
FORMULATIONS AND VALID INEQUALITIES FOR ECONOMIC

LOT SIZING PROBLEMS WITH REMANUFACTURING (ELSR)

by

Sharifah Aishah Binti Syed Ali

Department of Management Science

University of Strathclyde

A thesis presented in fulfilment of the requirement for the degree of

Doctor of Philosophy

(Management Science)

2016

i

Declarations of Authenticity and Author

Rights

This thesis is the result of the author’s original research. It has been composed by

the author and has not been previously submitted for examination which has led

to the award of a degree.

The copyright of this thesis belongs to the author under the terms of the United

Kingdom Copyright Acts as qualified by University of Strathclyde Regulation 3.50.

Due acknowledgement must always be made of the use of any material contained

in, or derived from, this thesis.

Some parts of this thesis have been presented in academic event and conferences:

(i) Syed Ali, S. A., Akartunalı, K. and van der Meer, R. [2014]. Computational

analysis of lower bounds for economic lot-sizing problem with remanufactur-

ing (ELSR), Presented at 20th Conference of the International Federation of

Operations Research Societies (IFORS), Barcelona, Spain.

(ii) Syed Ali, S. A., Doostmohammadi, M., Akartunalı, K. and van der Meer, R.

[2015]. Valid inequalities for economic lot-sizing problem with remanufactur-

ing (ELSR): Separate setup case, Presented at 27th European Conference on

Operational Research (EURO), Glasgow, United Kingdom.

(iii) Syed Ali, S. A., Akartunalı, K., Doostmohammadi, M. and van der Meer, R.

[2015]. Valid inequalities for economic lot-sizing problem with remanufactur-

ing (ELSR): Joint setup case, Presented at 2015 INFORMS Annual Meeting

Conference, Philadelphia, Pennsylvania, USA.

c, 2016 by Sharifah Aishah Syed Ali. All Rights Reserved.

Signed:

Date:

ii

Abstract

Nowadays, many manufacturers are beginning to establish remanufacturing facil-

ities due to the stricter government regulations on end-of-life product treatment,

and the increasing public awareness towards environmental issues. Remanufac-

turing offers a huge potential for employment, and provides profitable business

opportunities. However, production planning activities are more complex for re-

manufacturing, as they incorporate greater uncertainties and greater risk associated

with product returns and demands. These activities become even more intricate in

hybrid remanufacturing and manufacturing systems.

For this reason, we have investigated two variants of production planning of

the hybrid remanufacturing and manufacturing systems, they are: i) Economic

Lot Sizing Problem with Remanufacturing and Separate Setups (ELSRs) and ii)

Economic Lot Sizing Problem with Remanufacturing and Joint Setups (ELSRj).

In each period, the demands can be fulfilled by either remanufactured, or new

products, or both. These problems have been proven to be NP -hard in general.

Therefore, we study different approaches to tackle these problems.

First, we propose several traditional methodologies to obtain better lower

bounds for both problems, namely (`, S) − like inequalities and reformulation

techniques, such as facility location (FL) reformulation, multi-commodity (MC)

reformulation, and shortest path (SP) reformulation. Both theoretical and com-

putational comparisons of different lower bounding techniques are discussed. The

results show that the reformulation techniques demonstrate better performance

than other formulations for the separate setups case when the setup cost for re-

manufacturing is equivalent to the setup cost for manufacturing. For the joint

setups case, our (`, S) − like inequalities, which have the same lower bounds as

the reformulation techniques, are the most efficient methods to quickly solve the

problem.

Motivated by the previous chapter, we further investigate the polyhedral struc-

ture of a simpler mixed integer set, arising from the feasible set of ELSRs and

ELSRj problems, in order to derive several existing and new valid inequalities.

These mixed integer sets are variants of the well-known single node fixed-charge

network set, where two knapsack sets are considered simultaneously. Our main con-

tributions for these problems rely upon on identifying the facet-defining conditions

of the proposed inequalities, and discussing their separation problems. For each

problem, comparisons of computational experiments between different traditional

iii

methodologies introduced earlier, and the proposed inequalities, are presented to

test their effectiveness. The results indicate that the valid inequalities, with em-

bedded (`, S) − like inequalities for the separate setups case, have significantly

improved the lower bounds in almost (all) instances tested, compared with other

formulations when the setup cost for remanufacturing is, at most, the setup cost for

manufacturing. As regards to the joint setups case, the results show that (`, S)−like
inequalities remain provide stronger lower bounds than the proposed inequalities

for those randomly generated instances.

(434 words)

Keywords: Remanufacturing, Lot Sizing, Mixed Integer Programming, Polyhe-

dral Study, Valid Inequalities

iv

Acknowledgements

In the name of Allah, The Most Gracious and The Most Merciful

Alhamdulliah, all praise be to Almighty God, Allah for the blessing He bestowed

on me to enable me to successfully finish this thesis. There is nothing easy except

what He makes easy and He makes the difficult easy if it be His Will. I believe

Him more than myself, and without Him, I am nothing.

My deepest gratitude and sincere appreciation go to the many individuals who

have supported me throughout the completion of this thesis, especially to my

mother, Rohani Hassan, and my family for their \textit{dua’,} encouragement

and inspiration. My family has always been my support system and taught me to

never give up pursuing my passions and dreams.

I am grateful to my superb supervisors, Dr. Kerem Akartunali and Dr Robert

van der Meer, for their invaluable guidance and continuous support throughout

my research. They have seen my struggles during my studies and have always be

understanding and patient with me. Thank you very much! Further, special thanks

to Dr Mahdi Doostmohammadi for helping me develop an essential understanding

of mathematical proofs and motivating me to work harder.

I also would like to express my thanks to my wonderful colleagues and friends,

Noorseha Ayob, Norasmiha Mohd Nor, Ruzanna Mat Jusoh, Nita Ali, Noor Wini

Mazlan, Hilya Mudrika Arini, Aby Subin, Seda Sucu, Erfan Rahimian, Junchi Tan,

Christoph Werner, and many others I have not mentioned here for their friendship

and their direct and indirect support. Thank you also to the staff in the department

for being so kind and helpful. I should also not forget my lovely flatmate, Arie Restu

Wardhani, for always encouraging me to do the best whenever I feel down. I am

so delighted for her words of understanding and encouragement.

Last but not least, I am indebted to the Ministry of Education in Malaysia for

their financial assistance throughout my four years of study at the University of

Strathclyde and to my employer, National Defence University of Malaysia (NDUM),

for providing me the opportunity to study abroad and allowing me to experience

other countries’ cultures, to meet great people, and to challenge my fear of learning

new things. Thank you very much to all of you from the bottom of my heart!

SASA, Strathclyde, Glasgow’16

“No two things have been combined together better than Knowledge and

Patience”

Prophet Muhammad P.B.U.H

“Two roads diverged in a wood, and I took the one less traveled by,

And that has made all the difference”

Robert Frost

This thesis is affectionately dedicated to the memory of my late

father, Syed Ali Syed Mohamed and to my beloved mother, Rohani

Hassan, families and friends for their love, support and pray of day

and night.

vi

List of Algorithms

2.1 (`, S) separation algorithm for simple lot sizing problem 26

3.1 (`, S) separation algorithm for ELSRs problem 38

3.2 (`, S) separation algorithm for ELSRj problem 38

vii

List of Figures

1.1.1 Material flows in a hybrid model . 2

1.2.1 Network representation of the classical economic lot sizing problem

with period, n = 4 . 5

1.3.1 Two formulations for X . 7

1.3.2 The convex hull of X . 8

1.3.3 Branch-and-bound algorithm (Doostmohammadi, 2014) 12

1.3.4 Branch-and-cut algorithm (Doostmohammadi, 2014) 13

1.3.5 Extended formulation and projection 15

1.4.1 Network representation of ELSRs problem with period, n = 4 (Re-

tel Helmrich et al. (2013)) . 17

1.4.2 ELSRs as a special case of ELSRj with period, n = 4 (Retel Helmrich

et al. (2013)) . 18

2.2.1 The solution of linear relaxation of (1.1) - (1.6) 27

3.4.1 Separate setups, 25 periods . 59

3.4.2 Separate setups, 50 periods . 60

3.4.3 Separate setups, 75 periods . 61

3.4.4 Joint setups, solution times (s) for all periods 62

viii

List of Tables

2.1.1 Results of problem complexity (Bitran and Yanasse (1982)) 21

3.4.1 Mean percentage improvement of lower bounds for ELSR problems . 54

3.4.2 [Separate setups] Performance analysis of all formulations 56

3.4.3 [Joint setups] Performance analysis of all formulations 57

3.4.4 [Joint setups] Performance analysis of all formulations (cont.) . . . 58

4.5.1 [Low return] Computational comparisons of the strength of differ-

ent solution techniques for ELSRs problem 91

4.5.2 [Medium return] Computational comparisons of the strength of

different solution techniques for ELSRs problem 92

4.5.3 [High return] Computational comparisons of the strength of dif-

ferent solution techniques for ELSRs problem 93

5.5.1 [Low return] Computational comparisons of the strength of differ-

ent solution techniques for ELSRj problem 116

5.5.2 [Medium return] Computational comparisons of the strength of

different solution techniques for ELSRj problem 117

5.5.3 [High return] Computational comparisons of the strength of dif-

ferent solution techniques for ELSRj problem 118

ix

Abbreviations

AI Average Improvement

B&B Branch-and-Bound

B&C Branch-and-Cut

FL Facility Location reformulation

LB Lower Bound

LP Linear Programming

MC Multi-Commodity reformulation

MIP Mixed Integer Programming

SP Shortest Path reformulation

UB Upper Bound

x

Nomenclature

N Number of periods in the production planning problem

Rn The n-dimensional space of real values

Rn+ The n-dimensional space of nonnegative real values

Zn The n-dimensional space of integer values

{0, 1}n The n-dimensional space of binary values

conv(X) Convex hull of the feasible set of points X

dim(X) Dimension of a polyhedron X

O () Big-O notation for problem complexity

NP The complexity class NP

xi

Contents

Declarations of Authenticity and Author Rights i

Abstract iii

Acknowledgements iv

List of Algorithms vi

List of Figures vii

List of Tables viii

Abbreviations ix

Nomenclature x

1 Introduction 1

1.1 Motivation . 1

1.2 Simple Lot Sizing Problem . 4

1.3 Mixed Integer Programming (MIP) 5

1.3.1 Defining Polyhedra by Valid Inequality 9

1.3.2 Defining Polyhedra by Extreme Points and Extreme Rays . 10

1.3.3 Optimization Algorithms . 10

1.4 Problem Formulations for ELSR . 15

1.4.1 Separate Setups . 16

1.4.2 Joint Setups . 18

1.5 Outline of the Thesis . 18

2 Literature Review 20

2.1 Polynomial Algorithms for Special Cases 20

2.2 Mixed Integer Programming . 25

2.2.1 Valid Inequalities . 26

2.2.2 Extended Reformulations . 30

2.3 Heuristics . 32

2.3.1 Mixed Integer Programming (MIP) Heuristics 32

xii

2.3.2 Other Types of Heuristics . 33

3 Computational Analysis of Lower Bounds for Economic Lot Sizing

Problems with Remanufacturing (ELSR) 35

3.1 Valid Inequalities for ELSR . 35

3.1.1 (`, S)− like Inequalities for ELSR 35

3.1.2 (`, S,WW)− like Inequalities for ELSR 37

3.2 Extended Reformulations for ELSR 41

3.2.1 Facility Location Reformulation 41

3.2.2 Multi-commodity Reformulation 43

3.2.3 Shortest Path Reformulation 45

3.3 Theoretical Comparisons between Formulations 48

3.4 Computational Testing of Lower Bounds 51

3.5 Concluding Remarks . 63

4 Valid Inequalities for Economic Lot-Sizing Problems with Reman-

ufacturing: Separate Setups Case 64

4.1 Introduction . 64

4.2 Properties of conv(Xs) . 66

4.3 Polyhedral Analysis of conv(Xs) . 68

4.4 The Separation Problems for conv(Xs) 86

4.5 Preliminary Computational Results 89

4.6 Concluding Remarks . 95

5 Valid Inequalities for Economic Lot-Sizing Problems with Reman-

ufacturing: Joint Setups Case 96

5.1 Introduction . 96

5.2 Properties of conv(Xj) . 97

5.3 Polyhedral Analysis of conv(Xj) . 99

5.4 The Separation Problems for conv(Xj) 112

5.5 Preliminary Computational Results 114

5.6 Concluding Remarks . 119

6 Conclusion and Future Research 121

References 125

A (`, S)− like Inequalities in Mosel - Separate Setups 135

B Shortest Path Reformulation in Mosel - Separate Setups 140

C Detailed Results of Lower Bounds - Separate Setups 143

C.1 Low Return (n = 25) . 143

C.2 Low Return (n = 50) . 144

C.3 Low Return (n = 75) . 145

xiii

C.4 Medium Return (n = 25) . 146

C.5 Medium Return (n = 50) . 147

C.6 Medium Return (n = 75) . 148

C.7 High Return (n = 25) . 149

C.8 High Return (n = 50) . 150

C.9 High Return (n = 75) . 151

D Detailed Results of Lower Bounds - Joint Setups 153

D.1 Low Return (n = 25) . 153

D.2 Low Return (n = 50) . 154

D.3 Low Return (n = 75) . 155

D.4 Medium Return (n = 25) . 156

D.5 Medium Return (n = 50) . 157

D.6 Medium Return (n = 75) . 158

D.7 High Return (n = 25) . 159

D.8 High Return (n = 50) . 160

D.9 High Return (n = 75) . 161

E Flow Cover Inequalities in Mosel 163

1

Chapter 1

Introduction

1.1 Motivation

The increasing scarcity of the earth’s natural resources and disposal capacity are

global environmental problems. This is driven by technological development of new

products, which has led to the excessive consumption of raw materials and energy

in many industry sectors. Due to this, original equipment manufacturers (OEMs)

in many industries are beginning to remanufacture used products, namely single-

use cameras, machine tools, copiers, ink cartridges, computers, automotive parts,

tires, aviation equipment and medical instruments (Ferrer, 1997; Guide Jr et al.,

1997; Lebreton and Tuma, 2006; Matsumoto and Umeda, 2011; Cao et al., 2012;

Ahmadi et al., 2013; Xia et al., 2015).

Remanufacturing is an industrial process that brings used products to at the

least OEM functioning order with a warranty to match (Ijomah, 2009). It is the

most advanced product recovery option and offers value-added recovery, extends

product’s life cycles, reduces landfill waste, raw materials, and energy consumption,

and involves specialized labour (Shi et al., 2011). As reported by the Centre for

Remanufacturing and Reuse, the UK remanufacturing industry contributes around

£5 billion per annum to the economy, creates jobs for more than 500,000 people

and saves 270,000 tonnes of materials (mostly metals) from recycling or scrapping

(Chapman et al., 2010). Furthermore, in March 2014, the former Environment

Secretary Caroline Spelman, on behalf of the All-Party Parliamentary Sustainable

Resource Group, said that the UK remanufacturing industry has huge financial

potential to increase from the current value of £2.4 billion to £5.6 billion , creating

of thousands of skilled jobs (The All-Party Parliamentary Sustainable Resource

Group, 2014).

In addition, in October 2015, the European Remanufacturing Network’s re-

searchers working on the EU Horizon2020 project carried out a survey of the current

level of remanufacturing in the EU in nine main sectors, including the aerospace,

medical equipment, electronics, furniture and rail sectors. The findings show that

remanufacturing benefits from greater profit margins, generates an estimated e30

2

RemanufacturingReturns

Manufacturing

Demands

Inventory of product returns

Inventory of serviceables products

Figure 1.1.1: Material flows in a hybrid model

billion in annual since over two-thirds of remanufactured products sell for between

41% and 80% of the cost of a new product, and employs around 190,000 people.

Apart from this, remanufacturing offers new alternative business models (rental

and service-based) that create better relationships with customers and a flexible

workforce (Parker et al., 2015).

In remanufacturing systems, there are two types of business strategies:

a dedicated model (remanufacturing) and a hybrid model (manufacturing-

remanufacturing). OEMs that employ a dedicated model normally outsource

their operations to third-party remanufacturers. This is because remanufactur-

ing is much more reactive and less visible compared to manufacturing. It in-

volves an inherently complex kind of a manufacturing process that requires specific

tools, high-technology machinery and multi-skilled labour. Moreover, the three

main sub-processes of remanufacturing—disassembly, reprocessing and reassem-

bly–incorporate a higher degree of uncertainty and risk associated with end-of-life

products; this complicates production planning and control activities (Guide Jr,

2000). These planning activities become even more complex in a hybrid model

when remanufacturing is carried out in combination with original manufacturing.

According to Patel (2006), remanufacturing in North America generally follows a

dedicated model; in contrast, most remanufacturing operations in European coun-

tries employ a hybrid model (Li et al., 2009).

In this thesis, our main interest is investigating the economic lot-sizing problem

of hybrid remanufacturing-manufacturing systems that arise in production plan-

ning. The problem is to find an effective production plan that meets demand for

remanufactured and new products on time as minimises total setup, production

and inventory holding costs. The material flows of a hybrid model are illustrated

in Figure 1.1.1.

Three major assumptions are present in our model, namely The single-level,

single-item uncapacitated lot-sizing problem; deterministic returns and demand

over a finite planning horizon; and ensuring that the quality of remanufactured

products is as good as that of new products. The first assumption is the con-

sideration of the single-stage, single-item uncapacitated lot-sizing problem. Even

single-stage systems do not describe most real-life production systems; however,

3

they provide good insights and ideas about coping with more complex problems.

In single-stage lot-sizing problems, the remanufacturing or manufacturing process

is characterized by a single-level product structure in which products are directly

produced from used products (remanufacturing) or raw materials (manufacturing)

without intermediate stocking points or subassembly.

The second major assumption is that both returns and demand are determinis-

tic. According to Souza (2012), the assumption of deterministic returns is possible

in a situation when returns are retrieved from leasing operations. Moreover, re-

turns can be also forecasted for the entire planning horizon within an appropriate

approximation. An example of a realistic case of deterministic returns is found in

Golany et al. (2001), where the demand for or returns of the packaging and shipping

materials (such as pallets or containers) used in shipments are known as the ship-

ments are planned in advance. Obviously, the assumption of known demand is not

reasonable; however, it can be determined for a rolling horizon. In other words, the

quantities of current inventory and future returns and demands are approximated

and updated by period (Ferguson, 2010).

The last major assumption is that demand can be satisfied by either remanufac-

tured or new products. This is referred to as serviceable products, where unfulfilled

demand for remanufactured products can also be satisfied by new products. The

new products and remanufactured products cannot be distinguished since all prod-

ucts may consist of reused parts. For example, Fuji Xerox’s remanufacturing oper-

ations in Japan integrates reused parts in new products (Matsumoto and Umeda,

2011). Another interesting example is the Kodak line of single-use cameras, where

the parts can be reused multiple times, including the polymer, which is used to cast

new parts, and film is the only new material required. Since consumers are mainly

concerned about the quality of the film, they are not aware of the parts used in

the camera even though they are obviously labelled as remanufactured parts on

the packaging (Atasu et al., 2010). Lastly, as stated by Thierry et al. (1995), if

products have a service contract, demand can be satisfied from both sources as

the remanufactured products are treated in the same way as new products, with

similar warranties and service contracts and identical lease prices (Retel Helmrich

et al., 2013).

In this study, we consider two different setup cost schemes: separate setups costs

for remanufacturing and manufacturing (dedicated production line) and a joint

setup cost (single production line). There is a pressing need to study both types

of production lines to support decision making in closed-loop supply chains. For

instance, in the case of joint setups, Tang and Teunter (2006) studied an actual case

company, Autopart, which manufactures and remanufacturers car parts, with both

remanufacturing and manufacturing operations performed on a single production

line. Teunter et al. (2008) further investigated the same case company and the use

of separate production lines. Using the same set of cases considered by Tang and

Teunter (2006), they analysed the cost benefits of switching from a single line to

separate lines.

4

The next section gives a brief overview of the simple lot-sizing problem and

provides general insights that are useful for our models.

1.2 Simple Lot Sizing Problem

The dynamic economic lot size model was firstly introduced in the seminal paper

of Wagner and Whitin in 1958. The model is also known as an uncapacitated

single-item lot sizing problem, which aims to determine when and how much of

a product to produce, such that total sum of the costs, i.e. a fixed setup cost, a

nonnegative inventory holding cost and a constant production cost, are minimized

while assuming that deterministic demands are satisfied. This problem is modeled

as a mixed integer programming formulation; and basic decision variables and

parameters used in this formulation are given as follows.

Decision variables

xt is the amount of products produced in period t,

yt is 1 if the production takes place in period t, 0 otherwise,

It is the inventory of products at the end of period t.

Parameters

ht is unit holding cost for inventory in period t,

Kt is unit setup cost in period t,

M is the big-M value, an upper bound on xt,

dt is the amount of products demanded in period t,

n is the number of periods in the planning horizon such that N = 1, ..., n.

Zc = min
n∑
t=1

(Ktyt + htIt) (1.1)

s.t. It = It−1 + xt − dt ∀t ∈ N (1.2)

xt ≤Myt ∀t ∈ N (1.3)

xt, It ≥ 0 ∀t ∈ N (1.4)

yt ∈ {0, 1}n ∀t ∈ N (1.5)

I0 = In = 0 (1.6)

The objective function defined by (1.1) is the minimization of the total costs, i.e.

the setup costs and the holding costs. Constraint (1.2) represents the inventory

flow balance.Constraint (1.3) forces variable yt to be 1 if production occurs in a

given period t. The big-M value here refers to a large positive number, which is

5

known as an upper bound on the maximum lot size in period t. Constraint (1.4)

ensure nonnegativity of production and inventory. Constraint (1.5) ensure the

binary nature of the setup variable. Finally, without loss of generality, we assume

there is no inventory on hand initially and at the end of time period n. This simple

lot sizing problem can be illustrated in Figure 1.2.1.

1 2 3 4

x1 x2 x3 x4

I1 I2 I3

d1 d2 d3 d4

Figure 1.2.1: Network representation of the classical economic lot sizing problem
with period, n = 4

Then, in Section 1.3, we will discuss some basic concepts of our solution approach

i.e. mixed integer programming techniques used in this thesis.

1.3 Mixed Integer Programming (MIP)

Lot sizing problems are often formulated as Mixed Integer Programming (MIP)

models. In this section, some important definitions and theorems of MIP used

throughout the remainder of the thesis are discussed.

A MIP problem can be defined as an optimization problem with linear con-

straints and a linear objective function, which consists of continuous and integer

variables as follows.

Z = min
(x,y)
{cx+ ky : (x, y) ∈ X} where X = {(x, y) ∈ Rn × Zp : Ax+By ≤ d}

where, Z represents the objective value, X corresponds to the set of the feasible

solutions (feasible region) such that x is the n − dimensional (column) vector of

real variables and y is the p − dimensional (column) vector of integer variables

including 0 and 1. The parameters, c ∈ Rn and k ∈ Zp are the (row) vectors of the

objective function coefficients. d ∈ Rm is the (column) vector of the right hand side

coefficients of the m linear constraints. A and B are the matrices of constraints of

size (m× n) and (m× p), respectively. In a matrix form, this can be illustrated in

the following example.

6

Example 1. Let

A =

(
a11 a12
a21 a22
a31 a32

)
3×2

and B =

(
b11 b12 b13
b21 b22 b23
b31 b32 b33

)
3×3

where d =

(
d1
d2
d3

)
3×1

The matrix form can be presented as linear constraints, m = 3, continuous variables

with n = 2 and integer variables, p = 3.︷ ︸︸ ︷
a11x11 + a12x12 +

︷ ︸︸ ︷
b11y11 + b12y12 + b13y13 ≤ d1

a21x21 + a22x22 + b21y21 + b22y22 + b23y23 ≤ d2
a31x31 + a32x32 + b31y31 + b32y32 + b33y33 ≤ d3

where the objective function is:

Z = min{c1(x11 + x12) + c2(x21 + x22) + c3(x31 + x32) + k1(y11 + y12 + y13)

+ k2(y21 + y22 + y23) + k3(y31 + y32 + y33)}

Observe that, if all integer variables are restricted to take binary values, the

problem is called as a mixed binary linear program or a mixed 0-1 program, where

the feasible set X = {(x, y) ∈ Rn × {0, 1}p : Ax+By ≤ d} . Meanwhile, if n = 0,

the problem is then called as a pure integer program (IP) or a 0-1 program.

Next, the linear programming (LP) relaxation of the MIP is obtained by remov-

ing the integrality restrictions on the y variables. By solving the relaxation of a

problem, a bound on the optimal value of the original problem is obtained. It plays

a very important role in the optimization algorithm. The LP relaxation of the MIP

problem can be defined as follows.

Definition 1. If a program zLP = min
x,y

{
cTx+ kTy|(x, y) ∈ XLP

}
is a relaxation of

program z = min
x,y

{
cTx+ kTy|(x, y) ∈ X

}
, where X = {Ax + By ≤ d, x ∈ Rn, y ∈

Zp} and XLP = {Ax+By ≤ d, x ∈ Rn, y ∈ Rp}. Then, zLP ≤ z as conv(X) ⊆ XLP .

Now, we introduce some basics on polyhedral theory, which provide better in-

sights into the problem structures addressed in this thesis.

Definition 2. Let x1, ..., xk ∈ Rn be any point. Then, x is a convex combination

if:

x =
k∑
t=1

λtxt = λ1x1 + λ2x2 + ...+ λkxk

with λ1 + ...+ λk = 1 and nonnegativity, λt ≥ 0, t = 1, ..., k.

Definition 3. Let a set X ∈ Rn, the convex hull of X, denoted as conv(X) is the

7

set of all convex combinations of points in X or

conv(X) =

{
x ∈ Rn : xt ∈ X and λt ≥ 0, t = 1, .., n such that x =

n∑
t=1

λtxt

and
n∑
t=1

λt = 1

}

Definition 4. Let X ⊆ Rn be a set. X is a convex set if it contains a line segment

(or any convex combination) between any two points x1, x2 ∈ X in the set X, such

that 0 ≤ λ ≤ 1 and λx1 + (1− λ)x2 ∈ X.
Proposition 1. The convex hull of two points is a line segment.

Then, we provide the concept of a polyhedron, P.

Definition 5. Given P ∈ Rn is a set of points that satisfies a finite set of linear

inequalities, P = {x ∈ Rn : Ax ≤ b} is a polyhedron.

Definition 6. A polyhedron P ⊆ Rn is bounded if there exists a constant r ∈ R+

such that

P ⊆ {x ∈ Rn : |xt| < r,∀t ∈ 1, ..., n}

A bounded polyhedron is called a polytope.

Definition 7. A polyhedron, P is called a formulation for X if X = P ∩ Zn; that

is X is precisely the set of integer points in P.

Observe that, we can have an infinity of formulations in a set X. Now, in Figure

1.3.1, we present two formulations, P1 and P2 for X.

Definition 8. Suppose that P1 is better than P2 if P1 ⊂ P2. Then, for any objective

function cT ∈ Rn and kT ∈ Rn, we obtain

z ≥ min
{
cTx+ kTy|(x, y) ∈ P1

}
≥ min

{
cTx+ kTy : (x, y) ∈ P2

}
Example 2 (continued). In Figure 1.3.1, it can be clearly seen that formulation

P1 is better than formulation P2.

bcbc bc bc bc bc

bc bcbc

bc

bc

bc

bc

bc

bc b bc

b

b

bc bc

bc

b bcbc b bc

b bc bc b bc

bcbbb

bc bc bcbc bc

b

P2

P1

Figure 1.3.1: Two formulations for X

8

Definition 9. Let a set X ∈ Rn. Then, the convex hull of X, denoted as conv(X)

is the set of all convex combinations of points in X or

conv(X) =

{
x ∈ Rn : xt ∈ X and λt ≥ 0, t = 1, .., n such that x =

n∑
t=1

λtxt

and
n∑
t=1

λt = 1

}

For IP and MIP problems, conv(X) is the smallest polyhedron containing X. It

follows that conv(X) is the best of all formulations for X, and

z = min
{
cTx+ kTy|(x, y) ∈ conv(X)

}
≥ min

{
cTx+ kTy : (x, y) ∈ P

}
for all formulations P of X.

Example 3. Refer to the Figure 1.3.2, the convex of hull of set X is represented

by the shaded area, where

X = {(1, 3), (1, 4), (1, 5), (2, 2), (2, 3), (2, 4), (2, 5), (3, 1), (3, 2), (3, 3), (3, 4),

(3, 5), (4, 2), (4, 3), (4, 4), (4, 5)}

b

bcbc bc bc bc bc

bc bcbc

bc

bc

bc

bc

bc

bc b

b

b

bc bc

bc

b b bc

b bc

bcbbb

bc bc bcbc bc

b

Figure 1.3.2: The convex hull of X

The following propositions state the importance of convex hull X. X is the

feasible region of the general MIP that will help us to find an optimal solution.

Proposition 2 (Pochet and Wolsey (2006)). Let X ⊆ Rn and suppose the MIP

problem min
{
cTx+ kTy : (x, y) ∈ X

}
has an optimal solution then

min
x,y

{
cTx+ kTy|(x, y) ∈ X

}
= min

x,y

{
cTx+ kTy|(x, y) ∈ conv(X)

}
This proposition states that in order to solve this MIP problem, it suffices to

solve it over the convex hull, X of its feasible region. Therefore, our main interest

9

is to identify several families of valid linear inequalities that can describe partially

or completely the convex hull of mixed integer sets of our problems. This convex

hull can be best described in terms of valid inequalities and extreme points and

rays.

1.3.1 Defining Polyhedra by Valid Inequality

In this section, we describe the concept of valid inequality.

Definition 10. A linear inequality πx + µy ≤ π0 is a valid inequality if and only

if it is satisfied by all points in X , where (π, µ) ∈ Rn × Rp and π0 is a scalar.

Definition 11. The inequality πx + µy ≤ π0 is valid for a feasible set X if and

only if it is valid for conv(X).

Definition 12. The inequality πx + µy ≤ π0 is violated by the points (x∗, y∗) if

πx∗ + µy∗ > π0.

The concept of linear independence and affinely independence are defined as

follows.

Definition 13. A finite collection of points x1, ..., xk ∈ Rn is linearly independent

if the unique solution to
∑k

i=1 λix
i = 0 is λi = 0, ∀i = 1, 2, ..., k. Otherwise, the

points are linearly dependent.

Definition 14. A set x0, x1, ..., xk of k + 1 points in Rn is affinely independent

if the unique solution to
∑k

i=1 λix
i = 0,

∑k
i=1 λi = 0 is λi = 0, ∀i = 1, 2, ..., k or

equivalently x1 − x0, ..., xk − x0 in Rn is linearly independent.

Dimension of a polyhedron P , dim(X) can be expressed in the following way.

Definition 15. A polyhedron P is of the dimension k, denoted as dim(P) = k if

the maximum number of affinely independent points in P is k + 1.

Definition 16. A polyhedron P ⊆ Rn is full-dimensional if dim(P) = n.

Example 4 (continued). dim(conv(X)) = 2 because (1,3), (2,3) and (2,4) are

affinely independent. Therefore, the polyhedron conv(X) is full-dimensional.

Definition 17. Let conv(X) ⊆ Rn and πx + µy ≤ π0 be a valid in-

equality for X. Then, a face of conv(X) is non-empty set of points F =

{x, y ∈ conv(X) : πx+ µy = π0} 6= ∅. A face of F is said to be a proper face if

F 6= ∅ and F 6= conv(X). A face F is called a facet of conv(X) if dim(F) =

dim(conv(X))− 1. Then, the valid inequality πx+ µy ≤ π0 is said to describe the

face.

For an inequality to be strong, the face should have as high dimension as possible.

The facet-defining inequalities which dominate all other inequalities are those of

maximal dimension. i.e. dimension one less than the dimension of the polyhedron.

It is sufficient to exhibit dim(P) affinely independent points belonging to the set

10

{x, y ∈ conv(X) : πx+ µy = π0} in order to show that a valid inequality πx+µy ≤
π0 defines a facet for P. This idea is used in our study especially in Chapter 4

and 5 to establish that certain valid inequalities define facets. By showing all valid

inequality is facet-defining, it is adequate to describe the convex hull of the problem.

However, it is a challenge task to find all facet-defining inequalities if the problem

is NP -hard. In some cases, the valid inequalities can be proven theoretically as

facet-defining but they are computationally hard to find as the number of cuts

generated by these inequalities grows exponentially. However, adding some good

valid inequalities to a formulation necessarily increases its strength.

1.3.2 Defining Polyhedra by Extreme Points and Extreme Rays

Alternatively, we can describe a polyhedra by its extreme points and extreme rays.

The polyhedron P has a finite number of extreme points and extreme rays.

Definition 18. x ∈ P is an extreme point of polyhedron P if it cannot be written

as a convex combination of two points in P or in other words there do not exist

two points x1, x2 ∈ P, x1 6= x2 with x = 1
2x

1 + 1
2x

2.

An extreme point can also be called as a vertex of a polyhedron and has 0-

dimensional face of a polyhedron that represents a point.

Definition 19. Let r ∈ Rn. Then, r 6= 0 is a ray of polyhedron, P 6= ∅ if for each

x ∈ P , the set {x+ λr|λ ≥ 0} is contained in P. In other words, a ray r of P is

an extreme ray if there do not exist two linearly independent rays, r1, r2 of P ,

r1 6= λr2 for some λ > 0 with r = 1
2r

1 + 1
2r

2.

Theorem 1 (Minkowski’s Theorem). Every polyhedron P 6= ∅ can be represented

as a convex combination of extreme points {xt}Tt=1 and a non-negative combination

of extreme rays {rs}Ss=1 :

P =

{
x : x =

T∑
t=1

λtx
t+

S∑
s=1

µsr
s,

T∑
t=1

λt = 1, λ ∈ RT+, µ ∈ RS+

}
A characteristic cone of a polyhedron is also called as an extreme ray of P,

defined as follows.

Definition 20. Let P = {x ∈ Rn : Ax ≤ b}. Then

char.cone(P) = {r ∈ Rn : Ar ≤ 0}

In the next section, we will discuss several optimization approaches used to solve

MIP problems.

1.3.3 Optimization Algorithms

There are three most commonly used optimization algorithms for solving MIP

problems: (i) Branch-and-Bound (B&B) algorithm; ii) Branch-and-Cut (B&C) al-

gorithm i.e. cutting plane and separation algorithm and iii) Extended Formulations.

11

Branch-and-Bound (B&B) algorithm

Branch-and-Bound (B&B) algorithm is the traditional solution approach used in

mixed integer programming problems. This algorithm is basically a tree, where each

node of the tree is an LP problem. The algorithm procedure, i.e. minimization

problem, can be described as follows.

The value of the feasible solution found so far is called the incumbent, which

represents the upper bound of the value of the optimal solution. We set the incum-

bent to ∞ if there is no feasible solution found. B&B solves LP relaxation at the

root node and in case a fractional solution k for an integer variable y is obtained,

a constraint y ≤ bkc or y ≤ dke is added to the LP relaxation to obtain two child

nodes (two subproblems).

At each tree node, the LP relaxation is solved. First, if the solution found is

integral, the incumbent is updated and tree node is pruned. Second, in the case of

solution is infeasible, the tree node will be also pruned as the following subproblems

are infeasible. When the value of the incumbent is less than the value of the LP

solution, the tree node can be pruned if the optimal solution of the subproblem

is worse than a known feasible solution. Otherwise, we choose a variable with the

fractional value in the LP solution to be branched into two subproblems. Lastly,

B&B algorithm will stop if the set of subproblems is empty in which the optimal

solution of the problem is found. If not, this algorithm will continue search tree

node recursively. The B&B scheme in Figure 1.3.3 is summarized next.

Branch-and-Cut (B&C) algorithm

As regards Branch-and-Cut (B&C) algorithm, the use of cutting planes is imple-

mented within the Branch-and-Bound (B&B) algorithm so as to strengthen the

bounds of the LP solution to the actual feasible integer solutions.

The fundamental idea behind the cutting plane method and separation algo-

rithm is to generate valid inequalities and added them to the original formulation

when they are needed (in most cases, there are exponentially many of these in-

equalities which are inactive and useless) and only when they are not satisfied at

the optimal solution of LP relaxation. In other words, the constraints (valid in-

equalities) are added to a linear program until the optimal basic feasible solution

takes on integer values.

The separation algorithm for a valid inequality is given by the following defini-

tion.

Definition 21. Given a point (x∗, y∗) ∈ Rp × Rq with (x∗, y∗) /∈ conv(X) of a

mixed integer set, then the separation problem, denoted by SEP (X,x∗, y∗) is the

problem of finding a valid inequality πx+ µy ≤ π0 cutting off points (x∗, y∗) such

that πx∗ + µy∗ > π0 or deciding that there is no such inequality.

Next, we remark some important results that relate to the optimization and

separation problems.

12

start

incumbent=

solve LP
relaxation of
an unsolved
subproblem

LP ≥
incumbent?

integral?

all sub-
problems

are
solved?

eliminate
subproblem

from further

investigation

choose a
variable with
fractional
value and

subproblems

incumbent
actualize

stop

+∞

create new

no

no

no

yes

yes

yes

Figure 1.3.3: Branch-and-bound algorithm (Doostmohammadi, 2014)

13

start

incumbent=

solve LP
relaxation of
an unsolved
subproblem

LP ≥
incumbent?

integral?

all sub-
problems

are
solved?

eliminate
subproblem

from further

investigation

choose a
variable with
fractional
value and

subproblems

incumbent
actualize

stop

+∞

create new

no

no

no

yes

yes

yes

call CP
algorithm

add cuts
to LP

cuts
found?

solve LP

no

yes

Figure 1.3.4: Branch-and-cut algorithm (Doostmohammadi, 2014)

14

Proposition 3 (Pochet and Wolsey (2006)). Optimization problem and sepa-

ration problem are polynomially equivalent, where

• Solving the optimization problem, min
x,y

{
cTx+ kTy|(x, y) ∈ conv(X)

}
is solv-

able in polynomial time,

• Separating (x∗, y∗) ∈ Rp×Rq over conv(X) is also solvable in polynomial time.

From this, if the optimization and separation problem are polynomially solvable, we

can possibly find the complete description of conv(X). However, for the complex

case i.e. NP hard problem, we can hope that at least the partial description of

conv(X) can be obtained.

Next, we discuss the steps of implementing the cutting plane method in the

following ways.

(i) Find the LP relaxation of the MIP problem is solved. Then, if LP relaxation

solution obtained gives the convex hull of feasible region, then STOP, otherwise

go to Step (ii),

(ii) Solve the separation problem by finding the violated valid inequalities (or a

family of valid inequalities) that cut off a fractional point of the LP relaxation

solution. Then, add them directly to the original formulation. If no violated

inequality is found STOP, otherwise go back to Step (i).

The flowchart of B&C algorithm is illustrated in Figure 1.3.4.

Extended Formulations

Alternatively, extended reformulation can also be used to strengthen a formulation

by introducing new variables. For X =
{
x ∈ Zn+ : Ax ≤ b

}
, suppose that

X =
{
x ∈ Zn+ : Bx+Gz ≤ b for some z ∈ Rq

}
Definition 22. Let Q = {(x, z) ∈ Rn+ × Rq : Bx+Gz ≤ b}. Then, the projection

of Q into the x−variable space denoted, by projx(Q) is the polyhedron given by

P̃ = projx(Q) = {x ∈ Rn : ∃z ∈ Rq with (x, z) ∈ Q}

which is a formulation for X as X = P̃ ∩Zn. Figure 1.3.5 illustrates such a projec-

tion.

The extended formulation can be defined as follows.

Definition 23. The polyhedron Q = {(x, z) ∈ Rn+ × Rq : Bx + Gz ≤ b} is an

extended formulation for X =
{
x ∈ Zn+ : Ax ≤ b

}
if projx(Q) is a formulation for

X.

15

Q

proj Q

x

z

Figure 1.3.5: Extended formulation and projection

Definition 24. The extended reformulation, Q ⊂ Rn+q is a tight formulation for

X if

projx(Q) = conv(X)

and compact if its size is polynomial in the size of X.

Interestingly, the number of inequalities needed to describe conv(X) with an

extended formulation may be small (perhaps polynomial) compared to the number

of facet-defining inequalities (possibly exponential) generated to describe conv(X)

in the original space (Pochet and Wolsey, 2006).

1.4 Problem Formulations for ELSR

As in Teunter et al. (2006) and Retel Helmrich et al. (2013), we consider two

variants of models of economic lot sizing problem with remanufacturing which are

NP -hard in general (see literature review chapter for the details). In the first

model, remanufacturing and manufacturing processes each operate on dedicated

production lines, each with its own setup cost. This problem is called ELSRs

(Economic Lot Sizing Problem with Remanufacturing and Separate Setups). In

the second model, remanufacturing and manufacturing processes perform on the

same production line with a single setup cost, known as ELSRj (Economic Lot

Sizing Problem with Remanufacturing and Joint Setups).

These models seek to find an optimal production plan that satisfies customer

demands such that the total costs (production, inventory and setup costs) are

minimized. Now, we shall refer to the original formulations of ELSRs and ELSRj

problems as stated in Teunter et al. (2006) and Retel Helmrich et al. (2013). The

problems are formulated as mixed integer programs. First, we define the decision

variables and parameters used in the model formulations.

16

Decision variables

xrt is the amount of remanufactured products produced in period t,

xmt is the amount of new products produced in period t,

yrt is 1 if remanufacturing process takes place in period t, 0 otherwise,

ymt is 1 if manufacturing process takes place in period t, 0 otherwise,

yt is 1 if remanufacturing and manufacturing process both take place in

period t, 0 otherwise,

Irt is the inventory of product returns at the end of period t,

Ist is the inventory of serviceable products at the end of period t.

Parameters

prt is unit production cost of remanufacturing in period t,

pmt is unit production cost of manufacturing in period t,

hrt is unit holding cost for inventory of product returns in period t,

hst is unit holding cost for inventory of serviceable products in period t,

Kr
t is unit separate setup cost for remanufacturing in period t,

Km
t is unit separate setup cost for manufacturing in period t,

Kt is unit joint setup cost for remanufacturing and manufacturing in period

t,

dt is the amount of demands in period t, where dt,t′ =
∑t′

i=t di,

rt is the incoming amount of returns to be remanufactured in period t,

where rt,t′ =
∑t′

i=t ri.

1.4.1 Separate Setups

We present the original formulation of ELSRs:

Zss =min
n∑
t=1

(Kr
t y

r
t +Km

t y
m
t + prtx

r
t + pmt x

m
t + hrtI

r
t + hstI

s
t) (1.7)

s.t. Irt = Irt−1 + rt − xrt ∀t ∈ N (1.8)

Ist = Ist−1 + xrt + xmt − dt ∀t ∈ N (1.9)

xrt ≤ dt,nyrt ∀t ∈ N (1.10)

xmt ≤ dt,nymt ∀t ∈ N (1.11)

yrt , y
m
t ∈ {0, 1}n ∀t ∈ N (1.12)

xrt , x
m
t , I

r
t , I

s
t ≥ 0 ∀t ∈ N (1.13)

Ir0 = Is0 = 0 (1.14)

17

The objective (1.7) is to minimize the total of setup costs, production costs for re-

manufacturing and manufacturing processes; and holding costs for product returns

and serviceable products. Constraint (1.8) represents flow conversation (inventory

balance) for product returns. Constraint (1.9) indicates flow conversation (inven-

tory balance) for serviceable products. Constraint (1.10) is setup forcing constraint

for remanufacturing. Constraint (1.11) is setup forcing constraint for manufactur-

ing. Next, (1.12) provide the integrality of remanufacturing and manufacturing.

Then, (1.13) denotes nonnegativity requirements of production of remanufactured

and new products and inventory variables of product returns and serviceable prod-

ucts. Lastly, without loss of generality, we assume no initial inventory for product

returns and inventory of serviceable products on hand as stated in constraint (1.14).

The illustration of a network representation for ELSRs is given in Figure 1.4.1.

1 2

1 2

3

3

4

4

r1 r2 r3 r4

d1 d2 d3 d4

Ir1 Ir2 Ir3 Ir4

Is1 Is2 Is3

xm
1 xm

2 xm
3 xm

4

xr
1 xr

2 xr
3 xr

4

Figure 1.4.1: Network representation of ELSRs problem with period, n = 4 (Re-
tel Helmrich et al. (2013))

As the remanufacturing operation depends on the amount of returns at the

beginning of production period t, we obtain the following variable upper bound on

xr.

xrt ≤ min (r1,t, dt,n) yrt ∀t ∈ N (1.15)

This new valid upper bounds (1.15) on xr indicates that remanufactured products

can be produced up to the total amount of returns from period 1 to t but it is

restricted to the total amount of demands from period t to n.

As for now, we obtain the feasible region of the basic formulation for ELSRs:

Xss = {(xr, xm, yr, ym, Ir, Is)|(1.8), (1.9), (1.11)− (1.15)}

with the objective function Zss = min {(1.7)|(xr, xm, yr, ym, Ir, Is) ∈ Xss}.

18

1.4.2 Joint Setups

As for joint setups case, we use the same formulation as in separate setups case

except that a single setup variable, yt and a single setup cost parameter, Kt are

considered.

Zjs = min
n∑
t=1

(Ktyt + prtx
r
t + pmt x

m
t + hrtI

r
t + hstI

s
t) (1.16)

s.t. (1.8),(1.9), (1.13), (1.14) xrt + xmt ≤ dt,nyt, ∀t ∈ N (1.17)

yt ∈ {0, 1}n, ∀t ∈ N (1.18)

Then, we have the following feasible region of the basic formulation for ELSRj:

Xjs = {(xr, xm, y, Ir, Is)|(1.8), (1.9), (1.13), (1.14), (1.17), (1.18)}

and the objective function of Z
js

= min
{

(1.16)|(xr, xm, y, Ir, Is) ∈ Xjs
}

. The

following Figure 1.4.2 represents a network representation for ELSRs as a special

case of ELSRj. The details explanation of this figure can be found in Retel Helmrich

et al. (2013).

1 1’

1 1’

2

2

2’

2’

r1 r2

d1 d2

hr
1 hr

2

0 hs
1 0

∞,Kr
1

pr1,K
r
1

0 0

hs
2

∞,Km
1 pr2,K

r
2 ∞,Km

2

pm1 ,Km
1 ∞,Kr

2 pm2 ,Km
2

Figure 1.4.2: ELSRs as a special case of ELSRj with period, n = 4 (Retel Helmrich
et al. (2013))

1.5 Outline of the Thesis

Chapter 2 presents the relevant literature on several mathematical programming

techniques used to solve the classical single-item lot-sizing problem and its extension

19

(i.e., the remanufacturing option). In Chapter 3, we propose several traditional

solution techniques to obtain better lower bounds for ELSR problems. Theoretical

and computational comparisons between these different lower bounding techniques

are presented. Finally, we further investigate the polyhedral structure of both

problems in Chapters 4 and 5, following the findings from the previous chapter.

Several families of valid inequalities for the problems are derived and their facet-

defining conditions are identified. Finally, these cuts are computationally tested in

order to observe their effectiveness.

20

Chapter 2

Literature Review

This chapter discusses the literature survey on several solution techniques, specif-

ically, mathematical programming approaches that are commonly used to solve

a wide variety of lot-sizing problems. Since ELSR problems have been proven

to be NP -hard, this generally causes them to be computationally inefficient so

there is a need to develop and improve solution procedures. In this thesis, we

review three main solution techniques, namely polynomial-time algorithms (e.g.,

Wagner-Whitin algorithm and its extensions) for the special cases in Section 2.1,

mixed integer programming (MIP) methods in Section 2.2 and heuristic methods

in Section 2.3. The literature review of this classical lot-sizing problem develops an

essential understanding of ELSR problems’ substructures.

2.1 Polynomial Algorithms for Special Cases

Wagner and Whitin (1958) were the first to present an O(n2) dynamic program-

ming algorithm for the single-item uncapacitated lot sizing problem with constant

production costs and nonnegative inventory holding costs. This dynamic lot-size

model is a generalization of the economic order quantity (EOQ) model, which al-

lows deterministic demand rate, costs and lot sizes for a single item to vary from

period to period throughout the planning horizon. The key element of this model

is stated in the following property.

Definition 25. The Wagner-Whitin property, also known as the zero-inventory

property, states that xtIt−1 = 0, which can be either xt = 0 or It−1 = 0 or both.

(We produce only if the entering inventory is zero.)

Definition 26. The problem is Wagner-Whitin if the production costs, p
′

t in period

t and holding costs, h
′

t at the end of period t satisfy h
′

t+p
′

t−p
′

t+1 ≥ 0 for all t ∈ [0, n],

where p
′

0 = p
′

n+1 = 0. Note that it is optimal to produce as late as possible because

it is costlier to produce in period t and retain until period t+ 1 than to produce in

period t+ 1.

Further, an earlier study on basic extensions of the uncapacitated single-item

21

problem can be found in Zangwill (1969). The author generalized the Wagner-

Whitin model, first with backlogging and second with a multi-level problem, both

without capacities and with concave cost functions. Both models are represented

by single-source networks to develop efficient dynamic programming algorithms.

These single-item problems were then extended by Florian and Klein (1971) in the

case of constant capacities with and without backlogging. The authors developed

an O(n4) dynamic programming based on a shortest path algorithm. Later, Bi-

tran and Yanasse (1982) studied the computational complexity of capacitated lot

sizing under various assumptions of costs and capacity structures. The complexity

of the problem is given by the notation, α/β/γ/δ, where α, β, γ and δ represent

setup cost, holding cost, production cost and capacity, respectively. The values for

each notation are G, C, ND, NI and Z, which indicate general structure, constant,

non-decreasing, non-increasing and zero, respectively. For instance, the notation

ND/C/NI/G is a family of problems, where the setup cost is non-decreasing, the

holding cost is constant, the production cost is non-increasing and capacity is not

restricted to a prespecified structure. Their findings are shown in Table 2.1.1.

Table 2.1.1: Results of problem complexity (Bitran and Yanasse (1982))

Problem Complexity

NI/G/NI/ND O(n4)

NI/G/NI/C O(n3)

C/Z/C/G O(n log n)

ND/Z/ND/NI O(n)

In the 1990s, three independent studies discovered new algorithms that reduce

the computational complexity of the Wagner-Whitin algorithm. They improved

O(n2) time to O(n log n) and O(n2) time to O(n) for some special cases of Wagner-

Whitin costs. Firstly, Federgruen and Tzur (1991) proposed a forward-recursion

dynamic programming algorithm for the general single-item lot-sizing problem with

fixed and linear costs. The authors also proposed an O(n) simple algorithm for two

important special cases of: (i) no speculative motives for carrying stock and (ii)

non-decreasing setup costs. Further, Wagelmans et al. (1992) used a backward-

recursion dynamic programming algorithm to solve a Wagner-Whitin case in linear

time, O(n) where the cost functions are linear and not restricted in sign (may

have negative costs). Lastly, Aggarwal and Park (1993) investigated the case with

several cost structures, with and without backlogging for the single-item uncapaci-

tated lot-sizing problem. The authors provided efficient algorithms using dynamic

programming and array searching that improve on those in some previous stud-

ies. In the case of backlogging with arbitrary concave-cost functions, this study

reduced the computational complexity, O(n3) of Zangwill’s algorithm of 1969 to

O(n2). However, the authors were unable to improve their running time to the

22

O(n2) algorithm for the case with non-decreasing concave-cost functions of holding

and backlogging costs, and constant production cost. Next, Van Hoesel and Wagel-

mans (1996), who studied the constant capacities economic lot-sizing problem with

concave production costs and linear holding costs, improved Florian and Klein’s

algorithm that runs in O(n3) time. In the case of the general problem and both

constant and arbitrary capacities, the dynamic programming algorithms proposed

by Kirca (1990) can be performed at least three times faster than Florian and

Klein’s algorithm.

Several studies have improved the complexity of problems addressed by Bitran

and Yanasse (1982). Referring to Table 2.1.1, for the case of both non-increasing

setup and production costs (NI/G/NI/C), the problem is solved in O(n3) time.

The same complexity was obtained byVan Hoesel and Wagelmans (1996), in the

case where production costs are concave and holding costs are linear. When setup

costs have an arbitrary pattern, holding costs are constant, the production costs are

non-increasing, and the capacities are non-decreasing (NI/G/NI/ND), the problem

complexity obtained by Chung and Lin (1988) outperforms Bitran and Yannasse’s

algorithm from O(n4) to O(n2). Van den Heuvel and Wagelmans (2006) also ad-

dressed the same problem as Chung and Lin (1988) to derive a new O(n2) algo-

rithm. This new algorithm considered fewer candidate solutions in each iteration

than Chung and Lin (1988) and becomes more effective when the capacities are

relatively large. Numerical tests show the effectiveness of the proposed algorithm

compared to Chung et al.’s algorithm.

Fleischmann (1990) proposed a dynamic programming algorithm for a special

case in order to solve the relaxed problem of the discrete lot-sizing and schedul-

ing problem. Van Hoesel et al. (1994b) also investigated the same problem and

presented an efficient dynamic programming algorithm that uses properties of its

optimal solutions. Vanderbeck (1998) presented an O(n6) dynamic programming

algorithm for the single-item lot-sizing model with stationary capacities and start-

up times for both discrete and continuous setup models. This algorithm reduces

the problem complexity to O(n4) when the production and holding costs satisfy

the Wagner-Whitin costs.

Some extensions of lot-sizing problems include start-up costs and time windows.

Shaw and Wagelmans (1998) solved the capacitated economic lot-sizing problem

with piecewise linear production costs, general holding costs, backlogging and start-

up costs that run in pseudo-polynomial time. The authors proposed the O(n2p̄d̄)

algorithm, where n is the number of periods and d̄ and p̄ are the average demand and

average number of pieces of the production cost functions, respectively. Lee et al.

(2001) studied dynamic lot sizing with demand time windows, with and without

backlogging. The complexity of the problem is O(n2) if the no-backlogging case is

considered. Otherwise, O(n3) is obtained. Hwang (2007) also considered the same

problem with backlogging. The same complexity O(n3) algorithm as Lee et al. is

obtained in the case of non-speculative cost structure. For a somewhat general cost

structure, the algorithm is improved to O(maxn2, dn) time, where d is the demand

23

scheduled for n periods.

In the problem with bounded inventory, Gutiérrez et al. (2003) presented an

algorithm that runs in O(n) expected time when the demands vary between the in-

terval of zero and the storage capacity. This algorithm runs almost 30 times faster

than the algorithm proposed by Love (1973). Later, Gutiérrez et al. (2008) further

addressed the problem with time-varying storage capacities and costs whose run-

ning time is O(n log n). The authors showed that thee an optimal plan exists that

satisfies the zero-inventory ordering (ZIO) property in the case of constant pro-

duction/ordering unit costs (i.e., the Wagner\textendash Whitin case). Liu (2008)

who studied the economic lot-sizing problem with both upper and lower inventory

bounds, proposed an O(n2) algorithm for the general problem and an O(n) algo-

rithm for a special case with non-speculative motives. Önal et al. (2012) argued that

their algorithms do not provide an optimal solution in general. They proposed an

improved algorithm that also runs in O(n2) time. For a more realistic model, Chu

and Chu (2007) were the first to consider a single-item dynamic lot-sizing problem

with the integration of outsourcing, backlogging decisions and inventory capacity

in real-life crude-oil procurement problems that arise in refineries. When the inven-

tory holding and backlogging cost functions are concave and the production cost

functions are linear with fixed charges or concave piecewise linear, the problem is

solved inO(n2) time whereas O(n log n) time is obtained if unbounded inventory is

considered. Furthermore, the outsourcing model is solved in O(n2 log n) time when

the inventory holding and the outsourcing cost functions are linear. In addition,

Chu et al. (2013) adapted their study to the case of real-life production planning

problems of luxury goods. The problem is solved in O(n4 log n) time using dynamic

programming algorithm.

The problem of minimum order requirements was explored by the study of

Okhrin and Richter (2009). The authors presented a dynamic programming al-

gorithm for the single-item lot-sizing problem with both capacity constraints and

minimum order quantity requirements. They showed that this general problem is

NP -hard. The problems with constant capacity and minimum order quantities and

with general minimum order quantities and infinite capacities are all polynomially

solvable. They also developed a fully polynomial time-approximation scheme in the

presence of linear cost functions and possible fixed procurement costs. Okhrin and

Richter (2011) then proposed an O(n3) algorithm for the single-item capacitated

lot-sizing problem with minimum order quantities by investigating the properties

of the optimal solution structure to obtain sub-problems of an explicit solution.

Lastly, the study of a simple lot-sizing problem has also been extended to two-

level lot sizing and carbon emission constraints. Melo and Wolsey (2010) developed

a forward dynamic programming algorithm for the uncapacitated two-level lot-

sizing problem with running time of O(n2 log n). The authors also provided a

compact and tight extended formulation for the problem. Next, Absi et al. (2013)

proposed new lot-sizing problems with four different carbon-emissions constraints.

They developed a dynamic programming algorithm to obtain an optimal solution

24

for the multi-sourcing uncapacitated lot-sizing problem with a periodic carbon-

emissions constraint. The remaining three constraints have been proven to be

NP -hard.

We now review the existing literature related to lot-sizing problem with reman-

ufacturing. There are two types of demand streams addressed in the literature:

(i) demand that can be satisfied by either new or remanufactured products (ii)

different demand streams for new and remanufactured products (i.e., demand for

remanufactured products can be also satisfied by new products but not vice versa).

In this thesis, the first type of demand streams is of interest.

Some special cases of ELSR problems, such as whether there are sufficient re-

turns to satisfy demand, no production or no speculative motives on costs (also

called Wagner-Whitin cost), can be solved in polynomial time. To the best of our

knowledge, Richter and Sombrutzki (2000) was the first to study the reverse version

of Wagner et al.’s classical algorithm in the case of a large quantity of low inven-

tory cost of product returns. In this study, manufacturing and remanufacturing

are performed in different production lines, which each has its own setup costs, and

demand can be satisfied by either remanufactured or new products. The authors

assumed that the amount of returns at the beginning of the production period is

sufficient to meet total demand over the entire horizon; therefore, the manufactur-

ing process is not necessary. Accordingly, some modifications of the classical zero

Wagner-Whitin inventory property hold as follows:

Lemma 1. Any optimal solution satisfies the following property: xrtx
m
t = 0 and

Ist−1(x
r
t + xmt) = 0 for all t ∈ N.

From this, it is clearly seen that the optimal solution can be obtained when

either manufacturing or remanufacturing activities take place during a particular

period. In other words, these activities can never occur during the same period.

The selected activity can only be performed if the ending inventory of service-

able products in the previous period is empty. This study was later extended by

Richter and Weber (2001) with additional variable manufacturing and remanufac-

turing costs. Using the same property as mentioned previously, the authors derived

conditions that exclude one of these activities as they can never occur during the

same period. For time-constant costs and demands, they proved that the optimal

policy begins with remanufacturing before switching to manufacturing and found

that there is only one switching point from remanufacturing to manufacturing.

Following this, Golany et al. (2001) investigated the production-planning prob-

lem with manufacturing, remanufacturing and disposal options without restrictive

assumptions on the amount of returns. The problem has a network flow formulation

and is solved using dynamic programming. This study proves that the problem is

NP -hard for the general concave cost structure. For the case of linear costs and

zero setup costs, an exact algorithm of O(n3) is obtained when transforming the

problem into a transportation problem in a special way. Yang et al. (2005) used

settings similar to those in Golany et al. (2001) to develop an effective polynomial-

25

time heuristic algorithm using the extreme-point optimal solutions of the feasible

region and showed that the concave-cost problem is also NP -hard, even for the

case of stationary concave cost functions.

Heuvel (2004) investigated the complexity of the economic lot-sizing problem

with a remanufacturing option and separate setup costs and proved that the prob-

lem is NP -hard in general, even under stationary cost parameters. Then, Teunter

et al. (2006) studied the dynamic lot-sizing problem with remanufacturing with

joint and separate setup cases. The first model of joint setup costs for manufactur-

ing and remanufacturing was solved using an exact polynomial-time dynamic pro-

gramming algorithm based on zero-inventory and remanufacture-first properties.

With this model, the authors presented the same property addressed by Richter

and Sombrutzki (2000). Further, they provide a second lemma that gives priority

to a remanufacturing activity.

Lemma 2. Any optimal solution satisfies the following property: in every period

where products are manufactured, the stock of returns at th end of that period is

zero, i.e. Irt x
m
t = 0 for all t ∈ N.

This lemma tells us that the production of new products in a particular period

can take place if and only if the inventory of returns at the end of that period is

zero. As regards the second model, the heuristic approach is adopted, which is

discussed in the next section.

Pan et al. (2009) extended the basic problem with the separate setups case ad-

dressed by Heuvel (2004) and Teunter et al. (2006) to a capacitated problem. The

authors addressed the capacitated dynamic lot-sizing problem with remanufactur-

ing and disposal options. Several useful properties of the problem are characterized

when the cost functions are concave. The findings show that the dynamic lot-sizing

problem with only disposal or remanufacturing can be converted into the traditional

capacitated lot-sizing problem and solved using polynomial algorithms if constant

capacities are considered. In addition, the author proposed a pseudo-polynomial

algorithm for the problem with both capacitated disposal and remanufacturing.

Lastly, Wang et al. (2011) presented the single-item dynamic lot-sizing problem

with remanufacturing and outsourcing, where demand and returns are deterministic

over a finite planning horizon. Outsourcing is used to meet unfulfilled demand and

thus no backlogging is allowed. An O(n2) dynamic programming is developed to

solve this problem if a large amount of returns is considered. We look at alternative

approaches that use mixed integer programming in Section 2.2.

2.2 Mixed Integer Programming

One way to obtain better lower bounds within the MIP approach is by finding

good formulations that can give us a better approximation of the convex hull of the

problem. There are two types of exact methods: (i) adding valid inequalities into

an original space and (ii) extending a formulation into different variable spaces.

26

2.2.1 Valid Inequalities

Adding valid inequalities or constraints a priori to the original formulation provides

a tightened formulation that improves the lower bounds provided by linear relax-

ations solved at a node root, reduces the branch-and-bound (B&B) nodes required

to solve the MIP problem, and increases the efficiency of computation times.

There is a vast literature on the polyhedral properties of the uncapacitated

lot-sizing problem and many of its variants. The first polyhedral study of the

uncapacitated lot-sizing problem was introduced by Barany et al. (1984a). They

proposed a family of valid inequalities, namely (`, S) inequalities as follows:

Proposition 4 (Barany et al. (1984a)). For any ` = 1, ..., n, L = {1, ..., `}, and

S ⊆ L, the family of valid inequalities∑
i∈S

xi ≤
∑
i∈S

di,`yi + I` (2.1)

is called the (`, S) inequalities. The proof for this type of inequality can be referred

to in the cited paper.

Note that there exists an exponential number of (`, S) inequalities added into

the formulation and hence a cutting-plane approach should be used to avoid adding

all these inequalities a priori to the formulation. The feasible region of the original

MIP for this single-item uncapacitated lot-sizing problem is X = {(x, y, I|(1.2) −
(1.6)}, and the LP relaxation with added (`, S) inequalities is given by XLS =

{(x, y, I)|(1.2) − (1.6), (2.1) : 0 ≤ y ≤ 1}. Accordingly, the convex hull of this

problem is denoted as XLS = conv(X). Solving LP relaxation with the violated

(`, S) inequalities added into the original formulation suffices to obtain the complete

linear description of the convex hull of its feasible region (Barany et al., 1984b).

A simple polynomial separation algorithm presented in Algorithm 2.1 is used to

enumerate over all possible values of `, whose running time is O(n2).

Algorithm 2.1 (`, S) separation algorithm for simple lot sizing problem

1: Input: LP relaxation solution (x∗, y∗, I∗)
2: Output: Violated (`, S) inequalities
3: for all ` = 1 to n do
4: Initialize S is an empty set
5: for all i = 1 to ` do
6: if x∗i > di,`y

∗
i then

7: S ←S ∪ {i}
8: end if
9: end for

10: if
∑
i∈S
x∗i >

∑
i∈S
di,`y

∗
i + I` then

11: Add violated (`, S) inequality
12: end if
13: end for

27

Given a LP relaxation solution (x∗, y∗, I∗), the separation algorithm can be

solved by either:

• Find an (`, S) inequality violated by (x∗, y∗, I∗) or,

• Prove that all (`, S) inequality are satisfied by (x∗, y∗, I∗).

