
 
 

 

 

 

 

 

 

 

 

 

Intelligent Maintenance for Chilled Water 

System at Commercial Buildings: A Holistic 

Approach in Line with Industry 4.0   

 

by 

 

Malek Yousef Almobarek 

Student Registration ID# 202050615 

 

 

 

 

A research thesis submitted in fulfilment of the requirements 

for the degree of Doctor of Philosophy  

 

September 2024 

 

 



i 
 

DECLARATION OF AUTHENTICITY AND AUTHOR'S RIGHTS 
 

 

This research thesis is an outcome of the author’s original research. It has been 

written and composed by the author and has not previously been submitted for 

examination leading to the award of a postgraduate degree.  

The copyright of this research thesis belongs to the author under the terms of 

the United Kingdom Copyright Acts as qualified by University of Strathclyde’s 

Regulation 3.50. Due acknowledgement must be made for the use of any material 

contained in, or derived from, this research thesis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ii 
 

PUBLICATIONS 

 

Many parts of this thesis, including research findings, have previously been 

presented and published in a well-known Q1 scientific journal, which is indexed within 

Scopus and SCIE, and at International and European conferences. The author notes 

that the first four publications have already cited by other research studies: 

• Almobarek, M., Mendibil, K., and Alrashdan, A. (2022). Predictive Maintenance 

4.0 for Chilled Water System at Commercial Buildings: A Systematic Literature 

Review, Buildings, 12, p. 1229. 

• Almobarek, M., Mendibil, K., Alrashdan, A. and Mejjaouli, S. (2022). Fault Types 

and Frequencies in Predictive Maintenance 4.0 for Chilled Water System at 

Commercial Buildings: An Industry Survey, Buildings, 12, p. 1995. 

• Almobarek, M., Mendibil, K. and Alrashdan, A. (2023). Predictive Maintenance 

4.0 for Chilled Water System at Commercial Buildings: A Methodological 

Framework, Buildings, 13, p. 497. 

• Almobarek, M., Mendibil, K. and Alrashdan, A.  (2022, March). Faults handling in 

chilled water system maintenance program. In Proceedings of the 12th 

International Conference on Industrial Engineering and Operations Management, 

Istanbul, Turkey, 7–10 March 2022; Industrial Engineering & Operations 

Management (IEOM) Society International: Michigan, United States of America, 

pp. 1616–1625. 

• Almobarek, M. and Mendibil, K. (2023, July). Most Occurred Faults in Chilled 

Water System: An Empirical Predictive Maintenance 4.0 Study. In Proceedings of 

the 6th European Conference on Industrial Engineering and Operations 

Management, Lisbon, Portugal, July 18-20, 2023; Industrial Engineering & 

Operations Management (IEOM) Society International: Michigan, United States 

of America, pp. 672–678. 

 

 

 

 

 

 

 

 

 



iii 
 

AWARDS 

Table 1 below shows the awards that the thesis author has gotten 

during the PhD studies. 

Table 1: List of Awards 

Award 

Title 
Purpose Awarding Body 

Award 

Date 

Award Amount 

(Pound Sterling) 

Excellence 

Award #1 

• Satisfactory progressive 

report from the thesis 

author’s supervisor. 

• Publishing the literature 

review part as a review 

paper in Q1 journal. 

• Presenting the introduction 

part of the research thesis 

in an international 

conference. 

Saudi Arabian 

Cultural Bureau 

in the United 

Kingdom 

December 

16, 2022 
1,231.47 

Excellence 

Award #2 

• Satisfactory progressive 

report from the thesis 

author’s supervisor. 

• Publishing the industry 

survey part of the research 

thesis in Q1 journal. 

Saudi Arabian 

Cultural Bureau 

in the United 

Kingdom 

January 

03, 2023 
1,239.59 

Excellence 

Award #3 

• Satisfactory progressive 

report from the thesis 

author’s supervisor. 

• Publishing methodological 

framework part of the 

research thesis in Q1 

journal. 

• Presenting a part of the 

case study in a European 

international conference. 

Saudi Arabian 

Cultural Bureau 

in the United 

Kingdom 

October 

16, 2023 
1,218.87 

 

 

 

 

 

 

 

 



iv 
 

Acknowledgments  

 

First and foremost, I would like to express my deepest gratitude and 

appreciation to my primary supervisor, Dr. Kepa Mendibil, for his valuable 

guidance and unlimited support throughout my entire study. His excellent 

supervision allowed a myriad of successful accomplishments; for example, I 

have undertaken this research efficiently and published eight research papers, 

out of which five papers were related to my thesis work. I have many words 

that express how Dr. Kepa made my PhD journey a successful one and how he 

is considered a model in my life, but this would need a complete book! 

Also, I cannot thank Dr. Abdalla Alrashdan enough for everything. I am 

so proud that I was one of his students and under his supervision, particularly 

during the implementation of the case study. Without his unforgettable 

support, this research would not have been satisfactorily accomplished. In my 

view, Dr. Abdalla is worthy to be considered an industrial engineering scientist. 

Many thanks go to the Ministry of Education in the Kingdom of Saudi 

Arabia for approving my study at University of Strathclyde and to the Saudi 

Cultural Bureau in the United Kingdom for their supervision during my study, 

and for their generous encouragement in bestowing me with three excellence 

awards. 

In addition, I would like to thank everyone in my great department – 

Design, Manufacturing, and Engineering Management (DMEM) – for the 

perpetual support given to me during my study and stay in Glasgow, especially 

Ms. Gillian Eadie, Prof. Jorn Mehnen, Dr. Ian Whitfield, and Ms. Jennifer 

Gazzard. I extend my gratitude to the researcher development team for their 

professionalism in organising everything towards a Postgraduate Certificate in 

Researcher Professional Development (PG Cert RPD). Due thanks to Dr. Ibrahim 

Khadra for his kind support during my studies. 

I would also like to thank King Faisal Foundation in the Kingdom of Saudi 

Arabia, especially Alfaisal University, which is part of the said foundation, for 

their generous support to the case study portion of my research thesis. H.E. 

Prof. Mohammed bin Ali Alhayaza, HRH Princess Dr. Maha Bint Mashari AlSaud, 

and my esteemed leader Prof. Khaled bin Manna AlKattan, your kind, ongoing 

support meant much to me as well as to my family. Thank you so much from 



v 
 

the bottom of my heart. I would also like to thank Mrs. Elizabeth Marnell, Prof. 

Mohammed bin Abdulrahman Alhaider, Dr. Muhammad Anan, Dr. Sobhi 

Mejjaouli, Prof. Mohammed Zourob, Dr. Manal Alem, Dr. Akef Obeidat, Prof. 

Muhammad Zafar, Prof. Dana Bakheet, Prof. Bajis Dodin, Dr. Mustafa 

Abdelwahid, Prof. Hend Al-Sudairy, Prof. Abdelghani Bouras, Prof. Tarek 

AlHawari, Dr. Areej Al-Wabil, Mrs. Deema Al Azhari, Mrs. Safia Dart, Dr. Saddam 

Muthana, Prof. Matheus Goosen, Dr. Abd-Elhamid Taha, Dr. Sghaier Guizani, 

Dr. Aliaa Elabd, and Eng. Hussain Hashlan for their unlimited support. A very 

special thanks to Eng. Kaleemoddin Ahmed for serving as my first arm during 

my graduate studies. Due many thanks also to Mr. Mousa AlMalki (my second 

arm), Mr. Naeem Akram, Mr. Soliman Fahmy Hassan, Mr. Abdolaziz Khan, Mr. 

Ayyaz Bakhsh, Mr. Haytham Abu Jubara, Mr. Mohammed Bhatti, Mr. Hussein 

Almasri, and the Alfaisal University Information Technology Department 

especially Eng. Syed Shah. I cannot thank enough the head of Alfaisal 

University’s Editorial Services Team (Dr. Laura Jo Kleinhans), who helped me a 

lot with the proofreading of my research thesis. 

Finally, I would like to thank my wife, Mrs. Amal Almuhawes, and my 

daughter, Miss Lama Malek Almobarek, for everything. Thanking you both is 

definitely not enough for your incredible support during my stay in Glasgow. I 

never could have been so far from Riyadh without the support you have given 

to me. I am so proud of you both. A very big thanks to my entire family: my 

Mum, Mrs. Qumasha Alrayes, who was passed away on Friday April 05, 2024, 

my aunt, Ms. Shaikha Almobarek, my brother, Mr. Mashhour Almobarek; and 

my four sisters, Mrs. Mahasen Almobarek, Ms. Mervat Almobarek, Mrs. 

Mufidah Almobarek, and Mrs. Mayada Almobarek, and my father-in-law, Eng. 

Khalid Almuhawes for their prayers and generous support. 

Yours Faithfully, 

 

Malek Yousef Almobarek (Saudi National ID# 1014766057, BRP# RT1215962) 

September 2024 

 

 

 



vi 
 

Abstract 

 

Commercial buildings are equipped with critical systems that need strong 

attention by applying efficient maintenance practices. One of these systems is 

the chilled water system (CWS), which contains sophisticated components and 

consumes significantly higher levels of energy and financial resources 

compared to other systems. Given the relevance of the issue, this research 

study started with the following guiding research question: 

“What are the approaches or methods to implement predictive maintenance 

(PdM) or fault detection for a chilled water system at commercial buildings?” 

The review of the literature (with more than 180 studies analysed) identified 

several research gaps, which are (1) the impact of the technical correlation 

between CWS components on fault detection remains unknown, (2) there is a 

significant level of variations in defining CWS faults and their importance, (3) 

the data measurement of these faults is not standardised leading to unclear 

data collection practice, and (4) the resolution of these faults remains 

inconclusive. Accordingly, four research questions were generated. 

Two research methods were assigned to answer the generated four research 

questions: an industry survey and a case study. The industry survey adhered to 

construction guidelines and a pilot study. Subsequently, it was sent to 761 

professionals of commercial buildings in the city of Riyadh, Kingdom of Saudi 

Arabia, out of which 304 responses were considered and analysed. For the 

second research method, a case study, a novel methodological framework has 

been developed and implemented. The framework contained three phases: 

set-up, machine learning and quality control. The first phase proposed 

arrangements to prepare the framework, while in the literature, studies were 

directly started with building the detection model. The second phase proposed 

a decision tree model to detect faults. The final phase suggested managerial 

steps for monitoring, controlling, and evaluating the maintenance framework 

which includes the detection model, while in the literature, studies were ended 

with presenting the model accuracy. In addition, a second case study has been 

conducted for external validity purposes. 

This research project has proposed an intelligent maintenance framework for 

the whole CWS components in line with Industry 4.0, which includes a fault 



vii 
 

detection model using machine learning. During three empirical periods, the 

research questions have been answered and verified, with the proposed 

detection model achieving greater than or equal to 20 per cent improvement 

in detecting faults at the two case study sites compared to the current building 

management system.  

This thesis makes significant theoretical contributions, which are adding and 

recording additional faults to the ones mentioned by the literature, providing 

an action to fix each fault, providing fault frequencies that can be used in data 

collection and machine learning, and confirming the technical relevance 

between CWS components. Practically, this thesis makes significant 

contributions by proposing the said methodological framework, which 

contains an intelligent detection model. The framework inherently led to three 

other contributions, which are providing a simplified schematic for CWS, 

providing a proper location for each reading tool for data collection purpose, 

and providing a control plan for continuous monitoring for CWS. The 

aforementioned theoretical and practical contributions give a strong value for 

this research as they delivered a holistic maintenance guide for CWS at 

commercial buildings. At the end of this thesis, several areas for future research 

are suggested as well as the author’s own reflection is shared. 
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Chapter 1: Introduction 

“Preservation of modern buildings and those that changed over time is a complicated 

and delicate undertaking.” 

(Jackson, 2017) 

 

1.1 Background and Motivation of the Research 

 

At commercial buildings or large facilities, business work fills most the 

time and occupies employees, who spend most of their workday inside these 

buildings. So, these buildings or facilities comprise a sizable portion of the built 

environment for people. Common sense drives the organisations or owners to 

take care of these buildings in efforts to avoid any negative impact on the 

external surrounding or internal environment of these buildings. Commercial 

buildings are clearly different city to city: they could be massive or regular 

sized, such as universities, offices buildings, shopping malls, hotels, factories, 

compounds, or hypermarkets, and they cover most of the land area in the 

cities. The University of Michigan (2020) reported that commercial building 

floor spaces are expected to encompass 124.7 billion square feet by 2050, a 

significant 34 per cent increase from 2019. Globally, as the number of 

commercial buildings rapidly increases, these require significant attention from 

a maintenance management point of view (Hauashdh et al., 2022).  

In the author’s view, commercial buildings are obviously playing a 

significant role in communities, as they enhance people’s social life and serve 

to generate more jobs. However, they are consuming approximately 40 per 

cent of the total global energy demand (Kumar et al., 2016). Moreover, one of 

the main challenges that commercial buildings are facing is the climate change. 

According to Monge-Barrio and Gutierrez (2018), climate change has a 

significant impact on such buildings. Furthermore, climate change is predicted 

to have a strong effect on the energy requirements of commercial buildings, 

as their heating and cooling needs are inextricably related to temperature 

conditions and weather variations (Yau and Hasbi, 2013). In addition, activities 

in such buildings contribute to a major share of global environmental concerns 

(Urge-Vorsatz et al., 2013). These challenges should motivate any facility 

manager or engineer to take viable and practical actions toward building 

performance improvement and maintenance, as well as overseeing associated 

operation and maintenance costs. This is necessary since commercial buildings 
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are increasingly equipped with sophisticated engineering facilities as well as 

heat, ventilation and air conditioning (HVAC) equipment or machines (Lai and 

Man, 2017). In doing this, facility managers or engineers can fulfil the 

sustainability of their commercial buildings (Gálvez et al., 2021).  

Maintaining a particular building requires management of all systems 

within. Generally, it includes either mechanical or electrical systems. There are 

five major disciplines of buildings systems: 1) HVAC, which is highlighted in 

this research thesis; 2) plumbing and fire protection; 3) electrical power and 

telecommunications; 4) illumination; and 5) noise and vibration control (Janis 

and Tao, 2019). The HVAC system is defined by Porges as ‘’a technology of 

internal environmental ambience that supplies thermal comfort and agreeable 

indoor air quality’’ (2020, p. 49). Historically, the HVAC system is based on the 

findings of William Rankin, Nikolay Lvov, Willis Carrier, James Joule and others 

(Swenson, 2004). As a critical system, it consumes a substantial percentage of 

energy in commercial buildings, that accordingly, is reflected on the electricity 

bill (Aswani et al., 2012). In fact. it consumes more than 30 per cent of the total 

energy used in commercial buildings (Li et al., 2013). Cho et al. (2018) argue 

that the energy consumption of an HVAC system for a large office building can 

consume 40 to 50 per cent of that building’s total energy use. It is generally 

worrying to organisers or managers at commercial buildings because of the 

difficulty of replacing components, when needed, so caring and designing a 

planned control arrangement about the system to save energy, with minimal 

infrastructure investment, is critical (Dawson-Haggerty et al., 2010). However, 

conducting a proper and well-organised maintenance programme for this 

system is required, as many researchers have found that the factor most often 

embroiling indoor air quality is maintenance related (Greene et al., 1997). 

The importance of HVAC system was evident even before operating a 

particular commercial building, where selecting the appropriate system with its 

components at the beginning of its project time covers a significant part of its 

design. In this regard, Hassanain et al. (2014) argue that the HVAC system is 

one of the most convoluted systems in buildings projects. This argument has 

been supported by Sugarman (2020) as well. Naturally, the selection of the said 

system is based on three concepts: the configuration of that commercial 

building, the climate conditions, and the inclination of the organisation that 

owns it (Seyam, 2018). The standards to which HVAC building designs are held 

when being created, selected or studied come from The American Society of 

Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) (Luo et al., 
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2020a). Furthermore, it is an important system from well-being and safety 

points of view, as it monitors the environment related to occupant health, such 

as the level of colourless odourless gas (CO2) and humidity margins, as well as 

occupant thermal comfort, including ambient temperature and airflow 

(Schiavon et al., 2009). This system, especially ventilation and cooling elements, 

played a significant role in reducing infection inside commercial buildings 

during the recent global pandemic (COVID-19) if proper maintenance 

management monitored the airflow (Ding et al., 2020). According to Aebischer 

et al. (2007), due to the impact of climate change, the need for cooling comfort 

inside commercial buildings will be increased even in Europe until 2030 as 

temperature increment will be two-degrees centigrade over time. Having 

noted the cooling part, this research study focused on one of the major 

systems of HVAC, the chilled water system (CWS). The next subsubsection 

provides an overview of this chilled water system as well as an additional 

research motivation from the author’s point of view from practical experience. 

 

1.1.1 Chilled Water System 

 

A chilled water systems (CWS), considered as one of the major functions 

in the HVAC system where it typically consumes a significant amount of the 

total energy amortisation used in the main system (Colmenar-Santos et al., 

2013). The ASHRAE Handbook (2023) lists four components of CWS as follows: 

 

1. Chillers; 

2. Cooling Towers; 

3. Pumps; and 

4. Terminal Units. 

 

As per ASHRAE (2023), the operation of CWS starts with chillers 

producing the chilled water required to operate the terminal units and thereby 

achieve the designed room conditions. Chillers, primary chilled water pumps, 

are operated and sequenced to produce chilled water at a set temperature, 

whereas a specified temperature of water required by the condenser 

component of chillers is produced by the cooling towers through the condenser 

water pumps. The produced chilled water is then pumped by secondary water 

pumps to all terminal units, such as air handling units and fan coil units, and in 

case of a variable flow system, speed is controlled to maintain a set differential 
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pressure in the pipe network. Finally, the terminal units receive the chilled water 

and control their respective valve actuators to achieve the desired temperatures 

inside the rooms they are serving. Each component is manufactured by various 

industrial brands in different sizes, but the technical mechanism, function, and 

parts are same. Figure 1 shows a schematic drawing of the CWS (ASHRAE 

Handbook, 2023).  

 

 
Figure 1: Schematic of chilled water system 

 

During times of practical experience of more than ten years in facility 

management, the author repeatedly observed that the CWS plant broke down, 

and the real fault that caused the breakdown was not found in the original 

equipment manufacturer manual nor was the automotive control system like 

the building management system (BMS) able to guess or anticipate its 

occurrence correctly given the complex relationship among the various 

components of the plant. This led the author to seek a technological way that 

can replace BMS by an intelligent detection model to trace faults more 

efficiently and to see the possible ways to fix these faults when occurred in an 

effort to reduce plant breakdowns and thereby maintain the appropriate indoor 

conditions for occupants. In this context, this research project utilised machine 

learning to execute a predictive model as part of a maintenance management 

framework.  

 

1.2 Research Thesis Aim  

 

This research project aimed to explore innovations in observing and 

controlling the CWS at commercial buildings in accordance with the era of 

smart technologies. One of these technologies is faults detection, which is 

presented in this thesis. The objective of this research project is threefold: 1) to 

propose an intelligent maintenance via a methodological framework that could 

enhance CWS performance, 2) to build a fault detection model that performs 

better than BMS, and 3) to evaluate the intelligent maintenance framework in 
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real-life setting. Consequently, the research project contributed to the 

development of a holistic fault detection strategic framework that employed a 

mechanism to collect additional faults and provide optimum solutions, building 

a decision tree model that has improved the detection accuracy over that of 

BMS. A fault detection strategy is in line with Industry 4.0, as explained in detail 

in the upcoming chapter. 

 

1.2.1 The Significance of The Research 

 

The significance for such a framework is that it will help users of 

commercial buildings to manage their building’s operation in an efficient 

manner by minimising the likelihood of any possible failure for the system in 

discussion, maximising the life cycle of the components of the said system, 

reducing the operation and maintenance costs, avoiding major component 

replacement costs, understanding the operational status of the said system, 

ensuring the system is operating in line with the design, clarifying the 

importance of the parameters of the said system, and ultimately, improving 

building occupant experience and comfort. 

 

1.2.2 Guiding Research Question 

 

The guiding research question underpinning this present research is 

“What are the approaches or methods to implement predictive 

maintenance (PdM) or fault detection for a chilled water system at 

commercial buildings?” The research project undertook a systematic literature 

review leading to four research gaps related to three specific points: fault 

description and handling, data collection and fault frequencies, and the 

coverage of the proposed maintenance frameworks. From this, four research 

questions are identified during the literature review process, and they are 

presented in detail in the next chapter. 
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1.3 Research Methods 

 

This research project has assigned and employed two research methods to 

answer the aforementioned four research questions. The industry survey, the 

first research method, has been gone through two stages, namely survey 

construction and pilot study. The construction of the industry survey followed 

guidelines from the literature, while the pilot study included sending the draft 

survey to 10 experts in academia and industry for their review and advice. After 

that, the final draft of the survey was sent online via a web-based platform to 

761 professionals of commercial buildings in Riyadh, Saudi Arabia. Those 

professionals were either facility managers, support services managers or 

operation and maintenance managers. The total considered responses of the 

industry survey is about 40 per cent out of 761 contacts (i.e. 304 responses) as 

the related commercial buildings have chilled water system within. Chapter 4 

explains in detail the industry survey construction, its pilot study and its results. 

With regard to the case study, Alfaisal University campus, which is located 

in Riyadh, Kingdom of Saudi Arabia, was chosen. A methodological framework 

for PdM strategy was proposed to implement the said case study. The 

aforementioned framework has three phases, namely set-up, machine learning 

and quality control. Each phase has an objective, explained in detail in Chapter 

5 along with the case study results. Also, the said methodological framework 

has been implemented for another case study at a different building for 

external validity purposes, explained in detail in Chapter 5 as well. Three 

empirical periods were conducted: two periods were conducted at the building 

of the main case study for reliability and internal validity purposes, while the 

third period was conducted during the case study for the purpose of external 

validity.  
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1.4 Research Thesis Structure 

 

This research thesis has been structured into six chapters as shown below 

in Table 2. 

 

Table 2: Structure of research thesis 

Chapter 

Number 
Chapter Title Chapter Description 

1 Introduction 

This chapter shows the research background and the 

motivation behind it, including an overview of the chilled 

water system. It highlights the research aim, the overall 

contribution to knowledge, and its significance as well as 

presenting the guiding research question. In addition, it 

gives a glimpse about the research methods assigned to 

answer the research questions of this thesis. Finally, it 

summarises the structure of this research thesis. 

2 Literature Review 

This chapter gives an overview of maintenance 

management at commercial buildings from a general view, 

maintenance strategies, maintenance in Industry 4.0, the 

PdM concept, the relationship between quality engineering 

and maintenance management, and then the applications 

that are in line with Industry 4.0. After that, it presents a 

systematic literature review of methodology that addresses 

the guiding research question. The said review has been 

built through four stages and focused on the previous 

applications of PdM or fault detection strategy on CWS. 

Then, it discusses the findings of the literature and lists the 

research gaps, and then generates the research questions 

for this thesis. 

3 Research Design 

This is a theoretical chapter exploring the research 

philosophy and its approach. It presents the assigned 

research methods that are intended to answer the 

generated research questions and shows how to design 

these methods. It also shows the research planning, ethical 

considerations and how to assess the research quality. 

4 Industry Survey 

This chapter explains the first research method of this 

research thesis. It shows how the industry survey has been 

constructed, how the pilot study has been implemented, 

and the outcome of these stages. Also, it shows how the 

industry survey has been distributed. Then, it presents the 

results of the industry survey in three parts: response rate, 

chilled water system faults and faults frequencies. 

5 

Case Study: 

Development and 

Implementation 

of Maintenance 

Methodological 

Framework 

This chapter contains an overview about the location of the 

case study. It illustrates how the methodological framework 

has been proposed in order to apply it on the building 

under study. Then, it presents the results of implementing 

the framework. It contains discussions on reliability, internal 

validity and external validity. 
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6 
Discussion and 

Conclusion 

This final chapter discusses the results of both the industry 

survey and case studies and compares these results with the 

extant literature. It explains in detail how this research 

project has answered the research questions. Finally, it 

summarises the research in entirety, demonstrating how the 

quality of the research has been fulfilled. It lists the 

contribution to the knowledge theoretically and practically, 

the limitations, and then proposes a future research agenda 

accordingly. Finally, it ends with the author’s own reflection. 
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Chapter 2: Literature Review 

“Maintenance is everywhere, when there are systems, machines, elements that people use every 

day, requiring specific actions for functioning them correctly.” 

(De Carlo and Arleo, 2017) 

 

2.1 Introduction 
 

This chapter provides an overview about maintenance management at 

commercial buildings, maintenance strategies and the position of quality 

engineering in maintenance management. It also presents an overview about 

the concept of PdM and reviews applications of PdM or fault detection 

approaches that are in line with Industry 4.0. 

After that, this chapter seeks to generate the theoretical foundation that 

is underpinning this research thesis by reviewing extant studies on CWS that 

were applied in PdM applications at commercial buildings in line with Industry 

4.0. Having said that, this chapter contains the literature review methodology 

and the applications that are reviewed, and then discusses the findings, 

furnishes the research gaps, and thereafter, presents the generated research 

questions for this thesis. 

 

2.2 Maintenance Management at Commercial buildings 

 

2.2.1 An Overview 

 

Wireman (2005) as well as Werbinska-Wojciechowska and Winiraska 

(2023) define maintenance as managing any assets that are owned by an 

organisation. Duffuaa et al. (2015) as well as Duffuaa et al. (2024) point out that 

maintenance can be regarded as a system with input and an associated output. 

The input part contains workforce, management, tools, equipment and 

machines, while the output part comprises the equipment or machines that are 

working perfectly, are fulfilling the reliability concepts, and are well configured 

to reach the scheduled operational time. According to the European Standard, 

maintenance connects all managerial actions required during the life cycle of 

the equipment of a particular commercial building (Márquez and Gupta, 2006; 

Márquez, 2007; Sandu et al., 2023). 
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Previously, attention afforded to maintenance was not sufficiently 

recognised, as it was considered a “Cinderella Function” due to historical 

reasons, but this changed gradually as maintenance involved new information 

technologies (Sherwin, 2000; Piniciroli et al., 2023). Up to around 1940, 

maintenance was considered an inescapable cost and once the failure of a 

particular piece equipment occurred, the maintenance technician would 

service the same equipment based on a call request (Murthy et al., 2002; 

Alhourani et al., 2023). In 1968, it was determined that better maintenance 

practices in the United Kingdom could have economised approximately 300 

million pounds sterling per year of lost production because of the unavailability 

of a particular equipment (Kelly, 2006; Lundgren et al., 2023). In 1972, the 

significance of building maintenance was first recognised by the responsible 

authorities in the United Kingdom (Allen, 1993; Ogunbayo et al., 2023). 

Maintenance then became one of the important managerial departments or 

functions to be included in a company’s organisational hierarchy (Pintelon and 

Gelders, 1992; Firdaus et al., 2023).  

Maintenance in the 21st century is a substantial business: operating and 

maintaining commercial buildings takes significantly more time than designing 

and constructing the same building during its project time. The life cycle cost 

of operating and maintaining the same building is about 60 to 85 per cent of 

the total cost, whereas its design and its construction are about five to ten per 

cent (Lewis et al., 2010; Dahiya and Laishram, 2024). Moreover, alongside 

energy costs, maintenance costs can comprise the largest portion of an 

operational budget (Dekker, 1996; Goby et al., 2023). Many researchers have 

argued that implementing good and effective maintenance management 

would increase equipment performance, and this is definitely maximising the 

revenues, minimising the operation and maintenance costs, and ultimately 

growing an organisation’s profits (Willmott, 1994; Alsyouf, 2007; Naidu et al., 

2009; Xia et al., 2021a; Zeng et al., 2024). In this regard, Cholasuke et al. (2004) 

explain how to maximise organisational profit by implementing maintenance 

management. They list several factors such as attempting to minimise 

accidents or failures. Dhillon (2002) presents an approach containing steps and 

six important principles for managing maintenance in a cost-effective manner, 

which are 1) maximising productivity results, especially when each assigned 

person in a particular organisation has a defined maintenance task to perform 

in an effective manner; 2) scheduling the control points effectively, 3) ensuring 

measurement comes before control; 4) focusing on the customer service 
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relationship; 5) controlling the work order of a particular maintenance activity 

by the responsible staff; and 6) performing the maintenance activity with an 

optimal technician number. Here in this research thesis, most of these 

principles have been considered while preparing the proposed methodological 

framework especially the third one where the researcher is advised to measure 

the situation within the building, which includes data collection and building a 

detection model, before controlling the maintenance activity. This will be 

shown in detail in Chapter 5. 

 

2.2.2 Maintenance Strategies 

 

Maintenance can be actioned in many ways, depending on the operational 

status of a building and the organisational strategy. Having said that, Seeley 

(1987) categorises maintenance types for buildings, suggesting that it be 

considered a planned/ scheduled activity which can be organised by 

scheduling the building operation and tracking its performance. So, it can be 

considered a scheduled activity as well (Patra and Kumar, 2024). In contrast, it 

can be also considered as an unplanned activity (Seeley, 1987; Tambe et al., 

2013; Weidner 2023). In addition, it can be performed as a preventive task by 

controlling the building operation to reduce the probability of destruction, to 

avoid the failure of a mechanical or electrical system, or to maintain an item 

performance from any unexpected breakdown (Seeley, 1987; Gouiaa-Mtibaa 

et al., 2018; Zhang et al., 2024). This task can be considered as a planned/ 

scheduled or predictive activity (Seeley, 1987; Curcurù et al., 2010; Patra and 

Kumar, 2024).  

In the event of a failure, maintenance serves as a corrective measure aimed 

at restoring a system to its normal operational state. In urgent situations, 

maintenance takes on the form of emergency tasks, such as promptly 

addressing significant water leaks or power outages. Furthermore, Kanisuru 

(2017) and Vasić et al. (2024) classify maintenance into four major types. The 

first is reactive, corrective or breakdown maintenance. The second is preventive 

maintenance, which he categorised into two major types: PdM, as considered 

in this research thesis, and periodic. The third major type of maintenance is the 

improvement or design maintenance; while the fourth is technology 

maintenance. Figure 2 illustrates the position of PdM along with other 

maintenance strategies (Kanisuru, 2017). 
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Figure 2: Structure of maintenance management strategies 

Maintenance has been illustrated in different ways within the industrial 

revolutions. In the First Industrial Revolution, reactive maintenance was the 

primary strategy. This deals with an asset component on a daily basis as the 

aim is to respond to component malfunction or breakdown only after 

occurrence (Hegazy et al., 2010; Cachada et al., 2018; Sifat and Das, 2024). For 

this reason, it is referred to as ‘corrective maintenance’ as well (Campos Fialho 

et al., 2024). According to Swanson (2001), reactive maintenance can be 

described as a fire-fighting approach to maintenance, and she explains that a 

component or machine is allowed to run up to the point of failure. Then the 

failed component or machine is repaired or possibly be replaced (Swanson, 

2001; Behera and Dave, 2024). Researchers also state that a temporary repair 

may be performed in order to return the said component or machine to its 

normal operation, thereby deferring a permanent solution until a later time 

(Swanson, 2001; Behera and Dave, 2024). Reactive maintenance strategy allows 

a particular plant to minimise the maintenance manpower and the amount of 

money spent to keep a component or machine running in a normal condition 

(Salvendy, 2001; Behera and Dave, 2024). However, the drawbacks of this 

strategy include unpredictable and fluctuating production capability, failure to 

meet the required tolerance level and output of scrap, and the rising overall 

maintenance costs that are needed to repair increasingly critical failures 

(Swanson, 2001; Behera and Dave, 2024). 
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Reactive maintenance strategy has been applied in many applications, for 

example, du Plessis et al. (2015) utilised the said strategy by implementing an 

energy management system on two case studies, the first for water reticulation 

systems and the second for cooling auxiliaries. The first case study was 

primarily performed to attend to the failure of the supervisory control and data 

acquisition system, while the second case study was performed to evaluate the 

coefficient of performance of refrigeration machines. Calves et al. (2005) 

implemented reactive maintenance on time critical systems using a 

mathematical modelling language called Petri Net graph. The modelling was 

structured on two steps. First, the precedence constraints provided by the 

process flow, which is the linear part of the graph, are modelled on the 

beginning and ending events of failure. After that, the model is completed with 

the resources required for the implementation of maintenance tasks. In 

thermal power plants, reactive maintenance strategy was applied on a 

component called regenerative air heater, used for heating the fresh air (Demet 

et al., 2019). In this regard, they proposed four actions: continue observing the 

component, replacing it when needed, grinding the shaft in case of axis shift 

mode, or cleaning the honeycomb by using appropriate chemicals. Bocewicz 

et al. (2024) implemented reactive maintenance approach by proposing a 

reference model for offshore wind farm equipment, and they claimed that the 

model can extend the lifespan of the said equipment. A reactive maintenance 

framework is made based on data mining process model that combine domain 

expertise with data science techniques to address the pervasive data issues in 

industrial datasets, and the researchers claimed that such models can enable 

the energy reduction (Ahern et al., 2022). 

With regard to the Second Industrial Revolution, planned/ scheduled 

maintenance was the main strategic theme, a more proactive approach to 

maintaining the utility components or assets and minimising the downtime 

and costs associated with breakdowns of components (Cachada et al., 2018; 

García et al., 2022). The said strategic theme can be called ‘routine preventive 

maintenance’ as well, with the primary aim of this strategy to decrease 

workflow obstruction and failure of components or machines with minimal cost 

(Mirghani, 2001; Olsen, 2024). It assists in raising the reliability of components 

or machines and extending the life span of components or machines by 

determining and interacting with both consequence and technical-related 

aspects of certain failure modes (Mirghani, 2003; Matgorzata, 2016; Olsen, 

2024). According to Akcamete et al. (2010) as well as Olsen (2024), planned/ 

https://link.springer.com/article/10.1007/s10479-024-05951-4#auth-Grzegorz-Bocewicz-Aff1
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scheduled maintenance lends itself to adequate solutions to avoid breakdowns 

or failures, by providing proper documentation of suitable tolerances of 

various utility components, machines or any other tools. In contrast, Lenahan 

(2011), in discussing the drawbacks of this maintenance strategy, insists that it 

requires more budget upfront while initialising the maintenance plan, and will 

cost the organisation more to regularly maintain the utility components or 

machines than implementing a reactive maintenance strategy. He further 

describes it as an over-maintenance activity because it has a regular plan where 

sometimes a component or machine may not require checking as often as 

planned (Lenahan, 2011; Trubetskaya et al., 2023). This strategy then requires 

more manpower because regular checks are a requirement in planned/ 

scheduled maintenance, while in case of reactive maintenance, the 

responsibility within the organisation is simply just to contact a technician or a 

contractor for a one-time inspection and repair. Therefore, planned/ scheduled 

maintenance strategy needs technicians to always be around the site and 

perform daily inspections (Lenahan, 2011; Trubetskaya et al., 2023). The 

difference between preventive maintenance and the planned/ scheduled one 

is minor, where the preventive one is made for a longer period like a year or 

so for multiple machines, while the planned/ scheduled maintenance is made 

for a specific task with period of time like maintaining an error in a particular 

machine (Al-Duais et al., 2022). 

Planned/ scheduled maintenance strategy has been applied in many 

topics; for example, Tang et al. (2007) made a mathematical model that was 

formulated as a three-index integer programme. This model was presented to 

schedule the technicians who are responsible for utility services like elevators 

and HVAC systems. Another mathematical model was proposed by Wang 

(2012) to control the inventory of joint spare parts as a function of a planned/ 

scheduled maintenance programme. He considered multiple parameters in 

that model –such as the fixed cost of preventive maintenance inspection for all 

concerned items, the failure cost due to an absence of spare parts in stock, and 

the failure cost with the spare parts that are already in stock – and then 

conducted an empirical study using data from a local paper mill to claim the 

effectiveness of his mathematical model (Wang, 2012). In Italy, Tantardini et al. 

(2012) proposed a mathematical model to evaluate the costs for rescheduling 

maintenance interventions as part of planned/ scheduled maintenance 

programme. The said model considered three types of cost – those related to 

administrative, maintenance materials and maintenance manpower – and then 
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took these into consideration when defining a maintenance service contract as 

well as when running it (Tantardini et al., 2012). Their mathematical model has 

been developed after a vast empirical analysis scattered in two phases, the first 

an exploratory phase intended to identify the variables of the rescheduling 

maintenance problem via interviewing the main maintenance service 

providers, and the second a confirmatory phase intended to validate the 

mathematical model using data from a real industrial setting. Finally, the results 

were analysed by the maintenance officers who were provided the data 

(Tantardini et al., 2012). Ukato et al. (2024) present a planned/ scheduled 

maintenance approach via artificial intelligence to optimise the logistics on 

offshore platforms that are related to oil and gas industry, and they indicated 

that such approaches could deliver a more sustainable operations outcomes. 

A routine preventive maintenance approach is made based on model methods 

of construction to mitigate the life cycle impact of construction for the concrete 

buildings structure in a harsh environment, and this approach has enhanced 

the sustainability by 86 per cent within the studied buildings (Sánchez-Garrido 

et al., 2024). 

The main maintenance strategy in the Third Industrial Revolution was 

productive maintenance, defined as a holistic approach to the maintenance of 

utility components, equipment or machines that aims to attain exemplary 

production or performance (Agustiady and Cudney, 2018; Cachada et al., 2018; 

Samadhiya et al., 2024). The purpose of this maintenance strategy was to raise 

the productivity of any project by minimising the total cost of a particular 

component or machine over its entire life from design, production or 

fabrication, operation and maintenance, and the damages caused by the 

degradation of that component or machine (Ahuja and Khamba, 2008; 

Samadhiya et al., 2024). The key characteristics of this maintenance strategy 

are the reliability and maintainability focus of the utility component or 

machine, as well as cost awareness of maintenance activities (Almeanazel, 

2010; Hallioui et al., 2023). This maintenance strategy aims to improve 

productivity of utility components or machines by performing other related 

strategies such as preventive maintenance, corrective maintenance and 

maintenance prevention during the life cycle of components or machines (Brah 

et al., 2004; Samadhiya et al., 2024). While the benefits of implementing this 

maintenance strategy might sound promising, it is quite challenging as it 

requires securing senior management support and allocating adequate 

resources to the maintenance programme. It requires the construction of a 
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comprehensive plan as well as the development of a lean culture across the 

organisation and thorough preparation and training of all maintenance staff 

(Jain et al., 2014; Hallioui et al., 2023). 

The literature contains numerous applications of the productive 

maintenance strategy; for example, Ireland and Dale (2001) illustrated the 

application of productive maintenance in three different companies. The first 

company is based in The United Kingdom within the field of rubber products. 

The company applied productive maintenance to maintain their machines and 

their successful strategic objectives were standardising the organisational 

models across the world: raising autonomy; assuring empowerment to all 

organisational levels and related departments; introducing effective and 

efficient teamwork; ensuring an excellent structure for the concerned team; 

improving flexibility and response time to the needs of customers; improving 

competitiveness, quality, output and current performance; and minimising all 

associated cost (Ireland and Dale, 2001).  

The second company, specialising in packaging services, has 160 factories 

distributed throughout Europe, North America, Africa and Asia (Ireland and 

Dale, 2001). The company likewise applied productive maintenance improve 

the performance of their workforce, which was increased around 75 per cent. 

Their successful strategic objectives included extending the breakdown 

success to other departments; continuing to support autonomous 

maintenance; expanding the development of the computerised systems; 

continuing the reduction of stock; sustaining zone maintenance systems to 

other associated machines; developing thermal imaging systems to blend 

mechanical parts; communicating with relevant suppliers for other systems like 

vibration analysis; continuing the development of systems for controlling the 

budget tightly; and reviewing the associated maintenance costs continuously 

(Ireland and Dale, 2001).  

The third company, focused on manufacturing motorised vehicles, applied 

productive maintenance to increase productivity and optimise work space. 

They succeeded with their strategic objectives by increasing the market share 

for all their products (Ireland and Dale, 2001). Another case study utilised 

productive maintenance strategy in a company that is interested in electronics 

manufacturing, and that strategy contained multiple steps that succeeded in 

three different functions: reducing the cleaning times of associated tools; 

reducing the checking times of associated machines; and simplifying the 
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lubrication tasks (Chan et al., 2005). In the food industry, Tsarouhas (2007) 

discusses how productive maintenance can be applied, especially in preparing 

bakery products. He suggests that this maintenance strategy can detect and 

eliminate defects such breakdown losses, set up and adjustment losses, idling 

and minor stoppage losses, reduced speed losses, quality defects and rework 

losses, and start-up losses (Tsarouhas, 2007). Per Singh et al. (2022), 

implementing a productive maintenance approach in metal industry would 

improve the overall equipment efficiency. In Ethiopia, a qualitative framework 

is prepared by partial least square structural equation modeling, and then, it is 

presented to raise the awareness of implementing productive maintenance in 

manufacturing industries (Gelaw et al., 2024). 

One of the last two maintenance strategies that are previously mentioned 

in Figure 2 is design-out maintenance, which is defined as a strategy that aims 

for improvement activities rather than just actioning maintenance tasks to 

ensure system functionality, and it focuses on the improvement of system 

design to minimise the maintenance burden or even eliminating maintenance 

totally (Kumaresan et al., 2024). Furthermore, it redesigns the parts of the 

equipment that consume huge levels of maintenance effort or require spare 

parts’ available budget, or which have rejectable high failure rates 

(Psarommatis et al., 2023). This strategy was well applied in different industry’s 

domains such as steel industry (Shahin et al., 2018; Torre and Bonamigo, 2024), 

and railways (Granström and Söderholm, 2024). The last maintenance strategy 

mentioned in Figure 2 is terotechnology maintenance, which is an engineering 

practice that leverages management and finance to optimise installation, 

operations, and upkeep of a particular equipment, where it merges multiple 

aspects of the said equipment’s lifecycle from its design to installation to 

commissioning, operations, and maintenance, and therefore, it keeps this 

equipment maintained at an optimal level overtime (Chattopadhyay, 2024). It 

was used rarely reported by the literature, but there were some applications in 

maritime industry (Lazakis and Ölçer, 2016) as well as food and beverage 

industry (Onyejaka, 2024). 

With regard to the Fourth Industrial Revolution (Industry 4.0), the 

associated maintenance strategy is PdM, which is applied in this research 

project as a fault detection approach. The next section presents overview of 

Industry 4.0, and then describes PdM from various aspects like definition, 

applications and other related points. 
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2.2.3 Building Management System (BMS) 

 

Nowadays, BMS is one of the systems that is widely used in the 

maintenance management at commercial buildings (Gobinath et al., 2024). It 

is a computer-based control system that can be utilised to monitor and 

manage the mechanical, electrical and electro-mechanical systems or services 

in a particular facility or building (Ebirim et al., 2024). Such systems or services 

include power, HVAC, physical and security access control, fire safety and 

fighting systems, water pumps, irrigation system, lifts, and lights (Okwandu et 

al., 2024). In specific view of HVAC, BMS can enhance the comfort level for 

buildings’ occupants where it can monitor the temperature setting based on 

the operational schedules (Borodinecs et al., 2024). 

BMS is also called as a building automation system or a computerised 

maintenance management system (Yong, 2024). Its mechanism collects data 

from around a particular building or facility and monitor it for any 

abnormalities where in case the data falls outside the predetermined ranges/ 

values, the system, accordingly, sends an alert to the person in charge 

indicating possible problems (Obiuto et al., 2024). 

Based on the standard operating procedure at a particular facility or 

building, BMS software can be installed as a standalone application or to be 

integrated with other monitoring programmes (Heidari et al., 2024). More 

advanced BMS applications can monitor and manage a range of facility 

services across multiple technical platforms or organisational protocols where 

they provide the stakeholders with a single shared view of the facility's 

operations on a daily basis (Seraj et al., 2024). 

 

2.3 Maintenance in Industry 4.0 

 

2.3.1 The Fourth Industrial Revolution (Industry 4.0) 

 

The Fourth Industrial Revolution (Industry 4.0), the realisation of the digital 

transformation of a field or organisation, is delivering real-time decision 

making to a particular function thereby enhancing productivity, flexibility and 

agility (Ghobakhloo, 2020; Ancillai et al., 2023). Industry 4.0 is revolutionising 

the way that companies or organisations can manufacture, improve and 

https://www.techtarget.com/searchdatacenter/definition/HVAC
https://www.techtarget.com/searchitoperations/definition/platform
https://www.techtarget.com/searchnetworking/definition/protocol
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distribute their products and outcomes whereby they are integrating new 

technologies and tools like Internet of Things, cloud computing and data 

analytics, Artificial Intelligence and machine learning into their production 

facilities and throughout their operations and maintenance activities 

(Dalenogare et al., 2018). Nowadays, smart factories or facilities are equipped 

with advanced sensors, embedding software and robotics that are collecting 

and analysing relevant data to allow the best decision-making outputs 

(Mubarak and Petraite, 2020). According to Bai et al. (2020), the tools of 

Industry 4.0 will create an even higher value when data from production 

operations are combined with operational data from enterprise resource 

planning platforms, supply chain zones, customer service records, and other 

enterprise systems such as BMS in order to render entirely new levels of 

visibility and insight from the previous idle information. 

