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Abstract

We examine nonlinear laser pulse dynamics in plasma, encompassing both transverse and lon-

gitudinal envelope effects, in isolation and when coupled by the plasma. This is underpinned by

an interest in how strong magnetic fields, aligned along the laser axis, modify these processes.

In the presence of a strong magnetic field, such that the electron cyclotron frequency is on the

order of the laser frequency, there is dramatic modification to the laser-plasma interactions,

with the electron motion under left circularly polarised light remaining weakly-relativistic-like

at laser intensities typically associated with fully-relativistic behaviour. Conversely right cir-

cularly polarised light sees the opposite effect, with the laser-plasma interactions becoming

nonlinear at much lower light intensities. This affects all processes underpinned by relativistic

motion of the electrons, chiefly self-focusing and self-compression. Such processes are studied

in detail for both unmagnetised and magnetised plasma, and the results are compared. We find

that not only does an external field alter the relativistic response of the electrons, but it also

modifies the laser group and phase velocities, making the pulse shape of interest to the envelope

dynamics. We apply this to study spherical compression of a laser pulse, wherein the pulse di-

mensions reduce symmetrically towards a single cycle. This process results in greatly amplified

single-cycle pulses in the lambda-cubic regime, which may peak at over 100 times the initial

laser intensity. Finally, the process by which a fully relativistic pulse may amplify an existing

magnetic field is examined. We find that while this effect is known of for Laguerre-Gaussian

light, it can also occur for linearly polarised light. The ponderomotive effect of the laser, and

the external field trapping particles which would otherwise escape, bends their trajectories such

that a self-sustaining azimuthal current forms. This current scales with both laser intensity and

plasma density, and may produce fields of up to 10 kilotesla. We offer that this work may be of

interest for the manipulation of low-power or long-wavelength lasers in underdense plasma, the

generation of single-cycle pulses for high-harmonic generation and the generation of localised,

quasistatic ultra-intense magnetic fields.
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Chapter 1

Introduction, Background and

Theory

1.1 Introduction

The short-pulse laser has long been a primary scientific tool in the study of matter since its

inception in the 1960s. For early laser technology, available power was limited to around the

gigawatt level. The possibility of burning or melting delicate optical components restricted the

development of higher-power laser systems due to the requirement that the reflectors and lenses

be made larger and larger so as to reduce the incident laser intensity prior to the final focusing

stage.

The damage thresholds of laboratory optical equipment was the major factor holding back

the development of laser systems until the 1980s, when the technique of chirped pulse am-

plification (CPA) [1] allowed one to bypass this limitation via a technique of stretching and

recompressing laser pulses such that the laser intensity does not rise above the damage thresh-

old while the pulse is amplified. This development was recognised with a Nobel prize, and as

a result available laser power has been growing inexorably. As of 2019, it is expected that the

first all-optical studies of quantum electrodynamic (QED) processes will soon be possible [2–4]

representing a major milestone in extreme-intensity lasers.

As laser power rises, the inherently self-interacting nature of physics becomes impossible to

avoid. Intense lasers propagating through any medium affects the materials they are in, altering

their properties and resulting in a field of physics termed nonlinear optics. By their nature,

intense lasers operate in a pulsed-power mode. In order to amplify a laser pulse via CPA, the
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Chapter 1. Introduction, Background and Theory

initial seed pulse must already be short. Despite this, a nanosecond-duration pulse can easily

carry kilojoules of laser energy. The optical damage threshold of solid-state optics equipment,

which already restricted peak laser power available until the advent of CPA, continues to exert

an in-practice limit on what can reliably be done with solid optics. The field of nonlinear optics is

vast, and ever-present when dealing with intense lasers. At middling light intensity, nonlinear

optical effects arise from the polarisation of molecules, and at higher intensities beyond the

ionisation limit, this is replaced by plasma effects, and finally relativistic effects. The optical

damage threshold itself represents an obvious manifestation of detrimental nonlinear optical

effect.

As such, interest in plasma-based optics to focus and compress laser pulses beyond the limits

of laboratory optics is growing [5]. The idea of a plasma as an optical medium is attractive for

several reasons. Not only does the fluid nature of a plasma mean that the concept of a damage

threshold is no longer relevant, but in priciple, the optical properties of a plasma are extremely

tunable. Density profiles ranging from tenuous plasmas close to a vacuum to high density gas

jets measuring several times the critical density [6] are readily achievable. This makes plasmas

useful in cases where high light intensity may preclude the use of traditional optics, and in cases

where the light wavelength or pulse dimensions would require very specialised components. The

extremely compact nature of plasma optics is also desireable, with optical processes such as

focusing possible over extremely short distances on the order of tens or hundreds of laser

wavelengths.

The optical properties of plasmas are very well understood at this point, derived from an

understanding of how charged particles move under the influence of an electromagnetic (EM)

wave, and the resulting currents inform how the wave propagates. The exact shape of these

particle orbits are influenced by both the light itself, and any external fields. Of most relevant

interest to this work are magnetic fields. In most cases, ambient magnetic fields range from the

microtesla level (such as the Earth’s magnetic field) to the tens of tesla generated by a solid-

state electromagnet. When compared to the fields of the laser, this is vanishingly small, and

very often such fields can be neglected when determining the optical properties of the plasma.

However, recently magnetic fields at the kilotesla level have been produced by capacitor coil

target setups [7,8], and yet stronger fields in the tens of kiloteslas is proposed by using so-called

snail targets [9]. This opens up the possibility of background magnetic fields at or above the

field strength of the laser light itself, radically changing the particle orbits, and therefore the

plasma optical properties, presenting an interesting area of study.

This thesis begins with a general introduction to laser and plasma physics in chapter 1,
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Chapter 1. Introduction, Background and Theory

and then applies this to study how short-pulse laser propagation in plasma is affected by a

strong magnetic field in chapter 2, in particular examining the laser envelope dynamics. This is

expanded upon in chapter 3 which derives a general framework to describe short-pulse envelope

dynamics in plasma, and considers a special case where the laser envelope collapses down onto

a point. The final research chapter 4 examines the case where an external magnetic field in a

plasma may be amplified by an intense laser.

1.2 Applications of Short-Pulse Lasers

1.2.1 Plasma-based Accelerators and Radiation Production

Applications of short-pulse lasers in plasma are extremely varied, finding relevance in many

different areas. Among the most well known applications is plasma based particle accelerators,

whereby electron or ions are accelerated to relativistic velocities using a plasma. Proposed

in the late 1970s [10], the concept was experimentally verified not long after [11, 12]. In the

time since, the development of laser-plasma accelerators has become a deep field of study

in itself, with multiple schemes emerging. Plasma wakefield acceleration (PWFA) involves

the use of an existing particle bunch to excite the plasma, and accelerate particles caught in

the wake. Alternatively, a laser-driven wake may be used to accelerate the particles, termed

laser wakefield acceleration (LWFA). Almost all optical schemes require that the laser is of

relativistic intensity, and the pulse dimensions fall close to the plasma wavelength. In real

terms, this means intensities on the order of 1018 Wcm−2 and up, and pulse durations around

the tens of femotoseconds. This work considers laser powers slightly below this regime, but

with extensions to the models discussed, it may be applied. Further variations exist in the

form of laser beat-wave acceleration (LBWA) [13] wherein two lasers of different frequencies are

employed, self-modulated laser wakefield acceleration (SMLWFA) relies on self-modulation of

the wake by stimulated Raman scattering (SRS) [14] and yet more schemes are proposed on a

regular basis [15,16].

Across all schemes, the persistent feature of laser-based accelerator schemes is the extremely

compact nature of the devices. The accelerating electric field gradients of plasma accelerators

routinely reach tens of gigaelectronvolts per meter [17,18], compared to MeV/m gradients found

in conventional radio frequency (RF) accelerators [19]. The result is particle energies on par

with conventional accelerators, achieved in a fraction of the distance. The advent of petawatt

laser systems bring with them the expectation that these extreme gradients will continue to

rise [20, 21], making particle energies into the multi-gigaelectronvolts possible with lab-scale
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Chapter 1. Introduction, Background and Theory

equipment, rather than requiring acceleration over multiple kilometers in traditional linac or

cyclotron RF accelerators.

While the compact nature of plasma accelerators is a great advantage, when compared to

traditional linacs, plasma accelerators lag in some areas. As laser power rises, so does achievable

beam energy, but the beam quality must also be considered. Bunch stability, energy spread

and emittance must be controlled so that the resulting electron beam is useful for specific

application, and the brightness of the beam i.e. the total number of electrons accelerated must

also be controlable. These are all areas of active study and improvement [22].

Related to plasma accelerators is the concept of plasma-based radiation production. When

an electron bunch is accelerated in a plasma accelerator, the extremely strong longitudinal

electric fields cause the bunch to reach relativistic velocities. However, there are also transverse

fields, which act to keep the electron bunch centered in the accelerating cavity. Inevitably, as

particles enter the cavity they will have some residual transverse momentum. When combined

with the focusing fields, this causes the bunch to oscillate while it is accelerated. This results in

so-called betatron radiation being emitted by the bunch in the forward direction, typically at

X-ray energies [23, 24]. A more complex setup may be employed involving a preformed curved

plasma channel may be used to guide a laser pulse round in an arc. If the laser is introduced

into the channel slighlty off-axis, the laser centroid, and hence the entire accelerating structure

will oscillate, and as such the radiation emitted by the accelerated electrons will reflect this

motion [25]. In this way, the plasma may be used in place of a sychrotron for the purposes of

generating X-ray photons of tunable frequency. Still higher energy gamma ray photons may

be produced by interaction with high density plasma. Via a resonant energy transfer process,

electrons are directly accelerated by the laser and reach energies sufficient to emit gamma

rays [26].

1.2.2 Inertial Confinement Fusion

Possibly the most appealing potential application of intense lasers is the concept of inertial

confinement fusion (ICF). A small amount of hydrogen fuel is compressed by an array of high-

energy, but relatively low-power lasers [27], eventually reaching densities and temperatures high

enough that spontaneous nuclear fusion occurs. This results in a self-sustaining nuclear fusion

reaction, and the resulting energy release may be used to generate electricity. To date, the

remains a subject of very active research [28].

The two basic schemes of ICF are direct (DD) and indirect drive (ID). In DD, the fuel

capsule is directly illuminated by the laser light, and energy is coupled into it in this way. In
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ID, the capsule is surrounded by a hollow metal shell called a hohlraum, which is illuminated

by the lasers instead. The hohlraum heats up and reradiates X-rays, which bathe the inside

of the hohlraum and compress the fuel. In both cases, the end goal is to couple energy from

either the lasers or the thermal X-rays into the fuel. First, to compress the fuel, and then at

the point of stagnation, to heat the fuel to the point that a self-sustaining fusion reaction can

take hold.

Either scheme requires a lot of laser energy, as the coupling efficiency to the fuel is very

low, and extremely symmetric illumination. Typically ICF makes use of many individual laser

beamlets of up to nanosecond duration, with each one carrying up to kilojoules of energy [29].

This is orders of magnitude higher than those considered for particle acceleration, however the

high energy density nature of the process results in many complex laser-plasma interactions

over the entire duration of the compression [30].

In addition to these basic schemes, more sophisticated schemes exist. So-called fast ignition

(FI) aims to decouple the compression and the heating aspects of the process, and in doing so

relax the energy requirements of the lasers. While the laser is still used to compress the fuel,

the heating of the fuel is mediated by a beam of relativistic electrons, such as generated by a

plasma accelerator scheme [31]. This scheme has recieved attention recently in the form of a

magnetically-assisted (MA) modification. In the MA-FI scheme a strong longitudinal magnetic

field is used to collimate the particle beam towards the compressed fuel. The concept has been

demonstrated guiding relativistic electrons through a solid target using an imposed magnetic

field [32], and specialised simulation codes have been developed to study it specifically for

ICF [33,34].

1.2.3 Plasma Optics

The use of a plasma as an optical medium in and of itself has recieved increasing interest in

recent years. In situations where solid-state optics would be impractical, or impossible due to

scale or incident laser power, the use of a plasma in place of traditional laboratory optics is

an attractive prospect due to their extremely tunable optical properties, and malleable fluid

nature.

The widespread adoption of CPA for the generation of high-intensity lasers is undoubtedly a

necessity when dealing with ultraintense lasers, but as laser power continues to rise, eventually

equipment damage thresholds become significant again. One possible reponse is to simply

increase the size of the optics, thus lowering the incident intensity, but this obviously has limits

of its own. Quite apart from the practicality of using extremely large optics, the equipment
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becomes increasingly expensive to buy and maintain. Instead, we may look to a plasma to

solve the problem. An already ultraintense ‘seed’ laser may be further amplified in a plasma

by Raman backscattering (RBS) amplification over multiple order of magnitude by interaction

with a ‘pump’ laser [35–38] over centimeter scales, again taking advantage of the extremely

compact nature of optical processes in plasma, and the lack of a damage threshold.

Similarly, focusing optics are subject to the same material damage thresholds, and these

processes too may be accomplished with a plasma. Intense light will spontaneously self-focus

in plasma via a variety of means [39], and the first simulations clearly demonstrating such

processes were performed in the 1990s [40]. Self-focusing is a fundamental process, and as such

interest remains high, with schemes proposed to use plasmas as efficient lenses, hoping to see

order-of-magnitude increases of on-axis intensity and simultaneously improve other aspects of

the pulse profile, such as the temporal contrast [5]. Such schemes are typically in-plasma, i.e.

the pulse enters the plasma, and then undergoes focusing and its ultimate purpose without

returning to vacuum. However, a so-called ‘thin’ plasma lens may be employed in the manner

of a traditional optic, where the pulse enters a plasma, undergoes some focusing, and then

returns to vacuum [41].

Plasmas may also be employed as mirrors. By directing an intense laser onto a surface, a

plasma inevitably forms at that surface. Lasers may not propagate through plasmas above a

critical density, and instead will be reflected from that surface with extremely high efficiency,

regardless of the specular properties of the original solid material. In this way, the expanding

plasma can be used as a specular mirror, or optical switch. In the relativistic regime, high

density gradient interactions may produce high harmonic generation (HHG) at the laser-plasma

interface [42,43]. In a related application, the interference pattern of two lasers may be used to

selectively ionise a surface, producing a modulated plasma mirror, or a plasma hologram. This

may then be used to generate complex phase structures at relativistic intensities by reflecting

lasers off this specialised mirror [44].

The analogies continue, with plasmas also capable of being made to resemble optical waveg-

uides for short-pulse guiding, by having a two-pulse train. The first pulse evacuates a filament

of the plasma, and the second pulse follows in the newly created cavity [45–47]. The interaction

of two colliding lasers in a plasma may cause the formation of periodic density structures, which

function as a diffraction grating [48]. These structures are long-lived and may be employed to

chirped-pulse compression [49], again with no appreciable damage threshold. Periodic density

structures in plasma may also be employed as optical modulators [50, 51], in order to manip-

ulate pulse envelopes. Plasmas may be employed as light polarisers. The use of a magnetic
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field imposed on a plasma causes linearly polarised light to faraday-rotate as it propagates. Or,

in the case of ultrashort pulses and strong magnetic fields, it causes complete separation of

the circularly polarised components of the pulse [52]. This effect may also be used to generate

circularly polarised (CP) THz radiation at a tunable frequency [53].

Indeed there is little that can be accomplished with a traditional optics that cannot also be

accomplished with a plasma. As the fundamental physical mechanisms for many of the above

mentioned optical processes in a plasma overlap, it is possible and expected that they will occur

spontaneously, and simultaneously. The desireable properties of plasmas as an optical media

coupled with the inherant instability associated with intense light in a fluid material make this

a highly motivated, challenging field of study. This work contributes to plasma optics in that

the focus is the manipulation of short-pulse lasers with a plasma as the optical medium. The

specific focus is the inclusion of a magnetic field.

1.3 The Laser Pulse

In simple terms, the laser electric field E can be given by

E = êpψ exp(iφ), (1.1)

where êp is the polarisation vector, φ is the phase angle and ψ is the envelope.

The vector êp describes the polarisation state of the light. This may be written in generalised

form as

êp = êx + iδêy, (1.2)

where depending on the value of δ, we may use this to describe left-circular polarisation (LCP)

where δ = −1, linear polarisation (LP) where δ = 0 and right-circular polarisation (RCP)

where δ = +1. In this work we make no distinction between O-mode and X-mode linear

polarisation in this definition. An even more generalised form for êp which would allow for an

initial polarisation angle θ0 and a varying degree of ellipticity ϕ is given by

êp = cos(θ0)êx + sin(θ0)êy + iδeiϕ cos(θ0)êy + iδeiϕ sin(θ0)êx. (1.3)

The phase angle of the beam may be approximated by a plane wave

φ = k · r − ωt, (1.4)
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Chapter 1. Introduction, Background and Theory

Figure 1.1: Schematic showing an enveloped laser pulse in (a) 2D, where the black dashed line
traces the points at which the envelope drops to 1/e of the peak amplitude, and (b) a 1D slice
along r = 0 showing the envelope (dashed) over the phase (solid).

and we take ψ to be a gaussian envelope

ψ = a exp

[
− (z − ct)2

c2D2
− r2

R2

]
, (1.5)

where a is the field amplitude, and R describes the laser spot radius, and D describes the pulse

time duration. Both R and D are defined as the half-width of the envelope where the amplitude

falls to 1/e of its maximum value.

In fact, we should consider all the lasers as initially gaussian beams. This introduces several

extra terms to the phase angle in order to describe wavefront curvature, and extra terms to the

envelope in order to describe vacuum diffraction. While these terms are not included in our

analytical evaluations, their omission does not affect the relevant physics, as nonlinear processes

arising from laser-plasma interactions dominate the propagation characteristics once the beam

enters a plasma. Nevertheless, these terms are taken into account in the numerical simulations.

A schematic of an enveloped laser is given in figure 1.1.

Higher-order modes exist in various forms, the most well known being the Hermite-Gaussian

(HG) and Laguerre-Gaussian (LG) modes. LG mode lasers are characterised by a helical phase

structure and intensity minimum on the axis due to the phase singularity at that point. LG

modes can be described by the addition of two indices l and p describing the azimuthal and

radial mode numbers. Specifically l describes the azimuthal phase dependence, where the wave

phase varies by l complete rotations around the laser axis, and p describes the number of

amplitude peaks in the radial direction. The simplified laser elecrtic field of a LG laser is given

9



Chapter 1. Introduction, Background and Theory

in cylindrical coordinates (r, θ, z) by

E = êpL|l|p (r2)
( r
R

)|l|
exp

[
− (z − ct)2

c2D2
− r2

R2

]
exp [i(kz − ωt− lθ)] , (1.6)

where L|l|p (r2) is a generalised Laguerre polynomial of textbook form. When l = p = 0 the

standard Gaussian mode is recovered. In this work we will only consider p = 0 mode LG

beams, and as L|l|0 (r2) = 1, this simplifies the analysis required. From (1.6) we see that the

sign of the azimuthal index l is relevant only in the phase, and determines the handedness of

the beam, specifically it gives the sign of the orbital angular momentum (OAM) carried by the

beam, in the same way the sign of δ determines the sign of the spin angular momentum (SAM).

The transverse components of the field are well defined via the above methods, but lon-

gitudinal fields are not taken into account. In vaccum these must be determined by solving

∇ · E = 0 in order to fully satisfy the wave equation. Once the electric field is defined, the

magnetic field is given by

B =
1

c
k̂ ×E. (1.7)

Light intensity I is given by the magnitude of the Poynting vector S

I = |S| = 1

µ0
|E ×B|, (1.8)

In vacuum B = E/c, and c = (ε0µ0)−1/2 and hence

I = cε0E
2 (1.9)

for CP light. Beam power P is given by I (or more generally S · êz for a laser directed along z)

integrated over the transverse dimensions, and pulse energy E is given by the power integrated

over time;

P =

∫ 2π

0

∫ ∞
0

Ir drdθ, (1.10)

E =

∫ ∞
−∞

P dt. (1.11)

Assuming E is Gaussian in fundamental mode, the intensity envelope is hence

I = cε0E
2 exp

[
−2

r2

R2
− 2

t2

D2

]
. (1.12)
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We can now evaluate (1.10) and (1.11):

P = cε0
π

2
E2R2 exp

[
−2

t2

D2

]
, (1.13)

E = cε0

(π
2

)3/2
E2R2D. (1.14)

Introducing the ubiquitous normalisation

a =
eE

meωc
(1.15)

for the field amplitude, we can rearrange to a more convenient form. Intensity (irradiance) is

given by

I = 4π2P0
a2

λ20
= 2.763× 1010

(
a2

λ20

)
Wm−2, (1.16)

beam power by

P = 2π3P0
a2R2

λ20
= 4.298× 1010

(
a2R2

λ20

)
W, (1.17)

and the total energy for a Gaussian pulse with duration D seconds

E =
√

2π7P0
a2R2D

λ20
= 5.387× 1010

(
a2R2D

λ20

)
J. (1.18)

Here P0 = ε0m
2
ec

5/e2 = 6.931×108 W is a convenient unit of power. These values are calculated

for CP light, and should be halved for LP.