We rewrite the (`, S) inequality as
∑

i∈S(xi − di,`yi) ≤ I`. Then, we can find the

most violated (`, S) inequality for the fixed interval ` ∈ {1, ..., n} . It suffices to set

S∗ = {i ∈ {1, ..., `} : x∗i − di,`y∗i > 0}

and test whether
∑

i∈S∗(x
∗
i−di,`y∗i) > I∗` . The (`, S∗) inequality is the most violated

inequality for the given value of ` if this test holds. Otherwise, there is no violated

(`, S) inequality for a given value of `. Interested readers can refer to Pochet and

Wolsey (2006).

Example 5. Given that the optimal solution of the linear relaxation of (1.1) -

(1.6) in Figure 2.2.1. Note that the missing arcs correspond to arcs with zero flow.

We will find an (`, S) inequality cutting off the point.

t=1

4 2 5 1

x1=10.99

7

t=2 t=3 t=4 t=5

y1=1

1

t=6

x2=0.88
y2=

x4=0.125
y4=0.125

x5=7
y5=1

x6=1
y6=1

I1=6.99

0.0009

I2=5.875 I3=0.875

Figure 2.2.1: The solution of linear relaxation of (1.1) - (1.6)

Let ` = 3 and S ⊆ {1, ..., 3}, therefore we have following valid inequalities.

S = {1}, x1 ≤11y1 +I3

S = {2}, x2 ≤7y2 +I3

S = {3}, x3 ≤5y3 +I3

S = {1, 2}, x1 + x2 ≤11y1 + 7y2 +I3

S = {1, 3}, x1 + x3 ≤11y1 + 5y3 +I3

S = {2, 3}, x2 + x3 ≤7y2 + 5y3 +I3

S = {1, 2, 3},x1 + x2 + x3≤11y1 + 7y2 + 5y3+I3

28

By substituting the fractional solutions from Figure 2.2.1, we set

S∗ = {1}, x∗1 − 11y∗1 > 0→ Not satisfied

S∗ = {2}, x∗2 − 7y∗2 > 0→ 0.8737 > 0

S∗ = {3}, x∗3 − 5y∗3 > 0→ Not satisfied

S∗ = {1, 2}, x∗1 + x∗2 − 11y∗1 − 7y∗2 > 0→ 0.8637 > 0

S∗ = {1, 3}, x∗1 + x∗3 − 11y∗1 − 5y∗3 > 0→ Not satisfied

S∗ = {2, 3}, x∗2 + x∗3 − 7y∗2 − 5y∗3 > 0→ Not satisfied

S∗ = {1, 2, 3},x∗1 + x∗2 + x∗3 − 11y∗1 − 7y∗2 − 5y∗3> 0→ 0.8637 > 0

Then, we test whether
∑

i∈S∗(x
∗
i − di,`y∗i) > I∗` .

S∗ = {2}, x∗2 − 7y∗2 > I∗3 → 0.8737 ≯ 0.875

S∗ = {1, 2}, x∗1 + x∗2 − 11y∗1 − 7y∗2 > I∗3 → 0.8637 ≯ 0.875

S∗ = {1, 2, 3},x∗1 + x∗2 + x∗3 − 11y∗1 − 7y∗2 − 5y∗3> I∗3 → 0.8637 ≯ 0.875

There is no such violated inequalities exists for the given value of `.

An alternative way to write the above inequality (2.1) given by:

Corollary 1 (Pochet and Wolsey (2006)). The (`, S) inequality (2.1) can be

written as: ∑
i∈L\S

xi +
∑
i∈S

di,`yi ≥ d1,` S ⊆ [1, `] ,∀` ∈ N

Proof. Substitute
∑
i∈L
xi = d1,` + I`.

Next, as discussed earlier, the problem is said to have Wagner-Whitin costs if

p
′

t + h
′

t ≥ p
′

t+1 for all t and p
′

0 = p
′

n+1 = 0. In this case, it is optimal to produce

as late as possible, where the setup period will be either before or equal to t in

order to satisfy the demand in period t. Alternatively, Ik−1 contains demand di for

period i ≥ k only if no setup occurs in the time interval [k, ..., i].

Proposition 5 (Pochet and Wolsey (2006)). In the case of Wagner-Whitin

costs, we obtain (`, S,WW) inequality as follows:

Ik−1+
∑̀
i=k

di,`yi ≥ dk,` 1 ≤ k ≤ ` ≤ n (2.2)

is valid. It can be rewritten as an (`, S) inequality

k−1∑
i=1

xi+
∑̀
i=k

di,`yi ≥ d1,` 1 ≤ k ≤ ` ≤ n

29

In this study, we derive (`, S,WW) inequality from (`, S) inequality for both

ELSR problems. We now review several polyhedral studies of different variants of

the lot-sizing problem.

Firstly, the lot-sizing problem can be formulated as a fixed-charge network flow

problem. A number of polyhedral studies investigating this problem are available

in the literature. Van Roy and Wolsey (1985) proposed a family of valid inequalities

for single-item uncapacitated fixed-charge networks. The findings show that these

inequalities are sufficient to describe the convex hull of solutions. They present a

heuristic separation algorithm for this class of inequalities. Padberg et al. (1985)

studied three 0-1 mixed integer sets arising from capacitated fixed charge problems.

They derived two classes of facet-defining inequalities of the convex hull of the

problem, and the second of these classes provides a complete description of the

convex hull when the capacity is mt = m for all t ∈ N. These facets, called ’flow

cover’ inequalities, are used as cutting planes to tighten the formulation of a certain

mixed integer problem. We extend these findings into our ELSR problems.

Pochet (1988) combined Padberg et al.’s approaches by introducing a network

structure in a capacitated fixed-charge problem. In the equal capacity case, he

obtained a large number of facet-defining inequalities; however, he was unable

to find an efficient algorithm (polynomial algorithm). Therefore, he applied a

heuristic separation algorithm. Leung et al. (1989) further extended the problem

with the multi-item capacitated lot-sizing problem. The authors firstly studied the

polyhedral structure of the single-item capacitated lot-sizing problem and then used

the results obtained to develop methods for the multi-item case. They proposed

a set of valid inequalities that defines the facets of the problem. Next, Ortega

and Wolsey (2003) described dicut inequalities and their variants as well as the

complexity of the separation problem of the single-commodity uncapacitated fixed-

charge network flow problem. The proposed branch-and-cut algorithm was then

tested computationally.

Other extensions of the lot-sizing problems include start-up costs, inventory

bounds, fixed charges on stocks, step-wise production costs, one-way substitution

and supplier selections. Van Hoesel et al. (1994a) provided a complete linear

description of the economic lot-sizing problem with start-up costs. The authors

generalized the (`, S) inequalities proposed by Barany et al. (1984a) to (`, R, S)-

inequalities, where R be a subset of S. The separation problem was solved by for-

mulating the problem as a shortest path problem. Escalante et al. (2011) extended

the problem to continuous start-up costs. They studied the polyhedral structure

of the problem by providing some general properties and deriving facet-inducing

inequalities.

The polyhedral structure of the lot-sizing problem with inventory bounds was

first studied by Atamtürk and Küçükyavuz (2005). Two models are considered in

their study: first with linear inventory costs and second with linear and fixed inven-

tory costs. They defined facet-defining inequalities and presented exact separation

algorithms for both problems. Van Vyve and Ortega (2004) provided a polyhedral

30

analysis of the uncapacitated lot-sizing problem with fixed charges on stocks. The

authors extended the (`, S)-inequalities for a complete description of the convex

hull of the problem. Akbalik and Pochet (2009) considered the single-item capac-

itated lot-sizing problem with step-wise production costs to develop a new class

of valid inequalities, namely mixed flow cover. This mixed flow cover is derived

from two well-known classes of valid inequalities, namely flow cover inequalities

and integer cover inequalities. They proposed a cutting-plane algorithm within a

branch-and-cut procedure, where an exact polynomial separation is implemented.

Yaman (2009) investigated a polyhedral analysis for the two-item uncapacitated

lot-sizing problem with one-way substitution, where the demand of a low-quality

item can be substituted by a high-quality item. A family of facet-defining inequal-

ities is derived from the projection of the feasible set onto the space of production

and setup variables. In the case of two periods, these inequalities, together with the

trivial facet-defining inequalities, define the convex hull of the stated projection.

Zhao and Klabjan (2012) studied the polyhedral structure of both uncapacitated

and capacitated lot sizing with supplier selection problems. For the uncapacitated

case, a full description of the convex hull of the problem is obtained. The au-

thor defines several families of valid inequalities for the general capacitated case.

Lastly, Gicquel and Minoux (2014) proposed a family of valid inequalities for the

multi-product discrete lot-sizing and scheduling problem with sequence-dependent

changeover costs and provided both exact and heuristic separation algorithms. The

efficiency of both algorithms at strengthening the linear relaxation was tested.

In this research, we basically extend the study of Barany et al. (1984b) to our

ELSR problem with separate setups and joint setups cases in Chapter 3. Then,

in Chapter 4 and Chapter 5, we further investigate the polyhedral structure of a

mixed integer set arising from these problems, originally motivated by Padberg

et al.’s study.

2.2.2 Extended Reformulations

Extended reformulation can also be used to tighten the original formulation in

order to obtain better lower bounds for mixed integer problems. The new variables

are defined and added to the problem in different variable spaces. As mentioned

in Chapter 1, the number of inequalities required to describe conv(X) with an

extended reformulation may be relatively small compared to the number of facet-

defining inequalities generated to define conv(X) in the original space that grows

exponentially. However, the problem size of an extended reformulation is greater

than adding valid inequalities due to additional new variables.

There are some well-known extended reformulation techniques in the classical

lot-sizing literature. The first extended reformulation was introduced by Krarup

and Bilde (1977), which is facility location (FL) reformulation for the single-item

uncapacitated lot-sizing problem. The authors decomposed the production variable

xt by defining a new decision variable, wt,t′ , which is the amount produced in period

31

t to satisfy demand in period t′. Then, the amount of production xt in period t

is xt =
n∑
t′=t

wt,t′ . This reformulation has O(n2) variables and O(n2) constraints,

which suffices to solve LP relaxation. Barany et al. (1984b) also examined this

reformulation technique for the same problem to obtain the convex hull of solutions.

The second reformulation technique is more compact as it has only O(n) constraints

regardless of its nonnegativity constraints. This reformulation, called shortest path

(SP) reformulation, was proposed by Eppen and Martin (1987). The authors define,

a new variable, zt,t′ , which is the fraction of demand in periods t until t′ to be

satisfied by the production in period t. This reformulation has been proven to be

equivalent to FL reformulation as it provides integral solutions in an extended space.

Another reformulation technique that has been found useful in solving lot-sizing

problem is multi-commodity (MC) reformulation, which was suggested by Rardin

and Wolsey (1993) for fixed-charge network flow problems. The reformulation

basically has the same formulation as FL reformulation, but the inventory variables

are included in the formulation. They decompose the production flow, xt , as a

function of its destination node (demand node) at time interval [t, t+ 1, ..., n] and

the inventory flow, It as a function of its destination node (demand node) at time

interval [t+ 1, t+ 2, ..., n].

Several polyhedral studies have addressed extended reformulations for special

cases of the lot-sizing problem. Pochet and Wolsey (1988) investigated the unca-

pacitated lot-sizing problem with backlogging. The authors used a facility location

reformulation technique to define a family of valid inequalities and then used a

heuristic separation algorithm to find an optimal solution. Küçükyavuz and Pochet

(2009) derived a relationship between Pochet and Wolsey’s FL reformulation and

their facets in its natural space of production, setup, inventory and backlogging

variables. Next, Pochet and Wolsey (1994) examined four different cases of the

single-item lot-sizing problem with Wagner-Whitin costs: the uncapacitated prob-

lem (ULS), the uncapacitated problem with backlogging (BLS), the uncapacitated

problem with start-up costs (ULSS) and the constant capacity problem (CLS).

For each model, they studied the structure of the stock-minimal solutions in order

to derive the extended reformulations of the problem. The extended reformula-

tions with Wagner-Whitin costs were projected onto original spaces, which were

then used to define convex hull of the stock-minimal solutions and solve separation

problems.

Later, Pochet and Wolsey (2010) constructed an extended formulation for the

single-item lot-sizing problem with non-decreasing capacities using mixing sets and

obtained the convex hull of solutions when capacities are constant over time. The

authors tested this formulation with different instances, including with and with-

out Wagner-Whitin costs and with both non-decreasing and arbitrary capacities

over time so as to observe its effectiveness. Vyve et al. (2014) proposed exact

and approximate extended formulations for several variants of two-level multi-item

discrete lot-sizing problems. The performance of an extended formulation for the

32

problem with uncapacitated at both levels and start-up costs was found to be bet-

ter than an existing formulation. Due to a large-size formulation of the problem

with uncapacitated at the upper level and constant capacity at the lower level, they

projected the formulation onto the variable space. Additionally, they constructed

an extended formulation for relaxation in the case of constant capacity at both

levels.

Lastly, in regard to the case of ELSR problems, Retel Helmrich et al. (2013) was

the first to present a good mixed integer programming formulation for both vari-

ants of ELSR problems. Firstly, they showed that both variants are NP -hard and

then followed by proposing several alternative formulations for both variants such

as shortest path formulation, a partial shortest path formulation and an adaptation

of the (l, S,WW)-inequalities for the classic problem with Wagner-Whitin costs to

tighten the original formulation. The authors tested the efficiency of all formula-

tions was tested on a large number of data sets and found that a (partial) shortest

path type formulation outperforms the original formulation for both variants in

terms of LP gaps (%), MIP computation times and number of optimal solutions.

In our research, we also propose several extended formulations for both variants

of ELSR problems, namely facility location (FL) reformulation, MC reformulation

and shortest path (SP) reformulation. Note that our SP formulation is slightly

different from the formulation proposed by Retel Helmrich et al. (2013). Addition-

ally, we provide theoretical and computational comparisons between these different

lower bounding techniques to prove the equivalence of the formulations and to

test the effectiveness of the formulations. We discuss all of these formulations in

Chapter 3.

2.3 Heuristics

With the hope of obtaining good solutions in the least amount of time, a heuristic

approach is an alternative method to solve a wide variety of lot-sizing problems.

In this section, we provide the reader with a brief overview of mixed integer pro-

gramming heuristics and other types of heuristics. As for our research, we do not

use this approach to tackle our problems.

2.3.1 Mixed Integer Programming (MIP) Heuristics

There are two commonly used MIP heuristics, namely construction heuristic and

improvement heuristic as discussed in Pochet and Wolsey (2006). The interested

reader can refer to their article for more in-depth explanations on this heuristic.

This class of heuristic aims to obtain better quality solutions in a reasonable com-

putation time.

• Construction heuristic: This heuristic starts with no solution and constructs

it step-by-step from scratch.

(i) LP-and-Fix: The integral values in the LP relaxation solution are fixed.

33

(ii) Relax-and-Fix: The integrality restriction of some variables is relaxed to

continuous, then the integrality of other variables is fixed at each iteration.

• Improvement heuristic: This heuristic always begins with an initial solution

and the aim is to improve it.

(i) Relaxation Induced Neighborhood Search (RINS): This heuristic was dis-

cussed in Danna et al. (2005). The idea is to explore the neighbourhood

between the LP relaxation solution and the MIP solution. If both solu-

tions produce the same value of an integer variable, then that value is

fixed. This heuristic is an improved version of the LP-and-Fix heuristic.

(ii) Local Branching (LB): This heuristic was initially introduced by Fischetti

and Lodi (2003) and constructs the branching of neighboorhood using

MIP solution.

(iii) Exchange (EXCH): This is an improvement version of the relax-and-fix

heuristic. At each iteration, some integer variables are fixed at their

values in the best current MIP solutions, except for the variables, which

are restricted to take integer values.

Several studies have considered MIP-based heuristics with decomposition of time

windows. Mercé and Fontan (2003) introduced two MIP-based heuristic algorithms

within a rolling horizon framework for the multi-item capacitated lot-sizing prob-

lem. Absi and Kedad-Sidhoum (2007) proposed two MIP-based heuristics, namely

fix-and-relax and double-fix-and-relax using horizon decomposition, for the same

problem. Beraldi et al. (2008) introduced new rolling horizon and fix-and-relax

heuristics for the identical parallel machine lot-sizing and scheduling problem with

sequence-dependent setup costs. Akartunalı and Miller (2009) combined LP-and-fix

and relax-and-fix heuristics to develop a heuristic framework using decomposition

of time windows for the big-bucket multi-level production planning problem.

These MIP heuristic approaches are useful for solving our ELSR problems in

terms of reducing computation times and providing stronger lower bounds as they

offer a good trade-off between solution quality and solution time.

2.3.2 Other Types of Heuristics

This section summarizes other types of heuristics. One heuristic approach is the

Lagrangian relaxation heuristic (Toledo and Armentano, 2006; Rizk et al., 2006;

Haugen et al., 2007a,b; Absi and Kedad-Sidhoum, 2009). It considers a relaxation

of the capacity constraints, where the sub-problems are generated and can be easily

solved through the Wagner–Whitin algorithm (or any other uncapacitated single-

item algorithms). Another type is the branch-and-bound heuristic method (Gelders

et al., 1986; Chen and Thizy, 1990; Diaby et al., 1992; Chung et al., 1994; Lotfi

and Yoon, 1994; Hindi, 1995; Armentano et al., 1999). In this heuristic, nodes

34

that are close (within a percentage) to the best current upper bound are fathomed.

The optimal value of the Lagrangian relaxation heuristic can be used as a lower

bound in the branch-and- bound procedure. Furthermore, some studies have used

metaheuristics (Özdamar and Bozyel, 2000; Taşgetiren and Liang, 2003; Chang

et al., 2006; Gaafar, 2006; Süer et al., 2008; Gaafar et al., 2009; Chandrasekaran

et al., 2009) and some use classical heuristics such as silver meal (SM) and Least

Unit Cost (Dixon and Silver, 1981; Dogramaci et al., 1981; Senyiğit, 2009) to solve

the problems.

In the context of ELSR problems, most authors have adapted several well-known

classical heuristics. Teunter et al. (2006). conjectured that the ELSR problem

with separate setups case is NP -hard. Therefore, the authors suggested some

modifications and comparisons of the well-known SM, Least Unit Cost (LUC) and

Part Period Balancing (PPB) heuristics. They also implemented these methods for

the case of joint setups. Furthermore, Schulz (2011) developed a new SM-based

heuristic based on the work of Teunter et al. (2006). The findings show that the

average percentage gap to the optimal solution can be reduced to less than half of

the original value obtained by Teunter et al. (2006).

Metaheuristic approaches have also been utilized to tackle ELSR problems. Li

et al. (2013) studied the dynamic lot-sizing problem with product returns and

remanufacturing and found that the problem with general setup cost functions is an

NP -hard problem. A Tabu search was suggested to produce high-quality solutions

that include some new features. Their findings show that the proposed approach

is better than other algorithms. Next, Baki et al. (2014) proposed a new dynamic

programming-based heuristic for the same problem by analysing the properties

of the block structure of optimal solutions. Sifaleras et al. (2015) investigated

the same problem studied by Teunter et al. (2006), and Schulz (2011) proposed

two novel variable neighbourhoods search (VNS) metaheuristic approaches. The

results demonstrate that their method outperforms existing heuristic methods in

the literature. Finally, Parsopoulos et al. (2015) also addressed the same problem

using a different type of metaheuristic approach, namely differential evolution (DE),

a promising alternative for solving the lot-sizing problem.

For a more comprehensive literature survey of variants of lot-sizing models along

with their methods and industrial applications, interested readers can refer to inter-

esting articles such as Maes and Van Wassenhove (1988), Drexl and Kimms (1997),

Staggemeier and Clark (2001), Karimi et al. (2003), Brahimi et al. (2006), Quadt

and Kuhn (2008), Gicquel et al. (2008) Ullah and Parveen (2010), Buschkühl et al.

(2010), Clark et al. (2011) and Almada-Lobo et al. (2015).

In the following three chapters, we discuss several of the possible solution tech-

niques addressed in this chapter to tackle both ELSRs and ELSRj problems. In

each chapter, theoretical and computational test results are presented to demon-

strate the effectiveness of the proposed formulations.

35

Chapter 3

Computational Analysis of Lower

Bounds for Economic Lot Sizing Prob-

lems with Remanufacturing (ELSR)

This chapter evaluates and discusses the strength of different MIP formulations.

There are two MIP-exact techniques can be used to solve ELSRs and ELSRj prob-

lems: (1) add valid inequalities into an original formulation or (2) introduce new

variables into the model. These techniques provide stronger lower bounds, i.e. lin-

ear programming (LP) relaxation and reduce computation times for both problems.

We organize this chapter as follows. In Section 3.1, we firstly describe the families

of (`, S) − like inequalities along with the efficient separation algorithms for both

problems. The relationship between (`, S)− like inequalities and (`, S,WW)− like
inequalities is also presented. Then, in Section 3.2, the extended reformulation

techniques which are Facility Location (FL) reformulation, Multi-Commodity (MC)

reformulation and Shortest Path (SP) reformulation are discussed. In Section 3.3,

we provide theoretical comparisons between all the formulations. Next, Section 3.4

presents computational results for each problem and lastly, we conclude in Section

3.5.

3.1 Valid Inequalities for ELSR

In this section, we identify several families of (`, S) − like inequalities and

(`, S,WW) − like inequalities for ELSR with separate setups and joint setups

cases. We compare (`, S,WW) inequalities of Retel Helmrich et al. (2013) with

our (`, S,WW)− like inequalities in order to identify the differences.

3.1.1 (`, S)− like Inequalities for ELSR

In this section, we aim to approximate convex hull of feasible solutions for ELSR

problems. We propose several families of valid inequalities, initially introduced by

Barany et al. (1984a) for single-item uncapacitated problem. Adding these valid

36

inequalities into the original formulation have been found useful to improve lower

bounds and computation times. Now, we introduce several families of (`, S)− like
inequalities for both ELSRs and ELSRj problems.

Separate Setups

There are four families of (`, S) − like inequalities have been derived for ELSRs

problem.

Proposition 6. For any 1 ≤ k ≤ ` ≤ n, suppose that L = {k, .., `} and S ⊆ L,

then the following inequalities are valid for Xss :∑
i∈S

xri ≤
∑
i∈S

rk,iy
r
i + Irk−1 (3.1)∑

i∈S
(xri + xmi) ≤

∑
i∈S

di,` (yri + ymi) + Isl (3.2)∑
i∈S

xri ≤
∑
i∈S

di,`y
r
i + Is` (3.3)∑

i∈S
xmi ≤

∑
i∈S

di,`y
m
i + Is` (3.4)

Proof. Consider a point (xr, xm, yr, ym, Ir, Is)∈ Xss. If
∑

i∈S y
r
i = 0, then xri = 0,

∀i ∈ S and Irk−1 ≥ 0, hence the inequality is satisfied. Let
∑

i∈S y
r
i ≥ 1 and

p = max {i ∈ S} . Then
∑

i∈S x
r
i ≤

p∑
i=k

xri ≤ rk,p + Irk−1 ≤
∑

i∈S rk,iy
r
i + Irk−1 such

that p ≤ `. The first inequality follows the definition S and the nonnegativity of

xri , second inequality shows the constraint of flow conversation for product returns

and lastly using yrp = 1 and the nonnegativity of yri .

For the second inequality, we use a similar technique of proofing as discussed

earlier. Given a point (xr, xm, yr, ym, Ir, Is)∈ Xss, the inequality is satisfied if both∑
i∈S y

r
i =

∑
i∈S y

m
i = 0, then xri = xmi = 0, ∀i ∈ S and Is` ≥ 0. Let q = min {i ∈ S}

and also
∑

i∈S(yri + ymi) ≥ 1. Then
∑

i∈S (xri + xmi) ≤ ∑̀
i=q

(xri + xmi) ≤ dq,` + Is` ≤∑
i∈S di,` (yri + ymi) + Is` , where the first inequality follows the definition S and the

nonnegativity of both xri and xmi , second inequality shows the constraint of flow

conversation for serviceable products and lastly using yrq = 1 and ymq = 1; and the

nonnegativity of both yri and ymi .

As regards the third inequality, suppose that we have a point

(xr, xm, yr, ym, Ir, Is)∈ Xss. Then, if
∑

i∈S y
r
i = 0, then xri = 0, ∀i ∈ S

and Is` ≥ 0. Let a = min {i ∈ S} and
∑

i∈S y
r
i ≥ 1. We obtain∑

i∈S x
r
i ≤

∑̀
i=a

xri ≤ da,` + Is` ≤
∑

i∈S di,`y
r
i + Is` . The interpretation is similar

to the previous ones. The proof for the last inequality can be handled in a similar

manner.

37

Then, we define a new feasible region of ELSRs problem associated with these

family inequalities as:

Xss
LS = {(xr, xm, yr, ym, Ir, Is)|(1.8), (1.9), (1.11)− (1.15), (3.1)− (3.4)}

and the objective function is ZssLS = min {(1.7)|(xr, xm, yr, ym, Ir, Is) ∈ Xss
LS}.

Joint Setups

Next, we describe two families of (`, S) − like inequalities for ELSRj problem in

the following proposition.

Proposition 7. Suppose that 1 ≤ k ≤ ` ≤ n , L = {k, .., `} and S ⊆ L, then the

inequalities are valid for Xjs :∑
i∈S

xri ≤
∑
i∈S

rk,iyi + Irk−1 (3.5)∑
i∈S

(xri + xmi) ≤
∑
i∈S

di,`yi + Is` (3.6)

Proof. The interpretation for these inequalities (3.5) and (3.6) is basically similar

to those in separate setups case.

Next, we define the feasible region of ELSRj problem associated with these

families of valid inequalities as:

Xjs
LS = {(xr, xm, y, Ir, Is)|(1.8), (1.9), (1.13), (1.14), (1.17), (1.18), (3.5), (3.6)}

and the objective function is ZjsLS = min
{

(1.16)|(xr, xm, y, Ir, Is) ∈ Xjs
LS

}
.

Since these formulations contain an exponential number of (`, S)− like inequal-

ities and they are not possible to add all the (`, S) − like inequalities a priori in

the both original formulation, then we can use them in a cutting plane approach.

Given the fractional solutions obtained from LP relaxation at a root node, we solve

the separation problem associated to the (`, S) − like inequalities to test whether

any (`, S) − like inequality is violated or not. Algorithms 3.1 and 3.2 depict a

simple polynomial separation algorithm for ELSRs and ELSRj problems, respec-

tively. The details on separation algorithms of a simple problem can be found in

Barany et al. (1984a) and Pochet and Wolsey (2006) for a single-item lot sizing

problem; and a complex problem can be referred to Akartunalı and Miller (2012)

for a multi-level production planning problem.

3.1.2 (`, S,WW)− like Inequalities for ELSR

This section discusses several families of (`, S,WW) − like inequalities for both

problems, derived from (`, S)− like inequalities.

38

Algorithm 3.1 (`, S) separation algorithm for ELSRs problem

1: Input: LP relaxation solution (xr∗, xm∗, yr∗, ym∗, Ir∗, Is∗)
2: Output: Violated (`, S)− like inequalities for ELSRs
3: for all ` = 1 to n do
4: Initialize S to be an empty set
5: for all k = 1 to ` do
6: for all i = k to ` do
7: if xr∗i > rk,iy

r∗
i or xr∗i > di,`y

r∗
i or xm∗i > di,`y

m∗
i or xr∗i + xm∗i >

di,`(y
r∗ + ym∗i) then

8: S ← S∪{i}
9: end if

10: end for
11: end for
12: if

∑
i∈S
xr∗i >

∑
i∈S
rk,iy

r∗
i + Ir∗k−1 then

13: Add violated first (`, S)− like inequality
14: end if
15: if

∑
i∈S

(xr∗i + xm∗i) >
∑
i∈S
di,` (yr∗i + ym∗i) + Is∗` then

16: Add violated second (`, S)− like inequality
17: end if
18: if

∑
i∈S
xr∗i >

∑
i∈S
di,`y

r∗
i + Is∗` then

19: Add violated third (`, S)− like inequality
20: end if
21: if

∑
i∈S
xm∗i >

∑
i∈S
di,`y

m∗
i + Is∗` then

22: Add violated fourth (`, S)− like inequality
23: end if
24: end for

Algorithm 3.2 (`, S) separation algorithm for ELSRj problem

1: Input: LP relaxation solution (xr∗, xm∗, y∗, Ir∗, Is∗)
2: Output: Violated (`, S)− like inequalities for ELSRj
3: for all ` = 1 to n do
4: Initialize S to be an empty set
5: for all k = 1 to ` do
6: for all i = k to ` do
7: if xr∗i > rk,iy

∗
i or xr∗i > di,`y

∗
i or xm∗i > di,`y

∗
i or xr∗i + xm∗i > di,`y

∗

then
8: S ← S∪{i}
9: end if

10: end for
11: end for
12: if

∑
i∈S
xr∗i >

∑
i∈S
rk,iy

∗
i + Ir∗k−1 then

13: Add violated first (`, S)− like inequality
14: end if
15: if

∑
i∈S

(xr∗i + xm∗i) >
∑
i∈S
di,`y

∗
i + Is∗` then

16: Add violated second (`, S)− like inequality
17: end if
18: end for

39

Separate Setups

To begin with, we present (`, S,WW) − like inequalities for ELSR problem with

separate setups case.

Corollary 2. Let 1 ≤ k ≤ ` ≤ n, then (`, S) − like inequalities, (3.1) - (3.4) for

ELSRs problem can be rewritten as:

∑̀
i=k

xri ≤
∑̀
i=k

rk,iy
r
i + Irk−1 (3.7)

∑̀
i=k

(xri + xmi) ≤
∑̀
i=k

di,` (yri + ymi) + Isl (3.8)

∑̀
i=k

xri ≤
∑̀
i=k

di,`y
r
i + Is` (3.9)

∑̀
i=k

xmi ≤
∑̀
i=k

di,`y
m
i + Is` (3.10)

or as (`, S,WW)− like inequalities

Ir`+
∑̀
i=k

rk,iy
r
i ≥ rk,` (3.11)

Isk−1+
∑̀
i=k

di,` (yri + ymi) ≥ dk,` (3.12)

Isk−1+
∑̀
i=k

di,`y
r
i+
∑̀
i=k

(
Isi − Isi−1 − Iri−1 − ri + Iri + di

)
≥ dk,` (3.13)

Isk−1+
∑̀
i=k

di,`y
m
i +

∑̀
i=k

(
ri + Iri−1 − Iri

)
≥ dk,` (3.14)

Proof. We prove the first valid inequality by substituting Ir` = Irk−1 + rk,`−
∑̀
i=k

xri

into (3.11) as follows:

Ir`+
∑̀
i=k

rk,iy
r
i ≥ rk,`

Irk−1 + rk,`−
∑̀
i=k

xri+
∑̀
i=k

rk,iy
r
i ≥ rk,`

40

Irk−1+
∑̀
i=k

rk,iy
r
i ≥
∑̀
i=k

xri

∑̀
i=k

xri ≤
∑̀
i=k

rk,iy
r
i + Irk−1

The remaining valid inequalities will use the similar techniques of proofing by sub-

stituting the constraints, (1.8), (1.9) and Isk−1 = Is` +dk,`−
∑̀
i=k

(xri +xmi) into (3.12)

- (3.14).

Joint Setups

In the case of joint setups, we obtain the following inequalities.

Corollary 3. Suppose that 1 ≤ k ≤ ` ≤ n, then we can rewrite (`, S) − like

inequalities, (3.5) - (3.6) for ELSRj problem as:

∑̀
i=k

xri ≤
∑̀
i=k

rk,iyi + Irk−1 (3.15)

∑̀
i=k

(xri + xmi) ≤
∑̀
i=k

di,`yi + Is` (3.16)

or as (`, S,WW)− like inequalities

Ir`+
∑̀
i=k

rk,iyi ≥ rk,` (3.17)

Isk−1+
∑̀
i=k

di,`yi ≥ dk,` (3.18)

Proof. The same intepretations as previous.

Next, we discuss the similarities and differences between our proposed

(`, S,WW)− like inequalities and (`, S,WW) inequalities proposed by Retel Helm-

rich et al. (2013).

Proposition 8 (Retel Helmrich et al. (2013)). The (`, S,WW) inequalities for

ELSRs problem below are valid:

Ir`+
∑̀
i=k

rk,iy
r
i ≥ rk,` 1 ≤ k ≤ ` ≤ n (3.19)

Isk−1+
∑̀
i=k

di,` (yri + ymi) ≥ dk,` 2 ≤ k ≤ ` ≤ n (3.20)

41

Proposition 9 (Retel Helmrich et al. (2013)). The following (`, S,WW) inequal-

ities for ELSRj problem are valid:

Ir`+
∑̀
i=k

rk,iyi ≥ rk,` 1 ≤ k ≤ ` ≤ n (3.21)

Isk−1+
∑̀
i=k

di,`yi ≥ dk,` 2 ≤ k ≤ ` ≤ n (3.22)

We observe that their valid inequalities, (3.19) and (3.21) are identical with our

valid inequalities, (3.11) and (3.17). However, the planning horizon of our valid

inequalities, (3.12) for separate setups and (3.18) for joint setups include period 1.

There is a need to take into an account the first period because the inventory of

product returns and serviceable products are assumed to be zero at the beginning

of period 1 (Ir0 = Is0 = 0) in the original formulations, thus the remanufactured or

new products should be produced at period 1 in order to satisfy the demand at

that particular period.

In the following section, we introduce several extended reformulation tech-

niques for both ELSR problems such as facility location (FL) reformulation, multi-

commodity (MC) reformulation and shortest path (SP) reformulation.

3.2 Extended Reformulations for ELSR

In this section, we propose and examine three reformulation techniques to solve

ELSR problems. Firstly, we suggest facility location (FL) reformulation, which

is originally developed by Krarup and Bilde (1977) for single-item uncapacitated

problem. Next, the second formulation is based on multi-commodity (MC) refor-

mulation, introduced by Rardin and Wolsey (1993) for fixed-charge network prob-

lems is discussed. Lastly, we propose shortest path (SP) reformulation as similar

to Retel Helmrich et al. (2013), yet we present an alternative formulation. This

formulation is originally introduced by Eppen and Martin (1987) for a classical

capacitated lot sizing problem.

3.2.1 Facility Location Reformulation

The first formulation is based on the single-item facility location (FL) reformulation

problem, proposed by Krarup and Bilde (1977). This reformulation disaggregates

the production variables of remanufacturing, xrt and manufacturing, xmt by defining

new decision variables as follows:

wsrt,t′ is the amount of remanufactured products produced in period t to satisfy

the demand in period t′, where t′ ≥ t,

wsmt,t′ is the amount of new products produced in period t to satisfy the demand

in period t′, where t′ ≥ t.

42

We also introduce a new decision variable involving returns that is used for linking

the variable wsrt,t′ :

wrt,t′ is the amount of remanufactured products produced in period t′ based

on used products were returned in period t, where t′ ≥ t.

Separate Setups

In an extended variable space of ELSRs, the following constraints are added into

the original formulation.

xrt =
t∑

t′=1

wrt′,t ∀t ∈ [1, n] (3.23)

xmt =
n∑
t′=t

wsmt,t′ ∀t ∈ [1, n] (3.24)

wsrt,t′ ≤ dt′yrt ∀t ∈ [1, n], ∀t′ ∈ [t, n] (3.25)

wsmt,t′ ≤ dt′ymt ∀t ∈ [1, n], ∀t′ ∈ [t, n] (3.26)

wrt′,t ≤ rt′yrt ∀t ∈ [1, n], ∀t′ ∈ [1, t] (3.27)

t∑
t′=1

(
wsrt′,t + wsmt′,t

)
= dt ∀t ∈ [1, n] (3.28)

n∑
t′=t

wrt,t′ ≤ rt ∀t ∈ [1, n] (3.29)

t∑
t′=1

wrt′,t =

n∑
t′=t

wsrt,t′ ∀t ∈ [1, n] (3.30)

wsr, wsm, wr ≥ 0 (3.31)

Constraints (3.23) and (3.24) indicate the relationship between old and new

variables. Constraints (3.25) - (3.27) ensure positive production of remanufactured

and new products, where wsrt,t′ ≥ 0, wsmt,t′ ≥ 0 and wrt′,t ≥ 0 respectively. Constraint

(3.28) guarantees the demands of remanufactured and new products are satisfied.

Constraint (3.29) limits the production of remanufactured products by the amount

of product returns. Constraint (3.30) links wrt,t′ to the wsrt,t′ variables, which means

that the total amount of returns retrieved from period 1 to t is remanufactured

at period t to satisfy the total amout of demands from period t to n. Lastly,

(3.31) denotes the nonnegativity constraints. We then define the feasible region

and objective function associated with this formulation as:

Xss
FL = {xr, xm, yr, ym, Ir, Is, wr, wsr, wsm)|(1.8), (1.9), (1.11)− (1.15),

(3.23)− (3.31)}

and ZssFL = min {(1.7)|(xr, xm, yr, ym, Ir, Is, wr, wsr, wsm) ∈ Xss
FL} , respectively.

43

Joint Setups

As one single setup variable is considered in ELSRj problem, the constraints (3.25)

- (3.27) are replaced with constraints (3.32) and (3.33).

wsrt,t′ + wsmt,t′ ≤ dt′yt ∀t ∈ [1, n] , ∀t′ ∈ [t, n] (3.32)

wrt′,t ≤ rt′yt ∀t ∈ [1, n] , ∀t′ ∈ [1, t] (3.33)

The feasible region associated with this formulation can be defined as:

Xjs
FL = {(xr, xm, y, Ir, Is, wr, wsr, wsm)|(1.8), (1.9), (1.13), (1.14), (1.17),

(1.18), (3.27), (3.29)− (3.33)}

with the objective function is:

ZjsFL = min
{

(1.16)|(xr, xm, y, Ir, Is, wr, wsr, wsm) ∈ Xjs
FL

}
This formulation adds O(n2) variables and O(n2) constraints to the problem.

3.2.2 Multi-commodity Reformulation

The original formulation of ELSRs problem can be reformulated as multi-

commodity (MC) reformulation. This alternative approach, defined by Rardin

and Wolsey (1993) has been found to be effective in tightening the formulation of

fixed-charge network flow problems. We decompose the production flow for both

remanufacturing, xrt and manufacturing, xmt as functions of their destination nodes

(return and demand periods) at t, t + 1, .., n. The inventory flow for both product

returns, Irt and serviceable products, Ist are also decomposed at t + 1, t + 2, .., n.

Unlike a classical lot sizing problem, we consider two types of commodities which

are:

(i) Commodity, At represents the return delivered onto the system in period t,

where t ≤ t’,

(ii) Commodity Bt′ corresponds the demand delivered onto the system in period

t′, where t ≤ t’.

Now, we define new decision variables as follows:

usrt,t′ is the amount of remanufactured products in period t of commodity Bt′ ,

usmt,t′ is the amount of new products in period t of commodity Bt′ ,

vrpt,t′ is the inventory of product returns at the end of period t′ of commodity

At,

vspt,t′ is the inventory of serviceable products at the end of period t of com-

modity Bt′ .

44

As similar to facility location reformulation, we also include a new linking decision

variable that is:

urrt,t′ is the amount of remanufactured products in period t′ produced from

commodity At.

Note that both inventory variables, vrpt,t = 0 and vspt,t = 0 for all t = 1, .., n do not

exist as the commodity cannot be both returned to the system or delivered and

hold in stock in period t, respectively. Also, the inventory stock of both product

returns and serviceable products at the end of the planning horizon are assumed

to be zero.

Separate Setups

For the case of separate setups, we add the following constraints into the original

formulation.

xrt =

t∑
t′=1

urrt′,t t ∈ [1, n] (3.34)

xmt =

n∑
t′=t

usmt,t′ t ∈ [1, n] (3.35)

usrt,t′ ≤ dt′yrt t ∈ [1, n] t′ ∈ [t, n] (3.36)

usmt,t′ ≤ dt′ymt t ∈ [1, n] t′ ∈ [t, n] (3.37)

urrt′,t ≤ rt′yrt t ∈ [1, n] , t′ ∈ [1, t] (3.38)

vspt−1,t + usrt,t + usmt,t = dt t ∈ [1, n] (3.39)

vspt−1,t′ + usrt,t′ + usmt,t′ = vspt,t′ t ∈ [1, n− 1] , t′ ∈ [(t+ 1), n] (3.40)
n∑
t′=t

vrpt,t′ +

n∑
t′=t

urrt,t′ = rt t ∈ [1, n] (3.41)

t∑
t′=1

urrt′,t =

n∑
t′=t

usrt,t′ t ∈ [1, n] (3.42)

usr, usm, urr, vrp, vsp ≥ 0 (3.43)

Constraints (3.34) and (3.35) represent the relationship between old and new vari-

ables. Constraints (3.36) - (3.38) are setup forcing constraints. Constraints (3.39)

and (3.40) are inventory flow balance for serviceable products and constraint (3.41)

is for inventory flow balance for product returns. Constraint (3.42) links the vari-

ables between urrt,t′ and usrt,t′ . Lastly, (3.43) provides the nonnegativity constraints.

Then, the feasible region and objective function of this new formulation are:

Xss
MC = {(xr, xm, yr, ym, urr, usr, usm, vrp, vsp)|(1.8), (1.9), (1.11)− (1.15),

(3.34)− (3.43)}

45

and ZssMC = min {(1.7)|(xr, xm, yr, ym, urr, usr, usm, vrp, vsp) ∈ Xss
MC} , respectively.

This formulation also adds O(n2) variables and O(n2) constraints to the problem.

Joint Setups

As regards joint setups case, we exclude the constraints (3.36) - (3.38) and replace

with the following constraints.

usrt,t′ + usmt,t′ ≤ dt′yt t ∈ [1, n] , t′ ∈ [t, n] (3.44)

urrt′,t ≤ rt′yt t ∈ [1, n] , t′ ∈ [1, t] (3.45)

From this, we define the feasible region as:

Xjs
MC = {(xr, xm, y, urr, usr, usm, vrp, vsp)|(1.8), (1.9), (1.13), (1.14), (1.17), (1.18),

(3.34)− (3.36), (3.39)− (3.45)}

with the objective function is:

ZjsMC = min
{

(1.16)|(xr, xm, y, urr, usr, usm, vrp, vsp) ∈ Xjs
MC

}
3.2.3 Shortest Path Reformulation

The last reformulation technique is shortest path (SP) reformulation defined by

Eppen and Martin (1987) for classical capacitated lot-sizing problem. With respect

to ELSR problem, Retel Helmrich et al. (2013) is the first ones to introduce shortest

path reformulation techniques. We basically benefit from their ideas to find an

alternative way of developing SP formulation. We define the decision variables as

follows:

zsrt,t′ is the fraction of demand in each period t until t′ that is satisfied by

production of remanufactured products in period t,

zsmt,t′ is the fraction of demand in each period t until t′ that is satisfied by

production of new products in period t,

zrt,t′ is the fraction of return in each period t until t′ that is remanufactured

in period t′.

These new variables, zsrt,t′ and zsmt,t′ are 1 if production occurs in period t to satisfy

all demands in periods t, ..., t′ and 0 otherwise. Also, the variable, zrt,t′ is 1 if

used products returned in periods t, .., t′ to be remanufactured in period t′ and 0

otherwise.

Then, as discussed by Retel Helmrich et al. (2013), it is possible to have the

final inventory of product returns, i.e. not all returns need to be remanufactured

within the planning horizon. They define:

46

ft is the fraction of return in each of the periods t until n that is added to

the final inventory of product returns at the end of period n.

where Irt =
∑n

t=1 rt,nft.

Separate Setups

As regards separate setups case, the objective function (3.46) that consists of setup

and production costs for both remanufacturing and manufacturing still remains the

same as in the original formulation (1.7). However, the formulation for holding costs

for product returns and serviceable products are redefined, presented in (3.47).

min
n∑
t=1

(Kr
t y

r
t +Km

t y
m
t + prtx

r
t + pmt x

m
t) (3.46)

min
n∑
t=1

n∑
t′=t

(
crt,t′z

r
t,t′ + cst,t′

(
zsrt,t′ + zsmt,t′

))
+

n∑
t=1

cft ft (3.47)

where, crt,t′ =
∑t′−1

u=t h
r
trt,u, c

s
t,t′ =

∑t′−1
u=t h

s
tdu+1,t′ and cft =

∑n
u=t h

r
urt,u. Then, the

constraints are:

s.t. (1.12) xrt =

t∑
i=1

ri,tz
sr
i,t t ∈ [1, n] (3.48)

xmt =

n∑
i=t

dt,iz
sm
t,i t ∈ [1, n] (3.49)

n∑
t′=t:dt,t′>0

zsrt,t′ ≤ yrt t ∈ [1, n] (3.50)

n∑
t′=t:dt,t′>0

zsmt,t′ ≤ ymt t ∈ [1, n] (3.51)

t∑
t′=1:rt′,t≥0

zrt′,t ≤ yrt t ∈ [1, n] (3.52)

n∑
t=1

(
zsrt,n + zsmt,n

)
= 1 (3.53)

−
n∑
t=1

(
zsr1,t + zsm1,t

)
= −1 (3.54)

t′∑
t=1

(
zsrt,t′ + zsmt,t′

)
=

n∑
t=t′+1

(
zsrt′+1,t + zsmt+1′.t

)
t′ ∈ [1, n− 1] (3.55)

n∑
t=1

zrt,n + ft = 1 t ∈ [1, n] (3.56)

47

−
n∑
t=1

zr1,t − f1 = −1 (3.57)

t′∑
t=1

zrt,t′ =

n∑
t=t′+1

zrt′+1,t + ft′+1 t′ ∈ [1, n− 1] (3.58)

t′∑
t=1

rt,t′z
r
t,t′ =

n∑
t=t′

dt′,tz
sr
t′,t t′ ∈ [1, n] (3.59)

zsr, zsm, zr ≥ 0 (3.60)

The constraints (3.48) and (3.49) are added into shortest path reformulation

as a linking variable between old and new variables. Constraints (3.50) - (3.52)

represent the setup forcing constraints between the linear and binary variables.

Then, the constraints (3.53) - (3.57) are flow conservation constraints and (3.59)

links between zr and zsr variables. Finally, (3.60) is nonnegativitivity constraints.

The feasible region associated with this formulation can be defined as:

Xss
SP = {(xr, xm, yr, ym, zr, zsr, zsm)|(1.12), (3.48)− (3.60)}

and the problem is ZssSP = min{(3.46), (3.47)| (xr, xm, yr, ym, zr, zsr, zsm) ∈ Xss
SP}.

Joint Setups

In the case of joint setups, we consider one flow variables zspt,t′ :

zspt,t′ is the fraction of the demand in each period t until t′ that is satisfied by

remanufactured products and new products in period t.

We also use the returns variable, zrt,t′ addressed earlier. Then, the objective function

of ELSRj problem is given as:

min
n∑
t=1

(Ktyt + prtx
r
t + pmt x

m
t) (3.61)

min

n∑
t=1

n∑
t′=t

(
crt,t′z

r
t,t′ + cst,t′z

sp
t,t′

)
+

n∑
t=1

cft ft (3.62)

This is followed by the constraints.

s.t. (1.18),(3.48),(3.49),(3.56)− (3.58),

n∑
t′=t:dt,t′>0

zspt,t′ ≤ yt t ∈ [1, n] (3.63)

t∑
t′=1:rt′,t≥0

zrt′,t ≤ yt t ∈ [1, n] (3.64)

48

n∑
t=1

zspt,n = 1 (3.65)

−
n∑
t=1

zsp1,t = −1 (3.66)

t′∑
t=1

zspt,t′ =
n∑

t=t′+1

zspt′+1,t t′ ∈ [1, n− 1] (3.67)

t′∑
t=1

rt,t′z
r
t,t′ ≤

n∑
t=t′

dt′,tz
sp
t′,t t′ ∈ [1, n] (3.68)

zsp, zr ≥ 0 (3.69)

Constraints (3.63) and (3.64) are setup forcing constraints for manufacturing

and remanufacturing processes, respectively. Next, constraints (3.65) - (3.67) are

flow conservation constraints. (3.68) represents the relationships between zr and

zsp and (3.69) indicates nonnegativity constraints. The feasible region associated

with this formulation can be defined as:

Xjs
SP = {(xr, xm, y, zr, zsp)|(1.18), (3.48), (3.49), (3.56)− (3.58), (3.63)− (3.69)}

and the objective function is ZjsSP = min
{

(3.61), (3.62)|(xr, xm, y, zr, zsp) ∈ Xjs
SP

}
.

3.3 Theoretical Comparisons between Formulations

In this section, we establish the equivalence between the solution approaches. Note

that the binary setup variable, y is restricted to take integer value of 0 or 1. If we

relax the integrality constraint of binary variable y to be continuous, in which it

can take any value between the interval 0 ≤ y ≤ 1, we call this as LP relaxation.

Let superscript LP denotes as the LP relaxation of a problem. For instance, ZLPjFL

indicates the problem ZjsFL with the relaxed binary variable, y.

Proposition 10. ZLPsFL = ZLPsMC = ZLPsSP .

These results show that identical lower bounds are obtained by three reformulation

techniques for the original ELSRs problem.

Proof. We will prove that ZLPsFL = ZLPsMC . In order to prove these two formulations

are identical, we can show that facility reformulation (3.23) - (3.31) is equivalent to

the multi-commodity reformulation (3.34) - (3.43). Firstly, we eliminate inventory

variables in the constraints of MC, (3.39) - (3.41). As a result, the addition of two

flow conservation constraints (3.39) and (3.40) of MC is equivalent to the constraint

(3.28) of FL. Also, the constraint (3.41) of MC has the same formulation as the

constraint (3.29) of FL as a result of removing inventory variables.

49

Lastly, as ZLPsFL = ZLPsMC then we prove that ZLPsFL = ZLPsSP . The shortest path

reformulation is equivalent to the facility location reformulation such that wrt−1,t′ ≥
wrt,t′ for any 1 < t ≤ t′ ≤ n; and wsrt,t′ ≥ wsrt,t′+1 and wsmt,t′ ≥ wsmt,t′+1 for any 1 ≤ t ≤
t′ < n using the substitution of variables changes zrt,t′ = wrt−1,t′ − wrt,t′ for any 1 <

t ≤ t′ ≤ n; and zsrt,t′ = wsrt,t′ −wsrt,t′+1 and zsmt,t′ = wsmt,t′ −wsmt,t′+1 for any 1 ≤ t ≤ t′ ≤ n.

This demonstrates the equivalence of three reformulation techniques. Interested

readers can be referred to Pochet and Wolsey (1988) on the proofing of a simple

lot sizing problem.

Proposition 11. ZLPjFL = ZLPjMC = ZLPjSP .

This shows that facility location reformulation, multi-commodity reformulation and

shortest path reformulation provide the same lower bounds for the original ELSRj

problem.

Proof. Using the same technique of proofing addressed in the previous proposition,

we obtain ZLPjFL = ZLPjMC . Then, we will prove that ZLPjFL = ZLPjSP . Similarly, these

two formulations are equivalent, augmented with wrt−1,t′ ≥ wrt,t′ for any 1 < t ≤
t′ ≤ n; and wsrt,t′ + wsmt,t′ ≥ wsrt,t′+1 + wsmt,t′+1 for any 1 ≤ t ≤ t′ < n and using the

substitution of variables changes zrt,t′ = wrt−1,t′ − wrt,t′ for any 1 < t ≤ t′ ≤ n and

zspt,t′ = wsrt,t′ + wsmt,t′ − wsrt,t′+1 − wsmt,t′+1 for any 1 ≤ t ≤ t′ ≤ n. This completes the

proof.

Proposition 12. ZLPjLS = ZLPjFL . This indicates that the lower bounds provided by

(`, S)− like inequalities for joint setups case is identical with extended reformula-

tion, namely facility location reformulation. Note that all reformulation techniques

are equivalent; therefore, only facility location reformulation is considered in this

proof.

Proof. In order to prove the equivalence of (`, S) − like inequalities and facility

location reformulation, we will show that the separation algorithm of (`, S)− like
inequalities can be used to derive an extended formulation of uncapacitated lot

sizing problem that is facility location reformulation as similar to Pochet et al.

(1995) for uncapacitated lot sizing problem. Note that we have the same objective

function for both (`, S)− like inequalities and facility location reformulation.

We firstly eliminate stock variables from the constraints (1.8) and (1.9) of the

original formulation and we obtain the equivalent formulation as follows.

r1,t−1+
∑̀
j=t

rt,jyj ≥
∑̀
j=1

xrj for 1 ≤ t ≤ ` ≤ n (3.70)

t−1∑
j=1

(
xrj + xmj

)
+
∑̀
j=t

dj,`yj ≥ d1,` for 1 ≤ t ≤ ` ≤ n (3.71)

y1 = 1 (3.72)

xrj , x
m
j ≥ 0, 0 ≤ yj ≤ 1 for all j (3.73)

50

The inequalities Ir` = r1,`−
∑̀
j=1

xrj ≥ 0 and Is` =
∑̀
j=1

(xrj + xmj) − d1,` ≥ 0 with

yj = 0, ∀j ∈ {t, ..., `} correspond to (3.70) and (3.71), respectively. Then, y1 = 1

comes from xr1 + xm1 = d1 + Is1 ≥ d1 > 0. Lastly, (3.73) ensure nonnegativity and

integrality, respectively.

Now, we establish the relationship between this equivalent formulation and our

facility location reformulation. We introduce new variables, πsrj,` and πsmj,` to repre-

sent the production of remanufactured and new products in period j for periods

j up to `, respectively. We also consider variable, πrj,` to represent the amount of

returns in periods j up to `, where at period, ` the production of remanufactured

products will occur. This variable is used as linking variables to the variables, πsrj,`.

Then, we have the following formulation, Q:

(Q)
∑̀
j=1

πrj,` ≥
∑̀
j=1

xrj for 1 ≤ ` ≤ n (3.74)

πrj,` ≤ rj for 1 ≤ j ≤ ` ≤ n (3.75)

πrj,` ≤ rjy` for 1 ≤ j ≤ ` ≤ n (3.76)∑̀
j=1

(
πsrj + πsmj

)
≥ d1,` for 1 ≤ ` ≤ n (3.77)

πsrj,` + πsmj,` ≤ xrj + xmj for 1 ≤ j ≤ ` ≤ n (3.78)

πsrj,` + πsmj,` ≤ dj,`yj for 1 ≤ j ≤ ` ≤ n (3.79)

πr1,j = πsrj,n for 1 ≤ j ≤ n (3.80)

πrj,`, π
sr
j,`, π

sm
j,` ≥ 0, 0 ≤ yj ≤ 1 for 1 ≤ j ≤ ` ≤ n (3.81)

where (xr, xm, y, πr, πsr, πsm) ∈ Q and min {(1.16)|(xr, xm, y, πr, πsr, πsm) ∈ Q} is

an extended reformulation of ELSRj.

With regard to the relationship between Q and the facility location (FL) refor-

mulation, we consider the definitions, πrj,` =
∑̀
t=j

wrj,t, π
sr
j,` =

∑̀
t=j

wsrj,t and πsmj,` =
∑̀
t=j

wsmj,t . By using these definitions of variable changes, it suffices to show that any so-

lution (xr, xm, y, wr, wsr, wsm) ∈ Xjs
FL of the linear programming relaxation of FL,

(3.23), (3.24) and (3.28) - (3.33) correlate to a point (xr, xm, y, πr, πsr, πsm) ∈ Q
with the same objective function value.

Suppose that any (xr, xm, y, wr, wsr, wsm) satisfying (3.23), (3.24) and (3.28)

- (3.33), then we check whether the point (xr, xm, y, πr, πsr, πsm) belongs to Q.

Firstly, constraints (3.23) and (3.24), xrt =
n∑
t=j

wsrj,t ≥
∑̀
t=j

wsrj,t = πsrj,` and xmt =
n∑
t=j

wsmj,t ≥
∑̀
t=j

wsmj,t = πsmj,` for all 1 ≤ j ≤ ` ≤ n. Then, summing the constraint (3.28)

over t = 1, ..., ` gives
∑̀
t=1

t∑
j=1

(
wsrj,t + wsmj,t

)
=
∑̀
j=1

∑̀
t=j

(
wsrj,t + wsmj,t

)
=
∑̀
j=1

(
πsrj,` + πsmj,`

)
=

51

d1,` for all ` = 1, ..., n. Next, for constraint (3.29), let ` = n then we have
n∑
j=t

wrt,j =

πrt,n ≤ rt for all t = 1, ..., n. As regards constraint (3.30), since πr1,j = πsrj,n then
t∑

j=1

wrj,t =
n∑
j=t

wsrt,j holds true. Also, summing the constraint (3.32) over t = j, ..., `,

then
∑̀
t=j

(
wsrj,t + wsmj,t

)
= πsrj,` + πsmj,` ≤ dj,`yj = dtyj for all t = j, ..., `. Finally, the

constraint (3.33), wrt,j = πrt,j ≤ rtyj for all 1 ≤ t ≤ j ≤ n. These complete the

proof.

In the next section, we present computational analysis of lower bounds for both

ELSRs and ELSRj problems, where the strength of different lower bounding tech-

niques, (`, S) − like inequalities and extended reformulations are tested using a

great extent of data sets available from the literature.

3.4 Computational Testing of Lower Bounds

The primary aim of this section is to computationally test the theoretical results

discussed earlier and examine their effectiveness in improving lower bounds for

ELSR problems. We run 360 test instances obtained from Retel Helmrich et al.

(2013) on a PC with Intel (R) Core(TM) i7-4500U CPU 2.40 GHz processor and 8

GB RAM. All problems are solved by FICO (R) Xpress Optimization Suite in the

Mosel modelling language version 7.7 without any solver cuts. The default time is

set to 600 seconds for each test instance.

The planning horizons are 25, 50 and 75 periods. The demands are drawn

randomly from a normal distribution with mean, µ = 100, and standard devia-

tion, σ = 50. We also assume the returns parameter is normally distributed with

three different parameter settings: low return(µ = 10, σ = 5), medium return

(µ = 50, σ = 25), and high return (µ = 90, σ = 45). This gives us nine possi-

ble parameter combination settings, where each is replicated 10 times, resulting

in 90 different data sets. We assume that the demands and the returns values

are nonnegative and the cost parameters are time-invariant. The setup costs for

both remanufacturing and manufacturing take the values of 125, 250, 500 and 1000.

Then, the holding costs for both product returns and serviceable products are equal

to 1 for all test instances. Lastly, the production costs for both remanufacturing

and manufacturing are assumed to be zero.

The detailed results of lower bounds for ELSRs and ELSRj are provided in

Appendix C.1 - C.9 and Appendix D.1 - D.9, respectively. In Appendix C.1 - C.9:

• The first column indicates the variation of setup costs, SC, and is followed by

the number of iterations.

• The next three main columns demonstrate the lower bounds, LB, at the root

node solution of the branch-and-bound tree and the upper bounds, UB, ob-

tained from the original formulation (Teunter et al., 2006; Retel Helmrich

52

et al., 2013), (`, S)− like inequalities, (`, S,WW) inequalities (Retel Helmrich

et al., 2013), facility location (FL) reformulation, multi-commodity (MC) re-

formulation and SP reformulation, terminated within 600 seconds. Note that

we also rerun computational experiments on the (`, S,WW) inequalities pro-

posed by Retel Helmrich et al. (2013) in order to avoid bias in a computational

comparison.

In this chapter, the computational results for both ELSRs and ELSRj problems are

divided into two main parts:

(i) The pairwise comparisons of lower bounds in terms of average improvement

(in percentage) are summarized in Table 3.4.1 for separate setups and joint se-

tups cases. The first column represents return variability, namely low, medium

and high returns. This is followed by the number of periods, n, and the vari-

ation of setup costs. For simplicity, we use (`, S) bound notation to represent

(`, S)− like bound. The “(`, S) vs (`, S,WW)” indicates that the (`, S) bound

improves the (`, S,WW) bound to (`, S) bound or that there is simply average

improvement of lower bounds from (`, S,WW) bound to (`, S) bound. The

average improvement (%) can be calculated as:

AI (%)=
(`, S) bound− (`, S,WW) bound

(`, S) bound
× 100

for each test instance regardless of the solution optimality. Also note that the

lower bounds provided by FL are identical to those of MC and SP for both

ELSRs and ELSRj problems. These relationships were proven theoretically in

the previous section. Further, the interpretation of “FL vs (`, S)” is similar to

“(`, S) vs (`, S,WW)”.

(ii) The performance analysis of all formulations is presented in Table 3.4.2 for

separate setups and in Tables 3.4.3 - 3.4.4 for joint setups. We examine the

linear programming relaxation gap (%), also known as the duality gap, for

each test instance:

LP gap (%)=
Best UB− Best LB

Best UB
× 100

where, Best LB and Best UB are the best values found for the lower bound

(LP relaxation) and the upper bound, respectively, when the enumeration is

terminated at a preassigned time. The number of times the LP relaxation

found the integer solutions is also provided. Furthermore, we also include the

number of optimal solutions found (out of ten replications) that could be solved

to optimality within the preassigned time of 600 seconds. Next, the average

solution times of the MIPs are presented. If a test instance could not be

solved to optimality within the given time, the solution time is counted as 600

seconds. Lastly, the best performance among all formulations is highlighted

in bold-face.

53

The results of the pairwise comparisons of lower bounds for both ELSR problems

are presented in Table 3.4.1. We first discuss the average improvement (AI) from

the (`, S,WW) bound provided by Retel Helmrich et al. (2013) to the (`, S)− like
bound. Generally, the AI from the (`, S,WW) bound to the (`, S)− like bound de-

teriorates when the number of periods or the return variability is increased for both

problems. Specifically, if the amount of returns is large, then the remanufacturing

operation dominate production to satisfy the demand. Therefore, the family of

valid inequalities involving returns introduced by Retel Helmrich et al. (2013) and

also considered in our study becomes more effective in improving the lower bounds.

As a result, (`, S,WW) bound improves slightly by our (`, S)−like bound, which is

only 6% maximum on average. Compared to a low return scenario, the (`, S)− like
bound improves the (`, S,WW) bound significantly, up to 22% on average. One of

the reasons we obtain a large AI is because the second inequality (3.12) involving

demands introduced by Retel Helmrich et al. (2013) does not include production

during the first period, causing demand in this period to not be satisfied. Normally,

with low returns, manufacturing will dominate production over remanufacturing.

This causes a valid inequality involving returns to become less effective.

Next, we examine the average improvement from the (`, S) − like bound to

FL bound for ELSRs. The results show that the (`, S) − like bound in general

improves notably by the FL bound in the case of medium returns with large setup

costs, up to approximately 2% for all periods. In the case of low and high returns,

the FL bound shows less significant average improvement over the (`, S) − like

bound, which shows less than 1% improvement. This indicates that our proposed

(`, S)− like inequalities provide better lower bounds since we found some identical

bounds with FL in some data instances.

In short, the lower bound provided by our (`, S) − like bound is at least as

strong as the FL bound. Furthermore, for each period and scenario, the AI from

the (`, S)−like bound to the FL bound in general increases gradually as we increase

the amount of setup costs. In regard to the joint setups case, we review only the

pairwise comparisons of lower bounds between (`, S,WW) bound and the (`, S)−
like bound. We do not present the results of average improvement of the FL bound

over the (`, S)− like bound since the lower bounds of all the proposed formulations

are identical.

Firstly, we review the performance analysis of all formulations for the ELSRs

problem, which are presented in Table 3.4.2. We note that most test instances

in the case of medium and high return scenarios with large periods 50 and 75

could not be solved to optimality within the default time of 600 seconds. Overall,

three equivalent reformulation techniques have better LP relaxations in the sense

that they have smaller LP gaps compared to (`, S) − like inequalities, at most a

3% difference, followed by (`, S,WW) inequalities and the original formulation for

each ten replications. Although all reformulation techniques have identical lower

bounds, SP has slightly larger LP gaps, but this difference is insignificant.

Interestingly, we find the number of integer solutions provided by (`, S) − like

54

T
ab

le
3.

4.
1:

M
ea

n
p

er
ce

n
ta

g
e

im
p
ro

ve
m

en
t

o
f

lo
w

er
b

o
u
n
d
s

fo
r

E
L

S
R

p
ro

b
le

m
s

S
ce
n
a
ri
o

n

S
ep

a
ra
te

se
tu

p
s
co

st
J
o
in
t
se
tu

p
s
co

st
(l
,s
)
v
s
(l
,s
,w

w
)

F
L

v
s
(l
,s
)

(l
,s
)
v
s
(l
,s
,w

w
)

1
2
5

2
5
0

5
0
0

1
0
0
0

A
v
g
.