The advent of Industry 4.0 digital technologies fosters increased 

automation, facilitates the implementation of predictive maintenance 

strategies, enables self-optimisation of processes, and, ultimately, unlocks a 

new realm of efficiencies and responsiveness that were previously 

unimaginable to customers (Lasi et al., 2014). As authorities embark on the 

development of smart factories or other intelligent commercial structures, they 

pave the way for the business industry to fully embrace the Fourth Industrial 

Revolution. By harnessing vast quantities of data gathered from sensors 

strategically placed throughout building premises, real-time insights into asset 

management are secured. Moreover, these data-driven tools enable the 

implementation of PdM practices, effectively reducing downtime for building 

components and machinery (Silvestri et al., 2020).  

Using high-tech Internet of Things devices in smart buildings will increase 

the productivity and enhance the quality of equipment, components and 

machines in these buildings (Sony and Naik, 2020; Jan et al., 2023). Replacing 

manual inspection business models like the models of preventive maintenance 

with artificial intelligence-powered visual insight will minimise the operational 

errors or faults of a building’s machines or components, subsequently saving 

both money and time (Raj et al., 2020).  

Even with limited resources, quality control personnel can establish a cost-

effective solution by utilising a smartphone connected to the cloud. This setup 

empowers them to oversee operational processes, including manufacturing, 

from any location with internet connectivity (Devezas and Sarygulov, 2017). 
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Utilising machine learning algorithms, which are part of Industry 4.0 tools, 

maintenance officers can detect faults immediately, rather than at further 

stages when maintenance activity is certainly costlier (Silvestri et al., 2020). 

This research project is grounded in the premise that Industry 4.0 concepts 

and technologies hold applicability across diverse industrial sectors and 

commercial settings. Consequently, this research thesis delves into an 

examination of both the advantages and drawbacks associated with Industry 

4.0 concepts as presented by Sony (2020). Table 3 illustrates the pros and cons 

of Industry 4.0. 

Table 3: Pros and cons of Industry 4.0 (Adopted from Sony, 2020) 

Pros Cons 

Strategic competitive advantage 
Negative impact of data sharing in a 

competitive environment 

Organisational efficiency and effectiveness 
Total implementation of Industry 4.0 is 

necessary for success 

Organisational agility 
Handling employee and trade union 

apprehensions 

Manufacturing innovation Need for highly skilled labours 

Profitability Socio-technical implications of Industry 4.0 

Improved product safety and quality Cybersecurity 

Delightful customer experience High initial cost 

Improved operations 
 

Environmental and social benefits 

 

As the main maintenance strategy of this industrial revolution is the PdM, 

which is applied in this present research project, the following subsection 

presents an overview of this strategy. 

2.3.2 Concept of Predictive Maintenance (PdM) Strategy 

 

PdM, in general, was first devised back in the late 1940s (Prajapati et al., 

2012), and is basically used to assist in determining the status of an operated 

equipment in order to estimate the time of performing the maintenance 

actions (Levitt, 2011). According to Selcuk (2017), PdM can be defined as an 

exercise of pre-empting failures depending on historical data in efforts to 

optimise maintenance efforts. Moreover, it is conditioned-based maintenance 

to predict the likelihood of the failure time of a particular piece of equipment 

and advise which maintenance task should be performed accordingly 

(Goriveau et al., 2016; Garcia et al., 2022).  
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As a subset of preventive maintenance, predictive maintenance (PdM) 

facilitates the strategic scheduling of reactive maintenance tasks, thus averting 

unforeseen equipment failures in commercial buildings. The core principle of 

PdM lies in assessing the real-time operational status of specific systems and 

components to streamline operations and minimise maintenance expenses 

(Mobley, 2002). Hence, PdM serves as an augmentation to both preventive and 

reactive maintenance strategies. Figure 3 visualises this argument (Ran et al., 

2019). Moreover, this research posits that PdM constitutes a crucial aspect of 

maintenance programs for commercial buildings. By relying on real-time 

operational data, PdM enables swift identification of potential issues, 

surpassing reliance solely on average or projected equipment lifespans. 

Additionally, PdM facilitates the prediction of necessary maintenance actions 

upon fault detection, enhancing proactive management of building assets. 

Verbert et al. (2017) have assured that routine maintenance does not typically 

identify faults, but this can be sorted by implementing a PdM management 

programme. This assurance is also valid with fault detection approaches (Ji et 

al., 2024). 
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Figure 3: Effectiveness of predictive maintenance strategy 

 

Having acknowledged PdM as a significant paradigm, well-known and key 

industrial manufacturers have invested in PdM to maximise machine parts and 

their uptime and disseminate maintenance to increase cost-efficiency (He et 

al., 2017). According to Wang et al. (2017a), scheduled and unscheduled 

shutdowns, astronomical operation and maintenance costs, avoidable 

inventory, and undue maintenance activities performed on particular 

equipment, machine, or system can be diminished with PdM. However, any 

technique has its own pros and cons: the main advantages of PdM or fault 

detection approaches include making repairs based on equipment condition, 

a potential savings of up to 20 per cent, as well as enriching safety aspects of 

equipment and equipment surrounding (Ramadan et al., 2024). Disadvantages 

of PdM result when an organisation’s culture of hesitating neglects to assign a 

sufficient budget for the same (Hemmerdinger, 2014). 



23 
 

Large city downtowns are mainly comprised of commercial buildings, so 

owners or caretakers of these buildings make efforts to develop strategies and 

plans for their upkeep and to control their equipment. As mentioned 

previously, PdM is one of the said strategies, a strategical monitoring approach 

that optimises the usability of a particular piece of equipment or system (Kullu 

and Cinar, 2022). PdM strategy, in line with Industry 4.0, can determine the best 

time to detect equipment or system faults using machine learning models or 

artificial intelligence (Sahal et al., 2020). Bousdekis et al. (2019) have outlined 

the benefits of developing the said strategies, especially PdM strategy, 

suggesting that they have demonstrated a positive impact for improving many 

aspects related to various organisations, including maintenance and operation 

costs, replacement costs, repair downtime and verifications, machine failures, 

spare part stock, part service life, production, operator safety and overall profit. 

Using the outputs of a novel artificial intelligence approach, PdM strategy can 

serve as a control task that maintains buildings efficiently (Cotrufo et al., 2020). 

Moreover, PdM strategy ensures the sustainability of the buildings, as it allows 

humans and machines to be harmonised (Simon et al., 2022; Villa et al., 2022). 

In contrast, Achouch et al. (2022) note the challenges of PdM strategy 

regarding four aspects: financial and organisational limitations, the limitations 

of data sources, activity limitations for repairing machines, and the limitations 

in the deployment of industrial PdM models. 

In line with Industry 4.0 concepts, PdM uses data analytics to predict and 

then detect equipment faults in an effort to rectify operational inefficiencies 

with a goal of eliminating the root cause of potential system flops (Tiddens et 

al., 2020). Amruthnath and Gupta (2018) suggest that observing equipment 

performance and monitoring the critical parameter of a particular system are 

one main PdM technique. Moreover, Huang and Wang (2016) consider 

component monitoring of a particular system as one preventive maintenance 

theme, which is the derived category of PdM. According to Nguyen and 

Medjaher (2019), fault detection and diagnosis and condition monitoring are 

critical components of PdM. To perform an automatic fault detection, PdM 

requires big data collection, an analytics platform and data sufficiency (Sharma 

et al., 2011). The analytics platform must incorporate domain expertise, so that 

the machine learning algorithms will have an intended application to the 

system that is under study (Faccio et al., 2014; Ogunbayo et al., 2023). 

According to Garg and Deshmukh (2006), data sufficiency is the availability of 
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data from enough sensors, actuators, meters or control parameters so that a 

meaningful analysis can be performed accordingly. 

Per Ran et al. (2019), maintenance in business industrial life is typically 

reactive maintenance and preventive maintenance, with the PdM strategy 

applied only in critical situations. Mallioris et al. (2024) believe that these 

maintenance strategies, which are reactive and preventive maintenance, do not 

consider the vast amount of data that can be generated as well as the available 

approaches that are aligned with Industry 4.0 principles, such as machine 

learning, Internet of Things, artificial intelligence, big data, advanced data 

analytics, data driven, cloud computing and augmented reality. Based on the 

thoughts of Chukwuekwe et al. (2016) as well as Wang (2016), PdM strategy 

aligns seamlessly with the principles of Industry 4.0, fostering a transformative 

shift in industrial processes driven by intelligent data processing 

methodologies. This paradigmatic evolution in maintenance practices has 

inspired confidence in the PdM concept within this research project. 

Specifically, it aims to assess the operational status of CWS and provide 

relevant stakeholders, including managers, maintenance engineers, and 

system users, with real-time insights into the health of these systems. This 

empowers proactive decision-making and facilitates timely interventions when 

necessary. To summarise, Figure 4 explains the idea behind PdM strategy 

(Cachada et al., 2018), while Table 4 represents the correlation between 

maintenance strategies and the industrial revolutions (Poór et al., 2019). 

 

 

Figure 4: Proposed predictive maintenance strategy 
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Table 4: Correlation between maintenance and industrial revolutions 

Industrial 

Revolution 
Industry 1.0 Industry 2.0 Industry 3.0 Industry 4.0 

Characteristics of 

the industry 

revolution  

Mechanisation, 

steam power, 

and weaving 

loom 

Mass 

production, 

assembly lines, 

and electrical 

energy 

Automation, 

computers, 

and 

electronics 

Cyber physical 

systems, Internet 

of Things, 

networks, cloud, 

machine learning, 

and bi-directional 

amplification 

system 

Maintenance 

strategy  

Reactive 

maintenance 

Planned/ 

scheduled 

maintenance 

Productive 

maintenance 
PdM 

Type of 

inspection 
Visual Instrumental 

Sensor 

monitoring 
Predictive analysis 

Overall 

equipment/ 

system 

effectiveness 

Less than 50% 

Between 50% 

and less than 

75% 

Between 75% 

and 90% 
Greater than 90% 

Maintenance 

team 

reinforcement  

Trained 

craftsmen 
Inspectors 

Reliability 

engineers 
Data scientists 

 

Before exploring the applications of PdM, which are discussed in 

subsection 2.3.4, the thesis author will examine the relationship between quality 

engineering and maintenance management, specifically with PdM, as the 

research has utilised quality engineering tools within the methodological 

framework, explained in detail in Chapter 5. 

 

2.3.3  Quality Engineering in Maintenance Management 

 

Applying quality engineering and industrial quality control concepts in 

maintenance management and processes is one key to making it a successful 

programme. Having said that, Márquez et al. (2009) presented a modelled 

framework containing eight phases linked to four blocks of effectiveness, 

efficiency, assessment and improvement. The philosophy behind this 

framework was to create a strategic plan for an organisation to improve the 

outcome of its maintenance programme. Applying the maintenance control 

function is another valuable technique for improving maintenance 

management (Duffuaa and Haroun, 2009; Ogunbayo et al., 2023). This function 

contains four phases: planning, organising, implementing and controlling. 

Specifically, this research relies on the paradigm of the last phase (controlling), 

which is measuring the performance of the maintained equipment, taking 
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predictive and corrective actions, and reviewing the associated policies and 

procedures. Quality control is one of the main domains for evaluating the risks 

of maintenance activities (Kosztyan et al., 2019; Ertem et al., 2022). In fact, 

Chanter and Swallow (2008) as well as Nasr et al. (2023) argue that constructing 

industrial quality control procedures in maintenance projects will prevent the 

organisation from any managerial failure with any contractual party.  

One important concept of maintenance management is process 

improvement, which is part of the industrial quality control. This was performed 

in many maintenance applications using the typical pattern of lean six sigma 

that has five phases: define, measure, analyse, improve and control (Wang et 

al., 2012b; Zasadzien, 2017; Schafer et al., 2019; Vaidya et al., 2020; Hamali et 

al., 2022). With specific regard to this project, the quality engineering approach 

is data driven in the PdM field. It is one important feature of the Fourth 

Industrial Revolution, defined previously here as Industry 4.0 (Kenett and 

Redman, 2019). Many research studies have proposed data driven PdM 

frameworks for multiple purposes as part of quality control such as in green 

manufacturing (Rodseth and Schjolberg, 2016); in railways (Gerum et al., 2019); 

in oil refinery plants (Antomarioni et al., 2019); in mechanical, electrical, and 

plumping components (Cheng et al., 2020); and in huge refineries (Pisacane et 

al., 2021). Zonnenshain and Kenett (2020) as well as Saihi et al. (2023) suggest 

that quality engineering is a crucial dimension of the processes in maintenance, 

and consequently should be a data driven. In line with this, they introduced a 

framework termed Quality 4.0. As per Zonta et al. (2020), the adoption of the 

PdM strategy emerges as a prevalent practice in the Quality 4.0 era. The 

associated data play a pivotal role in generating insights that can inform 

predictive decision-making processes. Therefore, within the realm of quality 

management, PdM is oriented towards cost reduction and failure prevention 

by pinpointing the components of a specific system that are prone to failure 

(Lee et al., 2019; Haleem et al., 2023). 

Statistical quality control and statistical process control methods are two 

of the quality methods that support maintenance management. Escobar et al. 

(2024) applied these two methods in maintaining a manufacturing sector via 

three case studies, one for structured data, and two for unstructured data, they 

found that such methods could optimise the production processes and 

enhance the associated systems availability. Five steps were proposed as a 

procedure to show case how statistical process control could support the 

maintenance management, which are analysing particular components and 
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assemblies as well as the associated production processes with regard to the 

utilisation of statistical process control as a test and control strategy, defining 

the function-critical test characteristics for the said components, planning and 

defining the statistical process control loops within individual production 

processes, carrying-out test process suitability, machine and process capability 

investigations, and continuing the monitoring of the production process 

utilising statistical process control (Bracke, 2024). Control charts method is also 

one of the quality engineering techniques that can support maintenance 

management. In one of the factories, the degradation of a particular 

manufacturing unit grows parallelly with the production rate and the time of 

its utilisation, which accordingly affects its reliability, availability, and the 

product quality, and in order to improve the entire process, which includes 

preventive maintenance for the said unit, and to minimise the cost, control 

charts method was utilised to build an optimisation model, and it showed a 

good effectiveness in such processes (Kammoun et al., 2024). 

 

2.3.4 Applications of Predictive Maintenance in Line with Industry 

4.0 

 

In the age of Industry 4.0 and following what has been mentioned in 

previous subsections, maintenance officers require specific technical skills. 

They need the ability to manage maintenance processes, controlling the 

impact of PdM on a particular commercial building’s organisation from several 

aspects such as business goals, on efficiency, on quality, and on safety points 

of view (Papcun et al., 2018; Antony et al., 2023). Nowadays, more and more 

resources are devoted to maintenance management, potentially leading the 

organisers of the commercial buildings to manage maintenance activities in a 

remote-control way. In this regard, the ability to analyse the huge amounts of 

data that are produced by a building’s assets, machines or systems is one of 

the ongoing trends in the era of smart technologies (Achouch et al., 2022). 

Radio frequency identification, for example, and supervisory control, data 

acquisition, near field communication, wireless sensor actuator networks, 

simulation models, prediction models via machine learning algorithms, 

Internet of Things sensors and wireless sensor networks are several new 

innovative technologies that support fault detection and diagnosis as well as 
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the overall health condition of a particular system in commercial buildings 

(Poór et al., 2019; Lambán et al., 2022). 

The recent applications of the PdM strategy were in different domains. For 

instance, Righetto et al. (2021) reviewed many PdM strategic applications on 

multiple electrical systems. They refer to a study, for example, that was 

presented in a grey language model and used genetic algorithm to predict the 

tendency of gas content in the insulating oil of power transformers. They also 

note another study that applied an artificial neural network algorithm in a 

nuclear power system as part of the PdM strategic programme. In a small 

bottling plant, Kiangala and Wang (2018) applied supervisory control and a 

data acquisition approach to predict the early faults for a particular conveyor 

motor. Shukla et al. (2022), in discussing the thermography method widely 

used in PdM strategic applications, reviewed multiple studies that used the 

said method such as detecting the bearing damage of a particular induction 

motor and detecting the faults in the inner constructions of wind turbine rotor 

blades. Likewise, this method has been used to detect the faults of electrical 

transformers (de Faria Jr et al., 2015). On a real cutting machine woodworking 

machinery, PdM strategic technique was applied to predict the performance of 

the said machine using the random forest algorithm (Paolanti et al., 2018). The 

algorithm was also used to predict the faults of high sensitivity motors by 

analysing historical data of aircraft maintenance systems (Yan and Zhou, 2017). 

Cinar et al. (2020) suggest that machine learning algorithms such as random 

forest are beneficial for the development of PdM strategic programmes for 

electrical systems or equipment like motors. 

The PdM strategy was implemented in water-related systems as well. In 

Egypt, for example, Saidy et al. (2020a) utilised a digital twin technique to 

predict the faults of a particular water desalination system, finding that the 

technique showed a very good accuracy. Once again, the faults of the said 

system were predicted by using statistical process control charts, but as per 

the authors, digital twin has a better prediction performance than the charts 

(Saidy et al., 2020b). Digital twin technique was also utilised in two other 

studies to predict the performance degradation in transmission unit of 

computer numerical control machine tools (Yang et al., 2022; Luo et al., 2020b). 

An experimental study by Him et al. (2019) collected data from 16 parameters 

like the pressure of incoming cooling water and then applied a decision tree 

algorithm to predict the faults of a can welding machine, concluding a good 

prediction accuracy. Furthermore, Wellsandt et al. (2022) suggest the use of a 



29 
 

software called digital assistant as part of PdM strategic programme. In 

manufacturing sectors, a physical model-based approach was used as a PdM 

strategic application to predict the remaining useful life of multiple machines 

via a simulation model (Cao et al., 2022). In the railway domain, four studies 

recommended the use of a convolutional neural network algorithm to detect 

the defect of railway plugs, the wheels, the current collector strips of 

pantographs and the train bogies, respectively (Du et al., 2020; Krummenacher 

et al., 2018; Karaduman and Erhan, 2020; Kou et al., 2019). For airports facilities, 

the PdM strategy was utilised for various purposes via different techniques. For 

example, Verhagen and De Boer (2018) adopted a data driven approach by 

applying proportional hazard models that aimed to identify the operational 

factors affecting the reliability of nine aircraft components such as thermal 

actuator. The airport baggage system was also considered in a PdM strategy. 

In this regard, Koenig et al. (2020) applied the technical action research 

approach, while Gupta et al. (2023) applied supervised learning algorithms like 

random forest to predict the noise in the conveyors. The second study, that of 

Gupta et al. (2023), utilised Internet of Things sensors to capture the noise and 

considered the root mean square values of the signals, which were captured 

by the aforementioned sensors, in training their models. 

These aforementioned studies were just some of the PdM strategic 

applications in a variety of fields. Here in this thesis, the studies, which were 

applied PdM strategic techniques for the CWS in commercial buildings, are 

highlighted. PdM can be supported by many intelligent maintenance 

approaches such as the combination of Convolutional Neural Network and 

Long Short-Term Memory (Liu et al., 2022a), artificial intelligence (Stanton et al., 

2023; Ucar et al., 2024), Internet of things, digital twin, robotics, data fusion 

(Stanton et al., 2023), data balance and one-dimensional deep learning (Ileri et 

al., 2024). Jakubowski et al. mentioned that PdM can be supported by utilising 

data analytics tools and machine learning algorithms. They classified these 

algorithms into ‘’neural networks, support vector machines, which finds a 

hyperplane that separates different classes of observations in a high-

dimensional space, Tree-based models recursively partition a feature space into 

subsets based on the most informative features in which the predictions of 

many weak learners are converted into one strong prediction, to increase the 

predictive capabilities and generalization, Probabilistic models capture 

uncertainty by modelling data distributions or sequences using probabilistic 

frameworks, commonly applied in areas such as anomaly detection, Clustering 
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algorithms group similar data points according to their characteristics, allowing 

data exploration and pattern discovery in unlabelled data’’ (2024, p. 5). The next 

section presents a systematic literature review for all four CWS components and 

examines the tools and methods utilised to predict the faults of the said system, 

as well as the fault detection strategic framework that were proposed and 

implemented. In addition to the motivation behind focusing on CWS, which was 

mentioned in the first chapter, CWS deserves to be focused on; because it has 

become a cornerstone of modern cooling technology where it offers efficient 

and reliable cooling solutions in buildings (Liu et al., 2024). Following that, the 

next section discusses the findings of the literature review and furnishes the 

related research gaps. Finally, the associated research questions of this thesis 

are presented in the closing section of this chapter. 

 

2.4 Literature Review Methodology 

 

The methodology of the literature review has been actioned by making 

a systematic literature review; outcomes have been finalised as detailed in the 

next two subsections. 

 

2.4.1 Systematic Literature Review 
 

 

Typically, a systematic literature review compiles varied research studies, 

delineated and discussed to find answers to a research question in adherence 

to careful, stringent methods (Briner and Denyer, 2012; Hiebl, 2023). Here in this 

research thesis, the protocol as outlined by Kitchenham (2004) has been 

followed. The systematic literature review underwent four stages. Table 5 gives 

a glimpse of these stages which are then explained in detail in upcoming 

subsubsections 

 

 

 

 

 

 

 

Table 5: Stages of the systematic literature review 

Stage 

Number 
Stage Title Description 

1 Preparation 
To determine the guiding research 

question 

2 Base of the research 
To determine how to access to the 

targeted research studies 

3 
Criterion of the 

literature selection 

To determine which study should be 

considered in this research thesis 

4 Quality assurance 
To finalise the exact number of the 

considered studies 
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2.4.1.1 Stage #1 of Systematic Literature Review 

 

This stage is the launching of the systematic literature review. It consisted 

of defining the guiding research question of this research project. A research 

question is defined as a question that a study or research project intends to 

answer (Qiu et al., 2020; Hunziker and Blankenagel, 2024). To generate a strong 

research question for any field, especially in technology, engineering and 

management, several principles are recommended for evaluation (Leong et al., 

2015; Narula, 2024) (see Figure 5). 

 

 
Figure 5: Principles of strong research questions 

 

 As the idea of this research thesis is to examine the studies that proposed 

a PdM strategy for CWS from a managerial point of view, the following guiding 

research question arose: 

“What are the approaches or methods to implement predictive 

maintenance or fault detection for a chilled water system at commercial 

buildings?” 
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2.4.1.2 Stage #2 of Systematic Literature Review 

 

This stage shows the search string and source selection. For the search 

string, operators called Boolean allow the researcher to use specific keywords 

with symbols such as “AND” and “OR” to limit the relevant research papers 

(Aliyu, 2017; Chigbu et al., 2023). Based on the information of the previous 

sections, Boolean operators were exercised in the search engines as shown 

below in Figure 6. 

 

 
Figure 6: Systematic literature review’s Boolean operators 

 

The search engines or database used in this research thesis, in addition 

to the Pure Database of the University of Strathclyde, are Scopus, Web of 

Science, Google Scholar, CrossRef, IEEE, Springer, ACM Digital Library, 

ProQuest, Inspec, ScienceDirect (Elsevier), EBSCO, Wiley Online Library, Taylor 

and Francis, and MDPI, as they are persuasive and reliable (Zonta et al., 2020; 

Dalzochio et al., 2020). 

 

2.4.1.3 Stage #3 of Systematic Literature Review 

 

Subsequent to the activities conducted in the preceding two stages, all 

studies deemed irrelevant to the objectives of this research project were 

excluded. The exclusion criteria outlined in Table 6 below were then applied to 

execute the subject stage. 

 

 



33 
 

Table 6: Exclusion criteria 

Exclusion Criteria 

 

Reference 

Papers (journals or conferences) that are not 

related to PdM or fault detection in a beeline 

Zonta et al., 2020; Dalzochio et al., 2020; 

Sajid et al., 2021; Divya et al., 2023 

Papers that are not related to Industry 4.0 or 

Quality 4.0 or data driven analysis or data mining 

in a beeline 

Zonta et al., 2020; Dalzochio et al., 2020; 

Sajid et al., 2021 

Grey literature Dolatabadi and Budinska, 2021 

Non-English publications Dolatabadi and Budinska, 2021 

Pre-1999 publications Cioffi et al., 2020 

Papers that are not peer-reviewed Inayat et al., 2015 

 

2.4.1.4 Stage #4 of Systematic Literature Review 

 

In this final stage, and as advised by Zonta et al. (2020), filtering processes 

have been implemented on the remaining papers where duplicate ones were 

removed; thereafter, titles and abstracts were analysed, and then entire texts 

were analysed. Also, double checking confirmed that the remaining articles 

fulfilled the basic research rules – presenting the purpose of the research 

clearly; using an ontology or reasoning; showing a framework, an architectural 

proposal or a research methodology; and presenting and discussing the results 

of the research – to uphold and ensure the quality of the literature review 

methodology (Kitchenham, 2004).  

 

2.4.2 Search Results 

 

From the second stage of the systematic literature review up to the fourth 

stage, a total of 168 studies were considered research papers in this research 

thesis. Table 7 below presents the paper selection journey and how many 

papers remain after each stage of the systematic literature review, while Figure 

7 presents the number of journal articles and other considered literature.   

 

Table 7: Journey of the systematic literature review 

Action Stage Number Number of Studies 

Initial Search 2 1,094 

Exclusion Criteria 3 483 

Quality Assurance 4 168 

 

https://www.mdpi.com/2075-5309/12/8/1229#table_body_display_buildings-12-01229-t002
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Figure 7: Considered studies in the main literature review 

 

 

2.4.3 Literature Review Continuation 

 

The literature review encompassed studies up to May 2022. However, to 

ensure the research thesis remains current, the focus has been extended 

beyond this timeframe. Consequently, the methodology outlined by 

Kitchenham (2004) was upheld, leading to the inclusion of an additional 14 

research papers. This brings the total number of considered studies, up to 

June 2024, to 182. 

 

2.5 Applications of PdM Strategy for Chilled Water System 

 

This section delves into the studies outlined in the preceding section, 

organised into four subsections, each dedicated to a specific CWS component. 

The review presented here follows the PdM workflow advocated by Achouch 

et al. (2022). The said PdM workflow is summarised below in Table 8. 
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Table 8: Predictive maintenance workflow (Adopted from Achouch et al., 2022) 

Step Number 

 

Step Title Step Description 

1 Initial Stage 

To understand the needs such as the maintenance issue 

that a particular facility is experiencing such as the faults 

in a particular system 

2 Data Stage 
To identify the source of data, its sample size and the 

period of data collection  

3 Model Stage 

To choose the method like the algorithm of machine 

learning, to evaluate the detection model, and then to 

control the under-study’s system; in addition, this stage 

includes providing solutions to the occurred issues like 

systems faults 

 

2.5.1 Chillers 

 

PdM for chillers has been addressed through various approaches, ranging 

from overarching maintenance frameworks to specific fault detection and 

diagnosis protocols. These endeavors aim to align with the swift pace of 

industrial advancement. According to Rueda et al. (2005), the development of 

faults detection and diagnosis for liquid chillers is based on artificial 

intelligence techniques at one of the laboratory test facilities. By using an 

artificial neural network, they predicted the temperature increment of the 

water-cooled condenser with almost 99 per cent accuracy. In the United 

Kingdom, another study by Tassou and Grace (2005) applied artificial 

intelligence to predict the refrigeration leak fault of a particular liquid chiller at 

one of the large commercial buildings. This fault was also predicted by using 

the Kalman Filter algorithm (Navarro-Esbri et al., 2006). Han et al. (2020) 

integrated k-nearest neighbours, support victor machine and random forest 

algorithms into an ensemble diagnostic model to predict the said fault, and 

then also achieved around 99 per cent accuracy. According to Liu et al. (2022b), 

as a refrigeration leak fault seriously affects the reliability of chillers, they 

therefore proposed a predictive model based on the adaptive moment 

estimation algorithm with multi-layer feedforward neural networks trained 

with the error backpropagation neural network.  

In Hong Kong and China, seven studies applied principal component 

analysis to predict several faults of sensors that are reading operational 

parameters, such as chilled water flow rate, condenser water flow rate and 

evaporating pressure (Hu et al., 2016a; Xiao et al., 2006; Mao et al., 2018; Wang 
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and Cui, 2005; Xu et al., 2008; Wang et al., 2010; Hu et al., 2016b). Moreover, 

Hu et al. (2012) applied self-adaptive principal component analysis to enhance 

sensor fault detection and diagnosis efficiency. In contrast, Li et al. (2016a) 

report that support vector data description is better than principal component 

analysis, as it is not particularly efficient when it comes to predicting complex 

sensor faults, due to the weakness of Q-statistic plot, which is part of the 

principal component analysis. Xia et al. (2021b), however, did support this 

argument as they suggest that principal component analysis has a limited 

performance in predicting and then detecting the chiller faults. Accordingly, 

they enhanced the said method via two other methods – kernel density 

estimation and kernel entropy component analysis. Their study was built on 

data from an ASHRAE project to predict and then detect condenser fouling 

fault. Munir et al. (2023) used machine learning to predict the said fault, a 

condenser fouling, but they did not mention the algorithm that was utilised to 

make the prediction model nor include any clear information about the 

associated data. 

Choi et al. (2005) utilised data from one of ASHRAE projects to predict 

multiple sensor faults by collecting data of one operational parameter, the 

evaporator water entering temperature. They applied three data driven 

techniques: multiway dynamic principal component analysis, multiway partial 

least squares and support vector machine. Based on their results, they 

determined that the first two techniques, which employed generalised 

likelihood ratio test, are more accurate than the neural network one, which is 

a support vector machine. This finding was corroborated by another study 

performed by Namburu et al. (2007) to predict eight different faults of chillers 

by using the same three techniques. From another ASHRAE project, Schein and 

Bushby (2006) applied a hierarchical rule-based fault detection and diagnosis 

to predict the faulty operation scheduling during three different weather 

seasons, but with no broaching of the data sample of their study nor providing 

a solution to fix that fault. Genetic algorithm was applied to present a fault 

detection model for sensor fault in a particular chiller, and their model was 

built without any characteristic assumption to detect and diagnose the said 

fault (Gao et al., 2023).  

The faults mentioned above, like sensors faults or condenser fouling, were 

not the only faults considered in the previous studies. For example, at one 

commercial building in Hong Kong, chiller performance indices were utilised 

to predict evaporator fouling by applying a regression model (Zhou et al., 



37 
 

2009a). Performance indices of a particular chiller were again utilised to predict 

the other seven faults, such as condenser fouling, by applying fuzzy modelling 

and artificial neural network techniques (Zhou et al., 2009b). Both previous 

studies concluded that the utilisation of the performance indices may not be 

effective in fault diagnosis. On a related note, Comstock et al. (2001) presented 

data of one of the ASHRAE projects that had already tested the sensitivity of 

some chiller faults, but they did not specify these faults nor present any 

prediction model related information. Condenser fouling faults as well as 

evaporator fouling faults were predicted by applying support vector machines 

and k-nearest neighbours (Albayati et al., 2023). Although fault free mode was 

considered in this study as well as, the accuracy of their prediction model was 

around 93 per cent, but their sample size was too small as it just contained 30 

observations of the supply air average humidity. 

Han et al. (2011) applied faults detection and diagnosis protocol for 

multiple simultaneous faults of two chillers using combined support vector 

machine and multi-label techniques. These combined techniques showed high 

accuracy detection of the chillers’ performance, although the experimental 

data were limited. On a separate note, such techniques require sufficient 

training data for a high-quality output (Shi and O’Brien, 2019; Mirnaghi and 

Haghighat, 2020). Per Ma and Wang (2011), significant degradation in chiller 

performance can be effectively detected through the application of a hybrid 

quick search method. This method involves characterising performance indices 

of specific operational parameters, such as the temperature of the condenser 

water supply. 

A high chiller load affects the performance and leads to the appearance 

of faults such as condenser fouling. Yu and Chan (2012) suggest that via two 

studies, the first one pertained to improving chiller management using a 

regression model, while the other one proposed an assessment strategy of 

chiller performance using clustering analysis. According to Zhao et al. (2012), 

early identification of the said fault, the condenser fouling, is essential to highly 

maintain chiller performance; accordingly, they developed a virtual sensor for 

that fault. Similarly, Magoulès et al. (2013) proposed a significant fault 

detection and diagnosis strategy using a recursive deterministic perceptron 

neural network to predict faults related to chiller load. By utilising data of oil 

feed pressure, a regression model was built to detect the chiller faults and 

found that refrigeration leak and condenser fouling faults are mostly repeated 

faults (Ssembatya and Claridge, 2024). 
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Data from one ASHRAE project were utilised in 12 different studies to 

predict condenser fouling along with other unidentified faults (Zhao et al., 

2013a; Zhao et al., 2013b; Zhao et al., 2013c; Yan et al., 2018a; Yan et al., 2020; 

Yan et al., 2017; Li et al., 2016b; Li et al., 2016c; Li et al., 2016d; Wang et al., 

2020; Wang et al., 2017b; Li et al., 2016e). The first study applied exponentially 

weighted moving average control charts; the second one applied Bayesian 

belief network; the third one applied support vector data description; the 

fourth one used support vector machine; the fifth one applied conditional 

Wasserstein generative antagonistic networks; the sixth one combined 

extended Kalman filter and a recursive one-class support vector machine; the 

seventh one derived a tree-structured fault dependence kernel; the eighth one 

used principal component analysis along with support vector data description; 

and the ninth one adopted linear discriminant analysis. With regards to the 

tenth, one dimensional convolutional neural network and Gated Recurrent Unit 

were applied, while the eleventh one conjoined a distance rejection technique 

with Bayesian network by transforming the chiller’s fault detection and 

diagnosis problem into a single-class classification problem. The last one in 

that group predicted seven different faults by using the large margin 

information fusion method, finding this method more accurate than others, 

such as multi-class support vector machine, artificial neural network, decision 

tree, quadratic discriminant analysis, Ada Boost and logistic regression. All of 

these research studies showed significant accuracies but did not include fault 

free situations in their data training. Extended Kalman filter algorithm was 

applied to present a fault detection model for a residential chiller, and it was 

successfully detected an undercharge fault with 70.6 per cent accuracy 

(Chintala et al., 2024). 

Moreover, three additional studies used the same ASHRAE project to 

compare different models for the same purpose as the previous 12 studies 

(Tran et al., 2016a; Tran et al., 2016b; Tahmasebi et al., 2019). The first study 

presented two models, one by support vector machine and the second by 

combining nonlinear least squares support vector regression based on the 

differential evolution algorithm with exponentially weighted moving average 

control charts. It was determined that the second one has a better prediction. 

The second study, applying multiple linear regression, kriging algorithm and 

radial basis function, led to the conclusion that the radial basis function is 

better in prediction than the other two techniques. The outcome of the third 

study showed that an artificial neural network is more accurate than k-nearest 
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neighbours and bagged tree algorithms. The considered faults in these three 

studies were not fully described. The impact of condenser fouling was 

discussed and, accordingly, a decoupling-based fault detection and diagnosis 

method was proposed to predict this fault (Zhao et al., 2014). This method was 

applied by observing the cooling capacity and suggested to clean the 

condenser water tubes before data collection. Later, this method was applied 

again alongside two other methods for efficiency comparison purposes in 

detecting multiple simultaneous chiller faults (Zhao, 2015). The 

aforementioned other two methods were multiple linear regression and simple 

linear regression, but it was determined that these two methods are not very 

effective.  

Bonvini et al. (2014) argue that observing the energy consumption of a 

chiller is valuable for predicting the faults related to the high load. They 

introduced a fault detection and diagnosis approach based on an unscented 

Kalman filter, which is an advanced Bayesian nonlinear state estimation 

technique, to predict three of the aforementioned faults. Unscented Kalman 

filter is a proven technique which does not require long-time focused studies 

when applied in individual CWS components in different commercial buildings 

(Sun et al., 2013). This pretext came from a study that used and unscented 

Kalman filter to detect gradual chiller degradation based on the Grey-box 

model at the Jinmao tower of China (Sun et al., 2013). The said model is based 

on statistical process control by measuring and analysing two operational 

parameters – chilled water flow rate and chilled water returning temperature – 

where data were collected data every one hour for 20 days (Sun et al., 2013). 

Moreover, Karami and Wang (2018) integrated the Gaussian mixture model 

regression technique with the unscented Kalman filter to model a nonlinear 

system based on the measurement data of four operational parameters, 

finding this efficient in detecting chiller degradation and reducing the number 

of detecting sensors as well. 

The chiller faults that are either related to the high load or from other 

issues can be linked to human interventions and, accordingly, can influence 

occupant satisfaction. Having said that, maintenance characteristics such as 

skills, knowledge and number of maintenance labourers were addressed by 

Au-Yong et al. (2014) at one of the office buildings by using mixed methods. 

Following a survey that was shared with selected occupants and key 

responsible staff, they predicted eight of the aforementioned maintenance 

characteristics via a regression model, and then found empirical evidence that 
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such communications with the concerned parties can improve maintenance 

management and can enhance occupant satisfaction. With regard to high 

performance levels, it has been noticed that some commercial buildings are 

using BMS software in relation to their maintenance activities. For example, 

Alonso et al. (2019) suggest utilising BMS, in addition to plant management 

software, to control CWS performance; they applied this idea by observing the 

coefficient of chiller performance at a large hospital. Yan et al. (2014) proposed 

a chiller fault detection and diagnosis procedure to develop the BMS via a 

hybrid model that integrated a support vector machine with autoregressive 

exogenous variables, thereby obtaining high prediction accuracy with minimal 

false alarm rate. Identical results were presented by McIntosh and Mitchell 

(2000) using statistical analysis via modelling the log-mean temperature 

difference and condenser water temperature difference to predict six faults of 

chillers. In addition, two studies proposed a control strategy for chiller 

operation uncertainty by using the Monte Carlo simulation (Miyata et al., 2019; 

Liao et al., 2015).  

To curb the deterioration of chillers, Beghi et al. (2016) proposed a semi 

data driven approach by using principal component analysis in differentiating 

anomalies from normal operation variability and a reconstruction-based 

contribution approach to segregate variables related to faults. To minimise 

fault prediction errors, Kocyigit (2015) claimed to use a fuzzy interference 

system and Levenberg–Marquart-type artificial neural network algorithm by 

evaluating two operational parameters: condenser pressure and evaporator 

pressure. In addition to fault free mode, he concentrated on faults such as 

refrigerant leak, evaporating fouling, compressor overcharging and condenser 

fouling. Additionally, Gao et al. (2019a) presented a fault detection and 

diagnosis strategy to detect sensor faults by combining a maximal information 

coefficient with a long short-term memory network. 

Recently, it has been noticed in the market that multiple providers of 

maintenance solutions for commercial buildings are proposing building 

information modelling and a building automation system in addition to BMS. 

Cheng et al. (2020) utilised building information modelling with Internet of 

Things sensors to predict chiller faults through artificial neural network and 

support vector machine algorithms. However, their approach could not be 

applied for other CWS components due to differences in operational 

parameters. From BMS data, Escobar et al. (2020) used a fuzzy logic clustering 

approach for smart buildings, called the learning algorithm for multivariable 
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data analysis, and succeeded in reaching a zero-error state for chiller control. 

Besides BMS, Srinivasan et al. (2021) have used explainable artificial 

intelligence for chiller fault detection and diagnosis, showing the significance 

of acquiring the trust of maintenance officers. Hu et al. (2019) used building 

automation system for collecting data of chiller operational parameters, such 

as condenser water flow, and then detected faults by using support vector 

machine algorithm. Considering the fault free situation in their model training, 

their approach detected only one single fault – compressor overcharging. The 

same fault was efficaciously detected by using a principal component analysis-

based exponentially weighted moving average control chart and virtual 

refrigerant charge algorithm (Liu et al., 2017).  

From BMS, Luo et al. (2019) collected the data of chilled water supply and 

return temperatures in per minute frequency for six days from four different 

weather seasons to predict sensors faults, in addition to fault free conditions, 

using k-means clustering. The said faults were not fully described, and as in 

some other studies, the frequencies of their data sampling were not justified 

even after the development of this approach by Luo and Fong (2020). 

Thieblemont et al. (2017) explored state-of-the-art control strategies. The first 

strategy, called ‘model free control strategy’, does not require building a model 

or the use of historical data. It can be performed by programming the ambient 

temperature based on the next day’s weather forecast.  

The second strategy is an intelligent one using artificial intelligence with a 

cold thermal energy storage system. This strategy suggests combining a fuzzy 

logic controller and a feed-forward controller with weather predictions. To do 

so, the authors listed 27 rules for this aforementioned second strategy 

(Thieblemont et al., 2017).  

Advanced control is the third strategy, which includes two techniques: 

non-optimal advance predictive control and model predictive control. The 

unknown-but-bounded method is an example of the first technique, and its 

implementation is costly. The concept of model predictive control is to 

optimise the variables of CWS as a function of future horizon to satisfy the 

relevant constraints. Arteconi et al. (2012) suggested applying cold thermal 

energy storage for demand side management strategy, which can change the 

chiller load profile, to optimise the power system from generation to delivery. 

Model predictive control was presented by Wang et al. (2022) as a state-of-

the-art strategy. They formulated a simulation model to primarily control the 
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chiller performance using data of two main operational parameters, the water 

leaving temperature and water return temperature, but they did not state the 

chiller’s faults, the time interval between the readings of these parameters or 

the study period. 

Some studies used the ratio between the cooling load and energy 

consumed, which is called the coefficient of performance, as a data sample for 

scheduling PdM activities. In this regard, Wu et al. (2021) proposed a method 

to optimise the PdM scheduling for HVAC system by mixed integer 

programming. This method has two stages: the first one is parameter 

generation through historical data, and the second is optimisation by linear 

programming. They conducted a case study on chillers and addressed 

coefficient of performance. The idea of the first stage is to study the 

operational status and then listing the related constraints while the optimising 

model, which is the second stage, has to be solved to present a high quality 

PdM schedule to detect chiller degradation. This model is a bit general, nor 

does it consider any precise faults or issues that lead to chiller degradation. Li 

et al. (2022) proposed a fault detection and diagnosis method using a deep 

belief network. Their data were collected through an Internet of Things agent 

and processed through four different stages, including optimising them by a 

particle swarm optimisation algorithm. Moreover, in comparing deep belief 

network with deep neural network, k-nearest neighbours, and support vector 

machine, they obtained almost same prediction accuracy, but without 

clarifying the faults. 

From coefficient of performance data, Motomura et al. (2019a) developed 

two simulation models to evaluate multiple chillers’ faults. The first model 

calculated the increased amount of daily peak power, while the second one 

tracked the decrease rate of the performance coefficient. Sulaiman et al. (2020) 

observed a chiller coefficient of performance and developed a fault detection 

and diagnosis approach by using deep learning, multi-layer perceptron and 

support vector machine; they then determined that the multi-layer perceptron 

is more accurate than others. On a related note, multi-layer perceptron was 

integrated with a regression model to enhance the control of the chiller (Zabidi 

et al., 2023). In this study, the authors did not state any fault nor mention any 

detailed information about the data and its associated operational parameters 

(Zabidi et al., 2023). From a chiller coefficient of performance data sample, Ng 

et al. (2020) used Bayesian network to predict sensor bias of water flow 

temperature, but the results were not particularly encouraging as per the 
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authors’ conclusion. To obtain the usual promising results, Harasty et al. (2019) 

argued that the artificial neural network algorithm should be used in PdM 

strategic programmes. For a fuller picture, Sanzana et al. (2022) argued that a 

deep learning technique is the best to obtain higher prediction accuracy as 

compared to other PdM techniques. 

At the end of this subsection, the research thesis has summarised in Tables 

9 and 10 below what has been mentioned in the literature from three points 

of view: the faults, the operational parameters, and their frequencies or 

readings from which data were derived. The first table shows the faults that 

were stated in the literature as well as the number of times each fault is 

repeated across the considered studies. The second table is related to data 

collection and presents additional separate information pertaining to 

operational parameters presented or stated in the literature as well as their 

ranges from minimum and maximum frequencies points of view. This research 

thesis defines the duration or the time interval between each observation or 

reading of each operational parameter as ‘minimum frequencies’, while it 

defines study period, the duration of collecting the data, or the time span of 

collecting the data as ‘maximum frequencies’. Data in the literature were 

utilised to build and train the prediction or detection models. 