1.4 Linear Plasma Response

The above analysis gives the basic mathematical description of light in a vacuum, in a plasma

medium this is complicated by currents induced by the laserfields. The equation of motion for

an electron is

me
dv

dt
= −e (E + v ×B) , (1.19)

where me and e are the electron rest mass and charge respectively, E and B correspond to

the rapidly varying fields of the laser and v is the electron velocity. The electric field of

an arbitrarily polarised laser is given by (1.1), and from this we may determine the electron

velocity. Analytically, we take the plane-wave approximation. This is valid for large spot-size

lasers in the long-pulse approximation such that pulse duration D � 2π/ωp [54] and the pulse

amplitude does not vary much over a laser period. Hence, plasma electron wave excitation and

11



Chapter 1. Introduction, Background and Theory

all ponderomotive force may be considered to be negligible. We hence take v ' v⊥. Linearising

(1.19) with d/dt = −iω, and taking the nonrelativistic limit such that v×B � E, the velocity

is found as

v⊥ = <
{
− ie

meω
êpE0 exp (iφ)

}
. (1.20)

The inhomogeneous electromagnetic wave equation is

∇2E − 1

c2
∂2E

∂t2
= −µ0

∂J

∂t
, (1.21)

where we take the current density J to be dominated by the transverse motion of the electrons

only J ' J⊥ = −enev⊥. Here ne is the electron number density. Using a = eE/meωc, and

defining the quantities

ñe =
ne
n0
, (1.22a)

ω2
p =

e2n0
meε0

, (1.22b)

kp =
ωp
c
, (1.22c)

where n0 is the background electron density and ωp and kp are the plasma frequency and

wavenumber respectively. The corresponding wave equation in plasma is therefore

∇2a− 1

c2
∂2a

∂t2
= k2pñea. (1.23)

Under the assumption that the plasma is homogeneous, the density profile n0 is constant.

Consider a simple plane wave a = êx exp[i(kz − ωt)]. By substituting this and ñe = 1. into

(1.23), we can recover the normal plasma dispersion relation as

ω2 = k2c2 + ω2
p, (1.24)

which provides the basic information about how light propagates in a plasma, graphed as the

solid line in figure 1.2(a). There is a cutoff frequency at ω = ωp below which k becomes

imaginary, and therefore light of that frequency cannot propagate. This corresponds to a

particular electron density known as the critical density

nc =
ω2meε0
e2

(m−3), (1.25)

12
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and we may further summarise the dispersion relation by taking the refractive index N from

the phase velocity vp = ω/k

N =
c

vp
=

√
1− ω2

p

ω2
. (1.26)

1.5 Relativistic Nonlinear Plasma Response

Under relativistic conditions we must make modifications to the above equations as the electron

motion becomes relativistic. The Lorentz force is now given as

me
d

dt
(vγ) = −e (E + v ×B) , (1.27)

where the lorentz factor of the electron is given by γ = [1 + (p/mc)2]1/2. This means we must

average the squared momentum over a laser cycle. For LP light this results in a factor half

reduction and for CP light this results in a factor unity. We will consider CP light here. The

average electron lorentz factor is therefore given by conservation of momentum [55,56] as

γ =
√

1 + a2. (1.28)

This expression is calculated for the average rest-frame of the electron, and ignores and drift

motion, or forward momentum the particle acquires. It remains accurate enough for most

purposes in the weakly relativistic regime (a2 � 1), and numerical modeling calculates the

particle motion self-consistently as a matter of course, so it is acceptable. Due to the relativistic

mass increase of the electrons, the effective plasma frequency is reduced, varying as ωpeff. =

ωp/
√
γ, leading us to the relativistic plasma dispersion relation

ω2 = k2c2 +
ω2
p

γ
, (1.29)

where now the effective cutoff frequency is reduced, and hence the effective critical density

given in (1.25) is raised due to the increase in m. This allows intense light to propagate in

traditionally over-dense plasma, a phenomenon known as relativistically-induced transparency.

The disperson relation and the electron Lorentz factor are plotted in figure 1.2.

All optical properties have some threshold beyond which they become nonlinear. That is, the

intensity of the light itself affects the property in question. The refractive index of a medium is

a fundamental optical property, arising from the dispersion relation. It determines the medium

response to incoming light, and as seen in (1.29) it can become nonlinear under intense light.

13



Chapter 1. Introduction, Background and Theory

Figure 1.2: (a) A plot of (1.28) up to a0 = 2. (b) A plot of (1.29). The solid, dashed and
dot-dashed curves show the dispersion relation for γ = 1, 2 and 3 respectively, illustrating the
reduced cutoff frequency. The dotted red curve shows the vacuum relation ω = kc.

While in plasma the nonlinearity is due to the relativistic mass increase of the electrons, in

neutral media it is due to induced polarisation. This is the well-known Kerr optical effect, and

may be represented as a linear refractive index N0 modified by some nonlinear refractive index

N1 proportional to the laser intensity

N = N0 +N1a
2. (1.30)

This means while there is no hard lower threshold for nonlinear processes to occur, due to the

dependence on the square of the light amplitude, their impact is vanishingly small at low light

intensity, and proprtionally much more significant at high intensities. This allows us to safely

separate linear and nonlinear optical models depending on incident intensity. Modifications to

the plasma refractive index may be described in the form of (1.30) by taking a Taylor series of

the Lorentz factor, a technique which is very widely employed in the weakly-relativistic regime.

Self-focusing is a fundamental nonlinear process which may occur in any optical medium. It

is the process governed by variations in refractive index due to intense light. Real laser beams

are not uniform in intensity, and spatial gradients in the intensity result in spatial gradients

in the refractive index. This in turn causes a differential change to the speed of light in the

medium in areas of high intensity, and distorts the phasefront structure of the light, this turns

the rays of the pulse inwards and the beam focuses spontaneously.

In plasma, self-focusing may be categorised to three main sources; thermal, ponderomotive

and relativistic. Thermal focusing occurs when the plasma is locally heated, raising its refractive

index and therefore acting as a lens in hot areas. Ponderomotive focusing arises due to the fact a

plasma is a fluid medium, and density fluctuations naturally alter the refractive index. Finally,
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relativistic self-focusing arises from the relativistic mass increase of the electrons as a response

to intense laser light. This causes a reduction in the effective plasma frequency, raising the

refractive index and causing the plasma to act as a lens. All three of these effects can, and

do, occur simultaneously, and determining to what extent each process affects a laser is quite

difficult.

Density fluctuations in plasmas are unavoidable, given its fluid nature. An extremely sig-

nificant source of such fluctuations is found in the laser itself. While for plane waves, particles

oscillate in place, and there is no change in the overall plasma density, real lasers are unfor-

tunately not plane waves, with finite durations and spot sizes, the gradients in intensity lead

to particle drift. The ponderomotive force may be qualatatively explained as the force which

pushes particles out of areas of high field intensity. As a particle oscillates in a laser field with

some spatial intensity gradient it will naturally drift down the gradient due to the asymmetry

of the forces it experiences. Mathematically, this force F p can be derived in a few different

ways [57,58], with the result taking the form

F p = −mec
2∇γ̄, (1.31)

where γ̄ is the time-averaged lorentz factor as given by the laser amplitude (1.28). The pon-

deromotive force affects both electrons and ions in the same way, there is no polarity effects.

However, this is not so to say they are both affected equally. Naturally ions are much heavier,

and therefore do not respond as quickly. Very often their ponderomotive motion is disregarded

entirely from analytical treatments. This large difference in response leads to space charges

forming in the wake of an intense pulse, due to the now mismatched electron and ion densities.

This in turn gives rise to the plasma wake and bubble phenomena of fundamental importance

to plasma-based particle acceleration.

Due to the dependence on ∇γ̄ both the peak intensity of the laser and the pulse dimensions

affect how strong the ponderomotive force is. In the weakly relativistic regime, very often

ponderomotive effects are disregarded for both ions and electrons. If we assume circularly

polarised light, γ = γ̄, and a Gaussian amplitude profile a = a0 exp(−r2/R2), we may evaluate

(1.31) as

F p = mec
2 2ra2

R2γ̄
êr. (1.32)

From this, we can see that the ponderomotive force does indeed push particles in the positive

r direction as expected, but in the weakly relativistic regime, we expect a2 � 1, so the pon-

deromotive force will be vanishingly small. This is further compounded by the dependence on
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Figure 1.3: Illustrative plot showing the normalised ponderomotive force produced by a laser
pulses of varying amplitude and spot size. All four curves represent pulses with an equal amount
of total energy, and may be interpreted as a single laser pulse undergoing self focusing. The
black curve represents the largest spot size, and exerts a ponderomotive force which peaks at
0.002, wheras the tightly focused red curve peaks at 0.24, over 100 times stronger.

1/R2, which will act to further reduce the ponderomotive force when the spot size is large. In

the event that either a2 becomes large, or R2 becomes small, the assumption that the pon-

deromotive force can be neglected is course no longer valid. Figure 1.3 shows how this may

occur, illustrating how pulse amplitude and spot size affect the exerted ponderomotive force. It

shoiuld be noted that the example curves shown in figure 1.3 contain the same amount of energy

(aR = const.), and may therefore be thought of as snapshots of the same pulse, which begins

at a modest amplitude and large spot size, safely in the regime where ponderomotive effects

should be small, but then subsequently self-focuses, and dramatically increases the amount of

ponderomotive force exerted.

1.6 Generation of Quasistatic Magnetic Fields and Re-

lated Effects

Magnetic fields in plasmas introduce another class on nonlinearity, as plasmas consist of charged

particles, any magnetic field imposed upon a plasma will influence the motion of the plasma

particles. There are many different mechanisms for the generation of magnetic fields in plasmas.

These range from large-scale, relatively low strength fields such as may emerge spontaneously

from a turbulent plasma, so-called dynamo action [59–61], to small-scale, short-lived, much

stronger phenomena as may be produced by an intense laser. In this work we are more concerned

with the latter.

Of laser-generated magnetic fields, most commonly seen are the thermoelectric magnetic field
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[62, 63] arising from electron transport due to mismatched temperature and density gradients.

Such fields may also occur in the absence of a laser, where the mechanism is known as the

‘Biermann battery. [64]. In either case the growth rate of such fields is proportional to the

temperature and density gradients

∂B

∂t
∝ ∇Te ×∇ne. (1.33)

Magnetic fields also arise from a ponderomotively driven current through a steep density gra-

dient [65–68],

∇2B ∝ ∇ne ×∇I. (1.34)

Both of these fields are azimuthal in nature, albeit of opposite sign, and appear along the path

of the laser as is propagates into a plasma.

Longitudinal magnetic fields may be generated by the inverse faraday effect [69], in which

a static magnetisation M is induced in the plasma following

M ∝ E ×E∗, (1.35)

where E∗ is the complex conjugate of E. This results in a magnetic field aligned parallel to the

path of the laser, rather than perpendicular to it in the case of (1.33) and (1.34). This effect

is traditionally restricted to CP light only, as E × E∗ = 0 for LP light. However it has been

proposed that a LP laser can drive a similar process if it carries OAM [70]. A more exotic method

of generating longitudinal magnetic fields is a so-called ‘light spring’ setup [71–73], in which a

superposition of LG mode beams of different azimuthal indices and central frequency produce

a helical beam envelope, and hence a helical plasma wake, which drives an azimuthal current

behind the pulse. Both of these effects rely on the angular momentum of light, either spin or

orbital, to couple into the plasma and provide the neccessary circulating electron currents.

Both spontaneously appearing magnetic fields and those generated and imposed from ex-

ternal sources have the common effect of changing how a plasma responds to incoming light. In

this work we will consider a constant field along the laser propagation direction B ‖ k, and CP

light. From this starting point, we can examine how the electron motion will be modified. If we

consider (1.27), now with a nonzero B, we immediately see that wheras before the v×B term

vanished due to neglible contributions to the electron motion from the laser magnetic fields,

now the external field will cause continually bend the particle motion in the xy-plane. If left

to its own devices, a moving charge particle in a static magnetic field will travel in a circle,

17



Chapter 1. Introduction, Background and Theory

performing so-called cyclotron motion, and the radius of this circle termed the Larmor radius

rL gyrating at the cyclotron frequency ωc;

rL =
γmv

|q|B , (1.36a)

ωc =
|q|B
γm

. (1.36b)

From here, the modified dispersion relation

ω2 = k2c2 + ω2
p

η

γ
, (1.37)

can be found. Here, η is a relativistically modified factor relating to the external field η =

(1 − δωc/γω)−1, where δ again describes the polarisation state of the laser light as per (1.2).

This result is consistent with that given in previous work [69, 74], and illustrated in Figure

1.4. It shows that when ωc 6= 0, cutoff frequencies for RCP and LCP light take different

values. These may be obtained by setting k = 0 in (1.37) and have the general form ωR,L =

[(ωc/2γ)2 + ω2
p/γ]1/2 ± ωc/2γ. The cutoff frequency is reduced down to ωL for LCP light, and

increased up to ωR for RCP light. While transparency is increased for LCP light, there is still

a cutoff frequency below which no propagation is possible. Conversely, RCP waves may also

propagate in whistler mode, creating an opaque frequency range ωc/γ < ω < ωR.

The dispersion relation above shows that the extra complexity added to laser propagation

characteristics from the magnetic field alone is considerable. The combination of relativistic and

magnetic nonlinearity means that study of intense lasers in magnetised plasma is a challenging

field. Magnetised plasma effects stem from the particle motion being modified due to imposed

magnetic fields. When this motion is relativistic, these processes change in ways that are not

always obvious. For example, the relativistic Larmor radius does not grow linearly with velocity,

as relativistic kinematics must be employed. Similarly, the Lorentz factor in a magnetised

plasma does not scale the same as in an unmagnetised plasma. This gives rise to combined

relativistic-magnetic nonlinearity resulting in modifications to familiar phenomena such as self-

focusing, and entirely unique phenomena such as relativistically induced opacity (discussed in

chapter 2).
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Figure 1.4: The magnetised plasma dispersion relation. The solid curve represents RCP light,
the dashed curve represents LCP light and the dot-dashed curve indicates the unmagnetised
dispersion for comparison. Here ωc is arbitrarily less than ωp, as the relationship between the
two is not important here.

1.7 Particle-in-Cell Simulation

In kinetic plasma modeling, we aim to simulate individual charged particles interacting in

order to study their collective behaviour. Typically kinetic models are used to understand very

fast, and very small-scale processes, such as interactions between plasmas and lasers. This in

constrast to fluid models, for example, which are much more suited to larger scale processes that

occur over longer timescales. Kinetic modeling would ideally simulate each particle interacting

directly. However, attempting this is impossible, due to the vast number of particles in a real

system, and the vast number of interactions each particle experiences. Instead, to simplify the

problem we use particle-in-cell (PIC) codes. A PIC code is a tool to model a plasma as a kinetic

system, while staying within the limits of computation. The PIC method can be applied in

one to three spatial dimensions, and may be integrated into multiscale simulations via hybrid

algorithms or bridging codes, making it a versatile tool in the plasma physics arsenal.

The two key aspects of modelling plasma processes are the fields and the particles. Fields

are discretised onto points in a grid, and particles are allowed to move freely around within the

grid. Generally particles are initialised at regular intervals on the grid, giving rise to the name

particle-in-cell.

Simulating the vast number of particles present in a real system is not practical, so particles

are amalgamised into so-called ‘macroparticles’. Each macroparticle represents a number of

real particles of the same species, with macroparticles from different species distinguished by

their charge-to-mass ratio (q/m). Therefore, we can describe a macroparticle representing an

electron via an internal q/m of -1, normalised to the elementary charge and the electron mass.
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Correspondingly, a Hydrogen ion would have a q/m of 1/1836, with now positive charge and

a mass corresponding to mp/me. Heavier ions, and ions with different ionisation states can be

initialised in a similar manner. Since the particle trajectory is determined by the charge-to-mass

ratio, this means macroparticles follow the same paths real particles would. Each macroparticle

is weighted according to its representative size, and this is taken into account such that the

calculated charge and current densities are correspondant to those of a real system. This adds a

new parameter we must consider when designing simulations. In addition to the familiar spatial

step size, and time interval of numerical modeling, we must also choose the macroparticle count.

As with the grid spacing and timestep, the choice of macroparticle granularity depends on the

problem being investigated. In general, if features of the particle distribution function are (or

are important to) the object of study, a high macroparticle count is required. The aliasing

arising from a coarse grid spacing and timestep are further compounded upon by the possibility

of errors due to particle phase-space aliasing arising from a low particle count. Such errors

are hard to identify, as they do not typically affect the numerial stability of the simulation

itself. This means that without proper dilligence, macroparticle aliasing can easily be missed,

or worse, misinterpreted as genuine results.

At its core, the PIC method aims to solve the Vlasov equation

∂f

∂t
+ v · ∇f + q(E + v ×B) · ∂f

∂p
= 0, (1.38)

in a Lagrangian specification in order to determine the distribution function f(r,p, t) of each

simulated particle species. In order to do this, Maxwell’s equations are used to determine the

fields

∇×E = −∂B
∂t

, (1.39a)

∇×B =
1

c2
∂E

∂t
+ µ0J , (1.39b)

∇ ·E =
ρ

ε0
, (1.39c)

∇ ·B = 0, (1.39d)

and the particle equations of motion are used to determine the trajectories of individual
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Push particles
dpi
dt = qi (Ei + vi ×Bi)

dri
dt =

pi
miγi

Interpolate fields
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Deposit charge and
current onto the grid

(ri,vi) → (ρ,J)

Advance fields

∂B
∂t = −∇ × E

∂E
∂t = c2∇ × B − c2µ0J

∆t

Figure 1.5: The basic PIC cycle

macroparticles

dp

dt
= q (E + v ×B) , (1.40a)

dr

dt
=

p

mγ
. (1.40b)

For an electrostatic (ES) PIC code, we solve only (1.39c) and (1.40), with the assumption that

E = −∇φ where φ is the electrostatic potential. For an EM PIC code we solve (1.39a), (1.39b)

and (1.40), while (1.39c) and (1.39d) are automatically resolved as part of the simulation setup

and boundary conditions. If (1.39d) is satisfied at t = 0, it will remain satisfied throughout the

simulation, and if the charge continuity equation

∇ · J +
∂ρ

∂t
= 0 (1.41)

is satisfied via a charge-conserving current deposition scheme, then (1.39c) need only be satisfied

at t = 0, usually achieved via corrections to the field as the simulation is initialised. This allows

realistic simulations to be performed with only one particle species if desired. If a non-charge

conserving deposition scheme is used, then E must be adjusted at every timestep in order to

keep (1.39c) satisfied.

The classic PIC algorithm is shown in figure 1.5, consisting of four main steps. First, the

electric and magnetic fields on each particle are determined by linearly interpolating from the

nearest grid points. Then, particles are moved according to these fields. This is most commonly

achieved using a scheme known as the Boris pusher [75], which has good energy-conserving prop-

erties and a reasonable computational overhead. From the new positions, currents (and charge
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densities, if required) are deposited onto the grid. This is usually done using a charge-conserving

scheme in accordance with the particle shape factor, which determines the neighbouring grid

points to which charge and current are deposited, and the weighting on each point. This is

often the most time-consuming step, especially if there are a large number of particles using

a high-order shape factor. As such, it is also the step for which good load-balancing is most

important. The calculated current density is then used to advance the electric and magnetic

fields in time, typically this is achieved using a leapfrog method, making use of quantities

staggered in both space and time to achieve a numerically stable integrator, whilst minimising

computational cost. Alternate methods of advancing fields, depositing particle quantities and

implementations of collisions, ionisation and QED effects vary from code-to-code, and most

PIC codes are designed with a particular feature or area of study in mind, therefore it is worth

considering the problem at hand when selecting a code.