1
2
5

2
5
0

5
0
0

1
0
0
0

A
v
g
.

1
2
5

2
5
0

5
0
0

1
0
0
0

A
v
g
.

L
o
w

re
tu

rn

2
5

2
6
.5
5

2
3
.1
4

2
1
.5
7

2
0
.6
5

2
2
.9
8

0
.0
2
(6
)

0
.0
6
(3
)

0
.1
7
(1
)

0
.1
6
(2
)

0
.1
0

4
.2
8

5
.4
3

6
.9
0

9
.2
4

6
.4
6

5
0

2
5
.7
2

2
2
.2
0

2
1
.3
3

1
9
.7
3

2
2
.2
5

0
.0
4
(3
)

0
.1
9

0
.2
2

0
.2
8

0
.1
8

2
.0
6

2
.6
2

3
.5
9

4
.7
4

3
.2
5

7
5

2
5
.3
4

2
2
.2
6

2
0
.3
7

1
9
.3
4

2
1
.8
3

0
.0
3
(2
)

0
.1
2

0
.2
0

0
.2
8

0
.1
6

1
.3
9

1
.8
1

2
.3
7

3
.1
6

2
.1
9

M
ed

iu
m

re
tu

rn

2
5

1
6
.7
7

1
3
.9
9

1
3
.6
2

1
3
.0
1

1
4
.3
5

0
.2
1

0
.8
5

1
.2
8

1
.5
6

0
.9
8

1
.7
5

3
.0
7

4
.9
4

6
.7
7

4
.1
3

5
0

1
6
.1
0

1
3
.1
7

1
1
.4
6

1
0
.9
0

1
2
.9
1

0
.4
6

1
.1
3

1
.7
0

2
.2
5

1
.3
9

0
.8
4

1
.6
2

2
.4
3

3
.4
4

2
.0
8

7
5

1
6
.2
3

1
2
.7
2

1
1
.3
8

1
0
.4
2

1
2
.6
8

0
.2
8

1
.0
4

1
.7
0

2
.1
3

1
.2
9

0
.9
2

1
.3
3

1
.8
5

2
.5
6

1
.6
7

H
ig
h
re
tu

rn

2
5

3
.6
2

4
.0
9

5
.2
5

7
.5
3

5
.1
2

0
.0
3
(7
)

0
.2
7
(2
)

0
.6
7
(1
)

0
.7
6

0
.4
3

0
.7
4

1
.5
4

2
.5
9

4
.9
6

2
.4
6

5
0

4
.0
1

3
.5
9

3
.9
3

4
.7
8

4
.0
8

0
.0
6
(3
)

0
.3
7
(1
)

0
.7
7

0
.8
6

0
.5
2

0
.3
7

0
.9
5

1
.7
5

2
.8
0

1
.4
7

7
5

3
.5
5

3
.1
5

3
.1
1

3
.3
2

3
.2
8

0
.0
4
(1
)

0
.3
7

0
.6
8

0
.9
7

0
.5
1

0
.1
0

0
.4
6

0
.8
6

1
.4
3

0
.7
1

*
(`
,S

)
b
o
u
n
d
in
d
ic
a
te
s
(`
,S

)
−
li
k
e
b
o
u
n
d
.

*
(`
,S
,W

W
)
b
o
u
n
d
in
d
ic
a
te
s
(`
,S
,W

W
)
b
o
u
n
d
p
ro
v
id
ed

b
y
R
et
el

H
el
m
ri
ch

et
a
l.
(2
0
1
3
).

*
(
)
in
d
ic
a
te
s
th

e
n
u
m
b
er

o
f
eq

u
iv
a
le
n
t
lo
w
er

b
o
u
n
d
s
b
et
w
ee
n
F
L

a
n
d
(`
,S

)
−
li
k
e-

o
u
t
o
f
1
0
it
er
a
ti
o
n
s.

55

inequalities and the reformulation techniques in the case of low returns, a short

period and high setup costs. When we look at the computation time, all proposed

formulations require a longer time to find an optimal solution if we consider long

planning periods and large number of returns. This means that all formulations can

solve the test instances faster when the return rate is low, where remanufacturing

becomes almost negligible and the planning horizon is short since the problem size

is small (i.e., n = 25), especially for SP and the (`, S)− like inequalities.

We can conclude that (1) the (`, S)− like bound is better than the (`, S,WW)

inequalities provided by Retel Helmrich et al. (2013); and (2) our proposed re-

formulation techniques considerably outperform the (`, S) − like inequalities, the

(`, S,WW) inequalities and the original formulations for ELSRs problem in terms

of stronger and lower bounds; the smallest LP gaps and computation times; and

the highest number (out of ten replications) of optimal solutions found. Figure

3.4.1 - 3.4.3 illustrates an easy-to-read graphical representation to visualize some

important results. Note that we exclude the computational results for the original

formulation as it is known to be inefficient.

Regarding the performance analysis of all formulations for the joint setups case,

(`, S)−like inequalities, FL, MC and SP are equivalent and have the best LP relax-

ation since they have the smallest percentage of LP gap, as shown in Tables 3.4.3

and 3.4.4. Almost (all) of the test instances are solved to optimality and are often

found to be an integer. This is due to the fact that the setup variables considered

in the separate setups case are twice than in the joint setups case; therefore, we

would expect that optimal solutions can be possibly obtained within an allocated

time. These integer solutions are mostly found when the low returns scenario is

considered. We observe that the number of integer solutions decreases to more

than 20% in the case of medium returns and depletes to zero when the amount

of returns gets larger. Regarding average solution time, all proposed formulations

obtain the optimal solution very quickly, even for the longer period of 75, which

is less than 105 seconds. This shows that our proposed formulations are computa-

tionally efficient for solving the test instances in a very short time. To help with

understanding of the results obtained, we illustrate the graphical representation of

the solution times (s) of all formulations in Figure 3.4.4.

Finally, in contrast to the computational results of the separate setups case, we

conclude that our efficient separation algorithm of (`, S)− like inequalities for the

ELSRj problem, which has less variables, demonstrates better performance than

reformulation techniques in terms of saving computation time.

In conclusion, the (`, S) − like bound is better than the (`, S,WW) bound

by Retel Helmrich et al. (2013), and all reformulation techniques have identical

lower bounds for both ELSRs and ELSRj problems. Furthermore, for the ELSRs

problem, the lower bounds provided by (`, S)−like inequalities are at least as strong

as reformulation techniques. Meanwhile, the (`, S) − like bound is equivalent to

reformulation techniques in the case of joint setups. Comparing the performance

level of all formulations for ELSRs, reformulation techniques provide better lower

56

T
ab

le
3.

4.
2:

[S
e
p
a
ra

te
se

tu
p
s]

P
er

fo
rm

a
n
ce

a
n
a
ly

si
s

o
f

a
ll

fo
rm

u
la

ti
o
n
s

T
o
ta
l

a
v
er
a
g
e

S
ce
n
a
ri
o

S
et
u
p

co
st

n
=

2
5

n
=

5
0

n
=

7
5

O
(l
,s
)

(l
,s
,w

w
)

F
L

M
C

S
P

O
(l
,s
)

(l
,s
,w

w
)

F
L

M
C

S
P

O
(l
,s
)

(l
,s
,w

w
)

F
L

M
C

S
P

L
P

g
a
p

(%
)

L
o
w

re
tu

rn

1
2
5

8
5
.8
4

1
.0
1

2
1
.7
7

0
.9
9

0
.9
9

0
.9
9

9
2
.2
3

1
.7
1

2
2
.3
7

1
.6
7

1
.6
7

1
.6
7

9
4
.5
5

1
.3
6

2
2
.5
5

1
.3
4

1
.3
4

1
.3
4

2
5
0

8
2
.3
5

0
.9
3

1
9
.5
4

0
.8
8

0
.8
8

0
.8
8

9
0
.4
2

1
.2
0

2
0
.0
0

1
.0
2

1
.0
2

1
.0
2

9
3
.4
9

1
.3
1

2
0
.6
4

1
.1
9

1
.1
9

1
.1
9

5
0
0

7
7
.3
3

1
.0
1

1
8
.5
7

0
.8
4

0
.8
4

0
.8
4

8
7
.9
9

1
.2
7

1
9
.4
1

1
.0
6

1
.0
6

1
.0
6

9
1
.8
4

1
.1
7

1
9
.9
9

0
.9
7

0
.9
7

0
.9
7

1
0
0
0

7
1
.5
7

0
.3
0

1
7
.3
6

0
.1
4

0
.1
4

0
.1
4

8
4
.5
5

0
.9
4

1
7
.5
3

0
.6
7

0
.6
7

0
.6
7

8
9
.4
6

1
.0
2

1
9
.8
3

0
.7
4

0
.7
4

0
.7
4

M
ed

iu
m

re
tu

rn

1
2
5

8
2
.8
1

6
.1
2

1
9
.5
9

5
.9
2

5
.9
2

5
.9
2

8
9
.1
2

7
.6
0

2
1
.3
0

6
.9
8

7
.0
2

6
.9
6

8
9
.8
1

8
.8
1

2
2
.7
6

7
.9
3

7
.7
8

7
.9
9

2
5
0

8
2
.0
4

6
.2
8

1
7
.7
7

5
.4
8

5
.4
8

5
.4
8

8
9
.2
0

7
.6
0

1
9
.1
9

6
.3
1

6
.3
2

6
.3
9

9
1
.0
2

8
.0
0

2
0
.0
2

6
.7
2

6
.6
2

6
.8
2

5
0
0

7
9
.1
9

5
.4
0

1
6
.7
2

4
.2
0

4
.2
0

4
.2
0

8
7
.9
9

6
.5
1

1
6
.7
0

4
.7
0

4
.7
0

4
.7
0

9
0
.7
7

7
.6
7

1
9
.0
0

5
.3
5

5
.2
9

5
.4
4

1
0
0
0

7
4
.6
4

5
.1
1

1
6
.0
3

3
.6
3

3
.6
3

3
.6
3

8
5
.4
7

5
.9
2

1
5
.3
5

3
.7
9

3
.7
9

3
.7
9

8
9
.1
9

7
.1
8

1
7
.6
3

4
.4
1

4
.4
6

4
.5
4

H
ig
h

re
tu

rn

1
2
5

4
6
.5
4

9
.6
1

1
2
.7
3

9
.5
8

9
.5
8

9
.5
8

4
6
.8
6

7
.7
4

1
1
.3
5

7
.3
5

7
.3
4

7
.3
6

4
9
.4
2

8
.4
9

1
2
.6
5

8
.5
3

7
.9
0

7
.9
6

2
5
0

5
6
.1
4

9
.2
7

1
2
.8
3

9
.0
3

9
.0
3

9
.0
3

5
7
.8
9

8
.5
4

1
1
.6
6

7
.8
6

7
.8
8

7
.9
4

5
9
.6
6

9
.1
8

1
2
.3
3

8
.4
6

8
.4
2

8
.3
9

5
0
0

6
2
.6
4

8
.3
2

1
2
.8
8

7
.7
1

7
.7
1

7
.7
1

6
6
.1
6

8
.8
5

1
2
.1
9

7
.8
4

7
.8
9

7
.8
6

6
6
.0
0

9
.9
2

1
3
.3
1

8
.7
2

8
.7
1

9
.2
4

1
0
0
0

6
4
.9
4

6
.8
3

1
3
.3
4

6
.1
2

6
.1
2

6
.1
2

7
1
.6
5

7
.1
6

1
1
.3
4

6
.2
5

6
.2
9

6
.1
6

7
4
.3
8

8
.2
8

1
1
.5
3

6
.8
9

6
.9
2

7
.1
5

#
o
f

o
p
ti
m
a
l

so
lu
ti
o
n

L
o
w

re
tu

rn

1
2
5

0
1
0

1
0

1
0

1
0

1
0

0
1
0

0
1
0

1
0

1
0

0
1
0

0
1
0

1
0

1
0

2
5
0

0
1
0

1
0

1
0

1
0

1
0

0
1
0

0
1
0

1
0

1
0

0
1
0

0
1
0

1
0

1
0

5
0
0

8
1
0

1
0

1
0

1
0

1
0

0
1
0

0
1
0

1
0

1
0

0
1
0

0
1
0

1
0

1
0

1
0
0
0

0

1
0

(1
)

1
0

1
0

(2
)

1
0

(2
)

1
0

(2
)

0
1
0

1
1
0

1
0

1
0

0
1
0

0
1
0

1
0

1
0

M
ed

iu
m

re
tu

rn

1
2
5

0
1
0

1
0

1
0

1
0

1
0

0
4

0
5

4
5

0
0

0
0

0
0

2
5
0

0
1
0

1
0

1
0

1
0

1
0

0
1

0
3

3
2

0
0

0
0

0
0

5
0
0

0
1
0

1
0

1
0

1
0

1
0

0
4

0
1
0

9
9

0
0

0
0

0
0

1
0
0
0

1
1
0

1
0

1
0

1
0

1
0

0
8

5
1
0

1
0

1
0

0
0

0
1

1
1

H
ig
h

re
tu

rn

1
2
5

9
1
0

1
0

1
0

1
0

1
0

0
5

4
6

5
5

0
0

0
0

0
0

2
5
0

8
1
0

1
0

1
0

1
0

1
0

0
4

4
4

4
4

0
1

0
1

1
0

5
0
0

1
0

1
0

1
0

1
0

1
0

1
0

0
4

4
5

5
4

0
0

0
0

0
0

1
0
0
0

1
0

1
0

1
0

1
0

1
0

1
0

0
6

9
8

8
8

0
1

0
0

0
0

S
o
lu
ti
o
n

ti
m
es

(s
)

L
o
w

re
tu

rn

1
2
5

6
0
0

0
.0
9

1
.4
4

0
.0
8

0
.1
1

0
.0
7

6
0
0

0
.4
3

6
0
0

0
.8
2

0
.8
6

0
.6
2

6
0
0

0
.8
4

6
0
0

2
.2
2

2
.5
2

1
.6
1

2
5
0

6
0
0

0
.1
0

0
.7
6

0
.1
2

0
.0
9

0
.1
0

6
0
0

0
.7
0

6
0
0

0
.8
5

1
.0
3

0
.6
7

6
0
0

3
.5
2

6
0
0

4
.5
4

5
.8
6

2
.8

5
0
0

3
0
2
.8

0
.1
2

0
.5
4

0
.0
9

0
.0
9

0
.0
8

6
0
0

1
.3
0

6
0
0

1
.1
7

0
.9
2

0
.8
2

6
0
0

6
.4
2

6
0
0

3
.5

5
.5
2

4
.8
7

1
0
0
0

0
.8
5

0
.1
0

0
.2
4

0
.0
9

0
.0
8

0
.1
0

6
0
0

1
.4
6

5
7
9
.3
1

0
.7
4

0
.7
0

0
.4
4

6
0
0

1
0
.5

6
0
0

2
.6
1

3
.0
2

1
.6
9

M
ed

iu
m

re
tu

rn

1
2
5

6
0
0

0
.1
6

1
.2

0
.3
2

0
.3
6

0
.2
1

6
0
0

3
9
1
.8

6
0
0

3
5
1
.2

3
7
2
.5

3
4
2

6
0
0

6
0
0

6
0
0

6
0
0

6
0
0

6
0
0

2
5
0

6
0
0

0
.3
2

0
.9

0
.4
3

0
.4
5

0
.3
1

6
0
0

5
6
3
.1

6
0
0

4
7
0
.5

4
6
2

5
1
4

6
0
0

6
0
0

6
0
0

6
0
0

6
0
0

6
0
0

5
0
0

6
0
0

0
.3
4

0
.5
8

0
.3
8

0
.4
1

0
.2
6

6
0
0

3
9
9
.7

6
0
0

7
2
.6
9

9
8
.5
8

1
3
1
.8

6
0
0

6
0
0

6
0
0

6
0
0

6
0
0

6
0
0

1
0
0
0

5
6
3
.7

0
.3
3

0
.4
2

0
.3
6

0
.3
6

0
.2
5

6
0
0

1
7
2
.7

3
9
6
.8

2
4
.5
8

3
0
.7
4

2
1
.1

6
0
0

6
0
0

6
0
0

5
5
7
.1

5
7
1
.8

6
0
0

H
ig
h

re
tu

rn

1
2
5

1
3
2
.8

0
.4
8

1
.1

0
.7
5

0
.7
3

0
.7
1

6
0
0

3
2
1
.3

3
8
9

2
7
9
.1

3
1
8
.9

3
1
8
.3

6
0
0

6
0
0

6
0
0

6
0
0

6
0
0

6
0
0

2
5
0

2
0
4
.4

0
.6
9

0
.7
1

0
.7
9

0
.8
0

0
.8
4

6
0
0

3
6
7
.5

3
9
2
.1

3
8
0
.8

3
7
7
.3

3
7
8
.2

6
0
0

5
8
9
.1

6
0
0

5
7
7
.2

5
5
6

6
0
0

5
0
0

5
6
.5

0
.3
2

0
.3
6

0
.5
6

0
.5
4

0
.4
1

6
0
0

3
7
1
.6

3
9
1
.8

3
3
9
.7

3
3
6
.7

3
8
2
.3

6
0
0

6
0
0

6
0
0

6
0
0

6
0
0

6
0
0

1
0
0
0

1
0
.1

0
.2
6

0
.2
9

0
.5
0

0
.5
1

0
.3
6

6
0
0

2
6
4
.4

1
4
9
.5

1
7
9
.9

1
4
8
.4

1
8
9
.5

6
0
0

5
6
5
.4

6
0
0

6
0
0

6
0
0

6
0
0

*
(`
,S

)
b
o
u
n
d
in
d
ic
a
te
s
(`
,S

)
−
li
k
e
b
o
u
n
d
.

*
(`
,S
,W

W
)
b
o
u
n
d
in
d
ic
a
te
s
(`
,S
,W

W
)
b
o
u
n
d
p
ro
v
id
ed

b
y
R
et
el

H
el
m
ri
ch

et
a
l.
(2
0
1
3
).

*
(
)
in
d
ic
a
te
s
th

e
n
u
m
b
er

o
f
in
te
g
er

so
lu
ti
o
n
s
b
y
F
L

a
n
d
(`
,S

)
−
li
k
e-

o
u
t
o
f
1
0
it
er
a
ti
o
n
s.

57

T
ab

le
3.

4.
3:

[J
o
in

t
se

tu
p
s]

P
er

fo
rm

a
n
ce

a
n
a
ly

si
s

o
f

a
ll

fo
rm

u
la

ti
o
n
s

T
o
ta
l

a
v
er
a
g
e

S
ce
n
a
ri
o

S
et
u
p

co
st

n
=

2
5

n
=

5
0

n
=

7
5

O
(l
,s
)*

(l
,s
,w

w
)

O
(l
,s
)*

(l
,s
,w

w
)

O
(l
,s
)*

(l
,s
,w

w
)

L
P

g
a
p

(%
)

L
o
w

re
tu

rn

1
2
5

8
1
.5
2

0
4
.1
1

8
8
.7
9

0
.0
1

2
.0
3

9
2
.5
4

0
1
.3
7

2
5
0

7
7
.7
3

0
5
.1
5

8
6
.5
6

0
2
.5
5

9
1
.2
5

0
1
.7
8

5
0
0

7
2
.8
5

0
6
.4
5

8
3
.5
1

0
3
.4
6

8
9
.2
2

0
2
.3
2

1
0
0
0

6
7
.0
9

0
8
.4
6

7
9
.6
3

0
4
.5
2

8
6
.5
9

0
3
.0
7

M
ed

iu
m

re
tu

rn

1
2
5

7
7
.1
9

0
.2
7

1
.9
7

8
4
.6
1

1
.0
3

1
.8
5

8
5
.5
8

1
.0
4

1
.9
3

2
5
0

7
6
.9
3

0
.2
6

3
.2
1

8
4
.8
7

0
.4
8

2
.0
6

8
7
.4
7

0
.4
2

1
.7
3

5
0
0

7
4
.1
7

0
.0
3

4
.7
3

8
3
.3
3

0
.1
1

2
.4
8

8
7
.2
2

0
.2
2

2
.0
3

1
0
0
0

6
9
.8
9

0
.0
4

6
.3
8

8
0
.5
1

0
.0
1

3
.3
3

8
5
.8
3

0
.0
8

2
.5
8

H
ig
h

re
tu

rn

1
2
5

4
2
.0
8

4
.5
3

5
.2
2

4
1
.7
3

3
.2
6

3
.6
2

4
3
.1
9

3
.4
2

3
.5
2

2
5
0

5
2
.3
3

3
.6
4

5
.0
9

5
2
.6
5

3
.5
1

4
.4
1

5
4
.9
8

3
.3
2

3
.7
6

5
0
0

5
9
.4
7

3
.1
6

5
.5
8

6
1
.1
4

3
.0
7

4
.7
5

6
4
.3
5

3
.6
5

4
.4
8

1
0
0
0

6
1
.9
2

2
.0
4

6
.6
6

6
6
.3
3

1
.9
5

4
.6
2

7
0
.7
0

2
.3
1

3
.6
9

#
o
f

o
p
ti
m
a
l

so
lu
ti
o
n

L
o
w

re
tu

rn

1
2
5

1
0

1
0

1
0

0
1
0

1
0

0
1
0

1
0

2
5
0

1
0

1
0

1
0

0
1
0

1
0

0
1
0

1
0

5
0
0

1
0

1
0

1
0

0
1
0

1
0

0
1
0

1
0

1
0
0
0

1
0

1
0

1
0

0
1
0

1
0

0
1
0

1
0

M
ed

iu
m

re
tu

rn

1
2
5

1
0

1
0

1
0

0
1
0

1
0

0
1
0

1
0

2
5
0

1
0

1
0

1
0

0
1
0

1
0

0
1
0

1
0

5
0
0

1
0

1
0

1
0

0
1
0

1
0

0
1
0

1
0

1
0
0
0

1
0

1
0

1
0

0
1
0

1
0

0
1
0

1
0

H
ig
h

re
tu

rn

1
2
5

1
0

1
0

1
0

2
1
0

1
0

0
1
0

1
0

2
5
0

1
0

1
0

1
0

1
1
0

1
0

0
1
0

1
0

5
0
0

1
0

1
0

1
0

0
1
0

1
0

0
9

9
1
0
0
0

1
0

1
0

1
0

0
1
0

1
0

0
1
0

1
0

#
o
f

in
te
g
er

so
lu
ti
o
n
s

L
o
w

re
tu

rn

1
2
5

0
1
0

0
0

9
0

0
1
0

0
2
5
0

0
1
0

0
0

1
0

0
0

1
0

0
5
0
0

0
1
0

0
0

1
0

0
0

1
0

0
1
0
0
0

0
1
0

0
0

1
0

0
0

1
0

0

M
ed

iu
m

re
tu

rn

1
2
5

0
1

0
0

0
0

0
0

0
2
5
0

0
3

0
0

1
0

0
0

0
5
0
0

0
8

0
0

6
0

0
0

0
1
0
0
0

0
8

0
0

7
0

0
5

0

H
ig
h

re
tu

rn

1
2
5

0
0

0
0

0
0

0
0

0
2
5
0

0
0

0
0

0
0

0
0

0
5
0
0

0
0

0
0

0
0

0
0

0
1
0
0
0

0
0

0
0

0
0

0
0

0

*
(`
,S

)
b
o
u
n
d
in
d
ic
a
te
s
(`
,S

)
−
li
k
e
b
o
u
n
d
.

*
(`
,S
,W

W
)
b
o
u
n
d
in
d
ic
a
te
s
(`
,S
,W

W
)
b
o
u
n
d
p
ro
v
id
ed

b
y
R
et
el

H
el
m
ri
ch

et
a
l.
(2
0
1
3
).

*
(`
,S

)∗
re
p
re
se
n
ts

a
ll
fo
rm

u
la
ti
o
n
te
ch

n
iq
u
es
.

58

T
ab

le
3.

4.
4:

[J
o
in

t
se

tu
p
s]

P
er

fo
rm

a
n
ce

a
n
a
ly

si
s

o
f

a
ll

fo
rm

u
la

ti
o
n
s

(c
o
n
t.

)

T
o
ta
l

a
v
er
a
g
e

S
ce
n
a
ri
o

S
et
u
p

co
st

n
=

2
5

n
=

5
0

n
=

7
5

O
(l
,s
)

(l
,s
,w

w
)

F
L

M
C

S
P

O
(l
,s
)

(l
,s
,w

w
)

F
L

M
C

S
P

O
(l
,s
)

(l
,s
,w

w
)

F
L

M
C

S
P

S
o
lu
ti
o
n

ti
m
es

(s
)

L
o
w

re
tu

rn

1
2
5

6
8
.3
0

0
0

0
.0
1

0
.0
2

0
6
0
0

0
.0
1

0
.1
1

0
.2
9

0
.0
7

0
.2
9

6
0
0

0
0
.5
1

0
.5
1

0
.5
6

0
.2
0

2
5
0

4
8
.8
8

0
0

0
.0
1

0
.0
2

0
6
0
0

0
.0
1

0
.1
0

0
.2
7

0
.0
9

0
.2
8

6
0
0

0
0
.5
1

0
.5
8

0
.6
0

0
.2
0

5
0
0

6
.7
7

0
0

0
.0
2

0
.0
3

0
6
0
0

0
0
.1
0

0
.2
5

0
.0
6

0
.2
9

6
0
0

0
.0
2

0
.5
0

0
.6
3

0
.5
3

0
.2
0

1
0
0
0

0
.6
5

0
0

0
.0
1

0
.0
5

0
6
0
0

0
.0
4

0
.1
0

0
.2
6

0
.0
6

0
.2
7

6
0
0

0
.1
0

0
.5
0

0
.5
7

0
.6
8

0
.2
0

M
ed

iu
m

re
tu

rn

1
2
5

3
9

0
.0
1

0
.0
4

0
.0
8

0
.0
7

0
6
0
0

0
.0
7

0
.2
0

0
.3
8

0
.4
2

0
.4
2

6
0
0

0
.1
3

0
.8
7

0
.9
3

1
.0
7

0
.3
4

2
5
0

9
2
.7

0
.0
2

0
.0
4

0
.0
8

0
.0
9

0
.0
2

6
0
0

0
.1
1

0
.2
2

0
.3
6

0
.4
1

0
.4
1

6
0
0

0
.2
3

1
.2
1

0
.8
2

0
.8
9

0
.3
1

5
0
0

4
1
.9

0
0
.0
1

0
.0
5

0
.0
6

0
6
0
0

0
.0
6

0
.1
7

0
.3
1

0
.3
2

0
.3
2

6
0
0

0
.2
4

1
.0
2

0
.8
4

0
.6
7

0
.3
3

1
0
0
0

3
.8

0
.0
1

0
.0
1

0
.0
6

0
.0
6

0
.0
2

6
0
0

0
.0
8

0
.1
3

0
.2
7

0
.2
9

0
.2
6

6
0
0

0
.2
3

0
.7
6

0
.7
8

0
.8
9

0
.2
7

H
ig
h

re
tu

rn

1
2
5

0
.1
7

0
.0
6

0
.0
9

0
.5
1

0
.2
0

0
.1
2

4
9
6
.6

1
.0
2

1
.4
4

3
.5
5

1
.0
7

6
.2
4

6
0
0

5
.2
9

8
.2
2

2
4
.6
1

3
8
.7
6

1
3
.6
4

2
5
0

0
.3
8

0
.0
5

0
.1
0

0
.5
8

0
.1
8

0
.1
0

5
4
2
.1

1
.1
1

1
.3
6

4
.1
2

0
.8
9

5
.4
8

6
0
0

3
.4
9

1
0
.8
6

3
5
.4
2

2
9
.9
9

1
2
.8
4

5
0
0

0
.6
7

0
.0
9

0
.1
0

0
.6
3

0
.2
1

0
.1
0

6
0
0

0
.6
8

1
.5
0

3
.2
5

0
.6
7

6
.0
3

6
0
0

7
5
.1
4

7
4
.5
1

1
0
2
.7
6

1
0
4
.6
6

7
9
.4
1

1
0
0
0

0
.4
2

0
.0
8

0
.0
9

0
.5
7

0
.2
1

0
.0
7

6
0
0

0
.4
8

0
.8
7

1
.6
3

0
.8
9

2
.1
2

6
0
0

9
.9
9

1
2
.7
6

4
4
.3
6

4
0
.8
0

1
2
.3
9

*
(`
,S

)
b
o
u
n
d
in
d
ic
a
te
s
(`
,S

)
−
li
k
e
b
o
u
n
d
.

*
(`
,S
,W

W
)
b
o
u
n
d
in
d
ic
a
te
s
(`
,S
,W

W
)
b
o
u
n
d
p
ro
v
id
ed

b
y
R
et
el

H
el
m
ri
ch

et
a
l.
(2
0
1
3
).

59

Figure 3.4.1: Separate setups, 25 periods

60

Figure 3.4.2: Separate setups, 50 periods

61

Figure 3.4.3: Separate setups, 75 periods

62

Figure 3.4.4: Joint setups, solution times (s) for all periods

63

bounds, the best LP gaps, a higher number of optimal solutions found (out of ten

replications) and the shortest solution time in most tested instances. Meanwhile,

for the ELSRj problem, (`, S)− like inequalities show more promising results than

other formulations in terms of solving instances faster than other formulations.

3.5 Concluding Remarks

In this section, we evaluate different mathematical approaches such as (`, S)− like
inequalities, FL reformulation, MC reformulation and SP reformulation to obtain

lower bounds for the economic lot-sizing problem for remanufacturing and separate

setups (ELSRs) and joint setups (ELSRj) problems. The findings show that the

lower bounds provided by (`, S) − like inequalities are better than (`, S,WW)

inequalities by Retel Helmrich et al. (2013). Further, all reformulation techniques,

FL, MC and SP provide identical lower bounds for both problems, which is proven

theoretically and observed from the computational results. The fact that (`, S)

inequalities and all reformulation techniques provide equivalent lower bounds in

the classical single-item uncapacitated lot-sizing problem (see Barany et al. (1984a),

Rardin and Wolsey (1993), Krarup and Bilde (1977) and Eppen and Martin (1987)),

only applies to the case of joint setups as only a single setup is considered in the

formulation. The ELSRj problem, which more closely resembles the structure of the

classical uncapacitated lot-sizing problem is efficient for quickly solving the tested

data instances. However, in the case of separate setups, the lower bounds obtained

by all reformulation techniques slightly outperform (`, S)−like inequalities in terms

of lower bounds, LP gaps, the number of optimal solutions found and computation

times in almost all instances tested.

64

Chapter 4

Valid Inequalities for Economic Lot-

Sizing Problems with Remanufacturing:

Separate Setups Case

4.1 Introduction

This chapter investigates the polyhedral structure of a mixed integer set arising

from the feasible set of original formulation economic lot-sizing solutions with re-

manufacturing and separate setups, which considers two knapsack sets simultane-

ously based on the well-known single node fixed-charge network (SNFCN). Before

explaining this further, we first define this mixed integer set formally in the feasible

region:

Xs = {(xr, xm, yr, ym) ∈ Rn+ × Rn+ × Bn × Bn |
∑
t∈N

xrt ≤ R,
∑
t∈N

(xrt + xmt) ≥ D,

xrt ≤ mr
ty
r
t , x

m
t ≤ mm

t y
m
t , ∀t ∈ N}, (4.1)

where R =
∑n

t=1 rt denotes the total amount of returns and D =
∑n

t=1 dt is the

total amount of demands. Note that the big-M constraints can be structured based

on the initial formulation, using mr
t = min {r1,t, dt,n} and mm

t = dt,n for any t ∈ N.
In order to investigate the polyhedral set conv(Xs), we first refer to Padberg

et al. (1985) and the SNFCN set defined as follows:

X∇ = {(x, y) ∈ Rn+ × Bn |
∑
t∈N

xt∇d, xt ≤ mtyt, ∀t ∈ N}, (4.2)

where ∇ ∈ {≤,=,≥} . Note that X≤ and X≥ are relaxations of set Xs. Firstly,

they derive a class of “surrogate knapsack” facets for conv(X≥). The “surrogate

65

knapsack” problem as follows:∑
t∈N

mtyt ≥ d, yt ∈ {0, 1}, ∀t ∈ N

and the associated knapsack polytope K = conv{y ∈ Rn|∑
t∈N

mtyt ≥ d, yt ∈
{0, 1}, ∀t ∈ N} is a relaxation of conv(X≥) and conv(X=). They show that al-

most all facets of K are facets for conv(X≥). Secondly, a class of “flow cover” facets

for conv(X=) is described from a large class of valid inequalities for conv(X≤) is

stated as follows.

Proposition 13 (Flow cover inequalities (Padberg et al., 1985)). Let S be

a cover such that
∑

t∈Smt = d+ λ, where λ > 0 and m = maxt∈Smt > λ, then the

simple flow cover inequalities∑
t∈S

xt −
∑
t∈S

(mt − λ)+yt ≤ d−
∑
t∈S

(mt − λ)+, (4.3)

is valid and defines a facet of conv(X=). Moreover, for L ⊆ N \ S and mt =

max{mt,m}, the extended flow cover inequalities defined as∑
t∈S∪L

xt −
∑
t∈S

(mt − λ)+yt −
∑
t∈L

(mt − λ)yt ≤ d−
∑
t∈S

(mt − λ)+ (4.4)

is valid and defines a facet of conv(X≤) if 0 < m−λ < mt ≤ m holds for all t ∈ L.

From these two classes of facets, the surrogate knapsack facets for conv(X≥) and

the flow cover facets conv(X=), they suggest that the surrogate knapsack facets

are all valid inequalities for conv(X=) and the flow cover facets conv(X=) are valid

for conv(X≤). Moreover, for every facet of conv(X≥) corresponds to the facet of

conv(X≤), and vice versa. Then, they further examine the basic properties relating

conv(X≥), conv(X≤) and conv(X=) in order to construct facets of conv(X≥) and

conv(X≤) from facets of conv(X=). They obtain the flow cover facets for conv(X≤)

as mentioned earlier in (4.4) and the following flow cover facets for conv(X≥) is

given by:

Proposition 14 (Extended flow cover inequalities (Padberg et al., 1985)).

Let S be a cover such that
∑

t∈Smt = d+ λ, where λ > 0 and m = maxt∈Smt > λ

and for L ⊆ N \ S with 0 < m− λ < mt ≤ m for all t ∈ L, then∑
t∈N\(S∪L)

xt +
∑
t∈S

(mt − λ)+yt +
∑
t∈L

(m− λ)yt ≥
∑
t∈S

(mt − λ)+ (4.5)

is valid and defines a facet of conv(X≥).

Their findings provide us better insight into polyhedral study of our mixed

integer set Xs. Our main aim for this chapter is to adapt the well-known polyhedral

66

results for the SNFCN set to the setXs in order to further improve the lower bounds

for ELSRs problem. Note that we are not interested to study the relaxations of the

set Xs individually as they have been extensively studied by Padberg et al. (1985).

This chapter is structured as follows. In the Section 4.2, we establish basic

polyhedral properties of conv(Xs) and present some general results on the trivial

facet-defining inequalities. Next, Section 4.3 discusses several known flow cover

inequalities for conv(Xs) and identify their facet-defining conditions. In Section

4.4, we discuss an exact separation algorithm for conv(Xs). Then, in Section 4.5,

we provide the preliminary computational results to test the effectiveness of these

inequalities. Finally, we summarize this chapter in Section 4.6.

4.2 Properties of conv(Xs)

In this section, we examine basic properties and some general results on the trivial

facet-defining inequalities for conv(Xs). Without loss of generality, we assume the

following assumptions for the remainder of the chapter.

(i) D > R because if D ≤ R, manufacturing is no longer necessary, xmt = 0 then,

xrt > 0, ∀t,

(ii)
∑

t∈N\{k}
mm
t ≥ D for each k ∈ N,

(iii) D = mm
1 > mm

2 > mm
3 ... > mm

n > 0,

(iv)
∑
t∈N

mr
t > R.

Note that the second assumption allows manufacturing to satisfy all demands even

when it is set to zero in any chosen period, the third assumption simply uses

the structure of ELSRs used to define big-M parameters and the last assumption

ensures that the total amount of returns is used for remanufacturing. We prove the

full-dimensionality of conv(Xs) next.

Proposition 15. dim(conv(Xs)) = 4n.

Proof. First, we note dim(conv(Xs)) ≤ 4n since (xr, xm, yr, ym) ∈ R4n
+ . In order to

show dim(conv(Xs)) ≥ 4n, we present the following 4n + 1 affinely independent

points from conv(Xs) :

1. v0 : Set xrt = 0 and yrt = 0 and set xmt = mm
t and ymt = 1, ∀t ∈ N . (1 point)

2. v1, ..., vn : For each k ∈ N, set xrk = 0 and yrk = 1; set xrt = 0 and yrt = 0,

∀t ∈ N \ {k} and set xmt = mm
t and ymt = 1, ∀t ∈ N. (n points)

3. vn+1, ..., v2n : For each k ∈ N, set xrk = mr
k and yrk = 1; set xrt = 0 and yrt = 0,

∀t ∈ N \ {k} and set xmt = mm
t and ymt = 1, ∀t ∈ N. (n points)

67

4. v2n+1, ..., v3n : For each k ∈ N, set xmk = 0 and ymk = 0; set xmt = mm
t and

ymt = 1, ∀t ∈ N \ {k} and set xrt = 0 and yrt = 0, ∀t ∈ N. (n points)

5. v3n+1, ..., v4n : For each k ∈ N, set xmk = 0 and ymk = 1; set xmt = mm
t and

ymt = 1, ∀t ∈ N \ {k} and set xrt = 0 and yrt = 0, ∀t ∈ N. (n points)

In order to show affine independence, we note that the vectors v0, v1, ..., v4n are

affinely independent if the vectors (vi−v0), i = 1, ..., 4n are linearly independent or

equivalently if
∑4n

i=1 λi(vi− v0) = 0 has the single solution λ1 = λ2 = ... = λ4n = 0.

Hence, we have the following system of equations:
λi + λi+n = 0, i = 1, ..., n

mr
i−n (λi) = 0, i = n+ 1, ..., 2n

mm
i−2n(λi + λi+n) = 0, i = 2n+ 1, ..., 3n

λi = 0 i = 3n+ 1, ..., 4n

(4.6)

It is obvious that the only solution for second and fourth set of equations are λi = 0,

for i = n + 1, ..., 2n and i = 3n + 1, ..., 4n, and substituting these into other two

equations result in λ = 0.

Next, we note trivial facet-defining inequalities for conv(Xs) in the following

proposition.

Proposition 16. The trivial facet-defining inequalities for conv(Xs) (and their

facet-defining conditions if applicable) are:

(i) xri ≥ 0, ∀i ∈ N,

(ii) xri ≤ mr
iy
r
i , ∀i ∈ N ,

(iii) xmi ≤ mm
i y

m
i , ∀i ∈ N ,

(iv) ymi ≤ 1, ∀i ∈ N ,

(v) yri ≤ 1, ∀i ∈ N ,

(vi)
∑

t∈N x
r
t ≤ R (when

∑
t∈N\{k}m

r
t > R for each k ∈ N holds),

(vii)
∑

t∈N x
r
t +

∑
t∈N x

m
t ≥ D,

(viii) xmi ≥ 0, ∀i ∈ N (when ∀k ∈ N \ {i}, ∑t∈N\{i,k}m
m
t +

∑
t∈N m

r
t ≥ D holds).

Proof. First, we note 4n affinely independent points are necessary when each of

these inequalities is enforced as an equation. In order to construct these points, we

will use the 4n+1 affinely independent points presented in the proof of Proposition

15. For (i), (ii), (iii) and (iv), the proof is straightforward, as dropping exactly one

of the 4n + 1 points, i.e., vn+i, vi, v3n+i and v2n+i, respectively, provides us the

necessary 4n points. For (v), we can set yri = 1 and all the points except v0 will

68

remain valid. For (vi), let Hr ⊂ N such that
∑

t∈Hr mr
t > R, ∃k ∈ Hr satisfying∑

t∈Hr\{k}m
r
t < R and ∃` /∈ Hr satisfying mr

` ≥ mr
t , ∀t ∈ Hr. For all vi (except

for v1, ..., vn such that i ∈ Hr), set xrt = mr
t and yrt = 1, ∀t ∈ Hr \ {k} and set

xrk = R −∑t∈Hr\{k}m
r
t and yrk = 1 (for v1, ..., vn such that i /∈ Hr, in addition to

that, set xri = 0 and yri = 1). For v1, ..., vn such that i ∈ Hr \ {k}, set xri = 0 and

yri = 1; set xr` = mr
` and yr` = 1; set xrt = mr

t and yrt = 1, ∀t ∈ Hr \ {i, k}; set

xrk = R −∑t∈Hr\{k}m
r
t and yrk = 1. For (vii), we set xm1 = D and ym1 = 1 (and

also xmi = 0, ∀i ∈ N \ {1}) in all points, except setting xm1 = D −mr
k and ym1 = 1

in vn+1, ..., v2n and xm1 = D −mm
k and ym1 = 1 (and also xmk = mm

k and ymk = 1) in

v2n+2, ..., v3n, while removing points v2n+1 and v3n+1; therefore, we also add a new

point in the form of xm1 = 0 and ym1 = 1, xmt =
(
D/
∑

t∈N\{1}m
m
t

)
mm
t and ymt = 1,

∀t ∈ N \ {1}, and xrt = 0 and yrt = 0, ∀t ∈ N. Finally, for (viii), we set xmi = 0

for all points, remove point v3n+i and for any point in the set v2n+1, ..., v4n such

that xmk = 0 and
∑

t∈N\{i,k}m
m
t < D holds, we distribute the remaining demand

D −∑t∈N\{i,k}m
m
t into remanufacturing in the lexographic order.

4.3 Polyhedral Analysis of conv(Xs)

First, we provide some definitions used throughout the chapter.

Definition 27. The definitions of flow cover inequalities for conv(Xs) are given as

follows:

• A set Sr ⊆ N is a cover for R if λ1 =
∑

t∈Sr mr
t > R.

• A set Sm ⊆ N is a cover for D −R if λ2 =
∑

t∈Sm mm
t > (D −R).

• For Sr, Sm ⊆ N such that Sr ∩ Sm = φ, pair (Sr, Sm) is a cover for D if

λ3 =
∑

t∈Sr mr
t +

∑
t∈Sm mm

t > D.

We also define (x)+ = max{x, 0}.
It can be readily seen that set X≤ is a relaxation of set Xs by removing one of the

knapsack sets involving demand. Thus, any valid inequality for X≤ is also valid for

Xs. Our theoretical contribution for this chapter comes from the fact that, under

certain and general conditions, these inequalities are facet-defining for conv(Xs).

First, we will present two well-known facet-defining inequalities for conv(Xs) in

the case of ≤ . The validity proofs of these inequalities can be referred to Padberg

et al. (1985).

Corollary 4 (Flow cover inequalities (Padberg et al., 1985)). Let Sr ⊆ N

be a cover for R, with mr = maxt∈Sr mr
t > λ1. Then, the following inequality (called

returns cover inequality) is valid for Xs.∑
t∈Sr

xrt −
∑
t∈Sr

(mr
t − λ1)+yrt ≤ R−

∑
t∈Sr

(mr
t − λ1)+ (4.7)

69

Proposition 17. Let Sr+ = {t ∈ Sr|mr
t − λ1 > 0}. If |Sr+| ≥ 2, then (4.7) defines

a facet of conv(Xs).

Proof. Suppose we consider i1 and i2 are any two members of Sr+ and let ε > 0 is an

arbitrary small number. We demonstrate 4n affinely independent points, belonging

to Xs, that satisfy ∑
t∈Sr

xrt −
∑
t∈Sr+

(mr
t − λ1)(1− yrt) = R.

1. For every t′ ∈ Sr+, set xrt′ = 0 and yrt′ = 0; set xrt = mr
t and yrt = 1,

∀t ∈ Sr \{t′}; set xm1 = mm
1 and ym1 = 1 and set other variables to zero. (|Sr+|

points)

2. For every t′ ∈ Sr+, set xrt′ = mr
t′ − λ1 and yrt′ = 1; set xrt = mr

t and yrt = 1,

∀t ∈ Sr \{t′}; set xm1 = mm
1 and ym1 = 1 and set other variables to zero. (|Sr+|

points)

3. For every t′ ∈ Sr \ Sr+, set xrt′ = 0 and yrt′ = 0; set xri1 = mr
i1 − λ1 +mr

t′ and

yri1 = 1; set xrt = mr
t and yrt = 1, ∀t ∈ Sr \ {t′, i1}; set xm1 = mm

1 and ym1 = 1

and set other variables to zero. (|Sr \ Sr+| points)

4. For every t′ ∈ Sr \ Sr+, set xrt′ = 0 and yrt′ = 1; set xri2 = mr
i2 − λ1 +mr

t′ and

yri2 = 1; set xrt = mr
t and yrt = 1, ∀t ∈ Sr \ {t′, i2}; set xm1 = mm

1 and ym1 = 1

and set other variables to zero. (|Sr \ Sr+| points)

5. For every t′ ∈ N \ Sr, set xrt′ = 0 and yrt′ = 1; set xri1 = 0 and yri1 = 0; set

xrt = mr
t and yrt = 1, ∀t ∈ Sr \ {i1}; set xm1 = mm

1 and ym1 = 1 and set other

variables to zero. (n− |Sr| points)

6. For every t′ ∈ N \ Sr, set xrt′ = ε and yrt′ = 1; set xri1 = 0 and yri1 = 0; set

xrt = mr
t and yrt = 1, ∀t ∈ Sr \ {i1}; set xm1 = mm

1 and ym1 = 1 and set other

variables to zero. (n− |Sr| points)

7. For every t′ ∈ N \ {1}, set xri1 = 0 and yri1 = 0; set xrt = mr
t and yrt = 1,

∀t ∈ Sr \{i1}; set xmt′ = 0 and ymt′ = 1; set xm1 = mm
1 and ym1 = 1 and set other

variables to zero. (n− 1 points)

8. For every t′ ∈ N \ {1}, set xri1 = 0 and yri1 = 0; set xrt = mr
t and yrt = 1,

∀t ∈ Sr \ {i1}; set xmt′ = ε and ymt′ = 1; set xm1 = mm
1 and ym1 = 1 and set other

variables to zero. (n− 1 points)

9. Set xri1 = 0 and yri1 = 0; set xrt = mr
t and yrt = 1, ∀t ∈ Sr \ {i1}; set xm1 = 0

and ym1 = 0; set xmt = mm
t and ymt = 1, ∀t ∈ N \ {1} and set other variables

to zero. (1 point)

10. Set xri1 = 0 and yri1 = 0; set xrt = mr
t and yrt = 1, ∀t ∈ Sr \ {i1}; set xm1 = 0

and ym1 = 1; set xmt = mm
t and ymt = 1, ∀t ∈ N \ {1} and set other variables

to zero. (1 point)

70

We note that the affine independence of these 4n points is straightforward and;

therefore, omitted here for the sake of brevity.

It is natural to extend inequality (4.7) as follows.

Corollary 5 (Extended flow cover inequalities (Padberg et al., 1985)).

Let Sr ⊆ N be a cover for R with mr = maxt∈Sr mr
t and Lr ⊆ N \ Sr. Assume

mr
t = max (mr,mr

t) for all t ∈ Lr. Then the following inequality (called returns-

extended cover inequality) is valid for Xs.∑
t∈Sr∪Lr

xrt −
∑
t∈Sr

(mr
t − λ1)+yrt −

∑
t∈Lr

(mr
t − λ1)yrt ≤ R−

∑
t∈Sr

(mr
t − λ1)+ (4.8)

Proposition 18. The inequality (4.8) is facet-defining for conv(Xs) if both 0 <

mr − λ1 < mr
t ≤ mr for any t ∈ Lr and the conditions of Proposition 5 hold.

Proof. Condition 0 < mr − λ1 < mr
t ≤ mr implies mr

t = mr, ∀t ∈ Lr. Let ε > 0

is a sufficiently small number. We present 4N affinely independent points in Xs

that satisfy (4.8) as an equation. Note that the first four and the last four valid

sets listed in the proof of Proposition 5 satisfy (4.8) as an equation. Therefore, we

identify the remaining sets as follows.

1. For every t′ ∈ Lr, set xrt′ = mr − λ1 and yrt′ = 1; set xri1 = 0 and yri1 = 0; set

xrt = mr
t and yrt = 1, ∀t ∈ Sr \ {i1}; set xm1 = mm

1 and ym1 = 1 and set other

variables to zero. (|Lr| points)

2. For every t′ ∈ Lr, set xrt′ = mr − λ1 + ε and yrt′ = 1; set xri1 = 0 and yri1 = 0;

set xri2 = mr
i2 − ε and yri2 = 1; set xrt = mr

t and yrt = 1, ∀t ∈ Sr \ {i1, i2}; set

xm1 = mm
1 and ym1 = 1 and set other variables to zero. (|Lr| points)

3. For every t′ ∈ N \ (Sr ∪ Lr), set xrt′ = 0 and yrt′ = 1; set xri1 = 0 and yri1 = 0;

set xrt = mr
t and yrt = 1, ∀t ∈ Sr \ {i1}; set xm1 = mm

1 and ym1 = 1 and set

other variables to zero. (n− |Sr| − |Lr| points)

4. For every t′ ∈ N \ (Sr ∪ Lr), set xrt′ = ε and yrt′ = 1; set xri1 = 0 and yri1 = 0;

set xrt = mr
t and yrt = 1, ∀t ∈ Sr \ {i1}; set xm1 = mm

1 and ym1 = 1 and set

other variables to zero. (n− |Sr| − |Lr| points)

Note that the affine independence of these 4n points is straightforward.

Next, we investigate some well-known inequalities originally proposed for X≥,

which is again an obvious relaxation of set Xs. We obtain this relaxation of set

Xs by eliminating one knapsack set involving returns. Our theoretical contribution

remains with these inequalities being facet-defining for conv(Xs) under certain and

general conditions.

71

Corollary 6 (Flow cover inequalities (Padberg et al., 1985)). Let Sm ⊆ N
be a cover for D − R. Then, the following inequality (called demands cover

inequality) is valid for Xs.∑
t∈N\Sm

xmt ≥
∑
t∈Sm

(mm
t − λ2)

+(1 − ymt) (4.9)

Proof. First, we rearrange and rewrite the inequality (4.9) using the definition of

Sm+ as:∑
t∈N\Sm

xmt +
∑

t∈Sm+

(mm
t − λ2)y

m
t ≥

∑
t∈Sm+

(mm
t − λ2)

Consider (xr, xm, yr, ym) be a point of Xs with Tm = {t ∈ N |ymt = 1}. We identify

two cases for this inequality:

Case 1. |Sm+ \ Tm| = 0. This implies that ymt = 1 for any t ∈ Sm+. Then,

the validity of this inequality is followed by
∑

t∈N x
m
t ≥

∑
t∈Sm xmt ≥

D −R ≥ 0.

Case 2. |Sm+ \ Tm| ≥ 1.∑
t∈N\Sm

xmt +
∑

t∈Sm+

(mm
t − λ2)ymt

=
∑

t∈(N\Sm)∩Tm

xmt +
∑

t∈Sm+∩Tm

(mm
t − λ2)

=
∑

t∈N∩Tm

xmt −
∑

t∈Sm∩Tm

xmt +
∑

t∈Sm+

(mm
t − λ2)−

∑
t∈Sm+\Tm

(mm
t − λ2)

≥
∑

t∈N∩Tm

xmt −
∑

t∈Sm∩Tm

mm
t +

∑
t∈Sm+

(mm
t − λ2)−

∑
t∈Sm+\Tm

(mm
t − λ2)

≥(D −R)−
∑
t∈Sm

mm
t +

∑
t∈Sm\Tm

mm
t +

∑
t∈Sm+

(mm
t − λ2)

−
∑

t∈Sm+\Tm

(mm
t − λ2)

≥− λ2 +
∑

t∈Sm+\Tm

mm
t +

∑
t∈Sm+

(mm
t − λ2)−

∑
t∈Sm+\Tm

(mm
t − λ2)

=
∑

t∈Sm+

(mm
t − λ2)− λ2 + λ2|Sm+ \ Tm|

=
∑

t∈Sm+

(mm
t − λ2) + λ2

(
|Sm+ \ Tm| − 1

)
≥
∑

t∈Sm+

(mm
t − λ2)

where the first and second inequalities use the properties of ymt = 1,

72

∀t ∈ Tm, Sm ∩ Tm = Sm \ (Sm \ Tm), xmt ≤ mm
t y

m
t and the fact that∑

t∈N∩Tm xmt ≥ D − R. Next, the third and last inequalities use the

definition of λ2 and the properties Sm+ ⊆ Sm, |Sm+ \ Tm| − 1 ≥ 0 and

λ2 > 0.

The facet-defining conditions for this inequality are described in the following

proposition.

Proposition 19. Let Sm+ = {t ∈ Sm|mm
t − λ2 > 0}. If |Sm+| ≥ 1,

∑
t∈N\Sm

mm
t >

maxt∈Sm mm
t −λ2 and

∑
t∈N

mr
t > R+ maxt∈N m

r
t then, the inequality (4.9) defines a

facet for conv(Xs).

Proof. Let Hr ⊂ N such that
∑
t∈Hr

mr
t > R, ∃k ∈ Hr satisfying

∑
t∈Hr\{k}

mr
t < R and

∃` /∈ Hr satisfying mr
` ≥ mr

t , ∀t ∈ Hr. Let i1 be any member in the set Sm+ and

ε > 0 be a sufficiently small number. We also define m̂m
t = mm

t 6
∑

t∈N\Sm

mm
t . In

order to prove that this inequality is facet-defining, we will present the following

4n affinely independent points that satisfy it as an equation.

1. For every t′ ∈ Sm+, set xmt′ = 0 and ymt′ = 0; set xmt = mm
t and ymt = 1,

∀t ∈ Sm \ {t′}; set xmt = m̂m
t (mm

t′ − λ2) and ymt = 1, ∀t ∈ N \Sm; set xrt = mr
t

and yrt = 1, ∀t ∈ Hr \ {k}; set xrk = R −∑t∈Hr\{k}m
r
t and yrk = 1 and set

other variables to zero. (|Sm+| points)

2. For every t′ ∈ Sm+, set xmt′ = mm
t′ − λ2 and ymt′ = 1; set xmt = mm

t and

ymt = 1, ∀t ∈ Sm \ {t′}; set xrt = mr
t and yrt = 1, ∀t ∈ Hr \ {k}; set xrk =

R−∑t∈Hr\{k}m
r
t and yrk = 1 and set other variables to zero. (|Sm+| points)

3. For every t′ ∈ Sm \Sm+, set xmt′ = 0 and ymt′ = 0; set xmi1 = mm
i1 −λ2 +mm

t′ and

ymi1 = 1; set xmt = mm
t and ymt = 1, ∀t ∈ Sm \ {t′, i1}; set xrt = mr

t and yrt = 1,

∀t ∈ Hr \ {k}; set xrk = R−∑t∈Hr\{k}m
r
t and yrk = 1 and set other variables

to zero. (|Sm \ Sm+| points)

4. For every t′ ∈ Sm \Sm+, set xmt′ = 0 and ymt′ = 1; set xmi1 = mm
i1 −λ2 +mm

t′ and

ymi1 = 1; set xmt = mm
t and ymt = 1, ∀t ∈ Sm \ {t′, i1}; set xrt = mr

t and yrt = 1,

∀t ∈ Hr \ {k}; set xrk = R−∑t∈Hr\{k}m
r
t and yrk = 1 and set other variables

to zero. (|Sm \ Sm+| points)

5. For every t′ ∈ N \ Sm, set xmt′ = 0 and ymt′ = 1; set xmi1 = mm
i1 − λ2 and

ymi1 = 1; set xmt = mm
t and ymt = 1, ∀t ∈ Sm \ {i1}; set xrt = mr

t and yrt = 1,

∀t ∈ Hr \ {k}; set xrk = R−∑t∈Hr\{k}m
r
t and yrk = 1 and set other variables

to zero. (n− |Sm| points)

6. For every t′ ∈ N \ Sm, set xmt′ = ε and ymt′ = 1; set xmi1 = mm
i1 − λ2 + ε and

ymi1 = 1; set xmt = mm
t and ymt = 1, ∀t ∈ Sm \ {i1}; set xrt = mr

t and yrt = 1,

73

∀t ∈ Hr \ {k}; set xrk = R−∑t∈Hr\{k}m
r
t and yrk = 1 and set other variables

to zero. (n− |Sm| points)

7. For every t′ ∈ Hr \ {k}, set xrt′ = 0 and yrt′ = 0; set xr` = mr
t′ and yr` = 1; set

xmi1 = mm
i1 − λ2 and ymi1 = 1; set xmt = mm

t and ymt = 1, ∀t ∈ Sm \ {i1}; set

xrt = mr
t and yrt = 1, ∀t ∈ Hr \ {t′, k}; set xrk = R−∑t∈Hr\{k}m

r
t and yrk = 1

and set other variables to zero. (|Hr| − 1 points)

8. Set xrk = 0 and yrk = 0; set xr` = R−∑t∈Hr\{k}m
r
t and yr` = 1; set xmi1 = mm

i1−λ2
and ymi1 = 1; set xmt = mm

t and ymt = 1, ∀t ∈ Sm\{i1}; set xrt = mr
t and yrt = 1,

∀t ∈ Hr \ {`, k} and set other variables to zero. (1 point)

9. For every t′ ∈ Hr \ {k}, set xrt′ = 0 and yrt′ = 1; set xr` = mr
t′ and yr` = 1; set

xmi1 = mm
i1 − λ2 and ymi1 = 1; set xmt = mm

t and ymt = 1, ∀t ∈ Sm \ {i1}; set

xrt = mr
t and yrt = 1, ∀t ∈ Hr \ {t′, k}; set xrk = R−∑t∈Hr\{k}m

r
t and yrk = 1

and set other variables to zero. (|Hr| − 1 points)

10. Set xrk = 0 and yrk = 1; set xr` = R−∑t∈Hr\{k}m
r
t and yr` = 1; set xmi1 = mm

i1−λ2
and ymi1 = 1; set xmt = mm

t and ymt = 1, ∀t ∈ Sm\{i1}; set xrt = mr
t and yrt = 1,

∀t ∈ Hr \ {`, k} and set other variables to zero. (1 point)

11. For every t′ ∈ N \ Hr, set xrt′ = 0 and yrt′ = 1; set xmi1 = mm
i1 − λ2 and

ymi1 = 1; set xmt = mm
t and ymt = 1, ∀t ∈ Sm \ {i1}; set xrt = mr

t and yrt = 1,

∀t ∈ Hr \ {k}; set xrk = R−∑t∈Hr\{k}m
r
t and yrk = 1 and set other variables

to zero. (n− |Hr| points)

12. For every t′ ∈ N \Hr, set xrt′ = ε and yrt′ = 1; set xmi1 = mm
i1−λ2 and ymi1 = 1; set

xmt = mm
t and ymt = 1, ∀t ∈ Sm \ {i1}; set xrt = mr

t and yrt = 1, ∀t ∈ Hr \ {k};
set xrk = R −∑t∈Hr\{k}m

r
t − ε and yrk = 1 and set other variables to zero.

(n− |Hr| points)

We omit the affine independence proof for the sake of brevity and as it is straight-

forward due to its similarity to previous proofs. Next, we discuss the extended

version of these inequalities in the following corollary.

Corollary 7 (Extended flow cover inequalities, Padberg et al. (1985)). Let

Sm ⊆ N be a cover for D − R and Lm ⊆ N \ Sm such that mm = maxt∈Sm mm
t >

λ2 and mm
t = max{mm

t ,m
m}, ∀t ∈ Lm. Then, the following inequality (called

demands-extended cover inequality) is valid for Xs.∑
t∈N\(Sm∪Lm)

xmt +
∑
t∈Lm

(mm
t − λ2)ymt ≥

∑
t∈Sm

(mm
t − λ2)+(1− ymt) (4.10)

Proof. First, we rearrange and rewrite the inequality (4.10) using the definition of

74

Sm+ = {t ∈ Sm|mm
t − λ2 > 0} as:∑

t∈N\(Sm∪Lm)

xmt +
∑

t∈Sm+

(mm
t − λ2)ymt +

∑
t∈Lm

(mm
t − λ2)ymt ≥

∑
t∈Sm+

(mm
t − λ2)

Consider (xr, xm, yr, ym) be a point of Xs with Tm = {t ∈ N |ymt = 1}. We identify

two cases for this inequality:

Case 1. |Sm+ \ Tm| ≤ |Lm ∩ Tm|∑
t∈N\(Sm∪Lm)

xmt +
∑

t∈Sm+

(mm
t − λ2)ymt +

∑
t∈Lm

(mm
t − λ2)ymt

=
∑

t∈(N\(Sm∪Lm))∩Tm

xmt +
∑

t∈Sm+∩Tm

(mm
t − λ2) +

∑
t∈Lm∩Tm

(mm
t − λ2)

≥
∑

t∈Sm+

(mm
t − λ2)−

∑
t∈Sm+\Tm

(mm
t − λ2) +

∑
t∈Lm∩Tm

(mm − λ2)

≥
∑

t∈Sm+

(mm
t − λ2)−

∑
t∈Sm+\Tm

(mm − λ2) +
∑

t∈Lm∩Tm

(mm − λ2)

=
∑

t∈Sm+

(mm
t − λ2) + (mm − λ2)

(
|Lm ∩ Tm| − |Sm+ \ Tm|

)
≥
∑

t∈Sm+

(mm
t − λ2)

where the first inequality follows the properties of ymt = 1, ∀t ∈ Tm and

Sm+ ∩ Tm = Sm+ \ (Sm+ \ Tm). Then, the second inequality uses the

fact that mm
t ≤ mm ≤ mm

t and the last inequality obtained as a result

of the properties |Lm ∩ Tm| − |Sm+ \ Tm| ≥ 0 and mm ≥ λ2.

Case 2. |Sm+ \ Tm| ≥ |Lm ∩ Tm|+ 1∑
t∈N\(Sm∪Lm)

xmt +
∑

t∈Sm+

(mm
t − λ2)ymt +

∑
t∈Lm

(mm
t − λ2)ymt

=
∑

t∈(N\(Sm∪Lm))∩Tm

xmt +
∑

t∈Sm+∩Tm

(mm
t − λ2) +

∑
t∈Lm∩Tm

(mm
t − λ2)

=
∑

t∈N∩Tm

xmt −
∑

t∈Sm∩Tm

xmt −
∑

t∈Lm∩Tm

xmt +
∑

t∈Sm+

(mm
t − λ2)

−
∑

t∈Sm+\Tm

(mm
t − λ2) +

∑
t∈Lm∩Tm

(mm
t − λ2)

≥
∑

t∈N∩Tm

xmt −
∑

t∈Sm∩Tm

mm
t −

∑
t∈Lm∩Tm

mm
t +

∑
t∈Sm+

(mm
t − λ2)

−
∑

t∈Sm+\Tm

(mm
t − λ2) +

∑
t∈Lm∩Tm

(mm
t − λ2)

75

≥(D −R)−
∑
t∈Sm

mm
t +

∑
t∈Sm\Tm

mm
t −

∑
t∈Lm∩Tm

mm
t +

∑
t∈Sm+

(mm
t − λ2)

−
∑

t∈Sm+\Tm

(mm
t − λ2) +

∑
t∈Lm∩Tm

(mm
t − λ2)

≥− λ2 +
∑

t∈Sm+\Tm

mm
t −

∑
t∈Lm∩Tm

mm +
∑

t∈Sm+

(mm
t − λ2)

−
∑

t∈Sm+\Tm

(mm
t − λ2) +

∑
t∈Lm∩Tm

(mm − λ2)

=
∑

t∈Sm+

(mm
t − λ2)− λ2 + λ2|Sm+ \ Tm| − λ2|Lm ∩ Tm|

=
∑

t∈Sm+

(mm
t − λ2) + λ2

(
|Sm+ \ Tm| − |Lm ∩ Tm| − 1

)
≥
∑

t∈Sm+

(mm
t − λ2)

where the first and second inequalities use the properties of ymt = 1,

t ∈ Tm, Sm ∩ Tm = Sm \ (Sm \ Tm), xmt ≤ mm
t y

m
t and the fact that∑

t∈N∩Tm xmt ≥ D − R. Next, the third and the last inequalities use

the definition of λ2 and the properties mm
t ≤ mm ≤ mm

t , S
m+ ⊆ Sm,

|Sm+ \ Tm| − |Lm ∩ Tm| − 1 ≥ 0 and λ2 > 0.

