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Abstract 

Crystallisation is one of the key unit operations in the pharmaceutical industry. A wide 

range of crystal attributes affects the bulk particle properties of a crystalline material 

as well as its downstream manufacturability. Therefore, understanding and 

controlling the crystallisation process to achieve the desired quality attributes are of 

significant interest. This thesis investigated the potential of machine learning 

techniques in terms of the prediction of crystallisation outcomes, focusing on the 

shapes of mefenamic acid (MFA) crystals from various organic solvents, and solvated 

structures of small organic molecules considered by Powder X-ray Diffraction (PXRD) 

patterns. The solubility and nucleation of MFA were also explored in this thesis in an 

attempt to understand the thermodynamic and kinetic interactions during the 

crystallisation process of MFA. It was observed that the nucleation of MFA in 

methanol, ethanol, 2-propanol, 2-butanol, acetone, and tetrahydrofuran (THF) 

follows a two-step mechanism, in which the crystals nucleate within the metastable 

clusters. The comparison between surface free energy determined from nucleation 

rates and that calculated by Turnbull’s rule also proposes that the crystals nucleated 

faster via two-step nucleation compared to classical nucleation theory (CNT), due to 

the smaller nucleation barrier. 

For the machine learning application for predicting the crystallisation outcomes, the 

result showed that random forest classification models using solvent physical 

property descriptors can reliably predict crystal morphologies for MFA crystals grown 

in 20 out of the 28 solvents included in this work. Further characterization of the 

crystals grown in the remaining 8 solvents with poor model performance also 

resulted in the discovery of a new THF solvated form of MFA crystals. The ability of 

machine learning was also investigated to predict the solvated form of small organic 

molecules from the PXRD patterns derived from Cambridge Structural Database 

(CSD). The best model in this study showed 68.74% of prediction accuracy. These 

findings demonstrate the potential role of machine learning and data mining to assist 



iv 
 

the decision-making in crystallisation while reducing the uses of materials and time 

spent during the process development. 
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1 Introduction 

1.1 Crystallisation in the Pharmaceutical industry 

Crystallisation is used in many applications ranging from purification1–3 and separation4–6 to 

the production of chemicals or active pharmaceutical ingredients 7–9. Organic molecules can 

adopt a range of solid forms that have distinct crystal structures that affect their physical 

properties.10–13 The corresponding medicinal products produced using different polymorphs 

can have variable safety and efficacy due to changes in key biopharmaceutical attributes such 

as solubility and stability.14 Ritonavir polymorphism is an example of problematic solid form 

diversity where the more stable polymorph (form-II) with lower solubility was found in the 

metastable form well after the product had been released to the market. The presence of 

the more stable polymorph in the consumer product caused slower dissolution and 

decreased the bioavailability of the formulation. Consequently, ritonavir in an oral capsule 

formulation was withdrawn from the market in 1998 and reformulated.15  

Crystallisation has also been used to control crystal size and morphology. These are key 

attributes impacting the end-product quality, functionality, and downstream 

manufacturability of a drug candidate.16–18 For example, crystal morphology influences how 

easy it is to filter L-glutamic acid. This change in filterability results from the fact that 

spherulitic crystals (a form of polycrystalline particles with a spheroidal shape, Figure 1) of L-

glutamic acid have higher cake resistance values than the needle and polyhedral crystals.19  

 

Figure 1. Spherulitic crystals of L-glutamic acid (figure from reference) 19 
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Previously, the quality of the product was only tested at the end of the manufacturing 

process (quality-by-testing; QbT). This approach often led to unsatisfactory results as faults 

are only found after they occur and the analytical testing and sampling lead to additional 

costs and time delays during pharmaceutical manufacturing.20 To achieve the desired 

product quality, several advanced design strategies for controlling crystal size, purity, 

morphology, and polymorphic form during the crystallisation process have been developed 

over the last few decades.21 For example, advanced online sensors in PAT (process analytical 

technology) have been used to probe real-time crystallisation. Such online sensors provide 

feedback that can enable control over concentration to allow selectively crystallisation of the 

desired polymorph22 in addition to solubility and supersaturation measurements using in situ 

ATR-FTIR (Attenuated Total Reflection – Fourier Transform Infrared Spectroscopy)23. 

Although the application of these control techniques can increase the productivity of the 

process and/or the quality of the products, controlling crystallisation is still challenging due 

to the non-linear crystallisation dynamics and high variations in crystal nucleation and growth 

processes that occur impacting various aspects of the product particle and bulk properties.24 

To assess the impact of crystallisation solvent and process variables on crystal attributes 

(purity, polymorphic form, as well as crystal habit), crystallisation screening is used as a 

preliminary step of the preclinical assessment and solid form selection.25 In crystallisation 

screening, experimental variables of interest and associated variable ranges are selected 

before designing the experiment.26 The effects of the main process parameters including 

solvent, supersaturation, cooling rate, and agitation are studied. For instance, the systematic 

workflow of seeded cooling crystallisation developed by CMAC Future Manufacturing Hub 

(Figure 2) consists of various steps including solvent screening and selection (Stage 2 and 3, 

Figure 2) and process parameters were also studied during Stages 5 and 6 (Figure 2). The 

experiments in this workflow give comprehensive information on the effect of solvents and 

crystallisation conditions on the observed outcome. The solvent and process parameters 

which result in the desired crystal attributes can then be selected for further investigation, 

process development and scale-up.9 This decision-driven approach provides the first step 

into the predictive design of crystallisation processes.9 
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Figure 2. The CMAC workflow for seeded cooling crystallisation (figure from reference) 9 

Advancements in informatics and computational science techniques such as machine 

learning have shown promise to complement the experimental screening step and introduce 

useful predictive capability. Using machine learning to predict experimental outcomes can 

enable informed selection of solvents and minimizes the experiments, cost and time needed 

in the material and process optimizations.27 Some examples of machine learning applications 

in crystallisation include crystal structure prediction (CSP),28 crystal packing prediction,29 and 

the prediction of different crystal outcomes (e.g., solvates and non-solvates,30,31 different 

polymorphic forms,31 or crystalline and non-crystalline32). These studies have shown the 

potential applications of machine learning in the field of crystallisation process design.  

1.2 Thermodynamics and kinetics of crystallisation 

In crystallisation, both the prevailing thermodynamics of crystallization and the process 

kinetics influence the observed outcomes. Crystal nucleation and growth rates are affected 

by the crystallisation driving force or supersaturation, hence determining the yield and 

polymorphic form, shape, and size of the resultant crystals.33 

1.2.1 Crystal nucleation 

Nucleation is a process where nuclei form from a supersaturated medium. Crystal nucleation 

is a complex phenomenon that occurs via several different mechanisms. Conventionally, 

nucleation can occur by primary nucleation, where the nucleation happens spontaneously 
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from a supersaturated solution, or secondary nucleation, where the presence of crystal seeds 

and the interaction between the crystalline surfaces and the surrounding environment is 

required for nucleation to occur.34  

Figure 3 shows the difference between primary nucleation and secondary nucleation 

mechanisms. 

 

Figure 3. Different mechanisms of nucleation processes. (a) the monomers of solute molecules 

spontaneously aggregate into the crystal nuclei during primary nucleation process. (b) the monomers 

of solute molecules nucleate on the surface of preexisting crystal nuclei in the solution during secondary 

nucleation process.37 

Primary nucleation can be divided into two sub-categories of mechanism: primary 

homogeneous nucleation and primary heterogeneous nucleation. Homogeneous nucleation 

occurs in the absence of crystalline surfaces and crystal nuclei precursors. By contrast, 

heterogeneous nucleation occurs at preferential locations, such as the surfaces of a container 

or an interphase boundary in liquid or solid.38 Heterogeneous nucleation can also be induced 

by the particles of foreign substances, such as dust, impurities, or residues from previous 

material. Generally, nucleation in an industrial crystallisation is mostly heterogeneous 

because nucleation can be induced by foreign particles in working stations and it is practically 

not feasible to remove all particulate contaminants.34 Heterogeneous nucleation also 

requires a relatively low free energy barrier to nucleation and, thus, happens more readily at 

low supersaturation than homogeneous nucleation.39,40 For the mechanisms of primary 

nucleation, two main models have been proposed, namely the Classical Nucleation Theory 

(CNT) and the two-step nucleation theory (see Figure 4).  
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Figure 4. Mechanisms of crystal nucleation from a supersaturated solution. In CNT, monomer 

associations (a) are formed into a nucleus in a shape with the minimum free energy (b) before 

gathering into a macro-crystal with distinct facets (c). The two-step nucleation model suggests that 

the molecules congregate into a disordered precursor (d) before forming a nucleus (figure from 

reference).41 

Secondary nucleation is the process by which crystal nuclei are formed within the 

environment where the nuclei of the crystal in the same species are already presented. These 

preexisting nuclei are defined as crystal seeds. In general, secondary nucleation occurs at a 

faster rate than primary nucleation. This is due to the fact that primary nucleation 

necessitates the spontaneous formation of a nucleus from the supersaturated solution, while 

secondary nucleation occurs more easily because the crystal seed serves as a starting point 

for the formation of new crystals.35 Secondary nucleation plays a major role in many 

industrial crystallisation processes because the seeds can be designed to control the crystal 

growth rate, as well as the properties of the resulting crystals, such as polymorphism, crystal 

shape and crystal size distribution.36 

1.2.1.1 Classical Nucleation Theory 

CNT was introduced by Volmer in 1939. In CNT, a nucleus formed by monomer association 

has the same structure as the new crystal phase.42 According to this theory, nucleation rate 

J (m-3s-1), which is defined as the number of crystalline particles formed per unit of time 

within a specific solution volume, can be expressed by Equation 1.43 

                                                            𝐽 = 𝐴𝑆 𝑒𝑥𝑝 (−
𝐵

𝑙𝑛2𝑆
)     Equation 1 
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where S (unitless) represents a degree of supersaturation calculated from the ratio of 

solution’s concentration and equilibrium concentration in a supersaturated system and A   

(m-3s-1) and B (unitless) are the pre-exponential factor and thermodynamic factor, 

respectively. The pre-exponential factor A is a parameter that describes the molecular 

kinetics of the nucleation process and reflects the attachment rate for solute molecules 

moving from the solution to the surface of the nuclei. The thermodynamic factor B reflects 

the energy barrier of nucleation. As seen in Equation 1, the correlation between the 

thermodynamic factor B and the nucleation rate is inverse and exponential, and thus small 

changes in the value of supersaturation can have a large impact on the nucleation rate. 

Although the nucleation of many organic molecules can be explained by CNT, the presence 

of intermediate metastable species during the nucleation of some protein molecules,44–46 

polymers47–49 and inorganic structures50,51 provides evidence of different nucleation 

mechanisms. 

1.2.1.2 Two-step nucleation theory 

While classical nucleation theory states that the crystal nuclei are directly formed by the 

aggregation of solute molecules that are supersaturated in the solution, a two-step 

nucleation mechanism suggests that the formation of the disordered liquid droplet called a 

metastable intermediate phase (MIP) occurs in supersaturated solutions before crystal nuclei 

are produced inside the MIP droplets.52 This MIP has a thermodynamic stability higher than 

the parent phase (solution) but lower than the crystal phase.53 The formation of the MIP 

conforms to Oswald’s rule of stages which states that the least thermodynamically stable 

form with the closest free energy difference to the initial stage will form first in any 

crystallisation, followed by the more stable one.54,55 

The work supporting the two-step nucleation mechanism was carried out using molecular 

dynamics simulation. Gavezzotti simulated a system consisting of 50 separated molecules of 

acetic acid within a box of 1,659 solvent units. After increasing the concentration by removing 

solvent molecules from the system, the aggregation of acetic acid molecules into a 

microemulsion of liquid-like clusters was observed.56 Another work using molecular dynamic 

simulation was done by Shore and Perchak, who studied the nucleation of AgBr in water. 

Similar to Gavezzotti’s work, molecular dynamic simulation was used in this study. The 

prenucleation clusters of Ag18Br18 were found to be disordered.57 The results from these 
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studies support the presence of disorder clusters as the initial step of nucleation from 

solution in a two-step nucleation mechanism. 

Evidence of prenucleation clusters in two-step nucleation was also investigated by various 

analytical techniques. For example, dynamic and static light scattering was used to study the 

nucleation of lysozyme crystals. The results showed that lysozyme monomers aggregated 

into the clusters before these clusters restructured into compact structures.58 

Additionally, The study of protein crystals from aqueous solution by Haas and Drenth 

proposes that, in the presence of a thin liquid film which covers protein crystals, the surface 

energy of the crystals will considerably decrease. The high protein concentration in the liquid 

film enables the protein molecules to adsorb and incorporate into the crystal surface easier 

than in the process in the absence of the liquid film.59 

1.2.2 Crystal growth 

Crystal growth is a process in which molecules of solute in a supersaturated solution are 

incorporated onto a crystal surface resulting in an increase in crystal size. The process can be 

roughly divided into 3 steps: i) solute molecules move through the solution, ii) molecules 

from the solution are adsorbed to the surface of crystals, and iii) the molecules move to edge 

and kink positions and orderly arrange on the crystal surface.60 

1.2.2.1 Crystal growth mechanisms 

Two-dimensional layer growth mechanism: This theory is the first atomistic model explored 

by W. Kossel and I. N. Stranski said that the growth process of crystals occurs in two 

dimensions. Crystal growth units spread from the crystal nucleus to the directions parallel to 

the growth layer until the first crystal plane is completely formed. Then two-dimensional 

nucleation for another growth layer occurs and the growth process continues. Thus, the 

growth rate of the two-dimensional layer growth mechanism is determined by the nucleation 

rate. This phenomenon means growth cannot happen below a critical supersaturation 

(critical supersaturation being the supersaturation in the metastable zone below which 

nucleation cannot take place).61 The two-dimensional layer growth mechanism results in the 

formation of the smooth, flat faces of crystals.62 Figure 5 shows the two-dimensional layer 

growth mechanism. 
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Figure 5. Two-dimensional layer growth mechanism: (a) growth units adsorb to the crystal surface and 

diffuse to a step, (b) the step continues growing in the direction of crystal edges, (c) a formation of a 

two-dimensional nucleus occurs after the previous layer is completely formed (figure from 

reference)60 

Spiral growth mechanism: Whilst growth in the two-dimensional layer model needs 

relatively high supersaturations, a spiral growth mechanism has a lower energy barrier thus 

allowing crystals growth at lower supersaturations. In the spiral growth, dislocations of the 

crystal molecules create steps on crystal surfaces. In the initial stages of crystal growth, 

growth units attach to the initial step created from the dislocation. The process continues 

and a second step is generated, followed by a third step, and so on. Eventually, the spiral 

pattern forms, as seen in Figure 6. If the dislocation creates a curved step at the initial state, 

the spiral pattern on the crystal surface will be rounded (Figure 7). These steps in this growth 

process are self-perpetuating and do not require additional nucleation events, thus resulting 

in the lower energy required for this growth mechanism.60 

 

 

Figure 6. The spiral growth mechanism for crystal growth (figure from reference)60 
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Figure 7. The spiral pattern on the crystal surface(figure from reference)62 

Adhesive-type growth mechanism: The adhesive-type growth mechanism creates crystals 

with rough surfaces while other growth mechanisms create those with smooth surfaces. 

Figure 8 shows that the adhesive-type growth dominates crystal growth at high 

supersaturation and hence a transformation of crystal surfaces from smooth to rough takes 

place as supersaturation increases. In the adhesive-type growth mechanism, growth units 

are bounded by the crystal surfaces regardless of the crystallographic direction, resulting in 

spherulitic, fractal, or dendritic crystal morphologies.60,62 

 

Figure 8. A diagram of the preferred crystal growth mechanism at different supersaturations and 

crystal growth rates (figure from reference).60 

1.3 Cooling crystallisation 

Crystals can be obtained by various methods, including cooling crystallisation, solvent 

evaporative crystallisation, precipitation (anti-solvent and pH shift crystallisation), 

sublimation, vapour diffusion, crystallisation from melts, thermal treatment, and thermal 

desolvation. Crystallisation from solution is most commonly used for the manufacture of 

solid bulk APIs in pharmaceutical industries. Here, we will focus on cooling crystallisation as 

the crystallisation method predominantly used in this thesis. 
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Cooling crystallisation has a comparatively simple set-up compared to other crystallisation 

methods. Cooling crystallisation requires that the molecule to be crystallised has a 

temperature-dependent solubility in the solution of interest.63  In general, the solubility of 

organic compounds under elevated temperatures is higher than the solubility at low 

temperatures. Therefore, crystallisation will take place when the temperature of the solution 

decreases to a point where the concentration of the solution exceeds its equilibrium 

solubility. Crystal yield for this method is calculated using the difference between the initial 

amount of compound and the remaining amount of solute in the solution at the end of the 

crystallisation process (Equation 2).  

Crystal yield (Y)   =   
(Mass of soluted used – Mass of solute remaining in mother liquor)

Mass of solute used
 x 100 % 

Equation 264 

Solvent selection should consider the solubility of the crystalline material. Typically, if the 

initial solubility is too high at high temperatures, the slurry at low temperatures may be too 

dense for crystallisation to occur. Likewise, if the solubility at low temperature is too low, the 

precipitation of impurities tends to occur and impact the quality of crystal products.63 To 

obtain large enough crystals for crystal shape analysis, the cooling rate should also be taken 

into account, since rapid cooling results in a large number of small crystals.65,66 Figure 9 

demonstrates the solubility – supersaturation diagram of cooling crystallisation. 

 

Figure 9. The solubility – supersaturation diagram of cooling crystallisation 
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From the above diagram, the concentration of a crystallisation solution is initially 

undersaturated at high temperature (see point labelled ‘Initial concentration’ in Figure 9), 

which means the concentration is lower than the equilibrium solubility of the compound in 

the chosen solvent and the compound is completely dissolved. The area between the 

solubility curve and the metastable limit curve, known as the metastable zone (MSZ), is a 

supersaturated region where the crystallisation system is in an equilibrium state between 

the dissolved and crystalline phases. In MSZ, concentration of the solution is higher than the 

saturation point but the solutes are unable to crystallise because the unstable clusters or 

nuclei in the solution are consistently formed and dissolved.67 Once the system reaches the 

metastable limit, a nucleation occurs spontaneously and the solute molecules in a saturated 

solution attach to the surface of the nucleus until eventually grow into a crystal.68 Note that 

this diagram is for unseeded crystallisation, so there is no crystal growth inside the 

metastable zone and the nucleation that occurs at the metastable limit is primary 

nucleation.69,70 

1.4 Factors affecting the shape of crystals 

Crystal shape is one of the important attributes for determining the quality of crystalline 

materials. Different crystal shapes can impact the physical and chemical properties of 

crystalline materials in different ways. For example, rod shape crystals of simvastatin have a 

faster dissolution rate than plate-like crystals. This difference in dissolution rate happens 

because the different shaped crystals have different surface areas and surfaces with different 

polarities.71,72 Crystal shape also has a noticeable impact on mechanical properties that are 

important for downstream processes, such as flowability73,74 and filtration.19,75 Different 

crystal shapes also cause different tabletting performance (i.e., differences in compressibility 

and compactibility) even when the same compaction pressure is applied.76 Undesirable 

shapes of crystals such as needle-like or plate-like crystals can cause problems in the 

separation, washing, and drying steps after crystallisation.77 

The shapes of crystals are governed by chemical composition, the internal structures of a 

crystal itself and external factors such as solvent effects and the presence of additives or 

impurities and morphological instabilities. Furthering our understanding of these factors will 

improve our ability to control crystal shape during crystallisation and attain crystalline 

products with desirable properties. 
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1.4.1 Supersaturation 

Supersaturation can influence the final product of crystallisation. In cooling crystallisation, 

supersaturation can be controlled by changing the cooling profile,78 the solution 

temperature,79,80 and the initial concentration of a solution.81 Since crystal shape is 

determined by the different growth rates along each crystallographic direction and these 

growth rates are dependent on supersaturation, the desired shape of crystals can be 

obtained by controlling the supersaturation level.78,82 Two studies on the relationship 

between crystal shape and supersaturation carried out by Zuozhong Liang and Diana 

Camacho show that the aspect ratio of triclinic N-docosane crystals grown from dodecane 

solution (Figure 10) and the aspect ratio of benzoic acid crystals grown from water (Figure 11) 

are both supersaturation-dependent. Indeed, these studies showed that aspect ratio 

decreases with increasing supersaturation levels.79,81 Another example of supersaturation 

affecting crystal shape is a study of the crystal growth rate of methyl stearate as a function 

of supersaturation. In this study, the growth rates of individual crystal faces were measured 

by observing the increased distance perpendicularly from the centre of the crystal to each 

face using subsequent crystal micrographs recorded every 5-20 s, and then the mean growth 

rate of each crystal face was calculated. The results showed that growth rates of the crystal 

faces differed at different supersaturations.80 Furthermore, a study of paracetamol crystals 

grown from an aqueous solution conducted by Finnie et. al. showed that paracetamol crystals 

exhibited a columnar shape at low supersaturation while plate-like crystals were observed at 

high supersaturation (Figure 12).83  

 

Figure 10. The shape of N-docosane crystals grown from n-dodecane solution at different 

supersaturations (a) S = 0.01, (b) S = 0.02, and (c) S = 0.05 (figure from reference). The authors of this 

work provided these images to illustrate the trend that crystal aspect ratio can decrease as 

supersaturation increases.79 
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Figure 11. The shape of benzoic acid crystals grown from aqueous solution at different 

supersaturations (a) S = 1.029, (b) S = 1.103, (c) S = 1.206, (d) S = 1.353, (e) S = 1.397, (f) S = 1.47, 

(g) S = 1.618, (h) S = 2.059 and (i) S = 2.941 (figure from reference)81 

 

Figure 12. The shape of paracetamol crystals grown from aqueous solution at different 

supersaturations (a) low S, (b) moderate S, and (c) high S (figure from reference)83 

1.4.2 Solvent effects 

Intermolecular interactions between the solvent and solute molecules on the crystal surface, 

such as hydrogen bonding, can influence the shape of crystals by impeding crystal growth via 

molecular attachment in specific crystallographic directions.66 One example of this 

phenomenon arises in a study on steroid 7αMNa. In this study, crystals of 7αMNa form I 

grown from acetone solution exhibited a plate-like appearance with distinct (010) faces. 

However, the crystals showed an unexpected polar shape (a crystal habit that results from 

two opposite crystal faces having different growth rates, see Figure 13) when methanol or 

ethanol was used as a solvent. The polar-shaped crystals suggest that there were differences 

in directional growth rates. The authors suggested that the different crystal shapes resulted 
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from the alcohol solution molecules interacting with the hydroxyl groups of the 7αMNa 

molecules on the crystal surface, thus inhibiting growth in the relevant direction.84 Studies on 

dirithromycin crystals and salicylamide crystals grown from different organic solvents 

showed similar results. The results from these studies indicate that strong intermolecular 

interactions between solvent molecules and dirithromycin and salicylamide result in 

different crystal habits and different dominant crystal faces.85,86 

 

Figure 13. The polar-shaped 7αMNa crystal where the growth rate of (010) face was faster than that 

of (01̅0) face (figure from reference).84 

In a study on solvent effects on benzoic acid crystals, the correlation between solvents and 

aspect ratios of the crystals reveals that some solvent properties can determine how crystals 

grow. Experimental observations of crystal shapes indicate that the aspect ratio is directly 

proportional to solvent polarity and inversely proportional to the molecular size of the 

solvent. Conversely, the intrinsic crystal structure of benzoic acid is not affected by the 

solvent even for crystals exhibiting different crystal habits.87 

Additionally, the viscosity of solvents can affect the crystal habit due to the limitation on mass 

transfer in high viscosity solvents.88,89 Since the crystal growth rate is controlled by the 

diffusion rate of the solute in the liquid phase, the growth will be faster in low viscosity 

solvents and slower in high viscosity solvents.  

1.4.3 Additives/Impurities 

Similar to solvents, molecules of additives or impurities can be adsorbed at growth sites on 

crystal faces and impede the growth of specific crystal faces. The incorporation of these 

compounds causes a difference in growth rates of the crystal surfaces and hence can affect 

the crystal shape.90–93 For example, the influence of additives on the morphology of γ-

aminobutyric acid (GABA) crystals was studied by Gabas and Lin.92 In this work, additives 
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were added to an aqueous solution of GABA, and the face growth rates of GABA crystals in 

the presence of the additives were compared to the growth rates of GABA crystals in an 

aqueous solution without additives. Different face growth rates and different crystal 

morphologies were observed when adding either hydrated chromium nitrate, 

dodecyltrimethylammonium bromide or hexane-1,2-diol. These three additives slowed down 

the growth rate of the (001) GABA crystal face and resulted in a flatter crystal shape than the 

crystals grown from pure aqueous solution.92 

Generally, the role of tailor-made additives is to selectively hinder the growth of crystal faces. 

The crystal face whose growth is inhibited will then dominate the resulting crystal 

morphology. The work of Davey et al., which focused on the effect of tailor-made additives 

on glycine crystallisation, also discovered that some additives can selectively inhibit the 

growth of glycine crystals in α-form. In this study, the additives make the growth of γ -glycine 

crystals, crystals which are normally less likely to nucleate compared to α-glycine, more 

favourable.94 

1.4.4 Crystallisation parameters 

Experimental parameters, such as crystallisation temperature, cooling rate,78 and 

evaporation rate,95 also influence crystallization driving force and so crystal growth rates, and 

hence, crystal shape. For instance, the study of α-lactose monohydrate crystallising from an 

aqueous solution is a good example of crystallisation conditions influencing crystal 

morphology. The results from this study showed that lactose crystals exhibited more regular 

shapes and smoother surfaces when they were prepared at 40 °C crystallisation temperature 

than compared to those prepared at 0 °C.96 Additionally, external movement or vibration can 

also affect the crystal shape because vibrations can induce crystal nucleation. A faster 

nucleation rate can cause large numbers of disordered small crystals to form.97 

1.4.5 Morphological instability 

Morphological instability occurs when a crystal cannot maintain its interfacial form during 

the growth process. Under conditions with high crystallisation driving forces (i.e. high 

supersaturation), an adhesive-type growth mechanism dominates the crystal growth. 

Consequently, the resultant crystal has a rough interface. In such situations, plate or needle 

crystals may grow very rapidly around a nucleus and form bow-tie or spherulitic crystal 

aggregates. Another example of morphological instability is the growth of crystals with fractal 

patterns. These patterns are caused when continuous nucleation at the end of the crystal 
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results in connected patterns of the crystals. While spherulitic crystals form from 

polycrystalline aggregates, fractal or dendritic crystals form from a single crystal.62 

1.5 Machine learning  

With advancements in computer technology, many problems can be solved by using a 

computer operating system. Generally, a set of instructions used to generate an output by 

assessing input data, also known as an algorithm, is required for solving a problem. There are 

different algorithms for different tasks, such as algorithms for sorting numbers into 

ascendant order or algorithms for finding a maximum value from a set of random numbers, 

etc. Some tasks are more challenging because the correlation between input and output is 

unresolved or unknown. The use of machine learning can facilitate such tasks by using a 

training step that does not require a comprehensive understanding of the specific problem.98 

At present, many machine learning algorithms have been developed and applied to various 

jobs. For example, machine learning can be used for email spam filtering99,100 and email 

classification.101 In healthcare, machine learning has been used for the detection, diagnosis, 

and monitoring of certain diseases.102–106 

1.5.1 Learning methods of machine learning 

Machine learning can be classified by learning style into 3 groups as followed: supervised 

learning, unsupervised learning, and reinforcement learning.  

1.5.1.1 Supervised learning 

Training datasets in supervised machine learning must include a predefined label or a target 

for each data point. During the training step, the model learns to search for the correlations 

between independent variables and the predefined labels. To predict the label for new data, 

the model will use the optimised fit from the training dataset to predict the most likely 

outcome for the new data. Examples of problem types that can be solved by this method are 

classification and regression. Supervised machine learning is commonly used in the physical 

sciences and can be used for tasks such as predicting physical properties of interest from 

chemical composition.98,107 

1.5.1.2 Unsupervised learning 

Unlike the labelled data in supervised learning, the input data for unsupervised machine 

learning does not have a known result. This type of machine learning aims to find patterns in 



18 
 

the input data by organizing the data via a mathematical process or similarities in the data. 

Examples of problem types for which unsupervised learning can be used are clustering and 

dimensionality reduction.98,107 

1.5.1.3 Reinforcement learning 

Algorithms in reinforcement learning search for a sequence of actions that can achieve the 

best results or maximize cumulative rewards. Reinforcement learning is similar to learning 

by trial and error in that the learning process of reinforcement learning iteratively performs 

a sequence of actions where, in each new sequence, the algorithm can change in response 

to outcomes from previous sequences. In the other words, reinforcement learning will repeat 

actions that had positive results (a reward defined by the programmer) and avoid the actions 

which lead to less reward. When successful, this process will iterate until the algorithm 

reaches a target goal. Games like chess are similar to reinforcement learning because there 

are a large number of possible moves the players can make that result in different 

outcomes.98 

1.5.2 Machine learning algorithms 

Machine learning algorithms have been developed and applied to various tasks in the area 

of crystallisation.98 Many studies that investigate crystallisation outcomes employ Random 

Forest (RF) classification and regression. An explanation of RF algorithms is given below 

followed by a discussion of the use of RF in the literature for the prediction of crystallisation 

outcomes. This discussion includes comparisons between the performance of RF and the 

performance of other algorithms for predicting crystallisation outcomes. As RF often 

performed as well as or outperformed other algorithms in these studies, RF is the algorithm 

that this thesis will focus on.  

