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Abstract

This study focuses on aligning the business functions of maintainers and operators in the

manufacturing industry for better costs/profits. In practice, maintainers and operators

undertake maintenance operations management and production operations management

respectively; such two types of operations management are closely intertwined with each

other and hence should not be considered independently. In the maintenance planning

literature, however, the balance between machine utilisation and increased risk of failure

is rarely thoroughly discussed. Motivated by the maintenance planning problem in a large

scale British coal-fired power plant, this study aims at developing a theoretical framework

which facilitates aligning the business functions of maintainers and operators for better

costs/profits in a relatively generic manufacturing industrial setting.

Initially we consider a generic multi-asset production system. In such system we

investigate the fundamental trade-offs between the decision making of maintainers and

operators, and we further analyse how such trade-offs are underpinned by the existence

of contracted period for sales and the associated potentially high penalty cost; based

on such problem structure elicitation, we then develop a maintenance approach which

integrates the operators’ decision making as part of the maintainers’ decision making

in a conceptual framework and then further mathematically formulates such integrated

maintenance planning problem as a Markov decision process (MDP). Such maintenance

approach not only facilitates maintenance planning optimisation given existing machine

utilisation behaviours, but also facilitates machine utilisation behaviour improvement as

researchers/practitioners can conduct what-if analysis by changing the integrated utilisa-
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tion behaviours in the MDP model.

Next we consider a multi-level hierarchical physical structure which involves multiple

aforementioned multi-asset production systems; such hierarchical structure is shared by

many industrial cases. We scale up the MDP model to capture such complex hierarchical

structure, in the context of the coal-fired power plant case. The resulted mathematical

problem is too complex to be solved by exact methods, and we therefore develop a set of

heuristics to solve the problem: we select a simulation-based computation heuristic and a

value function approximation method from literature, and we further combine them with

our own designed decomposition method and parameters number bounding method. We

further discuss how the scaled-up mathematical model and heuristics can be applied to

other industrial cases of interest. Finally, we conduct numerical tests to demonstrate the

practical value of our maintenance approach, mathematical model and heuristics.
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Abbreviations

MDPs Markov decision processes

DP Dynamic programming

VI Value iteration

RL Reinforcement learning
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Nomenclature

Notations first introduced in Chapter 2

T Time length of the maintenance planning period

TC Time length of the contracted period

t Time-step

x System state

D Demand

wr Work-rate of system

c Condition

p Performance

n Index of asset

N Total amount of assets in the system

S State space of MDP

a Action

A Action space of MDP

R(•) Reward function of MDP
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P (•) Transition probability of MDP

π Policy of MDP

V Expected total discount rewards

RC(•) Reward function in the contracted period

RNC(•) Reward function in the non-contracted period

Notations first introduced in Chapter 3

V ∗ Optimal value of MDP

Q An estimation of V value

Notations first introduced in Chapter 4

K Total number of units in the plant

OH Time-length an overhaul takes

xM State of the generic mill

xP State of the plant

xk,n State of the mill indexed as mill n in the unit indexed as unit k in the power

plant

TS Time-length of the short-term part of the non-contracted period

TL Time-length of the long-term part of the non-contracted period

h Time-step in Stage (3) of the three-stage hybrid MDP model

ts Time-step in Stage (2) of the three-stage hybrid MDP model

oh Total number of time-steps an undergoing overhaul has lasted
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tc Time-step in Stage (1) of the three-stage hybrid MDP model

ck,n Condition of mill n in unit k

pk,n Performance of mill n in unit k

Q Output value of a chosen quadratic function

w Free parameter in a chosen quadratic function
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Chapter 1

Introduction

Machine maintenance is crucial to manufacturing industries to ensure the delivery of

high-quality products to customers on time, and proper maintenance planning in general

significantly contributes to a high level of operation efficiency [102]. Although the main-

tenance cost can range from 15% to 75% of the total operations expenditure in many

cases and can even surpass annual net profit especially when no proper maintenance plan-

ning programs are implemented [99, 104], it is not an optimal choice for manufacturers

to abandon machine maintenance at a strategic level [50]. In practice, manufacturers

aim at deriving maintenance policies which render the trade-offs between various main-

tenance cost measures and various machine performance measures approximately optimal

in their cases (note such trade-offs are usually very complex and therefore it is usually

impossible to obtain exact optimal policies in practice). Motivated by such complex and

important decision making problems about machine maintenance, researchers developed

multiple maintenance approaches each of which emphasises on different crucial aspects of

such trade-offs; the corresponding maintenance planning optimisation problems in stud-

ies/research are usually approximations of the actual problems in practice: a certain level

of approximation of modelling is necessary as it enables researchers/practitioners to focus

on the important features of the actual problems. Hereafter by maintenance planning

optimisation problems, we mean such approximations rather than the exact problems in



2

practice. Motivated by the case study of a real-life large scale power plant, this thesis

focuses on a type of maintenance planning optimisation problem which emphasises the

balance between machine utilisation and increased risk of failure.

Below first we shall present a brief literature review regarding existing maintenance

approaches; then we shall explain the structure of the thesis and highlight the research

questions and research contributions.

In order to facilitate the discussion in this thesis, here we distinguish the following three

terms which shall be used repeatedly throughout this thesis: maintenance approach, main-

tenance planning modelling framework and maintenance planning mathematical model.

Such three terms (or similar ones) have been repeatedly referred to in the machine main-

tenance planning literature; the definition of such terms however vary between different

studies and the boundaries of such terms do not seem clear in literature, and hence here we

re-define such terms to synchronise their boundaries and facilitate the discussion hereafter.

In our thesis, a maintenance approach means a conceptual framework which specifies the

fundamental trade-offs in maintenance planning decision making and the general prin-

ciples about how the machine shall be maintained. Note such maintenance principles

constrain the scope of potential maintenance policies in modelling. For instance, if a

maintenance approach assumes the best way to maintain a machine in practice is to re-

place the old machine with a brand new one at fixed time intervals regardless of whether

the machine still works and any intervening machine failure within a time interval must

be immediately corrected with a machine replacement as well, then one would specifically

focus on finding the time intervals which optimise some predetermined measures, e.g. the

average maintenance cost over time. A maintenance planning modelling framework in our

thesis refers to a framework which specifies how to mathematically model maintenance

decision making given a maintenance approach. For example, one framework may choose

a discrete-time setting whereas a different framework may adopt a continuous-time set-

ting. A maintenance planning mathematical model in our thesis refers to a mathematical
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model which is derived through applying a maintenance planning modelling framework

to maintenance planning decision making in a certain operations/business setting. For

instance, in this thesis we construct a maintenance planning mathematical model for a

case study from a real-life power plant. The relationship between the three terms is il-

lustrated in Figure 1.1: a maintenance planning mathematical model must belong to a

maintenance planning modelling framework ; a maintenance planning modelling frame-

work must belong to a maintenance approach. Hereafter we shall refer to maintenance

planning modelling framework briefly as modelling framework and refer to maintenance

planning mathematical model briefly as mathematical model, as long as this is clear in

the context.

Figure 1.1: Relationship between maintenance approach, modelling framework and math-
ematical model

Regarding the three aforementioned concepts, from the maintenance approach to the

modelling framework and finally to the mathematical model, inevitably more and more

problem structure/modelling assumptions are introduced to facilitate the modelling work,

especially if the maintenance planning decision making is complex in practice. These as-

sumptions underpin the application scope of different maintenance approaches/ modelling

frameworks/ mathematical models.

In the rest of the chapter, in order to maintain a relative high level overview, we shall
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focus on the conceptual frameworks of different maintenance approaches and the general

categorisation of maintenance planning modelling frameworks, and we shall not discuss

the maintenance planning mathematical models in the maintenance planning literature.

This chapter aims at providing background knowledge for reader to understand the main-

tenance approach that we develop (in Chapter 2) and our research contributions to the

literature.

1.1 An overview of machine maintenance approaches

Maintenance is a set of activities or tasks used to bring a machine back to a desirable

state to provide required functions [49]. In this thesis, we use the term machine in a

very general sense: it could either be a single piece of asset or a complex system which

comprises of multiple assets, where each asset must be maintained in its entirety. We

shall keep using such term to conduct the discussion in a general context, unless it is

necessary to clarify whether we focus on a single asset or a multi-asset system with a

specific physical structure.

In terms of the effects of a maintenance action, it often could be modelled as either

minimal, imperfect or perfect [117]. A minimal maintenance action restores the machine

to the failure rate it had when it failed: intuitively speaking, the machine is as bad as old

after a minimal maintenance, for example changing a broken rubber belt on a flour mill

would not improve the overall failure rate of the flour mill; a perfect maintenance action

restores the machine to the state where it has the same lifetime distribution and failure

rate as a brand new machine: intuitively speaking, the machine is as good as new after a

perfect maintenance, equivalent to replacing the failed machine with a brand new one; the

effects of an imperfect maintenance action fall somewhere between a minimal maintenance

action and a perfect one: the machine after an imperfect maintenance becomes younger

but not as good as new, for example the performance of an engine might be improved
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significantly after a tune-up but the machine deterioration is not reversed. Here the failure

rate for a machine at a given time is defined as the ratio of dividing the probability that

the machine of interest fails in an infinitely small time interval (following the given time)

by the time interval itself, given that the machine is not failed at the given time [17]; the

machine failure is defined as the machine of interest not being able to fulfil its required

functions [46]: for example, if a printer cannot print materials with sharpness above an

acceptable level, the printer is considered failed, even if it is not physically broken.

Other maintenance actions, in terms of their effects, include worse maintenance and

worst maintenance [117]: a worse maintenance action would increase the machine failure

rate and a worst maintenance action causes the machine to fail. Such maintenance actions

are not a deliberate choice of the maintainers, but they might happen in practice due to

multiple reasons including repairing the wrong part of the machine, wrong adjustments

and replacement with faulty parts. We shall not consider worse maintenance and worst

maintenance in our modelling work.

In terms of the timing of a maintenance action, it could be modelled as either corrective

or preventive. Corrective maintenance (CM) actions refer to the maintenance actions

executed after the machine fails, whereas preventive maintenance (PM) actions are the

maintenance actions executed before the machine fails. Note that a CM action or a PM

action can be minimal, imperfect or perfect regarding the effects [117].

Maintenance planning answers two questions: (1) when the machine should be main-

tained and (2) what maintenance actions should be selected (in terms of maintenance

effects). The maintenance planning literature is rich in mathematical models which aim

at facilitating optimal maintenance planning. Such (mathematical) models are built using

a limited number of maintenance approaches and modelling frameworks. In this chapter,

we shall focus on summarising maintenance approaches and modelling frameworks.

Maintenance approaches are generally classified as either corrective maintenance (CM)

approaches or preventive maintenance (PM) approaches [53]. We shall first discuss the
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CM approaches in Section 1.1.1, and then we focus on the PM approaches in Section

1.1.2. Additionally in Section 1.1.2 we shall also summarise the modelling frameworks in

PM approaches because they directly relate to the later discussion in Chapter 2.

1.1.1 CM approaches

Maintainers who follow CM approaches restore a machine to its required functions after

the machine fails [112]. In terms of the maintenance effects, the specific maintenance

actions involved in CM approaches can be minimal, imperfect and/or perfect mainten-

ance; in terms of maintenance timing, the specific maintenance actions involved in CM

approaches are only CM actions. CM approaches are often intuitively known as run-to-

failure maintenance approaches [2]. Such maintenance approaches may lead to a large

amount of machine downtime, high maintenance costs and even serious safety issues to

the personnel and environment due to a relatively large number of unexpected failures

[50, 137].

[101] introduces the so called repair number counting approach which replaces the old

machine with a new one (that is a perfect maintenance action) at the k-th failure and

deals the first (k − 1) failures with minimal maintenance actions. The process repeats

after replacement. [105] extends the approach by adding in another decision variable

called critical reference time, denoted as T . The extended approach is called reference

time approach. In this extended approach, all failures before the k-th failure are still

corrected by minimal maintenance actions. Regarding the k-th failure, if it happens

before an accumulated operating time T , it is corrected by a minimal maintenance action

and the next failure is dealt with machine replacement; if the k-th failure happens after

T , it is corrected by machine replacement. After machine replacement, the accumulated

time T is reset as zero and the process repeats. Readers are referred to [145] for a more

thorough literature review on studies following this research line. Note in both CM and

PM approaches, machine age is a virtual concept [90] and time is not always measured
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as calender/clock time: for example in some studies the machine age is measured as

the amount of products processed (see [15] for an example in the steel manufacturing

industry) since the last perfect maintenance action, and such age is reset as zero after a

perfect maintenance action.

Another CM maintenance approach is the so called repair limit CM approach. The

approach applies minimal/imperfect maintenance when failure occurs, as long as the es-

timated maintenance costs/time-length is below a predetermined threshold; otherwise the

the machine is replaced with a new one (that is a perfect maintenance action). Example

studies include [51, 52, 108, 155]. Later on [87] extends the studies by additionally en-

forcing perfect maintenance after a certain number of minimal/imperfect maintenance;

whereas [10] chooses to replace the one-time only minimal/imperfect maintenance cost

(which is widely used in earlier studies) with repair cost rate (average repair cost per unit

time) over a certain future planning period in the decision making.

1.1.2 PM approaches

In contrast to the CM approaches which only model interventions applied after a machine

failure occurs, the PM approaches additionally model maintenance actions which are to

be executed before the machine fails, in order to reduce the failure frequency of the

machine in a finite or infinite planning period [109]. In terms of the maintenance effects,

the specific maintenance actions involved in PM approaches can be minimal, imperfect

and/or perfect maintenance; in terms of maintenance timing, the specific maintenance

actions involved in PM approaches include CM actions and PM actions. PM approaches,

when they are properly implemented in practice, reduce the total maintenance costs and

machine downtime and improve the product quality [140], compared to CM approaches.

The PM approaches are further classified as time-based maintenance (TBM) ones and

condition-based maintenance (CBM) ones [3]. We shall first focus on the TBM ones and

later on we discuss the CBM ones.
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1.1.2.1 TBM approaches

Maintainers who follow TBM approaches schedule the maintenance based on the priori

statistical knowledge of the machine lifetime [61]. Their key goal is to derive the op-

timal time interval between every two successive preventive actions: as such time interval

increases, the average cost of unplanned machine outage per time unit is assumed to in-

crease whereas the average cost of preventive actions per time unit is assumed to decrease,

and therefore a balance must be reached in order to achieve the minimum average cost

per time unit [9]. According to [145], TBM approaches can be further categorised as the

following: the age-dependent PM approach, the periodic PM approach, the failure limit

PM approach and the sequential PM approach.

Following the age-dependent PM approach, the machine of interest receives a perfect

PM action (usually it is machine replacement) once the the machine age reaches a pre-

determined threshold T and any failures that occur before such an age threshold are

corrected by CM actions. Depending on the modelling assumptions in specific studies,

the CM actions can be minimal, imperfect and/or perfect maintenance actions. The ac-

cumulated machine age is reset as zero after a perfect maintenance action and the process

repeats. For example, [9] only considers perfect maintenance for CM actions, whereas

[106] additionally introduces an predefined threshold N and [106] applies only minimal

CM actions as long as the machine age is below T and the failure number is below N ;

once the machine age reaches T or failure number reaches N , whichever happens first, the

machine receives a perfect maintenance and then the machine age and failure number are

reset as zero.

Following the periodic PM approach, the machine of interest is preventively maintained

at fixed (and usually equal) time intervals independent of the failure history of the ma-

chine and any intervening failures within an interval are corrected by CM actions. For

example, [9] considers replacing the machine at predetermined identical time intervals and
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any intervening failures within an interval are removed by minimal repair; [107] focuses

on an approach similar to [9], with one extra requirement on triggering the preventive

replacement: the number of machine failures since the previous replacement must surpass

a predetermined threshold, otherwise no replacement should be done; [146] discusses a

maintenance approach similar to [107] but [146] considers preventive maintenance which

is either perfect or minimal with fixed probabilities rather than preventive maintenance

that is always perfect (and the accumulated number of failures is reset after a perfect

maintenance in [146]).

Following the failure limit PM approach, the machine is only preventively maintained

when the failure rate (or other reliability related measures, which we shall explain them

later in this section) reaches a predetermined level and any intervening failures are correc-

ted by CM actions. For instance, [94] introduces a maintenance approach which applies

minimal PM to the machine whenever it reaches a predetermined failure rate threshold;

[97] applies a failure limit approach under Weibull failure rates.

Following the sequential PM approach, it is not required to specify at the beginning

of the planning period each future PM interval; instead, after each executed maintenance

action, it is only required to specify the next PM interval. If the machine fails or the selec-

ted PM interval fully elapses, whichever happens first, a maintenance action is executed

and the process repeats. The PM interval is selected based on the estimated remaining

lifetime of the machine and cost structures. This approach aims at adding in flexibility

compared to the periodic PM approach such that the approach can deliver better results

under some predetermined measures (e.g. expected total maintenance costs). For ex-

ample, [110] studies an sequential PM approach which faces a situation where each PM

increases the failure rate of the machine; naturally the time interval for PM decreases as

time passes until perfect maintenance is done; [91] considers a sequential PM approach in

a cumulative damage shock environment where shocks occur following a Poisson process

and the system fails with a probability depending on the accumulated damage due to the
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shocks.

Regarding all the aforementioned TBM approaches, the periodic PM approach is per-

haps the easiest to implement in practice. The the age-dependent PM approach and

sequential PM approach however are able to further reduce the maintenance cost, com-

pared to the periodic PM approach. The failure limit PM approach is most suitable for

maintenance planning decision making which focuses more on reliability (or reliability

related measures) rather than cost, and we shall further discuss this issue in this section

when we discuss optimisation objectives.

As pointed out by [145], other studies focus exclusively on maintenance planning for

multi-asset machines where the assets are subject to dependencies including economic

dependence (i.e. maintaining multiple assets simultaneously costs less money and/or

time compared to maintaining them separately), failure dependence (i.e. the lifetime

distributions of multiple assets are stochastically dependent) and structure dependence

(i.e. the assets are bonded in a way such that maintaining any one asset pre-requires

dismantling the assets apart from each other). Such studies focus on joint maintenance

approaches including the group maintenance approach (i.e. a fixed category of assets

are maintained jointly, for instance assets with the same lifetime distribution) and the

opportunistic maintenance approach (i.e. when one asset receives maintenance, the other

assets deemed to have little remaining lifetime are maintained as well). We refer readers

to [92, 145] for a more detailed discussion.

Modelling frameworks and optimisation objectives

In the TBM approaches, the lifetime of a machine is modelled as a continuous random

variable [147]. A key difference between various modelling frameworks in TBM approaches

is how such random variable is modelled. According to [103], the distribution of the

random variable is specified by one of several functions, including the probability density

function (pdf), characteristic function, Mellin transform, failure rate function, survival

function and cumulative distribution function. In order to decide the specific parameters of
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the corresponding statistical model such that the machine lifetime can be reasonably well

modelled, techniques including goodness-for-fit tests and maximum likelihood estimation

should be applied on the historical failure data and maintenance events data. We refer

readers to [17] for detailed discussions. Regarding the issues in collecting and processing

the historical failure data and maintenance events data, we refer readers to [2].

In the TBM approaches, a maintenance planning modelling framework specifies three

things: the type of distribution regarding the machine lifetime variable (as explained

above); the maintenance planning optimisation objective(s) (which is explained immedi-

ately below); function(s) that quantifies how much each decision variable (e.g. machine

replacement age) contributes to the objective value(s).

Optimisation objectives

The optimisation objectives for maintenance planning include minimising some main-

tenance cost measures, maximising reliability and optimising some reliability related meas-

ures [145]. The maintenance cost measures include the maintenance cost rate (average

maintenance cost per unit time), total maintenance cost and discounted maintenance cost;

the reliability related measures include availability, failure rate and mean time between

failures (MTBF) [145]: the reliability itself is the probability that the machine will not

fail before it reaches a certain age [17]; the availability is the probability that the machine

will be available when required, or the proportion of total time that the machine is avail-

able for use [113]; the failure rate is explained above already; mean time between failures

(MTBF) applies to repairable machines and not to non-repairable machines.

According to [3, 145], the optimisation choices in publications can be summarised as

five types: (1) minimising a maintenance cost measure; (2) maximising the reliability or

optimising a reliability related measure; (3) optimising a maintenance cost measure while

ensuring the requirement on the machine reliability or a reliability related measure is sat-

isfied; (4) maximising the machine reliability or optimising a reliability related measure

while ensuring the requirement on a cost measure is satisfied; (5) multi-objective optim-
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isation which involve two or more conflicting objectives (for example minimising total

maintenance cost and maximising reliability). The first choice is most common in the

literature, because cost measures apply to many practical problem settings [86]; however,

for problems in which the consequences regarding a low level of reliability (or its related

measures) cannot be (fully) evaluated from the perspective of cost, sole cost-oriented

optimisation should be replaced by other appropriate choices aforementioned [86, 145].

1.1.2.2 CBM approaches

In the TBM approaches, the machine failure is assumed to be age-related [2], and the

decision making is based on the machine life distribution rather than the actual state

of the machine. As the modern production machines become more complex and the

requirement on high machine reliability grows ever stronger, the maintenance cost in TBM

approaches keep increasing. The maintenance engineers and researchers respond to such

challenges with more sophisticated maintenance approaches: condition-based maintenance

(CBM) approaches. Following CBM approaches, maintenance decision making is based

on directly/indirectly monitored machine degradation condition [73], which reduces the

uncertainty about time to machine failure: the monitoring data provides evidence or

insight about whether the machine is working in an abnormal state and how serious it is.

As a result, compared to TBM approaches, CBM approaches can reduce the maintenance

cost and improve machine reliability by scheduling preventive maintenance actions more

efficiently.

The relative effectiveness is dependent on problem-specific factors including the re-

quired setup time for desirable PM actions, the severity of failures, the accuracy of the

condition measurements and the amount of randomness in the deterioration level at which

failure occurs [44]. It is also worth mentioning that CBM approaches usually involve rel-

atively high installation cost (e.g. sensors installation and staff training costs) in practice

and we refer readers to [128] for detailed discussion regarding the advantages and disad-
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vantages about CBM approaches.

The machine condition information is gather by using sensors and/or other appro-

priate proxies [24]. As summarised by [2], the machine condition monitoring techniques

include vibration monitoring, sound or acoustic monitoring, oil-analysis or lubricant mon-

itoring, electrical monitoring, temperature monitoring, physical condition (e.g. cracks

and corrosion) monitoring, performance (e.g. flow rate and electrical power consumption)

monitoring and so on. In this thesis, we focus on the maintenance decision making and

therefore for CBM approaches we choose not to further discuss how the machine condi-

tion information is collected, the categorisation of inspection quality or how the inspection

results are processed to reveal/infer the machine condition; instead we refer readers to

[3, 86] for a thorough discussion. We shall assume the monitoring information provides

an exact view of the machine state in our modelling work.

CBM approaches can be categorised based on the machine condition inspection fre-

quency: continuous monitoring, periodic inspection and non-periodic inspection [86]. Con-

tinuous monitoring literally means the machine condition is monitored without any time

gaps; periodic inspection means the machine condition is examined at fixed (and usually

equal) time intervals; non-periodic inspection means after each inspection only the imme-

diate next inspection interval is decided, and usually the inspection interval decreases as

the machine deteriorates. The choice of the inspection intervals influences the perform-

ance of the ultimate maintenance policies, for example in terms of total costs and machine

reliability. We refer readers to [86] for a detailed discussion regarding the advantages and

disadvantages of different inspection frequency.

In CBM approaches which adopt periodic inspection or non-periodic inspection, the

inspection frequency must be determined as part of the maintenance planning problem

(the other issues have been discussed at the beginning of Section 1.1).

Modelling frameworks and optimisation objectives

In the CBM approaches, similar to the TBM approaches, a maintenance planning
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modelling framework specifies three things: how to model the stochastic machine de-

gradation process; the maintenance planning optimisation objective(s); function(s) that

quantifies how much each decision variable (e.g. inspection frequency or which machine

states should trigger preventive maintenance actions) contributes to the objective value(s).

Below we shall first focus on such different modelling frameworks regarding the machine

degradation process and then we discuss the optimisation objectives.

A key difference between various modelling frameworks in CBM approaches is how

the stochastic machine deterioration process is modelled. The deterioration process

can be modelled from the perspective of discrete-state/continuous-state and discrete-

time/continuous-time aspects.

Discrete-state deterioration modelling frameworks

As summarised by [3], discrete-state deterioration modelling frameworks include the

Markov chain, Semi-Markov process and hidden Markov process. All the frameworks

assume (1) the total number of potential machine states is finite and (2) the probability

that the machine transits into a given state only depends on the current machine state

and is independent from the historical machine states.

A Markov chain additionally assumes that the machine state transition always con-

sumes a fixed time-unit; in other words, Markov chain takes a discrete-time setting for

modelling deterioration and hence is also called discrete-time Markov process (or more

specifically, discrete-time discrete-state Markov process) in some studies. Application

studies of Markov chain in machine maintenance include [23, 55, 71, 88, 151, 152, 161].

In contrast, a Semi-Markov process assumes the state transition time is a continuous

variable of which the distribution depends on the current state and the state to jump into

and does not depend on any historical states; a special type of Semi-Markov processes fur-

ther assumes the transition time is exponentially distributed and such Semi-Markov pro-

cesses are called continuous-time Markov processes. Application studies of semi-Markov

processes in machine maintenance include [27, 40, 41, 54, 74, 93, 102]; application studies
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of continuous-time Markov processes in machine maintenance include [30, 89, 124, 127].

The hidden Markov process is used when the deterioration dynamics are assumed to be

determined by either a Markov chain or Semi-Markov process but the monitoring inform-

ation cannot exactly reveal the machine condition; in order to handle such uncertainty the

hidden Markov process additionally contains a vector of probability distributions where

each potential machine state is described by a unique distribution regarding the probabil-

ities of what kinds of output information are observable. The hidden Markov process can

either take a continuous-time setting or a discrete-time setting to model the deterioration

process. Application studies of hidden Markov process in machine maintenance include

[25, 58, 96, 121, 156, 154].

A comparison summary is provided in Table 1.1 regarding the three deterioration mod-

elling frameworks, as well as the associated maintenance planning modelling frameworks.

Here we would like to highlight that the time-setting we discuss for each deterioration mod-

elling framework above is specifically for modelling the deterioration process only: that is

whether the machine state would change in a continuous-time setting or discrete-time set-

ting due to deterioration, rather than for maintenance decision making; for example, the

deterioration process of a machine is assumed to follow a continuous-time setting but the

maintenance decision making can be following a discrete time-setting [98, 158]. In a main-

tenance planning modelling framework, if the deterioration process is assumed to follow a

continuous-time setting, either a continuous time-setting or a discrete time-setting can be

assumed for the maintenance decision making; if the deterioration process is assumed to

follow a discrete-time setting, it is natural to only assume a discrete-time setting for the

maintenance decision making. When we refer to time-setting, we would always specify

whether it is a time-setting for deterioration or it is for inspection and decision making.

Regarding all the discrete-state deterioration modelling frameworks aforementioned,

the Semi-Markov process and hidden Markov process are more general frameworks than

the Markov chain, but they also require more data collection and data processing and
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Deterioration

modelling

framework

Deterioration

time-setting

Corresponding maintenance

planning modelling framework

Markov chain Discrete Markov decision process (MDP):

discrete-time setting for decision

making
Semi-Markov process

and continuous-time

Markov process

Continuous Semi-Markov decision process

(Semi-MDP) and continuous-time

Markov decision process (CTMDP):

continuous-time/discrete-time setting

for decision making
Hidden Markov

process

Discrete/continuous Partially observable Markov decision

process (POMDP):

continuous-time/discrete-time setting

for decision making

Table 1.1: Comparison between discrete-state deterioration modelling frameworks

statistical analysis. In comparison to the continuous-state deterioration modelling frame-

works to be discussed below, the discrete-state deterioration modelling frameworks are

usually used either when precise measurements of the machine states cannot be obtained

or as an approximation of the actual degradation process from an engineering practice

perspective (i.e. categorising the degradation states into several deterioration levels) [3].

Proportional hazard modelling (PHM) framework

Used in CBM approaches, the proportional hazard model [43] describes the machine

state by its failure rate and assumes the failure rate of the machine at any given time

is influenced (i.e. accelerated/decelerated) by multiple factors that can be continuously

monitored, e.g. temperature and running speed [3]. Such factors can either be condition-

based or external to the machine. Technically speaking, a proportional hazard model

describes the failure rate of a machine as the product of two failure rate functions: one

baseline failure rate function of time; one failure rate function of the measurement values

of the influencing factor at the given time [103].

Compared to other deterioration modelling frameworks, the PHM framework is most

suitable for maintenance planning decision making which focuses more on reliability (or

reliability related measures) rather than cost, such as the maintenance planning for critical
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equipments in nuclear power plants.

Additional deterioration modelling frameworks

According to [3], some other frameworks model the machine deterioration through

time as a continuous-state process rather than transitions between discrete states; such

frameworks include the Wiener process, Gamma process and inverse Gaussian process.

All such frameworks take a continuous-time setting for modelling deterioration.

The Wiener process assumes the deterioration is non-monotonic over time, and it is

often used to model the deterioration process which shows a mixture of increments and

decrements of degradation over time: for instance the performance degradation of self-

regulating heating cables [150] and semiconductor laser devices [160]. Technically speak-

ing, the Wiener process is a stochastic process with independent and normally distributed

increments or decrements [153].

In contrast, both the Gamma process and the inverse Gaussian process assume the

deterioration is monotonic over time, and they are applied to modelling the deterioration

process which takes the form of cumulative damage: that is irreversible deterioration.

Technically speaking, the Gamma process is a stochastic process with independent and

Gamma-distributed increments [3]; the inverse Gaussian process is a stochastic process

with independent and inverse Gaussian distributed increments [3]. Because the Gamma

process has only one way of mathematically incorporating the random effects from external

shocks on the deterioration process while the inverse Gaussian process has three ways (all

different from the way in the Gamma process) of doing so [153], researchers see the inverse

Gaussian process as a more flexible modelling approach than the Gamma process.

Due to the specific statistical assumptions embedded in each modelling framework

above, goodness-for-fit tests should be applied in order to decide whether a modelling

framework is suitable or which modelling framework is the best to model the degradation

process of interest. We refer readers to [153, 157] for detailed discussions.

In most studies which adopt continuous-state deterioration modelling frameworks, the
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CBM approaches maintain the machine by exclusively following the control-limit policies

[2, 3, 86, 137, 147]. In a control-limit policy, the preventive maintenance actions are

triggered if and only if the detected machine condition deteriorates to or worse than a

predetermined level [81].

Optimisation objectives

In the TBM approaches, only two states of the machine are modelled in general:

failure and non-failure. In the CBM approaches, researchers recognise that a machine

can potentially go through multiple operational states before it fails. In other words, the

objective values aforementioned in Section 1.1.2.1 in TBM approaches are measured based

on statistical results that reflect “average” reliability characteristics [147]. Here we discuss

how such measuring should be updated for the CBM approaches.

Regarding the maintenance cost measures (i.e. maintenance cost rate, total main-

tenance cost and discounted maintenance cost), they should be evaluated based on the

maintenance cost associated with multiple operational states that a machine can poten-

tially evolve into at different stages throughout a planning period, rather than merely the

maintenance cost associated with two states (failure and non-failure) [84, 93, 141, 142].

Regarding reliability and reliability-related measures, their values should be evaluated

as follows: reliability should be measured as the probability that the machine is in an

operational state (rather than the single non-failed state) before it reaches a certain age

[127]; availability should be measured as the probability that the machine is in an opera-

tional state (rather than the single non-failed state) when required [93]; failure rate should

be measured under the additional prerequisite that it is known which operational state

the machine is in at the given time [147]; mean time between failures (MTBF) should

be measured as the mean time that the machine spends at the operational states (rather

than the single non-failed state) before it fails [102].

We highlight the maintenance approaches discussed in this chapter in Figure 1.2. As

illustrated so far in this chapter, the advancement of maintenance approaches in literature
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contributes to more complex mathematical modelling work which aims at better capturing

ever-improving (that is more comprehensive and accurate) monitoring information on

machine state in practice, which as a result facilitates more effective maintenance planning

decision making from the perspective of managing increased risk; however, the literature

so far largely overlooked another crucial aspect regarding maintenance planning decision

making in practice: machine utilisation. We shall discuss such issue in details in Chapter

2.

Figure 1.2: Different maintenance approaches

1.2 Further literature review on relevant studies

In the research area of machine maintenance approaches, two specific research domains

contain perhaps the most relevant studies to our research: (1) studies that model ma-

chine operational performance and (2) studies on maintenance-production joint schedul-

ing. Here we shall present a brief literature review on some representative studies and

highlight their common limitations from the perspective of our maintenance approach

(our maintenance approach shall be specified in Chapter 2).
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1.2.1 CBM studies involving operational performance

Before introducing studies that model machine operational performance, here we specify

two terms: condition and performance. According to [8] , the condition and performance

of a machine is each comprised of multiple variables/measures. A condition variable is

some measurement of the indicator of a potential failure mode of an asset of interest, for

example wear; a performance variable is some measurement related to the quality/quantity

of the asset’s production output, for example alignment. Each degradation condition

measure and operational performance measure is associated with a threshold level and

the machine fails if any condition/performance measure deteriorates to the corresponding

threshold level.

From the perspective of our maintenance approach, most condition-based maintenance

(CBM) planning studies (for instance [29, 41, 93, 120, 126, 147]) do not involve the

concept of operational performance at all. These studies are not part of our discussion

here; instead, here we focus on CBM planning studies from other research lines that

do involve the concept of operational performance. Compared to our research, these

condition-based maintenance studies do not consider the situations where condition and

performance may not be perfectly correlated and some maintenance actions may not

be equally effective on improving both condition and performance. Additionally, these

studies lack the consideration about impacts on the maintenance planning from operators’

decision regimes.

In some of such studies, performance-monitoring acts as a surrogate measure for the

degradation condition of the asset of interest, rather than a separate entity to degrada-

tion condition. [14] discusses monitoring abnormalities on certain types of performance

indicators of wind turbines and how to use the abnormalities to detect pollution and mal-

function of some key components in electrical pitch systems of wind turbine generators

before critical faults occur. [159] focus on applying a structural health monitoring system
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on arch bridges such that an array of sensors can periodically measure things including

the structural performance which are used to infer the deterioration or damage of the arch

bridges at an early stage. Another example [16] studies how to infer the degradation and

predict faults of the semiconductor manufacturing systems based on measuring a large set

of performance indicators.

Some other studies are dedicated to addressing operational performance deterioration

but they do not discuss degradation condition. For example, [139] addresses the issues of

water filtration performance monitoring and assessment, as well as preventive maintenance

planning to improve poor filtration performance for rapid gravity filters; [115] discusses

how to define the threshold values for pavement surface characteristics (including skid

resistance, evenness and rutting) and argue that maintenance should be initialised once

measurements of all three characteristics drop below corresponding thresholds; [57] studies

how to improve the maintenance planning of so-called ground track cross node in order

to ensure the navigation performance of the inclined geosynchronous orbit satellites.

Some studies address degradation condition and operational performance as two dif-

ferent entities, but they assume perfect correlation exists between them throughout the

lifetime of an asset. [46] considers optimising predictive maintenance policies for a gradu-

ally deteriorating single-asset system which is subject to stress, and the operational per-

formance failure is assumed to be always caused by asset deterioration beyond a certain

threshold; [127] develops the optimal maintenance policy for a system which can po-

tentially go through multiple ranked intermediate operational performance states and

ranked degradation condition states before the system fails, where each performance state

is assumed exclusively associated with a distinct condition state. [19] optimises the main-

tenance strategy in a case study about offshore wind farms in order to minimise the

maintenance cost and maximise the equipment availability and energy production per-

formance, where the performance indicator is the total produced energy which directly

depends on the amount of equipment down time.
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1.2.2 Maintenance-production joint scheduling

The other research area we look into consists of the maintenance-production joint schedul-

ing studies. Similar to our research, such studies address the issue of unifying the pro-

duction planning and maintenance planning for better costs/profits. More specifically

speaking, such studies in general aim at planning maintenance and production jointly up

to a certain time horizon such that the deterministic time-dependent forecasted demands

are optimally fulfilled in terms of the trade-offs between costs and benefits including the

production cost, (preventive and corrective) maintenance cost, inventory cost and sales

revenue. Compared to our research, these studies however assume perfect correlations

between the operational performance and degradation condition (or even only consider

one of them) as well as deterministic numerical relationship regarding the dependence of

assets deterioration on the production, which excludes the realistic possibilities of imper-

fect correlation between the performance and condition (as discussed in the beginning of

Chapter 2) as well as the uncertainties involved in decision makings discussed in Section

2.2.4.1.

Some earlier maintenance-production joint scheduling studies are overly production

focused: they require the maintenance scheduling is somehow known and fixed in advance

(see [1, 31, 45] as examples). Such studies are not part of our discussion here; instead,

here we are interested in the more balanced studies that consider the dependence of

maintenance requirements on the production and do not assume pre-fixed maintenance or

production planning. Some of such studies consider the deterministic impacts on condition

degradation from production (see [18, 28, 76, 111, 144] for examples) and they do not

involve the concept of operational performance.

Some other studies consider the performance decaying of assets with production time:

[85] tackles the cyclic scheduling problem for continuous parallel-process assets and two

operation modes are considered where the conversion rate for the key product or pro-
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cessing rate of input materials decreases exponentially with the production time since the

last cleaning activity. [5] extends the research into multi-product multi-stage plants. [6]

considers an economic lot scheduling problem similar to [85] with extra consideration of

inventory costs, assuming the yield of the key product decays linearly with time. Other

studies along this research line include [26, 59, 60, 77, 78, 79, 95, 125]. These studies

assume the performance of an asset is fully restored after a cleaning maintenance. De-

gradation condition is however excluded from these studies and the machine deterioration

processes are assumed to be deterministic.

