
DOMAIN DECOMPOSITION METHODS FOR

TIME-HARMONIC ELASTIC WAVES

BY

Romain Brunet

Supervised by

Victorita Dolean

A thesis submitted to the

Department of Mathematics and Statistics

University of Strathclyde

in partial fulfilment of the require for the degree of

Doctor of Philosophy

Academic Field Mathematics

This thesis is the result of the author’s original research. It has been composed by

the author and has not been previously submitted for examination which has led

to the award of a degree.

The copyright of this thesis belongs to the author under the terms of the United

Kingdom Copyright Acts as qualified by University of Strathclyde Regulation 3.50.

Due acknowledgement must always be made of the use of any material contained

in, or derived from, this thesis.

Signed:

Date:

Abstract

The construction of optimal solvers for high frequency Helmholtz-type equations is highly

problematic. After discretisation of the previous equations by a finite element method,

the underlying linear systems are usually large and difficult to solve both by direct and

iterative methods. Domain decomposition methods are hybrid methods in the sense that

they use an iterative coupling of smaller problems that are solved by direct methods,

and rely on the splitting the global problem into local problems on smaller subdomains.

These methods can be used as iterative solvers but also as preconditioners in a Krylov

type method. That is the reason why transmission conditions between subdomains are

very important.

In this manuscript, we start by an overview of main domain decomposition methods and

focus first on their use as preconditioners. Then we consider these methods from an

iterative point of view and perform a convergence study of non-overlapping and over-

lapping Schwarz methods with Dirichlet and Robin interface conditions, by analysing

their behaviour and conclude on their convergence properties which prove to be very

poor when used as solvers. The theoretical findings are illustrated by numerical results.

Then we present more sophisticated methods, namely the optimised Schwarz algorithms,

which use more effective transmission conditions depending on some parameters which

are solutions of min-max problems.

The Schwarz preconditioners defined previously were one-level, meaning only the in-

formation from the neighbouring domains is used. This has the undesired consequence

that the number of iterations needed to reach convergence increases with the number

of subdomains. For this reason we have tested numerically two-level preconditioners,

based on a coarse grid correction, this very simple idea giving promising results.

Acknowledgments

First of all, I would like to thank my thesis reviewers: Dr Sébastien Loisel from

the University of Heriot-Watt and Dr. Gabriel Barrenechea from the University

of Strathclyde, for their availability and careful reading of this manuscript which

will allow me to gain a new perspective and insight on my research work. I am

also thankful to staff members of the Department of Mathematics and Statistics

at University of Strathclyde for their help and advice during the last years.

I would like to address my sincere thanks to Prof. Martin J. Gander from the

University of Geneva for his ideas, useful comments, suggestions and for giving me

with the opportunity to benefit from the collaboration of a renowned specialist

of domain decomposition methods.

I would like to thank my parents and my family for supporting me throughout this

thesis and my life in general. Thanks a lot to Andrew, Grant, Craig, Rebecca,

Diego, Soizic, Mélinda, Marta, Céline, Vanessa, Angie, Mazze, Anna, Christo-

foros, Niobe, Nikita, Adriana, Beaumartin The Cottage crew and the LT822

office for making Glasgae feel like my second home, the “Parisiens”, “Bordelais”,

“Palois” for their continued support when I was at home. This thesis would just

not have been possible without all of them.

Last but clearly not least, I would like to express my sincere gratitude to Victoriţa

Dolean for the continuous support of my PhD study and related research, for her

patience, motivation, knowledge and joie-de-vivre. Her guidance helped in my

research work and also in the writing of this thesis.

A Mamie du Coq...

Contents

Introduction xiii

Motivation . xiii

Mathematical model . xiv

Domain decomposition . xix

Contents . xx

1 Domain decomposition methods 1

1.1 State of the art . 1

1.2 The original Schwarz method and Lions’ modification 3

1.3 Schwarz methods as preconditioners . 5

1.4 Numerical experiments: one-level preconditioners 7

2 Classical Schwarz methods 17

2.1 Classical Schwarz Algorithm . 17

Numerical experiments . 27

2.2 Optimal Schwarz algorithms and local approximations 30

2.3 Absorbing boundary conditions . 33

Numerical experiments . 50

3 Optimised Schwarz methods 54

3.1 State of the Art . 54

vi

CONTENTS vii

3.2 One parameter family of transmissions conditions 56

3.3 Higher order conditions . 75

3.3.1 Two-sided version of higher order conditions 78

3.3.2 General higher order conditions 82

3.4 Conclusions and future works . 84

4 Grid coarse space 86

4.1 The grid coarse space . 86

4.2 Numerical results . 87

A Matlab implementations 92

A.1 Main script . 92

A.2 Rho - the computation of the convergence factor 94

B FreeFem++ implementations 101

B.1 Data files and definitions of macros . 102

B.2 RAS/ORAS . 104

B.3 GMRES . 108

List of Figures

1 P/S-waves . xvi

1.1 Original domain of the classical Schwarz algorithm 3

1.2 Real part of the first component of the solution: Test case 1 (left figure)

and Test case 2 (right figure) . 9

1.3 An example of mesh and solution in the transmission problem 10

1.4 Uniform decomposition into 2x2, 4x4 and 6x6 domains. 10

1.5 METIS decomposition into 4, 16 and 36 domains. 11

1.6 RAS vs. ORAS, overlap =4h (h - meshsize), 64 domains, uniform de-

comp (left), METIS (right) . 11

1.7 Convergence history for RAS (upper row) and ORAS (lower row) on

uniform decompositions and overlap = 2h (left) and overlap=4h (right) 12

1.8 Convergence history for RAS (upper row) and ORAS (lower row) on

METIS decompositions and overlap =2h (left) and overlap=4h (right) . 12

1.9 RAS vs. ORAS, δ=4h, 64 domains, unif. decomp (left), METIS (right) 13

1.10 Convergence history for RAS on METIS decompositions and overlap=2h

(left) and overlap=4h (right) . 14

1.11 Convergence history for ORAS on METIS decompositions and overlap=2h

(left) and overlap=4h (right) . 14

2.1 Modulus of the eigenvalues of the iteration matrix for the classical Schwarz

method with Cp = 1, Cs = 0.5, δ = 0.1. Left: for ω = 1. Right: for ω = 5. 22

viii

LIST OF FIGURES ix

2.2 Error in modulus at iteration 25 of the classical Schwarz method with

2 subdomains, where one can clearly identify the dominant mode in the

error: Left: ω = 1. Right: ω = 5. 28

2.3 Spectrum of the iteration operator for the same example as in Figure

2.1, together with a unit circle centered around the point (1, 0). Left:

ω = 1. Right: ω = 5 . 29

2.4 Convergence history for RAS and GMRES preconditioned by RAS for

different values of ω . 29

2.5 Modulus of the eigenvalues of the iteration matrix for the Schwarz method

with absorbing TC without overlap and Cp = 1, Cs = 1
2 and ρ = 1. Left:

(ω = 1). Right: (ω = 5). 34

2.6 Spectrum of the iteration matrix for the Schwarz method with Cp = 1,

Cs = 1
2 , ρ = 1, ω = 1 and δ = 0. With absorbing ρT0 (ke = 0), general

zeroth order ρT0,e (ke = 5) and second order ρT2 (ke = k) TTC. 35

2.7 Spectrum of the iteration matrix for the optimised Taylor Schwarz method

Cp = 1, Cs = 1
2 , ρ = 1, ω = 5, δ = 0.1. With absorbing ρT0 (ke = 0),

general zeroth order ρT0,e (ke = 5) and second order ρT2 (ke = k) TTC. . 39

2.8 Spectrum of the iteration matrix for the optimized Taylor Schwarz method

with overlap δ = 1 and Cp = 1, Cs = 1
2 , ρ = 1 and ω = 1. Absorbing

BC ρT0 (ke = 0), general zeroth order ρT0,e (ke = 5) and second order

ρT2 (ke = k) TTC. 46

2.9 Modulus of the eigenvalues of the iteration matrix close to k = ω
Cs

for

the optimized Schwarz method with zeroth order TTC for ω = 1. Left:

δ = 0.8 (divergence). Middle: δ = 0.9 (convergence). Right: δ = 1

(convergence). 46

2.10 Error in modulus at iteration 60 of the iterative Schwarz method with

TTC and convergence history (ω = 5, δ = 2h). 51

2.11 Error in modulus at iteration 60 of the iterative Schwarz method with

TTC and convergence history (ω = 5, δ = 6h). 51

2.12 Convergence history for RAS and ORAS as solvers (left) and precondi-

tioners (right) for ω = 5, 2× 1 subdomains different values of δ. 52

2.13 Convergence history for RAS and ORAS as solvers (left) and precondi-

tioners (right) for ω = 5, 4× 4 subdomains, different values of δ. 53

LIST OF FIGURES x

3.1 ke <
ω
Cp

: the spectrum of the iteration matrix for the non-overlapping

Schwarz method with OIC and Cp = 1, Cs = 1
2 , ω = 1. 59

3.2 For ke <
ω
Cp

, spectrum of the iteration matrix from the overlapping

Schwarz method with OIC and Cp = 1, Cs = 1
2 , ω = 1. 61

3.3 Comparison of the overlapping Schwarz method with zeroth order TTC

and OIC for ke <
ω
Cp

with Cp = 1, Cs = 1
2 , ω = 1, δ = 1

10 64

3.4 ke ∈
{
ω
Cp
, ωCs

}
: spectrum of the iteration matrix from the overlapping

Schwarz method with OIC and Cp = 1, Cs = 1
2 , δ = 1

10 . Left: ω = 1.

Middle: ω = 5, Right: comparison with TTC. 66

3.5 ke >
ω
Cp

: the spectrum of the iteration matrix from the non-overlapping

Schwarz method with OIC and Cp = 1, Cs = 1
2 , ω = 1. 67

3.6 Z2 − Z1 with Cp = 1, Cs = 1
2 , ω = 1. Left: N=100. Right: N=1000. . . 69

3.7 Z2 − Z1 with Cp = 5, Cs = 1, ω = 10. Left: N=100. Right: N=1000. . . 70

3.8 ke >
ω
Cp

: the spectrum of the iteration matrix from the overlapping

Schwarz method with OIC and Cp = 1, Cs = 1
2 , ω = 1, δ = 1

10 71

3.9 Comparison of the classical and the OIC Schwarz method for ke >
ω
Cs

with Cp = 1, Cs = 1
2 , ω = 1, δ = 1

10 . 71

3.10 ω
Cp

< ke <
ω
Cs

: the spectrum of the iteration matrix for the overlapping

Schwarz method with OIC and Cp = 1, Cs = 1
2 , ω = 1, δ = 1

10 73

3.11 Optimized convergence factor, i.e. the maximum modulus of the eigen-

values of the iteration matrix for the overlapping Schwarz method with

OIC for ω
Cp

< ke <
ω
Cs

and ω = 1, Cp = 1, Cs = 1
2 , δ = 1

10 74

3.12 Left: Value of ω
Cs
− k∗e obtained by minimising the convergence factor

numerically compared to the asymptotic behaviour when the overlap δ

becomes small. Right: asymptotic behaviour of the convergence factor. . 74

3.13 ke <
ω
Cp

: the spectrum of the iteration matrix from the overlapping

Schwarz method with HOIC and Cp = 1, Cs = 1
2 , ω = 1, δ = 1

10 76

3.14 Spectrum of the iteration matrix for the Schwarz method with HOIC

with Cp = 1, Cs = 1
2 . Left: δ = 0. Right: δ = 1

10 78

3.15 Spectrum of the iteration matrix for the overlapping Schwarz method

with two-sided HOIC and Cp = 1, Cs = 1
2 , ω = 1, δ = 1

10 80

LIST OF FIGURES xi

3.16 Spectrum of the iteration matrix from the Schwarz method with one-

sided GHOIC and Cp = 1, Cs = 1
2 , ω = 1. Left: δ = 0. Right: δ = 1

10 . . 84

4.1 Convergence history for RAS (upper row) and ORAS (lower row) on

uniform decompositions and overlap =2h (left) and overlap=4h (right) . 88

4.2 Convergence history for RAS (upper row) and ORAS (lower row) on

METIS decompositions and overlap =2h (left) and overlap=4h (right) . 89

4.3 Convergence history for ORAS and RAS on METIS decompositions and

overlap =2h (left) and overlap=4h (right) 90

List of Tables

1.1 Physical characteristics for the heterogeneous test case 10

1.2 Preconditioners comparison for the test case 1 13

1.3 Preconditioners comparison for the test case 2 14

1.4 Preconditioners comparison for the heterogeneous test case 3 - Example 1 15

1.5 Preconditioners comparison for the heterogeneous test case 3 - Example 2 15

4.1 Preconditioners comparison for the test case 2 88

4.2 Preconditioners comparison for the heterogeneous test case 3 89

xii

Introduction

Motivation

Propagation of waves in elastic media is a problem of undeniable practical importance

that appears in geophysics which is also extremely interesting from a mathematical

point of view. Both experimental and theoretical approches have been designed be-

cause of an increasing interest in man-made ground vibration. Most materials have a

very complex behaviour, so in order to fully describe it, a lot of properties need to be

known. In classical elastodynamics, we are only concerned by isotropic and homoge-

neous materials with linear behaviour. For this kind of materials, it means that the

properties of particle motion don’t change according to the direction and the position.

Linear-elastic behaviour means we can use laws such as the generalised Hooke’s law,

which says that the strain (deformation) of an elastic object or material is proportional

to the stress applied to it. In several important applications - e.g. seismic exploration or

earthquake prediction - one seeks to infer unknown material properties of the earth’s

subsurface by sending seismic waves down and measuring the scattered field which

comes back, implying the solution of inverse problems.

In the process of solving the inverse problem (so-called ”full-waveform inversion”) one

needs to iteratively solve the forward scattering problem, each time using an improved

guess of the unknown material properties. In practice, each step is done by solving the

appropriate wave equation using explicit time stepping. With this kind of methods,

several phenomena, such as seismic waves in the earth and ultrasonic waves used to

detect flaws in materials, can be quite accurately simulated. However in many applica-

tions the relevant signals are band-limited and it would be more efficient to solve in the

frequency domain (the Helmholtz equation), except for the fact that the construction

of optimal solvers for the high frequency Helmholtz equation is highly problematic.

xiii

xiv

Different numerical methods have their own range of validity and interest and numerical

techniques in the space-time domain can handle almost any kind of waves in complex

media but are limited mainly because of numerical dispersion or computational cost

as quite an important number of time steps needs to be considered. For this reason

we are interested here in the time-harmonic counterpart of Navier equations with the

objective to develop new linear solvers for this equation. We will use domain decom-

position methods to split the overall problem into smaller boundary value problems on

subdomains and more precisely we will focus on the classical and optimised Schwarz

type algorithms.

In a first instance we analyse by using the Fourier transform technique the convergence

of these algorithms with the purpose of building more sophisticated and performant

methods. Asymptotic results are presented and several numerical results will illustrate

the theory. Due to their indefinite nature, Navier equations are difficult to solve and

therefore the construction of robust algorithms is mandatory. The development of fast

solvers for time harmonic problems is of great current interest and requires a combina-

tion of linear algebra (iterative methods for non-normal complex linear systems) and

variational discretisations of PDEs.

Mathematical model

An elastic material responds to an applied force by deforming and returns to its original

shape upon the removal of the applied force. Thus, there is no permanent deformation

within elastic behaviour. The relative geometric deformation of the solid is called

strain and forces that occur in the solid are described as stresses. The linear theory of

elasticity represented by the Navier-Cauchy equation models mechanical properties in

a structure.

In this section, we present the fundamental equations of linearised elasticity and derive

the Navier-Cauchy equation, which governs the propagation of time-harmonic waves in

elastic solids. In our case, we assume small deformations which lead to linear equations.

We also consider isotropic and homogeneous materials which implies that the physical

coefficients are independent of the position and the direction.

In this simplified case, we have that the strain tensor ε(u) is linked to the stress tensor

σ(u) (Hooke’s law), as seen in [Gra91] leading to the following second order hyperbolic

xv

system

(1)

ε(u) =
1

2

(
∇u + (∇u)T

)
,

σ(u) = 2µε(u) + λ div(u) Id,

ρ∂2
t u− div(σ(u)) = f ,

where u is the displacement field, f the source term, ρ the density that we assume real

and µ, λ ∈ [R∗+]2 the Lamé coefficients.

We also define by Cp, Cs the speeds of P- and S-waves (Figure (1))

(2) µ =
E

2(1 + ν)
, λ =

Eν

(1 + ν)(1− 2ν)
, Cp =

√
λ+ 2µ

ρ
, Cs =

√
µ

ρ
,

where E, ν are the Young’s modulus and the Poisson ratio. The Young modulus E is a

measure of the stiffness of the solid: it describes how much force is needed to attain the

given deformation and is positive. The Poisson ratio is a measure of the compressibility

of the solid: it is the ratio of lateral to longitudinal strain.

The fact that 0 < ν < 0.5, E > 0 and (2) gives us

(3) µ > 0, λ > 0, Cp >
√

2Cs.

Earth generally opposes much less resistance to the dilations than rotations, that is

why the compression waves dilation are always the first arrivals.

After plugging the tensors from (1) into the last equation we end up with the time

domain Navier Cauchy equations

(4) ρ∂2
t u− µ∆u− (λ+ µ)∇(∇ · u) = f .

These equations are defined on a domain Ω ⊂ R2, with Lipschitz boundary Γ = ∂Ω.

Equation (4) describes both the transport of the volumic variation called pressure

waves (or P-waves) represented by ∇ · u and small rotations called shear waves (S-

waves) represented by the term ∇ × u (included in ∆u) as illustrated in Figure (1)

from [Hog].

If the source f has a harmonic dependence on time, that is

f(x, t) = f̂(x) e−iωt,

xvi

Figure 1: P/S-waves

where ω is the angular frequency and f̂ is the complex amplitude, then the solution

will also follow a harmonic dependence

u(x, t) = û(x) e−iωt,

where û is the complex amplitude of the oscillatory displacement field.

By replacing now f and u into (4) we obtain the time-harmonic counterpart of Navier-

Cauchy equations

(5) −
(
ω2ρû + µ∆û + (λ+ µ)∇(∇ · û)

)
= f̂ in Ω.

For the simplicity of the notations we will abandon now the hat symbol and write the

time harmonic elastic wave propagation equations as follows

(6) −
(
∆e + ρω2

)
u = f in Ω, ∆e = [µ∆ + (λ+ µ)∇(∇·)] .

We want to solve these equations in the two dimensional domain Ω ⊂ R2 with a

Lipschitz boundary Γ = ∂Ω. By dot multiplying the equation (6) by the vector test

function v and integrating by parts we get

(7) a(u,v) +

∫
Γ
Tn(u) · v dΓ = 0,

where a(u,v) is a bilinear form defined by

a(u,v) =

∫
Ω

(
ω2ρu · v − λ∇ · u∇ · v

)
− µ

2

∫
Ω

(
∇u + (∇u)T

)
:
(
∇v + (∇v)T

)
,

xvii

and Tn is a local traction operator, which will be very useful in the sequel

(8)

Tn(u) = µ∂nu + (λ+ µ)n(∇ · u)

= µ∂nu + λn∇ · u + µ(∇u · n + n×∇× u)

= 2µ∂nu + λn∇ · u + µn× (∇× u) ,

n being a unit outward normal vector to the boundary Γ.

We can define different types of boundary conditions (BC). For example, if g ∈ (L2(Γ))2

• Dirichlet boundary conditions : u = g,

• ”Neumann” or natural boundary conditions : Tn(u) = g,

• Robin-type boundary conditions: (Tn + S)(u) = g, where S is a two by two

matrix valued operator which can possibly be tangential or pseudo-differential.

In our case we assume that the same results of well-posedness as in the case of the

Helmholtz equation hold, that is the presence of at least one Robin-type or absorbing

boundary condition insures the uniqueness and existence of the solution. This seems

to be often the case in various applications. Under this assumption and supposing the

appropriate discretisation method has been found (with enough points per wavelength)

because of the oscillatory nature of the solution, we expect that Navier equations in the

frequency domain will be very difficult to solve by iterative methods. This is somehow

natural, as they are similar to the Helmholtz equation which are notoriously difficult

to solve, see [EG12], and the Navier equations have further complications.

Simple Recalls Before going further let us recall some basic relations between the

well known partial differential operators, that will be very useful in the sequel:
∇ · (∇φ) = ∇2φ = ∆φ,

∇ · (∇× φ) = ∇× (∇φ) = 0,

∆u = ∇2u = ∇(∇ · u)−∇× (∇× u).

Plane wave solutions and absorbing boundary conditions

In the following we will illustrate a particular solution of the time-harmonic elastic wave

equations in the open space, also known as plane wave solution. By using the notion

of the plane wave we can also introduce the notion of absorbing boundary condition as

xviii

being the condition exactly verified by those plane waves. Let us first consider the unit

vector d and d⊥ (orthogonal vector to d). Note that in the three dimensional case d⊥

is not unique but can be any vector in an orthogonal plane to d.

Let us now consider the function:

(9) upwd = α d eiκpx·d︸ ︷︷ ︸
up

+ β d⊥ eiκsx·d︸ ︷︷ ︸
us

,

where α and β are constants and the coefficients κp and κs are defined as follows:

(10) κp =
ω

cp
, κs =

ω

cs
.

An easy computation shows on one side that

∇× up = 0, ∇ · us = 0,

and both up and us are solutions to the homogeneous time-harmonic Navier equations

(5) in the free space. In this sense we can say that the plane wave solutions defined by

(9) define an orthogonal decomposition using curl free and divergence free components.

Let us consider now a computational domain Ω of boundary Γ = ∂Ω. If we apply

now the traction operator (8) to the two components of the plane wave solution which

propagates in the direction defined by the outward normal d = n to the boundary Γ

defined above we obtain:

T (n)(up) = 2µ∇up · n + λn · (∇ · up) = iρωcp(n⊗ n)up,

T (n)(us) = µn · (∇× us) = iρωcs

(
n⊥ ⊗ n⊥

)
us.

Since up and us are orthogonal respectively to n⊥ and n we conclude that

T (n) (upwn) = iρω
(

cp (n⊗ n) + cs

(
n⊥ ⊗ n⊥

))
upw
n =: iσnupw

n .

We can therefore infer that the Robin boundary condition

(11)
(
T (n) − iρω

(
cp (n⊗ n) + cs

(
n⊥ ⊗ n⊥

)))
u =

(
T (n) − iσn

)
u = 0

is exact for the plane waves defined by (9). This condition is also called absorbing

boundary condition.

xix

Domain decomposition

After discretisation of the previous equations by a finite element method, the underly-

ing linear systems are usually large and difficult to solve both by direct and iterative

methods. Direct methods are very robust and provide the exact solution (up to the

machine precision) after a finite numbers of steps but they are limited by memory

requirements, which make the solution of the linear system beyond a given size impos-

sible to obtain in practice. Iterative methods, on the other hand, generate a sequence

that approximates the solution of the problem and the convergence to the appropriate

solution depends on the properties of the matrix such as the condition number (in the

case of symmetric positive definite matrices or more generally by the field of values for

indefinite matrices).

Domain decomposition methods are hybrid methods in the sense that we use an iter-

ative coupling of smaller problems that are solved by direct methods. By this kind of

technique we hope to eliminate the inconvenient features of the two classes of methods

(direct and iterative) and preserve only their advantages. The main idea behind these

hybrid methods is to split the problem defined on the global domain into local prob-

lems on smaller subdomains, which can be solved independently, in parallel, and then

communicate the results to the other domains in an iterative manner.

We distinguish two types of methods: overlapping and non-overlapping domain decom-

position methods. In the case of non-overlapping decompositions, the subdomains have

in common only the interface (the artificial boundary created by the decomposition).

In the overlapping case subdomains have in common more than just the interface,

which can lead to better convergence on one hand, but on the other hand redundant

information has to be stored locally which can be costly from a computational point of

view.

Domain decomposition methods can be used as either as iterative solvers or as precon-

ditioners in a Krylov type method. Both aspects will be treated in this thesis. Their

use as solvers is rather limited as the convergence might be very slow but it is very

helpful as one can gain a lot of insight on the behaviour of these methods. That is the

reason why the transmission conditions between subdomains are very important. In

order to use them as solvers one can first define more effective transmission conditions

at the interface between subdomains, depending on some parameters, by thus obtaining

a new class of methods called optimised Schwarz methods. These parameters can be

optimised by sophisticated techniques in order to obtain the best convergence possible

of the iterative method.

xx

The most common use of the Schwarz methods is as preconditioners which means that

instead of solving the global problem defined by

AU = F we solve M−1AU = M−1F .

If M−1 is a good approximation of A−1, then the spectral properties of M−1A are much

better than those of A. The previous preconditioner is based on the decomposition into

subdomains.

Content and contributions

One of the objectives of this thesis is the development of new domain decomposition

methods for the elastodynamics equations in frequency regime. We will consider these

methods both from an iterative point of view (by designing and analysing Schwarz

algorithms with optimised transmission conditions) and also as preconditioners in a

Krylov method by exploring numerically their behaviour on some reference test cases.

Chapter 1 In this chapter we present an overview of main domain decomposition

methods and we will focus on their use as preconditioners. More precisely we will

chose the simplest possible methods, that is those based on Dirichlet or Robin

transmission conditions (absorbing boundary conditions) at the interface between

domains. These precondititioners, called RAS and ORAS have been extensively

studied in the literature but to our knowledge this is the first numerical study

on the time-harmonic elastic waves equations. We perform several numerical

experiments on simple two-dimensional test cases, on uniform and METIS de-

compositions.

Chapter 2 In this chapter we will perform a convergence study of non-overlapping

and overlapping Schwarz methods with Dirichlet and Robin interface conditions

by using the Fourier transform technique. We will analyse their behaviour and

conclude on their convergence properties which prove to be very poor when used

as solvers. Numerical results illustrate the theoretical findings.

Chapter 3 The conclusions from the previous chapter motivated the introduction of

more sophisticated methods using more effective transmission conditions. The

convergence analysis shows that is quite complicated to build a better method

by minimising the maximum of the convergence factor over a range of relevant

xxi

frequencies. Since an analytical study seems out of reach, we use asymptotic

methods and numerical optimisation.

Chapter 4 In this chapter we first present a two level method. The second level is

based on a coarse grid correction inspired by a method introduced by Graham

et al in [GSV17a] for the Helmholtz equations and then extended to Maxwell’s

equations in [BDG+17]. In a first instance we only wish to explore the potential

of the method on several academic test cases. The first results seem quite en-

couraging as we obtain as expected a convergence which is weakly dependent of

the number of subdomains for the homogeneous test cases. However the two-level

preconditioner performs less well in the case of heterogeneous problems.

Appendix A includes numerical optimisation with Matlab used in Chapter 3.

Appendix B contains FreeFem++ codes used to generate the numerical results.

The content of the Chapters 1 and 2 gave raise to the following contributions:

• R. Brunet, V. Dolean, M.J. Gander, Can classical Schwarz methods fortime-

harmonic elastic waves converge?, accepted for publication in the proceedings of

the XXV International Conference on Domain Decomposition Methods, 2018.

• R. Brunet, V. Dolean, M.J. Gander, Analysis of natural Schwarz algorithms and

preconditioners for the solution of time-harmonic elastic waves, paper submitted

for publication.

Chapter 1

Domain decomposition methods

and preconditioners

With the increasing demand for high-resolution simulations for complex systems and

the availability of supercomputers, it has become necessary to have robust and efficient

algorithms. That is, independent or weakly dependent of the physical properties of

the medium such as the frequency. Computational efficiency is measured in terms of

scalability (that is the optimal use of resources, leading to the smallest time to solution

possible). Domain decomposition (DD) algorithms are very suitable candidates.

1.1 State of the art

We will start with a short introduction and a non exhaustive state of the art on do-

main decomposition methods. What we commonly call classical Schwarz method was

introduced for the first time in [Sch70] in the purpose of proving the existence and

uniqueness of the solution of a Dirichlet Poisson boundary value problem on a domain

composed of the union of a rectangle and a circle (as seen in Figure 1.1). For those

irregularly shaped domains, Fourier transform techniques (in absence of the modern

functional analysis, these were the only available mathematical tools) were not appli-

cable. The method consisted in an alternate iteration which was converging towards

the solution of the boundary value problem (BVP). Later on, it has been shown that

this method is in fact equivalent to a block Gauss Seidel type iteration where each of

blocks of the global matrix corresponds to the discretisation of the Laplace operator

on the local subdomains.

1

CHAPTER 1. DOMAIN DECOMPOSITION METHODS 2

Even if the method was discovered in the 19th century, it has regained a lot of interest

in the 20th century with the advent of the parallel computers. Indeed, a parallel

version of it was introduced by P.-L. Lions in [Lio88], which represents in fact only a

slight modification of the original method, yielding into a fully parallel algorithm whose

algebraic counterpart is a block-Jacobi method.

Since the sequence of works of Lions (presented on the occasion on of the first interna-

tional domain decomposition conferences) the literature on the topic covering various

aspects of the field has been considerably enriched. We would like to mention several

books and reference monographs. They are very different in content and approach

and respond to various needs of mathematicians and other scientists. Among them,

we could cite [SBG96] which presents the methods essentially from an algebraic point

of view and by using matrix formulations of problems, illustrating them on different

applications. Another reference book by Quarteroni and Valli [QV99] defines and

analyses these methods on the continuous versions of BVP and PDE models, being

less focused on computational aspects. Later on, Toselli and Widlund [TW05] discuss

in their monograph, domain decomposition methods for finite element discretisations

presenting rigorous analysis for a variety of problems and an overview of the properties

of these as preconditioners. The newest book from V. Dolean, P. Jolivet and F. Nataf

[DJN15], in addition to [TW05], includes also the optimized methods, new advances in

coarse spaces and provides implementations in an open-source finite element software.

In this work we are interested in two different aspects of domain decomposition meth-

ods. First, their use as solvers, where we try to optimise their performance by designing

new transmission conditions and secondly as preconditioners. The used of new, more

sophisticated interface transmission conditions, is part of the subtopic called Optimized

Schwarz methods which has expanded considerably in the past decades. Its origin can

be found in [Lio90], where for the first time the author proposed the use more effec-

tive conditions at the interfaces between the subdomains than the usual Dirichlet or

Neumann boundary conditions. These new conditions insure the convergence of the it-

erative version of the non-overlapping algorithms applied to a Poisson BVP. During the

past two decades a rich literature and an important number of works were developed

on this topic, with applications to various domains and equations.

There are several variants of domain decomposition methods used as preconditioners.

The most popular is called Additive Schwarz (AS) and has been extensively analysed in

[TW05] for a large class of symmetric positive definite problems. Its main property is

the preservation of the symmetry of the preconditioner which makes it easy to analyse.

However there is another variant called Restricted Additive Schwarz (RAS) which was

CHAPTER 1. DOMAIN DECOMPOSITION METHODS 3

introduced by X.-C. Cai and M. Sarkis in [CS99] and whose convergence properties were

proved to be better than those of the AS method. Same authors also proposed in [CS99]

a Restricted Multiplicative Schwarz (RMS) preconditioner whose convergence has been

analysed in [NS02]. There is also a continuous interpretation at the matrix level of the

RAS in [EG03] that helps to explain why this method converges faster than AS and

why it represents the natural discrete counterpart of the continuous Schwarz algorithm.

We need to note that Optimised Schwarz methods can also be used as preconditioners

and are known under the name of Optimized RAS (ORAS), Optimized MS (OMS) and

Optimized AS (OAS) preconditioners. The effective application of these methods as

preconditioners is illustrated in [SCGT07].

1.2 The original Schwarz method and Lions’ modification

The first domain decomposition method was introduced by H. Schwarz in order to solve

the following Poisson equation on an irregular domain Ω as shown in Figure 1.1

(1.1)

{
−∆u = f in Ω

u = g on ∂Ω

Figure 1.1: Original domain of the classical Schwarz algorithm

To solve problem (1.1) on the union of circle (Ω1) and rectangle (Ω2), Schwarz built an

iterative method which consists in computing successive approximations on the local

CHAPTER 1. DOMAIN DECOMPOSITION METHODS 4

subdomains on which the solution could be computed by using Fourier series and then

exchanging the data between neighbouring subdomains. He proved the convergence

of the iterative method to a solution meaning that the solution on the whole domain

exists.

This method is now known as the classical Schwarz method and can be simply described

as follows: given an initial guess u0
2 one solves iteratively by alternating the successive

solves on both subdomains

−∆un+1

1 = f in Ω1

un+1
1 = 0 on ∂Ω ∩ ∂Ω1

un+1
1 = un2 on ∂Ω1 \ ∂Ω

−∆un+1

2 = f in Ω2

un+1
2 = 0 on ∂Ω ∩ ∂Ω2

un+1
2 = un+1

1 on ∂Ω2 \ ∂Ω.

(1.2)

According to this definition, one can see that the solution on subdomain Ω2 at n + 1

iteration depends on the solution on subdomain Ω1, which is the reason why this

algorithm is not parallel and its convergence is very slow. Moreover, in the case of

non-overlapping subdomain the algorithm does not converge.

Later on, P.-L. Lions modified the classical Schwarz method (1.2) and proposed the

following fully parallel algorithm that starting from an initial guess (u0
1, u

0
2) solves in

parallel the local problems then iterates
−∆un+1

1 = f in Ω1

un+1
1 = 0 on ∂Ω ∩ ∂Ω1

un+1
1 = un2 on ∂Ω1 \ ∂Ω

−∆un+1

2 = f in Ω2

un+1
2 = 0 on ∂Ω ∩ ∂Ω2

un+1
2 = un1 on ∂Ω2 \ ∂Ω.

(1.3)

The now parallel algorithm (1.3) is convergent but only for overlapping subdomains and

the converge remains very slow. However, it can be proven that the bigger the overlap,

the faster the convergence.

On the other hand, due to its simplicity it can be generalised easily to a well posed

boundary value problem defined by the positive definite partial differential operator L{
Lu = f in Ω

u = 0 on ∂Ω.

with some further modifications to other categories of problems.

The convergence of such an algorithm can further be improved by using more sophis-

CHAPTER 1. DOMAIN DECOMPOSITION METHODS 5

ticated boundary conditions at the interfaces between subdomains

(1.4)

−∆un+1

1 = f in Ω1

un+1
1 = g on Ω1 ∩ ∂Ω

(∂n1 + p1)un+1
1 = (∂n1 + p1)un2 on Ω2 ∩ ∂Ω1

(1.5)

−∆un+1

2 = f in Ω2

un+1
2 = g on Ω2 ∩ ∂Ω

(∂n2 + p2)un+1
2 = (∂n2 + p2)un1 on Ω1 ∩ ∂Ω2

where p1, p2 are well chosen constants. The first algorithm of this type has been pro-

posed by Lions and converges even in the case of non-overlapping domains. The con-

stants p1, p2 can be computed by analytical or numerical techniques in order to achieve

the best convergence possible of the method. We will study in more detail this kind of

algorithms applied to the Navier equations in the next chapter.

It can be shown that the Schwarz method defined by (1.3) is equivalent to a block

Jacobi algorithm (see [DJN15, Chapter 1.2]), in which the blocks correspond to local

problems on each subdomain. Such a method is known to converge quite slowly and

therefore the use of preconditioned Krylov accelerations is recommended. In this case

the preconditioners will be inspired by the overlapping decompositions as we will show

in the next section.

Moreover, it has been shown for the first time in [SCGT07] that from practical point

of view, the use of Lions type algorithms and optimised Schwarz methods as precondi-

tioners, is quite natural and can be simply understood within the same formalism as

the classical overlapping Schwarz methods as we will see in the next section.

1.3 Schwarz methods as preconditioners

In this section we will present briefly the use of Schwarz methods as preconditioners.

For the sake of simplicity we will limit the presentation to the discrete setting. Suppose

that after the discretisation of the Navier equations, say by a finite element method,

we obtain the following linear system

AU = F ,

CHAPTER 1. DOMAIN DECOMPOSITION METHODS 6

where A is the discretisation matrix on the domain Ω, U is the vector of unknowns

and F is the right hand side. This system will be solved by a Krylov method (which in

our case will be GMRES as the system is indefinite). To accelerate the performance of

the Krylov method applied to this system we will consider two preconditioners inspired

by an overlapping domain decomposition which are naturally parallelisable [DJN15,

Chapter 3]. In order to introduce these preconditioners, we first need to define a cer-

tain number of ingredients necessary in their writing in algebraic form.

