
University of Strathclyde

Department of Electronic and Electrical Engineering

FPGA Implementation of Adaptive Filters

by

 Michael N. Hanson

MPhil Thesis

2016
1

This thesis is the result of the author’s original research. It has been composed by the au-

thor and contains material that has been previously submitted for examination leading to

the award of a degree at The University of Strathclyde in 2011.

Signed:

Date: 15/08/2016
2

Abstract

Adaptive signal processing is an important topic of research covering many application

areas such as audio signal processing, radar, wireless communications and control sys-

tems. In the context of wireless communications, the impulse response of the channel can

vary rapidly with respect to time. Fast adaptive filtering algorithms are required in order

to perform equalization of such channels. The two algorithms predominantly used in prac-

tice are variants of Least Mean Squares (LMS) and Recursive Least Squares (RLS) algo-

rithms. LMS algorithms are more straightforward to implement however, RLS algorithms

offer increased performance at the expense of greater complexity.

For very high throughput operation, dedicated hardware is required to keep up with the

incoming sampling rate. Field Programmable Gate Arrays (FPGAs) can provide superior

performance both in terms of power utilization and throughput, when compared to Graph-

ic Processor Unit (GPU) or Digital Signal Processor (DSP) implementation. However, de-

spite the potential performance advantage, FPGA implementation progress has been

limited by the difficulty of programming such devices. This motivates the development

of software allowing the user to program FPGAs in a more straightforward manner than

direct low-level programming.

The first part of the following work seeks to alleviate this via means of a high abstraction

level Intellectual Property (IP) core for both the classic LMS algorithm, and the Normal-

ized LMS (NLMS) algorithm. High level parameters allow the user to trade resource uti-

lization against throughput, choosing fully parallel, serial or partly-serial architectures. In

the second part of this work, a survey is presented on the implementation of the QR De-

composition RLS (QRD-RLS) algorithm. Discussion is given on the numerical perfor-

mance, cost and throughput of different architectures, with particular detail presented on

the Givens based systolic array architecture.
3

Table of Contents

1 Introduction ..9
1.1 Adaptive Signal Processing ..9
1.2 Least Mean Squares Algorithm ..11
1.3 QRD- Recursive Least Squares Algorithm ...14
1.4 FPGA Technology ..17
1.5 Aims and Objectives ...20
1.6 Project Outline ..21

2 Hardware Architecture Overview ..23
2.1 FPGA Design Introduction ...23
2.2 The Fully Parallel LMS Filter ...25
2.3 The Fully Serial LMS Filter ..26
2.4 The Parallel-Serial LMS Filter ..31
2.5 The Normalised LMS Filter and Smith’s Algorithm36
2.6 Sample Rate and Hardware Cost Trade Off ..43

3 Numerical Performance Analysis ...46
3.1 Real Valued Arithmetic Serial LMS Filter Results47

4 Hardware Implementation Results ...50
4.1 FPGA Technology Mapping ..50
4.2 Real Valued Arithmetic Results ..51
4.3 Complex Valued Arithmetic Results ..62
4.4 Discussion ..78

5 QR Decomposition Methods ..81
5.1 Gram Schmidt ...81
5.2 Householder Reflections ..84
5.3 Givens Rotations ..86

6 Givens Based QRD-RLS Implementation ..89
6.1 QRD-RLS Systolic Array Architecture ..89
6.2 CORDIC Arithmetic for Boundary/Internal Cells91
6.3 Complex Systolic Array using CORDIC Arithmetic95

7 Least Squares Solution Computation ...98
7.1 Back-Substitution ...98
7.2 Implicit Weight Extraction ...99
7.3 Weight Flushing ...102
7.4 Downdating Method ...103

8 Optimization for Throughput Increase or Resource Minimization105
8.1 Fine Grain Pipelining ..105
8.2 Resource Sharing Folded Systolic Array ..113
4

9 Comparison to Gram Schmidt Implementation ..116

10 Conclusion ..120

11 References ...125

12 Acknowledgements ..129

13 Appendix A: Additional Numerical Performance Analysis Results130
5

List of Figures

The Generic Adaptive FIR Filter..9
The Adaptive Equalisation Scenario..10
Complex LMS Based Adaptive Equalisation of Quadrature Phase Shift Keying Complex
Modulation Scheme Input Data..12
Decomposition of Complex Arithmetic Operations to Individual Real Arithmetic Opera-
tions: (a) Multiplication and (b) Addition...13
QR Decomposition...16
A 5 Weight Example of a QR Least Squares Solution via Backsubstitution.....................17
FPGA Technology: A Complex Circuit is Formed from the Interconnection of Low Level
Operations..18
Implementation Mapping of a Parallel FIR Filter: (a) Sequential DSP Implementation; (b)
Parallel Unrolled FPGA Implementation...19
FPGA Design: Critical Path Defined as the Maximum Combinatorial Path Between Two
Registers..24
Critical Path Reduction via Pipeline Optimization...25
The Fully Parallel LMS Filter Architecture: N=4...26
The Fully Serial LMS Filter Architecture...28
A Closer Look at the Processor Core..29
Operation of the Input Control Component..30
Operation of the State Machine Counter..31
Adder Tree (a) vs Linear Summation (b)Architectures..33
The Parallel - Serial LMS Filter Architecture: 4 PCs Computing 4 Coefficients, Forming
a 16 Coefficient Filter in Total..34
Detailed View of the Parallel - Serial LMS Filter Operation: 4 PCs Computing 4 Coeffi-
cients Each...35
Parallel - Serial Implementation of the NLMS Algorithm..38
Hardware Resulting from Implementation of Smith’s Algorithm....................................43
Test Case 1: 20 Coefficient Real Valued Serial LMS...48
Test Case 2: 50 Coefficient Real Valued Serial LMS...49
Sampling Frequency Results of Real Valued Parallel - Serial LMS Architecture............52
Sampling Frequency Results of Real Valued Parallel - Serial NLMS Architecture..........53
Sampling Frequency Results of Real Valued Parallel and Serial LMS Architectures......53
Sampling Frequency Results of Real Valued Parallel and Serial NLMS Architectures....54
DSP48 Utilisation of Real Valued Parallel LMS Architecture...55
DSP48 Utilisation of Real Valued Parallel NLMS Architecture......................................55
DSP48 Utilisation of Real Valued Parallel - Serial LMS Architecture.............................56
DSP48 Utilisation of Real Valued Parallel - Serial NLMS Architecture..........................56
LUT Utilisation of Real Valued Parallel and Serial LMS Architectures...........................57
LUT Utilisation of Real Valued Parallel and Serial NLMS Architectures........................58
LUT Utilisation of Real Valued Parallel - Serial LMS Architecture.................................58
LUT Utilisation of Real Valued Parallel - Serial NLMS Architecture..............................59
Slice Register Utilisation of Real Valued Parallel and Serial LMS Architectures............60
Slice Register Utilisation of Real Valued Parallel and Serial NLMS Architectures.........60
Slice Register Utilisation of Real Valued Parallel - Serial LMS Architecture..................61
Slice Register Utilisation of Real Valued Parallel - Serial NLMS Architecture...............61
Sampling Frequency Results of Complex Valued Parallel - Serial LMS Architecture.....62
6

