
Algorithms for exploring structure in
complex networks

Azhar Aleidan

Department of Mathematics and Statistics,

University of Strathclyde,

Glasgow, U.K.

A thesis submitted for the degree of

Doctor of Philosophy

September 18, 2023

Copyright Declaration

This thesis is the result of the author’s original research. It has been composed by the

author and has not been previously submitted for examination which has led to the award

of a degree.

The copyright of this thesis belongs to the author under the terms of the United

Kingdom Copyright Acts as qualified by the University of Strathclyde Regulation 3.50.

Due acknowledgement must always be made of the use of any material contained in, or

derived from, this thesis.

Signed:

Date:

i

Acknowledgements
First and foremost, I want to thank God, for his continual great blessings on me

and for giving me the ability to complete my thesis.

Throughout the writing of this thesis, I have received a great deal of support and as-

sistance from many people. This dissertation would not have been possible without their

guidance and help. I would first like to express my deepest gratitude to my supervisor,

Dr. Philip Knight, for his continuous support, knowledge, guidance, valuable comments,

and advice which have made this work possible. Dr. Knight, thank you for helping me

to become a better researcher.

I would also like to give special thanks to my family who endured this long process

with me and always offered their support and love. Their belief in me has kept me moti-

vated and my spirits high during this process. I want to thank my parents for everything

I have achieved. I want to thank my brothers and sisters for their support. I want to

thank my husband, Khaled, who supported me through this journey. I want to thank my

children, Abdullah, Sara, Dana, Yara, and Ahmed for their patience with my preoccupa-

tion.

I would also like to thank Princess Nourah bint Abdulrahman University for pro-

viding the funding for me to complete my PhD and for the University of Strathclyde

for accepting me into this program and providing me with the resources to successfully

complete it.

Finally, thank God, for letting me through all the difficulties to end this thesis.

Abstract
As real-world networks grow increasingly complex, new and adaptable methods are

required to analyse and understand the defining features of these networks. To find and

exploit these unique network features, current methods, primarily for random model gen-

eration and detection of anti-communities, are explored, tested, and adapted with a wide

range of networks from disparate fields including neuroscience, ecology, geology, social

ecology, linguistics, network theory, psychology, microbiology, gene sequencing, business

corporations, and sociology. In particular, to better approximate typical structural fea-

tures of real-world networks, Erdős–Rényi and scale-free network random models are mod-

ified by adding select subgraphs to match real-world networks with the aim of improving

their usefulness in network analysis.

Before looking for anti-communities we first look at ways to partition graphs into

communities. As well as generic techniques such as local improvement methods and

spectral partitioning, a number of specialised methods are studied. These include link

centrality, similarity, communicability, optimisation, and the Louvain method.

We then look at topics associated with near bipartivity in real world graphs. Partic-

ular attention is given to the measurement of bipartivity and anti-communities, and their

definitions are broadened, refined and tested so that many more networks that demon-

strate varying degrees of bipartivity can be analysed using those methods. We prove new

theoretical results showing how widely measures can differ and then look to determine

the best measures to use, as well as the most effective structure-revealing algorithms.

Thorough testing involves nearly one hundred real-world networks including some which

have a known tendency for bipartivity (such as airlines networks, and fullerene graphs)

as well as near-bipartite graphs based on random trees (including those generated from

Prüfer sequences, and other artificially constructed examples.

We are able to give conclusions about the measures and methods that should be

employed in practice.

Contents

1 Introduction 1

1.1 Introduction . 1

1.2 Definitions . 3

1.2.1 Clustering Coefficients of Networks 11

1.2.2 Graph Laplacian . 12

1.2.3 The Laplacian . 13

1.2.4 The eigenvalues and eigenvectors of graph Laplacian 13

1.2.5 The normalized Laplacian . 14

1.2.6 The Signless Laplacian . 15

1.3 Test Networks . 18

1.3.1 Network Descriptions . 18

2 Community Detection 34

2.1 Introduction . 34

2.1.1 Definitions . 37

2.1.2 Stochastic Block Model . 39

2.1.3 Examples . 40

2.2 Algorithms to Partition . 44

2.2.1 Local Improvement Methods . 45

2.2.2 Spectral Partitioning . 48

2.3 Quality of partitions . 51

2.3.1 Modularity . 51

2.3.2 Similarity . 53

iv

CONTENTS

2.4 Community detection methods . 55

2.4.1 Link centrality . 55

2.4.2 Communicability . 56

2.4.3 Optimisation . 57

2.4.4 The Louvain Method . 59

2.4.5 Dynamics . 61

2.5 Anti-Communities . 62

2.5.1 A Spectral Bipartization Method 63

2.5.2 Anti-modularity . 64

3 Random models with community structure 67

3.1 Random graphs and graph generators . 67

3.1.1 Erdős–Rényi . 68

3.1.2 Scale-free networks . 70

3.1.3 Effect of adding triangles on fragments (ER, BA) 72

3.1.4 Methods . 77

3.1.5 Results . 78

3.1.6 Conclusion . 89

4 Measuring Bipartivity 90

4.1 Introduction . 90

4.2 Characterising Bipartivity . 93

4.2.1 Bipartivity Measures . 99

4.2.2 Comparison of Bipartivity Measures 106

4.2.3 Example 1 . 106

4.2.4 Example 2 . 110

4.2.5 Random Networks Bipartivity . 119

4.2.6 Real-world Bipartivity . 128

4.2.7 Fullerene Graphs . 133

4.2.8 Airline Graphs . 135

4.2.9 Conclusion . 137

v

CONTENTS

5 Finding Anti-communities 139

5.1 Introduction . 139

5.2 Methods for finding bipartitions . 146

5.2.1 Experiment . 147

5.3 Local improvement with modularity . 162

5.3.1 Local improvement algorithm . 163

5.3.2 Example . 164

5.4 Experiments . 167

5.4.1 Experiment 1 . 167

5.4.2 Experiment 2 . 171

5.5 Conclusion . 179

6 Conclusions and Future Work 181

A MATLAB code for Chapters 4 and 5 185

vi

Chapter 1

Introduction

1.1 Introduction

According to the Oxford English Dictionary the use of the word ‘network’ dates back to

the 16th century being “an arrangement of intersecting horizontal and vertical lines” and

“a group or system of interconnected people or things”. When we consider the image of

these lines and points of connection between these lines, then any group of items that

are related in some way can then form such a system. The world around us is filled

with systems that are connected in ways both tangible and intangible. With the general

concept of the word having such wide-ranging applications, it should come as no surprise

that a quick internet search of the word results in almost 12 billion search results. The

applications are seemingly endless from physical connections such as railways, telephone

lines and roads to energy connections such as chemical and molecular bonds to social

connections such as relationships between friends, families, or coworkers; it is evident and

expected that the world around us is composed of related items connected in various ways

in order to fulfill vast and varied functions [22].

Networks (known at the time by the synonymous term ”graphs”) were first intro-

duced in the 18th century to try to describe a type of maths where the topology was based

on links rather than distances. As related to mathematics, the origin of network theory

is said to have begun with a problem encountered by Leonhard Euler, the Seven Bridges

of Konigsberg in Prussia (1736). Some would imagine a new type of mathematics arising

1

Chapter 1 – Introduction

from the need to solve a serious problem with significant implications, but the beginning of

network theory or graph theory can be traced back to high society in Konigsberg, Prussia

where the residents entertained themselves with a witty puzzle that involved arranging a

route to tour the town but crossing each of the town’s seven bridges only once. The puzzle

was considered unsolvable by some when Euler addressed the problem mathematically by

graphing the problem which required use of a math that considered the “geometry of po-

sition” a term which Euler uses but acknowledges was coined by Gottfried Leibniz. Euler

wrote an article describing the problem and a general method for solving it. Most notably,

he replaced the map of Konigsberg with a diagram of the main features and formulated

the problem. In so doing, he not only proved its impossibility but his approach marks the

advent of a new branch of mathematics- modern graph (network) theory. Important to

note is that Euler’s approach to the real-world Konigsberg Bridge Problem could not have

been solved with the mathematical tools known at the time. The problem did not require

knowledge or measurements of lengths or geometry, only on how they were connected to

each other or their topology [22].

In 1878, James J. Sylvester published an article in Nature entitled ‘Chemistry and

Algebra’ wherein he used the term graph to depictions of molecular structure. In, 1912

the relationship between predator and prey was depicted in an ecological network demon-

strating that there is a long history of interdisciplinary use of network theory which has

been expounded upon by Frank Harary, a mathematician considered to be the father of

modern graph theory [22].

Some seminal work on the theory of graphs was done by Erdos and others in the

1950s and their work and others has been used in countless areas of mathematics and

physics since then. Subsequent advances in graph theory include discovery of trees in the

mid-19th century by Gustav Kirchhoff in electrical networks which were later used by

Cayley, Sylvester and Polya in solving molecular problems, discovery of graph algorithms

using the maze problem discussed above, the travelling salesman problem in the 1930s by

Dantzig, Fulkerson and Johnson at Princeton, the minimum connector problem, and the

shortest and longest path problems in the 1940s and 50s by the US Navy [34].

2

Chapter 1 – Introduction

Erdos and Renyi created a random graph model to gain insight into certain prop-

erties of graphs. Contemporaneously, Edgar Gilbert also created a random graph model.

Over the last few years people have looked in detail at real world networks. In real world

networks we find structures which do not necessarily appear in more mathematical models

of graphs. These include communities, which are a hugely important topic in the study

of social networks. Or more generally, small groups of nodes which make in particular

shapes.

In this thesis, we’re going to look at various efficient ways of understanding what

some of these real-world structures are and how we can derive numerical techniques to

find important structures. To start with, we look at various tools for clustering. In the

third chapter, we look at how you can generate graphs which have more realistic frequen-

cies of some of the small graphlets which you see in real world networks. Then, we show

that by a simple application of adding triangles to standard random network models, we

can add a lot more other features that are seen in real world graphs. We then move

onto the important topic of bipartivity and approximate bipartivity. We show that the

multiple different definitions of bipartivity can lead to very different understandings of

when a graph is bipartite or not bipartite. In particular, we are able to come up with a

notion of local and approximate bipartivity. We then exploit these ideas to look at spec-

tral techniques for finding anticommunities which follow in the spirit of finding spectral

communities. There are multiple different ways of doing this and we give exhaustive tests

and show that using either the normalized or the sign of the Laplacian seems to give the

best results especially if it’s combined with a very simple method of local improvement.

Here in the exact opposite of what we want to do in finding communities we look for ways

of reducing modularity as much as possible.

Original material in Chapters 4 and 5 has been published in [3].

1.2 Definitions

We introduce some basic definitions and theorems for networks.

3

Chapter 1 – Introduction

Definition 1.2.1. A graph (network) G, is a pair (V,E) where V is a set of nodes and

E is a set of edges.

• A network G is undirected if E is symmetric (if (u, v) ∈ E ⇔ (v, u) ∈ E).

• A network has a loop if it is contain an edge of the form (v, v).

• A network G is a simple graph if E is symmetric and anti-reflexive.

In our work, we will use a simple graph.

We introduce the graph Gr in the Figure 1.1. The graph Gr has 6 nodes with 7

edges and the edges set of the graph Gr is

Er = {(1, 2), (1, 4), (2, 1), (2, 3), (2, 4), (2, 6), (3, 2), (3, 4), (4, 1), (4, 2), (4, 3), (4, 5), (5, 4), (6, 2)}

Figure 1.1: The graph Gr.

• Gk = (Vk, Ek) is a subgraph of G(V,E) if Vk ⊆ V and Ek ⊆ Vk ⊗ Vk ∩ E.

• If e = (v1, v2) is an edge in the network G then we say v1 is incident to and v2 is

incident from e and v1 is adjacent to v2.

4

Chapter 1 – Introduction

• Ḡ = (V, Ē) is the complement of G if Ḡ is simple graph with the same vertices as

G and if (u, v) ∈ E ⇔ (u, v) /∈ Ē.

• The degree of the node is the number of edges incident on it.

• We will use kmax to denote the maximum degree of any node of a simple network.

• If a node has degree 0 then we say the node is an isolated node.

Example 1.

Figure 1.2: Example of degree.

The degree of the nodes in the network in Figure 1.2 are 3, 2,1,0,1 and 1. The

maximum degree is 3 at node 1 and the node 4 is an isolated node.

• The complete graph Kn with n nodes is a graph with an edge between every distinct

node. Hence each node has the degree n− 1 (see Figure 1.3).

Figure 1.3: The complete graphs K4 and K6.

5

Chapter 1 – Introduction

• A network is regular if all nodes have the same degree.

• The null graph Nn is the graph with n nodes and no edges.

• If a graph contains at least one edge then we say the graph is nontrivial.

• The cycle graph Cn is a graph with n nodes which can be ordered so each is connected

to only its immediate neighbours. We can get the path graph Pn−1 with n nodes

and n− 1 edges if we remove an edge from Cn, and we can get a wheel graph Wn+1

with n + 1 nodes if we add a node to Cn and connected it with every other node

(see Figure 1.4).

Figure 1.4: C5, P4 and W6.

• The star graph S1,n−1 is a graph with a single central node connected to all other

n− 1 nodes and no other edges.

Definition 1.2.2. The adjacency matrix A of the graph G(V,E) is a square matrix n×n

with

aij =


1 if (i, j) ∈ E

0 if (i, j) /∈ E
.

6

Chapter 1 – Introduction

Definition 1.2.3. A walk in the graph G(V,E) is a series of edges

(u1, v1), (u2, v2), . . . , (up, vp)

where vi = ui+1 (i = 1, 2, . . . , p− 1). The walk is closed if vp = u1. A walk in which all

the edges are distinct is a trail. A trail in which all the ui are distinct is a path. A cycle

is a closed path. A triangle is a cycle of length 3 (C3).

Definition 1.2.4. IfG = (V,E) is a graph with n nodes andm edges (E = {e1, e2, . . . , em})

with ei = (ui, vi), for 1 ≤ i ≤ m, 1 ≤ j ≤ n

bij =


1 if ui = j ∈ E

−1 if vi = j

0 otherwise

,

then the matrix B = (bij) is called incidence matrix of the graph G.

Definition 1.2.5. A connected network with no cycles is a tree. A union of trees is a

forest.

Definition 1.2.6. A network is bipartite if the nodes of the network G(V,E) can be

divided into disjoint sets V = V1∪V2 such that for all (u, v) ∈ E, either u ∈ V1 and v ∈ V2

or u ∈ V2 and v ∈ V1.

There is a relationship between networks and matrices because we can represent

networks with matrices. In this section, we define the determinant of the matrix A, the

eigenvalues of A, the eigenvectors of A, and give some definitions of matrices.

Definition 1.2.7. The determinant of the matrix A ∈ Rn×n, is given by

det(A) =


A if n = 1∑n

j=1(−1)i+jaijdet(Aij) if n > 1

for any fixed i, where Aij is the submatrix formed from A by deleting its ith row and the

jth column.

7

Chapter 1 – Introduction

Definition 1.2.8. For the square matrix A with dimension n, there exist a scalar value

λ and vector x such that

Ax = λx.

We call λ an eigenvalue of A and x an eigenvector.

Definition 1.2.9. The polynomial

det(λI − A) = b0 + b1λ+ b2λ
2 + · · ·+ bnλ

n

is the (c.p) characteristic polynomial of A and det(λI − A) = 0 is the characteristic

equation.

Definition 1.2.10. The set of all eigenvalues is the spectrum of A

σ(A) = {λ : det(λI − A) = 0}

and the spectral radius of A is the modulus of the largest eigenvalue

ρ(A) = maxλ∈σ(A) | λ | .

Definition 1.2.11. If the adjacency matrix of a simple graph G has distinct eigenvalues

λ1 > λ2 > · · · > λk with multiplicities p1, . . . , pk respectively then we say that this is the

spectrum of G, and we write

σ(G) = {[λ1]p1 , [λ2]p2 , . . . , [λk]
pk}.

For certain graphs we know σ(G) explicitly.

Example 2.

• In the complete graph Kn, the adjacency matrix is A = E − I, where E is a matrix

of ones. Since an eigenvalue of E is zero with algebraic multiplicity n − 1 then A

has an eigenvalue of −1 of algebraic multiplicity n−1 and the remaining eigenvalue

is n− 1 since Ae = (n− 1)e.

8

Chapter 1 – Introduction

Hence

σ(Kn) = {[n− 1]1, [−1]n−1}.

• In the cycle graph Cn, the adjacency matrix is

A =



0 1 0 . . . 0 1

1 0 1 0 . . . 0

0 1 0
. . . 0

... 0 1
.

...

0
...

. . . 0 1

1 0 . . . 0 1 0


.

Suppose that ωn = 1 and v =

[
1 ω ω2 . . . ωn−1

]T
. Then

Av =



ω + ω−1

1 + ω2

ω + ω3

...

ωn−3 + ωn−1

1 + ωn−2



then ω+ω−1 = 2Reω is an eigenvalue of A for any root of unity ω. So, the spectrum

of Cn is

σ(Cn) = {2cos(
2πj

n
), j = 1, . . . , n}.

The adjacency matrices are always nonnegative and so we can use the Perron The-

orem for any nonnegative matrices.

Theorem 1 (Perron [25]). Suppose A ∈ Rn×n and A > 0. Then A has an eigenvalue λ

that satisfies the following properties.

1. λ = ρ(A).

9

Chapter 1 – Introduction

2. If µ ∈ σ(A) and µ 6= λ then |µ| < λ.

3. λ has algebraic multiplicity 1.

4. If Ay = λy then y = αx where x > 0 and α ∈ C.

Definition 1.2.12. If A ∈ Rn×n we say A is reducible if there exists P (a permutation)

such that

A = P

 X Y

O Z

P T

where X, Y and Z are square matrices. We say A ∈ Rn×n is fully decomposable if there

exists P and Q (permutations) matrices such that

A = P

 X Y

O Z

Q.
The square matrix is irreducible if is not reducible and fully indecomposable if it is not

decomposable.

Theorem 2 (Perron-Frobenius [25]). If the matrix A is fully indecomposable and non-

negative then the properties the Theorem 1 still hold and if the matrix is irreducible then

the properties 1,3 and 4 in Theorem 1 are guaranteed to hold.

The Perron-Frobenius theorem is relevant to networks, in particular we can refer

directly to connectively

• If A is symmetric and reducible then it can be permuted into block

 X O

O Z

,

where X and Z are completely independent of each other.

• If either X or Z is reducible it can also be permuted into diagonal form, and we know

that any any symmetric matrix can be written in the form Pdiag(A1, A2, A3, . . . , Ak)P
T ,

where each of A1, A2, . . . , Ak is irreducible. So, the Perron-Frobenius theorem can

then applied to each block.

• A network G is connected if and only if its adjacency matrix A is irreducible.

10

Chapter 1 – Introduction

1.2.1 Clustering Coefficients of Networks

Many networks contain a large number of triangles. This feature of the network is a

general consequence of high transitivity which means that the network has communities

of nodes that are densely connected internally. Clustering coefficients measure this and

are a widely-used statistic in network theory. They measure how many 2-paths (P2) in a

network are closed to form triangles (C3).

We will define two clustering coefficients. The first is the Watts-Strogatz clustering

coefficient. We define the clustering of a node by

Ci =
ti

ki(ki − 1)/2
=

2ti
ki(ki − 1)

where the ti is the number of triangles attached to node i of degree ki. The Watts-Strogatz

clustering coefficient is the average of the clustering coefficient of each node in a network:

C̄ =
1

n

∑
i

Ci.

The Newman clustering coefficient, also known as the transitivity index of the net-

work, is defined as

C =
3 | C3 |
| P2 |

=
3t

| P2 |

where | C3 | is the total number of triangles and | P2 | is the number of paths of length 2

[25].

Example 3.

Figure 1.5: Example network.

11

Chapter 1 – Introduction

First, we will compute the Watts-Strogatz clustering coefficient for the network in

Figure 1.5.

C1 =
2.(3)

4(3)
=

1

2
, C2 =

2.(1)

4(3)
=

1

3
, C3 =

2.(2)

4(3)
=

1

3
, C4 =

2.(3)

4(3)
=

1

2
, C5 =

2.(2)

3(2)
=

2

3
, C6 = C7 = 0, C8 = 1

⇒ C̄ =
1

8
(
10

3
) =

5

12
.

Second, we will use the Newman clustering coefficient to compute the clustering coefficient

for the graph in Figure 1.5:

t =| C3 |=
1

6
tr(A3) =

24

6
= 4

and

P2 =
n∑
i=1

ki(ki − 1)

2
=

4(3) + 3(2) + 4(3) + 4(3) + 3(2) + 1(0) + 1(0) + 2(1)

2
= 25

⇒ C =
3(4)

25
=

12

25
= 0.48.

We see that 0 ≤ C, C̄ ≤ 1. For all networks C, C̄ ∈ [0, 1].

1.2.2 Graph Laplacian

In graph theory, we often use the graph Laplacian which is a matrix with the same infor-

mation as the adjacency matrix but different useful and important properties.

12

Chapter 1 – Introduction

1.2.3 The Laplacian

Definition 1.2.13. [14] If G is a simple graph and kv denotes the degree of vertex v, the

Laplacian graph L is defined as

L(u, v) =


kv, if u = v,

−1, if u, v are adjacent,

0, otherwise.

This can also be written as L = D−A where D is the diagonal matrix of degree or

L = BBT , where B is the incidence matrix defined in definition 1.2.4.

1.2.4 The eigenvalues and eigenvectors of graph Laplacian

The set of all the Laplacian eigenvalues is called the Laplacian spectrum of the graph G.

Definition 1.2.14. The vector e = (1, 1, . . . , 1)T is always an eigenvector of Laplacian for

eigenvalue 0 because Ae = De and we know that all the Laplacian eigenvalues are nonneg-

ative because the Laplacian is positive semidefinite (because xTL(G)x = xT (
∑

e∈E Le)x =∑
e∈E x

TLex =
∑

(i,j)∈E(xi − xj)2 ⇒ xTLx ≥ 0).

Theorem 3. Suppose the eigenvalues of the Laplacian of a graph are ordered such that

λ1 ≥ λ2 ≥ · · · ≥ λn−1 ≥ λn = 0

then the following results holds [25]:

• λn−1 > 0⇔ G is connected.

• kmax ≤ λ1 ≤ 2kmax, where kmax is the maximal degree of a node in the associated

network.

• λ1 is bounded above by the maximum of the sum of degree of adjacent nodes. That

is,

λ1 ≤ max(i,j)|aij=1(ki + kj)

13

Chapter 1 – Introduction

1.2.5 The normalized Laplacian

Definition 1.2.15. Let D denote the diagonal with the v-entry having value kv.

The Normalized Laplacian of G is defined by

L(u, v) =


1 if u = v and ku 6= 0

− 1√
kukv

if u, v are adjacent

0 otherwise

so L = D
−1
2 LD

−1
2 , with D−1(u, v) = 0 for kv = 0.

We say v is an isolated node if kv = 0.

If G is k-regular, then L = I − 1
k
A where A is the adjacency matrix and I is the identity

matrix.

For a graph G without isolates nodes.

L = D−1/2LD−1/2 = I −D−1/2AD−1/2.

L can also be written as L = SST where S is the matrix whose rows are indexed

by the vertices and whose columns are indexed by the edges of G such that each column

corresponding to an edge e = (u, v) has an entry 1√
ku

in the row corresponding to u, an

entry 1√
kv

in the row corresponding to v, and has zero entries elsewhere. (As it turns out,

the choice of signs can be arbitrary as long as one is positive and the other is negative)

[14].

Since L is symmetric, its eigenvalues are real and we can assume that they are

ordered, i.e. λ1 ≤ λ2 ≤ · · · ≤ λn.

The vector D
1
2 e = (

√
d1,
√
d2, . . . ,

√
dn)T is an eigenvector of the eigenvalue 0 be-

cause:

LD
1
2 e = D−1/2LD−1/2D

1
2 e = D−1/2Le = 0.

Since L = SST the normalized Laplacian L is positive semidefinite.

14

Chapter 1 – Introduction

Lemma 1. LetG be a graph on n nodes with normalized Laplacian eigenvalues λ1, λ2, . . . , λn.

Then 0 ≤ λi ≤ 2 and λn ≥ n
n−1

[89].

Example 4.

• For the complete graph Kn on n vertices, the eigenvalues of L are 0 and n
n−1

(with

multiplicity (n− 1).

• For the complete bipartite graph Km,n on m + n vertices, the eigenvalues of L are

0, 1 (with multiplicity (m+ n− 2)), and 2.

• For the star S1,n−1 on n vertices, the eigenvalues of L are 0, 1 (with multiplicity

(n− 2), and 2.

• For the path Pn on n vertices, the eigenvalues of L are 1−cos 2πk
n−1

for k = 0, . . . , n−1.

• For the cycle Cn on n vertices, the eigenvalues of L are 1−cos 2πk
n

for k = 0, . . . , n−

1[14].

1.2.6 The Signless Laplacian

The matrix Ls = D + A is called the signless Laplacian. We can also consider:

Definition 1.2.16. Let G be a graph with n vertices and m edges. Suppose each edge

of G is assigned an orientation, which is arbitrary but fixed. The vertex-edge incidence

matrix of G, denoted by R(G), is the n×m matrix defined as follows. The rows and the

columns of R(G) are indexed by n vertices and m edges, respectively. The (i, j)-entry

of R(G) is 0 if vertex i and edge ej are not incident, and otherwise it is 1 or −1 as ej

originates or terminates at i, respectively. We often denote R(G) simply by R.

Let n,m,R be the number of vertices, the number of edges and the vertex-edge

incidence matrix of a graph G. Then

RRT = D + A,RTR = A+ 2I.

15

Chapter 1 – Introduction

The eigenvalues of RRT and RTR are the same.

Example 5.

• Consider the graph shown in Figure 1.6. Its incidence matrix is given by

Figure 1.6: Example of normalized and signless laplacian.

R =



1 0 0 1 0

1 1 0 0 1

0 1 1 0 0

0 0 1 1 1


where rows represent vertices and columns represent edges.

Ls = RRT =



2 1 0 1

1 3 1 1

0 1 2 1

1 1 1 3



S =



1√
2

0 1√
2

0 0

−1√
3

1√
3

0 0 1√
3

0 −1√
2

0 1√
2

0

0 0 −1√
3

1√
3
−1√

3



16

Chapter 1 – Introduction

L = SST =



1 −0.4082 0 −0.4082

−0.4082 1 −0.4082 −0.3333

0− 0.4082 1 −0.4082

−0.4082 −0.3333 −0.4082 1


• Consider T31 shown in Figure 1.7.

Figure 1.7: Example of normalized and signless Laplacian for T31.

R =



1 1 0 0

0 1 1 0

1 0 1 1

0 0 0 1



Ls = RRT =



2 1 1 0

1 2 1 0

1 1 3 1

0 0 1 1



S =



1√
2

0 0 1√
2

−1√
2

1√
2

0 0

0 −1√
3

1√
3

−1√
3

0 0 −1 0



17

Chapter 1 – Introduction

L = SST =



1 −0.5 −0.4082 0

−0.5 1 −0.4082 0

−0.4082 −0.4082 1 −0.5774

0 0 −0.5774 1



1.3 Test Networks

Throughout this thesis, we will work with a selection of real-world networks taken from

the literature. In many cases, some of the properties of these networks (for example their

community structure) are well-known and so we can compare algorithmic results to the

so-called “ground truth”. We now describe the source of the data behind these networks.

1.3.1 Network Descriptions

Brain networks

Neurons C elegans

The network of neurons of the Caenorhabditis elegans which is a nematode that was

determined to be small enough to be reconstructed and analyzed because it has 302

neurons that are identifiable and consistent across individuals within the species. Two

networks have been used to analyse this species: a non-directional gap junction network

and a directional chemical synapse network. We use just the second [83].

Ecological networks

Ecological networks are complex networks and we can divide this network in to three

types: food webs, mutualistic networks and host–parasitoid networks. In community

studies, the nodes are comprised of individuals that make up species populations, and the

links connecting the nodes indicate population effects [43] .

18

Chapter 1 – Introduction

Stony

Food network in a stream in New Zealand which studied food webs comprising fish,

macroinvertebrates, and algae, called Stony stream, at an altitude of 800 metres in an

area approximate 16 km2. [79].

Canton

Another stream site in New Zealand. This network was one of ten study sites chosen for a

study of food web architecture. It is 30 metres long and is a tributary of the Taieri River

in the south of New Zealand. It occurred in grassland catchments but was developed for

pasture [79].

El Verde

Species interactions in a rainforest in Puerto Rico. This network is an simplified yet

aggregated food web of the El Verde community in a rainforest in Puerto Rico. The

dominant predators are frogs and lizards with population densities that some of the highest

ever recorded. First level consumers are species such as bats, snails and birds, second level

consumers consist of some other species of birds, arboreal invertebrates, rats and other

lizards. Third level consumers consist of frogs, bats, some species of birds and arboreal

arachnids and anoline lizards and fourth level consumers consist of snakes, some arboreal

arachnids and mongoose. Finally, fifth level consumers are certain species of birds. Species

such as snakes, birds, rats and arboreal arachnids are important at different places in the

web and so show up at different consumer levels or overlap more than one level because

they are omnivorous [76].

19

Chapter 1 – Introduction

Ythan

The Ythan network is a food web from the Ythan estuary in North East Scotland. The

total number of species in the web is 134 and four versions were made including one with

more than two basal elements, one which included parasite species, one with hypothesized

links between hosts and parasite species, and one where parasites had two or more life

stages. We just used the version 3 [42].

Scotch

The network comprises a single field site of a community of the Scotch broom species,

Cystisus scoparius, from a field site in England. Its data consists of a food web that

describes the trophic relationships of 154 species, one plant, 19 herbivores, five omnivores,

66 parisitoids, 60 predators, and three pathogens [59].

Little Rock

Species interactions in a lake in Wisconsin. Various taxonomies at all the tropic levels

such as fish, invertebrate predators, predators, zooplankton and the like, have been sorted

into life stages characterized by changes in diet. It contains a total of 220 taxa and the

webs vary in size from 10 to 74 species [37].

Wildbird

The social ecology of wild birds in Wytham Woods in Oxford in the UK was examined by

studying great tits, blue tits, Eurasian nuthatches that were caught in nestboxes during

the breeding season or in the winter using mist-netting. The data was collected between

November 2013 and April 2014 using selective feeding sites to study association patterns

between species [29].

20

Chapter 1 – Introduction

Dolphin

The Dolphin network is a group of bottlenose dolphins in New Zealand. Between 1994

and 2001, Lusseau et al. [58] conducted surveys of bottlenose dolphins in Doubtful Bay,

New Zealand. During the study period, 40 dolphins were analysed for association out of

83 that were identified as they were observed for frequency of occurrence in the schools the

researchers intended to observe. The data collected was analysed which identified com-

munities or clusters of individuals by preferred partnerships and least preferred partners

[58].

TM1,2 and 3

A network of three-dimensional galleries in termite nests which are not the result of

repetition of patterns but a system of galleries and chambers inside the nest. They are,

in effect, three-dimensional transportation networks with topological properties relevant

to ecology and survival. There are few 3-D networks in the literature because of their

complexity and the difficulty in capturing their spatial patterns. These nests are from

different locations in Central African Republic and Cameroon [71].

Figure 1.8: Left: Picture of one nest; centre: a tomographical cut of the same nest
(the arrows indicate two of the corridors between chambers); right: a representation of
chambers and galleries as a network, where each vertex corresponds to a chamber in the
original nest and each edge to a corridor. The colour of the vertices reflects their degree;
vertex positions have been adjusted to improve visibility. [71].

21

Chapter 1 – Introduction

Informational networks

Centrality

This network is a collection of citations published about network centrality from 1948 to

1979 in order to analyze the structure of centrality productivity for this period [41].

GD

Citation network of papers published in ”Proceedings of Graph Drawing”. These graphs

were obtained using a program called Pajek which is available for free online. Graph

A is a citations networks analysis where each unit’s importance or weight is determined

using three proposed methods: NPCC method, paths count method and SPLC method.

The original graph has 311 vertices and 6 weak components. Graph B was done using

an energy drawing and then the position of the vertices was done manually using a grid.

Graph C is an acyclic directed graph that can be sorted by topology. It is a dense graph

so a matrix representation was used to visualize it [6].

Roget’s Thesaurus

Network of words related by their definitions in Roget’s Thesaurus. Roget’s Thesaurus

was created by Dr Peter Mark Roget who first listed over 15,000 synonyms for words in

1805 and has increased to over a 250,000 synonyms as of 1992. The vertices relate to

the 1879 edition and each one represents one of 1022 categories listed there. If there was

a reference between two categories this was represented by an edge http://vlado.fmf.

uni-lj.si/pub/networks/data/dic/roget/roget.htm.

Small world

Network of papers citing S. Milgram’s 1967 Psychology Today paper (An experimental

study of the small world problem) [81]. In Stanley Milgram’s small world study, people

volunteered to be part of a study on social contact in America in response to an ad.

Each participant was asked to send a packet of information to an individual by giving it

to someone they knew on a first-name basis—someone who knew the individual or who

22

http://vlado.fmf.uni-lj.si/pub/networks/data/dic/roget/roget.htm
http://vlado.fmf.uni-lj.si/pub/networks/data/dic/roget/roget.htm

Chapter 1 – Introduction

would most likely know someone who knew them. The play Six Degrees of Separation

referred to Milgram’s study. The degrees are the number of people who were intermediaries

in the chain. People with more social connections have a lower degree of separation then

people with fewer or no social connections. Since his original study done in 1967, his

experiment has been cited in many papers which therefore forms a citation network [45].

Biological networks

PIN Malaria

A PIN is a protein interaction network. PIN Malaria is a biological network that contains

data on the position of proteins in the human malaria parasite. The parasite which

causes the most dangerous form of malaria, Plasmodium falciparum, has not had most

of its proteins characterized. 2,846 protein-protein interactions were characterized in this

network using information analyses and gene co-expression [54].

