithm point of view as well as heuristic. However, very little amount of

literature exists for the distance-based critical node detection problem especially from an

algorithm perspective hence the need for this research. In the next chapter, we formally

present the distance-based critical node detection problem as well new models and exact

algorithm which we have developed to solve it.
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Chapter 3

Exact methods for the

distance-based critical node

detection problem

3.1 Introduction

Assessment of system vulnerability to adversarial attacks has become an important

concern to organisations, especially in the wake of security threats around the world.

Natural occurrences such as environmental disasters and disease epidemics with their

cascading effects impact the overall performance of systems, in which they occur. Networked

system developers now consider as a matter of necessity the issue of robustness at the

very stage of building new networks. For instance, they try to ensure the existence of

many unique alternative routes or multiple connectivity between specified source and

destination pairs as possible (Gouveia & Leitner 2017). Similarly, existing networked

system owners continue to seek efficient surveillance strategies to ensure minimal disruption

in the health and performance of their system. An important strategy for the latter

case is to identify elements of a given system that are critical in maintaining optimum

system performance. In other words, we are identifying the parts of a system whose
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failure would result in a break down of the system. System performance has varying

definitions depending on the topology of the system and the application being considered.

Nevertheless, the underlying problem is that of identifying important system elements.

The associated problem as studied in the optimization community is termed critical

node detection problem (CNDP), as introduced in Arulselvan et al. (2009). Given an

undirected graph G = (V,E) with n = |V | nodes (vertices) and m = |E| edges (arcs), the

problem is to identify a subset of nodes of limited cardinality whose deletion results in a

subgraph of maximum disconnectivity with respect to a predefined connectivity metric.

An essential aspect in the study of the critical node detection problem is the identification

of a network property relevant to the network under study and an appropriate metric

for its description (Borgatti & Everett 2006). This is primarily determined by the

application context. In relation to network properties associated with studies on the

CNDP, existing studies can be grouped into two broad categories, namely fragmentation-based

and distance-based connectivity. A significant volume of research has been carried out in

relation to the former category as shown in the review chapter (see Chapter 2). However,

only a few computational studies have been done with regards to the latter which is the

distance-based critical node detection problem (DCNDP).

In this chapter, we focus on the distance-based critical node detection problem

whose goal is to minimise some distance-based connectivity objective by the deletion

of a subset of nodes of specified cardinality. We begin by presenting the different

distance-based connectivity functions as defined in Veremyev et al. (2015) as well as

the integer programming formulation proposed by the authors. The IP model has

O(|V |3) variables and O(|V |2|E|) constraints and is sensitive to edge-dense graphs as

well as graphs with short average path lengths. We use this model as a base model

to benchmark our study. We then present our new formulations, the first is a generic

integer programming model which like the base model is a valid formulation for all the

distance-based connectivity functions defined in Veremyev et al. (2015). For a specific

distance-based connectivity function, we also propose a reduced formulation that has

fewer variables compared to the first model. We exploit the structure of the problems
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to develop an efficient separation routine to use within a branch-and-cut framework.

Our algorithmic framework for solving the proposed models is based on a modified

breadth-first-search tree generation. We demonstrate the efficiency of our approach

in comparison to the base model on both real-world and synthetic graphs using two

classes of the distance-based critical node detection problem. These two classes have

interesting practical applications and broadly generalise the other classes. Comparing

our implementation for the two distance DCNDP classes on some real-world graphs

provide computational evidence to the impact of connectivity objective on the possibility

and ease of solving the CNDP. We also propose valid inequalities based on mixed integer

rounding. Our contributions are two-fold:

i From the methodological side, we introduce new formulations that use a decomposition

approach. It was designed to exploit certain classes of distance functions (when

L is small) as the natural compact model can become too big. We also introduce

two families of valid inequalities for these problems.

ii We perform a computational study to test and compare the performance of the

new formulations we introduced on a number of real-world and computer generated

instances. The implementation includes a) a modified breadth-first-search (BFS)

algorithm to separate both integer and fractional solutions b) a primal heuristic to

improve upper bounds c) a family of valid inequalities to improve lower bounds.

Organisation

The rest of the chapter is organised as follows. In Section 3.2, we formally describe the

distance-based critical node detection problem and give definition of the distance-based

connectivity metrics proposed by Veremyev et al. (2015). We also present the base integer

programming formulations proposed by the authors. In section 3.3, we present our new

path-based mixed integer programming formulations. In section 3.4, we present our

modified breadth-first-search algorithm for solving the separation problem associated
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with the new models as well as valid inequalities and primal heuristics. We present

our computational study with thorough comparisons of models in sections 3.5 and 3.6.

Concluding remarks are provided in section 3.7.

3.2 Problem description and base formulation

Let G = (V,E) be a simple undirected unweighted graph with a finite set V of nodes

(or vertices) and a finite set E ⊆ V × V of edges where n := |V | and m := |E|. For any

given node say i, denote by NG(i), the set of all neighbours of i that is, NG(i) = {j ∈ V :

(i, j) ∈ E}. Node i is said to be connected to another node j if there is a path between

them. A shortest path between i and j is a path containing the least number of edges

among all paths connecting i and j. The number of edges of a shortest path between

i and j in G is known as the hop distance or simply distance between i and j denoted

by dG(i, j). The maximum distance between any pair of nodes in G is known as the

diameter of G. The goal of the distance-based critical node detection problem is to find

a subset of nodes R ⊂ V with |R| ≤ B, whose removal minimises some distance-based

connectivity measure f(d) written mathematically as:

DCNDP : min
R⊂V

∑
i,j∈V :i<j

f(dGR(ij)) : |R| ≤ B

where dGR(ij) is the distance or length of shortest path between nodes i and j in

the node-deleted subgraph GR = G[V \ R], f : Z>0 ∪ {∞} → R represents some

distance-based connectivity function and B is the available budget on the set of critical

nodes. The distance connectivity function f(.) is assumed to be non-increasing which

implies that paths with larger lengths contribute less in the objective function. Also,

for any pair of node i, j ∈ V \ R, if i and j are not connected, then dGR(ij) = ∞ and

we assume that f(∞) = 0. For simplicity of notation, we use f(d) instead of f(dGR(ij))

hereafter.
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3.2.1 Classes of the distance-based critical node detection problem

The concept of the connectivity metrics used in the definition of the distance-based

critical node detection problem come from notions of cohesion and fragmentation in

network analysis. For example, the characteristic path length and efficiency (Zhou et al.

2008) defined respectively by:

L(G) =
1

n(n− 1)

∑
i,j∈V :i 6=j

dG(i, j) and E(G) =
1

n(n− 1)

∑
i,j∈V :i 6=j

1

dG(i, j)

are popular distance measures used in the social network analysis literature. In Veremyev

et al. (2015), five different classes of the DCNDP were introduced. Each class corresponds

to a different distance connectivity function f(.). However the underlying idea in each

of the functions is that the set of critical nodes realised by solving the associated

optimisation problem ensures that pairwise distances in the induced subgraph are maximised.

Class 1. Minimise the number of node pairs connected by a path of length at most k:

f(d) =


1, if d ≤ k

0, if d > k

(3.1)

where k is a given positive integer representing the cut-off hop distance. The special case

where k ≥ n− 1 is the classical CNP version which minimises the number of connected

node pairs. Interesting instances of this class of DCNDP would be graphs with a small

diameter and thus a large proportion of nodes connected within a small number of hops.

We will refer to the DCNDP version corresponding to this class of distance function as

DCNDP-1.

Class 2. Minimise the Harary index or efficiency of the graph

f(d) =


d−1, if d <∞

0, if d =∞

This metric is based on the assumption in communication network analysis that communication

efficiency between node pairs is inversely proportional to the distance between them
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(Crucitti et al. 2003). Typically, two disconnected nodes are at a distance of∞. However,

in many real-world applications such as telecommunication and social networks, two

nodes that are far enough from each other cannot effectively communicate. Hence, we

consider a threshold model, where two nodes separated by a distance that is more than

some specified threshold L, cannot communicate. This results in the following modified

Harary distance function.

f(d) =


d−1, if d ≤ L

0, otherwise

(3.2)

We will refer to the DCNDP version corresponding to this connectivity function as

DCNDP-2.

Class 3. Minimise the sum of power functions of distances in the graph:

f(d) =


pd, if d <∞

0, if d =∞
(3.3)

where p is a fixed parameter such that 0 < p < 1. The distance function which is

also known as the Hosoya polynomial (Hosoya 1988) in chemistry can be applied in the

context of virus or rumour propagation. The parameter p here models the transmission

probability of the phenomenon between two adjacent nodes. For non-adjacent node

pairs, the transmission probability estimated from the power function would decrease

with increase in the distance (d) between the nodes. Hence, class 3 of the DCNDP

which we refer to as DCNDP-3 can be understood as identifying a subset of nodes

whose removal maximally reduces the network’s propensity to spread a virus.

Class 4. Maximise the generalised Wiener index or, equivalently, the characteristic path

length of the graph:

f(d) =


−d, if d <∞

−M, if d =∞
(3.4)
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where M is a sufficiently large constant such that M > n− 1.

The distance function f(.) is given here as negative since the DCNDP has been defined

as a minimisation problem. One can easily reformulate as a maximisation problem that

maximises the sum of all pairs shortest path distances in the induced subgraph as in

Hooshmand et al. (2020).

Class 5. Maximise the shortest path length between nodes s and t in the graph:

f(d) =


0, if i 6= s, or j 6= t

−M, if i = s, j = t, and d =∞

−d, otherwise

(3.5)

where s, t ∈ V \R.

This is simply the node deletion version of the defender’s problem in the classical shortest

path network interdiction problem (Israeli & Wood 2002) which maximises the distance

between node (commodity) pair (s, t). This can also be modified to handle non-singleton

set of commodity pairs.

3.2.2 Base MIP formulations

Given the input graph G = (V,E) as defined before with n = |V | nodes and m = |E|

edges, also let B and L be given positive integers. Associated with any node i ∈ V , we

define a variable xi as

xi =


1, if node i is deleted,

0, otherwise.

(3.6)

Similarly, we define connectivity variables by

y`ij =


1, if (i, j) are connected by a path of length ≤ ` in GR

0, otherwise.

(3.7)
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The generic integer programming formulation provided in Veremyev et al. (2015) is

given as follows:

DCNDP-base:

Minimise
∑

i,j∈V :i<j

(
f(1)y1ij +

L∑
`=2

f(`)
(
y`ij − y`−1ij

))
(3.8)

+
∑

i,j∈V :i<j

f(∞)
(
1− yLij

)
(3.9)

s.t. y1ij + xi + xj ≥ 1, ∀(i, j) ∈ E, i < j (3.10)

y`ij = y1ij , ∀(i, j) ∈ E, i < j, ` ∈ {2, . . . , L} (3.11)

y`ij + xi ≤ 1, ∀(i, j) ∈ V, i < j, ` ∈ {1, 2, . . . , L} (3.12)

y`ij + xj ≤ 1, ∀(i, j) ∈ V, i < j, ` ∈ {1, 2, . . . , L} (3.13)

y`ij ≤
∑

t:(i,t)∈E

y`−1tj , ∀(i, j) /∈ E, i < j, ` ∈ {2, . . . , L} (3.14)

y`ij ≥ y`−1tj − xi, ∀(i, t) ∈ E, (i, j) /∈ E, i < j, ` ∈ {2, . . . , L} (3.15)∑
i∈V

xi ≤ B (3.16)

xi ∈ {0, 1} , ∀i ∈ V (3.17)

y`ij ∈ {0, 1} , ∀(i, j) ∈ V, i < j, ` ∈ {1, . . . , L} (3.18)

Objective terms (3.8)–(3.9) minimise some distance-based connectivity objective f(.).

In objective (3.8), each term of the form (y`ij − y`−1ij ), ` ≥ 2 is equal to 1 iff y`ij = 1

and y`−1ij = 0. This implies that ` is the shortest path length between i and j in GR.

Moreover, the term 1−yLij in objective (3.9) is equal to 1 iff nodes i and j are disconnected.

Constraints (3.10)–(3.11) ensure that y`ij = 1 for adjacent node pairs (i, j), if neither of

the nodes i nor j is deleted. Constraints (3.12)-(3.13) enforce y`ij to be zero if either

node i or j is deleted. Constraints (3.14)-(3.15) ensure that there is a path of length at

most ` between non-adjacent nodes i and j iff node i is not deleted and there is a path of

length at most `− 1 between t and j for some non-deleted node t in the neighbourhood

of node i. Constraint (3.16) limits the cardinality of the critical node set to the budget
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B. Constraints (3.17)-(3.18) are binary restrictions on the decision variables. The

observation that the binary restrictions on the y variables can be relaxed was made in

Veremyev et al. (2015). Intuitively, once the x variables are fixed, constraints (3.10)

and (3.15) will fix a subset of y variables to either 0 or 1. The minimisation function

incentivises the remaining y variables to take a value of 0.

As noted in Veremyev et al. (2015), considering initial shortest-paths dij between each

node pair (i, j) in the input graph enables us to set connectivity variables y`ij = 0 for all

` < dij as well as defining constraints (3.14)-(3.15) for only ` ≥ dij . In addition to this,

we note that only neighbours t of i having shortest path dtj ≤ `−1 should be considered

in constraints (3.14)-(3.15). These and leaf-node based considerations reduce the number

of variables and constraints in the model, thereby improving performance of standard

IP solvers. We refer to this base formulation with all the proposed enhancements as the

enhanced compact model (ECM).

3.3 New integer programming formulations

The motivation behind the distance-based connectivity metrics is that shorter paths

contribute more to the connectivity objective than longer paths. Since only paths of

length at most L is of importance here, by keeping track of paths within this threshold,

we can guarantee that any given node pair (i, j) is L-distance disconnected iff at least

one node along all candidate paths PL(i, j) between i and j is deleted. We use this idea

to formulate new integer programming models which are based on the paths connecting

node pairs and as such consists of exponentially many constraints. However, only few

of these constraints would eventually be active in the formulation hence they can be

treated as lazy constraints to be separated in polynomial time by solving a shortest path

problem.

Using the decision variables x and y as defined in 3.6 & 3.7, we propose a new path-based

model which like the base model admits all the 5 distance-based connectivity functions.

We refer to this model as DCNDP-PBML and the mixed integer formulation is given
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as follows:

DCNDP-PBML

Minimise
∑

i,j∈V :i<j

(
f(1)y1ij +

L∑
`=2

f(`)
(
y`ij − y`−1ij

))
(3.19)

+
∑

i,j∈V :i<j

f(∞)
(
1− yLij

)
(3.20)

s.t.
∑

r∈V (P )

xr + y
|P |
ij ≥ 1, ∀P ∈ PL(i, j), i, j ∈ V, i < j (3.21)

y`−1ij ≤ y`ij , ∀(i, j) ∈ V, i < j, ` ∈ {2, . . . , L} (3.22)

y`ij = y1ij , ∀(i, j) ∈ E, i < j, ` ∈ {2, . . . , L} (3.23)∑
i∈V

xi ≤ B (3.24)

xi ∈ {0, 1} , ∀i ∈ V (3.25)

y`ij ∈ {0, 1} , ∀(i, j) ∈ V, i < j, ` ∈ {1, . . . , L} (3.26)

The objective terms (3.19)–(3.20) are the same with those of DCNDP-base.

Constraints (3.21) ensures that node pairs (i, j) are L-distance disconnected iff at least

one node along all paths of length less or equal to L connecting i and j is deleted. Since

there are potentially many such constraints, some of which are redundant, we explicitly

model the non-redundant constraints (y`ij + xi + xj ≥ 1) for edges and leave the rest to

be identified in a separation routine. Constraints (3.22) ensure that there is a path of

length l, if there is a path of length l−1. Constraints (3.23) is same as constraints (3.11).

The budgetary constraint limiting the cardinality of the critical node set is represented

by constraint (3.24) while constraints (3.25)–(3.26) specify the domains of the decision

variables. Following the same argument as in Veremyev et al. (2015), the integrality

constraints can also be relaxed for the connectivity variables ylij in this formulation. Note

that the root LP-relaxation of the base model (formulation (3.8)–(3.18)) will be better

than that of the path-based model (formulation (3.19)–(3.26)) as constraints (3.10)

and (3.15) of the base model would completely imply constraints (3.21). However,

constraints (3.14) and (3.15) make the compact model grow with the graph size.
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Furthermore, we exploit the nature of the distance-based connectivity function (3.1)

of class 1 of the DCNDP by observing that the objective function does not explicitly

make use of the path lengths indexed by ` in the y variables. Instead, it counts whether or

not pairs of nodes (i, j) are connected by a path of length `. This enables us to eliminate

the `- index in the distance connectivity variable y`ij used in the path-based model

(formulation (3.19)–(3.26)) to arrive at an alternative path model for DCNDP-1 which we

denote by DCNDP-1-PBM. We can get computationally more efficient solutions using

DCNDP-1-PBM as the corresponding LP relaxation is relatively smaller, which we

exploit to compute quicker bounds. These observations are supported in our experiments

(see Sections 3.6.1 & 5.2.1).

We define a new set of connectivity variables yij as follows:

yij =


1, if (i, j) are connected by a path of length ≤ k in GR

0, otherwise.

(3.27)

Using the former set of node deletion variables (3.6) along with the new connectivity

variables (3.27), the reduced path-based model for DCNDP-1 is formulated as follows:

DCNDP-1-PBM

Minimise
∑

i,j∈V :i<j

yij (3.28)

s.t.
∑

r∈V (P )

xr + yij ≥ 1, ∀P ∈ Pk(i, j), (i, j) ∈ V, i < j (3.29)

∑
i∈V

xi ≤ B (3.30)

xi ∈ {0, 1} , ∀i ∈ V (3.31)

yij ∈ {0, 1} , ∀(i, j) ∈ V, i < j (3.32)

Objective function (3.28) minimises the number of node pairs connected by a path of hop

distance at most k. The ideas behind constraints (3.29)- (3.32) are similar to those of

constraints (3.21); (3.24)–(3.26) of the extended path model (formulation (3.19)–(3.26)).
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We can relate both path-based formulations in the following way. Let

Q := {(y,x) : (y,x) satisfies constraints (3.21) to (3.26)}

where y = yL, . . . ,y1. Then we can think of the feasible space of the reduced path

formulation DCNDP-1-PBM as

Proj(yL,x)Q := {(yL,x) : ∃(yL−1, . . . ,y1) : (y,x) ∈ Q}

If we do Fourier elimination (Williams 1986) of variables systematically starting from

y1ij all the way to ykij , we will get exactly DCNDP-1-PBM with no changes. On the

other hand, if we interpret yij as non-negative continuous variables that define the value

of the distance function between nodes i and j, then we can model DCNDP-PBML

similar to the reduced version DCNDP-1-PBM. By removing the dependency on ` in

y variables, constraint (3.21) can now be replaced by∑
r∈V (P )

f(|P |)xr + yij ≥ f(|P |) ∀P ∈ PL(i, j), i, j ∈ V, i < j (3.33)

Objective function (3.19)–(3.20) would be replaced by

min
∑

i,j∈V :i<j

yij

we can then drop constraints (3.22)–(3.23) and relax constraint (3.26) to yij ∈ [0, 1]. By

replacing ylij with the aggregated continuous yij variables, we can see that the generic

path formulation (3.19)–(3.26) can be reformulated to a form of the reduced path

formulation (3.28)–(3.32) accommodating DCNDP-2 and DCNDP-3 objectives. This

reformulation can also accommodate positive integer edge weights and easily adapted to

the remaining distance classes. We discuss these in detail in Chapter 5.