Sampling Frequency Results of Complex Valued Parallel - Serial NLMS Architecture..63
Sampling Frequency Results of Complex Valued Parallel and Serial LMS
Architectures..64
Sampling Frequency Results of Complex Valued Parallel and Serial NLMS
Architectures..65
DSP48 Utilisation of Complex Valued Parallel LMS Architecture..................................66
DSP48 Utilisation of Complex Valued Parallel NLMS Architecture...............................67
DSP48 Utilisation of Complex Valued Parallel Serial LMS Architecture........................68
DSP48 Utilisation of Complex Valued Parallel - Serial NLMS Architecture...................69
LUT Utilisation of Complex Valued Parallel and Serial LMS Architectures...................70
LUT Utilisation of Complex Valued Parallel and Serial NLMS Architectures................71
LUT Utilisation of Complex Valued Parallel - Serial LMS Architecture.........................72
LUT Utilisation of Complex Valued Parallel - Serial NLMS Architecture......................73
Slice Register Utilisation of Complex Valued Parallel and Serial LMS Architectures.....74
Slice Register Utilisation of Complex Valued Parallel and Serial NLMS Architectures..75
Slice Register Utilisation of Complex Valued Parallel - Serial LMS Architecture...........76
Slice Register Utilisation of Complex Valued Parallel - Serial NLMS Architecture........77
Householder Reflections..84
Givens Rotations Example...87
Recursive QR Decomposition..88
Systolic Array Architecture for QR Decomposition...90
Systolic Array with Additional Column Appended..91
CORDIC Rotation Mode..94
CORDIC Vectoring Mode...95
Complex Boundary Cell Operation using CORDIC Arithmetic.......................................96
Complex Internal Cell Operation...97
Back-Substitution Approach for Least Squares Solution...99
McWhirter Systolic Array with Direct Residual Extraction...101
Modified McWhirter Systolic Array with Direct Residual Extraction...........................102
QRD-RLS with Downdating..104
A Detailed Look at CORDIC Based Boundary Cell (Givens Generation)......................106
Look Ahead Applied to 1st Order IIR Digital Filter...108
Block Update QR Decomposition..109
Annihilation Reordering Look Ahead QRD-RLS..110
Pipelined CORDIC Processing Element..111
Annihalation Reordering Look Ahead Pipelined Systolic Array....................................112
Folded QRD RLS Systolic Array: (a) Linear Array (b) Processing Element..................114
Modified Gram Schmidt TTA Processing Architecture...117
Test Case 3: 20 Coefficient Real Valued Parallel - Serial LMS......................................130
Test Case 4: 50 Coefficient Real Valued Parallel - Serial LMS......................................131
Test Case 5: 20 Coefficient Complex Valued Serial LMS..132
Test Case 6: 50 Coefficient Complex Valued Serial LMS..133
Test Case 7: 20 Coefficient Complex Valued Parallel - Serial LMS...............................134
Test Case 8: 50 Coefficient Complex Valued Parallel - Serial LMS...............................135
Test Case 9: 20 Coefficient Real Valued Serial NLMS..136
Test Case 10: 50 Coefficient Real Valued Serial NLMS..137
Test Case 11: 20 Coefficient Real Valued Parallel - Serial NLMS.................................138
Test Case 12: 50 Coefficient Real Valued Parallel-Serial NLMS...................................139
7

Test Case 13: 20 Coefficient Complex Valued Serial NLMS...140
Test Case 14: 50 Coefficient Complex Valued Serial NLMS...141
Test Case 15: 20 Coefficient Complex Valued Parallel - Serial NLMS..........................142
Test Case 16: 50 Coefficient Complex Valued Parallel - Serial NLMS..........................143
Test Case 17: 20 Coefficient Real Valued Parallel NLMS...144
Test Case 18: 50 Coefficient Real Valued Parallel NLMS...145
Test Case 19: 20 Coefficient Complex Valued Parallel NLMS......................................146
Test Case 20: 50 Coefficient Complex Valued Parallel NLMS......................................147
8

1 Introduction

1.1 Adaptive Signal Processing

The area of adaptive signal processing is concerned with the design of self-learning filters

for a variety of applications, [1],[2],[3]. The generic model of an adaptive filter is given

in Figure 1.1. Here, we consider the adaptive filter as being a Finite Impulse Response

(FIR) filter with an adaptive algorithm employed to automatically adjust the weight

values in order to minimise a specified error metric, e.g Least Square Error (LSE), Mean

Square Error (MSE). Note that the sample index is represented by the variable, .

The commonly used notation given in the literature is now defined:

• - Defines the input signal.

• - Defines the output signal.

• - Defines the desired signal to which the output of the filter, , should
converge.

• - Defines the error signal that is used to drive the adaptive filter. It is generated
from the sample-by-sample difference between the current output signal, , and
the current desired signal, .

• - Defines the discrete values held in the weight vector of the FIR filter.

k

w1 w2 w3

z 1–x k  d k 

y k 
e k 

Figure 1.1: The Generic Adaptive FIR Filter

+

–

w0

z 1– z 1–



Adaptive Weight Update Algorithm

x k 
y k 
d k  y k 

e k 
y k 

d k 
w k 
9

There are several general scenarios in which adaptive signal processing may be employed.