[15] considers the impacts of production on the deterioration of both condition and

performance in a flow-shop system: the production is assumed to imposes deterministic

wearing effects on the residual lifetimes of the assets in a linear way which is specified un-

der each type of production task and operation mode for each asset; [15] further assumes

certain measures of the production performance decreases deterministically with the re-

sidual lifetime of an asset (the maximum production batch size that an asset can handle

linearly depends on its residual lifetime and the availability of each operation mode of an

asset is associated with a certain threshold requirement on the asset’s residual lifetime),

and an asset is assumed to be restored as good as new after a maintenance. The mathem-

atical model in such study is exclusively based on deterministic deterioration assumptions,

and performance is assumed perfectly correlated with the condition.

1.3 Thesis structure and research objectives

In Chapter 2, motivated by the generic maintenance planning problem extracted from a

large scale power plant case, we shall thoroughly investigate the following research ques-

tion: how to balance between machine utilisation and increased risk of failure in a business

setting where (1) machine maintenance and machine utilisation are tightly intertwined and

(2) managerial parties follow different decision making time-scales? As we shall specify
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in Chapter 2, such research question is common in the manufacturing industry and it can-

not be effectively resolved by existing maintenance approaches. In order to fill in such an

important research gap between the maintenance approaches literature and the research

question of interest, in Chapter 2 we shall develop a new maintenance approach which (1)

captures how the decision making time-scales of different managerial parties impact their

value-perception of various operations activities and (2) facilitates operations decision

making from a balanced view between machine utilisation and increased risk of failure.

The application of such maintenance approach in industrial cases results in large size

mathematical problems which cannot be effectively solved by brute-force methods, which

gives rise to the second research question we shall investigate in this thesis: how to ef-

fectively solve such large size mathematical problems which would induce (1) impractically

long computational time and (2) impractically large data-storage cost if brute-force meth-

ods are applied? First, in Section 2.4 we shall explain three measures we refer to when

evaluating the effectiveness of different methods: computational time, data-storage cost

and data accuracy level; additionally, in Section 2.4 we shall also specify the numerical

benchmark for each such measure. Then in Chapter 3 we shall specify some existing

heuristics and justify our selection of such heuristics, and finally based on such selected

existing heuristics we shall in Chapter 4 design our own heuristics in order to effectively

solve the large size mathematical problems of interest.

Additionally, as we shall discuss in Chapter 4, further investigation of the specific

power plant case study background highlights a general hierarchical physical structure

that requires maintenance resources distribution at multiple sequential levels and such

structure is common in industries which have adopted distributed generation/production.

The hierarchical structure is beyond the scope of the mathematical model developed in

Chapter 2 and therefore raises the third research question in this thesis: how to scale up

the mathematical model from Chapter 2 to facilitate maintenance planning optimisation

in a more complex business setting which further involves the aforementioned hierarchical
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structure? In response, we shall in Chapter 4 build a more sophisticated new mathematical

model following the maintenance approach from Chapter 2 in order to capture optimal

maintenance planning decision making for more complex industrial problems that further

involve the hierarchical structure. Note that in Chapter 4 first we shall develop the new

mathematical model and the aforementioned heuristics in the context of the specific power

plant case and then we shall discuss how such mathematical model and heuristics can be

applied to other cases which also follow the hierarchical physical structure.

In Chapter 5, we shall present numerical test results in the context of the power

plant case in order to demonstrate the practical value of our maintenance approach,

mathematical model and heuristics. In Chapter 6 we shall summarise our study and

highlight some future research directions.

In summary, the main research contributions of the thesis are as follows:

• Chapter 2: building a maintenance approach to balance between machine utilisa-

tion and increased machine failure in a relatively generic manufacturing problem

setting where machine maintenance and machine utilisation are tightly interwind

and decision makers follow different time-scales in their operations decision making.

• Chapter 4: developing a mathematical model to capture optimal maintenance plan-

ning decision making for more complex industrial problems which further involve

the hierarchical structure of interest.

• Chapter 4: constructing a set of heuristics to effectively solve the large size math-

ematical problems resulted from applying our maintenance approach to industrial

cases, including the industrial cases which further involve the aforementioned hier-

archical structure.
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Chapter 2

A new performance-centred mainten-

ance (PCM) approach

The recent research [7, 8] of the maintenance planning problem in a power plant highlights

two general issues which challenge the fundamental conceptual frameworks of the existing

maintenance approaches summarised in Chapter 1. Below we discuss the two issues in

a general production-maintenance context rather than merely in the specific power plant

context.

In practice, the machine maintainers and machine operators manage the operations of

their production system together, sharing a responsibility of generating profits by fulfilling

the demand of production output with a relatively low operational cost. The operations

management is usually split between the two managerial parties as follows: the operators

plan and execute the production and the maintainers schedule and apply the maintenance.

Such a differentiation of business functions render the focus of the two parties different:

the operators focus on meeting the demand while the maintainers focus on maintaining

the machine health. Despite the difference in focus between the two management parties,

the maintenance operations management and production operations management are in-

tertwined with each other in practice: the decision making of the two managerial parties

impacts each other in reality via directly influencing the machine state, which the two

types of decision making themselves depend on in turn. More specifically speaking, a
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scheduled maintenance action would improve the machine state which leads to better

production performance (in terms of quantify/quality) in the future for operators, but

maintenance also induces potential loss of production during maintenance (due to pulling

off machines that can still work) for operators as well as certain fixed costs; on the other

hand, the operators may sometimes decide to speed up production in order to meet the

demand but such machine utilisation behaviour would make the machine state deteriorate

faster and hence induces higher necessity for maintenance in the future (note hereafter

by “intertwined” we refer to such impacts between the decision making of operators and

maintainers induced by the mutual dependence between decision making and machine

state). Therefore, maintenance operations management and production operations man-

agement should not be considered independently from each other. In the maintenance

planning literature, however, the balance between machine utilisation and increased risk

of failure is rarely thoroughly discussed.

Moreover, in line with the widespread installation of sensors into various types of in-

dustrial production systems over the recent years, as explained in Section 1.1.2.2, the

maintenance planning literature is shifting from the time-based maintenance (TBM) ap-

proaches which plan preventive maintenance actions based on a priori statistical knowledge

of the system lifetime to the machine condition-based maintenance (CBM) approaches

which plan preventive maintenance actions based on monitoring the degradation condi-

tion of the machine. CBM approaches allow for more effectively maintenance planning by

reducing the uncertainty about time to machine failure. But so far in the maintenance

planning literature, including the CBM planning studies, the operational performance of

the machine is still largely bounded by the assumption of a perfect link with the degrad-

ation condition. In reality, take the power plant which motivates our study for example,

although the condition deterioration underpins the performance deterioration, the perfect

link in assumption does not necessarily apply. In contrast, in practice maintainers need to

prioritise between maintenance alternatives that have a crucial impact on the performance
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but little effects on the condition and other maintenance alternatives that have significant

effects on the condition. The former alternatives may be beneficial from the viewpoint of

improving short-term production performance with relatively low fixed maintenance costs

and relatively short maintenance times, but they have very little effects on improving

the long-term reliability of the machine; the latter maintenance alternatives can improve

long-term reliability, but they usually have higher fixed costs and consume longer times

which potentially induces higher interventions in production.

The two issues aforementioned regarding the maintenance planning literature imply

the following fundamental changes to the lifetime/condition-centred conceptual frame-

work which underpins most of the maintenance planning optimisation studies so far: the

conceptual framework should enlarge its scope to include not only machine reliability, but

also the potential maintenance interventions in production and the potential impacts on

maintenance planning from different machine utilisation behaviours, and a reasonable ap-

proach to capture such impacts between the decision making of maintainers and operators

is to investigate and model the aforementioned mutual dependence between the decision

making and machine state; additionally, the framework should consider operational per-

formance and degradation condition as two separate entities. The resulted maintenance

approach is potentially sophisticated and it enables both the maintainers and operat-

ors to align their business functions with the higher level of responsibility which is shared

between the two managerial parties. Such insight motivates the proposal and development

of the so called performance-centred maintenance (PCM) approach in [7, 8], as opposed

to the lifetime/condition-centred maintenance approaches.

Our study follows the PCM research line and we focus on two important new issues

that are not effectively resolved in the previous studies: (1) the machine operators and

maintainers have different time-scales in practice (we shall explain it in Section 2.1) re-

garding their operations decision making, and such time-scale distinction modifies the

difference between the two managerial parties regarding how they perceive the value of
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various operations activities (e.g. schedule a performance-oriented maintenance action,

schedule a condition-oriented maintenance action or speed up the production for a certain

time period). The larger the time-scale distinction is, the bigger the value-perception

difference becomes between the two operations managerial parties. The previous studies

do not clearly discuss such issue. In this study, we shall thoroughly investigate such issue

and develop a new maintenance approach based on the existing PCM approach, in order

to better support the decision making of both managerial parties and align their business

functions more effectively. (2) The resulted mathematical models from applying the PCM

approach to industrial cases are too complex to be solved by exact methods, and therefore

heuristic methods are required instead. In this study we shall design a set of heuristics

in response. (Part of the research results originated from this study regarding heuristics

design and heuristics application has been combined into [8]; such research results are re-

latively early-stage output and in this thesis we shall deliver a much more comprehensive

and advanced work based on our updated research results.)

The rest of the chapter is dedicated to issue (1) above, i.e. developing a new PCM

approach to incorporate the time-scale distinction between the operators and maintainers;

issue (2) is resolved in Chapter 3 and Chapter 4.

Below we first describe the general business setting of interest in Section 2.1; then we

build the aforementioned new PCM approach in Section 2.2: more specifically speaking, in

Section 2.2 we shall build a new conceptual framework, specify the modelling framework

and develop a general mathematical model. Next, in Section 1.2 we compare the PCM

approach with other relevant studies to further highlight the importance and novel aspects

of the research line this thesis follows. Finally, in Section 2.4 we summarise our main

research contribution of developing the new PCM approach and we discuss the general

computation difficulties of solving the mathematical problems that result from applying

the PCM approach to specific industrial cases, which lays the groundwork for discussing

heuristics in Chapter 3-4.
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2.1 Generic business setting and problem structure

Motivated by a real-life coal-fired power plant, this study considers a generic production

system which contains multiple individual assets working in parallel, where the output

quantity of the system is determined by both the quantity and quality of material pro-

cessing of the individual assets. Product storage is either impossible or very expensive

such that inventory would never be an optimal choice and therefore it is not considered.

For instance, in a coal-fired power plant, every electricity production unit contains mul-

tiple mills. The mills grind coal into combustible dust which is to be burnt and converted

into electricity. As a result, the electricity generation quantity depends on how much coal

is ground and how fine the grinding is. The electricity cannot be stored on a large scale

given the current technology [135]. We would like to highlight that the discussion in this

chapter is dedicated to a general business context, and we use the power plant as a specific

illustrative example.

The generic system faces an exogenous demand, and the sales of the output are con-

tracted for a relative short-term (referred to as the contracted period hereafter) in advance

in terms of both quantity and sales price. The system deteriorates with production and its

state only improves after maintenance. The maintenance and operation of the system are

carried out by two parties: the maintainers and the operators respectively. The maintain-

ers undertake a business function of scheduling and applying the maintenance and their

focus is to ensure that the system is available as required for production in a relative long

term. The operators undertake a business function of planning and executing the pro-

duction and they are highly motivated to fulfil the contracted demand, because missing

contracted demand triggers a potentially high penalty cost. For instance, in the coal-fired

power plant case study, if the production cannot satisfy the contracted demand, in order

to resolve the shortfalls the plant owner must procure an emergent supply from the spot

market but it may be much more expensive compared to self-production. The premium
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on the spot market is one example of the penalty cost. Shortfalls happen mostly due to

unexpected failure or bad performance of the system which deteriorates stochastically. In

practice, to avoid/mitigate the potential penalty cost, the operator may choose to speed

up the production, if the system cannot fulfil the contracted demand by working at a

normal rate. Such operation may be beneficial in the short-term contracted period, but it

speeds up the deterioration of the system and therefore sacrifices the health of the system

in the long-term.

Due to the difference regarding the business functions between the two managerial

parties, the operators and maintainers perceive the value of various operations activities

differently: the operators would judge the value of scheduled operations activities based

on whether they enable the system to meet the production targets in the production

planning period, whereas the maintainers would judge the value of scheduled operations

activities based on their impact on the continuation of a relative good machine health

in the maintenance planning period. Such two value perception perspectives are some-

how both compatible and conflicting: a scheduled maintenance action would improve the

machine state (which is favoured by the maintainers) and therefore contributes to better

production performance (in terms of quantify/quality) in the future (which is favoured by

the operators), but maintenance also induces certain fixed costs as well as potential loss of

production during maintenance (which operators dislike); on the other hand, scheduling

higher than normal production rates may help meet the demand (which is favoured by the

operators) but such machine utilisation behaviours would make the machine deteriorate

faster (which the maintainers dislike). The compatibility/conflict level regarding the value

perception perspectives between maintainers and operators is modified by the distinction

between the time-scales of the production planning period and the maintenance planning

period, which we shall specify immediately below.

The existence of the contracted period for sales (and the associated potentially high

penalty cost, which is an embedded characteristic of the contracted period in practice)
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naturally renders the operators more short-term oriented compared to the maintainers

in terms of their operations decision making. In other words, the production planning

period is shorter than the maintenance planning period due to the contracted period.

Additionally, given that inventory is not a optimal choice in the business setting, the

operators would have little motivation to plan beyond the contracted period. The shorter

the production planning period is, compared to the maintenance planning period, the more

conflicting rather than compatible the two value perception perspectives aforementioned

become: the operators are cautious about the continuation of a relative good machine

health in the production planning period because such continuation is preliminary to

meet the production targets, but the shorter the production planning period is the weaker

such caution becomes since the machine is less likely to degrade to a relatively bad state

in a shorter production planning period. Therefore the shorter the production planning

period is (compared to the maintenance planning period), the operators would be more

likely to ignore the benefits of machine state improvement and see maintenance as a

disruption to production, and meanwhile the operators would be more motivated to speed

up production to resolve potential production shortfalls. In summary, the gap between the

value perception perspectives of the two managerial parties is modified by the distinction

between the time-scales of the two managerial parties in their decision making, and the

contracted period plays a crucial role in such a time-scale distinction.

Given such important impact of the contracted period on modifying the gap between

the value perception perspectives of the two managerial parties, it is necessary to re-

construct the conceptual and modelling frameworks of the existing performance-centred

maintenance (PCM) approach in order to properly capture the effects that the contrac-

ted period has on shaping how the operators perceive the trade-offs differently than the

maintainers in their decision making.

Having the contracted period as a key modelling aspect in our study makes our work

unique compared to some earlier relevant research we build on: [7] models the main-
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tenance planning problem for the specific power plant and to our knowledge they firstly

introduced the terminology performance-centred maintenance (PCM) approach ; [8] gen-

eralises the modelling work of [7] for a broader problem setting and explicitly incorporates

the operators’ decision making in their conceptual framework. Both [7, 8] however do not

capture the modifying effects of the contracted period on the gap between the operat-

ors and maintainers regarding their value perception perspectives of various operations

activities (note although [8] captures the operators’ decision making in their conceptual

framework, they do not consider that the contracted period is usually shorter than the

maintenance planning period, and in their mathematical model the demand is assumed

to be contracted up to the end of maintenance planning period). Our study fills in such

an important research gap: we reconstruct the PCM approach and underpin it with the

concept of contracted period (we shall specify the modelling work in Section 2.2.1).

Given the complex relationship between the value perception perspectives of the two

managerial parties, the maintenance planning is challenging in such a business setting:

first of all, the system contains multiple assets each of which further has degradation con-

dition and operational performance that are not necessarily perfectly correlated, which

implies a wide range of maintenance alternatives as the maintainers prioritise different

assets for either condition or performance focused maintenance, where each maintenance

alternative represents a unique trade-off between a fixed maintenance cost and future

rewards. Secondly, the maintainers need to consider potential loss of production during

maintenance: an asset does not contribute any production to the system when it is taken

off line for maintenance. In more details, regarding any maintenance actions scheduled

within the contracted period, the maintainers need to consider the possibility of penalty

cost induced by the potential loss of production during maintenance; as for any main-

tenance actions scheduled after the contracted period, the maintainers need to consider

the possibility of loss of sales caused by the potential loss of production: unsatisfied de-

mand would be lost and does not generate any revenue. Thirdly, the maintainers need to
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consider that the operators may speed up production in the contracted period and there-

fore render machine deterioration faster, which potentially induces higher necessity for

maintenance in the long-term. Additionally, the uncertainties of a random demand after

the contracted period and a stochastic machine deterioration process further complicate

the analysis. In summary, the reconstructed PCM approach needs to consider complex

uncertainties and consequences of a wide range of maintenance alternatives, as well as

the impact of the operators’ behaviours on maintenance planning. Therefore the recon-

structed PCM approach is potentially sophisticated in order to balance off machine use

against increased risk of machine failure and obtain the optimal trade-off between costs

and benefits.

It is potentially complex to accurately model the maintenance planning optimisation

problem in such a business setting. In this chapter, we shall therefore introduce some

simplification assumptions and modelling choices in Section 2.2 in order to focus on the

main features of the problem. The conceptual framework and the modelling framework

that we shall reconstruct below for the PCM approach are based on such assumptions and

modelling choices. In Chapter 6 we shall further discuss how to change such assumptions

in future studies in order to develop more accurate mathematical models.

2.2 Conceptual framework, modelling framework

and mathematical model

Below we first reconstruct the conceptual framework in Section 2.2.1 for the PCM ap-

proach, and then we decompose the discussion of reconstructing the modelling framework

for the PCM approach as follows: in Section 2.2.2 we explain how to model the machine

utilisation behaviours of the operators; next, in Section 2.2.3 we explain how to model

the machine deterioration process; finally, in Section 2.2.4 we discuss how to model the

maintenance planning optimisation problem.
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2.2.1 Conceptual framework

In this section, we first introduce some simplification assumptions regarding the business

setting and then we reconstruct the conceptual framework of the PCM approach based on

the existing work from [8]. The key difference is we reconstruct the conceptual framework

to capture how the contracted period modifies the perception of relevant trade-offs in the

production and maintenance planning decision making.

We assume the following: (1) the machine state is continuously monitored and the

monitoring information can accurately reveal the machine state; (2) the prices are all

fixed throughout time such that the penalty cost and the profit per unit of demand

are constants; (3) the contracted period has a fixed time length; (4) the demand after

the contracted period is independent and identical distributed (i.i.d.), and we further

assume that the distribution and its parameters can be reasonably inferred (e.g. based

on market research or historical business data); (5) discrete time-setting for both the

machine deterioration process and the decision making. The prices in reality actually

evolve stochastically, and we may model the prices from the perspective of stochastic

processes in future studies.

The maintainers need to plan maintenance for the system up to a certain horizon.

The demand of the output is contracted for a short-term but it remains unknown after

the contracted period up to the maintenance planning-horizon. The system state evolves

stochastically and it can be revealed by sensor data. Each scheduled maintenance action

is supposedly to improve the future state of the system; more specifically speaking, each

maintenance action addresses either the condition and/or performance of a targeted asset

in the system and each maintenance action has its own fixed time length. Any main-

tenance action has its own fixed cost, and it may further trigger either a penalty cost or

sales loss, depending on whether the maintenance action is scheduled in the contracted

period or after. Furthermore, in the contracted period, the operator attempts to meet
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the pre-agreed demand to create a revenue and the machine utilisation behaviour of the

operator may influence the future state of the system. In addition, the decision making

of the maintainers is subject to certain maintenance resource constraints which limit the

availability of potential maintenance alternatives. In this chapter we use the term main-

tenance resource constraints in a very general sense for the conceptual framework and

modelling framework that we shall build, and such constraints can only be specified in

specific case studies (for instance the power plant case study in Chapter 4).

Here we accordingly introduce some mathematical notations: the time-length of the

maintenance planning period is T ; the time length of the contracted period is TC , and

TC < T ; the system state at time-step t is denoted as xt, which is a vector comprised of

the state of every asset in the system, and the state of an asset is further modelled by

two separate entities: degradation condition and operational performance, each of which

could further be comprised of multiple measures; the demand at time-step t is denoted

as D(t), and D(t) is deterministic for t ≤ TC and stochastic for t > TC ; the total sales

revenue at time-step t is denoted as vo(t) and the total penalty cost is denoted as vp(t);

the maintenance cost at time-step t is denoted as vm(t).

The conceptual relationship between the variables is illustrated in Figure 2.1 (a) and

Figure 2.1 (b) each of which shows the operators’ decision O(t) and maintainers’ decision

M(t) as well as the other variables discussed above, in the contracted period and after

the contracted period respectively. Note that the operators’ decision O(t) only shows up

in the contracted period because the operators are highly motivated to adjust the ma-

chine utilisation behaviour in order to fulfil the contracted demand; beyond the contracted

period, the demand is not agreed yet and we choose to plan maintenance based on the

premise/assumption of a normal machine utilisation pattern after the contracted period

(note this assumption helps simplify the resulted mathematical model by avoiding mod-

elling the consequences of different utilisation patterns with demand uncertainties; future

research can choose to change such an assumption and derive more complex and accurate
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models). The approximation effects of such an assumption is mitigated by the rolling

horizon nature (which we will illustrate in Section 2.2.4.3) of our maintenance approach.

As indicated by the relative positions of the nodes against the time-line in Figure

2.1, the occurrence of events follows a certain sequence in each time-step throughout the

maintenance planning period: the system state x is assumed to stay the same within a

time-step, and a transition of the system state can only potentially happen at the very

beginning of a time-step in our model; the maintainers and operators observe the system

state at the beginning of a given time-step (after any potential system state transition

within the time-step), and simultaneously the two managerial parties make maintenance

decision and production decision respectively, where the production decision also depends

on the contracted demand for the time-step; following the maintenance and production

decisions, the corresponding sales revenue, penalty cost and maintenance cost are spread

across the rest of the given time-step; the selected maintenance action at a time-step

may span across several following time-steps and thus directly influence the system state

evolving process in the future time-steps.

The maintainers understand what kinds of decisions the operators are likely to take,

and therefore from the perspective of the maintainers the operators follow a certain de-

cision regime. Here we define the operators’ decision regime as a machine utilisation policy

which describes how the operators use the machine in response to a known demand and

the machine state. Besides, the maintenance planning period is longer than the timescale

of the production planning period, and therefore we choose to model the maintainers as

the only decision maker in the system and build the machine utilisation behaviours of

the operators into the maintainers’ decision making model (we shall specify such a model

in Section 2.2.4). Accordingly, the operators’ decision node in Figure 2.1 (a) should be

replaced by a random variable node as shown in Figure 2.2. Following such modelling
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(a) In contracted period (b) After contracted period

Figure 2.1: Maintenance planning problem structure

choice, the resulted maintainers’ decision making model would not only capture the main-

tenance planning optimisation problem under the existing operators’ decision regime, but

also enable what-if analysis (i.e. updating the integrated operators’ behaviours in the

model) to assess how different operators’ decision regimes would change the total costs

and benefits. In other words, the resulted maintainers’ decision making model has two-

fold effects: facilitate the maintenance planning optimisation and improve the machine

utilisation behaviours.

2.2.2 Mechanism of the operators’ decision regime

The operators can change the speed of production by adjusting the rate of feeding raw

materials into the system. For example, in the coal-fired power plants where coal is ground

and then burnt and converted into electricity, the operators control the speed of coal

feeding [7] in order to adjust the quantity of coal grinding; in the steel production plants
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Figure 2.2: Maintenance problem structure: maintainers’ view

where steel scraps are liquefied and refined and further processed into steel products, the

operators control the speed of steel scraps feeding [15]. We refer to such feeding rate as

the work-rate of the system. Naturally, the decision on work-rate should be based on the

contracted demand and the operational performance of all the assets in the system.

In this study, we consider that the operators control the work-rate only at the system

level. In reality, however, the operators may be able to further adjust the work-rate at

the individual asset level. For example, in the coal-fired power plant which motivates this

study, one production unit contains eight grinding mills and the operators are able to

separately adjust the coal feeding speed of each individual mill. In practice, the operators

may choose to only speed up the production of the mills with relative good states and

leave the other mills with relative bad states to work at a normal speed, due to the

concern that a higher than normal work-rate on the latter mills may force them to fail

very quickly. In our future studies we may incorporate the possibility of individual asset

work-rate adjustment.

We denote the work-rate of the system at time-step t as wrt. The operators’ de-

cision regime defines wr on the contracted demand and the operational performance of

all the assets in the production system. Hereafter in this thesis we assume that: (1) the

maintainers understand the exact decision regime that the operators follow, such that wr
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can be integrated into the mathematical model of the maintenance planning optimisation

problem; (2) wr can be categorised into ordered discrete levels. Note that because of

the stochastic machine deterioration process, wr evolves stochastically throughout the

contracted period from the perspective of the maintainers.

2.2.3 Modelling the deterioration process

The machine maintenance literature contains multiple alternative frameworks to model the

machine deterioration process, as discussed in Section 1.1.2.2. Here we select the Markov

chain (also called discrete-time discrete-state Markov process in some studies) based on

the three following assumptions: (1) the system state satisfies the Markovian property,

meaning the future state of the system is dependent on its current state and is independent

from previous system states; (2) the transition between any system states always consumes

a fixed time length, and in the future studies we may adopt a framework which is more

flexible in terms of the time setting (such as semi-Markov process or continuous-time

Markov process) to model the machine deterioration process; (3) the performance and

condition of every asset can each be categorised into ordered discrete levels based on the

perceived overall degradation and overall operational effectiveness accordingly.

Transition probabilities elicitation framework

Regarding an asset in the system, its future state may depend on the current states

of other assets in addition to its own current state: under certain operators’ decision

regimes, if some assets have relative bad performance the operators may speed up the

work-rate of the whole system in order to meet the contracted demand but as a result

all the assets in the system would degrade faster. Given the modelling choice of Markov

chain, we propose eliciting the system state deterioration process as follows: elicit the

transition probabilities between system states at each discrete level of work-rate.

It is however difficult to directly derive the transition probabilities between system

states, because the system state is defined as a vector comprised of the condition and
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performance of every asset in the system, and similar challenges arise from problems

involving complex systems in general [69]. In a mathematical language, suppose the

system consists of N assets which are indexed as asset 1, 2, ..., N respectively, and if we

denote the condition and performance of the nth asset as cn and pn accordingly, then the

system state is defined as x := (c1,p1, c2,p2, ..., cN ,pN). It is naturally challenging to

directly elicit the transition probabilities for x as it is a vector which consists of 2 ∗ N

variables.

Therefore we further propose decomposing the elicitation task to the level of the con-

dition and performance transition of every single asset in the system: (1) The transition

probabilities between condition levels of a single asset is elicited at each discrete level

of the work-rate. (2) The transition probabilities between performance levels of a single

asset, ideally, should be elicited at each discrete level of work-rate and each potential

condition level, as both work-rate and condition can affect the transition rates between

performance levels. As an approximation to such ideal elicitation, the transition prob-

abilities between every two performance levels are elicited at each potential condition

level given the normal work-rate level is applied. The dependence of the transition rates

between performance levels on the work-rate is captured indirectly by recognising that

the transition rates between performance levels are dependent on the asset’s condition of

which the transition directly depends on the work-rate.

Such elicitation framework is the generalisation result of a case-study specific elicitation

framework from [7].

2.2.4 Modelling the maintenance planning optimisation prob-

lem

So far in this chapter we have discussed how to model the utilisation behaviours of the

operators and the machine deterioration process. Based on such modelling work above,
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below we discuss how to model the maintenance planning optimisation problem: first we

discuss the structure of the optimisation problem in Section 2.2.4.1; then in Section 2.2.4.2

we briefly explain a mathematical modelling framework which we shall use to model the

optimisation problem of interest; finally in Section 2.2.4.3 we model the maintenance

planning optimisation problem by applying such framework.

2.2.4.1 Structure of the maintenance planning optimisation problem

The maintainers need to schedule a series of maintenance actions up to the planning-

horizon, and the maintainer can choose from multiple potential maintenance altern-

atives. Each maintenance action addresses a particular set of condition-based and/or

performance-based variables/measures. As part of the consequences of selecting a specific

maintenance action, regarding the asset receiving the maintenance, the future asset state

will be improved and potentially yield a longer lifetime and/or better future production

performance (in terms of quantity and/or quality), while in the short-term the mainten-

ance may cause some loss of production in addition to a fixed maintenance cost, and

the potential loss of production may further lead to potential penalty cost or potential

loss of sales, depending on whether the maintenance action is scheduled within or after

the contracted period. Part of the uncertainties regarding the consequences of a given

maintenance action roots in the stochastic nature of the demand after the contracted

period; part of uncertainties are induced by the stochastic machine deterioration process.

Additionally, the integrated operators’ behaviours in the maintenance planning problem

render the rate of machine deterioration evolving stochastically, which induces further

uncertainties.

Therefore modelling the maintenance planning problem requires capturing the follow-

ing: maintenance alternatives; potential consequences of choosing different maintenance

alternatives; the uncertainties regarding which consequence will shows up. Additionally,

in order to evaluate the relative superiority of different maintenance alternatives for ar-
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bitrary system states at any given time up to the planning-horizon, a utility function is

needed in the mathematical model to reflect the total benefits/costs of different potential

maintenance choices given the aforementioned uncertainties.

Given that in the conceptual framework (see Section 2.2.1) a discrete time-setting is as-

sumed for both the machine deterioration process and the maintenance planning decision

making and furthermore given Markov chain is selected to model the system state deteri-

oration process (see Section 2.2.3), here we choose to model the maintenance planning

optimisation problem based on Markov decision processes (MDPs) [82] in order to math-

ematically capture the aforementioned decision alternatives, consequences, uncertainties

and utility function.

2.2.4.2 Markov decision processes

MDPs are a widely used mathematical framework for modelling decision making problems

in which the state-evolution process of the underlying system is assumed to satisfy the

Markov property. Below we specify the fundamental elements of MDPs [82], and in the

next section we apply MDPs to modelling the maintenance planning optimisation problem

of interest.

An MDP is defined by a finite set of discrete states S, the finite set of actions A(x)

permitted for state ∀xεS, the reward function R(x, a,D,wr) which defines the immediate

reward of applying action ∀aεA(x) to state ∀xεS given the demand D and the work-rate

wr, and the probability of transition from state ∀xεS to state ∀yεS immediately after

action ∀aεA(x) where the probability is denoted as P (y|x, a). In an MDP, the system

state transition and decision making are assumed to occur at discrete time-steps.

In relation to the decision making problem, A(x) models the decision alternatives given

system state x; R(x, a,D,wr) models part of the consequences of applying action a to

state x given the demand and work-rate; the other part of the consequences is the impact

on the stochastic state transition which involves uncertainties (regarding which system
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state shows up next), and such impacts as well as the uncertainties of the transition are

modelled by P (y|x, a). Up to the planning-horizon, at each time-step, the stochastically

evolving process generates an immediate reward which depends on the current state and

selected action. A function that prescribes the appropriate action to be selected for every

state given the the remaining time-length up to the planning-horizon is called a policy,

denoted as π.

In terms of utility functions, specific choices include: total discounted rewards up

to the planning-horizon, total rewards which is not discounted, and average reward per

state transition. For detailed discussion readers are referred to [64]. Here we focus on

the total discounted rewards, because we shall evaluate costs and benefits in terms of

monetary values for our maintenance planning problem and it is sensible to discount such

values at different time-steps into present values. The optimisation problem is therefore

specified as identifying an optimal policy which maximises the expected total discounted

rewards up to the planning-horizon starting from each state. In a mathematical language,

the expected total discount rewards, V , for initial state x, under policy π is defined by

Equation (2.1)

V π(x) := E[
T∑
t=1

γt−1R(xt, π(xt, t), Dt, wrt)|x1 = x], (2.1)

where T denotes the total number of time-steps up to the planning-horizon, xt is the

state at time-step t, π(xt, t) is the action selected to be applied to state xt at time-step

t under policy π, Dt is the demand at time-step t, wrt is work-rate at time-step t, and

0 < γ < 1 is the discount factor which measures future rewards in terms of current value.

The optimal policy for the MDP, denoted as π∗, is thus defined as a policy which ensures

V π∗
(x) > V π(x) for ∀xεS and ∀π.

For an infinite planning-horizon MDP, where T → ∞, the remaining time-length

up to the planning-horizon is always infinite at any time-step. According to [12, 122],
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for any infinite planning-horizon MDP, at least one fixed policy which prescribes the

appropriate action for each state independently from the time-step satisfies the definition

of the optimal policy. For infinite planning-horizon MDPs, therefore, we focus on fixed

policies. The expected total discount rewards, V , for initial state x, under fixed policy π

is defined by Equation (2.2)

V π(x) := E[
∞∑
t=1

γt−1R(xt, π(xt), Dt, wrt)|x1 = x]. (2.2)

2.2.4.3 Applying MDPs to our problem

Now we apply MDPs to modelling the maintenance planning optimisation problem of

interest. In this study we focus on the infinite planning-horizon problem, that is T →∞,

and the resulted mathematical model can be easily modified for finite planning-horizon

problems.

The infinite maintenance planning period can be split into two parts: the first part is

the contracted period which has a finite time-length TC , and the demand in the first part

has been contracted in advance and the operators may speed up production in the con-

tracted period to avoid/mitigate potential penalty cost; the rest part of the maintenance

planning period is infinite long, and we refer it as the non-contracted period in which

the demand is stochastic and loss of sales may happen. Due to such two-part nature

of the planning period, we need to accordingly modify the MDPs introduced above in

order to model the maintenance planning optimisation problem of interest. We discuss

the modifications below.

The reward function R(x, a,D,wr) is simplified as RNC(x, a,D) for the non-contracted

period, because the work-rate is assumed to stay at a normal level in the non-contracted

period as a simplified modelling choice (discussed in Section 2.2.1).

Regarding the state transition probability P (y|x, a), it further depends on the work-

rate in the contracted period. We therefore modify the state transition probability as
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follows for the contracted period: PC(y|x, a, wr), and we denote the the state transition

probability in the non-contracted period as PNC(y|x, a).

Additionally, instead of considering a uni-mode policy, we consider a maintenance

policy π that consists of two sub-policies each of which prescribes the appropriate main-

tenance actions to be selected throughout the contracted period or non-contracted period

respectively, and we denote the sub-policy for contracted period as πC and denote the

sub-policy for non-contracted period as πNC . More specifically speaking, πC is a function

that prescribes the appropriate action to be selected for every state given the the remain-

ing time-length in the contracted period, and πNC prescribes the appropriate action for

each state independently from the time-step.

Finally, we modify the value function. The expected total discount rewards, V , for

initial state ∀x, under fixed policy ∀ π := (πC , πNC) is defined by Equation (2.3), which

sums the expected discounted rewards of the contracted period and non-contracted period

V π(x) := E[

TC∑
t=1

γt−1RC(xt, π
C(xt, t), Dt, wrt) +

∞∑
t=TC+1

γt−1RNC(xt, π
NC(xt), Dt)|x1 = x],

(2.3)

where πC(xt, t) is the action selected to be applied to state xt at time-step t under policy

πC in the contracted period, πNC(xt, t) is the action selected to be applied to state xt

under fixed policy πNC in the non-contracted period, Dt is the demand at time-step t and

Dt is assumed as i.i.d. in the non-contracted period, wrt is work-rate at time-step t and

wrt is deterministically determined given Dt and xt.

The optimisation problem is therefore specified as identifying an optimal policy π∗

which ensures V π∗
(x) > V π(x) for ∀xεS and ∀π.

Illustrative scenarios: contracted period and non-contracted period

Here we provide some simplified problem scenarios to illustrate (1) how to specify the

contracted period and non-contracted period numerically in the mathematical model when
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applying the PCM approach to real-life problems and (2) the importance of modelling

based on different time scales (in other words, using both contracted period and non-

contracted period in the model), in comparison with modelling only based on a single

time scale.

Suppose a manufacturing company of interest would not be closed down in any foresee-

able future and in addition currently the company has contracted the sales of production

up to two months. The time length of the contracted period TC in the resulted math-

ematical model (referring to Equation 2.3) should be initialised as the total number of

time-steps that the two contracted months contains (for example, assuming a time-step

is measured as one week in the modelling work then TC should be set as 8 in the model)

and the time length of the maintenance planning period T should be initialised as infinite

large (that is∞ in mathematical notation) respectively. In a slightly different alternative

scenario, suppose the company is scheduled to be closed down in five months, then the

time length of the maintenance planning period T should instead be initialised as the

total number of time-steps the scheduled five months contains. Below we shall keep using

the former case scenario to illustrate how to update the values for contracted period TC

and maintenance planning period T in the mathematical model as time rolls on in real-life

problems.

Now suppose one week has passed since the start of the existing contract, and no

new contracts have been made yet, then the contracted period TC in the mathematical

model should be updated as 7 (assuming a time-step is measured as one week in the

modelling work) and the maintenance planning period T remains as infinite large (as long

as the company would not be closed down in any foreseeable future). In a different (and

more complex) alternative scenario for comparison, suppose one week has passed since the

start of the existing contract, and a new contract (in addition to the existing one) with a

time length of three months has just been agreed and has become effective (meaning the

company must start supplying for the new contract immediately), then the contracted
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period TC in the mathematical model must be updated as 12, where the first 7 time-steps

correspond to both the existing original contract and the newly agreed contract while the

following 5 time-steps only correspond to the new contract; the maintenance planning

period T remains as infinite large in the mathematical model. In summary, both the

contracted period TC and the maintenance planning period T in the mathematical model

are subject to adjustment as time rolls on in real-life in order to support decision making

throughout the entire life-cycle of the company.

What extra value can decision makers obtain by following the different-time-scale (con-

tracted period versus non-contracted period) natured PCM approach, compared to follow-

ing a simpler single-time-scale and myopic modelling approach to model the consequences

of decision making only for the contracted period? (Note in theory there exists a single-

time-scale and non-myopic modelling approach as another alternative: directly capturing

the potential work-rate adjustments and penalty costs beyond the contracted period in

the modelling work, which means the operators’ decision regime would directly extend to

the non-contracted period in the model; hence the behaviours of the operators can also be

directly modelled with a time-scale of the full life-cycle of the company, the same as the

maintainers. But as discussed in Section 2.2.1, such a modelling choice would render the

resulted mathematical model more complex rather than simpler, and therefore we shall

not further discuss this modelling choice here.)

