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Abstract

Crystallisation is an example of a separation and purification technique used ubiquitously in chem-

ical manufacturing processes. For the design, development and optimisation of efficient crystalli-

sation processes, accurate solid-liquid equilibria (i.e., solubility) is necessary. Solubility is directly

measurable; however, despite years of development, available techniques have drawbacks related to

the time required to complete, the amount of material required, economic cost, as well as technical

challenges under certain conditions (i.e., solid form, temperature, pressure and composition).

In this thesis, new model-based methods rooted in classical equilibrium thermodynamics are de-

veloped that allow the solubility of a solid in a liquid to be estimated as a function of temperature.

Crucially, these methods are developed in a manner that reduce reliance on direct solubility mea-

surements to a single temperature, and make it possible to predict solubility through measurement

and mathematical modelling of thermodynamic quantities other than solubility.

First, an approximate version of the van’t Hoff equation is developed and used to predict the

aqueous solubility of glycine polymorphs using thermodynamic data reported in the literature at

298.15 K, only. For α-glycine, predictions in excellent agreement with direct solubility data from

260–340 K were made and additional predictions for β and γ-glycine, where less certain solubility

data are available in the literature, are also provided.

Then, an analytical solubility model is proposed by interpreting a criteria for thermodynamic

equilibrium (i.e., equal chemical potential) in terms of a second-order Taylor series expansion.

Again, this approach makes it possible to predict solubility using only a single solubility measure-

ment and a collection of thermodynamic quantities evaluated at the chosen reference temperature.

Encouraging results are presented for the aqueous solubility of α-glycine, sucrose and urea—all

of which have a meaningful amount of directly determined solubility, as well as thermodynamic

quantities measured at 298.15 K.

In the final part of this thesis, we illustrate how to parameterise Gibbs free energy models in

such a manner that solubility can be estimated precisely as a function of temperature by combining

only a single measure of solubilty and a broad range of thermodynamic quantities. This retains the

key advantages of the approximate approaches mentioned already, but makes it possible to reliably

estimate solubility across an unbounded range of temperature, in principle. As an illustrative

ii



example, we use thermodynamic data reported in the literature for the sucrose-water system to

make predictions, noting it is possible to generate estimations in excellent agreement with directly

measured solubility data from the freezing point to the assumed solute-solution-vapor triple point.

In summary, this thesis helps to fill a gap left by existing approaches in the ever growing suite

of methods at the disposal of practitioners looking to estimate the solubility of solids in liquids.
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Chapter 1

Introduction

Chemical manufacturing processes facilitate transformation of raw materials into useful end prod-

ucts that add value to our lives. Typically, multi-component mixtures are encountered during

chemical manufacturing processes and, given that the primary goal of any manufacturing process

is to produce products with a specific chemical nature and purity, having techniques to effectively

separate and purify often complex multi-component mixtures is essential. Furthermore, the im-

portance of effective separation and purification unit operations extends beyond the primary goal

of producing desired end products, with an increasing focus on limiting waste and enhancing the

recovery of potentially valuable secondary products.

A broad range of techniques exist allowing separation of products, by-products, unused raw

materials and waste streams [1], including: distillation, absorption, and extraction [2]. Crystalli-

sation, where chemical species existing in (usually, but not necessarily) multi-component liquid

mixtures aggregate forming separate crystalline phases when conditions allow, is another exam-

ple. As described in [3], crystallisation has been used in chemical engineering processes for many

years. For example, it is thought that ‘early civilizations’ crystallized salt from sea water through

evaporation. Then, crystallizers were shallow ponds, rather than sophisticated apparatus seen in

contemporary chemical manufacturing facilities.

Crystallisation is attractive for industrial applications where the goal is to produce solid products

free from impurities because it combines solid formation and purification in a single step [4]. More

specifically, through rational design of a crystallisation process, it is possible to produce ‘solid

particles with desired size, shape, crystal form and chemical purity in a reproducible manner’,

which is crucial as all of the aforementioned properties can affect the physio-chemical properties

of produced solid phases [4]. In certain applications, it is also thought that crystallisation is

generally less energy intensive compared to alternative separation and purification techniques [2],

due to the mild temperature and pressures used.

Solubility is a fundamental property governing crystallisation processes, setting a theoretical
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limit on the amount different ‘solutes’ can exist in a liquid solution at thermodynamic equilibrium.

Solubility varies with temperature, pressure and solution composition; as such, accurate solubility

data is required for the design, development and optimisation of robust industrial crystallisation

processes. Many techniques exist allowing estimation of solubility through direct experimental

methods and this approach is widely applied in practice. However, although seemingly simple to

perform, direct determination of solubility can be challenging for reasons relating to crystallisation

phenomena (e.g., controlling crystal form and equilibration time), as well as technical challenges

(e.g., temperature control, mass transfer, etc). Furthermore, a common critique of experimental

approaches is that they are expensive in terms of time, material and economic cost. As such, there

is motivation to develop approaches beyond direct measurement that enable reliable estimation.

Phase equilibria (e.g., solubility) can be described from the Laws of Thermodynamics. Not

only does this make it possible to construct models describing the dependence of solubility on

process parameters that can be used to correlate direct solubility measurements, it also makes it

possible to construct models where solubility is expressed in terms of experimentally measurable

thermodynamic properties other than solubility. As such, approaches that work alongside, or in

place of, purely experimental approaches are possible.

At a minimum, estimating solubility through equilibrium thermodynamics requires mathematical

representations for the Gibbs free energy of the pure crystalline solute, as well as the multi-

component liquid solution, across the entire range of temperature, pressure and composition that

solubility is required. Broadly speaking, the majority of approaches developed within this framework

and applied in practice are based on interpreting these functions with reference to the pure solute

melting properties (e.g., enthalpy of melting and melting temperature). Doing so, it is theoretically

possible to ‘predict’ solubility across the entire range of temperature for a given system without

ever knowing the solubility, which is highly attractive given known challenges with approaches that

rely on direct measurements. However, this widely applied theoretical approach has limited utility

for solutes with melting properties that are difficult to measure due to chemical degradation prior

to melting or transformation into a different solid form.

In this thesis, the application of equilibrium thermodynamics to the general problem of esti-

mating the solubility of solids in liquid is explored and, more specifically, we focus on theoretical

descriptions of binary systems comprising single-component solutes and solvents. The primary ob-

jective is to evaluate new approaches that allow the solubility of solids in liquids to be estimated as

a function of temperature in manner that retain the predictive nature of established model-based

approaches but without potential shortcomings introduced through reliance on measurement of

solute melting properties or significant amounts of directly measured solubility data. Integral to

methods evaluated in this thesis is a change of perspective in the interpretation of underlying Gibbs

free energy functions of phases, by referencing to a specific temperature and composition other
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than the pure solute melting point. In Chapter 3 and 4, this is used to develop locally accurate,

predictive models for temperature dependent solubility, and a global approach in Chapter 5.

The remainder of this thesis is structured as follows. In Chapter 2, relevant background required

to place original contributions described in this thesis is presented. First, the fundamentals of

crystallisation are introduced, including nucleation, crystal growth and solubility, followed by a

survey of experimental approaches for the direct determination of solubility, motivating model-

based approaches. Then, the fundamentals of classical equilibrium thermodynamics are introduced

through a series of postulates originally formulated in [5]. This leads to a thermodynamic definition

of phase equilibrium, after which the concept of a thermodynamic potential and the Gibbs free

energy are introduced. This chapter is completed with a review of approaches for the correlation

and prediction of solubility based in the equilibrium thermodynamics.

In Chapter 3, a method based on the van’t Hoff equation applied to solid-liquid equilibrium

which allows extrapolation of temperature dependent solubility around a chosen reference tempera-

ture based on classical thermodynamic quantities is presented. Contrary to traditional approaches,

the melting properties of the pure solute are not required to make predictions, making it applicable

to systems where melting properties are challenging to measure. In principle, this approach re-

quires only a single solubility measurement at the chosen reference temperature, reducing reliance

on potentially challenging solubility measurements. This approach is benchmarked by estimating

the aqueous solubility of α-glycine, where predictions in good agreement with measurements re-

ported in literature around 298.15 K, are obseverved. The sensitivity of the approach to property

estimation is examined through a Monte Carlo approach and additional predictions for the aqueous

solubility of β and γ-glycine are presented, both of which have limited experimental studies present

in the literature.

In Chapter 4, the approach described in Chapter 3 is refined. This leads to an analytical model

for solubility as a function of temperature expressed in macroscopic thermodynamic quantities.

Further, this approach retains one of the key characteristics of the approach described in Chapter 3;

no reliance on the pure solute melting properties at the normal melting point. Extrapolations for

two new binary systems—sucrose and urea (both in water)—with more complete solubility data

(when compared to the glycine-water system described in Chapter 3) are presented. As with the

approach in Chapter 3, predictions are in good agreement with available data and model-based

sensitivities examined.

In Chapter 5, one of the main ideas from Chapter 3 and 4 (i.e., estimating solubility based

on a single point on the solubility curve) is extended to a more general modelling framework,

free from the approximations introduced in the approaches presented in those chapters. For

a specific approach to single and multi-component Gibbs free energy model construction, it is

shown that global descriptions are possible with only a single solubility measurement, where pure
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crystal melting properties are not required. The general framework is explored in the context of

the sucrose-water system and solubility predictions provided. As shown, for a specific modelling

interpretation of pure sucrose crystal and sucrose-water liquid mixture, it is possible to predict the

sucrose aqueous solubility in excellent agreement with directly measured data, across the entire

range of temperature.

This thesis is closed with a chapter summarising the main conclusions of the work, as well as

recommendations for future work.
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Chapter 2

Background

At the core of this thesis is the problem of estimating the solubility of solids in liquids, relevant in

the broader context of the design, development and optimisation of industrial crystallisation pro-

cesses. In this chapter, relevant background for the work described in the remainder of this thesis

is provided and is structured as follows. First, the fundamentals of crystallisation are described,

including: nucleation, crystal growth and solubility. With the importance of solubility as necessary

component for the design of efficient crystallisation processes elucidated, established approaches

used to estimate solubility are discussed starting with a summary of direct experimental measure-

ments techniques (and associated challenges) and followed by model-based approaches. Of the

model-based approaches introduced, those derived from the Laws of equilibrium thermodynamics

are the focus of this thesis. As such, fundamentals of equilibrium thermodynamic theory are sub-

sequently described, covering the conditions for phase equilibria, as well as the introduction of key

thermodynamic quantities such as the chemical potential and Gibbs free energy, both of which are

used extensively in later chapters. The discussion on thermodynamics is completed by introducing

the role of mathematical modelling as a tool to connect thermodynamic theory and experiments.

The final part of this chapter is focused on surveying progress in the general area of solubility

estimation via equilibrium thermodynamics and motivating the work presented in the remainder of

this thesis. More specifically, the development of approaches anchored on the melting properties

of solutes is reviewed.

2.1 Crystallisation

As described in Chapter 1, the aim of this thesis is to evaluate methods to estimate the solubility

of solids in liquids using the classical equilibrium thermodynamics as a framework to develop

mathematical descriptions of solubility in the context of industrial crystallisation. More specifically,

we focus on crystallisation from liquid solutions. Throughout the remainder of this thesis, we adopt
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the standard terminology where the crystallising component is referred to as the ‘solute’ and the

remaining components are termed ‘solvents’.

Briefly, a crystal is a characterised by a regular microscopic structure (i.e., lattice) related of the

chemical nature of the particles (i.e., molecules, atoms or ions) that it comprises [6]. It is possible

for crystals formed by particles of the same chemical nature to form different crystal structures

called ‘polymorphs’ (c.f. polymorphism), characterised by different lattice energies. Although not

dealt with explicitly in the work described in this thesis, for completeness, it should be noted that in

addition to polymorphism, it is possible for a crystal phase to comprise multiple chemically distinct

particles, and common examples include: hydrates, solvates, solid solutions and co-crystals. In

certain situations, multi-component crystals are advantageous due to enhanced physio-chemical

properties; however, may also present challenges. It should be noted that several texts are available

presenting more comprehensive discussions on crystallisation and interested readers should refer

to these where relevant [3, 6, 7, 8].

2.1.1 Nucleation and Crystal Growth

Crystallization (of a solid from a liquid) is a phenomenon characterised by the transfer of sub-

stances that previously formed part of a homogeneous liquid solution to separate crystalline phases.

This process is assumed to consist of two stages—nucleation and crystal growth. Crystal growth

is the process by which an already existing stable crystalline phase increases in size through aggre-

gation of material from an adjacent homogeneous liquid solution. There are various theorectical

interpretations describing crystal growth and interested readers should refer to [9] for further

details.

Nucleation is defined as the process through which crystal ‘nuclei’ are formed. It is accepted

that nucleation occurs via different mechanisms, namely primary and secondary nucleation. Pri-

mary nucleation corresponds to the spontaneous formation of a stable nuclei in the absence of

crystalline solid. Primary nucleation is further classified as being either ‘homogeneous’—where

nuclei appear in the bulk solution in the absence of another solid interface (which may promote

nucleation), or ‘heterogeneous’—where nuclei appear in the presence of a solid interface [3]. Like

crystal growth, the fundamental mechanism of primary homogeneous nucleation is not yet under-

stood due to the small time and length scales involved [10]. Initially, it was thought that crystal

nucleation could be described in an analogous way to droplets from a vapor—giving a model typ-

ically referred to as ‘Classical Nucleation Theory’ (CNT) [4, 6, 8]. Classical Nucleation Theory

describes the nucleation in terms of the thermodynamic Gibbs free energy (Section 2.2) by con-

sidering the difference between the free energy of a solid solute and a solute in solution [6], stated
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mathematically as:

∆G =
4

3
πr3∆gv + 4πr2γ, (2.1)

where γ denotes the inter-facial tension between a solid solute particle and surrounding solution,

∆gv denotes the free energy change of solid-liquid transformation per unit volume and r denotes

solid solute particle radius (noting that it is assumed to be spherical). In the context of CNT,

a nucleus is stable when the radius is greater than or equal to the ‘critical radius’ (i.e., when

d∆G/dr = 0), given by −2γ/∆gv . However, failure of CNT to describe empirical observations,

coupled with more recent computational and experimental results has led to additional theories.

For more detailed discussion, readers should refer to [4] where the topic is discussed in greater

detail.

Secondary nucleation corresponds to the formation of nuclei in the presence of already formed

crystals and is viewed as a more readily controllable alternative to primary nucleation for industrial

applications [10]. It is thought that there are different mechanisms that drive secondary nucleation,

such as: initial breeding, dendritic or needle propagation, and crystal attrition [10]. Compared to

primary nucleation, secondary nucleation can occur at lower supersaturation levels [8], and can be

achieved by through introduction of so-called ‘seed’ crystals into supersaturated solutions.

2.1.2 Solubility and Supersaturation

For the crystallisation of solids from liquid mixtures, solubility refers to the total amount of the

crystallising substance that will dissolve in a solvent solution at fixed temperature, pressure and

solvent composition. For a given solute, solubility can vary significantly as processing parameters

(e.g., temperature, pressure and solvent composition) change. Focusing on the effect of temper-

ature, this is illustrated in Fig. 2.1 for sucrose, sodium chloride and urea in water. As shown, the

dependence of solubility can vary dramatically for different solutes in the same solvent. Although

the general trend is for solubility to increase with temperature (e.g., urea and sucrose in water),

it is possible to have an extremely weak temperature dependence (e.g., sodium chloride in water),

and in some cases to decrease with increasing temperature (referred to as retrograde solubility).

Focusing on the effect of solvent composition at fixed temperature and pressure, where the

solvent could be pure, or a mixture of different compounds, this is illustrated in Fig. 2.2 for sucrose

in water, ethanol and mixtures of both at 298.15 K. As shown, sucrose is practically insoluble in

pure ethanol. However, as the solvent composition is varied to increasing proportions of water,

the solubility of sucrose increases towards it’s solubility in pure water.

In addition to temperature, pressure and solvent composition, crystal structure is another factor

that may impact solubility. This is shown for the solubility of mefenamic acid (which has at least

two polymorphs—I and II) in ethyl acetate between 298.15 and 333.15 K in Fig. 2.3. As shown,
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Figure 2.1: Aqueous solubility of sodium chloride (grey), sucrose (blue) and urea (red) between

273.15–373.15 K shown via open circles (data taken from [6]). Dashed lines given as a guide for

the eye.
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Figure 2.2: Solubility of sucrose in water, ethanol and mixtures of both at 298.15 K shown via

open grey circles (data taken from [11]). Dashed line given as a guide for the eye.
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Figure 2.3: Solubility of mefenamic acid in ethyl acetate between 298.15–333.15 K shown via open

circles (blue is form I, red is form II and data taken from [12]). Dashed lines given as guide for

the eye.
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form I is less soluble at all temperatures given, which has implications for the design, development

and optimisation of crystallisation processes. As an aside, it should also be noted that polymorphs

may have drastically different physiochemical properties besides solubility leading to potentially

hazardous situations in a pharmaceutical context [13].

In the examples described above, it was assumed that all phases (i.e., solute and solvent) com-

prised particles of the expected chemical nature; however, systems encountered in practice are

susceptible to impurities which is another factor that can have a material impact on solubility [3].

For example, as originally shown in [14] and highlighted in [15], presence of water impacted the

solubility on an unspecified ‘pharmaceutical development’ compound’s solubility in ethyl acetate.

In [15], it was noted that additional water was present in the solute-solvent liquid mixture due to

a previous processing step, and highlight potential challenges with experimental solubility deter-

mination in an environment where contamination is possible. For the specific case where water

is present, this result is particularly relevant for hygroscopic solutes and/or solvents that may be

exposed to water prior to any attempt to estimate solubility. It should be noted that this is not

exclusive to water considering that mixing solvents is an approach to either increase or decrease

solubility (referred to co-solvent and anti-solvent, respectively).

As noted, solubility sets a theoretical limit on the amount of solute that will dissolve in a

fixed amount of solvent at fixed temperature, pressure and solvent composition. However, for

crystallisation to occur, the amount of solute in the solvent must exceed the limit set by solubility

at the corresponding conditions (i.e., temperature, pressure and solvent composition). When a

liquid mixture contains a greater amount of solute than the associated solubility, the solution is

often referred to as being ‘supersaturated’.

Supersaturation is a necessary, but insufficient criterion for instant, spontaneous crystallisation.

Experimental studies have shown that there is a so-called ‘meta-stable zone’ that beyond the

solubility curve as illustrated in Fig. 2.4. In the meta-stable zone, the propensity for nucleation to

occur is random and characterised by the induction time, which relates the period between achieving

supersaturation and crystallisation being observed. Typically, supersaturation and induction time

are related (i.e., increasing supersaturation decreases induction time). Beyond the meta-stable

zone, the likelihood of instantaneous crystallisation increases drastically.

The metastable zone width is generally not viewed as a fundamental property of a solute-

solvent system and varies with crystallisation conditions (i.e., scale, rate of supersaturation, etc) as

described in [16]. Understanding where the metastable zone likely exists for a given crystallisation

process is of interest because uncontrolled, spontaneous crystallisation at supersaturations greater

than the metastable zone width may lead to crystals with irreproducible properties (i.e., size,

shape, crystal form and chemical purity), which can make secondary processing (e.g., drying,

tablet formation, etc.,) more challenging in the context where the product is to be delivered in
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Figure 2.4: Solubility curve and meta-stable zone limit for binary solute-solvent system. Black

solid line corresponds to solubility curve. Black dashed line corresponds to meta-stable zone limit.
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solid form.

In practice, supersaturation is achieved in several ways [3, 17], including: cooling—where a

solution at an initially high temperature is cooled, evaporation—where volatile solvent is evapo-

rated, anti-solvent—where additional solvent (of different chemical nature) is added, as well as

manipulating solution pH or by chemical reaction. For a given system, the method of attain-

ing supersaturation and subsequent crystallisation ultimately depends on the relationship between

solubility and various process parameters described above.

2.1.3 Estimating Solubility

Thus far, the importance of understanding how the solubility of a solute in a solvent varies with

process parameters such as temperature and solvent composition for the design, development

and optimisation of industrial crystallisation unit operations, given it’s fundamental relationship to

the crystallisation phenomenon, has been illustrated. In this section, methods used to estimate

solubility are described starting with a description of direct experimental methods, followed by

model-based approaches.

Direct Experimental Measurement

It is possible to measure solubility using experimental techniques and there are numerous ap-

proaches available. Based on current understanding of the crystallisation/dissolution process,

regardless of the experimental approach taken to estimate solubility, key requirements for reliable

estimation are:

1. attainment of thermodynamic equilibrium

2. characterisation of solid form and solution composition at equilibrium

As described in [18] and [19] and summarised in a recent editorial [20], one way to classify solubility

measurement techniques is based on how saturation composition is estimated, leading to two broad

classes of approaches.

The first are ‘synthetic’ (also known as ‘polythermal’ [6]) methods, where a known amount of

solute is added to a container with a known amount of solvent. Then, temperature or pressure

is varied until complete dissolution of the solid solute is observed either directly through visual

techniques (e.g., turbidity), or detected via other means (e.g., vapor pressure, conductivity, heat

flow, etc). For example, it has been shown that Differential Scanning Calorimetry (DSC) can

be used to determine solubility indirectly by monitoring the thermal behavior of the dissolution

process [21]. For the systems studied in [21], this approach was shown to give results in good

agreement with equilibration-based (described shortly) techniques at moderate temperatures, as
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well providing estimates for solubility at temperature close to (and above, which may be due

to increased pressure in the crucible) the solvent boiling point (water). This approach was also

extended to polymorphic systems [12]. Generally speaking, synthetic approaches are viewed as

being faster than alternatives. However, given that crystallisation is a kinetic process, it is crucial

that an appropriate rate of heating (for the case where solubility is inferred by complete dissolution

of solid solute) is chosen to allow the system to achieve equilibrium.

Alternatively, there are ‘analytical’ (a.k.a equilibration) methods, where temperature and pres-

sure are fixed while a system initially comprising an excess of solid solute and solution, or a

previously supersaturated solution, are held in a container and allowed to reach thermodynamic

equilibrium via dissolution or crystallisation, respectively. When an excess of solute is allowed to

equilibrate with solution, this is sometimes referred to in the literature as the ‘shake flask method’,

and quoted as being the ‘gold standard’ approach for solubility determination [13]. A key aspect

of analytical approaches is the determination of equilibrium solution concentration, for which there

are numerous approaches, including (but not limited to): gravimetric methods, high-performance

liquid chromatography (HPLC), as well as nuclear magnetic resonance (NMR) and ultraviolet-

visible (UV-vis) spectroscopy [15]. In contrast to ‘synthetic’ approaches described already, it has

been shown that analytical approaches can take significant time to achieve equilibrium (inferred by

imperceptible changes in solution composition as a function of time), with some systems requiring

in excess of 48 hours [22], driven by the dissolution kinetics of the system under study, which has

implications in practical settings where sufficient time to generate requisite solubility data may not

be available. It should also be noted that challenges with temperature control during equilibration

and solution sampling are additional technical challenges faced by this approach.

As might be expected, it has been suggested that no one measurement technique is universally

applicable to all solid-liquid systems and the most appropriate choice largely depends on the context

in which solubility data are required [3, 6], in terms of time, amount of material, reliability of results,

etc. As an example, recent work assessing three experimental solubility estimation techniques

(polythermal, gravimetric equilibration and solute addition) for their ability to provide reliable

measurement of α-glycine solubility in water across a broad range of temperature indicated that

each approach had relative advantages and drawbacks [23]. Another recent example highlighting

possible system specific challenges is that reported in [24], where it was found that measuring the

solubility of tolbutamide polymorphs (form I and II) in n-propanol using a gravimetric equilibration

introduced significant differences (i.e., 5–15 g/kg, between 275 and 305 K) in solubility estimates

when compared to those produced using a polythermal method due to poor settling properties

of excess solid, impacting the authors ability to accurately characterise the equilibrium solution

concentration. Interestingly, the issue was specific to only one polymorph (i.e., form II), but serves

to highlight the unpredictable nature of solute-solvent systems and the practical challenges with
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direct measurement approaches. In summary, for a given system, it appears direct measurement

of solubility may require a high-level optimisation of experimental methodology to ensure reliable

estimates under the conditions of interest.

Aside from potential practical challenges, like any experimental approach, the effort (in terms

of time, skill and economic cost), as well as the amount of material required to perform a ro-

bust experimental design is a common critique of experimental solubility approaches. However,

attempts have been made to design methodologies where common solubility measurement tech-

niques are completed automatically, leading to high-throughput approaches, when compared to

human-operated experiments [25, 26, 27]. Although practical challenges with solubility measure-

ments have been discussed in the literature since 1952 [18], and described in varying levels of

detail in widely available textbooks [6, 19], it is interesting to note that issues are still common in

published work [15, 20].

Model-based Approaches

Challenges with purely experimental approaches for the estimation of solubility motivate the use of

model-based approaches. One model-based approach involves correlating directly measured solu-

bility with a mathematical model, after which they can be used to interpolate between conditions

where solubility was measured and, in some cases, extrapolate to conditions where solubility is yet

to be determined. This approach is particularly attractive for cases where reliable directly measured

solubility data is available across the entire range of interest. Within this approach, the rationale

for models used varies [6]. For example, in some cases models derived from a mathematical per-

spective (e.g., polynomial expansions) are used which have no connection to an underlying theory

of solubility beyond the assumption that, in a certain range, it can be expressed as a continuous

function. In other cases, models are derived from physical theories (c.f. Section 2.2).

The correlative approach has been discussed extensively in [28], where fifteen analytical equa-

tions with two, three or four flexible parameters describing solubility as a function of temperature

were fit to solubility data across a variety of temperature intervals for forty one organic compounds

in a broad range of organic solvents and water. As an aside, the collection of so-called ‘regression

equation(s) of solubility’ (RES) included examples of models with thermodynamic basis, as well as

arbitrary mathematical forms In terms of correlating temperature dependent solubility data, gen-

erally speaking, models with four parameters gave the best goodness of fit, taken here as the χ2

summed over all models in a specific class, with the exception of organic solutes in water exhibit-

ing negative deiations from Raoult’s Law at saturation, where models with three parameters gave

comparable or sometimes marginally better performance. This is generally expected; however,

could indicate over-fitting. The ability for each model to reliably extrapolate beyond the range

of temperature over which solubility was measured was assessed by predicting the pure crystal
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solute melting temperature by fixing the mole fraction solubility to one. It was found that the best

performing class models were two and three parameter equations, giving melting temperature pre-

dictions with average absolute errors of 19.8 and 21.7 K respectively. Interestingly, four parameter

models predicted a positive melting temperature in only 61.8, 55.9, 64.7 and 55.9 % of cases (for

each four parameter model, respectively) which further suggests over-fitting. In summary, analysis

indicates that, when possible, collecting solubility data across a broad range of temperature and

correlating with an appropriate model can lead to reasonable results in terms of interpolation and

extrapolation. However, regardless of the chosen model(s), correlating directly measured solubil-

ity data requires reliable solubility data across a broad range of temperature which, as discussed

already, is prone to several context specific challenges. Furthermore, based on typical experimen-

tal designs where the solubility is reported over a narrow range of temperature around ambient

conditions (e.g., 280–330 K), it is unclear how reliable a given extrapolation will predict solubility

for a given experimental design, model and system. This uncertainty can, of course, be reduced

if the solubility was measured at higher temperatures; however, this has potential challenges as

discussed already.

Another model-based approach for the estimation of solubility are those based on Quantitative

Structure Property Relationships (QSPR) [29, 30]. Here, models are developed by correlating large

databases of solubility data to so-called ‘molecular descriptors’, from which it is then possible to

predict the solubility of compounds not included in the initial model development. In comparison to

a correlative application, these approaches are attractive given that they can, in principle, be applied

to many systems, even those not included in the training, which means no additional solubility

data is required, in principle. Quantitative structure property approaches accurately predict relative

solubility of a single solute in several solvents or multiple solutes in the same solvent accurately,

as such their application is likely more suitable for screening purposes, either during early stage

drug design or solvent selection in the pharmaceutical industry. As reviewed in [31], examples of

the QSPR approach applied to solubility are the so-called ‘General Solubility Equation (GSE)’ [32]

and the Linear Solvation Energy Relationship (LSER) [33], and a recent example where machine

learning approaches were used in a QSPR framework can be found in [34].

For the purpose of this thesis, a thermodynamics based approach to estimate solubility is

considered to be one where the model used is based in general framework of equilibrium ther-

modynamics. An attractive property of thermodynamics-based approaches to the estimation of

solubility is that thermodynamics provides a theoretical framework to estimate solubility with lim-

ited, and in some cases no, solubility data. It should be noted that analytical forms derived from

thermodynamic arguments are sometimes used for correlative purposes [6]; however, parameters

that have a thermodynamic interpretation are usually treated as flexible fitting parameters, obscur-

ing their meaning. Thermodynamics-based approaches for the estimation of solubility are discussed
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in greater detail in Section 2.3, following a description of the fundamentals of thermodynamics in

the next section.

2.2 Fundamentals of Equilibrium Thermodynamics

Thermodynamics or, more specifically, classical equilibrium thermodynamics, is a framework orig-

inally developed to describe empirically observed relationships between heat and work at macro-

scopic length and time scales, specifically in the context of heat engines [35]. Over time, thermo-

dynamics was extended to an all-encompassing physical theory of energy and matter, described by

the Laws of Thermodynamics (i.e., Zeroth, First, Second and Third), which are widely accepted in

the absence of contrary experience. A key result from classical equilibrium thermodynamics is a de-

scription of phase equilibrium, which allows the theoretical boundaries (i.e., solid-liquid equilibrium

curves) governing crystallisation processes to be expressed as mathematical equations.

The mathematical framework of thermodynamics is concisely presented through four postulates

stated in [5], from which all properties of thermodynamics relevant to this thesis are derived. The

postulates are given as:

Postulate I There exists particular states (called equilibrium states) that, macroscopically, are

characterised completely by the specification of the internal energy (U) and a set of extensive

parameters X1, X2, . . . , Xt , specifically numerated for a given type of system.

Postulate II There exists a function called entropy (S) of the extensive parameters, defined for all

equilibrium states, and having the following property. The values assumed by the extensive

parameters in the absence of a constraint are those that maximise entropy over the manifold

of constrained equilibrium states.

Postulate III The entropy of a composite system is additive over the constituent subsystems

(whence the entropy of each constituent system is a homogeneous first-order function of the

extensive parameters). The entropy is continuous and differentiable and is a monotonically

increasing function of the energy.

Postulate IV The entropy of any system vanishes in the state for which

T ≡ (∂U/∂S)X1,X2,... = 0.

As an aside, an extensive property is defined as one which scales with the ‘size’ of the system, in

contrast to an intensive property which is independent of ‘size’. Beyond the postulates, essential

to the development of thermodynamics is the generalisation of the principle of energy conservation

to include heat and work giving the First Law of thermodynamics stated mathematically as:

dU = δQ− δW, (2.2)
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where Q and W denote heat and work (all types), respectively. Restricting analysis to systems

where the relevant extensive parameters include: internal energy (U), volume (V ) and mole number

of chemically distinct species (N1, N2, . . . , Nn), the postulates give:

U = U (S, V, N1, N2, . . . , Nn) , (2.3)

which becomes a so-called ‘fundamental property relation’ [5, 35, 36] describing an infinitesimal

thermodynamic change:

dU ≤ TdS − PdV +

n∑
i

µidni , (2.4)

where T is temperature, P is pressure and µi is the chemical potential, all of which are intensive

properties. Comparison of Eq. (2.2) and (2.4) gives the Second Law of thermodynamics, which

defines changes in entropy as dS ≥ (δQ/T )V,nj . The term PdV comes from the specification

that the only type of work is that due to expansion. From Eq. (2.4), it should be noted that given

a function U = U(S, V, N1, . . . , Nn) for a specific system, all thermodynamic properties of can be

derived.

As an aside, it can be shown [5]:

N∑
i

nidµi = V dP − SdT, (2.5)

which, at fixed temperature and pressure, relates the chemical potential of components in a phase.

This relation is referred to as the Gibbs-Duhem equation and can be used to check consistency of

of experimental data [36]. For a binary system (i.e., two components), if the chemical potential

of one component is known it is possible to estimate the chemical potential of the other up to a

constant of integration, given that:

dµA = −
nB
nA
dµB. (2.6)

Typically, thermodynamic systems comprise multiple phases, each of which may comprise more

than one component. The postulates alone define how intensive properties across a system behave

at equilibrium. For an isolated system (i.e., unable to exchange energy and matter with it’s

surroundings) comprising two open systems (i.e., free to exchange energy and matter), the change

in entropy is given by:

dS =
1

Tα
dUα −

n∑
i

µαi
Tα
dNαi +

Pα

Tα
dV α +

P β

T β
dV β +

1

T β
dUβ −

n∑
i

µβi
T β
dNβ, (2.7)

but noting that, because the composite system is isolated, dUα = −dUβ and dNα1 = −dNβ1 and
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dV α = −dV β, while dS = 0 (from Postulate 2) Eq. (2.7) gives:

Tα = T β (2.8)

Pα = P β (2.9)

µα1 = µβ1 (2.10)

. . . (2.11)

µαn = µβn (2.12)

which states that temperature, pressure and chemical potential (of each individual component in

each phase) are equal at thermodynamic equilibrium. It should be noted that postulate II leads

directly to the statement that internal energy is minimised when a system is at thermodynamic

equilibrium (c.f. [5]).

As an aside, the ‘Gibbs phase rule’ defines the degrees of freedom (i.e., independent state

variables) required to specify the state of a non-reacting multi-phase system:

F = 2 + N − π, (2.13)

where N is the number of chemical species present in the system and π is the number of phases.

Understanding the behavior of multi-phase, multi-component systems is crucial in chemical en-

gineering. For example, consider distillation—where the phase composition of a multi-component

vapor-liquid system is changed by sequentially varying it’s temperature and pressure. Knowing how

the composition of both vapor and liquid phases at equilibrium allows us to design, develop and

optimize distillation processes. From the postulates and the principle of energy conservation, a

vast number of chemical engineering problems can be solved, or at least described, if the function

U = U(S, V, N1, . . .) for the system of interest was known. However, entropy and volume are gen-

erally not easily controllable process parameters—temperature and pressure are more meaningful.

In the next section, this problem is resolved by the introduction of another potential defined as

the Gibbs free energy, which plays a significant role in every chapter of this thesis. Some relevant

properties are also explored.

2.2.1 The Gibbs Free Energy

Thermodynamic potentials are defined (mathematically) by taking Legendre transforms of Eq. (2.4).

The Gibbs free energy (G) is an example of a thermodynamic potential, defined in differential form

for an open system capable of expansion work only:

dG ≤ −SdT + V dP +

n∑
i

µidni . (2.14)

The Gibbs free energy is expressed in terms of intensive properties T and P both of which are, cru-

cially, easier to control compared to entropy when performing experiments. Like internal energy, the
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Gibbs free energy of a system is minimised at equilibrium. In addition, if G = G(T, P,N1, . . . , Nn)

is known for a given system, then it is completely specified and it is possible to estimate any

thermodynamic quantity.

The extensive Gibbs free energy of single phase, multi-component thermodynamic system can

be expressed as as a mole number weighted sum of the chemical potential:

Gα =

n∑
i

nαi µ
α
i , (2.15)

which, gives the Gibbs free energy of a multi-phase, multi-component system as:

Gsystem =

p∑
α

n∑
i

nαi µ
α
i , (2.16)

where p is the number of phases.

At fixed pressure and composition, changes in the Gibbs free energy with temperature can be

related to thermal properties. At constant temperature and pressure, the Gibbs free energy is

related to enthalpy through the Gibbs-Helmholtz relation:(
∂βG

∂β

)
P,nT

= H, (2.17)

where β = (RT )−1 and introducing enthalpy (another thermodynamic potential), defined for an

infinitesmal change as:

dH ≤ TdS + V dP +

N∑
i

µidni . (2.18)

Going further, the Gibbs free energy is related to constant pressure heat capacity (i.e., (∂H/∂T )P ≡

Cp): (
∂2βG

∂T∂β

)
P,nT

= Cp. (2.19)

At fixed temperature and composition, changes in the Gibbs free energy with pressure can be

related to volumetric properties: (
∂G

∂P

)
T,nT

= V. (2.20)

From Eq. (2.15), the extensive Gibbs free energy of a homogeneous phase at fixed temperature and

pressure can be expressed as a mole number weighted sum of the chemical potential of all species.

However, as already stated, the chemical potential is not directly measurable. It is customary to

interpret the chemical potential with reference to an auxiliary quantity defined as fugacity which,

at constant temperature, defines the chemical potential as:

µi = µrefi + RT ln
fi

f refi
, (2.21)

where µrefi and f refi are the chemical potential and fugacity of component i in a chosen reference

state and fi is the fugacity of component i in the ‘real’ state. Crucially, the introduction of fugacity

reduces Eq. (2.12) to:

f αi = f βi . (2.22)
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Combining Eq. (2.15) and (2.21), for a generic multi-component phase, gives:

G =
∑
i

ni

(
µrefi + RT ln

fi

f refi

)
(2.23)

= Gref. + Gcor. (2.24)

where Gref. is a contribution to the extensive Gibbs free energy associated to the reference states

chosen for all species and Gcor. is a contribution giving a correction to the reference state. Different

reference states have been proposed for different states of matter based on physically observed

limiting behavior of real systems (e.g., ideal gas and ideal solution (Raoult and Henry)). As an

aside, it is straightforward to derive the Gibbs free energy of an ideal gas as well as an ideal solution

(defined with respect to Raoult’s Law) from statistical mechanics by assuming they are comprised

of either non-interacting (in the case on an ideal gas) or identically interacting (in the case of

a solution (i.e., cross interactions are the same as like interactions)) particles, yielding the same

empirically observed relationships.

For liquid mixtures, it is customary to interpret the Gibbs free energy using Eq. (2.24). Although

many references states exist, perhaps the most widely applied is that of the ‘ideal solution’ defined

with respect to Raoult’s Law (c.f. Henry’s Law). Briefly, Raoult’s Law comes from empirical

observations indicating that under certain conditions the pressure of a vapor in equilibrium with a

liquid is given by:

P (T ) = x1p
sat.
1 (T ) + x2p

sat.
2 (T ) + . . . , (2.25)

where xi is the mole fraction of component i in the liquid phase and psati (T ) is the vapor pressure

of component i at temperature T . This leads to the definition of the Gibbs free energy of an ideal

solution given by:

G id =

N∑
i

niµ
l ,◦
i (T, P ) +

N∑
i

niRT ln xi (2.26)

where the chemical potential of a component in an ideal solution is given by µi = µl ,◦i +RT ln xi ,

with µl ,◦i denoting the chemical potential of component i in the pure liquid state at T and P .

If Gref. in Eq. (2.24) is taken as the Gibbs free energy of an ideal solution at the same

temperature and pressure as the real phase, Gcorr. = GE where GE is the ‘excess’ Gibbs free

energy. For real solutions, the chemical potential is defined by introducing the activity coefficient

γi , giving:

µi(T, P, x) = µl ,◦i (T, P ) + RT ln (xiγi(T, P, x)) , (2.27)

which gives another definition for the excess Gibbs free energy as:

βGE =

N∑
i

ni ln γi . (2.28)
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2.2.2 Thermodynamic Modelling

As will be illustrated in the proceeding chapters, estimates of the underlying Gibbs free energy

of different phases (i.e., pure crystal, solute-solvent liquid mixtures, etc.), are required to make

solubility predictions via thermodynamics given that, as described previously, if the Gibbs free

energy for a given system as a function of temperature, pressure and composition, then all other

thermodynamic properties of said system can be predicted.