The most exploited scenario from a communications standpoint is that of adaptive

equalisation [3]. Here, the adaptive filter is employed in order to counter the frequency

selective nature of the channel by converging towards the inverse of the channel’s

frequency response (Figure 1.2). Adaptive equalisers are used extensively in modern

communications systems, and have been a key driver in improving performance within

both wired and wireless scenarios.

1.2 Least Mean Squares Algorithm

One of the most popular and widely used adaptive filtering algorithms in both industry

and academia is the Least Mean Squares (LMS) algorithm, which has been applied to a

wide variety of applications such as equalisation, echo cancellation and adaptive

beamforming. The LMS algorithm has a computational complexity in the order of

MACs (Multiply-ACcumulates) which is substantially lower than variants of the RLS

(Recursive Least Squares) algorithm, which are typically in the order of MAC

operations in complexity. It also has desirable qualities in terms of fixed point

implementation. The hardware structure is highly regular and features numerically well

Transmitter Receiver

Distortive Channel

Channel Frequency Response Adaptive Equaliser Frequency Response
A

f

A

f

Figure 1.2: The Adaptive Equalisation Scenario

2N

N
2

10

conditioned multiplication and addition operations. This is in contrast to the more

complex LSE based class of algorithms which feature numerically ill-conditioned

operations such as square root, and hence exhibit a larger dynamic range (which translates

into higher hardware cost).

The LMS algorithm, given in [1.1], [1.2] and [1.3], aims to find the optimal set of filter

weights which shall minimise the MSE.

[1.1]

[1.2]

[1.3]

where is a constant commonly referred to as the step size, with bounds (for stable

convergence) defined in [1.4].

[1.4]

N is the order of the LMS filter, i.e. the number of coefficients, and E[] is the expectation

function.

An alternative bound on the step size is given by 1.5, where is the greatest

eigenvalue of the autocorrelation matrix . This shows that the convergence rate of the

LMS algorithm is sensitive to the eigenvalue spread of the input.

[1.5]

The LMS algorithm may be represented in either the real valued or complex valued form;

the inclusion of the complex valued algorithm is a necessity for many practical

applications, particularly in the context of communications systems, where the input data

is often in the complex form, e.g. channel equalisation where complex modulation

schemes are employed (Figure 1.3).

y k  w k x k =

e k  d k  y k –=

w k 1+  w k  2e k x k +=

2

0  1
N E x2 k  
----------------------------- 

max

R

0  2
max
----------- 
11

The complex LMS algorithm differs from the real valued LMS algorithm by the use of

complex arithmetic operations (Figure 1.4), and a single complex conjugate operation

which must be performed [1.6], [4].

[1.6]

where denotes the complex conjugate operation.

The hardware cost of the complex valued algorithm is significantly greater than that of the

real valued case, arising from the computational requirements of complex arithmetic.

Complex addition incurs double the cost of real valued addition, whereas complex

multiplication incurs a cost that is over four times that of the real valued case (four

multiplications, one addition and one subtraction are required).

LMS Algorithm
Complex

Dynamic
FIR Filter

Figure 1.3: Complex LMS Based Adaptive Equalisation of Quadrature Phase Shift
Keying Complex Modulation Scheme Input Data

A

t

x k 

d k 

y k 

Re e k  

+
+

–

w k 1+  w k  2e k x k +=



12

1.3 QRD- Recursive Least Squares Algorithm

The LMS algorithm uses the mean squared error as the performance criterion with which

to update the filter weights. Due to this approximation, the rate at which the error signal

converges towards steady state is limited. Where algorithm performance is at a premium,

and it is acceptable for higher cost, RLS algorithms may be considered due to the higher

rate of convergence.

Figure 1.4: Decomposition of Complex Arithmetic Operations to Individual Real
Arithmetic Operations: (a) Multiplication and (b) Addition

(a)

(b)

a ib+  c id+  ac bd–  j bc ad+ +=

a jb+  c jd+ + a c+  j b d+ +=

a

b

c

d

Imaginary

Real

Real

Imaginary

a
b

c
d

13

The cost function of the least squares solution is defined as the total sum of squared errors:

[1.7]

where is the error signal vector, representing the difference

between input and desired signal.

[1.8]

where is the desired signal vector, is the input data

matrix, and is the weight vector.

[1.9]

The equation is quadratic in , therefore performing partial differentation with respect to

 can be used to find the weight vector which minimizes the total squared error.

[1.10]

[1.11]

Rearranging the result in [1.11] gives the least squares solution for computing the weight

vector, [1.12].

[1.12]

The recursive least squares solution can be derived from [1.12]. The derivation will not

be presented here for brevity, however the reader is referred to [2] for a full proof. The

v k  ek
T
ek=

ek eo e1 e2 ek   =

v k  dk Xkw– T dk Xkw– =

dk d0 d1 d2 dk   = Xk
w

v k  dk
T
dk w

T
XkXkw 2dk

T
Xkw–+=

w

w wLS


w
-------v k  2Xk

T
Xkw 2Xk

T
dk– 2Xk

T
dk Xkw– –= =

Xk
T
XkwLS Xk

T
dk=

wLS Xk
T
Xk 

1–
Xk
T
dk=
14

(complex) RLS algorithm is presented in [1.13],[1.14], [1.15], [1.16].

[1.13]

[1.14]

[1.15]

[1.16]

where should be initialized to . is a small constant referred to as the

forgetting factor which de-emphasizes older samples. is the identity matrix. All other

parameters are initialized to 0. H represents the Hermitian transpose.

It is well known that the RLS algorithm suffers from numerical stability issues in the

presence of finite precision arithmetic. The requirement for division operations results in

high dynamic range requirements, leading to floating point arithmetic being preferred

over fixed point Very Large Scale Integration (VLSI) implementation. Studies have been

performed to quantify the numerical performance, [6], and modifications suggested [7].

QRD-RLS allows for RLS to be performed in a numerically stable fashion. Unlike the

conventional RLS algorithm, it also has forms which are well suited for VLSI

implementation.