3.4 Solution Methods

In this section, we present details of the separation routine for the path-based formulations.

We also present a heuristic framework for generation of good incumbent solution as well

as valid inequalities for improvement of lower bounds.

52



3.4.1 Separation algorithm

Instead of solving a hop-constrained shortest path problem (Guérin & Orda 2002) or

enumerating all paths of certain length for every pair of nodes in order to generate cuts,

we use a customised approach to separate violated lazy cuts. This approach involves in

generating a breadth-first-search tree for every node v ∈ V . At each level i of the BFS

tree rooted at v, there are ki nodes {li1, . . . , liki} that are at a distance of i from v (see

Figure 3.1). The unique path from a node in the BFS tree to the root node gives us

an inequality of type (3.21) or (3.29). For model DCNDP-1-PBM, since we are only

interested in paths up to a specific length k, we stop the traversal up to that particular

depth. For DCNP-PBML, we continue traversal up to depth L. In the BFS tree, we

identify the path from the root node i to the nodes in level ` = 1, . . . , L and if this path

is violated, we add it as a cut. The generation of these BFS trees is much more efficient

and we get multiple paths for one such tree. BFS tree can be generated in O(|E|) as

compared to solving shortest path that will take O(|E| + |V | log |V |). Since we only

explore L levels of the BFS tree, it takes far less time than O(|E|) to generate these

trees. A pseudocode of the algorithm is given by Algorithm 1.

The algorithm begins by selecting a root node r from the set of candidate root nodes

and constructs a BFS tree up to a specified depth (or tree level) L. The algorithm follows

a standard BFS algorithm with the only difference being that it keeps track of the depth

of each discovered node (lines 6 & 10) with which it determines when to terminate the

current tree generation and also to separate the corresponding path inequalities. For

each node t that is being visited, the algorithm proceeds in one of three possible ways

depending on its tree level l[t].

Case 1: l[t] = 1 which implies that node t is a direct neighbour of the root node r that

is (r, t) ∈ E. In this case, we only add t to the queue Q and mark it as visited (lines

11-13) since inequalities for edges are already present in the formulation.

Case 2: 1 < l[t] ≤ L, which implies that (r, t) /∈ E but hop distance between root node

r and t is less than or equal to L. This is the case of interest. Hence we not only add

t to the queue Q and mark it as visited, but we also check if path inequalities (3.21)
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`11

`21
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`L1 `L2
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`1k1
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`2k2

...
...

`LkL level L
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level 2

level 1

level 0

· · ·

· · · · · ·· · ·

· · · · · ·· · ·

Figure 3.1: An example of an L-depth BFS tree generation where L is the depth of the

tree and is based on the threshold hop distance specified in the corresponding DCNDP

class. Branches of the tree need not be binary
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or (3.29) of the corresponding shortest path Prt are violated (lines 14-17) and add the

violated inequality to the queue Qc.

Case 3: l[t] > L, this implies that all nodes reachable within hop distance L from the

root r have been explored. Therefore, we stop the current tree generation (lines 18-20)

and return to line 3 where we select the next root and begin the process all over.

We note a slight difference in the implementation of Algorithm 1 for separation of

integer and fractional solutions. Observe that in any incumbent solution, the variables

are either 0 or 1. Since constraints (3.21) or (3.29) are only violated when left-hand

sum is less than 1, only nodes with value x̃i = 0 in any given incumbent solution would

potentially lead to violated path constraints. Therefore, the set of candidate root nodes

Rc in step 3 of Algorithm 1 consists only of nodes with value x̃i = 0 in the current

integer solution. Following this thought, in exploring a node in step 9, we also limit it

to unvisited neighbors whose value in the current incumbent solution is zero. Hence,

only nodes with zero solution value (x̃i = 0) feature in the constructed trees. This helps

us to detect and add all violated constraints for any given integer solution and avoids

spending time in unpromising branches.

The separation problem for the most violated cut of a fractional solution involves

solving a shortest path problem with edge weights in an auxiliary graph. The edge

weights are the LP relaxation values (x̄). This can still be done in polynomial time

through a transformation to a directed graph as the weights are positive. This, however,

increases the graph size and the shortest path problem has to be solved for all pairs

of nodes. We instead adapt our BFS algorithm as a heuristic to separate a violated

fractional solution. The BFS trees are built based on the LP relaxation values x̄i,

i.e., candidate root nodes with smaller LP relaxation values are chosen first for BFS tree

generation. Also, nodes are explored in increasing order of their neighbours’ LP-relaxation

values, this means that the unvisited neighbours with smaller LP relaxation values x̄i are

visited first before other neighbours. This ensures that the most violated constraints for

all paths of a particular hop distance between node pairs are separated. Furthermore,

for LP relaxation solutions, we set limits on the number of cuts added at which we end
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Algorithm 1: Separation algorithm for the proposed model

1 Input : Graph G = (V,E), Incumbent (x̃, ỹ) or LP-relaxation solution (x̄, ȳ), set

of candidate root nodes Rc, and tree depth L

2 Output: Queue of violated inequalities Qc

3 for r ∈ Rc do

4 Q← {r} ; // initialise queue Q with root node r

5 T ← {r} ; // mark r as visited

6 l[r] = 0;

7 while Q 6= Ø do

8 s← Q.remove ; // retrieve the first element in queue Q

/* Explore node s, where δs denotes neighbours of s */

9 for t ∈ δs \ T do

10 l[t] = l[s] + 1;

11 if l[t] = 1 then

12 Q.add(t) ; // add t to queue Q

13 T ← T ∪ {t} ; // mark t as visited

14 else if l[t] ∈ [2, L] then

15 Q.add(t);

16 T ← T ∪ {t} ; // mark t as visited

/* check violation of (3.29) (resp. (3.21) for DCNDP-2b)

for the path Prt */

17 if
∑

i∈V (Prt)
x̃i + ỹrt < 1 (resp.

∑
i∈V (Prt)

x̃i + ỹ
l[t]
rt < 1) then

Qc.add(
∑

i∈V (Prt)
xi + yrt ≥ 1)

(resp. Qc.add(
∑

i∈V (Prt)
xi + y

l[t]
rt ≥ 1));

end

18 else

19 Q← Ø;

20 break;

end

end

end

end
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the call on the separation algorithm and re-solve the problem. We set parameter for

cut limit to 150 cuts, after trying different values within the neighborhood of ±100.

For integer solutions, we only set this limit to stop the current BFS tree generation

and return to line 3 to generate a new BFS tree rooted at the next candidate root

node. Nevertheless, this cut limit is only applied after the optimisation process begins

branching to ensure all violated cuts are separated. This is because at the root node of

a branch-and-bound tree, many integer solutions are infeasible to the original problem,

hence more constraints would be potentially violated.

3.4.2 Valid inequalities

In addition to the lazy cuts, we propose two families of strong valid inequalities that are

not implied by the constraints in the formulations. These inequalities can be viewed as

{0, 12} (or {0, 23})-Chvátal-Gomory (CG) cuts, where the constraints are multiplied by

constants in the set {0, 12} (or {0, 23}), added together and then rounded up. Note that

this generalises the procedure that was provided in Di Summa et al. (2012) and we can

obtain a broader class of inequalities. For the purpose of our computational experiments,

we focused on odd cycles of lengths 3 and 5 as larger holes are atypical in small world

networks.

Odd holes of length 3

Let H be an odd hole of length 3 in G = (V,E) with node set V (H) and edge set E(H).

Also for simplicity, let V (H) = {1, 2, 3} and E(H) = {12, 23, 13}.

Proposition 3.4.1. The following is a valid inequality for the path-based constraints in

E(H):

x1 + x2 + x3 + y12 + y13 + y23 ≥ 2 (3.34)
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Proof. Consider the following valid inequalities for each edge in H:

x1 + x2 + y12 ≥ 1

x1 + x3 + y13 ≥ 1

x2 + x3 + y23 ≥ 1

Summing together we get 2x1+2x2+2x3+y12+y13+y23 ≥ 3. Then by applying {0, 12}-CG

procedure we obtain inequality (3.34). It is easy to show that inequality (3.34) is not

implied by inequalities (3.29)-(3.32) of model DCNDP-1-PBM. The fractional point,

xi = 1
2 for all i ∈ V (H), yij = 0 for all i, j ∈ E(H), is feasible to the LP-relaxation of

DCNDP-1-PBM but violates (3.34).

Odd holes of length 5

Let H be an odd hole of length 5 in G = (V,E) with node set V (H) and edge set E(H).

Also for simplicity, let V (H) = {1, 2, 3, 4, 5}, E(H) = {12, 23, 34, 45, 15} and let P2(i, j)

denote the path of length 2 connecting i and j in H. Formulation (3.28)-(3.32) contains

the following constraints:

path of length 1: xi + xj + yij ≥ 1 i, j ∈ E(H)

path of length 2: xi + xj + xk + yij ≥ 1 i, j /∈ E(H), k ∈ V (P2(i, j)) \ {i, j}

Proposition 3.4.2. The following is a valid inequality for path-based constraints for

paths of length 2 in E(H):

2x1 + 2x2 + 2x3 + 2x4 + 2x5 + y13 + y24 + y35 + y14 + y25 ≥ 4 (3.35)

Proof. Consider the following valid inequalities corresponding to paths of length 2 in H:

x1 + x2 + x3 + y13 ≥ 1

x2 + x3 + x4 + y24 ≥ 1

x3 + x4 + x5 + y35 ≥ 1

x1 + x5 + x4 + y14 ≥ 1

x2 + x1 + x5 + y25 ≥ 1
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Summing together we get 3x1 + 3x2 + 3x3 + 3x4 + 3x5 + y13 + y24 + y35 + y14 + y25 ≥ 5.

Then applying {0, 23}-CG procedure, we obtain inequality (3.35). Inequality (3.35) is not

implied by inequalities (3.29)-(3.32) of DCNDP-1-PBM. The fractional point, xi = 1
3

for all i ∈ V (H), yij = 1
3 for all i, j ∈ E(H), yij = 0 for all i, j /∈ E(H), is feasible to

LP-relaxation of DCNDP-1-PBM but violates (3.35).

Following the same procedure, the corresponding odd hole inequalities for DCNDP-PBML

are:

x1 + x2 + x3 + y
(1)
12 + y

(1)
13 + y

(1)
23 ≥ 2 (3.36)

and

2x1 + 2x2 + 2x3 + 2x4 + 2x5 + y
(2)
13 + y

(2)
24 + y

(2)
35 + y

(2)
14 + y

(2)
25 ≥ 4 (3.37)

Separation of the odd hole inequalities is based on simple enumeration whereby a pool

of cycles of given length is generated based on the cycle enumeration scheme proposed

in Liu & Wang (2006) and the corresponding odd hole inequalities are routinely checked

for violations.

3.4.3 Primal heuristic

Generation of good incumbent solution helps in pruning branch-and-bound nodes. Thus

we propose a primal heuristic which incorporates information from LP-relaxation solutions

into centrality-based ranking to arrive at a good primal bound. First, we extend the

budget requirement to B̂ = 1.5B instead of B, then based on the degree centrality

measure, we obtain the top B̂ ranking nodes. Using the LP-relaxation values of those

nodes as selection probability, we randomly selectB distinct nodes. We fix the x variables

of the selected nodes to 1 (xi = 1) while the x variables for the rest of the nodes are

fixed to zero.
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3.5 Computational experiments

3.5.1 Hardware & Software

Our computational study was performed on an HP computer equipped with Windows 8.1

x64 operating system, an Intel Core i3-4030 processor(CPU 1.90 GHz) and RAM 8GB.

The models and algorithms were written in Python 3.6 (Anaconda 5) using Gurobi 8.1.0

(Gurobi Optimization 2018) as optimisation suite. We use NetworkX (Hagberg et al.

2008) for random graph generation and manipulating of the graphs. All experiments

were run with time limit of 3600 seconds.

Graph n m diam % k-Conn

Hi-tech 33 91 5 88.3

Karate 34 78 5 85.6

Mexican 35 117 4 98.0

Sawmill 36 62 8 63.0

Chesapeake 39 170 3 100.0

Dolphins 62 159 8 58.5

Lesmiserable 77 254 5 85.4

Santafe 118 200 12 32.9

Sanjuansur 75 155 7 48.7

Attiro 59 128 8 68.0

LindenStrasse 232 303 13 12.1

SmallWorld 233 994 4 95.2

NetScience 379 914 17 13.3

USAir97 332 2126 6 84.8

Table 3.1: Characteristics of real-world graph instances.
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3.5.2 Test Instances

Our test instances comprise both real-world and randomly generated graphs. Real-world

instances are a subset of networks from the Pajek and UCINET datasets (Batagelj &

Mrvar 2006, UCINET software datasets n.d.). All instances are connected graphs or the

largest connected component of the original graph if the original graph is disconnected.

• Hi-tech(|V | = 33, |E| = 91): Friendship network of employees in a hi-tech firm

(Batagelj & Mrvar 2006, UCINET software datasets n.d.).

• Karate (|V | = 34, |E| = 78): A social network of a karate club at a U.S University

in the 1970s (Batagelj & Mrvar 2006, UCINET software datasets n.d., Zachary

1977).

• Mexican (|V | = 35, |E| = 117) A network of relations (family, political and

business) of political elite in Mexico (Batagelj & Mrvar 2006, UCINET software

datasets n.d.).

• Sawmill (|V | = 36, |E| = 62): Communication network of employees within a

small enterprise (Batagelj & Mrvar 2006, UCINET software datasets n.d.).

• Chesapeake(|V | = 39, |E| = 170): Chesapeake Bay Mesohaline network (Batagelj

& Mrvar 2006, Baird & Ulanowicz 1989).

• Dolphins (|V | = 62, |E| = 159): A social network that represents frequent

associations between dolphins in a community in New Zealand (Batagelj & Mrvar

2006, UCINET software datasets n.d., Lusseau et al. 2003).

• Lesmiserable (|V | = 77, |E| = 254): Network of co-appearance of characters in

the novel Les Miserable (Knuth 1993)

• Santafe (|V | = 118, |E| = 200): Collaboration network of scientists at the Santa

Fe Institute (Girvan & Newman 2002).

• SmallWorld (|V | = 233, |E| = 994): A citation network (Batagelj & Mrvar 2006).
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• Sanjuansur (|V | = 75, |E| = 155), and attiro (|V | = 59, |E| = 128) : Social

networks of families in a rural area in Costa Rica (Batagelj & Mrvar 2006, UCINET

software datasets n.d.).

• LindenStrasse (|V | = 232, |E| = 303): Network of friendly relationships between

characters of the soap opera “Lindenstrasse” (Batagelj & Mrvar 2006).

• USAir97 (|V | = 332, |E| = 2126): Transportation network of US airlines (Batagelj

& Mrvar 2006).

• NetScience (|V | = 379, |E| = 914): Co-authorship network of scientists in science

(UCINET software datasets n.d.).

The properties of the real-world instances are summarised on Table 3.1. We also used

3 classes of random graphs which were generated using the networkX random graph

generators. For any graph in a particular class, 10 different instances were generated and

results averaged and compared across those instances. The three classes are described

as follows:

I Barabasi-Albert random graphs: The Barabasi-Albert model (Barabási &

Albert 1999) is known for its preferential attachment mechanism wherein nodes

with high degree have a higher propensity to be connected to a new node as

the graph is grown. The degree distribution, defined to be the fraction of nodes

with degree k, of the Barabasi-Albert model is known to follow a power law

distribution pk ≈ k−3. Instances of this random graph class were generated using

networkX random graph generator with parameters n = |V | and p, which denote

the graph size and the number of edges to attach from a new node to existing

nodes respectively. For the Barabasi-Albert graph class, two sets of graphs were

generated namely, ba1 and ba2, both with parameter n = 100 but with p = 5 and

p = 10 respectively.

II Erdos-Renyi random graphs: Erdos-Renyi model (Erdös & Rényi 1959) for

random graph generation defines a set of graphs having the same parameters n =
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|V |, the size of the graph and p, probability of adding an edge between any two node

pairs. Starting with an empty graph with |V | nodes, the model creates a random

graph by adding an edge between every pair of nodes i, j ∈ V with probability

p. The degree distribution of Erdos-Renyi graphs follow the Poisson distribution.

Instances were generated using networkX random graph generator with parameter

n denoting the graph size and p denoting the probability of edge creation. Two

sets of graphs were generated using the Erdos-Renyi model. The first which is

named er1 has parameters n = 80 and p = 0.15 while the second named er2 has

parameters n = 200 and p = 0.05.

III Uniform random graphs: Given two input parameters n and m, the uniform

random graph model Gn,m returns a graph selected uniformly at random from set

of all graphs having n nodes and m edges. Three sets of instances were generated

using networkX random graph generator that takes n and m as parameters. The

sets of instances are named gnm1, gnm2 and gnm3.

The properties of the random graphs averaged over the 10 instances generated for each

set are summarised in Table 3.2.

Graph n m diam density (%) k-DistConn (%) efficiency(%)

ba1 100 475 4.0 9.6 99.9 49.6

ba2 100 900 3.0 18.0 100 58.4

er1 80 470 3.0 14.9 100 55

er2 200 1004 4.0 5.0 97.7 42.8

gnm1 200 1000 4.2 5.0 97.9 42.8

gnm2 300 1500 4.4 3.3 94.1 39.6

gnm3 300 2000 4.0 4.5 99.6 43.4

Table 3.2: Characteristics of each set of random graph instances
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3.5.3 Parameter settings and preprocessing

Our computational experiments comparing the base model and the new path-based

models are based primarily on the first two classes (DCNDP-1 and DCNDP-2) of the

distance-based critical node detection problem. For DCNDP-1, where we minimise the

number of node pairs connected by a path of length at most k, we set the threshold

distance k = 3. For DCNDP-2 which minimises the Harary index or efficiency, we set L

to the diameter of the input graph. For experiments on randomly generated graphs, we

set budget B to 5% and 10% of graph size. We varied this percentage for the real-world

graphs from 1% to 10% of number of nodes in the input graph. The budget values for

different instances are specified on the corresponding tables and figures in Section 3.6.

We also explored the enhancements discussed in Section 3.2.2 as a preprocessing stage

prior to running the Gurobi optimiser while fixing values for nodes with degree one to

zero (xi = 0) for both models.