1.5.2.1 RF classification and its applications in Predicting Crystallisation Outcomes 

RF classification algorithms consist of a large number of decision trees. The structure of the 

decision tree is demonstrated in Figure 14. Each tree has 3 main components: decision nodes, 

branches, and leaf nodes. Each decision node corresponds to a test, which is an independent 

variable in the dataset and has two or more branches to the other variables. Each branch 

corresponds to a result of the test and indicates which node should be considered next. The 

topmost decision node of the tree structure containing the best predictor is called a root 

node. The definition of the best predictor is the feature that can be used to split the dataset 



19 
 

into subgroups with the largest differences from each other. The result of the prediction is 

indicated by the leaf nodes, which are the end of the tree structure.108,109 

 

Figure 14. The structure of the decision tree (adapted from 108) 

In the case of a dataset with a large number of independent variables, adding too many 

variables may cause a too complicated decision tree which can lead to overfitting. RF is a 

methodology developed based on the decision tree but can avoid the overfitting of training 

data.110 The key is that RF works by randomly selecting the data from the original dataset to 

build a set of different decision trees. Each tree in an RF has different structures due to the 

different subsets of randomly selected variables, which results from a feature randomness 

technique. Additionally, RF uses the subsampling technique called bagging or bootstrapping 

to randomly select the observations from the dataset to create multiple decision trees with 

the same size. This techniques samples the data with replacement in order to make the 

subsequent selections independent from the previous selections.111 With the combination of 

these techniques, an RF has variation among the trees in the model, and each tree has a low 

correlation to the other trees in the RF. In the classification, the class which is chosen by the 

majority of the trees in the model will become the model’s prediction. As a result, the 

predictions from the RF model are likely to be more accurate than those from a decision tree 

because the errors made from one individual tree can be mitigated by the others, so long as 

all trees do not make mistakes in the same direction.112 Figure 15 illustrates how the RF 

classification model works. 
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Figure 15. Random forest classification model 

Apart from the resistance to overfitting, RF also carries many advantages over other 

algorithms, including the robustness of the model to outliers and noises. Moreover, RF can 

provide an important score ranking indicating which variables have a high impact on the 

target or dependent variable by considering an increase of prediction error when each 

variable is permuted while all other variables remain the same.112,113 

RF is previously applied for the prediction of crystallisation outcomes. For example, the 

prediction of the crystallisation propensity of organic molecules carried out by Bhardwaj et. 

al.,114 the prediction of the crystallisability of carbamazepine solvates by Johnston et al.,31 

and the prediction of propensity to form solvates of pharmaceutical organic molecules by Xin 

et al.115 

From the previous studies, RF classification was applied for the prediction of carbamazepine 

solvate and its three polymorphs. In this study, the classification model was trained by the 

numerical physicochemical solvent descriptors, crystallisation conditions (vacuum, vortex 

stirring, temperature), and the crystallisation outcomes obtained from 326 experiments of 

carbamazepine crystallisations. The prediction results from this model suggested that 

carbamazepine had the potential to form solvates in three of the solvents that initially yielded 

non-solvated crystals. Guided by these predictions, the novel carbamazepine solvate was 

discovered from recrystallisation at lower temperatures. This finding highlights machine 

learning’s potential to predict novel crystal forms.116 

RF classification has also been used to predict the crystallisability of small organic molecules. 

The training data was obtained from the crystallisation of 382 different acylanilide 

compounds. The predictive model was trained with calculated molecular descriptors for each 
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acylanilide compound and the crystallisation outcomes (i.e. indicating whether a single 

crystal was observed). This study showed that molecular structure can be used to predict the 

crystallisability of small organic molecules. The study also indicated some problematic 

compounds, an outcome that could inform the selection of the crystallisation compound in 

the early-stage experiments.114  

Similar studies were carried out using RF classification to predict crystallisation propensity. A 

molecule’s propensity to crystallise was identified using the presence or absence of single-

crystal diffractograms in CSD, and molecular descriptors were used to train the predictive 

model. The results from this study showed that only a few molecular features impact 

crystallisation propensity and that the prediction accuracy can reach 90.3% by selecting only 

those features as the model variables.32 

In another study, an RF classification model was also applied to predict crystallisation 

propensity in more detail with two positive crystallisation classes (crystals and microcrystals) 

and four negative crystallisation classes (crystalline tendencies but no crystals, droplets, 

films, and amorphous). The experimental data were obtained from 5,710 solvent evaporative 

crystallisation experiments. Molecular weight and relative solubilities of compounds 

available in the literature were used as the model variables. This approach can guide the 

decision-making in solvent selection for crystallisation with success rates of over 92%.117  

Predicting crystal packing for olanzapine solvates was also achieved by applying an RF 

classification model that was trained with the molecular descriptors of crystallisation 

solvents. Three classes of crystal packing were observed in the crystallisation experiments of 

olanzapine solvates. This study revealed that van der Waals volume, number of covalent 

bonds, and polarizability of the solvent molecules play an important role in olanzapine crystal 

packing.29 

RF classification, amongst other ML methods, was also shown to be an effective tool for 

predicting whether or not a single crystal will grow in given conditions.118 Another study 

compared the efficacy of three algorithms (RF, support vector machines, and neural 

networks), in building models to predict the crystallisation propensity of small organic 

compounds. The results showed that the RF model had the highest prediction accuracy, 

especially when a large dataset was used to train the models. Additionally, this study also 

suggested that the presence of impurities and degradants had a negative impact on the 
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prediction ability of the model. Consequently, the model was improved by excluding such 

experiments from the training dataset.119 

In another study, RF classification also showed the best performance when compared with 

other model types for predicting three classes of crystallisation outcomes, namely crystalline, 

polymorphic, and amorphous. By using calculated molecular descriptors and fingerprints for 

chemical structures of crystallisation compounds, this model can predict the crystallisation 

outcomes from an external test set with up to 80% accuracy.120  

As the studies described above have demonstrated various successful applications of RF 

classification to predicting crystallisation outcomes, RF will be predominantly used in the 

work presented in this thesis to explore similar challenges in crystallisation experiments.  

1.5.2.2 Logistic regression 

Logistic regression is an analytic tool commonly used in classification tasks. It is often used 

for estimating the probability of a binary outcome.121 Unlike linear regression which searches 

for the best fit line to the data using the least square method, logistic regression fits an S-

curve called “logistic function”. This function informs us of the probability between two 

classes which values between 0 to 1. Values close to 0 indicate low probability of the 

outcome, and values close to 1 indicate high probability.122 Logistic function is defined as 

Equation 3. 

p  =  
1

1+e-z 
    Equation 3122 

Where p is the probability of the outcome occurring and z is the linear combination of the 

input variables (xi) and the model parameters (bi) as demonstrated in Equation 4. 

z  =  b0 + b1x1 + b2x2 + ... + bnxn   Equation 4122 

Figure 16 illustrates the differences between linear regression and logistic regression when 

they are applied to a classification task with binary outcome. When linear regression is 

applied, the predicted Y values can exceed the 0 – 1 range (infinite range by theory). On the 

other hand, logistic regression uses sigmoid curve so the predicted Y values are limited in the 

range of 0 – 1.123 In this example, Logistic regression is preferrable due to a non-linear 

correlation of the data and that there are only two possible outcomes that need to be 

predicted. 
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Figure 16. Comparison between linear regression and logistic regresstion. (a) Linear regression creates 

the best-fit straight line used for predicting the continuous y values. The value of y predicted by linear 

regression can exceed the 0 – 1 range. (b) Logistic regression uses a sigmoid curve (S-curve) to classify 

the data into two classes (0 or 1, true or false, or any binary outcomes). The value of y predicted by 

logistic regression can be only in the 0 – 1 range. In the case of classification task with a binary outcome, 

logistic regression outperforms linear regression. Green points represent the data points with the value 

of y = 0 and y = 1. 

Logistic regression has been applied in the studies in crystallisation area, such as predicting 

whether the crystal growth process model with different set of simulated data (process 

variables) results in monocrystalline or polycrystalline crystals,124 or predicting the 

crystallisation propensity of proteins.125 These studies demonstrated that logistic regression 

can be used to identify the key variables influencing the process outcomes. In the study 

carried out by Eri Shimono et. al.,126 logistic regression analysis also showed the potential to 

be a useful tool in crystal design. The logistic regression model in this study was applied to 

the large-scaled crystallographic database and the element group number was used for the 

prediction of chiral crystal propensity. The results revealed that the crystals containing some 

specific element groups have a high probability of becoming chiral crystals. This finding 

supports that logistic regression can advance the design of chiral crystals.126 

1.6 General challenges with machine learning 

Machine learning is a complex method which requires a lot of complicated mathematical and 

statistical processes. There are many challenges that we have faced in an attempt of building 

the model using machine learning techniques.  
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 Poor quality of training data  

Data plays an important role in machine learning. The model trained by poor quality data, 

such as variables unrelated to the outputs, uncleaned data, missing data, and data containing 

many outliers, cannot produce an accurate and reliable prediction. Therefore, good practice 

in data collection and data preprocessing is necessary for building the model.127–129 

 Small dataset 

A sufficient amount of data in the training dataset is crucial to achieving an accurate machine 

learning model, especially for the prediction which requires complicated data. Less amount 

of data cannot provide machine learning with enough training and results in an inaccurate 

and biased model. The amount of time for collecting enough data with good quality for 

machine learning is also one of the challenges that need to be concerned.127,128,130 

 Class imbalance  

Class imbalance can be a problem for some predictive models. The model tends to 

overpredict the data in the class with a large amount of data and underpredict the data in 

the class with a small amount of data, resulting in a biased prediction. Accordingly, a balanced 

distribution of data in all outputs is preferable for training the machine learning model.127,128 

 Overfitting and underfitting 

Overfitting and underfitting are the words used in data sciences to describe a machine 

learning problem in terms of model flexibility in training data. Overfitting occurs when a 

model is too flexible and fits too much training data that emphasizes even noises or outliers 

rather than actual values in a dataset. This usually happens in a complicated model in which 

the dataset contains too many independent variables compared to the number of samples. 

The overfitting model has very high accuracy for in-sample data (using data in a training 

dataset to evaluate the model) but it will poorly perform with new data or untrained data. 

As a result, the accuracy of the overfitting model will be very low when it comes to an out-

of-sample evaluation (using test data to evaluate the model). On the contrary, the 

underfitting model means the model which is too simple that it cannot represent the actual 

trend in a dataset. It may happen when the number of variables in a dataset is not enough 

for making a reasonable prediction, or when the model’s function is selected incorrectly. For 
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example, when a linear function is selected to use in a model with non-linear data. The 

Underfitting model performs very poorly with both in-sample and out-of-sample data.131,132 

 Data interpretation 

Since machine learning is a process that consisted of many complex steps, it is sometimes 

difficult to explain how the prediction is made or how the outputs correlated to the model’s 

variables. Some machine learning algorithms which involve a data transformation process, 

such as a support vector machine that applies kernel function to transform the data into 

higher dimensional space, can make the data interpretation more complicated.129 
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2 Aims and Objectives 

This thesis aims to help understand the fundamentals of the crystallisation process, 

specifically nucleation kinetics, and to investigate the potential and reliability of machine 

learning in the research field of crystallisation. Predicting crystallisation outcomes can 

minimize the number of required experiments in the screening step, accelerate development 

and reduce the cost and time required to develop robust processes. Understanding the 

correlation between solvent structures and crystallisation thermodynamics and kinetics can 

also guide decision-making in solvent selection. It is important to note that all of the 

crystallisation experiments discussed within this thesis employ the cooling from solution 

technique and are conducted in an absence of a seed crystal (i.e. unseeded cooling 

crystallisation). A description of each experimental chapter in this thesis with the aims and 

objectives for each chapter follows. 

Chapter 4, How crystallisation thermodynamics affect the nucleation barrier:  

Aims 

This chapter focused on improving our understanding of the thermodynamics and kinetics of 

the crystallisation of MFA in thirty-two different organic solvents. Crystallisation enthalpy 

(∆𝐻𝑐𝑟𝑦𝑠𝑡
0 ), entropy (∆𝑆𝑐𝑟𝑦𝑠𝑡

0 ), and Gibbs’ free energy (∆𝐺𝑐𝑟𝑦𝑠𝑡
0 ), were calculated using 

solubility data and the nucleation rate was determined from the probability distribution of 

induction time measurements. 

Objectives 

 Determine the solubility of MFA in various organic solvents from solubility curves 

obtained from turbidity measurement using a Crystal16 crystallizer. 

 Calculate thermodynamic and kinetic parameters of crystallisation of MFA from van ’t 

Hoff coordinate plots of the solubility as a function of temperature. 

 Determine the nucleation rates of MFA in different organic solvents by the probability 

distribution of induction time and maximum likelihood estimation. 

 Compare the calculated thermodynamic/kinetic parameters and nucleation rates of MFA 

between six organic solvents. 
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 Plot the correlations between thermodynamic factor B and ∆𝐻𝑐𝑟𝑦𝑠𝑡
0 , ∆𝑆𝑐𝑟𝑦𝑠𝑡

0 , and ∆𝐺𝑐𝑟𝑦𝑠𝑡
0  

to see if the crystallisation of MFA conforms with Turnbull’s empirical rule 

 Determine the impact of solvent on the observed solution thermodynamics and 

observed crystallization outcome. 

Chapter 5, Prediction of mefenamic acid crystal shape by random forest classification:  

Aims:  

This chapter investigates the potential of using machine learning to predict crystal shape. In 

this chapter, cooling crystallisation screening of MFA in various organic solvents was studied. 

The shape of the resulting crystals was observed, and, together with the supersaturation and 

molecular descriptors of solvents used, these observations formed a dataset for RF 

classification models for crystal shape prediction. A range of advanced analytical techniques, 

such as Powder X-ray Diffraction (PXRD), single-crystal X-ray diffraction (SD-XRD), and DSC, 

has also been applied to characterize the MFA crystals. 

Objectives: 

 Observe the crystal shapes using optical microscope and determine polymorphic 

forms of MFA using PXRD in a diverse range of organic solvents from small-scale 

cooling crystallisation screening 

 Develop machine learning models for the prediction of MFA crystal shape by 

applying an RF classification algorithm to the dataset containing experimental 

supersaturations and calculated molecular descriptors of crystallisation solvents as 

the model's input variables, and using crystal shape data as the model’s output. 

 Apply logistic regression to understand the impact of solvent descriptors on the 

model performance 

 Assess the predictive performance of the machine learning model  

Chapter 6, Investigating potential correlations between PXRD peaks at low angles and the 

crystal structures of solvates/non-solvates:  

Aims 

This chapter explores the powder patterns generated from crystallographic data available in 

the Cambridge Structural Database (CSD) to determine if there is a correlation between the 

low-angled peaks of the PXRD patterns and the solvated forms of small organic molecules. 
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An RF classification algorithm was applied to the models for the prediction of solvated and 

non-solvated structures using the peak data of the PXRD patterns as the model’s variables 

and the model’s performances were evaluated. 

Models 

 Explore solvate and non-solvate crystal structures of small organic molecules from 

the CCDC database and extract their PXRD data 

 Investigate the statistical data of the solvate and non-solvate structures crystallised 

from different crystallisation solvents in CCDC and the presence of the peaks in PXRD 

at low 2-theta angles 

 Investigate the solvent properties that may correlate with the probability of solvate 

formation 

 Develop machine learning models for the prediction of solvated and non-solvated 

crystal structures from PXRD data and assess their performance 

  



30 
 

 

 

 

 

 

 

3. Materials and Methods 

  



31 
 

3 Materials and Methods 

3.1 Overview 

Materials and methods specific to each chapter can be found within the individual research 

chapters (See Section 4.3 for Chapter 4, 5.2 for Chapter 5, and 6.5 for Chapter 6). Solubility 

measurements can be found below as these methods are used in Chapter 4 and Chapter 5. 

X-ray powder diffraction and introduction to the model evaluation method for validating RF 

classification can be found below as these methods are used in Chapter 5 and Chapter 6.  

3.2 Solubility measurements 

A known amount of MFA was weighed into a 1.5 ml high-performance liquid chromatography 

(HPLC) vial. 1.5 ml of a specific solvent selected from the library was then pipetted into this 

pre-weighed vial containing the solid material and stirrer bar. The vial was then reweighed 

to determine the exact mass of solvent added and therefore the exact molar composition of 

the sample. Each vial was capped tightly and the cap was carefully wrapped in parafilm tape 

to create a seal and prevent solvent loss at high temperatures. The overall weight (mg) of the 

sealed vial containing the solvent, stirrer, and solid material was recorded to check for weight 

loss after the solubility measurements in the Crystal16 Multiple Reactor (Technobis 

Crystallization Systems, The Netherlands). This method uses the transmission of light through 

the vial as an indication of complete dissolution (100% transmissivity) or precipitation of the 

crystals (less than 100% transmissivity). To dissolve the particles in the suspension, the 

bottom stirrer at 700 rpm of stirring rate was applied together with 0.2 K/min of heating rate 

up to a pre-set high temperature. For the precipitation, the temperature was decreased with 

0.4 K/min of cooling rate. The temperature was kept constant for 30 min at both the pre-set 

low and high temperatures to ensure complete dissolution (0% transmissivity). The selection 

of the Crystal16 parameters was based on previous published work by Samir A. Kulkarni.133 

The same parameters were employed in our study.  

Solubility for each vial was calculated as an average of clear points (0% transmissivity ) from 

all four cycles. For each solvent the solubility temperature was collected at four different 

concentrations and plotted in the van’t Hoff coordinates (Figure 17). The Van’t Hoff equation 

was then used for calculating the solubility of MFA in each solvent. Note that the Van’t Hoff 
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equation for solubility calculation is from the linear correlation between ln(Ce) and 1/T(K-1). 

For example, the solubility of MFA in methanol at 25 °C is calculated from the Equation 5. 

lnCe   =   -3,578.48*(
1

25+273
) + 8.15  Equation 5 

          Ce   =   Exp(-3.86)   =   0.02 mol/L 

 

Figure 17. Van't Hoff coordinate plot of lnC vs 1/T(K-1) with Van't Hoff equation for the solubility 

calculation of MFA in methanol 

3.3 Powder X-ray Diffraction (PXRD) 

Powder X-ray Diffraction is a non-destructive technique for the analysis of crystalline 

materials. This technique has been used for the determination of unit cell dimensions and 

phase identification of crystalline materials. The repetitive arrangement of electron density 

within the crystalline materials causes the X-rays to diffract in various specific directions 

depending on crystal planes, resulting in a diffraction pattern which provides information on 

peak intensities and peak positions at specific 2-theta angles.134,135 

When the X-ray radiation interacts with crystals, the secondary diffracted radiations from 

different crystal lattice planes can interfere with each other and cause either constructive or 

destructive interference. The constructive interference or reinforcement will occur when the 

path difference between the diffracted radiations is an integral number of the wavelength 

(Figure 18). These diffracted radiations are Bragg reflections. From this condition, the angle 

of incidence will be equal to the angle of reflection,135,136 as shown in Figure 19. 
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Figure 18. The path difference (PD) between two diffracted waves shows the condition in which the 

reinforcement of the waves takes place when the path difference is an integral number of wavelengths. 

 

Figure 19. The diffraction of X-rays by crystal planes in correspondence with Bragg’s law 

Bragg’s equation describes the relationship between the interplanar spacing in the crystal 

lattice and the path difference of diffracted radiations, see Equation 6. 

nλ  =  2dhkl sinθ                  Equation 6 

where λ is the wavelength of the incident X-ray, n is the reflection order, dhkl is the interplanar 

spacing between hkl planes, and θ is the diffraction angle.137 

Since the unit cell dimensions and Miller indices depend on the interplanar spacing dhkl, 

Bragg's law is used for the interpretation of diffraction patterns by X-ray. A diffraction pattern 

is a unique pattern for a particular crystal structure and can be used for the identification of 

unknown crystal structures.135,136 Peak positions in PXRD patterns are determined by the 

wavelength of the radiation, and lattice parameters of the material.  Peak intensity is 

determined by (i) the structural factors of the atoms, (ii) the specimen factors such as grain 
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size and distribution, the microstructure of the sample, and (iii) instrumental factors such as 

the properties of the radiation, the type of focusing geometry, properties of the detector, slit 

and /or monochromator geometry.135 

3.4 Random Forest Classification  

The details of RF models (model structure, independent and dependent variables) will be 

specifically described in Chapter 5 and Chapter 6. 

3.5 Model evaluation 

3.5.1 Train-test split 

Train-test split is a fast and easy method to evaluate the performance of a supervised 

machine learning algorithm. In this procedure, the dataset will be split into two subsets, in 

which one subset will be used to train the model. Then the prediction will be made for the 

other subset and the model predicted class will be compared to the actual one. These subsets 

are referred to as training datasets and test datasets, respectively. Train-test split is suitable 

when the dataset is of sufficient size to be split into two subsets while the test subset is still 

a good representation of the model’s question. Additionally, the dataset should not contain 

the data with class-imbalance problem138. 

3.5.2 N-fold Cross-validation 

The n-fold cross-validation is an out-of-sample evaluation method that uses all data in a 

dataset to evaluate a predictive model. A dataset will be split into equal-sized subsets. The 

number of the subsets can be customized, for example, 10-fold cross-validation splits the 

data into ten subsets. Then, one subset is selected as a test set and the remaining subsets 

are used as the training set. The process is repeated until all subsets are used as a test set. 

Since the whole dataset is used for training and testing the model, the bias from subset 

selection that might occur in the train-test split can be avoided.139 Figure 20 illustrates an 

example of 4-fold cross-validation. 
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Figure 20. An explanation of the 4-fold cross-validation method for model evaluation. A dataset was 

split into four equal subsets. Three subsets were used to train the model and the other subset was used 

to test the model. The same process was repeated 4 times, but different subsets were selected for 

testing the model. The model’s accuracy was calculated from the average of accuracies from 4 

iterations. 

3.5.3 Accuracy, precision, recall, and F1-score  

Accuracy is a simple measure for evaluating a model. It is a ratio of the number of correctly 

predicted data and the total amount of data in a dataset, regardless of which class a data 

belongs to. However, to evaluate a model’s performance, accuracy is not the only measure 

that should be considered. Precision, recall and F1-score are also important, especially in 

cases where the model prediction is very poor for some classes but better for others.140 

Precision and recall are the measures for determining the number of correctly predicted data 

in a particular class. Precision compares the number of correct predictions with the total 

number of predictions for that class, while recall compares the number of correct predictions 

with the total number of data points that actually belong to that class.141–143 Figure 21 shows 

an example of a model prediction and Equation 7-9 demonstrates the calculation of accuracy, 

precision, and recall, respectively. 

   Predicted 

  Positive Negative 

Actual 
Positive True positive False negative 

Negative False positive True negative 

Figure 21. An example of model prediction with two outputs, positive and negative 

Accuracy   =   
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎
             Equation 7 
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Precision   =   
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
           : for class positive, or 

                                 =   
𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
        : for class negative       Equation 8 

Recall        =   
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
          : for class positive, or 

=   
𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
         : for class negative  Equation 9 

The other measure for model evaluation is F1-score, which is a good measure to determine 

a balance between precision and recall. Unlike an accuracy that does not concern the number 

of data belonging to each class, F1-score is useful when the model has biased class 

distribution. Equation 10 shows how to calculate F1-score. 

F1-score    =   2 𝑥 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  𝑥  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
               Equation 10 

The highest possible value of precision, recall, and F1-score is 1, which can occur when the 

model has 100% accuracy.141,143 

3.6 Molecular descriptors 

Molecular descriptors can be defined as the molecular features in numerical form which 

represent the structural and chemical characteristics of a molecule. These descriptors are 

meaningful values obtained from the transformation of chemical information by applying 

logical and mathematical approaches. The descriptors which are derived from solely the two-

dimensional chemical structure, without considering 3D molecular conformation, are 2D 

molecular descriptors. Some examples of 2D molecular descriptors range from simple 

attributes such as the number of atoms, the number of internal bonds, or molecular weight, 

to the properties such as atomic polarizabilities, molecular mass density, and LogP value.144–

146 On the other hand, 3D molecular descriptors can be classified into 2 types, one depends 

on internal coordinates only and the other also depends on the absolute orientation of 

molecules.146 

Molecular descriptors can be calculated from various software. One of those is Molecular 

Operating Environment (MOE), the integrated computer-aided molecular design platform 

that operates various useful tools for visualizations, simulations, modelling, and screening, 

including cheminformatics. Molecular descriptors calculated from MOE consist of two-
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dimensional and three-dimensional molecular descriptors. two-dimensional descriptors were 

divided into 7 categories, namely 1.) physical properties, 2.) subdivided surface areas, 3.) 

atom counts and bond counts, 4.) Kier & Hall connectivity and Kappa shape indices, 5.) 

adjacency and distance matrix, 6.) pharmacophore feature, 7.) partial charge.146,147 
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4 How crystallisation thermodynamics affect the nucleation 

barrier 

4.1 Introduction 

Solubility is one of the physical properties measured for the process development of new 

crystallization processes for pharmaceutical materials. The solubility of a compound across a 

range of temperatures provides a key baseline for selecting crystallisation conditions by 

enabling us to calculate the supersaturation at which crystallisation occurs and identify the 

driving force and ultimately the kinetics of the key crystallisation processes. Solubility data 

can also via application of van’t Hoff analysis provide information on solution 

thermodynamics and solute-solvent interactions providing a deeper insight into the 

fundamentals of the solution chemistry and how this may impact crystallisation.148,149 

Accessing a large number of solid-state forms consumes enormous effort due to the 

metastable or elusive nature of many forms and the rapid kinetics of the transformation 

process in solution. Polymorphs stability can often be described using Ostwald’s rule of 

stages150,151 whereby at high supersaturation, the most soluble (thermodynamically least 

stable) form nucleates first and goes through several transformations until the least soluble 

(thermodynamically most stable) form is produced. This implies that the rate of nucleation 

of the metastable form is always higher than that of the stable form and numerous 

metastable polymorphs should be observed before the most stable form is isolated. This rule 

has been a gold standard for chemists seeking previously unknown crystal forms. Limitations 

of the rule come from the fact that it is rather empirical and has no theoretical foundation152 

and is not universally obeyed.153 For most compounds, we usually observe direct 

crystallisation to the most stable form, and kinetic forms can be isolated from specific 

solvents, e.g. for sulfathiazole, Ostwald’s rule was observed during the cooling crystallisation 

in ethanol, but was not observed in n-propanol154. 

In thermodynamics, the universe is divided into two primary regions: the system and the 

surroundings. The system refers to the specific region of interest, such as a chemical reaction 

vessel, while the surroundings comprise the region outside the system and serve as the point 

of reference for measurements. To establish a thermodynamic model, it is assumed that the 

system is in thermal equilibrium, meaning that the temperature is constant throughout the 
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system and there is no net flow of heat. Additionally, the system is considered to be at 

constant temperature and pressure and is closed, meaning there is no exchange of mass 

between the system and the surroundings. This approach enables the study of the 

thermodynamic behavior of a specific system while isolating it from external factors, such as 

pressure changes, and is a fundamental assumption in thermodynamic analysis.155 It is 

essential to note that this is an idealized scenario and in practice, the conditions of the 

external factors may vary, and mass exchange with the surroundings may occur. However, 

this simplifies the analysis and enhances our understanding of the system. 

Thermodynamic principles can be used to predict the conditions under which a new crystal 

phase can form, however, they do not provide a comprehensive description of the complex 

process of crystal nucleation. The thermodynamic model does not take into account the 

kinetics of the nucleation process, such as the rate at which new crystals form, the size of the 

nuclei, or the shape of the crystals. Additionally, the thermodynamic model does not consider 

the behavior of individual molecules or atoms, instead, it assumes that the system is 

macroscopic and does not take into account the effects of non-thermodynamic forces, such 

as electric or magnetic fields. These considerations make it difficult to evaluate the role of 

impurities or defects in the nucleation process, which can greatly affect the kinetics and the 

final crystal structure.155 

The crystallisation enthalpy ∆𝐻𝑐𝑟𝑦𝑠𝑡
0 , entropy ∆𝑆𝑐𝑟𝑦𝑠𝑡

0 , and free energy ∆𝐺𝑐𝑟𝑦𝑠𝑡
0  characterize 

the difference between the crystals and the solution. Since the crystals grown in all tested 

solvents belong to the same polymorphic form, the disparities of ∆𝐻𝑐𝑟𝑦𝑠𝑡
0 , ∆𝑆𝑐𝑟𝑦𝑠𝑡

0 , and 

∆𝐺𝑐𝑟𝑦𝑠𝑡
0  in different solvents distinguish the state of the solute in each solvent. 