It is because for some real-life problems the models derived based on the myopic

approach risks resulting in less profitable decision making which (1) recommends cheap

(in terms of money and/ or time) maintenance choices to maintainers even though in

practice more effective and expensive maintenance actions would actually yield better

results (judging from the total costs/benefits of the full life-cycle) and (2) recommends

high work-rate to operators to resolve potential production shortfalls even though paying

the penalty cost could be more profitable. Below we provide more detailed explanation.

Based on the cost (in terms of money and/ or time) and effects, different maintenance
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choices can usually be approximately categorised into two types in practice: the ones that

are relatively cheap to implement but bring limited improvements to the machine state

and the benefits wear off relatively quickly; the ones that are expensive but can bring

major improvements to machine state and the benefits last much longer. For example,

an overhaul that restores the core part of machine system as good as new would be

expensive, because an overhaul usually not only costs a relatively high price to implement

(for instance the company may need to purchase expensive components) but also takes

a long time to finish which may induce a non-trivial amount of production loss, but the

benefits of having a machine system as good as new can last for a relatively long time

during which the machine system can provide better production performance and are less

likely to encounter unexpected failures. In comparison, a service that simply tunes the

machine system costs a much lower price and is quick to implement, but the benefits (for

instance temporarily enhanced production rate) of a tuned machine could be worn off

quickly as well. When modelling the benefits of different maintenance choices, the myopic

approach risks ignoring the full benefits of the expensive maintenance choices as their

benefits may outlast the time-length of the mathematical model.

Regarding modelling the lasting consequences of speeding up the production work-rate,

the myopic approach risks overlooking the negative impacts of an increased degradation

rate on machine state evolving process beyond the limited time-length of the mathematical

model. As a result, the myopic approach based models risk recommending speeding up

the work-rate to resolve imminent production shortfalls even though in some real-life cases

a better choice would be paying a penalty cost in the short-term and in turn saving a

potentially large amount of maintenance cost and avoiding production interruption caused

by unexpected machine failures in the long-term.

Later in Section 4.1.4, we shall conduct a simplified case study to numerically demon-

strate that decision makers can encounter considerably high losses of expected value by

following the myopic approach compared with adopting the PCM approach.
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2.3 Comparison with relevant studies

The two crucial ideas that motivate the performance-centred maintenance (PCM) ap-

proach research line are (1) the necessities of separating degradation condition and op-

erational performance as two entities and (2) balancing between machine utilisation and

increased risk of machine failure via unifying the business functions of the operators and

maintainers. In Section 1.2 above, we present a brief literature review on studies related to

such two ideas and highlight their limitations from the perspective of the PCM approach.

Here we shall further discuss the relationship between the PCM approach and the existing

maintenance approaches from the reviewed studies.

From the perspective of modelling, the existing maintenance approaches are actually

specific instances of the more sophisticated PCM approach. In more details, the existing

maintenance approaches only fit for the type of problem scenarios where the condition and

performance are perfectly correlated, and some approaches further assume that production

has deterministic wearing-off effects on machines; in comparison, the PCM approach fits

for different real-life problem scenarios where (1) the condition and performance evolving

processes are either perfectly correlated, partially correlated or independent from each

other and (2) the machine state is worn by production either in a deterministic pattern

or in a stochastic pattern. Such flexible modelling capability of PCM approach derives

from its sophisticated modelling framework: PCM approach (1) captures condition and

performance as two separate entities in the modelling framework and (2) models the in-

fluence of decision making on machine state from a flexible stochastic perspective, and

therefore it is simply a matter of adjusting the parameter values (more specifically speak-

ing, adjusting the machine state transition matrices mostly) in the mathematical model

to fit for different types of aforementioned problem scenarios.

Applying the less sophisticated maintenance approaches to complex problems they

do not fit for risks deriving low quality decisions for operators and maintainers, since
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such maintenance approaches cannot effectively model some of the important problem

features. The type of problems (referring to Section 2.1) investigated in this thesis is an

example, and later in Section 4.1.4 we shall conduct simplified case studies to compare

the performance (on modelling quality and decision making quality) between the less

sophisticated maintenance approaches and the PCM approach.

2.4 Necessity for heuristics

In this chapter, we develop a new PCM approach to capture how the time-scale distinction

between the operators and maintainers in their decision making impacts the gap between

their value-perception of various operations activities. The PCM approach in general

aims at balancing complex trade-offs between machine utilisation and increased risk of

failure for better costs/benefits. The application of the PCM approach in specific case

studies would however result in large size mathematical problems in the form of Markov

decision processes (MDPs), as we shall see in the power plant case study in Chapter 4. It

is impractical to solve the large size MDP problems by exact methods: for example the

combination of dynamic programming (which is a type of exact computation method and

we shall specify it in Chapter 3) and brute-force lookup tables method (which is an exact

data-storage method), as exact methods would induce impractically long computational

time and/or impractically large data-storage cost (we shall specify the terminology in this

section). Heuristics are therefore required.

In Chapter 3, we shall evaluate and choose from some existing heuristic methods and in

Chapter 4 we shall use the chosen heuristics as the input of our own design of heuristics

for the power plant case study. More specifically speaking, in Chapter 3, we choose a

heuristic computation method called Q-learning, which supposedly can approximately

solve large size MDP problems in a relatively short computational time and significantly

mitigate the data-storage cost associated with storing the state transition probabilities.
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Additionally, in Chapter 3, we choose a data-storage heuristic called polynomial function

method which aims at approximately storing the computational results produced when

applying computation methods to solving large size MDPs, with relatively small data-

storage cost and also relatively small sacrifice on data accuracy. Figure 2.3 summarises

the functions of the two types of heuristics (i.e. computation heuristics and data-storage

heuristics).

Figure 2.3: Heuristics and the issues they dedicate to

Before presenting readers with technical discussions regarding the heuristics in the

next chapter (Chapter 3), here we would like to discuss three measures which we shall

refer to when evaluating the performance/effectiveness of different methods in solving the

large size mathematical problems of interest; additionally, for each such measure we also

specify the numerical benchmark and explain some relevant terms (that are already used

in this section and shall be used repeatedly hereafter in this thesis).

Measure (1): computational time

The first measure is the total amount of computational time required in solving the

mathematical problem of interest, given certain computation method(s) is implemented
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on a standard PC. We choose 24 hours as the numerical benchmark, based on multiple

numerical cases reported in literature (such as [32, 56, 65, 66, 67, 70, 71, 72, 151]). Of

course such number is purely a rule of thumb, and practitioners may need to adjust the

benchmark in their own case studies. Additionally, when we refer to a standard PC in this

thesis, we mean a PC with computation power and storage capacity close to the one that

is used in this PhD project (we shall specify the physical measures of our PC in Chapter

5) as we assume that many practitioners/researchers rely on such kind of standard PCs

in their work. Here we would like to clarity some relevant terminology:

• When we say the computational time of solving an MDP problem is impractically

long, we mean the computational time takes longer than what practitioners accept

and it usually happens if an exact computation method is applied to a large size

MDP problem.

• When we say heuristic computation methods aim at solving an MDP problem in

a relatively short computational time, we mean the computational time is both (1)

acceptable to practitioners and (2) at least one magnitude less than applying exact

computation methods.

Measure (2): data-storage cost

The second measure is the total data-storage cost induced in solving the mathematical

problem of interest, given certain computation method(s) and data-storage method(s) are

implemented. We set the numerical benchmark as 100% of maximum available memory

space a standard PC provides. Here we would like to clarity some relevant terminology:

• When we say that the data-storage cost arising from solving the MDP problem

of interest is impractically large, we mean the standard PC in use cannot store the

data (including (1) the input data for the MDP problem, mostly the state transition

probability matrices, and (2) the computational results that need to be stored when

applying a computation method to solving the MDP problem) in the designated
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format (such as brute-force lookup tables); such data-storage issue usually happens

if exact computation/data-storage methods are applied to large size MDP problems.

• Additionally, when we say heuristic data-storage methods aim at inducing relatively

small data-storage cost in terms of storing the computational results, we mean the

storage cost is (1) small enough such that the standard PC in use can handle it and

(2) at least one magnitude less than applying the brute-force lookup tables method.

• When we say an MDP problem is “large size”, we mean the MDP problem has a

large set of states (in other words, a large state space) such that the computational

time or the data-storage cost which arises from applying exact computation or data-

storage methods to the MDP problem becomes impractically long/large. As a rule

of thumb based on literature review and our own computation experience in this

PhD project, usually a MDP problem with one million states is seen as large size

when a standard PC is used. We would like to highlight that such threshold mostly

holds for MDP problems with an infinite horizon; as for MDP problems with finite

horizons, the threshold further decreases (and hence more challenging) following a

reciprocal numerical relationship with the total number of time-steps in the planning

period, because one extra dimension of cost (i.e. the time-step) is added into storing

the computational results.

Measure (3): data accuracy level

The third measure is the the accuracy level of the stored computational results; note

that computation heuristics and data-storage heuristics both sacrifice data accuracy in

exchange for improvement on computational time and data-storage cost compared to exact

methods. We set the numerical benchmark as 5% maximum data difference between the

computational results derived by heuristics and the computational results derived by

either exact methods or other benchmarking heuristics, based on aforementioned multiple

numerical cases reported in literature. More specifically speaking, if exact methods are
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used as the benchmark methods, usually a small/medium-size version of the MDP problem

would be tested; if other heuristics are used as the benchmark methods, either the full-size

version or a medium-size version of the MDP problem would be tested. Such numerical

benchmark is a rule of thumb, and practitioners/researchers may need to adjust the value

in their own case studies. Here we would like to clarity some relevant terminology:

• When we refer to relatively small sacrifice on data accuracy when using heuristics,

we mean the level of accuracy sacrifice is acceptable to the practitioners.
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Chapter 3

Solving MDPs: computation meth-

ods and data-storage methods

The main purpose of this chapter is to specify two existing heuristics which we shall use as

the input of our own design of heuristics in Chapter 4 for the power plant case study. One

such existing heuristic is called Q-learning, and the other one is called polynomial func-

tion method. As discussed below, researchers and practitioners can choose from multiple

methods to solve MDP problems, and therefore another aim of this chapter is providing

some general ground rules which facilitate researchers and practitioners choosing appro-

priate methods for their own studies (such rules help us choose Q-learning and polynomial

function method for our case study).

Below in Section 3.1 we provide a brief summary of the main computation methods to

solve MDPs, and justify our choice of Q-learning ; in Section 3.2 we shall take a detour and

specify an exact computation method (called value iteration), in order to provide readers

with crucial preliminary knowledge for understanding Q-learning (and we shall also use

value iteration to solve part of the MDP problem for the power plant case study in Chapter

4); in Section 3.3 we specify Q-learning; in Section 3.4 we provide a brief summary of the

main data-storage heuristics and justify why we choose polynomial function method.
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3.1 Exact and heuristic computation methods (brief

summary)

The exact computation methods for solving MDPs are categorised into two general classes:

dynamic programming (DP) methods and linear programming. DP methods include value

iteration [11, 12] and policy iteration [82]. We shall specify how the value iteration method

works in Section 3.2. As for the other exact methods, we recommend textbooks including

[64, 80, 118] to interested readers.

Some heuristic computation methods combine DP methods with auxiliary heuristic

techniques. Depending on the auxiliary heuristic techniques, such heuristic computation

methods can be approximately classified into two categories: (1) the ones that reduce

the size of the state space for MDPs and then apply DP methods to the reduced-size

MDPs; (2) the ones that modify the default sequence of computation process embedded

in DP methods in hope for faster convergence to near-optimal solutions. More specific-

ally speaking, type (1) heuristics adopt the techniques of states aggregation which ap-

proximately judge the homogeneity (usually based on the background knowledge of the

case study) of the states and then aggregate homogeneous states into mega states and re-

define the MDP problem on the aggregated level [64]. Some recent example studies include

[83, 114, 116, 136, 138]. Type (1) heuristics are however usually case specific and therefore

difficult to be applied to other cases. Type (2) heuristics adopt the techniques of topo-

logical graphing which highlight the most likely state transitions during the system state

evolving process and utilises such graphical structures to modify the default sequence of

computation process in DP methods. Example studies include [34, 35, 36, 37, 38]. Type

(2) heuristics however can impose impractically large computational and data-storage

costs to construct and store such graphical structures.

Another type of heuristic computation methods called reinforcement learning (RL)
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[133] encompasses so far arguably the most cutting-edge research in this area. Specific

RL methods include Q-learning [148], SARSA [123], Q-P-learning [64], CAP-I [13] and

actor-critic methods [133] and so on. The essence of (most if not all) RL methods is

combining two techniques: (1) simulating the system state evolving process for the MDP

problem and (2) incremental value-updating based on the so called temporal difference

[132]. The technical difference between specific RL methods consists in how such two

techniques are implemented. We shall specify the two techniques in the context of Q-

learning in Section 3.3, and here we avoid any discussion regarding such two techniques in

a more general context in case of distracting readers from the main purpose of this thesis.

For readers who are however interested, we refer to [64, 69, 118, 133].

Criteria for selecting computation methods

Given such multiple computation methods as alternatives, here we propose three cri-

teria to help researchers/practitioners make proper choice for their cases: (1) the meth-

odology of the method does not require any impractical exploitation on problem specific

knowledge, (2) the method has solid mathematical proof to guarantee the derived solu-

tions converge to optimum under certain conditions and (3) abundant numerical tests

exist in publications to empirically suggest such method can indeed approximately solve

large size MDP problems in a relative short time and find relatively accurate solutions.

Such criteria reduce the alternatives to Q-learning and SARSA for our case study; it is

possible other case studies may possess unique problem structures which lead to preference

for other heuristics (for instance state aggregation heuristic).

We would like to clarify that such criteria are proposed as a rule of thumb for re-

searchers and practitioners to quickly choose a computation heuristic to solve the large

size MDP problems in their own case studies, rather than as a set of rules to discriminate

one heuristic against another in theoretical research: due to a lack of theoretical research,

it is unclear whether the computation of some heuristic methods is guaranteed to con-

verge in theory, and hence such methods would so far be less favoured by practitioners
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in many specific case studies following such three criteria; however, further theoretical

research may prove some of such methods can converge towards optimal results faster

than proved heuristics (in other words, capable of providing better empirical results in

terms of computational time).

We choose Q-learning for the power plant case study (which we shall discuss in Chapter

4). As discussed in Section 2.3, Q-learning corresponds to (1) the issue of impractically

long computational time and (2) the issue of impractically large data-storage cost as-

sociated with the input data for MDPs (more specifically speaking, the state transition

probability matrices) which arise from solving large size MDPs with exact methods. First

we shall lay the groundwork and specify the exact computation method value iteration

(VI) in Section 3.2, and then we shall specify Q-learning in Section 3.3 and discuss how

it handles the two issues aforementioned.

3.2 Value iteration

Value iteration (VI) relies on solving the so called Bellman optimality equation to obtain

optimal policies for MDPs (the concept of optimal policies for MDPs is explained in

Section 2.2.4.2). Such equation is a recursive relation defined below for finite and infinite

planning-horizon MDPs separately.

3.2.1 VI for finite-horizon MDPs

For an MDP with a finite planning-horizon T , the optimal value of state ∀xεS at time-step

∀ t, V ∗t (x), is defined by Equation (3.1)

V ∗t (x) = max
aεA(x)

{R(x, a) + γ
∑
yεS

P (y|x, a)V ∗t+1(y)}, (3.1)
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which seeks the maximum of the immediate reward from applying an action to the current

state plus the expected optimal value over the remaining planning period. Equation (3.1)

is the so called Bellman optimality equation for finite planning-horizon MDPs and the

V ∗ terms are the unknowns in the equation. As shown in [118], V ∗t=1(x) from Equation

(3.1) is equal to the maximal objective function value V π∗
(x) from Equation (2.1) for

∀x. Solving Equation (3.1) and obtain the optimal value for ∀ (x, t) therefore enables

identifying the optimal policy π∗ for finite planning-horizon MDPs.

For finite planning-horizon MDPs, the value iteration method starts from the last time-

step of the mathematical model and works backwards in time through the entire planning

period. At each time-step, VI visits all the states one by one and calculates the exact

optimal value for each state at that time-step by using Equation (3.1), and these optimal

values are the input for calculations at the time-step to be visited next. Such process

continues until the first time-step is visited. The optimal policy is identified from these

optimal values at each time-step, more specifically that is π∗(x, t) := arg max
aεA(x)

{R(x, a) +

γ
∑

yεS P (y|x, a)V ∗t+1(y)} for ∀xεS and ∀ t ≤ T . Pseudo-code of VI for finite planning-

horizon MDPs is given in Figure 3.1.

3.2.2 VI for infinite-horizon MDPs

For an infinite planning-horizon MDP, since the remaining time-length up to the planning-

horizon at any time-step is always infinite, it is meaningless to specify the time-step.

Equation (3.1) therefore is updated as Equation (3.2) accordingly: for state ∀xεS

V ∗(x) = max
aεA(x)

{R(x, a) + γ
∑
yεS

P (y|x, a)V ∗(y)}. (3.2)

It is shown by [118] that V ∗(x) from Equation (3.2) is equal to the maximal objective

function value V π∗
(x) from Equation (2.2) for ∀x. Equation (3.2) is the so called Bell-

man optimality equation for infinite planning-horizon MDPs and the V ∗ terms are the
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Figure 3.1: VI finite planning-horizon [118]

unknowns in the equation. Solving Equation (3.2) and obtain the optimal value for ∀x

therefore enables identifying the optimal policy π∗ for infinite planning-horizon MDPs.

For infinite planning-horizon MDPs, VI initiates the estimate of the optimal value,

V ∗(x), as an arbitrary value (usually zero or a small positive value) for every state xεS,

and then iteratively updates these estimates until a pre-set termination criterion is met.

In each iteration, VI visits all the states one by one and updates the estimate for each

state based on a transformation derived from Equation (3.2), and the updated estimates

are the input for the computations in the next iteration. The derived transformation is

as follows: Let Vk(x) denote the estimate of optimal value V ∗(x) for state x updated in

the kth iteration of VI, then Vk+1(x) in the next iteration is calculated by Equation (3.3).

The ultimate policy is derived from the estimates updated in the last iteration of VI.

Vk+1(x) = max
aεA(x)

{R(x, a) + γ
∑
yεS

P (y|x, a)Vk(y)}. (3.3)

The estimate of the optimal value in VI converges to the exact optimal value for each

state, that is converging to V ∗(x) for ∀xεS, given infinite number of iterations. The
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ultimate policy is therefore the optimal policy. But in practice no one can afford infinite

computational time, and a termination criterion should thus be set to ensure a limited

number of iterations and a certain level of computation accuracy.

An arbitrarily pre-set positive value is used as the termination criterion, and it is often

denoted as ε in literature. As shown in multiple publications (for example [64, 118]), as

long as ε > 0 and the discount factor in an MDP is 0 < γ < 1, after enough but

a finite number of iterations, the optimal value estimate for each state from the last

two iterations of VI would be close enough to ensure max
xεS
|VK(x) − VK−1(x)| < ε for

∀xεS, and the policy derived by VI is close to the optimal policy which guarantees

max
xεS
|V πε(x)− V π∗

(x)| < 2γε/(1− γ) for ∀xεS, where K is the total number of iterations

that VI takes, πε is the policy that VI derives based on the estimates updated in the final

iteration: more specifically speaking, πε(x) := arg max
aεA(x)

{R(x, a)+γ
∑

yεS P (y|x, a)VK(y)}

for ∀xεS. In summary, with enough but finite iterations, VI returns the decision maker

with a near optimal policy which guarantees for each state that the gap between the value

actually expected to be obtained (by following such near optimal policy) and the ideal

optimal value (from following the exact optimal policy) is bounded by a certain threshold.

Pseudo-code of VI for infinite planning-horizon MDPs is given in Figure 3.2.

3.2.3 Application issues of value iteration

Applying value iteration (VI) to large size MDPs is impractical. The optimal values (or

their estimates) in VI are updated by brute-forces: in each iteration, VI visit all the

states one by one and perform value calculation for each state based on Equation (3.1)

or (3.3). For large size MDPs, however, the calculation for just one iteration can be very

time consuming. Additionally, DP methods requires the transition probability matrices

to be stored (each transition matrix consists of the transition probabilities from all states

to all states given a certain action), but the memory burden of storing them can be

impractically large for large size MDPs. Below we introduce Q-learning and discuss how
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Figure 3.2: VI infinite planning-horizon [118]

Q-learning mitigate such two issues.

3.3 Q-learning

Q-learning derives solutions for MDP problems by approximately solves the Bellman op-

timality equation. As empirically suggested by multiple numerical studies in publication

(e.g. [56, 65, 66, 67, 68, 70, 71, 72, 119, 131, 151]), usually Q-learning can derive rel-

atively accurate computational results in a relatively short computational time for large

size MDPs. Additionally, as proved by [149], the computational results are guaranteed to

converge as exact results (hence deriving optimal policies) under certain conditions (we

shall specify such conditions in Section 3.3.3).

We shall specify how Q-learning derives solutions for finite and infinite planning-

horizon MDPs respectively in Section 3.3.1 and Section 3.3.2. In Section 3.3.3, we shall

discuss why in many reported numerical studies Q-learning can approximately solve large

size MDPs with relatively short computational time and relatively small data-storage

cost related to transition probability matrices; meanwhile we shall also briefly discuss

optimality properties of Q-learning.
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3.3.1 Q-learning for finite-horizon MDPs

Q-learning for finite-horizon MDPs applies to the MDP problem which has a known and

fixed initial state and a finite planning period. Such method aims at deriving near-

optimal actions for the initial state and each state that the system can potentially transit

into at each following time-step towards the planning-horizon. In this section, first we

shall explain the methodology of Q-learning for finite-horizon MDPs and then we specify

the technical details of such method. Hereafter in this section, by Q-learning we mean

Q-learning for finite-horizon MDPs, unless stated otherwise.

Methodology of Q-learning for finite-horizon MDPs

Q-learning approximately solves the Bellman optimality equation in finite-horizon

MDPs (Equation (3.2.1)) by (1) decomposing the Bellman optimality equation as below

and then (2) approximating a type of intermediate values in such decomposed Bellman

optimality equations. Finally, actions are selected based on comparing such intermediate

value estimates between different actions.

Decomposed Bellman equations for finite planning-horizon MDPs: for state

xεS, time-step t ≤ T

V ∗t (x) = max
aεA(x)

{V a
t (x)}, (3.4)

where

V a
t (x) = R(x, a) + γ

∑
yεS

P (y|x, a)V ∗t+1(y). (3.5)

The value denoted as V a
t (x) in the decomposed Bellman optimality Equations (3.4)-

(3.5) is the intermediate value of interest, and it is called the expected value of state x

under action a at time-step t. Q-learning approximates such expected values for each state-

action-time-step combination in the MDP problem, by incrementally updating the estim-
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ates of such expected values based on simulation (we shall explain the simulation-updating

process below). Once such value estimates converge, Q-learning stops the simulation-

updating process and constructs a policy by selecting the action with the highest estimate

value for each state-time-step pair in the MDP problem. Pseudo-code of Q-learning for

finite planning-horizon MDPs is given in Figure 3.3.

Figure 3.3: Q-learning finite planning-horizon [70]

More specifically speaking, Q-learning initialises the value estimate as a random small

value (or zero) for each state-action-time-step combination in the MDP problem which has

a unique/fixed initial state, and then Q-learning starts the simulation-updating process

from the the first time-step of the MDP problem. The simulation and the value estimates

updating are intertwined in Q-learning. For an easier understanding, we shall first explain

the simulation process and then explain how the estimates updating process is embedded

in the simulation process. Note here we aim at providing a relative high-level view and

we shall specify the technical details later.
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The simulation process starts from the first time-step of the MDP problem and pro-

ceeds through each time-step in the MDP problem until it reaches the planning-horizon

and then the simulation process restarts from the first time-step of the MDP problem.

Such simulation process repeats for an arbitrarily pre-set large number. At each time-

step in each iteration during the simulation process, only one state-action pair is randomly

sampled (except that for the first time-step of the MDP problem the unique initial state

is deterministically chosen in the simulation): later we shall specify the technical details

regarding how the state and the action are sampled at each time-step.

Q-learning further embeds value estimates updating in such simulation process: at each

time-step during the simulation process, once a state-action pair is sampled, Q-learning

pauses the simulation process and updates the value estimate for such state-action-time-

step combination and then continues with the simulation process. Each update adjusts

the existing value estimate of the state-action-time-step based on an approximation of

Equation (3.5), and later we shall specify the technical details of such an approximation.

In summary, the simulation-updating process starts from the initial time-step and

progresses forwards to the last time-step and then continues from the initial time-step

again until a pre-set number of iterations is met. In practice, the pre-set number should

be sufficiently large to ensure the convergence of the value estimates. The value estimates

updated in each iteration of simulation is the input of computation in the next iteration

of simulation. Once the simulation-updating process is finished, Q-learning constructs a

policy by selecting the action with the highest estimate value for each state-time-step pair

in the MDP problem.

Below we specify the technical details of the method.

Transition matrices and state selection

Q-learning assumes (1) the system state is defined by the values of a set of individual

random variables that govern the system dynamics and (2) in a complex system the trans-

ition matrices (see definition in Section 3.2.3) of the system states are difficult to derive
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in practice and the associated storage cost is impractically large whereas the distribution

of each such individual random variable is relatively easy to derive in practice and the

associated storage cost is relatively small [64]. Therefore Q-learning requires the distribu-

tions of such individual random variables are derived (rather than the transition matrices

of the system states). Our elicitation framework (see Section 2.2.3) regarding state trans-

ition probabilities of the generic manufacturing system is an illustrative example: in such

framework we decompose the elicitation work from the system level to the level of the

condition and performance of every single asset in the system.

In the simulation process of Q-learning, the sampling of system state at a given time-

step is based on (1) such distributions and (2) the state-action pair sampled by Q-learning

at the previous time-step: the system state at the previous time-step specifies the value

of each governing random variable at the previous time-step, and the governing variables’

values at the current time-step are randomly sampled from the corresponding distribu-

tions given the previous values of such variables and the action sampled at the previous

time-step. The new values of all the governing variables defines the system state at the

given/current time-step.

Action selection

In the simulation process of Q-learning, the sampling of action at a given time-

step is based on the most up-to-date value estimates: given a state sampled for a

time-step, the actions associated with higher estimate values are more likely to be se-

lected. General selection rules include ε-greedy policy and softmax policies (such as

Boltzmann selection rule which adjusts the probability of action selection as follows:

P (a|x, t) = eQ(x,a,t)/M/ΣbεA(x)e
Q(x,a,t)/M , where e is the base of the natural logarithm

and M is an input parameter which as a rule of thumb should be set as both large enough

to ensure close to equal selection probabilities between all actions in the early stage of

the simulation process of Q-learning and small enough to ensure the action selection con-

verges towards the actions that have relatively high estimate values in the late stage of the
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simulation process) [64]. A drawback of these rules is they require parameter(s) tuning

for each specific MDP problem and such tuning work can be potentially time-consuming.

Alternatively, pure exploration policy under which all actions would equally likely be se-

lected can also be used, and such policy does not require parameter(s) tuning but such

policy may render the estimate values convergence slower in the application of Q-learning.

Approximation of Equation (3.5)

In Q-learning, the exact expected value V a
t (x) in Equation (3.5) is not computed.

Instead, its corresponding estimate, denoted as Q(x, a, t), is incrementally updated as

follows: suppose the currently selected state-action pair at time step t is (x, a) and the

next state to be visited by Q-learning at time step t + 1 is randomly sampled to be y,

then

Q(x, a, t)← (1− α)Q(x, a, t) + α(R(x, a) + γmax
bεA(y)

Q(y, b, t+ 1)) (3.6)

where 0 < α < 1 denotes a step-size parameter (we shall further discuss how to control

such parameter below), b denotes an arbitrary action that is permitted from state y, A(y)

denotes the set of actions permitted from state y, and ← means that the value of the

expression on the right-hand side is calculated and then used to replace the value of the

variable on the left-hand side; Q(x, a, t) on the right-hand side of the equation represents

the value estimate before update whereas Q(x, a, t) on the left-hand side represents the

value estimate after update; all the other notations have the same meaning as in Section

3.2.1. The value estimate update consists of a proportion of the current value estimate in

addition to an approximation of Equation (3.5): the approximation utilises max
bεA(y)

Q(y, b, t+

1) as a proxy of V ∗t+1(y) in Equation (3.5), that is using the maximum value estimate of

the randomly sampled state to be visited next in simulation as a proxy for the actual

optimal value over the remaining planning period of the MDP model.

Note by simply transforming the right-hand side of Expression 3.6 we can obtain
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the following: Q(x, a, t) + α(R(x, a) + γmax
bεA(y)

Q(y, b, t + 1) − Q(x, a, t)), where R(x, a) +

γmax
bεA(y)

Q(y, b, t+1)−Q(x, a, t) is the so called temporal difference in literature (mentioned

in Section 3.1) in the context of Q-learning .

Control of the step-size parameter

Regarding the control of the step-size parameter α, Gosavi [64] recommends controlling

rules such as M
N+k

, ln(k+1)
k+1

and the Darken-Chang-Moody rule [39] where M and N are large

positive constants, k denotes the kth sampling in the application of Q-learning and ln(k)

represents the natural logarithm of k. Note all such controlling rules ensure α gradually

decay in the application of Q-learning.

3.3.2 Q-learning for infinite-horizon MDPs

Q-learning for infinite-horizon MDPs applies to the MDP problem which has an infinite

planning period. Such method aims at deriving near-optimal actions for every state of the

MDP problem. In this section, first we shall explain the methodology of Q-learning for

infinite-horizon MDPs and then we specify the technical details of such method. Hereafter

in this section, by Q-learning we mean Q-learning for infinite-horizon MDPs, unless stated

otherwise.

Methodology of Q-learning for infinite-horizon MDPs

Q-learning approximately solves the Bellman optimality equation in infinite-horizon

MDPs by (1) decomposing the Bellman optimality equation as below and then (2) approx-

imating a type of intermediate values in such decomposed Bellman optimality equations.

Decomposed Bellman equations for infinite planning-horizon MDPs: for

state ∀xεS

V ∗(x) = max
aεA(x)

{V a(x)}, (3.7)
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where

V a(x) = R(x, a) + γ
∑
yεS

P (y|x, a)V ∗(y). (3.8)

The value denoted as V a(x) in the decomposed Bellman optimality Equations (3.7)-

(3.8) is the intermediate value of interest, and it is called the expected value of state x

under action a. Q-learning approximates such expected values for each state-action pair

in the MDP problem, by incrementally updating the estimates of such expected values

based on simulation (we shall explain the simulation-updating process below). Once such

value estimates converge, Q-learning stops the simulation-updating process and constructs

a policy by selecting the action with the highest estimate value for each state in the MDP

problem. Pseudo-code of Q-learning for infinite planning-horizon MDPs is given in Figure

3.4.

More specifically speaking, Q-learning initialises the value estimate as a random small

value (or zero) for each state-action pair in the MDP problem, and then Q-learning starts

the simulation-updating process from an arbitrary initial state in the MDP problem. The

simulation and the value estimates updating are intertwined in Q-learning. Similar to

Section 3.3.1, for an easier understanding, we shall first explain the simulation process and

then explain how the estimates updating process is embedded in the simulation process.

Note here we aim at providing a relative high-level view and we shall specify the technical

details later.

The simulation process proceeds towards the infinite planning-horizon of the MDP

problem, and in each time-step during the simulation process only one state-action pair

is randomly sampled. Q-learning terminates the simulation process after simulating a

pre-set number of time-steps for the MDP problem. Q-learning further embeds value

estimates updating in such simulation process: at each time-step during the simulation

process, once a state-action pair is sampled, Q-learning pauses the simulation process

and updates the value estimate for such state-action pair and then continues with the
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simulation process. Each update adjusts the existing value estimate of the state-action

pair based on an approximation of Equation (3.8).

In summary, the simulation-updating process starts from an arbitrary initial state and

progresses forwards towards the infinite planning-horizon of the MDP problem until a pre-

set number of time-steps is met (note the number should be sufficiently large to ensure

the convergence of the value estimates). The value estimates updated in each time-step

is the input of computation in the next time-step of the simulation. Once the simulation-

updating process is finished, Q-learning constructs a policy by selecting the action with

the highest estimate value for each state in the MDP problem.

Regarding how the state-action pairs are sampled at each time-step during the simu-

lation process, the corresponding technical details are identical to Section 3.3.1, and the

only technical difference is the estimate values of state-action pairs are used here rather

than the estimate values of state-action-time-step combinations. Below we specify the

technical details regarding how the value estimates are updated.

Approximation of Equation (3.8)

For infinite planning-horizon MDPs, Q-learning incrementally update the approxima-

tion of the expected value V a(x) defined in Equation (3.8), Q(x, a), as follows

Q(x, a)← (1− α)Q(x, a) + α(R(x, a) + γmax
bεA(y)

Q(y, b)) (3.9)

where the notations have similar meaning as their counterparts in Section 3.3.1 (note

the controlling rules discussed in Section 3.3.1 regarding the step-size parameter α also

apply here), and the difference is here the time-step is not specified because the interest

is in value estimation for each state-action pair, over an infinite number of remaining

time-steps; additionally, Q(x, a) on the right-hand side of the equation represents the

value estimate before update whereas Q(x, a) on the left-hand side represents the value

estimate after update. The value estimate update consists of a proportion of the current
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estimation value in addition to an approximation of Equation (3.8): the approximation

utilises max
bεA(y)

Q(y, b) to represent V ∗t (y), that is using the maximum value estimate of the

randomly sampled state to be visited next in simulation as a proxy for the actual optimal

value over the remaining planning period of the MDP model.

Pseudo-code of Q-learning is provided in Figure 3.4, for infinite-horizon MDP problems

in general.

Figure 3.4: Q-learning infinite planning-horizon [64]

3.3.3 Further technical discussions

Benefits of using Q-learning

Value iteration (VI) sweeps through the entire state-action space in each time-step (as

explained in Section 3.2). Given a large state space, however, just one such sweep can

render the computational time impractically long. Q-learning, however, selectively con-

centrates the computational efforts on some state-action pairs rather than visits all state-

action pairs with the equal frequency (as explained in Section 3.3); intuitively speaking,

in the application of Q-learning, the simulation would gradually more likely to sample

state-action pairs that the MDP model would actually evolve into with relatively high
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probabilities following the optimal policy [64]. Thus Q-learning usually can converge in a

relatively short computational time. In practice, the application of Q-learning can usually

converge in a few hours while the application of VI would cost days.

Additionally, Q-learning only requires that the distributions of the individual governing

random variables are obtained and stored, rather than the transition matrices of the

system states as requested by VI, which reduces the modelling complexity and memory

burden.

The discussion above in general also applies to other brute-force methods (such as

policy iteration) and other reinforcement learning methods (such as SARSA).

Optimality of Q-learning

The following conditions are required to be fulfilled in order to ensure the estimate

results of Q-learning converges as exact optimal results [149] : (1) all legit state-action(-

time-step) pairs are sampled infinitely times; (2)
∑∞

k=1 αk = ∞ and
∑∞

k=1(αk)
2 < ∞,

where αk denotes the step-size parameter value (in Equation 3.6 and Equation 3.9) after

the kth sampling in the application of Q-learning. In other words, given the application

of Q-learning contains infinitely large number of iterations (meaning infinitely long com-

putational time) and given proper rules are used to control the step-size parameter and

to sample state-action pairs (such as the rules discussed in Section 3.3.1), Q-learning is

guaranteed to derive optimal results.

Of course no one can afford infinitely long computational time in practice, and addi-

tionally in our knowledge so far it is not proved that Q-learning (or any other reinforcement

learning methods) derives error-bounded computational results in a finite computational

time like VI; the mathematical proof from [149] however justifies the assumption that the

converged results derived from proper application of Q-learning (meaning proper rules

are implemented as aforementioned) in a finite computational time are relatively close

to the exact optimal results. More specifically speaking, it is reasonable to assume such

converged results contain relatively accurate estimates of both optimal values and optimal
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actions for the states that the MDP model would actually evolve into with relatively high

probabilities following the optimal policy.

3.4 Value function approximation

This section dedicates to selecting an existing heuristic in response to the data-storage

issue which arises from storing the computational results produced when applying a com-

putation method to the large size MDP problem of the power plant case study (which

would be discussed in Chapter 4).

As discussed above in this chapter, we shall choose Q-learning as the computation

method for the power plant case study; the computational results (these are theQ values in

section 3.3.1 and section 3.3.2) should not be stored in brute-force lookup tables, otherwise

the data-storage cost would be impractically large. In fact, for large size MDP problems

in general, regardless of which computation method is applied, similar data-storage issues

exist. Hence in this section we shall provide a brief summary of the main data-storage

heuristics and justify why we choose polynomial function method for the power plant case

study, in the hope that the heuristic selection criterion we use to facilitate our choice can

serve as a ground rule for other researchers and practitioners to choose proper data-storage

heuristics for their own studies.

In Section 3.4.1, we introduce different general heuristic approaches each of which

bases on a unique methodology regarding how to tackle the general data-storage issue

discussed above. Note hereafter in this section by “data” we mean the aforementioned

computational results (which are the estimates of the expected values (defined in Section

3.2) of the state-action pairs in a given MDP problem). In Section 3.4.2, we further discuss

specific heuristic methods developed following each such heuristic approach (from Section

3.4.1) and justify our choice of heuristic method for the power plant case study. Note here

we aim at providing a holistic view without distracting readers from the main purpose of
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this thesis, and hence we keep the explanation of such existing heuristic approaches and

heuristic methods relatively brief. Readers who are however interested in a more detailed

discussion are referred to [129].

3.4.1 Different data-storage heuristic approaches

The main heuristic approaches aforementioned include the following:

• State space clustering approach: for each action of the MDP problem, such approach

judges the relative closeness of the expected values of different states and group

states deemed with close expected values into the same cluster. The approach only

allows each cluster to store one representative value to approximate the expected

values of all the states in the cluster. For a reasonable representation, the single

representative value should be close to the mean of all the expected values of states in

the cluster. Such approach uses brute-force lookup tables to store the representative

values of all clusters for each action of the MDP problem. Here is a numerical

example to illustrate such heuristic approach: suppose an MDP problem has two

actions (indexed as action 1 and action 2) and six states (indexed as state 1,..., state

6); additionally, for action 1, state 1 and state 2 and state 3 are supposed to have

close expected values while state 4 and state 5 and state 6 are supposed to have close

expected values, whereas for action 2, state 1 and state 4 and state 6 are supposed

to have close expected values while state 2 and state 3 and state 5 are supposed to

have close expected values; as a result, for action 1, state 1 and state 2 and state

3 should be grouped into a cluster while state 4 and state 5 and state 6 should be

grouped into another cluster, whereas for action 2, state 1 and state 4 and state 6

should be grouped as one cluster while state 2 and state 3 and state 5 should be

grouped into another cluster.