PIN H Pyl

The H.Pylori Database of Protein Interactomes (hp-DPI) contains H.Pylori protein inter-

actions that are both experimental and predicted with added annotations. The database

was created with protein domain scanning tools to define particular protein-domain rela-

tionships [56].

PIN E Coli

The DNA cassettes in the E. Coli chromosome have been targeted to create certain allelles.

857 proteins were tagged and their interacting protein partners were identified revealing

a protein-protein interaction network of proteins that are involved in varied biological

processes [12].

23

Chapter 1 – Introduction

Trans E Coli

One of the best-characterized networks are the direct transcriptional interactions in Es-

cherichia coli. The network is made up of three distinctive motifs each having a specific

function in determining gene expression. The structure of the motifs allows the entire

network to be interpreted [78].

Trans-Yeast

Direct transcriptional regulation between genes in yeast. This network is part of a super-

family that contains sensory transcription networks that control gene expression in bac-

teria and yeast in response to external stimuli. In a network such as this, nodes represent

genes and edges are direct transcriptional regulation. The yeast strain is Saccharomyces

cerevisiae [60].

Social and economic networks

Corporate people

The network properties of directors and companies from three years: 1982, 1990 and

1999, are used to examine the corporate elite network structure in the US in order to help

analyze corporate change on a macro level. Corporate people is an economic network that

includes board members from American Fortune 1000 companies in 1999 [20].

Drugs

Social network of injecting drug users. The data in this network comes from the Colorado

Springs Project 90 study which was a project funded by the Centre for Disease Control

and Prevention which focused on HIV transmission in heterosexual injecting drug user

populations. 595 respondents from face-to-face interviews within a four-year period from

1988 to 1992 using an open cohort design. The type of data collected included focus on

bringing forth characteristics of risk partnership networks to allow researchers to identify

and collect data from as many people in the target population as possible including

injecting drug users, prostitutes, and their sex and needle-sharing partners. Researchers

24

Chapter 1 – Introduction

also wanted to assess the size, structure and potential for epidemic of the entire high-risk

partnership network. Two networks were constructed which represented sexual contact

ties, ties involving shared drugs and ties involving both sexual and drug-contact sharing.

There were 1296 reported connections and data from the respondent-only network was

extracted from the larger network which included all ties including those who were not

participants in the study [1].

ColoSpg

The risk network of persons with HIV infection in Colorado Springs. AIDS had been a

condition that was required to be reported since 1983 and HIV infection since November

1985. The data used in this risk network therefore started from late 1985 through to 1999.

From the spring of 1987, the military tracked its own HIV data and released information

only about non-military or civilian partners making their data unavailable for analysis.

Contact tracing was available from 1985 onwards and information from other routine STD

programmes such as syphilis, gonorrhoea, and chlamydia were used to add sex-linked pairs

of men to the HIV contact tracing database. The data was divided into three periods:

(1) early: from 1982 to 1989, (2) middle from 1990 to 1994, and (3) late from 1995 to

1999. A total of 1,323 adult HIV/AIDS cases were reported between 1982 and 1999 [73].

Figure 1.9: Ties among (a) the giant connected component for the full network, and (b)
the observed respondent-only network: Colorado Springs Project 90, Colorado Springs,
CO, 1988–1992.[1].

25

Chapter 1 – Introduction

Revere

A network of people connected to American revolution. The network includes membership

lists of key political groups during the period of the American Revolution compiled in 1994

from of a group of seven lists. These lists are select examples from organizations in Boston

that played significant roles in the movement. The network itself consists of five groups

and 137 people [36].

FB Reed

The Facebook network at Reed College is from a single day snapshot in September 2005

[80].

Karate

This network contains a university-based karate club, which was divided into two orga-

nizations after having broken into two factions based on group members’ beliefs about

the leadership. Observations of the club were made over a three-year period from 1970 to

1972. The history of the club prior to these dates was also reconstructed using archives

and records from that time. During the three-year period, the club’s membership ranged

from 50 to 100 members and individuals met together for social events such as parties,

dances, and banquets in addition to the scheduled karate lessons. It had an informal

political organization although it did have a set of guidelines laid out in ‘constitution’

and there were four officers that loosely ran some aspects of the organization. Despite

these officers, the majority of decisions were made by consensus at club meetings. The

club employed a part-time karate instructor referred to as Mr. Hi. Initially, there was a

conflict between the club president, John A., and Mr. Hi over the price of karate lessons.

Mr. Hi wanted to raise prices and have the authority to do so with this own lesson fees

whereas John A. wanted to have one stable price that he set in his role as the club’s chief

administrator. Over time, club members became divided over this issue and then the

divide grew beyond the issue of prices to one of ideology where supporters of the club

president viewed him as a father figure and spiritual and physical mentor. They viewed

26

Chapter 1 – Introduction

Mr. Hi as a paid employee who simply wanted to earn more money. After some marked

disagreements, John A. fired Mr. Hi for trying to raise prices which resulted in Mr. Hi’s

supporters retaliating by resigning from the club and forming a new organization. During

this time, the confrontations between the factions took place at the meetings where if one

faction held the majority, they would attempt to pass decisions that were in their favour

and vice versa. Neither of the factions had a name and in situations where they were

not in direct conflict, members from respective factions spoke and interacted with one

another. Over time, bonds within the two groups were strengthened while bonds between

them weakened thus eventually pulling the club apart [86].

Mafia

Data is on attendance of suspected members of the Ndrangheta criminal organization at

summits (meetings whose purpose is to make important decisions and/or affiliations,

but also to solve internal problems and to establish roles and powers) taking place

between 2007 and 2009 https://sites.google.com/site/ucinetsoftware/datasets/

covert-networks/ndrangheta-mafia-2.

Caviar

A network of Canadian drug importers. Project Caviar was an investigation targeting a

network of hashish and cocaine importers operating out of Montreal. It was conducted

by the RCMP and the Montreal Police between 1994 and 1996 in conjunction with other

regional law enforcement agencies from countries in England and various parts of Europe

and South America. It is considered a unique case because of its investigative approach

which was termed “seize and wait”. The goal was to seize drug consignments but not arrest

any of the identified associated individuals, thus, 11 consignments were seized while the

arrests only took place at the end of the investigation. Because of the change in strategy,

the change in network structure and how network participants react and adapt could be

assessed. The data was from evidence submitted in the trial with 22 participants in the

27

https://sites.google.com/site/ucinetsoftware/datasets/covert-networks/ndrangheta-mafia-2
https://sites.google.com/site/ucinetsoftware/datasets/covert-networks/ndrangheta-mafia-2

Chapter 1 – Introduction

Caviar network and includes thousands of paragraphs of electronically recorded telephone

conversations. Of over three hundred individuals, 208 were not implicated in the drug

trafficking ring so the final network was composed of 110 participants [61].

Siren

A network of car thieves. A stolen vehicle exportation ring were obtained from a task

force project called Project CERVO between 1993 and 2005. The exportation of stolen

luxury vehicles from the Port of Montreal was monitored with information supplied from

maritime shipping companies. Project Siren started in February 1998 with an informant

providing information on stolen vehicles shipped to Ghana which was seized in Belgium.

It was a four-month investigation (to June 1998) wherein 35 cars were retrieved [61].

Mali

A terrorist network in Mali is analyzed for relationships between individuals belong to

Islamist and rebel groups. The ties between agents and the ways they interact produce a

network structure that can be analyzed [84].

Fifa

Two Networks of Standing Committee membership. These are overt networks with covert

elements https://sites.google.com/site/ucinetsoftware/datasets/covert-networks/

fifa.

Dublin

This dataset was taken from an exhibition entitled Infectious that was held in Dublin,

Ireland at the Science Gallery from April to June 2009. The interactions between con-

ference participants with respect to their proximity and static and dynamic interactions

[44].

28

https://sites.google.com/site/ucinetsoftware/datasets/covert-networks/fifa
https://sites.google.com/site/ucinetsoftware/datasets/covert-networks/fifa

Chapter 1 – Introduction

Technological networks

Electronic1,2 and 3

Electronic1, Electronic2 and Electronic3 are electronic logic circuits with 31 digital se-

quential circuits that are described at the gate level. By analysing this circuit, we can

calculate various parameters that are connected in an electrical network [10].

US-Air

This network considers the topology or structure of the US air transport network which

considers 500 of the highest traffic airports according to http://www.iata.org. [16].

Software networks

Software Digital, Software-Abi, Software VTK, Software My SQL

A class collaboration is the process by which more complex, multifunctional classes are

built from simpler ones. Classes interact through a process called inheritance where

one class is defined as a subclass of another and through aggregation where one class is

defined to hold an instance of another class. Software Digital is a collaboration network

associated with six different open-source software systems. It is a class collaboration graph

from version 4.0 of the VTK visualization library, the CVS snapshot dated 4/3/2002 of

Digital Material (DM), a library for atomistic simulation of materials, and version 1.0.2

of the AbiWord word processing program [62].

29

Chapter 1 – Introduction

Figure 1.10: VTK network [62].

In the following Tables the number of nodes is n, the number of edges is m and the

kmax is the maximum number of the node degree in the network, C3 is the total number

of triangles and C is the Newman clustering coefficient.

30

Chapter 1 – Introduction

Table 1.1: Test Networks 1.

n m kmax C C3

Brain networks

Neurons C. elegans 280 1973 77 0.1987 2808

Ecological networks

Canton Creek 108 707 47 0.0256 116

El Verde 156 1439 83 0.2322 3511

Little Rock 181 2318 105 0.3368 10812

Scotch Broom 154 366 36 0.2078 358

Stony Stream 112 830 45 0.0201 124

Wildbird 169 2758 81 0.6645 27886

Dolphins 62 159 12 0.3088 95

Ythan 134 593 65 0.1443 507

Informational networks

Centrality 118 613 66 0.274 1107

GD 249 635 20 0.2202 327

Roget Thesaurus 994 3640 28 0.1338 1550

Small World 233 994 147 0.16 1637

31

Chapter 1 – Introduction

Table 1.2: Test Networks 2.

n m kmax C C3

Social and economic networks

Corporate 1586 11540 65 0.3881 28002

Drugs 616 2012 58 0.3681 3598

ColoSpg 324 347 20 0.0385 17

Revere 254 9807 217 0.7354 208074

FB Reed 962 18812 313 0.2207 97137

Karate 34 78 17 0.2557 45

Mafia 151 1619 75 0.5825 9575

Caviar 110 205 60 0.1229 130

Siren 44 103 33 0.4061 142

Mali 36 67 11 0.3945 43

FIFA 307 3070 87 0.6528 18817

Dublin 410 2765 50 0.4357 7114

Software networks

Software Digital 150 198 25 0.0668 24

Software MySQL 1480 4190 220 0.058 1796

Software VTK 771 1357 83 0.0438 236

Software Abi 1035 1719 89 0.0387 219

32

Chapter 1 – Introduction

Table 1.3: Test Networks 3.

n m kmax C C3

Biological networks

PPI Malaria 229 604 35 0.1159 201

PPI H. pylori 710 1396 55 0.0152 76

PPI E. coli 272 3430 104 0.6306 42549

Trans Ecoli 328 456 72 0.0243 42

Trans Yeast 662 1062 71 0.0163 72

Technological and infrastructural networks

Electronic 1 122 189 10 0.0574 10

Electronic 2 252 399 14 0.0517 20

Electronic 3 512 819 22 0.0484 40

USAir97 332 2126 139 0.3964 12181

Other Networks

TM3 268 437 12 0.1381 78

TM2 260 280 12 0.0087 2

TM1 507 676 10 0.0478 33

33

Chapter 2

Community Detection

2.1 Introduction

This chapter is a brief survey of existing results in community detection. We develop

some ideas on community structure in Chapter 3 and we look at anti-communities in

Chapter 5. One of the most important ways complex networks can be structured is into

communities: for undirected networks, these are typically groups of nodes that are more

densely connected than in other parts of the network. These clusters of nodes can form

for many reasons, such as in a social network where nodes represent individuals that may

have ties with certain individuals and yet not others. In a biological network where nodes

represent proteins, communities could represent proteins that have a similar function.

Finding these communities based on the structure of the network alone is useful to scien-

tists in their respective fields since these clusters or communities represent shared proper-

ties between these nodes. The properties within these communities will frequently share

characteristics that are not shared by nodes that are outside of this dense cluster mak-

ing them of special interest to researchers. Additionally, community detection may aid

researchers in determining the organisation of a network. Within the detected communi-

ties, nodes that lie in the middle of their respective community versus at the edge may

represent some difference in their roles within that community.

Traditionally, communities were seen as dense subgraphs that are clearly separated from

each other as shown in Figure 2.1.

34

Chapter 2 – Community Detection

Figure 2.1: A graph with three Communities [32].

Communities can also be overlapping at their boundaries as shown in Figure 2.2.

Figure 2.2: Overlapping Communities [32].

Some researchers have coined the terms soft clustering to define communities that

overlap each other and hard clustering where there is no overlap where the boundaries of

the community are clearly defined. In hard clustering (e.g.,in Figure 2.1), each data point

belongs to a cluster completely or not at all, whereas Figure 2.2 is an example of what

would be termed soft clustering where there is overlap at its boundaries with each data

point assigned a probability or likelihood of being in a certain cluster. A subgraph with

vertices or nodes that connect to all the others is called a clique. Cliques are considered

complete graphs and the simplest example is a triangle. Communities, however, are not

usually complete graphs. All vertices in a clique have identical properties which is rarely

if ever the case in a real-world network where some vertices are more important than

35

Chapter 2 – Community Detection

others which are reflected in heterogeneous links throughout [32].

A better community definition should consider the level or degree of internal cohesiveness

in the network and how separated it is from the rest of the network. A simple way to

enforce this is to insist that in a community the number of internal edges is larger than

the number of external edges. This leads to the definition of a strong community which

is one where the internal degree of each vertex is greater than its external degree [75].

This in turn leads to the idea that in a network with more than one community the

definition of a strong community is one where the internal degree of any vertex within

that community is greater than the internal degree of the vertex in any other community

[40]. Conversely, the community is weak if its internal degree is not greater than the total

internal degree of its vertices in every other community. According to these definitions,

the network in Figure 2.3 shows both strong and weak communities. The four subgraphs

which are encircled in Figure 2.3 would all be considered weak communities according to

the definitions by both Hu et al. and Radicchi et al., but according to Hu et al., they are

also strong because the number of edges joining the vertex with the other vertices of all

the other subgraphs is less than the internal degree of each vertex. According to Radicchi

et al., three of these communities are not strong because some vertices have external

degrees larger than their internal degrees as some vertices (indicated in blue)[40].

Figure 2.3: Strong and weak Communities [32].

Alternative definitions of community examine the probability that nodes in clusters

share edges. Because the concept of communities implies a greater density of vertices or

nodes, it makes sense that vertices within the same community have a higher probability of

36

Chapter 2 – Community Detection

forming edges with those vertices more densely clustered around them than other vertices.

Therefore the definition mentioned above can be modified as strong communities’ vertices

having higher probability to be linked to every vertex of the subgraph than to any other

vertex in the graph. The edge probability is Pin between vertices in the same group and

Pout < Pin for vertices in different groups (A/B) as shown below

Figure 2.4: Problems of the classic notions of strong and weak communities [32].

Depending on the type of network, edges are formed differently which then presents

the problem of how to calculate edge probabilities.

2.1.1 Definitions

If all probabilities are equal, then we derive the classic random graph model Erdős–Rényi

(see Chapter 3) where there is no community structure.

We now give some formal definition of quantities that are useful when discussing commu-

nities. Given a subgraph G1(C,E1) ⊆ G(V,E) and nC =| C |, the number of edges the

node ki ∈ C has to other nodes internally and externally are defined as

ki
int =

∑
j∈C

aij, ki
ext =

∑
j∈C̄

aij (2.1)

37

Chapter 2 – Community Detection

where C̄ is the complement of C and A is the adjacency matrix of G. We determine the

number of links that connect nodes internally using mC = 1
2

∑
i∈C ki

int.

Intracluster density, that is the density of nodes within a cluster, is

δint(C) =
mC

nC(nC − 1)/2
=

∑
i∈C ki

int

nC(nC − 1)
, (2.2)

while inter-cluster density, that is the density of nodes between or outside of a cluster or

community, is defined as

δext(C) =
mC−C̄

nC(n− nC)
=

∑
i∈C ki

ext

nC(n− nC)
. (2.3)

Using networks which have communities, when we calculate the quantities we expect

the value for the internal density of the cluster to be markedly larger than its external

density and the internal density of a cluster to be larger than the total density of the

network. Nodes within the same community are all connected by at least one edge, thus

a community of a network can be defined as a set of nodes which are internally connected

and has an internal density that is significantly larger than the external density of the

whole network. Networks constructed with explicit clusters are referred to as benchmark

graphs.

Defining community based on the topology and dynamics of a network can be ad-

dressed with diffusion. Random walks are simple diffusion where the vertex reached at t

is a random neighbour of the vertex reached at t− 1. Because there are few routes to the

outside, the random walker could be spending a long time within the community [32]. The

result of using random walks this way also depends on the routes the walkers can follow,

and their distribution, which means these dynamics necessitate factor in many variables

into the calculation. The advantage of this complexity is it will reflect more features of

a networks which are usually quite complex with the drawback being the additional time

it takes to make complex calculations [32].

38

Chapter 2 – Community Detection

2.1.2 Stochastic Block Model

The stochastic block model (SBM) is a model for data from a network where the nodes

are separated into groups called blocks where the links between them are dependent on

which block the nodes belong [38].

In the k × k SBM we partition the adjacency matrix into the structure

A =



A11 A12 . . . A1k

A21 A22 . . . A2k

...
...

. . .
...

Ak1 Ak2 . . . Akk


.

where the probability of an entry equalling 1 being fixed in each block. A simple example

is the 2× 2 model

A =

 P1 Q

Q′ P2


where the edges between nodes in the diagonal blocks P1 and P2 have a fixed probability

0 ≤ p ≤ 1 of existing and the edges between blocks in Q exist with a fixed probability

0 ≤ q ≤ 1. By varying the relative size of p and q we can emphasise different network

structures. If p >> q then A will represent a network with 2 strong communities. If

p << q we have an almost bipartite graph.

The SBM ability to produce communities and clusters makes it the standard for

studying community detection. It is possible with this model to derive assortative struc-

ture as bonds between vertices in the same group are prioritized. Disassortative struc-

ture can also be derived because edges are more likely to occur between the blocks than

inside them. Multipartite structure arise if there are edges only between blocks and

core-periphery structure if the vertices are well connected in the core structure and to

peripheral vertices that do not interact between themselves very much [32]. For example:

by choosing p = 0.75 and q = 0.15 with all blocks being 5× 5 we generated the following

39

Chapter 2 – Community Detection

adjacency matrix. The community structure is evident in Figure 2.5

SBM =

 P1 Q

Q′ P2

 =



0 1 1 1 1 0 0 0 0 0

1 0 1 1 1 0 0 0 0 0

1 1 0 1 1 0 0 0 0 0

1 1 1 0 1 0 1 0 0 0

1 1 1 1 0 0 0 0 0 1

0 0 0 0 0 0 1 0 1 0

0 0 0 1 0 1 0 1 0 0

0 0 0 0 0 0 1 0 0 1

0 0 0 0 0 1 0 0 0 1

0 0 0 0 1 0 0 1 1 0



Figure 2.5: Example of Stochastic Block Model.

2.1.3 Examples

In this section, we briefly introduce some classic examples of communities emerging in

real-world networks.

40

Chapter 2 – Community Detection

American politics

In 2003, Valdis Krebs studied a network of associated book purchases on amazon.com

with the theory that the book network could be an accurate proxy network for the human

network that reads those books [50]. In order to do this, he used Amazon’s databases

of customers’ book purchases and linked two books if they were bought together and

followed the connections between the books until two distinct clusters emerged removing

any books that had two links or less. When he did this, a pattern emerged with the cluster

on the right showing a densely connected set of a small number of books and the cluster

on the left showing a broader array of books that was less dense. Further study of the

proxy network revealed two divisions of political thought with dense intraconnectivity and

sparse interconnectivity showing each group in an echo chamber of sorts reading similar

ideas in their chosen books. The connectivity between the two clusters is conjectured to

reflect academics or political commentators who needed to be well-read in both areas of

political thought. The connection between the two books were several common purchasers

who identified as conservative and liberal which are seen in Figure 2.6 in green and purple.

Figure 2.6: Conservative and liberal purchasers of books on amazon.com

A karate club

In 1977, Wayne W. Zachary conducted a social anthropological study on how fission takes

place in bonded groups using a social network approach. While it was a karate club, it

also held social activities such as parties and dances as well as regularly scheduled karate

lessons. A conflict over pricing between the club president who wanted to stabilize prices

and the karate instructor who wanted to increase prices resulted in over time the majority

of the members of the club becoming ideologically divided but not organisationally until

41

Chapter 2 – Community Detection

they formally separated into two organisations. Prior to the events that preceded the

fission, decisions made about the club took place at meetings where if the group that

supported the president held majority would vote in their favour and vice versa when the

group supporting the instructor held majority. These groups were not recognised to exist

by the club members, even unofficially. Rather, they were groups that formed during crisis

moments, such as when voting on issues at meetings, from pre-existing friendships within

the club and because of this key difference of opinion. These meetings where the members

had to vote on club issues then served to strengthen the existing friendship bonds within

these ideological groups while also weakening the bonds between them. Each subsequent

political crises in the club reinforced and further strengthened the bonds within group and

weakened the bonds between groups until the group completely and formally separated.

The connections between club members prior to fission is shown below in Figure 2.7 where

one group is represented in green and the other in blue[86].

Zachary then created a mathematical model based on precise descriptions and the re-

lationships between categories clearly defined. The most significant component of this

system was the network of friendship relationships amongst the members. The network

was represented as a graph and then more formally as an adjacency matrix[86].

In his social network model, the social relationships in the karate club are represented on

the graph with each member of the club represented by a point (or node) on the graph

with a line (or edge) between any of the two points representing the friendship between

the two members. A friendship would be defined as two members that consistently inter-

acted outside of normal club activities. As a result, although the club membership over

the three-year period was between 50 and 100, there are only 34 individuals in this graph

and matrix because they would have been reflected in unconnected nodes and rows and

columns with zeros which Zachary represented on the graph in Figure 2.7 below. The

edges represent interactions in both directions so are termed nondirectional and thus, the

graph is symmetrical[86].

42

Chapter 2 – Community Detection

The network and matrix only contain the members that interacted with other club

members outside of meetings. The model allowed for the location of the fission within the

group to be predicted to more than 97% accuracy[86].

Figure 2.7: The karate club network.

A dolphin community

A third example that is frequently cited is a group of bottlenose dolphins in New Zealand

[58]. Between 1994 and 2001, Lusseau et al. [58] conducted surveys of bottlenose dolphins

in Doubtful Bay, New Zealand. During the study period, 40 dolphins were analysed for

association out of 83 that were identified as they were observed for frequency of occurrence

in the schools the researchers intended to observe. The data collected was analysed

which identified communities or clusters of individuals by preferred partnerships and least

preferred partners. Two individuals would be identified if they were observed associating

more often or if they did not associate with individuals outside their cluster[58].

The cluster analysis did not show any clear divisions in the community but did identify

three groups which associated more with each other more than all the individuals did on

average. Group 1 was seen less and so observed less by the researchers. Groups 2 and 3

had one individual which had a central position in both groups. These two groups also

each had a male network and a female network, and Group 2 was more complex with

43

Chapter 2 – Community Detection

some groups of two and three individuals. Lusseau depicted the three communities they

observed in this social network of dolphins as shown below in the sociogram in Figure 2.8

[58].

Figure 2.8: Sociogram of Dolphin.

They observed that the dolphin population with an unusually large number of long-

lasting bonds within the Doubtful Sound population that could not be attributed to

seasonal factors nor reproductive, foraging or defence advantages. They concluded that

there was strong evidence that the uncharacteristically stable social organisation could be

explained by the population being isolated in a fjord which was the source of ecological

constraints that required more group stability for survival in this habitat [58].

2.2 Algorithms to Partition

Whereas community detection searches for community structure in order to look for partic-

ular special properties of a respective network such as social groupings or protein linkages,

graph partitioning refers to separating a larger graph into roughly equal sized sections

while keeping the number of edges to a minimum between the different partitions. In fields

such as parallel computing, there is significant value in being able to partition graphs this

way so that each can be assigned to a processor so as to minimize the time it takes the

44

Chapter 2 – Community Detection

computer to analyse the entire graph. In short, graph partitioning allows for more efficient

graph analysis and problem solving of larger graphs. Other areas of study where being

able to section equal sized parts of a graph are VLSI layout, sparse linear system solving,

and circuit testing and simulation [4].

The aim is to partition networks into p disjoint sets of nodes with the following

properties:

•
⋃
i=1 Vi = V and Vi ∩ Vj = ∅.

• The number of links crossing between subsets (cut-set size or boundary) is mini-

mized.

• | Vi |≈ n
p

for 1 ≤ i ≤ p.

This process can be generalised to weighted networks by defining the cut-set as the

sum of the weights of the links that cross the subsets and rewriting the final condition.

We then refer to this partition as balanced. We will discuss some algorithms that can be

used to partition a network.

2.2.1 Local Improvement Methods

In 1970, B.W. Kernighan and S. Lin [47] proposed taking a bisection of a network and

decreasing the cut-set using a local search approach. The initial partition can be generated

randomly or done by using any bisection method. If the random approach is used, then

several should be generated and the one with the minimum cut size selected. Considering

only unweighted networks to simplify the process, the internal and external weight for

each node of a bisection of the graph is defined by splitting its degree with the cut size

calculated using

C(V1, V2) =
1

2

∑
i∈V

W ext
i (2.4)

where V1, V2 a bisection of the network and W ext
i =

∑
i,j∈E wij and wi,j is the weight of

the link between nodes i and j.

45

Chapter 2 – Community Detection

A reduction in the cut size can be gained by moving one node from one subset to

the other and we can measure the gain in the cut size (gi = W ext
i −W int

i). In order to

prevent an imbalance in the number of nodes in the partition as seen in Figure 2.10, the

gain produced should be quantified by transposing two nodes from different partitions.

Figure 2.9 is an illustration of a random partition of a network.

Figure 2.9: A random partition of a network

Figure 2.10: An improvement to the partition in Figure 2.9

46

Chapter 2 – Community Detection

Once the gain is quantified, the cut size in our example is reduced to 2 from 5 as

shown in Figure 2.11.

Figure 2.11: An even better partition of Figure 2.9

This process of swapping nodes is the basis of what is known as the Kernighan-Lin

algorithm which starts with a balanced bisection, a cutsize is computed, a pair of nodes

are found which give the biggest value, they are labelled, the value of g(u) is updated,

Ck(V1, V2) = Ck−1(V1, V2)− g(vk1 , v
k
2), k = 1, ..., r, (2.5)

the partitions are updated by moving the sets and the process is repeated until no further

improvement can be gained. A drawback to this algorithm is the amount of time required,

however improving the process for switching nodes, using a fixed number of iterations,

and choosing nodes close to the partition boundary only to evaluate gain can reduce costs.

While this algorithm is not used today to detect communities, exploring how it functions

and its methodology demonstrate the rationale behind community detection methods [25]

and it can be used to improve partition provided by other algorithms.

47

Chapter 2 – Community Detection

2.2.2 Spectral Partitioning

Spectral partitioning is basically a way of dividing a graph into two subgraphs so that each

subgraph has nearly an equal number of vertices and edges between the two subgraphs are

minimised. It uses the eigenvalues of the matrix associated with the graph to partition

optimally.

Laplacian spectral partitioning

The Fiedler Vector

One example of spectral partitioning which was put forth in the early 1970s is the use

of the eigenvector associated with the second smallest eigenvalue of a graph Laplacian

matrix called the Fiedler vector to bipartition a network. Let φ2 denote the Fiedler

vector. In this method, two nodes (v1 and v2) are considered in the same partition if

sgn(φ2)(v1) = sgn(φ2)(v2) so then any two nodes other than these are part of the other

partition or cluster. This method can be used on Zachary’s katate club and partition

reproduces the ground truth [22].

The Fiedler vector is known to provide a powerful approach to identifying communities,

searching for significant links between communities (known as bottleneck links), and to

increase the general connectivity of a network [7].

The Fiedler Vector and Clusters

Given any connected network, one way the Fiedler vector can be used with these clusters

is in identifying subgraphs that are densely connected and sparsely linked to other clusters

(that is, graph partitioning). If we compare two identical networks, the network 2.12 (a)

can be clearly seen to show three clusters of nodes with each cluster sharing two edges with

the other two clusters. Whereas in the second network, Figure 2.12 (b) it is much more

difficult to partition the network into subgraphs for a human observer and even devising

an algorithm to identify these clusters is difficult, particularly since the nodes have a

limited area in the entire network graph. Finding the ratio cut (which minimizes the edge

density defined as ρ(V1, V2) = |E(V1,V2)|
|V1||V2| where V1 ∩ V2 = φ, V1 ∪ V2 = V and E(V1, V2)

48

Chapter 2 – Community Detection

denotes the set of edges in G that are shared between V1 and V2) presents a NP-complete

problem, so entries in the Fiedler vector would commonly be used to divide the network

into two clusters in xF with positive entries being one subgraph and negative entries

being the other subgraph. For dividing into more than two subgraphs, after the Fiedler

vector partitions the network into two subgraphs, the Fiedler vector of each subgraph is

calculated and this is continued until preferred number of subgraphs is found [7].

(a) (b)

Figure 2.12: Two different visualizations of a network consisting of k = 20 nodes. (a)
Ordened node placement.(b) Random node placement.

Adjacency Spectral Partitioning or Sign Partitioning

A second spectral approach which was put forth in the late 1980s was to partition a

network into more than two parts by using eigenvectors of the adjacency matrix which

produces both positive and negative values which can be used to partition according to the

sign pattern. Using extra eigenvectors to extend spectral techniques can be used to detect

more than two communities in a network. Using sign patterns for further eigenvectors

produces partitions of the matrix as quadrants, octants, and so forth [22].

Normalised Cut Criterion

This approach was proposed by Shi and Malik [22] and uses the measure

CN(V1, V2) = C(V1, V2)(
1

V ol(V1)
+

1

V ol(V2)
) (2.6)

49

Chapter 2 – Community Detection

where V ol(V1) =
∑

i∈V1 ki and V1, V2 is a partition of the nodes. This method involves

calculating a row-stochastic matrix, computing the eigenvector of the second largest eigen-

value, sorting the elements in increasing order, repeating n − 1 in computing CN(Vi, V̄i)

where Vi = {v1, . . . , vi} and V̄i = {vi+1, . . . , vn}, and partitioning the network into two

clusters where i0 = miniCN(Vi, V̄i). This algorithm is repeated on the cluster with the

largest value of λP2 until K clusters are acquired.

Variations on this algorithm have been proposed by Kannan et al., Ng et al., and Meila

and Shi [22]. Meila and Shi [22] propose using eigenvectors that correspond to the largest

eigenvalues of the community and then clustering the points in a condensed eigenvector

matrix [22].

The main advantage of Meila and Shi’s approach is that all eigenvectors are used to obtain

the solution which addresses the problem of continuing to bisect a graph even when it

in some cases does not leave us with the most natural partitions and not knowing when

to stop bisecting [85]. Two possible explanations for why spectral methods make these

kinds of partitions in networks are the polarization theorem and the consideration of the

stochastic matrix P in the calculation of the normalised cutset. We can define P implicitly

from the expression

PV1,V2

∑
i∈V1,j∈V2 πiPij

πA
=

∑
i∈V1,j∈V2 Mij

V ol(V1)
=
C(V1, V 2)

V ol(V1)
(2.7)

where PV1,V2 the transition probability for a random walk going from the subset V1 to V2

in one step. By substitution in the expression for the normalised cut gives

CN(V1, V2) =
C(V1, V2)

V ol(V1)
+ =

C(V1, V2)

V ol(V2)
= PV1V2 + PV2V1 . (2.8)

A small value for PV1V2 would show that random walks are localized in each partition

resulting in two communities of nodes [22].

50

Chapter 2 – Community Detection

2.3 Quality of partitions

2.3.1 Modularity

Quality functions represent how good a partition or cluster is by finding the maximum

of a function over the space of all possible clusters. Newman and Girvan’s [64] general

expression of modularity is

Q =
1

2m

∑
ij

(Aij − Pij)δ(Ci, Cj), (2.9)

where m is the number of edges in the network, Aij is the element of the adjacency

matrix, Pij is the null model term showing the average adjacency matrix of a group of

networks, Ci and Cj are the communities of i and j and δ(Ci, Cj) = 1 if i and j in the same

community and δ(Ci, Cj) = 0 if i and j in the different communities. Modularity measures

how different the graph is from randomisations reflecting the rationale that randomising

a network would destroy community structure so comparing the actual structure and its

randomised one shows how non-random the group structure is. One usual approach is the

term for the average adjacency matrix of a group of networks is taken to be Pij =
kikj
2m

,

where ki and kj are taken to be the degrees of i and j which link to the number of edges

we would expect for vertices i and j if the edges were rearranged in order to preserve the

average degrees of all the vertices. The result is the classic form of modularity

Q =
1

2m

∑
ij

(Aij −
kikj
2m

)δ(Ci, Cj), (2.10)

Other approaches involve using specific network features such as bipartiteness, correla-

tions, signed edges, and space embeddedness. To extend the classic form of modularity

to weighted networks is fairly simple (Newman, 2004), but generally the focus is on un-

weighted graphs. Vertex pairs belonging to the same cluster are grouped together and

the sum is rewritten over the vertex pairs as a sum over the clusters is termed an additive

51

Chapter 2 – Community Detection

as

Q =
∑
C

[
lC
m
− (

kC
m

)2]. (2.11)

Here lC is the total number of edges joining vertices of community C and kC is the sum

of the degrees of the vertices of C. The difference in the square brackets above shows how

non-random the subgraph C is. Larger values indicate that the arrangement of the edges

in C is not random which reflects a high quality partition. Q = 0 when the number of

intracluster links is not greater than the expected value in a random network. The highest

value Q can have is 1 which would show a strong community structure. Values of Q are

used to decide which partitions are of particular quality. Among the algorithms that use

modularity optimisation to detect communities are agglomerative techniques and some

modifications such as simulated annealing, extremal optimisation techniques and spectral

methods. Similarly to Meila and Shi, White and Smyth [22] apply k-clustering techniques

to split the network into various groups, calculate modularity for each possible group in

every dimension for an eigenvector space and then find the maximum possible numbers

of eigenvectors [22].

