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Abstract

Extracellular acidity and high levels of lactate are commonly observed in solid

tumours. Some tumours also exhibit a reversed cellular pH gradient with an

intracellular pH that is higher than the extracellular. This has been shown to

play a crucial part in not only the invasive and metastatic cascade of tumours,

but also on their response to therapies. In this thesis, we present four different

mathematical models that examine the possible causes of tumour acidity and its

effect on cell metabolism and tumour invasion.

In the second chapter, we derive an ordinary differential equation model that

explicitly focus on the interplay between H+-ions and lactate. We subject the

model to qualitative and quantitative analysis and, in particular, we study the

effect in the variations of key parameter estimates on the emergence of a reversed

transmembrane pH gradient within the tumour. The model predicts that a re-

versed pH gradient is attainable under aerobic conditions when sources of H+-ions

other than those from glycolysis are decreased and the lactate/H+ cell membrane

transporter (MCT) activity is increased—but we find the intra- and extracellular

pH values in this case to be too alkaline to be physiological. Under anaerobic

conditions, we find that decreasing the sources of H+-ions other than those from

glycolysis and also the glycolytic rate gives rise to a reversed cellular pH gradi-

ent, but again for intra- and extracellular pH values that are far from realistic

biologically.

In the third chapter, we present an extension to the first model by including the

spatial diffusion of hydrogen ions and lactate. This spatial extension also predicts
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a reversed transmembrane pH gradient but this time for more realistic intra- and

extracellular pH values. We find that low levels of blood lactate can give rise to

a reversed pH gradient throughout the spatial domain independent of the levels

of tissue lactate. Likewise, we have found the existence of a negative pH gradient

to be strongly dependent on the combined activity of a lactate/H+ cell membrane

transporter and other sources of H+-ion.

In the fourth chapter, we study the role of oxygen and pH on early tumour

growth using a hybrid cellular automaton model. We examine whether the levels of

oxygen, intra- or extracellular pH are the dominating metabolites driving tumour

growth and phenotypic transformations. This model predicts that when tumour

cells are strongly sensitive to changes in the intracellular pH, a low activity of the

Na+/H+ cell membrane transporter (NHE) or a high rate of anaerobic glycolysis

can give rise to a “fingering” morphology. Furthermore, we show that as the

activity of the MCT transporter increases, all the tumour cells within the spheroid

can exhibit a reversed transmembrane pH gradient.

In the fifth chapter, we examine the effect of extracellular acidity on tumour

invasion focusing, in particular, on cellular adhesion, matrix-degrading enzyme ac-

tivity and cellular proliferation. Our numerical simulations using a cellular Potts

model show that, under acidic extracellular pH, cell-ECM adhesion strength has

a comparable effect on tumour invasiveness as the rate at which the ECM is de-

graded by proteolytic enzymes. We also show that tumour cells cultured under

physiological pH tend to be larger and develop a “diffuse” morphology compared

to those cultured at acidic pH which display protruding “fingers” at the advancing

tumour front.
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Chapter 1

Introduction

According to the International Agency for Research on Cancer (IARC), there were

12.4 million new cancer cases and 7.6 million cancer deaths in 2008 worldwide [25].

By 2030, the number of cancer cases and deaths worldwide are expected to more

than double [25]. It has been estimated that more than 33% of the UK population

will develop cancer during their lifetime [1]. There has been, however, a remarkable

improvement in the treatment and diagnosis of cancer which has contributed to a

steady decline in the death rates in the last three decades. Still, the major cause of

treatment failure in cancer patients is the spread of the primary cancer to different

regions of the body and the destructive effect it has on the normal tissue [97].

Much evidence indicates that a tumour manifests following multiple alterations

in the genetic make up of several cells [157]. Also, many lines of evidence now sug-

gest that the tumour microenvironment plays a major role in tumour development

and can either be favourable or detrimental to tumour growth [194]. The tumour

microenvironment is considerably different from that of normal tissue [160]. As

more mutated cells accumulate, the normal organisation of the tissue gradually be-

comes disrupted. Vascular supply to tumours is often poorly formed and chaotic

with the result that tumours may contain regions of poor nutritional supply and

hypoxia (low oxygen) [42]. Tumour cells often adapt to hypoxia by switching to

a less-efficient pathway of energy production (i.e. anaerobic glycolysis) and as a

1



CHAPTER 1. INTRODUCTION 2

result produce excess hydrogen ions and lactate [73]. To ensure cell viability, these

ions are extruded extracellularly (i.e. outside the cell) via several cell membrane

transporters. With a compromised vasculature and an up-regulated glycolysis,

this is thought to create an acidic extracellular environment [236].

Acidic extracellular environment and high lactate levels have been shown to

play a crucial part in the invasive and metastatic cascade of some tumours. Several

enzymes which are known to facilitate the degradation of the structural barrier

(known as the extracellular matrix) between the tumour and the vasculature are ac-

tivated and secreted in large quantities under acidic extracellular conditions [116].

Moreover, extracellular acidity can trigger cells to strongly adhere to the extracel-

lular matrix [126, 166] and weakly adhere to each other [46, 47, 48], thus further

facilitating metastasis. Not only does acidosis play a role in the macroscopic scale

of tumour progression but it has also been shown to be involved in early tumori-

genesis. For example, exposure to hypoxia and low pH has been implicated in

increased DNA mutations and a subsequent lack of DNA repair in mammalian

cells [194, 257, 258]. Furthermore, lactate has been shown to stimulate several

signalling pathways involved in tumour progression [133, 134, 237]. In addition,

hypoxia and acidity have been shown to render cells resistant to cancer treatment

such as radiotherapy [185, 228] and chemotherapy [251].

Mathematical modelling at various temporal and spatial scales are increasingly

being used to understand the intricate phases of cancer development. The work

contained in this thesis will focus on better understanding what causes extracellular

acidity and the role it plays in the invasion process. I now outline our approach

in this thesis.
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1.1 Thesis outline

The remainder of this chapter is dedicated to an overview of the complex topic

of cancer and the microenvironment. We begin by introducing some of the key

properties of the disease from a biological perspective. In particular, we discuss

the pH regulatory mechanisms involved in maintaining a viable intracellular pH

(i.e. pH inside the cell) and the cellular changes that are thought to cause an acidic

extracellular pH (i.e. pH outside the cell). Unlike normal tissue, some solid tumours

are known to have an intracellular pH that is higher than the extracellular, a

phenomenon referred to as “a negative transmembrane pH gradient” or “a reversed

transmembrane pH gradient” [24, 248]. Also presented are the consequences of this

aberrant pH gradient on both the tumour and normal tissue. We then move on to

discuss relevant mathematical models on tumour acidity.

In Chapter 2, we develop an ordinary differential equation model that explicitly

focuses on the interplay between H+-ions and lactate. We subject the model to

qualitative and quantitative analysis and, in particular, we study the effect from

variations of key parameter estimates on the emergence of a reversed transmem-

brane pH gradient within the tumour.

In Chapter 3, we present an extension to the model developed in Chapter 2

to include the diffusion of hydrogen ions and lactate across the tissue. Apart

from increasing the biological realism of the model by incorporating spatial effects,

this extension allows us to examine whether extracellular lactate levels spatially

correlate with the extracellular pH and whether the distribution of the various

transporters which regulate the intracellular pH across the tumour tissue has an

effect on the cellular pH gradient. We also investigate the effect of intercellular gap

junctions on the cellular pH gradient and the spatial distribution of extracellular

lactate and hydrogen-ions.

In Chapter 4, we study the role of oxygen and pH on early tumour growth using

a hybrid cellular automaton model. We examine whether the levels of oxygen,
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intracellular or extracellular pH are the dominating metabolites driving tumour

growth and invasion. The degree of invasiveness is measured by the appearance of

a “fingered” morphology. In particular, we study the effect of variations in some

of the key parameters in the model, such as those associated with maintaining a

viable intracellular pH, in the evolution of the tumour spheroid and the emergence

of a reversed transmembrane pH gradient.

In Chapter 5, we study the effect of cellular adhesion, matrix-degrading enzyme

activity and cellular proliferation on tumour invasion. We do this by using a

cellular Potts model which allows each biological cell to occupy more than one

lattice point and hence allows them to change shape. By way of model validation,

we begin the chapter by simulating and reproducing the cellular Potts model of

cancer invasion described by Turner et al. [233]. In this model the pH conditions

are assumed to be neutral (i.e. pHe 7.4). We use experimental evidence to find new

parameter values under acidic extracellular pH and investigate the effect of acidity

on cellular adhesion, matrix-degrading enzyme activity and cellular proliferation.

We conclude the thesis in Chapter 6 by discussing possible future extensions

and the potential implication of our work.

1.2 Biological background on cancer

There are over 50 trillion cells in the adult human body performing numerous

operations [125]. In order for those cells to continue functioning normally, they

must pass multiple checkpoints [16]. If a cell is damaged and cannot be repaired,

it dies [16]. This programmed cell death, known as apoptosis, is crucial to all

cells in the body, acting to eradicate cells that are a threat to the organism.

Each day, approximately 50 to 70 billion cells undergo apoptosis in the average

human adult [192]. This process is evaded when multiple irreversible alterations

to the genetic make-up of cells occur, known as DNA mutations [101]. This allows

mutated cells to grow uncontrollably and accumulate in a lump of cells called a
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“tumour” [178].

Tumours are categorised as benign or malignant depending on their ability to

invade the surrounding tissue and spread to distant parts of the body. Cancer is

the Latin word for “crab”, most likely used to reflect the finger-like projections

from a tumour mass [178]. The oldest description of cancer was discovered in an

ancient Egyptian textbook between 3000–1500 BC, with the earliest evidence of the

disease found in fossilised bone tumours in human mummies [153]. Malignant, or

cancerous tumours, have the ability to invade neighbouring tissues and establish

new colonies in the body and is very difficult to treat effectively [16]. Benign

tumours, however, are usually harmless unless they grow large and start exerting

pressure on vital organs. But even then, they are often still treated efficiently by

conventional therapies such as chemotherapy, surgery, or radiotherapy.

1.2.1 Angiogenesis

As tumour cells proliferate rapidly, the tumour becomes large and it becomes

impossible for nutrients to diffuse into the centre and waste to be removed. In 1971,

Folkman [64] suggested that in order for tumours to flourish and grow beyond 1–2

mm in diameter, tumours produce signalling molecules that stimulate the growth

of nearby blood vessels. This complex process of vessel formation is known as

“angiogenesis” and is triggered by various signals, including low pO2, low pH and

low glucose [38]. Such low conditions facilitate the secretion of several tumour

angiogenic growth factors (TAFs) such as the Vascular Endothelial Growth Factor

(VEGF) and Fibroblast Growth Factor (FGF) by the tumour cells themselves or

the neighbouring normal cells [38]. The expression and secretion of TAFs are

thought to be triggered under hypoxic conditions, mainly by Hypoxia Inducible

Factors such as HIF-1α which are known to also activate several other signalling

pathways [45]. When TAFs are released, endothelial cells (which line the blood

vessels) secrete matrix-degrading enzymes (known as proteolytic enzymes). These

enzymes degrade the basement membrane (that supports the blood vessel) and
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the extracellular matrix, allowing endothelial cells to migrate away from the blood

vessel and into the tumour. Endothelial cells then divide, align and form new blood

vessels which then link together to form looped structures called anastomoses [38].

These newly formed blood vessels are anything but normal. They are “leaky”,

are not rigid enough to withstand significant tissue stress, are badly formed or have

absent basement membranes or endothelial lining [187, 236]. As a result, most

tumours can contain both highly perfused regions and others with compromised

perfusion. This can then give rise to variable levels of metabolites, such as oxygen,

pH, lactate and glucose, within the same tumour.

1.2.2 Invasion and metastasis

The basement membrane that separates the tumour from the vasculature must

be degraded if a tumour cell is to leave the primary mass and gain access to

the blood vessel. Once inside the blood stream, tumour cells are susceptible to

clearance by the body’s own immune system and only the very aggressive tumour

cells survive [56]. To establish themselves in another location of the body, tumour

cells must leave the blood stream. All these processes are believed to involve

a complex interaction between a variety of proteolytic enzymes, growth factors,

cell-cell and cell-matrix adhesion components [97].

Proteolytic enzymes

Apart from their well-known role in facilitating tumour cell invasion [59], prote-

olytic enzymes are also implicated in many other pathological conditions such as

rheumatoid arthritis, pancreatitis, diabetes mellitus and muscular dystrophy [154].

There are four main classes of proteolytic enzymes: the serine proteases which

include the plasminogen activators, the cysteine proteases (which are mostly lyso-

somal cathepsins), the aspartic proteases and the metalloproteinase (MMP) [253].

Table 1.1 summarises the role of each these proteases in degrading components
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of the extracellular matrix including fibronectin, laminin, collagen and elastin.

These enzymes are generally released in an inactive form which require activation

by other proteases [59]. For example, cathepsin D is known to mediate the acti-

vation of procathepsin B [235]. Once activated, cathepsin B can then act as an

activator of other proteases. That is, active cathepsin B can activate pro-uPA,

which is secreted as an inactive proenzyme [205]. Then, active uPA can convert

plasminogen into plasmin. Cathepsin B and plasmin are also capable of degrading

several components of the ECM and can also activate pro-MMPs [59]. As well

as having activators, proteolytic enzyme also have tissue inhibitors that regulate

their activity. It is thought that the imbalance that exists between the rate of

activation and inhibition of proteolytic enzyme is of major significance in cancer

development [211].

The most important and extensively studied proteolytic enzymes involved in

matrix degradation are the MMPs and lysosomal cathepsins [59]. There are 23

identified human MMP genes which are known to act extracellularly and digest

both matrix and non-matrix proteins [156]. The expression of MMPs is transcrip-

tionally maintained by a number of cell activators, including cell-cell adhesions,

cell-ECM adhesions, growth factors, inflammatory cytokines and hormones [156].

The activity of MMPs are also maintained via inhibition by endogenous inhibitors

and tissue inhibitors of metalloproteinases (TIMPs for short) [211]. Increased pro-

duction of MMPs has been linked to the invasive and metastatic behaviour in

some tumours [59, 116, 154, 256]. On the other hand, decreased expression of

tissue inhibitors of MMP-2 (TIMPs-2) has been found in gastric carcinomas [155]

and esophageal and gastric adenocarcinomas [95]

The exact mechanism by which MMPs facilitate cellular invasion is not clear [54].

However, the overexpression of MMP-3 in mammary epithelial cells has been shown

to lead to activation and upregulation of other MMPs and the loss of cell-cell con-

tacts, partly due to the degradation of E-cadherin [154]. On the other hand,

inhibition of MMP-12 has been shown to give rise to reduced macrophage inva-



1.2. BIOLOGICAL BACKGROUND ON CANCER 8

sion through matrigel both in vitro and in vivo [209]. Based on these studies a

large number of MMP inhibitors have been designed and a few have been clinically

tested in patients with cancer or arthritis. Unfortunately, these have shown little

efficacy [14]. The failure of these clinical trials may partly be due to the absence

of selective inhibitors [14].

The activity of MMPs is strongly pH-dependent, with an optimal activity

within the physiological pH range (pH 7.2–7.5) [54]. However, an in vitro study

by Martinez-Zaguilan et al. [142] shows a considerable rise in the relative amount

of active MMP in human melanoma cells when exposed to acidic extracellular

medium [142]. A more recent study by Giusti et al. [88] also shows that MMP-2

and MMP-9 activities increase in tumour-shed vesicles after exposure to acidic

extracellular pH. Moreover, a study by Rofstad et al. [195] found that acidic ex-

tracellular pH promotes experimental pulmonary metastasis in human melanoma

cells through an acidity-induced upregulation of the proteolytic enzymes MMP-

2, MMP-9, cathepsin B, and cathepsin L; and acidity-induced up-regulation of

proangiogenic factors VEGF-A and IL-8. For a full review of the role of prote-

olytic enzymes, see [59].
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Table 1.1: Proteases that are involved in degrading the ECM components. Table

courtesy of [211].

Protease family Protease Protease function

Aspartyl Cathepsin D Degradation of ECM components

Conversion of cysteine procathepsins into cathepsins

Cysteine Cathepsins B, L, H, K Degradation of ECM components

Conversion of pro-MMPs into MMPs

Serine Plasmin Degradation of ECM components

Activation of uPA

Conversion of inactive elastase into elastase

uPA Conversion of plasminogen into plasmin

tPA Conversion of plasminogen into plasmin

Neutrophil serine Elastase Degradation of ECM components

Cathepsin G

MMPs Degradation of collagens and other ECM proteins

Activation of another pro-MMP’s into MMPs

Collagenases [MMP-1, 8, 13] Degradation of collagens I, II, III, VII, X and gelatins

Stromelysins [MMP-3, 10] Degradation of proteoglycans, laminin, gelatins,

collagens III, IV, V, IX, fibronectin, entactin,

SPARC, collagenase-1

Gelatinases [MMP-2, 9] Degradation of gelatins, collagens: IV, V, VII, X,

fibronectin, elastin, procollagenase-3

Membrane-type Degradation of collagen I, II, III, gelatins,

[MMP-14–17,24,25] aggrecan,fibronectin, laminin, vitronectin,

MMP-2,13, tenascin, nidogen

Others [MMP-7,11,12,19,20,23] Degradation of proteoglycans, laminin, fibronectin,

gelatins, collagens IV, elastin, entactin, tenascin

Cell adhesion

There is accumulating evidence suggesting that alterations in the adhesive prop-

erties of tumour cells correlate with tumour progression [9, 17, 41, 217]. Cell

adhesion has shown to be important in cell growth, cell migration, apoptosis, im-
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mune responses and cell differentiation in vertebrate cells [174]. There are over

50 identified cell adhesion molecules (CAMs) that can be divided into four major

superfamilies: the immunoglobulins (Ig), cadherins, selectins, and integrins [174].

All members of the CAM superfamilies can mediate cell-cell binding except in-

tegrins which can only mediate cell-ECM binding [191]. CAMs bind to either

the same protein, known as homophilic adhesion, or to a different protein, called

heterophilic adhesion [174].

Cadherin genes are considered as tumour suppressor genes [241] and a loss of

their expression or activity has been correlated with increased tumour cell migra-

tion [20]. The expression of the most abundant adheren adhesion molecule in the

epithelia is E-cadherin, and this is downregulated in most epithelial cancers [20].

Several studies have shown that restoring functional E-cadherin adhesion hinders

the invasive phenotype of many different cancers [241]. Furthermore, the expres-

sion of cadherin in tumour cells can also be used to identify the histologic nature

of tumours and can be used as a differential diagnostic marker between tumours of

similar phenotype but different histogenesis [172, 173]. Moreover, cadherins bind

with intracellular proteins known as catenins, which link the cadherin molecule to

the actin micro-filaments and mediate signal transduction mechanisms that reg-

ulate cell growth and differentiation [204]. Data suggests that several potential

signalling pathways could be modulated by E-cadherin complex [40]. For exam-

ple, E-cadherin can increase the expression of the epidermal growth factor receptor

and induce its ligand independent activation [121].

Integrins, on the other hand, mediate the adhesion of cells to the ECM and

immunoglobulin superfamily molecules [174]. Integrin expression and activity

have important roles in the different steps of tumour progression, including initi-

ation [100, 108]. High expression of integrins is shown to be correlated with the

progression of breast cancer [191], hepatocellular carcinoma [82], murine melanoma

cell [126] and prostate cancer [261]. Recent studies have also shown that integrins

mediate cell signalling molecules that are stimulated by growth factors and onco-
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genes particularly during tumour initiation [191].

Extracellular acidity has been shown to trigger cells to strongly adhere to

the extracellular matrix [126, 166] and weakly adhere to each other [46, 47, 48],

thus further facilitating metastasis [17]. Recent studies have shown that culturing

human liver hepatocellular carcinoma at pH 6.6 enhances their migratory potential

with activation of tyrosine phosphorylation of β-catenin and E-cadherin [46, 47,

48]. Several studies have also shown that the cell-ECM adhesions are strongest at

acidic extracellular pH [166, 218]. In particular, a study by Paradise et al. [166]

show that the extracellular pH of human melanoma cells not only modulates cell

adhesion molecules but can also affect their morphology and migratory potential.

That is, cells were found to reach their maximum motility at pHe ∼ 7.0 but hardly

migrate at pHe 6.6 or 7.5. Long-time exposure to pH 6.5 is shown to cause cells

to exhibit an elongated morphology. In addition, migration and morphology was

found to be correlated with the strength of cell-matrix interactions [166]. Also,

adhesion was found to be the strongest at extracellular pH 6.6 [166].

1.2.3 Cell metabolism

Glycolysis is a complex process whereby one mole of glucose is metabolised to

produce adenosine triphosphate (ATP) molecules. In addition to being a major

source of energy in the cell [16], ATP has other essential roles: it is required for the

synthesis of DNA (replication) and RNA (protein synthesis); it regulates certain

biochemical pathways; it is essential for the active transport of some ions across

the cell membrane (e.g. the Vacuolar H+ ATPase, the Na+/K+ ATPase and the

Ca2+ ATPase) [16].

Under plentiful supply of oxygen, cells generally convert one molecule of glucose

to carbon dioxide and 38 ATP molecules. This can be written in a simplified form

as:

Glucose + 6O2 → 6CO2 + 38ATP. (1.1)
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In the absence of oxygen, glucose is converted into lactic acid with the production

of only two ATP molecules. This is represented as:

Glucose→ 2lactic acid + 2ATP, (1.2)

where lactic acid quickly dissociates to form lactate and H+ ions.

During aerobic metabolism, about eight H+-ions are produced for every oxygen

molecule used. However, the intracellular and extracellular pH still remains nearly

constant. This is because there is an intricate balance between the rate at which

H+-ions are produced and removed during ATP resynthesis and reoxidation of

reduced coenzymes [105]. Anaerobic metabolism (glycolysis), however, yields a

net of two H+-ions per glucose molecule consumed.

Warburg’s Nobel prize-winning work in the 1920s showed that, in contrast to

normal cells, tumour cells exhibit an altered metabolism marked by an increased

glucose uptake and raised glycolysis [247]. In fact, this feature is clinically ex-

ploited in the detection of tumours using fluorodeoxyglucose Positron Emission

Tomography (FDG-PET) imaging in clinical radiology [13, 120, 128]. Such imag-

ing has also demonstrated an association between tumour aggressiveness and the

rate of glucose consumption [73, 122]. Warburg’s work also showed that even in

the presence of plentiful supply of oxygen, tumour cells still undergo anaerobic

glycolysis to yield only 2 ATP molecules in total [247]. This is 19 times less effi-

cient than the aerobic metabolism and the vastly growing tumour then strives to

maintain the production of ATP by up-regulating their glycolytic pathway. As a

result, more lactic acid is produced and the tumour can become very acidic. In

fact, tumours were initially thought to have an acidic intracellular pH, but this was

then found to reflect primarily the extracellular pH because those measurements

were made using micro-electrodes which are too large to insert in most cells [260].

The invention of non-invasive measurements of intracellular pH (pHi) by mag-

netic resonance spectroscopy (MRS) has shown that tumour pHi can actually be

alkaline [93].
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The cause of extracellular acidity in tumours is still not entirely known [220].

Lactic acid is not the only source of extracellular acidity in tumours. Exper-

iments showed that glycolysis-deficient Chinese hamster lung fibroblasts, when

transfected into mice, produce an acidic extracellular pH around 6.7 despite an

insignificant production of lactic acid [159]. These cells, however, were found not

to be able to acidify their extracellular space in vitro. Furthermore, a subsequent

study showed that Chinese hamster ovary cells which are deficient in lactate de-

hydrogenase (LDH, which catalyses the breakdown of glucose to lactate) consume

negligible amounts of glucose and produce insignificant levels of lactic acid [254].

Nevertheless, the extracellular environment became acidic when these cells were

transplanted into mice but not in vitro [254]. These experiments clearly show that

there is a discrepancy between the levels of lactate and extracellular pH in some

tumours. An alternative candidate for tumour acidosis has shown to be carbon

dioxide [103, 159, 254].

1.2.4 Mechanisms of intracellular pH regulation

The metabolically produced hydrogen ions must be removed from the cell interior

to ensure a physiological pHi and cell viability. This is because many cellular pro-

cesses such as those associated with metabolism [196], the cell cycle [63, 109] and

cell proliferation [22, 135] are all pH sensitive. Furthermore, most mammalian

cells in tissue culture have been shown not to be able to proliferate at an extracel-

lular pH less than 6.6 [22]. Cells, therefore, have evolved several short and long

term mechanisms to maintain their pHi within the normal physiological range (pH

7.2–7.4). Short term homoeostasis involves a rapid reversible defence mechanism

that immediately minimises changes in the intracellular pH [22]. This involves cel-

lular buffering which can be divided into three types: physicochemical buffering,

H+-ion consuming metabolic reactions and intracellular organellar sequestration

or release of H+-ions [202].

The most essential and abundant physicochemical intracellular buffer is phos-
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phoric acid (H3PO4) which has a pKa close to the normal intracellular pH, i.e. 7.2

(pKa is defined as the negative logarithm of the acid dissociation constant, Ka)

[23]. Amino acids, such as lysine, arginine, and histidine, aspartate and glutamate,

are also important physicochemical buffers [23]. Normal cellular metabolism also

produces buffering molecules, including carbon dioxide, acetic, lactic and citric

acids [202]. The extracellular pH is also maintained through the intricate inter-

actions of plasma carbon dioxide partial pressure (pCO2) and bicarbonate ions

(HCO−
3 ) [202]. This is facilitated by carbonic anhydrase enzymes (CA), some of

which are known to be over-expressed in malignant tumours and are associated

with poor prognosis [225]. Organellar buffering, on the other hand, is the se-

questration of H+-ions into intracellular vesicles [23]. There is also accumulating

evidence suggesting that such vesicles, which contain matrix-degrading enzymes,

tend to relocate to the surface of the cell to aid invasion [90, 154, 232].

As mentioned earlier, cellular buffering is a short term immediate response

employed before long term pH regulating mechanisms are activated. Long-term

mechanisms consist of transport proteins that are based either at the cellular

membrane or at the vacuolar membrane inside the cell. They can be divided into

two broad categories: those that do not require energy in the form of ATP to drive

the transport, such as the Na+/H+ antiporter, the lactate/H+ symporter, the Na+-

dependant HCO3
−/Cl− exchanger, Na+-independent HCO3

−/Cl− exchanger; and

those that require ATP to facilitate their diffusion, such as the plasma membrane

and vacuolar type H+ ATPase pump [23]. Some of these transporters are illustrated

schematically in Figure 1.1.

The universal membrane protein, Na+/H+ exchanger (NHE for short) exports

one H+ ion outside the cell in return of one Na+ ion [12]. This antiporter is found

in most cell types [22] and plays an essential role in the regulation of cytoplasmic

pH, and a change in its activity has been shown to have a drastic effect on cell

metabolism and viability [12]. It is also shown to be implicated in mitogenesis and

cell volume regulation [226]. The Na+/H+ antiporter is freely reversible depending
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on both the Na+ and H+ gradients. However, most mammalian cells maintain

an inward Na+ gradient which stimulates H+ ion efflux. This process is tightly

mediated by pH and the antiporter’s activity changes by more than three orders

of magnitude between pH 7 and 8 (recall that pH = −log[H+]), and is totally

down-regulated below pH 6.5 [12]. Moreover, a study by Busco et al. [35] finds

the NHE expression and activity to be essential for invadopodia-mediated ECM

degradation. An upregulated NHE activity is also important for the invasiveness

of cervical cancer cell [49]. The NHE also is shown to play a part in the migration

of human melanoma cells [218] and fibroblasts [57].

Amongst the many transmembrane ion exchangers is the lactate/H+ symporter

(also known as the Monocarboxylate Transporter or MCT for short) [246]. This

symporter works by transporting lactate and hydrogen ions together in the same di-

rection, depending on the gradient of each ion. This process is freely reversible with

equilibrium being attained when [lactatei]/[lactatee]=[H+
e ]/[H+

i ]. There is growing

evidence suggesting that elevated tissue lactate levels are associated with a high

risk of metastasis [207, 246] and a reduced response to radiotherapy [185]. More-

over, Cardone et al. [37] suggest that the lactate/H+ symporter and the Na+/H+

antiporter cause tumour acidity which in turn stimulates metastasis. Also, MCT

expression has been shown to be significantly increased in cervical carcinomas [175]

and colorectal carcinomas [176]. In particular, MCT1 was directly related to the

presence of vascular invasion in cervical cancers [175].

We will focus in this thesis on the role of the NHEs and MCTs in tumour

pH regulation, but will briefly mention now some alternative pH-regulatory mech-

anisms expressed in mammalian cells. Another membrane transporter which is

shown to be present in several cell lines, but not all, is the Na+-driven HCO−
3 /Cl−

exchanger, which helps to raise the intracellular pH upon intracellular acidifica-

tion [22]. This transporter works by extruding Cl− ions extracellularly and import-

ing HCO3
− into the cell which acts as a buffer for the intracellular H+. Similar to

the Na+/H+ exchanger, the activity of the Na+-dependent HCO3
−/Cl− exchanger



1.2. BIOLOGICAL BACKGROUND ON CANCER 16

decreases as the normal resting value of pHi is approached. At higher levels of

pHi, the Na+-dependant HCO3
−/Cl− exchanger is more active than the Na+/H+

antiporter. Since the pHe within solid tumours is usually in the range 6.5-7.0

and the fact that the activity of Na+-dependant HCO3
−/Cl− exchanger is reduced

at pHe lower than 7.0 compared to Na+/H+ antiporter suggests that the latter

transporter plays a major role in regulating intracellular pH in such regions.

Hydrogen ions can also be packaged into vesicles by vacuolar H+ ATPase or they

can be extruded across the cellular membrane by a similar membrane-type H+ AT-

Pase. The vacuolar ATPase transports H+-ions from the cytosol into lysosomes,

thus acidifying lysosomes, and generating a low lysosomal pH that is necessary

for the optimum activity of lysosomal hydrolytic enzymes such as cathepsin pro-

teases [90]. Tumour cells have been reported to have a high expression of V-type

H+ ATPase [186].

So far we have concentrated on mechanisms that regulate pHi in response to

an acid load. Cells are rarely faced with the problem of alkaline loading under

physiological conditions. Nevertheless, the cellular ion gradient is such that the

Na+-independent HCO3
−/Cl− exchanger will take Cl− into the cell and the HCO3

−

out and thus bring the intracellular pH back to normal levels. However, this

exchanger is found to be inhibited in most cell lines at low pHi [24].
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Figure 1.1: Some of the long-term mechanisms which are known to maintain the

intracellular pH in mammalian cells at physiological levels. When H+-ions are produced

from glycolysis, they may be removed by: the lactate/H+ exchanger which transports

lactate and H+-ions in or out of the cell depending on their gradient; the Na+/H+

exchanger which takes in Na+-ions in return of H+-ions; or they may be buffered by

HCO−
3 which enters the cells via the Na+-driven HCO−

3 /Cl
− exchanger. When pHi

becomes alkaline, HCO−
3 may be removed via the Na+-independent exchanger. In this

thesis, we focus on the activity of the two membrane transporters highlighted by a

dashed box.

1.2.5 Effect of tumour pH on treatment efficacy

Traditional anti-cancer treatments include: chemotherapy (the use of drugs to kill

tumour cells), radiotherapy (the use of radiation to kill tumour cells) and hyper-

thermia (the use of heat to kill tumour cells), or a combination of the three [151].

Unlike bacterial infections, which can be eradicated using antibiotics, cancer is a
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collection of more than 100 diseases that varies in complexity from one patient to

the next. Also, it has proved difficult for an anti-cancer treatment to totally exert

toxic effects against the tumour without damaging normal tissue [30]. Developing

new anti-cancer therapies often involves pinpointing the differences between nor-

mal and malignant growth and targeting the abnormalities. Hypoxia and acidity

have recently emerged as a key targeting abnormality, and are currently being

exploited for the treatment of cancer [81, 110, 186, 216, 226].

Chemotherapeutic drugs enter the tumour cell either via passive diffusion or

active transport, and once inside the cell they are subjected to various intracellular

metabolisms [151]. Since cellular membranes are only permeable to “uncharged”

molecules [16], it is important for a drug to remain in the “uncharged” form before

crossing the membrane. The “charged” form of a drug is not membrane perme-

able and will accumulate in the extracellular space, therefore exerting little or no

cytotoxic effects [151]. Therefore, the transport of a drug by passive diffusion is

enhanced at extracellular pH values that leave the drug in the “uncharged” form in

the extracellular space [186]. There are many different types of anti-cancer drugs,

amongst them are the weak acids and weak bases which are known to be sensitive

to cellular pH gradients [251]. The pH difference between normal and tumour

tissues, and particularly the cellular pH gradient difference in the tumour itself

may provide selective treatment for tumours [226]. For example, the pH gradient

has been shown to alter the intracellular-extracellular distribution of weak acids

or bases agents [186, 231].