Now, we establish their facet-defining conditions in the next proposition.

Proposition 20. Let Sm+ = {t ∈ Sm|mm
t − λ2 > 0}. If 0 < mm− λ2 < mm

t ≤ mm

for any t ∈ Lm, ∑
t∈N\(Sm∪Lm)

mm
t > maxt∈Sm mm

t −λ2 and
∑
t∈N

mr
t > R+ maxt∈N m

r
t ,

then the inequality (4.10) defines a facet for conv(Xs).

Proof. Similar to the proof of Proposition 19, we let Hr ⊂ N such that
∑
t∈Hr

mr
t > R,

∃k ∈ Hr satisfying
∑

t∈Hr\{k}
mr
t < R and ∃` /∈ Hr satisfying mr

` ≥ mr
t , ∀t ∈ Hr. Let

i1 ∈ Sm+such that mm
i1 = mm and ε > 0 be a sufficiently small number. We also

define m̂m
t = mm

t 6
∑

t∈N\(Sm∪Lm)

mm
t . Then, we note that all the affinely independent

points from the proof of Proposition 19 are also valid for this case, except that for

set 2 of these points, the values are set for t ∈ N \(Sm∪Lm) rather than t ∈ N \Sm,

and for sets 5 and 6 of points, the points are valid only for t ∈ N \ (Sm ∪ Lm) .

Therefore, we need to define 2|Lm| new points in order to obtain 4n points in total,

which we present as follows:

1. For every t′ ∈ Lm, set xmt′ = mm− λ2 and ymt′ = 1; set xmi1 = 0 and ymi1 = 0; set

xmt = mm
t and ymt = 1, ∀t ∈ Sm \ {i1}; set xrt = mr

t and yrt = 1, ∀t ∈ Hr \ {k};
set xrk = R −∑t∈Hr\{k}m

r
t and yrk = 1 and set other variables to zero. (|Lm|

points)

76

2. For every t′ ∈ Lm, set xmt′ = mm − λ2 + ε and ymt′ = 1; set xmi1 = 0 and

ymi1 = 0; set xmt = mm
t and ymt = 1, ∀t ∈ Sm \ {i1}; set xrt = mr

t and yrt = 1,

∀t ∈ Hr \ {k}; set xrk = R−∑t∈Hr\{k}m
r
t and yrk = 1 and set other variables

to zero. (|Lm| points)

Lastly, we present the remaining two valid inequalities for conv(Xs) in the case

of ≥ .

Corollary 8 (Flow cover inequalities (Padberg et al., 1985)). For Sr, Sm ⊆
N, let (Sr, Sm) be a pair cover for D. Then, the inequality (called returns-

demands cover inequality) is valid for Xs.∑
t∈N\Sr

xrt +
∑

t∈N\Sm

xmt ≥
∑
t∈Sr

(mr
t − λ3)+(1− yrt) +

∑
t∈Sm

(mm
t − λ3)+(1− ymt)

(4.11)

Proof. Firstly, this inequality (4.11) is rearranged and rewritten as:∑
t∈N\Sr

xrt +
∑

t∈N\Sm

xmt +
∑
t∈Sr+

(mr
t − λ3)yrt +

∑
t∈Sm+

(mm
t − λ3)ymt +

≥
∑
t∈Sr+

(mr
t − λ3) +

∑
t∈Sm+

(mm
t − λ3)

where, Sr+ = {t ∈ Sr|mr
t − λ3 > 0} and Sm+ = {t ∈ Sm|mm

t − λ3 > 0}. Suppose

(xr, xm, yr, ym) be a point of Xs with T r = {t ∈ N |yrt = 1} and Tm = {t ∈ N |ymt =

1}. We consider four following cases:

Case 1. |Sr+ \ T r| + |Sm+ \ Tm| = 0. This implies that both yrt = 1 for any

t ∈ Sr+ and ymt = 1 for any t ∈ Sm+. This shows that
∑

t∈N (xrt +xmt) ≥∑
t∈Sr xrt +

∑
t∈Sm xmt ≥ D.

Case 2. |Sr+ \ T r| = 0 and |Sm+ \ Tm| ≥ 1.∑
t∈N\Sr

xrt +
∑

t∈N\Sm

xmt +
∑
t∈Sr+

(mr
t − λ3)yrt +

∑
t∈Sm+

(mm
t − λ3)ymt

=
∑

t∈(N\Sr)∩T r

xrt +
∑

t∈(N\Sm)∩Tm

xmt +
∑

t∈Sr+∩T r

(mr
t − λ3)

+
∑

t∈Sm+∩Tm

(mm
t − λ3)

=
∑

t∈N∩T r

xrt +
∑

t∈N∩Tm

xmt −
∑

t∈Sr∩T r

xrt −
∑

t∈Sm∩Tm

xmt +
∑
t∈Sr+

(mr
t − λ3)

+
∑

t∈Sm+

(mm
t − λ3)−

∑
t∈Sr+\T r

(mr
t − λ3)−

∑
t∈Sm+\Tm

(mm
t − λ3)

77

≥
∑

t∈N∩T r

xrt +
∑

t∈N∩Tm

xmt −
∑

t∈Sr∩T r

mr
t −

∑
t∈Sm∩Tm

mm
t +

∑
t∈Sr+

(mr
t − λ3)

+
∑

t∈Sm+

(mm
t − λ3)−

∑
t∈Sr+\T r

(mr
t − λ3)−

∑
t∈Sm+\Tm

(mm
t − λ3)

≥D −
∑
t∈Sr

mr
t −

∑
t∈Sm

mm
t +

∑
t∈Sr\T r

mr
t +

∑
t∈Sm\Tm

mm
t +

∑
t∈Sr+

(mr
t − λ3)

+
∑

t∈Sm+

(mm
t − λ3)−

∑
t∈Sr+\T r

(mr
t − λ3)−

∑
t∈Sm+\Tm

(mm
t − λ3)

≥− λ3 +
∑

t∈Sm+\Tm

mm
t +

∑
t∈Sr+

(mr
t − λ3) +

∑
t∈Sm+

(mm
t − λ3)

−
∑

t∈Sm+\Tm

(mm
t − λ3)

=
∑
t∈Sr+

(mr
t − λ3) +

∑
t∈Sm+

(mm
t − λ3)− λ3 + λ3(|Sm+ \ Tm|)

=
∑
t∈Sr+

(mr
t − λ3) +

∑
t∈Sm+

(mm
t − λ3) + λ3

(
|Sm+ \ Tm| − 1

)
≥
∑
t∈Sr+

(mr
t − λ3) +

∑
t∈Sm+

(mm
t − λ3)

where the first inequality uses the properties of yrt = 1, ∀t ∈ T r, ymt = 1,

∀t ∈ Tm, xrt ≤ mr
ty
r
t and xmt ≤ mm

t y
m
t . The second inequality follows

the fact that Sr ∩ T r = Sr \ (Sr \ T r), Sm ∩ Tm = Sm \ (Sm \ Tm) and∑
t∈N∩T r xrt +

∑
t∈N∩Tm xmt ≥ D. The third inequality uses the definition

of λ3, the properties Sr+ ⊆ Sr and Sm+ ⊆ Sm and |Sr+\T r| = 0. Lastly,

the inequality holds the properties |Sm+ \ Tm| − 1 ≥ 0 and λ3 > 0.

Case 3. |Sr+ \ T r| ≥ 1 and |Sm+ \ Tm| = 0.∑
t∈N\Sr

xrt +
∑

t∈N\Sm

xmt +
∑
t∈Sr+

(mr
t − λ3)yrt +

∑
t∈Sm+

(mm
t − λ3)ymt

=
∑

t∈(N\Sr)∩T r

xrt +
∑

t∈(N\Sm)∩Tm

xmt +
∑

t∈Sr+∩T r

(mr
t − λ3)

+
∑

t∈Sm+∩Tm

(mm
t − λ3)

=
∑

t∈N∩T r

xrt +
∑

t∈N∩Tm

xmt −
∑

t∈Sr∩T r

xrt −
∑

t∈Sm∩Tm

xmt +
∑
t∈Sr+

(mr
t − λ3)

+
∑

t∈Sm+

(mm
t − λ3)−

∑
t∈Sr+\T r

(mr
t − λ3)−

∑
t∈Sm+\Tm

(mm
t − λ3)

78

≥
∑

t∈N∩T r

xrt +
∑

t∈N∩Tm

xmt −
∑

t∈Sr∩T r

mr
t −

∑
t∈Sm∩Tm

mm
t +

∑
t∈Sr+

(mr
t − λ3)

+
∑

t∈Sm+

(mm
t − λ3)−

∑
t∈Sr+\T r

(mr
t − λ3)−

∑
t∈Sm+\Tm

(mm
t − λ3)

≥D −
∑
t∈Sr

mr
t −

∑
t∈Sm

mm
t +

∑
t∈Sr\T r

mr
t +

∑
t∈Sm\Tm

mm
t +

∑
t∈Sr+

(mr
t − λ3)

+
∑

t∈Sm+

(mm
t − λ3)−

∑
t∈Sr+\T r

(mr
t − λ3)−

∑
t∈Sm+\Tm

(mm
t − λ3)

≥− λ3 +
∑

t∈Sr+\T r

mr
t +

∑
t∈Sr+

(mr
t − λ3) +

∑
t∈Sm+

(mm
t − λ3)

−
∑

t∈Sr+\T r

(mr
t − λ3)

=
∑
t∈Sr+

(mr
t − λ3) +

∑
t∈Sm+

(mm
t − λ3)− λ3 + λ3(|Sr+ \ T r|)

=
∑
t∈Sr+

(mr
t − λ3) +

∑
t∈Sm+

(mm
t − λ3) + λ3

(
|Sr+ \ T r| − 1

)
≥
∑
t∈Sr+

(mr
t − λ3) +

∑
t∈Sm+

(mm
t − λ3)

where the first inequality follows the properties of yrt = 1, ∀t ∈ T r,

ymt = 1, ∀t ∈ Tm, xrt ≤ mr
ty
r
t and xmt ≤ mm

t y
m
t . The second inequality

uses the fact that Sr ∩ T r = Sr \ (Sr \ T r) and Sm ∩ Tm = Sm \ (Sm \
Tm) and

∑
t∈N∩T r xrt +

∑
t∈N∩Tm xmt ≥ D. Next, the third inequality

follows the definition of λ3, the properties Sr+ ⊆ Sr and Sm+ ⊆ Sm and

|Sm+ \ Tm| = 0. Finally, the last inequality makes use of the properties

|Sr+ \ T r| − 1 ≥ 0 and λ3 > 0.

Case 4. |Sr+ \ T r|+ |Sm+ \ Tm| ≥ 1.∑
t∈N\Sr

xrt +
∑

t∈N\Sm

xmt +
∑
t∈Sr+

(mr
t − λ3)yrt +

∑
t∈Sm+

(mm
t − λ3)ymt

=
∑

t∈(N\Sr)∩T r

xrt +
∑

t∈(N\Sm)∩Tm

xmt +
∑

t∈Sr+∩T r

(mr
t − λ3)

+
∑

t∈Sm+∩Tm

(mm
t − λ3)

=
∑

t∈N∩T r

xrt +
∑

t∈N∩Tm

xmt −
∑

t∈Sr∩T r

xrt −
∑

t∈Sm∩Tm

xmt +
∑
t∈Sr+

(mr
t − λ3)

+
∑

t∈Sm+

(mm
t − λ3)−

∑
t∈Sr+\T r

(mr
t − λ3)−

∑
t∈Sm+\Tm

(mm
t − λ3)

79

≥
∑

t∈N∩T r

xrt +
∑

t∈N∩Tm

xmt −
∑

t∈Sr∩T r

mr
t −

∑
t∈Sm∩Tm

mm
t +

∑
t∈Sr+

(mr
t − λ3)

+
∑

t∈Sm+

(mm
t − λ3)−

∑
t∈Sr+\T r

(mr
t − λ3)−

∑
t∈Sm+\Tm

(mm
t − λ3)

≥D −
∑
t∈Sr

mr
t −

∑
t∈Sm

mm
t +

∑
t∈Sr\T r

mr
t +

∑
t∈Sm\Tm

mm
t +

∑
t∈Sr+

(mr
t − λ3)

+
∑

t∈Sm+

(mm
t − λ3)−

∑
t∈Sr+\T r

(mr
t − λ3)−

∑
t∈Sm+\Tm

(mm
t − λ3)

≥− λ3 +
∑

t∈Sr+\T r

mr
t +

∑
t∈Sm+\Tm

mm
t +

∑
t∈Sr+

(mr
t − λ3) +

∑
t∈Sm+

(mm
t − λ3)

−
∑

t∈Sr+\T r

(mr
t − λ3)−

∑
t∈Sm+\Tm

(mm
t − λ3)

=
∑
t∈Sr+

(mr
t − λ3) +

∑
t∈Sm+

(mm
t − λ3)− λ3

+ λ3(|Sr+ \ T r|+ |Sm+ \ Tm| − 1)

=
∑
t∈Sr+

(mr
t − λ3) +

∑
t∈Sm+

(mm
t − λ3) + λ3

(
|Sr+ \ T r|+ |Sm+ \ Tm| − 1

)
≥
∑
t∈Sr+

(mr
t − λ3) +

∑
t∈Sm+

(mm
t − λ3)

where the first inequality follows the properties of yrt = 1, ∀t ∈ T r,

ymt = 1, ∀t ∈ Tm, xrt ≤ mr
ty
r
t and xmt ≤ mm

t y
m
t . Next, by using the fact

Sr ∩ T r = Sr \ (Sr \ T r), Sm ∩ Tm = Sm \ (Sm \ Tm) and
∑

t∈N∩T r xrt +∑
t∈N∩Tm xmt ≥ D, we obtain the second inequality. The third inequality

follows the definition of λ3, the properties Sr+ ⊆ Sr and Sm+ ⊆ Sm. The

properties |Sr+\T r|−|Sm+\Tm|−1 ≥ 0 and λ3 > 0 are used to generate

the last inequality.

Proposition 21. If |Sr+| + |Sm+| ≥ 2 and
∑

t∈N\Sr

mr
t +

∑
t∈N\Sm

mm
t >

max{maxt∈Sr mr
t ,maxt∈Sm mm

t } − λ3, then the inequality (4.11) is facet-defining

for conv(Xs).

Proof. First, we define Sr+ = {t ∈ Sr|mr
t − λ3 > 0} and Sm+ = {t ∈ Sm|mm

t −
λ3 > 0}. Let i1 ∈ Sr+ ∪ Sm+ be any member and ε > 0 be a sufficiently small

number. We also define m̂r
t = mr

t/(
∑

t∈N\Sr

mr
t +

∑
t∈N\Sm

mm
t) for all t ∈ N \ Sr and

m̂m
t = mm

t /(
∑

t∈N\Sr

mr
t +

∑
t∈N\Sm

mm
t) for all t ∈ N \ Sm. We next present 4n affinely

independent points that satisfy (4.11) as an equation.

1. For every t′ ∈ Sr+, set xrt′ = 0 and yrt′ = 0; set xrt = mr
t and yrt = 1,

∀t ∈ Sr \ {t′}; set xmt = mm
t and ymt = 1, ∀t ∈ Sm; set xrt = m̂r

t (m
r
t′ − λ3) and

80

yrt = 1, ∀t ∈ N \ Sr; set xmt = m̂m
t (mr

t′ − λ3) and ymt = 1, ∀t ∈ N \ Sm and set

other variables to zero. (|Sr+| points)

2. For every t′ ∈ Sr+, set xrt′ = mr
t′ − λ3 and yrt′ = 1; set xrt = mr

t and yrt = 1,

∀t ∈ Sr \ {t′}; set xmt = mm
t and ymt = 1, ∀t ∈ Sm and set other variables to

zero. (|Sr+| points)

3. For every t′ ∈ Sr \ Sr+, set xrt′ = 0 and yrt′ = 0; set xri1 = mr
i1 − λ3 +mr

t′ and

yri1 = 1; set xrt = mr
t and yrt = 1, ∀t ∈ Sr \ {t′, i1}; set xmt = mm

t and ymt = 1,

∀t ∈ Sm and set other variables to zero. (|Sr \ Sr+| points)

4. For every t′ ∈ Sr \ Sr+, set xrt′ = 0 and yrt′ = 1; set xri1 = mr
i1 − λ3 +mr

t′ and

yri1 = 1; set xrt = mr
t and yrt = 1, ∀t ∈ Sr \ {t′, i1}; set xmt = mm

t and ymt = 1,

∀t ∈ Sm and set other variables to zero. (|Sr \ Sr+| points)

5. For every t′ ∈ Sm+, set xrt = mr
t and yrt = 1, ∀t ∈ Sr; set xmt′ = 0 and ymt′ = 0;

set xmt = mm
t and ymt = 1, ∀t ∈ Sm \ {t′}; set xrt = m̂r

t (m
m
t′ − λ3) and yrt = 1,

∀t ∈ N \ Sr; set xmt = m̂m
t (mm

t′ − λ3) and ymt = 1, ∀t ∈ N \ Sm and set other

variables to zero. (|Sm+| points)

6. For every t′ ∈ Sm+, set xrt = mr
t and yrt = 1, ∀t ∈ Sr; set xmt′ = mm

t′ − λ3 and

ymt′ = 1; set xmt = mm
t and ymt = 1, ∀t ∈ Sm \ {t′} and set other variables to

zero. (|Sm+| points)

7. For every t′ ∈ Sm \ Sm+, set xrt = mr
t and yrt = 1, ∀t ∈ Sr; set xmt′ = 0 and

ymt′ = 0; set xmi1 = mm
i1 − λ3 + mm

t′ and ymi1 = 1; set xmt = mm
t and ymt = 1,

∀t ∈ Sm \ {t′, i1} and set other variables to zero. (|Sm \ Sm+| points)

8. For every t′ ∈ Sm \ Sm+, set xrt = mr
t and yrt = 1, ∀t ∈ Sr; set xmt′ = 0 and

ymt′ = 1; set xmi2 = mm
i2 − λ3 + mm

t′ and ymi2 = 1; set xmt = mm
t and ymt = 1,

∀t ∈ Sm \ {t′, i2} and set other variables to zero. (|Sm \ Sm+| points)

9. For every t′ ∈ N \Sr, set xrt′ = 0 and yrt′ = 1; set xrt = mr
t and yrt = 1, ∀t ∈ Sr;

set xmt = mm
t and ymt = 1, ∀t ∈ Sm and set other variables to zero. (n− |Sr|

points)

10. For every t′ ∈ N \Sr, set xrt′ = ε and yrt′ = 1; set xrt = mr
t and yrt = 1, ∀t ∈ Sr;

set xmt = mm
t and ymt = 1, ∀t ∈ Sm and set other variables to zero. (n− |Sr|

points)

11. For every t′ ∈ N \ Sm, set xmt′ = 0 and ymt′ = 1; set xrt = mr
t and yrt = 1,

∀t ∈ Sr; set xmt = mm
t and ymt = 1, ∀t ∈ Sm and set other variables to zero.

(n− |Sm| points)

12. For every t′ ∈ N \ Sm, set xmt′ = ε and ymt′ = 1; set xrt = mr
t and yrt = 1,

∀t ∈ Sr; set xmt = mm
t and ymt = 1, ∀t ∈ Sm and set other variables to zero.

(n− |Sm| points)

81

The affine independence proof for this inequality is also omitted for the sake of

brevity.

Corollary 9 (Extended flow cover inequalities (Padberg et al., 1985)). For

Sr, Sm ⊆ N, let (Sr, Sm) be a pair cover for D. Also, for Lr, Lm ⊆ N \ (Sr ∪ Sm)

such that mr = maxt∈Sr mr
t , m

m = maxt∈Sm mm
t then mc = max{mr,mm} and

mc
t = max{mr

t ,m
m
t ,m

c} for any t ∈ Lc. Therefore, the inequality (called returns-

and-demands-extended cover inequality) is valid for Xs.∑
t∈N\(Sr∪Lr)

xrt +
∑

t∈N\(Sm∪Lm)

xmt +
∑
t∈Lr

(mc
t − λ3)yrt +

∑
t∈Lm

(mc
t − λ3)ymt

≥
∑
t∈Sr

(mr
t − λ3)+(1− yrt) +

∑
t∈Sm

(mm
t − λ3)+(1− ymt) (4.12)

Proof. Firstly, this inequality (4.12) is rearranged and rewritten as:∑
t∈N\(Sr∪Lr)

xrt +
∑

t∈N\(Sm∪Lm)

xmt +
∑
t∈Sr+

(mr
t − λ3)yrt +

∑
t∈Sm+

(mm
t − λ3)ymt +

∑
t∈Lr

(mc
t − λ3)yrt +

∑
t∈Lm

(mc
t − λ3)ymt ≥

∑
t∈Sr+

(mr
t − λ3) +

∑
t∈Sm+

(mm
t − λ3)

where, Sr+ = {t ∈ Sr|mr
t − λ3 > 0} and Sm+ = {t ∈ Sm|mm

t − λ3 > 0}. Suppose

(xr, xm, yr, ym) be a point of Xs with T r = {t ∈ N |yrt = 1} and Tm = {t ∈ N |ymt =

1}. We consider four cases:

Case 1. |Sr+ \ T r|+ |Sm+ \ Tm| ≤ |Lr ∩ T r|+ |Lm ∩ Tm|∑
t∈N\(Sr∪Lr)

xrt +
∑

t∈N\(Sm∪Lm)

xmt +
∑
t∈Sr+

(mr
t − λ3)yrt +

∑
t∈Sm+

(mm
t − λ3)ymt

+
∑
t∈Lr

(mc
t − λ3)yrt +

∑
t∈Lm

(mc
t − λ3)ymt

=
∑

t∈(N\(Sr∪Lr))∩T r

xrt +
∑

t∈(N\(Sm∪Lm))∩Tm

xmt +
∑

t∈Sr+∩T r

(mr
t − λ3)

+
∑

t∈Sm+∩Tm

(mm
t − λ3) +

∑
t∈Lr∩T r

(mc
t − λ3) +

∑
t∈Lm∩Tm

(mc
t − λ3)

≥
∑
t∈Sr+

(mr
t − λ3)−

∑
t∈Sr+\T r

(mr
t − λ3) +

∑
t∈Sm+

(mm
t − λ3)

−
∑

t∈Sm+\Tm

(mm
t − λ3) +

∑
t∈Lr∩T r

(mc
t − λ3) +

∑
t∈Lm∩Tm

(mc
t − λ3)

82

≥
∑
t∈Sr+

(mr
t − λ3) +

∑
t∈Sm+

(mm
t − λ3)−

∑
t∈Sr+\T r

(mc − λ3)

−
∑

t∈Sm+\Tm

(mc − λ3) +
∑

t∈Lr∩T r

(mc − λ3) +
∑

t∈Lm∩Tm

(mc − λ3)

=
∑
t∈Sr+

(mr
t − λ3) +

∑
t∈Sm+

(mm
t − λ3)

+ (mc − λ3)
(
|Lr ∩ T r|+ |Lm ∩ Tm| − |Sr+ \ T r| − |Sm+ \ Tm|

)
≥
∑
t∈Sr+

(mr
t − λ3) +

∑
t∈Sm+

(mm
t − λ3)

where the first inequality uses the property of yrt = 1, ∀t ∈ T r and ymt =

1, ∀t ∈ Tm as well as the simple properties of Sr+∩T r = Sr+ \(Sr+ \T r)
and Sm+∩Tm = Sm+\(Sm+\Tm). Next, the second inequality considers

the fact that mr
t < mc ≤ mc

t and mm
t < mc ≤ mc

t . The last inequality

takes the properties |Lr ∩T r|+ |Lm ∩Tm| − |Sr+ \T r| − |Sm+ \Tm| and

mc ≥ λ3.

Case 2. |Sr+ \ T r|+ |Sm+ \ Tm| ≥ |Lr ∩ T r|+ |Lm ∩ Tm|+ 1∑
t∈N\(Sr∪Lr)

xrt +
∑

t∈N\(Sm∪Lm)

xmt +
∑
t∈Sr+

(mr
t − λ3)yrt +

∑
t∈Sm+

(mm
t − λ3)ymt

+
∑
t∈Lr

(mc
t − λ3)yrt +

∑
t∈Lm

(mc
t − λ3)ymt

=
∑

t∈(N\(Sr∪Lr))∩T r

xrt +
∑

t∈(N\(Sm∪Lm))∩Tm

xmt +
∑

t∈Sr+∩T r

(mr
t − λ3)

+
∑

t∈Sm+∩Tm

(mm
t − λ3) +

∑
t∈Lr∩T r

(mc
t − λ3) +

∑
t∈Lm∩Tm

(mc
t − λ3)

=
∑

t∈N∩T r

xrt +
∑

t∈N∩Tm

xmt −
∑

t∈Sr∩T r

xrt −
∑

t∈Lr∩T r

xrt −
∑

t∈Sm∩Tm

xmt

−
∑

t∈Lm∩Tm

xmt +
∑
t∈Sr+

(mr
t − λ3) +

∑
t∈Sm+

(mm
t − λ3)−

∑
t∈Sr+\T r

(mr
t − λ3)

−
∑

t∈Sm+\Tm

(mm
t − λ3) +

∑
t∈Lr∩T r

(mc
t − λ3) +

∑
t∈Lm∩Tm

(mc
t − λ3)

≥
∑

t∈N∩T r

xrt +
∑

t∈N∩Tm

xmt −
∑

t∈Sr∩T r

mr
t −

∑
t∈Sm∩Tm

mm
t −

∑
t∈Lr∩T r

mr
t

−
∑

t∈Lm∩Tm

mm
t +

∑
t∈Sr+

(mr
t − λ3) +

∑
t∈Sm+

(mm
t − λ3)−

∑
t∈Sr+\T r

(mr
t − λ3)

−
∑

t∈Sm+\Tm

(mm
t − λ3) +

∑
t∈Lr∩T r

(mc
t − λ3) +

∑
t∈Lm∩Tm

(mc
t − λ3)

83

≥D −
∑
t∈Sr

mr
t −

∑
t∈Sm

mm
t +

∑
t∈Sr\T r

mr
t +

∑
t∈Sm\Tm

mm
t −

∑
t∈Lr∩T r

mr
t

−
∑

t∈Lm∩Tm

mm
t +

∑
t∈Sr+

(mr
t − λ3) +

∑
t∈Sm+

(mm
t − λ3)−

∑
t∈Sr+\T r

(mr
t − λ3)

−
∑

t∈Sm+\Tm

(mm
t − λ3) +

∑
t∈Lr∩T r

(mc
t − λ3) +

∑
t∈Lm∩Tm

(mc
t − λ3)

≥− λ3 +
∑

t∈Sr+\T r

mr
t +

∑
t∈Sm+\Tm

mm
t −

∑
t∈Lr∩T r

mc −
∑

t∈Lm∩Tm

mc

+
∑
t∈Sr+

(mr
t − λ3) +

∑
t∈Sm+

(mm
t − λ3)−

∑
t∈Sr+\T r

(mr
t − λ3)

−
∑

t∈Sm+\Tm

(mm
t − λ3) +

∑
t∈Lr∩T r

(mc − λ3) +
∑

t∈Lm∩Tm

(mc − λ3)

=
∑
t∈Sr+

(mr
t − λ3) +

∑
t∈Sm+

(mm
t − λ3)

− λ3 + λ3(|Sr+ \ T r|+ |Sm+ \ Tm|)− λ3(|Lr ∩ T r|+ |Lm ∩ Tm|)
=
∑
t∈Sr+

(mr
t − λ3) +

∑
t∈Sm+

(mm
t − λ3)

+ λ3
(
|Sr+ \ T r|+ |Sm+ \ Tm| − |Lr ∩ T r| − |Lm ∩ Tm| − 1

)
≥
∑
t∈Sr+

(mr
t − λ3) +

∑
t∈Sm+

(mm
t − λ3)

where the first inequality uses the properties of yrt = 1, ∀t ∈ T r, ymt = 1,

∀t ∈ Tm, xrt ≤ mr
ty
r
t and xmt ≤ mm

t y
m
t . The second inequality follows that

Sr ∩ T r = Sr \ (Sr \ T r), Sm ∩ Tm = Sm \ (Sm \ Tm) and
∑

t∈N∩T r xrt +∑
t∈N∩Tm xmt ≥ D. The third inequality uses the definition of λ3, the

fact that mr
t < mc ≤ mc

t and mm
t < mc ≤ mc

t and the properties

Sr+ ⊆ Sr and Sm+ ⊆ Sm. Lastly, the inequality holds the properties

|Sr+ \ T r|+ |Sm+ \ Tm| − |Lr ∩ T r| − |Lm ∩ Tm| − 1 ≥ 0 and λ3 > 0.

Case 3. |Sr+ \ T r| ≤ |Lr ∩ T r| and |Sm+ \ Tm| ≥ |Lm ∩ Tm|+ 1∑
t∈N\(Sr∪Lr)

xrt +
∑

t∈N\(Sm∪Lm)

xmt +
∑
t∈Sr+

(mr
t − λ3)yrt +

∑
t∈Sm+

(mm
t − λ3)ymt

+
∑
t∈Lr

(mc
t − λ3)yrt +

∑
t∈Lm

(mc
t − λ3)ymt

=
∑

t∈(N\(Sr∪Lr))∩T r

xrt +
∑

t∈(N\(Sm∪Lm))∩Tm

xmt +
∑

t∈Sr+∩T r

(mr
t − λ3)

+
∑

t∈Sm+∩Tm

(mm
t − λ3) +

∑
t∈Lr∩T r

(mc
t − λ3) +

∑
t∈Lm∩Tm

(mc
t − λ3)

84

=
∑

t∈N∩T r

xrt +
∑

t∈N∩Tm

xmt −
∑

t∈Sr∩T r

xrt −
∑

t∈Lr∩T r

xrt −
∑

t∈Sm∩Tm

xmt

−
∑

t∈Lm∩Tm

xmt +
∑
t∈Sr+

(mr
t − λ3) +

∑
t∈Sm+

(mm
t − λ3)−

∑
t∈Sr+\T r

(mr
t − λ3)

−
∑

t∈Sm+\Tm

(mm
t − λ3) +

∑
t∈Lr∩T r

(mc
t − λ3) +

∑
t∈Lm∩Tm

(mc
t − λ3)

≥
∑

t∈N∩T r

xrt +
∑

t∈N∩Tm

xmt −
∑

t∈Sr∩T r

mr
t −

∑
t∈Sm∩Tm

mm
t −

∑
t∈Lr∩T r

mr
t

−
∑

t∈Lm∩Tm

mm
t +

∑
t∈Sr+

(mr
t − λ3) +

∑
t∈Sm+

(mm
t − λ3)−

∑
t∈Sr+\T r

(mr
t − λ3)

−
∑

t∈Sm+\Tm

(mm
t − λ3) +

∑
t∈Lr∩T r

(mc
t − λ3) +

∑
t∈Lm∩Tm

(mc
t − λ3)

≥D −
∑
t∈Sr

mr
t −

∑
t∈Sm

mm
t +

∑
t∈Sr\T r

mr
t +

∑
t∈Sm\Tm

mm
t −

∑
t∈Lr∩T r

mr
t

−
∑

t∈Lm∩Tm

mm
t +

∑
t∈Sr+

(mr
t − λ3) +

∑
t∈Sm+

(mm
t − λ3)−

∑
t∈Sr+\T r

(mr
t − λ3)

−
∑

t∈Sm+\Tm

(mm
t − λ3) +

∑
t∈Lr∩T r

(mc
t − λ3) +

∑
t∈Lm∩Tm

(mc
t − λ3)

≥− λ3 +
∑

t∈Sr+\T r

mr
t +

∑
t∈Sm+\Tm

mm
t −

∑
t∈Lr∩T r

mr
t −

∑
t∈Lm∩Tm

mc

+
∑
t∈Sr+

(mr
t − λ3) +

∑
t∈Sm+

(mm
t − λ3)−

∑
t∈Sr+\T r

(mc − λ3)

−
∑

t∈Sm+\Tm

(mm
t − λ3) +

∑
t∈Lr∩T r

(mc − λ3) +
∑

t∈Lm∩Tm

(mc − λ3)

=
∑
t∈Sr+

(mr
t − λ3) +

∑
t∈Sm+

(mm
t − λ3) + (mc −mr

t − λ3) |Lr ∩ T r|

− (mc −mr
t − λ3) |Sr+ \ T r| − λ3 + λ3|Sm+ \ Tm| − λ3|Lm ∩ Tm|

=
∑
t∈Sr+

(mr
t − λ3) +

∑
t∈Sm+

(mm
t − λ3)

+ (mc −mr
t − λ3)

(
|Lr ∩ T r| − |Sr+ \ T r|

)
+ λ3

(
|Sm+ \ Tm| − |Lm ∩ Tm| − 1

)
≥
∑
t∈Sr+

(mr
t − λ3) +

∑
t∈Sm+

(mm
t − λ3)

where the first inequality follows the properties of yrt = 1, ∀t ∈ T r,

ymt = 1, ∀t ∈ Tm, xrt ≤ mr
ty
r
t and xmt ≤ mm

t y
m
t . The second inequality

uses Sr∩T r = Sr\(Sr\T r), Sm∩Tm = Sm\(Sm\Tm) and
∑

t∈N∩T r xrt+∑
t∈N∩Tm xmt ≥ D. Next, the third inequality follows the definition of λ3

and the fact that mr
t < mc ≤ mc

t and mm
t < mc ≤ mc

t and the properties

Sr+ ⊆ Sr and Sm+ ⊆ Sm. Finally, the last inequality makes use of the

85

properties |Lr ∩ T r| − |Sr+ \ T r| ≥ 0, |Sm+ \ Tm| − |Lm ∩ Tm| − 1 ≥ 0,

mc −mr
t ≥ λ3 and λ3 > 0 hold true.

Case 4. |Sr+ \ T r| ≥ |Lr ∩ T r|+ 1 and |Sm+ \ Tm| ≤ |Lm ∩ Tm|∑
t∈N\(Sr∪Lr)

xrt +
∑

t∈N\(Sm∪Lm)

xmt +
∑
t∈Sr+

(mr
t − λ3)yrt +

∑
t∈Sm+

(mm
t − λ3)ymt

+
∑
t∈Lr

(mc
t − λ3)yrt +

∑
t∈Lm

(mc
t − λ3)ymt∑

t∈(N\(Sr∪Lr))∩T r

xrt +
∑

t∈(N\(Sm∪Lm))∩Tm

xmt +
∑

t∈Sr+∩T r

(mr
t − λ3)

+
∑

t∈Sm+∩Tm

(mm
t − λ3) +

∑
t∈Lr∩T r

(mc
t − λ3) +

∑
t∈Lm∩Tm

(mc
t − λ3)

=
∑

t∈N∩T r

xrt +
∑

t∈N∩Tm

xmt −
∑

t∈Sr∩T r

xrt −
∑

t∈Lr∩T r

xrt −
∑

t∈Sm∩Tm

xmt

−
∑

t∈Lm∩Tm

xmt +
∑
t∈Sr+

(mr
t − λ3) +

∑
t∈Sm+

(mm
t − λ3)−

∑
t∈Sr+\T r

(mr
t − λ3)

−
∑

t∈Sm+\Tm

(mm
t − λ3) +

∑
t∈Lr∩T r

(mc
t − λ3) +

∑
t∈Lm∩Tm

(mc
t − λ3)

≥
∑

t∈N∩T r

xrt +
∑

t∈N∩Tm

xmt −
∑

t∈Sr∩T r

mr
t −

∑
t∈Sm∩Tm

mm
t −

∑
t∈Lr∩T r

mr
t

−
∑

t∈Lm∩Tm

mm
t +

∑
t∈Sr+

(mr
t − λ3) +

∑
t∈Sm+

(mm
t − λ3)−

∑
t∈Sr+\T r

(mr
t − λ3)

−
∑

t∈Sm+\Tm

(mm
t − λ3) +

∑
t∈Lr∩T r

(mc
t − λ3) +

∑
t∈Lm∩Tm

(mc
t − λ3)

≥D −
∑
t∈Sr

mr
t −

∑
t∈Sm

mm
t +

∑
t∈Sr\T r

mr
t +

∑
t∈Sm\Tm

mm
t −

∑
t∈Lr∩T r

mr
t

−
∑

t∈Lm∩Tm

mm
t +

∑
t∈Sr+

(mr
t − λ3) +

∑
t∈Sm+

(mm
t − λ3)−

∑
t∈Sr+\T r

(mr
t − λ3)

−
∑

t∈Sm+\Tm

(mm
t − λ3) +

∑
t∈Lr∩T r

(mc
t − λ3) +

∑
t∈Lm∩Tm

(mc
t − λ3)

≥− λ3 +
∑

t∈Sr+\T r

mr
t +

∑
t∈Sm+\Tm

mm
t −

∑
t∈Lr∩T r

mc −
∑

t∈Lm∩Tm

mm
t

+
∑
t∈Sr+

(mr
t − λ3) +

∑
t∈Sm+

(mm
t − λ3)−

∑
t∈Sr+\T r

(mr
t − λ3)

−
∑

t∈Sm+\Tm

(mc − λ3) +
∑

t∈Lr∩T r

(mc − λ3) +
∑

t∈Lm∩Tm

(mc − λ3)

=
∑
t∈Sr+

(mr
t − λ3) +

∑
t∈Sm+

(mm
t − λ3)− λ3 + λ3|Sr+ \ T r| − λ3|Lr ∩ T r|

+ (mc −mm
t − λ3) |Lm ∩ Tm| − (mc −mm

t − λ3) |Sm+ \ Tm|

86

=
∑
t∈Sr+

(mr
t − λ3) +

∑
t∈Sm+

(mm
t − λ3) + λ3

(
|Sr+ \ T r| − |Lr ∩ T r| − 1

)
+ (mc −mm

t − λ3)
(
|Lm ∩ Tm| − |Sm+ \ Tm|

)
≥
∑
t∈Sr+

(mr
t − λ3) +

∑
t∈Sm+

(mm
t − λ3)

where the first inequality follows the properties of yrt = 1, ∀t ∈ T r,

ymt = 1, ∀t ∈ Tm, xrt ≤ mr
ty
r
t and xmt ≤ mm

t y
m
t . Next, by using Sr ∩

T r = Sr \ (Sr \ T r), Sm ∩ Tm = Sm \ (Sm \ Tm) and
∑

t∈N∩T r xrt +∑
t∈N∩Tm xmt ≥ D, we obtain the second inequality. The third inequality

follows the definition of λ3 and and the fact that mr
t < mc ≤ mc

t and

mm
t < mc ≤ mc

t and the properties Sr+ ⊆ Sr and Sm+ ⊆ Sm. The

properties |Sr+ \ T r| − |Lr ∩ T r| − 1 ≥ 0, |Lm ∩ Tm| − |Sm+ \ Tm| ≥ 0,

mc −mm
t ≥ λ and λ3 > 0 are used to generate the last inequality.

Note that the extended version of the following inequalities is valid for conv(Xs)

however, it is not facet-defining. To conclude this section, we note that the feasible

region of the basic formulation for ELSRs is now updated with additional flow cover

inequalities and hence can be written as:

Xss
fc = {(xr, xm, yr, ym, Ir, Is)|(1.8), (1.9), (1.11)− (1.15), (3.1)− (3.4),

(4.7)− (4.12)}

with the objective function Zssfc = min {(1.7)|(xr, xm, yr, ym, Ir, Is) ∈ Xs}. In the

next section, we will discuss the separation procedures for all proposed valid in-

equalities.

4.4 The Separation Problems for conv(Xs)

In order to use class of valid inequalities in a cutting plane algorithm, one needs

a separation algorithm. Given a solution to the linear relaxation of (`, S) − like
inequalities, (xr∗, xm∗, yr∗, ym∗, Ir∗, Is∗) ∈ Xss

LS, we can either finding an inequality

from the class violated by the solution or proving that all inequalities from the class

are satisfied by the given solution.

This section provides the exact separation algorithms for valid inequalities de-

scribed in the previous sections. These separation algorithms are then compu-

tationally tested to examine the strength of the violated cuts generated by each

inequality rather than their computational efficiency. We note that without loss of

generality, all problem parameters are assumed to be integer valued.

Firstly, we discuss the separation algorithms of the flow cover inequalities for

the case ≤ described by (4.7). Generally, there are two ways of generating the

most violated inequalities; either define the objective function as a minimization

87

problem as studied by Padberg et al. (1985) or alternatively as a maximization

problem discussed by Doostmohammadi (2014).

In this study, we rewrite the inequality (4.7) as a maximization problem.∑
t∈Sr

(
xrt + (mr

t − λ1)+(1− yrt)
)
≤ R,

where Sr is a cover with λ1 > 0. Then, we solve the following knapsack problem

in order to find the most violated inequalities that cuts off the fractional points

(xr∗, xm∗, yr∗, ym∗, Ir∗, Is∗),

f r = max

{∑
t∈N

ϕt(λ1)u
r
t |
∑
t∈N

mr
tu
r
t = R+ λ1; u

r
t ∈ {0, 1} , ∀t ∈ N

}
,

where ϕt(λ1) = xr∗t + (mr
t − λ1)+(1 − yr∗t), the urt variable ensures the set Sr 6= ∅

such that

urt =

{
1, the period, t belongs to Sr

0, otherwise

and λ1 ∈ [1,
∑
t∈Sr

mr
t − R]. From this, we test whether f r > R as to find the most

violated inequality.

Next, the inequality (4.8) can be rewritten as:∑
t∈Sr

(
xrt + (mr

t − λ1)+(1− yrt)
)

+
∑
t∈Lr

(
xrt − (mr

t − λ1)yrt
)
≤ R,

which is the extension of the flow cover inequalities (4.7). In order to find the most

violated (Sr, Lr) flow cover facet, one can define the set Lr as:

Lr =
{
t ∈ N \ Sr|xr∗t − (mr

t − λ1)yr∗t > 0
}

such that mr
t ≥ λ1.

The similar approach as discussed previously can be applied for the case of ≥,

described by (4.9). This inequality can be rewriten as follows:∑
t∈Sm

(
xmt + (mm

t − λ2)+(1− ymt)
)
≤
∑
t∈N

xmt ,

where Sm is a cover with λ2 > 0. For a given value λ2, the most violated inequalities

that cuts off the fractional solutions (xr∗, xm∗, yr∗, ym∗, Ir∗, Is∗) can be obtained by

solving the following knapsack problem:

fm = max

{∑
t∈Sm

τt(λ2)u
m
t |
∑
t∈N

mm
t u

m
t = (D −R) + λ2; u

m
t ∈ {0, 1} , ∀t ∈ N

}
,

88

where τt(λ2) = xm∗t + (mm
t − λ2)+(1 − ym∗t), the umt is the decision variable that

determine the number of elements in the set Sm.

The first constraint indicates that the cover set Sm must be at least (D − R).

Then, the most violated inequality can be found if and only if fm >
∑

t∈N x
m∗
t such

that λ2 ∈ [1,
∑

t∈Sm mm
t − (D − R)]. Next, we rewrite its extended of flow cover

inequality (4.10) as:∑
t∈Sm

(
xmt + (mm

t − λ2)+(1− ymt)
)

+
∑
t∈Lm

(
xmt − (mm

t − λ2)ymt
)
≤
∑
t∈N

xmt

The most violated (Sm, Lm) flow cover facet can be found by defining the set Lm

as:

Lm =
{
t ∈ N \ Sm|xm∗t − (mm

t − λ2)ym∗t > 0
}

such that mm
t ≥ λ2.

For the separation algorithms for ≥, defined by (4.11), we can rewrite it as:∑
t∈Sr

xrt +
∑
t∈Sm

xmt −
∑
t∈Sr+

(mr
t − λ3)yrt −

∑
t∈Sm+

(mm
t − λ3)ymt

+
∑
t∈Sr+

(mr
t − λ3) +

∑
t∈Sm+

(mm
t − λ3) ≤

∑
t∈N

(xrt + xmt),

where Sr and Sm are a pair cover with λ3 > 0. For a given value of λ3, we can

solve the following knapsack problem to obtain the most violated inequalities that

cuts off the fractional solutions (xr∗, xm∗, yr∗, ym∗, Ir∗, Is∗).

f c = max

{∑
t∈Sr

τ ′t(λ3)u
r
t +

∑
t∈Sm

τ ′′t (λ3)u
m
t |
∑
t∈N

(mr
tu
r
t +mm

t u
m
t) = D + λ3;

urt + umt = 1; urt ∈ {0, 1} , umt ∈ {0, 1} , ∀t ∈ N} ,

where τ ′t(λ3) = xr∗t +(mr
t−λ3)+(1−yr∗t) and τ ′′t (λ3) = xm∗t +(mm

t −λ3)+(1−ym∗t) and

λ3 ∈ [1,
∑

t∈Sr mr
t +
∑

t∈Sm mm
t −D]. The decision variables, urt and umt determine

the number of elements in the sets Sr and Sm, respectively.

The first constraint denotes that the pair cover set, Sr and Sm must be at

least D. The second constraint ensures only a single production will take place

at a particular period t. From this, if f c >
∑

t∈N (xr∗t + xm∗t), then we can obtain

the most violated inequalities. Lastly, as for the extended of flow cover inequality

89

(4.12), we can rewrite it as:∑
t∈Sr

xrt +
∑
t∈Sm

xmt −
∑
t∈Sr+

(mr
t − λ3)yrt −

∑
t∈Sm+

(mm
t − λ3)ymt

+
∑
t∈Sr+

(mr
t − λ3) +

∑
t∈Sm+

(mm
t − λ3)−

∑
t∈Lr

(
xrt − (mc

t − λ3)yrt
)

−
∑
t∈Lm

(
xmt − (mc

t − λ3)ymt
)
≤
∑
t∈N

(xrt + xmt)

In order to find the most violated flow cover facet, the sets Lr and Lm are defined

as follows.

Lr =
{
t ∈ N \ Sr|xr∗t − (mc

t − λ3)yr∗t > 0
}

Lm =
{
t ∈ N \ Sm|xm∗t − (mc

t − λ3)ym∗t > 0
}

such that mc
t ≥ λ3.

In the next section, we will run computational experiments for testing their

effectiveness as cutting planes when incorporated in a Branch-and-Cut algorithm

and compare with other MIP formulations proposed in Chapter 3.

4.5 Preliminary Computational Results

This section provides computational comparisons of the strength of the various cuts

proposed in this chapter (i.e., flow cover inequalities with embedded (`, S) − like
inequalities) and the MIP formulations (i.e., FL reformulation and the (`, S)− like
inequalities addressed in Chapter 3). All the separation algorithms and mathemati-

cal models are implemented and solved using the Mosel modelling language version

7.7 of FICO (R) Xpress Optimization Suite on a PC with Intel (R) Core(TM)

i7-4500U CPU 2.40 GHz processor and 8 GB RAM with no solver cuts.

To test the effectiveness of the cuts proposed, a of 540 random test instances are

generated. In this study, we consider low, medium and high return variabilities.

The return parameters, rt, are generated randomly between the intervals of [5, 15],

[5, 35] and [5, 50] and the demand parameters, dt , take values between [10, 60]. This

results in 15 demand-returns data sets, where three possible parameter settings are

replicated 5 times.

We note that the exact separation algorithms can be excessively time-consuming

when the problem size gets larger; therefore, we consider small planning horizons of

n = 2, 4, 6, 8 and 12. We also consider all test instances with a large period of 24

in order to observe the effectiveness of the cuts generated with the short periods.

In contrast to Chapter 3, we assume that the setup costs for remanufacturing

are at the most equal to the setup costs for manufacturing, Kr
t ≤ Km

t , ∀t ∈ N.

This assumption is also stated in Piñeyro and Viera (2012) as in practice, the

remanufacturing of used products is economically preferred over the production of

90

new products due to the energy and raw materials savings from remanufacturing

activity. Additionally, when the setup costs for remanufacturing are kept as low

as possible compared to those for manufacturing, the chances of remanufacturing

to occur is potentially high. In this study, the setup costs for remanufacturing

range from 10, 30, 50, 90 and 200, up to a maximum of 500, which is equal to the

setup costs for manufacturing. The holding costs for both product returns, hrt , and

serviceable products, hst , take values between [0.5, 2] and no production costs for

either remanufacturing and manufacturing processes are considered. The variation

of n and setup costs results in 36 different combinations.

Tables 4.5.1 - 4.5.3 present the computational results for low, medium and high

returns variabilities. The details of the tables are as follows.

• The first column lists the six tested periods, n .

• The second colum provides the variants of setup costs for Remanufacturing.

• The next column represents the average percentage of the initial integrality

gap of the LP relaxation at the root node. If all test instances are solved to

optimality by all methods, the rows where the initial integrality gap is zero

are omitted.

• This is followed by the average percentage of gap closed by Facility Location

reformulation and (`, S) − like inequalities. Note that the percentage of gap

closed for all test instances provided by FL is the same for MC and SP refor-

mulation techniques.

• Then, we present the average percentage of gap closed of (`, S) − like with

the addition of the Flow Cover inequalities defined earlier. The average total

number of cuts generated by flow cover inequalities are also included and

arranged in the following order: eturns cover (4.7), Returns-Extended cover

(4.8), Demands cover (4.9), Demands-Extended cover (4.10), Returns-and-

Demands cover (4.11) and Returns-and-Demands-Extended cover (4.12).

• The last two columns denote the pairwise comparison of the average percent-

age of gap closed between the (`, S) − like + FC inequalities vs (`, S) − like
inequalities and between the (`, S) − like + FC inequalities vs FL. Similar

to Chapter 3, the “(`, S) − like + FC vs (`, S) − like” represents how much

improvement of the average percentage of gap closed provided by flow cover

inequalities improves the average percentage of gap closed of (`, S)− like in-

equalities. The average improvement of gap closed (%) can be defined as:

AI (%)=
(`, S)− like+ FC gap closed− (`, S)− like gap closed

(`, S)− like + FC gap closed
× 100

The “(`, S)− like + FC vs FL” is interpreted in a similar manner.

According to Tables 4.5.1 - 4.5.3, the average percentage of gap closed for all

formulations deteriorates gradually from low returns to high returns. The cuts

91

T
ab

le
4.

5.
1:

[L
o
w

re
tu

rn
]

C
om

p
u
ta

ti
on

a
l

co
m

p
a
ri

so
n
s

o
f

th
e

st
re

n
g
th

o
f

d
iff

er
en

t
so

lu
ti

o
n

te
ch

n
iq

u
es

fo
r

E
L

S
R

s
p
ro

b
le

m

n
R

R
o
o
t
n
o
d
e
(%

)

A
v
er
a
g
e
o
f
g
a
p
cl
o
se
d
(%

)
P
a
ir
w
is
e
co

m
p
a
ri
so
n
s
o
f
a
v
er
a
g
e
g
a
p
cl
o
se
d
(%

)

F
L

(l
,s
)-
li
k
e

(l
,s
)-
li
k
e
+

F
C

A
v
er
a
g
e
#

o
f
cu

ts
g
en

er
a
te
d

(l
,s
)-
li
k
e+

F
C

v
s
(l
,s
)

(l
,s
)-
li
k
e+

F
C

v
s
F
L

R
R
E

D
D
E

R
D

R
D
E

2

1
0

2
8
.8
5
4
1

3
1
.4
3
2
8

3
1
.4
3
2
8

9
9
.8
5
2
9

0
0

2
0

1
0

6
8
.5
0
7
2

6
8
.5
0
7
2

3
0

2
6
.5
2
2
8

4
0
.6
8
7
2

4
0
.6
8
7
2

1
0
0

0
0

2
0

1
0

5
9
.3
1
2
8

5
9
.3
1
2
8

5
0

2
2
.7
8
9
0

5
0
.0
4
7
5

5
0
.0
4
7
5

1
0
0

0
0

2
0

2
0

4
9
.9
5
2
5

4
9
.9
5
2
5

9
0

1
4
.1
0
7
8

6
6
.7
9
0
7

6
6
.7
9
0
7

1
0
0

0
0

2
0

2
0

3
3
.2
0
9
3

3
3
.2
0
9
3

2
0
0

0
.9
2
7
3

1
0
0

1
0
0

1
0
0

0
0

0
0

0
0

0
0

4

1
0

2
3
.9
9
3
1

3
9
.0
9
4
8

3
9
.0
9
4
8

8
9
.6
0
3
1

0
0

3
0

1
0

5
6
.5
6
7
9

5
6
.5
6
7
9

3
0

2
3
.5
8
2
2

5
9
.2
9
0
5

5
9
.1
9
5
7

9
8
.6
0
8
7

0
0

3
0

1
0

3
9
.8
8
8
2

3
9
.7
9
0
4

5
0

2
1
.8
9
9
4

7
5
.8
5
8
0

7
5
.6
0
5
0

9
9
.5
0
7
0

0
0

3
0

1
0

2
4
.0
8
4
8

2
3
.8
3
1
8

9
0

1
9
.3
7
0
9

9
4
.4
1
4
4

9
4
.1
6
5
5

9
9
.8
6
8
6

0
0

2
0

0
0

5
.7
2
3
0

5
.4
7
4
1

2
0
0

1
2
.2
5
5
4

1
0
0

1
0
0

1
0
0

0
0

0
0

0
0

0
0

5
0
0

6
.3
2
3
2

1
0
0

1
0
0

1
0
0

0
0

0
0

0
0

0
0

6

1
0

3
5
.0
9
5
7

7
0
.9
8
8
1

7
0
.8
8
2
5

7
6
.6
8
5
3

0
0

3
4

0
0

7
.7
2
6
7

7
.5
9
1
1

3
0

3
4
.9
7
3
7

7
9
.5
1
5
0

7
9
.0
4
5
7

8
3
.9
5
3
5

0
1

3
4

0
0

5
.9
7
4
1

5
.4
2
3
8

5
0

3
4
.7
5
7
7

8
5
.1
4
8
2

8
4
.3
0
8
5

8
8
.3
9
0
8

1
1

2
2

0
0

4
.6
5
2
2

3
.7
0
9
0

9
0

3
3
.7
0
8
6

9
0
.1
6
5
8

8
9
.0
8
4
8

9
3
.2
1
8
2

2
3

0
2

0
0

4
.4
5
9
5

3
.3
2
1
4

2
0
0

2
8
.8
8
8
7

9
8
.8
4
6
2

9
8
.5
5
3
0

9
9

0
1

0
0

0
0

0
.6
4
6
0

0
.3
4
0
1

5
0
0

2
1
.5
0
6
6

1
0
0

1
0
0

1
0
0

0
0

0
0

0
0

0
0

8

1
0

3
9
.8
1
3
1

7
0
.8
5
1
6

7
0
.8
0
5
0

7
2
.5
5
9
1

0
0

3
6

0
0

2
.9
4
6
1

2
.8
8
0
2

3
0

3
8
.6
1
7
2

7
7
.0
9
8
6

7
6
.9
2
5
0

7
8
.2
5
6
7

0
0

3
6

0
0

1
.9
5
9
3

1
.7
4
0
0

5
0

3
7
.0
7
9
4

8
2
.2
8
8
4

8
1
.9
7
1
4

8
3
.0
4
5
0

1
2

5
5

0
0

1
.3
8
7
3

1
.0
0
8
2

9
0

3
5
.3
5
5
1

8
6
.9
7
6
6

8
6
.7
0
5
8

8
7
.5
6
3
8

2
3

1
4

0
0

1
.0
2
7
7

0
.7
2
2
6

2
0
0

3
2
.8
6
4
3

9
0
.4
0
9
3

9
0
.3
4
1
4

9
1

1
6

1
4

0
0

0
.6
7
8
1

0
.6
0
3
5

5
0
0

2
4
.7
7
0
5

9
7
.0
6
4
4

9
6
.9
7
7
2

9
7

0
0

0
0

0
0

0
.0
7
8
5

-0
.0
1
3
1

1
2

1
0

5
3
.6
1
0
0

6
9
.2
9
2
6

6
9
.1
8
8
6

6
9
.4
4
4
4

0
0

1
2

0
0

0
.4
3
2
1

0
.2
6
5
3

3
0

5
2
.3
5
2
1

7
5
.3
8
8
6

7
4
.9
9
8
6

7
5
.1
3
7
8

0
0

0
2

0
0

0
.2
1
3
9

-0
.3
4
7
6

5
0

5
0
.9
6
8
4

7
9
.5
7
9
5

7
8
.8
5
4
4

7
8
.9
2
2
8

0
0

0
2

0
0

0
.1
0
1
0

-0
.9
0
3
1

9
0

4
8
.4
0
5
2

8
4
.4
1
3
5

8
3
.1
7
5
4

8
3
.1
7
9
2

0
0

0
0

0
0

0
.0
0
5
3

-1
.6
1
9
4

2
0
0

4
2
.8
5
2
5

9
0
.6
7
9
8

8
9
.1
1
2
1

8
9
.1
2
3
2

0
1

0
0

0
0

0
.0
1
1
6

-1
.8
4
6
2

5
0
0

3
4
.2
9
7
6

9
4
.4
1
6
3

9
3
.2
6
8
6

9
3
.2
6
8
6

0
0

0
0

0
0

0
-1
.2
6
9
3

2
4

1
0

6
4
.8
1
7
5

8
2
.1
3
9
3

8
2
.0
6
5
3

8
2
.0
6
5
3

0
0

1
0

0
0

0
-0
.0
9
1
5

3
0

6
4
.4
9
9
4

8
6
.5
8
9
3

8
6
.2
0
0
9

8
6
.2
0
0
9

0
0

1
1

0
0

0
-0
.4
5
8
0

5
0

6
3
.9
9
0
0

8
8
.8
3
3
6

8
8
.2
4
2
9

8
8
.2
4
2
9

0
0

0
1

0
0

0
-0
.6
7
8
7

9
0

6
2
.4
3
7
2

9
1
.6
9
1
5

9
0
.9
1
9
7

9
0
.9
1
9
7

0
0

0
0

0
0

0
-0
.8
5
3
2

2
0
0

5
9
.4
0
0
3

9
3
.5
6
0
4

9
2
.2
2
8
0

9
2
.2
2
8
0

0
0

0
0

0
0

0
-1
.4
5
7
5

5
0
0

5
2
.1
8
2
9

9
4
.7
7
1
7

9
2
.6
1
8
7

9
2
.6
1
8
7

0
0

0
0

0
0

0
-2
.3
3
0
8

A
v
e
r
a
g
e

2
9
.9
7
2
7

7
7
.9
5
1
0

7
7
.6
3
3
6

9
0
.9
1
2
3

0
0

1
1

0
0

1
3
.7
2
4
7

1
3
.3
4
8
3

92

T
ab

le
4.

5.
2:

[M
e
d
iu

m
re

tu
rn

]
C

om
p
u
ta

ti
o
n
a
l

co
m

p
a
ri

so
n
s

o
f

th
e

st
re

n
g
th

o
f

d
iff

er
en

t
so

lu
ti

o
n

te
ch

n
iq

u
es

fo
r

E
L

S
R

s
p
ro

b
le

m

n
R

R
o
o
t
n
o
d
e
(%

)

A
v
er
a
g
e
o
f
g
a
p
cl
o
se
d
(%

)
P
a
ir
w
is
e
co

m
p
a
ri
so
n
s
o
f
a
v
er
a
g
e
g
a
p
cl
o
se
d
(%

)

F
L

(l
,s
)-
li
k
e

(l
,s
)-
li
k
e
+

F
C

A
v
er
a
g
e
#

o
f
cu

ts
g
en

er
a
te
d

(l
,s
)-
li
k
e+

F
C

v
s
(l
,s
)-
li
k
e

(l
,s
)-
li
k
e+

F
C

v
s
F
L

R
R
E

D
D
E

R
D

R
D
E

2

1
0

4
5
.0
9
5
0

2
6
.9
0
7
5

2
6
.9
0
7
5

9
4
.4
6
1
1

0
0

2
0

0
0

7
2
.5
7
8
6

7
2
.5
7
8
6

3
0

4
2
.8
8
6
4

3
1
.1
8
3
5

3
1
.1
8
3
5

9
5
.2
7
6
7

0
0

2
0

0
0

6
8
.3
4
1
2

6
8
.3
4
1
2

5
0

4
0
.2
3
8
6

3
4
.7
2
0
7

3
4
.7
2
0
7

9
6
.4
2
7
0

0
0

2
0

0
0

6
4
.7
3
8
9

6
4
.7
3
8
9

9
0

3
2
.8
7
3
3

4
0
.3
5
3
7

4
0
.3
5
3
7

9
8
.5
0
5
1

0
0

2
0

0
0

5
9
.2
8
2
1

5
9
.2
8
2
1

2
0
0

1
5
.9
2
2
3

7
8
.7
2
1
5

7
8
.7
2
1
5

1
0
0

0
0

1
0

0
0

2
1
.2
7
8
6

2
1
.2
7
8
6

4

1
0

4
9
.7
4
0
3

3
5
.3
9
6
8

3
5
.3
9
6
8

6
8
.0
1
7
3

0
0

2
1

0
0

5
2
.1
3
6
7

5
2
.1
3
6
7

3
0

4
7
.6
4
9
4

4
6
.0
0
1
1

4
6
.0
0
1
1

7
4
.8
1
8
2

0
0

2
1

0
0

4
0
.7
6
4
4

4
0
.7
6
4
4

5
0

4
5
.2
4
0
8

5
3
.6
3
1
7

5
3
.6
2
6
7

8
0
.5
7
1
7

0
0

2
1

0
0

3
4
.9
5
5
0

3
4
.9
4
9
2

9
0

4
0
.3
6
1
4

5
8
.9
1
5
1

5
8
.3
0
8
7

9
0
.0
0
6
0

1
1

2
1

0
0

2
7
.1
5
2
4

2
6
.3
6
9
5

2
0
0

2
9
.4
1
8
9

9
1
.5
9
8
8

9
0
.6
7
5
0

9
7

0
0

1
0

0
0

6
.9
6
0
8

5
.8
7
2
6

5
0
0

3
.2
0
8
8

1
0
0

1
0
0

1
0
0

0
0

0
0

0
0

0
0

6

1
0

4
9
.3
5
9
9

4
9
.9
7
5
8

4
9
.3
4
8
0

6
0
.1
8
8
3

0
0

2
5

0
0

1
9
.6
7
3
7

1
8
.4
4
8
8

3
0

4
7
.9
1
5
4

5
9
.4
0
9
6

5
7
.2
1
9
3

6
7
.6
2
4
1

0
0

2
6

0
0

1
6
.8
4
2
9

1
3
.3
0
6
1

5
0

4
6
.4
7
1
7

6
6
.3
1
0
7

6
3
.0
3
5
8

7
2
.9
7
0
6

0
0

2
6

0
0

1
4
.7
8
9
2

9
.9
2
7
7

9
0

4
3
.8
0
3
5

7
7
.6
0
2
5

7
4
.6
4
3
5

8
2
.3
3
0
2

0
0

2
5

0
0

1
0
.0
4
9
3

6
.1
4
4
6

2
0
0

3
6
.0
3
2
3

8
9
.7
1
5
1

8
9
.0
0
2
8

9
1
.4
1
5
6

0
1

1
0

0
0

3
.0
1
2
8

2
.1
3
4
3

5
0
0

2
4
.3
1
9
7

9
8
.7
4
9
8

9
8
.7
4
9
8

1
0
0

1
1

0
0

0
0

1
.2
5
0
2

1
.2
5
0
2

8

1
0

5
4
.8
3
2
7

5
6
.2
9
4
2

5
5
.9
6
0
5

6
7
.5
8
7
5

0
0

5
6

0
0

1
9
.9
8
7
2

1
9
.2
3
9
4

3
0

5
2
.2
1
7
8

6
4
.0
2
2
0

6
3
.1
2
0
7

7
2
.3
1
6
8

0
0

4
5

0
0

1
4
.8
9
3
4

1
3
.2
5
1
1

5
0

4
9
.9
5
3
0

6
9
.0
4
7
4

6
8
.2
9
4
7

7
6
.2
6
3
5

0
0

5
5

0
0

1
1
.8
0
0
3

1
0
.3
6
8
7

9
0

4
6
.1
3
5
6

7
6
.6
4
4
9

7
5
.2
3
4
1

7
7
.4
5
7
7

1
2

3
3

0
0

3
.2
1
5
0

0
.7
0
5
7

2
0
0

3
8
.4
0
8
1

8
3
.8
1
0
8

8
1
.8
5
1
8

8
3
.2
4
4
5

1
1

1
2

0
0

1
.6
4
1
5

-1
.1
5
2
0

5
0
0

2
6
.3
7
9
4

9
1
.7
4
4
2

9
0
.9
5
8
9

9
2
.2
8
1
5

1
0

0
1

0
0

1
.3
5
4
2

0
.4
7
8
8

1
2

1
0

5
9
.2
9
9
9

5
2
.0
5
9
0

5
0
.4
9
1
1

5
1
.8
3
4
2

0
0

2
6

0
0

3
.7
0
6
9

1
.2
0
0
9

3
0

5
7
.5
0
2
1

5
9
.1
3
5
4

5
8
.4
8
4
7

6
0
.3
0
8
1

0
0

2
8

0
0

3
.6
5
3
9

2
.6
0
5
5

5
0

5
6
.0
0
8
3

6
4
.7
9
8
5

6
3
.6
0
3
1

6
4
.9
2
5
9

0
0

2
8

0
0

2
.4
4
2
2

0
.5
6
1
9

9
0

5
3
.6
2
7
9

7
1
.6
3
6
9

6
8
.8
3
7
4

6
9
.5
9
9
6

0
0

1
7

0
0

1
.2
3
8
8

-3
.0
7
7
9

2
0
0

4
6
.4
3
7
7

8
3
.4
9
2
9

7
8
.5
0
3
1

7
9
.4
3
2
2

0
0

0
5

0
0

1
.1
8
3
6

-5
.6
4
3
7

5
0
0

3
4
.2
8
9
5

9
0
.1
2
0
8

8
7
.3
7
6
0

8
7
.6
7
7
1

0
1

0
2

0
0

0
.3
3
3
9

-2
.8
0
6
1

2
4

1
0

6
6
.9
4
2
6

6
1
.7
0
8
5

6
1
.5
3
3
0

6
1
.7
0
1
2

0
0

0
5

0
0

0
.3
1
0
2

0
.0
0
7
2

3
0

6
6
.8
3
6
9

6
8
.2
6
3
0

6
7
.7
3
7
1

6
7
.8
6
0
8

0
0

0
5

0
0

0
.2
0
0
6

-0
.6
0
9
9

5
0

6
6
.4
1
1
8

7
2
.7
9
6
4

7
1
.4
2
2
2

7
1
.5
1
2
1

0
0

0
7

0
0

0
.1
3
8
3

-1
.8
8
2
8

9
0

6
4
.8
1
5
3

7
9
.3
8
8
5

7
6
.8
1
7
3

7
6
.8
5
1
6

0
0

0
5

0
0

0
.0
4
7
2

-3
.3
8
3
3

2
0
0

6
1
.4
9
3
8

8
5
.6
7
8
0

8
2
.2
3
8
1

8
2
.2
3
8
1

0
0

0
0

0
0

0
-4
.2
3
9
4

5
0
0

5
3
.9
1
9
7

9
0
.1
6
9
1

8
7
.9
0
5
1

8
7
.9
1
2
3

0
0

0
1

0
0

0
.0
0
8
4

-2
.5
9
3
1

A
v
e
r
a
g
e

4
1
.7
0
1
1

6
4
.8
1
2
6

6
3
.7
6
6
3

8
1
.6
4
8
4

0
0

1
3

0
0

2
1
.2
1
6
7

1
9
.6
8
3
3

93

T
ab

le
4.