The QR factorization takes an input matrix .and decomposes it into an upper triangular

matrix and orthogonal matrix , as shown in Figure 1.5.

 k  1

1 x k P k 1– x k H+ 
---=

g k  P k 1– x k H k =

w k  w k 1–  g k  d k  x k wT k 1– – +=

P k  P k 1–  g k g k H

 k 
--------------------------–=

P i 1–   I 
I

X

U R

0
= Q
15

Now, looking back at the least squares solution given by [1.12], we can substitute

 and simplify to reach the QR least squares solution, [1.21], where the k indes

is dropped for the sake of clarity:

[1.17]

[1.18]

[1.19]

[1.20]

[1.21]

Performing the QR decomposition is numerically robust in the presence of finite precision

arithmetic. Once the QR decomposition has been performed, the least squares solution

weight vector, , can be found via straightforward backsubstitution, (Figure 1.6).

Figure 1.5: QR Decomposition

x x x x x

x x x x x

x x x x x

x x x x x

x x x x x

q q q q q q

q q q q q q

q q q q q q

q q q q q q

q q q q q q

q q q q q q

r r r r

0 r r r

0 0 r r

0 0 0 r

0 0 0 0

0 0 0 0

X Q

= .

R

0

Xk QU=

QU T QU  wLS QU Td=

U
T
Q

T
QU wLS U

T
Q

T
d=

U
T
UwLS U

T
Q

T
d=

UwLS Q
T
d d= =

RwLS d=

wLS
16

1.4 FPGA Technology

FPGAs are a type of VLSI technology which offer a compromise between the

performance of Application Specific Integrated Circuit (ASIC) implementation and the

flexibility of DSP implementation. From a high level of abstraction, an FPGA can be

thought of as a collection of digital logic elements connected together by a complex

wiring matrix, as shown in Figure 1.7. Hardware designers program FPGAs via a high

level description of the digital circuit which is accepted by the FPGA synthesis tool. The

synthesis tool is able to translate the functional design of the circuit into a series of

interconnections on the FPGA.

Figure 1.6: A 5 Weight Example of a QR Least Squares Solution via
Backsubstitution

r11 r12 r13 r14 r15

0 r22 r23 r24 r25

0 0 r33 r34 r35

0 0 0 r44 r45

0 0 0 0 r55

w1

w2

w3

w4

w5

d1'

d2'

d3'

d4'

d5'

=.

w5

d5'

r55
--------= w4

d4' r45w5–

r44
-----------------------------= w3

d3' r35w5– r34w4–

r33
---=

w2

d2' r25w5– r24w4– r23w3–

r22
---=w1

d1' r15w5– r14w4– r13w3– r12w2–

r11
---=

R wLS d
17

In contrast to an ASIC implementation, FPGAs are programmed (and reprogrammed) by

the designer as required after manufacture. ASICs on the other hand are manufactured for

one specific purpose and are limited in terms of programmability after fabrication. ASIC

implementation will result in very high performance for a given application, both in terms

of power consumption and throughput. However, ASIC implementations are extremely

costly, and are therefore prohibitively expensive for all but the most high volume market

areas. FPGA implementation is therefore attractive for designers who require high

throughput, low power, designs but cannot absorb the prohibitive costs associated with

ASIC design.

DSP/GPUs also offer an implementation platform which can be repeatedly programmed

Figure 1.7: FPGA Technology: A Complex Circuit is Formed from the
Interconnection of Low Level Operations

DSP
Slice

DSP
Slice

DSP
Slice

DSP
Slice

DSP
Slice

DSP
Slice

DSP
Slice

DSP
Slice

BRAM

BRAM

BRAM

BRAM

BRAM

BRAM

Logic
Slice

Logic
Slice

Logic
Slice

Logic
Slice

Logic
Slice

Logic
Slice

Logic
Slice

Logic
Slice
18

“in the field”. However, such devices are general purpose for many applications, and as

such there is a performance hit from the associated generality of the hardware. The

memory access associated with performing parallel DSP algorithms on a device which is

inherently sequential is one such source of performance degradation. Figure 1.8 illustrates

this concept. The FIR implementation on DSP platform suffers a performance hit

associated with repeated memory access. The FPGA implementation unrolls the

algorithm onto parallel hardware allowing the memory access to be performed in place.

While FPGA implementation features the aforementioned advantages, such devices are

not straightforward to program for non hardware orientated engineers. In contrast to

implementation on floating point DSP, FPGAs in general will support only fixed point,

integer arithmetic. It is therefore up to the designer to track the binary point appropriately

when performing arithmetic operations. FPGAs must be programmed via code written in

Figure 1.8: Implementation Mapping of a Parallel FIR Filter: (a) Sequential DSP
Implementation; (b) Parallel Unrolled FPGA Implementation

Common

Shared

Memory

N Clock Cycles Latency

z 1–

z 1–

z 1–

(a) (b)
19

a Hardware Description Language (HDL). Such a language captures the parallelism of

operations explicitly in the code and is therefore quite a departure from development in

C/C++, for example.

The so called “design-gap” when programming FPGAs due to the unfamiliarity of many

embedded firmware engineers with hardware-specific concepts is one of the primary

blocking factors for more widespread FPGA adoption. In light of this, many FPGA

vendors offer high level IP cores in order to abstract complex DSP algorithms into an easy

to use package, for which the user only has to configure a few parameters. High level

solutions such as this are often referred to as “compilers”, as the scenario is analogous of

the compilation of high level functional code into low level assembly language.

1.5 Aims and Objectives

In this project, we seek to close the design gap associated with the FPGA implementation

of the LMS adaptive filtering algorithm. A high level compiler is detailed which allows

for many implementation styles to be rapidly prototyped. The user is able to make high

level design trade-offs such as hardware cost against throughput, via configuration of a

small number of high level parameters. A detailed account of the results obtained after

synthesizing many different circuits for the LMS algorithm is presented. This forms the

first part of the thesis.

The work carried out on the Adaptive LMS Compiler began during the course of the BEng

(Hons) final year project (University of Strathclyde, 2011). At the end of this period, fully

parallel and fully serial architectures for LMS supporting either real valued or complex

valued arithmetic were supported. During the course of the MPhil, this was extended to a

parallel-serial architecture, and NLMS support was added. The complete compiler

therefore consists of:

• Real or complex valued arithmetic processing.

• LMS or NLMS algorithm.

• Parallel, serial or partly-serial architecture.