There is now ample evidence suggesting that low pHe plays an essential role

in rendering cells sensitive to hyperthermia [36, 65, 80]. The studies by [65, 80]

suggest that the extent of tumour heat sensitivity is greater at low pHe (pH in the

range of 6.5–7.0 that is often found in solid tumours) and at lower temperatures.

There are other studies which suggest that tumour response to hyperthermia de-

pends on the intracellular pH rather than the extracellular and that the effect of

hyperthermia at low pHe is significantly greater when pHi is artificially lowered
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by, for example, blocking the Na+/H+ exchanger [50, 98].

On the other hand, low pHe has been shown to render tumour cells resistant to

radiotherapy, but not to the same extent as hypoxia [226]. Moreover, it seems that

resistance depends on the relationship between the time cells become acidic and the

time radiation is administered [106]. For example, an experiment by [106] showed

that Chinese hamster ovary cells had an increased survival rate when exposed

to acidic pHe following irradiation than during or before radiation. All of these

findings are valid under aerobic conditions, however, under hypoxic conditions,

acidity has been shown not to increase the radioresistance of tumour cells [198].

1.3 Mathematical modelling of tumour develop-

ment

As we have seen in the previous section, cancer is a complex disease encompass-

ing several biological processes that occur at various spatial and temporal scales,

ranging from the subcellular, cellular and tissue scale. The growing number of

biological research articles published every year on cancer development call for

a quantitative method to integrate the ever-expanding literature. Mathematical

modelling can be such a quantitative method and a useful tool to test hypotheses

which can be time-consuming or impossible to implement experimentally. Mathe-

matical modelling can also provide predictions which can be validated by further

experimental studies.

The contributions of mathematical modelling to the understanding of tumour

growth and development dates back at least 60 years. Some of the earliest models

(for example, [33, 64, 92, 228]) focus mainly on how culture conditions (such as

oxygen and nutrients) can affect the growth of multicellular spheroids (MCS).

Several studies have since emerged to describe the many levels of complexity, from

the intracellular signalling pathways to the macroscopic invasion processes. Of



1.3. MATHEMATICAL MODELLING OF TUMOUR DEVELOPMENT 20

these, models explore particular aspects of tumour growth and dynamics such as

immunotherapy (e.g. see [27, 32, 119]), angiogenesis (e.g. see [43, 138]) and invasion

(e.g. see [77, 188, 189, 190, 214]). Most models can be grouped into two broad

categories, those describing the behaviour of individual cells (discrete models), and

those averaging the spatial and temporal behaviour of cells (continuum models).

The complexity of cancer as a disease often calls for the combination of the two

approaches (i.e. hybrid models). We will briefly summarise the techniques used.

For a comprehensive review, see for example [3, 10, 132, 44, 182, 197].

Continuum models typically consist of reaction-diffusion or reaction-diffusion-

convection or integro-differential equations. This approach is particularly useful

for describing clinically visible tumours, but is not suitable for tracking the be-

haviour of a small number of cells growing at an early stage of tumorigenesis.

This, however, can be addressed by utilising a “discrete” approach which allows

the behaviour of individual cells to be tracked using a set of predefined biophysical

rules. Discrete models are usually categorised into two groups: lattice-based (cel-

lular automata) and lattice-free. In lattice-based modelling, the cells or subcellular

elements are limited to a regular lattice. In lattice-free models, cells are approxi-

mated by deformable spheres, ellipses or aggregates of spheres. Hybrid models, on

the other hand, have the potential to combine the best features of both discrete

and continuum models.

There are only relatively few mathematical models that consider tumour acid-

ity. Amongst these are the work of [71, 158, 214, 249, 250]. In this chapter, we

discuss a number of studies based on their relevance to this thesis and their con-

tribution to our understanding of acidity in tumours. We focus on the modelling

assumptions, governing equations and summarise the main findings. We split the

summary into two parts: continuum models and discrete lattice-based models.
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1.3.1 Relevant continuum models

Webb et al. (1999) [250]

We consider the study by Webb et al. [250] which investigates the various pH

regulatory mechanisms adopted by tumour and normal cells in maintaining the

intracellular pH at physiological levels. The main differences between normal and

tumour cells, in their model, are the inefficient tumour vasculature, and the in-

creased tumour production of H+-ions from glycolysis. Denoting by I and E the

concentrations of intracellular and extracellular H+-ions respectively, the model

has the general functional form

dI

dt
= − P1(I, E)

︸ ︷︷ ︸

Na+driven Cl−/HCO−

3

− P2(I, E)
︸ ︷︷ ︸

Na+/H+exchanger

+

Na+independent Cl−/HCO−

3
︷ ︸︸ ︷

P3(I) + S1(V )
︸ ︷︷ ︸

H+from glycolysis

+

H+leakage
︷︸︸︷

βE ,

(1.3)

dE

dt
= P1(I, E)

︸ ︷︷ ︸

Na+driven Cl−/HCO−

3

+ P2(I, E)
︸ ︷︷ ︸

Na+/H+exchanger

−
Na+independent Cl−/HCO−

3
︷ ︸︸ ︷

P3(I) − S2(V )E
︸ ︷︷ ︸

removal by vasculature

−
H+leakage
︷︸︸︷

βE ,

(1.4)

where V represents the degree of vascularity. Due to the difficulty in parame-

terising the model, a qualitative approach is adopted: S1(V ) is assumed to be a

monotone decreasing function of V , whereas S2(V ) is taken to be directly propor-

tional to V , and the qualitative functional forms of Pi(i = 1, 2, 3) are estimated

using experimental findings from [24]. That is, P1(I, E) is taken such that the

maximum influx of HCO−
3 -ions by the Na+-driven Cl−/HCO−

3 exchanger (in re-

sponse to an intracellular acid load) occurs when pHi ∼ 7.0 and the activity of

the exchanger slowly decreases as pHi increases or decreases. Similarly, P2(I, E) is

taken such that the maximum efflux of H+-ions by the Na+/H+ exchanger (in re-

sponse to an intracellular acid load) occurs when pHi ∼ 6.75 and slowly decreases

as pHi increases or decreases. Moreover, P1(I, E) and P2(I, E) are both assumed

to decrease exponentially and linearly, respectively, as pHe becomes low. P3(I)
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is assumed to be an exponentially decreasing function describing the reduction in

the activity of the Na+-independent Cl−/HCO−
3 (in response to an intracellular

alkaline load) at low pHi.

The main aim of their study is to capture the well-established experimental

observations that the intracellular pH in some solid tumour cells is higher than in

some normal cells and in particular higher than the tumour extracellular pH [226].

In their first set of qualitative analysis, the authors focus on the influence of in-

creased lactic acid production in tumour cells, compared to normal cells, on resting

pHi. Although the authors find that tumour cells are able to maintain a physiolog-

ical pHi despite an acidic pHe, they find that there is very little difference between

the pHi of tumour and normal cells. This prompted them to consider the role of

the lactate/H+ symporter in regulating pHi and whether its inclusion is sufficient

to produce a reversed cellular pH gradient. They incorporate a term of the form

αS1(V )G(E) into the equations, where α is a positive rate constant denoting the

rate of activity of the lactate/H+ symporter and G(E) is an exponentially decreas-

ing function describing the reduction in the activity of this transporter at low pHe.

Failing to obtain the desired reversed cellular pH gradient in hypoxic cases, the

authors neglect the effects of the lactate/H+ symporter and introduce a term in

the form of λH(I) into (1.3) to reflect the intracellular sequestration of H+-ions by

intracellular acidic vesicles. The parameter λ is a positive rate constant and H(I)

is a Hill function with co-efficient one to model the saturation of the sequestra-

tion process. They then show that the most active mechanism of pHi regulation

within hypoxic tumour cells is this transfer of H+-ions from the cytosol into acidic

organelles.

Neville (2003) [158]

Motivated by the lack of explicit account of glucose and the lack of quantitative

analysis in the study by Webb et al. [250], Neville [158] models the process of

glycolysis, in normal and tumour cells, focusing not only on the dynamics of lactic
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acid but also on intra- and extracellular glucose dynamics. In Neville’s model,

the rate of glycolysis and extracellular acid removal by the surrounding vascu-

lature distinguishes normal cells from tumour cells. The model consists of five

ordinary differential equations describing intracellular H+-ions (I), extracellular

H+-ions (E), H+-ions contained in lysosomes (L), intracellular glucose (GI) and

extracellular glucose (GE). The equations read as follows:

dI

dt
= µE(E − I)

︸ ︷︷ ︸

H+leakage

− C3I

C4 + I2
︸ ︷︷ ︸

Na+/H+exchanger

+
2C1GI

C2 + I
︸ ︷︷ ︸

H+from glycolysis

− θ(GI)
ImaxI

C5 + I
︸ ︷︷ ︸

H+degradation by lysosomes

+ γ(I, L),
︸ ︷︷ ︸

H+excreted from intracellular lysosomes

(1.5)

dE

dt
= −µE(E − I) +

C3I

C4 + I2
− C6E,

︸ ︷︷ ︸

removal by vasculature

(1.6)

dL

dt
= θ(GI)

ImaxI

C5 + I
− γ(I, L), (1.7)

dGI

dt
= µG(GE −GI)

︸ ︷︷ ︸

glucose diffusing into cell

− C1GI

C2 + I
,

︸ ︷︷ ︸

glucose consumed via glycolysis

(1.8)

dGE

dt
= A

︸︷︷︸

source of glucose

−µG(GE −GI), (1.9)

where A, µE, µG, Cj(j ∈ 1, 2, 3, 4, 5, 6), and Imax are positive rate constants. We

briefly discuss the physical meanings of the above terms:

1. µE(E − I): µE reflects the rate at which H+-ions leak intracellularly due to

the negative potential of the cell membrane.

2.
C3I

C4 + I2
: the rate at which H+-ions leave the cell via the Na+/H+ exchanger.

The parameters C3 and C4 are estimated from the data in [24].

3.
2C1GI

C2 + I
: the rate at which two H+-ions are produced via glycolysis and is

taken to be directly proportional to the concentrations of intracellular glucose
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and inversely proportional to intracellular H+-ions to reflect the fact that

decreasing pHi decreases the glucose consumption rate [39]. The parameter

C2 is the H+ level at which the glycolytic rate is half maximal and C1 is the

maximal rate of glycolysis.

4. θ(GI)
ImaxI

C5 + I
: intracellular digestion of H+-ion by lysosomes. It is assumed to

saturate if intracellular H+-ions concentration increases. Also, θ(GI) is a Hill

function which saturates with increasing intracellular glucose concentration.

5. γ(I, L): lysosomal secretion of H+-ions into the intracellular space is taken

to be directly proportional to the difference in the concentration of H+-ions

in the lysosomes and in the intracellular space.

6. C6E: the rate of removal of H+-ions (C6) is assumed to be lower in tumours

than normal tissue.

7. A: this constant describes the rate at which glucose is supplied to the extra-

cellular domain.

Using perturbation techniques, Neville predicts that, due to a higher glycolytic

rate, tumour cells can withstand a greater increase in intracellular acidity com-

pared to normal cells—consistent with the findings by [250]. Furthermore, nu-

merical solutions to the system in (1.5)–(1.9) reveal that the concentrations of

intracellular H+-ions and that in the lysosomes change at a much slower rate rel-

ative to the other metabolites in the model. The author attributes this finding to

the ability of cells to maintain the intracellular pH at physiological levels. More

importantly, Neville’s quantitative approach to pH modelling recovers the often-

observed reversed pH gradient, and supports the same reasoning behind this as

shown by Webb et al. [250]. That is, a tumour’s increased reliance on the glycolytic

pathway and a poor clearance rate of H+-ions are major factors contributing to a

reversed cellular pH gradient.



1.3. MATHEMATICAL MODELLING OF TUMOUR DEVELOPMENT 25

Gatenby & Gawlinski (1996) [71]

The study by Gatenby & Gawlinski [71] is the first to consider acidity as a mech-

anism mediating tumour invasion. A set of coupled reaction-diffusion equations

describe the spatial distribution of normal tissue (N1), tumour tissue (N2), and

excess H+-ion concentration (L). The general model framework is:

∂N1

∂t
= r1N1

(

1− N1

K1

)

︸ ︷︷ ︸

growth

− d1LN1,
︸ ︷︷ ︸

death from excess H+

(1.10)

∂N2

∂t
= r2N2

(

1− N2

K2

)

︸ ︷︷ ︸

growth

+∇ ·
[

D2

(

1− N1

K1

)

∇N2

]

,

︸ ︷︷ ︸

movement

(1.11)

∂L

∂t
= r3N2

︸︷︷︸

production

− d3L
︸︷︷︸

removal by vasculature

+D3∇2L,
︸ ︷︷ ︸

diffusion

(1.12)

where r1, r2 and r3 denote the growth rates of normal tissue, tumour tissue and

the rate of acid production respectively. The K1, K2 are the normal and tumour

tissue carrying capacities respectively, D2 the tumour cell diffusion coefficient, D3

the H+-ion diffusion co-efficient, r3 the rate of H+-ion production and d3 the rate

of removal of H+-ions by vasculature and buffering. At the heart of their model

are two assumptions: 1. normal cells do not diffuse; 2. tumour cells cannot diffuse

when normal cells are at their carrying capacity and only diffuse when normal cells

are diminished.

Non-dimensionalising equations (1.10)–(1.12) identifies a critical parameter,

δ1=d1r3K2/d3r1. Linear stability analysis yields four steady state solutions:

1. Absence of normal and tumour tissue, and acid (unconditionally unstable).

2. Normal tissue existing at its carrying capacity with the lack of tumour tissue

and acid (unconditionally unstable).

3. Co-existence of tumour and normal tissue with the presence of acid (stability

depends on the parameter δ1).
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4. Total diminishment of normal tissue and the existence of tumour tissue at

its carrying capacity and the presence of acid (unconditionally stable).

For δ1 < 1, steady state number 3 is stable and the tumour and normal tissue co-

exist in a benign state. For δ1 > 1, steady state number 3 is unstable and evolves to

that of a total elimination of the normal tissue (steady state number 4). Moreover,

travelling wave solutions predict a smooth pH gradient extending from the tumour

edge into the peritumoral tissue. This is consistent with the in vivo pH profiles

of VX2 rabbit carcinoma obtained earlier by Martin & Jain [140]. More crucially,

the model suggests that, provided δ1 > 1, a hypocellular gap exists between the

advancing tumour front and the receding normal tissue. Gatenby & Gawlinski [71]

subsequently showed that 67% of the 21 human squamous cell carcinoma examined

were judged to have this gap in vitro. This study is an excellent illustration of

how a mathematical model can be formulated using biological hypotheses and the

solution of which can then drive experimental designs.

Smallbone et al. (2005) [214]

Smallbone et al. [214] argue that the acid-mediated tumour invasion model devel-

oped by [71] does not accurately represent the growth pattern of benign tumours.

Assuming that the tumour acts as an incompressible fluid and that spherical sym-

metry prevails, Smallbone et al. [214] model the tumour as a sphere consisting of

proliferating cells and necrotic material. The driving mechanism of tumour inva-

sion is taken to depend purely on the levels of hydrogen ions (H) which evolve

according to the following reaction-diffusion equation:

∂H

∂t
= rtT

︸︷︷︸

H+from glycolysis

− rvV H
︸ ︷︷ ︸

removal by vasculature

+
DH

R2

d

dR

(

R2dH

dR

)

︸ ︷︷ ︸

diffusion

, (1.13)

where, V denotes the vascular density which is taken to distinguish an avascular

growth from a vascular one, rV the rate of removal of H+-ions by the vasculature,

rT the rate of H+-ions production from glycolysis, DH the diffusion co-efficient of
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H+-ions (assumed constant) and T the viable tumour cell density. At the heart

of their model is the assumption that metabolically produced H+-ions can both

promote and inhibit tumour growth. That is, normal cells cannot withstand the

harsh acidic environment created by the tumour tissue and hence die, allowing

the tumour to expand into the resulting empty space. On the other hand, if H+-

ions accumulate within the tumour tissue due to a reduced removal rate by the

vasculature then auto-toxicity occurs and tumour tissue can then die.

Analysis of this simple model predicts three tumour growth patterns. In an

avascular tumour, a benign growth always prevails if the rate of tumour acid

removal is low. In a vascular tumour, whether a benign growth prevails or not

depends on a predefined threshold for tumour cell death due to acidity (hT ): if

hT < 1, the tumour turns out to be benign; if hT ≥ 1, the tumour invades the

entire normal tissue. In contrast, a tumour does not grow if it is so small that the

acid levels do not become high enough to induce normal cell death.

Moreover, a hypocellular gap is predicted to exist between the advancing tu-

mour front and the normal tissue—in line with [71]. However, this gap is predicted

to be of a similar size to the tumour, and larger than the experimentally determined

estimates of 100 µm. This then lead the authors, in a subsequent study [213], to

consider modelling the tumour as a multicellular sphere consisting of not only

proliferative and necrotic cells but also quiescent cells which are known to be less

metabolically active and thus are likely to produce less acid than proliferative cells.

They show that the amended model in [213] results in a hypocellular gap matching

the size observed in experimental studies.

1.3.2 Relevant discrete lattice-based models

Interested by Neumann’s model of self-replicating robots [242], Conway developed

the first 2-D discrete model of interacting biological cells known as the “game of

life” model [70]. Since then, individual-based models, such as cellular automata

(CA for short), have been used to model various biological phenomenon, such as
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morphogenesis (e.g. see [203]), predator-prey invasion (e.g. see [208]), excitable

media (e.g. see [76]) and many others (e.g. see [4] for a review). Most of these

models also use a“continuum” approach for extracellular metabolite and substrate

concentrations since traditional CA methods lack the ability to deal with contin-

uously varying elements such as substrate diffusion and consumption. The first

work using an individual based CA model in cancer modelling was developed by

Düchting and Vogelsaenger [58], who used it to investigate the effects of radiother-

apy. Since then, many CA models have been developed to examine the various

aspects of tumour development such as the tumour morphology (e.g. [62]), the

glycolytic phenotype (e.g. [170]), tumour cell adhesion (e.g. [8]), and the cell-cycle

(e.g. [181]).

The cellular Potts model (otherwise known as the Glazier-Graner-Hogeweg

model or GGH for short) is a type of CA model which was developed by Glazier

and Graner in 1992 to model cell sorting [91]. Based on energy-minimisation

techniques, the main advantage of the Potts model is that it allows biological cells

to be represented as spatially-extended objects with variable shapes. The Potts

model has been used extensively to model morphogenesis as well as tumour growth.

In this section, we focus on lattice-based tumour growth models. For a com-

prehensive review on other methods such as agent based, lattice-gas or immersed

boundary models see the comprehensive review by Lowengrub et al. [132].

Patel et al. (2001)

The acid-mediated continuum model developed by Gatenby and Gawlinski [71]

suggests that, in a clinically apparent tumour mass, tumour-induced acidity plays

a significant role in invasion and destruction of normal tissue. However, it is not

obvious whether this is also the case when a tumour is relatively small in size. Patel

et al. [170] therefore develop a hybrid CA model to study the role of H+ production

and host tissue vascularity in the growth and invasive capacity of a small cluster of

tumour cells. The automaton elements of the model include normal cells, tumour
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cells, empty space and native microvessels. Diffusion of glucose (G) and H+ ions

(Ht) to and from the microvessels, and their consumption or production by cells,

is governed by the following reaction-diffusion differential equations:

∂G(r, t)

∂t
= DG∇2G(r, t)

︸ ︷︷ ︸

diffusion

− k(r)G(r, t),
︸ ︷︷ ︸

consumption

(1.14)

∂Ht(r, t)

∂t
= DH∇2Ht(r, t)

︸ ︷︷ ︸

diffusion

+ h(r),
︸︷︷︸

H+ production

(1.15)

where, DG and DH are the diffusion co-efficients of glucose and H+-ions respec-

tively, k(r) is taken such that it is non-zero only when a tumour or normal cell is

present, with tumour cells consuming ten times more glucose than normal cells.

Also, h(r) is non-zero only when a tumour is present. Glucose is delivered and

H+-ions are removed through the boundary conditions imposed at the vessel walls.

Note that because glucose and H+-ions diffuse at a faster rate relative to cell

growth, the time derivatives in (1.14)–(1.15) are set to zero. The phenotypic evo-

lution of individual cells then depends on the steady state local concentrations of

glucose and H+.

The model predicts that the growth of an initial cluster of 21 tumour cells (in a

200×200 automaton) is able to generate an environment that allows the tumour to

advance by destroying the normal tissue. A wide variety of tumour morphologies

are obtained: a compact mass with regions of central necrosis, those with “dif-

fuse” necrosis and those with “cords” (which are cylindrical cuffs of tumour cells

surrounding a blood vessel [16]). It also turns out that the tumour morphology

crucially depends on the rate of H+-ion production and its removal.

Gerlee et al. (2008) [79]

Gerlee et al. [79] examine the emergence of the tumour glycolytic phenotype in

cancer using a complex CA model based on a feed-forward neural network. The

model also consists of discrete individual tumour cells, continuous chemical fields
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(oxygen, glucose and H+-ions) and ECM density. The time evolution of oxygen (c),

glucose (g) and hydrogen ions (h) are governed by the following partial differential

equations:

∂c

∂t
= Dc∇2c

︸ ︷︷ ︸

diffusion

+ fc(x, y, t),
︸ ︷︷ ︸

production or consumption

∂g

∂t
= Dg∇2g

︸ ︷︷ ︸

diffusion

+ fg(x, y, t),
︸ ︷︷ ︸

production or consumption

∂h

∂t
= Dh∇2h

︸ ︷︷ ︸

diffusion

+ fh(x, y, t),
︸ ︷︷ ︸

production or consumption

where Di(i ∈ c, g, h) are the respective diffusion co-efficients. The ECM density is

assumed to degrade at a rate proportional to the excess H+-ion concentration. The

authors find that the tumour environment affects both its growth and evolutionary

dynamics. More specifically, low oxygen levels allow for the development of a

“fingered” morphology, while a dense extracellular matrix density gives rise to

more compact tumours with wider fingers.

Jiang et al. (2005) [219]

The first cellular Potts model to describe a three-dimensional avascular tumour

growth was developed by Stott et al. [219]. Their model reproduces the classical

three layered tumour structure (with a necrotic core, an intermediate layer of

quiescent cells and an outer layer of proliferative cells). Jiang et al. [112] further

extends this Potts model to include a subcellular model of a protein expression

regulatory network for the cell-cycle as well as incorporating growth promoters and

inhibitors through continuum reaction-diffusion equations. At the extracellular

scale, the model considers the diffusion, consumption, and production of nutrients,

metabolites, growth promoters, and inhibitors, presented in a generic form,

∂u

∂t
= D∇2u
︸ ︷︷ ︸

diffusion

+ f(x, y, z),
︸ ︷︷ ︸

production or consumption

(1.16)
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where, D is the diffusion co-efficient of the chemical u, and f(x, y, z) is the

metabolic rate which depends on the state of the cell (i.e. whether each cell is

proliferative, quiescent or necrotic). The chemicals considered include oxygen,

nutrients, lactate, growth and inhibitory factors.

Biological cells interact with one another through their surface membrane, and

this is modelled using a coupling constant, Jτ(σij),τ(σi′j′), to quantify the adhesive

energy between cells in a Hamiltonian function, E (see Chapter 5 for detailed de-

scription of these terms). This energy function is made up of the cell-cell adhesion

energies and cell volume. That is,

E =
∑

ij

∑

i′j′

Jτ(σij ),τ(σi′j′ )

(

1− δτ(σij ),τ(σi′j′ )
)

︸ ︷︷ ︸

cell adhesion

+
∑

all domains λ6=0

λ (vσ − VT )2
︸ ︷︷ ︸

cell volume

, (1.17)

In the first term, the outer sum runs over all occupied sites in the lattice, whereas

the inner sum is over the eight nearest neighbours of (i, j). The Kronecker delta,

δτ(σij ),τ(σi′j′ ), is equal to one when σij = σi′j′ and zero otherwise. This ensures

that only surface interactions between different biological cells contribute to the

cell-cell adhesion energy. Parameter values were estimated to best fit experimental

measurements of spheroids in vitro such that the model reproduces an avascular

tumour consisting of a necrotic core surrounded by a quiescent and a proliferative

rim.

1.4 In this thesis

The microenvironment of tumours varies considerably from normal tissue, with

tumours having pronounced variations in hypoxia and acidity. Cells respond to

hypoxia by switching to anaerobic metabolism which then leads to the production

of high amounts of lactic acid and this is thought to lower the extracellular pH.

The pioneering study of Warburg [247], however, showed that upregulated gly-

colysis in many aggressive tumours can occur even with ample supply of oxygen.

Cells also respond to the upregulated lactic acid production by upregulating sev-
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eral membrane-bound transporters which raises the intracellular pH [49, 176, 184].

With a poor tumour vasculature and an altered tumour cell metabolism, this may

then lead to cells having an extracellular pH that is lower than the intracellu-

lar. This is called a ‘reversed cellular pH gradient’ and has been implicated in

tumour cell proliferation [85], apoptosis [123, 167], cell morphology [218] and mi-

gration [218]. Increased lactate levels have also been correlated with incidence of

metastasis in some cancers [245, 246].

There has been considerable mathematical modelling efforts to understand the

effect of extracellular acidity on tumour development. However, none of the previ-

ous models have examined the role of lactate in regulating the intracellular pH to

a physiological level and its effect on the onset of a ‘reversed cellular pH gradient’.

In this thesis, we develop a mathematical model that examines the role of various

membrane-based ion transporters in tumour pH regulation, in particular, with a

focus on the interplay between lactate and H+ ions and whether the lactate/H+

symporter activity is sufficient to give rise to the observed reversed pH gradient

that is observed in some tumours.

In Chapter 2, we develop an ordinary differential equation model that explicitly

focuses on the interplay between H+-ions and lactate. In Chapter 3, we present

an extension to this model by including the diffusion of hydrogen ions and lactate

across the tissue. In Chapter 4, we study the role of oxygen and pH on early

tumour growth using a hybrid cellular automaton model. We examine whether the

levels of oxygen, intracellular or extracellular pH are the dominating metabolites

driving tumour growth and invasion. In Chapter 5, we use the cellular Potts

model to study the effect of cellular adhesion, matrix-degrading enzyme activity

and cellular proliferation on tumour invasion.



Chapter 2

A mathematical model examining

the interplay between H+-ions

and lactate

2.1 Introduction

The microenvironment of tumours trigger various signals which can promote in-

vasion [142, 160] and reduce tumour response to therapies [29, 104]. An altered

pH homoeostasis is increasingly becoming a distinct feature of some cancer cells.

While the intracellular pH in normal differentiated cells is generally ∼ 7.2 and

is less alkaline than the extracellular pH (pHe ∼ 7.4) [23], the intracellular pH

of some malignant tumour cells can be greater than 7.4 and is found to be more

alkaline than the extracellular pH (pHe ∼ 6.5–7.1) [86, 168]. That is, a ‘reversed’

pH gradient (pHi >pHe) exists and is thought to confer a survival advantage to

the tumour over normal tissue [179, 187]—an acidic pHe is believed to enhance the

invasive behaviour of tumour cells [142, 195] and render them resistant to some

chemotherapeutics [243]. On the other hand, an elevated pHi can have permissive

effects on proliferation [180, 184] and the evasion of apoptosis [123, 143].

33
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Unlike normal cells, it is well-established that malignant tumour cells undergo

anaerobic glycolysis despite plentiful oxygen supply [73]. This yields excess levels

of hydrogen ions and lactate which must be exported outside the cell in order to

maintain cell viability. Cells have evolved several short and long term mechanisms

to maintain their pHi within the normal physiological range (pH 7.2–7.4). In

this chapter, we focus on the well-studied Na+/H+ exchanger and the lactate/H+

symporter which are increasingly implicated in tumour progression [49, 118, 147,

176]. We investigate the effect of their activity on tumour pH reversal.

Previous models which consider tumour acidity are [71, 158, 214, 249, 250]

(see Section 1.3 for details on these models). Gatenby & Gawlinski [71] derive an

acid-mediated tumour invasion model which provides a simple mechanism linking

altered glucose metabolism with the ability of tumour cells to form invasive cancers.

The modelling of Webb et al. [249, 250] includes descriptions of intracellular and

extracellular pH and their effects on invasion. However, the various cell-membrane

transporters are represented in a rather simple fashion. Moreover, they do not

include lactate as a variable, but instead include the lactate/H+ symporter as

a function depending wholly on extracellular H+ and the degree of functioning

vasculature. The role of sequestration of H+-ions into lysosomes is also considered

in [250]. The modelling of Neville et al. [158] considers the evolution of intracellular

and extracellular glucose as well as hydrogen ions.

In this chapter, we present a new model for pH regulation that explicitly focuses

on the interplay between H+-ions and lactate. We develop the mathematical model

in Section 2.2 and present some of the qualitative features of H+ and lactate.

Numerical simulations show that the pH solutions initially change very rapidly

relative to lactate. Detailed analysis of this behaviour in Section 2.4.2 show that

the initial concentration of intra and extracellular lactate plays a crucial role in

the sharp transient. More importantly, our model has the potential to reproduce

the well-documented reversed pH gradient but for values outside the physiological

pH range (6.9–7.4)—suggesting, instead, that other cellular mechanisms may play
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an important role in this behaviour.

2.2 Model development

Our model framework is that of a single tumour cell or normal cell with two

compartments—intracellular and extracellular—and we focus on the regulation

of lactate and H+-ions between these two compartments (see Figure 1.1 for a

schematic). We consider the temporal evolution of H+-ions which we denote by

Hσ, σ ∈ {I, E} where I, E denotes intracellular and extracellular concentrations,

and lactate (Lσ) where σ ∈ {I, E}.
The cells studied in this model can be tumour or normal depending on param-

eter choices and whether the vasculature, V , is bigger or smaller than a chosen

threshold degree of vasculature (V g) which we use to control whether the cell un-

dergoes glycolysis (for V < V g) or aerobic metabolism (for V ≥ V g). In line with

Webb et al. [249, 250] and Neville et al. [158], we assume that extracellular ions

are removed from the interstitial space at a rate directly proportional to V .

Our model differs from previous studies in that we explicitly include lactate.

This allows a better representation of the MCT (i.e., the lactate/H+ symporter)

and its role in pH regulation and, in particular, whether the action of the MCTs

are able to reproduce a reversed pH gradient which is characteristic of some tu-

mours [93].

Derivation of the lactate/H+ term

Consider the following closed system which describes the transport of H+-ions and

lactate across the cell membrane from the intracellular to the extracellular space

via the MCT transporter:

[LI ] + [HI ]
k1−⇀↽−
k−1

[LIHI ]
k2([LIHI ]−[LEHE ])←→ [LEHE]

k−1−⇀↽−
k1

[LE ] + [HE ], (2.1)
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where [·] denotes concentration and LσHσ represents intracellular and extracellular

lactic acid, for σ = I, E respectively. The k2 parameter denotes the rate of activity

of the lactate/H+ symporter and we assume that this activity is directly propor-

tional to the concentration difference of lactic acid across the cell membrane. The

rate at which lactic acid dissociates into lactate and H+-ions is denoted by k−1

and the rate of the reversible reaction is denoted by k1. We then use the law of

mass action to derive the following equations from the reactions shown in (2.1),

namely:

d[HI ]

dt
= −k1[LI ][HI ] + k−1[LIHI ], (2.2)

d[LI ]

dt
= −k1[LI ][HI ] + k−1[LIHI ], (2.3)

d[LIHI ]

dt
= k1[LI ][HI ]− k−1[LIHI ]− k2([LIHI ]− [LEHE ]), (2.4)

d[HE ]

dt
= k−1[LEHE]− k1[HE ][LE ], (2.5)

d[LE ]

dt
= k−1[LEHE]− k1[HE ][LE ], (2.6)

d[LEHE ]

dt
= −k−1[LEHE ] + k1[HE ][LE ] + k2([LIHI ]− [LEHE ]). (2.7)

Given that k1 and k−1 are known to be large (i.e. lactic acid dissociates freely, with

an equilibrium constant of 1.38×10−4 mol/l, to form lactate and H+-ions) [206],

this allows us to assume that [LIHI ] and [LEHE] are quasi-steady. Hence, solving

equations (2.4) and (2.7) algebraically for [LIHI ] and [LEHE] we get

[LIHI ] =
k1
k−1

([LI ][HI ] + [LE ][HE ])− [LEHE],

where

[LEHE] =
k1k2

k−1 (2k2 + k−1)

(

[LI ][HI ] + [LE ][HE]

(

1 +
k−1

k2

))

.

So that the lactate/H+ efflux term after a little algebra, k1[LIHI ] − k−1[LIHI ],

becomes

k3([HI ][LI ]− [HE ][LE ]),
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where k3 = k1k2/(2k2 + k−1) and we will use this expression for lactate/H+ efflux

via the MCT in our full model.