Let Th a triangulation of the computational domain and {Th,i}Ni=1 be a non-overlapping

partition of this triangulation. Such a partition can be typically obtained by using a

mesh partitioner like METIS [KK98]. The overlapping partition needed in our method

is defined as follows. For an integer value l ≥ 0, we build the decomposition {T lh,i}Ni=1

such that T lh,i is a set of all triangles from T l−1
h,i and all triangles from Th \ T l−1

h,i that

have non-empty intersection with T l−1
h,i , and T 0

h,i = Th,i. With this definition the width

of the overlap will be of 2l. Furthermore, if Wh stands for the finite element space asso-

ciated with Th, W l
h,i is the local finite element spaces on T lh,i that is a triangulation of Ωi.

Let N be the set of indices of degrees of freedom of the global finite element space Wh

and N l
i the set of indices of degrees of freedom of the local finite element spaces W l

h,i

for l ≥ 0. We define the restriction operators from the global set of degrees of freedom

to the local one, by

Ri : Wh →W l
h,i.

At a discrete level this is a rectangular matrix |N l
i | × |N | such that if V is the vector

of degrees of freedom of vh ∈ Wh, then RiV is the vector of degrees of freedom of Wh

in Ωi.

The extension operator from W l
h,i to Wh and its associated matrix are both then given

by RTi .

In addition we introduce a partition of unity Di as a diagonal matrix |N l
i | × |N l

i | such

that

(1.6) Id =
N∑
i=1

RTi DiRi,

where Id ∈ R|N |×|N | is the identity matrix.

With these ingredients at hand we can now present the RAS preconditioner firstly

CHAPTER 1. DOMAIN DECOMPOSITION METHODS 7

introduced in [CS99], as described in [DJN15, Chapter 1.4]:

(1.7) M−1
RAS =

N∑
i=1

RTi Di

(
RiAR

T
i

)−1
Ri.

In our experiments we will also use another very natural method, namely the Optimized

RAS (ORAS) preconditioner which is based on local boundary value problem with

Robin boundary conditions (absorbing boundary conditions). In this case, let Bi be

the matrix associated to a discretisation of the corresponding local BVP on the domains

Ωi with Robin boundary conditions on ∂Ωi∩∂Ωj . The definition is very similar to (1.7)

except that RiAR
T
i is replaced by Bi:

(1.8) M−1
ORAS =

N∑
i=1

RTi DiBi
−1Ri.

We will therefore solve the following preconditioned system by a Krylov method

M−1AU = M−1F

where M−1 is given by (1.7) or (1.8). Both versions (1.7) or (1.8) of the Schwarz

preconditioners are called one-level preconditioners.

Note that one can prove that the Schwarz method in its iterative form is equivalent to

the preconditioned fixed-point iteration

(1.9) Un+1 = Un +M−1 (F −AUn) ,

We can then see that the solution of this iteration is given in a space spanned by powers

of the matrix Id−M−1A and that the solution can be naturally accelerated by a Krylov

method [DJN15, Chapter 3].

1.4 Numerical experiments: one-level preconditioners

In this section we compare the standard RAS preconditoner (1.7) with the ORAS pre-

conditioner (1.8), that is the one based Robin interface transmission conditions. These

preconditioners are quite standard in the literature, however to our knowledge, their

application to the time-harmonic elastodynamics equations has not been extensively

studied. These preliminary tests on a few simple, two-dimensional configurations are

CHAPTER 1. DOMAIN DECOMPOSITION METHODS 8

meant to explore the properties of the basic domain decomposition preconditioners in

order to further investigate whether more performant methods can be developed.

In all cases the Krylov iterative solver is GMRES [SS86]. The stopping criterium of

the algorithm is when the relative L2 norm of error is smaller than 10−6,

‖U −Un‖L2(Ω)

‖U −U0‖L2(Ω)
< 10−6,

where U is the one domain solution and Um denotes the approximation of U at the

m-th iteration of the iterative solver. Therefore the algorithm is stopped when the

criterium is achieved. The number of iterations will be a measure of the performance

of each method as the cost per iteration is very similar.

The overlapping decomposition into subdomains can be uniform (e.g m×m domains,

with m domains in each direction) or generated by METIS [KK98]. In both cases, N

denotes the total number of subdomains. In each case the boundary value problem is

discretised using P1 elements and the computational domain is the unit square (test

cases 1 and 2) and a disk with a heterogeneous medium composed of two parts (test

case 3). We use a random initial guess for the GMRES iterative solver in all tests

and we vary the size of the overlap and the type of the decomposition (uniform or

using METIS). Numerical simulations were done by using the open source software

Freefem++ [Hec12] which is a high level language specialised in variational discretisa-

tions of partial differential equations.

Definition of the test cases. In test cases 1 and 2 we simulate the wave propagation

through a computational domain given by the unit square [0, 1]2 with Robin boundary

conditions on the whole boundary. We solve the following boundary value problem

(1.10) −
(
∆e + ρω2

)
u = f in Ω,

(
T (n) − iσn

)
u = g on ∂Ω,

where ∆e = [µ∆ + (λ+ µ)∇(∇·)], with the source term g chosen such that the exact

solution is a plane wave uinc consisting both P- and S-waves like in (9) such that

(1.11) uinc = upwd , d =
(

cos
(π

3

)
, cos

(π
3

))T
, α = β = 1.

Note that in the two-dimensional case considered here

(1.12) σn = ωρ

(
cpn

2
x + csn

2
y (cp − cs)nxny

(cp − cs)nxny cpn
2
y + csn

2
x

)
,

CHAPTER 1. DOMAIN DECOMPOSITION METHODS 9

The physical coefficients are as follows

(1.13) Cp =

√
λ+ 2µ

ρ
, Cs =

√
µ

ρ
, κp =

ω

Cp
, κs =

ω

Cs
, ω = 2πf

and

(1.14) µ =
E

2(1 + ν)
= ρC2

s , λ =
Eν

(1 + ν)(1− 2ν)
= ρ(C2

p − 2C2
s).

In the first test case (denoted by Test case 1) we fix some parameters:

(1.15) Cp = 2, Cs = 1, ρ = 1, ω = 30.

In the second test case (denoted by Test case 2) we fix

(1.16) E = 2 · 1011, ν = 0.3, ρ = 7800, f = 2 · 104,

and the others are computed from the formulae written above.

These test cases do not necessarily correspond to accurate physical situations but they

produce simple but oscillatory enough solutions reflecting the difficulties related to the

solving of the problem.

An example of the real part of the first component of these solutions is depicted in

Figure 1.2

Figure 1.2: Real part of the first component of the solution: Test case 1 (left figure)
and Test case 2 (right figure)

The third example (denoted by Test case 3) is a transmission problem through a cir-

cular inhomogeneous media whose radius is 0.5 (Ω1), surrounded by an infinite homo-

geneous material (Ω2) with absorbing boundary conditions and heterogeneous physical

CHAPTER 1. DOMAIN DECOMPOSITION METHODS 10

parameters that can be chosen as in the examples below

Examples Domain E ν ρ µ λ Cp Cs f ω

1 r < 0.5 2.1011 0.3 7800 77.109 12.1010 5927 3142 104 2π104

0.5 ≤ r ≤ 1 2.1011 0.47 7800 68.109 11.1011 12588 2952 104 2π104

2 r < 0.5 2.1011 0.3 7800 77.109 12.1010 5927 3142 104 2π104

0.5 ≤ r ≤ 1 2.1011 0.25 7800 80.109 80.109 5547 3203 104 2π104

Table 1.1: Physical characteristics for the heterogeneous test case

Figure 1.3: An example of mesh and solution in the transmission problem

For all these test cases we compare the performances of the RAS and ORAS pre-

conditioners as a function of the decomposition into subdomains and the overlapping

parameters. Examples of uniform and METIS decompositions can be found below

Partition into subdomains Partition into subdomains Partition into subdomains

Figure 1.4: Uniform decomposition into 2x2, 4x4 and 6x6 domains.

In these preliminary test cases we deliberately focus on decompositions into N × N
domains as they correspond to the typical weak scaling tests with the one level Schwarz

method used as a preconditioner. This is somehow different on what we will do in

the following chapter where the analysis is focused on the decomposition into two

CHAPTER 1. DOMAIN DECOMPOSITION METHODS 11

Partition into subdomains Partition into subdomains Partition into subdomains

Figure 1.5: METIS decomposition into 4, 16 and 36 domains.

subdomains and for the later we will design specific numerical tests.

In the case of uniform decompositions the size of local problems is maintained fixed

(e.g. equal to 20 degrees of freedom in one direction), thus the biggest problem that

will be considered, contains 8× 20 = 160 degrees of freedom (dof) in one direction for

a total number of 160× 160 = 25600 dofs.

RAS and ORAS: Test case 1. We first perform a numerical experiment on a uniform

decomposition by varying the number of subdomains and the size of the overlap. In

both cases we notice that when the number of subdomains increases the performance

of the algorithm (in terms of number of iterations) deteriorates. As expected, when

the overlap is increased, the algorithm performs better. We also notice that the ORAS

preconditioner outperforms RAS (as it uses more effective transmission conditions) and

that the type of the decomposition has only a little influence on the iteration count.

0 50 100 150 200 250

Iterations

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

R
e

la
ti
v
e

 r
e

s
id

u
a

l

RAS vs. ORAS, 64 domains - uniform decomposition,ovr = 2

ORAS

RAS

0 50 100 150 200 250

Iterations

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

R
e

la
ti
v
e

 r
e

s
id

u
a

l

RAS vs. ORAS, 64 domains - METIS decomposition,ovr = 2

ORAS

RAS

Figure 1.6: RAS vs. ORAS, overlap =4h (h - meshsize), 64 domains, uniform decomp
(left), METIS (right)

The convergence history is repeated on uniform and METIS decompositions as follows

CHAPTER 1. DOMAIN DECOMPOSITION METHODS 12

0 50 100 150 200 250 300

Iterations

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

R
e

la
ti
v
e

 e
rr

o
r

One-level RAS preconditioner, unif decomp, ovr = 1

2x2

4x4

6x6

8x8

0 50 100 150 200 250

Iterations

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

R
e

la
ti
v
e

 e
rr

o
r

One-level RAS preconditioner, unif decomp, ovr = 2

2x2

4x4

6x6

8x8

0 20 40 60 80 100 120

Iterations

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

R
e

la
ti
v
e

 e
rr

o
r

One-level ORAS preconditioner, unif decomp, ovr = 1

2x2

4x4

6x6

8x8

0 10 20 30 40 50 60 70 80 90

Iterations

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

R
e

la
ti
v
e

 e
rr

o
r

One-level ORAS preconditioner, unif decomp, ovr = 2

2x2

4x4

6x6

8x8

Figure 1.7: Convergence history for RAS (upper row) and ORAS (lower row) on uniform
decompositions and overlap = 2h (left) and overlap=4h (right)

0 50 100 150 200 250 300

Iterations

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

R
e

la
ti
v
e

 e
rr

o
r

One-level RAS preconditioner, METIS decomp, ovr = 1

4

16

36

64

0 50 100 150 200 250

Iterations

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

R
e

la
ti
v
e

 e
rr

o
r

One-level RAS preconditioner, METIS decomp, ovr = 2

4

16

36

64

0 20 40 60 80 100 120 140 160 180

Iterations

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

R
e

la
ti
v
e

 e
rr

o
r

One-level ORAS preconditioner, METIS decomp, ovr = 1

4

16

36

64

0 20 40 60 80 100 120

Iterations

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

R
e

la
ti
v
e

 e
rr

o
r

One-level ORAS preconditioner, METIS decomp, ovr = 2

4

16

36

64

Figure 1.8: Convergence history for RAS (upper row) and ORAS (lower row) on METIS
decompositions and overlap =2h (left) and overlap=4h (right)

CHAPTER 1. DOMAIN DECOMPOSITION METHODS 13

A numerical summary of the results of the previous figures is found in the table below

Overlap = 2h Overlap = 4h
N RAS ORAS RAS ORAS

Unif MTS Unif MTS Unif MTS Unif MTS

4 46 57 20 20 42 55 14 15
16 105 131 46 52 97 117 36 41
36 210 229 88 101 179 197 63 71
64 294 295 119 166 248 250 89 111

Table 1.2: Preconditioners comparison for the test case 1

In conclusion, these preliminary tests show that the one-level preconditioner is not scal-

able, that is the iterations increase linearly with respect to the number of subdomains

in one direction and that the ORAS preconditioner is clearly better than RAS leading

to an iteration count that is roughly half of that of the latter.

RAS and ORAS: Test case 2. We first perform similar numerical experiments as

before while we presume that the problem will be more difficult to solve as the solution

is more oscillatory. This is also reflected in the iteration count of the RAS and ORAS

algorithms. We notice again that the ORAS preconditioner outperforms RAS as below

0 50 100 150 200 250 300 350

Iterations

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

R
e

la
ti
v
e

 e
rr

o
r

RAS vs. ORAS, 64 domains - uniform decomposition, ovr = 2

ORAS

RAS

0 50 100 150 200 250 300 350

Iterations

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

R
e

la
ti
v
e

 e
rr

o
r

RAS vs. ORAS, 64 domains - METIS decomposition, ovr = 2

ORAS

RAS

Figure 1.9: RAS vs. ORAS, δ=4h, 64 domains, unif. decomp (left), METIS (right)

A numerical summary can be found in the table 1.3. Again these preliminary tests

show that the one-level preconditioner is not scalable, that is the iterations increase

linearly with respect to the number of subdomains in one direction and that the ORAS

preconditioner is clearly better than RAS leading to an iteration count that is roughly

on third of that of the latter. We can notice that with respect to the Test case 1,

despite the solution being more oscillatory and the problem potentially more difficult

to solve, the ORAS preconditioner is quite robust unlike the RAS preconditioner.

CHAPTER 1. DOMAIN DECOMPOSITION METHODS 14

Overlap = 2h Overlap = 4h
N RAS ORAS RAS ORAS

Unif MTS Unif MTS Unif MTS Unif MTS

4 62 74 19 18 80 81 13 14
16 135 143 43 46 142 151 33 39
36 208 273 72 78 192 250 60 66
64 347 361 111 123 304 327 86 97

Table 1.3: Preconditioners comparison for the test case 2

RAS and ORAS: Test case 3. We perform numerical experiments on a METIS

decomposition of the geometry defined in Figure 1.3 on the two problems with hetero-

geneous coefficients given in the Table 1.1. We start first with Example 1.

The convergence history of the two algorithms for the first heterogeneous case is de-

picted in Figures 1.10 and 1.11.

0 50 100 150 200 250

Iterations

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

R
e

la
ti
v
e

 e
rr

o
r

One-level RAS preconditioner, METIS decomp, ovr = 1

4

16

36

64

0 20 40 60 80 100 120 140 160 180 200

Iterations

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

R
e

la
ti
v
e

 e
rr

o
r

One-level RAS preconditioner, METIS decomp, ovr = 2

4

16

36

64

Figure 1.10: Convergence history for RAS on METIS decompositions and overlap=2h
(left) and overlap=4h (right)

0 50 100 150 200 250 300

Iterations

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

R
e

la
ti
v
e

 e
rr

o
r

One-level ORAS preconditioner, METIS decomp, ovr = 1

4

16

36

64

0 20 40 60 80 100 120 140

Iterations

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

R
e

la
ti
v
e

 e
rr

o
r

One-level ORAS preconditioner, METIS decomp, ovr = 2

4

16

36

64

Figure 1.11: Convergence history for ORAS on METIS decompositions and overlap=2h
(left) and overlap=4h (right)

CHAPTER 1. DOMAIN DECOMPOSITION METHODS 15

A numerical summary can be found in the table 1.4.

Overlap =2h Overlap=4h
N RAS ORAS RAS ORAS

4 68 52 57 43
16 94 71 103 57
36 164 154 177 98
64 211 298 189 125

Table 1.4: Preconditioners comparison for the heterogeneous test case 3 - Example 1

We notice here that unlike for the two other test cases the ORAS preconditioner deteri-

orates considerably as the number of subdomains increases when the overlap is minimal

(one mesh size on each size of the non-overlapping partition). This can be explained by

the fact that the domains being too small with respect to the wavelength the absorbing

boundary conditions are less efficient. In turn when the overlap is larger we retrieve the

behaviour we already expect with roughly 30% less iterations for ORAS with respect

to RAS when the number of subdomains increases. As before and as expected, the

performance deteriorates with the increase of the number of domains.

We now perform the same tests on the Example 2 from table 1.1. A numerical summary

of these results can be found in the table 1.5.

Overlap =2h Overlap=4h
N RAS ORAS RAS ORAS

4 72 49 62 42
16 124 59 96 49
36 205 99 177 73
64 275 128 174 86

Table 1.5: Preconditioners comparison for the heterogeneous test case 3 - Example 2

In this case the behaviour is as expected with a huge gain in number of iteration (more

than half) when using ORAS with respect to RAS. Also, we could notice only a slight

increase in the number of iterations when the overlap is sufficiently big.

These first preliminary tests on the time-harmonic elastic wave equations by using

domain decomposition preconditioners from the literature, but adapted to our problem

(specific absorbing boundary conditions at the interfaces) show on one side that the use

of more sophisticated interface transmission conditions is needed as even the simplest

CHAPTER 1. DOMAIN DECOMPOSITION METHODS 16

ones can lead to an important gain. On the other side, a deeper understanding of

the impact of the interface transmission conditions will help us to further improve

the convergence. Note that the convergence can also be improved by using two-level

algorithms thus achieving a performance independent of the number of subdomains.

The Freefem++ codes used in these implementations can be found in the Appendix

chapter B.

Chapter 2

Classical Schwarz methods for

time-harmonic elastic waves

The purpose of this chapter is to analyse the convergence of the classical Schwarz

method (and several other variants) in its iterative version by using the Fourier trans-

form technique. This analysis will reveal quite an usual behaviour which is very different

from what we observe in the case of Helmholtz or Maxwell’s equations. As a conse-

quence, we will try to improve this algorithm by constructing more effective interface

transmission conditions. The simplest ones (which are of Robin type) are low order

approximations of transparent boundary conditions, that we call absorbing boundary

conditions. Despite their simplicity, the analysis of the underlying algorithms is already

quite tedious (an asymptotic analysis and numerical algorithms are needed) and again

the conclusions are very different from what we obtain in the case of the Helmholtz

equation.

2.1 Classical Schwarz Algorithm

In this section we start by the definition of the classical Schwarz algorithm in a simple

geometrical configuration and we continue by its analysis. For the time being we will

limit ourselves to a two dimensional domain, knowing that a similar analysis can be

performed in the three dimensional case.

We are interested in solving the Navier equations in the frequency domain

(2.1) −
(
∆e + ω2ρ

)
u = f in Ω,

17

CHAPTER 2. CLASSICAL SCHWARZ METHODS 18

where the operator ∆e is defined by

(2.2) ∆eu = µ∆u + (λ+ µ)∇(∇ · u).

For the sake of the analysis only, we decompose the domain Ω := R2 into two unbounded

possibly overlapping subdomains Ω1 := (−∞, δ)× R and Ω2 := (0,∞)× R, δ ≥ 0. On

this simple configuration the convergence analysis is relatively easy to perform while

providing some important insight on the behaviour of the algorithm.

Let’s consider now what we call classical Schwarz algorithm

(2.3)

−
(
∆e + ω2ρ

)
un1 = f in Ω1,

un1 = un−1
2 on x = δ,

−
(
∆e + ω2ρ

)
un2 = f in Ω2,

un2 = un−1
1 on x = 0.

We can also build a class of optimised versions by changing the interface transmission

conditions:

(2.4)

−
(
∆e + ω2ρ

)
un1 = f in Ω1,

(T1 + S1) un1 = (T1 + S1) un−1
2 on x = δ,

−
(
∆e + ω2ρ

)
un2 = f in Ω2,

(T2 + S2) un2 = (T2 + S2) un−1
1 on x = 0,

where the traction operators Tj , j = 1, 2, which plays for the Navier equations the role

of a Neumann condition, is defined by

(2.5) Tj(u) = 2µ
∂u

∂nj
+ λnj∇ · u + µnj ×∇× u.

The operators we chose for the transmission condition Sj are two by two matrix valued

operators.

Navier equations in frequency domain are very difficult to solve by iterative methods.

Their nature is similar to the nature of the Helmholtz equation which are notoriously

difficult, see [EG12], and Navier equations have further complications, as we will see.

Our analysis will be based on Fourier transform in the y direction. Let us denote by

k ∈ R the Fourier symbol and û(x, k) the Fourier transformed solution

(2.6)

û(x, k) = F(u) =

∫ ∞
−∞

e−iky u(x, y) dy, u(x, y) = F−1(û) =
1

2π

∫ ∞
−∞

eiky û(x, k) dk.

CHAPTER 2. CLASSICAL SCHWARZ METHODS 19

We first investigate if the classical Schwarz algorithm (2.3) is convergent by computing

its convergence factor in the Fourier space. Note that all the computations that follow

have been partially or entirely performed by using the formal computing tool Maple.

Here starts the theorem summarising the results of the section.

Theorem 2.1 (Convergence analysis of the classical Schwarz algorithm). (i) For a

given initial guess (u0
1 ∈ (L2(Ω1)2), (u0

2 ∈ (L2(Ω2)2), the classical Schwarz algo-

rithm with overlap has the following convergence factor for each Fourier mode

(2.7) ρcla (k, ω, Cp, Cs, δ) = max{|r+|, |r−|},

where

(2.8)

r± =
X2

2
+e−δ(λ1+λ2)±1

2

√
X2
(
X2 + 4e−δ(λ1+λ2)

)
, X =

k2 + λ1λ2

k2 − λ1λ2

(
e−λ1δ − e−λ2δ

)
.

Here, λ1,2 ∈ C and are the roots of the characteristic equation of the Fourier

transformed Navier equations

(2.9) λ1 =

√
k2 − ω2

C2
s

, λ2 =

√
k2 − ω2

C2
p

.

(ii) The convergence factor of the overlapping classical Schwarz method (2.3) applied

to the Navier equations (2.1) verifies the following

ρcla (k, ω, Cp, Cs, δ)

= 1, k ∈

[
0, ωCp

]
∪
{
ω
Cs

}
,

> 1, k ∈
(
ω
Cp
, ωCs

)
,

< 1, k ∈
(
ω
Cs
,∞
)
,

if the overlap is small enough. Therefore the algorithm is convergent for higher

frequencies while being divergent for all the others.

(iii) The maximum of the convergence factor of the classical Schwarz method (2.3)

applied to the Navier equations (6) behaves for small overlap δ asymptotically as

follows

max
k

(max |r±|) = 1+

√
2Csω

(
3C2

p −
√
C4
p + 8C4

s

)√
C2
p

√
C4
p + 8C4

s − C4
p − 2C4

s

Cp(C2
p + C2

s)
3
2

(√
C4
p + 8C4

s − C2
p

) δ.

CHAPTER 2. CLASSICAL SCHWARZ METHODS 20

Proof. (i) By linearity it suffices to consider only the case f = 0 and analyse the

convergence to the zero solution (superposition principle for linear equations).

After a Fourier transform with respect to y direction, (2.1) becomes

(2.10)

[
(λ+ 2µ) ∂2

x +
(
ρω2 − µk2

)]
ûx + ik(µ+ λ)∂xûz = 0[

µ∂2
x +

(
ρω2 − (λ+ 2µ) k2

)]
ûz + ik (µ+ λ) ∂xûx = 0

This is an ODE system whose solution is obtained after computing the roots r of

its characteristic equation

(2.11)

 (λ+ 2µ)r2 + ρω2 − µk2 ik(µ+ λ)r

ik(µ+ λ)r µr2 + ρω2 − (λ+ 2µ)k2

[ûx

ûz

]
= 0.

A simple computation shows that these roots are ±λ1 and ±λ2 where λ1,2 are

given by (2.9). Therefore the general form of the solution can be written as:

(2.12) û(x, k) = α1v+e
λ1x + β1v−e

−λ1x + α2w+e
λ2x + β2w−e

−λ2x,

where v± and w± are obtained by successively replacing these roots into (2.11)

(2.13) v+ =

(
1

iλ1
k

)
, v− =

(
1

− iλ1
k

)
, w+ =

(
− iλ2

k

1

)
, w− =

(
iλ2
k

1

)
.

Coefficients α1,2 and β1,2 are uniquely determined by the transmission conditions

and λ1,2 are defined in (2.9). Because the local solutions are vanishing at infinity,

subdomain solutions in the Fourier transformed domain are

(2.14)

û1(x, k) = α1v+e
λ1x + α2w+e

λ2x, û2(x, k) = β1v−e
−λ1x + β2w−e

−λ2x.

Before using the iteration we will rewrite the local solutions at iteration n as

(2.15)

ûn1 = αn1v+e
λ1x + αn2w+e

λ2x =

 eλ1x − iλ2
k eλ2x

iλ1
k eλ1x eλ2x

(αn1
αn2

)
=: Mxα

n,

ûn2 = βn1 v−e
−λ1x + βn2 w−e

−λ2x =

 e−λ1x iλ2
k e−λ2x

− iλ1
k e−λ1x e−λ2x

(βn1
βn2

)
=: Nxβ

n,

CHAPTER 2. CLASSICAL SCHWARZ METHODS 21

then we plug (2.15) into the interface iterations of (2.3)

(2.16)
Mδα

n = Nδβ
n−1 ⇔ αn = M−1

δ Nδβ
n−1,

N0β
n = M0α

n−1 ⇔ βn = N−1
0 M0α

n−1,

which leads to

(2.17)
αn+1 = (M−1

δ NδN
−1
0 M0)αn−1 =: R1

δα
n−1,

βn+1 = (N−1
0 M0M

−1
δ Nδ)β

n−1 =: R2
δβ

n−1.

where R1,2
δ are the iteration matrices which are spectrally equivalent. R1

δ is given

by

(2.18) R1
δ =

 e−δ(λ1+λ2)X2
2

λ1

λ2
+ e−2λ1δX2

1 X1X2

(
e−2λ1δ − e−δ(λ1+λ2)

)
X1X2

λ1

λ2

(
e−δ(λ1+λ2)− e−2λ2L

)
e−δ(λ1+λ2)X2

2

λ1

λ2
+ e−2λ2δX2

1

 ,
where

(2.19) X1 =
k2 + λ1λ2

k2 − λ1λ2
, X2 = −i

2kλ2

k2 − λ1λ2
.

After some computations, we get the eigenvalues (r+, r−) of R1
δ

(2.20)

r± =
X2

2
+e−δ(λ1+λ2)±1

2

√
X2
(
X2 + 4e−δ(λ1+λ2)

)
, X =

k2 + λ1λ2

k2 − λ1λ2

(
e−λ1δ − e−λ2δ

)
,

The convergence factor of the classical Schwarz algorithm is given by the spectral

radius of its iteration matrix R1
δ (or R2

δ). This definition will be used for the

following results and can be extended to optimised algorithms studied in Chapter

3. Therefore in this case, we get

(2.21) ρcla (k, ω, Cp, Cs, δ) = ρ
(
R1
δ

)
= max{|r+|, |r−|}.

We notice that in the case without overlap (δ = 0), (2.20) gives r± = 1
(
R1
δ = Id

)
.

Therefore, the Schwarz algorithm is not convergent for all frequencies. This con-

clusion is consistent with what we know for Helmholtz equations where the non-

overlapping algorithm is not convergent for all modes when Dirichlet interface

conditions are used. Before analysing the overlapping case, in order to gain more

insight, we start with a numerical experiment illustrated in Figure 2.1.

CHAPTER 2. CLASSICAL SCHWARZ METHODS 22

0 5 10 15 20 25 30 35

k

0

0.2

0.4

0.6

0.8

1

1.2
Spectrum of Classical Schwarz

r
+

r
-

0 5 10 15 20 25 30 35

k

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
Spectrum of Classical Schwarz

r
+

r
-

Figure 2.1: Modulus of the eigenvalues of the iteration matrix for the classical Schwarz
method with Cp = 1, Cs = 0.5, δ = 0.1. Left: for ω = 1. Right: for ω = 5.

(ii) The proof is quite technical. To simplify the notation, we define for the case when

the roots λ1,2 in (2.9) are complex the quantities

(2.22) iλ̄1 := λ1 = i
√

ω2

C2
s
− k2, iλ̄2 := λ2 = i

√
ω2

C2
p
− k2.

We have to treat five cases: three intervals for k, and two values k ∈ { ωCp ,
ω
Cs
}

separating the intervals: in the first interval k ∈ (0, ωCp), λ1,2 ∈ iR+, and the

eigenvalues (2.8) become

r± = X2

2 +e−iδ(λ̄1+λ̄2)±1
2

√
X2
(
X2 + 4 e−iδ(λ̄1+λ̄2)

)
, X = k2−λ̄1λ̄2

k2+λ̄1λ̄2

(
e−iλ̄1δ − e−iλ̄2δ

)
.

The square of their modulus is given by

(2.23)

|r±|2 = 1 +
√
A2+B2+(x2+y2)2

4 + er
(
x2 − y2

)
+ 2xyei︸ ︷︷ ︸

Part1

±
√

2

2
×

x2−y2+2er
2

(√
A2 +B2 +A

) 1
2

+ csgn (B − iA) (xy + ei)
(√

A2 +B2 −A
) 1

2︸ ︷︷ ︸
Part2

 ,

where the complex sign is defined as

(2.24) csgn(x) =

{
1 0 < R(x) or R(x) = 0 & 0 < I(x),

−1 R(x) > 0 or R(x) = 0 & I(x) > 0,

CHAPTER 2. CLASSICAL SCHWARZ METHODS 23

and we introduced the quantities er, ei, x and y such as

er := − sin
(
δ
(
λ̄1 + λ̄2

))
,

ei := cos
(
δ
(
λ̄1 + λ̄2

))
,

x := <(X) = k2−λ̄1λ̄2
k2+λ̄1λ̄2

(
cos
(
λ̄1δ
)
− cos

(
λ̄2δ
))
,

y := =(X) = −k2−λ̄1λ̄2
k2+λ̄1λ̄2

(
sin
(
λ̄1δ
)
− sin

(
λ̄2δ
))
.

The terms A and B appearing in the square root are real and defined by A+iB :=

X2
(
X2 + 4 e−iδ(λ̄1+λ̄2)

)
, which gives after some computations

A =
(
x2 − y2

)2 − 4x2y2 − 8eixy + 4er
(
x2 − y2

)
,

B = 4(xy + ei)
(
x2 − y2

)
+ 8erxy.

Then we obtain by a direct computation that

√
A2 +B2 =

(
x2 + y2

)√
(x2 + y2)2 + 8er (x2 − y2) + 16eixy + 16

=
16(k2−λ̄1λ̄2)

2
sin2(δ2(λ̄1−λ̄2))

(k2+λ̄1λ̄2)
2

×
(

1− 2(k2−λ̄1λ̄2)
2

sin2(δ2(λ̄1−λ̄2))
(k2+λ̄1λ̄2)

2 +
(k2−λ̄1λ̄2)

4
sin4(δ2(λ̄1−λ̄2))

(k2+λ̄1λ̄2)
4

)
=

16 sin2(δ2(λ̄1−λ̄2))
(
(k2−λ̄1λ̄2)

2
cos2(δ2(λ̄1−λ̄2))+4λ̄1k2λ̄2

)
(k2−λ̄1λ̄2)

−2
(k2+λ̄1λ̄2)

4 ,

and

x2 − y2 = −4(k2−λ̄1λ̄2)
2

sin2(δ2(λ̄1−λ̄2)) cos(δ(λ̄1+λ̄2))
(k2+λ̄1λ̄2)

2 ,

x2 + y2 =
4(k2−λ̄1λ̄2)

2
sin2(δ2(λ̄1−λ̄2))

(k2+λ̄1λ̄2)
2 ,

xy =
2(k2−λ̄1λ̄2)

2
sin(δ(λ̄1+λ̄2)) sin2(δ2(λ̄1−λ̄2))

(k2+λ̄1λ̄2)
2 .

We now show that Part1 in (2.23) vanishes identically;

We get on the one hand

(2.25)

(
x2 + y2

)2
4

= 4

(
k2 − λ̄1λ̄2

)4
sin4

(
δ
2

(
λ̄1 − λ̄2

))(
k2 + λ̄1λ̄2

)4 ,

CHAPTER 2. CLASSICAL SCHWARZ METHODS 24

and on the other hand, we have

(2.26)

√
A2+B2

4 =
(k2−λ̄1λ̄2)

4
sin2(δ(λ̄1−λ̄2))

(k2+λ̄1λ̄2)
4 +

16 sin2(δ2(λ̄1−λ̄2))λ̄1k2λ̄2
(k2−λ̄1λ̄2)

−2
(k2+λ̄1λ̄2)

4 ,

er
(
x2 − y2

)
= −4(k2−λ̄1λ̄2)

2
sin2(δ2(λ̄1−λ̄2)) cos2(δ(λ̄1+λ̄2))

(k2+λ̄1λ̄2)
2 ,

2eixy = −4(k2−λ̄1λ̄2)
2

sin2(δ(λ̄1+λ̄2)) sin2(δ2(λ̄1−λ̄2))
(k2+λ̄1λ̄2)

2 ,

and we obtain by adding the three terms from (2.26) to each other

(2.27) −
4
(
k2 − λ̄1λ̄2)4 sin4

(
δ
2(λ̄1 − λ̄2

))(
k2 + λ̄1λ̄2

)4 .

This leads, by adding (2.25) and (2.27) indeed to Part1 ≡ 0. We next show that

also Part2 in (2.23) vanishes identically: we get

x2−y2
2 + er = cos

(
δ
(
λ̄1 + λ̄2

))(
1− 2

(k2−λ̄1λ̄2)
2

sin2(δ2(λ̄1−λ̄2))
(k2+λ̄1λ̄2)

2

)
,

xy + ei = − sin
(
δ
(
λ̄1 + λ̄2

))(
1− 2

(k2−λ̄1λ̄2)
2

sin2(δ2(λ̄1−λ̄2))
(k2+λ̄1λ̄2)

2

)
,

and for the term involving A and B√√
A2 +B2 ±A = 4 k2−λ̄1λ̄2

(k2+λ̄1λ̄2)
2 sin

(
δ
2

(
λ̄1 − λ̄2

))√
1∓ cos

(
2δ
(
λ̄1 + λ̄2

))
×
√(

k2 − λ̄1λ̄2

)2
cos2

(
δ
2

(
λ̄1 − λ̄2

))
+ 4k2λ̄1λ̄2.

By analyzing the signs of the different terms, we obtain for the complex sign

csgn(B − iA) = sg
(
cos
(
δ
(
λ̄1 + λ̄2

))
sin
(
δ
(
λ̄1 + λ̄2

)))
,

and after a lengthy computation we obtain

Part2 = Ck×
(√

1 + cos
(
2δ
(
λ̄1 + λ̄2

))
sin
(
δ
(
λ̄1 + λ̄2

))
− csgn (B − iA) cos

(
δ
(
λ̄1 + λ̄2

))√
1− cos

(
2δ
(
λ̄1 + λ̄2

)))
,

where Ck ∈ R∗ (= R\ {0}) is a complicated factor depending on k. A direct

computation for the second factor of Part2 shows that independently of the value

CHAPTER 2. CLASSICAL SCHWARZ METHODS 25

of csgn(B − iA), we get Part2 ≡ 0. We can thus conclude from (2.23) that

ρcla (k, ω, Cp, Cs, δ) = max{|r+|, |r−|} = |r+| = |r−| = 1

and therefore the algorithm stagnates in the first interval k ∈ [0, ωCp), see the first

interval in Figure 2.1. At the boundary between the first and second interval,

where k = ω
Cp

, we have that λ2 = 0 and λ1 ∈ iR∗+, and therefore (2.8) becomes

r± =
1

2
(1 + e−2iλ̄1δ)± 1

2

√(
1− e−2iλ̄1δ

)2
, X = e−iλ̄1δ −1,

and Re(1− e−2iλ̄1δ) = 1− cos(2λ̄1δ) being positive we have equivalently

r+ = 1, r− = e−2iλ̄1δ =⇒ ρcla(
ω
Cp
, ω, Cp, Cs, δ) = max {|r+|, |r−|} = 1,

and hence the algorithm stagnates also when the first interval is closed on the

right, i.e. for k ∈ [0, ωCp]. In the second interval, k ∈ (ω
Cp
, ωCs), we have that

λ1 ∈ iR∗+ and λ2 ∈ R∗+, and hence (2.8) becomes

r± = X2

2 +e−δ(iλ̄1+λ2)±1
2

√
X2(X2 + 4 e−δ(iλ̄1+λ2)), X = k2+iλ̄1λ2

k2−iλ̄1λ2
(e−iλ̄1δ − e−λ2δ).