In addition to the non-trivial extension of the LMS architecture to support parallel-serial
20

processing, it was during the MPhil programme that the extensive numerical verification

and hardware implementation study was carried out. This study represents a large body of

results from which analysis is drawn.

The thesis also presents a detailed survey of QRD-RLS implementation from the FPGA

design perspective. Discussion is given on the various architectural design optimizations

which can be made in order to form an effective, fixed point implementation. This forms

the second part of the thesis.

1.6 Project Outline

As previously noted, the project is divided into two separate but related parts. Firstly,

practical work is carried out in the design of an “Adaptive LMS Compiler”, suitable for

automating the generation of RTL for LMS based adaptive filtering. Secondly, a detailed

survey is given of the QRD-RLS algorithm, which is well known to be suitable for VLSI

implementation. The two parts combined form a comprehensive report of the VLSI

implementation of adaptive filters.

In Part 1 (pp 19-75) of the thesis, the different hardware architectures used to achieve the

various implementation options of the Adaptive LMS Compiler are detailed. Results of

an extensive numerical performance analysis are given in order to validate the correct op-

eration of the compiler. Finally, FPGA implementation results are provided and evaluat-

ed.

Following the design of the Adaptive LMS Compiler, a survey of the implementation of

QRD-RLS adaptive filters was carried out, with particular focus on the Givens based sys-

tolic array architecture. This forms Part 2 of the thesis (pp 75- 113).

The two parts of the thesis are brought together in the Conclusion, (pp 114-117), where

common topics between both LMS and QRD-RLS implementation are defined. Potential

future improvements and gaps in the current literature are also defined.
21

Part 1: Adaptive LMS Compiler

In the first part of this report, the work carried out on the creation of an Adaptive LMS

Compiler is detailed. Chapter 2 gives an overview of the various hardware architecture

designs for fully parallel, fully serial and parallel-serial LMS/NLMS architectures for

both real and complex valued arithmetic. The results of a numerical performance analysis

carried out to validate the correct operation of the compiler are given in Chapter 3. Finally,

Chapter 4 presents detailed results of FPGA hardware implementation, investigating

metrics such as slice register utilization, LUT utilization, DSP48 utilization, and

maximum achievable sampling frequency of input data.
22

2 Hardware Architecture Overview
The Adaptive LMS Compiler offers the user the option of both the standard LMS

algorithm and the NLMS algorithm in both the real valued and complex valued form.

Three distinct filter architectures - fully parallel, fully serial and a flexible parallel - serial

architecture are available for each algorithm, allowing for an effective trade off to be

made between the hardware cost and throughput (maximum achievable sampling

frequency) of the design.

In this section, a brief overview of each architecture (parallel, serial, parallel - serial) is

given - where the operation of the control hardware needed in order to implement varying

degrees of serialisation is discussed. Further information is also given on the hardware

implementation of the NMLS based adaptive filter. For the sake of clarity, the discussion

is restricted to real valued arithmetic. Before delving further into the details of the

architectures however, an introduction to some commonly used FPGA design

terminology is provided.

2.1 FPGA Design Introduction

In this section, an overview of the fundamental FPGA design terminology is provided. An

important concept to begin with is that of the critical path. When designing for hardware,

the maximum rate at which the device can be clocked is limited by the maximum

combinatorial path between any two registers in the design. This concept is illustrated in

Figure 2.1.
23

In order to increase the clock frequency, thereby increasing the overall throughput of

samples from the input to the output of the circuit, a technique known as pipelining is

employed. Pipelining consists of inserting registers throughout the combinatorial logic,

thereby reducing the critical path between two registers, as shown in Figure 2.2.

Figure 2.1: FPGA Design: Critical Path Defined as the Maximum Combinatorial
Path Between Two Registers

z 1–

z 1–

z 1–

Combinatorial

Element

Critical Path
24

Another key concept of FPGA design is that of parallelization. When designing for

custom hardware, the designer has complete control over the hardware resources used in

the architecture. For the example of an FIR filter - in fully parallel mode, a separate

hardware MAC unit is used for each cofficient; in fully serial mode a single MAC unit is

used to compute all coefficients; and in parallel-serial mode there are several MAC units

each computing the result of a number of coefficients. A general design goal is to

implement the architecture using as few resources as possible whilst still being able to

keep pace with the incoming data.

The following sections describe the hardware architecture for the Adaptive LMS

Compiler. The compiler allows the user to have full control over the hardware resources

used to implement a filter of given order.

2.2 The Fully Parallel LMS Filter

The most straightforward manner by which the LMS algorithm may be mapped into

hardware is that of a fully parallel architecture (Figure 2.3). In this implementation, two

Multiply ACcumulate (MAC) components are required for each coefficient of the filter,

Figure 2.2: Critical Path Reduction via Pipeline Optimization

z 1–

z 1–

z 1–

z 1–

z 1–
Critical Path

Combinatorial

Element
25

and hence the total MAC cost is given by the linear relationship, , where

M is the total number of coefficients to be computed in the LMS filter.

Although the fully parallel architecture has the highest hardware cost of the various

architectures, the advantage of this approach lies in the relationship between the

maximum clock frequency and the maximum sampling frequency, given by

, which allows the fully parallel design to accommodate the highest

throughput of any of the implemented architectures.

2.3 The Fully Serial LMS Filter

In order to allow for a scalable implementation to be realised, the LMS filter may be

serialised, whereby a single MAC unit (which when combined with appropriate control

logic is referred to as a Processor Core (PC)) is time-shared in order to calculate the results

of several coefficients, hence greatly reducing the hardware cost.

To achieve full serialisation, it is necessary to operate the processor core at a faster rate

MACs 2N=

fclk fsampling=

Figure 2.3: The Fully Parallel LMS Filter Architecture: N=4

2

x k 

e k 

y k 
d k 

z 1– z 1– z 1–

z 1–

x k 

z 1– z 1– z 1–

z 1– z 1–
z 1–

w 1  w 2  w 3 w 0 
26

than the input data, and hence the sampling frequency of the input data is constrained by

an integer factor, [2.1].

[2.1]

where N is the number of coefficients computed by the serialised processor core,

PIPELINE is an integer delay incurred by pipeline optimisation (architecture and

parameter dependent) and is the maximum clock rate of the FPGA - which the

processing elements of the design operate at.