The full model equations read as follows:

dHI

dt
= lH(HE −HI)

︸ ︷︷ ︸

H+leakage

− f1H(HI −HE)(HI −HE)
︸ ︷︷ ︸

Na+/H+antiporter

− k3(HILI −HELE)
︸ ︷︷ ︸

MCT

+
2ΦGH(V g − V )

HI + b
︸ ︷︷ ︸

Excess H+via glycolysis

+ d1,
︸︷︷︸

Other sources of H+

(2.8)

where H(·) denotes a Heaviside function,

dHE

dt
= − lH(HE −HI)

︸ ︷︷ ︸

H+leakage

+ f1H(HI −HE)(HI −HE)
︸ ︷︷ ︸

Na+/H+antiporter

+ k3(HILI −HELE)
︸ ︷︷ ︸

MCT

− R1(V )HE,
︸ ︷︷ ︸

Removal by vasculature

(2.9)

dLI
dt

=
2ΦGH(V g − V )

HI + b
︸ ︷︷ ︸

Production from glycolysis

+ d4
︸︷︷︸

Other sources of lactate

− α4LI
︸ ︷︷ ︸

Lactate degradation

− k3(HILI −HELE)
︸ ︷︷ ︸

MCT

, (2.10)

dLE
dt

= k3(HILI −HELE)
︸ ︷︷ ︸

MCT

− R2(V )LE .
︸ ︷︷ ︸

Removal by vasculature

(2.11)

To close our system, we assume appropriate initial concentration of the chemicals

that correspond to levels typically found in normal cells, that is:

HI = H0
I mol/l, HE = H0

E mol/l, LI = L0
I mol/l, LE = L0

E mol/l.

We now explain, in turn, how we derived each of the model terms in equations

(2.8)– (2.11):

1. lH(HE −HI). This term describes the rate at which H+ ions enter the cell

due to the internally negative potential of the cell membrane. In line with

Neville et al. [158], we assume that this occurs at a rate directly proportional
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to the difference in the hydrogen ion concentration across the cell membrane.

The permeability of the cell membrane to H+ ions is approximately 10−14

m/s [125]. Dividing this by the typical width of the bilayer (∼ 10 nm) [125]

gives an estimation for lH as 10−6 s−1.

2. f1H(HI − HE)(HI − HE). This term models the rate at which H+-ions are

exported outside the cell via the Na+/H+ exchanger (NHE for short) and we

assume that the rate of H+ efflux is directly proportional to the H+ gradient

across the cell membrane, i.e. HI −HE. This is a sensible assumption since

experiments carried out by Boyer & Tannock [24] report that the rate of H+

efflux is linearly proportional to the transmembrane H+ gradient (HI −HE)

in MGHU1 human bladder carcinoma cells. For simplicity, we assume that

the outward Na+ gradient is always positive. Therefore, this term is taken

to be proportional to the hydrogen ion gradient only. The Heaviside is used

to prevent any H+ influx which is typically not observed via this transporter.

The constant f1 is a parameter which denotes the rate of H+ flux, and carries

the units of s−1.

3. k3(HILI −HELE). This term represents the rate at which hydrogen ions are

extruded along with lactate ions. These ions are transported via a Monocar-

boxylate Transporter (MCT) located at the plasma membrane. A study by

McDermott et al. [144] shows that lactate transport is saturable with respect

to increasing concentrations of lactate and hydrogen ions, but for simplicity

we assume a linear relationship. This term can also be seen as an approxi-

mation of the MCT efflux expression derivable from a recent kinetic model

in [240]. The constant k3 (units of mol−1/l−1/s) describes the rate at which

hydrogen ions and lactate are exported or imported.

4. d1. This term implicitly accounts for other sources of H+ ions in the cell.

For example, this could include the catalysed hydration of cell generated

CO2 into H+-ions and bicarbonate ions by Carbonic Anhydrase enzymes
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(CA) [223]. There are 16 isoforms of mammalian CAs, some are expressed

internally while others are membrane-tethered with an extracellular catalytic

site [148]. In particular, the internally expressed CA I and CA II are shown

to be predictive of local growth of oral squamous cell carcinoma [130] and is

correlated with biological aggressiveness of colorectal cancer [18].

5.
2ΦGH(V g − V )

HI + b
. This term models the net production of H+ ions via the

process of glycolysis. Glycolysis is a metabolic pathway involving a complex

chain of chemical reactions that produces energy rich molecules (ATP) [125].

Studies by Kaminkas [114] showed that glucose transport and consumption

in cultured Ehrlich ascites-tumour cells are pH dependent. Decreasing pHi is

found to decrease the rate of glucose consumption [22, 39]. In particular, the

key glycolytic enzyme phosphofructokinase is found to be critically pH sen-

sitive [19]. As mentioned before, in our model, we assume a threshold degree

of vasculature (V g), above which a cell will undergo aerobic metabolism,

and below which anaerobic glycolysis will prevail. In the presence of an

oxygen supply (V ≥ V g), there is no net production of H+ ions as aerobic

metabolism is shown not to produce any net H+-ions [105]. However, in

low oxygen concentrations (V < V g), two H+-ions are produced from the

dissociation of lactic acid [105]. We assume glucose to be plentiful, which is

reasonable given the observed large diffusion distance of glucose [236]. The

constant ΦG represents the maximal rate of glycolysis and b corresponds to

the concentration of H+ ions needed to achieve one half of the maximum

rate of glycolysis. We use the results of [39] for EMT6/R0 mouse mammary

tumour cells to estimate ΦG and b. In this study, it is noted that glucose is

consumed at a rate of 2× 10−14 g/cell/s at a pH of 7.2. One mol of glucose

has a relative molecular mass of 180 g and one cell has a volume of roughly

10−15 m3 [131]. This corresponds to a glucose consumption rate of 1.1×10−4

mol/m3/s. If we choose b = 10−7 mol/l then ΦG = 10−14 (mol/l)2/s.
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6. Rσ(V ), σ = 1, 2 for H+-ions and lactate, respectively. These terms represent

the rate at which hydrogen and lactate ions are removed from the interstitial

space. We assume, along with [158, 250, 214], that once H+ ions and lactate

are extruded, they are removed linearly by the supporting vasculature, that

is, Rσ(V ) = ρσV , where σ = 1, 2. However, the vasculature of tumour is

believed to be highly disordered and compromised [187, 236], which results

in uneven perfusion and a poor clearance rate. This allows us to take V to

be much lower in tumours than in normal tissue.

7. d4. This term corresponds to the production of lactate under normal physio-

logical conditions. In non-stressed or non-shocked animals, significant lactate

is produced to maintain a concentration of 0.7 mM [206]. It has been esti-

mated [206] that lactate is produced in the resting man at the following rates

(mM/h/kg): skeletal mass, 3.13; brain, 0.14; red cell mass, 0.18; and 0.11

for blood elements, renal medulla, intestinal mucosa and skin. Total lactate

production in a 70-kg man is approximately 1,300 mM/day [206].

8. α4LI . This term implicitly describes the rate at which lactate is converted

back to pyruvate or is degraded. We currently have no available data to

approximate this value and so we vary it in our analysis.

2.3 Analysis of the model

We begin by considering the qualitative features of the long-time steady state

solutions of the model. At equilibrium, the steady states (H∗
I , H

∗
E, L

∗
I , L

∗
E) for

equations (2.8)–(2.11) are obtained by setting
dHI

dt
=
dHE

dt
=
dLI
dt

=
dLE
dt

= 0.

Adding equations (2.8) and (2.9) then gives

H∗
E =







d1
ρ1V

, V ≥ V g,

d1
ρ1V

+
2ΦG

ρ1V (H∗
I + b)

, V < V g.

(2.12)
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Adding (2.10) and (2.11) and solving for L∗
I gives

L∗
I =







(d4 − ρ2V L∗
E) /α4, V ≥ V g,

(
2ΦG

H∗
I + b

+ d4 − ρ2V L∗
E

)

/α4, V < V g.
(2.13)

Now, substituting (2.13) and (2.12) into (2.11) gives

L∗
E =







qρ1V H
∗
I

rH∗
I + u

, V ≥ V g,

(qH∗
I
2 + wH∗

I )ρ1V

rH∗
I
2 + sH∗

I + p
, V < V g.

(2.14)

where,

q = k3d4, r = ρ1ρ2k3V
2, u = α4d1k3 + α4ρ1ρ2V

2, w = 2ΦG + d4b,

s = ρ1ρ2V
2k3b+ α4d1k3 + α4ρ1ρ2V

2,

p = α4ρ1ρ
2
2V

2b+ α4d1k3b+ 2α4ΦGk3.

In order to calculate the steady state for H∗
I , equations (2.12), (2.13) and (2.14)

must be substituted back into the steady state version of (2.8)–(2.11) (i.e. with the

time derivatives set to zero). This yields an extremely long intractable algebraic

expression and so we can not obtain an analytical solution for H∗
I . We thus resort

to numerical methods in order to understand the model behaviour.

2.3.1 Parameter rescaling

We now perform a numerical study of this system to explore the behaviours. To

facilitate this, we rescale the system according to the following rescalings: H̃I =

HI/b, H̃E = HE/b, L̃I = α4LI/d4, L̃E = α4LE/d4, t̃ = α4t, where the tildes
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represent rescaled variables with which the model equations become

dH̃I

dt̃
= l̃H(H̃E − H̃I)− f̃1H(H̃I − H̃E)(H̃I − H̃E)

−k̃3ψ(H̃IL̃I − H̃EL̃E) +
2Φ̃GψH(V g − V )

H̃I + 1
+ d̃1, (2.15)

dH̃E

dt̃
= −l̃H(H̃E − H̃I) + f̃1H(H̃I − H̃E)(H̃I − H̃E)

+k̃3ψ(H̃IL̃I − H̃EL̃E)− R̃1(V )H̃E, (2.16)

dL̃I

dt̃
=

2Φ̃GH(V g − V )

H̃I + 1
+ 1− L̃I − k̃3(H̃IL̃I − H̃EL̃E), (2.17)

dL̃E

dt̃
= k̃3(H̃IL̃I − H̃EL̃E)− R̃2(V )L̃E , (2.18)

where,

l̃H =
lH
α4

, f̃1 =
f1
α4

, k̃3 =
k3b

α4

, Φ̃G =
ΦG

bd4
,

d̃1 =
d1
bα4

, ψ =
d4
bα4

, ρ̃1 =
ρ1
α4
, ρ̃2 =

ρ2
α4
.

The initial concentrations become:

H̃0
I = H0

I /b, H̃
0
E = H0

E/b, H̃
0
I = H0

I /b, L̃
0
I = α4L

0
I/d4, L̃

0
E = α4L

0
E/d4.

We will henceforth drop the tildes for notational convenience.

Parameter estimates

Given the large number of parameters posed in the model, it has proved difficult

to obtain concrete values for all our parameters. However, we are able to obtain

values for some of the parameters using literature data, see Section 2.2 for details.

The remaining parameters are determined by pre-assuming normoxic and hypoxic

steady state values for pHe, pHi, LI and LE . Ball park estimates for these values
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are readily available in the literature. For instance, assuming that for a normal tis-

sue in a normoxic environment: pH∗
e=7.4 (H∗

E=10−7.4 mol/l), pH∗
i=7.2 (H∗

I=10−7.2

mol/l), L∗
I= 1 × 10−3 mol/l, L∗

E= 1.4 × 10−3 mol/l [221] and we take V = 1 for

normoxia. Now, with b = 10−7 mol/l we have H̃∗
I = 0.6310, H̃∗

E = 0.3981, and

now taking L̃∗
E = 1 we have d4/α4 ∼ O(10−3) ≡ 1.4 × 10−3 and L̃∗

I = 0.7143.

Adding equations (2.17) and (2.18) at steady state gives 1− L̃∗
I − ρ̃2V L̃∗

E = 0 and

substituting for L̃∗
I , L̃

∗
E and V we have ρ̃2 = 0.2857. Then substituting for H̃∗

E ,

H̃∗
I , L̃∗

I , L̃
∗
E and ρ̃2 in equation (2.18) at steady state we have that k̃3 = 5.4316.

Now adding equations (2.15) and (2.16) at steady state we get d̃1 = ρ̃1H̃
∗
E and

substituting for H̃∗
E we have that d̃1 = 0.3981ρ̃1. Assuming that the activity of

Na+/H+ ≈ MCT, i.e. f̃1(H̃
∗
I − H̃∗

E) ≈ k̃3(H̃
∗
I L̃

∗
I − H̃∗

EL̃
∗
E) and after substitutions,

we get f̃1 = 1.7174 × 104. Using estimates for lH from [125] and assuming that

l̃H ≡ 10−6f̃1, we obtain from equation (2.15) at steady state d̃1 = 7.9978× 103.

Now, for V < V ∗ we would expect pH∗
e = 6.60 and pH∗

i = 6.52 respec-

tively [149]. Adding equations (2.15) and (2.16) at steady state we get d̃1 =

ρ̃1V H̃
∗
E − 2Φ̃Gψ/(H̃I + 1) which then gives Φ̃G = 0.2823.

A summary of all of the non-dimensional parameters are given in Table 2.1–we

refer to this set of parameters as the ‘base’ set.
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Table 2.1: Dimensionless values of the model parameters in (2.15)–(2.18).

Parameter Value

l̃H 1.7174 ×10−2

f̃1 1.7174 ×104

k̃3 5.4316

d̃1 7.9996×103

ρ̃1 2.0095×104

ρ̃2 0.2857

Φ̃G 0.2823

ψ 1.4×104

V g 0.5

2.4 Numerical solution

We construct numerical solutions to the system (2.15)–(2.18) in MATLAB using

the parameter values in Table 2.1. Using those parameters, a linearisation of

our system yields real and negative eigenvalues of varying order of magnitudes.

Hence, we use a stiff multistep ODE solver, ode15s, based on backward numerical

differentiation formulas. The numerical accuracy of the solution was confirmed by

reducing the ODE solver tolerances and we noted a convergence of the solutions

to that shown in Figure 2.1. A typical solution is shown in Figure 2.1, (a) for

V ≥ V g and (b) for V < V g. Note that for the full model, we assume a resting

pHi = 7.2, pHe = 7.4, for V ≥ V g (normoxia) and pHi = 6.52, pHe = 6.60, for

V < V g (hypoxia) [149, 221]. We hard-wire the final steady state solutions into

this simulation, but it is interesting to note the differences in how pH and lactate

attain these steady state values. We observe that the solutions of pHI and pHE

initially change very rapidly, whilst LI and LE vary over a longer timescale (see

Figure 2.1). We use singular perturbation techniques in Section 2.4.2 to analyse
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(a) V ≥ V g
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(b) V < V g
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Figure 2.1: A typical numerical solution for (a) V ≥ V g and (b) V < V g for the full

(equations 2.15–2.18) and simplified model (section 2.4.2) showing the sharp initial tran-

sient in the H+-ions solution relative to lactate. (——, extracellular, full model), (−−−,
intracellular, full model), (· · · · · · , intracellular, simple model), (− ·−·, extracellular, simple

model). The parameter values used are shown in Table 1—we refer to this as the ‘base’

set of parameter values. Initial conditions: H0
I = 0.63,H0

E = 0.63, L0
I = 0.9, L0

E = 0.9.

We note from Figure 2.1(b) that by removing the HI +1 factor from the glycolysis term

(giving the simple model) the qualitative behaviour of the model is unchanged for the

range of parameters considered.



2.4. NUMERICAL SOLUTION 46

this behaviour in more detail. Before we do this, given the uncertainty in some of

the parameter estimates, we perform a parameter sensitivity analysis to identify

the key rate parameters in the system.

2.4.1 Sensitivity analysis

In this Section, we vary individual parameters in turn and note their effects on

the steady state solutions of the model. We illustrate the sensitivity of the model

behaviour for the V < V g case in Figure 2.2 as a percentage change in each of the

chosen parameter values from their base value. Given the similarity between the

V ≶ V g cases, we only show the V < V g case for brevity. The parameters that

we illustrate are those that show the most variation in the solutions—these are,

f1, k3, ρ1, ρ2, d1 and V , which respectively represent the rate of activity of the NHE;

and that of MCT; the rate of removal of H+-ions; and that of lactate; background

production of H+-ions; and finally the degree of vasculature. The sensitivity of

the model behaviour for the V ≥ V g is qualitatively similar to that shown in

Figure 2.2, except that H∗
E is insensitive to any parameter variations except for

d1, ρ1 and V . That is, variations in d1, ρ1 and V result in qualitatively different

lactate behaviour for the V ≶ V g cases. More specifically, increasing ρ1 above

its ‘base’ value (see Table 2.1) results in low steady state levels of intracellular

lactate under normoxic conditions (not shown), whilst a high value of intracellular

lactate is attained under hypoxia. This means that a purely glycolytic tumour

will still have high levels of intracellular lactate despite increased H+-ions removal

rate. Numerical simulations indicate that increasing H+-ions removal rate under

hypoxic conditions results in a high NHE activity, which leaves less intracellular

H+-ions to bind with lactate for extrusion via the MCT. Moreover, increasing d1

results in a large L∗
E under normoxic conditions (not shown), whilst the opposite is

true under hypoxic conditions. This implies that the MCT extrudes H+ ions (along

with lactate) more rapidly under normoxic conditions compared to hypoxic. Our

sensitivity analysis also predicts that increasing the blood perfusion for an already
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highly glycolytic tumour, whilst keeping perfusion below the hypoxic threshold,

results in low intra and extracellular H+-ions and intracellular lactate, but an

unexpectedly high extracellular lactate levels. This is because as extracellular

H+-ions and lactate are cleared, intracellular lactate and H+-ions continue to be

produced glycolytically, and hence the activity of the MCT becomes much higher

which gives rise to the observed higher extracellular lactate.

2.4.2 Singular perturbation analysis of a simplified model

We note from the numerical simulations in Figure 2.1 that there is an initial sharp

transient in the pH solution profile relative to the slower change in the lactate

solutions. We now analyse this behaviour in more detail. To facilitate the analysis,

we remove the factor 1/(HI+1) from the glycolysis term. We note that by doing so

the qualitative behaviour of the solutions is not affected for the range of parameters

considered (see dotted and dash-dotted solutions in Figure 2.1(b)). Also, it turns

out to be more convenient to work with the following variables for total H+ and

lactate and the difference between intracellular and extracellular concentrations,

namely:

HT = HI +HE, LT = LI + LE , HD = HI −HE, LD = LI − LE .

The model contains a number of large and small parameters (see Table 2.1) and we

exploit this by introducing a small parameter ǫ≪ 1 and rescale the parameters as

follows lH = l̂Hǫ
2, f1 = f̂1/ǫ

4, ψ = ψ̂/ǫ4, ΦG = Φ̂Gǫ, d1 = d̂1/ǫ
3, ρ1 = ρ̂1/ǫ

4, ρ2 =

ρ̂2ǫ, V = V̂ ǫ, where the parameters represented by ‘hats’ are all of O(1) and

ǫ = 0.1. Upon substitution into (2.15)–(2.18), and representing the equations in
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Figure 2.2: Sensitivity analysis of the full model. For each parameter, the percentage

change in its value from the base case is plotted on the x-axis, and the corresponding

percentage change in the steady state solution is plotted on the y-axis. We only show

the results for V < V g as they are, in general, qualitatively similar to V ≥ V g.
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terms of HT , HD, LT and LD we obtain

ǫ3
dHT

dt
= 2Φ̂Gψ̂H(V̂ g − V̂ ) + d̂1 −

ρ̂1V̂

2
(HT −HD) , (2.19)

ǫ4
dHD

dt
= 2Φ̂Gψ̂ǫH(V̂ g − V̂ ) + d̂1ǫ +

ρ̂1V̂

2
ǫ (HT −HD)− 2HD(l̂Hǫ

6 + f1)

−k3ψ̂(HTLD +HDLT ), (2.20)

dLT
dt

= 2Φ̂GǫH(V̂ g − V̂ ) + 1− 1

2
(LT + LD)− ρ̂2V̂

2
ǫ2 (LT − LD) , (2.21)

dLD
dt

= 2Φ̂GǫH(V̂ g − V̂ ) + 1− 1

2
(LT + LD) +

ρ̂2V̂

2
ǫ2(LT − LD)

−k3(HTLD +HDLT ). (2.22)

The problem is clearly singular since the small parameter ǫ multiplies the derivative

terms in the HT and HD equations. This means that the dependent variables, HT

and HD, undergo rapid changes over very small timescale (as we indeed observe

in Figure 2.1). These rapid changes cannot be handled by slow time scales, but

can be tackled using a stretched time scale. Specifically, we look for solutions in

the form of an asymptotic expansion such as

uσ(t; ǫ) = u0σ(t) + ǫu1σ(t) + ǫ2u2σ(t) + ǫ3u3σ(t) + . . . , (2.23)

where u = H,L and σ = T,D and we first rescale time using t = ǫατ , α > 0.

2.4.2.1 Inner solution

We look for the inner solution of (2.19)–(2.22) valid near t = 0, with the objective

of understanding in more detail the sharp initial transient in the intra and extra-

cellular pH solutions. We rescale time by letting t = ǫατ and after substituting

into (2.19)–(2.22) we find that the distinguished limit is reached when α = 4. Now,

with t = ǫ4τ , putting ǫ = 0 in the resulting equations we have

L0
D = 0, L0

T = L0
T (0), H0

D = 0 and H0
T = H0

T (0), (2.24)

where H0
T (0) and L0

T (0) correspond to the initial values of H0
T and L0

T respectively.



2.4. NUMERICAL SOLUTION 50

Equating O(ǫ) terms for HT and solving gives

H1
T =

(

2Φ̂Gψ̂H(V̂ g − V̂ ) + d̂1 − ρ̂1V̂ H0
T

)

τ. (2.25)

Equating O(ǫ) terms for HD gives

dH1
D

dτ
= 2Φ̂Gψ̂H(V̂ g − V̂ ) + d̂1 +

ρ̂1V̂

2
H0
T − (k3ψ̂L

0
T + 2f̂1)H

1
D. (2.26)

Solving for H1
D with H1

D(0) = 0, we then get

H1
D =

(ρ̂1V̂ H
0
T + 4Φ̂Gψ̂H(V̂ g − V̂ ) + 2d̂1)(1− e−(k3ψ̂L0

T+2f̂1)τ )

2(2f̂1 + k3ψ̂L
0
T )

, (2.27)

where H0
T and L0

T are given in (2.24).

Equating O(ǫ) terms for LT and LD gives L1
T = L1

D = 0.

Now, equating O(ǫ2) terms for HT gives

dH2
T

dτ
= − ρ̂1V̂ (H1

T −H1
D)

2
, (2.28)

subject to H2
T (0) = 0. Substituting for H1

D, H
1
T and solving for H2

T we then get

H2
T =

ρ̂1V̂

8(k3ψ̂L
0
T + 2f̂1)2

(

k3ψ̂L
0
T τ
(
ρ̂1k3ψ̂V̂ H

0
TL

0
T τ + 4ρ̂1f̂1V̂ H

0
T τ + 2ρ̂1V̂ H

0
T

+8Φ̂Gψ̂H(V̂ − V̂ g) + 4d̂1 − 4k3Φ̂Gψ̂
2H(V̂ − V̂ g)L0

T τ − 8d̂1f̂1τ
2 − 8d̂1f̂1

−2d̂1k3Φ̂Gψ̂H(V̂ − V̂ g)τ
)

+ 8d̂1f̂1τ + 4ρ̂1f̂
2
1 V̂ H

0
T τ

2 − 4d̂1 − 2ρ̂1V̂ H
0
T

+(2ρ̂1V̂ H
0
T + 8Φ̂Gψ̂H(V̂ − V̂ g) + 4d̂1)e

−(k3ψ̂L0
T+2f̂1) + 4ρ̂1f̂1V̂ H

0
T τ

−16f̂1Φ̂Gψ̂H(V̂ − V̂ g)(ψ̂k3L
0
T τ

2 + τ 2 − 1)− 8Φ̂Gψ̂H(V̂ − V̂ g)
)

. (2.29)

Equating O(ǫ2) terms for HD gives

dH2
D

dτ
=
ρ̂1V̂ (H1

T −H1
D)

2
− (2f̂1 + k3ψ̂L

0
T )H2

D, (2.30)
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which, on solving subject to H2
D(0) = 0, we get

H2
D =

ρ̂1V̂

4(k3ψ̂L0
T + 2f̂1)2

((
8Φ̂Gψ̂H(V̂ g − V̂ ) + 4d̂1

)(
e−(k3ψ̂L0

T
+2f̂1)τ − 1

)

+
(
4k3Φ̂Gψ̂

2H(V̂ g − V̂ )L0
T τ + 2d̂1k3ψ̂L

0
T τ + 8f̂1Φ̂Gψ̂H(V̂ g − V̂ )τ

−8Φ̂Gψ̂H
(
V̂ g − V̂ )− 2ρ̂1f̂1V̂ H

0
T τ − ρ̂1V̂ k3ψ̂H0

TL
0
T τ + 4d̂1f̂1τ

−4d̂1
)(

e−(k3ψ̂L0
T
+2f̂1)τ + 1

))

. (2.31)

Equating O(ǫ2) terms for LT and LD then gives L2
T = 0, L2

D = 0.

Equating O(ǫ3) terms in the HT equation gives

dH3
T

dτ
= − ρ̂1V̂ (H2

T −H2
D)

2
. (2.32)

Substituting for H2
D, H

2
T and solving for H3

T subject to H3
T (0) = 0, we get

H3
T = − ρ̂21V̂

2

48(k3ψ̂L0
T + 2f̂1)3

((
24k3Φ̂Gψ̂

2L0
T τ + 6k3ρ̂1V̂ ψ̂H

0
TL

0
T τ + 24d̂1(f̂1τ + 1)

+48Φ̂Gψ̂(1 + f̂1τ) + 12k3d̂1ψ̂L
0
T τ + 12f̂1ρ̂1V̂ H

0
T τ
)
e−(k3ψ̂L0

T+2f̂1)τ

+24d̂1f̂1τ + 24k3Φ̂Gψ̂
2L0

T τ + 12d̂1k3ψ̂L
0
T τ − 12f̂1ρ̂1V̂ H

0
T τ

+24f̂ 2
1 ρ̂1V̂ H

0
T τ

2 − 16f̂ 3
1 d̂1τ

3 + 8f̂ 3
1 ρ̂1V̂ H

0
T τ

3 − 4k33Φ̂Gψ̂
4L0

T
3
τ 3

−2d̂1k
3
3ψ̂

3L0
T
3
τ 3 − 24f̂1k

2
3Φ̂Gψ̂

3L0
T
2
τ 3 − 12k23f̂1d̂1ψ̂

2L0
T
2
τ 3

−48f̂ 2
1k3Φ̂Gψ̂

2L0
T τ

3 − 24d̂1f̂
2
1k3ψ̂L

0
T τ

3 − 32f̂ 3
1 Φ̂Gψ̂τ

3 + 48f̂1Φ̂Gψ̂τ

+k3ρ̂1V̂ ψ̂H
0
TL

0
T

(
6k3ψ̂L

0
T τ

2 + 24f̂1τ
2 + 6f̂1k3ψ̂L

0
T + k23ψ̂

2L0
T
2
τ 3

+12f̂ 2
1 τ

3 − 6
)
− 24d̂1 − 48Φ̂Gψ̂

)

. (2.33)

Equating O(ǫ3) terms in the HD equation gives

dH3
D

dτ
=
ρ̂1V̂ (H2

T −H2
D)

2
− (2f̂1 + k3ψ̂L

0
T )H3

D, (2.34)
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subject to H3
D(0) = 0. This can be readily solved after substituting for H2

D and

H2
T from above (solution not shown for brevity).

Equating O(ǫ3) terms in the LT and LD equations gives L3
T = 0, L3

D = 0.

Equating O(ǫ4) terms in the HT equation then gives

dH4
T

dτ
= − ρ̂1V̂ (H3

T −H3
D)

2
. (2.35)

Again, after substituting forH3
D, H

3
T , (2.35) can be easily solved subject toH4

T (0) =

0 (solution not shown for brevity).

Equating O(ǫ4) in the HD equation gives

dH4
D

dτ
=
ρ̂1V̂ (H3

T −H3
D)

2
− (2f̂1 + k3ψ̂L

0
T )H4

D − k3ψ̂H0
TL

4
D, (2.36)

subject to H4
D(0) = 0. Here, L4

T and L4
D respectively satisfy

dL4
T

dτ
= 1−L0

T /2 and

dL4
D

dτ
= 1 − L0

T/2, subject to L4
T (0) = 0 and L4

D(0) = 0 respectively, which in

solving gives

L4
T =

(

1− L0
T

2

)

τ and L4
D =

(

1− L0
T

2

)

τ. (2.37)

Equation (2.36) can then be readily solved after substituting for H3
D, H

3
T and L4

D

(solution not shown for brevity).

Now, equating O(ǫ5) terms for LT gives

dL5
T

dτ
= 2Φ̂GH(V̂ g − V̂ ), (2.38)

subject to L5
T (0) = 0, which on solving gives L5

T = 2Φ̂GH(V̂ g − V̂ )τ .

Equating O(ǫ5) terms for L5
D then gives

dL5
D

dτ
= 2Φ̂G − k3L0

TH
1
D, (2.39)
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subject to L5
D(0) = 0, which upon solving gives

L5
D =

−1

2(k3ψ̂L
0
T + 2f̂1)2

((
k3ρ̂1V̂ H

0
T + 4k3Φ̂Gψ̂ + 2d̂1k3

)
L0
T e−(k3ψ̂L0

T
+2̂̂f1)τ

+
(
k23 ρ̂1V̂ ψ̂L

0
TH

0
T τ + 2f̂1k3ρ̂1V̂ H

0
T τ − 8f̂1k3Φ̂Gψ̂τ + 2d̂1k

2
3ψ̂L

0
T τ

+4d̂1f̂1k3τ − k3ρ̂1V̂ H0
TL

0
T − 4k3Φ̂Gψ̂ − 2d̂1k3

)
L0
T − 16f̂ 2

1 Φ̂Gτ
)

. (2.40)

We equate O(ǫ5) terms in the HT and HD equations and solve (solution not

shown). The approximations for HT and HD compare very well with the numerical

solution for t ∈ [0, ǫ4] as shown in Figure 2.3 for V ≥ V g (inclusive of all terms up

to O(ǫ5)) and in Figure 2.4 for V < V g (inclusive of all terms up to O(ǫ2)).

Equating O(ǫ6) terms in the LD equation gives

dL6
D

dτ
= L0

T

(

ρ̂2V̂

2
− k3H2

D

)

, (2.41)

subject to L6
D(0) = 0, which can be easily solved upon substitution for H2

D.

Equating O(ǫ6) terms in the LT equation gives
dL6

T

dτ
= −ρ̂2V̂ L0

T/2, which subject

to L6
T (0) = 0, solves to

L6
T =
−ρ̂2V̂ L0

T τ

2
. (2.42)

We equate O(ǫ7) and O(ǫ8) terms in the LD equation and present the approximate

solutions in Figure 2.3 for V ≥ V g (inclusive of all terms up to O(ǫ8)) and in

Figure 2.4 for V < V g (inclusive of all terms up to O(ǫ6)).

The approximations for LT , inclusive of all terms up to O(ǫ6), compare very well

with the numerical solutions for t ∈ [0, ǫ4] as shown in Figure 2.3 for V ≥ V g and

Figure 2.4 for V < V g.

With HI(t, ǫ) = (HT (t, ǫ) + HD(t, ǫ))/2, numerical inspections through vari-

ations in the magnitudes of the parameters that constitute HI(t, ǫ) shows that,

amongst other parameters, L0
T in particular plays a crucial role in the sharp tran-

sient in the H+-ions profile. Recall that L0
T denotes the combined initial concen-
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Figure 2.3: Inner solution for the normoxic case (V ≥ V g) in terms of increasing

order of ǫ. Using perturbation analysis, we obtain an analytic approximation (shown in

equations (2.25)–(2.42)) to the solution of the simpler system and compare them with

the numerical solution. These solutions capture the interesting sharp transition in the

pH solution that is observed in the full model for t ∈ [0, ǫ4], where here we take ǫ = 0.1.
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Figure 2.4: Same caption to Figure 2.3 but, here, we show the hypoxic case (V < V g).
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Figure 2.5: This simulation illustrates the effect of increasing the dimensionless initial

concentration of intracellular lactate, L0
I , from 0.9 (solid blue line) to 80 (solid circled

line) on the steepness of (a) intracellular H+-ions profile and (b) the corresponding pH,

under hypoxic conditions. Here the initial extracellular lactate concentration, L0
E, is

0.9. Inset shows a more shallower profile when L0
I as well as L0

E are increased to 800

and 200 respectively.
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tration of intra and extracellular lactate. With the initial levels of extracellular

lactate kept fixed, L0
E , numerical simulations show that increasing the initial intra-

cellular lactate levels, L0
I , results in a shallow profile of H+-ions (see Figure 2.5),

which is much shallower when L0
E is increased (see inset of Figure 2.5). Numerical

simulations illustrating the activity of the NHEs and MCTs reveal that, when L0
I

and L0
E is low, the activity of the NHEs is much more rapid than the MCTs and

that a sharp transient exists in the H+-ions solution. On the other hand, a high

L0
I and L0

E results in a much higher activity of the MCT (for a short time) and

consequently a reversed pH gradient (for that period of time). Then, as extra-

cellular H+-ions and lactate build up, the MCTs import H+-ions and lactate and

hence provide intracellular H+-ions for the NHEs to function again. Our results,

therefore, suggest that the activity of the NHE indirectly controls the steepness of

the initial transient of the pH solution.