• Interpolation approach: for each action of the MDP problem, such approach chooses
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exemplar states and allows their computational results to be explicitly stored. For

each non-exemplar state, its expected value is interpolated from exemplars which

are deemed to have relatively close expected values to the target non-exemplar

state. The interpolation result is of course an estimate of the expected value of

interest. Such approach uses brute-force lookup tables to store the computational

results of the exemplar states for each action of the MDP problem. Here we reuse

the numerical example above to illustrate the interpolation approach: for action 1,

state 1 and state 3 can be selected as exemplars and their computational results

can be used to interpolate the expected value of state 2, additionally state 4 and

state 6 can also be selected as exemplars and their computational results can be

used to interpolate the expected value of state 5; whereas for action 2, state 1 and

state 6 can be selected as exemplars and their computational results can be used to

interpolate the expected value of state 4, additionally state 2 and state 5 can also

be selected as exemplars and their computational results can be used to interpolate

the expected value of state 3.

• Parametric function approximation approach: for each action of the MDP prob-

lem, such approach requires to define a mathematical formula to approximate the

numerical relationship between the states and their expected values. The resulted

data-storage format of such approach is real valued functions and the value of each

function is supposed to approximate the expected values of all the states for the

corresponding action in the MDP problem.

In terms of the resulted data-storage format, the first two heuristic approaches above

aim at reducing the total size of the brute-force lookup tables which would otherwise

explicitly store the computational results for each state-action pair in the MDP problem,

whereas the last heuristic approach aims at replacing brute-force lookup tables with real

valued functions. In terms of methodology, both the state space clustering approach and
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the interpolation approach focus on judging the relative closeness of the expected values

from different state-action pairs in an MDP problem, whereas the parametric function

approximation approach focuses on the mathematical formula relationship between the

state-action pairs and the expected values.

The specific heuristic methods in Section 3.4.2 inherits the methodology of the corres-

ponding heuristic approaches above, with variance on technical choices.

3.4.2 Different data-storage heuristic methods

• Heuristic methods following the state space clustering approach: according to our

best knowledge, the existing literature lacks such kind of heuristic methods that

both have relatively good empirical performance (i.e. relatively small sacrifice of

data accuracy) and can be potentially applied to a relatively wide range of case

studies; an arguable exception is the so called nearest neighbour method which we

shall specify below.

• Heuristic methods following the interpolation approach:

– K-nearest neighbours method [42]: such heuristic method assumes the abso-

lute difference of the expected values from two different states under the same

action increases in proportion to the distance between the two states meas-

ured based on certain metrics: the most popular distance measuring choice

is the so called Euclidean distance [48] and alternatively in some studies (for

instance [65] ) researchers design problem-specific measuring techniques. For

each non-exemplar state, K exemplar states within the shortest distance (based

on the measuring technique) to such non-exemplar state are selected. The ex-

pected value of the non-exemplar state is interpolated either (1) simply as the

arithmetic mean of the computational results of all K exemplar states or (2)

interpolated as the weighted average of such K computational results where
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the weight is based on the distance between the non-exemplar state and each

corresponding exemplar state in a reciprocal numerical relationship or (3) in-

terpolated from such K computational results by regression [134]. An extreme

case of the K-nearest neighbours method is when K = 1, and therefore only one

exemplar state would be selected [56, 65]: no interpolation is actually applied

and the method actually clusters states together to reduce the data-storage

cost in a way which aligns with the methodology of the state space clustering

approach; such extreme K-nearest neighbours method is referred as the nearest

neighbour method.

– Kernel-based method: such heuristic method is very similar to the K-nearest

neighbours method above, and the main difference is here the expected value

of every non-exemplar state is interpolated from the computational results of

a fixed set of exemplar states by weighted averaging.

• Heuristic methods following the parametric function approximation approach:

– Artificial neural networks (ANNs) [13]: such heuristic method uses a weighted

sum of sigmoidal functions [33] or nested sigmoidal functions to approximate

the numerical relationship of interest between the states and the expected val-

ues for each action in an MDP problem. According to studies including [33],

with unlimited number of sigmoidal functions the numerical relationship of

interest can be accurately captured.

– Radial basis function networks (RBFNs) [21]: such heuristic method is very

similar to the ANNs method above, and the only difference is here radial func-

tions [22] are used rather than sigmoidal functions. According to [21], with

unlimited number of radial functions the numerical relationship of interest can

be accurately captured.

– Polynomial function method: for each action of a given MDP problem, such
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heuristic method uses a polynomial function to approximate the numerical

relationship between the states and the expected values.

We use a general rule to select the data-storage heuristic for our case study: the meth-

odology and technical choices of the selected heuristic method should be backed up by the

background knowledge of the case study.

In our case study, the background knowledge implies that the numerical relationship

between the system state and the expected value follows a concave pattern in general,

which supports the choice of the polynomial function method : in more details, the system

state is a high-dimensional variable which is a vector comprised of multiple basic variables

(i.e. the condition/performance of each individual mill in the power plant); according to

the background knowledge of our case study, the condition/performance of a mill impacts

the expected value via determining the lifetime/output-rate of the mill, and further nu-

merical test shows the numerical relationship between the condition/performance and the

average lifetime/output-rate follows concave patterns in the case study. We shall specify

such discussion and explain how to apply the polynomial function method to our case

study later in Chapter 4, and additionally in Chapter 4 we shall also specify how the

polynomial function method interacts with Q-learning.

As comparative examples (which follow the same heuristic selection rule as ours), in

both an automatic guided vehicle route scheduling case study [134] and a video gaming

strategy developing case study [56], the system state consists of the physical location of

objects; the background knowledge in such studies implies the physical distance between

two system states determines the relative closeness of the expected values of such system

states in the MDP models, and hence it is reasonable to adopt the (K-)nearest neighbour(s)

method and use Euclidean distance in such studies. In a yield management case study

[65] from the airline industry, the system state consists of multiple basic variables which

describe the historical flight classes booking situation (including the number of seats

booked in each flight class and the booking time of each seat) and the current booking
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request; the background knowledge in the case study suggests the relative closeness of the

expected values of such system states which have identical current booking request can

be approximately judged by the amount of already earned revenue from booked seats;

hence [65] adopts the nearest neighbour method and additionally develop a revenue index

function (such function prescribes the normalised earned revenue based on booked seats

and the cost/benefit structure in the case study) to judge the relative closeness of system

states.

We would also like to highlight that the heuristic methods discussed above with

universal-approximation power (i.e. the ANNs method and the RBFNs method) are

relatively less favoured by our heuristic selection rule aforementioned, as such heuristics

only provide a relatively limited gateway for researchers/practitioners to link the para-

metric function approximation modelling choices to the specific background knowledge

of their case studies: regarding such limited gateway, interested readers are referred to

publications including [13, 64] for discussions about how to first construct some simple

functions of the state variable and then use such simple functions as the independent vari-

ables of the sigmoidal functions in the ANNs method ; such simple functions are referred

to as features in such publications and in theory they do provide a gateway which links to

the problem-specific background knowledge; the fundamental sigmoidal/radial functions

based real-value function structure in such methods are nonetheless not adjustable based

on the problem-specific background knowledge at all. We admit that using such heuristics

with universal-approximation power is prevalent so far in the research area and relatively

good (meaning the data accuracy sacrifice is relatively small) empirical results are reported

in multiple studies including [40, 72, 143]; however researchers/practitioners can expect

two (usually impractical) requirements in general about applying such heuristics: (1) a rel-

atively large amount of set-up efforts/time on constructing the so called features aforemen-

tioned, and such issue is reported in multiple publications (e.g. [13, 40, 64, 72, 118, 151])

including the ones with relatively good empirical results ; (2) a relatively large amount of
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free-parameters tuning efforts/time induced by adopting multiple sigmoidal/radial func-

tions: usually complex decision making problems in practice lead to large size MDP

problems in which the numerical relationship between the states and the expected values

is highly non-linear, and hence multiple sigmoidal/radial functions are required for a re-

latively close approximation of such numerical relationship of interest. In contrast, our

heuristic selection rule above encourages researchers/practitioners to identify a problem-

specific data-storage method which hopefully only induces a relatively small amount of

data accuracy sacrifice without imposing an impractically high demand on the set-up

time and/or free-parameters tuning efforts. Additionally, we would like to highlight that

our heuristic selection rule does not aim at discouraging researchers from continuing with

theoretical research related to such universal-approximation power methods or stopping

researchers/practitioners who have access to high-performance computing devices from

applying such methods to case studies which are underpinned by the purpose of exploring

universal artificial intelligence (such as [75] and [130] ).

In Chapter 4, first we shall apply the performance-centred approach (from Chapter 4)

to the power plant case and model the maintenance planning decision making problem

for the case study; then we shall design a set of heuristics to solve the corresponding

mathematical problem. The polynomial function method provides a relatively general

framework and an important part of our own design of heuristics in Chapter 4 is specifying

the application of such general method in our case study. Both the mathematical model

and the heuristics in Chapter 4 apply to a relatively general context and therefore can be

used on other cases as well (we shall specify the discussion in Chapter 4).
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Chapter 4

Case study: modelling and heuristics

In this chapter, we apply the performance-centred maintenance approach from Chapter 2

to the coal-fired power plant that motivates our study. The power plant is one example of

many production companies from various industries where the production operations man-

agement and maintenance operations management should be aligned in order to achieve

better total costs/benefits (see Section 2.1 for specifications). In addition, the power plant

presents a general challenge in terms of applying the performance-centred maintenance

approach: the production machines in the power plant forms a multi-level hierarchical

physical structure (which we shall specify in Section 4.1.3) which is beyond the scope of

the system-asset physical structure (see Section 2.1) modelled following the performance-

centred maintenance approach. Such hierarchical structure is shared by a vast number

of industries (which we shall discuss in Section 4.1.3) and aligning the production and

maintenance operations management in such industries necessitates scaling up the ex-

isting maintenance planning mathematical model (developed in Chapter 2) under the

performance-centred maintenance approach. Therefore, building such widely applicable

scaled-up mathematical model is the first aim of this chapter.

The resulted mathematical model is very complex, and thus heuristics are required to

solve the mathematical problem, which gives rise to the second aim of the cases study:
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developing a set of heuristics which can tackle the mathematical problem that arises from

aligning the production and maintenance operations management in industrial problems

which share the same hierarchical structure as the power plant.

Below in Section 4.1 we introduce the power plant case study background information

and then formally describe the hierarchical structure and the case study; in Section 4.2 we

develop the scaled-up mathematical model in the context of the power plant, and discuss

how such model can be applied to other cases of interest; in Section 4.3 we develop a set

of heuristics to solve the mathematical problem in the context of the power plant, and

discuss how such heuristics can be applied to other cases of interest; in Section 4.4 we

summarise the research contributions of this chapter.

4.1 Case study: problem structure and assumptions

Below in Section 4.1.1, we shall describe the problem setting of the power plant case study

and highlight the relevance of the performance-centred maintenance approach; in Section

4.1.2, we describe the operators’ decision regimes in the context of the case study which

we shall numerically investigate and compare in Chapter 5; in Section 4.1.3, we specify the

hierarchical structure shared by the power plant case study and various other production

companies; finally, in Section 4.1.4 we formally describe the power plant case study.

4.1.1 Background of the coal-fired power plant

The case study is based on the real-life maintenance problem in a coal-fired power plant,

which consists of four separate independent units, each of which contains eight mills work-

ing in parallel (such multi-level structure is illustrated in Figure 4.1). The specific physical

structure of a mill is illustrated in Figure 4.2. Without further discussing the multiple
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elements in each mill, the production operations from a high level can be explained as

follows: for each unit, the operators regulate the speed by which the coal is fed to the mills

in the unit, and the mills grind the coal to coal dust which is transferred into the boiler

of the unit to be burned in order to power the steam turbines and generate electricity.

The focus is on the operators’ utilisation behaviours and maintenance policy for the mills

rather than the boiler system or the turbines.

Figure 4.1: Hierarchical structure in the power plant

Figure 4.2: Mill structure [4]

The performance of a mill affects the maximum amount of coal a mill can process

per unit of time (that is the throughput of a mill) and the particulates size distribution

of the coal dust transferred to the boiler (that is the grinding quality of a mill). The

amount of electricity generated is determined by both the quantity and quality of coal
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grinding. The condition of a mill determines the likelihood of a critical failure and the

state of wear-out of the mill. According to the maintenance engineers, the performance of

a mill will generally deteriorate as the condition of the mill deteriorates; however, there

are occasions when this pattern is not followed. A service maintenance action can improve

the performance of a mill with a relative short maintenance time and low fixed cost, but

it has no effects on the degradation condition of a mill and therefore there is no effect if

the mill has failed in terms of degradation condition. Services on the mills include tasks

such as rollers oil changes, rollers tension adjusting and others. An overhaul maintenance

action can restore both the performance and condition of a mill to the full levels, but

with a relatively long maintenance time and high fixed cost. The examples of condition

failures for a mill include cracking of the grind plate, wear of the rollers below a useful

operational standard and wear of structural elements beyond certain thresholds. A service

consumes approximately one week and an overhaul takes approximately five weeks. It is

rare for maintainers to pull offline more than one mill for maintenance at any given time

in a unit, due to the concern of overly reducing the production capacity of the unit, which

is based on the observed average electricity supply level contracted in history (note this

is a rule of thumb that maintainers follow in practice rather than a definite requirement,

and it only applies to mills which are still working rather than the mills which are not

contributing to production due to condition/performance failure). Additionally, due to

financial and personnel restrictions, maximum two maintenance crews are available across

the plant at a given time: one performs overhaul and one performs service. Each crew

consists of a number of staff. Usually the overhaul of a mill requires a full overhaul crew

and the service of a mill requires a full service crew. The maintainers’ business function is

planning maintenance for the mills and applying scheduled and unscheduled maintenance

actions, and their focus is ensuring that the whole power plant is available as required for

production in a long term.

In contrast, the operators are relatively short-term oriented, due to the existence
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of the contracted period: the electricity is sold by contracts for a relative short period

in advance, in terms of both quantity and price. According to [135], on the British

electricity wholesale market,“contracts for electricity can be struck over timescales ranging

from several years ahead to on-the-day trading markets” and the production is matched

with the contracted supply on a second-by-second basis as electricity cannot be stored in

large amounts. Large scale storage of electricity is either impossible or very expensive;

hence if the production cannot satisfy the contracted supply, any missing amount must be

procured from the spot market which requires a potentially substantial financial premium

compared to self-production. To avoid/mitigate procurement on the potentially expensive

spot market when the electricity generation cannot satisfy the contracted supply under

normal production circumstances, the operators can choose to speed up production in the

working mills to a level that is above the usual level but such behaviour may accelerate

deterioration of the mills (we shall discuss the operators’ decision regime in more details

below in Section 4.1.2). The operators in the power plant adopt such machine utilisation

behaviours because their business function is planning and executing production, and they

focus on meeting the contracted supply while having limited interests in the effects that

their decision regime brings to the relative long-term state of the mills.

Despite the difference in the focus of operations management between the maintainers

and the operators, the business functions of the two managerial parties are intertwined

in a complex way: the scheduled maintenance actions can improve the machine state and

therefore lead to a better production performance in terms of quantity and/or quality,

but during the maintenance some loss of production may happen in addition to fixed

maintenance costs, and the trade-offs differ especially significantly between services and

overhauls which are operational performance oriented and degradation condition oriented

respectively; due to potentially higher cost on the spot market, the operators are motivated

to speed up production when electricity generation at normal rate cannot satisfy the

contracted demand, but such machine utilisation behaviours render machine deterioration
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faster, which may impose higher necessity for maintenance in the future.

As a result, maintenance operations management and production operations manage-

ment should not be considered independently in the power plant. Instead, the business

functions of the two managerial parties should be aligned in order to achieve optimal total

benefits/costs at the plant level, not least because the interests between the operators and

maintainers may conflict as priority needs to be set between short-term production and

long-term health of the mills.

A similar requirement for such alignment applies to many industrial cases in which the

operations management is split between the operators and maintainers. The maintenance

approaches in the existing literature are however largely reliability-centred, which is not

able to model the complex trade-offs that arise from aligning the business functions of

the two managerial parties. Therefore in this thesis we build a new performance-centred

maintenance approach (based on [7, 8]) in Chapter 2, in order to break down the decision

making barrier between the maintainers and the operators for such production systems

where the two managerial parties follow different timescales. Such maintenance approach

is widely applicable given its generic business setting (discussed in Section 2.1) and the

fact that the benefits and costs involved in the decision making can usually be evaluated

in monetary value for many production companies.

4.1.2 Operators’ decision regime in power plant

Based on the investigation by [7], the existing operators’ decision regime in the power

plant can be approximately summarised as follows: every unit in the power plant is

committed to a separate contract, and if a unit cannot meet the production target under

normal operation circumstances, then the operators would speed up the work-rate of all

the working mills in the unit to a level higher than normal. Such operator decision regime

results in stochastic dependence between the residual lifetimes of the mills in the same unit.

Note that any production shortfalls of a unit must be resolved by emergent procurement
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from the spot market, rather than by exploiting the potential extra production capacity of

other units in the plant: such setting results from the specific requirements of the British

electricity wholesale market and we shall not further discuss the details.

Note in practice the operators actually have more flexible choices, we choose the ap-

proximation above in order to avoid over-complicating the mathematical model that we

shall build later in this chapter such that we can focus on the key trade-offs between the

maintenance operations management and production operations management in the case

study. This thesis serves as an early-stage study of its kind, and in the future research

we plan to incorporate more advanced decision regimes to better capture the real ma-

chine utilisation behaviours of the operators in the power plant: for example, rather than

adjust the work-rate at the unit-level, the operators may further adapt the work-rate of

each individual mill and only increase the work-rate of the mills in relative good states. In

this thesis, we refrain from any further discussion about more advanced decision regimes

which involve work-rate adjustment at the mill level or the plant level.

Hereafter in this thesis, we only consider work-rate adjustment at the unit level. In

such operators’ decision regime, the operators have the choice to speed up work-rate but as

a consequence the degradation may also be accelerated. It is worth investigating whether

such trade-off is beneficial, and therefore an alternative decision regime shall be examined

which prohibits the operators from speeding up the production. This alternative regime

induces a relatively low level of intervention to the maintenance planning, compared to

the original regime. Hereafter in this thesis, we refer to the alternative regime as the low

intervention regime and to the original one as the high intervention regime.

4.1.3 Hierarchical structure in general

The power plant maintenance planning problem in essence requires decision making about

maintenance resources distribution at three sequential levels: at the highest plant level,

the maintainers need to decide which unit in the plant should be maintained; furthermore,



89

at the medium unit level, the maintainers should decide which mill in a unit should be

maintained; finally, at the bottom mill level, the maintainers have to decide whether to

apply service or overhaul to a mill. Generally speaking, each mill in the power plant is

a production asset, each unit in the power plant is a production system which consists

of multiple production assets, and the power plant itself is a company that is comprised

of several production systems. Hereafter by hierarchical structure, we mean such general

company-system-asset structure, as illustrated in Figure 4.3. The multi-level physical

structure (illustrated in Figure 4.1) of the power plant is one example of such hierarchical

structure.

Figure 4.3: General hierarchical structure

It is actually not exclusive to the coal-fired power plant that the maintenance re-

sources distribution follows such hierarchical structure. Various examples can be found

in industries that have adopted distributed generation or distributed manufacturing, in-

cluding the solar power industry, wind power industry, automotive manufacturing sector,

electronics manufacturing sector and healthcare manufacturing. For instance, think of a

car manufacturing company which has five factories and each factory is comprised of ten

production lines and additionally the maintenance resources are shared at the company

level: in such case each production line can be seen as a production asset and each factory

can be seen as a production system and therefore the maintenance resources distribution
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again follows the company-system-asset hierarchical structure.

Such a hierarchical structure poses a crucial challenge to applying the performance-

centred maintenance approach: in the performance-centred maintenance approach (from

Chapter 2), the production machines are assumed to follow a system-asset structure, which

does not further include the company level as considered in the hierarchical structure

here; in other words, the multi-level hierarchical structure here is beyond the scope of the

mathematical model built in Chapter 2. As a result, such model should be scaled up for

more complex maintenance planning problems which follow such hierarchical structure.

Below we apply the performance-centred maintenance approach (from Chapter 2) to

the the coal-fired power plant case study and build a case-specific mathematical model.

Additionally, we shall also build a set of heuristics to solve the corresponding math-

ematical problem. The mathematical model and the set of heuristics can be relatively

easily adopted to many other industries which require the alignment of the production

and maintenance operations management under the same hierarchical structure discussed

above.

4.1.4 Case study

In this section we formally describe the power plant case study.

The whole power plant consists of K units which are indexed as 1, 2, ..., K respectively,

and each unit contains N identical mills working in parallel which are indexed as 1, 2, ..., N

respectively in a given unit. The mills deteriorate stochastically with production. The

performance of an mill is improved after a service, given the asset is not failed in terms of

condition. The condition and performance of a mill are fully restored after an overhaul.

Overhaul consumes a longer time and induces a higher cost than service, as an overhaul

action is much more complex than a service action. The operators adjust the work-rate

of each unit based on (1) the contracted supply and (2) the unit state, by following either

the high intervention regime or the low intervention regime specified in Section 4.1.2; the
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maintainers are grouped into two different crews: one crew is dedicated to service and the

other crew is dedicated to overhaul, and the maintainers need to plan maintenance actions

up to a certain horizon. Each crew can only maintain one mill each time. Large scale

of electricity storage is either impossible or very expensive (given the current technology)

such that inventory would never be an optimal choice and therefore it is not considered.

Additionally, here we introduce some modelling assumptions in order to focus on the

key trade-offs in the case study:

• The service of a mill consumes one time-step and the cost of service is fixed; the

performance of a mill is fully restored after a service, as long as the mill is not failed

in terms of condition.

• The overhaul of a mill consumes OH time-steps and the cost of overhaul is fixed.

• The condition of a mill deteriorates gracefully with time such that the condition only

degrades by up to one level in a single time-step. Following such an assumption,

one can derive the transition probabilities between any two condition levels based

on the estimated average operating time a mill spends at each condition level at

each discrete level of work-rate.

Simplified numerical examples: PCM approach, myopic approach and other

existing maintenance approaches

Here we take a detour to discuss a highly simplified toy-size problem based on the

business context of the real-life case study above, aiming at numerically demonstrating

the value of adopting the more sophisticated PCM approach in comparison to (1) the

myopic approach (discussed in Section 2.2.4.3) which only captures the contracted-period

and other existing maintenance approaches (discussed in Section 1.2 and Section 2.3)

which (2.a) assume the condition and performance are perfectly correlated and the ones

(2.b) further assume that production has deterministic wearing-off effects on machines.

Below in Section 4.2 we shall return to the full-size case study.
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In this toy-size problem, we assume the following: (1) the power plant contains only 1

unit which has 3 identical mills; (2) the contracted period contains 20 weeks; (3) the en-

tire maintenance planning period contains 50 weeks; (4) the demand in each week within

the non-contracted period (which is 30 weeks) follows the same continuous uniform dis-

tribution unif(a, b) where a equates to 70% of the maximum weekly production rate of

a perfect unit working at normal work-rate and b equates to 100% of such maximum

weekly production rate, while the demand in each week within the contracted period is

equal to 90% of such maximum weekly production rate; (5) the operators follow the low

intervention regime (note in this simplified toy-size problem we shall not further invest-

igate whether high intervention regime is more profitable); (6) although the condition

deterioration underpins the performance deterioration, the performance deterioration is

not perfectly linked to condition deterioration; (7) service and overhaul cannot be applied

to the unit at the same time (note this assumption is introduced to simplify the case

studies here and it is based on the rule of thumb aforementioned in Section 4.1.1).

Below we shall first present the mathematical model and the derived decisions for PCM

approach as a benchmark; then we shall use the benchmark to highlight the limitations

of the mathematical models and the decisions derived based on the other aforementioned

approaches1. Note here we use the value iteration computation method (see Section

3.2) and store the computational results in brute-force lookup tables when deriving the

decisions from different mathematical models, in order to conduct the comparison between

different modelling approaches based on accurate computations.

PCM approach: mathematical model and derived solutions

As a general modelling choice, the condition of a mill is categorised into four levels

(new, good, poor and failed) and the performance of a mill is categorised into three

levels (full performance: that is satisfactory performance; reduced performance: that is

unsatisfactory performance; offline: that is grossly unsatisfactory performance); we further

1The compressed MATLAB code for all the toy-size case studies can be found at
http://doi.org/10.5281/zenodo.2602868
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index all potential mill state and describe the corresponding production rate as shown in

Table 4.1 in order to facilitate later discussion. In addition, a time-step is measured as

one week.

Mill state index Meaning (condition, performance) Weekly production

rate (in terms of

standard units of

demand) at normal

work-rate
1 (failed, offline) 0
2 (poor, offline) 0
3 (poor, reduced performance) 60
4 (poor, full performance) 80
5 (good, offline) 0
6 (good, reduced performance) 60
7 (good, full performance) 80
8 (new, offline) 0
9 (new, reduced performance) 60
10 (new, full performance) 80

Table 4.1: Different mill states

The mathematical model for PCM approach follows the format defined in Equation

(2.3) (see Section 2.2.4.3). Here we specify the parameter values of the model: the state

space contains 220 unique states at the unit level (see Table A.1 in Appendix A.1 for

specification); the probability of state transition at the individual mill level is given in

Table 4.2, and the mill state transition diagram is given in Figure 4.4; the maintenance

choices at the individual mill level are listed and indexed in Table 4.3; the time length

and the cost of service and overhaul are given in Table 4.2; the sales price and the penalty

cost per unit of demand are also given in Table 4.2. Note here the presented parameter

values are desensitised (meaning the business sensitive parameter values derived from the

original real-life case are modified without losing the dynamic nature of the problem, and

then presented here to readers).

The derived decisions (on maintenance choice) and expected value for each potential

initial unit state is given in Table A.2 in Appendix A.1. For example, for initial unit
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Parameter Meaning Parameter value

PM Mill state transition

matrix under normal

work-rate and no

maintenance


P1,1 P1,2 ... P1,10
P2,1 P2,2 ... P1,10

...
...

...
...

P10,1 P10,2 ... P10,10

 =


1 0 ... 0
0 1 ... 0
...

...
... 0

0 0 ... 0.93765



COM cost of overhaul (£) COM = 207, 480
CSM cost of service (£) CSM = 1, 920
TC time length of contracted

period (weeks)

TC = 20

T time length of

maintenance planning

period (weeks)

T = 50

OH time length of overhaul

(week)

OH = 1

SH time length of service

(week)

SH = 1

RS sales price (per unit of

electricity) (£)

RS = 3, 780

RP penalty price (per unit of

electricity) (£)

RP = 1, 134

Table 4.2: PCM approach: parameter values

state 1, maintainers are recommended to apply no maintenance; the expected value (£)

is 27561445.32.

Myopic approach: mathematical model and derived solutions

The mathematical model derived based on the myopic approach is similar to the

mathematical model derived above based on the PCM approach (and we choose not to

repeat the parameter values here), with the only difference here the maintenance planning

period T = 20 (T = 50 above in PCM approach).

For the myopic approach, the derived decisions (on maintenance choice) and the loss

of expected value (compared with the optimal decision derived from PCM approach) for

each potential initial unit state are listed in Table A.3 in Appendix A.2. For example,

for initial unit state indexed as 211 (see Table A.1 in Appendix A.1 for the meaning

of the unit state indexing), the myopic approach recommends maintainers to apply no

maintenance to any mill but the optimal choice actually would be applying overhaul to
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Maintenance choice index Meaning (see Table 4.1 for reference to mill state index)
1 Applying no maintenance to any mill in the unit
2 Applying service to a mill in mill state 2
3 Applying service to a mill in mill state 3
4 Applying service to a mill in mill state 5
5 Applying service to a mill in mill state 6
6 Applying service to a mill in mill state 8
7 Applying service to a mill in mill state 9
8 Applying overhaul to a mill in mill state 1
9 Applying overhaul to a mill in mill state 2
10 Applying overhaul to a mill in mill state 3
11 Applying overhaul to a mill in mill state 4
12 Applying overhaul to a mill in mill state 5
13 Applying overhaul to a mill in mill state 6
14 Applying overhaul to a mill in mill state 7
15 Applying overhaul to a mill in mill state 8
16 Applying overhaul to a mill in mill state 9

Table 4.3: PCM approach: action space

Figure 4.4: Mill state (condition, performance) transition diagram
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a mill that is in the mill state indexed as 1 (see Table 4.1 above for the meaning of the

mill state indexing); the expected loss of value is 38.07% (based on the expected values of

the two maintenance choices and the expected values are both computed from the model

derived based on the PCM approach).

As shown in Table A.3, compared with the PCM approach, the myopic approach

shows a strong tendency to avoid costly but actually necessary maintenance choices (for

some initial unit states, the optimal choice of service is replaced by no maintenance, and

the optimal choice of overhaul is replaced by either service or no maintenance), and the

expected loss of value ranges from 0% to 39.96% for the potential initial unit states.

Deriving low quality sub-optimal decisions (as illustrated here in the toy-size problem)

can be a common issue for the myopic approach, as (discussed in Section 2.2.4.3) such

approach usually cannot effectively capture the full benefits of expensive (in terms of

monetary value and/ or time cost) maintenance choices.

Perfect correlation approach: mathematical model and derived solutions

The same as in the PCM approach, here the condition of a mill is categorised into

four levels and the performance of a mill is categorised into three levels (readers can refer

to the meaning of each such categorised level above in the PCM approach). However,

following the basic assumption “condition and performance are perfectly correlated”, the

perfect correlation approach is limited to coarsely modelling the toy-size problem as if the

performance deterioration is perfectly linked to condition deterioration. In other words,

in the mathematical model here, each condition level can only be associated with one

performance level, rather than multiple performance levels. We further index all potential

mill state and describe the corresponding production rate as shown in Table 4.4.

Here we still choose to build the mathematical model by following the format defined

in Equation (2.3) (see Section 2.2.4.3). Note there exist other (perhaps more succinct)

modelling formats for the perfect correlation approach, and our choice here of using the

same format as defined in Equation (2.3) aims at helping readers focus on the loss of
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modelling accuracy if one chooses to follow the perfect correlation approach (in comparison

to the PCM approach) for the toy-size problem.

Here we specify the parameter values of the model: the state space contains 20 unique

states at the unit level (see Table A.4 in Appendix A.3 for specification); the probability

of state transition at the individual mill level is given in Table 4.5; the maintenance

choices at the individual mill level are listed and indexed in Table 4.6; the values of other

parameters (the time length and the cost of overhaul, the sales price and the penalty cost

per unit of demand) remain the same as PCM approach above in Table 4.2 and we choose

not to repeat them here in Table 4.5. Note as illustrated by the difference between 4.3

above from PCM approach and Table 4.6 here, the perfect correlation approach cannot

effectively model maintenance choices that are mostly effective at improving performance

but not effective on condition (these maintenance choices are services in this toy-size

problem). In other words, the coarse mathematical model derived based on the perfect

correlation approach risks overlooking an important type of maintenance choices from

real-life, which is a common issue to the perfect correlation approach.

Mill state index Meaning (condition, performance) Weekly production

rate (in terms of

standard units of

demand) at normal

work-rate
1 (failed, offline) 0
2 (poor, reduced performance) 60
3 (good, full performance) 80
4 (new, full performance) 80

Table 4.4: PC approach: different mill states

Parameter Meaning Parameter value

PM Mill state transition

matrix under normal

work-rate and no

maintenance

 P1,1 P1,2 P1,3 P1,4
P2,1 P2,2 P2,3 P1,4
P3,1 P3,2 P3,3 P3,4
P4,1 P4,2 P4,3 P4,4

 =

 1 0 0 0
0.013 0.987 0 0

0 0.013 0.987 0
0 0 0.013 0.987



Table 4.5: PC approach: parameter values
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Maintenance choice index Meaning (see Table 4.4 for reference to mill state index)
1 Applying no maintenance to any mill in the unit
2 Applying overhaul to a mill in mill state 1
3 Applying overhaul to a mill in mill state 2
4 Applying overhaul to a mill in mill state 3

Table 4.6: PCM approach: action space

For the perfect correlation approach, the derived decisions (on maintenance choice)

and the loss of expected value (compared with the optimal decision derived from PCM

approach; note the comparison is conducted based on mapping the coarse state space

and coarse action space of the perfect correlation approach with the ones above from the

PCM approach) for each potential initial unit state are listed in Table A.5 and Table A.6

respectively in Appendix A.3. For example, for initial unit state indexed as 9 (in the

state space of PCM approach) the perfect correlation approach recommends applying no

maintenance to any mill but the optimal choice would actually be applying service to a

mill in mill state 8 (in the mill space of PCM approach; see Table 4.1 for the meaning of

the mill state indexing); the expected loss of value is 1.98%.

Based on Table A.6 in Appendix A.3, the maintenance policy derived from the perfect

correlation approach seems to relatively well approximate the optimal policy from the

PCM approach: the expected loss of value ranges from 0% to 4.41% for the potential initial

unit states, despite the perfect correlation approach completely overlooks an important

type of maintenance choices. However, such relatively good approximation effects of the

perfect correlation approach is confined to the specific parameters setting in this toy-size

problem; in other words, the perfect correlation approach may yield much lower quality

decisions in other problems. Future studies can conduct more in-depth sensitive analysis

on the input parameters in Table 4.2.

Deterministic wearing-off approach: mathematical model and derived solutions

Compared with the perfect correlation approach above, here the deterministic wearing-

off approach further assumes that production has deterministic wearing-off effects on
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machines. In more details, given that the mill condition is categorised into several discrete

levels (rather than modelled as a continuous variable) in this toy-size problem, the mill

condition is assumed to stay at the same level for a fixed time period with probability

1 and then the mill condition would deteriorate by one level immediately after the fixed

time period with probability 1 (note this means the mathematical model derived here

would be even more coarse compared to the one derived based on the perfect correlation

approach). Furthermore, given the “graceful condition deterioration” assumption above

in Section 4.1.4, the aforementioned fixed time period is the same for each mill condition

level.

The mathematical model derived based on the deterministic wearing-off approach is

similar to the mathematical model derived above based on the perfect correlation approach

(and we choose not to repeat the parameter values here), with the only differences here

(1) an extra parameter TX is introduced to denote the aforementioned fixed time period,

and here TX = 78 (that is 78 weeks; note in other problems the value of TX may vary

between different condition levels) and (2) the mill state transition matrix is updated as

shown in Table 4.7.

Parameter Meaning Parameter value

PM1 Mill state transition

matrix under normal

work-rate and no

maintenance (before

reaching TX)

 P1,1 P1,2 P1,3 P1,4
P2,1 P2,2 P2,3 P1,4
P3,1 P3,2 P3,3 P3,4
P4,1 P4,2 P4,3 P4,4

 =

 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


PM2 Mill state transition

matrix under normal

work-rate and no

maintenance (when

reaching TX)

 P1,1 P1,2 P1,3 P1,4
P2,1 P2,2 P2,3 P1,4
P3,1 P3,2 P3,3 P3,4
P4,1 P4,2 P4,3 P4,4

 =

 1 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0



Table 4.7: Deterministic wearing-off approach: parameter values

Regarding the deterministic wearing-off approach, the derived decisions (on mainten-
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ance choice) and the loss of expected value (compared with the optimal decision derived

from PCM approach; note the comparison is conducted based on mapping the coarse

state space and coarse action space of the deterministic wearing-off approach with the

ones above from the PCM approach) for each potential initial unit state are listed in

Table A.7 and Table A.8 respectively in Appendix A.4. For example, for initial unit state

indexed as 38 (in the state space of PCM approach) the deterministic wearing-off approach

recommends applying no maintenance to any mill but the optimal choice actually would

be applying overhaul to a mill in mill state 5 (in the mill space of PCM approach; see

Table 4.1 for the meaning of the mill state indexing); the expected loss of value is 2.19%.

As shown in Table A.8 (in Appendix A.4), the expected loss of value for the determ-

inistic wearing-off approach ranges from 0% to 9.94% for the potential initial unit states,

which is worse compared with the results from the perfect correlation approach above.

Furthermore, by comparing Table A.8 (in Appendix A.4) with Table A.6 (in Appendix

A.3), the deterministic wearing-off approach shows a stronger tendency to avoid bene-

ficial preventive maintenance choices compared with the perfect correlation approach,

which can be a common issue for deterministic wearing-off approach: because the ap-

proach additionally assumes the machine system would not deteriorate for a fixed time

period, the resulted maintenance policy would be more likely to avoid beneficial preventive

maintenance choices during the fixed time period.

Conclusion of toy-size problem case studies

In this section we compare the numerical performance between different approaches

in a simplified toy-size problem. As demonstrated in the numerical tests, the more soph-

isticated PCM approach helps derive a more accurate mathematical model and a better

quality (in terms of total costs/benefits) maintenance policy compared with the the other

approaches.

Note in this simplified toy-size problem we only compare the numerical performance
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between different approaches on maintenance decision making, and their performance on

choosing the operators’ decision regimes is not tested yet. It is reasonable to assume the

PCM approach would also yield better results than the other approaches on choosing

the operators’ decision regimes, and more advanced case studies can be conducted in the

future research to test the assumption.

4.2 Three-stage hybrid MDP model

In this section we apply the performance-centred maintenance approach from Chapter 2

to the full-size case study described above in Section 4.1. The essence of such application

is scaling up the existing mathematical model of the maintenance approach, as previously

discussed in Section 4.1.3.

The optimal decision making for the case study (see Section 4.1.4) is potentially very

complex, and therefore here we additionally combine the performance-centred mainten-

ance approach with a heuristic decomposition method in the modelling work for the case

study, in order to mitigate the complexity of the resulted mathematical model. Below in

Section 4.2.1 we explain the main idea of the decomposition method and the framework

about how to integrate such decomposition method into the performance-centred main-

tenance approach, and additionally we discuss how to adapt the decomposition method

for other cases of interest; then in Section 4.2.2 we present the mathematical model.