We compute the modulus of the eigenvalues and expand them for overlap param-

eter δ small to find

(2.28) |r+| = 1 +
2ω2λ2λ̄

2
1

C2
p

(
k4 + λ̄2

1λ
2
2

)︸ ︷︷ ︸
C2(k)

δ +O(δ2), |r−| = 1− 2ω2λ2k2

C2
s(k4+λ̄21λ

2
2)
δ +O(δ2).

We thus obtain that ρcla(k, ω, Cp, Cs, δ) = max{|r+|, |r−|} is bigger than one for

δ small and the method diverges, see the middle interval in Figure 2.11. Between

the second and third interval, where k = ω
Cs

, we have that λ1 = 0 and λ2 =
ω
√
C2
p−C2

s

CsCp
> 0, and hence (2.8) becomes

r± =
1

2

(
1 + e−2λ2δ

)
± 1

2

√
(1− e−2λ2δ)

2
.

We thus obtain

r+ = 1, r− = e−2λ2δ =⇒ ρcla(
ω
Cs
, ω, Cp, Cs, δ) = max{|r+|, |r−|} = 1,

1Numerically we observe that also for a large overlap, the algorithm diverges, see Figure 2.1, but
this seems to be difficult to prove.

CHAPTER 2. CLASSICAL SCHWARZ METHODS 26

and the algorithm stagnates for k = ω
Cs

. In the last interval, k ∈
(
ω
Cs ,∞

)
,

λ1,2 ∈ R∗+ and by expanding r± > 0 from (2.8) for δ small, we get

r+ = 1− 2λ2ω2

C2
s (k2−λ1λ2)

δ +O(δ2) < 1, r− = 1− 2λ1ω2

C2
p(k2−λ1λ2)

δ +O(δ2) < 1,

since k2 − λ1λ2 > 0. We can thus conclude that

ρcla(k, ω, Cp, Cs, δ) = max{|r+|, |r−|} < 1,

see the last interval in Figure 2.1, where we also see that limk→∞ r± = 0, since

all the real exponentials involved in the expressions of r± are decreasing to 0 as

k increases.

(iii) The maximum of the convergence factor is attained in the middle interval where

the algorithm is divergent and this quantity is larger than one. In this case for

a fixed k, the convergence factor is given by (2.28) with C2(k) being the positive

quantity in front ont δ. Computing the maximum of (2.28) is equivalent to the

computation of the maximum of C2(k). By taking the derivative w.r.t k we get

dC2(k)

d k
=
−2k

(
k4C2

s

(
C2
p + C2

s

)
+ k2ω2

(
C2
p − 2C2

s

)
− ω4

)(
k2
(
C2
p + C2

s

)
− ω2

)2√
k2 − ω2

C2
p

.

We solve the equation dC2(k)
d k = 0 w.r.t. k and we obtain three real solutions0,

√
2ω

2Cs

√√√√2C2
s − C2

p +
√
C4
p + 8C4

s

C2
p + C2

s

,−
√

2ω

2Cs

√√√√2C2
s − C2

p +
√
C4
p + 8C4

s

C2
p + C2

s

 ,
and two purely imaginary ones,√2ω

2Cs

√√√√2C2
s − C2

p −
√
C4
p + 8C4

s

C2
p + C2

s

,−
√

2ω

2Cs

√√√√2C2
s − C2

p −
√
C4
p + 8C4

s

C2
p + C2

s

 .
We are looking for a positive real local maximum, therefore the good candidate

is

ks =

√
2ω

2Cs

√√√√2C2
s − C2

p +
√
C4
p + 8C4

s

C2
p + C2

s

∈ R∗+.

27

By computing the second order derivative at our critical point we get

d2C

d k2
(ks) =

32C3
sCp
√

2
(
C4
p + 8C4

s

) (√
C4
p + 8C4

s − C2
p

)−3

ω
(
C2
p

√
C4
p + 8C4

s − C4
p − 2C4

s

) 3
2
√
C2
p + C2

s

×

C8
p − C6

pC
2
s + 7C4

pC
4
s − 5C2

pC
6
s + 4C8

s√
C4
p + 8C4

s

−
(
C6
p − C4

pC
2
s + 3C2

pC
4
s − C6

s

) < 0

and we can conclude it is a local maximum.

In conclusion the maximum value of the convergence factor for a small δ is:

max
k

(ρ) = 1 + C(ks)δ

= 1 +

√
2Csω

(
3C2

p −
√
C4
p + 8C4

s

)√
C2
p

√
C4
p + 8C4

s − C4
p − 2C4

s

Cp(C2
p + C2

s)
3
2

(√
C4
p + 8C4

s − C2
p

) δ.

Numerical experiments

We illustrate this divergence of the iterative version of the Schwarz algorithm which

can be written as (1.9)

Un+1 = Un +M−1 (F −AUn) ,

in a numerical experiment (Figure 2.2) in which we choose the same parameters Cp =

1, Cs = 1
2 , ρ = 1 and overlap δ = 1

10 as in Figure 2.1. We discretise the time-

harmonic Navier equations using P1 finite elements on the domain Ω = (−1, 1)× (0, 1)

and decompose it into two overlapping subdomains Ω1 = (−1, 2h) × (0, 1) and Ω2 =

(−2h, 1) × (0, 1) with h = 1
40 , in other words we build a uniform decomposition with

the overlapping parameter δ = 4h.

We show in Figure 2.2 the error in modulus at iteration 25 of the classical Schwarz

method, on the left for ω = 1 and on the right for ω = 5.

The error is computed with respect to the solution of the algebraic system obtain on

the global domain AU = F by a direct method. Note that in more realistic test cases

28

Figure 2.2: Error in modulus at iteration 25 of the classical Schwarz method with
2 subdomains, where one can clearly identify the dominant mode in the error: Left:
ω = 1. Right: ω = 5.

this reference solution is not available. In those cases the global relative residual will

be a measure of the convergence.

In the first case (ω = 1) since the lowest frequency that can be represented on the mesh

is k = π this would leave outside the interval of frequencies on which the method is

divergent, that is
[
ω
Cp
, ωCs

]
= [1, 2], which means the method will converge very slowly

to a solution. The dominant mode of the error is the lowest frequency that can be

represented on the mesh, that is | sin(ky)| with k = π. We can notice that the error

decreases from 7.89e− 1 to 5e− 2 after 25 iterations.

In contrast, for ω = 5 the method is diverging, since the interval of frequencies on

which the method is divergent, is given by
[
ω
Cp
, ωCs

]
= [5, 10]. We notice that the error

after a certain number of iterations is increasing and will be 6.5e− 1 after 25 iterations

and the diverging mode in Figure 2.2 on the right has two bumps along the interface,

which corresponds well to the mode | sin(ky)| along the interface for k = 2π ≈ 6. This

seems to be the fastest diverging mode that can be already seen from the analysis in

Figure 2.1 on the right.

One might wonder if the classical Schwarz method is nevertheless a good preconditioner

for a Krylov method, which can happen also for divergent stationary methods, like for

example the Additive Schwarz Method applied to the Laplace problem, which is also not

convergent as an iterative method [EG03], but useful as a preconditioner. To investigate

this, it suffices to plot the spectrum of the identity matrix minus the iteration operator

in the complex plane, which corresponds to the preconditioned systems one would like

to solve. We see in Figure 2.3 that the part of the spectrum that leads to a contraction

factor ρcla with modulus bigger than one lies unfortunately close to zero in the complex

29

plane, and that is where the residual polynomial of the Krylov method must equal one.

Therefore we can infer that the classical Schwarz method will also not work well as a

preconditioner.

-0.5 0 0.5 1 1.5 2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Spectrum of Iteration Operator

r
+

r
-

-0.5 0 0.5 1 1.5 2

-1.5

-1

-0.5

0

0.5

1
Spectrum of Iteration Operator

r
+

r
-

Figure 2.3: Spectrum of the iteration operator for the same example as in Figure 2.1,
together with a unit circle centered around the point (1, 0). Left: ω = 1. Right: ω = 5

This is also confirmed by the numerical results shown in Figure 2.4,

0 5 10 15 20 25

Iterations

10
-2

10
-1

10
0

10
1

R
e
la

ti
v
e
 e

rr
o
r

Convergence of RAS algorithm, two-domain decomposition

omega=1

omega=5

omega=10

omega=20

0 5 10 15 20 25

Iterations

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

R
e
la

ti
v
e
 e

rr
o
r

Convergence of GMRES preconditioned by RAS

omega=1

omega=5

omega=10

omega=20

Figure 2.4: Convergence history for RAS and GMRES preconditioned by RAS for
different values of ω

where we used first the classical Schwarz method as a solver and then as preconditioner

for GMRES. We see that GMRES now makes the method converge, but convergence

depends strongly on ω and slows down when ω grows. Note that in the case when the

Schwarz algorithm is used as a solver the lack of convergence is caused by the singular

and diverging modes (this behaviour can be also seen in the case of the Helmholtz

30

equations) whereas when the Schwarz method is used as a preconditioner, the Krylov

method takes care naturally of these diverging modes (and therefore the convergence

on the right of Figure 2.4 in not an artefact of the initial guess).

2.2 Optimal Schwarz algorithms and local approximations

We just saw that the Schwarz method so far is slowed down by an entire range of low

frequency components. For a better performance, we need to improve the algorithm

especially in that range and make it the smallest possible.

Let us start by introducing the optimal Schwarz algorithm which uses transparent

boundary conditions (TBC) as transmission conditions in (2.4) as defined in the fol-

lowing

Theorem 2.2 (Convergence of the optimal Schwarz algorithm.). If one chooses in the

general Schwarz algorithm (2.4) the operators Sj with the Fourier symbols

(2.29)

Ŝ1(1, 1) = ρ λ1ω2

k2−λ1λ2 ,

Ŝ1(1, 2) = +ikρ
(

2C2
s − ω2

k2−λ1λ2

)
,

Ŝ1(2, 1) = −ikρ
(

2C2
s − ω2

k2−λ1λ2

)
,

Ŝ1(2, 2) = ρ λ2ω2

k2−λ1λ2 ,

Ŝ2(1, 1) = Ŝ1(1, 1),

Ŝ2(1, 2) = −Ŝ1(1, 2),

Ŝ2(2, 1) = −Ŝ1(2, 1),

Ŝ2(2, 2) = Ŝ1(2, 2),

where λ1, λ2 are given by (2.9) the resulting algorithm converges in two iterations.

Proof. The TBC from (2.4) can be written in Fourier space as

F(Tn1 + S1)(u) =

(
(2µ+ λ)∂xû1 + iλkv̂1

iµkû1 + µ∂xv̂1

)
+

(
Ŝ1(1, 1)û1 + Ŝ1(1, 2)v̂1

Ŝ1(2, 1)û1 + Ŝ1(2, 2)v̂1

)
=: Tn1(û),

F(Tn2 + S2)(u) = −

(
(2µ+ λ)∂xû2 + iλkv̂2

iµkû2 + µ∂xv̂2

)
+

(
Ŝ2(1, 1)û2 + Ŝ2(1, 2)v̂2

Ŝ2(2, 1)û2 + Ŝ2(2, 2)v̂2

)
=: Tn2(û),

where n1 = (1, 0) and n2 = −n1. The interface iterations from (2.4) become

(2.30)
Tn1(ûn1)(δ, ·) = Tn1(ûn−1

2)(δ, ·)⇔ A1,δα
n = A2,δβ

n−1,

Tn2(ûn2)(0, ·) = Tn2(ûn−1
1)(0, ·)⇔ B2β

n = B1α
n−1,

31

where

A2,δ =

Ŝ1(1, 1)− 2λ1C

2
sρ

eλ1δ
− i

λ1Ŝ1(1, 2)

k eλ1δ
Ŝ1(1, 2)

eλ2δ
− i

2ρk2C2
s − λ2Ŝ1(1, 1)− ρω2

k eλ2δ

Ŝ1(2, 1)

eλ1δ
+ i

2ρk2C2
s − λ1Ŝ1(2, 2)− ρω2

k eλ1δ
Ŝ1(2, 2)− 2C2

sρλ2

eλ2δ
+ i

λ2Ŝ1(2, 1)

k eλ2δ

and

B1 =

 Ŝ2(1, 1)− 2λ1ρC
2
s + i

λ1Ŝ2(1, 2)

k
Ŝ2(1, 2) + i

2k2ρC2
s − λ2Ŝ2(1, 1)− ρω2

k

Ŝ2(2, 1)− i
2k2C2

sρ− λ1Ŝ2(2, 2)− ρω2

k
Ŝ2(2, 2)− 2C2

sρλ2 − i
λ2Ŝ2(2, 1)

k

 .
Now, to obtain the transparent boundary conditions, it suffices to write the iteration

after a Fourier transform in the y direction and to choose the operators Sj such that

the right hand side vanishes. We note that if we replace (Ŝ1, Ŝ2) by (2.29), we get

A2,δ = B1 = 0 ⇒ αn = βn = 0,

thus the new convergence factor vanishes identically and the algorithm converges in

two iterations independently of any initial guess and overlap δ.

To use the optimal choice of transmissions operators, we need to back transform the

TBC from (2.29) into the physical domain. Unfortunately, Sj are non local operators

because of the inverse transform with square roots terms at the interfaces [HTJ88]

therefore they cannot be used efficiently in practice.

We want now to build local approximations for the optimal transmissions conditions

which will lead to a new class of Schwarz algorithms. In order to do this, we can approx-

imate the symbols of the optimal transmission conditions from (2.29) by polynomial

symbols in ik which correspond to local operators.

We will explain in the following how to build these local operators, but to start with,

we will evaluate the convergence factor in the case where more general (not necessarily

transparent) transmission operators Ŝ1,2 are used.

Lemma 2.1. For a given initial guess (u0
1 ∈ (L2(Ω1)2), (u0

2 ∈ (L2(Ω2)2), the general

Schwarz algorithm with overlap (2.4) has the following convergence factor for each

Fourier mode

(2.31) ρopt(k, ω, Cp, Cs, δ) = (max{|r+|, |r−|})
1
2 , r± =

X2

2
+ Y ± 1

2

√
X2(X2 + 4Y),

32

with

(2.32) X = e−λ1δ b11 − e−λ2δ b22, Y =
b11b22 − b12b21

eλ1δ eλ2δ
,

[
b11 b12

b21 b22

]
:= B−1

2 B1,

where

(2.33)

B1 =

 Ŝ2(1, 1)− 2λ1ρC
2
s − i

λ1Ŝ2(1, 2)

k
Ŝ2(1, 2) + i

2k2ρC2
s − λ2Ŝ2(1, 1)− ρω2

k

Ŝ2(2, 1)− i
2k2C2

sρ− λ1Ŝ2(2, 2)− ρω2

k
Ŝ2(2, 2) + 2C2

sρλ2 + i
λ2Ŝ2(2, 1)

k

 ,
(2.34)

B2 =

 Ŝ2(1, 1) + 2λ1ρC
2
s + i

λ1Ŝ2(1, 2)

k
Ŝ2(1, 2) + i

2k2ρC2
s + λ2Ŝ2(1, 1)− ρω2

k

Ŝ2(2, 1)− i
2k2C2

sρ+ λ1Ŝ2(2, 2)− ρω2

k
Ŝ2(2, 2)− 2C2

sρλ2 − i
λ2Ŝ2(2, 1)

k

 ,
and λ1,2 ∈ C are given by (2.9).

Proof. We use the local solutions in the Fourier space already computed in (2.15),

plug them in the new transmission conditions from algorithm(2.4) and write them in

the Fourier space like in (2.30). We get the two half-iteration matrices like in (2.16),

denoted by A,B ∈M(C) and that can be computed as follows

(2.35)

B = B−1
2 B1 =:

[
b11 b12

b21 b22

]
, A = A−1

1 A2 =

[
e−2λ1δ b11 − e−(λ1+λ2)δ b12

− e−(λ1+λ2)δ b21 e−2λ2δ b22

]
,

with B1, B2 given in (2.33) and (2.34).

This leads to the two spectrally equivalent iteration matrices AB and BA, whose com-

mon spectral radius gives the square of the convergence factor ρopt(k, ω, Cp, Cs, δ)

αn+1 = ABαn−1.

of the algorithm (2.31) as seen in the previous double iteration.

The following corollary will further simplify the computation of the convergence factor

Remark 2.1. For the general Schwarz algorithm applied on the Navier equations, if

at least one anti-diagonal term of at least one of the half-iteration matrix is equal to

zero, the eigenvalues of the iteration operator are only determined by the diagonal of

33

the half-iteration matrices.

Indeed, if we start with the generic form of our two half-iteration matrices

(2.36) M1 =

[
b11 b12

b21 b22

]
, M2 =

[
e−2λ1δ b11 − e−(λ1+λ2) b12

− e−(λ1+λ2) b21 e−2λ2δ b22

]
, λ1, λ2 ∈ C,

if b12 = 0 and/or b21 = 0, a quick computation gives

(2.37) r− = e−2λ1δ b211, r+ = e−2λ2δ b222.

and as a consequence, the convergence factor ρ = max(|r+|, |r−|).

2.3 Absorbing boundary conditions

The simplest optimised Schwarz algorithm can be obtained by approximating Sj in the

transmission conditions using a low frequency expansion in the Fourier variable k of the

optimal choice given in Theorem 2.2. This leads to the so called Taylor transmission

conditions (TTC)

(2.38)

Ŝ1(1, 1) = iρωCp + iρ
C2
p

2ω (Cp − 2Cs)k
2 +O(k4),

Ŝ1(1, 2) = −iρ(Cp − 2Cs)Csk +O(k3),

Ŝ1(2, 1) = iρ(Cp − 2Cs)Csk +O(k3),

Ŝ1(2, 2) = iρωCs + iρC
2
s

2ω (Cs − 2Cp)k
2 +O(k4),

and Ŝ2 with the same relation to Ŝ1 as for the optimal choice in Theorem 2.2.

A zeroth order approximation would thus be

(2.39)

ŜT01 (1, 1) = iρωCp,

ŜT01 (1, 2) = 0,

ŜT01 (2, 1) = 0,

ŜT01 (2, 2) = iρωCs.

which was also obtained as an absorbing boundary condition using a different argument

as seen in [HMCK04] or explained in detail in the introduction. These absorbing

boundary conditions happen to be exact for a combination of plane waves, therefore

34

0 2 4 6 8 10 12 14 16

k

0

0.2

0.4

0.6

0.8

1

1.2

r
+

r
-

0 2 4 6 8 10 12 14 16

k

0

0.2

0.4

0.6

0.8

1

1.2

r
+

r
-

Figure 2.5: Modulus of the eigenvalues of the iteration matrix for the Schwarz method
with absorbing TC without overlap and Cp = 1, Cs = 1

2 and ρ = 1.
Left: (ω = 1). Right: (ω = 5).

they have a physical sense for this particular problem.

We can also introduce an improved zeroth order optimised TTC where we would fix

k = ke in (2.38) and ignore the higher order terms,

(2.40)

ŜT0,e1 (1, 1) = iρωCp + iρ
C2
p

2ω (Cp − 2Cs)k
2
e ,

ŜT0,e1 (1, 2) = −iρ(Cp − 2Cs)Cske,

ŜT0,e1 (2, 1) = iρ(Cp − 2Cs)Cske,

ŜT0,e1 (2, 2) = iρωCs + iρC
2
s

2ω (Cs − 2Cp)k
2
e .

There are also more general second order optimised TTC
(
ŜT2j
)

such as

(2.41)

ŜT21 (1, 1) = iρωCp + iρ
C2
p

2ω (Cp − 2Cs)k
2,

ŜT21 (1, 2) = −iρ(Cp − 2Cs)Csk,

ŜT21 (2, 1) = iρ(Cp − 2Cs)Csk,

ŜT21 (2, 2) = iρωCs + iρC
2
s

2ω (Cs − 2Cp)k
2.

The use of absorbing (or Robin) boundary conditions for scalar equations as well as for

wave type equations as Helmholtz leads to an improvement in the convergence factor

and in the latter has also the advantage of making the local problem systematically well

35

posed. Therefore we expect that their use in a Schwarz algorithm for the time-harmonic

elastic waves will also have a positive effect by greatly improving its behaviour.

Convergence analysis in the non-overlapping case

Optimised Schwarz methods can often be used without overlap, but in the case of the

Navier equations the conclusions are different.

• By using just the zeroth order Taylor condition without overlap does also not

lead to a convergent algorithm, as one can see in Figure 2.5 where we plotted the

eigenvalues in modulus of a full iteration (Note the plots are the same, just the

scaling in k changes).

• For the low frequencies, the algorithm converges however, in contrast to the clas-

sical Schwarz method, but for the high frequencies there is stagnation. Note also

that the curve for different values of ω is the same, only the scaling in k changes.

• We notice in a similar manner that even the TTC with a general parameter don’t

help and can even lead to an explosion for low frequencies while not improving

high frequencies (see Figure 2.6 left).

10
-2

10
-1

10
0

10
1

10
2

k

0

0.5

1

1.5

2

2.5

k
e
=0

k
e
=5

k
e
=k

Figure 2.6: Spectrum of the iteration matrix for the Schwarz method with Cp = 1,
Cs = 1

2 , ρ = 1, ω = 1 and δ = 0. With absorbing ρT0 (ke = 0), general zeroth order
ρT0,e (ke = 5) and second order ρT2 (ke = k) TTC.

These first intuitive conclusions lead us to the following theoretical result

Theorem 2.3 (Convergence of the non-overlapping Schwarz algorithm with TTC).

The Schwarz method with zero order transmission conditions (2.40) for non-overlapping

36

decompositions converges for k ∈
(

0, ωCs

)
\
{
ω
Cp

}
and is divergent with the contraction

factor being equal to 1 for k ∈
(
ω
Cs
,∞
)

.

Proof. Under the specific hypothesis of the theorem, the half-iteration matrix from

formula (2.35) becomes

(2.42)

B =
1

D

−Z1 − Z2 − iω3
(
λ1 − λ2

Cp
Cs

)
iλ2K

−iλ1K −Z1 − Z2 + iω3
(
λ1 − λ2

Cp
Cs

) =:

[
b11 b12

b21 b22

]
,

where

(2.43) Z1 = C3
s

(
k2 + λ2

1

)2
+ ω2Cpk

2, Z2 =
(
4C3

sk
2 + Cpω

2
)
λ1λ2,

(2.44) K = 2k
(
Cpω

2 + 2C3
s

(
k2 + λ2

1

))
, D = −Z1 + Z2 + iω3

(
λ1 + λ2

Cp
Cs

)
.

The eigenvalues are given by

(2.45) r± =
X2

2
+ Y ± 1

2

√
X2(X2 + 4Y), X = b11 − b22, Y = b11b22 − b12b21.

We define now λ̄j ∈ R+, j = 1, 2 as in (2.22).We distinguish the following cases (all the

computations have been done using Maple and details can be found in the Appendix)

• Case 1: If k ∈
(

0, ωCp

)
then λ1,2 ∈ iR+ and (2.45) gives

X =
2ω3

D

(
λ̄1 − λ̄2

Cp
Cs

)
, Y =

1

D2

(
(Z1 + Z2)2 − ω6

(
λ̄1 − λ̄2

Cp
Cs

)2

+ λ̄1λ̄2K
2

)
.

We can see easily that X2 + 2Y > 0 and X2 + 4Y > 0 therefore r+ > |r−| > 0 so

we just need to check the equivalent relations

r+ < 1⇔
(
X2 + 2Y

)
+
√
X2 (X2 + 4Y) < 2⇔ (1− Y)2 −X2 > 0.

The latter inequality can be checked by first setting X = X̃/D and Y = Ỹ /D2

which leads to the straightforward condition

0 <
(

1− Ỹ /D2
)2
−
(
X̃/D

)2
⇔ 0 <

(
D2 − Ỹ

)2
−D2X̃2 = 16ω6Cp

Cs
λ̄1λ̄2C

2

37

where C ∈ R∗ is a quantity with a complicated expression depending on (Cp, Cs, ω, k).

We conclude that in this case the algorithm is convergent.

• Case 2: If k = ω
Cp

then λ1 = i
ω
√
C2
p−C2

s

CsCp
and λ2 = 0. Then the coefficients (2.32)

of the half-iteration matrix are given by

b11 =
(Cp + Cs)(C

3
p − 4CpC

2
s + 4C3

s)−
√
C2
p − C2

sC
3
p

(Cp + Cs)(C3
p − 4CpC2

s + 4C3
s) +

√
C2
p − C2

sC
3
p

, b12 = 0, b21 ∈ C, b22 = 1

and the eigenvalues r± can be computed from remark (2.1)

r+ = 1, |r−| =

∣∣∣∣∣(Cp + Cs)
(
C3
p − 4CpC

2
s + 4C3

s

)
− λ̄1C

4
pCs

(Cp + Cs)
(
C3
p − 4CpC2

s + 4C3
s

)
+ λ̄1C4

pCs

∣∣∣∣∣
2

.

Since C3
p − 4CpC

2
s + 4C3

s > 0 ⇒ |r−| < 1 and ρT0 = 1.

• Case 3: If k ∈
(
ω
Cp
, ωCs

)
then λ1 ∈ iR+ and λ2 ∈ R+. The expressions of r±

become

r± =

ω3
(
λ̄1 + iλ2

Cp
Cs

)
±
√
−iλ2λ̄1K2 −

(
Z̄2 − iZ1

)2(
−Z1 + iZ̄2

)
− ω3

(
λ̄1 − iλ2

Cp
Cs

)

2

.

By computing its modulus we get

|r±| =

(
ω3Cp

Cs
λ2 ∓ csgn(α)

√
2

2

√√(
Z2

1 − Z̄2
2

)2
+
(
K2λ2λ̄1 − 2Z1Z̄2

)2 − Z2
1 + Z̄2

2

)2

(
ω3Cp

Cs
λ2 + Z̄2

)2
+
(
ω3λ̄1 + Z1

)2

+

(
ω3λ̄1 ±

√
2

2

√√(
Z2

1 − Z̄2
2

)2
+
(
K2λ2λ̄1 − 2Z1Z̄2

)2
+ Z2

1 − Z̄2
2

)2

(
ω3Cp

Cs
λ2 + Z̄2

)2
+
(
ω3λ̄1 + Z1

)2 ,

where

α =
(
K2λ2λ̄1 − 2Z1Z̄2 + i

(
Z2

1 − Z̄2
2

))
, Z̄2 =

(
4C3

sk
2 + Cpω

2
)
λ̄1λ̄2,

and csgn is the complex sign defined as in 2.24. We can easily see that an upper

38

bound for the absolute values of the eigenvalues is the following quantity:

M :=

(
ω3Cp

Cs
λ2 +

√
2

2

√((
Z2

1 − Z̄2
2

)2
+
(
K2λ2λ̄1 − 2Z1Z̄2

)2) 1
2 − Z2

1 + Z̄2
2

)2

(
ω3Cp

Cs
λ2 + Z̄2

)2
+
(
ω3λ̄1 + Z1

)2

+

(
ω3λ̄1 +

√
2

2

√((
Z2

1 − Z̄2
2

)2
+
(
K2λ2λ̄1 − 2Z1Z̄2

)2) 1
2

+ Z2
1 − Z̄2

2

)2

(
ω3Cp

Cs
λ2 + Z̄2

)2
+
(
ω3λ̄1 + Z1

)2 ,

It is thus enough to prove that M < 1. This happens to be true as we can see

0 < ω3Cp
Cs
λ2 +

√
2

2

√((
Z2

1 − Z̄2
2

)2
+
(
K2λ2λ̄1 − 2Z1Z̄2

)2) 1
2 − Z2

1 + Z̄2
2

< ω3Cp
Cs
λ2 + Z̄2,

and

0 < ω3λ̄1 +

√
2

2

√(
(Z2

1 − Z̄2
2)2 + (K2λ2λ̄1 − 2Z1Z̄2)2

) 1
2 + Z2

1 − Z̄2
2

< ω3λ̄1 + Z1.

In both cases we end up with the equivalent condition

0 < 4Z1Z̄2 −K2λ2λ̄1 = 4λ2λ̄1
Cp
Cs
ω6.

In conclusion max (|r+|, |r−|) ≤M < 1 and the algorithm is convergent.

• Case 4 If k = ω
Cs

then λ1 = 0 and λ2 =
ω
√
C2
p−C2

s

CsCp
> 0. In this case the coefficients

(2.32) of the half-iteration matrix are given by

b11 = 1, b12 ∈ C, b21 = 0, b22 =
−i
√
C2
p − C2

s − (Cp + Cs)

i
√
C2
p − C2

s − (Cp + Cs)

and the eigenvalues r± can be computed from remark (2.1)

r+ = 1, |r−| =

∣∣∣∣∣∣
−i
√
C2
p − C2

s − (Cp + Cs)

i
√
C2
p − C2

s − (Cp + Cs)

∣∣∣∣∣∣
2

= 1 ⇒ ρT0 = 1,

39

therefore the algorithm is divergent.

• Case 5: If k ∈
(
ω
Cs ,∞

)
then λ1,2 ∈ R∗+ and (2.45) gives r± =

1

D
(R± iI) where

(2.46)

R = −K2λ1λ2 − ω6

(
λ1 − λ2

Cp
Cs

)2

+ (Z1 + Z2)2 ,

I = −2ω3

(
λ1 − λ2

Cp
Cs

)√
(Z1 + Z2)2 −K2λ1λ2,

⇒ R2 + I2 − |D|2 = C(ω, k, Cp, Cs)

(
K2λ1λ2 − 4

(
Z1Z2 − ω3λ1λ2

Cp
Cs

))
= 0,

where C(ω, k, Cp, Cs) ∈ R∗ is a constant which means that

|r±| = 1⇒ ρT0 = 1

and the algorithms is not convergent in this case.

Convergence analysis in the overlapping case

We investigate now if the combination of overlap and TTC can lead to a convergent

optimised Schwarz algorithm. We start again with a numerical experiment in order to

gain some insight.

10
-2

10
-1

10
0

10
1

10
2

k

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

k
e
=0

k
e
=5

k
e
=k

Figure 2.7: Spectrum of the iteration matrix for the optimised Taylor Schwarz method
Cp = 1, Cs = 1

2 , ρ = 1, ω = 5, δ = 0.1. With absorbing ρT0 (ke = 0), general zeroth
order ρT0,e (ke = 5) and second order ρT2 (ke = k) TTC.

40

For the same parameter choice as for Figure 2.1, we show in the right graph of Figure

2.7 the modulus of the eigenvalues of the optimized Schwarz method with overlap and

the three different kind of Taylor transmission conditions we previously introduced. We

can see that the absorbing transmission conditions are the best, we therefore focus on

them. This leads to the following result

Theorem 2.4 (Convergence of the overlapping Schwarz algorithm with TTC.). For a

small enough δ, the overlapping Schwarz method with absorbing transmission conditions

converges for

k ∈
(

0,
ω

Cp

)
∪
(
ω

Cp
,
ω

Cs

)
∪ (k∗,∞) , k∗ (ω,Cp, Cs, δ) ∈

(
ω

Cs
,∞
)

but diverges for k ∈
{
ω
Cp

}
∪
[
ω
Cs
, k∗
]
. Therefore the algorithm is in general convergent

except for a small interval in the neighbourhood of ω
Cs

and for the cut-off frequency ω
Cp

.

Proof. Under the specific hypothesis of the theorem, the half-iteration matrix from

formula (2.35) is again given by

B =
1

D

−Z1 − Z2 − iω3
(
λ1 − λ2

Cp
Cs

)
iλ2K

−iλ1K −Z1 − Z2 + iω3
(
λ1 − λ2

Cp
Cs

) =:

[
b11 b12

b21 b22

]
,

where

Z1 = C3
s

(
k2 + λ2

1

)2
+ ω2Cpk

2, Z2 =
(
4C3

sk
2 + Cpω

2
)
λ1λ2,

K = 2k
(
Cpω

2 + 2C3
s

(
k2 + λ2

1

))
, D = −Z1 + Z2 + iω3

(
λ1 + λ2

Cp
Cs

)
.

The eigenvalues of the iteration matrix are

(2.47) r± =
X2

2
+ Y ± 1

2

√
X2 (X2 + 4Y).

where

X = e−λ1δ b11 − e−λ2δ b22, Y =
b11b22 − b12b21

eλ1δ eλ2δ
.

We define now λ̄j ∈ R+, j = 1, 2 as in (2.22) when λ1 and/or λ2 ∈ iR.

In the case when the overlap δ is small, the series expansion of these eigenvalues is

(2.48) r± = (R1± + iI1±) + (R2± + iI2±) δ +O(δ2), (Rj±, Ij±) ∈ R,

41

with the modulus is

|r±|2 =
(
R2

1± + I2
1±
)

+ 2δ (R1±R2± + I1±I2±) +O(δ2).

Again we need to distinguish several cases

• Case 1: If k ∈
(

0, ωCp

)
then λ1,2 ∈ iR+ and I1± = R2± = 0 for both eigenvalues.

Therefore the series expansion (2.48) becomes

r± = R1± + iI2±δ +O(δ2) ⇒ |r±|2 = R2
1± +O(δ2),

where

R1± =
ω6
(
λ̄1 − λ̄2

Cp
Cs

)2
+ (Z1 + Z2)2 + 4k2λ̄1λ̄2

(
4C3

sk
2 + Cpω

2 − 2Csω
2
)2(

Z1 − Z2 + ω3
(
λ̄1 + λ̄2

Cp
Cs

))2

± 2ω3

(
λ̄1 − λ̄2

Cp
Cs

) √(Z1 + Z2)2 + 4k2λ̄1λ̄2 (4C3
sk

2 + Cpω2 − 2Csω2)2(
Z1 − Z2 + ω3

(
λ̄1 + λ̄2

Cp
Cs

))2 .

After simplifications this gives exactly the same convergence factor as in the non-

overlapping case which we have proven that it is less than one. Therefore the

algorithm is convergent in this case.

• Case 2: If k = ω
Cp

then λ1 = i
ω
√
C2
p−C2

s

CsCp
and λ2 = 0.

The coefficients (2.32) of the half-iteration matrix are given by

b11 =
(Cp + Cs)

(
C3
p − 4CpC

2
s + 4C3

s

)
−
√
C2
p − C2

sC
3
p

(Cp + Cs)
(
C3
p − 4CpC2

s + 4C3
s

)
+
√
C2
p − C2

sC
3
p

, b12 = 0, b21 ∈ C, b22 = 1.

The eigenvalues r± can be computed from remark 2.1

(2.49) r+ = 1, |r−| =

∣∣∣∣∣e−2iλ̄1δ
(Cp + Cs)(C

3
p − 4CpC

2
s + 4C3

s)− λ̄1C
4
pCs

(Cp + Cs)(C3
p − 4CpC2

s + 4C3
s) + λ̄1C4

pCs

∣∣∣∣∣
2

Since C3
p − 4CpC

2
s + 4C3

s > 0 ⇒ |r−| < 1 and ρT0 = 1 which means the

algorithm is divergent in this case.

• Case 3: If k ∈
(
ω
Cp
, ωCs

)
, then λ1 ∈ iR+ and λ2 ∈ R+. The series expansion

42

(2.48) becomes

|r±|2 =
(
R2

1± + I2
1±
)

+O(δ)

We notice the terms (R1±+iI1±) are the same as in the non-overlapping case and

we already know that
(
R2

1± + I2
1±
)
< 1. We can conclude that it’s convergent.

• Case 4: If k = ω
Cs

then λ1 = 0, λ2 =
ω
√
C2
p−C2

s

CsCp
> 0. The coefficients (2.32) of

the half-iteration matrix are given by

b11 = 1, b12 ∈ C, b21 = 0, b22 =
−i
√
C2
p − C2

s − (Cp + Cs)

i
√
C2
p − C2

s − (Cp + Cs)

and the eigenvalues r± of the iteration matrix given by remark 2.1

(2.50)

r+ = 1, |r−| = e−2λ2δ

∣∣∣∣∣∣
−i
√
C2
p − C2

s − (Cp + Cs)

i
√
C2
p − C2

s − (Cp + Cs)

∣∣∣∣∣∣
2

= e−2λ2δ < 1 ⇒ ρT0 = 1.