5.
3:

[H
ig

h
re

tu
rn

]
C

om
p
u
ta

ti
on

a
l

co
m

p
a
ri

so
n
s

o
f

th
e

st
re

n
g
th

o
f

d
iff

er
en

t
so

lu
ti

o
n

te
ch

n
iq

u
es

fo
r

E
L

S
R

s
p
ro

b
le

m

n
R

R
o
o
t
n
o
d
e
(%

)

A
v
er
a
g
e
o
f
g
a
p
cl
o
se
d
(%

)
P
a
ir
w
is
e
co

m
p
a
ri
so
n
s
o
f
a
v
er
a
g
e
g
a
p
cl
o
se
d
(%

)

F
L

(l
,s
)-
li
k
e

(l
,s
)-
li
k
e
+

F
C

A
v
er
a
g
e
#

o
f
cu

ts
g
en

er
a
te
d

(l
,s
)-
li
k
e+

F
C

v
s
(l
,s
)-
li
k
e

(l
,s
)-
li
k
e+

F
C

v
s
F
L

R
R
E

D
D
E

R
D

R
D
E

2

1
0

5
7
.5
8
7
6

2
4
.5
6
4
9

2
4
.5
6
4
9

7
9
.4
0
2
5

0
0

1
0

0
0

7
1
.2
8
8
5

7
1
.2
8
8
5

3
0

5
4
.3
9
1
7

2
7
.2
0
9
3

2
7
.2
0
9
3

8
0
.5
0
2
0

0
0

1
0

0
0

6
9
.1
7
5
3

6
9
.1
7
5
3

5
0

5
1
.1
9
7
3

2
9
.2
5
9
0

2
9
.2
5
9
0

8
0
.5
2
3
1

0
0

1
0

0
0

6
6
.8
0
8
8

6
6
.8
0
8
8

9
0

4
4
.7
5
9
8

3
1
.1
0
9
4

3
1
.1
0
9
4

8
0
.7
8
5
6

0
0

1
0

0
0

6
4
.2
2
0
8

6
4
.2
2
0
8

2
0
0

2
2
.2
7
5
4

3
7
.5
0
5
1

3
7
.5
0
5
1

8
9
.1
5
8
4

0
0

1
0

0
0

3
9
.0
2
9
0

5
9
.0
2
9
0

4

1
0

5
5
.3
9
9
2

3
2
.8
3
9
8

3
2
.2
4
8
3

5
5
.2
6
8
1

0
0

2
1

0
0

4
8
.4
3
3
7

4
7
.3
8
2
3

3
0

5
2
.6
5
6
9

4
1
.0
8
2
0

4
1
.0
0
2
4

6
2
.1
7
9
8

0
0

2
1

0
0

3
8
.0
7
6
8

3
7
.9
5
3
3

5
0

5
0
.3
6
7
8

4
6
.6
7
9
7

4
6
.6
3
7
0

6
7
.0
3
6
4

0
0

2
1

0
0

3
2
.9
3
9
0

3
2
.8
4
8
0

9
0

4
5
.3
2
4
2

5
1
.0
3
1
7

5
1
.0
3
1
7

7
3
.3
5
0
4

0
0

1
1

0
0

2
4
.7
4
7
9

2
3
.8
9
9
2

2
0
0

3
1
.5
6
1
9

8
1
.5
0
3
0

8
0
.4
1
2
6

9
0
.3
5
1
1

0
0

1
0

0
0

1
1
.5
7
2
2

1
0
.4
2
0
4

5
0
0

1
3
.7
8
5
3

1
0
0

1
0
0

1
0
0

0
0

0
0

0
0

0
0

6

1
0

5
5
.6
1
3
7

4
5
.5
4
1
5

4
4
.9
5
3
1

5
6
.9
7
0
9

0
0

2
3

0
0

2
1
.4
0
1
3

2
0
.1
4
3
0

3
0

5
2
.9
2
4
3

5
3
.6
7
1
7

5
1
.9
8
5
7

6
1
.9
2
1
4

0
0

3
3

0
0

1
6
.2
1
4
7

1
2
.9
9
9
5

5
0

5
0
.7
8
6
7

5
9
.5
6
4
4

5
7
.2
9
3
6

6
7
.9
4
4
6

0
0

3
3

0
0

1
5
.5
3
2
0

1
1
.4
5
3
0

9
0

4
7
.5
4
1
8

6
7
.9
6
9
7

6
5
.2
4
0
7

7
3
.8
2
3
0

0
0

3
4

0
0

1
1
.6
2
7
5

6
.9
8
2
0

2
0
0

3
7
.4
2
6
7

8
2
.9
8
8
2

8
1
.7
4
5
9

8
6
.8
7
0
5

1
2

2
2

0
0

6
.0
4
3
5

4
.4
4
8
4

5
0
0

2
3
.4
9
5
5

9
7
.7
1
3
2

9
7
.7
1
3
2

9
7
.9
9
4
3

0
0

0
0

0
0

0
.2
9
1
4

0
.2
9
1
4

8

1
0

5
6
.9
6
9
2

5
8
.4
3
7
1

5
8
.2
1
2
7

6
2
.8
9
0
6

0
0

3
3

0
0

7
.0
4
1
4

6
.7
0
9
3

3
0

5
4
.5
9
3
1

6
4
.2
5
8
2

6
3
.4
9
4
2

6
7
.4
5
5
2

0
0

3
3

0
0

5
.8
9
4
5

4
.6
9
9
2

5
0

5
1
.6
5
7
5

6
8
.7
6
8
4

6
8
.1
7
6
1

7
1
.4
3
5
8

0
0

3
1

1
0

4
.4
4
8
7

3
.5
3
0
3

9
0

4
7
.5
1
6
1

7
5
.2
2
1
9

7
4
.0
5
1
9

7
6
.6
7
7
4

0
0

2
1

0
0

3
.4
8
6
7

1
.8
8
9
1

2
0
0

3
9
.3
6
3
9

8
7
.0
3
4
6

8
5
.8
1
7
0

8
6
.4
8
7
4

0
0

2
0

0
0

0
.8
0
8
3

-0
.7
2
9
9

5
0
0

2
5
.7
6
9
2

9
3
.9
9
9
6

9
3
.7
4
8
0

9
4
.9
3
1
5

0
1

0
0

0
0

1
.2
6
4
6

0
.9
8
4
0

1
2

1
0

6
3
.0
5
0
3

4
8
.3
8
1
1

4
7
.6
1
7
7

5
3
.9
8
0
2

0
0

2
6

0
0

1
4
.9
0
7
8

1
3
.6
9
6
9

3
0

6
0
.8
5
3
4

5
7
.1
9
6
5

5
5
.9
3
4
4

6
0
.7
8
1
5

0
0

2
5

0
0

9
.7
4
0
1

7
.1
2
2
5

5
0

5
9
.0
8
1
8

6
2
.7
9
7
9

6
0
.8
9
3
7

6
5
.0
8
7
0

0
0

1
6

0
0

7
.6
8
0
9

4
.3
0
1
4

9
0

5
5
.7
2
6
5

7
0
.2
0
9
6

6
7
.4
2
7
9

7
0
.7
5
7
5

0
0

1
6

0
0

5
.4
8
2
5

1
.1
4
6
9

2
0
0

4
8
.3
3
3
1

8
2
.5
7
9
0

7
9
.5
7
9
2

8
1
.1
0
4
6

0
0

1
5

0
0

1
.9
5
8
8

-1
.7
6
5
1

5
0
0

3
4
.6
7
7
6

8
8
.4
3
6
8

8
7
.4
6
0
6

8
7
.5
2
0
5

0
0

1
0

0
0

0
.0
6
7
3

-1
.0
8
7
3

2
4

1
0

6
3
.3
5
4
6

5
9
.5
2
3
0

5
9
.0
4
4
5

6
0
.9
0
8
4

0
0

1
8

0
0

3
.0
5
9
0

2
.3
3
8
7

3
0

6
3
.9
1
9
1

6
7
.1
7
8
5

6
6
.3
2
6
2

6
7
.5
5
6
0

0
0

1
8

0
0

1
.7
8
2
4

0
.5
5
1
1

5
0

6
4
.2
0
6
2

7
1
.4
9
6
6

7
0
.1
9
1
3

7
1
.1
0
4
4

0
0

1
8

0
0

1
.2
6
3
7

-0
.5
8
8
7

9
0

6
3
.9
0
5
3

7
7
.2
9
8
3

7
4
.9
3
1
4

7
5
.8
2
6
5

0
0

1
5

0
0

1
.1
8
6
2

-2
.0
0
8
5

2
0
0

6
1
.8
8
3
7

8
3
.5
2
2
4

8
0
.6
5
2
4

8
1
.3
2
3
4

0
0

0
6

0
0

0
.8
4
6
4

-2
.7
8
0
1

5
0
0

5
4
.0
9
1
5

9
1
.1
6
7
6

8
8
.8
1
7
6

8
8
.9
6
3
3

0
0

0
4

0
0

0
.1
7
0
5

-2
.4
8
2
1

A
v
e
r
a
g
e

4
6
.3
5
7
7

5
9
.9
1
6
1

5
9
.8
7
5
2

7
5
.5
0
8
8

0
0

2
3

0
0

2
2
.0
7
6
3

2
1
.5
3
1
5

94

close the gap on average more than 59% and 75% of the initial gap for extended re-

formulation cuts and (`, S)− like with the addition of flow cover cuts, respectively.

In contrast, the average gap closed by the cuts of all methods, FL, (`, S) − like
and (`, S) − like with FC cuts increases when either the setup costs for reman-

ufacturing approach the setup costs for manufacturing or the average initial gap

deteriorates. When the setup costs for remanufacturing increases to the setup costs

for manufacturing, remanufacturing process becomes negligible, especially in the

case of low returns. In this situation, manufacturing normally dominates the entire

production. We observe that this problem more closely resembles the structure of

the classical uncapacitated problem; the test instances can be effectively described

by FL and (`, S)− like inequalities and hence there is little room for improvement

(i.e., a small, initial gap that could be made by other cuts).

When looking at the average gap closed for each method, (`, S)− like with the

addition of flow cover cuts shows significant results in closing overall gaps when

either a small number of periods or low return variability is considered compared

to FL cuts and (`, S)− like cuts. In general, the number of cover cuts generated by

all various cuts proposed in this chapter is quite small. However, the number of cuts

generated does not determine the effectiveness or strength of the cuts yet is more

inherent for problems of different sizes. Specifically, R and RE cuts become less

effective when either the number of periods or return variability increases. Further,

D and DE cuts consistently make cuts in most data instances and are the most often

generated inequalities in our framework. RD cuts seem to be the least violated,

performs considerably better in closing the gaps in the case of low returns with

a short planning horizon. This is because remanufacturing and manufacturing

processes can never occur at the same time; therefore, when a small number of

used products is retrieved for the production system, the decision can be made to

produce new products only to satisfy demand. Finally, RDE cuts are never violated

for any of the 540 instances due to the fact that they are not facet-defining.

In regard to pairwise comparison of the average percentage of\textbf{ }gap

closed between the “(`, S) − like + FC cuts vs (`, S) − like cuts” and between

“(`, S) − like + FC cuts vs FL cuts”, the (`, S) − like with the addition of the

flow cover gap closed further improves both the (`, S) − like and FL gap closed

on average more than 13\% of the initial gap. Interestingly, we find that the

average gap closed of (`, S) − like and FL are identical in some test instances.

Specifically, the average improvement of gap closed for both cases increases as

return variability is increased. This is because the remanufacturing process occurs

more frequently if a large amount of returns is put back into the system; therefore,

the flow cover cuts become significant when making effective cuts. As expected, the

average improvement of gap closed between the “(`, S)− like + FC cuts vs (`, S)−
like cuts”and between“(`, S)−like + FC cuts vs FL cuts”declines drastically when

the number of periods increases. As the number of periods increases, these cuts

are difficult to generate since the structure of the problem becomes more complex.

Note that the negative value of gap closed by “(`, S) − like + FC cuts vs FL

95

cuts” indicates that the gap closed by FL cuts is better than the gap closed provided

by (`, S) − like + FC cuts. We observe that negative values begin to appear if a

large number of periods is considered. This can be consistently observed from the

average improvements of gap closed for all problems with periods of 12 and 24. The

results show that the gap closed by FL cuts slightly outperforms the gap closed by

(`, S)− like + FC cuts.

Under the condition that setup costs for remanufacturing are at most equal

to the setup costs for manufacturing, we conclude that the flow cover cuts with

embedded (`, S)− like inequalities outperform (`, S)− like inequalities and refor-

mulation techniques in almost all test instances when either a low return variability

or a short-term planning horizon is considered. For a large number of periods (i.e.,

period of 24 and high setup costs) the reformulation technique seems to provide

better gap closure since the gap closed from (`, S)− like inequalities + FC cuts to

(`, S)− like cuts or FL cuts is decreases as the number of periods increases.

4.6 Concluding Remarks

This chapter investigates the polyhedral structure of the mixed integer set Xs

arising from the case of a feasible set of ELSR with separate setups. This mixed

integer set is a combination of two knapsack sets and is a variant of the well-

known single-node fixed-charge set. This chapter aims to examine the strength

of several families of flow cover inequalities with added (`, S) − like inequalities

introduced in this chapter and other formulations discussed in Chapter 3. In this

study, we describe six families of flow cover inequalities and identify their facet-

defining conditions. Then, we present comparisons of preliminary computational

results between different solution techniques in order to examine their effectiveness.

By assuming the setup costs for remanufacturing are at most equal to the setup

costs for manufacturing, the results show that adding this combination of valid

inequalities, (`, S)−like inequalities and flow cover inequalities notably tightens the

lower bounds for randomly generated instances when either a low return scenario

or a short-term planning horizon is taken into account when compared to other

formulations. As for future research directions corresponding to set Xs, it would be

interesting to study fast separation heuristics for this mix of inequalities, to include

inventory variables and capacity constraints in the formulation, and to investigate

the remaining types of facet-defining inequalities generated by the PORTA software.

96

Chapter 5

Valid Inequalities for Economic Lot-

Sizing Problems with Remanufacturing:

Joint Setups Case

5.1 Introduction

In contrast to Chapter 4, this chapter investigates the polyhedral structure of a

general mixed integer set arising from the feasible set of original formulation of

economic lot-sizing problems with remanufacturing and joint setups addressed by

Teunter et al. (2006) and Retel Helmrich et al. (2013), where remanufacturing and

manufacturing operations share one production line. This general mixed integer

set is also a variant of the well-known single node fixed-charge network (SNFCN)

set that examines the intersection of two knapsack sets as follows:

Xj = {(xr, xm, y) ∈ Rn+ × Rn+×Bn |
∑
t∈N

xrt ≤ R,
∑
t∈N

(xrt + xmt) ≥ D,

xrt + xmt ≤ mtyt,∀t ∈ N} (5.1)

where R =
∑n

t=1 rt denotes the total amount of returns, D =
∑n

t=1 dt is the total

amount of demands and the big-M constraint is given by mt = dt,n for any t ∈ N. As

stated in the Propositions 13 and 14 of the flow cover inequalities and the extended

flow cover inequalities for the SNFCN sets in Chapter 4, we aim to extend their

well-known polyhedral results to the set Xj .

This chapter is organized as follows. First, in Section 5.2, we study the basic

polyhedral properties of conv(Xj) and present trivial facet-defining inequalities.

Next, we discuss polyhedral analysis of conv(Xj) by deriving several families of

valid inequalities for conv(Xj) and establish their facet-defining conditions in Sec-

tion 5.3. Then, in Section 5.4, the exact separation algorithms for conv(Xj) are

discussed. In Section 5.5, the preliminary computational experiments are carried

out to test the effectiveness of these inequalities and compare with other formula-

97

tions proposed in Chapter 3. Lastly, we conclude this chapter in Section 5.6.

5.2 Properties of conv(Xj)

In this section, we examine the basic properties and discuss some general results on

the trivial facet-defining inequalities for conv(Xj). Similar to Chapter 4, without

loss of generality, we make the following assumptions:

(i) D > R,

(ii)
∑

t∈N\{k}
mt ≥ D for each k ∈ N,

(iii) D = m1 > m2 > m3... > mn > 0,

(iii)
∑
t∈N

mt > R.

Similarly as in Chapter 4, we note that the second assumption indicates that only

manufacturing (except in a single period) will satisfy all demands and the third

assumption uses the big-M parameter of ELSRj. The last assumption ensures

total amount of returns is sufficient for remanufacturing. Next, we prove the full-

dimensionality of conv(Xj).

Proposition 22. dim(conv(Xj)) = 3n.

Proof. In order to show dim(conv(Xj)) = 3n, we present the following 3n + 1

affinely independent points from conv(Xj). Suppose that ε is a relatively small

number.

1. v0 : Set xrt = 0, xmt = mt and yt = 1, ∀t ∈ N . (1 point)

2. v1, ..., vn : For every k ∈ N, set xrk = ε, xmk = 0, yk = 1 and set xrt = 0,

xmt = mt, yt = 1,∀t ∈ N \ {k}. (n points)

3. vn+1, ..., v2n : For every k ∈ N, set xrk = xmk = 0, yk = 0 and set xrt = 0,

xmt = mt, yt = 1, ∀t ∈ N \ {k}. (n points)

4. v2n+1, ..., v3n : For every k ∈ N, set xrk = xmk = 0, yk = 1 and set xrt = 0,

xmt = mt, yt = 1, ∀t ∈ N \ {k}. (n points)

The vectors, v0, v1, ..., v3n are affinely independent if the vectors (vi − v0), i =

1, ..., 3n are linearly independent or equivalently if
∑3n

i=1 λi(vi − v0) = 0 implies

that λ1 = λ2 = ... = λ3n = 0, where λi, i = 1, ..., 3n are scalars. Then, we obtain
ε (λi) = 0, i = 1, ..., n

λi = 0, i = n+ 1, ..., 2n

mi−2n(λi−2n + λi−n + λi) = 0, i = 2n+ 1, ..., 3n

(5.2)

98

From these equations (5.2), the first and second equations imply that λi = 0,

for i = 1, ..., n and for i = n + 1, ..., 2n, respectively which these solutions are

substituted into third equation provides λ2n+1 = ... = λ3n = 0.

The following proposition presents the trivial facet-defining inequalities for

conv(Xj).

Proposition 23. The trivial facet-defining inequalities for conv(Xj) (and their

facet-defining conditions if applicable) are :

(i) xri ≥ 0, ∀i ∈ N,
(ii) xri + xmi ≤ miyi, ∀i ∈ N ,

(iii) yi ≤ 1, ∀i ∈ N ,

(iv)
∑

t∈N x
r
t ≤ R (when

∑
t∈N\{k}mt > R for each k ∈ N holds),

(v)
∑

t∈N x
r
t +

∑
t∈N x

m
t ≥ D,

(vi) xmi ≥ 0, ∀i ∈ N (when ∀k ∈ N \ {i}, ∑t∈N\{i,k}mt ≥ D holds).

Proof. By using the 3n + 1 affinely independent points presented in the proof of

Proposition 22, we demonstrate 3n affinely independent points, where each of these

inequalities is enforced as an equation. For (i) and (iii), the proof is straightforward,

as we remove exactly one of the 3n+1 points, i.e., vi and vn+i, respectively gives us

the necessary 3n points. For (ii), we remove two points, vi and v2n+i and add a new

point in the form of xri = ε, xmi = mi − ε and yi = 1, xrt = 0, xmt = mt and yt = 1,

∀t ∈ N \ {i}. For (iv), let Hr ⊂ N such that
∑

t∈Hr mt > R, ∃k ∈ Hr satisfying∑
t∈Hr\{k}mt < R and ∃` /∈ Hr satisfying m` ≥ mt, ∀t ∈ Hr. For v1, ..., vn (except

for vn+1, ..., v2n and v2n+1, ..., v3n such that i ∈ Hr), set xrt = mt, x
m
t = 0 and

yt = 1, ∀t ∈ Hr \ {k} and set xrk = R −∑t∈Hr\{k}mt, x
m
k = 0 and yk = 1 (for

vn+1, ..., v2n and v2n+1, ..., v3n such that i /∈ Hr, in addition to that, set xri = xmi = 0

and yi = 0 and set xri = xmi = 0 and yi = 1, respectively). For vn+1, ..., v2n such

that i ∈ Hr \ {k}, set xri = xmi = 0 and yi = 0; set xr` = m`, x
m
` = 0 and y` = 1; set

xrt = mt, x
m
t = 0 and yt = 1, ∀t ∈ Hr \ {i, k}; set xrk = R −∑t∈Hr\{k}mt, x

m
k = 0

and yk = 1. For v2n+1, ..., v3n such that i ∈ Hr \ {k}, set xri = xmi = 0 and yi = 1;

set xr` = m`, x
m
` = 0 and y` = 1; set xrt = mt, x

m
t = 0 and yt = 1, ∀t ∈ Hr \ {i, k};

set xrk = R −∑t∈Hr\{k}mt, x
m
k = 0 and yk = 1. For (v), we set xr1 = 0, xm1 = D

and y1 = 1 (and also xri = 0, xmi = 0, ∀i ∈ N \ {1}) in all points, except setting

xr1 = 0, xm1 = D − ε and y1 = 1 in v1, ..., vn and xr1 = 0, xm1 = D −mk and y1 = 1

(and also xrk = 0, xmk = mk and yk = 1) in vn+2, ..., v2n, while removing points vn+1

and v2n+1; therefore, we also add a new point in the form of xr1 = 0, xm1 = 0 and

y1 = 1, xrt = 0, xmt =
(
D/
∑

t∈N\{1}mt

)
mt and yt = 1, ∀t ∈ N \ {1}. Lastly, for

(vi), we set xri = ε and xmi = 0 for all points, eliminate point v2n+i and for any

point in the set vn+1, ..., v3n such that xrk = xmk = 0 and
∑

t∈N\{i,k}mt ≥ D holds

true and then add a new point xri = xmi = 0 and yi = 1 and xrt = 0, xmt = mt and

yt = 1, ∀t ∈ N \ {i}.

99

Next, in the following section, we study the polyhedral structure of conv(Xj)

by defining several families of valid inequalities.

5.3 Polyhedral Analysis of conv(Xj)

This section discusses several families of valid inequalities for conv(Xj) with their

facet-defining conditions. We firstly provide some definitions used throughout the

chapter as follows.

Definition 28. The definitions of flow cover inequalities for conv(Xj) are:

• A set S ⊆ N is a cover for R if λ1 =
∑

t∈Smt −R.

• A set S ⊆ N is a cover for D −R if λ2 =
∑

t∈Smt − (D −R).

• A set S ⊆ N is a cover for D if λ3 =
∑

t∈Smt −D.

We denote (x)+ = max{x, 0}. The main contribution in this chapter relies upon on

establishing the facet-defining conditions of several existing and new inequalities.

First, we will describe several families of valid inequalities for conv(Xj) in the

case of ≤ along with their facet-defining conditions.

Corollary 10 (Flow cover inequalities (Padberg et al., 1985)). Let S ⊆ N

be a cover for R with m = max
t∈S

mt > λ1. Then, the following inequality (called

returns cover inequality) is valid for Xj .∑
t∈S

xrt +
∑
t∈S

(mt − λ1)+(1− yt) ≤ R (5.3)

Note that the validity proof for this valid inequality can be clearly seen in Pad-

berg et al. (1985). Now, we establish facet-defining conditions for this simple in-

equality.

Proposition 24. Let S+ = {t ∈ S|mt − λ1 > 0}. If |S+| ≥ 1, then (5.3) defines a

facet of conv(Xj).

Proof. Suppose i1 be any member in the set S+ and let ε > 0, where ε is a rela-

tively small number. Now, we present 3n affinely independent points that satisfy∑
t∈S x

r
t +

∑
t∈S+(mt − λ1)(1− yt) = R.

1. For every t′ ∈ S+, set xrt′ = 0, xmt′ = 0 and yt′ = 0; set xrt = mt, x
m
t = 0 and

yt = 1, ∀t ∈ S \ {t′}; set xrt = 0, xmt = mt and yt = 1, ∀t ∈ N \S and set other

variables to zero. (|S+| points)

2. For every t′ ∈ S+, set xrt′ = mt′ −λ1, xmt′ = 0 and yt′ = 1; set xrt = mt, x
m
t = 0

and yt = 1, ∀t ∈ S \ {t′}; set xrt = 0, xmt = mt and yt = 1, ∀t ∈ N \ S and set

other variables to zero. (|S+| points)

100

3. For every t′ ∈ S+, set xrt′ = mt′ −λ1, xmt′ = ε and yt′ = 1; set xrt = mt, x
m
t = 0

and yt = 1, ∀t ∈ S \ {t′}; set xrt = 0, xmt = mt and yt = 1, ∀t ∈ N \ S and set

other variables to zero. (|S+| points)

4. For every t′ ∈ S \S+, set xrt′ = 0, xmt′ = ε and yt′ = 1; set xri1 = mi1−λ1 +mt′ ,

xmi1 = 0 and yi1 = 1; set xrt = mt, x
m
t = 0 and yt = 1, ∀t ∈ S \ {t′, i1}; set

xrt = 0, xmt = mt and yt = 1, ∀t ∈ N \ S and set other variables to zero.

(|S \ S+| points)

5. For every t′ ∈ S \S+, set xrt′ = 0, xmt′ = 0 and yt′ = 1; set xri1 = mi1−λ1 +mt′ ,

xmi1 = 0 and yi1 = 1; set xrt = mt, x
m
t = 0 and yt = 1, ∀t ∈ S \ {t′, i1}; set

xrt = 0, xmt = mt and yt = 1, ∀t ∈ N \ S and set other variables to zero.

(|S \ S+| points)

6. For every t′ ∈ S \S+, set xrt′ = 0, xmt′ = 0 and yt′ = 0; set xri1 = mi1−λ1 +mt′ ,

xmi1 = 0 and yi1 = 1; set xrt = mt, x
m
t = 0 and yt = 1, ∀t ∈ S \ {t′, i1}; set

xrt = 0, xmt = mt and yt = 1, ∀t ∈ N \ S and set other variables to zero.

(|S \ S+| points)

7. For every t′ ∈ N \S, set xrt′ = ε, xmt′ = 0 and yt′ = 1; set xri1 = mi1−λ1, xmi1 = ε

such that ε ≤ λ1 and yi1 = 1; set xrt = mt, x
m
t = 0 and yt = 1, ∀t ∈ S \ {i1};

set xrt = 0, xmt = mt and yt = 1, ∀t ∈ N \ (S ∪ {t′}) and set other variables to

zero. (n− |S|) points)

8. For every t′ ∈ N \S, set xrt′ = 0, xmt′ = 0 and yt′ = 0; set xri1 = mi1−λ1, xmi1 = ε

such that ε ≤ λ1 and yi1 = 1; set xrt = mm
t , xmt = 0 and yt = 1, ∀t ∈ S \ {i1};

set xrt = 0, xmt = mt and yt = 1, ∀t ∈ N \ (S ∪ {t′}) and set other variables to

zero. (n− |S|) points)

9. For every t′ ∈ N \S, set xrt′ = 0, xmt′ = 0 and yt′ = 1; set xri1 = mi1−λ1, xmi1 = ε

such that ε ≤ λ1 and yi1 = 1; set xrt = mt, x
m
t = 0 and yt = 1, ∀t ∈ S \ {i1};

set xrt = 0, xmt = mt and yt = 1, ∀t ∈ N \ (S ∪ {t′}) and set other variables to

zero. (n− |S|) points)

The extended version of this type of inequalities is discussed as follows.

Corollary 11 (Extended flow cover inequalities (Padberg et al., 1985)).

Let S ⊆ N be a cover for R with m = maxt∈Smt > λ1 and L ⊆ N\S. Then, suppose

that mt = max{mt,m} for all t ∈ L, then the extended flow cover inequality (called

returns-extended cover inequality) is valid for Xj .∑
t∈S∪L

xrt +
∑
t∈S

(mt − λ1)+(1− yt)−
∑
t∈L

(mt − λ1)yt ≤ R (5.4)

The facet-defining conditions for this inequality (5.4) are discussed in the fol-

lowing proposition.

101

Proposition 25. Let S+ = {t ∈ S|mt − λ1 > 0}. If |S+| ≥ 1,
∑

t∈N\(S∪L)
mt +∑

t∈S
mt −m > D and 0 < m− λ1 < mt ≤ m for any t ∈ L then the inequality (5.4)

is facet-defining for conv(Xj).

Proof. This proof requires the condition that i1 ∈ S+ such that maxt∈Smt = mi1

and assume ε is an arbitrary small number. Next, we demonstrate 3N affinely

independent points as follows.

1. For every t′ ∈ S+, set xrt′ = 0, xmt′ = 0 and yt′ = 0; set xrt = mt, x
m
t = 0 and

yt = 1, ∀t ∈ S \ {t′}; set xrt = 0, xmt = mt and yt = 1, ∀t ∈ N \ (S ∪L) and set

other variables to zero. (|S+| points)

2. For every t′ ∈ S+, set xrt′ = mt′ −λ1, xmt′ = 0 and yt′ = 1; set xrt = mt, x
m
t = 0

and yt = 1, ∀t ∈ S \ {t′}; set xrt = 0, xmt = mt and yt = 1, ∀t ∈ N \ (S ∪ L)

and set other variables to zero. (|S+| points)

3. For every t′ ∈ S+, set xrt′ = mt′ −λ1, xmt′ = ε and yt′ = 1; set xrt = mt, x
m
t = 0

and yt = 1, ∀t ∈ S \ {t′}; set xrt = 0, xmt = mt and yt = 1, ∀t ∈ N \ (S ∪ L)

and set other variables to zero. (|S+| points)

4. For every t′ ∈ S \S+, set xrt′ = 0, xmt′ = ε and yt′ = 1; set xri1 = mi1−λ1 +mt′ ,

xmi1 = 0 and yi1 = 1; set xrt = mt, x
m
t = 0 and yt = 1, ∀t ∈ S \ {t′, i1}; set

xrt = 0, xmt = mt and yt = 1, ∀t ∈ N \ (S ∪ L) and set other variables to zero.

(|S \ S+| points)

5. For every t′ ∈ S \S+, set xrt′ = 0, xmt′ = 0 and yt′ = 1; set xri1 = mi1−λ1 +mt′ ,

xmi1 = 0 and yi1 = 1; set xrt = mt, x
m
t = 0 and yt = 1, ∀t ∈ S \ {t′, i1}; set

xrt = 0, xmt = mt and yt = 1, ∀t ∈ N \ (S ∪ L) and set other variables to zero.

(|S \ S+| points)

6. For every t′ ∈ S \S+, set xrt′ = 0, xmt′ = 0 and yt′ = 0; set xri1 = mi1−λ1 +mt′ ,

xmi1 = 0 and yi1 = 1; set xrt = mt, x
m
t = 0 and yt = 1, ∀t ∈ S \ {t′, i1}; set

xrt = 0, xmt = mt and yt = 1, ∀t ∈ N \ (S ∪ L) and set other variables to zero.

(|S \ S+| points)

7. For every t′ ∈ L, set xrt′ = m−λ1, xmt′ = 0 and yt′ = 1; set xri1 = 0, xmi1 = 0 and

yi1 = 0; set xrt = mt, x
m
t = 0 and yt = 1, ∀t ∈ S \ {i1}; set xrt = 0, xmt = mt

and yt = 1, ∀t ∈ N \ (S ∪ L) and set other variables to zero. (|L| points)

8. For every t′ ∈ L, set xrt′ = m−λ1, xmt′ = ε and yt′ = 1; set xri1 = 0, xmi1 = 0 and

yi1 = 0; set xrt = mt, x
m
t = 0 and yt = 1, ∀t ∈ S \ {i1}; set xrt = 0, xmt = mt

and yt = 1, ∀t ∈ N \ (S ∪ L) and set other variables to zero. (|L| points)

9. For every t′ ∈ L, set xrt′ = m− λ1, xmt′ = 0 and yt′ = 1; set xri1 = 0, xmi1 = mi1

and yi1 = 1; set xrt = mt, x
m
t = 0 and yt = 1, ∀t ∈ S \ {i1}; set xrt = 0,

xmt = mt and yt = 1, ∀t ∈ N \ (S ∪ L) and set other variables to zero. (|L|
points)

102

10. For every t′ ∈ N \ (S ∪ L), set xrt′ = ε, xmt′ = 0 and yt′ = 1; set xri1 = 0,

xmi1 = 0 and yi1 = 0; set xrt = mt, x
m
t = 0 and yt = 1, ∀t ∈ S \ {i1}; set xrt = 0,

xmt = mt and yt = 1, ∀t ∈ N \ (S ∪ L ∪ {t′}) and set other variables to zero.

(n− |S| − |L| points)

11. For every t′ ∈ N \ (S ∪L), set xrt′ = 0, xmt′ = 0 and yt′ = 0; set xri1 = mi1 −λ1,
xmi1 = ε such that ε ≤ λ1 and yi1 = 1; set xrt = mt, x

m
t = 0 and yt = 1,

∀t ∈ S \ {i1}; set xrt = 0, xmt = mt and yt = 1, ∀t ∈ N \ (S ∪ L ∪ {t′}) and set

other variables to zero. (n− |S| − |L| points)

12. For every t′ ∈ N \ (S ∪L), set xrt′ = 0, xmt′ = 0 and yt′ = 1; set xri1 = mi1 −λ1,
xmi1 = ε such that ε ≤ λ1 and yi1 = 1; set xrt = mt, x

m
t = 0 and yt = 1,

∀t ∈ S \ {i1}; set xrt = 0, xmt = mt and yt = 1, ∀t ∈ N \ (S ∪ L ∪ {t′}) and set

other variables to zero. (n− |S| − |L| points)

Then, we will discuss the remaining four families of valid inequalities conv(Xj)

in the case of ≥ and identify their facet-defining conditions.

Corollary 12 (Flow cover inequalities (Padberg et al., 1985)). Let S ⊆ N

be a cover for D − R with m = maxt∈Smt > λ2, then the flow cover inequality

(called demands cover inequality) is valid for Xj .∑
t∈N\S

xmt ≥
∑
t∈S

(mt − λ2)+(1− yt) (5.5)

Proof. Using the definition of S+ = {t ∈ S|mt − λ2 > 0}, this inequality can be

rearranged and rewritten as:∑
t∈N\S

xmt +
∑
t∈S+

(mt − λ2)yt ≥
∑
t∈S+

(mt − λ2)

Let (xr, xm, y) be a point of Xj with T = {t ∈ N |yt = 1}. We consider two cases:

Case 1. |S+ \ T | = 0. This shows that yt = 1 for any t ∈ S+. Then, we get∑
t∈N x

m
t ≥

∑
t∈S x

m
t ≥ D −R ≥ 0.

Case 2. |S+ \ T | ≥ 1.∑
t∈N\S

xmt +
∑
t∈S+

(mt − λ2)yt

=
∑

t∈N∩T
xmt −

∑
t∈S∩T

xmt +
∑

t∈S+∩T

(mt − λ2)

≥
∑

t∈N∩T
xmt −

∑
t∈S∩T

mt +
∑

t∈S+∩T

(mt − λ2)

≥(D −R)−
∑
t∈S∩T

mt +
∑
t∈S+

(mt − λ2)−
∑

t∈S+\T

(mt − λ2)

103

=(D −R)−
∑
t∈S

mt +
∑
t∈S\T

mt +
∑
t∈S+

(mt − λ2)−
∑

t∈S+\T

(mt − λ2)

≥(D −R)−
∑
t∈S

mt +
∑

t∈S+\T

mm
t +

∑
t∈S+

(mt − λ2)−
∑

t∈S+\T

(mt − λ2)

=(D −R)−
∑
t∈S

mt + λ2|S+ \ T |+
∑
t∈S+

(mt − λ2)

=− λ2 + λ2|S+ \ T |+
∑
t∈S+

(mt − λ2)

=
∑
t∈S+

(mt − λ2) + λ2(|S+ \ T | − 1) ≥
∑
t∈S+

(mt − λ2)

where the first inequality is obtained by using the property yt = 1, ∀t ∈ T
and the defining inequality xmt ≤ mtyt. Next, we consider the properties

S+∩T = S+\(S+\T) and the definition
∑

t∈N∩T
xmt ≥ D−R to generate the

second inequality. The third inequality follows the property of S+ ⊆ S.

The last inequality uses the definition of λ2 and |S+ \ T | − 1 ≥ 0.

The facet-defining conditions for this simple inequality is discussed in the next

proposition.

Proposition 26. Let S+ = {t ∈ S|mt − λ1 > 0}. If |S+| ≥ 1,
∑

t∈N\S
mt >

maxiεSmi − λ2 and
∑
t∈N

mt > R + maxtεN mt, then the inequality (5.5) is facet-

defining for conv(Xj).

Proof. Let Hr ⊂ N such that
∑
t∈Hr

mt > R, ∃k ∈ Hr satisfying
∑

t∈Hr\{k}
mt < R and

∃` /∈ Hr satisfying m` ≥ mt, ∀t ∈ Hr. Let i1 be any member in the set S+ and ε is

an arbitrary small number. We also define m̂t = mt/
∑

t∈N\S
mt. Now, we will present

3n affinely independent points that satisfy this inequality as an equation.

1. For every t′ ∈ S+, set xrt′ = 0, xmt′ = 0 and yt′ = 0; set xrt = 0, xmt = mt and

yt = 1, ∀t ∈ S \{t′}; set xrt = 0, xmt = m̂t(mt′−λ2) and yt = 1, ∀t ∈ N \S; set

xrt = mt, x
m
t = 0 and yt = 1, ∀t ∈ Hr \ {k}; set xrk = R − ∑

t∈Hr\{k}
mt, x

m
k = 0

and yk = 1 and set other variables to zero. (|S+| points)

2. For every t′ ∈ S+, set xrt′ = 0, xmt′ = mt′ −λ2 and yt′ = 1; set xrt = 0, xmt = mt

and yt = 1, ∀t ∈ S \ {t′}; set xrt = mt, x
m
t = 0 and yt = 1, ∀t ∈ Hr \ {k}; set

xrk = R− ∑
t∈Hr\{k}

mt, x
m
k = 0 and yk = 1 and set other variables to zero. (|S+|

points)

3. For every t′ ∈ S+, set xrt′ = ε, xmt′ = mt′−λ2 and yt′ = 1; set xrt = 0, xmt = mm
t

and yt = 1, ∀t ∈ S \ {t′}; set xrt = mt, x
m
t = 0 and yt = 1, ∀t ∈ Hr \ {k}; set

104

xrk = R − ∑
t∈Hr\{k}

mt − ε, xmk = 0 and yk = 1 and set other variables to zero.

(|S+| points)

4. For every t′ ∈ S \ S+, set xrt′ = 0, xmt′ = 0 and yt′ = 0; set xri1 = 0, xmi1 =

mi1 − λ2 + mt′ and yi1 = 1; set xrt = mt, x
m
t = 0 and yt = 1, ∀t ∈ Hr \ {k};

set xrk = R − ∑
t∈Hr\{k}

mt, x
m
k = 0 and yk = 1 and set other variables to zero.

(|S \ S+| points)

5. For every t′ ∈ S \ S+, set xrt′ = 0, xmt′ = 0 and yt′ = 1; set xri1 = 0, xmi1 =

mi1 − λ2 + mt′ and yi1 = 1; set xrt = mt, x
m
t = 0 and yt = 1, ∀t ∈ Hr \ {k};

set xrk = R − ∑
t∈Hr\{k}

mt, x
m
k = 0 and yk = 1 and set other variables to zero.

(|S \ S+| points)

6. For every t′ ∈ S \ S+, set xrt′ = ε, xmt′ = 0 and yt′ = 1; set xri1 = 0, xmi1 =

mi1 −λ2 +mt′ and yi1 = 1; set xrt = mt, x
m
t = 0 and yt = 1, ∀t ∈ Hr \ {k}; set

xrk = R − ∑
t∈Hr\{k}

mt − ε, xmk = 0 and yk = 1 and set other variables to zero.

(|S \ S+| points)

7. For every t′ ∈ N \S, set xrt′ = 0, xmt′ = 0 and yt′ = 1; set xri1 = 0, xmi1 = mi1−λ2
and yi1 = 1; set xrt = 0, xmt = mt and yt = 1, ∀t ∈ S \ {i1}; set xrt = mt,

xmt = 0 and yt = 1, ∀t ∈ Hr \{k}; set xrk = R− ∑
t∈Hr\{k}

mt, x
m
k = 0 and yk = 1

and set other variables to zero. (n− |S| points)

8. For every t′ ∈ N \S, set xrt′ = ε, xmt′ = 0 and yt′ = 1; set xri1 = 0, xmi1 = mi1−λ2
and yi1 = 1; set xrt =0, xmt = mt and yt = 1, ∀t ∈ S \{i1}; set xrt = mt, x

m
t = 0

and yt = 1, ∀t ∈ Hr \ {k}; set xrk = R − ∑
t∈Hr\{k}

mt − ε, xmk = 0 and yk = 1

and set other variables to zero. (n− |S| points)

9. For every t′ ∈ N \ S, set xrt′ = 0, xmt′ = ε and yt′ = 1; set xri1 = 0, xmi1 =

mi1 − λ2 + ε and yi1 = 1; set xrt = 0, xmt = mt and yt = 1, ∀t ∈ S \ {i1}; set

xrt = mt, x
m
t = 0 and yt = 1, ∀t ∈ Hr \ {k}; set xrk = R − ∑

t∈Hr\{k}
mt, x

m
k = 0

and yk = 1 and set other variables to zero. (n− |S| points)

10. For every t′ ∈ Hr \ {k}, set xrt′ = 0, xmt′ = 0 and yt′ = 0; set xr` = mr
t′ , x

m
` = 0

and y` = 1; set xri1 = 0, xmi1 = mi1 − λ2 and yi1 = 1; set xrt′ = 0, xmt = mm
t

and yt = 1, ∀t ∈ S \ {i1}; set xrt = mt, x
m
t = 0 and yt = 1, ∀t ∈ Hr \ {k};

set xrk = R − ∑
t∈Hr\{k}

mt, x
m
k = 0 and yk = 1 and set other variables to zero.

(|Hr| − 1 points)

11. Set xrk = 0, xmk = 0 and yk = 0; set xr` = R −∑t∈Hr\{k}m
r
t , x

m
` = 0 and

y` = 1; set xri1 = 0, xmi1 = mi1 − λ2 and yi1 = 1; set xrt = 0, xmt = mt and

yt = 1, ∀t ∈ S \ {i1}; set xrt = mt, x
m
t = 0 and yt = 1, ∀t ∈ Hr \ {`, k} and set

other variables to zero. (1 point)

105

12. For every t′ ∈ Hr \ {k}, set xrt′ = 0, xmt′ = 0 and yt′ = 1; set xr` = mr
t′ , x

m
` = 0

and y` = 1; set xri1 = 0, xmi1 = mi1 − λ2 and yi1 = 1; set xrt′ = 0, xmt = mm
t

and yt = 1, ∀t ∈ S \ {i1}; set xrt = mt, x
m
t = 0 and yt = 1, ∀t ∈ Hr \ {k};

set xrk = R − ∑
t∈Hr\{k}

mt, x
m
k = 0 and yk = 1 and set other variables to zero.

(|Hr| − 1 points)

13. Set xrk = 0, xmk = 0 and yk = 1; set xr` = R −∑t∈Hr\{k}m
r
t , x

m
` = 0 and

y` = 1; set xri1 = 0, xmi1 = mi1 − λ2 and yi1 = 1; set xrt = 0, xmt = mt and

yt = 1, ∀t ∈ S \ {i1}; set xrt = mt, x
m
t = 0 and yt = 1, ∀t ∈ Hr \ {`, k} and set

other variables to zero. (1 point)

14. For every t′ ∈ Hr \ {k}, set xrt′ = 0, xmt′ = ε and yt′ = 1; set xr` = mr
t′ , x

m
` = 0

and y` = 1; set xri1 = 0, xmi1 = mi1 − λ2 − ε and yi1 = 1; set xrt′ = 0, xmt = mm
t

and yt = 1, ∀t ∈ S \ {i1}; set xrt = mt, x
m
t = 0 and yt = 1, ∀t ∈ Hr \ {k};

set xrk = R − ∑
t∈Hr\{k}

mt, x
m
k = 0 and yk = 1 and set other variables to zero.

(|Hr| − 1 points)

15. Set xrk = 0, xmk = ε and yk = 1; set xr` = R −∑t∈Hr\{k}m
r
t , x

m
` = 0 and

y` = 1; set xri1 = 0, xmi1 = mi1 − λ2 − ε and yi1 = 1; set xrt = 0, xmt = mt and

yt = 1, ∀t ∈ S \ {i1}; set xrt = mt, x
m
t = 0 and yt = 1, ∀t ∈ Hr \ {`, k} and set

other variables to zero. (1 point)

16. For every t′ ∈ N \ Hr, set xrt′ = 0, xmt′ = 0 and yt′ = 1; set xri1 = 0, xmi1 =

mi1 − λ2 and yi1 = 1; set xrt = 0, xmt = mm
t and ymt = 1, ∀t ∈ S \ {i1}; set

xrt = mt, x
m
t = 0 and yt = 1, ∀t ∈ Hr \ {k}; set xrk = R −∑t∈Hr\{k}m

r
t ,

xmk = 0 and yk = 1 and set other variables to zero. (n− |Hr| points)

17. For every t′ ∈ N\Hr, set xrt′ = ε, xmt′ = 0 and yt′ = 1; set xri1 = 0, xmi1 = mi1−λ2
and yi1 = 1; set xrt = 0, xmt = mm

t and ymt = 1, ∀t ∈ S \ {i1}; set xrt = mt,

xmt = 0 and yt = 1, ∀t ∈ Hr \ {k}; set xrk = R−∑t∈Hr\{k}m
r
t − ε, xmk = 0 and

yk = 1 and set other variables to zero. (n− |Hr| points)

18. For every t′ ∈ N \ Hr, set xrt′ = 0, xmt′ = ε and yt′ = 1; set xri1 = 0, xmi1 =

mi1 − λ2 − ε and yi1 = 1; set xrt = 0, xmt = mm
t and ymt = 1, ∀t ∈ S \ {i1};

set xrt = mt, x
m
t = 0 and yt = 1, ∀t ∈ Hr \ {k}; set xrk = R −∑t∈Hr\{k}m

r
t ,

xmk = 0 and yk = 1 and set other variables to zero. (n− |Hr| points)

Then, the extended flow cover inequalities are derived next along with their

facet-defining conditions.

Corollary 13 (Extended Flow cover inequalities (Padberg et al., 1985)).

Let S ⊆ N be a cover for D−R with m = maxt∈Smt > λ2 and L ⊆ N \S. Assume

that mt = max (m,mt) for all t ∈ L. Then, the extended flow cover inequality

106

(called demands-extended cover inequality) is valid for Xj .∑
t∈N\(S∪L)

xmt +
∑
t∈L

(mt − λ2)yt ≥
∑
t∈S

(mt − λ2)
+(1 − yt) (5.6)

Proof. By using the definition of S+ = {t ∈ S|mt − λ2 > 0}, we rearrange and

rewrite the inequality (5.6) as:∑
t∈N\(S∪L)

xmt +
∑
t∈S+

(mt − λ2)yt +
∑
t∈L

(mt − λ2)yt ≥
∑
t∈S+

(mt − λ2)

Suppose that (xr, xm, y) be a point of Xj with T = {t ∈ N |yt = 1}. We show the

validity of this inequality as follows:

Case 1. |S+ \ T | ≤ |L ∩ T |∑
t∈N\(S∪L)

xmt +
∑
t∈S+

(mt − λ2)yt +
∑
t∈L

(mt − λ2)yt

=
∑

t∈N\(S∪L)

xmt +
∑

t∈S+∩T

(mt − λ2) +
∑
t∈L∩T

(mt − λ2)

≥
∑
t∈S+

(mt − λ2)−
∑

t∈S+\T

(mt − λ2) +
∑
t∈L∩T

(mt − λ2)

≥
∑
t∈S+

(mt − λ2)−
∑

t∈S+\T

(m− λ2) +
∑
t∈L∩T

(m− λ2)

=
∑
t∈S+

(mt − λ2) + (m− λ2)
(
|L ∩ T | − |S+ \ T |

)
≥
∑
t∈S+

(mt − λ2)

where the first inequality uses the properties of yt = 1, ∀t ∈ T and

S+ ∩ T = S+ \ (S+ \ T). Next, the second inequality considers the fact

that mt ≤ m ≤ mt and the last inequality obtained as a result of the

properties |L ∩ T | − |S+ \ T | ≥ 0 and m ≥ λ2.

Case 2. |S+ \ T | ≥ |L ∩ T |+ 1∑
t∈N\(S∪L)

xmt +
∑
t∈S+

(mt − λ2)yt +
∑
t∈L

(mt − λ2)yt

=
∑

t∈(N\(S∪L))∩T

xmt +
∑

t∈S+∩T

(mt − λ2) +
∑
t∈L∩T

(mt − λ2)

=
∑

t∈N∩T
xmt −

∑
t∈S∩T

xmt −
∑
t∈L∩T

xmt +
∑
t∈S+

(mt − λ2)

−
∑

t∈S+\T

(mt − λ2) +
∑
t∈L∩T

(mt − λ2)

107

≥
∑

t∈N∩T
xmt −

∑
t∈S∩T

mt −
∑
t∈L∩T

mt +
∑
t∈S+

(mt − λ2)

−
∑

t∈S+\T

(mt − λ2) +
∑
t∈L∩T

(m− λ2)

≥− λ2 +
∑

t∈S+\T

mt +
∑
t∈S+

(mt − λ2)−
∑

t∈S+\T

(mt − λ2)− λ2|L ∩ T |

=
∑
t∈S+

(mt − λ2)− λ2 + λ2|S+ \ T | − λ2|L ∩ T |

=
∑
t∈S+

(mt − λ2) + λ2
(
|S+ \ T | − |L ∩ T | − 1

)
≥
∑
t∈S+

(mt − λ2)

where the first and second inequalities follow the properties of yt = 1,

∀t ∈ T , S ∩ T = S \ (S \ T), xmt ≤ mtyt and the fact that mt ≤
m ≤ mt and

∑
t∈N∩T x

m
t ≥ D − R. Then, we obtain the third and last

inequalities by using the definition of λ2 and the properties S+ ⊆ S,

|S+ \ T | − |L ∩ T | − 1 ≥ 0 and λ2 > 0.

Proposition 27. Let S+ = {t ∈ S|mt−λ1 > 0}. Suppose that 0 < m−λ2 < mt ≤ m
for any t ∈ L,

∑
t∈N\(S∪L)

mt > maxiεSmi − λ2 and
∑
t∈N

mt > R+ maxtεN mt then the

inequality (5.6) defines a facet for conv(Xj).

Proof. As similar to the proof of Proposition 26, let Hr ⊂ N such that
∑
t∈Hr

mt > R,

∃k ∈ Hr satisfying
∑

t∈Hr\{k}
mt < R and ∃` /∈ Hr satisfying m` ≥ mt, ∀t ∈ Hr. Then,

we let i1 ∈ S+ such that m = mi1 and ε is an arbitrary small number. We also

define m̂t = mt/
∑

t∈N\S
mt for all t ∈ N \ S. Note that all the affinely independent

points from the proof of Proposition 26 are also valid for this case, except that set

1 of these points, the values are set for t ∈ N \ (S ∪L) instead of t ∈ N \S and for

set points 7, 8 and 9, the points are valid only for t ∈ N \ (S ∪ L). From this, we

need to define 3|Lm| new affinely independent points in order to obtain 3n points

as follows.

1. For every t′ ∈ L, set xrt′ = 0, xmt′ = m−λ2 and yt′ = 1; set xri1 = 0, xmi1 = 0 and

yi1 = 0; set xrt = 0, xmt = mt and yt = 1, ∀t ∈ S \ {i1}; set xrt = mt, x
m
t = 0

and yt = 1, ∀t ∈ Hr \ {k}; set xrk = R − ∑
t∈Hr\{k}

mt, x
m
k = 0 and yk = 1 and

set other variables to zero. (|L| points)

2. For every t′ ∈ L, set xrt′ = ε, xmt′ = m−λ2 and yt′ = 1; set xri1 = 0, xmi1 = 0 and

yi1 = 0; set xrt = 0, xmt = mt and yt = 1, ∀t ∈ S \ {i1}; set xrt = mt, x
m
t = 0

108

and yt = 1, ∀t ∈ Hr \ {k}; set xrk = R − ∑
t∈Hr\{k}

mt − ε, xmk = 0 and yk = 1

and set other variables to zero. (|L| points)

3. For every t′ ∈ L, set xrt′ = 0, xmt′ = m−λ2 + ε and yt′ = 1; set xri1 = 0, xmi1 = 0

and yi1 = 0; set xrt = 0, xmt = mt and yt = 1, ∀t ∈ S \ {i1}; set xrt = mt,

xmt = 0 and yt = 1, ∀t ∈ Hr \{k}; set xrk = R− ∑
t∈Hr\{k}

mt, x
m
k = 0 and yk = 1

and set other variables to zero. (|L| points)

Now, we derive two new flow cover inequalities and then show their validity

proofs and facet-defining conditions.

Proposition 28. Let S ⊆ N be a cover for D with m = maxt∈Smt > λ3, then we

have the following inequality (called returns-demands cover inequality) that is

valid for Xj .∑
t∈N\S

(xrt + xmt) ≥
∑
t∈S

(mt − λ3)
+(1 − yt) (5.7)

Proof. Likewise, we rearrange and rewrite this inequality using the definition of

S+ = {t ∈ S|mt − λ3 > 0}.∑
t∈N\S

(xrt + xmt) +
∑
t∈S+

(mt − λ3)yt ≥
∑
t∈S+

(mt − λ3)

Given that (xr, xm, y) be a point of Xj with T = {t ∈ N |yt = 1}. For this inequality,

we consider two cases:

Case 1. |S+\T | = 0. Since yt = 1 for any t ∈ S+. Then, we get
∑

t∈N (xrt +xmt) ≥∑
t∈S(xrt + xmt) ≥ D ≥ 0.

Case 2. |S+ \ T | ≥ 1.∑
t∈N\S

(xrt + xmt) +
∑
t∈S+

(mt − λ3)yt

=
∑

t∈N∩T
(xrt + xmt)−

∑
t∈S∩T

(xrt + xmt) +
∑

t∈S+∩T

(mt − λ3)

≥
∑

t∈N∩T
(xrt + xmt)−

∑
t∈S∩T

mt +
∑

t∈S+∩T

(mt − λ3)

≥D −
∑
t∈S∩T

mt +
∑
t∈S+

(mt − λ3)−
∑

t∈S+\T

(mt − λ3)

=D −
∑
t∈S

mt +
∑
t∈S\T

mt +
∑
t∈S+

(mt − λ3)−
∑

t∈S+\T

(mt − λ3)

109

≥D −
∑
t∈S

mt +
∑

t∈S+\T

mt +
∑
t∈S+

(mt − λ3)−
∑

t∈S+\T

(mt − λ3)

=− λ3 + λ3|S+ \ T |+
∑
t∈S+

(mt − λ3)

=
∑
t∈S+

(mt − λ3) + λ3(|S+ \ T | − 1) ≥
∑
t∈S+

(mt − λ3)

where the property yt = 1, ∀t ∈ T and the defining inequality xrt +

xmt ≤ mtyt are used to obtain the first inequality. Then, the second

inequality follows the property of S+ ∩ T = S+ \ (S+ \ T) and the

definition
∑

t∈N∩T
(xrt + xmt) ≥ D and the third inequality consider the

property of S+ ⊆ S. The last inequality derived from the definition of

λ3 and |S+ \ T | − 1 ≥ 0.

Proposition 29 provides the facet-defining conditions for this inequality.

Proposition 29. Let S+ = {t ∈ S|mt−λ3 > 0}. Then, let |S+| ≥ 1 and
∑

t∈N\S
mt >

max
t∈S

mt − λ3, then the inequality (5.7) is facet-defining for conv(Xj).

Proof. Suppose i1 be any member in the set S+ and assume that ε be a sufficiently

small number. We also define m̂t = mt/
∑

t∈N\S
mt for all t ∈ N \S. Then, we present

3n affinely independent points that satisfy (5.7) as an equation.

1. For every t′ ∈ S+, set xrt′ = 0, xmt′ = 0 and yt′ = 0; set xrt = 0, xmt = mt and

yt = 1, ∀t ∈ S \ {t′}; set xrt = 0, xmt = m̂t(mt′ − λ3) and yt = 1, ∀t ∈ N \ S
and set other variables to zero. (|S+| points)

2. For every t′ ∈ S+, set xrt′ = 0, xmt′ = mt′ −λ3 and yt′ = 1; set xrt = 0, xmt = mt

and yt = 1, ∀t ∈ S \ {t′} and set other variables to zero. (|S+| points)

3. For every t′ ∈ S+, set xrt′ = ε, xmt′ = mt′ − λ3 − ε and yt′ = 1; set xrt = 0,

xmt = mt and yt = 1, ∀t ∈ S \ {t′} and set other variables to zero. (|S+|
points)

4. For every t′ ∈ S \ S+, set xrt′ = 0, xmt′ = 0 and yt′ = 0; set xri1 = 0, xmi1 =

mi1 − λ3 + mt′ and yi1 = 1; set xrt = 0, xmt = mt and yt = 1, ∀t ∈ S \ {t′, i1}
and set other variables to zero. (|S \ S+| points)

5. For every t′ ∈ S \ S+, set xrt′ = 0, xmt′ = 0 and yt′ = 1; set xri1 = 0, xmi1 =

mi1 − λ3 + mt′ and yi1 = 1; set xrt = 0, xmt = mt and yt = 1, ∀t ∈ S \ {t′, i1}
and set other variables to zero. (|S \ S+| points)

6. For every t′ ∈ S \ S+, set xrt′ = ε, xmt′ = 0 and yt′ = 1; set xri1 = 0, xmi1 =

mi1 − λ3 + mt′ and yi1 = 1; set xrt = 0, xmt = mt and yt = 1, ∀t ∈ S \ {t′, i1}
and set other variables to zero. (|S \ S+| points)

110

7. For every t′ ∈ N \S, set xrt′ = 0, xmt′ = 0 and yt′ = 1; set xrt = 0, xmt = mt and

yt = 1, ∀t ∈ S and set other variables to zero. (n− |S| points)

8. For every t′ ∈ N \S, set xrt′ = ε, xmt′ = 0 and yt′ = 1; set xrt = 0, xmt = mt and

yt = 1, ∀t ∈ S and set other variables to zero. (n− |S| points)

9. For every t′ ∈ N \S, set xrt′ = 0, xmt′ = 0 and yt′ = 0; set xrt = 0, xmt = mt and

yt = 1, ∀t ∈ S and set other variables to zero. (n− |S| points)

Lastly, we prove the validity of the extended version of the previous inequalities

and identify conditions under which these inequalities are facet defining.

Proposition 30. Suppose that S ⊆ N be a cover for D with m = maxt∈Smt > λ3.

Also, L ⊆ N \ S, then suppose that mt = max (m,mt) for all t ∈ L. Then, the

inequality (called returns-demands-extended cover inequality) is valid for Xj .∑
t∈N\(S∪L)

(xrt + xmt) +
∑
t∈L

(mt − λ3)yt ≥
∑
t∈S

(mt − λ3)
+(1 − yt) (5.8)

Proof. We rearrange and rewrite the inequality (5.8) as follows using the definition

of S+ = {t ∈ S|mt − λ3 > 0}.∑
t∈N\(S∪L)

(xrt + xmt) +
∑
t∈S+

(mt − λ3)yt +
∑
t∈L

(mt − λ3)yt ≥
∑
t∈S+

(mt − λ3)

Given that (xr, xm, y) be a point of Xj with T = {t ∈ N |yt = 1}. Firstly, we

provide the validity of this inequality.

Case 1. |S+ \ T | ≤ |L ∩ T |∑
t∈N\(S∪L)

(xrt + xmt)
∑
t∈S+

(mt − λ3)yt +
∑
t∈L

(mt − λ3)yt

=
∑

t∈N\(S∪L)

(xrt + xmt) +
∑

t∈S+∩T

(mm
t − λ3) +

∑
t∈L∩T

(mt − λ3)

≥
∑
t∈S+

(mt − λ3)−
∑

t∈S+\T

(mm
t − λ3) +

∑
t∈L∩T

(mt − λ3)

≥
∑
t∈S+

(mt − λ3)−
∑

t∈S+\T

(m− λ3) +
∑
t∈L∩T

(m− λ3)

=
∑
t∈S+

(mt − λ3) + (m− λ3)
(
|L ∩ T | − |S+ \ T |

)
≥
∑
t∈S+

(mt − λ3)

where we obtain the first inequality by using the properties yt = 1,

∀t ∈ T and S+ ∩ T = S+ \ (S+ \ T). The second inequality follows

the fact that mt ≤ m ≤ mt and the last inequality uses the properties

|L ∩ T | − |S+ \ T | ≥ 0 and m ≥ λ3.