2.4.2.2 Outer solution

Putting ǫ = 0 in equations (2.19)–(2.22) yields the following set of differential

algebraic equations

2Φ̂Gψ̂ + d̂1 −
ρ̂1V̂ (H0

T −H0
D)

2
= 0, (2.43)

−2f̂1H
0
D − k3ψ̂(H0

TL
0
D +H0

DL
0
T ) = 0, (2.44)

dL0
T

dt
= 1− (L0

T + L0
D)

2
, (2.45)

dL0
D

dt
= 1− (L0

T + L0
D)

2
− k3(H0

TL
0
D +H0

DL
0
T ). (2.46)

Eliminating H0
T from equations (2.43) and (2.44) gives

H0
D =

−2k3ψ̂L
0
D(2Φ̂Gψ̂ + d̂1)

ρ̂1V̂ (2f̂1 + k3ψ̂(L0
T + L0

D))
. (2.47)

Noting that (L0
T + L0

D) = 2L0
I > 0 in (2.47) we notice that, to leading order,

1. H0
D > 0 if L0

D < 0 i.e. we have H0
E < H0

I if L0
I < L0

E ,
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2. H0
D < 0 if L0

D > 0 i.e. we have H0
E > H0

I if L0
I > L0

E .

Although this conclusion is to leading order, experiments carried out by Stubbs et

al. [221] to determine whether lactate distribution across the cell membrane reflect

the transmembrane pH in Hepatoma 9618a found that: pHi = 7.10 > pHe = 6.79

and LI = 8.36 mM > LE =3.39 mM, which is in line with our prediction that

H0
E > H0

I if L0
I > L0

E . We find later in this section that where a reversed pH

gradient is attained, the steady state levels of intracellular lactate is always higher

than the extracellular (see Figure 2.7).

The outer solutions evolve to the steady state solution which, in terms of the

simple non-dimensional model, are

H∗
E =







d1
ρ1V

, V ≥ V g,

d1 + 2ΦGψ

ρ1V
, V < V g.

(2.48)

We note that, compared with the full model solution in equation (2.12), H∗
E here

does not depend on H∗
I for the V < V g case. We also have, from (2.43)–(2.46)

L∗
I =







1− ρ2V L∗
E , V ≥ V g,

2ΦG + 1− ρ2V L∗
E , V < V g,

(2.49)

and

L∗
E =







k3ρ1V H
∗
I

k3ρ1ρ2V 2H∗
I + d1k3 + ρ1ρ2V 2

, V ≥ V g,

k3ρ1V (1 + 2ΦG)H∗
I

ρ1ρ2V 2k3H
∗
I + 2k3ΦGψ + d1k3 + ρ1ρ2V 2

, V < V g.

(2.50)

Finally, substituting (2.48), (2.49) and (2.50) into (2.16) yields a lengthy ex-

pression for H∗
I in terms of the model parameters. We show the variation of this

H∗
I solution in Figure 2.6, for variations in (a) (f1, V ) and (b) (k3, V ); and in

Figure 2.7, (a) (d1,ΦG) and (b) (d1, k3).
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The simple model solutions are highly analogous to those of the full model in

(2.12)–(2.14). The only difference is that when the glycolytic factor is dropped,

the H+-ions and lactate solutions are larger which is due to the lack of inhibitory

effect of high intracellular H+-ions on glycolysis (e.g. see Figure 2.1).

Figure 2.6 clearly shows that across a range of f1, k3 and V values, with better

vascularisation, a tumour will have a higher pHi and pHe and lower intra- and

extracellular lactate levels. This is supported by studies carried out by [83, 230]

which shows that the intracellular pH of tumours depends on blood flow and an

acute decline in blood flow results in a significant reduction in pHi [230]. Fig-

ure 2.6(a) further indicates that an increase in f1 raises pHi because more HI ’s are

extruded. As a result, less intracellular hydrogen ions are available to bind with

intracellular lactate for MCT to function and, hence, we observe that intracellular

lactate builds up and extracellular lactate decreases. This observation is more

apparent in the hypoxic case (V < V g). There seems to be no effect on pHe with

increasing f1, which is not surprising. In Figure 2.6(b), we see that varying k3 has

little effect on pHi, pHe and L∗
I but a more significant effect on L∗

E , which is more

apparent in the V ≥ V g region. Numerical simulations showing the activity of the

NHEs and MCTs indicate that increasing k3 results in a lower H+-ion gradient

and a lower MCT activity (the extent of the decrease is very small in the hypoxic

case).

We show in Figure 2.7(a) the effect of varying ΦG (rate of glycolysis) and d1

(background production of H+-ions) on the steady state solution of pH and lactate

under hypoxic conditions. The pH gradient is reversed for relatively small ΦG and

d1 which we find, from our numerical simulations, to be due to the increased

activity of the MCTs. This is because a low source of intracellular H+-ions and

rate of glycolysis directly impacts the NHEs by lowering its activity. Clearly,

the reversed pH gradient is above pH 8—outside the physiologically reasonable

range. Figure 2.7(b) shows the effect of varying k3 (rate of MCT activity) and d1

(background production of H+-ions) on the steady state solution of pH and lactate
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under normoxic conditions. Note that varying k3 and d1 under hypoxic conditions

does not result in a negative pH gradient (not shown). This is because our model

predicts that the impact of the MCT on the regulation of pHi is small in hypoxic

regions (see Figure 2.6) compared to normoxic (in line with findings by Webb et

al. in [250]). This appears to be due to the increased activity of the MCTs which

is evident from the decreased L∗
I and increased L∗

E . Biologically, this implies that

lowering sources of intracellular H+-ions other than those resulting from glycolysis

can give rise to highly alkaline reversed pH gradient. For example, lowering the

Carbonic Anhydrase (CA) catalysed hydration of CO2 into HCO−
3 and H+-ions can

enhance the efficacy of chemotherapeutics by alkalising the intra and extracellular

pH. This is supported by an in vitro study by Parkkila et al. [169] which found

that a potent CA inhibitor suppresses the relative invasion rate of renal carcinoma

cell lines by 18–74%.

2.5 Discussion and conclusions

Some tumours are reported to have an acidic extracellular environment, which is

often thought to give them a greater survival advantage [75]. It is believed that

this is caused by elevated glycolysis which results in the up-regulation of certain

cellular transporters. In this chapter, we have described a mathematical model

that focuses on the interplay between H+-ions and lactate in tumours. The main

differences between normal and tumour cells in the model are: tumour cells rely

heavily on the inefficient glycolytic pathway for energy production and also their

clearance rate of extracellular ions is assumed to be poor. Qualitative analysis

of the model shows that tumour cells have higher levels of lactate and lower pH,

which is in line with experimental observations [75]. Further analysis of the steady

state solutions shows that, the more vascularised the cell, the higher the intra and

extracellular pH and the lower the lactate levels. This is supported by studies

carried out by [83, 230] which shows that the intracellular pH of tumours depend
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Figure 2.6: We illustrate the effect of varying key parameters (a) f1 (NHE rate

activity) versus V (vasculature); and (b) k3 (MCT rate activity) versus V on the steady

state solution of pH and lactate. In both simulations, vasculature spans from poorly

formed blood vessels (V < V g = 0.5) to very efficient ones (V ≥ V g = 0.5.)
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Figure 2.7: Caption on following page.
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Figure 2.7: (Previous page). (a) The effect of varying ΦG (rate of glycolysis) and

d1 (background production of H+-ions) on the steady state solution of pH and lactate

under hypoxic conditions using the simple model. Regions below the black thick curve

represent a reversed pH gradient whilst above is otherwise. Values of pH and lactate

for the ‘base’ case parameter set are represented by a black filled circle. Clearly the

reversed pH gradient is above pH 8—outside the physiologically reasonable range. (b)

Here we show the effect of varying k3 (rate of MCT activity) and d1 on the steady state

solution of pH and lactate under normoxic conditions using the simple model.

on blood flow and an acute decline in blood flow results in a significant reduction

in pHi [230]. Our qualitative analysis also shows that decreasing the quantity of

hydrogen ions produced from sources other than metabolism can cause the pH

cellular gradient to be reversed.

Numerical simulations in Section 2.4 show that, after an initial transient, the

intra and extracellular pH sharply attain their steady state value. To study this

behaviour in more detail, we have considered a simplified model, in which we ne-

glect the inhibitory effect of low intracellular pH on glycolysis. Investigation of

this model using singular perturbation analysis has given considerable insight into

the behaviour of the solution, and has provided a good analytical approximation

to the solutions of the system. These solutions compare very well with the nu-

merical simulations, and capture the interesting transition in the pH solution that

is observed in the full model. We find that the initial concentrations of intra and

extracellular lactate play a key role in this sharp transient. Numerical simulations

show that a high initial value of intracellular lactate results in a sharp increase

in the activity of the MCTs which gives rise to a transiently reversed pH gradi-

ent and as a result a suspended NHE activity. This seems to explain the shallow

profile obtained when the initial concentration of intracellular lactate is increased,

which is more shallow when extracellular lactate is also increased. Therefore, we
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conclude that the activity of the Na+/H+ exchanger plays a key role in the sharp

initial transient in the pH solution relative to lactate.

Analysis of the model show that, with the inclusion of lactate explicitly in the

model, a reversed pH gradient is attainable under aerobic conditions when other

sources of hydrogen ions are decreased and MCT activity is increased—but we find

the pH conditions that this reversed gradient is found to be too alkaline to be viable

and therefore is unrealistic. Under anaerobic conditions, we find that decreasing

‘other sources of H+-ions’ and the glycolytic rate gives rise to a reversed cellular pH

gradient, but again it is too alkaline to be biologically realistic. This suggests that

another mechanism could be contributing to support a physiologically reasonable

reversed pH gradient and we are driven in the next chapter to find if a more

realistic spatial representation of the tumour may have an effect on reproducing a

biologically realistic reversed pH.

A recent study by Colen et al. [51] indicates that glioma invasion was markedly

impaired when lactate efflux was inhibited. More specifically, it was found to cause

complete necrosis in some cases. A more recent study by Sonveaux et al. [215]

shows that blocking lactate influx through MCT1 can lead to anti-angiogenic and

anti-metabolic effects. Our study suggests that, for some values of background

production of H+-ions, decreasing the MCT activity will diminish the reversed pH

gradient which is known to be implicated in tumour invasiveness [248].



Chapter 3

Spatial distribution of H+-ions

and lactate in a one-dimensional

monolayer

3.1 Introduction

A variety of modelling techniques are now widely used to examine features of cancer

progression. The ordinary differential equation model, presented in Chapter 2,

shows that a reversed cellular pH gradient that is seen in some tumours is possible

with the factors that we consider, but we find it in our model for biologically

unrealistic parameter estimates. To increase the biological realism of our model

we consider the fact that tissue has spatial structure. In so doing, we also examine

the findings of Provent et al. [183] that, in some cases, the spatial concentrations of

extracellular lactate and extracellular hydrogen ions are often uncorrelated. That

is, regions with high extracellular acidity do not necessarily correlate with high

levels of lactate [183]. In Section 3.3.3, we investigate the conditions under which

this phenomenon is observed. It is suggested that this is because protons, which

are exported outside cells along with lactate in hypoxic regions, re-enter the cells

65
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indirectly via the HCO−
3 /Cl− exchanger or simply leak back into the cell and then

are transported cell-to-cell via gap junctions to make protons available for the NHE

exchanger [183]. Another study by Grillon et al. [94] reports that the distribution

of NHEs and MCTs in rat brain gliomas are heterogeneous—the relative intensity

of NHE1 (isoform 1) peaks at an average distance of 0.33±0.027 mm from the

edge of the tumour and expression of the MCT1 (which can transport lactate and

H+ either out of or into cells [99]) peaks further into the glioma (1.05±0.14 mm

from the edge of the tumour). We incorporate these findings into the model in

Section 3.3.5 and examine their effect on the cellular pH gradient. We finally

investigate in Section 3.3.6 the effect of H+-ion intercellular gap junctions on the

cellular pH gradient reversal and the spatial distribution of extracellular lactate

and H+-ions.

3.2 Model formulation

For simplicity, we assume a one-dimensional Cartesian geometry, such that 0 ≤ x ≤ L,

where L denotes the distance away from the blood vessel which is located at x = 0.

Our model has the form

dHI

dt
=

2ΦGH(V g − V )

HI + b
+ d1 + φ, (3.1)

dLI
dt

=
2ΦGH(V g − V )

HI + b
+ d4 − α4LI − θ, (3.2)

∂HE

∂t
= DH

∂2HE

∂x2
− φ, (3.3)

∂LE
∂t

= DL
∂2LE
∂x2

+ θ, (3.4)

where,

θ = k3(HILI −HELE),

φ = lH(HE −HI)− f1H(HI −HE)(HI −HE)− k3(HILI −HELE),

and H(·) is a Heaviside (as in Chapter 2).
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The current model differs from that in Chapter 2 via the added diffusion terms

of extracellular H+-ions and lactate, with diffusion coefficients DH and DL respec-

tively. Also, here the boundary conditions at x = 0 replace the removal terms,

Rσ(V ), σ =1 and 2, used in Chapter 2 for extracellular H+-ions and lactate respec-

tively. Rather than including the complexity of an additional equation for oxygen,

we simply assume a linear decreasing concentration of O2 (denoted by V ) from the

blood vessel located at x = 0, namely V = 1 + (γ− 1)x/L, where γ = ∈ [0, 1) (see

Figure 3.1 for a schematic). With appropriate choices of γ, we can either simulate

a tumour which is completely well-oxygenated (e.g. if γ = 1) or a tumour that is

hypoxic for V < V g (i.e. xg < x ≤ L) and aerobic for V ≥ V g (i.e. 0 ≤ x ≤ xg),

where x = xg is the point at which V = V g. As in Chapter 2, we assume that glu-

cose supply is plentiful ∀x ∈ [0, L]. We impose boundary conditions to represent

a tumour with a well-perfused blood vessel (on the left side of the tissue, x = 0)

which supplies the tumour with oxygen and removes H+-ions and lactate. That is

At x = 0 : DH
∂HE

∂x
(0, t) = ρHl(HE(0, t)−H∞l),

DL
∂LE
∂x

(0, t) = ρLl(LE(0, t)− L∞l),

At x = L : HE(L, t) = H∞r,

−DL
∂LE
∂x

(L, t) = ρLr(LE(L, t)− L∞r),

where H∞l and L∞l are, respectively, the concentrations of hydrogen ions and

lactate inside the blood vessel at x = 0. Their rate of leakage into or out of the

blood vessel at x = 0 is regulated by the parameters ρHl and ρLl respectively.

A similar notation is used for lactate at the right hand side boundary condition,

but with L∞r denoting estimated tissue lactate levels. Based on an experimental

observation, we take a fixed boundary condition at x = L for the extracellular

H+ since findings show that at L = 2 mm, the extracellular pH is known to be

around 6.5 (Personal Communication with Jonathan Coles, Institute of Photonics,

University of Strathclyde).
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We denote the initial values by their normal concentration in the tissue, namely,

HI(x, 0) = H0
I mol/l, HE(x, 0) = H0

E mol/l, LI(x, 0) = L0
I mol/l, LE(x, 0) = L0

E

mol/l.

V = 1

V = γ

V = V g

x = xg
non-glycolytic cells glycolytic cells

· · ·

x = 0 x = L

O2

Figure 3.1: A schematic representation of the distribution of glycolytic (V < V g) and

non-glycolytic cells (V ≥ V g) in the 1-D spatial model (3.1)–(3.4). x = 0 denotes the

location of the blood vessel.

Non-dimensionlisation

To facilitate the numerical study of the model, we rescale space, x̃ =
√

α4/DHx,

where the tilde represents the rescaled space. This scales out the diffusion pa-

rameter for H+-ions, DH . The remaining variables are rescaled as in Chapter 2,

namely

H̃I =
HI

b
, H̃E =

HE

b
, L̃I =

α4LI
d4

, L̃E =
α4LE
d4

, t̃ = α4t.
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The dimensionless equations then read

dH̃I

dt̃
=

2Φ̃GψH(V g − V )

H̃I + 1
+ d̃1 + φ̃, (3.5)

dL̃I

dt̃
=

2Φ̃GH(V g − V )

H̃I + 1
+ 1− L̃I − θ̃, (3.6)

∂H̃E

∂t̃
=

∂2H̃E

∂x̃2
− φ̃, (3.7)

∂L̃E

∂t̃
= D̃L

∂2L̃E
∂x̃2

+ θ̃, (3.8)

where,

θ̃ = k̃3(H̃IL̃I − H̃EL̃E),

φ̃ = l̃H(H̃E − H̃I)− f̃1H(H̃I − H̃E)(H̃I − H̃E)− k̃3ψ(H̃IL̃I − H̃EL̃E).

We use the same rescalings as in Chapter 2 for the model parameters and, with

these rescalings, the boundary conditions then become

∂H̃E

∂x̃
(0, t̃) = ρ̃Hl(H̃E(0, t̃)− H̃∞l),

∂L̃E
∂x̃

(0, t̃) = ρ̃Ll(L̃E(0, t̃)− L̃∞l), (3.9)

H̃E(L̃, t̃) = H̃∞r,
∂L̃E
∂x̃

(L̃, t̃) = −ρ̃Lr(L̃E(L̃, t̃)− L̃∞r), (3.10)

where,

ρ̃Hl =
ρHl√
α4DH

, H̃∞l =
H∞l

b
, ρ̃Ll =

ρLl
DL

√
DH

α4
, L̃∞l =

α4L∞l

d4
, H̃∞r =

H∞r

b
,

ρ̃Lr =
ρLl
DL

√

DH

α4

, L̃∞r =
α4L∞r

d4
, D̃L =

DL

DH

, L̃ =

√
α4

DH

L.

And the initial conditions become

H̃I(x̃, 0) = H̃0
I , H̃E(x̃, 0) = H̃0

E, L̃I(x̃, 0) = L0
I , L̃E(x̃, 0) = L̃0

E , (3.11)

where,

H̃0
I =

H0
I

b
, H̃0

E =
H0
E

b
, L̃0

I =
α4L

0
I

d4
, L̃0

E =
α4L

0
E

d4
.
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3.3 Numerical solution

3.3.1 Spatial discretisation and numerical scheme

We divide the spatial domain into N uniformly spaced points with grid size, ∆x =

L/(N−1). This allows the problem to be solved in Matlab using a built-in ODE

solver (ode15s) with four ODEs in time (for HI , HE , LI , LE) at each space point.

The grid function u(xj , t), u ∈ {HI , HE, LI , LE}, denotes an approximation of u at

xj , where 1 ≤ j ≤ N . For the diffusion terms of HE and LE , we use a simple finite

difference approximation in the interior points using a second central difference of

the form
∂2uj
∂x2

≈ uj+1 − 2uj + uj−1

∆x2
; 1 ≤ j ≤ N − 1. (3.12)

We approximate u0 using a first order central difference

∂u1
∂x
≈ u2 − u0

2∆x
= ρvl(u1 − v∞l)⇒ u0 = u2 − 2∆xρvl(u1 − v∞l), (3.13)

where v ∈ {H,L} and v∞l is the corresponding blood level of H+-ions or lactate

respectively. We approximate ∂2uj/∂x
2 at j = N in a similar manner.

3.3.2 Parameter estimates

From the literature, we are able to estimate some of the new parameters. We take

the diffusion co-efficient of H+ ions (DH) to be 1.08 × 10−5 cm2/s [127] and that

of lactate (DL) to be 8.8× 10−6 cm2/s [259]. We assume that cells near the blood

vessel are well-oxygenated and that extracellular lactate and H+-ions leak in or

out of the blood vessel at a much higher rate than extracellular lactate does into

the tissue at x = L due to the leakiness of the tumour vasculature. The vessel

permeability to lactic acid (ρLl) is taken to be 1.19×10−4 cm/s [53], for which the

non-dimensional equivalence is 4.4 × 10−2/
√
α4. With a lack of available data,

we also assume that H+ ions have the same vessel permeability as lactate. Also,

because of the lack of available data on the rate of lactate decay (α4), we vary this

parameter in Section 3.3.3 and note the effect on the overall model behaviour.
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In general, normal blood lactate in unstressed patients is between 0.5–1.0×10−3

mol/l, but for patients with critical illnesses, concentrations of less than 2.0×10−3

mol/l are sometimes found [21]. With this in mind, we estimate lactate levels

inside the blood vessel at x = 0, L∞l, to be 0.5–1.0×10−3 mol/l [21], and lactate

2 mm away from the blood vessel, L∞r, to be 2.0×10−3 mol/l [21]. Recall from

our parameter estimates in Chapter 2 that d4/α4 ∼ O(10−3) ≡ 1.4 × 10−3 mol/l,

which gives L̃∞l = 0.35–0.71 and L̃∞r = 1.42 (in dimensionless form). The normal

blood H+ concentration in unstressed patients is found to be in the range of 3.55–

4.5× 10−8 mol/l [178] and we take this value to represent H∞l.

Almost fifty years following Warburg’s pioneering work on tumour metabolism [247],

extensive studies have concluded that glucose is a main energy source for malig-

nant tumours [73, 74] and that 60% of cancer cells are glycolytic [55]. We therefore

partition our tumour section so that 60% of the cells undergo anaerobic glycol-

ysis and the remaining 40% do not. We simulate the model with appropriate

non-dimensional initial conditions that represent normal tissue levels: H̃0
I = 0.63,

H̃0
E = 0.63, L̃0

I = 1 and L̃0
E = 1. A summary of the non-dimensional parameter

values used in the model is presented in Table 3.1. The remaining parameters are

the same as those in Chapter 2 (see Table 2.1 for details).

We will work with the non-dimensional model hereafter but drop the tildes for

notational convenience.

3.3.3 Spatial distribution of extracellular lactate and hy-

drogen ions

Given that there is some uncertainty in the values that we should take for the

vessel permeabilities (ρHl and ρLl)—mostly stemming from the uncertainty of the

value of α4 (i.e. recall that ρHl (dimensionless) = ρHl/(α4DH)1/2 and ρLl (dimen-

sionless) = ρLl/(DH/α4D
2
L)1/2)—we first vary the dimensionless values of ρHl and

ρLl in our analysis. In particular, we are interested to find if these parameters have
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Table 3.1: Dimensionless parameter estimates used in the one-dimensional spatial

model in (3.5)–(3.11). PC=personal communications with Jonathan Coles, Institute of

Photonics, University of Strathclyde.

Description Symbol Value Ref.

Vessel permeability to H+ at x = 0 ρ̃Hl 4.4× 10−2/
√
α4 Estimate

Vessel permeability to lactate at x = 0 ρ̃Ll 4.4× 10−2/
√
α4 [53]

Tissue permeability to lactate at x = L ρ̃Lr 4.4× 10−2/
√
α4 Estimate

Normal H+ concentration in blood H̃∞l 0.35–0.45 [226]

Lactate concentration in blood at x = 0 L̃∞l 0.35–0.71 [21]

Lactate concentration in the tissue at x = L L̃∞r 1.42 [21]

H+-ions concentration in the tissue at x = L H̃∞r 3.16 PC

Diffusion co-efficient fraction D̃L 0.81 [127, 259]

Tissue size L̃ 0.02 PC

any effect on whether the extracellular pH is less acidic when extracellular lactate

is high. Figure 3.2(a) shows how the spatial profile of extracellular pH at steady

state is qualitatively reversed (i.e. from that with an increasing pHE profile versus

distance from the tumour edge x to that of a decreasing pHE profile versus x) as

ρHl increases. It appears that this reversal occurs at roughly ρHl > 20 (note that

as ρHl gradually increases from 20, pHE slowly increases near the blood vessel and

attains a minimum parabolic profile which gradually changes into a monotonically

decreasing function as ρHl further increases). The spatial profile of extracellular

lactate, however, remains qualitatively unchanged (see Figure 3.2(b)) as ρHl in-

creases. Note that varying the rate of removal of lactate into the blood vessel, ρLl,

has no qualitative effect on the spatial profile of lactate and pH as illustrated in

Figure 3.2(c)–(d)).

We show a typical simulation with large ρHl and ρLl (=O(103)) in Figure 3.3.

We illustrate the profiles with and without the inclusion of the “glycolytic factor”
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(i.e. the denominator HI + 1 in the first term of equations (3.5) and (3.7)). Note

that dropping this glycolytic factor from the model equations has no qualitative

effect on the model behaviour. Hence, we work with the simplified model (i.e. with

the glycolytic factor dropped) from this point on because we exploit the simpler

form analytically later in this chapter. Note that dropping the “glycolytic factor”

does, however, have a quantitative effect on the rate of activity of the NHE and

MCT in the anaerobic region (see Figure 3.3(b)). This is because the inhibitory

effects of low intracellular pH on glycolysis is neglected when the “glycolytic factor”

is dropped. As a result, the intra- and extracellular pH is more acidic and the

extracellular lactate becomes higher throughout the domain. We also observe

that the levels of intracellular lactate in the aerobic region is slightly lower when

the “glycolytic factor” is dropped which is attributed to the slightly higher MCT

activity and lower NHE activity there.

Also note the “jump” in the intracellular concentration profiles and the activity

of the membrane-based transporters observed at x = xg. This is due to the

switch from aerobic metabolism in the x ≤ xg region to anaerobic metabolism

in the x > xg region where oxygen levels are low. The extracellular lactate and

pH display no significant observable “jump” in their profile due to the smoothed

effect of diffusion. The key solution features are as follows: intracellular H+-ions,

extracellular H+-ions and extracellular lactate are higher in the region further away

from the blood vessel (i.e. in the x > xg region) than that in the aerobic region close

to the blood vessel (both with and without the inclusion of the “glycolytic factor”).

However, intracellular lactate levels increase in the anaerobic region but quickly

drop to levels below that found close to the blood vessel (both with and without

the inclusion of the “glycolytic factor”). This could be because the NHE activity

near the blood vessel is high due to the larger H+-ions transmembrane gradient

as a result of an increased removal of extracellular H+-ions into the blood vessel.

Consequently, the MCT activity near the blood vessel becomes low because there

are less intracellular H+-ions available for extrusion and as a result intracellular



3.3. NUMERICAL SOLUTION 74

lactate levels near the blood vessel become high and decrease as the activity of the

NHE decreases (away from the blood vessel).

On the other hand, we do observe a spatial correlation between the increase in

extracellular pH and the increase in extracellular lactate as shown in Figure 3.4.

This is in line with the findings of Provent et al. [183] which showed that the

glucose-induced increase in extracellular lactate showed no associated decrease in

extracellular pH. However, they suggest that the re-distribution of extracellular

H+-ions at sites remote from anaerobic lactate production is primarily due to the

leakage of H+-ions intracellularly and their subsequent transfer by gap junctions to

make them available for extrusion by the NHEs. In contrast, our model predictions

suggest that this same result can be observed in the absence of gap junctions, and

instead with a reduced permeability of the blood vessels to H+-ions and lactate.

In a biological sense, we may interpret our results by suggesting that less-efficient

blood vessels, which are indeed frequently found in tumours, are likely to give rise

to a contrasting spatial distribution of extracellular pH and lactate.
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(a)

Distance from the blood vessel, x (mm)

(b)

Distance from the blood vessel, x (mm)

(c)

Distance from the blood vessel, x (mm)

(d)

Distance from the blood vessel, x (mm)

Figure 3.2: Plots showing the effect of varying the rate of H+-ions leakage into the

blood vessel (ρHl) on the spatial profile of (a) pHE and (b) LE ; and the effect of varying

the rate of lactate leakage into the blood vessel (ρLl) on the spatial profile of (c) pHE and

(d) LE . In (a)– (b):ρLl = 4.4 × 103. In (c)–(d):ρHl = 4.4 × 103. Remaining parameter

values are as in Table 3.1 and with ρLr = 0.44, L∞l = 0.5, L∞r = 1.42,H∞l = 0.398.

The prescribed model is simulated until the steady state solution is reached, starting

from the initial conditions: H0
I = 0.63, H0

E = 0.63, L0
I = 1 and L0

E = 1. We determine

whether the steady state solution is reached by considering the solution at time step, i,

and time step, i+1. If the absolute difference in solution is less than some ε (we choose

to be 10−6), then the model stops running at the ith step. With this value of ε, the

metabolites reach a steady state at t = 6.
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Figure 3.3: Caption on following page.
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Figure 3.3: (Previous page). Numerical solution of the system (3.5)–(3.11), (—–,

glycolytic factor included) and (−·−·, glycolytic factor dropped). Obtained using an ODE

stiff solver from Matlab. As in Chapter 2, we denote by the superscripted ∗ the steady
state levels. The vertical dashed lines denote x = xg, where here xg = (4γ + 6)/10,

with γ chosen to be 0.1 throughout the simulations in this chapter. (a) A spatial

correlation exists between extracellular lactate levels and pHE (e.g. compare (a)II and

(a)IV). (b)I shows the hydrogen ion gradient, (b)II the lactate gradient, (b)III the

MCT activity and (b)IV the NHE activity. Parameter values are as in Table 3.1 with

ρHl = 4.4 × 103, ρLl = 4.4 × 103, ρLr = 0.44, L∞l = 0.5, L∞r = 1.42,H∞l = 0.398.

The prescribed model is simulated until the steady state solution is reached, starting

from the initial conditions: H0
I = 0.63, H0

E = 0.63, L0
I = 1 and L0

E =1. We determine

whether the steady state solution has been reached as in Figure 3.2.
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Figure 3.4: Caption on following page.
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Figure 3.4: (Previous page). Numerical solution to the system (3.5)–(3.11) at steady

state showing (a) a lack of spatial correlation between pHE and LE obtained using

parameter values as in Figure 3.3 but with a reduced rate of leakage of H+-ions and

lactate into the blood stream (i.e. ρHl, ρLl = 4.4), compare (a)II with (a)IV. (b)I shows

the hydrogen ion gradient, (b)II the lactate gradient, (b)III the MCT activity and (b)IV

the NHE activity. The model is simulated until the steady state solution is reached,

starting from the initial conditions: H0
I = 0.63, H0

E = 0.63, L0
I = 1 and L0

E=1. We

determine whether the steady state solution is reached the same way as stated in the

caption for Figure 3.2.

3.3.4 Effect of parameter variations on the spatial cellular

pH gradient

In Section 2.4.2.2, we investigate how the steady state solution varies against a

number of model parameters. We also demonstrate that d1, which is responsible for

the background production of H+-ions, plays a pivotal role in determining whether

there is a reversed cellular pH gradient. In this section, we study the extent of

the reversed cellular pH gradient in this spatial context and show that, in some

cases, the extracellular environment is more acidic than the intracellular for all the

cells in the domain or only for non-glycolytic cells or in other cases, no negative

pH gradients are found in any region of the tissue section. We demonstrate in

Figures 3.5–3.8 examples of this.

Varying the concentration of extracellular lactate in the blood vessel

versus that in the tissue

Recall that L∞l and L∞r denote the concentrations of extracellular lactate in the

blood and tissue respectively. We find that simply taking lower values of L∞l gives

a reversed cellular pH gradient across the tissue section independent of L∞r, as
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illustrated in Figure 3.5. For example, with L∞l = 0.1, the pH gradient is reversed

throughout the entire spatial domain considered. This is because if we take L∞l

to be very small, LE(0, t) − L∞l in the boundary term at x = 0 is likely to be

positive and large, which means that extracellular lactate will leak into the blood

stream at a high rate and hence the levels of extracellular lactate throughout the

tissue section will be low. This will then facilitate the activity of the MCT (which

functions according to the cellular lactate and H+ gradient) and consequently result

in a reversed cellular pH gradient as H+-ions are exported outside the cells along

with lactate. We note that in this case, the observed reversed cellular pH gradients

occur at realistic values (pHE 6.5–7.4 for the parameters used in Figure 3.5). As

L∞l increases, the perfusion rate of lactate into the blood decreases, tissue lactate

then increases and the MCT activity decreases. This then results in a negative

cellular pH gradient only in the non-glycolytic region, or, if L∞l continues to

increase, no negative pH gradient is observed at all. Our model therefore predicts

that low levels of lactate found in the blood stream may indirectly cause a reversed

cellular pH gradient in conjunction with an up-regulated tumour activity of the

MCT.
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Figure 3.5: The effect of varying lactate levels in the blood vessel (L∞l) whilst keeping

tissue lactate level (L∞r) fixed. The red region represents the parameter values for

which all the cells in the spatial domain express a negative pH gradient; the green

region represents a negative pH gradient for only non-glycolytic cells (V ≥ V g); the

blue region represents parameter space where there are no negative pH gradients in any

region of the tissue. Shown above the horizontal panel are typical profiles of the cellular

hydrogen gradient for L∞l values that lie in the region highlighted by the arrows. For

each set of chosen parameters (L∞l, L∞r), the model is simulated until the steady state

solution is reached, starting from the initial conditions: H0
I = 0.63, H0

E = 0.63, L0
I = 1

and L0
E = 1. We determine whether the steady state solution is reached the same

way as stated in the caption to Figure 3.2. L∞r = 1 in each subplot and remaining

parameters are the same as in the caption to Figure 3.3.