Figure 2.2 provides an overview of the fully serial architecture. The Processor Core (PC)

is the main computational unit of the design, and computes both the filter output and the

updated weight values. The Error Signal / Weight Update, (ES/WU), logic is used to

capture the appropriate sample of accumulated filter output from the PC, and to then

compute the error signal and the resulting value needed for the weight update

operation, . Both the PC and the ES/WU logic contain a single MAC component

- the multiplier present in each of these components will be a large contributor towards

the critical path in terms of propagation delay and so both of these multipliers are

pipelined, incurring a delay of two clock cycles in each multiplication, (a delay of three

clock cycles is incurred for the case of complex valued arithmetic).

Also present in the design is an Input Control (IC) unit - this component controls the input

data samples that are passed to the PC, and takes into account the pipeline delay of

both the multiplier present in the PC and that present in the ES/WU logic. This is achieved

via a combination of a Finite State Machine (FSM), a counter and an Addressable Shift

Register (ASR).

fsampling

fclk

2N  PIPELINE+
---=

fclk

y k 

e k 

2e k 

x k 
27

Figure 2.5 gives a closer look at the internal operation of the Processor Core. The PC

consists of a single MAC component which is time shared via a 2:1 multiplexer for both

the filtering operation and the weight update operation. A set of internal shift registers

ensure that the weight values for both the filter section and the weight update section are

appropriately stored between iterations.

Processor Core

2e k 
Error Signal /

Figure 2.4: The Fully Serial LMS Filter Architecture

x k y k 

x k 

d k 

e k  y k 
z

1–
z

1–
z

1–

PC Internal View

z
1–

z
1–

z
1– Weight Update

Input Control

z
1–

Signal
28

The PC must receive the correct samples of input data at the appropriate sample

instants in order for the numerical integrity of the algorithm to be maintained. To achieve

this, a State Machine Counter (SMC) (i.e a combination of an FSM and a counter) and

ASR component are combined to form the Input Control component (Figure 2.4). The

ASR allows for samples to be read out using integer addressing values which correspond

to internal locations in the memory array. A write operation is performed automatically

once every sample period, where a new value of is accepted on the input port and

the current oldest value of is sent to the output port. The SMC performs the

addressing operation to the ASR, taking into account the pipeline delay incurred by each

of the multipliers.

z
1–

z
1–

z
1–

PC Internal View

z
1–

z
1–

z
1– Store ‘New’ Weight Values

for Filter Section.

Store ‘Old’ Weight Values
for Weight Update
 Section.

X X_CONJ 2e k 

Figure 2.5: A Closer Look at the Processor Core

z
1–

x k 

x k 

x k 
29

An overview of the sample by sample output from the SMC is given in Figure 2.7. Where

zeros are present, this indicates that the state machine is taking into account the pipeline

stages of the architecture.

Figure 2.6: Operation of the Input Control Component

Address
Sequence

Pipeline

Period 1

01230000012300...

x k 

Read Address

Input

Read Output

ASR

SMC

Address

Output

Pipeline

Period 2

Input Control

x k N– 
30

2.4 The Parallel-Serial LMS Filter

The flexibility that serialisation brings to the design may be extended further with the

development of a parallel-serial type architecture. The parallel-serial LMS filter uses a

parallel array of PCs, each of which serially computes the results of several coefficients.

Like the fully serial architecture, the parallel-serial architecture is deeply pipelined to

ensure that the critical path is minimised and hence that the achievable clock frequency is

maximised.

The parallel-serial architecture allows for a trade off to be reached between the hardware

cost and throughput requirements of the design. As evidenced by [2.2], the hardware cost

(number of PC components) may be traded against the number of coefficients computed

Figure 2.7: Operation of the State Machine Counter

0 1 2 3 0 0

Delay of Pipelined Multiplier:
Processor Core Delay of Pipelined Multiplier:

MU_GENERATOR Component

Delay of Pipelined Multiplier:
Processor Core Weight Update

Operation

N Data
Operations

0 1 2 30 0 0 0

N Data
Operations

Filtering Operation

Address Sequence Pipeline Period 1 Address Sequence Pipeline Period 2
31

per PC.

[2.2]

where N is the total number of coefficients computed in the LMS filter, PC is the total

number of Processor Core components employed in the parallel-serial design and

 is the overhead incurred due to pipeline optimisation (architecture and

parameter dependent).

Note that the sampling frequency calculation may also be expressed in the alternate form

given by [2.3].

[2.3]

where is the number of coefficients computed per PC.

An overview of the parallel serial LMS architecture is given in Figure 2.9. The original

single ASR of length N featured in the fully serial architecture is partitioned into several

ASRs of length , referring to the number of coefficients computed per PC. Each is

connected in a linear row, such that at each sample period, the output of the previous ASR

serves as the input to the next ASR. The SMC component performs the same role as was

the case for the fully serial filter, providing the correct addressing signal for each of the

ASR components at the appropriate sampling instants.

As each PC computes only a partial sum of the overall filter output, it is necessary for a

parallel addition of each of the PC outputs to be performed. To achieve this, an adder tree

type structure is used (as opposed to a linear summation). The adder tree architecture has

a lower critical path than the standard linear summation type architecture, and therefore

the PIPELINE overhead is reduced. This is illustrated in Figure 2.8, where the adder tree

architecture has a critical path of three adders, compared to the critical path of eight adders

for the linear summation architecture.

fsampling

fclk PC

2N PIPELINE
--=

PIPELINE

fsampling

fclk

2 NPC PIPELINE+
---=

NPC

NPC
32

Following the tree summation stage, an accumulator component is present - this is

necessary due to the serial nature of the design. Recall that at each iteration, each PC will

compute the result of only a single coefficient, and hence the PC summation from the

adder tree must be accumulated over N iterations until the overall filter output is

computed. After N iterations have passed, then the output of the accumulator is saved via

the CAPTURE REGISTER - this forms the output signal which is held constant

over the sample period duration. The signal is used in conjunction with the input

signal in order to form the error signal and subsequently, the signal

needed for the weight update operation.

It should be noted that the weight update operation is contained within the PCs and

Figure 2.8: Adder Tree (a) vs Linear Summation (b)Architectures

x0
x1

x2 x3
x4 x5 x6 x7

x0 x1 x2 x3 x4 x5 x6 x7

(a)

(b)

y k 

y k 

d k  e k  2e k 
33

follows the same process as was described for the fully serial case.