In addition to the code itself, the simulation parameters must be chosen so that the relevant

physics can be resolved, and simulation is stable. Generally speaking, a good starting point

is to identify the smallest spatial features and the fastest events a simulation must be able to

resolve. In plasma simulation, the Debye length λD crops up very often as a constraint on

simulation grid spacing. It is given by

λD =

(
ε0kBTe
nee2

)1/2

(1.42)

where ε0 is the permitivity of free space, kB is the Boltzmann constant, Te is the electron

temperature, ne is the electron density and e is the elementary charge. This length is a measure

of how far an individual particles electrostatic charge has influence, beyond which, the collective

properties of the plasma dominate and the charge may be considered ‘screened’. This parameter

is important to the properties and behaviour of the plasma and so it is an important parameter

to consider when designing simulations. Typical values of the Debye length can range from

macroscopic values in space-plasmas, to picometer scales inside stars. In laser-produced plasmas

at or below the critical density, and heated to keV levels, the Debye length typically falls around

the micrometer scale. This provides a first basis for choosing the grid spacing for the simulation.

The second factor to look at for determining appropriate grid spacing is the laser itself. In

PIC simulation, the laser fields are initialised piecewise across the cells, and therefore must also

be resolved over the course of the simulation. This necessitates a grid resolution (in the laser

direction) of at least six times [40] smaller than the central wavelength in order to reasonably

resolve the field structures of the laser (naturally higher resolution is more desireable). Typically

in laser-plasma experiments, Ti:Sapphire lasers operate at around 800 nm, which would mean
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a minumum spatial resolution of 0.1 µm. Frequency doubled lasers, or simulations in which

high-harmonic generation (HHG) is expected would require accordingly higher resolution.

Once the spatial resolution is decided, the timestep must be chosen. Resolving particle

orbits is usually the main physical consideration when choosing a maximum timestep. Intense

lasers cause electrons to follow a characteristic figure-eight motion [76], and ambient magnetic

fields introduce cyclotron motion, and once again the expectation of high-harmonics necessitate

yet higher resolution to properly resolve the motion. Aside from the physics-based contraints

on the timestep, there is also the question of numerical stability.

When attempting to solve differential equations numericallly, the Courant condition gives

the limits on both spatial resolution and timestep in order to ensure stability i.e. the solutions

to the equations the simulation is trying to solve will converge, and not ‘blow up’, producing

unphysical results. In the case of a PIC simulation modeling n spatial dimensions we may write

C = c∆t

n∑
i=1

1

∆xi
≤ Cmax, (1.43)

where ∆xi is the grid spacing along each spatial coordinate, C is the calculated Courant num-

ber, Cmax is the maximum allowable Courant number, ∆t is the timestep and c is the maximum

speed information can travel across the grid, the speed of light. If C ≤ Cmax then the results

of the simulation will converge. The exact value of Cmax varies depending on how the equation

is solved. Explicit methods usually require smaller timesteps in order to maintain stability

(Cmax = 1, for instance), wheras implicit solvers are often more forgiving in this respect and

Cmax may rise considerably. The technical constraints on simulations, and the physical consid-

erations together inform how a simulation should be designed in order to maximise the efficiency

of available computing resources.

In this work, we make use of two PIC codes, namely Osiris [77, 78] and FBPIC [79, 80].

Osiris is a fully explicit 3D code employing finite-difference time domain (FDTD) methods to

advance fields and particle trajectories. This ‘no-shortcuts’ approach produces reliable results,

and Osiris has a long track record of use within the plasma physics community. It is designed

for large-scale distributed computing, and this method of execution is often unavoidable given

the intense nature of simulating laser-plasma interactions. A long 3D simulation involving

potentially billions of cells and macroparticles demands a significant investment in terms of

computer power.

FBPIC, on the other hand is a relatively new code. It takes advantage of a Fourier-Bessel

decomposition algorithm to describe the field geometry around the azimuth. This allows the
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particles themselves to move around in 3D, but the field are described by multiple 2D grids

describing the various azimuthal modes. This combination of 3D motion and 2D grids is

sometimes described as ‘quasi-3D’ or ‘2.5D’. All of the time integration in FBPIC is performed

in spectral space, this allows for analytical integration of Maxwell’s equations,making it a

‘dispersion-free’ field solver, sidestepping numerical dispersion effects which FDTD methods are

prone to [81]. The net result is an accurate code, which executes quickly and at significantly

less computational overhead than a fully-3D code, so long as the problem being studied has

intrinsic azimuthal symmetry. For the purposes of the laser-plasma interactions of interest to

this work, this assumption is valid. A more in-depth comparison of the two codes is given in

appendix C, where some specific simulations detailed in chapter 3 are examined.
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Chapter 2

Influence of Strong Magnetic

Fields on Laser Pulse

Propagation

First, we examine the interaction between intense laser pulses and strongly magnetised plasmas

in the weakly relativistic regime. An expression for the electron Lorentz factor coupling both

relativistic and cyclotron motion nonlinearities is derived for static magnetic fields along the

laser propagation axis. This is applied to predict modifications to the refractive index, critical

density, group velocity dispersion and power threshold for relativistic self-focusing. It is found

that electron quiver response is enhanced under right circularly-polarised light, decreasing the

power threshold for various instabilities, while a dampening effect occurs under left circularly-

polarised light, increasing the power thresholds. Derived theoretical predictions are tested by

one and three-dimensional particle-in-cell simulations.

2.1 Introduction

Static magnetic fields induce cyclotron motion in the charged particles of a plasma. The particles

gyrate at a frequency proportional to the applied field, and this motion modifies the optical

properties of the plasma. Classical plasma theory is also altered by the relativistic mass increase

of electrons when the driving laser amplitude is high enough, and this couples to the magnetic

nonlinearity through mass dependence of the cyclotron frequency. In this way, magnetic and

relativistic effects are linked, and must be considered together.
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This work focuses exclusively on the propagation of circularly polarised light along the

direction of an externally applied DC magnetic field. In this case, there is distinct difference

between right circular polarisation (RCP) and left circular polarisation (LCP) of the light,

which are respectively with clockwise and anticlockwise rotation along the laser propagation

direction. A dramatic effect of magnetisation on RCP light in the whistler mode is greatly

increased plasma transparency, which allows for novel schemes of efficient, magnetically guided

plasma acceleration [74]. This is of particular relevance to the fast-ignition scheme of inertial

confinement fusion, which relies heavily on precise deposition of energy by accelerated particles

[82]. This motivates an understanding of the physics of intense laser interactions with highly

magnetised plasma. For lasers on the order of µm wavelength, it would require a magnetic field

on the order of 104 Tesla, in order to bring the plasma in order to operate in the whistler regime.

Such extremely high fields are challenginging to reach experimentally, however the generation

of ultra-strong magnetic fields has received considerable interest in the last decade.

Long-lasting fields of around 100 Tesla can now be readily produced with conventional

techniques [83, 84]. Higher strength fields operating at shorter timescales are can also be pro-

duced [85]. High power laser interaction with dense plasma can even produce quasi-static

magnetic fields at the 105 T level [86–89]. By irradiating a capacitor-coil target with kilo-Joule

high power lasers, it has been demonstrated experimentally that high magnetic fields at kT

level can be produced [7, 8]. The latter is particularly interesting for a number of applications

such as inertial confinement fusion [34].

Even in the linear wave regime, the magnetic fields result in unique effects of wave prop-

agation. Observations of anomalous radio waves were documented as early as 1894, termed

whistlers due to the descending tone heard as the waves were picked up on receivers. Explana-

tions of the physical processes underlying them developed in the 1950s as general understanding

of plasma physics advanced [?]. The comparatively high frequency of laser light compared to

radio waves has, until relatively recently, precluded the investigation of whistler mode lasers.

However, advances in laser technology and the creation of high strength magnetic fields now

allow access to this parameter regime, and have spurred interest in the combination of magnetic

and relativistic plasma effects.

Nonlinear propagation of lasers in unmagnetised plasma has been widely studied. The key

physics involving the propagation of a laser pulse in a plasma concern the transverse evolu-

tion [54, 90, 91], typically characterised by self-focusing (SF) processes, and the longitudinal

evolution, governed by processes such as self-phase modulation (SPM), [92, 93] which may act

to compress an already short pulse in plasma further. Recently, work has been done determin-
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ing the effect magnetisation plays on the propagation of lasers. The transverse evolution of

lasers in weakly-relativistic magnetised plasmas is investigated by [94, 95], who conclude that

magnetic field enhances self-focusing of RCP pulses. Longitudinal effects are investigated by

some researchers [96–98], who conclude that SPM may be enhanced for RCP light, or inhibited

for LCP light, by an applied magnetic field.

In this chapter we consider the strongly magnetised regime, in which the electron cyclotron

frequency is on the order of the incident laser frequency. In this case, magnetic fields dra-

matically influence the magnitude and rate of the SF and SPM processes with a much lower

power threshold for RCP light. In chapter 3.2, a theory model is presented for a regime where

the laser pulse duration is relatively long so that ponderomotive force and subsequent density

perturbations can be neglected. Therefore we focus on the effect of strong magnetic fields on

relativistic SF and relativistic SPM. Also the self-generated magnetic fields [40, 99–102] are

neglected as compared with the externally applied magnetic field. Results from self-consistent

three-dimensional particle-in-cell simulations are presented in chapter 2.3, which confirm the

theory predictions given in section 3.2. Simulations also illustrate complicated longitudinal and

transverse couplings at later stage of the laser propagation.

2.2 Theory Model

2.2.1 Dispersion Relation

We aim to describe the characteristics of propagation of a laser beam in a magnetised underdense

plasma, with the static magnetic field aligned along the propagation axis of the laser and with

the cyclotron frequency comparable to the laser frequency. We may do this by generalisation

of the treatment used to study Faraday rotation [103].

We have following expression for the particle motion,

v⊥ = <
{
− iηeE

meωγ
êp exp [i(kz − ωt)]

}
. (2.1)

Reminding ourselves of the notation η = (1− δωc/γω)−1, we also define B = ωc/ω for further

convenience. We may construct an implicit expression for the time-averaged electron Lorentz

factor

γ =

√
1 +

(
eEη

meωc

)2

. (2.2)

This, in combination with (1.37) we may immediately obtain the normalised phase velocity

as βp =
(
1− (η/γ)(ωp/ω)2

)−1/2
. The plasma refractive index N and dielectric function ε are
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Figure 2.1: The relationship between γ and a for CP light. The black line shows the unmagne-
tised curve conforming to γ =

√
1 + a2. The red curve shows RCP light with a magnetic field

strength B = 0.5, and the blue curve shows the relationship for LCP light, also for B = 0.5.

related by ε = N2 = 1− (η/γ)(ωp/ω)2. We may also obtain the normalised group velocity from

(1.37) as

βg = N

{
1 +

nη2δB

2γ2

[
1 +

a2η3

2γ2

(
1− a2η3δB

2γ3

)−1]}−1
, (2.3)

where we have used γ =
√

1 + a2η2 and n = (ωp/ω)2. RCP light may propagate in the whistler

mode, where B/γ > 1 and hence N > 1. Under these conditions, propagation is possible in

overdense plasmas [104].

Extra care must be taken for intense light in the whistler mode. Due to relativistic electron

mass increase, it is possible for the effective cyclotron frequency to be lowered enough that it

approaches the laser frequency and the plasma is returned to a resonant state.

As (2.2) is implicit, it is not immediately plottable. However, solving (2.2) for a results in

a =

(
γ2 − 1

η2

)1/2

, (2.4)

which is plottable with γ as the domain. The result may then be used to numerically interpolate

for γ(a). In weakly magnetised plasmas, this results in a slighly modified curve, shown in figure

2.1, LCP light shows a flattening of the curve, wheras RCP light sees the curve steepen. As the

magnetic field is raised further, LCP light continues to be damped but RCP light undergoes

more complicated changes due to the presence of the cyclotron resonance point at B = 1.

Figure 2.2 shows how the curve changes for RCP light as B is raised above 1. We see that

the curves become multi-valued when B > 1. Physically, electrons will adhere to the curve up

to the inflection point, denoted by dots in Figure 2.2 and mathematically described by solving

da/dγ = 0 in (2.4). The physical explanation for this is found by considering what the lorentz
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Figure 2.2: The calculated relationship between γ and a for RCP light in the whistler mode.
The solid, dashed, dot-dashed and dotted curves show B = 1.1, 1.5, 2 and 3, respectively. The
black points on each curve correspond to critical values (ac, γc) described in the text. Physically,
γ must always take the lowest value available when a < ac. For a > ac the plasma is highly
absorbing and the actual electron Lorentz factor can vary over many orders of magnitude.

factor represents. The cyclotron frequency of a particle is determined by the ambient magnetic

field strength, and the mass of the particle, as per (1.36b). In this case the magnetic field is

fixed, but the particle mass is not. As the electrons gain energy, their mass increases, and the

effective cyclotron frequency is reduced. Taking an extremely strong magnetic field B > 1,

the effective cyclotron frequency is initially above the reonance frequency, however when the

cyclotron frequency is reduced back to cyclotron resonance, any further attempts to increase

the kinetic energy of the electrons is instead subject to resonant absorption. The amplitude at

which this begins to occur may be expressed in terms of B as a critical light amplitude ac or

critical Lorentz factor γc

ac = (B2/3 − 1)3/2, (2.5a)

γc = B1/3. (2.5b)

These quantities do not correspond directly to the resonant point of B/γ = 1, rather they

represent the point at which strong heating begins and large amounts of energy are transfered

from the laser to the bulk plasma. As B is increased, the critical point is increased in turn.

The frequency gap associated with RCP light results in an opaque region close to the

resonant point occupying the range (γ − n) < B < γ. In reality, this is a poor definition of the

actual range at which a laser may still propagate in the plasma, as strong absorption occurs

even outside this region. As a result, the insight gained from this is of little practical use.

However, at the very least we can estimate the upper bound as γc. This improves our estimate
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Figure 2.3: Calculated group velocity for light of varying intensity in a plasma of constant
density n = 0.1. the solid, dashed, dot-dashed and dotted lines correspond to a = 0, 0.1, 0.2
and 0.3, respectively. (a) RCP light. The values of βg when B ' 1 are in reality quite different
from those calculated due to the finite nature of real pulses. Plasma absorption and heating
begins before the peak of the pulse can act to reduce to effective cyclotron frequency. (b) LCP
light. Tends asymptotically towards βg = 1 with increasing B.

to (γ − n) < B < γ3. We show the effect of increasing a on βg in Figure 2.3.

2.2.2 Transverse Properties

Analytically we consider a regime where the laser pulse is relatively long so that the longitudinal

motion of electrons due the longitudinal ponderomotive force can be neglected. Also we consider

a regime where the laser intensity is weakly relativistic so that the density modification due to

the transverse ponderomotive force can be neglected during the laser interaction. The numerical

simulations detailed in section 2.3 show that this approximation is justified during the early

stages of propagation, although nonlinear evolution at later stages leads to the development of

very complicated structures that cannot be described by this analytical model.

Consider a laser pulse similar to (1.1):

a = <{êpa exp [i(kz − ωt)]} , (2.6)

where the amplitude term is a slowly-varying envelope function a(r, z, t). The evolution equation

of the laser envelope is obtained by substituting (2.6) into (1.23), and evaluating it under

the slowly varying envelope approximation (SVEA) [54]. Using a generic dispersion relation

ω2 = k2c2 + σω2
p where σ is a constant typically associated with the laser power of a finite-

width beam [90]. Physically this constant relates to ponderomotive cavitation along the beam

axis, which acts to reduce the effective plasma frequency in the presence of a powerful laser.
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Generally speaking the higher the power, the smaller σ becomes, ranging between 0 ≤ σ ≤ 1.

Now, let a(r, z, t) = a(r, ξ, τ), where τ = t and ξ = z − vgt with the assumption that

vpvg ∼ c2, and therefore vg ∼ kc2/ω. Then we can obtain

(
2i
∂

∂τ
+∇2

⊥ + σ
ω2
p

ω2

∂2

∂ξ2

)
a =

(
neη

γ
− σ

)
a, (2.7)

where∇2
⊥a = r−1∂/∂r(r∂a/∂r) is the radial component of the Laplacian and the normalisations

τ̃ = (ω2
p/ω)τ , ξ̃ = kpξ, and r̃ = kpr have been used, with the tildes henceforth dropped

for convenience. In accordance with the SVEA, we discard some terms containing second-

order derivatives ∂2/∂τ2 and ∂2/∂τ∂ξ from (2.7). The second order terms ∇2
⊥ and ∂2/∂ξ2

are allowed to remain as these terms govern processes that are of interest. Specifically, ∇2
⊥

governs the transverse diffraction and hence also self-focusing, and ∂2/∂ξ2 governs longitudinal

spreading due to linear plasma dispersion, and hence also self-compression. The right hand side

of this equation is a nonlinear source term, governing the magnitude of both self-focusing and

self-compression.

To obtain the laser power threshold for self-focusing, one may consider a stationary solution

and a laser pulse with long longitudinal profile. To further simplify calculations, an analytical

form for the electron Lorentz factor is required. The weakly relativistic approximation assumes

that γ remains close to 1. This is usually satisfied when a2 � 1. However, magnetisation

introduces the additional factor η. If we consider γ ∼ 1, then η ∼ η0 = (1 − δB)−1. When

B ' 1, η20 � 1 and so we must modify the conditions to a2η20 � 1, under which we may consider

the weakly-relativistic approximation to be still satisfied. This effectively limits the scope of

application of this theory to only the low-B or very high-B regime for RCP light, but increases

the amplitude range we may consider for strongly magnetised LCP light.

Performing a Taylor expansion of (2.2) yields

γ ≈ 1 +
a2η20

2
. (2.8)

If we make the assumption that the beam has a constant transverse profile, which does not

vary along ξ or τ we can examine the stationary solutions to the envelope equation. Taking

∂a/∂τ = 0 and ∂2a/∂ξ2 = 0, then substituting (2.8) into (2.7) with the approximation η/γ ≈
η0 − a2η40/2, one can obtain the stationary envelope equation for a laser beam in a magnetised

plasma

∇2
⊥a− (η0 − σ)a+ ne

η40
2
|a|2a = 0. (2.9)
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Solving this equation yields the radial profile for a beam of a given power, indicated by assigning

a value σ ≤ 1. Such beam profiles represent trapped beams, undergoing self-focusing. Many

solutions to this problem exist, found by solving (2.9) via the shooting method, detailed exten-

sively in [54,90]. We are interested in the minimum power required to trap a beam and induce

self-focusing. In this threshold case, we take σ = 1, signifying a low power, and hence elimi-

nate the ponderomotive force, setting ne = 1. We may recast (2.9) via a change of variables,

according to the general form ∇2
⊥a− ε1a+ ε2a

3 = 0, where ε1 and ε2 are arbitrary coefficients.

We may use the relations a = α(ε1/ε2)1/2 and r = ρε
1/2
1 to transform between a(r) and α(ρ),

where α(ρ) is the solution of a(r) with ε1 = ε2 = 1. This may be evaluated numerically with the

boundary conditions dα(0)/dρ = 0 and α(∞) = 0. Recasting and evaluating (2.9) for the beam

power via the relation between amplitude and intensity in vacuum I = ε0c|E|2, numerically

evaluating and reverting to dimensional quantities yields the critical power for self-focusing

Pc = 1.62×1010η−40

(
ω

ωp

)2

[W ]. (2.10)

This result is consistent with previous work [54, 69] i.e. focusing effects are stronger at higher

densities, and the additional term η−40 relates to the magnetic field. This term reduces to

unity for B = 0, making the result generally applicable. The corrective term suggests that the

magnetic field strongly alters the threshold for self-focusing by a factor of η−40 = (1−δB)4. The

form of the adjustment is reversed for RCP and LCP light and is shown in Figure 2.4. It shows

that the SF power threshold is significantly reduced for RCP light near B ∼ 1. This analysis

implies that at B = 1 the threshold power drops to zero. In reality however, this is the point

at which cyclotron resonance occurs, and the plasma becomes opaque in the low-power regime

and strongly absorbing at high light power. Resonant effects preclude the exploitation of this

parameter regime for anything other than plasma heating. Conversely for LCP light, the SF

power threshold increases monotonically with B.