It is not possible to measure the Gibbs free energy directly; however, it is possible to relate the

underlying Gibbs free energy to thermodynamic properties that can be measured. As an example,

consider the Gibbs free energy of a phase a fixed composition. Through Eq. (2.17)–(2.20), it is

possible to relate changes in the Gibbs free energy (relative to an reference state) to experimentally

measurable thermal and volumetric properties (i.e., heat capacity and density) through:

βG = β0G0 + β0H0

(
β

β0
− 1

)
+

∫ β
β0

∫ T
T0

Cp(P0)dTdβ +

∫ P
P0

V (T )dP, (2.29)

where G0 and H0 are the extensive Gibbs free energy and enthalpy defined at the initial conditions

(i.e., T0 and same pressure and composition) and where the ‘state function’ properties of the

Gibbs free energy was used. An expression analogous to Eq. (2.29) is available for changes in the

chemical potential at fixed composition:

βµi = β0µi ,0 + β0h̄i ,0

(
β

β0
− 1

)
+

∫ β
β0

∫ T
T0

c̄p,i(P0)dTdβ +

∫ P
P0

v̄i(T )dP, (2.30)

where h̄i , c̄p,i and v̄i are the the partial molar enthalpy, constant pressure heat capacity and volume

of component i , respectively.

Equation (2.29) and (2.30) relate changes in abstract quantities for which no experimental

measurement techniques exist to measurable thermal and volumetric quantities, defined as partial

derivatives of the Gibbs free energy [36]. The integrals can be evaluated numerically from tabulated

experimental measurements or analytically if closed form expressions for Cp(T, P, n) and V (T, P, n)

are known, in addition to G0(T, P, n) and H0(T, P, n).

Constructing a mathematical model for a phase with fixed composition is straightforward if

the heat capacity and density are known as a function of temperature and pressure, respectively.

However, modeling phases that vary in composition is more challenging, since the composition

partial derivatives of the Gibbs free energy are the chemical potential (and subsequent higher order

partial derivatives), none of which are directly measurable. Instead, all available experimental data

for the system under study is collected and correlated using different mathematical models until

an appropriate model is found that describes available experimental data deemed reliable enough

to do so. Liquid mixtures comprising a solute and solvent are the primary composition dependent

phase encountered throughout the remainder of this thesis and so the subsequent discussion is

focused on the development of models for this type of phase specifically.
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As suggested already, it is common to interpret liquid mixtures in terms of an ideal solution

contribution (defined with respect to Raoult’s Law) and an excess Gibbs free energy contribution

(c.f. equations of state [35]). In this framework, the ideal contribution is modelled by pure liquid

component properties in a manner similar to Eq. (2.29), leaving the excess Gibbs free energy.

There has been significant research effort towards development of models for the excess Gibbs

free energy and interested readers should refer to seminal texts, such as [36], for a detailed account

describing the historical development of several. Regardless, examples describing non-electolyte

liquid mixtures include: the Van Laar [37], Scatchard-Hildebrand [38, 39], Redlich-Kister [40],

Wilson [41], NRTL (Non-Random Two Liquid) model [42] and UNIQUAC (UNIversal QUAsi-

Chemical) [43] models. It should be noted that references to works where the excess Gibbs free

energy model was originally proposed are provided; however, models are routinely modified to

improve their ability to simultaneously describe multiple types of experimental data, as well as

their ability to extrapolate to regions where data is not available.

Typically, the most appropriate model structure, as well as the corresponding value of empirical

parameters in the aforementioned excess Gibbs free energy models are developed by correlating

available experimental data for the system(s) under study. Briefly, correlating a model to exper-

imental data involves finding model structures and corresponding sets of parameter values that

‘best’ describe the available data. This general approach is applied throughout the remainder

of this thesis. The modelling approach and computational details vary across chapters, as such,

details of methods used are provided where relevant.

Given that, generally speaking, appropriate coverage, type, and accuracy of experimental ther-

modynamic data such that it is possible to construct reliable Gibbs free energy models for phases

over the entire range of temperature, pressure and composition is rarely available for a given sys-

tem, considerable effort has been gone towards the development of so-called ‘group contribution’

approaches that attempt to by-pass this issue. Here, the properties of a molecule are estimated as

a combination of the properties of the functional groups that comprise the molecule’s structure.

Once a list of functional groups has been determined, each functional group is assigned an unknown

contribution to the property, which is then evaluated by correlating experimental data for the prop-

erties of interest for a broad range of compounds including as many functional groups as possible.

Once the contribution of each functional group is known, it is possible to re-build molecules that

weren’t included in functional group parameter estimation and prediction the desired property,

with the goal being the reduction in experimental effort required to analyse new systems. The

group contribution approach has been applied to many thermodynamic properties [44]; however,

perhaps most relevant to the determination of the excess Gibbs free energy (and activity coeffi-

cients) [45] through the UNIFAC (UNIQUAC Functional-group Activity Coefficients) method [46]

(and modifications [47]), which re-interpretted the aforementioned UNIQUAC excess Gibbs free
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energy model. The development of functional group parameter databases for UNIFAC and Mod-

ified UNIFAC group contribution models is primarily completed on a large scale by the UNIFAC

consortium using data collated in the Dortmund Data Bank. However, parameter databases are

also developed on a much smaller scale in independently published works, where authors have pro-

posed new functional groups, parameter values and parameter dependencies, to make the general

framework more reliable for a sub-set of multi-component systems (e.g., Pharma UNIFAC [48] for

pharmaceutical systems and S-UNIFAC [49] for sugar solutions).

In addition to group contribution methods, there are models based on the so-called ‘concep-

tual segment contribution concept’ [50], originally applied to the aforementioned NRTL model.

Rather than interpreting a molecule in terms of functional groups, the conceptual segment contri-

bution concept views a molecule in terms of conceptual segments related to interactions between

molecules in solution, including: hydrophobic, polar (repulsive and attractive) and hydrophilic.

Once molecules have been interpreted in terms of their respective segments, a characteristic value

for each segment contribution is determined by correlating experimental data and then predictions

can be made for molecules not included in the initial parameterisation. The conceptual seg-

ment contribution concept has been applied to the UNIQUAC model, giving the UNIQUAC-SAC

model [51].

More recently, as noted in [52], the general method leveraged in group contribution, conceptual

segment contribution and QSPR-based approaches where molecular descriptors are correlated to

physical properties has been approached using Machine Learning (ML) techniques. See also a

recent review in [53].

Generally speaking, the predictive performance of group contribution and conceptual segment

contribution models is highly system dependent, as well as the database used to generate model

parameters.

In the approaches described thus far, the identification of appropriate model structure, as well

as parameter values, is done by correlating experimental data (regardless of whether parameters

can be transferred to new systems as done in group-contribution and conceptual segment-based

frameworks). Beyond bespoke parameterisations as well as group contribution (and related) meth-

ods, it should be noted that progress has been made towards a priori predictive methods, specifically

for the estimation of the excess Gibbs free energy of components in liquid mixtures through the

COSMO-RS [54] and COSMO-SAC [55] methods. Here, all that is required to make predictions

for thermodynamic properties of liquid mixtures is the molecular structure of the compounds in the

mixture, as well a set of pre-determined, compound-independent parameters [56]. Furthermore,

it is possible to predict model parameters in silico using Molecular Dynamics (MD) simulations,

as shown in [57], where binary interaction parameters in the UNIQUAC model were predicted for

sugar-water systems.
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2.3 Estimating Solubility in the Context of Thermodynamics:

A Review

It is convenient to begin the description of solubility in the context of equilibrium thermodynam-

ics by considering a closed system comprising two phases; one consisting of a pure crystalline

substance (i.e., solute) and another consisting of a liquid comprising dissolved solute and solvent

(i.e., solution). Assuming the composite system is at thermodynamic equilibrium, by definition,

the solution is saturated. As described already, a multi-phase system exists at equilibrium when

the Gibbs free energy is minimized, which also leads to the following condition:

µs,◦i (T ) = µl,sati (T, xi,sat (T )) , (2.31)

where, as before, µs,◦i and µl,sati are the chemical potential of solute in the pure crystalline phase

and saturated liquid solution, respectively. Equation (2.31), is the starting point for perhaps the

most widely applied predictive model referred to in crystallisation literature and will be discussed

further in the following section.

2.3.1 Analytical Models Based on the Normal Melting Point

If, for example, the chemical potential of solute in liquid solution is interpreted relative to Raoult’s

Law, Eq. (2.31) becomes:

ln xiγi = β
(
µs,◦i − µ

l,◦
i

)
, (2.32)

where xi is the mole fraction of solute in solution, γi is the solute activity coefficient in solution,

µl,◦i is the chemical potential of the solute as a pure liquid, and β = 1/RT . It should be noted

that the pure liquid solute is usually referred to as a ‘hypothetical state’, given that the solute’s

thermodynamically stable state is the pure crystal at all temperatures along the soubility curve.

Focusing specifically on µ◦,si −µ
◦,l
i = ∆µi which doesn’t depend on composition (by definition),

it can be shown that:

β∆µi(T ) = β0∆µi(T0) + ∆hi(T0)

(
β

β0
− 1

)
+

∫ β
β0

∫ T
T0

∆cpdTdβ (2.33)

where Eq. (2.17) and (2.19) have been used. When the reference temperature is taken as the

assumed pure solute melting temperature, Equation (2.33) reduces to:

β∆µi(T ) = ∆hi(Tm)

(
Tm
T
− 1

)
+

∫ β
βm

∫ T
Tm

∆cpdTdβ (2.34)

noting that β
(
µs,◦i (Tm)− µl ,◦i (Tm)

)
= 0. Finally, combining Eq. (2.32) and (2.34), an explicit

equation for solubility is found:

ln xi = ∆hi(Tm)

(
Tm
T
− 1

)
+

∫ β
βm

∫ T
Tm

∆cpdTdβ − ln γi , (2.35)
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where ∆hi(Tm) is the molar enthalpy associated to the melting of pure crystal solute and ∆cp =

c lp − csp where csp and c lp are the molar heat capacity of the solute in as a pure solid and liquid,

respectively.

Equation (2.35) represents an exact1 model describing the temperature dependence of solu-

bility. By solving Eq. (2.35), it is possible to estimate solubility anywhere if ∆hi(Tm), ∆cp(T ) and

ln γi(T, x) are known, in principle. Given that there exist experimental measurement and predictive

techniques for the estimation of pure solute melting properties (i.e., enthalpy and melting tem-

perature) and heat capacity, and approaches to estimate the solute activity coefficient, Eq (2.35)

has appealing properties.

Equation (2.35) is rarely, if ever, used in practice, and a variety of simplifications are applied

yielding approximate equations discussed in various contemporary texts that treat solubility in

the context of thermodynamics [3, 6, 36]. Historically, approximations were in part motivated

by the lack of direct approaches to estimate ∆cp [58], and more specifically, the heat capacity

of the hypothetical pure liquid solute at temperatures below the melting point. Some common

approximations include a case where ∆cp is assumed to be a constant, independent of temperature,

giving:

ln xi ≈ ∆hi(Tm)

(
Tm
T
− 1

)
+

∆cp
R

(
ln
T0
T
−
T0
T

+ 1

)
− ln γi , (2.36)

while, if ∆cp is assumed to well approximated by the entropy of fusion first proposed by Hildebrand,

Eq. (2.35) becomes:

ln xi ≈ −
∆hi(Tm)

RTm
ln
Tm
T
− ln γi , (2.37)

while, if ∆cp is ignored completely, Eq. (2.35) becomes:

ln xi ≈ ∆hi(Tm)

(
Tm
T
− 1

)
− ln γi . (2.38)

As an aside, the contribution to Eq. (2.35) describing the temperature dependence of the solute

melting and associated approximations can be interpreted as a Taylor series expansion (c.f. Chap-

ter 3). Thus, for systems with solutes whose melting point is close to ambient conditions as well

as close to ideal behavior in the solution phase, it might be expected that the approximations are

valid from a mathematical perspective.

If the activity coefficient in Eq. (2.35) is ignored which can be interpreted as the solution

behaving ideally (relative to Raoult’s Law), then solubility predictions made have been referred

to as the ideal solubility. The validity of approximations has been discussed in the context of

estimating the ideal solubility [59, 60, 61] and summarised in [62]. However, the impact of

approximations is perhaps best illustrated in [58], where it has been shown that assumptions

regarding the behavior of ∆cp on estimated ideal solubility at 298.15 K can have a significant impact

for compounds with melting points in the range 420–450 K. The authors measured the melting

1Ignoring physical effects due to surface forces, as well as electric, magnetic and gravitational fields [36].
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enthalpy and temperature of five compounds (i.e., acetaminophen, naproxen, anisic acid, mannitol

and diethylstilbestrol), and compared predicted ideal solubility at 298.15 K using Eq. (2.36), 2.37

and (2.38), ignoring the term associated to the solute activity coefficient in solution. The authors

noted that differences in approximation led to differences in ideal solubility at 298.15 K ranging

from 59–189% (mole fraction solubility). In summary, it is unclear how, for a given system, the

choice of approximation might impact reliability of solubility predictions.

Although approximations are usually employed to handle the contribution associated to the

difference in heat capacity between pure crystal and ‘hypothetical’ liquid solute, a recent work [63]

has reported the heat heat capacity of pharmaceutical compounds, including: (RRS)-ibuprofen,

(S)-ibuprofen, (S)-naproxen and indomethacin, in both pure crystal and sub-cooled liquid states

at temperatures above and below the normal melting point, potentially indicating that reliable

estimation if this term is possible. In recent work [64], it was shown that assuming the heat

capacity to be a constant, independent of temperature, is a reasonable assumption for certain

compounds, illustrated by interpolation of heat capacity for solutes in chemically and physically

similar solvents in combination with enthalpy of fusion and solution measurements.

For predictive purposes (i.e., avoiding direct solubility measurement), the enthalpy of fusion

is required, which is frequently reported in experimental studies. However, as described in [65],

measuring the enthalpy of fusion is limited for compounds with poorly defined melting properties,

which can be due to thermal decomposition or solid form transition prior to melting, an example

being the simple amino acid glycine, which has been shown to decompose through a combination

calorimetry, thermogravimetry and mass spectroscopy. Regardless, it should be note that that

novel approaches have recently been proposed based on ‘Fast Scanning Calorimetry’ (FSC) [66]

which, like the hypothetical pure liquid solute, potentially allow determination of thermodynamic

quantities previously thought to be inaccessible. More generally, even when a compound appears

to have a well defined melting transition, accurate determination of melting properties can be made

challenging due to “noncrystalline (amorphous) residues, large molecular sizes, highly variable crys-

tal sizes, defects in crystal structures, impurities, superheating, isomerization and mutarotation,

and [. . . ] the presence of water (solvent) at normal atmospheric surroundings” [67], which are

known to have a meaningful impact on measured melting property values.

For reliable prediction of solubility, application of Eq. (2.35) requires knowledge of the solute

activity coefficient as a function of temperature and composition and, more specifically, along the

solubility curve of a given system. As described already in Section 2.2.1, there exists an enormous

body of literature on the estimation of activity coefficients, given that they are required in any

practical application involving multi-component liquid mixtures. For the prediction of solubility

via Eq. (2.35), predictions are often viewed as a two-step process, where pure solute melting

parameters (i.e., ∆hfus(Tm) and Tm) are evaluated experimentally, ∆cp(T ) is approximated in any

27



one of the of many ways described already (or ignored), and the solute activity coefficient is

estimated using an excess Gibbs free energy model parameterised in ‘outside’ of the solubility

prediction—either using previously published parameters or a bespoke parameterisation based on

available experimental data.

For example, in [68], the original UNIFAC group-contribution method for the estimation of ac-

tivity coefficients in multi-component liquid mixtures was used to predict the solubility of various

non-electrolyte solids in single and mixed solvents was predicted using Eq. (2.38) where the con-

tribution associated to the activity coefficient of solute in solution was modelled using the UNIFAC

group-contribution method. For the systems investigated, predicted solubility was found to be in

good agreement with experimental data from the melting point to the eutectic point; however, it

should be noted that solids investigated had a normal melting temperature below 373.15 K, which

is, relatively speaking, low when compared to industrially relevant compounds.

In a more recent study [69], the original UNIFAC group-contribution method was again used

to estimate solute activity coefficients for solubility prediction via Eq. (2.38). Compared to [68],

the systems investigated included compounds with melting temperatures in excess of 373.15 K,

although the selected solvents were similar. It was shown that predictions at 298.15 K were in

poor agreement with experimental data, with the error in predicted solubility in excess of 15% for

most systems and deemed too unreliable for the design of industrial crystallisation processes. The

authors also highlight that differences in solubility predictions based in i) ignoring the ∆cp term

and ii) assuming it to be a constant, can lead to substantial (e.g., up to 100%) differences in the

solubility predicted at 298.15 K.

In [70], several excess free energy models (i.e., UNIFAC, Modified UNIFAC, COSMO-SAC

and NRTL-SAC) were used to predict the temperature dependent solubility of ibuprofen, ac-

etaminophen, benzoic acid, 4-aminobenzoic acid and anthracene in a variety of solvents using

Eq. (2.38) and (2.37). The authors concluded that, even when factoring in the ∆cp term, pre-

dictions made were generally not suitable for quantitative prediction required for the design of

crystallisation processes. It was suggested that this is due to the excess Gibbs free energy models

and associated parameter values used.

In a very recent work (i.e., 2022) [56], reviewed solubility for predictions for ten pharmaceutical

compounds (e.g., paracetamol, (RS)-ibuprofen, carbamazepine, etc.,) in a variety of common

industrial solvents using Eq. (2.35) assuming ∆cp(T ) = ∆cp(Tm) and the solute activity coefficient

predicted using both PC-SAFT and COSMO-RS modelling frameworks. Compared to studies

mentioned previously, the solid compounds investigated are higher in molecular weight as well as

melting temperature. Although PC-SAFT has semi-empirical parameters that are usually evaluated

by correlating experimental data, the author used it in a ‘predictive manner’ using pure component

properties, only. As described, solubility predictions were generally in qualitative agreement with
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direct measurements for the systems studied and both models with predictions based on solute

activity coefficients estimated using COSMO-RS found to be in better agreement. However,

predictions based on both models were in poor quantitative agreement with direct measurements,

in general agreement with findings for predictions based on other models describe already.

It should be noted that Eq. (2.35) (in approximate form) is used to parameterise excess

Gibbs free energy models if temperature dependent solubility is available across a broad range of

temperature, as well as the melting properties of the system under study. For example, in [71],

the functional group interaction parameter values for the SAFT-γ Mie equation of state were

evaluated by correlating temperature dependent solubility data for benzoic acid, diphenylamine

and mefenamic acid in a range of solvents.

2.4 Conclusions

In this chapter, the fundamentals of crystallisation were introduced and the importance of solubility

as an essential property for the rational design, development and optimisation of crystallisation

processes highlighted. As described, it is possible to measure solubility directly using any one

of many technique-instrument combinations available, in principle. However, although apparently

straightforward, direct determination of solubility can be challenging, as well as costly in terms of

time and resources.

Model-based approaches for the estimation of solubility were introduced, including correla-

tive, QSPR, as well as those based in equilibrium thermodynamics. The relevance of equilibrium

thermodynamics as a framework to model phase equilibria and, more specifically, solubility, was

elucidated by a considering the fundamentals of equilibrium thermodynamics in the postulative

framework formulated in [5].

The most common approach found in crystallisation literature where an explicit model for sol-

ubility expressed in terms of pure solute melting properties, differential heat capacity and solution-

based activity, is derived from fundamental thermodynamic relationships and it’s application re-

viewed. As described, this model is usually applied with simplifying assumptions, the impact of

which are generally not well known on system-by-system basis. In addition, the majority of appli-

cations available in literature approximate the solute activity coefficient using ‘predictive’ excess

Gibbs free energy models (e.g., UNIFAC, NRTL-SAC, COSMO-RS), the reliability of which is also

challenging to assess for a given system. Finally, this approach relies on knowledge of the pure

solute enthalpy of fusion and melting temperature, and solution non-ideality, all of which can be

challenging for a variety of reasons discussed.

From the above, the following is noted. First, there is scope to develop methods that allow

estimation of solubility as a function of temperature that do not require measurement of pure solute
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melting properties (i.e., ∆hfus.(Tm) and Tm) that provide alternative approaches for systems where

this is challenging. Second, there is scope to develop methods that allow estimation of solubility as

a function of temperature without the need to employ simplifications, the implications of which are

hard to assess on a given system in the absence of direct solubility data, whether that be through

the introduction of simplifying assumptions, or reliance on ‘predictive’ methods for excess Gibbs

free energy properties. These areas are the subject of work presented in the following chapters.
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Chapter 3

A Local Expansion Approximation of

the van’t Hoff Equation

The results presented in this chapter have been published in the journal Crystal Growth and Design

(doi: 10.1021/acs.cgd.1c01217), authored by Andrew Manson, Jan Sefcik and Leo Lue. It should

be noted that large sections of this chapter reflect those in the published manuscript; however,

adaptations have been made to improve readability in the context of this thesis.

3.1 Introduction

In Chapter 2, it was shown that an explicit model describing the temperature dependence of solu-

bility for a given solute in solution could be derived from fundamental thermodynamics by referring

to the pure solute normal melting point. In this chapter, we construct an approximate model de-

scribing solubility as a function of temperature by considering the so-called ‘van’t Hoff’ equation,

which describes the temperature dependence of thermodynamic processes. More specifically, we

approximate the temperature and composition dependence of thermodynamic quantities in the

van’t Hoff equation applied to dissolution using 1st-order Taylor series expansions. As shown,

this gives an approximate model from which solubility can be predicted if relevant thermodynamic

quantities are known, all of which can be approximated from experimentally measurable properties

and, crucially, none of which include the pure solute melting properties.

Using this approach, we investigate the aqueous solubility of α, β and γ-glycine which, despite

numerous studies, have considerable quantitative uncertainty, in particular for the most stable (γ)

and the least stable (β) solid forms. The remainder of this chapter is structured as follows. In the

next section, the van’t Hoff equation applied to solid-liquid equilibrium is introduced after which

we describe how the temperature and composition dependence of thermodynamic quantities in
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the van’t Hoff equation can be approximated using a 1st-order Taylor series expansion. Then, we

apply our new approach to predict the aqueous solubility of α-glycine using thermodynamic data

reported in literature at 298.15 K and assess prediction sensitivity to modelling approach and data

quality. Finally, the approach is used to estimate the aqueous solubility of β and γ-glycine using

ancillary thermodynamic data reported in literature.

3.2 The van’t Hoff Equation

We consider a solute (denoted as 1) which is dissolved in a solvent (denotes as 2). At sufficiently

high concentrations, the solute precipitates as a pure solid. The temperature dependence of the

mole fraction of the solute x1,sat(T ) at saturation can be expressed by the so-called ‘van’t Hoff’

equation:

d ln x1,sat(T )

dT
=

1

RT 2

[
h̄l1(T, x1,sat(T ))− hs,◦1 (T )

1− (1− x1,sat(T ))∂ ln γ2(T, x1,sat(T ))/∂x1

]
(3.1)

=
1

RT 2

[
a(T, x1,sat(T ))

1− b(T, x1,sat(T ))

]
(3.2)

where R is the gas constant, h̄l1(T, x1,sat(T )) is the partial molar enthalpy of the solute in a

saturated solution at temperature T , and hs,◦1 (T ) is the molar enthalpy of the pure solid at T

(which is not a function of solution composition). The solute activity coefficient γ1 is defined

with the chemical potential of the solute written as βµl1 = βµ◦,l1 (T ) + ln x1γ1, where µ◦,l1 (T ) is

the chemical potential of pure liquid solute at temperature T . The quantity h̄l1(T, x1,sat(T )) −

hs,◦1 (T ) is sometimes referred to as the “differential heat of solution”, and the quantity (1 −

x1,sat(T ))∂ ln γ2(T, x1,sat(T ))/∂x1 is related to the variation of the solvent activity coefficient

(defined through the relation βµl2 = βµ◦,l2 (T ) + ln x2γ2, where µ◦,l2 (T ) is the chemical po-

tential of pure solvent at temperature T ) with composition, evaluated at saturation tempera-

ture and composition. For convenience, we refer to h̄l1(T, x1,sat(T )) − hs,◦1 (T ) as a, and (1 −

x1,sat(T ))∂ ln γ2(T, x1,sat(T ))/∂x1 as b. In principle, it is possible to estimate both a and b from

experimentally measurable thermodynamic quantities and, if they were known in addition to a

single solubility point, the solubility at any temperature could be predicted through integration of

Eq. (3.1).

Expressions equivalent to Eq. (3.1) have been reported by various authors [72, 73, 74, 75];

however, it can be derived by considering that, at thermodynamic equilibrium, the chemical poten-

tial of a pure solid solute is equal to the chemical potential of the solute in a saturated solution

(at the same temperature):

βµ◦,s1 (T ) = βµl1(T, x1,sat(T )) (3.3)

where β = (RT )−1, R is the gas constant, µ◦,s1 (T ) is the chemical potential of pure solid solute

and µl1(T, x1,sat(T )) is the chemical potential of the solute in a saturated solution. Equation (3.3)
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is valid at any point along the solubility curve. More generally, small changes in the chemical

potential terms can be expressed as:

dβµ◦,s1 (T ) =
∂βµ◦,s1 (T )

∂β
dβ, (3.4)

dβµl1(T, x1) =
∂βµl1(T, x1)

∂β
dβ +

∂βµl1(T, x1)

∂ ln x1
d ln x1, (3.5)

which results from the fact that they are continuous functions of T and x1. Combining Eq. (3.4)

and (3.5), while noting that Eq. (3.3) can be expressed as dβµ◦,s1 (T ) = dβµ◦,l1 (T, x1,sat(T )),

gives:
∂βµ◦,s1 (T )

∂β
dβ =

∂βµl1(T, x1,sat(T ))

∂β
dβ +

∂βµl1(T, x1,sat(T ))

∂ ln x1
d ln x1,sat(T ) (3.6)

which, again, is valid along the solubility curve. Going further:

d ln x1,sat(T )

dβ
= −

[
h̄l1(T, x1,sat(T ))− h◦,s1 (T )

∂βµl1(T, x1,sat(T ))/∂ ln x1

]
, (3.7)

where we make use of the Gibbs-Helmholtz relation h̄i = ∂βµi/∂β where h̄i is the partial molar

enthalpy of species i . The denominator in Eq. (3.7) can be expressed as:

∂βµl1(T, x1,sat(T ))

∂ ln x1
=

[
1 +
∂ ln γ1(T, x1,sat(T ))

∂ ln x1

]
, (3.8)

which, coupled with Eq (3.7):

d ln x1,sat(T )

dT
=

1

RT 2

[
h̄l1(T, x1,sat(T ))− h◦,s1 (T )

1 + ∂ ln γ1(T, x1,sat(T ))/∂ ln x1

]
(3.9)

which is an expression identical to that reported previously [72, 73, 74, 75]. Since data relating to

the activity of solvent in solution is more widely reported, we use the Gibbs-Duhem relationship

to replace the solute activity coefficient term:

∂ ln γ1
∂ ln x1

= −
x2
x1

∂ ln γ2
∂ ln x1

= −x2
∂ ln γ2
∂x1

(3.10)

noting that we make the arbitrary choice to use the partial derivative with respect to x1, rather

than ln x1 which, when combined with Eq. (3.9) gives Eq. (3.1). For interested readers, we report

another derivation in our Appendix A, based entirely on earlier work found in [74]. As an aside,

Eq. (3.1) is sometimes reported in the form:

d ln x1
dT

=
∆HvH

RT 2
, (3.11)

where ∆HvH is referred to as the “van’t Hoff enthalpy of solution” [75, 76].

The utility of Eq. (3.1) is two-fold. First, if the solubility of a compound is known as a function

of temperature, the right side can be determined leading to an estimate of the differential heat

of solution and related solution properties [74, 77]. Alternatively, if the right side were known as

a function of temperature and solution composition, the solubility as a function of temperature
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could be calculated by integration of the equation, given the solubility at one temperature as a

starting point [78].

In general, a and b in Eq. (3.2) are functions of both temperature and composition. Ideally, we

could collate sufficient experimental data to develop functional expressions for both parameters

(i.e. across the entire range of temperature and solubility); however, in practice this would require

significant effort. In addition, it is unclear if techniques are available that allow evaluation of the

required measurements at extremes of temperature and solution composition.

3.2.1 An Approximation for Quantities in the van’t Hoff Equation

In the absence of sufficient data to correlate functions for model parameters, we can approximate

their temperature and composition dependence using Taylor’s theorem, which is a mathematical

technique used to construct locally accurate but increasingly approximate models of analytic,

multi-variate functions in terms of their partial derivatives evaluated at a chosen reference point.

For convenience, we apply the 1st-order approximation of Taylor’s theorem which, for a two-

variable continuous function, is given as:

f (x, y) ≈ f (x0, y0) +
∂f (x0, y0)

∂x
(x − x0) +

∂f (x0, y0)

∂y
(y − y0) (3.12)

≈ f (x0, y0) + x0
∂f (x0, y0)

∂x

(
x

x0
− 1

)
+ y0

∂f (x0, y0)

∂y

(
y

y0
− 1

)
. (3.13)

It should be noted that the 1st-order expansion will limit the accuracy of approximation far from

the chosen reference point. In this chapter, we perform the following expansions for a and b,

respectively:

a(T, x1) ≈ a0(T0, x1,0) + a1

(
T

T0
− 1

)
+ a2

(
x1
x1,0
− 1

)
(3.14)

b(β, x1) ≈ b0(β0, x1,0) + b1

(
T0
T
− 1

)
+ b2

(
x1
x1,0
− 1

)
, (3.15)

where definitions for model coefficients and their interpretation are presented in Table 3.1 and

nomenclature is defined in Table 3.2.

Approximating a(T, x1) in terms of T and x1 which makes it possible to use heat capacity

data to evaluate a1 since ∂h/∂T = cp. While approximating b(β, x) in terms of β and x makes it

possible to relate a2 and b1. However, it should also be noted that the expansion can be performed

in many other ways.

Substituting Eqs. (3.14) and (3.15) into Eq. (3.2), the solubility relation becomes:

d ln x1,sat(T )

dT
≈

1

RT 2

[
a0 + a1(T/T0 − 1) + a2(x1,sat(T )/x1,sat(T0)− 1)

1− (b0 + b1(T0/T − 1) + b2(x1,sat(T )/x1,sat(T0)− 1))

]
, (3.16)

from which the solubility at any temperature can be predicted by numerical integration if all model

coefficients and the solubility at T0 is known.
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Table 3.1: Taylor series expansion coefficient definitions

Coefficient Definition

a0 (h̄1
l
(T0, x1,sat(T0))− hs,◦1 (T0))

a1 T0(c̄
l
p,1(T0, x1,sat(T0))− cs,◦p,1(T0))

a2 x1,sat(T0)(∂(h̄1
l
(T0, x1,sat(T0))− hs,◦1 (T0))/∂x1)

b0 (x2,sat(T0)∂ ln γ2(T0, x1,sat(T0))/∂x1)

b1 −β0
[
x1,sat(T0)(∂(h̄1

l
(T0, x1,sat(T0))− hs,◦1 (T0))/∂x1)

]
b2 x1,sat(T0)(−∂ ln γ2(T0, x1,sat(T0))/∂x1 + x2,sat(T0)∂

2 ln γ2(x1,sat(T0))/∂x21 )

Table 3.2: Thermodynamic property definitions

Property Name Definition

h̄l1 Solute partial molar enthalpy (solution) h̄l1 = h∞,l1 +
∂ ln γ∗1
∂β

h∞,l1 Solute partial molar enthalpy in solution at infinite dilution

hs,◦1 Pure solute molar enthalpy (solid) hs,◦1 = h∞,l1 − ∆h∞,s

∆h∞,s Enthalpy of solution (to infinite dilution)

c̄ lp,1 Solute partial molar heat capacity (solution) c̄ lp,1 = c l ,◦p,1 + ∂2 ln γ1
∂T∂β

cs,◦p,1 Pure solute molar heat capacity (solid)

ln γi Activity coefficient for component i (Raoult’s Law)

ln γ∗i Activity coefficient for component i (Henry’s Law) ln γ∗i = ln γi
γ∞i

ln γ∞i Activity coefficient at infinite dilution limxi→0 ln γi
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For notational convenience, the composition dependence of coefficients in Eq. (3.16) will be

represented by x1 and x1,0 in place of x1,sat(T ) and x1,sat(T0) respectively throughout the remainder

of the chapter. However, it should be emphasized that these refer to the quantities evaluated at

or along the solubility curve.

3.3 Application to the Aqueous Solubility of α, β and γ-Glycine

Glycine is the simplest amino acid [79, 80], known to crystallize in one of three polymorphs identi-

fied as γ, α, and β (in order of decreasing thermodynamic stability at ambient conditions [79, 81]).

It’s chemical structure is illustrated in Fig. 3.1. Different crystallization techniques (i.e. cooling,

Figure 3.1: Glycine molecular structure.

evaporation, antisolvent) can be used to crystallize respective glycine polymorphs while additives

(e.g., salts) and process conditions (e.g., stirring) can also be used to change the polymorphic

outcome [81]. Rational design and efficient operation of crystallization processes requires quan-

titative understanding of solid-liquid equilibria over a suitable range of operating conditions, as

equilibrium solubility compositions and respective supersaturations need to be known for relevant

solid forms.

The aqueous solubility of glycine polymorphs has been a topic of numerous investigations

(see Refs. [80] and [82] for reviews). As pointed out in recent works [81, 83], aqueous solubility

data for α and γ-glycine is largely inconsistent. Hence, direct measurements of the aqueous

solubility of glycine polymorphs using conventional techniques appear challenging for the most

stable solid form, γ-glycine, and even for α-glycine at elevated temperatures (above 330 K). This

may be related to issues with mass transfer and particularly with very slow growth (and perhaps

dissolution) rates at small supersaturations in highly concentrated solutions, so that it could be

challenging to ensure that solid-liquid equilibrium is reached. For β-glycine, there is currently

limited solubility data available, most likely due to rapid re-crystallisation to α-glycine [84].

Measurements of thermodynamic properties other than solubility (e.g., enthalpy of solution,

vapor pressure, etc.) exist over a fairly broad range of temperatures [80] for the glycine-water

system; however, the majority of measurements are reported around 298.15 K between dilute to

36



moderate concentrations of glycine. Practical difficulties in working with glycine-water solutions

at higher temperatures and moderate concentrations severely limit the availability of experimental

data at elevated temperatures. For glycine-water mixtures, the Pitzer [85], mean spherical ap-

proximation (MSA) [85], modified Wilson [86], and PC-SAFT [87, 66], as well as many other,

models have been used successfully to describe the liquid phase.

Given the reported uncertainty with glycine polymorph temperature dependent solubility and the

availability of thermodynamic data other than solubility reported at 298.15 K, it is possible to make

predictions for temperature dependent solubility using Eq. (3.1). In this section, the application

of Eq. (3.1) to the estimation of glycine polymorph aqueous solubility is presented, providing

estimates from their eutectic point to the solid-solution-vapor triple point (i.e. intersection of

solubility and boiling curve).

The remainder of this section is structured as follows. First, a review of glycine polymorph

aqueous solubility data reported in the literature is presented. Then, the estimation of coefficients

in Eq. (3.1) is described and estimates based on available experimental data provided. Following

this, solubility predictions based on Eq. (3.1) for α-glycine are shown and the sensitivity of solubility

predictions with respect to underlying measurement uncertainty, as well as the excess Gibbs free

energy models used to derive required thermodynamic quantities is discussed. Finally, predictions

for the aqueous solubility of β and γ-glycine are provided.

3.3.1 Solubility Review

There are numerous reports of glycine-water solubility measurements in the literature. Some

articles present data for an identified polymorph (see [88] for α, β and γ, [89, 12, 90, 91, 92] for

α and γ, [93, 80, 94] for α and [95] for γ), while others refer only to “glycine” (see [96, 97, 98,

99, 100, 101, 102, 25]) — which is problematic, since crystal polymorphs have different solubility

in the same solvent at the same temperature and pressure.

Some of this data has been reviewed recently [80, 82]; however, both reviews have specific

areas of focus and limitations. Datta et al. [82], make no distinction between glycine polymorphs,

choosing to review only data that has been identified as “glycine”. Their review does not include

any data labeled with glycine polymorphs, excluding a number of data sets from their review.

Rowland [80] reviewed solubility data as part of their work on an equation of state model parameters

as well as the standard state properties for the glycine-water solution. Rowland’s review is restricted

to data assumed to be α-glycine, which includes data points reported as α-glycine as well as data

where the glycine polymorph is unspecified; however, β and γ-glycine were out of the scope of the

work.

The primary aim of this glycine-water solubility review is to consider other glycine polymorphs

alongside α-glycine, as well as any missing data not included previously, especially at elevated
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temperatures where glycine solubility data are sparse. We proceeded as follows: first, if the

solubility data had the polymorph labeled (e.g. α, β or γ) it was included. Then, if the solubility

data was for an undefined glycine polymorph, it was included only if the dataset included data

above 330 K. Data meeting either of these criteria are presented in Fig. 3.2.

We note that some solubility compilations (e.g., see Table A.5 in Ref. [103]) show glycine

solubility up to 373 K, without providing a source reference. However, we believe this is based

on an extrapolation of lower temperature data as reported early on [96]; this was also before

polymorphism of glycine was established. From Fig. 3.2, each data set shows the solubility of

0.7 0.8 0.9 1.0 1.1
T0/T

3.5

3.0

2.5

2.0

1.5

1.0

ln
x 1

,s
at

(T
)

Devi
Yang
Park
Igarashi
Sakai
Sun
Han
Seidell
Rowland

(a) α

0.7 0.8 0.9 1.0 1.1
T0/T

3.5

3.0

2.5

2.0

1.5

1.0

ln
x 1

,s
at

(T
)

Devi
Rowland

(b) β

0.7 0.8 0.9 1.0 1.1
T0/T

3.5

3.0

2.5

2.0

1.5

1.0

ln
x 1

,s
at

(T
)

Devi
Yang
Park
Igarashi
Sakai
Han
Dowling
Tan
Rowland

(c) γ

0.7 0.8 0.9 1.0 1.1
T0/T

3.5

3.0

2.5

2.0

1.5

1.0

ln
x 1

,s
at

(T
)

Dalton
Dunn
Ansari ('16)
Ansari ('17)
Zeng
Cao
Gao
Yi
Rowland

(d) Undefined

Figure 3.2: “Van’t Hoff” style plot of literature solubility data [88, 89, 12, 93, 90, 91, 92, 94, 95,

96, 97, 98, 99, 100, 101, 102, 25] for α-, β-, γ-, and undefined glycine between 270–430 K. Note

that T0 = 298.15 K. The black dashed line is the α-glycine solubility estimate from Ref. [80] and

is shown in all plots as a guide.

glycine in water increasing with temperature as generally expected. For data labeled as either α or

γ-glycine, there are a similar number of datasets because of various studies reporting measurements

for both polymorphs together. In addition, it can be seen that data is sparse above 350 K, with only

one data set for α and γ-glycine respectively. Interestingly, the labeled polymorph datasets have
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greater variability, while the undefined polymorph datasets appear more consistent. It is unclear

why this is the case; however, following our own assessment and in agreement with Rowland, we

attribute the undefined data sets as α-glycine. Based on the slope of their data, we observe that

data from Devi and Igarashi for both α and γ-glycine is inconsistent with each other and other

data reported in the literature.