Performance Index

Van Dongen [22] defined the performance of a cluster by measuring coverage. The larger

the value of coverage, the higher the quality of the cluster. Smaller values of the perfor-

mance of the cluster, the better the quality of the cluster.

Per(C) = 1−
2m[1− 2Cov(C)] +

∑c
i=j | Ci | (| Ci | −1)

n(n− 1)
(2.12)

where Cov(C) is the ‘coverage’ of the cluster as characterized below

Cov(C) =
1

m

c∑
i=1

ω(Ci) (2.13)

where ω(Ci) is the number of links in the cluster Ci, | Ci | is the number of nodes in the

cluster Ci, and m is the total number of links.

52

Chapter 2 – Community Detection

The Davies-Bouldin Validation Index

The Davies-Bouldin Validation Index, named for Davies and Bouldin [22] who proposed

it, measures quality based on intracluster and intercluster distances and is defined as

DB(C) =
1

m

c∑
i=1

maxi 6=j{
4(Ci) +4(Cj)

δ(Ci, Cj)
}. (2.14)

There are several different definitions of the distance functions. In this index, dense

clusters with centres far away from each other have small values of the index. As a result,

when comparing two communities within a network, the smallest value of this index is

considered to be of higher quality. There are many other measures for validation in the

literature but we will focus only on modularity clearly the results we produce later could

be checked using these measures in future work.

2.3.2 Similarity

The idea that communities share certain properties or that certain properties within a

community have similarities can also be exploited to find communities within a network.

However, Similarity measures need to be obtained in order to apply this idea to networks.

These measures will use data from the adjacency matrix of the network.

The cosine similarity, which is the angle formed between two vectors, can be calculated

as

σij = cosφij =
xTy

‖ x ‖‖ y ‖
(2.15)

To consider this similarity, the ith and jth columns of the adjacency matrix are

two vectors with corresponding nodes. We use the cosine of the angle between them to

measure node to node similarity . If the angle between them is perpendicular, the nodes

are considered dissimilar with the lowest possibility of similarity between them. When

this measure is used with two equivalent nodes, the angle between them is zero.

The Pearson correlation coefficient is another popular similarity measure. It is defined as

53

Chapter 2 – Community Detection

rij =
naTi aj − (aT1 e)(a

T
j e)√

naTi ai − (aT1 e)2
√
naTj aj − (aTj e)2

(2.16)

where ai, aj are columns of the adjacency matrix A and e is a vector of ones. Other

measures such as the Manhattan or taxicab norm

‖ ai − aj ‖1=
n∑
k=1

| ai(k)− aj(k) |, (2.17)

Euclidean norm

‖ ai − aj ‖2=

√√√√ n∑
k=1

[ai(k)− aj(k)]2, (2.18)

and Infinity norm

‖ ai − aj ‖∞= max
k∈[1,n]

| ai(k)− aj(k) |, (2.19)

are norms of difference between corresponding columns of the adjacency matrix.

To use a similarity measure, start by choosing one for the nodes of a network where

we want to detect a community and then find successive clusters using various linkage

approaches.

One such approach, single linkage, whereby determining the nearest neighbours in different

clusters, the distance between the clusters can be calculated.

The complete linkage approach takes the opposite approach were the farthest neighbours

are calculated using the greatest distance between any nodes in two different clusters. If

the clusters are chain-linked, this approach will not work.

When the average distance between nodes in two different clusters and in all pairs are

calculated, we can use the unweighted pair-group average to find clusters whereas in the

similar weighted pair-group average, the size of each cluster is used as a weight.

The unweighted pair-group centroid approach is when the centre of a uniform density

cluster is calculated using the average point in the multi-dimensional space and similarly,

the weighted pair-group centroid (median) is the same except the weighting of each cluster

54

Chapter 2 – Community Detection

is taken into account using computations to allow for differences in cluster size.

Finally, Ward’s method analyses the variance approach to calculate the distances between

clusters [22].

2.4 Community detection methods

Centrality is a very important concept in network theory which used to determine the

important nodes in a network. Centrality comes in different ways and each way deter-

mines a node’s importance from a different perspective and further gives us analytical

information about the nodes and the graph. There are various measures for centrality

like degree centrality, closeness centrality and betweenness centrality. We will look at

some of them in this thesis.

2.4.1 Link centrality

Links that are central to communication within clusters can be used to detect communi-

ties. Removing them one by one in succession is one approach by Girvan and Newman

(2002, 2004) which is based on the idea of calculating edge betweenness centrality. Calcu-

lating this betweenness centrality involves counting the number of shortest paths between

two nodes that pass through a particular link and dividing by the total number of shortest

paths. Links between nodes in different communities have the highest edge betweenness.

As such, using this method provides a way to find links between different communities.

Once this edge betweenness is calculated for all links in a network, applying Girvan and

Newman’s approach as summarised above, then recalculating the edge betweenness for

the remaining links repeating until all links have been removed, and finally plotting a

dendrogram (which is a hierarchical tree with clusters as a nodes in tree, and single nodes

as leaves) in order to analyse the community structure of the network enables us to find

the links that are essential to communication between communities. A range of partitions

are possible with this method and in the next section we will discuss more about how to

decide how many divisions is most useful.

Another way to use link centrality is a link clustering coefficient studied by both Radicchi

55

Chapter 2 – Community Detection

et al. and Watts and Strogatz [22] which can be defined as

C l
i,j =

zli,j + 1

sli,j
(2.20)

where zli,j is the number of cycles of length l that pass through the link between i and j,

and si,j is the maximum possible value that zli,j can take. By removing the links with the

smallest clustering coefficient and recalculating for C l
i,j for the remaining links until none

are remaining in the network. We produce a clustering coefficient that takes advantage

of the fact that a community is characterised by a high density of links which are not

expected to be shared between two partitions within the same network.

2.4.2 Communicability

We can measure how much information is transferred from one node to another in a

network which is termed ‘communicability’. In fact, communities as groups of nodes

that communicate more between their members than with people outside their group is

another useful definition of a community or cluster within a network. Nodes can be in one

of three states: each node can have a positive or negative point of view with respect to

some measurable criterion or no opinion (the off state). Those who have similar points of

view tend to cluster into communities. This idea can be applied when looking at networks

of energy configuration where nodes exist in either a positive or negative state. Networks

that want to reflect communities that maximize energy would put nodes in the positive

and negative state close together [22].

When we consider a pair of nodes p and q the communicability can be measured by

Gpq(β) =
n∑
j=1

φj(p)φj(q)e
βλj (2.21)

where λj and φj are eigenvectors and eigenvalues of the adjacency matrix. Focusing

on the case of β = 1 and recalling that nodes in an off state do not contribute to the

communicability function, allows us to express the function as

56

Chapter 2 – Community Detection

Gpq = φ1(p)φ1(q)eλ1 +
∑

φj(p)φj(q)≥0

φj(p)φj(q)e
λj +

∑
φj(p)φj(q)<0

φj(p)φj(q)e
λj . (2.22)

The first term on the righthand side is the consensus configuration where all nodes

share the same state. The second term on the righthand side (or intracluster communica-

bility) have the nodes p and q as the same sign of the corresponding eigenvector (positive

or negative). The last term on the same side (intercluster communicability) represents a

lack of consensus or different signs of the eigenvector component so they do not commu-

nicate well meaning they are in different communities in the network [24]. To calculate

the difference between intra- and intercluster communicability, we rewrite the consensus

configuration as below:

∆Gpq =
∑

φj(p)φj(q)≥0

φj(p)φj(q)e
λj +

∑
φj(p)φj(q)<0

φj(p)φj(q)e
λj

=
intracluster∑

j=2

φj(p)φj(q)e
λj −

∣∣∣∣∣
intercluster∑

j=2

φj(p)φj(q)e
λj

∣∣∣∣∣ .
∆Gpq > 0 demonstrates that p and q show larger intracluster than intercluster communi-

cability.

2.4.3 Optimisation

Optimisation techniques which maximize a function measuring cluster quality have been

the area of focus for community detection.

Drawbacks to modularity maximisation

Modularity maximisation is considered NP-hard [9] so the hope is to find decent ap-

proximations and there are several approaches with modularity proposed by Girvan and

Newman being the most popular. Despite its popularity, there are several problems as-

sociated with its use. Because modularity does not take into account the distribution of

different network features, it is possible to find high modularity partitions even in random

graphs without groups [35].

Resolution Limit Problem or the Ring of Cliques

57

Chapter 2 – Community Detection

Consider cliques of four vertices in a ring-like structure with each clique joined to two

others by a shared edge. This is named the ring of cliques by Fortunato and Barthélemy

[31] as seen in Figure 2.13. We might expect that modularity would reach its maximum

for partitions whose cliques are community, but the modularity is larger when subgraphs

are put together than when they are treated as separate communities, and the modularity

scale is dependent only on the number of edges m, unrelated to community size.

Figure 2.13: Example of the resolution problem of modularity.

This issue is known as resolution limit and occurs where networks with small com-

munities which are adjacent to bigger communities or many small communities that are

circularly connected are incorrectly partitioned into pairs of modules rather than single

cliques. It is also important to note that these problems are not unique to modularity

[22].

A multi-resolution approach, which involves introducing a resolution parameter γ

into the modularity formula and tuning it to adjust the resolution scale of the method

when going from very large to very small communities [5], is popular but does not always

solve the problem reliably because with modularity maximisation large subgraphs are

typically split into smaller pieces [55]. This problem has the same origin as the resolution

problem, that is, its use of the null model, which assumes that each node can attach

to any other node in the network, which does not make sense in a very large network.

Furthermore, in a null model, this assumption would result in the expected number of

58

Chapter 2 – Community Detection

edges in a large enough network being less than one, and one edge shared between two

groupings would indicate a strong correlation between the two which with optimisation

would merge the two clusters irrespective of their features. The end result is that small

communities in large networks are not recognized even when they are well-defined [31].

2.4.4 The Louvain Method

Circumventing the resolution limit issue, which is an actual feature of modularity rather

than an issue with methods of maximising it, can be done using the Louvain method first

proposed by Blondel et al. [8]. It is a heuristic method based on modularity optimisation

that finds high modularity partitions of networks and complete hierarchical community

structure in a short time. It is based on a similar earlier method proposed by Clauset,

Moore and Newman [15] where communities are merged repeatedly to optimise modu-

larity. The drawbacks to this earlier method were the production of lower modularity

values than other methods such as simulated annealing [35], and a propensity to produce

‘super-communities’ containing many nodes even within networks that had no notable

community structure which resulted in slowing processing times so that networks exceed-

ing a million nodes were not practical [15].

In contrast, the Louvain method is a greedy optimisation of Q that has two phases that

are repeated iteratively. Starting with a weighted network of N nodes, a different com-

munity is assigned to each node of the network so there are as many communities as

nodes. Each node is considered and the gain in modularity when i is removed from its

community and placed in the community of its neighbour j is evaluated. Node i is then

placed in the community only where the gain is maximised and positive. This process is

repeated until no further improvements can be made. It should be noted that the order

does not affect modularity but it does affect computation time. The formula

∆Q = [

∑
in +ki,in
2m

− (

∑
tot +ki
2m

)2]− [

∑
in

2m
− (

∑
tot

2m
)2 − (

ki
2m

)2] (2.23)

59

Chapter 2 – Community Detection

is used to calculate the gain in modularity.
∑

in is the sum of the weights of the links

inside the community C,
∑

tot is the sum of the weights of the links incident to nodes

in C, ki is the sum of the weights of the links incident to node i, ki,in is the sum of the

weights of the links from i to nodes in C and m is the sum of the weights of all the links

in the network. A similar expression is used to evaluate the change of modularity when i

is removed from its community.

In the second phase, a new network whose nodes are now the communities found during

the first phase is built using the weights of the links between the new nodes which are

found using the sum of the weight of the links between nodes in the two corresponding

communities. One cycle of the process of both phase one and phase two is termed a

“pass”. The number of communities decreases with each pass and the passes continue

until there are no more changes and maximum modularity is reached.

There are a number of advantages with this algorithm. It is easy to implement and does

not require supervision to achieve the outcome. It is also very fast with most of the

calculation time used in the first iteration. It circumvents the resolution limit problem

of modularity because there is a low probability that two communities are able to merge

by moving nodes one by one. Additionally, this algorithm finds communities at different

levels of organization thus uncovering hierarchical structure as it maximises modularity

[8]. High modularity partitions are not necessarily similar to each other in spite of the

similarity in their modularity scores. The best partition may not have the highest Q-value

but amongst a number of high scoring partitions, it may be very difficult to distinguish

the best partition from the rest. In order to choose, the user could restrict the clustering

to certain parameters based on specific features she could expect the community to have.

If she does not know or does not have any particular expectations, consensus clustering

could be used and combined with a hierarchical approach could address resolution limit

problems as well as helping to avoid finding communities in networks without any [87].

60

Chapter 2 – Community Detection

2.4.5 Dynamics

Dynamical processes like diffusion, spin dynamics, and synchronisation can be used to

detect communities. Specifically, most of these processes are based on diffusion and spin

dynamics.

Vertex Similarity

Methods based on vertex similarity exploit these random walk dynamics. One set of

techniques includes using random walk dynamics to estimate similarity between pairs of

vertices. One method by Pons and Latapy [72] is called Walktrap, where community

structure is calculated in time O(mnH) where H is the height of the dendrogram. H is

usually small and yields the best results when the dendrogram is balanced (H = O(log n)).

Within a random walk, the probability for each step is Pij =
Aij
d(i)

. P is the transition

matrix of random walk processes. The vertex similarity can be measured using P and is

thought to be considerably higher within groups than between groups. Clusters can be

identified by hierarchical cluster or partitional clustering, but this algorithm cannot be

used on larger networks [72].

Map Equation

This approach came about when trying to achieve the best way to describe long random

walks taking place in the graph. In this process, all vertices are listed sequentially, then

assigned a unique codeword although there are places where there is an overlap of names.

The equation results in the description length of an infinite random walk in two terms:

the Shannon entropy and the minimum description length.

Info map can be applied to both weighted and unweighted, directed and undirected net-

works. A teleportation probability as in PageRank [11] is introduced for random walk

dynamics. The rule was then expanded to detection of hierarchical community structure

and clusters which overlap within a network and then to higher order Markov dynamics

where transition probabilities are used in other steps thus retaining memory of the recent

past [11].

61

Chapter 2 – Community Detection

In comparison to structure-based methods such as modularity and optimisation, Infomap

and other variants usually return different partitions because they are not based on num-

ber of edges, vertex, etc. but on flows running across the system. Most methods in this

section discussed so far are global, meaning that they find community structure for the

entire network. Random walks can, however, be used to find communities locally using

seed vertices [32][46].

When examining some existing methods for community detection, we must recognize

that because there is no overriding mathematical definition of community, each method

is not necessarily exactly comparable with another given that each set of researchers

may define community differently. Methods for partitioning graphs usually require that

the number of partitions is known in advance which is not usually the case for complex

networks. Modularity methods which were first explored by Newman and Girvan, do

not have this issue and are popular because they also evaluate the quality of the parti-

tioning. Other methods which have their basis in community detection are algorithms

based on structural equivalence [57], stochastic block model methods [65], [70] , [69], and

hierarchical clustering algorithms [30].

2.5 Anti-Communities

Detecting communities allows us to identify components that are functionally related.

However, not all communities in complex networks possess this structural feature. The

term ‘anti-community’ was first used by Newman in a 2006 paper where he described

bipartite and multipartite structures in networks [63]. An anti-community can be defined

as an area of a network which has a significantly low density of connections between its

nodes but a high density of connections outside of it. While there has been much discus-

sion within the field of detecting areas of densely connected nodes—communities, there

has been much less investigation of algorithms to locate anti-communities.

The idea of clusters or communities in a network has to do with shared characteristics

of that network. It is noteworthy that some networks have communities with opposing

62

Chapter 2 – Community Detection

properties where the nodes have no connection with other nodes, that is, little to no in-

ternal edges but many external edges. Two major studies of anti-communities have been

with protein-protein interactions and conflicts in traditional Chinese medicine [27],[88].

These anti-communities can also be viewed as bipartitions since they are those areas

where there is less density between nodes. Finding anti-communities is closely connected

to finding communities in the graph complement. Mathematically, the same principle

can be applied as they are comparable. Practically, the runtime complexity represents a

significant barrier in a dense graph that exceeds a certain number of edges.

2.5.1 A Spectral Bipartization Method

Using the spectral structure of a bipartite graph to calculate a permutation in the node of

the V1 and V2 sets provides us with a method of detecting communities in bipartite graphs.

Once the permutation is calculated, we can approximate and then construct a bipartite

graph to a connected, undirected graph G which has a perturbed bipartite structure. The

authors of this approach were unable to deduce a complete convergence approach and so

have classified this method as heuristic [17].

With this approach, there are three problems that need to be addressed. The first

is determining a way to estimate the size of sets V1 and V2. The authors determine

cardinalities of n1 and n2 by finding the number of eigenvalues that are around zero. The

most reliable method they found was to figure out the largest gap between the small and

large eigenvalues by computing the ratios

ρi =
| λi+1 |
| λi |

where λi is the large eigenvalue and considering the index set for the chosen constants R

and τ . The index set is as follows

J = {i ∈ {1, 2, . . . , n− 1} : ρi > R and | λi+1 |> τ}. (2.24)

63

Chapter 2 – Community Detection

A significant gap between λi and λi+1 denotes that J (see 2.24) has an index. If J is

empty, then the cardinality of V1 and V2 are considered to be the same.

The second issue is ordering the nodes in G in a suitable fashion. To address this

issue, G is assumed to be bipartite and yet the adjacency matrix A parallels with the

nodes in random order so that

A = ΠABΠT

where AB =

 On1 C

CT On2

, Ok is the k × k zero matrix, and C = [ci,j] ∈ Rn1×n2 with

ci,j > 0. The eigenvector matrix is partitioned so the structure of the eigenvector can be

recovered.

The third issue is how to approximate the adjacency matrix by a matrix of the form

AB =

 On1 C

CT On2


First, the eigenvector matrix is approximated WB by solving

minUT1 U1=V TV= 1
2
n2I,UT2 U2= 1

2
In1−n2

=

∥∥∥∥∥∥∥
U1 U2 U3

V O −V

−
W11 W12 W13Z

W21 W22 W23Z


∥∥∥∥∥∥∥
F

(where ‖ . ‖F denotes the Frobenius norm) and then approximating the eigenvalues using

specified scalars [17].

2.5.2 Anti-modularity

In 2014, Chen et al. published a paper proposing the term ‘anti-modularity’ to quanti-

tatively measure anti-community partitioning in a network by using a label propagation

algorithm [13]. Their rationale for proposing this measure was that all the community

detection methods that were adapted to find anti-communities would not necessarily re-

sult in the best partitioning for these anti-communities. Consequently, they claimed these

adapted methods would not be as precise or as accurate [13]. They define anti-modularity

as “the difference between the number of paths connecting the vertices within groups pass-

64

Chapter 2 – Community Detection

ing a vertex in other group, and the expected number in an equivalent network with edges

placed at random” with positive values showing the presence of anti-community struc-

ture with the larger the value of anti-modularity, the larger the anti-community. The

anti-modularity is defined as:

Q =
1

n

c∑
g=1

∑
vj∈vg

(
n∑
k=1

aikakj −
didj
n

)

To maximise the anti-modularity within all the possible graph partitions, finding the

anti-modularity becomes an optimisation problem with it being expressed in terms of the

eigenvalues of the anti-modularity matrix

M = ATA− 1

n
DTD

where D = (d1, d2, . . . , dn) is the vector with the degrees of the vertices. Chen et al. goes

on to show how reliable their measure is by maximising the anti-modularity by clustering

the column vectors of the graph in the adjacency matrix which leads to an NP-complete

problem [66] since we do not know the size of the communities and guessing will pre-

vent the best solution from being found. High values of Q represent an anti-community

partition of high quality so optimising Q over all the possible groupings to find the best

one would seem logical. Carrying out a search of all the vertices would require a massive

amount of time, so they devise a label propagation algorithm which is faster than all other

methods in the literature [13]. They then test their algorithm on artificial and real-world

networks.

Further to their work, Zhu et al. have proposed two heuristic methods that attempt

to minimise modularity and Fasino et al. puts forth a spectral method to simultaneously

detect both communities and anti-communities using modularity minimisation or max-

imisation [27]. There are few dedicated algorithms for anti-community detection and the

ones that do exist are either not feasible because of the storage space it would require and

the runtime [53].

65

Chapter 2 – Community Detection

Since the optimisation problem is NP-hard, heuristic approximation algorithms where

a greedy algorithm makes a locally optimal choice rather than searching for a global

optimum which would take much more time.

66

Chapter 3

Random models with community

structure

3.1 Random graphs and graph generators

Working with random graph networks can provide us with insight into some of the issues

we encounter when trying to analyse real world networks, so long as the randomly gen-

erated networks sufficiently resemble real-world networks. It is well known that some of

the basic random models lack crucial features that are important in practice and we aim

to devise methods to overcome this lack. For instance, there are many applications where

scientists and engineers need to isolate small fragments to understand their role within

the whole system and techniques to quantify these fragments or subgraphs can be very

useful. The frequency of fragments that inevitably arise through network connectivity

may be dissimilar to equivalent random networks, hence poorly chosen random networks

may not be useful for inferring behaviour in real world networks [25], [22].

In this section we describe some popular random graph models and list some of their

properties.

67

Chapter 3 – Random models with community structure

3.1.1 Erdős–Rényi

Probably the simplest model of random graphs is the Erdős–Rényi (ER) model. Erdős

and Rényi characterized a class of random graphs and showed that many of the prop-

erties of such networks can be calculated analytically. This minimal model consists of

n nodes, joined by edges which are placed between pairs of nodes chosen uniformly at

random. Erdős and Rényi gave a number of versions of their model. The most commonly

studied is the one denoted Gn,p, in which each possible edge between two nodes is present

with independent probability p, and absent with probability 1 − p. Technically, in fact,

the model is the ensemble of graphs of n nodes in which each graph appears with the

probability appropriate to its number of edges [25],[22].

We list some properties of the random graph model. To form Gn,p, each pair out of

N = n(n−1)
2

pairs of nodes is connected with probability p.

1. The mean number of edges is m̄ = pn(n−1)
2

.

2. The expected node degree k̄ = (n− 1)p.

3. The probability p(k) follows a binomial distribution of the form

p(k) =

(
n− 1

k

)
pk(1− p)n−1−k.

For large n with fixed k̄, p(k) become

p(k) =
e−k̄k̄k

k!

which is the Poisson distribution.

4. The average path length for large n with fixed k̄ is l̄(G) = lnn−γ
ln(k̄)

+ 1
2

where γ ≈ 0.577

is the Euler–Mascheroni constant.

5. The Watts–Strogatz clustering coefficient is C̄ = p which means that the clustering

coefficient for sparse Erdős–Rényi random networks is very small, much smaller than

for real world networks with the same density [22].

68

Chapter 3 – Random models with community structure

6. As p increases, most nodes tend to be clustered in one giant component, while the

rest of nodes are isolated in very small components and the structure of Gn,p changes

as a function of k̄, giving rise to the following three stages.

• Subcritical (k̄ < 1), where all components are simple and very small. The size

of the largest component is S = O(lnn).

• Critical (k̄ = 1),where the size of the largest component is O(n
2
3)nodes.

• Supercritical (k̄ > 1), where the probability that (f − ε)n < S < (f + ε)n

is 1 when n → ∞, ε > 0, and where f = f(k̄) is the positive solution of the

equation e−k̄f = 1 − f . The rest of the components are very small, with the

second largest having size about lnn.

7. The largest eigenvalue of the adjacency matrix in an ER network grows proportion-

ally to n so that limn→∞
λ1(A)
n

= p.

8. The second largest eigenvalue grows more slowly than λ1. In fact, limn→∞
λ2(A)
nε

= 0

for every ε > 0.5.

9. The most negative eigenvalue grows in a similar way to λ2(A). Namely, limn→∞
λn(A)
n

=

0 for every ε > 0.5.

10. The spectral density of Gn,p follows Wigner’s semi circle law [22].

Figure 3.1: Erdős–Rényi degree distribution for an instance.

69

Chapter 3 – Random models with community structure

Figure 3.1 shows degree distribution for average of 100 instances of an Erdős–Rényi

network with n = 100, p = 0.1.

Figure 3.2: Erdős–Rényi eigenvalue distribution.

Figure 3.2 shows the eigenvalue distribution for an instance of an Erdős–Rényi net-

work with n = 2000, p = 0.1. Notice the small uptick at the right hand edge of the graph

(this is λ1) [25][22].

3.1.2 Scale-free networks

While ER networks are a very useful theoretical tool they lack an important property

found in many real-world networks, namely that while most nodes have only a few links

to other nodes, a small number of nodes are highly connected with a huge number of links

to other nodes. This leads to the observation that real-world networks do not have nodes

with a typical number of neighbors, and in this sense these networks are scale-free. The

modern investigation of scale-free networks began with Barabási and Albert.

To generate a Barabási–Albert (BA) network we begin with an initial connected

network of m0 nodes. New nodes are added to the network one at a time. Each new

node is connected to d ≤ m0 existing nodes with a probability that is proportional to

the number of links that the existing nodes already have. This process is known as

preferential attachment. For example, we assume that we begin with a connected ER

70

Chapter 3 – Random models with community structure

network G = (V,E) with m0 nodes. In this case the Barabási–Albert (BA) algorithm

can be understood as a process in which inhomogeneities in the degree distribution of the

Erdős–Rényi (ER) network grow in time.

We summarise some key properties of BA networks.

1. The probability of a node with degree k ≥ d is

p(k) =
2d(d− 1)

k(k + 1)(k + 2)
≈ k−3

that means the distribution resulting from the BA model close to a power law (power

law are usually represented on logarithmic scale then appears as straight line but

the degree distribution of some models do not look so smooth) as in Figure 3.3 with

n = 1000, d = 10.

Figure 3.3: The degree distribution of a model BA network

2. The average path length of the BA model is

l̄ =
lnn− ln(d

2
)− 1− γ

ln lnn+ ln(d
2
)

+
3

2
,

where γ is the Euler-Mascheroni constant.

3. The cumulative degree distribution is P (k) ≈ k−2.

4. The expected value for the clustering coefficient, is C̄ = d−1
8

log2 n
n

as n→∞

71

Chapter 3 – Random models with community structure

5. As shown in Figure 3.4 the spectral density of BA model has a different shape from

the semicircular spectral density of random graph. It has a triangle-like shape with

the top lying well above the semicircle and edges decaying as a power law [25], [22].

Figure 3.4: Spectral density of a model BA network.

6. The largest eigenvalue of the adjacency matrix in BA network increases approxi-

mately as n
1
4 [2].

3.1.3 Effect of adding triangles on fragments (ER, BA)

Motifs and Fragments

Given the significance of fragments in real world networks, the frequency with which they

appear suggests that there is a function or logic to this over expression. Adapting random

networks to reflect real world networks by taking the average nodes that have the same

degrees as real ones, we can see which fragments can be over and under represented.

A fragment that appears in a real network an equal or greater number of times than

in random networks is motif. Conversely, fragments which appears less frequently than

would be expected are anti-motifs.

Real world networks contain small structural pieces that occur with certain functions

of the system see Figure 3.5. Isolating these pieces helps us to understand how they work

and how the roles in the system work together.

72

Chapter 3 – Random models with community structure

(a) Triangle (b) Bi-fan

Figure 3.5: Triangle and Bi-fan

Various techniques will be discussed to determine the number of these fragments

within a network and whether or not their presence indicates a significant function or is

simply a reflection of a random process. Another way to describe these fragments are as

subgraphs. Some techniques to count different types of subgraphs include counting stars

and using closed walks. These two techniques can also be combined. Other techniques can

be used to find subgraphs with a diamond shape. While subgraphs with certain shapes

can certainly be found in connected networks, their occurrences may be random as we

can identify when comparing real world graphs to random graphs. In this circumstance,

we cannot use these occurrences whether frequent or not to explain how the structure

of that network evolved. Nevertheless, over expression of a fragment beyond that which

would be expected suggests there is a structural or functional reason. We can consider

this subgraph or fragment to be a network motif when the probability P of its presence

in a real world network an equal or greater number of times than in a random network is

PC = 0.01. Quantifying statistical significance is calculated using the Z-score (Zi) where

Zi =
Nreal
i −〈Nrandom

i 〉
σrandomi

, where σrandomi is the standard deviation of the number of times that

i appears in an ensemble of random networks and the relative abundance of a particular

fragment as measured by

αi =
N real
i − 〈N random

i 〉
N real
i + 〈N random

i 〉
, (3.1)

where N real
i is the number of times the subgraph i appears in the real network and

〈N random
i 〉 is the average of the number of times that appears in an ensemble of random

networks. If αi is close to zero then the frequency is about right. If it is positive then the

73

Chapter 3 – Random models with community structure

real network has more than the random network and the fragment is a motif. A defining

characteristic of network motifs are that they are specific to a particular network but it

should also be noted that families of networks can be found if they share the same group-

ings of motifs. Subgraphs are over represented in some networks and underrepresented in

others as is usually the case for motifs in undirected networks. This under representation

where fragments are less frequently found in real world networks than in a corresponding

random network are called anti-motifs.

In our experiment we look at the frequencies of a number of small fragments. F1 is

a path of length two, F2 is a 3-cycle (or triangle), F3 is a path of length three, F4 is a star

with 3 points, F5 is a 4-cycle (or square), F6 is characterized by having a node which is

simultaneously part of a triangle and a path of length one, often known as a tadpole, F7

is a diamond, F8 is a 5-cycle (pentagon), F9 is characterized by having a node which is

simultaneously part of a triangle and a path of length two, F10 is characterized by having

a node which is simultaneously part of a 4-cycle and a path of length one, F11 is reindeer,

F12 is characterized by having a node which is simultaneously part of a triangle and a

path of length two, F13 is bowtie, F14 is a house and F15 is 6-cycle. We expect that only

some of the fragments would be motifs in real world networks and some of them would

not [25].

74

Chapter 3 – Random models with community structure

F1

F2

F3

F4

F5

F6

F7

F8

F9

F10

F11

F12

F13

F14

F15

Figure 3.6: F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13, F14 and F15.

To explore the question of whether real world networks have motifs, we examined

ten real networks (Dolphins, ColoSpg, Centrality, Pin Malaria ,Corporatepeople, Canton,

GD, Drugs, Little Rock and Stony) representing different system in the real world by

computing 15 fragments F1-F15. These are illustrated in Figure 3.6. It is well known that

triangles frequently appear as a motif in real-world networks.

We wanted to see the effect of artificially adding triangles to random networks and

a Block Two-Level Erdős-Renyi (BTER) model, which has a community structure in the

form of dense ER subgraphs and matches well with real-world graphs. In the first level,

BTER builds a collection of ER blocks in such a way that the specified degree distribution

is respected, and the second level interconnects the blocks [77].

The benefit of the BTER model are its dense ER subgraphs and that it pairs well

with real-world graphs. In what is termed the preprocessing state, the nodes that have

degree 2 or higher are grouped into communities. The desired degree distribution is

75

Chapter 3 – Random models with community structure

designated as di. Though the process is more complicated, roughly speaking d vertices

that are close to d are placed in certain scale-free communities. Then, Gk represents the

kth community and ki is the assigned community for the node i.

In level 1, each of the distributed communities from the preprocessing stage has links

modelled using the ER model and their connectivity used as a parameter of the model.

Clustering coefficients for real graphs show that degrees with lower vertices have a signifi-

cantly higher clustering coefficient than the ones with higher degrees. The connectivity is

then adjusted as these results illustrate that large communities are less closely connected

than smaller ones. Overall, these connections tend to be dense leading to larger clustering

coefficients.

In level 2, the same communities that have been locally linked are now globally

linked by applying a Chung and Lu (CL) model to the excess degree, ei of each node. It

is computed using

ei =


1 if di = 1

di − ρki(| Gk | −1), otherwise

.

where Gk is the size of community k. Duplicate links are discarded. It should be noted

that in this level, generating extra edges to account for repeats and self-loops can be done.

Overall, these connections tend to be sparse leading to heavy-tailed degree distributions.

Comparisons of the BTER to real world networks are well-matched with any degree

distribution. However, where the BTER truly stands out is when considering the cluster-

ing coefficient where it is seen to provide a much closer match to the real data than other

models such as the CL proving the BTER builds communities of differing sizes while also

producing a heavy tail. Thus, it is a fitting model to test algorithms and architectures for

interaction graphs, that is, graphs of social relationships, collaboration, computer network

traffic, and the like. The added benefit of the BTER is that it is scalable and in fact in

level 2 could be used to compute the exact excess degree and complete the graph [77].

76

Chapter 3 – Random models with community structure

3.1.4 Methods

1. The 15 fragments for real world networks were computed using Matlab to find the

number of nodes, number of edges and the 15 fragments.

2. We used the Erdős–Rényi model, the Barabási–Albert model and BTER model and

adapted them to the networks being studied in this experiment by fixing the nodes

to match the real-world graphs and ensuring that on average the number of edges

was matched, too.

3. We computed the fragments for each one.

4. We calculated the relative abundance of each given fragment by using the statistic

αi defined in equation (3.1). If αi is close to zero then the frequency is about right.

If it is positive then the real network has more motifs than the random network.

If it is negative then it has less than the random network. If a subgraph is under

represented it is known as anti motifs.