4.2.1 Decomposition method and modelling framework

In this study we focus on maintenance planning problems with an infinite planning-

horizon, and the resulted mathematical model can be easily modified for finite planning-

horizon problems. Under our reconstructed performance-centred maintenance approach

(see Chapter 2), the infinite maintenance planning period is split into two parts: con-

tracted period and non-contracted period (as discussed in Section 2.2.1), the time-lengths
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of which are finite and infinite respectively. The decomposition method applies to the

non-contracted period.

Below we first focus on decomposing the maintenance decision making in the non-

contracted period, and then we discuss how to integrate the decomposition method into

the performance-centred maintenance approach to model the complete maintenance plan-

ning problem.

4.2.1.1 Two-timescale decomposition method

For the non-contracted period, we reduce the complexity of optimal decision making for

the maintainers by further splitting the decision making into two parts: short-term part

and long-term part. For the short-term part of the non-contracted period, we shall still

accurately model the decision making problem; for the rest (long-term part) of the non-

contracted period, we only consider and model high-level maintenance decision making

by assuming the maintenance resources are distributed evenly in the power plant at both

the unit level and the mill level in the long-term.

Deterministic rotating schedules

More specifically speaking, the overhaul crew is assumed to operate on a deterministic

rotating schedule such that (1) from the perspective of the unit level, the overhaul crew

visits all the units in the power plant one by one in turn repeatedly and (2) from the

perspective of the mill level, the overhaul crew visits all the mills in the power plant one

by one in turn repeatedly. Here is a numerical example of such deterministic rotating

schedule: suppose the power plant has two units (indexed as unit 1 and unit 2) and each

unit has two mills (indexed as mill 1 and mill 2 in each unit) and an overhaul action

consumes five weeks, then the overhaul crew would firstly spend five weeks at mill 1 in

unit 1, then five weeks at mill 1 in unit 2, then five weeks at mill 2 in unit 1, then five

weeks at mill 2 in unit 2, and then the overhaul crew returns to mill 1 in unit 1 and repeats

the whole process. Furthermore, the service crew is also assumed to operate on a similar
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rotating schedule such that the service opportunity is evenly distributed at both the unit

level and the mill level, the same as the even distribution of the overhaul opportunity.

The rotating basis assumptions above are based on the following hypothesis: from

the beginning of the non-contracted period, the maintenance resources would be relat-

ively concentrated on the units/mills with relatively worse initial states, while the other

units/mills with relatively better initial states receive less frequent maintenance; since all

the units/mills are identical in terms of their physical structure in the power plant, such

predisposed maintenance resources allocation would gradually bring the all the units/mills

to a probabilistic equilibrium where each unit/mill is supposed to keep receiving nearly

the same frequency of maintenance.

Based on such rotating schedule assumptions, in the long-term part of the non-

contracted period, each mill is expected to wait for the same amounts of time until the

corresponding maintenance crews return. As a result, we can consider the maintenance of

a single generic mill which represents each of the K·N mills in the power plant; obviously,

the generic mill does not exclusively occupy the maintenance resources in the power plant

and instead it shares the maintenance crews with other mills based on the corresponding

rotating schedules the same as any other mill in the power plant does. Focusing on a

generic mill enables us to decompose the decision making problem from the power plant

level to the mill level, which leads to a large scale of reduction in terms of the size of both

the state space and action space in the ultimate mathematical model.

Additional permutation rule

Given such decomposition method, the modelling scope for maintenance decision mak-

ing in the long-term would be focused on one individual generic mill, and therefore it is

important to avoid the potential issue that one maintenance crew takes the generic mill

offline for maintenance while at the same time the other maintenance crew takes another

mill offline from the same unit for maintenance: as discussed in Section 4.1.1, mainten-

ance engineers in the power plant developed a reasonable rule of thumb of not taking more
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than one mill offline in a unit for maintenance due to the concern of overly reducing the

production capacity, based on the observed average electricity supply level in history. In

our decomposition method, we shall further adopt such high-level insight that maintainers

obtained in practice.

Hence we introduce an additional permutation rule here for the service rotating sched-

ule, as part of the decomposition method: once the overhaul crew rotates to the unit

which the generic mill belongs to (following the deterministic overhaul rotating schedule

above) and visits a mill that is different from the generic mill, any service opportunity

for the generic mill originally assigned by the deterministic service rotating schedule (as

explained above) should be shifted immediately behind the overhaul time-window (which

contains OH time-steps). Such permutation rule assigns the priority to overhaul oppor-

tunities in a unit because the overhaul opportunity is much less frequent for a unit and

overhaul improves the expected lifetime of a mill (which a service cannot achieve). Here

is a numerical example of such permutation rule: suppose the overhaul crew rotates to

a unit in every 20 weeks since its last arrival at the unit and would stay at the unit for

5 weeks before rotating to the next unit, then any service opportunity (assigned by the

deterministic service rotating schedule) for the generic mill should be shifted immediately

behind such 5 weeks overhaul time-window as long as the service time-window for the

generic mill overlaps with the overhaul time-window for any other mill in the same unit.

Since the maintenance decision making in the non-contracted period is decomposed

based on two different timescales (i.e. short-term and long-term), hence the name two-

timescale decomposition method. The approximation effects of the decomposition method

are mitigated by its rolling horizon nature as soon as the maintenance decision making

enters the short-term part of the model.

Adapting the two-timescale decomposition method for other case studies

Note that the decomposition method is an optional modelling choice rather than a

compulsory heuristic. The decomposition method enables one to reduce the size of both
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state space and action space in the part of the mathematical model which relates to the

long-term maintenance decision making, which as a result reduces the total computational

efforts required to solve the mathematical problem: such reduction effects can be very

useful for case studies which involve large numbers of assets (see terminology in Section

4.1.3) such as our power plant case study, because (given the way the machine state

is modelled in Chapter 2) the size of state space increases exponentially with the total

number of assets and the size of action space increases linearly with the total number of

assets in a company.

Such decomposition method however inevitably sacrifices the accuracy of the mathem-

atical model, compared with the actual maintenance planning optimisation problem that

is required to be solved in practice. We therefore recommend researchers and practitioners

compare the total computational efforts required to solve the mathematical problem with

and without such decomposition method in their own cases and benchmark against either

the corresponding thresholds discussed in Section 2.4 or their own criteria, such that the

best decision can be made on whether the decomposition method is necessary for their

cases.

Additionally, the decomposition method is based on the assumption of even mainten-

ance resources distribution in the power plant, and the even distribution assumption itself

is based on the fact that the physical structure is identical at both the unit level and the

mill level in the power plant. In other case studies a similar identical structure may not

hold and researchers/practitioners need to accordingly adjust the deterministic rotating

schedules of the maintenance crews for their cases, because the frequency of receiving

maintenance resources varies between non-identical production systems/assets in the long

term.

Furthermore, as part of the decomposition method, the permutation rule is based on

the high-level insight (i.e. avoid taking more than one mill offline for maintenance in a

unit) from the maintainers in the power plant and the insight itself is based on the observed
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electricity supply level contracted in history. Researchers/practitioners are recommended

to adjust the maximum number of assets that can be taken offline from a production

system based on the average production supply level contracted in history in their own

cases.

Moreover, both the decomposition method and the permutation rule have room for

improvement in our future studies: the decomposition method can further incorporate

an extra time-window for emergency maintenance after every maintenance crew rotation

cycle, and the time-length of such extra time-window can be determined based on the

expected frequency of asset failures or the expected frequency of assets states deteriorating

to certain undesirable levels. As for the permutation rule, it can further consider the

expected occurrence frequency of the situations where more than one mill are offline

already in a unit due to condition/performance failure and thus it is reasonable to perform

maintenance on more than one mill simultaneously in a unit; meanwhile the rule can also

be improved to consider the expected occurrence frequency of the situations where the

overhaul rotates to a mill (different from the generic mill) in a unit but the mill is in a

relatively good state and thus it does not require overhaul and therefore it is unnecessary

to shift the service opportunity of the generic mill.

4.2.1.2 Modelling framework

After introducing the decomposition method above which focuses on the non-contracted

period, here we discuss the framework about how to model the complete optimal

maintenance planning problem through integrating the decomposition method into the

performance-centred maintenance approach.

We segment the entire maintenance planning period into three stages as shown in

Figure 4.5: (1) the contracted period where operators may adjust the work-rate to mitig-

ate/avoid the potential penalty cost; (2) the short-term part and (3) the long-term part

of the non-contracted period where the work-rate is assumed to stay at a normal level
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(as explained in Section 2.2.1) and potential loss of sales can happen. We model the

complete optimal maintenance planning problem by applying the MDP model from the

performance-centred maintenance approach as follows: for Stage (1) and Stage (2), we

shall scale up the MDP model to the plant level; for Stage (3) we shall modify the MDP

model at the mill level, based on the decomposition method discussed above.

Since we segment the entire maintenance planning period into three stages, hence

the name three-stage hybrid MDP model. Below we present the mathematical model in

Section 4.2.2.

4.2.2 Mathematical model

The mathematical model for optimal decision making is comprised of three major com-

ponents and two interface components, where the three major components correspond

to the aforementioned three stages of the entire maintenance planning period and the

two interface components aggregate the three major components together to capture the

complete optimal maintenance planning problem.

We work backwards and introduce first the major component that corresponds to Stage

(3) which involves only one representative mill. Next, we present the major component

that corresponds to Stage (2) and then we provide the major component for Stage (1);

note each such major component addresses all K·N mills at the plant level. Finally, we

explain the two interface components. Note such backward introducing sequence for the

major components aims at providing an easier understanding of the mathematical model

for readers; we shall however solve the mathematical problem in a slightly different order

and we shall specify such problem solving order and methods in Section 4.3.

We now introduce some mathematical notations for the entire maintenance planning

period: the time-length of the entire maintenance planning period is denoted as T , and T

is infinite ( T →∞ ); the time-length of Stage (1), i.e. the contracted period, is denoted

as TC ; the time-length of Stage (2), i.e. the short-term part of the non-contracted period,
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is denoted TS; the time-length of Stage (3), i.e. the long-term part of the non-contracted

period, is denoted TL, and TL is infinite (TL→∞). The relationship between the variables

is illustrated in Figure 4.5.

Figure 4.5: Decomposition of infinite planning-horizon T

4.2.2.1 MDP model for Stage (3)

In the long-term part of the non-contracted period, i.e. Stage (3), we apply the two-

stage decomposition method discussed in Section 4.2.1: we consider the maintenance of

a single generic mill which represents each of the K·N mills in the power plant, and the

maintenance crews follow the deterministic rotating schedules and permutation rule as

discussed in Section 4.2.1.

The overhaul crew spends OH time-steps at an mill before moving to the next one in

the plant. Therefore in Stage (3) the generic mill on average needs to wait for K·N ·OH

time-steps until the overhaul crew returns since its last arrival. As a result, we choose

to further segment Stage (3) into infinite number of successive time blocks each of which

contains K·N ·OH time-steps, as illustrated in Figure 4.5. The sequence of maintenance

actions for the generic mill in every such time block is as follows: overhaul/service/no

maintenance at the beginning of the time block, and service/ no maintenance at each

following time-step in the time block. According to the deterministic service crew rotation

schedule, the service opportunity occurs to the generic mill in every K·N time-steps and

the opportunity would be further shifted based on the permutation rule.
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Here we provide a numerical example for illustration: suppose the power plant contains

four units and each unit consists of eight mills and an overhaul action consumes five weeks

(i.e. K = 4, N = 8 and OH = 5); Stage (3) is segmented into successive time blocks

each of which contains 160 weeks; the overhaul opportunity rotates to the generic mill

at the fist week of every such time block, and the permuted service opportunity rotates

to the generic mill at the following weeks in each such time block {1, 33, 66, 97, 129}; at

the first week of each such time block, the maintainers need to choose between overhaul

and service and no maintenance for the generic mill, and then the maintainers need to

choose between service (if the service opportunity is available) and no maintenance for the

generic mill at each remaining week after the chosen initial maintenance action in each

time block.

The maintenance planning problem in Stage (3) for the generic mill can be summarised

as follows: at the first time-step of every K·N ·OH time-step block, the maintainers need

to choose between overhaul, service and no maintenance; then at each remaining time-step

(in a time block) after the selected initial maintenance alternative, the maintainers need

to choose between service (if the service opportunity occurs) and no maintenance. Below

we model the optimal decision making by MDPs, based on adjusting the decomposed

Bellman Equation (3.7) and Equation (3.8) from Section 3.3.

It is very important to note that for Stage (3) in the mathematical model, we only

keep track of which time-step it is within a given K·N ·OH time-step block, as illustrated

in Figure 4.5, rather than specifying which time-step it is since the beginning of Stage

(3). In mathematical notation, let h denote the time-step in any such given time block.

Here we introduce some additional mathematical notations to facilitate the modelling

work in Stage (3): let xM denote the state of the generic mill and let SM denote the set

of all potential mill states; let HSM denote the set of the time-steps within a K·N ·OH

time-step block, where the maintenance alternatives include service; let NM and SM and

OM respectively denote no maintenance and service and overhaul; let V ∗h (xM) denote the
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optimal value for mill state xMεSM at time-step h, and let V a
h (xM) denote the expected

value of applying maintenance action a to a given mill state xMεSM at time-step h (see

the definition of optimal value and expected value in Section 3.3.2 ). Below we provide

the mathematical model for Stage (3):

For 1 ≤ h ≤ K·N ·OH, if h = 1 the optimal value V ∗h (xM) for ∀xM is defined in

Equation (4.1)

V ∗h (xM) = max
aε{NM,SM,OM}

{V a
h (xM)}, forh = 1, (4.1)

and if h > 1 the optimal value V ∗h (xM) for ∀xM is defined in Equation (4.2)

V ∗h (xM) :=


max

aε{NM,SM}
{V a

h (xM)}, forh > 1 andh ∈ HSM ,

V a=NM
h (xM), forh > 1 andh /∈ HSM ,

(4.2)

where the expected value V a
h (xM) in Equation (4.1)-(4.2) for a = NM and a = SM and

a = OM is defined in Equation (4.3)-(4.5) respectively

V a
h (xM) :=



EDh{RNC(xM , a,Dh)}+ γ
∑

yM εSM
PNC(yM |xM , a)V ∗h+1(yM),

for a = NM,h < K·N ·OH,

EDh{RNC(xM , a,Dh)}+ γ
∑

yM εSM
PNC(yM |xM , a)V ∗1 (yM),

for a = NM,h = K·N ·OH,

(4.3)

V a
h (xM) :=


CSM + γV ∗h+1(yM |xM , a), for a = SM, h < K·N ·OH,

CSM + γV ∗1 (yM |xM , a), for a = SM, h = K·N ·OH,
(4.4)

V a
h (xM) = COM + γOHV ∗h+OH(xOMM ), for a = OM,h = 1, (4.5)
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where in Equation (4.3) Dh denotes the demand at time-step h; RNC denotes the reward

function; PNC denotes the state transition probability; V ∗1 (yM) denotes the optimal value

of mill state yM at the first time-step of a K·N ·OH time-step block and V ∗1 (yM) is

defined in Equation (4.1); in Equation (4.4) CSM denotes the fixed service maintenance

cost; in Equation (4.5) COM denotes the fixed overhaul maintenance cost, γOH denotes

the one time-step discount ratio γ raised to the OH − th power, and xOMM denotes the

fixed mill state which a mill is restored to after overhaul.

For the MDP problem modelled above for Stage (3), the optimal maintenance al-

ternative and the optimal value for any given mill state xM and any time-step h in any

K·N ·OH time-step block are derived by solving Equation 4.1 or Equation 4.2, depending

on whether h = 1 or h > 1 within the K·N ·OH-time-step block.

4.2.2.2 MDP model for Stage (2)

For the short-term part of the non-contracted period, i.e. Stage (2), we model the main-

tenance decision making problem at the plant level. Therefore here we explicitly consider

the state of the entire plant. Here we highlight the difference of terminology between

Stage (3) and Stage (2): in Stage (3) we use the term maintenance alternative where an

alternative is either applying overhaul or service or no maintenance to the generic mill; in

Stage (2) we instead use the following terms: overhaul alternative and service alternative

where an alternative means applying overhaul or service respectively to a specific mill in

the plant (for example apply service to the mill which is indexed as mill 4 in the unit

which is indexed as unit 2 in the power plant, or initiate overhaul for mill 3 in unit 1 in

the power plant). Note at a time-step in Stage (2), multiple overhaul alternatives and

multiple service alternatives may exist.

The maintenance planning problem in Stage (2) can be summarised as follows: for

each time-step in Stage (2), if the overhaul crew is idle, choose between

• applying no maintenance to any mill in the plant and
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• applying a specific service alternative and

• initiating a specific overhaul alternative and

• applying a specific service alternative and initiating a specific overhaul alternative;

otherwise, if the overhaul crew is busy (i.e. already engaged in applying overhaul to a

mill), choose between

• applying no additional maintenance to any mill in the plant and

• applying a specific service alternative.

Notations in Stage (2)

Here we introduce some mathematical notations to facilitate the modelling work in

Stage (2): let xP denote the state of the plant, where xP is a vector comprised of the states

of all the units in the plant, and the state of a unit is furthermore a vector consisting of

the states of all the mills in the unit; let SP denote the set of all potential plant states; let

ts denotes the time-step in Stage (2), and ts ≤ TS; let TOM to denote the last time-step in

Stage (2) where overhaul can be initialised, and TOM = TS−OH+1 which ensures the last

potential overhaul planned in Stage (2) does not span into Stage (3); let ohb,ts denote how

many time-steps an undergoing overhaul action b has lasted at the beginning of time-step

ts, and we shall abbreviate ohb,ts as oh hereafter and 1 ≤ oh < OH; we introduce ocits =

1/0 to indicate the overhaul crew is idle/engaged respectively at the beginning of time-

step ts before any maintenance decision is made at that time step, and we shall abbreviate

ocits as oci hereafter and oci is initialised as 0 for Stage (2) and the value of oci changes

throughout Stage (2) depending on whether the overhaul crew is busy or idle; let NAM

denote no additional maintenance while overhaul is being performed, and let NM denote

no maintenance; let a denote arbitrary service alternative and let b denote arbitrary

overhaul alternative; let ASM(xP ) denote the set of all potential service alternatives for

state xP , and let AOM(xP ) denote the set of all potential overhaul alternatives for state
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xP , and furthermore let SMb denote the service alternative which would conflict with

given overhaul alternative b (meaning both SMb and b aim at maintaining the same mill),

and let ASM(xP )/{SMb} denote the set of all potential service alternatives for state xP

excluding the service alternative which conflicts with given overhaul alternative b, and

hereafter we shall abbreviate ASM(xP ) and AOM(xP ) and ASM(xP )/{SMb} respectively

as ASM and AOM and ASM/{SMb}; let V ∗ts,oci=0(xP ) denote the optimal value for plant

state xP εSP at time-step ts for given overhaul crew status oci = 0 at the beginning of

time-step ts, and let V ∗ts,oci=1(xP , b, oh) denote the optimal value for plant state xP εSP at

time-step ts given that the undergoing overhaul alternative b has lasted oh time-steps at

the beginning of time-step ts; let V a
ts(xP ) and V b

ts(xP ) and V a,b
ts (xP ) respectively denote the

expected value of (i) applying service alternative a and (ii) initiating overhaul alternative

b and (iii) both applying service alternative a and initiating overhaul alternative b to a

given plant state xP at time-step ts, and let V a
ts(xP , b, oh) denote the expected value of

applying service alternative a to plant state xP at time-step ts given that the undergoing

overhaul alternative b has lasted oh time-steps at the beginning of time-step ts.

Mathematical model for Stage (2)

For ts ≤ TS:

if oci = 0 and ts ≤ TOM (meaning overhaul can be potentially initiated)

V ∗ts,oci(xP ) = max{ max
a∈{NM,ASM}

{V a
ts(xP )}, max

b∈AOM
{V b

ts(xP )},

max
a∈ASM/{SMb},b∈AOM

{V a,b
ts (xP )}}, for oci = 0, ts ≤ TOM , (4.6)

and if oci = 0 and ts > TOM (meaning no overhaul should be initiated)

V ∗ts,oci(xP ) = max
a∈{NM,ASM}

{V a
ts(xP )}, for oci = 0, ts > TOM , (4.7)
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and if oci = 1 (meaning the overhaul crew is engaged)

V ∗ts,oci(xP , b, oh) = max
a∈{NAM,ASM/{SMb}}

{V a
ts(xP , b, oh)}, for oci = 1, oh < OH, b ∈ AOM

(4.8)

where the expected value V a
ts(xP ) and V b

ts(xP ) and V a,b
ts (xP ) and V a

ts(xP , b, oh) in Equation

(4.6)-(4.8) for a ∈ {NM,ASM} and b ∈ AOM and a ∈ ASM/{SMb}, b ∈ AOM and

b ∈ AOM , a ∈ {NAM,ASM/{SMb}} is defined in Equation (4.9)-(4.12) respectively

V a
ts(xP ) = EDts{RNC(xP , a,Dts)}+ γ

∑
yP εSP

PNC(yP |xP , a)V ∗ts+1,oci=0(yP ),

for a ∈ {NM,ASM}, (4.9)

V b
ts(xP ) = EDts{RNC(xP , b,Dts)}+ γ

∑
yP εSP

PNC(yP |xP , b)V ∗ts+1,oci=1(yP , b, oh = 1),

for b ∈ AOM , (4.10)

V a,b
ts (xP ) = EDts{RNC(xP , a, b,Dts)}+ γ

∑
yP εSP

PNC(yP |xP , a, b)

V ∗ts+1,oci=1(yP , b, oh = 1), for a ∈ ASM/{SMb}, b ∈ AOM , (4.11)
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V a
ts(xP , b, oh) =



EDts{RNC(xP , a, b,Dts)}+ γ
∑

yP εSP
PNC(yP |xP , a, b, oh)

V ∗ts+1,oci=1(yP , b, oh+ 1),

for 1 ≤ oh < OH − 1, b ∈ AOM , a ∈ {NAM,ASM/{SMb}},

EDts{RNC(xP , a, b,Dts)}+ γ
∑

yP εSP
PNC(yP |xP , a, b, oh)

V ∗ts+1,oci=0(yP ),

for oh = OH − 1, b ∈ AOM , a ∈ {NAM,ASM/{SMb}}.

(4.12)

where in Equation (4.9)-(4.12) Dts is a vector that consists of the output demand for each

unit in the power plant at time-step ts; RNC denotes the reward function; PNC denotes the

state transition probability for the plant state and Section 2.2.3 specifies how to derive

such transition probabilities; in Equation (4.12) oh = OH − 1 means the undergoing

overhaul action b has lasted OH − 1 time-steps at the beginning of time-step ts, and such

overhaul action will be finished at the end of time-step ts and hence the overhaul crew

will be idle at the beginning of the next time-step (hence oci = 0 for ts+ 1).

For the MDP problem modelled above for Stage (2), the optimal maintenance decision

and the optimal value for any given plant state xP and any time-step ts are derived by

solving Equation (4.6) or Equation (4.7) or Equation (4.8), depending on the value of oci

(i.e. whether oci = 0 or oci = 1 ) and ts (i.e. whether ts ≤ TOM or ts > TOM).

4.2.2.3 MDP model for Stage (1)

In this section, we focus on modelling the optimal decision making in the contracted

period, i.e. Stage (1), of the maintenance planning problem. Given the discussion in

Section 4.2.1 regarding the mathematical modelling framework for the entire mainten-

ance planning problem, it is easy to see that the modelling work for Stage (1) is very

similar to the modelling work in Stage (2), and the main difference include: in Stage (1)
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the mathematical model should capture that the operators would potentially adjust the

work-rate of the machines in order to meet the contracted supply; in Stage (1) penalty

cost occurs if the contracted supply is not fulfilled. Here we shall reuse the majority of

the mathematical notations and mathematical model from Section 4.2.2.2, and the new

notations introduced only for Stage (1) are given below.

We introduce tc to denote the time-step since the beginning of Stage (1), and tc ≤ TC;

we introduce RC to denote the reward function and introduce PC to denote the plant state

transition probability in Stage (1), and compared with their counterparts in Stage (2) (i.e.

RNC and PNC respectively) they furthermore depend on the work-rate level of each unit

in the plant, and additionally here RC describes penalty cost for unfulfilled contracted

supply; we introduce wrtc to denote the work-rate levels in the power plant, where wrtc

is a vector consists of the work-rate of each unit in the power plant at time-step tc.

We reuse TOM from Section 4.2.2.2 to denote the last time-step in Stage (1) where

overhaul can be initialised, but for Stage (1) we update the value of TOM as TOM =

TC−OH+1 which ensures the last potential overhaul planned in Stage (1) does not span

into Stage (2). Regarding the other notations that we reuse from Section 4.2.2.2, their

domain meaning is simply updated from the context of Stage (2) to the context of Stage

(1) and we shall not further explain.

Mathematical model for Stage (1)

For tc ≤ TC :

if oci = 0 and tc ≤ TOM (meaning overhaul can be potentially initiated)

V ∗tc,oci(xP ) = max{ max
a∈{NM,ASM}

{V a
tc(xP )}, max

b∈AOM
{V b

tc(xP )},

max
a∈ASM/{SMb},b∈AOM

{V a,b
tc (xP )}}, for oci = 0, tc ≤ TOM , (4.13)

and if oci = 0 and tc > TOM (meaning no overhaul should be initiated)
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V ∗tc,oci(xP ) = max
a∈{NM,ASM}

{V a
tc(xP )}, for oci = 0, tc > TOM , (4.14)

and if oci = 1 (meaning the overhaul crew is engaged)

V ∗tc,oci(xP , b, oh) = max
a∈{NAM,ASM/{SMb}}

{V a
tc(xP , b, oh)}, for oci = 1, oh < OH, b ∈ AOM

(4.15)

where the expected value V a
tc(xP ) and V b

tc(xP ) and V a,b
tc (xP ) and V a

tc(xP , b, oh) in Equation

(4.13)-(4.15) for a ∈ {NM,ASM} and b ∈ AOM and a ∈ ASM/{SMb}, b ∈ AOM and

b ∈ AOM , a ∈ {NAM,ASM/{SMb}} is defined in Equation (4.16)-(4.19) respectively

V a
tc(xP ) = EDtc{RC(xP , a,Dtc,wrtc)}+ γ

∑
yP εSP

PC(yP |xP , a,wrtc)V
∗
tc+1,oci=0(yP ),

for a ∈ {NM,ASM}, (4.16)

V b
tc(xP ) = EDtc{RC(xP , b,Dtc,wrtc)}+ γ

∑
yP εSP

PC(yP |xP , b,wrtc)

V ∗tc+1,oci=1(yP , b, oh = 1), for b ∈ AOM , (4.17)

V a,b
tc (xP ) = EDtc{RC(xP , a, b,Dtc,wrtc)}+ γ

∑
yP εSP

PC(yP |xP , a, b,wrtc)

V ∗tc+1,oci=1(yP , b, oh = 1), for a ∈ ASM/{SMb}, b ∈ AOM , (4.18)
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V a
tc(xP , b, oh) =



EDtc{RC(xP , a, b,Dtc,wrtc)}+ γ
∑

yP εSP
PC(yP |xP , a, b, oh,wrtc)

V ∗tc+1,oci=1(yP , b, oh+ 1),

for 1 ≤ oh < OH − 1, b ∈ AOM , a ∈ {NAM,ASM/{SMb}},

EDtc{RC(xP , a, b,Dtc,wrtc)}+ γ
∑

yP εSP
PC(yP |xP , a, b, oh,wrtc)

V ∗tc+1,oci=0(yP ),

for oh = OH − 1, b ∈ AOM , a ∈ {NAM,ASM/{SMb}}.
(4.19)

Regarding the MDP problem modelled above for Stage (1), the optimal maintenance

decision and the optimal value for any given plant state xP and any time-step tc are

derived by solving Equation (4.13) or Equation (4.14) or Equation (4.15), depending on

the value of oci (i.e. whether oci = 0 or oci = 1 ) and tc (i.e. whether tc ≤ TOM or

tc > TOM).

4.2.2.4 Interfaces between different stages

So far we separately modelled the optimal maintenance decision making in each of the

three stages of the maintenance planning problem, in Section 4.2.2.1-4.2.2.3 respectively.

Here we shall introduce the last components of the mathematical model: interfaces which

aggregate the three major components developed in Section 4.2.2.1-4.2.2.3 such that the

ultimate mathematical model can capture the impact of the decision making in a stage

on the later stage(s).

Interface between Stage (2) and Stage (3)

The maintenance decision and the plant state at the last time-step in Stage (2), i.e.

time-step TS, impact what state the plant evolves into at the next time-step and hence

influence the optimal value at that time-step, i.e. the first time-step in Stage (3). We

therefore define Equation (4.20) to capture the influence from Stage (2) to Stage (3):
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V ∗TS+1,oci=0(xP ) =
K∑
k=1

N∑
n=1

V ∗h=1(xM = xk,n | xP ), ∀xP (4.20)

where xk,n denotes the mill state of the mill which is indexed as mill n in the unit which

is indexed as unit k in the power plant.

Interface between Stage (1) and Stage (2)

Similarly, we define Equation (4.21) to capture the influence from Stage (1) to Stage

(2)

V ∗TC+1,oci=0(xP ) = V ∗ts=1,oci=0(xP ), ∀xP . (4.21)

With the two interface components developed, the entire mathematical model we built

above in Section 4.2.2 can approximately capture the impact of the decision making at an

earlier time-step on the decision making at every later time-steps up to the horizon of the

entire maintenance planning period. In other words, the three-stage hybrid MDP model

supports the optimal decision making for the complete maintenance planning problem of

the power plant case study.

The three-stage hybrid MDP model is built in the context of the power plant case;

such model can be relatively easily adapted for other cases which share the same hierarch-

ical structure (the structure is specified in Section 4.3); see discussion regarding model

generalisation in Section 4.2.1.

4.2.2.5 Inputs and outputs of the model

Here we further clarify (1) what input parameter values should be specified by practition-

ers when applying the three-stage hybrid MDP model and (2) what output results can be

expected after solving the mathematical problem.

As shown in Table 4.8, the PCM approach does not require impractical specifications

of input parameters at the plant level; instead the elicitation of complex input parameters
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is decomposed to the unit or mill level. Note that the formula expression of certain input

parameters (these are wr and Dt in Table 4.8) are case-based (as shown in the case studies

discussed in Section 4.1.4 and Chapter 5), and hence here we choose not to further discuss

their specific formula expressions.

Regarding the computation results of solving the three-stage hybrid MDP problem, as

shown in Table 4.9, given an operators’ decision regime, practitioners can derive an estim-

ate for the expected value of applying any maintenance action to the initial plant state; by

comparing such estimated expected values between different maintenance actions, practi-

tioners can then derive an estimate for the optimal maintenance action (to be applied to

the initial plant state) and an estimate for the associated optimal value. In mathematical

expression, the estimated optimal maintenance action is arg maxa∈A(XP )Q̄wr(XP , a, tc = 1 )

and the estimated associated optimal value is maxa∈A(XP )Q̄wr(XP , a, tc = 1 ). Additionally

practitioners can modify the input parameter (that is wr) for different operators’ decision

regimes and compare the aforementioned estimated optimal values to evaluate which op-

erators’ decision regime is approximately the optimal choice. In mathematical expression,

the estimated optimal operators’ decision regime is the one of which the estimated optimal

value is equal to maxwr(maxa∈A(XP )Q̄wr(XP , a, tc = 1 )). In summary, regarding the out-

put results, practitioners can (1) approximately identify the optimal operators’ decision

regime from available choices and also (2) estimate the optimal maintenance action and

the associated optimal value for the given initial plant state.

From the perspective of practitioners, the logic flow of applying the PCM approach

to facilitate their decision making can be summarised as Figure 4.6: (1) specify the input

parameters listed in Table 4.8, (2) implement the three-stage hybrid MDP model (for ex-

ample implementing in MATLAB), (3) apply certain heuristics (for example the heuristics

developed in Section 4.3) to solve the mathematical problem and (4) make maintenance

and production decisions based on the computation results as discussed above.
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Input parameter Meaning
T The maintenance planning period
TL The long-term part of the non-contracted period
Ts The short-term part of the non-contracted period
TC The contracted period
K The amount of units in the power plant
N The amount of mills per unit

HSM The set of the time-steps where the maintenance alternatives

include service in Stage (3) of the model; specified based on the

deterministic rotating schedules and permutation rule in Section

4.2.1.1.
wr The work-rate function that applies to any unit at any time-step

in Stage (1) of the model for a given operators’ decision regime
Dt The vector that consists of the demand (distribution) at

time-step ∀t ≤ T for unit (1, 2, ...,K)
SM The set of all potential mill states
AM The set of all potential maintenance actions at the individual

mill level
OH The amount of time-steps an overhaul action consumes
SH The amount of time-steps a service action consumes
CSM The service maintenance cost
COM The overhaul maintenance cost
RS The sales price per unit of supply
RP The penalty cost per unit of unfulfilled contracted supply in

Stage (1) of the model
PM Mill state transition matrix
γ One time-step discount ratio

XP for tc = 1 The initial plant state

Table 4.8: Inputs for three-stage hybrid MDP model

Computation results Meaning

Q̄wr(XP , a, tc = 1) for

∀ a ∈ A(XP ) given (XP , wr)

The estimate of expected value for applying any

maintenance action a to the given initial plant state

XP given a specified work-rate function wr

Table 4.9: Computation results of solving three-stage hybrid MDP problem

Figure 4.6: Logic flow of modelling and implementation
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4.3 Heuristics for the three-stage hybrid MDP prob-

lem

In order to solve the three-stage hybrid MDP problem for the case study, we shall apply a

set of (heuristic) methods to the MDP problem in a certain sequence as specified below.

We shall first apply the value iteration computation method (see Section 3.2) to the

small size MDP problem arising from Stage (3) of the case study (see the MDP model

in Section 4.2.2.1) and store the computational results in brute-force lookup tables. Such

exact computational results are fed to the large-size MDP models for earlier stages (i.e.

Stage (1) and Stage (2)) of the the case study via Equation (4.20) in Section 4.2.2.4. Then

we shall aggregate the large-size MDP problems arising from Stage (1) and Stage (2) of

the case study via Equation (4.21) into a single MDP problem, and apply Q-learning

(see Section 3.3) to the aggregated single MDP problem and additionally we shall use the

polynomial function method (see Section 3.4) to store the computational results for such

aggregated problem. Figure 4.7 illustrates the application scopes of such methods.

Figure 4.7: Methods application scopes

By applying the set of methods in such sequence to the three-stage hybrid MDP model

developed in Section 4.2, for arbitrarily given initial state of the three-stage hybrid MDP
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problem we hope to obtain a near-optimal policy which prescribes a near-optimal action

for each state the hybrid MDP model would potentially evolve into at each time-step

during the entire planning period; additionally we hope the computational time and data-

storage cost and ultimate data accuracy level are acceptable in practice for the three-stage

hybrid MDP problem (see discussion of corresponding benchmark thresholds in Section

2.3). We shall discuss the corresponding numerical test results in Chapter 5.

Regarding the value iteration and Q-learning computation methods, we have specified

them in Section 3.2 and Section 3.3 respectively, and their application to the three-stage

hybrid MDP problem is relatively straightforward. Hence we shall not extend the dis-

cussion here. Instead, in Section 4.3.1 we shall justify the choice of polynomial function

method for the aggregated MDP problem of Stage (1) and Stage (2) in the case study

and also specify how to apply such method to the power plant case study, and then we

shall generalise the context and extend the discussion to other case studies of interest; in

Section 4.3.2 we shall specify how such data-storage heuristic interacts with Q-learning.

4.3.1 Polynomial function method

The essence of the applying the polynomial function method to the power plant case

study is approximating the numerical relationship between the plant state and the ex-

pected value in the aggregated MDP problem by polynomial functions. More specifically

speaking, for each stage (i.e. Stage (1) or Stage (2)) in the aggregated MDP problem,

a separate polynomial function is defined to approximate such numerical relationship for

each combination of maintenance choice and time-step in the MDP problem. Each such

polynomial function contains a certain number of free parameters to be tuned; by tuning

we mean adapting the values of the free parameters such that the polynomial function

can yield acceptable value approximation quality in practice.

In this section we shall first focus the context to the power plant case study and

(i) justify the choice of the polynomial function method and (ii) specify the degree and
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independent variables of the polynomial functions and (iii) introduce a method to reduce

the number of free parameters in such functions and (iv) define such functions, and then

we shall generalise the context and (v) discuss whether and how to apply the polynomial

function method to other case studies of interest.

Justification for choosing the polynomial function method

The polynomial function method is chosen based on exploiting the background know-

ledge of the case study. In the hybrid MDP model of the case study, the plant state is a

vector comprised of the degradation condition and operational performance of each mill in

the power plant, and such condition/performance impacts the expected profit (i.e. the ex-

pected value modelled in the hybrid MDP model) by determining the lifetime/output-rate

of the corresponding mill (see the discussion about the case study background in Section

4.1). Furthermore, the numerical test below shows the numerical relationship between the

condition/performance and such average lifetime/output-rate follows concave patterns in

the case study, which supports the modelling choice of approximating the numerical rela-

tionship of interest by polynomial functions defined on the condition and performance of

each mill in the power plant.

The numerical test aforementioned is as follows: change the initial condition and

initial performance of a representative mill each from the lowest possible level to the

highest possible level, and accordingly check the values of two measures: (1) the average

lifetime of the mill and (2) the amount of output the mill contributes per unit of time;

then extrapolate such numerical relationships from the discrete condition and performance

measurement scales to continuous scales. The results are shown in Figure 4.8.

Independent variables and function degree

The independent variables in each such polynomial function are the conditions and

performance of all mills in the power plant: ck,n and pk,n for ∀ (k, n), where ck,n and pk,n

denote the condition and performance respectively for mill n in unit k (where n ≤ N and

k ≤ K; again, K denotes the total number of units in the power plant, and N denotes
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(a) Average lifetime (b) Output amount per time unit

Figure 4.8: Data patterns (normal work-rate level)

the number of mills per unit).