111

Case 2. |S+ \ T | ≥ |L ∩ T |+ 1∑
t∈N\(S∪L)

(xrt + xmt) +
∑
t∈S+

(mt − λ3)yt +
∑
t∈L

(mt − λ3)yt

=
∑

t∈(N\(S∪L))∩T

(xrt + xmt) +
∑

t∈S+∩T

(mt − λ3) +
∑
t∈L∩T

(mt − λ3)

=
∑

t∈N∩T
(xrt + xmt)−

∑
t∈S∩T

(xrt + xmt)−
∑
t∈L∩T

(xrt + xmt) +
∑
t∈S+

(mt − λ3)

−
∑

t∈S+\T

(mt − λ3) +
∑
t∈L∩T

(mt − λ3)

≥
∑

t∈N∩T
(xrt + xmt)−

∑
t∈S∩T

mt −
∑
t∈L∩T

mt +
∑
t∈S+

(mt − λ3)

−
∑

t∈S+\T

(mt − λ3) +
∑
t∈L∩T

(mt − λ3)

≥D −
∑
t∈S

mt +
∑
t∈S\T

mt −
∑
t∈L∩T

mt +
∑
t∈S+

(mt − λ3)

−
∑

t∈S+\T

(mt − λ3) +
∑
t∈L∩T

(mt − λ3)

≥− λ3 +
∑

t∈S+\T

mt −
∑
t∈L∩T

m+
∑
t∈S+

(mt − λ3)

−
∑

t∈S+\T

(mt − λ3) +
∑
t∈L∩T

(m− λ3)

=
∑
t∈S+

(mt − λ3)− λ3 + λ3|S+ \ T | − λ3|L ∩ T |

=
∑
t∈S+

(mt − λ3) + λ3
(
|S+ \ T | − |L ∩ T | − 1

)
≥
∑
t∈S+

(mt − λ3)

where the first inequalities uses the properties yt = 1, ∀t ∈ T , S+ ∩ T =

S+ \ (S+ \ T), xrt + xmt ≤ mtyt. The second inequality considers the fact

that
∑

t∈N∩T (xrt +x
m
t) ≥ D and S∩T = S\(S\T). Finally, the definition

of λ3, mt ≤ m ≤ mt and the properties S+ ⊆ S, |S+\T |−|L∩T |−1 ≥ 0

and λ3 > 0 are taking into an account to get the last two inequalities.

Finally, we discuss the facet-defining conditions for this inequality in the follow-

ing proposition.

Proposition 31. Let S+ = {t ∈ S|mt − λ3 > 0}. If 0 < m− λ3 < mt ≤ m for any

t ∈ L and
∑

t∈N\(S∪L)
mt +

∑
t∈S
mt−m > D hold true, then the inequality (5.8) defines

112

a facet for conv(Xj).

Proof. In order to prove this inequality is a facet, we require the condition of

i1 ∈ S+ such that mm = mm
i1 and let ε > 0 is an arbitrary small number. We also

define m̂t = mt/
∑

t∈N\S
mt. Now, we present 3n sets, including the valid sets 2 - 6

of Proposition 29, set of point 1, the values are set for t ∈ N \ (S ∪ L) instead of

t ∈ N \S and for set points 7, 8 and 9, the points are valid only for t ∈ N \ (S∪L).

Then, we present the remaining sets of 3|Lm| new affinely independent points as

follows.

1. For every t′ ∈ L, set xrt′ = 0, xmt′ = m − λ3 and yt′ = 1; set xri1 = 0, xmi1 = 0

and yi1 = 0; set xrt = 0, xmt = mt and yt = 1, ∀t ∈ S \ {i1} and set other

variables to zero. (|L| points)

2. For every t′ ∈ L, set xrt′ = ε, xmt′ = m−λ3 and yt′ = 1; set xri1 = 0, xmi1 = 0 and

yi1 = 0; set xrt = 0, xmt = mt and yt = 1, ∀t ∈ S \ {i1} and set other variables

to zero. (|L| points)

3. For every t′ ∈ L, set xrt′ = 0, xmt′ = m−λ3 + ε and yt′ = 1; set xri1 = 0, xmi1 = 0

and yi1 = 0; set xrt = 0, xmt = mt and yt = 1, ∀t ∈ S \ {i1} and set other

variables to zero. (|L| points)

This completes the proof of the proposition. Note that in this study, since we

assume that there is no initial stock of serviceable product at the beginning of

period 1, Is0 = 0 and the demand is nonnegative and nonzero in all periods, dt > 0

for all t ∈ N ; therefore, we have also included y1 = 1 in this formulation. From

this, the feasible region of the basic formulation for ELSRj along with flow cover

inequalities and setup production at a first period can be described as:

Xjs
fc = {(xr, xm, y, Ir, Is)|(1.8), (1.9), (1.13), (1.14), (1.17), (1.18),

(5.3)− (5.8), y1 = 1}

and the objective function of Zjsfc = min
{

(1.16)|(xr, xm, y, Ir, Is) ∈ Xj
fc

}
. In the

next section, we will discuss the separation algorithms for the inequalities discussed

previously.

5.4 The Separation Problems for conv(Xj)

With the aim to investigate the effectiveness of the cuts generated by each inequality

discussed in the previous section, we provide the exact separation algorithms that

cuts off the fractional linear relaxation points (xr∗, xm∗, y∗, Ir∗, Is∗). Firstly, we

discuss separation algorithm for the case ≤ and then followed by the case for ≥ .

113

Note that these separation algorithms are similar to the ones presented in the

Chapter 4.

Next, we discuss the separation algorithms of the flow cover inequalities for

the case ≤ . We use the similar procedures as in Chapter 4 to obtain the most

violated inequalities. Suppose we consider the first inequality (5.3). We rewrite

this inequality as: ∑
t∈S

(
xrt + (mm

t − λ1)+(1− yt)
)
≤ R

where S is a cover with λ1 > 0. By solving the following knapsack problem, we

obtain the most violated inequalities that cut off the fractional points if and only

if f r > R.

f r = max

{∑
t∈N

ϕt(λ1)u
r
t |
∑
t∈N

mm
t u

r
t = R+ λ1; u

r
t ∈ {0, 1} , ∀t ∈ N

}

where ϕt(λ1) = xr∗t + (mm
t − λ1)+(1− y∗t). We define urt variables as to ensure the

set S 6= ∅ such that

urt =

{
1, the period, t belongs to S

0, otherwise

and λ1 ∈ [1,
∑
t∈S
mm
t − R]. Then, the inequality (5.4) is the extended flow cover

inequalities can be rewritten as:∑
t∈S

(
xrt + (mm

t − λ1)+(1− yt)
)

+
∑
t∈L

(
xrt − (mm

t − λ1)yt
)
≤ R

From this, we define the set L as:

L =
{
t ∈ N \ S|xr∗t − (mm

t − λ1)y∗t > 0
}

in order to find the most violated (S,L) flow cover facet, where mm
t ≥ λ1.

This follows by the separation algorithms for ≥, defined by (5.5), we can rewrite

the inequality as: ∑
t∈S

(
xmt + (mm

t − λ2)+(1− yt)
)
≤
∑
t∈N

xmt

where S is a cover with λ2 > 0. Given that the value of λ2, we can find the most

violated inequalities that cuts off the fractional solutions (xr∗, xm∗, y∗, Ir∗, Is∗) by

114

solving the knapsack problem as stated below:

fm = max

{∑
t∈S

τt(λ2)u
m
t |
∑
t∈N

mm
t u

m
t = (D −R) + λ2; u

m
t ∈ {0, 1} , ∀t ∈ N

}

where, τt(λ2) = xm∗t + (mm
t − λ2)+(1 − y∗t). The first constraints shows that the

cover set Sm must be at least D − R (λ2 = 0) and second constraint determines

the number of elements (period) in the set Sm. Then, the most violated inequality

can be found if and only if fm >
∑

t∈N x
m∗
t such that λ2 ∈ [1,

∑
t∈Sm

m
t − (D−R)].

Next, the extended of the flow cover inequality (5.6) can be rewritten as :∑
t∈S

(
xmt + (mm

t − λ2)+(1− yt)
)

+
∑
t∈L

(
xmt − (mm

t − λ2)yt
)
≤
∑
t∈N

xmt

This is followed by defining the set L as:

L =
{
t ∈ N \ S|xm∗t − (mm

t − λ2)y∗t > 0
}

Then, we obtain the most violated (S,L) flow cover facet given that mm
t ≥ λ2.

Lastly, the similar procedures of exact separation algorithms can be applied to the

inequalities (5.7) and (5.8).

5.5 Preliminary Computational Results

In this section, we present the computational analysis of the strength of flow cover

inequalities with added setup production during the first period and (`, S) − like
inequalities. Note that (`, S)− like inequalities are equivalent to all reformulation

techniques and provide better performance in almost all cases as discussed in Chap-

ter 3. We implement and execute all the separation algorithms and mathematical

models using Mosel language version 7.7 of FICO (R) Xpress Optimization Suite

on a PC with Intel (R) Core(TM) i7-4500U CPU 2.40 GHz processor and 8 GB

RAM with no solver cuts.

In this study, a total of 375 random test Instances are generated. As in Chapter

4, we also consider small planning horizons of 3, 4, 6, 8 and 12 periods since the

exact separation algorithms are computationally expensive. Note that the results of

Period 2 is omitted from this study because all instances tested close the initial gaps

to 100% by all proposed methods. We use the same returns and demands parameter

settings discussed in Chapter 4. Three return parameter settings: low, medium and

high return variabilities are generated randomly between the intervals of [5, 15],

[5, 35] and [5, 50], respectively, and demand parameter is set between the values of

[10, 60]. Further, we also use the same setup costs for both remanufacturing and

manufacturing addressed in Chapter 3, namely 125, 250, 500, 1000 and 5000. This

provides a total of 75 possible combinations, where five test instances are iterated

for each combination. Lastly, we assume that the holding costs for both product

115

returns and serviceable products take values between [0.5, 2] and zero production

costs for both the remanufacturing and manufacturing processes.

We present the computational results for different returns variabilities in Tables

5.5.1 - 5.5.3. In each table:

• The first column lists the time periods, n .

• The second column indicates the variation of setups costs for remanufacturing

and manufacturing.

• This is followed by the average percentage of initial integrality gap of all

combinations, which is based on the LP relaxation at a root node. If all

instances tested are solved to optimality by both (`, S)− like inequalities and

Flow Cover inequalities with added setup production during the first period,

where the initial integrality gap is found to be zero, we omit these rows from

the table.

• The next two columns represent the average percentage of gap closed after

adding (`, S) − like inequalities cuts and FC, respectively. In the next few

columns, the average total number of cuts generated by flow cover inequalities

are arranged in the following order: Returns cover (5.3), Returns-Extended

cover (5.4), Demands cover (5.5), Demands-Extended cover (5.6), Returns-

and-Demands cover (5.7) and Returns-and-Demands-Extended cover (5.8).

• The last column denotes the pairwise comparison of the average percentage

of gap closed of (`, S)− like inequalities vs FC.

Based on Tables 5.5.1 - 5.5.3, we observe that the FC cuts close the gap on

average more than 71% of the initial gap compared to 99% of the initial gap by

(`, S) − like cuts. Unlike the results obtained for the case of separate setups,

the average percentage of gap closed by FC cuts decreases gradually when return

variability increases. This is because when the amount of returns is overly low, the

problem more closely resembles the structure of a single uncapacitated problem in

which the remanufacturing process is almost negligible and the production of new

products is carried out to fulfil the entire demand. In addition to this, we observe

that the average percentage of initial integrality gap (root node) has a negative

relationship with the average percentage of gap closed by FC cuts as setup costs

increase. When the average percentage of initial integrality gap deteriorates steadily

with the increase of setup costs, the average percentage of gap closed by FC cuts

increases accordingly.

Furthermore, FC cuts close 100% of the gap in most instances if the setup

costs are somewhat higher. In regard to the number of cuts generated by FC cuts

for all test instances, the average number of cuts generated decreases when return

variability increases and increases as the problem size gets larger; however, this does

not guarantee their effectiveness in closing gaps. In general, R cuts consistently

generate violated cuts in almost all instances tested. However, in terms of frequency

116

T
ab

le
5.

5.
1:

[L
o
w

re
tu

rn
]

C
om

p
u
ta

ti
on

a
l

co
m

p
a
ri

so
n
s

o
f

th
e

st
re

n
g
th

o
f

d
iff

er
en

t
so

lu
ti

o
n

te
ch

n
iq

u
es

fo
r

E
L

S
R

j
p
ro

b
le

m

n
S
et
u
p
co

st
R
o
o
t
n
o
d
e
(%

)

A
v
er
a
g
e
o
f
g
a
p
cl
o
se
d
(%

)
P
a
ir
w
is
e
co

m
p
a
ri
so
n
s
o
f
a
v
er
a
g
e
g
a
p
cl
o
se
d
(%

)
(l
,s
)-
li
k
e

F
C

A
v
er
a
g
e
#

o
f
cu

ts
g
en

er
a
te
d

R
R
E

D
D
E

R
D

R
D
E

(l
,s
)-
li
k
e
v
s
F
C

3

1
2
5

3
2
.4
4
0
2

1
0
0

8
4
.5
3
2
6

1
0

1
1

2
1

1
5
.4
6
7
4

2
5
0

1
6
.2
5
6
1

1
0
0

9
2
.5
4
1
3

1
1

1
0

1
1

7
.4
5
8
7

5
0
0

5
.5
2
4
0

1
0
0

1
0
0

1
1

2
0

1
0

0
1
0
0
0

1
.1
9
2
2

1
0
0

1
0
0

1
1

1
0

1
1

0

4

1
2
5

3
1
.7
8
7
9

1
0
0

6
7
.6
2
6
4

1
1

2
1

2
3

3
2
.3
7
3
6

2
5
0

2
1
.6
4
7
4

1
0
0

8
3
.7
1
3
7

2
1

2
1

2
3

1
6
.2
8
6
3

5
0
0

8
.5
1
0
5

1
0
0

9
6
.1
4
9
4

2
2

2
0

1
3

3
.8
5
0
6

1
0
0
0

2
.5
0
1
8

1
0
0

1
0
0

1
2

3
0

1
2

0

6

1
2
5

4
7
.2
6
1
1

1
0
0

4
7
.7
0
7
1

1
1

1
4

2
6

5
2
.2
9
2
9

2
5
0

3
7
.9
5
8
4

1
0
0

7
2
.0
6
1
1

2
2

1
3

2
6

2
7
.9
3
8
9

5
0
0

3
0
.8
9
4
9

1
0
0

8
4
.2
3
8
5

3
4

1
3

2
6

1
5
.7
6
1
5

1
0
0
0

1
6
.3
9
2
0

1
0
0

9
1
.5
9
2
5

2
4

1
3

2
6

8
.4
0
7
5

5
0
0
0

1
.1
2
0
6

1
0
0

1
0
0

1
3

4
0

1
3

0

8

1
2
5

5
2
.3
9
9
1

9
9
.8
3
6
2

3
4
.4
2
9
9

1
2

0
4

2
9

6
5
.5
1
3
6

2
5
0

4
4
.6
8
4
5

1
0
0

4
9
.2
2
4
7

1
2

0
4

2
1
0

5
0
.7
7
5
3

5
0
0

3
3
.3
0
8
1

1
0
0

8
0
.4
3
9
8

2
3

0
5

3
1
2

1
9
.5
6
0
2

1
0
0
0

2
2
.4
7
9
7

1
0
0

8
1
.7
5
8
6

3
6

1
3

3
1
0

1
8
.2
4
1
4

5
0
0
0

2
.7
0
8
5

1
0
0

1
0
0

2
5

9
2

1
5

0

1
2

1
2
5

6
2
.4
5
2
7

9
9
.8
9
1
6

2
0
.0
5
4
8

2
4

1
2

1
3

7
9
.9
2
3
5

2
5
0

5
5
.8
2
4
6

1
0
0

2
8
.3
0
9
2

2
4

0
3

1
7

7
1
.6
9
0
8

5
0
0

4
6
.6
8
6
6

1
0
0

4
4
.2
3
6
5

2
5

0
6

2
1
2

5
5
.7
6
3
5

1
0
0
0

3
6
.2
8
9
5

1
0
0

7
2
.1
8
8
0

4
7

0
7

2
2
0

2
7
.8
1
2
0

5
0
0
0

9
.1
4
0
0

1
0
0

9
9
.3
2
9
9

5
9

9
3

0
1
1

0
.6
7
0
1

A
v
e
r
a
g
e

2
5
.9
7
7
0

9
9
.9
8
9
1

7
6
.4
5
1
0

2
3

2
2

2
6

2
3
.5
4
0
7

117

T
ab

le
5.

5.
2:

[M
e
d
iu

m
re

tu
rn

]
C

om
p
u
ta

ti
o
n
a
l

co
m

p
a
ri

so
n
s

o
f

th
e

st
re

n
g
th

o
f

d
iff

er
en

t
so

lu
ti

o
n

te
ch

n
iq

u
es

fo
r

E
L

S
R

j
p
ro

b
le

m

n
S
et
u
p
co

st
R
o
o
t
n
o
d
e
(%

)

A
v
er
a
g
e
o
f
g
a
p
cl
o
se
d
(%

)
P
a
ir
w
is
e
co

m
p
a
ri
so
n
s
o
f
a
v
er
a
g
e
g
a
p
cl
o
se
d
(%

)
(l
,s
)-
li
k
e

F
C

A
v
er
a
g
e
#

o
f
cu

ts
g
en

er
a
te
d

R
R
E

D
D
E

R
D

R
D
E

(l
,s
)-
li
k
e
v
s
F
C

3

1
2
5

3
4
.7
7
3
0

9
9
.8
4
7
6

8
0
.7
5
5
2

1
1

1
0

2
1

1
9
.1
2
1
5

2
5
0

2
2
.1
4
1
4

1
0
0

8
8
.9
9
0
2

1
1

1
0

1
1

1
1
.0
0
9
8

5
0
0

8
.4
5
8
9

1
0
0

1
0
0

1
0

1
0

1
0

0
1
0
0
0

2
.1
0
9
6

1
0
0

1
0
0

1
0

1
0

1
1

0

4

1
2
5

3
6
.5
0
6
1

9
9
.7
9
6
1

6
4
.6
1
6
5

1
0

1
1

2
3

3
5
.2
5
1
4

2
5
0

2
6
.1
6
8
2

1
0
0

7
9
.5
2
5
4

1
0

1
1

2
3

2
0
.4
7
4
6

5
0
0

1
4
.7
5
6
6

1
0
0

9
4
.7
3
9
5

1
1

2
0

1
3

5
.2
6
0
5

1
0
0
0

4
.9
8
5
3

1
0
0

1
0
0

1
1

2
0

1
2

0

6

1
2
5

4
8
.4
4
9
2

1
0
0

4
3
.2
1
0
4

1
2

1
2

1
5

5
6
.7
8
9
6

2
5
0

4
0
.4
8
7
6

1
0
0

6
1
.6
1
2
3

1
2

0
1

2
6

3
8
.3
8
7
7

5
0
0

3
2
.5
8
3
6

1
0
0

7
9
.2
0
1
2

2
1

1
2

1
5

2
0
.7
9
8
8

1
0
0
0

2
1
.2
9
9
9

1
0
0

8
7
.9
8
6
2

2
1

1
2

1
6

1
2
.0
1
3
8

5
0
0
0

1
.8
2
5
4

1
0
0

1
0
0

1
1

2
0

1
4

0

8

1
2
5

5
3
.6
6
6
4

9
9
.1
0
5
8

2
9
.4
5
9
3

2
1

0
1

1
6

7
0
.2
7
4
9

2
5
0

4
6
.0
2
9
9

1
0
0

4
3
.4
1
4
4

1
1

0
1

2
7

5
6
.5
8
5
6

5
0
0

3
6
.8
6
4
9

9
8
.7
7
0
4

6
7
.5
4
3
9

1
1

0
1

2
1
0

3
1
.6
1
5
3

1
0
0
0

2
7
.5
6
1
6

1
0
0

7
2
.7
5
5
5

2
1

1
1

2
9

2
7
.2
4
4
5

5
0
0
0

4
.4
1
6
0

1
0
0

1
0
0

2
2

5
1

1
5

0

1
2

1
2
5

5
9
.7
8
3
2

1
0
0

1
8
.6
2
1
2

3
4

1
2

1
3

8
1
.3
7
8
8

2
5
0

5
5
.9
9
7
9

1
0
0

2
5
.0
2
5
7

2
4

0
1

1
4

7
4
.9
7
4
3

5
0
0

4
8
.7
7
8
1

1
0
0

3
7
.6
5
0
6

2
3

0
1

0
8

6
2
.3
4
9
4

1
0
0
0

3
9
.4
2
9
5

9
9
.9
5
0
7

6
1
.6
3
9
9

2
3

0
2

1
1
5

3
8
.3
2
9
7

5
0
0
0

1
4
.3
1
0
7

1
0
0

9
8
.4
4
7
9

3
4

4
2

0
1
4

1
.5
5
2
1

A
v
e
r
a
g
e

2
8
.7
5
4
3

9
9
.8
9
5
3

7
2
.4
9
4
1

1
1

1
1

1
5

2
7
.4
2
9
9

118

T
ab

le
5.

5.
3:

[H
ig

h
re

tu
rn

]
C

om
p
u
ta

ti
on

a
l

co
m

p
a
ri

so
n
s

o
f

th
e

st
re

n
g
th

o
f

d
iff

er
en

t
so

lu
ti

o
n

te
ch

n
iq

u
es

fo
r

E
L

S
R

j
p
ro

b
le

m

n
S
et
u
p
co

st
R
o
o
t
n
o
d
e
(%

)

A
v
er
a
g
e
o
f
g
a
p
cl
o
se
d
(%

)
P
a
ir
w
is
e
co

m
p
a
ri
so
n
s
o
f
a
v
er
a
g
e
g
a
p
cl
o
se
d
(%

)
(l
,s
)-
li
k
e

F
C

A
v
er
a
g
e
#

o
f
cu

ts
g
en

er
a
te
d

R
R
E

D
D
E

R
D

R
D
E

(l
,s
)-
li
k
e
v
s
F
C

3

1
2
5

3
1
.1
4
8
6

9
9
.2
2
8
0

8
0
.1
3
3
9

2
1

1
0

2
1

1
9
.2
4
2
7

2
5
0

2
0
.4
4
3
6

1
0
0

8
7
.0
0
6
0

1
1

1
0

2
1

1
2
.9
9
4
0

5
0
0

9
.6
2
7
7

1
0
0

1
0
0

1
0

1
0

1
1

0
1
0
0
0

2
.2
6
1
7

1
0
0

1
0
0

1
0

1
0

1
1

0

4

1
2
5

3
4
.0
8
8
6

1
0
0

7
6
.2
7
5
3

1
0

0
0

2
3

2
3
.7
2
4
7

2
5
0

2
7
.1
4
8
1

9
9
.9
3
2
5

8
4
.3
3
7
6

1
0

0
0

2
3

1
5
.6
0
5
4

5
0
0

1
7
.0
7
6
0

1
0
0

9
4
.2
3
7
7

1
1

2
0

1
3

5
.7
6
2
3

1
0
0
0

5
.8
9
3
0

1
0
0

1
0
0

1
1

2
0

1
2

0

6

1
2
5

4
5
.7
4
5
7

9
9
.2
9
9
4

4
4
.9
7
2
2

1
2

1
1

2
5

5
4
.7
1
0
5

2
5
0

3
9
.0
7
0
9

9
9
.6
4
3
0

6
0
.7
3
7
2

1
2

1
2

2
6

3
9
.0
4
5
2

5
0
0

3
2
.1
2
0
0

1
0
0

7
5
.5
1
8
1

1
1

1
2

1
6

2
4
.4
8
1
9

1
0
0
0

2
1
.0
2
7
7

1
0
0

8
7
.1
8
1
9

1
1

1
1

1
6

1
2
.8
1
8
1

5
0
0
0

2
.0
1
9
3

1
0
0

1
0
0

1
1

2
0

1
4

0

8

1
2
5

5
1
.0
0
5
1

9
9
.6
4
6
7

2
7
.9
7
2
5

1
0

0
1

2
6

7
1
.9
2
8
4

2
5
0

4
4
.4
6
2
7

9
9
.1
8
3
2

4
1
.3
5
3
8

1
0

0
1

1
6

5
8
.3
0
5
6

5
0
0

3
6
.2
0
8
4

9
9
.1
9
5
5

6
3
.8
8
8
2

1
0

0
0

1
1
1

3
5
.5
9
3
6

1
0
0
0

2
6
.5
6
8
8

1
0
0

7
2
.9
2
9
2

1
0

0
1

2
8

2
7
.0
7
0
8

5
0
0
0

4
.3
4
5
2

1
0
0

1
0
0

1
1

3
0

1
5

0

1
2

1
2
5

6
0
.1
4
3
8

9
6
.4
9
0
2

1
6
.7
1
4
2

1
2

1
3

0
2

8
2
.6
7
7
8

2
5
0

5
6
.5
3
0
0

9
8
.1
8
0
1

2
2
.5
5
1
6

1
1

0
3

1
5

7
7
.0
3
0
4

5
0
0

5
0
.7
1
2
4

9
8
.6
8
0
9

3
2
.4
0
5
6

1
2

0
2

0
3

6
7
.1
6
1
2

1
0
0
0

4
2
.6
6
9
5

9
9
.7
1
9
4

5
0
.4
5
8
0

1
2

0
1

0
9

4
9
.4
0
0
0

5
0
0
0

1
5
.4
7
3
5

1
0
0

9
7
.7
3
2
4

1
1

2
2

0
1
3

2
.2
6
7
6

A
v
e
r
a
g
e

2
8
.2
0
5
7

9
9
.5
5
9
6

7
1
.8
7
6
1

1
1

1
1

1
4

2
7
.8
0
5
9

119

of cuts generated, for our new flow cover inequalities, RDE cuts often effectively

generate cuts in our framework. On the other hand, other cuts, D and DE cuts

are the least violated in the most test instances. In contrast, these similar types of

inequalities produce better than average percentages of gap closed for the case of

separate setups. In regard to (`, S)− like inequalities and extended reformulations,

these also reduce the gap up to 100% in almost all instances tested when the return

variability is low.

To provide more details, we examine the pairwise comparisons of the average

percentage of gap closed between (`, S)−like cuts and FC cuts. We observe that the

(`, S)− like cuts significantly improve the average percentage of gap closed of FC

when a large horizon is considered. This is generally about 23% improvement in the

case of low returns and jumps moderately to 27% for high returns. Furthermore, the

average improvement of gap closed declines as the amount of setup costs increases.

This shows that (`, S) − like cuts become less effective for improving the average

percentage of FC cuts.

In summary, all the FC cuts are more often violated and make more of an impact

when return variability is low or a small number of periods is considered. Mean-

while, in many cases, the (`, S)− like inequalities are the best solution techniques

to obtain strong lower bounds for the ELSRj problem compared to the FC cuts.

As a comparison, the case of separate setups shows significant results with flow

cover inequalities whereas having joint setups case weakens the effect of flow cover

inequalities.

5.6 Concluding Remarks

In this chapter, we study the polyhedral structure of a new mixed integer set Xj

arising from the original formulation of the economic lot-sizing problem with reman-

ufacturing and joint setups, where two knapsack sets are considered simultaneously.

This mixed integer set is also a variant of the well-known single-node fixed-charge

set, which was studied previously by Padberg et al. (1985). Our main aim in this

chapter is to examine the strength of several families of flow cover inequalities with

additional setup production during the first period, which were addressed in the

present chapter, and the (`, S)− like inequalities, which are studied in Chapter 3,

for improving the lower bounds for the ELSRj problem. This study discusses six

existing and new families of flow cover inequalities, along with their facet-defining

conditions and separation algorithms. Then, comparisons of preliminary compu-

tational results of different solution methods are presented. The findings indicate

that adding (`, S)− like inequalities is efficient for improving the lower bounds for

these randomly generated test instances. In addition, the lower bounds provided by

proposed valid inequalities with additional setup production during the first period

provide comparable results for a smaller number of returns and a short planning

horizon. As for future research, opportunities remain for further enhancement of

this mixed integer set, such as study of the remaining unknown facet-defining in-

120

equalities generated by PORTA, the use of several alternative techniques for gener-

ating families of valid inequalities, the inclusion of a capacity constraint or inventory

variables in this mixed integer set, or the investigation of separation heuristics for

the inequalities derived.

121

Chapter 6

Conclusion and Future Research

In this section, we address the contributions obtained in this thesis and discuss

some future research directions.

In this thesis, we investigate two variants of the economic lot sizing problem

with remanufacturing. As previously discussed, the problem with both separate

and joint setups for remanufacturing and manufacturing operation must be proven

to beNP -hard. First, we present theoretical and computational analysis of different

well-known lower bounding techniques of the classical lot-sizing problem. We then

further investigate the polyhedral structure of two mixed integer sets that arise as

a relaxation of the main problems of both separate and joint setup cases. Several

classes of valid inequalities for these sets were derived to obtain better lower bounds

of both problems.

In Chapter 3, we present different traditional mathematical programming ap-

proaches (i.e., (`, S)− like inequalities) along with exact separation algorithm and

the reformulation techniques such as FL reformulation, MC reformulation and SP

reformulation for obtaining lower bounds. Mathematical analysis is conducted to

extend existing theory for a deeper understanding of the structure of the problem

addressed. Computational results on a wide variety of test instances obtained from

Retel Helmrich et al. (2013) are presented in order to gain a better insight into

these theoretical results. In particular, our (`, S)− like inequalities show stronger

lower bounds than the (`, S,WW) inequalities of Retel Helmrich et al. (2013) for

both problems. One of the main reasons why we get different results is that the

inequalities derived by Retel Helmrich et al. (2013) do not consider production at

the first period. It is necessary to produce the products at the beginning of the

planning period if the demand is always positive and no initial stock is on hand.

Apart from these results, we prove that all the reformulation techniques are identi-

cal theoretically and computationally for both problems. Interestingly, in the case

of joint setups, the lower bounds provided by both (`, S) − like inequalities and

all reformulation techniques are proven to be equivalent since the ELSRj problem

structure more closely resembles the structure of the simple lot-sizing problem.

These equivalence results have significant implications since the same optimal so-

lution values are obtained, regardless of which data set is tested. Due to these

122

equivalence results, we observe the computational effort associated with these for-

mulations in order to determine which formulation is the best choice. According

to our computational results, the (`, S) − like inequalities are the most efficient

among the three well-known reformulation techniques in terms of saving compu-

tation time. However, in the case of separate setups, the (`, S) − like inequalities

appear to be the least efficient formulation and this is especially true for test in-

stances with larger planning periods and if the setup costs for remanufacturing and

manufacturing are equal. Because of these differences, we further investigate the

polyhedral structure of ELSRs hereafter in Chapter 4 in order to derive several

classes of valid inequalities and identify their facet-defining conditions with the

hope of obtaining equivalent or better lower bounds for the problem. We are also

interested in describing other families of valid inequalities for the ELSRj problem

to test and compare their effectiveness with the previously proposed formulations.

In Chapter 4 and 5, we study two new mixed integer sets, Xs and Xj , which

arise as a relaxation (substructures) of ELSRs and ELSRj problems, respectively.

Unlike the well-known single-node fixed-charge network set, these mixed integer sets

simultaneously examine two knapsack sets. The polyhedral structure of the simpler

mixed integer sets is studied to derive several classes of strong valid inequalities

in order to include them in the original formulations. In both chapters, our main

contribution relies upon establishing the facet-defining conditions of the proposed

valid inequalities. We derive several existing and new classes of valid inequalities

that generalize the well-known flow cover inequalities. Then, we report comparisons

of the computational results of different combinations of solution techniques to test

the impact of the inclusion of these inequalities in improving the lower bounds.

The results indicate significant potential for improving the lower bounds on a set

of randomly generated instances by adding these valid inequalities with embedded

(`, S) − like inequalities for the case of separate setups under which the setup

cost for remanufacturing is at the most equal to the setup cost for manufacturing.

However, (`, S) − like inequalities remain to be the best formulation for the case

of joint setup.

To summarize, we have used different traditional MIP approaches, with a focus

on polyhedral analysis, to tackle these two production planning problems with re-

manufacturing options. In this study, we believe our contribution to these problems,

which currently have limited results, can provide valuable insight and motivation

for other researchers, especially in the areas of production planning and MIP, to fur-

ther investigate hybrid remanufacturing-manufacturing production systems. Many

intriguing and difficult questions remain unsolved and need to be addressed in the

future.

One immediate future research topic is the identification of the remaining un-

known facet-defining inequalities corresponding to both mixed integer sets Xs and

Xj , generated by PORTA, which is used to analyse polytopes and polyhedra sets.

Note that the number of unknown facet-defining inequalities generated by PORTA

increases as the number of periods increases. Other extensions for this research

123

include the study of fast separation heuristics as the exact separation algorithm

for these flow cover inequalities is computationally expensive in terms of time and

memory when the problem size increases. Next, one could also examine the follow-

ing mixed integer set.

XP = {(xr, xm, ym) ∈ Rn+ × Rn+×Bn |
∑
t∈N

(xrt + xmt) ≥ D,

0 < xrt ≤ C, xmt ≤ mm
t y

m
t , ∀t ∈ N}

where C denotes the capacity or resources of remanufactured products. This mixed

integer set indicates that there is no remanufacturing activity occurring in the pro-

duction facility. This is because OEMs outsource (or contract out) their remanu-

facturing activities to third-party remanufacturers, which are commonly referred to

as contract remanufacturers. Normally, OEMs have a contract agreement with con-

tract remanufacturers to remanufacture products on their behalf to minimize the

risk and uncertainty issues associated with product returns. These remanufactured

products are then stored in a limited storage space, C.

Other than that, it would be interesting to use a mixed integer programming

(MIP)-based heuristic method to improve both computation time and lower bounds

for ELSRs problem since the computation times to find an optimal solution (out of

ten replications) increases as the problem size increases. This MIP-based heuris-

tic method offers the best trade-off between quality and run time. In regard to

the ELSRj problem, the overall run time required to solve big data instances are

acceptable for our study.

Setup operations play a significant role in production planning in many pro-

duction environments. These setup activities, which involve cost and take time

can disrupt the production/service processes. Therefore, reduction in setup cost

and time is necessary for continuous improvement of the production system. For

further research, we can extend our original formulation for ELSRs by considering

machine/labour capacity constraints since as follows:

arkx
r
t + strky

r
t ≤ Ck

t

amk x
m
t + stmk y

m
t ≤ Dk

t

where the setup times of machine/labour are part of the capacity constraints, the

parameters ark and amk represent the variable processing time to produce one unit

of remanufactured product and new product, respectively. The parameters strk and

stmk , respectively, the setup time to remanufacture a used product and manufac-

ture a new product using machine/labour k, which has a capacity of Ck
t and Dk

t ,

respectively. The inclusion of these capacity constraints is important because the

time required to prepare the necessary resource (e.g., machines, people) to perform

both remanufacturing and manufacturing activities is highly variable compared to

classical production. With respect to the joint setup case, we only consider a single

124

setup variable, yt; a
h
k is the variable processing time to produce one unit of reman-

ufactured or new product and sthk indicates the setup time for the remanufacture

of a used product or manufacture of a new product using machine/labour k, which

has a capacity of Ek
t .

Since our models are deterministic models, there are still opportunities avail-

able to investigate uncertainty issues with regard to the amount of used products

retrieved by the system, R, and the demand for both remanufactured and new

products, D. Further, the used products returned to the production system are

not guaranteed to be remanufactured due to greater uncertainty about quality. Fi-

nally, both problems will be more realistic if we incorporate the three sub-systems

of remanufacturing (i.e. disassembly, remanufacturing and assembly processes) into

the original formulation. Firstly, used products are collected from core suppliers

such as a core broker, retailer/dealer or end customers. Potential used products

are then cleaned, sorted and disassembled into parts (items). A visual inspection

process will be performed to eliminate non-remanufacturable parts and defective

or failed parts and replace them with new parts. Subsequently, remanufacturable

parts are reprocessed to a like-new condition and then integrated with new parts

to produce a remanufactured product. This problem scenario considers multi-item

and multi-level problems, where these multiple parts (items) compete for the same

resources. This general production planning for remanufacturing is complex and

becomes more challenging when taking into account the manufacturing process.

125

References

Absi, N., Dauzère-Pérès, S., Kedad-Sidhoum, S., Penz, B., Rapine, C., 2013. Lot

sizing with carbon emission constraints. European Journal of Operational Re-

search 227 (1), 55–61.

Absi, N., Kedad-Sidhoum, S., 2007. Mip-based heuristics for multi-item capacitated

lot-sizing problem with setup times and shortage costs. RAIRO-Operations Re-

search 41 (2), 171–192.

Absi, N., Kedad-Sidhoum, S., 2009. The multi-item capacitated lot-sizing problem

with safety stocks and demand shortage costs. Computers & Operations Research

36 (11), 2926–2936.

Aggarwal, A., Park, J. K. P., 1993. Improved algorithms for economic lot size

problems. Operations Research 41 (3), 549–571.

Ahmadi, S. A., Zargaran, A., Mehdizadeh, A., Mortazavi, S. M. J., 2013. Remanu-

facturing and evaluation of al zahrawi surgical instruments, al mokhdea as scalpel

handle. Galen Medical Journal 2 (1), 22–25.

Akartunalı, K., Miller, A. J., 2009. A heuristic approach for big bucket multi-

level production planning problems. European Journal of Operational Research

193 (2), 396–411.

Akartunalı, K., Miller, A. J., 2012. A computational analysis of lower bounds for

big bucket production planning problems. Computational Optimization and Ap-

plications 53 (3), 729–753.

Akbalik, A., Pochet, Y., 2009. Valid inequalities for the single-item capacitated lot

sizing problem with step-wise costs. European Journal of Operational Research

198 (2), 412–434.

Almada-Lobo, B., Clark, A., Guimarães, L., Figueira, G., Amorim, P., 2015. In-

dustrial insights into lot sizing and scheduling modeling. Pesquisa Operacional

35 (3), 439–464.

Armentano, V. A., França, P. M., de Toledo, F. M., 1999. A network flow model

for the capacitated lot-sizing problem. Omega 27 (2), 275–284.

126

Atamtürk, A., Küçükyavuz, S., 2005. Lot sizing with inventory bounds and fixed

costs: Polyhedral study and computation. Operations Research 53 (4), 711–730.

Atasu, A., Guide, V. D. R., Van Wassenhove, L. N., 2010. So what if remanufactur-

ing cannibalizes my new product sales? California Management Review 52 (2),

56–76.

Baki, M. F., Chaouch, B. A., Abdul-Kader, W., 2014. A heuristic solution pro-

cedure for the dynamic lot sizing problem with remanufacturing and product

recovery. Computers & Operations Research 43, 225–236.

Barany, I., Van Roy, T., Wolsey, L. A., 1984b. Uncapacitated lot-sizing: The convex

hull of solutions. Springer.

Barany, I., Van Roy, T. J., Wolsey, L. A., 1984a. Strong formulations for multi-item

capacitated lot sizing. Management Science 30 (10), 1255–1261.

Beraldi, P., Ghiani, G., Grieco, A., Guerriero, E., 2008. Rolling-horizon and fix-

and-relax heuristics for the parallel machine lot-sizing and scheduling problem

with sequence-dependent set-up costs. Computers & Operations Research 35 (11),

3644–3656.

Bitran, G. R., Yanasse, H. H., 1982. Computational complexity of the capacitated

lot size problem. Management Science 28 (10), 1174–1186.

Brahimi, N., Dauzere-Peres, S., Najid, N. M., Nordli, A., 2006. Single item lot

sizing problems. European Journal of Operational Research 168 (1), 1–16.

Buschkühl, L., Sahling, F., Helber, S., Tempelmeier, H., 2010. Dynamic capaci-

tated lot-sizing problems: a classification and review of solution approaches. Or

Spectrum 32 (2), 231–261.

Cao, H., Li, H., Cheng, H., Luo, Y., Yin, R., Chen, Y., 2012. A carbon efficiency

approach for life-cycle carbon emission characteristics of machine tools. Journal

of Cleaner Production 37, 19–28.

Chandrasekaran, C., Rajendran, C., Krishnaiah Chetty, O., Hanumanna, D., 2009.

A two-phase metaheuristic approach for solving economic lot scheduling prob-

lems. International Journal of Operational Research 4 (3), 296–322.

Chang, J.-f., Zhong, Y.-x., Han, Z.-d., 2006. Optimal method of capacitated lot-

sizing planning in manufacturing systems. Frontiers of Mechanical Engineering

in China 1 (1), 67–70.

Chapman, A., Bartlett, C., McGill, I., Parker, D., Walsh, B., 2010. Remanufactur-

ing in the uk: 2009 survey.

URL http://www2.wrap.org.uk/downloads/2009REman1.d51435ff.8948.pdf

Chen, W.-H., Thizy, J.-M., 1990. Analysis of relaxations for the multi-item capac-

itated lot-sizing problem. Annals of operations Research 26 (1), 29–72.

http://www2.wrap.org.uk/downloads/2009REman1.d51435ff.8948.pdf

127

Chu, C., Chu, F., Zhong, J., Yang, S., 2013. A polynomial algorithm for a lot-

sizing problem with backlogging, outsourcing and limited inventory. Computers

& Industrial Engineering 64 (1), 200–210.

Chu, F., Chu, C., 2007. Polynomial algorithms for single-item lot-sizing models

with bounded inventory and backlogging or outsourcing. Automation Science

and Engineering, IEEE Transactions on 4 (2), 233–251.

Chung, C.-S., Flynn, J., Lin, C.-H. M., 1994. An effective algorithm for the capac-

itated single item lot size problem. European Journal of Operational Research

75 (2), 427–440.

Chung, C.-S., Lin, C.-H. M., 1988. An o (t2) algorithm for the ni/g/ni/nd capaci-

tated lot size problem. Management Science 34 (3), 420–426.

Clark, A., Almada-Lobo, B., Almeder, C., 2011. Lot sizing and scheduling: indus-

trial extensions and research opportunities. International Journal of Production

Research 49 (9), 2457–2461.

Danna, E., Rothberg, E., Le Pape, C., 2005. Exploring relaxation induced neigh-

borhoods to improve mip solutions. Mathematical Programming 102 (1), 71–90.

Diaby, M., Bahl, H., Karwan, M., Zionts, S., 1992. Capacitated lot-sizing and

scheduling by lagrangean relaxation. European Journal of Operational Research

59 (3), 444–458.

Dixon, P. S., Silver, E. A., 1981. A heuristic solution procedure for the multi-item,

single-level, limited capacity, lot-sizing problem. Journal of opérations manage-

ment 2 (1), 23–39.

Dogramaci, A., Panayiotopoulos, J. C., Adam, N. R., 1981. The dynamic lot-sizing

problem for multiple items under limited capacity. AIIE transactions 13 (4), 294–

303.

Doostmohammadi, M., 2014. Polyhedral study of mixed integer sets arising from

inventory problems. Ph.D. thesis.

Drexl, A., Kimms, A., 1997. Lot sizing and scheduling-survey and extensions. Eu-

ropean Journal of Operational Research 99 (2), 221–235.

Eppen, G. D., Martin, R. K., 1987. Solving multi-item capacitated lot-sizing prob-

lems using variable redefinition. Operations Research 35 (6), 832–848.

Escalante, M. S., Marenco, J. L., del Carmen Varaldo, M., 2011. A polyhedral study

of the single-item lot-sizing problem with continuous start-up costs. Electronic

Notes in Discrete Mathematics 37, 261–266.

Federgruen, A., Tzur, M., 1991. A simple forward algorithm to solve general dy-

namic lot sizing models with n periods in 0 (n log n) or 0 (n) time. Management

Science 37 (8), 909–925.

128

Ferguson, M., 2010. Strategic and tactical aspects of closed-loop supply chains.

Vol. 8. Now Publishers Inc.

Ferrer, G., 1997. The economics of personal computer remanufacturing. Resources,

Conservation and Recycling 21 (2), 79–108.

Fischetti, M., Lodi, A., 2003. Local branching. Mathematical programming 98 (1-

3), 23–47.

Fleischmann, B., 1990. The discrete lot-sizing and scheduling problem. European

Journal of Operational Research 44 (3), 337–348.

Florian, M., Klein, M., 1971. Deterministic production planning with concave costs

and capacity constraints. Management Science 18 (1), 12–20.

Gaafar, L., 2006. Applying genetic algorithms to dynamic lot sizing with batch

ordering. Computers & Industrial Engineering 51 (3), 433–444.

Gaafar, L. K., Nassef, A. O., Aly, A. I., 2009. Fixed-quantity dynamic lot sizing

using simulated annealing. The International Journal of Advanced Manufacturing

Technology 41 (1-2), 122–131.

Gelders, L. F., Maes, J., van Wassenhove, L. N., 1986. A branch and bound algo-

rithm for the multi item single level capacitated dynamic lotsizing problem. In:

Multi-stage production planning and inventory control. Springer, pp. 92–108.

Gicquel, C., Minoux, M., 2014. Multi-product valid inequalities for the discrete

lot-sizing and scheduling problem. Computers & Operations Research.

Gicquel, C., Minoux, M., Dallery, Y., 2008. Capacitated lot sizing models: a liter-

ature review.

Golany, B., Yang, J., Yu, G., 2001. Economic lot-sizing with remanufacturing op-

tions. IIE Transactions 33 (11), 995–1003.

Guide Jr, V., Srivastava, R., Spencer, M. S., 1997. An evaluation of capacity plan-

ning techniques in a remanufacturing environment. International Journal of Pro-

duction Research 35 (1), 67–82.

Guide Jr, V. D. R., 2000. Production planning and control for remanufacturing:

industry practice and research needs. Journal of Operations Management 18 (4),

467–483.

Gutiérrez, J., Sedeño-Noda, A., Colebrook, M., Sicilia, J., 2003. A new character-

ization for the dynamic lot size problem with bounded inventory. Computers &

Operations Research 30 (3), 383–395.

Gutiérrez, J., Sedeño-Noda, A., Colebrook, M., Sicilia, J., 2008. An efficient ap-

proach for solving the lot-sizing problem with time-varying storage capacities.

European Journal of Operational Research 189 (3), 682–693.

129

Haugen, K. K., Olstad, A., Pettersen, B. I., 2007a. The profit maximizing capaci-

tated lot-size (pclsp) problem. European Journal of Operational Research 176 (1),

165–176.

Haugen, K. K., Olstad, A., Pettersen, B. I., 2007b. Solving large-scale profit max-

imization capacitated lot-size problems by heuristic methods. Journal of Mathe-

matical Modelling and Algorithms 6 (1), 135–149.

Heuvel, W., 2004. On the complexity of the economic lot-sizing problem with re-

manufacturing options. Tech. rep., Erasmus School of Economics (ESE).

Hindi, K., 1995. Computationally efficient solution of the multi-item, capacitated

lot-sizing problem. Computers & industrial engineering 28 (4), 709–719.

Hwang, H.-C., 2007. An efficient procedure for dynamic lot-sizing model with de-

mand time windows. Journal of Global Optimization 37 (1), 11–26.

Ijomah, W. L., 2009. Addressing decision making for remanufacturing operations

and design-for-remanufacture. International Journal of Sustainable Engineering

2 (2), 91–102.

Karimi, B., Ghomi, S. F., Wilson, J., 2003. The capacitated lot sizing problem: a

review of models and algorithms. Omega 31 (5), 365–378.

Kirca, Ö., 1990. An efficient algorithm for the capacitated single item dynamic lot

size problem. European Journal of Operational Research 45 (1), 15–24.

Krarup, J., Bilde, O., 1977. Plant location, set covering and economic lot size:

An 0 (mn)-algorithm for structured problems. In: Numerische Methoden bei

Optimierungsaufgaben Band 3. Springer, pp. 155–180.

Küçükyavuz, S., Pochet, Y., 2009. Uncapacitated lot sizing with backlogging: the

convex hull. Mathematical Programming 118 (1), 151–175.

Lebreton, B., Tuma, A., 2006. A quantitative approach to assessing the profitabil-

ity of car and truck tire remanufacturing. International Journal of production

economics 104 (2), 639–652.

Lee, C.-Y., Çetinkaya, S., Wagelmans, A. P., 2001. A dynamic lot-sizing model

with demand time windows. Management Science 47 (10), 1384–1395.

Leung, J. M., Magnanti, T. L., Vachani, R., 1989. Facets and algorithms for ca-

pacitated lot sizing. Mathematical programming 45 (1-3), 331–359.

Li, J., González, M., Zhu, Y., 2009. A hybrid simulation optimization method

for production planning of dedicated remanufacturing. International Journal of

Production Economics 117 (2), 286–301.

Li, X., Baki, F., Tian, P., Chaouch, B. A., 2013. A robust block-chain based tabu

search algorithm for the dynamic lot sizing problem with product returns and

remanufacturing. Omega.

130

Liu, T., 2008. Economic lot sizing problem with inventory bounds. European Jour-

nal of Operational Research 185 (1), 204–215.

Lotfi, V., Yoon, Y.-S., 1994. An algorithm for the single-item capacitated lot-sizing

problem with concave production and holding costs. Journal of the Operational

Research Society, 934–941.

Love, S. F., 1973. Bounded production and inventory models with piecewise concave

costs. Management Science 20 (3), 313–318.

Maes, J., Van Wassenhove, L., 1988. Multi-item single-level capacitated dynamic

lot-sizing heuristics: A general review. Journal of the Operational Research So-

ciety, 991–1004.

Matsumoto, M., Umeda, Y., 2011. An analysis of remanufacturing practices in

japan. Journal of Remanufacturing 1 (1), 1–11.

Melo, R. A., Wolsey, L. A., 2010. Uncapacitated two-level lot-sizing. Operations

Research Letters 38 (4), 241–245.

Mercé, C., Fontan, G., 2003. Mip-based heuristics for capacitated lotsizing prob-

lems. International Journal of Production Economics 85 (1), 97–111.

Okhrin, I., Richter, K., 2009. The single item dynamic lot sizing problem with min-

imum lot size restriction. In: Operations Research Proceedings 2008. Springer,

pp. 91–96.

Okhrin, I., Richter, K., 2011. An o (t3) algorithm for the capacitated lot sizing

problem with minimum order quantities. European Journal of Operational Re-

search 211 (3), 507–514.

Önal, M., Van den Heuvel, W., Liu, T., 2012. A note on ’the economic lot siz-

ing problem with inventory bounds’. European Journal of Operational Research

223 (1), 290–294.

Ortega, F., Wolsey, L. A., 2003. A branch-and-cut algorithm for the single-

commodity, uncapacitated, fixed-charge network flow problem. Networks 41 (3),

143–158.

Özdamar, L., Bozyel, M. A., 2000. The capacitated lot sizing problem with overtime

decisions and setup times. IIE transactions 32 (11), 1043–1057.

Padberg, M. W., Van Roy, T. J., Wolsey, L. A., 1985. Valid linear inequalities for

fixed charge problems. Operations Research 33 (4), 842–861.

Pan, Z., Tang, J., Liu, O., 2009. Capacitated dynamic lot sizing problems in closed-

loop supply chain. European Journal of Operational Research 198 (3), 810–821.

131

Parker, D., Riley, K., Robinson, S., Symington, H., Tewson, J., Jansson, K.,

Ramkumar, S., Peck, D., October 2015. Remanufacturing market study.

URL https://www.remanufacturing.eu/wp-content/uploads/2016/01/

study.pdf

Parsopoulos, K. E., Konstantaras, I., Skouri, K., 2015. Metaheuristic optimization

for the single-item dynamic lot sizing problem with returns and remanufacturing.

Computers & Industrial Engineering 83, 307–315.

Patel, G., 2006. A Stochastic Production Cost Model for Remanufacturing Systems.

The University of Texas - Pan American.

URL http://books.google.co.uk/books?id=YFXb0BI1CxEC

Piñeyro, P., Viera, O., 2012. Analysis of the quantities of the remanufacturing plan

of perfect cost. Journal of Remanufacturing 2 (1), 1–8.

Pochet, Y., 1988. Valid inequalities and separation for capacitated economic lot

sizing. Operations Research Letters 7 (3), 109–115.

Pochet, Y., Wolsey, L. A., 1988. Lot-size models with backlogging: Strong refor-

mulations and cutting planes. Mathematical Programming 40 (1-3), 317–335.

Pochet, Y., Wolsey, L. A., 1994. Polyhedra for lot-sizing with wagner-whitin costs.

Mathematical Programming 67 (1-3), 297–323.

Pochet, Y., Wolsey, L. A., 2006. Production planning by mixed integer program-

ming. Springer Science & Business Media.

Pochet, Y., Wolsey, L. A., 2010. Single item lot-sizing with non-decreasing capaci-

ties. Mathematical programming 121 (1), 123–143.

Pochet, Y., Wolsey, L. A., et al., 1995. Algorithms and reformulations for lot sizing

problems. DIMACS Series in Discrete Mathematics and Theoretical Computer

Science 20, 245–293.

Quadt, D., Kuhn, H., 2008. Capacitated lot-sizing with extensions: a review. 4OR

6 (1), 61–83.

Rardin, R. L., Wolsey, L. A., 1993. Valid inequalities and projecting the multi-

commodity extended formulation for uncapacitated fixed charge network flow

problems. European Journal of Operational Research 71 (1), 95–109.

Retel Helmrich, M. J., Jans, R., van den Heuvel, W., Wagelmans, A. P., 2013.

Economic lot-sizing with remanufacturing: complexity and efficient formulations.

IIE Transactions (just-accepted).

Richter, K., Sombrutzki, M., 2000. Remanufacturing planning for the reverse wag-

ner/whitin models. European Journal of Operational Research 121 (2), 304–315.

https://www.remanufacturing.eu/wp-content/uploads/2016/01/study.pdf
https://www.remanufacturing.eu/wp-content/uploads/2016/01/study.pdf
http://books.google.co.uk/books?id=YFXb0BI1CxEC

132

Richter, K., Weber, J., 2001. The reverse wagner/whitin model with variable man-

ufacturing and remanufacturing cost. International Journal of Production Eco-

nomics 71 (1), 447–456.

Rizk, N., Martel, A., Ramudhin, A., 2006. A lagrangean relaxation algorithm for

multi-item lot-sizing problems with joint piecewise linear resource costs. Interna-

tional Journal of Production Economics 102 (2), 344–357.

Schulz, T., 2011. A new silver–meal based heuristic for the single-item dynamic

lot sizing problem with returns and remanufacturing. International Journal of

Production Research 49 (9), 2519–2533.

Senyiğit, E., 2009. New heuristics to stochastic dynamic lot sizing problem. Gazi

University Journal of Science 22 (2), 97–106.

Shaw, D. X., Wagelmans, A. P., 1998. An algorithm for single-item capacitated

economic lot sizing with piecewise linear production costs and general holding

costs. Management Science 44 (6), 831–838.

Shi, J., Zhang, G., Sha, J., 2011. Optimal production planning for a multi-product

closed loop system with uncertain demand and return. Computers & Operations

Research 38 (3), 641–650.

Sifaleras, A., Konstantaras, I., Mladenović, N., 2015. Variable neighborhood search

for the economic lot sizing problem with product returns and recovery. Interna-

tional Journal of Production Economics 160, 133–143.

Souza, G. C., 2012. Product disposition decisions on closed-loop supply chains. In:

Sustainable Supply Chains. Springer, pp. 149–164.

Staggemeier, A. T., Clark, A. R., 2001. A survey of lot-sizing and scheduling mod-

els. In: 23rd annual symposium of the Brazilian operational research society

(SOBRAPO). Citeseer, pp. 938–947.

Süer, G. A., Badurdeen, F., Dissanayake, N., 2008. Capacitated lot sizing by using

multi-chromosome crossover strategy. Journal of Intelligent Manufacturing 19 (3),

273–282.

Tang, O., Teunter, R., 2006. Economic lot scheduling problem with returns. Pro-

duction and Operations Management 15 (4), 488–497.

Taşgetiren, M. F., Liang, Y.-C., 2003. A binary particle swarm optimization al-

gorithm for lot sizing problem. Journal of Economic and Social Research 5 (2),

1–20.

Teunter, R., Kaparis, K., Tang, O., 2008. Multi-product economic lot scheduling

problem with separate production lines for manufacturing and remanufacturing.

European Journal of Operational Research 191 (3), 1241–1253.

133

Teunter, R. H., Bayindir, Z. P., Den Heuvel, W. V., 2006. Dynamic lot sizing

with product returns and remanufacturing. International Journal of Production

Research 44 (20), 4377–4400.

The All-Party Parliamentary Sustainable Resource Group, March 2014. Remanu-

facturing: Towards a resource efficient economy.

URL http://www.policyconnect.org.uk/apsrg/research/

report-remanufacturing-towards-resource-efficient-economy-0

Thierry, M., Salomon, M., Van Nunen, J., Van Wassenhove, L., 1995. Strategic

issues in product recovery management. California management review 37 (2).

Toledo, F. M. B., Armentano, V. A., 2006. A lagrangian-based heuristic for the

capacitated lot-sizing problem in parallel machines. European Journal of Opera-

tional Research 175 (2), 1070–1083.

Ullah, H., Parveen, S., 2010. A literature review on inventory lot sizing problems.

Global Journal of Researches in Engineering 10 (5).

Van den Heuvel, W., Wagelmans, A. P., 2006. An efficient dynamic programming

algorithm for a special case of the capacitated lot-sizing problem. Computers &

operations research 33 (12), 3583–3599.

Van Hoesel, C., Wagelmans, A. P., Wolsey, L. A., 1994a. Polyhedral characteri-

zation of the economic lot-sizing problem with start-up costs. SIAM Journal on

Discrete Mathematics 7 (1), 141–151.

Van Hoesel, C., Wagelmans, A. P. M., 1996. An o (t3) algorithm for the economic

lot-sizing problem with constant capacities. Management Science 42 (1), 142–150.

Van Hoesel, S., Kuik, R., Salomon, M., Van Wassenhove, L. N., 1994b. The single-

item discrete lotsizing and scheduling problem: optimization by linear and dy-

namic programming. Discrete Applied Mathematics 48 (3), 289–303.

Van Roy, T. J., Wolsey, L. A., 1985. Valid inequalities and separation for uncapac-

itated fixed charge networks. Operations Research Letters 4 (3), 105–112.

Van Vyve, M., Ortega, F., 2004. Lot-sizing with fixed charges on stocks: the convex

hull. Discrete Optimization 1 (2), 189–203.

Vanderbeck, F., 1998. Lot-sizing with start-up times. Management Science 44 (10),

1409–1425.

Vyve, M., Wolsey, L. A., Yaman, H., 2014. Relaxations for two-level multi-item

lot-sizing problems. Mathematical Programming: Series A and B 146 (1-2), 495–

523.

Wagelmans, A., Van Hoesel, S., Kolen, A., 1992. Economic lot sizing: an o (nlogn)

algorithm that runs in linear time in the wagner-whitin case. Operations Research

40 (1-supplement-1), S145–S156.

http://www.policyconnect.org.uk/apsrg/research/report-remanufacturing-towards-resource-efficient-economy-0
http://www.policyconnect.org.uk/apsrg/research/report-remanufacturing-towards-resource-efficient-economy-0

134

Wagner, H. M., Whitin, T. M., 1958. Dynamic version of the economic lot size

model. Management science 5 (1), 89–96.

Wang, N., He, Z., Sun, J., Xie, H., Shi, W., 2011. A single-item uncapacitated

lot-sizing problem with remanufacturing and outsourcing. Procedia Engineering

15, 5170–5178.

Xia, X., Govindan, K., Zhu, Q., 2015. Analyzing internal barriers for automotive

parts remanufacturers in china using grey-dematel approach. Journal of Cleaner

Production 87, 811–825.

Yaman, H., 2009. Polyhedral analysis for the two-item uncapacitated lot-sizing

problem with one-way substitution. Discrete Applied Mathematics 157 (14),

3133–3151.

Yang, J., Golany, B., Yu, G., 2005. A concave-cost production planning problem

with remanufacturing options. Naval Research Logistics (NRL) 52 (5), 443–458.

Zangwill, W. I., 1969. A backlogging model and a multi-echelon model of a dynamic

economic lot size production system-a network approach. Management Science

15 (9), 506–527.

Zhao, Y., Klabjan, D., 2012. A polyhedral study of lot-sizing with supplier selection.

Discrete Optimization 9 (2), 65–76.