Alternatively, starting with Eq. (2.7), assuming a Gaussian transverse amplitude profile such

as by a(τ) = A(τ) exp(−r2/R2(τ)), it can be shown, by either source-dependant expansion [105]

or variational methods [106], that the beam waist evolution of a CP laser pulse can be described

by
d2R

dτ2
=

4

k2R3

(
1− P

Pc

)
, (2.11)

where critical power is given by Pc = 1.74×1010η−40 (ω/ωp)
2 [W], which is only slightly different

from that given in (2.10).
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Figure 2.4: The adjustment to the critical power for self-focusing as induced by an applied
magnetic field. The solid curve represents the adjustment for RCP light, the dashed curve for
LCP light.

2.2.3 Longitudinal Properties

For short pulses, one can consider the evolution of the longitudinal profile of a laser pulse in

magnetised plasmas due to SPM by use of (2.7). The phase change due to nonlinearity on the

right-hand side of this equation is given by

∆φ =
1

2

∫ τ

η0(1− ne) +
neη

4
0

2
|a|2dτ ′. (2.12)

where we have replaced σ from the generic dispersion relation with η0 from the linear magnetised

dispersion relation, and the result taylor-expanded. The corresponding frequency change is

given by ∆ω = −∂(∆φ)/∂t. Alternatively, the effect can be demonstrated directly for a specific

set of parameters. For a temporal pulse profile a(t), the instantaneous phase of the wave after

propagating a distance L into a homogeneous plasma is given by φ = ωt −NkL. In this case

the frequency change may be estimated from ω = ∂φ/∂t as

∆ω = −πL
N

ne
nc

(
aη4

γ3 + δBa2η3

)
∂a

∂t
, (2.13)

where L is normalised to 2π/k. This is illustrated for RCP and LCP light in Figure 2.5. The

SPM of the laser pulse leads to the compression of the longitudinal profile of the laser pulse. In

the weakly relativistic case, the compression level is found by letting (ω2
p/ω

2)(∂2/∂ξ2) ∼ η40a2/2
in (2.7). Therefore, the laser pulse duration can be compressed to the level

Lp ≈
√

2

kp

ωp
ω

(η20a)−1. (2.14)
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Figure 2.5: Frequency shift introduced by SPM for a Gaussian envelope a = a0 exp(−t2/τ2).
We show a pulse of amplitude of a0 = 0.1, at an arbitrary distance L into a plasma of density
n = 0.1. The dotted line plot shows the unmagnetised case. The influence of an external
magnetic field causes an increase in frequency spread for the same amplitude and density. The
dot-dashed, dashed and solid lines correspond to B = 0.2, 0.4 and 0.6, respectively. The y-axis
is scaled to the unmagnetised case. (a) RCP. (b) LCP.

This suggests that the longitudinal compression can be significantly enhanced for RCP light

with B < 1. The magnitude of SPM is tied heavily to the plasma density, with higher density

producing stronger modulation.

Pulse compression by SPM alone is not possible for whistler-mode lasers. If we recall that

B = ωc/ω, and take ωc to be constant, B will vary inversely with ω. By analysis of (2.3)

(or inspection of Figure 2.3a), we can find that ∂βg/∂ω takes opposite signs for B < 1 and

B > 1. When this is considered alongside the frequency shift given by (2.13), it can hence be

shown that the effect of SPM is reversed when B > 1, acting to lengthen the pulse, rather than

compress it.

2.3 Numerical simulation results

To illustrate the key features of laser pulse propagation in strongly magnetised plasma predicted

by theory discussed above, we have carried out 1D and 3D particle-in-cell (PIC) simulations.

All of the following numerical simulations are performed using the PIC code Osiris. In general

length scales are characterised by the laser wavelength λ0 in vacuum and timescales by the laser

period τ0 = λ0/c.

For 3D simulations, we use a Cartesian coordinate system, with a grid resolution set to 20

cells per wavelength in the longitudinal direction, and 5 cells per wavelength in the transverse

directions. In order to simulate long propagation distances it is convenient to make use of the

moving window feature of Osiris. The laser pulse propagates in the forward z direction. It has a

pure sine-squared longitudinal profile with the initial pulse duration of 50τ0 in full-width. The
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Figure 2.6: Simulation results for a RCP pulse with B = 0.5, P/Pc ≈ 2. (a) Pulse evolution
over time. The left column shows the longitudinal amplitude profile, the right column shows
the transverse amplitude profile at the longitudinal peak amplitude. Each row is independently
normalised, with the colour scale ranging from 0 to the peak amplitude indicated by the value
amax on each row. (b - d) The normalised electron distribution at t= 50τ0, 200τ0 and 500τ0,
respectively. The dashed line plots denote the prediction by (2.8) using the on-axis pulse
amplitude. Focusing and compression are observed over the first few hundred laser periods,
until density modulations cause pulse breakup into a train of very short, highly amplified pulses
of the plasma wavelength in length. The pulse train undergoes catastrophic collapse and loses
cohesion, diffusing rapidly after this. The beginning of this process can be seen at t=500τ0.
This also marks the point at which the electron response ceases to be adiabatic.
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Figure 2.7: Simulation results for a LCP pulse with B = 0.5, P/Pc ≈ 2. (a) Pulse evolution
over time. The left column shows the longitudinal amplitude profile, the right column shows
the transverse amplitude profile at the longitudinal peak amplitude. Each row is independently
normalised, with the colour scale ranging from 0 to the peak amplitude indicated by the value
amax on each row. (b - d) The normalised electron distribution at t= 50τ0, 200τ0 and 500τ0
respectively. The dashed line plots denote the prediction by (2.8) using the on-axis pulse
amplitude. Smooth focusing and compression occur down to an equilibrium spot size. In the
later stages, this pulse begins to be modulated by density fluctiations in a similar manner to
the RCP pulse (Figure 2.6).
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Figure 2.8: A pulse of initial amplitude a0 = 0.5 and length 100τ0 after propagating around
200λ0 into a plasma with B = 2. The dashed line marks the critical amplitude ac as given by
(2.5a). The rear of the pulse is seen to be experiencing absorption by the plasma, while the
leading edge is propagating without any absorption.

laser is initialised in vacuum and modelled as a Gaussian beam with a waist size at the focal

plane of R0 = 10λ0. The plasma is initially homogeneous after a short ramp of 1λ0 to minimise

boundary reflection and the focal plane is located at the start of the plasma density plateau.

Each cell contains 4 electrons, with no initial momenta. Ions are assumed to be immobile,

accounting for the fact that the laser pulse duration is short. In 1D, the resolution is increased

to 400 cells per wavelength, and 25 particles per cell. Where possible, all other parameters

match the 3D simulations.

In terms of normalised peak amplitude, the power of circularly polarised light with a Gaus-

sian transverse profile in the lowest mode is given by P = 4.29×1010(a0R0/λ0)2 [W]. The

conditions for self-focusing are met when P/Pc > 1 where Pc is given by (2.10).

To test the effect of a magnetic field on the evolution of a RCP laser, we consider a plasma

with plateau density (ωp/ω)2 = 0.02, with an external magnetic field of B = 0.5 (approximately

5×103 Tesla for λ0 = 1µm). The predicted self-focusing adjustment is η−40 = 1/16 that of the

unmagnetised case, corresponding to a peak intensity of approximately 3×1016 Wcm−2 (for

λ0 = 1µm). We use a laser with initial peak amplitude of a0 = 0.15, such that P/Pc ≈ 2. The

results of this simulation are shown in figure 2.6. The pulse propagates at reduced βg according

to Eq. (2.3). Both SF and SPM-driven longitudinal compression are visible, which are coupled

to each other. These effects cause a large increase in peak intensity, close to 6 times the initial

amplitude. This increase in amplitude causes the excitation of longitudinal electron plasma

waves at the wavelength of 2πvg/ωp, which has been reduced as compared to unmagnetised

plasma according to figure 2.3(a). The plasma waves further distort the longitudinal profile of
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the laser pulse, resulting in the formation of a pulse train similar to that studied by [14, 50].

As the beam waist collapses down further, ponderomotive expulsion becomes significant, with

the minimum electron density reaching close to, but not quite zero at the pulse. As expected,

the self-generated magnetic field remains comparatively small, reaching only 2% of the imposed

longitudinal magnetic field strength.

Figures 2.6(b-d) show that the pulse evolution initially appears to conform to the analytical

model derived here. However, after a certain distance the pulse shape is radically altered,

complex structures form, and plasma heating begins. From these simulations it is evident that

RCP pulse evolution in near resonant plasma is not well described by the model employed

here. At an even later time, longitudinal compression of the laser pulse occurs, which allows for

the excitation of electron plasma waves [107], an effect which is explicitly ignored in deriving

(2.2). The strong spatiotemporal compression also raises the pulse amplitude well beyond the

weakly-relativistic regime. Obviously this continuous evolution of RCP pulses in the parameter

regime B ∼ 1 and P > Pc is much beyond our analytical model. The model remains, however,

a reasonable method to predict the initial tendencies of the pulse evolution.

An equivalent simulation was performed for LCP light. Laser pulse, plasma and magnetic

field parameters remain the same with the exception that the beam intensity is increased to

5×1018 Wcm−2, to maintain P/Pc ≈ 2. The results of this simulation are shown in Figure

2.7. Focusing and compressional effects are smooth and the plasma electron response remains

adiabatic throughout. The pulse group velocity is seen to be increased, in agreement with Eq.

(2.3) and Figure 2.3(a). This can be qualatatively confirmed by inspection of Figures 2.6(d)

and 2.7(d). Comparing the propagation distances of both pulses after the same amount of time

highlights the difference in group velocity for LCP and RCP light.

It is well documented that plasma electrons gain significant amounts of energy near cyclotron

resonance, which finds application in resonance heating systems for magnetically confined fusion

reactors [108]. Here we are relatively far from resonance and still observe large amounts of energy

absorption to the plasma, with the peak electron Lorentz factor observed to be around 3 times

that predicted by the theory. This behaviour is more problematic in the near-resonant whistler

regime, as intense light may easily cause a feedback of electrons continually gaining energy,

resulting in the plasma returning to a resonant state. The asymmetry in electron response

around B = 1 is not predicted by the simple model in (2.8) but may be readily observed in

simulation.

To demonstrate the critical amplitude as described by (2.5a) we performed a 1D simulation

of a whistler pulse, shown in Figure 2.8. For B = 2, ac = 0.45 and hence the initial peak
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amplitude was set at a0 = 0.5. The pulse was also lengthened to 100τ0 in full-width so as to

better demonstrate the process.

As the pulse moves through the plasma, the leading edge produces an adiabatic electron

response in agreement with the theory, up until the pulse amplitude a = ac. At this point, the

plasma becomes highly absorbing and the rear of the pulse is rapidly absorbed. This leaves

an attenuated pulse traveling with a wake of heated plasma behind it. While this is very well

represented in 1D, extension to higher dimension introduce transverse effects which alter the

propagation characteristics. However, the critical amplitude remains a good estimate of the

onset of energy absorption to the plasma.

2.4 Conclusions

The simulation results demonstrate the influence an externally applied magnetic field has on

weakly relativistic plasma electron dynamics and laser propagation. In general, LCP light expe-

riences reduced electron motion, and hence a reduction in instability growth in the presence of

a strong external magnetic field. Under these conditions, pulse evolution becomes less sensitive

to pulse amplitude, and the weakly relativistic approximation remains applicable even at high

pulse amplitudes.

In contrast to this, RCP light experiences enhanced electron motion which becomes unpre-

dictable when the electron cyclotron frequency approaches the incident laser frequency B/γ ' 1,

due to the effects of cyclotron resonance. As B enters the whistler regime electron motion is

once more reduced, and exceptionally strong fields of B > 2 experience reduced electron motion

compared to the unmagnetised case for both polarisation directions.

Near to cyclotron resonance, electron motion and hence pulse evolution is very sensitive to

laser amplitude for RCP light. This puts considerable strain on remaining under the weakly-

relativistic approximation. Even a pulse which is initially weakly relativistic can quickly evolve

to a point at which it can no longer be considered as such. This introduces complicated nonlinear

phenomena, in particular, strong coupling between transverse and longitudinal evolution in the

short pulse regime. Transverse focus increases the peak amplitude of the pulse, which in turn

enhances longitudinal pulse compression, ponderomotive expulsion of electrons, excitation of

electron plasma waves and subsequent electron acceleration. These are beyond the scope of the

presented analytical model.

Despite this, the combination of transverse and longitudinal effects on RCP laser pulses may

offer new opportunities for the manipulation of high power laser propagation in underdense
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plasmas, which may be relevant to applications such as plasma heating, and with extensions

to a fully relativistic model provide insights for laser-plasma based particle acceleration and

radiation.
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Chapter 3

Laser Pulse Compression

Towards Collapse and Beyond

The dynamics of three-dimensional (3D) compression of ultrashort intense laser pulses in plasma

is investigated theoretically and numerically. Starting from the slowly-varying envelope model,

we derive equations describing the spatiotemporal evolution of a short laser pulse towards the

singularity, or collapse, based on the variational method. In particular, the laser and plasma

conditions leading to spherical compression are obtained. 3D particle-in-cell simulations are

carried out to verify these conditions, which also enable one to examine the physical processes

both towards and beyond the pulse collapse. Simulations suggest that the laser pulse can

be spherically compressed down to a minimum size of the order of the laser wavelength, the

so called lambda-cubic regime. The compression process develops more than twice as fast in

simulation than what is predicted by the envelope model, due to the simplified nature of the

latter. The final result of this process is pulse collapse, which is accompanied with strong

plasma density modulation and spectrum broadening. The collapse can occur multiple times

during the laser pulse propagation, until a significant part of the pulse energy is dissipated to

electron acceleration by the laser ponderomitve force. It is also shown that a strong external DC

magnetic field applied along the laser propagation direction can enhance the rate of compression

for circularly-polarised laser pulses, when compared to an unmagnetised plasma, allowing access

to strong compression and focusing in the low-density and low-amplitude regime.
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3.1 Introduction

The ultrashort laser pulse has become a routine tool of high energy-density physics research,

but the nature of bandwidth-limited amplification, and the finite damage threshold of solid-

state optics, place lower limits on the pulse duration, focal spot size, and thus an upper limit

on the peak intensity which can be produced. Plasmas are a natural choice to move beyond

these limits, having extremely tunable optical properties and almost no restrictions on the beam

intensities which may be sustained within them.

The study of nonlinear optical materials, as a medium to focus and compress already ul-

trashort laser pulses, has been a subject of considerable research interest in the past decades

[5,40,41,54,109–116]. Generally, this can be described by the nonlinear Schrödinger equation for

the envelope of the laser pulse under the paraxial approximation [109–111,117]. This equation

predicts that simultaneous self-focusing and compression can lead to collapse of laser pulses,

where the laser focal spot size and duration both approach zero, accompanied by explosive

growth in the laser intensity. Physically, however, such a limit cannot be achieved since the

envelope equation is no longer valid when the laser pulse is approaching collapse. A modified

nonlinear Schrödinger equation demonstrates the phenomenon of pulse steepening and spectrum

broadening in various optical media [118,119].

Compared to other nonlinear optical media, plasma can be used to manipulate short laser

pulses at high peak power well above tens of terawatts. Under such peak powers, the nonlinear

effects are mainly due to the relativistic effect and ponderomotive force. In this case, the

envelope evolution of the laser pulses can still be described by a modified nonlinear Schrödinger

equation. Typically this equation can be studied analytically [41, 112, 120, 121] or numerically

[54,90]. Through these combined efforts, relativistic self-focusing and self-compression are well

understood. However, the two processes have mostly been considered separately, as we do in

chapter 2. For ultrashort pulses, these processes often occur simultaneously and therefore, in

order to accurately reproduce the problem a coupled treatment is required. An interesting

avenue of research is the possibility to focus and compress laser pulses to the so called lambda-

cubic regime [122], which may provide the opportunity to produce isolated attosecond pulses

and achieve extreme high intensity [123–125]. When approaching this regime, the paraxial

envelope equation is no longer valid. More interestingly, laser pulse collapse may develop during

its focusing and compression, which is expected to be accompanied by spectrum broadening,

plasma heating or particle acceleration and plasma density modulation. These are notoriously

difficult to account for in the envelope model. Self-consistent numerical simulation using the

PIC method is an effective way to investigate this problem in 3D geometry. PIC simulation
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Figure 3.1: Three-dimensional spherical compression of an ultrashort pulse towards collapse
and beyond, shown at progressive times, for the parameter setup discussed in section 3.4.1.
The isosurfaces correspond to 1/e (transparent) and 2/e (solid) times the peak amplitude of
the snapshot, coloured according to the lower-left colourbar. The bottom projection shows
intensity slices in the y-z plane at x = 0, with different snapshots separated by white lines. The
rear plane shows the electron density distribution in the x-z plane at y = 0, for the t = 192τ0
snapshot. We see dramatic compression of the initial pulse towards the lambda-cubic regime
at z ∼ 100λ0, accompanied by a very large increase in intensity, over 150 times the initial
value. Further attempts to compress the pulse lead to pulse collapse, distortion and strong
ponderomotively-driven electron caviation. Despite this, the pulse remnant re-emerges from
the collapse site, continues propagating, and undergoes further collapses (here shown up to the
second, at z 120λ0) until the pulse energy is significantly depleted. The rendered snapshots are
captured at t = 120, 140, 153, 159, 164, 177, 184 and 192τ0 respectively, shown in order from
left to right.

allows one to resolve subwavelength structures of the laser pulse during the collapse, which

is critical to understanding this process. A typical picture of this, leading up to and beyond

collapse, is shown in figure 3.1.

In this chapter we investigate the process of laser pulse compression in 3D towards the pulse

collapse both analytically and numerically. We start with the paraxial model of envelope evolu-

tion in 3+1 (three spatial plus one temporal) dimensions. By applying the variational approach

to the slowly-varying envelope equation, the conditions are derived both in unmagnetised and

magnetised plasmas, under which the rates of transverse and longitudinal evolution is matched

and the pulse evolves spherically towards the lambda-cubic regime and finally towards collapse.

This model provides guidance for self-consistent 3D PIC simulations, which can reveal various

features during the laser pulse evolution towards collapse and beyond.
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3.2 Theory Model for Laser Pulse Compression in 3D

We consider a right-circularly polarised (R-mode) laser pulse, and are interested in the evolution

of the pulse envelope ψ in time and space, so we again adopt the routinely used slowly-varying

envelope approximation [41,54] with the following nonlinear Schrödinger equation

2i
∂ψ

∂z
+∇2

⊥ψ + ε1
∂2ψ

∂τ2
+ ε2|ψ|2ψ = 0, (3.1)

where ∇2
⊥ is the tranverse Laplacian and ε1 and ε2 are constants. We have transformed to

comoving time τ = t−z/vg and are working with the dimensionless variables r̃ = rkp, z̃ = zk2p/k

and τ̃ = τωp, where k and kp = ωp/c are the laser and plasma wavenumbers respectively, vg is

the laser group velocity and the tildes are henceforth dropped for convenience. Note that the

constants ε1 = β−2g −1 and ε2 = (1−ωc/ω)−4/2, where βg = vg/c is the normalised laser group

velocity, ωc = eB/me is the plasma electron cyclotron frequency in the case when an external

DC magnetic field with strength B is applied along the laser propagation direction and ω is

the central laser frequency. The group velocity for R-mode laser light may be derived from the

dispersion relation (1.37) and is found to be

βg =

[
1− ω2

p

ω2 − ωωc

]1/2 [
1 +

ωcω
2
p

2ω(ω − ωc)2

]−1
,

which reduces to the usual plasma group velocity when ωc = 0.