Table 9: Summary of chiller’s faults 

Fault Name Number of Studies Addressing this Fault 

Refrigeration leak 5 

Evaporating fouling 3 

Compressor 

overcharging 
3 

Faulty operation 

scheduling 
1 

Condenser fouling 16 

High condenser 

temperature 
1 

Sensor bias 12 

 

Table 10: Summary of chiller’s frequencies utilised for data collection 

Operational 

Parameter Name 

Range of Minimum 

Frequency  

Range of Maximum 

Frequency 

Chilled water flow 

rate 

Between 60 and 75 

minutes 

Between 20 days and 

two months 

Condenser water 

flow rate 

Between five and 75 

minutes 
Two months 

Evaporating 

pressure 
Not specified  Not specified 
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Evaporator water 

entering 

temperature 

10 minutes Five days 

Supply air average 

humidity 
Not specified Not specified 

Condenser water 

supply 

temperature  

Not specified Not specified 

Chilled water 

leaving 

temperature  

Not specified Not specified 

Chilled water 

returning 

temperature 

One hour 20 days 

Condenser 

pressure 
Not specified Not specified 

Oil feed pressure Not specified Not specified 

 

 

2.5.2 Cooling Towers 

 

Compared to studies on chillers, studies on cooling towers were limited 

and were either part of the chiller studies or were discussed separately. Ahn et 

al. (2001) developed a simulation model to detect three faults of cooling 

towers. Their model was built based on the deviation of different operational 

parameters such as the difference between the chilled water temperatures that 

are leaving the tower and the temperatures that are returning to the same. The 

claims against this study, however, are the data collection and fault clarification 

as the authors did not clarify the source of their samples used in the associated 

experiment nor did not state the faults clearly. Zhou et al. (2009a) used a 

regression model to detect air fan degradation faults by formulating the 

performance index of the air flow rate’s reduction. The sample size of their data 

looked small, as it was generated during only five days in the summer season, 

including the fault free condition. Hu et al. (2019) collected data on fan power 

to detect the same fault, which is air fan degradation by using support vector 

machine, and their sample size also looked small as it contained 775 readings 

that were collected every five minutes during a study period of two months. 

From a qualitative method study, Chew and Yan (2022) suggested cleaning 

cooling tower fans before applying any fault detection and diagnosis 

approach, but this action cannot be considered as a solution to fix a particular 

fault where they did not mention any fault of the said CWS component, nor 
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did they clarify the PdM technique. Khan and Zubair (2004) discussed another 

fault, fouling of fills, and predicted it by use of a regression model. Through 

this model, the correlation was analysed between the performance indices of 

different operational parameters, but they did provide a solution to fix the said 

fault when it occurred. Per Ma and Wang (2011), the said two faults, fouling of 

fills and air fan degradation, can be detected significantly using the hybrid 

quick search method by characterising the performance index of a selected 

operational parameter, the inlet condenser water temperature. Air fan 

degradation was also predicted by Sulaiman et al. (2020) when they compared 

multi-layer perceptron, support vector machine and deep learning methods, 

finding that multi-layer perceptron is more accurate than the other mentioned 

algorithms. However, they neglected to provide any solution to fix the fault 

when it appeared. 

Human and organisational factors are obviously affecting PdM costs and 

its scheduling. In this regard, Jain et al. (2019) studied the failure conditions of 

a particular cooling tower by introducing a process resilience analysis 

framework. This framework utilised a Bayesian network model to integrate two 

factors, process parameter variations as a technical factor and human and 

organisational factors as a social one. Their framework illustrated the impact of 

their model on PdM management from cost and safety points of view. Melani 

et al. (2019) insisted that making a significant investment in a PdM programme 

is essential to maintaining the availability of the systems that are operating 

commercial buildings. Having said that, they developed a generalised 

stochastic Petri net model to predict multiple faults, such as those related to 

fans, including the operational errors caused by humans. Furthermore, Aguilar 

et al. (2020) proposed an autonomic cycle of data analysis tasks involving BMS 

to manage the failures of two cooling towers of an opera palace in Spain. They 

utilised three techniques – multi-layer perceptron, k-nearest neighbours and 

gradient boosting – to reach similar prediction accuracies of all three 

techniques. To diagnose such failures, Piot and Lancon (2012) suggested that 

commercial buildings use a SCANSITES 3D system as they surveyed several 

cooling towers in France and found the said system to be useful. 

In contrast to what was performed in chillers, the fault detection and 

diagnosis of sensor faults was not studied much in regard to cooling towers. 

At the Oak Ridge National Laboratory in the United States of America, the air 

fan degradation fault of the high flux isotope reactor was predicted using 

wireless sensors (Hashemian, 2011). Wang et al. (2010) predicted the said fault 
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by use of principal component analysis. Their data samples were collected 

through a sensor that read one of the operational parameters, the inlet 

condenser water temperatures, and per their results, the principal component 

analysis did not always record the occurrence timings of that fault, so 

accordingly, they could not evaluate the performance index of the 

aforementioned parameter. An experimental study had collected data from the 

same parameter to predict an air fan degradation fault using the Kalman filter 

method (Sun et al., 2013). Another study used the Kalman filter method to 

observe cooling tower performance at one of China’s commercial buildings 

(Sun et al., 2018). To reduce the false alarm rate, the study analysed and 

measured some chosen parameters via a statistical process control technique. 

Motomura et al. (2019b) developed two simulation models to assess multiple 

cooling-tower faults. The first model checked the water flow and the outside 

air wet-bulb temperature, whilst the second model focused on the inlet and 

outlet condenser water temperatures. Data on air wet bulb temperature, which 

basically contained 5000 readings, were collected to predict a particular 

cooling tower’s performance and to eliminate the severity of the related faults 

by use of the backpropagation neural network method (Xu et al., 2015). This 

method resulted in the obtainment of a very good correlation coefficient 

between the predicted values and experimental ones, but with no clarification 

about the predicted faults. 

Similar to the close of the previous subsection regarding the chiller 

component, this thesis has summarised the literature of the cooling tower 

component as shown below in Tables 11 and 12. These tables have the same 

ideas of the previous tables (Tables 9 and 10), which were presented in the 

previous subsection. 

Table 11: Summary of cooling tower’s faults 

Fault Name Number of Studies Addressing this Fault 

Air fan degradation 6 

Fouling of fills 2 

Sensor bias 1 
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Table 12: Summary of cooling tower’s frequencies utilised for data collection 

Operational Parameter 

Name 

Range of Minimum 

Frequency 

Range of Maximum 

Frequency 

Chilled water leaving 

temperature 
Not specified Not specified 

Chilled water entering 

temperature 
Not specified Not specified 

Air flow rate Not specified Five days 

Inlet condenser water 

temperature 
Not specified Not specified 

Outlet condenser water 

temperature  
Not specified Not specified 

Air wet bulb temperature Not specified Not specified 

Fan power Five minutes Two months 

 

2.5.3 Pumps 

 

Following the literature on cooling towers, the number of studies on 

pumps is approximately the same. Karim et al. (2020) predicted five faults of 

pumps – out of which two were related to the cooling system – using artificial 

neural network method, arguing that their hypothetical data showed that such 

a method is capable of predicting the aforementioned faults, but they also did 

not clarify the predicted faults. Using k-means clustering method, Luo et al. 

(2019) studied the sensor bias of primary and secondary pumps, but their 

method has detected only one sensor fault. Through the high flux isotope 

reactor project at the Oak Ridge National Laboratory, Hashemian (2011) 

predicted three different faults using wireless sensors. These faults are 

excessive noise, faulty control switch and faulty starter, of which are related to 

the secondary pump.  

From an installed building automation system, Hu et al. (2019) collected a 

data sample of the differential pressure every five minutes for two months to 

predict the degradation of the secondary pump using a support vector 

machine algorithm. However, they did not specify the fault that leads to pump 

degradation. To keep a control on the differential pressure of primary and 

secondary pumps, Ma and Wang (2009) developed a simulation model that 

recorded water flow rates of one year, but the time intervals between the 

readings were not clarified nor did they clarify the type of the fault. Miyata et 

al. (2019) used Monte Carlo simulation to detect operational uncertainty 

caused by the imponderable pressure, but data-related information was 

neglected. 
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Zhou et al. (2009a) used a regression model to detect a partial clogging 

fault in the secondary pump by formulating the performance index of the 

increase in the pipeline resistance. On the other hand, Wang et al. (2010) 

predicted the same fault, which is partial clogging by using the principal 

component analysis method. Moreover, Liu et al. (2022b) studied pipeline 

resistance and then predicted the primary pump’s leakage fault by using 

adaptive moment estimation algorithm with multi-layer feedforward neural 

networks trained with the error backpropagation neural network. Motomura 

et al. (2019a) developed two simulation models to predict the faults of primary, 

secondary and condenser pumps. From the BMS data, their first model 

observed the water flow in litter per minute for almost a year, while the second 

focused on sensor errors and also studied the impact of pump specifications, 

such as the calibre. By using an Internet of Things technique on the subject 

CWS component, Domínguez-Cid et al. (2022) proposed a PdM framework for 

the hotel sector. Their framework contained an acquisition system that has 

three modules – single conditioning module, microcontroller-based system 

and microprocessor-based system – but they did not specify the data 

information and their related operational parameters nor stated the faults for 

which they were looking. Convolutional neural network transfer learning was 

applied to present a fault detection model for centrifugal pump, and it was 

successfully detected the motor faulty starter (Sunal et al., 2024). 

The appearance of faults obviously affects the CWS performance, whether 

caused by human interventions or by an operational issue or by an unreliable 

sensor. Au-Yong et al. (2014) focused on pumps within their mixed-method 

study, which was explained in the section on chillers. Per the qualitative 

method research of Chew and Yan (2022), maintenance officers and 

researchers are advised to check the condenser pumps for corrosion before 

applying any fault detection and diagnosis approach. Moreover, Yang et al. 

(2017) proposed the usage of the fault detection and diagnosis strategy with 

the machine learning method, counting data samples via BMS that are related 

to pumps. However, they did not specify the associated operational parameters 

and the machine learning method nor the detected faults.  

Yuan and Liu (2013) used a semi supervised learning technique to predict 

severe gear damage of a particular pump, which led to pump partial clogging, 

taking into consideration the fault free condition while training the model. 

Bouabdallaoui et al. (2021) introduced a PdM framework by using a long short-

term memory network. As part of this framework, they collected data for three 
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pumps via building automation system and Internet of Things devices, but they 

did not specify the associated operational parameters nor the predicted or 

detected faults. With regard to state-of-the-art control strategies, Thieblemont 

et al. (2017) suggested applying adaptive model predictive control to decrease 

the pumps’ running time, but they did not clarify their PdM model nor 

mentioning the faults within their research. 

Similar to chillers and cooling towers components, this thesis has 

summarised the literature of pumps in Tables 13 and 14 below with the same 

ideas as in the previous Tables 9 and 10. 

Table 13: Summary of pump’s faults 

Fault Name 
Number of Studies 

Addressing this Fault 

Clogging 3 

Faulty control switch 1 

Pipeline leakage 1 

High flow rate in cold exchange 1 

Faulty starter 2 

Low flow rate in cold exchange 1 

Excessive or abnormal noise 1 

Sensor bias 2 

 

Table 14: Summary of pump’s frequencies utilised for data collection 

Operational 

Parameter Name 

Range of Minimum 

Frequency 

Range of Maximum 

Frequency 

Differential pressure Five minutes Two months 

Water flow rate Not specified 360 days 

 

2.5.4 Terminal Units 

 

The subject component has the largest number of studies comparing it to 

other CWS components. Liang and Du (2007) proposed a fault detection and 

diagnosis model of the HVAC system using mixed methods. The under-study 

component was an air handling unit of a particular commercial building in 

Hong Kong. They combined a simulation-based model method with a support 

vector machine method. Three types of faults were addressed – return damper 

jam, cooling coil blockage and speed reducing of the supply fan – noting that 

false signal fault was not considered in their study. Their method was built by 

collecting data of multiple operational parameters, the set temperature and 

indoor cooling load. The original sample size was looking small because it was 
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generated from 10 operational hours, but they assumed that the fault would 

arrive within one hour. They depended on this assumption when finalising their 

required data and obtained a bigger sample size, which was used to build the 

model.  

Through building information modelling and Modelica software, 

Andriamamonjy et al. (2018) presented a simulation model to detect return 

damper jam fault of a particular air handling unit. Their model showed the 

potential of building information modelling for a significant reduction of the 

manual configuration needed to disseminate such a model, based on 

calculating the normalised root mean square error of multiple operational 

parameters (supply air temperature, space temperature, return air temperature 

and exhaust air temperature). The readings of each of these parameters 

contained three types of conditions or modes: faulty, uncertain and fault free. 

In contrast to a case study performed at a university, Alavi and Forcada (2022) 

argued that building information modelling cannot constitute complete 

information on maintenance activities when implementing decision making 

frameworks. The study, which discussed the impact of human interventions in 

the occurrence of faults and was explained in chillers and pumps subsections, 

also included air handling units (Au-Yong et al., 2014).  

The PdM framework of Bouabdallaoui et al. (2021), discussed in the pumps 

section, was also embedded with two air handling units, but they did not define 

the predicted faults in their case study that was performed at a sport facility in 

France. Bruton et al. (2013) proposed a procedure for choosing the appropriate 

machine learning technique based on air handling unit conditions. After that, 

they developed an automated fault detection and diagnosis for air handling 

units, the contents of which are data access layer to be flexible with BMS, 

business layer to be flexible with any combination of sensors with operational 

parameters, and graphical user interface to evaluate the performance of air 

handling units (Bruton et al., 2014).  

Sittón-Candanedo et al. (2018) used a decision tree technique for 

evaluating an early stage PdM model of terminal units. In a set of buildings 

that are between zero and 30 years old, they obtained historical data of the 

indoor temperatures to compare with the newly designed ones, and then to 

identify any abnormal behaviour. After utilising the sample size of 8000 

readings, they indicated that decision tree algorithm showed an exceedingly 

high accuracy in covering fault possibilities. On a related note, Hodavand et al. 
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(2023) concluded that the decision tree algorithm provides a practical solution 

to smart building management, enabling real-time data collection and analysis 

to enhance occupant comfort and ensure sustainable operations and 

maintenance. They also indicated that the decision tree technique is the best 

for PdM as it can improve fault detection and diagnosis by allowing real-time 

monitoring of building components and systems and can enhance stakeholder 

collaboration and communication (Hodavand et al., 2023).  

In pursuit of thermal comfort within commercial buildings, an experiment 

was conducted, involving the collection of occupant skin temperatures. This 

data was utilised to predict the optimal speed reduction for the supply fan in 

air handling units. Support vector machine and extreme learning machine 

techniques were employed, yielding satisfactory results from both 

methodologies (Chaudhuri et al., 2017). For achieving high accuracy in fault 

detection and diagnosis models, it is recommended to clean the impeller, fan 

scroll, and blower blade of air handling units prior to the application of the 

model (Chew and Yan, 2022). Arteconi et al. (2012) suggested a state-of-the-

art control strategy using demand-side management to reduce the required 

air handling unit’s size up to 40 per cent, resulting in energy saving. 

The variable air volume of air handling units was discussed in numerous 

studies. For instance, in a multi-purpose research and test facility called an 

environmental chamber, Cho et al. (2005) conducted two studies on a number 

of rooms that represent commercial building standards. In addition to the fault 

free condition, their first study used artificial neural network to predict some 

faults linked to air handling unit parts, including the variable air volume, while 

the second study applied transient pattern analysis to isolate the said faults to 

reach steady-state condition. The study of Schein and Bushby (2006), which 

was mentioned previously in the chiller subsection, predicted a variable air 

volume sensor fault when reading the discharge air temperature. At a large 

academic office building in Canada, Gunay et al. (2022) developed a simulation 

model to detect variable air volume sequencing logic faults in two air handling 

units. Using data of ASHRAE projects, another simulation model was 

developed by Norford et al. (2002) to detect multiple air handling unit faults 

related to the variable air volume’s damper, fan and filter coil system. 

Moreover, Li et al. (2021) proposed a simulation model to predict 11 variable 

air volume faults at a particular commercial building in China, succeeding in 

detecting nine faults, including outdoor air damper stuck and multiple sensors 

faults. Two more research studies predicted the return damper jam fault at two 
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different commercial buildings: the first one applied random forest, while the 

second one developed a simulation model (Gao et al., 2019b; Deshmukh et al., 

2019). In addition, Lin et al. (2023) claimed success in predicting the faulty 

variable air volume of an air handling unit by applying a fully automated 

control hunting correction algorithm, developed by utilising lambda open-

loop tuning rules. The source of data used was discharge air temperature, and 

the readings of this operational parameter were taken every 30 minutes during 

the summer of 2022. A similar study to Lin et al. (2023) one was conducted at 

the Oak Ridge National Laboratory but by applying a digital twin technique 

(Xie et al., 2023). 

At other various commercial buildings, 13 research studies used data from 

one ASHRAE project to predict several faults of air handling units and fan coil 

units, including ones related to the variable air volume, and obtained an 

acceptable prediction accuracy for each (Piscitelli et al., 2020; Zhao et al., 2015; 

Zhao et al., 2017; Yuwono et al., 2015; Yan et al., 2016a; Yan et al., 2018b; Yan 

et al., 2019; Tun et al., 2021; Pourarian et al., 2017; Li et al., 2010; Li and Wen, 

2014; Fan et al., 2021; Mulumba et al., 2015). The first study applied the 

temporal association rules mining algorithm, while both the second and third 

ones applied Bayesian network. The fourth study applied ensemble rapid 

centroid estimation; the fifth study applied simulation model; and the sixth 

applied support vector machine. With regard to the seventh, the generative 

adversarial network was applied, and the eighth one combined random forest 

with support vector machine. The ninth utilised simulation software called 

HVACSIM+; the tenth derived large margin information fusion; the eleventh 

applied principal component analysis; the twelfth applied semi supervised 

learning; and the last one applied support vector machine algorithm with 

autoregressive exogenous variables technique. In contrast, Zhao et al. (2019) 

criticised the same ASHRAE project because its data did not cover a vast range 

of operating conditions. 

Combining the fault detection and diagnosis approach with a fault 

isolation approach is one of the PdM ideas. A study in Canada presented this 

idea by applying the principal component analysis to detect two selected faults 

of air handling units and active functional testing to isolate the same faults 

(Padilla and Choinière, 2015). Two more studies applied principal component 

analysis, but in both detecting and isolating a number of faults on air handling 

units (Wang and Xiao, 2004; Qin and Wang, 2005). Ranade et al. (2019) 

developed a simulation model to predict some selected faults of fan coil unit 
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and variable air volume, including fault free condition. They argued that these 

faults can be isolated easily by applying decision tree algorithm. Using data of 

air handling unit outlet water temperature and supply air temperature, 

collected for three days, Shahnazari et al. (2019) applied a recurrent neural 

network to detect and isolate the faults of the associated sensors.  Moreover, 

Wang and Chen (2016) conducted a case study at a particular commercial 

building with 36 floors by applying exponentially weighted moving average 

control charts for the same purpose – detecting sensor faults.  

Wang et al. (2012a) applied a genetic algorithm to predict and isolate the 

faults of air handling unit supply fans and variable air volume. Data from BMS 

were utilised to predict and isolate 10 selected faults of air handling units using 

Bayesian network (Xiao et al., 2014). At a green commercial building, an 

experimental study resulted in developing four simulation models to detect 

and isolate four faults of air handling units by one model for each fault (Yang 

et al., 2008). Yang et al. (2018b) presented a pragmatic simulation model to 

detect only four selected faults at 44 buildings in Canada. Their solution relied 

on clustering work orders datasets collected from occupant complaints, and 

then they computed mean time between failure. Mean time between failure 

was also computed by Sanchez-Barroso and Sanz-Calcedo (2019). To detect 

and isolate small bias sensor faults, an experimental study advised using a 

hybrid-model-based fault detection and diagnosis that combines the fractal 

correlation dimension algorithm with support vector regression (Yang et al., 

2013). Zhang and Hong (2017) explained the background of faults related to 

variable air volume in air handling units, which will help the researchers or 

commercial building officers take that into consideration while making PdM 

programmes.  

By recalling what has been mentioned in the chillers subsection about how 

commercial buildings are using BMS to control CWS performance, it has been 

noted that Hosamo et al. stated that “in systems like Air Handling Unit (AHU) 

which is considered as a complex system, many faults cannot be detected by 

BMS” (2022, p. 2). Having said that, they conducted a case study on four air 

handling units at a particular university which proposed a digital twin 

technology utilising building information modelling and Internet of Things 

sensors, noting that this technology is an artificial neural network-based 

technique. On a related note, Lee et al. (2004) predicted sensor faults using a 

general regression neural network model. Gao et al. (2016) studied the impact 

of the system’s water temperature difference (called delta T) on air handling 
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unit performance. They developed a simulation model that generates the 

performance indices of various operational parameters, but they did not clarify 

the faults that may appear due to the aforementioned temperature difference.  

Choi and Yeom (2019) introduced a thermal satisfaction prediction model 

that combines human factors and physiological signals. Their data were 

collected from volunteer students through a LabVIEW based data acquisition 

system and were analysed by multiple statistical analysis and data mining 

software called WEKA. Their study showed a significant correlation between 

the said factors and signals. A similar study discussed indoor air quality and 

used simulation model and statistical tests to diagnose air handling unit sensor 

faults (Najeh et al., 2021). Shaw et al. (2002) studied the correlation between 

multiple operational parameters of an air handling unit to obtain reliable fault 

detection and diagnosis results in detecting faults related to fan, damper and 

filter coil system.  

In Australia, an auto fault detection and diagnosis model, developed by 

Guo et al. (2017) in one of the large commercial buildings, merged the hidden 

Markov model and support vector machine. Their data were collected through 

BMS from 15 air handling unit sensors, and their model was trained based on 

selected faults over two business months. Unfortunately, they did not specify 

which parameters of the air handling unit were studied, nor did they consider 

the sensor’s false signal in their model. Holub and Macek (2013) presented a 

simulation model within a stochastic system by addressing the set temperature 

of a rooftop air handling unit. The target of their application was to detect a 

diagnostic fault that links to the fan. Frankly, the data used to simulate the 

model were limited where they applied a hybrid system.  

To obtain an active simulation model, Deshmukh et al. (2020) suggested 

holding three operational conditions and closing the cooling valve while 

collecting the air handling unit’s data of fault free mode. Ma et al. (2020) 

introduced a PdM framework which integrated building information 

modelling, geographic information system and reliability-centred maintenance 

technologies by implementing a quantitative decision-making model along 

with a Monte Carlo simulation model. Their case study, performed on a virtual 

university campus that included air handling units, determined it difficult to 

acquire a large data sample size. Gourabpasi and Nik-Bakht (2021) indicated 

that the lack of knowledge in locating sensors causes difficulty for both data 

collection and sensor fault detection and diagnosis. 
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Terminal unit fault detection and diagnosis can be considered a 

probabilistic approach. In the USA, Dey and Dong (2016) applied Bayesian 

belief network in a probabilistic way to predict some air handling unit faults at 

one university. Du et al. (2008) applied the wavelet neural network to fix the air 

handling unit’s sensor bias. A subtractive clustering technique and 

backpropagation neural network were combined to catch the missing alarm 

when an air handling unit’s fault occurred (Du et al., 2014a). For missing alarm 

issues, a study suggested applying Levenberg–Marquart-type artificial neural 

network to eliminate that (Du et al., 2014b). To enhance the thermal comfort, 

Dudzik et al (2020) suggested the use of a building automation system and 

applied artificial neural network to examine the environmental quality 

management system. In Jordan, Al-Aomar et al. (2023) utilised BMS to retrieve 

three days’ historical data of the air flow of a particular air handling unit at a 

hospital. Then, they applied two probabilistic algorithms, prophet forecasting 

and seasonal auto-regressive integrating moving average, and then noted that 

the second has a better accuracy, but they did not clarify the type of the fault. 

At one of Qatar’s sport facilities, Elnour et al. (2022) applied a neural 

network that clustered the normalised root mean square error of some 

operational parameters, and then compared that with support vector machine, 

k-nearest neighbours and decision tree techniques. They found their approach 

to be more efficient than the aforementioned three techniques in controlling 

air handling unit operation. Through virtual sensors of multiple operational 

measurements, Kim and Braun (2020) presented a fault detection and 

diagnosis approach via virtual sensors to predict the compressor failure. Their 

study discussed a rooftop air conditioner that works as a terminal unit; the 

sensors were linked to the measurements of three operational parameters, 

refrigerant mass flow, refrigerant charge and air flow. Lauro et al. (2014) used 

fuzzy logic clustering to predict the abnormal behaviour of a particular 

building’s fan coil unit. Li and Wen (2014) used wavelet transform with the 

principal component analysis technique to predict some air handling unit 

faults. Liu et al. (2021) applied the Markov Chain Monte Carlo algorithm to 

drive the statistical characteristics of an air handling unit’s faults levels.  

On a single terminal unit, Lo et al. (2007) applied fuzzy genetic algorithm 

to eliminate sensor false signals. The study of Luo et al. (2019), as explained in 

the chillers and pumps subsections and using k-means clustering algorithm, 

also focused on terminal units by detecting sensors faults. By utilising 

ASHRAE’s thermal comfort database, an experimental study compared the 
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thermal sensation vote and the predicted mean vote by use of a random forest 

model, resulting in approximately 65 per cent accuracy in the thermal sensation 

vote prediction but with no clarification on any fault (Luo et al., 2020a). The 

study of Miyata et al. (2019), as mentioned in the chiller and pump subsections, 

included air handling units, but they did not define the related faults. From an 

ASHRAE project dataset, Montazeri and Kargar (2020) applied six algorithms 

(namely support vector machine, radial basis function, kernel principal 

component analysis, decision tree, deep belief network and shallow neural 

network) to detect the sensor and actuator faults, insisting that the decision 

tree model had the best prediction accuracy. 

ASHRAE datasets were not the only source in developing fault detection 

and diagnosis within the literature. Novikova et al. (2019) utilised a dataset 

called ‘VAST Challenge 2016’ to develop a simulation model that monitored 

and assessed terminal unit performance at a three-floor commercial building. 

The data of residential complex buildings were utilised by Parzinger et al. 

(2020) for air handling unit fault detection and diagnosis, using autoregressive 

exogenous variables and random forest techniques. Both techniques showed 

similar and acceptable prediction accuracy. Rafati et al. (2022) utilised non-

intrusive load monitoring software in terminal unit fault detection and 

diagnosis. Extended Kalman filter algorithm was applied to present a fault 

detection model for a residential air handling unit, and it was successfully 

detected an undercharge fault with 70.6 per cent accuracy (Chintala et al., 

2024). 

In collaboration with a leading building management company, Satta et 

al. (2017) proposed a PdM approach for the cohort of 17 appliances that are 

similar to terminal units, and then examined this cohort at an Italian hospital. 

Using historical data of different variables such as indoor temperature, they 

used decision tree to detect the abnormal behaviour of these appliances. They 

argued that the reciprocal dissimilarities between appliance behaviour can 

expose an upcoming fault with enough anticipation to allow for a proactive 

meddling to avert breakage in operation. Tehrani et al. (2015) addressed one 

fault related to a particular terminal unit at one Canadian university. The fault 

was the filter blockage, and the associated data sample size was more than 

3000 readings of fan speed, taken every 30 minutes. Moreover, they indicated 

that the performance of the unit in discussion improved using decision tree 

instead of artificial neural network. Furthermore, Shakerian et al. (2021) 
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recommended applying the synthetic minority oversampling technique to 

improve the prediction accuracy.  

Sulaiman et al. (2015) developed a fuzzy fault detection model for 

centralised CWS, using simulation. They implemented the model in the air-

supply damper of an air handling unit, linked to two specific rooms. Three cases 

were studied in their research to simulate the model. Two were related to 

damper faults, and the third was at normal operation, without any faults. They 

identified these faults by checking the room-temperature variation. They noted 

that the developed model resulted in detecting the damper faults, but with no 

technical details. Another fault detection and diagnosis approach, presented 

further by them and explained in the chillers and cooling towers section, also 

covered air handling units (Sulaiman et al., 2020). This study addressed the 

faults related to the compressor and damper. Thumati et al. (2011) developed 

a generic simulation model to detect terminal unit faults and to isolate the 

associated residual errors. Their idea could be presented perfectly by using 

virtual sensor approaches such as the one by Verbert et al. (2017).  

At a residential facility, Turner et al. (2017) developed a simulation model 

for the fault detection and diagnosis of air handling units. During seven days’ 

study time, they focused on the outdoor temperature and the set of indoor 

temperature parameters to detect a selected fault, compressor failure. They 

believe that using such data driven approaches for tracking these parameters 

can help easily detect associated faults. Van Every et al. (2017) applied Gaussian 

regression and a support vector machine to estimate air handling unit sensor 

values and to detect associate faults, respectively. With no clarification to the 

faults and frequencies, Velibeyoglu et al. (2018) applied a directed acyclic 

graph to assess the detectability of air handling unit simultaneous faults, 

claiming they have obtained a promising accuracy of results. 

The usage of one or more software or systems – such as LabVIEW-based 

data acquisition system, building information modelling, Internet of Things 

sensors, building automation system and BMS – is important in controlling 

CWS performance that is part of PdM programmes. Villa et al. (2022) extolled 

the usage of such software in air handling unit fault detection and diagnosis 

purposes, and accordingly, they introduced a PdM management framework 

using an automatic machine learning platform called H2O. Using fuzzy logic 

clustering, Wijayasekara et al. (2014) assessed BMS performance in controlling 

the thermal comfort inside selected rooms. Alongside BMS, decision tree and 
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regression tree algorithms were used by Yan et al. (2016b) to develop a 

diagnostic strategy for air handling units. For this experiment, they used data 

recorded from one of the ASHRAE projects to predict faults related to cooling 

coil and fan, including fault free mode. They emphasised that data driven 

methods are unique to glean the useful information from large datasets and 

for modelling the behaviour of HVAC systems. Yu et al. (2012) proposed 

association rule mining, which is a data-mining technique, to test the 

correlation between air handling unit operational parameters at one of the 

complex buildings that contains offices and chemical labs. It seems they faced 

some difficulties regarding data collection; the absence of data sources such 

as sensors or any other reading tools of operational parameters weakens any 

machine learning model in detecting and diagnosing faults of any system (Shi 

et al., 2017). 

Similar to the summary of other three components in the previous 

subsections (chillers, cooling towers and pumps), Tables 15 and 16 present the 

same ideas as in Tables 9 and 10 but concerning literature on terminal units. 

Table 15: Summary of terminal unit’s faults 

Fault Name Number of Studies Addressing this Fault 

Faulty variable air volume 22 

Faulty fan 5 

Compressor failure 3 

Filter blockage 1 

Faulty filter coil system 2 

Cooling coil blockage 2 

Return damper jam 8 

Speed reducing the supply fan 3 

Sensor bias 12 

 

Table 16: Summary of terminal unit’s frequencies utilised for data collection 

Operational Parameter 

Name 

Range of Minimum 

Frequency 

Range of Maximum 

Frequency 

Set/space/ indoor 

temperature 
Not specified 

Between 10 hours and 

seven days 

Indoor cooling load Not specified 10 hours 

Supply air temperature Not specified Three days 

Outlet water 

temperature 
Not specified Three days 

Return air temperature Not specified Not specified 

Exhaust air temperature Not specified Not specified 

Discharge air 

temperature 
30 minutes Not specified 
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Air flow Not specified Three days 

Outdoor temperature Not specified Seven days 

Refrigerant charge Not specified Not specified 

Refrigerant mass flow Not specified Not specified 

 

2.6 Discussion 

 

2.6.1 General View 
 

From the previous section, it is observed that chillers and terminal units 

were mainly researched, while there was little research on cooling towers and 

pumps. Following the systematic literature review, the maximum number of 

research studies on chillers was carried out from 2016 to 2019, whereas on 

terminal units, research was primarily conducted in 2020. Regarding cooling 

towers and pumps, 2019 recorded the maximum number of research studies 

for both components. Figure 8 highlights the research trends from 1999 

onward. 

 

 

 

Figure 8: Research trends 

https://www.mdpi.com/2075-5309/12/8/1229#fig_body_display_buildings-12-01229-f006
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The systematic literature review aims to address the guiding research 

question outlined in this chapter, which focuses on exploring methods of 

implementing a PdM programme and fault detection framework for a CWS. 

The primary objective of the research question is twofold. Firstly, it seeks to 

understand the preparatory measures undertaken by researchers for the 

implementation of the PdM or fault detection framework. This involves 

examining how researchers identify and analyse system faults, which forms the 

foundational basis for implementing the PdM or fault detection framework. 

Additionally, it involves identifying operational parameters that enable 

researchers or users to monitor the system and detect faults, as well as 

understanding the sample size and data sources utilised in this process. 

Secondly, the research question aims to investigate the tools, methods, 

programmes or control strategies employed in the development of the PdM 

or fault detection framework. So, the fifth section of this chapter (Applications 

of PdM Strategy for CWS) is presented based on these two aims of the guiding 

research question. In addition, the systematic literature review has been 

prepared and then written following the proposed PdM workflow by Achouch 

et al. (2022), as presented in Table 8. So, each considered study has undergone 

these activities unless information is missing. 

The considered studies occasionally addressed CWS components 

independently and other times in combinations. From a combination point of 

view, some addressed either two components or three components in total 

although no research study addressed the whole system (i.e., four 

components) at once, and for this reason, the previous section was divided into 

four subsections, a subsection for each CWS component. As stated previously 

in this subsection, the majority of the considered research studies investigate 

terminal units (approximately 48 per cent of the total number of studies), and 

the next is chillers (approximately 32 per cent of the total number of 

studies). Table 17 presents the number of considered studies that addressed 

either a single component or more than one within the same study. Table 18 

summarised the key findings of the considered studies that are addressed 

more than one CWS component within their studies. 

 

 

 

 

https://www.mdpi.com/2075-5309/12/8/1229#table_body_display_buildings-12-01229-t003
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Table 17: Breakdown of the considered research studies of the literature 

CWS Components 
Number of Considered 

Studies 

Just chillers 63 

Just cooling towers 6 

Just pumps 6 

Just terminal units 86 

Chiller and cooling towers 5 

Chillers and pumps 2 

Chillers and terminal units 5 

Cooling towers and pumps 1 

Pumps and terminal units 1 

Chillers, cooling towers and pumps 3 

Chillers, pumps and terminal units 2 

Chillers, cooling towers and terminal units 1 

Cooling towers, pumps and terminal units 1 

Total 182 

 

Table 18: Key findings of the literature considered more than one chilled water system 

component 

Reference 
CWS components 

addressed 
Key findings 

Bouabdallaoui et al. (2021) 
Pump and Terminal 

Unit 

• Internet of Things devices are 

crucial for fault detection 

techniques. 

Wang et al. (2010) 
Chiller, Cooling 

Tower, and Pump 

• Principal component analysis 

algorithm is valid to detect 

the clogging fault in pumps. 

• The said algorithm is also 

valid to detect the sensor bias 

in chillers. 

• The said algorithm is valid to 

detect the air fan degradation 

fault in cooling tower as well. 

Miyata et al. (2019) 
Chiller, Pump, and 

Terminal Unit 

• The operational uncertainty in 

the aforementioned CWS 

components can be well 

detected by utilising the 

Monte Carlo simulation. 

Motomura et al. (2019a) Chiller and Pump 

• Applying simulation models in 

association with BMS is useful 

to monitor the chillers and to 

detect their faults. 

• It is important to understand 

the pump specifications 

before implementing fault 

detection techniques. 
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Luo et al. (2019) 
Chiller, Pump, and 

Terminal Unit 

• k-means clustering 

algorithm is ideal to detect 

the sensor bias in the 

aforementioned CWS 

components. 

Hashemian (2011) 
Cooling Tower and 

Pump 

• Wireless sensors technique 

is applicable to detect the 

air fan degradation in 

cooling tower. 

• The said technique is valid 

for secondary pump 

maintenance as well as it 

can detect excessive noise, 

faulty control switch and 

faulty starter faults. 

Sulaiman et al. (2020) 

Chiller, Cooling 

Tower, and 

Terminal Unit 

• Multi-layer perception 

algorithm is more accurate 

than deep learning and 

support vector machine in 

detecting the faults in the 

aforementioned CWS 

components. 

Ma and Wang (2011) 
Chiller and Cooling 

Tower 

• The degradation of the 

aforementioned CWs 

components can be 

effectively detected by 

utilising a hybrid quick 

search method. 

Hu et al. (2019) 
Chiller, Cooling 

Tower, and Pump 

• Support vector machine 

algorithm can make a 

detection model even with 

small data size. 

Zhou et al. (2009a) 
Chiller, Cooling 

Tower, and Pump 

• By formulating the 

performance index of any 

chiller’s operational 

parameter, the evaporating 

fouling fault can be 

detected by making a 

regression model. 

• The air fan degradation 

fault in cooling tower can 

be detected by making a 

regression model via 

formulating the 

performance index of any 

operational parameter. 
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• In pump, the partial 

clogging fault can be 

detected by building a 

regression model, which 

can be built through 

formulating the 

performance index of any 

operational parameter. 

 

From the above and, as stated previously in this subsection, it has been 

deduced that no research from the considered studies has addressed the entire 

CWS within the same study, and therefore, the first research gap of this thesis 

is presented as follows: 

Research Gap #1: The impact of the technical correlation between all four CWS 

components on fault detection remains unknown. 

The following three subsections discuss the three stages of the PdM 

workflow, proposed by Achouch et al. (2022) and presented in this chapter in 

Table 8. 

 

2.6.2 Chilled Water System Faults 

 

To begin, the faults considered in this literature can be defined as any 

failure that may lead to a CWS breakdown over time. In this regard, it has been 

observed that some studies were focused on only one fault, such as the 

condenser fouling of chillers. Significant variations exist among the studies 

regarding the number of faults addressed for all CWS components. While some 

studies focus on specific faults, others cover a broader range. Moreover, certain 

studies may address the same faults, while others target different ones. 

Conversely, some studies either do not specify the faults addressed or provide 

inadequate descriptions, often citing "abnormal behavior" as a fault, for 

instance. Additionally, certain studies may list multiple faults but fail to address 

or predict all of them in their case studies. 

For chiller related studies that stated the faults, most addressed primarily 

the condenser fouling fault and secondly the refrigeration leak fault. On a 

related note, some of the studies extended their discussion by clarifying the 

reason behind the occurrence of condenser fouling and compressor 
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overcharging faults. Those studies indicated that high chiller load is affecting 

the chiller performance and leading to the aforementioned faults, which are 

condenser fouling and compressor overcharging. Some of the studies 

indicated that the condenser fouling fault as well as the refrigeration leak fault 

were determined as the faults with the most negative impact on CWS reliability 

and on occupant satisfaction. For the cooling towers section, fouling of fills and 

air-fan degradation are the most addressed faults. The most addressed fault of 

the pumps is pump clogging. For the terminal units, the most addressed faults 

were related the variable air volume in addition to other faults like return 

damper jam, cooling coil blockage, and speed reducing of the supply fan. 

Sensor bias or controller false alarms were considered in some of the 

aforementioned studies as a fault. According to most of the reviewed literature, 

fault free mode must be considered in any research to increase prediction 

reliability. Some studies discussed human factors that have a significant impact 

on fault appearance, such as skills of the maintenance officer who manages the 

system, but they did not present any related fault. Figure 9 below summarises 

the faults presented by the literature for each CWS component. 

 

Figure 9: Chilled water system faults presented in the literature 
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During the review of studies concerning system faults, despite the wealth 

of valuable information they provided, the disparities between the studies 

highlighted the emergence of the second research gap in this thesis. This gap 

can be summarised as follows: 

Research Gap #2: There is a significant level of variations in defining CWS faults 

and their importance/ impact. 

 

2.6.3 Operational Parameters, Frequencies and Data Collection 

 
Operational parameters are the measurable technical factors that provide 

numerical data of the system performance (Levitt, 2011). The readings of any 

of these operational parameters can give a clear glimpse of the health 

condition of the related CWS component as they are linked technically to the 

operation of CWS components (ASHRAE Handbook, 2023; Chang et al., 2023). 

Furthermore, the considered literature did not claim that there is a technical 

correlation between a particular operational parameter and a particular fault. 

Some of the reviewed studies in the literature have chosen different 

operational parameters for their data collection plan such as the chilled water 

leaving temperature for chillers and for cooling towers, the differential pressure 

for the pumps, and the space temperature for the terminal units. Data 

collection serves as the primary activity in constructing the detection model, 

as it necessitates the acquisition of datasets. These datasets typically comprise 

readings of operational parameters along with associated information 

regarding faults. The process of creating datasets involves determining 

frequencies. As per the understanding gleaned from the literature, frequencies 

refer to the time intervals between readings of operational parameters. This 

thesis refers to the shortest time interval between readings as the ‘minimum 

frequency’. Additionally, the duration over which data is collected, representing 

the study period, is termed the ‘maximum frequency’.  

During the review of the considered literature, it has been found that some 

of the studies did not specify which operational parameter their data came 

from. In addition, some of the studies stated the operational parameters but 

did not provide detailed information about the associated data, such as sample 

size or frequencies. Some studies did not address the operational parameters, 

nor the data information used in building the prediction model. With regard 

to the data source, some of the studies used ASHRAE projects, some counted 
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on the sensors, and others relied on historical records of other sites. Moreover, 

some of the considered studies utilised Internet of Things sensors, BMS, or 

building automation systems as sources to obtain their data and to control the 

addressed CWS components. The considered studies using these sources 

either did not offer many details about the minimum or maximum frequencies, 

or these frequencies were not the same between the studies that clarified 

them. A review of the studies in the literature makes apparent that the methods 

of data collection vary among them. Differences in sample size, minimum 

frequencies, and maximum frequencies exist across the studies. This variability 

poses a challenge for future research endeavors aiming to create datasets, 

especially when studying CWS in buildings. Clarifying the optimal approach for 

dataset creation in such cases becomes essential for researchers. 

Further to the above, it is evident that the collected data in the considered 

studies were used to simply build and train the prediction model. In view of 

the final stage of the PdM workflow of Achouch et al. (2022), the considered 

studies have evaluated their prediction models by showing their prediction 

accuracies, calculated based on the collected and utilised data. For this 

research project, evaluating the prediction model requires undertaking 

experimental studies to check its reliability and validity in predicting and then 

detecting faults. So, this thesis has addressed this weakness by conducting 

empirical studies, as will be shown in Chapter 5. 

With regard to the reading tools of the operational parameters such as 

sensors, meters and gauges, it has been observed that no considered study 

has suggested or referred to managerial or technical procedures for installing 

such reading tools in the case of their unavailability at a particular building. But 

considering the nature of this shortcoming in the literature, this research thesis 

addressed this weakness by presenting a proper location for selected 

operational parameters, as will be shown in Chapter 5. On a separate note, 

some literature advised the cleaning of some CWS critical parts such as the air 

handling unit fan scroll and chiller condenser water tubes before collecting the 

data to ensure an excellent machine learning model, but they neglected to 

provide information about how exactly the data should be collected. Some 

studies emphasised that having an excellent machine learning model would be 

challenging if the data sample size is inadequate. This challenge, along with 

the differences between the studies with regard to frequencies, encouraged 

this research thesis to explore justified frequencies that can allow the creation 

of datasets of the prediction model by identifying proper time intervals 
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between the readings of operational parameters (minimum frequency) as well 

as a proper time span for data collection, which is the study period (maximum 

frequency). 

Reviewing the considered studies from operational parameters, 

frequencies and data collection points of view, led to the third research gap to 

be addressed by this thesis, summarised as follows: 

Research Gap #3: The measurement of CWS faults is not standardised leading 

to inconsistent fault detection practice. 

 

2.6.4 Detection Tools and Management 

 
This subsection gives a swift overview on PdM, and fault detection tools 

applied within the considered studies and highlights the major findings. The 

primary methods used are a simulation model, principal component analysis, 

support vector machine, decision tree and artificial neural network (as 

furnished in Appendix A) along with others which are not as common. The 

Appendix showcases which method is applied for which CWS component 

along with the related references. As per the second stage of the PdM workflow 

of Achouch et al. (2022), most of the considered studies have already stated 

the chosen machine learning algorithm but ended their work with building and 

training a model, showing the prediction accuracy but lacking solutions to fix 

the faults in stated cases. 

Other studies include a comparison between several machine learning 

tools from an accuracy point of view. In most, decision tree and artificial neural 

network scored the highest accuracy percentage in predicting faults. Generally, 

per the claims within literature, all machine learning techniques showed very 

good accuracies in predicting faults. Similarly, some of the studies combined 

machine learning techniques in PdM applications such as autoregressive 

exogenous variables with support vector machine, suggesting that such 

combinations have positive outcomes in predicting the CWS faults. But again, 

it is worth noting that the studies reviewed in this context concluded their PdM 

programmes or fault detection models after establishing and training the 

prediction model, as well as demonstrating its accuracy in predicting faults. 