Based on our review, there is only one report of β-glycine in the literature; however, it is

interesting to note that, as mentioned previously, research suggest direct measurement of β-glycine

in pure water are challenging due to kinetic instability in water and resulting rapid transformation to

α-glycine [84, 104]. Taking Rowland’s estimate for α-glycine as a guide, it appears data reported

as β-glycine could be α-glycine.

3.3.2 Methodology

It should be noted that there are many ways in which experimental data could be used to evalu-

ate the coefficients in Eq. (3.16), resulting from the many relationships between thermodynamic

quantities. In this chapter, we relate coefficients to experimental measurements performed at a

single temperature. This is advantageous in the sense that it limits the amount of thermodynamic

data required to make solubility predictions. In the following subsection, an interpretation for each

a and b coefficients in the context of available experimental data reported for the glycine-water

system is presented. After which, each quantity is evaluated.

Determination of a coefficients

The a coefficient can be expanded as

a(T, x1,sat(T )) ≈ ∆h̄
(0)
1

+ T0
∂∆h̄

(0)
1

∂T

(
T

T0
− 1

)
+ x1,sat(T0)

∂∆h̄
(0)
1

∂x1

(
x1,sat(T )

x1,sat(T0)
− 1

) (3.17)

where ∆h̄
(0)
1 = h̄l1(T0, x1,sat(T0)) − hs,◦1 (T0) could be evaluated directly if “differential heat of

solution” measurements were available; however, in the absence of these measurements, it can be

shown that:

∆h̄
(0)
1 = ∆h∞,s(T0) +

∂ ln γ
∗,(0)
1

∂β
(3.18)

where ∆h∞,s is the enthalpy of solution when forming an “infinitely dilute” solution [105]. It

should be noted that we introduce γ∗1 = γ1/γ
∞
1 as the solute activity coefficient defined rel-

ative to an infinitely dilute solution, where γ∞1 = limx1→0 γ1. The quantity ∂ ln γ
∗,(0)
1 /∂β =

∂ ln γ∗1(T0, x1,sat(T0))/∂β can be evaluated by regressing an excess Gibbs free energy model to
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“enthalpy of dilution” data (for cases where the enthalpy of dilution is given per mole of solute in

solution) via:

∆Hdi l(T, x
f , x i)

n1
=

(
N∑
i

ni
n1

∂ ln γi(T, x)

∂β

)f
−

(
N∑
i

ni
n1

∂ ln γi(T, x)

∂β

)i
, (3.19)

where superscript i and f denote the solution at initial and final concentration (i.e., before and

after dilution), respectively. In addition, since ∆h∞,s(T0) is independent of composition, it can be

shown that:

∂∆h̄
(0)
1

∂x1
=
∂2 ln γ

(0)
1

∂x1∂β
, (3.20)

which can be evaluated from the same excess Gibbs free energy model regressed to enthalpy of

dilution data. Given that cp = ∂h/∂T , it can be shown:

∂∆h̄
(0)
1

∂T
= ∆c̄

(0)
p,1 (3.21)

where ∆c̄
(0)
p,1 = c̄ lp,1(T0, x1,sat(T0))− cs,◦p,1(T0), c◦,sp,1 is the molar heat capacity of crystalline glycine,

which can be measured directly, and c̄ lp,1 is the partial molar heat capacity of glycine in solution

which can be interpreted as:

c̄ lp,1(T0, x1,sat(T0)) = c◦,lp,1(T0) +
∂2 ln γ1(T0, x1,sat(T0))

∂T∂β
, (3.22)

which, given an excess Gibbs free energy model, can be estimated by regressing solution heat

capacity data, since:

csolnp (T, x) =

N∑
i

xic
l ,◦
p,i (T ) +

N∑
i

xi
∂2 ln γi(T, x)

∂T∂β
. (3.23)

Determination of b coefficients

In the context of this work:

b(β, x1,sat(T )) ≈ x2,sat(T0)
∂ ln γ

(0)
2

∂x1

+ β0
∂(x2,sat(T0)(∂ ln γ

(0)
2 /∂x1))

∂β

(
T0
T
− 1

)
+ x1,sat(T0)

∂(x2,sat(T0)(∂ ln γ
(0)
2 /∂x1))

∂x1

(
x1,sat(T )

x1,sat(T0)
− 1

)
.

(3.24)

where again ln γ
(0)
2 = ln γ2(T0, x1,sat(T0)) is introduced for notational convenience. It can be shown

that:
∂

∂x1

(
x2,sat(T0)

∂ ln γ
(0)
2

∂x1

)
= −
∂ ln γ

(0)
2

∂x1
+ x2,sat(T0)

∂2 ln γ
(0)
2

∂x21
, (3.25)

which can be evaluated by regressing an excess Gibbs free energy model to “activity” related

measurements (i.e. vapor pressure, isopiestic molality, etc.) taken at the reference temperature
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and at various compositions, and:

∂

∂β

(
x2,sat(T0)

∂ ln γ
(0)
2

∂x1

)
= −x1,sat(T0)

∂2 ln γ
∗,(0)
1

∂x1∂β
, (3.26)

which can be evaluated in the same way as Eq. (3.20).

Excess Gibbs Free Energy Models

Several parameters required to estimate the coefficients in Eq. (3.16) are derivatives of continuous

thermodynamic quantities. Given the discrete nature of experiments, coupled with the absence of

approaches to measure the thermodynamic quantities in Eq (3.1) directly, estimation of required

parameters requires correlation of data using models. In the context of thermodynamics, the

excess Gibbs free energy relates most of the quantities in Eq. (3.16) to experimental data and as

such, a mathematical model describing the excess Gibbs free energy is required. Historically, many

attempts have been made to derive physically interpretable excess Gibbs free energy models and

as such, for the purpose of this work, we use the Scatchard-Hildebrand and Scatchard-Hildebrand-

Flory-Huggins excess Gibbs free energy models [106].

The Scatchard-Hildebrand excess free energy model (for a binary solution comprising glycine

and water) is given by:

βGE = (n1v
L
1 + n2v

L
2 )φ1φ2χ

′ (3.27)

where vLi is the molar volume of component i , φi is the volume fraction of component i , and χ′

is a binary interaction parameter. This gives:

ln γ2 = βvL2 φ
2
1χ
′ (3.28)

ln γ1 = βvL1 φ
2
2χ
′ (3.29)

For convenience, we define χ(β) = χ′βvL2 and v ∗ = vL1 /v
L
2 which gives:

ln γ2 = φ21χ (3.30)

ln γ1 = v ∗φ22χ, (3.31)

where we have assumed χ to be a function of temperature, while the molar volumes (i.e. v ∗) are

independent of temperature and composition. These assumptions make it straightforward to use

the same model throughout the correlation of different thermodynamic data. In addition:

φ1 =
x1v

∗

x1v ∗ + x2
(3.32)

φ2 =
x2

x1v ∗ + x2
= 1− φ1 (3.33)
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The excess enthalpy of this model, assuming χ′ is a function of temperature only and v ∗ is

independent of temperature and composition, is given by:

HE = n1v
L
1 φ1φ2χ

′
1 + n2v

L
2 φ1φ2χ

′
1, (3.34)

and the excess heat capacity is given by:

CEp = n1v
L
1 φ1φ2χ

′
2 + n2v

L
2 φ1φ2χ

′
2, (3.35)

where χ′1 = ∂χ′/∂β, and χ′2 = ∂2χ/∂T∂β.

To account for differences in molecular size we can add a “Flory-Huggins” term to the

Scatchard-Hildebrand free energy expression; which, for a binary solution, is given by:

βGE = (n1v
L
1 + n2v

L
2 )φ1φ2χ

′ + n1 ln
φ1
x1

+ n2 ln
φ2
x2
, (3.36)

which gives:

ln γ2 = φ21χ+

(
ln
φ2
x2

+ 1−
φ2
x2

)
(3.37)

ln γ1 = v ∗φ22χ+

(
ln
φ1
x1

+ 1−
φ1
x1

)
(3.38)

It should be noted that HE and CEp are the same for both the Scatchard-Hildebrand-Flory-Huggins

and Scatchard-Hildebrand when χ′ is a function of temperature only and v ∗ is a constant inde-

pendent of temperature and composition, which is an assumption used in this work.

3.3.3 Thermodynamic Properties

As discussed above, Rowland [80] published a comprehensive review of thermodynamic data for

glycine-water mixtures. Much of the data presented there corresponds to data required to evaluate

the coefficients in Eq. (3.16) and as such, the work was used as a reference for thermodynamic

data. An initial review indicated that most of the thermodynamic data for glycine-water solutions

has been collected at 298.5 K, as such we chose T0 = 298.15 K as the start point for our Taylor

expansion. Following a further review of literature, any additional data required to evaluate the

coefficients in Eq. (3.16) was found.

Solubility at the chosen reference temperature is a crucial thermodynamic property required

to make predictions with the approach presented in the theory section. For α-glycine, we have

chosen to take the value reported by Rowland [80] (i.e. 3.324 mol kg−1 of water or 0.056 (glycine

mole fraction) at 298.15 K), derived from a thermodynamically consistent, semi-empirical fit to a

broad range of experimental data (including solubility), which we believe to be the best estimate

available in literature.

In this work, we model solution properties separately (i.e. ln γ2 is modeled independently of

∆Hdi l/n and csolnp ), rather than developing a model to simultaneously describe all thermodynamic
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data. Development of a comprehensive model is out with the scope of this work, and the ap-

proach described here is computationally convenient and ensured experimental data was modeled

accurately.

In the following section, thermodynamic data used to evaluate evaluate the coefficients in

Eq. (3.16) is described. This includes measurements from which the solvent activity coefficient

can be derived, enthalpy of dilution and solution heat capacity, as well as measurements for enthalpy

of solution to infinite dilution and crystalline glycine polymorph heat capacity (both at 298.15 K).

Activity Coefficient Data, Fits and Derived Properties

From the review published by Rowland, twelve data sets [107, 108, 109, 87, 110, 111, 85, 112,

113, 114, 115, 116] were found from which the water activity coefficient as a function of solution

composition can be derived. For seven of the datasets, the water activity coefficient γ2 was derived

from isopiestic or osmotic vapor pressure measurements and subsequent estimation of the osmotic

coefficient in glycine-water solutions of various compositions at 298.15 K using:

Φ = −
1

M2m1
ln(γ2x2), (3.39)

where x2 is the mole fraction of water, M2 = 0.018 kg mol−1 is the molecular weight of water, and

m1 is glycine molality. Four data sets reported values for water activity a2 at various glycine-water

solution concentrations (at 298.15 K) which were converted to activity coefficients via:

a2 = γ2x2. (3.40)

The final dataset reported static vapor pressure measurements for glycine-water solutions of varying

composition at 298.15 K. The water activity coefficient was determined from the modified Raoult’s

law (assuming the vapor was ideal and comprised only of water):

P = x2γ2P
sat
2 (T ), (3.41)

where P is the pressure, and P sat2 (T ) is the saturated vapor pressure of pure water at 298.15 K,

taken as the value provided in the dataset. All data, converted to ln γ2 and plotted as a function

of solution composition, are given in Fig. 3.3a. From Fig. 3.3a, the general trend indicates

that ln γ2 increases with glycine mole fraction, meaning that γ2 > 1. Excluding the data from

Ninni, the data appears to follow the same trend; however, there is significant variability between

datasets, particularly above x1 = 0.03. In general, evaluations made from isopiestic vapor pressure

measurements appear to be more consistent in terms of internal scatter. A review of data included

in Rowland’s global fit indicates that all data used was measured using an isopiestic vapor pressure

technique, except from the single point that was measured using vapor pressure osmometry. For

the purpose of this work, we assume the data chosen by Rowland to be the most reliable and use this

to regress the Scatchard-Hildebrand and Scatchard-Hildebrand-Flory-Huggins models respectively.
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Figure 3.3: (a) Literature glycine-water solution activity data at 298.15 K [107, 108, 109, 87,

110, 111, 85, 112, 113, 114, 115, 116], (b) model fits to selected data activity data, (c) 1st-

order partial derivative for fitted models with respect to concentration, and (d) 2nd-order partial

derivative for fitted models with respect to concentration. Solid lines are the predictions of the

Scatchard-Hildebrand model, dashed lines are the predictions of the Scatchard-Hildebrand-Flory-

Huggins model, and symbols are converted experimental data from the literature.
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From Fig. 3.3b, both the Scatchard-Hildebrand and Scatchard-Hildebrand-Flory-Huggins mod-

els appear to fit the activity coefficient data well. However, the choice of model has a significant

impact on behavior of the 1st and 2nd partial derivatives and their values at glycine polymorph

solubility. For example, the 1st partial derivative evaluated at the estimated α-glycine solubility

is 0.098 and 0.075 for the Scatchard-Hildebrand and Scatchard-Hildebrand-Flory-Huggins model,

respectively, while the 2nd partial derivative is −0.74 and −2.82. Given that both partial derivatives

are parameters used to evaluate solubility relation coefficients, the differences suggest that, in the

case of discrete data, the choice of model can impact the predictive ability.

Enthalpy of Dilution Data, Fits and Derived Properties

Again, following Rowland there are at least 8 datasets [117, 118, 119, 120, 121, 122, 123,

124] available in the literature reporting enthalpy of dilution measurements. For the purpose

of review, each dataset was correlated by Eq. (3.19) to allow direct comparison, noting that

raw measurements cannot be compared graphically. From the best fit to each data set, points

corresponding to ∂ ln γ∗1/∂β were generated corresponding to the range over which measurements

were reported. The resulting processed data is presented in Fig. 3.4a. From Fig. 3.4a, data

generated from best fits to each data set appear consistent from 0–0.02 mole fraction. However,

beyond 0.02, there is uncertainty resulting from a lack of data and inconsistency between the

data that is available. This is problematic because an estimate of the partial derivative of this

curve at the estimated solubility is required to evaluate model parameters and thus extrapolation

is necessary—which may introduce uncertainty.

Again, Eq. (3.19) was regressed against the aggregated data set (i.e. the data sets used by

Rowland) and the results are presented in Fig. 3.4b, with ∂2 ln γ∗1/∂x1∂β in Fig. 3.4c. It should

be noted that our best fit estimate for ∂ ln γ∗1/∂β is in excellent agreement with that presented in

Ref. [118].

Solution Heat Capacity Data, Fits and Derived Properties

Rowland references 9 data sets reporting measurements relating to the heat capacity of glycine-

water solutions. However, only 5 [77, 125, 126, 127, 128] have data for solutions at 298.15 K.

These data are presented in Fig. 3.5a. It should be noted that, where data was reported in terms

of the “apparent molar heat capacity”, data has been converted to solution heat capacity using

pure water molar heat capacity of 75.2 J mol−1. From Fig. 3.5a, 4 data sets appear consistent

between 0 and 0.01, corresponding to the data used by Rowland in their global fit. For the

purpose of this work, we use these data sets. It should be highlighted again that data doesn’t

extend to solution compositions required to accurately estimate properties at estimated solubility.

In addition, there is only one dataset that extends beyond a solution composition of 0.01. Thus, we
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Figure 3.4: (a) Literature glycine-water solution enthalpy of dilution processed data at 298.15 K,

(b) and (c) ∂ ln γ∗1 and ∂2 ln γ∗1/∂x1∂β derived from Scatchard-Hildebrand best fit to data in (a).

Open symbols are values derived from fits to literature data [117, 118, 119, 120, 121, 122, 123,

124], grey dashed vertical lines indicate α-glycine solubility at 298.15 K
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Figure 3.5: (a) Glycine-water solution heat capacity data at 298.15 K [77, 125, 126, 127, 128],

(b) and (c) csoln1 and c̄p,1 derived form Scatchard-Hildebrand best fit to selected data in (a). Grey

dashed vertical lines indicate α-glycine aqueous solubility at 298.15 K
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have to extrapolate regressed models to evaluate required parameters. The fit and corresponding

partial molar heat capacity are given in Figs. 3.5b and 3.5c.

Enthalpy of Solution and Pure Crystal Heat Capacity

Direct measurements of the enthalpy of solution (to infinite dilution) and pure solid molar heat

capacity at 298.15 K, are required to evaluate the coefficients in Eq. (3.16). Both have been

reported in the literature and are presented in Table 3.3. We note that both ∆h∞,s and cp,298.15

has been measured for α, β and γ-glycine respectively. However, we also note that each property

has been measured only once and not validated by additional measurements.

Table 3.3: Enthalpy of solution (to infinite dilution) and crystal molar heat capacity data for α, β

and γ-glycine at 298.15 K

Polymorph ∆h∞,s (J mol−1) [105] cp,298.15 (J/mol.K) [129]

α 14523 ± 76 99.23

β 14198 ± 73 98.69

γ 14791 ± 84 96.00

3.3.4 α-Glycine Solubility Predictions

The solubility of α-glycine was predicted as a function of temperature by numerically integrating

Eq. (3.16) with the coefficient values presented in Table 3.4, and predictions are shown in Fig. 3.6.

It should be noted that the solubility was also estimated with a0 and b0 only, which is referred to

as the “0th-order” prediction, while predictions based on Eq. (3.16) are referred to as “1st-order”

predictions.

From Fig. 3.6, the 0th and 1st-order approaches both predict an increasing solubility with

temperature. From 280–330 K, irrespective of the excess Gibbs free energy model used to estimate

model parameters, both 0th and 1st-order approaches show good agreement in terms of solubility;

however, beyond this, predictions diverge. Although solubility data is limited above 340 K, the 1st-

order corrections shift solubility predictions toward available measurements, potentially indicating

that the 1st-order corrections improve those made by the 0th-order model.

We note that our solubility predictions are consistent with the majority of available direct

measurements, as shown in Fig. 3.6. However, our predictions vary considerably compared to

Refs. [88] and [90], shown as red open triangles. This supports initial observations detailed in

our solubility review, where the slope of both data sets was inconsistent with other literature data
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Table 3.4: Taylor series expansion coefficient values (α, β and γ-glycine)

Coefficient Scatchard-Hildebrand Exp. Scatchard-Hildebrand

α

a0 (J/mol) 13103.5 13103.5

a1 (J/mol) −96.8 −96.8

a2 (J/mol) −671.1 −671.1

b0 (-) 0.093 0.07

b1 (-) 0.27 0.27

b2 (-) −0.045 −0.15

β

a0 (J/mol) 12597. 12605.

a1 (J/mol) 1314.5 1261.0

a2 (J/mol) −622.2 −625.4

b0 (-) 0.079 0.019

b1 (-) 0.251 0.252

b2 (-) −0.056 −0.240

γ

a0 (J/mol) 13421.5 13421.5

a1 (J/mol) 478.8 478.8

a2 (J/mol) −677.8 −677.8

b0 (-) 0.096 0.081

b1 (-) 0.273 0.273

b2 (-) −0.041 −0.131
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Figure 3.6: Temperature dependent α-glycine solubility predictions for various data modelling ap-

proaches (grey lines; 0th-order predictions, blue lines; 1st-order predictions, dashed lines; Scatchard-

Hildebrand predictions, solid lines; Scatchard-Hildebrand-Flory-Huggins predictions, black open

symbols; direct measurements labeled as α-glycine [89, 12, 93, 91, 92] and undefined glycine [96,

97, 98, 99, 100, 101, 102, 25] Refs. [88] and [90] highlighted with red triangles due to being

inconsistent with rest of available data)
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when plotted on a van’t Hoff plot. As such, both data sets will be omitted from plots in the

remainder of this work.

The effect of the excess Gibbs free energy model used to evaluate the coefficients in Eq. (3.16)

is shown in Fig. 3.6. For the 0th-order predictions, model impact is limited—becoming significant

around 380 K. However, the impact of model selection is greater for the 1st-order predictions. The

corrected models begin to diverge at approximately 340 K. At 400 K, the solubility is predicted as

0.17 and 0.19 (glycine mole fraction) for the Scatchard-Hildebrand and Scatchard-Hildebrand-

Flory-Huggins models, respectively.

Differences between the chosen excess Gibbs free energy models used to derive thermodynamic

quantities is specific to quantities derived from fits to solvent activity coefficient data. Previously,

it was shown that, although both models (Scatchard-Hildebrand and Scatchard-Hildebrand-Flory-

Huggins) appeared to fit water activity coefficient data well, the first and second partial derivatives

(with respect to glycine mole fraction) were significantly different. It is interesting to note that,

despite this, both models produce consistent predictions near 298.15 K.

Based on available solution thermodynamic data and solubility, we believe further progress could

be made on assessing the performance of the approach detailed above in two ways. First, with

more accurate high temperature solubility data—all solubility data above 340 K comes from the

same source in which solubility was determined using a novel application of “Differential Scanning

Calorimetry (DSC)” [12], resulting in an unusual shape for the α-glycine solubility curve. Second,

having further glycine-water solution thermodynamic data (e.g., water activity, enthalpy of dilution

and solution heat capacity), for solution compositions in excess of 0.056 mole fraction, would be

useful to ensure construction of accurate excess Gibbs free energy models and potentially allow

decoupling of uncertainty introduced from the choice of excess Gibbs free energy and Eq. (3.16),

respectively.

Sensitivity Analysis

As shown above, the choice of model used to estimate coefficients in Eq. (3.16) impacted solubility

predictions at temperatures far from the reference temperature; indicating an underlying model

sensitivity. Given that there is limited solubility data in this region (i.e. above 340 K) it is not

appropriate to assess reliability of the approach based solely on best fit parameter estimates, as

these would be subject to measurement uncertainty. To account for this we perform a sensitivity

analysis.

Each aggregated data set (i.e. ln γ2, ∆Hdi l/n and csolnp ) used to regress model parameters was

used to generate “simulated” data sets. A simulated data set is defined as a data set derived from

the original aggregated data set; however, each data point was “blurred” by a random percentage,

calculated from yblur = yor iginal + yor iginalϵ where y denotes a thermodynamic quantity and ϵ is a
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random value drawn from a Gaussian distribution with mean µ∗ = 0, and standard deviation, σ∗.

Then, the procedure outlined previously was repeated using simulated data sets, resulting in a

new solubility prediction. This process was repeated 1000 times for each excess Gibbs free energy

model, giving the predictions presented in Fig. 3.7a. To investigate the effect of uncertainty

magnitude, we perform sensitivity analysis at three levels for each thermodynamic quantity; σ∗,

2σ∗ and 5σ∗, where σ∗ is defined as 0.01, 0.01 and 0.0001 for ln γw , ∆Hdi l and csolnp , respectively.

It should be noted that the chosen σ∗ values correspond to approximate uncertainty observed in

aggregated data sets shown in Figs. 3.3b, 3.4a and 3.5b. From the available data, measurements

of csolnp are more precise, in terms of % error, when compared to other thermodynamic quantities.

Uncertainty levels translated to percentage errors are provided in Table 3.5. Resulting fits to

experimental data are presented in Appendix A (see Sensitivity Analysis). From Fig. 3.7, solubility

Table 3.5: Levels used in α-glycine sensitivity analysis

Quantity Error (%)

ln γ2 1

σ∗ ∆Hdi l 1

csolnp 0.01

ln γ2 2

2 σ∗ ∆Hdi l 2

csolnp 0.02

ln γ2 5

5 σ∗ ∆Hdi l 5

csolnp 0.05

predictions for α-glycine derived from both activity coefficient models are somewhat insensitive

to measurement uncertainty (at the levels investigated) between 273–340 K, as illustrated by thin

blue and grey bands. However, as the prediction moves further from the reference temperature

(298.15 K), prediction uncertainty increases as indicated by a spreading of the bands for all levels.

As the level of uncertainty used to “blur” data increases, the uncertainty of predictions far from

the reference temperature increases, which is generally what we expect. It is interesting to note

that, even accounting for measurement uncertainty, predictions based on the different excess Gibbs

free energy models are significantly different at temperatures far from the reference for predictions

based σ∗ and 2σ∗ uncertainty levels (Figs. 3.7a and 3.7b). This suggests that model selection has

an impact, independent of measurement uncertainty, on the validity of the method and motivates
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Figure 3.7: (a)–(c) Solubility predictions based on excess Gibbs free energy model parameters

fit to “simulated” data sets. The grey fan represents the range of predictions for the Scatchard-

Hildebrand model, and the blue fan represents the range of predictions of the Scatchard-Hildebrand-

Flory-Huggins model. (d) Prediction uncertainty based on fan horizontal width. Grey refers to the

Scatchard-Hildebrand model, and blue refers to the Scatchard-Hildebrand-Flory-Huggins model.

The open black circles are selected direct measurements labeled as α-glycine [89, 12, 93, 91, 92]

and undefined glycine [96, 97, 98, 99, 100, 101, 102, 25]
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future work on finding the most appropriate model to collate consistent thermodynamic quantities

of liquid solutions. However, at the 5σ∗ level, we note that prediction bands overlap for the entire

temperature range analysed. From Fig. 3.7d, we note the percentage error for each uncertainty

level taken with respect to the best fit solubility predictions for each excess Gibbs free energy

model. As shown, the the percentage error in solubility increases as the prediction moves from the

reference temperature, while at 400 K, the percentage error in solubility prediction is approximately

1, 3, and 8− 10% for σ∗, 2σ∗, and 5σ∗, respectively.
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Figure 3.8: Uncertainty of the predicted α-glycine solubility based on the Scatchard-Hildebrand

model with fluctuations of σ∗ (gray), 2σ∗ (blue), and 5σ∗ (red) in the value of ln γ2 (solid lines),

∆Hdi l (dashed lines), and csolnp (dashed-dotted lines).

The sensitivity of solubility predictions (based on the Scatchard-Hildebrand excess Gibbs free

energy model) to independent thermodynamic data is shown in Fig. 3.8. We note that, for the

case where uncertainty in data is estimated by “blurring” data points and generating new model

fits, solubility predictions far from the reference temperature are impacted by: csolnp , ∆Hdi l/n1 and

ln γ2 in order of most to least impact, where a greater impact corresponds to larger percentage

error. If we consider that the level of uncertainty in csolnp is 100 times lower than ∆Hdi l and ln γ2,

it suggests that, for accurate solubility predictions, precise measurements of csolnp are required

(i.e. ±0.1 J mol−1 K−1). However, it should be noted that, for the same level of uncertainty, both

csolnp and ∆Hdi l have a similar impact, while for all levels, uncertainty in ln γ2 has comparatively

lower impact. For example, at the 5σ∗ level, the percentage uncertainty in predicted solubility at
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400 K is ≈ 2.5, 4 and 5% for ln γ2, ∆Hdi l , and csolnp , respectively.

3.3.5 β and γ-Glycine Solubility Predictions

For β and γ-glycine, where solubility measurements are inconsistent or limited, we develop methods

for estimating the solubility at 298.15 K, as well as its dependence on temperature, using ancillary

thermodynamic data. In the context of the modeling framework presented for α-glycine, there is

scope to predict the solubility of β and γ-glycine, given that direct measurements for ∆h∞,◦ and

c◦p are available (Table 3.3), alongside regressed excess Gibbs free energy models describing the

thermodynamic properties of glycine-water solutions. However, for β-glycine, there is only one

report of solubility data available, while for γ-glycine the solubility data is scattered (Fig. 3.2). As

discussed, predictions require an estimate for the solubility at the chosen reference temperature

around which the expansion is based. While the solubility of α-glycine is accurately known, various

data was collated to estimate β and γ-glycine solubility predictions as summarized in Table 3.6.

In Table 3.6, ∆µx−y is an estimate of the polymorph free energy difference at 298.15 K,

(cx/cy )(310K) is polymorph solubility ratios measured in water-antisolvent systems with various

solvent compositions at 310 K, TE and xE are eutectic temperature and composition measure-

ments, xγ corresponds to direct solubility measurements of γ-glycine, xα/xγ corresponds to α/γ

solubility ratios derived from direct solubility measurements reported together and Tα−γ corre-

sponds to estimates for the temperature at which the relative stability of α and γ-glycine changes.

Table 3.6: Summary of data used to estimate β and γ-glycine reference solubility

β γ

∆µγ−β(298.15K) ∆µα−γ(298.15K)

(cβ/cα)(310K) (cγ/cα)(310K)

TE and xE TE and xE

— xγ

— xγ/xα

— Tα−γ

Eutectic Temperature and Composition

The eutectic temperatures for α-, β-, and γ-glycine in water have been reported by various authors

and recently reviewed [130]. From the available data (see Appendix A (Eutectic Temperature and

Composition)), we note that β-glycine has the most reported measurements, followed by γ and
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finally α with a single measurement.

The eutectic temperatures for β and γ-glycine are consistent when the reported error is con-

sidered, while those reported for α-glycine are conflicting. We assume the reported eutectic

temperature of −3.6◦C for α is incorrect on the basis that it is the same as the reported value

for β-glycine, and our α-glycine solubility predictions indicate −2.8◦C is a more reasonable value.

The expected eutectic temperature for each polymorph was estimated by taking the mean of the

reported values and found to be −2.8, −3.7, and −2.8◦C for α, β and γ, respectively, on which

we estimate an uncertainty of ±0.1◦C. The resulting eutectic temperatures are presented along-

side selected freezing point measurements in Fig. 3.9. By evaluating the solution composition at
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Figure 3.9: Expected eutectic temperatures and freezing curve The open black symbols are freezing

curve measurements [131, 132, 133, 134, 135], and the grey dashed line is the best fit line. The

solid lines are the estimated eutectic temperature, and the opaque bands indicate the uncertainty.

Blue refers α-, grey refers to γ-, and red refers to β-glycine.

which the eutectic temperature range for β- and γ-glycine intersects the freezing point line, we

estimate their eutectic composition; giving xE,β = 0.040 ± 0.001 and xE,γ = 0.03 ± 0.001 for β

and γ, respectively. In the absence of reliable estimates for the solubility of β and γ-glycine at

298.15 K, the eutectic temperature and composition can be used as a point from which we can

base our solubility predictions. For example, we can iteratively perform solubility predictions with

different reference values and asses the resulting performance in relation to the estimated eutectic

temperature and composition. This would work for β-glycine; however, given that the eutectic
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temperature and composition estimate for γ is the same as α, the utility of the approach is limited

for γ-glycine.

Bouchard Ratios

Bouchard et al., report measurements of α-, β-, and γ-glycine solubility in water-antisolvent

mixtures of varying solvent composition at 310 K. Measurements for α- and γ-glycine are given

in pure water, giving a solubility ratio of xγ/xα = 0.974 ± 0.012. Measurements of β-glycine in

pure water are not reported due to rapid re-crystallization to α-glycine. However, using available

solubility measurement in antisolvent mixtures, we can estimate the solubility ratio of β and α

in pure water by extrapolating the solubility ratio from known antisolvent mixtures to pure water

(see Appendix A (Bouchard Ratios)). We find that this approach gives a reasonable estimate for

γ/α, thus apply it to β/γ. The estimated solubility ratio was found to be xβ/xα = 1.13± 0.08.

Polymorph Free Energy Difference Estimates

The free energy differences for glycine polymorphs (α and β) with respect to γ glycine at 298.15 K

have been estimated from pure crystal heat measurements at temperatures between 0 and 298.15 K

and enthalpy of solution measurements [136, 129, 105]. The free energy differences are reported as

∆µα,γ = 157±145 J mol−1 K−1 and ∆µβ,γ = 277 J mol−1 K−1, giving ∆µβ,α = 120 J mol−1 K−1. It

should be noted that the reported uncertainty for ∆µγ,α is of the same magnitude as the difference;

while no uncertainty was reported for ∆µβ,γ . From thermodynamics, it can be shown that the

solubility of two polymorphs at a given temperature is related to the free energy difference:

β(µs,αi − µ
s,γ
i ) = ln(x sat,αi γi(x

sat,α
i ))− ln(x sat,γi γi(x

sat,γ
i )) (3.42)

≈ ln(x sat,αi )− ln(x sat,γi ), (3.43)

where we make the assumption that the activity coefficient is approximately the same given that

we expect the mole fraction solubility of each polymorph to be reasonably close. From Eq. (3.43)

we estimate the solubility ratios to be xγ/xα = 0.94± 0.05 and xβ/xα = 1.05. It should be noted

that the mole fraction solubility ratio estimated for γ/α is in good agreement with those derived

from direct measurements (see Appendix A).

Solubility Predictions

Based on the discussion above, solubility predictions for β and γ-glycine were developed based on

the following. For β-glycine, the solubility prediction was fixed on the expected eutectic tempera-

ture of −3.7◦C using an iterative approach to find the “best” reference solubility at T0 = 298.15 K,

which was found to be 0.074 and 0.073 for the Scatchard-Hildebrand and Scatchard-Hildebrand-

Flory-Huggins solution models respectively. For γ-glycine, the ratio estimated by the free energy
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difference was used, giving xγ,298.15 = 0.052 (based on xα,298.15 = 0.056). The resulting solubility,

solubility ratio and eutectic point estimates are presented in Figs. 3.10, 3.11 and 3.12, respec-

tively; all of which are based on model paramaters presented in Table 3.4. As expected, the
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Figure 3.10: Solubility predictions for α, β and γ-glycine based on Eq. (3.16), with coefficients

derived from different glycine-water solution models. The dashed lines are the prediction of the

Scatchard-Hildebrand model, and the solid lines are the predictions of the Scatchard-Hildebrand-

Flory-Huggins model. Blue refers to α-, red refers to β-, and grey refers to γ-glycine solubility

in water. The black solid line is the best fit to the freezing point depression curve, and the black

dash-dotted line is the ideal boiling curve.

choice of the excess Gibbs free energy model has a similar impact on solubility predictions for β

and γ-glycine, as was seen for α-glycine, resulting in diverging solubility predictions away from the

reference temperature. As shown in Fig. 3.10, the effect of excess Gibbs free energy model on

solubility predictions for γ-glycine is similar to α-glycine—the predictions begin to diverge around

340 K. However, it is interesting to note predictions for β-glycine diverge much closer to the refer-

ence temperature (i.e. 298.15 K). This is likely a result of β-glycine having a much higher solubility

at 298.15 K which, as shown in Fig. 3.3, which corresponds to diverging estimates for ∂ ln γw/∂xg

and ∂2 ln γw/∂x
2
g , for each excess Gibbs free energy model. As such, we suggest 273.15–310 K

as reliable range for our β-glycine solubility predictions. However, we expect reliability could be

improved with accurate water activity data solution compositions above 0.055 glycine mole frac-

tion. This further highlights that prediction accuracy of the presented approach can be improved
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Figure 3.11: Eutectic temperature and composition predictions α-, β-, and γ-glycine based on

Eq. (3.16), with coefficients derived from different glycine-water solution models. Open circles

are freezing point measurements for water [131, 132, 133, 134, 135], and the grey dashed line

is the best-fit line, Blue refers to α-, red refers to β-, and grey refers to γ-glycine. The dashed

lines are the predictions of the Scatchard-Hildebrand, and the solid lines are the predictions of the

Scatchard-Hildebrand-Flory-Huggins model.
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Figure 3.12: Glycine polymorph mole fraction solubility ratio predictions based on Eq. (3.16), with

coefficients derived from different glycine-water solution models. Blue refers to the γ-α ratio, and

red refers to β-α ratio. The dashed lines is the prediction of the Scatchard-Hildebrand model, and

the solid lines Scatchard-Hildebrand-Flory-Huggins model. The open symbols are ratios derived

from direct measurements [131, 132, 133, 134, 135] and the pluses are estimates from free energy

ratios [129], stars are estimates from eutectic temperatures, triangles are estimates from Ref. [84]

and freezing point data, and grey squares are α-γ crossover estimates [137, 105, 138, 12, 139,

140, 141, 142]. Bars indicate uncertainty estimates.
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through more accurate estimation of partial derivatives of relevant thermodynamic quantities.

In addition, the mole fraction solubility ratios (across a wide range of temperature) are similarly

impacted. It is interesting to note the Scatchard-Hildebrand-Flory-Huggins model correctly predicts

the γ/α crossover in the range of temperatures reported in literature; however, the Scatchard-

Hildebrand model fails to do so, despite coming very close. This could be interpreted as an

indication that the composition dependence of the water activity coefficient is better described

by the Scatchard-Hildebrand-Flory-Huggins model. Both solution models predict β-glycine to be

least stable (i.e. highest solubility) in the temperature range explored, agreeing with qualitative

observations in the literature. However, predictions for β/α based on the expected eutectic

temperature appear to be inconsistent with independent ratio estimates derived from anti-solvent

mixture solubility data and free energy difference estimates, though this could be attributed to

significant uncertainty associated to both estimates.

Finally, we note that solubility predictions based on different solution models are approximately

identical in the eutectic region (as shown in Fig. 3.11), where the predicted eutectic temperature

and composition for α-glycine agrees extremely well with data available in literature, as does

γ (noting that models for α and γ were not based on the eutectic temperature at all). Our

predictions suggests that −2.7◦C is an appropriate eutectic temperature for γ-glycine.

3.4 Conclusions

A novel approach to estimate the temperature dependence of solubility was presented that relies on

experimentally accessible thermodynamic data at a single temperature. The approach was applied

the glycine-water system and it was found that, between 273 - 340 K, the approach provided

a solubility prediction that agreed very well with available direct solubility measurements for α-

glycine.

Sensitivity analysis was used to assess accuracy of solubility predictions with respect to un-

derlying measurement uncertainty, as well as underlying excess free energy models used to derive

required thermodynamic quantities. This provided a range of plausible solubility predictions far

from the chosen reference temperature, and in particular above 340 K where there is lack of reli-

able solubility data for glycine. Finally, we applied the approach to β and γ-glycine where previous

solubility data is inconsistent or limited, providing estimates for their aqueous solubility between

273–310 K and 273–330 K, respectively.

The approach introduced here provides a novel framework for how various thermodynamic

data can be used in concert to predict the temperature dependent solubility of crystal polymorphs.

This will be useful for systems where direct measurements of solubility are challenging for one or

more polymorphs. In addition, for compounds that undergo thermal decomposition or polymorph
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transition prior to melting.
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Chapter 4

A Local Expansion Approximation of

Solubility

The results presented in this chapter are in-preparation for submission as a manuscript authored

by Andrew Manson, Jan Sefcik and Leo Lue. It should be noted that large sections of this chapter

reflect those in the manuscript; however, adaptations have been made to improve readability in

the context of this thesis.

4.1 Introduction

In Chapter 3, a predictive approach allowing extrapolation of temperature dependent solubility

based on thermodynamic quantities evaluated at a specific point on the solubility curve was pro-

posed. As shown, this approach gave solubility estimates in good agreement with direct measure-

ments for α-glycine in water, around the chosen reference temperature (i.e., 298.15 K). However,

estimates were significantly impacted by the approach taken to derive required thermodynamic

quantities required to make predictions. Furthermore, the impact of the modeling approach was

challenging to quantify given that certainty around α-glycine aqueous solubility provided by direct

measurements decreased significantly at temperatures above 340 K.