Varying the activity of MCTs versus other sources of intracellular H+-

ions

Figure 3.6 shows that the extent of the negative cellular pH gradient is strongly

dependent on both the MCT activity, regulated by the parameter k3, and the back-
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ground production of intracellular H+-ions, d1. Not only is the negative cellular

pH gradient attainable for a larger range of k3 and d1 values when blood lactate

level (L∞l) is lowered (compare (a) with (b) in Figure 3.6), but when L∞l is low,

a reversed cellular pH gradient also occurs for the base case parameter values set

in Chapter 2 as indicated by a “diamond” in the figure.

We now examine analytically what happens when d1 and k3 are varied. Looking

at the HI equation in (3.5), an increase in d1 gives rise to an increase in the rate

of HI production. We now proceed by looking for an analytical solution to H∗
E(x)

(we denote by * the steady state level). To do this, as described above, we drop

the 1/(HI + 1) factor from (3.5)–(3.8) and re-write H(V g − V ) as

H(xg − x) =







1, x > xg

0, x ≤ xg,

(3.14)

where x = xg is the point at which V = V g. Adding (3.5) and (3.7), at steady

state, gives
∂2H∗

E

∂x2
= −d1 − 2ΦGψH(x− xg), which on integrating twice and using

the given boundary conditions we get

H∗
E(x) = −

(
d1
2

+ ΦGψH(xg − x)

)

x2 −
( 1

2(LρHl + 1)

(
2ρHlΦGψH(L− xg)

(
− L2 − xg2 + 2xgL

)
− ρHld1L2 − 2ρHlH∞r + 2ρHlH∞l

)

+2ΦGψH(xg − x)xg
)

x− ΦGψH(x− xg)xg2

+
1

2(LρHl + 1)

(

H(xg − L)
(
2ΦGψL

2 + 2ΦGψx
g2 − 4ΦGψx

gL
)

+d1L
2 + 2LρHlH∞l + 2H∞r

)

. (3.15)
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Now, differentiating (3.15) with respect to d1 gives

∂H∗
E

∂d1

∣
∣
∣
x fixed

=
−(ρHlL+ 1)x2 + ρHlL

2x + L2

2(ρHlL + 1)
,

so that

∂H∗
E

∂d1

∣
∣
∣
x fixed

>0 iff

(−(ρHlL+ 1)x2 + ρHlL
2x + L2

2(ρHlL + 1)

)

> 0,

⇔
(
(ρHlL+ 1)x2 − L2ρHlx− L2

)
< 0. (3.16)

The roots of (3.16) are x = L and x = −L/(ρHl + 1), where ρHl > 0 and L > 0,

so that the above inequality is satisfied for −L/(ρHl + 1) < x < L. Hence, H∗
E

decreases as d1 decreases for all −L/(ρHl + 1) < 0 ≤ x < L. It is difficult to

obtain a similar expression analytically for H∗
I (x), so we numerically illustrate in

Figure 3.7 (column (a)) that decreasing d1 also decreases HI , but we observe that

there is a greater effect on H∗
I as d1 varies than there is on H∗

E. That is, as d1

decreases, H∗
I becomes much lower than H∗

E (see Figure 3.7(c)). On the other

hand, H∗
E does not depend on k3 at steady state (see equation (3.15)), but H∗

I

decreases as k3 is increased as shown in Figure 3.7(b). This, in turn, results in

the levels of intracellular H+-ions being lower than the extracellular (as shown in

Figure 3.7(d)) as k3 increases.

To interpret the above observations, we note that decreasing d1 implies that

the amount of H+-ions available intracellularly is reduced. This influences the rate

of activity of all the membrane-based transporters and the rate at which H+-ions

leak inside the cell from the extracellular space. So, the lower the background

production of intracellular H+-ions, the less H+-ions are extruded and the lower

the extracellular H+ levels become. On the other hand, increasing k3 implies that

the amount of H+-ions extruded extracellularly via the MCT increases. These

extracellular H+-ions, however, quickly diffuse across the tissue section and are

removed by the supporting blood vessel.
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(a) L∞l = 0.2, L∞r = 0.3 (b) L∞l = 0.5, L∞r = 1.42

Figure 3.6: Parameter space of pH gradient reversal showing the effect of varying

the rate of activity of MCT (k3) and the total background production of H+-ions

(d1) for: (a) L∞l = 0.2, L∞r = 0.3 and (b) L∞l = 0.5, L∞r = 1.42. The remaining

parameters are the same as in the caption to Figure 3.3. The colour code is the same

as in Figure 3.5. We superimpose our results from the ODE model in Chapter 2 which

shows that parameter values below the white curve yield a reversed pH gradient and

above the curve otherwise. The base case parameter set in Chapter 2 is depicted in the

figure by a “diamond”.
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Figure 3.7: The effect of varying (a) d1 (k3 fixed at 1) and (b) k3 (d1 fixed at 4000) on

H∗
I and H∗

E (in dimensionless form). We also show the effect on the cellular H+ gradient

(H∗
I −H∗

E) due to variations in the values of: (c) d1 and (d) k3. Remaining parameters

are the same as in the caption to Figure 3.3. Here, L∞l = 0.5 and L∞l = 1.42.
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Varying the the activity of NHEs versus other sources of intracellular

H+-ions

In contrast, we find that no matter how much the rate of activity of the NHEs, regu-

lated by the parameter f1, is varied the cellular pH gradient is reversed throughout

the tissue section (for all values of d1, as long as k3 is sufficiently high) as Fig-

ure 3.8(a) demonstrates. Note that H∗
E at steady state does not depend on f1 (see

equation (3.15)) because the rate at which H+-ions enter the extracellular space,

in our model, via the membrane-based transporters is equal to the rate of their

removal by the blood vessel or their subsequent leakage into a cell. So, an increase

in f1 does not affect H∗
E but will decrease H∗

I via extrusion by the NHE so that H∗
I

quickly becomes smaller than H∗
E and the cellular pH gradient becomes reversed.

In contrast, for higher values of tissue and blood lactate, the NHE only gives rise

to a reversed pH gradient provided that the level of other sources of H+-ions is

small (i.e. d1 below a certain threshold as shown in Figure 3.8(b)). This is because

increasing the levels of blood lactate means that extracellular lactate leaks into

the blood stream at a lower rate. This then lowers the activity of the MCT (which

functions according to the cellular lactate and H+ gradient) and consequently re-

sults in less intracellular H+-ions being transported outside the cell along with

lactate.

Note that, if we artificially set intracellular and extracellular lactate to be

equal, we find no cellular pH gradient reversal for the range of parameters that we

have explored thus far. Crucially, this suggests that lactate plays a pivotal role in

determining a cellular reversed pH gradient, which further motivates its inclusion

as separate intracellular and extracellular components in the model.

To summarise, we have shown so far in this chapter that by allowing diffusion

of the extracellular metabolites across the tissue section, we are able to recover a

more realistic acidic negative pH gradient throughout the tissue section—in the

aerobic region as well as in the anaerobic region—which the well-mixed ODE model
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in Chapter 2 does not capture. Recall from our discussion in Chapter 2 that in

the well-mixed model a reversed cellular pH gradient is obtainable but is found to

be too alkaline to be biologically realistic (with pHi = 7.7–9.75, pHe = 7.5–9.5, see

Figures 2.6–2.7).
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(b) L∞l = 0.5, L∞r = 1.42
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Figure 3.8: Same procedure described in Figure 3.5, but with parameter space (f1, d1)

and with k3 fixed at 5.43. In (a) L∞l = 0.2, L∞r = 0.3. In (b) L∞l = 0.5, L∞r = 1.42.

The remaining parameters are the same as in the caption to Figure 3.3. The colour

code is the same as in Figure 3.5. We superimpose our results from the ODE model in

Chapter 2 which predicts that parameter values below the white line yield a reversed

pH gradient and above the line otherwise. The base case parameter set in Chapter 2 is

depicted in the Figure by a “diamond”.

Our focus in the remainder of this chapter will be on the impact of a hetero-

geneous spatial distribution of NHEs and MCTs on the extent of the spatial pH

gradient reversal and on the spatial correlation of extracellular lactate and low pHe.
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3.3.5 Heterogeneous distribution of MCT and NHE

So far, we have assumed that the MCTs and NHEs are homogeneously distributed

throughout the spatial domain. However, recent experiments carried out by Grillon

et al. [94] on C6 rat gliomas reveal that the relative intensity of NHE peaks at

a distance of 0.33±0.027 mm away from the tumour edge and that the intensity

of MCT is also up-regulated at 1.05±0.14 mm from the edge of the tumour. The

authors represent this spatial organisation of the transporters across the tumour

rim graphically as shown in Figure 3.9. With this in mind, we incorporate the

following functions for the heterogenous expression of the NHE (f1) and the MCT

(k3), namely

f1 =

(

1 +
f2x

f3 + f4x2

)

fbase
1

k3 =

(

1 +
k4

k5 + k6x2

)

kbase3 , (3.17)

where, fi(i ∈ 2, 3, 4), kj(j ∈ 4, 5, 6) are chosen to best fit the curves shown in Fig-

ure 3.9, and fbase
1 , kbase3 denote the base parameter values as presented in Table 2.1.

It turns out, however, that incorporating these functions in our model has no qual-

itative effect on the pH and lactate profiles for the parameter values considered

(see Figure 3.10). Quantitatively, there is relatively little change to the levels of

pHI and no observable change to pHE and LE . However, there is a considerable

change in the levels of intracellular lactate which is due to the variations in MCT

activity. That is, intracellular lactate levels increase near the tumour edge due to

a higher NHE activity there (compared to MCT activity) which leaves less intra-

cellular H+ to bind with lactate for extrusion via the MCT and so intracellular

lactate builds up. But as the NHE activity then drops further into the tumour (see

Figure 3.9), intracellular lactate begins to fall due to an increased MCT activity.

In comparison, a substantial change in the NHE activity only appears to result

in a small change in intracellular pH (see Figure 3.10(b)IV). Therefore, it appears

that the variations in MCT activity is the dominating factor here.
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We show in Figure 3.11 that variations in the parameters that represent the

maximum rate of activity of the NHE transporter, f2, and the MCT transporter,

k4, results in a qualitatively similar profile to that seen in Figure 3.10. We see,

however, a slight change in the qualitative profiles of intracellular lactate and in-

tracellular pH near the blood vessel (near x = 0). This is attributed to a sharp

increase in the NHE activity and a slight dip in the MCT activity which results in

a sharp increase in intracellular lactate levels there (see Figure 3.11(b), III and IV).

So in conclusion, our model suggests that an increased expression of the MCT and

NHE near the tumour edge affects the intracellular levels of lactate significantly

(the key effects being dominated by the MCT), and the effects on intracellular pH

is much lower.
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Figure 3.9: The spatial organisation of the NHE and the MCT near the tumour

rim relative to outside the tumour as observed in [94]. The average intensity of the

transporters outside the tumour is set to one.
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Figure 3.10: Caption on following page.
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Figure 3.10: (Previous page). (a) The steady state profile of pH and lactate with

heterogeneous (− · −·) and homogeneous (——) functions representing the activity of

the NHEs and MCTs. (b) Shows hydrogen and lactate gradients and the rates of

activity of NHE and MCT. Parameter values are the same as in Figure 3.3 but with

k4 = 1.18, k5 = 8 × 10−3, k6 = 50, f2 = 0.032, f3 = 9.9 × 10−5, f4 = 10 representing the

heterogenous distribution of NHE and MCT. fbase
1 = 1.71× 104, kbase3 = 5.43.
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Figure 3.11: Caption on following page.
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Figure 3.11: (Previous page). (a) shows the effect of increasing the magnitude of

the maximum rate of activity near the tumour rim of the NHE, f2, and MCT, k4 on

the spatial levels of the metabolites. It appears that intracellular lactate is the most

sensitive metabolite to variations in f2 and k4. Intracellular pH is also affected, but to a

lesser extent. (b)I shows hydrogen ion gradient, (b)II lactate gradient, (b)III the MCT

activity and (b)IV the NHE activity. Base values: f2 = 0.032, k3 = 1.18. Remaining

parameter values are the same as in the caption to Figure 3.3.

3.3.6 The inclusion of intercellular gap junctions for H+-

ions

It has been suggested that a lack of spatial correlation between an increase in ex-

tracellular lactate levels and a decrease in extracellular pH exists in some tumours

because protons, which are exported extracellularly along with lactate in hypoxic

regions, re-enter the cells indirectly via the HCO−
3 /Cl− exchanger or simply leak

back into the cell and then are transported cell-to-cell via gap junctions to make

protons available for the NHE exchanger [183]. In this section, we examine if

incorporating H+-ions intercellular gap junctions in our model have any effect on

whether high extracellular lactate is correlated with a decrease in extracellular pH.

We now introduce the following gap junction intercellular communication term,

gj = k (HI(j + 1)− 2HI(j) +HI(j − 1)) , (3.18)

into the spatially discretised form of equation (3.1), where j denotes the cell at

spatial position j, HI(j) is the intracellular H+-ion concentration in that cell and

k represents the rate of transfer of H+ between cells. Due to the lack of available
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data, we vary the magnitude of k and illustrate the effect on the spatial profile of

pH and lactate in Figure 3.12.

We observe that as k increases, the intracellular pH decreases in the aerobic

region (V ≥ V g) and increases in the glycolytic region (V < V g) due to the in-

tracellular H+-ions being transferred from the glycolytic region (where they are

produced in excess) to the aerobic region. As a result, extracellular pH increases

in the V < V g region (due to there being less intracellular H+-ions to be pumped

outside the cell via the NHE or MCT) and decreases in the V ≥ V g region (due

to there being more intracellular H+-ions being pumped outside the cell). Extra-

cellular lactate, however, remains largely insensitive which is attributed to their

leakage to the surrounding tissue. Note that the concentrations of extracellular lac-

tate and pH become spatially correlated (compare (a)I with (a)IV in Figure 3.12),

contrary to the hypothesis provided in [94, 183] which associates the activity of

the H+ intercellular gap junctions with the lack of correlation between low pHe

and high extracellular lactate. Also, intracellular lactate decreases in the V ≥ V g

region (due to there being more intracellular H+-ions being pumped outside the

cell along with lactate via the MCTs) and increases in the V < V g region (due to

there being less intracellular H+-ions pumped outside the cell via the MCTs).

Furthermore, a reversed pH gradient is observed in the glycolytic region, which

is due to the intracellular H+-ions being transferred from the glycolytic region

(where they are produced in excess) to the aerobic region and thus lowering the

levels of intracellular H+-ions in the glycolytic region and raising it in the aerobic

region. Note that a sufficiently high value of k is required, > O(106), to see a

significant effect on the metabolite gradients (see Figure 3.12).
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Figure 3.12: Caption on following page.
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Figure 3.12: (Previous page). Plots showing how the spatial profile of: (a)I pH∗
I and

(a)III L∗
I are affected as the rate of H+ transfer between cells, k, is varied and how

little (a)II pH∗
E and (a)IV L∗

E profiles change in comparison. (b)I shows hydrogen ion

gradient, (b)II lactate gradient, (b)III the MCT activity and (b)IV the NHE activity.

Parameter values are the same as in the caption to Figure 3.3.

3.4 Discussion and conclusions

The motivation of this chapter is to incorporate more realism into the modelling

framework. By giving the tumour a spatial structure, the aim is to investigate if

there is a spatial correlation between extracellular lactate and extracellular pH and

if a reversed cellular pH gradient can be achieved with more realistic parameter

values. Also, we include intercellular gap junctions and a heterogeneous expression

of NHEs and MCTs, as suggested by experimentation, and study the effects.

Acidic extracellular environments are often-noted in solid tumours [149, 195,

218, 220]. It has long been anticipated that this low pH is largely due to lactic acid

production by glycolytic tumours. The diagnostic significance of lactate has been

implicated in numerous studies showing an association between high lactate levels

and the incidence of metastasis [207, 246]. We have demonstrated in this model

that areas with high extracellular lactate can coincide with high extracellular H+-

ion concentrations. However, when the rate of removal of H+-ions and lactate by

blood vessels is reduced, lower extracellular lactate concentrations can exist where

extracellular H+-ion concentrations are at their highest level. This result suggests

a role for blood vessel perfusion rates in determining the spatial correlation of

extracellular pH and lactate. Tumour blood vessels are chaotic and an order of

magnitude leakier than normal vessels [145]. This is known to result in an in-
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creased interstitial fluid pressure inside tumours which can hamper the uptake of

therapeutic agents [187]. Recently, Martin et al. [141] extended the acid-mediated

tumour invasion model [71] by including the effect of vessel permeability on the

acid gradient from the centre of the tumour to the normal tissue. They find that

leaky vasculature (those with high vessel permeability) can lead to an overall acid-

ification of the normal tissue further from the tumour boundary, and our present

study seems not to contradict this (if we take non-glycolytic cells to be representa-

tives of normal cells). Moreover, our results are supported by Parkins et al. [168]

who studied the relationship between extracellular lactate and extracellular pH in

murine tumours after vascular occlusion (clamping) followed by reperfusion. Their

study shows that, under conditions of severe stress, resulting in abolition of energy

stores and cell death, the extracellular pH continues to decline in the absence of a

corresponding accumulation of extracellular lactate [168].

The motivation of our work is to also determine the relative importance and

inter-relationships between some of the main parameters involved in the spatial re-

versed cellular pH gradient, concentrating in particular on the influence of changes

in tissue and blood lactate levels, background production of H+-ions and the ac-

tivity of the MCTs and NHEs. We find that simply taking lower values of blood

lactate levels gives a reversed pH gradient throughout the spatial domain indepen-

dent of the levels of tissue lactate. This is because, with lower blood lactate values,

extracellular lactate leaks into the blood vessel until the level of lactate in the tis-

sue equates that in the blood vessel. Hence, the lower the blood lactate level is,

the lower the tissue extracellular lactate becomes, which in turn drives the MCTs

to export lactate and H+-ions outside the cell at a higher rate due to the larger

lactate gradient. Likewise, we have found the existence of a negative pH gradient

to be strongly dependent on the combined activity of the MCTs and other sources

of H+-ion. The ability of extracellular H+-ions to leak into the neighbouring blood

vessel and to diffuse across the tissue from higher to lower concentrations means

that the reversed cellular pH gradient occurs at more realistic values and is less
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alkaline (pHe = 6.5–7.4) than that observed in the closed ODE system studied

in Chapter 2 (pHe = 7.5–9.5). In addition, we have found the pH gradient to be

always reversed no matter how high or low the NHE activity is, provided that the

level of other sources of H+-ions is below a certain threshold.

Recent experiments carried out by Grillon et al. [94] on C6 rat gliomas reveal

that the relative intensity of NHEs peak at a distance of 0.33±0.027 mm away

from the edge of the tumour and that the intensity of MCTs is also up-regulated

at 1.05±0.14 mm from the edge. The inclusion of heterogeneous expressions of the

NHEs and the MCTs as in [94] has no qualitative effect on the model behaviour,

but a considerable increase in their rate of activity can have some effect on intra-

cellular levels of lactate and intracellular pH. Quantitatively, this has a significant

difference to the intracellular levels of lactate which is attributed to the activity

of the MCT. Also, there is a relatively small effect on the intracellular pH. Based

on our model, we therefore suggest that an up-regulated expression of NHE and

MCT in the growing rim of a carcinoma can give rise to a higher intracellular pH

(which is known to aid tumour cell migration [139] and proliferation [85]) and a

lower intracellular lactate (in regions further away from the tumour edge) but may

not result in a reversed cellular pH gradient or a redistribution of protons away

from the glycolytic source.

On the other hand, including intercellular gap junction communication can

give rise to a reversed cellular pH gradient. Note that in order for this to hap-

pen, intercellular gap H+-ion transfer needs to be more rapid compared to the

other transporter processes in the model. This results in intracellular H+-ions

being transferred from the glycolytic region (where they are produced in excess)

to the aerobic region and thus lowering the levels of intracellular H+-ions in the

glycolytic region and raising it in the aerobic region. Moreover, we observe that

the intercellular H+-ion gap junctions can influence the levels of extracellular pH

in the model. There are numerous studies suggesting that gap junction intercellu-

lar communication (GJIC) is altered by changes in the extracellular pH [201, 255].
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However, there is no evidence to suggest that intercellular-gap junctions can change

the extracellular acidity of a cell and it would be interesting to test these results

experimentally.



Chapter 4

A cellular automaton model

examining the effects of H+-ions

and lactate on early tumour

growth

4.1 Introduction

In Chapter 3, we have presented a continuum reaction-diffusion model of pH and

lactate which has provided us with insight into the conditions that give rise to a

spatial reversed cellular pH gradient. It was assumed that all the tumour cells are

of one type and are large in number. In this chapter, however, our aim is to model

the growth of a small number of tumour cells which are supplied with nutrients

from distally located blood vessels. To this end, we use a hybrid cellular automaton

model with reaction-diffusion equations as described in Chapter 3 to describe the

evolution of extracellular metabolites (oxygen, H+-ions and lactate) and discrete

elements describing the individual tumour cells and the interaction of the cells

with each other and the microenvironment. The model is intended to represent a

101
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two dimensional slice through the centre of a three-dimensional avascular tumour

spheroid.

Existing hybrid cellular automaton models have tended to utilise simple reaction-

diffusion differential equations when examining the effect of extracellular pH on

tumour growth (see for example [78, 79, 112, 170]). The main difference between

the model we develop in this chapter and previous models (e.g. [112, 170]) is

that we couple the dynamics of intra- and extracellular pH, as well as the intra-

and extracellular lactate levels. This is achieved by taking explicit account of

the membrane-bound ion transporters (such as the Na+/H+ and lactate/H+ ex-

changers) used to regulate intracellular pH and lactate. In so doing, we are able

to examine the effect of these transporters on the cellular pH gradient and early

tumour growth.

We first assume, in Section 4.3.1, that oxygen is the only metabolite that drives

the growth and phenotypic transformations of the tumour cells. We then allow

oxygen, in Section 4.3.2, to influence a cell’s glycolytic phenotype and assume that

only the extracellular pH drives the growth and transformations of the tumour

cells. In Section 4.3.3, we focus on the effects of intracellular pH on tumour cell

growth and phenotypic transformations. Then, using experimental findings we

allow both oxygen and extracellular pH to drive the simulations in Section 4.3.4.

4.2 Model framework

Our cellular model consists of two spatial scales. At the microscopic scale, a

discrete lattice stochastic model utilising a set of probabilistic rules for cell growth

and death. At the macroscopic scale, a system of partial differential equations

describing the diffusion and transport of extracellular lactate, H+-ions and oxygen.

Both of these are coupled to a system of ordinary differential equations describing

the production, decay and transport of intracellular lactate and H+-ions in each

tumour cell.
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4.2.1 Metabolite fields

We denote by V the oxygen levels that enter the system via the blood vessels

which are located on the perimeter of a regular square domain. We assume that

oxygen diffuses with diffusivity DV throughout the domain and is consumed by

tumour cells at a rate dV (rate per cell), namely

∂V (x, t)

∂t
= DV∇2V (x, t)− dV (x)V (x, t), (4.1)

where, x= (x, y) is the position vector in the simulation space with −L ≤ x ≤ L

and −L ≤ y ≤ L where L is the distance from the tumour centre, and t is

time. Note that dV (x) will be a function of cell phenotype, and is taken to be

equal to a constant dV (the value of which varies with phenotype defined below) if

viable cell is present at x = (x, y) and zero otherwise. As the tumour grows, the

supply of oxygen by diffusion to the central core of the growing mass decreases,

resulting in cells becoming starved of oxygen and incapable of proliferating (a

cell state termed as quiescent, see Figure 4.1 for an illustration). Quiescent cells

are generally characterised by a lower metabolic rate [67] which is represented in

our model by a lower oxygen consumption rate, dV (see below). The extent of

the decrease is not well determined experimentally [67], but we find that the key

qualitative features of the solutions are largely insensitive to this factor and so for

simplicity we assume a decrease by a factor of two, namely,

dV = dc ×







1, ∀x = proliferative cells,

1/2, ∀x = quiescent cells,

0, ∀x = necrotic cells or empty space,

where dc corresponds to the base oxygen consumption rate in proliferating tumour

cells. While some tumour cells have been shown to metabolise using anaerobic

glycolysis instead of aerobic despite a plentiful supply of oxygen [74], here we

assume that only if oxygen levels become low do tumour cells undergo glycolysis.

The result is an excess production of hydrogen ions and lactate which must then
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Figure 4.1: Transverse section of a T47D multicellular tumour spheroid shows a

characteristic viable rim consisting of proliferative (red) and quiescent cells (blue), and

an inner necrotic core (brown). Spheroid diameter∼1200 µm. Image courtesy of [164].

be exported extracellularly in regions of cellular glycolysis via several membrane

bound transporters to ensure cell viability. This is represented by the following

ordinary differential equation for a cell located at position x,

dHI(x, t)

dt
=

2ΦGH(V g − V (x, t))

HI(x, t) + b
+ d1 + φ(x, t), (4.2)

where,

φ(x, t) = lH(HE (x, t)−HI(x, t))− f1H (HI(x, t)−HE(x, t)) (HI(x, t)−HE(x, t))

− k3 (HI(x, t)LI(x, t)−HE(x, t)LE(x, t)) .

Recall that ΦG represents the rate at which a tumour cell glycolytically produces

H+-ions and lactate; d1 denotes the background production of H+-ions; lH denotes

the rate of intracellular leakage of H+-ions from the extracellular space; f1 denotes

the NHE rate activity and k3 represents the MCT rate activity.

Extracellular hydrogen ions diffuse with diffusivity DH and are governed by

the following reaction-diffusion equation

∂HE(x, t)

∂t
= DH∇2HE(x, t)− φ(x, t). (4.3)
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Note that in this equation we take

φ(x, t) =







φ(x, t), if a cell is present

0, otherwise (i.e. empty space or a dead cell)

so that there is no transporter activity at locations where there are dead cells or

empty space. Similarly, tumour cells produce excess lactate as a by-product of

glycolysis which are exported outside the cell via the MCTs to avoid cell toxicity

or is converted back to glucose. This is represented for a cell at location x via,

dLI(x, t)

dt
=

2ΦGH(V g − V (x, t))

HI(x, t) + b
+ d4 − α4LI(x, t)− θ(x, t), (4.4)

where,

θ(x, t) = k3 (HI(x, t)LI(x, t)−HE(x, t)LE(x, t)) .

Recall that d4 and α4 represent the rate of lactate background production and

decay respectively.

Extracellular lactate also diffuses (with diffusion co-efficient DL) and is trans-

ported via the MCTs in the form,

∂LE(x, t)

∂t
= DL∇2LE(x, t) + θ(x, t). (4.5)

Again, as above, in this equation we take

θ(x, t) =







θ(x, t), if a cell is present at x

0, otherwise (i.e. empty space or a dead cell)

to prevent lactate influx/efflux at spatial locations of dead cells or empty space.

We take fixed boundary conditions. On this perimeter, we fix O2, HE and LE

at their normal physiological levels: V (x, t) = V 0 mol/l, HE(x, t) = H0
E mol/l,

LE(x, t) = L0
E mol/l. Our initial conditions for O2, HI , HE, LI and LE are, re-

spectively, V (x, 0) = V 0 mol/l, HI(x, 0) = H0
I mol/l, HE(x, 0) = H0

E mol/l,

LI(x, 0) = L0
I mol/l,LE(x, 0) = L0

E mol/l.
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4.2.2 Automaton rules

In the automaton framework, we discretise the [−L, L] × [−L, L] domain by an

N ×N regular square grid. Each grid site can either be occupied by a tumour cell

(proliferative, quiescent or necrotic) or it can be empty. Initially, we introduce a

population of sixteen tumour cells at the centre of the lattice. At each time step,

the state of each grid cell evolves according to predefined automaton rules: (a) if

the grid cell is unoccupied, it does not evolve directly but may evolve indirectly if

a daughter cell is placed into it by a neighbouring proliferative tumour cell; (b) if

the grid cell is occupied, then the phenotype of the occupying tumour cell will be

altered depending on environmental conditions, such as the levels of oxygen and

acidity. We update the automaton according to the following rules:

Proliferation

At each time step, we loop over each tumour cell and check if oxygen levels at the

cell locations are permissive for cell division, i.e. if oxygen level (V ) is bigger than

or equal to a predefined quiescence threshold, V q.

For each tumour cell such that V ≥ V q at its location, we then examine the

state of the neighbouring sites in the von Neumann neighbourhood of the cell (i.e.

the four cells orthogonally surrounding a central cell). If there are any empty sites

in this local neighbourhood, we then choose one of these sites randomly and insert

a daughter cell in that site provided that the time since the last division of that

cell exceeds a predefined average cell cycle time, Tσ.

Cell state

Almost 60 years ago, the first indication that hypoxia (low oxygen) exists in tu-

mours was observed by Thomlinson and Gray [228] in histological studies of human

lung adenocarcinomas. Since then, many studies have shown that hypoxic cells are

present in most solid tumours, such as, melanomas [124], prostate cancer [152], in-



4.2. MODEL FRAMEWORK 107

vasive breast cancer [229] and non-small cell lung cancer [225]. It is well-established

that hypoxia alters cells progression through the cell cycle [69]. Whereas normal

cells undergo apoptosis when faced with intensive prolonged hypoxia, tumour cells

are shown to be able to resist for longer and enter into a quiescent state [26, 31].

At each time step in our model, we update the state of each tumour cell according

to the level of oxygen. If oxygen concentration is lower than the value we predefine

for quiescence, Vq, but above that which we define for necrosis, Vn, then we set the

cell state to quiescent. If the oxygen concentration is lower than the value set for

necrosis, we set the cell state to dead. Otherwise, we leave the state of the cell to

proliferative. Note that once a cell dies it is no longer updated but still occupies a

grid point. The reason for this is that when cell death occurs by necrosis the cell

keeps its shape for a period of time and thus still occupies a physical space during

this period [131].

pH effects on phenotype and proliferation

As well as being dependent on oxygen availability, cell division and phenotypic

transformations are also influenced by intracellular and extracellular pH [84]. In

the simulations in this chapter we either focus just on the effects of oxygen (and

ignore the effects of pH on cell phenotype and proliferation) or we include pH

effects. We will vary whether it is pHI or pHE that drives the cell proliferation

and cell phenotype transformations in our simulations. If pHE (or pHI) is above

or equal to a quiescence threshold level, which we define as pHq
E (or pHq

I), then

we allow the cell to proliferate. If the pHE (or pHI) is lower than or equal to a

necrotic threshold, which we define as pHn
E (or pHn

I ), the cell dies. Otherwise the

cell becomes quiescent.

An overview of the automaton process is shown in Figure 4.2 when growth and

phenotypic transformations are dependent only on oxygen levels.
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start time counter

update time counter
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no
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cells become necroticcells become quiescent

solve for V,HE, LE , HI , LI
given the current cell states

for each tumour cell:

is V ≥ Vq?

is Vn < V < Vq? V ≤ Vn

is there an empty site
in the cells von Neumann

neighbourhood?

is clock count≥ Tσ?

cell cannot proliferate

select one of the empty sites randomly and occupy with a daughter cell

t = t + ∆t

Figure 4.2: Schematic representation of the automaton process showing the effects of

oxygen. Note that by replacing ‘V ’ with ‘HI ’ or ‘HE ’ in the above rules, one can get

similar automaton process for the effects of intra- and extracellular H+-ions. See main

text for full details.
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Non-dimensionalising

Note that the average doubling time of a tumour cell is of the order of 10–24

hours [39] which can vary depending on tumour cell type. The diffusion times

for the metabolites in our model (lactate, hydrogen ions and oxygen), on the

other hand, are of the order of 1–10 seconds (e.g. with mean intervessel distance,

∆x = 10−2cm, and lactic acid diffusion constant, DL = 1.08 × 10−5 cm−2s−1, the

diffusion time is given by ∆τ = ∆x2/DL = 9.3 seconds [170]). Under the timescale

of interest (tumour cell growth∼ days, chemical reaction/diffusion∼ hours), we can

therefore assume quasi-steady conditions for oxygen, hydrogen ions and lactate,

so that the time derivatives in (4.1)–(4.5) can be set to zero. To facilitate our

numerical study of the model, we also non-dimensionalise by letting Ṽ = V/V g,

and as in the previous chapters we take

x̃ =

√
α4

DH
x, H̃I =

HI

b
, H̃E =

HE

b
, L̃I =

α4LI
d4

, L̃E =
α4LE
d4

.