However, a notable gap exists in these studies as they often neglect to offer 

solutions for addressing the identified faults. Some studies indicated the 

benefits of applying control strategies like demand-side management in 

https://www.mdpi.com/2075-5309/12/8/1229#table_body_display_buildings-12-01229-t004
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saving energy but likewise, did not offer solutions for fixing the faults when 

one occurred. From a management point of view and following the third stage 

of the proposed PdM workflow, presented in this chapter in Table 8, the 

intelligent maintenance framework must provide solutions to fix the 

occurrence of faults, but the reviewed literature confirmed that the previously 

proposed PdM programmes or fault detection approaches ended with building 

and training a prediction or a detection model, devoid of management 

solutions for rectifying faults. 

From the above finding, the fourth research gap of this thesis can be 

summarised as follows: 

Research Gap #4: CWS fault resolution remains inconclusive. 

 

2.7 Conclusion 

 

At the beginning of this chapter, an overview of maintenance 

management in commercial buildings was provided. After that, this chapter 

explored maintenance strategies. Then, the chapter presented an overview of 

the maintenance strategy selected for this research project, which is PdM, 

defining the strategy from an Industry 4.0 point of view. Also, the relation 

between maintenance management and quality engineering was discussed as 

well. Further, this chapter explored multiple applications on PdM strategy for 

various systems and domains.  

This chapter aimed to answer the guiding research question, addressing 

the literature from a managerial point of view. The first goal of the guiding 

research question is to check the arrangements or the preparations to identify 

faults, and the second goal is to inquire about predictive tools applied in line 

with Industry 4.0. This chapter implemented a systematic literature review that 

included four stages, and then based on the systematic review, it highlighted 

the studies conducted post-1999 on PdM or fault detection for CWS in 

commercial buildings, exploring numerous frameworks, programmes, 

approaches and methods. Following the PdM workflow of Achouch et al. 

(2022), this chapter also identified the gaps discernible from the literature from 

a managerial perspective.  

Following the systematic literature review, especially at the end of its 

second stage, a lack of research covering the entire CWS was noted. The 
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considered studies cover either one, two or three components only. Therefore, 

this chapter focused on all four CWS components. From a maintenance 

management point of view, this research project intends to consider the entire 

system (i.e., all CWS components in the same PdM programme or fault 

detection framework). So, the first research gap, as mentioned in the previous 

section, arose with this finding, deliberating on the importance of covering the 

entire system rather than only partial coverage of one, two or three CWS 

components. To justify this importance, this research project intended to check 

if there is a correlation between CWS components. So, the first research 

question can be presented as follows: 

First Research Question: Is there a correlation between the components of a 

CWS that makes it important to cover all of them within the same maintenance 

framework? 

With regard to the second research gap, mentioned in the previous 

section as well, it is concluded that CWS may have other faults different from 

those studied in the literature, and therefore, the second research question 

generated for this research project is as follows: 

Second Research Question: Are there any other faults rather than the ones 

mentioned by the literature? 

While following the second stage of the proposed PdM workflow, the data 

stage, it has been noted that the considered studies of the literature were not 

similar with regard to the frequencies used in building and training the 

detection models where the time interval between the readings of the 

operational parameters or the study period were not same, even in studies 

addressing the same CWS components. It has been also noted that the rest of 

considered studies either did not provide the time interval between readings 

of operational parameters, did not provide the study period, did not give clear 

information about data collection methodology, or did not identify the source 

of the data. This finding can be extracted from Tables 10, 12, 14, and 16 in this 

chapter. Also, some of the considered studies which utilised data from ASHRAE 

projects, for example, did not provide details of data from the time interval 

between the readings of operational parameter or did not clarify the time span 

of these data (study period). Therefore, the third research gap arose according 

to this observation. This research intends to propose a base that can provide 

fault frequencies and then utilise this for building and training the proposed 
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detection model. Accordingly, the third research question of this research 

investigation can be presented as follows: 

Third Research Question: How can an intelligent detection model be built and 

validated? 

The final stage of the proposed PdM workflow is to complete the 

maintenance framework by rectifying the occurred faults or issues. The 

considered research studies of the literature, however, did not provide 

solutions for detected faults, ending instead by only tracing the faults or 

showing the accuracy of the detection model. Therefore, the fourth research 

gap arose, as mentioned in the previous section as well, and accordingly, this 

thesis sought to find actions to fix CWS faults. So, the fourth research question 

of this thesis can be presented as follows: 

Fourth Research Question: What are the actions required to fix the CWS faults? 

The aim of this research is to propose a holistic fault detection framework 

for CWS at commercial buildings in line with Industry 4.0. To accomplish this, 

the thesis proposed a methodological framework with three phases – set-up, 

machine learning and quality control – as explained in detail in Chapter 5. The 

main goal of the proposed framework is to create a detection model by 

utilising a machine learning algorithm. In accordance with the PdM workflow 

proposed by Achouch et al. (2022) and presented in this chapter (Table 8), the 

third stage of the workflow was to evaluate the prediction model, which means 

assessing its performance in tracing and detecting faults. Based on that, the 

above research question of this thesis can cover the said task. 

This thesis has performed further actions to answer the above research 

questions as will be explained in Chapters 3, 4 and 5. These research questions 

have been re-numbered for a logical order to match this research flow. From a 

fault point of view, this research has performed an action to identify new faults 

and another action to validate that identification. Also, this research project 

has performed an action to provide a solution for each identified CWS fault. 

For data collection, this research project performed an action to verify the 

required sample size as well as the frequencies of data readings and records 

and recommends creating the datasets from the building under study to 

obtain more accurate data about the current operational situation and to avoid 

dependence on historical records from other buildings or projects. In addition, 

this research has established a control plan after building, training and testing 
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the detection model to maintain continuous and meticulous tracking of the 

building’s operation and maintenance. 
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Chapter 3: Research Design 

“A well-structured maintenance programme for HVAC systems is not optional but it is 

compulsory." 

(Suttell, 2006) 

 

3.1 Introduction 

 

This chapter explores aspects of designing this present study from a 

research point of view. It explores the philosophical perspective, the research 

approach, the research planning, the assigned research methods, the ethics of 

the research, and finally, the quality of the research. To recall the main goal of 

the previous chapter, this thesis has included a comprehensive, systematic 

literature review which investigated studies that proposed PdM frameworks, 

approaches or fault detection and diagnosis protocols in line with Industry 4.0. 

The aforementioned systematic literature review study explained and focused 

on CWS with four components: chillers, cooling towers, pumps and terminal 

units. Based on the guiding research question, mentioned in the previous two 

chapters, the systematic literature review considered 182 studies that applied 

different methods or machine learning algorithms to predict CWS faults. After 

reviewing the literature and the associated four research gaps, four research 

questions were developed, as presented in the previous chapter. In this 

chapter, those research questions are recalled in Table 19 below into the same 

logical order as the outcome of this research project. 

 

Table 19: Logical order of the research questions 

Research Questions Order 

Number 

Is there a correlation between the components of a CWS that makes it important 

to cover all of them within the same maintenance framework? 
1 

Are there any other faults rather than the ones mentioned by the literature? 2 

How can an intelligent detection model be built and validated? 3 

What are the actions required to fix the CWS faults? 4 
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3.2 Philosophical Perspective 

 

This section illustrates the philosophical perspective of this research. First 

of all, research philosophy is defined as a framework that directs the manner of 

conducting research according to notions of reality and nature of knowledge 

(Collis and Hussey, 2021). It emphasises the system of beliefs, the assumptions 

and the rationale across knowledge development in a specific field or domain 

(Saunders et al., 2019). Awareness of philosophical assumptions is required for 

researchers while choosing a research topic. Saunders et al. (2019) confirm the 

importance of a philosophical commitment from several points of view such as 

the philosophical position of the researcher and the manner of undertaking 

research; the nature and  background of the topic that assists the researcher in 

forming all facets of the planned study; and the selection of the research 

methodology, the research strategy, the technique of data collection and the 

associated analysis procedures that allow the designing of a cohesive research 

study or project. 

Research philosophy encompasses the development of research 

assumptions alongside an understanding of research knowledge and its nature 

(Saunders et al., 2019). According to Saunders et al. (2019), assumptions are 

acknowledged as a primary statement of reasoning, but are based on the 

philosophising researcher’s knowledge and visions generated as a result of 

intellectual thoughts. Also, Hitchcock and Hughes (2002) explain that all 

research arises from assumptions. Therefore, it is understood that assumptions 

may differ between researchers based on the nature of knowledge and its gain 

(Lancaster, 2007). Zukauskas et al. (2018) list three main trends of research 

philosophy: the positivist, the interpretivist, and the pragmatist philosophies. 

The scientific research paradigm assists to define the scientific research 

philosophy. Literature on scientific research explains that a researcher must 

have a visible sight of the paradigms that offer philosophical, theoretical, 

instrumental and methodological foundations (Zukauskas et al., 2018). 

Alghamdi and Li (2013) assure that the scientific research paradigm depends 

on the aforementioned foundations. According to Cohen et al. (2017), the 

scientific research paradigm can be defined as a wide structure comprising 

visualisation, beliefs and outreach of different theories and practices used to 

carry out a particular scientific research study. Gliner et al. (2011) depict the 

scientific research paradigm as a way of thinking about research, the process 

of accomplishing it, and implementing that process via research methods. 
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Easterby-Smith et al. (2018) list three main components of the scientific 

research paradigm in order to comprehend the philosophy of any research, as 

shown below in Table 20. Similarly, Zukauskas et al. (2018) compared the 

aforementioned trends of research paradigms from the point of view of each 

component, as summarised below in Table 21. 

Table 20: Components of the scientific research paradigm  

Research Paradigm Component Description 

Epistemology 

General parameters and assumptions associated 

with an excellent way to explore the real-world 

nature 

Ontology 

General assumptions created to perceive the real 

nature of society (to understand the real nature 

of society) 

Research Method 

Combination of different techniques used by the 

scientists or the researchers to explore different 

situations 

 

Table 21: Comparison of main paradigms with regard to components 

Research 

Paradigm 

Positivism Interpretivism Pragmatism 

Ontology Reality is objective and 

perceived 

Researcher and 

reality are 

inseparable 

Reality is vague, but 

based on language, 

history, and cultural 

respect 

Epistemology Acquisition of 

knowledge is not 

related to values and 

moral content 

Knowledge is based 

on the abstract 

descriptions of 

meanings, and 

formed of human 

experiences 

Knowledge is derived 

from experience. The 

researcher restores 

subjectively assigned 

and “objective” 

meaning of other 

actions 

Research 

Methods 

Surveys, experiments, 

quasi-experiments 

Case studies, 

interviews, 

phenomenology, 

ethnography, and 

ethnomethodology 

Interviews, case 

studies, and surveys 

 

 Following the above information, this research thesis adopted the 

pragmatist paradigm introduced by William James in 1898 (Malachowski, 

2014). The pragmatist paradigm is defined as a philosophical tradition that 

considers ideologies as instruments for prediction as well as for problem 

solving (Bacon, 2012). This research paradigm tries to enhance the 

understanding of the industry to be more practical in providing more 
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appropriate practices (Korte, 2022). According to Sakib and Wuest (2018), this 

pragmatist research paradigm is ideal for PdM research. Table 22 illustrates the 

assumptions of the pragmatist paradigm and implications for this research 

thesis. 

 Table 22: Implications of pragmatist assumptions 

Assumption References Implication in this research thesis 

The epistemological 

pragmatist assumption is 

that knowledge is always 

based on experience 

(Kaushik and Walsh, 2019) 

Based on the research gaps and generated 

research questions, professionals from 

several commercial buildings were 

contacted about the CWS faults and their 

occurrence frequencies, which is explained 

in detail in Chapter 4.  

The ontological pragmatist 

assumption is that reality is 

ambiguous, but it is based 

on the history 

(Creswell and Creswell, 

2017) 

Following the research gaps and in light of 

the generated research questions, faults 

with their occurrence frequencies of CWS 

are unknown in advance but can detected 

by utilising historical data. This course of 

action is explained in detail in Chapter 5. 

The methodological 

pragmatist assumption is 

to employ a survey or an 

experimental case study 

(Aneta and Jerzy, 2013; 

Saunders et al., 2019)  

To answer the generated research 

questions, this thesis has conducted an 

industry survey followed by a case study via 

methodological framework. Chapters 4 and 

5 show this in detail. 

 

3.3 Research Approach 

 

Research approach is defined as a systematic and structured way for 

conducting a research study, and each approach differs in terms of its inherent 

logic and methods of investigations (Okoli, 2023). There are three main 

research approaches: deductive, inductive, and abductive (Kennedy and 

Thornberg, 2018). Performing a research study via a conceptual structure and 

theoretical background developed from the scientific literature, and then 

testing that with empirical observation is referred to as a deductive research 

approach (Saunders et al., 2019; Fife and Gossner, 2024). On the other hand, 

the inductive research approach strives to generate a theory with the collection 

of related data in an effort to explore a phenomenon (Saunders et al., 2019; 

Gupta et al., 2022). With regard to the third type of research study, the 

abductive approach, the researcher begins by collecting relevant data to 

explore a topic, determine themes or expound patterns (Saunders et al., 2019; 

Bürger and Fiates, 2024). The abductive approach lets the researcher generate 

a new theory or amend an existing one by testing via a supplementary data 
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collection (Saunders et al., 2019; Zheng and Pee, 2024). Table 23 below 

summarises the key facets of these three research approaches (Saunders et al., 

2019). 

             Table 23: Facets of the three research approaches 

Research 

Approach 
Deductive Inductive Abductive 

Logic 

In a deductive 

inference, when the 

premises are true, 

the conclusion must 

be true as well 

In an inductive 

inference, known 

premises are 

used to generate 

untestable 

conclusions 

In an abductive inference, 

known premises are used 

to generate testable 

conclusions 

Generalising 

from/to 

Generalising from 

the general to the 

specific 

Generalising from 

the specific to the 

general 

Generalising from the 

interactions between the 

specific and the general 

Data usage 

Data collection is 

used to evaluate 

propositions or 

hypotheses related 

to an existing theory 

Data collection is 

used to explore a 

phenomenon, 

identify themes 

and patterns, and 

to create a 

conceptual 

framework 

Data collection is used to 

explore a phenomenon, 

identify themes and 

patterns, locate these in a 

conceptual framework and 

test this via subsequent 

data collection 

Theory 
Theory falsification 

or verification 

Theory 

generation and 

building 

Theory generation or 

modification; incorporating 

existing theory, where 

appropriate, to build new 

theory or amend existing 

theory  

 

This research thesis employs the abductive research approach in line with 

the adopted scientific research paradigm, which is pragmatism. Based on the 

systematic literature review, the employed research approach is developed in 

a conceptual and theoretical way, and therefore, two research methods – an 

industry survey and a case study – have been assigned to fill the research gaps 

and accordingly, to answer the generated research questions as presented in 

the next sections of this chapter as well as in Chapters 4 and 5. 
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3.4 Research Planning 

 

This section shows the road map created for this research project. 

According to Leedy and Ormrod (2018), research planning starts by 

identifying the idea based on the research motivation and the background of 

the topic, and accordingly, the guiding research questions should be finalised 

prior to beginning the literature review. Based on the outcome of the literature 

review, the research gaps are recorded and then research questions generated 

to guide the study in discussion. After that, the research methods are selected 

based on the epistemological and ontological assumptions, which include 

data collection and analysis. Buie (2018) suggests the use of an input-process-

output diagram for problem solving planning, and accordingly, Figure 10 

below shows a simple view of planning this research thesis via three phases. 

Each step of the road map of this research has either been explained in 

previous chapters or will be explained in upcoming chapters. 

 

Figure 10a: Research thesis road map (phase 1) 
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Figure 10b: Research thesis road map (phase 2) 
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Figure 10c: Research thesis road map (phase 3) 
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3.5 Assigned Research Methods 

 

A glance at the four research questions generated highlights two 

keywords; these are the main pillars of this research. The first one is ‘faults’, 

which are descriptive data, and the second is ‘frequencies’, which are the 

readings of the operational parameters as well as the study period. These are 

numerical data, so this research thesis has opted for mixed methods 

methodology in line with epistemological and ontological assumptions. Mixed 

methods can be defined as an integration between quantitative and 

qualitative approaches (Heyvaert et al., 2013). A quantitative approach uses 

numerical data while a qualitative approach uses descriptive data (Saunders 

et al., 2019). Table 24 outlines the main characteristics of a mixed methods 

approach (Creswell and Tashakkori, 2007; Mitchel, 2018; Saunders et al., 2019). 

Table 24: Main characteristics of mixed methods methodology  

Characteristics Mixed Methods Research Design 

Research philosophy 
It is associated with the epistemological and ontological pragmatism 

approach 

Research approach Abductive approach can be used 

Typical goals 

Producing a robust description and interpretation of data, making the 

quantitative results more understandable, and understanding wider 

snap of qualitative findings 

Data collection Uses structured and validated instruments for data collection  

Role of the researcher 

To answer the research questions that neither quantitative nor 

qualitative methods could answer alone, and to explain the statistical 

results more deeply 

Research strategy 
Generally associated with experimental case study and survey 

research strategy 

Main advantage Flexibility  

Main disadvantage Workload 

  

Following the systematic literature review, four research gaps were 

listed with four research questions generated accordingly. Table 25 presents 

the assigned research method that intended to answer each research 

question. 
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Table 25: Thesis research methods 

Research Questions Assigned Research Method 

1) Is there a correlation between the components of a 

CWS that makes it important to cover all of them within 

the same maintenance framework? 

Industry survey and case study 

2) Are there any other faults rather than the ones 

mentioned by the literature? 
Industry survey and case study 

3) How can an intelligent detection model be built and 

validated? 
Industry survey and case study 

4) What are the actions required to fix the CWS faults? Industry survey and case study 

  

3.5.1 Industry Survey Design 

 

With regard to the first research method, which intended to answer the 

research questions displayed in Table 25, a survey is defined as a research 

method utilised to collect data from a predetermined group of participants to 

solicit information and thoughts on diverse topics of interest (Schouten et al., 

2017). It lets the researcher collect quantitative and qualitative data which can 

be illustrated and analysed using descriptive and inferential statistics 

(Saunders et al., 2019). Collecting data related to any study is important in 

terms of harmonisation with research goals (Ramakrishnan et al., 2012).  

According to Levy and Lemeshow (2013), survey design comprises two 

steps: 1) developing the sampling plan, and then 2) establishing the 

procedures for obtaining population estimates from the sample data as well 

as for estimating the reliability of those population estimates. The sampling 

plan is the methodology that will be utilised to choose the sample from the 

population (De Leeuw et al., 2012). The sampling plan depicts the approach 

that should be used to select the sample, how an adequate sample size should 

be determined, and the choice of media through which the survey should be 

administered and distributed (Laaksonen, 2018). This might be telephonic or 

face-to-face interviews, for example, or mailed surveys using either postal or 

electronic mail, or a web-based survey (Laaksonen, 2018). Anseel et al. (2010) 

advise that while crafting the survey, the researcher must determine the 

method of administrating the survey such as self-completed questionnaire. 

For the second step of the survey design, the process involves identification 

of the desired response rate and the required level of accuracy for the survey 

(Salant and Dillman, 1994; Laaksonen, 2018). Survey design procedures 

require input from stakeholders who will utilise the survey data and from 
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those who will conduct the survey. Ghauri and Gronhaug (2005) advise 

specifying the required data while crafting the survey. According to Levy and 

Lemeshow (2013), data users should determine the measurable variables, the 

required estimates, the needed reliability and validity to ensure usefulness of 

the estimates, and any resource limitations that could impact survey 

implementation. Levy and Lemeshow (2013) suggest that the people who will 

conduct the survey may furnish additional inputs regarding resource 

requirements and offer alternative sampling procedures they deem practical 

and adequate to the task.  

The main instrument of any survey is the questions, which can be open-

ended or closed-ended. They should, of course, be harmonised with the 

educational level of the intended participants (Fowler, 1995). Open-ended 

questions let participants answer in their own words and allow the researcher 

who is conducting the survey to explore ideas that would not otherwise be 

readily in mind (Salant and Dillman, 1994). In contrast, closed-ended 

questions require participants to select responses from among a given group 

of response options (Salant and Dillman, 1994). The wording and the logical 

order of the questions should be scrutinised while constructing the survey 

(Ghauri and Gronhaug, 2005). According to Anseel et al. (2010), the survey 

must be pre-tested, and to do so, a pilot study conducted. In this regard and 

in order to execute the survey, according to Levy and Lemeshow (2013), a pilot 

study is vital prior to distributing or conducting the survey. A pilot study is 

used to assess and review the survey questions and the choice of the targeted 

participants either by dependable experts in the field or via group discussion 

of stakeholders who are familiar with the aim of the survey (Fowler, 1995). 

Based on the above valuable information, the industry survey of this 

research has been carefully constructed and a pilot study undertaken before 

sending the survey to the research participants, as explained in detail in the 

next chapter. On a related note, the author of this thesis has added the word 

‘industry’ to ‘survey’ to be ‘industry survey’ as the target respondents are from 

industry and the survey has technical information and questions. According 

to this present study, data collected from the industry survey will open a space 

to investigate the operational circumstances at buildings managed by the 

participants. As concluded by the systematic literature review, an industry 

survey investigates commercial buildings in the areas and cities in which 

buildings will be studied, and here in this research thesis, the city of Riyadh in 

the Kingdom of Saudi Arabia has been chosen.  
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3.5.2 Case Study Design 

  

With regard to the second research method intended for answering the 

research questions and to verify the answers of the industry survey, and to 

present a holistic intelligent maintenance via methodological framework, a 

case study method was identified. Case study is defined as a strategy for 

undertaking research that involves an empirical investigation of a particular 

trendy phenomenon within its real-life context using multiple sources of 

evidence (Woodside, 2010). From an engineering management point of view, 

case study is a discussion of real-life situations that business executives 

encounter (Schwartz-Shea and Yanow, 2013). The case study is an appropriate 

method for describing, predicting and controlling processes that are 

associated with a phenomenon at the organisational level (Beach and 

Pedersen, 2016). It can produce an in-depth analysis of phenomenon in a 

framework, strengthening the development of historical perspectives, and 

guaranteeing internal validity (Gagnon, 2010). Case study is typically applied 

when three criteria are met: the first, answering the how and why questions; 

the second, when the researcher has little or no control over behavioural 

events; and the third, when the focus of the associated study is neoteric, 

contrary to historical phenomenon (Ridder, 2017). 

There are several approaches for designing case study research, several 

suggested by Robert Yin, Robert Stake and Kathleen Eisenhardt. Yin (2018) 

lists five main steps to design the case study: defining the research questions, 

determining the theoretical propositions, identifying the actual case that the 

researcher would study, linking that case to research questions via data 

analysis, and then reporting the strength of the findings. His approach is 

created primarily for qualitative research. Yin (2018) emphasises that the initial 

step in the research design process should be guided by the research 

questions. Researchers are advised to dedicate significant time and effort to 

formulating these questions thoughtfully. Once the research questions are 

defined, Yin (2018) advises the development of theoretical propositions 

stating what the researcher expects to discover. These propositions are 

something like hypotheses but are not formulated in the exact same way 

(George, 2019). For the third step, Yin (2018) insists that the researcher should 

identify where information will be collected from. After that, for the fourth 

step, Yin (2018) suggests different ways of linking data to the research 

questions, propositions or purpose, such as pattern matching, explanation 
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building, time-series analysis, logic models and cross-case synthesis. Yin 

(2018) advises that sufficient data be collected for better linking and analysis. 

On a related note, Stake (1995) suggests two ways to analyse the collected 

data: categorical aggregation and direct interpretation. Yin’s approach (2018), 

though, advises that data be collected first, followed by data analysis, while 

Stake’s approach (1995) does not suggest a specific point of time during the 

research process for data collection and analysis to begin. The final step of 

Yin’s approach (2018) is to interpret the strength of the case study; this step, 

he insists, applies statistical benchmarks to prove the strength of the case 

study findings. 

With regard to Eisenhardt’s approach (1989), she suggests five steps to 

design the case study research. The first step is defining the research 

questions, the ‘getting started’ step as she refers to it. She emphasises an 

important component of this step – that researchers do their best to avoid 

having a theory or theoretical proposition in advance, meaning that the 

researcher should not propose a theory or a relationship prior to collecting 

data. The second step involves selecting the precise case that will be used. 

After that, she suggests collecting the data, referring to third step as the 

‘crafting instruments and protocol’ step. With regard to this step, she does 

not restrict case study research as a qualitative study as she claims there is no 

frontier in such research, and therefore, the utilisation of both qualitative and 

quantitative data collection tools is permitted. This differs from the previous 

two approaches (Yin, 2018; Stake, 1995), which concentrate solely on 

qualitative studies. The fourth step of Eisenhardt’s approach (1989) entails 

analysing the collected data, the backbone of the case study research she 

explains. Again, in contrast to Yin’s approach (2018), Eisenhardt (1989) claims 

that data analysis can be undertaken even while collecting the data and not 

only after the data collection. The main tactic for analysing the data is 

hypothesis testing, assessing the plausibility of a hypothesis using sample 

data (Eisenhardt, 1989). After stating the hypotheses, which are null 

hypothesis and the alternative one, and collecting the data, the test can be 

conducted either by statistical analysis like analysis of variance, called ANOVA 

test (Walpole et al., 2016) or via machine learning algorithms (Fazai et al., 

2019). The final step of Eisenhardt’s approach (1989) is reporting the case 

study findings and their strengths. In this step, she suggests a comparison of 

findings with the extant literature in order to avoid having those interested in 

such studies vacillate between two different findings that may result in 
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questioning the generalisability of a particular study. Rather, researchers are 

encouraged to think critically and are furnished the opportunity to extend an 

existing theory or to enhance findings of the extant literature. 

 In this current research, the case study takes the first research method a 

step further. A methodological framework is proposed to implement the said 

method. The framework contains three phases: the set-up, machine learning 

and quality control. Two case studies have been implemented following 

Eisenhardt’s approach (1989). One was in a university in Riyadh, Saudi Arabia, 

while the second one was in a hotel; two are investigated for external validity 

purposes. This is explained in detail in Chapter 5. 

 

3.6 Ethics of the Research 

 

This research thesis considered the ethics of research. Saunders et al. 

(2019) assert that participants engaged in research should be fully informed 

that they are subjects of study. This awareness fosters a sense of cooperation 

and encourages participants to willingly share the necessary information (He, 

2023). Table 26 shows the course of actions in terms of the ethics of the 

research. 

Table 26: Ethical considerations 

Research Method Actions 

Industry survey 

• Contact details of participants were 

received officially from the concerned 

authority (Chamber of Commerce, Riyadh 

City). Appendix B contains an e-mail of the 

correspondence between the thesis 

author and the said authority.  

• Participants were promised anonymity. A 

clear statement was included in the body 

of the e-mail sent to targeted participants. 

• Participants gave consent. At the end of 

the industry survey, a message appears to 

the participants in the web-based 

platform of the survey confirming that 

submission means approval.  

Case study via methodological 

framework 

• Executive management gave approval. An 

official letter was sent to senior 

management of the building under study, 

and in return, written approval was 

received.  
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3.7 Quality of the Research 

 

Here in this last section of this chapter, the author checks and affirms the 

quality of the research outcomes. The outcomes, presented in detail in 

Chapters 4 and 5, are primarily a list of CWS faults, their solutions, the 

proposed faults frequencies and the proposed decision tree’s detection 

model. Saunders et al. (2019) list and define three courses of action for 

evaluating the quality of research: reliability, internal validity and external 

validity (Table 27). 

   Table 27: Evaluation elements of research quality 

Element Description 

Reliability 

Reliable research should be reproducible, meaning that the 

techniques of the data collection and analytical procedures can 

produce the same findings if repeated by another researcher at 

another time 

Internal validity The extent of confidence in research outcomes  

External validity 
The ability of the research findings to be generalised and 

implemented somewhere else. 

 

Amaratunga et al. (2002) also made a comparison between research reliability 

and validity as shown below in Table 28. 

Table 28: Comparison between research reliability and validity 

Reliability  Validity 

The extent to which the research results 

can be reproduced when the research 

study is reiterated under similar 

circumstances 

The extent to which the results really 

measure what they are supposed to 

measure 

To check the consistency of the research 

results across periods of time, across 

different investigators, and across parts of 

the study itself 

To check how well the research results 

conform to the founded theories and other 

actions or measures of the same concept 

A reliable measurement is not necessarily 

always valid where the results are likely 

reproducible but they are not inevitably 

correct. 

A valid measurement is typically reliable 

where if a test, a framework or a theory 

produces accurate results, they must be 

reproducible 
 

In this research thesis, the course of action is prepared for assessment 

as presented below in Table 29. 

 

 

https://www.scribbr.nl/methodology/reproducibility-replicability-repeatability/
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Table 29: Quality of research activity in this research project 

Element Element Implementation 

Reliability 

To check if the proposed detection model can trace CWS 

faults over time; also, to check if the solutions provided by 

the industry survey are useful for fixing the occurred faults. 

Internal validity 
To check if the proposed detection model is better than the 

existing PdM tool at the building under study.  

External validity 

To apply the methodological framework at another site and 

check the performance of the detection model; in this 

current research project, a second case study is conducted 

for this explicit purpose. 
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Chapter 4: Industry Survey 

‘’Predictive maintenance is, essentially, the gold star of the maintenance world - it ensures 

that tasks are performed at just the right time.” 

(Eisner, 2022) 

 

4.1 Introduction 

 

The industry survey is the first research method that is assigned to answer 

the research questions as mentioned in the previous chapter. The type of the 

survey chosen for this research project is an online one as explained in detail 

in the next sections. Table 30 below illustrates the benefits of this online survey 

research method (Fricker and Schonlau, 2002; Easterby-Smith et al., 2018). 

Table 30: Benefits of online surveys 

Benefit Description 

Cost Surveys are proportionately not expensive, with only a minor cost per 

participant. Even if motivations are given to participants, the cost per 

response is significantly less than the cost of administrating paper or 

phone surveys, and the number of potential responses is typically 

greater. 

Extensive Surveys are meaningful in describing attributes of a significant 

population. No other research method can provide this vast capability, 

with a more accurate sample size to collect targeted results in which to 

plot conclusions and to render substantial decisions. 

Dependable and 

flexible 

The anonymity of surveys allows participants to answer with more 

explicit and valid responses. Surveys conducted anonymously offer a 

space for clear and truthful responses more than other research 

methodologies, particularly visibly stated that survey responses will 

remain discrete and classified. 

 

            In this present research, the industry survey serves multiple objectives 

aligned with the identified research gaps and associated research questions. 

The primary aim is to validate the faults identified in the existing literature. 

Based on the findings of the systematic literature review, which revealed the 

possibility of additional or different faults in CWS, the survey seeks to identify 

any new or overlooked faults. To recall the definition of fault, it is any failure 

that may lead to a CWS breakdown over time. The second point is to identify 

the occurrence timings of minimum and maximum faults. These timings assist 

in determining the frequencies, which can then be used in creating the dataset 

of the decision tree model for heightened prediction accuracy. To recall the 

definition of frequencies, these are the time intervals between readings of the 

operational parameters as well as the whole study period. The final point is to 
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understand how to fix the faults, either those identified by the literature or by 

the industry survey. The industry survey has undergone a careful crafting 

procedure as well as a pilot study, as shown in the next two sections. 

 

4.2 Industry Survey Construction 

 

The proposed industry survey contains four parts which solicit both 

quantitative and qualitative data. The survey began a with close-ended 

question asking the participants about the availability of CWS in their facilities. 

The answer required is black or white, either ‘yes’ or ‘no’, and if ‘yes’, 

participants were asked to complete the survey. The second part of the industry 

survey, containing open-ended questions, is related to the faults: the definition 

of the fault is given to the participants, and they are asked about their 

observations of listed faults as collected from the literature for each CWS 

component. Then, they are asked to provide additional faults that have 

occurred in their buildings. Then, participants were asked to suggest a solution 

for each listed fault. 

The third part of the survey is related to fault frequencies: participants 

were asked which fault occurred most commonly, and to specify its frequency 

occurrence time (minimum frequency); and then, which fault occurred most 

infrequently and its frequency occurrence time (maximum frequency). The 

further action of this survey portion is to select the minimum value frequencies 

of the faults that occur often for all responses, and to select the maximum value 

frequencies of the faults that occur infrequently for all responses. The 

innovative idea here is to utilise these two values in creating the dataset that 

is will be used in building any machine learning model, and in particular, a 

decision tree model for this present research. The minimum frequency is 

proposed as a time interval in collecting data for each component, for example, 

the readings should be taken every 45 minutes. In contrast, the maximum is to 

be used as a study period, for example, the readings should be taken over three 

months. Asking the participants to state those two faults and frequencies 

makes obtaining the frequency information simple and avoids any 

misunderstandings. Following the systematic review of literature, the source of 

the associated data are the readings of any chosen operational parameter of 

each component, as these operational parameters reflect the health conditions 

of CWS components.  
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The fourth part of the survey solicits the opinions of participants about the 

chosen operational parameter of each CWS component for validation 

purposes. Although that any operational parameter can give a glimpse about 

the health condition of the related CWS component as mentioned in Chapter 

2, and therefore, it can help building the machine learning model and lead to 

the fault in the component (ASHRAE Handbook, 2023), this part of the survey 

is intended to check the view of the participants about the best operational 

parameter of each CWS component that its readings can build the detection 

model of each CWS component (see Appendix C, part 4). In this research, the 

chosen operational parameters are the chilled water leaving temperature for 

chillers and cooling towers, the pressure for pumps, and the space temperature 

for terminal units. These operational parameters were utilised in some of the 

considered literature to build the associated detection models, and they are 

selected here based on the thesis author’s practical experience. Up to this 

point, the guidelines as suggested by Anseel et al. (2010) as well as by Ghauri 

and Gronhaug (2005) related to the specification of the data type and the 

consideration of question wording and logical order, were fulfilled. Regarding 

the guideline suggested by Anseel et al. (2010) related to the method of 

administration, the self-completed questionnaire is selected as the data 

collection instrument. With regard to the guideline related to pre-testing the 

survey as suggested by Levy and Lemeshow (2013) and Ghauri and Gronhaug 

(2005), a pilot study was performed, as explained below. 

 

4.3 Pilot Study 

 

To adhere to the fourth guideline of survey construction, the draft 

questionnaire was disseminated to 10 experts from academia and industry for 

their review and advice. In addition to the questions, the draft included an 

explanation of the research goal and expectations. This is to ensure that the 

survey questions are fulfilling the requirements for validity and reliability, and 

to raise the response rate (Easterby-Smith et al., 2018; Saunders et al., 2019). 

The experts from academia were from a variety of departments – industrial 

engineering, mechanical engineering, electrical engineering, economics and 

operation management. Also, a manufacturer of each CWS component as well 

as an operation and maintenance contractor were the industry experts. These 
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experts were allotted one month to reply with their feedback. Table 31 

below presents the main comments from both sides, academia and industry. 

Table 31: Pilot study outcomes 

Academia Industry 

The anonymity of the participants and their 

organisations must be protected by adding 

a statement in this regard 

The minimum age of the commercial 

buildings that are managed by the 

respondents should be three years 

The recommended duration for receiving 

responses is three months 

The commercial buildings should have valid 

commercial registration with the concerned 

authority 

Clarify the questions that are related to the 

frequency part with an example 

Each component should have its own 

questions 

The form of writing the solutions for the 

new faults should be made the same for 

every participant 

Avoid using abbreviations 

 

After addressing the experts’ comments, the industry survey was 

finalised (as shown in Appendix C) and inserted into a web-based platform, as 

explained in the next section.  

 

 

4.4 Targeted Participants and Survey Distribution 

 

Following the outcome of the pilot study, the concerned authority in 

Riyadh was contacted, and accordingly, the professionals’ contacts of 761 

commercial buildings were received containing e-mails and phone numbers. 

The professionals are facility managers, operation and maintenance managers 

and support services managers. 

For industry survey distribution, the associated technique of survey 

administration, as part of the survey construction guidelines, is the 

SurveyMonkey platform for web-based questionnaires. This platform 

generates e-mails to participants. Following the recommendations of Andrews 

et al. (2003), the e-mail was given an informative title and the body of the e-

mail carefully worded to encourage the participants to open the e-mail and 

click on the survey link. Likewise, the burden of the survey was minimised for 

participants. The agreement with participants that answers would be 

anonymous was conveyed with a written statement in the body of the e-mail.  

As recommended by the pilot study, the duration of the industry survey 

was three months’ time, including weekends, and auto reminders were sent 
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every seven working days. In addition to auto reminders, a follow-up nudge 

with phone calls encouraged a higher response rate (Hudson et al., 2004). 

 

4.5 Industry Survey Results 

 

This section illustrates the results of the aforementioned industry survey. 

It contains four subsections discussing response rate, analysis of survey 

responses, CWS faults and CWS fault frequencies. 

 

4.5.1 Response Rate 

 

From the 761 participants connected to commercial buildings who were 

contacted, 336 responses were received within the allotted time, out of which 

304 respondents have CWS at their facilities. These are then considered in this 

research thesis. Figure 11 below illustrates the response rate of the survey. 

 

 
Figure 11: Industry survey response rate 

 

The auto reminders and follow-up phone calls appear to have been 

beneficial as responses increased during the second and the third months, 

respectively. Figure 12 shows the number of responses for each month of the 

survey. 

56%

4%

40% No Response

Commercial Buildings With No CWS

Total Considered Responses
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Figure 12: Monthly number of responses 

 

 

4.5.2 Analysis of Industry Survey Responses 

 

As mentioned previously in this chapter, data gathered from the survey 

are both quantitative and qualitative. The faults and their solutions are 

qualitative as these are text-based answers, while the frequencies are 

quantitative as they are numerical responses. The analysis of the survey 

outcomes took 22 working days, excluding weekends (Fridays and Saturdays) 

by an assigned team. The team divided into two sub-teams, referred to for this 

research as internal and external sub-teams. The internal sub-team included 

the thesis author, who is separating the responses of CWS components in one 

sheet for each component, analysing the answers, and then summarising the 

required information, two operation and maintenance managers, who are 

refining the information, and the external supervisor of the thesis author, who 

is supervising the whole process, whereas the external sub-team included 

several experts who participated in the pilot study. Regarding the 

aforementioned two managers in the internal sub-team, one is managing the 

operation and maintenance at a university building (the main case study), while 

the second is managing the same at a hotel building (the case study for 

external validity). With regard to the experts in the external sub-team, they are 

an operation and maintenance contractor as well as a manufacturer of each 

CWS component. The summary provided by the internal sub-team for each 
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CWS component is screened, reviewed, and approved by the operation and 

maintenance contractor. After that, each summary is sent to the concerned 

manufacturer for validation. Those experts are already engaged in operation 

and maintenance activities through annual contracts for both buildings.  

As mentioned in the previous subsection, 336 responses were received 

during the industry survey, out of which 304 responses were considered in this 

research project due to the initial ‘yes’ answer by those participants, affirming 

that they have CWS in their facilities or buildings, so the analysis of the first 

part of the industry survey was straightforward. The second part of the industry 

survey contains the faults and respective solutions which were analysed with a 

coding approach. Corbin and Strauss (2014) call this approach a traditional one 

in analysing text answers of surveys. In this present research, coding began by 

the internal sub-team by reading through the answers of the second part of 

the survey containing the faults and their corresponding solutions. They then 

identified main categories for faults and solutions. This was done by grouping 

similar words or statements, refining them, and then linking the result to each 

fault and its solution. After that, the internal sub-team wrote a concise text for 

each fault and its solution. The faults gathered from the literature were 

delineated in their same written format. The final step of this analysis entailed 

writing a summary for each CWS component that contains the list of faults, 

includes those from the literature and the new ones from the survey, and 

beside each fault, a solution was noted as well.  

Subsequently, the summary was sent to the external sub-team for review 

and validation. For example, the summary of the cooling towers was sent to 

the operation and maintenance contractor and cooling tower manufacturer. 

Table 32 below summarises the analysis of one chiller’s fault and its solution. 

This table contains four columns, the first from the left showing a sample of 

texts written by participants; these texts are related to one of the chiller’s faults. 

The second column from the left shows how this research thesis described this 

fault to reflect the outcome of the analysis of the sample in the previous 

column. This was done by the internal sub-team and verified by the external 

sub-team. The third column from the left shows a sample of texts written by 

the participants; these are related to the solution of each fault. The fourth 

column from the left shows the outcome of the analysis of the sample in the 

previous column, done by the internal sub-team and verified by the external 

sub-team. 
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 Table 32: Sample of text answer analysis and outcome 

Fault as named by 

participants 

Fault name post 

analysis activity 

Solution as presented 

by participants 

Description of 

solution post 

analysis activity 

Condenser approach 

over the limit  

High condenser 

approach 

The associated operating 

cooling tower needs to 

be checked 

The connected 

tunnel of the 

cooling tower in 

operation 

should be 

checked and 

serviced by 

cleaning the fills 

Condenser approach 

breached 

The tunnel that is 

connected to the cooling 

tower requires checking 

the fills and do cleaning 

for them 

The approach of the 

condenser is going up 

The pipeline that is linked 

as a tunnel between the 

cooling tower and the 

chiller needs to be 

inspected by checking the 

fills and clean them 

The high difference 

between condenser 

liquid and refrigerant 

temperature and 

leaving water 

temperature 

Servicing the cooling 

tower tunnel is surely 

required 

Undesirable condenser 

approach 

The technician must 

inspect the tunnel of the 

cooling tower 

Condenser approach 

needs attention 

The person in charge of 

CWS should be asked to 

go to the cooling tower 

associated with that 

chiller and do some 

servicing by cleaning the 

fills 

 

 For the third part of the industry survey, four pieces of information were 

requested from the participants for each CWS component (see Appendix C). All 

participants provided the fault that occurred often in their building and the 

frequency of occurrence, as well as the fault that occurred infrequently and its 

frequency of occurrence for each CWS component. Then, these timings were 

shifted to an Excel file. A column for each CWS component contains 304 values 

of the frequency occurrence time of the faults that occur often, and another 

column for each CWS component containing 304 values of the frequency 

occurrence time of the faults that occur infrequently. This research thesis named 

the frequency occurrence time of the faults that occur often as ‘minimum 

frequency’ and nominated it as ‘x’, and called the frequency occurrence time of 

the faults that occur infrequently as ‘maximum frequency’ and nominated it as 
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‘y’. After that, these values (x and y) were inserted in the two separate columns, 

and then the minimum value of x has been determined using the Min function 

in the Excel, while the maximum value of y has been determined using the Max 

function in Excel. Here, and as mentioned in the second section of this chapter, 

this research thesis proposed an innovative utilisation of these two values, x and 

y. The idea of determining the minimum of values of the x and maximum value 

of the y is to ascertain the most possible proper frequencies that can be used 

in creating a dataset of a machine learning detection model. By getting the 

minimum value of x’s, the guarantee will be raised for picking a proper time 

intervals between the readings of the operational parameter of each 

component, and the guarantee will be raised for picking a proper study period 

for collecting the data by getting the maximum value of y’s, and therefore, a 

proper dataset for each CWS component can be made. The detail of creating 

the dataset is provided in the next chapter. This research thesis proposed 

utilising the ‘minimum frequency’ as a time interval between the readings of a 

particular operational parameter in a particular CWS component, while it 

proposed utilising the ‘maximum frequency’ as a study period for a particular 

CWS component. The proposed minimum and maximum frequencies for each 

CWS component are shown in section 4.5.4 of this chapter. 

 For the final segment of the industry survey, participants were given an 

operational parameter for each CWS component and asked a close-ended 

question: if the selected operational parameters are the best to predict the 

health condition of CWS components or not. The analysis here is to count the 

number of participants in agreement with these selected operational 

parameters and then to determine the percentage out of the total number of 

participants: 304. The percentage for each operational parameter is shown in 

section 4.5.4 of this chapter. As mentioned in the second section of this chapter, 

this activity is for validation purposes of the selected operational parameters. In 

cases where the answer to the question of this fourth part of the survey is ‘no’, 

participants were asked to suggest an alternative operational parameter for the 

related CWS component. These data were analysed using the same coding 

approach as the second part of the industry survey. 
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4.5.3 Chilled Water System Faults 

 

To recall the CWS faults that were presented post systematic literature 

review, there were seven faults for chillers, three faults for cooling towers, eight 

faults for pumps, and nine faults for terminal units. In contrast, the argument 

that the systematic literature review is incomplete has been proven here as the 

survey divulged additional faults for each CWS component. The survey outcome 

provided the research community with 17 faults for chillers, 13 faults for cooling 

towers, eight faults for pumps and 20 faults for terminal units. Figure 13 below 

illustrates the total number of CWS faults and the increment between the 

literature and the industry survey outcomes where these faults are all distinct.  