The trade-off in deciding the degree of the polynomial functions is as follows: if the

degree is too low, the value approximation quality would be undesirable; if the degree is too

high, the number of free parameters would be relatively large and the computational cost

of tuning them may be impractically high (see discussion on benchmark in Section 2.3). In

order to find a balance between the value approximation quality and the total number of

free parameters, we experimented from the minimum plausible function degree (which is 2,

given the concave data patterns aforementioned) and it already derives relatively accurate

approximation (we shall specify the numerical results in Chapter 5); we therefore choose

to use quadratic functions to approximate the numerical relationship for the power plant

case study.

Furthermore, since each unit in the plant has its separate supply contract and

the units cannot directly exploit each other’s potential extra production capacity

(as discussed in Section 4.1.2), we additionally choose to define each such quadratic

function of interest as the sum of multiple smaller size quadratic functions each of

which only involves ck,n and pk,n from a single unit. As a numerical example, for

K = 2 and N = 2, such smaller size quadratic function which only involves unit

1 takes the form
∑N

n=1w(c2
1,n)· c2

1,n +
∑N

n=1w(p2
1,n)·p2

1,n + w(c1,1, c1,2)· c1,1· c1,2 +∑N
e=1

∑N
f=1w(c1,e,p1,f )· c1,e·p1,f + w(p1,1,p1,2)·p1,1·p1,2 +

∑N
n=1w(c1,n)· c1,n +
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∑N
n=1w(p1,n)·p1,n + w(0), where w(•) denotes free parameters; the other smaller

quadratic function only involves unit 2, and the (full size) quadratic function of interest

is the sum of such two smaller quadratic functions.

Reducing the number of free parameters

Hereafter in this section, by quadratic functions we mean the aforementioned full size

quadratic functions, unless stated otherwise. Using quadratic functions to approximately

store the computational results obviously mitigates the data-storage burden, compared

with the brute-force lookup tables. However, such modelling choice in general may induce

a large number of free parameters to be tuned. More specifically speaking, in the context

of the power plant case, the number of free parameters in each quadratic function grows

exponentially with the number of mills per unit in the power plant, mostly due to the

exponential increment of the number of cross-products in the polynomial functions: the

total number of the cross products is K(2N2 − N) for each quadratic function, and the

total number of free parameters for all the terms (including all cross-products and all the

other terms) in a quadratic function would be K(2N2 + 3N + 1). Hence a relatively small

number of mills per unit can lead to a relatively large number of free parameters.

Therefore we develop a method which reduces the total amount of free parameters to a

fixed and relatively small number for each quadratic function regardless of the number of

the mills per unit in the power plant, without sacrificing the value approximation quality

of the quadratic functions; we refer to such method as the parameters number bounding

method. Generally speaking, for each quadratic function, such method requires evaluating

the homogeneity of the terms in the function based on the case study background know-

ledge, and then the method requires combining the homogeneous terms such that they

share the same free parameter; from a mathematical viewpoint, such arrangement does

not induce extra value approximation inaccuracy for the quadratic functions.

More specifically speaking, according to the case study background knowledge, the

mills have identical physical structure in the power plant; therefore from the perspective of
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the quadratic functions, ck,1, ..., ck,N of the mills from the same unit are equally important

variables regardless of which mill they belong to, and pk,1, ...,pk,N of the mills from the

same unit are also equally important variables. Based on such homogeneous property

of independent variables, we can determine whether two arbitrary terms in a quadratic

function are homogeneous, and we shall combine all homogeneous terms together to share

one parameters. As a numeral example, c1,1·p1,2 and c1,3·p1,4 are homogeneous terms

as they are both a cross-product of the condition and performance from two different

mills in unit 1, and as a result we can combine c1,1·p1,2 and c1,3·p1,4 to share one free

parameter instead of assigning a separate free parameter to each individual term; in fact

all terms in the form of c1,e·p1,f are considered homogeneous and thus they shall all be

combined to share just one free parameter regardless of how many mills exist in unit 1

(∀e, f ≤ N, e 6= f ). We provide the full list of homogeneous terms in Table 4.10 for the

quadratic functions.

As a result, by applying the parameters number bounding method, each quadratic

function would contain 9 ∗ K free parameters (as readers shall see immediately below),

rather than K(2N2 + 3N + 1) free parameters.

Different forms of

homogeneous terms

Meaning (in the same unit)

ck,eck,f (∀ k ≤ K,∀ e, f ≤
N ,e 6= f)

cross-product of the conditions from

two arbitrary different mills
c2k,e(∀ k ≤ K,∀ e ≤ N) square of the condition of an arbitrary

mill
pk,epk,f (∀ k ≤ K,∀ e, f ≤
N ,e 6= f)

cross-product of the performance from

two arbitrary different mills
p2
k,e(∀ k ≤ K,∀ e ≤ N) square of the performance of an

arbitrary mill
ck,epk,f (∀ k ≤ K,∀ e, f ≤
N ,e 6= f)

cross-product of the condition and

performance from two arbitrary

different mills
ck,epk,e(∀ k ≤ K,∀ e ≤
N)

cross-product of the condition and

performance of an arbitrary mill
ck,e(∀ k ≤ K,∀ e ≤ N) condition of an arbitrary mill
pk,e(∀ k ≤ K,∀ e ≤ N) performance of an arbitrary mill

Table 4.10: Homogeneous terms in quadratic functions
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Defining the quadratic functions

Here we shall define the quadratic functions for the power plant case study. As dis-

cussed above, for Stage (1) and Stage (2), a separate polynomial function is defined to

approximate the numerical relationship of interest for each combination of maintenance

choice and time-step in the MDP problem.

In terms of the potential maintenance choices in Stage (1) and Stage (2), they are

already discussed in Section 4.2.2.2; we shall group such choices into three categories

below and then define the quadratic functions for each such category rather than for

each specific maintenance choice. Note that no value approximation accuracy would be

sacrificed in such arrangement. By using the same mathematical notations from Section

4.2.2.2 and Section 4.2.2.3, below we first define the quadratic functions of interest for

Stage (2) and then Stage (1) of the three-stage hybrid MDP model.

For Stage (2):

(1) if the maintenance choice at time-step ts is either (i) applying no maintenance to

any mill in the plant or (ii) applying a specific service alternative, then

Q(xP , a, ts) =
K∑
k=1

{w(2)
cc (a, ts, k)

N−1∑
e=1

N∑
f=e+1

ck,eck,f

+ w
(2)
c2 (a, ts, k)

N∑
e=1

c2
k,e + w(2)

pp (a, ts, k)
N−1∑
e=1

N∑
f=e+1

pk,epk,f

+ w
(2)
p2 (a, ts, k)

N∑
e=1

p2
k,e + w(2)

cp (a, ts, k)
N∑
e=1

N∑
f=1,f 6=e

ck,epk,f

+ w(2)
pc (a, ts, k)

N∑
e=1

ck,epk,e + w(1)
c (a, ts, k)

N∑
e=1

ck,e

+ w(1)
p (a, ts, k)

N∑
e=1

pk,e + w(0)(a, ts, k)}, ∀ aε{NM,ASM} (4.22)

where Q is the output value of the quadratic function and Q(xP , a, ts) is the estimate of
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targeted expected value V a
ts(xP ) (see Section 4.2.2.2) for ∀ (xP , a, ts); the plant state is

defined as xP := (c1,1,p1,1, ..., cK,N ,pK,N);

(2) if the maintenance choice at time-step ts is either (i) initiating a specific overhaul

alternative or (ii) continuing with the undergoing overhaul action, then

Q(xP , b, ts, oh) =
K∑
k=1

{w(2)
cc (b, ts, k, oh)

N−1∑
e=1

N∑
f=e+1

ck,eck,f

+ w
(2)
c2 (b, ts, k, oh)

N∑
e=1

c2
k,e + w(2)

pp (b, ts, k, oh)
N−1∑
e=1

N∑
f=e+1

pk,epk,f

+ w
(2)
p2 (b, ts, k, oh)

N∑
e=1

p2
k,e + w(2)

cp (b, ts, k, oh)
N∑
e=1

N∑
f=1,f 6=e

ck,epk,f

+ w(2)
pc (b, ts, k, oh)

N∑
e=1

ck,epk,e + w(1)
c (b, ts, k, oh)

N∑
e=1

ck,e

+ w(1)
p (b, ts, k, oh)

N∑
e=1

pk,e

+ w(0)(b, ts, k, oh)}, ∀ bεAOM , 0 ≤ oh ≤ OH − 1 (4.23)

where Q(xP , b, ts, oh = 0) is the estimate of targeted expected value V b
ts(xP ) (see Section

4.2.2.2) for ∀ (xP , b, ts), and Q(xP , b, ts, oh) is the estimate of targeted expected value

V a=NAM
ts (xP , b, oh) (see Section 4.2.2.2) for ∀ (xP , b, ts) and 1 ≤ oh ≤ OH − 1;

(3) if the maintenance choice at time-step ts is either (i) initiating a specific overhaul

alternative and applying a specific service alternative or (ii) continuing with an undergoing

overhaul action and applying a specific service alternative, then



130

Q(xP , a, b, ts, oh) =
K∑
k=1

{w(2)
cc (a, b, ts, k, oh)

N−1∑
e=1

N∑
f=e+1

ck,eck,f

+ w
(2)
c2 (a, b, ts, k, oh)

N∑
e=1

c2
k,e + w(2)

pp (a, b, ts, k, oh)
N−1∑
e=1

N∑
f=e+1

pk,epk,f

+ w
(2)
p2 (a, b, ts, k, oh)

N∑
e=1

p2
k,e + w(2)

cp (a, b, ts, k, oh)
N∑
e=1

N∑
f=1,f 6=e

ck,epk,f

+ w(2)
pc (a, b, ts, k, oh)

N∑
e=1

ck,epk,e + w(1)
c (a, b, ts, k, oh)

N∑
e=1

ck,e

+ w(1)
p (a, b, ts, k, oh)

N∑
e=1

pk,e

+ w(0)(a, b, ts, k, oh)}, ∀ bεAOM , a ∈ ASM/{SMb}, 0 ≤ oh ≤ OH − 1

(4.24)

where Q(xP , a, b, ts, oh = 0) is the estimate of targeted expected value V a,b
ts (xP ) (see

Section 4.2.2.2) for ∀ (xP , a, b, ts), and Q(xP , a, b, ts, oh) is the estimate of targeted ex-

pected value V a
ts(xP , b, oh) (see Section 4.2.2.2) for ∀ (xP , a ∈ ASM/{SMb}, b, ts) and

1 ≤ oh ≤ OH − 1.

For Stage (1):

the quadratic functions of interest for Stage (1) are almost identical to the quadratic

functions defined above for Stage (2), and the only different in terms of notations is that

tc are used to denote the time-step in Stage (1) rather than ts; we shall not repeat such

functions for Stage (1) here.

Applying polynomial function method to other case studies

So far this section discusses why and how to apply the polynomial function method to

the power plant case study, including how to reduce the total number of free parameters

in the context of the power plant case. Now we generalise the discussion for other case

studies.
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Regarding other maintenance planning optimisation case studies which follow the same

hierarchy (see discussion about the company-system-asset hierarchy in Section 4.3) as

the power plant case study, in terms of the numerical relationship between the condi-

tion/performance of an asset and the expected value in the hybrid MDP model for the

corresponding company, we expect the existence of concave patterns similar to the ones

aforementioned in the power plant case study. Hence we expect the polynomial function

method to be a proper modelling choice for such case studies as well. In the power plant

case study we detect such concave data patterns by using average lifetime and output

amount per time unit as proxies of the non-observable expected value of interest based on

the power plant case study background knowledge; researchers/practitioners may need to

adopt/design different proxies accordingly based on their own case study contexts.

The application of the polynomial function to the power plant case study results in the

choice of quadratic functions as aforementioned, and such modelling choice is based on

numerical test results given specific input data (which we shall specify in Chapter 5) for the

case study. Researchers/practitioners may require polynomial functions of higher degrees

(compared to quadratic functions) in order to achieve an acceptable value approximation

quality in their case studies.

As illustrated above in the context of the power plant case, the application of poly-

nomial functions would result in a large amount of free parameters, and in response we

develop a so called parameters number bounding method which reduces the amount of

free parameters in each quadratic function to a fixed and relatively small number for the

power plant case study regardless of the number of the mills per unit. Such method can

be applied as part of the polynomial function method to other case studies under one

important prerequisite: the assets in the corresponding company must be identical in

terms of their physical structure. In the more general context of company-system-asset

hierarchy, we expect the application of such parameters number bounding method reduces

the number of free parameters in each polynomial function to a constant which depends
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on the number of production systems and rather than the number of assets. As a numer-

ical example, the number of free parameters for each cubic function (suppose we choose

cubic functions rather than quadratic functions) in the power plant case study is 23 ∗K,

regardless of the number of mills per unit. We expect such free parameters reduction

effects from the parameters number bounding method , based on the assumption that the

increment of assets amount only results in more polynomial function terms which are

homogeneous to the already existing terms (and hence can be defined to share the same

free parameters as the already existing terms).

4.3.2 Methods interaction and tuning free parameters

In this section we discuss the interaction between the polynomial function method and

Q-learning in the context of the power plant case (hence we would focus on the quadratic

functions defined in Section 4.3.1). We would like to emphasise that the discussion below

can be relatively easily generalised for the context of polynomial functions and other

aforementioned case studies of interest.

The application of the polynomial function method to the power plant case study

results in the quadratic functions defined in Section 4.3.1; the update of free parameters in

such functions and the value estimates update by Q-learning are intertwined: Q-learning

refers to such quadratic functions to obtain the existing value estimates (i.e. the Q

values) and then Q-learning computes updated value estimates in the way explained in

Section 3.3; the quadratic functions refer to such updated value estimates (computed by

Q-learning) and accordingly update the free parameters in a heuristic way (which we shall

specify soon). Such intertwined updates continue for a pre-defined number of iterations.

The pre-defined number should be sufficiently large to ensure the output value of the

quadratic functions converges.

More specifically speaking, the incremental gradient-descent method [133] is used to

incrementally update the free parameters in such quadratic functions. Again, we shall
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explain such method in the power plant case study context; we however would like to

emphasise such method is in general applicable to tuning free parameters for the data-

storage heuristics that follow the parametric function approximation approach (see 3.4.2),

and relatively good empirical results have been reported for such method in publications

(see example publications including [40, 64, 72]).

Let Q (the same Q values as in Section 4.3.1) denote the existing value estimate of

interest; let Q denote the corresponding updated value estimate from Q-learning; let ~w

denote the vector of the free parameters in the corresponding quadratic function; the

incremental gradient-descent method updates the values of the free parameters as follows

~w ← ~w − µ
∂[1

2
(Q−Q)2]

∂ ~w

where← denotes the value calculated on the right-hand side of equation is used to replace

the value of the variable on the left-hand side of equation; ~w on the right-hand side

represents the values of the free parameters before update whereas ~w on the left-hand

side represents the values of the free parameters after update; the value of the parameter

0 < µ < 1 is subject to the control of researchers/practitioners who apply the method

(see [64] for suggestive controlling rules); ∂ denotes partial derivative. In combination

with heuristic computation methods such as Q-learning, the incremental gradient-descent

method aims at approximately minimising the so called mean squared errors [133] which

is a measure used to evaluate the difference between expected values of interest and their

estimates: technically speaking, the mean squared errors are the expected sum of the

squared value difference between each expected value of interest and the estimate (readers

interested in technical details are referred to publications including [64, 118, 133]).

Figure 4.9 provides the pseudo-code regarding how the free parameters tuning and

Q-learning (with finite planning-horizon) interacts at a high level.
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Figure 4.9: Methods interaction

4.4 Conclusion

In this chapter, we apply the performance-centred maintenance approach to the power

plant case study. The power plant possesses a multi-level hierarchical physical structure

which is beyond the scope of the original mathematical model (see Chapter 2) developed

under the performance-centred approach, and therefore we develop a three-stage hybrid

MDP model for the case study based on scaling up the existing mathematical model.

Additionally we develop a set of heuristics to solve the complex mathematical problem:

two-timescale decomposition method and parameters number bounding method, in com-
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bination with the application of polynomial function method, Q-learning and incremental

gradient-descent method . The three-stage hybrid MDP model and the set of heuristics can

also be used to align the maintenance operations management and production operations

management for industrial problems which follow the same hierarchical structure as the

power plant case study.

In the next chapter, we shall present and discuss some numerical test results for the

power plant case study, in order to numerically demonstrate the practical value of our

mathematical model and methods.



136

Chapter 5

Numerical tests

In this chapter, we conduct numerical tests on the power plant case (specified in Section

4.1.4), in order to demonstrate the practical value of our maintenance approach (from

Chapter 2), mathematical model and heuristics (both from Chapter 4).

More specifically speaking, we shall first in Section 5.1 compare the perform-

ance/effectiveness of heuristics (these are Q-learning, the polynomial function method,

the parameters number bounding method and the incremental gradient-descent method)

with the performance/effectiveness of exact methods (these are VI and brute-force lookup

tables method) in solving a medium size (that is the unit level) problem of the case

study. Next, in Section 5.2 we shall further combine such heuristic methods with the two-

timescale decomposition method and apply these heuristics to the full size (that is the

plant level) problem of the case study, with the purpose of not only deriving near-optimal

maintenance decision but also evaluating whether it is more beneficiary for the operators

to follow the low intervention regime or the high intervention regime (specified in Section

4.1.2); additionally, we shall also examine the performance/effectiveness of heuristics in

solving the full size problem1.

1The compressed MATLAB Code for the numerical tests at both the unit level and plant level can be
found at http://doi.org/10.5281/zenodo.2602872
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5.1 Unit level: benchmarking heuristic methods

As specified in Section 2.4, we refer to three measures to evaluate the effectiveness of

different methods in solving the mathematical problems of interest; a method (or a set of

methods) is considered effective in practice only if it satisfies the numerical benchmark

specified for each such measure: consuming less than or equal to 24 hours of computational

time, requiring less than or equal to 100% of maximum available memory space provided

by the standard PC in use, and the maximum data difference between the computational

results derived by heuristics and the computational results derived by either exact methods

or other benchmarking heuristics is less than or equal to 5%.

In this section, we apply the aforementioned heuristic methods and exact methods to

a medium size problem of the power plant case study and examine their performance.

The medium size problem consists of a single unit and the corresponding mathematical

model contains over 24, 000 unique states.

More specifically speaking, the medium size problem is as follows: the maintainers

and operators plan and execute maintenance and production activities respectively as

specified in Section 4.1.4 with further simplification assumptions here: the plant contains

one unit (which consists of eight mills); the operators increase the work-rate to a fixed

high level as long as the number of working mills is less than seven; no penalty cost applies

and all produced electricity is sold at a fixed price; both the maintenance planning period

and contracted period contain 100 weeks. The parameter values (these are the machine

state transition matrices, the maintenance cost of each maintenance alternative, the sales

price) of the mathematical model for such medium size problem are obtained from the

research of [7] where such values are elicited in a power plant belonging to ScottishPower

and furthermore the condition of a mill is categorised into four levels (new, good, poor

and failed) and the performance of a mill is categorised into three levels (full performance:

that is satisfactory performance; reduced performance: that is unsatisfactory performance;
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Classification Input parameter Meaning

Controlled variables

T The maintenance planning period
TC The contracted period
K The amount of units in the power plant
N The amount of mills per unit
wr The work-rate function
Dt The demand at time-step ∀t ≤ T
SM The set of all potential mill states
AM The set of all potential maintenance actions at the individual mill level
OH The amount of time-steps an overhaul action consumes
SH The amount of time-steps a service action consumes
CSM The service maintenance cost
COM The overhaul maintenance cost
RS The sales price per unit of supply
RP The penalty cost per unit of unfulfilled contracted supply
PM Mill state transition matrix
γ One time-step discount ratio

Independent variables XU for t = 1 The initial unit state

Table 5.1: Parameter classification in medium size problem

offline: that is grossly unsatisfactory performance); such parameter values are business

sensitive information and therefore we shall not present them in this thesis. Such single

unit problem is part of the research in [8] and they solve this problem by applying exact

methods (VI and brute-force lookup tables method) on a high performance computer.

Note here we instead implement such exact heuristics on a standard PC (specified below)

for the purpose of performance comparison.

The numerical tests of this PhD project are conducted in MATLAB R2014a on a

PC with the following properties: processor: Intel(R) Core(TM) i5-3570 CPU@3.40GHz;

operating system: Windows 7 Enterprise 32-bit Operating System; RAM: 8 GB.

5.1.1 Performance of heuristics and exact methods

We classify the input parameters of the mathematical model into two types: controlled

variables (the values/settings of which stay constant in the numerical experiment here)

and independent variables (the values/settings of which we manipulate), as shown in Table

5.1.

In order to thoroughly benchmark the heuristics, we select ten different initial states

(presented in Table 5.2 where each unit state is expressed as a set consisting of the state
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index of all eight mills in the unit, and readers are referred to Table 4.1 in Section 4.1.4 for

the meaning of mill state index) for the mathematical model and ensure such ten initial

states in the mathematical model represent different potential overall physical status of

the unit in reality ranging from relatively good physical status to relatively bad physical

status; we consequently generate ten different MDP problems each of which has a unique

initial state, and for each such MDP problem we benchmark the performance of the

heuristics. In order to facilitate the discussion, we index such ten MDP problems from 1

to 10 as shown in Table 5.2.

MDP

problem

index

Initial unit state (in terms of mill state index)

1 {10, 10, 10, 10, 10, 10, 10, 10}
2 {10, 10, 10, 10, 10, 10, 10, 9}
3 {10, 10, 10, 10, 9, 9, 9, 8}
4 {10, 9, 9, 9, 9, 9, 8, 7}
5 {10, 10, 10, 10, 8, 8, 7, 6}
6 {10, 10, 9, 9, 8, 7, 6, 5}
7 {10, 10, 10, 10, 10, 10, 9, 4}
8 {10, 10, 10, 10, 9, 9, 9, 3}
9 {10, 10, 10, 10, 10, 9, 8, 2}
10 {10, 10, 10, 10, 10, 10, 8, 1}

Table 5.2: Initial unit state

In the context of the single unit problem discussed above, the application of our heur-

istics should ideally contain a large number of iterations (see specification in Section 4.9)

to ensure the optimal value estimate converges for each state-time-step in the MDP prob-

lem, in order to obtain a near-optimal policy which prescribes a near-optimal action to

each state-time-step in the MDP problem. In practice, however, we realise such conver-

gence goal imposes an impractically large number of iterations and hence an impractically

long computational time which defeats the purpose of introducing heuristics; we therefore

alternatively choose to only require the convergence of the optimal value estimation for

the initial state in each MDP problem. As a result, we expect the heuristics can relatively

quickly derive a highly accurate optimal value estimate and a near optimal maintenance
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action for the initial state. In other words, for each such ten MDP problem, the applic-

ation of the heuristics aims at deriving a near-optimal maintenance action for the initial

state within a relatively short computational time rather than spending an impractically

long computational time deriving a near-optimal maintenance policy for an entire MDP

problem of the case study. Note such strategy of applying heuristics still serves the pur-

pose of solving real life decision making problems: the practitioners simply need to update

the initial state of the mathematical model as the unit physical status evolves in practice

(and consequently obtain a new MDP problem) and then re-apply the heuristics to the

new MDP problem to derive updated results.

Below we present the numerical test results and compare the performance between

heuristics and exact methods against the three aforementioned numerical benchmarks;

furthermore, based on some additional empirical results we shall also discuss why the

heuristics are able to derive near optimal results for the initial state of an MDP problem

without requiring the convergence of optimal value estimation for all the other state-time-

steps in the MDP problem.

Computational time: convergence speed

For each MDP problem, the application of heuristics contains 100, 000 iterations which

consume approximately 50 minutes in total. The step-size parameter α in Q-learning is

controlled by the rule α = M
N+k

as discussed in Section 3.3, and we set M = 11, 250, 000

and N = 12, 500, 000; the other step-size parameter µ in the incremental gradient-descent

method is set as 0.2/iter, and ITER = 2 (see specifications in Figure 4.9 of Section

4.3.2). Such parameters setting in the application of heuristics is based on our domain

knowledge of the project and trial-and-error in a toy-size problem (which contains only

three mills). The action selection in such application of heuristics (more specifically

speaking, Q-learning) is controlled by pure exploration policy (specified in Section 3.3.1).

For each MDP problem, the optimal value estimation converges in less than 20 minutes.

For instance, Figure 5.1 illustrates how the optimal value estimation converges for the
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initial state of MDP problem 10 in simulation, in terms of optimal value estimate
optimal value

.

Figure 5.1: Optimal value estimation (% of the optimal value) in every 1, 000 iterations
for initial state of MDP problem 10

As comparison, for each MDP problem, the exact methods would consume more than

10 days! Such conclusion is drawn as follows: first we observe the computational time

spent on performing a fraction of the total computational workload; then we use such

observed fractional computational time to extrapolate the total computational time, and

such total computational time is estimated to be more than 10 days; finally we examine

such estimation by keeping the exact methods running on the standard PC for exactly 10

days, and the numerical test confirms it is indeed impossible to finish the total computa-

tional workload in 10 days.

Data-storage cost

Numerical tests show that both heuristics and exact methods are effective in terms

of their data-storage costs. However, in terms of storing the computational results, the

brute-force methods consume approximately 70% of the maximum available memory space

provided by the standard PC in use: we draw such conclusion by incrementally enlarging

the problem size (more specifically speaking, the time length of planning period) until

the data-storage cost of brute-force methods surpasses the maximum available memory
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space of the PC and then comparing the original problem size with the enlarged problem

size; the data-storage cost of heuristics is approximately only 0.04% of the data-storage

cost induced by brute-force methods; additionally, the data-storage cost of brute-force

methods grows exponentially with the total number of mills in the industrial problem,

while the data-storage cost of heuristics does not depend on the total number of mills (as

discussed in Section 4.3.1) and hence is immune from such exponential growth.

Data accuracy level

Table 5.3 summarises the data accuracy level of heuristics for such ten MDP problems

by comparing with the exact computational results (note the exact results are derived

by [8] via implementing exact methods on a high performance computer): technically

speaking, Column Optimal value estimate
Optimal value

describes what percentage the optimal value estimate

(derived from heuristics) is of the exact optimal value (derived from exact methods) for

the initial state of each MDP problem (intuitively speaking, such column describes how

accurate the optimal value estimate is; the closer the percentage value is to 100% the

more accurate the estimate is, and a percentage value larger or smaller than 100% in this

column indicates overestimate or underestimate respectively); Column Selected action

index (optimal or not) describes the estimated optimal action (derived from heuristics)

for the initial state of each MDP problem, and whether the estimation is accurate or

not (note that we index different maintenance alternatives in the mathematical model

(from Chapter 4) and here in the column we refer to each action by its index number);

additionally, Column Expected value
Optimal value

describes what percentage the expected value of the

action selected from heuristics is of the optimal value (both such values are derived from

exact methods), for the initial state of each MDP problem (intuitively speaking, such

column measures how good the action derived by heuristics is compared with the optimal

action; the closer the percentage value is to 100% the better).

According to Table 5.3, the estimation error of the optimal value falls within the

±5% range for the initial state of each MDP problem (see Column Optimal value estimate
Optimal value

);



143

the optimal action estimation for the initial state is accurate for the majority (nine out

of ten) of MDP problems; regarding the only MDP problem where the optimal action

estimation is not accurate for the initial state (i.e. MDP problem 4), the loss of monetary

value due to the selection of a sub-optimal action (i.e. action 15) is merely 1.6% compared

to selecting the actual optimal action. In conclusion, the approximation results derived

from the heuristics are relatively accurate (see discussion on benchmarks in Section 2.4)

for the single unit problem.

MDP

problem

index

Optimal value estimate
Optimal value

Selected

action index

(optimal or

not)

Expected value
Optimal value

1 98.68% 1 (optimal) 100.00%
2 99.49% 16 (optimal) 100.00%
3 99.22% 15 (optimal) 100.00%

4 95.31%
15 (not

optimal)
98.4%

5 96.98% 13 (optimal) 100.00%
6 95.79% 12 (optimal) 100.00%
7 98.86% 11 (optimal) 100.00%
8 98.51% 10 (optimal) 100.00%
9 99.03% 9 (optimal) 100.00%
10 102.83% 8 (optimal) 100.00%

Table 5.3: Data accuracy level of heuristics

Further examination of the numerical results in Table 5.3 indicates an interesting pat-

tern: as shown in Column Optimal value estimate
Optimal value

, the heuristics tend to underestimate the

optimal values. We believe such issue occurs as follows: in this case study, there exits no

ideal concave curve defined by the quadratic functions (specified in Section 4.3.1) around

which the scatter of expected values (defined in Section 3.3) strictly follows a normal

distribution: in other words, some outliers exist; in such context, using the incremental

gradient-descent method (discussed in Section 4.3.2) to tune the free parameters of quad-

ratic functions would encounter an issue: such method aims at approximately minimising

the mean squares of the value distances between the expected values and their estimates

(produced by such quadratic functions), but the outliers would affect and even dominate
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Performance measure Are

heuristics

effective?

Are exact

methods

effective?
Computational time Yes No

Data-storage cost Yes Yes
Data accuracy level Yes Yes

Table 5.4: Medium size problem: performance comparison between heuristics and exact
methods

the calculation of such mean squares and therefore induce either overestimation or under-

estimation of most values (in this case study it is underestimation). In order to mitigate

such underestimation tendency, one future research direction would be either improving

the incremental gradient-descent method or designing a new parameters tuning method

to ensure a certain level of “robustness” to the outliers when tuning up free parameters.

Before discussing why the heuristics are able to derive near optimal results for the

initial state of an MDP problem without requiring the convergence of optimal value es-

timation for all the other state-time-steps in the MDP problem, here in Table 5.4 we

summarise the comparison between heuristics and exact methods on each of the three

aforementioned performance measures: in the medium size problem of case study, the

numerical test results indicate that the heuristics are effective in solving the mathem-

atical problems of interest, whereas the exact methods are not effective in terms of the

computational time.

Convergence for initial state and the implications

First of all, we would like to emphasise that in the numerical tests discussed above

the optimal value estimation does not converge for all state-time-steps in the ten MDP

problems. For instance, for MDP problem 1, after the limited number of iterations (i.e.

100, 000 iterations) in simulation, the heuristics visit (see terminology in Section 3.3.1)

1, 918 different states in total at the 15th week, and the optimal value estimation converges

for 36.39% (rather than 100%) of such 1, 918 states at such time-step; additionally, the

heuristics visit 6, 443 different states in total at the last time-step (i.e. the 100th week),
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and the optimal value estimation converges for 24.02% (rather than 100%) of such 6, 443

states at the last time-step. Similar examination (that is checking the number of states

visited by the heuristics and checking the percentage of states with converged optimal

value estimation) at each time-step for all aforementioned ten MDP problems indicates

the following data patterns: the further away the time-step is (towards the planning-

horizon), the larger the total number of states are visited by the heuristics at such time-

step while the optimal value estimation converges for a smaller percentage of such states:

the aforementioned comparison between the 15th week and the 100thweek of MDP problem

1 is an illustrative example of such data patterns.

Below we shall discuss why the heuristics are able to derive near optimal results for

the initial state of an MDP problem without requiring the convergence of optimal value

estimation for all the other state-time-steps in the MDP problem, and we shall also discuss

why the aforementioned data patterns exist in the numerical tests.

Increment of states visited per time-step

A crucial part of the heuristics (more specifically speaking, Q-learning) is simulating

the system state evolving process for MDP problems in general (as specified in Chapter

3), and additionally in the mathematical model the number of states that can potentially

branch out at each time-step following the initial unit state increases as the time-step

continues towards the planning-horizon; it is therefore reasonable that in the numerical

tests the total number of states visited by heuristics increases at each time-step as the

time-step continues towards the planning-horizon in each MDP problem.

Convergence of state optimal value(s) estimation per time-step

Intuitively speaking, the optimal value estimate of each state branched out at later

time-steps in the mathematical model carries a certain weight in terms of impacting the

optimal results estimation accuracy of the initial state in the application of heuristics;

however, given the distributions of the random variables which govern the system dy-

namics (see specifications in Section 3.3.1), the aforementioned weights vary among such
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branched out states: more specifically speaking, the less likely a state can potentially

branch out from the initial state at a given time-step, the smaller such weight the state

carries compared to other more likely branched out states at the same time-step. There-

fore at each time-step in the MDP problem only a limited portion (rather than 100%)

of branched out states are relatively important in terms of impacting the optimal results

estimation accuracy level of the initial state in the application of heuristics.

Furthermore, the heuristics (more specifically speaking, Q-learning) prioritise driv-

ing the optimal value estimates of such relatively important states at each time-step to

converge towards the optimal values by visiting (see terminology in Section 3.3.1) such

states more frequently (such frequency is underpinned by the distributions of the random

variables which govern the system dynamics; see specifications about the state visit-

ing/sampling in Section 3.3.1). Intuitively speaking, the more frequently a state is visited

at a time-step during simulation (i.e. in the application of heuristics), the more likely

the optimal value estimation would converge for such state-time-step compared to other

states at such time-step of the MDP problem (readers who are interested in technical

discussion are referred to publications including [64, 72] which justify such intuition by

relating to the so called Robbins-Monroe stochastic approximation scheme).

Given such properties discussed above regarding the MDP problem and the heuristics

(more specifically speaking, Q-learning), it is reasonable that (1) the optimal value estim-

ates only converge for a limited portion (rather than 100%) of branched out states at each

time-step in the simulation given a limited number of iterations and (2) the heuristics

are able to derive near optimal results for the initial state of an MDP problem without

requiring the convergence of optimal value estimation for all the other state-time-steps in

the MDP problem.

Additionally, the existence of discount factor in the mathematical model renders such

aforementioned impact of later branched out states in general less crucial compared to

states branched out at earlier time-steps in the mathematical model; therefore it is reas-
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onable to assume in the MDP problem the percentage of such aforementioned relatively

important states in general decreases at each time-step as the the time-step continues

towards the planning-horizon, and hence it is reasonable that in the numerical tests the

percentage of states with converged optimal value estimation decreases at each time-step

as the time-step continues towards the planning-horizon.

Further discussion

Here we would like to discuss two additional questions on the convergence performance

of the heuristics in terms of speed and accuracy.

How would the convergence behaviour (discussed above) impacted in general if the

simulation contains more iterations (in other words, what if the application of heuristics

runs longer)? Intuitively speaking, as the total number of iterations increases in the

simulation (for example 500, 000 iterations rather than 100, 000 iterations), the percentage

of states with converged optimal value estimation would become higher at each time-step

(for example such percentage might be 60% rather than only 36.39% as reported above

at the 15th week of MDP problem 1); in an extreme case, if the total number of iterations

increases to a very large value that is close to infinity (and of course the computational time

would be impractically long), such percentage would become close to 100% at each time-

step and as a result the application of heuristics would derive a near optimal maintenance

policy (for the entire MDP problem) rather than only derive a near optimal maintenance

action for the initial state of the MDP problem.

As discussed above, we recommend the following heuristics application approach to

practitioners: update the initial state of the mathematical model as the unit physical

status evolves in reality and re-apply the heuristics; in the application of heuristics, only

require convergence of optimal value estimation for the initial state of the mathematical

problem. By following such approach, the necessary computational time is expected to

be relatively short in order to obtain converged results of interest, and such expectation

is indeed supported by the empirical results discussed above. However, is it reasonable to



148

expect that the heuristic results would still converge relatively quickly if the time length of

the planning period in the mathematical model becomes infinitely large?

Here we would like to remind readers a main difference between applying the heuristics

(more specifically speaking, Q-learning) to a finite-horizon problem and to an infinite-

horizon problem: in a finite-horizon problem setting, the heuristics return to the initial

state of interest once the sampling process reaches the last time-step of the mathematical

model and then the heuristics would again sample the states that can potentially branch

out from the initial state at each time-step of the mathematical model; in an infinite-

horizon problem setting, the simulation is not defined to return to the initial state of

interest after sampling the state evolving process for a fixed number of time-steps any

more (readers can refer back to the methodology of Q-learning for infinite-horizon MDPs

in Section 3.3.2 in case of requiring further clarification). Actually, given the relatively

large size of the state space, in an infinite planning-horizon problem setting, the simulation

may take a relatively long computational time to return to the initial state of interest and

then again sample the states that can potentially branch out from the initial state. In

the worst potential scenario, the simulation may roam through the entire state space

multiple times before it returns to the initial state. Such return-sample process however

must be repeated for a relatively large number of times to derive the heuristic results

to converge. In other words, in an infinite planning-horizon problem setting, given a

relatively large state-space, the total computational time may become impractically long

in order to derive converged results, even if the heuristics discussed above are used (and

of course in comparison the computational time of applying exact methods would be even

longer).

We note that in some other studies (such as [56, 65, 66, 67, 68, 70, 71, 72, 119,

131, 151]) Q-learning and other reinforcement learning methods (especially if they are

further scaled up with value function approximation heuristics) are reported to derive

near-optimal results within a relatively short computational time for relatively large size
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MDP problems with infinite planning-horizon (see discussion in Section 3.3); we believe

it is because in such studies under the optimal policy the MDP model would only evolve

into a relatively small number of states (rather than all states or majority of all states)

with high probabilities, and hence most of the time the simulation is more likely to roam

within a relatively small size sub-set of states rather than roam through the entire state-

space or majority of the entire state-space (readers can refer back to Chapter 3 in case

of requiring further explanation). Such nice property regarding the state space however

does not seem to hold in our case study, as the computational time becomes impractically

long to derive converged heuristic results for the aforementioned ten MDP problems if we

re-model the planning periods of such problems as infinitely long. Additional heuristics

(such as the two-timescale decomposition method developed in Chapter 4) are therefore

required to ensure the computational time is relatively short to derive converged results

for infinite-horizon problems.

Two-timescale decomposition method

In Section 5.2 we shall conduct numerical tests on the full size problem of the case

study where we assume an infinite planning-horizon problem setting (as discussed in

Chapter 4). In order to ensure the heuristic results converge in a relatively short time for

the full size problem, we shall further combine the heuristics already examined above in

the medium size problem with the two-timescale decomposition method (see Chapter 4).