The leading order quasi-steady dimensionless equations read

0 = ∇2Ṽ (x̃)− d̃V Ṽ (x̃), (4.6)

0 =
2Φ̃GψH(1− Ṽ )

H̃I(x̃) + 1
+ d̃1 + φ̃(x̃), (4.7)

0 = ∇2H̃E(x̃)− φ̃(x̃), (4.8)

0 =
2Φ̃GH(1− Ṽ )

H̃I(x̃) + 1
+ 1− L̃I(x̃)− θ̃(x̃), (4.9)

0 = ∇2L̃E(x̃) + D̃HLθ̃(x̃), (4.10)
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where,

θ̃ = k̃3(H̃IL̃I − H̃EL̃E),

φ̃ = l̃H(H̃E − H̃I)− f̃1H(H̃I − H̃E)(H̃I − H̃E)− k̃3ψ(H̃IL̃I − H̃EL̃E),

D̃HL =
DH

DL
, l̃H =

lH
α4
, f̃1 =

f1
α4
, k̃3 =

k3b

α4
,

Φ̃G =
ΦG

bd4
, d̃1 =

d1
bα4

, ψ =
d4
bα4

, d̃V =
DHdV
DV α4

.

The initial and boundary parameters become

H̃0
I =

H0
I

b
, H̃0

E =
H0
E

b
, L̃0

I =
α4L

0
I

d4
, L̃0

E =
α4L

0
E

d4
, Ṽ 0 =

V 0

V g
.

Recall that equations (4.7) and (4.9) are only valid at spatial locations of viable

cells (i.e. proliferative, quiescent). So that φ̃(x̃) and θ̃(x̃) in equations (4.8) and

(4.10) are set to zero where there are necrotic cells or empty space. Similarly, d̃V

in equations (4.6) is set to zero where there are necrotic cells or empty space.

At each time step, we solve the algebraic equations in (4.6)–(4.10) simultane-

ously given the previous cell states (proliferative, quiescent, dead).

4.2.3 Parameter estimation

We are able to estimate some of the new model parameters from the literature. A

study by Kallinowski et al. [113] finds that the oxygen consumption rate of L929

and DS-carcinosarcoma cells in vitro and in vivo lie within the range of 0.10–0.83

fmol/s/cell. Using the fact that one mole contains 1015 femtomole [171] and one cell

has a typical volume of approximately 10−12 litres [131], the oxygen consumption

rate becomes 1×10−4 – 8.3 × 10−3 mol/l/s. To convert from mol/l/s to s−1, we

use the fact that one mole of oxygen is equivalent to 26.2 litres of oxygen [127], so

that dc becomes 2.63× 10−3 – 21.83×10−3 s−1. Typically, cells become hypoxic if

the oxygen partial pressure falls below 10 mmHg [2]. We convert this value into
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mol/l using the conversion rates in [162] to get Vq = 1.25 × 10−5 mol/l. A study

by Casciari et al. [39] finds that oxygen levels below 8.2×10−6 mol/l (at pH 6.6)

inhibits cell growth of EMT6IRo mouse mammary tumour cells and so we take

this value to be the minimum oxygen concentration for cell survival, Vn.

As well as being dependent on oxygen, virtually all biological processes are pH

sensitive, for example, glycolysis, protein synthesis, DNA synthesis, are all permis-

sive at a specific pH range and a slight deviation from the norm has a detrimental

effect on their functionality [34, 123]. Low intracellular pH is a hallmark of non-

proliferative cells [85, 180] and a rapid increase in pHI may be vital to bring these

cells from a quiescent state to a proliferative state [137]. It has been shown that a

pHI threshold of ∼ 7.2 for quiescence exists, below which growth factors cannot set

the transformation of fibroblasts back into proliferative [180]. Intracellular acid-

ification in mammalian cells undergoing apoptosis was first observed about two

decades ago [15] and since then, several studies have confirmed that this is a com-

mon apoptotic characteristic. Although apoptosis and necrosis are two separate

modes of cell death [262] and since we are not concerned with the morphological

or chemical changes that occur to cells following their death (which distinguishes

necrosis from apoptosis), we adopt apoptotic values for our model. A study by

Park et al. [167] shows that the intracellular pH of HL-60 Human Leukemia cells

undergoing apoptosis lies between 6.6–6.9 with a corresponding extracellular pH

of 6.2–6.4. We denote these values by pHn
I and pHn

E respectively. Along with Patel

et al. [170] we use a quiescence threshold of pHq
E = 6.4 when we consider effects

due to extracellular pH.

We simulate the model on a 200×200 square grid where the tumour tissue

under consideration is surrounded by a blood vessel with optimal oxygen concen-

tration, V 0, of 2.8 × 10−3 mol/l [193]. In dimensionless form: Ṽ 0 = 22.4, H̃0
I =

0.6309, L̃0
I = 1, H̃0

E = 0.6309, L̃0
E = 1. Assuming that the diameter of each cell

in this model is of the order of 10 µm, the 200×200 domain corresponds to a

physical size of 2 mm. The parameter values used in the model are summarised in
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Table 4.1: (a) Model parameter values which appear in equations (4.1)–(4.5). (b) The

tildes represent the non-dimensional values used in (4.6)–(4.10).

(a) (b)

Description Symbol Value Units Ref.

O2 diffusion co-efficient DV 1.82×10−5 cm2s−1 [238]

H+ diffusion co-efficient DH 1.1×10−5 cm2s−1 [53]

Lactate diffusion co-efficientDL 1.08×10−5 cm2s−1 [127]

O2 consumption rate dc 2.6×10−3 s−1 [113]

Necrosis O2 threshold Vn 8.2× 10−6 mol/l [39]

Cell hypoxia V g, Vq 1.25×10−5 mol/l [236]

Necrosis pHi threshold pHn
I 6.6–6.9 mol/l [167]

Necrosis pHe threshold pHn
E 6.2–6.4 mol/l [170]

Quiescence pHi threshold pHq
I 7.2 mol/l [180]

Quiescence pHe threshold pHq
E 6.4 mol/l [170]

Parameter Value

D̃HL 1

d̃V 0.0016/α4

Ṽq 1

Ṽn 0.65

H̃q
I 0.63

H̃n
I 2.51

H̃q
E 3.98

H̃n
E 6.30

Table 4.1. We will work with the non-dimensional model hereafter but drop the

tildes for notational convenience. We discretise the spatial derivatives in equations

(4.6), (4.8) and (4.10) on the N ×N (200× 200) cell grid and solve the resulting

systems of algebraic coupled equations using ‘backslash’ in Matlab.

4.3 Model results

We begin by presenting our model results in the case where cellular growth and

phenotypic change depend solely on oxygen levels. We later allow cellular growth

and phenotypic change to depend also on extracellular and intracellular H+-ions.

We focus on the effects of various key parameters on tumour morphology and

cellular pH gradient and, in particular, examine whether varying activities of the
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NHE or MCT transporters has any effect at this early stage of tumour growth.

4.3.1 Effect of oxygen on tumour growth

In this section, we neglect any pH effects on cell growth and phenotypic transfor-

mations and allow only oxygen to drive tumour growth and cell state. Due to the

lack of available data on α4, we begin by estimating dV (= 0.0016/α4) by fitting

our model output to the experimental results [Personal communication with Craig

Murdoch, School of Dentistry, University of Sheffield, T47D breast cancer cell line]

shown in Figure 4.3. A comparison between our simulation and this experimental

data is shown in Figure 4.4. It is clear that the viable rim size in our model does

not match very well with the experimental results for early time which is, in part,

due to the empty spaces formed inside the tumour mass at the initial stage of the

growth (see Figure 4.3(a)). Our simulated tumour, however, has no intratumoural

empty spaces at this early stage and as a result we have a smaller radius compared

to the experimental results. Moreover, as the necrotic radius becomes bigger, our

simulated viable rim remains roughly constant in size compared to the experimen-

tal rim which decreases. It has been previously suggested that necrotic cells secrete

toxic chemicals that act as growth or viability inhibitors which diffuse from the

core to the edge of the tumour and play a part in bringing tumour growth to a

saturation level [66]. It is possible that such an effect could explain the observed

differences between the data and our simulations. Our simulated tumour shows a

three layered structure (see Figure 4.5) comparable to that typically observed in

an avascular tumour that does not possess a blood supply (as shown in Figure 4.1).

Figure 4.6 shows how the simulated tumour in our model does not reach a sat-

uration level with time but continues to grow linearly. This is because although

oxygen is consumed by the viable cells and is diminished in the inner core of the

spheroid (see Figure 4.7), oxygen levels at the outer layer of the tumour mass are

still permissive for cell proliferation. Note that the best fit shown in Figure 4.3 is

obtained with a value of 750 for dV .
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Figure 4.3: (a) A snapshot of T47D breast cancer growth line at day one (diameter

500µm) shows intratumoral empty spaces [Craig Murdoch, School of Dentistry,

University of Sheffield, Personal communication]. (b) The evolution of the viable rim

(circles) and necrotic radius (triangles) over a period of 26 days of the T47D breast

cancer shown in (a).
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Figure 4.4: Comparison of our numerical solution (—◦—,—△—) to the experimental

data (· · · ◦ · · · ,· · · △ · · · ) presented in Figure 4.3. Our numerical plot corresponds to

the mean of 10 simulations with standard deviations at 20 time intervals {0, 0, 0, 0,
0.98, 1.08, 1.07, 1.09, 1.00, 1.23, 1.18, 1.31, 1.28 1.21, 1.42, 1.00, 1.09, 1.27, 1.40, 1.19}
for the necrotic radius and {2.12, 2.03, 1.53, 1.76, 2.16, 2.04, 1.55, 1.65, 1.69, 2.08,

1.18, 1.65, 1.17, 1.58, 1.51, 1.58, 1.42, 0.99, 0.99, 1.70} for the viable rim. Parameter

values are as in Table 4.1 and with dV = 750, N = 200, L = 0.02. Note that the best

comparison between the data and the simulations is achieved when one simulation time

step is taken to be roughly five hours.
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Figure 4.5: Plots showing (a) a layered tumour comprised of necrotic (dark red),

quiescent (yellow) and proliferating (blue) tumour cells. Empty space is represented as

white. The corresponding oxygen profile is shown in (b). The tumour centre is desig-

nated as the 0 point on the x and y−axis. After 26 days the tumour reaches a radius of

765 µm with a total number of 13,000 cells. Parameter values: initial number of tumour

cells=16, Vq = 1, Vn = 0.65, V 0 = 22.4, dV = 750, N = 200, L = 0.02, t = 180, Tσ = 12.
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Figure 4.6: Plots of simulation output showing how: (a) the size of the viable rim

and the necrotic core change with time; (b) the total number of cells within the tumour

spheroid continues to increase and does not reach a saturation level; (c) the onset of

necrosis occurs at a tumour radius of ∼ 250 µm (in agreement with [228]) and continues

to increase in size. Parameter values are as given in the caption to Figure 4.5.
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Figure 4.7: Oxygen concentration along row 100 of the 200 × 200 grid at: (——, day

6), (− − −, day 11) and (− · −·, day 19). Oxygen levels decrease as time increases due

to consumption by the rapidly dividing cells. The lowest concentration is found at the

centre of the tumour spheroid. Parameter values are as given in the caption to Figure

4.5.

4.3.1.1 Effect of parameter variations on tumour morphology

Metastasis is when a tumour cell leaves the primary tumour mass and colonises

in a neighbouring tissue [17]. This is a sign of a high grade invasive tumour

as established by pathological specimens [68]. Moreover, the irregular finger-like

projections (as seen in Figure 4.8) or completely disconnected regions of tumour

cells are attributable to aggressive tumours compared to more benign ones which

are usually distinguished by a smooth non-invasive edge [60]. We illustrate in

Figure 4.9 an example of this feature obtained simply by increasing the value of

the dimensionless oxygen consumption rate, d̃V , which can be written in terms of
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dimensional parameters as d̃V = DHdV /DV α4. A large d̃V could then be a result

of one, or, a combination of the following: 1) an increase in oxygen consumption

rate, dV ; 2) a decrease in oxygen diffusion rate, DV ; 3) an increase in extracellular

H+-ions diffusion rate, DH ; 4) a decrease in the rate of lactate decay/conversion,

α4. Biologically, this implies that high oxygen-consuming tumour cells can possibly

give rise to a tumour with a “fingering” morphology. Alternatively, an aggressive

morphology can be attained if the diffusion rate of extracellular H+-ions is high

or the tumour cells are not oxygenated well-enough to allow the conversion of

intracellular lactate to glucose or pyruvate.

erimen

Figure 4.8: Multi-cellular tumour spheroid (MCS) gel assay showing multiple pro-

jections of “fingering”-like invasion pathways (magnification:×200). Image courtesy

of [115].

This is because as oxygen is utilised by proliferating cells in the outermost layer

of the spheroid, less oxygen is left in the innermost region and so tumour cells

become quiescent or die if oxygen levels become too intolerable. This means that

higher d̃V implies an earlier onset of necrosis; the larger the necrotic core; and the

smaller the viable rim. Rough tumour edges then form due to there being fewer
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proliferative cells along the tumour border than there are necrotic cells (which

are incapable of proliferating). Note that although the tumour develops rough

“fingered” edges as d̃V increases, the necrotic zone is large and the number of

proliferating and quiescent cells is small suggesting that one should not only focus

on the morphology of the invading mass to predict the aggressiveness, but also to

the type of cells comprising it.

Our results are in-line with previous continuum (e.g. see [136]) and discrete-

continuum models (e.g. see [78]) which study the effect of tumour microenviron-

ment on tumour growth. More specifically, Gerlee & Anderson [78] predict that

a low oxygen concentration in the tissue gives rise to a tumour with a fingered

morphology, while a high oxygen concentration in the tissue gives rise to a tumour

with a round morphology. Also, Macklin & Lowengrub [136] predict that tissue

invasion via fragmentation can be caused by a hypoxic microenvironment.
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(a) d̃V = 600 (b) d̃V = 1200 (c) d̃V = 1800

(d) d̃V = 2100 (e) d̃V = 2400 (f) d̃V = 3000

Figure 4.9: Tumour morphology changes as the dimensionless oxygen consumption

rate (d̃V ) is varied. Note also how the thickness of the protruding “fingers” change

as d̃V varies. Axes: space x, y (mm). Colouration: blue (proliferating cells), yellow

(quiescent cells), dark red (necrotic material), white (empty space). Parameter values:

Vq = 1, Vn = 0.65, V 0 = 22.4, t = 26 days in each simulation.

4.3.2 Effect of extracellular H+ ions on tumour growth

In this section, we remove the effects of oxygen on cell proliferation and phenotypic

transformations and instead focus on the effects of extracellular pH. That is, we

take cellular proliferation and phenotypic transformations to depend solely on the

extracellular levels of H+-ions and update the state of each cell as mentioned in

Section 4.2.2. Note that oxygen levels, however, still play a role in our simulations
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in determining whether a tumour cell undergoes anaerobic glycolysis or not, but

does not directly influence cell growth or phenotypic change. A typical simulation

result in this case is shown in Figure 4.10 with the corresponding temporal mean

(over the viable cells) of pH and lactate shown in Figure 4.11. Tumour cells which

are located in the innermost region of the spheroid become glycolytic (enclosed by a

black curve in the left hand panel of Figure 4.10) when oxygen levels decrease below

the glycolytic threshold (Vq) which in turn lowers pHI and pHE , and increases

LI and LE in this region because of excess production of H+-ions and lactate.

Note that the spatial concentration of extracellular lactate is roughly homogeneous

due to the estimated dimensionless diffusion co-efficient value being low (DLH =

DH/DL ∼ 1).
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Figure 4.10: Plots with cellular growth and phenotypic transformations entirely

dependent on extracellular H+-ions. A tumour comprised of only proliferative cells

is formed, with an inner hypoxic (glycolytic) region, compared to the three layered

structure shown in Figure 4.5. Parameter values are as given in the caption to Figure 4.5

but with also pHqE = 6.4, pHnE = 6.2, H0
I = 0.39,H0

E = 0.39, L0
I = 1, L0

E = 1.
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Figure 4.11: Plots showing the mean concentrations of (a) oxygen, (b and c) pH

and (d and e) lactate over the viable cells in the spheroid when cellular growth and

phenotypic change are entirely dependent on the extracellular levels of H+-ions. Note

that the mean cellular pH gradient (pHE-pHI) shown in (f) is positive. The grey shades

represent the standard deviations. We observe that the mean pH decreases and lactate

increases rapidly when oxygen levels become low (roughly at day 9) because of the rise

in the glycolytic production of H+-ions.
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4.3.2.1 Effect of parameter variation on transmembrane pH gradient

and tumour morphology

In this section, we vary some of the key parameters in our model and observe

the effect on tumour morphology and cellular pH gradient. Since we use three-

dimensional tumour spheroid studies to estimate the quiescence and necrosis thresh-

old and our model is only a two-dimensional representative, we begin by varying

these thresholds. We show the effect of varying the quiescence threshold, pHq
E , on

tumour morphology and cellular pH gradient in Figure 4.12. We observe that as

pHq
E is increased from the base value (i.e. from pHq

E = 6.40) quiescent cells start

to appear and the tumour develops a “fingering” morphology. This is because a

high pHq
E means that the tumour cells are less resistant to extracellular acidity

and quickly become quiescent instead of proliferating. The cellular pH gradient

remains positive and largely the same across the various morphologies shown.

We now vary the extracellular pH necrosis threshold level, pHn
E , and show

the effect on tumour morphology and cellular pH gradient in Figure 4.13. Note

that if we assume the base value for pHq
E (i.e. pHq

E = 6.40) and vary pHn
E , the

tumour morphology does not change. This is because the extracellular pH in our

model does not go below 6.4. However if we choose pHq
E = 6.98 and vary pHn

E

we see from Figure 4.13 that the tumour starts to develop a necrotic zone when

pHn
E is significantly increased. This is because increasing pHn

E means that the

tumour cells become less resistant to extracellular acidosis and die quickly instead

of proliferating or becoming quiescent. The cellular pH gradient remains positive

and largely the same as that shown in Figure 4.12.

Recall that ΦG represents the rate at which intracellular hydrogen ions are

produced glycolytically when oxygen concentrations are low. We observe from

Figure 4.14 that increasing ΦG results in the appearance of quiescent and necrotic

cells. This is because as ΦG increases, the production of intracellular H+-ions from

anaerobic glycolysis increases which are then exported outside the cell and as a
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result raise the levels of extracellular H+-ions. This then results in cells quickly

becoming necrotic or quiescent. Note that the cellular pH gradient remains positive

but increases with increasing rate of glycolysis which is to be expected.

We also observe that as the background production of intracellular H+-ions (d1)

in tumour cells increases, the tumour changes from that with a “compact” well-

rounded edges to one exhibiting several “fingers” (see Figure 4.15). However, a

considerable increase in the background production of intracellular H+-ions (other

than from glycolysis) is needed to achieve this. The cellular pH gradient remains

positive but increases with increasing values of d1 which is to be expected since

there are more intracellular H+-ions available.
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radius

Figure 4.12: Plots showing the effect of increasing the extracellular pH quiescence

threshold level, pHqE, on tumour morphology (top panel) and cellular H+ gradient

(bottom panel, HI − HE in dimensionless form). Colouration is the same as in

Figure 4.9. Here, pHnE = 6.2 and the remaining parameter values are fixed as in the

caption to Figure 4.10. Note that the pH gradient slightly decreases as the tumour

develops a “fingering” morphology.
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Figure 4.13: Plots showing the effect of increasing the extracellular pH necrosis

threshold level, pHnE, on tumour morphology (top panel) and cellular H+ gradient

(bottom panel, HI − HE in dimensionless form). Colouration is the same as in

Figure 4.9. Here, pHqE is chosen to be 6.98 and the remaining parameter values are as

given in the caption to Figure 4.10. ‘N’ denotes necrosis.
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Figure 4.14: Plots showing the effect of increasing the rate of glycolysis, ΦG, on

tumour morphology (top panel) and cellular H+ gradient (bottom panel, HI − HE in

dimensionless form). Colouration is the same as in Figure 4.9. pHq
E = 6.4,pHn

E = 6.2

and the remaining parameter values are as in the caption to Figure 4.10. ‘N’ denotes

necrosis.
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Figure 4.15: Plots showing the effect of increasing the rate of background production

of H+-ions, d1, on tumour morphology (top panel) and cellular H+ gradient (bottom

panel, HI − HE in dimensionless form). pHqE = 6.4,pHq
E = 6.2 and the remaining

parameter values are as in the caption to Figure 4.10. ‘N’ denotes necrosis.

4.3.3 Effect of intracellular H+ ions on tumour growth

In this section, we now allow cellular growth and phenotypic transformations to

depend solely on the levels of intracellular hydrogen ions, and observe any differ-

ences, to the tumour size and cellular pH gradient. Note that we now assume that

neither oxygen nor pHe affects cellular growth or phenotypic change but oxygen

is still assumed to play a role in determining whether a tumour cell undergoes

glycolysis or not as in the previous section. Note, in this case, that with our initial

estimate of the quiescence threshold (i.e. pHq
I = 7.2) and the necrotic threshold

(i.e. pHn
I = 6.6), the initial cluster of cells quickly become quiescent before prolifer-
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ating (see Figure 4.16). So, we lower the pH threshold for quiescence to pHq
I = 6.84

and show a typical simulation with this new threshold level in Figure 4.17 with the

corresponding temporal mean (over the viable cells) of pH and lactate shown in

Figure 4.18. As we can see, the tumour now consists of a typical layered structure

comprising a quiescent core with proliferating cells at the rim.



4.3. MODEL RESULTS 131

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

distance from tumour centre, x(mm)

 

 

L
I

1.0009

1.0009

1.001

1.001

x 10
−3

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

distance from tumour centre, x(mm)

 

 

L
E

1.4

1.4

1.4

1.4

1.4

1.4

1.4

1.4

x 10
−3

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

 

 

pH
I

7.1972

7.1972

7.1973

7.1974

7.1974

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

 

 

pH
E

7.3965

7.397

7.3975

7.398

7.3985

7.399

7.3995

7.4

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

tumour morphology

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

 

 
V

20

20.5

21

21.5

22

necrotic

Figure 4.16: Plots with tumour growth and phenotypic change entirely dependent on

pHI . The tumour cells do not grow but quickly became quiescent (yellow). pHqI = 7.2

and pHnI = 6.6. Remaining parameter values are as shown in the caption to Figure 4.5.
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Figure 4.17: Plots with tumour growth and phenotypic change entirely dependent on

pHI . A layered tumour has formed consisting of quiescent (yellow) and proliferating

(blue) tumour cells. Parameter values are is in the caption to Figure 4.16 but with a

lowered quiescence threshold, pHqI = 6.84.
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Figure 4.18: Plots showing the mean concentrations of (a) oxygen, (b and c) pH and

(d and e) lactate over the viable tumour rim. We also show that the cellular pH gradient

(pHE-pHI shown in (f)) is positive. This is when cellular growth and phenotypic change

is entirely dependent on intracellular H+-ions.
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4.3.3.1 Effect of parameter variation on transmembrane pH gradient

and tumour morphology

As before, we vary some of the key parameters in the model and observe the effect

on tumour morphology and cellular pH gradient, but this time we let the levels of

intracellular pH drive the growth and phenotypic transformation of cells. Note that

the levels of oxygen still play a role in the “glycolytic switch” but not in the growth

and phenotypic transformations of cells. We begin by varying the intracellular pH

threshold for quiescence, pHq
I . We can see from Figure 4.19 that as pHq

I increases,

the tumour develops a fingering morphology. This is because increasing pHq
I means

that cells are less resistant to intracellular acidity and quickly become quiescent

instead of proliferating. Note how the cellular pH gradient becomes smaller when

the “fingers” appear which is due to the tumour mass being smaller in size and

hence cells which are undergoing anaerobic glycolysis are smaller in number (or

none at all for pHq
I = 7.12). Increasing the intracellular pH threshold for necrosis,

pHn
I (see Figure 4.20) gives rise to a “compact” tumour comprised of the three

characteristic layers: necrotic core surrounded by quiescent and proliferative layers.

This is to be expected since a high pHn
I means that cells become less resistant to

an increase in intracellular acidity and die, giving rise to a necrotic core.

Figure 4.21 shows that as the background production of intracellular H+-ions

(d1) increases the tumour begins to develop a quiescent core with some “contorted”

edges. However, compared to when cellular growth and phenotypic transforma-

tions is dependent on extracellular pH, tumour growth is halted as d1 further

increases. Moreover, the cellular pH gradient remains positive but significantly

increases with increasing values of d1, which is to be expected since more intracel-

lular H+-ions are produced which are made available for extrusion extracellularly

via the cellular transporters.

In addition, as the rate of glycolysis, ΦG, increases (see Figure 4.22) the tu-

mour consists of necrotic cells as well as proliferative and quiescent cells with
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the “fingering” morphology becoming more prominent as ΦG is increased further.

Again, the cellular pH gradient remains positive but significantly increases with

increasing values of ΦG, which is to be expected since more intracellular H+-ions

are glycolytically produced at a higher rate when oxygen levels become low.

We also examine the effect of varying the magnitudes of the rate of activity of

the Na+/H+ exchanger, f1, and the lactate/H+ symporter, k3 in Figures 4.23–4.24.

As can be seen from Figure 4.23 the tumour develops a “fingering” morphology

when f1 is low and the pH gradient becomes high but remains positive. However,

as k3 increases the tumour begins to exhibit a reversed cellular pH gradient and

a “compact” morphology consisting of only proliferative cells. The cellular pH

gradient becomes more negative as k3 increases further. This implies that, in our

model, the MCT plays a major role in not only regulating the intracellular pH,

but also in causing a ‘reversed’ cellular pH gradient.
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Figure 4.19: Plots showing the effect of increasing the intracellular pH quiescence

threshold level, pHqI , on tumour morphology (top panel) and cellular H+ gradient

(bottom panel, HI − HE in dimensionless form). Colouration is the same as in

Figure 4.9. Here, pHnI = 6.6 and the remaining parameter values are fixed as in the

caption to Figure 4.16. ‘N’ denotes necrosis.
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Figure 4.20: Plots showing the effect of increasing the intracellular pH necrosis thresh-

old level, pHnI , on tumour morphology (top panel) and cellular H+ gradient (bottom

panel, HI − HE in dimensionless form). Colouration is the same as in Figure 4.9.

Here, pHqI = 6.84 and the remaining parameter values are fixed as in the caption to

Figure 4.16. ‘N’ denotes necrosis.
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Figure 4.21: Plots showing the effect of increasing the background production of

H+-ions, d1, on tumour morphology (top panel) and cellular H+ gradient (bottom

panel, HI −HE in dimensionless form). Colouration is the same as in Figure 4.9. Here,

pHqI = 6.84, pHnI = 6.6 and the remaining parameter values are fixed as in the caption

to Figure 4.16.
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Figure 4.22: Plots showing the effect of increasing the rate of glycolysis, ΦG, on

tumour morphology (top panel) and cellular H+ gradient (bottom panel, HI − HE

in dimensionless form). Colouration is the same as in Figure 4.9. Here, pHqI = 6.84,

pHnI = 6.6 and the remaining parameter values are fixed as in the caption to Figure 4.16.

‘N’ denotes necrosis.
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Figure 4.23: Plots showing the effect of increasing the rate of activity of the Na+/H+

exchanger, f1, on tumour morphology (top panel) and cellular H+ gradient (bottom

panel, HI −HE in dimensionless form). Colouration is the same as in Figure 4.9. Here,

pHqI = 6.84, pHnI = 6.6 and the remaining parameter values are fixed as in the caption

to Figure 4.16.
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Figure 4.24: Plots showing the effect of increasing the rate of activity of the lactate/H+

symporter, k3, on tumour morphology (top panel) and cellular H+ gradient (bottom

panel, HI − HE in dimensionless form). Colouration are the same as in Figure 4.9.

Here, pHqI = 6.84, pHnI = 6.6 and the remaining parameter values are fixed as in the

caption to Figure 4.16.

4.3.4 The combined effect of extracellular H+-ions and oxy-

gen on tumour growth

Guided by experimental findings, we couple the automaton rules derived in Sec-

tion 4.2.2 in order to investigate the combined effect of pHE and O2 on cell prolif-

eration and phenotypic transformations. A study by Casciari et al. [39] in which

the growth rate of EMT6IRo mouse mammary tumour cells is measured at several

values of extracellular pH (pHE 7.25, 6.95, 6.67, 6.60) and under various oxygen
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concentrations ([4.43, 2.32, 0.82]×10−5 mol/l) finds that very low levels of oxy-

gen and pH are required to cease the growth of EMT6IRo cells (i.e. pHE 6.60,

O2 = 8.2 × 10−6 mol/l). See Table 4.2(a) for a summary of their results. In the

context of our model, we infer from their data that if cells take 20 hours or more

to proliferate then they are assumed to be in a quiescent state, greater than 200

hours means a necrotic cell state, otherwise we assume that the cell is proliferative

(see Table 4.2(b)).

In our simulation code, we examine the concentration of oxygen and the ex-

tracellular pH at each cell location, if it falls within the range of values shown in

Table 4.2 then we assign to the cell the appropriate state as indicated. We show

a typical simulation in Figure 4.25 and the corresponding metabolite profiles in

Figure 4.26 for the combined pHE , O2 simulation. We see that by allowing both

oxygen and extracellular pH to influence the evolution of the cells, the tumour

mass consists of a proliferative rim and a quiescent core as before but there ap-

pears to be some gaps within the tumour which could be due to the early onset

of “fingers”. However, these appear to be later masked by the rapid cell division.

The impact on the tumour phenotypical structure is significant relative to when

cells are assumed to be strongly sensitive to oxygen or pHE individually, which is

primarily due to the differing thresholds for quiescence, necrosis and proliferation.

When the tumour cells are taken to be strongly sensitive to oxygen levels, the

tumour mass consists of three layers: proliferative, quiescent and necrotic (e.g. see

Figure 4.5). Whereas when the tumour cells are taken to be strongly sensitive to

the extracellular pH, the tumour mass consists of only proliferative cells (see Fig-

ure 4.10). In terms of tumour phenotypic composition and response to therapies,

it appears that when pHE and oxygen effects are combined we observe a large

inner core of quiescent cells rather than a quiescent layer with a large necrotic

inner core. Quiescent cells are known to be resistant to some chemotherapeutics

(which tend to target highly proliferative cells) and so can often be left untouched

by treatment. The issue is that these quiescent cells can become nourished again
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once the proliferative cells have been therapeutically removed and are often shown

to be aggressive and invasive [151].

Figure 4.26 shows that the metabolic profiles for the combined pHE and O2

simulation is largely the same as that when oxygen or pHE effects are considered

individually. This is because, even with this dual effect, there is still hypoxia and

the subsequent rise in pH and lactate is roughly the same.

Table 4.2: (a) Doubling times (hours) of EMT6/Ro cells grown at various oxygen

concentrations, extracellular pH and a plentiful supply of glucose (5.5×10−3mol/l). Data

taken from [39]. Assuming that cells which take 20 hours or more to double in number

are in a quiescent state, greater than 200 hours means a necrotic cell state, otherwise we

assume that the cell is proliferative and obtain the cell state as shown in (b). ‘P’, ‘Q’

and ‘N’ denote proliferative, quiescent and necrotic cell state respectively.

(a)

24 17 12
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Figure 4.25: Plots showing the profile of the tumour spheroid, oxygen, pH and lactate

at 26 days when cellular growth and phenotypic change are dependent on both extra-

cellular H+-ions and oxygen levels. Parameter values for the phenotypic transformation

of cells in this case are summarised in Table 4.2. Remaining parameter values are as in

Table 4.1.
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Figure 4.26: Plots showing the mean concentration of oxygen, pH and lactate over

the course of tumour growth. We also show that the cellular pH gradient (pHE-pHI)

is positive. Note that cellular growth and phenotypic change are dependent on

extracellular H+-ions and oxygen levels.
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4.3.5 Effect of lactate on transmembrane pH gradient

Recall from our singular perturbation analysis of the outer solution of pH and

lactate in Section 2.4.2 that, to leading order, pHE < pHI (i.e. the pH gradient is

negative) if LI > LE . In this section, we find that by simply taking the value of

extracellular lactate at the boundary of the domain to be lower than some threshold

(see Figure 4.27), we obtain a reversed cellular pH gradient. In Figure 4.27, we

show the proportion of cells in the spheroid exhibiting a reversed cellular pH

gradient when only oxygen (part (a)) or intracellular pH (part (c)) or extracellular

pH (part (b)) drives the growth and phenotypic transformations of the cells. It

is clear that there is no qualitative difference between the figures. We show (in

Figure 4.28) a typical simulation when L0
I and L0

E are chosen such that 50% of cells

are predicted to have a reversed cellular pH gradient. We illustrate the case when

extracellular pH drives the phenotypic change and growth in the simulations. It

is interesting to note that, for some L0
E values, the reversed cellular pH gradient is

spatially organised within the tumour spheroid, with a positive pH gradient in an

intermediate layer within the spheroid (as depicted in Figure 4.28). We suggest

that the reversed pH gradient occurs when lactate outside the cell is decreased

because the activity of the MCT becomes higher (due to LE being low and LI

becoming high when oxygen levels fall below the threshold to initiate glycolysis)

and so more intracellular lactate are exported outside the cell along with H+-ions

and thus the intracellular pH is raised, whilst the extracellular pH remains roughly

constant. This suggests that there is a crucial role for extracellular lactate in not

only determining the cellular pH gradient across the membrane but also the spatial

extent of the pH gradient within the spheroid. And it is clear from Figure 4.27

that this result is independent of the initial intracellular lactate levels.
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Figure 4.27: Plots showing the proportion of tumour cells in the spheroid with a

reversed cellular pH gradient (ie. pHE < pHI) for various initial values of intracellular

lactate, L0
I , and initial (and boundary) values of extracellular lactate, L0

E. This figure

shows the results of one simulation for each L0
I and L0

E. In (a) cellular growth and

phenotypic transformations depend solely on the levels of oxygen (as in Section 4.3.1).