Conventionally, the crystallisation enthalpy ∆𝐻𝑐𝑟𝑦𝑠𝑡
0  can be measured calorimetrically by 

scaling the heat released during crystallisation (at constant temperature, T and pressure, p) 

with the crystallised mass.156 For an alternative method, ∆𝐻𝑐𝑟𝑦𝑠𝑡
0  can also be determined 

from the solubility Ce of the crystals at different temperatures, using standard 

thermodynamics relations and Ce(T). The equilibrium constant for the reaction molecule in 

solution ⇆ molecule in crystals is K = Ce
−1. Assuming that the respective activity coefficients 

are close to one due to the low Ce, and that the solution is ideal.148 In this study, the 

crystallisation thermodynamics were determined from the solubility, Ce, because it requires 

less specialized equipment and can be performed using standard laboratory tools and 

techniques. Additionally, this approach is also more high-throughput, allowing for the 
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screening of multiple samples simultaneously. More details including the limitations of both 

approaches, as well as the comparison between the crystallisation enthalpy directly 

measured by calorimetry and that calculated from the determination of solubility as a 

function of temperature can be found in Appendix. 

From a thermodynamic perspective, the change in Gibbs free energy resulting from 

crystallisation (∆𝐺𝑐𝑟𝑦𝑠𝑡
0  or the free energy difference between 1 mole of the compound of 

interest in solution and 1 mole of the compound of interest in crystalline form) controls the 

energy barrier for crystallisation and, thus, should be related to nucleation rate (J). 

∆𝐺𝑐𝑟𝑦𝑠𝑡
0  can be determined from the crystallisation enthalpy (∆𝐻𝑐𝑟𝑦𝑠𝑡

0 ) and crystallisation 

entropy (∆𝑆𝑐𝑟𝑦𝑠𝑡
0 ). ∆𝐻𝑐𝑟𝑦𝑠𝑡

0  and ∆𝑆𝑐𝑟𝑦𝑠𝑡
0  are derived from the dependence of equilibrium 

solubility on temperature determined using the van’t Hoff equation. ∆𝐻𝑐𝑟𝑦𝑠𝑡
0  and ∆𝑆𝑐𝑟𝑦𝑠𝑡

0  

complete the thermodynamic picture of solution thermodynamics and the associated solute-

solvent interactions.148,157 Figure 22 illustrates the thermodynamic interactions and 

associated enthalpies and entropies in the crystallization process. 

 

Figure 22. The different types of molecular interactions occurring during crystallisation (solute-solute, 

solute-solvent, solvent-solvent) and associated enthalpies and entropies. In this thesis, ∆𝐻𝑐𝑟𝑦𝑠𝑡
0  and 

∆𝑆𝑐𝑟𝑦𝑠𝑡
0  represent the enthalpy and entropy of the entire system composed of all of the interactions 

described in this figure. 

This chapter addresses the thermodynamic interactions that direct the crystallisation of MFA 

from different organic solvents. MFA form I was crystallised from thirty-two organic solvents 
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including alcohols (methanol, ethanol, 2-propanol, 1-butanol, 2-butanol, 1-octanol, 2-

methoxyethanol), ketones (acetone, 2-butanone), acetates (methyl acetate, ethyl acetates, 

butyl acetate, isobutyl acetate), halogenated carbons (iodomethane, 1-chlorobutane, 1-

bromobutane, 1-iodobutane, dichloromethane, 1,2-dichloroethane, chloroform, 

trichloroethylene), ethers (anisole, 1,4-dioxane, THF) and others (aniline, acetic acid, toluene, 

1-methylnaphthalene, nitromethane, acetonitrile, diethyl sulfide) As an indication of the 

solute−solvent interactions, we employ the relative solution enthalpies (Hsoln)and solution 

entropies (Ssoln) of MFA form-I in the thirty-two solvents, evaluated from ∆𝐻𝑐𝑟𝑦𝑠𝑡
0  and ∆𝑆𝑐𝑟𝑦𝑠𝑡

0 .  

4.2 Mefenamic acid 

Mefenamic acid (MFA, Figure 23) is a nonsteroidal anti-inflammatory that is widely indicated 

for pain related to menstrual disorders. MFA is classified in BCS class II indicating poor 

aqueous solubility but high permeability. It shows high hydrophobicity and propensity to stick 

to surfaces, which pose great problems during granulation and tabletting.158 The molecule 

consists of the phenyl ring with the carboxyl group, connected to a twisted dimethyl-

substituted phenyl ring by an imino bridge (torsion angle τ, Figure 23a) stabilised by a strong 

intramolecular hydrogen bond (N−H···O). MFA crystallises in three polymorphic forms (I, II, III). 

In all three known polymorphs, MFA forms a symmetric carboxylic acid dimer (Figure 23b). 

The main difference among the three polymorphs is the torsion angle (τ) of molecular 

conformation, which is ±120.0° in form I, ±68.2° in form II, and ±80.82° in form III (Figure 23c). 

Stable MFA form I (Figure 23d) crystallises in the most common solvents at ambient 

conditions. The metastable form II (Figure 23e) was reported in polymorphic transformation 

at a temperature above 500K,159 high-pressure recrystallisation,160 quenching cooling from 

DMF,161 or SAM templates.162 Forms I and II are enantiotropically related with a transition 

temperature of ca. 448K.163 Form II is metastable and the rate of transformation to form I is 

sensitive to relative humidity (RH) and the solvent system, showing accelerated rates in the 

least polar mixtures.164 Form III (Figure 23f) was found in the failed co-crystallisation with 

cytosine in a 1:1 DMF/methanol mixture and converts back to Form I immediately.165 Form 

III is the least stable form of MFA at any conditions, hence, it will transform to Form I at 

ambient conditions or to Form II in the environment with high temperatures.  
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Figure 23 Structure of MA. a) the molecular structure of MFA, b) MFA carboxylic dimer, c) the overlay 

of MFA molecular conformation in Form I (red, dihedral angle equal 120.0°, CCDC ref code XYANAC), 

Form II (blue, dihedral angle equal to 68.2°, CCDC ref code XYANAC07) and Form III (green, dihedral 

angle equal to 80.82°,  CCDC ref code XYANAC03), the crystal structure of MFA d) form I, e) Form II, f) 

Form III. 

4.3 Methods    

4.3.1 Induction Time Measurement 

The nucleation rate was determined by the maximum likelihood estimation166 measured by 

a Crystal 16 multiple reactor setup (Avantium, Amsterdam). The setup consists of 16 reactors 

to hold 1.5 mL vials and records the induction time by detecting the variation in light 

transmission of solution.  

A 100 mL of stock solution was prepared by dissolving known amounts of MFA crystals in 

various solvents. After being dissolved at an elevated temperature, the solution was filtered 

through a 0.45 μm filter membrane. The 1.5 mL filtrate was then transferred to preheated 

vials. The vials were incubated at 323 K for 1 hour. Cooling crystallisation was carried out in 

feedback control mode. In this mode, the next cycle of crystallisation will be started when 

the % transmissivity of all samples in the same reactor reaches the target. The heating and 

cooling procedures were repeated five times to achieve a maximum of 80 sets of induction 

time data. In this experiment, the samples needed to be cooled to the set temperature as 

quick as possible so that the nucleation was detected at the desired crystallisation 
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temperature, while the heating rate should be slow to ensure that all the samples were 

redissolved before the next cooling step started. Similar parameters were selected following 

the previous work by Samir A. Kulkarni.133 The heating and cooling rate were set at 0.5 K/min 

and 5 K/min, respectively (Figure 24). The bottom stirring speed was set constantly at 700 

rpm throughout the entire process. Induction time was calculated as a difference between 

the time when the system reached desired temperature (298 K) and the time when the 

optical transmittance of the individual vials started to drop from 100%. Supersaturation is 

defined as S = C/Ce, where C is the solute concentration and Ce is the temperature-

dependence solubility of the solute at 298 K. 

 

Figure 24 Heating and cooling profile along with the %transmissivity of 4 individual MFA sample 

solutions. The transmissivity reached 100% when the solute was completely dissolved and started 

dropping from 100% when the crystal nuclei were detected. The time interval between the point where 

the process temperature reached the target (25 °C) and the point where %transmissivity started 

dropping was considered as an induction time. 

4.3.2 Nucleation rates estimation from probability distributions of induction 

times 

Crystal nucleation is considered a stochastic process. Therefore, a Poisson distribution could 

be applied to calculate the probability of forming a particular number of nuclei within a 

specific time interval.167 

𝑃𝑚  =   
𝑁𝑚

𝑚!
𝑒𝑥𝑝(−𝑁)   Equation 11 

Where Pm is the probability that m nuclei are formed in a time interval, and N is the average 

number of nuclei forming in the time interval. 

The probability of the event where at least one nucleus was formed can be written as 

Equation 12. 
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𝑃≥1  =  1 − 𝑃0  =  1 − 𝑒𝑥𝑝(−𝑁)   Equation 12 

Since N is the average number of nuclei forming during a time interval, it can be calculated 

from the nucleation rate J, solution volume V, and time interval tj (Equation 13). 

       𝑁   =   𝐽 𝑉 𝑡𝑗      Equation 13 

Since the Crystal16 can detect the appearance of crystal only once it grew to a measurable 

size, the time, tj, obtained from the Crystal16 is the time since the first nuclei appeared 

(induction time; t) with the addition of the time until it grew to the detectable size (growth 

time; tg). Accordingly, the probability P(t) of detecting crystals at time t can be determined 

by Equation 14. 

      𝑃(𝑡)  =  1 − exp (-J V (t - 𝑡𝑔))     Equation 14 

The nucleation rate can be determined from the variation of induction times from the same 

experimental setup (supersaturation, temperature profile, stirring rate, and solution volume) 

for small-scale crystallisations. The number of experiments per supersaturation was 80, 

which, according to the study of Jiang Shanfeng and Joop Ter Horst43, was proved to be 

sufficient for determining nucleation rate. In their study, a series of 80 induction times were 

simulated for a known nucleation rate, growth time, and solution volume. The nucleation 

rate was then redetermined from the probability distribution of a random induction time 

series using Equation 14 and compared to the known nucleation rate. It appeared that there 

is approximately 80% chance that the nucleation rates measured from this method were 

within the range of actual nucleation rates with 20% margin of error. This result showed that 

80 induction times were sufficient to determine the nucleation rate for a given system.43 

The induction time probability P(t) can be defined as the ratio of the number of experiments 

in which crystals are detected at time t (M+(t)) and the total experiments (M) as described in 

Equation 15. 

                        𝑃(𝑡)  =  
𝑀+(𝑡)

𝑀𝑠
     Equation 15 

Figure 25 presents the variation of induction time from eighty crystallisation experiments 

carried out by Crystal16. The histogram in Figure 25a shows a large variation in induction 

time even though the experiments were done under the same crystallisation conditions 

(supersaturation, crystallisation temperature, stirring rate, and solution volume). The 
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induction time probability P(t) was further calculated by Equation 15 and plotted as a 

function of the induction times in Figure 25b. 

 

Figure 25 Determination of the nucleation rate, a) a histogram showing a large variation in induction 

times from 80 crystallisation experiments of MFA solution under the same condition (supersaturation, 

crystallisation temperature, stirring rate, and solution volume), b) the induction time probability 

distribution. 

4.3.3 Powder X-ray diffraction for solid state identification 

Powder X-ray diffraction pattern (PXRD) patterns were obtained using a Bruker AXS D8-

Advance transmission diffractometer equipped with θ/θ geometry, primary monochromatic 

radiation (Cu, λ = 1.54056 Å). Data were collected in the 2θ range of 4−35° with a 0.015° 2θ 

step and 1 s/step speed. Reference powder patterns were produced using the Mercury 3.8 

(CCDC) software from single-crystal data (CSD ref code: MFA form I: XYANAC, MFA form II: 

XYANAC02). 

4.4 Results 

4.4.1 Solution thermodynamics of MFA crystallisation 

From thirty-two solvents selected for this study, MFA crystallised consistently as Form I. The 

PXRD patterns of MFA in studied solvents are presented in Figure 26. 
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Figure 26. Powder patterns of mefenamic acid crystals from the solvents studied in this work. All 

patterns corresponded to mefenamic acid form-I. Different colours represent MFA crystallised from 

different organic solvents. 

Overall, MFA Form I shows good solubility in the solvents containing the functional groups of 

ethers (tetrahydrofuran, 1,4-dioxane, and 1-methoxyethanol) and ketones (2-butanone and 

acetone). The highest solubility at 25°C was measured in THF (0.70 mol/L or 169.33 mg/mL), 

which can be categorized as freely soluble (100 – 1,000 mg/mL) according to the USP 

solubility guideline.168 The solubility of MFA form I in all chlorinated hydrocarbons is low, 

between 0.0076 mol/L for iodomethane and 0.0015 mol/L for 1-chlorobutane. Figure 27 

presents the compared experimental solubility of MFA in thirty-two organic solvents. 
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Figure 27. Experimental solubility of MFA form I at 25°C in various organic solvents calculated from 

Van’t Hoff plot of lnC as a function of 1/T(K) (a) the solubility is higher than 0.05 M, (b) the solubility is 

lower than 0.05 M. 

For all solvents, the solubility curve was plotted to allow the extraction of the thermodynamic 

parameters crystallisation enthalpy (∆𝐻𝑐𝑟𝑦𝑠𝑡
0 ) and entropy (∆𝑆𝑐𝑟𝑦𝑠𝑡

0 ). Figure 28 presents the 

dependence of MFA form I solubility on temperature and corresponding van’t Hoff equations. 

As with any process in nature at constant temperature and pressure, the transfer of solute 

molecules from solution to the crystal is governed by the change of Gibbs free energy, 
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∆𝐺𝑐𝑟𝑦𝑠𝑡
0 .148 According to the Gibbs–Helmholtz equation, the change in ∆𝐺𝑐𝑟𝑦𝑠𝑡

0  at constant 

temperature T can be stated as the net effect of the contributions of the enthalpy ∆𝐻𝑐𝑟𝑦𝑠𝑡
0  

and entropy ∆𝑆𝑐𝑟𝑦𝑠𝑡
0  as:148 

               ∆𝐺𝑐𝑟𝑦𝑠𝑡
0 =  ∆𝐻𝑐𝑟𝑦𝑠𝑡

0 − 𝑇∆𝑆𝑐𝑟𝑦𝑠𝑡
0     Equation 16 

If ∆𝐺𝑐𝑟𝑦𝑠𝑡
0  is negative, the process is thermodynamically favoured, which means that the 

system becomes more favourable as a consequence of crystallization (the energy is changed 

from high to low). To determine the ∆𝐻𝑐𝑟𝑦𝑠𝑡
0  in the solvents, the solubility of MFA at different 

temperatures Ce(T) was employed. Figure 28(a-d) presented the quasi-exponential 

dependence of the solubility of MFA form-I on temperature T(K).  

In the crystallisation equilibrium MFA(solution) ⇆ MFA(crystal), the equilibrium constant can 

be expressed as Keq = Ce
-1

.
149 While the associated crystallisation constant at equilibrium can 

be expressed as:148 

                          𝐾𝑒𝑞 = exp (
−∆𝐺𝑐𝑟𝑦𝑠𝑡

0

𝑅𝑇
⁄ )          Equation 17 

Hence, the change in Crystallisation Free Energy ∆𝐺𝑐𝑟𝑦𝑠𝑡
0  can be expressed as: 

      ∆𝐺𝑐𝑟𝑦𝑠𝑡
0 = −𝑅𝑇 ln 𝐾𝑒𝑞 = 𝑅𝑇 ln 𝐶𝑒           Equation 18 

where R is the universal gas constant, T is the temperature (K), and Ce is the solubility (M). To 

evaluate the crystallisation enthalpy ∆𝐻𝑐𝑟𝑦𝑠𝑡
0  of MFA form I, the van’t Hoff relation plotted 

between ln Ce and T-1(K) was determined. The equation can be expressed as:148,149 

        
𝜕𝑙𝑛𝐶𝑒

𝜕(1
𝑇⁄ )

=  
∆𝐻𝑐𝑟𝑦𝑠𝑡

0

𝑅
    Equation 19 

The van ‘t Hoff relation assumes that the slope of the correlation ln Ce(T−1) is proportional to 

∆𝐻𝑐𝑟𝑦𝑠𝑡
0 . The data of MFA solubility plotted in van‘t Hoff coordinates (Figure 28e-Figure 28h) 

indicate that ∆𝐻𝑐𝑟𝑦𝑠𝑡
0  is constant in the studied temperature range. Lastly, ∆𝑆𝑐𝑟𝑦𝑠𝑡

0 =

(∆𝐻𝑐𝑟𝑦𝑠𝑡
0 − ∆𝐺𝑐𝑟𝑦𝑠𝑡

0 )/𝑇  and is proportional to the intercept of the plot of correlation ln Ce(T−1).  
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Figure 28 Solubility of MFA Form I in various organic solvents. The legend shows the solvent in the 

studies, (a-d) The temperature dependence of the solubility Ce; dashed lines are polynomial fits, (e-h) 

MFA solubility plotted in van ’t Hoff coordinates; dashed lines are linear regression fits. Note that some 

systems have only 3 points because there was an error during the experiment of 1 concentration, 

resulting in the high standard deviation of clear points from 4 cycles, so they were excluded. 
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During the crystallisation process, the solute molecules in the saturated solution are 

incorporated into a crystal surface at kinks, which are the end sites of an unfinished crystal 

layer. In this study, MFA crystallised as the same polymorph (Form-I) in all tested solvents. 

Therefore, the same interactions were formed and the kinks of MFA crystals are identical, 

implying that the crystal enthalpy (𝐻𝑐𝑟𝑦𝑠𝑡𝑎𝑙)and crystal entropy (𝑆𝑐𝑟𝑦𝑠𝑡𝑎𝑙) are independent of 

the type of solvent. Subsequently, the differences in crystallisation enthalpy ∆𝐻𝑐𝑟𝑦𝑠𝑡
0  

(Equation 20) and the differences in crystallisation entropy ∆𝑆𝑐𝑟𝑦𝑠𝑡
0  (Equation 21) between 

different solvents can reflect the solution enthalpy (𝐻𝑠𝑜𝑙𝑛) and solution entropy (𝑆𝑠𝑜𝑙𝑛) of 

MFA in each solvent.148 

∆𝐻𝑐𝑟𝑦𝑠𝑡
0 =  𝐻𝑐𝑟𝑦𝑠𝑡𝑎𝑙 − 𝐻𝑠𝑜𝑙𝑛   Equation 20 

∆𝑆𝑐𝑟𝑦𝑠𝑡
0 =  𝑆𝑐𝑟𝑦𝑠𝑡𝑎𝑙 −  𝑆𝑠𝑜𝑙𝑛   Equation 21 

The values of ∆𝐻𝑐𝑟𝑦𝑠𝑡
0  and ∆𝑆𝑐𝑟𝑦𝑠𝑡

0  derived from the solubility data can be used to determine 

the strength of solute-solvent interactions in each solvent and link these parameters to the 

rate of nucleation of MFA in different crystallisation solvents. 

The results showed that the obtained values of ∆𝐻𝑐𝑟𝑦𝑠𝑡
0  in all tested solvents are negative  

(Figure 29a), indicating the greater values of solution enthalpies (𝐻𝑠𝑜𝑙𝑛) over the enthalpy of 

the MFA form-I crystals (𝐻𝑐𝑟𝑦𝑠𝑡𝑎𝑙). According to the Equation 20, 𝐻𝑠𝑜𝑙𝑛 =  𝐻𝑐𝑟𝑦𝑠𝑡𝑎𝑙 −

 ∆𝐻𝑐𝑟𝑦𝑠𝑡
0 , the respective 𝐻𝑠𝑜𝑙𝑛 will be low in the solvents with algebraically high ∆𝐻𝑐𝑟𝑦𝑠𝑡

0 , and 

the low value of 𝐻𝑠𝑜𝑙𝑛 suggested the strong solute−solvent interactions. In this study, the 

strongest interaction was found in THF and the weakest interaction was found in the group 

of solvents with halogenated structures. 

The values of crystallization entropy ∆𝑆𝑐𝑟𝑦𝑠𝑡
0  are also negative in all solvents (Figure 29b). 

This result suggested that the overall degrees of freedom of the system were lost during the 

crystallisation. Additionally, similar trends between ∆𝐻𝑐𝑟𝑦𝑠𝑡
0  and ∆𝑆𝑐𝑟𝑦𝑠𝑡

0  observed in all 

tested solvents (Figure 29 and Figure 30) suggest that the thermodynamics of MFA solutions 

were supported only by solute−solvent interactions but not by solvent-solvent interactions. 

This conclusion comes from the fact that, if there were strong solvent-solvent bonds formed 

as the layers of solvent molecules around the molecules of solutes, ∆𝑆𝑐𝑟𝑦𝑠𝑡
0   should notably 

increase during the process of crystallisation.169,170 The breakage of strong interactions within 

the layer of solvent molecules when the solute molecules incorporate into the crystal would 
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significantly increase the crystallisation entropy while causing minimal impact on ∆𝐻𝑐𝑟𝑦𝑠𝑡
0  . 

This phenomenon arises because the energy of the solvent (related to the enthalpy) in the 

solvent layer is, numerically, almost equivalent to the energy of the free solvent.148 For 

example, in aqueous solutions where the H-bond contribution increases, the value of 

∆𝐻𝑐𝑟𝑦𝑠𝑡
0  and ∆𝑆𝑐𝑟𝑦𝑠𝑡

0  will no longer correlate with each other (Figure 29 and Figure 30).149 The 

observed correlation between ∆𝐻𝑐𝑟𝑦𝑠𝑡
0  and ∆𝑆𝑐𝑟𝑦𝑠𝑡

0  in this work is in agreement with the 

results of the work done by Rajshree and Peter, which focuses on the crystallisation 

thermodynamics of etioporphyrin I in five organic solvents: Dimethylsulfoxide (DMSO), 

octanol, hexanol, butanol, and caprylic acid.148 

 

Figure 29 Thermodynamic parameters of crystallization of MFA in different solvents. a) The 

crystallisation enthalpy, ∆𝐻𝑐𝑟𝑦𝑠𝑡
0  b) The crystallisation entropy, ∆𝑆𝑐𝑟𝑦𝑠𝑡

0 .  
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Figure 30. The plot between ∆𝐻𝑐𝑟𝑦𝑠𝑡
0  and ∆𝑆𝑐𝑟𝑦𝑠𝑡

0  shows linear correlation. 

4.4.2 Nucleation rates of MFA in six different solvents 

The crystal nucleation rate (J) is defined as the number of crystalline particles forming in the 

supersaturated solution per unit of volume and time. Measuring the rate of crystal nucleation 

is difficult because of the stochastic nature of the nucleation process. Additionally, the small 

size of the crystal nucleus is also a limitation for direct measurement of the first occurrence 

of crystal nuclei.171 In this study, the nucleation rate of MFA was measured using a Crystal16 

multiple reactor setup (Avantium, Amsterdam). This method uses transmission of the light 

that passes through the vial as an indicator for complete dissolution (100% transmissibility) 

of precipitation of crystals (less than 100% transmissibility). Six organic solvents, namely 2-

butanol, 2-propanol, acetone, ethanol, methanol, and THF, were selected to be studied 

because four of them are alcohol with different numbers of carbon atoms (methanol, ethanol, 

2-propanol, and 2-butanol), THF is the solvent in which MFA has the highest solubility, and 

acetone is a solvent commonly used in the crystallisation besides water and alcohols. The 

solution of MFA was filtered into 1.5-mL vials. The temperature was initially set up at 323 K 

and held for 30 minutes before instantly cooling to 298 K (5 K/min cooling rate). Induction 

time was defined as a time difference between the point where the temperature of the 

system reached 298 K and the point where the light transmissibility of the individual vials 

started to reduce from 100%. The total 80 induction times were measured from 16 vials that 

repeated 5 cycles of the same heating and cooling conditions. The induction time probability 

(P(t)) was calculated from those measured 80 induction times (see Equation 15), and the 

nucleation rate (J) was calculated from the probability distributions of induction times (see 



54 
 

Equation 14) by applying the maximum likelihood estimation method. Figure 31 shows a 

typical induction time probability distribution of MFA crystals at four different 

supersaturations in six different solvents. After an initial time period in which no crystals 

were detected in all samples, the probability of induction time (P(t)) quickly increased and 

levelled off towards a probability of 1, especially in acetone solution. The possible 

explanation of this finding can be that acetone is a solvent with low nucleation barrier 

(according to parameter B showed in Table 2). Although THF has the lowest B value among 

six studied solvents, the viscosity of acetone is lower than that of THF (at 273.15 K, the 

viscosity of acetone and THF are 0.00389172 and 0.114173 Pa.s, respectively). Low viscosity 

promotes mass transfer of the solute in a supersaturated solution to the crystal nuclei, 

resulting in faster nucleation.174,175 For all solvents studied, the shape of the curve correlated 

to the probability model of the single nucleus mechanism171. Heterogeneous nucleation 

cannot be completely ruled out since it is assumed that the crystal nucleation from solution 

usually occurs through heterogeneous nucleation on foreign particles such as dust particles 

or on interfaces such as a glass wall and the stirrer surface.  

 

Figure 31. Determination of nucleation rates at various supersaturations from the probability 

distributions of induction times (P(t)) of MFA in a solution of a) methanol, b) ethanol, c) 2-propanol, d) 

2-butanol, e) acetone, and f) THF. 
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4.4.3 Determination of thermodynamic and kinetic constants A and B  

According to CNT, the nucleation rate can be described by Equation 22: 

         𝐽 = 𝐴𝑆𝑒𝑥𝑝 (
−𝐵

𝑙𝑛2𝑆
)    Equation 22 

in which A is the kinetic parameter, B is the thermodynamic parameter for nucleation, and S 

is the supersaturation calculated by the ratio of solution concentration and equilibrium 

concentration (C/Ce). The equation can be rearranged as: 

                                  𝑙𝑛
𝐽

𝑆
= ln 𝐴 −

𝐵

𝑙𝑛2𝑆
    Equation 23 

A plot of ln(J/S) versus 1/ln2S (Figure 32) allows access to the kinetic parameter A from the 

intercept, while the thermodynamic parameter B can be derived from the slope. The values 

of nucleation rate J and supersaturation in the plot were shown in  

 

Figure 32 Determination of A and B parameters from nucleation rates at different supersaturation for 

methanol, ethanol, 2-propanol, 2-butanol, acetone, and THF (inserted). 
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Table 1. The value of S, 1/ln2S, J, J/S, and ln(J/S) used for the plot in Figure 32  

Solvent S 1/ln2S J J/S ln(J/S) 

2-Butanol 1.75 3.19 33.9 19.4 3.0 

 1.80 2.89 50.2 27.9 3.3 

 1.83 2.74 55.1 30.1 3.4 

 1.93 2.31 340.2 176.2 5.2 

2-Propanol 1.60 4.53 33.0 20.6 3.0 

 1.72 3.40 190.2 110.6 4.7 

 1.75 3.19 253.0 144.6 5.0 

 1.88 2.51 774.0 411.7 6.0 

Methanol 1.60 4.53 104.0 65.0 4.2 

 1.70 3.55 188.4 110.8 4.7 

 1.75 3.19 270.1 154.3 5.0 

 1.80 2.89 550.8 306.0 5.7 

Ethanol 1.55 5.21 87.5 56.4 4.0 

 1.65 3.99 297.4 180.2 5.2 

 1.74 3.26 755.8 434.3 6.1 

 1.80 2.89 1239.7 688.7 6.5 

Acetone 1.40 8.83 443.3 316.7 5.5 

 1.45 7.24 591.2 407.7 6.0 

 1.50 6.08 698.5 465.6 6.3 

 1.80 2.89 8464.3 4702.4 8.5 

THF 1.10 110.08 31.0 28.2 3.3 

 1.20 30.08 96.0 80.0 4.4 

 1.30 14.53 147.0 113.1 4.7 

 1.40 8.83 266.0 190.0 5.2 

Parameters A and B for the nucleation of MFA crystals were determined in methanol, 

ethanol, 2-propanol, 2-butanol, acetone, and THF. The values of these two parameters are 

summarized in Table 2. The values of the obtained parameters are notably different between 

the six studied solvents. 

4.4.3.1 Interpretation of thermodynamic parameter B 

The thermodynamic parameter B of MFA nucleated from 2-butanol is highest, while the 

thermodynamic parameter B of MFA nucleated from THF is lowest. This result suggests that, 

at the same supersaturation level, the energy barrier for the nucleation of MFA in 2-butanol 

is much larger than the nucleation in the other solvents in this study, especially THF. The 

relation between the energy barrier of the nucleation (or nucleation work), W*, and the 

thermodynamic parameter B is given by Equation 24.171,176 

   
𝑊∗

𝑘𝐵𝑇
=

𝐵

𝑙𝑛2𝑆
  Equation 24 
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The parameter B reflects the energy barrier for forming the critical cluster which is the cluster 

in an equilibrium state to grow to become the crystal nucleus or to dissolve in the 

supersaturated solution. The value of thermodynamic parameter B is affected by different 

surface free energy (γ) of the crystal nucleus, which establishes the excess energy of the 

interface between a nucleus and the surrounding solution. This thermodynamic barrier along 

with the kinetics of the process in which the solute molecules attach to the critical cluster 

determines the rate of nucleation. In the case of a spherical cluster, the relationship between 

B and the surface free energy γ can be expressed by Equation 25.171,177 

                                                 𝛾 = √
3𝐵(𝑘𝐵𝑇)3

16𝜋𝛺2

3
    Equation 25 

Where γ is a surface free energy of the nuclei, kB is the Boltzmann constant (1.38 × 10−23 J/K), 

T is a temperature (K), and Ω is a molecular volume, which is 315.83 Å3 for MFA form I. The 

calculated values for γ are summarized in Table 2. 