We next apply the variational method [120] to study the evolution of ψ. We choose a

Gaussian ansatz for ψ of the form

ψ(r, z, τ) = a exp

[
− r

2

R2
− τ2

D2
+ iρr2 + iφτ2

]
, (3.2)

where R, D, ρ and φ describe the beam spot size, duration, radial curvature and longitudinal

chirp respectively and are all real functions of z. Here a is the normalized peak amplitude and

is a complex function of z, which is related to the laser intensity I (W/cm2) and wavelength

λ0 (µm) via Iλ20 = |a|2(2.76 × 1018 W/cm2 µm2). Assuming evolution from initial conditions

a0, R0 and D0, where R0 is normalised to kp and D0 is normalised to ωp. It is convenient to

further normalise all parameter functions to their initial values, e.g. R̃ = R/R0, D̃ = D/D0,

ã = a/a0, with the tildes dropped henceforth for convenience. The full derivation and results

of the variational method are given in appendix B. Of most relevance here are the two coupled
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equations describing the transverse and longitudinal evolution of ψ, given by

d2R

dz2
=

4

R4
0R

3

[
1− E0ε2

8
√

2D0D

]
, (3.3)

d2D

dz2
=

4ε21
D4

0D
3

[
1− E0ε2D0D

8
√

2ε1R2
0R

2

]
, (3.4)

and the constant of motion, i.e., energy conservation equation given by E0 = |a0|2R2
0D0. In

practice, energy is not conserved as we will see, however this equation is approximately correct

up until the final stage of compression preceeding collapse. Equations (3.3) and (3.4) describe

the evolution of the pulse spot size and duration respectively, and are coupled to each other

inextricably. In limiting cases we may simplify this problem. For instance, if we consider the

simple case of no external magnetic field, then ε1 depends only on the plasma density and

ε2 = 0.5. Under these circumstances we can see immediately that self-compression of the laser

is difficult when the plasma is underdense, as ε21 � 1. This is compounded upon when D0 � 1,

we see that d2D/dz2 ≈ 0, and may consider changes to R only, resulting in the familiar 2D

self-focusing regime. Conversely, if R0 � D0 � 1 and the plasma is of sufficient density that

ε21 ∼ 1 then self-compression dominates, and we may consider R to be fixed instead [126,127].

The picture is more complicated when there is an external magnetic field. Both ε1 and ε2

scale with the magnetic field strength, shown in Figure 3.2. We can therefore see that while ε21

remains small for unmagnetised low-density plasma, this is not the case when a strong magnetic

field is introduced. In the same vein, ε2 scales very strongly with magnetic field strength. As

such, we now have a system in which is more sensetive to relativistic nonlinearlty through ε2,

and more suceptable to self-compression specifically through ε1. This combination results in

the onset of relativistic effects at lower laser intensity (when compared to the unmagnetised

case), and allows for self-compression in low-density regimes in which it is typically prohibited.

In such a sensitive regime, the coupling between (3.3) and (3.4) becomes important. For

instance, while a pulse may begin at an amplitude at which self-compression is negligible, the

effect of self-focusing may push the amplitude up to the point at which appreciable compression

begins to occur, and this in turn will further influence the self-focusing.

A special case of this problem is found when considering spherically symmetric evolution,

i.e. when R(z) ≡ D(z). This has been studied previously for spherically symmetric geometry,

considering only a single radial dimension [128]. We point out that the result obtained in

spherical coordinates is reproducible in cartesian coordinates by applying the initial condition

D2
0 = ε1R

2
0. (3.5)
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Figure 3.2: Scaling of the two NLSE coefficients with external magnetic field strength. (a) The
scaling of ε1 with magnetic field strength as compared to the case of no magnetic field. The
scaling is stronger at higher plasma density. The solid, dashed, dot-dashed and dotted lines
correspond to ne/nc = 0.1, 0.2, 0.5 and 0.8 respectively. (b) The scaling of ε2 with magnetic
field strength, tending to infinity as ωc/ω → 1.

A subtlety of this condition is that it fixes the relative shape of the pulse for the entire

evolution, with the curves R(z) and D(z) only intersecting at the point of singularity. For any

pulse aspect ratio other than unity, this implies R(z) and D(z) evolve asymmetrically. While it

is convenient to call this the condition for spherical compression, it is not neccesarily spherical in

real units. This allows for a situation where, for example, D may reduce to a single wavelength,

but R may still be several times larger if the aspect ratio is low.

If reaching the lambda-cubic regime is our goal, it is tempting to suggest we should tune the

pulse so that R(z) and D(z) intersect at λ0. This tuning may be done with ease by inspection

of the solutions to (3.3) and (3.4). The result is a small change to either R0 or D0 to nudge the

point of intersection above zero. In fact, the difference between a pulse satisfying this condition

and one satisfying the ‘spherical’ condition is incredibly small, and the envelope model is simply

not powerful enough for such a fine detail to carry over into simulations (let alone experiments)

and not be consumed by more dominant competing processes and noise. As such, taking (3.5)

as the condition for spherical compression is justified.

To apply this model to more realistic situations, one must remember that the values for D0

are assumed to be in-plasma, therefore the change in duration due to group velocity reduction

should be taken into account as a real pulse enters a plasma. As this happens, a pulse with

vacuum duration Dvac
0 will be shortened to D0 = βgD

vac
0 . Now, the adjusted rate-matching

conditions are given by

Dvac
0 = R0(β−4g − β−2g )1/2. (3.6)

Allowing both ωp and ωc to vary in (3.6) via the group velocity βg, we can show how the
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rate-matching condition changes with both density and magnetic field strength, as illustrated

in figure 3.3. In general, lower plasma densities and lower magnetic fields require shorter

pulses or broader laser spots in order to compress spherically. Specifically, in an unmagetised

underdense plasma with ω2
p � ω2, this requires Dvac

0 /R0 � 1, i.e., the initial pulse length must

be much shorter than the laser transverse spot size. Only when the plasma is of near-critical

density, one can realise spherical compression with initial Dvac
0 /R0 ≥ 1. On the other hand,

when a sufficiently high external DC magnetic field is applied, one may still achieve spherical

compression with initial Dvac
0 /R0 ∼ 1, even if the plasma is quite underdense. This implication

is applicable to R-mode laser light exclusively. Left-circularly polarised, or linearly polarised

light behaves entirely differently when an external magnetic field is imposed. L-mode laser light

sees the opposite effect as R-mode, where the required aspect ratio becomes even smaller, and

linearly polarised light experiences much more complicated effects, behaving as a superposition

of R and L mode light [52]. Equation (3.5) describes the conditions for spherical compression

for L-mode and linearly polarised light only when ωc = 0.

Initial beam tendency may be predicted from (3.3) and (3.4) as critical powers, taking

R(0) = 1 and D(0) = 1,

PR = 2.463× 1010
(

1− ωc
ω

)4 ω2

ω2
p

W (3.7)

PD = 2.463× 1010
(

1− ωc
ω

)4 ω2

ω2
p

ε1R
2
0

c2D2
0

W, (3.8)

with R0 and D0 now in real units. The values of PR and PD are derived using the approximate

beam power for a CP Gaussian laser P = 4.298 × 1010|a0|2R2
0/λ

2
0 W, where both λ0 and R0

are again in real units. Physically, Equations (3.7) and (3.8) give the power thresholds above

which the laser pulse will immediately begin to transversely focus or longitudinally compress

respectively. These two thresholds are often different, and the initial tendency will not necce-

sarily be maintained. A laser pulse with power satisfying PR < P < PD will initially focus

transversely and spread longitudinally, but recall the coupled nature of (3.3) and (3.4); over the

course of focusing the peak amplitude may rise enough that it begins to compress, reversing this

initial tendency. If (3.5) is satisfied, the two thresholds become identical, and if this threshold

is exceeded the pulse will collapse towards the lambda-cubic regime.

3.3 Envelope Model Comparisons

We note that in (3.7) and (3.8), the constant value is a factor of
√

2 higher than the usually

cited threshold power for self-focusing of 17.4(ω2/ω2
p) GW [40]. This is due to the variational
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Figure 3.3: Initial pulse aspect ratio required for spherical compression as a function of density
and cyclotron frequency. The isobars show the curves for some specific ratios. The upper right
black area of the plot is beyond the effective critical density, and hence returns non-real values.
The cross, plus, and circle signs denote the conditions we choose to simulate.

method itself. The dimensionality of the problem, and the choice of ansatz used, introduce

a constant factor to the second term of the RHS of (3.3) and (3.4). For a Gaussian ansatz

and 3 spatial dimensions, such as the case we examine here, this factor is equal to (3
√

2)−1.

A different ansatz, or a different number of spatial dimensions will change this value. This

inconsistency is well documented in reference [128], comparing both Gaussian and sech profiles

in up to three spatial dimensions, and is a result of the assumption that the laser profile remains

abberationless. This artefact of approximation acts to inflate the calculated power thresholds

and stretch the numerical solutions of (3.3) and (3.4) for higher-dimensional systems.

3.4 Results from PIC simulation

Even though (3.6) gives the conditions for 3D compression in plasma, it does not provide details

on how it develops. In order to test these equations and show the physical processes involved,

simulations are performed using both the 3D PIC code Osiris [77] and supplemented by the

cylindrically symmetric, quasi-3D PIC code FBPIC [79], which can produce very similar results

to that of cartesian 3D PIC codes for the problems considered here, while at the same time

being computationally cost-effective. A more detailed comparison between the two codes is

given in appendix C, where we find good agreement between the two for the purposes of this

work.

In general, length scales are normalised to the laser wavelength in vacuum λ0, and time

scales to the laser period τ0 = λ0/c. We note that in the following simulation results, ‘time’ now

refers to elapsed simulation time, rather than the comoving time used in section 3.2. In Osiris, a

spatial resolution of 16× 16× 16 cells/λ30 is used to ensure the subwavelength structures can be
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clearly resolved. The simulation includes electrons and ions, with mi/me = 1836 representing

a hydrogen plasma. Each cell contains 1 electron and 1 ion, with quartic particle shapes. The

laser is right-circularly polarised, initialised from the wall in vacuum a distance of 5λ0 from the

start of the plasma, then traverses a short linear density ramp of length 1λ0 before entering a

cold homogeneous plasma with the plasm plateau beginning at z = 0. The simulation box is

200λ0 in total along z, 50λ0× 50λ0 in transverse extent. In FBPIC, we maintain the resolution

of 16×16 cells/λ20 in the z-r plane and simulate two azimuthal modes. We again simulate both

electrons and ions use a total of 40 particles per species per cell, distributed as 2×2×10 per-cell

along z, r and θ using cubic particle shapes. Laser amplitude, static magnetic field strength,

and plasma density is varied between simulations.

3.4.1 The case for unmagnetised plasma

First, we simulate a non-magnetised plasma with a plateau density of n0 = ω2
p/ω

2 = 0.475 and

an initial amplitude of a0 = 0.12, corresponding to P/Pc ≈ 1.2. The laser focal plane is set to

the start of the plasma density plateau, with the beam waist R0 = 10λ0, and vacuum duration

Dvac
0 = 13τ0. These conditions are tailored to satisfy the matching condition Dvac

0 /R0 =

1.3 as denoted by the cross sign on figure 3.3. Figure 3.4 shows the overview of the pulse

duration, amplitude evolution, final electron density and frequency spectrum over the course of

the simulation. Firstly, the theory predicts collapse down to a singularity, and this is borne

out in the simulation. Shown in figure 3.4(a), the functions R and D evolve at close-to the same

rate, which is in good agreement with the theory. However, the overall rate at which the pulse

collapses is much faster than predicted by the envelope model given in (3.3) and (3.4), implying

both (3.7) and (3.8) are overestimated. We attribute this to artificial threshold inflation due

to the 3D nature of the problem, discussed at the end of section 3.2. Accompanying the 3D

compression in the simulation, the peak intensity is enhanced by two orders of magnitude.

Despite this being a significant increase, it falls short of what a simple analysis might suggest.

If we say that the pulses are compressed to the lambda-cubic (i.e. R = D = 1), and there

is no energy loss, then the maximum amplification factor we might see is a function only of

the initial pulse dimensions, a/a0 =
√
R2

0D0. This results in a predicted amplification factor

of 30 times the amplitude, or 900 times the intensity for the pulse we simulate here. These

theoretical predictions are of course, not realistic, as they assume no loss to the plasma, and a

perfectly abberationless collapse. Figure 3.6 shows the energy balance over time of an FBPIC

simulation with equivalent parameters. We see that after the pulse has entered the plasma, the

energy is partitioned between the laser and particles as expected, with little change up the the
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Figure 3.4: Unmagnetised simulation results. (a) Envelope parameter function evolution over
the course of the simulation. The relative changes to R (black), D (red) and a (blue) are
shown, the dashed lines show the theory-predicted evolution for the same parameters, in which
the z axis has been scaled down by a factor of 3.5 in order to overlay with the simulation
results. Immediately following a collapse the pulse becomes highly distorted and so meaningful
evaluations of its width and duration are difficult to make in these regions. (b) The laser
envelope profile along the central z axis at progressive times. Note that a logarithmic scale has
been adopted to depict the broad range of intensity variation through the course of laser pulse
collapse, and the reversed light tracks in the top-right are caused by boundary reflections as
the pulse leaves the simulation box at around t = 300τ0. (c) Electron density plots at the end
of the simulation (t = 400τ0). (d) Frequency spectra of the on-axis Bx fields performed at fixed
longitudinal positions, over the whole simulation time domain (400τ0).

Figure 3.5: Unmagnetised simulation electron phase-space distributions at t = 180τ0, following
the first collapse. (a) The longitudinal momentum pz versus the longitudinal axis z. (b) The
transverse momentum px versus the x axis. (c) pz-px distribution.
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Figure 3.6: Energy balance over the course of the simulation with n0 = 0.475, B = 0. The
black line shows the total EM energy contained in the simulation (E2 +B2), the red line shows
the total radiative energy calculated from the Poynting vector (|E ×B|) via (1.8)-(1.11), and
the blue line shows the total kinetic energy of the electrons (ion kinetic energy is negligible).
The sharp drop in EM energy at t ≈ 310τ0 corresponds to the laser pulse leaving the simulation
box.

point of first collapse at around t = 160τ0. Despite this, the amplification falls well short of the

(näıvely) predicted result. This is due to both the partitioning of energy between the laser and

plasma, and the pulse profile deviating from its initial radial profile. While most of the energy

initially contained by the pulse remains radiative, as seen by the comparison of red (radiative)

and black (total) EM energy curves on figure 3.6, the pulse conforms to a characteristic shape in

which significantly more energy is distributed in the wings of the pulse than a Gaussian shape

known as the Townes mode [54,129], thus reducing the potential amplification.

Secondly, successive collapses are found after the first collapse, as the pulse undergoes al-

ternating strong focusing (and compression) and strong diffraction (and decompression), losing

energy each time, as seen in figure 3.6 at t > 160τ0. It is reasonable to extrapolate that this pro-

cess will continue until there is no longer sufficient energy left in the core of the pulse remnant,

at which point it will diffract away rapidly.

Thirdly, the pulse is not reaching a singularity, but a minimum spatial extent of approx-

imately 1λ30 volume (a single cycle pulse, with a spot size of approximately one wavelength).

This is due to electron cavitation which acts to prevent further compression. The pulse un-

dergoes collapse three times over the course of the simulation, each time accompanied by a

burst of keV to MeV electrons expelled from the cavity in the forward direction, seen in figure

3.5(a). There is a high divergence associated with the burst as illustrated by figure 3.5(b - c)

and the particles spread out in a cone from the point of collapse. Ion motion on the other hand

is sedentary, with no suprathermal ions produced over the course of the simulation. At the end

of the simulation, the ion density distribution is very close to that of the electrons.

The rapid nature of the cavitation causes a density pileup to form in front of the pulse in

the few periods leading up to collapse. This scatters the wave, resulting in a sudden, strong
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frequency downshift [130, 131], as seen in figure 3.4(d). In addition to frequency downshift,

frequency upshift is also found, which is most obvious near the first collapse. This much

broadened spectrum also suggests the occurrence of laser pulse compression down to the lambda-

cubic regime.

The ponderomotive force becomes quite strong in the lead-up to collapse, causing the forma-

tion of an electron density cavity. The downshifted wave becomes trapped in this newly-formed

cavity as a soliton, which decays in turn to a post-soliton. Post-soliton formation in plasmas

have been examined in both 2D [132,133], and 3D geometry [134] under a variety of conditions.

We observe behaviour consistent with previous studies of 3D post-solitons. Formation of the

ion density cavity transfers energy from the trapped EM wave to the particles, resulting in

rapid decay of the post-soliton over a few tens of laser periods. Ion motion is also critical to the

cavity stability. Acting in reaction to the space charge separation, ions are gradually expelled

outwards and, as such, the cavities continue to slowly expand long after the postsoliton has

completely decayed. Figure 3.4(c) shows the density snapshot at the end of the simulation

where the three cavities structures remain well intact.

3.4.2 The case for magnetised plasma

Next, we consider a magnetised case, with normalised magnetic field strength ωc/ω = 0.5,

plasma density n0 = 0.15 and initial amplitude a0 = 0.06, giving P/Pc ≈ 1.5. We note

that without a magnetic field, this plasma and laser amplitude would have power ratios of

P/PR ≈ 0.09 and P/PD ≈ 0.48. Even accounting for the inflated thresholds, we would expect

this pulse to monotonically diffract and spread in an unmagnetised plasma. This case is denoted

by the plus sign on figure 3.3 and again calls for an aspect ratio of 1.3 in order to have spherical

compression. Results in line with those given for the previous simulation are shown in figures

3.7 and 3.8.

Similar to the case of unmagnetised plasma, the transverse and longitudinal sizes of the laser

pulse reduce at the same rate leading to symmetrical collapse as shown in figure 3.7(a), which

agrees with our theory. Meanwhile, the pulse compression again develops much faster than

that predicted by the theory model given in (3.3) and (3.4). Even with such a low laser energy

and in low-density plasma conditions that would typically by unfavourable for compression,

pulse evolution towards collapse is found. Again, the pulse undergoes collapse several times, as

seen in figure 3.7(b), each time losing small amounts of energy to energetic particle production

as seen in figure 3.9. This case also exhibits post-soliton formation, localised at the points of

collapse. These are distinguished from those produced in the unmagnetised case by the much
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Figure 3.7: Magnetised simulation results. (a) Envelope parameter function evolution over the
course of the simulation. The relative changes to R (black), D (red) and a (blue) are shown, the
dashed lines show the theory-predicted evolution for the same parameters, in which the z axis
has been scaled down by a factor of 2.6 in order to overlay with the simulation results. Immedi-
ately following a collapse the pulse becomes highly distorted and so meaningful evaluations of
its width and duration are difficult to make in these regions. (b) The laser envelope profile along
the central z axis at progressive times. Note that a logarithmic scale has been adopted to depict
the broad range of intensity variation through the course of laser pulse collapse. (c) Electron
density plots at the end of the simulation (t = 400τ0). (d) Frequency spectra of the on-axis Bx
fields performed at fixed longitudinal positions, over the whole simulation time domain (400τ0).

Figure 3.8: Magnetised simulation electron phasespace distributions at t = 190τ0, following
the first collapse. (a) The longitudinal momentum pz versus the longitudinal axis z. (b) The
transverse momentum px versus the x axis. (c) pz-px distribution.

53



Chapter 3. Laser Pulse Compression Towards Collapse and Beyond

Figure 3.9: Energy balance over the course of the simulation with n0 = 0.15, B = 0.5. The
black line shows the total EM energy contained in the simulation (E2 +B2), the red line shows
the total radiative energy calculated from the Poynting vector (|E ×B|) via (1.8)-(1.11), and
the blue line shows the total kinetic energy of the electrons (ion kinetic energy is negligible).
The sharp drop in EM energy at t ≈ 300τ0 corresponds to the laser pulse leaving the simulation
box.

greater lifespan of the contained solitons. They can be seen as vertical tracks, stationary in

space, in figure 3.7(b) and persist many times longer. Research on post-soliton formation in

magnetised plasma is less robust than for unmagnetised plasma, [135–137], with studies of 3D

magnetised post-solitons doubly so. The mechanism of their comparative longevity and other

specific details of magnetised post-solitons are beyond the scope of this work, however the topic

certainly warrants futher study.

The frequency spectrum is also quite comparable with figure 3.7(d), showing strong fre-

quency downshift and spectral broadening due to scattering close to collapse and trapping of

laser fields inside the cavities.