5. Then we added triangles to both models (the Erdős–Rényi model and the Barabási–

Albert model) so that they had approximately the same number as their real world

counterparts. To add triangles we target 2-paths in A which are not yet triangles.

These can be identified by finding entries of A2 which are nonzero while the corre-

sponding entry of A is zero. If A(i, j) = 0 and A2(i, j) > 0 then by setting A(i, j)

and A(j, i) to 1 we have added a triangle. Adding k (random) edges adds (at least)

k new triangles.

6. Then re-computed the new αi

αi =
N real
i − 〈N random+T

i 〉
N real
i + 〈N random+T

i 〉

.

77

Chapter 3 – Random models with community structure

7. Finally, we made a table for each network. The table contains 19 rows and 7

columns. The main row contains real world networks, αi before adding triangles to

ER and αi after adding triangles to ER, αi before adding triangles to BA and αi

after adding triangles to BA and αi for BTER, The main column contains a number

of nodes n, number of edges m, the average of edge for random networks, F1, F2,

F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13, F14 and F15 .

We compute the speed of the algorithm in the following table and we see that the time

increases as the number of nodes increases:

Networks n m C3 Time for ER+T Time for BA+T Time for BTER

Dolphin 62 159 95 0.3 0.8 26

ColoSpg 324 347 17 0.4 1.4 25

Centrality 118 613 1107 0.6 1.5 13

Pin Malaria 229 604 201 0.8 1.8 14

Corporate People 1586 11540 28002 22.4 44.9 371

Canton 108 707 116 0.4 1.5 14

Drugs 616 2012 3598 5.9 4.1 21

GD 249 635 327 0.5 2 14

Little Rock 181 2311 10489 3.1 5.4 21

Stony 112 830 124 0.6 1.6 14

Table 3.1: The speed of the algorithms in milliseconds.

3.1.5 Results

We colour the results in the following tables by green if the relative abundance is in the

range [−0.2, 0.2] and by red if it is not in the range [−0.2, 0.2].

78

Chapter 3 – Random models with community structure

In the Dolphin, Centrality and Corporate people, Pin Malaria, Drugs and GD we

can see that the relative abundance of BTER is the best. In Dolphin, Centrality ,Canton

and GD the relative abundance is decreased after adding triangles to Erdős–Rényi model

and Barabási-Albert model.

real ER ER+T BA BA+T BTER

n 62

m 159

av(m) 160 161

F1 923 0.6525 -0.0238 -0.1791 -0.1964 0.044

C3 = F2 95 0.9515 0.0146 0.2657 0.0765 0.0281

P3 = F3 5023 0.8287 -0.0683 -0.2325 -0.2853 0.0358

S13 = F4 1861 0.8461 -0.0712 -0.5899 -0.6054 0.0501

C4 = F5 278 0.9655 0.0692 0.08 -0.0471 0.0423

T31 = F6 1644 0.9802 -0.0077 -0.079 -0.2522 0.065

Diamond = F7 300 0.9977 0.1729 0.3551 0.108 0.0334

C5 = F8 906 0.9771 0.0093 -0.0408 -0.1836 0.0573

Cr = F9 4675 0.9923 -0.0792 -0.6203 -0.713 0.0889

T41 = F10 5976 0.9848 0.0018 -0.2551 -0.3739 0.0578

Reindeer = F11 9012 0.9918 -0.0452 -0.3056 -0.4452 0.0831

T32 = F12 7879 0.9901 -0.0925 -0.0512 -0.2779 0.0314

Bowtie = F13 586 0.998 -0.06242 -0.1016 -0.41 0.0827

House = F14 1887 0.9971 0.1232 0.192 -0.0731 0.0386

C6 = F15 3232 0.9896 -0.0708 -0.105 -0.2617 0.0637

Table 3.2: Dolphin fragments.

79

Chapter 3 – Random models with community structure

real ER ER+T BA BA+T BTER

n 324

m 347

av(m) 346 320

F1 1324 0.8163 0.3542 -0.0141 0.0138 -0.0038

C3 = F2 17 0.9927 -0.006 1 -0.004 -0.1081

P3 = F3 2668 0.9565 0.6023 0.291 0.1758 -0.094

S13 = F4 3875 0.9809 0.7858 -0.3761 -0.3 0.0695

C4 = F5 13 0.9986 0.7115 1 0.5051 -0.2249

T31 = F6 235 0.9991 0.5303 1 -0.067 -0.1213

Diamond = F7 19 1 0.7394 1 0.5197 -0.0501

C5 = F8 9 0.9991 0.9217 1 0.7991 -0.3277

Cr = F9 1006 0.9999 0.859 1 -0.482 -0.1144

T41 = F10 213 0.9998 0.8965 1 0.4299 -0.2755

Reindeer = F11 890 0.9999 0.8235 1 0.1961 -0.1764

T32 = F12 454 0.9999 0.7271 1 0.2416 -0.1996

Bowtie = F13 6 1 0.7427 1 -0.093 -0.1208

House = F14 16 1 0.9488 1 0.8081 -0.167

C6 = F15 7 0.9997 0.9601 1 0.9267 -0.4621

Table 3.3: ColoSpg fragments.

80

Chapter 3 – Random models with community structure

real ER ER+T BA BA+T BTER

n 118

m 613

av(m) 611 516

F1 12119 0.6991 -0.0541 0.0112 -0.057 0.0901

C3 = F2 1107 0.9715 0.0213 0.5929 0.2495 0.0688

P3 = F3 205833 0.889 -0.0665 0.1226 -0.053 0.1504

S13 = F4 126075 0.8959 -0.1052 -0.3674 -0.417 0.1607

C4 = F5 14682 0.9874 0.0693 0.5905 0.2504 0.1546

T31 = F6 80494 0.9904 -0.0184 0.3963 0.0092 0.1391

Diamond = F7 13395 0.9991 0.1231 0.7815 0.3774 0.1096

C5 = F8 180042 0.9952 0.0757 0.6384 0.2424 0.2377

Cr = F9 1414176 0.9971 -0.0752 -0.1252 -0.462 0.2206

T41 = F10 1434083 0.9961 0.0447 0.4506 0.0515 0.2317

Reindeer = F11 1766160 0.9971 -0.0212 0.3364 -0.071 0.2148

T32 = F12 1242809 0.9969 -0.0195 0.5755 0.1054 0.203

Bowtie = F13 135737 0.9997 0 0.6196 -0.011 0.1988

House = F14 431360 0.9997 0.1662 0.8053 0.3823 0.2054

C6 = F15 2408189 0.9982 0.0692 0.707 0.264 0.3149

Table 3.4: Centrality fragments.

81

Chapter 3 – Random models with community structure

real ER ER+T BA BA+T BTER

n 229

m 604

av(m) 601 650

F1 5202 0.7397 0.1773 -0.1862 -0.2019 0.0616

C3 = F2 201 0.9717 -0.0413 0.23 -0.0292 -0.1104

P3 = F3 41208 0.9068 0.3078 -0.2205 -0.2628 -0.0079

S13 = F4 25244 0.9485 0.5197 -0.5431 -0.5752 0.1497

C4 = F5 884 0.9878 0.4572 0.0726 -0.0421 -0.1776

T31 = F6 6895 0.9933 0.2769 -0.1198 -0.3236 -0.0906

Diamond = F7 623 0.9996 0.3912 0.3113 0.0254 -0.2171

C5 = F8 4048 0.9941 0.6235 -0.0761 -0.1857 -0.3346

Cr = F9 57150 0.999 0.6356 -0.5774 -0.7067 -0.0229

T41 = F10 40548 0.9973 0.6649 -0.2392 -0.3563 -0.2253

Reindeer = F11 76139 0.9984 0.5315 -0.3158 -0.4604 -0.1613

T32 = F12 51407 0.9977 0.3811 -0.0508 -0.2965 -0.199

Bowtie = F13 2856 0.9999 0.4898 -0.043 -0.4055 -0.1636

House = F14 6711 0.9998 0.714 0.1965 -0.0478 -0.3506

C6 = F15 20595 0.9976 0.675 -0.1594 -0.28 -0.4625

Table 3.5: Pin Malaria fragments.

82

Chapter 3 – Random models with community structure

real ER ER+T BA BA+T BTER

n 1586

m 11540

av(m) 12333 12328

F1 216461 0.6773 -0.3186 -0.2546 -0.3702 0.0013

C3 = F2 28002 0.9955 -0.2382 0.785 0.3573 0.005

P3 = F3 4296686 0.8688 -0.5812 -0.3756 -0.6038 -0.0463

S13 = F4 1679811 0.887 -0.5937 -0.8437 -0.873 -0.0004

C4 = F5 186566 0.9963 -0.6406 0.4811 -0.1674 -0.2252

T31 = F6 1690907 0.9984 -0.5362 0.2274 -0.4078 0.0034

Diamond = F7 340878 1 -0.4957 0.8431 0.281 -0.1012

C5 = F8 1575866 0.9975 -0.8535 0.0908 -0.6233 -0.4054

Cr = F9 20510120 0.9995 -0.7498 -0.7663 -0.9349 0.0054

T41 = F10 15871108 0.9987 -0.8117 -0.2444 -0.7439 -0.2613

Reindeer = F11 35442713 0.9994 -0.7467 -0.3258 -0.7405 -0.063

T32 = F12 34382728 0.9994 -0.7303 0.226 -0.5642 -0.0456

Bowtie = F13 3424433 1 -0.7007 0.4764 -0.6232 0.0401

House = F14 6425782 1 -0.7809 0.6525 -0.2378 -0.3171

C6 = F15 16505015 0.9985 -0.941 -0.24 -0.8393 -0.5297

Table 3.6: Corporate People fragments.

83

Chapter 3 – Random models with community structure

real ER ER+T BA BA+T BTER

n 108

m 707

av(m) 704 626

F1 13602 0.7214 0.0588 0.1668 0.112 0.192

C3 = F2 116 0.9433 -0.047 0.4608 0.1302 0.0172

P3 = F3 247305 0.8912 0.0879 0.3025 0.1643 0.2546

S13 = F4 103361 0.9299 0.2554 0.034 -0.005 0.4029

C4 = F5 29263 0.9716 0.047 0.4925 0.1833 0.0953

T31 = F6 8034 0.9844 0.108 0.4193 0.1005 0.2152

Diamond = F7 821 0.9972 0.0327 0.6056 0.1454 -0.0019

C5 = F8 32978 0.9885 0.0956 0.589 0.2439 0.171

Cr = F9 116819 0.9972 0.3928 0.2663 -0.031 0.492

T41 = F10 2435383 0.9925 0.2004 0.4923 0.1769 0.2676

Reindeer = F11 172214 0.9955 0.2246 0.468 0.1513 0.3325

T32 = F12 126925 0.9939 0.1043 0.5832 0.1962 0.2356

Bowtie = F13 2579 0.9994 0.2274 0.6143 0.0942 0.303

House = F14 44215 0.9987 0.1373 0.6798 0.2208 0.0868

C6 = F15 5777276 0.9954 0.1081 0.6845 0.3094 0.2258

Table 3.7: Canton fragments.

84

Chapter 3 – Random models with community structure

n 616

m 2012

av(m) 2018 1800

F1 29327 0.7383 -0.0298 -0.08 -0.377 0.0287

C3 = F2 3598 0.996 0.0602 0.881 -0.0888 0.0376

P3 = F3 376645 0.9299 -0.1886 0.0665 -0.6147 0.0487

S13 = F4 246315 0.9362 -0.2008 -0.626 -0.7278 0.0581

C4 = F5 25502 0.9988 -0.371 0.8798 -0.4888 0.0613

T31 = F6 181958 0.999 -0.3303 0.6914 -0.5382 0.0566

Diamond = F7 40556 1 -0.4193 0.9707 -0.277 0.0653

C5 = F8 211825 0.9996 -0.6739 0.8975 -0.7392 0.0839

Cr = F9 2331399 0.9998 -0.6038 -0.02 -0.8505 0.0784

T41 = F10 1847005 0.9997 -0.6416 0.7401 -0.7525 0.077

Reindeer = F11 3083556 0.9998 -0.5957 0.5457 -0.7495 0.0764

T32 = F12 2431969 0.9998 -0.5766 0.8183 -0.71 0.0737

Bowtie = F13 303482 1 -0.7186 0.9261 -0.7253 0.0946

House = F14 791935 1 -0.7192 0.9764 -0.6126 0.0877

C6 = F15 1963883 0.9999 -0.8403 0.9206 -0.8713 0.1063

Table 3.8: Drugs fragments.

85

Chapter 3 – Random models with community structure

real ER ER+T BA BA+T BTER

n 249

m 635

av(m) 633 710

F1 4455 0.6992 0.0256 -0.3134 -0.3355 -0.0022

C3 = F2 327 0.9853 -0.098 0.4321 -0.0618 -0.0554

P3 = F3 31503 0.882 0.0491 -0.3961 -0.4965 -0.0683

S13 = F4 13130 0.9042 0.0913 -0.7792 -0.7798 -0.0167

C4 = F5 1191 0.9916 0.1178 0.1997 -0.1946 -0.1048

T31 = F6 7704 0.9951 -0.0201 -0.1093 -0.5142 -0.0909

Diamond = F7 1106 0.9998 0.032 0.5461 -0.1319 -0.1799

C5 = F8 4504 0.9956 0.2301 -0.0426 -0.4424 -0.2339

Cr = F9 34626 0.9985 0.0487 -0.7639 -0.8918 -0.1306

T41 = F10 37519 0.9974 0.1774 -0.3167 -0.6195 -0.1917

Reindeer = F11 60271 0.9984 0.0466 -0.4587 -0.7169 -0.1867

T32 = F12 53207 0.9983 0.0055 -0.0709 -0.5843 -0.1795

Bowtie = F13 3091 0.9999 -0.0547 -0.0299 -0.7259 -0.1973

House = F14 9128 0.9999 0.2083 0.3431 -0.3553 -0.3086

C6 = F15 20369 0.998 0.3071 -0.1924 -0.6008 -0.3305

Table 3.9: GD fragments.

86

Chapter 3 – Random models with community structure

real ER ER+T BA BA+T BTER

n 181

m 2311

av(m) 2307 1917

F1 95534 0.7628 0.236 0.2325 0.2334 0.2421

C3 = F2 10489 0.9467 0.5568 0.4599 0.4504 0.1125

P3 = F3 3603217 0.9192 0.4123 0.3768 0.3761 0.3282

S13 = F4 1708591 0.9425 0.5453 0.2114 0.2097 0.444

C4 = F5 421275 0.9881 0.7735 0.6813 0.6797 0.4246

T31 = F6 1532094 0.9868 0.7415 0.4896 0.4811 0.3046

Diamond = F7 368113 0.9982 0.9124 0.7053 0.6985 0.2954

C5 = F8 9541185 0.9951 0.7958 0.6981 0.6967 0.4166

Cr = F9 44856088 0.9974 0.8792 0.3723 0.3557 0.5189

T41 = F10 75582987 0.9969 0.8654 0.6868 0.6842 0.5348

Reindeer = F11 70771628 0.9966 0.85 0.5608 0.5552 0.4413

T32 = F12 56210239 0.9958 0.8149 0.6317 0.624 0.3729

Bowtie = F13 6999260 0.9994 0.94 0.6616 0.6462 0.4118

House = F14 28332235 0.9994 0.9436 0.7922 0.7882 0.446

C6 = F15 3.22E+08 0.9986 0.8685 0.7951 0.7942 0.5367

Table 3.10: Little Rock fragments.

87

Chapter 3 – Random models with community structure

real ER ER+T BA BA+T BTER

n 112

m 830

av(m) 825 655

F1 18544 0.7469 0.2081 0.2294 0.2337 0.1886

C3 = F2 124 0.3727 -0.6251 -0.6882 -0.6845 -0.824

P3 = F3 396443 0.9118 0.3846 0.3928 0.3982 0.2547

S13 = F4 158231 0.926 0.459 0.0872 0.0961 0.2955

C4 = F5 55704 0.99 0.8103 0.7659 0.7696 0.5264

T31 = F6 8825 0.7688 -0.4508 -0.7134 -0.7079 -0.8002

Diamond = F7 865 0.9218 -0.2789 -0.7321 -0.7256 -0.8841

C5 = F8 50051 0.9406 -0.1445 -0.2418 -0.232 -0.6656

Cr = F9 123556 0.9394 -0.1486 -0.818 -0.8129 -0.7475

T41 = F10 5419604 0.9972 0.8838 0.7608 0.7665 0.585

Reindeer = F11 202645 0.9264 -0.2441 -0.6883 -0.6803 -0.7802

T32 = F12 169920 0.9128 -0.3258 -0.5882 -0.58 -0.7926

Bowtie = F13 2335 0.9016 -0.6502 -0.9362 -0.9339 -0.9652

House = F14 66644 0.9859 0.2039 -0.3768 -0.3633 -0.7629

C6 = F15 15489577 0.9989 0.9027 0.8887 0.8911 0.6156

Table 3.11: Stony fragments.

88

Chapter 3 – Random models with community structure

3.1.6 Conclusion

In this study, we used random models because random models are good for testing the

properties of real-world networks but some existing models lack something that the real-

world networks have. So, In this experiment, we added triangles to the random networks

and we examined ten real networks by computing 15 fragments. Then we compute the

abundance of fragments. In some cases the effect of adding triangles is marginal. But

sometimes we find that many other fragments appear in much more realistic frequencies.

For example, in Tables 3.2, 3.4, 3.7 and 3.9 ER+T does well. For almost Tables, BTER

is the best but much more expensive.

As the existence of these motifs and anti-motifs most likely reflects some structural

or functional properties in real world networks, adapting these random graph models to

more closely reflect the structures of real world networks should prove useful for further

applications of random graph modules to better understand real world networks. So,

our conclusion is if we target triangles we affect many more other types of fragments.

Sometimes we are very successful in bringing everything in line. The network has much

more of the structure of a real world network by doing one simple change making them

much more suitable for simulations that mimic real world examples. The reason why some

networks are amenable to this process and others aren’t is a topic for future research.

89

Chapter 4

Measuring Bipartivity

4.1 Introduction

Bipartite networks are two sets of nodes connected by links without links in each set.

These “two-mode” networks where two sets of nodes are connected by links that represent

the relationships between them are described as bipartite [26]. However, some networks,

though they do not strictly meet this definition are not completely random and have

some bipartitivity. These can arise when the agents within the network tend to collect in

diverse groups [39].

There are a lot of real networks represented as bipartite. For example, a set of buyers

and a set of sellers: there are links between buyers and sellers in general, but sometimes

there are sellers who buy from other sellers. So, the network is no longer bipartite [25].

Also, citation networks in which a set of nodes represented the authors and the other

set represented the papers. In general, bipartite graph structure can be found in many

real-world networks outside of the biological fields. For example, actors and movies they

appear in, scientists and papers they authored, P2P exchange networks, queries and URLs,

users and items for recommendations, and analysing internet traffic [68]. Systems that

naturally occur as bipartite networks include biochemical networks of chemical substances

and chemical reactions and affiliation networks with organisations and individual actors

in that organisation. Then there are networks that are nearly bipartite such as ones where

there is a tendency for individuals to collect in diverse groups such as in human sexual

90

Chapter 4 – Measuring Bipartivity

contacts and human romance or partnerships. In a webgraph, it has been suggested that

in a graph of the world wide web, small bipartite subgraphs have a hub-authority bipartite

structure within communities on the web [49].

Applications include the links between enzyme-reactions and metabolic pathways, gene-

disease linkages or an ecological network. It should be noted that there has been focus

on unipartite graphs but less attention to the unique insights bipartite graphs can bring

to biological sciences.

The existence of bipartite graphs has given rise to various algebraic and spectral

applications being modified to analyse them since many of the methods that exist to

analyse unipartite graphs are not suitable to the bipartite structure [51].

Disassortative mixing or anti-community occurs where vertices have most of their

connections outside the group and have few to none connections inside the same group

[13]. In situations where networks consist of two such anti-communities, detecting the

largest bipartite subgraph within a given graph is necessary. These bipartite graphs are

also known as two-mode networks [39].

Before discussing bipartivity measures we give an example to show why it might

be useful in practice to measure closeness to bipartivity taken from [23] where it was

observed that one can find a degree of bipartivity in a network depicting communication

between airports; almost all communication is between the partitions while there is little

between members of the same group. The authors focused on European airline networks

to see how varying degrees of bipartivity affect their efficiency.

Thirty-three airlines were studied in total with 25 being “traditional” airlines and

8 being “low-cost”. The airports represented the nodes and the flights between them are

edges. The authors showed that that traditional airlines appear to be much more bipartite

than low cost airlines. They have observed large differences between traditional carriers

and the low-cost airlines, being the bipartivity of the latter ones much smaller than that

of the former. Then, they have shown that alliances and major mergers of traditional

airlines lead to a decrease in bipartivity.

91

Chapter 4 – Measuring Bipartivity

To show how bipartivity can affect efficiency, we can use an example of a passenger

from City A who is visiting two cities: City B and City C. After her trip she flies back

from City C to City B to go back to her home City A. If her airline belongs to an alliance

of airlines then she may be able to go directly home to City A from City C which amounts

to considerable savings in time and money for both the passenger and airline [23]. Estrada

et al. (2016) measure transportation efficiency as the ratio of the number of passengers to

the number of hours flown by a carrier. Increasing efficiency means decreasing the degree

of bipartivity and is shown when the number of passengers (in millions) is divided by

the hours flown and plotted against the bipartivity of air transportation networks. Thus,

we can see that a low degree of bipartivity in a transportation network drives airline

efficiency. Without a way to measure bipartivity, inefficiencies like the one just discussed

would be more difficult to identify [26].

This chapter aims to give a thorough review of characterisations of bipartivity. We

establish their equivalence for bipartite networks but when we look at “nearly” bipartite

networks we will see that the level by which that the characterisations fail can vary wildly.

We discuss in detail the appearance of bipartivity and near-bipartivity in real world

networks and more generally in graph theory to highlight the importance of the subject.

The main contribution of this chapter is to use the characterisations of bipartivity

to derive and analyse a number of measures to determine how far a network is from a

bipartite network. Some of these measures have appeared previously for example be in

equation 4.2, and some of them are new for example the measure bLN but we believe

that our comparison of them is new and adds valuable perspective. We show that the

different characterisations can lead to profoundly different conclusions about the level of

bipartivity within a network. For example we show that is possible to generate a network

that is arbitrarily close to being bipartite by one measure while being arbitrarily far by

another.

We support our analysis with comprehensive numerical tests both on real world and

artificial networks.

The theoretical results in Section 4.2.2 are new, and along with the comprehensive

characterisations of bipartivity, they have been published in [3].

92

Chapter 4 – Measuring Bipartivity

4.2 Characterising Bipartivity

Suppose G is a simple network with adjacency matrix A and spectrum

σ(G) = {λ1, λ2, . . . , λn},

where λ1 ≥ λ2 ≥ · · · ≥ λn (we will make this assumption throughout this chapter). The

classic definition of network bipartivity is as follows.

Definition 4.2.1. A network is bipartite if the nodes of the network G(V,E) can be

divided into disjoint sets V = V1∪V2 such that for all (u, v) ∈ E, either u ∈ V1 and v ∈ V2

or u ∈ V2 and v ∈ V1.

We note that the network with n nodes that is the least bipartite is Kn, the complete

graph. There are a number of other characterisations that have been proposed in the

literature as encapsulated in Theorem 4, below. First, we introduce a useful Lemma

Lemma 2. A simple graph has cycles of odd length if and only if it has closed walks of

odd length.

Proof. ⇒ Trivial. A cycle is a walk.

⇐ Suppose we have a closed walk of odd length p ≥ 3, from u to u, say. If the walk

is a cycle then we have nothing to prove. Otherwise there are nodes on the walk which

we visit more than once. Suppose one of these is v and the walk goes

u→ · · · → v → · · · → v → · · · → u.

Either the section of this walk from v to v, or the walk that skips this section, is a closed

walk of odd length < p. If this closed walk is a cycle then we are done, otherwise we

repeat the process on the new odd length closed walk and one of its repeated notes. This

finite process will end when our odd length closed walk no longer has repeated nodes and

is therefore a cycle.

93

Chapter 4 – Measuring Bipartivity

The following is a by no means exhaustive list of equivalent characterisations of

bipartivity. All of these conditions are well known but we have collected them together

for the first time.

Theorem 4. If G(V,E) is a simple connected network with adjacency matrix A then the

following conditions are equivalent.

1. G is bipartite.

2. A of G can be permuted to

 O B

BT O

.

3. G has no cycles of odd length.

4. G has no closed walks of odd length.

5. tr(sinhA) = 0.

6. The modularity of the bipartition is −1/2.

7. The spectrum of G is symmetric about 0.

8. λ1 = −λn.

9. The signless Laplacian is singular.

10. The normalised Laplacian has maximum eigenvalue 2.

11. The subgraph centralisation of G equals
1

n

n∑
j=1

cosh(λj).

12. The spectra of the signless Laplacian (Ls = A + D) and the graph Laplacian L =

D − A coincide for a bipartite graph.

The results 2,3,4,7,8 and 12 are standard text book results and 5,6,9,10 and 11 can

be found in [9, 19, 23, 48].

94

Chapter 4 – Measuring Bipartivity

Proof. (1⇒ 2) The vertices of G can be split into two disjoint sets V = V1 ∪V2 such that

for any edge in G once incident node is in V1 and one in V2. Suppose |V | = n, |V1| = n1,

|V2| = n2 then order the rows of the adjacency matrix so the first n1 rows correspond

to nodes in V1 and the final n2 to those in V2. By definition of bipartivity, Aij = 0 if

i, j ∈ {1, ..., n1} or if i, j ∈ {n1 +1, ..., n}, so A has the desired structure A =

 O B

BT O

.

(2⇒ 1) Use the permuted form of the adjacency matrix to partition the nodes into

disjoint sets V1 and V2. Since Auv = 0 for any two nodes in the same partition, there are

no inter-partition edges and G is bipartite.

(1⇒ 3) Suppose G is bipartite and it has an odd cycle (v1, v2, ..., v2k+1, v1). Suppose

v1 ∈ V1, then by definition, v2 ∈ V2 and v3 ∈ V1, so v2j ∈ V2 and v2j+1 ∈ V1. But v2k+1 is

connected to v1 so v2k+1 /∈ V1 a contradiction.

(3⇔ 4) From Lemma 2.

(4 ⇒ 1) Choose x ∈ V and partition nodes into {X, Y } where v ∈ X ⇔ d(v, x)

even (where d(u, v) represents shortest path distance between u and v). Clearly X ∩Y =

∅, X ∪ Y = V . Suppose there exists v1, v2 ∈ X, v1 is adjacent to v2 (or two such nodes in

Y). Then consider the following walk: x → · · · → v1 → v2 → · · · → x where we follow

the shortest path from x to v1 and from v2 to x. This is a closed walk of odd length,

which is a contradiction. We can conclude that if v1 is adjacent to v2, v1 ∈ X and v2 ∈ Y

or vice versa and G is bipartite.

(4⇔ 5) Note that all elements of all powers of A are nonnegative. Hence G has no

closed walks of odd length ⇔ ∀i, k, (A2k+1)ii = 0⇔ ∀k, tr(A2k+1) = 0⇔ tr(sinh(A)) = 0.

(1⇔ 6)

For a partition into two sets we can use the formula for modularity

Q =
1

4m
sT (A− kkT

2m
)s

where m =| E |, A is the adjacency matrix of G, k is the vector of degrees, ki is the

degree of node i and s is an indicator vector with si = 1 if i ∈ V1, si = −1 if i ∈ V2.

We assume without lose of generality that V1 = {1, . . . , n1}, V2 = {n1 + 1, . . . , n}. We

95

Chapter 4 – Measuring Bipartivity

make use of the following quantities

k1 =
∑
i∈V1

ki, k2 =
∑
i∈V2

ki, k11 =
∑
i,j∈V1

aij, k22 =
∑
i,j∈V2

aij, k12 =
∑

i∈V1,j∈V2

aij.

Note that

k12 = m− (k11 + k22)

2
, k1 = k11 + k12 = m+

(k11 − k22)

2
, k2 = 2m− k1 = m+

(k22 − k11)

2

Partition s and A according to V1 and V2 and let e(1) and e(2) be vectors of 1s of lengths

n1 and n2. Then

sTAs =

[
e(1)T −e(2)T

]A11 A12

A21 A22


 e(1)

−e(2)

 = e(1)TA11e
(1)+e(1)TA22e

(2)−2e(1)TA12e
(2)

So

sTAs = k11 + k22 − 2k12 = 2(k11 + k22 −m).

And

sTk = e(1)Tk1 − e(2)Tk2 = k11 − k22.

Hence

Q =
1

4m
(2(k11 + k22 −m)− (k11 − k22)2

2m
) =
−1

2
+
k11 + k22

2m
− (k11 − k22)2

8m2
.

Note that if k11 = k22 = 0 then Q = −1
2

, the desired equality for the case of an exact

bipartite. But for a general bound we note that 2m ≥ k11 + k22 hence

Q ≥ −1

2
+

1

8m2
(2(k11 + k22)2 − (k11 − k22)2)

=
−1

2
+

1

8m2
((k11 + k22)2 + 4k11k22)

≥ −1

2

with equality at the least step if and only if k11 = k22 = 0

96

Chapter 4 – Measuring Bipartivity

(1⇒ 7)

Suppose that G is bipartite and λ is a non-zero eigenvalue of the adjacency matrix

A, then there is a vector

v =

 v1

v2


such that  O B

BT O


v1

v2

 =

 Bv2

BTv1

 =

λv1

λv2

 .
Thus Bv2 = λv1 and BTv1 = λv2. Note also that as v 6= 0 and λ 6= 0 ⇒ v1 6= 0 and

v2 6= 0. So we have

 O B

BT O


 v1

−v2

 =

−Bv2

BTv1

 =

−λv1

λv2

 = −λ

 v1

−v2


and −λ is also an eigenvalue of the adjacency matrix which confirms that the spectrum

of G is symmetric about zero.

(7⇒ 8) If λ is an eigenvalue of the adjacency matrix then −λ is also an eigenvalue.

So, if λ1 is the most positive eigenvalue and λn is the most negative eigenvalue then

λ1 = −λn.

(8⇒ 1)

Suppose that λ1 = −λn. Let x be the eigenvector of λn and y be the vector y = |x|.

Then

|λn| = |
xTAx

xTx
| =

∣∣∣∣Σu,v
A(u, v)x(u)x(v)

xTx

∣∣∣∣ ≤ Σu,v
A(u, v)|x(u)||x(v)|

|xTx|
≤ λ1

yTy

yTy
= λ1

For this to be an equality, it must be the case that all the terms x(u)x(v) ≥ 0 whenever

A(u, v) = 1. By the Perron-Frobenius theorem, x must have both positive and negative

elements (since it is orthogonal to the Perron vector which is one-signed). Hence if x(u)

and x(v) are of different signs, A(u, v) = 0. Thus splitting nodes according to the signs

of x gives a perfect bipartition of the graph.

97

Chapter 4 – Measuring Bipartivity

(1⇔ 9)

First note that Q = A + D = RRT where R is the vertex-edge incidence matrix of

graph G. Then for nonzero x, Qx = 0 ⇔ RTx = 0 which can happen if and only if for

every edge (u, v) in the graph, xu = −xv which can if and only if G is bipartite and u and

v are in opposite partitions [18].

(1 ⇔ 10) For a bipartite graph the eigenvalues of the normalised Laplacian L =

I − D−1/2AD−1/2 can be deduced from L̂ = D−1/2AD−1/2 and clearly 2 ∈ σ(L) if and

only if −1 ∈ σ(L̂). Now L̂ ≥ 0 and x = D
1
2 e is clearly the Perron vector of L̂ with

eigenvalue 1. We can now follow the proof of (1⇔ 8).

(1 ⇒ 11) The subgraph centralization is defined as SC(G) = 1
n
tr(eA). We can use

the identity

SC(G) =
1

n

∞∑
l=0

µl
l!

=
1

n

n∑
j=1

(eλj).

Now SC(G) can be expressed as the sum of two contributions, one coming from odd and

the other from even closed walks, that is,

SC(G) =
1

n

n∑
j=1

[cosh(λj) + sinh(λj)] = SC(G)even + SC(G)odd.

If G is bipartite, then by point 5, SC(G)odd = 1
n

∑n
j=1 sinh(λj) = 0, therefore

SC(G) = SC(G)even =
1

n

n∑
j=1

cosh(λj).

(11⇒ 1)

1

n
tr(eA) =

1

n
tr(cosh(A)) +

1

n
tr(sinh(A)).

We know that 1
n
tr(sinh(A)) ≥ 0 and by 5 tr(sinh(A)) = 0⇒ G bipartite.

(12⇔ 1)

Let L = D − A =

 D1 −B

−BT D2

, Q =

 I O

O −I

 = Q−1

98

Chapter 4 – Measuring Bipartivity

Q−1LQ =

 I O

O −I


 D1 −B

−BT D2


 I O

O −I

 =

 D1 −B

−BT −D2


 I O

O −I

 =

D1 B

BT D2

 = Ls

L and S are similar So they have the same eigenvalues.

4.2.1 Bipartivity Measures

Using Theorem 4 we can characterise closeness to bipartivity in myriad ways. In this

section we introduce a number of measures. We want to identify computationally tractable

measures. These are generally inspired by algebraic properties of the adjacency matrix

and Laplacian of a bipartite graph.

Calculating the proportion of links that destroy the bipartivity in a network gives an

easy way to define the degree of network bipartivity. That is, we can measure the degree

of bipartivity by counting the minimum number of edges we need to remove to create a

perfectly bipartite network [25]. We will use the term “frustrated edges” to describe the

edges we want to remove. This term was introduced in [39].

Let md be the number of such links in a network G and m be the total number of

edges. Then the bipartivity of G can be measured by

bc = bc(G) = 1− md

m

where the subindex c is introduced to indicate that this index is combinatorial [25]. Clearly

bc = 1 if and only if G is a bipartite.