3.6 Results and Discussion

The computational experiments were performed for varying sizes (nodes, edges) and

classes of graphs with different edge densities and diameters. We compare the performance

of the base model implemented with the suggested enhancements labelled as ECM and

our path-based models labeled as PBM (or PBML for DCNDP-2). In each table, along

with graph characteristics such as number of nodes, edges and diameter, we present

computational times in seconds and/or percentage gaps for both the ECM and PBM for

different budget settings. Columns labelled InitObj represent the initial objective values

in the input graph prior to solving the model. For DCNDP-1, this is the percentage of

node pairs connected by paths of length at most k (k−DistConn) while for DCNDP-2,

it is the initial communication efficiency of the input graph. Similarly, columns labelled

FinObj represent the final objective value (in percentage) at the end of optimisation or

the best objective realised within the specified time limit. Columns labelled ECMt and

PBMt represent the computational time for the base and path-based models respectively.
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Recall that all experiments were run with time limit of 3600 seconds, hence, where the

optimisation process could not terminate within the given time limit, the corresponding

entry is marked ′ > 3600′. Similarly, when a problem instance runs out of memory, we

indicate this by an “M”. For instances which were unsolved within the specified time

limit, the percentage gaps are calculated as

%gap = 100 · BestObj − FinalLowerBound
FinalLowerBound

%

For the synthetic graphs, the percentage gaps are averaged over all ten instances generated

for each graph class.

3.6.1 Results of the base and the path formulations for DCNDP-1

The first set of experiments provides comparison between the base model (ECM) and the

aggregated path-based model (PBM) based on DCNDP-1 that is, distance function 3.1.

B=0.05n B=0.1n

Graph n m diam InitObj FinObj ECMt (s) PBMt (s) FinObj ECMt (s) PBMt (s)

Hi-tech 33 91 5 88.3% 75.2% 0.12 0.2 55.5% 0.59 0.64

Karate 34 78 5 85.6% 57.8% 0.16 0.13 26.2% 0.11 0.11

Mexican 35 117 4 98.0% 88.6% 0.31 0.23 60.2% 0.33 0.39

Sawmill 36 62 8 63.0% 34.1% 0.08 0.06 21.4% 0.08 0.08

Chesapeake 39 170 3 100.0% 93.9% 0.6 0.61 69.1% 1.36 1.18

Dolphins 62 159 8 58.5% 43.4% 1.91 1.03 30.8% 1.91 1.71

Lesmiserable 77 254 5 85.4% 31.8% 0.52 0.92 11.0% 0.97 1.03

Santafe 118 200 12 32.9% 4.4% 0.2 0.45 1.7% 0.59 0.72

Sanjuansur 75 155 7 48.7% 28.9% 0.44 0.35 16.5% 0.39 0.58

Attiro 59 128 8 68.0% 43.4% 0.39 0.31 26.0% 0.67 0.61

Table 3.3: Results of ECM and PBM models with DCNDP-1 on realworld networks

(small size)

Tables 3.3 & 3.4 summarise results for real-world network instances. What we see

from Table 3.3 is that the path based model (PBM) competes well with the base model
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Graph n m diam InitObj B FinObj ECMt (s) PBMt (s)

USAir97 332 2126 6 84.8%

0.1n 5.64% > 3600 1277.38

0.05n 19.33% 426.88 377.83

0.03n 39.35% 952.22 692.04

0.02n 49.57% 515.49 582.16

0.01n 63.90% 456.41 240.67

LindenStrasse 232 303 13 12.1%

0.04n 4.70% 0.91 1.17

0.03n 6.15% 0.88 1.82

0.015n 8.32% 0.86 1.25

SmallWorld 233 994 4 95.2%

0.1n 6.27% 144.56 117.54

0.04n 19.45% 78.66 53.61

0.03n 23.41% 46.75 18.46

0.015n 40.56% 85.17 41.17

NetScience 379 914 17 13.3%
0.03n 4.32% 4.08 5.11

0.01n 8.43% 4.72 4.52

Table 3.4: Results of ECM and PBM models with DCNDP-1 on real world networks

(medium size)
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for small graph sizes (< 120 nodes). As the real-world network instances increase in

size with increase in initial objective, the performance of PBM over ECM becomes more

glaring. For example, in Smallworld and USAir97 graphs with initial %k-distConn

greater than 80%, the PBM on average is almost twice as fast as the ECM. In particular,

for budget setting of 0.1n, ECM fails to solve the USAir97 instance terminating with

a 10.3% gap whereas this is solved under 1300 seconds by PBM (see Table 3.4). This is

also the case for the smaller class of Barabasi-Albert random network (ba1), in which

PBM is more than three times as fast as the ECM for B=0.05n (ECMt=1263.18s,

PBMMt=374.33s) and more than twice as fast for B=0.1n (ECMt=1158.20s,

PBMt=418.94s). For the rest of the synthetic networks, both models are unable to

solve these instances, thus we compare the average percentage gaps for both models.

The instances are labelled network-budget. For instance, er1-5 represents the er1

network with 0.05n budget setting. From the graphs in Figure 3.2, the average %gap

for the ECM is larger than those of PBM. In particular, the %gap for ECM is twice

that of PBM for ba2-5 (ECM=3.75%, PBM=1.24%); ba2-10 (ECM=10.32%,

PBM=5.35%) and er1-10 (ECM=6.44%, PBM=3.41%). Moreover, for ba2-5

and er1-5 random network classes, we observed that among the 10 instances generated

for each class, PBM successfully solved 30% and 50%, respectively, while the success for

ECM was 0% and 20%, respectively. Furthermore, percentage gap is observed to increase

with the budget for both models. The difference in average % gap for both models is

seen to be even more pronounced for larger instances of the uniform random graph

model (see Figure 3.3). This is understandable as these instances are larger than the

rest both in terms of number of nodes and edges. Moreover, the topology of the network

is characterised by a small diameter and a large proportion of nodes being connected by

very few hops. Similar to other random network instances, the average percentage gap

increases with the budget for both models. For all instances and budget setting, PBM is

seen to outperform ECM. PBM in conjunction with the BFS cuts excelled particularly

for large edge densed instance (n=300, m=2000) where almost all node pair connections

are within short distances. We see the ECM struggling to solve the LP relaxations as
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Figure 3.2: Variation of average gaps of ECM and PBM models for DCNDP-1 on random

network. Average gaps are taken over 10 problem instances for each network class.

68



gnm2-10 gnm3-5 gnm3-10
graph

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

0.300

A
v
g
 g

a
p

Formulation

PBM

Figure 3.3: Variation of average gaps of PBM for DCNDP-1 on uniform random network.

ECM gap remains at 100% for all instances of gnm3-5 and gnm3-10. It solves 50% of

gnm2-10 graphs to an average gap of 20% and the rest of instances have 100% gap.
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can be seen from the average gap of 100%, whereas with our approach, we are still able

to achieve competitive bounds and gaps in these instances.

3.6.2 Results of the base and the path formulations for DCNDP-2

We now present results of computational experiments for the DCNDP-2 (that is, distance

connectivity function 3.2). Recall that for this class, the objective is to minimise the

ba1-5 ba2-5 er1-5
graph
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Formulation
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Figure 3.4: Variation of average computational times of ECM and PBM models for

DCNDP-2 on Barabasi-Albert and Erdos-Renyi network instances for B=0.05n

communication efficiency. We use the same set of real-world graphs with budget setting

of 5% and 10% of graph size. For randomly generated graphs, we use the same instances

of Barabasi-Albert and Erdos-Renyi classes but with budget setting of only 5% of graph

size due to the observation of computational difficulty when the budget increases. Results

for these experiments are summarised in Table 3.5 for real-world network instances and

in Figure 3.4 for random network instances. Analysing results for the random network

instances, it can be seen from Figure 3.4 that PBM is on average 3 times faster than
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the ECM for all three sets of instances. Moreover for the larger Erdos-Renyi class

B=0.05n B=0.1n

Graph n m diam InitObj FinObj ECMt (s) PBMt (s) FinObj ECMt (s) PBMt (s)

Hi-tech 33 91 5 50.8% 43.69% 0.47 0.45 32.81% 2.38 1.53

Karate 34 78 5 49.2% 33.74% 0.3 0.19 16.69% 0.38 0.28

Mexican 35 117 4 55.0% 49.06% 0.35 0.41 36.58% 0.92 0.71

Sawmill 36 62 8 39.9% 27.46% 0.75 0.44 14.17% 0.67 0.34

Chesapeake 39 170 3 60.4% 53.71% 0.25 0.27 35.87% 0.33 0.69

Dolphins 62 159 8 37.9% 29.33% 243.13 23.03 18.63% 609.81 24.73

Lesmiserable 77 254 5 43.5% 18.44% 3.02 3.85 7.88% 7.27 5.02

Santafe 118 200 12 27.0% 2.95% 14.07 3.41 1.39% 21.39 4.83

Sanjuansur 75 155 7 34.2% 25.90% 141.1 25.96 14.41% 224.22 28.62

Attiro 59 128 8 38.9% 31.11% 29.47 6.17 22.30% 175.81 41.93

SmallWorld 233 994 4 45.4% 9.28% 642.7 264.88 4.02% > 3600 822.96

NetScience 379 914 17 20.3% 2.09% M 1166 0.94% M 181.55

Table 3.5: Results of ECM and PBM models with DCNDP-2 on realworld networks

(er2-5), a striking observation is that while PBM achieves an average percentage gap

of 6.56%, ECM is seen to struggle with solving the linear programming relaxation of

these instances within the given time limits. We notice a similar trend for the real-world

graphs, PBM competes well with ECM for the smaller instances and indeed performs a

lot better in terms of computational times as the graph size increases (see Table 3.5).

For instance, for Dolphins network, PBM is more than 10 times faster for both budget

settings B = 0.05n and B = 0.1n. Similarly, for Santafe, Sanjuansur & Attiro

networks, PBM is atleast 4 times faster than ECM for both budget settings. Moreover,

for the NetScience graph which has a large diameter (diameter=17), we see that while

PBM is able to solve the problem to optimality in 1166 and 182 seconds respectively for

budget settings B = 0.05n and B = 0.1n, the ECM runs out of memory. This behaviour

might be related to the issue of sensitivity to large diameter of the base model (ECM) as

reported in Hooshmand et al. (2020) for a different class of the DCNDP (Wiener index).

For USAir97 and LindenStrasse, both models fail to close the gap within the time

limit. In particular, with LindenStrasse, both ECM and PBM struggle to obtain good
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dual bounds leading to gaps of 108.6% and 102.3%, respectively. Moreover, comparison

with the results obtained for the same graphs earlier reported for the first distance class

provides strong insights for our discussion in Section 3.6.4.

3.6.3 Results of path-based model with inclusion of oddhole inequalities

and primal heuristics

We now examine the impact of the proposed oddhole inequalities and primal heuristic

presented in Sections 3.4.2 & 3.4.3. We compare the performance of the path-based

models with and without the inclusion of the oddhole inequalities and primal heuristics.

The former is labelled as PBM+oddhole+heur while the latter remains as PBM. We

focused our computational tests on those instances which were unsolved by PBM within

the time limit This consists of the random graph instances with B = 0.1n for DCNDP-1

and USAir97 and LindenStrasse for DCNDP-2 with B = 0.05n. Results are reported

in Table 3.6 for network classes where there is a significant difference between PBM and

PBM+oddhole+heur. We omit results for uniform random graphs (gnm1, gnm2 &

gnm3 instances) and Erdos-Renyi graph er2 where no improvement was observed. From

the table, we observe some improvement of version PBM+oddhole+heur with respect

to PBM over the denser Barabasi and Erdos-Renyi graph classes (ba2 & er1) instances,

where tighter bounds are realised with the inclusion of the odd hole inequalities. However,

across all of the uniform random graphs (gnm1, gnm2 & gnm3) instances as well as

over Erdos-Renyi er2 instances, PBM and PBM+oddhole+heur behave in a similar way.

A possible explanation for this is the very few number of cycles reported in these graphs

which could have reduced the chances of having violated inequalities. With respect to the

cycle enumeration, we observed that about four times as many cycles were enumerated

for the Barabasi graph class ba2 and twice as many cycles for Erdos-Renyi er1 thus

leading to more usercuts violations. A clear evidence of this structural difference is in

the edge densities of these graph classes. While er1 and ba2 instances have average

densities of 14.9% and 18.2% respectively, the gnm1, gnm2, gnm3 and er2 instances

have smaller average densities of 5.0%, 3.3%, 4.5% and 5% respectively. For the

72



PBM PBM+oddhole+heur

Instances n m density LB UB %gap LB UB %gap

er1(1) 80 456 14.4% 2400.65 2466 2.72% 2402.94 2466 2.62%

er1(2) 80 472 14.9% 2398.17 2484 3.45% 2408.61 2481 3.01%

er1(3) 80 474 15.0% 2394.56 2474 3.32% 2404.32 2483 2.90%

er1(4) 80 446 14.1% 2383.29 2474 3.81% 2393.60 2474 3.36%

er1(5) 80 475 15.0% 2398.21 2483 3.45% 2413.72 2481 2.79%

er1(6) 80 476 15.1% 2394.74 2482 3.60% 2413.25 2481 2.81%

er1(7) 80 474 15.0% 2395.02 2484 3.59% 2410.33 2481 2.93%

er1(8) 80 471 14.9% 2393.31 2479 3.58% 2407.59 2481 2.97%

er1(9) 80 447 14.1% 2378.37 2452 3.10% 2403.22 2452 2.03%

er1(10) 80 505 16.0% 2398.67 2475 3.14% 2417.92 2474 2.32%

ba2(1) 100 900 18.2% 3674.25 4005 6.58% 3735 4004 4.85%

ba2(2) 100 900 18.2% 3744 3914 4.54% 3753.14 3916 4.29%

ba2(3) 100 900 18.2% 3716 4004 7.29% 3722.8 4003 7.10%

ba2(4) 100 900 18.2% 3751.18 3913 4.31% 3759.25 3913 4.09%

ba2(5) 100 900 18.2% 3737 3916 4.79% 3741.44 4003 4.67%

ba2(6) 100 900 18.2% 3717.45 3916 5.26% 3745.66 3913 4.47%

ba2(7) 100 900 18.2% 3745.14 3915 4.51% 3769 3914 3.85%

ba2(8) 100 900 18.2% 3767.83 3915 3.85% 3790.42 3913 3.23%

ba2(9) 100 900 18.2% 3702.2 4005 5.77% 3755.38 3916 4.28%

ba2(10) 100 900 18.2% 3744.49 3912 4.47% 3744.76 3914 4.47%

USAir97 332 2126 3.9% 5703.83 10745.58 88.39% 5758.62 10745.58 86.60%

LindenStrasse 232 303 1.1% 1162.01 2350.18 102.25% 1150.86 2350.18 104.21%

Table 3.6: Results of PBM and PBM+oddhole+heur
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DCNDP-2 instances, PBM+oddhole+heur improved in lower bounds for the USAir97

graph instance but fell behind its counterpart PBM for LindenStrasse graph.

With regards to the primal bounds, better upper bounds were recorded for some of

the ba2 and er1 instances. Although this improvement is mild, it is indicative of the

potential of the primal heuristics.

3.6.4 Result of the path based model with different connectivity metrics

One of the insights drawn from an earlier research on the CNDP is that the ease of

solving an instance of the CDNP is influenced by the connectivity metric, the specified

budget as well as the topology of the input network (Veremyev, Prokopyev & Pasiliao

2014). We investigate this by comparing results for different connectivity metrics on a

range of problem instances varying in size of networks and edge density. We begin by

investigating the behaviour of both the base model and the path based models on the

first two DCNDP classes based on results for the real-world instances (see Tables 3.3, 3.4

& 3.5). The first observation is that both the path-based model and the base model

are more difficult to solve for DCNDP-2 i.e distance connectivity metric (3.2) than for

DCNDP-1 distance connectivity metric (3.1). For example, for the SmallWorld graph

with 10% budget, Gurobi is able to solve DCNDP-1 in less than 150 seconds (Table 3.4)

whereas it takes over 3600 and 800 seconds (Table 3.5) to solve the base model and

path-based model respectively for DCNDP-2. Similarly, for the USAir97 graph with

5% budget, Gurobi is unable to solve both the base model and path-based model for

DCNDP-2. However with DCNDP-1, both models are solved under 430 seconds. Even

more striking difference is observed for the Lindenstrasse and NetScience graphs,

even though both graphs have very small initial communication efficiency (20%) and

k-DistConn (13%). For the random networks, however, DCNDP-2 appears to be less

computationally demanding than DCNDP-1. For example, while both the compact and

path-based models were solved to optimality on just a single random network type (ba1)

for DCNDP-1, DCNDP-2 was solved for two additional random network types (ba2-5

& er1-5). These differences in computational ease confirm earlier observations that the
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choice of objective metric is an important part of the critical node detection problem.

We conclude this section by extending this investigation to two additional connectivity

metrics. The first is class 3 of the DCNDP whose distance function (3.3) minimises the

sum of power functions of distances. The other is the classical fragmentation-based

CNDP which minimises the total number of connected node pairs. We denote the

problems corresponding to these metrics by DCNDP-3 and CNP respectively. For

all CNDP variants, the path-based formulation with the corresponding connectivity

objective metric is used. Results are summarised in Table 3.7. The instances are labelled

as Graph-budget for example, Dolphin-5 instance is the Dolphins graph with budget on

the critical node set specified as 5% of the graph size. Columns labelled Initial and Final

denote the initial and final objective value in percentage before and after node deletion.

The running times are specified in the columns labelled time. The best and worst

running times for each instance are highlighted in blue and red respectively. When the

optimisation process does not terminate within the specified time limit of 3600seconds,

we specify this with “limit” in the respective entry.

From Table 3.7, we observe that the behaviour in terms of computational time across

all four connectivity metrics is similar for the smaller real-world instances but as the

graph size increases, we observe notable differences. For example, while all 3 DCNDP

classes were solved for the Smallworld-10 instance, the instance is unsolved with the

fragmentation-based CNP. This is not strange since the Smallworld-10 is a larger

instance of a small world citation network characterised by small hop distances with

diameter equal to 4. Hence, with L fixed to the diameter (that is, L = 4) and k fixed to

3, the instance is easily solve by all distance-based CNDP. For the USAir97 instances,

a more interesting observation is made. We see that while the smaller USAir97

instance (USAir97-5 ) is solved under 400 seconds using DCNDP-1, it is 7 times more

computationally demanding to solve with any of the other metrics. The computational

competitiveness is even more pronounced for the larger instance (USAir97-10 ), which

remains unsolved using any of the other 3 metrics whereas with DCNDP-1, it is solved

under 1300 seconds. Considering that these instances come from a transportation
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network of airlines where most flights are direct, 1 or 2 layovers, the DCNDP-1 would

be a more appropriate connectivity objective. The interpretation of the problem being

intuitive in the sense that the critical nodes are those airlines which if deleted (that is,

not in operation for whatever reason) would reduce the number of direct, 1 or 2 layover

flights to a minimum.

Overall, we see from the results in Table 3.7, that the fragmentation-based CNP

metric proves to be computationally more demanding for graphs with smaller diameter

(3 or 4) but quite competitive with its distance-based counterparts for the instances with

larger diameter. Conversely, DCNDP-2 and DCNDP-3 metrics seem to be computationally

favorable for graphs with small diameter, however, they both begin to struggle as the

diameter increases. Moreover, the DCNDP-3 metric appear to be the most computationally

favorable metric for both the Barabasi-Albert and Erdos-Renyi graph instances while

the CNP performed worst across these random graph types. On average, DCNDP-1

metric is more competitive both for instances with small and large diameter.