The production of energetic electrons in this case is similar to the unmagnetised case, which

is found only when pulse collapses occur. However from figure 3.8(b) we observe that the

electrons are constrained on the central axis by the magnetic field, effectively collimating the

particles in the forward direction. The electron density at the end of the simulation is again

comparable, with some electron accumulation on the axis, due to the magnetic field constraining

electrons. Again we see no energetic ion production, and the final ion density distribution is

near-identical to that of the electrons.

The dependence on the magnetic field is very strong, as evidenced by the fact that the

rate of compression is comparable to the unmagnetised case at half the laser amplitude, and

less than half the plasma density. We point out once more that a laser pulse and plasma of

equivalent parameters without such a strong magnetic field would not exhibit any self-focusing

or self-compression. The real magnetic field strength required to elicit these effects varies with

laser wavelength. For example, the value of ωc/ω = 0.5 for λ0 ≈ 1 µm corresponds to around

5,000 T, which remains a challenge to produce experimentally [86]. However, if we consider
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Figure 3.10: Peak intensity amplification for different initial amplitudes and plasma conditions.
(a) Shows the high-density results, where n = 0.5, and (b) shows the low-density results for
n = 0.1. The Osiris results discussed in sections 3.4.1 and 3.4.2 are given for comparison,
denoted by white markers, and labeled on each subfigure. In all cases, when the maximum
intensity for the simulation is reached, the pulse is close to lambda-cubic proportions.

infrared sources, such as CO2 lasers with λ0 ≈ 10 µm, this is reduced to 500 T, which is more

readily available [8, 138]. Thus this magnetised plasma approach suggests a novel method of

compression for long-wavelength or low-amplitude lasers, which are typically more difficult to

manipulate [139,140].

3.4.3 The case for high amplitudes

It is also worthwhile to look at the physics as laser amplitude is raised beyond the weakly-

relativistic limit. We choose to examine densities of n0 = 0.1 and n0 = 0.5, represented by the

circle and cross on figure 3.3, respectively. By maintaining R0 = 10λ0, from (3.6) this requires

Dvac
0 = 3.51 and 14.14, respectively. We use FBPIC to simulate several different amplitude

cases and present the results in figure 3.10. As we are interested only in the envelope dynamics

up to the first collapse, we leave ions immobile, as the simulations do not extend to the ion

motion timescale. Correspondingly we increase the electron particle count to 100 particles per

cell distributed as 2×2×25 in (r, z, θ) and utilise 5 azimuthal modes.

In overview, we may examine the outcome of a compression by the maximum intensity

amplification. This is performed for each simulation at the point of collapse and the results are

summarised in figure 3.10. In the case of high density shown in figure 3.10(a), we see a general
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downward trend as amplitude is increased, with low amplitude pulses in near-critical density

plasma capable of significant amplification, over 150 times the initial intensity. This is exhibited

by both of the Osiris simulations and the FBPIC simulation with n0 = 0.5, a0 = 0.1. As the

amplitude is raised to a0 ∼ 1, the high density case sees rapid filamentation and disintegration

of the pulse, entirely dominating any other envelope processes and making such conditions

unsuitable for compression. As such no results are shown in this regime.

The low density case on the other hand, shown in figure 3.10(b), exhibits a local amplification

maximum around a0 ∼ 1. The pulses with moderate amplitudes a0 = 1 and a0 = 2 show

amplfication of around 40 times the initial intensity. We offer as explanation that in this

regime the compression is fast enough that the wake does not have time to modulate the

main pulse, and distortions from ponderomotive effects are also at a minimum, resulting in

relatively clean compression. As amplitude is further raised, the amplification drops once more,

falling monotonically as ponderomotive losses and other destructive processes dominate the

propagation. At a0 = 10, the maximum amplification has fallen to less than one order of

magnitude. Spherical compression appears to still be possible in this regime, however, due to

ponderomotive focusing and leading-edge etching, it is least described by our model.

In all cases, the compressed profile approaches the lambda-cubic regime, with the ‘best’

results reaching slightly sub-wavelength dimensions, albeit briefly. In general the higher the

amplification, the more closely the compressed pulse approaches the lambda-cubic regime.

For a more detailed examination, we may compare two specific cases. A laser with amplitude

a0 = 0.3 was simulated for both low, and high density plasma. Both pulses have the same peak

amplitude, but due to their differing dimensions, contain different amounts of energy. The

pulse in high density plasma contains approximately 4.5 times the energy of the pulse in low

density. As such, we expect that the amplifcation factor in high density plasma will be greater

than that of the low density plasma, if we are taking the pulses to be spherically symmetric in

their respective plasmas. For the long and short pulses we consider the maximum amplification

factor calculated from a/a0 =
√
R2

0D0 comes out to 37 and 19 times the initial amplitude

respectively. In fact, the simulation results show amplification factors of 8.6 for the long pulse

and 3.4 for the short pulse. This disparity is in line with that discussed in section 3.4.1.

Some snapshots of the simulation results are shown in figures 3.11 and 3.12, showing the

laser Ex field, electron density and wavenumber spectra at various times for the n0 = 0.1

and n0 = 0.5 simulations respectively. The low-density case in figure 3.11 shows the initially

Gaussian pulse in figure 3.11(a). In figure 3.11(b), after propagating some distance into the

plasma, the pulse envelope has contracted both longitudinally and transversely as expected,
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Figure 3.11: Laser electric field (red/blue) and illustrative plasma density (greyscale) at pro-
gressive times, for the case of n0 = 0.1, a0 = 0.3. The inset plots show the k-space spectrum
of the Ex field along the central axis of each snapshot. The dotted line represents the linear
expected value of k based on the plasma refractive index. (a) t = 0, the initial pulse profile. (b)
t = 120τ0, the pulse after entering the plasma. (c) t = 140τ0, the pulse at its minimum extent.
(d) t = 160τ0, the pulse post-collapse.

but it is also modulated by the forming plasma wake. The next snapshot figure 3.11(c) shows

the pulse at close-to its minimum spatial extent. We see that although compression is quite

symmetric, it is not as strong as it could be, limting to around 2λ0 in spot-size, and similar

longitudinal extent. As propagation continues from figure 3.11(c) to 3.11(d), we see that the

frequency downshift continues, and the pulse begins to distort due to the continual downshifting,

elongating and trailing in the wake, with frequency components becoming separated [141].

This results in only modest amplification of 10-20 times the initial intensity. In this density

regime, spherical compression requires both shorter pulses and higher initial amplitudes than

the high-density or magnetised cases. This means lower total energy overall, and renders the

compression process open to competition from ponderomotive effects. Compounding this, at

close-to-threshold laser powers such as these, the propagation distance before collapse is quite

long, giving more time for even low growth-rate instabilities to become significant such as pulse

modulation due to scattering processes and pulse spectral changes.

Correspondingly, the high density case is shown in figure 3.12. Again, (a) shows the initial

pulse profile, and (b) the pulse after entering the plasma, some reflection is seen as the pulse

enters the plasma. Due to the higher plasma density, the time and distance scales for collapse

are much shorter than in figure 3.11. After only 30λ0 the pulse has reached the lamda-cubic
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Figure 3.12: Laser electric field (red/blue) and illustrative plasma density (greyscale) at pro-
gressive times, for the case of n0 = 0.5, a0 = 0.3. The inset plots show the k-space spectrum
of the Ex field along the central axis of each snapshot. The dotted line represents the linear
expected value of k based on the plasma refractive index. (a) t = 0, the initial pulse profile.
(b) t = 68τ0, the pulse after entering the plasma (c) t = 80τ0, the pulse at its minimum extent
(d) t = 112τ0, the pulse post-collapse.

regime, with a fitted spot-size of only 0.7λ0, and an equivalent duration. This naturally induces

strong spectral broadening as seen in the inset of (c), however due to the short propagation

distance and high plasma density, no appreciable wake has formed to distort the pulse. We

attribute the very compact compressed profile to this relatively undisturbed plasma, preserving

the ne = n0 assumption made in the theory. Post-collapse, the pulse disintegrates rapidly, with

the remnants continuing to propagate as seen in other simulations.

3.5 Conclusions

In conclusion, we have demonstrated the viability of spherical compression and subsequent

pulse collapse for short-pulse lasers over a wide parameter range. 3D numerical simulation

suggests the laser pulses can be compressed to the lambda-cubic regime before they reach col-

lapse. Spherical collapse is accompanied by the significant spectrum broadening, the formation

of density cavities and the production of energetic electrons in the forward direction. Multiple

pulse collapses can be found during the laser pulse propagation until the pulse energy is suffi-

ciently dissipated to plasma. Such phenomena can occur even for short laser pulses with input

energy as small as a few millijoules and thus can be demonstrated experimentally on various
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laser systems. The inclusion of a magnetic field is shown to enhance the compression rates at

lower densities and amplitudes, and could potentially be used to manipulate long-wavelength

lasers which are typically difficult to compress below the picosecond scale. While compression

can achieve impressive factors of amplification, energy balance analysis shows that only a small

fraction of the total EM energy is contained in the core of the pulse. As such the use of a

plasma channel may be beneficial to corral the laser energy towards the axis and improve over-

all efficiency. As laser intensity is increased the compression efficiency falls due to absorption to

the plasma, and nonlinear effects causing the pulse evolution to stray further from the expected

profile. Eventually, the pulse shape is dominated by ponderomotive focusing and pulse erosion,

and cannot truly by called a compression in this sense. The magnetic field affects both the

compression rate, and the coupling between transverse and longitudinal focusing, and careful

choice of plasma and field parameters may allow pulses of almost any dimension and amplitude

to be smoothly compressed using the right matched conditions. While we exclusively consider

one specific case, the coupled nature of the evolution equations derived here afford them the

potential to govern the shaping of light into nearly any profile, offering an exciting outlook for

future research.
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Chapter 4

Magnetic Field Amplification by

High Power Lasers

The process by which an existing magnetic field of relatively low strength 102-103 T may be

amplified to a quasistatic magnetic field aligned along the laser axis of 103-104 T is investigated.

The mechanism underlying the effect is found to be ponderomotive in nature, governed by

grad-B drift currents. Scaling relations for the strength of the induced field are derived from

Ampère’s law, suggesting roughly linear scaling with light intensity and plasma density. We

employ 3D and quasi-3D particle-in-cell simulations to numerically investigate the process,

and find agreement with the scaling relations, and support for the ponderomotive mechanism

explanation of the effect in general. The lifetime of the process is considered, and we find

the major factor limiting its growth and lifetime is ion motion, which disrupts the electron

currents neccessary to sustain the induced field. The induced field is found to be of sufficient

strength, and is long-lived enough to be relevant for study in relation to applications in radiation

production and laboratory astrophysics.

4.1 Introducton

Magnetic fields in plasmas have been a source of constant interest for a considerable amount

of time, as they are found universally in all plasma regimes from astrophysicsal to fusion and

a need to understand them underpins many of the ongoing problems in plasma physics. They

are often ephemeral, and they manifest in many different topologies, making them challenging

to study with any degree of generality. This has given rise to many different models and tools

with which to study them.
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It has been observed previously [142] that an intense LG laser incident on a plasma with a

preexisting background magnetic field B0 may induce an apparent amplification effect, resulting

in a highly localised, ultraintense magnetic field along the path of the laser. This effect has

been explained as due to the transfer of angular momentum from an LG01 mode laser to the

plasma, facilitated by the external magnetic field. Instead, we propose that this effect is not

unique to OAM or indeed AM-carrying light in general, rather it is a ponderomotively driven

effect. The field forms in the wake of the pulse, as particles are ponderomotively expelled from

the beam, and their trajectories are then curved by the background field. This kick-starts an

amplification of the longitudinal magnetic fields which occurs when a laser is tightly focused.

The transverse motion of electrons is converted into an azimuthal current, which in turn induces

a self-reinforcing magnetic field, long after the laser has passed.

We propose the use of a linearly polarised pulse in the fundamental mode, providing no

angular momentum of its own. However, in the presence of a background magnetic field, we

find that the plasma nevertheless gains a significant amount of angular momentum, and a

strong, static magnetic field forms in the wake of the pulse. The mechanism underlying this

field is not immediately obvious, and so we perform simulations and use the results to discuss

potential explanations for the phenomenon.

4.2 Simulation Setup

Simulations were carried out using both Osiris and FBPIC to determine both the basic principle

and perform parameter variations in order to better understand the process by which the

magnetic field forms and is sustained. The Osiris simulations used a plasma 40λ0×40λ0×30λ0

with a resolution of 32×32×32 cells/λ30 and 60 iterations per laser period. A linearly polarised

laser with duration D0 = 10τ0 and spot size R0 = 7λ0 with a peak amplitude of a0 = 5 incident

on a plasma with n0 = 0.5 and a normalised background magnetic field of B0 = 0.2 (such that

ωc = 0.2ω). A 3D render of the induced field is shown in figure 4.3. The very well defined

cylindrical shape is due to the background magnetic field, which restricts particle motion around

the axis, but allows for particles to stream along z freely, allowing the field to spread to the

edges of the plasma at z = 5 and z = 35. In order to explore the effects of parameter variations,

FBPIC is employed. The FBPIC simulations use a similarly sized plasma to that of the Osiris

simulations, but with a lower resolution of 16 × 16 cells/λ20. Five azimuthal modes are used

with 2×2×25 particles along r, z, θ. We find that there is sufficiently good agreement between

Osiris and FBPIC to justify the use of the latter in tandem. The cylindrically symmetric nature
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of FBPIC does result in significantly more noise close to the axis, however this is compensated

for in the analysis with a slight smoothing filter.

4.3 Mechanism and Scaling

4.3.1 Angular Momentum

As observed by [142], during the formation and maintainence of the induced magnetic field the

plasma obtains a vast amount of angular momentum, and this is the mechanism to which they

attribute the magnetic field formation. However, the amount of angular momentum imparted

to the plasma cannot be accounted for by the laser alone. The total angular momentum of light

may be calculated via

L = ε0

∫
V

r × (E ×B) dV, (4.1)

where r is the position vector and V is the plasma volume. This expression represents the total

angular momentum, making no distinction between spin or orbital contributions. Equation

(4.1) requires the longitudinal fields be included in order to produce a nonzero result for the

AM along the axis, this makes it somewhat more difficult to use in analytically calculating the

AM of light. However it is useful for numerically evaluating simulation results. An alternate

method of approximating the the total angular momentum of a laser pulse may be to calculated

from the number of photons, and then multiply by ~(δ + l) accounting for the SAM, where δ

describes the polarisation state, and OAM where l describes the azimuthal index of a laguerre

polynomial.

For a pure gaussian laser using the tesbed parameters described in section 4.2, the total

energy comes to E ≈ 1.1 J. If we simulate a LG01 beam with the amplitude scaled such that the

pulse contains the same energy, we may use the photon energy Eγ = hc/λ0 and take λ0 = 1µm

for simplicity, to find there are E/Eγ ≈ 5.5× 1018 photons in total. The beam should therefore

carry an OAM of 5.8× 10−16 kg m2 s−1. This value is confirmed by measuring the total energy,

and angular momentum of a simulated LG beam, where we find both in good agreement with

theory. This value, assuming angular momentum is conserved, should be the sum of the AM

partitioned between the EM fields and the plasma over the course of the simulation. In fact,

this is not the case. Figure 4.1 shows the angular momentum and energy partitioning for

several laser configurations. Each pulse contains 1.1 J and the CP and LG pulses begin with

the calculated value of AM, be it spin or orbital. Small differences can be seen in the coupling

to the plasma, mostly due to the small differences in refractive index and focusing dynamics
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Figure 4.1: Equal-energy laser pulses with different field configurations. Linear polarisation
(black), circular polarisation (red) and linearly polarised LG01 (blue). (a) The partitioning of
angular momentum along z, where the solid, dot-dashed and dashed lines track the total AM,
AM carried by the plasma and by AM carried by the light in the simulation box respectively.
(b) The energy balance over the course of the simulations. The solid, dot-dashed, dashed and
dotted lines represent the total energy, EM energy, particle energy and the energy contained
only in the Bz field respectively.

between the different pulses. However, we see in Figure 4.1(a) that in all cases the total angular

momentum in the system grows to around ten times the amount carried by the CP and LG

pulses. While angular momentum should be conserved, it appears that in this case it is not.

The external magnetic field may be the cause of this, as it is not generated self-consistently.

There is therefore strong motivation to study this phenomena experimentally. A more detailed

discussion of how angular momentum is transfered (or not transfered) to the plasma by OAM-

carrying beams may be found in appendix D. The pulse energy is shown in figure 4.1(b), and

we see that as expected, much of the pulse energy is coupled to the plasma as heating, and

some of it is lost as the pulses exit the simulation box around t = 100τ0. The EM energy that

remains is very small comparatively, with the energy contained in the Bz field on the order of

mJ. Despite this, it remains roughly constant and due to the compact nature of the fields, the

actual field strength remains very high long after the laser has passed. Furthermore we note

that upon reversing the polarity of the seed field, the induced field follows suit. Figure (4.2)

shows the results of FBPIC simulations demonstrating this for linearly polarised light, where

we see two near-identical plots of the Bz field, with only the sign differing between the two.

It is interesting to note that this behaviour is also true for LG light, as noted by [142]. This

introduces further difficulties in accepting this process as a transfer of angular momentum, as

the final AM of the plasma is unrelated to the initial AM of the incident laser.
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Figure 4.2: Induced magnetic field given a positive (a) and negative (b) seed field along z,
indicated on the plots. In both cases the laser is linearly polarised, and incident from the left.
Both snapshots taken at t = 200τ0.

4.3.2 Dynamo Action

Given this, we look for an alternate explanation for the formation and upkeep of the field. The

long-lasting nature of the field, and the apparent self-reinforcement it exhibits would suggest

some sort of dynamo action as the mehanism for the field, and indeed there has been recent

interest in laboratory dynamos [143–145], with solutions found to the MHD equations. We

note at this point that MHD is not strictly applicable to laser-plasma interactions, as the

spatial and temporal scales are very small, and the plasma is generally collisionless and far

from a Maxwellian temperature distribution. For the purposes of the following demonstration

however, this may be overlooked.

At a glance, we may look at the magnetic reynolds number Rm, which gives the ratio of

magnetic induction to magnetic diffusivity, in order to gauge how readily a plasma might exhibit

dynamo action. The minimum Rm for spontaneous amplification of magnetic fields is generally

quoted to fall between 100 and 3000 depending on the geometry under consideration [146]. The

magnetic reynolds number is given by

Rm = µ0σ0vL (4.2)

where L is the length-scale of the plasma flow. In order to estimate Rm we must assume several

quantities. While the length scale will neccesarily be very small, on the order of 10−6 m, the

flow velocity and conductivity can be extremely high for a hot plasma, placing at least some

parts of the plasma into the regime in which dynamo action is possible.
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Given this, we may look at the MHD magnetic induction equation [147]

∂B

∂t
= ∇× (v ×B) +

1

σ0µ0
∇2B. (4.3)

Where v is the plasma flow velocity, σ0 = nee
2/(meνei) is the DC conductivity of the plasma

and νei is the electron-ion collision frequency. In reality, the plasma is magnetised, and so

the conductivity would be better expressed as a tensor, but again, for the purposes of this

example it is not important. The coupling of v ×B allows kinetic energy to be transformed

into magnetic energy, and it is evident that without a flow, the equation becomes a magnetic

diffusion equation only. This would appear to fit very well with the magnetic fields observed

in simulation. However, an answer is not forthcoming. Taking an azimuthal flow v = êθvθ(r)

and longitudinal field B = êzBz(r) with radial dependence,

∇× (v ×B) = êθ
∂

∂z
vθBz − êz

∂

∂θ
vθBz = 0 (4.4)

reducing (4.3) to a diffusive process only, at odds with observations. It is important to note that

we assume a quasiinfinite plasma length such that ∂/∂z → 0, and a perfect azimuthal symmetry

such that ∂/∂θ → 0. In reality the plasma is of finite length, and azimuthal symmetry is

certainly not assured, so both terms will be nonzero. However, predicting and describing these

asymmetries is not feasable. Clearly this very simplified flow and magnetic field geometry is not

sufficient to decribe the origin of the magnetic field, but such a process may still be relevant,

relying on asymmetries in the plasma and magnetic field geometry.