Again the algorithm is divergent.

• Case 5: If k ∈
(
ω
Cs
,∞
)

, then λ1,2 ∈ R∗+ and the eigenvalues are given by (2.47).

We then use series expansion (2.48) on r± and obtain

R1± + iI1± =
1

D
(R± iI)

where the values (R, I,D) are given in (2.46) and (2.44). Hence R2
1± + I2

1± = 1

and

R1+R2+ + I1+I2+ = −

(
λ2λ1K

2 − ω6
(
λ1 − λ2

Cp
Cs

)2
− (Z1 + Z2)2

)2

|D|
√

(Z1 + Z2)2 − λ2λ1K2

×
(√

(Z1 + Z2)2 − λ2λ1K2(λ1 + λ2)− (λ1 − λ2)(Z1 + Z2)
)
< 0

since (λ1 − λ2) < 0 < (Z1 + Z2).

Since the first eigenvalue is less than one

r+ ≈ 1 +R1+R2+ + I1+I2+ < 1,

43

we will focus now on r− ≈ 1 +R1−R2− + I1−I2− =: F (k)

(2.51)

F (k) = −

(
λ2λ1K

2 − ω6
(
λ1 − λ2

Cp
Cs

)2
− (Z1 + Z2)2

)2

|D|
√

(Z1 + Z2)2 − λ2λ1K2

×

√(Z1 + Z2)2 − λ2λ1K2(λ1 + λ2) + (λ1 − λ2)(Z1 + Z2)︸ ︷︷ ︸
g(k)

 .

We know that g(k) ∈ R as we have seen previously. Our aim is to show in which

conditions g(k) < 0 which is equivalent to r− > 1. We see that

g(k) < 0 ⇔ 2(Z1 + Z2)−K(λ1 + λ2) < 0.

We will study the sign of g in a neighbourhood of ω
Cs

and for this reason we set

k = ω
Cs

+ ε, and then develop g as series for small ε

g =
2ω4

CpC2
s

(
(Cs + Cp)Cp − (Cp + 2Cs)

√
C2
p − C2

s

)
− 2

Cp

√
2ω7

C3
s

(
Cp (Cp + 2Cs)− (Cp + 4Cs)

√
C2
p − C2

s

)√
ε+O(ε).

For sufficiently small values of ε (that is for k very close to ω
Cs

), the leading term

of this series being negative we have r− > 1. On the other side, because of the

overlap lim
k→∞

ρT0(k, ω, Cp, Cs, δ) = 0 and by continuity ∃
(
k∗, k̄

)
such that

∃ k∗ > k̄ >
ω

Cs
such as

ρT0(k∗, ω, Cp, Cs, δ) = 1,

ρT0
∣∣k>k∗ < 1,

max
k> ω

Cs

|ρT0 | =: k̄,

as one can see on Figure 2.7.

We need to find the k∗ for which ρT0 = 1 as we can see in Figure 2.7. Since an analytical

formula is impossible to obtain for k∗, we will derive a numerical estimate of it. We

use the ansatz k∗ = C∗δ
β and we find β by fitting the numerical values obtained for

different values of δ. After that we need to find the constant C∗ by developing the

44

formula of the convergence factor as a series depending on δ. Note that these results

would require a more rigorous mathematical proof as they are derived by using purely

numerical arguments. A summary of the procedure is given below:

• Case 1. If
√

2Cs < Cp <

√
5 + 1

2
Cs, we find numericaly k∗ ≈ C∗ where C∗ is a

constant. We know that r+ < r−, therefore asymptotically r− = 1 for a given k∗

if the second term in the following series is null

r− = 1 + (R1−R2− + I1−I2−)δ +O(δ2).

Therefore k∗ verifies

(R1−R2−+I1−I2−)(k∗) = 0⇔ k∗ /

λ2λ1K
2 − ω6

(
λ1 − λ2

Cp
Cs

)2

− (Z1 + Z2)2 = 0

and/or g(k∗) = 0,

where g(k) is defined in (2.51). The only admissible solution is

k∗(ω,Cp, Cs) = C∗ = − (Cp − 2Cs)Cpω

2
√
−C3

pCs + 2C2
pC

2
s − C4

sCs
,

Note that the hypothesis on Cp and Cs insures that −C3
pCs + 2C2

pC
2
s − C4

s > 0

and C∗ is real.

• Case 2. If

√
5 + 1

2
Cs < Cp, we find numerically k∗ ≈ C∗√

δ
and we plug it into

(2.47). By developping the eigenvalues of the iteration matrix we get
r+ ≈ 1−

C4
∗C

4
s

(
C2
s − 2C2

p

)
+ C2

sC
2
p

(
C4
∗C

2
p + 3ω2

)
+ 3C3

pω
2 (Cs − Cp)

3C2
sC∗

(
C2
p − C2

s

)2 δ
3
2 ,

r− ≈ 1− 4C∗
√
δ

which means that asymptotically for a small δ, we have that r− ≤ r+. In order

to find k∗ such that ρT0(k∗) = 1 we need to solve r+ ≈ 1 with respect to C∗. We

get:

C∗ =

√3Cpω
√
C2
p − CsCp − C2

s

Cs
(
C2
p − C2

s

)

1
2

.

45

In conclusion

k∗ =

√3Cpω
√
C2
p − CsCp − C2

s

Cs
(
C2
p − C2

s

)

1
2

δ−
1
2 .

Note that k∗ > ω
Cs

for a δ small enough. Moreover C2
p − CsCp − C2

s > 0 since
√

5+1
2 Cs < Cp.

In the same way we can also find a formula for the maximum point k̄. We use again

the ansatz k̄ = C̄δβ and by fitting this formula with the numerical data we get β. In

this way, we find numerically that k̄ ≈ C̄. In order to find the constat we need to solve

the equation:

∂kρ
(
k̄
)

= 0⇔ F ′
(
k̄
)

= 0,

we find that the only critical point verifying k̄ > ω
Cs

is√
(2Cs − Cp)

(
(Cp − 2Cs)

(
Cp − Cs

2

)
−
√
Cs sg(Cp−2Cs)

2

√
4C3

pCs − 3C2
pC

2
s − 4CpC3

s + 4C4
s

)
ω

2C
3
2
s (Cp − Cs)

.

We end up with two different cases according to the value of sg(Cp − 2Cs).

• Case 1. sg(Cp− 2Cs) = −1⇔
√

2Cs < Cp < 2Cs. In this case k̄ ∈ R and we get

k̄ =

√
2Cs − Cpω

2C
3
2
s (Cp − Cs)

√
(2Cs − Cp)

(
Cp −

Cs
2

)
−
√
Cs
2

√
4C3

p − 3C2
pCs − 4CpC2

s + 4C3
s .

• Case 2. sg(Cp − 2Cs) = 1 ⇔ Cp > 2Cs. In this case k̄ ∈ R under a further

constraint that is Cp < 4Cs and we get

k̄ =

√
Cp − 2Csω

2C
3
2
s (Cp − Cs)

√√
Cs
2

√
4C3

p − 3C2
pCs − 4CpC2

s + 4C3
s − (Cp − 2Cs)

(
Cp −

Cs
2

)
.

We won’t investigate further (for Cp > 4Cs), because it doesn’t seem to correspond to

any physical situation.

In Theorem 2.4 we have supposed that δ is small enough which is in most of the cases the

most difficult case from the convergence point of view. As it can be seen from the general

formula of the convergence factor (2.8) for a sufficiently big overlap and for intermediate

and higher frequencies, the algorithm will become convergent as the exponentials will

46

decrease to zero. For small frequencies, the convergence factor is naturally small as it is

based on Taylor approximations around 0 of (exact) transparent boundary conditions.

In the following we will try to understand when the transition occurs from divergence

to convergence and for which value of the overlap this is achieved. In order to do this

we will first perform the following numerical experiment illustrated in Figure 2.8.

10
-2

10
-1

10
0

10
1

10
2

k

0

0.5

1

1.5

2

2.5

3

k
e
=0

k
e
=5

k
e
=k

Figure 2.8: Spectrum of the iteration matrix for the optimized Taylor Schwarz method
with overlap δ = 1 and Cp = 1, Cs = 1

2 , ρ = 1 and ω = 1. Absorbing BC ρT0 (ke = 0),
general zeroth order ρT0,e (ke = 5) and second order ρT2 (ke = k) TTC.

We can see that if the overlap is large enough, it is possible to obtain a convergent

optimized Schwarz method except for the frequencies k = ω
Cp

and k = ω
Cs

. The best

method seems to be that based on absorbing boundary conditions. It would thus be of

great interest to estimate the value δ∗(Cp, Cs, ω) for which it converges as soon as the

overlap δ > δ∗(Cp, Cs, ω) like illustrated in Figure 2.9. Then we get

Figure 2.9: Modulus of the eigenvalues of the iteration matrix close to k = ω
Cs

for
the optimized Schwarz method with zeroth order TTC for ω = 1. Left: δ = 0.8
(divergence). Middle: δ = 0.9 (convergence). Right: δ = 1 (convergence).

47

Based on the insight given by this graphic representations, in the following lemma we

will derive a formula for the value of the overlap when the transition to a convergent

algorithm occurs. Note that the proof cannot rely on the series which are valid for a

small δ but we can assume that when the algorithm is convergent for a small overlap

this will be the case for a sufficiently big overlap.

Lemma 2.2. The overlapping Schwarz algorithm with absorbing boundary conditions

will converge for k ∈ R+ \
{
ω
Cp
, ωCs

}
if the overlap δ is bigger than

δ∗(Cp, Cs, ω) =
Cs
√
C2
p − C2

s (Cp + 2Cs)
2

Cpω(Cs + Cp)

sinh(α)

Cp cosh(α) + Cs

where α is the positive root of

αC2
p (Cp cosh(α) + Cs)−

(
C3
p + 3C2

pCs − 4C3
s

)
sinh(α) = 0.

Proof. A first step into this direction comes from observing how the convergent algo-

rithm turns into a divergent one when δ is decreased. It seems that it is sufficient to

just check the slope of the modulus of the larger eigenvalue of the iteration matrix for
ω
Cs

coming from the right. We will distinguish again five different cases.

If k ∈
(

0, ωCs

)
\
{
ω
Cp

}
, which corresponds to cases 1 and 3, the Schwarz algorithm with

absorbing boundary conditions converges both without overlap (see theorem 2.3) and

with a small overlap (see theorem 2.4). A sufficiently big overlap can only improve the

behaviour of the algorithm in the mid-frequency regime and not deteriorate it in the

low frequency regime, therefore it will be convergent in this case.

If k ∈
{
ω
Cp
, ωCs

}
, which corresponds to cases 2 and 4, we see from (2.49) and (2.50)

that the convergence factor is independent of the size of δ.

If k ∈
(
ω
Cs
,∞
)

we will analyse the behaviour of the algorithm in the neighbourhood

of ω
Cs

and see when it becomes divergent. No argument on the size of δ is used in this

case. In order to do this, we define ε such as k = ω
Cs

+ ε and develop r± from (2.47) in

series as in (2.48) for a small ε with (Rj±, Ij±) ∈ R and then get the modulus

|r±|2 =
(
R2

1± + I2
1±
)

+ 2
√
ε (R1±R2± + I1±I2±) +O(ε).

48

For r+, we have on one hand that

R1+ + iI1+ = −
C2
p − 2C2

s − i2Cs
√
C2
p − C2

s

C2
p e

2ω
√
C2
p−C2

s

CpCs
δ

⇒ R2
1+ + I2

1+ = e
−

4ω
√
C2
p−C2

s

CsCp
δ
< 1,

and similarly for r− we have R1− + iI1− = 1 ⇒ R2
1− + I2

1− = 1. On the other hand

R1+R2++I1+I2+ = −
2
√

2Cs e
−

4ω
√
C2
p−C2

s

CsCp
δ
√
C2
p − C2

s (Cp + 2Cs)
2

(
e

2ω
√
C2
p−C2

s

CsCp
δ −1

)

Cp
√
ω(Cp + Cs)

(
Cp e

2ω
√
C2
p−C2

s

CsCp
δ

+2Cs e
ω
√
C2
p−C2

s

CsCp
δ

+Cp

) < 0,

from which we can conclude that |r+|2 < 1 and

R1−R2− + I1−I2− =

−2
√

2(ωCs)
− 1

2

(Cp+Cs)Cp

δCpω(Cp + Cs)−
Cs(Cp + 2Cs)

2
√
C2
p − C2

s

(
e

2ω
√
C2
p−C2

s

CsCp
δ −1

)

Cp e
2ω
√
C2
p−C2

s

CsCp
δ

+2Cs e
ω
√
C2
p−C2

s

CsCp
δ

+Cp

︸ ︷︷ ︸

=:f(δ)

.

We study f to see if and when it becomes negative. We take

(2.52) f ′(δ) = − 2
√

2ω e
2ω
√
C2
p−C2

s

CsCp
δ

√
CsC2

p

(
Cp e

2ω
√
C2
p−C2

s

CsCp
δ

+2Cs e
ω
√
C2
p−C2

s

CsCp
δ

+Cp

)2 g(δ),

so f ′ is of opposite sign w.r.t. g where

g(δ) = 2C4
p cosh

(
2ω

CsCp

√
C2
p − C2

s δ

)
− 2Cp(C

3
p + 6C2

pCs − 2CpC
2
s − 8C3

s)

+ 4Cs(Cp + Cs)(Cp − 2Cs)
2 cosh

(
ω

CsCp

√
C2
p − C2

s δ

)
,

g′(δ) =
4

Cp
ω(Cp + Cs)(Cp − 2Cs)

2
√
C2
p − C2

s sinh

(
ω

CsCp

√
C2
p − C2

s δ

)
+

4

Cs
ω
√
C2
p − C2

s sinh

(
2ω

CsCp

√
C2
p − C2

s δ

)
> 0 ∀δ,

49

We know that cosh is a strictly increasing function for positive values and in our case

all the parameters are real and positive. We have cosh(δ = 0) = 1 and we denote

∃!δ̄ ∈ R∗+ / cosh

(
ω

CsCp

√
C2
p − C2

s δ̄

)
= 3.

Since we have

cosh

(
ω

CsCp

√
C2
p − C2

s δ

)
≤ cosh

(
2

ω

CsCp

√
C2
p − C2

s δ

)
,

this implies

g(δ) ≥ 2C4
p cosh

(
ω

CsCp

√
C2
p − C2

s δ

)
− 2Cp(C

3
p + 6C2

pCs − 2CpC
2
s − 8C3

s)

+ 4Cs(Cp + Cs)(Cp − 2Cs)
2 cosh

(
ω

CsCp

√
C2
p − C2

s δ

)
,

then

g(δ̄) ≥ 16C2
p(C2

p − 2C2
s) + 16CpC

3
s + 48C4

s > 0.

As a result ∃δ̂ s.t. g(δ̂) = 0 and we know that g is increasing.

Since f(0) = 0, f is a strictly increasing function ∀δ < δ̂ and decreasing ∀δ > δ̂ and

∂2
δf = −

4
√

2ω3(C2
p − C2

s)(Cp + 2Cs)
2(Cp − Cs) e

ω
√
C2
p−C2

s

CsCp
δ

(
√
CsCp)3

(
Cp e

2ω
√
C2
p−C2

s

CsCp
δ

+2Cs e
ω
√
C2
p−C2

s

CsCp
δ

+Cp

)3

×

[(
e

4ω
√
C2
p−C2

s

CsCp
δ −1

)
CpCs + 2(2C2

p − C2
s) e

ω
√
C2
p−C2

s

CsCp
δ

(
e

2ω
√
C2
p−C2

s

CsCp
δ −1

)]
< 0,

therefore δ̂ is a absolut maximum for f .

Since lim
δ→∞

f(δ)→ −∞, its graph will cut the x-axis only once. By solving the equation

f(δ) = 0 w.r.t. δ we get:

δ∗(Cp, Cs, ω) =
Cs
√
C2
p − C2

s (Cp + 2Cs)
2

Cpω(Cs + Cp)

e2α−1

Cp e2α +2 eαCs + Cp

=
Cs
√
C2
p − C2

s (Cp + 2Cs)
2

Cpω(Cs + Cp)

sinh(α)

Cp cosh(α) + Cs
,

50

where α the positive root of

0 =
[
(α− 1)

(
C3
p − 3C2

pCs + 4C3
s

)
e2α +2αC2

pCs eα +(α+ 1)
(
C3
p + 3C2

pCs − 4C3
s

)]
⇔ α / αC2

p (Cp cosh(α) + Cs) =
(
C3
p + 3C2

pCs − 4C3
s

)
sinh(α).

Note that α = 0 is also solution but we have that δ∗ > 0⇒ α > 0.

Numerical results

In this section we illustrate the different convergence/divergence regimes of the iterative

version of the Schwarz algorithm

Un+1 = Un +M−1 (F −AUn) ,

where M−1 is either to RAS or the ORAS preconditioners:

(2.53) M−1
RAS =

N∑
i=1

RTi DiA
−1
i Ri, M

−1 =
N∑
i=1

RTi DiB
−1
i Ri

where Bi are the local matrices derived from the discretisation of boundary value

problems with absorbing boundary (or Taylor transmission conditions) conditions and

Ai = RiAR
T
i .

Two-subdomains case: iterative Schwarz with TTC

We have seen previously that the iterative Schwarz algorithm with Taylor transmission

conditions can converge outside the cut-off frequencies ω
Cp

and ω
Cs

provided that the

overlap is big enough. For a lower value of the overlap, the algorithm is divergent in

an interval of frequencies and is dominated by a frequency k? which is slightly bigger

than ω
Cs

. We will illustrate these findings by some numerical experiments.

We choose again Cp = 1, Cs = 1
2 , ρ = 1.

We discretise the time-harmonic Navier equations using P1 finite elements on the

domain Ω = (−1, 1) × (0, 1), use the two subdomains Ω1 = (−1, 2h) × (0, 1) and

Ω2 = (−2h, 1) × (0, 1) with h = 1
80 , in other words we build a uniform decomposi-

tion into two overlapping subdomains. This time we use Dirichlet boundary conditions

on the longer sides of the rectangle. The overlapping parameter is first chosen to be

δ = 2h. We show in Figure 2.10 the error in modulus at iteration 60 of the optimised

51

Schwarz method which uses Taylor transmission conditions for ω = 5.

The error is computed with respect to the solution of the algebraic system obtain on

the global domain AU = F by a direct method. Note that in more realistic test cases

this reference solution is not available. In those cases the global relative residual will

be a measure of the convergence

0 10 20 30 40 50 60

Iteration

10
-1

10
0

E
rr

o
r

Convergence history for the iterative Schwarz with TTC, overlap=2h

Figure 2.10: Error in modulus at iteration 60 of the iterative Schwarz method with
TTC and convergence history (ω = 5, δ = 2h).

We see that the iterative method is not converging (the error after 60 iterations stag-

nates around the value of 5.5e − 2). This time the interval on which the method is

diverging is
[
ω
Cs
, k?
]

= [10, k?]. We can see that the error has 5 bumps along the inter-

face which corresponds well to the mode | sin(ky)| along the interface for k = 5π ≈ 15.

This seems to be the fastest diverging mode whose existence the analysis can prove.

0 10 20 30 40 50 60

Iteration

10
-4

10
-3

10
-2

10
-1

10
0

10
1

E
rr

o
r

Convergence history for the iterative Schwarz with TTC, overlap=6h

Figure 2.11: Error in modulus at iteration 60 of the iterative Schwarz method with
TTC and convergence history (ω = 5, δ = 6h).

If we increase the overlap the method will converge provided that the ”cut-off” fre-

52

0 10 20 30 40 50 60

Iterations

10
-10

10
-5

10
0

10
5

10
10

10
15

R
e

la
ti
v
e

 e
rr

o
r

Iterative RAS vs. ORAS for different values of overlap, 2x1 decomposition

RAS: ovr=2

RAS: ovr=4

RAS: ovr=8

ORAS: ovr=2

ORAS: ovr=4

ORAS: ovr=8

0 2 4 6 8 10 12 14 16 18 20

Iterations

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

R
e

la
ti
v
e

 e
rr

o
r

RAS vs. ORAS as preconditioners for different values of overlap, 2x1 decomposition

RAS: ovr=2

RAS: ovr=4

RAS: ovr=8

ORAS: ovr=2

ORAS: ovr=4

ORAS: ovr=8

Figure 2.12: Convergence history for RAS and ORAS as solvers (left) and precondi-
tioners (right) for ω = 5, 2× 1 subdomains different values of δ.

quencies ω
Cp

and ω
Cs

can’t be represented on the mesh, which seems to be the case here

(see Figure 2.11). A slowly converging mode can be seen again and it corresponds to a

mode | sin(ky)| along the interface, except that the error has now decreased to 2.5e− 4

(for a global residual of 9.4e− 6).

Schwarz method as solver and as a preconditioner

We simulate the wave propagation through a computational domain which is given

by the unit square [0, 1]2 with Robin boundary conditions on a part of the boundary(
T (n) − iσn

)
u = g, with the source term g chosen such that the exact solution is

a plane wave uinc consisting both P- and S-waves uinc = d eiκpx·d + d⊥ eiκsx·d, d =(
cos
(
π
3

)
, cos

(
π
3

))T
. Note that in the two-dimensional case considered here

(2.54) σn = ωρ

(
cpn

2
x + csn

2
y (cp − cs)nxny

(cp − cs)nxny cpn
2
y + csn

2
x

)
.

In the first test case the physical parameters are given by Cp = 1, Cs = 0.5, ρ = 1, λ =

ρ(C2
p − 2C2

s), µ = ρC2
s , ω = 5.. This test case does not necessarily correspond to

an accurate physical situation but it produces simple but oscillatory enough solutions

reflecting the difficulties related to the solving of the problem. We will test the two

versions of RAS and ORAS in (2.53) on a uniform decomposition of the rectangle

[0, 2]× [0, 1] into 2× 1 subdomains having each one 40× 40 discretisation points for a

total number of 6400 dof per subdomain. We will then repeat the experience by solving

the global preconditioned system AU = F by. GMRES method. The behaviour of the

algorithms for different values of overlap is shown in Figure 2.12.

53

0 10 20 30 40 50 60

Iterations

10
-10

10
-5

10
0

10
5

10
10

10
15

10
20

10
25

10
30

R
e

la
ti
v
e

 e
rr

o
r

Iterative RAS vs. ORAS for different values of overlap, 4x4 decomposition

RAS: ovr=2

RAS: ovr=4

RAS: ovr=8

ORAS: ovr=2

ORAS: ovr=4

ORAS: ovr=8

0 5 10 15 20 25 30 35 40 45

Iterations

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

R
e

la
ti
v
e

 e
rr

o
r

RAS vs. ORAS as preconditioners for different values of overlap, 4x4 decomposition

RAS: ovr=2

RAS: ovr=4

RAS: ovr=8

ORAS: ovr=2

ORAS: ovr=4

ORAS: ovr=8

Figure 2.13: Convergence history for RAS and ORAS as solvers (left) and precondi-
tioners (right) for ω = 5, 4× 4 subdomains, different values of δ.

We repeat the experience on a uniform decomposition of the unit square [0, 1]1 into

4 × 4 subdomains with the same local number of degrees of freedom. he behaviour of

the algorithms for different values of overlap is shown in Figure 2.13.

As expected, in its iterative version, the ORAS algorithm outperforms RAS, the later

not being convergent for any value of the overlap. Another notable difference is that

by increasing the overlap, the iterative version of the ORAS algorithm is getting better

whereas the performance of RAS is getting worse. Even if in practice one won’t use

these iterative versions of the algorithms, this comparison provides us a very useful

insight of their behaviour.

When used as preconditioners in a GMRES method, again ORAS is clearly better than

RAS, the former being less dependant on the overlap as RAS. Note that for a bigger

value of the overlap the difference between the two methods is reduced even if we can

still notice a slightly better behaviour of the ORAS algorithm.

Chapter 3

Optimised Schwarz methods

In the previous chapter we have seen that classical Schwarz methods based on Dirichlet

or even Robin transmission conditions are not very effective when used as iterative

solvers. For this reason we would like to introduce a new class of methods, namely the

optimised Schwarz methods by designing better transmission conditions between the

subdomains.

3.1 State of the Art

Over the last two decades, a lot of results have been obtained about optimised algo-

rithms based on well chosen parameters in the transmission conditions. Different types

of equations from the symmetric positive definite scalar equations to indefinite systems

of PDEs, have been thus analysed.

For the case of steady state symmetric problems, we can mention the self contained

overview article by Gander [Gan06], the later contains a very exhaustive state of the art

and the description of the techniques used to tackle these kind of algorithms. Several

extensions to the advection-diffusion type problems can be found in the works of Nataf

et al. [JNR98, JN00, JNR01, LMO00, Nat96, NN97].

Among numerous works on the topic, several aspects have been approached. For exam-

ple, the case of problems with discontinuous coefficients in [Dub07, Fla01, GN04], the

influence of the geometry on the behaviour of the algorithms [Gan11], the construction

of coarse grid corrections [DGL+12, KL15, LNS15], the presence of cross points [GK12]

or an accurate analysis for circular domains [GX14].

54

CHAPTER 3. OPTIMISED SCHWARZ METHODS 55

The general principle of the construction of optimised interface conditions is based on

polynomial (local) approximations of the Fourier symbols of the exact or transparent

boundary conditions (non-local operators). An alternative would be to use rational

approximations of Padé type instead of polynomials and in the works of Antoine et

al.[ABG12]. We should note that perfectly matched layers (PML) [Ber94] [CW94] are

also used in domain decomposition methods see [SZB+07], [GN00] or [PELY13].

For the Helmholtz equation, which is the prototype of elliptic indefinite wave type of

problems with oscillatory solution, optimised transmission conditions were developed

for the first time by Desprès in [Des90] and [Des91] and later on by Chevalier in [Che98,

CN98], Collino [CDJP97b] or Gander et al:[GMN02a, GHM07a].

Very similar in nature to Helmholtz equations, high-frequency time-harmonic Maxwell’s

equations are also very difficult to solve and the design of sophisticated iterative meth-

ods seems to be quite complex. Nevertheless such attempts to develop optimised algo-

rithms both for the first order and the second order formulations can be found chrono-

logically in the works of Chevalier [Che98][section 4.7], Collino [CDJP97a], Alonso

[ARGG06], Lee et al [PRL10, PL10, RL10] or Dolean et al. [DLP08a, DLP08b, DGG09,

EDGL12a, EDGL12b].

The implementation of sophisticated transmission conditions is generally not easy es-

pecially in the case of Discontinuous Galerkin methods, therefore a special treatment

is needed [DLP08a, DLP08b, EDG+11]. Same statement holds in the case of edge

element discretisations of the Maxwell’s equations or even for non-conforming dis-

cretisations. A certain number examples used in computations of non trivial multi-

scale electromagnetic radiation and scattering problems can be found in the works of

Lee et al. [LVL05, PRL10, PL10, RL10]. First order and second order formulations

of Maxwell’s equations lead to different optimisation results, which have neverthe-

less a common ground. The presentation of such a unified framework is detailed in

[DGL+13, DGL+14].

As a general rule, the method of deriving optimised transmission conditions is quite

general and can be in principle applied to a big variety of equations. To our knowledge

the case of time-harmonic elastic waves (Navier equations) has not been studied so far

and our purpose is to apply the techniques from the state of the art to Navier equations

while adapting them to the specificities of the problem.

CHAPTER 3. OPTIMISED SCHWARZ METHODS 56

3.2 One parameter family of transmissions conditions

In the following we present one possible strategy of improving the interface transmission

conditions. We use as a starting point the expression of the transparent Boundary

Conditions (TBC) (2.29) in which we fix one frequency k = ke. The resulting operators

ŜEj will be local, but exact for the chosen frequency:

(3.1)

ŜE1 (1, 1) = ρω2

√
k2
e − ω2

C2
s

k2
e −

√
k2
e − ω2

C2
s

√
k2
e − ω2

C2
p

,

ŜE1 (1, 2) = +ikeρ

2C2
s −

ω2

k2
e −

√
k2
e − ω2

C2
s

√
k2
e − ω2

C2
p

 ,

ŜE1 (2, 1) = −ikeρ

2C2
s −

ω2

k2
e −

√
k2
e − ω2

C2
s

√
k2
e − ω2

C2
p

 ,

ŜE1 (1, 1) = ρω2

√
k2
e − ω2

C2
p

k2
e −

√
k2
e − ω2

C2
s

√
k2
e − ω2

C2
p

,

with

ŜE2 (1, 1) = ŜE1 (1, 1), ŜE2 (1, 2) = −ŜE1 (1, 2), ŜE2 (2, 1) = −ŜE1 (2, 1), ŜE2 (2, 2) = ŜE1 (2, 2).

We thus expect that the convergence properties in a neighbourhood of this frequency

will be very good. Afterwards we can optimise the convergence factor on the whole

range of frequencies with respect to ke.

To simplify the notations we denote

p1 :=

√
k2
e −

ω2

C2
s

, p2 :=

√
k2
e −

ω2

C2
p

.

We name these conditions Optimised Interface Conditions (OIC). We see that (3.1)

gives a one parameter family of simple transmission conditions, and one can try to find

the best choice for ke to minimise the maximum of the contraction factor, excluding

the frequencies k = ω
Cp

and k = ω
Cs

where the algorithm will never converge as well

as a small interval around them, as it was done the case of the Helmholtz equation

([GMN02b],[GHM07b]).

CHAPTER 3. OPTIMISED SCHWARZ METHODS 57

Lemma 3.1 (Convergence factor in the general case). For a given initial guess u0
1 ∈(

L2 (Ω1)
)2

, u0
2 ∈

(
L2 (Ω2)

)2
, the Schwarz algorithm with OIC has the following conver-

gence factor

ρE(k, ke, ω, Cp, Cs, δ) = max{|r+|, |r−|}, r± =
X2

2
+ Y ± 1

2

√
X2 (X2 + 4Y),

with

(3.2) X = e−λ1δ b11 − e−λ2δ b22, Y =
b11b22 − b12b21

eλ1δ eλ2δ
,

[
b11 b12

b21 b22

]
=: B,

where

(3.3)

b11 =
k2 (ke + C2)2 + λ1λ2 (ke + C1)2 − p1p2

(
k2 + λ1λ2

)
+
(
k2
e − p1p2

)
(λ1p2 − λ2p1)

k2 (ke + C2)2 − λ1λ2 (ke + C1)2 − p1p2 (k2 − λ1λ2)− (k2
e − p1p2) (λ1p2 + λ2p1)

,

b12 =
−2ik ((ke + C1) (ke + C2)− p1p2)λ2

k2 (ke + C2)2 − λ1λ2 (ke + C1)2 − p1p2 (k2 − λ1λ2)− (k2
e − p1p2) (λ1p2 + λ2p1)

,

b21 =
2ik ((ke + C1) (ke + C2)− p1p2)λ1

k2 (ke + C2)2 − λ1λ2 (ke + C1)2 − p1p2 (k2 − λ1λ2)− (k2
e − p1p2) (λ1p2 + λ2p1)

,

b22 =
k2 (ke + C2)2 + λ1λ2 (ke + C1)2 − p1p2

(
k2 + λ1λ2

)
−
(
k2
e − p1p2

)
(λ1p2 − λ2p1)

k2 (ke + C2)2 − λ1λ2 (ke + C1)2 − p1p2 (k2 − λ1λ2)− (k2
e − p1p2) (λ1p2 + λ2p1)

,

and

C1 = 2
C2
s

ω2
(k − ke)

(
k2
e − p1p2

)
, C2 =

C2
s

kω2

(
k2
e − p1p2

) (
k2 − 2kke + λ2

1

)
.

The particular case without overlap leads to the convergence factor

(3.4) |r±| =

∣∣∣∣∣∣(p1λ2 − λ1p2)
(
k2
e − p1p2

)
±
√

(Z1 − Z2)2 − 4λ1λ2p1p2 (k2
e − p1p2)2

(p1λ2 + λ1p2) (k2
e − p1p2) + Z2 − Z1

∣∣∣∣∣∣
2

,

where

Z1 = k2
(

(ke + C2)2 − p1p2

)
, Z2 = λ1λ2

(
(ke + C1)2 − p1p2

)
.

Proof. We use the general result on Schwarz method with general transmission condi-

tions from Lemma 2.1 in which we insert the new boundary conditions (3.1). We get

CHAPTER 3. OPTIMISED SCHWARZ METHODS 58

the two following matrices in the interface iterations

B1 =
ρω2

k(k2
e − p1p2)

[
kp1 − keλ1 − λ1C1 i (k(ke + C2)− λ2p1)

−i (k(ke + C2)− λ1p2) kp2 − keλ2 − λ2C1

]

and

B2 =
ρω2

k(k2
e − p1p2)

[
kp1 + keλ1 + λ1C1 i (k(ke + C2) + λ2p1)

−i (k(ke + C2) + λ1p2) kp2 + keλ2 + λ2C1

]
.

After some computations we obtain the half-iteration matrix B = B−1
2 B1 involved in

(3.2) and (3.3) and the resulting convergence factor that will be denoted ρE .

In the case without overlap δ = 0, these formulae simplify

X =
−2 (p1λ2 − λ1p2)

(
k2
e − p1p2

)
Z1 − Z2 − (p1λ2 + λ1p2) (k2

e − p1p2)
,

Y =
(Z1 + Z2)2 −

(
(p1λ2 − λ1p2)

(
k2
e − p1p2

))2 − 4k2 ((ke + C2) (ke + C1)− p1p2)2 λ1λ2

(Z1 − Z2 − (p1λ2 + λ1p2) (k2
e − p1p2))2 ,

and lead to

r± =

(
(p1λ2 − λ1p2)

(
k2
e − p1p2

))2
+ (Z1 + Z2)2 − 4k2 ((ke + C2) (ke + C1)− p1p2)2 λ1λ2

(Z1 − Z2 − ((p1λ2 + λ1p2)(k2
e − p1p2))2

±
2(p1λ2 − λ1p2)(k2

e − p1p2)
√

(Z1 + Z2)2 − 4k2 ((ke + C2) (ke + C1)− p1p2)2 λ1λ2

(Z1 − Z2 − (p1λ2 + λ1p2)(k2
e − p1p2))2

=

(p1λ2 − λ1p2)(k2
e − p1p2)±

√
(Z1 + Z2)2 − 4k2 ((ke + C2) (ke + C1)− p1p2)2 λ1λ2

(p1λ2 + λ1p2) (k2
e − p1p2) + Z2 − Z1

2

=

(p1λ2 − λ1p2)(k2
e − p1p2)±

√
(Z1 − Z2)2 − 4λ1λ2p1p2 (k2

e − p1p2)2

(p1λ2 + λ1p2) (k2
e − p1p2) + Z2 − Z1

2

.

We will use one of the two last expressions according to our needs.

From now on, when (p1, p2) ∈ C (3.1), we define (p̄1, p̄2) ∈ R+ such that

p1 = i

√
ω2

C2
s

− k2
e =: ip̄1, p2 = i

√
ω2

C2
p

− k2
e =: ip̄2.

CHAPTER 3. OPTIMISED SCHWARZ METHODS 59

As in the previous chapter λ̄1,2 are defined in a similar manner. We will see that the

convergence properties of the algorithm will change depending on the value of ke and

on the presence of the overlap.

Theorem 3.1 (Convergence of the non-overlapping Schwarz method with OIC: ke <
ω
Cp

).

The non-overlapping Schwarz method with OIC such that ke <
ω
Cp

converges for k ∈(
0, ωCs

)
\
{
ω
Cp

}
and diverges for k ∈

{
ω
Cp

}
∪
[
ω
Cs
,∞
)

.

Proof. We start with a graphical illustration of the theorem in the Figure 3.1.

10
-1

10
0

10
1

10
2

k

0

0.2

0.4

0.6

0.8

1

1.2

k
e
=0

k
e
=0.5

k
e
=0.95

Figure 3.1: ke <
ω
Cp

: the spectrum of the iteration matrix for the non-overlapping

Schwarz method with OIC and Cp = 1, Cs = 1
2 , ω = 1.