135

Appendix A

(`, S) − like Inequalities in Mosel - Sepa-

rate Setups

model ’(l,S) Inequalities for ELSR with Separate Setups ’

uses ’mmxprs ’

uses ’mmsystem ’

declarations

NT=25 !number of time periods

period =1..NT

p_r:array(period) of real !production cost for remanufactured products

p_m:array(period) of real !production cost for new products

k_r:array(period) of real !setup cost for remanufacturing

k_m:array(period) of real !setup cost for manufacturing

h_r:array(period) of real !holding cost for used products

h_s:array(period) of real !holding cost for serviceable products

x_r:array(period) of mpvar !production amount of remanufactured product

x_m:array(period) of mpvar !production amount of manufactured product

y_r:array(period) of mpvar !setup variable for remanufacturing

y_m:array(period) of mpvar !setup variable for manufacturing

I_r:array(period) of mpvar !inventory variable for product returns

I_s:array(period) of mpvar !inventory variable for serviceable products

return:array(period) of real !amount of used products returned

demand:array(period) of real !amount of demand for serviceable products

totdem:array(period) of real !total demand from period t until NT

totret:array(period) of real !total return from period 1 until t

!==

!(l,S) INEQUALITIES

!==

!maximum number of iterations

maxiter =100

iter =1.. maxiter

!set S (1 if t in S, 0 otherwise) for each iteration + period l

setS:array(iter , period , period) of integer

ret:array(period , period) of real !total return from period t until period l

dem:array(period , period) of real !total demand from period t until period l

!counter for number of violations of constraints at each iteration

countviol_1:integer

countviol_2:integer

countviol_3:integer

countviol_4:integer

136

end -declarations

!==

!DATA INPUT

!==

starttime := gettime

!read the data from the file

fopen(’LaHM100 (125) _11.txt ’, F_INPUT)

forall(t in period)

readln(t, demand(t), return(t), k_m(t), k_r(t), h_s(t), h_r(t), p_m(t), p_r(t))

fclose(F_INPUT)

!==

!PARAMETERS CALCULATION

!==

!calculate the bigM -constraints

forall (t in period)do

totdem(t):=sum(tt in t..NT)demand(tt)

totret(t):=sum(tt in 1..t)return(tt)

end -do

!==

!CONSTRAINTS

!==

!total costs function

costpro :=sum(t in period)(p_r(t)*x_r(t) + p_m(t)*x_m(t))

costfixed :=sum (t in period)(k_r(t)*y_r(t) + k_m(t)*y_m(t))

costinv :=sum(t in period)(h_r(t)*I_r(t) + h_s(t)*I_s(t))

cost:= costpro + costfixed + costinv

!flow balance for remanufacturing and manufacturing

forall(t in period)do

const_1(t):= if(t>1, I_r(t-1), 0)- x_r(t) + return(t) = I_r(t)

const_2(t):= if(t>1, I_s(t-1), 0)+ x_m(t) + x_r(t)- demand(t) = I_s(t)

end -do

!production variable -binary variable relations

forall(t in period)do

const_3(t):=x_r(t)<= minlist(totret(t),totdem(t))*y_r(t)

const_4(t):=x_m(t)<= totdem(t)*y_m(t)

end -do

!relax the setup variables

forall(t in period)do

y_r(t)<= 1

y_m(t)<= 1

end -do

setparam(’XPRS_CPUTIME ’,1)

setparam(’XPRS_MAXTIME ’, -600)

setparam(’XPRS_CUTSTRATEGY ’, 0)

setparam(’XPRS_GOMCUTS ’, 0)

!==

!ADDS (l,S)INEQUALITIES TO THE ORIGINAL FORMULATION

!==

starttime := gettime

!calculate the returns and demands from period t to l

forall(l in 1..NT)do

137

forall(t in 1..l)do

ret(t,l):= 0 !(1) set initial value of ret(t,l) and dem(t,l) as zero

ret(l,l):= return(l)

dem(t,l):= 0 !(2) calculate other ret(l,t) and dem (t,l) quantities

dem(l,l):= demand(l)

if(l>=2) then

forall(tt in 1..(l-1))do

ret(l-tt,l):= ret(l-tt+1,l) + return(l-tt)

dem(l-tt,l):= dem(l-tt+1,l) + demand(l-tt)

end -do

end -if

end -do

end -do

!first , solve LP relaxation

minimize(cost)

writeln (!===)

writeln(’LP RELAXATION SOLUTION ’)

writeln (!===)

writeln(’The total cost for LP relaxation: ’, getobjval)

writeln(’ ’) ls_soln := getobjval

!count the total number of inequalities added to the original problem formulation

total_viol_1 :=0

total_viol_2 :=0

total_viol_3 :=0

total_viol_4 :=0

!separation algorithm for (l,s)inequalities

forall(iteration in iter) do

!initialize the counter

countviol_1 :=0

countviol_2 :=0

countviol_3 :=0

countviol_4 :=0

forall(l in period) do

forall(k in 1..l) do

!initialize the set S

forall(t in k..l)

setS(iteration ,t,l):=0

forall(t in k..l)do

if(getsol(x_r(t))>ret(k,t)* getsol(y_r(t)) or

getsol(x_r(t))>dem(t,l)* getsol(y_r(t))or

getsol(x_m(t))>dem(t,l)* getsol(y_m(t))or

getsol(x_r(t))+ getsol(x_m(t))>dem(t,l)*(getsol(y_r(t))+ getsol(y_m(t)))) then

setS(iteration ,t,l):=1

end -if

end -do

if(sum(u in k..l)setS(iteration ,u,l)*(getsol(x_m(u))+ getsol(x_r(u)))>

getsol(I_s(l))+ sum(u in k..l)setS(iteration ,u,l)*dem(u,l)

*(getsol(y_m(u))+ getsol(y_r(u)))+0.00001) then

addcons_1(iteration , l):=sum(u in k..l)setS(iteration ,u,l)*(x_m(u)+x_r(u))

<= I_s(l)+ sum(u in k..l)setS(iteration ,u,l)*dem(u,l)*(y_m(u)+y_r(u))

countviol_1 := countviol_1 + 1

end -if

if(sum(u in k..l)setS(iteration ,u,l)* getsol(x_m(u))>

getsol(I_s(l))+ sum(u in k..l)setS(iteration ,u,l)

dem(u,l) getsol(y_m(u))+0.00001) then

addcons_2(iteration , l):=sum(u in k..l)setS(iteration ,u,l)*x_m(u)<= I_s(l)

138

+ sum(u in k..l)setS(iteration ,u,l)*dem(u,l)*(y_m(u))

countviol_2 := countviol_2 + 1

end -if

if(sum(u in k..l)setS(iteration ,u,l)* getsol(x_r(u))>

getsol(I_s(l))+ sum(u in k..l)setS(iteration ,u,l)

dem(u,l) getsol(y_r(u))+0.00001) then

addcons_3(iteration , l):=sum(u in k..l)setS(iteration ,u,l)*x_r(u)<= I_s(l)

+ sum(u in k..l)setS(iteration ,u,l)*dem(u,l)*(y_r(u))

countviol_3 := countviol_3 + 1

end -if

if(sum(u in k..l)setS(iteration ,u,l)* getsol(x_r(u))> if(k>1,getsol(I_r(k-1)) ,0)

+ sum(u in k..l)setS(iteration ,u,l)*ret(k,u)* getsol(y_r(u))+0.00001) then

addcons_4(iteration ,l):=sum(u in k..l)setS(iteration ,u,l)*x_r(u)

<= if(k>1,I_r(k-1) ,0)+ sum(u in k..l)setS(iteration ,u,l)*ret(k,u)*(y_r(u))

countviol_4 := countviol_4 + 1

end -if

end -do

end -do

if(countviol_1 =0 and countviol_2 =0 and countviol_3 =0 and countviol_4 =0) then break

else

!solve the strengthened LP relaxation with added maximum violated (l,s)cuts

minimize(cost)

ls_soln := getobjval

total_viol_1 := total_viol_1 + countviol_1

total_viol_2 := total_viol_2 + countviol_2

total_viol_3 := total_viol_3 + countviol_3

total_viol_4 := total_viol_4 + countviol_4

num_iter := iteration

writeln (!==)

writeln(’LP RELAXATION SOLUTION WITH ADDED INEQUALITIES ’)

writeln (!==)

writeln(’Iteration: ’,iteration)

writeln(’Number of constraints added for constraint I: ’,countviol_1)

writeln(’Number of constraints added for constraint II: ’,countviol_2)

writeln(’Number of constraints added for constraint III: ’,countviol_3)

writeln(’Number of constraints added for constraint III: ’,countviol_4)

writeln(’Total cost for LP relaxation with added inequalities: ’,getobjval)

writeln(’ ’)

end -if

end -do

!===

!GENERAL STATISTICS FOR(l,S) INEQUALITIES

!===

writeln (!===)

writeln(’(l,S)INEQUALITIES STATISTICS ’)

writeln (!===)

writeln(’Total cost for LP relaxation : ’,getobjval)

writeln(’ ’)

writeln(’Number of valid inequalities I : ’,total_viol_1)

writeln(’Number of valid inequalities II : ’,total_viol_2)

writeln(’Number of valid inequalities III : ’,total_viol_3)

writeln(’Number of valid inequalities III : ’,total_viol_4)

writeln(’ ’)

ls_time := gettime -starttime

writeln(’(l,s) time spent : ’, ls_time)

139

writeln(’Number of iterations: ’, num_iter)

writeln(’ ’)

!===

!IP SOLUTION OF THE MODEL

!===

forall (t in period)do

y_r(t) is_binary

y_m(t) is_binary

end -do

!solve IP

starttime := gettime

minimize(cost)

writeln (!===)

writeln(’IP SOLUTION ’)

writeln (!===)

writeln(’Best solution - the total cost for IP: ’, getobjval)

writeln(’ ’)

mip_time :=gettime -starttime

writeln(’MIP time spent: ’, mip_time)

writeln(’ ’)

!===

!EXIT

!===

exit (0)

end -model

140

Appendix B

Shortest Path Reformulation in Mosel -

Separate Setups

model ’Shortest Path Reformulation for ELSR with Separate Setups ’

uses ’mmxprs ’

uses ’mmsystem ’

declarations

NT=25 !number of time periods

period =1..NT

p_r:array(period) of real !production cost for remanufactured products

p_m:array(period) of real !production cost for new products

k_r:array(period) of real !setup cost for remanufacturing

k_m:array(period) of real !setup cost for manufacturing

h_r:array(period) of real !holding cost for used products

h_s:array(period) of real !holding cost for serviceable products

x_r:array(period) of mpvar !production amount of remanufactured product

x_m:array(period) of mpvar !production amount of manufactured product

y_r:array(period) of mpvar !setup variable for remanufacturing

y_m:array(period) of mpvar !setup variable for manufacturing

f:array(period) of mpvar !final serviceable inventory variable

return:array(period) of real !amount of used products returned

demand:array(period) of real !amount of demand for serviceable products

ret:array(period , period) of real !total return from period t until l

dem:array(period , period) of real !total demand from period t until l

c_s:array(period , period) of real !total cost for remanufacturing process

c_r:array(period , period) of real !total holding cost for used products

c_f:array(period) of real !total cost of final inventory of returns

!the fraction of demand in each of the periods i until j that is fulfilled

!by remanufactured products in period i

z_sr:dynamic array(period , period) of mpvar

!the fraction of demand in each of the periods i until j that is fulfilled

!by newly produced products in period i

z_sm:dynamic array(period , period) of mpvar

!the fraction of returns in each of the periods i until j that is remanufactured

!in period j

z_r:dynamic array(period , period) of mpvar

end -declarations

!==

!DATA INPUT

!==

starttime := gettime

141

!read the data from the file

fopen(’LaHM100 (125) _11.txt ’, F_INPUT)

forall(t in period)

readln(t, demand(t), return(t), k_m(t), k_r(t), h_s(t), h_r(t), p_m(t), p_r(t))

fclose(F_INPUT)

!==

!PARAMETERS CALCULATION

!==

starttime := gettime

!calculate the bigM -constraints

forall(t in period , l in t..NT)do

ret(t,l):=sum(u in t..l)return(u)

dem(t,l):=sum(u in t..l)demand(u)

end -do

!calculate the total costs from period t to l

forall(l in period)do

if(l>=2) then

forall(u in 1..(l-1))do

c_s(u,l):=sum(i in u..(l-1)) h_s(i)*dem(i+1,l)

c_r(u,l):=sum(i in u..(l-1)) h_r(i)*ret(u,i)

end -do

end -if

end -do

forall(t in period) c_f(t):=sum(j in t..NT)h_r(j)*ret(t,j)

forall(l in 1..NT, t in 1..NT)do

create(z_sr(l,t))

create(z_sm(l,t))

create(z_r(l,t))

end -do

!==

!CONSTRAINTS

!==

!total costs function

costpro :=sum(t in period)(p_r(t)*x_r(t) + p_m(t)*x_m(t))

costfixed :=sum (t in period)(k_r(t)*y_r(t) + k_m(t)*y_m(t))

costinv :=sum(t in period , l in t..NT)(c_r(t,l)*z_r(t,l)

+ c_s(t,l)*(z_sr(t,l)+z_sm(t,l)))+ sum(t in period)c_f(t)*f(t)

cost:= costpro + costfixed + costinv

!constraints -nodes

const_1 :=sum(l in period)(z_sr(l,NT) + z_sm(l,NT))=1

const_2:=-sum(l in period)(z_sr(1,l) + z_sm(1,l))=-1

forall(t in 1..NT -1) const_3(t):=sum(l in 1..t)(z_sr(l,t) + z_sm(l,t))

=sum(l in t+1..NT)(z_sr(t+1,l) + z_sm(t+1,l))

const_4 :=sum(l in period)(z_r(l,NT)+f(l))=1

const_5:=-sum(l in period)(z_r(1,l)+f(1))= -1

forall(t in 1..NT -1) const_6(t):=sum(l in 1..t)z_r(l,t)=sum(l in t+1..NT)z_r(t+1,l)

+f(t+1)

!relationship old and new variables

forall(t in period)do

const_7(t):=x_r(t)=sum(l in 1..t)ret(l,t)*z_r(l,t)

const_8(t):=x_m(t)=sum(l in t..NT)dem(t,l)*z_sm(t,l)

end -do

!production variable -binary variable relations

forall(t in period)do

142

const_9(t):=sum(l in t..NT|dem(t,l)>0)z_sr(t,l)<= y_r(t)

const_10(t):=sum(l in t..NT|dem(t,l)>0)z_sm(t,l)<= y_m(t)

const_11(t):=sum(l in 1..t|ret(t,l)>=0)z_r(l,t)<= y_r(t)

end -do

!link constraint between z_r and z_sr

forall(t in period) const_12(t):=sum(tt in 1..t)ret(tt ,t)*z_r(tt,t)

=sum(tt in t..NT)dem(t,tt)*z_sr(t,tt)

!relax the setup variables

forall(t in period)do

y_r(t)<=1

y_m(t)<=1

end -do

setparam(’XPRS_CPUTIME ’,1)

setparam(’XPRS_MAXTIME ’, -600)

setparam(’XPRS_CUTSTRATEGY ’, 0)

!===

!LP RELAXATION SOLUTION OF THE MODEL

!===

!first , solve LP relaxation

minimize(cost)

writeln (!===)

writeln(’LP RELAXATION SOLUTION ’)

writeln (!===)

writeln(’The total cost for LP relaxation: ’, getobjval)

writeln(’ ’)

!===

!IP SOLUTION OF THE MODEL

!===

forall (t in period)do

y_r(t) is_binary

y_m(t) is_binary

end -do

!solve IP

minimize(cost)

writeln (!===)

writeln(’IP SOLUTION ’)

writeln (!===)

writeln(’The total cost for IP: ’, getobjval)

writeln(’ ’)

ls_time := gettime -starttime

writeln(’MIP time spent: ’, ls_time)

writeln(’ ’)

!===

!EXIT

!===

exit (0)

end -model

143

Appendix C

Detailed Results of Lower Bounds - Sep-

arate Setups

C.1 Low Return (n = 25)

SC No
Original (`, S) − like (`, S,WW) FL = MC = SP

LB UB LB UB LB UB LB UB

125

1 464.35 3359.62* 3189.72 3236.15 2532.83 3236.15 3189.91 3236.15

2 506.64 3570.12* 3425.37 3467.05 2688.53 3467.05 3425.37 3467.05

3 474.44 3447.61* 3334.67 3349.75 2663.53 3349.75 3334.67 3349.75

4 426.11 3333.23* 3209.77 3234.96 2523.74 3234.96 3212.56 3234.96

5 524.69 3458.44* 3278.08 3314.37 2523.62 3314.37 3278.16 3314.37

6 453.10 3409.5* 3209.43 3238.29 2506.58 3238.29 3212.62 3238.29

7 448.33 3237.66* 3099.32 3141.92 2467.76 3141.92 3099.32 3141.92

8 496.14 3625.71* 3469.15 3511.13 2745.44 3511.13 3469.15 3511.13

9 510.52 3238.12* 3188.34 3199.49 2546.26 3199.49 3188.34 3199.49

10 520.00 3407.27* 3244.27 3288.93 2600.61 3288.93 3244.27 3288.93

Average 482.43 3408.73 3264.81 3298.20 2579.89 3298.20 3265.44 3298.20

250

1 914.32 5101.95* 4927.87 4964.39 4062.02 4964.39 4932.71 4964.39

2 997.12 5462.89* 5263.13 5290.72 4312.43 5290.72 5266.82 5290.72

3 948.88 5353.13* 5215.07 5299.84 4245.51 5299.84 5215.41 5299.84

4 847.59 5315.92* 5017.91 5105.49 4100.77 5105.49 5017.91 5105.49

5 988.68 5539.79* 5200.18 5294.24 4138.32 5294.24 5205.54 5294.24

6 906.19 5385.55* 5166.32 5217 4097.32 5217 5174.58 5217

7 888.35 5007.02* 4785.83 4812.14 3946.5 4812.14 4791.04 4812.14

8 934.31 5572.55* 5358.38 5360.62 4376.94 5360.62 5358.38 5360.62

9 993.29 5112.98* 5009.75 5049.38 4046.37 5049.38 5009.75 5049.38

10 977.07 5417.75* 5127.79 5161.67 4147.82 5161.67 5129.01 5161.67

Average 939.58 5326.95 5107.22 5155.55 4147.4 5155.55 5110.12 5155.505

* indicates solution is not optimal-allocated computation time exceeded 600s.

144

SC No
Original (`, S) − like (`, S,WW) FL = MC = SP

LB UB LB UB LB UB LB UB

500

1 1724.64 7381.85 7304.22 7381.85 6018.52 7381.85 7304.22 7381.85

2 1831.34 7873.84 7763.39 7873.84 6325.37 7873.84 7773.45 7873.84

3 1836.61 8019.16 7980.17 8019.16 6598.65 8019.16 7986.64 8019.16

4 1643.97 7644.34 7539.59 7644.34 6193.77 7644.34 7549.81 7644.34

5 1828.59 8036.64 7931.33 8036.64 6499.84 8036.64 7966.75 8036.64

6 1789.93 7975.8 7871.45 7975.8 6382.43 7975.8 7875.27 7975.8

7 1658.5 7321.54 7254.53 7321.54 5997.39 7321.54 7277.36 7321.54

8 1684.38 8262.92* 8066.97 8099.03 6644.42 8099.03 8083.54 8099.03

9 1945.94 7791.65 7720.64 7791.65 6414.56 7791.65 7732.5 7791.65

10 1787.06 7967.69* 7764.19 7837.54 6424.2 7837.54 7775.05 7837.54

Average 1773.10 7827.54 7719.65 7798.14 6349.92 7798.14 7732.46 7798.14

1000

1 3274.45 11047.6 11008.5 11047.6 8895.41 11047.6 11031.5 11047.6

2 3269.02 11610.2 11605.2 11610.2 9484.89 11610.2 11605.2 11610.2

3 3405.95 11686.8 11640.3 11686.8 9739.97 11686.8 11666.2 11686.8

4 3108.61 11336 11250.8 11336 9483.84 11336 11299.3 11336

5 3354.71 11875.1 11825.4 11875.1 9775.96 11875.1 11852.9 11875.1

6 3306.88 11746.7 11729.7 11746.7 9756.82 11746.7 11742.1 11746.7

7 3036.81 10624 10601.1 10624 8886.71 10624 10624 10624

8 3127.85 12208.6 12137.9 12208.6 9950.63 12208.6 12159.2 12208.6

9 3466.87 11282.1 11266.7 11282.1 9302.88 11282.1 11267.5 11282.1

10 3213.96 11241.4 11241.4 11241.4 9469.48 11241.4 11241.4 11241.4

Average 3256.51 11465.85 11430.7 11465.85 9474.66 11465.85 11448.93 11465.85

* indicates solution is not optimal-allocated computation time exceeded 600s.

C.2 Low Return (n = 50)

SC No
Original (`, S) − like (`, S,WW) FL = MC = SP

LB UB LB UB LB UB LB UB

125

1 565.36 7361.2* 6638.24 6733.5 5295.6 6774.64* 6651.97 6733.5

2 570.40 7436.05* 6430.19 6584.36 5099.2 6638.49* 6434.68 6584.36

3 553.55 7571.91* 6588.09 6690.34 5213.66 6728.79* 6589.05 6690.34

4 561.28 7558.84* 6608.57 6744.22 5228.78 6761.62* 6609.03 6744.22

5 608.52 7009.21* 5974.02 6119.18 4795.26 6166.71* 5974.73 6119.18

6 598.26 7289.03* 6368.27 6475.72 5028.27 6508.96* 6376.44 6475.72

7 601.34 7638.84* 6750.22 6843.73 5434.13 6955.53* 6750.22 6843.73

8 566.69 7490.95* 6657.33 6771.58 5289.75 6813.44* 6657.33 6771.58

9 583.84 7410.4* 6466.38 6582.94 5138.76 6608.4* 6467.07 6582.94

10 556.45 7487.08* 6313.83 6374.63 5015.24 6431.78* 6313.83 6374.63

Average 576.57 7425.35 6479.51 6592.07 5153.87 6638.84 6482.44 6592.07

250

1 1065.16 11597.6* 10239.3 10370.2 8527.6 10498.7* 10280.6 10370.2

2 1118.48 11562.2* 10040.5 10168.2 8083.49 10183.9* 10054.5 10168.2

3 1095.2 11520.1* 10336 10421.8 8495.36 10526.8* 10348.8 10421.8

4 1110.99 12170.8* 10321.2 10494 8471.64 10718.1* 10341.7 10494

5 1157.45 10996.5* 9372.01 9470.86 7665.58 9609.91* 9402.45 9470.86

6 1110.25 11619.3* 9928.3 10013.6 8097.82 10133.5* 9952.62 10013.6

7 1173.83 11607.4* 10589.6 10712.9 8731.04 10743.1* 10590.2 10712.9

8 1093.83 11983.4* 10433.8 10596.2 8498.37 10735.4* 10461 10596.2

9 1121.51 11534.9* 10044.7 10170.7 8160.24 10213* 10056.8 10170.7

10 1080.81 11634.1* 9759.75 9876.83 7989.38 10033.4* 9763.86 9876.83

Average 1112.75 11622.63 10106.52 10229.53 8272.05 10339.58 10125.25 10229.53

* indicates solution is not optimal-allocated computation time exceeded 600s.

145

SC No
Original (`, S) − like (`, S,WW) FL = MC = SP

LB UB LB UB LB UB LB UB

500

1 2056.98 17364.1* 15595.7 15892.5 12933.5 16018.1* 15637.7 15892.5

2 2128.89 18166.6* 15197.7 15353.6 12481.4 15572.6* 15235.2 15353.6

3 2075.36 17690.6* 15649.9 15874.2 12878 15902.8* 15681.5 15874.2

4 2144.6 17381.7* 15716.3 15947.4 12802.5 16132.5* 15767.2 15947.4

5 2159.19 16361.6* 14364.2 14560.6 11817.3 14646.9* 14396.4 14560.6

6 2120.27 17560.6* 15255 15414.8 12472.1 15524.1* 15261.3 15414.8

7 2188.55 17251.3* 15927.2 15990.1 13334.6 16270.4* 15929 15990.1

8 2042.05 18366.5* 15689.2 15917.4 13009.8 16119.7* 15734 15917.4

9 2105.41 17705.9* 15256.2 15387.9 12600.5 15588.5* 15293.5 15387.9

10 2006.89 17402.8* 14864.8 15157.4 12220 15237* 14917.5 15157.4

Average 2102.82 17525.17 15351.62 15549.59 12654.97 15701.26 15385.33 15549.59

1000

1 4000.77 25152.3* 23205 23461.1 19514.4 23539* 23337.4 23461.1

2 3939.26 25512.6* 22673.2 22798.7 18897.6 22900.3* 22681.7 22798.7

3 3825.42 27041.4* 23445.9 23670.2 19328.1 23670.2* 23485.1 23670.2

4 4077.8 25865.4* 23161.3 23241.6 19389.4 23241.6* 23224.8 23241.6

5 4073.09 24085.6* 21256.8 21473.7 17846.1 21473.7 21296.3 21473.7

6 3975.92 25658.2* 22785.5 22840.5 19063.6 22840.5* 22797.7 22840.5

7 3979.09 26060.7* 23372.4 23632.4 19563 23878.6* 23430.4 23632.4

8 3911.06 26003.6* 23188.8 23493.9 19295.8 23702.8* 23277.7 23493.9

9 3942.07 25701.8* 22512.9 22916.6 18852.2 23022.7* 22594 22916.6

10 3674.01 24147.1* 22487.5 22730.7 18739.7 22730.7* 22597.7 22730.7

Average 3939.85 25522.87 22808.93 23025.94 19048.99 23096.63 22872.28 23025.94

* indicates solution is not optimal-allocated computation time exceeded 600s.

C.3 Low Return (n = 75)

SC No
Original (`, S) − like (`, S,WW) FL = MC = SP

LB UB LB UB LB UB LB UB

125

1 666.69 11483.7* 9693.04 9855.47 7791.05 9969.51* 9699.29 9855.47

2 583.38 11222.1* 9269.78 9376.61 7413.97 9583.57* 9270.76 9376.61

3 640.09 11529.8* 9639.32 9805.77 7677.52 9921.27* 9641.48 9805.77

4 635.57 11410.3* 9929.34 10075 7946.94 10242.4* 9933.02 10075

5 601.41 11127.9* 9968.45 10086 8013.99 10333.9* 9969.24 10086

6 597.97 11252.3* 9922.69 10057.8 7909.06 10236.2* 9923.57 10057.8

7 592.33 11460.3* 10038.7 10184.1 7987.67 10330.5* 10038.7 10184.1

8 641.58 11188.3* 10018.2 10120.5 8087.1 10260.7* 10018.2 10120.5

9 624.73 11613.8* 9986.93 10151.8 7863.22 10390.8* 9998.2 10151.8

10 618.33 11602.8* 10322.1 10438.4 8125.69 10503.9* 10322.2 10438.4

Average 620.21 11389.13 9878.86 10015.15 7881.62 10177.28 9881.47 10015.15

250

1 1237.59 18068.2* 15198.5 15446.2 12575.7 15677.6* 15220.3 15446.2

2 1141.33 17431.4* 14570.4 14701.3 11981.6 14938.7* 14585.6 14701.3

3 1201.04 18084.6* 14924.7 15139.9 12065.4 15445.6* 14940.7 15139.9

4 1220.39 18114.4* 15456.6 15682.1 12698.6 15964.4* 15489 15682.1

5 1202.83 18097.2* 15681 15832.4 12838.9 15905.6* 15713.2 15832.4

6 1133.72 18462.3* 15460 15725.6 12527.1 15929.5* 15467 15725.6

7 1165.38 17999.7* 15642.4 15846.5 12772.5 16232.2* 15656.1 15846.5

8 1219.04 18474.7* 15544.6 15719 12860.8 16138* 15558.2 15719

9 1197.6 19008.2* 15632.8 15919.1 12673 16127.9* 15651.8 15919.1

10 1167.3 18924.9* 16174.9 16317 13208.8 16666.5* 16189.7 16317

Average 1188.62 18266.56 15428.59 15632.91 12620.24 15902.6 15447.16 15632.91

* indicates solution is not optimal-allocated computation time exceeded 600s.

146

SC No
Original (`, S) − like (`, S,WW) FL = MC = SP

LB UB LB UB LB UB LB UB

500

1 2375.9 27889.3* 23152.5 23406.8 19266.5 24416.3* 23195.4 23406.8

2 2257.22 26481.9* 22110.8 22448.3 18455.4 23050.7* 22196.9 22448.3

3 2271.86 28197.6* 22536.6 22802.5 18697.8 23208.6* 22575.6 22802.5

4 2321.98 28181.2* 23202.8 23631.9 19129.4 24566.6* 23306.2 23631.9

5 2306.48 27433.6* 23810.2 24026.1 19906.7 24525.9* 23866 24026.1

6 2186.97 27956.4* 23546.8 23699.2 19652.3 24435.2* 23559.3 23699.2

7 2261.02 27996.7* 23508.2 23682.2 19639.4 24252.3* 23536.5 23682.2

8 2271.76 28103.5* 23962.4 24162.2 19944.1 24486.1* 24008.9 24162.2

9 2289.29 27793.8* 23748.1 24036.3 19595.3 24846.7* 23771.1 24036.3

10 2214.72 28905* 24697.2 25150.8 20333.6 25466.2* 24729.5 25150.8

Average 2275.72 27893.90 23427.56 23704.63 19462.05 24325.46 23474.54 23704.63

1000

1 4608.09 40496.1* 34752.9 35115.7 29293.1 35868.7* 34838.5 35115.7

2 4413.49 39456.1* 32866.6 33118.7 27668.9 34887.1* 32923 33118.7

3 4247.08 41868.6* 33739.1 33954.8 28252.2 35111.5* 33820.7 33954.8

4 4357.92 41466.2* 34699.8 35036.1 28708.8 36525.8* 34817.8 35036.1

5 4339.77 41467.1* 35546.7 35957.2 29888.7 37226* 35638.8 35957.2

6 4264.32 40216.5* 34702.7 35103.1 29148.3 35852* 34797.4 35103.1

7 4337.33 41308.3* 34841 35229.3 29060.9 36420.8* 34937.8 35229.3

8 4362.27 41501.4* 35837.2 36203.7 30007.3 37447.2* 35976.2 36203.7

9 4321.8 40553.6* 35413.1 35868.4 29655.8 37004.9* 35533 35868.4

10 4266.52 45366.2* 36925.9 37345 31046.8 38812.8* 37031.7 37345

Average 4351.85 41370.01 34932.50 35293.20 29273.08 36515.68 35031.49 35293.20

* indicates solution is not optimal-allocated computation time exceeded 600s.

C.4 Medium Return (n = 25)

SC No
Original (`, S) − like (`, S,WW) FL = MC = SP

LB UB LB UB LB UB LB UB

125

1 624.87 3963.53* 3626.25 3741.25 3026.34 3741.25 3638.39 3741.25

2 1133.14 4261.01* 3807.91 4037.24 3280.21 4037.24 3811.45 4037.24

3 606.06 3975.73* 3445.4 3720.15 2983.85 3720.15 3449.63 3720.15

4 588.90 3816.39* 3394.38 3605.47 2874.67 3605.47 3402.27 3605.47

5 686.57 3898.61* 3479.23 3703.68 2927.56 3703.68 3493.82 3703.68

6 529.38 3869.51* 3554.82 3777.79 2988.95 3777.79 3559.28 3777.79

7 740.54 4146.84* 3744.36 3934.48 3219.15 3934.48 3745.52 3934.48

8 587.14 4141.29* 3523.67 3835.62 3052.57 3835.62 3539.28 3835.62

9 702.99 3625.78* 3261.17 3512.26 2912.56 3512.26 3261.21 3512.26

10 619.82 3838.76* 3432.8 3697.65 2940.17 3697.65 3443.86 3697.65

Average 681.94 3953.75 3527 3756.56 3020.60 3756.56 3534.47 3756.56

250

1 1063.65 6147.76* 5612.74 5903.2 4938.03 5903.2 5655.84 5903.2

2 1553.97 6351.62* 5957.21 6284.12 5268.54 6284.12 5965.45 6284.12

3 1043.79 6599.35* 5616.64 6102.84 5042.18 6102.84 5661.33 6102.84

4 1001.96 6237.01* 5523.3 5851.62 4774.91 5851.62 5552.48 5851.62

5 1177.17 6171.08* 5552.67 5963.37 4856.86 5963.37 5621.37 5963.37

6 1037.18 6319.34* 5597.25 5973.87 4856.51 5973.87 5640.29 5973.87

7 1157.84 6457.29* 5876.59 6203.47 5103.88 6203.47 5950.95 6203.47

8 1021.21 6370.71* 5465.56 5958.21 4802.16 5958.21 5559.2 5958.21

9 1168.14 5968.66* 5255.71 5675.93 4739.82 5675.93 5296.84 5675.93

10 1045.72 6176.23* 5517.09 5804.16 4729.68 5804.16 5546.06 5804.16

Average 1127.06 6279.91 5597.48 5972.08 4911.26 5972.08 5644.98 5972.08

* indicates solution is not optimal-allocated computation time exceeded 600s.

147

SC No
Original (`, S) − like (`, S,WW) FL = MC = SP

LB UB LB UB LB UB LB UB

500

1 1896.95 9525.66* 8597.21 9232.07 7532.97 9232.07 8734.41 9232.07

2 2395.63 9741.7* 9089.86 9474.87 8045.5 9474.87 9148.22 9474.87

3 1881.98 9951.85* 8674.05 9174.45 7849.86 9174.45 8812.12 9174.45

4 1760.84 9250.32* 8633.97 9171.27 7488.44 9171.27 8700.19 9171.27

5 2022.81 9090.98* 8377.99 8888.91 7420.47 8888.91 8491.81 8888.91

6 1881.8 9369.86* 8626.56 8999.86 7627.77 8999.86 8738.27 8999.86

7 1992.46 9802.4* 9098.31 9513 8011.59 9513 9207.47 9513

8 1813.12 9352.64* 8489.37 9153.01 7465.46 9153.01 8704.76 9153.01

9 2058.79 8784.92* 8193.68 8627.31 7243.81 8627.31 8230.65 8627.31

10 1826.66 9079.95* 8461.48 8929.45 7240.4 8929.45 8572.6 8929.45

Average 1953.10 9395.03 8624.25 9116.42 7592.63 9116.42 8734.05 9116.42

1000

1 3432.15 13719.9* 12847.9 13492.9 11392.4 13492.9 13142.2 13492.9

2 3887.36 14193.3* 13573.2 14193.3 11942.9 14193.3 13716.9 14193.3

3 3435.36 14221.2* 13016.9 13979.4 11766.8 13979.4 13243.9 13979.4

4 3798.89 13913.1* 12905.8 13770.3 11583 13770.3 13106.7 13770.3

5 3551.44 12799.8 12396 12799.8 10950.5 12799.8 12540.2 12799.8

6 3436.12 13589.8* 12827.4 13584.7 11340 13584.7 13036.3 13584.7

7 3580.56 14437.3* 13610.5 14437.3 11976.1 14437.3 13852.9 14437.3

8 3310.31 13462.6* 12649.5 13310.9 11263 13310.9 12862.6 13310.9

9 3531.99 13097.1* 12373.8 13073.9 10800.5 13073.9 12555.9 13073.9

10 3246.52 13174.2* 12648.5 13174.2 11015 13174.2 12804.5 13174.2

Average 3461.07 13660.83 12884.95 13581.67 11403.02 13581.67 13089.21 13581.67

* indicates solution is not optimal-allocated computation time exceeded 600s.

C.5 Medium Return (n = 50)

SC No
Original (`, S) − like (`, S,WW) FL = MC = SP

LB UB LB UB LB UB LB UB-FL
UB-

MC
UB-SP

125

1 832.32 8208.58* 7011.1 7674.76* 6056.75 7766.81* 7043.34 7624.46* 7629.62* 7605.62*

2 1003.86 7959.2* 6667.87 7160.75 5751.82 7219.8* 6699.21 7160.75 7160.75 7160.75

3 1079.88 8015.92* 6662.66 7343.37* 5794.86 7404.8* 6708.24 7262* 7281.45* 7266.8*

4 1072.93 8968.17* 7039.22 7491.85 5993.83 7616.99* 7069.73 7491.85 7491.85 7491.85

5 721.19 8636.47* 6989.94 7419.35 6011.62 7494.8* 6998.27 7419.35 7419.35 7419.35

6 730.43 8307.33* 6830.14 7225.31 5785.86 7266.52* 6861.54 7225.31 7225.31 7225.31

7 843.40 8660.86* 6965.85 7691.34* 6019.99 7756.52* 6993.38 7672.13* 7667.51* 7667.51*

8 806.40 8397.65* 7062.54 7572.22* 6021.95 7719.33* 7102.76 7572.22 7572.22* 7572.22

9 1229.96 8249.9* 6573.39 7306.03* 5809.35 7405.24* 6602.53 7306.03* 7325.95* 7306.03*

10 778.77 8388.77* 7035.03 7623.24* 6042.44 7696.78* 7076.62 7619.75* 7325.95* 7619.75*

Average 909.91 7433.04 6883.77 7450.82 5928.85 7534.76 6915.56 7435.39 7436.98 7433.52

250

1 1390.9 12913.1* 11043.9 11846.8* 9726.77 12004.8* 11222.9 11851.5* 11383.9* 11851.5*

2 1536.32 13103.9* 10632.8 11489.2* 9416.77 11712* 10738.1 11473.8* 11489.2* 11500*

3 1634.25 13106.1* 10382.6 11413* 9286.76 11490.9* 10506 11402.1* 11413* 11422.5*

4 1595.93 13688.9* 10977.9 11682 9621.71 12016.4* 11074.7 11682 11682 11682

5 1274.82 13905.1* 11242.9 11950.8* 9916.44 12025.7* 11323 11938.1 11938.1 11938.1

6 1290.31 13530.3* 10771.4 11578.5* 9441.8 11665.2* 10904.7 11570.8* 11570.8* 11582.3*

7 1372.2 14177* 11146.7 12322.6* 9907.72 12355.7* 11270.4 12235.2* 12235.2* 12246*

8 1378.42 13458.5* 11178.8 12103.3* 9720.72 12135.4* 11316.6 12023.2* 12028.6* 12023.2*

9 1760.91 13571.9* 10442.3 11292.2* 9453.68 11345.5* 10533.5 11253.1 11253.1 11287.1*

10 1275.93 13459.4* 11041.2 12146.5* 9691.21 12300.9* 11201.6 12089.6* 12073* 12073*

Average 1451 13491.42 10886.05 11782.49 9618.36 11905.25 11009.15 11750.38 11752.19 11760.57

.

* indicates solution is not optimal-allocated computation time exceeded 600s.

148

SC No
Original (`, S) − like (`, S,WW) FL = MC = SP

LB UB LB UB LB UB LB UB-FL UB-MC UB-SP

500

1 2428.55 20348.1* 16870.8 17914.7* 15086.3 18040.9* 17137.1 17914.7 17914.7 17914.7

2 2535.3 20438.2* 16185.4 17266.6 14565.9 17351.8* 16517.7 17266.6 17266.6 17266.6

3 2694.29 20642.2* 15715.1 16772.6 14141.3 16772.6* 16054.6 16772.6 16772.6 16772.6

4 2641.93 21090.1* 16833.9 17926.5* 14951.9 18015.6* 17151 17920.6 17920.6 17920.6

5 2328.04 20657.5* 17163.2 18094.8 15351.2 18366.2* 17331.9 18094.8 18094.8 18094.8

6 2380.53 20447.2* 16513.5 17516 14807.2 17531.5* 16763.5 17516 17516 17516

7 2380.5 21043.1* 17085.5 18362.4* 15325.5 18720.1* 17362.9 18348.1 18348.1 18348.1

8 2414.17 20914.7* 16988.2 18074.2* 15129 18223.8* 17277.2 18074.2 18074.2 18074.2

9 2693.33 20253.2* 15949.6 17425.8* 14724.9 17528.2* 16185.6 17273.6 17273.6 17273.6

10 2270.26 20429.7* 16999.3* 18534.7* 15108.5 18613.9* 17337.3 18275.3 18275.3* 18275.3

Average 2476.69 20626.4 16630.45 17788.83 14919.17 17916.46 16911.88 17745.65 17745.65 17745.65

1000

1 4269.82 29850.3* 25054 26657.4 22555 26758.1* 25655.8 26657.4 26657.4 26657.4

2 4297.05 30132.3* 24292.4 26137.8* 22131.9 26137.6* 24896 26111.7 26111.7 26111.7

3 4680.59 28716.2* 23377.4 24891.4 21372.9 24891.4 23936.3 24891.4 24891.4 24891.4

4 4569.69 29026.1* 25087.5 26387.3 22505.2 26387.3 25611.3 26387.3 26387.3 26387.3

5 4293.51 30214.2* 25789 27025.2 23103.4 27025.2 26211.8 27025.2 27025.2 27025.2

6 4349.62 29369.3* 24719.2 26212.5 22178 26367.9* 25345.5 26212.5 26212.5 26212.5

7 4271.79 31736.1* 25656.5 27259.8 23316.7 27259.8 26134.9 27259.8 27259.8 27259.8

8 4305.19 31084.9* 25627.6 27258.5 22577.8 27370.2* 26103.7 27258.5 27258.5 27258.5

9 4467.93 30097.1* 23958.6 25846.1 21874.7 25846.1 24627.1 25846.1 25846.1 25846.1

10 4133.11 30520.5* 25360.7 27267.4* 22806.1 27525.4* 25992.7 27264.5 27264.5 27264.5

Average 4363.83 30074.7 24892.29 26458.34 22442.17 26517.90 25451.51 26491.44 26455.44 26491.44

* indicates solution is not optimal-allocated computation time exceeded 600s.

C.6 Medium Return (n = 75)

SC No
Original (`, S) − like (`, S,WW) FL = MC = SP

LB UB LB UB LB UB LB UB-FL UB-MC UB-SP

125

1 1789.47 12875.2* 10362.5 11440* 9123.6 11598.1* 10378.4 11297.3* 11320.6* 11289.2*

2 1404.45 12497.4* 10165.9 11072.4* 8856.31 11115.1* 10195.3 11024.6* 11024.6* 11024.6*

3 1492.5 12786.4* 10018.8 11251.4* 8652.07 11361.2* 10060.8 11139.5* 11094.5* 11223.5*

4 1535.4 13159.9* 10496.7 11459.2* 9050.89 11482* 10513.4 11355.4* 11422.4* 11404.4*

5 960.12 12994.4* 10214 11121.6* 8698.99 11309* 10265.8 11152.1* 11051.5* 11150.6*

6 1575.52 13008.4* 10039.6 11139.8* 8686.32 11222.2* 10050.1 11020.4* 11020.4* 11159.2*

7 1327.46 12474.6* 10053 11052.7* 8647.38 11354.8* 10085.6 11039.6* 10974.6* 10980.7*

8 887.23 13005.4* 10222.3 11281.4* 8646.93 11563.5* 10242.4 11130.2* 11060.9* 11044.1*

9 919.22 13185.7* 10686.9 11554.3* 9016.33 12069.1* 10706.3 11530.4* 11489.3* 11459.9*

10 1156.55 12169.2* 10203.5 10985.5* 8786.49 11109* 10249.6 10912* 10957.1* 10933*

Average 1304.79 12815.66 10246.32 11235.83 8816.53 11418.40 10274.77 11160.15 11141.55 11166.92

250

1 2366.15 20759.6* 16201.5 17790.6* 14378.9 18363.1* 16323.6 17621.6* 17627.5* 17652.4*

2 1959.81 21635* 16125.4 17579.3* 14547.7 17853.9* 16178.3 17556.3* 17457.9* 17563.7*

3 2074.14 20545.5* 15763.9 17325.9* 14264.9 17509.5* 16012.2 17355.1* 17282.2* 17333.1*

4 2129.03 21113.1* 16394.7 17809.7* 14534.5 18255.5* 16505.8 17671.3* 17695.9* 17625.8*

5 1519.67 20992.3* 16124.1 17594* 14189.4 17804.3* 16402.6 17427.2* 17447.6* 17431.3*

6 2119.96 20736.6* 15729.7 17272.8* 13870.9 17745.7* 15871.6 17210.8* 17188.3* 17127.9*

7 1940.6 21181* 15824.7 17072.5* 13985 17341.4* 15977.9 16950.2* 17021* 17008.9*

8 1471.24 20934.8* 16023.6 17208.8* 14289.5 17576.4* 16166.5 17243* 17199* 17238.9*

9 1496.52 21721.1* 16969.3 18283.5* 14855.5 18930.2* 17213.1 18316.1* 18284.4* 18413.2*

10 1729 20089.8* 15954.9 17195* 14023 17377.4* 16131.6 17157.9* 17120.9* 17295.4*

Average 1880.61 20970.88 16111.18 17513.21 14293.93 17875.74 16278.32 17450.95 17432.47 17469.06

* indicates solution is not optimal-allocated computation time exceeded 600s.

149

SC No
Original (`, S) − like (`, S,WW) FL = MC = SP

LB UB LB UB LB UB LB UB-FL UB-MC UB-SP

500

1 3519.5 33336.5* 24523.6 26931.8* 22278.2 27821.5* 24932.3 26802.2* 26808.5* 26737.6*

2 3070.52 31808.3* 24641 26944.5* 22349.2 27584.3* 25064.6 26575* 26630.1* 26839.5*

3 3237.42 31852.2* 24260.4 26577.8* 21966.6 26991.9* 24681.7 26285.5* 26146.9* 26336.6*

4 3265.48 32419* 25219.3 26682.5* 22306.8 27286* 25677.4 26675.3* 26682.5* 26661.5*

5 2638.78 33062.9* 24666.5 26785.3* 22137.3 27046.8* 25067.1 26598.2* 26651.7* 26589.9*

6 3208.83 32943.5* 24055.9 26200.9* 21526.6 26987.1* 24547.2 25816.3* 25871.3* 25814.5*

7 3135.7 32846.7* 24201.2 26072.1* 21775.5 26566.5* 24553.2 26014.3* 25952.5* 26066.6*

8 2612.17 33469* 24688.5 26444.4* 21901 26992.7* 25063.1 26040* 26040* 26076.5*

9 2608.5 33065.3* 26043.2 28389.3* 23289.9 29303.3* 26590.1 28207.6* 28003.1* 28031.5*

10 2873.9 32210.6* 24467.2 26246.8* 22031 26998.5* 24794.2 26163.9* 26203.7* 26253.9*

Average 3017.08 32704.99 24676.68 26727.54 22156.21 27357.86 25097.09 26517.83 26499.03 26540.81

1000

1 5690.22 46917.6* 36647.2 39849.8* 33566.6 40328.8* 37518.8 39376.7* 39352.1* 39334.7*

2 5124.63 48046.1* 36889 40108.2* 33784.6 39966.7* 37701.7 39791.5* 39892.1* 39829.5*

3 5554.98 46926.1* 36197.3 39250.3* 33258.6 39681.9* 37087.3 38875.5* 38875.5* 39219.9*

4 5347.57 49598.3* 37544.2 40439.5* 33509.5 41813* 38243.6 40009.8* 40073.7* 40073.7*

5 4713.05 48104.7* 37000.2 39653.8* 33519.1 40383.7* 37760.4 39315.7* 39369* 39398*

6 5370.18 46802.8* 35917.1 38766.8* 32842.1 40184* 36723 38469* 38469* 38439.1*

7 5292.38 47305* 36102.5 38580.1* 32719.5 39407.6* 36665.7 38128.1 38128.1 38128.1

8 4747.85 48211.3* 37242.5 40287.1* 33204.3 40937.5* 38097.5 39968.5* 40019.9* 40072*

9 4665.38 49824.7* 38916.4 41829.9* 35079.9 43504* 39880.3 41654.1* 41655.4* 41641.5*

10 4996.74 45482.8* 36747.3 38997.3* 32891.9 39882.5* 37409.8 38886.9* 38886.9* 38878.5*

Average 5150.30 47721.94 36920.37 39776.28 33437.61 40608.97 37708.81 39447.58 39472.17 39501.5

* indicates solution is not optimal-allocated computation time exceeded 600s.

C.7 High Return (n = 25)

SC No
Original (`, S) − like (`, S,WW) FL = MC = SP

LB UB LB UB LB UB LB UB-FL UB-MC UB-SP

125

1 2312.49 4812.87 4393.96 4812.87 4170.14 4812.87 4393.96 4812.87 4812.87 4812.87

2 2360.86 4635.89 4057 4635.89 3889.31 4635.89 4057 4635.89 4635.89 4635.89

3 2861.92 4845.44 4494.49 4845.44 4384.53 4845.44 4494.49 4845.44 4845.44 4845.44

4 1675.61 4414.15* 3769.82 4394.41 3601.64 4394.41 3775.64 4394.41 4394.41 4394.41

5 1866.07 4408.13 3815.58 4408.13 3657.24 4408.13 3815.58 4408.13 4408.13 4408.13

6 5158.93 6494.15 6278.86 6494.15 6142 6494.15 6278.86 6494.15 6494.15 6494.15

7 1181.54 4083.36 3496.93 4083.36 3367.51 4083.36 3497.17 4083.36 4083.36 4083.36

8 2811.91 4698.35 4352.37 4698.35 4153.69 4698.35 4352.37 4698.35 4698.35 4698.35

9 3153.98 5187.34 4741.92 5187.34 4625.87 5187.34 4747.06 5187.34 5187.34 5187.34

10 3578.91 5321.16 4983.03 5321.16 4901.87 5321.16 4983.03 5321.16 5321.16 5321.16

Average 2696.22 4890.08 4438.40 4888.11 4289.38 4888.11 4439.52 4888.11 4888.11 4888.11

250

1 2643.76 7004.25* 6357.51 6977.06 5942.21 6977.06 6365.33 6977.06 6977.06 6977.06

2 2693.36 6555.65 5855.03 6555.65 5629.4 6555.65 5857.8 6555.65 6555.65 6555.65

3 3217.78 6965.34 6281.02 6965.34 6126.03 6965.34 6281.02 6965.34 6965.34 6965.34

4 2124.98 6624.74* 5789.58 6601.94 5532.86 6601.94 5818.08 6601.94 6601.94 6601.94

5 2259.52 6320.74 5769.11 6320.74 5475.52 6320.74 5788.33 6320.74 6320.74 6320.74

6 5429.99 7994.15 7637.99 7994.15 7362.48 7994.15 7637.99 7994.15 7994.15 7994.15

7 1617.24 6474.63 5632.19 6474.63 5507.84 6474.63 5675.93 6474.63 6474.63 6474.63

8 3134.05 6530.19 6008.17 6530.19 5661.8 6530.19 6024.71 6530.19 6530.19 6530.19

9 3547.59 7040.44 6415.06 7040.44 6220.34 7040.44 6423.73 7040.44 7040.44 7040.44

10 3896 7159.58 6589.7 7159.58 6450.22 7159.58 6623.38 7159.58 7159.58 7159.58

Average 3056.43 6866.97 6233.54 6861.97 5990.87 6861.97 6249.63 6861.97 6861.97 6861.97

* indicates solution is not optimal-allocated computation time exceeded 600s.

150

SC No
Original (`, S) − like (`, S,WW) FL = MC = SP

LB UB LB UB LB UB LB UB-FL UB-MC UB-SP

500

1 3306.28 10032.4 9390.38 10032.4 8627.78 10032.4 9480.03 10032.4 10032.4 10032.4

2 3358.35 10055.6 8859.75 10055.6 8410.73 10055.6 8893.69 10055.6 10055.6 10055.6

3 3857.98 10077.2 9195.9 10077.2 8886.98 10077.2 9358.51 10077.2 10077.2 10077.2

4 3012.63 9718.81 8690.33 9718.81 8293.4 9718.81 8805.62 9718.81 9718.81 9718.81

5 3044.44 9805.69 8913.91 9805.69 8516.64 9805.69 8949.77 9805.69 9805.69 9805.69

6 5972.12 10994.2 10223.2 10994.2 9803.44 10994.2 10223.2 10994.2 10994.2 10994.2

7 2340.17 9526.4 8719.98 9526.4 8370.6 9526.4 8819.36 9526.4 9526.4 9526.4

8 3778.33 9476.37 8856.2 9476.37 8242.19 9476.37 8870.57 9476.37 9476.38 9476.37

9 4334.81 9775.09 9171.25 9775.09 8826.94 9775.09 9214.97 9775.09 9775.09 9775.09

10 4530.18 10328.4 9469.74 10328.4 8968.35 10328.4 9478.02 10328.4 10328.4 10328.4

Average 3753.53 9979.02 9149.06 9979.02 8694.71 9979.02 9209.37 9979.02 9979.02 9979.02

1000

1 4631.34 14891.9 13833.5 14891.9 12666.7 14891.9 14049.9 14891.9 14891.9 14891.9

2 4688.32 14845.1 13599.5 14845.1 12669.3 14845.1 13639.1 14845.1 14845.1 14845.1

3 5137.67 14697 13611.3 14697 12719.7 14697 13810 14697 14697 14697

4 4599.63 14615.4 13465.1 14615.4 12605.5 14615.4 13650.8 14615.4 14615.4 14615.4

5 4559.02 14481.3 13492.3 14481.3 12394.8 14481.3 13563 14481.3 14481.3 14481.3

6 7056.36 15689.6 14680.2 15689.6 14051.2 15689.6 14757.5 15689.6 15689.6 15689.6

7 3746.73 14099.2 13130.2 14099.2 12199.8 14099.2 13271.1 14099.2 14099.2 14099.2

8 5066.88 13751.2 12862.1 13751.2 11986.3 13751.2 12950 13751.2 13751.2 13751.2

9 5866.04 14274 13293.7 14274 12296.1 14274 13312.5 14274 14274 14274

10 5798.55 14299.8 13712.7 14299.8 12636.6 14299.8 13712.7 14299.8 14299.8 14299.8

Average 5115.05 14564.45 13568.06 14564.45 12622.6 14564.45 13671.66 14564.45 14564.45 14564.45

* indicates solution is not optimal-allocated computation time exceeded 600s.

C.8 High Return (n = 50)

SC No
Original (`, S) − like (`, S,WW) FL = MC = SP

LB UB LB UB LB UB LB UB-FL UB-MC UB-SP

125

1 10577.8 13424.3* 12864.5 13424.3 12731.1 13424.3 12864.5 13424.3 13424.3 13424.3

2 6952.03 10763.4* 9714.8 10437.1 9542.93 10437.1 9716.61 10437.1 10437.1 10437.1

3 8196.99 11047.9* 10259.6 10979.3* 10201.9 10979.3* 10259.6 10979.3 10979.3* 10979.3*

4 3475.91 9143.18* 7921.49 8690.49* 7455.64 8655.55* 7925.02 8645.26* 8628.98* 8628.98*

5 11880.1 14410.3* 13863.7 14346.3 13776.7 14346.3 13863.7 14346.3 14346.3 14346.3

6 2470.71 9419.94* 7396.8 8510.44* 6917.19 8470.61* 7404.91 8318.79* 8318.79* 8321.39*

7 5584.89 10444 9313.42 10002.8 9048.19 10002.8* 9318.6 10002.8 10002.8 10002.8

8 1613.56 9146.57* 7331.45 8133.51* 6534.91 8456.09* 7336.29 8106.54* 8106.54* 8106.54*

9 6107.42 10128.2* 9176.94 9915.61 9029.89 9915.61 9188.2 9915.61 9915.61 9915.61

10 3247.05 9102.86* 7724.99 8602.96* 7277.42 8594.32* 7741.71 8559.84* 8559.84* 8576.16*

Average 6010.65 10703.07 9556.77 10304.28 9251.59 10328.20 9561.91 10273.58 10271.96 10273.85

250

1 10879.2 16668* 15355.9 16426.3 15093.8 16426.3 15362.1 16426.3 16426.3 16426.3

2 7409.73 14348.5* 12593 13625.1 12309.8 13625.1 12645.8 13625.1 13625.1 13625.1

3 8600.62 14183.1* 12718.9 14029.5* 12608* 14029.5* 12718.9 14029.5* 14033* 14029.5*

4 3941.83 14485.4* 11580.1 13060.2* 11033.1* 13041.7* 11653.6 12874.6* 12903.2* 12937*

5 12408.2 17721.3* 16269.7 17221.3 16129.7 17221.3 16273.2 17221.3 17221.3 17221.3

6 2989.98 14266.5* 11577.9 12753.2* 10994.4 12706.2* 11644.8 12674.2* 12674.2* 12706.2*

7 6026.01 15521.6* 12966.6 14124* 12537* 14150.5* 12991.2 14129.2* 14124* 14124*

8 2150.96 14502.6* 11435 12803* 10588.3* 12836.4* 11547 12593.6* 12593.6* 12613.5*

9 6535.24 14557.5* 12491.8 13606.6 12183.5 13606.6 12513 13606.6 13606.6 13606.6

10 3700.95 13821* 11732 12863.3* 11076.5* 12900.1* 11813.3 12855.6* 12855.6* 12855.6*

Average 6464.27 15007.55 12872.09 14051.25 12455.41 14054.37 12916.29 14003.60 14006.29 14014.51

* indicates solution is not optimal-allocated computation time exceeded 600s.

151

SC No
Original (`, S) − like (`, S,WW) FL = MC = SP

LB UB LB UB LB UB LB UB-FL UB-MC UB-SP

500

1 11482 21915.2* 19934.7 21533.7 19539.9 21533.7 19947.5 21533.7 21533.7 21533.7

2 8289.69 21186.4* 17597.1 18829.8 17035 18829.8 17676.3 18829.8 18829.8 18828.8

3 9407.89 20021.3* 17559.7 19386.2* 17342.9 19386.2* 17578.5 19386.2 19386.2 19386.2*

4 4841.27 20547.3* 17178 19457.7* 16095.2 19379.4* 17440.5 19282.7* 19283.2* 19193.7*

5 13346.4 23426.7* 20620.7 22533.2 20419.9 22533.2 20644.5 22533.2 22533.2 22533.2

6 4028.53 22265.7* 17816.2 19770.9* 17015.2 19630.4* 17978.3 19566.3* 19566.3* 19630.4*

7 6899 22834.5* 18845.3 20631.6* 18181.6 20631.1* 18991.9 20631.6* 20825.4* 20601.3*

8 3103.61 22167.6* 17445.1 19629.4* 16210.4 19833* 17835.7 19416.2* 19302.8* 19413.8*

9 7390.89 21022.6* 17916.5 19171.6 17294.5 19171.6 17984 19171.6 19978.26 19171.6

10 4608.74 21034.9* 17712.6 19401.1* 16799.8 19302.8* 17904.6 19302.8* 19406.7* 19401.1*

Average 7339.80 21642.22 18262.59 20034.52 17593.44 20023.12 18398.18 19965.41 19945.51 19969.48

1000

1 12687.6 30554.4* 27455.7 29347.3 26587.4 29347.3 27528.2 29347.3 29347.3 29347.3

2 10017.2 31446.1* 25600.8 27988* 24531.3 27988 25748.7 27988* 27988* 27643.5*

3 11022.4 30217.1* 25876.5 27875.5 25370.9 27875.5 25960.5 27875.5 27875.5 27875.5

4 6593.32 31364.5* 25541.2 27616.9* 23964 27405.8 25950.8 27405.8 27405.8 27405.8

5 15033.9 32893.6* 28750.5 30848.8 27668.9 30848.8 28831.4 30848.8 30848.8 30848.8

6 6049.11 33899.9* 26805.9 28788.8* 25577.5 28788.8 27137.8 28788.8 28788.8 28788.8

7 8641.13 32621.2* 27581.4 29429.3 26223.7 29429.3 27769.1 29429.3 29429.3 29429.3

8 4892.94 32698.9* 26413.6 29425.9* 24564.4 29549.8* 27001.5 29294.6* 29321.8* 29378.8*

9 9102.2 32037.3* 26614.9 28449.1 25496 28449.1 26738.9 28449.1 28449.1 28449.1

10 6413.04 33468.8* 26451.2 27927.8 24993.8 27927.8 26708.3 27927.8 27927.8 27927.8

Average 9045.28 32120.18 26709.17 28769.74 25497.79 28761.02 26937.52 28735.5 28747.28 28709.47

* indicates solution is not optimal-allocated computation time exceeded 600s.

C.9 High Return (n = 75)

SC No
Original (`, S) − like (`, S,WW) FL = MC = SP

LB UB LB UB LB UB LB UB-FL UB-MC UB-SP

125

1 5180.05 14693.1* 11642 13153* 11176.1 13315.7* 11642 13015.8* 13029.6* 13070.8

2 18573.8 24426.1* 22463 23390.4* 22213.1 23553* 22463.7 23309.8* 23299.9* 23299.9*

3 10919.4 17484.2* 15950.7 16775.6* 15495.7 16897.7* 15958.4 16707.7* 16707.7* 16707.7*

4 4686.71 13836.5* 11628.1 12884.9* 10924.6 13223.1* 11629.9 12800* 12800* 12800*

5 21187.8 24534.8* 23694.1 24409.8* 23595.8 24409.8* 23696 24409.8* 24409.8* 24409.8*

6 4588.37 14586.7* 11391.2 13225* 10964.9 13648.5* 11399.6 13190.1* 13082.9* 13100.3*

7 12063.4 17700.9* 16411.7 17301.9* 16156.6 17301.9* 16412.1 17301.9* 17301.9* 17301.9*

8 3515.13 14306.1* 11090.6 12655.4* 10371.2 12891.9* 11101.2 13322.3* 12383.5* 12366.9*

9 4744.27 14972.1* 11575.2 13381.7* 10963.5 13842.9* 11588.2 13289.3* 13288* 13426*

10 9172.04 16393.2* 14552.5 15638* 14211.8 15630.2* 14552.8 15549.9* 15652.8* 15553.9*

Average 9463.10 17293.37 15039.91 16281.57 14607.33 16471.47 15044.39 16289.66 16195.61 16203.72

250

1 5745.25 21946.1* 17406.5 19484* 16932.6 19571.6* 17501.6 19472.2* 19464.1* 19494*

2 19038.5 29421.5* 26269 27928.9* 26001.4 28006* 26284.2 27615.6* 27659* 27635.5*

3 11339.3 23154.3* 20321.1 21550.6 19773.4 21742.8* 20382.3 21550.6 21550.6 21550.6*

4 5290.15 21923.8* 17507.3 19578.2* 16505.1 19681* 17601.3 19478* 19378.6* 19396.3*

5 21592.5 28159.8* 26478.4 27909.8* 26301.2 27909.8* 26482.2 27909.8* 27909.8* 27909.8*

6 5133.43 21102* 17178.5 19689.5* 16633 20104.6* 17310.3 19649.7* 19733.1* 19618.2*

7 12471.7 23821.1* 20754.2 22506.4* 20403.7 22506.4* 20756.2 22506.4* 22506.4* 22506.4*

8 4076.5 22169.5* 17124.9 19351.9* 16152.8 19210.1* 17278.5 19038.2* 19006.7* 19045.9*

9 5301.61 22797.3* 17503.4 20187.6* 16679.2 20508.1* 17593.8 20055.1* 20013.5* 19964.3*

10 10295.1 23206.9* 19351.1 21125* 18936.4 21168.3* 19365.3 21121.7* 21095.4* 21115*

Average 10028.40 23770.23 19989.44 21931.19 19431.88 22040.87 20055.57 21839.73 21831.72 21823.6

* indicates solution is not optimal-allocated computation time exceeded 600s.

152

SC No
Original (`, S) − like (`, S,WW) FL = MC = SP

LB UB LB UB LB UB LB UB-FL UB-MC UB-SP

500

1 6859.69 33177.2* 26400.2 29623.8* 25661.5 29856.2* 26602.1 29609.1* 29410.9* 29390.4*

2 19968 40275.7* 33027.6 35991.2* 32487.6 36224.4* 33162.6 35457.3* 35574.8* 35731.1*

3 12179.3 34396.1* 27968 30899.6* 27039.2 31237.1* 28128.4 30589* 30376.6* 30992.1*

4 6431.11 34568.2* 26521.8 29611.4* 25235.7 30470.7* 26769.8 29561.2* 29285.9* 29606.6*

5 22401.9 37160.2* 32047 34568.7* 31692.5 34568.7* 32054.5 34568.7* 34568.7* 34568.7*

6 6223.54 32236.8* 26076.8 29194.9* 25175.5 29615* 26381.2 28917.3* 29078.2* 29169*

7 13288.3 33760.4* 28649.4 31795.4* 28146.1 31614.4* 28709.2 31873.6* 31873.6* 32125.1*

8 5142.69 33718.3* 26452.1 29392.1* 25218.7 29976.6* 26815.8 28906.7* 29409.8* 29258*

9 6390.03 35457.1* 26709.2 30129.5* 25482.8 29936.5* 27004.5 29906.2* 29785.3* 30119.8*

10 11382.4 34007.1* 27470.9 30829.9* 26985.8 31030.5* 27539.3 30662.4* 30575.1* 30865.7*

Average 11026.70 34875.71 28132.3 31203.65 27312.54 31453.01 28316.74 31005.15 30993.89 31182.65

1000

1 8956.85 51761.6* 39303.5 42828* 38109.7 43032.2* 39712.9 42856.6* 42828* 43115.4

2 21770.2 53787.6* 44722.1 47924.5* 43531.3 48947* 44970.7 48069.6* 48325.5* 48351.4*

3 13859.2 49065.8* 40251.2 42758.8* 38793.9 42705.6* 40544.5 42642.1* 42642.1* 42642.1*

4 8488.13 52583.3* 39729.3 43489.8* 37871.2 43248.6* 40290.6 43034.6* 43143.8* 42949.1*

5 24020.7 48977.3* 42783 45434.9 41885.2 45716* 42789.5 45434.9* 45434.9* 45434.9*

6 8403.77 50072.7* 39434.5 44341* 38394.9 44351.6* 39951.1 43545.8* 43545.8* 43691.2*

7 14921.4 47608.4* 41031.8 44634.7* 39938.6 44265.5* 41107.6 44515.6* 44005.5* 44515.6*

8 7115.93 51224.8* 39999.1 44445* 38355.8 44649.8* 40664.5 43845.6* 43800.7* 43866.6*

9 8537.04 51931.3* 40362.2 44537.2* 38563.1 45034.4* 41151.4 44028.5* 44058.3* 44693.1*

10 13428.6 50524.6* 40091.9 44082.4* 39249.3 44169.7* 40419.7 44072.7* 44429.6* 44072.7*

Average 12950.18 50753.74 40770.86 44447.63 39469.3 44612.04 41160.25 44204.6 44221.42 44333.21

* indicates solution is not optimal-allocated computation time exceeded 600s.