 
 

 
Figure 13: Number of chilled water system faults post industry survey 

 

As stated previously in this chapter, the faults addressed in the literature 

were listed in the survey for each component and the participants were asked 

if they observe them. Then they were asked to state other faults beyond those 

listed. Furthermore, the survey provided managerial solutions for both the 

faults studied in the literature and the new faults emanating from the survey, 

whereas the previous studies of the literature ended their proposed PdM or 

faults detection and diagnosis programmes by tracing the faults but without 

solutions to rectify the faults. To summarise these outcomes, a table for each 

CWS component describes the faults and its source, either from literature or 

from the industry survey, as well as a solution or action for each fault. Table 
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33 is for chillers, and Table 34, Table 35 and Table 36 are for cooling towers, 

pumps and terminal units, respectively. 

   Table 33: Chiller faults and solutions 

Fault Identified By Solution/Action 

Refrigeration leak Literature 

All the components of refrigeration system including 

tube, joints and valves should be checked, tested and 

rectified as appropriate. 

Evaporating fouling Literature 
The associated parameters should be checked, and 

then the evaporator tubes should be descaled. 

Compressor 

overcharging 
Literature 

The factory sheet should be checked and then the 

charge reduced accordingly. 

Faulty operation 

scheduling 
Literature The control switch should be reset. 

Condenser fouling Literature 
The associated parameters should be checked, and 

then the condenser tubes should be descaled. 

High condenser 

temperature 
Literature 

The return chilled water temperature should be 

checked, and then the tubes should be descaled. 

Sensor bias Literature 
The controller, the artificial agent, or the sensor should 

be checked, verified and replaced if needed. 

Low discharge 

superheat 
Industry survey 

The liquid refrigerant flow in the compressor should be 

checked and adjusted. 

Low evaporator 

refrigerant 

temperature 

Industry survey 
The expansion valve and the filter should be checked 

and cleaned. 

Low oil pressure Industry survey 
The oil filters should be cleaned, and the oil pump with 

its quality should be checked and rectified. 

Low condenser flow Industry survey 
The pressure of the condenser pump in operation 

should be checked and rectified. 

Low chilled water flow Industry survey 
The pressure of the secondary pump in operation 

should be checked and rectified. 

Low cooler water 

temperature difference 

(low cooler delta-t) 

Industry survey 
The lowering efficiency of the primary pump in 

operation should be checked and the pressure reset. 

High cooler water 

temperature difference 

(high cooler delta-t) 

Industry survey 
The accuracy of the water flow’s control should be 

checked and rectified. 

High compressor lift Industry survey The water flow should be checked. 

High motor 

temperature 
Industry survey The compressor parameters should be checked. 

High motor ampere Industry survey 
The linked mechanical system and the motor winding 

should be checked and rectified. 

High condenser 

approach 
Industry survey 

The connected tunnel of the cooling tower in operation 

should be checked and serviced by cleaning the fills. 

High evaporator 

approach 
Industry survey 

The assigned water temperature set-point should be 

checked and reset if needed. 

High condenser 

pressure 
Industry survey The strainer should be checked and cleaned. 

Relief valve discharge Industry survey The pressure sensors should be checked and fixed. 
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Vibration Industry Survey 
The supply water temperature should be checked, and 

the mountings should be reassembled. 

Imbalanced line 

current 
Industry survey 

The loose connection at the terminals should be 

rectified. 

Incorrect manual 

guide vane target 
Industry survey The override sittings should be checked and reset. 

 

 

Table 34: Cooling tower faults and solutions 

Fault Identified By Solution/Action 

Air fan degradation Literature 
The fan should be checked physically, and then 

repaired by grinding or replaced if needed. 

Fouling of fills Literature The fills should be cleaned or replaced if needed. 

Sensor bias Literature 
The controller, the artificial agent or the sensor 

should be checked, verified and replaced if needed. 

Unusual sound Industry survey 
The bearings of the motor in operation should be 

checked. 

Malfunctioning 

blowdown system 
Industry survey The solenoid valves should be checked. 

High water total 

dissolved solid 
Industry survey The chemical treatments should be checked. 

Fills clogging Industry survey 
The chemical treatments should be checked, and 

then the required chemicals refilled if needed. 

Low circulating water 

flow rate 
Industry survey 

The stainer of the associated condenser pump or 

condenser tubes inside the chiller should be 

checked and cleaned. 

Vibration Industry survey 
The motor in operation and its blade alignment 

should be checked. 

Over current Industry survey 
The phase voltage and other electrical connection 

should be checked. 

Rise in circulating 

water temperature 
Industry survey 

The filters should be checked and cleaned or 

replaced if needed. 

Damaged fan Industry survey 

The associated motor should be replaced. In 

addition, the fan should be grinded or replaced, if 

needed. 

Faulty water level 

valve 
Industry survey The valve should be replaced. 

Faulty isolation valve Industry survey The valve should be replaced. 

Motor overheating Industry survey The voltage should be checked and adjusted. 

Low water basin level Industry survey 
The water makeup system should be checked, and 

the water level should be increased. 
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Table 35: Pump faults and solutions 

Fault Identified By Solution/Action 

Clogging Literature 

The strainer filtering the water coming from the 

associated cooling tower should be checked and 

cleaned in case of partial clogging, and deep cleaned 

with chemicals and high-pressured water in case of full 

clogging. 

Faulty control switch Literature 
The switch should be troubleshooted or replaced if 

needed. 

Faulty starter Literature 
The electrical connection should be checked and 

rectified. 

Pipeline leakage Literature 
The pipe joint and its fittings should be checked, and 

then welded or replaced if needed. 

High flow rate in cold 

exchange 
Literature The right pump speed should be checked and adjusted. 

Low flow rate in cold 

exchange 
Literature The right pump speed should be checked and adjusted. 

Abnormal or 

excessive noise 
Literature 

The associated bearings and shaft should be checked 

and fixed. 

Sensor bias Literature 
The controller, the artificial agent, or the sensor should 

be checked, verified and replaced if needed. 

Motor vibration Industry survey 
The bearings and the foundation support should be 

checked and rectified. 

Motor Heat-up Industry survey 
The bearings and the associated fan should be checked 

and rectified, ground or replaced if needed. 

Leakage from pump 

set 
Industry survey 

The associated gland and joints should be checked and 

reassembled. 

Leakage from valves Industry survey 
The associated joints should be checked, reassembled 

or the valve replaced if needed. 

Pump runs but 

provides no water 
Industry survey The valves should be checked and made free of air. 

Pumps run at 

reduced capacity 
Industry survey The stainer should be checked and cleaned. 

Noisy non-return 

valve 
Industry survey 

The valve set-up should be checked and replaced if 

needed. 

Improper pump water 

alignment 
Industry survey Realignment. 

 

 

Table 36: Terminal unit faults and solutions 

Fault Identified By Solution/Action 

Faulty variable air 

volume 
Literature 

The damper connection and controller should be 

checked and rectified. 

Faulty fan Literature 
The fan should be checked, rectified and replaced if 

needed. 

Compressor failure Literature 
The voltage and related control accessories should be 

checked before replacing formalities. 

Filter blockage Literature The filter should be cleaned or replaced if needed. 

Faulty filter coil system Literature The dirt and debris should be cleared. 
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Cooling coil blockage Literature 

For outer blockage, the fresh air damper position 

should be checked, and air speed reduced if needed. 

For inner blockage, the chilled water quality coming 

from the associated chiller or from the primary pump 

should be checked and rectified. 

Return damper jam Literature The damper should be serviced and replaced if needed. 

Speed reducing the 

supply fan 
Literature The blower tips should be checked and cleaned. 

Sensor bias Literature 
The controller, the artificial agent or the sensor should 

be checked, verified and replaced if needed. 

Dirty air flow Industry survey The bag filer section should be checked and cleaned. 

Faulty supply air 

damper 
Industry survey The damper should be replaced. 

Loose belts Industry survey 
The associated pulleys, mountings and V. belt quality 

should be checked and rectified. 

Air trapped in cooling 

coil 
Industry survey 

The coil should be checked and cleaned. The pressure 

of associated secondary pump should be checked and 

amended as well. 

Faulty control valve Industry survey 
The associated voltage should be checked, and the 

valve replaced if needed. 

Broken belts Industry survey 
The associated pulley should be checked and rectified, 

and then the belt should be replaced. 

Noisy motor Industry survey The blower bearings should be checked and fixed. 

Faulty bearing Industry survey The bearing should be replaced. 

Motor overload Industry survey 
The power voltage and electrical accessories should be 

checked and rectified. 

Noisy contactors Industry survey The terminal in operation should be cleaned. 

Vibration Industry survey The associated blowers should be aligned. 

Motor overheating Industry survey 
The voltage and rated amperes should be checked and 

adjusted. 

Damaged Insulation 

on pipe 
Industry survey 

The insulation material should be replaced and then 

sealed properly. 

Faulty variable 

frequency drive soft 

starter 

Industry survey The associated parameters should be reset. 

Low static pressure Industry survey The air flow rate should be checked and decreased. 

Damaged Insulation 

on duct 
Industry survey 

The duct should be vacuumed, and the defective 

insulation should be replaced. 

Faulty fresh air damper Industry survey 
The air speed should be reduced, or the damper should 

be replaced if needed. 

Faulty exhaust air 

damper 
Industry survey 

The connected duct should be vacuumed, or the 

damper should be replaced if needed. 

Faulty cooling valve 

actuator 
Industry survey The voltage should be checked and adjusted. 

Faulty damper 

actuator 
Industry survey 

The voltage should be checked and adjusted, and the 

air flow rate should be minimised. 

 

The occurrence of faults differs between the commercial buildings 

managed by participants, who repeated some faults for each component and 

listed some other faults either once or a few times. Furthermore, all considered 
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responses confirmed the occurrence of the faults that are mentioned by the 

literature and furnished in Figure 9. Table 37 below reveals the most repeated 

fault for each CWS component in the commercial buildings managed by 

participants. This table has three columns: the first from the left lists the CWS 

components; the second from the left shows the most repeated fault by the 

participants for each CWS component; while the third from the left shows the 

percentage of participants who listed the faults in the previous column out of 

the total number of participants (304). 

 

Table 37: Most repeated faults 

CWS Component Fault Repeating Percentage 

Chillers Refrigeration leak 100% 

Cooling towers Malfunctioning blowdown system 89% 

Pumps Noisy non-return valve 91% 

Terminal units Low static pressure 84% 

 

This table shows refrigeration leak as the most common fault for chillers 

as all the respondents confirmed its appearance at their commercial buildings; 

this is not in alignment with the systematic literature review wherein the 

condenser fouling was the most frequently noted chiller fault in the literature. 

For the cooling towers, the literature primarily addressed fills fouling and air 

fan degradation faults, while the industry survey showed that the 

malfunctioning blowdown system fault is the most repeated. The same is 

evident with pumps and terminal units, wherein the literature mainly addressed 

the pump clogging fault and the terminal unit return damper jam fault, while 

the industry survey showed other faults noted by the majority of the 

participants: noisy non-return valve and low static pressure for pumps and 

terminal units, respectively. The literature has overlooked the aforementioned 

faults as it might be the focus was on how to build a detection model and on 

determining the detection accuracy of that model rather than paying attention 

to the type of fault.  

In addition to a fixing action for each CWS fault in the industry survey, it 

is evident from Tables 33-36 that there are technical correlations between CWS 

components, as faults in a particular CWS component appear to be a 

consequence of the health condition of another CWS component. The low 

condenser flow fault in the chiller component, for example, can be fixed by 

investigating the related pump component in operation. The solution of this 

fault can be executed by checking and rectifying the pressure of the condenser 

pump in operation. The low chilled water flow fault in the chiller component 
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can be fixed by investigating the related pump component. The solution for 

this fault can be executed by checking the rectifying the pressure of the 

secondary pump in operation. The high condenser approach fault in the chiller 

component can be fixed by investigating the related cooling tower component 

in operation. The solution to this fault can be executed by checking and 

servicing the connecting tunnel of the cooling tower in operation via cleaning 

the fills.  

The low circulating water flow rate fault in the cooling tower component 

can be fixed by investigating the related chiller or pump components in 

operation. The solution for this fault can be executed by checking and cleaning 

the stainer of the associated condenser pump or by checking and cleaning the 

condenser tubes inside the associated chiller. The clogging fault in the pump 

component can be fixed by investigating the related cooling tower component 

in operation. The solution to this fault can be executed by checking and 

cleaning the strainer filtering the water from the associated cooling tower in 

case of partial clogging, and by cleaning deeply with chemicals and high-

pressured water in case of full clogging. 

The air trapped in cooling coil fault in the terminal unit component can be 

fixed by investigating the related pump component in operation. The solution 

to this fault can be executed by checking and cleaning the coil and by checking 

and amending the pressure of associated secondary pump. The cooling coil 

blockage fault in the terminal unit component can be fixed by investigating the 

related chiller or pump components in operation. The solution for this fault can 

be executed by checking the fresh air damper position and by reducing the air 

speed in case of the outer blockage. In case of inner blockage, it can be fixed 

by checking and rectifying the chilled water quality from the associated chiller 

or the primary pump in operation. To justify the technical correlation between 

CWS components quantitatively, Pearson r test is used for this purpose. Yu and 

Hutson (2024) define it as a statistical correlation test that can estimate the 

strengths between different variables and their relationships. The correlation 

coefficient ‘r’ can be easily calculated in Excel software via ‘PEARSON’ function 

(Mustafy and Rahman, 2024). Table 38 below shows the interpretations of 

different r values (Fox and Sturdivant, 2024). 
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Table 38: Interpretations of different correlation coefficient values 

Correlation coefficient 

value 
Strength Direction 

Greater than 0.50 Strong Positive 

Between 0.30 and 0.50 Moderate Positive 

Between Zero and 0.30 Weak Positive 

Zero None None 

Between Zero and – 0.30 Weak Negative 

Between – 0.30 and – 0.50 Moderate Negative 

Less than – 0.50 Strong Negative 

 

The quantitative analysis is arranged through Excel sheet for each of the 

fault relations between the components that are mentioned previously in this 

subsubsection. Each sheet includes three columns, the first column contains 

the serial numbers of the persons surveyed, who are stated the fault, for 

example the low chilled water fault in chiller, the second column contains either 

‘1’, which means the person mentioned that the said fault can be fixed by 

investigating the related pump in operation for the said fault, or ‘0’, which 

means the person gives different action, and the third column contains the 

cumulative values of the second column. After that, the first and third columns 

are assigned as variables for Pearson r test. Appendix D shows these sheets 

along with the correlation coefficient values and their plots. Table 39 below 

summarised the r values between CWS components, and the associated 

confidence level is ninety-nine per cent.  

Table 39: Correlation Coefficient Values (Industry Survey) 

CWS component 

experiencing a fault 
Fault 

CWS component to 

be investigated 

Correlation 

Coefficient Value 

Chiller  
Low condenser 

flow 
Pump 0.9707 

Chiller 
Low chilled water 

flow 
Pump 0.9806 

Chiller 
High condenser 

approach 
Cooling Tower 0.9307 

Cooling Tower 
Low circulating 

water flow rate 
Chiller 0.9525 

Cooling Tower 
Low circulating 

water flow rate 
Pump 0.9623 

Pump Clogging Cooling Tower 0.8922 

Terminal Unit 
Air trapped in 

cooling coil 
Pump 0.9880 

Terminal Unit 
Cooling coil 

blockage 
Chiller 0.9599 

Terminal Unit 
Cooling coil 

blockage 
Pump 0.9413 
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All r values in the above table are greater than 0.50, which means the 

correlation is strong and positive for each. So, from this analysis, it can be 

concluded that covering the whole CWS within the same maintenance 

framework is exceedingly important and highly significant. 

 

4.5.4 Chilled Water System Fault Frequencies 

 

This subsection is related to the third part of the survey, whose concept 

was explained previously in this chapter. Participant responses were counted by 

tabulating the frequency values of the faults that are occurring often (x’s) as 

well as the frequency values of the faults that occurred infrequently (y’s). Then, 

the smallest value of the x and the biggest value of the y are identified. In 

addition, these two values were scored by the majority of the participants. Table 

40 below summarises these outcomes: each CWS component has two values (x 

and y) and shows the highest percentage of times each value is repeated by the 

participants. Figure 14 is for chiller as an example, showing how the values of x 

and y in Table 40 are derived, and the same applies for other CWS components. 

These frequencies will be used for data collection to create a dataset for each 

CWS component, which will then be used in building the detection model. Data 

collection related details will be discussed in the next chapter. 

 

Table 40: Fault frequency outcomes 

CWS 

component 
X (minutes) 

Percentage of 

304 

participants 

who stated the 

value x 

Y (weeks) 

Percentage of 

304 

participants 

who stated the 

value y 

Chillers 30 75% 12 56% 

Cooling towers 30 68% 16 39% 

Pumps 60 49% 24 34% 

Terminal units 45 40% 8 39% 
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Figure 14: Source of frequency values 

 

The above table clarifies the time interval of the proposed readings of 

each chosen operational parameter for the chiller in operation – the leaving 

water temperature – as every 30 minutes over a study period of 12 weeks. For 

the cooling tower, the readings of the water leaving temperature should be 

taken every 30 minutes over a study period of 16 weeks. For the pumps, the 

readings of the pressure should be taken every hour over a study period of 24 

weeks. For the terminal unit, the readings of the space temperature should be 

taken every 45 minutes over a study period of eight weeks. These frequencies 

provide a technical element to building the machine learning model, which in 

this research is a decision tree, to detect the faults and control the entire CWS. 

Having noted the operational parameters, the survey asked participants in its 

fourth segment to share their opinion on specific operational parameters for 

each CWS component. This is to ensure that these operational parameters are 

valid and are the best to provide the health condition of the CWS components, 

and accordingly, to find and detect the faults. Table 41 below shows the 

majority of participants identified the chosen operational parameters as the 
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best to detect the health condition of CWS components. Appendix E contains 

the alternative operational parameters recommended by the remainder of the 

participants. 

 

Table 41: Chilled water system operational parameters 

Component Operational Parameters 
Participants with 

the choice 

Chillers Chilled water leaving temperature (°C) 98% 

Cooling towers Chilled water leaving temperature (°C) 96% 

Pumps Pressure (bar) 100% 

Terminal units Space temperature (°C) 90% 

 

 

4.6 Conclusion 

 

This chapter presented the first research instrument in this research 

project, the industry survey. The industry survey, adhering to construction 

guidelines and a pilot study, was disseminated to 761 professionals who 

manage commercial building in Riyadh, Saudi Arabia. The duration of the 

industry survey was three months, and 336 responses were received during that 

time. Of those, 304 participant responses were considered by this research 

project as these participants have CWS in their commercial buildings. After that, 

the responses were analysed by an assigned team. Following the analysis, the 

industry survey provided the research community with new faults: 17 faults for 

chillers, 13 faults for cooling towers, eight faults for pumps, and 20 faults for 

terminal units. Also, the industry survey provided a solution to fix each fault, all 

faults listed in either the literature or noted by the industry survey. The solutions 

reveal a correlation between CWS components, underscoring the importance 

of involving the entirety of CWS components when managing operations. For 

example, to fix a chiller fault such as high condenser approach, the cooling 

tower in operations needs to be inspected. 

With regard to the frequencies, this research project proposed time 

frequencies to create the dataset for use in building the detection model. These 

frequencies, as presented in Table 40, are two types, minimum and maximum. 

This research proposed an innovative approach to create the dataset that will 

be used in building the detection model by applying the minimum frequency 

as a time interval between the readings of the operational parameter for each 

CWS component, and by using the maximum frequency as a study period. This 

chapter explains how these frequencies were calculated (see Figure 14 for an 
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example). The findings from the concluding segment of the industry survey 

have reinforced the selection of operational parameters for this research 

project. These parameters will serve as the primary source of data required for 

constructing the detection model. The subsequent chapter will demonstrate 

how the outcomes of the survey, including the identified frequencies, are 

utilised in developing the methodological framework. This framework will be 

implemented through the second research method employed in this project, 

namely, a case study. The subsequent Chapter will also show that the chosen 

operational parameter of each CWS component can be taken care of any fault 

category in the associated component. 
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Chapter 5: Case Study: Development and 

Implementation of Maintenance Methodological 

Framework 

“Save money by relying on predictive maintenance.” 

(Theissler et al., 2021) 

 

5.1 Introduction 

 

As discussed in the first chapter, the goal of this research project is to 

present a holistic intelligent maintenance for CWS via a methodological 

framework. This chapter utilised the outcomes of the industry survey (see the 

previous chapter) in building this framework. The industry survey provided two 

inputs applicable to this research, which were the fault frequencies and fault 

solutions. The utilisation of these inputs is explained in the next sections. This 

chapter presents the second research method of this present research project, 

which is a case study, one main case study and another for external validity 

purpose. To implement the main case study, a methodological framework is 

proposed in this chapter. Partelow (2023), defining framework as a supporting 

structure around which something can be created and built, considers it a 

system of rules, steps, ideas or beliefs utilised to plan or decide something for 

any scientific topic. From a research point of view, frameworks are typically 

utilised to understand and investigate a research problem and lead the 

development and analysis of the research topic (Ravitch and Riggan, 2016). 

Also, it can be presented as a roadmap to conceptualise and structure the 

research work by providing a schema that links different ideas, concepts or 

theories within the area of a research topics to facilitate the execution of the 

related empirical studies (Kirk et al., 2015). From a practical point of view, 

constructing management frameworks for projects, continuous activities or 

any other core programme of a building’s facility management gives a 

structure to the programme and allows corrective measures that can achieve 

related goals (Wildenauer et al., 2022). 

Structuring a methodological framework for this research project serves 

several objectives. The primary goal is to assess the suitability of the proposed 

frequencies, which emerged as a key finding from the industry survey. It aims 

to determine whether these frequencies are appropriate and capable of 

facilitating the development of a detection model with high accuracy. These 
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frequencies, shown in the previous chapter, will be used for data collection 

purpose. As mentioned in the previous chapter, this research project proposed 

an innovative way for data collection where the minimum frequency for each 

CWS component will be used as a time interval between the readings of the 

operational parameters, while the maximum frequency will be considered as a 

study period or the total time of collecting the data. Accordingly, a dataset for 

each CWS component will be provided. Then, each dataset of each CWS 

component will be used in building and training the detection model that will 

be presented via machine learning. The second goal is to verify the faults 

presented in this thesis especially the ones resulted from the industry survey 

and that will be checked during empirical periods. Overall, the methodological 

framework will allow this research project to address all the research gaps and 

will give a structure for the second research method, which is the case study, 

to answer all the research questions, and to verify the outcomes of the industry 

survey that were mentioned in the previous chapter. The next section shows 

the structure of the proposed methodological framework. 

5.2 Methodological Framework 

 

The methodological framework in this research project is built from a 

managerial perspective; each phase of the framework contains multiple 

managerial steps. Table 42 below describes the phases of the proposed 

methodological framework as well as the objectives of each phase.  

 

 

 

 

Table 42: Methodological framework structure 

Phase Objectives Supporting References 

Set-up 

• To understand the as-built 

drawing of the under-study 

building. 

• To identify the number of each 

CWS components and their 

location at the site. 

• To ensure the data reading tools 

are in the right locations. 

• To prepare the data collection 

plan, including data collection 

tools, the schedule of data 

collection, and the team who will 

collect the data. 

(Maree et al., 2021; Sala et al., 

2019; Hauashdh et al., 2024) 

Machine 

learning 

• To formulate the algorithm, build 

the detection model and train it. 

(Sharma et al., 2024; Cummins 

et al., 2024) 

Quality control 

• To make a control plan for the 

maintenance framework. 

• To evaluate the detection model. 

(Gan et al., 2024; Arena et al., 

2024) 
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It is suggested that the above phases are followed in the same logical 

order as shown, as detailed in the next subsections. 

 

5.2.1 Set-up Phase 

 

In preparing the methodological framework, three stages are to be 

followed in the same order as listed in the below subsubsections. 

 

5.2.1.1 Chilled Water System Drawing 

 

The first step of the framework suggested by this research project is to 

understand the as-built drawing of the CWS in the building that will be studied. 

This drawing, showing the actual building layout, is normally handed over to 

the facility management after completion of the building construction (Ellis, 

2021). Following ASHRAE standards (2023), this research proposed a simplified 

schematic CWS drawing to easily identify the numbers of each CWS component 

and recognise their location at the site (see Figure 15 below). The proposed 

schematic serves as a guide while the researcher or user is reviewing the original 

as-built drawing. The as-built drawing, typically quite complicated, has many 

pages that contain other utility systems. The proposed schematic has been 

made to recognise the look of each CWS component in the drawing, so the user 

of the researcher can identify each easily in the main as-built drawing, noting 

the number of each CWS component at the building and their locations at the 

site. 
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Figure 15: Chilled water system simplified as-built drawing 

 

5.2.1.2 Reading Tools of Operational Parameters 

 

Following on the previous two chapters, one fundamental of PdM strategy 

is the datasets that contain the readings of the CWS operational parameters. 

As discussed in the systematic literature review, operational parameters are 

defined as quantifiable factors that offer numerical data about the 

performance of the CWS. In this research project, the operational parameters 

chosen are the temperature of water leaving the chillers and cooling towers, 
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the pressure for pumps, and the space temperature for terminal units as these 

are the best for conveying the health condition of these components as proven 

by the industry survey (Chapter 4, Table 41). 

To collect these parameter readings, the associated tools were assumed 

to be available at the building under study. Measurement tools can include 

meters, gauges, sensors, thermostats or any other agent such as BMS. In case 

of the unavailability of these reading tools, Lam et al. (2011) as well as 

Beckmann et al. (2004) outlined procedures for installing such tools. Following 

the standard operating procedure of ASHRAE (2023), this research project 

suggests a proper location for installing the reading tool for each CWS 

component in the building under study (see Table 43). 

Table 43: Proper locations for reading tools 

Chilled Water System 

Component 
Location 

Chiller Chilled water supply header 

Cooling tower Straight pipeline entering the condenser 

Pump Discharge pipeline 

Terminal unit 1.50 m above the floor level in a space, or in the return air duct 

 

Once the reading tools are installed, they must be connected to an 

assigned computer unit that will be used in the maintenance framework. 

Kayastha et al. (2014) as well as Trivedi et al. (2019) outlined a procedure for 

connecting such tools to computers. This course of action is undertaken, as 

explained in the third subsection of the methodological framework section 

(Quality Control). 

 

5.2.1.3 Data Collection 

 

After determining the number of each component and finalising the 

reading tools, the last stage of the set-up is the data collection. The previous 

chapter proposed time frequencies to collect data of selected operational 

parameters in commercial buildings (see Table 40) and supported the choice 

of the operational parameters (see Table 41). Following these proposals, the 

readings of chilled water temperature leaving a particular chiller should be 

taken every 30 minutes over a study period of 12 weeks. The same should be 

applied for cooling towers, but over a study period of 16 weeks. With regard 

to pumps, the readings of pressure should be taken every hour over a study 
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period of 24 weeks. For terminal units, the readings of space temperature 

should be taken every 45 minutes over a study period of eight weeks. 

This research project uses a check sheet to collect data for each CWS 

component. According to Tarı́ and Sabater (2004), a check sheet is one of the 

seven basic quality control tools. The check sheet should contain the readings 

and inspection results. According to Zhang et al. (2019), such readings must 

cover two modes, fault existing and fault free, and therefore, the inspection 

results will be either ‘1’ in a case of fault or ‘0’ in a case of no fault. This research 

project suggests that the check sheet be completed by experienced technicians 

or users. Each check sheet, it is proposed, is to be recorded by two team 

members, one for the morning and part of the afternoon shift, and one for the 

evening and the second part of the afternoon shift. Appendix F presents a 

proposed check sheet for terminal units, and the same should be applied for 

other CWS components, taking into consideration the differences in time 

intervals and the unit of operational parameters between components.  

After collecting the data, a file for each particular component is proposed 

to be created in Excel software, and then the information from the related 

check sheet should be logged. Thus, each file should contain two columns – 

one for the readings and the another for the inspection results – and then be 

saved in the assigned computer unit in csv format. These files contain the 

required datasets, and at this point, the set-up phase is completed. 

Accordingly, the machine learning part can then be started. 

 

5.2.2 Machine Learning Phase 

 

This research has utilised decision tree, a common machine learning 

algorithm primarily used for classification, prediction and regression 

applications. It has many benefits; for example, Sharma and Kumar (2016) insist 

that it can be used to predict continuous and discrete values. They also indicate 

that it can capture nonlinear relationships while being easier to use than other 

machine learning algorithms for understanding, interpretation and 

visualisation (Sharma and Kumar, 2016). In addition to these benefits, the 

literature review concluded that decision tree and artificial neural network 

algorithms provide high prediction accuracy compared to other algorithms, 

and therefore, this research project has chosen decision tree, as its graphical 

binary representation can be easily interpreted by both technical and 

https://www.mdpi.com/2075-5309/13/2/497#app1-buildings-13-00497
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nontechnical decision makers. Moreover, decision trees excel in capturing 

nonlinear relationships within data, providing a valuable tool for tasks 

requiring pattern recognition (Priyanka and Kumar, 2020). Simultaneously, the 

research recognises the alternative methodology of artificial neural networks 

inspired by the sophisticated architecture of the human brain, consisting of 

interconnected nodes in layers (Graupe, 2013). Each connection between 

nodes has a weight, and the model learns by adjusting these weights during 

the training process (Wu and Feng, 2018). Artificial neural networks are 

adequate for learning complex patterns and relationships in data, making them 

suitable for tasks like image and speech recognition, natural language 

processing and detailed decision-making processes (Gurney, 2018). However, 

artificial neural networks can be computationally intensive, especially for large 

and deep networks, and may lack the interpretability offered by the decision 

trees (Worden et al., 2023). With these considerations, this thesis acknowledges 

the distinctive advantages of decision trees, such as interpretability and 

simplicity, rendering them a valuable choice in capturing intricate relationships 

within data. 

The decision tree has a tree-like structure, with a root node and 

intermediate nodes that split into branches. The last intermediate node, split 

into leaves, is terminated with an end node. Each node represents a 

classification or prediction feature. A branch or a leaf represents the possible 

value of the feature. The path from the root node to the end node is labelled 

using the predicted outcome or target classification, which is assigned using 

an existing training dataset. Using supervised training algorithms, the features 

are split recursively from top down according to certain criteria. Figure 

16 below depicts the general structure of the decision tree (Fletcher and Islam, 

2019). 
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Figure 16: General structure of the decision tree 

 

In this research, two decision tree algorithms are proposed for use – the 

C4.5, a successor of the iterative dichotomiser 3 (ID3), and the classification and 

regression tree (CART) algorithm – as they are efficient for splitting the trees 

(Javed Mehedi Shamrat et al., 2022). The basic principle of the splitting 

mechanism is to select a root node from the ‘N’ features and subsequently 

decide which attribute should be used next as the intermediate node. Different 

statistical criteria should be used to make these decisions, such as the Gain Ratio 

and the Gini Index. According to Grąbczewski (2014), the Gain Ratio criterion is 

mainly used in the C4.5 algorithm, while the Gini Index is used in the CART 

algorithm. The Gain Ratio is calculated as in Equation 1 below: 

 

𝐺𝑎𝑖𝑛 𝑅𝑎𝑡𝑖𝑜(𝐴) =
𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝐺𝑎𝑖𝑛

𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜
=

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑝𝑎𝑟𝑒𝑛𝑡)−∑ 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑗,𝑐ℎ𝑖𝑙𝑑)𝑘
𝑗=1

∑
𝐷𝑗

𝐷
𝑘
𝑗=1 𝑙𝑜𝑔2

𝐷𝑗

𝐷

                    (1) 

 

In information theory, entropy measures the uncertainty in data. The 

entropy (parent) measures the amount of randomness (impurity) in the parent 

node before it splits. D is the number of instances in the parent node and Dj is 

the number of instances in the child j, and k is the number of discrete values of 

an attribute A, which is tested at the parent node for splitting. The entropy at 

each child node is found using Equation 2 below: 
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𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ 𝑝𝑖 𝑙𝑜𝑔2
𝑛
𝑖=1  𝑝𝑖                                                                                 (2) 

 

Where 𝑝𝑖 is the probability of selecting an instance in class i, and n is the 

number of classes. The attribute that is selected for splitting at the parent node 

is the one with the highest Gain Ratio. Similarly, the Gini Index for the CART 

algorithm can be found by Equation 3 below: 

 

  𝐺𝑖𝑛𝑖 𝐼𝑛𝑑𝑒𝑥(𝐴) = ∑
𝐷𝑗

𝐷
𝐺𝑖𝑛(𝑗, 𝑐ℎ𝑖𝑙𝑑)𝑘

𝑗=1                                    (3) 

 

Similarly, to the entropy, the Gini Index measures the impurity at the 

parent node. The Gini of a child node is found by Equation 4 below: 

 

 𝐺𝑖𝑛𝑖 = 1 − ∑ 𝑝𝑖
2𝑛

𝑖=1                                                                                                (4) 

The attribute that is selected for splitting at the parent node is the one 

with the smallest Gini Index. In this research project, this attribute is the selected 

operational parameter of each CWS component. As a reminder of these 

operational parameters or attributes, they are the water leaving temperature for 

chillers and cooling towers, the pressure for pumps, and the space temperature 

for terminal units. Many programming languages or software can read the 

collected data and train the detection model, such as Python (Guttag, 2017). 

The software should be installed in the assigned computer unit and the required 

codes should be written in a way that allows reading the files (datasets) for each 

CWS component, as listed in the data collection stage of the setup phase, and 

then to train and test the model. In terms of the process of utilising decision 

trees for detection, Figure 17 below shows sequential steps that guide the 

development, training and evaluation of the decision tree model. 
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Figure 17: Building of decision tree model 
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5.2.3 Quality Control Phase 

 

Th quality control phase is the final part of the proposed framework; its 

goal is to ensure the detection model is working correctly and to rectify faults 

immediately. To do so, this research project suggests crafting a control plan 

which contains monitoring and response actions (Almobarek and Alrashdan, 

2022). Table 44 below clarifies the descriptions of these two actions, noting who 

is responsible for executing each action. 

 

Table 44: Control plan 

Quality Control 

Action 
Description Responsible 

Monitoring 

The detection model should be connected to 

the reading tools, which are already 

connected with the computer unit during set-

up. This ensures that the computer unit shows 

continuous reading for each CWS component. 

Information Technology 

Department or Service 

Provider or Specialised 

Supplier 

Response 

When the detection model shows fault, which 

is ‘1’, as a result of a particular reading, the 

related component should be inspected and 

then be rectified as per the actions tabulated in 

the previous chapter (Tables 33-36). 

Facility Department’s Officer 

and Technician 

 

While the response action contains fixing the occurred faults by 

implementing the actions provided by this research thesis in Tables 33-36, this 

research project recommends applying measures that examine if these actions 

are satisfactory or not. When detecting a fault, and after implementing the 

provided action to fix that fault, the inspector at site should immediately 

observe the effected part of the component, and then report the outcome to 

the officer. The outcome would be either satisfactory, which means the fault is 

fixed and cleared, or unsatisfactory, which means the provided action is unable 

to fix the fault. In case of unsatisfactory, the inspector should re-implement the 

action again and observe the effected part – in case the fault continues, then 

the inspector should report that to the officer, and accordingly, the officer 

should double check the situation at site to validate the report of the inspector. 

Once validated, the officer should call specialised team like the operation and 

maintenance contractor to look at the case and fix it. Furthermore, Montgomery 

(2020) advises it best to document the outcome of the response action for 

future improvement. This research proposed a documentation process which 

involves listing the lessons learned from the proposed intelligent maintenance 
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framework, ensuring that the computer unit is working efficiently, tracking spare 

parts stock, training more technicians to be familiar with the detection model, 

and writing regular reports about the performance of the proposed intelligent 

maintenance framework for future improvements.  

 

5.3 Case Study: Methodological Framework Implementation 

and Results 

 

This section presents a case study on the proposed framework. The case 

study was performed at Alfaisal University in Riyadh, Kingdom of Saudi Arabia. 

The implementation of the framework has been carried out as per the three 

parts proposed in the previous section comprising the methodological 

framework. 

Alfaisal University is a King Faisal Foundation project, a private, not-for-

profit, research university, comprising the Colleges of Engineering, Science and 

General Studies, Medicine, Pharmacy, Business, and Law and International 

Relations. It has a range of state-of-the art amenities and equipment spread 

across seven major buildings on a 36.7-acre (≈149,000 square meter) campus. 

These facilities provide students, faculty members and other admin staff a 

venue for study and research while accommodating various other social 

activities too. The following subsections will explain the implementation of 

each part of the methodological framework. 

 

 

5.3.1 Implementation of Set-up Phase 

 

5.3.1.1 Chilled Water System Drawing 

 

The main goal of the proposed framework is to design an intelligent 

maintenance framework that considers the whole CWS, all CWS components. 

Therefore, to begin implementing the framework, the CWS as-built drawing was 

collected and then, following Figure 15, the numbers of each CWS component 

were determined (see Table 45) as well as their locations around the site. Figure 

18 shows a panoramic view of CWS at Alfaisal University. 
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Table 45: Number of chilled water system components 

CWS Component Quantity 

Chiller 5 

Cooling tower 7 

Pump 19 

Terminal unit 72 

   

 

 
Figure 18: Panoramic view of chilled water system 

 

5.3.1.2 Reading Tools of Operational Parameters 

 

At this stage, the standard presented in Table 43 has been followed, 

ensuring that the reading tools for the operational parameters of each CWS 

component were in the best location. Figures 19-22 show the reading tool 

location for each CWS component. As previously stated, these tools read the 

temperature for water leaving each chiller and cooling tower, the pressure for 

pumps, and the space temperature for terminal units. Through the Information 

Technology Department of the university in discussion, these reading tools were 



122 
 

connected via sensors to a computer unit to be prepared for the quality control 

phase. 

 

 

Figure 19: Chiller reading tool 

 
Figure 20: Cooling tower reading tool 
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Figure 21: Pump reading tool 

 

 
Figure 22: Terminal unit reading tool 
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5.3.1.3 Data Collection 

 

The most important stage in setting up the intelligent maintenance 

framework pertains to the datasets required to build the detection model. As 

the previous two stages had been finalised, data collection was initiated as per 

the outcomes of the industry survey. This research project adhered to the 

recommended minimum frequencies as time intervals when collecting data; 

likewise, the recommended maximum frequencies were used as study periods 

for each CWS component. Twelve qualified technicians from the university 

were assigned for the subject matter, and one operational unit for each CWS 

component was selected. The readings for the chilled water leaving 

temperatures of each chiller and cooling tower were collected manually using 

check sheets. The same was performed for the pressures for each pump and 

the space temperatures for each terminal unit. In addition, the inspection 

result, which was either a fault “1” or fault free “0”, was included for each check 

sheet. Appendix G illustrates a fully filled one day check sheet for a particular 

pump, and Table 46 below shows the data collection plan. 

Table 46: Data collection plan 

Chilled Water 

System Component 

Time Interval for 

Reading and 

Inspection 

(Minutes) 

Total Study 

Time 

(Weeks) 

Study Period 

Chiller 30 12 
29 May 2022 to                  

20 August 2022 

Cooling tower 30 16 
29 May 2022 to                        

17 September 2022 

Pump 60 24 
29 May 2022 to                          

12 November 2022 

Terminal unit 45 8 
29 May 2022 to                           

23 July 2022 

 

After that, an Excel file was created for each component, and the 

information in all the related check sheets was transferred to the appropriate 

Excel files. Following the procedure proposed in the methodological framework 

section, each Excel file represented a dataset that contained two cells, one for 

the readings and another one for the inspection results (see Appendix H for an 

example of a cooling tower). Next, each file was named and saved in csv format. 

For example, for a particular pump, the file was named and saved as “pu.csv’’; 

so, it can be read when training the detection model, as shown in the next 

section. 
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5.3.2 Implementation of Machine Learning Phase 

 

A decision tree was built for each selected CWS component. As explained 

in the methodological framework section, the faults of each component were 

predicted using the related attributes. Table 47 shows the attribute and training 

data size for each unit of the selected CWS components that were in an 

operational mode. The data size for the whole CWS is 10,248 observations. 

 

Table 47: Main inputs of the detection model 

CWS Component Attribute Data Size for Each Unit 

Chiller 
Chilled water leaving 

temperature (°C) 
2,688 

Cooling tower 
Chilled water leaving 

temperature (°C) 
3,584 

Pump Pressure (bar) 2,688 

Terminal unit Space temperature (°C) 1,288 

 

The C4.5 and CART algorithms were used to train the tree. Various 

training parameters were used to optimise tree accuracy. The parameters 

included the training to testing ratio and the level of pruning. The model was 

executed in Python, with the pseudocode shown below in Figure 23 for a 

particular pump. The same was done with other CWS components, taking into 

consideration the changes in file reading and loading. 
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Figure 23: The Pseudocode of Pump’s Decision Tree 

   BEGIN 
 

    # Import necessary libraries 

    IMPORT necessary libraries (numpy, pandas, sklearn, matplotlib, csv) 

 

    # load dataset 

    LOAD pump dataset into X (features=pressure) and y (target=1 for fault observed 

OR= 0 for no fault) 

 

    # Split the dataset into training and testing sets 

    SPLIT X and y into X_train, X_test, y_train, y_test using train_test_split with test_size = 

0.3 and random_state =1 

 

    # Initialise the DecisionTreeClassifier with Gini index 

    CREATE DecisionTreeClassifier object clf with criterion = 'gini' and max_depth = 

set_by_user 

 

    # Train the model 

    FIT clf on X_train and y_train 

 

    # Predict the results 

    PREDICT y_pred using clf on X_test 

 

    # Evaluate the model 

    CALCULATE accuracy using accuracy_score with y_test and y_pred 

    PRINT "Accuracy: ", accuracy * 100, "%" 

 

    # Write results to CSV file 

    OPEN file results.csv for writing 

    WRITE X_test and y_pred to results.csv in comma-separated format 

    CLOSE file results.csv 

 

    # Plot the decision tree 

    IMPORT matplotlib.pyplot as plt and plot_tree from sklearn.tree 

    SET plot figure size with custom dpi 

    PLOT decision tree using plot_tree with clf, feature_names, and class_names 

    SHOW plot 
 

    END 
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The initial run of the training stage was performed without pruning, which 

led to prediction overfitting, as can be seen for the chiller tree in Figure 24, and 

in Figures 25, 26 and 27 for the cooling tower tree, the pump tree and the 

terminal unit tree, respectively, noting that these trees are for one selected 

CWS component in an operational mode. From these figures, it can be seen 

that at the end of each intermediate node, there is an interval of two values 

where the left-side value is the total observation of fault free, while the right-

side value is the total observation of faults. The total number of observations 

is also mentioned in each intermediate node. After completing the run of the 

training, the pre-pruning of the decision tree shows the end node for each 

CWS component. 

Pruning is a technique used in decision trees to prevent overfitting, a 

phenomenon whereby the model performs well on the training data but fails to 

generalise effectively to new and unseen data. Overfitting occurs when the 

decision tree becomes too complex, capturing noise or abnormalities in the 

training data that do not represent true patterns. In this research, the branches 

that provide minimal improvement in detection accuracy are pruned after the 

tree is fully constructed. Similar to the pre-pruning of decision tree, each 

intermediate node clarifies the sample size, and it has an interval of two values, 

one for fault free observations after pruning, and the other one for fault 

observations after pruning. Examining the different pruning methods, the 

optimally trained trees for each studied CWS component were found in Python 

as shown in Figure 28 for the same selected chiller, and in Figures 29, 30 and 31 

for the same selected cooling towers, pumps and terminal units, respectively. 

 

  
Figure 24: Chiller tree without pruning              Figure 25: Cooling tower tree without pruning 
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     Figure 26: Pump tree without pruning         Figure 27: Terminal unit tree without pruning 

 

   
Figure 28: Chiller decision tree         Figure 29: Cooling tower decision tree 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   
Figure 30: Pump decision tree           Figure 31: Terminal unit decision tree 

 

Changing the training-to-testing ratio and the training algorithms had a 

very small impact on the prediction accuracy between C4.5 and CART. A 70-to-

30 per cent training-to-testing ratio was adopted using the CART training 

algorithm. The detection accuracy of a decision tree model can be calculated 

by Equation 5 below: 

 

Accuracy =
Number of Correct Detections

Total Number of Detections 
× 100               (5) 
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Where, ‘’Number of Correct Detections’’ is the count of instances where 

the model's prediction matches the actual target values in the test set, and 

‘’Total Number of Detections’’ is the total number of instances in the test set.  