If G = Kn then we can compute bc explicitly since the nearest bipartite graph is

the complete bipartite graph Kn
2
,n
2

(n even, with n2/4 edges) or Kn−1
2
,n+1

2
(n odd, with

(n2 − 1)/4 edges).

99

Chapter 4 – Measuring Bipartivity

If n is even this means md = n(n− 2)/4 and if n is odd md = (n− 1)2/4. In either

case, limn→∞ bc = 1/2. For comparison with other measures, we will redefine the measure

so that

bc = 1− 2md

m
,

and hence for all graphs 0 ≤ bc ≤ 1 with the upper and lower bounds being attainable in

the limit.

Unfortunately, this measure is extremely expensive to calculate in practice because

computing md is NP-complete, meaning that an efficient algorithm providing a solution

has yet to be found [25], but since it is such a natural idea we will be interested in how

our other measures compare against it. To that end, we provide some theoretical results

for certain model networks. And for relatively small networks, where its computation is

practical or where we can get decent bounds, we can give empirical comparisons.

A measure similar to bc was introduced in [39] which tries to quantify bipartivity in

terms of the energy in an underlying Ising model. This measure is, again, computationally

impractical so the authors present another measure which is computable in polynomial

time based on counting odd cycles. The authors note that even though md may be small

there may be a large number of odd cycles. This is a point we will examine in detail later

in this section.

For the measure, which we call b2, Holme et al. draw a parallel between frustrated

edges and edges that appear frequently in cycles of odd length and then attempt to get

reasonable estimates of the minimum number of edges one can mark so that every odd

cycle has a marked edge. To keep computational costs down, only cycles of relatively

short length are considered. The measure can usually be calculated in O(m2) time and

lies in the range [1/2, 1] with b2 = 1 if and only if the graph is bipartite. However

the link between values of b2 close to 1 and closeness to bipartivity are only established

heuristically and empirically.

In detail, the measure is calculated for a graph G as follows. A value n̂ is chosen

to be the minimum value such that G has at least 3m odd cycles of length less than or

equal to n̂ (the choice 3m appears to be chosen for expediency). In many cases n̂ = 3.

100

Chapter 4 – Measuring Bipartivity

Letting C be the set of all odd cycles of maximum length n̂ the quantity ν(e) denotes the

number of cycles in C passing through the edge e. It is assumed that if ν(e) is large then

e is likely to be frustrated. The algorithm works as follows.

1. Start with C,

2. Sort the edges in order of ν.

3. Repeat the following while C 6= ∅:

• Mark the edge e with highest ν.

• Remove all cycles in C containing e.

• Recalculate ν for each edge.

The number of iterations needed for this process is taken as the proxy for md

Rather than using odd cycles, we can derive alternative measures of closeness to

bipartivity by quantifying the frequency of closed walks in comparison to the number of

even walks or as a proportion of the total number of closed walks. This idea is introduced

by Estrada in [26].

This can be quantified using subgraph centralisation with the measure

bs =
SC(G)even
SC(G)

=
SC(G)even

SC(G)even + SC(G)odd
=

∑n
j=1 cosh(λj)∑n

j=1 e
λj

(4.1)

where SC(G)even = 1
n

∑n
j=1 cosh(λj) and SC(G)odd = 1

n

∑n
j=1 sinh(λj). Note that

bs ≤ 1 and bs = 1 if and only if G is bipartite. Furthermore, as sinh(λj) ≤ cosh(λj), ∀λj,

then bs ≥ 1/2 [26].

The lower bound is reached for Kn as n→∞. One way of confirming this is through

spectral information. Since

σ(Kn) =
{

[n− 1]1, [−1]n−1
}

we have

bs =
cosh(n− 1) + (n− 1) cosh(−1)

en−1 + (n− 1)e−1

101

Chapter 4 – Measuring Bipartivity

and

lim
n→∞

bs(Kn) = lim
n→∞

cosh(n− 1) + (n− 1) cosh(−1)

en−1 + (n− 1)e−1
= lim

n→∞

cosh(n− 1)

en−1
=

1

2
.

A slight adaptation of (4.1) gives a measure of bipartivity in the range [0, 1] as observed

in [23]. Here we compare the number of even and odd walks using the measure

be =
tr(coshA)− tr(sinhA)

tr(coshA) + tr(sinhA)
.

Since A is diagonalisable this can be rewritten as

be =

∑n
j=1 e

−λj∑n
j=1 e

λj
=

tr(e−A)

tr(eA)
. (4.2)

From the fact that the spectrum is symmetric if and only if the network is bipartite, the

upper bound of 1 is reached only for bipartite networks. For the complete graph Kn,

be =
e−(n−1) + (n− 1)e

e(n−1) + (n− 1)e−1

and clearly

lim
n→∞

be = 0.

We can introduce a raft of additional measures using the conditions outlined in

Theorem 4. We won’t give an exhaustive list, but in order to compare measures we

introduce a selection below. We normalise our measures so that they equal 1 if and only

if a network is bipartite and so they have an attainable minimum of 0 (possibly for an

infinite graph, typically Kn as n→∞).

Our next measure exploits the observation that if the network is bipartite then the

spectrum is symmetric about 0 and so

S = |λ1 + λn|+ |λ2 + λn−1|+ · · ·+ |λ1 + λn| = 0.

102

Chapter 4 – Measuring Bipartivity

On the other hand, for Kn

S = | λ1 + λn | + | λ2 + λn−1 | + . . . |λ1 + λn|

= | n− 1− 1 | + | −1− 1 | + | −1− 1 | + · · ·+ | n− 1− 1 |

= 2(n− 2) + 2(n− 2) = 4(n− 2)

for which limn→∞ S =∞. A measure of bipartivity is given by

bS =
1

S + 1
.

If G is bipartite, then bS = 1/(0 + 1) while we see that for Kn, bS → 0 as n→∞.

We can also derive a measure based on modularity. Recall that Q = −1/2 if and

only if the graph is bipartite. In this case the least bipartite graph is one where we have

two complete graphs Kn connected by a single edge. To compute Q for such a graph note

that the total number of edges is n(n − 1) + 1, that the degree of 2n − 2 nodes is n − 1

and the degree of 2 nodes is n. Then

Q =

nC∑
k=1

[
|Ek|
m
− 1

4m2
(
∑
j∈Vk

kj)
2

]

where we divide the nodes in a network into nC clusters V1, V2, . . . , VnC .

| EC1 |= 1
2
n(n−1), | EC2 |= 1

2
n(n−1),

∑
j∈Vc1

(kj) = n(n−1)+1,
∑

j∈Vc2
(kj) = n(n−1)+1

Q =
1
2
n(n− 1)

n(n− 1) + 1
− (n(n− 1) + 1)2

4(n(n− 1) + 1)2
+

1
2
n(n− 1)

n(n− 1) + 1
− (n(n− 1) + 1)2

4(n(n− 1) + 1)2

⇒ Q =
n(n− 1)

n(n− 1) + 1
− 1

2
⇒ lim

n→∞

n(n− 1)

n(n− 1) + 1
− 1

2
=

1

1 + 0
− 1

2
=

1

2
.

So to get a measure in the range [0, 1] we introduce

bQ =
1

2
−Q.

103

Chapter 4 – Measuring Bipartivity

Our next measure is the simple ratio

bλ =
|λn|
λ1

,

Where λ1 and λn are the most positive and negative values of the adjacency matrix

respectively. This has been used in many places in the literature, for example [52].

From Theorem 4, the network is bipartite if and only if bλ ≤ 1 with bλ = 1 while for

the complete graph bλ = 1/(n− 1) and bλ → 0 as n→∞

For example, for the bipartite graph C2n the eigenvalues are

{2 cos[
πj

n
], j = 1, 2, ..., 2n}.

We know that −1 ≤ cos[πj
n

] ≤ 1 ⇒ −2 ≤ cos[πj
n

] ≤ 2

bλ =
|λn|
λ1

=
2

2
= 1.

Closeness to bipartivity can be measured by the size of the largest eigenvalue of the

normalised Laplacian. We do this with the measure

bLN = |1− λmax(Ln)|.

Again, we know from Theorem 4 that bLN can only equal 1 for bipartite networks. For

the complete graph Kn we can compute the spectrum of N explicitly since

LN = I −D−
1
2AD−

1
2 = I − 1

n− 1
A =

n

n− 1
I − 1

n− 1
E

and hence its eigenvalues are 0 and n/(n− 1) meaning

bLN = |1− λmax(LN)| = |1− n

n− 1
| = 1

n− 1

and

lim
n→∞

1

n− 1
= 0.

104

Chapter 4 – Measuring Bipartivity

Since tr(L) = n and 0 ∈ σ(L) for all graph, n
n−1

is the minimum possible spectral radius

for the normalised Laplacian of any graph and hence bLN ≥ 0 for all graphs.

We can use the signless Laplacian to measure closeness to bipartivity by

bLs =
1

1 + λmin(Ls)

recalling that a graph is bipartite if and only if Ls is singular.

For the complete graph Kn, Ls = D + A = (n− 2)I + E and hence its eigenvalues

are n− 2 and 2n− 2 hence

lim
n→∞

bLs = lim
n→∞

1

1 + n− 2
= 0.

We collected all Bipartivity Measures in Table 4.1. Note that measures 4,5,7 and 8 are

new.

Bipartivity Measures

1 bc = 1− md
m

2 bs =
∑n
j=1 cosh(λj)∑n
j=1 e

λj

3 be =
∑n
j=1 e

−λj∑n
j=1 e

λj
= tr(e−A)

tr(eA)

4 bS = 1
S+1

5 bQ = 1
2
−Q

6 bλ = |λn|
λ1

7 bLN = |1− λmax(Ln)|

8 bLs = 1
1+λmin(Ls)

Table 4.1: Bipartivity Measures.

105

Chapter 4 – Measuring Bipartivity

4.2.2 Comparison of Bipartivity Measures

In this section we give various examples showing the disparity between bipartivity mea-

sures on a number of families of networks.

4.2.3 Example 1

Our first example uses a “nearly” bipartite family of matrices suggested by Holmes et

al. in [39] illustrated in Figure 4.1. The network (agave graph) is generated by adding a

single edge to the complete bipartite graph Kn2 (the edge is added to the partition with

two nodes).

Figure 4.1: A “nearly” bipartite network.

We label this graph Gn. It has adjacency matrix

A =

 O En2

ET
n2 P1


where En2 is an n× 2 matrix of 1s and

P1 =

 0 1

1 0

 .
While Gn has only one frustrated edge, it also contains many odd cycles and this leads to

a significant difference between certain bipartivity measures. For example, consider the

measures bλ = −λn
λ1

and be = tr(e−A)
tr(eA)

.

106

Chapter 4 – Measuring Bipartivity

It is straightforward to compute the spectrum of A since it has rank 3 and the

nonzero eigenvalues are easy to track down. Note that

A


0

1

−1

 =


0

−1

1

 = −1


0

1

−1



so −1 ∈ σ(A). Now let e be a vector of 1s and if x =

[
eT α α

]T
then

Ax =


2αe

n+ α

n+ α

 = λx

and hence λ = 2α⇒ (n+ α) = λα = 2α2 ⇒ 2α2 − n− α = 0 which is true if and only if

α = (1±
√

1 + 8n)/4. Hence

σ(A) =

{
[0]n−1, [−1]1,

[
1

2
+

√
8n+ 1

2

]1

,

[
1

2
−
√

8n+ 1

2

]1
}
.

Having computed the spectrum we can now compare the bipartivity measures, in partic-

ular their limits as n grows. Firstly,

bλ = (
√

8n+ 1− 1)/(
√

8n+ 1 + 1)

and bλ → 1 as n→∞. Secondly,

be =
n− 1 + e+ e−

1
2
−
√
8n+1
2 + e−

1
2

+
√
8n+1
2

n− 1 + e−1 + e
1
2

+
√
8n+1
2 + +e

1
2
−
√
8n+1
2

=
2e−

1
2 cosh

√
8n+ 1 + e+ n− 1

2e
1
2 cosh

√
8n+ 1 + e−1 + n− 1

,

107

Chapter 4 – Measuring Bipartivity

hence be → 2e−
1
2/(2e

1
2) = e−1 as n→∞.

Finally, we compute bc. The total number of edges m = 4n+ 2 and the number of edges

we want to delete to be bipartite md = 1. So,

bc = 1− md

m
= 1− 1

4n+ 2

as n→∞⇒ bc → 1.

So, bλ → 1, bc → 1 and be → e−1.

Next we examine measures based on the signless graph Laplacian matrix. If the

adjacency matrix is

A =

 O En2

ET
n2 P1

 ,
then the signless Laplacian is

Ls = D + A =


2I En2

ET
n2

 n+ 1 1

1 n+ 1


 .

To find the eigenvalues of Ls, we compute Ls − 2I as

Ls − 2I =


O En2

ET
n2

 n− 1 1

1 n− 1


 .

108

Chapter 4 – Measuring Bipartivity

This has a rank of 3 and therefore it has a zero eigenvalue of multiplicity n − 1. To

compute the other eigenvalues we note that x =

[
0 . . . 0 1 −1

]T
is an eigenvector

with eigenvalue n− 2 since

(Ls − 2I)x =



0

...

0

n− 2

2− n


= (n− 2)



0

...

0

1

−1


= λx.

Finally, suppose that x =

[
eT α α

]T
is an eigenvector. Then

Lsx =


(2 + 2α)e

n+ (n+ 2)α

n+ (n+ 2)α


and hence λ = 2 + 2α and λα = n + (n + 2)α which is equivalent to the identity 2α2 −

nα− n = 0⇒ α = n±
√
n2+8n
2

⇒ λ = 2 + 2α = 2 + n+
√
n2+8n
2

.

Finally, we have σ(Ls − 2I) = {[0]n−1, [n− 2]1, n+
√
n2+8n
2

, n−
√
n2+8n
2

} so

σ(Ls) = {[2]n−1, [n]1, 2 +
n+
√
n2 + 8n

2
, 2 +

n−
√
n2 + 8n

2
}.

Then λmin(Ls) = 2 + n−
√
n2+8n
2

and

lim
n→∞

2 +
n−
√
n2 + 8n

2
= 2 + lim

n→∞

−8n

2(n+
√
n2 + 8n)

= 2− lim
n→∞

4

1 +
√

1 + 8
n

= 2− 4

1 + 1
= 0

109

Chapter 4 – Measuring Bipartivity

So, λmin(Ls)→ 0 as n→∞ and hence

lim
n→∞

bLs =
1

1 + λmin(Ls)
= 1.

Turning to a measure based on the normalised Laplacian, for our adjacency matrix

A the normalised Laplacian is

LN = I −D−1/2AD−1/2 = I −


O 1√

2(n+1)
En2

1√
2(n+1)

ET
n2

 0 1
n+1

1
n+1

0



 .

Again, since rank(A) ≤ 3, we can find the spectrum of LN by identifying the three

eigenvalues of LD not equal to 1. One of these is zero (corresponding to the eigenvector

D1/2e). One can also confirm by direct calculation that

[
0T 1 −1

]T
is an eigenvector

with eigenvalue 1 + 1/(n + 1) and then since tr(LN) = n + 2 the final eigenvalue is

2− 1/(n+ 1) .

Thus we can conclude that bLN = 2− λmax = 2− 2n+1
n+1

and bLN → 0 as n→∞.

4.2.4 Example 2

We extend Example 1 by adding a node to the smaller partition and an additional edge.

Thus we let G be the graph with n+ 3 nodes whose adjacency matrix is

A =

 P2 En3

ET
n3 O


where

P2 =


0 1 0

1 0 1

0 1 0


represents a path graph.

110

Chapter 4 – Measuring Bipartivity

As in Example 1, A has very low rank (looking at the last n columns we can bound

the rank above by 4). In order to find the full spectrum of A we first calculate its null

space.

If x =

[
0 0 0 x4 x5 . . . xn+3

]T
where

∑n+3
j=4 xj = 0 then Ax = 0. We have

n− 1 degrees of freedom in choosing the xj and a basis for the null space is given by





0

0

0

1

−1

0

0

0

...

0



,



0

0

0

1

0

−1

0

0

...

0



,



0

0

0

1

0

0

−1

0

...

0



, . . . ,



0

0

0

1

0

0

0

0

...

−1





.

We normalise this null space and use it to apply a similarity transformation to A, namely

the one induced by

V =

 I3 O

O Z

 ,
where

Z =
1√
n

 1 eT

e −I

 .
Since

Z−1 =
1√
n

 1 eT

e E − nI

 ,
we have

111

Chapter 4 – Measuring Bipartivity

V −1AV =



0 1 0
√
n 0 . . . 0

1 0 1
√
n 0 . . . 0

0 1 0
√
n 0 . . . 0

√
n
√
n
√
n 0 0 . . . 0

0 0 0 0 0 . . . 0

0 0 0 0 0 . . . 0


.

To find the eigenvalues of

X =



0 1 0
√
n

1 0 1
√
n

0 1 0
√
n

√
n
√
n
√
n 0


we use a further similarity transformation. Namely, if

Q =



1
2

1√
2
− 1√

2
0

1√
2
−1

2
0 0

1
2

1
2

1√
2

0

0 0 0 1


then

Â = QXQT =



√
2 0 0

√
n(1 + 1√

2
)

0 −
√

2 0
√
n(1− 1√

2
)

0 0 0 0

√
n(1 + 1√

2
)
√
n(1− 1√

2
) 0 0


.

Now det(λI − Â) = λ3 − (3n+ 2)λ− 4n. So A has spectrum

{[0]n, [λ1]1, [λ2]1, [λ3]1},

where λ1, λ2, λ3 are roots of λ3 − (3n+ 2)λ− 4n.

112

Chapter 4 – Measuring Bipartivity

An asymptotic analysis shows that the root of λ3 − (3n+ 2)λ− 4n are λ1 =
√

3n+

2
3

+ o(1), λ2 = −
√

3n+ 2
3

+ o(1) and λ3 = −4
3

+ o(1) and so

lim
n→∞

bλ = lim
n→∞

√
3n√
3n

= 1,

but

lim
n→∞

be = lim
n→∞

n+ e−
√

3n− 2
3 + e

√
3n− 2

3 + e
−4
3

n+ e
√

3n+ 2
3 + e−

√
3n+ 2

3 + e
4
3

=
e
−2
3

e
2
3

= e
−4
3 .

In order to generalize what is going on in the previous examples, let’s construct a

family of networks parameterized by n and m.

Theorem 5. There is a family of networks parameterised by n such that as n → ∞,

bλ → 1, bC → 1 and be → 0.

Proof. We construct a graph Gnm where (m = n2) with n2 + n nodes where n nodes

are connected to every node in the graph (except themselves) but there are no intra-

connections between the other n2 nodes. If n = 2 this is an agave graph. The adjacency

matrix of the graph Gn is

A =

 Kn Enn2

ET
nn2 O

 ,
where Kn is the adjacency matrix of a complete graph. We can calculate the spectrum

of A explicitly given its relatively low rank. The result can be found in [82, pp. 138–

141], where this graph is an instance to the class of networks with an n-fully meshed star

topology but here we give a simple derivation of the result. To do this we first apply the

similarity transformation induced by V =

 In O

O Z

, where nZ =

 1 eT

e −In2−1

 .
Then

V −1AV =


Kn ne O

neT 0 O

O O O

 .

113

Chapter 4 – Measuring Bipartivity

To find the eigenvalues of X =

 Kn ne

neT 0

 we use the spectral decomposition of the

complete graph Kn = QDQT (where the eigenvalues are ordered so that the bottom

right element of D is n − 1 and hence the final column of Q is e/
√
n). Thus, using the

orthogonality of Q, we find

 QT O

O 1

X
 Q O

O 1

 =

 D nQTe

neTQ 0

 =


−I 0 0

0T n− 1 n3/2

0T n3/2 0

 .

Hence

σ(Gn) =
{

[0]n
2−1, [−1]n−1, [f(n) + g(n)]1, [f(n)− g(n)]1

}
,

where

f(n) =
n− 1

2
, g(n) =

√
(n− 1)2

4
+ n3.

Now we compute the bipartivity measures.

Firstly note that we can make the network bipartite by removing the n(n − 1)/2

edges from the Kn block and hence

bC ≥ 1− n(n− 1)

n3 + n(n− 1)/2
≥ 1− 1

n
.

Next,

bλ =
g(n)− f(n)

g(n) + f(n)
= 1− o(n).

Finally,

be =
(n2 − 1) + (n− 1)e+ e−f(n)−g(n) + e−f(n)+g(n)

(n2 − 1) + (n− 1)e−1 + ef(n)+g(n) + ef(n)−g(n)
=

2e−f(n) cosh g(n) + n2 − 1 + (n− 1)e

2ef(n) cosh g(n) + n2 − 1 + (n− 1)e−1

which for large n behaves increasingly like e1−n and hence be → 0 as n→∞.

Theorem 6. For the family of networks introduced in Theorem 5 (when m = n3) as

n→∞, bLs → 1, bC → 1 and be → 0.

114

Chapter 4 – Measuring Bipartivity

Proof. We construct the graph Gnm with m2 + n nodes where n nodes are connected to

every node in the graph (except themselves) but there are no intra-connections between

the other m nodes. As in Theorem 5, the adjacency matrix of the graph Gnm is

A =

 Kn Enm

ET
nm O

 .
Where Kn is the adjacency matrix of a complete graph. Then the signless Laplacian is

Ls = D + A =

 En + (m+ n− 2)I Enm

ET
nm nI

 .
All but two of the eigenvalues can immediately be deduced. The last m rows of Ls − nI

are rank 1, so Ls has m− 1 copies of n as an eigenvalue. Ls − (m+ n− 2)I first n rows

are rank 1 so Ls has n− 1 copies of (n+m− 2) as an eigenvalue.

We assume that for the two remaining eigenvalues x =

 αen

em

 is an eigenvector

of Ls. Then

Lsx =

 αEnen + α(m+ n− 2)en + Enmem

αEmnen + nem

 =

 (α(m+ 2n− 2) +m)en

n(α + 1)em


from which we deduce αλ = α(m+ 2n− 2) +m and λ = (α + 1)n. Solving gives

λ = (α + 1)n =

(
(n+m− 2)±

√
(m+ n− 2)2 + 4mn

2n
+ 1

)
n

=
(3n+m− 2)±

√
(m+ n− 2)2 + 4mn

2

so

σ(Ls) =

[n]m−1, [n+m− 2]n−1,

[
(3n+m− 2)±

√
(n+m− 2)2 + 4mn

2

]1
 .

115

Chapter 4 – Measuring Bipartivity

The smallest eigenvalue is then

λmin(Ls) =
(m+ 3n− 2)−

√
(m+ n− 2)2 + 4mn

2
=

(m+ 3n− 2)

2

[
1−

√
1 +

8(n2 − n)

(m+ 3n− 2)2

]
.

And using the power series for (1 + x)
1
2 gives

λmin(Ls) =
(m+ 3n− 2)

2

[
1− 1 +

1

2

8(n2 − n)

(m+ 3n− 2)2
− 1

4

(
8(n2 − n)

(m+ 3n− 2)2

)2

+ . . .

]
=

(m+ 3n− 2)

2

[
4n(n− 1)

(m+ 3n− 2)2
− 4n2(n− 1)2

(m+ 3n− 2)4
+ . . .

]
=

2n(n− 1)

(m+ 3n− 2)
− 2n2(n− 1)2

(m+ 3n− 2)3
+

In particular, if m = n3,

λmin =
2n(n− 1)

(n3 + 3n− 2)
− 4n2(n− 1)2

(n3 + 3n− 2)3
+ · · · ,

so lim
n→∞

λmin(Ls) = lim
n→∞

2
n

+ O(n−2) = 0 and lim
n→∞

bLs = 1
1+0

= 1, while bc, be and bλ all

behave as in Theorem 5

In Theorems 5 and 6 we have described networks where bλ, bLs and bc behave one

way while be behaves in another. But an almost opposite scenario is possible.

For our second family we consider networks where the path graph PN is connected

by a single edge to Kn. If we let N grow much faster than n then we can show a very

different behaviour from the previous one.

Theorem 7. There is a family of networks parameterised by n such that as n → ∞,

bλ → 0, bC → 1 and be → 1.

Proof. Consider the graph where the path graph PN is connected by a single edge to Kn

(call it Gn).

116

Chapter 4 – Measuring Bipartivity

Figure 4.2: Example of Gn when n = 4 and N = 2.

It has adjacency matrix

A =

 Kn C

CT PN

 .
where C is a matrix which has a single nonzero entry in its bottom lefthand corner and

PN is the adjacency matrix of a path graph with N edges.

For sufficiently large n,N we make the assumption that the spectrum of Gn can

be approximated to an accuracy of O(1/n2) by ignoring C and CT and it is sufficient to

consider the graph without the edge linking the path to the complete graph (call this G′n).

We have no analytic proof of this result but the numerical evidence is convincing.

Then

σ(G′n) = σ(Kn) ∪ σ(PN) = {[n− 1]1, [−1]n−1} ∪ {2 cos
πj

N + 2
, j = 1, . . . , N + 1}.

Turning to the measures, we observe that by removing half the edges from the complete

graph we have a bipartite graph and hence md ≤ n(n−1)/4 and so so long as n2/N = o(n)

we will have bC → 1 as n→∞.

Next note that λ1(G′(n)) = n − 1 while λn+N(G′n) ≥ −2 and hence bλ → 0 as

n→∞.

117

Chapter 4 – Measuring Bipartivity

Finally,

be =
(n− 1)e+ e1−n + S(N)

(n− 1)e+ en−1 + S(N)

where

S(N) =
N+1∑
j=1

exp(2 cos
πj

N + 2
) ≈

∫ N+1

1

exp(2 cos
πx

N + 2
)dx =

N + 2

π

∫ π−π/(N+2)

1/(N+2)

e2 cosxdx

and hence for large N , we can use the approximation

S(N) = (N + 2)J0(2i),

where J0(x) is a Bessel function of the first kind. Note that J0(2i) ≈ 2.28. We end up

with the approximation for large n and N

be ≈
J0(2i)N

en−1 + J0(2i)N
,

and if N is sufficiently bigger than n (e.g. N > e2n) we see that be → 1 as n→∞.

We observe that the difference in size of the path graph and the complete graph

in this example is rather extreme. To illustrate the result we have computed bλ and be

explicitly for n = 2, . . . , 8 with N = [en] (with e2n we have a much smaller range of n with

which to work computationally). In Figure 4.3 we record the values of be and bλ against

n and show the effectiveness of our bounds.

Figure 4.3: bλ and be against n.

118

Chapter 4 – Measuring Bipartivity

4.2.5 Random Networks Bipartivity

We have introduced a series of measures which are designed to indicate the extent to

which a real-world network exhibits bipartite properties. These measures all work on a

[0, 1] scale where a network scores 1 if and only if it is exactly bipartite. Typically, a score

of 0 is reserved for the least bipartite of all networks, namely large complete graphs.

We have seen that the different measures can behave differently in theory. In order

to get a feel for which measures are well suited to their purpose we now investigate the

performance of some of these measures on various families of random bipartite networks

which we then randomly alter so that the original bipartite structure is progressively

destroyed. We then analyse results.

Random trees

Our first family of bipartite graphs are random trees. They are generated randomly using

n nodes where each node is added iteratively so that the kth node is joined randomly to

one of the pre-existing k − 1 nodes.

The following figures show some graphs for random trees of different size.

119

Chapter 4 – Measuring Bipartivity

(a) Random tree with n = 30. (b) Random tree with n = 50.

(c) Random tree with n = 100. (d) Random tree with n = 300.

(e) Random tree with n = 500. (f) Random tree with n = 800.

(g) Random tree with n = 1000.

Figure 4.4: Random trees with different size.

120

Chapter 4 – Measuring Bipartivity

The degree distribution for a random tree follows an exponential distribution as

exhibited in the following figures.

(a) n = 1000. (b) n = 2000.

(c) n = 5000. (d) n = 10000.

Figure 4.5: Random tree degree distribution.

Next, we generate another family of trees using Prüfer sequences [74]. To convert a

Prüfer sequence into a tree, we complete the following steps: If the Prüfer sequence has

n numbers, then the tree has n + 2 nodes which are numbered 1 to n + 2. The degree

is set to the number of times each node appears in the sequence plus 1. We find the

first lowest numbered node not included in the sequence and add an edge between the

lowest number and the first entry in the sequence. Next, we consider the next number in

the sequence and find the corresponding vertex with the least degree not included in the

sequence. This process is repeated until we are left with two vertices that we join [33].

For example, convert a Prüfer sequence (1,1,1,1,6,5) into a tree. The given code has 6

entries so, the corresponding tree will have 8 nodes. The first number in Prüfer sequence

is 1 and the lowest number not included in the Prüfer sequence is 2 so, 1 connect to 2. We

delete the 1 from Prüfer sequence and put 2 at the end (1,1,1,6,5,2). The first number is

1 and the lowest number not included in the Prüfer sequence is 3, so 1 connects to 3. We

121

Chapter 4 – Measuring Bipartivity

delete the 1 from Prüfer sequence and put 3 at the end (1,1,6,5,2,3). The first number in

Prüfer sequence is 1 and the lowest number not included in the Prüfer sequence is 2 so,

1 connects to 4. We delete the 1 from Prüfer sequence and put 4 at the end (1,6,5,2,3,4).

The first number in Prüfer sequence is 1 and the lowest number not included in the Prüfer

sequence is 7 so, 1 connects to 7. We delete the 1 from Prüfer sequence and put 7 at

the end (6,5,2,3,4,7). The first number in Prüfer sequence is 6 and the lowest number

not included in the Prüfer sequence is 1 so, 7 connects to 1. We delete the 6 from Prüfer

sequence and put 1 at the end (5,2,3,4,7,1). The first number in Prüfer sequence is 5 and

the lowest number not included in the Prüfer sequence is 6 so, 5 connects to 6. We delete

the 5 from Prüfer sequence and put 6 at the end (2,3,4,7,1,6). We have iterated all the

way through the code and the two numbers missing are 5 and 8. So we connect 5 to 8.

Figure 4.6: Example of convert a Prüfer sequence into a tree.

The following figures show some graphs for trees generated by Prüfer sequences of

different sizes.

122

Chapter 4 – Measuring Bipartivity

(a) n = 30. (b) n = 50.

(c) n = 300. (d) n = 500.

Figure 4.7: Tree generated by Prüfer sequences with different size.

The degree distribution of trees generated by Prüfer sequences follows a Poisson

model.

123

Chapter 4 – Measuring Bipartivity

(a) n = 1000. (b) n = 2000.

(c) n = 4000. (d) n = 5000.

(e) n = 6000.

Figure 4.8: Tree generated by Prufer distribution with different size.

in this experiment, we generated our trees then we added new edges at random.

The graphs in Figure 4.9 and 4.10 which have the X-axes are the edges added and Y-axes

is the bipartivity measure show the effect of adding edges on the measures bλ, be, bLs and

bLN . We see from Figure 4.9 and 4.10 that the bλ (blue line) and bLN (yellow line) are

almost exactly the same they going down slowly, but bLs (purple line) start with bλ and

bLN then it much closer to the be (red line) which is a bit slower from them then it steeply

goes down. So, when we compare the Prufer sequences in Figure 4.10 and random trees

in Figure 4.9 we get very similar behavior.

124

Chapter 4 – Measuring Bipartivity

(a) Random tree with n = 300,add =
3000.

(b) Random tree with n = 300,add =
5000.

(c) Random tree with
n=500,add=3000.

Figure 4.9: Bipartivity measures of Random trees with different sizes.

125

Chapter 4 – Measuring Bipartivity

(a) n = 200, add = 4000. (b) n = 300, add = 8000.

(c) n = 500 ,add = 5000.

Figure 4.10: Trees generated by Prufer sequences.

Random graphs

Our next family of random bipartite graphs are formed by generating an adjacency matrix

of the form  O B

BT O


where the (binary) entries of B are chosen at random according to some parameter p so

that each entry in B has probability p of equaling 1. Thus these matrices are generated

in a very similar way to the Erdős–Rényi (ER) model.

The following figures show some random graphs of different size.

126

Chapter 4 – Measuring Bipartivity

(a) n = 60, p = 0.3. (b) n = 100, p = 0.1.

(c) n = 200, p = 0.2. (d) n = 500, p = 0.3.

Figure 4.11: Random graph with different size.

Then, we add some edges to each random graph and compute bλ, be, bLs and bLN .

Here some figures show the effect of measures when we add edges. We see from Figure

4.12 which have the X-axes are the edges added and Y-axes is the bipartivity measure

that bλ (blue line) and bLN (yellow line) behave very similar and going down very slowly,

but be (red line) and bLs (purple line) goes down steeply and very fast. When we compare

this model with the Prufer sequences in Figure 4.10 and random trees in Figure 4.9 we get

very different behavior. So, we show that even in random model we get different behavior

depending on the type of random model for different bipartivity measures.

127

Chapter 4 – Measuring Bipartivity

(a) random graph with n = 60, p =
0.3, add = 400.

(b) random graph with n = 200, p =
0.2, add = 2000.

(c) random graph with n = 500, p =
0.3, add = 2000.

(d) random graph with n = 700, p =
0.1, add = 2500.

Figure 4.12: Reintroducing edges to random graphs.

4.2.6 Real-world Bipartivity

To get an insight into whether these observed behaviours for purely random graphs are

realistic we look at how our bipartivity measures change with some real-world graphs.

In order to do this we have started with approximate bipartitions we obtain for

the real-world graphs by splitting our networks using the signs of the eigenvector of the

most negative eigenvalue of the adjacency matrix. We then randomly add back the edges

removed in forming these bipartitions and look at how the bipartivity measures evolve.

Our graphs show the average changes in 10 different random realisations (the details of

this experiment will given in 5).

The measures calculated are bλ, be, bLs and bLN .

128

Chapter 4 – Measuring Bipartivity

(a) Canton. (b) Stony Brook.

Figure 4.13: Reintroducing edges to real-world graphs.