4.3.3 Drift Current

Such a strong, well defined magnetic field would imply an equally well defined current sustaining

it. However, the instantaneous current density does not show any particularly strong azimuthal

component, as seen in figure 4.4(a). However, when the current density is summed along z

for the whole simulation box, the azimuthal current becomes quite evident. This lack of a net

azimuthal current in the slice diagnostics implies that instead of a direct current, the magnetic

field is sustained by a time-averaged current. Therefore, we look at the magnetic field topology

itself and consider a drift current arising from guiding-centre motion of the electrons.

The individual and collective motion of charged particles in electric and magnetic fields is

fundamental to this work, however generally we have assumed either universally constant or

enveloped oscilliatory fields such as the laser fields, and static constant background magnetic

fields. Inhomogeneous E and B fields bring with them an entire class of particle motions called
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Figure 4.3: The Bz field at t = 150τ0. Axis labels are given in laser wavelengths. The yellow
isosurface corresponds to Bz = 0.2, the red isosurface to Bz = 0.5. The peak field amplitude
in the snapshot is Bz = 1.02, corresponding to over 104T for λ0 = 1µm.

Figure 4.4: Azimuthal current density, at (a) a single slice through the middle of the simulation
box (b) integrated along z. In the unintegrated slices, away from the axis there are more clearly
identifiable azimuthal currents, as seen in (a). This is due to the lower electron temperature
and less turbulent nature of the plasma far from the axis, the currents are transient in nature
and when integrated along z there is little net current anywhere except the axis, as seen in (b).
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Figure 4.5: The motion resulting from electrons with randomised initial momentum under
an inhomogeneous magnetic field. The field is shown by the colourmaps and a slice (inset).
Electron orbits are shown without (a) and with (b) a background magnetic field. Note that the
difference in magnetic field is very slight between (a) and (b), Inset (b) shows the presence of
a background field B0 = 0.1 not present in (a).

drifts. In a plasma with a background magnetic field, the particles will perform cyclotron

motion as discussed in chapter 1. Taking there to be no change in the kinetic energy of the

particle (i.e. E = 0), and taking there to be some spatial gradient to B the guiding centre of

the particle motion will drift perpendicular to the gradient of the magnetic field vdrift ⊥ ∇B.

This is the so-called grad-B drift, and in the nonrelativistic limit it is is given by [148]

v∇B =
E⊥
qB

B ×∇B
B2

, (4.5)

where E⊥ is the transverse (relative to B) component of the electron kinetic energy. A cor-

responding drift current density may be estimated by considering the plasma density. If we

consider a magnetic field B = êzB(r) aligned along z with some spatial inhomogeneity along

r, the resulting drift motion v∇B = êθv∇B . This drift motion is demonstrated in figure 4.5. In

figure 4.5(a), some test particles with random initial momenta were simulated and the equa-

tion of motion solved numerically. These particles gyrate due to the imposed magnetic field,

and drift azimuthally due to the inhomogeneity. When only self-generated fields are consid-

ered, even if a centralised, gaussian-like longitudinal field structure forms, while some particles

with congruous trajectories will become trapped, most particles will eventually escape, and a

self-sustaining field structure cannot form. This is demonstrated in the fact that of the eight

particles simulated, six were eventually lost. However, if a background field is imposed as in
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figure 4.5(b), all eight particles remain trapped, and continue to contribute to the azimuthal

drift current. The exact difference in the magnetic field topology in each case is shown in the

inset plots in figure 4.5, the difference is quite minor, but even the presence of a small seed field

dramatically alters the particle trajectories. Once a magnetic field is established, the resulting

motion of the electrons can be separated into fast and slow components. The slow motion

makes up the time-averaged drift current, and the fast motion is the cyclotron motion of the

electrons, which act as microscopic current loops, to which we may assign a magnetic moment

µe = −µeêz, (4.6a)

µe =
E⊥
B
. (4.6b)

This motion is transformed back into a longitudinal magnetic field via Ampère’s law, with the

drift motion acting to reinforce the seed field, and the cyclotron motion acting to reduce it,

although the two competing generated fields are obviously not in balance, given the growth of

the magnetic field in one direction. This behavious is borne out in PIC simulation, a random

sample of 250 electron trajectories is plotted in figure 4.6, in which the guiding centre motion

can be clearly seen in almost all particles near to the laser axis. Quantifying this effect is quite

difficult.

Assuming quasineutrality and neglecting ion motion, we may use Ampère’s law (1.39b) to

study the magnetic field including both drift motion and cyclotron motion

∇×B = µ0∇×Mωc + µ0J∇B (4.7)

where Mωc is the plasma magnetisation due to the cyclotron motion of the electrons and J∇B

is the drift current. The magnetisation and drift current are given by

Mωc =

∫
v

µefe(v) d3v, (4.8a)

J∇B = −e
∫
v

v∇Bfe(v) d3v, (4.8b)

where fe(v) is the distribution function of the electrons. If we assume that the distribution

fe(v) is Maxwellian, the integral

∫
v

E⊥fe d3v = nekBTe = p, (4.9)
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Figure 4.6: A flat random sample of 250 electron orbits. Particle tracks are coloured arbitrarily
to improve visibility.
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where p is the kinetic pressure, is of use. While it is unlikely that the distribution is Maxwellian

when the laser is present, we would expect the plasma to relax towards it once the laser has

passed. Using this, we may evaluate (4.7) as

∇×B = −µ0∇×
( p
B
êz

)
+ µ0

p

B3
B ×∇B (4.10)

Here the first term on the RHS denotes the contribution by the electron cyclotron motion, and

the second term denotes the contribution by the drift motion. Further algebra on (4.10) leads

to the familiar relation
B2

2µ0
+ p = constant. (4.11)

describing the relationship between kinetic (nekBTe) and magnetic (B2/2µ0) pressure. Alter-

natively, we may also arrive at

B =
√

2µ0nekBTe + constant., (4.12)

indicating a potential scaling relationship for the magnetic field strength involving the plasma

density and temperature.

4.4 Simulation Results and Discussion

Figure 4.7 shows a summary of parameter scans varying several key parameters and examin-

ing the effect on the resulting magnetic fields. The results are presented as lineouts averaged

in space, taken from the final step of the simulations at t = 250τ0. The spatial averaging is

performed in both z and θ and is achieved by taking advantage of FBPIC’s harmonic decom-

position algorithm. All field outputs in FBPIC are decomposed according to azimuthal mode,

such that a simulation with nm modes will produce field diagnostics with 2nm− 1 components,

which may be combined to retrieve the complete field F as follows

F = f0< +

nm−1∑
n=1

[fn< cos(nθ) + fn= sin(nθ)] , (4.13)

where the f coefficients describe the various modes of the field, and θ gives the plane angle at

which we are resolving the field. Therefore, to average a field around θ we can see by inspection

of (4.13) that the result will be

〈F 〉θ =
1

2π

∫ 2π

0

F dθ = f0<, (4.14)
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Figure 4.7: Radial magnetic field profiles demonstrating the effect of varying (a) laser amplitude,
(b) plasma density (c) seed magnetic field strength and (d) laser spot size on Bz. All simulations
use a common testbed with B0 = 0.2, a0 = 5, R0 = 7λ0, n0 = 0.5nc, snapshots are taken at
t = 250τ0 and spatially averaged around θ and along z. The averaged lineouts are smoothed
with a Savitzky-Golay filter with a window length of 15 and polynomial of order 2. The upper
insets show the peak magnetic field against the parameter being varied. The lower insets show
the total energy contained in the Bz field. Both insets in (a) are fitted to a linear regression,
both insets in (b) are fitted to a regression of power half. The lower inset in (d) is fitted to a
quadratic regression.
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as integrating sinusoids over an integer number of their periods comes to zero. The spatial

averaging along z is performed numerically, from the beginning of the plasma to the end of the

plasma, such that vacuum fields are excluded.

We may also sum the total energy in the field using the same properties. The field energy

density U is given by

U =
αF 2

2
, (4.15)

where α = µ−10 if F is a magnetic field, and α = ε0 if F is an electric field. We may combine

(4.13) and (4.15), and evaluate the volume integral
∫
V
U dV , where dV = rdrdθdz, to retrieve

the total energy in the field. Desepite the potentially very large number of terms obtained

when expanding F 2, most sum to zero when integrated around θ, and so we may analytically

evaluate the azimuthal part of the integral, leaving us with

EF =
απ

2

∫ ∞
0

r

∫ ∞
−∞

2(f0<)2 +

nm−1∑
n=1

[
(fn<)2 + (fn=)2

]
dzdr. (4.16)

Which may then be discretised according to the simulation mesh spacing and the remainder of

the integral evaluated numerically.

Plasma temperature is related to the laser intensity, therefore we may expect a linear re-

lationship with laser amplitude, as Te = Ē and E⊥ ∝ I ∝ a2, assuming tranverse motion

dominates. This relationship is supported by 4.7(a), where the dotted line in the upper inset

shows a good fit to a linear regression. The lower inset shows the total energy of the Bz field,

and this also scales linearly with amplitude.

Initial density is more directly controlable, but also affects the energy coupling to the plasma,

and the resulting electron temperature. This scaling is tested with the results shown in figure

4.7(b). The averaged field amplitude does not scale this way, instead appearing to saturate

after n0 = 0.5, as illustrated in figure 4.7(b) lower inset. This is likely a diminishing return on

the energy coupling per particle for a constant laser intensity. Despite this, the total energy

contained in the magnetic fields does increase with density, as illustrated in figure 4.7(b) lower

inset. This may indicate that a high density plasma with n0 ≥ 1 is capable of supporting

very high magnetic fields, but with the requirement that the input pulse is of sufficiently high

amplitude to heat the plasma sufficiently to drive the requisite currents.

The background field strength is more difficult to quantitatively examine, but nevertheless

affects the induced field. The transverse heat flow is dependent on the magnetic field. A higher

field restricts electron motion, leading to a sharper, tighter profile. Figure 4.7(c) shows the

effect of varying B0. Naturally when there is no initial magnetic field, no field is induced.
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However it is interesting to note from the lower inset that the energy contained in the Bz field

is not much less than the cases where an induced field is present. This suggests that the process

does not greatly alter the magnetic energy partitioning, rather is simply reorders it to be more

collimated. Further, the initial field has a saturation point around B0 = 0.1 beyond which it no

longer affects the induced field as seen in the upper inset. This may be explained as the point at

which the majority of electrons become trapped close to the axis and contribute to the current.

Beyond this, there is no further advantage to increasing the background field. This saturation

point will increase linearly with laser amplitude as p⊥ ∝ a, however the exact value is difficult

to determine exactly, relying on an accurate method to predict the resudial momentum of the

electrons after the laser has passed. This requires a knowlege of the specific focusing dynamics.

Increasing the laser spot size increases the width of the magnetic field as one might expect,

demonstrated in figure 4.7(d). This is in line with the increased energy imparted to the plasma,

as E ∝ R2
0, so do we also see a quadratic scaling of the magnetic field energy in the lower

inset. The peak field strength however is not affected much, instead seeming to saturate, with

the additional magnetic energy contained in the wider field profile. Very large spot-size beams

are more prone to fillamentation, so the beam does not focus onto the axis as cleanly as the

smaller spot-size beams, As the simulated plasma is quite shallow and the beam itself already

ultrashort, self correction and channel formation does not have time to occur the laser energy

is deposited over a large radius. This may also help explain why despite the increased energy

imparted, the peak magnetic field does not increase as the beam cannnot focus strongly enough

to increase the amplitude on-axis much beyond the smaller spot-size simulations.

The induced field forms quickly in the wake of the laser pulse, and appears to have an

extremely long lifetime under all circumstances. In all cases the field presists until the simulation

ends with very little change in topology, and only a minor decay in field strength. As the

local plasma temperature can reach several hundred keV the collision frequency is expected

to be negligible, as such, collisions were not simulated. The electron-ion collision rate can be

approximated by [149]

νei ≈ 2.91× 10−6ZneT
−3/2
e ln(Λ), (4.17)

where ne is given in cm−3, Z is the number of free electrons per atom, Te is the electron

temperature in eV, ln(Λ) = ln(9ND/Z) is the coulomb logarithm, ND = 4πλ3D/3 is the debye

number and λD = (ε0Te/nee)
1/2 is the debye length. A cursory estimate of the electron-ion

collision frequency using the simulation plasma parameters, and taking an electron temperature

of 100 keV gives νei ∼ 109 s−1, corresponding to an expected timescale for the induced field on

the order of nanoseconds, before collisions become significant. It would be beneficial to study
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Figure 4.8: Comparison of electron densities (upper row) and Bz field amplitudes (lower row)
at t = 200τ0 in simulations without (a)-(b) and with (c)-(d) ion motion enabled.

the effect collisions have on the energy transport, and determine quantitatively if there are

significant losses to this mechanism.

Despite the very high estimation of the field lifetime based on the collision frequency, ion

motion substantially alters the magnetic field topology. Figure 4.8 shows the effect of ion motion

on otherwise identical simulations. With mobile ions, much of the areas close to the axis are

evacuated shortly after the laser passes. As electrons move to neutralise the charge separation

induced by the radial motion of the ions, this in turn disrupts the azimuthal current and leads to

a rapid disappation of the magnetic field. The induced field in this case is less collimated, with

the on-axis strength much lower. However, there is still a relatively ordered field formed due to

the fairly well-defined wall of the evacuated channel. As the channel expands, the radial motion

of the plasma as a whole induces a complex expanding multiringed magnetic field structure,

which may well be worthy of study in its own right. For experiment, the use of an ion species

with a low charge-to-mass ratio, would delay the onset of this motion. This may be achieved

with a high-Z ion species. Figure 4.9 shows the rate of channel formation for 3 ion species. The
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Figure 4.9: Ion channel formation rate for three ion species; H+1 (red), Ar+18 (black) and Ar+1

(blue) characterised by (a) channel width, defined as the radial point at which density is equal
to the plasma plateau density, and (b) channel depth, defined as the density at r = 0. The
channel is not uniform, so a slice at z = 30λ0 is chosen to illustrate the typical rates. The
results are fitted to arctangent regressions, assuming the channel width and depth ultimately
plateaus as ion momentum is disappated.

channel for the H+1 (q/m ∼ 108) plasma forms the fastest, with Ar+18 (q/m ∼ 107) and Ar+1

(q/m ∼ 106) following in order of decreasing charge/mass. The use of Ar+1 is illustrative, as

the high plasma temperature would fully ionise argon, but despite the much lower charge/mass

ratio, a channel forms nonetheless. The effect of mixed-ion plasmas and partially ionised species

are worthy of further study, but beyond the scope of this work.

4.5 Conclusions

We have investigated the phenomena of magnetic field amplification by high power lasers,

and demonstrated its viability for quasistatic magnetic fields lasting tens to hundreds of laser

periods. The field appears ponderomotively driven, allowing lasers of arbitrary polarisation and

field configuration to be employed, given a suitable seed field. The field itself is sustained by

an azimuthal current induced in the wake of the laser pulse.

The induced field scales with both laser amplitude and plasma density, with no theoretical

limit. Dense plasmas with ultraintense lasers may be capable of supporting fields into the tens

of kiloteslas. It is interesting that while extremely strong magnetic fields may be produced, the

overall energy contained within the relevant field component remains small when compared to

the other components. This is likely due to the extremely compact nature of the field structure,

but may suggest a way to improve the efficiency of the process and realise stronger fields given

further research.
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The extremely hot nature of the plasma generated suggests and extremely long timescale

for collisional losses. However, this potential is tempered by the fact that ion motion inevitably

disrupts the currents as an evacuated channel forms in the path of the laser, and this occurs on

a much faster timescale than collisions. Despite this, the strong fields still persist for hundreds

of femtoseconds at least, making them of useful duration nontheless. This limitation may be

further mitigated by the use of an ion species with a low charge-to-mass ratio to slow the ion

motion further.
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Summary and Outlook

This thesis presents the theoretical framework and numerical investigation of envelope dynamics

of short pulse lasers in plasma, under the influence of strong magnetic fields.

The first section of this thesis covers weakly relativistic laser dynamics in quite sparse

plasma ne < 0.1nc, with a focus on the effects stemming from the external magnetic field. A

strong external magnetic field dramatically alters the elctron response under circularly polarised

light. In the non whistler regime (ωc < ω0), the weakly-relativistic regime is described by the

condition a20η
2
0 � 1. For LCP light this means a damped electron response, extending the

weakly-relativistic regime into traditionally fully-relativistic light intensities. For RCP light this

curtains the weakly-relativistic regime even further, resulting in increased instability growth,

absorption and wavebreaking effects at much lower light intensities. These polarisation effects

may be employed to either allow access to fully-relativistic processes in low-power laser systems,

or examine weakly-relativistic effects in high-power systems. At resonance (ωc = ω0), the

plasma is entirely absorbing to RCP light. By contrast LCP light experiences no such resonant

point. The analagous resonance for LCP light is governed by the ion cyclotron frequency,

and is both of too low a frequency, and too minor magnitide to be relevant. An electron-

positron plasma would have a strong resonance for both RCP and LCP light, and may be an

interesting avenue of study. In the whistler regime (ωc > ω0), a laser pulse may propagate

through arbitrarily dense plasma, and relativistic effects can serve to bring the plasma back to

an absorbing resonant state as ωc/γ → ω0. As this is independent of density, it may offer a

method to measure the field in a plasma given a known probe laser intensity.

The second section of this thesis considers a more quantitative method of describing pulse

propagation, by employing the varitional method to generate parameter functions describing

both the transverse and longitudinal dynamics in a more self-consistent way. The specific case
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of symmetric evolution is studied in detail, and its viability as a method of causing complete

pulse collapse is demonstrated. The parameter range for such collapses emcompass a large

range of potential plasma and pulse parameters. In the strictly weakly-relativistic regime a

pulse may be smoothly compressed to the lambda-cubic, and a corresponding large increase in

intensity achieved. The use of a magnetic field is accounted for by the evolution equations, and

may be used to compress pulses of arbitrary shape, due to the fact that the longitudinal and

transverse compression rates do not scale equally when a magnetic field is applied. This allows

for the possibility that carefully chosen plasma and magnetic field parameters may allow access

to compression for a very wide range of pulse shapes and intensities. High intensity pulses

may also be compressed towards the lambda-cubic regime, but the overall efficiency is much

reduced, as there are significant losses to absorption, and the exact mechanism of compression

moves from a purely envelope model, to a ponderomotively driven process.

The final section considers how intense lasers may be used to further enhance an imposed

magnetic field by ponderomotively-driven circulating currents, sustained by the background

B-field. Given a suitable seed field, an intense laser or arbitrary polarisation and mode may

induce an extremely strong quasistatic magnetic field along the laser propagation axis. This

field scales with the laser intensity and plasma density, as both contribute to driving the strong

azimuthal currents needed to sustain the magnetic field. The induced field may reach an order of

magnitude higher than the seed field, which seems to have an optimal level around ωc/ω0 ∼ 0.1,

corresponding to 102-103 T depending on the laser wavelength. The field is relatively long-lived,

limited by ion motion, which disrupts the azimuthal currents. The use of high-Z or otherwise

plasma with a low average q/m may mitigate this and prolong the life of the magnetic field.

Moving forward, the work done over the course of this project may find application in

high-power laser experiments. The pure envelope dynamics may be of interest to plasma-based

accelerator physics and inertial confinement fusion. Optical schemes for generation of extremely

strong and compact magnetic fields may be of relevance to magnetically-assisted fast ignition,

as a means of collimating electrons into the compressed fuel more efficiently, and for radiation

production, from deflecting relativistic particle beams.

Chapter 3 highlights the need to look further into the discrepancies arising from simplfied

evolution models. Theory and simulation results differ in predicted collapse distance, and

while this discrepancy is less important at high intensities, where envelope dynamics are no

longer dominated by the purely relativistic effects underlying the evolution equations we derive,

the source of this discrepancy should be studied in order to improve understanding of the

limitations of such models. We also note a lack of work on post-soliton formation in magnetised
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plasmas, where we see relatively long-lived solitons in 3D geometry, a phenomenon usually

associated with 2D simulations, and the unrealistic electron motion this reproduces. This work

suggests such phenomena are indicative of a partial or complete pulse collapse, and may be

useful to experimentalists to identify with reasonable accuracy the location of collapse events.