4.4.3.2 Interpretation of kinetic parameter A 

While thermodynamic parameter B represents the energy barrier of the nucleation process, 

the pre-exponential factor A reflects the kinetics of the process in which the attachment and 

detachment of molecules into the clusters of crystal nuclei take place in the supersaturated 

solution. Similar to the thermodynamic parameter B, the value of kinetic parameter A in this 

study varied strongly depending on the crystallisation solvents. Parameter A of MFA 

nucleated in 2-butanol is two orders of magnitude higher than that in THF (Table 2).  

In the equilibrium state where the concentration of the clusters is constant, the kinetic factor 

A can be described as Equation 26. 

                            𝐴𝑆 = 𝑧𝑓∗𝐶0     Equation 26 

From Equation 26, A is a pre-exponential factor which determines the rate of the attachment 

of building units onto the crystal at the nucleation site. This equation expresses that the pre-

exponential factor A depends on the Zeldovich factor (z), the attachment frequency (f*), and 

the concentration of nucleation sites (C0). The Zeldovich factor was first introduced by Becker 

and Döring, describing the probability of the clusters around the critical nucleus size 

redissolving rather than growing into macroscopic crystal nuclei.178 The attachment 

frequency f* indicates the number of nuclei in the critical size (n*) that can grow further into 

supernuclei by the attachment of a building unit (n*+1).171 
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Theoretically, the kinetic factor A is estimated to be in the range between 1015 – 1025 m-3s-1.176 

However, the kinetic parameter A of the nucleation of MFA in the six studied solvents (Table 2) 

has significantly lower experimental values than the values estimated theoretically. The 

lower values of A observed in the experiment most likely results either from a lower than 

expected attachment frequency in the experiment, f*, or a lower than expected 

concentration of nucleation sites, C0, in the experiment. A lower than expected concentration 

of nucleation sites, C0, may result from the heterogenous particles presenting in the process. 

On the other hand, the particles may have a higher energy barrier for the attachment of 

growth units to the crystal nuclei than expected as this high energy barrier would lower the 

attachment frequency, f*.  The work done by Davey et al, also found lower experimental 

values of A than estimates predict and came to similar conclusions as stated here.42 

Table 2. Summary of the kinetic and thermodynamic parameters for MFA in various solvents 

Solvent B A [m-3s-1] 
ΔH0

cryst 

[kJ/mol] 
ΔS0

cryst 

[J/mol.K] 
ΔG0

cryst 

[kJ/mol] 
γ from Turnbull 

rule [mJ/m2] 
γ by Eq.24 
[mJ/m2] 

THF 0.02 163.5 -12.8 
(±1.6) 

-40.1 
(±1.7) 

-0.9 
(±1.7) 

20.0 2.8E-07 

Acetone 0.50 16,866.8 -26.0 
(±1.7) 

-64.8 
(±5.4) 

-6.7 
(±0.2) 

27.9 6.9E-06 

Ethanol 0.63 5,259.6 -27.2 
(±0.5) 

-62.9 
(±1.6) 

-8.5 
(±0.1) 

29.1 8.7E-06 

Methanol 0.86 2845.2 -31.0 
(±0.5) 

-71.8 
(±7.7) 

-9.6 
(±0.1) 

32.0 1.2E-05 

2-Propanol 1.48 16,762.5 -35.4 
(±0.9) 

-89.9 
(±2.8) 

-8.6 
(±0.1) 

38.5 2.1E-05 

2-Butanol 2.53 47,562.5 -39.0 
(±0.7) 

-99.9 
(±2.1) 

-9.2 
(±0.1) 

41.8 3.5E-05 

Toluene* 2.71 361.4 -42.3 -95.7 -13.8 - - 

* Values from literature 179 

4.4.4 Thermodynamic parameters determine the kinetics of crystal nucleation 

To understand how thermodynamic parameter relates to the crystal nucleation rate, the 

correlations between nucleation kinetics ∆𝐻𝑐𝑟𝑦𝑠𝑡
0 , ∆𝑆𝑐𝑟𝑦𝑠𝑡

0  and ∆𝐺𝑐𝑟𝑦𝑠𝑡
0  derived from the van’t 

Hoff relationship and thermodynamic factor B were plotted (Figure 33). Initially, the main 

assumption in this study was that the nucleation rate should correlate to the Gibbs free 

energy of crystallisation, ∆𝐺𝑐𝑟𝑦𝑠𝑡
0 . Surprisingly, the best fit is obtained from ∆𝐻𝑐𝑟𝑦𝑠𝑡

0 , and 

∆𝑆𝑐𝑟𝑦𝑠𝑡
0  (Figure 33a and Figure 33b, respectively) instead of ∆𝐺𝑐𝑟𝑦𝑠𝑡

0  (Figure 33c). This 

relationship is in an agreement with Turnbull’s empirical rule for the estimation of surface 

free-energy, γ. This rule states that the surface free energy is proportional to ∆𝐻𝑐𝑟𝑦𝑠𝑡
0 , as 

expressed in Equation 27.180 
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                                            𝛾 =
𝛼|𝛥𝐻𝑐𝑟𝑦𝑠𝑡

0 |

𝛺2/3∙𝑁𝐴
      Equation 27 

Where α is the scaling parameter accounting for the molecular environment in the crystal 

which generally values around 0.3 and NA is Avogadro's number (approx. 6.023*1023). The 

surface free energy, γ, of MFA nucleation in six solvents in this study was calculated by 

Turnbull’s rule (Equation 27) values between 20-40 mJ/m2 (Table 2). 

By combining Equation 25 with Equation 27, the relation between thermodynamic 

parameter B and ∆𝐻𝑐𝑟𝑦𝑠𝑡
0  can be written as: 

       𝐵 =
16𝜋

3

𝛼3|𝛥𝐻𝑐𝑟𝑦𝑠𝑡
0 |

3
𝛺2

(𝑘𝐵𝑇)3∙𝑁𝐴
3     Equation 28 

From Equation 28, the thermodynamic parameter B is expected to be linearly proportional 

to (∆𝐻𝑐𝑟𝑦𝑠𝑡
0 )

3
, as shown in Figure 33d – Figure 33f. Since ∆𝐻𝑐𝑟𝑦𝑠𝑡

0  can be extracted from the 

Van’t Hoff plot of solubility of a given compound in a solvent, this linear correlation between 

(∆𝐻𝑐𝑟𝑦𝑠𝑡
0 )

3
and thermodynamic parameter B suggests that the solubility data can be used to 

reflect the energy barrier of the nucleation.  

 

Figure 33 Relationship between B and a) ∆𝐻𝑐𝑟𝑦𝑠𝑡
0 , b) ∆𝑆𝑐𝑟𝑦𝑠𝑡

0  c) ∆𝐺𝑐𝑟𝑦𝑠𝑡
0  and linear fit between B and a) 

∆𝐻𝑐𝑟𝑦𝑠𝑡
3 , b) ∆𝑆𝑐𝑟𝑦𝑠𝑡

3  c) ∆𝐺𝑐𝑟𝑦𝑠𝑡
3 . The error bars on B values were determined from the standard error of 

the linear fitting (Figure 32) using Origin software. The error bars on ∆𝐻𝑐𝑟𝑦𝑠𝑡
0 , ∆𝑆𝑐𝑟𝑦𝑠𝑡

0 , and ∆𝐺𝑐𝑟𝑦𝑠𝑡
0  

were determined from 3-4 seperated solubility measurements. 
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4.4.5 Nucleation mechanism of MFA: CNT or Two-step Nucleation? 

According to CNT, the crystals are formed directly from the individual molecules of solute in 

the supersaturated solution. Therefore, the crystal nuclei have an identical molecular 

arrangement to that of the new crystal phase, resulting in an equal surface free energy 

between the nuclei and the crystal interfaces.177 CNT suggests that the nucleation barrier is 

proportional to the surface area of the crystal nucleus, and the systems found to be 

supported by CNT are mostly in relatively low supersaturation.181 Whereas the two-step 

nucleation model assumes that the solute molecules aggregate into an intermediate 

metastable cluster before assembly into the crystal phase with the most thermodynamically 

stable conformation.182 In two-step nucleation, the molecular arrangement in the clusters is 

different to the crystal phase, and the nucleation barrier is controlled by supersaturation and 

the surface free energy of the crystal nucleus surrounded by the precursor phase.53,183–185 The 

surface free energy also influences the nucleation rate in the clusters.42 

In the absence of any direct information on the pre-nucleation behaviour of MFA in solution, 

the nucleation mechanism can be determined by the comparison of the surface free energy 

γ calculated from the experimental data describing nucleation rate (Equation 25) to those 

calculated based on Turnbull’s rule (Equation 27). The result shown in Table 2 presents that 

the γ values of MFA nucleated in all solvents are much lower when the calculation is based 

on the observed experimental nucleation rate compared with those calculated from 

Turnbull’s rule which is based on the solution thermodynamics. This finding suggests that the 

nucleation of MFA in these six studied solvents follows a two-step nucleation mechanism. 

The assumption is that, if the nucleation process follows CNT, the γ from the experimental 

nucleation rate should be more than 106-fold greater, or similar to the values obtained from 

the calculation using Turnbull’s rule (see the differences between the values of γ calculated 

by two methods in Table 2). An increasing value of γ would dramatically heighten the 

nucleation barrier, and hence, decrease the nucleation rate by many orders of magnitude.181 

4.5 Conclusions 

The relationship between kinetic and thermodynamic parameters and crystal nucleation of 

MFA was studied in this chapter.  

In this work, we studied ∆𝐻𝑐𝑟𝑦𝑠𝑡
0  which provides a measure of the heat released when one 

mole of solute crystallised from a supersaturated solution and ∆𝑆𝑐𝑟𝑦𝑠𝑡
0  which describes the 

degree of disorder or randomness of the crystallisation system. The results show that the 
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thermodynamic parameter B, which reflects the nucleation barrier, is linearly related to 

(∆𝐻𝑐𝑟𝑦𝑠𝑡
0 )

3
 in accordance with Turnbull’s rule. This observed correlation can be used to 

estimate the nucleation kinetics of organic crystals in various solvents based on their solution 

thermodynamics, and facilitate the rational selection of crystallisation solvents based on the 

strength of the interactions with the solute molecules expressed by thermodynamic 

parameters such as ∆𝐻𝑐𝑟𝑦𝑠𝑡
0  and ∆𝑆𝑐𝑟𝑦𝑠𝑡

0 .  Additionally, the difference of surface free energy 

determined by nucleation rates to those calculated from Turnbull’s rule suggests that the 

nucleation of MFA in six studied solvents (methanol, ethanol, 2-propanol, 2-butanol, 

acetone, and THF) occurs via two-step nucleation. Due to the smaller nucleation barrier, the 

rate of nucleation via the two-step nucleation mechanism is faster than the nucleation rate 

in CNT. Further investigations can be done by various analytical techniques to confirm the 

two-step nucleation in this study. For instance, dynamic and static light scattering 

techniques, which help us observe the size of solutes or aggregation in the solution, can be 

applied for the investigation of pre-nucleation clusters forming during the two-step 

nucleation.58 

This information helps to understand the thermodynamic properties of the crystal formation 

process and the solute behavior in different solvents. The thermodynamic approach is 

important to predict the conditions under which new crystal phases can form. 
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5. Prediction of mefenamic acid crystal shape  

by random forest classification 
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5 Prediction of mefenamic acid crystal shape by random forest 

classification 

5.1 Introduction 

There is a considerable drive across the pharmaceutical industry to enhance the agility and 

productivity of activities involved in the development and manufacture of medicines.186 

Central interests focus on enabling faster, cost-effective drug production whilst improving 

sustainability and delivering improved security of supply whilst still assuring the quality and 

safety of medicines to patients.187,188 Advanced particle formation and control is an area to 

address as this can also enable the disruptive benefits from more closely associated 

knowledge across drug substance and drug product manufacturing.189 Cyber-Physical 

Systems embed Industry 4.0 principles and industrial digital technologies and realise benefits 

from digital design,190 advanced process technology,191 and data-driven manufacturing and 

control such as Digital Twins192 or medicines development and manufacture that encompass 

the data, models, and knowledge that describe the inter-relationships between materials, 

products, processes, and performance.  

Crystal shape is one of the important attributes dictating the physicochemical and bulk 

properties of a crystalline material, which can have an impact on the process-related 

characteristics as well as the quality attributes of the final formulated products.193 Certain 

shapes of crystals are problematic during the key unit process used in the production of raw 

materials and downstream formulated product manufacturing. For example, needles can 

cause poor flowability of particulate solids and result in problems during various processes 

including powder flow,194 filtering,195 and tabletting196. Therefore, the ability to routinely 

predict the crystal shape yielded from a given solvent could improve efficiencies in process 

development and medicine manufacturing and reduce the costs of research and 

development.  

Several theoretical models are already available for crystal shape i.e. geometrical 

morphology based on Bravais-Friedel-Donnay-Harker (BFDH) theory,197 growth morphology 

based on an attachment energy calculation, the theory of Hartman-Perdok198 or periodic 

bond chain (PBC).199 Experimental results often vary from theoretical predictions due to the 

influence of solvent,87,200 impurities,201 and additives193 in the crystallisation medium, and 
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although progress has been made in the prediction of morphologies,202,203 there is a need for 

new models that can provide practically useful, rapid prediction across a wide range of 

potential crystallisation environments.   

In the field of crystallisation, data-driven approaches using machine learning can be powerful 

tools for finding relevant patterns in high-dimensional data. During the past few years, 

several machine learning studies showed great promise and lead to the successful discovery 

of novel crystal forms116 and the successful prediction of the small molecule 

crystallisability,204 crystal packing,29 polymorphism, and co-crystallisation.205  

In this work, the crystal shape prediction of MFA in different solvents was investigated. MFA 

(2-[(2,3-Dimethylphenyl)amino]benzoic acid, C15H15NO2) is a high-dose analgesic drug in the 

non-steroidal anti-inflammatory (NSAIDs) group. It is widely used for the treatment of mild 

to moderate pain due to menstruation (primary dysmenorrhea).206–208 It is classified as a 

compound in class II based on the biopharmaceutical classification system (BCS) which 

indicates low aqueous solubility with high permeability.209,210 Apart from the solvated form, 

MFA has 3 different solid-state forms, which are forms I, II, and III.211 During manufacturing, 

MFA often causes problems in processes such as granulation and tabletting because of its 

hydrophobicity and tendency to stick to surfaces that result from the specific crystal surface 

chemistry expressed. MFA is therefore a useful example to illustrate the impact of crystal 

shape during drug manufacturing212,213 and to explore the prediction of solvent effects on 

crystal shape to inform subsequent process development and engineer the bulk properties 

of active pharmaceutical ingredients. Control of shape through appropriate particle 

engineering strategies can also allow the avoidance of additional downstream processing 

steps such as milling.   

A variety of crystal shapes have been reported from prior experimental studies for MFA, 

ranging from plate-like to needle-like crystals.159,214,215 Plates or elongated crystals of MFA 

were observed when crystallised from tetrahydrofuran,159 ethanol,216 ethyl acetate,159,212 

dimethylacetamide (DMA),215,217 and isopropanol,218 while needle-like crystals were often 

observed when MFA was crystallised from acetone.218,219 However, many studies of the 

crystallisation of MFA have yielded different results for crystal shape despite using the same 

crystallisation solvent. For example, the crystallisation of MFA from ethyl acetate carried out 

by Mudalip et al. produced needle-like crystals,215 while the SEM pictures of MFA crystallised 

from ethyl acetate showed plate-like crystals in the study of Panchagnula et al.159 The latter 
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study has also shown that the shape of MFA crystal grown from tetrahydrofuran and ethyl 

acetate changed as supersaturation levels changed.159 

Previously, a random forest (RF) algorithm has been applied to predict the crystallisation 

outcomes.119,120 From these studies, RF performed as well as or better than other algorithms, 

such as support vector machines (SVM),119,120 neural networks,119 and deep learning 

multilayer perceptron networks.120 

RF has advantages over other algorithms including SVM or k-nearest neighbours which 

generally are more sensitive to data outliers. On the other hand, RF is robust to the outliers 

since its prediction relies on the averaged output from multiple independent decision 

trees.112 This attribute of RF algorithm also provides the low risk of over-fitting to training 

data.220 Additionally, RF also provides us with the relative ranking of variable importance 

which can be used to guide a feature selection and support model interpretability.221 

Therefore, in this work, we applied RF classification to predict the crystal shape of MFA as a 

function of recrystallisation solvent. MOE molecular descriptors were used for 30 solvents 

and three different sets of variables (one set that contained all available 2D descriptors, a 

second set that focused on molecular structure and a third set that focused on physical 

properties) were tested to optimise model performance. To identify which solvent 

descriptors were associated with RF model performance, logistic regression was applied, and 

variable coefficients, as well as recursive feature elimination, were considered. Powder X-ray 

Diffraction (PXRD) for solid-state determination and Differential Scanning Calorimetry (DSC) 

for thermal analysis was carried out for crystallisation from solvents which resulted in poor 

model performance. 

5.2 Materials and methods    

Materials. MFA (>98% purity) was purchased from Merck (UK). All solvents were purchased 

from Fisher Scientific (UK). 

5.2.1 Cooling crystallisation 

Small-scale crystallisation was carried out in 20-mL scintillating vials. Appropriate amounts of 

MFA powder and organic solvent, as determined by the solubility experiments, were 

transferred into the vials. The vials were capped and covered with parafilm to avoid solvent 

evaporation. Vials were heated using a hot plate until all solid had visibly dissolved. To ensure 

no solid remained, the solution was then filtered through 0.45 µl PTFE filter discs into a clean 
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vial. The vials were capped and placed in an incubator at 25 ○C without disturbance for 5 

days. All samples were prepared in different solvents at various supersaturations for 

comparison. 

5.2.2 Optical microscopy 

An optical microscope (Leica M165C, supplied by Leica Microsystems (UK) Ltd.) was used for 

capturing two-dimensional images of the resulting crystals. Without removing the remaining 

solvent, the crystal samples obtained from cooling crystallisation were observed in the same 

container under the bright-field mode of optical microscope. The crystal shapes were 

manually classified into two classes: polyhedral and needle. Polyhedral crystals were 

comprised of any crystals with regular bounding facets including shapes such as prisms, 

plates and elongated crystals. Needles were defined by any sample with elongated crystals 

with no discernable edges or faces. Note that polyhedral and needle crystals were introduced 

with broad definitions for the practical implications for downstream pharmaceutical 

manufacturing processes as needle-shaped crystals are more likely to cause issues during 

manufacturing than crystal shapes with aspect ratios closer to 1, and so are generally 

undesirable. Any spherulitic crystals were classed as needle crystals as they were a form of 

needle crystal aggregates.62 Example images of different crystal shapes from our dataset can 

be seen in Figure 34. 

 

Figure 34.  Examples of crystal shapes: (a) plates, (b) elongated plates, (c) needles, and (d) spherulites. 

Plate and elongated plate crystals were assigned to the polyhedral class while needle and spherulitic 

crystals were both assigned to needle crystals. 
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5.2.3 X-ray diffraction data 

X-ray diffraction aims to determine the solid-state form (polymorphism) of MFA crystallised 

in each organic solvent. For face indexing, single crystal X-ray diffraction (SC-XRD) was 

performed using D8 Venture (Bruker UK Limited), equipped with Photon III CCD detector and 

Cu (Copper) Kα X-ray energy source which corresponds to an x-ray wavelength of 1.5406 Å. 

A single crystal was prepared and fixed onto a low diffraction loop connected to a three-circle 

fixed Chi goniometer. APEX3 software was used to specify the faces of a single crystal. For 

powder X-ray diffraction (PXRD), the data were collected from 4° to 35° 2-theta (step size 

0.017°) for all samples at ambient temperature. PXRD on triethylamine samples was repeated 

in a capillary set up and the data was collected from 3° to 40° 2-theta. 

5.2.4 Random forest predictions 

Random Forest (RF) classification (Random Forest Classifier in Scikit-learn 1.0.2, Python 3.10) 

was applied to all models as RF have been shown to be effective for the prediction of 

crystallisation outcomes in previous works.31,114,204 The number of decision trees was set at 

100 by setting parameter n_estimators = 100 and the random state was set at 0. Other 

parameters were used as default values (bootstrap = True, max_depth = None, max_features 

= auto, max_leaf_nodes = None, min_samples_leaf = 1, min_samples_split = 2). 

The justifications for selecting each parameters are provided as follows: 

 n_estimators: This parameter controls the number of trees in the random forest 

model. The higher the number of trees, the more complex the model is.222 Increasing 

n_estimators can improve the model performance but also increase the computational 

time. Moreover, too complicated models may end up causing overfitting, resulting 

in the model being less efficient to external data. Setting n_estimators = 100 is 

considered a good trade-off between the model performance and computational 

time.223 

 random_state: This parameter is useful for the reproducibility of running the random 

forest model as it specifies a particular random subset of the input data to the model. 

0 is the common choice for this parameter.223 

 bootstrap: By setting bootstrap = True, bootstrap sampling technique will be applied. 

Bootstrap sampling randomly selects the input data from the original dataset with 

replacement for building each tree in the random forest, promoting randomness to 

the model and cause the trees to be more independent from each other.223 
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 max_depth: By setting max_depth = None, the depth of the tree structure is 

unrestricted, which makes the splitting process continue until the number of samples 

at a leaf node = 1 (as min_samples_leaf is also set as 1).223 

 max_features: By setting max_features = auto, the number of features (input 

variables) used for considering the best split will be determined by the square root 

of the total number of features in the dataset. This setting is commonly used as it is 

a default value of Random Forest Classifier in scikit-learn that can work well in 

practice.223 

 max_leaf_nodes: By setting max_leaf_nodes = None, the number of leaf nodes in 

each decision tree is unrestricted, which makes the trees can grow as large as 

possible to fit the data or until the number of samples at a leaf node = 1 (as 

min_samples_leaf is also set as 1).223 

 min_samples_leaf and min_samples_split: By setting min_samples_leaf = 1 and 

min_samples_split = 2, the node will be splitted until the number of samples at a leaf 

node = 1 (impurity = 0).223 

5.2.4.1 Building models 

Experimental solubility of MFA at 25oC, supersaturation levels, 2D MOE solvent molecular 

descriptors 224, solvent boiling point and melting point, and solvent density225 were included 

in the dataset as input for training predictive models. Each experiment in the dataset was 

labelled with the crystal shape outcome. MOE descriptors used in this work were calculated 

from molecular structures using SMILE codes. After data cleaning by removing the 

descriptors with NaN value (missing data) and the descriptors which contain the same value 

for all solvents, 206 descriptors were left in the dataset (see Table 3 for details of descriptors).  

Table 3. 2-D molecular descriptors calculated from MOE 

Descriptors Category Description 

2-D descriptors 

apol, bpol, Fcharge, mr, 
SMR, Weight, logP (o/w), 

SlogP, vdw_vol, density, 

vdw-area 

physical properties Physical properties are 
calculated from the 

connection table of a 

molecule 

SlogP_VSA0-SlogP_VSA9, 

SMR_VSA0 - SMR_VSA7 

subdivided surface areas The Subdivided Surface 

Areas are descriptors based 

on an approximate 
accessible van der Waals 

surface area calculation for 
each atom, vi along with 
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some other atomic 
property, pi. 

a_aro, a_count, a_heavy, 
a_ICM, a_IC, a_nH, a_nB, 

a_nC, a_nN, a_nO, a_nF, 
a_nP, a_nS, a_nCl, a_nBr, 

a_nI, b_1rotN, b_1rotR, 

b_ar, b_count, b_double, 
b_heavy, b-rotN, b_rotR, 

b_single, b_triple, VAdjMa, 
VAdjEq 

atom count and bond count The atom count and bond 
count descriptors are 

functions of the counts of 
atoms and bonds 

chi0, chi0_C, chi1, chi1_C, 

chi0v, chi0v_C, chi1v, 
chi1v_C, Kier1 - Kier3, 

KierA1 - KierA3, KierFlex, 
zagreb 

Kier&Hall Connectivity and 

Kappa Shape Indices 

The Kier and Hall kappa 

molecular shape indices 
compare the molecular 

graph with minimal and 
maximal molecular graphs 

and are intended to capture 

different aspects of 
molecular shape. 

balabanJ, diameter, 

petitjean, radius, VDistEq, 
VDistMa, weinerPath, 

weinerPol 

Adjacency and Distance 

Matrix Descriptors 

The adjacency matrix, M, of 

a chemical structure is 
defined by the elements 

[Mij] where Mij is 1 if atoms 
i and j are bonded and zero 

otherwise. The distance 
matrix, D, for a chemical 

structure is defined by the 

elements [Dij] where Dij is 
the length of the shortest 

path from atoms i to j; zero 
is used if atoms i and j are 

not part of the same 

connected component. 

a_acc, a_acid, a_base, 

a_don, a_hyd, vsa_acc, 

vsa_acid, vsa_base, 
vsa_don, vsa_hyd, 

vsa_other, vsa_pol 

Pharmacophore Feature 

Descriptors 

The Pharmacophore Atom 

Type descriptors consider 

only the heavy atoms of a 
molecule and assign a type 

to each atom 

Q_PC+ PEOE_PC+, Q_PC- 

PEOE_PC-, Q_RPC+ 

PEOE_RPC+, Q_RPC- 
PEOE_RPC-, Q_VSA_POS 

PEOE_VSA_POS, 
PEOE_VSA_NEG, 

PEOE_VSA_PPOS, 

PEOE_VSA_PNEG, 
PEOE_VSA_HYD, 

PEOE_VSA_POL, 
PEOE_VSA_FPOS, 

PEOE_VSA_FNEG, 
Q_VSA_FPPOS 

PEOE_VSA_FPPOS, 

Q_VSA_FPNEG 
PEOE_VSA_FPNEG, 

Q_VSA_FHYD 

Partial Charge Descriptors Descriptors that depend on 

the partial charge of each 

atom of a chemical 
structure require calculation 

of those partial charges. 
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PEOE_VSA_FHYD, 
Q_VSA_FPOL 

PEOE_VSA_FPOL, 
PEOE_VSA+6 - 

PEOE_VSA+0, PEOE_VSA-0 

- PEOE_VSA-6 

From this dataset, 87 models were built to assess the optimum performance for predicting 

crystal shape.  

Model 1 used the entire dataset for 3-class prediction as follows: polyhedral (134 

observations), needle (83 observations), and no crystal (44 observations). The class of no 

crystal was then removed from the datasets for all remaining models due to the relatively 

low occurrence of this outcome. As class imbalance was present in the dataset used for 

Model 2, some observations in the polyhedral class were removed from the dataset used in 

Model 3. In this step, some observations were removed to maintain the spread of original 

data (i.e. data points for solvents with low numbers of observations were kept in the dataset 

while some data points for the solvents with higher numbers of observations were removed) 

rather than random selection. The numbers of observations in the dataset used for Models 

1 – 3 are shown in Table 4. 

Table 4. Numbers of observations in the dataset used for training and testing each predictive 

model 

Model 

Number of observations 

Polyhedral class Needle class 
No crystal 

class 
Total 

Model 1 134 (51.3 %) 83 (31.8 %) 44 (16.9 %) 261 

Model 2 134 (62.0 %) 82 (38.0 %) - 216 

Model 3 82 (50.0 %) 82 (50.0 %) - 164 

From 206 descriptors, feature selection was applied to the final 84 models to investigate if 

different sets of solvent molecular descriptors (one set that contained all available 2D 

descriptors, a second set that focused on molecular structures and a third set that focused 

on physical properties) would affect model performance. The details of the selected 

descriptors were listed in Table 5.   
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Table 5. The list of physical properties, atom counts and bond counts, and pharmacophore 

feature solvent descriptors with codes and descriptions 

Category Descriptors Descriptions 

Molecular 

structure and 

connectivity 

(second set of 

descriptors) 

a_aro Number of aromatic atoms 

a_count Number of atoms 

a_heavy Number of heavy atoms 

a_nH, a_nC, a_nN, 

a_nO, a_nS, a_nCl, 

a_nBr, a_nI 

Number of hydrogen, carbon, nitrogen, 

oxygen, sulfur, chlorine, bromine, iodine 

atoms 

b_ar Number of aromatic bonds 

b_count Number of bonds 

b_heavy Number of bonds between heavy atoms 

b_rotN Number of rotatable bonds 

b_single, b_double, 

b_triple 

Number of single, double, and triple bonds 

chiral Number of chiral centres 

opr_brigid Number of rigid bonds 

rings Number of rings. 

a_acc Number of hydrogen bond acceptor atoms 

a_acid Number of acidic atoms 

a_base Number of basic atoms 

a_don Number of hydrogen bond donor atoms 

a_hyd Number of hydrophobic atoms 

Physical 

properties (third 

set of 

descriptors) 

apol Sum of the atomic polarizabilities 

bpol Sum of the absolute value of the difference 

between atomic polarizabilities of all bonded 

atoms in the molecule 

density Molecular mass density 

mr, SMR Molecular refractivity 

weight Molecular weight 

logP(o/w), SlogP Log of the octanol/water partition coefficient 

logS Log of the aqueous solubility (mol/L) 

reactive Indicator of the presence of reactive groups 

TPSA Polar surface area 

vdw_vol van der Waals volume 

vdw_area Area of van der Waals surface 

The different considerations and test criteria used for all models are shown in Figure 35. 
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Figure 35. Diagram showing the dataset, variable and accuracies of all models 

5.2.4.2 Model evaluation: 

Train-test split and n-fold cross-validation 226 were used to evaluate the prediction accuracy 

of the RF classification models. Table 6 shows the prediction accuracy of the models 

evaluated with different ratios of training and test data. Ratios of 75:25, 80:20, and 90:10 

were used in the train-test split method, comparable to 4-fold, 5-fold, and 10-fold cross-

validation, respectively. 