In this chapter, we propose another approximate model describing solubility as a function of

temperature but instead of approximating thermodynamic quantities in the van’t Hoff equation,

we consider the difference in partial molar Gibbs free energy of the solute in a solid and saturated

solution directly. Again, like conventional thermodynamic interpretations for solubility, the resulting

model has parameters related to thermodynamic quantities other than solubility, although the

solubility at a chosen reference point is required. Further, like the approach described in Chapter 3,

this approach is applicable to systems where pure solute melting properties aren’t available, which
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is a potential limitation of conventional approaches. Finally, the approach presented in this chapter

gives an analytic (but still approximate) model for solubility expressed in terms of thermodynamic

quantities associated to the chosen reference point on the solubility curve, eliminating the need

to perform numerical integration required to make predictions with the approach proposed in

Chapter 3.

Using this approach, we estimate the temperature dependent aqueous solubility of three or-

ganic compounds: α-glycine, sucrose and urea, using a broad range of experimentally determined

thermodynamic properties reported in the literature, all of which at 298.15 K. For both urea and

sucrose, there exists a substantial amount of directly measured solubility data reported in the

literature across a broad range of temperature when compared to α-glycine, accompanied by a

meaningful amount thermodynamic data from which the quantities required to make predictions

can be derived. Furthermore, not only does each system represent different chemistry, the sol-

ubility curve for each system presents a different behavior when viewed from the perspective of

deviations from the van’t Hoff equation. As shown, solubility predictions derived from experimen-

tal data via mathematical modeling lead to predictions in good agreement with directly measured

solubility data for all compounds up to at least 340 K; however, as with the results derived for the

aqueous solubility of α-glycine presented in Chapter 3, predictions at temperatures above this are

sensitive to the mathematical modeling approach taken.

The remainder of this chapter is structured as follows. In the following section, a local expansion

view of solubility is developed starting from the condition that the chemical potential of a solute

as a pure solid and in solution are equal (i.e., Eq. (2.31)) at thermodynamic equilibrium. This

includes a discussion on the local behavior of the aqueous solubility for a broad collection of organic

compounds. Then, solubility estimates for each system (i.e., α-glycine, sucrose and urea) are

presented in the context of available experimental data used to evaluate relevant thermodynamic

quantities need to make predictions.

4.2 A Local Expansion View of Solubility

In Chapter 2, it was shown that a necessary condition for solid-liquid equilibrium was the equiv-

alence of chemical potential between a hypothetical solid phase and a saturated liquid solution

containing the same compound as that in the pure solid phase (i.e., Eq. (2.31)), which are as-

sumed to depend on temperature, and temperature and composition, respectively. If we assume

that β(µl1(T, x) − µs,◦1 (T )) = f (T, x) (where subscript 1 and 2 denote solute and solvent re-

spectively, as in Chapter 3) is adequately described (at least locally) by a Taylor series expanded

around an arbitrary temperature and composition in terms of β and ln x and neglecting terms
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above 1st-order gives:

β
(
µl1(T, x)− µs,◦1 (T )

)
≈ β0

(
µl1(T0, x0)− µs,◦1 (T0)

)
+
(
h̄l1(T0, x0)− h̄s,◦1 (T0)

)
(β − β0)

+

(
1 +
∂ ln γ1(T0, x0)

∂ ln x1

)(
ln
x1
x1,0

)
,

(4.1)

which, when combined with Eq. (2.31) and re-arranged, gives an explicit but approximate model

describing the temperature dependence of solubility:

ln
x1,sat(T )

x1,sat(T0)
= −

β0
(
h̄l1(T, x1,sat(T ))− h̄s,◦1 (T )

)
1 + ∂ ln γ1(T, x1,sat(T ))/∂ ln x1

(
β

β0
− 1

)
(4.2)

where ∂(βµ1)/∂β = h̄1 and ∂(βµl1)/∂ ln x1 = 1 + ∂ ln γ1/∂ ln x1 where βµl1 = βµl ,◦1 + ln(x1γ1),

were used. Crucially, as shown in Chapter 3, these thermodynamic quantities can be estimated

via mathematical modelling of conventional experimental measurement techniques, none of which

require knowledge of the pure solid melting properties, thus mitigating potential issues with pre-

dictive approaches based on Eq. (3.1). For notational convenience, Eq. (4.2) can be re-written

as:

ln x⊕1,sat(T ) ≈ −
c0
b0
ε, (4.3)

where c0 = β0∆h̄
(0)
1 , b0 = 1 + ∂ ln γ

(0)
1 /∂ ln xg, ε = β/β0 − 1 = T0/T − 1 and ln x⊕1,sat(T ) =

ln(x1,sat(T )/x1,sat(T0)), where the superscript (0) denotes the property is evaluated at a temper-

ature T0 and the corresponding saturation composition x1,sat(T0). As an aside, the limiting case

where T0 is taken as the pure solute normal melting temperature (i.e., Tm) reduces Eq. (4.3) to:

ln x⊕1,sat(T ) ≈ −∆hfus(Tm)ε, (4.4)

where ∆hfus is the pure solute normal enthalpy of fusion. The 1st-order expansion (in terms of

β and ln xg) (i.e., Eq. (4.3)) can be found by integrating the the exact form of the ‘van’t Hoff’

equation applied to solid-liquid equilibrium [143]:

d ln x⊕1 (T )

dε
= −

β0∆h̄1(T, x1,sat(T ))

1 + ∂ ln γ1(T, x1,sat(T ))/∂ ln x1
, (4.5)

under the assumption that the right hand side is constant, evaluated at T0. Equation (4.3) implies

that ln x⊕1,sat(T ) should be linear when plotted vs. 1/T , which is sometimes referred to as a ‘van’t

Hoff plot’. However, solubility plotted in a van’t Hoff plot is generally not linear when covering

a broad range of temperature [73], as alluded to in Chapter 3. To illustrate this, the aqueous

solubility of thirty seven organic compounds using data reported in [6] and used previously by [144]

was used. As an aside, solubility data used in this analysis is reported for all compounds at the

following temperatures T ∈ [273.15, 283.15, 293.15, 303.15, 313.15, 333.15, 353.15, 373.15]K. It

should be noted that the original source of the data is not specified; however, we assume it to be
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reliable enough for illustrative purposes. Following the approach used in [144], solubility data for

each compound was correlated using the following three parameter equation for solubility:

ln x1,sat(T ) = A+ B/T + C lnT, (4.6)

where A, B and C are free parameters. Once parameterised, the ratio c0/b0 was derived for each

compound at 313.15 K via:
c0
b0

= C −
B

T0
(4.7)

which comes from Eq. (4.3). Then, the reduced solubility (i.e., ln x⊕1,sat) was plotted against

(b0/c0)ε (where ε = 313.15/T − 1), fixing the reference solubility and associated slope for all

compounds and providing a simple way to visualise how solubility may (or may not) deviate from a

hypothetical van’t Hoff behaving system as, from Eq. (4.5), a compound whose solubility followed

the van’t Hoff equation would lie on a diagonal line with gradient -1, and any line deviating from

this would require a more complex model. The solubility data for each compound relative to it’s

predicted solubility via Eq. (4.3) is shown in Fig. 4.1 and a complete list of compounds is provided

in Table 4.1.

From Fig. 4.1, the 1st-order solubility model (i.e., Eq. (4.3)) has limited practical utility for

many of the compounds analysed, as shown by the blue and red solid lines deviating from the dashed

grey line as c0/b0ε moves from 0 (i.e., as the solubility moves away from the chosen reference

point). In the context of the Taylor series, this is generally what we expect, given that only 1st-

order terms have been used and a truncated Taylor series is approximate by definition beyond a

application specific distance. More generally, fourteen of the compounds have a negative curvature

(i.e., deviate ‘down’ from the van’t Hoff reference line and colored blue) and the remaining twenty

three have a positive curvature (i.e., deviate ‘up’ from the van’t Hoff reference line and colored

red). The compounds included in this analysis cover a diverse range of chemistry, including:

amino acids, aromatic (alcohols, acids, etc.,), carboxylic acids, sugars, etc. For the main groups

analysed, no relationship between chemistry and curvature was noted, as per Table B.1 provided

in Appendix B which groups compounds by chemistry. Model parameters generated as part of this

analysis are reported in Table B.2, also in Appendix B.

Given the inadequacy of Eq. (4.3), we extend our Taylor series analysis to include 2nd-order

terms for β(µl1(T, x) − µs1(T )) where the expansion is again carried out in terms of β and ln x1,
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Figure 4.1: Modeled deviations from Eq. (4.3) for the aqueous solubility of 37 organic solutes

reported in [6]. The dashed grey line indicates the reference for solubility obeying Eq. (4.3) at

all temperatures. Solid red and blue lines correspond to modeled solubility. ε = T0/T − 1, where

T0 = 313.15 K.
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Table 4.1: Organic compounds with solubility reported in [6] and associated curvature defined

relative to Eq. (4.3).

Compound Curvature Compound Curvature

Adipic Acid + Alanine (D) +

Alanine (DL) + o-Aminophenol −

p-Aminophenol + Benzoic Acid +

Citric Acid + Dicyandiamide +

Fumaric Acid + Glucose −

Glutamic Acid (D) + Glycine −

Hydroquinone − o-Hydroxybenzoic Acid +

m-Hydrobenzoic Acid + p-Hydroxybenzoic Acid +

Lactose + Maleic Acid −

Malic Acid (DL) + Malonic Acid +

Maltose + Mannitol (D) +

Melamine + Oxalic Acid −

Pentaerythritol + o-Phthalic Acid +

Picric Acid + Raffinose −

Resorcinol − Salicylic Acid +

Succinic Acid + Succinimide −

Sucrose + Tartaric Acid +

Tartaric Acid (racemic) − Taurine −

Thiourea − Urea −

Uric Acid −
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giving:

β
(
µl1(T, x)− µs1(T )

)
≈ β0

(
µl1(T0, x0)− µs1(T0)

)
+ β0

(
h̄l1(T0, x0)− h̄s1(T0)

)( β
β0
− 1

)
−

1

2!

(
c̄ lp,1(T0, x0)− c̄sp,1(T0)

)
R

(
β

β0
− 1

)2
+

(
1 +
∂ ln γ1(T0, x1,0)

∂ ln x1

)(
ln
x1
x1,0

)
+

1

2!

(
∂2 ln γ1(T0, x1,0)

∂ ln x2

)(
ln
x1
x1,0

)2
+ β0

∂h̄l1(T0, x1,0)

∂ ln x1

(
ln
x1
x1,0

)(
β

β0
− 1

)

(4.8)

Combining with Eq. (2.12) gives:

ln
x1,sat(T )

x1,sat(T0)
≈

−2c(T )

b(T ) +
√
b(T )2 − 4ac(T )

, (4.9)

where:

a =
1

2!

∂2 ln γ
(0)
1

∂ ln x21
, (4.10)

b(T ) = 1 +
∂ ln γ

(0)
1

∂ ln x1
+ β0

∂h̄
l ,(0)
1

∂ ln x1
ε = b0 + b1ε, (4.11)

c(T ) = β0∆h̄
(0)
1 ε−

1

2!

∆c̄
(0)
p,1

R
ε2 = c0ε+ c1ε

2, (4.12)

noting that ∂2(βµ1)/∂β
2 = −RT 2c̄p,1 where c̄p,1 is the partial molar heat capacity of solute in

solution.

Equation (4.9) expresses solubility in terms of five thermodynamic quantities. As noted already,

models with fewer parameters can correlate temperature dependent solubility data over varying

temperature ranges. However, we would like to emphasize that parameters in our approach have a

clear thermodynamic interpretation and can, in theory, be evaluated from experimental measure-

ments, as illustrated in the proceeding section.

It should be noted that both Eq. (4.3) and (4.9) can be derived by considering the solute

chemical potentials individually in terms of the same Taylor series expansion. However, by focusing

on β(µs1−µl1), we avoid forcing the underlying chemical potential to have specific forms, which is

beyond the scope of this chapter.

4.3 The Aqueous Solubility of α-glycine, Urea and Sucrose in

Water

A literature review was completed to identify model systems to test the solubility prediction frame-

work proposed in the previous section. More specifically, systems with a significant amount of
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directly measured solubility data (across a broad range of temperature), as well as solid and liq-

uid solution phase thermodynamic data, were sought. In addition to the α-glycine-water system,

which was the subject of analysis in Chapter 3, urea-water and sucrose-water were identified as

model systems to examine the application of Eq. (4.9).

(a) Sucrose (b) Urea

Figure 4.2: Molecular structures of sucrose and urea.

Briefly, sucrose is a disaccharide formed from the monosaccharides fructose and glucose and

it’s chemical structure is illustrated in Fig. 4.2. Sucrose is an industrially relevant compound used

throughout the food industry. The sucrose-water system has well defined phase boundaries and

relatively speaking, when compared to other industrially relevant binary solute-solvent systems,

broad coverage of experimental studies on the solution phase. The volume and diversity of data

available for the sucrose-water system is captured by a substantial compilation provided in [145].

Compared to sucrose, urea is small molecule with a less complex structure (see Fig. 4.2). However,

has substantial biological and industrial importance.

Directly measured aqueous solubility for α-glycine, urea and sucrose is presented in Fig. 4.3

showing that, although limited in number, these systems display diverse solubility behavior. Urea

appears to have a solubility dependence adequately described by Eq. (4.3), as shown by mea-

surement data lying on the diagonal black line. In comparison, α-glycine shows a mild negative

deviation, while sucrose has a more extreme positive deviation.

4.3.1 Methodology

As with the work described in Chapter 3, there are many ways in which the thermodynamic quan-

tities in Eq. (4.9) can be estimated from experimental measurements. In this chapter, we apply

the approach used in Chapter 3 where all parameters are evaluated with thermodynamic data col-

lected at the chosen reference temperature (i.e., T0), which in this chapter is taken as 298.15 K

(as in Chapter 3). This is in part motivated by the availability of thermodynamic data, where

the majority of experimentally determined thermodynamic quantities used to make predictions are

reported at standard conditions (i.e., 298.15 K and 1 atm). However, as mentioned in Chapter 3,

this approach has an advantage that, if a temperature is found where all measurements are mu-
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Figure 4.3: Aqueous solubility of α-glycine [89, 12, 93, 91, 92, 96, 97, 98, 99, 100, 101, 102,

25], sucrose [146, 147, 148, 149, 150, 151] and urea [152, 153, 154, 155, 156, 157, 158]. Blue

open circles correspond to direct measurements for α-glycine. Grey open circles correspond to

direct measurements for urea. Red open circles correspond to direct measurements for sucrose.

Solid black line with slope −1 corresponds to Equation (4.3). ln x⊕g,sat = ln(xg,sat(T )/xg,sat(T0))

and ε = T0/T − 1 where T0 = 298.15 K.
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tually convenient to perform (e.g., 298.15 K) and potential users of this approach have access to

required instrumentation, experimental effort may be reduced. In addition, it allows estimation

of quantities using measurements closely related to the property of interest. For example, we

used enthalpy-based measurements to estimate the partial molar enthalpy and heat capacity mea-

surements to estimate the partial molar heat capacity. Potential users of this approach may use

any thermodynamically consistent methodology to estimate thermodynamic quantities required to

make solubility predictions via Eq. (4.9).

For quantities derived from measures of solution thermodynamics, binary solutions were mod-

eled by considering the Gibbs free energy of the solution, defined here as:

βgsol. = βgR + βgE, (4.13)

where βgR was taken as the ideal solution defined with respect to Raoult’s Law [159]:

βgR = x1(βµ
l ,◦
1 + log x1) + x2(βµ

l ,◦
2 + log x2), (4.14)

and βgE was assumed to follow a Redlich-Kister polynomial [40]:

βgE = x1x2
[
A+ B(x1 − x2) + C(x1 − x2)2 +D(x1 − x2)3 + . . .

]
. (4.15)

For a given system, it is not possible to know the most appropriate combination of parameters

in Eq. (4.15) required to describe available thermodynamic data a priori. As such an iterative

approach was employed in this chapter where the number of parameters used were increased,

starting with A only, then A and B, then A, B and C, and finally A, B, C and D, and the

appropriateness of each model analysed through a measure of ‘best fit’, as well as through visual

comparison to available data, where possible.

For the purpose of this chapter, parameters in Eq. (4.15) were assumed to depend on tem-

perature via: M = M0 + M1(T0/T − 1) + M2(log(T0/T ) − T0/T + 1) (where M denotes A,

B, C and D) with T0 = 298.15 K. Interpreting the parameters in this way makes it possible to

separately evaluate parameters associated different types of thermodynamic quantities required to

make predictions via Eq. (4.9), in a manner similar to the approach described in Chapter 3. More

specifically, for the system described by a Redlich-Kister expansion with parameters A, B, C and

D, the enthalpy and heat capacity of a binary mixture at T0 is given by:

hsol.(T0, x1) = x1h
l ,◦
1 (T0) + x2h

l ,◦
2 (T0)

+ x1x2
[
A1 + B1(x1 − x2) + C1(x1 − x2)2 +D1(x1 − x2)3

]
,

(4.16)

and

csol.p (T0, x1) = x1c
l ,◦
p,1(T0) + x2c

l ,◦
p,2(T0)

+ x1x2
[
A2 + B2(x1 − x2) + C2(x1 − x2)2 +D2(x1 − x2)3

]
,

(4.17)
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respectively. For each of the systems studied in the remainder of this chapter, estimating the

parameters required to make solubility predictions with Eq. (4.9) involved three stages of modeling.

First, data from which the solvent activity (defined relative to Raoult’s Law) in solution could

be derived was used to evaluate parameters A0, B0, C0 and D0 in Eq. (4.15), noting that(
∂βG

∂n2

)
n1,T,P

= ln γ2, (4.18)

where ln γ2 is the solvent activity coefficient (again, defined relative to Raoult’s Law). Then,

estimates for the solute activity coefficient in solution at discrete concentrations were determined

using the parameters just mentioned via:(
∂βG

∂n1

)
nj ,T,P

= ln γ1. (4.19)

Both steps were performed using a bespoke Python code leveraging Automatic Differentiation,

described in greater detail in Chapter 5. To estimate the composition partial derivatives required

to make predictions (i.e., ∂ ln γ1/∂ ln x1 and ∂2 ln γ1/∂ ln x21 ), numerical differentiation was used,

noting:
∂f (x)

∂x
≈
f (x + ∆x)− f (x − ∆x)

2(∆x)
, (4.20)

and:
∂2f (x)

∂x
≈
f (x − ∆x)− 2f (x) + f (x + ∆x)

(∆x)2
. (4.21)

It should be noted that a value of ∆ ln x1 = 0.001 was taken for all systems.

Data related to enthalpy changes involving the liquid solution phase were used to parameterise

Eq. (4.16), providing estimates for A1, B1, C1 andD1. As with the parameters related to the solute

activity coefficient (and associated composition derivatives), the excess partial molar enthalpy

(defined relative to the infinitely dilute reference state) required to estimate ∆h̄
(0)
1 was found

using AD, since: (
∂H

∂n1

)
nj ,T,P

= h̄1. (4.22)

However, as with the solute activity partial derivatives, the composition derivative (i.e., β0∂h̄1
l ,(0)
/∂ ln x1)

was found using numerical differentiation Eq. (4.20).

Finally, solution heat capacity data was used to parameterise Eq. (4.17), giving estimates for

A2, B2, C2 and D2. Again, the partial molar enthalpy of solute in solution was determined using

AD, given that: (
∂Cp
∂n1

)
= c̄p,1. (4.23)

For the models proposed in this chapter, all fitting was completed using a ‘residual sum of

squares’ (RSS) objective function (i.e., RSS =
∑N
i (ydatai − f (θ, xi)

model)2, where ydatai is an

experimentally measured quantity, f (θ, xi)
model is the same quantity predicted from the relevant

model and N is the number of data points). It should be noted that, at each stage of the modelling
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process (described above), experimental data was weighted equally (c.f. Chapter 5), with the

exception for obvious outliers which were discarded when relevant. All fitting was completed using

a bespoke set of Python modules (noted previously) described in Chapter 5 coupled with the Nelder-

Mead optimisation algorithm [160] implemented in SciPy [161]. For parameter estimation, the

optimisation algorithm used requires initial estimates for parameter values. For most parameter

sets evaluated in the remainder of this chapter, satisfactory parameter values were found by

initialising the optimisation algorithm with all parameter values set to zero; however, in some

cases, paramater values were initialised at non-zero values to obtain reasonable fits. Generally

speaking, this is to be expected on occasion and can be related to the optimisation process (i.e.,

algorithm, measure of best fit, etc.,) finding local minima (and failing to find ‘better’ solutions),

subject to poor initial parameter choice. For completeness, the initial values associated to the

parameter values tabulated in the remainder of this chapter are provided in Appendix C.

The remainder of this chapter is dedicated to the mathematical modelling of available exper-

imental data, estimation of thermodynamic quantities required to make use of Eq. (4.9), and

assessment of associated solubility predictions by comparison to available experimental data. It

should be noted that for each system (i.e., α-glycine-water, sucrose-water and urea-water), solu-

bility predictions are presented for all models which provide a ‘reasonable’ fit to experimental data.

We note that from a certain perspective, this means we include models that are unnecessarily com-

plex (i.e., additional parameters don’t make a meaningful difference in terms of reducing measure

of best fit); however, including a range of models provides a simple way to capture model-based

variance and it’s impact on the applicability of Eq. 4.9 as a predictive tool, and aides assessment

of sensitivity highlighted in Chapter 3.

4.3.2 α-Glycine

For the α-glycine-water system, data from which the water activity coefficient could be inferred

included six independent reports of glycine isopiestic molality as noted in Chapter 3. As before,

isopiestic molalities were converted to osmotic coefficients using a model for the omsotic coefficient

of reference solutions and then to solvent activity coefficient via Eq. (3.39). Experimental data and

corresponding best fits derived from Eq. (4.15) with parameters A0, B0, C0 and D0 are presented

in Fig. 4.4. The resulting parameter values for each fit are provided in Table 4.2.

From Fig. 4.4, the fit with only one parameter (i.e., A0) produces a model in poor visual

agreement with available data. However, models with at least two parameters (i.e., A0, B0,

etc.,) gave fits in good visual agreement with available data. These findings are supported by the

associated RSS values provided in Table 4.2, where models 2, 3 and 4 have a markedly lower RSS,

when compared to model 1. Close inspection of Fig. 4.4 indicates that near α-glycine saturation

(i.e., 0.056 mole fraction), the fits including more than one parameter deviate slightly, which may
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Figure 4.4: Processed water activity coefficient (Raoult’s Law) data in binary mixtures with glycine

at 298.15 K. Open grey symbols denote processed experimental data [107, 108, 109, 87, 110, 111,

85, 112, 113, 114, 115, 116], . Colored dashed lines correspond to fits using Eq. (4.15), with

black denoting model 1, red denoting model 2, blue denoting a fit with model 3 and grey denoting

model 4, as per Table 4.2.

Table 4.2: Redlich-Kister parameter values for α-glycine solvent activity data fits. Values reported

for ∂ ln γ1/∂ ln x1 and ∂2 ln γ1/∂ ln x21 have been evaluated at solution composition of 0.056 glycine

mole fraction.

Model RSS A0 B0 C0 D0 ∂ ln γ
(0)
1 /∂ ln x1 ∂2 ln γ

(0)
1 /∂ ln x21

(-) (-) (-) (-) (-) (-)

1 0.0096 2.20 0.0096 0.0276

2 0.00025 -28.95 11.01 0.0024 -0.0185

3 0.00023 4.49 -8.87 5.25 0.0029 -0.0148

4 0.00023 -5.98 -2.34 3.22 0.146 0.0028 -0.0158
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Figure 4.5: Solute activity coefficient first partial derivative with respect to solute composition

estimated from best fits shown in Fig. 4.4. Colored dashed lines correspond to different models,

with black denoting a fit with A0, red denoting a fit with A0 and B0, blue denoting a fit with A0,

B0 and C0 and grey denoting a fit with A0, B0, C0 and D0.

lead to differences in the partial derivatives (i.e., ∂ ln γ1/∂ ln x1 and ∂2 ln γ1/∂ ln x21 ) required for

predictions. As illustrated in Chapter 3, differences in these quantities can lead to significant

differences in predictions far from the chosen reference temperature.

The first and second solute activity coefficient partial derivatives with respect to composition

derived from the fits to solvent activity data are presented in Fig. 4.5 and 4.6, respectively. The

partial derivatives (i.e., ∂ ln γ1/∂ ln x1 and ∂2 ln γ1/∂ ln x21 ) derived from models including more

than one parameter are in good agreement; however, begin to diverge close to the α-glycine

saturation composition. For each model, values for ∂ ln γ
(0)
1 /∂ ln x1 and ∂2 ln γ

(0)
1 /∂ ln x21 at an

assumed saturation composition of 0.056 glycine mole fraction are presented in Table 4.2.

Again, as outlined in Chapter 3, the enthalpy of dilution has been reported at 298.15 K over

a range of solution compositions by at least four independent studies (based on the dataset used

in [80]), all of which report dilution measurements where a finite amount of solvent was added to

a glycine-water solution of known concentration and the heat evolved measured, as well as the

final solution composition. Equation (4.15) was fit to the composite dataset via Eq. (3.19) and
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Figure 4.6: Solute activity coefficient first partial derivative with respect to solute composition

estimated from best fits shown in Fig. 4.4. Colored dashed lines correspond to different models,

with black denoting a fit with A0, red denoting a fit with A0 and B0, blue denoting a fit with A0,

B0 and C0 and grey denoting a fit with A0, B0, C0 and D0.
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the resulting parameters are given in Table 4.3, with estimates for ∆h̄(0) (noting the enthalpy of

solution to infinite dilution for α-glycine was taken as 14523 J/mol.K, as noted in Chapter 3)

and β0∂h̄
l ,(0)
1 /∂ ln x1. For each model, the corresponding estimate of h̄,l1 − h

,∞
1 is presented in

Table 4.3: Redlich-Kister parameter values for α-glycine enthalpy of dilution data fits

Model RSS A1 B1 C1 D1 ∆h̄
(0)
1 β0∂∆h̄

(0)
1 /∂ ln x1

(J/mol) (J/mol) (J/mol) (J/mol) (J/mol) (-)

1 445151 4.66 13265 -0.49

2 409354 -59.02 21.71 13878 0.13

3 330216 8132.34 -4774.43 11732 -4.39

4 330167 277.63 1105.87 -1521.98 575.11 11789 -4.20

Fig. 4.7. The quantity β0∂∆h̄
(0)
1 /∂ ln x1 derived from the aforementioned fits is presented in

Fig. 4.8. Focusing on the RSS values for models 1–4 in Table 4.3, as the number of parameters

increases the RSS decreases with each additional parameter—potentially indicating that model 4

best describes the data. Based on each models predicted composition dependence for h̄l1 − hl ,∞1
and βo∂h̄

l
1∂ ln x1 illustrated in Fig. 4.7 and 4.8, there are three different behaviors predicted by

model 1, model 2 and models 3 and 4 (which are in good agreement with each other), respectively.

Briefly, the motivation for illustrating h̄,l1 − h
,∞
1 comes from, as described previously in Chapter 3,

the fact that it can be combined with enthalpy of solution measurements reported for infinitely

dilute solution concentrations giving the quantity ∆h̄(0) which is required to make predictions.

However, as noted in Chapter 3, there is no simple way to visually compare models to enthalpy of

dilution data, as such it is challenging to validate whether the reduced RSS observed for models

3–4 is the result of over-fitting—where a mathematical model is too flexible for a given dataset,

and captures noise rather than signal.

For ∆c̄
(0)
p,1 , two quantities are required—the pure solid solute molar heat capacity (i.e., c̄sp,1(T0))

and the partial molar heat capacity of solute in solution at saturation (i.e., c̄ lp,1(T0, x1,sat(T0))). It

is possible to measure the pure solid solute heat capacity using conventional techniques, and taken

as 99.23 J/mol.K for α-glycine at 298.15 K (see Chapter 3). There are no methods available

to measure the solute partial molar heat capacity in solution directly; however, it is possible to

estimate if the solution heat capacity is available at the reference temperature as a function of

solution concentration (which is readily measurable), since c̄ lp,1 = ∂Csolnp /∂n1.

Heat capacity data for glycine-water solutions reported in the literature at 298.15 K is shown

in Fig. 4.9 with best fits derived from Eq. (4.17) where the molar heat capacity of pure liquid

water (i.e., c l ,◦p,2) was taken as 75.2 J/mol.K. It should be noted that fitting solution heat capacity

data also requires fitting an additional parameter—c l,◦p,1(T0) (as well as of A2, B2, etc.)—which
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Figure 4.7: Estimates for h̄l1−hl,∞1 derived from fits to experimental enthalpy of dilution measure-

ments at 298.15 K using Eq. (4.15). Colored dashed lines correspond to different models, with

black denoting a fit with A1, red denoting a fit with A1 and B1, blue denoting a fit with A1, B1

and C1 and grey denoting a fit with A1, B1, C1 and D1.
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Figure 4.8: Estimates for β∂∆h̄l1/∂ ln x1 derived from fits to experimental enthalpy of dilution

measurements at 298.15 K using Eq. (4.15). Colored dashed lines correspond to different models,

with black denoting a fit with A1, red denoting a fit with A1 and B1, blue denoting a fit with A1,

B1 and C1 and grey denoting a fit with A1, B1, C1 and D1.
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may be interpreted as the heat capacity of pure liquid solute.

Experimentally determined solution heat capacity measurements for glycine-water solutions

are shown alongside best-fit models in Fig. 4.9. The resulting parameter values for each fit are
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Figure 4.9: Solution heat capacity for glycine-water solutions at 298.15 K. Open grey circles

correspond to solution heat capacity measurements reported in literature [77, 125, 126, 127,

128]. Colored dashed lines correspond to different models, with black denoting a fit with A2, red

denoting a fit with A2 and B2, blue denoting a fit with A2, B2 and C2 and grey denoting a fit with

A2, B2, C2 and D2. It should be noted that red, blue and grey lines overlap.

provided in Table 4.4, with estimates for ∆c̄
(0)
p,1 .

Table 4.4: Redlich-Kister parameter values and for glycine-water solution heat capacity fits

Model RSS A2 B2 C2 D2 cs,◦p,1 ∆c̄
(0)
p,1

(J/mol.K) (J/mol.K) (J/mol.K) (J/mol.K) (J/mol.K) (J/mol.K)

1 0.016 -648.61 693.21 15.98

2 0.010 6589.24 -2521.38 -4027.16 1.93

3 0.010 3125.67 -476.47 -535.18 -2073.35 2.12

4 0.010 519.75 -432.44 925.92 -692.68 -279.98 2.74
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From Fig. 4.9, all models are in good visual agreement with available solution heat capacity

data. It should be noted that models 2–4 give models in excellent agreement with each other,

but noticeably different to model 1. With reference to the RSS values given in Table 4.4, models

2–4 have a lower value compared to model 1. The partial molar heat capacity of glycine derived

from each model is presented in Fig. 4.10, where it is shown that the models able to represent

available data give slightly different estimates at α-glycine saturation (i.e., 0.056 mole fraction).

As shown, the partial molar heat capacity of sucrose is in excellent agreement for models 2–4, but
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Figure 4.10: Partial molar heat capacity of glycine in glycine-water mixtures at 298.15 K derived

from fits to soution heat capacity data using Redlich-Kister models. Colored dashed lines corre-

spond to different models, with black denoting a fit with A2, red denoting a fit with A2 and B2,

blue denoting a fit with A2, B2 and C2 and grey denoting A2, B2, C2 and D2. It should be noted

that red, blue and grey lines overlap.

differs for model 1.

Thus far, different types of experimental data have been used to develop estimates for the

thermodynamic quantities required to estimate solubility via Eq. (4.9). As shown, the modeling

process used leads to different estimates for thermodynamic quantities, even when different models

appear to have nearly equivalent fits to available data, from a RSS and visual perspective. For

parameters related to the solute activity coefficient (i.e., ∂ ln γ
(0)
1 /∂ ln x1 and ∂2 ln γ1/∂ ln x21 ) and
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Figure 4.11: α-Glycine solubility predictions based on Eq. (4.9). Open grey symbols denote

directly measured solid-liquid equilibria reported in the literature (solubility [89, 12, 93, 91, 92,

96, 97, 98, 99, 100, 101, 102, 25] and freezing point [131, 132, 133, 134, 135]). Solid lines are

predictions derived from Eq. (4.9) based on all combinations of thermodynamic quantities provided

in Table 4.2 (models 2–4), 4.3 (all models) and 4.4 (all models). The red band corresponds to

all predictions based on model three and four in Table 4.3. The grey band corresponds to all

predictions based on model one in Table 4.3. The blue band corresponds to all predictions based

on model two in Table 4.3.

partial molar heat capacity (i.e., ∆c̄
(0)
p,1 ), available experimental data provides a degree of certainty

around their value, despite there being differences in derived quantities between models providing

‘good’ fits to experimental data. In contrast, there is significant uncertainty with parameters

derived from enthalpy measurements (i.e., ∆h̄
(0)
1 and β0∂∆h̄01/∂ ln x1), due to the availability and

type of experimental data, and our inability to visually assess fits.

Solubility predictions based on Eq. (4.9) are presented in Fig. 4.11. The predictions correspond

to all combinations of derived quantities based on models that gave plausible fits to experimental

data, including: models 2–4 in Table 4.2, all models in Table 4.3 and all models in Table 4.4

As shown, predictions are grouped into three distinct ‘bands’ driven by the values of ∆h̄
(0)
1

and β0∂∆h̄
(0)
1 /∂ ln x1. Predictions in the red band are based on enthalpy parameters derived from
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model three and four in Table 4.3 and are in extremely poor agreement with available solubility

data, even locally around 298.15 K. This potentially indicates that these models were too flexible

for the available data, leading to over-fitting.

Predictions in the grey band are based on enthalpy parameters derived from model one and

predictions in the blue band are based on enthalpy parameters derived from model two in Table 4.3,

respectively. Both bands give predictions in good agreement with directly measured solubility

data near the reference temperature (i.e., in the range 270–340 K, where data is most reliable).

Interestingly, across nearly the entire range of temperature for which directly-measured solubility

data is available (i.e., 270–390 K), models in the grey band are in excellent agreement with said

data.

Beyond 340 K, predictions in the grey and blue bands diverge in a similar manner to those

presented in Chapter 3. However, beyond the differences in the underlying mathematical model

used for fitting, the thermodynamic quantities driving divergence are different (i.e., in Chapter 3,

it was quantities related to the composition dependence of the solute activity coefficient, while

here it is the enthalpy). Closer inspection of the values of ∆h̄
(0)
1 and β0∂∆h̄

(0)
1 /∂ ln x1 in Table 4.3

suggest that it’s the latter driving the divergence between grey and blue bands, given the significant

difference depending on the chosen model.

In summary, solubility predictions based on Eq. (4.9), where all thermodynamic properties

required were derived from experimentally measurable quantities reported at 298.15 K, give en-

couraging results for the aqueous solubility of α-glycine. However, additional measurements from

which ∆h̄
(0)
1 and β0∂h̄

l
1/∂ ln x1 can be derived would be useful to reduce divergence between pre-

dictions at temperatures above 340 K, and disentangle the effect of uncertainty due to the approx-

imate nature of Eq. (4.9), and that due to mathematical modelling as a tool to estimate required

quantities.

4.3.3 Sucrose

For the sucrose-water system, the types of experimental measurements reported include: vapor

pressure, isopiestic molality (i.e., osmotic coefficients) and relative humidity [145].

For completeness, vapor pressure measurements of pure water above sucrose-water solutions,

the water activity coefficient was found using via Eq. (3.41). When a dataset didn’t include a

reference vapor pressure measurement for pure water, the value 3169 Pa was used. For mea-

surements of the isopiestic molality, the water activity coefficient was found in the same way as

described for α-glycine solutions. For measurements of the relative humidity, the water activity

coefficient was found via:

ln γ2 = ln

(
ERH

100x2

)
. (4.24)
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Experimental data processed into ln γw , and corresponding best fits derived from Eq. (4.15) with

parameters A0, B0, C0 and D0 are presented in Fig. 4.12. Parameter values for each fit are
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Figure 4.12: Processed water activity coefficient (Raoult’s Law) data in sucrose-water liquid

mixtures at 298.15 K. Open grey symbols denote estimates from processed experimental data [162,

163, 164, 165, 166, 167, 168, 169, 170, 150, 171, 172, 173, 174]. Colored dashed lines correspond

to fits using Eq. (4.15), with black denoting a fit with A0, red denoting a fit with A0 and B0, blue

denoting a fit with A0, B0 and C0 and grey denoting a fit with A0, B0, C0 and D0.

provided in Table 4.5. As illustrated in Fig. 4.12, all fits produce models in good visual agreement

Table 4.5: Redlich-Kister parameter values for sucrose solvent activity data fits

Model RSS A0 B0 C0 D0 ∂ ln γ
(0)
1 /∂ ln x1 ∂2 ln γ

(0)
1 /∂ ln x21

(-) (-) (-) (-) (-) (-)

1 0.0004 -6.55 1.158 1.032

2 0.0004 -9.55 1.13 1.207 1.193

3 0.0004 -2.13 -3.5 1.31 1.202 1.146

4 0.0004 0.44 -5.08 1.74 0.01 1.199 1.127

with available data. Close inspection of Fig. 4.12 indicates that near sucrose saturation (i.e.,
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0.098 mole fraction), the fits including more than one parameter deviate slightly, which may

lead to differences in the partial derivatives (i.e., ∂ ln γ1/∂ ln x1 and ∂2 ln γ1/∂ ln x21 ) required for

predictions.

The first and second solute activity coefficient partial derivatives with respect to composition

(i.e., ∂ ln γ1/∂ ln x1 and ∂2 ln γ1/∂ ln x21 ) derived from the fits to solvent activity data are presented

in Fig. 4.13 and 4.14, respectively. From Fig. 4.13, the first partial derivate estimates for all
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Figure 4.13: Solute activity coefficient first partial derivative with respect to solute composition

estimated from best fits shown in Fig. 4.12. Colored dashed lines correspond to different models,

with black denoting a fit with A0, red denoting a fit with A0 and B0, blue denoting a fit with A0,

B0 and C0 and grey denoting a fit with A0, B0, C0 and D0.

models are in good agreement; however, give different estimates at sucrose saturation. From

Fig. 4.14, the second partial derivative estimates for all models are in good agreement at low

compositions, but begin to diverge at approximately 0.04 sucrose mole fraction, leading to different

estimates at saturation.