When ke <
ω
Cp

we have that p1,2 ∈ iR+ and we distinguish the following cases

• Case 1: If k ∈
(

0, ωCp

)
then λ1,2 ∈ iR+ and we have

√
|r±| =

∣∣∣∣∣∣(−p̄1λ̄2 + λ̄1p̄2)(k2
e + p̄1p̄2)±

√
(Z1 − Z2)2 − 4λ̄1λ̄2p̄1p̄2 (k2

e + p̄1p̄2)2

Z2 − Z1 −
(
p̄1λ̄2 + λ̄1p̄2

)
(k2
e + p̄1p̄2)

∣∣∣∣∣∣ ,

<

∣∣∣∣∣(−p̄1λ̄2 + λ̄1p̄2)(k2
e + p̄1p̄2) +

√
(Z1 − Z2)2

(p̄1λ̄2 + λ̄1p̄2)(k2
e + p̄1p̄2)− Z2 + Z1

∣∣∣∣∣ if λ̄1p̄2 > p̄1λ̄2,

∣∣∣∣∣(−p̄1λ̄2 + λ̄1p̄2)(k2
e + p̄1p̄2)−

√
(Z1 − Z2)2

(p̄1λ̄2 + λ̄1p̄2)(k2
e + p̄1p̄2)− Z2 + Z1

∣∣∣∣∣ if λ̄1p̄2 < p̄1λ̄2,

CHAPTER 3. OPTIMISED SCHWARZ METHODS 60

which leads to√
|r±| <

(
λ̄1p̄2 − p̄1λ̄2

)
(k2
e + p̄1p̄2) + k2

(
(ke + C2)2 + p̄1p̄2

)
+ λ̄1λ̄2

(
(ke + C1)2 + p̄1p̄2

)
(
p̄1λ̄2 + λ̄1p̄2

)
(k2
e + p̄1p̄2) + k2

(
(ke + C2)2 + p̄1p̄2

)
+ λ̄1λ̄2

(
(ke + C1)2 + p̄1p̄2

) ,
(
p̄1λ̄2 − λ̄1p̄2

)
(k2
e + p̄1p̄2) + k2

(
(ke + C2)2 + p̄1p̄2

)
+ λ̄1λ̄2

(
(ke + C1)2 + p̄1p̄2

)
(
p̄1λ̄2 + λ̄1p̄2

)
(k2
e + p̄1p̄2) + k2

(
(ke + C2)2 + p̄1p̄2

)
+ λ̄1λ̄2

(
(ke + C1)2 + p̄1p̄2

) .
In the two different cases, the right hand side terms are lower than one since

(
λ̄1p̄2 − p̄1λ̄2

)
,(

p̄1λ̄2 − λ̄1p̄2

)
both being smaller than

(
p̄1λ̄2 + λ̄1p̄2

)
.

• Case 2: If k = ω
Cp

then λ1 ∈ iR+ and λ2 = 0, therefore we have

√
|r±| =

∣∣∣∣∣∣∣∣
p̄2λ̄1(k2

e + p̄1p̄2)±
√
k4
(

(ke + C2)2 + p̄1p̄2

)2

p̄2λ̄1(k2
e + p̄1p̄2) + k2

(
(ke + C2)2 + p̄1p̄2

)
∣∣∣∣∣∣∣∣ ,

=

∣∣∣∣∣∣
p̄2λ̄1(k2

e + p̄1p̄2) + k2
(

(ke + C2)2 + p̄1p̄2

)
p̄2λ̄1(k2

e + p̄1p̄2) + k2
(

(ke + C2)2 + p̄1p̄2

)
∣∣∣∣∣∣ = 1,

∣∣∣∣∣∣
p̄2λ̄1(k2

e + p̄1p̄2)− k2
(

(ke + C2)2 + p̄1p̄2

)
p̄2λ̄1(k2

e + p̄1p̄2) + k2
(

(ke + C2)2 + p̄1p̄2

)
∣∣∣∣∣∣ < 1.

• Case 3: If k ∈
(
ω
Cs
, ωCp

)
then λ1 ∈ iR+ and we have

√
|r±| =

1∣∣(ip̄1λ2 − λ̄1p̄2

)
(k2
e + p̄1p̄2) + Z2 − Z1

∣∣ × ∣∣(ip̄1λ2 + λ̄1p̄2

)
(k2
e + p̄1p̄2)

±
√

(Z1 + Z2)2 − 4ik2λ̄1λ2 ((ke + C1)(ke + C2) + p̄1p̄2)2

∣∣∣∣
<

∣∣∣∣∣(ip̄1λ2 + λ̄1p̄2)(k2
e + p̄1p̄2) +

√
(Z1 + Z2)2(

ip̄1λ2 − λ̄1p̄2

)
(k2
e + p̄1p̄2) + Z2 − Z1

∣∣∣∣∣ = 1,

since Im
(

(Z1 + Z2)2
)

= k2
(

(ke + C2)2 + p̄1p̄2

)
λ̄1λ2

(
(ke + C1)2 + p̄1p̄2

)
> 0.

CHAPTER 3. OPTIMISED SCHWARZ METHODS 61

• Case 4: If k = ω
Cs

then λ1 = 0, so we have

√
|r±| =

∣∣∣∣∣∣∣∣
ip̄1λ2

(
k2
e + p̄1p̄2

)
±
√
k4
(

(ke + C2)2 + p̄1p̄2

)2

−ip̄1λ2 (k2
e + p̄1p̄2) + k2

(
(ke + C2)2 + p̄1p̄2

)
∣∣∣∣∣∣∣∣ = 1.

• Case 5: If k =
(
ω
Cs
,∞
)

then we have

√
|r±| =

∣∣∣∣∣ i(p̄1λ2 − λ1p̄2)(k2
e + p̄1p̄2)±

√
(Z1 − Z2)2 + 4λ1λ2p̄1p̄2(k2

e + p̄1p̄2)2

i(p̄1λ2 + λ1p̄2) (k2
e + p̄1p̄2) + Z2 − Z1

∣∣∣∣∣
=

∣∣∣∣(p̄1λ2 − λ1p̄2)2(k2
e + p̄1p̄2)2 + (Z1 − Z2)2 + 4λ1λ2p̄1p̄2(k2

e + p̄1p̄2)2

(p̄1λ2 + λ1p̄2)2 (k2
e + p̄1p̄2)2 + (Z2 − Z1)2

∣∣∣∣ = 1.

since Z1, Z2 ∈ R.

Theorem 3.2 (Convergence of the Overlapping Schwarz method with OIC: ke <
ω
Cp

).

The overlapping Schwarz method with a small overlap δ and with OIC such that ke <
ω
Cp

converges for all values k ∈
[
0, ωCp

)
∪
(
ω
Cp
, ωCs

)
∪ (k∗,∞) but diverges for the following

k ∈
{
ω
Cp

}
∪
[
ω
Cs
, k∗
]

where k∗(ω,Cp, Cs, δ) ∈
(
ω
Cs
,∞
)

.

Proof. We start with a illustration of the theorem in Figure 3.2.

10
-1

10
0

10
1

10
2

k

0

0.2

0.4

0.6

0.8

1

1.2

1.4

k
e
=0

k
e
=0.5

k
e
=0.95

Figure 3.2: For ke <
ω
Cp

, spectrum of the iteration matrix from the overlapping Schwarz

method with OIC and Cp = 1, Cs = 1
2 , ω = 1.

Again we have p1,2 ∈ iR+. In the case of a small δ, we can use a series expansion as in

CHAPTER 3. OPTIMISED SCHWARZ METHODS 62

(2.48) of the modulus of the eigenvalues of the iteration matrix,

|r±|2 =
(
R2

1± + I2
1±
)

+ 2δ(R1±R2± + I1±I2±) +O(δ2).

We can distinguish similar cases as previously:

• Case 1 and 3: If k ∈
(

0, ωCs

)
\
{
ω
Cp

}
, we proved in the previous theorem that the

convergence factor in the case without overlap, which corresponds to
(
R2

1± + I2
1±
)
, is

stricly lower than one. Therefore for a small enough δ, the conclusion still holds

|r±|2 = R2
1± + I2

1±︸ ︷︷ ︸
<1

+O(δ) < 1.

• Case 2: If k = ω
Cp

then λ1 ∈ iR+, λ2 = 0, Z2 = 0, b11 = 1, b12 = 0, and

√
|r±| =

∣∣∣∣∣
(
Z1 + λ̄1p̄2(k2

e + p̄1p̄2)
)2
e−2iλ̄1δ +

(
Z1 − λ̄1p̄2(k2

e + p̄1p̄2)
)2

2
(
Z1 + λ̄1p̄2(k2

e + p̄1p̄2)
)2

±

√(
Z1 + λ̄1p̄2(k2

e + p̄1p̄2)
)2
e−2iλ̄1δ −

(
Z1 − λ̄1p̄2(k2

e + p̄1p̄2)
)2

2
(
Z1 + λ̄1p̄2(k2

e + p̄1p̄2)
)2

∣∣∣∣∣∣

=

∣∣∣e−2iλ̄1δ

∣∣∣ = 1,

∣∣∣∣Z1 − λ1p̄2(k2
e + p̄1p̄2)

Z1 + λ1p̄2(k2
e + p̄1p̄2)

∣∣∣∣ =

∣∣∣∣k2((ke + C2)2 + p̄1p̄2)− λ1p̄2(k2
e + p̄1p̄2)

k2((ke + C2)2 + p̄1p̄2) + λ1p̄2(k2
e + p̄1p̄2)

∣∣∣∣ < 1.

• Case 4: If k = ω
Cs

then λ1 = 0 and Z2 = 0, b21 = 0, b22 = 1. Then

√
|r±| =

∣∣∣∣∣
(
Z1 − iλ2p̄1(k2

e + p̄1p̄2)
)2
e−2λ2δ +

(
Z1 + iλ2p̄1(k2

e + p̄1p̄2)
)2

2 (Z1 − iλ2p̄1(k2
e + p̄1p̄2)))2

±
(
Z1 − iλ2p̄1(k2

e + p̄1p̄2)
)
e−2λ2δ −

(
Z1 + iλ2p̄1(k2

e + p̄1p̄2)
)

2 (Z1 − iλ2p̄1(k2
e + p̄1p̄2))2

×

√
((Z1 − iλ2p̄1(k2

e + p̄1p̄2)) e−2λ2δ + Z1 + iλ2p̄1(k2
e + p̄1p̄2))

2

2 (Z1 − iλ2p̄1(k2
e + p̄1p̄2))2

∣∣∣∣∣∣

CHAPTER 3. OPTIMISED SCHWARZ METHODS 63

and we end up this time with

√
|r±| =

∣∣∣e−2λ2δ

∣∣∣ < 1,

∣∣∣∣Z1 + iλ2p̄1(k2
e + p̄1p̄2)

Z1 − iλ2p̄1(k2
e + p̄1p̄2)

∣∣∣∣ =

∣∣∣∣k2((ke + C2)2 + p̄1p̄2) + iλ2p̄1(k2
e + p̄1p̄2)

k2((ke + C2)2 + p̄1p̄2)− iλ2p̄1(k2
e + p̄1p̄2)

∣∣∣∣ = 1.

• Case 5: If k ∈
(
ω
Cs
,∞
)

, then we write the series expansion (2.48) of r± and obtain

R2
1± + I2

1± = 1 for the main term (as seen in the previous theorem) and

R1±R2± + I1±I2± =

−

(
(λ2p̄1 − λ1p̄2)2 (k2

e + p̄1p̄2)2 + (Z1 + Z2)2 − λ2λ14k2 ((ke + C2) (ke + C1) + p̄1p̄2)2
)2

D
√

(Z1 + Z2)2 − λ2λ14k2 ((ke + C2) (ke + C1) + p̄1p̄2)2

×

√(Z1 − Z2)2 + 4λ2λ1p̄1p̄2 (k2
e + p̄1p̄2)2(λ1 + λ2)± (λ1 − λ2)︸ ︷︷ ︸

<0

(Z1 + Z2)︸ ︷︷ ︸
>0

︸ ︷︷ ︸

g(k)

where

D :=
∣∣Z1 − Z2 − i(λ2p̄1 + λ1p̄2)(k2

e + p̄1p̄2)
∣∣ ,

therefore R1−R2− + I1−I2− < 0 and r− ≈ 1 +R1−R2− + I1−I2− < 1.

We now study the sign of g(k) in the case of R1+R2+ + I1+I2+ and one can show

by asymptotic arguments that g(k) < 0 in a neighbourhood of ω
Cs

which means that

R1+R2+ + I1+I2+ > 0 and r+ ≈ 1 +R1+R2+ + I1+I2+ > 1.

Then by using the fact that the overlap makes the convergence factor vanish at infinity,

lim
k→∞

ρE(k, ω, Cp, Cs, δ) = 0

we can conclude there will be a small interval on which the algorithm is not convergent.

We summarise the previous result as follows

Remark 3.1. We notice that ρE
ke→0−→ ρT0

(
⇔ ŜEj

ke→0−→ ŜT0j

)
, and the curves show

that for almost all k ∈ R+, ρE ≤ ρH the Schwarz method with zeroth order TTC is

uniformly better than that with OIC for ke <
ω
Cp
.

CHAPTER 3. OPTIMISED SCHWARZ METHODS 64

10 -1 10 0 10 1 10 2

k

0

0.2

0.4

0.6

0.8

1

1.2

1.4

taylor0

k
e
=0.95 /c

p

k
e
=0.75 /c

p

k
e
=0.5 /c

p

Figure 3.3: Comparison of the overlapping Schwarz method with zeroth order TTC
and OIC for ke <

ω
Cp

with Cp = 1, Cs = 1
2 , ω = 1, δ = 1

10 .

We move on now to the case where ke = ω
Cp

or ke = ω
Cs

.

Theorem 3.3 (Convergence of the non-overlapping Schwarz method with OIC: ke = ω
Cp

or ke = ω
Cs

). The non-overlapping Schwarz method with OIC such that ke ∈
{
ω
Cp
, ωCs

}
is always divergent except when k ∈

(
ω
Cp
, ωCs

)
Proof. Under the specific hypothesis of the theorem we have

ke =
ω

Cp
=: k1 ⇔ [p2 = 0, p1 = ip̄1] & ke =

ω

Cs
=: k2 ⇔

[
p1 = 0, p2 ∈ R∗+

]
,

therefore (3.4) gives us in that first case rk1± (and similarly rk2±) as

√
rk1± ==

∣∣∣∣∣∣∣
i ω

2

C2
p
p̄1λ2 + k2

(
ω
Cp

+ Ck12

)2
− λ1λ2

(
ω
Cp

+ Ck11

)2

−k2
(
ω
Cp

+ Ck12

)2
+ λ1λ2

(
ω
Cp

+ Ck11

)2
+ i ω

2

C2
p
p̄1λ2

∣∣∣∣∣∣∣ =: rk1+ ,

∣∣∣∣∣∣∣
i ω

2

C2
p
p̄1λ2 − k2

(
ω
Cp

+ Ck12

)2
+ λ1λ2

(
ω
Cp

+ Ck11

)2

−k2
(
ω
Cp

+ Ck12

)2
+ λ1λ2

(
ω
Cp

+ Ck11

)2
+ i ω

2

C2
p
p̄1λ2

∣∣∣∣∣∣∣ =: rk1− = 1,

√
rk2± ==

∣∣∣∣∣∣∣
− ω2

C2
s
p2λ1 + k2

(
ω
Cs

+ Ck22

)2
− λ1λ2

(
ω
Cs

+ Ck21

)2

−k2
(
ω
Cs

+ Ck22

)2
+ λ1λ2

(
ω
Cs

+ Ck21

)2
+ ω2

C2
s
p2λ1

∣∣∣∣∣∣∣ =: rk2+ = 1,

∣∣∣∣∣∣∣
− ω2

C2
s
p2λ1 − k2

(
ω
Cs

+ Ck22

)2
+ λ1λ2

(
ω
Cs

+ Ck21

)2

−k2
(
ω
Cs

+ Ck22

)2
+ λ1λ2

(
ω
Cs

+ Ck21

)2
+ ω2

C2
s
p2λ1

∣∣∣∣∣∣∣ =: rk2− ,

CHAPTER 3. OPTIMISED SCHWARZ METHODS 65

where

Ck11 = 2

(
Cs
Cp

)2(
k − ω

Cp

)
, Ck12 =

(
Cs√
kCp

)2(
k2 − 2kω

Cp
+ λ2

1

)
,

and

Ck21 = 2

(
k − ω

Cs

)
, Ck22 =

1

k

(
k2 − 2kω

Cs
+ λ2

1

)
.

We notice
(
Ck11 , Ck12 , Ck21 , Ck22

)
will remain real and distinguish again several cases to

study rk1+ and rk2− according the values of k as follows

• If k ∈
(

0, ωCp

)
then λ1,2 ∈ iR+. So we get

rk1+ =

∣∣∣∣∣∣∣
− ω2

C2
p
p̄1λ̄2 + k2

(
ω
Cp

+ Ck12

)2
+ λ̄1λ̄2

(
ω
Cp

+ Ck11

)2

−k2
(
ω
Cp

+ Ck12

)2
− λ̄1λ̄2

(
ω
Cp

+ Ck11

)2
− ω2

C2
p
p̄1λ̄2

∣∣∣∣∣∣∣ < 1,

rk2− =

∣∣∣∣∣∣∣
−i ω

2

C2
s
p2λ̄1 − k2

(
ω
Cs

+ Ck22

)2
− λ̄1λ̄2

(
ω
Cs

+ Ck21

)2

−k2
(
ω
Cs

+ Ck22

)2
− λ̄1λ̄2

(
ω
Cs

+ Ck21

)2
+ i ω

2

C2
s
p2λ̄1

∣∣∣∣∣∣∣ = 1.

• If k = ω
Cp

then λ1 ∈ iR+ and Ck11 = λ2 = 0 and we get

lim
k→k−1

∣∣∣rk1+

∣∣∣ = lim
k→k+1

∣∣∣rk1+

∣∣∣ = 0 and rk2− =

∣∣∣∣∣∣∣
−i ω

6

C2
s
p2λ̄1 − k2

(
ω3

Cs
+ C̄k22

)2

−k2
(
ω3

Cs
+ C̄k22

)2
+ i ω

6

C2
s
p2λ̄1

∣∣∣∣∣∣∣ = 1.

• If k ∈
(
ω
Cp
, ωCs

)
then λ1 ∈ iR+. So we get

rk1+ =

∣∣∣∣∣∣∣
i ω

2

C2
p
p̄1λ2 + k2

(
ω
Cp

+ Ck12

)2
− iλ̄1λ2

(
ω
Cp

+ Ck11

)2

−k2
(
ω
Cp

+ C̄k12

)2
+ iλ̄1λ2

(
ω
Cp

+ Ck11

)2
+ i ω

2

C2
p
p̄1λ2

∣∣∣∣∣∣∣ =:

∣∣∣∣n1

d1

∣∣∣∣ < 1,

rk2− =

∣∣∣∣∣∣∣
−i ω

2

C2
s
p2λ̄1 − k2

(
ω
Cs

+ C̄k22

)2
+ iλ̄1λ2

(
ω
Cs

+ Ck21

)2

−k2
(
ω
Cs

+ C̄k22

)2
+ iλ̄1λ2

(
ω
Cs

+ Ck21

)2
+ i ω

2

C2
s
p2λ̄1

∣∣∣∣∣∣∣ =:

∣∣∣∣n2

d2

∣∣∣∣ < 1,

because all variables being real and positive, we have the relations

Re(n1) = −Re(d1), Re(n2) = Re(d2),

CHAPTER 3. OPTIMISED SCHWARZ METHODS 66

and

Im(n1) =
ω2

C2
p

p̄1λ2 − λ̄1λ2

(
ω

Cp
+ Ck11

)2

<
ω2

C2
p

p̄1λ2 + λ̄1λ2

(
ω

Cp
+ Ck11

)2

= Im(d1),

Im(n2) = −ω
2

C2
s

p2λ̄1 + λ̄1λ2

(
ω

Cs
+ Ck21

)2

<
ω2

C2
s

p2λ̄1 + λ̄1λ2

(
ω

Cs
+ Ck21

)2

= Im(d2).

• If k = ω
Cs

then λ2 ∈ R+ and λ1 = 0, so we get

rk1+ =

∣∣∣∣∣∣∣
i ω

2

C2
p
p̄1λ2 + k2

(
ω
Cp

+ Ck12

)2

−k2
(
ω
Cp

+ Ck12

)2
+ i ω

2

C2
p
p̄1λ2

∣∣∣∣∣∣∣ = 1 and lim
k→k−2

∣∣∣rk2− ∣∣∣ = lim
k→k+2

∣∣∣rk2− ∣∣∣ = 0.

• If k ∈
(
ω
Cs
,∞
)

then λ1,2 ∈ R+ and we get

rk1+ =

∣∣∣∣∣∣∣
i ω

2

C2
p
p̄1λ2 + k2

(
ω
Cp

+ Ck12

)2
− λ1λ2

(
ω
Cp

+ Ck11

)2

−k2
(
ω
Cp

+ Ck12

)2
+ λ1λ2

(
ω
Cp

+ Ck11

)2
+ i ω

2

C2
p
p̄1λ2

∣∣∣∣∣∣∣ = 1,

rk2− =

∣∣∣∣∣∣∣
− ω2

C2
s
p2λ1 − k2

(
ω
Cs

+ Ck22

)2
+ λ1λ2

(
ω
Cs

+ Ck21

)2

−k2
(
ω
Cs

+ Ck22

)2
+ λ1λ2

(
ω
Cs

+ Ck21

)2
+ ω2

C2
s
p2λ1

∣∣∣∣∣∣∣ < 1.

Remark 3.2. In overlapping case, when ke ∈
{
ω
Cp
, ωCs

}
the behaviour of the algorithm

is illustrated in Figure 3.4.

10 -1 10 0 10 1 10 2

k

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

k
e
= /C

p

k
e
= /C

s

10 -1 10 0 10 1 10 2

k

0

0.2

0.4

0.6

0.8

1

1.2

1.4

k
e
= /C

p

k
e
= /C

s

10 -1 10 0 10 1 10 2

k

0

0.2

0.4

0.6

0.8

1

1.2

1.4

taylor0

k
e
= /c

p

k
e
= /c

s

Figure 3.4: ke ∈
{
ω
Cp
, ωCs

}
: spectrum of the iteration matrix from the overlapping

Schwarz method with OIC and Cp = 1, Cs = 1
2 , δ = 1

10 . Left: ω = 1. Middle: ω = 5,
Right: comparison with TTC.

CHAPTER 3. OPTIMISED SCHWARZ METHODS 67

Moreover, one can see that the Schwarz algorithm with zeroth order TTC is better.

We investigate now the case ke ∈
(
ω
Cs
,∞
)

and we get the result

Theorem 3.4 (Convergence of the non-overlapping Schwarz method with OIC: ke >
ω
Cs

).

The non-overlapping Schwarz method with OIC such as ke >
ω
Cs

diverges for k ∈
(

0, ωCs

]
and converges for k ∈

(
ω
Cs
,∞
)

.

Proof. We start with a illustration of the theorem in the Figure 3.5 and distinguish as

usual five cases.

10
-1

10
0

10
1

10
2

k

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

k
e
=2.1

k
e
=5

k
e
=15

Figure 3.5: ke >
ω
Cp

: the spectrum of the iteration matrix from the non-overlapping

Schwarz method with OIC and Cp = 1, Cs = 1
2 , ω = 1.

• Case 1: If k ∈
(

0, ωCp

)
then λ1,2 ∈ iR+ and Z1,Z2 ∈ R and (3.4) gives

√
|r±| =

∣∣∣∣∣∣ i
(
p1λ̄2 − λ̄1p2

) (
k2
e − p1p2

)
±
√

(Z1 − Z2)2 + 4λ̄2λ̄1p1p2 (k2
e − p1p2)2

i
(
p1λ̄2 + λ̄1p2

)
(k2
e − p1p2) + Z2 − Z1

∣∣∣∣∣∣ = 1.

• Case 2: If k = ω
Cp

then λ1 ∈ iR+ and λ2 = 0, Z2 = 0, C2 ∈ R therefore (3.4) gives

√
|r±| =

∣∣∣∣∣∣∣∣
−ip2λ̄1(k2

e − p1p2)±
√
k4
(

(ke + C2)2 − p1p2

)2

ip2λ̄1(k2
e − p1p2)− k2

(
(ke + C2)2 − p1p2

)
∣∣∣∣∣∣∣∣ = 1.

CHAPTER 3. OPTIMISED SCHWARZ METHODS 68

• Case 3: If k ∈
(
ω
Cp
, ωCs

)
then λ1 ∈ iR+, and we get from (3.4)

√
|r±| =

∣∣∣∣∣∣(p1λ2 − iλ̄1p2)(k2
e − p1p2)±

√
(Z1 − Z2)2 − 4iλ2λ̄1p1p2 (k2

e − p1p2)2

(p1λ2 + iλ̄1p2)(k2
e − p1p2) + Z2 − Z1

∣∣∣∣∣∣ ,
and let us denote

r∗+ :=

∣∣∣∣∣
(
p1λ2 − iλ̄1p2

) (
k2
e − p1p2

)
+
√

(Z1 − Z2)2(
p1λ2 + iλ̄1p2

)
(k2
e − p1p2) + Z2 − Z1

∣∣∣∣∣ .
We notice that in the numerator of r∗+, the first term has a positive real part and

negative imaginary part. Moreover under the square root we have

Im
(
(Z1 − Z2)2

)
= −2λ̄1λ2k

2
(

(ke + C2)2 − p1p2

)
︸ ︷︷ ︸

<0

(
(ke + C1)2 − p1p2

)
︸ ︷︷ ︸

<0

< 0,

therefore no matter the value of R
(
(Z1 − Z2)2

)
, we have r∗+ <

√
|r+|. We want to

know if
∣∣r∗+∣∣ > 1. We notice that R (Z1 − Z2) = k2

(
(ke + C2)2 − p1p2

)
< 0 therefore

r∗+ =

∣∣∣∣∣
(
p1λ2 − iλ̄1p2

) (
k2
e − p1p2

)
− (Z1 − Z2)

(p1λ2 + iλ̄1p2)(k2
e − p1p2) + Z2 − Z1

∣∣∣∣∣ =:

∣∣∣∣n+

d+

∣∣∣∣ .
We get Re(n+ − d+) = 0 and Im (Z2 − Z1) = λ̄1λ2

(
(ke + C1)2 − p1p2

)
< 0 and

|Im (n+)| > |Im (d+)|. We can conclude that
∣∣r∗+∣∣ > 1, which means there is always at

least one eigenvalue whose lower bound is bigger than one.

• Case 4: If k = ω
Cs

then λ1 = 0, Z2 = 0 and C2 ∈ R, we have from (3.4)

√
|r±| =

∣∣∣∣∣∣∣∣
p1λ2(k2

e − p1p2)± ω2

C2
s

√(
(ke + C2)2 − p1p2

)2

p1λ2(k2
e − p1p2)− ω2

C2
s

(
(ke + C2)2 − p1p2

)
∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣
p1λ2(k2

e − p1p2) + ω2

C2
s

(
(ke + C2)2 − p1p2

)
p1λ2(k2

e − p1p2)− ω2

C2
s

(
(ke + C2)2 − p1p2

)
∣∣∣∣∣∣ =

√
|r+|,

∣∣∣∣∣∣
p1λ2(k2

e − p1p2)− ω2

C2
s

(
(ke + C2)2 − p1p2

)
p1λ2(k2

e − p1p2)− ω2

C2
s

(
(ke + C2)2 − p1p2

)
∣∣∣∣∣∣ = 1.

CHAPTER 3. OPTIMISED SCHWARZ METHODS 69

We denote (
Z̃1

)
ke,Cp

(Cs) = (ke + C2)2 − p1p2 ∈ C1

[
0,
Cp√

2

]
.

A quick computation shows @C∗s /
(
Z̃1

)
ke,Cp

(C∗s) = 0, and we see numerically there is

at least one negative value, so Z̃1 < 0 and then
√
|r+| < 1.

• Case 5: If k ∈
(
ω
Cs
,∞
)

then we get from (3.4)

√
|r±| =

∣∣∣∣∣∣(p1λ2 − λ1p2)
(
k2
e − p1p2

)
±
√

(Z1 − Z2)2 − 4λ2λ1p1p2 (k2
e − p1p2)2

(p1λ2 + λ1p2) (k2
e − p1p2) + Z2 − Z1

∣∣∣∣∣∣ .
We have Z1, Z2 ∈ R and suppose Z1 < Z2, (which seems to be the case according to

the figure 3.6).

Since we cannot prove analytically that Z2 > Z1, we sketched in Figure 3.6 and Figure

3.7, the difference Z2−Z1 for k, ke ∈
(
ω
Cs

= kmin,
π
h = kmax

)
, which represent the set of

all the possible k, ke we could have in our case, and we take h = 1/10. We do it in two

different cases including the one with oscillatory solutions (Cp = 5, Cs = 1, ω = 10),

and we will significately increase the number of grid points kmax−kmin
N on both axes k

and ke simultaneously by taking N = 100 then N = 1000 in order to have an accurate

enough representation of this difference.

Figure 3.6: Z2 − Z1 with Cp = 1, Cs = 1
2 , ω = 1. Left: N=100. Right: N=1000.

and we notice that is always bigger than or equal to 0.

CHAPTER 3. OPTIMISED SCHWARZ METHODS 70

Figure 3.7: Z2 − Z1 with Cp = 5, Cs = 1, ω = 10. Left: N=100. Right: N=1000.

If (Z1 − Z2)2 < 4λ2λ1p1p2

(
k2
e − p1p2

)2
, we obtain

|r±| =

∣∣∣∣∣
(
(p1λ2 − λ1p2)(k2

e − p1p2)
)2 − (Z1 − Z2)2 + 4λ2λ1p1p2

(
k2
e − p1p2

)2
((p1λ2 + λ1p2)(k2

e − p1p2) + Z2 − Z1)2

∣∣∣∣∣
2

=

∣∣∣∣∣
[
(p1λ2 + λ1p2)(k2

e − p1p2)
]2 − [Z2 − Z1]2

[(p1λ2 + λ1p2) (k2
e − p1p2)] + [Z2 − Z1])2

∣∣∣∣∣
2

< 1,

since Z2 > Z1.

If not we have

|r±| =

∣∣∣∣∣∣(p1λ2 − λ1p2)
(
k2
e − p1p2

)
±
√

(Z1 − Z2)2 − 4λ2λ1p1p2 (k2
e − p1p2)2

(p1λ2 + λ1p2) (k2
e − p1p2) + Z2 − Z1

∣∣∣∣∣∣
2

≤

∣∣∣∣∣∣(p1λ2 − λ1p2)
(
k2
e − p1p2

)
±
√

(Z1 − Z2)2

(p1λ2 + λ1p2) (k2
e − p1p2) + Z2 − Z1

∣∣∣∣∣∣
2

=

∣∣∣∣∣(p1λ2 − λ1p2)
(
k2
e − p1p2

)
± (Z2 − Z1)

(p1λ2 + λ1p2) (k2
e − p1p2) + Z2 − Z1

∣∣∣∣∣
2

=:
(
r∗±
)2
,

where r∗+ (resp. r∗−) is the maximum when (p1λ2 > λ1p2) (resp. (p1λ2 < λ1p2)),(
k2
e − p1p2

)
being positive. In the first case, we have as well (p1λ2 + λ1p2) > (p1λ2 − λ1p2)

and by supposition Z2 > Z1, and therefore
∣∣r∗+∣∣ < 1. In the second case

∣∣r∗−∣∣ =

∣∣∣∣∣(p1λ2 − λ1p2)
(
k2
e − p1p2

)
− (Z2 − Z1)

(p1λ2 + λ1p2) (k2
e − p1p2) + Z2 − Z1

∣∣∣∣∣

CHAPTER 3. OPTIMISED SCHWARZ METHODS 71

and same as before, if (p2λ1 − λ2p1) < (p1λ2 + λ1p2) & Z2 > Z1, then |r∗−| < 1.

Theorem 3.5 (Convergence of the overlapping Schwarz method with OIC: ke >
ω
Cs

).

The overlapping Schwarz method with OIC such as ke >
ω
Cs

diverges for k ∈
(

0, ωCs

]
and converges for k ∈

(
ω
Cs
,∞
)

.

The conclusions are very similar as in the non-overlapping case and the proof is mainly

based on the series with respect to δ in which we use the results of the Theorem 3.4.

10
-1

10
0

10
1

10
2

k

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

k
e
=2.1

k
e
=5

k
e
=20

Figure 3.8: ke >
ω
Cp

: the spectrum of the iteration matrix from the overlapping Schwarz

method with OIC and Cp = 1, Cs = 1
2 , ω = 1, δ = 1

10 .

A graphic illustration of the theorem is given in Figure 3.8.

Remark 3.3. Figure 3.9 shows that classical Schwarz method is better than with OIC

for ke >
ω
Cs

for low and ”middle” frequencies and less good for higher ones.

10
-1

10
0

10
1

10
2

k

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

classical

k
e
=10 /c

s

k
e
=50 /c

s

k
e
=100 /c

s

Figure 3.9: Comparison of the classical and the OIC Schwarz method for ke >
ω
Cs

with

Cp = 1, Cs = 1
2 , ω = 1, δ = 1

10 .

CHAPTER 3. OPTIMISED SCHWARZ METHODS 72

Indeed, we already know that ρT0 < 1 for k ∈
[
0, ωCs

)
\
{
ω
Cp

}
from Theorem 2.4. If

k ∈
(

0, ωCp

)
, we know that ρE = 1, and for k ∈

(
ω
Cp
, ωCs

)
, we have ρT0 < 1 < ρE from

Theorem 3.5. Moreover, we notice that if we take the general form of the eigenvalues

from Lemma 3.1

X = e−λ1δ b11 − e−λ2δ b22, Y = e−(λ1+λ2)δ(b11b22 − b12b21),

where bij are given by (3.3), we get
b11

ke→∞≈
(
4k2C4

s + 4C4
sλ1λ2

)
k6
e

(4k2C4
s − 4C4

sλ1λ2) k6
e

=
k2 + λ1λ2

k2 − λ1λ2
& b22

ke→∞−→ k2 + λ1λ2

k2 − λ1λ2
,

b11b22 − b21b12
ke→∞≈

(
(4k2C4

s + 4C4
sλ1λ2)2 − 64λ2C

8
sk

2λ1

)
k12
e

(4k2C4
s − 4C4

sλ1λ2)2 k12
e

= 1.

We end up up withX = e−λ1δ b11 − e−λ2δ b22
ke→∞−→ k2 + λ1λ2

k2 − λ1λ2

(
e−λ1δ − e−λ2δ

)
,

Y = e−(λ1+λ2)δ (b11b22 − b12b21)
ke→∞−→ e−(λ1+λ2)δ,

which is the classical Schwarz method, see (2.8), therefore ρE
ke→∞−→ ρcla.

We have seen so far that zeroth order TTC gives the best approximation of the non-

local terms in the transmissions conditions. Schwarz algorithm with TTC is known to

be good for low frequencies but we need to improve the behaviour for high frequencies.

The most interesting case seems to be ω
Cp

< ke <
ω
Cs

as we can see in Figure 3.10 for

the overlapping algorithm.

Unfortunately, we cannot perform an accurate analysis as the expression of the con-

vergence factor is very complicated in this case. Nevertheless, we can find the optimal

value ke, that is the one giving the best possible algorithm, numerically by minimising

the maximum of the convergence factor for all frequencies excluding only two small

intervals around the two frequencies k1 and k2 for which the algorithm is always diver-

gent:

(3.5) min
ke∈R+

∗

 max
k∈(kmin,k

−
1)∪(k+1 ,k

−
2)

∪(k+2 ,kmax)

|ρE (k, ke, ω, Cp, Cs, δ, L)|

CHAPTER 3. OPTIMISED SCHWARZ METHODS 73

10
-2

10
-1

10
0

10
1

10
2

0

0.5

1

1.5

2

2.5

k
e
=1.5

k
e
=1.9

k
e
=1.99

Figure 3.10: ω
Cp

< ke <
ω
Cs

: the spectrum of the iteration matrix for the overlapping

Schwarz method with OIC and Cp = 1, Cs = 1
2 , ω = 1, δ = 1

10

where

k±j := kj ±∆k, k1 :=
ω

Cp
, k2 :=

ω

Cs
, ∆k :=

π

L
.

We leave these two frequencies to the Krylov method and treat all the others by opti-

misation. Here we denoted by L the strip of height of the rectangular domain Ω and

by h the grid spacing. Note that the largest frequency supported by the numerical grid

is kmax = π
h and the lowest frequency would be kmin = π

L for a rectangular domain of

width L.