Additionally, the envelope evolution equations derived here, may be applied to higher-order

beam modes, such as LG modes, by considering the symmetry of the amplitude profiles and

constructing approximate profiles by superposition of simpler profiles. The radial profile as a

2D envelope with cylindrical symmetry suggests higher-order LG or HG beams would collapse

down to ring structured or rectilinear arrays of pulses. Given the strong ponderomotive forces

observed when fundamental Gaussian pulses are tightly focused and compressed, higher modes

would potentially cause ordered patterns or ring-shaped post-soliton cavities, which may offer

a novel method to structure the plasma density and diffract subsequent beams.

Chapter 4 also suggests further study of both the underlying mechanisms, and the detailed

scaling of magnetic field amplification. Additionally, the questions arising from the huge angular

momentum gain by the plasma, and apparent violation of the related conservation laws would

be best examined experimentally, given that the practicalities of studying such strong ambient

magnetic fields preclude a self-consisten method of generation.

In all cases, there is clear motivation to study in more detail the effects of moving beyond the

weakly-relativistic regime. We consistently see deviations from the models due to laser intensity

growth pushing into the fully relativistic regime. This in turn causes electron acceleration

and introduces ponderomotive effects not accounted for by the models. As a clear next step

this would both improve the applicability of the envelope models, and give a more accurate

description overall of the dynamics in all cases.
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Appendix A

Calculating Electron Motion

This appendix contains the details of calculating particle orbits under light of arbitrary polari-

sation and arbitrary external magnetic field strength. Consider the plasma to be initially cold.

Individual electron motion is given by the Lorentz equation

m
∂v

∂t
= q (E + v ×B) . (A.1)

We may linearise by assuming plane-wave solutions for E, and further simplify by assuming

the interaction is nonrelativistic, ie. v � c allowing us to discount the laser magnetic field.

E = êxEx + êyEy. (A.2)

The static magnetic field

B = êzδBz, (A.3)

is aligned along k, with the direction of the field is determined by δ, which takes values of 1 or

-1 corresponding to R and L modes.

Derivatives are linearied accordingly

∂

∂t
f(t) = −iωf(t), (A.4)

∫
f(t) dt =

i

ω
f(t) + C. (A.5)
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Initial substitution gives us

− iωm


vx

vy

0

 = q



Ex

Ey

0

+

∣∣∣∣∣∣∣∣∣
êx êy êz

vx vy 0

0 0 δBz

∣∣∣∣∣∣∣∣∣

 , (A.6)

which seperates to

− imeωvx = q(Ex + vyδBz), (A.7)

− imeωvy = q(Ey − vxδBz). (A.8)

We now introduce the signed cyclotron frequency Ωc = δωc = eδBz/me and solve (A.7) and

(A.8) simultaneously for v{x,y} in terms of E{x,y}

vx =
q

m

[
iωEx − ΩcEy
ω2 − Ω2

c

]
, (A.9)

vy =
q

m

[
iωEy + ΩcEx
ω2 − Ω2

c

]
. (A.10)

Now we may integrate to retrieve expressions for position

x = − q

ωm

[
ωEx + iΩcEy
ω2 − Ω2

c

]
+ C, (A.11)

y =
q

ωm

[
iΩcEx − ωEy
ω2 − Ω2

c

]
+ C. (A.12)

Substituting appropriate values for Ωc, m and q, and an expression for E allow the orbits for

arbitrary particles in arbitrary fields to be determined
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Variational method workings

This appendix details the variational method as applied in chapter 3 leading to (3.3) and (3.4).

B.1 Obtaining the Reduced Lagrangian

The governing NLSE is given by

2i
∂ψ

∂z
+∇2

⊥ψ + ε1
∂2ψ

∂τ2
+ ε2|ψ|2ψ = 0, (B.1)

and we take a test envelope function

ψ = A(z) exp

[
−x

2 + y2

R2(z)
− τ2

D2(z)
+ iB(z)(x2 + y2) + iC(z)τ2

]
, (B.2)

where A(z) is the complex amplitude, R(z) is the spot radius, D(z) is the pulse duration, B(z)

is the transverse phase term and C(z) is the longitudinal chirp term. The variational principle

requires that the lagrangian energy density L satisfies

∑
j∈X

[
∂

∂j

(
∂L

∂[∂j(ψ∗)]

)]
− ∂L
∂ψ∗

= 0 (B.3)

X = {x, y, z, τ}

Such a lagrangian is given by

L = i

(
ψ
∂ψ∗

∂z
− ψ∗ ∂ψ

∂z

)
+

∣∣∣∣∂ψ∂y
∣∣∣∣2 +

∣∣∣∣∂ψ∂x
∣∣∣∣2 + ε1

∣∣∣∣∂ψ∂τ
∣∣∣∣2 − ε2

2
|ψ|4. (B.4)
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First we evaluate (B.4), requiring the derivatives of ψ

∂ψ

∂z
=

dA

dz

ψ

A
+ ψ

(
2r2

R3

dR

dz
+

2τ2

D3

dD

dz
+ ir2

dB

dz
+ iτ2

dC

dz

)
, (B.5a)

∂ψ∗

∂z
=

dA∗

dz

ψ∗

A∗
+ ψ

(
2r2

R3

dR

dz
+

2τ2

D3

dD

dz
− ir2 dB

dz
− iτ2 dC

dz

)
, (B.5b)

∂ψ

∂y
= ψ

(
− 2y

R2
+ 2iyB

)
, (B.5c)

∂ψ

∂x
= ψ

(
− 2x

R2
+ 2ixB

)
, (B.5d)

∂ψ

∂τ
= ψ

(
− 2τ

D2
+ 2iτC

)
. (B.5e)

The reduced lagrangian is given by integrating over all dependent variables we wish to eliminate;

〈L〉 =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞
L dτdydx. (B.6)

We may also define for reference

|ψ|2 = |A|2 exp

[
−2x2

R2
− 2y2

R2
− 2τ2

D2

]
, (B.7a)

|ψ|4 = |A|4 exp

[
−4x2

R2
− 4y2

R2
− 4τ2

D2

]
, (B.7b)

∣∣∣∣∂ψ∂x
∣∣∣∣2 = |ψ|2

(
4x2

R2
+ 4x2B2

)
, (B.7c)

∣∣∣∣∂ψ∂y
∣∣∣∣2 = |ψ|2

(
4y2

R2
+ 4y2B2

)
, (B.7d)

∣∣∣∣∂ψ∂τ
∣∣∣∣2 = |ψ|2

(
4τ2

D2
+ 4τ2C2

)
, (B.7e)

ψψ∗′ = |ψ|2
[
A∗′

A∗
+ (x2 + y2)

(
2R′

R3
− iB′

)
+ τ2

(
2D′

D3
− iC ′

)]
, (B.7f)

ψ∗ψ′ = |ψ|2
[
A′

A
+ (x2 + y2)

(
2R′

R3
+ iB′

)
+ τ2

(
2D′

D3
+ iC ′

)]
, (B.7g)

ψψ∗′ − ψ∗ψ′ = |ψ|2
[
A∗′

A∗
− A′

A
− (x2 + y2)2iB′ − τ22iC ′

]
. (B.7h)
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From here we may combine the above equations and evaluate 〈L〉 using textbook gaussian

integrals. After some algebra we arrive at

〈L〉 =
(π

2

)3/2
DR2[i(AA∗′ −A∗A′) + |A|2·

[B′R2 + C ′D2/2 + 2R2(R−4 +B2) + ε1D
2(D−4 + C2)]− |A|4ε22−5/2]. (B.8)

We may compact this by defining the following convenience functions

ϕ = AA∗′ −A∗A′, (B.9a)

θ = B′R2 + C ′D2/2 + 2R2(R−4 +B2) + ε1D
2(D−4 + C2), (B.9b)

φ = ε22−5/2, (B.9c)

and write the reduced lagrangian in a more manageable form

〈L〉 =
(π

2

)3/2
DR2

[
iϕ+ |A|2θ − |A|4φ

]
. (B.10)

B.2 Variations of the Parameter Functions

The general form for variations on a function A(z) is given by

δ〈L〉
δA

=
∂

∂z

∂〈L〉
∂
(
∂A
∂z

) − ∂〈L〉
∂A

= 0. (B.11)

We require variations on all parameter functions, starting with A:

∂

∂z

∂〈L〉
∂
(
∂A
∂z

) = −i
(π

2

)3/2 d

dz
[DR2A∗], (B.12)

∂〈L〉
∂A

=
(π

2

)3/2
DR2

[
iA∗′ +A∗θ − 2A∗|A|2φ

]
, (B.13)

− i d

dz
[DR2A∗] = DR2

[
iA∗′ +A∗θ − 2A∗|A|2φ

]
. (B.14)

Variations of A∗:
∂

∂z

∂〈L〉
∂
(
∂A∗

∂z

) = i
(π

2

)3/2 d

dz
[DR2A], (B.15)

∂〈L〉
∂A∗

=
(π

2

)3/2
DR2

[
−iA′ +Aθ − 2A|A|2φ,

]
(B.16)
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i
d

dz
[DR2A] = DR2

[
−iA′ +Aθ − 2A|A|2φ

]
. (B.17)

Now multiply (B.14) and (B.17) by their conjugates and subract to obtain

− i
[

d

dz
(DR2A∗)A+

d

dz
(DR2A)A∗

]
= DR2[i(A∗′A+A′A∗)]. (B.18)

From here, expand the derivatives to obtain the constant of motion for the system, i.e. the EM

energy conservation equation
d

dz
(|A|2R2D) = 0, (B.19)

which states the while the individual parameter functions may vary with z, the total energy

does not change from its initial value E0. We may hence write this in terms of the parameter

function initial values; A(0) = A0, R(0) = R0 and D(0) = D0:

|A|2R2D = |A0|2R2
0D0 = E0. (B.20)

Next, multiply (B.14) and (B.17) by their conjugates and add, to obtain the useful relation

− iϕ = |A|2θ − 2|A|4φ. (B.21)

Now perform variations on the remaining parameter functions, starting with B:

∂〈L〉
∂B

=
(π

2

)3/2
DR2|A|2[4R2B], (B.22)

d

dz

∂〈L〉
∂B′

=
(π

2

)3/2 d

dz
[DR4|A|2]. (B.23)

Recall (B.19) and hence obtain
dR

dz
= 2RB. (B.24)

After R is known, B may be found as

B =
1

2

d ln(R)

dz
. (B.25)

Variations for C:
∂〈L〉
∂C

=
(π

2

)3/2
DR2|A|2[2ε1CD

2], (B.26)

d

dz

∂〈L〉
∂C ′

=
(π

2

)3/2 1

2

d

dz
[D3R2|A|2]. (B.27)
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As before, recall (B.19) and obtain
dD

dz
= 2ε1CD. (B.28)

After D is known, C may be found as

C =
1

2ε1

d ln(D)

dz
. (B.29)

Variations for D:

∂〈L〉
∂D

=
(π

2

)3/2
R2

[
iϕ+ |A|2

[
B′R2 +

3

2
C ′D2 + 2R2(B2 +R−4)− ε1D−2 + 3ε1D

2C2

]
− |A|4φ

]
,

(B.30)
d

dz

∂〈L〉
∂D′

= 0. (B.31)

Set (B.30) equal to (B.31) and then equate to (B.21) to obtain

C ′D2 − 2ε1D
−2 + 2ε1D

2C2 = −|A|2φ. (B.32)

Variations for R:

∂〈L〉
∂R

=
(π

2

)3/2
2DR

[
iϕ+ |A|2[2B′R2 + C ′D2/2 + 4B2R2 + ε1D

2(C2 +D−4)]− |A|4φ
]
,

(B.33)
d

dz

∂〈L〉
∂R′

= 0. (B.34)

Set (B.33) equal to (B.34) and then equate to (B.21) to obtain

R2B′ + 2B2R2 − 2R−2 = −|A|2φ. (B.35)

Equations (B.24) and (B.35) are coupled and can be combined to get

R′′ =
4

R3

(
1− E0φ

2D

)
. (B.36)

Similarly (B.28) and (B.32) are coupled and can be combined to get

D′′ =
4ε21
D3

(
1− E0φD

2ε21R
2

)
. (B.37)

We may normalise R̃ = R/R0 and D̃ = D/D0 resulting in

R′′ =
4

R3R4
0

(
1− A2

0R
2
0φ

2D

)
, (B.38)
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D′′ =
4ε21
D3D4

0

(
1− A2

0DD
2
0φ

2ε1R2

)
. (B.39)

Recalling that φ = ε22−5/2, we may retrieve the exact forms used in chapter 3.
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Appendix C

Code Comparison - Osiris and

FBPIC

Here we provide some comparisons of the OSIRIS and FBPIC codes used. We compare two

simulations in-full, and focus on the essential physics of the envelope dynamics, in particular

the dynamics up to the first collapse. We conclude OSIRIS and FBPIC agree well enough, up

to the point of first collapse.

The first case of comparison between OSIRIS and FBPIC is the simulation discussed in

section 3.1 of the main work. This is an unmagnetised plasma with n0 = 0.475 and a laser with

initial parameters R0 = 10λ0, D0 = 13τ0 and a0 = 0.12. We compare the on-axis intensity in

figure C.1, fitted parameter evolution in figure C.2. We see from figure C.1 that qualatatively

there is very good agreement between the two codes, FBPIC exhibits more noise after the laser

has passed, but this is a perennial feature of cylindrical codes, due to algorthmic difficulties

in dealing with the axis. The effect of this noise is negligible in our work. More quantative

comparison is given by figure C.2, which compares the fitted parameters for beam spot size,

duration and peak amplitude. Up to the first collapse, over the course of the simulation, all

major features are reproduced by both codes, with small differences arising in terms of the

focusing dynamics. The initial point of collapse differs by only a few wavelengths.

The second case of comparison between OSIRIS and FBPIC is the simulation discussed in

section 3.2 of the main work. This is a magnetised plasma with n0 = 0.15 and B = 0.5 and

a laser with initial parameters R0 = 10λ0, D0 = 13τ0 and a0 = 0.06. We again compare the

on-axis intensity in figure C.3, fitted parameter evolution in figure C.4. We see from figure C.3

that qualatatively there is mostly good agreement between the two codes. The compression is

again spherical in both codes, however the time-to-collapse is more noticeably greater in FBPIC
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Figure C.1: Comparison of (a) on-axis envelope of an OSIRIS simulation to (b) the same
information from an FBPIC simulation of equivalent parameters. The dot-dashed lines show
the simulation spatial and time domain extents. An initially moving window was used for the
FBPIC case, which was then halted to allow for comparison of post-soliton dynamics.

than in the unmagnetised plasma case. This is most evident in figure C.4, and is possibly due to

the sensitive nature of the regime. Small differences in laser initialisation or energy partitioning

may give rise to this discrepancy. Most evident is the lack of a third collapse in the FBPIC

simulation. We observe the pulse remnant amplitude rising as it leaves the simulation box, so

it is reasonable to conclude that if the box was larger, the third collapse even would eventually

occur. However, it would do so significantly after that of the OSIRIS simulation.

In all cases, the key result of the work, i.e. spherical compression in the run up to the

first collapse, is well-reproduced by both codes, with the only appreciable differences being the

variations in the distance-to-collapse. For this reason we feel that the use of both OSIRIS and

FBPIC in tandem is well justified, up to the point of first collapse. Beyond this, agreement

is still largely good, but less consistent, and in magnetised plasma, the results diverge more

strongly. As such in section 3.3 we choose to only examine unmagnetised plasma using FBPIC

alone.
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Figure C.2: A comparison of the fitted parameters, R (red), D (black) and a (blue). The
OSIRIS results are represented by solid lines, and FBPIC simulation by dashed lines.

Figure C.3: Comparison of (a) on-axis envelope of an OSIRIS simulation to (b) the same
information from an FBPIC simulation of equivalent parameters. The dot-dashed lines show
the simulation spatial and time domain extents. An initially moving window was used for the
FBPIC case, which was then halted to allow for comparison of post-soliton dynamics.
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Figure C.4: A comparison of the fitted parameters, R (red), D (black) and a (blue). The
OSIRIS results are represented by solid lines, and FBPIC simulation by dashed lines.
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Appendix D

Plasma Angular Momentum

This appendix contains a discussion of how one may calculate the instantaneous angular mo-

mentum of a plasma under the influence of light carrying some arbitrary angular momentum.

The angular momentum along z of a single particle in a plasma is given by

Lz = xpy − ypx. (D.1)

where x, y are the particle positions px, py the particle momentum components and all are

functions of time. Assuming each particle experiences an electric field of the form

<{E} = Exêx cos(lθ − ωt)− Exêy sin(lθ − ωt) (D.2)

i.e. a laser of arbitrary polarisation and azimuthal mode, with components, where l is the

azimuthal mode index relevant to LG beams and Ex and Ey may have some envelope. Electron

motion may be described via solutions to the linearised Lorentz force equation. These are (see

appendix A)

px(t) =
q

ω

[
BEy − Ex

1−B2

]
sin(lθ − ωt) = Cpx sin(lθ − ωt), (D.3)

py(t) =
q

ω

[
BEx − Ey

1−B2

]
cos(lθ − ωt) = Cpy cos(lθ − ωt), (D.4)

x(t) =
q

ω2m

[
BEy − Ex

1−B2

]
cos(lθ − ωt) = Cx cos(lθ − ωt), (D.5)

y(t) =
q

ω2m

[
Ey −BEx

1−B2

]
sin(lθ − ωt) = Cy sin(lθ − ωt). (D.6)

now including an optional external magnetic field along z denoted by B. We introduce the C

coefficients for brevity. We may analytically determine the angular momentum of a volume of
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plasma by integrating over the volume. For a homogeneous plasma of density ne, in cylindrical

coordinates we have the total angular momentum

Lz = ne

∫ ∞
−∞

∫ 2π

0

∫ ∞
0

[(r cos(θ)− x)py − (r sin(θ)− y)px] rdrdθdz. (D.7)

where the particle positions are now displaced as r cos(θ) − x and r sin(θ) − y to represent all

parts of the plasma volume. For a finite pulse envelope, the r and z parts of the integral will

reduce to constants relating to the beam profile. The azimuthal part of the integral is of interest

on its own;

Lz ∝
∫ 2π

0

[r cos(θ)py − xpy − r sin(θ)px + ypx] dθ. (D.8)

Evaluating this gives a two-part function with an oscilliatory term and a DC term

Lz ∝ r(lCpy − Cpx)
2 sin(πl) cos(πl − ωt)

l2 − 1
+ 2πC0, (D.9)

where we have made use of the fact that CxCpy = −CyCpx = C0. The oscilliatory part

is nonzero only if l takes the values 1, -1, or any non-integer, and averaging this over time

reduces the contribution to zero, no net transfer occurs. The static term is nonzero when

the laser is either circularly polarised, or there is some background magnetic field, and once

again disappears once the laser influence is removed. This affirms that while beams with

intrinsic angular momentum will indeed impart it to plasma, beams without intrinsic angular

momentum (l = 0) may also impart angular momentum through Lconst. when |Bz| > 0. The

method employed here does not take energy loss to the plasma into account, so any estimation

of the plasma angular momentum after absorption has occured is beyond the scope of this

treatment.

The oscilliatory part of the result is graphed in Figure D.1 for different l, and a few different

values of ωc/ω (at t = 0). The result suggests that an index of |l| = 1 is the only integer mode

capable of transfering AM to the plasma, even temporarily. It also implies that non-integer

modes may impart OAM, and while these are not strictly solutions of the wave equation, they

may be approximated by superpositions of modes, such as found in light-springs. Applying an

external field biases the plasma towards a particular l, when |ωc/ω| = 1 only l of matching sign

will contribute AM to the plasma, the antiparallel l will not cause AM contribution. However

this does not stop the static term from contributing.
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Figure D.1: Angular momentum as a function of azimuthal mode index l.
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[71] G. Pariente and F. Quéré. Spatio-temporal light springs: extended encoding of orbital

angular momentum in ultrashort pulses. Optics Letters, 40:2037, 2015.

[72] Y. Shi et al. Magnetic field generation in plasma waves driven by copropagating intense

twisted lasers. Phys. Rev. Lett., 121:145002, 2018.
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