Note that the two-timescale decomposition method would inevitably compromise the

accuracy of the heuristic results, and in the future research we shall revisit the medium

size problem and further examine the accuracy level of the heuristic results when the

two-timescale decomposition method is used.
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5.2 Plant level: comparison between different oper-

ators’ decision regimes

In this section, we apply our maintenance approach and heuristics to the full size prob-

lem of the case study, with the purpose of illustrating that our maintenance approach

and mathematical model facilitate both optimal maintenance decision making and ma-

chine utilisation behaviour improvement in complex problem settings which follow the

general hierarchical structure specified in Section 4.1.3; additionally, we also examine the

performance/effectiveness of the heuristics in solving the full size problem.

First we shall in Section 5.2.1 explain the numerical test setting; then we shall in

Section 5.2.2 present and discuss the numerical test results.

5.2.1 Numerical test setting

Here we consider the full size (that is the plant level) problem of the case study. The

power plant contains four units each of which consists of eight mills. In the full size

problem, we reuse the parameter values (these are the machine state transition matrices,

the maintenance cost of overhaul and service, the sales price per unit of supply) from the

medium size problem discussed in Section 5.1. Additionally, we assume the following: the

contracted period contains 20 weeks, the short-term part of the non-contracted period

contains 80 weeks and the long-term part of the non-contracted period is infinitely long.

Furthermore, we assume the demand of each unit in each week within the non-contracted

period follows the same continuous uniform distribution unif(a, b) where a equates to 70%

of the maximum weekly production rate of a perfect unit working at normal work-rate

and b equates to 100% of such maximum weekly production rate; regarding the contracted

period, we specify the contracted demand of each unit in each week by randomly sampling

from the aforementioned uniform distribution, and additionally we assume the penalty
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Classification Input parameter Meaning

Controlled variables

T The maintenance planning period
TL The long-term part of the non-contracted period
Ts The short-term part of the non-contracted period
TC The contracted period
K The amount of units in the power plant
N The amount of mills per unit

HSM The set of the time-steps where the maintenance alternatives

include service in Stage (3) of the model; specified based on the

deterministic rotating schedules and permutation rule in Section

4.2.1.1.
Dt The vector that consists of the demand (distribution) at

time-step ∀t ≤ T for unit (1, 2, ...,K)
SM The set of all potential mill states
AM The set of all potential maintenance actions at the individual

mill level
OH The amount of time-steps an overhaul action consumes
SH The amount of time-steps a service action consumes
CSM The service maintenance cost
COM The overhaul maintenance cost
RS The sales price per unit of supply
RP The penalty cost per unit of unfulfilled contracted supply in

Stage (1) of the model
PM Mill state transition matrix
γ One time-step discount ratio

Independent variables
wr The work-rate function that applies to any unit at any time-step

in Stage (1) of the model
XP for tc = 1 The initial plant state

Table 5.5: Parameter classification in full size problem

cost per unit of demand is equal to 30% of the sales price.

We classify the input parameters of the mathematical model into two types: controlled

variables (the values/settings of which stay constant in the numerical experiment here)

and independent variables (the values/settings of which we manipulate), as shown in Table

5.5.

For the purpose of illustrating the practical value of our maintenance approach and

heuristics, we randomly select some different initial power plant states for the three-stage

hybrid MDP model (defined in Section 4.2.2) and further embed the mathematical model

with certain intervention regime (that is low/high intervention regime discussed in Section

4.1.2); we consequently generate different three-stage hybrid MDP problems each of which

has a unique combination of initial plant state and intervention regime. Furthermore, we

ensure such problems are generated in pairs: each problem associated with a certain initial
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state and low/high intervention regime is paired with a different problem associated with

the same initial state but high/low intervention regime (that is the opposite intervention

regime) as counterpart.

We then apply the aforementioned set of heuristics to each such problem in order to

derive optimal value estimation and optimal maintenance choice estimation for the initial

plant state of the problem given certain intervention regime is embedded; furthermore, by

comparing such optimal value estimate for the same initial plant state between different

regimes, operators can decide which regime brings better costs/benefits given specific

initial plant state.

In total ten hybrid MDP problems are examined: we randomly choose five different

initial plant states (presented in Table 5.6 where a plant state is expressed as a set com-

prised of the states of all four units each of which is further expressed as a set consisting

of the state index of all eight mills in the unit, and readers are referred to Table 4.1 in

Section 4.1.4 for the meaning of mill state index; note the five initial plant states in the

mathematical model represent different potential overall physical status of the plant in

reality ranging from relatively good physical status to relatively bad physical status) and

combine each such state with the two intervention regimes of interest; then we assign the

combinations to the three-stage hybrid MDP model and sequentially generate ten differ-

ent problems which are grouped into five pairs. In order to facilitate later discussion, we

index such ten problems in a format as illustrated in Table 5.7: for instance, problem L3

and problem H3 are a pair of problems; problem L3 is embedded with the low intervention

regime and initial plant state 3, and the counterpart problem is problem H3.

5.2.2 Numerical results and discussion

The state space of the full size problem consists of more than 1016unique states at the

plant level of the power plant case study, which is over 4 ∗ 1011times of the state space

size of the medium size problem discussed in Section 5.1; additionally, the action space
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Initial plant state

index

{unit 1 state, unit 2 state, unit 3 state, unit 4 state}

1

{{10, 10, 10, 10, 10, 10, 10, 9},
{10, 10, 10, 10, 9, 9, 9, 8},
{10, 9, 9, 9, 9, 9, 8, 7},
{10, 10, 9, 9, 8, 7, 6, 5}}

2

{{10, 10, 10, 10, 9, 9, 9, 3},
{10, 10, 10, 10, 8, 8, 7, 6},
{10, 10, 10, 10, 10, 10, 10, 10},
{10, 10, 10, 10, 9, 9, 9, 8}}

3

{{10, 10, 10, 10, 10, 10, 8, 1},
{10, 10, 10, 10, 10, 10, 10, 9},
{10, 10, 10, 10, 10, 9, 8, 2},
{10, 10, 9, 9, 8, 7, 6, 5}}

4

{{10, 10, 10, 10, 10, 10, 8, 1},
{10, 10, 10, 10, 10, 10, 10, 10},
{10, 10, 10, 10, 8, 8, 7, 6},
{10, 10, 9, 9, 8, 7, 6, 5}}

5

{{10, 10, 10, 10, 10, 10, 10, 10},
{10, 10, 10, 10, 9, 9, 9, 3},
{10, 10, 10, 10, 10, 9, 8, 2},
{10, 10, 10, 10, 10, 9, 8, 2}}

Table 5.6: Initial plant state

size of the full size problem is over 10 times of the action space size of the medium size

problem.

It is infeasible to implement exact methods to solve the full size problem, as exact

methods induce an impractically long computational time and an impractically large

data-storage cost: for instance, the aforementioned set of brute-force methods (these are

VI and lookup tables method) is estimated to take more than 4 ∗ 1013 days to solve the

full size problem, based on the performance of such methods in the medium size problem

(note such estimation is derived based on a simplification assumption that it takes the

same amount of time to calculate the expected value of a state-action-time-step in the full

size problem as the medium size problem; however in practice such computational time is

actually higher in the full size problem, as each state-action pair can potentially evolve into

more states at the following time-step in the hybrid MDP model for the full size problem

compared to the medium size problem. In other words, the actual total computational

time induced by brute-force methods in solving the full size problem may be even several

magnitudes larger than 4 ∗ 1013 days); additionally, in terms of storing the computational



154

Problem
index

Initial
plant state

index

Intervention
regime

(low/high)
L1 1 low
H1 1 high
L2 2 low
H2 2 high
L3 3 low
H3 3 high
L4 4 low
H4 4 high
L5 5 low
H5 5 high

Table 5.7: Different three-stage hybrid MDP problems

results, the application of such brute-force methods approximately induces 4 ∗ 1012 times

of data-storage cost in solving the full size problem compared to the medium size problem,

and such large data-storage cost is approximately 3∗1012 times of the maximum available

memory space of the standard PC in use. In summary, it is necessary to apply heuristics

to solve the full size problem.

For each of the ten hybrid MDP problems, the application of heuristics contains

300, 000 iterations which consume approximately 9.5 hours in total, and the optimal value

estimation converges in approximately 7.5 hours. For instance, Figure 5.2 illustrates how

the optimal value estimation converges for the initial state of problem H2 in simulation,

in terms of optimal value estimate
final estimate

.

The two-timescale decomposition method plays a crucial role in ensuring the heuristic

results converge in such relatively short computational time (approximately 7.5 hours):

due to the application of such heuristic, the long-term part of the decision making prob-

lem is solved by brute-force methods in a short time (see specification in Chapter 4);

the associated computational results are further fed into the simulation (via Equation

(4.20) defined in Chapter 4) and therefore help the simulation “leap” to a solution that is

relatively close to optimum: as highlighted in Figure 5.2, the convergence rate of simu-

lation for problem H2 is obviously improved in the early stage of simulation, and similar
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improvement on convergence speed is also observed in the simulation for all the other

representative hybrid MDP problems; in contrast, such convergence speed improvement

disappears and the required computational time becomes impractically long (to derive

converged results) if the two-timescale decomposition method is not implemented, as we

observe in some additional comparative numerical tests.

Figure 5.2: Optimal value estimate (% of the final estimate) in every 3, 000 iterations for
initial state of problem H2

In terms of storing the computational results, the data-storage cost induced by heur-

istics in the full size problem is only 4 times of the data-storage cost in the medium size

problem, and it approximately only consumes 0.11% of the maximum available memory

space of the standard PC in use.

In terms of benchmarking the data-accuracy level, we do not have exact results or

heuristic results derived by other benchmarking heuristics to compare with. However, we

assume the heuristics (these are Q-learning, the polynomial function method, the para-

meters number bounding method and the incremental gradient-descent method) examined

in the medium size problem would reach approximately the same level of accuracy here in

the full size problem, given that the medium size problem resembles the full size problem

in terms of the dynamics nature (i.e. the stochastic machine deterioration process and
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Performance measure Are

heuristics

effective?

Are exact

methods

effective?
Computational time Yes No

Data-storage cost Yes No

Table 5.8: Full size problem: performance comparison between heuristics and exact meth-
ods

work-rate adjustment flexibility); additionally, in terms of the two-timescale decomposi-

tion method which is used in solving the full size problem, its impacts on the data accuracy

level should be examined in future studies as discussed in Section 5.1, but we assume such

impacts are marginal: such method applies to the long-term part of the non-contracted

period of the mathematical model, and the importance of such long-term part on cal-

culating the expected values is limited due to the discount factor in the mathematical

model.

Before presenting and comparing the numerical results between different intervention

regimes, in Table 5.8 we summarise the performance/effectiveness of heuristics and exact

methods in solving the full size problem of the case study.

Table 5.9 summarises the numerical results for different intervention regimes: Column

Maintenance choice index (a, b) describes the estimated optimal maintenance choice for

the initial plant state of each problem (note that we index different maintenance altern-

atives in the three-stage hybrid MDP model by specifying two integer valued variables

(a, b), as explained in Section 4.2.2.2, and here in the column we refer to each mainten-

ance choice by its index); Column Q̄L
Q̄H

compares the estimated optimal values for each

initial plant state between every two paired problems (technically speaking such column

describes what percentage the optimal value estimate for the initial state in a problem

embedded with low intervention regime is of the optimal value estimate for the same

initial state in the counterpart problem embedded with high intervention regime, and in-

tuitively speaking such column indicates which regime brings better profits given certain

initial plant state where a percentage value larger or smaller than 100% indicates the low
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intervention regime or high intervention regime should be selected respectively).

Problem

index

Maintenance

choice index

(a, b)

Q̄L
Q̄H

L1 (12, 17)
99.79%H1 (12, 21)

L2 (3, 23)
99.95%H2 (3, 11)

L3 (1, 23)
100.2%H3 (1, 23)

L4 (1, 5)
101.28%H4 (1, 5)

L5 (29, 13)
99.77%H5 (20, 23)

Table 5.9: Comparison between different intervention regimes

As indicated by Table 5.9, the two intervention regimes are expected to yield almost

identical profits for each given initial plant state in practice: although Column Q̄L
Q̄H

suggests

the high intervention regime brings slightly higher profits given initial plant state 1, 2 or 5

whereas the low intervention regime brings slightly higher profits given initial plant state

3 or 4, the value difference (in terms of percentage) between the two regimes revealed by

Column Q̄L
Q̄H

is too small to support such claim conclusively given that heuristic results are

used in comparison rather than exact results. In other words, both regimes are expected

to be approximately equally beneficiary for operators to follow given any initial plant state

selected above.

Such what-if numerical tests (on different operators’ decision regimes) are conducted

following the problem setting specified above for the power plant case study; research-

ers/practitioners can apply our maintenance approach, mathematical model and heur-

istics to the problem setting of their own cases and conduct similar what-if analysis to

facilitate operations decision making for both maintainers and operators.
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5.3 Conclusion

In this chapter we examine the practical value of our maintenance approach, mathematical

model and heuristics in the power plant case study. As demonstrated in the numerical

tests, our maintenance approach and mathematical model support decision making of

both maintainers and operators from a balanced view between machine utilisation and

increased risk of failure; additionally, such facilitation on optimising maintenance planning

and improving machine utilisation behaviours also applies to complex industrial problems

which follow the general hierarchical structure specified in Section 4.1.3. Furthermore, the

numerical test results of the case study empirically illustrate the high effectiveness of our

heuristics by benchmarking with exact methods on three measures: computational time,

data-storage cost and data accuracy level; such numerical test results indicate that the

performance of our heuristics are robust to the size of mathematical problems of interest.

In the next chapter, we shall summarise our research contributions and discuss future

research directions.
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Chapter 6

Conclusions and further research

This thesis focuses on facilitating the balance between machine utilisation and increased

risk of failure in a generic manufacturing business setting extracted from a large scale

British coal-fired power plant; the key features of such business setting include (1) machine

maintenance and machine utilisation are tightly intertwined and (2) maintainers and

operators follow different decision making time-scales.

Chapter 1 highlights the research questions investigated in this thesis:

• How to balance between machine utilisation and increased risk of failure in the

aforementioned business setting?

• How to scale up the mathematical model from Chapter 2 to facilitate maintenance

planning optimisation in a more complex business setting which further involves the

hierarchical structure defined in Chapter 4?

• How to effectively solve the large size mathematical problems resulted from applying

our maintenance approach (developed in Chapter 2), knowing such mathematical

problems would induce (1) impractically long computational time and (2) imprac-

tically large data-storage cost if brute-force methods are applied?

Here we summarise our research contributions which are made in response to the above

research questions in sequence:
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Building a new performance-centred maintenance approach

As discussed in Chapter 2, the existing maintenance approaches cannot effectively

resolve the maintenance planning optimisation problem in the above business setting

from a balanced view between machine utilisation and increased risk of failure, and such

issue is common in the manufacturing industry; in order to fill in such an important gap

between the existing literature and the research problem of interest, a new maintenance

approach is developed in Chapter 2 to properly capture the impacts of different decision

making time-scales and also to balance between machine utilisation and increased risk of

failure.

Such research contribution, as specified in Chapter 2, is achieved through (1) investig-

ating why maintainers and operators have different decision making time-scales and how

such time-scale distinction impacts the value-perception difference between maintainers

and operators regarding various operations activities, and then based on the investigation

results (2) conceptually eliciting how the decision making of maintainers and operators are

intertwined, and finally based on the elicitation results and a set of modelling choices (3)

developing a mathematical model to capture the maintenance planing problem of interest.

Furthermore, as discussed in Chapter 2, by integrating the operators’ decision regime

into maintainers’ decision making in the modelling work, the resulted maintenance ap-

proach facilitates not only maintenance planning optimisation but also machine utilisation

behaviour improvement from a balanced view between machine utilisation and increased

risk of failure. In other words, such a maintenance approach facilitates decision making

for both managerial parties and align their business functions more effectively for better

costs/profits in the aforementioned business setting.

Developing a new mathematical model to capture the hierarchical structure of interest

As discussed in Chapter 4, further investigation of the specific power plant case

background highlights another issue: industries that have adopted distributed genera-

tion/production further involves a general hierarchical physical structure which requires
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maintenance resources distribution at multiple sequential levels, and such hierarchical

structure is beyond the scope of the mathematical model developed in Chapter 2. There-

fore in Chapter 4 we built a more sophisticated new mathematical model following the

maintenance approach from Chapter 2 in order to capture optimal maintenance planning

decision making for more complex industrial problems that further involve the hierarchical

structure.

Such research contribution, as specified in Chapter 4, is achieved through enlarging the

mathematical modelling scope from the production system-asset structure to the company-

production system-asset structure. Additionally, in such more complex modelling work,

we provided an optional modelling choice for practitioners/researchers: approximately

decompose the long-term part of maintenance decision making problem at the company

level as a combination of sub-problems at the asset level. As discussed in Chapter 4, such

modelling choice simplifies the resulted mathematical model and therefore reduces the

total computational efforts required to solve the resulted mathematical problem.

Constructing a set of effective heuristics

As discussed in Chapter 2 and further illustrated in Chapter 4 and Chapter 5, the

application of the maintenance approach from Chapter 2 to industrial cases result in large

size mathematical problems which cannot be effectively solved by brute-force methods:

we evaluate the effectiveness of different methods based on the numerical benchmarks on

three criteria (these are computational time, data-storage cost and data accuracy level)

which we specified in Section 2.4. Therefore we construct a set of heuristics in Chapter 4

in order to effectively solve such large size mathematical problems, including the problems

which involve the aforementioned hierarchical structure.

As specified in Chapter 4, such set of heuristics consists of (1) the two-timescale de-

composition method, (2) the parameters number bounding method, (3) Q-learning, (4)

the polynomial function method and (5) the incremental gradient-descent method. Heur-

istic (1)-(2) are our own design and Heuristic (3)-(5) are selected from existing literature:
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Heuristic (1) is the aforementioned optional modelling choice which reduces the size of

both state space and action space of the resulted mathematical model and hence re-

duces the total computational efforts (in terms of computational time and data-storage

cost) required to solve the mathematical problem; Heuristic (2) is used in combination

with Heuristic (4), where the latter heuristic approximately stores the computational res-

ults by using polynomial functions (which is expected to be more effective compared to

brute-force lookup tables in terms of data-storage cost), and the former heuristic further

reduces the number of free parameters in each polynomial function to a known constant

and such reduction effect results in additional improvement on computational time and

data-storage cost; Heuristic (3) performs simulation-based approximate computation to

solve the mathematical problem and such heuristic is expected to be more effective than

brute-force computation methods in terms of computational time as discussed in Chapter

3; Heuristic (5) incrementally updates the free parameters in the aforementioned polyno-

mial functions based on updated computational results from Heuristic (3): in other words,

Heuristic (5) is a crucial component of the interface between aforementioned heuristics.

We numerically tested the heuristics on the power plant case study in simulation

(see Chapter 5), and the simulation results empirically confirm the effectiveness of the

heuristics.

Below we shall first in Section 6.1 discuss the main assumptions in our research work

related to each such contribution, in order to provide a high level view about which

assumptions are fundamental ones extracted from the problem setting in practice and

which assumptions are chosen in this thesis to help us focus on the main features of the

problem setting and simplify our modelling work: the latter type of assumptions is subject

to potential changes in future studies; then we shall in Section 6.2 select from such change

options and discuss further research directions.
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6.1 Discussion on assumptions

The performance-centred maintenance (PCM) approach

The PCM approach in general applies to industrial cases where the production system

contains multiple individual assets working in parallel, given the set of assumptions (dis-

cussed in Chapter 2) embedded in the PCM approach are justifiable in the corresponding

practical problem setting. Such assumptions are embedded in different aspects of the

PCM approach: the business setting, the conceptual framework and the modelling frame-

work; below we examine the main assumptions in each such aspect and discuss whether

such assumptions are subject to changes in the future research.

Regarding the business setting, the main assumptions include the following: (1) the

contracted period has a crucial impact on modifying the gap between the value perception

perspectives of maintainers and operators, (2) no inventory (it is either impossible or very

expensive to hold inventory) and (3) the output quantity of the system is determined by

both the quantity and quality (for instance the coal grinding quality in the power plant

case) of material processing of the individual assets. Assumption (1) is extracted from

problem settings in practice (see specifications in Section 2.1) and it is fundamental to

the PCM approach as such assumption underpins the development of the PCM approach

in this thesis; therefore such assumption is unlikely to be changed in the future research.

Assumption (2) is extracted from the power plant case but product storage may be a

possible and reasonable choice in other industrial cases (such as in the car manufacturing

industry); therefore Assumption (2) is subject to potential changes in the future research

to suit a more general problem setting: we shall in Section 6.2 discuss how the PCM

approach should be updated given Assumption (2) is changed. Assumption (3)

is also extracted from the power plant case study and since it describes a more general

situation compared to industrial cases where the output quantity of the system is solely

determined by the quantity of material processing of the individual assets, the PCM
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approach can be applied to such cases.

Regarding the conceptual framework, the main assumptions include: (1) the maintain-

ers understand the exact decision regime that the operators follow, (2) the machine state is

continuously monitored and the monitoring information can accurately reveal the machine

state, (3) all prices are all fixed throughout time, (4) the demand after the contracted

period is independent and identical distributed (i.i.d.) and (5) discrete time-setting for

both the machine deterioration process and operations decision making. Assumption (1)

is extracted from problem settings in practice and it is fundamental to the PCM approach

as such an assumption justifies building the machine utilisation behaviours of the operat-

ors into the maintainers’ decision making in the mathematical model (see specifications

in Section 2.2.1); therefore such assumption is unlikely to be changed in the future re-

search. Assumptions (2)-(5) enable this research project to focus on the crucial features

of fundamental trade-offs between managerial parties in their decision making, and such

assumptions are all subject to potential changes in the future research in order to more

accurately reflect practical problem settings: in reality, the machine state may only be

checked at discrete time intervals and the monitoring information may not accurately

reveal the machine state; prices fluctuate randomly over time; the future (non-contracted

and hence non-observed) demand may not be well fitted by i.i.d. statistical models and

the machine deterioration process is more likely to be time-continuous rather than time-

discrete (note that the maintenance actions in practice usually take time lengths of several

consecutive shifts, for example several days or weeks, and hence the discrete time-setting

assumption for modelling decision making is less necessary to be changed in future stud-

ies). Regarding whether to change Assumption (4), practitioners/researchers can conduct

model validation tests on historical demand data for i.i.d. statistical models of interest (so

practitioners/researchers can estimate whether the future demand can be well fitted by

i.i.d. statistical models) and/or conduct sensitivity analysis on the computational results

(so practitioners/researchers can evaluate the impacts of potential statistical modelling
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inaccuracy on the quality of derived operations policies) in the context of their own case.

For the cases where Assumption (4) should be changed, practitioners/researchers need

to investigate more flexible modelling choices including Markov processes and time series

forecasting. It is however worth emphasising that in practice the future (non-contracted)

demand has less importance to operations decision making compared to already contrac-

ted demand, and we capture such difference in importance by introducing discount factor

in our mathematical models; therefore we do not expect high necessity for changing As-

sumption (4) and we shall not further discuss such change option in this thesis. Instead,

we shall in Section 6.2 discuss how the PCM approach should be updated

given the other three assumptions (Assumption (2), Assumption (3) and As-

sumption (5)) are changed.

Regarding the modelling framework, the main assumptions include: (1) the system

state evolving process satisfies the Markovian property, (2) the transition between any

system states always consumes a fixed time length and (3) the performance and condition

of every asset can each be perceived as a single-dimensional aggregated variable which can

be further categorised into ordered discrete levels. Such assumptions enable us to model

the deterioration and maintenance process by using a discrete-time discrete-state Markov

decision process. The three assumptions are not necessarily accurate reflection of practical

problem settings: Assumption (2) can be changed to better suit time-continuous

deterioration processes in practice, which we shall further discuss in Section

6.2; Assumption (3) aligns with a common approximation perception of the machine

state from engineers in practice but it is worth knowing that such aggregation perception

may comprise the quality of derived operations policies if each asset in practice further

consists of multiple non-identical components each of which has a different deterioration

mechanism: in such case it is necessary to consider changing Assumption (3) and

conducting more complex modelling work in order to better capture asset

performance deterioration and/or asset condition deterioration on multiple
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dimensions, which we shall further discuss in Section 6.2; regarding Assumption

(1), it is unclear what modelling frameworks can replace Markov decision processes while

maintaining the same level of modelling simplicity if Assumption (1) is changed.

The mathematical model for the hierarchical structure

The hierarchical structure of the machine systems significantly increases the complex-

ity of decision making, rendering the mathematical model much more complex. See com-

parison between the three-stage hybrid MDP model in Section 4.2 and the mathematical

model in Section 2.2.4.3.

The three-stage hybrid MDP model is developed in the context of the power plant

case, where all the mills are identical in terms of their physical structure. However, we

would like to emphasise that Stage (1) and Stage (2) of the model does not require the

assets to be identical; as for Stage (3) of the mathematical model which is resulted from

the application of the two-timescale decomposition method (see Section 4.2.1.1), both the

decomposition method and the mathematical model part can be relatively easily adapted

for industrial cases in which the assets are not identical, as discussed in Section 4.2.1.1.

Additionally, the three-stage hybrid MDP model follows the specific maintenance re-

sources constraints in the power plant case study: the plant has two maintenance crews in

total: one dedicates to service and the other crew dedicates to overhaul. The mathemat-

ical model can be relatively easily adapted for other industrial cases which has either more

or less maintenance crews: to suit such cases, the action space in Stage (1) and Stage (2)

of the mathematical model should be expanded or reduced accordingly, and in Stage (3)

the maintenance crew rotation schedules should also be modified to reflect the change of

crew numbers; these are relatively simple modifications and we shall not further discuss.

The heuristics

The set of heuristics is also developed in the context of the power plant case, and

such set of heuristics can be relatively easily adapted for other industrial cases of interest

as discussed in Section 4.2-4.3; here we focus on assumptions embedded in the polyno-
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mial function method and the parameters number bounding method (the two-timescale

decomposition method is discussed above already).

The choice of polynomial function method is justified by the extrapolated concave data

patterns in the case study (see discussion in Section 4.3.1); furthermore, we choose to use

quadratic functions to approximate the expected value of interest, based on numerical tests

on medium size problems of the case study. Although we assume similar concave data

patters in general also exist in other industrial cases of interest and therefore polynomial

function method can also be applied to such cases, quadratic functions may not yield

relative accurate approximation in such cases and hence polynomial functions with higher

degrees may be required (for instance cubic functions): note that polynomial functions

with higher degrees still contain concave properties. Higher degree polynomial functions

however may introduce a large number of free parameters to be tuned; additionally, the

specific quadratic function setting for the power plant case study does not involve cross

products of variables from different units in the power plant (see specifications in Section

4.3.1): such modelling choice is justified by the specific problem setting where each unit

in the plant has its separate supply contract (see discussion in Section 4.3.1), but other

industrial cases may not have such convenient problem feature and hence an extra large

number of free parameters (for the cross products) may be required to be tuned. Therefore,

the parameters number bounding method is crucial (even for quadratic functions) to

ensure the total number of free parameters is relatively small.

The parameters number bounding method has a fundamental prerequisite that all

assets are identical, in order to guarantee the value approximation quality (of the polyno-

mial function method) is not compromised due to the application of such method; but the

prerequisite may not be satisfied in some industrial cases, and in such cases the applic-

ation of the parameters number bounding method may instead largely compromise the

value approximation quality. It is however unclear how to further improve the method to

mitigate such impacts on data accuracy if the prerequisite is changed.
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6.2 Further research

Section 6.1 discusses which assumptions in our research work are subject to potential

changes; here we choose to focus on the change options that would bring major impacts

to our research and discuss the implied updates in the modelling work for future research.

• Assumption change option (1): keeping inventory is a potentially reasonable

choice.The choice of keeping inventory would enable the operators to exploit ex-

cessive production capacity of the machine system in practice; in order to facilitate

optimal inventory decision making on buffer size(s), the PCM approach needs to con-

sider additional trade-offs involved in such decision making from a balanced view

between machine utilisation and increased risk of failure: exploiting extra produc-

tion helps reduce the necessity of speeding up future production in the contracted

period and helps cut down potential penalty cost; however, inventory cost must

be evaluated and additionally the reduction of maintenance opportunities (a ma-

chine cannot produce products and receive maintenance at the same time) should

be examined. Meanwhile, the operators may be motivated to expand the produc-

tion planning-horizon beyond the contracted period, as the inventory level at the

end of the current contracted period directly impacts whether the demand to be

contracted in the future can be fulfilled by self-production in the company. The

decision making on buffer size(s), as well as the additional trade-offs and impacts on

production planning-horizon, should be captured in the conceptual framework and

the mathematical model of the PCM approach if assumption change option (1) is

chosen.

• Assumption change option (2): the relevant prices evolve stochastically over time.

Such assumption aligns with practice: in reality, the raw material purchase price,

the product sales price and the emergent procurement price on spot market all fluc-
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tuate randomly over time; therefore in practice the penalty cost and the profit per

unit of demand discussed in the business setting of the PCM approach would also

randomly fluctuate over time. Intuitively speaking, as the unit profit or penalty

cost becomes larger, production should be more likely prioritised over maintenance

in practice (meaning maintenance should be more likely scheduled for a later time)

and speeded-up production should be more likely chosen to resolve potential produc-

tion shortfalls (to avoid high penalty cost) for better costs/benefits; in other words,

the price dynamics have important impacts on operations decision making. Given

assumption change option (2), such impacts in practice should be captured at each

level of the PCM approach: the conceptual framework, the modelling framework

and the mathematical model. Such research direction relates to an active research

area which focuses on the interface between the commodity markets and operations

management where the operations decision making is subject to the randomly fluc-

tuating prices on different commodity markets (for example, forward market and

spot market where procurement/sales is agreed on forward contracts and spot con-

tracts respectively); the studies (e.g. [47, 62, 63, 100]) in such research area provide

example modelling frameworks that incorporate stochastically evolving prices into

operations decision making, which we may further investigate.

• Assumption change option (3): the assets deteriorate in a continuous time-setting.

As a result, the modelling framework and the mathematical model of the PCM

approach should be updated to suit the more general problem settings that the

assumption change option reflects. More specifically speaking, semi-Markov process

or continuous-time Markov process (see discussion of both frameworks in Section

1.1.2.2) can be adopted in the PCM approach to replace Markov chain to model the

machine deterioration process.

• Assumption change option (4): the performance and condition of an asset can each
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potentially deteriorates on multiple dimensions, and additionally the deterioration

mechanisms can be highly different between such dimensions. As a result, the de-

terioration measurement on each such dimension should be modelled as a separate

entity in the mathematical model, and additionally the transition probabilities eli-

citation framework specified in Section 2.2.3 should be updated to elicit the machine

state transition probabilities on each aforementioned dimension separately (assum-

ing the measurement on each such dimension can be categorised into ordered discrete

levels) rather than at an aggregated level. However, such more complex modelling

work induces exponential increment on the state space size in the resulted mathem-

atical problem, and such exponential increment inevitably requires more effective

computation and data-storage heuristics which raises further interesting research

questions. We believe that as machines are becoming more complex in the manu-

facturing industry, such a more complex modelling framework and the designing of

more effective heuristics are worth further investigation.

• Assumption change option (5): the machine monitoring information can only re-

veal part of the machine state. So far in practice, it is common that the machine

state cannot be fully monitored, especially if the machine has a complex physical

structure. In order to capture such more general problem setting where opera-

tions decision making relies on incomplete machine state information, assumption

change option (5) can be chosen and consequently the modelling framework and

the mathematical model of the PCM approach should be updated to reflect such

additional uncertainty faced by decision makers. More specifically speaking, hidden

Markov process (discussed in Section 1.1.2.2) can be adopted in the PCM approach

to replace Markov chain to model the machine deterioration process. However,

as modern-day monitoring technologies advance in the current era of Industry 4.0

and machine monitoring becomes more effective (especially with increasing use of

advanced sensors), the issue of inaccurate monitoring would become less pressing
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and therefore the necessity of mathematically capturing the uncertainty involved in

machine state monitoring may diminish.

Nevertheless, while the technology of ubiquitous sensing is materialising and hence

decision makers are enabled to harvest more accurate and comprehensive monitoring

information, researchers/practitioners face an ever-growing challenge of balancing

between model complexity and model accuracy: in order to fully capture the more

detailed monitoring information in the mathematical model, the machine state may

need to be mathematically described in very complex ways (for example described

as a high-dimensional variable) and hence the resulted mathematical model may

become very complex and even computational intractable; therefore, rather than

blindly pursuing a “true” mathematical model which fully captures the monitor-

ing information in the ever-more ubiquitous sensing industrial setting, researchers

and practitioners should find a suitable simplified mathematical description of the

machine state which provides a useful approximation.

Of course, the advancement of computation technologies (for example the break-

throughs in quantum computing) would tilt the balance and enable research-

ers/practitioners to pursue more accurate models without losing computational

tractability; however, the trade-off between model complexity and model accur-

acy would always remain and therefore reaching a balance in between (rather than

building an absolutely accurate model that involves over-elaboration and over-

parameterization) is always the key of a good mathematical modelling work. As

summarised by [20], all models are wrong but some are useful.