3.7 Concluding remarks

In this chapter, we considered the hop-distance version of the distance-based critical node

detection problem. We presented new mixed integer programming formulations along

with efficient separation heuristics and strong valid inequalities that exploit the structure

of the problem. Extensive computational experiments on both real-world and synthetic

graphs based on the first two classes of the distance-based critical node detection problem

shed light on the scalability of our approach. The effectiveness of our approach is

more evident as the graph size grows, when the existing compact model struggles to

solve even the linear programming relaxation. The computational experiments on four

different connectivity metrics also provide insights into the influence of graph topology

and objective metric on the identification of critical nodes in a network. This emphasises

the need for appropriate choice of objective metric for specific application setting in

order to design efficient solution methods. In the next chapter, we propose a heuristic
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framework to handle larger instances of the problem for which the exact approaches

struggle.
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Chapter 4

Heuristic algorithm for the

distance-based critical node

detection problem

4.1 Introduction

Traditional exact algorithms such as branch-and-bound, branch-and-cut and Benders

decomposition have been employed to solve the critical node detection problem (see for

example, Arulselvan et al. (2009), Di Summa et al. (2012), Veremyev, Boginski & Pasiliao

(2014), Hooshmand et al. (2020), Alozie et al. (2021)). However, due to its combinatorial

nature, the complexity of the critical node detection problem grows significantly with

the size of the network. This limits the success of exact solution methods to small and

medium size instances of the problem. To mitigate this gap, heuristic algorithms have

been developed to provide good solution to larger instances of the problem. For example,

Ventresca & Aleman (2015) proposed a greedy heuristic algorithm that is based on a

modified depth first search. Two new neighbourhoods were developed by Aringhieri

et al. (2016b) and used within a variable neighbourhood search solution framework. The

new neighbourhoods are more computationally efficient than the traditional two node
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exchange. Aringhieri et al. (2016a) proposed a genetic algorithm for the classical CNDP

as well as its cardinality-constrained variant. A Greedy Randomised Adaptive Search

Procedure (GRASP) with Path Relinking (PR) mechanism was proposed for the classical

CNDP by Purevsuren et al. (2016). Recently, Zhou et al. (2018) developed a memetic

algorithm for both the classical and the cardinality-constrained variants of the CNDP.

For a detailed discussion on heuristic solution methods as well as current developments

in their application to combinatorial optimisation problems, we refer the reader to

Silver (2004) as well as Aickelin & Clark (2011). To the best of our knowledge, the

memetic algorithm proposed by Zhou et al. (2018) is the current state-of-the-art heuristic

algorithm for the classical critical node detection problem based on computational experiments

on 26 real-world and 16 synthetic benchmark instances. All the aforementioned studies

on heuristic methods for the critical node detection problem focus on the fragmentation-based

variants of the critical node detection problem. To this end, this chapter addresses

the distance-based critical node detection from a heuristic perspective. We propose a

heuristic framework for the first class of the DCNDP whose goal is to minimise the

number of node pairs connected by a distance of length at most k. We demonstrate the

efficiency of our proposed algorithm in comparison to the exact approaches discussed in

Chapter 3 on both real-world and synthetic graphs. We also show how our proposed

heuristic framework can be extended to other classes of the DCNDP.

Contributions

Our main contributions consist of the following:

i. We describe a new heuristic algorithm for the distance-based critical node detection

problem. The feasible solution construction procedure utilizes centrality measures

along with the idea of backbone-based crossovers to construct good feasible solutions.

The neighbourhood search procedure uses a newly developed two-stage node exchange

strategy to focus local search on a reduced centrality-based neighborhood thus

making the search more efficient.
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ii. The proposed algorithm yields competitive results on both real-world and synthetic

graphs. In particular for the real-world instances, our heuristic algorithm matches

the exact optimal solutions for all 28 instances. For the synthetic graphs which

comprise of 54 instances, the heuristic achieves the optimal objective value or best

known upper bounds on 10 of the instances and discovers new upper bounds on

33 of the instances within very short time duration in comparison to the exact

methods.

iii. Our empirical results provide useful insights regarding the effect of topological

structures of certain model networks on algorithm behaviour.

Organisation

The rest of the chapter is structured as follows. In Section 4.2, we recapitulate the

description of the distance-based critical node detection problem with definition of the

distance connectivity function of interest. Section 4.3 describes the proposed heuristic

algorithm in detail as well as ideas on how to extend the proposed framework to other

classes of the DCNDP. In Section 4.5, parameter settings and results of our computational

experiments are presented. For real-world and synthetic network instances, we compare

the performance of our proposed heuristic algorithm with results of the exact methods.

We end the chapter with some concluding remarks in Section 4.6.

4.2 Problem Description

Given an input graph G = (V,E) with n = |V | nodes (vertices) and m = |E| edges, as

well as a positive integer B, the distance-based critical node detection problem aims

to find a subset of nodes S of cardinality at most B, whose removal minimises a

certain distance-based connectivity objective. Five different distance-based connectivity

functions were defined by Veremyev et al. (2015) all of which have been described in

Chapter 3. In this chapter, we focus on the first distance-based connectivity objective

which minimises the number of node pairs connected by a path of length at most k.
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This class of the DCNDP denoted as DCNDP-1 has interesting real life applications, for

example in transportation engineering and is the most studied. Recall the definition of

the distance function for DCNDP-1:

f(d) =


1, if d ≤ k

0, if d > k

(4.1)

where d is the distance (shortest path length) between node pairs in the induced subgraph

GS = G[V \ S], and k is a given positive integer representing the cut-off distance.

4.3 Heuristic for distance-based critical node detection problem

This section describes the proposed heuristic algorithm for the distance-based critical

node detection problem. The underlying idea of the proposed heuristic framework is

akin to the memetic algorithm proposed for the classical critical node problem by Zhou

et al. (2018) however with some striking differences as described later in the chapter

(Section 4.3.4). Memetic algorithm has seen successful applications in solving NP-hard

problems (Pereira et al. 2018, Du et al. 2017, Yadegari et al. 2019, Wang et al. 2020).

For a review of memetic algorithm and its application to several classes of optimisation

problem, we refer the reader to the survey by Neri & Cotta (2012).

4.3.1 Representation and evaluation of feasible solution

Given an input graph G = (V,E), a feasible solution to the DCNDP is any collection of

B distinct nodes. For any feasible solution S, the objective function value f(S) according

to equation (4.1) evaluates the number of node pairs connected by hop distance less or

equal to k in the induced subgraph GS = G[V \ S]. By running an all-pairs shortest

path algorithm on G[V \S], one can calculate f(S) by counting the number of such pairs

whose shortest path length is less than or equal to k. The fastest of such algorithms

requires O(|V |3) time which is quite expensive given that the objective function would

be evaluated multiple times for different feasible solution. Instead, we compute f(S)

by generating a k-depth breadth-first-search tree for each node. The k−depth BFS tree
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runs the general breadth-first-search up to a given depth k (see Figure 3.1). The size of

each tree gives the number of nodes connected to the root node within a hop distance

at most k. The time complexity of general BFS tree generation is O(|V ||E|). Note that

this complexity can be significantly improved to O(bk), when we are restricting BFS

trees to depths of k, where b is the branching factor (or average outdegree) of the tree.

For small values of k, this reduces to linear time complexity and it empirically makes an

immense difference.

4.3.2 General framework of heuristic

The proposed heuristic algorithm consists of three components: an initial solution

generation procedure, a backbone-based crossover and a centrality-based neighbourhood

search procedure.

Algorithm 2: The proposed heuristic algorithm for DCNP

1 Input : Graph G = (V,E), an integer B

2 Output: the best solution S∗ found

/* construct initial centrality-based solutions, section 4.3.3 */

3 P 0 = {C1, C2, C3} ← centralitysolution();

4 S∗ = argmin {f(C1), f(C2), f(C3)}

/* generate offspring solution, section 4.3.4 */

5 S1 ← backboneCrossover(C1, C2, C3)

/* perform local search, section 4.3.5 */

6 S+ ← neighbourhoodSearch(S1);

7 if f(S+) < f(S∗) then

8 S∗ = S+

9 else

10 pass;

end

The algorithm begins with the generation of centrality-based solutions. An improved
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offspring solution is then generated from these centrality-based solutions through a

backbone-based crossover (Section 4.3.4). This offspring solution is further improved

by a centrality-based neighbourhood search procedure (Section 4.3.5). A pseudocode of

the general framework of the proposed algorithm is presented in Algorithm 2. Its three

components are described in detail in the subsequent sections.

4.3.3 Initial solution generation

The proposed algorithm begins with construction of initial feasible solutions using three

centrality metrics. The first is the popular degree centrality where nodes are ranked

according to their degrees. The other two measures could be seen as specialised adaptations

of the Katz and betweenness centralities. The first which we refer to as k−Katz centrality

ranks nodes according to the size of the k-depth breath first search (BFS) tree rooted

at each node. The last centrality metric which we refer to as k-betweenness ranks nodes

according to the number of their direct offspring summed over all generated k-depth

BFS trees. We refer the interested reader to Paton et al. (2017) for detailed discussion

and a numerical analysis of centrality measures.

Let v be an arbitrary node in a graph, we summarise the centrality definitions as follows:

Definition 4.3.1. (degree centrality): The degree of a node v is the number of edges

incident on v, i.e., the number of direct neighbours of v.

Definition 4.3.2. (k−Katz centrality): The k−Katz of v is the number of nodes

reachable from v at a hop distance less than or equal to k.

Definition 4.3.3. (k−betweenness centrality): The k−betweenness of v is the number

of direct offsprings of v summed across all generated k-depth BFS trees.

Let R1,R2 and R3 denote 3 different collections of all nodes in the input graphs

ordered according to the three defined centrality measures. From each of these collections,

we generate 3 feasible centrality-based solutions C1, C2 and C3 through a probabilistic

selection of B nodes. For example, to generate C1, we sequentially add each node in R1

into C1 with probability p = 0.90 until the required budget is attained. We also extend
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the budget value by a certain number, ε = max(5, 0.02B) and then select the next ε top

nodes in each of R1,R2 and R3. The union of these extended budget solutions which

we denote by Xε is used in the backbone crossover phase (details in Section 4.3.4).

4.3.4 Backbone-based crossover

Our notion of backbone crossover is similar to the double backbone crossover introduced

by Zhou et al. (2018) in the sense that the offspring solution inherits elements that are

common to its parent solutions as well as exclusive elements. However, our backbone

procedure differs from that of Zhou et al. (2018) primarily in the number of parent

solutions used. Secondly, our procedure for repairing a partial offspring solution combines

both greedy and random node selection. This combination of greedy and random

selection can be seen as a double-edged sword that intensifies and diversifies the node

selection. The motivation for the use of three rather than two parent solutions is to limit

the members of the partial solution inherited from the parent solutions to only promising

nodes. This is potentially useful in arriving at high quality offspring solutions leading to

fewer iterations of local search to converge to local optimum. For the backbone crossover,

we divide the elements of the centrality-based solutions into sets as follows:

Definition 4.3.4. (3-parent elements): These consist of the intersection of all three

centrality-based feasible solution sets, denoted by X1 = C1 ∩ C2 ∩ C3.

Definition 4.3.5. (2-parent elements): These consist of elements that are only present

in exactly two parent solutions denoted by X2 = ((C1 ∩ C2) ∪ (C1 ∩ C3) ∪ (C2 ∩ C3)) \X1.

Definition 4.3.6. (1-parent elements): These consist of elements that are only present

in exactly one parent solution denoted by X3 = (C1 ∪ C2 ∪ C3) \ (X2 ∪X1).

Definition 4.3.7. (0-parent elements): These consist of elements in the extended

budget solutions denoted by Xε.

The backbone crossover procedure proceeds as follows: An offspring solution S1

is constructed by first inheriting all elements common to its parent solutions that is,
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S1 ← X1. If |S1| < B, we repair S1 by sequentially adding elements from sets X2, X3,

Xε until the budget is satisfied. At each iteration of the repair process, a new node is

selected into the offspring solution by one of greedy or random approaches according to

some specified probabilities Pgreedy and Prandom. The greedy approach entails selecting

a node u /∈ S1 which gives the best improvement to the current objective function value

f(S1), i.e u = argmax{f(S1) − f(S1 ∪ {v})}, ∀v ∈ (X2 ∪ X3 ∪ Xε) \ S1. The random

approach uses specified probabilities p2, p1 or p0 to determine which of the sets X2, X3

or Xε from which a node is to be chosen at random.

4.3.5 Centrality-based neighbourhood search

We explore the neighbourhoods of the solution realised from the construction phase

with the aim of arriving at the optimal solution in the region. We discuss next the

neighbourhood structure as well as the node swap technique defined for our study.

Centrality-based neighbourhood structure

Considering the time complexity for evaluation of a candidate solution, the traditional

neighbourhood which swaps each node v ∈ S with a node u ∈ V \ S requires a time of

O(B(|V |−B)(|V ||E|)) to evaluate all neighbourhood solutions. This becomes prohibitive

when |V | is very large or when many local search iterations are required. To mitigate this

time complexity, we design a much smaller alternative neighbourhood which also exploits

the structure of the objective function. Let s be a positive integer corresponding to the

size of each centrality-based neighbourhood. Thus our centrality based neighbourhood

Ns for a given solution S consists of the union of the top s nodes ranked according

to the three defined centrality measures in the residual graph G[V \ S]. Similar to the

generation of centrality-based solutions, the top ranking nodes in each centrality measure

have a 90% chance of being selected into the corresponding centrality neighbourhood.

The cardinality of Ns is bounded below and above by s and 3s. Hence, the size of the

neighbourhood is reduced to (B|Ns|).
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Algorithm 3: Centrality-based neighbourhood search

1 Input : a starting solution S, centrality-based neighbourhood Ns, size of

centrality neighbourhood s

2 Output: the best solution S∗ found

3 S∗ ← S;

4 iterCnt← 0;

5 while iterCnt < maxIter and Ns 6= Ø do

6 v ← Ns.remove();

7 S ← S ∪ {v};

8 u← argminw∈S {f(S \ {w})− f(S)} ;

9 S ← S \ {u};

10 if f(S) < f(S∗) then

11 S∗ = S;

12 iterCnt← 0

end

13 else

14 iterCnt← iterCnt+ 1;

end

end
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Two-phase node swap

We employ the two-phase node exchange strategy used in Zhou et al. (2018). In keeping

with its name, the two-phase node exchange strategy is composed of two separate phases:

a “removal phase” which removes a node from the resultant subgraph and an “add

phase” which adds a node back to the subgraph. At each iteration of the two-phase

node exchange strategy, a node is removed from the neighbourhood and added into the

current solution S. This makes S infeasible. The second phase repairs this infeasibility

by identifying a node v ∈ S which results in the minimum increase in the objective

function value, v is then added back to the subgraph.

4.4 Extension to other classes of the DCNDP

The proposed heuristic framework can easily be extended to other classes of the distance-based

critical node detection problem in particular DCNDP class 2 and class 3. Recall that

DCNDP-2 and DCNDP-3 respectively minimise the efficiency and residual closeness.

Their distance connectivity functions are given respectively by:

f(d) =


d−1, if d ≤ L

0, if d > L

and f(d) =


pd, if d ≤ L

0, if d > L

The main modification of the heuristics for the above DCNDP distance functions lies in

the implementation of the modified BFS tree to evaluate a given feasible solution. Recall

that we evaluate a given solution S by generating k-depth BFS trees rooted at each node

of the residual graph GS = G[V \ S]. For DCNDP-1, it suffices to count the number

of nodes on each tree to obtain the corresponding objective value. We can modify the

implementation of the tree generation by keeping track of the depth say l[t] of each

encountered node t from the root node. Then the objective value can be calculated by

summing the values of the distance function f (l[t]) over every node encountered from

the root of each L-depth BFS tree.
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4.5 Computational Studies

4.5.1 Test Instances

Our computational experiments were based on both real-world and synthetic network

instances. Real-world instances are a subset of networks from the Pajek and UCINET

datasets (Batagelj & Mrvar 2006, UCINET software datasets n.d.). The first set of

synthetic instances consist of Barabasi-Albert, Erdos-Renyi and uniform random graphs

which were generated using NetworkX random graph generators (Hagberg et al. 2008).

Characteristics of the real-world and NetworkX-generated instances are summarised in

Tables (4.1) & (4.2). Detailed descriptions of these network instances are provided in

Section 3.5 of Chapter 3.

Graph n m diam % k-Conn

Hi-tech 33 91 5 88.3

Karate 34 78 5 85.6

Mexican 35 117 4 98.0

Sawmill 36 62 8 63.0

Chesapeake 39 170 3 100.0

Dolphins 62 159 8 58.5

Lesmiserable 77 254 5 85.4

Santafe 118 200 12 32.9

Sanjuansur 75 155 7 48.7

Attiro 59 128 8 68.0

LindenStrasse 232 303 13 12.1

SmallWorld 233 994 4 95.2

NetScience 379 914 17 13.3

USAir97 332 2126 6 84.8

Table 4.1: Characteristics of real-world graph instances.
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Graph n m diam density (%) % k-Conn

ba1 100 475 4.0 9.6 99.9

ba2 100 900 3.0 18.0 100

er1 80 470 3.0 14.9 100

er2 200 1004 4.0 5.0 97.7

gnm1 200 1000 4.2 5.0 97.9

gnm2 300 1500 4.4 3.3 94.1

gnm3 300 2000 4.0 4.5 99.6

Table 4.2: Characteristics of NetworkX-generated synthetic graph instances.

The other set of synthetic networks include instances from the benchmark networks

in Ventresca (2012). Since, these benchmark instances were generated for the traditional

fragmentation CNDP and not the distance-based variant, only 2 (13%) of these instances

have % k-Conn greater than 20%. We use the 2 instances (labelled as FF250 and

WS250a in Table 4.6) and generate additional instances of similar size and order as the

original benchmark networks in Ventresca (2012).

4.5.2 Experimental settings

Our computational study was performed on an HP computer equipped with Windows 8.1

x64 operating system, an Intel Core i3-4030 processor(CPU 1.90 GHz) and RAM 8GB.

The proposed algorithms were implemented in Python 3.6. We used NetworkX (Hagberg

et al. 2008) for random graph generation. In the design of the proposed algorithm, some

parameters were selected for our computational experiments. We executed preliminary

experiments to select most of these parameters. Final values of the parameters used

in the computational study presented in this chapter are summarised in Table 4.3. All

experiments were run with a time limit of 3600 seconds. In line with previous studies,

we also set hop distance threshold k = 3 which is reasonable since most of the tested

instances have a large proportion of nodes connected within this hop distance.
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Parameter Description Values

ε extended budget limit for centrality solution max(5, 0.2B)

s size of each centrality-based neighborhood B + ε

maxIter maximum no of improvement iteration 100

Pgreedy probability of greedy node selection in any crossover iteration 0.7

Prandom probability of random node selection in any crossover iteration 0.3

p2 probability of random node selection from set X2 0.5

p1 probability of random node selection from set X3 0.3

p0 probability of random node selection from set Xε 0.2

Table 4.3: Parameter settings for computational experiments.