129

Chapter 4 – Measuring Bipartivity

(a) Centrality Literature. (b) Little Rock.

(c) Neurons C. elegans. (d) PIN H. pylori.

(e) Dolphins. (f) PIN Malaria.

(g) Drugs. (h) Small World Citations.

Figure 4.14: Reintroducing edges to real-world graphs.

130

Chapter 4 – Measuring Bipartivity

(a) Electronic 1. (b) Electronic 2.

(c) Electronic 3.

Figure 4.15: Reintroducing edges to real-world graphs.

131

Chapter 4 – Measuring Bipartivity

(a) Scotch Broom. (b) Software Abi.

(c) Software Digital. (d) Software VTK.

(e) Roget’s Thesaurus. (f) Software XMS.

(g) Colorado Springs.

Figure 4.16: Reintroducing edges to real-world graphs.

132

Chapter 4 – Measuring Bipartivity

The figures 4.13, 4.14, 4.15 and 4.16 the X-axes are the edges added and Y-axes is

the bipartivity measure show the effect of adding edges show groups of real world networks

according to the behavior of bipartivity measures. In each group, we see a different type

of behavior. We can identify various trends in Figures 4.13, 4.14, 4.15 and 4.16.

We see from Figure 4.13 that bλ and bLN are very close together,while be decreases

faster than bLs .

We see from Figure 4.14 that bλ and bLN are very close together and they decreased

very slowly, but bLs is going down then stop going down and going straight line while the

be decreased very fast.

We see from Figure 4.15 that be decreased very fast and the other measures going

down very slowly.

We see from Figure 4.16 that the two lines bLs , bLN are very close together and

they decreased very slowly, while the lines bλ and be decreased be decreased very fast. So,

in real world graphs as well as in random graphs, we see that the measures can give us

different information and allow us to distinguish between different types of bipartivity.

4.2.7 Fullerene Graphs

Having looked at graphs with varying degrees of randomness we now investigate our mea-

sures in real-world graphs which are known to be almost bipartite. Our first experiment

is a fullerene molecule.

The importance of studying graphs that model fullerene molecules is that graph

properties can be related to the most stable arrangements of these molecules. Certain

graph properties have been analyzed to see how well they can predict stability, amongst

these is the smallest number in a set of edges that can be removed to make a graph

bipartite.

Fullerene molecules often contain isolated pentagons and hence are not bipartite.

These are known as IP fullerenes.

133

Chapter 4 – Measuring Bipartivity

There is a relationship between the chemical stability of fullerenes and how non-

bipartite they are which is confirmed by computed results that show good performance

on eight different arrangements. A question to be considered is whether bipartite edge

frustration can predict stability in different fullerene arrangements or isomers.

Stability can be measured by calculating the values of certain invariants. While the

value ranges for these invariant properties is narrow, there seems to be good distribution

as maximal values can be calculated for some isomers. Thus, the potential for application

in stability prediction might be in ranges where there are no stable isomers. In this case,

the calculation of frustrated edges would have an advantage over other spectral predictors

since the computations are all performed exactly [21].

We used the measures be =
∑n
j=1 e

−λj∑n
j=1 e

λj
= tr(e−A)

tr(eA)
, bλ = |λn|

λ1
, bc = 1 − md

m
and bLs =

1
1+λmin(Ls)

.

We tested the measures on three sets of fullerene graphs. C1 is a collection of 237

IP fullerene graphs with between 20 and 92 nodes. C2 is a collection of 134 IP fullerene

graphs all with 94 nodes. C3 is much bigger and contains C240 This is a collection of

18825 IP fullerene graphs with 240 nodes. Then we look to the number of edges we must

remove to get bipartite graphs.

134

Chapter 4 – Measuring Bipartivity

(a) C1 (b) C2

(c) C3

Figure 4.17: measure of bipartivity.

In Figure 4.17 we plot the measures be (blue line), bλ (red line), bc (yellow line) and

bLs (purple line) for the sets C1, C2 and C3 (the x-axis is the index of a graph in a set).

In this case all the measures perform similarly although they underestimate bc. The be is

closest to 1.

4.2.8 Airline Graphs

In this experiment we are looking at 37 airline networks (Lufthansa, Ryanair, Easyjet,

British Airways, Turkish Airlines, Air Berlin, Air France, Scandinavian Airlines, KLM,

Alitalia, Swiss International Air Lines, Iberia, Norwegian Air Shuttle, Austrian Airlines,

Flybe, Wizz Air, TAP Portugal, Brussels Airlines, Finnair, LOT Polish Airlines, Vueling

Airlines, Air Nostrum, Air Lingus, Germanwings, Pegasus Airlines, Netjets, Transavia

Holland, Niki, SunExpress, Aegean Airlines, Czech Airlines, European Air Transport,

Malev Hungarian Airlines, Air Baltic, Windroe, TNT Airways and Olympic Air). We

135

Chapter 4 – Measuring Bipartivity

testing them with different bipartivity measures and with LSA (the details of what is

LSA will give in Chapter 5), be =
∑n
j=1 e

−λj∑n
j=1 e

λj
= tr(e−A)

tr(eA)
, bλ = |λn|

λ1
, bLs = 1

1+λmin(Ls)
, bLN =

|1− λmax(LN)|,m1 = 0.5−Q,m2 = 0.5−Q
1.5−Q [67].

Figure 4.18: Airlines network.

We compute the matrix correlations of the Figure 4.18:

136

Chapter 4 – Measuring Bipartivity

be bλ bLs bLN LSA m1 m2

be 1 0.92669136 0.840815 0.802489 0.812458 0.784726 0.80667

bλ 0.926691 1 0.809804 0.829564 0.88998 0.830625 0.829653

bLs 0.840815 0.80980414 1 0.968017 0.802921 0.770344 0.783466

bLN 0.802489 0.82956402 0.968017 1 0.827835 0.783379 0.78907

LSA 0.812458 0.88998004 0.802921 0.827835 1 0.957836 0.955438

m1 0.784726 0.83062543 0.770344 0.783379 0.957836 1 0.996158

m2 0.80667 0.82965299 0.783466 0.78907 0.955438 0.996158 1

Table 4.2: The correlations between the measures.

Each pair of columns in Table 4.2 shows the correlation between two specific mea-

sures. For example, the first and second column shows the correlation between be and

bλ, which indicates that they’re strongly positively correlated. Also, the first and third

column shows the correlation between be and bLs , which indicates that they’re strongly

positively correlated. The first and fourth column shows the correlation between be and

bLN , which indicates that they’re strongly positively correlated. The most correlation is

between m1 and m2 then bLs and bLN .

4.2.9 Conclusion

Since bipartivity has so many equivalent characterisations there are many ways one can

try and measure nearness to the property. We have restricted our analysis to spectral

measures, but this still gives us plenty to compare. Measures can be divided into those

which use a purely algebraic characterisation of bipartivity (in terms of spectral proper-

ties) and those which use the existence of odd cycles as a more direct manifestation of a

lack of bipartivity. In experiments it seems that both approaches give insightful results.

137

Chapter 4 – Measuring Bipartivity

In terms of performance versus cost we recommend bLN since its cost is essentially just

that of finding the largest eigenvalue of a symmetric matrix for which an upper bound is

already available and thus is generally very cheap to compute for even very large networks.

Overall, it seems that measures based on the adjacency matrix and the normalised

Laplacian seem to be closely related to each other, and our results on minimising modu-

larity suggest that these are well correlated to the presence of frustrated edges.

Our theoretical analysis shows that there is the possibility that measures based on

very similar spectral ideas can diverge markedly. In particular, measures that look at the

discrepancy between the number of even and odd walks between nodes seem to decay very

sharply. It may be that we can exploit this to get a more nuanced view of the approximate

bipartivity by using more than one measure on the same matrix.

Depending on the measures used to calculate bipartivity within even a single graph

can vary significantly thus illustrating the importance of carefully selecting the measures

used.

In our experiment, we examine both real networks and random models with different

measures and we show that the measures behave differently in theory. Also, the different

between these measures vary.

138

Chapter 5

Finding Anti-communities

5.1 Introduction

We’ve thoroughly analysed bipartivity and near-bipartivity. We now look at methods

that can reliably identify almost bipartite structures in networks.

In this chapter, we aim to find a way of partitioning the graph so that in the partition

there are as few connections as possible. Finding the optimal solution is an NP-hard

problem and clearly related to finding community structures. We refer to this opposing

process as finding anti-communities. According to [63] , if we look at the complement

graph we can find communities and anti-communities can be found in the original graph.

This approach can be costly but provides us with a starting point.

Newman proposed a method for detecting both communities and anti-communities

by minimising modularity. Given that positive eigenvalues of the modularity matrix

B = A− kkT

2m

provide information about network structure, it stands to reason that negative eigenvalues

of the modularity matrix or would provide us with information about anti-community

structure.

139

Chapter 5 – Finding Anti-communities

In [63], Newman shows that modularity maximisation is analogous to finding the

Fiedler vector when one replaces the Laplacian matrix with the modularity matrix B,

since Q = 1
4m

sTBs where s is the indicator vector for a bipartition. If B has the Schur

factorisation B = uB̂uT where B̂ = diag(β1, β2, . . . , βn) and β1 ≥ β2 ≥ · · · ≥ βn then

Q =
1

4m

n∑
i=1

a2
iβi

where we write s as a linear combination of eigenvectors s =
∑n

i=1 aiui and ai = ui
T s.

While the continuous problem

maxs∈RnQ

is straightforward to solve, the discrete problem (with si ∈ {−1, 1})) is known to be

NP-hard but can be approximated by choosing

si =


1, u

(1)
i ≥ 0

−1, u
(1)
i < 0

.

If we want to split into several communities we use the matrix S where

sij =


1, if node i in community j,

0 otherwise,

to measure modularity, then compute

Q = tr(STBS). (5.1)

For a bipartition, where we wish to minimise modularity, Newman simply suggests

using the smallest eigenvalue of B and splitting the nodes according to

si =


1, u

(n)
i ≥ 0

−1, u
(n)
i < 0

.

140

Chapter 5 – Finding Anti-communities

Newman goes further and suggests a method for finding multiple anti-communities using

(5.1) but as our focus solely is on bipartitions we will not consider this further.

Wang et al. (2008) developed an algorithm based on spectral analysis which would

show the structure of a complex network using Newman’s method of recreating the ex-

pression of the modularity using eigenvectors and eigenvalues of the modularity matrix

to change the problem into one which questions the partition of the vector and then

proposing a new vector partition algorithm [85].

It has been argued that since the modularity matrix or Laplacian matrix used is

designed for the community, partitioning with the least modularity will not necessarily

be best for partitioning anti-communities. Therefore, the concept of anti-modularity has

been proposed by Chen et al. [13] where the characteristics of anti-communities are

studied and a label propagation algorithm is presented with experimental results.

In Chapter 4 we classified equivalent definitions of bipartivity. In this chapter, we

are going to use these equivalent ways to find the partitions. If we have an approximately

bipartite graph we can use these equivalent characterizations to motivate algorithms for

finding a way to partition a graph with few frustrated edges as possible. A summary of

the algorithms we present and their analysis can be found in [3].

Theorem 8. Suppose G is a connected bipartite graph with partitions P and Q and

adjacency matrix A. Label P and Q so that P ∪ Q = {1, . . . , n}. Let x be one of the

following eigenvectors.

1. The eigenvector associated with the most negative eigenvalue of A.

2. The eigenvector associated with the smallest eigenvalue of the signless Laplacian of

G.

3. The eigenvector associated with the largest eigenvalue of the normalised Laplacian

of G.

4. The eigenvector associated with the largest eigenvalue of e−A.

5. The eigenvector associated with the Fiedler vector of the complement graph.

141

Chapter 5 – Finding Anti-communities

6. The eigenvector associated with the largest eigenvalue of the Laplacian matrix.

Then nodes i and j are in the same partition if and only if xixj > 0.

The results 1–5 are well known. The results 1–4 can be inferred from [67] and 5 is

a simple corollary of Fiedler’s results for the Laplacian of graphs [28]. We include the

proofs for completeness. 6 is new.

Proof. 1. We know that if a graph is bipartite then the eigenvector we are looking for

is guaranteed to give an exact bipartition.

Suppose that the network is bipartite. So, we can write the adjacency matrix

A =

 O B

BT O



and let x =

x1

x2

 is eigenvector associated with eigenvalue λ .

Ax = λx⇒

 O B

BT O


x1

x2

 = λ

x1

x2

⇒ Bx2 = λx1, B
Tx1 = λx2.

Then if y =

 x1

−x2

 ⇒ Ay =

 O B

BT O


 x1

−x2

 =

−Bx2

BTx1

 =

−λx1

λx2

 =

−λ

 x1

−x2

 .
So, we can use the signs of y to find the partition.

2. Suppose that A =

 O B

BT O

 where B is an m× n matrix and let ep be a vector

of p ones.

The signless Laplacian is Ls = D + A, where D = diag(Ae).

Ae =

 O B

BT O


em

en

 =

 Ben

BTem

 , D = diag

 Ben

BTem



142

Chapter 5 – Finding Anti-communities

Ls = A+D =

 O B

BT O

+

diag(Ben) O

O diag(BTem)

 =

diag(Ben) B

BT diag(BT em)



Ls

 em

−en

 =

 diag(Ben).em −Ben

BT em − diag(BT em).en

 = 0.

So, we can use the sign of

 em

−en

 to find the partition.

3. We need to show that the eigenvector associated with the eigenvalue 2 of LN =

I−D−1/2AD−1/2 has the form

 x

−y

 . If z is eigenvector for I−D−1A, then D−1/2z

is eigenvector of LN .

Let C = I −D−1A =

 I −E

−F I



Cz = C

 em

−en

 =



1 + 0 + 0 + · · ·+ 1

k1

+
1

k1

+
1

k1

+ · · ·+ 1

k1︸ ︷︷ ︸
k1copies

0 + 1 + 0 + · · ·+ 1

k2

+
1

k2

+
1

k2

+ · · ·+ 1

k2︸ ︷︷ ︸
k2copies

...

−1

km−1

+
−1

km−1

+
−1

km−1

+ · · ·+ −1

km−1︸ ︷︷ ︸
km−1copies

+0 + . . . 0− 1

−1

km
+
−1

km
+
−1

km
+
−1

km
+ · · ·+ −1

km︸ ︷︷ ︸
kmcopies

+0 + . . . 0− 1



=



1 + 0 + 0 + · · ·+ k1
k1

0 + 1 + 0 + · · ·+ k2
k2

...

−km−1

km−1
− 1 + 0 + . . . 0

−km
km
− 1 + 0 + . . . 0


=



2

2

...

−2

...

−2


= 2

 em

−en



So, z is the eigenvector of C associated with the eigenvalue 2. Let X = D−1/2z =

143

Chapter 5 – Finding Anti-communities

 x

−y

 ,
the LNX =

 I −H

−HT I


 x

−y

 = 2

 x

−y


and we can use the signs of

 x

−y

 to find the partition.

4. e−A =
∑∞

k=1
(−1)k

k!
Ak =

∑∞
k=1

(−1)k

2k!
A2k −

∑∞
k=1

(−1)k

(2k+1)!
A(2k+1)!.

Because A =

 O B

BT O

, then A2k =

 (BBT)k O

O (BTB)k



and A2k+1 =

 O (BBT)kB

(BTB)kBT O



Gpq = e−A =
∞∑
k=0

(−1)k

2k!

 (BBT)k O

O (BTB)k

− ∞∑
k=0

(−1)k

(2k + 1)!

 O (BBT)kB

(BTB)kBT O

 .

⇒ Gpq =

 F −C

−CT T


where F, T and C are greater than zero. The sign of Gpq determines whether the

corresponding pair of nodes are in the same partition or not. That is, Gpq > 0 if

and only if p and q are in the same partition. From the anti communicability matrix

G = e−A.

We define

Ĝpq =


1 Gpq > 0

0 Gpq ≤ 0

⇒ Ĝpq =

 E O

O ET

, where E,ET are matrices of ones.

The anti-communicability graph with adjacency matrix G is the disconnected net-

work.

144

Chapter 5 – Finding Anti-communities

5. We can use the fact that the eigenvectors of L and Lc are the same and we can

show that there a simple relationship between the eigenvalues of L and Lc and show

the Fiedler vector of the complement finds the bipartition. Suppose that A is the

adjacency matrix of G. So,

Lc = Dc − Ac = (n− 1)I −D − (E − A− I) = nI − L− E

We know that Le = 0. So, Lce = nIe− Le− Ee = ne− 0− ne = 0. Now suppose

that Lx = λx then

Lcx = nx− Lx− Ex = (n− λ)x− Ex = (n− λ)x− eeTx = (n− λ)x

(eTx = 0 because L is symmetric so its eigenvectors are orthogonal eTx = 0) ⇒ L

and Lc have the same eigenvectors and σ(L) = {0, λ2, . . . , λn} and 0 < λ2 ≤ · · · ≤

λn, σ(Lc) = {0, n− λ2, . . . , n− λn}

If λ2 is the smallest non-zero eigenvalue of L, then the n − λ2 the biggest eigen-

value of Lc and the eigenvector of λ2 is the Fiedler vector corresponding to the

biggest eigenvector of the biggest eigenvalue of Lc. So, the biggest eigenvector of Lc

partitions the graph into two sets.

6. Suppose G has bipartition U ∪ V , where U = {1, . . . , r}, V = {r + 1, . . . , n} and

| E |= m. We can write a signed incidence matrix for G as [B1 B2] where B1 ∈

Rm×r, B2 ∈ Rm×(n−r) with B1 ≥ 0 and B2 ≤ 0. Recall that L = BTB.

Now BBT = B1B
T
1 +B2B

T
2 ≥ 0 and so, since it is irreducible by Perron-–Frobenius

theorem its dominant eigenvector y is positive (let its eigenvalue be λ). Now clearly

x = BTy (because BT (BBTy) = BT (λy) = λ(BTy)⇒ BTBx = λx) is the eigenvec-

tor of the dominant eigenvalue of L (since BBT and BTB share the same non-zero

eigenvalues) and

x =

BT
1 y

BT
2 y


so the first r entries of x are positive and the next n− r are negative, as required.

145

Chapter 5 – Finding Anti-communities

5.2 Methods for finding bipartitions

Closed walks, eigenvalues and normalizing the sum of closed walks give measures that

quantify bipartivity using the properties of the adjacency matrix and its exponential.

The same matrices will now be used in the hope of finding a good partition. We will also

use equivalent or similar algorithm to using the graph Laplacian which has long been used

to detect communities.

Algorithm 1:

We just find in this algorithm the eigenvectors associated with the most negative eigen-

value of the adjacency matrix and then we partition the graph according to the positive

and negative elements of the eigenvector. We know that in bipartite network the most

negative eigenvalue will split the networks in two communities.

Algorithm 2:

In this algorithm we use the communicability function G = exp(−A), then define

Ĝ =


1 if Gpq > 0

0 if Gpq < 0 or p = q

,

after that, we find the eigenvectors associated with the second smallest eigenvalue of the

entries of the Laplacian of Ĝ, then we partition the graph according to the positive and

negative element of the eigenvector.

Algorithm 3:

In this algorithm we use the signless Laplacian and find the eigenvectors associated with

the smallest eigenvalue of the entries of the signless Laplacian, then we partition the graph

according to the positive and negative element of the eigenvector.

146

Chapter 5 – Finding Anti-communities

Algorithm 4:

In this algorithm we use the normalised Laplacian and find the eigenvectors associated

with the biggest eigenvalue of the entries of the normalised Laplacian, then we partition

the graph according to the positive and negative element of the eigenvector.

Algorithm 5:

In this algorithm we use the Laplacian of complement graphs and find the eigenvectors

associated with second smallest eigenvalue of the entries of the Laplacian of the comple-

ment, then we partition the graph according to the positive and negative element of the

eigenvector.

Algorithm 6:

We use the algorithm of Newman in the paper [63].

5.2.1 Experiment

In this experiment, we are trying to partition the nodes to minimise the number of edges

within each partition. So, we have used the algorithm 1, algorithm 2, algorithm 3 and

algorithm 4 for computing an approximate bipartition. We haven’t used algorithm 5

and algorithm 6 just because they give similar results. We select 20 real world networks

(Canton, Centrality, ColoSpg, Corporate people, Dolphins, Drugs, ElVerde, Electronic1,

Electronic2, Electronic3, Little Rock, Neurons C elegans, PIN E coli, PIN Malaria, PIN

H pylori, Roget Thesaurus, Scotch Broom, Small World Citations, Software Digital and

Stony), and used the 4 algorithms to find the bipartition.

147

Chapter 5 – Finding Anti-communities

Figure 5.1: Canton.

Figure 5.2: Centrality.

148

Chapter 5 – Finding Anti-communities

Figure 5.3: ColoSpg.

Figure 5.4: Corporate people.

149

Chapter 5 – Finding Anti-communities

Figure 5.5: Dolphins.

Figure 5.6: Drugs.

150

Chapter 5 – Finding Anti-communities

Figure 5.7: ElVerde.

Figure 5.8: Electronic1.

151

Chapter 5 – Finding Anti-communities

Figure 5.9: Electronic2.

Figure 5.10: Electronic3.

152

Chapter 5 – Finding Anti-communities

Figure 5.11: Little Rock.

Figure 5.12: Neurons C elegans.

153

Chapter 5 – Finding Anti-communities

Figure 5.13: PIN E coli.

Figure 5.14: PIN Malaria.

154

Chapter 5 – Finding Anti-communities

Figure 5.15: PIN H pylori.

Figure 5.16: Roget Thesaurus.

155

Chapter 5 – Finding Anti-communities

Figure 5.17: Scotch Broom.

Figure 5.18: Small World Citations.

156

Chapter 5 – Finding Anti-communities

Figure 5.19: Software Digital.

Figure 5.20: Stony.

157

Chapter 5 – Finding Anti-communities

So, we see from the Figures 5.1 - 5.20 that the results look similar in many cases,

but when we focus there are differences between them. We show this in Tables 5.1-5.2.

Their effect is almost equal, but with the difference in speed, we find that the algorithm

2 is the slowest and algorithm 3 is the fastest method from Table 5.1.

158

Chapter 5 – Finding Anti-communities

1 2 3 4 5 6

canton 0.203 0.453 0.016 0.156 0.063 0.344

Centrality literature 0.25 0.453 0.016 0.141 0.047 0.391

ColoSpg 0.641 0.953 0.063 0.234 0.25 0.406

Corporate people 5.422 22.13 2.594 11.48 4.594 5.813

Dolphins 0.422 0.563 0.047 0.047 0.094 0.422

Drugs 1.688 2.766 0.453 1.016 0.516 1.047

El Verde 0.656 0.734 0.063 0.125 0.25 0.469

Electronic1 0.656 0.484 0.031 0.109 0.094 0.281

Electronic2 0.672 0.75 0.109 0.281 0.219 0.563

Elecrtonic3 0.922 1.625 0.234 0.797 0.234 0.688

Little Rock 0.5 0.719 0.063 0.109 0.203 0.594

Neurons C elegans 0.469 0.922 0.094 0.25 0.328 0.375

PIN E coli 0.266 0.688 0.063 0.172 0.234 0.172

PIN Malaria 0.469 0.734 0.156 0.219 0.188 0.313

PIN H pylori 1.203 2.641 0.594 1.5 0.641 0.844

Roget Thesaurus 2.672 7.094 1 2.859 1.953 1.688

Scotch Broom 0.656 0.453 0.063 0.188 0.188 0.406

Small World Citations 0.422 0.688 0.078 0.234 0.203 0.391

Software Digital 0.406 0.703 0.125 0.063 0.063 0.438

Stony 0.484 0.563 0.016 0.047 0.047 0.328

Total 19.08 46 .1 5.88 20 10.4 15.97

Table 5.1: The speed of the algorithms in seconds.

159

Chapter 5 – Finding Anti-communities

We compute the modularity of partitions to distinguish between the methods. We

see from Tables 5.2 and 5.3 that the method using the normalised Laplacian is the best

and the method using the Laplacian of complement graphs never do the best.

We have in Tables 5.2 and 5.3 (7) columns and we put the smallest value in each

row in bold.:

Column n is the modularity after using algorithm n. The last column is the best

modularity in each row which in this case is the lowest.

160

Chapter 5 – Finding Anti-communities

1 2 3 4 5 6 7

canton -0.4732 -0.4732 -0.4732 -0.4732 -0.4357 -0.4732 -0.4732

Centrality literature -0.1938 -0.1938 -0.1295 -0.2046 -0.0488 -0.0231 -0.2046

ColoSpg -0.4483 -0.4513 -0.457 -0.457 -0.4481 -0.1634 -0.457

Corporate people 0.00211 0.01259 0.0381 0.03368 0.0885 0.0056 0.00211

Dolphins -0.2305 -0.2023 -0.2426 -0.2513 -0.1923 -0.1251 -0.2513

Drugs -0.0965 -0.0684 -0.0837 -0.0836 0.0219 -0.016 -0.0965

El Verde -0.3125 -0.3125 -0.2123 -0.3102 -0.0429 -0.3125 -0.3125

Electronic1 -0.3371 -0.3375 -0.3466 -0.3422 -0.3109 -0.2798 -0.3466

Electronic2 -0.3073 -0.3096 -0.3171 -0.3121 -0.297 -0.1645 -0.3171

Electronic3 -0.2975 -0.2971 -0.3145 -0.3181 -0.2719 -0.0231 -0.3181

Little Rock -0.289 -0.289 -0.2829 -0.2901 -0.0575 -0.2903 -0.2903

Neurons C elegans -0.1416 -0.1432 -0.116 -0.1695 -0.0159 -0.1074 -0.1695

PIN E coli -0.1175 -0.1175 -0.0132 -0.0105 0.0497 -0.0952 -0.1175

PIN Malaria -0.2137 -0.2006 -0.2204 -0.2398 -0.1826 -0.2122 -0.2398

PIN H pylori -0.3653 -0.3741 -0.3237 -0.3625 -0.2445 -0.19 -0.3741

Roget Thesaurus -0.1714 -0.1714 -0.1436 -0.1462 -0.1352 -0.1709 -0.1714

Scotch Broom -0.3254 -0.3744 -0.392 -0.392 -0.3254 -0.2468 -0.392

Small World Citations -0.1514 -0.1514 -0.2176 -0.25 -0.081 -0.1634 -0.25

Software Digital -0.4399 -0.4446 -0.4451 -0.4451 -0.395 -0.1488 -0.4451

Stony -0.4725 -0.4725 -0.4725 -0.4725 -0.4711 -0.4725 -0.4725

Table 5.2: The modularity before using the local improvement algorithm.

161

Chapter 5 – Finding Anti-communities

1 2 3 4 5 6 7

Transcription E coli -0.4148 -0.4148 -0.443 -0.4342 -0.3934 -0.1835 -0.443

GD -0.2371 -0.2048 -0.1949 -0.1967 -0.1584 -0.1829 -0.2371

Transcription Yeast -0.413 -0.4322 -0.4567 -0.4567 -0.4033 -0.1827 -0.4567

Software MySQL -0.2126 -0.2148 -0.2542 -0.2549 -0.1438 -0.0375 -0.2549

USAir 97 -0.135 -0.132 -0.0699 -0.0615 0.03054 -0.0931 -0.135

Software VTK -0.293 -0.293 -0.3136 -0.3136 -0.26 -0.112 -0.3136

Ythan 1 -0.3004 -0.3004 -0.3034 -0.317 -0.1006 -0.298 -0.317

Software XMMS -0.3259 -0.3291 -0.3657 -0.3657 -0.3202 -0.0731 -0.3657

termite Mound 3 -0.3055 -0.2918 -0.3125 -0.3146 -0.2922 -0.1296 -0.3146

Software Abi -0.3316 -0.3599 -0.3686 -0.371 -0.2958 -0.1013 -0.371

Termite Mound 1 -0.3883 -0.3596 -0.3698 -0.3787 -0.3774 -0.2463 -0.3883

Termite Mound 2 -0.4607 -0.4536 -0.4679 -0.4679 -0.4572 -0.1215 -0.4679

Table 5.3: The modularity before using the local improvement algorithm.

5.3 Local improvement with modularity

We use the idea of a local improvement method mentioned in the context of communities

in 2.2.1 to test the effectiveness of various algorithms for computing the nearest bipartite

graph. So, we use the local improvement method to improve the various algorithms for

computing the nearest bipartite graph. Then we compute the modularity after partition-

ing the network using various algorithms before and after using the local improvement

method. In local improvement method we are just looking at ways of moving two nodes

between partition to reduce the modularity to the fact that the modularity of bipartite

network is −0.5.

162

Chapter 5 – Finding Anti-communities

5.3.1 Local improvement algorithm

We use the local improvement algorithm to reduce modularity and find the biggest im-

provement in modularity at each step. The local improvement algorithm give us easy way

to compute the effect of modularity. First we input the adjacency matrix A, the current

partition {p, q}. Then we go through each nodes in the network and see if it is in the

partition p or in the partition q. we start with node 1 and start with main loop. Suppose

we partition

A =

 App Apq

Aqp Aqq

 ,
into p = {1, 2, . . . , n} and q = {n + 1, . . . , n + r}. Then swap node 1 from p to q. Then

we compute the change in modularity (∆Q) which can be computed analytically in the

following steps:

For clarity, let e(l) be a vector of ones of length l, and el be the lth column of I.

Then

Qold =
sTBs

4m
and Qnew =

s̄TBs̄

4m

where

B = A− kkT

2m
, s =

 e(n)

−e(r)

 and s̄ = s− 2e1 ,k = Ae.

So,

Qnew =
1

4m
(s− 2e1)TB(s− 2e1) = Qold +

1

m
(eT1Be1 − sTBe1).

Now eT1Be1 = a11 − k2
1/(2m) = −k2

1/(2m) and since

Be(n+r) = Ae(n+r) − kkT

2m
e(n+r) = k− 2m

2m
k = 0,

we have

− 1

m
sTBe1 =

2

m

 0

e(r)


T

Be1 =
2

m
eT1

[
A− kkT

2m

] 0

e(r)

 =
2

m
kq1−

k1k
T

m2

 0

e(r)

 =
2

m
kq1−

k1k̂q
m2

.

163

Chapter 5 – Finding Anti-communities

And so the change in modularity is given by

∆Q =
−k2

1

2m2
− k1k̂q

m2
+

2kq1
m
,

where kq1 is the number of edges from node 1 that end in partition q and k̂q is the sum of

the degrees of the nodes in partition q. W

The equivalent change can be calculated for every node very quickly and we swap

the node which gives the minimum value of ∆Q (so long as it is negative). We can repeat

this process until we reduce Q no further.

5.3.2 Example

In this example, we will apply the local improvement algorithm to a network with 8

nodes and 4 frustrated edges. We are going to work out the number of frustrated edges.

So,initially we partition the network as in Figure 5.21 with partition p =

[
1 3 5 7

]
and partition q =

[
2 4 6 8

]
. There 4 frustrated edges and the measurement of the

modularity before starting the local improvement algorithm gives a value of −0.1 .

So, the principle of the local improvement algorithm is to find the best improvement we

can get of modularity by moving one node from one side to another.

Figure 5.21: The network before start the algorithm.

164

Chapter 5 – Finding Anti-communities

Now we swap the node 6 from partition q to partition p. So the partition now is

p =

[
1 3 5 7 6

]
, q =

[
2 4 8

]
. Because the

v =

[
−0.0200 −0.0200 −0.0200 0.0550 0.0550 −0.1450 0.0550 0.1800

]
, where

v is the change in modularity. The minimum number is −0.1450 which in node 6 and the

modularity in this step is −0.2450 and we reduce the number of frustrated edges to 3 as

in Figure 5.22, then we repeat the process again.

Figure 5.22: Step 1.

In this step we get the v =

[
0.0400 0.1200 0.0400 0.1650 0.1450 0.1450 −0.0550 0.1200

]
and the minimum number is −0.0550 which in node 7. So, we swap the node 7 from par-

tition p to partition q. So the partition now is p =

[
1 3 5 6

]
, q =

[
2 4 8 7

]
and the modularity in this step is −0.3000 and we reduce the number of frustrated edges

to 2 as in Figure 5.23, then we repeat the process again.

165

Chapter 5 – Finding Anti-communities

Figure 5.23: Step 2.

In this step we get the v =

[
−0.0200 0.1800 0.1800 0.0550 0.0550 0.2550 0.0550 0.1800

]
and The minimum number is −0.0200 which in node 1. So, we swap the node 1 from

partition p to partition q. So the partition now is p =

[
3 5 6

]
, q =

[
2 4 8 7 1

]
and the modularity in this step is −0.3200 and we stop at this step we got 2 frustrated

edges in the end as in Figure 5.24. We show in this step that we may not necessarily

reduce the number frustrated of edges at each step

Figure 5.24: Step 3.

166

Chapter 5 – Finding Anti-communities

5.4 Experiments

In these experiments, we test real world networks with different bipartivity measures and

try to find which of the measures best reflects how bipartite a network is.

5.4.1 Experiment 1

In this experiment, we are looking at 32 networks (Canton, Electronic3, Small World

Citations, Transcription E coli, Centrality literature, GD, Software Digital, Transcription

Yeast, ColoSpg, Little Rock, Software MySQL, USAir 97, Corporate people, Neurons C

elegans, Software VTK, Ythan 1, Dolphins, PIN E coli, Software XMMS, termite Mound

3, Drugs, PIN Malaria, Software Abi, El Verde, PIN H pylori, Stony, Electronic1, Roget

Thesaurus, Termite Mound 1, Electronic2, Scotch Broom and Termite Mound 2) and

testing them with different bipartivity measures.

The following tables show the modularity and bipartivity measures for real networks.

We have in Table 5.4 and 5.5 (6) columns:

The column n is the modularity after partitioning the network using the method

we use in column n in Tables 5.2 and 5.3 with the local improvement method. The last

column is the best modularity in each row.