Let us give an example of such a numerical optimisation performed with the help of

Matlab (see Appendix for details). Here are the values of the parameters for this

example:

L = 10π, ∆k :=
1

10
, δ = 0.1.

The optimal value obtained numerically is ke = k∗e = 1.9890 as shown in Figure 3.11.

Remark 3.4. The properties of this optimisation algorithm can be summarised as

follows:

• When δ goes to zero, the minimised convergence factor attains its maximum at

k = k1 + ∆k and/or k = k2 + ∆k and/or k = k1 −∆k, which are balanced when

the convergence factor is minimised (Figure 3.11).

• By varying the overlap size we notice that the optimal choice for ke for δ small

has three different asymptotic regimes. It is interesting to note that even with this

transition in ke from the O(δ) to the O(δ2) regime, the convergence factor does

CHAPTER 3. OPTIMISED SCHWARZ METHODS 74

10
-1

10
0

10
1

10
2

k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r
-

r
+

max
1

max
2

max
3

Figure 3.11: Optimized convergence factor, i.e. the maximum modulus of the eigen-
values of the iteration matrix for the overlapping Schwarz method with OIC for
ω
Cp

< ke <
ω
Cs

and ω = 1, Cp = 1, Cs = 1
2 , δ = 1

10 .

not have such a transition, and behaves asymptotically as:

R ∼ 1− CR (ω, µ,Cs, Cp, ρ) δ.

These facts are illustrated in Figure 3.12.

10 -8 10 -6 10 -4 10 -2 10 0
10 -15

10 -10

10 -5

10 0

10 5

/C
s
-k

e

*

O()

O(
3/2

)

O(
2

)

10 -8 10 -6 10 -4 10 -2 10 0
10 -8

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

1-R

O()

Figure 3.12: Left: Value of ω
Cs
− k∗e obtained by minimising the convergence factor

numerically compared to the asymptotic behaviour when the overlap δ becomes small.
Right: asymptotic behaviour of the convergence factor.

CHAPTER 3. OPTIMISED SCHWARZ METHODS 75

3.3 Higher order conditions

Another possible strategy to approximate transparent transmission operators if we keep

the local polynomial terms in their expressions and approximate only the non-local ones

is the following:

(3.6)

ŜH1 (1, 1) = ρω2

√
k2e− ω

2

C2
s

k2−
√
k2e− ω

2

C2
s

√
k2e− ω

2

C2
p

,

ŜH1 (1, 2) = ikρ

2C2
s − ω2

k2−
√
k2e− ω

2

C2
s

√
k2e− ω

2

C2
p

 ,

ŜH1 (2, 1) = −ikρ

2C2
s − ω2

k2−
√
k2e− ω

2

C2
s

√
k2e− ω

2

C2
p

 ,

ŜH1 (2, 2) = ρω2

√
k2e− ω

2

C2
p

k2−
√
k2e− ω

2

C2
s

√
k2e− ω

2

C2
p

,

with ŜH2 being defined from ŜH1 in the same way as for the optimal choice from the The-

orem 2.2. We name these conditions Higher Optimised Interface Conditions (HOIC),

and as previously one can try to find the best choice for ke giving the best possible

algorithm, that is, which minimises the maximum of the contraction factor, excluding

the frequencies k = ω
Cp

and k = ω
Cs

where the algorithm will never converge as well as

a small interval around them.

We distinguish different cases as previously.

Theorem 3.6 (Convergence of the overlapping Schwarz method with HOIC: ke <
ω
Cp

).

For a given initial guess u0
1 ∈

(
L2(Ω1)

)2
, u0

2 ∈
(
L2(Ω2)

)2
, the overlapping Schwarz

method with HOIC such that ke ∈
[
0, ωCp

)
has the following convergence factor

(3.7)

ρH(k, ke, ω, Cp, Cs, δ) = max{|r±|}, r− =

(
p1 − λ1

p1 + λ1
e−λ1δ

)2

, r+ =

(
p2 − λ2

p2 + λ2
e−λ2δ

)2

,

and converges for k ∈ R+ \
{
ω
Cp
, ωCs

}
.

Proof. We start by plotting the convergence factor in the Figure 3.13. We use the

general result on optimised Schwarz method from the Lemma 2.1 and insert our new

CHAPTER 3. OPTIMISED SCHWARZ METHODS 76

10 -1 10 0 10 1 10 2

k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k
e
=0.5 /c

p

k
e
=0.75 /c

p

k
e
=0.95 /c

p

Figure 3.13: ke <
ω
Cp

: the spectrum of the iteration matrix from the overlapping

Schwarz method with HOIC and Cp = 1, Cs = 1
2 , ω = 1, δ = 1

10 .

boundary operators (3.6). We get two interface iteration matrices

B1 =
ρω2

(k2 − p1p2)

[
p1 − λ1 ip1k (p2 − λ2)

−ip1k (p1 − λ1) p2 − λ2

]
,

and

B2 =
ρω2

(k2 − p1p2)

[
p1 + λ1 ip1k (p2 + λ2)

−ip1k (p1 + λ1) p2 + λ2

]
,

then we obtain the only half-iteration matrix we need

B = B−1
2 B1 =

[
b11 b12

b21 b22

]
=

p1 − λ1

p1 + λ1
0

0
p2 − λ2

p2 + λ2

 ,
where

p1 =

√
k2
e −

ω2

C2
s

, p2 =

√
k2
e −

ω2

C2
p

, λ1 =

√
k2 − ω2

C2
s

, λ2 =

√
k2 − ω2

C2
p

.

According to the remark 2.1, we end up with the convergence factor as in (3.7). Then,

for ke <
ω
Cp

we have p1, p2 ∈ C and then

|r−| =
∣∣∣∣ ip̄1 − λ1

ip̄1 + λ1

∣∣∣∣2 ∣∣∣e−2λ1δ
∣∣∣ , |r+| =

∣∣∣∣ ip̄2 − λ2

ip̄2 + λ2

∣∣∣∣2 ∣∣∣e−2λ2δ
∣∣∣

where p̄1,2 are defined previously. We distinguish the following 5 cases:

CHAPTER 3. OPTIMISED SCHWARZ METHODS 77

• Case k > ω
Cs

. Here we have λ1, λ2 ∈ R∗+ and

(3.8)

|r−| =
∣∣∣∣ ip̄1 − λ1

ip̄1 + λ1

∣∣∣∣2 ∣∣∣e−2λ1δ
∣∣∣ = e−2λ1δ < 1, |r+| =

∣∣∣∣ ip̄2 − λ2

ip̄2 + λ2

∣∣∣∣2 ∣∣∣e−2λ2δ
∣∣∣ = e−2λ2δ < 1.

• Case k = ω
Cs

. In this case λ1 = 0 and

(3.9) |r+| = e−2λ2δ < 1, |r−| = 1.

• Case ω
Cp

< k < ω
Cs

. In this case λ1 ∈ C∗ and

(3.10) |r−| =
∣∣∣∣ p̄1 − λ̄1

p̄1 + λ̄1

∣∣∣∣2 ∣∣∣e−2iλ̄1δ
∣∣∣ =

(
p̄1 − λ̄1

p̄1 + λ̄1

)2

< 1, |r+| = e−2λ2δ < 1.

• Case k = ω
Cp

. Here λ2 = 0, λ1 ∈ C∗ and

(3.11) |r−| =
(
p̄1 − λ̄1

p̄1 + λ̄1

)2

< 1, |r+| = 1.

• Case k < ω
Cp

. In this case λ1, λ2 ∈ C∗+ and therefore

|r−| =
(
p̄1 − λ̄1

p̄1 + λ̄1

)2

< 1, |r+| =
(
p̄2 − λ̄2

p̄2 + λ̄2

)2

< 1.

Remark 3.5. There are several cases (as seen in Figure 3.14) where the algorithm is

not convergent as follows:

• If ke ≥ ω
Cp

both the non-overlapping and overlapping algorithms are non-convergent.

Indeed p2 ∈ R+ and for k < ω
Cp

we get λ2 = iλ̄2 therefore

|r+| =
∣∣∣∣p2 − iλ̄2

p2 + iλ̄2

∣∣∣∣2 ∣∣∣e−2iλ̄2δ
∣∣∣ = 1.

• If ke <
ω
Cp

the non-overlapping algorithm is not converging. In this case p2 ∈ iR+,

for k ≥ ω
Cp

we get λ2 ∈ R+ therefore

(3.12) |r+| =
∣∣∣∣ ip̄2 − λ2

ip̄2 + λ2

∣∣∣∣2 = 1.

CHAPTER 3. OPTIMISED SCHWARZ METHODS 78

10
-1

10
0

10
1

10
2

k

0

0.2

0.4

0.6

0.8

1

1.2

k
e
=0.5

k
e
=1.5

k
e
=2.5

10
-1

10
0

10
1

10
2

k

0

0.2

0.4

0.6

0.8

1

1.2

k
e
=1.5

k
e
=3

Figure 3.14: Spectrum of the iteration matrix for the Schwarz method with HOIC with
Cp = 1, Cs = 1

2 . Left: δ = 0. Right: δ = 1
10 .

According to the results above, an optimal parameter, if it exists must lie in the interval

[0, ωCp]. Moreover, we notice from the formula (3.7) that the convergence factor of the

algorithm applied to the time-harmonic equations of elastic waves can be related to that

coming from the application of the optimised overlapping Schwarz method to Helmholtz

equations. Nevertheless, as the situation is more complex here, as both eigenvalues r±

can play a role, we cannot extend directly the results presented in [GZ16]. This will be

the object of future work and needs further investigation.

3.3.1 Two-sided version of higher order conditions

The natural next step is to choose one ke different for each subdomain. We will analyse

the convergence factor for the new algorithms.

Lemma 3.2 (Convergence factor of the two-sided algorithm with high order condi-

tions). For a given initial guess u0
1 ∈

(
L2 (Ω1)

)2
, u0

2 ∈
(
L2 (Ω2)

)2
, the Schwarz algo-

rithm with two-sided HOIC has the following convergence factor

ρH(k, k(1)
e , k(2)

e , ω, Cp, Cs, δ) = max{|r+|, |r−|},

where

r− =

(
λ1 − p1

(
k

(1)
e

))(
λ1 − p1

(
k

(2)
e

))
(
λ1 + p1

(
k

(1)
e

))(
λ1 + p1

(
k

(2)
e

)) e−2λ1δ,

CHAPTER 3. OPTIMISED SCHWARZ METHODS 79

and

r+ =

(
λ2 − p2

(
k

(1)
e

))(
λ2 − p2

(
k

(2)
e

))
(
λ2 + p2

(
k

(1)
e

))(
λ2 + p2

(
k

(2)
e

)) e−2λ2δ .

Proof. We use as a starting point the TBC where we insert now
(
k

(1)
e , k

(2)
e

)
and get

ŜHj =

ρω2

p1
(
k
(j)
e

)
k2−p1

(
k
(j)
e

)
p2
(
k
(j)
e

) ikρ

(
2C2

s − ω2

k2−p1
(
k
(j)
e

)
p2
(
k
(j)
e

)
)

−ikρ

(
2C2

s − ω2

k2−p1
(
k
(j)
e

)
p2(kje)

)
ρω2

p2
(
k
(j)
e

)
k2−p1

(
k
(j)
e

)
p2
(
k
(j)
e

)

 , j = 1, 2,

our new interface operators, which lead us to the two half-iteration matrices

B =

p1
(
k
(2)
e

)
−λ1

p1
(
k
(2)
e

)
+λ1

0

0
p2
(
k
(2)
e

)
−λ2

p2
(
k
(2)
e

)
+λ2

 , A =

e−2λ1δ

p1
(
k
(1)
e

)
−λ1

p1
(
k
(1)
e

)
+λ1

0

0 e−2λ2δ
p2
(
k
(1)
e

)
−λ2

p2
(
k
(1)
e

)
+λ2

 ,
and the iteration matrix M = AB gives the eigenvalues and the convergence factor.

We have this first result

Theorem 3.7 (Convergence of the overlapping Schwarz method with two-sided HOIC).

The overlapping Schwarz method with two-sided HOIC converges for k ∈ R+ \
{
ω
Cp
, ωCs

}
and ∀δ > 0 except when k

(1)
e > ω

Cp
and k

(2)
e > ω

Cp
.

Proof. We start by drawing the convergence factor of the algorithm for different values

of k
(1,2)
e (see Figure 3.15).

If k
(1)
e < ω

Cp
we get

r− =

(
λ1 − ip̄1

(
k

(1)
e

))(
λ1 − p1

(
k

(2)
e

))
(
λ1 + ip̄1

(
k

(1)
e

))(
λ1 + p1

(
k

(2)
e

)) e−2λ1δ

and

r+ =

(
λ2 − ip̄2

(
k

(1)
e

))(
λ2 − p2

(
k

(2)
e

))
(
λ2 + ip̄2

(
k

(1)
e

))(
λ2 + p2

(
k

(2)
e

)) e−2λ2δ .

We distinguish three cases according to the values of k
(2)
e .

CHAPTER 3. OPTIMISED SCHWARZ METHODS 80

10 -1 10 0 10 1 10 2

k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k
e
=[0.5 0.5]

k
e
=[0.5 1.5]

k
e
=[0.5 2.5]

Figure 3.15: Spectrum of the iteration matrix for the overlapping Schwarz method with
two-sided HOIC and Cp = 1, Cs = 1

2 , ω = 1, δ = 1
10 .

Case 1: k
(2)
e < ω

Cp
. We distinguish four cases according to the values of k

• Case k < ω
Cp

.

|r−| =

∣∣∣∣∣∣
(

iλ̄1 − ip̄1

(
k

(1)
e

))(
iλ̄1 − ip̄1

(
k

(2)
e

))
(

iλ̄1 + ip̄1

(
k

(1)
e

))(
iλ̄1 + ip̄1

(
k

(2)
e

)) e−2iλ̄1δ

∣∣∣∣∣∣
=

∣∣∣∣∣∣
(
λ̄1 − p̄1

(
k

(1)
e

))(
λ̄1 − p̄1

(
k

(2)
e

))
(
λ̄1 + p̄1

(
k

(1)
e

))(
λ̄1 + p̄1

(
k

(2)
e

))
∣∣∣∣∣∣ < 1,

|r+| =

∣∣∣∣∣∣
(

iλ̄2 − ip̄2

(
k

(1)
e

))(
iλ̄2 − ip̄2

(
k

(2)
e

))
(

iλ̄2 + ip̄2

(
k

(1)
e

))(
iλ̄2 + ip̄2

(
k

(2)
e

)) e−2iλ̄2δ

∣∣∣∣∣∣
=

∣∣∣∣∣∣
(
λ̄2 − p̄2

(
k

(1)
e

))(
λ̄2 − p̄2

(
k

(2)
e

))
(
λ̄2 + p̄2

(
k

(1)
e

))(
λ̄2 + p̄2

(
k

(2)
e

))
∣∣∣∣∣∣ < 1.

• Case k > ω
Cs

.

|r−| =

∣∣∣∣∣∣
(
λ1 − ip̄1

(
k

(1)
e

))(
λ1 − ip̄1

(
k

(2)
e

))
(
λ1 + ip̄1

(
k

(1)
e

))(
λ1 + ip̄1

(
k

(2)
e

)) e−2λ1δ

∣∣∣∣∣∣ = e−2λ1δ < 1,

|r+| =

∣∣∣∣∣∣
(
λ2 − ip̄2

(
k

(1)
e

))(
λ2 − ip̄2

(
k

(2)
e

))
(
λ2 + ip̄2

(
k

(1)
e

))(
λ2 + ip̄2

(
k

(2)
e

)) e−2λ2δ

∣∣∣∣∣∣ = e−2λ2δ < 1.

CHAPTER 3. OPTIMISED SCHWARZ METHODS 81

• Case ω
Cp

< k < ω
Cs

. In that case, |r−| is like in the case k < ω
Cp

and |r+| is like

in the case k > ω
Cs

, so both are lower than one.

• Case k = ω
Cp

and k = ω
Cs

. A quick computation shows ρH = 1.

Case 2: k
(2)
e > ω

Cs
. We distinguish four cases according to the values of k

• Case k < ω
Cp

.

|r−| =

∣∣∣∣∣∣
(

iλ̄1 − ip̄1

(
k

(1)
e

))(
iλ̄1 − p1

(
k

(2)
e

))
(

iλ̄1 + ip̄1

(
k

(1)
e

))(
iλ̄1 + p1

(
k

(2)
e

)) e−2iλ̄1δ

∣∣∣∣∣∣ =

∣∣∣∣∣∣
λ̄1 − p̄1

(
k

(1)
e

)
λ̄1 + p̄1

(
k

(1)
e

)
∣∣∣∣∣∣ < 1,

|r+| =

∣∣∣∣∣∣
(

iλ̄2 − ip̄2

(
k

(1)
e

))(
iλ̄2 − p2

(
k

(2)
e

))
(

iλ̄2 + ip̄2

(
k

(1)
e

))(
iλ̄2 + p2

(
k

(2)
e

)) e−2iλ̄2δ

∣∣∣∣∣∣ =

∣∣∣∣∣∣
λ̄2 − p̄2

(
k

(1)
e

)
λ̄2 + p̄2

(
k

(1)
e

)
∣∣∣∣∣∣ < 1.

• Case k > ω
Cs

.

|r−| =

∣∣∣∣∣∣
(
λ1 − ip̄1

(
k

(1)
e

))(
λ1 − p1

(
k

(2)
e

))
(
λ1 + ip̄1

(
k

(1)
e

))(
λ1 + p1

(
k

(2)
e

)) e−2λ1δ

∣∣∣∣∣∣ =

∣∣∣∣∣∣
(
λ1 − p1

(
k

(2)
e

))
(
λ1 + p1

(
k

(2)
e

)) e−2λ1δ

∣∣∣∣∣∣ < 1,

|r+| =

∣∣∣∣∣∣
(
λ2 − ip̄2

(
k

(1)
e

))(
λ2 − p2

(
k

(2)
e

))
(
λ2 + p2

(
k

(1)
e

))(
λ2 + p2

(
k

(2)
e

)) e−2λ2δ

∣∣∣∣∣∣ =

∣∣∣∣∣∣
(
λ2 − p2

(
k

(2)
e

))
(
λ2 + p2

(
k

(2)
e

)) e−2λ2δ

∣∣∣∣∣∣ < 1.

• Case ω
Cp

< k < ω
Cs

. In that case, |r−| is like in the case k < ω
Cp

and |r+| is like

in the case k > ω
Cs

, so both are lower than one.

• Case k = ω
Cp

and k = ω
Cs

. A quick computation shows ρH = 1.

Case 3: ω
Cp

< k
(2)
e < ω

Cs
. One notices that in that case, r− is like in the Case 1 and

r+ is like in the Case 2, so it will be convergent as well.

The proof for k
(2)
e < ω

Cp
follows easily by symmetry.

To conclude, we consider the remaining cases not covered above, that is when both k
(1)
e

and k
(2)
e are bigger than ω

Cp
. We see that for k < ω

Cp
we get

|r+| =

∣∣∣∣∣∣
(

iλ̄2 − p2

(
k

(1)
e

))(
iλ̄2 − p2

(
k

(2)
e

))
(

iλ̄2 + p2

(
k

(1)
e

))(
iλ̄2 + p2

(
k

(2)
e

)) e−2iλ̄2δ

∣∣∣∣∣∣ = 1.

CHAPTER 3. OPTIMISED SCHWARZ METHODS 82

which means that the global convergence factor will be always bigger or equal to 1 and

the algorithm will be divergent.

Lemma 3.3 (Convergence of the non-overlapping Schwarz method with two-sided

HOIC). The non-overlapping Schwarz method with two-sided HOIC converges for k ∈
R+ \

{
ω
Cp
, ωCs

}
∀k(2)

e >
ω

Cs
if k(1)

e <
ω

Cp
& ∀k(1)

e >
ω

Cs
if k(2)

e <
ω

Cp
.

Proof. The proof follows the lines of the theorem 3.7 where we put δ = 0.

The next step would be again to extend the results or establish a link with Helmholtz

equations as in [GZ16].

3.3.2 General higher order conditions

There is another way to approximate the nonlocal λj , j = 1, 2, by well-chosen constants

λapp1 = α1 + iβ1, λ
app
2 = α2 + iβ2 on Ω1,

and

λ̃app1 = α̃1 + iβ̃1, λ̃
app
2 = α̃2 + iβ̃2 on Ω2,

and then try to find the best choice for the parameters in both domains. We name

these conditions General Higher Optimised Interface Conditions (GHOIC).

Theorem 3.8. For a given initial guess u0
1 ∈

(
L2(Ω1

)2
, u0

2 ∈
(
L2(Ω2)

)2
, the Schwarz

method with GHOIC converges for k ∈ R+ \
{
ω
Cp
, ωCs

}
.

Proof. The proof follows the lines of Lemma 3.2, where we replace

p1

(
k(1)
e

)
→ λapp1 , p2

(
k(1)
e

)
→ λapp2 on Ω1,

and

p1

(
k(2)
e

)
→ λ̃app1 , p2

(
k(2)
e

)
→ λ̃app2 on Ω2.

The new eigenvalues of the iteration matrix are in this case

r− =
(λapp1 − λ1)

(
λ̃app1 − λ1

)
(λapp1 + λ1)

(
λ̃app1 + λ1

) e−2λ1δ, r+ =
(λapp2 − λ2)

(
λ̃app2 − λ2

)
(λapp2 + λ2)

(
λ̃app2 + λ2

) e−2λ2δ,

CHAPTER 3. OPTIMISED SCHWARZ METHODS 83

which gives

|r−| =

∣∣∣∣∣∣(α1 + iβ1 − λ1)

(α1 + iβ1 + λ1)

(
α̃1 + iβ̃1 − λ1

)
(
α̃1 + iβ̃1 + λ1

) e−λ1δ

∣∣∣∣∣∣

=

√
(α1 − λ1)2 + β2

1√
(α1 + λ1)2 + β2

1

√
(α̃1 − λ1)2 + β̃2

1√
(α̃1 + λ1)2 + β̃2

1

e−2λ1δ < 1 if k >
ω

Cs
,

√(
β1 − λ̄1

)2
+ α2

1√(
β1 + λ̄1

)2
+ α2

1

√(
β̃1 − λ̄1

)2
+ α̃2

1√(
β̃1 + λ̄1

)2
+ α̃2

1

< 1 if k <
ω

Cs
,

and similarly

|r+| =

√
(α2 − λ2)2 + β2

2√
(α2 + λ2)2 + β2

2

√
(α̃2 − λ1)2 + β̃2

2√
(α̃2 + λ2)2 + β̃2

2

e−2λ1δ < 1 if k >
ω

Cp
,

√(
β2 − λ̄2

)2
+ α2

2√(
β2 + λ̄2

)2
+ α2

2

√(
β̃2 − λ̄2

)2
+ α̃2

2√(
β̃2 + λ̄2

)2
+ α̃2

2

< 1 if k <
ω

Cp
.

We can see that the convergence factor remains less than one (except on the resonance

frequencies as usual), either with overlap (δ > 0) or not (δ = 0). If it is one-sided

(αj = α̃j , βj = β̃j , j = 1, 2), the non-overlapping and overlapping methods are both

convergent.

Then we have this specific result

Remark 3.6. We could chose the parameters for the non-overlapping Schwarz method

with one-sided GHOIC as

q∗j = α∗j (1 + i), j = 1, 2,

where the α∗j are chosen as in [GMN02b]

α∗1 =

√

ω2

C2
s
−
(
k−2
)2√

(kmax)2 − ω2

C2
s

2

1
2

, α∗2 =

√

ω2

C2
s
−
(
k−2
)2√

(kmax)2 − ω2

C2
s

2

1
2

.

CHAPTER 3. OPTIMISED SCHWARZ METHODS 84

In this case the corresponding convergence factor is

ρ (k, ω, Cp, Cs, q
∗
1, q
∗
2) =

1−
√

2

(
k21−(k−1)

2

(k∗max)2−k21

) 1
4

+

√
k21−(k−1)

2

(kmax)2−k21

1 +
√

2

(
k21−(k−1)

2

(k∗max)2−k21

) 1
4

+

√
k21−(k−1)

2

(kmax)2−k21

,

where

k±j := kj ±∆k, k1 :=
ω

Cp
, k2 :=

ω

Cs
, ∆k :=

π

L
, kmin =

π

L
, kmax =

π

h
.

Note that this is not a solution to the minmax problem but it could potentially improve

the convergence of the algorithm.

10
-1

10
0

10
1

10
2

k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

r
-

r
+

10
-1

10
0

10
1

10
2

k

0

0.05

0.1

0.15

0.2

0.25

0.3

r
-

r
+

Figure 3.16: Spectrum of the iteration matrix from the Schwarz method with one-sided
GHOIC and Cp = 1, Cs = 1

2 , ω = 1. Left: δ = 0. Right: δ = 1
10 .

The solution to the min /max problem is even more complex than in the case of

Helmholtz equations. As an illustration, we can solve this problem numerically by

Matlab (an illustration of this can be seen in Figure 3.16) and we see that the optimal

value is a result of the equioscillation of the convergence factor, but since we have to

equilibrate different quantities on various intervals, the extension of the results obtained

in the Helmholtz case is not straightforward.

3.4 Conclusions and future works

As we mentioned earlier, the classical Schwarz method does not converge without over-

lap. In turn, simple optimised Schwarz methods, however, can be used without overlap,

CHAPTER 3. OPTIMISED SCHWARZ METHODS 85

and non-overlapping Schwarz methods can be of great interest if the physical properties

in the subdomains differ. These methods deserve further exploration as the preliminary

results seem to be very promising.

The first obvious future work would be to find the optimal parameter ke asymptotically

as a function of the parameters of the problem for the Schwarz algorithm with or

without overlap. The numerical optimisation problem solved with Matlab has shown

an improvement and an asymptotic behaviour of the convergence factor that needs to

be confirmed by a mathematical proof.

Secondly, the general higher order conditions, one or two-sided derived in the last

part of the chapter demonstrate that there is a strong link with the Helmholtz equa-

tions. Nevertheless, since for the time-harmonic elastic waves, the expressions being

far more complex and involve additional quantities, the extension of these results is not

straightforward. This link needs to be understood and the techniques used in the case

of Helmholtz equations generalised to the elastic waves.

Thirdly, we would like to apply these methods to more realistic physical models from

geophysics, that are still challenging from a computational point of view.

Chapter 4

Numerical assessment of a grid

coarse space for elastic waves

As we have seen in the previous chapters, solving the time-harmonic elastic wave equa-

tion is a challenging task. Despite several attempts to solve it efficiently, there doesn’t

seem to exist an established and robust preconditioner, whose behaviour is indepen-

dent of the frequency and of the number of subdomains, in the case of general de-

compositions. A very robust domain decomposition method was developed recently

in [GSV17a, GSV17b], where two-level domain decomposition approximations of the

damped (with absorption) Helmholtz equation −∆u− (k2 +iε)u = f were used as pre-

conditioners for the pure Helmholtz equation without absorption; in this particular case

the coarse correction is based on a coarse mesh with diameter constrained by the wave

number k. As a result, in the ideal case, the obtained convergence was independent of

the wave number. Our purpose is to perform a preliminary numerically study where

we can assess the performance of a two-level grid based preconditioner in the case of

the time-harmonic elastic waves without absorption but with absorbing transmission

conditions at the interfaces between domains.

4.1 The grid coarse space

In order to achieve weak scalability or the independence with respect to the number of

subdomains, we need to add a coarse component to the one-level ORAS preconditioner

86

CHAPTER 4. GRID COARSE SPACE 87

(1.8). The two-level preconditioner can be written in a generic way as follows

(4.1)
M−1

2,RAS = QM−1
RASP + ZE−1Z∗,

M−1
2,ORAS = QM−1

ORASP + ZE−1Z∗,

where ∗ denotes the conjugate transpose and M−1
RAS is the one-level preconditioner

given in (1.7) and M−1
ORAS is given in (1.8).

Other ingredients:

• Z is a rectangular matrix with full column rank,

• E = Z∗AZ is the so-called coarse grid matrix,

• Ξ = ZE−1Z∗ is the so-called coarse grid correction matrix.

From now on we will use P = I − AΞ and Q = I − ΞA, which is a hybrid two-level

preconditioner also called the Balancing Neumann Neumann (BNN) preconditioner.

Remark 4.1. If P = Q = I, we would get an additive two-level preconditioner.

Preconditioner (4.1) is characterized by the choice of Z, whose columns span the coarse

space (CS). Consequently, the definition of Z will give the nature of the new precondi-

tioner and the columns of Z represent the basis vectors of what is called the CS.

The most natural coarse space would be one based on a coarser mesh, we subsequently

call it grid coarse space.

Let us consider THcoarse a simplicial mesh of the computational domain Ω with a mesh

diameter Hcoarse and WHcoarse the corresponding finite element space.

Let R0 : Wh → WHcoarse be the nodal interpolation operator from the fine grid finite

element space to the coarse grid finite element space and R0 the corresponding matrix.

We define Z = RT0 , then in this case E = Z∗AZ is the stiffness matrix of the problem

discretised on the coarse mesh and the component ZE−1Z∗ of the preconditioner is

called coarse space correction.

4.2 Numerical results

In this section we compare the two-level preconditioners defined in (4.1) for the some of

test cases presented in Section 1.4. We will particularly focus on the highly oscillatory

test case (Test case 2) and the heterogeneous one (Test case 3).

CHAPTER 4. GRID COARSE SPACE 88

Two-level RAS and ORAS: Test case 2

In these tests we notice that the iteration count is only slowly varying with the number

of subdomains and that there is a considerable improvement with respect to the one-

level method. We also notice that the ORAS preconditioner is not necessarily better

that RAS, the effect of transmission conditions seems to be less obvious when a second

level is added. Also we notice that the type of the decomposition has only a little

influence on the iteration count.

0 5 10 15 20 25 30

Iterations

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

R
e
la

ti
v
e
 r

e
s
id

u
a
l

Two-level RAS preconditioner, uniform decomp, ovr = 1

4

16

36

64

0 5 10 15 20 25

Iterations

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

R
e
la

ti
v
e
 r

e
s
id

u
a
l

Two-level RAS preconditioner, uniform decomp, ovr = 2

4

16

36

64

0 5 10 15 20 25

Iterations

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

R
e
la

ti
v
e
 r

e
s
id

u
a
l

Two-level ORAS preconditioner, unif decomp, ovr = 1

4

16

36

64

0 2 4 6 8 10 12 14 16 18 20

Iterations

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

R
e
la

ti
v
e
 r

e
s
id

u
a
l

Two-level ORAS preconditioner, unif decomp, ovr = 2

4

16

36

64

Figure 4.1: Convergence history for RAS (upper row) and ORAS (lower row) on uniform
decompositions and overlap =2h (left) and overlap=4h (right)

This experiment is repeated on METIS decompositions (Figure 4.2) and a numerical

summary of the results of the previous figures can be found in the table below.

Overlap = 2h Overlap = 4h
N RAS ORAS RAS ORAS

Unif MTS Unif MTS Unif MTS Unif MTS

4 9 11 16 18 10 10 9 10
16 17 18 20 21 24 19 15 15
36 17 20 21 25 22 20 16 18
64 26 18 23 28 25 23 19 19

Table 4.1: Preconditioners comparison for the test case 2

CHAPTER 4. GRID COARSE SPACE 89

0 5 10 15 20 25

Iterations

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

R
e
la

ti
v
e
 r

e
s
id

u
a
l

Two-level RAS preconditioner, METIS decomp, ovr = 1

4

16

36

64

0 5 10 15 20 25

Iterations

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

R
e
la

ti
v
e
 r

e
s
id

u
a
l

Two-level RAS preconditioner, METIS decomp, ovr = 2

4

16

36

64

0 5 10 15 20 25 30

Iterations

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

R
e
la

ti
v
e
 r

e
s
id

u
a
l

Two-level ORAS preconditioner, METIS decomp, ovr = 1

4

16

36

64

0 2 4 6 8 10 12 14 16 18 20

Iterations

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

R
e
la

ti
v
e
 r

e
s
id

u
a
l

Two-level ORAS preconditioner, METIS decomp, ovr = 2

4

16

36

64

Figure 4.2: Convergence history for RAS (upper row) and ORAS (lower row) on METIS
decompositions and overlap =2h (left) and overlap=4h (right)

In conclusion, these preliminary tests show that the two-level preconditioner seems to

be very robust, that is the iterations vary only slightly when the number of subdomains

is increased. More extensive tests are needed to conclude on the general applicability

of this two-level method.

Two-level RAS and ORAS: Test case 3

We will focus now on the heterogeneous test case defined on a disk, where the decom-

position in subdomains is done by METIS.

A numerical summary can be found in the table 4.2.

Overlap =2h Overlap=4h
N RAS ORAS RAS ORAS

4 31 33 29 28
16 40 45 36 37
36 47 75 43 54
64 52 128 51 97

Table 4.2: Preconditioners comparison for the heterogeneous test case 3

CHAPTER 4. GRID COARSE SPACE 90

0 20 40 60 80 100 120 140

Iterations

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

R
e
la

ti
v
e
 r

e
s
id

u
a
l

Two-level ORAS preconditioner, METIS decomp, ovr = 1

4

16

36

64

0 10 20 30 40 50 60

Iterations

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

R
e
la

ti
v
e
 r

e
s
id

u
a
l

Two-level RAS preconditioner, METIS decomp, ovr = 2

4

16

36

64

Figure 4.3: Convergence history for ORAS and RAS on METIS decompositions and
overlap =2h (left) and overlap=4h (right)

Here we notice that the two-level ORAS preconditioner is less efficient whereas the

two-level RAS preconditioner leads to quite a stable number of iterations where we can

see only a slight increase when the number of subdomain gets bigger. At the same

time, there is an important decrease in the iteration count with respect to the one-level

method.

We can conclude these preliminary tests by saying that a two-level preconditioner is

mandatory in achieving robustness of the domain decomposition solver but the be-

haviour of this method is not completely understood in the case of time-harmonic

elastic waves and therefore it requires further investigation.

Appendices

91

Appendix A

Matlab implementations

In the main script denoted by Main.m, one enters the different parameters and the choice of the methods.

In Rho.m, the computation of the convergence factor based on different interface transmission conditions

is implemented. More details are given in the comments inside the code.