Table 6. Model evaluation by train-test split and cross-validation of Models 1, 2 and 3. SD = 

standard deviation 

Prediction 
Accuracy by train-test split 

(train:test) 
Accuracy by cross-validation 

75:25 80:20 90:10 4-fold 5-fold 10-fold 

Model 1 (3 classes) 
84.4%  

(SD = 3.6%) 
84.2% 

(SD = 4.5%) 
85.0% 

(SD = 6.2%) 
82.4% 

(SD = 3.1%) 
84.7% 

(SD = 2.1%) 
83.1% 

(SD = 4.6%) 

Model 2 (2 classes 
w/ class-imbalance) 

91.8% 
(SD = 3.3%) 

92.1% 
(SD = 3.6%) 

93.7% 
(SD = 4.6%) 

93.5% 
(SD = 2.1%) 

94.4% 
(SD = 2.4%) 

93.5% 
(SD = 4.7%) 

Model 3 (2 classes 
w/o class-imbalance) 

93.8% 
(SD = 3.8%) 

93.6% 
(SD = 4.3%) 

95.5% 
(SD = 4.7%) 

93.3% 
(SD = 5.3%) 

92.6% 
(SD = 6.4%) 

95.7% 
(SD = 4.7%) 
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Overall, the different accuracies as calculated by either train-test split or cross-validation 

varied by no more than 3%. This consistency shows the RF approach to be robust to different 

methods of validation. The lowest ratio was used to save computational time and reduce 

standard deviation in the model.226 Between the two evaluation methods, the variance of the 

accuracy calculated from n-fold cross-validation was lower than those from the train-test 

split. As a result, 4-fold cross-validation was used for evaluating the model performance in 

this work. 

5.3 Results and Discussion 

5.3.1 Crystallisation: 

MFA was crystallised from 30 solvents over 5 days at a range of supersaturations (261 

observations in total). Crystallisation was observed in all solvents except isobutyl acetate and 

1-butanol during the 5-day experimental period. Table 7 presents crystal shapes and 

corresponding solvents. Four crystal morphologies were observed: plates, elongated plates, 

needles, and spherulites (Figure 34). Plates (Figure 34a) and elongated plates (Figure 34b) 

were classified as polyhedral crystals while needle (Figure 34c) and spherulitic (Figure 34d) 

crystals were both classified as needle crystals. Based on face-indexing data, the biggest face 

which dominated the polyhedral crystal is [100] (Figure 36). This observed crystal shape 

corresponded to the BFDH morphology of MFA crystal form-I (Figure 37).  

Table 7. The list of organic solvents categorized by the shape of MFA crystals they can produce 

Polyhedral 
 

Needle 
Supersaturation dependent  

(polyhedral supersaturation range, 
needle supersaturation range) 

1,2 dichloroethane 1-bromobutane 1,4 dioxane (1.18 – 1.28, 1.39 – 1.91) 

1-chlorobutane 1-methylnaphtalene 2-butanol (1.51 – 1.83, 1.94 – 2.03) 

1-octanol aniline 2-butanone (1.10 – 1.50, 1.60 – 2.01) 

2-methoxyethanol anisole 2-propanol (1.14 – 1.41, 1.49 – 1.99) 

acetic acid methyl acetate butyl acetate (1.32, 1.42 – 2.00) 

acetone nitromethane diethyl sulfide (1.06 – 1.57, 1.76 – 1.94) 

acetonitrile toluene Methanol (1.13 – 1.22, 1.30 – 1.98) 

chloroform   

ethanol   

DMF   

ethyl acetate   

iodomethane   

triethylamine   

trichloroethylene   
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Figure 36. Face indexing of single crystal of MFA crystallised from (a) methanol, (b) ethyl acetate, (c) 

acetonitrile, and (d) 2-butanol. The face that dominates crystal morphology is (100). 

 

Figure 37. BFDH morphology of MFA crystal form-I shows plate-like crystal morphology generated 

with Mercury software (version 2021.2.0) 

Polyhedral crystals were always found at all supersaturation levels (in the range of 1.1 – 2.7) 

when using the following solvents: 1,2 dichloroethane, 1-chlorobutane, 1-octanol, 2-

methoxyethanol, acetic acid, acetone, acetonitrile, chloroform, ethanol, DMF, ethyl acetate, 

iodomethane, triethylamine, trichloroethylene. At a supersaturation range of 1.1 – 3.0, the 

crystals of MFA exhibited needle shape when crystallised from the following solvents: 1-

bromobutane, 1-methylnaphtalene, aniline, anisole, methyl acetate, nitromethane, toluene. 

As for crystals grown from 1,4 dioxane, 2-butanol, 2-butanone, 2-propanol, butyl acetate, 

diethyl sulphide and methanol, the crystal shape was supersaturation dependent. For these 
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solvents, polyhedral crystals were observed at low supersaturation and needles were 

observed at higher supersaturations.  

5.3.2 Model performance using crystal shape observations from all solvents in 

the training set 

Three RF classification models were built initially to determine the efficacy of this method 

and understand the extent to which the class imbalance present in the dataset would affect 

prediction accuracies. In Model 1 the full dataset was separated into the following 3 classes: 

polyhedral (134 data points), needle (83 data points), and ‘no crystal’ (44 data points). In 

Model 2, the ‘no crystal’ class was removed resulting in a 2-class prediction model. The class-

imbalance present in Model 2 was removed for the dataset used in Model 3 by removing 

observations in the polyhedral class until the needle and polyhedral classes were equally 

populated. For 4-fold cross-validation, Model 1 had the lowest prediction accuracy (82.4%) 

while Models 2 and 3 had prediction accuracies of 93.5% and 93.3%, respectively. 

Additionally, the values of accuracy, precision, recall, and F1-score of these three models also 

agreed with the model accuracies (Table 8). As these results indicate that the class imbalance 

observed in Model 2 did not noticeably affect the model performance, the dataset used in 

Model 2 was used for further models with the modifications discussed below.  

Table 8. The models’ precision, recall, and F1-score. The ‘Support’ column indicates the 

number of test data in each crystal class. 

Model prediction Precision Recall F1-score Support 

Model 1 (3 crystal outcomes with class imbalance) 

Polyhedral 0.83 0.94 0.88 31 

Needle 0.89 0.80 0.84 20 

No crystal 0.85 0.73 0.79 15 

Model 2 (2 crystal outcomes with class imbalance) 

Polyhedral 0.91 1.00 0.95 31 

Needle 1.00 0.87 0.93 23 

Model 3 (2 crystal outcomes without class imbalance) 

Polyhedral 1.00 0.84 0.91 19 

Needle 0.88 1.00 0.94 22 

Confusion matrixes of Models 1, 2, and 3 are presented in Figure 38a, Figure 38b, and Figure 

38c, respectively. The number in each column represents the number of each class predicted 

by the model, while the number in each row represents the number of experimental results 

or actual classification in the dataset. The sum of the numbers in each column is the total 

number of the data in each predicted class, while the sum of the numbers in each row is the 
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total number of actual data in each class of the test set. The numbers on the diagonal axis of 

the matrix represent correct predictions. On the other hand, the numbers in the remaining 

fields represent incorrect predictions. 

 

Figure 38. The confusion matrix of the RF classification model for the prediction of MFA crystal shapes 

(a) 3-class prediction, (b) 2-class prediction with class imbalance, and (c) 2-class prediction without 

class-imbalance 

5.3.3 Prediction of crystal shape from solvents not included in the training set 

To determine the ability of this methodology to predict crystal morphology from solvents for 

which no data was present in the training set, we built 84 additional models that each had all 

observations for a single solvent removed from the training data. The performance accuracy 

for each model was then assessed using the crystal morphologies for the solvent excluded 

from the training data. Additionally, three different feature sets were tested to determine if 

model performance accuracy was affected by the inclusion of different variables in the 

training sets (see Figure 35 and Table 9 for more details). The three feature sets were (i) all 

features present in the original dataset, (ii) atom count, bond count, pharmacophore 

descriptors for the solvents and supersaturations of the crystallisation experiments, and (iii) 

solvent physical properties and supersaturations of crystallisation experiments. 

In total, 32 out of 84 models predicted the shape of MFA crystals with 100% accuracy, and 

the models trained with the third feature set resulted in the best overall prediction accuracy 

for morphologies across all solvents. When including only physical property descriptors and 

supersaturations in the model features, 12 solvent models had 100% prediction accuracy, 8 

solvent models had accuracies from 50-100%, and the remaining 8 models had prediction 

accuracies below 50%. When using atom count, bond count, and pharmacophore descriptors 

as variables, 10 models had 100% prediction accuracy, 7 models had accuracies from 50-

100%, and 11 models had accuracies below 50%. For the models using all solvent molecular 
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descriptors as variables, 10 models had 100% prediction accuracy, 6 models had accuracies 

from 50-100%, and 12 models had accuracies below 50%. Thus, using all descriptors in the 

feature set resulted in the lowest performance across all solvents while using only solvent 

physical properties and supersaturations as the feature set had the highest accuracies across 

all solvents. These results suggest that some of the variables in the atom count, bound count 

and pharmacophore descriptor feature set had a confounding effect on model performance.  

Accuracy trends were also observed for solvent type. All models had high prediction 

accuracies for morphologies of crystals grown in chlorinated solvents (1,2 chloroethane, 

chloroform,  and trichloroethylene), aniline, anisole, ethanol, and toluene. By contrast, the 

models performed poorly when predicting morphologies for crystals grown from 1-octanol, 

triethylamine, methyl acetate, and nitromethane. To understand why RF classification 

consistently performed well for some solvents and badly for others, these results were 

explored via logistic regression. Crystal form characterisation was also investigated for 

crystals grown in solvents where morphology was poorly predicted.   
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Table 9. The prediction accuracy of the models testing the prediction of crystal shape from individual solvents. poly = polyhedral crystals, nd = needle.  All training 

set and test set data included the relevant solvent descriptors and experimental supersaturation. 

Solvent in which  
test set data was 

collected 

Number of 
samples in 

test set 

Experimental 
crystal shape 

Solvent descriptors 

Variable group 1: 
All solvent descriptors 

Variable group 2: 
Atom counts / bond 

counts + pharmacophore 
features 

Variable group 3: 
Physical properties 

Predicted 
shape 

Prediction 
accuracy 

Predicted 
shape 

Prediction 
accuracy 

Predicted 
shape 

Prediction 
accuracy 

1,2-dichloroethane 7 Polyhedral Polyhedral 100 % Polyhedral 100 % Polyhedral 100 % 

Chloroform 5 Polyhedral Polyhedral 100 % Polyhedral 100 % Polyhedral 100 % 

Trichloroethylene 4 Polyhedral Polyhedral 100 % Polyhedral 100 % Polyhedral 100 % 

Ethanol 9 Polyhedral Polyhedral 100 % Polyhedral 100 % Polyhedral 100 % 

Aniline 7 Needle Needle 100 % Needle 100 % Needle 100 % 

Anisole 10 Needle Needle 100 % Needle 100 % Needle 100 % 

Toluene 6 Needle Needle 100 % Needle 100 % Needle 100 % 

Acetonitrile 12 Polyhedral Polyhedral 100 % Polyhedral 100 % 10 poly, 2 nd 83.3 % 

Acetone 9 Polyhedral 7 poly, 2 nd 77.8 % Polyhedral 100 % Polyhedral 100 % 

Iodomethane 3 Polyhedral Polyhedral 100 % 1 poly, 2 nd 33.3 % Polyhedral 100 % 

2-propanol 10 6 poly, 4 nd polyhedral 60.0 % polyhedral 60.0 % 7 poly, 3 nd 90.0 % 

2-methoxyethanol 10 Polyhedral 4 poly, 6 nd 40.0 % 6 poly, 4 nd 60.0 % Polyhedral 100 % 

2-butanol 6 3 poly, 3 nd 1 poly, 5 nd 66.7 % 1 poly, 5 nd 66.7 % 1 poly, 5 nd 66.7 % 

2-butanone 9 5 poly, 4 nd polyhedral 55.6 % polyhedral 55.6 % 6 poly, 3 nd 88.9 % 

1-methylnaphthalene 8 Needle needle 100 % needle 100 % polyhedral 0 % 

Methanol 10 6 poly, 4 nd polyhedral 60.0 % polyhedral 60.0 % polyhedral 60.0 % 

Diethyl sulfide 7 5 poly, 2 nd polyhedral 71.4 % polyhedral 71.4 % needle 28.6 % 

1,4-dioxane 8 2 poly, 6 nd 6 poly, 2 nd 50.0 % needle 75.0 % polyhedral 25.0 % 
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Table 9 (Cont.) The prediction accuracy of the models testing the prediction of crystal shape from individual solvents. poly = polyhedral crystals, nd = needle.  All 

training set and test set data included the relevant solvent descriptors and experimental supersaturation. 

Solvent in which 
test set data was 

collected 

Number of 
samples in 

test set 

Experimental 
crystal shape 

Solvent descriptors 

Variable group 1: 
All solvent descriptors 

Variable group 2: 
Atom counts / bond 

counts + pharmacophore 
features 

Variable group 3: 
Physical properties 

Predicted 
shape 

Prediction 
accuracy 

Predicted 
shape 

Prediction 
accuracy 

Predicted 
shape 

Prediction 
accuracy 

DMF 9 Polyhedral 3 poly, 5 nd 33.3 % needle 0 % polyhedral 100 % 

Ethyl acetate 6 Polyhedral needle 0 % 3 poly, 3 nd 50.0 % 4 poly, 2 nd 66.7 % 

Acetic acid 10 Polyhedral 1 poly, 9 nd 10.0 % needle 0 % polyhedral 100 % 

Butyl acetate 7 1 poly, 6 nd polyhedral 14.3 % polyhedral 14.3 % 3 poly, 4 nd 71.4 % 

1-bromobutane 7 Needle polyhedral 0 % polyhedral 0 % 2 poly, 5 nd 71.4 % 

1-chlorobutane 6 Polyhedral needle 0 % 1 poly, 5 nd 16.7 % 2 poly, 4 nd 33.3 % 

Triethylamine 8 Polyhedral 2 poly, 6 nd 25.0 % 2 poly, 6 nd 25.0 % needle 0 % 

1-Octanol 7 Polyhedral needle 0 % needle 0 % needle 0 % 

Methyl acetate 11 Needle polyhedral 0 % polyhedral 0 % polyhedral 0 % 

Nitromethane 5 Needle polyhedral 0 % polyhedral 0 % polyhedral 0 % 
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5.3.4 Variable Importance in the RF Classification for crystal morphology 

prediction 

Table 10 shows the two most important variables for each model for solvents with the 

highest and lowest prediction accuracies. For the first two variable sets, the most important 

feature focus on the structure of the molecule, mainly the number of rings, number of rigid 

or single bonds, atom count and adjacency matrix. There is no clear difference between the 

most important descriptors identified for the models that performed poorly or well. Across 

all models, using these two sets of variables performed similarly in terms of the number of 

correct and incorrect predictions. Models using the third variable set (13 physical properties 

MOE descriptors) performed much better and identified the most important variables 

including aqueous solubility and molecular refractivity.  

Aqueous solubility can be linked with the ability of the molecules to form H-bonds while 

molecular refractivity is related to London dispersive forces.227 The anisotropy of the rate of 

incorporation of growth units from solution to individual crystal faces determines crystal 

shape.193,228 In solution, both the crystal surface and solute growth units are solvated, and 

the relative growth rates of faces depend on the strengths of intermolecular interactions 

between the solute-solvent and solvent-crystal surfaces.229,230 It was demonstrated 

previously that the crystallisation from organic solvents is dominated by weak interactions 

between permanent dipoles and London dispersion forces between the nonpolar groups of 

the solute and solvent and these interactions are responsible for different crystal shapes 

obtained from various solvents.231  Our machine-learning model also identified these 

interactions as the most important distinguishers between models for solvents that show 

very good prediction accuracy (100%). We identified that if the model does not identify the 

two most important variables as aqueous solubility or molecular refractivity, the accuracy of 

the predictions is low. Note that this assumption refers to the models with the third set of 

variables (physical properties). We are interested in physical property variables because the 

overall performance of the models using this variable set is the best among all models. For 

the models using the first variable set, there is no clear difference between the most 

important descriptors identified for the models that performed poorly or well. A possible 

reason why these models are not able to identify aqueous solubility and molecular 

refractivity as the most important variables may result from too many variables leading to 
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over-complexity of the model, making it harder to understand which variables are relevant 

or irrelevant, and which variables are most important. 

Table 10. List of first and second most important variables of the models for predicting the 

shape of crystals crystallised from individual solvents 

Crystallisation 
solvents 

The most important variables of each model 

Variable group 1: 
All solvent 
descriptors 

Variable group 2: 
Atom counts / bond 

counts + 
pharmacophore 

features 

Variable group 3: 
Physical properties 

Solvents where the crystals were 100% accurately predicted by the models 
1,2-Dichloroethane 1. number of rings 

2. adjacency matrix  
1. no. of rigid bonds 
2. atom count 

1. aqueous solubility  
2. molecular refractivity 

Chloroform 1. adjacency matrix 
2. number of rings 

1. no. of rigid bonds 
2. no. of single bonds 

1. aqueous solubility  
2. molecular refractivity 

Ethanol 1. adjacency matrix 
2. number of rings 

1. no. of rigid bonds 
2. no. of single bonds 

1. aqueous solubility  
2. molecular refractivity 

Trichloroethylene 1. adjacency matrix 
2. number of rings 

1. no. of rigid bonds 
2. no. of single bonds 

1. aqueous solubility  
2. molecular refractivity 

Aniline 1. adjacency matrix 
2. number of rings 

1. no. of single bonds 
2. no. of rigid bonds 

1. aqueous solubility  
2. bpol# 

Anisole 1. number of rings 
2. distance Matrix 

1. no. of rigid bonds 
2. no. of single bonds 

1. aqueous solubility  
2. molecular refractivity 

Toluene 1. adjacency matrix 
2. number of rings 

1. no. of single bonds 
2. no. of rigid bonds 

1. aqueous solubility  
2. molecular refractivity 

Solvents where the crystals were incorrectly predicted by the models 

1-Chlorobutane 1. number of rings 
2. adjacency matrix 

1. no. of rigid bonds 
2. no. of single bonds 

1. aqueous solubility  
2. bpol# 

1-Octanol 1. chi1_C* 
2. zagreb$ 

1. no. of heavy atoms 
2. no. of rigid bonds 

1. aqueous solubility  
2. VDW volume 

Triethylamine 1. distance matrix 
2. molecular refractivity 

1. no. of single bonds 
2. no. of rigid bonds 

1. molecular refractivity 
2. VDW volume 

Methyl acetate 1. distance matrix 
2. adjacency matrix 

1. no. of rigid bonds 
2. no. of rings 

1. VDW volume 
2. molecular refractivity 

Nitromethane 1. adjacency matrix 
2. number of rings 

1. no. of rigid bonds 
2. atom count 

1. bpol# 
2. aqueous solubility  

 

5.3.5 Using Logistic Regression to Understand Model Performance 

Logistic regression was also used to probe why the RF models consistently performed well 

for some solvents and poorly for others even when the solvent feature sets were changed. 

For this analysis, models 60-87 were used (i.e. solvent-exclusion models that used solvent 

physical properties and supersaturation as training variables), and models with prediction 

accuracy greater than 50% were labelled as 1 while models with prediction accuracies less 
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than 50% were labelled as 0. This set of models was chosen as the feature set for these 

models resulted in the highest overall prediction accuracy across solvents. The most 

important features in logistic regression can be determined by the highest absolute values of 

the variable coefficients and/or recursive feature elimination until only the most relevant 

features remain. The details are presented in Table 11. 

Table 11. The MOE descriptors included as variables in the RF classification Models 60-87 listed 

according to importance scores in the logistic regression analysis of the performance of these models. 

RF model accuracies above 50% were labelled as 1 in the logistic regression analysis while RF model 

accuracies below 50% were labelled as 0. Recursive feature elimination was done until the 6 most 

relevant features/variables remained (these 6 features are ranked as 1 in the table below). 

MOE Descriptor Summary of MOE Descriptor 
Logistic 

Regression 
Coefficients 

Ranking by 
Recursive 
Feature 

Elimination 

bpol 

sum of the absolute value of the 
difference between atomic 
polarizabilities of all bonded 
atoms in the molecule 

-0.7288 1 

apol sum of the atomic polarizabilities -0.4332 1 

logS 
log of the aqueous solubility 
(mol/L) 

0.3232 1 

SMR molecular refractivity -0.2926 1 

vdw_area Area of van der Waals surface -0.2872 1 

vdw_volume van der Waals volume -0.2594 1 

mr molecular refractivity -0.2587 2 

logP(o/w) 
log of the octanol/water partition 
coefficient 

-0.2248 3 

density molecular mass density 0.1845 4 

reactive 
indicator of the presence of 
reactive groups 

0.1039 5 

TPSA polar surface area -0.1081 6 

SlogP 
log of the octanol/water partition 
coefficient 

-0.0897 7 

Weight molecular weight -0.0209 8 

From the relative importance of different variables in the logistic regression analysis, we see 

that polarizability (apol, bpol) and solubility (logS) play an important role in determining 

whether the RF classification model performed well for a given solvent. While the polar 

surface area variable (TPSA) was deemed a relatively unimportant feature, this rating may be 

due to this variable being redundant after the inclusion of apol and bpol into the models. 

Variables pertaining to van der Waals interactions (vdw_area and vdw_volume) were also 
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amongst the more relevant features in determining whether the RF classification models 

performed well for observations in a given solvent. As we would expect crystal morphologies 

to be strongly influenced by intermolecular interactions between the MFA and the 

crystallisation solvent, the importance of variables pertaining to solubility, polarity and van 

der Waals interactions corresponds with the important physical parameters in a 

crystallisation experiment. 

Logistic regression also suggests a possible reason why the model using physical property 

variables poorly performed when predicting the crystal shape from some solvents. By 

increasing the value of the variables with negative logistic regression coefficient (i.e. bpol and 

apol), the probability that a model performs well decreases and the probability that a model 

poorly performs increases. On the other hand, increasing the value of the variables with 

positive logistic regression coefficient (i.e. logS) will increase the probability that a model 

performs well and decrease the probability that a model poorly performs.122 The results from 

Table 11 could explain why the models cannot correctly predict the shape of crystals grown 

from 1-octanol, since 1-octanol has high values of bpol and apol variables and low value of 

logS variable. This result suggests a limitation of this predictive model in which there are 

ranges of the values of some variables that might negatively affect the model performance. 

5.3.6 Characterisation of MFA crystals grown in triethylamine 

Further crystal characterisation was done for the crystals grown in solvents with the models 

showing low prediction accuracy. All samples were consistent with MFA form I except the 

sample crystallised from trimethylamine which exhibited a notably distinct PXRD pattern 

(Figure 39a). Characterisation of the MFA grown in triethylamine was of particular interest 

as results revealed these crystals to be a previously unidentified solvate of MFA. Additionally, 

the shape of the crystals grown in triethylamine had thinner flat plates as observed under a 

microscope when compared to the plate crystals of MFA form-I crystallised from the other 

solvents (see Figure 39b).  
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(a)  

(b)  

Figure 39. a) Experimental powder X-ray diffraction pattern of MFA crystallised from 

triethylamine, compared to the simulated powder patterns of MFA form-I (refcode: 

XYANAC), II (refcode: XYANAC02), and III (refcode: XYANAC03) calculated from Mercury, b) 

MFA crystals crystallised from triethylamine at supersaturation = 1.4 

Characterisation of these crystals by differential scanning calorimetry (DSC) also suggested 

that MFA crystals grown from triethylamine were a previously unidentified solvate. 

According to the DSC results from the work carried out by Adam, et al. (2000),213 the onset 

temperature of the first endothermic peak of MFA ranges from 187°C to 205°C and 

corresponds to the transition temperature from MFA form-I to form-II. A second sharper 

peak has an onset temperature of around 230°C and is known to correspond to the melting 

point of MFA form-II.  
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For our MFA crystals crystallised from triethylamine, the DSC thermogram (Figure 40) 

showed different onset temperatures for both peaks when compared to the literature values. 

In our results, the first peak and the second peak have onset temperatures of 110.5 °C and 

214.1 °C, respectively.  

 

Figure 40. DSC curve for MFA crystallised from triethylamine by cooling crystallisation 

While all other crystals grown in other solvents for which morphologies were poorly 

predicted by RF models were shown to be form I, the results shown here suggest that the 

poor prediction accuracy for the trimethylamine crystal morphology may be due to the 

distinctiveness of these crystals from the four previously document forms of MFA crystals 

rather than an innate flaw in the RF classification approach. 

5.4 Conclusions 

The choice of solvent in crystallisation is a critical design decision and can affect the crystal 

morphology with further implications for downstream manufacturability. For this work, we 

generated 261 experimental observations of MFA crystal shape in 30 various organic solvents 

at the range of supersaturation levels between S = 1.0 – 3.0. RF classification models can 

predict the shape of MFA crystals observed from different solvents experimentally. Thus, the 

results illustrate that RF classification can be a useful tool to predict the experimental crystal 
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shape of MFA. Our two-class RF prediction model with polyhedral and needle classes resulted 

in a prediction accuracy of 93%. This model was further modified to explore prediction 

accuracies for crystals grown in specific solvents. For solvents that were excluded from the 

training set at all supersaturation levels, the prediction accuracy depended on the solvent. 

The most important variables for the correctly predicted solvents relate to H-bonds and 

London dispersion forces identifying this interaction as key for the determination of a crystal 

shape. Whilst demonstrated only for MFA it is expected that with the appropriate data, the 

application of this tool can be broadened to cover a wider range of active ingredient 

molecular and crystal attributes. In order to enhance the predictive capabilities of our model 

for a broader variety of APIs, it is proposed that data from crystallisation experiments on a 

diverse set of materials should be collected. This data could encompass a range of 

crystallisation process parameters, including temperature, cooling rate, agitation, the 

presence of seed crystals, and the use of additives. By incorporating this data, the model will 

be better equipped to predict the resultant crystal shapes under a variety of crystallisation 

conditions. Such data are already often collected during physical form selection, solubility 

and early development studies. The adequacy of the training data for a model is not only 

dependent on the data quality, but also on the sufficient number of experiments for training 

the model. To determine whether there is an adequate amount of data for training the 

model, various techniques such as cross-validation, assessment of out-of-sample 

performance, and examination of learning curves should be employed. These methods can 

provide insight into the sufficiency of the data and inform any necessary adjustments to the 

model. This study also highlights the potential role of machine learning and data-driven 

predictive tools to support decision-making during pharmaceutical process development, 

e.g. informing solvent selection, reducing experimental time and material consumption and 

enabling the selection of conditions that deliver materials engineered to achieve desirable 

attributes.  
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6 Investigating potential correlations between PXRD peaks at 

low angles and the crystal structures of solvates/non-solvates 

6.1 Introduction 

The crystallisation processing steps involved during the drug development of pharmaceutical 

drugs can result in unforeseen changes to the solid forms of crystalline active pharmaceutical 

ingredients (APIs) or new chemical ingredients (NCEs). One such change is the incorporation 

of water or other solvent molecules into a drug’s crystal structure, resulting in hydrate or 

solvate formation, respectively.232 It has been estimated that around 33% of organic 

compounds are susceptible to hydrate formation whilst approximately 10% are capable of 

forming solvates robustly with organic solvents.233 Examples of the marketed pharmaceutical 

products in hydrate form are chloral hydrate (Noctec),234 ciprofloxacin monohydrate 

(Cipro),235 and levofloxacin hemihydrate (Levaquin).236 The phenomenon of solvate 

formation can affect the physicochemical properties of drugs, and the unexpected formation 

of solvates can impact the manufacturability and pharmacokinetic properties of drug 

candidates.  A survey of solvates in the literature suggests that some compounds form 

solvates in a range of solvents237 while other compounds only form selected solvates.238,239 

Although progress has been made to understand the structural features that lead to solvate 

formation, a comprehensive understanding of why some molecules form solvates more 

readily than others remains elusive. Whilst the discovery of novel solvatomorphs of APIs and 

NCEs provides an opportunity to alter the physical properties of drug substances, the 

possibility of forming these solvatomorphs can make it challenging to control the solid form 

during the drug development process.240–243 The most commonly used techniques to 

differentiate between non-solvate and solvate forms of crystalline materials are X-ray 

diffraction methods (single crystal244,245 and powder X-ray diffraction246–248), thermal 

techniques such as differential scanning calorimetry (DSC),246–250 thermogravimetric analysis 

(TGA),246–250 Solid State nuclear magnetic resonance spectroscopy (SSNMR),250 and other 

spectroscopic techniques such as Raman spectroscopy.251,252 As solvates and hydrates 

significantly affect the safety, quality, and efficiency of the crystalline products, the ability to 

predict whether the crystal structures exhibit solvate or non-solvate forms will be highly 

useful. 
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6.2 Solvent incorporation into solvates 

The solvent molecules are incorporated into the crystal lattice by the following two 

mechanisms. When the solute-solvent molecular interaction dominates solute-solute 

molecular interaction, solvent molecules incorporate into the crystal structure by forming 

hydrogen bonds with the molecules of APIs. This incorporation of solvates results in the 

formation of stoichiometric solvates in which the molecules of solvent modify the crystal 

structure of the host molecule.241,253,254  Alternatively, when void volume in the crystal 

structure is sufficient for the inclusion of solvent molecules, the solvates form by occupying 

the void space through weak interactions, resulting in the formation of channel solvates or 

non-stoichiometric solvates. In non-stoichiometric solvates, the solvent’s molecules have 

weaker interaction with the molecules of solute and can interact with the surrounding 

molecules outside the solvate structures. This interaction between solvent molecules inside 

and outside of the solvate structure can affect the stability and quality of the formulated 

products.241,253 

6.3 Powder patterns of solvated and non-solvated structures 

PXRD patterns are determined by the crystal structures of crystalline compounds. Since the 

unit cell parameters (cell lengths, cell angles, and cell volume) of the same compound in 

solvate form and non-solvate form are different, their powder patterns are also dissimilar.255 

In general, due to the incorporation of solvent molecules in the crystal lattice of the API, the 

unit cell lengths of solvate forms are longer than those of non-solvate forms which results in 

a higher cell volume for the structures that belong to the same space group and have the 

equal number of molecules in an asymmetric unit. Moreover, according to Bragg’s equation 

(Equation 6), when interplanar spacing expands by increasing unit cell lengths, as a result, 

the PXRD peaks are expected at lower 2-theta.135,136 Table 12 and Figure 41 show the 

differences in the unit cell parameters and powder patterns between ciprofloxacin in non-

solvate form and solvate/hydrate forms derived from CSD, respectively. 
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Table 12. Unit cell parameters of ciprofloxacin in non-solvate form, ciprofloxacin 

hexahydrate, and ciprofloxacin difluoroethanol solvate 

Compounds 
Space 
group 

Cell lengths [Å] Cell angles [°] Cell 
volume 

[Å3] 
a b c α β γ 

Ciprofloxacin (CSD ref 
code: UHITOV) 

P-1 7.96 8.58 10.77 87.87 85.15 88.21 732.43 

Ciprofloxacin 
hexahydrate (CSD ref 
code: COVPIN01) 

P-1 9.51 9.94 11.04 94.23 100.21 91.33 1023.67 

Ciprofloxacin 
difluoroethanol solvate 
(CSD ref code: 
ENODOB) 

P-1 10.98 13.98 13.98 105.47 90.35 93.36 2063.22 

The differences between the powder patterns of non-solvate, hydrate, and solvate crystals 

of the same compound (Figure 41), which is ciprofloxacin in this example, indicate that X-ray 

powder diffraction can be used to distinguish solvate and non-solvate crystal structures. 