167

Chapter 5 – Finding Anti-communities

1 2 3 4 5 6

canton -0.476 -0.476 -0.476 -0.476 -0.476 -0.476

Centrality literature -0.2232 -0.2232 -0.2118 -0.2275 -0.2146 -0.2275

ColoSpg -0.451 -0.454 -0.4597 -0.4597 -0.451 -0.4597

Corporate people -0.0796 -0.0775 -0.0759 -0.0754 -0.0758 -0.0796

Dolphins -0.2563 -0.2423 -0.2513 -0.2675 -0.2312 -0.2675

Drugs -0.18 -0.177 -0.1745 -0.172 -0.1715 -0.18

El Verde -0.3136 -0.3136 -0.3136 -0.3142 -0.3136 -0.3142

Electronic1 -0.3575 -0.3575 -0.3735 -0.3677 -0.3521 -0.3735

Electronic2 -0.3647 -0.3474 -0.3547 -0.3548 -0.3421 -0.3647

Electronic3 -0.3414 -0.3547 -0.3585 -0.3609 -0.3331 -0.3609

Little Rock -0.2995 -0.2995 -0.2995 -0.2995 -0.2995 -0.2995

Neurons C elegans -0.1921 -0.1893 -0.1989 -0.1934 -0.1559 -0.1989

PIN E coli -0.1225 -0.1235 -0.1174 -0.1177 -0.1229 -0.1235

PIN Malaria -0.2505 -0.2562 -0.2583 -0.2652 -0.26 -0.2652

PIN H pylori -0.3775 -0.3782 -0.351 -0.3791 -0.2937 -0.3791

Roget Thesaurus -0.213 -0.2126 -0.2069 -0.2069 -0.2008 -0.213

Scotch Broom -0.3951 -0.3951 -0.3945 -0.3945 -0.3951 -0.3951

Small World Citations -0.2572 -0.2572 -0.2532 -0.26 -0.2304 -0.26

Software Digital -0.4399 -0.4446 -0.4451 -0.4451 -0.4243 -0.4451

Stony -0.4735 -0.4735 -0.4735 -0.4735 -0.4723 -0.4735

Table 5.4: The modularity after using the local improvement method.

168

Chapter 5 – Finding Anti-communities

1 2 3 4 5 6

Transcription E coli -0.43694 -0.43694 -0.44299 -0.44299 -0.42105 -0.44299

GD -0.26396 -0.26067 -0.25279 -0.25279 -0.23863 -0.26396

Transcription Yeast -0.43699 -0.4511 -0.46063 -0.4606 -0.42192 -0.4606

Software MySQL -0.29768 -0.29622 -0.29935 -0.29935 -0.26945 -0.29935

USAir 97 -0.16469 -0.16469 -0.16275 -0.1256 -0.16043 -0.16469

Software VTK -0.33461 -0.32568 -0.32833 -0.32907 -0.31812 -0.33461

Ythan 1 -0.32182 -0.32182 -0.31989 -0.32207 -0.31241 -0.32207

Software XMMS -0.36132 -0.36573 -0.3757 -0.3757 -0.36016 -0.3757

termite Mound 3 -0.32932 -0.33076 -0.34211 -0.34671 -0.30665 -0.34671

Software Abi -0.3697 -0.38835 -0.38318 -0.38315 -0.35754 -0.38835

Termite Mound 1 -0.4012 -0.38505 -0.38319 -0.38462 -0.39064 -0.4012

Termite Mound 2 -0.46072 -0.45358 -0.47143 -0.47143 -0.45717 -0.47143

Table 5.5: The modularity after using the local improvement method.

When we compare the Tables 5.2 and 5.3 before using local improvement method

with the Tables 5.4 and 5.5 after using local improvement method we see that all methods

improved and the method 4 is the best.

The following table shows the time taken for each method and in the last row, we

see the total of the time taken by every method. We see from the Table 5.6 that the

method 3 is the best followed by the method 4.

169

Chapter 5 – Finding Anti-communities

1 2 3 4 5

canton 0.406 0.313 0.141 0 0.031

Centrality literature 0.438 0.344 0.016 0.188 0.047

ColoSpg 0.625 0.516 0.078 0.156 0.25

Corporate people 18.5 29.25 17.39 21.55 23.8

Dolphins 0.359 0.578 0 0.156 0.047

Drugs 1.688 2.844 1.063 1.234 1.328

El Verde 0.516 0.609 0.063 0.094 0.109

Electronic1 0.359 0.531 0.063 0.078 0.047

Electronic2 0.5 0.719 0.172 0.141 0.156

Elecrtonic3 1.016 1.688 0.469 0.797 0.5

Little Rock 0.516 0.625 0.063 0.156 0.094

Neurons C elegans 0.547 0.578 0.125 0.297 0.219

PIN E coli 0.531 0.641 0.109 0.156 0.406

PIN Malaria 0.438 0.5 0.156 0.266 0.156

PIN H pylori 1.094 2.125 0.688 1.172 0.984

Roget Thesaurus 3.734 7.25 3.859 4.188 3.906

Scotch Broom 0.5 0.438 0.063 0.063 0.094

Small World Citations 0.438 0.563 0.031 0.203 0.141

Software Digital 0.297 0.375 0.063 0.109 0.063

Stony 0.438 0.406 0.031 0.094 0.063

Total 32.94 50.89 24.64 31.1 32.44

Table 5.6: The speed of the algorithms in seconds.

170

Chapter 5 – Finding Anti-communities

5.4.2 Experiment 2

In this experiment, we are looking at 32 networks (Canton, Electronic3, Small World

Citations, Transcription E coli, Centrality literature, GD, Software Digital, Transcription

Yeast, ColoSpg, Little Rock, Software MySQL, USAir 97, Corporate people, Neurons

C elegans, Software VTK, Ythan 1, Dolphins, PIN E coli, Software XMMS, termite

Mound 3, Drugs, PIN Malaria, Software Abi, El Verde, PIN H pylori, Stony, Electronic1,

Roget Thesaurus, Termite Mound 1, Electronic2, Scotch Broom and Termite Mound

2) and we compute the bipartivity measures bc, bs, be, bLN , bLs , LSA, and an estimate of

a number of edges. The LSA (Local switching algorithm) [67] starts with randomly

permuting the vertices and then partition the set of nodes into two sets X and Y with

sizes |V |
2

, |V |
2

, respectively (X ∩ Y = φ,X ∪ Y = V). After that, the vertex u is moved

from one part to another if | Eint
u (G) |>| Eext

u (G) |, or 2× | Eint
u (G) |>| Eu(G) | since

| Eu(G) |=| Eint
u (G) | + | Eext

u (G) |, vertex u is then marked as moved and not considered

for movement in subsequent iterations. The process continues alternately between the two

parts until no more movements of vertices are possible. Finally, the ratio rb =
|E(G)bipart|
|E(G)|

is calculated where | E(G)bipart | is the number of edges remaining when edge-deleted

subgraph of G becomes bipartite and | E(G) | is the number of edges in G [67].

We use the algorithm which gives the minimum modularity in Table 5.7 then we com-

pute the bipartivity measures and LSA. Also, we find the Correlation Coefficient between

the minimum modularity and bipartivity measures in Table 5.9 to see the relationship

between these measures.

171

Chapter 5 – Finding Anti-communities

min be bλ bc bLs bLn LSA frustrated E

canton -0.47596 0.550983 0.969526 0.973126 0.734844 0.970547 0.976 19

Elecrtonic3 -0.36085 0.903425 0.984032 0.797314 0.912128 0.956006 0.8413 166

Small World Citations -0.26003 0.000118 0.561003 0.597586 0.529584 0.660274 0.7445 400

Transcription E coli -0.44299 0.661264 0.94794 0.914474 0.959516 0.978644 0.9364 39

Centrality literature -0.2275 0.0001 0.498308 0.683524 0.582047 0.613348 0.7194 194

GD -0.26396 0.106902 0.575269 0.737008 0.895869 0.946116 0.7606 167

Software Digital -0.44507 0.534761 0.817721 0.939394 0.95286 0.97403 0.9394 12

Transcription Yeast -0.46063 0.918998 0.998868 0.911488 0.980551 0.989678 0.9313 94

ColoSpg -0.45972 0.890182 0.938028 0.948127 0.995246 0.99756 0.951 18

Little Rock -0.29949 0.000 0.599063 0.788836 0.511177 0.820148 0.7984 488

Software MySQL -0.29935 0.001227 0.682953 0.709308 0.973751 0.989478 0.7931 1218

USAir 97 -0.16469 0.000 0.320908 0.629351 0.658826 0.722713 0.6627 788

Corporate people -0.07957 0.000 0.253447 0.496014 0.74503 0.753424 0.5764 5816

Neurons C elegans -0.19894 0.000 0.508202 0.641156 0.534967 0.575818 0.6898 708

Software VTK -0.33461 0.163029 0.797047 0.792189 0.938648 0.964823 0.8246 282

Ythan 1 -0.32207 0.004799 0.678286 0.799325 0.523225 0.747642 0.8212 119

Dolphins -0.26747 0.154829 0.53117 0.72956 0.654247 0.713769 0.7547 43

PIN E coli -0.1235 0 0.2408 0.6175 0.9258 0.9528 0.6227 1312

Software XMMS -0.3757 0.308081 0.80956 0.825749 0.977193 0.988851 0.8629 314

termite Mound 3 -0.34671 0.542647 0.620194 0.805492 0.912995 0.958258 0.8284 85

Drugs -0.18003 0.0001 0.362991 0.593936 0.846119 0.883264 0.6754 817

PIN Malaria -0.26517 0.109428 0.655404 0.713576 0.650219 0.754015 0.7467 173

Software Abi -0.38835 0.14448 0.797758 0.831297 0.990739 0.995233 0.8703 290

El Verde -0.31424 0.000 0.623571 0.811675 0.594033 0.748337 0.8124 271

PIN H pylori -0.37908 0.423129 0.876634 0.86533 0.858333 0.912228 0.8775 188

Stony -0.47352 0.630128 0.979657 0.972289 0.715769 0.97181 0.9735 23

Electronic1 -0.37352 0.896729 0.912019 0.835979 0.904729 0.95014 0.8571 31

Roget Thesaurus -0.21299 0.057644 0.535572 0.670604 0.860142 0.896855 0.7115 1199

Termite Mound 1 -0.4012 0.883001 0.844908 0.887574 0.935432 0.964056 0.9009 76

Electronic2 -0.36466 0.9005 0.943149 0.807018 0.909259 0.953746 0.8622 77

Scotch Broom -0.39509 0.007431 0.659237 0.811475 0.878037 0.931493 0.8361 69

Termite Mound 2 -0.47143 0.987768 0.979899 0.960714 0.982756 0.990977 0.9607 11

Table 5.7: The minimum modularity and bipartivity measures.

172

Chapter 5 – Finding Anti-communities

Then, we compute the Correlation Coefficient between the minimum modularity

with bipartivity measures.

The following figures show the Correlation Coefficient between the minimum modularity

with bipartivity measures.

(a) be and modularity. (b) bλ and modularity..

(c) bLn and modularity. (d) bLs and modularity.

Figure 5.25: The correlation coefficient between modularity and be, bλ, bLn , bLs .

173

Chapter 5 – Finding Anti-communities

(a) bc and modularity. (b) LSA and modularity.

Figure 5.26: The correlation coefficient between modularity and LSA, bc.

The following Table 5.8 is the Correlation Coefficient between modularity and bi-

partivity measures for all 32 networks.

min be bλ bc bLs bLn LSA

min 1 -0.73461 -0.93588 -0.9665 -0.4296 -0.62799 -0.99422

be -0.73461 1 0.812837 0.724643 0.554774 0.60213 0.7427

bλ -0.93588 0.812837 1 0.890526 0.442844 0.606632 0.93782

bc -0.9665 0.724643 0.890526 1 0.401519 0.625114 0.976133

bLs -0.4296 0.554774 0.442844 0.401519 1 0.880682 0.415021

bLn -0.62799 0.60213 0.606632 0.625114 0.880682 1 0.628495

LSA -0.99422 0.7427 0.93782 0.976133 0.415021 0.628495 1

Table 5.8: The Correlation Coefficient between modularity and bipartivity measures.

The following Table 5.9 is the Correlation Coefficient between modularity and bi-

partivity measures for networks which has modularity less than −0.35.

174

Chapter 5 – Finding Anti-communities

min be bλ bc bLs bLn LSA

min 1 -0.20927 -0.40864 -0.95084 0.202146 -0.51683 -0.95275

be -0.20927 1 0.795374 0.276937 0.144789 0.218053 0.314467

bλ -0.40864 0.795374 1 0.450376 -0.16772 0.289237 0.52746

bc -0.95084 0.276937 0.450376 1 -0.26345 0.431381 0.985435

bLs 0.202146 0.144789 -0.16772 -0.26345 1 0.435932 -0.24611

bLn -0.51683 0.218053 0.289237 0.431381 0.435932 1 0.5108

LSA -0.95275 0.314467 0.52746 0.985435 -0.24611 0.5108 1

Table 5.9: The Correlation Coefficient between modularity and bipartivity measures.

Then, we compute the modularity and bipartivity measures for other group of real

world networks (Luft, Ryan, Easy, British, Turkish, Berlin, France, Scandinavian, KLM,

Alitalia, Swiss, Iberia, Norwegian, Austrian, Flybe, Wizz, Portugal, Brussels, Finnair,

LOT Polish, Vueling, Nostrum, Lingus, German, Pegasus, Netjets, Holland, Niki, Sun-

Express, Aegean, Czech, European, Malev, Baltic, Wideroe, TNT and Olympic) in the

Table 5.10 and we put the smallest value in each row in bold.

175

Chapter 5 – Finding Anti-communities

1 2 3 4 5 6 7 8 9 10

Luft -0.3722 -0.4058 -0.3722 -0.4058 -0.4064 -0.4064 -0.4017 -0.4101 -0.0972 -0.4101

Ryan -0.1945 -0.2238 -0.1914 -0.2173 -0.1695 -0.2238 -0.2205 -0.2362 -0.1109 -0.2321

Easy -0.2851 -0.3249 -0.2851 -0.3249 -0.3036 -0.3249 -0.3179 -0.3249 -0.1805 -0.3079

British -0.5 -0.5 -0.485 -0.5 -0.5 -0.5 -0.5 -0.5 -0.485 -0.5

Turkish -0.4577 -0.4577 -0.4577 -0.4577 -0.4577 -0.4577 -0.4577 -0.4577 -0.3173 -0.4577

Berlin -0.2616 -0.2826 -0.2616 -0.2826 -0.2538 -0.2836 -0.2956 -0.2956 -0.1702 -0.2831

France -0.4575 -0.4575 -0.4575 -0.4575 -0.471 -0.471 -0.471 -0.471 -0.4575 -0.4575

Scandinavian -0.3742 -0.3742 -0.3742 -0.3742 -0.3819 -0.3819 -0.3729 -0.3729 -0.1506 -0.3822

KLM -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.1171 -0.5

Alitalia -0.2537 -0.363 -0.2537 -0.363 -0.3515 -0.3818 -0.3818 -0.3818 -0.1445 -0.363

Swiss -0.3868 -0.4672 -0.3868 -0.4672 -0.4672 -0.4672 -0.4672 -0.4672 0 -0.3068

Iberia -0.4718 -0.4718 -0.4718 -0.4718 -0.4718 -0.4718 -0.4718 -0.4718 -0.4718 -0.4718

Norwegian -0.2831 -0.3393 -0.2831 -0.3393 -0.3277 -0.3393 -0.3277 -0.3393 -0.1718 -0.3393

Austrian -0.4201 -0.4314 -0.4201 -0.4314 -0.4448 -0.4448 -0.4448 -0.4448 -0.4201 -0.4314

Flybe -0.3594 -0.3594 -0.3594 -0.3594 -0.3594 -0.3594 -0.3594 -0.3594 -0.2139 -0.3594

Wizz -0.4892 -0.4892 -0.4892 -0.4892 -0.4892 -0.4892 -0.4892 -0.4892 -0.4892 -0.4892

Portugal -0.4623 -0.4623 -0.4623 -0.4623 -0.4623 -0.4623 -0.4623 -0.4623 -0.2992 -0.4623

Brussels -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 0 -0.5

Finnair -0.4765 -0.4765 -0.4765 -0.4765 -0.4765 -0.4765 -0.4765 -0.4765 -0.4765 -0.4765

LOT Polish -0.3056 -0.4106 -0.3056 -0.4106 -0.3605 -0.4106 -0.3605 -0.4106 -0.3056 -0.4106

Vueling -0.2329 -0.3095 -0.2329 -0.3095 -0.3141 -0.3141 -0.3141 -0.3141 -0.2329 -0.3095

Nostrum -0.3845 -0.4147 -0.3845 -0.4147 -0.3908 -0.4135 -0.3908 -0.4135 -0.3845 -0.4147

Lingus -0.4316 -0.4484 -0.4316 -0.4484 -0.4316 -0.4484 -0.4316 -0.4484 -0.4316 -0.4484

German -0.4104 -0.4255 0.02941 -0.4421 -0.2982 -0.4255 -0.4255 -0.4255 -0.2599 -0.4255

Pegasus -0.2878 -0.33 -0.2878 -0.33 -0.3971 -0.3971 -0.3971 -0.3971 -0.2878 -0.33

Netjets -0.2646 -0.2945 -0.2682 -0.2946 -0.2669 -0.2948 -0.1945 -0.2833 -0.1561 -0.2613

Holland -0.3847 -0.3847 -0.3847 -0.3847 -0.3847 -0.3847 -0.3847 -0.3847 -0.3786 -0.3786

Niki -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5

SunExpress -0.4104 -0.4104 -0.4104 -0.4104 -0.4104 -0.4104 -0.4104 -0.4104 -0.1965 -0.2517

Aegean -0.3498 -0.3498 -0.3498 -0.3498 -0.3498 -0.3498 -0.3498 -0.3498 -0.2237 -0.3498

Czech -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.144 -0.5

European -0.3539 -0.3539 -0.3539 -0.3539 -0.3768 -0.3768 -0.3768 -0.3768 -0.2942 -0.3539

Malev -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 0 -0.5

Baltic -0.478 -0.478 -0.478 -0.478 -0.478 -0.478 -0.478 -0.478 -0.478 -0.478

Wideroe -0.1343 -0.2558 -0.1728 -0.2667 -0.1956 -0.2556 -0.1956 -0.2556 -0.1467 -0.2667

TNT -0.4038 -0.4182 -0.4038 -0.4182 -0.4038 -0.4182 -0.4038 -0.4182 -0.4038 -0.4182

Olympic -0.3505 -0.4327 -0.3505 -0.4327 -0.4327 -0.4327 -0.4327 -0.4327 -0.3505 -0.4327

Table 5.10: The Modularity of airline networks.

176

Chapter 5 – Finding Anti-communities

min be bλ bc bLs bLn LSA

Luft -0.4101 0.0382 0.7737 0.8689 0.7205 0.8818 0.9057

Ryan -0.2362 0.0001 0.4836 0.6922 0.58 0.651 0.7238

Easy -0.3249 0.0083 0.6528 0.7752 0.6323 0.7766 0.8176

British -0.5 1 1 1 1 1 1

Turkish -0.4577 0.4772 0.9243 0.9576 0.892 0.9484 0.9576

Berlin -0.2956 0.0147 0.5786 0.75 0.6244 0.7254 0.788

France -0.471 0.8773 0.9805 0.9565 0.9343 0.968 0.9565

Scandinavian -0.3822 0.1419 0.754 0.8727 0.7675 0.8766 0.8727

KLM -0.5 1 1 1 1 1 1

Alitalia -0.3818 0.1496 0.767 0.7204 0.7316 0.8484 0.8602

Swiss -0.4672 0.5681 0.9173 0.8833 0.8879 0.9421 0.9667

Iberia -0.4718 0.9461 0.9893 0.9714 0.9629 0.9802 0.9714

Norwegian -0.3393 0.1582 0.7393 0.7701 0.6949 0.7989 0.8276

Austrian -0.4448 0.8256 0.9758 0.9126 0.9126 0.9514 0.9306

Flybe -0.3594 0.0939 0.6703 0.8586 0.6373 0.8023 0.8586

Wizz -0.4892 0.8379 0.9661 0.9891 0.9369 0.9828 0.9891

Portugal -0.4623 0.5333 0.901 0.9623 0.8949 0.9471 0.9623

Brussels -0.5 1 1 1 1 1 1

Finnair -0.4765 0.9538 0.992 0.9762 0.969 0.9836 0.9762

LOT Polish -0.4106 0.5601 0.9064 0.7818 0.8408 0.9035 0.9091

Vueling -0.3141 0.253 0.7437 0.6825 0.7379 0.8198 0.7778

Nostrum -0.4147 0.7661 0.9528 0.8841 0.8912 0.9508 0.913

Lingus -0.4484 0.7722 0.9599 0.931 0.8977 0.9463 0.9483

German -0.4421 0.3704 0.851 0.9254 1 1 0.9254

Pegasus -0.3971 0.4557 0.8591 0.7586 0.782 0.8626 0.8621

Netjets -0.2948 0.1418 0.5924 0.7611 1 1 0.7944

Holland -0.3847 0.7217 0.9355 0.8772 0.8001 0.8993 0.8772

Niki -0.5 1 1 1 1 1 1

SunExpress -0.4104 0.1446 0.712 0.9104 0.7454 0.8704 0.9104

Aegean -0.3498 0.3833 0.8206 0.8491 0.787 0.868 0.8491

Czech -0.5 1 1 1 1 1 1

European -0.3768 0.3408 0.7987 0.8493 0.7952 0.8657 0.8493

Malev -0.5 1 1 1 1 1 1

Baltic -0.478 0.9551 0.9923 0.9778 0.9711 0.9848 0.9778

Wideroe -0.2667 0.3055 0.6583 0.6222 0.7061 0.8435 0.7222

TNT -0.4182 0.7848 0.9523 0.9016 0.8932 0.9401 0.918

Olympic -0.4327 0.6631 0.9264 0.8372 0.8839 0.9331 0.8837

Table 5.11: The minimum modularity and bipartivity measures

177

Chapter 5 – Finding Anti-communities

Then we compute the Correlation Coefficient between be and modularity is −0.8317

and the Correlation Coefficient between bλ and modularity is −0.9182.

(a) be and modularity. (b) bλ and modularity.

Figure 5.27: The correlation Coefficient between modularity and bl, be.

The following Table 5.12 is the Correlation Coefficient between modularity and

bipartivity measures for all 37 airline networks.

min be bλ bc bLs bLn LSA

min 1 -0.8317 -0.91819 -0.91404 -0.81252 -0.83949 -0.98819

be -0.8317 1 0.926691 0.764336 0.840815 0.802489 0.812458

bl -0.91819 0.926691 1 0.800575 0.809804 0.829564 0.88998

bc -0.91404 0.764336 0.800575 1 0.76699 0.778942 0.942856

bs -0.81252 0.840815 0.809804 0.76699 1 0.968017 0.802921

bn -0.83949 0.802489 0.829564 0.778942 0.968017 1 0.827835

LSA -0.98819 0.812458 0.88998 0.942856 0.802921 0.827835 1

Table 5.12: The correlation Coefficient between modularity and bipartivity measures
for airline networks.

The following Table 5.13 is the Correlation Coefficient between modularity and

bipartivity measures for networks which has modularity less than −0.35.

178

Chapter 5 – Finding Anti-communities

min be bλ bc bLs bLn LSA

min 1 -0.80722 -0.86326 -0.85437 -0.64564 -0.66694 -0.97865

be -0.80722 1 0.936242 0.718058 0.761893 0.742369 0.79186

bl -0.86326 0.936242 1 0.691193 0.638563 0.6333 0.824602

bc -0.85437 0.718058 0.691193 1 0.633957 0.682356 0.893477

bs -0.64564 0.761893 0.638563 0.633957 1 0.984779 0.652197

bn -0.66694 0.742369 0.6333 0.682356 0.984779 1 0.688325

LSA -0.97865 0.79186 0.824602 0.893477 0.652197 0.688325 1

Table 5.13: The correlation Coefficient between modularity and bipartivity measures
for airline networks.

5.5 Conclusion

In this chapter, we see the different ways of characterizing bipartivity lead to different

algorithms for finding a way of partition. Our experiments with algorithms for finding a

good partition into anti-communities show that simple spectral algorithms, based on the

analysis of a single eigenvector, can perform as well (or better) than some of the more

complex techniques that have been proposed in the literature, and that post-processing

with local improvement can really pay dividends. The local improvement technique is

similar to that introduced by Kernighan and Lin [47] but takes advantage of the fact that

we do not need to balance the size of bipartitions, we simply need to reduce the number

of frustrated edges. These algorithms can also give a relative cheap approximation of

md, the number of frustrated edges, since we can get an upper bound by counting the

intra-community edges in the bipartition we calculate for the cost of one eigenvector

computation.

179

Chapter 5 – Finding Anti-communities

We show that method 3, which uses the signless Laplacian and finds the eigenvector

associated with the smallest eigenvalue is faster than other methods in terms of time, and

method 4, which uses the normalised Laplacian and finds the eigenvector associated with

the biggest eigenvalue, is the best in terms of giving the best modularity, which is very

closely correlated to md.

180

Chapter 6

Conclusions and Future Work

In this work, our aim was to examine some definitions and methods for analysing graph

partitioning problems including clustering coefficients, the graph Laplacian including its

eigenvalues and eigenvectors, the normalized Laplacian, and the signless Laplacian. We

also introduced a selection of real-world test networks with which to compare our results.

The networks were selected from a variety of fields of study such as brain networks, in-

formational networks, biological networks, social and economic networks, technological

networks, and software networks to ensure a wide array of network types were examined.

To attempt to enhance the area of community detection, we first had to review the

existing literature on the subject. To this end, we examined the Stochastic Block Model,

and various algorithms to partition such as local improvement methods and spectral par-

titioning. We examined various methods of assessing the quality of partitioning using

Newman and Girvan’s general expression of modularity. Indices such as the Performance

Index and the Davies-Bouldin Validation Index study clusters as well. We determined

that modularity was an effective method of measuring the quality of a partition among

other validation indices contained within the literature. Along with modularity, similarity

measures also needed to be obtained in order to judge network quality effectively. The

Pearson Coefficient, the Manhattan norm, the Euclidean norm, and the Infinity norm

were also surveyed. Examining centrality to determine node importance with respect to

the rest of the graph also plays an important role in accurately and usefully partition-

181

Chapter 6 – Conclusions and Future Work

ing graphs. Using similarity measures to find communities using linkage approaches was

also reviewed. Assessing communicability between nodes that can be considered either

off or on is another way of detecting communities as they are usually found closer together.

We identified some issues not just with using modularity but some other individ-

ual measures for community detection and that based on some of the drawbacks of each

measure, using a combination of measures to assess quality is the best approach. More

recently, one optimisation approach, the Louvain method, offers several advantages which

serve to address the issue with resolution limits. In addition, we found that dynamical

process such as vertex similarity or the map equation approach can also be used to detect

communities. The two final methods discussed for detecting communities are the spectral

bipartization method and the b1 measure. The corollary of detecting communities would

obviously seem to be detecting anti-communities, that is, areas of networks that have a

lower density of connections. Conceptually, detecting anti-communities and bipartitions

are analogous. Adjacent to this idea is finding the anti-modularity, an idea posed by

Chen et al. which suggests that anti-communities may not be optimally partitioned with

existing detection methods.

The use of random graph networks to provide test models for the various measures

and approaches is dependent on how well the random graphs reflect the properties of

real-world graphs. Since improving these networks was part of our aim (making random

models more realistic), we used the Erdős–Rényi model, scale-free networks, and subse-

quently experimented with adding triangles on fragments. Also, we compared some more

complex models including the BTER model and ones that use the degree distribution

more closely and then concluded that there were improvements in the accuracy of ran-

dom networks reflecting real world networks. Furthermore, we concluded that focusing

specifically on adding triangles was more effective than adding other types of fragments

and if we added triangles, we affect many other types of fragments and sometimes we

are very successful in bringing everything in line. In this study, we examined ten real

182

Chapter 6 – Conclusions and Future Work

networks by computing 15 fragments. For our experiment we showed that BTER is the

best but it takes more time than Erdős–Rényi model and scale-free model.

Rather than simply identifying graphs as bipartite or non-bipartite, measuring to

what degree a graph is bipartite or characterizing bipartivity is a good way of addressing

inefficiencies within networks. We reviewed characterizations of bipartivity in real-world

networks and random networks to demonstrate the importance of this area. We proved

12 equivalent characterisations of bipartivity. We defined eight measures for networks to

measure bipartivity and showed the different bipartivity measures in real-world networks

and random networks give us different results for the same case. Also, we showed that

different measures can have different behavior in practice and in theory. In theory, we

showed that two of these measures could exactly do the opposite thing, with one going to

1 and the other going to 0. So, it is important to see what happens with these bipartiv-

ity measures on real world networks. For this, we examined the real-world networks by

splitting our networks using the signs of the eigenvector of the most negative eigenvalue

of the adjacency matrix. We then randomly add back the edges removed in forming these

bipartitions and look at how the bipartivity measures evolve and showed that there are

groups of real worlds that have different behavior of bipartivity measures. In each group

we see a different type of behaviour. Also, we examined whether a network is nearly

bipartite or not by modularity and we examined different types of random graphs like

random trees, Tree generated by Prüfer sequences we showed that bλ and bLN have same

behaviour and be and bLs have same behaviour and goes down steeply and very fast. Also,

we examined the Fullerene Graphs where all measures have the same behaviour.

Experiments with 6 different algorithms in order to detect anti-communities so as

to divide graphs into communities with as few connections as possible between them were

conducted. Furthermore, the effectiveness of each algorithm was also tested using a local

improvement method with modularity. Finally, these methods were tested with 32 real-

world networks and the results were compared. A second experiment was run with the

same real-world networks and 37 airline networks to compare minimum modularity and

183

Chapter 6 – Conclusions and Future Work

bipartivity measures in order to compare minimum modularity and bipartivity measures.

Overall, using the signless Laplacian with the smallest eigenvectors and eigenvalues was

the fastest while using the normalised Laplacian with the largest eigenvectors and eigen-

values resulted in the best modularity.

In the future, I will try to extend the work to approximate multipartivity but this

requires a new theory of characterizations of multipartivity. Approximate multipartivity

is common, for example, in food networks where the different partitions represent different

trophic levels (from pure predators to prey and vegetation, we can also try to see if we

can use multiple bipartivity measures on the same graph to get additional insight (e.g.

core-periphery structure appears to have high bλ but low be. That is we aim to expand the

idea of local and global bipartivity we have observed in some our theoretical examples to

real world networks and our experiments give evidence that the phenomenon is prevalent

in real examples.

Also, I will try to improve random models by gaining an understanding of when

adding triangles works. Our experiment in Chapter 3 showed that we could be very suc-

cessful in reproducing the graphlet statistics of real world networks. But so far we have

been unable to classify the circumstances that lead to this success. If we can distinguish

between cases we could provide much more reliable simulations and possibly get a bet-

ter understanding of when graphlets are the best tool for interpreting complex network

behaviour.

184

Appendix A

MATLAB code for Chapters 4 and 5

1. Taking random networks ER and adding triangles (ERplusT.m).

2. Taking random networks BA and adding triangles (BAplusT.m).

3. Random trees with different size (treeA.m).

4. Tree generated by Prüfer sequences with different size (treeB.m).

5. Random tree with different measures after adding edges (treeL.m).

6. Trees generated by Prüfer sequences with different measures after adding edges

(PtreeL.m).

7. Reintroducing edges to random graphs with different measures (Randombipartite.m).

8. Computing the bipartivity measures for real-world graphs after add back edges

removed (bipreal2.m).

9. Finding the best bipartition (bestbip.m).

ERplusT.m

function [A,t] = ERplusT(n, m, tr, fl)

% Take an ER network with n nodes and m edges and rewire so that it has

% around tr triangles.

warning off

185

Chapter A – MATLAB code for Chapters 4 and 5

% Optional flag to report statistics.

if nargin < 4, fl = 0; end

A=sparse(n,n);

if 2*m > n*(n-1), disp(’Too many edges requested.’), return, end

% Generate the ER network (upper-triangular part only)

% This method seems faster than built-in routines and guarantees an

% exact number of edges.

c = 0;

while c < m

% M random edges. Avoid loops. Repeat until we have m unique edges.

M = m-c;

i = randi(n,M,1)-1; j = mod(i+randi(n-1,M,1),n);

% Make sure i < j.

ij = sort([i j],2)+1;

% Check for duplicate edges.

A = A + sparse(ij(:,1),ij(:,2),1,n,n);

c = nnz(A);

end

% Built-in: A = triu(sprandsym(n,2*m/n/(n-1))>0,1);

A = A > 0;%, plot(graph(A+A’)), pause

% Find edges that lie in existing triangles

B = A.*(A+A’)^2;%, pause

% Initial number of triangles

TR = sum(full(sum(B)))/3; trg = tr - TR;

if fl, fprintf(’Initial graph has %d triangles.\n’,TR), end

if trg <= 0

186

Chapter A – MATLAB code for Chapters 4 and 5

k = 0;

else

k = 1;

end

ct = 0;

while k && ct < 5

k = 0; ct = ct+1;

% Find edges that aren’t part of triangles

C = A-(B>0); [x,y] = find(C);

% Remove trg of these edges, if there are that many.

pote = length(x);

if pote < trg

de = 1:pote;

else

re = randperm(pote); de = re(1:trg);

end

A = A - sparse(x(de),y(de),1,n,n);

mxeadd = min([pote trg]);

% Find P2s that aren’t in triangles and identify missing edges

A2 = triu((A+A’)^2,1);

D = A2 - A2.*A;

[xn,yn] = find(D);

me = length(xn);

% If there aren’t enough, put back some of the removed edges.