The sample by sample operation of the parallel-serial LMS filter design is summarised in

Figure 2.10, for the case of a 16 coefficient filter comprising 4 PCs computing 4

coefficients each. In order to be concise, the diagram does not take into account the

Accumulator

Capture
Register

e k 

Figure 2.9: The Parallel - Serial LMS Filter Architecture: 4 PCs Computing 4
Coefficients, Forming a 16 Coefficient Filter in Total

Processor

Core

Processor

Core

Processor

Core

Processor

Core

z 1– z 1– z 1– z 1– z 1– z 1– z 1– z 1– z 1– z 1– z 1– z 1– z 1– z 1– z 1– z 1–

z 1–

x k 

d k 

y k 

SMC

Pipelined Tree Summation

ASRs

z 1–
z 1–

z 1–

Error Signal /
 Weight Update
 Signal 2e k 
34

pipeline stages of the design.

Processor

Core

Processor

Core

Processor

Core

Processor

Core

Filter Section Weight Update Section

Capture
Register

z 1–

Calculate

filter

output of

weight 1

Calculate

filter

output of

weight 5

Calculate

filter

output of

weight 9

Calculate

filter

output of

weight 13

Sum

weights

1, 5, 9, 13

and save

Hold

current

value

Calculate

filter

output of

weight 2

Calculate

filter

output of

weight 6

Calculate

filter

output of

weight 10

Calculate

filter

output of

weight 14

Sum

weights

2, 6, 10, 14

to

previous

result

Calculate

filter

output of

weight 3

Calculate

filter

output of

weight 7

Calculate

filter

output of

weight 11

Calculate

filter

output of

weight 15

Sum

weights

3, 7, 11, 15

to

previous

result

Calculate

filter

output of

weight 4

Calculate

filter

output of

weight 8

Calculate

filter

output of

weight 12

Calculate

filter

output of

weight 16

Sum

weights

4, 8, 12, 16

to

previous

result

Calculate

updated

value for

weight 1

Calculate

updated

value for

weight 5

Calculate

updated

value for

weight 9

Calculate

updated

value for

weight 13

Reset

state

Calculate

updated

value for

weight 2

Calculate

updated

value for

weight 6

Calculate

updated

value for

weight 10

Calculate

updated

value for

weight 14

Reset

state

Calculate

updated

value for

weight 3

Calculate

updated

value for

weight 7

Calculate

updated

value for

weight 11

Calculate

updated

value for

weight 15

Reset

state

Calculate

updated

value for

weight 4

Calculate

updated

value for

weight 8

Calculate

updated

value for

weight 12

Calculate

updated

value for

weight 16

Reset

state

Adder Tree

1-4

5-8

9-12

13-16

Hold

current

value

Hold

current

value

Save

current

input

Hold

current

value

Hold

current

value

Hold

current

value

Hold

current

value

Accumulator

Figure 2.10: Detailed View of the Parallel - Serial LMS Filter Operation: 4 PCs
Computing 4 Coefficients Each

fsampling

fclk
35

2.5 The Normalised LMS Filter and Smith’s Algorithm

The Adaptive LMS Compiler also features support for the Normalised LMS (NLMS)

algorithm, with a choice of either parallel, serial or parallel-serial architecture and real or

complex valued arithmetic. NLMS is perhaps the most popular variant of the LMS

algorithm. It solves the practical problem of choosing a step size value which guarantees

convergence, regardless of the changing properties of the input data.

As previously discussed, the step size bounds of the conventional LMS algorithm are

given by [2.4].

[2.4]

where N is the tap length of the LMS filter and is the expectation function

performed upon the input data samples.

From this straightforward relationship, it is observed that in order to guarantee

convergence using the LMS algorithm, prior knowledge of both (a) the filter length and

(b) the magnitude values of the input data samples must be known. While (a) is user

controlled, it is obvious that (b) can not be controlled in practical situations.

The NLMS algorithm guarantees convergence, provided that the normalised step size is

bounded by . The signal flow graph of the NLMS architecture is given in

Figure 2.11, where the algorithm has been implemented in a parallel-serial type

architecture.

The NLMS algorithm is summarised by [2.5], [2.6] and [2.7], in the complex form. The

real valued equivalent is obtained by substituting the Hermitian operations for transpose

operations and by removing the conjugation operations.

[2.5]

 1
N E x2 k  
------------------------------ 2

MAX

------------ 

E x2 k  

0  1 

y k  wH k x k =
36

[2.6]

[2.7]

where is used to denote the Hermitian transpose (i.e the conjugate transpose) and

is used to denote the complex conjugate.

The hardware realisation of the NLMS algorithm in the parallel-serial form is given by

Figure 2.11.

e k  d k  wH k x k –=

w k 1+  w k  
xH k x k 
------------------------x k e k +=

H 
37

Figure 2.11: Parallel - Serial Implementation of the NLMS Algorithm

Accumulator

2e k 

Processor

Core

Processor

Core

Processor

Core

Processor

Core

Pipelined Tree Summation

z 1– z 1– z 1– z 1– z 1– z 1– z 1– z 1– z 1– z 1– z 1– z 1– z 1– z 1– z 1– z 1–

Capture
Register

d k 

e k y k 

x k 

Capture
RegisterAccumulator

z 1–

z 1– 2

z 1– z 1–

z 1–

z 1–

z 1–

z 1–z 1– z 1–z 1–

z 1– z 1–

z 1–

z 1–

z 1–
38

A key point regarding the NLMS algorithm is the requirement for not only multiply and

add operations, but also for the operation of division. Fixed point division is well known

to be numerically ill-conditioned, producing both very small and very large numbers, and

hence requiring a very large dynamic range in order for accurate numerical representation

to be achieved. If the requirement is not met, then there is the risk of overflow occurring,

inducing severe numerical error. This is perhaps even more of an issue for feedback

algorithms such as LMS, where the past values will influence the accuracy of future

values.

The issue of dynamic range requirements arising from numerical ill conditioning in fixed

point implementation is often met with one of two different solutions:

• Increase the dynamic range of the hardware by selecting a larger number of integer
and fractional bits, and hence selecting a larger overall wordlength.