 

Figure 41. Simulated PXRD patterns of ciprofloxacin: non-solvate form (blue), ciprofloxacin 

hexahydrate (black), and ciprofloxacin difluoroethanol solvates (red). Solvated and hydrated forms 

show lower angle PXRD peaks compared to the non-solvated form. 

6.4 Methodology 

6.4.1 Creation of the dataset of solvate and non-solvate crystal structures 

The database of crystal structures was prepared by Laura Straughair, University of 

Strathclyde (2021). The metadata of organic molecules (containing only the atoms H, O, C, N, 

S, P, F, Cl, Br, and I) were extracted from the Cambridge Structural Database (CSD) by using 

CSD Python API (version 5.41, March 2020). The database contains small organic molecules 
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between 100 and 1,000 Da in molecular weight, with an atom-to-bond ratio of less than 1.3. 

Duplicate crystal structures have been retained in case there are powder pattern differences 

between polymorphs. 

The database consists of reference codes as the identifier of crystal structures in 4 classes 

based on the existence of solvent molecules or water molecules in their crystal structures, 

namely solvate class, non-solvate class, hydrate class, and non-hydrate class. The solvate 

class was further classified into 4 subclasses, which are heterosolvate subclass, solvate 

hydrate subclass, ionic solvate subclass, and regular solvate subclass. Each subclass of the 

solvate class and the non-solvate class was further classified into 11 categories depending on 

the recrystallisation solvents (Figure 42).  

 

Figure 42. Molecular structures of recrystallisation solvents. (a) water, (b) THF, (c) chloroform, (d) DCM, 

(e) DMF, (f) acetonitrile, (g) methanol, (h) IPA, (i) acetone, (j) ethanol, (k) ethyl acetate, and (l) hexane 

The solvents in this database are acetone, acetonitrile, chloroform, dichloromethane (DCM), 

dimethylformamide (DMF), ethanol, ethyl acetate, hexane, isopropyl alcohol (IPA), 

methanol, and tetrahydrofuran (THF). Hydrate and non-hydrate classes consist of the 

structures crystallised from water, and the structures in the hydrate class were classified into 

3 subclasses, namely solvate hydrates, ionic hydrates, and regular hydrates. Figure 43 shows 

the structure of the database. 
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Figure 43. Classification of the structures extracted from CSD 

In this work, the structures in each class and subclass are defined as follows: 

 The non-solvate class represents the structures that do not contain any solvent 

molecules in their unit cell. 

 The solvate class represents the structures that contain (an) organic molecule(s) and 

at least 1 solvent molecule in the unit cell. The solvate class is subdivided into 

subclasses as follows.  

o The heterosolvate subclass consists of structures containing multiple unique 

solvent molecules (excluding water) in their unit cell. 

o The ionic solvate subclass consists of solvates containing at least 1 cation or 

1 anion. 

o The solvate hydrate subclass consists of structures containing at least 1 

water molecule and at least 1 unique solvent molecule in the unit cell. 

o The solvate subclass includes structures containing only 1 unique solvent 

molecule. 

The process for extracting the crystal structures of small organic molecules from the CSD is 

described in Figure 44. 
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Figure 44. Diagram presenting the process for extracting the crystal structures of small organic 

molecules from the CSD and classifying the structures into two classes, solvates and non-solvates. 

Solvate class can be specified into four solvate subclasses, namely: regular solvates; ionic solvates; 

heterosolvates, and solvate hydrates.  

The solvates were obtained by identifying the presence of solvent molecules within the 

crystal structures that contain more than 1 unique component. Then the structures were 

differentiated whether they are heterosolvates, solvate hydrates, ionic solvates, or regular 

solvates based on the number of unique solvent molecules and the presence of ions in their 

crystal structures. As for non-solvate structures, the structures containing only 1 unique 

component were isolated and string pattern matching was used to identify specific solvents 

within the recrystallisation solvent field. 

6.4.2 PXRD patterns from CSD and peak search 

The powder patterns were simulated and saved as .xye files consisting of the peak intensity 

at 2-theta ranging between 5° and 50° with an 0.02° step size. Function ‘find_peaks’ on 

Python (version 3.9.7) was applied to the xye files for searching peak positions in PXRD 

patterns between specific 2-theta ranges. 

The datasets for peak counts at 2-theta ranging from 5° to 10° and those from 5° to 7.5° were 

generated via Python by determining how many peaks were in the range of interest. 

6.4.3 Random Forest Classification algorithms for the predictive design of 

crystal structures 

The total number of structures in all solvate and non-solvate classes is 37,304 structures 

(Figure 45). The Heterosolvate subclass has the lowest number of structures (336 structures), 

followed by the solvate hydrate subclass (952 structures), the ionic solvate subclass (2,706 
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structures), and the regular solvate subclass (9,167 structures). The number of structures in 

the solvate class and non-solvate class are 13,161 and 24,143 structures, respectively. 

 

Figure 45. Comparison of the total number of structures in all solvent categories. (a) individual solvate 

subclass compared to non-solvate class. (b) solvate class compared to non-solvate class 

In total, eleven models were built for testing and improving the performance of machine 

learning predictions. Models 1-8 related to the prediction of solvates while Models 9-11 were 

used to predict hydrate structures. Model 1 included all available structures. The class 

imbalance present in Model 1 resulted in the overprediction of the class with the largest 

number of structures and the underprediction of the class with the smallest number of 

structures. In Model 2, the number of predicted classes was limited to two, and all solvate 

subclasses were combined into one solvate class. This approach reduced the class imbalance 

in Model 2 compared to Model 1. Table 13 shows the details of Model 1 and Model 2 for the 

prediction of solvate structures. 

Table 13. Detail of the models for the prediction of solvate structures (Model 1 – 2) 

Model 
Cut 
off 

Dataset 

Model’s variables Solvate class 
NS Total 

HS SH IS RS 

1 None 336 952 2,706 9,167 24,143 37,304 25 peak data 
variables: Peak 
counts in every 2θ 
range of 0.2° step 
size, started from 5.0 
and ended at 10.0 
(5.0-5.2, 5.2-5.4, …, 
9.6-9.8, 9.8-10.0). 

2 None 13,161 24,143 37,304 

* HS = heterosolvate subclass, SH = solvate hydrate subclass, IS = ionic solvate subclass, RS = regular 
solvate subclass, NS = non-solvate class 
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For Models 3-11, the number of structures was reduced to balance the number of structures 

in each class or subclass, i.e. Model 3 ( 

Table 14) which involved the prediction of all classes (5 outputs: heterosolvate subclass, 

solvate hydrate subclass, ionic solvate subclass, regular solvate subclass, and non-solvate 

class) consisted of only 336 structures in each subclass, giving the dataset with 1,680 

structures in total. In Model 4A ( 

Table 14),  which predicted solvate class and non-solvate class (2 outputs), each solvate class 

and the non-solvate class consists of 13,161 structures so the whole dataset contained 

26,322 structures. The structures that exceeded the required numbers were randomly 

removed using the ‘random’ function, rand(), in Microsoft Excel. By applying this function, 

random numbers were created for all structures. Then the data was re-ordered in ascending 

order of the created random numbers. The structures at the top of the list after re-ordering 

were kept in the new dataset and were used for training the models. The detail of the models 

for predicting solvate structures is described in  

Table 14 and Table 16. Model 3 has 5 outputs (4 subclasses in solvate class and 1 non-solvate 

class) while Model 4 and Model 5 have 2 outputs (solvate class and non-solvate class). In 

Model 4A, all solvate subclasses (heterosolvate subclass, solvate hydrate subclass, ionic 

solvate subclass, regular solvate subclass) are combined to maximize the number of data in 

the solvate class, while for Model 4B, only regular solvate subclass is considered. Model 5 is 

a variation of Model 4A with the introduction of the cut point on peak intensity. All peaks 

with intensity below 100 were excluded to determine if including low-intensity peaks was 

important for solvate prediction. 

Table 14. Detail of the models for the prediction of solvate structures (Model 3 – 5) 

Model 
Cut 
off 

Dataset 

Model’s variables Solvate class 
NS Total 

HS SH IS RS 

3 None 336 336 336 336 336 1,680 25 peak data 
variables: Peak 
counts in every 2θ 
range of 0.2° step 
size, started from 5.0 
and ended at 10.0 
(5.0-5.2, 5.2-5.4, …, 
9.6-9.8, 9.8-10.0). 

4A None 13,161 13,161 26,322 

4B None - - - 9,167 9,167 18,334 

5 100 13,161 13,161 26,322 

* HS = heterosolvate subclass, SH = solvate hydrate subclass, IS = ionic solvate subclass, RS = regular 
solvate subclass, NS = non-solvate class 
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To examine if there is a more indicative region of 2-theta that would better differentiate solvated 

and non-solvated structures, the 2-theta range was expanded from the range of 5° – 10° 2-

theta (for Model 1-5) to 5° – 15° (Model 6) and 5° – 20° 2-theta (Model 7). Detail for Models 

6 and 7 are described in Table 15. 

Table 15. Detail of the models for the prediction of solvate structures (model 6 – 7) 

Model 
Cut 
off 

Dataset 

Model’s variables Solvate class 
NS Total 

HS SH IS RS 

6 None 13,161 13,161 26,322 

50 peak data variables: Peak 
counts in every 2θ range of 
0.2° step size, started from 
5.0 and ended at 15.0 (5.0-
5.2, 5.2-5.4, …, 14.6-14.8, 
14.8-15.0). 

7 None 13,161 13,161 26,322 

75 peak data variables: Peak 
counts in every 2θ range of 
0.2° step size, started from 
5.0 and ended at 20.0 (5.0-
5.2, 5.2-5.4, …, 19.6-19.8, 
19.8-20.0). 

* HS = heterosolvate subclass, SH = solvate hydrate subclass, IS = ionic solvate subclass, RS = regular 
solvate subclass, NS = non-solvate class 

In Model 8A – 8D (Table 16), the variables in the dataset were changed. The peak density was 

represented by introducing new variables: 

 The peak positions of the 1st, 5th and 10th peaks were considered. 

 The distance between the 1st and 5th and 1st and 10th peak positions was considered. 

 Peak count was calculated in 2-theta intervals: 5-7.5°, 5-10°, 5-15° and 5-20°. 

Model 8A used all 9 variables as mentioned above for training the model, while the variables 

relevant to the 10th peak and 5th peak were removed in Model 8B and Model 8C, respectively. 

For Model 8D, peak position variables were excluded. 

Table 16. Detail of the models for the prediction of solvate structures (Model 8A-8D) 

Model 
Cut 
off 

Dataset 

Model’s variables 

Peak 
positions 

Peak 
distance 
from 1st 

peak 

#Peaks in 2θ range 
from 5° to n° 

S NS Total 1st 5th 10th 5th 10th 7.5° 10° 15° 20° 

8A 
None 13,161 13,161 26,322 

🗸 🗸 🗸 🗸 🗸 🗸 🗸 🗸 🗸 

8B 🗸 🗸 - 🗸 - 🗸 🗸 🗸 🗸 
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8C 🗸 - 🗸 - 🗸 🗸 🗸 🗸 🗸 

8D - - - 🗸 🗸 🗸 🗸 🗸 🗸 

* S = solvate class, NS = non-solvate class 

For the prediction of hydrate structures, Models 9 –11 ( 

Table 17) were constructed with the same variables as Models 1 – 5. The total number of 

possible structures for each class is presented in Figure 46. Due to the class imbalance, some 

of the data were removed from the dataset using the same method as used for Models 3 – 

6. 

 

Figure 46. Comparison of the total number of structures crystallised from water (a) individual hydrate 

subclass compared to non-hydrate class. (b) hydrate class compared to non-hydrate class 

Table 17. Detail of the models for the prediction of hydrate structures (Model 9 – 11) 

Model 
Cut 
off 

Dataset 

Model’s variables Hydrate class 
NH Total 

SH IH RH 

9 None 457 457 457 457 1,828 25 peak data variables: Peak 
counts in every 2θ range of 
0.2° step size from 5° to 10° 
(5.0°-5.2°, 5.2°-5.4°, …, 9.6°-
9.8°, 9.8°-10.0°). 

10A None 457 457 914 

10B None - - 457 457 914 

11 100 457 457 914 

* SH = solvate hydrate subclass, IH = ionic hydrate subclass, RH = regular hydrate subclass, NH = non-
hydrate class 

6.4.4 Model evaluation 

The n-fold cross-validation and train-test split were used to evaluate the predictive models. 

4-fold, 5-fold, and 10-fold were applied to evaluate Model 3 (the smallest dataset) and the 

prediction accuracies calculated by these different folds were compared. For the train-test 

split, the dataset was divided into different ratios of training sets and test sets, namely 75:25, 
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80:20, and 90:10, which are comparable to 4-fold, 5-fold, and 10-fold cross-validation, 

respectively. The model evaluation by train-test split was repeated 100 times and the average 

accuracy was used. Table 18 presents the model’s accuracies from different evaluation 

methods. 

Table 18. Comparison of different n-fold cross-validation and different ratio of training and test set in 

train-test split method, applied to Model 3 

n-fold 4-fold 5-fold 10-fold 

Cross-validation 35.5 % (SD = 0.02%) 36.1 % (SD = 0.03 %) 37.0 % (SD = 0.03 %) 

    

Train/test ratio 75% train : 25% test 80% train : 20% test 90% train : 10% test 

Train-test split 35.9 % (SD = 0.02 %) 36.3 % (SD = 0.02 %) 36.7 % (SD = 0.03 %) 

Although the increasing folds and the numbers of test data improve the model accuracy, the 

model’s accuracies from 4-fold, 5-fold, and 10-fold cross-validation, as well as from 75:25, 

80:20, and 90:10 of training and test set in train-test split were not significantly different. 

Therefore, 4-fold cross-validation and train/test split with a 75:25 train/test ratio were 

selected as model evaluation methods in this work to save computational time. Additionally, 

the model may overfit when the ratio of training data to test data is too high. Therefore, 

applying the model evaluation method in which the ratio of training data to test data is 

relatively low while the accuracy is still comparable is considered appropriate.  

6.5 Results 

6.5.1 Statistical analysis of the presence of the PXRD peak at low 2-theta 

From the fact that the presence of the additional atoms in solvation or hydration layer can 

increase the unit cell size of the crystals and cause shift in the diffraction peaks to lower 2-

theta values compared to the non-solvated crystals,256 this study was proposed from Pfizer 

Inc. to explore whether there is any noticeable difference between the PXRD patterns of 

solvated and non-solvated crystal structures of small organic molecules. The presence of low 

2-theta peaks in PXRD patterns of solvated and non-solvated crystal structures was 

investigated.  

The number of structures in each category based on recrystallisation solvents and solvate 

subclasses was presented in Table 19. The number of the structures in the solvate class is the 

sum of the number of structures in heterosolvate, solvate hydrate, ionic solvate, and regular 

solvate subclasses. The number of the structures in hydrate and non-hydrate classes (used 
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water as recrystallisation solvent) are highlighted in blue, and the total number of the 

structures in each subclass is highlighted in green (this number excludes the structures in 

hydrate and non-hydrate classes). These data were illustrated as pie charts presented in 

Figure 47. The total number of structures analysed is equal to 37,254. From there, 24,143 are 

non-solvated structures and 13,161 are solvates. Solvates are further divided into 336 

heterosolvates, 952 solvate hydrates, 2706 ionic solvates and 9167 solvates that just consist 

of one solvent molecule in the crystal structure. 

Table 19. Summary of the number of structures based on solvate subclasses and recrystallisation 

solvents ordered from the category with the lowest to the highest number of the structures.  

Recrystallisation 
solvents 

Number of structures 

HS SH IS RS S NS Total 

IPA 11 16 72 131 230 403 633 

THF 25 18 96 340 479 316 795 

DMF 25 78 106 711 920 799 1719 

Hexane 12 6 9 194 221 1940 2161 

Acetone 12 65 135 662 874 1725 2599 

Acetonitrile 27 91 475 744 1337 1448 2785 

Ethyl acetate 8 25 20 399 452 2690 3142 

Chloroform 54 61 283 1553 1951 1515 3466 

DCM 52 69 440 1697 2258 1931 4189 

Methanol 77 389 783 1964 3213 4544 7757 

Ethanol 33 134 287 772 1226 6832 8058 

Water - 1219 8519 7471 17209 457 17666 

Total (excluding 
water) 

336 952 2706 9167 13161 24143 37304 

* HS = heterosolvate subclass, SH = solvate hydrate subclass, IS = ionic solvate subclass, RS = regular 
solvate subclass, S = solvate class, NS = non-solvate class 
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Figure 47. (a) Pie chart illustrating the percentage of crystal structures in 12 categories classified by 

recrystallisation solvents, (b) Pie chart illustrating the percentage of crystal structures in 4 solvate 

subclasses and non-solvate class 

Figure 47a demonstrates that the structures crystallised from water are the largest group in 

CSD, followed by those crystallised from ethanol and methanol, with 32%, 15%, and 14%, 

respectively. Non-solvate structures show the largest group compared to the crystal 

structures in the solvate class, as presented in Figure 47b. 

Exported PXRD patterns of solvates were analyzed for the presence of low 2-theta peaks. The 

2-theta range was defined in two ways. First, the range 5° - 10° was considered and then the 

2-theta value was narrowed to 5° – 7.5°. When examining the powder patterns of solvated 

and non-solvated crystal structures within a wider range of 5° – 10°, it was found that the 

non-solvated class exhibited a lack of peaks within this range more frequently compared to 

the solvated class. (Figure 48b and c). The overall difference in peak distribution between the 

two classes is more pronounced when considering a narrower range of 5° – 7.5°. (Figure 48d 

and e). According to Figure 48d and Figure 48e, the pie charts show that the majority of 

powder patterns of solvate structures have at least one peak at a low 2-theta position, while 

those of non-solvate structures do not show any peak in the same 2-theta range. The same 

trend in the presence/absence of peaks was also found for each solvent category. 
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Figure 48. (a) The comparison between the percentage of the structures in solvate class and non-

solvate class with and without PXRD peak in 2-theta ranges from 5 to 10, (b) for solvate class, (c) for 

non-solvate class, and 2-theta ranges from 5 to 7.5, (d) for solvate class, and (e) for non-solvate class. 

The bar chart in Figure 49 shows the number of peaks with high, medium, and low intensity 

between 5° and 20° 2-theta. This chart shows that solvated structures have a higher number 

of peaks at all intensity levels compared to non-solvated structures.  

 

Figure 49. The number of peaks with high, medium, and low intensity between 5 and 20 ° 2-theta in 

the powder patterns of solvate (blue) and non-solvate (orange) structures 

Figure 50 and Figure 51 compare the number of solvated and non-solvated structures for 

individual solvents.  Figure 50 shows solvents that form a higher percentage of solvated 

structures compared to non-solvated structures. Figure 51 shows solvents that form non-

solvate structures in a higher percentage compared to solvated structures. The highest 
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fraction of solvated structures was observed for water and THF followed by chloroform and 

dichloromethane. The lowest fraction of solvated structures was observed in hexane.  

 

Figure 50. Recrystallisation solvents that form solvated structures with higher percentages compared 

to non-solvated structures. (a) water, (b) THF, (c) chloroform, (d) DCM, and (e) DMF (Group 1 solvents) 

When using acetonitrile, methanol, isopropyl alcohol, acetone, ethanol, ethyl acetate, and 

hexane, the compounds preferentially crystallised as non-solvates rather than solvates, 

especially hexane which only 10% of the structures form solvates. This trend could result 

from the relatively long hydrocarbon chain and the non-polar nature of hexane. Ethyl acetate 

with only 14% of solvates also has a bulky structure compared to the structures of the other 

solvents. However, the fraction of solvated structures observed for ethanol is lower than that 

of isopropyl alcohol. As isopropyl alcohol is a larger molecule, the bulkiness of the solvent 

molecule does not alone explain the tendency of molecules to crystallise as solvates vs. non-

solvates. This suggests a complex interaction between organic molecules and 

recrystallisation solvents is also involved in determining this trend. 
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Figure 51. Recrystallisation solvents that form non-solvated structures with higher percentages 

compared to solvated structures. (a) acetonitrile, (b) methanol, (c) IPA, (d) acetone, (e) ethanol, (f) ethyl 

acetate, and (g) hexane (Group 2 solvents) 

Hydrates are the biggest class of solvates available in the studied dataset (32%, Figure 47). 

Based on this data, molecules crystallised in water have a high propensity to form hydrates. 

This tendency is likely because water molecules are small, easily form hydrogen bonds, and 

thus are easily incorporated into crystal structures.  

For the hydrate class, 47% of structures show peaks in their powder patterns at low 2-theta 

(5°-7.5°) and 53% show no peak (Figure 52a). For non-hydrated structures, 21% show peaks 

and 79% show no peak at the same 2-theta range (Figure 52b). Hydrates can be further 

divided into 3 subclasses Figure 52c-e. Of the total 17,209 hydrate structures in the dataset, 

8,519 structures are ionic hydrates (48.2%), in which 48% of their PXRD pattern have peaks 

at low 2-theta. The solvate hydrate subclass consists of 1,219 structures (6.9%), and 72% of 

their PXRD patterns have peaks at low 2-theta. For the regular hydrate subclass (structures 

that only consist of the organic molecule and the molecule of water), the dataset is built from 

7,471 structures (42.3%) where 41% have peaks at low 2-theta on the PXRD patterns. 

On average, more powder patterns of hydrate and non-hydrate have no peaks between 5° 

and 7.5° 2-theta. Similar to solvates, the higher percentage of hydrates have peaks in the low 

2-theta range compared to non-hydrates. This observation suggests that the higher density 

of solvate or hydrate crystal structure resulting from the incorporation of solvent or water 
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molecules may lead to the higher peak density in their powder patterns. Additionally, the 

solvate hydrate subclass has the highest percentage of powder patterns with peaks. The 

presence of low 2-theta peaks in this subclass may be due to the incorporation of both water 

and an additional solvent molecule into the crystal structure resulting in a higher density 

crystal. 

 

Figure 52. Comparison between the percentage of structures with and without PXRD peak in 2-theta 

ranges from 5 to 7.5: (a) hydrate class, (b) non-hydrate class, (c) ionic hydrate subclass, (d) solvate 

hydrate subclass, and (e) regular hydrate subclass. 

6.5.2 Space group preferences of solvates 

The total number of space groups that the compound can crystallise in is 230. The analysis of 

the prefered space group from the available dataset for solvates and non-solvates suggests 

that six space groups (P-1, P21/c, P21/n, P212121, P21, C2/c) are prefered over the remaining 

224 space groups, which agrees with the work of C. Cabeza, et al. (2007).257 Space group P-1 

is the majority of the solvate structures (28.3%, Figure 53a) followed by P21/c (17.0%) and 

P21/m (12.5%). For non-solvated structures, P21/c is the most popular space group (23.9%) 

followed by P-1 (20.1%) and P21/m (14.1%, Figure 53b). Considering the subclasses of the 

solvates, the majority of heterosolvates crystallised in space group P-1 (43.3%, Figure 53c), 

which is the same in solvate hydrate (25.7%, Figure 53d), ionic solvates (28.7%, Figure 53e), 

and non-solvates (27.9%, Figure 53f). 
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Figure 53. Pie chart representing the percentage of space groups of crystal structures in (a) solvate 

class (all solvate subclasses), (b) non-solvate class (c) heterosolvate subclass, (d) solvate hydrate 

subclass, (e) ionic solvate subclass, and (f) regular solvate subclass. The space groups accounting for 

less than 3% were considered “others” and their percentages were summed up together. 

Considering individual recrystallisation solvents (Figure 54), THF is the only solvent in this 

study in which the majority of the solvated structures do not belong to the P-1 space 

group (Figure 54b). For THF solvates, most of the structures are in space group P21/c. Thus, 

using space groups is not, in isolation, a good predictor of solvate formation because both 

solvates and non-solvates crystallise in the same sets of space groups.  
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Figure 54. Overview of the percentage of space groups of crystal structures crystallised from different 

solvents. (a) water, (b) THF, (c) chloroform, (d) DCM, (e) DMF, (f) acetonitrile, (g) methanol, (h) IPA, (i) 

acetone, (j) ethanol, (k) ethyl acetate, and (l) hexane. The space groups accounting for less than 3% 

were considered “others” and their percentages were summed up together. 
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6.5.3 Prior likelihoods of solvents in forming solvates 

For comparing the propensity of organic solvents in forming solvates, prior likelihood (PL), 

which is the probability of solvate formation from a given solvent before the nature of the 

solute is considered258, was used. Prior likelihood can be calculated by Equation 29. 

       PL  =  nsolvate / nsolvent               Equation 29 

where: nsolvate is the number of solvated structures recrystallized from the particular solvent, 

and nsolvent is the total number of structures recrystallized from the particular solvent 

Figure 50, Figure 51, and Table 20 represent the prior likelihood of solvents forming solvate 

or hydrate structures, ordered from the highest to lowest value. Among the twelve 

recrystallisation solvents in this work, water has the highest prior likelihood (PL = 0.97) and 

hexane has the lowest likelihood with only 10% of the structures crystallised as solvates. 

Table 20. Prior likelihood of the solvents forming solvate/hydrate structures 

Recrystallisation 
solvents 

PL 

Water 0.97 

THF 0.60 

Chloroform 0.56 

DCM 0.54 

DMF 0.54 

Acetonitrile 0.48 

Methanol 0.41 

IPA 0.36 

Acetone 0.34 

Ethanol 0.15 

Ethyl acetate 0.14 

Hexane 0.10 

As stated previously, the low likelihood of forming solvates of hexane could be because 

hexane has a relatively long hydrocarbon chain and is more non-polar than compared to the 

other solvents. To search for the correlation between the prior likelihood and solvent’s 

properties, molecular weight, dielectric constant, density, and boiling point of the solvents 

were observed (Figure 55).  
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Figure 55. The prior likelihood of solvent to form solvate vs (a) solvent’s molecular weight, (b) dielectric 

constant, (c) density, and (d) boiling point. Blue points represent group 1 solvents and red points 

represent group 2 solvents (solvent groups 1 and 2 refer to the groups in Figure 50 and Figure 51, 

respectively). 

Figure 55c shows that solvents with relatively high density seem to have a higher likelihood 

to form solvates than those with relatively low density. Most compounds crystallised from 

the solvents with a density above 0.9 g/mL tend to crystallise as solvates. However, the 

absence of correlation in all plots (Figure 55a-d) suggests that the likelihood of solvate 

formation cannot be predicted with only the solvent properties investigated here. 