The optimal model demonstrates that similarly high accuracy was attained 

for both C4.5 and CART. Importantly, achieving this level of accuracy required 

only one level of decision branching, indicating that minimal depth was 

enough to produce accurate results, irrespective of the training algorithm 

employed. The detection accuracies for all CWS components at optimal 

decision tree settings are presented below in Table 48. These high accuracies 

proved that the proposed frequencies shown in previous chapter (Table 40) 

are proper to create the dataset for each CWS component. 

Table 48: Detection accuracies of chilled water system components  

Chilled Water System Component Detection Accuracy (%) 

Chiller 98.50 

Cooling tower 99.60 

Pump 99.80 

Terminal unit 99.20 

 
 

5.3.3 Implementation of Quality Control Phase 

 

After successfully building the detection model, the control plan 

presented in Table 44 was actioned. In the monitoring stage of the control 

plan, the detection model was connected to a computer unit (see Figure 32) to 

initiate the second stage of the control plan (response). In this stage, the 

Facility Department at the university was advised to continue observing the 

readings as per convenient and to inspect the site in case of a fault ‘1’, fixing it 

as per the actions provided in the previous chapter (Tables 33-36) and 

measuring the outcomes as shown in subsubsection 5.2.3. In addition, the 

department were advised to document the response action of the control plan 

by listing the lessons learned from the proposed intelligent maintenance 

framework, ensuring that the computer unit is working efficiently, tracking the 

spare parts stock, training more technicians to be familiar with the detection 

model, and writing regular reports about the performance of the proposed 

intelligent maintenance framework for future improvements. 
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Figure 32: Computer unit for intelligent maintenance framework 

 

5.4 Reliability and Internal Validity 

 

After successfully implementing the methodological framework, an 

empirical study divided into two periods (one month each, including 

weekends) was conducted for reliability and internal validity purposes. During 

each empirical period, the same unit of each CWS component was considered, 

and the readings of the related operational parameters were recorded. As 

stated previously in Chapters 3 and 4, a single operational parameter is used 

to build the dataset of each CWS component. During the first empirical period, 

the decision tree model of each CWS component predicted 56 faults in the 

chiller, 61 faults in the cooling tower, 39 faults in the pump, and 73 faults in 

the terminal unit. All fault signals from the computer unit, which were displayed 

as ‘1’, led primarily to real faults around the site, which are part of the faults 

listed either by the literature or by the industry survey. Figure 33 displays a 

fault signal for the cooling tower, which means unknown fault is predicted by 

the decision tree model. After each fault signal, the assigned specialised 

technician should inspect the associated CWS component physically where 

each CWS component has an assigned specialised technician for inspection. 

The thesis author was involved in the inspection as well as attending to fault 

signals. This inspection has two goals: the first is to check if there is a real fault, 

which means the decision tree model has detected that fault; and the second 
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is to fix that fault by applying the solutions mentioned in the previous chapter 

(Tables 33-36) which are an outcome of the industry survey. Table 49 below 

shows a breakdown of the name and number of chiller faults detected by the 

decision tree model during the first empirical period, while Tables 50-52 are 

related to the decision tree’s model of cooling tower, pump and terminal unit, 

respectively. Each table has three columns, the first one contains the fault 

name, the second one contains its source whether from the literature or the 

survey, and the third column, which is titled as “Number of Times Detected’’, 

shows how many times this fault had appeared and detected during the said 

empirical period.  

 

Figure 33: Fault signal for cooling tower 

 

 

Table 49: Summary of the first empirical period for chiller 

Fault Source 
Number of Times 

Detected  

Refrigeration leak Literature 9 

Condenser fouling Literature 8 

Evaporating fouling Literature 7 

High compressor lift Industry survey 7 

Compressor overcharging Literature 6 

High motor ampere Industry survey 5 

Relief valve discharge Industry survey 5 

High condenser approach Industry survey 4 

Incorrect manual guide vane target Industry survey 2 

High evaporator approach Industry survey 1 

Total 54 

 

Table 50: Summary of the first empirical period for cooling tower 

Fault Source 
Number of Times 

Detected  

Malfunctioning blowdown system Industry survey 11 

Low water basin level Industry survey 10 
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High water total dissolved solid Industry survey 10 

Vibration Industry survey 9 

Rise in circulating water temperature Industry survey 5 

Faulty isolation valve Industry survey 4 

Low circulating water flow rate Industry survey 4 

Motor overheating Industry survey 3 

Fouling of fills Literature 2 

Over current Industry survey 1 

Unusual sound Industry survey 1 

Total 60 

 

Table 51: Summary of the first empirical period for pump 

Fault Source 
Number of Times 

Detected  

Noisy non-return valve Industry survey 10 

Pump runs but provides no water Industry survey 7 

Leakage from Valves Industry survey 7 

Motor vibration Industry survey 3 

Low flow rate in cold exchange Literature 3 

Improper pump water alignment  Industry survey 1 

Motor heat-up Industry survey 2 

Clogging Literature 4 

Total 37 

 

Table 52: Summary of the first empirical period for terminal unit 

Fault Source 
Number of Times 

Detected  

Low static pressure Industry survey 13 

Loose belts Industry survey 8 

Air trapped in cooling coil Industry survey 9 

Noisy contactors Industry survey 6 

Faulty fresh air damper Industry survey 6 

Speed reducing the supply fan Literature 6 

Vibration Industry survey 1 

Faulty exhaust air damper Industry survey 5 

Dirty air flow Industry survey 2 

Faulty damper actuator Industry survey 4 

Faulty control valve Industry survey 3 

Damaged insulation on pipe Industry survey 1 

Cooling coil blockage Literature 4 

Total 71 

 

The above four tables make evident the reliability of the decision tree 

model of each CWS component as 54 faults for the chiller, 60 faults for the 

cooling tower, 37 faults for the pump, and 71 faults for the terminal unit were 

detected. In addition, detecting these real faults conveyed the reliability of the 

proposed frequencies as shown in the previous chapter (Table 40). They were 
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utilised to create the datasets for CWS components, which were used to build 

and train the detection models. Also, the above four tables validated the new 

faults that were provided by the industry survey where six different chiller 

faults, 10 different cooling tower faults, six different pump faults, and 11 

different terminal unit faults appeared during this empirical period, the 

majority of these detected faults from the lists of the new faults provided by 

the industry survey (see Tables 33-36). 

The solutions suggested by the industry survey, as mentioned in the 

previous chapter (Tables 33-36), verified their validity in fixing the occurred 

faults to the satisfaction of the concerned department. Regarding the finding 

mentioned previously about the technical correlation between CWS 

components, the importance of covering the all the CWS components within 

the same intelligent maintenance framework has been confirmed during this 

empirical phase where the chiller fault that occurred, which is the high 

condenser approach, had been successfully fixed by investigating the 

associated cooling tower and then by implementing the suggested solution 

(Table 33). This fault appeared four times during the said empirical period (See 

Table 49), and it was identified and fixed by the technician, who inspected the 

site, where he cleaned the effected fills of the associated cooling tower. With 

regard to the occurred cooling tower fault, which is the low circulating water 

flow rate, it was successfully fixed by investigating the associated chiller and/ 

or pump, and then by implementing its suggested solution (Table 34). This 

fault appeared four times during the said empirical period (see Table 50), out 

of which, two times were fixed by cleaning the stainer of the associated 

condenser pump, and two times were fixed by cleaning the condenser tubes 

inside the associated chiller. With regard to the occurred pump fault, which is 

pump clogging, it was successfully fixed by investigating the associated 

cooling tower, and then by implementing its suggested solution (Table 35). 

This fault appeared four times (see Table 51), and it was a partial type and it 

was identified by the assigned technician and fixed by cleaning the strainer 

filtering the water coming from the associated cooling tower. The occurred 

terminal unit faults, which are the cooling coil blockage and air trapped in 

cooling coil, were successfully fixed by investigating the associated chiller and 

pump, and then by implementing their suggested solutions (Table 36). For 

example, the first fault, which is the cooling coil blockage, appeared four times 

during the empirical period in discussion (see Table 52), and it was an outer 

type and fixed by reducing the air speed that linked to the associated chiller. 
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 A quantitative analysis is made to confirm the above-mentioned 

technical correlation between CWS components. Similar to the analysis of the 

industry survey’s outcome (see Table 39), the analysis of the case study’s 

outcome with regard to the correlation is made through Excel sheets using 

Pearson r test. Each sheet contains three columns, the first one contains the 

serial number of fault occurrence, for example, the first detection time of the 

high condenser approach fault in chiller is numbered as ‘1’, the second 

detection time of the same fault is numbered as ‘2’, etc. With regard to the 

second column of the aforementioned sheets, it contains either ‘1’, which 

means that the said fault is successfully fixed by investigating the associated 

cooling tower, or ‘0’, which means fixing the fault was not required to 

investigate the associated cooling tower. The third column contains the 

cumulative values of the second column. Appendix I shows these sheets along 

with the correlation coefficient values and their plots. Table 53 below 

summarised the r values between CWS components during the first empirical 

period with ninety-nine per cent confidence level. All correlation coefficient 

values are greater than 0.50. which means the correlation is strong and 

positive. 

Table 53: Correlation Coefficient Values for the first empirical period 

CWS component 

experiencing a fault 
Fault 

CWS component to 

be investigated 

Correlation 

Coefficient Value 

Chiller  
High condenser 

approach 
Cooling Tower 0.9439 

Cooling Tower 
Low circulating 

water flow rate 
Pump 0.9486 

Pump Clogging Cooling Tower 0.9307 

Terminal Unit 
Cooling Coil 

Blockage 
Chiller 1 

 

Similarly, the existing monitoring system implemented by the department 

is BMS. They were asked to give a report for the same empirical period during 

which the CWS components via the decision tree model were observed. The 

report contained the total number of faults predicted and detected by the BMS 

for the same selected CWS components. For internal validity purposes, Figure 

34 shows a comparison between the decision tree model and BMS in tracing 

and detecting faults after inspecting the site within the same period. The 

Figure’s bar chart confirms the internal validity of the decision tree model; each 

CWS component was fulfilled as there is an improvement in detecting the 

faults when compared to BMS. As a result of this empirical period, the 
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improvement in chiller is 24 per cent, while the improvements in cooling tower, 

pump and terminal unit are 22, 30 and 24 per cent, respectively.  

 
Figure 34: Comparison of detection performance during first empirical period 

  

The above process has been repeated during the second empirical period. 

The decision tree model predicted 47 faults in the chiller, 53 faults in the 

cooling tower, 44 faults in the pump and 68 faults in the terminal unit. Table 

54 below shows a breakdown of the name and number of chiller faults that 

were detected by the decision tree model during the second empirical period, 

while Tables 55, 56 and 57 reflect the decision tree’s model of cooling tower, 

pump and terminal unit, respectively. The third column on the right of these 

tables, which is titled as “Number of Times Detected’’ shows how many times 

each fault had appeared and detected during the said empirical period. 

 

Table 54: Summary of the second empirical period for chiller 

Fault Source 

Number of 

Times 

Detected  

Refrigeration leak Literature 8 

Low condenser flow Industry survey 7 

High condenser temperature Literature 7 

High evaporator approach Industry survey 5 

Low oil pressure Industry survey 5 

High motor temperature Industry survey 5 

Vibration Industry survey 3 

Imbalanced line current Industry survey 3 

Low evaporator refrigerant temperature Industry survey 2 

Faulty operation scheduling Literature 1 

Total 46 
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Table 55: Summary of the second empirical period for cooling tower 

Fault Source 

Number of 

Times 

Detected  

Malfunctioning blowdown system Industry survey 10 

Over current Industry survey 8 

Fills clogging Industry survey 7 

Faulty water level valve Industry survey 9 

Motor overheating Industry survey 4 

Faulty isolation valve Industry survey 4 

Low circulating water flow rate Industry survey 8 

Damaged fan Industry survey 2 

Total 52 

 

Table 56: Summary of the second empirical period for pump 

Fault Source 
Number of 

Times Detected  

Noisy non-return valve Industry survey 9 

Low flow rate in cold exchange Literature 9 

Pump runs but provides no water Industry survey 7 

Leakage from pump set Industry survey 4 

Motor heat-up Industry survey 4 

Pump runs at reduced capacity Industry survey 3 

Faulty control switch Literature 3 

Pipeline leakage Literature 2 

Abnormal or excessive noise Literature 1 

Total 42 

 

Table 57: Summary of the second empirical period for terminal unit 

Fault Source 
Number of 

Times Detected  

Low static pressure Industry survey 11 

Loose belts Industry survey 10 

Air trapped in cooling coil Industry survey 8 

Faulty cooling valve actuator Industry survey 6 

Return damper jam Literature 6 

Motor overload Industry survey 6 

Vibration Industry survey 6 

Faulty supply air damper Industry survey 4 

Faulty filter coil system Literature 3 

Faulty variable air volume Literature 3 

Damaged insulation on duct Industry survey 1 

Compressor failure Literature 1 

Filter blockage Literature 1 

Broken belts Industry survey 1 

Total 67 
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These four tables give evidence that the decision tree model of each CWS 

component shows reliability as 46 faults for the chiller, 52 faults for the cooling 

tower, 42 faults for the pump and 67 faults for the terminal unit were detected. 

In addition, detecting these real faults showed again the reliability of the 

proposed frequencies, noted in the previous chapter (Table 40), as they were 

utilised to create the datasets for CWS components, which were then used to 

build and train the detection models. Also, the above four tables again 

validated the new faults provided by the industry survey where seven different 

chiller faults, nine different cooling tower faults, five different pump faults, and 

nine different terminal unit faults appeared during this second empirical 

period. The majority of these detected faults are from the lists of new faults 

emerging through the survey and shown in the previous chapter (Tables 33-

36). 

The solutions suggested by the industry survey (Tables 33-36) again 

confirmed their validity in fixing the occurred faults to the satisfaction of the 

concerned department. Regarding the finding mentioned in the previous 

chapter regarding the technical correlation between CWS components, the 

importance of covering all the CWS components within the same intelligent 

maintenance framework has been confirmed again during the empirical 

period. The occurred chiller fault, for example, which is the low condenser flow, 

has been successfully fixed by investigating the associated pump and then by 

implementing its suggested solution (Table 33). With regard to the cooling 

tower fault that occurred, the low circulating water flow rate, it has been 

successfully fixed by investigating the associated chiller and pump, and then 

by implementing its provided solution (Table 34). The terminal unit fault that 

occurred, which is the air trapped in cooling coil, has been successfully fixed 

by investigating the associated chiller and pump, and then by implementing 

its suggested solution (Table 36). Similar to the first empirical period, a 

quantitative analysis is made to confirm the above-mentioned correlation (see 

Appendix I). Table 58 below summarised the r values between CWS 

components during the second empirical period with ninety-nine per cent 

confidence level. All correlation coefficient values are greater than 0.50. which 

means the correlation is strong and positive. 
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Table 58: Correlation Coefficient Values for the second empirical period 

CWS component 

experiencing a fault 
Fault 

CWS component to 

be investigated 

Correlation 

Coefficient Value 

Chiller  
Low condenser 

flow 
Pump 0.9799 

Cooling Tower 
Low circulating 

water flow rate 
Chiller 0.9439 

Cooling Tower 
Low circulating 

water flow rate 
Pump 0.9439 

Terminal Unit 
Air trapped in 

cooking coil 
Chiller 1 

Terminal Unit 
Air trapped in 

cooking coil 
Pump 0.9439 

 

Concerning the new faults emerging from the survey and shown in the 

previous chapter (Tables 33-36), and after these two empirical periods, out of 

the 17 new chiller faults from the survey, 12 faults occurred. With regard to 

cooling towers, of the 13 new faults provided by the survey, 12 faults occurred. 

With regard to the pump, all eight new faults emerging from the survey 

occurred. For the terminal unit, of the 20 new faults provided by the survey, 16 

faults occurred. This also validated the outcomes of the industry survey about 

these new faults. In addition, it has been observed that the faults occurring 

most frequently for CWS during these two empirical periods are the 

refrigeration leak fault for the chiller component, the malfunctioning 

blowdown system fault for the cooling tower component, the noisy non-return 

valve for the pump component, and the low static pressure for the terminal 

unit component (Tables 49-52 and 54-57). This observation matches the 

outcome of the industry survey with regard to the CWS faults repeated the 

most by the participants (Table 37). 

For internal validity purposes, a comparison between the decision tree 

model of each CWS component and the BMS in predicting and detecting CWS 

faults has been conducted in the same procedure as the first empirical period. 

Figure 35 presents this comparison. As a result of this empirical period, the 

improvement rate in chiller is 28 per cent, while the improvements in cooling 

tower, pump and terminal unit are 21, 26 and 22 per cent, respectively. After 

all the above activities, a discussion was conducted with the head of 

maintenance as well as with the operation and maintenance manager at the 

university to ascertain their views about the proposed methodological 

framework, a holistic intelligent maintenance for CWS. The outcome of the 

proposed intelligent maintenance framework was to their satisfaction, 
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particularly seeing the improvement made by the proposed decision tree 

model of each CWS component when compared to BMS. 

 
Figure 35: Comparison of detection performance during second empirical period 

 

 

5.5 External Validity 

 

The methodological framework has been implemented at another site 

for external validity purposes. The second case study was conducted in a hotel 

owned by the same foundation that manages the university. The hotel has a 

complete CWS, which means it has chillers, cooling towers, pumps and terminal 

units. The three methodological framework phases were applied in parallel with 

main case study, so the data collection plan was same for both case studies. 

Following the same procedure as implemented in the main case study, Figures 

36-39 show the outcomes of the hotel’s decision trees without pruning for a 

selected chiller, cooling tower, pump and terminal unit, respectively. 
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Figure 36: Hotel chiller tree without pruning    Figure 37: Hotel cooling tower tree without 

pruning 

 

  
Figure 38: Hotel pump tree without pruning    Figure 39: Hotel terminal unit tree without 

pruning 

 

Examining the different pruning methods, the optimally trained trees for 

each studied CWS component were once again found in Python (see Figure 40) 

for the same selected chiller, and for the same selected cooling tower, pump 

and terminal unit, respectively (Figures 41-43). 

 

 

 
Figure 40: Hotel chiller decision tree        Figure 41: Hotel cooling tower tree 
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        Figure 42: Hotel pump decision tree          Figure 43: Hotel terminal unit decision tree 

 

Similar to the main case study, changing the training-to-testing ratio and 

the training algorithms had an insignificant impact on the detection accuracy. 

A 70-to-30 per cent training-to-testing ratio was adopted using the CART 

training algorithm. By utilising Equation 5 as in the main case study, the 

detection accuracies of each CWS component at the optimal decision tree 

setting were determined and presented below in Table 59. Again, these high 

accuracies prove that the proposed frequencies, as shown in previous chapter 

(Table 40), are proper to create the dataset for each CWS component. After 

that, the Support Services Department at the hotel site successfully actioned 

the monitoring and response actions of the quality control phase. 

Table 59: Hotel chilled water system component detection accuracies 

CWS Component Detection Accuracy (%) 

Chiller 98.90 

Cooling tower 99.70 

Pump 99.85 

Terminal unit 99.35 

 

After implementing the phases of the methodological framework, an 

empirical study was conducted for one month, including weekends, for validity 

purposes. The decision tree model of the chiller predicted 41 faults, while the 

decision tree model of the cooling tower predicted 43 faults. With regard to 

the decision tree model of the pump, it predicted 44 faults, while the decision 

tree model of the terminal unit predicted 48 faults.  

Following a site inspection by assigned technicians, Table 60 below shows 

a breakdown of the name and number of chiller faults that were detected by 

the hotel’s decision tree model during the empirical period, while Tables 61, 

62, and 63 below are for the decision tree’s model of cooling tower, pump and 
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terminal unit, respectively. The column titled “Number of Times Detected” in 

these tables shows how many times each listed fault had appeared and 

detected on site.  

 

 

 

 

Table 60: Summary of the hotel empirical period for chiller 

Fault Source 
Number of Times 

Detected  

Refrigeration leak Literature 7 

High condenser temperature  Literature 7 

Evaporator fouling Literature 6 

Low chilled water flow Industry survey 5 

Compressor overcharging Literature 5 

High cooler delta-t Industry survey 3 

Vibration Industry survey 2 

Low oil pressure Industry survey 1 

Low discharge superheat Industry survey 1 

Incorrect manual guide vane target Industry survey 1 

Relief valve discharge  Industry survey 1 

Total 39 

 

Table 61: Summary of the hotel empirical period for cooling tower 

Fault Source 
Number of Times 

Detected  

Malfunctioning blowdown system Industry survey 11 

Rise in circulating water temperature Industry survey 8 

Low water basin level Industry survey 6 

Fills fouling Literature 6 

Vibration Industry survey 4 

Faulty isolation valve Industry survey 2 

Faulty water level valve Industry survey 2 

Unusual sound Industry survey 1 

Total 40 

 

Table 62: Summary of the hotel empirical period for pump 

Fault Source 
Number of Times 

Detected  

Noisy non-return valve Industry survey 15 

Motor vibration Industry survey 11 

Leakage from valves Industry survey 4 

Improper pump water alignment Industry survey 3 

High flow rate in cold exchange Literature 3 

Pump runs but provides no water Industry survey 3 

Clogging Literature 4 

Total 43 
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Table 63: Summary of the hotel empirical period for terminal unit 

Fault Source 
Number of Times 

Detected  

Low static pressure Industry survey 12 

Faulty control valve Industry survey 11 

Faulty variable air volume Literature 8 

Faulty cooling valve actuator Industry survey 4 

Faulty exhaust air damper Industry survey 4 

Noisy motor Industry survey 4 

Damaged Insulation on pipe Industry survey 1 

Faulty bearings Industry survey 1 

Faulty fan Literature 1 

Total 46 

 

These tables make it clear that the decision tree model of each CWS 

component shows reliability as 39 faults for the chiller, 40 faults for the cooling 

tower, 43 faults for the pump, and 46 faults for the terminal unit were detected. 

Additionally, detecting these real faults confirms the reliability of the proposed 

frequencies (Table 40) as they were utilised to create the datasets for CWS 

components, which were then used to build and train the hotel’s detection 

models. Also, the above four tables validated again the new faults that were 

provided by the industry survey as seven different chiller faults, seven different 

cooling tower faults, five different pump faults, and six different terminal unit 

faults appeared during this hotel’s empirical period, with the majority of these 

detected faults on the lists of the new faults identified by the survey and shown 

in the previous chapter (Tables 33-36). 

Furthermore, the provided actions by the industry survey again had their 

validity verified in fixing the occurred faults to the satisfaction of the concerned 

department. Regarding the finding mentioned in the previous chapter about 

the technical correlations between CWS components, the importance of 

covering all the CWS components within the same intelligent maintenance 

framework has been confirmed yet again during the empirical period where 

the occurred chiller fault, which is the low chilled water flow, has been 

successfully fixed by investigating the associated pump and then by 

implementing its provided solution. With regard to the pump fault occurring, 

which is clogging, it has been successfully fixed by investigating the associated 

cooling tower, and then by implementing its solution that was shown in the 

previous chapter (Table 34). Similar to the previous two empirical periods, a 

quantitative analysis is made to confirm the above-mentioned correlation (see 

Appendix I). Table 64 below summarised the r values between CWS 
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components during the hotel empirical period with ninety-nine per cent 

confidence level. All correlation coefficient values are greater than 0.50. which 

means the correlation is strong and positive. 

Table 64: Correlation Coefficient Values for the hotel empirical period 

CWS component 

experiencing a fault 
Fault 

CWS component to 

be investigated 

Correlation 

Coefficient Value 

Chiller  
Low chilled water 

flow 
Pump 1 

Pump Clogging Cooling Tower 0.9487 

 

In terms of the new faults emerging from the survey and shown in the 

previous chapter (Tables 33-36), and after these three empirical periods (two 

at the university and one at the hotel), of the 17 new chiller faults that were 

provided by the industry survey, 15 faults occurred. With regard to cooling 

tower component, all 13 new faults that were provided by the industry survey 

occurred. The same is true with regard to the pump component: all eight new 

faults provided by the industry survey already occurred. For the terminal unit 

component, of the 20 new faults provided by the industry survey, 18 faults 

occurred. This further validates the outcomes of the industry survey concerning 

the new faults. In addition, it has been observed that the most frequently 

occurring faults for CWS components during the hotel empirical period are 

refrigeration leak fault for the chiller component, the malfunctioning 

blowdown system fault for the cooling tower component, the noisy non-return 

valve for the pump component, and the low static pressure for the terminal 

unit component (see Tables 60-63). Like the empirical periods of the main case 

study, this observation again matches the outcome of the industry survey with 

regard to the CWS faults listed the most by participants, as shown in Chapter 

4 (Table 37). 

For validity purposes, a comparison between BMS, which is similar to the 

monitoring system at the university, and the hotel’s decision tree model of 

each CWS component in predicting and detecting CWS faults, has been 

conducted in the similar procedure as the two previous empirical periods. 

Figure 44 shows the comparison. As a result of this hotel’s empirical period, 

the improvement in chiller is 21 per cent, while the improvement in cooling 

tower, pump and terminal unit are 25, 26 and 22 per cent, respectively. As with 

the previous empirical periods, a discussion was held with the hotel 

stakeholders to ascertain their views about the proposed methodological 

framework, a holistic intelligent maintenance for CWS. The outcome of the 
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proposed intelligent maintenance framework was to their satisfaction, 

particularly with the improvements by the proposed decision tree model of 

each CWS component when compared to BMS. With this, the external validity 

of this research project has been fulfilled. 

 
Figure 44: Comparison of the detection performance during the hotel empirical period 

 

 

5.6 Conclusion 

 

This chapter presented the second research instrument in this research 

project, the case study. The case study is implemented through a proposed 

methodological framework (see Table 42). Three empirical periods were 

conducted, and the detection model for each CWS proved its reliability and 

validity in tracing the faults. Though such faults have a minimal impact on CWS 

components, but they may lead to major breakdown as defined in Chapters 2 

and 4. So, the detection models and the actions provided by this research 

project have managed to protect the said components from major failures. The 

methodological framework can be considered as a guide for operation and 

maintenance professionals where it contains several managerial and technical 

steps. Table 65 below presents a step-by-step guideline for implementing the 

proposed methodological framework.  
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Table 65: Step-by-step guideline 

Step 

Number 
Step Remarks  

1 

Looking at the As-built 

drawing and then 

matching it with the 

simplified CWS drawing 

(see Figure 15). 

This step is to understand the assembly of CWS 

at site, and to determine the number of each 

CWS component installed at site. 

2 

Ensuring the reading tools 

are installed properly (see 

Table 43).  

Here, the reading tools are the source of 

collecting the data, and this step is to make 

sure the data collection can start conveniently. 

3 
Determining the data 

collection plan. 

A schedule for each CWS component should 

be here as per the proposed minimum and 

maximum frequencies (see Table 40). 

4 

Preparing the required 

copies of the check sheets 

for each CWS component 

(see Appendix F) 

The number of check sheets is based on the 

number of days that are determined from the 

previous step.  

4 

Forming the team 

members who are going 

to collect the data. 

As per the work load, the concerned person 

should assign the technicians for each CWS 

component. 

5 

Transferring the collected 

data to Excel sheet for 

each CWS component. 

The Excel sheets are considered as datasets for 

building the machine learning model. 

6 

Building the machine 

learning model (see Figure 

17). 

For example, in this research project, decision 

tree algorithm is formulated to be a detection 

model for each CWS component. 

7 

Making and implementing 

a quality control plan (see 

Table 44).  

At the end of this methodological framework, 

the quality control plan ensures evaluating the 

detection model from faults tracing point of 

view, fixing the occurred faults by the provided 

actions, examining these actions, and 

documenting the lesson learned for continuous 

improvements.  

 

The next chapter analyses and summarises the outcomes and findings of 

this research and interprets the answers of the four research questions. Also, it 

acknowledges the contribution of this present work to the extant knowledge 

both theoretically and practically, summarises the assessment of the quality of 

this research thesis, denotes the limitations of this research, and suggests future 

research. It then wraps up with the author’s personal reflection. 
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Chapter 6: Research Thesis Discussion and 

Conclusion 

“Fault detection is one of the critical components of predictive maintenance where it is very 

much needed for industries to detect faults early and accurately.” 

(Amruthnath and Gupta, 2018) 

 

6.1 Introduction 

 

This chapter interprets and discusses the results of the two applied 

research methods of this research project. The discussion centres primarily on 

the four research questions answered by the project. Following the approach of 

Eisenhardt (1989), the discussion includes a comparison of findings of this 

research with extant literature. Each of the next four subsections is related to 

one research question and its answer. Thereafter, the chapter concludes with 

several subsections: a general summary of this research project, the 

contribution to theoretical and practical knowledge, the research limitations, a 

future research agenda, and finally, with the author’s reflections. 

 

6.2 Discussion 

 

6.2.1 Answer to Research Question #1 

 

The first research question generated after the systematic literature 

review and shown in Chapter 3 (Table 19) is as follows: 

 

Research Question #1: Is there a correlation between the components of a CWS 

that makes it important to cover all of them within the same maintenance 

framework?  

The main point of investigation in this research project is the chilled 

water system (CWS) and the aim of this research is to propose a holistic 

intelligent maintenance framework for CWS components, which means 

managing all components of the system within the same framework and at the 

same time. In light of the definition of CWS in Chapter 1, the four components 

– chiller, cooling tower, pump and terminal unit – all contribute to the system 

at the same time and linked to each other from an operational point of view. 
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But the systematic literature review revealed that no study under consideration 

focused on all CWS components within the same research (see Chapter 2, Table 

17). Information in Table 17 indicates that the majority of the relevant studies 

(approximately 50 per cent) addressed only one CWS component, the terminal 

unit. The chiller component was second with approximately 32 per cent of the 

considered studies investigating this component. The remaining 18 per cent 

were distributed between addressing only one CWS component, either the 

cooling tower or pump, or by addressing two or three CWS components at the 

most. No evidence indicated coverage of all CWS components in their entirety 

within the same studies. This could potentially be due to the complexity of the 

CWS system, as shown in Chapter 5 (Figure 18), or perhaps to the difficulty of 

accessing data for all four CWS components. On a side note, the studies that 

addressed more than one CWS component, which are summarised in Table 18, 

did not mention any technical relevance between the components. For 

example, Zhou et al. (2009a), Hu et al. (2019), and Motomura et al. (2019a) 

focused on three CWS components – chiller, cooling tower and pump – but 

none of these three studies clarified any technical link or relevance among the 

three CWS components. Sulaiman et al. (2020) also explored three CWS 

components – chiller, cooling tower and terminal unit – but also neglected to 

examine any relevance between these components or to clarify the reason for 

addressing these particular three components in the same research. Miyata et 

al. (2019) as well as Luo et al. (2019) focused on three CWS components – 

chiller, pump and terminal unit – but also failed to mention any rationale for 

addressing these particular three components in their studies or to clarify any 

technical relevance among them. Based on that, the first research gap emerged 

for this research project: “The impact of the technical correlation between all 

four CWS components on fault detection remains unknown”. This created a 

question about the benefit and significance of covering all CWS components 

at the same time within any proposed fault detection framework, and 

accordingly, the above research question was generated. 

The research methods assigned to answer this first research question 

were the industry survey (explained in Chapter 4) and the case study (explained 

in Chapter 5). By examining the fault solutions solicited from the industry 

survey (see Chapter 4, Tables 33-36), it was noticed that faults in a particular 

CWS component seem to be due to the health condition of another CWS 

component, which means there is likely some degree of technical relevance 

between CWS components wherein the faults that occur in a particular CWS 
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component could potentially be fixed by investigating another CWS 

component. A quantitative analysis is conduced to confirm the correlation 

between CWS components based on the industry survey outcomes (see Table 

39 and Appendix D). Based on the correlation coefficient values mentioned in 

the said table and appendix, the correlation is strong and positive with ninety-

nine per cent confidence level. In addition, a quantitative analysis is conducted 

to reconfirm the correlation between CWS components based on the case 

study outcome (see Tables 53, 58, and 64 as well as Appendix I). Based on the 

correlation coefficient values mentioned in the said tables and appendix, the 

correlation is strong and positive as well with ninety-nine confidence level, and 

accordingly, the case study has validated the outcome of the industry survey 

in this regard. Table 66 below summarises the relevance of faults and their 

fixing actions between CWS components, as noted after the industry survey 

and confirmed by the case study at both sites. 

Table 66: Relevance between chilled water system components 

CWS component 

showing fault 
Fault 

CWS component to be 

investigated 

Chiller Low condenser flow Pump 

Chiller Low chilled water flow Pump 

Chiller High condenser approach Cooling tower 

Cooling tower Low circulating water flow rate Chiller and/or pump 

Pump Clogging Cooling tower 

Terminal unit Air trapped in cooling coil Pump 

Terminal unit Cooling coil blockage Chiller and/or pump 

 

During the three empirical periods of this study, faults that occurred in a 

particular CWS component were fixed by rectifying something in another 

component. Part of these faults were the same faults as presented in the above 

table. For example, the low condenser flow fault that occurred in the chiller 

during one of the empirical periods at the university building was successfully 

fixed by implementing an action furnished by the industry survey (see Chapter 

4, Table 33). With the action to fix this fault, the technical relevance between 

the chiller and the pump has been confirmed; the associated condenser pump 

in operation has been investigated and then its pressure has been checked and 

rectified. Low chilled water flow fault occurred in the chiller during the hotel’s 

empirical period and was successfully fixed by implementing its solution 

supplied by the industry survey (see Chapter 4, Table 33). With the action to fix 

this fault, the technical relevance between the chiller and the pump has been 

confirmed, again where the associated secondary pump in operation has been 

investigated and then its pressure checked and rectified.  
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A high condenser approach fault occurred in the chiller during one of 

the empirical periods at the university building and was successfully fixed by 

implementing its solution provided by the industry survey (see Chapter 4, Table 

33). As per the action to fix this fault, the technical relevance between the chiller 

and the cooling tower has been confirmed where the connected tunnel of the 

associated cooling tower in operation has been checked and then serviced via 

cleaning the fills.  

The cooling tower fault, which is low circulating water flow rate, occurred 

during both empirical periods at the university building and was successfully 

fixed by implementing its action as provided by the industry survey (see 

Chapter 4, Table 34). As per the action to fix this fault, it is again confirmed that 

technical relevance exists between the cooling tower and the chiller where the 

associated chiller in operation has been investigated and then the condenser 

tubes inside the associated chiller have been checked and cleaned. Also, for 

the same fault, the technical relevance between the cooling tower and pump 

has been confirmed where the associated pump in operation has been 

investigated as well, and then the stainer of the associated condenser pump 

has been checked and cleaned. A clogging fault occurred in the pump during 

one of the empirical periods at the university building as well as during the 

hotel’s empirical period. This fault was successfully fixed by implementing its 

solution as furnished by the industry survey (see Chapter 4, Table 35). With the 

action to fix this fault, the technical relevance between the pump and the 

cooling tower has again been confirmed: the associated cooling tower in 

operation has been investigated, and then the strainer, which is filtering the 

water coming from that cooling tower, has been checked and cleaned as the 

status of the clogging was partial when detected.  

The terminal unit fault, air trapped in cooling coil, occurred during both 

empirical periods at the university building and was successfully fixed by 

implementing its solution provided by the industry survey (see Chapter 4, Table 

36). As per the action to fix this fault, the technical relevance between the 

terminal unit and the pump has been confirmed: the associated pump in 

operation has been investigated, and then the coil has been cleaned and the 

pressure of the associated secondary pump has been checked and amended. 

A cooling coil blockage fault occurred in the terminal unit during one of the 

empirical periods at the university building and was successfully fixed by 

implementing the action to fix this fault supplied by the industry survey (see 

Chapter 4, Table 36). As per the action to fix this fault, a technical relevance 
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between the terminal unit and the pump is confirmed; the associated pump in 

operation has been investigated and then the chilled water quality from the 

associated primary pump has been checked and rectified as the blockage was 

an inner one when detected. Also, for the same fault, the technical relevance 

between the terminal unit and the chiller has been confirmed where the 

associated chiller in operation has been investigated, and then the chilled 

water quality from the associated primary pump has been checked and 

rectified as the blockage was also an inner one when detected. 

In view of the above discussion, the industry survey and the case studies 

have answered the first research question: both methods resolved a 

confirmation that there indeed is technical relevance between CWS 

components, and accordingly, covering all these components simultaneously 

within the same intelligent maintenance framework is imperative. Therefore, the 

answer to the first research question is ‘yes, there is a strong and positive 

correlation between CWS components, and therefore, it is important to cover 

them within the same intelligent maintenance framework’. 

 

 

6.2.2 Answer to Research Question #2 

 

The second research question generated after the systematic literature 

review and shown in Chapter 3 (Table 19) is as follows: 

 

Research Question #2: Are there any other faults rather than the ones 

mentioned by the literature? 

The above question intended to check if there are CWS faults not 

addressed or stated by the considered literature. Identifying new faults will 

open a space that can expand the knowledge about the issues of CWS. As 

mentioned after the systematic literature review, the term fault is defined as 

any failure that may lead to a CWS breakdown over time, so taking care of CWS 

components would be inefficient without the awareness and knowledge of 

issues that engender their breakdown. 

The considered studies in the literature have addressed various faults for 

CWS components. For the chiller component, the total number of considered 

studies that addressed faults is 81. Most of these have pinpointed the 

condenser fouling and refrigeration leak as chiller faults. Also, sensor bias is 
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addressed as a chiller fault by most of the literature where several studies 

suggested installing sensors via multiple approaches such as Internet of Things 

to detect chiller faults. Table 67 below summarised the chiller faults that are 

mentioned by the literature. The table contains the fault along with the 

reference(s). Some of the studies neglected to describe the chiller faults clearly; 

for example, Ma and Wang (2011), Sun et al. (2013), Karim and Wang (2018), 

and Wu et al. (2021) addressed the degradation of the chiller but did not 

proffer more detail about the faults that lead to that degradation. The 

remainder of the literature did not state or clarify chiller faults within their 

proposed intelligent maintenance frameworks. 

Table 67: Summary of chiller faults presented by the literature 

Fault References 

Condenser fouling 

Zhou et al. (2009b), Yu and Chan (2012), Zhao et al. (2012), 

Zhao et al. (2013a), Zhao et al. (2013b), Zhao et al. (2013c), 

Kocyigit (2015), Li et al. (2016a), Li et al. (2016b), Li et al. 

(2016d), Li et al. (2016e), Wang et al. (2017b), Yan et al. 

(2018a), Wang et al. (2020), Xia et al. (2021b), Munir et al. 

(2023), Albayati et al. (2023), and Ssembatya and Claridge, 

(2024) 

Refrigeration leak 

Tassou and Grace (2005), Navarro-Esbri et al. (2006), Kocyigit 

(2015), Han et al. (2020), Liu et al. (2022b), and Ssembatya 

and Claridge, (2024) 

Faulty operation 

scheduling 
Schein and Bushby (2006) 

High condenser 

temperature 
Rueda et al. (2005) 

Evaporating fouling Zhou et al. (2009a), Kocyigit (2015), and Albayati et al. (2023) 

Compressor overcharging Kocyigit (2015), Liu et al. (2017), and Hu et al. (2019) 

Sensor bias 

Wang and Cui (2005), Choi et al. (2005), Xiao et al. (2006), Xu 

et al. (2008), Wang et al. (2010), Hu et al. (2012), Hu et al. 

(2016a), Hu et al. (2016b), Mao et al. (2008), Hu et al. (2019), 

Mao et al. (2018), Gao et al. (2019a), Luo et al. (2019), and Ng 

et al. (2020) 

 

The literature did not reveal much of a focus on the cooling tower 

component: the total number of the considered studies was 17. Most of these 

studies found air fan degradation as one cooling tower fault. Table 68 

summarised the references that were mentioned the air fan degradation as 

well as other faults. Miyata et al. (2019) utilised the Monte Carlo simulation 

technique to detect operational uncertainty caused by imponderable 

pressure, but like others, they neglected to describe the faults that rendered 

such uncertainty. The remainder of the literature did not state or clarify 
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cooling tower faults within their proposed PdM programmes or fault 

detection models. 

Table 68: Summary of cooling tower faults presented by the literature 

Fault References 

Air fan degradation 

Zhou et al. (2009a), Ma and Wang (2011), Hashemian (2011), 

Sun et al. (2013), Wang et al. (2010), Hu et al. (2019), Melani 

et al. (2019), and Sulaiman et al. (2020) 

Fouling of fills Ma and Wang (2011) as well as Khan and Zubair (2004) 

Sensor bias Sun et al. (2018) 

 

As mentioned in Chapter 2, the consideration of the literature towards 

the pump component is similar to the cooling tower component; the total 

number of considered studies is 16. Table 69 presents a summary of the pump 

faults that were highlighted by the literature. Hu et al. (2019) addressed the 

degradation of the secondary pump but did not proffer the necessary detail 

about the faults resulting in that degradation. The remainder of the considered 

studies did not state any fault in their proposed PdM or fault detection 

approaches with regard to the pump component. 

Table 69: Summary of pump faults presented by the literature 

Fault References 

Clogging 
Yuan and Liu (2013), Zhou et al. (2009a), and Wang et al. 

(2010),  

Excessive or abnormal 

noise 
Hashemian (2011) 

Faulty control switch Hashemian (2011) 

Faulty starter of the pump Hashemian (2011) 

Pipeline leakage Liu et al. (2022b) 

High flow rate in cold 

exchange 
Ma and Wang (2009) 

Low flow rate in cold 

exchange 
Ma and Wang (2009) 

Sensor bias Luo et al. (2019), and Motomura et al. (2019b) 

 

A review of the identified literature studies determined that the terminal 

unit was the CWS component most addressed, along with the chiller 

component. The total number of considered studies pertaining to the terminal 

unit fault is 97. While the literature has provided many faults for the terminal 

unit component, the most stated one is the faulty variable air volume. Table 70 

shows the terminal unit faults that were stated by the literature along with the 

supporting references. Several studies failed to describe the faults they 

addressed, simply noting these as ‘abnormal behaviour’ of the terminal unit 
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(Lauro et al., 2014; Satta et al., 2017; Candanedo et al., 2018). The rest of the 

studies did not state the faults within their proposed PdM programmes for the 

terminal unit component. 

Table 70: Summary of terminal unit faults presented by the literature 

Fault References 

Faulty variable air volume 

Norford et al. (2002), Cho et al. (2005), Schein and Bushby 

(2006), Li et al. (2010), Wang et al. (2012a), Li and Wen (2014), 

Zhao et al. (2015), Mulumba et al. (2015), Yuwono et al. 

(2015), Yan et al. (2016a), Zhao et al. (2017), Pourarian et al. 

(2017), Zhang and Hong (2017), Yan et al. (2018), Yan et al. 

(2019), Ranade et al. (2019), Piscitelli et al. (2020), Fan et al. 

(2021), Li et al. (2021), Gunay et al. (2022), Lin et al. (2023), 

and Xie et al. (2023) 

Faulty fan 
Norford et al. (2002), Shaw et al. (2002), Wang et al. (2012a), 

Holub and Macek (2013), and Yan et al. (2016b) 

Compressor failure 
Turner et al. (2017), Kim and Braun (2020), and Sulaiman et al. 

(2020) 

Filter blockage Tehrani et al. (2015) 

Faulty filter coil system Norford et al. (2002), and Shaw et al. (2002) 

Cooling coil blockage Liang and Du (2007), and Yan et al. (2016b) 

Speed reducing the 

supply fan 

Liang and Du (2007), Yan et al. (2016b), and Chaudhuri et al. 

(2017) 

Return damper jam 

Shaw et al. (2002), Liang and Du (2007), Sulaiman et al. (2015), 

Yan et al. (2016b), Andriamamonjy et al. (2018), Gao et al. 

(2019b), Deshmukh et al. (2019), and Sulaiman et al. (2020) 

Sensor bias 

Lee et al. (2004), Lo et al. (2007), Du et al. (2008), Yang et al. 

(2013), Du et al. (2014), Van Every et al. (2017), Shahnazari et 

al. (2019), Luo et al. (2019), Montazeri and Kargar (2020), Li et 

al. (2021), Gourabpasi and Nik-Bakht (2021), and Najeh et al. 