4.5.3 Performance of the heuristic algorithm

We present results obtained from the proposed heuristic algorithm for different graph

instances. The results have been summarised from ten independent runs for each

instance. Values reported in the tables include objective function values minimum (min),

mean (avg), maximum (max ) and standard deviation (std) for the proposed heuristic

algorithm, as well as optimal objective function values (Opt) or best lower bounds (LB)

and best upper bounds (UB) realised from Gurobi solver 8.1.0 (Gurobi Optimization

2018). The reported optimal objective function values or best lower and upper bounds

were generated using the integer programming models in Veremyev et al. (2015) and

Alozie et al. (2021). Computational times (in seconds) for both exact and heuristic

algorithms are also reported in columns labelled respectively by t exact and t heur with

the smaller run time highlighted in bold. Exact optimal (Opt) or best upper bounds

(UB) are compared with heuristic minimum objective values (min).
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Real-world instances

Results for the real-world instances are summarised in Table 4.4, where we observe that

the proposed heuristic attains the optimal objective values for all 28 instances. Also the

average and maximum objective function values obtained by the heuristic matches the

optimal solution for 16 of the instances (see when std=0.0 in Table 4.4).

B=0.05n B=0.1n

Graph Opt t exact min avg max std t heur Opt t exact min avg max std t heur

Hi-tech 397 0.12 397 397.0 397 0.0 0.2 293 0.59 293 294.8 297 1.9 0.5

Karate 324 0.13 324 324.0 324 0.0 0.2 147 0.11 147 150.9 186 11.7 0.4

Mexican 527 0.23 527 527.0 527 0.0 0.3 358 0.33 358 358.0 358 0.0 0.6

Sawmill 215 0.06 215 215.0 215 0.0 0.2 135 0.08 135 135.0 135 0.0 0.2

Chesapeake 696 0.6 696 696.0 696 0.0 0.3 512 1.18 512 515.2 528 6.4 1.1

Dolphins 820 1.03 820 820.0 820 0.0 1.3 583 1.71 583 591.7 616 13.4 2.5

Lesmiserable 930 0.52 930 930.0 930 0.0 1.9 323 0.97 323 323.0 323 0.0 2.9

Santafe 305 0.2 305 305.0 305 0.0 1.2 116 0.59 116 116.0 116 0.0 2.8

Sanjuansur 803 0.35 803 803.0 803 0.0 0.9 457 0.39 457 457.2 459 0.6 2.0

Attiro 743 0.31 743 743.0 743 0.0 0.5 444 0.61 444 450.4 474 10.3 0.7

LindenStrasse 1054 1.34 1054 1057.8 1090 10.7 5.9 429 2.82 429 431.7 445 4.6 12.7

SmallWorld 4629 202.87 4629 4660.5 4734 48.1 51.4 1694 117.54 1694 1694.0 1694 0.0 58.6

NetScience 2102 9.07 2102 2102.0 2102 0.0 52.9 897 7.12 897 901.0 927 8.8 112.3

USAir97 10623 377.83 10623 10697.2 10729 48.6 269.7 3100 1277.38 3100 3219.1 3405 105.9 423.6

Table 4.4: Results for real-world instances: Optimal objective value (Opt) and summary

statistics for heuristic (minimum (min), mean (avg), maximum (max) and standard

deviation (std)) with budget settings B = 0.05n & B = 0.1n. Values compared are Opt

and min, lower values are better (best in bold)

Synthetic instances

Results for our first set of synthetic networks are summarised in Table 4.5 as well as

Figures 4.1 – 4.4 . Overall, the heuristic attains the best known upper bounds in 16.7%

of the instances, yielding new upper bounds in 57.1% but falls short of the best UB in

26.2% of the instances (see Figure 4.1).

From Figures 4.2 and 4.3, we can observe that for the instances where the heuristic

falls short, the quality of the solutions is still competitive in comparison to the best UB.

92



B=0.05n B=0.1n

Graph LB UB t exact min avg max std t heur LB UB t exact min avg max std t heur

ba1(3) 4275.0 4275 330.19 4275 4275.0 4275 0.0 8.5 3330 3330 278.57 3330 3330.0 3330 0.0 13.6

ba1(6) 4278.0 4278 303.56 4278 4278.4 4282 1.2 9.8 3390 3390 476.99 3390 3391.0 3395 2.0 14.1

ba1(9) 4193.0 4193 169.48 4193 4193.0 4193 0.0 7.7 3328 3328 374.92 3328 3328.4 3332 1.2 13.6

ba2(3) 4384.2 4461 3600 4465 4465.0 4465 0.0 20.9 3716.0 3987 3600 4005 4005.0 4005 0.0 46.1

ba2(6) 4369.0 4369 562.95 4436 4453.4 4465 14.2 19.3 3717.5 3916 3600 3955 3955.9 3956 0.3 44.5

ba2(9) 4371.4 4463 3600 4465 4465.0 4465 0.0 18.3 3702.2 3986 3600 4004 4004.0 4004 0.0 48.6

er1(3) 2798.0 2835 3600 2842 2843.4 2845 1.2 9.6 2394.6 2474 3600 2535 2538.7 2549 5.0 20.5

er1(6) 2799.4 2835 3600 2835 2839.6 2848 5.7 11.2 2394.7 2482 3600 2485 2519.1 2540 12.8 22.9

er1(9) 2814.0 2814 1787.2 2847 2847.7 2850 0.9 8.4 2378.4 2452 3600 2528 2539.0 2548 6.0 20.6

er2(3) 15989.5 16955 3600 16842 16897.3 16909 19.9 101.5 12468.9 14886 3600 14332 14360.0 14385 14.0 213.5

er2(6) 16025.5 16930 3600 16887 16930.0 16960 28.6 91.5 12575.4 15052 3600 14364 14380.2 14403 11.9 217.2

er2(9) 15969.7 16954 3600 16899 16900.9 16908 3.4 129.1 12414.4 15038 3600 14397 14434.0 14488 24.1 255.7

gnm1(3) 15972.3 16771 3600 16706 16716.6 16740 9.3 136.4 12516.5 14730 3600 14193 14256.3 14296 31.2 252.2

gnm1(6) 16209.4 17062 3600 16975 16977.4 16987 3.5 104.6 12600.7 14658 3600 14399 14419.0 14446 13.4 221.4

gnm1(9) 16099.0 16958 3600 16843 16860.1 16886 15.9 89.0 12564.9 14803 3600 14195 14211.3 14221 12.0 178.1

gnm2(3) 34014.7 36803 3600 35332 35334.7 35341 4.1 281.4 25876.6 28978 3600 28715 28734.4 28764 21.0 637.4

gnm2(6) 33700.6 36445 3600 35236 35245.4 35252 6.0 303.4 25261.7 30635 3600 28554 28629.7 28704 48.5 647.9

gnm2(9) 33782.3 36641 3600 35331 35350.8 35388 18.8 353.9 25765.4 30805 3600 28868 28922.1 28956 25.0 709.9

gnm3(3) 36402.9 40229 3600 39978 39982.0 39983 2.0 627.3 28541.1 35847 3600 35158 35198.5 35238 25.0 1539.6

gnm3(6) 36557.1 40217 3600 39848 39876.1 39902 18.8 681.6 27307.3 35501 3600 35000 35079.6 35176 47.9 1353.8

gnm3(9) 36258.1 40176 3600 39852 39880.5 39896 14.8 605.1 28697.9 35704 3600 34785 34837.7 34935 50.7 1323.1

Table 4.5: Results for synthetic instances: Exact Lower and Upper bounds (LB, UB)

and summary statistics for heuristic (minimum (min), mean (avg), maximum (max) and

standard deviation (std)) for budget settings B = (0.05n, 0.1n). Values compared are

UB and min, lower values are better (best in bold)
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min < UB
57.1%

min = UB

16.7%

min > UB

26.2%

Figure 4.1: Summary results of heuristic algorithm compared with exact methods over

synthetic instances

Analysing the performance of the heuristic across the synthetic network classes,

we observed that the effectiveness of the heuristic framework is more pronounced in

the less dense instances within each random network class. For example, for both

Barabasi-Albert and Erdos-Renyi network classes, the heuristic yields new upper bounds

in all the less-dense instances of both network classes (see results for ba1 and er2

instances in Table 4.5). However, as the edge density increases (graph characteristics

are shown in Table 4.2), the heuristic falls short of the best known upper bounds

matching only 1 out of the 6 er1 instances and falling short in all ba2 instances. This

behaviour might be explained by the concept of “Structural Equivalence” wherein some

of the most central nodes have overlapping neighbourhoods leading to redundancy of

the solution set in which they occur (Borgatti 2006). Moreover, ba2 and er1, being

highly connected networks, are likely to suffer from the “Problem of Ties” which affects

the performance of centrality-based algorithm on such topological structures (Ventresca

& Aleman 2015). Our empirical investigation correlates with the above concepts. We
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(a) BA instance

(b) ER Instance

(c) GNM Instance

Figure 4.2: Comparison of gaps from best UB and Heuristic for the synthetic instances,

B=0.05n
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(a) BA instance

(b) ER Instance

(c) GNM Instance

Figure 4.3: Comparison of gaps from best UB and Heuristic for the synthetic instances,

B=0.1n
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observed the existence of multiple solutions with similar objective value differing only by

one or two nodes. Thus, based on the structure of the centrality-based neighbourhood,

the node swapping technique yielded little or no improvement as could be seen from the

heights of the bars for ba2 and er1 in Figure 4.4. However, some improvement were

observed for the less-dense Barabasi-Albert and Erdos-Renyi (ba1, er2) instances. This

is also the case for the uniform random instances (gnm1, gnm, gnm3) which constitute

the largest subset of the set of synthetic instances in terms of size and were also the most

challenging synthetic network instances for the exact methods. The bars in Figure 4.4

represent percentage improvement calculated based on the objective function values

realised before and after local search (InitialObj and FinalObj, respectively) averaged

across all instances in each of the displayed synthetic graph type.

For a given problem instance, the percentage improvement is calculated as

%improvement = 100 · InitialObj − FinalObj
InitialObj

%

and averaged over all 10 runs of the instance. Across the three random network classes,

the heuristics performed best in the uniform random network class, yielding new upper

bounds in all 18 instances with all maximum objective values even less than the exact

upper bounds. The instances in the uniform random graph class were the most challenging

for the exact methods. Hence, achieving these new upper bounds shows the usefulness

of the proposed algorithm in providing good solution for challenging problem instances.

Overall we also observed that classes and instances of the random graphs that were

challenging for the exact methods were also the most computationally intensive for the

heuristic algorithm as can be seen in average computational times reported for the

uniform random graphs on Table 4.5. Also, the impact of the local search procedure

increases with increase in the budget setting B as would be expected since the size of

the neighbourhood is directly proportional to B.
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Figure 4.4: Variation of average percentage improvement in objective function values

following the neighbourhood search procedure across different synthetic network types;

budget settings B = 0.05n & 0.1n.

Benchmark instances

We extend our computational experiment to the set of benchmark synthetic graphs which

have been used as test instances for most heuristic algorithms developed for the classical

critical node detection problem. Due to the sparsity of these networks, we focused only

on instances where the initial percentage k-distance connectivity (k-Conn%) is greater

or equal to 20% (labelled as FF250 and WS250a in Table 4.6). From Table 4.6, we

observed that the heuristic realises the exact optimal objective value for 3 out 12 of the

instances and yields new upper bounds in the remaining 9 instances. We also observed

that as the budget increases especially for large dense graphs, the heuristic algorithm

struggles to terminate within the specified time limit. In particular for BA1000 and

ER1000, the heuristic algorithm was unable to terminate within the specified time

limit. These two instances were also the most challenging for the exact algorithm as

seen from the gaps between the upper and lower bounds especially for ER1000 for

which an upper bound was only achieved after 8052 seconds. A possible way to enhance
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the computational burden of the proposed heuristic for the larger instances might be to

increase the probability of using a randomised node selection when repairing the partial

offspring solution. However, the quality of the offspring solution might be affected in

which case local search improvement can be employed with the gained time. Also an

approximate evaluation of objective change might be employed during iterations of the

greedy backbone crossover to reduce the computational burden of solution evaluation.

Exact Heur

Graph n m k-Conn (%) B LB UB t exact min avg max std t heur

FF250 250 514 23.9 13 1587.0 1587 11.44 1587 1598.2 1601 5.6 16.7

BA250 250 1225 98.08 25 13772.0 13772 3160.27 13722 13788.25 13811 16.89 137.6

BA500 500 2475 95.18 50 24847.0 24847 3331.03 24847 24847 24847 0 1104.7

BA1000 1000 4975 84.97 100 16071.326 316735 3600 59178 60488.9 62487 909.7 3600.0

ER250 250 1190 94.04 25 17958.996 22288 3600 19894 19931.6 19970 19.89 326.45

ER500 500 2570 86.27 50 30845.690 79482 3600 68062 68129.2 68208 39.43 3189.6

ER1000 1000 5061 64.66 100 70494.315 221831 8052 173538 174326.1 175494 527.5 3600.0

WS250a 250 1246 52.9 70 1038.980 2319 3600 2034 2056.8 2093 17.0 728.7

WS250b 250 1250 79.65 25 14586.020 15223 3600 15020 15044.67 15086 16.55 316.1

WS500 500 2500 69.35 50 25907.377 53729 3600 51460 51567.2 51659 63.2 3483.39

GNM250 500 1250 96.17 25 18638.331 22711 3600 20967 20984.5 21013 17.0 453.8

GNM500 1000 2500 84.74 50 29461.785 78001 3600 65775 65892.9 65975 67.1 2883.02

Table 4.6: Results for benchmark synthetic instances: Exact Lower and Upper bounds

(LB, UB) and summary statistics for heuristic (minimum (min), mean (avg), maximum

(max) and standard deviation (std)). Budget settings for each instance are specified in

column labelled B. Values compared are UB and min, lower values are better (best in

bold)

4.5.4 Two-parent versus three-parent backbone crossover

We conclude the discussion on computational experiments by comparing the proposed

three-parent backbone crossover to the usual two-parent approach. Recall that three

initial feasible solutions are generated based on three centrality measures which are all

used to generate offspring solutions (see Sections 4.3.3 & 4.3.4). We compare this to a

two-parent approach in which we randomly select two out of the initial solutions as was
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done in Zhou et al. (2018). Using the two selected parent solutions, we construct an

offspring solution using a combination of greedy and random backbone crossover.

Specifically, the initial offspring solution is repaired using the greedy approach 70%

of the time and the random approach 30% of the time just as with the three-parent

approach. The random approach selects from the corresponding 1-parent elements

or 0-parent elements based on probabilities 0.6 and 0.4 respectively. Comparative

performance of the proposed three-parent backbone crossover and its alternative two-parent

in terms of the minimum objective value (min) and mean objective value (avg) are

displayed in Figures 4.5 and 4.6 respectively. The x-axis represents the instances while

the y-axis represents the percentage gap between the objective values (minimum values

and mean values) realised by the heuristic and the exact upper bounds (UB). The

percentage gaps are calculated as

%gap = 100 · obj − UB
obj

%

where obj is the minimum or mean objective value. A gap less than zero implies that

the heuristic approach (three-parent or two-parent) realises a new upper bound for the

given instance.

From Figures 4.5 - 4.6 and Table 4.7, we observe that out of the 14 tested instances,

the three-parent approach obtains better minimum and mean objective values in 10

and 9 instances respectively. On the other hand, the two-parent approach obtains

better minimum and mean objective values respectively in 1 instance and 2 instances.

Both approaches perform alike obtaining the same minimum and mean objective values

respectively for the smaller Barabasi-Albert instances (ba1 3, ba2 3) as well as the

Smallworld instance. The advantage of the three-parent becomes more obvious as the

instance size increases particular for the benchmark synthetic graphs. We observed

that while the three-parent approach yields 3 new upper bounds and achieves the

exact optimal for 2 of the 5 tested benchmark instances, the two-parent approach

obtains minimum objective values which are worse than the exact upper bounds. Actual

minimum and mean objective values along with run times for both three-parent and
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three-parent two-parent

Graph n m k-Conn (%) UB min avg t heur min avg t heur

SmallWorld 233 994 95.2 1694 1694 1694 58.6 1694 1694 45.6

USAir97 332 2126 84.8 3100 3100 3219.1 423.6 3168 3232.4 293.5

ba1 3 100 475 99.9 3330 3330 3330.0 13.6 3330 3330.0 13.8

ba2 3 100 900 100 3987 4005 4005.0 46.1 4005 4005.0 42.9

er1 3 80 470 100 2474 2535 2538.7 20.5 2534 2540.7 17.75

er2 3 200 1004 97.7 14886 14332 14360.0 213.5 14348 14370.4 183.9

gnm1 3 200 1000 97.9 14730 14193 14256.3 252.2 14244 14249.8 196.3

gnm2 3 300 1500 94.1 28978 28715 28734.4 637.4 28718 28729.8 568.1

gnm3 3 300 2000 99.6 35847 35158 35198.5 1539.6 35171 35235.0 1353.5

BA250 250 1225 98.08 13722 13722 13788.3 137.6 13844 14292.3 165.62

ER250 250 1190 94.04 22288 19894 19931.6 326.45 20107 20275.8 263.99

WS250b 250 1250 79.65 15223 15020 15044.7 316.1 15275 15370.3 211.46

GNM250 250 1250 96.17 22711 20967 20984.5 453.8 21088 21253.1 431.09

FF250 250 514 23.9 1587 1587 1598.2 16.7 1615 1694.2 16.2

Table 4.7: Comparison of the proposed heuristics using three-parent and two-parent

backbone crossover approaches on a set of test instances, B = 0.1n except for FF250

where B = 13 as recorded from the source of the data. Values compared are minimum

(min) and mean (avg) objective values obtained from both approaches as well as run

times (t heur), lower values are better (best in bold). The exact upper bounds are given

in column labelled UB
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two-parent backbone crossover can be seen in Table 4.7. Based on the tested instances,

the three-parent approach performs better than the two-parent approach in terms of

minimum and mean objective values however at higher cost of run times. This could be

attributed to the higher number of iterations of the greedy procedure required to repair

the initial offspring solution obtained from the common elements of all three parents. An

approximate method to evaluate changes in objective value within the greedy procedure

could be useful to improve the run times.

4.6 Concluding remarks

In this chapter, we considered a class of distance-based critical node detection problem.

The proposed heuristic algorithm generates good solutions following a combination of

greedy and randomized backbone-based crossover on initial feasible solutions. We also

presented an improvement scheme that is derived from a centrality-based neighbourhood

search. Extensive computational experiments on both real-world and synthetic graphs

show the usefulness of the developed heuristics in generating good solutions when compared

to exact solutions particularly for challenging problem instances. For the synthetic

graphs which comprise of 54 instances, the heuristic achieves the optimal objective value

or best known upper bounds on 17% of the instances within short run time (on average

20 times as fast as the exact approaches). Most importantly, amongst the challenging

instances such as the uniform random graph were exact percentage optimality gaps were

as high as 100%, the heuristic discovers new upper bounds on 57% of the instances

within a maximum run time less than half of the time limit of 3600 seconds. These

results indicate that the heuristic can be employed as a warm-start algorithm to provide

good solution in small running time to kick start the exact algorithm. Such a strategy

has the potential of speeding up the optimisation process of the exact approach and has

been employed to solve difficult optimisation problems including a class of the critical

node detection problem (see for example, Salemi & Buchanan (2020). Finally, the

computational experiments provided some insights about the structural properties of
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the dense classes of the Barabasi-Albert and Erdos-Renyi network where the heuristic

fell short in terms of objective value. This is potentially useful for future development

of heuristic algorithms for these and related network classes.
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Chapter 5

Generalisation for edge-weighted

distances and edge deletion

5.1 Introduction

In this chapter, we present a generalisation of the idea of the proposed path-based

formulation to edge weighted graphs where distances are not limited to hop-based

distances. This is motivated by real-world cases where edge weights represent costs such

as construction cost, travel time, etc and as such vary from one edge to another. We also

consider a related distance-based connectivity problem which we call the distance-based

critical edge detection problem (DCEDP) in which the entities to be deleted are edges.