6.5.4 Machine learning for the prediction of solvate classes 

Conducted statistical analysis did not show a significant preference for low 2-theta position 

or space group for solvates over non-solvated crystal structures. To increase the prediction 

capabilities for solvate formation, machine learning was applied.  In total, eleven models 

were built for testing and improving the performance of machine learning predictions. 

Models 1-8 relate to the prediction of solvates while Models 9-11 were used to predict 

hydrate structures. 
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6.5.4.1 The model with class-imbalance 

To test if class imbalance would affect the prediction accuracies of the model,  the following 

two RF classification models were considered using all available data.   

1. Prediction of four solvate subclasses (heterosolvate, ionic solvate, solvate hydrate 

and regular solvates) and non-solvate class. – Model 1  

2. Prediction of solvate class and non-solvate class – Model 2  

The accuracies of Model 1 and Model 2 are shown in Table 21. The detail of the models for 

the prediction of solvate structures for Model 1 and Model 2 are summarized in the 

methodology section (Table 13) 

Table 21. The prediction accuracies of Model 1 and Model 2 as calculated via train-test split and 4-fold 

cross-validation 

Model’s accuracy Model 1 Model 2 

Average from 100 iterations of 
train-test split (75/25) 

63.80 % 
(SD = 0.39 %) 

68.73 % 
(SD = 0.34 %) 

4-fold cross-validation 
62.86 % 

(SD = 0.22 %) 
67.75 % 

(SD = 1.15 %) 

To evaluate Model 1 and Model 2, the following values were considered: accuracy, precision, 

recall, and F-1 score. Accuracy is a ratio of the number of correctly predicted data and the 

total number of data in a dataset, regardless of which class a data belongs to (Equation 7). 

According to Table 21, Model 1 which consists of 5 possible outputs (with class imbalance) 

has 63.8% accuracy by train-test split method and 62.8% accuracy by 4-fold cross-validation. 

These values are considered high compared to a random guess of five classes which would 

have only approximately 20% accuracy. However, the values of precision and recall in Table 22 

show that the accuracy is falsely inflated by the class imbalance. In Table 22, the precision 

and recall of ionic solvate, solvate hydrate, and regular solvate subclasses are low, which 

indicates an inaccurate prediction of these subclasses. Additionally, the difference between 

the values of precision and recall also suggests the model’s bias. In the case of Model 1, the 

value of precision is higher than recall in all solvate subclasses, which suggests that the model 

underpredicts the data in these subclasses. In the non-solvate class, the lower value of 

precision compared to recall indicates overprediction. The low value of F1-scores of each 

solvate subclass, especially ionic solvate and solvate hydrate subclasses, in which the value 

of F1-score is only 0.07, also indicate that Model 1 cannot correctly predict the structures in 

all solvate subclasses. The high value of the F1-score in the non-solvate class (0.77) also 
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suggests that the accuracy of the model comes from the overprediction of the non-solvate 

class. This bias most likely results from the class imbalance presented in the training dataset. 

Table 22. Solvate subclass and non-solvate class prediction accuracy for Model 1 as represented by 

precision, recall, and F1-score 

Model prediction Precision Recall F1-score Support 

Heterosolvate 
0.69 

(SD = 0.06) 
0.40 

(SD = 0.05) 
0.51 

(SD = 0.05) 
84.8 

(SD = 7.1) 

Ionic solvate 
0.19 

(SD = 0.02) 
0.06 

(SD = 0.01) 
0.09 

(SD = 0.01) 
676.8 

(SD = 23.5) 

Solvate hydrate 
0.18 

(SD = 0.05) 
0.04 

(SD = 0.01) 
0.07 

(SD = 0.02) 
237.8 

(SD = 10.8) 

Solvate 
0.38 

(SD = 0.01) 
0.23 

(SD = 0.01) 
0.29 

(SD = 0.01) 
2295.8 

(SD = 38.4) 

Non-solvate 
0.70 

(SD = 0.01) 
0.88 

(SD = 0.01) 
0.78 

(SD = 0.00) 
6030.9 

(SD = 46.4) 

Average of all classes 
0.43 

(SD = 0.02) 
0.32 

(SD = 0.01) 
0.35 

(SD = 0.01) 
9326.0 

(SD = 0.0) 

Model 2 has 2 outputs, the solvate class and the non-solvate class, in which the solvate class 

consists of all subclasses combined. Accuracies of 68.7% by train-test split validation and 

67.8% by 4-fold cross-validation did not reflect the overall performance of the model. As seen 

by the precision, recall, and F1-scores in Table 23, although Model 2 demonstrates superior 

performance in terms of overall precision, recall, and F1-score, in comparison to Model 1 due 

to the lower number of class predictions, Model 2 still exhibits an overprediction of the non-

solvate class, which contains a larger number of structures, and an underprediction of the 

structures within the solvate class. 

Table 23. Solvate class and non-solvate class prediction accuracy for Model 2 as represented by 

precision, recall, and F1-score 

Model prediction Precision Recall F1-score Support 

Solvate class 
0.58 

(SD = 0.01) 
0.40 

(SD = 0.01) 
0.47 

(SD = 0.01) 
3284.4 

(SD = 48.1) 

Non-solvate class 
0.72 

(SD = 0.01) 
0.84 

(SD = 0.00) 
0.78 

(SD = 0.00) 
6041.7 

(SD = 48.1) 

Average of all classes 
0.65 

(SD = 0.00) 
0.62 

(SD = 0.00) 
0.63 

(SD = 0.00) 
9326.0 

(SD = 0.0) 

The confusion matrices for Model 1 and Model 2 are shown in Figure 56(a) and Figure 56(b), 

respectively. 
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Figure 56. The confusion matrix of the RF classification model with class imbalance for the prediction 

of solvate structures (a) prediction of heterosolvate subclass, ionic solvate subclass, solvate hydrate 

subclass, regular solvate subclass, and non-solvate class (Model 1), (b) prediction between solvate class 

and non-solvate class (Model 2). 

Since class imbalance highly affected the prediction of the model, some data points were 

randomly removed to create new datasets without class imbalance for the remaining models 

(Model 3 – 11). 

6.5.4.2 The models using datasets without class-imbalance 

To solve the problem of class imbalance observed in Model 1 and Model 2, some data in the 

dataset were randomly excluded. The new dataset containing an equal number of structures 

in each class was used for training the models. 

Model 3 and Model 4 were used for predicting four solvate subclasses and non-solvate 

classes (five prediction outputs in total) and for predicting solvate class and non-solvate class 

(two prediction outputs), respectively. The prediction accuracies of the models are shown in 

Table 24. 
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Table 24. The prediction accuracies of Model 3 and Model 4 via train-test split and 4-fold cross-

validation 

Accuracies of 
Models 3&4 

 
Four solvate 

subclasses and 
non-solvate class 

(Model 3) 

Solvate class VS Non-solvate class 

Solvate class 
consists of all 

subclasses 
(Model 4A) 

Solvate class consists 
of only regular solvate 

subclass 
(Model 4B) 

Average from 100 
iterations of train-test 
split (75/25) 

36.03 % 
(SD = 2.13 %) 

65.22 % 
(SD = 0.53 %) 

63.22 % 
(SD = 0.63 %) 

4-fold cross-
validation 

35.54 % 
(SD = 1.88 %) 

64.29 % 
(SD = 2.21 %) 

62.43 % 
(SD = 2.76 %) 

The accuracy of Model 3 is around 36% (compared to 20% of random guessing accuracy. The 

performance of Model 3 for the prediction of each solvate subclasses and non-solvate class 

is presented in Table 25. 

Table 25. Prediction accuracies of each solvate subclass and non-solvate class of Model 3, as 

represented by precision, recall, and F1-score 

Model 3 Precision Recall F1-score Support 

Heterosolvate 
0.58 

(SD = 0.05) 
0.59 

(SD = 0.06) 
0.58 

(SD = 0.04) 
84.8 

(SD = 7.0) 

Ionic solvate 
0.27 

(SD = 0.04) 
0.24 

(SD = 0.04) 
0.26 

(SD = 0.03) 
84.0 

(SD = 7.0) 

Solvate hydrate 
0.27 

(SD = 0.05) 
0.24 

(SD = 0.05) 
0.26 

(SD = 0.04) 
84.0 

(SD = 7.2) 

Solvate 
0.22 

(SD = 0.04) 
0.20 

(SD = 0.04) 
0.21 

(SD = 0.04) 
83.3 

(SD = 8.0) 

Non-solvate 
0.40 

(SD = 0.04) 
0.51 

(SD = 0.06) 
0.44 

(SD = 0.04) 
83.9 

(SD = 6.5) 

Average of all classes 
0.35 

(SD = 0.02) 
0.36 

(SD = 0.02) 
0.35 

(SD = 0.02) 
420.0 

(SD = 0.0) 

For the models predicting only 2 outputs, solvate and non-solvate classes, the accuracy of 

Model 4A is 65.2% by train-test split and 64.3% by 4-fold cross-validation (compared to 50% 

of the accuracy from random guessing). In Model 4B, only the regular solvate subclass was 

considered (9,167 structures), in contrast to Model 4A where the other subclasses 

(heterosolvate, hydrate solvate, and ionic solvate - 13,161 structures in total) were also 

combined into one class. The accuracy of Model 4B was lower than Model 4A. The decrease 

in accuracy of Model 4B may be due to the smaller dataset used for training the model. 
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As demonstrated by the F1-score metrics presented in Table 26 and Table 27, the 

performance of Model 4A and Model 4B in predicting the solvate and non-solvate classes is 

comparable. Furthermore, these accuracies surpass the baseline of random guessing (50% as 

per probability rule), indicating that the models possess a significant level of predictive 

power. These results are particularly notable given that there is no class imbalance effect, as 

evidenced by the similar values of the F1-score for the solvate and non-solvate classes. These 

findings reflect the true performance of the models and demonstrate their efficacy in 

accurately predicting the solvate and non-solvate classes. It is notable that the higher value 

of recall for the solvate class, in comparison to the non-solvate class, may be attributed to 

the more complex structure present in the solvate class. This complexity may make it more 

challenging for the model to accurately classify samples within the solvate class. Additionally, 

the comparable precision of both classes may suggest that the model is generating a similar 

number of false predictions for both the solvate and non-solvate classes. 

Table 26. Prediction accuracies for the solvate class and non-solvate class of Model 4A, as indicated  

by precision, recall, and F1-score 

Model 4A  Precision Recall F1-score Support 

Solvate class 
0.67 

(SD = 0.01) 
0.59 

(SD = 0.01) 
0.63 

(SD = 0.01) 
3294.2 

(SD = 38.6) 

Non-solvate class 
0.64 

(SD = 0.01) 
0.71 

(SD = 0.01) 
0.67 

(SD = 0.01) 
3286.8 

(SD = 38.6) 

Average of all classes 
0.66 

(SD = 0.00) 
0.65 

(SD = 0.00) 
0.65 

(SD = 0.00) 
6581.0 

(SD = 0.0) 

Table 27. Prediction accuracies for the solvate class and non-solvate class of Model 4B, as represented 

by precision, recall, and F1-score 

Model 4B Precision Recall F1-score Support 

Solvate class 
0.65 

(SD = 0.01) 
0.58 

(SD = 0.01) 
0.61 

(SD = 0.01) 
2286.5 

(SD = 34.5) 

Non-solvate class 
0.62 

(SD = 0.01) 
0.69 

(SD = 0.01) 
0.65 

(SD = 0.01) 
2297.5 

(SD = 34.5) 

Average of all classes 
0.63 

(SD = 0.01) 
0.63 

(SD = 0.01) 
0.63 

(SD = 0.01) 
4584.0 

(SD = 0.0) 

 The confusion matrices of Models 3, 4A, and 4B are shown in Figure 57(a), Figure 57(b), and 

Figure 57(c), respectively. 
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Figure 57. The confusion matrix of the RF classification model for the prediction of solvate structures 

(a) prediction of heterosolvate subclass, ionic solvate subclass, solvate hydrate subclass, regular 

solvate subclass, and non-solvate class (Model 3), (b) prediction of solvate class and non-solvate class, 

in which solvate class consists of all subclasses (Model 4A), (c) prediction of solvate class and non-

solvate class, in which solvate class consists of only the regular solvate subclass (Model 4B) 

RF classification allows the users to look into the importance of different variables by 

introducing importance scores. The importance scores of Model 4A (Figure 58) show that the 

2-theta region 9.6-9.8° is the most important variable followed by lower 2-theta regions. This 

trend in importance scores may suggest that including data for peaks in higher 2-theta ranges 

may improve the prediction accuracy. However, as the peak number also increases with the 

higher 2-theta (Figure 59a and Figure 59b), higher feature values may falsely inflate the 

importance of these variables in the model’s decision-making. Both of these possibilities are 

explored in the following sections.  
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Figure 58. Important scores of the prediction between solvate class and non-solvate class (Model 4A) 

 

Figure 59. (a) The average number of peaks in the PXRD patterns between 5° and 10° 2-theta. Each 

bar is 0.2° 2-theta range. Standard deviations (SD) are represented as the black lines on top of the bars, 

(b) Scattering plot between PXRD peak counts and important scores in the RF classification model for 

the prediction of solvate and non-solvate classes (Model 4A) 
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6.5.4.3 The models using the dataset containing peak data in different 2-theta ranges  

To explore including higher regions of 2-theta in the model data, Models 6 and 7 were built. 

Peak density for solvates and non-solvates (Figure 60) increases as the 2-theta values 

increase. 

 

Figure 60. The average number of peaks in the PXRD pattern between 5° and 20° 2-theta. Each bar is 

1° 2-theta range. Standard deviations (SD) are represented as the black lines on top of the bars. (a) 

solvate class, (b) non-solvate class 

The model’s variables were expanded from the range of 5° – 10° 2-theta (Model 4A) to 5° – 

15° (Model 6) and 5° – 20° 2-theta (Model 7). 

Table 28. The comparison of the accuracies of the models using the dataset containing peak data in 

different 2-theta ranges (Model 4A, Model 6, and Model 7) 

Model’s accuracy 
2-theta ranges 

5° – 10°  
(Model 4A) 

5° – 15°  
(Model 6) 

5° – 20°  
(Model 7) 

Average from 100 
iterations of train-test 
split (75/25) 

65.22% 
(SD = 5.29 %) 

68.65 % 
(SD = 4.72 %) 

69.21 % 
(SD = 4.93 %) 

4-fold cross-validation 
64.29 % 

(SD = 2.21 %) 
67.00 % 

(SD = 1.86 %) 
67.62 % 

(SD = 2.16 %) 
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Table 29. Comparison of the performance of Model 4A, Model 6, and Model 7 for predicting 

solvate class and non-solvate class, represented by precision, recall, and F1-score 

Model Model prediction Precision Recall F1-score Support 

4A 

Solvate class 
0.67 

(SD = 0.01) 
0.59 

(SD = 0.01) 
0.63 

(SD = 0.01) 
3294.2 

(SD = 38.6) 

Non-solvate class 
0.64 

(SD = 0.01) 
0.71 

(SD = 0.01) 
0.67 

(SD = 0.01) 
3286.8 

(SD = 38.6) 

Average of all classes 
0.66 

(SD = 0.00) 
0.65 

(SD = 0.00) 
0.65 

(SD = 0.00) 
6581.0 

(SD = 0.0) 

6 

Solvate class 
0.68 

(SD = 0.01) 
0.69 

(SD = 0.01) 
0.69 

(SD = 0.00) 
3295.8 

(SD = 31.9) 

Non-solvate class 
0.69 

(SD = 0.01) 
0.68 

(SD = 0.01) 
0.68 

(SD = 0.01) 
3285.2 

(SD = 31.9) 

Average of all classes 
0.69 

(SD = 0.01) 
0.69 

(SD = 0.01) 
0.69 

(SD = 0.01) 
6581.0 

(SD = 0.0) 

7 

Solvate class 
0.69 

(SD = 0.01) 
0.70 

(SD = 0.01) 
0.70 

(SD = 0.01) 
3290.2 

(SD = 36.6) 

Non-solvate class 
0.70 

(SD = 0.01) 
0.69 

(SD = 0.01) 
0.69 

(SD = 0.01) 
3290.8 

(SD = 36.6) 

Average of all classes 
0.69 

(SD = 0.00) 
0.69 

(SD = 0.00) 
0.69 

(SD = 0.00) 
6581.0 

(SD = 0.0) 

 

 

Figure 61. Confusion matrix of (a) Model 4A, (b) Model 6, and (c) Model 7. The number of structures 

correctly predicted in the solvate class increased when the model has more peak data variables. 

According to the accuracy in Table 28, the model accuracy increased when the 2-theta range 

was expanded (accuracy increased from 64.29 % to 67.62 % when the 2-theta range 

increased from 5° – 10° to 5° – 20°). A thorough examination of the confusion matrices, 

precision, recall, and F1-score in Table 29 for Model 4A (Figure 61a), Model 6 (Figure 61b), 

and Model 7 (Figure 61c) shows an improvement in model performance. This improvement 

is particularly evident in the F1-score of the solvate class, which increased from 0.63 in Model 

4A to 0.69 in Model 6 and further to 0.70 in Model 7. These results suggest that the inclusion 

of additional peak data within the range of 10° to 20° 2-theta has a positive impact on the 
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model's ability to predict solvate structures. These findings highlight the potential value of 

incorporating a broader range of X-ray diffraction data in the training process to improve the 

performance of models in predicting solvate class structures. As unit cell packing density is 

likely higher in solvated crystals, packing density differences could affect peak density 

throughout the spectra (not only limited to low 2-theta ranges). Thus, a higher prediction 

accuracy would be expected as more peak ranges are included. 

6.5.4.4 A machine learning model focusing on peak density  

To eliminate any bias resulting from higher feature values having more influence in model 

decision-making, an additional dataset was built. In this dataset, only 9 variables relevant to 

peak density in powder pattern were considered: 

 peak positions of 1st,  5th,  and 10th peak [3 variables] 

 peak location’s differences between 1st and  5th, and between 1st and 10th peaks [2 

variables] 

 peak counts in 4 different 2-theta ranges (5-7.5°, 5-10°, 5-15°, and 5-20° 2-theta) [4 

variables] 

This set of variables represents peak density while decreasing biases related to the tendency 

of peak counts to increase with higher 2-theta.  

Model 8A was used for predicting solvate and non-solvate classes via RF classification. 

According to Table 30, the average accuracy of Model 8A from 100 iterations of train-test 

split (75% training data and 25% testing data) is 68.81 % (SD = 0.41 %), and the accuracy 

calculated by 4-fold cross-validation method is 68.74% (SD = 0.34%). Figure 62. shows the 

confusion matrix of Model 8A. By comparing the accuracy of Model 8A to the accuracy of 

Model 7 (Table 28), the higher accuracy of Model 8A suggests that representing the data 

differently was more important to the model than increasing the 2-theta range. 

 

Figure 62. The confusion matrix of the RF classification Model 8A 
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For determining the importance of the variables, some variables were removed from the 

dataset used for training the model. The variables relevant to the 10th peak (2-theta position 

of 10th peak and the distance between 1st peak and 10th peak) were removed in Model 8B, 

and the variables relevant to the 5th peak (2-theta position of 5th peak and the distance 

between 1st peak and 5th peak) were removed in Model 8C. In Model 8D, peak position was 

not included in the dataset. Table 30 presents the accuracy of each model in relation to 

Model 8A, which utilized the dataset incorporating all variables.  

Table 30. A comparison of the model accuracies for Models 8A, 8B, 8C and 8D 

Model’s 
accuracy 

All variables 
(Model 8A) 

Remove 10th peak-
relevant variables 

(Model 8B) 

Remove 5th peak-
relevant variables 

(Model 8C) 

Remove peak 
position variables 

(Model 8D) 

Average from 100 
iterations of train-
test split (75/25) 

68.81 % 
(SD = 4.06 %) 

68.25 % 
(SD = 5.02 %) 

67.86 % 
(SD = 4.73 %) 

67.62 % 
(SD = 5.22 %) 

4-fold cross-
validation 

68.74 % 
(SD = 3.44 %) 

68.43 % 
(SD = 3.29 %) 

67.96 % 
(SD = 5.93 %) 

67.72 % 
(SD = 4.90 %) 

As evidenced by the prediction accuracies presented in Table 30, the removal of certain 

variables from the training dataset resulted in a very slightly decrease in the model 

performance, indicating that the selection of only the 2-theta positions corresponding to the 

5th or 10th peak is sufficient for the model to achieve a high level of accuracy in its predictions.  

To further validate this observation, Error! Not a valid bookmark self-reference. presents a 

comprehensive analysis of the model performance through the examination of precision, 

recall and F1-score values for each model. The values in the table demonstrate the 

comparable performance of Model 8A, 8B, 8C and 8D, further supporting the conclusion that 

only the 2-theta positions corresponding to the 5th or 10th peak are sufficient for the model 

to achieve a satisfactory level of accuracy in its predictions. 
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Table 31. Comparison of the performance of Model 4A, Model 6, and Model 7 for predicting solvate 

class and non-solvate class, represented by precision, recall, and F1-score 

Model Model prediction Precision Recall F1-score Support 

8A 

Solvate class 
0.68 

(SD = 0.01) 
0.70 

(SD = 0.01) 
0.69 

(SD = 0.01) 
3290.2 

(SD = 35.1) 

Non-solvate class 
0.69 

(SD = 0.01) 
0.68 

(SD = 0.01) 
0.68 

(SD = 0.01) 
3290.8 

(SD = 35.1) 

Average of all classes 
0.69 

(SD = 0.01) 
0.69 

(SD = 0.00) 
0.69 

(SD = 0.00) 
6581.0 

(SD = 0.0) 

8B 

Solvate class 
0.68 

(SD = 0.01) 
0.70 

(SD = 0.01) 
0.69 

(SD = 0.00) 
3285.8 

(SD = 29.7) 

Non-solvate class 
0.69 

(SD = 0.01) 
0.67 

(SD = 0.01) 
0.68 

(SD = 0.01) 
3295.2 

(SD = 29.7) 

Average of all classes 
0.68 

(SD = 0.00) 
0.68 

(SD = 0.00) 
0.68 

(SD = 0.00) 
6581.0 

(SD = 0.0) 

8C 

Solvate class 
0.67 

(SD = 0.01) 
0.69 

(SD = 0.01) 
0.68 

(SD = 0.01) 
3290.4 

(SD = 42.6) 

Non-solvate class 
0.68 

(SD = 0.01) 
0.67 

(SD = 0.01) 
0.67 

(SD = 0.01) 
3290.6 

(SD = 42.6) 

Average of all classes 
0.68 

(SD = 0.01) 
0.68 

(SD = 0.01) 
0.68 

(SD = 0.01) 
6581.0 

(SD = 0.0) 

8D 

Solvate class 
0.67 

(SD = 0.01) 
0.69 

(SD = 0.01) 
0.68 

(SD = 0.01) 
3291.3 

(SD = 34.1) 

Non-solvate class 
0.68 

(SD = 0.01) 
0.66 

(SD = 0.01) 
0.67 

(SD = 0.01) 
3289.8 

(SD = 34.1) 

Average of all classes 
0.68 

(SD = 0.00) 
0.68 

(SD = 0.00) 
0.68 

(SD = 0.00) 
6581.0 

(SD = 0.0) 

 

6.5.5 Machine learning for the prediction of hydrate classes 

The models for predicting hydrate structures were built in the same way as the models for 

predicting solvate structures. Peak counts in 0.2° 2-theta step size from 5° to 10° were used 

as the models’ variables. Model 9 was used to predict 3 hydrate subclasses (ionic hydrate, 

solvate hydrate, and regular hydrate subclasses) and non-hydrate class (four outputs in 

total). Model 10A and Model 10B were used for predicting the hydrate class and non-hydrate 

class (two outputs for each model). The difference between the dataset used in Model 10A 

and Model 10B was the subclass included in the hydrate class. Model 10A used all hydrate 

subclasses combined, while Model 10B used only the structures in the regular hydrate 

subclass. All models have the same number of data points in each prediction class (i.e., no 

class imbalance). The accuracies of the models by train-test split and 4-fold cross-validation 

are shown in Table 32. The model performances as represented by precision, recall, and F1-
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scores of Model 9, Model 10A, and Model 10B, are shown in Table 33, Table 34, and Table 

35, respectively. Figure 63 presents the confusion matrix of the three models. 

Table 32. The prediction accuracies of Model 9 and Model 10 as calculated by train-test split and 4-

fold cross-validation 

Model accuracy 

Three hydrate 
subclasses and 

non-hydrate class 
(Model 9) 

Hydrate class VS Non- hydrate class 

Hydrate class 
consists of all 

subclasses 
(Model 10A) 

Hydrate class consists  
of only regular  

hydrate subclass 
(Model 10B) 

Average from 100 
iterations of train-test 
split (75/25) 

41.15 % 
(SD = 1.67 %) 

64.95 % 
(SD = 2.66 %) 

65.16 % 
(SD = 2.96 %) 

4-fold cross-validation 
40.48 % 

(SD = 1.66 %) 
65.86 % 

(SD = 2.88 %) 
62.90 % 

(SD = 3.25 %) 

Table 33. Precision, recall, and F1-scores for Model 9 

Model Prediction Precision Recall F1-score Support 

Regular hydrate 
0.46 

(SD = 0.04) 
0.63 

(SD = 0.05) 
0.53 

(SD = 0.03) 
112.9 

(SD = 7.5) 

Ionic hydrate 
0.32 

(SD = 0.04) 
0.28 

(SD = 0.04) 
0.30 

(SD = 0.03) 
115.9 

(SD = 8.1) 

Solvate hydrate 
0.48 

(SD = 0.04) 
0.50 

(SD = 0.05) 
0.49 

(SD = 0.03) 
112.9 

(SD = 7.6) 

Non-hydrate 
0.31 

(SD = 0.04) 
0.23 

(SD = 0.04) 
0.26 

(SD = 0.04) 
115.3 

(SD = 7.4) 

Average of all classes 
0.40 

(SD = 0.02) 
0.41 

(SD = 0.02) 
0.40 

(SD = 0.02) 
457.0 

(SD = 0.0) 

Table 34. Precision, recall, and F1-scores for Model 10A 

Model prediction Precision Recall F1-score Support 

Hydrate 
0.68 

(SD = 0.05) 
0.54 

(SD = 0.05) 
0.60 

(SD = 0.03) 
113.8 

(SD = 6.0) 

Non-hydrate 
0.62 

(SD = 0.03) 
0.75 

(SD = 0.05) 
0.68 

(SD = 0.03) 
115.2 

(SD = 6.0) 

Average of all classes 
0.65 

(SD = 0.03) 
0.65 

(SD = 0.03) 
0.64 

(SD = 0.03) 
229.0 

(SD = 0.0) 

Table 35. Precision, recall, and F1-scores for Model 10B 

Model prediction Precision Recall F1-score Support 

Hydrate 
0.67 

(SD = 0.04) 
0.58 

(SD = 0.06) 
0.62 

(SD = 0.04) 
113.9 

(SD = 7.2) 

Non-hydrate 
0.63 

(SD = 0.04) 
0.72 

(SD = 0.05) 
0.67 

(SD = 0.03) 
115.1 

(SD = 7.2) 

Average of all classes 
0.65 

(SD = 0.03) 
0.64 

(SD = 0.03) 
0.64 

(SD = 0.03) 
229.0 

(SD = 0.0) 



122 
 

 

Figure 63. The confusion matrices of the RF classification model for the prediction of hydrate structures 

(a) prediction of ionic hydrate subclass, solvate hydrate subclass, regular hydrate subclass, and non-

hydrate class (Model 9), (b) prediction between hydrate class and non-hydrate class, in which hydrate 

class consists of all subclasses (Model 10A), (c) prediction between hydrate class and non-hydrate class, 

in which hydrate class consists of only regular hydrate subclass (Model 10B) 

As demonstrated by the prediction accuracy of 41.15% in Model 9, the performance of the 

model is superior to that of random guessing, which is 25% for four-class classification. 

Furthermore, the prediction accuracies of Models 10A and Model 10B, which are around 

65%, are also better than random guessing for two-class classification (50%). The F1-scores 

presented in Table 34 and Table 35 suggest that both models exhibit superior performance 

in the prediction of the non-hydrate class as compared to the hydrate class. These findings 

are consistent with the performance of the similar models, namely Models 4A and Model 4B, 

of which the F1-scores suggest a better performance of the prediction in non-solvate class 

than those in solvate class, and exhibit a prediction accuracy of approximately 65%. 

The important score of each variable in Model 10A is shown in Figure 64. The pattern is 

similar to the important scores of the prediction between the solvate class and the non-

solvate class (Model 4A - Figure 58). 
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Figure 64. Important scores of the prediction between hydrate class and non-hydrate class (Model 10A) 

6.5.6 The effect including of weak reflection peaks in machine learning models  

To determine if including the weak reflection peaks in the powder patterns was important 

for the model prediction accuracy, two datasets were built:  

1) no cut-off value for peak height  

2) peaks included only if peak height >100 units Table 36 shows the prediction accuracies for 

solvate vs. non-solvate classes and hydrate vs. non-hydrate classes for the models with and 

without peak height cut-offs. 