For sucrose, as with α-glycine, parameters in Eq. (4.15) are evaluated by correlating different

types of enthalpy of dilution data reported in the literature at 298.15 K and over a range of solution

concentrations and combining with reported values for the enthalpy of solution to infinite dilution,

in the absence of enthalpy of solution measurements at higher solution compositions. Strictly
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Figure 4.14: Solute activity coefficient first partial derivative with respect to solute composition

estimated from best fits shown in Fig. 4.12. Colored dashed lines correspond to different models,

with black denoting a fit with A0, red denoting a fit with A0 and B0, blue denoting a fit with A0,

B0 and C0 and grey denoting a fit with A0, B0, C0 and D0.
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speaking, only one report of enthalpy of dilution data at 298.15 K was found in the literature [175],

covering dilute solutions (i.e., up to approximately 0.04 sucrose mole fraction). As an aside, this

data reports the heat evolved when two sucrose-water solutions of known composition were mixed,

contrary to the dilution measurements discussed for α-glycine, where pure water was added to a

solution of known composition. As such, parameters were found via:

∆Hdil =

(
N∑
i

ni h̄
l
g

)final
−

( N∑
i

ni h̄
l
g

)1
+

(
N∑
i

ni h̄
l
g

)2 (4.25)

=

(
N∑
i

ni
∂ ln γi
∂β

)final
−

( N∑
i

ni
∂ ln γi
∂β

)1
+

(
N∑
i

ni
∂ ln γi
∂β

)2 , (4.26)

To supplement data from [175], data reported at 299.15 K in [176] was used. It should be noted

that this data was presented in the same form as that for α-glycine, and processed in the same

manner. The resulting parameters derived from fitting enthalpy of dilution data are given in

Table 4.6. For each model, the corresponding estimate of h̄l1 − hl,∞1 is presented in Fig. 4.15,

Table 4.6: Redlich-Kister parameter values for sucrose enthalpy of dilution data fits

Model RSS A1 B1 C1 D1 ∆h̄
(0)
1 β0∂∆h̄

(0)
1 /∂ ln x1

(J/mol) (J/mol) (J/mol) (J/mol) (J/mol) (-)

1 4090.56 -11.44 11285 2.02

2 2018.95 18.75 -10.45 10427 1.14

3 2002.8 -95.85 57.75 -18.05 10569 1.51

4 2001.3 7.29 -20.92 20.04 -8.23 10568 1.49

and the quantity β0∂∆h̄
(0)
1 /∂ ln x1 derived from the aforementioned fits is presented in Fig. 4.16.

From Fig. 4.15 and 4.16, estimates of h̄l1 − hl,∞1 and β0∂∆h̄l1/∂ ln x1 are partitioned into three

groups depending on the number of parameters used. More specifically, both model one and two

have distinct behaviors, whereas models 3 and 4 have very similar behaviour but distinct to models

1 and 2. It should be noted that, although models three and four give consistent estimates for

h̄l1 − hl,∞1 , estimates for β0∂∆h̄1/∂ ln x1 diverge very slightly near sucrose saturation (i.e., 0.098

mole fraction). Values of ∆h̄
(0)
1 and β0∂∆h̄

(0)
1 /∂ ln x1 required to make predictions using Eq. (4.9)

derived from each model are given in Table 4.6. It should be noted that estimates of ∆h̄(0) were

calculated in a similar manner as described for α-glycine, using the enthalpy of solution to infinite

dilution for sucrose taken as 6000 J/mol.

Additional estimates for h̄l1− h̄l ,∞1 and β0∂∆h̄/∂ ln x1 were derived from a comprehensive mod-

eling study for the sucrose-water system reported by [145]. In this work, a model for the sucrose-

water solution was developed by simultaneously fitting all available thermodynamic quantities,
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Figure 4.15: Estimates for h̄l1−hl,∞1 derived from fits to experimental enthalpy of dilution measure-

ments for sucrose-water mixtures at 298.15 K [175] and 299.15 K [176] using Eq. (4.15). Colored

dashed lines correspond to different models, with black denoting a fit with A1, red denoting a fit

with A1 and B1, blue denoting a fit with A1, B1 and C1, grey denoting a fit with A1, B1, C1 and

D1, and purple denoting estimates from [145].
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Figure 4.16: Estimates for β∂∆h̄l1/∂ ln x1 derived from fits to experimental enthalpy of dilution

measurements at 298.15 K using Eq. (4.15). Colored dashed lines correspond to different models,

with black denoting a fit with A1, red denoting a fit with A1 and B1, blue denoting a fit with A1,

B1 and C1, grey denoting a fit with A1, B1, C1 and D1, and purple denoting estimates from [145].
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including: activity, enthalpy, heat capacity, and phase equilibria, at all available temperatures

and compositions. Based on this analysis, estimates shown in Fig 4.15 and 4.16 indicate that

the models derived using data at 298.15 K (and 299.15 K) with Eq. (4.15) give reasonably good

agreement.

Only one report for sucrose-water solution heat capacity data at 298.15 K was found in the

literature. This data is illustrated in Fig. 4.17 with the resulting best fit using Eq. (4.17). A suitable
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Figure 4.17: Solution heat capacity for sucrose-water solutions at 298.15 K. Open grey circles

correspond to solution heat capacity measurements reported in literature [177, 178, 179, 180].

Colored dashed lines correspond to different models, with black denoting a fit with c l,◦p,1 only.

fit to available solution heat capacity data was achieved with all parameters in the Redlich-Kister

equation set to zero and varying the hypothetical pure liquid sucrose heat capacity (i.e., c l,◦p,1),

which was found to be 650 J/mol.K, giving a partial molar heat capacity at saturation (i.e., c̄
(0)
p,1 )

with the same value. It should be noted that the molar heat capacity of pure liquid water (i.e.,

c l ,◦p,2) was taken as 75.2 J/mol.K. For ∆c̄
(0)
p,g , the pure solid solute heat capacity was taken as 420

J/mol.K for sucrose.

In a manner similar to the predictions shown for α-glycine, thermodynamic quantities derived

from the above fitting process were used to make predictions for the aqueous solubility of sucrose.

This included predictions generated by combining quantities derived from all models in Table 4.5
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for ∂ ln γ
(0)
1 /∂ ln x1 and ∂2 ln γ

(0)
1 /∂ ln x21 , all models in Table 4.6 for ∆h̄

(0)
1 and β0∂∆h̄

(0)
1 /∂ ln x1

respectively, as well as the single estimate for ∆c̄
(0)
p,1 . The results are illustrated in Fig. 4.18.

Again, the predictions are split into four groups to highlight the effects of different parameter esti-
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Figure 4.18: Sucrose aqueous solubility predictions based on Eq. (4.9). Open grey symbols denote

directly measured solid-liquid equilibria reported in the literature (solubility [146, 147, 148, 149,

150, 151] and freezing point [181, 182, 148, 150, 183, 184] ). Solid lines are predictions derived

from Eq. (4.9) based on all combinations of thermodynamic quantities provided in Table 4.5 (all

models), 4.6 (all models) and the single estimate of sucrose partial molar heat capacity. The blue

band corresponds to all predictions based on model one in Table 4.6. The grey band corresponds

to all predictions based on model two in Table 4.6. The black band corresponds to all predictions

based on models three and four in Table 4.3. The red band corresponds to all predictions where

∆h̄
(0)
1 and β0∂∆h̄

(0)
1 /∂ ln x1 were derived from the model described in [145].

mates. The blue group corresponds to predictions where the enthalpy parameters (i.e., ∆h̄
(0)
1 and

β0∂∆h̄
(0)
1 /∂ ln x1) came from model one on Table 4.6. The grey group corresponds to predictions

where the enthalpy parameters came from model two in Table 4.6. The black band corrresponds

to predictions where the enthalpy paramaters came from model 3 and 4 in Table 4.6. The red

group corresponds to predictions where the enthalpy parameters came from the model reported in

literature [145].
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As shown, all predictions are in excellent agreement with each other, as well as the directly

measured solubility data from 260–340 K, after which predictions in the grey and black bands

appear to diverge from those in the red and blue bands, as well as direct measurements. Generally,

predictions in the red band correspond to solubility estimates in excellent agreement with direct

measurements up to approximately 350 K, while predictions in the blue group correspond to solubil-

ity estimates in excellent agreement with direct measurements from 260–360 K. Within each band,

predictions diverge around similar temperatures driven by different estimates for ∂ ln γ
(0)
1 /∂ ln x1

and ∂2 ln γ
(0)
1 /∂ ln x21 .

4.3.4 Urea

For the urea-water system, data from which the water activity coefficient could be inferred in-

cluded five independent reports of urea isopiestic molality. As before, isopiestic molalities were

converted to osmotic coefficeints using a model for the omsotic coefficient of reference solutes

and then to solvent activity coefficient via Eq. (3.39). Experimental data (processed as ln γw ),

with corresponding best fits derived Eq. (4.15) with parameters A0, B0, C0 and D0 are presented

in Fig. 4.19. The resulting parameters for each fit are provided in Table 4.7. From Fig. 4.19, only

Table 4.7: Redlich-Kister parameter values for urea-water solvent activity data fits

Model RSS A0 B0 C0 D0 ∂ ln γ
(0)
1 /∂ ln x1 ∂2 ln γ

(0)
1 /∂ ln x21

(-) (-) (-) (-) (-) (-)

1 0.07 0.69 -0.86 -0.55

2 0.0035 -1.61 1.01 0.07 0.67

3 0.0023 -0.15 -0.02 0.34 0.03 0.40

4 0.0014 0.17 0.12 -0.21 0.32 -0.06 0.03

the fit including all parameters (i.e., A0, B0, C0 and D0) produce models in good visual agreement

with available data which is additionally supported by the lowest RSS in Table 4.7. Given that

the only model capable of producing a fit to all available data was the most complex (i.e., all four

parameters), coupled with good coverage of experimental data near saturation, an additional set

of fits were generated focusing on data near the urea-water solution saturation compositon (i.e.,

0.265 urea mole fraction). The motivation for this being that we’re most interested in generating

a good fit to data in this region, rather than the entire composition range, and trying to fit all

availabe data may bias a given model away from fitting data in the region of interest required

to generate accurate estimates for ∂ ln γ1/∂ ln x1 and ∂2 ln γ1/∂ ln x21 . As before, all model forms

were fit to solvent activity data; however, instead of fitting all available data, fits were resticted to
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Figure 4.19: Processed water activity coefficient (Raoult’s Law) data in urea-water liquid mixtures

solutes at 298.15 K. Open grey symbols denote processed experimental data [185, 186, 187, 188,

189]. Colored dashed lines correspond to fits using Eq. (4.15), with black denoting a fit with A0,

red denoting a fit with A0 and B0, blue denoting a fit with A0, B0 and C0 and grey denoting a fit

with A0, B0, C0 and D0.
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data with a composition above 0.15 urea mole fraction. Experimental data (processed as ln γw ),

with corresponding best fits derived Eq. (4.15) with parameters A0, B0, C0 and D0 are presented

in Fig. 4.20. The resulting parameters for each fit are provided in Table 4.8. From Fig. 4.20,
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Figure 4.20: Processed water activity coefficient (Raoult’s Law) data in urea-water liquid mixtures

solutes at 298.15 K.

Open grey symbols denote processed experimental data [185, 186, 187, 188, 189]. Colored dashed

lines correspond to fits using Eq. (4.15), with black denoting a fit with A0, red denoting a fit with

A0 and B0, blue denoting a fit with A0, B0 and C0 and grey denoting a fit with A0, B0, C0 and

D0.

Table 4.8: Redlich-Kister parameter values for urea-water solvent activity data fits

Model RSS A0 B0 C0 D0 ∂ ln γ
(0)
1 /∂ ln x1 ∂2 ln γ

(0)
1 /∂ ln x21

(-) (-) (-) (-) (-) (-)

1 4.6e-3 0.51 -0.20 -0.13

2 2.3e-5 -1.02 0.73 -0.004 0.45

3 1.18e-5 0.024 -0.047 0.291 -0.02 -0.29

4 1.4e-5 0.044 -0.106 0.39 -0.056 -0.016 0.36
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restricting the data used during fitting made it possible to easily find parameter sets for models

with two and three parameters in excellent agreement with available data near the saturation

composition (i.e., 0.265 urea mole fraction), when compared to the fits to all data illustrated in

Fig. 4.19 and summarised in Table 4.7. However, the fit with only one parameter was still unable

to describe any of the data, indicating the model structure is not suitable for this system.

Comparing Fig. 4.19 and 4.20, there are four models that give a reasonable description of the

solvent activity data for urea-water liquid mixtures at 298.15 K; model 4 in Table 4.7 and models

2–4 in Table 4.8. The first and second solute activity coefficient partial derivatives with respect

to composition derived from each of these fits to solvent activity data are presented in Fig. 4.21

and 4.22, respectively. As shown in Fig. 4.21 and 4.22, the partial derivatives (i.e., ∂ ln γ1/∂ ln x1
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Figure 4.21: Solute activity coefficient first partial derivative with respect to solute composition

estimated from best fits shown in Fig. 4.19. Colored dashed lines correspond to different models,

with black denoting a fit with A0, red denoting a fit with A0 and B0, blue denoting a fit with A0,

B0 and C0 and grey denoting a fit with A0, B0, C0 and D0.

and ∂2 ln γ1/∂ ln x21 ) are in fairly good agreement; however, all of which begin to diverge close to

the urea saturation composition.

For urea, as with α-glycine and sucrose, there exist reports of the enthalpy of dilution at

298.15 K which can, in theory, be used to estimate h̄
(0)
1 and β0∂∆h̄

(0)
1 /∂ ln x1, as long as at least
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Figure 4.22: Solute activity coefficient first partial derivative with respect to solute composition

estimated from best fits shown in Fig. 4.19. Colored dashed lines correspond to different models,

with black denoting a fit with A0, red denoting a fit with A0 and B0, blue denoting a fit with A0,

B0 and C0 and grey denoting a fit with A0, B0, C0 and D0.
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one enthalpy of solution measurement is available. However, a study reporting values of the

enthalpy of solution from infinite dilution to saturation was also found. It should be noted that

no other data sets reporting enthalpy of solution measurements at solution concentrations greater

than ‘infinitely dilute’ were found to validate this data set. The enthalpy of solution was interpreted

via:

∆Hsol. = n1
(
hl,◦1 + h̄E1

)
+ n2

(
hl,◦2 + h̄E2

)
− n1hs,◦1 − n2h

l,◦
2

= n1
(

∆h∞,s1 − hl,∞1
)

+ n1h̄
E
1 + n2h̄

E
2

(4.27)

where ∆h∞,s1 denotes the enthalpy of solution to infinite dilution (taken as 15,400 J/mol) and hl,∞1

denotes the molar enthalpy of solute in solution at infinite dilution (i.e., infinitely dilute reference

state c.f. Henry’s Law). All other quantities have been identified previously and retain those

definitions.

Initially, fitting was completed by aggregating both types of data (i.e., solution and dilution);

however, given challenges already discussed with visualising fits to dilution data, a set of models

were generated by fitting each type of data independently. The models generated by fitting only

enthalpy of dilution data are shown in Fig 4.23 while models generated by fitting enthalpy of

solution data are shown in Fig. 4.24, both of which predicting the enthalpy of solution data, as it

is possible to readily visualise this.

Parameters derived from fitting enthalpy of dilution data are provided in Table 4.9, while

parameters derived from fitting enthalpy of solution data are provided in Table 4.10. The

Table 4.9: Redlich-Kister parameter values for urea enthalpy of dilution data fits

Model RSS A1 B1 C1 D1 ∆h̄
(0)
1 β0∂∆h̄

(0)
1 /∂ ln x1

(J/mol) (J/mol) (J/mol) (J/mol) (J/mol) (-)

1 1982213 4.80 9975.9 -1.86

2 438570 -10.31 5.73 12660.62 0.97

3 398015 -0.21 0.52 0.99 12393.1 0.49

4 145107 0.025 -0.064 0.54 0.68 9339.7 -4.42

enthalpy of solution derived from each fit is shown in Fig. 4.23 and 4.24 alongside experimental

data, for fits derived from dilution and solution measurements, respectively.

Estimates for h̄l1−hl,∞1 are presented in Fig. 4.26 and estimates for β0∂∆h̄1/∂ ln x1 are presented

in Fig. 4.28. As shown, generally speaking, there is disagreement between each model for all

enthalpy properties, leading to potentially significant difference in ∆h̄
(0)
1 and ∂∆h̄

(0)
1 /∂ ln x1. It is

interesting to note that model 2 in Table 4.10 gives the best approximation of the enthalpy of

solution data, compared to all other models.
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Figure 4.23: Estimates for urea-water enthalpy of solution derived from fits to experimental en-

thalpy of dilution measurements [190, 191] for urea-water mixtures at 298.15 K using Eq. (4.15).

Open grey symbols correspond to experimental measurements [192]. Colored dashed lines corre-

spond to different models, with black denoting a fit with A1, red denoting a fit with A1 and B1,

blue denoting a fit with A1, B1 and C1 and grey denoting a fit with A1, B1, C1 and D1.

Table 4.10: Redlich-Kister parameter values for urea enthalpy of solution data fits

Model RSS A1 B1 C1 D1 ∆h̄
(0)
1 β0∂∆h̄

(0)
1 /∂ ln x1

(J/mol) (J/mol) (J/mol) (J/mol) (J/mol) (-)

1 692605 4.9 9839.8 -1.91

2 24426 -8.1 4.9 12124.3 0.46

3 21115 -0.89 0.23 1.42 11812.6 0.04

4 19806 0.12 0.09 0.82 0.36 11718.8 -0.15
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Figure 4.24: Estimates for urea-water enthalpy of solution derived from fits to experimental en-

thalpy of solution measurements [192] for urea-water mixtures at 298.15 K using Eq. (4.15). Open

grey symbols correspond to experimental measurements [192]. Colored dashed lines correspond

to different models, with black denoting a fit with A1, red denoting a fit with A1 and B1, blue

denoting a fit with A1, B1 and C1 and grey denoting a fit with A1, B1, C1 and D1.
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Figure 4.25: Estimates for h̄l1 − hl,∞1 derived from fits to experimental enthalpy of dilution mea-

surements for urea-water mixtures at 298.15 K using Eq. (4.15). Colored dashed lines correspond

to different models, with black denoting a fit with A1, red denoting a fit with A1 and B1, blue

denoting a fit with A1, B1 and C1 and grey denoting a fit with A1, B1, C1 and D1.
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Figure 4.26: Estimates for h̄l1 − hl,∞1 derived from fits to experimental enthalpy of dilution mea-

surements for urea-water mixtures at 298.15 K using Eq. (4.15). Colored dashed lines correspond

to different models, with black denoting a fit with A1, red denoting a fit with A1 and B1, blue

denoting a fit with A1, B1 and C1 and grey denoting a fit with A1, B1, C1 and D1.
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Figure 4.27: Estimates for β∂∆h̄l1/∂ ln x1 derived from fits to experimental enthalpy of dilution

measurements at 298.15 K using Eq. (4.15). Colored dashed lines correspond to different models,

with black denoting a fit with A1, red denoting a fit with A1 and B1, blue denoting a fit with A1,

B1 and C1 and grey denoting a fit with A1, B1, C1 and D1.
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Figure 4.28: Estimates for β∂∆h̄l1/∂ ln x1 derived from fits to experimental enthalpy of dilution

measurements at 298.15 K using Eq. (4.15). Colored dashed lines correspond to different models,

with black denoting a fit with A1, red denoting a fit with A1 and B1, blue denoting a fit with A1,

B1 and C1 and grey denoting a fit with A1, B1, C1 and D1.
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Heat capacity data for urea-water solutions reported in the literature at 298.15 K is shown

in Fig. 4.29 with best fits derived from Eq. (4.17) where the molar heat capacity of pure liquid

water (i.e., c l ,◦p,2) was taken as 75.2 J/mol.K. The resulting parameter values for each fit are

provided in Table 4.11. Models and experimental data are presented in Fig. 4.29 and the urea

Table 4.11: Redlich-Kister parameter values and for urea-water solution heat capacity fits

Model RSS A2 B2 C2 D2 cs,◦p,1 ∆c̄
(0)
p,1

(J/mol.K) (J/mol.K) (J/mol.K) (J/mol.K) (J/mol.K) (J/mol.K)

1 1.24 -95.38 191.25 -51.58

2 0.56 267.61 -155.23 -24.09 -65.79

3 0.56 465.05 -290.86 44.22 -129.64 -66.9

4 0.56 243.23 -116.94 -42.21 18.57 -14 -66.27

partial molar heat capacity is presented in Fig. 4.30. As shown, all models provide plausible fits

to available solution heat capacity data. However, as noted for several properties already, this

apparent similarity is lost when thermodynamic quantities required to make solubility predictions

are derived, which is the case for estimates of the partial molar heat capacity of urea. Estimates

for ∆c̄
(0)
p,1 from each model are provided in Table 4.11, where the heat capacity of pure crystalline

urea at 298.15 K was taken as 192.3 J/mol.K.

As with α-glycine and sucrose, thermodynamic quantities derived from the above fitting pro-

cess were used to make predictions for the aqueous solubility of urea. This included predictions

generated by combining quantities derived from model 4 in Table 4.7 and model 2–4 in Table 4.8

for ∂ ln γ
(0)
1 /∂ ln x1 and ∂2 ln γ

(0)
1 /∂ ln x21 , as well as all models in Table 4.11 for ∆c̄

(0)
p,1 . For param-

eters related to the enthalpy, solubility predictions have been split based on enthalpy parameters

(i.e., ∆h̄
(0)
1 and β0∂∆h̄

(0)
1 /∂ ln x1) derived from the enthalpy of dilution data and the enthalpy of

solution fits and are illustrated in Fig. 4.31 and 4.32, respectively.

As shown, for both sets of predictions (i.e., those derived with models parameterised using

enthalpy of dilution data, as well as those with enthalpy of solution data), there are subsets of

predictions in excellent agreement with directly measured solubility data. Focusing specifically on

predictions made with models derived from enthalpy of dilution data (i.e., Fig. 4.31), the black

and blue bands corresponds to predictions made with model 1 and 4 in Table 4.9, respectively, and

yield predictions in poor agreement with experimental data at all temperatures and compositions.

These predictions fail to predict the local slope around the chosen reference point (i.e., 298.15 K

and 0.265 urea mole fraction), indicating these models are incorrect. The red and grey bands

correspond to model 2 and 3 in Table 4.9, and many of the model combinations yield predictions

in excellent agreement with directly measured solubility data, with the exception of two predictions
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Figure 4.29: Solution heat capacity for urea-water solutions at 298.15 K. Open grey circles corre-

spond to solution heat capacity measurements reported in literature [193, 194, 195, 196]. Colored

dashed lines correspond to different models, with black denoting a fit with A2, red denoting a fit

with A2 and B2, blue denoting a fit with A2, B2 and C2 and grey denoting a fit with A2, B2, C2

and D2.
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Figure 4.30: Partial molar heat capacity of urea in urea-water mixtures at 298.15 K derived from

fits to soution heat capacity data using Redlich-Kister models. Colored dashed lines correspond

to different models, with black denoting a fit with A2, red denoting a fit with A2 and B2, blue

denoting a fit with A2, B2 and C2 and grey denoting A2, B2, C2 and D2.
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Figure 4.31: Urea aqueous solubility predictions based on Eq. (4.9). Open grey symbols denote

directly measured solid-liquid equilibria reported in the literature (solubility [152, 153, 154, 155,

156, 157, 158] and freezing point [197] ). Solid lines are predictions derived from Eq. (4.9) based

on all combinations of thermodynamic quantities provided in Table 4.7 (model four), 4.8 (models

two–four), 4.9 (all models) and 4.11 (all models). The black band corresponds to all predictions

based on model one in Table 4.9. The red band corresponds to all predictions based on model two

in Table 4.9. The grey band corresponds to all predictions based on models three in Table 4.9.

The blue band corresponds to all predictions based on models four in Table 4.9.
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Figure 4.32: Urea aqueous solubility predictions based on Eq. (4.9). Open grey symbols denote

directly measured solid-liquid equilibria reported in the literature (solubility [152, 153, 154, 155,

156, 157, 158] and freezing point [197] Solid lines are predictions derived from Eq. (4.9) based

on all combinations of thermodynamic quantities provided in Table 4.7 (model four), 4.8 (models

two–four), 4.10 (all models) and 4.11 (all models). The black band corresponds to all predictions

based on model one in Table 4.10. The grey band corresponds to all predictions based on model

two in Table 4.10. The red band corresponds to all predictions based on models three in Table 4.10.

The blue band corresponds to all predictions based on models four in Table 4.10.
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in the grey band which diverge from experimental data far quicker than all other models—it should

be noted that these are associated to model 4 in Table 4.7 used to estimate activity parameters

(i.e., ∂ ln γ1/∂ ln x1 and ∂2 ln γ1/∂ ln x21 ). A simplified view of predictions is provided in Fig. 4.33,

which shows the range of predictions based on the most plausible models.
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Figure 4.33: Urea aqueous solubility predictions based on Eq. (4.9). Open grey symbols denote

directly measured solid-liquid equilibria reported in the literature (solubility [152, 153, 154, 155,

156, 157, 158] and freezing point [197] Solid lines are predictions derived from Eq. (4.9) based

on all combinations of thermodynamic quantities provided in Table 4.8 (models two–four), 4.9

(models two and three) and 4.11 (all models). The red band corresponds to all predictions based

on model two in Table 4.9. The grey band corresponds to all predictions based on models three

in Table 4.9.

Focusing on predictions made with models derived from enthalpy of solution data (i.e., Fig. 4.32),

the black band corresponds to model 1 in Table 4.10 and, in a manner similar that observed with

the one parameter model for dilution data, predicts solubility in poor agreement with available

data. Comparing to Fig. 4.24, this model failed to describe available enthalpy of solution data,

potentially indicating these predictions should be ignored. The grey, red and blue bands correspond

to predictions derived from models 2–4 in Table 4.10 and lead to predictions in better agreement

with solubility measurements. Generally speaking, all parameter combinations lead to predictions
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in excellent agreement data from 260–340 K, before diverging from each other, and experimental

data. In a manner similar to that shown for predictions based on models parameterised using en-

thalpy of dilution data only, removing predictions where the activity parameters (i.e., ∂ ln γ1/∂ ln x1

and ∂2 ln γ1/∂ ln x21 ) are taken from model 4 in Table 4.7 are shown in Fig. 4.34. By comparison
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Figure 4.34: Urea aqueous solubility predictions based on Eq. (4.9). Open grey symbols denote

directly measured solid-liquid equilibria reported in the literature (solubility [152, 153, 154, 155,

156, 157, 158] and freezing point [197] Solid lines are predictions derived from Eq. (4.9) based

on all combinations of thermodynamic quantities provided in Table 4.8 (models two–four), 4.10

(models two–four) and 4.11 (all models). The grey band corresponds to all predictions based on

model two in Table 4.10. The red band corresponds to all predictions based on models three in

Table 4.10. The blue band corresponds to all predictions based on models four in Table 4.10.

to Fig. 4.32, predictions based on these parameters are in better agreement with experimental

data across the full range of temperatures.

4.4 Conclusions

In this chapter, an approach allowing extrapolation of temperature dependent solubility by consid-

ering the chemical potential of the solid in both solid and liquid solution in terms of Taylor series in
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terms of ln xg and β, truncated at the 2nd-order was presented. Like conventional thermodynamic

interpretations of solubility, our proposed model retains a key advantage for predictive purposes in

that solubility is expressed in terms of thermodynamic quantities related to experimentally mea-

surable properties. Crucially, however, none of the data required to make solubility predictions

include the pure solute melting properties, which can be challenging to measure and limits the

applicability of conventional approaches.

The aqueous solubility of α-glycine, sucrose and urea was predicted using thermodynamic

quantities derived from available experimental data reported at 298.15 K. For all systems, solu-

bility predictions based on the new approach give estimates that are sensitive to the data and

modeling approach used to derive required quantities. This was particularly evident for α-glycine

and urea, where some predictions diverged rapidly from available direct measurement data. As

shown, thermodynamic quantities required to make extrapolations were estimated by correlat-

ing measurable properties with a mathematical model, then applying mathematical manipulations

(e.g., partial differentiation, etc), which brings several sources of uncertainty usually associated to

any modeling application. Small differences in functional form may lead to meaningful differences

in extrapolated solubility far from the chosen reference point, which is particularly problematic for

systems where data required to estimate relevant thermodynamic quantities are limited, making

model selection and parameterisation challenging.

However, it was found that certain interpretations of experimental data gave predictions in good

agreement with direct solubility measurements. This was most convincing for the sucrose-water

system, where multiple modelling approaches gave similar results, likely giving the most robust

assessment of the modelling approach. Across all systems, predictions were in excellent agreement

with direct measurements between 260–340 K regardless of the modelling approach taken, when

plausible fits were used. Above this, predictions started to diverge amongst themselves, as well as

from the direct solubility measurements. Interestingly, this agrees with findings noted in Chapter 3,

and may indicate an upper limit in the reliability of Eq. (4.9), when relevant thermodynamic

quantities are derived via mathematical modeling of experimental data at 298.15 K.

Generally speaking, the most uncertain parameters for all systems were ∆h̄
(0)
1 and β0∂∆h̄

(0)
1 /∂ ln x1,

driven by limited availability of enthalpy data from which the models that yield these quantities can

be parameterised. With this in mind, it would be advantageous to perform additional measure-

ments with a particular focus on quantities from which ∆h̄
(0)
1 and β0∂∆h̄

(0)
1 /∂ ln x1 can be derived

with greater certainty—this may involve measuring the enthalpy of dilution, or solution as shown

for Urea.
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Chapter 5

Beyond Approximate Approaches

5.1 Introduction

In Chapter 3 and 4, approximate methods allowing estimation of solubility as a function of temper-

ature were presented and benchmarked on organic binary solute-solvent systems. Both methods

made it possible to ‘predict’ solubility by evaluating thermodynamic quantities other than solubility

at a single point on the solubility curve, alongside a single estimate for solubility. However, many of

these quantities are not widely reported in the literature and were estimated by considering alterna-

tive measureable quantities that can be related to the solute-solvent solution and pure crystalline

solute phases. These approaches might be advantageous in situations where availability of data

is limited to a single temperature (i.e., 298.15 K) or the level of predictive accuracy is less impor-

tant (particularly at temperatures far from the chosen reference temperature at which relevant

thermodynamic quantities are evaluated); however, they are approximate through introduction of

truncated Taylor series expansions.

In this chapter, the general problem of constructing Gibbs free energy models as functions

of temperature and composition by mathematically modelling experimental data is reviewed. As

described, this makes it possible to estimate solubility to a level limited only by our ability to

collect and model reliable experimental data—no approximations are required, in principle. This

general approach is then examined by estimating the temperature dependent solubility of sucrose

in water by developing explicit representations for the Gibbs free energy of pure crystalline sucrose

as a function of temperature, and the Gibbs free energy of the sucrose-water liquid mixture as

a function of temperature and composition, using a broad range of experimental data reported

in the literature. For a specific interpretation of the Gibbs free energy of pure components and

binary mixtures, it is shown that estimating solubility from the eutectic point to the pure crystal-

vapor-liquid triple point is possible, with only a single estimate of solubility, retaining one of the

key features of the approaches described in Chapter 3 and 4, but without the need to introduce
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any approximations or limiting the experiments used during modelling.

The rest of this chapter is structured as follows. First, a discussion of modeling thermodynamic

properties and phase equilibria is provided, expanding that presented in Chapter 2. Then, some

illustrative applications of this theory are discussed, including the introduction and summary of the

so-called CALPHAD method—a systematic approach to the construction of phase diagrams widely

applied in the literature [198]. With the CALPHAD method introduced, the relationship between

functional form, parameter values and a set of common experimental measurements is reviewed.

A key finding from this analysis is the illustration that estimating solubility using conventional

CALPHAD models requires a minimum set of experimental data such that all model parameters

can be evaluated. Crucially, it is shown that only a single measure of solubility is required so that

all model parameters can be found, retaining one of the key features of the approaches presented

in Chapters 3 and 4, and the primary objective of this thesis (c.f. Chapter 1).

After this, a review of experimental data reported for the sucrose-water system is presented,

supplementing that provided in Chapter 4 which focused on experimental data reported at 298.15 K,

which is followed by a discussion of different thermodynamic modeling studies performed on the

sucrose-water system. Then, the sucrose-water data is modelled following the approach applied

during a CALPHAD assessment, where single component phases are modelled explicitly as temper-

ature expansions and the binary liquid mixture is modelled with a Redlich-Kister expansion for the

excess contribution (defined relative to Raoult’s Law). Interestingly, we find that it is possible to

‘predict’ the solubility curve in excellent agreement with available experimental data with a simple

model for the binary liquid mixture, despite the underlying model being in significant disagreement

with differential enthalpy of dilution data that has been used to develop models previously published

in the literature.

5.2 Simultaneous Representation of Thermodynamic Data

As described in Chapter 2, one relationship characterising the equilibrium between a solid and a

liquid (free to exchange energy and matter) is:

βµs,◦1 (T ) = βµl,sat1 (T, x1(T )) (5.1)

where µs,◦1 and µl,sat1 are the chemical potential of solute in crystalline and liquid solution phases,

respectively maintaining the same notation as used in previous chapters. If a parameterised func-

tional form for both chemical potentials was known, it would be possible to solve this relationship

and find the equilibrium solution composition at chosen temperature, pressure and fixed total

amount of each component. Assuming the chemical potential functions were reliable at all tem-

peratures and solution compositions, this gives an approach to estimate solubility. However, as
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noted already, it is not possible to measure the chemical potential directly and so alternative

approaches leveraging this relationship are required, motivating the work presented in Chapter 3

and 4.

Although potentially useful in certain situations, the approaches presented in Chapter 3 and 4

are necessarily approximate given that predictions are made possible by introduction of truncated

Taylor series expansions. Furthermore, although not strictly necessary, evaluation of thermody-

namic quantities required to make predictions is conveniently approached by considering experimen-

tal measurements completed at a chosen reference temperature. This is potentially problematic

because practitioners looking to estimate solubility might have sufficient resources to make a di-

verse set of measurements across a broad range of temperature and composition in excess of the

single temperature approach described in Chapter 3 and 4.

For simple systems comprising a single-component solute and solvent, such as those studied

in Chapter 3 and 4, the solubility curve is just one phase boundary in the whole phase diagram,

the others being a boiling and freezing curve, as illustrated in Fig. 5.1. It should be noted that

the complete phase diagram for a binary system will extend to temperatures above and below the

range illustrated; however, for the purpose of this chapter these regions are not considered. For

the phase diagram illustrated in Fig. 5.1, the stable phases include: pure crystalline component

1, pure crystalline component 2, pure liquid component 2, pure vapor component 2, as well as

an components 1 and 2 in a liquid mixture. Each phase boundary is related to the solute-solvent

solution, via:

βµv,◦2 = βµl2 (5.2)

βµs,◦1 = βµl1 (5.3)

βµs,◦1 = βµl1, (5.4)

for the boiling, solubility and freezing point curves, respectively, where 1 denotes solute and 2

denotes solvent and the superscript ◦ denotes a pure phase. Like solubility, it is possible to develop

explicit equations for both the freezing and boiling point curves. For example, the temperature

at which a solute-solvent liquid mixture will freeze as a function of temperature at fixed pressure

(i.e., solvent freezing curve) can be expressed as:

ln (1− x1(T )) = −
∆hfus.2 (Tm)

RTm

(
Tm
T
− 1

)
+

∫ β(T )
β(Tm)

∫ T
Tm

∆cp(T )dTdβ

+ ln γ2(T, x),

(5.5)

where ∆hfus(Tm) is the enthalpy of fusion of solvent at the normal melting point Tm, ∆cp(T ) is the

difference between the heat capacity between pure solid and liquid solvent, which can be treated in

a similar manner to the heat capacity term in explicit models for solubility discussed in Chapter 2,

and γ2 is the solvent activity coefficient in solution (defined with respect to Raoult’s Law).
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Figure 5.1: Example phase diagram for binary system comprising components 1 (solute) and 1

(solvent) between practically relevant temperatures for solubility estimation. Black solid lines cor-

respond to phase boundaries. Black dashed lines correspond to tie-lines. The blue, orange and

yellow portion of the y-axis at 0 component 1 mole fraction (i.e., 2s,◦, 2l,◦ and 2v,◦) indicate the

range of temperature the solvent (i.e., component B) exists as a pure solid, liquid and vapor,

respectively. The green portion of the y-axis at component 1 mole fraction = 1 (i.e., 1s,◦) corre-

sponds to the range of temperature the solute (i.e., component 1) exists as a pure solid.
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Furthermore, it is possible to express the boiling point of a binary solution in a manner similar

to Eq. (2.35) and Eq. (5.5), for solubility and freezing point, respectively:

ln (1− x1(T )) =
∆hvap.2 (Tb)

RTb

(
Tb
T
− 1

)
+

∫ β(T )
β(Tb)

∫ T
Tb

∆cp(T )dTdβ

+ ln γ2(T, x),

(5.6)

where ∆hvap.2 (Tb) is the enthalpy of vaporisation for pure solvent and Tb is the associated normal

boiling temperature, ∆cp(T ) is the difference between the heat capacity between pure vapor and

liquid solvent, and γ2 is the solvent activity coefficient in solution (defined with respect to Raoult’s

Law), as before. Equation (2.35), (5.5) and (5.6) connect phase equilibria measurements, melting

properties, heat capacity and excess solution properties.

For completeness, in addition to Eq. (5.6), boiling curve data can be included in a manner

similar to vapor pressure measurements using modified versions of Raoult’s Law where, as long as

coefficients in the Antoine equation for the pure solvent are known, the temperature at which a

solute-solvent solutions boils can be modelled explicitly via:

x2 =
Py2

P sat.2 (T )γ2
, (5.7)

where P is total pressure, y2 is the mole fraction of solvent in the vapor phase (which is usually

always one for the systems encountered in crystallisation applications due to non-volatility of

solutes (i.e., the solute has no vapor-pressure)) and P sat.2 (T ) is the vapor pressure of pure solvent

at T . It should be noted that this assumes the vapor phase behaves like an ideal gas.

The aforementioned relationships, coupled with an excess Gibbs free energy model such that

γ1 and γ2 can be evaluated, make it possible to develop thermodynamically consistent descriptions

for solute-solvent systems and has been applied in the literature. For example, consider results

presented in [145], for the sucrose-water system. In this work, primary focus is the development

of a model describing the activity of water in sucrose-water solutions where the model structure

and parameter values of which are informed by simultaneously correlating phase equilibria and

thermodynamic properties, all of which relate in some manner to the parameters in Eq. (2.35), (5.5)

and (5.6). For the sucrose-water liquid mixture, the authors use an four-suffix Margules-type

equation to describe the excess Gibbs free energy coupled with an ideal contribution defined

relative to Raoult’s Law. Phase equilibria are incorporated using Eq. (2.35) for solubility data,

Eq. (5.5) for freezing point data and Eq. (5.7) for boiling point data.

A similar application is described in [80] (cited extensively in Chapter 3). Here, thermody-

namic theory is coupled with mathematical modeling to develop ‘new equations describing the

thermodynamic properties of the glycine + H2O system [. . . ] from previously published thermo-

dynamic data’ and the ‘primary aim of this work is to develop a thermodynamic equation of state

for glycine(aq) capable of describing key measurements of the system’s properties within their
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experimental uncertainty’. The author constructs explicit models describing the Gibbs free energy

of glycine-water liquid mixtures as a function of temperature and composition, as well as the pure

α-glycine crystal as a function of temperature. For the glycine-water liquid mixture, the author

uses a Pitzer-like equation for non electrolytes as an excess Gibbs free energy contribution defined

relative to a hypothetical ideal one molar glycine-water mixture. For the pure glycine crystal, it’s

heat capacity is modelled using a cubic spline, allowing calculation of the partial molar Gibbs free

energy of glycine in the ideal hypothetical solution as a function of temperature, and inclusion of

solubility data during model parameterisation.