We show how the model for the node-deletion version could be easily modified for the

edge-deletion version as well as an alternative model for the distance-based critical edge

detection problem.

5.2 Distance-based critical node detection problem for edge

weighted graphs

We show how to generalise the integer programming models proposed in Chapter 3 for

edge-weighted graphs. Let G = (V,E) be a given undirected edge-weighted graph. For
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every edge (i, j) ∈ E, we denote by wij a positive weight on (i, j) interpreted as the

length of (i, j). For any pair of nodes i and j, the length of any given path between

i and j is the sum of all edge weights along that path. Then the distance between i

and j is defined as the length of a shortest path between i and j. We assume that

all edge weights wij are positive integers which is not too restrictive for most real-world

applications. However, where edge weights are rational numbers, the procedure proposed

in Veremyev et al. (2015) can be used to modify rational weights. Using similar notations

as in the unweighted case i.e formulation (3.19) -(3.26), we define y`ij = 1 if and only if

there is a path of length at most ` in the induced graph GR where ` ∈ {1, . . . , L} and

L ≤ (n − 1).max(i,j)∈E {wij}. The distance-based critical node detection problem for

edge-weighted distances admits the following formulation:

DCNDP-PBML-gen

minimise
∑

i,j∈V :i<j

(
f(1)y1ij +

L∑
`=2

f(`)
(
y`ij − y`−1ij

))
(5.1)

+
∑

i,j∈V :i<j

f(∞)
(
1− yLij

)
(5.2)

s.t. y`ij = 0, ∀(i, j) ∈ E, i < j, ` ∈
{

1, . . . , min
t6=j:(i,t)∈E

{wit, wij − 1}
}

(5.3)

y`ij = 0, ∀(i, j) /∈ E, i < j, ` ∈
{

1, . . . , min
t:(i,t)∈E

{wit}
}

(5.4)∑
r∈V (P )

xr + ydij ≥ 1, ∀P ∈ PL(i, j), i, j ∈ V, i < j (5.5)

y`ij ≤ y`+1
ij , ∀(i, j) /∈ E, i < j, ` ∈ {2, . . . , L− 1} (5.6)

y`ij = y
(wij)
ij , ∀(i, j) ∈ E, i < j, ` ∈ {wij + 1, . . . , L} (5.7)∑

i∈V
xi ≤ B (5.8)

y`ij ∈ {0, 1} , ∀(i, j) ∈ V, i < j, ` ∈ {1, . . . , L} (5.9)

xi ∈ {0, 1} , ∀i ∈ V (5.10)

Constraints (5.5)-(5.10) are based on the same ideas as those of constraints (3.21)-(3.26)

in the path formulation for hop distance. Constraints (5.3)-(5.4) enhance the formulation
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in a similar version as the shortest path-based enhancements described for the base

formulation. Thus constraints (5.3)-(5.4) fix y`ij variables to zero for all ` less than the

minimum distance from node i to its neighbours t since the length of any shortest path

from node i to any other node j must be greater than this minimum. In constraint (5.5),

instead of the hop-based length of path P , we now consider the edge-weighted length of

path P represented by d. As with the hop-based distance DCNDP, the non-redundant

constraints in (5.5) are those corresponding to edges that is

xi + xj + y
(wij)
ij ≥ 1, ∀(i, j) ∈ E, i < j

The rest are added dynamically through an appropriate separation routine. The separation

routine follows a similar fashion as with the hop distance counterpart. For an integer

solution, we construct a residual graph G′(V ′, E′) containing only nodes whose values

in the current integer solution is equal to zero along with the edges incident on them.

That is V ′ = {v ∈ V : x̃v = 0} and E′ = {(u, v) ∈ E : u, v ∈ V ′}. Then, using this new

graph G′, the separation routine entails generating a shortest path tree Tu rooted at

each u ∈ V ′. For every v in the tree Tu whose distance (d) from the root u is within the

specified threshold L, the corresponding constraint (5.5) is checked for violation. That

is, if ỹduv < 1, ∀v ∈ Tu, then the violated inequality
∑

i∈V (Puv)
xi + yduv ≥ 1 is added to

the formulation.

Observe that for arbitrary edge weights, the size of formulation (5.1)–(5.10) becomes

pseudopolynomial. To overcome this, we aggregate the y variables into a new set of

continuous variable yij which is independent of `. This new variable yij is interpreted

as the value of the distance function between nodes i and j. Using these aggregated

continuous yij variables, we arrive at an alternative formulation for the weighted DCNDP

defined as follows:
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DCNDP-PBM-gen

minimise
∑

i,j∈V :i<j

yij (5.11)

s.t.
∑

r∈V (P )

f(d)xr + yij ≥ f(d), ∀P ∈ PL(i, j), (i, j) ∈ V, i < j (5.12)

∑
i∈V

xi ≤ B (5.13)

xi ∈ {0, 1} , ∀i ∈ V (5.14)

yij ≥ 0, ∀(i, j) ∈ V, i < j (5.15)

Objective (5.11) minimises the connectivity of the input graph with respect to a

specified distance-based connectivity function f(.) ≥ 0. Formulation (5.11)–(5.15) above

admits any non-negative non increasing distance function such as the first 3 classes of

the DCNDP. This is captured in the definition of constraints (5.12) and the yij variables.

Constraints (5.12) basically indicate that for any pair of nodes i and j connected by a

path of length at most L, if none of the nodes along the paths connecting i and j is

deleted, then the distance-based connectivity between i and j is at least f(d) where d is

the length of path P . Since the objective is a minimisation and the distance function is

non-decreasing, we see that yij would be equal to f(d̄) the value of the distance function

corresponding to the length of shortest path between i and j. Thus the non-redundant

inequalities in constraint set (5.12) are those of the shortest path between each pair of

nodes which can be separated through generation of shortest path trees following the

procedure discussed for the disaggregated path formulation.

It is easy to see that when the distance function f(d) is defined as in equation (3.6),

Constraints (5.12) reduces to∑
r∈V (P )

xr + yij ≥ 1, ∀P ∈ PL(i, j), (i, j) ∈ V, i < j

which are the path-based constraints for DCNDP-1 formulation (3.28)–(3.32). It can also

be shown that formulation (5.11)–(5.15) is a valid formulation for the rest of the distance

functions defined in Section 3.2 of Chapter 3. We illustrate this for two other DCNDP
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objective namely: minimise the efficiency of the graph and minimise the sum of power

functions of distances in the graph. Recall that the distance functions for these DCNDP

objectives are defined respectively as f(d) = d−1 and f(d) = pd, 0 < p < 1 if d less or

equal to the specified threshold L and 0 elsewhere. By substituting the corresponding

values of each of these distance functions into constraints (5.12), one realises that the y

variables would take on the value of the distance function of the shortest path between

any node pair if none of the nodes along that path is deleted. For the last two DCNDP

classes whose objectives have a maximisation sense, the formulation (5.11)-(5.15), can

easily be adapted to accommodate their distance functions. For example, for class 4

of the DCNDP whose objective maximises the Wiener index, we redefine the distance

function similar to that presented by Hooshmand et al. (2020):

Class 4. Maximise the generalised Wiener index or, equivalently, the characteristic path

length of the graph:

f(d) =


d, if d ≤ L

M, if d > L

(5.16)

where M is a sufficiently large constant such that M > L. Then, objective (5.11) changes

to maximisation sense and constraint (5.12) is modified to:

yij ≤ d+M
∑

r∈V (P )

xr, ∀P ∈ PL(i, j), (i, j) ∈ V, i < j (5.17)

In addition, the y variables are bounded by M , that is:

yij ≤M ∀(i, j) ∈ V, i < j

The variables yij measure the shortest path length between nodes i and j in the residual

graph. Thus, yij equal to the length of the shortest path between i and j in the

residual graph if i and j are connected; otherwise, it is equal to M . The ideas behind

constraints (5.17) is the same with those of constraints (5.12). They indicate that if none

of the nodes along a candidate path P connecting a pair of nodes i and j is deleted,

then, the length of shortest path between them is at least d which is the length of the

path P . The separation of these constraints is exactly as discussed.
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5.2.1 Comparing the two path based formulations

We now compare the two path formulations for the distance-based critical node detection

problem. From a theoretical perspective, the disaggregated path formulation (5.1)-(5.10)

seems to be a more tighter formulation (has better lower bound) than the aggregated

version (that is, formulation (5.11)-(5.15)). To see this, observe that for every solution

to the disaggregated model, there exist a solution to the aggregated version with the

same objective value by setting yij = max(f(l)ylij). However, in terms of scalabilty, the

disaggregated formulation is not likely to scale well computationally for arbitrary edge

weights. This is because for arbitrary edge weights, the disaggregated y variables grows

in the order of L ≤ (n− 1) ∗max(i,j)∈E {wij}.

Edge weight B=0.05n B=0.1n

Range diam InitObj FinObj PBMt (s) PBMLt (s) FinObj PBMt (s) PBMLt (s)

{1} 4 45.44% 9.28% 238.6 475.7 4.10% 595.5 1631

{1, 2} 8 23.44% 4.64% 251.5 599.2 2.01% 822.9 1045.2

{1, 2, 3} 12 16.01% 3.09% 251.5 747.9 1.34% 716.5 932.8

{1, 2, 3, 4} 16 12.18% 2.32% 234.4 925.5 1.01% 786.4 1822.7

{1, 2, 3, 4, 5} 20 9.83% 1.86% 201.5 1217.5 0.80% 996.5 1731.7

{1, 2, 3, 4, 5, 6} 24 8.28% 1.55% 211 1340.1 0.67% 1040.5 2452.6

Table 5.1: Comparing aggregated and disaggregated path-based models on weighted

instances of the SmallWorld network using DCNDP-2 objective

We investigate the computational efficiency of the two path formulations using their

respective models for the first two DCNDP classes DCNDP-1 and DCNDP-2. Recall

that the objective in DCNDP-1 is to minimise the number for nodes connected by a path

of length at most k and while DCNDP-2 minimises the efficiency. Comparison for the

DCNDP-1 class is based on the larger real-world instances described in Chapter 3.5 using

the hop-based distance models (unit edge weights). For DCNDP-2, our comparisons

use the edge-weighted distance models on the smaller real-world network as well as

the SmallWorld network. The SmallWorld network posseses characteristics of many

real-world network having a small diameter of 4. We assign positive integer weights
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on edges of the network based on their edge betweenness centralities (Brandes 2008).

Following the same assumption made by Veremyev et al. (2015), we assign smaller edge

weights to edges with large edge betweenness centrality values. Specifically, given the

normalised edge betweenness bij of edge (i, j), we set wij = min(b, b̄), where b̄ is the

nearest positive integer gotten from approximating the quotient of 0.1 and bij while b is

some specified positive integer that provides an upper bound on the edge weights. For

our experiment, we used values of b in the range {1, 2, 3, 4, 5, 6} for the SmallWorld

network where b = 1 is equivalent to the hop-based distance. We set b = 6 for the rest

of the real-world networks. Tables 5.1 and 5.2 summarise the results of edge-weighted

distance versions of both path-based models using DCNDP-2 objective while results of

the hop-distance versions using DCNDP-1 objective are summarised in Table 5.3. The

B=0.05n B=0.1n

Graph n m diam InitObj FinObj PBMt (s) PBMLt (s) FinObj PBMt (s) PBMLt (s)

Hi-tech 33 91 14 16.2% 13.0% 0.89 1.08 8.5% 1.2 2.57

Karate 34 78 11 21.8% 10.5% 0.27 0.3 2.7% 0.22 0.19

Mexican 35 117 16 13.6% 10.4% 0.69 1.93 5.7% 0.58 0.75

Chesapeake 39 170 16 12.0% 9.3% 0.86 2.43 4.8% 0.47 0.55

Lesmiserable 77 254 21 11.0% 3.2% 4.87 28.53 1.3% 1.19 4.56

Sawmill 36 62 12 23.7% 10.1% 0.31 0.41 5.3% 0.57 0.61

Dolphins 62 159 21 12.0% 5.5% 2.93 4.72 4.0% 8.69 23.5

Santafe 118 200 20 8.4% 0.6% 2.33 5.55 0.2% 2.19 18.63

Sanjuansur 75 155 24 10.5% 5.8% 8.74 39.95 2.6% 5.87 23.12

Attiro 59 128 22 11.8% 8.2% 3.95 16.75 4.3% 3.23 13.81

Smallworld 233 994 24 8.3% 1.6% 211 1340.12 0.7% 1040.45 2452.6

Table 5.2: Comparing aggregated and disaggregated path-based models on weighted

real-world instances of DCNDP-2 where edge weights are in the range {1, 2, 3, 4, 5, 6}

columns labelled PBMt(s) contain the running time of the aggregated path formulation

while the columns labelled PBMLt(s) show the running time for the disaggregated

path formulation. The objective values before and after node deletions are respectively

displayed in columns labelled InitObj and FinObj. For both budget settings of 5% and

10% of input network size, one can see from Table 5.1 that the disaggregated model is
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computationally more expensive than the aggregated model based on the SmallWorld

network. This is indeed true for the different range of the edge weights, as well as

for other network instances (see Table 5.2). Similarly with DCNDP-1 objective and

unit edge weights, we see the same pattern across the different network instances and

budget settings as shown in Table 5.3. Therefore, we can conclude that the aggregated

path model (formulation (5.11)–(5.15)) is computationally more competitive than the

disaggregated version (formulation (5.1)–(5.10)). This supports our motivation for the

reformulation presented in Chapter 3 for the first class of the distance-based critical

node detection problem and the generalisations to edge-weighted distance presented in

this chapter.

Graph n m diam InitObj B FinObj PBMt (s) PBMLt (s)

USAir97 332 2126 6 84.8%

0.1n 5.64% 1277.38 2375.76

0.05n 19.33% 377.83 526.39

0.03n 39.35% 692.04 1054.04

0.02n 49.57% 582.16 925.6

0.01n 63.90% 240.67 474.64

SmallWorld 233 994 4 95.2%

0.1n 6.27% 117.54 156.78

0.05n 17.13% 202.87 170.95

0.03n 23.41% 18.46 25.71

0.015n 40.56% 41.17 77.65

NetScience 379 914 17 13.3%
0.03n 4.32% 5.11 14.76

0.01n 8.43% 4.52 7.8

LindenStrasse 232 303 13 12.1%

0.4n 4.70% 1.17 2.03

0.03n 6.15% 1.82 3.32

0.015n 8.32% 1.25 2.11

Table 5.3: Comparing aggregated and disaggregated path-based models on unweighted

real-world instances of DCNDP-1
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5.3 Distance-based critical edge detection problem

We consider two formulations for the edge-deletion version of the distance-based critical

node detection problem which we refer to as the distance-based critical edge detection

problem (DCEDP). The first is a modification of the node deletion case. Let’s consider

for simplicity an undirected graph G = (V,E), we can construct an auxiliary graph

G′ = (V + V ′, E′) as follows:

• For each edge (i, j) ∈ E, add a new node k and replace (i, j) ∈ E with (i, k) and

(k, j). Thus the new graph G′ has n+m nodes and 2m edges.

• For hop-based distances, since the number of edges in the auxiliary graph is twice

the number of edges in the input graph, the distance threshold would be modified

as well to 2L.

• For edge-weighted distances, the weight wij of edge (i, j) ∈ E would be propagated

equally to the corresponding edges of the auxiliary graph. Thus, the weights for

edges (i, k) and (k, j) would be wij and the distance threshold would be modified

to 2L.

• For non-unit edge deletion costs, the deletion cost cij for edge (i, j) ∈ E is assigned

to the corresponding new node k that is ck = cij .

Let us partition the nodes in the auxiliary graph G′ into two disjoint sets V and V ′. Let

set V be the set of all nodes present in the initial input graph G while V ′ be the set of

all new nodes added for each edge of G. Observe that deletion of nodes v′ ∈ V ′ from

the auxiliary graph G′ is equivalent to deletion of the corresponding edge of G. Thus,

the distance-based critical edge detection problem on the input graph G is equivalent to

the distance-based critical node detection problem on the constructed auxiliary graph

G′ formulated as follows:
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DCEDP-mod

minimise
∑

i,j∈V :i<j

yij (5.18)

s.t.
∑

r∈V ′(P )

f(d)xr + yij ≥ f(d), ∀P ∈ PL(i, j), i, j ∈ V, i < j (5.19)

∑
i∈V ′

ci(xi) ≤ B (5.20)

xi = 0, yij ≥ 0, ∀(i, j) ∈ V, i < j (5.21)

xi ∈ {0, 1} , ∀i ∈ V ′ (5.22)

The construction of the auxiliary graph doubles the graph size. However, we can reduce

the variable and constraint size by fixing the x variables of the original nodes to zero and

defining yij variables for only node pairs (i, j) of the original graph as in constraint (5.21).

We end the section by presenting an alternative formulation for the edge-weighted

distance-based critical edge detection problem which uses the input graph directly. Given

an edge weighted graph G = (V,E) with positive integer edge weights wij and edge

deletion costs cij specified for every edge (i, j) ∈ E. We define a new set of variables for

edges as follows:

xij =


1, if edge (i, j) is deleted,

0, otherwise.

(5.23)

We keep the aggregated continuous variables yij as defined for the node deletion version.

The distance-based critical edge detection problem on the input graph G admits the

formulation:
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DCEDP

minimise
∑

i,j∈V :i<j

yij (5.24)

s.t.
∑

(r,t)∈E(P )

f(d)xrt + yij ≥ f(d), ∀P ∈ PL(i, j), i, j ∈ V, i < j (5.25)

∑
i,j∈E:i<j

cijxij ≤ B (5.26)

xij ∈ {0, 1} , ∀(i, j) ∈ E (5.27)

yij ≥ 0, ∀(i, j) ∈ V, i < j (5.28)

where objective function (5.24) minimises some distance-based connectivity function

as defined by f(.). Constraints (5.25) are the equivalent path constraints which state

that to disconnect any node pair i and j, at least one edge along each qualifying path

(that is, paths whose lengths are within the specified threshold L) connecting i and j

must be deleted. Constraints (5.26) specify that the total edge deletion cost must not

exceed the available budget while constraints (5.27)– (5.28) specify the domain of the

decision variables x and y.

5.4 Concluding remarks

In this chapter, we presented generalisations of our models and algorithm proposed

for the distance-based critical node detection problem to edge weighted graphs. Two

path-based formulations were considered. The first which is pseudopolynomial in variable

size for arbitrary edge weights is theoretically tighter. However, computationally, it is not

as efficient as the second formulation which uses an aggregated version of the variables

to overcome the computationally intractability posed by the dependence on the edge

weights. We also considered the edge deletion version of the distance-based critical node

detection problem which we termed the distance-based critical edge detection problem.