A.1 Main script

1 % INITIALIZATION−−
2 g l o b a l omega cs cp rho kmin kmax d e l t a L cho i c e order ;

3 f o r mat long ;

4

5 % Parameters

6 omega =1. ; cp =1. ; c s =0.5 ; rho =1. ; d e l t a =0.1 ;

7 L=10.∗ pi ; h=1./10; kmin=pi . /L ; kmax=pi . / h ; LL=0; RR=0; dk=pi . /L ;

8

9 % Choice o f method

10 % 1 = C l a s s i c a l // 2 = Taylor // 3 = two−s ided Taylor // 4 = one parameter fami ly // 6 =

Two−Sided one parameter fami ly // 8 = Higher c o n d i t i o n s // 10 = Two−s ided h igher

c o n d i t i o n s // 12 = General h igher c o n d i t i o n s

11 % To f i n d the min−max , the equ iva l en t in a d i s cont inuous g r id

12 % 5 = one parameter fami ly // 7 = Two−s ided one parameter fami ly // 11 = Two−s ided h igher

c o n d i t i o n s // 13 = General h igher c o n d i t i o n s

13 cho i c e =12;

14

15 % Choice o f order f o r Taylor (zeroth , improved zeroth , second)

16 order =0;

17

18 % Choice o f ke

92

APPENDIX A. MATLAB IMPLEMENTATIONS 93

19 i f (cho i c e==1) | | (cho i c e==2) | | (cho i c e==4) | | (cho i c e==5) | | (cho i c e==8) | | (cho i c e==9)

20 ke =0.995;

21 e l s e i f (cho i c e ==12) | | (cho i c e ==13)

22 alpha =[1 1] ;

23 e l s e

24 ke =[0.5 5] ;

25 end ;

26

27 % CODE −−−
28 i f (cho i c e==1) | | (cho i c e==2) | | (cho i c e==3) | | (cho i c e==4) | | (cho i c e==6) | | (cho i c e==8)

| | (cho i c e ==10)

29 Rho(ke) ;

30 e l s e i f (cho i c e ==12)

31 Rho(alpha) ;

32

33 % Min−max o f One parameter fami ly

34 e l s e i f (cho i c e==5) | | (cho i c e==9)

35 opt=opt imset (’TolX ’ ,1 e−12, ’ TolFun ’ ,1 e−12) ;

36

37 % change p i f one wants asymptotic behavior

38 p=0:0;

39 KE=0;

40 f o r i =1: l ength (p)

41 % comment d e l t a f o r non−over lapp ing methods

42 d e l t a =0 .1 ./ (1 .∗10ˆ p(i))

43 i f i==1

44 [ke ,R]= fminsearch (’Rho ’ , ke , opt) ;

45 e l s e

46 [ke ,R]= fminsearch (’Rho ’ ,KE(i −1) , opt) ;

47 end ;

48 RR(i)=R; LL(i)=de l t a ; KE(i)=ke

49 end ;

50

51 i f (l ength (p)>1) | | (cho i c e==5)

52 % Behaviour o f ke ˆ∗ w. r . t . the over lap

53 l o g l o g (LL , omega/ cs−KE, ’−−o ’ ,LL , 0 . 0 4∗LL. ˆ 1 , ’− ’ ,LL , 0 . 3 5 . ∗ LL . ˆ 1 . 5 , ’− ’ ,LL, 6 2 0 0 .∗LL. ˆ 2 , ’− ’)

54 l e g end1 = l e g end (’ \omega/C s−k e ˆ∗ ’ , ’O(\ d e l t a) ’ , ’O(\ d e l t a ˆ{3/2}) ’ , ’O(\ d e l t a ˆ{2}) ’) ;

55 s e t (l e g end 1 , ’ Locat ion ’ , ’ s outheas t ’) ; x l a b e l (’ \ d e l t a ’) ;

56 s e t (gca , ’ Fonts i z e ’ , 10) ; pr i n t −de ps c keoptexp2 . e ps ;

57

58 % Behaviour o f the convergence f a c t o r w. r . t . the over lap

59 f i g u r e ;

60 l o g l o g (LL,1−RR, ’−−o ’ ,LL , 0 . 7 . ∗ LL. ˆ 1 , ’− ’)

61 l e g end1 = l e g end (’1−R ’ , ’O(\ d e l t a) ’) ;

62 s e t (l e g end 1 , ’ Locat ion ’ , ’ north ’) ; x l a b e l (’ \ d e l t a ’) ;

APPENDIX A. MATLAB IMPLEMENTATIONS 94

63 s e t (gca , ’ Fonts i z e ’ , 10) ; pr i n t −de ps c keoptexp3 . e ps ;

64 end ;

65

66 % Min−max o f Two−Sided methods

67 e l s e i f (cho i c e==7) | | (cho i c e ==11)

68 opt=opt imset (’TolX ’ ,1 e−12, ’ TolFun ’ ,1 e−12) ;

69 % change p i f one wants asymptotic behavior

70 p=0:0;

71 KE2=ze ro s (l ength (p) ,2) ;

72 f o r i =1: l ength (p)

73 % comment d e l t a f o r non−over lapp ing methods

74 d e l t a =0.1∗1.3ˆp(i)

75 i f i==1

76 [ke ,R]= fminsearch (’Rho ’ , ke , opt) ;

77 e l s e

78 [ke ,R]= fminsearch (’Rho ’ ,KE2(i −1 , :) , opt) ;

79 end ;

80 RR(i)=R; LL(i)=de l t a ; KE2(i , :)=ke

81 end ;

82

83 % Min−max o f gene ra l h igher

84 e l s e i f (cho i c e ==13)

85 opt=opt imset (’TolX ’ ,1 e−12, ’ TolFun ’ ,1 e−12) ;

86 % change p i f one wants asymptotic behavior

87 p=0:0;

88 ALPHA=ze ro s (l ength (p) ,2) ;

89 f o r i =1: l ength (p)

90 % comment d e l t a f o r non−over lapp ing methods

91 d e l t a =0.1∗1.3ˆp(i)

92 i f i==1

93 [alpha ,R]= fminsearch (’Rho ’ , alpha , opt) ;

94 e l s e

95 [alpha ,R]= fminsearch (’Rho ’ ,ALPHA(i −1 , :) , opt) ;

96 end ;

97 RR(i)=R; LL(i)=de l t a ; ALPHA(i , :)=alpha

98 end ;

99 end ;

A.2 Rho - the computation of the convergence factor

1 func t i on R=Rho(Ke)

2 g l o b a l omega cs cp rho kmin kmax d e l t a L cho i c e order ;

3

4 i f (cho i c e==3) | | (cho i c e==6) | | (cho i c e==7) | | (cho i c e ==10) | | (cho i c e ==11)

APPENDIX A. MATLAB IMPLEMENTATIONS 95

5 ke1=Ke(1) ; ke2=Ke(2) ;

6 e l s e i f (cho i c e ==12) | | (cho i c e ==13)

7 alpha1=Ke(1) ; alpha2=Ke(2) ;

8 e l s e

9 ke=Ke(1) ;

10 end ;

11

12 % Grid

13 i f (cho i c e==5) | | (cho i c e==7) | | (cho i c e==9) | | (cho i c e ==11) | | (cho i c e ==13)

14 N=200; k1=omega . / cp ; k2=omega . / cs ; dk=pi . /L ;

15 kk=[kmin : (k1−dk−kmin) . /N: k1−dk k1+dk : (k2−dk−(k1+dk)) . /N: k2−dk k2+dk : (kmax−(k2+dk)) . /N:

kmax] ;

16 e l s e

17 N=1000; kk=kmin : (kmax−kmin) /N: kmax ;

18 end ;

19

20 mu=rho∗ cs ˆ2 ; lambda=rho ∗(cpˆ2−2∗ cs ˆ2) ; k bar =0; k bar2 =0; f b a r =0; temp=0; temp2=0;

21

22 % C l a s s i c a l

23 i f (cho i c e==1)

24 f o r j =1: l ength (kk)

25 k=kk (j) ;

26 lambda1=s q r t (k.ˆ2−omega ˆ2 ./ cs ˆ2) ; lambda2=s q r t (k.ˆ2−omega ˆ2 ./ cp ˆ2) ;

27 X1=(k.ˆ2+lambda1 .∗ lambda2) . / (k.ˆ2− lambda1 .∗ lambda2) ; X2=−1i . ∗ (2 . ∗ k .∗ lambda2) . / (k.ˆ2−
lambda1 .∗ lambda2) ;

28 G=[exp(−d e l t a . ∗ (lambda1+lambda2)) .∗X2ˆ2 .∗ lambda1 . / lambda2+exp (−2.∗ d e l t a .∗ lambda1) .∗X1

ˆ2 X1.∗X2.∗(− exp(−d e l t a . ∗ (lambda1+lambda2))+exp (−2.∗ d e l t a .∗ lambda1))

29 X1.∗X2.∗ lambda1 . / lambda2 . ∗ (exp(−d e l t a . ∗ (lambda1+lambda2))−exp (−2.∗ d e l t a .∗ lambda2))

exp(−d e l t a . ∗ (lambda1+lambda2)) .∗X2ˆ2 .∗ lambda1 . / lambda2+exp (−2.∗ d e l t a .∗ lambda2) .∗X1

ˆ 2] ;

30 e=e i g (G) ; R1(j)=e (1) ; R2(j)=e (2) ;

31 end ;

32 e l s e

33 f o r j =1: l ength (kk)

34 k=kk (j) ; lambda1=s q r t (k.ˆ2−omega ˆ2 ./ cs ˆ2) ; lambda2=s q r t (k.ˆ2−omega ˆ2 ./ cp ˆ2) ;

35

36 % Taylor

37 i f (cho i c e==2)

38 i f (order==0)

39 sigma111=1 i ∗ rho∗omega∗cp ; sigma112 =0; sigma121 =0; sigma122=1 i ∗ rho∗omega∗ cs ;

40 e l s e i f (order==1)

41 sigma111=1 i ∗ rho∗omega∗cp+1 i ∗ rho∗cp ˆ2/(2∗omega) ∗(cp−2∗cs) ∗ke ˆ2 ;

42 sigma112=−1i ∗ rho∗ cs ∗(cp−2∗cs) ∗ke ; sigma121=−sigma112 ;

43 sigma122=1 i ∗ rho∗omega∗ cs+1 i ∗ rho∗ cs ˆ2/(2∗omega) ∗(cs−2∗cp) ∗ke ˆ2 ;

44 e l s e i f (order==2)

APPENDIX A. MATLAB IMPLEMENTATIONS 96

45 sigma111=1 i ∗ rho∗omega∗cp+1 i ∗ rho∗cp ˆ2/(2∗omega) ∗(cp−2∗cs) ∗k ˆ2 ;

46 sigma112=−1i ∗ rho∗ cs ∗(cp−2∗cs) ∗k ; sigma121=−sigma112 ;

47 sigma122=1 i ∗ rho∗omega∗ cs+1 i ∗ rho∗ cs ˆ2/(2∗omega) ∗(cs−2∗cp) ∗k ˆ2 ;

48 end ;

49 sigma211=sigma111 ; sigma212=−sigma112 ; sigma221=−sigma121 ; sigma222=sigma122 ;

50

51 % Two−s ided Taylor

52 e l s e i f (cho i c e==3)

53 sigma111=1 i ∗ rho∗omega∗cp+1 i ∗ rho∗cp ˆ2/(2∗omega) ∗(cp−2∗cs) ∗ke1 ˆ2 ;

54 sigma112=−1i ∗ rho∗ cs ∗(cp−2∗cs) ∗ke1 ; sigma121=−sigma112 ;

55 sigma122=1 i ∗ rho∗omega∗ cs+1 i ∗ rho∗ cs ˆ2/(2∗omega) ∗(cs−2∗cp) ∗ke1 ˆ2 ;

56 sigma211=1 i ∗ rho∗omega∗cp+1 i ∗ rho∗cp ˆ2/(2∗omega) ∗(cp−2∗cs) ∗ke2 ˆ2 ;

57 sigma212=1 i ∗ rho∗ cs ∗(cp−2∗cs) ∗ke2 ; sigma221=−sigma212 ;

58 sigma222=1 i ∗ rho∗omega∗ cs+1 i ∗ rho∗ cs ˆ2/(2∗omega) ∗(cs−2∗cp) ∗ke2 ˆ2 ;

59

60 % One parameter fami ly

61 e l s e i f (cho i c e==4) | | (cho i c e==5)

62 var1 1=s q r t (ke .ˆ2−omega ˆ2 ./ cs ˆ2) ; var2 1=s q r t (ke .ˆ2−omega ˆ2 ./ cp ˆ2) ;

63 var1 2=var1 1 ; var2 2=var2 1 ; K 1=ke ; K 2=K 1 ;

64

65 % Two−s ided one parameter fami ly

66 e l s e i f (cho i c e==6) | | (cho i c e==7)

67 var1 1=s q r t (ke1 .ˆ2−omega ˆ2 ./ cs ˆ2) ; var2 1=s q r t (ke1 .ˆ2−omega ˆ2 ./ cp ˆ2) ; K 1=ke1 ;

68 var1 2=s q r t (ke2 .ˆ2−omega ˆ2 ./ cs ˆ2) ; var2 2=s q r t (ke2 .ˆ2−omega ˆ2 ./ cp ˆ2) ; K 2=ke2 ;

69

70 % Higher c o n d i t i o n s

71 e l s e i f (cho i c e==8) | | (cho i c e==9)

72 var1 1=s q r t (ke .ˆ2−omega ˆ2 ./ cs ˆ2) ; var2 1=s q r t (ke .ˆ2−omega ˆ2 ./ cp ˆ2) ;

73 var1 2=var1 1 ; var2 2=var2 1 ; K 1=k ; K 2=K 1 ;

74

75 % Two−s ided Higher c o n d i t i o n s

76 e l s e i f (cho i c e ==10) | | (cho i c e ==11)

77 var1 1=s q r t (ke1 .ˆ2−omega ˆ2 ./ cs ˆ2) ; var2 1=s q r t (ke1 .ˆ2−omega ˆ2 ./ cp ˆ2) ; K 1=k ;

78 var1 2=s q r t (ke2 .ˆ2−omega ˆ2 ./ cs ˆ2) ; var2 2=s q r t (ke2 .ˆ2−omega ˆ2 ./ cp ˆ2) ; K 2=k ;

79

80 % General Higher c o n d i t i o n s

81 e l s e i f (cho i c e ==12) | | (cho i c e ==13)

82 var1 1=alpha1 .∗(1+1 i) ; var2 1=alpha2 .∗(1+1 i) ;

83 var1 2=var1 1 ; var2 2=var2 1 ; K 1=k ; K 2=k ;

84 end ;

85

86 % General Formula

87 i f (cho ice >2)

88 sigma111=rho .∗ omega . ˆ 2 . ∗ var1 1 . / (K 1.ˆ2− var1 1 .∗ var2 1) ;

89 sigma112=1 i .∗ K 1 .∗ rho . ∗ (2 . ∗ csˆ2−omega ˆ2 . / (K 1.ˆ2− var1 1 .∗ var2 1)) ;

APPENDIX A. MATLAB IMPLEMENTATIONS 97

90 sigma121=−sigma112 ; sigma122=rho .∗ omega ˆ2 .∗ var2 1 . / (K 1.ˆ2− var1 1 .∗ var2 1) ;

91 sigma211=rho .∗ omega . ˆ 2 . ∗ var1 2 . / (K 2.ˆ2− var1 2 .∗ var2 2) ;

92 sigma212=−1i .∗ K 2 .∗ rho . ∗ (2 . ∗ csˆ2−omega ˆ2 . / (K 2.ˆ2− var1 2 .∗ var2 2)) ;

93 sigma221=−sigma212 ; sigma222=rho .∗ omega ˆ2 .∗ var2 2 . / (K 2.ˆ2− var1 2 .∗ var2 2) ;

94 end ;

95

96 % Matr ices from I n t e r f a c e i t e r a t i o n s

97 A1=[exp (lambda1∗ d e l t a) ∗(2∗ lambda1∗mu+sigma111+(1 i ∗ sigma112∗ lambda1) /k) exp (lambda2∗
d e l t a) ∗(1 i ∗k∗ lambda+sigma112−(1 i ∗2∗ lambda2ˆ2∗mu+1 i ∗ lambda2ˆ2∗ lambda+1 i ∗ sigma111∗
lambda2) /k)

98 exp (lambda1∗ d e l t a) ∗(1 i ∗mu∗k+sigma121+(1 i ∗ lambda1ˆ2∗mu+1 i ∗ sigma122∗ lambda1) /k) exp (

lambda2∗ d e l t a) ∗(2∗ lambda2∗mu+sigma122−(1 i ∗ sigma121∗ lambda2) /k)] ;

99 A2=[exp(−lambda1∗ d e l t a) ∗(−2∗ lambda1∗mu+sigma111−(1 i ∗ sigma112∗ lambda1) /k) exp(−
lambda2∗ d e l t a) ∗(1 i ∗k∗ lambda+sigma112−(1 i ∗2∗ lambda2ˆ2∗mu+1 i ∗ lambda2ˆ2∗ lambda−1 i ∗
sigma111∗ lambda2) /k)

100 exp(−lambda1∗ d e l t a) ∗(1 i ∗mu∗k+sigma121+(1 i ∗ lambda1ˆ2∗mu−1 i ∗ sigma122∗ lambda1) /k) exp(−
lambda2∗ d e l t a) ∗(−2∗ lambda2∗mu+sigma122+(1 i ∗ sigma121∗ lambda2) /k)] ;

101 B1=[−2∗ lambda1∗mu+sigma211+(1 i ∗ sigma212∗ lambda1) /k −1 i ∗k∗ lambda+sigma212+(1 i ∗ lambda2

ˆ2∗ lambda+1 i ∗2∗ lambda2ˆ2∗mu−1 i ∗ sigma211∗ lambda2) /k

102 −1 i ∗mu∗k+sigma221+(−1 i ∗ lambda1ˆ2∗mu+1 i ∗ sigma222∗ lambda1) /k −2∗lambda2∗mu+sigma222−(1 i

∗ sigma221∗ lambda2) /k] ;

103 B2=[2∗ lambda1∗mu+sigma211−(1 i ∗ sigma212∗ lambda1) /k −1 i ∗k∗ lambda+sigma212+(1 i ∗2∗
lambda2ˆ2∗mu+1 i ∗ lambda2ˆ2∗ lambda+1 i ∗ sigma211∗ lambda2) /k

104 −1 i ∗mu∗k+sigma221+(−1 i ∗ lambda1ˆ2∗mu−1 i ∗ sigma222∗ lambda1) /k 2∗ lambda2∗mu+sigma222+(1 i ∗
sigma221∗ lambda2) /k] ;

105

106 % I t e r a t i o n matr ice and i t s e i g e n v a l u e s

107 G=inv (A1) ∗A2∗ inv (B2) ∗B1 ; e=e i g (G) ; R1(j)=e (1) ; R2(j)=e (2) ;

108

109 % Absc i s s e s from kˆ∗ and k bar (Lemmas 2 .2 and 2 . 3)

110 i f (cho i c e==2)

111 f b a r 2 = max(abs (e (1)) , abs (e (2))) ;

112 i f (f b a r 2 > f b a r)

113 k bar = k ; f b a r = f b a r 2 ;

114 e l s e i f (f b a r 2 >= f b a r)

115 k bar2 = k ;

116 end ;

117 end ;

118

119 % peak spot

120 i f (cho i c e==5) | | (cho i c e==7) | | (cho i c e==9) | | (cho i c e ==11) | | (cho i c e ==13)

121 i f (k>omega . / cs +5.∗dk)

122 temp2=max(abs (e (1)) , abs (e (2))) ;

123 i f (temp2 > temp)

124 k temp = j ; temp = temp2 ;

APPENDIX A. MATLAB IMPLEMENTATIONS 98

125 end ;

126 end ;

127 end ;

128 end ;

129 end ;

130

131 % Values o f the assumed maximums

132 i f (cho i c e==5)

133 R=max ([abs (R2(N+1)) abs (R2(N+2)) abs (R1(2 .∗N+3))]) ;

134 e l s e i f (cho i c e==7) | | (cho i c e==9) | | (cho i c e ==11)

135 R=max ([abs (R2(N+1)) abs (R2(N+2)) abs (R1(2 .∗N+1)) abs (R1(2 .∗N+3)) abs (R1(k temp))]) ;

136 e l s e i f (cho i c e ==13)

137 R=max ([abs (R2(N+1)) abs (R2(N+2)) abs (R1(2 .∗N+1)) abs (R1(2 .∗N+3)) abs (R1(k temp)) abs (

R2(k temp))]) ;

138 end ;

139

140 % PLOTS −−
141 i f (cho i c e==1)

142 p lo t (kk , abs (R1) , ’− ’ , kk , abs (R2) , ’ r− ’) ;

143 semi logx (kk , max(abs (R1) , abs (R2)) , ’− ’) ;

144 t i t l e (” Spectrum of C l a s s i c a l Schwarz ”) ;

145 l e g end1 = l e g end (’ c l a s s i c a l ’) ;

146 g r id on

147

148 % Spectrum of the i t e r a t i o n operator (C l a s s i c a l Schwarz)

149 f i g u r e ;

150 p lo t (1− r e a l (R1) , imag (R1)) ;

151 s e t (gca , ’ Fonts i z e ’ , 10) ;

152 hold on

153 p lo t (1− r e a l (R2) , imag (R2)) ;

154 hold on

155 t = 0 : 0 . 0 5 : 2 . ∗ pi ;

156 p lo t (1+ cos (t) , s i n (t)) ;

157 l e g end1 = l e g end (’ r +’ , ’ r − ’) ; s e t (l e g end 1 , ’ Locat ion ’ , ’ southwest ’) ;

158 t i t l e (” Precond i t i one r t e s t ”) ;

159 pr i n t −de ps c precon . e ps ;

160 e l s e i f (cho i c e==2)

161 semi logx (kk , max(abs (R1) , abs (R2)) , ’− ’) ;

162 %t i t l e (” Spectrum of Schwarz with Taylor ”) ;

163 l e g end1 = l e g end (’ \ rho T ’) ;

164 e l s e i f (cho i c e==3)

165 semi logx (kk , max(abs (R1) , abs (R2)) , ’− ’) ;

166 t i t l e (” Spectrum of Schwarz with two−s ided Taylor ”) ;

167 l e g end1 = l e g end (’ \ rho {T 1} ’) ;

168 e l s e i f (cho i c e==4)

APPENDIX A. MATLAB IMPLEMENTATIONS 99

169 semi logx (kk , max(abs (R1) , abs (R2)) , ’− ’) ;

170 t i t l e (” Spectrum of Schwarz with one parameter fami ly ”) ;

171 l e g end1 = l e g end (’ \ rho E ’) ;

172 e l s e i f (cho i c e==5)

173 semi logx (kk (1 :N+1) , abs (R1 (1 :N+1)) , ’−b ’ , kk (1 :N+1) , abs (R2 (1 :N+1)) , ’−r ’ , kk (N+1) , abs (R2(N

+1)) , ’ ∗ ’ , kk (N+2) , abs (R2(N+2)) , ’ ∗ ’ , kk (2∗N+3) , abs (R1(2∗N+3)) , ’ ∗ ’ , kk (N+2:2∗N+2) , abs (

R1(N+2:2∗N+2)) , ’−b ’ , kk (2∗N+3:end) , abs (R1(2∗N+3:end)) , ’−b ’ , kk (N+2:2∗N+2) , abs (R2(N

+2:2∗N+2)) , ’−r ’ , kk (2∗N+3:end) , abs (R2(2∗N+3:end)) , ’−r ’)

174 l i n e ([omega/ cs omega/ cs] , [0 R]) ; l i n e ([omega/cp omega/cp] , [0 R])

175 t i t l e (” Spectrum of Schwarz with one parameter fami ly ”) ;

176 l e g end1 = l e g end (’ r − ’ , ’ r + ’ , ’ max 1 ’ , ’ max 2 ’ , ’ max 3 ’) ;

177 e l s e i f (cho i c e==6)

178 semi logx (kk , max(abs (R1) , abs (R2)) , ’− ’) ;

179 t i t l e (” Spectrum of Schwarz with two−s ided one parameter fami ly ”) ;

180 l e g end1 = l e g end (’ \ rho E two−s ided ’) ;

181 e l s e i f (cho i c e==7)

182 semi logx (kk (1 :N+1) , abs (R1 (1 :N+1)) , ’−b ’ , kk (1 :N+1) , abs (R2 (1 :N+1)) , ’−r ’ , kk (N+1) , abs (R2(N

+1)) , ’ ∗ ’ , kk (N+2) , abs (R2(N+2)) , ’ ∗ ’ , kk (2∗N+1) , abs (R1(2∗N+1)) , ’ ∗ ’ , kk (2∗N+3) , abs (R1(2∗
N+3)) , ’ ∗ ’ , kk (k temp) , abs (R1(k temp)) , ’ ∗ ’ , kk (N+2:2∗N+2) , abs (R1(N+2:2∗N+2)) , ’−b ’ , kk

(2∗N+3:end) , abs (R1(2∗N+3:end)) , ’−b ’ , kk (N+2:2∗N+2) , abs (R2(N+2:2∗N+2)) , ’−r ’ , kk (2∗N

+3:end) , abs (R2(2∗N+3:end)) , ’−r ’)

183 l i n e ([omega/ cs omega/ cs] , [0 R]) ; l i n e ([omega/cp omega/cp] , [0 R])

184 t i t l e (” Spectrum of Schwarz with two−s ided one parameter fami ly ”) ;

185 l e g end1 = l e g end (’ r − ’ , ’ r + ’ , ’ max 1 ’ , ’ max 2 ’ , ’ max 3 ’ , ’ max 4 ’ , ’ max 5 ’) ;

186 e l s e i f (cho i c e==8)

187 semi logx (kk , max(abs (R1) , abs (R2)) , ’− ’) ;

188 t i t l e (” Spectrum of Schwarz with h igher c o n d i t i o n s ”) ;

189 l e g end1 = l e g end (’ \ rho H ’) ;

190 e l s e i f (cho i c e==9)

191 semi logx (kk (1 :N+1) , abs (R1 (1 :N+1)) , ’−b ’ , kk (1 :N+1) , abs (R2 (1 :N+1)) , ’−r ’ , kk (N+1) , abs (R2(N

+1)) , ’ ∗ ’ , kk (N+2) , abs (R2(N+2)) , ’ ∗ ’ , kk (2∗N+1) , abs (R1(2∗N+1)) , ’ ∗ ’ , kk (2∗N+3) , abs (R1(2∗
N+3)) , ’ ∗ ’ , kk (k temp) , abs (R1(k temp)) , ’ ∗ ’ , kk (N+2:2∗N+2) , abs (R1(N+2:2∗N+2)) , ’−b ’ , kk

(2∗N+3:end) , abs (R1(2∗N+3:end)) , ’−b ’ , kk (N+2:2∗N+2) , abs (R2(N+2:2∗N+2)) , ’−r ’ , kk (2∗N

+3:end) , abs (R2(2∗N+3:end)) , ’−r ’)

192 l i n e ([omega/ cs omega/ cs] , [0 R]) ; l i n e ([omega/cp omega/cp] , [0 R])

193 t i t l e (” Spectrum of Schwarz with h igher c o n d i t i o n s ”) ;

194 l e g end1 = l e g end (’ r − ’ , ’ r + ’ , ’ max 1 ’ , ’ max 2 ’ , ’ max 3 ’ , ’ max 4 ’ , ’ max 5 ’) ;

195 e l s e i f (cho i c e ==10)

196 semi logx (kk , max(abs (R1) , abs (R2)) , ’− ’) ;

197 t i t l e (” Spectrum of Schwarz with two−s ided h igher c o n d i t i o n s ”) ;

198 l e g end1 = l e g end (’ \ rho H two−s ided ’) ;

199 e l s e i f (cho i c e ==11)

200 semi logx (kk (1 :N+1) , abs (R1 (1 :N+1)) , ’−b ’ , kk (1 :N+1) , abs (R2 (1 :N+1)) , ’−r ’ , kk (N+1) , abs (R2(N

+1)) , ’ ∗ ’ , kk (N+2) , abs (R2(N+2)) , ’ ∗ ’ , kk (2∗N+1) , abs (R1(2∗N+1)) , ’ ∗ ’ , kk (2∗N+3) , abs (R1(2∗
N+3)) , ’ ∗ ’ , kk (k temp) , abs (R1(k temp)) , ’ ∗ ’ , kk (N+2:2∗N+2) , abs (R1(N+2:2∗N+2)) , ’−b ’ , kk

APPENDIX A. MATLAB IMPLEMENTATIONS 100

(2∗N+3:end) , abs (R1(2∗N+3:end)) , ’−b ’ , kk (N+2:2∗N+2) , abs (R2(N+2:2∗N+2)) , ’−r ’ , kk (2∗N

+3:end) , abs (R2(2∗N+3:end)) , ’−r ’)

201 l i n e ([omega/ cs omega/ cs] , [0 R]) ; l i n e ([omega/cp omega/cp] , [0 R])

202 t i t l e (” Spectrum of Schwarz with two−s ided h igher c o n d i t i o n s ”) ;

203 l e g end1 = l e g end (’ r − ’ , ’ r + ’ , ’ max 1 ’ , ’ max 2 ’ , ’ max 3 ’ , ’ max 4 ’ , ’ max 5 ’) ;

204 e l s e i f (cho i c e ==12)

205 semi logx (kk , max(abs (R1) , abs (R2)) , ’− ’) ;

206 t i t l e (” Spectrum of Schwarz with General h igher c o n d i t i o n s ”) ;

207 l e g end1 = l e g end (’ \ rho G ’) ;

208 e l s e i f (cho i c e ==13)

209 semi logx (kk (1 :N+1) , abs (R1 (1 :N+1)) , ’−b ’ , kk (1 :N+1) , abs (R2 (1 :N+1)) , ’−r ’ , kk (N+1) , abs (R2(N

+1)) , ’ ∗ ’ , kk (N+2) , abs (R2(N+2)) , ’ ∗ ’ , kk (2∗N+1) , abs (R1(2∗N+1)) , ’ ∗ ’ , kk (2∗N+3) , abs (R1(2∗
N+3)) , ’ ∗ ’ , kk (k temp) , abs (R1(k temp)) , ’ ∗ ’ , kk (k temp) , abs (R2(k temp)) , ’ ∗ ’ , kk (N+2:2∗N

+2) , abs (R1(N+2:2∗N+2)) , ’−b ’ , kk (2∗N+3:end) , abs (R1(2∗N+3:end)) , ’−b ’ , kk (N+2:2∗N+2) ,

abs (R2(N+2:2∗N+2)) , ’−r ’ , kk (2∗N+3:end) , abs (R2(2∗N+3:end)) , ’−r ’)

210 l i n e ([omega/ cs omega/ cs] , [0 R]) ; l i n e ([omega/cp omega/cp] , [0 R])

211 t i t l e (” Spectrum of Schwarz with General h igher c o n d i t i o n s ”) ;

212 l e g end1 = l e g end (’ r − ’ , ’ r + ’) ;

213 end ;

214 s e t (l e g end 1 , ’ Locat ion ’ , ’ no r theas t ’) ; x l a b e l (’ k ’) ;

215 g r id on

216 s e t (gca , ’ Fonts i z e ’ ,10) ;

217 pr i n t −de ps c keoptexp . e ps ;

218 drawnow

Appendix B

FreeFem++ implementations

In this section we discuss the FreeFem++ implementation of the methods from Chapter 1 and show

the main parts of codes we used. All the details about the choice the solver, discrete spaces, boundary

conditions, are described in the exhaustive comments from the codes. We use the build-in polynomial

spaces such like space of all polynomials degree one P1.

Note that the data script contains a certain number of macros, whose general syntax is

macro <identifier>(<parameter list>) <replacement token list> //

where <parameter list> is optional; this will make it possible to replace every subsequent occurrence

of <identifier>() with <replacement token list>, by using the passed arguments if <parameter

list> is present in the macro definition. This use of macros permits to use the same scripts for different

(two or three dimensional) problems, by changing only the data script.

The main program needs the routines (of decomp.idp and createPartitionVec.idp) to create a de-

composition of the domain and to build the restriction and partition of unity matrices. We do not include

here the files decomp.idp and createpartitionVec.idp as they can be found in [DJN15].

The matrices from the local problems are used in the constructuon of the preconditioner for the (com-

plex) GMRES method called to solve the problem; in particular the GMRES-left.idp routine requires

the matrix-vector product with the problem matrix and with the preconditioner.

We start by the test cases 1 and 2.

101

APPENDIX B. FREEFEM++ IMPLEMENTATIONS 102

B.1 Data files and definitions of macros

The data file used for both is dataNavier.edp

1 load ” metis ”

2 load ”medit”

3

4 s t r i n g method = ”ORAS” ; // p r e c o n d i t i o n e r RAS or ORAS

5 i n t nn=2, mm=1; // number o f the domains in each d i r e c t i o n

6 i n t npart = nn∗mm; // t o t a l number o f domains

7 bool withmetis = 0 ; // =1 (Metis decomp) =0 (un i f orm decomp)

8 i n t s i z e o v r =8; // s i z e o f the over lap

9 i n t n loc = 40 ; // l o c a l no o f dof per domain in one d i r e c t i o n

10 s t r i n g prob=” square ” ; // t e s t case cons ide r ed

11 mesh Th ;

12 r e a l a l l o n g ;

13 // Boundary c o n d i t i o n s :

14 // Q = −1 D i r i c h l e t , Q = 1 Traction , Q = 0 Robin

15 r e a l Q = 0 , Qi = 0 ;

16

17 // Testcase 1

18 r e a l Cp=1, Cs =0.5 ;

19 r e a l rho = 1 ;

20 r e a l lambda = rho ∗(Cpˆ2−2∗Csˆ2) , mu = Csˆ2∗ rho ;

21 r e a l omega = 5 ;

22

23 // Testcase 2

24 /∗ r e a l rho = 7800 ; // dens i ty

25 r e a l E = 2.∗10ˆ11 , nu = 0 . 3 ; // Poisson r a t i o / Young ’ s modulus

26 r e a l mu= E/(2∗(1+nu)) ; // Lame c o e f f i c i e n t s

27 r e a l lambda = (E∗nu) /((1+nu) ∗(1−2∗nu)) ;

28 r e a l Cp = s q r t ((lambda+2∗mu) / rho) , Cs = s q r t (mu/rho) ; // P & S−wave

29 r e a l f = 20000 , omega = 2∗ pi ∗ f ; ∗/ // frequency , p u l s a t i o n

30

31 r e a l Kp = omega/Cp, Ks = Kp∗Cp/Cs ; // wavenumber o f P & S−waves

32

33 // Inc iden t wave

34 r e a l alpha = 1 . , beta = 1 . ; // c o e f . i n c i d e n t waves

35 r e a l xcs = pi /3 ;

36 r e a l sq r t2 = s q r t (2 .) ;

37 func uinc = alpha ∗ cos (xcs) ∗exp (1 i ∗Kp∗(cos (xcs) ∗x+s i n (xcs) ∗y)) +

38 beta ∗ s i n (xcs) ∗exp (1 i ∗Ks∗(cos (xcs) ∗x+s i n (xcs) ∗y)) ;

39 func v inc = alpha ∗ s i n (xcs) ∗exp (1 i ∗Kp∗(cos (xcs) ∗x+s i n (xcs) ∗y)) −
40 beta ∗ cos (xcs) ∗exp (1 i ∗Ks∗(cos (xcs) ∗x+s i n (xcs) ∗y)) ;

41

APPENDIX B. FREEFEM++ IMPLEMENTATIONS 103

42 i n t [i n t] chlab =[1 ,1 ,2 ,2 ,3 ,1 , 4 , 2] ; //Robin c o n d i t i o n s f o r l a b e l = 2

43 macro Grad (u) [dx (u) , dy (u)] // EOM

44 macro e ps i l o n (u , v) [dx (u) , dy (v) , (dy (u)+dx (v)) / sq r t2] // EOM

45 macro div (u , v) (dx (u)+dy (v)) // EOM

46

47 // Components o f the Sigma tenso r

48 macro sxx () rho∗omega∗(Cp∗N.xˆ2+Cs∗N.y ˆ2) //EOM

49 macro sxy () rho∗omega∗(Cp−Cs) ∗N.x∗N.y //EOM

50 macro syy () rho∗omega∗(Cp∗N.yˆ2+Cs∗N.x ˆ2) //EOM

51

52 // I t e r a t i v e s o l v e r parameters

53 r e a l t o l=1e−6; // t o l e r a n c e f o r the i t e r a t i v e method

54 i n t maxit =60; // maximum number o f i t e r a t i o n s

We also need to define the domain decomposition data structures and the global variational formulation

as shown in defNavier.edp

1 // D e f i n i t i o n i n g r e d i e n t s − numerica l s o l u t i o n o f Navier equat ions

2 // Mesh o f a r e c t angu l a r domain

3 i f (prob == ” square ”) {
4 a l l o n g = r e a l (nn) / r e a l (mm) ; // aspect r a t i o o f the g l o b a l domain

5 Th=square (nn∗ nloc ,mm∗ nloc , [x∗ a l long , y]) ;

6 }
7 func b i n t = (x>=0) && (x<=a l l o n g) && (y>0) && (y<1) ;

8 func brd = 1−b i n t ;

9

10 f e s p ac e Ph(Th, P0) ;

11 f e s p ac e Vh(Th , [P1 ,P1]) ; // vec to r fem space

12 f e s p ac e Uh(Th, P1) ; // s c a l a r fem space

13 Ph part ; // p i e c e w i s e constant func t i on

14 i n t [i n t] l p a r t (Ph . ndof) ; // g i v ing the decompos it ion

15

16 // Domain decomposit ion data s t r u c t u r e s

17 mesh [i n t] aTh(npart) , aTh0(npart) ; // sequence o f ovr . mesh es

18 matrix<complex>[i n t] Rih (npart) ; // l o c a l r e s t r i c t i o n ope ra to r s

19 matrix<complex>[i n t] Dih (npart) ; // p a r t i t i o n o f unity ope ra to r s

20 matrix [i n t] Dih r e a l (npart) , Rih r e a l (npart) , Dih r e a l 0(npart) , Rih r e a l 0(npart) , Dih r e a l r (npart)

;

21 i n t [i n t] Ndeg (npart) , Ndeg0 (npart) ; // number o f dof f o r each mesh