In both works, all (or subsets of) available experimental data reported in the literature for the

system under study are collated, before simultaneously critically assessed and modelled, yielding

what is considered a consistent set of parameterised models for the Gibbs free energy of the various

phases that adequately describe reviewed data, from which all other thermodynamic properties may

be derived, in principle. The types of data used to inform the structure and parameter values of

the models used cover heat capacity (single and multi-component phases) and enthalpy changes

(upon dilution, dissolution and mixing), as well as phase equilibrium (i.e., vapor-liquid equilibrium

in the form of vapor pressure, isopiestic molality, relative humidity, or boiling point measurements,

as well as solid-liquid equilibria in the form of temperature dependent solubility and freezing point

measurements).

The aforementioned examples illustrate the application of general thermodynamic theory to

the problem of simultaneously describing multiple types of experimental thermodynamic data using

mathematical models. From a thermodynamic perspective (as discussed in Chapter 2), it is also

possible to estimate the phase diagram by finding the distribution of components that minimises the

system Gibbs free energy (with a fixed total amount of component A and B) at fixed temperature

and pressure where the system Gibbs free energy can be conveniently described as sum of the

Gibbs free energy of each phase:

βGsys. = βGs,◦1 (T ) + βGs,◦2 (T ) + βG l ,◦2 + βGv,◦2 + βG l ,mix1,2 (T, x) (5.8)

where βGα is the extensive Gibbs free energy of phase α and β retains the same definition as

previously specified. As an aside, it should also be noted that, for the case where the solid form of

a solute is known in addition to the desired solvent for which the solubility of said solute is required,

it is possible to estimate solubility by finding the distribution of components that minimises the

Gibbs free energy (with a fixed total amount of solvent and solute) of the sub-system comprising

pure crystal and solute-solvent liquid mixture only, giving:

βGsys. = βGs,◦1 (T ) + βG l ,mix1,2 (T, x). (5.9)

To estimate a phase diagram or, as in the case required in the thesis, a single phase boundary,

functions describing the Gibbs free energy of all relevant phases are required. In a manner similar to
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the chemical potential, the Gibbs free energy is not directly measureable; however, it is known (c.f.

Chapter 3 and 4) that many experimentally measureable quantities can be related to the underlying

Gibbs free energy functions required to estimate any phase boundary in a thermodynamically

consistent manner.

5.2.1 The CALPHAD Method

In addition to, but not entirely distinct from, ad-hoc applications, the simultaneous modelling

of thermodynamic data and phase equilibria has been formalised in the so-called CALPHAD

(CALculation of PHAse Diagrams) method. The CALPHAD method was developed with a

particular focus on using experimental data, mathematical modelling and equilibrium thermody-

namics to estimate phase diagrams of often complex multi-phase, multi-component alloy systems

and interested readers should refer to [199, 200] for a historical perspective on it’s development.

Before discussing the approach in any detail, many examples of CALPHAD assessments can be

found in the ‘CALPHAD Computer Coupling of Phase Diagrams and Thermochemistry’ journal

and interested readers looking for practical applications should refer there. Further, as mentioned

in [201], there are various texts covering the CALPHAD method in great detail and interested read-

ers should refer to [198], [202], and [203] for comprehensive treatments, as only a brief discussion

is presented here.

The CALPHAD method can be interpreted as a systematic, iterative procedure often referred

to as an ‘assessment’ and comprises two stages: critical analysis and optimisation. In the critical

analysis stage, relevant experimental and theoretical data for the system under study is collected

from the available sources (i.e., literature, databases, etc). During the collection of data, it is

recommended that all data sources are reviewed for the ‘appropriateness of experimental meth-

ods, systematic uncertainties, impurities, etc’, while an initial attempt to define the ‘number of

independent model parameters for each phase, consistent with quantity and quality of available

information’ should be made [198]. Assuming the initial models for all relevant phases are correct

as well as the assessed experimental data, the next step is to estimate the parameters in the chosen

model by finding the parameter values that allow models to describe available data. This is usually

approached as a least-squares optimisation [198]; however, recent works have explored the use of

Bayesian techniques [204], with the goal of allowing uncertainty propagation from experimental

data and quantification in model predictions. Usually, this process is repeated by varying model

structure and parameter constraints, as well as weighting and/or inclusion of data.

In a CALPHAD assessment, the Gibbs free energy of all phases are modelled explicitly and,

as mentioned already, experimental data is used to identify the structure of the underlying Gibbs

free energy models, as well as the values of parameters they comprise. Perhaps most simply,

the Gibbs free energy of a phase with fixed composition is usually expressed as a power series in
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temperature [198]:

G = a0 + a1T + a2T lnT + a3T
2 + a4T

−1 + . . . (5.10)

where a1, a2, . . . are free parameters found by correlating experimental data. Equation. (5.10)

is usually only appropriate over limited temperature ranges and may lead to significant errors

if used for extrapolation [198]. Crucially for stable components, the heat capacity of which is

experimentally measurable, it is possible to evaluate an appropriate model structure and some

parameter values given that for Eq. (5.10):

cp =
∂2βG

∂β∂T
= −a2 − 2a3T − 2a4T

−2 − 6a5T
2 + . . . . (5.11)

The extensive Gibbs free energy of a phase with a composition dependence is usually interpreted

through different contributions:

Gα = Gsrfα + Gphysα − TScnfα + GEα, (5.12)

where Gsrfα corresponds to a contribution to the Gibbs free energy associated to a ‘surface of

reference’, Gphysα corresponds to a contribution to the Gibbs free energy associated to a physical

model describing a particular phenomenon (e.g., magnetic transitions), GEα is the excess Gibbs free

energy and Scnfα is the configurational entropy [198].

For the systems discussed in this thesis, the only phase with a composition dependence is the

solute-solvent liquid mixture. In CALPHAD terms, this is referred to as a ‘substitutional-solution’

and is usually modelled without any ‘physical’ contribution in which case Eq. (5.12) becomes:

Gα =

n∑
i

nig
l,◦
i + RT

n∑
i

ni ln xi + GEα, (5.13)

where the excess Gibbs free energy contribution is modelled using the Redlich-Kister power series

(c.f. Chapter 4), expressed for the molar excess Gibbs free energy via:

gEα =

n−1∑
i

n∑
j

xixjLi j , (5.14)

where Li j =
∑k
v (xi − xj)v vLi j . The appropriate number of coefficients required for a given phase

cannot be known a priori and is therefore determined subjectively during the optimisation stage

based on the quality, type and distribution of available experimental data. When the experimental

data used during an assessment allows, the term vLi j can be interpretted as a function of tempera-

ture and usually in the form of a power series in temperature1 as for phases with fixed composition

which, for six coefficients is expressed as [205]:

vLi j =v ai j +v bi jT +v ci jT lnT +v di jT
2 +v ei jT

3 +v fi jT
−1 (5.15)

1with some additional terms for fitting convenience

120



where, again, the appropriate number of coefficients required to describe a given phase is deter-

mined during the optimisation stage of an assessment. Assessments with temperature dependent

interaction parameters including all six parameters appear to be limited, and it is common to use

only the first three [205, 198]. In [205], it was suggested that interaction parameters could instead

be described by a two parameter exponential equation to avoid observed high temperature arti-

facts occasionally observed with the extrapolation of power series expansions to high temperatures,

giving:

vLi j =v hi j exp

(
−
T
vτi j

)
, (5.16)

where vhi j and vτi j are flexible parameters and vτi j > 0. Interested readers are also directed to

more recent works [206, 207] by the same author in [205], where the exponential temperature

dependence is discussed in greater detail, as well as that described in [208].

As an aside, it should be noted that in addition to the popular Redlich-Kister excess Gibbs free

energy model cited in seminal texts on the CALPHAD method, as well as being used in the majority

of CALPHAD assessments, the standard UNIQUAC equation [43] was recently implemented [209]

in an open-source Python package (i.e., OpenCalphad [210]) developed for completing CALPHAD

assessments.

A CALPHAD assessment is, generally speaking, analogous to the processes described in the

ad-hoc examples cited previously [80, 145], aside from subtle choices around modelling approach

and property calculation. In both approaches, the fundamental idea is to use experimentally mea-

surable thermodynamic quantities and phase equilibria to generate thermodynamically consistent

mathematical representations of systems such that any property of the system can be reliably

estimated.

Typically, the development of Gibbs free energy models through simultaneous representation

of experimental data rely solely on the data available at the time of the study and, as such,

the quality of resulting models is limited by this. As shown in both ad-hoc applications and those

based on the CALPHAD approach, it is common practice to include directly measured temperature

dependent phase equilibrium data (e.g., solubility) during model parameterisation, regardless of the

intended application. However, in line with the focus of this thesis, there have been no attempts

to understand how this general idea of constructing thermodynamically consistent Gibbs free

energy models from experimental data can be used to estimate temperature dependent solubility,

specifically. Therefore, a key question is can this general approach can be used to estimate solubility

in regions where it hasn’t yet been measured.
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5.2.2 The Relationship Between CALPHAD-like Gibbs free Energy Models

and Experiments

In principle, developing a model for the Gibbs free energy of an arbitrary phase in a system can

be approached using any appropriate modelling technique (e.g., power series, cubic spline, neural

network, physical model, etc.). Given the efficacy of models used during CALPHAD assessments

(i.e., Eq. (5.10) and (5.12)) as illustrated by the volume of assessments reported in the literature,

these are used as a basis for the remainder of this chapter. As mentioned already, the Gibbs free

energy of a pure crystalline solute and solute-solvent liquid mixture are required to estimate solu-

bility either through minimisation of the composite Gibbs free energy (or solution of Eq. (2.31)).

In this section, the relationship between experimentally measureable thermodynamic quantities and

the models used to describe both phases are discussed.

Assuming, the Gibbs free energy of pure crystalline solute can be expressed using a CALPHAD

power series:

βgs,◦i (T ) = a0′+ a1′
(
T0
T
− 1

)
+ f (T ). (5.17)

where f (T ) is an unknown function of temperature which can, over a given range of temperature,

be completely specified by knowledge of the pure crystal solute heat capacity, assuming this is

experimentally accessible. Furthermore, if heat capacity data for the pure crystal is available from

0 K, it is possible to estimate a0 and a1, as illustrated in Section 5.6. From a mathematical

perspective the parameters in Eq. (5.17) are simply free parameters, an appropriate value for

which can be found by fitting experimental data. However, from a thermodynamic perspective, it

is possible to relate the Gibbs free energy of a phase with constant composition to enthalpy and

heat capacity:

βgs,◦i (T ) = β0g
l,◦
i (T0) + β0h

l,◦
i (T0)

(
β

β0
− 1

)
+

∫ β
β0

∫ T
T0

c l,◦p,i(T )dTdβ, (5.18)

giving, a0′ = β0g
s,◦
i (T0), a1′ = β0h

s,◦
i (T0), and f (T ) =

∫ β
β0

∫ T
T0
cp(T )dTdβ.

The solute-solvent liquid mixture can be described using Eq. (5.13). The form of this equation

is identical to that of a solution interpreted in terms of an ideal solution contribution (in terms

of Raoult’s Law) and an excess contribution. Following the standard CALPHAD approach, the

temperature dependent function associated to the pure liquid components is given by Eq. (5.17).

For simplicity, no specific structure is specified for the excess Gibbs free energy contribution,

beyond the fact it is a function of temperature and composition.

For a set of experimentally measureable quantities, it is possible to enumerate how they relate

to parameters in each model. Common measurements reported in literature and used during

development of thermodynamic models (based on work discussed in Chapter 3 and 4) for systems

discussed in this thesis are presented in Table 5.1. It should be noted that pure solute melting
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properties (i.e., enthalpy of fusion and normal melting temperature) have been omitted intentionally

(c.f. Chapter 2), in keeping with the general aim of this thesis.

Table 5.1: Model parameter–data relationships, where x1 denotes solubility, a2 denotes solvent

activity in solution, ∆Hdil. denotes enthalpy of dilution, ∆Hsol. denotes enthalpy of solution and

csolnp denotes solution heat capacity. † denotes property must be measured at temperatures other

than T0. ‡ denotes single estimate of property required if measured at T0.

Parameter x1 a2 ∆Hdil. ∆Hsol. csolnp

gl,◦1 (T0) ✓‡

hl,◦1 (T0) ✓† ✓‡

cp,1(T ) ✓ ✓ ✓

βGE ✓ ✓ ✓ ✓ ✓

Before discussing the relationship between experiments and parameters described in Table 5.1,

it should be noted that it is possible to evaluate parameters associated to the pure liquid solvent in a

manner identical to that described previously for the pure crystalline solute, in principle, given that it

is a stable, experimentally observed phase. In contrast, from a practical perspective, all parameters

associated to the pure hypothetical liquid solute must be found indirectly through a specific set

of experimentally measurable quantities, given that pure liquid solutes at temperatures below

their assumed normal melting point are unstable and therefore rarely observed using conventional

experimental techniques (c.f. Chapter 2). The contribution associated to the hypothetical pure

liquid solute are discussed in greater detail next.

From the experiments listed in Table 5.1, there is only one measurement that gives information

about the value of gl,◦1 (T0) and that is solubility. In theory, the experimental conditions at which

solubility measurements are required to estimate gl,◦1 (T0) is reduced to one if the solubility is

measured at T0. However, this comes with the caveat that a reliable model for βGE(T, x) is

known at T0 as a function of solution composition. Further more, hl,◦1 (T0), c l,◦p,1(T ) and βGE(T, x)

are required if solubility data at temperatures other than T0 are used. The key finding from this

is that, for this collection of experiments and the modelling framework described, at least one

solubility measurement is required such that all parameters are evaluated, if solubility is to be

estimated at other temperatures.

There are only two types of experimental measurement that give information about the value of

hl,◦1 (T0) and they are solubility (at temperatures other than T0) and enthalpy of solution. Like with

solubility and gl,◦1 (T0), the number of experimental state points at which the enthalpy of solution

is required to estimate hl,◦1 (T0) is reduced to one if it is measured at T0 and an arbitrary solution

concentration (below saturation). However, like with solubility, this comes with the caveat that a
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reliable model for βGE(T, x) is known at T0 and as a function of solution composition. Again, if

the enthalpy of solution is not at T0, then both c l,◦p,1(T ) and βGE(T, x) are required.

Finally, there are three types of experiments that give information about cp,1(T ) and that is

solubility, enthalpy of solution, and solution heat capacity. If, for example, the functional form of

the heat capacity is assumed to be that of an expansion-type (e.g., c l,◦p,1(T ) = c l,◦p,1(T0) + . . .) then

it is possible to estimate the first term (i.e., c l,◦p,1(T0)) with the solution heat capacity at T0. Again,

this comes with the caveat that a reliable model for βGE(T, x) is known at T0 as a function of

solution composition.

In theory, it is possible to constrain βGE(T, x) with an additional set of experiments that

do not include gl,◦1 (T0), hl,◦1 (T0) or c l,◦p,1(T0). These include measurements based on vapor liquid

equilibrium (i.e., vapor pressure, isopiestic molality, relative humidity, etc), the enthalpy of dilution

(which takes numerous forms), and potentially even light scattering [211]. Additionally, it is

possible to use other phase boundaries that enclose the liquid solution (i.e., boiling curve and

freezing point depression), if the Gibbs free energy of the adjacent phase (i.e., pure vapor and

pure crystalline solvent, respectively) is known. All of these examples yield information about

different partial derivatives of the βGE(T, x) surface.

From a practical perspective, it is possible to frame the construction of a Gibbs free energy

surface for a binary liquid solution as a two step process where certain experimental data is used

to independently construct βGE(T, x) and then evaluate the remaining parameters associated to

the sub-cooled liquid solute. Alternatively, it it possible to view the processes as a single step,

where all data is used simultaneously. Regardless, the primary goal is to find functional forms

for c l,◦p,1(T ) and βGE(T, x) that describe the available experimental data with the hope that the

resulting surface leads to reliable solubility estimates.

Assuming complete determination of Gibbs free energy functions of stable, experimentally

observable pure solvent phases (i.e., crystalline, liquid and vapor), as well as pure crystalline solute

phases is reasonable given our ability to measure the heat capacity of stable compounds. This

would be analogous to the unary database developed as part of the CALPHAD modelling concept,

as originally published by [212]. Treating the determination of model structure and parameter

values that are directly related to the temperature dependence of pure stable component heat

capacity has practical advantages. First, it reduces the number of parameters that would be

required during the optimisation stage which may reduce the complexity of the objective function

and lead to more robust results with reduced computational effort, depending on the algorithm

used. Secondly, this eliminates data types from the global optimisation step that would otherwise

contribute to the chosen objective function. If framed as a single objective optimisation, this could

introduce unnecessary complexity and poor model parameterisation, as discussed in a recent work

assessing the performance single and multi-objective optimisation for excess Gibbs free energy
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models [213].

In summary, for the experimentally measureable quantities in Table 5.1, it is possible to con-

struct combinations of experiments that allow parameterisation of the Gibbs free energy models

required to estimate solubility as a function of temperature. Most importantly, in the broader

context of the work presented in this thesis, it is possible to do so with only a single estimate

of solubility, retaining a key property of the approaches described in Chapter 3 and 4. In the

remainder of the chapter, the applicability of this result is analysed on ‘real’ experimental data for

the sucrose-water system. More specifically, available experimental data is collated and modelled

for the purpose of understanding how well the associated solubility curve can be represented. For

the purpose of this chapter, modelling is approached using the aforementioned Gibbs free energy

models frequently used in the CALPHAD method.

5.3 Computational Details

For the purpose of the work presented in this chapter, a series of Python modules were developed

to allow simple calculation of thermodynamic properties from parameterised Gibbs free energy

models for single and multi-phase system comprising either single or multiple components, as well

as the parameterisation of Gibbs free energy modes by ‘fitting’ to experimental data. It should

be noted that the development of a comprehensive software package for distribution as either

open-source or commercial use is beyond the scope of this thesis.

5.3.1 Automatic Differentiation

‘Automatic Differentiation (AD)’ is a computational technique used to evaluate partial derivatives

of mathematical function specified in terms of computer code. As noted in [214], in contrast to

alternative computational differentiation techniques, AD voids the need to express mathematical

functions in ‘expression strings’ (c.f. symbolic differentiation) and eliminates approximation error

(c.f. numerical differentiation). Given that any thermodynamic quantity can be expressed as a

partial derivative (or combination of) of the underlying Gibbs free energy (or relevant thermody-

namic potential), Automatic Differentiation was used to calculate thermodynamic properties from

underlying Gibbs free energy models in Chapter 3 and 4, and plays a crucial role in the calculations

described in this chapter.

5.3.2 Python Code

For calculation of thermodynamic quantities from pre-assigned Gibbs free energy models or param-

eterisation of models based on experimental data, the following three core modules were developed:
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• Models.py

• DataFunctions.py

• DataProcesses.py,

all of which are discussed individually.

Models.py

In Models.py, Gibbs free energy models required for subsequent calculation of derived thermody-

namic quantities, parameterisation by fitting to experimental data, or both, are stored. Although

it may have been reasonable to apply an ‘Object Orientated Programming (OOP)’ philosophy and

interpret a Gibbs free energy model as ‘class’, it was decided to encapsulate a Gibbs free energy

model in a Python function (more akin to a Functional Programming philosophy). This choice was

motivated by the manner in which the AutoGrad Python library allows calculation of derivatives

and the choice is not expected to have any material impact on performance in the context of the

computations described herein.

The structure of a Gibbs free energy Python function in the Model.py module is as follows:

def G i b b s F r e e E n e r g y M o d e l ( p a r a m a t e r d i c t , ∗ s t a t e d a t a ) :

# Unpack s t a t e data

B = s t a t e d a t a [ 0 ]

P = s t a t e d a t a [ 1 ]

n l i s t = s t a t e d a t a [ 2 : ]

# Ca l c u l a t e BG

( i n s e r t c a l c u l a t i o n h e r e )

r e tu rn BG

where it should be noted that that the function takes two arguments, the first being parameter dict

which is a Python dictionary that holds all parameters (e.g., binary interaction paramaters in the

UNIFAC model). The second, ∗ state data , denotes a Python iterable (e.g., tuple, list, etc.), for

all state properties, including: β = 1/(RT ), pressure and the number of moles of each component

in the model (which may be one or more). Throughout this work, the first and second values in

∗ state data are always designated as β and pressure, respectively; however, this is not necessary,

as long as the un-packing process is consistent. It should be noted that the property calculated

by Python function is βG.
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In principle, with Gibbs free energy models stored as Python functions in Models.py, users

can derive thermodynamic quantities using AutoGrad. However, the additional Python modules

DataFunctions.py and DataProcesses.py have been developed to store re-usable code snippets

frequently encountered when calculating thermodynamic properties of interest and fitting experi-

mental data.

DataFunctions.py

The DataFunctions.py module acts as a placeholder to store user-defined Python functions that

manipulate Gibbs free energy models (defined in Models.py) and generate thermodynamic quan-

tities (e.g., osmotic coefficient, differential enthalpy of dilution, solubility, etc), typically using

AutoGrad. The basic structure of a DataFunction is as follows:

def D a t a F u n c t i o n ( m o d e l d i c t , p a r a m d i c t d i c t , ∗ s t a t e d a t a ) :

# Ca l c u l a t e thermodynamic p r o p e r t y o f i n t e r e s t

r e tu rn P r o p e r t y

where it should be noted that a DataFunction will take three arguments, the first being model dict ,

which is a Python dictionary that collects all Gibbs free energy models required to calculate

the property of interest (e.g., pure solid and liquid mixture for solubility), the second being

param dict dict which is another Python dictionary used to collect the Python dictionaries associ-

ated to each Gibbs free energy model in model dict , and the final argument is ∗ state data which,

in most cases takes a similar form to ∗ state data used by Python functions defined in Models.py;

however, can be defined in any manner that a user deems appropriate to facilitate calculation of

the thermodynamic property of interest.

DataProcesses.py

The DataProcesses.py module acts as a placeholder to store Python functions that return a user

specified ‘goodness of fit’ measure between thermodynamic quantities of interest derived from

Gibbs free energy models and corresponding set of experimental data. The purpose of this is to

simplify the process of fitting Gibbs free energy models to experimental data, as the calculated

goodness of fit value can be fed into a user-defined objective function. For the purpose of this

work, this was typically chosen as the ‘sum of errors squared’, which contributed to an objective

function used by a numerical optimisation algorithm taken from NumPy [215]. The basic structure

of a DataProcess is as follows:
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def D a t a P r o c e s s ( df , f u n c t i o n , m o d e l d i c t , p a r a m d i c t d i c t ) :

# Ca l c u l a t e goodnes s o f f i t to e x p e r im e n t a l da ta

# based on c u r r e n t pa r ame t e r s v a l u e s s t o r e d i n

# p a r am d i c t d i c t

r e tu rn G o o d n e s s o f f i t

where a DataProcess Python function takes four inputs, the first being df, which denotes a

Pandas [216, 217] dataframe Python object that holds the experimental data that the user wishes

to compare a set of parameterised Gibbs free energy models to, function is a DataFunction defined

for the thermodynamic property of interest, model dict dict is a Python dictionary containing the

Python dictionaries containing parameter objects for each of the Gibbs free energy model Python

functions (defined in Models.py) required for the analysis and param dict is a Python dictionary

holding the parameters associated to each Gibbs free energy model.

It should be noted that, in the current form, a DataProcess must be written for all types

of experimental data that may be used during a fitting process. More specifically, is a user

wants to fit a both vapor pressure data (reported in terms of vapor pressure, temperature and

solution composition) and solution heat capacity data (reported in terms of solution heat capacity,

temperature, pressure and solution composition), the user would have to generate and concatenate

the outputs to generate the desired objective function.

5.4 The Sucrose-Water System

In the previous section, it was shown how different types of experimental measurements inform

an appropriate model structure and associated parameter values when developing Gibbs free en-

ergy models for solubility prediction. As mentioned briefly in Chapter 4, there appears to be few

systems with the characteristics suitable for crystallisation (i.e., at least one component stable in

the liquid state (solvent) and another stable in the solid state (solute)), where phase equilibria

have been accurately determined across all relevant temperatures and atmospheric pressure, as

well as complete characterisation of single and multi-component phases, in terms of the experi-

mental measurement techniques detailed in the previous section; however, one possible exception

is sucrose-water. As illustrated in Fig. 5.2, phase boundaries of the sucrose-water system are well

defined through direct experimental measurements.
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Figure 5.2: Sucrose-water phase equilibria at 1 atm. Open circles correspond to direct measure-

ments reported in the literature. Red denotes boiling point measurements [218, 219, 220, 221,

222, 223]. Grey denotes solubility measurements [146, 147, 148, 149, 150, 151]. Blue denotes

freezing point measurements [181, 182, 148, 150, 183, 184].

For completeness, the work described in this chapter related to the sucrose-water is focused

on the anhydrous form of sucrose only, noting that several sucrose hydrate forms have been

reported in the literature [148]. Regardless, in addition to well defined phase boundaries, many

studies reporting thermodynamic properties of the sucrose-water solution phase are present in the

literature, as shown by an extensive data compilation discussed in [145].

In addition to the aforementioned work described in [145], modelling thermodynamic properties

and phase equilibria of the sucrose-water system has been discussed by several authors (tabulated

in Table 5.2).
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Table 5.2: Sucrose-water thermodynamic modelling studies

Author Year Citation

Abed et al. 1992 [224]

Abderafi et al. 1994 [225]

Catte et al. 1994 [226]

Catte et al. 1995 [227]

Peres and Macedo 1996 [228]

Peres and Macedo 1997 [11]

Kuramochi et al. 1997 [107]

Jonsdottir and Rasmussen 1999 [57]

Spiliotis and Tassios 2000 [49]

Ferreira et al. 2003 [229]

Tsavas et al. 2004 [230]

Perozin et al. 2007 [231]

Nowak et al. 2009 [232]

Van der Sman 2017 [233]

Paese et al. 2020 [234]

Most studies listed in Table 5.2 have been discussed in [145] and [234], respectively. As

noted by these authors, many sucrose-water thermodynamic modelling studies have focussed on

the determination of appropriate group contribution functional groups and/or associated group

contribution parameter values for group contribution excess Gibbs free energy models. Examples of

this type of work include [224] where interaction parameters between molecular groups not available

in published tables (at the time of original publishing) for the original UNIFAC model were evaluated

by correlating temperature dependent solubility data for binary and ternary sugar mixtures, [227]

where a new expression based on the UNIFAC equation that includes an association/solvation

term to capture behavior thought to occur in sugar-water solutions, [49] where the so-called

‘S-UNIFAC model was proposed, providing new groups specifically for modelling liquid mixtures

containing sugars was proposed and their interaction parameters against experimental data (which

was later extended by [230]) and [229] where the so-called ‘A-UNIFAC’ model was proposed and

correlated against a large selection of data giving good correlations and applications to mixed

systems.

Aside from works investigating the application of group contribution excess Gibbs free en-

ergy models to the sucrose-water system (again, as pointed out in [145] and [234]), and perhaps

more relevent to the work described in the remainder of this chapter, several authors have as-
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sessed the performance of correlative excess Gibbs free energy models in the context of describing

experimental sucorse-water thermodynamic data. Examples of this type of work include [225]

where parameters in the Peng-Robinson and Lee-Kesler equations of state, as well as the NRTL

excess Gibbs free energy model were correlated to boiling point measurements at atmospheric

pressure for binary and ternary sugar-water mixtures (including sucrose-water) published in the

same work, [226] where various types of experimental thermodynamic data (including solubility,

freezing point, boiling point, solvent activity, enthalpy of dilution and solution heat capacity) were

correlated using using a modified UNIQUAC equation for the excess Gibbs free energy, [228] where

phase equilibria (i.e., solubility, freezing point and boiling point) and solvent activity data were cor-

related using the UNIQUAC equation with temperature dependent interaction parameters, [231]

the PRSV equation of state was used to correlate sucrose-water solvent activity data and then

used to predict boiling temperatures in good agreement with direct measurements, [233] the Flory-

Huggins excess Gibbs free energy model was used to correlate temperature dependent solubility

data, and the often cited (in this thesis) [145] where the biggest collection of thermodynamic

data (including solubility, boiling and freezing point, solvent activity, enthalpy of dilution and so-

lution heat capacity) is correlated with the goal of producing an excess Gibbs free energy model

describing the activity of water in sucrose-water liquid mixtures.

In summary, the aforementioned works have mostly focussed on the problem of using avail-

able experimental data to determine appropriate model structures, and/or parameterise a pre-

determined model—trying to ‘predict’ solubility from all other available experimental data has not

been addressed. Furthermore, with the exception of [145], many studies have sampled only a

subset of available data. Finally, there are no examples where a Redlich-Kister polynomial excess

Gibbs free energy model has been used to describe the sucrose-water liquid mixture. All of the

above are addressed, in-part, in the remainder of this chapter.

5.5 Data Review

The sucrose-water system has been studied through measurement of several different thermo-

dynamic properties, as indicated by a compilation published [145], which cites a vast collection

of reports of phase equilibria (i.e., vapor-liquid and solid-liquid) as well as thermochemical (i.e.,

activity, enthalpy and heat capacity) data. The authors refer to an earlier compilation [235], as

well as previous work of the lead author [236], as basis for their compilation.

In this chapter, the compilation published in [145] was used as a basis to construct reference

data for which a sucrose-water model could be developed. In addition to reports cited in [145],

the DETHERM database provided by the Physical Sciences Data-science Service (hosted by the

University of Southampton) was used to find additional references, as well as the wider literature
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(where relevant).

Broadly speaking, data included in this analysis belong to one of four groups:

1. Cited in [145] and available through a primary source 2

2. Not cited in [145], available in DETHERM and available through a primary source

3. Cited in [145] and available through DETHERM but not available as a primary source

4. Not cited in [145], not available through DETHERM but available as a primary source

It should be noted that some reports cited in [145] were not included in the data collection stage

for a variety of reasons (e.g., primary source inaccessible, primary source in language other than

English, etc.,); however, these omissions were restricted to data types and regions on the phase

diagram where a meaningful amount of data was already available; thus, it is not expected to have

substantial impact on the analysis presented here. In subsequent sections, the data collected is

summarised.

5.5.1 Phase Equilibria

Direct measurements of sucrose-water phase equilibria including both boiling and freezing points,

as well as anhydrous sucrose solubility have been reported in the literature and are illustrated in

Fig. 5.2. As shown, each phase boundary appears to be well defined with data spanning the entire

range of practical interest from the perspective of crystallisation process design (i.e., complete

knowledge of solubility curve from eutectic to vapor-solid-solution triple point).

Focusing on the solubility data, illustrated separately in Fig. 5.3, it can be seen that all data

sets included in this analysis are in excellent agreement with each other.

2In this context, a primary source is defined as the document where the data was originally reported
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Figure 5.3: Sucrose solubility in water at 1 atm. Open symbols correspond to direct measurements

reported in the literature [146, 147, 148, 149, 150, 151].

The lowest temperature at which the solubility has been reported is approximately 260 K in [148]

while the highest is approximately 370 K reported in [146]. There appears to be no measurements

closer to the assumed vapor-crystal-solution triple point and this could be a direct for future

research; however, may present challenges due to high solution concentration, temperatures far

from ambient and water volatility.

Measurements of water freezing point temperature in sucrose-water liquid mixtures are pre-

sented in Fig. 5.4.
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Figure 5.4: Water freezing point temperature in sucrose-water liquid mixtures at 1 atm. Open

symbols correspond to direct measurements reported in the literature [181, 182, 148, 150, 183,

184].

As shown, water freezing temperature decreases with increasing sucrose concentration in ac-

cordance with the general principle of ‘freezing point depression’, where the freezing point of a

solvent decreases with the addition of solute. Data from independently reported datasets are in

fair agreement at solution concentrations up to approximately 0.04 sucrose mole fraction. Three

references report data that extend above this towards the assumed eutectic point [148, 184], one

of which reports freezing point data beyond the expected eutectic point [148].

Measurements of water boiling point temperature in sucrose-water liquid mixtures are presented

in Fig. 5.5.
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Figure 5.5: Water boiling point temperature in sucrose-water liquid mixtures at 1 atm. Open

symbols correspond to direct measurements reported in the literature [218, 219, 220, 221, 222,

223].

As shown, water boiling temperature increases with increasing sucrose concentration in accor-

dance with the general principle of ‘boiling point elevation’, where the temperature at which a

solvent boils increases with the addition of solute. For the references shown, data from indepen-

dent reports are in good agreement up to 0.2 sucrose mole fraction. Beyond 0.2 sucrose mole

fraction, data from independent reports begins to diverge. By comparison to Fig. 5.2, the inter-

section of the solubility and boiling point curve is likely around 0.2 sucrose mole fraction, which

may explain increased variation.

5.5.2 Pure Component Constant Pressure Heat Capacity

For water in both liquid and vapor phases, the ‘International Association for the Properties of

Water and Steam’ (IAWPS) have published a model, referred to in the remainder of this chapter

as IAWPS-95, reported to describe the most accurate experimental thermodynamic data within

experimental uncertainty, where model development and predictions are presented in [237]. Pre-

dictions for the constant pressure heat capacity of both phases derived from the IAWPS-95 model

are shown in Fig. 5.6. As shown, the constant pressure heat capacity for water in the liquid state is
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Figure 5.6: Constant pressure molar heat capacity for solid, liquid and vapor water between 260–

420 K at 1 atm. Dashed lines correspond to estimations based on IAWPS-95. Open symbols

correspond to direct measurements [238]. Blue denotes solid, grey denotes liquid and red denotes

vapor.
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Figure 5.7: Constant pressure molar heat capacity measurements for crystalline anhydrous sucrose

between 260–420 K at 1 atm. Dashed lines denote fits. Open symbols denote direct measure-

ments [239, 240, 241].

modelled by a curve starting with a heat capacity of approximately 75.95 J/mol.K at 273.15 K, de-

creasing to a minimum of 75.23 J/mol.K at 305 K, before increasing to 75.88 J/mol.K at 373.15 K

(i.e., normal boiling point). For the vapor phase, the constant pressure heat capacity is modelled

by monotonically decreasing curve starting at approximately 37 J/mol.K at 373.15 K and dropping

to approximately 35 J/mol.K at 430 K.

For water in the solid phase (i.e., ice), constant pressure heat capacity data was collected from

the literature and this data is illustrated in Fig. 5.6, where the data indicates that the constant

pressure heat capacity is a linear function of temperature.

Experimental data from independent studies reporting the constant pressure heat capacity of

pure crystalline sucrose were collected from the literature, and illustrated in Fig.5.7. As shown,

the constant pressure heat capacity increases with increasing temperature. All independent reports

shown are in good agreement between 260–420 K and the data appear to have a linear dependence

on temperature, in a manner similar to water in the solid state.

137



5.5.3 Vapor Pressure, Isopiestic Molality and Relative Humidity

The vapor pressure above sucrose-water solutions has been reported by several authors. Briefly,

the collection contains measurements from thirteen independent sources from as early as 1910 to

as recent as 2018, while numerous apparatus have been described. All measurements are presented

in Fig. 5.8, while data in the temperature range is 273.15–323.15 K is shown in Fig. 5.9.
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Figure 5.8: Vapor pressure measurements reported in literature for sucrose-water solutions. Open

symbols correspond to measurements [168, 242, 164, 165, 172, 243, 244, 150, 245, 246, 167].

Color gradient corresponds to reported temperature scaled between 260 K (blue) and 370 K (red).

Dashed lines indicate ideal (with respect to Raoult’s Law) vapor pressure.
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Figure 5.9: Vapor pressure measurements reported in literature for sucrose-water solutions between

273.15 and 323.15 K. Open symbols correspond to measurements [168, 242, 164, 165, 172, 243,

244, 150, 245, 246, 167]. Color gradient corresponds to reported temperature scaled between

260 K (blue) and 370 K (red). Black dashed line indicates ideal (with respect to Raoult’s Law)

vapor pressure at 298.15 K.

From Fig. 5.8 and 5.9 it appears all data sets are in good agreement with each other. Fur-

ther, there appears to be reasonable coverage across the sucrose-water mixture composition and

temperature range; however, data at elevated temperatures is limited to five independent reports,

while the majority of data points are closer to ambient conditions. With reference to the ‘ideal

solution’ vapor pressure curve (defined relative to Raoult’s Law), vapor pressure data indicates the

sucrose-water mixture becomes increasingly non-ideal as sucrose composition increases towards

saturation (i.e., approximately 0.1 mole fraction), at 298.15 K, inferred from the increasing diver-

gence between dashed lines and symbols in Fig 5.8. The pure vapor pressure (i.e., dashed lines

in Fig. 5.8 and 5.9) was estimated using Eq. (5.7), where the vapor pressure of pure water vapor

was estimated with the following equation:

log p◦(T ) = 8.07131−
1730.63

T + 233.426
(5.19)

where p◦ is saturated vapor pressure (in Torr) and T is temperature (in ◦C).
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The equilibrium relative humidity is another property through which it is possible to investi-

gate the behavior of sucrose-water liquid mixtures. Briefly, the collection contains measurements

from thirteen independent sources from as early as 1910 to as recent as 2018, while numerous

apparatus have been described. In some cases, the relative humidity is reported as the measured

quantity, while in others, water activity is reported as the measured quantity when certain types of

modern measurement apparatus are used. For convenience, all measurements where the method

of measurement was through analysis of relative humidity were converted to water activity (defined

relative to Raoult’s Law) through:

a2 =
ERH

100
, (5.20)

where the equilibrium relative humidity (ERH) was reported as a %, and:

a2 =
h

100
, (5.21)

where the relative pressure (i.e., h = p2/p
◦
2(T ) with p2 being the partial pressure of water and

p◦2(T ) being the saturated vapor pressure of pure water) was reported as %.

All measurements are presented in Fig. 5.10. As shown, it appears all data sets are in qualitative

agreement with each other; however, appear somewhat noisy.
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Figure 5.10: Water activity (defined relative to Raoult’s Law) in sucrose-water solutions derived

from relative humidity-based measurements reported in literature Open symbols correspond to

measurements [166, 169, 173, 163]. Color gradient corresponds to reported temperature scaled

between 260 K (blue) and 370 K (red).

The isopiestic molality of sucrose-water solutions relative to different reference solutions (i.e.,

sodium chloride-water and potassium chloride-water) have been reported by several authors. Briefly,

the collection contains measurements from six independent sources from as early as 1938 to as

recent as 2021, while numerous apparatus have been described. All measurements are presented

in Fig. 5.11 and Fig. 5.12 for sodium chloride and potassium chloride, respectively. As shown,

all data sets where measurements are taken relative to the same reference solution are in good

agreement with each other. However, it should be noted that all data is reported at 298.15 K.
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Figure 5.11: Isopiestic molality measurements reported in the literature for sucrose-water liquid

mixtures relative to sodium chloride-water liquid mixtures, at 298.15 K. Open symbols correspond

to measurements [247, 174, 248, 170].
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Figure 5.12: Isopiestic molality measurements reported in the literature for sucrose-water liquid

mixtures relative to potassium chloride-water liquid mixtures, at 298.15 K. Open symbols corre-

spond to measurements [249, 171, 170].