153

Appendix D

Detailed Results of Lower Bounds - Joint

Setups

D.1 Low Return (n = 25)

SC No
Original (`, S) − like = FL = MC = SP (`, S,WW)

LB UB LB UB LB UB

125

1 464.35 2584.51 2584.51 2584.51 2470.55 2584.51

2 506.64 2734.12 2734.12 2734.12 2622.2 2734.12

3 474.44 2692.42 2692.42 2692.42 2584.34 2692.42

4 426.11 2569.15 2569.15 2569.15 2454.32 2569.15

5 524.69 2549.41 2549.41 2549.41 2437.75 2549.41

6 453.10 2486.77 2486.77 2486.77 2404.32 2486.77

7 448.33 2502.97 2502.97 2502.97 2400.82 2502.97

8 496.14 2786.56 2786.56 2786.56 2686.4 2786.56

9 510.52 2570.77 2570.77 2570.77 2462.07 2570.77

10 520.00 2634.42 2634.42 2634.42 2516.2 2634.42

Average 482.43 2611.11 2611.11 2611.11 2503.90 2611.11

250

1 914.32 4075.26 4075.26 4075.26 3859.58 4075.26

2 997.12 7356.91 7356.91 7356.91 4149.56 7356.91

3 948.88 4354.53 4354.53 4354.53 4128.93 4354.53

4 847.59 4176.54 4176.54 4176.54 3953.55 4176.54

5 988.68 4171.97 4171.97 4171.97 3969.91 4171.97

6 906.19 4172.86 4172.86 4172.86 3970.52 4172.86

7 888.35 4060.85 4060.85 4060.85 3841.19 4060.85

8 934.31 4466.74 4466.74 4466.74 4259.29 4466.74

9 993.29 4144.17 4144.17 4144.17 3915.56 4144.17

10 977.07 4228.45 4228.45 4228.45 3988.08 4228.45

Average 939.58 4220.83 4220.83 4220.83 4003.62 4220.83

154

SC No
Original (`, S) − like = FL = MC = SP (`, S,WW)

LB UB LB UB LB UB

500

1 1724.64 6163.41 6163.41 6163.41 5759.64 6163.41

2 1831.34 6496.81 6496.81 6496.81 6075.73 6496.81

3 1836.61 6875.62 6875.62 6875.62 6415.02 6875.62

4 1643.97 6406.88 6406.88 6406.88 5985.96 6406.88

5 1828.59 6641.72 6641.72 6641.72 6207.39 6641.72

6 1789.93 6593.56 6593.56 6593.56 6191.9 6593.56

7 1658.50 6193.53 6193.53 6193.53 5799.42 6193.53

8 1684.38 6848.78 6848.78 6848.78 6417.41 6848.78

9 1945.94 6566.74 6566.74 6566.74 6151.59 6566.74

10 1787.06 6540.60 6540.60 6540.60 6109.81 6540.60

Average 1773.10 6532.77 6532.77 6532.77 6111.39 6532.77

1000

1 3274.45 9386.12 9386.12 9386.12 8559.3 9386.12

2 3269.02 10025.1 10025.1 10025.1 9155.94 10025.1

3 3405.95 10171.9 10171.9 10171.9 9340.3 10171.9

4 3108.61 9922.63 9922.63 9922.63 9065.62 9922.63

5 3354.71 10232.7 10232.7 10232.7 9413.89 10232.7

6 3306.88 10126.5 10126.5 10126.5 9304.27 10126.5

7 3036.81 9270.1 9270.1 9270.1 8446.8 9270.1

8 3127.85 10417.6 10417.6 10417.6 9528.14 10417.6

9 3466.87 9701.9 9701.9 9701.9 8849.84 9701.9

10 3213.96 9774.78 9774.78 9774.78 8994.92 9774.78

Average 3256.51 9902.93 9902.93 9902.93 9065.90 9902.93

D.2 Low Return (n = 50)

SC No
Original (`, S) − like = FL = MC = SP (`, S,WW)

LB UB LB UB LB UB

125

1 565.36 5534.8* 5304.67 5304.67 5192.83 5304.67

2 570.40 5439.04* 5075.8 5075.8 4979.3 5075.8

3 553.55 5599.56* 5199.06 5199.06 5103.8 5199.06

4 561.28 5543.74* 5262.1 5262.1 5157.49 5262.1

5 608.52 5010.79* 4766.46 4766.46 4679.99 4766.46

6 598.26 5192.71* 4997.99 4997.99 4892.94 4997.99

7 601.34 5667.57* 5467.11 5471.91 5353.75 5471.91

8 566.69 5377.71* 5277.03 5277.03 5169.48 5277.03

9 583.84 5406.86* 5151.71 5151.71 5034.23 5151.71

10 556.45 5340.98* 5029.13 5029.13 4926.11 5029.13

Average 576.57 5411.38 5153.11 5153.59 5048.99 5153.59

250

1 1065.16 8898.12* 8529.02 8529.02 8313.62 8529.02

2 1118.48 8302.42* 8114.56 8114.56 7903.38 8114.56

3 1095.2 8879.86* 8518.7 8518.7 8318.15 8518.7

4 1110.99 9000.93* 8504.39 8504.39 8278.16 8504.39

5 1157.45 8069.31* 7632.11 7632.11 7427.64 7632.11

6 1110.25 8697.83* 8095.63 8095.63 7906 8095.63

7 1173.83 9280.84* 8772.66 8772.66 8556.74 8772.66

8 1093.83 9431.14* 8523.25 8523.25 8309.96 8523.25

9 1121.51 8711.75* 8231.65 8231.65 8003.38 8231.65

10 1080.81 8683.31* 8028 8028 7818.74 8028

Average 1112.75 8795.55 8295 8295 8083.58 8295

* indicates solution is not optimal-allocated computation time exceeded 600s.

155

SC No
Original (`, S) − like = FL = MC = SP (`, S,WW)

LB UB LB UB LB UB

500

1 2056.98 13555.5* 13027.6 13027.6 12573 13027.6

2 2128.89 13721* 12595 12595 12169.5 12595

3 2075.36 13757.4* 12960.9 12960.9 12521.3 12960.9

4 2144.6 13574.8* 12959.9 12959.9 12507 12959.9

5 2159.19 12592.5* 11808 11808 11367.6 11808

6 2120.27 13461.5* 12569.5 12569.5 12143.9 12569.5

7 2188.55 14014.8* 13528.9 13528.9 13077.7 13528.9

8 2042.05 14005.5* 13107.1 13107.1 12685.6 13107.1

9 2105.41 13380* 12775.8 12775.8 12308.7 12775.8

10 2006.89 13282* 12365.1 12365.1 11924.3 12365.1

Average 2102.82 13534.5 12769.78 12769.78 12327.86 12769.78

1000

1 4000.77 20519.4* 19749 19749 18881.2 19749

2 3939.26 21182.7* 19152.3 19152.3 18300.7 19152.3

3 3825.42 21304.8* 19706.2 19706.2 18788.5 19706.2

4 4077.8 20981.8* 19714.9 19714.9 18811.4 19714.9

5 4073.09 19339.6* 18021.1 18021.1 17191.3 18021.1

6 3975.92 20700.3* 19373.3 19373.3 18514.9 19373.3

7 3979.09 20083.7* 19938.6 19938.6 19077 19938.6

8 3911.06 20630.5* 19549.7 19549.7 18664.6 19549.7

9 3942.07 20634.3* 19208.8 19208.8 18339.2 19208.8

10 3674.01 20375.1* 19136.6 19136.6 18232.9 19136.6

Average 3939.85 20635.22 19355.05 19355.05 18480.17 19355.05

* indicates solution is not optimal-allocated computation time exceeded 600s.

D.3 Low Return (n = 75)

SC No
Original (`, S) − like = FL = MC = SP (`, S,WW)

LB UB LB UB LB UB

125

1 666.69 8320.16* 7781.52 7781.52 7663.72 7781.52

2 583.38 7999.59* 7431.44 7431.44 7316.31 7431.44

3 640.09 8379.92* 7694.35 7694.35 7591.97 7694.35

4 635.57 8368.35* 7972.62 7972.62 7860.78 7972.62

5 601.41 8377.84* 7988.49 7988.49 7880.03 7988.49

6 597.97 8229.95* 7899.33 7899.33 7792.64 7899.33

7 592.33 8437.54* 8011.76 8011.76 7903.88 8011.76

8 641.58 8388.95* 8095.41 8095.41 7986.08 8095.41

9 624.73 8209.51* 7858.59 7858.59 7759.65 7858.59

10 618.33 8468.1* 8158.89 8158.89 8054.63 8158.89

Average 620.21 8317.99 7889.24 7889.24 7780.97 7889.24

250

1 1237.59 13686.6* 12579.5 12579.5 12347.7 12579.5

2 1141.33 12965* 12033.4 12033.4 11815.8 12033.4

3 1201.04 13172* 12130.4 12130.4 11905.5 12130.4

4 1220.39 13625* 12771.9 12771.9 12537.5 12771.9

5 1202.83 13999.4* 12851.9 12851.9 12638 12851.9

6 1133.72 13654.4* 12573.3 12573.3 12357 12573.3

7 1165.38 13592.6* 12803.3 12803.3 12570.9 12803.3

8 1219.04 13598.1* 12920.5 12920.5 12688.3 12920.5

9 1197.6 13647.8* 12691.7 12691.7 12470.9 12691.7

10 1167.3 14085.4* 13274.7 13274.7 13048.2 13274.7

Average 1188.62 13602.63 12663.06 12663.06 12437.98 12663.06

* indicates solution is not optimal-allocated computation time exceeded 600s.

156

SC No
Original (`, S) − like = FL = MC = SP (`, S,WW)

LB UB LB UB LB UB

500

1 2375.9 20961.2* 19363.6 19363.6 18903.9 19363.6

2 2257.22 20315.4* 18567.5 18567.5 18113.3 18567.5

3 2271.86 21038* 18828.1 18828.1 18358.2 18828.1

4 2321.98 20507.9* 19226.5 19226.5 18769.6 19226.5

5 2306.48 21601.8* 19937.8 19937.8 19500.7 19937.8

6 2186.97 21111* 19852.5 19852.5 19405.4 19852.5

7 2261.02 20999.1* 19629.4 19629.4 19213.8 19629.4

8 2271.76 21225.7* 20111.1 20111.1 19633.2 20111.1

9 2289.29 21486.3* 19737.8 19737.8 19290.7 19737.8

10 2214.72 22121.1* 20508.5 20508.5 20037.5 20508.5

Average 2275.72 21136.75 19576.28 19576.28 19122.63 19576.28

1000

1 4608.03 31345.4* 29553.9 29553.9 28621.4 29553.9

2 4413.49 30492.7* 27993.8 27993.8 27082.3 27993.8

3 4247.08 32083.4* 28645.9 28645.9 27751.9 28645.9

4 4357.92 31926.2* 29098.1 29098.1 28163.2 29098.1

5 4339.77 32879.6* 30112.9 30112.9 29226.7 30112.9

6 4264.32 32648.8* 29589.4 29589.4 28678.3 29589.4

7 4337.33 32929.5* 29312.2 29312.2 28417 29312.2

8 4362.27 34316.3* 30380.3 30380.3 29454.3 30380.3

9 4321.8 33470.4* 30037.1 30037.1 29181.7 30037.1

10 4266.52 33743.6* 31411.5 31411.5 30481.7 31411.5

Average 4351.85 32583.59 29613.51 29613.51 28705.85 29613.51

* indicates solution is not optimal-allocated computation time exceeded 600s.

D.4 Medium Return (n = 25)

SC No
Original (`, S) − like = FL = MC = SP (`, S,WW)

LB UB LB UB LB UB

125

1 624.87 3025.5 3017.02 3025.5 2932.56 3025.5

2 1133.14 3186.39 3180.65 3186.39 3180.65 3186.39

3 606.06 2988.24 2980.83 2988.24 2926.97 2988.24

4 588.9 2867.73 2864.53 2867.73 2758.33 2867.73

5 686.57 2919.99 2905.73 2919.99 2831.76 2919.99

6 529.38 3021.69 3021.69 3021.69 2917.47 3021.69

7 740.54 3171.73 3170.33 3171.73 3110.33 3171.73

8 587.14 2923.78 2907.39 2923.78 2907.39 2923.78

9 702.99 2829.66 2825.61 2829.66 2815.92 2829.66

10 619.82 2845.67 2827.16 2845.67 2813.5 2845.67

Average 681.94 2978.04 2970.09 2978.04 2919.49 2978.04

250

1 1063.65 4941.63 4935.39 4941.63 4775.1 4941.63

2 1553.97 5184.67 5143.98 5184.67 5093.66 5184.67

3 1043.79 5031.94 4986.48 5031.94 4864.89 5031.94

4 1001.96 4817.01 4817.01 4817.01 4592.78 4817.01

5 1177.17 4846.18 4846.18 4846.18 4654.44 4846.18

6 1037.18 4847.34 4847.34 4847.34 4647.1 4847.34

7 1157.84 5136.24 5114.58 5136.24 4935.45 5136.24

8 1021.21 4657.9 4654.33 4657.9 4566.55 4657.9

9 1168.14 4663.63 4653.49 4663.63 4564.35 4663.63

10 1045.72 4664.33 4662.78 4664.33 4527.25 4664.33

Average 1127.06 4879.09 4866.16 4879.09 4722.16 4879.09

157

SC No
Original (`, S) − like = FL = MC = SP (`, S,WW)

LB UB LB UB LB UB

500

1 1896.95 7531.13 7531.13 7531.13 7146.5 7531.13

2 2395.63 7916.87 7896.41 7916.87 7549.38 7916.87

3 1881.98 7917.85 7917.85 7917.85 7569.41 7917.85

4 1760.84 7509.64 7509.64 7509.64 7049.38 7509.64

5 2022.81 7411.49 7411.49 7411.49 7081.02 7411.49

6 1881.80 7743.13 7743.13 7743.13 7318.09 7743.13

7 1992.46 7942.05 7942.05 7942.05 7666.58 7942.05

8 1813.12 7384.96 7384.96 7384.96 7058.47 7384.96

9 2058.79 7160.78 7160.7 7160.78 6881.8 7160.78

10 1826.66 7119.97 7119.97 7119.97 6746.18 7119.97

Average 1953.10 7563.79 7561.73 7563.79 7206.68 7563.79

1000

1 3432.15 11562.6 11562.6 11562.6 10811.8 11562.6

2 3887.36 11982.8 11982.8 11982.8 11274.4 11982.8

3 3435.36 12042.9 12010.7 12042.9 11324.1 12042.9

4 3198.89 11670.9 11670.9 11670.9 10884.6 11670.9

5 3551.44 11025.6 11025.6 11025.6 10334.1 11025.6

6 3436.12 11487.7 11469.8 11487.7 10685.8 11487.7

7 3580.56 12116.6 12116.6 12116.6 11402.3 12116.6

8 3310.31 11234.7 11234.7 11234.7 10646.1 11234.7

9 3531.99 10689.7 10689.7 10689.7 9943.79 10689.7

10 3246.52 11265.4 11265.4 11265.4 10443.1 11265.4

Average 3461.07 11507.89 11502.88 11507.89 10775.01 11507.89

D.5 Medium Return (n = 50)

SC No
Original (`, S) − like = FL = MC = SP (`, S,WW)

LB UB LB UB LB UB

125

1 832.32 6064.39* 6001.6 6032.65 5954.03 6032.65

2 1003.86 5983.83* 5718.44 5813.3 5650.76 5813.3

3 1079.88 5876.04* 5720.24 5801.75 5700.11 5801.75

4 1072.93 6094.6* 5968.15 6032.21 5873.31 6032.21

5 721.19 5991.64* 5899 5936.16 5896.3 5936.16

6 730.43 5859.78* 5765.69 5794.99 5693.41 5794.99

7 843.40 6022.48* 5928.37 5990.03 5850.13 5990.03

8 806.40 6091.62* 5931.32 5990.55 5911.01 5990.55

9 1229.96 6047.04* 5764.35 5835.18 5683.9 5835.18

10 778.77 6009.69* 5876.65 5955.05 5874.61 5955.05

Average 909.91 6004.11 5857.38 5918.19 5808.76 5918.19

250

1 1390.9 9991.33* 9617.78 9680.22 9500.82 9680.22

2 1536.32 9765.17* 9388.49 9398.55 9250.52 9398.55

3 1634.25 9515.39* 9243.94 9300.96 9119.78 9300.96

4 1595.93 10223.4* 9653.44 9754.04 9437.96 9754.04

5 1274.82 10122.7* 9762.66 9846.47 9688.79 9846.47

6 1290.31 9669.62* 9424 9424 9228.62 9424

7 1372.2 10091.8* 9861.42 9932.51 9668.42 9932.51

8 1378.42 10097.6* 9577.05 9589.36 9433.13 9589.36

9 1760.91 9690.7* 9474.21 9524.89 9270.47 9524.89

10 1275.93 9851.95* 9552.48 9569.88 9438.35 9569.88

Average 1451 9901.97 9555.55 9602.09 9403.69 9602.09

* indicates solution is not optimal-allocated computation time exceeded 600s.

158

SC No
Original (`, S) − like = FL = MC = SP (`, S,WW)

LB UB LB UB LB UB

500

1 2428.55 15242* 14886.6 14886.6 14526.2 14886.6

2 2535.3 15243.6* 14487.7 14530.7 14151.6 14530.7

3 2694.29 14763.2* 14054.1 14054.1 13766.7 14054.1

4 2641.93 15648.7* 15024.8 15070.8 14568.1 15070.8

5 2328.04 15660.1* 15253.8 15253.8 14957 15253.8

6 2380.53 15351.3* 14790.6 14790.6 14469.6 14790.6

7 2380.5 15798.6* 15234.7 15234.7 14895.5 15234.7

8 2414.17 15580.9* 15113.8 15113.8 14738.6 15113.8

9 2693.33 15337.8* 14724.7 14788.8 14331.2 14788.8

10 2270.26 15527.2* 15028.5 15037.3 14671.9 15037.3

Average 2476.69 15415.34 14859.93 14876.12 14507.64 14876.12

1000

1 4269.82 23789.6* 22339.7 22339.7 21648.1 22339.7

2 4297.05 22808.5* 21956.7 21964.7 21265.6 21964.7

3 4680.59 22340.6* 21314.6 21314.6 20760 21314.6

4 4569.69 23628.1* 22745.7 22745.7 21806.4 22745.7

5 4293.51 23823.1* 22946.7 22946.7 22279.5 22946.7

6 4349.62 23267.9* 22156.6 22156.6 21370.8 22156.6

7 4271.79 24073.3* 23114.9 23123.8 22323.7 23123.8

8 4305.19 24088.7* 22623.9 22623.9 21800.9 22623.9

9 4467.93 23235.4* 22001 22003.1 21196.6 22003.1

10 4133.11 24220.5* 22874.8 22874.8 22172.1 22874.8

Average 4363.83 23527.57 22407.46 22409.36 21662.37 22409.36

* indicates solution is not optimal-allocated computation time exceeded 600s.

D.6 Medium Return (n = 75)

SC No
Original (`, S) − like = FL = MC = SP (`, S,WW)

LB UB LB UB LB UB

125

1 1789.47 9357.35* 9107.14 9299.67 9038.34 9299.67

2 1404.45 9058.1* 8704.39 8773.46 8702.62 8773.46

3 1492.5 8881.92* 8638.02 8771.58 8547.62 8771.58

4 1535.4 9392.24* 9006.74 9123.16 8923.7 9123.16

5 960.12 8814.17* 8625.49 8678 8549.67 8678

6 1575.52 8911.88* 8691.68 8775.69 8568.65 8775.69

7 1327.46 8906.2* 8622.63 8718.05 8519.08 8718.05

8 887.23 8785.96* 8595.18 8647.35 8472.44 8647.35

9 919.22 9023.07* 8918.82 8944.88 8841.21 8944.88

10 1156.55 9145.75* 8750.68 8854.57 8705.58 8854.57

Average 1304.79 9027.66* 8766.08 8858.64 8686.89 8858.64

250

1 2366.15 14589* 14349 14410.4 14177.4 14410.4

2 1959.81 14946.5* 14358 14463.4 14266.2 14463.4

3 2074.14 15123.8* 14301 14441.3 14122.5 14441.3

4 2129.03 15534.9* 14469.4 14527.1 14306.4 14527.1

5 1519.67 15088* 14122.6 14157.3 13923.2 14157.3

6 2119.96 14735.1* 13887.1 13915.8 13644.1 13915.8

7 1940.6 15032.4* 13981.9 14058.6 13777.6 14058.6

8 1471.24 15036.7* 14257.5 14282.9 14012.1 14282.9

9 1496.52 15572.6* 14736.3 14805.8 14535 14805.8

10 1729 14804.3* 14008.2 14012.9 13840.4 14012.9

Average 1880.61 15046.33 14247.1 14307.55 14060.49 14307.55

* indicates solution is not optimal-allocated computation time exceeded 600s.

159

SC No
Original (`, S) − like = FL = MC = SP (`, S,WW)

LB UB LB UB LB UB

500

1 3519.5 23980.7* 22254 22283.3 21904 22283.3

2 3070.52 23778* 22183.3 22303.8 21842.4 22303.8

3 3237.42 23566.6* 22053.7 22101.9 21633.4 22101.9

4 3265.48 23862.7* 22327.5 22401.8 21922.7 22401.8

5 2638.78 23558.3* 22007.6 22016 21666.4 22016

6 3208.83 22920.4* 21643.2 21759.1 21166.9 21759.1

7 3135.7 23333.4* 21851.2 21885.3 21403.8 21885.3

8 2612.17 23036.1* 21833.5 21838.1 21353.2 21838.1

9 2608.5 24276.5* 23163.6 23207 22818.9 23207

10 2873.9 23906.8* 22100.5 22110.9 21687 22110.9

Average 3017.08 23621.95 22141.81 22190.72 21739.87 22190.72

1000

1 5690.22 36053.2* 33717.9 33717.9 32889 33717.9

2 5124.63 36564.6* 33633.2 33698.3 32912 33698.3

3 5554.98 35884.5* 33303.4 33358.5 32486.5 33358.5

4 5347.57 37687.9* 33439.2 33485.8 32694.8 33485.8

5 4713.05 36464.1* 33229 33229 32407.5 33229

6 5370.18 35725.8* 33125.1 33175.4 32172.4 33175.4

7 5292.38 35505* 32900.1 32949.3 32021.7 32949.3

8 4747.85 36628.2* 33184.6 33184.6 32223.9 33184.6

9 4665.38 38888.7* 34988.5 34988.5 34165.4 34988.5

10 4996.74 36380.9* 33011.3 33011.3 32208.3 33011.3

Average 5150.30 36578.29 33453.23 33479.86 32618.15 33479.86

* indicates solution is not optimal-allocated computation time exceeded 600s.

D.7 High Return (n = 25)

SC No
Original (`, S) − like = FL = MC = SP (`, S,WW)

LB UB LB UB LB UB

125

1 2312.49 4301.81 4154.2 4301.81 4154.2 4301.81

2 2360.86 4087.5 3877.45 4087.5 3870.05 4087.5

3 2861.92 4546.31 4386.94 4546.31 4367.3 4546.31

4 1675.61 3787.63 3573.56 3787.63 3573.56 3787.63

5 1866.07 3874.43 3668.92 3874.43 3613.65 3874.43

6 5158.93 6412.11 6229.98 6412.11 6138.89 6412.11

7 1181.54 3577.65 3310.31 3577.65 3310.31 3577.65

8 2811.91 4468.45 4257.92 4468.45 4139.38 4468.45

9 3153.98 4764.2 4644.19 4764.2 4604.53 4764.2

10 3578.91 5136.82 4894.3 5136.82 4894.3 5136.82

Average 2696.22 4495.69 4299.78 4495.69 4266.62 4495.69

250

1 2643.76 6171.18 6002.86 6171.18 5910.54 6171.18

2 2693.36 5957.93 5647.94 5957.93 5601.68 5957.93

3 3217.78 6313.43 6150.86 6313.43 6099.82 6313.43

4 2124.98 5656.42 5513.7 5656.42 5477.32 5656.42

5 2259.52 5770.48 5547.05 5770.48 5427.15 5770.48

6 5429.99 7912.11 7572.1 7912.11 7357.71 7912.11

7 1617.24 5511.57 5373.11 5511.57 5349.72 5511.57

8 3134.05 6115.89 5880.31 6115.89 5643.24 6115.89

9 3547.59 6549.22 6269.61 6549.22 6185.37 6549.22

10 3896 6769.41 6459.88 6769.41 6435.71 6769.41

Average 3056.43 6272.76 6041.74 6272.76 5948.83 6272.76

160

SC No
Original (`, S) − like = FL = MC = SP (`, S,WW)

LB UB LB UB LB UB

500

1 3306.28 8852 8779.8 8852 8530.18 8852

2 3358.35 9025.94 8581.65 9025.94 8365.6 9025.94

3 3857.98 9348.27 9035.36 9348.27 9035.36 9348.27

4 3012.63 8413.64 8271.14 8413.64 8182.2 8413.64

5 3044.44 8842.73 8601.6 8842.73 8382.44 8842.73

6 5972.12 10912.10 10158.9 10912.10 9794.56 10912.10

7 2340.17 8511.57 8316.32 8511.57 8145.96 8511.57

8 3778.33 9007.90 8681.44 9007.90 8207.31 9007.90

9 4334.81 9063.88 8896.58 9063.88 8750.15 9063.88

10 4530.18 9584.76 9255.93 9584.76 8947.5 9584.76

Average 3753.53 9156.28 8857.87 9156.28 8634.13 9156.28

1000

1 4631.34 13440 13229.5 13440 12523.9 13440

2 4688.32 13557.5 13179 13557.5 12570.7 13557.5

3 5137.67 13648.1 13323.3 13648.1 12664.7 13648.1

4 4599.63 12903 12837.6 12903 12379.7 12903

5 4559.02 13042.3 12736 13042.3 12143.5 13042.3

6 7056.36 15014.5 14319.7 15014.5 14003.6 15014.5

7 3746.73 12513.9 12509.2 12513.9 11988.8 12513.9

8 5066.88 13153.2 12794.3 13153.2 11921.3 13153.2

9 5866.04 12897.1 12731 12897.1 12111 12897.1

10 5798.55 13610.2 13315.8 13610.2 12529.7 13610.2

Average 5115.05 13377.98 13097.54 13377.98 12483.69 13377.98

D.8 High Return (n = 50)

SC No
Original (`, S) − like = FL = MC = SP (`, S,WW)

LB UB LB UB LB UB

125

1 10577.8 13151.4 12802.3 13151.4 12729.2 13151.4

2 6952.03 10057.4* 9559.41 10011.7 9531.73 10011.7

3 8196.99 10735.7* 10255 10735.7 10201.6 10735.7

4 3475.91 7722.1* 7434.01 7702.1 7419.61 7702.1

5 11880.1 14102* 13759 14102 13759 14102

6 2470.71 7225.82* 6865.65 7110.02 6865.65 7110.02

7 5584.89 9354.59* 9054.19 9285.71 9029.27 9285.71

8 1613.56 6712.76* 6502.2 6655.84 6437.95 6655.84

9 6107.42 9476.23 9080.91 9476.23 9023.32 9476.23

10 3247.05 7678.81* 7262.17 7461.51 7246.78 7461.51

Average 6010.65 9621.68 9257.48 9569.22 9224.41 9569.22

250

1 10879.2 15924.3 15301.7 15924.3 15090.2 15924.3

2 7409.73 12926.6* 12384.3 12885.9 12276 12885.9

3 8600.62 13610.7* 12711 13532.5 12604.3 13532.5

4 3941.83 11611.3* 11047 11356.9 11047 11356.9

5 12408.2 16837.2* 16093 16805.1 16093 16805.1

6 2989.98 11599* 11013.3 11197.9 10902.8 11197.9

7 6026.01 13309.3* 12647.8 13062.6 12499.5 13062.6

8 2150.96 11113.6* 10574 10813.3 10403.4 10813.3

9 6535.24 13006.2* 12304.3 13006.2 12162.7 13006.2

10 3700.95 11538.2* 11157.6 11366.4 11012.4 11366.4

Average 6464.27 13147.64 12523.4 12995.11 12409.13 12995.11

* indicates solution is not optimal-allocated computation time exceeded 600s.

161

SC No
Original (`, S) − like = FL = MC = SP (`, S,WW)

LB UB LB UB LB UB

500

1 11482 21423.8* 19883.8 21131.2 19537.5 21131.2

2 8289.69 18441.7* 17307.4 17750.4 16993.7 17750.4

3 9407.89 18750.3* 17543.8 18677.7 17330.3 18677.7

4 4841.27 17543.1* 16210.4 16508.2 15931.5 16508.2

5 13346.4 21549* 20381.9 21438.9 20381.9 21438.9

6 4028.53 17938.9* 17120.1 17470.9 16817 17470.9

7 6899 19570.7* 18483.2 18957.9 18110.7 18957.9

8 3103.61 16687.5* 16208.1 16286.2 15822.3 16286.2

9 7390.89 19061.3* 17711.8 18250.7 17259.7 18250.7

10 4608.74 17693.7* 17025.8 17299.5 16687.5 17299.5

Average 7339.80 18866 17787.63 18377.16 17487.21 18377.16

1000

1 12687.6 28568.1* 27357.1 28131.2 26575.1 28131.2

2 10017.2 27281.4* 25163.7 25644.4 24429.6 25644.4

3 11022.4 27255.9* 25794.9 26711.7 25356.3 26711.7

4 6593.32 25450.6* 24373.4 24697.2 23661.8 24697.2

5 15033.9 30376.7* 28223 29359.4 27456.9 29359.4

6 6049.11 27111.2* 25700.4 25917.8 25190.2 25917.8

7 8641.13 28208.5* 26776.9 26987.1 26051.7 26987.1

8 4892.94 26088.3* 24845.7 24904.3 23981.3 24904.3

9 9102.2 28587.7* 26299 27161.2 25447.5 27161.2

10 6413.04 26926.8* 25498.3 25827.6 24813.8 25827.6

Average 9045.28 27585.52 26003.24 26534.19 25296.42 26534.19

* indicates solution is not optimal-allocated computation time exceeded 600s.

D.9 High Return (n = 75)

SC No
Original (`, S) − like = FL = MC = SP (`, S,WW)

LB UB LB UB LB UB

125

1 5180.05 11875.8* 11098.7 11586.2 11098.7 11586.2

2 18573.8 23015.1* 22186.6 22559.1 22186.6 22559.1

3 10919.4 16347.3* 15550.3 15919.3 15484 15919.3

4 4686.71 11634.7* 10848.1 11344.4 10848.1 11344.4

5 21187.8 24401.8* 23596.9 24151.8 23592.5 24151.8

6 4588.37 11667* 10926.5 11604.6 10925.4 11604.6

7 12063.4 16716* 16161.9 16614.6 16148.8 16614.6

8 3515.13 10856.1* 10293.8 10578.6 10285 10578.6

9 4744.27 11840.2* 10889.9 11505 10889.9 11505

10 9712.04 14745.9* 14206.7 14605.7 14148.6 14605.7

Average 9517.10 15309.99 14575.94 15046.93 14560.76 15046.93

250

1 5745.25 18547.8* 16938 17694.5 16831.8 17694.5

2 19038.5 27153.4* 25964.7 26529.4 25964.7 26529.4

3 11339.3 21518.6* 19946.1 20663.6 19753.6 20663.6

4 5290.15 17769.4* 16419.8 16879.9 16363.5 16879.9

5 21592.5 27651.8* 26314.8 27401.8 26294.7 27401.8

6 5133.43 18138.3* 16507.4 17086.8 16492 17086.8

7 12471.7 21938.3* 20530.1 21466.6 20394 21466.6

8 4076.5 17606.8* 16155.7 16457.7 16022.9 16457.7

9 5301.61 18281.9* 16624.7 17258.3 16572.1 17258.3

10 10295.1 20329.3* 18908.3 19571.7 18785 19571.7

Average 10028.40 20893.56 19430.96 20101.03 19347.43 20101.03

* indicates solution is not optimal-allocated computation time exceeded 600s.

162

SC No
Original (`, S) − like = FL = MC = SP (`, S,WW)

LB UB LB UB LB UB

500

1 6859.69 28185.9* 25750.9 26549.4 25467.1 26549.4

2 19968 34798* 32416.6 33679.9 32369.8 33679.9

3 12179.3 30338.1* 27374.9 28413.7 27001.2 28413.7

4 6431.11 27099.1* 25098.2 25771.3 24884.8 25771.3

5 22401.9 34901.8* 31750.5 33809.5 31679.6 33809.5

6 6223.54 27192.5* 25261 25831.6 25007.5 25831.6

7 13288.3 31204.1* 28397.2 30420.9* 28123.7 30420.9*

8 5142.69 27106.1* 25252.6 25593.6 24879.7 25593.6

9 6390.03 27343.9* 25500.1 26043.9 25249.4 26043.9

10 11382.4 29452.1* 26907.8 28356.9 26791.4 28356.9

Average 11026.70 29762.16 27370.98 28447.07 27145.42 28447.07

1000

1 8956.85 42407.9* 38455.1 39346.6 37858.5 39346.6

2 21770.2 47418.5* 43832.5 45422.4 43325.8 45422.4

3 13859.2 43166.7* 39520.6 40804.1 38726.8 40804.1

4 8488.13 41880.3* 37880 38365.8 37337.6 38365.8

5 24020.7 46860.4* 42452.4 43992.6 41854.1 43992.6

6 8403.77 41682.1* 38548.3 39021.4 38157.4 39021.4

7 14921.4 44156* 40518.3 41987.9 39893.7 41987.9

8 7115.93 42005.4* 38508.8 38902.5 37923.7 38902.5

9 8537.04 42569.9* 38872.5 39328.7 38221.8 39328.7

10 13428.6 43121.8* 39137.8 40168.3 38818.6 40168.3

Average 12950.18 43526.9 39772.63 40734.03 39211.8 40734.03

* indicates solution is not optimal-allocated computation time exceeded 600s.

163

Appendix E

Flow Cover Inequalities in Mosel

model ’Original Formulation for ELSRs with Added (l,s) and Flow Cover Inequalities ’

uses ’mmsystem ’

uses ’mmxprs ’

uses ’mmive ’

forward procedure getsolution(t: integer)

forward procedure flowcover_1(lambda: integer)

forward procedure flowcover_2(lambda: integer)

forward procedure flowcover_3(lambda: integer)

setrandseed (10)

declarations

NT=3 !number of time periods

period =1..NT

p_r:array(period) of real !production cost for remanufactured products

p_m:array(period) of real !production cost for newly products

k_r:array(period) of real !setup cost for remanufacturing

k_m:array(period) of real !setup cost for manufacturing

h_r:array(period) of real !holding cost for used products

h_s:array(period) of real !holding cost for serviceable products

x_r:array(period) of mpvar !production amount of remanufactured product

x_m:array(period) of mpvar !production amount of manufactured product

y_r:array(period) of mpvar !setup variable for remanufacturing

y_m:array(period) of mpvar !setup variable for manufacturing

I_r:array(period) of mpvar !inventory variable for product returns

I_s:array(period) of mpvar !inventory variable for serviceable products

return:array(period) of real !amount of used products returned

demand:array(period) of real !amount of demand for serviceable products

totdem:array(period) of real !total demand from period t until NT

totret:array(period) of real !total return from period 1 until t

bigm_r:array(period) of real !big M constraint for remanufacturing

bigm_m:array(period) of real !big M constraint for manufacturing

solopt_x_r:array(period) of real !optimal solution for each variable

solopt_x_m:array(period) of real

solopt_y_r:array(period) of real

solopt_y_m:array(period) of real

solopt_I_r:array(period) of real

solopt_I_s:array(period) of real

optval:real !optimal solution for objective function

linrelaxval:real !linear relaxation for objective function

!get problem status

status:array({XPRS_OPT ,XPRS_UNF ,XPRS_INF ,XPRS_UNB ,XPRS_OTH }) of string

164

count1 ,count2 ,count3 ,count4 ,count5 ,count6: integer

!(l,s) inequalities

maxiter =100 !maximum number of iterations

iter =1.. maxiter

!set S (1 if t in S, 0 otherwise) for each iteration + period l

setS:array(iter , period , period) of integer

ret:array(period , period) of real !total return from period t until period l

dem:array(period , period) of real !total demand from period t until period l

countviol_1:integer !counter for number of violations of constraints

countviol_2:integer

countviol_3:integer

countviol_4:integer

end -declarations

setparam(’XPRS_CPUTIME ’,1)

setparam(’XPRS_PRESOLVE ’,1)

!==

!DATA INPUT

!==

forall(t in period)return(t):=5+4* round (2.5* random)

forall(t in period)demand(t):=10+20* round (2.5* random)

forall(t in period)h_r(t):=0.5+ round (1.5* random)

forall(t in period)h_s(t):=0.5+ round (1.5* random)

forall(t in period)p_r(t):=0

forall(t in period)p_m(t):=0

forall(t in period)k_r(t):=50

forall(t in period)k_m(t):=500

!==

!GET PROBLEM STATUS

!==

status ::([XPRS_OPT ,XPRS_UNF ,XPRS_INF ,XPRS_UNB ,XPRS_OTH])

[’Optimum found ’,’Unfinished ’,’Infeasible ’,’Unbounded ’,’Failed ’]

count1 :=0

count2 :=0

count3 :=0

count4 :=0

count5 :=0

count6 :=0

!==

!PARAMETERS CALCULATION

!==

!calculate the bigM -constraints

forall(t in period)do

totdem(t):=sum(tt in t..NT)demand(tt)

totret(t):=sum(tt in 1..t)return(tt)

end -do

forall(t in period)do

bigm_r(t):= minlist(totret(t),totdem(t))

bigm_m(t):= totdem(t)

end -do

!==

!CONSTRAINTS

!==

165

!total cost function

costpro := sum(t in period)(p_r(t)*x_r(t) + p_m(t)*x_m(t))

costfixed := sum (t in period)(k_r(t)*y_r(t) + k_m(t)*y_m(t))

costinv := sum(t in period)(h_r(t)*I_r(t) + h_s(t)*I_s(t))

cost := costpro + costfixed + costinv

!flow balance for remanufactured and manufactured products

forall(t in period)do

dem_sat_r(t):= if(t>1, I_r(t-1), 0)- x_r(t) + return(t) = I_r(t)

dem_sat_s(t):= if(t>1, I_s(t-1), 0)+ x_m(t) + x_r(t)- demand(t) = I_s(t)

end -do

!production variable -binary variable relations

forall(t in period)do

vub_r(t):=x_r(t)<=bigm_r(t)*y_r(t)

vub_m(t):=x_m(t)<=bigm_m(t)*y_m(t)

end -do

!==

!IP SOLUTION OF THE MODEL

!==

fopen(’output -1.txt ’,F_OUTPUT)

writeln(’Period:’,NT)

writeln(’Setup cost -remanufacturing:’,k_r (1))

writeln(’Setup cost -manufacturing:’,k_m (1))

writeln(’’)

forall(t in period)writeln(’Demands:’, demand(t))

forall(t in period)writeln(’Returns:’, return(t))

D:=sum(t in period)demand(t)

writeln(’Total demands:’, D)

R:=sum(t in period)return(t)

writeln(’Total returns:’, R)

writeln(’’)

forall (t in period)do

y_r(t) is_binary

y_m(t) is_binary

end -do

!solve IP

minimize(cost)

optval := getobjval

forall(t in period)do

solopt_x_r(t):= getsol(x_r(t))

solopt_x_m(t):= getsol(x_m(t))

solopt_y_r(t):= getsol(y_r(t))

solopt_y_m(t):= getsol(y_m(t))

solopt_I_r(t):= getsol(I_r(t))

solopt_I_s(t):= getsol(I_s(t))

end -do

writeln (!===)

writeln(’IP SOLUTION ’)

writeln (!===)

writeln(’Total cost for IP:’, getobjval)

writeln(’ ’)

writeln (!===)

writeln(’Optimal solutions for IP ’)

writeln (!===)

forall(t in period)

writeln(’x_r(’,t,’)=’,getsol(x_r(t)),’’,’x_m(’,t,’)=’,getsol(x_m(t)),

’’,’y_r(’,t,’)=’,getsol(y_r(t)),’’,’y_m(’,t,’)=’,getsol(y_m(t)),

166

’’,’I_r(’,t,’)=’,getsol(I_r(t)),’’,’I_s(’,t,’)=’,getsol(I_s(t)))

writeln(’ ’)

!==

!LP RELAXATION SOLUTION OF THE MODEL

!==

forall (t in period)do

y_r(t)<=1

y_m(t)<=1

end -do

!solve LP relaxation

minimize(XPRS_LIN ,cost)

linrelaxval1 := getobjval

writeln (!===)

writeln(’LP RELAXATION SOLUTION ’)

writeln (!===)

writeln(’Total cost for LP relaxation: ’, getobjval)

writeln(’ ’)

writeln (!===)

writeln(’Optimal solutions for LP relaxation ’)

writeln (!===)

forall(t in period)

writeln(’x_r(’,t,’)=’,getsol(x_r(t)),’’,’x_m(’,t,’)=’,getsol(x_m(t)),

’’,’y_r(’,t,’)=’,getsol(y_r(t)),’’,’y_m(’,t,’)=’,getsol(y_m(t)),

’’,’I_r(’,t,’)=’,getsol(I_r(t)),’’,’I_s(’,t,’)=’,getsol(I_s(t)))

writeln(’ ’)

!==

!ADD (l,S)INEQUALITIES TO THE ORIGINAL FORMULATION

!==

setparam(’XPRS_COVERCUTS ’,0)

setparam(’XPRS_GOMCUTS ’,0)

setparam(’XPRS_CUTSTRATEGY ’,0)

setparam(’XPRS_MAXTIME ’, -600)

starttime := gettime

!calculate the returns and demands

forall(l in 1..NT)do

forall(t in 1..l)do

ret(t,l):= 0 !(1) set initial value of ret(t,l) and dem(t,l) as zero

ret(l,l):= return(l) !(2) calculate other ret(l,t) and dem (t,l) quantities

dem(t,l):= 0

dem(l,l):= demand(l)

if(l>=2) then

forall(tt in 1..(l-1))do

ret(l-tt,l):= ret(l-tt+1,l) + return(l-tt)

dem(l-tt,l):= dem(l-tt+1,l) + demand(l-tt)

end -do

end -if

end -do

end -do

forall(l in period) do

forall(k in 1..l) do

!initialize the set S

forall(t in k..l)

setS(iteration ,t,l):=0

forall(t in k..l)do

if(getsol(x_r(t))>ret(k,t)* getsol(y_r(t))

167

or getsol(x_r(t))>dem(t,l)* getsol(y_r(t))

or getsol(x_m(t))>dem(t,l)* getsol(y_m(t))) then

setS(iteration ,t,l):=1

end -if

end -do

if(sum(u in k..l)setS(iteration ,u,l)*(getsol(x_m(u))+ getsol(x_r(u)))>

getsol(I_s(l))+ sum(u in k..l)setS(iteration ,u,l)*dem(u,l)

*(getsol(y_m(u))+ getsol(y_r(u)))+0.00001) then

addcons_1(iteration , l):=sum(u in k..l)setS(iteration ,u,l)*(x_m(u)+x_r(u))

<= I_s(l)+ sum(u in k..l)setS(iteration ,u,l)*dem(u,l)*(y_m(u)+y_r(u))

countviol_1 := countviol_1 + 1

end -if

if(sum(u in k..l)setS(iteration ,u,l)* getsol(x_m(u))>

getsol(I_s(l))+ sum(u in k..l)setS(iteration ,u,l)

dem(u,l) getsol(y_m(u))+0.00001) then

addcons_2(iteration , l):=sum(u in k..l)setS(iteration ,u,l)*x_m(u)<= I_s(l)

+ sum(u in k..l)setS(iteration ,u,l)*dem(u,l)*(y_m(u))

countviol_2 := countviol_2 + 1

end -if

if(sum(u in k..l)setS(iteration ,u,l)* getsol(x_r(u))>

getsol(I_s(l))+ sum(u in k..l)setS(iteration ,u,l)

dem(u,l) getsol(y_r(u))+0.00001) then

addcons_3(iteration , l):=sum(u in k..l)setS(iteration ,u,l)*x_r(u)<= I_s(l)

+ sum(u in k..l)setS(iteration ,u,l)*dem(u,l)*(y_r(u))

countviol_3 := countviol_3 + 1

end -if

if(sum(u in k..l)setS(iteration ,u,l)* getsol(x_r(u))> if(k>1,getsol(I_r(k-1)) ,0)

+ sum(u in k..l)setS(iteration ,u,l)*ret(k,u)* getsol(y_r(u))+0.00001) then

addcons_4(iteration ,l):=sum(u in k..l)setS(iteration ,u,l)*x_r(u)

<= if(k>1,I_r(k-1) ,0)+ sum(u in k..l)setS(iteration ,u,l)*ret(k,u)*(y_r(u))

countviol_4 := countviol_4 + 1

end -if

end -do

end -do

if(countviol_1 =0 and countviol_2 =0 and countviol_3 =0 and countviol_4 =0) then break

end -if

!solve the strengthened LP relaxation with added maximum violated (l,s)cuts

minimize(XPRS_LIN ,cost)

linrelaxval2 := getobjval

end -do

!==

!LP RELAXATION SOLUTION WITH ADDED (L,S) INEQUALITIES

!==

forall(t in period) linx_r(t):= getsol(x_r(t))

forall(t in period) linx_m(t):= getsol(x_m(t))

forall(t in period) liny_r(t):= getsol(y_r(t))

forall(t in period) liny_m(t):= getsol(y_m(t))

forall(t in period) linI_r(t):= getsol(I_r(t))

forall(t in period) linI_s(t):= getsol(I_s(t))

writeln (!===)

writeln(’LP RELAXATION SOLUTION WITH ADDED (L,S) INEQUALITIES ’)

writeln (!===)

writeln(’Total cost for LP Relaxation with added (l,s) Inequalities: ’, getobjval)

writeln(’’)

writeln (!===)

writeln(’Optimal Solutions for LP relaxation with added (l,s) Inequalities ’)

168

writeln (!===)

forall(t in period)

writeln(’x_r(’,t,’)=’,linx_r(t),’’,’x_m(’,t,’)=’,linx_m(t),’’,’y_r(’,t,’)=’,liny_r(t),

’’,’y_m(’,t,’)=’,liny_m(t),’’,’I_r(’,t,’)=’,linI_r(t),’’,’I_s(’,t,’)=’,linI_s(t))

writeln(’’)

writeln(’Initial integrality gap: ’,((optval -linrelaxval1)/ optval)*100)

writeln(’Integrality gap after adding (l,S) cuts: ’,((optval -getobjval)/ optval)*100)

writeln(’Closed gap by (l,S) cuts: ’,(getobjval -linrelaxval1)

/(optval -linrelaxval1)*100)

c_time :=gettime -starttime writeln(’’) fclose(F_OUTPUT)

if (((optval -getobjval)/ optval)*100=0) then

writeln (" !!! STOP !!! ")

exit (1)

end -if

!==

!LP RELAXATION WITH ADDED (L,S) AND FLOW COVER INEQUALITIES

!==

declarations

linearx_r:array(period) of real !linear relaxation solutions for each variable

linearx_m:array(period) of real

lineary_r:array(period) of real

lineary_m:array(period) of real

maxbigm_r:real !taking the maximum value of bigm on t

maxbigm_m:real

maxbigm_c:real

end -declarations

maxbigm_r :=0

maxbigm_m :=0

forall(t in period)do

if(bigm_r(t)>=maxbigm_r)then

maxbigm_r := bigm_r(t)

end -if

end -do

forall(t in period)do

if(bigm_m(t)>=maxbigm_m)then

maxbigm_m := bigm_m(t)

end -if

end -do

maxbigm_c := maxlist(maxbigm_r , maxbigm_m)

forall(t in period) getsolution(t)

fopen("output -2.txt",F_OUTPUT)

writeln(’Period:’,NT)

writeln(’Setup cost -remanufacturing:’,k_r (1))

writeln(’Setup cost -manufacturing:’,k_m (1))

writeln(’’)

starttime := gettime

forall(lambda in 1.. round(maxbigm_r))

flowcover_1(lambda)

writeln (!===)

writeln (’(1) Flow cover inequalities (<=)’)

writeln (!===)

writeln(’Number of flow cover inequalities 1 added (<=): ’,count1)

writeln(’Number of extended flow cover inequalities 1 added (<=): ’,count2)

169

writeln(’’)

fc1_time :=gettime -starttime

starttime := gettime

forall(lambda in 1.. round(maxbigm_m))

flowcover_2(lambda)

writeln (!===)

writeln (’(2) Flow cover inequalities (>=)’)

writeln (!===)

writeln(’Number of flow cover inequalities 2 added (>=): ’,count3)

writeln(’Number of extended flow cover inequalities 2 added (>=): ’,count4)

writeln(’’)

fc2_time :=gettime -starttime

starttime := gettime

forall(lambda in 1.. round(maxbigm_c))

flowcover_3(lambda)

writeln (!===)

writeln (’(3) Flow cover inequalities (>=)’)

writeln (!===)

writeln(’Number of flow cover inequalities 3 added (>=): ’,count5)

writeln(’Number of extended flow cover inequalities 3 added (>=): ’,count6)

writeln(’’)

fc3_time :=gettime -starttime

minimize(XPRS_LIN ,cost)

writeln (!===)

writeln(’LP RELAXATION WITH ADDED (L,S) INEQUALITIES AND ALL FLOW COVER INEQUALITIES ’)

writeln (!===)

writeln(’Total cost for LP relaxation with added (l,s)

and all flow cover inequalities: ’,getobjval)

writeln(’’)

writeln(’Integrality gap after adding all cuts: ’,((optval -getobjval)/ optval)*100)

writeln(’Closed gap by all cuts: ’,(getobjval -linrelaxval2)/(optval -linrelaxval2)*100)

a_time := c_time + fc1_time + fc2_time + fc3_time

fc_time := fc1_time + fc2_time + fc3_time

writeln(’Time spent by (l,S):’, c_time)

writeln(’Time spent by FC:’, fc_time)

writeln(’Time spent by All:’, a_time)

writeln(’’) fclose(F_OUTPUT)

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! PROCEDURES !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!==

!PROCEDURE: GET SOLUTION

!==

procedure getsolution(t: integer)

linearx_r(t):= getsol(x_r(t))

linearx_m(t):= getsol(x_m(t))

lineary_r(t):= getsol(y_r(t))

lineary_m(t):= getsol(y_m(t))

end -procedure

!==

!PROCEDURE: FLOW COVER INEQUALITIES

!==

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! PROCEDURE 1!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

procedure flowcover_1(lambda:integer)

170

declarations

w_r:array(period) of mpvar

s_r:set of integer

l_r:set of integer

maxi_r:real

end -declarations

s_r :={}

l_r :={}

forall(t in period)w_r(t) is_binary

!Objective function

obj_r:=sum(t in period)(linearx_r(t)+(maxlist(bigm_r(t)-lambda ,0)

(1- lineary_r(t)))) w_r(t)

!Constraint

c_r:=sum(t in period)bigm_r(t)*w_r(t)=sum(t in period)return(t)+ lambda

maximize(obj_r)

c_r:=0

if (status(getprobstat)=’Optimum found ’)then

forall(t in period)do

if(round(getsol(w_r(t)))=1) then

s_r+={t}

end -if

end -do

if(s_r <>{}) and (getobjval >sum(t in period)return(t))then

sum(t in s_r)x_r(t)-sum(t in s_r)maxlist(bigm_r(t)-lambda ,0)* y_r(t)<=

sum(t in period)return(t)-sum(t in s_r)maxlist(bigm_r(t)-lambda ,0)

writeln(’The flow cover inequality 1 is added ’)

count1 := count1 +1

writeln(’Lambda=’,lambda ,’, S_r=’,s_r)

if (sum(t in s_r)solopt_x_r(t)-sum(t in s_r)maxlist(bigm_r(t)-lambda ,0)

*solopt_y_r(t)> sum(t in period)return(t)-

sum(t in s_r)maxlist(bigm_r(t)-lambda ,0)) then

writeln(’---->Cuts off the optimal solution ’)

end -if

end -if

if (s_r <>{}) then

maxi_r :=0

forall (t in s_r) do

if (bigm_r(t)>=maxi_r) then

maxi_r := bigm_r(t)

end -if

end -do

forall(t in period) do

if (not(t in s_r)) and (linearx_r(t)

-(maxlist(bigm_r(t),maxi_r)-lambda)* lineary_r(t)>0) then

l_r+={t}

end -if

end -do

if (maxi_r >= lambda) and (l_r <>{}) and

(getobjval+sum(t in l_r)(linearx_r(t)-(maxlist(bigm_r(t),maxi_r)-lambda)* lineary_r(t))>

sum(t in period)return(t)) then

sum(t in s_r)x_r(t)+sum(t in l_r)x_r(t)

-sum(t in s_r)(maxlist(bigm_r(t)-lambda ,0)* y_r(t))

-sum(t in l_r)((maxlist(bigm_r(t),maxi_r)-lambda)*y_r(t))

<=sum(t in period)return(t)-sum(t in s_r)maxlist(bigm_r(t)-lambda ,0)

171

writeln(’The extended flow cover inequality 1 is added ’)

count2 := count2 +1

writeln(’Lambda=’,lambda ,’, S_r=’,s_r ,’, L_r=’,l_r)

if (sum(t in s_r)solopt_x_r(t)+sum(t in l_r)solopt_x_r(t)

-sum(t in s_r)(maxlist(bigm_r(t)-lambda ,0)* solopt_y_r(t))

-sum(t in l_r)((maxlist(bigm_r(t),maxi_r)-lambda)* solopt_y_r(t))

>sum(t in period)return(t)-sum(t in s_r)maxlist(bigm_r(t)-lambda ,0)) then

writeln(’---->Cuts off the optimal solution ’)

end -if

end -if

end -if

end -if

end -procedure

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! PROCEDURE 2!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

procedure flowcover_2(lambda:integer)

declarations

u_m:array(period) of mpvar

s_m:set of integer

l_m:set of integer

maxi_2:real

end -declarations

s_m :={}

l_m :={}

forall(t in period) u_m(t) is_binary

!Objective function

obj_m:=sum(t in period)(linearx_m(t)+(maxlist(bigm_m(t)-lambda ,0)

(1- lineary_m(t)))) u_m(t)

!Constraint

c_m:=sum(t in period)bigm_m(t)*u_m(t)=sum(t in period)(demand(t)-return(t))+ lambda

maximize(obj_m)

c_m:=0

if (status(getprobstat)=’Optimum found ’)then

forall(t in period)do

if(round(getsol(u_m(t)))=1) then

s_m+={t}

end -if

end -do

if(s_m <>{}) and (getobjval >sum(t in period)linearx_m(t))then

sum(t in s_m)x_m(t)-sum(t in s_m)maxlist(bigm_m(t)-lambda ,0)* y_m(t)

+sum(t in s_m)maxlist(bigm_m(t)-lambda ,0)<=sum(t in period)x_m(t)

writeln(’The flow cover inequality 2 is added ’)

count3 := count3 +1

writeln(’Lambda=’,lambda ,’, S_m=’,s_m)

if (sum(t in s_m)solopt_x_m(t)-sum(t in s_m)maxlist(bigm_m(t)-lambda ,0)* solopt_y_m(t)

+sum(t in s_m)maxlist(bigm_m(t)-lambda ,0)>sum(t in period)solopt_x_m(t)) then

writeln(’---->Cuts off the optimal solution ’)

end -if

end -if

if (s_m <>{}) then

maxi_2 :=0

forall (t in s_m) do

if (bigm_m(t)>=maxi_2) then

172

maxi_2 := bigm_m(t)

end -if

end -do

forall(t in period) do

if (not(t in s_m)) and

(linearx_m(t)-(maxlist(maxi_2 ,bigm_m(t))-lambda)* lineary_m(t)>0) then

l_m+={t}

end -if

end -do

if(maxi_2 >= lambda)and (l_m <>{}) and (getobjval+sum(t in l_m)(linearx_m(t)

-(maxlist(maxi_2 ,bigm_m(t))-lambda)* lineary_m(t))>sum(t in period)linearx_m(t)) then

sum(t in s_m)x_m(t)-sum(t in s_m)maxlist(bigm_m(t)-lambda ,0)* y_m(t)

+sum(t in s_m)maxlist(bigm_m(t)-lambda ,0)

+sum(t in l_m)((x_m(t))-(maxlist(maxi_2 ,bigm_m(t))-lambda)*y_m(t))

<=sum(t in period)x_m(t)

writeln(’The extended flow cover inequality 2 is added ’)

count4 := count4 +1

writeln(’Lambda=’,lambda ,’, S_m=’,s_m ,’, L_m=’,l_m)

if (sum(t in s_m)solopt_x_m(t)-sum(t in s_m)maxlist(bigm_m(t)-lambda ,0)* solopt_y_m(t)

+sum(t in s_m)maxlist(bigm_m(t)-lambda ,0)+ sum(t in l_m)((solopt_x_m(t))

-(maxlist(maxi_2 ,bigm_m(t))-lambda)* solopt_y_m(t))

>sum(t in period)solopt_x_m(t)) then

writeln(’---->Cuts off the optimal solution ’)

end -if

end -if

end -if

end -if

end -procedure

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! PROCEDURE 3!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

procedure flowcover_3(lambda:integer)

declarations

u_r:array(period) of mpvar

u_m:array(period) of mpvar

s_r:set of integer

s_m:set of integer

l_r:set of integer

l_m:set of integer

maxi_3:real

maxi_4:real

end -declarations

s_r :={}

s_m :={}

l_r :={}

l_m :={}

forall(t in period)do

u_r(t) is_binary

u_m(t) is_binary

end -do

!Objective function

obj_rm1 :=sum(t in period)(linearx_r(t)+(maxlist(bigm_r(t)-lambda ,0)

(1- lineary_r(t)))) u_r(t)

+sum(t in period)(linearx_m(t)+(maxlist(bigm_m(t)-lambda ,0)*(1 - lineary_m(t))))* u_m(t)

!Constraint

c_rm1:=sum(t in period)bigm_r(t)*u_r(t)+sum(t in period)bigm_m(t)*u_m(t)

173

=sum(t in period)demand(t)+ lambda

forall(t in period)do

u_r(t)+u_m(t)=1

end -do

maximize(obj_rm1)

c_rm1 :=0

if (status(getprobstat)=’Optimum found ’)then

forall(t in period)do

if(round(getsol(u_r(t)))=1) then

s_r+={t}

end -if

end -do

forall(t in period)do

if(round(getsol(u_m(t)))=1) then

s_m+={t}

end -if

end -do

if(s_r <>{}) and (s_m <>{}) and

(getobjval >sum(t in period)(linearx_r(t)+ linearx_m(t))) then

sum(t in s_r)x_r(t)-sum(t in s_r)maxlist(bigm_r(t)-lambda ,0)* y_r(t)

+sum(t in s_r)maxlist(bigm_r(t)-lambda ,0)

+sum(t in s_m)x_m(t)-sum(t in s_m)maxlist(bigm_m(t)-lambda ,0)* y_m(t)

+sum(t in s_m)maxlist(bigm_m(t)-lambda ,0)<=sum(t in period)(x_r(t)+x_m(t))

writeln(’The flow cover inequality 3 is added ’)

count5 := count5 +1

writeln(’Lambda=’,lambda ,’, S_r=’,s_r ,’, S_m=’,s_m)

if (sum(t in s_r)solopt_x_r(t)-sum(t in s_r)maxlist(bigm_r(t)-lambda ,0)* solopt_y_r(t)

+sum(t in s_r)maxlist(bigm_r(t)-lambda ,0)

+sum(t in s_m)solopt_x_m(t)-sum(t in s_m)maxlist(bigm_m(t)-lambda ,0)* solopt_y_m(t)

+sum(t in s_m)maxlist(bigm_m(t)-lambda ,0)

>sum(t in period)(solopt_x_r(t)+ solopt_x_m(t))) then

writeln(’---->Cuts off the optimal solution ’)

end -if

end -if

if (s_r <>{}) and (s_m <>{}) then

maxi_3 :=0

maxi_4 :=0

forall (t in s_r) do

if (bigm_r(t)>=maxi_3) then

maxi_3 := bigm_r(t)

end -if

end -do

forall (t in s_m) do

if (bigm_m(t)>=maxi_4) then

maxi_4 := bigm_m(t)

end -if

end -do

forall(t in period) do

if (not(t in s_r)) and

(linearx_r(t)-(maxlist(maxi_3 ,maxi_4 ,bigm_r(t))-lambda)* lineary_r(t)>0) then

l_r+={t}

end -if

end -do

forall(t in period) do

if (not(t in s_m)) and

174

(linearx_m(t)-(maxlist(maxi_3 ,maxi_4 ,bigm_m(t))-lambda)* lineary_m(t)>0) then

l_m+={t}

end -if

end -do

if(maxi_3 >= lambda) and (maxi_4 >= lambda) and (l_r <>{}) and (l_m <>{}) and

(getobjval+sum(t in l_r)(linearx_r(t)-(maxlist(maxi_3 ,maxi_4 ,bigm_r(t))-lambda)

*lineary_r(t))+sum(t in l_m)(linearx_m(t)-(maxlist(maxi_3 ,maxi_4 ,bigm_m(t))-lambda)

*lineary_m(t))>sum(t in period)(linearx_r(t)+ linearx_m(t))) then

sum(t in s_r)x_r(t)-sum(t in s_r)maxlist(bigm_r(t)-lambda ,0)* y_r(t)

+sum(t in s_r)maxlist(bigm_r(t)-lambda ,0)

+sum(t in l_r)(x_r(t)-(maxlist(maxi_3 ,maxi_4 ,bigm_r(t))-lambda)*y_r(t))

+sum(t in s_m)x_m(t)-sum(t in s_m)maxlist(bigm_m(t)-lambda ,0)* y_m(t)

+sum(t in s_m)maxlist(bigm_m(t)-lambda ,0)

+sum(t in l_m)(x_m(t)-(maxlist(maxi_3 ,maxi_4 ,bigm_m(t))-lambda)*y_m(t))

<=sum(t in period)(x_r(t)+x_m(t))

writeln(’The extended flow cover inequality 3 is added ’)

count6 := count6 +1

writeln(’Lambda=’,lambda ,’, S_r=’,s_r ,’, L_r=’,l_r ,’, S_m=’,s_m ,’, L_m=’,l_m)

if (sum(t in s_r)solopt_x_r(t)-sum(t in s_r)maxlist(bigm_r(t)-lambda ,0)

*solopt_y_r(t)+sum(t in s_r)maxlist(bigm_r(t)-lambda ,0)

+sum(t in l_r)(solopt_x_r(t)-(maxlist(maxi_3 ,maxi_4 ,bigm_r(t))-lambda)* solopt_y_r(t))

+sum(t in s_m)solopt_x_m(t)-sum(t in s_m)maxlist(bigm_m(t)-lambda ,0)* solopt_y_m(t)

+sum(t in s_m)maxlist(bigm_m(t)-lambda ,0)

+sum(t in l_m)(solopt_x_m(t)-(maxlist(maxi_3 ,maxi_4 ,bigm_m(t))-lambda)* solopt_y_m(t))

>sum(t in period)(solopt_x_r(t)+ solopt_x_m(t))) then

writeln(’---->Cuts off the optimal solution ’)

end -if

end -if

end -if

end -if

end -procedure

end -model

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! END MODEL !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

	Declarations of Authenticity and Author Rights
	Abstract
	Acknowledgements
	List of Algorithms
	List of Figures
	List of Tables
	Abbreviations
	Nomenclature
	1 Introduction
	1.1 Motivation
	1.2 Simple Lot Sizing Problem
	1.3 Mixed Integer Programming (MIP)
	1.3.1 Defining Polyhedra by Valid Inequality
	1.3.2 Defining Polyhedra by Extreme Points and Extreme Rays
	1.3.3 Optimization Algorithms

	1.4 Problem Formulations for ELSR
	1.4.1 Separate Setups
	1.4.2 Joint Setups

	1.5 Outline of the Thesis

	2 Literature Review
	2.1 Polynomial Algorithms for Special Cases
	2.2 Mixed Integer Programming
	2.2.1 Valid Inequalities
	2.2.2 Extended Reformulations

	2.3 Heuristics
	2.3.1 Mixed Integer Programming (MIP) Heuristics
	2.3.2 Other Types of Heuristics

	3 Computational Analysis of Lower Bounds for Economic Lot Sizing Problems with Remanufacturing (ELSR)
	3.1 Valid Inequalities for ELSR
	3.1.1 (,S)-like Inequalities for ELSR
	3.1.2 (,S,WW)-like Inequalities for ELSR

	3.2 Extended Reformulations for ELSR
	3.2.1 Facility Location Reformulation
	3.2.2 Multi-commodity Reformulation
	3.2.3 Shortest Path Reformulation

	3.3 Theoretical Comparisons between Formulations
	3.4 Computational Testing of Lower Bounds
	3.5 Concluding Remarks

	4 Valid Inequalities for Economic Lot-Sizing Problems with Remanufacturing: Separate Setups Case
	4.1 Introduction
	4.2 Properties of conv(Xs)
	4.3 Polyhedral Analysis of conv(Xs)
	4.4 The Separation Problems for conv(Xs)
	4.5 Preliminary Computational Results
	4.6 Concluding Remarks

	5 Valid Inequalities for Economic Lot-Sizing Problems with Remanufacturing: Joint Setups Case
	5.1 Introduction
	5.2 Properties of conv(Xj)
	5.3 Polyhedral Analysis of conv(Xj)
	5.4 The Separation Problems for conv(Xj)
	5.5 Preliminary Computational Results
	5.6 Concluding Remarks

	6 Conclusion and Future Research
	References
	A (,S)-like Inequalities in Mosel - Separate Setups
	B Shortest Path Reformulation in Mosel - Separate Setups
	C Detailed Results of Lower Bounds - Separate Setups
	C.1 Low Return (n=25)
	C.2 Low Return (n=50)
	C.3 Low Return (n=75)
	C.4 Medium Return (n=25)
	C.5 Medium Return (n=50)
	C.6 Medium Return (n=75)
	C.7 High Return (n=25)
	C.8 High Return (n=50)
	C.9 High Return (n=75)

	D Detailed Results of Lower Bounds - Joint Setups
	D.1 Low Return (n=25)
	D.2 Low Return (n=50)
	D.3 Low Return (n=75)
	D.4 Medium Return (n=25)
	D.5 Medium Return (n=50)
	D.6 Medium Return (n=75)
	D.7 High Return (n=25)
	D.8 High Return (n=50)
	D.9 High Return (n=75)

	E Flow Cover Inequalities in Mosel