In (b) cellular growth and phenotypic transformations depend solely on extracellular

H+-ions concentrations (as in Section 4.3.2). In (c) cellular growth and phenotypic

transformations depend solely on intracellular H+-ions concentrations (as in Sec-

tion 4.3.3). pHqI = 6.84, pHnI = 6.60, pHqE = 6.20, pHnE = 6.20, dV = 750. Remaining

parameters are the same as in Table 4.1. t = 26 days.
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Figure 4.28: Caption on following page.
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Figure 4.28: (Previous page.) Plots when cellular growth and phenotypic change are

dependent on extracellular H+-ions. A tumour comprised of only proliferating cells

is formed compared to the three layered structure shown in Figure 4.5. A reversed

cellular pH gradient exists (pHE < pHI) in the outermost and innermost region of the

tumour mass with the exclusion of a thin region in-between. Parameter values and

colouration are as in the caption to Figure 4.10 but with L0
E = 0.28. See Figure 4.29 for

the temporal evolution of the metabolites.

4.4 Discussion and conclusions

Our model differs from previous studies mainly in our explicit inclusion of intra-

cellular pH regulatory mechanisms compared to, for example, the study of [170]

where extracellular pH effects are examined but there are no consideration of the

membrane-bound cellular transporters, such as the Na+/H+ exchanger and the

lactate/H+ symporter. These transporters have been shown to be up-regulated in

some tumours and are implicated in tumour growth and invasion [37, 102, 118].

In this respect, our model is the first to investigate the effect of these crucial

membrane transporters, during the early stage of tumour growth, on the tumour

morphology and the cellular pH gradient. This chapter begins by assuming that

tumour growth and phenotypic transformation is sensitive to only the levels of

oxygen. Then in Section 4.3.2, we remove the effect of oxygen on tumour growth

and phenotypic transformation, but still allow oxygen to determine the “glycolytic

switch” of cells, and take cellular growth and phenotypic transformation instead

to be sensitive only on the levels of extracellular pH. In Section 4.3.3 we remove

both the effects of oxygen and the extracellular pH on growth and cell state and

focus instead on the intracellular pH. In Section 4.3.4, we take cellular growth and

phenotypic transformation to depend on both oxygen and extracellular pH.

Our most significant findings in this chapter are that, when tumour cells are
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strongly sensitive to changes in the intracellular pH, a low activity of the NHE

or a high rate of anaerobic glycolysis can give rise to a “fingering” morphology.

This is a new observation which has not been noted before in this context. The

glycolytic phenotype is a characteristic of some human cancers and there is much

biological evidence which has consistently correlated poor prognosis and increased

tumour aggressiveness with an increased glycolytic rate [72, 73]. The effect of the

glycolysis on tumour invasiveness has also been investigated mathematically via

tumour-host interface models [71, 212]. For example, the acid-mediated model by

Gatenby et al. [71] (see Section 1.3.1) predicts a hypocellular interstitial gap at the

tumour-host interface which is thought to be caused by the pH gradient extending

from the tumour into the normal tissue.

Furthermore, we show that as the activity of the MCT increases, when tumour

cells are strongly sensitive to changes in the intracellular pH, all the tumour cells

within the spheroid exhibit a reversed transmembrane pH gradient. This is an in-

teresting result which has not been reported before in any mathematical modelling

framework. Our results are supported by biological postulations in [37, 244] that

the MCT increases the intracellular pH and gives rise to the onset of the acidic

interstitial microenvironment and the reversed transmembrane pH gradient.

The current model has some limitations. Firstly, in reality, tumour growth may

exhibit some strong dependencies on all of pHi, pHe and oxygen, and as such it

would be more biologically reasonable to also allow all of these variables to simulta-

neously influence the growth and phenotypic transformation of cells. The difficulty

in doing this is in finding data to sufficiently model these combined dependencies.

Secondly, one could investigate whether the activity of the membrane-based cellu-

lar transporters (i.e. the NHEs and MCTs) is higher when cells become quiescent

or hypoxic and incorporate this into the model equations. Thirdly, it would be

interesting to investigate whether lactate levels have any effect on tumour growth.
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Figure 4.29: Plots showing the mean concentration of (a) oxygen, (b and c) pH and

(d and e) lactate over the course of the tumour growth in Figure 4.28. We also show

that the mean cellular pH gradient (pHE-pHI shown in (f)) becomes negative as the

tumour grows. Note that in this simulation cellular growth and phenotypic change is

taken to be entirely dependent on extracellular H+-ions. We observe that the mean pH

decreases for a short time (until the 9th day) but decreases because of the rise in the

glycolytic production of H+-ions when oxygen levels become low.



Chapter 5

Modelling tumour cell invasion

using the extended Potts model

5.1 Introduction

In this chapter we use the extended cellular Potts model, based on energy min-

imisation techniques, to model the interactions between tumour cells and the ex-

tracellular matrix under acidic and physiological pH. Such interactions have also

been modelled using a continuum approach, see for example [5, 11]. Unlike our

cellular automaton modelling approach of tumour growth in Chapter 4, here we

explicitly account for cell geometry and the adhesive interactions between cells.

An advantage of this approach is that migrating cells are able to change shape as

they manoeuvre through the matrix [256].

There has been a lot of interest in using the cellular Potts model to understand

different aspects of tumour growth (see for example [7, 112, 177, 200, 210, 233, 234],

a detailed discussion of a selection of these studies can be found in Section 1.3.2).

Inspired by the work of Turner et al. [233] on tumour cell invasion, we begin by

developing a general formalism to reproduce their model results. Tumour inva-

siveness in this model is quantified by measuring the maximum cell penetration

distance into the extracellular matrix at every time step, and, the time at which

152
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a cell reaches a predefined maximal invasion distance. Moreover, the morphology

of the invading tumour mass can be a useful indicator of the degree of tumour

invasiveness. Tumours with “fingering” morphology are known to be more aggres-

sive than those with smooth edges [60]. Additionally, those that shed cells which

then migrate through the matrix and escape into the bloodstream are known to be

associated with poor prognosis [96]. There are many known factors implicated in

this metastatic cascade which begins when cells detach from each other and adhere

to the supporting matrix [41]. We investigate in Section 5.3.2 the effect of cellular

adhesion strength on the invasiveness of the tumour and the effect of haptotaxis

in Section 5.3.3. We then incorporate an important feature of tumour growth—

cell proliferation—into our model in Section 5.3.4. We finally use this model in

Section 5.4 to examine the effect of extracellular acidity on tumour invasiveness

using experimental data from the literature.

5.2 Model Development

We divide our domain into N × N equally spaced lattice sites with indices (i, j).

Each site is assigned a label, σi,j ∈ {1, 2, 3, . . . ,M}, where M is the maximum

number of biological cells. A collection of adjacent lattice sites, (i,′ j′), sharing

the same value of σi,j are defined to lie within the same cell. Each cell has an

associated “cell type”, denoted by τ(σi,j), used to model the different types of

cells within the tissue in question, e.g. cancerous or normal cells. In this study,

we model only one type of cell: a tumour cell. See Figure 5.1 for a schematic

representation of our modelled tumour mass.

Biological cells interact with one another through their surface membrane, and

we model this interaction by using a coupling constant, Jτ(σij),τ(σi′j′), to quantify

the adhesive energy between cells in a Hamiltonian, E. The energy function is

made up of a number of parts relating to cell-cell adhesion, cell-matrix adhesion,
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cell volume and haptotaxis. For example,

Eadhesion =
∑

ij

∑

i′j′

Jτ(σij),τ(σi′j′ )

(

1− δτ(σij ),τ(σi′j′ )
)

, (5.1)

where the boundary energy coefficients are symmetric, Jτ(σij),τ(σi′j′ ) = Jτ(σi′j′ ),τ(σij).

The outer sum runs over all occupied sites in the lattice, whereas the inner sum

is over the eight nearest neighbours of (i, j). The Kronecker delta, δτ(σij ),τ(σi′j′ ), is

equal to one when σij = σi′j′ and zero otherwise. This ensures that only surface

interactions between different biological cells contribute to the cell-cell adhesion

energy.

stroma

basement membrane

Figure 5.1: Diagrammatic representation showing five layers of epithelial cells invading

the basement membrane. See Figure 5.2 for a representation of a portion of the cells

(boxed area) and the extracellular matrix (or basement membrane) using the cellular

Potts model. Note that we do not incorporate blood vessels in our model.

Cells change volume during growth [39], hence we prescribe an elastic con-

straint, Evolume, to prevent cells from growing unbounded or shrinking too small

Evolume =
∑

all domains λ6=0

λ (vσ − VT )2 , (5.2)

where, the summation runs over the total number of cells in the lattice and λ

denotes the cellular volume elasticity. The target volume, VT , is the volume a

cell relaxes to in the absence of deformation or stress. This term ensures that the
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instantaneous volume of a cell, vσ, remains close to the target volume (depending

on the value of λ).

The above formulation is the basic set-up of the classical cellular Potts model [89].

To include other cellular phenomenon, one simply adds terms to the Hamiltonian

in the usual form of an elastic constraint or a potential energy.

Cells not only adhere to each other and to the medium, but they can also move

up or down gradients of chemicals or substratum. The first stage of metastasis is

believed to be when tumour cells invade the basement membrane in order to gain

access to the surrounding blood vessels and colonise in different locations of the

body [129]. This is thought to be facilitated by proteolytic enzymes which break

down components of the extracellular matrix (e.g. fibronectin) and thereby create

a gradient along which cells move [59] (this movement is termed “haptotaxis”). To

model haptotaxis, we adopt a similar approach used by Savill & Hogeweg [203], so

that the energy change due to cells moving up a fibronectin gradient is given by

∆Ehaptotaxis = kH(fi′j′ − fij), (5.3)

where, fi,j is the fibronectin concentration at the point (i, j) on the lattice, fi′,j′ is

the neighbouring fibronectin concentration and kH is a constant that determines

the strength of the haptotactic gradient. There is accumulating evidence sug-

gesting that endosomal vesicles which contain matrix-degrading enzymes tend to

relocate to the surface of the cell to aid invasion [90, 154, 232]. For this reason, we

assume, in line with Turner et al. [233], that cells which are situated directly on

top of the ECM secrete larger quantities of active proteolytic enzymes than those

which are further up. Consequently, the rate of change of fibronectin in our model

is governed by the proteolytic enzyme activity at each time step according to

f(t+ 1) = f(t)×







e−ki, if lattice point is occupied by a cell,

e−kn, if adjacent point(s) are occupied,

1, empty space,

(5.4)
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where t refers to the Monte-Carlo time step (MCS) and we assume that ki is larger

than kn to account for higher matrix degradation rate associated with cells that are

in close contact with the ECM. In line with Turner et al. [233], we take ki = 2kn.

Figure 5.2: An example of a 2-D lattice configuration of our extended Potts model.

The numerals (referred to in the text by σi,j) represent cell index values. Each biological

cell is modelled as a collection of lattice sites with the same index value. The number of

lattice sites in each biological cell denotes its volume (here, the volume of each cell, VT

is taken to be 25). In this example, there are two layers of cells, each layer containing

three biological cells.

Thus, the total energy change of our system, ∆E is

∆E = ∆Eadhesion + ∆Evolume + ∆Ehaptotaxis. (5.5)

To simulate the above Hamiltonian, we generate a standard Monte Carlo sim-

ulation using a modified Metropolis algorithm [89, 150], where each Monte-Carlo

time step is defined to be as many iterations as the number of occupied lattice

points in the model. The algorithm is as follows: we randomly choose a lattice

point (i, j), then randomly choose one of the eight neighbouring points, (i′, j′). If
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σi,j = σi′,j′, i.e. the lattice points lie in the same biological cell, then we repeat the

selection. If the lattice sites lie in different biological cells, we calculate the energy

change, ∆E, associated with changing the state of the lattice site (i, j) to that of

site (i′, j′). If ∆E ≤ 0, we accept the copy; otherwise we accept with Boltzmann

weighted probability according to e−∆E/β. That is,

p(σij → σi′j′) =







1, if ∆E ≤ 0,

e−∆E/β, if ∆E > 0,

(5.6)

where β affects the probability of unfavourable configurations being accepted. A

high β leads to a higher acceptance rate of a configuration and the greater the

area across which a cell will move in a given time. In this sense, β is physically

comparable to the diffusion coefficient considered in a diffusion equation. In other

physical systems such as in Ferromagnetism and the Ising model, β is analogous

to thermal fluctuations [89].

Initial conditions

We simulate the model on a 100 × 100 grid, with each biological cell initially

represented by a square occupying 25 lattice sites (i.e. VT = 25 in equation (5.2)).

The lattice is initialised with five layers of cells, each layer containing 20 biological

cells. A homogeneous sheet of fibronectin (100× 100 in size) acts as a medium to

which cells adhere and migrate along. We normalise the fibronectin concentration

so that fij = 1 within this fibronectin sheet.

Boundary conditions

We impose zero flux boundary conditions at the top and bottom of the lattice to

reflect the fact that epithelial cells are enclosed by lumen from the top and by the

basement membrane from below [125] (see Figure 5.1 for a schematic). We assume

periodic boundary conditions at the left and right of the lattice to reflect the fact

that we are modelling only a small segment of a large tumour.
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5.3 Numerical Results under physiological pH

5.3.1 Parameter values

Wherever possible, experimental data is used to estimate values for our model pa-

rameters. Firstly, to prevent cells from dissociating we set all Jτ(σij),τ(σi′j′ ) positive.

Note that a high J value is energetically demanding and therefore corresponds to

low adhesivity. We use Jc,ECM to denote the cell-ECM adhesion energy; JECM,ECM

the ECM-ECM adhesion energy; and Jc,c the cell-cell adhesion energy. Owing to

the fact that the dynamics of the simulations are controlled by the relative value

of ∆E to β, the absolute values of J ’s are less significant than their relative values.

We thus assume a typical value of 3 for Jc,c and 6 for Jc,ECM in line with Turner

et al. [233]. On the contrary, there is no adhesive energy between neighbouring

lattice sites constituting just ECM, and so we take JECM,ECM = 0 [177].

The Boltzmann probability in (5.6) is at the heart of the cellular Potts model,

and as such β plays a central role in determining the configuration of a system.

At high β, the acceptance rate of a configuration increases and as a result the

boundaries of the cells become contorted. The volume elasticity constant, λ, con-

trols the extent of cell growth and a high value gives rise to a system where cells

barely grow (because of the resulting increase in the overall energy). Increasing

λ/β gives rise to a computationally inefficient system because the acceptance rate

becomes very small [89]. We have experimented with various values of β and λ,

and choose β = 6, λ = 1 (in line with various other models such as [200, 233]) in

all our simulations to ensure that the model is computationally efficient.

To relate our spatial scale to real space, we assume that the size of one simulated

tumour cell is equivalent to the average size of a typical biological cell, that is,

approximately 10 µm in diameter [16]. With each simulated tumour cell initially

occupying 25 lattice sites arranged in a square of length five, each lattice site then

corresponds to 2 µm and the size of our domain corresponds to a physical size of

around 200 µm.
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For a typical simulation, with the parameter values outlined above, shown in

Figure 5.3, the mean maximum translocation distance (dmax) per 2100 MCS (taken

from an average of ten runs) is 67 lattice sites—equivalent to 134 µm. To relate

our temporal scale to real time, we use the mean translocation distance of human

melanoma cells (MV3) following their exposure to various extracellular pH [218].

For example, at pHe 7.45, the mean translocation distance in five hours is 20

µm [218]. Comparing with the translocation distance of our simulated tumour

cells, this gives that one MCS corresponds to roughly 58 seconds.

Throughout the rest of this chapter, the model is run for 3000 MCS which

corresponds to roughly 48 hours, or, is terminated when a cell reaches the bottom

of the lattice.

5.3.2 Effect of cellular adhesion strengths on tumour mor-

phology and invasion

Figure 5.3 shows how the initially rectangular tumour mass develops fingering mor-

phology which eventually break from the main tumour and migrate into the extra-

cellular matrix; an example of the cross-section of the corresponding fibronectin

profile is shown in Figure 5.4. The depth of tumour cell penetration into the ex-

tracellular matrix has long been established as a marker of the extent of tumour

aggression [28]. A higher depth is associated with more aggressive tumours and

poor prognosis [107, 117]. To quantify the extent of invasion, we measure the

maximum cell penetration distance into the extracellular matrix, dmax. We also

introduce another parameter, nm, to denote the number of Monte-Carlo time steps

that it takes for a tumour cell to reach the bottom of the lattice (we terminate the

simulation at that time).

Alterations in the adhesive properties of the tumour cells is thought to have

an important role in tumour development and progression [41, 204]. Figure 5.5

shows the evolution of the tumour mass for a higher cell-cell adhesion energy.



5.3. NUMERICAL RESULTS UNDER PHYSIOLOGICAL PH 160

(a) t = 600

20 40 60 80 100

20

40

60

80

100

concen

(b) t = 1200

20 40 60 80 100

20

40

60

80

100

(c) t = 1800

20 40 60 80 100

20

40

60

80

100

b

(d) t = 2100

20 40 60 80 100

20

40

60

80

100

dmax

t = 0

t = 2100

Figure 5.3: A typical simulation of our model showing the temporal evolution of the

tumour mass. The initially rectangular tumour mass develops fingering morphology

which then break from the main tumour and migrate into the extracellular matrix.

dmax denotes the maximum cell penetration distance into the extracellular matrix.

Here, Jc−c = 3, Jc−ECM = 6, λ = 1, β = 6, kH = 40, kn = 0.003.

Here, we take Jc−c = 6 instead of Jc−c = 3 (as in Figure 5.3). Compared to

Figure 5.3, in Figure 5.5 cells break from the main tumour earlier and migrate
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Figure 5.4: A vertical slice through the centre of the corresponding fibronectin profile

of Figure 5.3. Taken from column number 50 of the 100 × 100 grid and for t ranging

from 300 to 2400.

individually as well as in cohorts. We illustrate in Figure 5.6 the effect of varying

the cell-cell adhesion energy, Jc−c, on (a) dmax and (b) nm. A high Jc−c value

corresponds to low intercellular adhesivity, which leads to more cells spreading

into the surrounding matrix and consequently a higher depth of invasion as shown

in Figure 5.6(a). Following their detachment from neighbouring cells, an adequate

adherence to the ECM is required in order for cells to migrate [154]. This is

evident from Figure 5.6(a) where a stronger attachment to the ECM (Jc−ECM = 3)

results in a higher depth of invasion compared to weaker ones (Jc−ECM = 6). This

is because it is energetically favourable for a cell to bind with the ECM in the

case of a low Jc−ECM and so cells are more likely to migrate through the ECM.

Moreover, Figure 5.6(b) shows that as the intercellular adhesion becomes weaker,

the time it takes for a cell to reach the maximal invasion distance decreases, with

those expressing a low cell-ECM adhesion (Jc−ECM = 6) taking longer. On the

other hand, decreasing the strength of cell-cell attachment (from Jc−c = 3 to
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Jc−c = 6) across a range of Jc−ECM values does not have such a noticeable effect

(see Figure 5.7). Not only does the depth of invasion differ as the strength of the
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Figure 5.5: A typical simulation showing the effect of a higher cell-cell adhesion

energy, Jc−c. The parameter values are the same as in the caption to Figure 5.3 except

that Jc−c = 6. The difference in this case is that cells break from the main tumour

mass earlier and migrate individually as well as collectively.

adhesion energy varies, but so does the morphology of the tumour mass. As the
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intercellular adhesion gradually becomes weaker, compact “fingers” break from the

main tumour and move into the ECM (as illustrated in Figure 5.8). Note that

cells exhibiting stronger intercellular adhesions (e.g. Jc−c = 2) tend to break off

collectively in large lumps compared to those with lower adhesions which break off

in smaller lumps as well as individually. In contrast, Figure 5.9 demonstrates how

a more defined fingering morphology is obtained with less shedding of individual

tumour cells as the cell-ECM adhesion energy becomes weak.

The results obtained in this section demonstrate that an increase in malignant

invasion can result from a decrease in the cohesiveness between the invading cells

and/or from an increase in their adhesiveness to the extracellular matrix—a re-

sult which is well-established in cellular migration assays [217]. For example, the

loss of E-cadherin, the most abundant epithelial intercellular adhesion molecule,

is shown to correlate with increased invasiveness and metastasis of tumours [241].

Several studies show that restoring E-cadherin adhesion complex impedes the in-

vasiveness of several types of tumour cells [17]. Moreover, increased expression of

certain integrin molecules that bind cells to the ECM is associated with increased

cell migration and metastasis in several cancer cells, for example breast [252],

melanoma [126] and prostate [261].

Changes in the adhesive properties of cells and their proteolytic activity can

facilitate their movement through the basement membrane [154]. We next in-

vestigate how tumour cell invasion can be affected by variations in the enzyme

degradation rate of the ECM, under various strengths of cellular adhesion ener-

gies.

5.3.3 Effect of haptotactic strength and cell adhesion on

tumour cell invasion

Figure 5.10(a) shows that increasing the haptotactic co-efficient (kH in equa-

tion 5.3) results in a slightly larger depth of invasion, which is more pronounced
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Figure 5.6: Effect of varying cell-cell adhesion energy, Jc−c, on (a) maximum depth of

invasion, dmax and (b) the time it takes a single cell to reach the bottom of the lattice,

nm. We show the results for two values of cell-ECM adhesion energy: Jc−ECM = 3

(——) and Jc−ECM = 6 (− −−). The profile in (a) is obtained at t = 600. Each circle

represents the mean of ten duplicate simulations with the associated standard deviations

represented by error bars. Note that a high J corresponds to low adhesivity and vice

versa. Increasing Jc−c results in an increase in the depth of invasion, which is much

higher when Jc−ECM is decreased. Parameter values: λ = 1, β = 6, kH = 40, kn = 0.003.

if the rate of enzyme degradation of the fibronectin matrix, kn, is also increased.

We can see that the gap between the two solutions is small when kH is small but

increases for large kH . Figure 5.10(b) shows the effect of varying kH and kn on

the time taken for a cell to reach the bottom of the lattice, nm. Biologically, this

implies that a greater sensitivity to the haptotactic gradient coupled with a high

secretion rate of active proteolytic enzymes would result in an increased depth of

invasion in a short period of time.

We illustrate in Figures 5.11–5.12 the relationship between tumour invasion
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Figure 5.7: Effect of varying cell-ECM adhesion energy, Jc−ECM , on (a) maximum

depth of invasion, dmax and (b) the time at which a cell reaches the bottom

of the lattice, nm. We show the results for two values of cell-cell adhesion en-

ergy: Jc−c = 3 (——) and Jc−c = 6 (− − −). The profile shown in (a) is

obtained at t = 600. Each circle represents the mean of ten duplicate simula-

tions with standard deviations: in (a) σ = {4.71, 2.17, 3.28, 2.28, 5.10, 1.51} for

Jc−c = 6 and σ = {3.57, 2.20, 3.62, 3.21, 1.85, 1.54} for Jc−c = 3; and in (b)

σ = {55, 45, 605, 70, 341, 23} for Jc−c = 6 and σ = {45, 42, 131, 171, 250, 108} for

Jc−c = 3. Note that a high J corresponds to low adhesivity and vice versa. Increasing

Jc−ECM results in a profound decrease in the depth of invasion and an increase in the

time a cell reaches the bottom of the lattice. The two lines in the figure lie close to

each other, indicating that weakening intercellular adhesion does not have a significant

impact on invasion compared to cell-ECM adhesion (see Figure 5.6). Parameter values:

λ = 1, β = 6, kH = 40, kn = 0.003.

depth and the rate of proteolytic degradation of the fibronectin matrix (kn), under

various values of cellular adhesion energies. As expected, we observe from both
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Figure 5.8: Simulations showing the way in which the strength of cell-cell adhesion

energy modulates tumour morphology (at t = 900). We take cell-ECM adhesion to be

Jc−ECM = 3 and vary the cell-cell adhesion energy: (a) Jc−c = 2 (strong adhesion), (b)

Jc−c = 4 (medium adhesion), (c) Jc−c = 8 (weak adhesion). The remaining parameter

values are the same as those in the caption to Figure 5.3.
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Figure 5.9: Simulations showing the way in which the strength of cell-ECM adhesion

energy modulates tumour morphology (at t = 900). We take cell-cell adhesion to be

Jc−c = 3 and vary the cell-ECM adhesion energy: (a) Jc−ECM = 2 (strong adhesion),

(b) Jc−ECM = 4 (medium adhesion), (c) Jc−ECM = 8 (weak adhesion). The remaining

parameter values are the same as those in the caption to Figure 5.3.
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figures that a large kn (high proteolytic degradation rate) gives a high invasion

depth compared to a low kn. However, there is a marked difference in the slope

of the two solution curves in Figure 5.11(b) for lower values of kn, pointing again,

to the significance of cell-ECM adhesion on tumour invasiveness. On the other

hand, varying the cell-cell adhesivity has a comparably less significant effect (Fig-

ure 5.12). That is, the speed of invasion shows a much wider range of variation as

kn varies when the cell-ECM adhesivity is low.
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Figure 5.10: Effect of varying the strength of the haptotactic gradient, kH , on (a)

maximum depth of invasion, dmax and (b) the time at which a cell reaches the bottom

of the lattice, nm. The profile in (a) is obtained at t = 600. We show the results for two

values of matrix-degrading rate: kn = 0.003 (——) and kn = 0.001 (−−−). Each circle

represents the mean of ten duplicate simulations with the associated standard deviations

represented by error bars. Parameter values: Jc−c = 3, Jc−ECM = 6, λ = 1, β = 6.
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Figure 5.11: Effect of varying the rate at which fibronectin is degraded by proteolytic

enzymes, kn, on (a) maximum depth of invasion, dmax and (b) the time at which a cell

reaches the bottom of the lattice, nm. The profile in (a) is obtained at t = 600. With

Jc−c = 6, we show the results for two values of cell-ECM adhesion: Jc−ECM = 3 (——)

and Jc−ECM = 6 (−−−). Each circle represents the mean of ten duplicate simulations

with the associated standard deviations represented by error bars. Parameter values:

λ = 1, β = 6, kH = 40.

5.3.4 The inclusion of cell proliferation

So far in our model, cells can grow in size but do not multiply. In reality, once a cell

reaches a certain size, it attempts to proliferate and after several divisions (50–60

times), it is no longer capable of dividing [239]. The average cell doubling time

is about ten hours [39], but this varies between different cell types. For example,

nerve cells do not divide; liver cells divide roughly every two years; whereas skin

cells divide approximately every 12 hours [16]. The axis along which cells divide

depends on their type and their associated morphology [161]. It is, however, typical
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Figure 5.12: Effect of varying the rate at which fibronectin is degraded by proteolytic

enzymes, kn, on (a) maximum depth of invasion, dmax and (b) the time at which a cell

reaches the bottom of the lattice (nm, maximal invasion). With Jc−ECM = 6, we show

the results for two values of cell-cell adhesion: Jc−c = 3 (——) and Jc−c = 6 (− − −).
The profile in (a) is obtained at t = 600. Each circle represents the mean of ten duplicate

simulations with standard deviations: in (a) σ = {1.02, 1.85, 2.44, 2.21, 4.67} for Jc−c = 3

and σ = {1.17, 5.10, 3.69, 5.36, 3.01} for Jc−c = 6; and in (b) σ = {444, 250, 393, 465, 504}
for Jc−c = 3 and σ = {724, 341, 156, 186, 88} for Jc−c = 6. Parameter values:

λ = 1, β = 6, kH = 40.

of cells to divide along the shortest axis through their centre of mass [161].

We model cell division the same way as in [233]. We begin by assuming that

there exists a time period, Td, during which cells are not permitted to divide. This

is to account for the time it takes for cells to double their content and prepare

for cell division. Moreover, we assume, along with Turner et al. [233], that cells

tend to proliferate when intercellular adhesions are strong relative to the cell-ECM

adhesions. This is conveyed in the ratio, ks = Jc−ECM/Jc−c, which we introduce
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into a probability function for cell division. Namely, we assign to each cell a clock

which records the time since last division, Tσ, and the instantaneous volume, vσ.

If Tσ > Td and vσ > VT , then we assume that the probability of division gradually

increases and reaches one as Tσ becomes very large. That is,

pσ =
T 2
σ

T 2
σ + (αks)2

, (5.7)

where αks is the time (Tσ) at which pσ = 1/2.

We calculate the horizontal, vertical and diagonal distances passing through the

centre of mass of each cell and divide the cell along the shortest axis. The result

is two daughter cells roughly equal in size (vnewσ ∼ voldσ /2).

Now, with one MCS being equivalent to 58 seconds (see section 5.3.1 for de-

tails), we take Td = 745 so that it is comparable with the average cell doubling

time (∼12 hours). A low value of Td represents a fast-growing tumour whereas a

high value represents a slow-growing tumour.

A typical simulation with cell proliferation included is shown in Figure 5.13 for

Jc−c = 3 and Jc−ECM = 6. Here, we observe that the protruding “fingers” are much

thicker and the depth of invasion is higher than that in the absence of proliferation

(shown in Figure 5.3). We vary α in Figure 5.14 and note the effect on dmax and

the total number of tumour cells, ncells. For both strong and weak intercellular

adhesions (Jc−c = 3, left column; Jc−c = 6, right column), the number of cells and

the depth of invasion decrease as α becomes large (see Figures 5.14(a)–5.14(b)).

One would expect cell proliferation to increase the invasiveness of the tumour, but

we find that within a small range of α, proliferation has a counter-intuitive effect

on invasion. More specifically, values of α in the range of 104–105 have no effect

on dmax (Figure 5.14(c)), and a negative effect when intercellular adhesions are

weakened (Figure 5.14(d)) which is largely attributed to the stochastic nature of

the model. This is because increasing α means that the probability of proliferation,

for Tσ considered in the simulations, becomes smaller and tends to zero for very

large values of α and hence the observed lack of proliferation for α = 105 (see



5.3. NUMERICAL RESULTS UNDER PHYSIOLOGICAL PH 171

Figure 5.14 (c) and (d)).
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Figure 5.13: A typical simulation of our model with the inclusion of

cell proliferation. The invading “fingers” are much thicker than in the ab-

sence of proliferation (compare with Figure 5.3). Parameter values here:

Jc−c = 3, Jc−ECM = 6, λ = 1, β = 6, kH = 40, kn = 0.003, α = 7× 103, Td = 745, ks = 2.



5.3. NUMERICAL RESULTS UNDER PHYSIOLOGICAL PH 172

(a) Jc−c = 3, Jc−ECM = 6

10
30

40

50

60

70

10
0

100

200

300

400

500
d
m
a
x

α
n
ce
ll
s

102102 103103 104104 105105

(b) Jc−c = 6, Jc−ECM = 6

10
30

40

50

60

70

10
0

100

200

300

400

500

d
m
a
x

α

n
ce
ll
s

102102 103103 104104 105105

(c) Jc−c = 3, Jc−ECM = 6
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(d) Jc−c = 6, Jc−ECM = 6
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Figure 5.14: Plots showing the relationship between α, dmax and ncells under two

different values of intercellular adhesions: (a) Jc−c = 3 and (b) Jc−c = 6, with

Jc−ECM = 6 in both cases. We also show the difference proliferation has on

the depth of invasion and the number of cells for these two cases (dpmax, n
p
cells)

compared to the non-proliferative case (domax, n
o
cells). The profiles shown are

obtained at t = 1200. Each circle represents the mean of ten duplicate sim-

ulations. Standard deviations: in (a) σ = {3.26, 3.66, 5.42, 4.03, 3.20} for dmax

and σ = {12.82, 11.73, 10.09, 48.71, 1.79} for ncells. Standard deviations: (b)

σ = {6.50, 5.48, 5.19, 5.89, 3.32} for dmax and σ = {24.30, 20.03, 19.58, 59.64, 1.43} for

ncells. Parameter values: λ = 1, β = 6, kH = 40, kn = 0.003. Note that the total number

of cells in the absence of proliferation is 100. For both strong and weak intercellular

adhesions, ncells and dmax decrease as α becomes large. Note that proliferation has a

counter-intuitive effect on invasion for α in the range of 104–105.
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We now use this model to examine the effect of extracellular acidity on tumour

invasiveness.