To convert the isopiestic molality measurments to osmotic coefficients for sucrose-water mix-

tures, the osmotic coefficient as a function of composition for the relevant reference mixture was

used. In this chapter, a reference model for both sodium chloride-water and potassium chloride-

water was derived using data tabulated in [250] and [251], respectively, where tabulated data is

presented as the output of a large-scale modeling study of both systems based on an extensive

collection of experimental thermodynamic data. Both reference models were developed by inter-

polating available data using the ‘RBFInterpolator’ function in Scipy with a thin plate spline kernel.

The interpolants and data are presented in Fig. 5.13.
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Figure 5.13: Osmotic coefficient as a function of salt molality at 298.15 K. Open symbols cor-

respond to tabualted osotic coefficients for sodium chloride [250] (circles) and potassium chlo-

ride [251] (triangles) in water, respectively. Lines correspond to radial basis function interpolants.

The osmotic coefficients derived from isopiestic molality measurements are presented in Fig. 5.14.
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Figure 5.14: Osmotic coefficients for sucrose-water liquid mixtures at 298.15 K. Open symbols cor-

respond coefficients derived from direct measurements reported in literature (NaCl reference [247,

174, 248, 170]. and KCl reference [249, 171, 170]. )

As shown, osmotic coefficients estimated from isopiestic molality measurements are in good

agreement across the entire range of sucrose composition, with the exception of data reported

in [174] (left triangle) and [248] (diamond). It should be noted that two data points in [170]

appeared to be outliers when compared to additional points in the data set and are not shown in

Fig. 5.14.

All the aforementioned properties give information about the chemical potential of water in

the sucrose-water liquid mixture. As such, it is possible to convert each class of measurement into

each other, to allow comparison between properties. Here, the measurements derived from relative

humidity and isopiestic molality measurements are converted into equivalent vapor pressure. By

definition, the osmotic coefficient for a solution comprising a single solute and solvent is related

to the solvent activity via:

φ = −
ln a2
vM2m1

(5.22)

where a2 is solvent activity, v is the stoichiometric number of the solute (i.e., ions per molecule)

m1 is solute molality and M2 is solvent molecular weight (kg/mol). From solvent activity, the

equivalent vapor pressure assuming the vapor phase comprises pure solvent is given via the so-
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called extended Raoult’s Law:

pvap(T ) = a2p
◦,sat(T ) (5.23)

where p◦,sat(T ) is the pure solvent vapor pressure taken for water as the correlation given in

Eq. (5.19).

The combined activity data in terms of water vapor pressure are presented in Fig. 5.15.
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Figure 5.15: Vapor pressure, relative humidity and isopiestic molality measurements reported in

literature (processed into equivalent vapor pressure) for sucrose-water solutions between 273.15

and 323.15 K. Open symbols correspond to vapor pressure measurements [168, 242, 164, 165,

172, 243, 244, 150, 245, 246, 167]. Partially closed (top) symbols correspond to vapor pressure

estimated from relative humidity measurements [166, 169, 173, 163]. Partially closed (right)

symbols correspond to vapor pressure estimated from isopiestic molality measurements [249, 171,

170, 247, 174, 248]. Color gradient corresponds to reported temperature scaled between 260 and

370 K (blue and red, respectively).

It should be noted that the data is shown between 273.15–323.15 K given that this is the

range over which measurements of the three sub-classes used in this analysis cover. As shown,

measurements from all classes are in good agreement when presented at pure water vapor pressure.

Data derived from relative humidity measurements and isopiestic molalities are compared on

the basis of ln γ2 in Fig. 5.16.

146



0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Sucrose Mole Fraction

−0.10

−0.08

−0.06

−0.04

−0.02

0.00

ln
γ

2

280

300

320

340

360

Figure 5.16: Water activity coefficient (i.e., ln γ2), defined relative to Raoult’s Law derived from

measurements of relative humidity and isopiestic molality measurements reported in literature for

sucrose-water solutions between 273.15 and 323.15 K. Partially closed (top) symbols correspond

to ln γ2 estimated from relative humidity measurements [166, 169, 173, 163]. Partially closed

(right) symbols correspond to ln γ2 estimated from isopiestic molality measurements [249, 171,

170, 247, 174, 248]. Color gradient corresponds to reported temperature scaled between 260 and

370 K (blue and red, respectively).

As shown, estimates of ln γw based on relative humidity measurements appear more noisy than

those based on isopiestic molalities, with the exception of those reported by [163] (right pointing

triangles, top filled), which appear to be in within the same scatter as those based on isopiestic

molalities.

5.5.4 Enthalpy of Solution and Dilution

The enthalpy of solution has been reported by various authors. References cited in this work are

summarised in Fig. 5.17. As shown, all reports focus on the region of extremely dilute sucrose

concentration (i.e., below 0.07 mole fraction, noting that saturation corresponds to 0.1 mole

fraction at 298.15 K). In this region and based on available data, the enthalpy of solution appears

to have no dependence on composition; however, increases with temperature. It should be noted
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that data taken from Barry (1920), Hendricks et al., (1930) as well as Miller and Pablo (2000)

was assigned a solution concentration of zero (i.e., infinite dilution) as the true measurement

concentration was not found.
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Figure 5.17: Enthalpy of solution data for sucrose-water liquid mixtures reported in literature.

Open symbols correspond to measurements [252, 253, 254, 255, 256, 257, 258, 259]. Color

gradient corresponds to reported temperature scaled between 260 K (blue) and 370 K (red).

Data related to the heat evolved during dilution of sucrose-water solutions has been reported

by several authors As described in Chapters 3 and 4, the enthalpy of dilution is often reported

in various ways. For sucrose-water mixtures at 298.15 K (discussed in Chapter 4), this included

two different types of integral measurements reported by [176, 175]. For temperatures other than

298.15 K all additional data found are reported as differential, where a small but finite amount of

water is added to a sucrose-water solution of known concentration and the heat evolved measured,

giving h̄2 − hl,◦2 = ∂ ln γ2/∂β.

Values reported as differential enthalpy of dilution measurements are illustrated in Fig. 5.18.

It should be noted that, although reported as integral measurements, differential measurements

derived from integral measurements are provided by [176], and also shown. All measurements

suggest that the magnitude of differential enthalpy of dilution increases with sucrose mole fraction,

as well as temperature and appear to be in good agreement with each other (below approximately
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Figure 5.18: Differential enthalpy of dilution data for sucrose-water liquid mixtures reported in

literature. Open symbols correspond to measurements [260, 176, 261, 162]. Color gradient

corresponds to reported temperature scaled between 260 K (blue) and 370 K (red).
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0.06 mole fraction). However, as also discussed in [145], data reported by [261] at 333.15 and

353.15 K follow the same trend as those at lower temperatures; however, appear to go through

an inflection point and begin to level.

5.5.5 Solution Heat Capacity

The heat capacity of sucrose-water liquid mixtures has been reported by various authors, using a

variety of techniques. Data are illustrated in Fig. 5.19.
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Figure 5.19: Solution heat capacity data for sucrose-water liquid mixtures reported in literature.

Open symbols correspond to measurements [179, 177, 178, 180]. Color gradient corresponds to

reported temperature scaled between 260 K (blue) and 370 K (red).

As shown, datasets with coverage of a broad range of sucrose-water liquid mixture compositions

is restricted to temperatures at (or near) 298.15 K. There are also two measurements at elevated

temperatures (i.e., 330 and 360 K) both at approximately 0.07 sucrose mole fraction.
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5.6 Pure Component Reference Values

As noted already, at fixed pressure, the reduced molar Gibbs free energy of single component

phase at temperature T can be related to the reduced Gibbs free energy at temperature T0 via

Eq. (5.17). Expressing the Gibbs free energy (and chemical potential) of a pure phase in this way is

convenient because, given the heat capacity of all stable components as a function of temperature,

as well as the temperature and enthalpy change of all first-order phase transitions in the range of

interest, it is possible to determine this model.

For the results reported in this chapter, the Gibbs free energy of crystalline sucrose, as well as

liquid water are required to make solubility predictions. relevant pure phases in the sucrose-water

system are water (solid, liquid and vapor) and sucrose (solid). As noted already, reference values for

the Gibbs free energy of pure phases have been generated and subsequently used in the CALPHAD

method by noting that if the enthalpy of formation of elements in their stable states at standard

conditions are taken as zero, an interconnected reference state to evaluate ‘absolute’ Gibbs free

energies of compounds is defined. This is shown by first defining the enthalpy of formation of a

arbitrary component i is as:

∆Hf ,◦ = H◦i −
∑
j

bjhj , (5.24)

where bj is the stoichiometric amount of element j in component i . The enthalpy of formation

is not directly measurable; however, can be found by constructing a hypothetical reaction using

Hess’s Law, where the enthalpy of combustion is used.

From Postulate IV (see Chapter 2), which states that entropy is zero for a thermodynamic

system at zero temperature on the Kelvin scale, it is possible to estimate the entropy of formation.

More specifically, this is captured in the Third Law which states that the entropy of a pure crystal

is zero at zero temperature, again on the Kelvin scale. At constant pressure, changes in entropy

at related to constant pressure heat capacity, giving:

S(T )− S(T0) =

∫ T
T0

Cp(T )

T
dT, (5.25)

which, for the case where T0 = 0 K becomes:

S(T ) =

∫ T
0

Cp(T )

T
dT, (5.26)

which makes it possible to estimate entropy with heat capacity low temperature heat capacity.

The entropy of formation is defined in the same way as enthalpy:

∆Sf ,◦ = S◦i −
∑
j

bjS
◦
j . (5.27)

Using Eq. (5.24) and (5.27), the standard Gibbs free energy of formation is found from:

∆Gf ,◦ = ∆Hf ,◦ − T∆Sf ,◦. (5.28)
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The relevant properties are tabulated for many compounds in property handbooks [262]. This

makes it possible to calculate the standard Gibbs free energy of formation for a pure component

in it’s stable state, giving a consisent reference on which calculations are based.

This, coupled with calorimetric data (i.e., pure component heat capacity as a function of

temperatre in solid, liquid and gas states, as well as temperature and enthalpy of first-order

phase transitions, all of which are experimentally measurable in-principle) the Gibbs free energy at

any temperature and fixed pressure can be calculated directly from fundamental thermodynamic

relations.

Standard properties of pure crystalline sucrose and pure liquid water reported in literature

are presented in Table 5.3. The standard Gibbs free energy for pure sucrose is not available in

Table 5.3: Gibbs free energy and enthalpy for pure crystalline sucrose and liquid water at 1 atm

and 298.15 K defined relative to the elements in their standard state at same temperature and

pressure. † denotes properties estimated from standard values reported by NIST

Compound g◦ (kJ/mol) h◦ (kJ/mol)

Sucrose(s) -1553.16 -2221.2†

Water(l) -237.14† -285.8†

the literature; however, the value reported in Table 5.3 was evaluated using Eq. (5.28), where

∆Hf ,◦ was taken as the value in Table 5.3, T was taken as 298.15 K and ∆Sf ,◦ was estimated

using 392.4, 130.68, 205.15 and 5.6 J/mol for the standard entropy of sucrose (crystal), hy-

drogen (gas), oxygen (gas) and carbon (solid), respectively (where ∆Sf ,◦sucrose = Ssucrose,298.15K −

(12Scarbon,298.15K + 11Shydrogen,298.15K + 5.5Soxygen,298.15K) and all values are reported by NIST).

5.7 Multi-component Phase Modelling and Phase Equilibria

Prediction

In the previous section, Gibbs free energy models were generated for thermodynamically stable

phases observed in the sucrose-water system (i.e., pure crystalline sucrose, as well as pure solid,

liquid and vapor water). In this section, models for the Gibbs free energy of sucrose-water liq-

uid mixtures are constructed, and the solubility of sucrose in water is subsequently predicted.

The section starts with a detailed discussion on available experimental thermodynamic data pre-

sented previously with the goal of highlighting the temperature and composition dependence of

the sucrose-water liquid solution. Given that constructing a Gibbs free energy model for the liquid

mixture is more complex than for single components where only a single type of experimental data
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is required (i.e., heat capacity), a short discussion on data modelling is provided. Then, mod-

elling results are presented for the ‘full’ experimental database described in the previous section.

Modelling is completed based on different models, all of which are derived from the Redlich-Kister

polynomial (for the excess contribution), and a contribution in the ideal Gibbs free energy associ-

ated to the hypothetical pure liquid sucrose that yields a heat capacity with a linear temperature

dependence.

5.7.1 Discussion on Experimental Data

In this section, the construction of a Gibbs free energy model for the sucrose-water liquid mixture is

disscussed in the specific context of modelling the experimental data presented in Section 5.5. As

shown, several different thermodynamic quantities have been reported in the literature, including

those related to the solvent activity (e.g., vapor pressure, isopiestic molality, relative humidity and

solution boiling point), changes in enthalpy (e.g., dilution and solution), as well as solution heat

capacity. Assuming all measurements are correct, they should be thermodynamically consistent.

Before developing a model for the Gibbs free energy of sucrose-water liquid mixtures, a discussion

on the experimental data is provided, with a view to identify key characteristics any set of Gibbs

free energy models should have to adequately describe it.

As described already, interpreting the activity (or, more specifically, activity coefficient) of

solvent in multi-component liquid mixtures (typically through vapor-liquid equilibrium) is one of

the primary methods used to construct thermodynamic models. Based on the experimental data

illustrated in Fig. 5.16, there are several independent reports of solvent activity at 298.15 K, the

majority of which are in good agreement (likely driven by the use of isopiestic molality measure-

ments), and indicate the solvent activity coefficient (defined with respect to Raoult’s Law) has a

quadratic dependence. Furthermore, although noisy, solvent activity coefficient data at tempera-

tures other that 298.15 K indicates some form of temperature dependence which is in qualitative

agreement with enthalpy of dilution data discussed next. However, it is challenging to discern the

nature of this due to the lack of more accurate isopiestic molality measurements at temperatures

other than 298.15 K, with all other data derived from seemingly less accurate relative humidity

and vapor pressure measurements.

Focusing on the differential enthalpy of dilution data shown in Fig. 5.18, there are four indepen-

dent reports at various temperatures and composition ranges. As mentioned already, composition

dependent data reported in [260], [176] and [261] appear to be in good agreement at temperatures

near 298.15 K. More specifically, the data appear to follow a consistent dependence on composi-

tion, irrespective of temperatures, as well as having a dependence on temperature. As an aside,

this is potentially in contrast to modelling described in Chapter 4, where the solution heat capacity

was assumed to be a linear function of composition (i.e., no excess contribution).
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However, data reported in [261] includes additional measurements at 273.15, 333.15 and

353.15 K where there are no other data at these temperatures from independent sources. In

terms of constructing a model for the Gibbs free energy of sucrose-water liquid mixtures, this

is important because data reported in [261] at 333.15 and 353.15 K appear to have a different

composition dependence to data at temperatures around 298.15 K discussed already, as illustrated

in Fig. 5.18. This behavior was discussed in [145], where the authors suggest that ‘differential

enthalpy of dilution measurements are less accurate than integral measurements’, while noting

that ‘calculated mean differential heats of dilution reported in [261], involving rare measurements

of differential heats of dilution, was at least 10–15% based on available integral measurement

data’ and reiterating that the authors in [261] describe challenges with temperature control due

to viscous nature of sucrose-water liquid mixtures at high temperature and composition. As an

aside, it should be noted that it is unclear how the authors estimated errors in the reported

differential enthalpy of dilution measurements. In the original work [261], the authors also discuss

the temperature and composition dependence of the reported differential enthalpy of dilution

measurements, commenting that a similar behavior was observed for differential enthalpy of dilution

of hydrochloric acid in water [263].

As noted already, reports of thermodynamic properties should be consistent if they are ac-

curate. In theory, differential enthalpy of dilution measurements are related to solvent activity

measurements, since:

h̄l2(T, x)− hl,◦2 (T ) =
∂ ln γ2(T, x)

∂β
(5.29)

where all symbols retain their definitions discussed already in this chapter. As noted in Section 5.5,

there are four reports of water vapor pressure measurements above sucrose-water liquid mixtures

at temperatures between 313.15–363.15 K and 0–0.2 sucrose mole fraction [168, 242, 164, 150].

To provide rationale for either including or rejecting high temperature differential enthalpy of

dilution measurements reported in [261], it was thought that this data could be used to estimate

the differential enthalpy of dilution. However, as shown in Fig. 5.20, when converted from vapor

pressure to water activity coefficient, the data is subject to significant noise and discerning a

meaningful relationship is challenging. It should be noted that a detailed description of calculations

can be found in Appendix D.

Focusing on the enthalpy of solution data illustrated in Fig. 5.17, this data indicates that the

magnitude of sucrose enthalpy of solution in water increases with increasing temperature (e.g.,

approximately 4,000 J/mol at 278.15 K and approximately 12,000 J/mol at 318.15 K, for data

reported in [259]). Based on this data set (i.e., [259]), it appears that the rate of change of

the enthalpy of solution (at concentrations assessed) varies in temperature as noted by increasing

differences in the reported enthalpy of solution for similar increases in temperature; however, it

should be noted that there are limited reports available to support these measurements. Given
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Figure 5.20: Water activity coefficients in sucrose-water liquid mixtures estimated from vapor

pressure measurements reported between 313.15–373.15 K. Open symbols correspond to experi-

mental measurements. Color gradient corresponds to reported temperature scaled between 260 K

(blue) and 370 K (red).
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that all enthalpy of solution data collated in this chapter is restricted to highly dilute sucrose-water

liquid mixtures, with 0.007 sucrose mole fraction being the most concentrated data point, data

at temperatures other than 298.15 K was omitted from fitting. To re-cap, from a theoretical

perspective the enthalpy of solution is defined as:

∆Hsol. = n1
(
hl,◦1 + h̄E1

)
+ n2

(
hl,◦2 + h̄E2

)
− n1hs,◦1 − n2h

l,◦
2

= n1
(

∆h∞,s − hl,∞1
)

+ n1h̄
E + n2h̄

E
2

(5.30)

which reduces to:

∆Hsol.,∞ = n1
(

∆h∞,s1 (T )− hl,∞1 (T )
)

(5.31)

for infinitely dilute solutions (noting that all symbols are defined in the same way as Chapter 4),

which must have the required functional form to capture the experimentally observed behavior.

Although limited, available solution heat capacity experimental data (illustrated in Fig. 5.19)

appears to have a temperature dependence where, at fixed solution composition, the solution

heat capacity increases with increasing temperature In terms of constructing a Gibbs free energy

model, there are different model contributions that would allow this behaviour including the term

associated to the hypothetical pure liquid solute, the excess contribution, or a mixture of both.

Assuming the temperature dependence noted in the discussion on differential enthalpy of dilution

data is real, this implies that the chosen Gibbs free energy model used to describe the sucrose-water

liquid mixture should have an excess contribution component for the heat capacity. Interestingly,

this is in contrast to the modelling approach used in Chapter 4, where it was assumed that the

solution heat capacity could be modelled with ‘ideal’ terms, only.

5.7.2 Data Modelling

As described already, constructing Gibbs free energy models typically involves finding model struc-

tures and associated parameter values that are in ‘best’ agreement with available experimental

data. However, it is often the case that the numerical values of different types of experimental

data used during model development are drastically different partially due to the reported units of

measurement. For example, vapor pressure measurements for sucrose-water liquid mixtures span

1000–70,000 Pa, while osmotic coefficients derived from isopiestic molality measurements span

1–1.1.

Furthermore, it is common practice to frame Gibbs free energy model parameterisation as a

single-criteria optimisation where there is a single objective function comprising error contributions

from each data type. However, if the contribution to the objective function for each data type

was interpreted as the sum of errors squared, it is straightforward to see that different data types

will contribute different errors to the objective function driven predominantly by the magnitude of

the numerical values. It is unclear how ignoring this mismatch in contributions to the objective
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function will impact numerical optimisation of parameters, as such, it is common to scale data

based on different features such as estmated uncertainty and/or expert judgment [198].

When the goodness-of-fit measure is taken as the sum of errors squared, this gives the an

objective function of the form:

F =

N∑
i

(ŷi(θ, xi)− yi(xi))2 · pi (5.32)

where ŷi(θ, xi) is thermodynamic quantity y predicted using the current parameter estimate θ

at conditions xi , yi is thermodynamic quantity y measured at conditions xi , N is the number

of data points, and pi is a ‘weighting factor’ [198], which in practice may take different forms.

For example, in some cases pi = 1/σ2i where σi corresponds to an estimate of data uncertainty

for measurement i . Alternatively, pi = wi/σ
2
i where wi is an additional ‘weighting factor’ used to

augment the contribution of data during optimisation. It should be noted that Eq. (5.32) is readily

derived by assuming data is normally distributed and is a special case the so-called ‘generalised least

squares’ theory; however, this contribution is usually omitted when data of the same type is used

under the assumption that any associated uncertainty is independent and identically distributed

(i.i.d). It should be noted that this type of objective function is applied in studies outside the

scope of CALPHAD assessments [145, 80].

As an aside, and noted briefly already, the correlation of different types of experimental ther-

modynamic data for the construction of mathematical models describing the Gibbs free energy of

phases is usually framed as a single criteria optimisation problem, However, recent work described

in [213] has shown that interpreting the problem as a multi-criteria optimisation (MCO) can yield

robust results as illustrated for the parameterisation of an NRTL-based excess Gibbs free energy

model describing binary liquid mixtures containing water, 1-propanol and 2-pentanol.

For the purpose if this chapter, given the lack of robust information on possible uncertainty,

each data type was assigned a specific value for σ (i.e., all vapor pressure measurements have

the same assumed data uncertainty, irrespective of the technique used or reporting authors), and

those values are tabulated in Table 5.4.

Table 5.4: Estimated uncertainty for sucrose-water thermodynamic properties.

Quantity σ (units)

Vapor Pressure 100 (Pa)

Osmotic Coefficient 0.005 (-)

Differential Enthalpy of Dilution 15 J/mol

Integral Enthalpy of Dilution 15 J/mol

Solution Heat Capacity 1 J/mol.K
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As shown in Table 5.4 vapor pressure measurements were assumed to have a relative uncertainty

of 100 Pa, which was estimated from data reported in [164], [243] and [150], where each report

includes at least two measurements reported at identical (or similar very similar) conditions which,

generally speaking, were within 100 Pa, with the exception of some points in [243] which differed by

almost 1000 Pa. Furthermore, analysis of data from independent sources reporting measurements

at 298.15 K indicated that measurements at similar sucrose compositions were generally within

100 Pa. Osmotic coefficients derived from isopiestic molality measurements were assigned an

uncertainty of 0.005, based on the variation between independent reports at 298.15 K across a

broad range of sucrose compositions. Integral and differential enthalpy of dilution measurements

were both assigned an arbitrary uncertainty of 15 J/mol. Solution heat capacity measurements

were assigned an arbitrary uncertainty of 1 J/mol.K. In addition, all data sets were weighted the

same.

5.7.3 Redlich-Kister Modelling

As noted already, the Redlich-Kister polynomial is used to model the excess Gibbs free energy

contribution in multi-component phases throughout the thermodynamic modelling literature, and

extensively in CALPHAD-based modelling studies. Interestingly, based on the review of sucrose-

water modelling studies provided earlier in this chapter, no studies have been found where the

Redlich-Kister polynomial has been used to model sucrose-water liquid mixtures.

Given the nature of Redlich-Kister polynomial excess Gibbs free energy models, it is not pos-

sible to determine an appropriate model structure (and associated parameter values) a priori, and

this has to be found through trial-and-error by correlating available experimental data. As noted

already, parameters in the Redlich-Kister polynomial are assumed to have a temperature depen-

dence modeled by Eq. (5.15); however, as noted in [205], it is rare to use all parameters in an

assessment and often only the first three terms are used. In the remainder of this section, mod-

elling the excess contribution in the Gibbs free energy of the sucrose-water mixture is restricted

to the first three temperature dependent parameters.

Full Sucrose-water Liquid Mixture Data Set

Given uncertainty around the reliability and thermodynamic consistency of available experimental

data, it was initially assumed that all data was accurate and included in the model development

process. From this, the parameterisation of Gibbs free energy models for the sucrose-water liquid

mixture was approached in a two-step process. In the first step, parameters in the excess Gibbs free

energy contribution (described by a Redlich-Kister polynomial), as well as parameters associated

to the hypothetical pure liquid sucrose heat capacity were correlated to experimentally measured
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quantities reported for the sucrose-water liquid mixture, including solvent activity (i.e., vapor

pressure and isopiestic molality), enthalpy of dilution (i.e., differential and integral), and solution

heat capacity—all data used in the fitting is captured in Table 5.6.

It should be noted that certain data reported earlier in this chapter was omitted from this study,

including: solution heat capacity data reported in [179], [177], and [180] (at concentrations below

0.012 sucrose mole fraction), due to a high number of data points covering a narrow composition

range at the same temperature, and potentially biasing fits. In addition, to simplify the fitting

procedure, the heat capacity of pure of liquid water water was also treated as a constant, with a

value of 75.3 J/mol.K and enthalpy of solution to infinite dilution at 298.15 K was fixed at 6,000

J/mol. Finally, only solution properties were used—boiling and freezing point data were omitted.

In the second step, parameters associated to the reference Gibbs free energy and enthalpy of

the hypothetical pure liquid sucrose were determined using the parameters derived in the first step.

More specifically, as noted in Section 5.2.2, only temperature dependent solubility data can provide

information about the parameter associated to the reference Gibbs free energy of the hypothetical

pure liquid sucrose at T0 (i.e., gl,◦1 (T0)). In keeping with the general theme of this thesis, this

parameter was evaluated using the estimated sucrose-water solubility at 298.15 K, noting that

T0 =298.15 K, and that:

gl ,◦1 (T0) = gs,◦1 (T0) + ln x1,sat(T0)γ1(x1,sat(T0)), (5.33)

where x1,sat(T0) is the solubility sucrose in water at T0 (taken as 0.098 at 298.15 K), gs,◦1 (T0) is the

reference molar Gibbs free energy of pure crystalline sucrose at T0 (evaluated in Section 5.6), and

γ1 is the sucrose activity coefficient in the sucrose-water liquid mixture, evaluated from the excess

Gibbs free energy model developed in step one. Again as noted in Section 5.2.2, it is possible to

evaluate the parameter associated to the reference enthalpy of the hypothetical pure liquid sucrose

at T0 (i.e., hl,◦1 (T0)) with temperature dependent solubility (at temperatures other than 298.15 K)

and/or temperature dependent enthalpy of solution data, only. Based on the availability of several

enthalpy of solution measurements at 298.15 K and at infinite dilution, this parameter was found

using this value, via:

hl,◦1 (T0) = hs,◦1 (T0) +
∂ ln γ∞1 (T0)

∂β
, (5.34)

where hs,◦1 (T0) is the molar enthalpy of pure crystalline sucrose at T0 (evaluated in Section 5.6),

and γ∞1 is the estimated infinitely dilution activity coefficient for sucrose in sucrose-water liquid

mixtures evaluated from the excess Gibbs free energy model developed in step one.

Three forms of the Redlich-Kister model were correlated against the experimental database,

starting with model I, defined as:

gE = x1x2

[
(0)ai j +(0) bi jT +(0) ci jT lnT

]
, (5.35)
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model II, specified as:

gE = x1x2

[
(0)ai j +(0) bi jT +(0) ci jT lnT

(x1 − x2)
(
(1)ai j +(1) bi jT +(1) ci jT lnT

)]
,

(5.36)

and model III, defined as:

gE = x1x2

[
(0)ai j +(0) bi jT +(0) ci jT lnT

(x1 − x2)
(
(1)ai j +(1) bi jT +(1) ci jT lnT

)
(x1 − x2)2

(
(2)ai j +(2) bi jT +(2) ci jT lnT

)]
,

(5.37)

where (k)li j denotes a flexible parameter (with l referring to a, b or c , respectively), as noted

previously. For each model, parameter values were derived by finding the minimum of Eq. (5.32),

with pi defined as 1/σ2i (where σi for each experimental data type was taken as the associated

value in Table 5.4). For this analysis, the Nelder-Mead numerical optimisation algorithm [160]

implemented in SciPy [161] was used alongside the Python modules described in Section 5.3.

Best fit parameters for based on models I, II, and III to the full experimental data set alongside

the ‘best-fit’ value of Eq. (5.32) are summarised in Table 5.5. As an aside, given that the

Nelder-Mead numerical optimisation algorithm implemented in Scipy requires a set of initial values,

those used for each parameter are also provided in Table 5.5. The parameter associated to the

constant pressure heat capacity of hypothetical liquid sucrose at T0 (i.e., c l ,◦p,1(T0)) was assumed

to be 650 J/mol.K based on work described in Chapter 4 and the associated local temperature

dependence (i.e., c ′l ,◦p,1 (T0)) was assumed to be 1.66 J/mol.K2 which is the same as the constant

pressure heat capacity temperature dependence for pure crystalline sucrose (at 298.15 K), as

described in Section 5.6. All parameters in the Redlich-Kister excess Gibbs free energy contribution

were assumed to be 0.
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Table 5.5: Parameter values.

Parameter Initial Model I Model II Model III Model I (Reduced)

c l ,◦p,1(T0) (J/mol.K) 650 721.57 674.41 692.13 731.45

c ′l ,◦p,1 (T0) (J/mol.K2) 1.66 2.26 2.25 2.26 2.26

A0 (J/mol) 0 -71.66 -20.85 6.93 -81.86

A1 (J/mol) 0 80.71 -11.88 -4.01 19.42

A2 (J/mol.K) 0 8.27 -0.75 5.12 9.55

B0 (J/mol) 0 - -18.76 -10.61 -

B1 (J/mol) 0 - 16.71 4.53 -

B2 (J/mol.K) 0 - 3.39 -3.65 -

C0 (J/mol) 0 - - -12.37 -

C1 (J/mol) 0 - - 1.07 -

C2 (J/mol.K) 0 - - 3.33 -

g◦,l1 (T0) (J/mol) - -1533304.13 -1503018 -1603218 -1532859

h◦,l1 (T0) (J/mol) - -2194781 -2208661 -2203303.8 -2191547

Eq. (5.32) - 1899 996.5 853.15 1632.02

As shown, the magnitude of the objective function (i.e., Eq. (5.32)) decreases as the number

of parameters in the Redlich-Kister polynomial increases. Generally speaking, this is expected

given that an increased number of parameters gives greater model flexibility and data correlation

capacity. Reviewing this metric in isolation implies that model III gives the ‘best’ fit to available

experimental data, with model I being the worst.

To gain additional insight into the fitting process, the ‘best fit’ objective function (i.e., Eq. (5.32))

is broken down into the contributions per each dataset used in fitting in Table 5.6.
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Table 5.6: Objective function contributions broken down by data set

Type Reference Model I Model II Model III

Vapor Pressure [168] 0.45 0.44 0.48

[242] 775.25 293.24 288.58

[164] 612.12 294.29 269.72

[165] 0.07 0.05 0.04

[172] 0.11 0.07 0.05

[150] 6.41 1.09 1.09

[245] 0.23 0.06 0.06

Isopiestic Molality [170] 9.14 27.06 38.05

[247] 8.87 22.82 33

Differential Enthalpy of Dilution [260] 0.527 0.54 0.36

[176] 4.29 3.41 2.61

[261] 202.37 188.93 130.72

[162] 0.28 0.12 0.029

Integral Enthalpy of Dilution [175] 253.45 138.87 56.83

Solution Heat Capacity [178] 22.97 22.96 22.93

[180] 2.56 2.56 2.56

Total 1899.1 996.5 853.2

As shown, the reduction in best fit objective function between model I and model II and III,

is primarily driven by a substantial reduction in the error associated to two vapor pressure data

sets [242, 164], and the integral enthalpy of dilution data set [175]. However, it should be noted

that the best fit parameters in model I gave a model in better agreement with the solvent activity

data derived from isopiestic molality measurements—perhaps the most reliable of all the data

included in the analysis.

Thermodynamic properties derived from best-fit results for models I, II, and III are compared

to corresponding experimental data illustrated in Fig. 5.21, 5.22, and 5.23, for models I, II, and

III, respectively (sub-figures (a)–(e)). As shown, the best fits to vapor pressure and solution

heat capacity gives a model in good agreement with available data across all temperatures and

compositions used, for all models.

From Fig. 5.21, model I appears to predict the osmotic coefficient data derived from isopiestic

molality measurements in good agreement with experimental data. In contrast, from Fig. 5.22
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Figure 5.21: Model I. Open symbols correspond to experimental data (vapor pressure [168, 242,

164, 165, 172, 150, 245], Osmotic coefficient [170, 247], differential enthalpy of dilution [260,

176, 261], enthalpy of solution [259], solution heat capacity [178, 180] and solubility [147, 149,

150, 151]). Dashed lines correspond to predictions from global fit.
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Figure 5.22: Model II. Open symbols correspond to experimental data (vapor pressure [168, 242,

164, 165, 172, 150, 245], Osmotic coefficient [170, 247], differential enthalpy of dilution [260,

176, 261], enthalpy of solution [259], solution heat capacity [178, 180] and solubility [147, 149,

150, 151]). Dashed lines correspond to predictions from global fit.
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Figure 5.23: Model III. Open symbols correspond to experimental data (vapor pressure [168, 242,

164, 165, 172, 150, 245], Osmotic coefficient [170, 247], differential enthalpy of dilution [260,

176, 261], enthalpy of solution [259], solution heat capacity [178, 180] and solubility [147, 149,

150, 151]). Dashed lines correspond to predictions from global fit.
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and 5.23, models II and III predict osmotic coefficients in poor agreement with those derived from

experimental data, in agreement with the objective function contribution analysis described above.

Interestingly, none of the models explored were able to capture the temperature and composi-

tion dependence of the differential enthalpy of dilution data reported by [261]. More specifically,

each model predicts the same functional dependence at all temperatures, which is in excellent

agreement with experimental data reported at and around 298.15 K; however, is disagreement

with measurements reported by [261] at 273.15, 333.15 and 353.15 K which, as discussed already,

the validity of which is unclear due to a lack of independent supporting data reports. The need

for additional enthalpy of dilution measurements was also highlighted in a recent work [264].

Finally, all models predict temperature dependent enthalpy of solution between 283.15–318.15 K

at extremely dilute sucrose concentrations in excellent agreement with measurements reported

in [259], noting again that only a single measure at 298.15 K was used during fitting. It should be

noted that all models failed to capture data at 278.15 K.

Included in Fig. 5.21, 5.22 and 5.23 is a solubility prediction derived from the pure solid

solute and respective multi-component liquid solution model compared to selected solubility data

reported in the literature [147, 149, 150, 151] (sub-figure (f)). Each solubility curve was estimated

by finding the sucrose-water liquid mixture composition that solves βµs,◦1 (T ) = βµl,◦1 (T ) at fixed

temperature, where µs,◦1 (T ) is the chemical potential of pure crystalline sucrose derived from the

single component model developed earlier and µl,◦1 (T ) is the chemical potential of sucrose in the

sucrose-water liquid mixture derived from the associated sucrose-water liquid mixture Gibbs free

energy model. As an aside, the solubility calculation was completed using the Python modules

described in Section 5.3.

From Fig. 5.21, model I gives a solubility prediction in excellent agreement both qualitatively

and quantitatively with directly measured solubility data reported in the literature across the entire

range of temperature for which data is available.

In contrast, from Fig. 5.22 and 5.23, models II and III are only able to predict sucrose solubility in

qualitative agreement with directly measured data, diverging rapidly from the solubility at 298.15 K

which was used a reference point. With reference to Chapter 3, the local slope of a solubility curve

is defined by a ratio of the partial molar enthalpy of solution and the first partial derivative of the

solute activity coefficient, both evaluated at saturation. Based on the aforementioned discrepancy

between osmotic coefficients predicted by model II and III and available experimental data, this

could explain the poor solubility performance, and highlights the potential challenges with predicting

one set of thermodynamic properties based on mathematical modelling of other thermodynamic

properties.
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Reduced Dataset

In the previous section, it was found that a solubility of sucrose is water was reliably predicted from

the eutectic temperature to the pure vapor (solvent)-pure solid (solute)-liquid mixture (solute and

solvent) triple point, with model I, potentially indicating that the ‘real’ sucrose-water liquid mixtures

is well described by this model. As noted already, the form of this model is not flexible enough to

capture the temperature and composition dependence suggested by differential enthalpy of dilution

data at 273.15, 333.15 and 353.15 K reported in [261], and potentially To re-cap, as discussed

in Section 5.5, there is significant uncertainty associated the temperature and composition of

differential enthalpy of dilution data in general but, more specifically, with that reported in [261],

given a lack of supporting data from independent reports. In this section, the parameters in

model I are refined by re-fitting to available experimental data; however, differential enthalpy of

dilution data at temperatures reported in [261] are excluded. The purpose of this is to provide

a set of parameters, free from bias introduced by the inclusion of inconsistent data during the

parameterisation process, which can be used in future modelling applications

The resulting best fit to sucrose-water solution properties is shown in Fig. 5.24. As shown,

the resulting model predicts thermodynamic properties with to a comparable level to those already

described for model I. The updated model parameters are provided in Table 5.5.

5.8 General Discussion

In this analysis, a straightforward and computationally convenient approach was used to param-

eterise each model, where an initial set of parameter values were specified and the Nelder-Mead

numerical optimisation algorithm used. Assuming the chosen goodness-of-fit measure is appro-

priate, like with any optimisation problem, it is possible that the solutions found are sub-optimal

due to the algorithm getting ‘stuck’ in local minima. Within the context of the methods applied

here, this could be addressed by sampling different initial values and comparing the outputs. Al-

ternatively, this could be addressed by exploring the application of more sophisticated numerical

optimisation algorithms, such as ‘basin hopping’ [265], ‘Differential Evolution (DE)’ [266] or ‘Par-

ticle Swarm Optimisation (PSO)’ [267], all of which have been proposed to overcome potential

challenges with practical optimisation problems; however, this is left as a recommendation for

future work.

A key limitation of the analysis presented in this chapter is related to the estimation of only a

single set of ‘bets-fit’ parameters for each of the sucrose-water liquid mixtures models examined.

As illustrated in Chapter 3, it is possible to supplement a ‘best fit’ by perturbing the underlying

experimental data within the estimated uncertainty and performing an independent parameteri-

sation to this ‘blurred’ dataset, in an attempt to capture uncertainty introduced by experimental
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Figure 5.24: Model I (reduced data set). Open symbols correspond to experimental data (vapor

pressure [168, 242, 164, 165, 172, 150, 245], Osmotic coefficient [170, 247], differential enthalpy

of dilution [260, 176, 261], enthalpy of solution [259], solution heat capacity [178, 180] and

solubility [147, 149, 150, 151]). Dashed lines correspond to predictions from global fit.
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data and modelling approach. Based on the computational approach applied, the time required

to complete parameterisations was approximately 20, 40 and 60 minutes for model I, II and III,

respectively. In Chapter 3, prediction bands were generated based on 1,000 perturbations of the

underlying experimental data and subsequent re-parameterisation of the associated model. If a

similar analysis was to be performed for the analysis described in this chapter, it calculations would

be expected to take approximately 14, 28 and 60 days for model I, II and III, respectively (assum-

ing that the computation time scales linearly with the number of parameterisations required). Of

course, this could be reduced if the underlying code used to perform calculations was made more

efficient.