Given the five different future research directions discussed above, we choose to first look

into assumption change option (3) in our immediate next study, as such choice induces

perhaps the lowest level of extra modelling complexity to our existing work; the other

four research directions shall be investigated in later studies.
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Appendix A

Toy-size problem: compare different

modelling approaches

A.1 PCM approach: lists of additional parameters

and derived decisions

Table A.1: PCM: full list of unit states

Unit state index 1 2 3 4 5

meaning (in terms

of set of mill

states; see Table

4.1 for reference to

mill state index)

{10, 10, 10} {9, 10, 10} {9, 9, 10} {9, 9, 9} {8, 10, 10}

Unit state index 6 7 8 9 10

meaning (in terms

of set of mill

states)

{8, 9, 10} {8, 9, 9} {8, 8, 10} {8, 8, 9} {8, 8, 8}

Unit state index 11 12 13 14 15
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Table A.1: PCM: full list of unit states

meaning (in terms

of set of mill

states)

{7, 10, 10} {7, 9, 10} {7, 9, 9} {7, 8, 10} {7, 8, 9}

Unit state index 16 17 18 19 20

meaning (in terms

of set of mill

states)

{7, 8, 8} {7, 7, 10} {7, 7, 9} {7, 7, 8} {7, 7, 7}

Unit state index 21 22 23 24 25

meaning (in terms

of set of mill

states)

{6, 10, 10} {6, 9, 10} {6, 9, 9} {6, 8, 10} {6, 8, 9}

Unit state index 26 27 28 29 30

meaning (in terms

of set of mill

states)

{6, 8, 8} {6, 7, 10} {6, 7, 9} {6, 7, 8} {6, 7, 7}

Unit state index 31 32 33 34 35

meaning (in terms

of set of mill

states)

{6, 6, 10} {6, 6, 9} {6, 6, 8} {6, 6, 7} {6, 6, 6}

Unit state index 36 37 38 39 40

meaning (in terms

of set of mill

states)

{5, 10, 10} {5, 9, 10} {5, 9, 9} {5, 8, 10} {5, 8, 9}

Unit state index 41 42 43 44 45

meaning (in terms

of set of mill

states)

{5, 8, 8} {5, 7, 10} {5, 7, 9} {5, 7, 8} {5, 7, 7}
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Table A.1: PCM: full list of unit states

Unit state index 46 47 48 49 50

meaning (in terms

of set of mill

states)

{5, 6, 10} {5, 6, 9} {5, 6, 8} {5, 6, 7} {5, 6, 6}

Unit state index 51 52 53 54 55

meaning (in terms

of set of mill

states)

{5, 5, 10} {5, 5, 9} {5, 5, 8} {5, 5, 7} {5, 5, 6}

Unit state index 56 57 58 59 60

meaning (in terms

of set of mill

states)

{5, 5, 5} {4, 10, 10} {4, 9, 10} {4, 9, 9} {4, 8, 10}

Unit state index 61 62 63 64 65

meaning (in terms

of set of mill

states)

{4, 8, 9} {4, 8, 8} {4, 7, 10} {4, 7, 9} {4, 7, 8}

Unit state index 66 67 68 69 70

meaning (in terms

of set of mill

states)

{4, 7, 7} {4, 6, 10} {4, 6, 9} {4, 6, 8} {4, 6, 7}

Unit state index 71 72 73 74 75

meaning (in terms

of set of mill

states)

{4, 6, 6} {4, 5, 10} {4, 5, 9} {4, 5, 8} {4, 5, 7}

Unit state index 76 77 78 79 80
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Table A.1: PCM: full list of unit states

meaning (in terms

of set of mill

states)

{4, 5, 6} {4, 5, 5} {4, 4, 10} {4, 4, 9} {4, 4, 8}

Unit state index 81 82 83 84 85

meaning (in terms

of set of mill

states)

{4, 4, 7} {4, 4, 6} {4, 4, 5} {4, 4, 4} {3, 10, 10}

Unit state index 86 87 88 89 90

meaning (in terms

of set of mill

states)

{3, 9, 10} {3, 9, 9} {3, 8, 10} {3, 8, 9} {3, 8, 8}

Unit state index 91 92 93 94 95

meaning (in terms

of set of mill

states)

{3, 7, 10} {3, 7, 9} {3, 7, 8} {3, 7, 7} {3, 6, 10}

Unit state index 96 97 98 99 100

meaning (in terms

of set of mill

states)

{3, 6, 9} {3, 6, 8} {3, 6, 7} {3, 6, 6} {3, 5, 10}

Unit state index 101 102 103 104 105

meaning (in terms

of set of mill

states)

{3, 5, 9} {3, 5, 8} {3, 5, 7} {3, 5, 6} {3, 5, 5}

Unit state index 106 107 108 109 110

meaning (in terms

of set of mill

states)

{3, 4, 10} {3, 4, 9} {3, 4, 8} {3, 4, 7} {3, 4, 6}
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Table A.1: PCM: full list of unit states

Unit state index 111 112 113 114 115

meaning (in terms

of set of mill

states)

{3, 4, 5} {3, 4, 4} {3, 3, 10} {3, 3, 9} {3, 3, 8}

Unit state index 116 117 118 119 120

meaning (in terms

of set of mill

states)

{3, 3, 7} {3, 3, 6} {3, 3, 5} {3, 3, 4} {3, 3, 3}

Unit state index 121 122 123 124 125

meaning (in terms

of set of mill

states)

{2, 10, 10} {2, 9, 10} {2, 9, 9} {2, 8, 10} {2, 8, 9}

Unit state index 126 127 128 129 130

meaning (in terms

of set of mill

states)

{2, 8, 8} {2, 7, 10} {2, 7, 9} {2, 7, 8} {2, 7, 7}

Unit state index 131 132 133 134 135

meaning (in terms

of set of mill

states)

{2, 6, 10} {2, 6, 9} {2, 6, 8} {2, 6, 7} {2, 6, 6}

Unit state index 136 137 138 139 140

meaning (in terms

of set of mill

states)

{2, 5, 10} {2, 5, 9} {2, 5, 8} {2, 5, 7} {2, 5, 6}

Unit state index 141 142 143 144 145
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Table A.1: PCM: full list of unit states

meaning (in terms

of set of mill

states)

{2, 5, 5} {2, 4, 10} {2, 4, 9} {2, 4, 8} {2, 4, 7}

Unit state index 146 147 148 149 150

meaning (in terms

of set of mill

states)

{2, 4, 6} {2, 4, 5} {2, 4, 4} {2, 3, 10} {2, 3, 9}

Unit state index 151 152 153 154 155

meaning (in terms

of set of mill

states)

{2, 3, 8} {2, 3, 7} {2, 3, 6} {2, 3, 5} {2, 3, 4}

Unit state index 156 157 158 159 160

meaning (in terms

of set of mill

states)

{2, 3, 3} {2, 2, 10} {2, 2, 9} {2, 2, 8} {2, 2, 7}

Unit state index 161 162 163 164 165

meaning (in terms

of set of mill

states)

{2, 2, 6} {2, 2, 5} {2, 2, 4} {2, 2, 3} {2, 2, 2}

Unit state index 166 167 168 169 170

meaning (in terms

of set of mill

states)

{1, 10, 10} {1, 9, 10} {1, 9, 9} {1, 8, 10} {1, 8, 9}

Unit state index 171 172 173 174 175

meaning (in terms

of set of mill

states)

{1, 8, 8} {1, 7, 10} {1, 7, 9} {1, 7, 8} {1, 7, 7}
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Table A.1: PCM: full list of unit states

Unit state index 176 177 178 179 180

meaning (in terms

of set of mill

states)

{1, 6, 10} {1, 6, 9} {1, 6, 8} {1, 6, 7} {1, 6, 6}

Unit state index 181 182 183 184 185

meaning (in terms

of set of mill

states)

{1, 5, 10} {1, 5, 9} {1, 5, 8} {1, 5, 7} {1, 5, 6}

Unit state index 186 187 188 189 190

meaning (in terms

of set of mill

states)

{1, 5, 5} {1, 4, 10} {1, 4, 9} {1, 4, 8} {1, 4, 7}

Unit state index 191 192 193 194 195

meaning (in terms

of set of mill

states)

{1, 4, 6} {1, 4, 5} {1, 4, 4} {1, 3, 10} {1, 3, 9}

Unit state index 196 197 198 199 200

meaning (in terms

of set of mill

states)

{1, 3, 8} {1, 3, 7} {1, 3, 6} {1, 3, 5} {1, 3, 4}

Unit state index 201 202 203 204 205

meaning (in terms

of set of mill

states)

{1, 3, 3} {1, 2, 10} {1, 2, 9} {1, 2, 8} {1, 2, 7}

Unit state index 206 207 208 209 210
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Table A.1: PCM: full list of unit states

meaning (in terms

of set of mill

states)

{1, 2, 6} {1, 2, 5} {1, 2, 4} {1, 2, 3} {1, 2, 2}

Unit state index 211 212 213 214 215

meaning (in terms

of set of mill

states)

{1, 1, 10} {1, 1, 9} {1, 1, 8} {1, 1, 7} {1, 1, 6}

Unit state index 216 217 218 219 220

meaning (in terms

of set of mill

states)

{1, 1, 5} {1, 1, 4 {1, 1, 3} {1, 1, 2} {1, 1, 1}

Table A.2: PCM: derived decisions and expected value

Initial unit state index 1 2 3 4 5

Derived maintenance action 1 7 7 7 6

Expected value (£) 27561445.32 27407704.37 27183135.36 26894373.16 27407704.37

Initial unit state index 6 7 8 9 10

Derived maintenance action 6 6 6 6 6

Expected value (£) 27183135.36 26894373.16 26962255.19 26662894.19 26231981.27

Initial unit state index 11 12 13 14 15

Derived maintenance action 14 14 14 6 6

Expected value (£) 27202144.37 26977575.36 26688813.16 26889750.31 26660153.93

Initial unit state index 16 17 18 19 20

Derived maintenance action 6 14 14 6 14

Expected value (£) 26431522.3 26684190.31 26454593.93 26253006.42 26047446.42

Initial unit state index 21 22 23 24 25

Derived maintenance action 13 13 13 13 13

Expected value (£) 27202144.37 26977575.36 26688813.16 26756695.19 26457334.19
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Table A.2: PCM: derived decisions and expected value

Initial unit state index 26 27 28 29 30

Derived maintenance action 6 13 13 13 13

Expected value (£) 26197930.19 26684190.31 26454593.93 26225962.3 26047446.42

Initial unit state index 31 32 33 34 35

Derived maintenance action 13 13 13 13 13

Expected value (£) 26511090.14 26230355.66 25992370.19 25855409.74 25620634.97

Initial unit state index 36 37 38 39 40

Derived maintenance action 12 12 12 12 12

Expected value (£) 27202144.37 26977575.36 26688813.16 26756695.19 26457334.19

Initial unit state index 41 42 43 44 45

Derived maintenance action 12 12 12 12 12

Expected value (£) 26026421.27 26684190.31 26454593.93 26225962.3 26047446.42

Initial unit state index 46 47 48 49 50

Derived maintenance action 12 12 12 12 12

Expected value (£) 26511090.14 26230355.66 25992370.19 25855409.74 25620634.97

Initial unit state index 51 52 53 54 55

Derived maintenance action 12 12 12 12 12

Expected value (£) 26279870.47 25982320.01 25572592.17 25636599.77 25392276.77

Initial unit state index 56 57 58 59 60

Derived maintenance action 12 11 11 11 11

Expected value (£) 24993210.54 27202144.37 26977575.36 26688813.16 26756695.19

Initial unit state index 61 62 63 64 65

Derived maintenance action 11 11 11 11 11

Expected value (£) 26457334.19 26026421.27 26684190.31 26454593.93 26225962.3

Initial unit state index 66 67 68 69 70

Derived maintenance action 11 11 11 11 11

Expected value (£) 26047446.42 26511090.14 26230355.66 25992370.19 25855409.74

Initial unit state index 71 72 73 74 75

Derived maintenance action 11 11 11 11 11

Expected value (£) 25620634.97 26279870.47 25982320.01 25572592.17 25636599.77



200

Table A.2: PCM: derived decisions and expected value

Initial unit state index 76 77 78 79 80

Derived maintenance action 11 11 11 11 11

Expected value (£) 25392276.77 24993210.54 25350390.78 25088665.22 24856798.59

Initial unit state index 81 82 83 84 85

Derived maintenance action 11 11 11 11 10

Expected value (£) 24577919.96 24365010.68 24146824.29 22665926.83 27202144.37

Initial unit state index 86 87 88 89 90

Derived maintenance action 10 10 10 10 10

Expected value (£) 26977575.36 26688813.16 26756695.19 26457334.19 26026421.27

Initial unit state index 91 92 93 94 95

Derived maintenance action 10 10 10 10 10

Expected value (£) 26684190.31 26454593.93 26225962.3 26047446.42 26511090.14

Initial unit state index 96 97 98 99 100

Derived maintenance action 10 10 10 10 10

Expected value (£) 26230355.66 25992370.19 25855409.74 25620634.97 26279870.47

Initial unit state index 101 102 103 104 105

Derived maintenance action 10 10 10 10 10

Expected value (£) 25982320.01 25572592.17 25636599.77 25392276.77 24993210.54

Initial unit state index 106 107 108 109 110

Derived maintenance action 10 10 10 10 10

Expected value (£) 25350390.78 25088665.22 24856798.59 24577919.96 24365010.68

Initial unit state index 111 112 113 114 115

Derived maintenance action 10 10 10 10 10

Expected value (£) 24146824.29 22665926.83 25240844.87 24953058.36 24649657.23

Initial unit state index 116 117 118 119 120

Derived maintenance action 10 10 10 10 10

Expected value (£) 24466892.94 24234112.35 23943765.08 22555812.05 22399097.27

Initial unit state index 121 122 123 124 125

Derived maintenance action 9 9 9 9 9

Expected value (£) 27202144.37 26977575.36 26688813.16 26756695.19 26457334.19
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Table A.2: PCM: derived decisions and expected value

Initial unit state index 126 127 128 129 130

Derived maintenance action 9 9 9 9 9

Expected value (£) 26026421.27 26684190.31 26454593.93 26225962.3 26047446.42

Initial unit state index 131 132 133 134 135

Derived maintenance action 9 9 9 9 9

Expected value (£) 26511090.14 26230355.66 25992370.19 25855409.74 25620634.97

Initial unit state index 136 137 138 139 140

Derived maintenance action 9 9 9 9 9

Expected value (£) 26279870.47 25982320.01 25572592.17 25636599.77 25392276.77

Initial unit state index 141 142 143 144 145

Derived maintenance action 9 9 9 9 9

Expected value (£) 24993210.54 25350390.78 25088665.22 24856798.59 24577919.96

Initial unit state index 146 147 148 149 150

Derived maintenance action 9 9 9 9 9

Expected value (£) 24365010.68 24146824.29 22665926.83 25240844.87 24953058.36

Initial unit state index 151 152 153 154 155

Derived maintenance action 9 9 9 9 9

Expected value (£) 24649657.23 24466892.94 24234112.35 23943765.08 22555812.05

Initial unit state index 156 157 158 159 160

Derived maintenance action 9 9 9 9 9

Expected value (£) 22399097.27 25041441.05 24747763.12 24385229.7 24270723.21

Initial unit state index 161 162 163 164 165

Derived maintenance action 9 9 9 9 9

Expected value (£) 24034312.72 23684271.57 22374400.98 22182608.97 21936494.82

Initial unit state index 166 167 168 169 170

Derived maintenance action 8 8 8 8 8

Expected value (£) 27202144.37 26977575.36 26688813.16 26756695.19 26457334.19

Initial unit state index 171 172 173 174 175

Derived maintenance action 8 8 8 8 8

Expected value (£) 26026421.27 26684190.31 26454593.93 26225962.3 26047446.42
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Table A.2: PCM: derived decisions and expected value

Initial unit state index 176 177 178 179 180

Derived maintenance action 8 8 8 8 8

Expected value (£) 26511090.14 26230355.66 25992370.19 25855409.74 25620634.97

Initial unit state index 181 182 183 184 185

Derived maintenance action 8 8 8 8 8

Expected value (£) 26279870.47 25982320.01 25572592.17 25636599.77 25392276.77

Initial unit state index 186 187 188 189 190

Derived maintenance action 8 8 8 8 8

Expected value (£) 24993210.54 25350390.78 25088665.22 24856798.59 24577919.96

Initial unit state index 191 192 193 194 195

Derived maintenance action 8 8 8 8 8

Expected value (£) 24365010.68 24146824.29 22665926.83 25240844.87 24953058.36

Initial unit state index 196 197 198 199 200

Derived maintenance action 8 8 8 8 8

Expected value (£) 24649657.23 24466892.94 24234112.35 23943765.08 22555812.05

Initial unit state index 201 202 203 204 205

Derived maintenance action 8 8 8 8 8

Expected value (£) 22399097.27 25041441.05 24747763.12 24385229.7 24270723.21

Initial unit state index 206 207 208 209 210

Derived maintenance action 8 8 8 8 8

Expected value (£) 24034312.72 23684271.57 22374400.98 22182608.97 21936494.82

Initial unit state index 211 212 213 214 215

Derived maintenance action 8 8 8 8 8

Expected value (£) 21740228.19 21400787.94 21185664.05 20761654.03 20484793.1

Initial unit state index 216 217 218 219 220

Derived maintenance action 8 8 8 8 8

Expected value (£) 20287501.06 18291897.07 18167769.68 17997225.49 12980370.85
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A.2 Myopic approach: derived decisions comparison

Table A.3: Myopic approach: derived decisions compar-

ison

Initial unit state

index

1 2 3 4 5 6 7 8 9 10

Optimal

maintenance choice

1 7 7 7 6 6 6 6 6 6

Myopic

maintenance choice

1 1 1 1 1 1 6 6 6 6

Loss of expected

value (%)

0 0.03 0.12 0.26 0.58 0.87 0 0 0 0

Initial unit state

index

11 12 13 14 15 16 17 18 19 20

Optimal

maintenance choice

14 14 14 6 6 6 14 14 6 14

Myopic

maintenance choice

1 1 1 1 6 6 1 1 6 1

Loss of expected

value (%)

0.59 0.39 0.28 0.65 0 0 1.05 0.85 0 1.24

Initial unit state

index

21 22 23 24 25 26 27 28 29 30

Optimal

maintenance choice

13 13 13 13 13 6 13 13 13 13
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Table A.3: Myopic approach: derived decisions compar-

ison

Myopic

maintenance choice

1 1 1 1 6 6 1 1 6 1

Loss of expected

value (%)

1.00 1.06 1.20 1.03 0.08 0 1.53 1.61 0.63 1.75

Initial unit state

index

31 32 33 34 35 36 37 38 39 40

Optimal

maintenance choice

13 13 13 13 13 12 12 12 12 12

Myopic

maintenance choice

1 1 6 1 1 1 1 4 6 6

Loss of expected

value (%)

1.62 1.74 0.64 1.80 1.90 1.59 1.88 1.11 1.01 1.02

Initial unit state

index

41 42 43 44 45 46 47 48 49 50

Optimal

maintenance choice

12 12 12 12 12 12 12 12 12 12

Myopic

maintenance choice

6 1 4 6 4 1 4 6 4 4

Loss of expected

value (%)

0.95 2.09 1.54 1.46 1.72 2.38 1.61 1.52 1.72 1.75

Initial unit state

index

51 52 53 54 55 56 57 58 59 60
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Table A.3: Myopic approach: derived decisions compar-

ison

Optimal

maintenance choice

12 12 12 12 12 12 11 11 11 11

Myopic

maintenance choice

4 4 6 4 4 4 1 1 1 1

Loss of expected

value (%)

1.53 1.56 1.46 1.73 1.76 1.81 5.51 5.46 5.57 5.28

Initial unit state

index

61 62 63 64 65 66 67 68 69 70

Optimal

maintenance choice

11 11 11 11 11 11 11 11 11 11

Myopic

maintenance choice

6 6 1 1 6 1 1 1 6 1

Loss of expected

value (%)

4.40 3.70 6.57 6.54 5.50 7.48 6.53 6.62 5.47 7.40

Initial unit state

index

71 72 73 74 75 76 77 78 79 80

Optimal

maintenance choice

11 11 11 11 11 11 11 11 11 11

Myopic

maintenance choice

1 1 4 6 4 4 4 1 1 6

Loss of expected

value (%)

7.44 6.27 5.51 4.77 6.45 6.38 5.75 9.21 9.22 7.99
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Table A.3: Myopic approach: derived decisions compar-

ison

Initial unit state

index

81 82 83 84 85 86 87 88 89 90

Optimal

maintenance choice

11 11 11 11 10 10 10 10 10 10

Myopic

maintenance choice

1 1 4 1 1 1 1 6 6 6

Loss of expected

value (%)

10.17 10.13 9.01 12.34 5.67 5.81 6.10 4.90 4.91 4.50

Initial unit state

index

91 92 93 94 95 96 97 98 99 100

Optimal

maintenance choice

10 10 10 10 10 10 10 10 10 10

Myopic

maintenance choice

1 1 6 1 1 1 6 1 1 4

Loss of expected

value (%)

6.75 6.91 5.92 7.67 6.86 7.14 5.97 7.75 7.95 5.99

Initial unit state

index

101 102 103 104 105 106 107 108 109 110

Optimal

maintenance choice

10 10 10 10 10 10 10 10 10 10

Myopic

maintenance choice

4 6 4 4 4 1 1 6 1 1
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Table A.3: Myopic approach: derived decisions compar-

ison

Loss of expected

value (%)

6.03 5.57 6.87 6.90 6.56 9.39 9.65 8.43 10.38 10.54

Initial unit state

index

111 112 113 114 115 116 117 118 119 120

Optimal

maintenance choice

10 10 10 10 10 10 10 10 10 10

Myopic

maintenance choice

4 1 1 1 6 1 1 4 1 1

Loss of expected

value (%)

9.47 12.63 9.45 9.82 8.30 10.46 10.73 9.36 12.82 13.08

Initial unit state

index

121 122 123 124 125 126 127 128 129 130

Optimal

maintenance choice

9 9 9 9 9 9 9 9 9 9

Myopic

maintenance choice

1 1 2 6 6 6 1 1 6 1

Loss of expected

value (%)

6.15 6.47 6.05 5.64 5.68 5.52 7.22 7.59 6.67 8.14

Initial unit state

index

131 132 133 134 135 136 137 138 139 140

Optimal

maintenance choice

9 9 9 9 9 9 9 9 9 9
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Table A.3: Myopic approach: derived decisions compar-

ison

Myopic

maintenance choice

1 2 6 1 2 4 4 6 4 4

Loss of expected

value (%)

7.52 7.10 6.74 8.43 7.93 6.72 6.81 6.58 7.61 7.68

Initial unit state

index

141 142 143 144 145 146 147 148 149 150

Optimal

maintenance choice

9 9 9 9 9 9 9 9 9 9

Myopic

maintenance choice

4 1 2 6 1 2 4 1 1 2

Loss of expected

value (%)

7.59 9.83 9.51 9.16 10.84 10.43 10.21 13.13 10.21 9.58

Initial unit state

index

151 152 153 154 155 156 157 158 159 160

Optimal

maintenance choice

9 9 9 9 9 9 9 9 9 9

Myopic

maintenance choice

6 2 2 4 2 2 1 2 6 2

Loss of expected

value (%)

9.17 10.35 10.50 10.25 12.47 12.56 10.48 9.63 9.20 10.35

Initial unit state

index

161 162 163 164 165 166 167 168 169 170
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Table A.3: Myopic approach: derived decisions compar-

ison

Optimal

maintenance choice

9 9 9 9 9 8 8 8 8 8

Myopic

maintenance choice

2 4 2 2 2 1 1 1 6 6

Loss of expected

value (%)

10.55 10.30 12.53 12.66 12.76 18.30 18.89 19.50 17.98 18.34

Initial unit state

index

171 172 173 174 175 176 177 178 179 180

Optimal

maintenance choice

8 8 8 8 8 8 8 8 8 8

Myopic

maintenance choice

6 1 1 6 1 1 1 6 1 1

Loss of expected

value (%)

17.81 20.38 21.00 20.05 22.34 20.92 21.51 20.40 22.85 23.35

Initial unit state

index

181 182 183 184 185 186 187 188 189 190

Optimal

maintenance choice

8 8 8 8 8 8 8 8 8 8

Myopic

maintenance choice

4 4 6 4 4 4 1 1 6 1

Loss of expected

value (%)

20.06 20.45 19.86 22.01 22.35 21.90 25.94 26.54 25.58 27.96
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Table A.3: Myopic approach: derived decisions compar-

ison

Initial unit state

index

191 192 193 194 195 196 197 198 199 200

Optimal

maintenance choice

8 8 8 8 8 8 8 8 8 8

Myopic

maintenance choice

1 4 1 1 1 6 1 1 4 1

Loss of expected

value (%)

28.46 27.65 33.21 26.12 26.77 25.46 28.16 28.69 27.55 33.45

Initial unit state

index

201 202 203 204 205 206 207 208 209 210

Optimal

maintenance choice

8 8 8 8 8 8 8 8 8 8

Myopic

maintenance choice

1 1 2 6 2 2 4 2 2 2

Loss of expected

value (%)

33.72 26.21 26.10 25.35 27.65 28.08 27.47 32.98 32.96 32.98

Initial unit state

index

211 212 213 214 215 216 217 218 219 220

Optimal

maintenance choice

8 8 8 8 8 8 8 8 8 8

Myopic

maintenance choice

1 1 6 8 8 4 8 8 8 8
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Table A.3: Myopic approach: derived decisions compar-

ison

Loss of expected

value (%)

38.07 38.67 37.76 0 0 39.96 0 0 0 0

A.3 Perfect correlation approach: lists of additional

parameters and derived decisions comparison

Unit state index 1 2 3 4 5

meaning (in terms

of set of mill

states; see Table

4.4 for reference to

mill state index)

{4, 4, 4} {3, 4, 4} {3, 3, 4} {3, 3, 3} {2, 4, 4}

Unit state index 6 7 8 9 10

meaning (in terms

of set of mill

states)

{2, 3, 4} {2, 3, 3} {2, 2, 4} {2, 2, 3} {2, 2, 2}

Unit state index 11 12 13 14 15

meaning (in terms

of set of mill

states)

{1, 4, 4} {1, 3, 4} {1, 3, 3} {1, 2, 4} {1, 2, 3}

Unit state index 16 17 18 19 20

meaning (in terms

of set of mill

states)

{1, 2, 2} {1, 1, 4} {1, 1, 3} {1, 1, 2} {1, 1, 1}

Table A.4: PM: full list of unit states

Unit state index 1 2 3 4 5 6 7 8 9 10

Derived maintenance action 1 1 1 1 3 3 3 3 3 3
Unit state index 11 12 13 14 15 16 17 18 19 20

Derived maintenance action 2 2 2 2 2 2 2 2 2 2

Table A.5: Perfect correlation approach: derived decisions
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Table A.6: Perfect correlation approach: derived de-

cisions comparison

Initial unit state index 1 2 3 4 5 6 7 8 9 10

Optimal maintenance

choice

1 7 7 7 6 6 6 6 6 6

Maintenance choice

(perfect correlation

approach)

1 1 1 1 1 1 1 1 1 1

Loss of expected value

(%)

0 0.03 0.12 0.26 0.58 0.87 1.15 1.66 1.98 2.78

Initial unit state index 11 12 13 14 15 16 17 18 19 20

Optimal maintenance

choice

14 14 14 6 6 6 14 14 6 14

Maintenance choice

(perfect correlation

approach)

1 1 1 1 1 1 1 1 1 1

Loss of expected value

(%)

0.59 0.39 0.28 0.65 0.97 1.80 1.05 0.85 0.72 1.24

Initial unit state index 21 22 23 24 25 26 27 28 29 30

Optimal maintenance

choice

13 13 13 13 13 6 13 13 13 13

Maintenance choice

(perfect correlation

approach)

1 1 1 1 1 1 1 1 1 1

Loss of expected value

(%)

1.00 1.06 1.20 1.03 1.26 2.05 1.53 1.61 1.60 1.75

Initial unit state index 31 32 33 34 35 36 37 38 39 40
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Table A.6: Perfect correlation approach: derived de-

cisions comparison

Optimal maintenance

choice

13 13 13 13 13 12 12 12 12 12

Maintenance choice

(perfect correlation

approach)

1 1 1 1 1 1 1 1 1 1

Loss of expected value

(%)

1.62 1.74 1.82 1.80 1.90 1.59 1.88 2.19 2.61 2.93

Initial unit state index 41 42 43 44 45 46 47 48 49 50

Optimal maintenance

choice

12 12 12 12 12 12 12 12 12 12

Maintenance choice

(perfect correlation

approach)

1 1 1 1 1 1 1 1 1 1

Loss of expected value

(%)

3.67 2.09 2.42 3.18 2.35 2.38 2.70 3.48 2.61 2.85

Initial unit state index 51 52 53 54 55 56 57 58 59 60

Optimal maintenance

choice

12 12 12 12 12 12 11 11 11 11

Maintenance choice

(perfect correlation

approach)

1 1 1 1 1 1 11 11 11 11

Loss of expected value

(%)

3.05 3.41 4.12 3.39 3.66 4.41 0 0 0 0

Initial unit state index 61 62 63 64 65 66 67 68 69 70

Optimal maintenance

choice

11 11 11 11 11 11 11 11 11 11
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Table A.6: Perfect correlation approach: derived de-

cisions comparison

Maintenance choice

(perfect correlation

approach)

11 11 11 11 11 11 11 11 11 11

Loss of expected value

(%)

0 0 0 0 0 0 0 0 0 0

Initial unit state index 71 72 73 74 75 76 77 78 79 80

Optimal maintenance

choice

11 11 11 11 11 11 11 11 11 11

Maintenance choice

(perfect correlation

approach)

11 11 11 11 11 11 11 11 11 11

Loss of expected value

(%)

0 0 0 0 0 0 0 0 0 0

Initial unit state index 81 82 83 84 85 86 87 88 89 90

Optimal maintenance

choice

11 11 11 11 10 10 10 10 10 10

Maintenance choice

(perfect correlation

approach)

11 11 11 11 10 10 10 10 10 10

Loss of expected value

(%)

0 0 0 0 0 0 0 0 0 0

Initial unit state index 91 92 93 94 95 96 97 98 99 100

Optimal maintenance

choice

10 10 10 10 10 10 10 10 10 10
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Table A.6: Perfect correlation approach: derived de-

cisions comparison

Maintenance choice

(perfect correlation

approach)

10 10 10 10 10 10 10 10 10 10

Loss of expected value

(%)

0 0 0 0 0 0 0 0 0 0

Initial unit state index 101 102 103 104 105 106 107 108 109 110

Optimal maintenance

choice

10 10 10 10 10 10 10 10 10 10

Maintenance choice

(perfect correlation

approach)

10 10 10 10 10 10 10 10 10 10

Loss of expected value

(%)

0 0 0 0 0 0 0 0 0 0

Initial unit state index 111 112 113 114 115 116 117 118 119 120

Optimal maintenance

choice

10 10 10 10 10 10 10 10 10 10

Maintenance choice

(perfect correlation

approach)

10 10 10 10 10 10 10 10 10 10

Loss of expected value

(%)

0 0 0 0 0 0 0 0 0 0

Initial unit state index 121 122 123 124 125 126 127 128 129 130

Optimal maintenance

choice

9 9 9 9 9 9 9 9 9 9
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Table A.6: Perfect correlation approach: derived de-

cisions comparison

Maintenance choice

(perfect correlation

approach)

9 9 9 9 9 9 9 9 9 9

Loss of expected value

(%)

0 0 0 0 0 0 0 0 0 0

Initial unit state index 131 132 133 134 135 136 137 138 139 140

Optimal maintenance

choice

9 9 9 9 9 9 9 9 9 9

Maintenance choice

(perfect correlation

approach)

9 9 9 9 9 9 9 9 9 9

Loss of expected value

(%)

0 0 0 0 0 0 0 0 0 0

Initial unit state index 141 142 143 144 145 146 147 148 149 150

Optimal maintenance

choice

9 9 9 9 9 9 9 9 9 9

Maintenance choice

(perfect correlation

approach)

9 9 9 9 9 9 9 9 9 9

Loss of expected value

(%)

0 0 0 0 0 0 0 0 0 0

Initial unit state index 151 152 153 154 155 156 157 158 159 160

Optimal maintenance

choice

9 9 9 9 9 9 9 9 9 9
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Table A.6: Perfect correlation approach: derived de-

cisions comparison

Maintenance choice

(perfect correlation

approach)

9 9 9 9 9 9 9 9 9 9

Loss of expected value

(%)

0 0 0 0 0 0 0 0 0 0

Initial unit state index 161 162 163 164 165 166 167 168 169 170

Optimal maintenance

choice

9 9 9 9 9 8 8 8 8 8

Maintenance choice

(perfect correlation

approach)

9 9 9 9 9 9 9 9 9 9

Loss of expected value

(%)

0 0 0 0 0 0 0 0 0 0

Initial unit state index 171 172 173 174 175 176 177 178 179 180

Optimal maintenance

choice

8 8 8 8 8 8 8 8 8 8

Maintenance choice

(perfect correlation

approach)

8 8 8 8 8 8 8 8 8 8

Loss of expected value

(%)

0 0 0 0 0 0 0 0 0 0

Initial unit state index 181 182 183 184 185 186 187 188 189 190

Optimal maintenance

choice

8 8 8 8 8 8 8 8 8 8
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Table A.6: Perfect correlation approach: derived de-

cisions comparison

Maintenance choice

(perfect correlation

approach)

8 8 8 8 8 8 8 8 8 8

Loss of expected value

(%)

0 0 0 0 0 0 0 0 0 0

Initial unit state index 191 192 193 194 195 196 197 198 199 200

Optimal maintenance

choice

8 8 8 8 8 8 8 8 8 8

Maintenance choice

(perfect correlation

approach)

8 8 8 8 8 8 8 8 8 8

Loss of expected value

(%)

0 0 0 0 0 0 0 0 0 0

Initial unit state index 201 202 203 204 205 206 207 208 209 210

Optimal maintenance

choice

8 8 8 8 8 8 8 8 8 8

Maintenance choice

(perfect correlation

approach)

8 8 8 8 8 8 8 8 8 8

Loss of expected value

(%)

0 0 0 0 0 0 0 0 0 0

Initial unit state index 211 212 213 214 215 216 217 218 219 220

Optimal maintenance

choice

8 8 8 8 8 8 8 8 8 8
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Table A.6: Perfect correlation approach: derived de-

cisions comparison

Maintenance choice

(perfect correlation

approach)

8 8 8 8 8 8 8 8 8 8

Loss of expected value

(%)

0 0 0 0 0 0 0 0 0 0

A.4 Deterministic wearing-off approach: derived de-

cisions comparison

Unit state index 1 2 3 4 5 6 7 8 9 10

Derived maintenance action 1 1 1 1 1 1 1 3 3 3
Unit state index 11 12 13 14 15 16 17 18 19 20

Derived maintenance action 2 2 2 2 2 2 2 2 2 2

Table A.7: Deterministic wearing-off approach: derived decisions

Table A.8: Deterministic wearing-off approach: derived

decisions comparison

Initial unit state index 1 2 3 4 5 6 7 8 9 10

Optimal maintenance

choice

1 7 7 7 6 6 6 6 6 6

Maintenance choice

(perfect correlation

approach)

1 1 1 1 1 1 1 1 1 1
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Table A.8: Deterministic wearing-off approach: derived

decisions comparison

Loss of expected value

(%)

0 0.03 0.12 0.26 0.58 0.87 1.15 1.66 1.98 2.78

Initial unit state index 11 12 13 14 15 16 17 18 19 20

Optimal maintenance

choice

14 14 14 6 6 6 14 14 6 14

Maintenance choice

(perfect correlation

approach)

1 1 1 1 1 1 1 1 1 1

Loss of expected value

(%)

0.59 0.39 0.28 0.65 0.97 1.80 1.05 0.85 0.72 1.24

Initial unit state index 21 22 23 24 25 26 27 28 29 30

Optimal maintenance

choice

13 13 13 13 13 6 13 13 13 13

Maintenance choice

(perfect correlation

approach)

1 1 1 1 1 1 1 1 1 1

Loss of expected value

(%)

1.00 1.06 1.20 1.03 1.26 2.05 1.53 1.61 1.60 1.75

Initial unit state index 31 32 33 34 35 36 37 38 39 40

Optimal maintenance

choice

13 13 13 13 13 12 12 12 12 12

Maintenance choice

(perfect correlation

approach)

1 1 1 1 1 1 1 1 1 1

Loss of expected value

(%)

1.62 1.74 1.82 1.80 1.90 1.59 1.88 2.19 2.61 2.93
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Table A.8: Deterministic wearing-off approach: derived

decisions comparison

Initial unit state index 41 42 43 44 45 46 47 48 49 50

Optimal maintenance

choice

12 12 12 12 12 12 12 12 12 12

Maintenance choice

(perfect correlation

approach)

1 1 1 1 1 1 1 1 1 1

Loss of expected value

(%)

3.67 2.09 2.42 3.18 2.35 2.38 2.70 3.48 2.61 2.85

Initial unit state index 51 52 53 54 55 56 57 58 59 60

Optimal maintenance

choice

12 12 12 12 12 12 11 11 11 11

Maintenance choice

(perfect correlation

approach)

1 1 1 1 1 1 1 1 1 1

Loss of expected value

(%)

3.05 3.41 4.12 3.39 3.66 4.41 5.51 5.46 5.57 5.28

Initial unit state index 61 62 63 64 65 66 67 68 69 70

Optimal maintenance

choice

11 11 11 11 11 11 11 11 11 11

Maintenance choice

(perfect correlation

approach)

1 1 1 1 1 1 1 1 1 1

Loss of expected value

(%)

5.56 5.88 6.57 6.54 6.38 7.48 6.53 6.62 6.63 7.40

Initial unit state index 71 72 73 74 75 76 77 78 79 80
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Table A.8: Deterministic wearing-off approach: derived

decisions comparison

Optimal maintenance

choice

11 11 11 11 11 11 11 11 11 11

Maintenance choice

(perfect correlation

approach)

1 1 1 1 1 1 1 11 11 11

Loss of expected value

(%)

7.44 6.27 6.57 6.86 7.22 7.44 7.75 0 0 0

Initial unit state index 81 82 83 84 85 86 87 88 89 90

Optimal maintenance

choice

11 11 11 11 10 10 10 10 10 10

Maintenance choice

(perfect correlation

approach)

11 11 11 11 1 1 1 1 1 1

Loss of expected value

(%)

0 0 0 0 5.67 5.81 6.10 6.06 6.39 6.91

Initial unit state index 91 92 93 94 95 96 97 98 99 100

Optimal maintenance

choice

10 10 10 10 10 10 10 10 10 10

Maintenance choice

(perfect correlation

approach)

1 1 1 1 1 1 1 1 1 1

Loss of expected value

(%)

6.75 6.91 7.18 7.67 6.86 7.14 7.47 7.75 7.95 7.05

Initial unit state index 101 102 103 104 105 106 107 108 109 110

Optimal maintenance

choice

10 10 10 10 10 10 10 10 10 10
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Table A.8: Deterministic wearing-off approach: derived

decisions comparison

Maintenance choice

(perfect correlation

approach)

1 1 1 1 1 10 10 10 10 10

Loss of expected value

(%)

7.42 7.89 8.02 8.30 8.81 0 0 0 0 0

Initial unit state index 111 112 113 114 115 116 117 118 119 120

Optimal maintenance

choice

10 10 10 10 10 10 10 10 10 10

Maintenance choice

(perfect correlation

approach)

10 10 10 10 10 10 10 10 10 10

Loss of expected value

(%)

0 0 0 0 0 0 0 0 0 0

Initial unit state index 121 122 123 124 125 126 127 128 129 130

Optimal maintenance

choice

9 9 9 9 9 9 9 9 9 9

Maintenance choice

(perfect correlation

approach)

1 1 1 1 1 1 1 1 1 1

Loss of expected value

(%)

6.15 6.47 6.91 7.05 7.40 8.03 7.22 7.59 8.18 8.14

Initial unit state index 131 132 133 134 135 136 137 138 139 140

Optimal maintenance

choice

9 9 9 9 9 9 9 9 9 9
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Table A.8: Deterministic wearing-off approach: derived

decisions comparison

Maintenance choice

(perfect correlation

approach)

1 1 1 1 1 1 1 1 1 1

Loss of expected value

(%)

7.52 7.95 8.48 8.43 8.75 8.03 8.43 9.02 9.03 9.33

Initial unit state index 141 142 143 144 145 146 147 148 149 150

Optimal maintenance

choice

9 9 9 9 9 9 9 9 9 9

Maintenance choice

(perfect correlation

approach)

1 9 9 9 9 9 9 9 9 9

Loss of expected value

(%)

9.94 0 0 0 0 0 0 0 0 0

Initial unit state index 151 152 153 154 155 156 157 158 159 160

Optimal maintenance

choice

9 9 9 9 9 9 9 9 9 9

Maintenance choice

(perfect correlation

approach)

9 9 9 9 9 9 9 9 9 9

Loss of expected value

(%)

0 0 0 0 0 0 0 0 0 0

Initial unit state index 161 162 163 164 165 166 167 168 169 170

Optimal maintenance

choice

9 9 9 9 9 8 8 8 8 8
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Table A.8: Deterministic wearing-off approach: derived

decisions comparison

Maintenance choice

(perfect correlation

approach)

9 9 9 9 9 8 8 8 8 8

Loss of expected value

(%)

0 0 0 0 0 0 0 0 0 0

Initial unit state index 171 172 173 174 175 176 177 178 179 180

Optimal maintenance

choice

8 8 8 8 8 8 8 8 8 8

Maintenance choice

(perfect correlation

approach)

8 8 8 8 8 8 8 8 8 8

Loss of expected value

(%)

0 0 0 0 0 0 0 0 0 0

Initial unit state index 181 182 183 184 185 186 187 188 189 190

Optimal maintenance

choice

8 8 8 8 8 8 8 8 8 8

Maintenance choice

(perfect correlation

approach)

8 8 8 8 8 8 8 8 8 8

Loss of expected value

(%)

0 0 0 0 0 0 0 0 0 0

Initial unit state index 191 192 193 194 195 196 197 198 199 200

Optimal maintenance

choice

8 8 8 8 8 8 8 8 8 8
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Table A.8: Deterministic wearing-off approach: derived

decisions comparison

Maintenance choice

(perfect correlation

approach)

8 8 8 8 8 8 8 8 8 8

Loss of expected value

(%)

0 0 0 0 0 0 0 0 0 0

Initial unit state index 201 202 203 204 205 206 207 208 209 210

Optimal maintenance

choice

8 8 8 8 8 8 8 8 8 8

Maintenance choice

(perfect correlation

approach)

8 8 8 8 8 8 8 8 8 8

Loss of expected value

(%)

0 0 0 0 0 0 0 0 0 0

Initial unit state index 211 212 213 214 215 216 217 218 219 220

Optimal maintenance

choice

8 8 8 8 8 8 8 8 8 8

Maintenance choice

(perfect correlation

approach)

8 8 8 8 8 8 8 8 8 8

Loss of expected value

(%)

0 0 0 0 0 0 0 0 0 0
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