(2021) 

 

As evident from the above discussion, one of the clear research gaps 

arising was, “There is a significant level of variations in defining CWS faults and 

their importance/ impact’’. Accordingly, this initial research question has been 

generated. The research methods assigned to answer this research question 

are the industry survey (explained in Chapter 4) and the case study (explained 

in Chapter 5). Results of the industry survey have provided the research 

community with additional faults for each CWS component. They are 17 faults 

for chiller, 13 faults for cooling tower, 8 faults for pump, 20 faults for terminal 

units, which is more than those identified as an outcome of the systematic 

literature review where they are 7 faults for chiller, 3 faults for cooling tower, 8 

faults for pump, 9 faults for terminal unit (see Figure 13). To recall, the faults 

that are mentioned by the literature were presented in Chapter 2 (Figure 9), 

while the faults that are mentioned by the industry survey are mentioned 
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above (see Tables 67-70). Furthermore, and as mentioned in Chapter 4, all 

participants in the industry survey confirmed the occurrence of the faults 

mentioned by the literature at their sites, but they differ with literature in the 

most repeated faults. The considered studies of the literature were mostly 

mentioned the condenser fouling and sensor bias faults in chiller, the air fan 

degradation fault in cooling tower, the clogging fault in pump, and the faulty 

variable air volume in terminal unit, while the responses of industry survey were 

mostly stated the faults mentioned in Table 37.  

Following the survey, the case study method was applied using a 

proposed methodological framework. The framework is comprised of three 

phases: set-up, machine learning and quality control. After implementing the 

last phase of the framework, three empirical periods were conducted at two 

different sites, out of which two periods for reliability and internal validity 

purposes were undertaken for the main case study in a university building, and 

one period for external validity purpose was undertaken in a hotel building. 

The result of these empirical periods with regard to the faults has validated the 

outcome of the industry survey as 15 faults for the chiller component occurred 

out of the additionally recorded 17 faults. The two faults that did not occur 

were low cooler delta-T and high condenser pressure. By contrast, the 15 faults 

that occurred were low discharge superheat, low evaporator refrigerant 

temperature, low oil pressure, low condenser flow, low chilled water flow, high 

cooler delta-T, high compressor lift, high motor temperature, high motor 

ampere, high condenser approach, high evaporator approach, relief valve 

discharge, vibration, imbalanced line current, and incorrect manual guide vane 

target.  

With regard to the cooling tower component, the outcome of the three 

empirical periods has fully validated the outcome of the industry survey as all 

additional 13 faults occurred. These faults were the malfunctioning blowdown 

system, unusual sound, high water total dissolved solid, fills clogging, low 

circulating water flow rate, vibration, over current, rise in circulating water 

temperature, damaged fan, faulty water level valve, faulty isolation valve, motor 

overheating, and low water basin level. Likewise, with regard to the pump 

component, the outcome of the three empirical periods has fully validated the 

outcome of the industry survey as all the additional eight faults occurred. These 

faults were motor vibration, motor heat-up, leakage from the pump set, 

leakage from the valves, pump runs but provides no water, pump runs at 
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reduced capacity, noisy non-return valve, and improper pump water 

alignment.  

With regard to the terminal unit component, the result of the three 

empirical periods has somewhat validated the outcome of the industry survey 

as 18 faults occurred out of the 20 additionally identified faults. The two faults 

that did not occur were the motor overheating and the faulty variable 

frequency drive soft starter. The faults that did occur were dirty air flow, faulty 

supply air damper, loose belts, air trapped in cooling coil, faulty control valve, 

broken belts, noisy motor, faulty bearing, motor overload, noisy contactors, 

vibration, damaged insulation on pipe, low static pressure, damaged insulation 

on duct, faulty fresh air damper, faulty exhaust air damper, faulty cooling valve 

actuator, and faulty damper actuator. 

From the above discussion, the reasonable conclusion after a 

comprehensive systematic literature review concerning the existence of 

additional faults is proven by the industry survey and the case study, and 

therefore, the answer to the second research question of this research project 

is ‘yes’. 

 

 

6.2.3 Answer to Research Question #3 

 

The third research question generated after the systematic literature 

review, shown in Chapter 3 (Table 19), is as follows: 

 

Research Question #3: How can an intelligent detection model be built and 

validated? 

The maintenance strategy utilised in this research project is an intelligent 

one based on fault detection approach, as this is in line with Industry 4.0. One 

of the proposed methodological framework phases is machine learning. The 

machine learning phase includes building and training a detection model, 

which happens via a decision tree algorithm in this research project. To build 

and train a detection model for each CWS component, a dataset for each CWS 

component is required. For this research project, an Excel file was created for 

each dataset to be read by the chosen machine learning platform, Python. Each 

file contains two columns, one with the readings of the chosen operational 

parameters, and another one for the inspection result, which is either ‘1’ in a 
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case of fault, or ‘0’ in a case of no fault. The chosen operational parameters in 

this research project are the chilled water leaving temperatures for the chiller 

and the cooling tower components, the pressure for the pump component, 

and the space temperature for the terminal unit component. These readings, 

along with the inspection results, were recorded by experienced technicians by 

means of check sheets. To collect data, which includes these readings and 

inspection results, a time interval between the readings is established, referred 

to in this research as minimum frequency; likewise, a study period or time span 

for data collection is established, referred to in this research as maximum 

frequency. In this regard, it has been noted after the systematic literature 

review that there are variances in addressing the frequency point of view. Some 

studies from the literature clarified both minimum and maximum frequencies, 

but these frequencies were not same in all the literature, nor were operational 

parameters the same with all reviewed studies. Some studies clarified the 

operational parameters but did not specify either one of the frequencies or 

both. The rest of the literature did not specify operational parameter or 

frequencies. 

For the chiller, Sun et al. (2013) collected data of two operational 

parameters, chilled water flow rate and chilled water returning temperature, 

every hour for 20 days. Chilled water flow rate was considered again by Mao 

et al. (2018) but the readings were collected every 75 minutes for two months. 

Xiao et al. (2006) considered the same parameter but did specify the 

frequencies. Another study considered the parameter and specified the sample 

size of the collected data but did not provide information about the 

frequencies (Hu et al., 2016) Condenser water flow rate is another operational 

parameter for which one study collected readings every five minutes for two 

months (Hu et al., 2016), and another study collected readings but every 75 

minutes for two months (Wang et al., 2010). Wang and Cui (2005) collected 

data of evaporating pressure but did not provide information about the 

frequencies. Kocyigit (2015) addressed the same operational parameter along 

with the condenser pressure, but with information provided about the 

frequencies. The study of Choi et al. (2005) collected readings of the evaporator 

water entering temperature every 10 minutes for five days. One of the studies 

addressed the supply air average humidity as an operational parameter where 

its sample size was clarified, but information about the frequencies was absent 

(Albayati et al., 2023). Ma and Wang (2011) considered the condenser water 

supply temperature but did not clarify the frequencies. The readings of the 
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chilled water leaving temperature and the chilled water returning temperature 

were collected in the study of Wang et al. (2022), but frequencies were not 

specified. The readings of oil feed pressure were combined to create a dataset 

to detect chiller fault, but the frequencies were not clarified as well (Ssembatya 

and Claridge, 2024). The rest of the chiller studies failed to clarify data-related 

information. 

For the cooling tower, Ahn et al. (2001) explained that the data for 

building their simulation model are the readings of the chilled water leaving 

temperature and the chilled water returning temperature, but they did not 

clarify the frequencies. Zhou et al. (2009a) collected data of the air flow rate 

and clarified only the maximum frequency, which is five days. Data of the fan 

power were collected during two months with a time interval between the 

readings of five minutes (Hu et al., 2019). Three studies from the literature 

addressed inlet condenser water temperature as an operational parameter for 

their data collection purpose in building their prediction models, but they did 

not specify the frequencies (Ma and Wang, 2011; Wang et al., 2010; Motomura 

et al., 2019a). The study of Motomura et al. (2019b) addressed another 

operational parameter, the outlet condenser water temperature, but the 

associated frequencies were not specified. One study collected data of air wet 

bulb temperature that have a sample size of five thousand readings, but the 

frequencies were not clarified (Xu et al., 2015). The rest of the cooling tower 

studies did not clarify the data-related information. For the pump, Hu et al. 

(2019) utilised a building automation system to obtain differential pressure 

data every five minutes for two months. Water flow rates of one year were 

utilised in building a simulation model, but the time intervals between the rate 

readings were not specified (Ma and Wang, 2009). The rest of the pump studies 

did not clarify the data-related information. 

For the terminal unit, the indoor set temperature or the space 

temperature was addressed in four studies from the literature (Turner et al., 

2017; Liang and Du, 2007; Sittón-Candanedo et al., 2018; Andriamamonjy et 

al., 2018). The first and second study clarified only the maximum frequency, 

which is seven days and 10 hours, respectively; the third study clarified the 

sample size but they did not specify the frequencies; while the fourth study did 

not clarify both frequencies. The outdoor temperature is another operational 

parameter that was considered by Turner et al. (2017), but only the maximum 

frequency of its readings was clarified, which is seven days. A sample size of 

the indoor cooling load was collected during 10 hours for one of the studies, 
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but the time intervals between the loads were not specified (Liang and Du, 

2007). The supply air temperature was chosen as an operational parameter by 

two studies from the literature (Andriamamonjy et al., 2018; Ranade et al., 

2019). The first study did not specify the frequencies, while the second study 

specified the maximum frequency only, which is three days. Ranade et al. 

(2019) considered another operational parameter, the outlet water 

temperature, and only clarified the maximum frequency, which is three days. 

Andriamamonjy et al. (2018) considered two more operational parameters, the 

return air temperature and the exhaust air temperature, but they did not clarify 

the frequencies. Discharge air temperature is an operational parameter 

considered by two studies from the literature (Schein and Bushby, 2006; Lin et 

al., 2023). The first study did not clarify the frequencies, while the second study 

specified only the minimum frequency, which is 30 minutes. The air flow was 

considered as an operational parameter by two studies from the literature (Kim 

and Braun, 2020; Omar et al., 2023). But the first study did not clarify the 

frequencies, while the second one clarified only the maximum frequency, which 

is three days. The study of Kim and Karim (2020) considered two more 

operational parameters, the refrigerant charge and the refrigerant mass flow, 

but they did not clarify the associated frequencies. The study of Chaudhuri et 

al. (2017) did not consider the parameters linked technically to the terminal 

unit operation where they collected occupant skin temperatures and 

considered these readings in building their support vector machine model. The 

rest of the terminal unit studies did not clarify the data-related information. 

Based on the above discussion, another research gap arose for this research 

project: ‘’The measurement of CWS faults is not standardised leading to 

inconsistent fault detection practice.”. The noted differences cause obscurity for 

future research on the proper way to create datasets in case the researcher 

needs to collect new data for a building to study its CWS. The differences 

between the studies with regard to the frequencies have encouraged this 

research to think about confirming justified frequencies that allow the creation 

of datasets of the detection model by identifying proper time intervals between 

readings of the operational parameters (minimum frequency) as well as a 

proper time span of collecting the data, which is the study period (maximum 

frequency). Also, this research believes that random selections of the 

frequencies cannot guarantee a high detection accuracy of a detection model, 

so research requires logical and justifiable frequencies for data collection 
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purposes. Accordingly, the aforementioned fourth research question has been 

generated. 

Similar to the previous research questions, the research methods 

assigned to answer the third research question are the industry survey 

(explained in Chapter 4) and the case study (explained in Chapter 5). In the 

industry survey, this research project devised an innovative way to identify 

minimum and maximum frequencies. The participants were asked in the third 

part of the industry survey to state the fault for each CWS component that is 

occurring often and then state its frequency of occurrence in their commercial 

buildings. They were also asked to state the fault for each CWS component 

that is occurring only rarely and then state its frequency of occurrence in their 

commercial buildings. After considering 304 responses, the minimum value of 

the minimum frequencies and the maximum value of the maximum 

frequencies were identified as the proposed frequencies in this research 

project, where the minimum value of each CWS component is for the time 

interval between the readings of the chosen operational parameters and the 

maximum value of each CWS component is for the time span for data 

collection. This ensures coverage of the possibility of fault occurrence as much 

as possible within the city in which a particular building to be studied is located. 

This innovative idea was discussed in Chapter 4 (Figure 14). So, this research 

project has proposed frequencies applicable to data collection for each CWS 

component (see Chapter 4, Table 40). 

After determining the outcomes of the industry survey, the case study 

method via methodological framework was conducted. Two case studies were 

conducted, a main one in a university building and another in a hotel building 

for external validity purposes. As shown in Chapter 5 (Table 46), the data 

collection plan was implemented as per the proposed frequencies. 

Accordingly, a dataset for each CWS component was created to build and train 

its decision tree model. The detection accuracy for the decision tree model of 

each CWS component at both sites was calculated based on the collected data 

using Equation 5. As shown in Chapter 5 (Tables 48 and 59), the detection 

accuracy for the decision tree model of each CWS component at both sites was 

more than 98 per cent, results which validate the proposed frequencies. 

Because these frequencies were applied as a guide for data collection, attaining 

such high accuracy confirms the significance of these frequencies. At the time 

of implementing the case study method via methodological framework, three 

empirical periods were conducted, two periods for reliability and internal 
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validity at the main case study building (Alfaisal University), and one period as 

an external validity case study at another building (a hotel). As shown in 

Chapter 5 (Tables 49-52, 54-57, and 60-63), the decision tree model of each 

CWS component verifies its reliability in tracing and detecting faults. This 

confirms that the proposed frequencies are valid in creating datasets for 

building detection models. Also, the accuracy outcome of each CWS 

component validated the chosen operational parameters of this research 

project; these are the chilled water leaving temperature for chiller and cooling 

tower, the pressure for pump, and the space temperature for terminal unit. 

Moreover, it validated the outcome of the industry survey where the majority 

of participants were advised to select these operational parameters (see 

Chapter 4, Table 37). 

In light of the above, the industry survey and the case studies have 

fulfilled the way of building the detection model, which is highlighted in the 

third research question. This research thesis has proposed proper frequencies 

that were utilised in collecting data that built a reliable detection model for 

each CWS component. These frequencies are summarised below in Table 71. 

Table 71: Chilled water system fault frequencies 

CWS Component  
Minimum Frequency 

(Minutes) 

Maximum Frequency 

(Weeks) 

Chiller 30 12 

Cooling tower 30 16 

Pump 60 24 

Terminal unit 45 08 

 

The primary intention of the proposed intelligent maintenance 

framework is to detect the faults of CWS and then to fix them when occurring. 

To do so, a detection model was built and trained for each CWS component. 

In line with Industry 4.0, machine learning is one of the phases of the proposed 

methodological framework; it entails building and training the detection 

model. The PdM workflow proposed by Achouch et al. (2022) contains in its 

final stage the evaluation of the detection model. To evaluate the detection 

model of this research project, it is necessary to assess the model’s 

performance in tracing and detecting faults of CWS components. A review of 

the literature revealed that evaluating the detection model was completed by 

calculating the prediction accuracy based on the data. As mentioned in 

Chapter 2, this research believes that evaluating the detection model requires 
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the undertaking of experimental studies to check its reliability and validity in 

tracing and detecting faults. 

  The assigned research method to validate the outcome of the industry 

survey and the built detection model is the case study (explained in the 

previous chapter). As mentioned previously, this method has been 

implemented via a methodological framework containing three phases: set-up, 

machine learning and quality control where two case studies were 

implemented, the main one at a university building and another at a hotel 

building for external validity purposes. As part of the second phase, the 

machine learning phase, a decision tree model for each CWS component was 

built and trained as per the steps mentioned in the previous Chapter (see 

Figure 17) with the sample size mentioned in the previous chapter (Table 47). 

Some of the reviewed studies have encouraged this research to use the 

decision tree algorithm. According to Hodavand et al. (2023), decision tree 

algorithm provides a practical solution to smart building management; in fact, 

they emphasise that decision tree algorithm is the best for PdM and for fault 

detection. Montazeri and Kargar (2020) compared the decision tree algorithm 

with five other machine learning algorithms, finding that the decision tree 

algorithm has the highest prediction accuracy. One of the reviewed studies 

indicated that decision tree algorithm shows a high accuracy in covering fault 

possibilities, an excellent algorithm for evaluating the intelligent maintenance 

framework (Sittón-Candanedo et al., 2018). In a general view of other machine 

learning algorithms, the decision tree algorithm was chosen as its graphical 

binary representation can be easily interpreted by technical users as well as 

nontechnical decision makers.  

In this second phase, the researcher calculated the detection accuracy of 

the decision tree model of each CWS component at both sites with promising 

results: the lowest accuracy was 98.5 per cent (see previous chapter, Tables 48 

and 59). This is in agreement with several other studies determining high 

prediction accuracy by applying the decision tree algorithm such as the studies 

of Satta et al. (2017), Ranade et al. (2019), and Elnour et al. (2022). While 

implementing the last phase of the methodological framework, a computer 

unit at each site was integrated with the decision tree model for continuous 

monitoring. When the screen of the computer unit shows a signal with ‘1’ (see 

Figure 31), this means the decision tree model has predicted a fault. The next 

course of action is to inspect the site and verify that signal, and in the case of 

a real fault, this confirms the decision tree model has detected a fault. 



163 
 

During the first empirical phase, conducted at the university after 

implementing the last phase of the methodological framework, the decision 

tree model of the chiller predicted 56 faults, out of which 54 faults were 

detected. The decision tree of cooling tower predicted 61 faults, out of which 

60 faults were detected. With regard to the decision tree of the pump, 39 faults 

were predicted, out of which 37 faults were detected. For the terminal unit, its 

decision tree model predicted 73 faults, out of which 71 faults were detected. 

These results confirm the reliability of the detection model of each CWS 

component as most of the predicted faults were real faults at the site. This also 

verifies that the proposed frequencies (Chapter 4, Table 40; Chapter 6, Table 

71) are appropriate for data collection for datasets upon which the detection 

model was built and trained. 

With regard to the second empirical period, the decision tree of the 

chiller predicted 47 faults, out of which 46 faults were detected. For the cooling 

tower, its decision tree model predicted 53 faults, out of which 52 faults were 

detected. The decision tree model of the pump predicted 44 faults, out of 

which 42 faults were detected. For the terminal unit, its decision tree model 

predicted 68 faults, out of which 67 faults were detected. Similar to the first 

empirical period, these results confirm the reliability of the prediction model 

of each CWS component as nearly all the predicted faults were real faults at 

the site. Also, this verifies the proposed frequencies that were utilised in 

creating the prediction models. With regard to the third empirical period, 

which was conducted at the case study building for external validity (the hotel), 

the chiller’s decision tree model predicted 41 faults, out of which 39 faults were 

detected. For the cooling tower, its decision tree model predicted 43 faults, out 

of which 40 faults were detected. For the pump, its decision tree model 

predicted 44 faults, out of which 43 faults were detected. The terminal unit’s 

decision tree model predicted 48 faults, out of which 46 faults were detected. 

These outcomes have the same encouraging impact as the previous two 

empirical periods, confirming the reliability of the prediction model of each 

CWS component. Again, nearly all predicted faults were real faults at the site. 

And again, this validates the proposed frequencies utilised in creating the 

prediction models. 

After the empirical periods, a comparison activity was conducted at both 

sites between BMS and the decision tree model of each CWS component. Clear 

improvement was evident in fault detection (see Table 72). The stakeholders at 

both sites expressed satisfaction with the decision tree model of each CWS 
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component as it traced and detected numerous faults, showing encouraging 

improvement in tracing and detecting faults when compared to BMS. 

Table 72: Faults detection improvement by the decision tree model 

CWS 

Component 

First Empirical 

Period 

Improvement (%) 

Second Empirical 

Period Improvement 

(%) 

Third (Hotel) 

Empirical Period 

Improvement (%) 

Chiller 24 28 21 

Cooling tower 22 21 25 

Pump 30 26 26 

Terminal unit 24 22 22 

 

  Based on the above discussion, the industry survey and case study 

methods have answered the third research question by providing the 

frequencies mentioned in Table 71, which can create the required datasets that 

build the intelligent detection model. The empirical periods activities have 

validated the detection model very well. 

 

6.2.4 Answer to Research Question #4 

 

The fourth research question that was generated after the systematic 

literature review and shown in Chapter 3 (Table 19) is as follows: 

 

Research Question #4: What are the actions required to fix the CWS faults? 

Following the PdM workflow proposed by Achouch et al. (2022), the 

intelligent maintenance framework would be inefficient without understanding 

how to fix any issues or faults occurring in a building’s systems. So, proposing 

a holistic intelligent maintenance framework for CWS would necessitate an 

immediate to fix each occurred fault. As a result of the literature review, it was 

noted that studies ended their PdM programmes or approaches with building 

and training the prediction models, and then with calculating its accuracy in 

predicting or detecting the investigated faults, but without providing solutions 

to the CWS faults. Also, two of the studies advised some actions before 

collecting the data that will be utilised in building and training the prediction 

models for chiller, cooling tower and terminal unit components, but those 

actions are not solutions for fixing the faults of the said CWS components; 

instead, they were proposed for data collection purposes. The first study 

advised the cleaning of the condenser water tubes in the chiller (Zhao et al., 
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2014), while the second study advised the cleaning of the cooling tower fan 

and the impeller, the fan scroll, and the blower blade of the air handling unit 

(Chew and Yan, 2022). Based on this, another research gap arose: “CWS fault 

resolution remains inconclusive”. Therefore, a fourth research question has 

been generated.  

The assigned research methods to answer the subject research question 

are the industry survey (explained in Chapter 4) and the case study (explained 

in Chapter 5). The industry survey has provided an action to fix each CWS fault 

that was presented in the literature. Also, the industry survey provided an 

action to fix each additional CWS fault that was presented by the same industry 

survey. Table 73 shows the total number of actions for each CWS component. 

Table 73: Number of actions to fix CWS faults 

CWS Component Total Number of Fault Solutions 

Chiller 24 

Cooling tower  16 

Pump 16 

Terminal unit 29 

 

The fault occurring during the three empirical periods for each CWS 

component, as presented in the previous chapter (Tables 49-52, 54-57, and 60-

63), were successfully fixed by implementing the actions that were furnished 

by the industry survey and mentioned in Chapter 4 (Tables 33-36). After 

implementing the quality control phase, which includes measuring the 

provided actions to fix the occurred faults (see subsubsection 5.2.3), the 

concerned departments at the main case study site (the university) and at the 

external validity site (the hotel) scrutinised if the said actions are applicable and 

beneficial in fixing the faults. Indeed, all the actions to fix the faults occurring 

were to the satisfaction of the concerned departments at both sites.  

In view of the faults occurring during the empirical periods for CWS 

components, as mentioned in the previous chapter (Tables 49-52, 54-57, and 

60-63), the majority were from the new faults supplied by the industry survey 

and only a few faults were from the list generated from the literature, as 

mentioned in Chapter 2 (Figure 9). To highlight the faults occurred during the 

empirical periods from the lists generated from the considered literature, the 

chiller faults occurring were refrigeration leak, condenser fouling, compressor 

overcharging, evaporating fouling, high condenser temperature, and faulty 

operation scheduling. For the cooling tower component, one fault occurred 

from the list presented by the considered literature, the fouling of fills. For the 
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pump component, the faults occurred from among those listed by the 

literature were clogging, low flow rate in cold exchange, faulty control switch, 

pipeline leakage, abnormal or excessive noise, and high flow rate in cold 

exchange. For the terminal unit component, the faults that occurred from 

among those generated by the literature were cooling coil blockage, speed 

reducing the supply fan, return damper jam, faulty variable air volume, 

compressor failure, and filter blockage. 

During the empirical periods, the refrigeration leak fault for the chillers 

was detected 24 times by the decision tree models. This fault was presented 

by several studies from the considered literature (Tassou and Grace, 2005; 

Navarro-Esbri et al., 2006; Kocyigit, 2015; Han et al., 2020; Liu et al., 2022b). 

These studies have proposed various PdM tools to predict or detect the fault, 

but again, they neglected to suggest a solution or an action to fix the fault. In 

this research project, an action was provided for the fault (see Chapter 4, Table 

33). After detecting the fault by the proposed decision tree models, it has been 

successfully fixed by implementing the provided solution, which is by checking, 

testing and rectifying the tube, joint, and valves of the refrigeration system of 

that chiller. The condenser fouling fault is another chiller fault that occurred 

during the empirical periods. This fault was detected eight times by the 

decision tree models. This fault was presented by 16 studies from the 

considered literature (Zhou et al., 2009a; Yu and Chan, 2012; Zhao et al., 2012; 

Zhao et al., 2013a; Zhao et al., 2013b; Zhao et al., 2013c; Kocyigit, 2015; Li et 

al., 2016a; Li et al., 2016b; Li et al., 2016c; Li et al., 2016d; Wang et al., 2017b; 

Wang et al., 2020; Xia et al., 2021b; Munir et al., 2023; Albayati et al., 2023). 

These studies proposed a variety of PdM tools to predict or detect the fault, 

but they did not provide any solution to fix it. In this research project, the said 

chiller fault has been successfully fixed by implementing the action furnished 

by the industry survey (Chapter 4, Table 33): descaling the condenser tubes.  

The proposed decision tree models for chillers have detected 

compressor overcharging six times during the empirical periods of this 

research. This fault was presented by three studies from the considered 

literature (Kocyigit, 2015; Liu et al., 2017; Hu et al., 2019). These studies have 

proposed various PdM tools to predict or detect this fault, but they did not 

provide any viable solution for fixing it. In this research project, this chiller fault 

has been successfully fixed immediately after its detection by the decision tree 

model. It was fixed by implementing the action furnishes by the industry survey 



167 
 

(Chapter 4, Table 33) – by checking the factory sheet and then by reducing the 

charge accordingly.  

The evaporating fouling fault, another chiller fault occurring during the 

empirical periods, was detected 13 times by the decision tree models. This fault 

was presented in the considered literature by three studies (Zhou et al., 2009b; 

Kocyigit, 2015; Albayati et al., 2023). These studies have proposed different 

PdM tools to predict or detect this fault but stopped prior to proffering any 

solution to fix it. In this research project, an action was furnished for this fault 

(Chapter 4, Table 33). It has been successfully fixed immediately after its 

detection by descaling the evaporator tubes. 

As mentioned previously in this subsection, high condenser temperature 

is a chiller fault that occurred during the aforementioned empirical periods; 

this fault was detected 14 times by the decision tree models. As noted in the 

literature, Rueda et al. (2005) proposed a fault detection technique by applying 

an artificial neural network algorithm for this fault, but as with the others, they 

did not provide a solution to fix it this fault at the time of its detection. In this 

research project, a viable action was supplied for fixing this fault (Chapter 4, 

Table 33). After detection of this fault by the decision tree model, it has been 

successfully fixed by implementing that solution – by checking the return 

chilled water temperature and then the condenser tubes were descaled.  

The final fault that occurred fault from the list of chiller faults that was 

generated from the literature is the faulty operation scheduling. This fault has 

been detected once by the decision tree model during the empirical periods. 

This fault was presented by Schein and Bushby (2006) where they applied a 

hierarchical rule-based fault detection and diagnosis to predict this fault. But 

as with the other studies, no solution for fixing this fault was indicated. In this 

research project, this fault was successfully fixed after detection by 

implementing the action furnished through the industry survey (Chapter 4, 

Table 33), which was by resetting the control switch. 

As mentioned previously in this subsection regarding the cooling towers 

faults that were listed by the literature, one fault has occurred eight times 

during the empirical periods: the fouling of fills. In the literature, this fault was 

detected by applying a regression model in one of the studies and by the 

hybrid quick search method in another study, but with no solution provided to 

fix it (Khan and Zubair, 2004; Ma and Wang, 2011). This present research has 

furnished an action to fix this fault (Chapter 4, Table 34), and this solution has 
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been implemented after the fault’s detection by the decision tree model. This 

fault has been successfully rectified by cleaning the fills.  

With regard to the pump component, the clogging fault has occurred 

three times during the empirical periods, and it is one of the faults that were 

presented by the literature in three studies, the research studies of Yuan and 

Liu (2013), Wang et al. (2010), and Zhou et al. (2009a). These studies have 

applied various PdM models to predict this fault, but without the suggestion 

of a solution to fix it in case of its occurrence in real life. In this present research 

project, an action to fix this fault was one evident and beneficial outcome of 

the industry survey (Chapter 4, Table 35). The action was implemented 

immediately after detecting the fault by the decision tree models. The status 

of the clogging was partial, and it has been successfully fixed by cleaning the 

strainer that is filtering the water coming from the associated cooling tower.  

During the empirical periods, low flow rate in cold exchange fault and 

high flow rate in cold exchange fault, both presented in the literature by Ma 

and Wang (2009), have been detected by the decision tree models 15 times: 

12 for the low flow rate fault and three for the high flow rate fault. Ma and 

Wang (2009) proposed a simulation model to predict both faults, but without 

giving a solution to fix them if they occurred while operating the CWS in any 

building. In this research project, actions to fix both faults have been provided 

(Chapter 4, Table 35), and both actions were utilised during the empirical 

periods. Both faults have been successfully fixed by adjusting the pump speed.  

The faulty control switch and excessive noise faults have occurred during 

the empirical periods, two pump faults from the list generated from the 

literature. Hashemian (2011) presented these faults and predicted them using 

wireless sensors, but as with other studies, his research did not include 

solutions for those faults. As shown in the previous chapter, the faulty control 

switch was detected three times by the decision tree model during the 

empirical periods, and its fixing action (Chapter 4, Table 35) has been 

successfully implemented, fixing the fault by troubleshooting the switch. With 

regard to the excessive noise fault, it was detected once by the decision tree 

model during the empirical periods. As this present research has provided an 

action to fix this fault (Chapter 4, Table 35), this action has successfully cleared 

that fault by fixing the associated bearings and shaft.  

The pipeline leakage fault also occurred during the empirical periods; it 

has been detected twice by the decision tree model. In the considered 
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literature, this fault was presented by Liu et al. (2022b) who predicted it by 

applying an adaptive moment estimation algorithm with multi-layer 

feedforward neural networks trained with the error backpropagation neural 

network, but their PdM proposal did not contain a solution or an action to fix 

this fault. In contrast, this research project has furnished an action to fix this 

fault (Chapter 4, Table 35) which resulted in a successful fix of this fault by 

welding multiple pipe joints. 

With regard to the terminal unit faults presented in the considered 

literature and which occurred during the empirical periods as mentioned above 

in this subsection, cooling coil blockage and speed reducing the supply fan 

were two specific faults. Both faults were presented by Liang and Du (2007) as 

well as by Yan et al. (2016b). The study by Liang and Du (2007) combined a 

simulation-based model method with a support vector machine method to 

predict these faults, while the study of Yan et al. (2016) utilised decision tree 

algorithm for fault prediction. But both studies have neglected to proffer a 

solution for either of these two faults. During the empirical periods, the 

proposed decision tree model of this present research has detected the cooling 

coil blockage once and the speed reducing the supply fan six times. After 

detection, both faults were successfully fixed by implementing the actions 

provided by this research (Chapter 4, Table 36). The first fault, an inner 

blockage, was fixed by rectifying the chilled water quality coming from the 

associated chiller as well as from the associated primary pump. The second 

fault was fixed by cleaning the blower tips.  

A return damper jam was another fault occurring during the empirical 

periods. This fault was presented by seven studies in the literature (Shaw et al., 

2002; Liang and Du, 2007; Sulaiman et al., 2015; Yan et al., 2016b; Gao et al., 

2019b; Deshmukh et al., 2019; Sulaiman et al., 2020). These studies have 

applied different PdM tools to predict the fault, but none proposed any 

solution to fix the same. In this research, an action was provided (Chapter 4, 

Table 36), which is servicing the damper or replacing it as needed. This fault 

was detected six times by the decision tree model of this research project, and 

its aforementioned solution successfully rectified the fault after detection. 

Three more faults occurring during the empirical periods were from the 

fault lists presented by the literature. First, the faulty variable air volume was 

presented by 22 studies (Norford et al., 2002; Cho et al., 2005; Schein and 

Bushby, 2006; Li et al., 2010; Wang et al., 2012a; Li and Wen, 2014; Zhao et al., 
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2015; Mulumba et al., 2015; Yuwono et al., 2015; Yan et al., 2016a; Zhao et al., 

2017; Pourarian et al., 2017; Zhang and Hong, 2017; Yan et al., 2018b; Yan et 

al., 2019; Ranade et al., 2019; Piscitelli et al., 2020; Fan et al., 2021; Li et al., 2021; 

Gunay et al., 2022; Lin et al., 2023; Xie et al., 2023). These studies have applied 

a variety of PdM tools to predict this fault, but with no solution provided to fix 

it in case it appeared in the terminal units of any commercial building. As 

shown in Chapter 4 (Table 36), this research project has filled this absence by 

providing an action to fix that fault, which is by rectifying the damper 

connection and controller. During the empirical periods, this fault was detected 

11 times by the decision tree model for this research. It was successfully fixed 

by implementing the aforementioned action.  

Second, the compressor failure fault was presented by three studies from 

the considered studies (Turner et al., 2017; Kim and Braun, 2020; Sulaiman et 

al., 2020). The first study applied a simulation mode; the second applied virtual 

sensors; while the third applied multi-layer perceptron to predict this fault, but 

none proffered a viable solution for the fault. This research project has 

provided an action (Chapter 4, Table 36), acknowledging that the voltage and 

related control accessories should be checked before replacing formalities. By 

the proposed decision tree model of this research, this fault was detected once 

during the empirical periods and was successfully repaired by implementing 

the provided action. The filter blockage fault is the last fault that occurred 

during the empirical periods from the lists presented by the considered 

literature. It was presented by Tehrani et al. (2015) and was predicted by 

utilising the decision tree algorithm, but with no solution provided to fix it in 

case it appeared in the industry life. This research has completed this task by 

providing an action to fix this fault (Chapter 4, able 36). During the empirical 

periods, this fault was detected once by the proposed decision tree model of 

this research, and then successfully fixed by implementing its action, which is 

by cleaning the filter. 

A cursory perusal of Figure 13 in Chapter 4 shows the total number of 

chiller faults presented by the literature as seven faults, out of which, six faults 

occurred during the empirical periods (see previous chapter). The total number 

of the additional chiller faults provided by the industry survey is 17, out of 

which 15 faults occurred during the study’s empirical periods. So, 21 types of 

chiller faults were successfully fixed by implementing the furnished actions (see 

Chapter 4, Table 33). For the cooling tower, the total number of faults that were 

presented by the literature is three, out of which one fault occurred during the 
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study’s empirical periods (see previous chapter). The total number of additional 

cooling tower faults emerging from the industry survey is 13 faults, and all 

occurred during the empirical periods. So, 14 types of cooling towers faults 

were successfully fixed by implementing the furnished actions (see Chapter 4, 

Table 34). For the pump component, the total number of faults that were 

presented by the literature is eight faults, out of which six occurred during the 

study’s empirical periods. The total number of additional pump faults that were 

provided by the industry survey is eight, all of which occurred during the 

empirical periods. So, 14 types of pump faults were successfully fixed by 

implementing the furnished actions (see Chapter 4, Table 35). For the terminal 

unit component, the total number of faults that were presented by the 

literature is nine, out of which eight faults occurred during the study’s empirical 

periods. The total number of additional terminal unit faults emerging from the 

industry survey is 20, out of which 18 faults occurred during the study’s 

empirical periods. So, 26 types of terminal unit faults were successfully fixed by 

implementing the furnished actions (Chapter 4, Table 36). In general, this 

present research project has provided a viable action to fix each listed type of 

fault, whether its source is from the literature or from the industry survey (see 

Table 73). 

In light of the above, the industry survey and case studies have supplied 

an answer for the fourth research question of this research project, beneficially 

providing an action to fix each listed CWS fault in order to ensure a holistic 

intelligent maintenance framework. These actions are presented Chapter 4: 

Table 33 presents an action to fix each listed chiller fault, and Tables 34-36 

present actions to fix each listed fault of cooling tower, pump and terminal unit, 

respectively. 

 

6.3 Conclusion 

 

6.3.1 Summary of Research Thesis Aim and Objective 

 

This research proposes a holistic intelligent maintenance framework for 

CWS at commercial buildings. It conducted a four-stage systematic literature 

review. The guiding research question of this research project was as follows: 
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“What are the approaches or methods to implement predictive 

maintenance or fault detection for a chilled water system at commercial 

buildings?” 

 

 The intention of the above question was to gain an understanding of the 

mechanism of identifying a system’s faults during operation and exploring the 

methods used to detect these faults. Following the above guiding question, 

the systematic literature review began and extending to 182 studies that were 

performed more recently than 1999. This review of these studies followed the 

PdM workflow proposed by Achouch et al. (2022). Four research gaps were 

highlighted from a management perspective. These gaps (explained in Chapter 

2) are related to three parts (fault description and handling, data collection and 

frequency, and the coverage of the proposed maintenance frameworks) and 

accordingly, four research questions were generated. To answer these 

questions, two research methods were assigned: industry survey and case 

study (Chapter 3, Table 19). The industry survey, adhering to constructive 

guidelines and a pilot study, was disseminated to 761 participants at 

commercial buildings in Riyadh, Saudi Arabia, which have valid registration 

certificates with the proper authority. As recommended by the pilot study, the 

commercial buildings that were contacted have a minimum age of three years. 

As advised by the pilot study, three months were given to receive survey 

responses, and as a result, 336 response were received, out of which 304 

responses were examined for this research project as they have CWS in their 

commercial buildings. The industry survey produced four outcomes: 1) 

recording additional faults for each CWS component; 2) an action to fix each 

listed CWS fault whether its source was the literature or the survey; 3) 

frequencies for all CWS components that can be used in data collection to 

build a detection model; and 4) validation of the chosen operational 

parameters with readings viable for creating the datasets upon which the 

detection model can be built and trained.  

In light of the above, the aim of this research project was to explore 

innovations in observing and controlling the CWS at commercial buildings in 

accordance with the era of smart technologies, and it is achieved by gaining 

the knowledge of other researchers from conducting the said literature review. 

182 considered studies are illustrated various ideas in detecting the faults of 

CWS components and opened a gate to present further knowledge by filling 

the associated research gaps. The aim of this research project is also achieved 
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post conducting the industry survey where valuable insights and information 

were gathered from 304 professionals. The industry survey looked like a drone 

that captured the CWS at different commercial buildings where each 

professional submitted the answers of the provided four parts, which can be 

considered as a sight of operation and maintenance management for CWS at 

the professional’s building. These answered are helped to answer the research 

questions of this research project.  

With regard to the case study, a methodological framework was proposed 

for conducting the research. Two case studies were conducted in tandem, the 

primary one a university building, and the other a hotel building for external 

validity purposes. The methodological framework entailed three phases: the 

set-up, machine learning and quality control. Each phase of this 

methodological framework has multiple managerial stages or steps to build 

the intelligent maintenance framework. The set-up phase of the proposed 

methodological framework contained three stages. The first stage was 

understanding the building under study in an efficient way by analysing its as-

built drawing. By doing so, determining the unit numbers of each CWS 

component in the building, and knowing their locations on site was easier. This 

proposed simplified schematic (see Chapter 5, Figure 15) allowed users to find 

each CWS component and determine their quantities. The second stage of the 

set-up pertained to the reading tools for the CWS operational parameters: how 

to make the reading tools available and the proper location for each tool. The 

readings of the operational parameters were essential for creating the datasets 

used in the second phase of the methodological framework, the machine 

learning. The operational parameters chosen in this research were the chilled 

water temperatures for chillers and cooling towers, the pressures for pumps, 

and the space temperatures for terminal units. The third and final stage of the 

set-up addressed data collection, presenting the data required and proposing 

a complete plan for collecting data. Therefore, the main goal of the set-up 

phase was to provide datasets required to build and train the detection model, 

as explained in the second phase of this framework, which is machine learning. 

With this, the first objective of this research project, which was mentioned in 

Chapter 1 (see section 1.2), is fulfilled. 

As this research project intended to implement an intelligent maintenance 

framework in line with Industry 4.0, the second phase of the methodological 

framework relied on machine learning. The decision tree technique was chosen 

to build and train a model for predicting and detecting CWS faults by utilising 
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datasets created based on the proposed frequencies. Two decision tree 

algorithms, C4.5 and CART, were proposed to build, train and test the detection 

model. The detection accuracy for each decision tree model was calculated 

with encouraging results: the detection accuracy was more than 98 per cent 

for the decision tree model of each CWS component. The last phase of the 

methodological framework, quality control, proposed a control plan for 

continuous evaluation of the detection models. The control plan contained two 

actions, monitoring and response. Both actions proposed executing the 

decision tree model while operating the CWS, and then controlling the system 

via aspects such as fixing the detected faults and documenting the outcomes 

of the detection model from a managerial perspective. 

To conduct the research quality aspects that were mentioned in Chapter 

3 (Table 27), three empirical periods (one month each) were executed: two 

periods at the main case study building (the university) for reliability and 

internal validity purposes, and the third at another site (the hotel) for external 

validity purposes. Following the assessment activities of this research project 

as discussed in Chapter 3 (Table 29), the reliability segment was assigned to 

check if the proposed detection model, the decision tree, can trace CWS faults 

over time. The reliability part was proven during the first two empirical periods 

implemented at the main case study building (the university). During the first 

empirical period, which was conducted at the university, the decision tree 

model of the chiller predicted 56 faults, out of which 54 faults were detected, 

with a breakdown of nine times for the refrigeration leak fault, eight times for 

the condenser fouling fault, six times for the compressor overcharging fault, 

seven times for evaporating fouling fault, seven times for the high compressor 

lift fault, five times for the high motor ampere fault, five times for the relief 

valve charge fault, four times for the high condenser approach fault, two times 

for the incorrect manual guide vane target fault, and one time for the high 

evaporator approach fault.  

The decision tree of the cooling tower predicted 61 faults, out of which 

60 faults were detected, with a breakdown of 11 times for malfunctioning 

blowdown system fault, 10 times for the low water basin level fault, 10 times 

for the high water total dissolved solid fault, nine times for the vibration fault, 

five times for the rise in circulating water temperature, five times for the faulty 

isolation valve, three times for the low circulating water flow rate fault, three 

times for the motor overheating fault, two times for the fouling of fills fault, 

one time for the over current fault, and one time for the unusual sound fault.  
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With regard to the decision tree of the pump, 39 faults were predicted, 

out of which 37 faults were detected, with a breakdown of 10 times for noisy 

non-return valve fault, seven times for pump runs but no water provision, seven 

times for leakage from valves, six times for motor vibration fault, three times 

for low flow rate in cold exchange fault, one time for the improper pump water 

alignment fault, two times for motor heat-up fault, and one time for clogging 

fault.  

For the terminal unit, its decision tree model predicted 73 faults, out of 

which 71 faults were detected, with a breakdown of 13 times for the low static 

pressure fault, eight times for the loose belts fault, nine times for air trapped 

in cooling coil, six times for noisy contactors fault, six times for faulty fresh air 

damper, six times for speed reducing the supply fan, five times for vibration, 

five times for faulty exhaust air damper, two times for dirty air flow fault, four 

times for faulty damper actuator, three times for faulty control valve, one time 

for damaged insulation on pipe, and one time for cooling coil blockage fault. 

These results confirmed the reliability of the detection model of each CWS 

component as it was able to predict faults, and most of the predicted faults 

were real faults at the site. 

With regard to the second empirical period, which was also conducted at 

the university, the decision tree of the chiller predicted 47 faults, out of which 

46 faults were detected, with a breakdown of eight times for a refrigeration 

leak fault, seven times for the low condenser flow fault, seven times for the 

high condenser temperature fault, five times for the high evaporator approach 

fault, five times for the low oil pressure fault, five times for the high motor 

temperature fault, three times for the vibration fault, three times for the 

imbalanced line current fault, two times for low evaporator refrigerant 

temperature fault, and one time for the faulty operating schedule. For the 

cooling tower, its decision tree model predicted 53 faults, out of which 52 faults 

were detected, with a breakdown of 10 times for a malfunctioning blowdown 

system fault, eight times for the over current fault, seven times for the fills 

clogging fault, nine times for faulty water level valve, six times for the motor 

overheating fault, six times for the faulty isolation valve, five times for the low 

circulating water flow rate fault, and one time for the damaged fan fault.  

The decision tree model of the pump predicted 44 faults, out of which 42 

faults were detected, with a breakdown of nine times for a noisy non-return 

valve fault, nine times for the low flow rate in cold exchange fault, seven times 
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for pump runs but no water provision, four times for leakage from pump set, 

four times for the motor heat-up fault, three times for pump runs at reduced 

capacity, three times for the faulty control switch, two times for the pipeline 

leakage fault, and one time for abnormal or excessive noise fault. For the 

terminal unit, its decision tree model predicted 68 faults, out of which 67 faults 

were detected, with a breakdown of 11 times for a low static pressure fault, 10 

times for the loose belts, eight times for air trapped in cooling coil, six times 

for the faulty cooling valve actuator, six times for the return damper jam fault, 

six times for the motor overload fault, six times for the vibration fault, four 

times for the faulty supply air damper, three times for the faulty filter coil 

system, three times for the faulty variable air volume, one time for damaged 

insulation on duct, one time for the compressor failure, one time for the filter 

blockage fault, and one time for the broken belts fault.  