22 r e a l [i n t] AreaThi (npart) , AreaThi0 (npart) ; // area o f each subdomain

23 matrix<complex>[i n t] aA(npart) ,aR(npart) ; // l o c a l D i r i c h l e t /Robin matr i ce s

24

25 // D e f i n i t i o n o f the problem to s o l v e

26 Th=change (Th, r e f e=chlab) ;

27 Vh [i n t ern , i i n t ern] = [b i n t ,b i n t] ;

APPENDIX B. FREEFEM++ IMPLEMENTATIONS 104

28 Vh [bord , bbord] = [brd , brd] ;

29

30 // Tract ion operator app l i ed to uinc

31 Vh<complex> [ui , v i]=[uinc , v inc] ;

32 macro gu () (2∗mu∗(dx (u i) ∗N.x+dy (u i) ∗N.y)+

33 lambda∗ div (ui , v i) ∗N.x + mu∗(dx (v i)−dy (u i)) ∗N.y) //EOM

34 macro gv () (2∗mu∗(dx (v i) ∗N.x+dy (v i) ∗N.y)+

35 lambda∗ div (ui , v i) ∗N.y − mu∗(dx (v i)−dy (u i)) ∗N.x) //EOM

36

37 // g l o b a l v a r i a t i o n a l f o r mulation

38 Vh<complex> [rh sg l oba l , r r h s g l o b a l] , [uglob , uuglob] , [u , v] , [uu , vv] ;

39 macro Navier (u , v , uu , vv) rho∗omega ˆ2∗(u∗uu+v∗vv) −
40 lambda ∗(div (u , v) ∗ div (uu , vv))−2.∗mu∗(e ps i l o n (u , v) ’ ∗e ps i l o n (uu , vv)) // EOM

41 var f vag loba l ([u , v] , [uu , vv]) = i n t 2d (Th) (Navier (u , v , uu , vv))

42 + i n t 1d (Th, 2) (1 i ∗(1−Q) /(1+Q) ∗(sxx∗u∗uu+sxy ∗(v∗uu+u∗vv)+syy∗v∗vv))

43 − i n t 1d (Th, 2) (gu∗uu+gv∗vv−1 i ∗(1−Q) /(1+Q) ∗(sxx∗ ui ∗uu+sxy ∗(v i ∗uu+ui ∗vv)+syy∗ v i

∗vv))

44 + on (1 , u=ui)+on(1 , v=v i) ;

45 matrix<complex> Aglobal ;

B.2 RAS/ORAS

The main script file for the iterative versions of RAS and ORAS algorithms is Solver-Navier.edp

1 /∗# debutPar t i t i on #∗/

2 i n c lude ” . / dataNavier . edp”

3 i n c lude ” . / de fNavier . edp”

4 // inc lude ” ./ dataNavier−t r ansmi s s i on . edp”

5 // inc lude ” ./ defNavier−t r ansmi s s i on . edp”

6 i n c lude ” . / decomp . idp ”

7 i n c lude ” . / c r ea t ePar t i t i onVec . idp ”

8 SubdomainsPartit ionUnityVec (Th, part [] , s i z eov r , aTh , Rih r e a l , Dih r e a l ,Ndeg , AreaThi) ;

9 /∗ Build a new p a r t i t i o n o f unity

10 SubdomainsPartit ionUnityVec (Th, part [] , 1 , aTh0 , Rih r e a l 0 , Dih r e a l 0 , Ndeg0 , AreaThi0) ;

11 f o r (i n t i =0; i < npart ; i++) {
12 matrix Maux1 , Maux2 , Maux3 ;

13 Maux1 = Rih r e a l 0 [i]∗ Rih r e a l [i] ’ ;

14 Maux2 = Dih r e a l 0 [i]∗Maux1 ;

15 Maux3 = Rih r e a l 0 [i] ’∗Maux2 ;

16 Dih r e a l r [i] = Rih r e a l [i]∗Maux3 ;

17 }∗/

18

19 f o r (i n t i =0; i<npart ; i++) {
20 Rih [i] = Rih r e a l [i] ;

APPENDIX B. FREEFEM++ IMPLEMENTATIONS 105

21 Dih [i] = Dih r e a l [i] ;

22 /∗ t e s t the p a r t i t i o n o f unity

23 Vh<complex> [ux , uux] , [vx , vvx] ;

24 ux [] = 1 . ;

25 matrix Maux1 , Maux2 ;

26 Maux1 = Dih r e a l [i]∗ Rih r e a l [i] ;

27 Maux2 = Rih r e a l [i] ’∗Maux1 ;

28 vx [] = Maux2∗ux [] ;

29 p lo t (vx , va lue =1, f i l l =1,dim=3, wait=1) ; ∗/

30 }
31

32 /∗# end P a r t i t i o n #∗/

33 /∗# debutGlobalData #∗/

34 Aglobal = vag loba l (Vh,Vh, s o l v e r = UMFPACK) ; // g l o b a l matrix

35 r h s g l o b a l [] = vag loba l (0 ,Vh) ; // g l o b a l rhs

36 uglob [] = Aglobalˆ−1∗ r h s g l o b a l [] ;

37 p lo t (uglob , wait =1, f i l l =1,dim=3,ps=” Globa lSo lut ion ”) ;

38 /∗# finGlobalData #∗/

39

40 /∗# debutLocalData #∗/

41 f o r (i n t i = 0 ; i<npart;++ i) {
42 mesh Thi = aTh [i] ;

43 f e s p ac e Vhi (Thi , [P1 ,P1]) ;

44 cout << ” Domain : ” << i << ”/” << npart << end l ;

45 i f (method == ”ORAS”) {
46 var f v a l o c a l ([u , v] , [uu , vv]) = i n t 2d (Thi) (Navier (u , v , uu , vv))

47 + i n t 1d (Thi , 2) (1 i ∗(1−Q) /(1+Q) ∗(sxx∗u∗uu+sxy ∗(v∗uu+u∗vv)+syy∗v∗vv))

48 + i n t 1d (Thi , 1 0) (1 i ∗(1−Qi) /(1+Qi) ∗(sxx∗u∗uu+sxy ∗(v∗uu+u∗vv)+syy∗v∗vv))

49 + on (1 , u=ui , v=v i) ;

50 aR [i] = v a l o c a l (Vhi , Vhi , s o l v e r = UMFPACK) ;

51 }
52 i f (method == ”RAS”) {
53 matrix<complex> temp = Aglobal ∗Rih [i] ’ ;

54 aR [i] = Rih [i]∗ temp ;

55 s e t (aR [i] , s o l v e r = UMFPACK) ;

56 }
57 }
58 /∗# finLoca lData #∗/

59 /∗# debutSchwarzIter #∗/

60 ofstream f i l e i (method+” I t e r o v r ”+s i z e o v r+” w”+omega+”.m”) ;

61 Vh<complex> [un , uun] = [0 , 0] ; // i n i t i a l guess

62 Vh<complex> [rn , r rn] = [rhsg l oba l , r r h s g l o b a l] ;

63 Vh<complex> [er , e e r] , [dr , ddr] ;

64 f o r (i n t i t e r = 0 ; i t e r <maxit;++ i t e r)

65 {

APPENDIX B. FREEFEM++ IMPLEMENTATIONS 106

66 r e a l e r r = 0 , r e s ;

67 [dr , ddr] = [0 , 0] ;

68 f o r (i n t i = 0 ; i<npart;++ i)

69 {
70 complex [i n t] b i = Rih [i]∗ rn [] ; // r e s t r i c t i o n to the l o c a l domain

71 complex [i n t] u i = aR [i] ˆ−1 ∗ bi ; // l o c a l s o l v e

72 bi = Dih [i]∗ ui ;

73 dr [] += Rih [i] ’ ∗ bi ;

74 }
75 un [] += dr [] ; // bu i ld new i t e r a t e

76 rn [] = Aglobal ∗un [] ; // computes g l o b a l r e s i d u a l

77 rn [] = rn [] − r h s g l o b a l [] ;

78 rn [] ∗= −1;

79 er [] = un[]− uglob [] ;

80 // cout << ” Error = ”<< er [] [2 5] << end l ;

81 e r r = er [] . l 2 / uglob [] . l 2 ;

82 r e s = rn [] . l 2 ;

83 cout << ” I t : ”<< i t e r << ” Res idua l = ” << r e s << ” Re la t i v e L2 Error = ”<< e r r

<< end l ;

84 Vh [abser , abseer] = [abs (er) , abs (ee r)] ;

85 p lo t (abser , va lue =1,dim=3, f i l l =1, wait =1,cmm=” e r r o r ”) ;

86 i n t j = i t e r +1;

87 // Store the e r r o r and the r e s i d u a l in Matlab/ S c i l a b /Octave f o rm

88 f i l e i << method+” I t e r o v r ”+s i z e o v r+” w”+omega+” (”+j+”)=” << e r r << ” ; ” << end l ;

89 i f (e r r < t o l) break ;

90 }
91 // medit (” Error ” ,Th, abs (er)) ;

92 /∗# f inSchwarz I t e r #∗/

and of the preconditioned version is Precond-GMRES-Navier.edp

1 /∗# debutPar t i t i on #∗/

2 i n c lude ” . / dataNavier . edp”

3 i n c lude ” . / de fNavier . edp”

4 // inc lude ” ./ dataNavier−t r ansmi s s i on . edp”

5 // inc lude ” ./ defNavier−t r ansmi s s i on . edp”

6 i n c lude ” . / decomp . idp ”

7 i n c lude ” . / c r ea t ePar t i t i onVec . idp ”

8 SubdomainsPartit ionUnityVec (Th, part [] , s i z eov r , aTh , Rih r e a l , Dih r e a l ,Ndeg , AreaThi) ;

9 /∗ Build a new p a r t i t i o n o f unity

10 SubdomainsPartit ionUnityVec (Th, part [] , 1 , aTh0 , Rih r e a l 0 , Dih r e a l 0 , Ndeg0 , AreaThi0) ;

11 f o r (i n t i =0; i < npart ; i++) {
12 matrix Maux1 , Maux2 , Maux3 ;

13 Maux1 = Rih r e a l 0 [i]∗ Rih r e a l [i] ’ ;

14 Maux2 = Dih r e a l 0 [i]∗Maux1 ;

15 Maux3 = Rih r e a l 0 [i] ’∗Maux2 ;

APPENDIX B. FREEFEM++ IMPLEMENTATIONS 107

16 Dih r e a l r [i] = Rih r e a l [i]∗Maux3 ;

17 }∗/

18 f o r (i n t i =0; i<npart ; i++) {
19 Rih [i] = Rih r e a l [i] ;

20 Dih [i] = Dih r e a l [i] ;

21 }
22

23 /∗# end P a r t i t i o n #∗/

24 /∗# debutGlobalData #∗/

25 Aglobal = vag loba l (Vh,Vh, s o l v e r = UMFPACK) ; // g l o b a l matrix

26 r h s g l o b a l [] = vag loba l (0 ,Vh) ; // g l o b a l rhs

27 uglob [] = Aglobalˆ−1∗ r h s g l o b a l [] ;

28 // p lo t (uglob , wait =1, f i l l =1) ;

29 /∗# finGlobalData #∗/

30

31 /∗# debutLocalData #∗/

32 f o r (i n t i = 0 ; i<npart;++ i) {
33 mesh Thi = aTh [i] ;

34 f e s p ac e Vhi (Thi , [P1 ,P1]) ;

35 cout << ” Domain : ” << i << ”/” << npart << end l ;

36 i f (method == ”ORAS”) {
37 var f v a l o c a l ([u , v] , [uu , vv]) = i n t 2d (Thi) (Navier (u , v , uu , vv))

38 + i n t 1d (Thi , 2) (1 i ∗(1−Q) /(1+Q) ∗(sxx∗u∗uu+sxy ∗(v∗uu+u∗vv)+syy∗v∗vv))

39 + i n t 1d (Thi , 1 0) (1 i ∗(1−Qi) /(1+Qi) ∗(sxx∗u∗uu+sxy ∗(v∗uu+u∗vv)+syy∗v∗vv))

40 + on (1 , u=ui , v=v i) ;

41 aR [i] = v a l o c a l (Vhi , Vhi , s o l v e r = UMFPACK) ;

42 }
43 i f (method == ”RAS”) {
44 matrix<complex> temp = Aglobal ∗Rih [i] ’ ;

45 aR [i] = Rih [i]∗ temp ;

46 s e t (aR [i] , s o l v e r = UMFPACK) ;

47 }
48 }
49

50 /∗# finLoca lData #∗/

51 /∗# debutGMRESs o l v e #∗/

52 i n c lude ”GMRES. idp ”

53 Vh<complex> [un , uun] , [cbord , ccbord] ;

54 Vh<complex> [s o l , s s o l] , [er , e e r] ; // i n i t i a l guess , f i n a l s o l u t i o n and e r r o r

55 un [] . r e = i n t ern [] ;

56 cbord [] . r e = bord [] ;

57 un [] += ui [] . ∗ cbord [] ; // s o l u t i o n ver i f y ing the D i r i c h l e BC

58

59 s o l [] = GMRES(un [] , to l , maxit) ;

60 Vh [s o l r e , s s o l r e]= [r e a l (s o l) , r e a l (s s o l)] ;

APPENDIX B. FREEFEM++ IMPLEMENTATIONS 108

61 Vh [sol im , s so l im]= [imag (s o l) , imag (s s o l)] ;

62 // p lo t (s o l r e , dim=3, wait =1, va lue =1, f i l l =1) ;

63 er [] = s o l []− uglob [] ;

64 cout << ” Fina l s c a l e d e r r o r = ” << er [] . l i n f t y / uglob [] . l i n f t y << end l ;

65 /∗# finGMRES s o l v e #∗/

B.3 GMRES

The details of the implementation of these preconditioners as well as the complex version of the Krylov

solver used here (GMRES with a left preconditioning) are shown in GMRES-left.idp

1 // Precondi t ioned GMRES algor i thm Applied to the system

2 // Mˆ{−1}Aglobal x = Mˆ{−1}b
3 // Here Aglobal denotes the g l o b a l matrix

4 // Mˆ{−1} i s the RAS p r e c o n d i t i o n e r based on domain decompos it ion

5 // In order to use the GMRES rout ine d e f i n e f i r s t the matrix−vec to r product

6 /∗# debutGlobalMatvec #∗/

7 func complex [i n t] A(complex [i n t] &vec)

8 {
9 // Matrix vec to r product with the g l o b a l matrix

10 Vh<complex> [Ax , Axx] ;

11 Ax[]= Aglobal ∗vec ;

12 re turn Ax [] ;

13 }
14 /∗# finGlobalMatvec #∗/

15 /∗# debutRASPrecond #∗/

16 // and the a p p l i c a t i o n o f the p r e c o n d i t i o n e r

17 func complex [i n t] PREC(complex [i n t] &l)

18 {
19 // Appl i ca t ion o f the p r e c o n d i t i o n e r

20 // Mˆ{−1}∗y = \sum RiˆT∗Di∗Aiˆ{−1}∗Ri∗y

21 // Ri r e s t r i c t i o n operators , Ai l o c a l matr i ce s

22 Vh<complex> [s , s s] = [0 , 0] ;

23 f o r (i n t i =0; i<npart ; ++i) {
24 complex [i n t] b i = Rih [i]∗ l ; // r e s t r i c t s rhs

25 complex [i n t] u i = aR [i] ˆ−1 ∗ bi ; // l o c a l s o l v e s

26 bi = Dih [i]∗ ui ; // p a r t i t i o n o f unity

27 s [] += Rih [i] ’ ∗ bi ; // pro longat i on

28 }
29 re turn s [] ;

30 }
31 /∗# finRASPrecond #∗/

32 /∗# debutGMRESs o l v e #∗/

33 func complex [i n t] GMRES(complex [i n t] x0 , r e a l e ps , i n t n b i t e r)

APPENDIX B. FREEFEM++ IMPLEMENTATIONS 109

34 {
35 i n t i n t metis = withmetis ;

36 ofstream f i l e i (” conv ovr l”+s i z e o v r+” ”+method+” ”+npart+” ”+”part”+i n t metis +”.m”)

;

37

38 Vh<complex> [r , r r] , [z , zz] , [v , vv] , [w,ww] , [er , e e r] , [un , uun] ;

39 Vh<complex>[i n t] [V,VV] (n b i t e r) ; // orthonormal b a s i s

40 complex [i n t , i n t] Hn(n b i t e r +2, n b i t e r +1) ; // Hessenberg matrix

41 Hn = 0 . ;

42 complex [i n t , i n t] ro t (2 , n b i t e r +2) ;

43 ro t = 0 . ;

44 complex [i n t] g (n b i t e r +1) , g1 (n b i t e r +1) ;

45 g = 0 . ; g1 = 0 . ;

46 r [] = A(x0) ;

47 r [] −= r h s g l o b a l [] ;

48 r [] ∗= −1.0;

49

50 z [] = PREC(r []) ; // z= Mˆ{−1}(b−A∗x0)

51 g [0] = z [] . l 2 ; // i n i t i a l r e s i d u a l norm

52

53 // f i l e i << ” r e l r e s (”+1+”)=” << g [0] << ” ;” << end l ;

54 V[0] [] = 1 / g [0] ∗ z [] ; // f i r s t b a s i s vec to r

55 f o r (i n t i t =0; i t<n b i t e r ; i t ++){
56 v [] = A(V[i t] []) ;

57 w [] = PREC(v []) ; // w = Mˆ{−1}A∗ V it

58 f o r (i n t i =0; i< i t +1; i++) {
59 Hn(i , i t) = w [] ’ ∗V[i] [] ;

60 w [] −= conj (Hn(i , i t)) ∗V[i] [] ;

61 }
62 Hn(i t +1, i t) = w [] . l 2 ;

63 complex aux = Hn(i t +1, i t) ;

64 f o r (i n t i =0; i< i t ; i++){ // QR decomposit ion o f Hn

65 complex aa = conj (ro t (0 , i)) ∗Hn(i , i t)+conj (ro t (1 , i)) ∗Hn(i +1, i t) ;

66 complex bb = −ro t (1 , i) ∗Hn(i , i t)+rot (0 , i) ∗Hn(i +1, i t) ;

67 Hn(i , i t) = aa ;

68 Hn(i +1, i t) = bb ;

69 }
70 complex sq = s q r t (conj (Hn(i t , i t)) ∗Hn(i t , i t) + Hn(i t +1, i t) ∗Hn(i t +1, i t)) ;

71 ro t (0 , i t) = Hn(i t , i t) / sq ;

72 ro t (1 , i t) = Hn(i t +1, i t) / sq ;

73 Hn(i t , i t) = conj (ro t (0 , i t)) ∗Hn(i t , i t)+conj (ro t (1 , i t)) ∗Hn(i t +1, i t) ;

74 Hn(i t +1, i t) = 0 . ;

75 g [i t +1] = −ro t (1 , i t) ∗g [i t] ;

76 g [i t] = conj (ro t (0 , i t)) ∗g [i t] ;

77 complex [i n t] y (i t +1) ; // Reconstruct the s o l u t i o n

APPENDIX B. FREEFEM++ IMPLEMENTATIONS 110

78 f o r (i n t i=i t ; i >=0; i−−) {
79 g1 [i] = g [i] ;

80 f o r (i n t j=i +1; j< i t +1; j++){
81 g1 [i] = g1 [i]−Hn(i , j) ∗y [j] ;

82 }
83 y [i]=g1 [i] /Hn(i , i) ;

84 }
85 un [] = x0 ;

86 f o r (i n t i =0; i< i t +1; i++){
87 un []= un []+ conj (y [i]) ∗V[i] [] ;

88 }
89 er [] = un [] − uglob [] ;

90 r e a l r e l r e s = abs (g [i t +1]) ;

91 r e a l r e l e r r = er [] . l 2 / uglob [] . l 2 ;

92 cout << ” I t : ”<< i t << ” Res idua l = ” << r e l r e s << ” Re la t i v e L2 Error = ”<<

r e l e r r << end l ;

93 i n t j = i t +2;

94 i n t k = j −1;

95 f i l e i << ” r e l r e s (”+k+”)=” << r e l e r r /∗ r e l r e s ∗/ << ” ; ” << end l ;

96 i f (r e l e r r < e ps) {
97 cout << ”GMRES has converged in ” + i t + ” i t e r a t i o n s ” << end l ;

98 cout << ” Re la t i v e r e s i d u a l = ” + r e l r e s << end l ;

99 break ; }
100 V[i t +1][]=1/ aux∗w [] ;

101 Vh [r e a l so l , r r e a l s o l] , [r e a l er , r r e a l e r] ;

102 [r e a l so l , r r e a l s o l] = [r e a l (un) , r e a l (uun)] ;

103 [r e a l er , r r e a l e r] = [r e a l (e r) , r e a l (e e r)] ;

104 // p lo t (r e a l er , dim=3, cmm=”Error at s tep ” + i t , va lue =1, f i l l =1, wait=1) ;

105 }
106 re turn un [] ;

107 }
108 /∗# finGMRES s o l v e #∗/

Bibliography

[ABG12] X. Antoine, Y. Boubendir, and C. Geuzaine. A quasi-optimal non-

overlapping domain decomposition algorithm for the Helmholtz equation.

Journal of Computational Physic, 231(2):262–280, 2012.

[ARGG06] A. Alonso-Rodriguez and L. Gerardo-Giorda. New nonoverlapping domain

decomposition methods for the harmonic Maxwell system. SIAM J. Sci.

Comput., 28(1):102–122, 2006.

[BDG+17] M. Bonazzoli, V. Dolean, I. G. Graham, E.A. Spence, and P-

H. Tournier. Domain Decomposition preconditioning for the high-

frequency time-harmonic Maxwell equations with absorption. Submitted,

arXiv:1711.03789, 2017.

[Ber94] J.-P. Berenger. A perfectly matched layer for the absorption of electro-

magnetic waves. J. of Comp.Phys., 114:185–200, 1994.

[CDJP97a] F. Collino, G. Delbue, P. Joly, and A. Piacentini. A new interface condition

in the non-overlapping domain decomposition. Comput. Methods Appl.

Mech. Engrg., 148:195–207, 1997.

[CDJP97b] F. Collino, G. Delbue, P. Joly, and A. Piacentini. A new interface condition

in the non-overlapping domain decomposition for the Maxwell equations

Helmholtz equation and related optimal control. Comput. Methods Appl.

Mech. Engrg, 148:195–207, 1997.

[Che98] P. Chevalier. Méthodes numériques pour les tubes hyperfréquences.

Résolution par décomposition de domaine. PhD thesis, Université Paris

VI, 1998.

[CN98] P. Chevalier and F. Nataf. Symmetrized method with optimized second-

order conditions for the Helmholtz equation. In Domain decomposition

111

BIBLIOGRAPHY 112

methods, 10 (Boulder, CO, 1997), pages 400–407. Amer. Math. Soc., Prov-

idence, RI, 1998.

[CS99] X.-Ch. Cai and M. Sarkis. A restricted additive Schwarz preconditioner

for general sparse linear systems. SIAM J. Sci. Comput., 21(2):792–797

(electronic), 1999.

[CW94] W. C. Chew and W. H. Weedon. A 3d perfectly matched medium from

modified maxwell’s equations with stretched coordinates. IEEE Trans.

Microwave Opt. Technol. Lett., 7:599–604, 1994.

[Des90] B. Després. Décomposition de domaine et problème de Helmholtz. C.R.

Acad. Sci. Paris, 1(6):313–316, 1990.

[Des91] B. Després. Méthodes de décomposition de domaine pour les problèmes de

propagation d’ondes en régimes harmoniques. PhD thesis, Paris IX, 1991.

[DGG09] V. Dolean, L. Gerardo Giorda, and M. J. Gander. Optimized Schwarz

methods for Maxwell equations. SIAM J. Scient. Comp., 31(3):2193–2213,

2009.

[DGL+12] O. Dubois, M. J. Gander, S. Loisel, A. St-Cyr, and D. B. Szyld. The

optimized Schwarz method with a coarse grid correction. SIAM J. Sci.

Comput., 34(1):A421–A458, 2012.

[DGL+13] V. Dolean, M. J. Gander, S. Lanteri, J.-F. Lee, and Z. Peng. Optimized

Schwarz methods for curl-curl time-harmonic Maxwell’s equations. In Jo-

celyne Erhel, Martin J. Gander, Laurence Halpern, Taoufik Sassi, and Olof

Widlund, editors, Proceedings of the 21st international domain decompo-

sition conference. Springer LNCSE, 2013.

[DGL+14] V. Dolean, M. J. Gander, S. Lanteri, J.-F. Lee, and Z. Peng. Effective

transmission conditions for domain decomposition methods applied to the

time-harmonic curl-curl maxwell’s equations. Journal of Computational

Physics, 2014.

[DJN15] V. Dolean, P. Jolivet, and F. Nataf. An introduction to domain decompo-

sition methods. Society for Industrial and Applied Mathematics (SIAM),

Philadelphia, PA, 2015. Algorithms, theory, and parallel implementation.

BIBLIOGRAPHY 113

[DLP08a] V. Dolean, S. Lanteri, and R. Perrussel. A domain decomposition

method for solving the three-dimensional time-harmonic Maxwell equa-

tions discretized by discontinuous Galerkin methods. J. Comput. Phys.,

227(3):2044–2072, 2008.

[DLP08b] V. Dolean, S. Lanteri, and R. Perrussel. Optimized Schwarz algorithms for

solving time-harmonic Maxwell’s equations discretized by a discontinuous

Galerkin method. IEEE. Trans. Magn., 44(6):954–957, 2008.

[Dub07] O. Dubois. Optimized Schwarz Methods for the Advection-Diffusion Equa-

tion and for Problems with Discontinuous Coefficients. PhD thesis, McGill

University, 2007.

[EDG+11] M. El Bouajaji, V.a Dolean, M. J. Gander, S. Lanteri, and R. Perrus-

sel. Domain decomposition methods for electromagnetic wave propagation

problems in heterogeneous media and complex domains. In Domain De-

composition Methods in Science and Engineering XIX, volume 78(1), pages

5–16. Springer LNCSE, 2011.

[EDGL12a] M. El Bouajaji, V. Dolean, M. J. Gander, and S. Lanteri. Comparison of

a one and two parameter family of transmission conditions for Maxwell’s

equations with damping. In Domain Decomposition Methods in Science

and Engineering XX. Springer LNCSE, 2012. accepted for publication.

[EDGL12b] M. El Bouajaji, V. Dolean, M. J. Gander, and S. Lanteri. Optimized

Schwarz methods for the time-harmonic Maxwell equations with dampimg.

SIAM J. Scient. Comp., 34(4):2048–2071, 2012.

[EG03] E. Efstathiou and M. J. Gander. Why restricted additive Schwarz con-

verges faster than additive Schwarz. BIT, 43(suppl.):945–959, 2003.

[EG12] O. G. Ernst and M. J. Gander. Why it is difficult to solve Helmholtz prob-

lems with classical iterative methods. In Numerical analysis of multiscale

problems, pages 325–363. Springer, 2012.

[Fla01] E. Flauraud. Méthode de décomposition de domaine pour des milieux

poreux faillés. PhD thesis, Paris VI, 2001. in preparation.

[Gan06] M. J. Gander. Optimized Schwarz methods. SIAM J. Numer. Anal.,

44(2):699–731, 2006.

BIBLIOGRAPHY 114

[Gan11] M. J. Gander. On the influence of geometry on optimized Schwarz meth-

ods. SeMA J., 53(1):71–78, 2011.

[GHM07a] M. J. Gander, L. Halpern, and F. Magoulès. An optimized schwarz method

with two-sided robin transmission conditions for the helmholtz equation.

Int. J. for Num. Meth. in Fluids, 55(2):163–175, 2007.

[GHM07b] M. J. Gander, L. Halpern, and F. Magoules. An optimized Schwarz method

with two-sided Robin transmission conditions for the Helmholtz equation.

International journal for numerical methods in fluids, 55(2):163–175, 2007.

[GK12] M. J. Gander and F. Kwok. Best Robin parameters for optimized Schwarz

methods at cross points. SIAM J. Sci. Comput., 34(4):A1849–A1879, 2012.

[GMN02a] M. J. Gander, F. Magoulès, and F. Nataf. Optimized Schwarz meth-

ods without overlap for the Helmholtz equation. SIAM J. Sci. Comput.,

24(1):38–60, 2002.

[GMN02b] M. J. Gander, F. Magoules, and F. Nataf. Optimized Schwarz methods

without overlap for the Helmholtz equation. SIAM Journal on Scientific

Computing, 24(1):38–60, 2002.

[GN00] M. J. Gander and F. Nataf. AILU: a preconditioner based on the ana-

lytic factorization of the elliptic operator. Numer. Linear Algebra Appl.,

7(7-8):505–526, 2000. Preconditioning techniques for large sparse matrix

problems in industrial applications (Minneapolis, MN, 1999).

[GN04] L. Gerardo Giorda and F. Nataf. Optimized Schwarz methods for un-

symmetric layered problems with strongly discontinuous and anisotropic

coefficients. Technical Report 561, CMAP, CNRS UMR 7641, Ecole Poly-

technique, France, 2004. submitted.

[Gra91] K.F. Graff. Wave motion in elastic solids. Dover, New York, 1991.

[GSV17a] I. G. Graham, E. A. Spence, and E. Vainikko. Domain decomposition

preconditioning for high-frequency Helmholtz problems with absorption.

Math. Comp., 86(307):2089–2127, 2017.

[GSV17b] I. G. Graham, E. A. Spence, and E. Vainikko. Recent Results on Domain

Decomposition Preconditioning for the High-Frequency Helmholtz Equation

Using Absorption, pages 3–26. Geosystems Mathematics. Springer, 2017.

BIBLIOGRAPHY 115

[GX14] M. J. Gander and Y. Xu. Optimized Schwarz Methods for Circular Domain

Decompositions with Overlap. SIAM J. Numer. Anal., 52(4):1981–2004,

2014.

[GZ16] M. J. Gander and H. Zhang. Optimized Schwarz methods with overlap

for the Helmholtz equation. SIAM J. Sci. Comput., 38(5):A3195–A3219,

2016.

[Hec12] F. Hecht. New development in freefem++. J. Numer. Math., 20(3-4):251–

265, 2012.

[HMCK04] T. Huttunen, P. Monk, F. Collino, and J. P. Kaipio. The ultra-weak vari-

ational formulation for elastic wave problems. SIAM Journal on Scientific

Computing, 25(5):1717–1742, 2004.

[Hog] M. Hogan. Ps waves. http://www.colorado.edu/physics/phys2900/

homepages/Marianne.Hogan/waves.html. Accessed: 2017-09-07.

[HTJ88] T. Hagstrom, R. P. Tewarson, and A. Jazcilevich. Numerical experiments

on a domain decomposition algorithm for nonlinear elliptic boundary value

problems. Appl. Math. Lett., 1988.

[JN00] C. Japhet and F. Nataf. The best interface conditions for domain decom-

position methods: Absorbing boundary conditions. to appear in ’Artificial

Boundary Conditions, with Applications to Computational Fluid Dynam-

ics Problems’ edited by L. Tourrette, Nova Science, 2000.

[JNR98] C. Japhet, F. Nataf, and F.-X. Roux. The Optimized Order 2 Method with

a coarse grid preconditioner. application to convection-diffusion problems.

In P. Bjorstad, M. Espedal, and D. Keyes, editors, Ninth International

Conference on Domain Decompositon Methods in Science and Engineering,

pages 382–389. John Wiley & Sons, 1998.

[JNR01] C. Japhet, F. Nataf, and F. Rogier. The optimized order 2 method. ap-

plication to convection-diffusion problems. Future Generation Computer

Systems FUTURE, 18(1):17–30, 2001.

[KK98] G. Karypis and V. Kumar. A software package for partitioning unstruc-

tured graphs, partitioning meshes, and computing fill-reducing orderings

of sparse matrices. Technical report, University of Minnesota, Depart-

ment of Computer Science and Engineering, Army HPC Research Center,

Minneapolis, MN, 1998.

BIBLIOGRAPHY 116

[KL15] A. Karangelis and S. Loisel. Condition number estimates and weak scaling

for 2-level 2-Lagrange multiplier methods for general domains and cross

points. SIAM J. Sci. Comput., 37(2):C247–C267, 2015.

[Lio88] P.-L. Lions. On the Schwarz alternating method. I. In First Interna-

tional Symposium on Domain Decomposition Methods for Partial Differ-

ential Equations (Paris, 1987), pages 1–42. SIAM, Philadelphia, PA, 1988.

[Lio90] P.-L. Lions. On the Schwarz alternating method. III: a variant for nonover-

lapping subdomains. In Tony F. Chan, Roland Glowinski, Jacques Périaux,

and Olof Widlund, editors, Third International Symposium on Domain De-

composition Methods for Partial Differential Equations , held in Houston,

Texas, March 20-22, 1989, Philadelphia, PA, 1990. SIAM.

[LMO00] G. Lube, L. Mueller, and F.-C. Otto. A non-overlapping domain decompo-

sition method for the advection-diffusion problem. Computing, 64:49–68,

2000.

[LNS15] S. Loisel, H. Nguyen, and R. Scheichl. Optimized Schwarz and 2-Lagrange

multiplier methods for multiscale elliptic PDEs. SIAM J. Sci. Comput.,

37(6):A2896–A2923, 2015.

[LVL05] S.-C. Lee, M. Vouvakis, and J.-F. Lee. A non-overlapping domain decom-

position method with non-matching grids for modeling large finite antenna

arrays. J. Comput. Phys., 203(1):1–21, 2005.

[Nat96] F. Nataf. Absorbing boundary conditions in block Gauss-Seidel methods

for convection problems. Math. Models Methods Appl. Sci., 6(4):481–502,

1996.

[NN97] F. Nataf and F. Nier. Convergence rate of some domain decomposition

methods for overlapping and nonoverlapping subdomains. Numerische

Mathematik, 75(3):357–77, 1997.

[NS02] R. Nabben and D. B. Szyld. Convergence theory of restricted multiplicative

Schwarz methods. SIAM J. Numer. Anal., 40(6):2318–2336 (electronic)

(2003), 2002.

[PELY13] J. Poulson, B. Engquist, S. Li, and L. Ying. A parallel sweeping precondi-

tioner for heterogeneous 3D Helmholtz equations. SIAM J. Sci. Comput.,

35(3):C194–C212, 2013.

BIBLIOGRAPHY 117

[PL10] Z. Peng and J.-F. Lee. Non-conformal domain decomposition method with

second-order transmission conditions for time-harmonic electromagnetics.

J. Comput. Phys., 229(16):5615–5629, 2010.

[PRL10] Z. Peng, V. Rawat, and J.-F. Lee. One way domain decomposition method

with second order transmission conditions for solving electromagnetic wave

problems. J. Comput. Phys., 229(4):1181–1197, 2010.

[QV99] A. Quarteroni and A. Valli. Domain Decomposition Methods for Partial

Differential Equations. Oxford Science Publications, 1999.

[RL10] V. Rawat and J.-F. Lee. Nonoverlapping domain decomposition with sec-

ond order transmission condition for the time-harmonic Maxwell’s equa-

tions. SIAM J. Sci. Comput., 32(6):3584–3603, 2010.

[SBG96] B. F. Smith, P. E. Bjørstad, and W. Gropp. Domain Decomposition: Par-

allel Multilevel Methods for Elliptic Partial Differential Equations. Cam-

bridge University Press, 1996.

[SCGT07] A. St-Cyr, M. J. Gander, and S. J. Thomas. Optimized multiplicative,

additive, and restricted additive Schwarz preconditioning. SIAM J. Sci.

Comput., 29(6):2402–2425 (electronic), 2007.

[Sch70] H. A. Schwarz. Über einen Grenzübergang durch alternirendes Verfahren.

Zürcher u. Furrer, 1870.

[SS86] Y. Saad and M. H. Schultz. GMRES: a Generalized Minimal Residual

algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist.

Comput., 7(3):856–869, 1986.

[SZB+07] A. Schadle, L. Zschiedrich, S. Burger, R. Klose, and F. Schmidt. Do-

main decomposition method for Maxwell’s equations: scattering off peri-

odic structures. J. Comput. Phys., 226(1):477–493, 2007.

[TW05] A. Toselli and O. Widlund. Domain Decomposition Methods - Algorithms

and Theory, volume 34 of Springer Series in Computational Mathematics.

Springer, 2005.