% Then it’s worth another iteration.

if me < mxeadd

k = 1;

xx = unique([xn yn;x y],’rows’);

187

Chapter A – MATLAB code for Chapters 4 and 5

xn = xx(:,1); yn = xx(:,2);

me = length(xn);

end

re = randperm(me); re = re(1:mxeadd);

xn = xn(re); yn = yn(re);

A = A + sparse(xn,yn,1,n,n);

%plot(graph(A+A’));pause

if k % Recalculate values needed for another iteration.

B = A.*(A+A’)^2; TRa = sum(full(sum(B)))/3;

trg = tr - TRa; if trg <=0, k = 0; end

end

end

if fl || nargout==2

t = sum(full(sum(A.*(A^2))));

end

if fl

fprintf(’Final graph has %d triangles.\n’, t)

end

A = A + A’;

BAplusT.m

function [A,t] = BAplusT(n, d, tr, fl)

% Take a BA network with n nodes and minimum degree d edges and rewire so that

it has

% around tr triangles. Uses pref.m (courtesy of Higham and Taylor).

warning off

% Optional flag to report statistics.

188

Chapter A – MATLAB code for Chapters 4 and 5

if nargin < 4, fl = 0; end

A = triu(pref(n,d),0); % Upper tirangular portion of a BA network.

% Find edges that lie in existing triangles

B = A.*(A+A’)^2;%, pause

% Initial number of triangles

TR = sum(full(sum(B)))/3; trg = tr - TR;

if fl, fprintf(’Initial graph has %d triangles.\n’,TR), end

if trg <= 0

k = 0;

else

k = 1;

end

ct = 0;

while k && ct < 5

k = 0; ct = ct+1;

% Find edges that aren’t part of triangles

C = A-(B>0); [x,y] = find(C);

% Remove trg of these edges, if there are that many.

pote = length(x);

if pote < trg

de = 1:pote;

else

re = randperm(pote); de = re(1:trg);

end

A = A - sparse(x(de),y(de),1,n,n);

189

Chapter A – MATLAB code for Chapters 4 and 5

mxeadd = min([pote trg]);

% Find P2s that aren’t in triangles and identify missing edges

A2 = triu((A+A’)^2,1);

D = A2 - A2.*A;

[xn,yn] = find(D);

me = length(xn);

% If there aren’t enough, put back some of the removed edges.

% Then it’s worth another iteration.

if me < mxeadd

k = 1;

xx = unique([xn yn;x y],’rows’);

xn = xx(:,1); yn = xx(:,2);

me = length(xn);

end

re = randperm(me); re = re(1:mxeadd);

xn = xn(re); yn = yn(re);

A = A + sparse(xn,yn,1,n,n);

%plot(graph(A+A’));pause

if k % Recalculate values needed for another iteration.

B = A.*(A+A’)^2; TRa = sum(full(sum(B)))/3;

trg = tr - TRa; if trg <=0, k = 0; end

end

end

if fl || nargout==2

t = sum(full(sum(A.*(A^2))));

end

if fl

fprintf(’Final graph has %d triangles.\n’, t)

190

Chapter A – MATLAB code for Chapters 4 and 5

end

A = A + A’;

treeA.m

n = 1000;

i = 2:n; j = zeros(1,n-1); % A tree has n-1 edges

% In this loop we will connect node k+1 to one of the existing nodes at random.

k = zeros(n-1,1);

for x = 1:50

for h=1:n-1

j(h) = randi(h); end;

% Put 1s in the adjacency matrix at the prescribed coordinates.

A = sparse(i,j,1,n,n); A = A + A’;

k = k+ hist(A*ones(n,1),1:n-1)’;

end

dis = k/sum(k);

191

Chapter A – MATLAB code for Chapters 4 and 5

maxdeg = max(find(k));

plot(1:maxdeg,dis(1:maxdeg))

plot(graph(A))

treeB.m

% convert prufer sequence to tree

n = 500;

p = randi(n,1,n-2);

t = zeros(n-1,2);

d = ones(n,1);

for i = 1:n-2

d(p(i)) = d(p(i)) + 1;

end

for i = 1:n-2

x = find(d==1,1);

y = p(i);

d(x) = d(x) - 1; d(y) = d(y) - 1;

t(i,:) = [x; y];

end

t(n-1,:) = find(d==1);

k = zeros(n-1,1);

for x=1:50;

A=sparse(t(:,1),t(:,2),1,n,n); A = A+A’;

k = k+ hist(A*ones(n,1),1:n-1)’;

192

Chapter A – MATLAB code for Chapters 4 and 5

end

dis = k/sum(k);

maxdeg = max(find(k));

plot(1:maxdeg,dis(1:maxdeg))

plot(graph(A))

treeL.m

n = 500;

i = 2:n; j = zeros(1,n-1); % A tree has n-1 edges

% In this loop we will connect node k+1 to one of the existing nodes at random.

k = zeros(n-1,1);

for x = 1:50

for h=1:n-1

j(h) = randi(h); end;

% Put 1s in the adjacency matrix at the prescribed coordinates.

A = sparse(i,j,1,n,n); A = A + A’;

k = k+ hist(A*ones(n,1),1:n-1)’;

end

% Some edges to add

193

Chapter A – MATLAB code for Chapters 4 and 5

add = 3000;

i1 = randi(n,add,1)-1; i2 = mod(i1+randi(n-1,add,1),n);

i1 = i1 + 1; i2 = i2 + 1;

bE = zeros(add,1);

bL = zeros(add,1);

bLn= zeros(add,1);

bLs= zeros(add,1);

C = full(A);

for h = 1: add

% Add the edge

C(i1(h),i2(h)) = 1; C(i2(h),i1(h)) = 1;

% Compute the new bipartivity measures

n=size(C,1);

k=C*ones(n,1);

Ls=diag(k)+C;

d=1./sqrt(k);

Ln=eye(n)-diag(d)*C*diag(d);

eval = eig(C);

bL(h) = abs(min(eval))/max(eval);

bE(h) = sum(exp(-eval))/sum(exp(eval));

bLs(h)=1/(1+min(eig(Ls)));

bLn(h)=abs(1-max(eig(Ln)));

end

figure(2)

plot(1:add,bL,1:add,bE,1:add,bLn,1:add,bLs)

194

Chapter A – MATLAB code for Chapters 4 and 5

PtreeL.m

% convert prufer sequence to tree

n = 500;

p = randi(n,1,n-2);

t = zeros(n-1,2);

d = ones(n,1);

for i = 1:n-2

d(p(i)) = d(p(i)) + 1;

end

for i = 1:n-2

x = find(d==1,1);

y = p(i);

d(x) = d(x) - 1; d(y) = d(y) - 1;

t(i,:) = [x; y];

end

t(n-1,:) = find(d==1);

k = zeros(n-1,1);

for x=1:50;

A=sparse(t(:,1),t(:,2),1,n,n); A = A+A’;

k = k+ hist(A*ones(n,1),1:n-1)’;

m=sum(k)/2;

end

% Some edges to add

195

Chapter A – MATLAB code for Chapters 4 and 5

add = 5000;

i1 = randi(n,add,1)-1; i2 = mod(i1+randi(n-1,add,1),n);

i1 = i1 + 1; i2 = i2 + 1;

% compute the bipqrtivity

bE = zeros(add,1);

bL = zeros(add,1);

bLn= zeros(add,1);

bLs= zeros(add,1);

C = full(A);

for h = 1: add

% Add the edge

C(i1(h),i2(h)) = 1; C(i2(h),i1(h)) = 1;

% Compute the new bipartivity measures

eval = eig(C);

k =C*ones(n,1);

Ls=diag(k)+C;

d=1./sqrt(k);

Ln=eye(n)-diag(d)*C*diag(d);

eval = eig(C);

bL(h) = abs(min(eval))/max(eval);

bE(h) = sum(exp(-eval))/sum(exp(eval));

bLs(h)=1/(1+min(eig(Ls)));

bLn(h)=abs(1-max(eig(Ln)));

end

figure(2)

plot(1:add,bL,1:add,bE,1:add,bLn,1:add,bLs)

figure(1)

plot(graph(A))

196

Chapter A – MATLAB code for Chapters 4 and 5

Randombipartite.m

n1 = 250; n2 = 250; p =.3;

B = rand(n1,n2)<p;

A = [zeros(n1) B; B’ zeros(n2)];

n = size(A,1);

[V,D]=eigs(A,1,-n); % Most negative eigenvalue

% Find two partitions

P1=find(V>0);P2=find(V<0);

% B will be adjacency matrix of the bipartite graph

C = A; C(P1,P1)=0; C(P2,P2)=0;

% You can see the bipartition with spy. Not obvious from the graph.

figure(1)

spy(C([P1;P2],[P1;P2]))

figure(2)

plot(graph(C([P1;P2],[P1;P2])))

% Now add some edges to destroy bipartivity and measure the change in b_l

% and b_e

p1 = length(P1); p2 = length(P2);

% We’ll add this many edges

add = 50;

bE = zeros(add,1);

bL = zeros(add,1);

bLn= zeros(add,1);

bLs= zeros(add,1);

197

Chapter A – MATLAB code for Chapters 4 and 5

bALL = zeros(add,4);

for trials = 1:10

C=A;

for i = 1: add

% Flip a coin to decide whether to add edges to nodes in P1 or P2

if rand < .5

x = randperm(p1); edge = P1(x(1:2));

else

x = randperm(p2); edge = P2(x(1:2));

end

% Add the edge

C(edge(1),edge(2)) = 1; C(edge(2),edge(1)) = 1;

% Compute the new bipartivity measures

eval = eig(C);

k =C*ones(n1+n2,1);

d=1./sqrt(k);

Ls=diag(k)+C;

Ln=eye(n1+n2)-diag(d)*C*diag(d);

bL(i) = abs(min(eval))/max(eval);

bE(i) = sum(exp(-eval))/sum(exp(eval));

bLs(i)=1/(1+min(eig(Ls)));

bLn(i)=abs(1-max(eig(Ln)));

end

bALL = bALL + [bL bE bLs bLn];

end

bALL = bALL/10;

figure(3)

198

Chapter A – MATLAB code for Chapters 4 and 5

plot(1:add,bALL(:,1),1:add,bALL(:,2),1:add,bALL(:,3),1:add,bALL(:,4))

bipreal2.m

% compute the bipartivity for real networks and add edges

D=load(’Dolphins.txt’); A=edgeL2adj(D);

[u,v]=eig(A);

diag(v);

bpv=u(:,1);

p1=find(bpv>0);p2=find(bpv<=0);

B=A;B(p1,p1)=0;B(p2,p2)=0;

figure(1)

plot(graph(B));

C=triu(A-B);

[i,j]=find(C);

add =length(i);

bE = zeros(add,1);

bL = zeros(add,1);

bLn= zeros(add,1);

bLs= zeros(add,1);

bAll = zeros(add,4);

% We’ll repeatedly add the edges back to the bipartite graph

% and then plot the average measures.

numtrials = 10;

for trials = 1:numtrials

p = randperm(add);

i = i(p); j = j(p);

F = full(B);

199

Chapter A – MATLAB code for Chapters 4 and 5

for k = 1: add

% Add the edge

F(i(k),j(k)) = 1; F(j(k),i(k)) = 1;

% Compute the new bipartivity measures

eval = eig(F);

n = size(F,1);

K =F*ones(n,1);

d=1./sqrt(K);

Ls=diag(K)+F;

Ln=eye(n)-diag(d)*F*diag(d);

bL(k) = abs(min(eval))/max(eval);

bE(k) = sum(exp(-eval))/sum(exp(eval));

bLs(k)=1/(1+min(eig(Ls)));

bLn(k)=abs(1-max(eig(Ln)));

end

bAll=bAll+[bL bE bLs bLn];

end

bAll = bAll/numtrials;

plot(1:add,bAll(:,1),1:add,bAll(:,2),1:add,bAll(:,3),1:add,bAll(:,4))

bestbip.m

C=load(’Centrality_literature.txt’);

A=edgeL2adj(C);A = A + A’; A = A>0; A = A - diag(diag(A));

tr=trace(A^3)/6;m=sum(sum(A))/2;n=size(A,1);

G=expm(-A);

B = G>0; B = B - diag(diag(B));

L = diag(sum(B)) - B;

200

Chapter A – MATLAB code for Chapters 4 and 5

[u,v]=eigs(L,2,0);

v(2,2)

conncomp(graph(B))

p=find(u(:,2)>0);q=find(u(:,2)<=0);

spy(A([p;q],[p;q]))

subplot(2,2,2);spy(A([p;q],[p;q]))

[u,v]=eigs(A,1,-1000);

p=find(u(:,1)>0);q=find(u(:,1)<=0);

sum(sum(A(p,p)))+sum(sum(A(q,q)))

subplot(2,2,1);spy(A([q; p],[q; p]));

N=A+diag(sum(A));

eig(N);

[u,v]=eigs(N,1,0);

p=find(u(:,1)>0);q=find(u(:,1)<=0);

subplot(2,2,3);spy(A([q;p],[q;p]))

D=diag(sum(A));

D=diag(1./sqrt(sum(A)));

M=eye(n)-D*A*D;

[u,v]=eigs(M,1);

eig(M);

p=find(u(:,1)>0);q=find(u(:,1)<=0);

sum(sum(A(p,p)))+sum(sum(A(q,q)))

subplot(2,2,4);spy(A([p;q],[p;q]))

201

Bibliography

[1] Jimi Adams, James Moody, and Martina Morris. “Sex, drugs, and race: how

behaviors differentially contribute to the sexually transmitted infection risk

network structure”. In: American journal of public health 103.2 (2013),

pp. 322–329.

[2] Réka Albert and Albert-László Barabási. “Statistical mechanics of complex

networks”. In: Reviews of modern physics 74.1 (2002), p. 47.

[3] Azhar Aleidan and Philip A Knight. “Spectral techniques for measuring bipartivity

and producing partitions”. In: Journal of Complex Networks 11.4 (2023), cnad026.

[4] Konstantin Andreev and Harald Racke. “Balanced graph partitioning”. In: Theory

of Computing Systems 39.6 (2006), pp. 929–939.

[5] Alex Arenas, Alberto Fernandez, and Sergio Gomez. “Analysis of the structure of

complex networks at different resolution levels”. In: New journal of physics 10.5

(2008), p. 053039.

[6] Vladimir Batagelj and Andrej Mrvar. “Layouts for GD01 graph-drawing

competition”. In: (2001). url:

http://vlado.fmf.uni-lj.si/pub/gd/01/report.pdf (visited on 01/05/2023).

[7] Alexander Bertrand and Marc Moonen. “Distributed computation of the Fiedler

vector with application to topology inference in ad hoc networks”. In: Signal

Processing 93.5 (2013), pp. 1106–1117.

[8] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and

Etienne Lefebvre. “Fast unfolding of communities in large networks”. In: Journal

of statistical mechanics: theory and experiment 2008.10 (2008), P10008.

202

http://vlado.fmf.uni-lj.si/pub/gd/01/report.pdf

BIBLIOGRAPHY

[9] Ulrik Brandes, Daniel Delling, Marco Gaertler, Robert Gorke, Martin Hoefer,

Zoran Nikoloski, and Dorothea Wagner. “On modularity clustering”. In: IEEE

transactions on knowledge and data engineering 20.2 (2007), pp. 172–188.

[10] Franc Brglez, David Bryan, and Krzysztof Kozminski. “Combinational profiles of

sequential benchmark circuits”. In: IEEE International Symposium on Circuits

and Systems. IEEE. 1989, pp. 1929–1934.

[11] Sergey Brin and Lawrence Page. “The anatomy of a large-scale hypertextual web

search engine”. In: Computer networks and ISDN systems 30.1-7 (1998),

pp. 107–117.

[12] Gareth Butland, José Manuel Peregrın-Alvarez, Joyce Li, Wehong Yang,

Xiaochun Yang, Andrei Starostine, Dawn Richards, Bryan Beattie, Nevan Krogan,

Michael Davey, et al. “Interaction network containing conserved and essential

protein complexes in Escherichia coli”. In: Nature 433.7025 (2005), pp. 531–537.

[13] Ling Chen, Qiang Yu, and Bolun Chen. “Anti-modularity and anti-community

detecting in complex networks”. In: Information Sciences 275 (2014), pp. 293–313.

[14] Fan Chung and Ron Graham. Spectral graph theory. 92. American Mathematical

Soc., 1997.

[15] Aaron Clauset, Mark EJ Newman, and Cristopher Moore. “Finding community

structure in very large networks”. In: Physical review E 70.6 (2004), p. 066111.

[16] Vittoria Colizza, Romualdo Pastor-Satorras, and Alessandro Vespignani.

“Reaction–diffusion processes and metapopulation models in heterogeneous

networks”. In: Nature Physics 3.4 (2007), pp. 276–282.

[17] Anna Concas, Silvia Noschese, Lothar Reichel, and Giuseppe Rodriguez. “A

spectral method for bipartizing a network and detecting a large anti-community”.

In: Journal of Computational and Applied Mathematics 373 (2020), p. 112306.

[18] Dragoš Cvetković, Peter Rowlinson, and Slobodan K Simić. “Signless Laplacians

of finite graphs”. In: Linear Algebra and its applications 423.1 (2007), pp. 155–171.

203

BIBLIOGRAPHY

[19] Kinkar Ch Das. “On conjectures involving second largest signless Laplacian

eigenvalue of graphs”. In: Linear Algebra and its Applications 432.11 (2010),

pp. 3018–3029.

[20] Gerald F Davis, Mina Yoo, and Wayne E Baker. “The small world of the American

corporate elite, 1982-2001”. In: Strategic organization 1.3 (2003), pp. 301–326.

[21] Tomislav Došlić and Damir Vukičević. “Computing the bipartite edge frustration

of fullerene graphs”. In: Discrete Applied Mathematics 155.10 (2007),

pp. 1294–1301.

[22] Ernesto Estrada. The structure of complex networks: theory and applications. 2012.

[23] Ernesto Estrada and Jesús Gómez-Gardeñes. “Network bipartivity and the

transportation efficiency of european passenger airlines”. In: Physica D: Nonlinear

Phenomena 323 (2016), pp. 57–63.

[24] Ernesto Estrada and Naomichi Hatano. “Communicability in complex networks”.

In: Physical Review E 77.3 (2008), p. 036111.

[25] Ernesto Estrada and Philip A Knight. A first course in network theory. Oxford

University Press, USA, 2015.

[26] Ernesto Estrada and Juan A Rodŕıguez-Velázquez. “Spectral measures of

bipartivity in complex networks”. In: Physical Review E 72.4 (2005), p. 046105.

[27] Dario Fasino and Francesco Tudisco. “A modularity based spectral method for

simultaneous community and anti-community detection”. In: Linear Algebra and

its Applications 542 (2018), pp. 605–623.

[28] Miroslav Fiedler. “A property of eigenvectors of nonnegative symmetric matrices

and its application to graph theory”. In: Czechoslovak mathematical journal 25.4

(1975), pp. 619–633.

[29] Josh A Firth and Ben C Sheldon. “Experimental manipulation of avian social

structure reveals segregation is carried over across contexts”. In: Proceedings of the

Royal Society B: Biological Sciences 282.1802 (2015), p. 20142350.

204

BIBLIOGRAPHY

[30] Santo Fortunato. “Community detection in graphs”. In: Physics reports 486.3-5

(2010), pp. 75–174.

[31] Santo Fortunato and Marc Barthelemy. “Resolution limit in community

detection”. In: Proceedings of the national academy of sciences 104.1 (2007),

pp. 36–41.

[32] Santo Fortunato and Darko Hric. “Community detection in networks: A user

guide”. In: Physics reports 659 (2016), pp. 1–44.

[33] Jens Gottlieb, Bryant A Julstrom, Günther R Raidl, and Franz Rothlauf. “Prüfer

numbers: A poor representation of spanning trees for evolutionary search”. In:

Proceedings of the Genetic and Evolutionary Computation Conference. Vol. 343.

2001, p. 350.

[34] Jonathan L Gross and Jay Yellen. Handbook of graph theory. CRC press, 2003.

[35] Roger Guimera, Marta Sales-Pardo, and Lúıs A Nunes Amaral. “Modularity from

fluctuations in random graphs and complex networks”. In: Physical Review E 70.2

(2004), p. 025101.

[36] Shin-Kap Han. “The other ride of Paul Revere: The brokerage role in the making

of the American revolution”. In: Mobilization: An international quarterly 14.2

(2009), pp. 143–162.

[37] Karl Havens. “Scale and structure in natural food webs”. In: Science 257.5073

(1992), pp. 1107–1109.

[38] Paul W Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. “Stochastic

blockmodels: First steps”. In: Social networks 5.2 (1983), pp. 109–137.

[39] Petter Holme, Fredrik Liljeros, Christofer R Edling, and Beom Jun Kim. “Network

bipartivity”. In: Physical Review E 68.5 (2003), p. 056107.

[40] Yanqing Hu, Hongbin Chen, Peng Zhang, Menghui Li, Zengru Di, and Ying Fan.

“Comparative definition of community and corresponding identifying algorithm”.

In: Physical Review E 78.2 (2008), p. 026121.

205

BIBLIOGRAPHY

[41] Norman P Hummon, Patrick Doreian, and Linton C Freeman. “Analyzing the

structure of the centrality-productivity literature created between 1948 and 1979”.

In: Knowledge 11.4 (1990), pp. 459–480.

[42] Mark Huxham, S Beaney, and Dave Raffaelli. “Do parasites reduce the chances of

triangulation in a real food web?” In: Oikos (1996), pp. 284–300.

[43] Thomas C. Ings, José M. Montoya, Jordi Bascompte, Nico Blüthgen, Lee Brown,

Carsten F. Dormann, François Edwards, David Figueroa, Ute Jacob,

J. Iwan Jones, Rasmus B. Lauridsen, Mark E. Ledger, Hannah M. Lewis,

Jens M. Olesen, F.J. Frank Van Veen, Phil H. Warren, and Guy Woodward.

“Ecological networks–beyond food webs”. In: Journal of Animal Ecology 78.1

(2009), pp. 253–269.

[44] Lorenzo Isella, Juliette Stehlé, Alain Barrat, Ciro Cattuto, Jean-François Pinton,

and Wouter Van den Broeck. “What’s in a crowd? Analysis of face-to-face

behavioral networks”. In: Journal of theoretical biology 271.1 (2011), pp. 166–180.

[45] Kathryn James. “Six degrees of information seeking: Stanley Milgram and the

small world of the library”. In: The Journal of Academic Librarianship 32.5

(2006), pp. 527–532.

[46] Lucas GS Jeub, Prakash Balachandran, Mason A Porter, Peter J Mucha, and

Michael W Mahoney. “Think locally, act locally: Detection of small,

medium-sized, and large communities in large networks”. In: Physical Review E

91.1 (2015), p. 012821.

[47] Brian W Kernighan and Shen Lin. “An efficient heuristic procedure for

partitioning graphs”. In: The Bell system technical journal 49.2 (1970),

pp. 291–307.

[48] Steve Kirkland and Debdas Paul. “Bipartite subgraphs and the signless Laplacian

matrix”. In: Applicable Analysis and Discrete Mathematics (2011), pp. 1–13.

[49] Jon M Kleinberg et al. “Authoritative sources in a hyperlinked environment.” In:

SODA. Vol. 98. Citeseer. 1998, pp. 668–677.

206

BIBLIOGRAPHY

[50] Valdis Krebs. “Proxy Networks. Analyzing One Network to Reveal Another”. In:

Bulletin de méthodologie sociologique. Bulletin of sociological methodology 79

(2003), pp. 61–70.

[51] Jérôme Kunegis. “Exploiting the structure of bipartite graphs for algebraic and

spectral graph theory applications”. In: Internet Mathematics 11.3 (2015),

pp. 201–321.

[52] Jérôme Kunegis. “Handbook of Network Analysis [KONECT–the Koblenz

Network Collection]”. In: arXiv preprint arXiv:1402.5500 (2014).

[53] Sebastian Lackner, Andreas Spitz, Matthias Weidemüller, and Michael Gertz.

“Efficient anti-community detection in complex networks”. In: Proceedings of the

30th International Conference on Scientific and Statistical Database Management.

2018, pp. 1–12.

[54] Douglas J LaCount, Marissa Vignali, Rakesh Chettier, Amit Phansalkar,

Russell Bell, Jay R Hesselberth, Lori W Schoenfeld, Irene Ota,

Sudhir Sahasrabudhe, Cornelia Kurschner, et al. “A protein interaction network of

the malaria parasite Plasmodium falciparum”. In: Nature 438.7064 (2005),

pp. 103–107.

[55] Andrea Lancichinetti and Santo Fortunato. “Limits of modularity maximization in

community detection”. In: Physical review E 84.6 (2011), p. 066122.

[56] Chung-Yen Lin, Chia-Ling Chen, Chi-Shiang Cho, Li-Ming Wang,

Chia-Ming Chang, Pao-Yang Chen, Chen-Zen Lo, and Chao A Hsiung. “hp-DPI:

Helicobacter pylori database of protein interactomes—embracing experimental and

inferred interactions”. In: Bioinformatics 21.7 (2005), pp. 1288–1290.

[57] Francois Lorrain and Harrison C White. “Structural equivalence of individuals in

social networks”. In: The Journal of mathematical sociology 1.1 (1971), pp. 49–80.

207

BIBLIOGRAPHY

[58] David Lusseau, Karsten Schneider, Oliver J Boisseau, Patti Haase,

Elisabeth Slooten, and Steve M Dawson. “The bottlenose dolphin community of

Doubtful Sound features a large proportion of long-lasting associations”. In:

Behavioral Ecology and Sociobiology 54.4 (2003), pp. 396–405.

[59] J Memmott, ND Martinez, and JE Cohen. “Predators, parasitoids and pathogens:

species richness, trophic generality and body sizes in a natural food web”. In:

Journal of Animal Ecology 69.1 (2000), pp. 1–15.

[60] Ron Milo, Shalev Itzkovitz, Nadav Kashtan, Reuven Levitt, Shai Shen-Orr,

Inbal Ayzenshtat, Michal Sheffer, and Uri Alon. “Superfamilies of evolved and

designed networks”. In: Science 303.5663 (2004), pp. 1538–1542.

[61] Carlo Morselli. Inside criminal networks. Vol. 8. Springer, 2009.

[62] Christopher R Myers. “Software systems as complex networks: Structure, function,

and evolvability of software collaboration graphs”. In: Physical review E 68.4

(2003), p. 046116.

[63] Mark EJ Newman. “Finding community structure in networks using the

eigenvectors of matrices”. In: Physical review E 74.3 (2006), p. 036104.

[64] Mark EJ Newman and Michelle Girvan. “Finding and evaluating community

structure in networks”. In: Physical review E 69.2 (2004), p. 026113.

[65] Mark EJ Newman and Gesine Reinert. “Estimating the number of communities in

a network”. In: Physical review letters 117.7 (2016), p. 078301.

[66] Andrew Ng, Michael Jordan, and Yair Weiss. “On spectral clustering: Analysis

and an algorithm”. In: Advances in neural information processing systems 14

(2001), pp. 849–856.

[67] Debdas Paul and Dragan Stevanović. “Eigenvector-based identification of bipartite

subgraphs”. In: Discrete Applied Mathematics 269 (2019), pp. 146–158.

208

BIBLIOGRAPHY

[68] Georgios A Pavlopoulos, Panagiota I Kontou, Athanasia Pavlopoulou,

Costas Bouyioukos, Evripides Markou, and Pantelis G Bagos. “Bipartite graphs in

systems biology and medicine: a survey of methods and applications”. In:

GigaScience 7.4 (2018), giy014.

[69] Tiago P Peixoto. “Bayesian stochastic blockmodeling”. In: Advances in network

clustering and blockmodeling (2019), pp. 289–332.

[70] Tiago P Peixoto. “Hierarchical block structures and high-resolution model

selection in large networks”. In: Physical Review X 4.1 (2014), p. 011047.

[71] Andrea Perna, Sergi Valverde, Jacques Gautrais, Christian Jost, Ricard Solé,

Pascale Kuntz, and Guy Theraulaz. “Topological efficiency in three-dimensional

gallery networks of termite nests”. In: Physica A: Statistical Mechanics and its

Applications 387.24 (2008), pp. 6235–6244.

[72] Pascal Pons and Matthieu Latapy. “Computing communities in large networks

using random walks”. In: International symposium on computer and information

sciences. Springer. 2005, pp. 284–293.

[73] John J Potterat, L Phillips-Plummer, Stephen Q Muth, RB Rothenberg,

DE Woodhouse, TS Maldonado-Long, HP Zimmerman, and JB Muth. “Risk

network structure in the early epidemic phase of HIV transmission in Colorado

Springs”. In: Sexually transmitted infections 78.suppl 1 (2002), pp. i159–i163.

[74] Heinz Prüfer. “Neuer beweis eines satzes über permutationen”. In: Arch. Math.

Phys 27.1918 (1918), pp. 742–744.

[75] Filippo Radicchi, Claudio Castellano, Federico Cecconi, Vittorio Loreto, and

Domenico Parisi. “Defining and identifying communities in networks”. In:

Proceedings of the national academy of sciences 101.9 (2004), pp. 2658–2663.

[76] Douglas P Reagan and Robert B Waide. The food web of a tropical rain forest.

University of Chicago Press, 1996.

209

BIBLIOGRAPHY

[77] Comandur Seshadhri, Tamara G Kolda, and Ali Pinar. “Community structure and

scale-free collections of Erdős-Rényi graphs”. In: Physical Review E 85.5 (2012),

p. 056109.

[78] Shai S Shen-Orr, Ron Milo, Shmoolik Mangan, and Uri Alon. “Network motifs in

the transcriptional regulation network of Escherichia coli”. In: Nature genetics

31.1 (2002), pp. 64–68.

[79] Ross M Thompson and Angus R Mcintosh. “Disturbance, resource supply, and

food-web architecture in streams”. In: Ecology Letters 1 (1998), pp. 200–209.

[80] Amanda L Traud, Peter J Mucha, and Mason A Porter. “Social structure of

Facebook networks”. In: Physica A: Statistical Mechanics and its Applications

391.16 (2012), pp. 4165–4180.

[81] Jeffrey Travers and Stanley Milgram. “An experimental study of the small world

problem”. In: Social networks. Elsevier, 1977, pp. 179–197.

[82] Piet Van Mieghem. Graph spectra for complex networks. Cambridge University

Press, 2010.

[83] Lav R Varshney, Beth L Chen, Eric Paniagua, David H Hall, and

Dmitri B Chklovskii. “Structural properties of the Caenorhabditis elegans

neuronal network”. In: PLoS computational biology 7.2 (2011), e1001066.

[84] Olivier J Walther and Dimitris Christopoulos. “Islamic terrorism and the Malian

rebellion”. In: Terrorism and Political Violence 27.3 (2015), pp. 497–519.

[85] Gaoxia Wang, Yi Shen, and Ming Ouyang. “A vector partitioning approach to

detecting community structure in complex networks”. In: Computers &

Mathematics with Applications 55.12 (2008), pp. 2746–2752.

[86] Wayne W Zachary. “An information flow model for conflict and fission in small

groups”. In: Journal of anthropological research 33.4 (1977), pp. 452–473.

[87] Pan Zhang and Cristopher Moore. “Scalable detection of statistically significant

communities and hierarchies, using message passing for modularity”. In:

Proceedings of the National Academy of Sciences 111.51 (2014), pp. 18144–18149.

210

BIBLIOGRAPHY

[88] Jiajing Zhu, Yongguo Liu, Yun Zhang, Xiaofeng Liu, Yonghua Xiao,

Shidong Wang, and Xindong Wu. “Exploring anti-community structure in

networks with application to incompatibility of traditional Chinese medicine”. In:

Physica A: Statistical Mechanics and its Applications 486 (2017), pp. 31–43.

[89] Philipp Zumstein. “Comparison of spectral methods through the adjacency matrix

and the Laplacian of a graph”. In: TH Diploma, ETH Zürich (2005).

211

	1 Introduction
	1.1 Introduction
	1.2 Definitions
	1.2.1 Clustering Coefficients of Networks
	1.2.2 Graph Laplacian
	1.2.3 The Laplacian
	1.2.4 The eigenvalues and eigenvectors of graph Laplacian
	1.2.5 The normalized Laplacian
	1.2.6 The Signless Laplacian

	1.3 Test Networks
	1.3.1 Network Descriptions

	2 Community Detection
	2.1 Introduction
	2.1.1 Definitions
	2.1.2 Stochastic Block Model
	2.1.3 Examples

	2.2 Algorithms to Partition
	2.2.1 Local Improvement Methods
	2.2.2 Spectral Partitioning

	2.3 Quality of partitions
	2.3.1 Modularity
	2.3.2 Similarity

	2.4 Community detection methods
	2.4.1 Link centrality
	2.4.2 Communicability
	2.4.3 Optimisation
	2.4.4 The Louvain Method
	2.4.5 Dynamics

	2.5 Anti-Communities
	2.5.1 A Spectral Bipartization Method
	2.5.2 Anti-modularity

	3 Random models with community structure
	3.1 Random graphs and graph generators
	3.1.1 Erdos–Rényi
	3.1.2 Scale-free networks
	3.1.3 Effect of adding triangles on fragments (ER, BA)
	3.1.4 Methods
	3.1.5 Results
	3.1.6 Conclusion

	4 Measuring Bipartivity
	4.1 Introduction
	4.2 Characterising Bipartivity
	4.2.1 Bipartivity Measures
	4.2.2 Comparison of Bipartivity Measures
	4.2.3 Example 1
	4.2.4 Example 2
	4.2.5 Random Networks Bipartivity
	4.2.6 Real-world Bipartivity
	4.2.7 Fullerene Graphs
	4.2.8 Airline Graphs
	4.2.9 Conclusion

	5 Finding Anti-communities
	5.1 Introduction
	5.2 Methods for finding bipartitions
	5.2.1 Experiment

	5.3 Local improvement with modularity
	5.3.1 Local improvement algorithm
	5.3.2 Example

	5.4 Experiments
	5.4.1 Experiment 1
	5.4.2 Experiment 2

	5.5 Conclusion

	6 Conclusions and Future Work
	A MATLAB code for Chapters 4 and 5