Similar to the first empirical period, these results again confirmed the 

reliability of the detection model of each CWS component as it was able to 

detect faults, and most of the signal alerts “1” were real faults at the site. In 

addition, detecting these real faults demonstrated the reliability of the 

proposed frequencies (Chapter 4, Table 40, and Chapter 6, Table 71) as they 

were utilised to create the datasets for CWS components, which were then 

used to build and train the detection models. Also, the actions listed in Chapter 

4 (Tables 33-36) for chiller, cooling towers, pumps and terminal units, 

respectively, were reliable for fixing the fault that occurred faults sufficiently to 

the satisfaction of stakeholders of university building of the main case study.  

With regard to internal validity, assigned to check if the proposed 

detection model is better than the existing PdM tool at the building under 

study, the decision tree model of this research project for each CWS 

component has demonstrated clear improvement in predicting and detecting 

CWS faults as compared to the existing system at the building of the main case 

study, which is BMS. During the two empirical periods, and as shown in Chapter 

5 (Figures 34-35), and in this chapter (Table 72), the decision tree model is 

better than BMS by greater than or equal to 21 per cent for all CWS 

components. 

With regard to external validity, this occurred via the application of the 

methodological framework at another site and by assessing the performance 

of the detection model. The methodological framework has been implemented 

at another site for this purpose. The second case study was conducted in a 



177 
 

hotel owned by the same foundation that manages the university (the main 

case study). The hotel has a complete CWS, which means it has chillers, cooling 

towers, pumps and terminal units. The methodological framework phases were 

applied in tandem with the main case study, so the data collection plan was 

same for both case studies. After creating the datasets and then building and 

training the decision tree models, the prediction accuracy of each detection 

model was calculated by Equation 5. The results were encouraging as the 

detection accuracy of each CWS component was found greater than or equal 

to 98.90 per cent. After implementing the methodological framework, an 

empirical period was conducted for reliability and validity purposes.  

The decision tree model for the hotel chiller predicted 41 faults, out of 

which 39 faults were detected, with a breakdown of seven times for a 

refrigeration leak fault, seven times for the high condenser temperature, six 

times for the evaporator fouling fault, five times for the low chilled water flow, 

five times for the compressor overcharging fault, three times high cooler delta-

T, two times for the vibration fault, one time for the low oil pressure fault, one 

time for the low discharge superheat fault, one time for the incorrect manual 

guide vane target, and one time for the relief valve discharge fault. For the 

hotel’s cooling tower, its decision tree model predicted 43 faults, out of which 

40 faults were detected, with a breakdown of 11 times for the malfunctioning 

blowdown system fault, eight times for the rise in circulating water 

temperature, six times for the low water basin level fault, six times for the fills 

fouling fault, four times for the vibration fault, two times for the faulty isolation 

valve, two times for the faulty water level valve, and one for the unusual sound 

fault.  

For the hotel pump, its decision tree model predicted 44 faults, out of 

which 43 faults were detected, with a breakdown of 16 times for the noisy non-

return valve fault, 12 times for the motor vibration fault, four times for the 

leakage from valves, three times for the improper pump water alignment fault, 

three times for the high flow rate in cold exchange, three times for pump runs 

but no water provision, and two times for the clogging fault. The hotel’s 

terminal unit decision tree model predicted 48 faults, out of which 46 faults 

were detected, with a breakdown of 12 times for the low static pressure fault, 

11 times for the faulty control valve, eight times for the faulty variable air 

volume, four times for the faulty cooling valve actuator, four times for the faulty 

exhaust air damper, four times for the noisy motor fault, one time for the 
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damaged insulation on pipe, one time for faulty bearings, and one time for a 

faulty fan.  

As with the first two empirical periods, these results again confirmed the 

reliability of the detection model of each CWS component as it was able to 

predict the faults, and nearly all the predicted faults were real faults at the site. 

In addition, detecting these real faults verified the reliability of the proposed 

frequencies (Chapter 4, Table 40, and Chapter 6, Table 71) as they were utilised 

to create the datasets for the hotel CWS components, which were then used 

to build and train the detection models. Also, the solutions listed in Chapter 4 

(Tables 33-36), for chiller, cooling towers, pumps and terminal units, 

respectively, were reliable for fixing the faults that occurred faults to the 

satisfaction of the stakeholders of the hotel building. Furthermore, the existing 

PdM system at the hotel is BMS, which is similar to one at the university; a 

comparison between BMS and the hotel’s decision tree model of each CWS 

component was conducted during the empirical period, demonstrating clear 

improvement in tracing and detecting CWS faults by the decision tree model. 

As shown in the previous chapter (Figure 44) and in this chapter (Table 72), the 

decision tree model is undeniably better than BMS, with greater than or equal 

to 21 per cent for each hotel’s CWS component. Implementing the framework 

successfully in two sites, building a detection model for each CWS component 

that performed better than BMS, and meeting the satisfaction of the 

stakeholders at both sites have fulfilled the second and third objectives of this 

research project, which was mentioned in Chapter 1 (see section 1.2). 

 

6.3.2 Theoretical Contributions to The Knowledge  

 

“Enriching the research community with additional faults for each 

CWS component” 

The systematic literature review showed that the literature could be 

grouped into four parts: the first part addressed similar faults, the second part 

addressed different faults, the third part did not fully describe the faults but 

referred to faults as ‘abnormal behaviour’, and the last part did not clarify the 

faults. In total, the literature presented seven faults for the chiller, three faults 

for the cooling tower, eight faults for the pump, and nine faults for the terminal 

unit. Based on that, the research project sought out the existence of other 

faults, and then assigned two research methods to discover new faults: an 
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industry survey and a case study via methodological framework. After analysis 

of the survey results, this research project identified and recorded additional 

faults for each CWS component, noting 17 additional faults for the chiller, 13 

additional faults for the cooling tower, eight additional faults for the pump, 

and 20 additional faults for the terminal unit. At the time of implementing the 

case study method at two sites, 15 faults occurred out of the 17 additional 

faults for the chiller; all 13 additional faults for the cooling tower occurred; all 

eight additional faults for the pump occurred; and 18 faults occurred out of 

the 20 additional faults identified for the terminal unit. Looks like the literature 

has overlooked the aforesaid additional faults due to their focus on building 

and training detection model and on calculating the detection accuracy of that 

model rather than paying attention to the type of fault. In addition, the 

datasets, which were utilised to build and train their models, contained 

observations of a specific fault like the ones mentioned in Tables 67-70 or 

contained a fault that is undefined. 

So, the first theoretical contribution to the knowledge by this research 

project is the identification and recording of additional faults for each CWS 

component (see Chapter 4, Tables 33-36). 

 

“Providing an action to fix each listed CWS fault” 

In accordance with the PdM workflow proposed by Achouch et al. (2022), 

the last stage of that workflow focused on fixing the faults or issues that 

occurred faults, but while reviewing the literature, it was noted that not a single 

study provided a solution for the faults addressed. As the aim of this research 

project is to propose a holistic intelligent maintenance framework, it is 

essential to complete the intelligent maintenance activity by fixing the faults 

when they occur. Based on this essential understanding, this present research 

project explored viable actions to fix CWS faults by assigning two research 

methods, as industry survey and a case study, to investigate solutions. After 

analysing the survey results, the research project provided an action to fix each 

listed fault (see Chapter 4, Tables 33-36). To summarise the number of listed 

faults, the chiller has seven faults identified from the considered literature and 

17 additional faults from this research; the cooling tower has three faults from 

the considered literature and 13 additional faults from this research; the pump 

has eight faults from the considered literature and eight additional faults from 

this research; and the terminal unit has nine faults from the considered 
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literature and 20 additional faults from this research. This research project has 

recommended measures to assess the provided actions as part of the quality 

control phase of the proposed methodological framework. When detecting a 

fault and after implementing the provided action to fix that fault, the inspector 

at site should immediately observe the effected part of the component and 

report the outcome to the officer. The outcome would be either satisfactory, 

which means the fault is fixed and cleared, or unsatisfactory, which means the 

provided action is unable to fix the fault. In case of unsatisfactory, the inspector 

should re-implement the action again and observe the effected part – in case 

the fault continues, then the inspector should report that to the officer, and 

accordingly, the officer should double check the situation at site to validate the 

report of the inspector. Once validated, the officer should call specialised team 

like the operation and maintenance contractor to look at the case and fix it. At 

the time of implementing the case study at two sites, all faults that occurred 

were successfully fixed by implementing the provided actions, as confirmed by 

the stakeholders, who are the operation and maintenance managers, of both 

sites. So, the second theoretical contribution to the knowledge by this research 

project is the provision of a viable action to fix each listed CWS fault (see 

Chapter 4, Tables 33-36). 

 

“Confirming technical relevance between CWS components” 

The studies reviewed from the literature were primarily focused on one 

CWS component, although a few studies focused either on two CWS 

components or three components at the most. This observation triggered a 

question about the significance of covering the whole CWS by addressing all 

its components. While analysing the survey results with regard to the solutions 

of CWS faults, it was noted that some faults for one particular CWS component 

are due to the health condition of another component. A quantitative analysis 

for the responses was made to justify this notice, and the result showed strong 

and positive correlation (see Table 39, and Appendix D). This result was 

confirmed during the empirical periods as part of the case study method as 

fixing some faults of a particular CWS component required investigating 

another component. In this regard, a quantitative analysis was again made to 

illustrate the correlation, and the result showed strong and positive correlation 

as well (see Tables 53, 58, and 64 as well as Appendix I). So, the third theoretical 
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contribution to the knowledge by this research project is illustrating and 

confirming the technical relevance between CWS components. 

 

“Providing valid frequencies for each CWS component” 

The main part of intelligent maintenance framework is the detection 

model. Datasets are required to build and train that model. These datasets can 

be either ready for utilisation, which means the data are historical, or the data 

should be collected from the building that will be studied. To collect the data, 

three factors are required: determining the operational parameter of each CWS 

component, determining the time interval between the readings of the 

operational parameter, referring to in this research as minimum frequency, and 

determining the study period, referred to in this research as maximum 

frequency. During the systematic literature review, it was observed that there 

is great variance in the studies with regard to data collection related 

information. The studies can be placed into five groups: the first clarified the 

operational parameter and the frequencies but these were not usually the 

same information; the second clarified the operational parameter and one of 

the frequencies; the third clarified the operational parameter but without 

clarifying the frequencies; the fourth clarified the sample size of the data but 

not the operational parameter or the frequencies; and the last did not clarify 

any data collection-related information.  

The difference between the studies with regard to the frequencies 

obscures which frequencies are proper for building and training a new 

detection model. So, this research project, noting this observation, included a 

section in the industry survey to ask participants about faults that occurred 

often (and to state the frequency) and about faults that rarely occur (and to 

state the frequency) for each CWS component. The research project designed 

an innovative way to determine the frequencies, by identifying the minimum 

value of all minimum frequencies provided by the participants, as well as by 

identifying the maximum value of all maximum frequencies provided by the 

participants. These two values for each CWS component serve as the proposed 

frequencies by this research project. The case study method, the second 

research method assigned by this research project, was implemented at two 

sites post analysing the results of the industry survey, the first site is a university 

building, which is for the main case study, and the second site is a hotel 

building for external validity purposes. The proposed frequencies (Chapter 4, 
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Table 40, and Chapter 6, Table 71) were utilised in the data collection for both 

sites. After building and training the detection model, the decision tree, for 

each CWS component, the detection accuracy was calculated with encouraging 

results: the accuracy was greater than or equal to 98.5 per cent for both sites. 

This confirms that the proposed frequencies are proper for the data collection 

activity, and they helped to create the datasets that built and trained a 

detection model for each CWS component. In addition, the detection models 

show their reliability in detecting faults (Chapter 5, Tables 49-52, 54-57, and 

60-63), and this validated the proposed frequencies where the detection model 

of each CWS component was built and trained based on these frequencies. So, 

the fourth theoretical contribution to the knowledge by this research project is 

providing valid frequencies for each CWS component that can be utilised in 

creating the datasets to build and train the detection model. 

 

6.3.3 Practical Contributions 

 

“Providing a methodological framework that presents a holistic 

intelligent maintenance for CWS at commercial buildings” 

The methodological framework itself is a practical contribution where it 

presents a holistic intelligent maintenance framework for CWS. This research 

project proposed three phases (shown in Chapter 5) that present a road map 

for the intelligent maintenance framework. These phases are set-up, machine 

learning and quality control, and they contain multiple management steps to 

build the intelligent maintenance framework. The said framework can be 

considered as a guide for operation and maintenance professionals as shown 

in the previous chapter (see Table 65). So, the first practical contribution is 

presenting a holistic intelligent maintenance via a methodological framework. 

 

“Providing a simplified schematic for CWS” 

Practically, this research thesis delineated technical guidelines when 

implementing the methodological framework as shown in the previous chapter 

(see Table 65). With regard to the first phase of the methodological framework, 

the research project advised the value of thoroughly understanding the 

building to be studied by assessing the as-built drawing, but since such 
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drawings are complicated with many pages and much information, this 

research created a simplified schematic for CWS to show how each CWS 

component looks in such drawings for easy visualisation and identification of 

each component, the number of each CWS component, and the location of 

each unit at the site. The schematic was created based on the guidelines of the 

ASHRAE Handbook (2023) as shown in Chapter 5 (Figure 15). So, the second 

practical contribution to the knowledge by this research project is the provision 

of a simplified schematic for CWS. 

 

“Providing a proper location for each reading tool of selected 

operational parameters” 

While reviewing the literature with regard to data collection-related 

information, an inadequacy was noted: no research suggested reading tool 

locations of operational parameters. Operational parameters presented one of 

the values of the datasets that built the detection model for each CWS 

component. These values are the chilled water leaving temperatures for both 

chiller and cooling tower, the pressure for pumps, and the space temperature 

for terminal units. The second values of the datasets are the inspection results, 

which are fault (‘1’) or fault free (‘’0). This research has addressed the 

aforementioned weakness by proposing a proper location for the reading tool 

of each operational parameter based on the standard operating procedure of 

the ASHRAE Handbook (2023). Reading tools can be sensors, meters or gauges, 

and their proposed locations were provided in Chapter 5 (Table 43). So, the 

third practical contribution to the knowledge by this research is the provision 

of a proper reading tool location for each operational parameter. These 

locations will advise the researcher or user as to where to install such tools if 

they are not already installed at site, or to ensure they are in their proper 

locations if they are already installed. This practical contribution is a part of the 

proposed guide, which is mentioned in the previous chapter (see Table 65). 

 

“Providing a control plan for continuous CWS monitoring” 

The fourth practical contribution of this research project is related to the 

third phase of the proposed methodological framework, quality control. In the 

previous chapter (Table 44), this research project devised a control plan that 

can be conducted after building and training the detection model to continue 
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observing and monitoring the said model, while the studies from the literature 

ended their proposed intelligent maintenance frameworks by calculating the 

detection accuracy of their detection models. The said plan is part of the guide 

that is provided in the previous chapter (see Table 65). In addition, this research 

project provided a documentation process (as shown in the previous chapter) 

which involves listing the lessons learned from the proposed intelligent 

maintenance framework, ensuring that the computer unit is working efficiently, 

knowing which the detection model is installed on it, tracking the spare parts 

stock, training more technicians for familiarity with the detection model, and 

writing regular reports about the performance of the proposed intelligent 

maintenance framework. This process is advised to be actioned after 

conducting the aforementioned control plan. These processes are required 

within the intelligent maintenance framework to ensure continuous control 

and improvement to the maintenance management framework of the CWS. 

Also, this research project suggests that such process can implemented in any 

other maintenance strategy.  

 

 

6.3.4 Quality of The Research 

 

Three elements determine the quality of research: reliability, internal 

validity and external validity (see Chapter 3, Table 27). This present research 

project has explained how it has fulfilled these requirements (Chapter 3, Table 

29). Accordingly, the outcomes of this thesis have fulfilled the quality of the 

research as shown below in Table 74. 

Table 74: Research quality accomplishment 

Element Research Thesis Outcome 

Reliability 

The proposed detection model of each CWS component has shown 

its reliability by tracing the faults where after inspecting the site 

(university), most of the predicted faults were detected. Also, the 

solutions furnished by this research were useful in fixing the faults 

that occurred.  

Internal Validity 

The proposed detection model of each CWS component has 

improved fault prediction and detection compared to the existing 

system (BMS) at both sites. 

External Validity 

The proposed methodological framework has been successfully 

implemented at a second site, a hotel. The detection model of each 

CWS component at that site has demonstrated similar performance 

to the one at the university in tracking faults, detecting them, and 

improving fault detection over the existing system, BMS. 
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6.3.5 Limitations 

 

Both research methods assigned to answer the four research questions of 

this research project have limitations. The industry survey, for example, 

required significant effort to receive responses by implementing a follow-up 

strategy (outcome shown in Chapter 4, Figure 12). Although the number of the 

responses was 336 out of 761 contacts at commercial buildings, there may 

have been invalid e-mail addresses or phone numbers, one potential limitation 

reducing the number of responses. Another limitation besets the survey as 

well, in that it was conducted in Riyadh, Saudi Arabia. Though the industry 

survey structures the pillars of this research project – which are CWS faults, the 

actions to fix the faults, and the frequencies – these may be limited by the city 

surveyed. Considering the climate in Riyadh and climate difference between 

Riyadh and other cities (whether inside Saudi or outside Saudi), there may be 

other faults or different faults frequencies elsewhere. So, the next subsection 

considers this limitation as part of the future research agenda. 

After analysing the considered studies of the literature, this research 

project defined the fault as any failure that may lead to a CWS breakdown over 

time, which means that the listed faults in this research thesis have a minimal 

impact on the operation of CWS as confirmed during the empirical periods. 

Accordingly, this definition is included in the second part of the industry survey 

as a note for the participants (see Appendix C). So, this research project is 

limited to such type of faults, and it did not consider other types of faults that 

may completely shut-down the CWS when occurred or the ones that may have 

a major impact, if any. So, the next subsection is also considered this third 

limitation as part of the future research agenda. 

The fourth limitation is related to case study methodology. The three 

empirical periods which were conducted at two sites have validated most of 

the outcomes of the industry survey, especially with regard to the faults and 

the actions to fix such faults. From the 17 additional chiller faults, which were 

furnished by the survey, 15 faults occurred, and from the 20 additional terminal 

unit faults, 18 faults occurred. All the additional faults of cooling tower and 

pump occurred. Although only two additional faults of the chiller and terminal 

unit did not occur during the said periods, it would be useful to allow for more 

empirical periods to attempt to validate the remaining faults. 
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6.3.6 Future Research Agenda 

 

From the systematic literature review, it was noticed that the number of 

studies pertaining to cooling towers and pumps were far fewer than those 

pertaining to chillers and terminal units; therefore, this research project 

encourages researchers to pay more attention to these two components 

(cooling tower and pump) if their studies are not planned for the entire CWS. 

Another suggestion for future research, in light of the first limitation 

mentioned in the previous subsection, is to expand the reach of the industry 

survey, distributing it into other cities in the Kingdom of Saudi Arabia, like 

Jeddah or Dammam; or surrounding countries like Kuwait, Bahrain or Qatar; or 

other countries farther afield on the same continental, Asia; or even to other 

continents such as South America or Africa. This agenda may enrich the 

research community with more faults beyond those listed in this research 

project (Chapter 4, Tables 33-36). The same agenda will also allow for exploring 

fault frequencies of different operational parameters, including the ones 

chosen by this research project, which can be utilised in building and training 

detection models if the researchers intend to utilise machine learning. 

The third future research agenda is related to the operational parameters 

that their readings can help in building and training the detection model. 

Although Chapter 2 showed that any operational parameter is generally giving 

a glimpse about the health condition of the related CWS component, this 

research project encourages researchers to explore how different operational 

parameters may lead to different faults, and accordingly, a fish-bone diagram 

like Figure 9 can be presented. One more suggestion for future work, in light 

of the third limitation mentioned in the previous subsection, is to explore the 

faults that partially and/or completely do shut-down the CWS. This includes 

building detection models based on the frequencies of such faults. While this 

research project has proven that there is a technical relevance between CWS 

components as shown in Table 66 and has proposed a simplified schematic for 

CWS as shown in Figure 15, future works are encouraged to deeply investigate 

the complexity of such a system to explore more relationships between its 

components. 

The sixth research agenda suggested by this research project is to focus 

more on the faults occurring more frequently for each CWS component. As 

shown in Chapter 4 (Table 37), as well as in the previous chapter (Tables 49-52, 
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54-57, and 60-63), researchers are encouraged to investigate the repeated 

occurrence of the refrigeration leak fault in the chillers, the malfunctioning 

blowdown system fault in the cooling towers, the noisy non-return valve fault 

in the pumps, and the low static pressure fault in the terminal units, and to 

explore the reasons for these occurrences. For the machine learning related 

tasks, three research agendas are suggested by this research project. The first 

is to discuss how to integrate the machine learning models with the building 

automation and management systems, such as BMS, for more efficient 

detection models. The second is to propose an intelligent system for updating 

the datasets required to build and train the detection model in order to raise 

the control efficiency of commercial buildings. While this research project has 

built a separate detection model for each component, the third research 

agenda is to address the complexity of CWS and to try building one detection 

model that look after all CWS components. Finally, another suggestion is for 

researchers to apply the ideas of the proposed methodological framework and 

extend the framework to other HVAC systems such as heating systems and to 

other utility systems such as electrical systems. 

Future research agendas are suggested to show how to motivate more 

participants – professionals who participate in such industry surveys – to reply. 

The professionals for this research were either support services managers, 

facilities managers, or operation and maintenance managers, and their 

workload may deter them from taking the time to answer survey questions. 

Also, future research agendas are suggested to place more attention on the 

availability of data sources; the experience of the team who will collect the 

data; the organisational culture at the building under study which may not be 

cooperative; and the associated costs such as arranging the reading tools, the 

computer unit of the detection model, and the labour. 

In line with Sanzana et al. (2022), researchers are encouraged to explore 

further development in deep learning applications towards the PdM of HVAC 

system of which CWS is a part. This present research has implemented its 

methodological framework in two different types of commercial buildings – a 

university campus and a hotel – so it would be useful for future research to 

implement the proposed framework in other types of commercial buildings 

like hospitals. According to Al-Aomar et al. (2023), machine learning 

applications in PdM require more attention in hospital facilities. Hodavand et 

al. (2023) insist that fault data from complex systems such as HVAC systems 

are scarce, so more research studies are required to investigate machine 
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learning technique for fault detection, especially unsupervised and deep 

learning methods. Therefore, they suggest searching for a standardised 

solution for integrating data from various sources like building automation 

systems, building information systems and BMS to ensure the effectiveness of 

machine learning algorithms like decision tree. As this research project 

presented an intelligent system for the maintenance of CWS at commercial 

buildings, the last research agenda suggested for the researchers is to explore 

what could be done to move from such an intelligent system that detect the 

faults to a PdM that can anticipate the faults way before their occurrence. 

 

6.3.7 Thesis Author’s Own Reflection 

 

In the author’s current position in the industry, a great deal of effort in 

maintenance planning goes toward CWS due its complexity. At the start of the 

PhD study on October 01, 2020, the author intended to address this complex 

system to improve the maintenance practice at the current job. The research 

process helped the author explore a myriad of ideas about developing an 

intelligent maintenance framework for such a system, and then investigating 

how and where to improve the current maintenance procedure on CWS on 

site. In terms of personal and professional aspects, the author has benefited 

tremendously from the research experience, particularly by improving time 

management skills. Specifically, the research process required extensive 

preparation and planning for each stage of the study, and each stage had to 

be conducted in an organised manner from a time perspective. The University 

of Strathclyde has a reputable PhD programme with students taking five 

modules of researcher professional development activities: knowledge and 

intellectual abilities; personal effectiveness; research governance and 

organisation; engagement, influence, and impact; and an elective module 

which included attendance at international conferences. These modules helped 

the author conduct the research efficiently as well as write this thesis properly. 

After finalising this thesis, the author carries an overwhelming excitement 

to present a holistic intelligent maintenance framework for CWS at commercial 

buildings. The presented programme evolved through a long journey: 

conducting a systematic literature review, constructing an industry survey, 

analysing its outcomes, and proposing and implementing a methodological 

framework at two sites. The framework is a holistic one as it begins with an 
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understanding of the engineering drawing of CWS, showing the proper 

location of each reading tool. Thereafter, the journey continued through the 

process of data collection, the implementation of machine learning algorithm 

to make the detection model, and then the quality control process that with 

viable and pragmatic actions to fix the faults that have occurred faults. It also 

replied on monitoring and improvement actions via a control plan and 

documentation process. So, the final product of this research project is a 

methodological framework that represents an intelligent maintenance 

framework for CWS at commercial buildings. 

Although the author of this thesis is a senior manager of a facility 

department, the industry survey allowed him to explore the operational 

situations at other commercial buildings in Riyadh and to ascertain the 

managerial knowledge of the professionals at these other commercial 

buildings. The research thesis provided a list of faults and actions to fix them 

that are not in the original equipment manufacturer manual, presenting a 

decision tree model that enhanced the maintenance practice at the university 

building under study with regard to fault detection, undeniably more effective 

than the existing maintenance system, BMS. 

The PhD journey taught the author a great deal about machine learning 

and choosing a proper algorithm. The author has agreed with senior 

management of his current occupational position to implement the proposed 

methodological framework and utilise the proposed detection model at the 

site after his doctoral graduation ceremony. 
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Appendices 

Appendix A: Summary of CWS predictive maintenance and fault detection tools across 

the literature 

Technique Component(s) Reference(s) 

Artificial Neural 

Network 

Chiller, pump and 

terminal unit 

(Rueda et al., 2005; Zhou et al., 2009b; 

Li et al., 2016a; Kocyigit, 2015; 

Tahmasebi et al., 2019; Cheng et al., 

2020; Harasty et al., 2019; Karim et al., 

2020; Cho et al., 2005; Hosamo et al., 

2022; Dudzik et al., 2020; Tehrani et 

al., 2015) 

Kalman Filter 
Chiller and cooling 

tower 

(Navarro-Esbri et al., 2006; Sun et al., 

2013; Sun et al., 2018) 

k-nearest neighbours 
Chiller, cooling tower 

and terminal unit 

(Han et al., 2020; Albayati et al., 2023; 

Tahmasebi et al., 2019; Aguilar et al., 

2020; Elnour et al., 2022) 

Support Vector 

Machine 
All CWS components 

(Choi et al., 2005; Albayati et al., 2023; 

Han et al., 2011; Yan et al., 2018a; Tran 

et al., 2016a; Yan et al., 2014; Cheng et 

al., 2020; Hu et al., 2019; Li et al., 2022; 

Sulaiman et al., 2020; Liang and Du, 

2007; Chaudhuri et al., 2017; Yan et al., 

2018b; Tun et al., 2021; Mulumba et 

al., 2015; Guo et al., 2017; Elnour et al., 

2022; Montazeri and Kargar, 2020; 

Van Every et al., 2017) 

Random Forest 
Chiller and terminal 

unit 

(Gao et al., 2019b; Han et al., 2020; 

Tun et al., 2021; Parzinger et al., 2020; 

Luo et al., 2020a) 

Adaptive Moment 

Estimation 
Chiller and pump (Liu et al., 2022b) 

Backpropagation 

Neural Network 
Chiller and pump (Xu et al., 2015; Du et al., 2014a) 

Principal Component 

Analysis 
All CWS components 

(Hu et al., 2016a; Xiao et al., 2006; 

Mao et al., 2018; Wang and Cui, 2005; 

Xu et al., 2008; Wang et al., 2010; Hu 

et al., 2016b; Li et al., 2016b; Beghi et 

al., 2016; Wang et al., 2010; Li et al., 

2010; Padilla and Choinière, 2015; 

Wang and Xiao, 2004; Qin and Wang, 

2005) 

Multiway Partial Least 

Squares 
Chiller (Choi et al., 2005) 

Multiway Dynamic 

Principal Component 

Analysis 

Chiller (Choi et al., 2005) 

Fuzzy Modelling 
Chiller and terminal 

unit 

(Zhou et al., 2009b; Sulaiman et al., 

2015) 

Multi-Label Chiller (Han et al., 2011) 
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Hybrid Quick Search 
Chiller and cooling 

tower 
(Ma and Wang, 2011) 

Regression 
Chiller, cooling tower 

and pump 

(Zhou et al., 2009a; Yu and Chan, 

2012; Au-Yong et al., 2014; Zabidi et 

al., 2023; Khan and Zubair, 2004; 

Ssembatya and Claridge, 2024) 

Clustering 
Chiller and terminal 

unit 

(Yu and Chan, 2012; Yan et al., 2016a; 

Yang et al., 2018; Du et al., 2014a; 

Elnour et al., 2022) 

Recursive Deterministic 

Perception Neural 

Network 

Chiller (Magoulès et al., 2013) 

Multi-layer perceptron Chiller 
Sulaiman et al., 2020; Zabidi et al., 

2023) 

Exponentially Weighted 

Moving Average 

Control Charts 

Chiller and terminal 

unit 

(Zhao et al., 2013a; Tran et al., 2016b; 

Wang and Chen, 2016) 

Bayesian Belief Network 
Chiller and terminal 

unit 

(Zhao et al., 2013b; Dey and Dong, 

2016) 

Support Vector Data 

Description 
Chiller (Zhao et al., 2013c; Li et al., 2016c) 

Wasserstein Generative 

Antagonistic Network 
Chiller (Yan et al., 2020) 

Extended Kalman Filter 
Chiller and terminal 

unit 
(Yan et al., 2017; Chintala et al., 2024) 

Recursive One-class 

Support Vector 

Machine 

Chiller (Yan et al., 2017) 

Linear Discriminant 

Analysis 
Chiller (Li et al., 2016e) 

One Dimensional 

Convolutional Neural 

Network 

Chiller and pump (Wang et al., 2020; Sunal et al., 2024) 

k-means clustering 
Chiller, pump and 

terminal unit 
(Luo et al., 2019) 

Wavelet Neural 

Network 
Terminal unit (Du et al., 2008) 

Kernel Principal 

Component Analysis 
Terminal unit (Montazeri and Kargar, 2020) 

Synthetic Minority 

Oversampling 
Terminal unit (Shakerian et al., 2021) 

Directed Acyclic Graph Terminal unit (Velibeyoglu et al., 2018) 

Distance Rejection Chiller (Wang et al., 2017b) 

Bayesian Network 
Chiller, cooling tower 

and terminal unit 

(Wang et al., 2017b; Xiao et al., 2014; 

Zhao et al., 2015; Zhao et al., 2017; 

Jain et al., 2019; Ng et al., 2020) 

Large Margin 

Information Fusion 

Chiller and terminal 

unit 
(Li et al., 2016d; Li et al., 2010) 

Multi-Class Support 

Vector Machine 
Chiller (Li et al., 2016) 
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Decision Tree 
Chiller and terminal 

unit 

(Li et al., 2016; Sittón-Candanedo et 

al., 2018; Hodavand et al., 2023; 

Ranade et al., 2019; Elnour et al., 2022; 

Montazeri and Kargar, 2020; Satta et 

al., 2017; Tehrani et al., 2015; Yan et 

al., 2016b) 

Self-adaptive Principal 

Component Analysis 
Chiller (Hu et al.,2012) 

Quadratic Discriminant 

analysis 
Chiller (Li et al., 2016a) 

Tree-Structured Fault 

Dependence Kernel 
Chiller (Li et al., 2016a) 

Ada Boost Chiller (Li et al., 2016a) 

Logistic Regression Chiller (Li et al., 2016a) 

Support Vector 

Regression 

Chiller and terminal 

unit 
(Tran et al., 2016a; Yang et al., 2013) 

Differential Evolution Chiller (Tran et al., 2016b) 

SCANSITES 3D Cooling tower (Piot and Lancon, 2012) 

Multiple Linear 

Regression 
Chiller (Tran et al., 2016a; Zhao, 2015) 

Kriging Chiller (Tran et al., 2016a) 

Wireless Sensors 
Cooling tower and 

pump 
(Hashemian, 2011) 

Radial Basis Function 
Chiller and terminal 

unit 

(Tran et al., 2016a; Montazeri and 

Kargar, 2020) 

Bagged Tree Chiller (Tahmasebi et al., 2019) 

Simple Linear 

Regression 
Chiller (Zhao, 2015) 

Unscented Kalman 

Filter 
Chiller 

(Bonvini et al., 2014; Sun et al., 2013; 

Karami and Wang, 2018) 

Statistical Process 

Control 

Chiller and cooling 

tower 
(Sun et al., 2013; Sun et al., 2018) 

Gaussian Mixture 

Model Regression 
Chiller (Karami and Wang, 2018) 

Autoregressive 

Exogenous Variables 

Chiller and terminal 

unit 

(Yan et al., 2014; Mulumba et al., 2015; 

Parzinger et al., 2020)  

Monte Carlo Simulation 
Chiller, pump, and 

terminal unit 
(Miyata et al., 2019; Ma et al., 2020) 

Decoupling Chiller (Zhao et al., 2014) 

Fuzzy Interference 

System 
Chiller (Kocyigit, 2015) 

Levenberg Marquart 

Type Artificial Neural 

Network 

Chiller and terminal 

unit 
(Kocyigit, 2015; Du et al., 2014b) 

Maximal Information 

Coefficient 
Chiller (Gao et al., 2019a) 

Virtual Sensor 
Chiller and terminal 

unit 

(Zhao et al., 2012; Kim and Braun, 

2020; Verbert et al., 2017) 

H2O (Automatic 

Machine Learning 

Platform) 

Chiller and terminal 

unit 
(Villa et al., 2022) 
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Association Rule 

Mining 
Terminal unit (Yu et al., 2012) 

Temporal Association 

Rules Mining 
Terminal unit (Piscitelli et al., 2020) 

Ensemble Rapid 

Centroid Estimation 
Terminal unit (Yuwono et al., 2015) 

Regression Tree Terminal unit (Yan et al., 2016b) 

HVACSIM+ (Simulation 

Software) 
Terminal unit (Pourarian et al., 2017) 

Fuzzy Logic Clustering 
Chiller and terminal 

unit 

(Escobar et al., 2020; Lauro et al., 2014; 

Wijayasekara et al., 2014) 

Active Functional 

Testing 
Terminal unit (Padilla and Choinière, 2015) 

Explainable Artificial 

Intelligence 
Chiller (Srinivasan et al., 2021) 

Virtual Refrigerant 

Charge 
Chiller (Liu et al., 2017) 

Gated Recurrent Unit Chiller (Wang et al., 2020) 

Mixed Integer 

Programming 
Chiller (Wu et al., 2021) 

Deep Belief Network 
Chiller and terminal 

unit 

(Li et al., 2022; Montazeri and Kargar, 

2020) 

Deep Neural Network Chiller (Li et al., 2022) 

Principal Component 

Analysis-based 

exponentially weighted 

moving average control 

charts 

Chiller (Liu et al., 2017) 

Multi-Layer Perceptron 
Chiller and cooling 

tower 

(Sulaiman et al., 2020; Aguilar et al., 

2020) 

Simulation All CWS components 

(Wang et al., 2022; Motomura et al., 

2019a; Ahn et al., 2001; Motomura et 

al., 2019b; Ma and Wang, 2009; Liang 

and Du, 2007; Andriamamonjy et al., 

2018; Gunay et al., 2022; Norford et 

al., 2002; Li et al., 2021; Deshmukh et 

al., 2019; Yang et al., 2008; Yang et al., 

2018; Gao et al., 2016; Deshmukh et 

al., 2020; Najeh et al., 2021; Holub and 

Macek, 2013; Novikova et al., 2019; 

Sulaiman et al., 2015; Thumati et al., 

2011; Turner et al., 2017; Yan et al. 

2016a) 

Gradient Boosting Cooling tower (Aguilar et al., 2020) 

Autonomic Cycle of 

Data Analysis Tasks 
Cooling tower (Aguilar et al., 2020) 

Generalised Stochastic 

Petri Net 
Cooling tower (Melani et al., 2019) 

Particle Swarm 

Optimisation 
Chiller (Li et al., 2022) 
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Deep Learning 
Chiller and cooling 

tower 

(Sulaiman et al., 2020; Sanzana et al., 

2022) 

Shallow Neural 

Network 
Terminal unit (Montazeri and Kargar, 2020) 

Semi Supervised 

Learning 

Pump and terminal 

unit 
(Yuan and Liu, 2013; Fan et al., 2021) 

Non-intrusive Load 

Monitoring Software 
Terminal Unit (Rafati et al., 2022) 

Wavelet Transform with 

the Principal 

Component analysis 

Terminal Unit (Li and Wen, 2014) 

Markov Chain Monte 

Carlo 
Terminal Unit (Liu et al., 2021) 

Kernel Density 

Estimation 
Chiller (Xia et al., 2021b) 

Kernel Entropy 

Component Analysis 
Chiller (Xia et al., 2021b) 

Genetic Algorithm 
Chiller and Terminal 

Unit 

(Wang et al., 2012a; Lo et al., 2007; 

Gao et al., 2023) 

Generative Adversarial 

Network 
Terminal Unit (Yan et al., 2019) 

General Regression 

Neural Network 
Terminal Unit (Lee et al., 2004) 

WEKA (Data Mining 

Software) 
Terminal Unit (Choi and Yeom, 2019) 

Hidden Markov Model Terminal Unit (Guo et al., 2017) 

Digital Twin Artificial 

Neural Network 
Terminal Unit (Hosamo et al., 2022; Xie et al., 2023) 

Recurrent Neural 

Network 
Terminal Unit (Shahnazari et al., 2019) 

Fractal Correlation 

Dimension 
Terminal Unit (Yang et al., 2013) 

Demand Side 

Management 

Chiller and Terminal 

Unit 
(Arteconi et al., 2012) 

Multi-layer 

Feedforward Neural 

Network 

Chiller and Pump (Liu et al., 2022b) 

Error Backpropagation 

Neural Network 
Chiller and Pump (Liu et al., 2022b) 

Long Short-term 

Memory Network 
Chiller and Pump 

(Gao et al., 2019a; Bouabdallaoui et al., 

2021) 

Extreme Learning 

Machine 
Terminal Unit (Chaudhuri et al., 2017) 

Lambda Open-loop 

Tuning Rules (fully 

automated control 

hunting correction 

algorithm) 

Terminal Unit (Lin et al., 2023) 

Prophet Forecasting Terminal Unit (Al-Aomar et al., 2023) 
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Seasonal Auto-

Regressive Integrating 

Moving Average 

Terminal Unit (Al-Aomar et al., 2023) 
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Appendix B: Correspondence on data gathering of survey participants  
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Appendix C: Final questions form of the industry survey 

 

 
Part #1: 

- Do you have chilled water system at your facility? 

o Yes 

o No 

If yes, then please complete the following parts: 

Part #2: 

- Please choose from the below furnished faults for each component of the chilled water system that you 

encounter at your facility and provide the details. Kindly add those that you encounter but are not listed here 

as new. Also, beside each fault, kindly propose a managerial solution to fix that fault in a timely manner. 

Please note that this part is looking for the fault, which is defined as any failure that may lead to a chilled 

water system component breakdown over time. 

A) Chillers 

Fault Do you encounter this at your facility? Solution 

Sensor Bias o Yes o No  

Refrigeration Leak o Yes o No  

Operation Scheduling o Yes o No  

Evaporating Fouling o Yes o No  

Condenser Fouling o Yes o No  

High Condenser Temperature o Yes o No  

Compressor Overcharging o Yes o No  

New Faults and their solutions: (Please write this form: (Fault: Solution), (Fault: Solution) 

 

 

 

B) Cooling Towers 

Fault Do you encounter this at your 

facility? 
Solution 

Air Fan Degradation  o Yes o No  

Fills Fouling o Yes o No  

Sensor Bias o Yes o No  

New Faults and their solutions: (Please write this form: (Fault: Solution), (Fault: Solution) 
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C) Pumps 

Fault Do you encounter this at your facility? Solution 

Clogging o Yes o No  

Control Switch o Yes o No  

Faulty Starter o Yes o No  

Pipeline Leakage o Yes o No  

High Flow Rate in Cold Exchange o Yes o No  

Low Flow Rate in Cold Exchange o Yes o No  

Excessive or Abnormal Noise o Yes o No  

Sensor Bias o Yes o No  

New Faults and their solutions: (Please write this form: (Fault: Solution), (Fault: Solution) 

 

 

 

 

 
D) Terminal Units 

Fault Do you encounter this at your 

facility? 
Solution 

Sensor Bias o Yes o No  

Faulty Variable Air Volume (VAV) o Yes o No  

Faulty Fan o Yes o No  

Compressor Failure o Yes o No  

Filter Blockage o Yes o No  

Faulty Filter Coil System o Yes o No  

Cooling Coil Blockage o Yes o No  

Return Damper Jam o Yes o No  

Speed Reducing the Supply Fan o Yes o No  

New Faults and their solutions: (Please write this form: (Fault: Solution), (Fault: Solution) 
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Part #3: 

A) Chillers 

- What is the most fault occurring so often during your operational time? Please state the frequency of its 

occurrence and mention the time unit (for example, it is possibly occurred for every 45 minutes). 

Fault: ………………………………………….; Frequency: ……………………………………. 

- What is the most fault occurring rarely during your operational time? Please state the frequency of its 

occurrence and mention the time unit (for example, it is possibly occurred within 6 weeks).  

Fault: ………………………………………….; Frequency: ……………………………………. 

 

B) Cooling Towers 

- What is the most fault occurring so often during your operational time? Please state the frequency of its 

occurrence and mention the time unit (for example, it is possibly occurred for every 45 minutes). 

Fault: ………………………………………….; Frequency: ……………………………………. 

- What is the most fault occurring rarely during your operational time? Please state the frequency of its 

occurrence and mention the time unit (for example, it is possibly occurred within 6 weeks).  

Fault: ………………………………………….; Frequency: ……………………………………. 

 

C) Pumps 

- What is the most fault occurring so often during your operational time? Please state the frequency of its 

occurrence and mention the time unit (for example, it is possibly occurred for every 45 minutes). 

Fault: ………………………………………….; Frequency: ……………………………………. 

- What is the most fault occurring rarely during your operational time? Please state the frequency of its 

occurrence and mention the time unit (for example, it is possibly occurred within 6 weeks).  

Fault: ………………………………………….; Frequency: ……………………………………. 

 

D) Terminal Units 

- What is the most fault occurring so often during your operational time? Please state the frequency of its 

occurrence and mention the time unit (for example, it is possibly occurred for every 45 minutes). 

Fault: ………………………………………….; Frequency: ……………………………………. 

- What is the most fault occurring rarely during your operational time? Please state the frequency of its 

occurrence and mention the time unit (for example, it is possibly occurred within 6 weeks).  

Fault: ………………………………………….; Frequency: ……………………………………. 
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Part #4: 

- Please tick appropriately if the furnished parameter best predicts the chiller’s health condition and if not, 

please recommend an alternative. 

 

Chilled Water Leaving Temperature (oC)  

 

Is it the best to predict 

the health condition? 
Alternative 

o Yes o No  

 
- Please tick appropriately if the furnished parameter best predicts the cooling tower’s health condition and 

if not, please recommend an alternative. 

 

Chilled Water Leaving Temperature (oC)  

 

Is it the best to predict 

the health condition? 
Alternative 

o Yes o No  

 

- Please tick appropriately if the furnished parameter best predicts the pump’s health condition and if not, 

please recommend an alternative. 

 

Pressure (Bar) 

 

Is it the best to predict 

the health condition? 
Alternative 

o Yes o No  

 
- Please tick appropriately if the furnished parameter best predicts the terminal unit’s health condition and if 

not, please recommend an alternative. 

 

Space Temperature (oC) 

 

Is it the best to predict 

the health condition? 
Alternative 

o Yes o No  

 
Important Note: By clicking submit, you are approving to participate in this survey anonymously.   
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Appendix D: Correlations between CWS components (Industry Survey) 
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Appendix E: Alternative operational parameters 

Chilled Water System Component Operational Parameters 

Chiller 
• Water Return Temperature 

• De-coupler Temperature 

Cooling Tower 
• Wet Bulb Temperature 

• Fan static Pressure 

Pump 
No alternatives were provided as 100 per cent of the 

participants were with choosing the pressure. 

Terminal Unit 

• Air Supply Temperature 

• Air Return Temperature 

• Mixed Air Temperature 
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Appendix F: Check sheet for terminal units 
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Appendix G: Duly filled check sheet for a particular pump 
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Appendix H: Snapshot of cooling tower dataset 
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Appendix I: Correlations between CWS components (Case Study) 

 

 