Table 36. Prediction accuracies for the RF classification models using datasets with and  without the 

peaks with peak heights lower than 100 

Model 
accuracy 

Solvate class VS Non-solvate class Hydrate class VS Non-hydrate class 

All peaks were 
included 

(Model 4A) 

Weak reflections 
with height < 100 

were excluded 
(Model 5) 

All peaks were 
included 

(Model 10A) 

Weak reflections 
with height < 100 

were excluded 
(Model 11) 

Average from 
100 iterations 
of train-test 
split (75/25) 

65.22 % 
(SD = 0.53 %) 

65.53 % 
(SD = 0.48 %) 

64.95 % 
(SD = 2.66 %) 

64.76 % 
(SD = 2.67 %) 

4-fold cross-
validation 

64.29 % 
(SD = 2.21 %) 

64.97 % 
(SD = 2.54 %) 

65.86 % 
(SD = 2.88 %) 

63.35 % 
(SD = 1.76 %) 
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Table 37 and Table 38 present the precision, recall, F1-score, and number of test data points 

of the models for solvate vs. non-solvate classes and hydrate vs. non-hydrate classes, 

respectively. The values in Table 37 and Table 38 are comparable to those in Table 26 and 

Table 34, respectively. 

Table 37. Classification report of Model 5 for the prediction of solvate and non-solvate classes 

Model prediction Precision Recall F1-score Support 

Solvate 
0.69 

(SD = 0.01) 
0.57 

(SD = 0.01) 
0.62 

(SD = 0.01) 
3287.6 

(SD = 35.2) 

Non-solvate 
0.63 

(SD = 0.01) 
0.74 

(SD = 0.01) 
0.68 

(SD = 0.01) 
3293.4 

(SD = 35.2) 

Average of all classes 
0.66 

(SD = 0.01) 
0.65 

(SD = 0.01) 
0.65 

(SD = 0.01) 
6581.0 

(SD = 0.0) 

Table 38. Classification report of Model 11 for the prediction of hydrate and non-hydrate classes 

Model prediction Precision Recall F1-score Support 

Hydrate 
0.68 

(SD = 0.04)  
0.58 

(SD = 0.05) 
0.62 

(SD = 0.03) 
114.5 

(SD = 5.9) 

Non-hydrate 
0.63 

(SD = 0.04) 
0.72 

(SD = 0.05) 
0.67 

(SD = 0.03) 
114.5 

(SD = 5.9) 

Average of all classes 
0.65 

(SD = 0.03) 
0.65 

(SD = 0.03) 
0.65 

(SD = 0.03) 
229.0 

(SD = 0.0) 

Similar model performance of Model 4A and Model 10A, as well as Model 5 and Model 11, 

suggest that the inclusion of low-intensity peaks does not have a significant impact on the 

overall performance of the models. These findings suggest that the decision-making process 

of the models is not influenced by those weak reflections. 

The accuracies and F1-score of all models are summarized in Table 39. 

Table 39. Summary of the model for the prediction of solvate and hydrate structures 

Model Prediction class Model’s variables 
Accuracy 

(4-fold CV) 

Improved 
accuracy from 
random guess 

F1-score 

1 

Heterosolvate – 336 
Solvate hydrate – 952 
Ionic solvate – 2,706 
Regular solvate – 9,167 
Non-solvate – 24,143 

Peak counts in every 2θ 
range of 0.2°, from 5° 
to 10°. 

62.86 %** - 0.35 

2 
Solvate – 13,161 
Non-solvate – 24,143 

Peak counts in every 2θ 
range of 0.2°, from 5° 
to 10°. 

67.75 %** - 0.63 

  



125 
 

Table 39 (Cont.) Summary of the model for the prediction of solvate and hydrate structures 

Model Prediction class Model’s variables 
Accuracy 

(4-fold CV) 

Improved 
accuracy from 
random guess 

F1-score 

3 

Heterosolvate – 336 
Solvate hydrate – 336 
Ionic solvate – 336 
Regular solvate – 336 
Non-solvate – 336 

Peak counts in every 2θ 
range of 0.2°, from 5° 
to 10°. 

35.54 % 15.54 % 0.35 

4A 
Solvate (combined all 
subclasses) – 13,161 
Non-solvate – 13,161 

Peak counts in every 2θ 
range of 0.2°, from 5° 
to 10°. 

64.29 % 14.29 % 0.65 

4B 
Solvate (only regular 
subclass) – 9,167 
Non-solvate – 9,167 

Peak counts in every 2θ 
range of 0.2°, from 5° 
to 10°. 

62.43 % 12.43 % 0.63 

5 
Solvate (combined all 
subclasses) – 13,161 
Non-solvate – 13,161 

Peak counts in every 2θ 
range of 0.2°, from 5° 
to 10°. Peaks with 
intensity lower than 
100 were removed.  

64.97 % 14.97 % 0.65 

6 
Solvate (combined all 
subclasses) – 13,161 
Non-solvate – 13,161 

Peak counts in every 2θ 
range of 0.2°, from 5° 
to 15°. 

67.00 % 17.00 % 0.69 

7 
Solvate (combined all 
subclasses) – 13,161 
Non-solvate – 13,161 

Peak counts in every 2θ 
range of 0.2°, from 5° 
to 20°. 

67.62 % 17.62 % 0.69 

8A 

Solvate (combined all 
subclasses) – 13,161 
Non-solvate – 13,161 

Peak position (1st, 5th, 
10th), peak distance (1st 
and 5th ,1st and 10th), 
peak count (5-7.5°, 5-
10°, 5-15°, 5-20°) 

68.74 % 18.74 % 0.69 

8B 

Peak position (1st, 5th), 
peak distance (1st and 
5th), peak count (5-7.5°, 
5-10°, 5-15°, 5-20°) 

68.43 % 18.43 % 0.68 

8C 

Peak position (1st, 10th), 
peak distance (1st and 
10th), peak count (5-
7.5°, 5-10°, 5-15°, 5-20°) 

67.96 % 17.96 % 0.68 

8D 

peak distance (1st and 
5th ,1st and 10th), peak 
count (5-7.5°, 5-10°, 5-
15°, 5-20°) 

67.72 % 17.72 % 0.68 

9 

Solvate hydrate – 457 
Ionic hydrate – 457 
Regular hydrate – 457 
Non-hydrate – 457 

Peak counts in every 2θ 
range of 0.2°, from 5° 
to 10°. 

40.48 % 15.48 % 0.40 
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Table 39 (Cont.) Summary of the model for the prediction of solvate and hydrate structures 

Model Prediction class Model’s variables 
Accuracy 

(4-fold CV) 

Improved 
accuracy from 
random guess 

F1-score 

10A 
Hydrate (only regular 
hydrate subclass) – 457 
Non-hydrate – 457 

Peak counts in every 2θ 
range of 0.2°, from 5° 
to 10°. 

65.86 % 15.86 % 0.64 

10B 
Hydrate (combined all 
subclasses) – 457 
Non-hydrate – 457 

Peak counts in every 2θ 
range of 0.2°, from 5° 
to 10°. 

62.90 % 12.90 % 0.64 

11 
Hydrate (combined all 
subclasses) – 457 
Non-hydrate – 457 

Peak counts in every 2θ 
range of 0.2°, from 5° 
to 10°. Peaks with 
intensity lower than 
100 were removed. 

63.35 % 13.35 % 0.65 

* CV = cross-validation, ** The model is bias to non-solvate class due to class-imbalance. The 

accuracies of Model 1 and Model 2 did not reflect the true model performance. 

 

6.6 Conclusions 

This work investigated the use of previously established CMAC solvate libraries created by 

mining the CSD database to probe for the correlations between low 2-theta PXRD peak 

position and solvate formation. The recrystallisation solvents used in this work included 

acetone, acetonitrile, chloroform, DCM, DMF, ethanol, ethyl acetate, hexane, IPA, methanol, 

THF, and water.  Most solvate and non-solvate structures had peaks in their powder patterns 

between 5° and 10° 2-theta values. Decreasing the 2-theta range from 5° - 10° to 5° - 7.5° 

better differentiated solvate vs. non-solvate structures as more solvate structure powder 

patterns had at least one peak between 5 to 7.5 2-theta, while more non-solvate structures 

do not have peaks in this 2-theta range.   

Solvates were divided into two groups. Solvents that were more likely to form solvated than 

non-solvated crystalline structures were placed in the first group, while solvents that were 

more likely to form non-solvated than solvated structures were put into the second group.  

Group 1 solvent included: water, THF, chloroform, DCM and DMF, while group 2 solvent 

included acetonitrile, methanol, IPA, acetone, ethanol, ethyl acetate and hexane. In the first 

group, the highest number of solvated structures was observed for water and THF and the 

lowest for DMF. In the second group, the highest number of solvated forms was observed for 

acetonitrile and the lowest for hexane. These observations likely result from the fact that 

water and THF are small molecules that readily form hydrogen bonds and can be 
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incorporated into crystal structures more easily than hexane which has a long hydrophobic 

chain that is unable to form strong interactions with organic molecules.  

The analysis of the preferred space group from the available dataset for solvates and non-

solvates suggests that six space groups (P-1, P21/c, P21/n, P212121, P21, C2/c) were 

preferred over the remaining 224 space groups.  Space group P-1 was observed for the most 

solvates (28.3%) followed by P21/c (17.0%) and P21/n (12.5%). For non-solvated structures, 

P21/c was the most common space group (23.9%) followed by P-1 (20.1%) and P21/n. When 

considering individual solvents, THF was the only solvent in which the majority of molecules 

did not crystallise in space group P-1 (for molecules crystallised in THF, the space group P21/c 

was most common).   

Based on prior likelihood analysis, solvent density has the potential to be a predictor for 

solvate formation as structures were more likely to crystalize as solvates from high-density 

solvents. The other solvent properties considered, specifically molecular weight, boiling 

point, and dielectric constant, did not correlate with solvate formation.   

As statistical analysis showed no significant trends in low 2-theta ranges for solvates vs non-

solvated crystal structures, machine learning models were trained on the data. In summary, 

eleven models were developed and evaluated for their performance in predicting solvate and 

non-solvate, as well as hydrate and non-hydrate structures. Class imbalance was present in 

Models 1 and 2, resulting in overprediction of the non-solvate class. To mitigate this issue, 

some data were removed from the dataset in Models 3-11 to balance the classes. This led to 

improved precision, recall, and F1-score values for each class. However, the models for 

solvate prediction (Models 4A and 4B) still showed superior performance in predicting the 

solvate class compared to the non-solvate class, possibly due to the more complex variables 

present in the solvate class. The prediction accuracy of the same type of models for hydrate 

prediction (Models 9-11) was comparable to that of the solvate prediction models (Models 

3-5). The models that excluded weak reflection peaks (Model 5 and Model 11) showed similar 

performance as the models that used all peaks (Model 4A and Model 10A), suggesting that 

the weak reflection peaks did not significantly contribute to the model's decision-making. 

Analysis of Models 4A and Model 10A indicated that the variables in the higher 2-theta region 

had higher importance scores, but these scores may have been inflated by the higher feature 

values present in this region. 
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The examination of the importance of peak data in a wider 2-theta range in PXRD patterns 

was conducted through the construction of Models 6 and Model 7, which included additional 

peak data within the range of 10° to 20° 2-theta. The results of these models, as evidenced 

by the improved precision, recall, and F1-score, particularly in the solvate class, suggest that 

the inclusion of this additional peak data has a positive impact on the model's ability to 

predict solvate structures. 

In terms of overall model accuracy, Model 8A emerged as the best performer with a 

prediction accuracy of 68.7%. However, when evaluating the overall F1-score of the model, 

Model 8A was found to be comparable to Models 6 and Model 7, and only slightly superior 

to Models 8B, 8C, and 8D. These findings suggest that the model performance can be 

enhanced by transforming the representation of the data to mitigate bias associated with 

trends in feature values. However, some additional data such as peak position which relevant 

to the available variables like peak distance and peak count did not have a significant impact 

on the performance of the model and can be excluded. This also decrease the size of the 

dataset, resulting to the reduced computational resources. 

In summary, this work explores the use of statistical analysis and machine learning algorithm 

application in predicting solvate co-crystallisation. Statistical analysis of the peak distribution 

in the powder patterns showed that solvated crystal structures are likely to have more peaks 

in PXRD patterns at low 2-theta ranges than non-solvated structures. The machine learning 

models presented here suggest that PXRD peak positions can contribute to determining 

whether a PXRD pattern resulted from a solvated or non-solvated structure. While including 

molecular descriptors and unit cell densities as features in the machine learning models was 

beyond the scope of this project, including such features would likely further improve the 

model's accuracy.  
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7 Overall Conclusions & Further Works 

This thesis probed the parameters relevant to the crystal nucleation process and investigated 

the use of machine learning to predict crystallisation outcomes.  

In the first two research chapters, MFA was used in the solubility screening and cooling 

crystallisation studies in various organic solvents. Due to the variety of MFA crystal shapes, 

ranging from plate-like to needle-like crystals, MFA is a good compound for crystallisation 

shape screening. The research here showed that machine learning models can be 

implemented as a predictive tool to help guide solvent selection to achieve desirable crystal 

attributes and also reduce experimental time and material consumption. These models are 

currently restricted to MFA crystal shape prediction so future work, as discussed later in this 

chapter, is needed to expand model applicability to other compounds in a wider range of 

APIs and solvents. 

In Chapter 4, the thermodynamic and kinetic parameters for the crystallisation of MFA in 

thirty-two organic solvents were studied. The measurement of crystallization enthalpy 

(∆𝐻𝑐𝑟𝑦𝑠𝑡
0 ) can be carried out using calorimetry, which involves determining the heat released 

during crystallization and scaling it with the amount of crystalline material produced at a 

constant temperature, T and pressure, p. However, the accuracy of this method is affected 

by limitations such as the cleanliness and roughness of the calorimetric cells, which can lead 

to crystallisation in a metastable, supersaturated solution. Therefore, an alternative method 

is to calculate ∆𝐻𝑐𝑟𝑦𝑠𝑡
0  from the solubility (Ce) of the crystals at different temperatures, using 

thermodynamics relation and Ce(T). This approach assumes that the heat of crystallisation is 

equal in magnitude but opposite in sign to the heat of dissolution. This correlation is also 

proved by the comparative values between the heat of crystallization and the heat of 

dissolution in various molecules (details are provided in the Appendix). 

By determining crystallisation thermodynamics from the solubility data, it was found that the 

disparities in ∆𝐻𝑐𝑟𝑦𝑠𝑡
0 , ∆𝑆𝑐𝑟𝑦𝑠𝑡

0 , and ∆𝐺𝑐𝑟𝑦𝑠𝑡
0  among different solvents highlight the varying 

state of the solute, as all the crystals grown in the tested solvents belong to the same 

polymorphic form. Additionally, the results showed that thermodynamic parameter B 

derived from the plot of nucleation rate as a function of supersaturation of MFA in six studied 

solvents varied linearly with (∆𝐻𝑐𝑟𝑦𝑠𝑡
0 )

3
. This observed correlation conforms with the 

equation of Turnbull’s rule and enables us to predict the nucleation kinetics of the given 
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compound in solution based on their solubility data. This knowledge could help the solvent 

selection in the initial stage of crystallisation by determining the solution thermodynamics 

which reflects the interactions between the molecules of solute and solvent. In the 

crystallisation of MFA in six solvents, a two-step nucleation mechanism was anticipated due 

to the smaller value of surface free energy than the calculation based on CNT. However, other 

methods, such as light scattering spectroscopy or AFM, are required to support the presence 

of pre-nucleation clusters forming in this mechanism. 

Further work can be carried out to cover more compounds in a larger variety of solvents. By 

increasing the number of experiments and a variety of crystallisation compounds and 

solvents, the correlation between thermodynamic parameter B and ∆𝐻𝑐𝑟𝑦𝑠𝑡
0  and ∆𝑆𝑐𝑟𝑦𝑠𝑡

0  may 

be more obvious. Additionally, future studies could explore whether certain compounds 

nucleate via different nucleation mechanisms (CNT and two-step nucleation) in different 

solvent systems. These studies would enable us to compare the differences in the 

thermodynamic parameters which control the energy barrier for nucleation between two 

different mechanisms and, thus, improve our understanding of nucleation behaviour. 

Furthermore, crystal growth and nucleation behaviours can also be studied by implementing 

analytical techniques such as light scattering spectroscopy, oblique Illumination Microscopy 

(OIM), and atomic force microscopy (AFM). In work done by Malkin and McPherson, light 

scattering techniques can be used to detect the formation of protein and viral particle 

aggregates in a supersaturated solution. In this study, the size of the aggregates gradually 

increases over time, and the increased size was assumed to correspond to the formation of 

metastable clusters in the two-step nucleation pathway.259,260 Furthermore, OIM can be used 

to study the mesoscopic clusters by tracking the clusters’ sizes and positions.149 Additionally, 

AFM can be used to characterize the surface of crystals in nanoscale.149 Implementing these 

additional techniques along with expanding current experiments to include more solvents 

and APIs would continue to improve our understanding of these systems and provide data 

which could be used to train future ML prediction models.  

In Chapter 5, eighty-seven RF classification models were developed for the prediction of the 

shape of MFA crystals in a variety of crystallisation solvents. The two-class prediction model 

(polyhedral vs. needle) had a prediction accuracy of 93% as determined by 10-fold cross-

validation. To determine the ability of the models to predict crystal shape for crystallisation 

solvents not present in the training set, all observations for each solvent were systematically 
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removed from the training data and were instead used as the test data. For these later 

models, different training data sets were explored. Overall, using solvent physical property 

descriptors in the training dataset resulted in the best model performance (as evaluated by 

4-fold cross-validation), compared to using all solvent molecular descriptors or using atom 

count, bond count, and pharmacophore feature descriptors. When using the solvent physical 

properties as the model variables, the most important variables were aqueous solubility and 

molecular refractivity. As these variables relate to H-bonds and London dispersion forces, 

respectively, these results suggest that a solvent’s propensity to form H-bonds and London 

affects the resulting crystal shape. Although the predictive models developed in this work 

were specific to MFA, these results suggest that with adequate data from crystallisation 

experiments, RF classification models could predict crystal attributes for a wider range of 

APIs. Thus, this study highlights the potential role of machine learning and data-driven 

predictive tools to support decision-making at the initial stage of pharmaceutical process 

development. 

Further experimental crystallisation was conducted in solvents for which the models showed 

poor prediction accuracy when data for that solvent was used as the test set but not included 

in the training set. In these experiments, MFA crystals grown from trimethylamine exhibited 

a distinct PXRD pattern which could not be identified as polymorphic form-I, II, or III. Thus, 

these crystals were likely a new solvated form of MFA from triethylamine not previously 

present in the literature. The poor performance of the machine learning model for 

trimethylamine may have therefore resulted from the presence of a polymorphic form not 

present in the rest of the dataset.  

The RF models built in Chapter 5 focused only on the prediction of the crystal shape of MFA 

crystallised from 30 organic solvents. While MFA is a good compound for the study of crystal 

shape due to the variety of crystal shapes dependent on the crystallisation solvent and 

supersaturation, studying the crystallisation of more organic compounds is also of interest. 

Moreover, studying only MFA has limited the number of solvents studied to those suitable 

for MFA crystallisation. By studying the crystallisation of more organic compounds, we could 

explore a more diverse range of solvents, which, in turn, would improve our understanding 

of the effect of different solvent properties on the shape of crystals of various organic 

compounds. Additionally, other crystallisation parameters such as temperature or stirring 

rate could be varied to investigate their influences on crystal shape. Other crystallisation 
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techniques, such as evaporation, anti-solvent crystallisation, or crystallisation from melt, 

could also be included in the study. These proposed studies would provide additional data 

for future ML models to both improve model performance and expand the types of 

predictions made by the models. Furthermore, the correlation between molecular 

descriptors as well as other crystallisation process parameters and the shape of targeted 

crystals could be observed. The results from these studies could facilitate solvent selection 

and the control of the crystallisation process to obtain the crystals with desired shapes. 

Undertaking experiments that explored all of these parameters would be facilitated by 

automated platforms for high-throughput crystallisation screening. ML imaging analysis 

could be implemented for the automated identification of crystal shapes in this high-

throughput platform. 

In Chapter 6, RF classification models were developed for predicting solvate and non-solvate 

crystal structures from PXRD patterns. Statistical analysis of the peak distribution in the 

powder patterns showed that solvated crystal structures that are likely to be denser than 

their non-solvated counterparts are more likely to have peaks at low 2-theta ranges. Eleven 

RF classification models were built and, the best model had 68.7% prediction accuracy for 

two-class prediction (solvates vs. non-solvates). Overall, the machine learning models 

presented in Chapter 6 suggest that while PXRD peak positions can contribute to determining 

whether or not a PXRD pattern results from a solvated or non-solvated structure, this data, 

in isolation, does not yield prediction accuracies above 70% and F1-score above 0.70.  

The RF models built in Chapter 6 were used to predict whether a given compound forms 

solvates or non-solvates by considering the PXRD pattern with emphasis on the peaks in the 

low 2-theta region. The training dataset for these models used only the data of PXRD peak 

location to predict the solvated and non-solvated forms of the compounds as the inclusion 

of additional features was beyond the scope of this work. However, to develop the model 

performance, molecular descriptors of crystallisation compounds and solvents and unit cell 

densities could be added to the training dataset for the machine learning models. This 

additional data could add more value to this work by correlating the molecular descriptors 

to the formation of solvated structures.  

This thesis expands current knowledge of thermodynamic and kinetic parameters of MFA 

crystallisation while also exploring further applications of machine learning models in the 

field of crystallisation. The work shows the potential to be expanded to the prediction of 
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crystallisation of other APIs in other solvents using other experimental parameters, such as 

crystallisation temperature, stirring rate, or even different crystallisation techniques. Improving 

our understanding of crystallisation and being able to predict crystal shape will facilitate us 

to better design the experiment prior to any wet-lab work. This work could contribute to 

better control of crystal attributes in pharmaceutical manufacturing by enabling us to predict 

and therefore avoid undesirable crystal attributes like needle-shaped crystals which cause 

issues in downstream pharmaceutical manufacturing processes. This informed design of 

crystallisation experiments for manufacturing processes could in turn cut down on the early-

stage screening experiments, thereby reducing associated time, material costs and 

environmental impact. 
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Appendix 

Thermodynamics of crystallisation and dissolution  

Crystallisation and dissolution are both thermodynamic processes that involve the formation 

and breaking of solid-liquid interfaces. The fundamental difference between these two 

processes is the direction of heat flow.261 In crystallisation, a solid is formed from a liquid as 

molecules or ions come together and organize into a repeating three-dimensional pattern. 

This process releases heat, known as the heat of crystallization. On the other hand, 

dissolution is the process by which a solid dissolves in a liquid, forming a solution. This process 

absorbs heat, known as the heat of dissolution.261 In the process of crystallisation, growth 

units are transported from the liquid phase to the surface of the crystal nuclei and 

incorporated at specific locations called kink sites. This process is known as surface kinetics 

(Figure S1).148 The nucleation kinetics, which determines the formation of crystals, is largely 

influenced by the nucleation barrier, the speed of transport of growth units, and the surface 

kinetics.171 When the transport of growth units is faster than their integration at the surface, 

the formation of amorphous structures is more likely to occur. Conversely, when the 

integration of growth units at the surface is rapid, they are able to arrange into an orderly, 

compact structure that eventually forms a crystal.262 

 

Figure S1. The process of growing a crystal involves the transfer of growth units from the liquid phase 

(liquid complex molecule - Green) to specific sites on the surface of crystal nuclei, known as kink sites. 

The formation of crystal requires the reorientation of an adsorbed molecule (Yellow) before integrating 

into an orderly, compact structure (as solid complex molecule - Blue) at kink site. 
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The heat of crystallisation and heat of dissolution is often assumed to be equivalent, with the 

amount of heat released during crystallisation equal to the amount of heat absorbed during 

dissolution. However, this assumption holds true only under certain conditions, such as when 

the solid and liquid phases are in equilibrium and the process is carried out at a constant 

temperature. This assumption does not take into account the effects of surface integration 

during crystallisation on the heat of crystallisation.155 In reality, the crystallisation process 

typically occurs at the surface of the liquid and the heat is released over a range of surface 

areas. This can have an impact on the overall heat of crystallisation. Additionally, as the 

crystallisation process proceeds, the surface area may change, which can also affect the heat 

of crystallisation.155 

The direct measurement of the values of heat of crystallisation is limited by the accuracy of 

the methods employed.261 Calorimetry is one of the techniques used to measure the heat 

flow associated with a chemical or physical process. It is commonly used in thermodynamics 

to determine the enthalpy change (ΔH) associated with a reaction or phase change. The main 

advantage of calorimetry is its ability to directly measure the heat flow associated with a 

process, which allows for the determination of the enthalpy change.263 However, calorimetry 

is not a very sensitive technique and may not be able to detect small changes in heat 

flow.264,265 The major challenges include ensuring the cleanliness and smoothness of the 

calorimetric cells, as even small imperfections can lead to crystallisation in a metastable, 

supersaturated solution.261 Another challenge is accurately determining the total mass of the 

formed crystals, which can be distorted by solution trapped between crystals and mislabeled 

as a crystalline mass. In homogeneous nucleation, where crystals are allowed to form 

spontaneously, the measurement can be time-consuming and difficult due to the extended 

duration of the process.261 

An alternative approach for determining the heat of crystallization is to measure the 

solubility, Ce, of the crystals at different temperatures and use standard thermodynamics 

relations to calculate ∆𝐻𝑐𝑟𝑦𝑠𝑡
0 , ∆𝑆𝑐𝑟𝑦𝑠𝑡

0 , and ∆𝐺𝑐𝑟𝑦𝑠𝑡
0 . The equilibrium constant for the reaction 

of a molecule in solution to a molecule in crystal form is K = Ce
−1, assuming that the activity 

coefficients are close to one due to low solubility and that the solution behaves as an ideal 

one.262,266 
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It is assumed that at solubility, the heat of crystallization is equal in magnitude but opposite 

in sign to the heat of dissolution, i.e. ∆𝐻𝑐𝑟𝑦𝑠𝑡
0  =  −∆𝐻𝑑𝑖𝑠𝑠𝑜

0 .261 This leads to the equation for the 

equilibrium constant for crystallization as Kcryst = Ce
−1, at given temperature T (Equation 

S1).148,149 

∆𝐺𝑐𝑟𝑦𝑠𝑡
0  = − RT𝑙𝑛K = RT𝑙𝑛𝐶𝑒   Equation S1 

To determine ∆𝐻𝑐𝑟𝑦𝑠𝑡
0 , the van‘tHoff relation (Equation S2) can be employed.148,149 

       
𝜕𝑙𝑛𝐶𝑒

𝜕(1
𝑇⁄ )

=  
∆𝐻𝑐𝑟𝑦𝑠𝑡

0

𝑅
     Equation S2 

The comparison between the ∆𝐻𝑐𝑟𝑦𝑠𝑡
0  obtained through directly measuring the heat of 

crystallization and the measured heat of dissolution ∆𝐻𝑑𝑖𝑠𝑠𝑜
0  is presented in Table S1. 

Table S1. Comparative values between heat of crystallisation (∆𝐻𝑐𝑟𝑦𝑠𝑡
0 ) and heat of dissolution (∆𝐻𝑑𝑖𝑠𝑠𝑜

0 ) 

Substance 
−∆𝑯𝒄𝒓𝒚𝒔𝒕

𝟎  from 

direct measurement 
[kJ/mol] 

Measured 

∆𝑯𝒅𝒊𝒔𝒔𝒐
𝟎  [kJ/mol] 

% difference Reference 

Na2HPO4 • 12H2O 90.79 91.30 0.56 % 

Perreu 1934267 

Na2SO4 • 10H2O 70.08 70.33 0.36 % 

Na2CO3 • 10H2O 56.90 56.61 0.51 % 

Na2S2O3 • 5H2O 31.30 31.46 0.51 % 

ZnSO4 • 7H2O 22.72 23.01 1.28 % 

MnCl2 • 4H2O 19.87 20.12 1.26 % 

BaCl2 • 2H2O 19.25 19.79 2.81 % 

MgSO4 • 7H2O 17.62 17.36 1.48 % 

(NH2)2CO 11.12 11.37 2.25 % Rychly 1969268 

CuSO4 • 5H2O 10.46 10.21 2.39 % Perreu 1934267 

From the data presented in Table S1, it is evident that the values of ∆𝐻𝑐𝑟𝑦𝑠𝑡
0   and  ∆𝐻𝑑𝑖𝑠𝑠𝑜

0  are 

comparable. The results demonstrate a correlation between the heat of crystallization and 

heat of dissolution, and the discrepancies identified are minimal. This supports the use of 

solubility data for the determination of crystallization thermodynamics. Additionally, it is 

important to note that limitations of the calorimetry method, such as improper cleaning of 

the vessel wall or inaccuracies in the measurement of the actual amount of the crystal 
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substance at the end of the measurement, may account for some of the discrepancies 

between ∆𝐻𝑐𝑟𝑦𝑠𝑡
0   and  ∆𝐻𝑑𝑖𝑠𝑠𝑜

0  presented above. 

Despite the advantages of the approach for the determination of the crystallization heat from 

the solubility of crystals at different temperatures, including lower cost and accessible data, 

it is crucial to take into account an important limitation. This approach assumes that the 

crystal dissolution process follows ideal thermodynamic behavior, which may not always be 

the case in practice. Various factors, such as crystal defects, impurities, and crystal growth, 

can cause crystals to display non-ideal behavior and thereby affect the thermodynamics of 

the process, potentially leading to errors in the determination of the crystallization 

heat.148,269 