5.4 Effects of extracellular pH

Many cellular processes are highly dependent on extracellular pH [109, 196] and a

small perturbation can cause drastic changes in cell behaviour [142, 195]. Acidic

extracellular pH is a hallmark of most solid tumours and is often associated with

tumour progression [195] and response to therapies [81]. For instance, acidic extra-

cellular pH is shown to facilitate metastasis by modulating the adhesion properties

of cells [47, 166], inducing cell elongation [166] and upregulating the secretion of

several proteolytic enzymes [142]. Our study is, to the best of our knowledge, the

first to use the extended cellular Potts model to examine the effect of extracellular

pH on tumour cell invasion. We study pH effects implicitly by determining how pH

variations will affect the model parameters, e.g. cell-ECM adhesion strength, and

then studying the effects of these parameter changes in the Potts model. We first

investigate the effects of pH on each model parameter in turn. Then we simulate a

tumour with all the relevant model parameters being sensitive to acidic pH. Note

that throughout this section we ignore intracellular pH and focus on variations

and associated effects of pHe.

5.4.1 Sensitivity of cellular adhesion to acidic pH

The empirical studies that have lead to the existing model parameter values were

performed under physiological pHe (pH∼ 7.2–7.4). We now use experimental data

to work out the relative change in their values under acidic pH (6.0–6.6) and hence

obtain new model parameter values applicable to acidic conditions. For example,

a study by Chen et al. [47] shows that cells cultured at pH 6.6 have a 75% re-

duced junctional E-cadherin level relative to those cultured at pH 7.4. We assume

that the Jc−c value used so far (i.e. Jc−c = 3) [233] corresponds to 100% inten-
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sity of intercellular adhesion molecules (such as E-cadherins). Now, taking into

consideration that a high J value corresponds to low adhesivity and vice versa,

we can approximate Jc−c = 5.25 to be the cell-cell adhesivity at pHe 6.6 (i.e. a

75% reduction in adhesivity). Figure 5.15(a) shows the morphology of the tumour

mass where we assume that only cell-cell adhesion energy is affected by acidic pHe

(namely, we increase Jc−c from 3 to 5.25). We observe that the “fingering” mor-

phology is similar to that under physiological pH (shown in Figure 5.15(d)). We

can therefore predict that certain mechanisms which cause intercellular adhesions

to be weakened under acidic conditions do not, alone, have a significant effect on

the invasiveness of the tumour.

To investigate the influence of pHe on cell-ECM adhesion, Stock et al. [218]

measure the number of cells that remain adhered to collagen matrix at various

extracellular pH values. They find that there is a 45% increase in the number of

cells adhered to the matrix at pHe 6.6 relative to those at pHe 7.4. Again, keeping

in mind that a high adhesivity corresponds to a low J value, we can approximate

Jc−ECM = 3.3 to be the cell-ECM adhesivity at pH 6.6 (compared to Jc−ECM = 6

at physiological pH [233]). We present in Figure 5.15(b) the results of exposing

our tumour mass to acidic pHe if only cell-ECM adhesion is taken to be sensitive

to the acidic medium. Here, we see a marked difference in tumour morphology

compared to that at physiological pH.

Moreover, we illustrate in Figure 5.15(c) the effect, on the depth of invasion,

of sensitising both cellular adhesion energies (i.e. cell-cell and cell-ECM) to acidic

pHe. We summarise the key effects in Figure 5.16. As we can see, when cell-

ECM adhesion energy is decreased in response to acidic pHe, the depth of invasion

is significantly greater than in the base case and that of an increased cell-cell

adhesion energy. We may therefore conclude that the combined over-expression of

cell-ECM adhesion molecules, such as integrins, and under-expression of cell-cell

adhesion molecules, such as, cadherins, under acidic conditions is associated with

a higher degree of invasiveness. We can suggest from our model predictions that
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the dominant effect appears to be due to the change in cell-ECM adhesivity at low

pH rather than due to variations in cell-cell adhesivity.
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Figure 5.15: Effect of acidic extracellular pH on tumour morphology. In (a) only

intercellular adhesion molecules are taken to be sensitive to the acidic medium

(Jc−c = 5.25 and Jc−ECM = 6). In (b), only cell-ECM adhesion molecules are taken

to be sensitive to the acidic extracellular pH (Jc−c = 3 and Jc−ECM = 3.3). In (c),

both cell-ECM and cell-cell adhesion molecules are taken to be sensitive to the acidic

extracellular pH (Jc−c = 5.25 and Jc−ECM = 3.3). In (d), cell- cell and cell-ECM

adhesiveness are taken to be at the physiological values (Jc−c = 3, Jc−ECM = 6). Here

t = 900 and the remaining parameter values are the same as those in the caption to

Figure 5.3.



5.4. EFFECTS OF EXTRACELLULAR PH 176

10

20

30

40

50

60

70

base 
case

varying 
J

c−c

varying 
J

c−ECM

varying 
both

d
m
a
x

Figure 5.16: We show how the depth of invasion (dmax) in the base case

(Jc−c = 3, Jc−ECM = 6) compares with that when Jc−c, alone, is varied in response to

acidic extracellular pH (Jc−c = 5.25), or, Jc−ECM alone is varied (Jc−ECM = 3.3), or,

both Jc−c and Jc−ECM are varied (Jc−c = 5.25, Jc−ECM = 3.3). Each circle represents

the mean of three duplicate simulations at t = 900, with the associated standard

deviations represented by error bars.

5.4.2 Effect of acidic pH on the rate of proteolytic degra-

dation of the ECM

The local secretion of proteolytic enzymes by tumour cells or surrounding stro-

mal cells is a prerequisite to the loss of the structural integrity of the extracellular

matrix [59]. The acidic extracellular environment of most solid tumour cells is per-

missive for the over-production of several proteolytic enzymes, such as cathepsin

B [88, 199], cathepsin D [195], proangiogenic factors [195], matrix metallopro-

teinases (MMPs) [116, 195]. There are 23 members of MMPs, and we focus in this

study on MMP-2 because the pH dependency in this enzyme is readily available.

Although the catalytic activity of MMP-2 exhibits a broad bell-shaped pH depen-

dency with pKa values of 6.0–9.0 [61], a study by Rofstad et al. [195] shows that



5.4. EFFECTS OF EXTRACELLULAR PH 177

human melanoma cells cultured at acidic pHe secrete 1.8–2.8 times more MMP-2

in pro and active form than those cultured at pHe 7.4. Assuming that the matrix

degradation rate used so far (i.e. kn = 0.003, ki = 2kn) applies to physiological pH

medium, we can approximate kn = 0.0036–0.0084 to be the matrix degradation

rate at acidic pHe. We illustrate the effect of increased enzyme secretion rate by

factors of 1.8–2.8 [195] on tumour morphology (Figure 5.17) and on the depth of

invasion (Figure 5.18). It is clear from both figures that increased secretion of

proteolytic enzymes due to acidic conditions yields a more invasive tumour than

when the medium is kept at physiological pH (see Figure 5.17(c)). However, an

increase in the secretion rate of proteolytic enzymes by a factor of 2.8 gives rise to

a similar depth of invasion to that when cell-ECM adhesion is taken to be sensitive

to acidic pHe (see Figure 5.16).
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Figure 5.17: Plots showing the morphology of the tumour following increased

production of proteolytic enzymes (such as MMP-2) at acidic pH by a factor

of: (a) 1.8, (b) 2.8, relative to secretions under pH 7.2–7.4. Compare with (c)

where kn = 0.003, which is the assumed value under physiological pH. Here

t = 1200, Jc−c = 3, Jc−ECM = 6, λ = 1, β = 6.
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Figure 5.18: Plot showing how dmax is altered when proteolytic enzyme secretion rate

is increased, from the base case, under acidic pH. Each circle represents the mean of

three duplicate simulations obtained at t = 900, with the associated standard deviations

represented by error bars. kn=0.003 in the base case.

5.4.3 Effect of acidic pH on cell area

As cells migrate along a matrix their shape changes, the extent of which is believed

to vary with exposure to different degrees of extracellular acidity [37, 46, 166, 218,

222] (see Figure 5.19 for an illustration). For example, a study by Paradaise et

al. [166] shows that cells develop an elongated morphology following an exposure

to extracellular pH of 6.0, with a 42% increase in mean cell area. Now, with

VT =25 taken to be the average cell area at physiological pH [233], a 42% increase

will then give VT =36 to be the average cell area at acidic pH. To simulate an

elongated cell of volume 36, we initialise each biological cell to be either a 12 × 3

or 9× 4 or 18× 2 rectangle. We find that, compared to the physiological pH case,

there is no effect on either the morphology of the main tumour mass or the depth

of invasion (figures not shown). This is because the Potts model is driven by the
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change in energy in the system and not the number of adhesive bonds gained or

lost. Our model therefore predicts that cell elongation and increased cell area, due

to changes in extracellular pH, does not predict an increase in the invasiveness of

the tumour.

Figure 5.19: Morphology of human melanoma (MV3) cells following a three-hour

exposure to various extracellular pH. Image courtesy of [218].

5.4.4 Effect of acidic pH on cell proliferation

Once cells reach a prescribed volume, they can proliferate. Before proliferating,

many conditions have to be met, amongst them is a viable extracellular pH [39, 63].

A study by Casciari et al. [39] shows that the growth rate of EMT6/Ro mouse

mammary tumour cells decreases with decreasing extracellular pH. They measure

tumour cell doubling time at various extracellular pH and O2 concentrations. For

instance, under oxygen levels of 0.0443 mmol/l, cell doubling time increases by

118% at pH 6.6 relative to pH 7.25. With even lower oxygen levels of 0.0232 mmol/l

and 0.0082 mmol/l, there is, respectively, a 238% and a 1.46×103% increase in cell

doubling time at pH 6.6 relative to pH 7.25. Now, if we assume that Td = 745

is the cell doubling time under physiological pH, we can then take for pH 6.6:

Td = 1.62× 103, 2.52× 103, and 1.15× 104, respectively, for pH 6.6 conditions at

O2 concentrations of (0.0443, 0.0232, 0.0082) mmol/l [39].

Figures 5.20(a)–(c) show how the tumour morphology changes from well-defined
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“fingers” to that where the “fingers” split from the main tumour mass. The reason

for this is that the doubling time in (a)–(c) is long (due to low pH and oxygen

levels), so that cells do not have the chance to proliferate and populate the ar-

eas behind the advancing “finger” tip. Cells cultured under physiological pH are

known to produce a “diffuse” morphology (Figure 5.13). We show in Figure 5.21

how dmax is little affected by variations in pHe. Proliferation under acidic pH yields

a similar dmax to the case where no proliferation is included, with the highest dmax

recorded under physiological pH (see Figure 5.21). In view of those results, we

suggest that the increased invasion distances observed in low pH cultured cells is

not a result of the pH effects on cell proliferation. However, as we can see in Fig-

ure 5.20(d), there are clear morphological differences in low pH and physiologically

cultured tumours, with break-away tumour clusters readily observed in the low pH

case.
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Figure 5.20: We show the profile of the tumour mass cultured at pH 6.6 and at three

different concentrations of oxygen: (a) 0.0443 mmol/l (Td = 1.62 × 103), (b) 0.0232

mmol/l (Td = 2.52 × 103), (c) 0.0082 mmol/l (Td = 1.15 × 104). We also show the

tumour profile under physiological pH and O2 (Td=745) in (d). It is clear that under

pH 6.6 the tumour mass exhibits “fingering” morphology, whereas at physiological pH

the morphology is more “diffuse”. Note that in (b) and (c) the doubling time is very

large that cells break off the main mass and reach the bottom of the lattice before

proliferation occurs. Here t = 2100. The remaining parameters are the same as in the

caption to Figure 5.3.
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Figure 5.21: Plot showing how dmax is little affected by proliferation at acidic pH.

Each circle represents the mean of three duplicate simulations obtained at t = 900, with

the associated standard deviations represented by error bars. Parameter values are the

same as in the caption to Figure 5.13 with Td = 745 at physiological pH, Td = 1.62×103

at pH 6.6 and α = 7× 103 in both cases.

5.4.5 Effect of acidic pH on cellular adhesion, cell area,

proteolytic enzymes and proliferation

So far we have illustrated the effects of acidic pH on each of the relevant model

parameters one by one (Figures 5.15–5.21). We now show the results when all

of these parameters are simultaneously modified to replicate more realistically a

tumour cultured in acidic conditions (see Figure 5.22(a)). We observe that, com-

pared with the physiological pH case (Figure 5.22(b)), cells split from the main

tumour mass much earlier and migrate further into the extracellular matrix in a

very short period of time. We summarise in Figure 5.23 how the depth of invading

cells is affected over the course of their growth, under physiological and acidic pH.

We may deduce that, cell-ECM adhesion strength, or, proteolytic enzyme secretion
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rate appear to be dominating processes driving an increase in tumour invasiveness

under acidic conditions. Variations in processes such as cell-cell adhesivity, mod-

erate (×1.8) variations in proteolytic activity and cell proliferation do not appear

to significantly affect the speed of invasion. Therefore, it appears that optimal

therapeutic targets are predicted to be cell-ECM adhesions and preventing large

increases in proteolytic activity.
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Figure 5.22: A typical profile of the migration of tumour cells cultured (a) at acidic

pH (b) at physiological pH. Profiles shown at t = 900. Parameter values for (a) are

those applicable to acidic conditions: kn = 0.0036, Jc−c = 5.25, Jc−ECM = 3.3, VT = 36

(initially cells are 3 grids long and 12 grids wide), α = 7 × 103, Td = 1.9 × 103.

Parameter values for (b) are those corresponding to physiological pH, i.e.

kn = 0.003, Jc−c = 3, Jc−ECM = 6, VT = 25, α = 7 × 103, Td = 1.9 × 103. In

both figures: λ = 1, β = 6, kH = 40.
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Figure 5.23: Plot showing how dmax is affected when a tumour is cultured at acidic

pH (squared solid line) compared to physiological pH (circled solid line). In between

these two lines we show how dmax is affected if only one parameter is taken to be

sensitive to acidic pH medium. Each circle and square represent the mean of three

duplicate simulations.
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5.5 Discussion and conclusions

In this chapter we have reproduced key findings obtained by Turner et al. [233]

in their study of tumour cell invasion using the extended cellular Potts model.

We then examined the effect of acidic pH on cell adhesion, proteolytic degrada-

tion of the ECM and cell proliferation and how it can affect the invasiveness of

the tumour mass. While previous studies, such as in [112, 210], have considered

reaction-diffusion equations to represent chemicals such as oxygen, nutrients and

lactate, here we simply vary the relevant parameters using experimental data in

the literature to reflect the relevant pH effects.

In summary, our numerical simulations have shown that a strong cell-ECM

adhesion and a weak cell-cell adhesion can result in a ‘fingering’ and more in-

vasive morphology. This is consistent with previous multi-scale individual-based

(e.g. [7]) and continuum models (e.g. [6, 165]). We have also shown that under

acidic extracellular pH, cell-ECM adhesion strength have a comparable effect on

tumour invasiveness as the rate at which the ECM is degraded by proteolytic en-

zymes. More specifically, cells which are strongly attached to the ECM, or, have

a high rate of proteolytic degradation of the ECM, tend to infiltrate further into

the matrix than those which are weakly attached or have a low rate of proteolytic

degradation of the ECM. On the other hand, intercellular adhesion strength ap-

pears to have a less significant effect on tumour invasiveness. Moreover, we have

also shown that proliferation can have a counter-intuitive effect on invasion. That

is, tumour cells cultured under physiological pH tend to be larger and develop

a “diffuse” morphology compared to those cultured at acidic pH which display

protruding “fingers” at the advancing front. Amongst the many factors that af-

fect the prognosis and treatment of cancer is their morphology. For instance, in

colorectal cancer, whether a tumour has an infiltrative or smooth border at the

advancing edge has been shown to have a prognostic significance and may predict

liver metastasis [52, 111, 163].
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Our study is the first to use the extended cellular Potts model to examine the

effect of extracellular acidity on tumour cell invasion and as such there is plenty of

scope for improvement. Firstly, we model the effects of pH in a simplistic manner

by assuming a constant pHe throughout the tissue section and that cellular mem-

brane transporters are distributed evenly. However, there are numerous studies

suggesting that certain cellular membrane transporters such as the NHEs localise

at the leading edge of migrating tumour cells [57, 139, 218, 222]. In particular,

Stock et al. [218] observe in their study of human melanoma cells that the NHE

activity plays a key role in controlling cell migration and morphology. Inhibition

of the NHE reduces the speed and translocation of migrating cells by 70% [218].

Secondly, we assume a homogeneous concentration of fibronectin in our model.

However, a study by Paradise et al. [166] shows that the fibronectin levels required

for maximum migration speed is lower at acidic pH compared to physiological pH.

Therefore, in order to increase the biological realism of our model, it would be

interesting in the future to simulate our model with a heterogenous concentration

of fibronectin and a reaction diffusion equation (such as the one presented Chap-

ter 3) to represent pHe with the NHE term being localised near the leading edge

of tumour cells.



Chapter 6

Conclusions and future work

Compared to normal tissue, the microenvironment of some solid tumours are lit-

tered with variable regions of hypoxia and acidity [93, 227]. This has been partly

attributed to the poorly-formed tumour vasculature and irregular perfusion [187].

However, even under aerobic conditions, tumour cells have been sometimes shown

to still metabolise anaerobically [247] and produce excess amounts of lactate and

H+-ions, which has been shown to have a detrimental effect on cell function and

survival if accumulated intracellularly [85, 109, 123, 167]. Cells respond to the

acidic intracellular load by upregulating their membrane-based ion transporters

to extrude these ions extracellularly [35, 176]. It is thought that a high rate of

anaerobic glycolysis coupled with an upregulated extrusion of these ions and a

poor extracellular clearance gives rise to an acidic extracellular pH [73, 87, 93].

In this thesis, we develop mathematical models that examine the role of various

membrane-based ion transporters in tumour pH regulation, in particular, with a

focus on the interplay between lactate and H+ ions and whether the lactate/H+

symporter activity is sufficient to give rise to the observed reversed pH gradient

that is seen in some tumours. We examine the problem of tumour acidity using

two different mathematical approaches: a continuum (as in Chapters 2 and 3) and

a multi-scale individual cell-based approach (as in Chapters 4 and 5).

In this chapter, we bring together the key findings of this thesis in the light
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of current biological and mathematical contributions. We also set out some key

questions that we suggest can be answered through further research.

In Chapter 2, we develop a mathematical model representing the various cell

membrane transporters involved in pH regulation. Analysis of the model show

that, with the inclusion of lactate explicitly in the model, a reversed pH gradient

is attainable under aerobic conditions when ‘other sources of hydrogen ions’ are

decreased and MCT activity is increased—but we find the pH conditions that

this reversed gradient is found to be biologically unrealistic. Under anaerobic

conditions, we find that decreasing ‘other sources of H+-ions’ and the glycolytic

rate gives rise to a reversed cellular pH gradient, but again it is too alkaline to be

biologically realistic. Other sources of hydrogen ions can include those produced

from glutaminolysis or the intracellular hydration of carbon dioxide by carbonic

anhydrase.

In Chapter 3, we extend this model by giving the tumour a spatial structure.

Spatially, we assume a 1-d cartesian geometry. We find that simply taking lower

values of blood lactate levels gives a reversed cellular pH gradient throughout

the spatial domain independent of the levels of tissue lactate. Likewise, we find

the existence of a negative cellular pH gradient to be strongly dependent on the

combined activity of the lactate/H+ symporters (MCTs) and other sources of H+-

ion. The ability of extracellular H+-ions to leak into the neighbouring blood vessel

and to diffuse across the tissue causes the reversed cellular pH gradient to occur

at more realistic values and is less alkaline than that found in the none spatial

model. This is because as the extracellular H+-ions and lactate are cleared by the

blood vessel, more intracellular H+-ions and lactate are extruded via the MCTs

and NHEs which cause the extracellular pH to become less alkaline. In addition,

we find the pH gradient to be always reversed no matter how high or low the

Na+/H+ exchanger (NHE) activity is provided the level of other sources of H+-

ions is below a certain threshold. We also find that including intercellular gap

junctional communication can give rise to a reversed cellular pH gradient but only
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if the rate of intercellular transport is significantly high.

In Chapter 4, we model early tumour growth using a hybrid cellular automaton

model with reaction-diffusion equations as described in Chapter 3 but with also

an additional equation for oxygen and discrete elements describing the individual

tumour cells and the interaction of the cells with each other and the microenviron-

ment. Our most significant contribution in this chapter is that, when tumour cells

are strongly sensitive to changes in the intracellular pH, a low activity of the NHE

or a high rate of anaerobic glycolysis can give rise to a “fingering” morphology.

Furthermore, we show that as the activity of the MCT increases all the tumour

cells within the spheroid exhibit a reversed transmembrane pH gradient.

As a way of validating the model developed in Chapter 5, we reproduce key

findings obtained by Turner et al. [233] in their study of tumour cell invasion using

the extended cellular Potts model. We then examine the effect of acidic pH on cell

adhesion, proteolytic degradation and cell proliferation on the invasiveness of the

tumour cells. Our simulations show that, under acidic extracellular pH, cell-ECM

adhesion strength has a comparable effect on tumour invasiveness as the rate at

which the ECM is degraded by proteolytic enzymes. We also show that tumour

cells cultured under physiological pH tend to be larger and develop a “diffuse”

morphology compared to those cultured at acidic pH which display protruding

“fingers” at the advancing front.

Our analysis have allowed us to draw several important conclusions regard-

ing tumour acidity and the reversed cellular pH gradient. We now ask what their

significance may be in terms of therapeutic strategies. We suggest that simply low-

ering the MCT activity may prevent the onset of a negative cellular pH gradient

when the tumour is growing. This intervention, however, can cause a ‘fingering’

tumour morphology and the onset of quiescent cell state which have been shown

to be resistant to some anti-cancer therapies [151]. Also, we suggest that interven-

tions which lower the rate of glycolysis may result in a ‘rounded’ tumour which

is a characteristic of less invasive tumours [60]. Also, artificially increasing the
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glycolytic rate will acidify the intracellular space and result in inner core of dead

cells, but with ‘fingering’ morphology which is a characteristic of invasive tumours

[60]. Furthermore, we suggest that mechanisms which render cell-ECM adhesion

molecules weak particularly under acidic extracellular conditions tend to give rise

to a less invasive tumour. As expected, we also find that reducing proteolytic

enzyme activity will also give rise to a less invasive tumour.

One criticism that may arise from our model is that we assume anaerobic

glycolysis is the only source of excess production of H+-ions above the normal

background production. However, in addition to lactic acid production, intracel-

lular buffering of H+-ions with bicarbonate can release carbon dioxide which can

then freely leave the cell [202]. Expression of the enzyme carbonic anhydrase 9 on

the tumour cell surface catalyses the extracellular cell-generated carbon dioxide

into bicarbonate and H+ [223]. This will then contribute to the acidity of the

extracellular environment [224]. It would be interesting to study the effects of this

in our model.

The CA model presented in Chapter 4 provides a novel framework for under-

standing the important factors driving early tumour growth. In reality, tumour

growth does not exclusively depend on, for example, oxygen or pH and as such

it would be more biologically reasonable to allow all of oxygen, glucose, intra-

and extracellular pH to simultaneously influence, in our model, the growth and

phenotypic transformation of cells rather than just oxygen and extracellular pH.

Also, rather than just assuming a distally located blood vessel at the boundary,

our model can be extended by investigating the effect of the tumour microenvi-

ronment during angiogenesis. For example, it would be interesting to incorporate

the effect of acidity on MMP secretion and degradation of the extracellular matrix

into the sophisticated model of angiogenesis developed by McDougall et al. [146].

This model focuses on the effect of blood perfusion during angiogenesis and the

delivery of chemotherapeutic drugs.



Appendix A

Glossary

Acidic pH high levels of H+-ions.

Benign non-cancerous mass.

Carcinoma any type of cancer that arises in the epithelial tissue of the skin or

of the lining of the internal organs.

Cell adhesion molecules proteins located on the cell surface that bind cells with

other cells or with the extracellular matrix (ECM).

Cellular ion-transporter membrane-bound protein that transports ions in or

out of the cell.

Extracellular matrix (ECM) is a non-cellular component that provides essen-

tial structural support for the tissues or organs and also initiates crucial

biochemical and biomechanical signalling that are required for tissue mor-

phogenesis, differentiation and homeostasis.

Glioma a type of malignant tumour that originates from the the brain or spine.

Glycolysis the breakdown of glucose to release energy in the form of ATP. In the

presence of oxygen, 36 ATP molecules are produced, whereas in the absence

of oxygen, only 2 ATP molecules are produced.
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Hypoxia low oxygen.

Intracellular inside the cell.

Extracellular outside the cell.

In vitro experiments performed on cells outside the organism.

In vivo an experimental procedure using an intact live organism.

Metastasis the spread of cancer cells from one organ or tissue to another.

Necrosis cell death.

Phenotype an organism’s observable characteristics, such as its morphology, de-

velopment, biochemical or physiological features.

Proteolytic enzymes enzymes that catalyse the digestion of proteins into smaller

peptide fractions and amino acids by a process known as proteolysis.

Proliferation the process whereby a parent cell gives rise to two daughter cells

that share the same genetic make up.

Reversed, or negative, pH gradient the intracellular pH is higher than the

extracellular.

pH scale measures how acidic or alkaline a substance is, with pH 14 being strongly

alkaline, pH 1 being strongly acidic and pH 7 neutral.

Quiescence cell in resting state.

Vasculature arrangement of blood vessels in the body or an organ.



Bibliography

[1] http://info.cancerresearchuk.org/cancerstats/incidence/, Sep 2012.

[2] M F Adam, E C Gabalski, D A Bloch, J W Oehlert, J M Brown, A A

Elsaid, H A Pinto, and D J Terris. Tissue oxygen distribution in head and

neck cancer patients. Head Neck, 21:146–153, 1999.

[3] J A Adams and N Bellomo. A Survey of models for tumour-immune system

dynamics. Birkhauser, Boston, 1997.

[4] M Alber, M Kiskowski, J Glazier, and Y Jiang. IMA Series on mathematical

systems theory in biology, communication and finance, volume 142, chapter

On cellular automaton approaches to modeling biological cells, pages 1–40.

Springer, New York, 2002.

[5] V Andasari and M A J Chaplain. Intracellular modelling of cell-matrix

adhesion during cancer cell invasion. Math Model Nat Phenom, 7(01):29–48,

2012.

[6] V Andasari, A Gerisch, G Lolas, A P South, and M A J Chaplain. Math-

ematical modeling of cancer cell invasion of tissue: biological insight from

mathematical analysis and computational simulation. J. Math. Biol., 63:141–

171, 2011.

[7] V Andasari, R T Roper, M H Swat, and M A J Chaplain. Integrating

intracellular dynamics using CompuCell3D and bionetsolver: applications

193



BIBLIOGRAPHY 194

to multiscale modelling of cancer cell growth and invasion. PLoS ONE,

7(3):e33726, 2012.

[8] A R A Anderson. A hybrid mathematical model of solid tumour invasion:

the importance of cell adhesion. Math. Med. Biol., 22:163–186, 2005.

[9] A E Aplin, A K Howe, and R L Juliano. Cell adhesion molecules, signal

transduction and cell growth. Curr. Opin. Cell Biol., 11(6):737–744, 1999.

[10] R P Araujo and D L S McElwain. A history of the study of solid tumour

growth: the contribution of mathematical modelling. Bull. Math. Biol.,

66:1039–1091, 2004.

[11] N J Armstrong, K J Painter, and J A Sherratt. A continuum approach to

modelling cell-cell adhesion. J. Theor. Biol., 243(1):98–113, 2006.

[12] P S Aronson. Kinetic properties of the plasma membrane Na+-H+ exchanger.

Ann. Rev. Physiol., 47:545–560, 1985.

[13] N Avril, J Dose, F Janicke, S Bense, S Ziegler, C Laubenbacher, W Romer,

H Pache, M Herz, B Allgayer, W Nathrath, H Graeff, and M Schwaiger.

Metabolic characterization of breast tumors with positron emission tomog-

raphy using F-18 fluorodeoxyglucose. J. Clin. Oncol., 14(6):1848–1857, 1996.

[14] A H Baker, D R Edwards, and G Murphy. Metalloproteinase inhibitors:

biological actions and therapeutic opportunities. J. Cell. Sci., 115:719–3727,

2002.

[15] M A Barry and A Eastman. Endonuclease activation during apoptosis: The

role of cytosolic Ca2+ and pH. Biochem. Bioph. Res. Co., 186(2):782—789,

1992.

[16] W M Becker, L J Kleinsmith, J Hardin, and G P Bertoni. The world of the

cell. Perarson Benjamin Cummings, San Francisco, 2008.



BIBLIOGRAPHY 195

[17] J Behrens. The role of cell adhesion molecules in cancer invasion and metas-

tasis. Breast Cancer Res. Tr., 24:175–184, 1993.

[18] S Bekku, H Mochizuki, T Yamamoto, H Ueno, E Takayama, and

T Tadakuma. Expression of carbonic anhydrase I or II and correlation to

clinical aspects of colorectal cancer. Hepato-Gastroenterol., 47(34):998–1001,

2000.

[19] J M Berg, J L Tymoczko, and L Stryer. Biochemistry. W. H. Freeman, New

York, 5th edition, 2003.

[20] G Berx and F van Roy. Involvement of members of the cadherin superfamily

in cancer. Cold Spring Harb. Perspect. Biol., 1:a003129, 2009.

[21] J Boldt, B Kumle, S Suttner, and G Haisch. Point-of-care (POC) testing of

lactate in the intensive care patient. Acta. Anaesthesiol. Scand., 45:194–199,

2001.

[22] W F Boron. Intracellular pH-regulating mechanisms for the squid axons: Re-

lation between the external Na+ and HCO3
− dependences. J. Gen. Physiol,

85(3):325–345, 1985.

[23] W F Boron. Intracellular pH regulation in epithelial cells. Annu. Rev.

Physiol., 48:377–388, 1986.

[24] M J Boyer and I F Tannock. Regulation of intracellular pH in tumour cell

lines: Influence of microenvironmental conditions. Cancer Res., 52:4441–

4447, 1992.

[25] P Boyle and B Levin. World cancer report. Technical report, World Health

Organisation, 2008.

[26] M C Brahimi-Horn, J Chiche, and J Pouyssegur. Hypoxia signalling controls

metabolic demand. Curr. Opin. Cell Biol., 19:223–229, 2007.



BIBLIOGRAPHY 196

[27] R Breban, A Bisiaux, C Biot, C Rentsch, P Bousso, and M L Albert. Math-

ematical model of tumor immunotherapy for bladder carcinoma identifies

the limitations of the innate immune response. Oncoimmunology, 1(1):9–17,

2012.

[28] A Breslow. Thickness, cross-sectional areas and depth of invasion in the

prognosis of cutaneous melanoma. Ann. Surg., 172(5):902–908, 1970.

[29] J M Brown. Tumor microenvironment and the response to anticancer therapy

(review). Cancer Biol. Ther., 1(15):453–458, 2002.

[30] J M Brown and A J Giaccia. The unique physiology of solid tumors: Oppor-

tunities (and problems) for cancer therapy. Cancer Res., 58(7):1408–1416,

1998.

[31] J M Brown and W R Wilson. Exploiting tumour hypoxia in cancer treat-

ment. Nat. Rev. Cancer, 4:437–447, 2004.

[32] S Bunimovich-Mendrazitsky, H Byrne, and K Stone. Mathematical model

of pulsed immunotherapy for superficial bladder cancer. Bull. Math. Biol.,

70(7):2055–2076, 2008.

[33] A V Burton. Rate of growth of solid tumours as a problem of diffusion.

Growth, 30:157–176, 1966.

[34] W B Busa. Mechanisms and consequences of pH-mediated cell regulation.

Ann. Rev. Physiol., 48:389–402, 1986.

[35] G Busco, R A Cardone, M R Greco, A Bellizzi, M Colella, E Antelmi, M T

Mancini, M E Dell’Aquila, V Casavola, A Paradiso, and S J Reshkin. NHE1

promotes invadopodial ECM proteolysis through acidification of the peri-

invadopodial space. FASEB J, 24(10):3903–3915, 2010.



BIBLIOGRAPHY 197

[36] S K Calderwood and J A Dickson. pH and tumor response to hyperthermia.

Adv. Radiat. Biol., 10:135–190, 1983.

[37] R A Cardone, V Casavola, and S J Reshkin. The role of distributed pH dy-

namics and the Na+/H+ exchanger in metastasis. Nat. Rev. Cancer, 5:786–

795, 2005.

[38] P Carmeliet and R K Jain. Angiogenesis in cancer and other diseases. Nature,

407:249–257, 2000.

[39] J J Casciari, S V Sotirchos, and R M Sutherland. Variations in tumour cell

growth rates and metabolism with oxygen concentrations, glucose concen-

tration, and extracellular pH. J. Cell. Physiol., 151(2):386–394, 1992.

[40] U Cavallaro and G Christofori. Cell adhesion and signalling by cadherins

and ig-CAMs in cancer. Nat. Rev. Cancer, 4:118–132, 2004.

[41] F Ceteci, S Ceteci, C Karreman, B W Kramer, E Asan, R Götz, and U R
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