There are limited (if any) studies focused on understanding how the characteristics (e.g., type,

quality, distribution, etc.) of experimental data, coupled with applied modelling strategies, might

impact the ability to estimate thermodynamic quantities in regions of the phase diagram where

they have not yet been measured.

In a similar vein, as mentioned earlier in this chapter, recent work has focused on supple-

menting estimations of thermodynamic quantities and phase equilibria based on interpolations and

extrapolations based on CALPHAD assessments. The challenges of this were partially addressed

in a recent review [268] focused on uncertainty reduction and quantification in computational

thermodynamics, including a discussion on identifying valuable measurements in the context of

applying Bayesian methods for uncertainty quantification and experimental design during CAL-

PHAD assessments. The author notes three challenges with attempting to quantify the ‘value’

of experiments in terms of reliably estimating quantities of interest (QoIs). The first challenge

comes from the fact that the Gibbs free energy is not directly observable and so its uncertainty is,

by definition, estimated by propagation from measureable quantities. The second challenge comes

from the fact that it is only possible to specify Gibbs free energy models for a given system using

a collection of several different experimental quantities. The final challenge is related to phase

stability and our inability to know a priori what phases may exist in a given system.

In this chapter, Gibbs free energy models for single and multicomponent phases were con-

structed by correlating experimentally determined thermodynamic quantities, as widely applied in

the literature. In Section 5.2.2, the relationship between a subset of often reported experimentally

measureable quantities and the Gibbs free energy models applied in this work was discussed and the

minimum requirements for model parameterisation outlined. In principle, when trying to construct

Gibbs free energy models, it might be expected that different data types provide different informa-

tion value when developing Gibbs free energy models. This general problem has been addressed as

far back at 1978 in [269], where the authors attempted to gain insight into the types of data that

would lead to reliable model structure and parameter estimates in various excess Gibbs free energy

models (e.g., Van Laar, Wilson, UNIQUAC (and modifications), and Zeta) for the description of
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both fully and partially miscible organic binary liquid mixtures. An interesting result from their

analysis was that irrespective of the chosen excess Gibbs free energy model, being able to model

one type of data (e.g., VLE) was not a sufficient criterion to reliably estimate another (e.g., en-

thalpy of mixing) and vice versa. However, the authors noted that measuring activity coefficients

at infinite dilution at one temperature and one set enthalpy of dilution measurements appeared

sufficient to parameterise all models investigated, giving reliable estimates of vapor pressure as a

function of composition over a narrow range of temperature near those where the actual data was

taken.

5.9 Conclusions

In this chapter, a general theoretical approach to the prediction of solubility as a function of

temperature was described and it’s application in the context of predicting the solubility of sucrose

in water discussed. As shown, using a widely applied thermodynamic modelling framework (i.e.,

CALPHAD method), it is possible to predict solubility with only a single solubility measurement and

no pure solute melting properties, in line with the general aim of this thesis. However, in contrast

to the predictive approaches described in Chapters 3 and 4, the general approach presented in this

chapter is not limited by the inclusion of approximations, in theory.

For the specific application to the sucrose-water system, we have shown that it is possible

to predict solubility from the eutectic point to the pure crystal-liquid mixture-pure vapor triple

point using only a single solubility estimate at a chosen reference temperature, taken here as

298.15 K, and a subset of experimentally measured thermodynamic data reported in the literature.

Interestingly, this model predicted solution properties (i.e., differential enthalpy of dilution) in poor

agreement with experimental data at elevated temperatures and high sucrose concentrations,

which may be important given that this data has been used in several published reports focused on

modelling the sucrose-water system. It was also shown that it was not possible to construct model

that could simultaneously describe all available thermodynamic data for the sucrose-water liquid

mixture using the Redlich-Kister polynomial with temperature dependent parameters commonly

used in the CALPHAD community.

More generally, these results have implications for the work presented in Chapter 3. As dis-

cussed, the aqueous solubility of glycine polymorphs is subject to uncertainty with contradicting

reports for α-glycine and very limited reports for β and γ. Given apparent challenges with reliably

measuring glycine polymorph aqueous solubility across a broad range of temperature, a possible

direction for future research would be to perform a systematic characterisation of glycine-water

liquid mixtures and pure crystalline glycine polymorphs to supplement existing data and allow es-

timation in a similar manner to that illustrated for sucrose-water in this chapter. As mentioned
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in [80], this would include additional measurements of pure crystal heat capacity beyond 310.15 K;

however, should also include either enthalpy of solution and/or solution heat capacity measure-

ments at temperatures up to 373.15 K from dilute to nearly saturated solutions. After which

is should be possible to make predictions for glycine polymorph solubility, as well as being able

to discriminate between different reports in literature in a more robust manner than conclusions

drawn from approximate modeling in this thesis.
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Chapter 6

Conclusions and Future Work

As discussed extensively throughout this thesis, accurate and reliable estimates of solubility are

crucial for the design, development and optimisation of efficient crystallisation unit operations,

where crystallisation is a separation and purification technique used ubiquitously throughout the

chemical manufacturing industry. As such, this thesis has focussed on the general problem of

developing and evaluating methods to allow estimation of the solubility of solids in liquids as

a function of temperature at constant pressure—all of which are rooted in classical equilibrium

thermodynamics. More specifically, we have proposed and evaluated new methods that reduce

reliance on directly measured solubility, while simultaneously addressing potential limitations with

already existing model-based approaches, such as reliance on pure solute melting properties which

can be challenging to determine accurately.

In the remainder of this chapter, the main findings, contributions, and limitations of the work

presented in this thesis are discussed. This is followed by recommendations for future work.

6.1 Conclusions

In Chapter 3 and 4, two methods were proposed that allowed prediction of solubility through

estimation of thermodynamic quantities at a single point on the solubility curve. The first approach

(i.e., Chapter 3), was based on the van’t Hoff equation applied to solid-liquid equilibrium—which

provides a mathematical relationship describing the rate of change of a solubility curve with respect

to temperature in terms of a ratio between two thermodynamic quantities, both of which would

be expected to vary with temperature and composition. By interpreting the temperature and

composition dependence of the numerator and denominator using a 1st-order Taylor series, it

was possible to numerically integrate the approximate model and predict solubility, as long as

all terms introduced by the expansion were evaluated. Thermodynamic quantities required to

make predictions were estimated for the α-glycine-water system via mathematical modeling of
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experimental data reported in the literature at 298.15 K, and results in good agreement with

directly measured solubility from 260–340 K were shown.

The second approach (i.e., Chapter 4), took learnings from work presented in Chapter 3,

proposing an analytical five parameter model describing the temperature dependence of solubility

by interpreting the difference in pure crystal and dissolved solute chemical potential (at saturation),

in terms of a 2nd-order Taylor series expansion. As with the approach presented in Chapter 3,

the model proposed in Chapter 4 made it possible to predict solubility as function of temperature

using only a single solubility estimate, as long as estimates of additional thermodynamic quantities

evaluated at the same point on the solubility curve were known. The predictive ability of this

approach was examined by estimating the aqueous solubility of three industrially relevant organic

solutes (i.e., α-glycine, sucrose and urea), and similar results were found when compared to Chap-

ter 3—when reliable experimental data is available near the solubility point taken as a reference,

predictions in good agreement with directly measured solubility within ±40 K of 298.15 K.

In Chapter 5, a more general approach to the estimation of solubility was reviewed, where Gibbs

free energy functions describing all phases of a hypothetical system were modeled explicitly. In

contrast to Chapter 3 and 4, this approach wasn’t restricted to the estimation of thermodynamic

quantities at a single point on the solubility curve, more rather any (and all) valid experimental data

was used to parameterise the underling Gibbs free energy models required to estimate solubility.

However, it was shown for a set of widely applied Gibbs free energy models that it is theoretically

possible to completely parameterise all models required to estimate solubility across an unlimited

range of temperature using the same types of experimental data used in Chapter 3 and 4, as

long as only a single measurement of solubility is known. This approach was illustrated for the

sucrose-water system, which has a significant amount of thermodynamic data across a broad

range of temperature coupled with well defined phase boundaries, and a simple model was found

that could completely describe the solubility curve from the eutectic point up to the crystalline

solute-solution-vapor triple point.

The main contribution of the work presented in this thesis are new methods that allow esti-

mation of the solubility of solids in liquids as a function of temperature. Crucially; however, all

approaches make it possible to do so without knowledge of the pure solute melting properties

and with only a single measure of solubility, which can be viewed as an advance on the current

state of the art. Comparing the approaches in Chapter 3 and 4 to that in Chapter 5, the former

provide estimates in the local vicinity of the chosen solubility point, while the latter can provide

estimates across an unbounded range of temperature, if reliable data other than solubility is avail-

able and mathematical modelling is applied. The work presented in this thesis should be of interest

to practitioners with an interest in estimating the solubility solids in liquids, where conventional

approaches (both experimental and model-based) may not yield desired accuracy. For example,
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compounds like β-glycine (see Chapter 3) where measurement of solubility is challenging at any

temperature but measurement of other thermodynamic quantities involving the pure crystal (i.e.,

crystalline heat capacity, enthalpy of solution) and solution (i.e., solution heat capacity, vapor pres-

sure, osmotic coefficient, etc.) might be easier and more reliable. This is directly applicable to

the pharmaceutical industry, where novel solid compounds are produced with characteristics that

make direct measurement of solubility challenging, when compared to the simple model systems

used throughout this thesis.

It is important to highlight the primary challenge with the methods explored in this thesis,

namely the reliance on mathematical modeling as a tool used to translate thermodynamic in-

formation from measurable properties other than solubility, into an estimate for solubility. As

illustrated throughout this thesis, subjective choices made during mathematical modeling (e.g.,

measure of best fit, optimisation algorithm, model and data), can have a meaningful impact on

the approaches. However, uncertainty introduced as a result of applying mathematical modeling

techniques can be reduced by ensuring that the data used to make predictions is reliable, numerous

and covers an appropriate range conditions—something that is challenging to know for a given

application.

6.2 Future Work

Perhaps the most obvious direction for future research would be the expansion of described tech-

niques to a broader space of chemical compounds. In this work, analysis is focused on a limited set

of organic compounds (i.e., glycine, urea and sucrose) and their solubility in water. As alluded to

already, this was driven by necessity rather than by choice. As mentioned briefly throughout this

thesis, these systems have a reasonable amount of thermodynamic data reported in the literature

covering both single component and multi-component phases, as well as and phase equilibria over

broad ranges of temperature and composition, when compared to many other systems—obvious

counter examples being salt-water systems (e.g., sodium chloride-water and potassium-chloride-

water). While water is an important solvent, and glycine, urea and sucrose have somewhat diverse

chemical characteristics (i.e., functional groups, solubility behavior with respect to temperature,

molecular weight, etc.,), they represent an extremely small set of possible chemical properties,

relative to the broader universe of chemical compounds encountered in chemical manufacturing

processes.

Furthermore, all analysis presented in this thesis is focused on binary systems (i.e., single

solute, single solvent). Despite being an import class of crystallisation system, as described in

Chapter 2, industrial crystallisation is often achieved with more complex systems, an example

being anti-solvent crystallisation, where multiple solvents are present. From a theoretical per-
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spective, extension of the results approaches described in this thesis to more complex systems is

possible; however, this is currently limited by limited availability of comprehensive thermodynamic

characterisation of ternary (and higher) systems.

Again, work presented in this thesis was driven by availability of experimental data. However,

thermodynamic data is usually collected with a specific outcome in mind which is usually not for

the subsequent prediction of solubility of solids in liquids. From a practical perspective, it would be

advantageous to have coordinated efforts to produce comprehensive thermodynamic assessments

of industrially relevant crystallisation systems. As shown in Chapter 5, a minimum amount of

information is required to develop reliable estimates for the phase diagram of binary systems,

focused on the region bounding the assumed solute-solvent liquid mixture, is a single solubility

estimate, a single enthalpy of solution measurement and a complete determination of the solution

heat capacity across the entire range of solution temperature and composition.

In Chapters 3 and 4, approximate models were proposed allowing prediction of solubility based

on thermodynamic quantities evaluated at an chosen point on a given solubility curve. For the

model systems explored in this thesis, estimating these quantities using available experimental data

involved a multi-step processes involving development of mathematical models, from which quan-

tities were evaluated, introducing undefined uncertainty. A possible direction for future work would

be the development and assessment of novel experimental techniques allowing direct measurement

of thermodynamic quantities. For example, it has been shown that dynamic light scattering can

be used to measure the first composition partial derivative (i.e., ∂ ln ai/∂ ln xi) of components in

liquid mixtures. Furthermore, terms related to the difference in partial molar enthalpy can be esti-

mated from a hypothetical process defined as the differential enthalpy of solution (c.f. differential

enthalpy of dilution). In principle, it should be possible to make these measurements; however, as

far as we are aware, they are yet to be reported in the literature.

Finally, well known functional forms for the Gibbs free energy of single and multi-component

phases were used throughout this thesis (e.g., Scatchard-Hildebrand(-Flory-Huggins), Redlich-

Kister, etc) for mathematical modeling purposes. Another direction for future research—particularly

with reference to results presented in Chapter 5—could be to understand the applicability of non-

traditional (in the context of thermodynamic modeling) modeling techniques for the representation

of Gibbs free energies. More specifically, this may include neural networks, noting that recent work

has shown that a single layer neural network was able to represent the Gibbs free energy of pure

iron between 0 and 6,000 K [270].
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[63] Vojtěch Štejfa et al. “Heat capacities of selected active pharmaceutical ingredients”. In:

The Journal of Chemical Thermodynamics 163 (Dec. 2021), p. 106585. DOI: 10.1016/

j.jct.2021.106585. URL: https://doi.org/10.1016/j.jct.2021.106585.

[64] Mikhail I. Yagofarov and Boris N. Solomonov. “Interpolation of the Temperature De-

pendence of the Fusion Enthalpy of Aromatic Compounds Between 298.15 K and the

Melting Temperature”. In: International Journal of Thermophysics 43.6 (Apr. 2022). DOI:

10.1007/s10765-022-03020-1. URL: https://doi.org/10.1007/s10765-022-

03020-1.

[65] Ingrid M. Weiss et al. “Thermal decomposition of the amino acids glycine, cysteine, aspartic

acid, asparagine, glutamic acid, glutamine, arginine and histidine”. In: BMC Biophysics 11.1

(Feb. 2018). DOI: 10.1186/s13628-018-0042-4. URL: https://doi.org/10.1186/

s13628-018-0042-4.

[66] Yeong Zen Chua et al. “New experimental melting properties as access for predicting

amino-acid solubility”. In: RSC Advances 8.12 (2018), pp. 6365–6372. DOI: 10.1039/

c8ra00334c. URL: https://doi.org/10.1039/c8ra00334c.

182

https://doi.org/10.1023/a:1012148910975
https://doi.org/10.1023/a:1012148910975
https://doi.org/10.1023/a:1012148910975
https://doi.org/10.1002/jps.2600610643
https://doi.org/10.1002/jps.2600610643
https://doi.org/10.1016/0378-5173(89)90346-3
https://doi.org/10.1016/0378-5173(89)90346-3
https://doi.org/10.1016/0378-5173(89)90346-3
https://doi.org/10.1023/a:1015984310068
https://doi.org/10.1023/a:1015984310068
https://doi.org/10.1023/a:1015984310068
https://doi.org/10.1002/jps.21897
https://doi.org/10.1002/jps.21897
https://doi.org/10.1002/jps.21897
https://doi.org/10.1016/j.jct.2021.106585
https://doi.org/10.1016/j.jct.2021.106585
https://doi.org/10.1016/j.jct.2021.106585
https://doi.org/10.1007/s10765-022-03020-1
https://doi.org/10.1007/s10765-022-03020-1
https://doi.org/10.1007/s10765-022-03020-1
https://doi.org/10.1186/s13628-018-0042-4
https://doi.org/10.1186/s13628-018-0042-4
https://doi.org/10.1186/s13628-018-0042-4
https://doi.org/10.1039/c8ra00334c
https://doi.org/10.1039/c8ra00334c
https://doi.org/10.1039/c8ra00334c
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Appendix A

Supporting Information for

Chapter 3

A.1 Derivation of Differential Solubility Equation (based on

Williamson (1944))

Here we present a complete derivation from fundamental thermodyamic arguments for Eq. (3.1)

in Chapter 3. We attribute this derivation to [143] and present it here as an additional resource

for interested readers.

The Gibbs free energy change for a hypothetical thermodynamic reaction (at equilibrium) is

defined as:

∆G = Gproducts − Greactants (A.1)

= ∆H − T∆S, (A.2)

where ∆H and ∆S are the enthalpy and entropy change associated with the reaction, respectively,

and T is temperature. The Gibbs-Helmholtz equation is given as:

d

dT

(
∆G

T

)
= −

∆H

T 2
, (A.3)

which relates the temperature dependence of the Gibbs free energy of the hypothetical process to

the enthalpy change of the process. As an aside, we can interpret ∆G further. For the reversible

reaction solute(s)↔ solute(aq), which describes the equilibrium between a pure solid solute and

a saturated solution:

∆G = Gproducts − Greactants (A.4)

= n1µ
l
1 − n1µs,◦1 (A.5)

∆g =
(
µl ,◦1 + RT ln a1

)
− µs,◦1 , (A.6)
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where 1 denotes solute, µs,◦1 is the molar Gibbs free energy of the pure solid solute, µl ,◦1 is the

molar Gibbs free energy of the solute in solution at the chosen reference state, and µl1 is the

partial molar Gibbs free energy of the solute (i.e. chemical potential) in solution. For a chemical

reaction at equilibrium, ∆G = 0, which means ∆g = 0, thus:

∆g◦1 = −RT ln a1 (A.7)

where a1 is the solute activity, and we introduce ∆g◦1 = µl ,◦1 − µ
s,◦
1 as the standard molar Gibbs

free energy for the dissolution process (i.e. the difference between the partial molar Gibbs free

energy between the pure solid solute and the solute in solution, in their standard states, which is

typically interpretted in terms of the melting properties of the solute). Alternatively, as described

by Williamson, the standard Gibbs free energy change for the dissolution equilibrium reaction can

be expressed in terms of the equilibrium constant K via:

∆g◦1 = −RT lnK, (A.8)

where K = a1. Following [143] and combining either Eq. (A.7) or Eq. (A.8) with Eq. (A.3) we

note that:
d ln a1
dT

=
(h∞1 − h◦,s1 )

RT 2
, (A.9)

where h∞1 − hl ,◦1 is defined as the standard enthalpy change for the dissolution process (i.e.

solute(s) ↔ solute(aq)), which is also referred to as the experimentally measurable enthalpy

of solution to infinite dilution (noting that we use the infinitely dilute reference state to define

a). Further, we note that a = γx . Now, we need to define the derivative on the left hand side.

Noting that the relationship is only valid along the solubility curve:(
d ln(x1γ1)

dT

)
sat

=

(
d ln x1
dT

)
sat

+

(
d ln γ1
dT

)
sat

. (A.10)

As described by [143], special attention should be given to
(
d ln γ1
dT

)
sat

, because it is both a function

of temperature and composition, both of which vary as we move along the solubility curve. We

can do so by introducing the total derivative:

d ln γ1 =

(
∂ ln γ1
∂T

)
ln x

dT +

(
d ln γ1
∂ ln x1

)
T

d ln x1, (A.11)

which gives (imposing the constraint that differentiation occurs along the solubility curve):(
d ln γ1
dT

)
sat

=

(
∂ ln γ1
∂T

)
ln x

+

(
d ln γ1
∂ ln x

)
T

(
d ln x1
dT

)
sat

. (A.12)

Here, we note that: (
∂ ln γ1
∂T

)
ln x

= −
(h̄1 − h∞1 )

RT 2
, (A.13)
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which is often termed the ‘relative partial molar heat content of the solute’. Coupled with the

standard enthalpy change for the dissolution process:

∆hsoln,s1 =
(h̄1 − h∞1 )

RT 2
+

(h∞1 − hs,◦1 )

RT 2
(A.14)

=
(h̄1 − hs1)
RT 2

. (A.15)

Combining all of the above, we get:

d ln x1
dT

+

(
∂ ln γ1
∂ ln x1

)
T

(
d ln x1
dT

)
sat

=
(h̄1 − hs1)
RT 2

(A.16)

d ln x1
dT

=
1

RT 2

[
(h̄1 − hs1)

1 + ∂ ln γ1/∂ ln x1

]
. (A.17)

A.2 Solubility Fits for Estimating Solubility Ratio

Certain solubility data reports contain measurements for both α and γ-glycine. In theory, these

can be processed to determine the solubility ratio of polymorphs at various temperatures. In some

cases, measurements are for both polymorphs are reported at the same temperature; however, in

others, they are reported at different temperatures.

For data sets reporting data at different temperatures for each polymorph, the following sol-

ubility model was used to interpolate a uniform set of solubility, thus giving estimates for the

solubility ratio:

ln x =
−a
R

1

T
+
b

R
lnT + c (A.18)

Table A.1: α and γ-glycine parameters for Eq. (A.18) regression

Park et. al Yang et. al Igarashi et. al

Parameter α γ α γ α γ

a(×103) 1.213 6.401 4.435 2.858 1.141 0.144

b 1.041 24.908 −8.911 −3.773 0.371 4.220

c −4.738 −166.390 62.676 25.756 −1.236 −26.583

A.3 Bouchard Solubility Ratio Data and Interpretation

Bouchard et al., measured the solubility of α, β and γ-glycine in aqueous solutions of varying

composition containing methanol, ethanol, 2-propanol or acetone at 310 K. β-glycine solubility in
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Figure A.1: Fits to selected literature solubility data (blue; α, red; γ, open circles; data, dashed

lines; fits)

pure water wasn’t measured due to assumed rapid re-crystallisation to α. As shown in Fig. A.2,

extrapolating the solubility ratio (cγ/cα) measured in various mixed solvent systems (above 70

wt% water) gives a reasonable estimate for the solubility ratio in pure water. Thus, the solubility

ratio (cβ/cα in pure water was estimated using data from mixed solvent solubility measurements—

shown graphically in Fig. A.2.
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Figure A.2: Selected Bouchard solubility ratios with estimated uncertainties (points; solubility

ratios (note: c measured in g glycine / g solution, grey solid line; expected solubility ratio, grey

dashed lines; ±σ∗)

The uncertainty on ratio estimates derived from Bouchard anti-solvent solubility data was

estimated using Uncertainties python package. For γ-α, the solubility ratio uncertainty estimate

was calculated using uncertainty data provided in the article (i.e. ± 0.002 g/gsoln) and translated

into mole fraction ratios. For the purpose of estimation, we apply the same uncertainty to the

‘average’ solubility ratio for β-α.
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A.4 Miscellaneous Tabulated Literature Data

In this section, literature data used in various figures throughout the associated manuscript are

tabulated for a complete record. This includes: α-γ cross-over temperatures and α, β and γ-

glycine eutectic temperatures.

Table A.2: Literaure α-γ cross-over temperatures

Reference Temperature (K)

[137] 452.14

[105] 441.55–473.15

[138] 438.15± 5

[12] 450.15

[139] (via [142]) 438

[140] 462.15

[141] 441.15 & 445.15

[142] 425–450

Table A.3: Literaure eutectic temperature and composition estimates (adapted from a review by

[130])

Reference α β γ

[130] −2.8± 0.1 −3.6± 0.1 −2.8± 0.1

[271] −3.6 −3.8 −2.9

[272] −3.6 −2.7

[273] −3.6± 0.1

A.5 Freezing Point Depression

In general, the presence of solute in solvent leads to ’freezing point depression’ (i.e. a decrease

in the temperature at which a solvent freezes). It should be noted that freezing point depression

occurs while the concentration of solute in solution is below the eutectic composition for the

solute/solvent system. The freezing point of glycine-water solutions (or related properties from

which the freezing point can be derived) has been measured by various authors [131, 132, 133,
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134, 135] and presented in Fig. A.3. It should be noted that reports of water osmotic coefficients

at the freezing point were converted to freezing point temperatures using:

∆T ≈
Φ

1.858
mg,

where ∆T = 0◦C − Tf p. In addition, the freezing point depression was predicted using:

ln xw =
∆Hf us

R

(
1

T
−

1

Tm

)
,

where ∆Hf us = 6010 J/mol and Tm = 273.15 K (i.e. the melting properties of pure ice).

From Fig. A.3, four of the data sets are consistent, while the data reported by Shimoyamada et.

al., appears to be inconsistent. The consistency of the other four data sets is further supported by

modeling work of Rowland [80]. The following model was used to correlate the consistent data:

ln xw = −A
(

1

T
−

1

Tm

)
+ B ln

(
T

Tm

)
,

where A = 10115.62 K and B = −34.29, and is shown in Fig. A.3.
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Figure A.3: Freezing point depression data (symbols; experimental data, blue dahsed line; predic-

tion from ice melting properties, grey dashed line; best fit)

A.6 Sensitivity Analysis

In the associated manuscript, we present a range of predictions for the aqueous solubility of α-

glycine, based on a sensitivity analysis of the underlying thermodynamic data used to regress

excess Gibbs free energy models, as well as sensitivity to the form of the chosen models. Here

we illustrate the aforementioned sensitivity, for all levels of assumed measurement uncertainty for

210



ln γw , ∆Hdi l/ng and csolnp . Figures are grouped together based on level of assumed measurement

uncertainty (i.e. σ∗, 2σ∗ and 5σ∗)—as described in the associated manuscript. Finally, we present

α-glycine aqueous solubility predictions based on underlying measurement uncertainty to each

themrodynamic quantity (i.e. ln γw , ∆Hdi l and csolnp ) at each uncertainty level, for the Scatchard-

Hildebrand model.
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A.6.1 Uncertainty Level: σ∗

0.00 0.01 0.02 0.03 0.04 0.05 0.06
xg

0.000

0.001

0.002

0.003

0.004

0.005
ln

w

(a) Scatchard-Hildebrand

0.00 0.01 0.02 0.03 0.04 0.05 0.06
xg

0.000

0.001

0.002

0.003

0.004

0.005

ln
w

(b) Scatchard-Hildebrand-Flory-Huggins

0.00 0.01 0.02 0.03 0.04 0.05 0.06
xg

0.00

0.02

0.04

0.06

0.08

0.10

ln
w
/

x g

(c) Scatchard-Hildebrand

0.00 0.01 0.02 0.03 0.04 0.05 0.06
xg

0.00

0.02

0.04

0.06

0.08

0.10

0.12

ln
w
/

x g

(d) Scatchard-Hildebrand-Flory-Huggins

0.00 0.01 0.02 0.03 0.04 0.05 0.06
xg

0

2

4

6

8

10

12

2 ln
w
/

x2 g

(e) Scatchard-Hildebrand

0.00 0.01 0.02 0.03 0.04 0.05 0.06
xg

2

0

2

4

6

8

10

2 ln
w
/

x2 g

(f) Scatchard-Hildebrand-Flory-Huggins

Figure A.4: Sensitivity of water activity and associated partial derivatives in glycine-water mixtures

at 298.15 K to assumed measurement uncertainty of σ∗. (a)–(b) show ln γw (where blue open

circles are selected data from literature as discussed in the associated manuscript), (b)–(c) show

∂ ln γw/∂xg and (d)–(e) show ∂2 ln γw/∂x
2
g . Vertical dashed line indicates α-glycine aqueous

solubility at 298.15 K
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Figure A.5: Sensitivity of ∂ ln γ∗g/∂β and ∂2 ln γg/∂xg∂β at 298.15 K to assumed measurement

uncertainty in ∆Hdi l/ng. Vertical dashed line indicates α-glycine aqueous solubility at 298.15 K
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Figure A.6: Sensitivity of glycine-water solution heat capacity and glycine partial molar heat

capacity in glycine-water mixtures at 298.15 K to assumed measurement uncertainty in csolnp .

Blue open circles indicate selected literature data. Vertical dashed line indicates α-glycine aqueous

solubility at 298.15 K
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A.6.2 Uncertainty Level: 2 σ∗
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Figure A.7: Sensitivity of water activity and associated partial derivatives in glycine-water mixtures

at 298.15 K to assumed measurement uncertainty of 2σ∗. (a)–(b) show ln γw (where blue open

circles are selected data from literature as discussed in the associated manuscript), (b)–(c) show

∂ ln γw/∂xg and (d)–(e) show ∂2 ln γw/∂x
2
g . Vertical dashed line indicates α-glycine aqueous

solubility at 298.15 K
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Figure A.8: Sensitivity of ∂ ln γ∗g/∂β and ∂2 ln γg/∂xg∂β at 298.15 K to assumed measurement

uncertainty in ∆Hdi l/ng. Vertical dashed line indicates α-glycine aqueous solubility at 298.15 K
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Figure A.9: Sensitivity of glycine-water solution heat capacity and glycine partial molar heat

capacity in glycine-water mixtures at 298.15 K to assumed measurement uncertainty in csolnp .

Blue open circles indicate selected literature data. Vertical dashed line indicates α-glycine aqueous

solubility at 298.15 K
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A.6.3 Uncertainty Level: 5 σ∗
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Figure A.10: Sensitivity of water activity and associated partial derivatives in glycine-water mixtures

at 298.15 K to assumed measurement uncertainty of 5σ∗. (a)–(b) show ln γw (where blue open

circles are selected data from literature as discussed in the associated manuscript), (b)–(c) show

∂ ln γw/∂xg and (d)–(e) show ∂2 ln γw/∂x
2
g . Vertical dashed line indicates α-glycine aqueous

solubility at 298.15 K

A.6.4 α-Glycine Solubility Predictions
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Figure A.11: Sensitivity of ∂ ln γ∗g/∂β and ∂2 ln γg/∂xg∂β at 298.15 K to assumed measurement

uncertainty in ∆Hdi l/ng. Vertical dashed line indicates α-glycine aqueous solubility at 298.15 K
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Figure A.12: Sensitivity of glycine-water solution heat capacity and glycine partial molar heat

capacity in glycine-water mixtures at 298.15 K to assumed measurement uncertainty in csolnp .

Blue open circles indicate selected literature data. Vertical dashed line indicates α-glycine aqueous

solubility at 298.15 K
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Figure A.13: α-glycine solubility prediction sensitivity to independent sources of thermodynamic

data using the Scatchard-Hildebrand model (black circles; direct solubility measurements, grey fan;

solubility predictions)
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A.7 Tabulated Solubility Predictions

In the associated manuscript, we graphically present various predictions for the aqueous solubility

of α, β and γ-glycine across a broad range of temperatures. To make re-use of this data simpler,

here we present tabulated values corresponding to each prediction at 5 K increments between

263.15 and 398.15 K, where the solubility is given in terms of glycine mole fraction.
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Table A.4: Solubility predictions for α, β and γ-glycine in water at 5 K increments between 263.15

and 398.15 K derived from predictions described in the associated manuscript. Solubility reported

in glycine mole fraction. SH and SHFH denote predictions based on Scatchard-Hildebrand and

Scatchard-Hildebrand-Flory-Huggins excess Gibbs free energy models, respectively.

α β γ

T (K) SH SHFH SH SHFH SH SHFH

263.15 0.025 0.024 0.034 0.034 0.023 0.022

268.15 0.028 0.028 0.039 0.039 0.026 0.026

273.15 0.032 0.032 0.044 0.044 0.029 0.029

278.15 0.036 0.036 0.049 0.049 0.033 0.033

283.15 0.041 0.041 0.055 0.055 0.038 0.038

288.15 0.046 0.046 0.061 0.061 0.042 0.042

293.15 0.051 0.051 0.067 0.067 0.047 0.047

298.15 0.056 0.056 0.074 0.073 0.052 0.052

303.15 0.062 0.061 0.081 0.079 0.057 0.057

308.15 0.067 0.067 0.088 0.086 0.063 0.063

313.15 0.074 0.073 0.096 0.093 0.069 0.068

318.15 0.080 0.079 0.104 0.099 0.075 0.074

323.15 0.086 0.085 0.112 0.106 0.081 0.080

328.15 0.093 0.091 0.120 0.113 0.088 0.086

333.15 0.100 0.097 0.129 0.120 0.095 0.092

338.15 0.107 0.103 0.138 0.127 0.102 0.098

343.15 0.115 0.109 0.146 0.134 0.109 0.105

348.15 0.122 0.116 0.156 0.141 0.116 0.111

353.15 0.129 0.122 0.165 0.148 0.123 0.117

358.15 0.137 0.128 0.174 0.155 0.131 0.124

363.15 0.145 0.134 0.184 0.161 0.139 0.130

368.15 0.152 0.141 0.193 0.168 0.146 0.136

373.15 0.160 0.147 0.203 0.175 0.154 0.143

378.15 0.168 0.153 0.213 0.181 0.162 0.149

383.15 0.176 0.159 0.223 0.188 0.170 0.155

388.15 0.184 0.165 0.232 0.195 0.178 0.162

393.15 0.192 0.171 0.242 0.201 0.186 0.168

398.15 0.200 0.177 0.252 0.207 0.194 0.174
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Appendix B

Mullin Aqueous Solubility Analysis
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Table B.1: Compounds used in Chapter 4 solubility analysis broken down by chemical structure.

Type Compound Curvature

Amino Acid Alanine (D) +

Alanine (DL) +

Glutamic Acid +

Glycine −

Sugar Glucose −

Maltose +

Lactose +

Mannitol (D) +

Raffinose −

Sucrose +

Aromatic o-Aminophenol −

p-Aminophenol −

Benzoic Acid +

o-Hydroxybenzoic Acid +

m-Hydroxybenzoic Acid +

p-Hydroxybenzoic Acid +

o-Phthalic Acid +

Picric Acid +

Salicylic Acid +

Hydroquinone +

Resorcinol −

Acid Adipic Acid +

Citric Acid −

Fumaric Acid +

Maleic Acid −

Malic Acid (DL) +

Oxalic Acid −

Succinic Acid +

Tartaric Acid +

Tartaric Acid (racemic) −
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Other Dicyandiamide +

Melamine +

Pentaerythritol +

Succinimide −

Taurine −

Thiourea −

Urea −

Uric Acid −
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Table B.2: Parameter and RSS values derived from fitting aquous solubility data reported in [6]

Compound A B C RSS

Adipic Acid -475.04 17034.54 72.31 0.00056

Alanine (D) -37.34 717.95 5.53 3.76e-07

Alanine (DL) -44.10 863.65 6.63 5.62e-07

o-aminophenol 6.28 -1126.29 -1.43 2.34e-05

p-aminophenol -302.78 11741.44 45.19 0.00069

benzoic acid -296.89 10454.89 44.62 9.80e-05

citric acid 31.87 -2744.97 -4.34 0.00052

dicyandiamide -28.85 -2346.21 5.61 0.00063

fumaric acid -172.85 4483.81 26.47 5.41e-05

glucose (dextrose) 35.73 -3679.51 -4.51 0.0015

glutamic acid (D) -145.63 3375.90 22.37 4.39e-05

glycine 55.96 -4035.72 -7.95 4.98e-05

hydroquinone -352.35 12990.92 53.44 0.00097

o-hydroxybenzoic acid -377.32 14025.49 56.55 7.89e-05

m-hydroxybenzoic acid -227.16 6583.35 34.83 0.00030

p-hydroxybenzoic acid -468.84 17148.90 70.95 0.00026

lactose -146.04 4375.03 22.27 2.52e-05

maleic acid 26.58 -3035.08 -3.27 0.00042

malic acid (DL) -97.01 3090.52 14.88 0.00025

malonic acid -43.44 891.53 6.83 0.00061

maltose -182.40 6677.26 27.53 0.00010

mannitol (D) -91.37 1644.36 14.39 0.00010

melamine -30.02 -2262.22 5.27 0.00033

oxalic acid 66.48 -6308.56 -8.62 2.21e-05

pentaerythritol -88.54 1243.94 13.98 9.44e-05

o-phthalic acid -157.65 3571.59 24.30 5.84e-05

picric acid -195.10 7035.11 28.91 0.00028

raffinose 402.54 -22636.64 -58.19 0.0020

resorcinol 88.48 -5876.50 -12.36 0.0010

salicylic acid -377.32 14025.49 56.55 7.89e-05

succinic acid -11.57 -2895.15 2.97 0.00015

succinimide 346.08 -18979.29 -50.04 0.0057
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sucrose -75.77 2752.43 11.27 2.09e-05

tartaric acid (D or L) -33.22 703.51 5.08 8.77e-05

tartaric acid (racemic) 102.76 -7361.33 -14.34 0.00033

taurine 153.18 -9534.90 -22.01 2.41e-05

thiourea 74.73 -6761.61 -9.72 0.00061

urea 14.33 -1921.17 -1.62 0.00026

uric acid 125.36 -9230.07 -18.64 0.00014
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Appendix C

Initial Paramater Values

Table C.1: Redlich-Kister initial parameter values and for glycine-water fits presented in Chapter 4

Model A0 B0 C0 D0

1 0

2 0 0

3 0 0 0

4 0 0 0 0

Model A1 B1 C1 D1

1 0

2 0 0

3 0 0 0 0

4 1000 1000 1000 -1000

Model A2 B2 C2 D2 cs,◦p,1

1 0 700

2 -600 -500 700

3 500 -500 500 700

4 500 -500 500 -500 700

226



Table C.2: Redlich-Kister initial parameter values and for sucrose-water fits presented in Chapter 4

Model A0 B0 C0 D0

1 0

2 0 0

3 0 0 0

4 0 0 0 0

Model A1 B1 C1 D1

1 0

2 0 0

3 10 -10 10 0

4 10 -10 10 -10

Model A2 B2 C2 D2 cs,◦p,1

1 0 700

2 -600 -500 700

3 500 -500 500 700

4 500 -500 500 -500 700
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Appendix D

Water Vapor Pressure Analysis for

Sucrose-water Liquid Mixtures

In this appendix, vapor pressure measurements for water vapor above sucrose-water liquid mixtures

are modelled to estimate the differential as discussed in Chapter 5.

D.1 Vapor Pressure Data

From the data review described in Chapter 5, independent reports of vapor pressure measurements

at including data from 313.15 K to 373.15 K were identified [168, 242, 164, 150] and the resulting

vapor pressures are shown in Fig. D.1.

From the vapor pressure data, the activity coefficient in water was determined using modified

Raoult’s Law (see Eq. (5.7)). Crucially, this requires an estimate for the pure water saturation

vapor pressure, which is assumed to be known through standard reference models based on the

Antoine equation. Using parameters for the Antoine equation (see Chapter 5), the water activity

coefficient was estimated and illustrated in Fig. D.2.

The water activity coefficient was also estimated using pure water saturated vapor pressure

estimated by each of the experimental methodologies, to capture any systematic bias. Data

reported in [168] and [164] includes measurements for pure water at the associated temperature.

For [242] and [150], the required values were estimated by extrapolation to zero sucrose mole

fraction using a second-order polynomial implemented in Excel. Using dataset-specific estimates

for the pure water vapor pressure, the water activity coefficient was estimated and illustrated in

Fig. D.3.
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Figure D.1: Vapor pressure measurements reported in literature between 313.15 and 373.15 K as

a function of sucrose composition.
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Figure D.2: Water activity coefficient (defined relative to Raoult’s Law) between 313.15 and

373.15 K as a function of sucrose composition.
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Figure D.3: Water activity coefficient (defined relative to Raoult’s Law) between 313.15 and

373.15 K as a function of sucrose composition.
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