We showed how the aggregated formulation proposed for the node deletion version can

be modified to solve the edge deletion problem on an auxiliary graph of the input graph.
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Finally, an alternative formulation that does not require modification of the input graph

was presented.
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Chapter 6

Conclusion and Future Research

In this thesis, we studied node and edge deletion problems in networks. We began

by introducing a class of node and edge deletion problems that is concerned with

the overarching property of network connectivity namely the critical node detection

problem. The importance of connectivity objective metric in the study of the critical

node detection problem as well as in other problems involving node and/or edge removals

was presented. The various variants of the critical node detection problem, their applications

and related problems as studied in literature were discussed. In addition, we discussed

and illustrated some of the limitations of the variants of the critical node detection

problem whose goal is network fragmentation. On account of these limitations, we

briefly introduced the distance-based variant of the critical node detection problem which

became the focus of the remainder of the thesis.

In Chapter 3, we formally defined the distance-based critical node detection problem

along with the assumptions of the distance-based connectivity functions. We presented

definitions of five existing distance-based connectivity functions and a compact integer

programming formulation proposed in Veremyev et al. (2015). This compact integer

programming model served as the base model for our study. Following this, we presented

a new path-based model which like the base compact model is valid for all the five

distance-based connectivity functions and any other functions satisfying the assumptions.

The new integer programming model uses the same sets of decision variables as the
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base model but its constraint set comprises of so-called lazy constraints. Inspired

by the structure of the first distance-based connectivity function, we also present a

reformulation of the path-based model by redefining the set of connectivity variables to

one with fewer variables. Although the reformulation was devised with the first class

of distance-based critical node detection problem in mind, we showed that it can be

generalised to the other distance-based connectivity functions. The main assumptions

of the models presented in Chapter 3 is that the input graph is unweighted, hence the

distances considered are hop distances. Following this, we presented an algorithm for the

separation problem associated with the lazy constraints in the new path-based models.

The separation algorithm is based on modified breadth-first-search tree generation and

as such explores the assumption of hop-based distances. As part of the discussion

on the proposed algorithmic framework, we propose valid inequalities and a primal

heuristic. The chapter ends with discussions on extensive computational experiments

on both real-world and synthetic graphs. This includes a comparison of the proposed

path-based models and the base compact model for two classes of the distance-based

critical node detection problem where results show the computational competitiveness of

our path-based models over the base model. We also investigated how the distance-based

connectivity functions influence the the ease of solving the critical node detection problem

for different network topology and size. The computational experiments compared the

first 3 distance-based connectivity objective functions and the classical fragmentation-based

pairwise connectivity objective. The results showed that the distance-based connectivity

metrics were more computationally favorable for edge-dense graphs with small diameter

with the first distance-based connectivity objective being the easiest to solve.

The influence of the proposed valid inequalities and primal heuristic on computational

time and optimality gaps was also investigated. The distance-based critical node detection

problem being anNP-complete problem, exact methods are only able to solve small-medium

size instances in reasonable time.

In consideration of the computational limitations of the exact approaches, Chapter 4

considered the distance-based critical node detection problem from a heuristic perspective.
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The general framework of the proposed heuristic was presented. The framework combines

a double backbone crossover and a neighbourhood search procedure. The double backbone

crossover procedure generates offspring solution from initial solutions constructed based

on defined centrality measures. The neighbourhood search procedure uses a two-phase

node swap proposed by Zhou et al. (2018) on a reduced neighbourhood constructed

based on centrality metrics of the nodes. Computational experiments on real-world

and synthetics instances used for the exact methods in Chapter 3 as well as on larger

benchmark synthetic instances were also presented. The computational results show

that the proposed heuristic matches the optimal solutions in all the real-world instances

and 19% of the synthetic instances. Moreover, the heuristic achieves new upper bounds

in reasonable time for 61% of the synthetic network instances which were unsolved by

the exact approaches. We also showed how the heuristic framework can be extended to

other classes of the distance-based critical node detection problem as well insights on

some topological structures where the heuristic failed to match the exact solution.

Finally, in Chapter 5, we considered the distance-based critical node detection problem

on edge-weighted graphs. We extended the ideas of the two path-based formulations to

edge-weighted distances where we assumed that edge weights are positive integers. This

assumption is not limiting since this is the case in many combinatorial optimisation

problems and as shown in Veremyev et al. (2015), fractional edge weights could be

transformed to integer weights. We also considered edge deletion variant which we term

the distance-based critical edge detection problem. We explored certain transformations

of the input graph under which solving the distance-based critical node detection problem

on the transformed graph is equivalent to solving the edge deletion version of the

problem. Since the transformation doubles the size of the graph even though the

variable size is kept the same by variable fixing, we also presented an alternative integer

programming formulation that does not require any transformation.

The results gathered from this study provide useful tools to model and solve node and

edge deletion problems particularly as it concerns distance-based connectivity property

in the node-deleted and/or edge-deleted subgraph. Nevertheless, there are undoubtedly
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directions for future research that would provide additional insights to solve real-life

problems involving node and edge deletions more efficiently.

The underlying assumption of the distance-based critical node detection problem

presented in this thesis is that the decision maker knows the required budget on total cost

of deleting the critical nodes or edges. However, this is not always the case. Sometimes,

the decision maker wants to uncover the extent of vulnerability of the network to different

levels of damage (node or edge deletions). This would provide some insights as to how

much cost he needs to incur to protect his infrastructure to mitigate such vulnerability.

In this sense, the relevant problem becomes the β-connectivity distance-based critical

node detection problem where β, 0 < β < 1 is a bound on the proportion of original

distance-based connectivity left after node deletion. A general formulation for hop-based

distances can be written as:

minimise
∑
i∈V

cixi (6.1)

s.t.
∑

r∈V (P )

xr + y
|P |
ij ≥ 1, ∀P ∈ PL(i, j), i, j ∈ V, i < j (6.2)

yl−1ij ≤ y
l
ij , ∀(i, j) ∈ V, i < j, l ∈ {2, . . . , L} (6.3)

ylij = y1ij , ∀(i, j) ∈ E, i < j, l ∈ {2, . . . , L} (6.4)∑
i,j∈V :i<j

(
f(1)y1ij +

L∑
l=2

f(l)
(
ylij − yl−1ij

))
≤ βN (6.5)

ylij ∈ {0, 1} , ∀(i, j) ∈ V, i < j, l ∈ {1, . . . , L} (6.6)

xi ∈ {0, 1} , ∀i ∈ V (6.7)

where objective function 6.1 minimises the total deletion cost. Constraints 6.2–6.4 are

same with the ones in the path-based formulation 3.19–3.26 (DCNP-PBML) proposed

in this thesis. Constraint 6.5 bounds the distance-based connectivity in the node-deleted

subgraph to some specified proportion β of the initial distance-based connectivity of the

input graph. The distance-based connectivity of the input graph N depends on the

distance-based connectivity functions. For example, with respect to the first distance-based
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connectivity function, N would be the total number of node pairs connected by a path of

distance at most k. Constraints 6.6–6.7 specify the domain of the decision variables which

are as defined in Chapter 3 of this thesis. Moreover, the β-connectivity distance-based

critical node detection problem as well as the models considered in this thesis can easily

be reformulated to address more realistic cases. In particular, cases where the decision

maker is interested in assessing the degradation in the distance-based connectivity for

only a specified set of commodities (origin-destination pairs) and not all node pairs in

the network.

The heuristic proposed in this thesis leverages the effectiveness of a memetic-type

algorithm in particular, the double backbone crossover and the neighbourhood search.

This is evidenced by its success in achieving in reasonable time the optimal and near-optimal

objective values for the medium sized instances as well as new upper bounds for the

challenging instances. However, as the instance size increases, the cost of evaluating

solutions and hence changes in objective values resulting from node swaps becomes

significant. Devising a more efficient evaluation function to overcome this bottle neck

is indeed a direction for future research. One interesting area worth exploring is to use

machine learning algorithm to approximate the objective value for a given solution or

solution change. In recent times, machine learning has been employed to solve difficult

graph combinatorial optimisation problems such as the TSP and set covering problem

(Khalil et al. 2017, Bengio et al. 2021). The first approach to incorporate machine

learning to the proposed heuristics is to use the trained machine learning algorithm

to choose the most promising node to add to the current offspring solution within the

greedy procedure of the backbone crossover (Section 4.3.4). Also, in the neighbourhood

search, the learned model can also be used to select the nodes to swap. Since these

two decisions are repeated within the heuristic framework, the run time of the heuristic

would be significantly reduced given that the learning phase of the machine learning

algorithm is done offline. This would also enable the extension of the heuristic to a

proper memetic algorithm in which a larger population of feasible solutions is constructed

leading to more offspring solutions generated from multiple triples of parent solutions.
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Each of these offspring solutions can then be improved by the local search and used as

parent solutions for further backbone crossovers until termination criteria is reached.

This would potentially lead to improved solutions for larger instances. Following on

from this, the computationally enhanced heuristic framework can be extended to other

classes of the distance-based critical node detection problem and related problems.

The heuristic framework proposed in this thesis uses a heuristic approach to construct

initial population. Indeed, it has been proved that using a heuristic approach for

construction of initial solutions yields better solutions than using a random approach

(Baker & Ayechew 2003). However, our computational experiments suggest that for

highly connected networks, the inherent issue of structural equivalence affects performance

of the centrality-based heuristic. Hence, future heuristic approaches should explore ways

of initialising parent population such that the neighbourhood of the solutions do not

overlap too much. A plausible approach might be to hybridise heuristic and random

approaches in the solution initialisation.

Finally, it would be interesting to use the underlying ideas of the models and algorithms

described in Chapters 3–5 to solve practical problems. For example, using class 3

of the distance-based critical node detection problem (that is, distance connectivity

function (3.3)), the path-based models could be adapted to solve contagion control

problems. If we take the susceptible-infected (SI) disease spread model, the set of nodes

V would then be split into two subsets namely infected nodes (I) and susceptible nodes

(S). Given the transmission probability p (0 < p < 1) of a contagion from a node

i ∈ I to a neighboring node j ∈ S, then for non-adjacent nodes i ∈ I and j ∈ S the

transmission probability can be estimated from the power function (pd) of DCNDP-3.

As this probability decreases with distance d, it therefore implies that susceptible nodes

that are sufficiently far from infected nodes (that is, a large distance d) are less likely

to contact the infection. Thus, a strategy for minimising the spread of such kind of

contagion within a social or population network can be achieved by solving a modified

version of the hop-constrained path-based model for DCNDP-3 proposed in Chapter (3).

That is, we seek nodes (members of the network) whose removal (isolation or vaccination)
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would maximally reduce the propensity of spread of the contagion (e.g virus). The

modification is as follows: Instead of considering every node pair i, j ∈ V in the objective

function and path-based constraints, we only consider node pairs i, j : i ∈ I , j ∈ S.

The resultant aggregated model is given by formulation (6.8)–(6.12). Consequently,

the separation algorithm for the path-based constraints (Algorithm 1) can be slightly

modified by further restricting the set of candidate root nodes Rc to only infected nodes,

that is, Rc = Rc∩I. Furthermore, in checking for violations of the path-based constraints

in line 17 of Algorithm 1, we restrict our check to susceptible nodes t ∈ S at the

corresponding tree depth. So that for every BFS tree generated, the root node r of each

tree is an infected node (that is, r ∈ I) and the terminal node t along a path in the

tree for which we check path constraint violation must be a susceptible node (that is,

t ∈ S).

DCNDP-PBM-App

minimise
∑

i∈I , j∈S
yij (6.8)

s.t.
∑

r∈V (P )

f(d) xr + yij ≥ f(d), ∀ P ∈ PL(i, j), i ∈ I , j ∈ S (6.9)

∑
i∈V

xi ≤ B (6.10)

xi ∈ {0, 1} , ∀ i ∈ V (6.11)

yij ≥ 0, ∀ i ∈ I , j ∈ S (6.12)

We refer the interested reader to Nandi & Medal (2016) and Lalou et al. (2018) for

related applications of the critical node detection problem to contagion control.

Another application problem where the models and algorithms proposed in this thesis

can be adapted to solve is in assessing the vulnerability of a network a transportation

network. One of the network instances used for the computational experiments described

in Chapters (3)– (5) is the USAir97 network which is an air transportation network

of United States air flights. Indeed, the computational experiments indicate that the

first class of the DCNDP which minimises the number of node pairs connected by hop
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distance less than or equal to 3 is a more appropriate model for this network. This is

intuitive since many passengers would not expect an air trip from their origin location to

destination to be more than 3 stops. A model for the traditional critical node detection

problem has been used to assess the vulnerability of a road network to arc failures, where

the existence of a path between two points in the road network is the metric used to

assess vulnerability (Matisziw & Murray 2009). The models and algorithms proposed

in this thesis can be used along with the distance function of DCNDP-1 or DCNDP-4

to assess the vulnerability of supply chain networks to node or edge failures. Indeed,

the edge-weighted version considered in Chapter (5) would be a more appropriate model

given that there are varied cost (distance or time) of flow of materials from one source

location (production or storage facility) to a demand location. With a suitable estimation

of these costs, and specification of a set of source-destination (s, t) points, one can apply

the algorithm ideas for the weighted version of DCNDP or DCNEP to identify nodes

or edges in the network whose loss or damage will maximise the cost (e.g. distance)

required to move materials between (s, t) points. The modifications proposed for the

contagion control application also would apply to this case, since we do not need to

consider all node pairs.
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Hernández-Pérez, H. & Salazar-González, J.-J. (2004), ‘A branch-and-cut algorithm for

a traveling salesman problem with pickup and delivery’, Discrete Applied Mathematics

145(1), 126–139.

Holme, P., Kim, B. J., Yoon, C. N. & Han, S. K. (2002), ‘Attack vulnerability of complex

networks’, Physical review E 65(5), 056109.

Hooshmand, F., Mirarabrazi, F. & MirHassani, S. (2020), ‘Efficient benders

decomposition for distance-based critical node detection problem’, Omega 93, 102037.

Hosoya, H. (1988), ‘On some counting polynomials in chemistry’, Discrete applied

mathematics 19(1-3), 239–257.

Hosteins, P. & Scatamacchia, R. (2020), ‘The stochastic critical node problem over trees’,

Networks 76(3), 321–426.

Huang, C.-Y. R., Lai, C.-Y. & Cheng, K.-T. T. (2009), Fundamentals of algorithms, in

‘Electronic Design Automation’, Elsevier, pp. 173–234.

Israeli, E. & Wood, R. K. (2002), ‘Shortest-path network interdiction’, Networks

40(2), 97–111.
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Appendix A

Codes

A.1 Aggregated Path-based model (DCNDP-PBM)

import networkx as nx

from gurobipy.gurobipy import Model , GRB , LinExpr

import dist_connectivity as dc

#-------Lazy cut callback to separate path constraints -------------------

def mycut(model , where):

global savebnd , cutcount , bndcheck

cost = {}

connect={}

#-----separates integer solution

def depthKsp1(graph , cost , connect , L, cutlimit):

roots=[n for (n,attr) in cost.items() if attr < 1-1e-5]

input_graph=graph.subgraph(roots)

for rt in roots:

cutcount=0

length , path = nx.single_source_dijkstra(input_graph ,rt ,

cutoff=L,weight=’weight ’)

for v,distance in length.items():

if rt!=v:

i=min([rt ,v])

j=max([rt ,v])
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if connect[(i, j)] < f[distance-1]:

model.cbLazy ((f[distance-1]*\

sum(model._x_delete[node] for node in path[v])) + \

model._u_connect[i,j] >= f[distance-1])

cutcount+=1

if cutcount ==cutlimit:

break

#-----separates fractional solution

def depthKsp2(graph , cost , connect , L, cutlimit):

roots=[n for (n,attr) in cost.items() if attr < 1-1e-5]

input_graph=graph.subgraph(roots)

for rt in roots:

cutcount=0

length , path = nx.single_source_dijkstra(input_graph ,rt ,

cutoff=L,weight=’weight ’)

for v,distance in length.items():

if rt!=v:

i=min([rt ,v])

j=max([rt ,v])

if (f[distance-1]*sum(cost[node] for node in path[v])) +\

connect[(i, j)] < f[distance-1]:

model.cbLazy ((f[distance-1]*\

sum(model._x_delete[node] for node in path[v])) + \

model._u_connect[i,j] >= f[distance-1])

cutcount+=1

if cutcount ==cutlimit:

break

#if integer solution

if where == GRB.Callback.MIPSOL:

savebnd=model.cbGet(GRB.callback.MIPSOL_OBJBND)

nodecnt = model.cbGet(GRB.Callback.MIPSOL_NODCNT)

for j in G.nodes():

cost[j]=abs(model.cbGetSolution(model._x_delete[j]))

for i in G.nodes():

if i<j:

connect[(i,j)] = \
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abs(model.cbGetSolution(model._u_connect[i,j]))

depthKsp1(G, cost , connect , L, GRB.INFINITY)

# if fractional solution

elif where ==GRB.Callback.MIPNODE:

if model.cbGet(GRB.Callback.MIPNODE_STATUS) == GRB.Status.OPTIMAL:

currentbnd=model.cbGet(GRB.callback.MIPNODE_OBJBND)

nodecnt=int(model.cbGet(GRB.callback.MIPNODE_NODCNT))

if savebnd==currentbnd:

bndcheck+=1

if bndcheck >=5 or nodecnt>0:

bndcheck=0

else:

for j in G.nodes():

cost[j]=abs(model.cbGetNodeRel(model._x_delete[j]))

for i in G.nodes():

if i<j:

connect[(i,j)] = \

abs(model.cbGetNodeRel(model._u_connect[i,j]))

depthKsp2(G, cost , connect , L, 300)

else:

savebnd=currentbnd

for j in G.nodes():

cost[j]=abs(model.cbGetNodeRel(model._x_delete[j]))

for i in G.nodes():

if i<j:

connect[(i,j)] = \

abs(model.cbGetNodeRel(model._u_connect[i,j]))

depthKsp2(G, cost , connect , L, 300)

#-----Minimize distance -based connectivity metric specified by f((l)----------

def main(H,k,C):

model = Model(’Minimize distance -based connectivity objective ’)

#variables

x_delete = {}

140



u_connect = {}

for j in H.nodes():

if H.degree[j]==1:

x_delete[j] = model.addVar(lb=0.0, ub=0.0, vtype=GRB.BINARY ,

name ="x[%d]" %(j))

else:

x_delete[j] = model.addVar(lb=0.0, ub=1.0, vtype=GRB.BINARY ,

name ="x[%d]" %(j))

for i in H.nodes():

if i <j:

u_connect[i,j] =model.addVar(lb=0.0, ub=1.0,

vtype=GRB.CONTINUOUS , name="u[%d,%d]" %(i,j))

#objective function

obj = LinExpr(0)

for j in H.nodes():

for i in H.nodes():

if i<j:

obj.add(u_connect[i,j])

#constraint on number of critical nodes

model.addConstr(sum(( x_delete[j]) for j in H.nodes())<=C)

#constraints on connectivity variables u

#constraints on (i,j) in E

for (i,j) in H.edges():

weight=H.edges[i, j][’weight ’]

if i<j:

model.addConstr(u_connect[i,j] + f[weight-1]*(x_delete[i]+ \

x_delete[j]) >= f[weight-1])

else: #that is j<i

model.addConstr(u_connect[j,i] + f[weight-1]*(x_delete[j]+ \

x_delete[i]) >= f[weight-1])

model.update ()

model.setObjective(obj , GRB.MINIMIZE)
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model._x_delete=x_delete

model._u_connect=u_connect

model.setParam(GRB.param.Cuts , 0)

model.setParam(’LogToConsole ’, 0)

model.setParam(GRB.param.PreCrush , 1)

model.setParam(’LazyConstraints ’, 1)

model.setParam(’TimeLimit ’, 3600)

#model.write("DCNP -gen.lp")

model.optimize(mycut)

run_time=model.Runtime

xval=model.getAttr(’x’, x_delete)

critical_nodes=[i for i in xval.keys() if xval[i]>=1- 1e-4]

opt_obj = 0

for j in H.nodes():

for i in H.nodes():

if i < j:

opt_obj+= u_connect[i, j].X

return critical_nodes ,opt_obj , run_time , model.Runtime

#------------------Main body ------------------------------

G=nx.read_edgelist(path="SmallWorld.edgelist", nodetype=int)

#assign weights to edges based on edge betweenness

edge_btw=nx.edge_betweenness_centrality(G, normalized=True)

for e in G.edges():

G.edges[e[0],e[1]][’weight ’] = min(2,max(1,round(0.1/edge_btw[e])))

bndcheck=0

L=dc.cal_diameter(G) #diameter of the graph

n=G.number_of_nodes ()

C=int(0.05*n) #budget on critical nodes

ind=0
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#define distance connectivity function (eg f(d)=1/d)

f=[]

for l in range(L+1):

f.append(1/float(l+1))

#find the critical nodes

critical_nodes ,opt_obj ,run_time ,cpu_time=main(G,L,C)

print("critical nodes are :", critical_nodes)

print("Running Time = {:.2f} seconds".format(run_time))

print(’Final objective = {:.2f}’.format(opt_obj))

print(’Final objective percentage = {:.2f}%’.format(2*100*opt_obj/(n*(n-1))))

A.2 Disaggregated Path-based model (DCNDP-PBML)

import networkx as nx

from gurobipy.gurobipy import Model , GRB , LinExpr

import dist_connectivity as dc

#-------Lazy cut callback to separate path constraints -------------------

def mycut(model , where):

global savebnd , cutcount , bndcheck

cost = {}

connect={}

#-----separates integer solution -----

def depthKsp1(graph , cost , connect , L, cutlimit):

roots=[n for (n,attr) in cost.items() if attr < 1-1e-5]

input_graph=graph.subgraph(roots)

for rt in roots:

cutcount=0

length , path = nx.single_source_dijkstra(input_graph , rt ,

cutoff=L, weight=’weight ’)

for v,distance in length.items():

if rt!=v:

i=min([rt ,v])

j=max([rt ,v])

if connect[(i, j, distance)] < 1:
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model.cbLazy(sum(model._x_delete[n] for n in path[v])\

+ model._u_connect[i,j,distance] >= 1)

cutcount+=1

if cutcount ==cutlimit:

break

#separates fractional solution

def depthKsp2(graph , cost , connect , L, cutlimit):

roots=[n for (n,attr) in cost.items() if attr < 1-1e-5]

input_graph=graph.subgraph(roots)

for rt in roots:

cutcount=0

length , path = nx.single_source_dijkstra(input_graph , rt ,

cutoff=L, weight=’weight ’)

for v,distance in length.items():

if rt!=v:

i=min([rt ,v])

j=max([rt ,v])

if sum(cost[n] for n in path[v]) + \

connect[(i, j, distance)] < 1:

model.cbLazy(sum(model._x_delete[n] for n in path[v])\

+ model._u_connect[i,j,distance] >= 1)

cutcount+=1

if cutcount ==cutlimit:

break

#if integer solution

if where == GRB.Callback.MIPSOL:

savebnd=model.cbGet(GRB.callback.MIPSOL_OBJBND)

nodecnt = model.cbGet(GRB.Callback.MIPSOL_NODCNT)

for j in G.nodes():

cost[j]=abs(model.cbGetSolution(model._x_delete[j]))

for i in G.nodes():

for l in range(1,L+1):

connect[(i,j,l)] = \

abs(model.cbGetSolution(model._u_connect[i,j,l]))
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depthKsp1(G, cost , connect , L, GRB.INFINITY)

#if fractional solution

elif where ==GRB.Callback.MIPNODE:

if model.cbGet(GRB.Callback.MIPNODE_STATUS) == GRB.Status.OPTIMAL:

currentbnd=model.cbGet(GRB.callback.MIPNODE_OBJBND)

nodecnt=int(model.cbGet(GRB.callback.MIPNODE_NODCNT))

if savebnd==currentbnd:

bndcheck+=1

if bndcheck >=5 or nodecnt>0:

bndcheck=0

else:

for j in G.nodes():

cost[j]=abs(model.cbGetNodeRel(model._x_delete[j]))

for i in G.nodes():

if i<j:

for l in range(1,L+1):

connect[(i,j,l)] = \

abs(model.cbGetNodeRel(model._u_connect[i,j,l]))

depthKsp2(G, cost , connect , L, 300)

else:

savebnd=currentbnd

for j in G.nodes():

cost[j]=abs(model.cbGetNodeRel(model._x_delete[j]))

for i in G.nodes():

if i<j:

for l in range(1,L+1):

connect[(i,j,l)] = \

abs(model.cbGetNodeRel(model._u_connect[i,j,l]))

depthKsp2(G, cost , connect , L, 300)

#-----Minimize distance -based connectivity metric specified by f((l)---------

def main(H,k,C):

model = Model(’Minimize distance -based connectivity objective ’)
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#Decision variables

x_delete = {}

u_connect = {}

for j in H.nodes():

if H.degree[j]==1:

x_delete[j] = model.addVar(lb=0.0, ub=0.0,

vtype=GRB.BINARY , name ="x[%d]" %(j))

else:

x_delete[j] = model.addVar(lb=0.0, ub=1.0,

vtype=GRB.BINARY , name ="x[%d]" %(j))

for i in H.nodes():

if i <j:

for l in range(1,L+1):

u_connect[i, j, l] =model.addVar(lb=0.0, ub=1.0,

vtype=GRB.BINARY , name="u[%d,%d,%d]" %(i,j,l))

#objective function

obj = LinExpr(0)

for j in H.nodes():

for i in H.nodes():

if i<j:

obj.add(f[0] * u_connect[i, j, 1])

for l in range(1,L):

obj.add(f[l] * (u_connect[i, j, l + 1] - u_connect[i, j, l]))

#constraint on number of critical nodes

model.addConstr(sum(( x_delete[j]) for j in H.nodes())<=C)

#constraints on (i,j) in E

for (i,j) in H.edges():

weight_ij=H.edges[i, j][’weight ’]

if i<j:

model.addConstr(u_connect[i,j,weight_ij] + x_delete[i]+ \
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x_delete[j] >= 1)

weights_other=[H.edges[i,t][’weight ’] for t in set(H[i])-set([j])]

weights_other.append(weight_ij-1)

weight=min(weights_other)

for l in range(1, weight+1):

model.addConstr(u_connect[i,j,l] == 0)

for l in range(weight_ij+1, L+1):

model.addConstr(u_connect[i,j,l] == u_connect[i,j,weight_ij])

else: #that is j<i

model.addConstr(u_connect[j,i,weight_ij] + \

x_delete[j]+ x_delete[i] >= 1)

weights_other=[H.edges[j,t][’weight ’] for t in set(H[j])-set([i])]

weights_other.append(weight_ij-1)

weight=min(weights_other)

for l in range(1, weight+1):

model.addConstr(u_connect[j,i,l] == 0)

for l in range(weight_ij+1, L+1):

model.addConstr(u_connect[j,i,l] == u_connect[j,i,weight_ij])

#constraints on (i,j) not in E

for j in H.nodes():

for i in H.nodes():

if i not in H.neighbors(j) and i<j:

for l in range(2, L):

model.addConstr(u_connect[i,j,l] <= u_connect[i,j,l+1])

model.update ()

model.setObjective(obj , GRB.MINIMIZE)

model._x_delete=x_delete

model._u_connect=u_connect

model.setParam(GRB.param.Cuts , 0)

model.setParam(’LogToConsole ’, 0)

model.setParam(GRB.param.PreCrush , 1)

model.setParam(’LazyConstraints ’, 1)

model.setParam(’TimeLimit ’, 3600)
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model.optimize(mycut)

run_time=model.Runtime

xval=model.getAttr(’x’, x_delete)

critical_nodes=[i for i in xval.keys() if xval[i]>=1- 1e-4]

opt_obj = 0

for j in H.nodes():

for i in H.nodes():

if i < j:

opt_obj+=f[0] * u_connect[i, j, 1].X

for l in range(1,L):

opt_obj+=f[l] * (u_connect[i, j, l + 1].X - \

u_connect[i, j, l].X)

return critical_nodes ,opt_obj , run_time , model.Runtime

#------------------Main body ------------------------------

G=nx.read_edgelist(path="USAir97.edgelist", nodetype=int)

#assign weights to edges based on edge betweenness ------------

edge_btw=nx.edge_betweenness_centrality(G, normalized=True)

for e in G.edges():

G.edges[e[0],e[1]][’weight ’] = min(2,max(1,round(0.1/edge_btw[e])))

bndcheck=0

n=G.number_of_nodes ()

L=dc.cal_diameter(G)

C=int(0.05*n)

ind=0

#define distance connectivity function (eg f(d)=1/d)

f=[]

for l in range(L+1):

f.append(1/float(l+1))
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#find the critical nodes

critical_nodes ,opt_obj ,run_time ,cpu_time=main(G,L,C)

print("critical nodes are :", critical_nodes)

print("Running Time = {:.2f} seconds".format(run_time))

print(’Final objective = {:.2f}’.format(opt_obj))

print(’Final objective percentage = {:.2f} %’.format(2*100*opt_obj/(n*(n-1))))

A.3 Heuristic Algorithm

from functools import wraps

from time import time

import networkx as nx

import collections

import dist_connectivity as ds

from operator import itemgetter

import random

def timing(f):

@wraps(f)

def wrapper(*args , ** kwargs):

global runTime

start = time()

result = f(*args , ** kwargs)

end = time()

runTime=round(end-start ,1)

return result

return wrapper

def k_distBFS(input_graph , root , k):

#keep track of all visited nodes and nodes to be checked

visited , queue =set([root]), collections.deque([root])

levels = {} # this dict keeps track of levels

levels[root]= 0 # depth of root node is 0

pred={} #this dict keeps track of predecessors
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pred[root]=-1 #predecessor of root node is -1

while queue: #keep looping until there are no nodes still to be checked

vertex = queue.popleft () #pop first node from the queue

for neighbour in input_graph[vertex]:

if neighbour not in visited:

newlevel=levels[vertex]+1

if newlevel>k:

break

else:

pred[neighbour]=vertex

levels[neighbour]=newlevel

#mark neighbours of node as visited to avoid revisiting

visited.add(neighbour)

queue.append(neighbour) #add neighbours of node to queue

else:

continue

break

del pred[root]

return list(pred.values ())

#--Randomising node selection from node sets ranked according to their centrality

def randomize_centrality(centrality , randomSize):

randFlag=random.choices([1,2], weights=[p1,p2], k=randomSize)

nodecnt=0

centralNodes=[]

centralNbr=[]

for flag in randFlag:

if flag==1:

centralNodes.append(centrality[nodecnt])

else:

centralNbr.append(centrality[nodecnt])

nodecnt+=1

centralNodes.extend(centralNbr)

return centralNodes
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#--Greedy approach to repair offspring solution

def greedy_BBcrossover(minconn ,critNodes ,nbr):

for i in nbr:

subGnodes=[n for n in G.nodes() if (n not in critNodes and n!=i)]

kconn=ds.subG_kconnectivity(G,k,subGnodes)

if kconn < minconn:

addNode=i

minconn=kconn

return addNode ,minconn

#--Generate initial solution based on centrality and do backbone crossover

def centralityHeur(G,k,C):

global currentObj

global solA1

kBFS_size={}

degree_centrality = [n for n, d in sorted(G.degree () ,\

key=itemgetter(1), reverse=True)]

root=degree_centrality[0]

tree_nodes=k_distBFS(G, root , k)

kBFS_size[root]=len(tree_nodes)

kbetweeenness_Count=collections.Counter(tree_nodes)

for rt in degree_centrality[1:n]:

tree_nodes=k_distBFS(G, rt , k)

kBFS_size[rt]=len(tree_nodes)

node_kbetweenness=collections.Counter(tree_nodes)

kbetweeenness_Count.update(node_kbetweenness)

kBFS=collections.Counter(kBFS_size)

kbtw_centrality=[n for n,d in kbetweeenness_Count.most_common ()]

kkatz_centrality=[n for n,d in kBFS.most_common ()]

#gnerate initial solutions based on centrality measures

solA=randomize_centrality(degree_centrality , B)

solB=randomize_centrality(kkatz_centrality , B)

solC=randomize_centrality(kbtw_centrality , B)
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solA1=solA[:C] #heuristic solution based on degree centrality

solB1=solB[:C] #heuristic solution based on k-katz centrality

solC1=solC[:C] #heuristic solution based on k-betweenness centrality

unionExtSol=set(solA).union(set(solB),set(solC))

unionSol=set(solA1).union(set(solB1),set(solC1))

two_par1=set(solA1).intersection(set(solB1))

two_par2=set(solA1).intersection(set(solC1))

two_par3=set(solC1).intersection(set(solB1))

union_two_parent=two_par1.union(two_par2 ,two_par3)

three_parent=two_par1.intersection(two_par2 ,two_par3)# 3-parent nodes

#return the offspring solution if the size is equal to budget

if len(three_parent) == C:

subGnodes=[n for n in G.nodes() if n not in list(three_parent)]

currentObj=ds.subG_kconnectivity(G,k,subGnodes)

return currentObj ,three_parent

#else repair offspring solution via backbone crossover

else:

two_parent=union_two_parent.difference(three_parent)#2-parent nodes

one_parent=unionSol.difference(union_two_parent)# 1-parent nodes

no_parent=unionExtSol.difference(unionSol)#0-parent nodes

offspring=three_parent.copy()

offspring_nbr=two_parent.union(one_parent ,no_parent)

subGnodes=[n for n in G.nodes() if n not in list(offspring)]

currentObj=ds.subG_kconnectivity(G,k,subGnodes)

randCrossover=random.choices([1,2], weights=[0.7,0.3], k=C-len(offspring))

for rand1 in randCrossover:

if rand1==1:#use greedy crossover
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includeNode , Obj=greedy_BBcrossover(currentObj ,

offspring ,list(offspring_nbr))

offspring.add(includeNode)

offspring_nbr.remove(includeNode)

currentObj=Obj

else:#randomly select from 2-parent , 1-parent , 0-parent nodes

rand2=random.choices([1,2,3], weights=[0.5,0.3,0.2], k=1)

#select from 2-parent

if rand2==1 and len(two_parent.difference(offspring))!=0:

includeNode=random.choice(list(two_parent.difference(offspring)))

offspring.add(includeNode)

offspring_nbr.remove(includeNode)

#select from 1-parent

elif rand2==2 and len(one_parent.difference(offspring))!=0:

includeNode=random.choice(list(one_parent.difference(offspring)))

offspring.add(includeNode)

offspring_nbr.remove(includeNode)

#select from 0-parent

elif rand2==3 and len(no_parent.difference(offspring))!=0:

includeNode=random.choice(list(no_parent.difference(offspring)))

offspring.add(includeNode)

offspring_nbr.remove(includeNode)

else:

includeNode=random.choice(list(offspring_nbr.difference(offspring)))

offspring.add(includeNode)

offspring_nbr.remove(includeNode)

subGnodes=[n for n in G.nodes() if n not in list(offspring)]

currentObj=ds.subG_kconnectivity(G,k,subGnodes)

return currentObj ,offspring

#-------------------------------------------------------------
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def centrality_nbrhood(H):

kBFS_size={}

degree_centrality = [n for n, d in sorted(H.degree (),

key=itemgetter(1), reverse=True)]

root=degree_centrality[0]

tree_nodes=k_distBFS(H, root , k)

kBFS_size[root]=len(tree_nodes)

kbetweeenness_Count=collections.Counter(tree_nodes)

for rt in degree_centrality[1:int(0.5*n)]:

tree_nodes=k_distBFS(H, rt , k)

kBFS_size[rt]=len(tree_nodes)

node_kbetweenness=collections.Counter(tree_nodes)

kbetweeenness_Count.update(node_kbetweenness)

kBFS=collections.Counter(kBFS_size)

kbtw_centrality=[n for n,d in kbetweeenness_Count.most_common ()]

kkatz_centrality=[n for n,d in kBFS.most_common ()]

# degree centrality neighbourhood

nbr1=randomize_centrality(degree_centrality , B)

# k-betweenness centrality neighbourhood

nbr2=randomize_centrality(kkatz_centrality , B)

# k-Katz centrality neighbourhood

nbr3=randomize_centrality(kbtw_centrality , B)

unionNbr=set(nbr1).union(set(nbr2),set(nbr3))

return list(unionNbr)

#---identify node to swap with a node in the current feasible solution ---------

def swap(minObj ,n,swapNodes):

for i in swapNodes:

otherNodes=[node for node in G.nodes() if (node not in swapNodes or node==i)]

newObj=ds.subG_kconnectivity(G,k,otherNodes)

if newObj <= minObj:
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removeNode=i

minObj=newObj

return removeNode ,minObj

#----centrality -based neighbourhood search using two -phase node swap ----

def nbr_search(initObj ,initSol):

global bestObj

global iterCnt

subGnodes=[n for n in G.nodes() if n not in initSol]

bestObj=initObj

bestSol=initSol.copy()

subG=G.subgraph(subGnodes)

nbrhood=centrality_nbrhood(subG)

nbrCnt=0

iterCnt=0

while nbrCnt < len(nbrhood) and iterCnt < maxIter:

nbr=nbrhood[nbrCnt]

initSol.add(nbr)

swapNode , newObj=swap(bestObj ,nbr ,list(initSol))

nbrCnt+=1

initSol.remove(swapNode)

if newObj < bestObj:

bestObj=newObj

bestSol=initSol.copy()

iterCnt=0

else:

iterCnt+=1

return bestObj ,bestSol

#--------------------------------------------

@timing

def completeHeur(G,k,C):

global best_obj

CurrBestObj ,CurrBestSol=centralityHeur(G,k,C)

best_obj ,bestSol=nbr_search(CurrBestObj ,CurrBestSol)

return best_obj
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G=nx.read_edgelist(path="USAir97.edgelist", nodetype=int)

n=G.number_of_nodes ()

C=int(0.1*n)

p1=0.9

p2=0.1

k=3

eps=max(5,int(0.2*C))

B=C+eps

maxIter=100

print("finalSol , initialSol and runtime: ", \

completeHeur(G,k,C), currentObj ," and ", runTime)
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