• Manipulate the algorithm/arithmetic operations further such that the numerically ill
conditioned operation is either removed, or performed in a manner which has good
numerical properties.

The first solution is perhaps obvious, however the issue is that the cost of the hardware

implementation is somewhat linked to the wordlength that is specified. For this reason,

the second solution is employed. For the case of real valued arithmetic, it is not possible

to manipulate the algorithm in such a manner that this can be achieved, however as shall

be explained, it is only for the case of complex valued arithmetic that the issue of

numerical ill - conditioning is a particular problem.

Consider the conventional “pen and paper” formula for complex division, arising from

rudimentary algebra, [2.8].

[2.8]

With reference to [2.7], consider the denominator of the complex division operation,

. Due to the use of Hermitian operations, it is possible to reduce the complex

z a jb+
c jd+
e jf+
-------------- ce df+

e
2

f
2

+
----------------- j

de cf–

e
2

f
2

+
----------------+= = =

xH k x k 
39

multiplication to a simpler form:

[2.9]

noting that and , we then obtain:

[2.10]

As is achieved via the sum of individual samples used within each

tap of the NLMS filter (see Fig.2.11), the value at the output of the summation will rise

as the number of taps of the NLMS filter increases. Hence a greater number of integer bits

will be required with an increasing number of taps in the NLMS filter.

In addition to the formula presented in [2.8] for performing complex division, there also

exists a method of computation known as Smith’s algorithm, [8]. In this method, either

 or is extracted from the denominator, resulting in an algorithm which does not

require or to be calculated. By extracting from the denominator, the complex

division can be rewritten in the form given by [2.11].

[2.11]

From a first glance, it might appear that Smith’s algorithm has an increased computational

complexity. However, by performing appropriate manipulation of the algorithm, an

implementation can be achieved which requires fewer dedicated arithmetic components

than the original technique.

Firstly, it can be noted that in the separate formulae given in parenthesis in [2.11], the

arithmetic operations remain constant, only the values passed to each operation change.

xH k x k  a jb+  c jd–  a2 jbc jad– b2
+ += =

a c= b d–=

xH k x k  a jb+  c jd–  a2 b2
+= =

xH k x k  x k 2

e e f f

e
2

f
2 e e

z a jb+

c d f e +
e f f e +
------------------------- j

d c f e –
e f f e +
------------------------- c d +

c d f e +
e f f e +
------------------------- j

d c f e –
e f f e +
------------------------- c d +









= =
40

Hence, the equation may be re-written in a more general form, [2.12].

[2.12]

A 2:1 multiplexer can be applied to each of the generic variables given in [2.12], where

the SELECT signal is controlled by a logical test to determine whether or

. The values which each variable should take with respect to the SELECT signal

are listed in Table 2.11.

From Table 2.11, it is apparent that there is a degree of commonality between the values

which each variable should take in each case. In fact, the number of variables can be

reduced to four, (as opposed to the sixteen listed), as illustrated in Table 2.

Variable SELECT=0 SELECT=1

ADD1 c d

MULT1 d c

DIV1 f e

DIV2 e f

SUBTRACT1 d c

MULT2 c d

DIV3 f e

DIV4 e f

ADD2 e f

MULT3 f e

DIV5 f e

DIV6 e f

ADD3 e f

MULT4 f e

DIV7 f e

DIV8 e f

Table 1:List of Variables Against SELECT Input

z a jb+
add1 mult1 div1  div2  +
add2 mult3 div5  div6  +
-- j

subtract1 m– ult2 div3  div4  
add3 mult4 div7  div8  +

---+= =

c d

c d
41

The previously given equation for Smith’s algorithm may then be rewritten as a result of

the commonality identified in the algorithm, [2.13].

[2.13]

By writing the equation in this form, we can note further commonality in the arithmetic

operations performed, allowing for the complex division operation to be performed using

3 divides, 3 multiplications, 3 additions, four 2:1 multiplexers and a low cost logic test,

(Figure 2.12). This is of lower cost than the original algorithm, (which requires 6

multiplications, 3 additions and two divides). Hence, the resulting implementation has

better numerical properties than the original calculation, and can be implemented at a

lower hardware cost.

Variable SELECT = 0 SELECT =1

V1 c d

V2 d c

V3 f e

V4 e f

Table 2: Revised Values Passed in Smith’s Algorithm Multiplexer Arrangement

z a jb+
V1 V2 V3  V4  +
V4 V3 V3  V4  +
--- j

V2 V1 V3  V4  +
V4 V3 V3  V4  +
---+= =
42

2.6 Sample Rate and Hardware Cost Trade Off

In each of the various LMS architectures, there is a fundamental trade off to be made

between the achievable sample rate of the design, and the hardware cost. As the folding

factor (i.e. the degree of serialisation) is increased, then the work which must be carried

out by the hardware is increased, and so the sampling rate must be decreased with respect

to the maximum clock rate, in order to allow the serialised hardware a sufficient number

of clock cycles to compute the overall result.

Although the sample rate restrictions have been highlighted in previous sections, they

Figure 2.12: Hardware Resulting from Implementation of Smith’s Algorithm

SELECT
LOGIC

V1

V2

V3

V4

c
d

d
c

f
e

e
f

Re(z)

Im(z)
43

have not been given a comprehensive study. In this section, the corresponding sample rate

equation for each of the various architectures is given definitively.

In the fully parallel case, for both the LMS and NLMS algorithms (real valued and

complex valued), there is no serialisation imparted on the design, and hence the sample

rate of the input data can match the rate at which each element of the LMS architecture is

clocked at, [2.14].

[2.14]

For the case of the fully serial LMS/NLMS filter architecture, the number of clock cycles

taken to compute the result is a function of the number of coefficients employed in the

design, which is multiplied by two seeing as a single PC component is employed for both

the filtering and weight update operation. A fixed overhead is added due to the pipelining

employed in the design, giving the sample rate equation for the fully serial LMS/NLMS

algorithm [2.15].

[2.15]

For the case of the complex valued LMS/NLMS algorithm, complex valued multipliers

mean that an extra pipeline delay is incurred of three clock cycles, giving the sample rate

equations for the fully serial complex LMS/NLMS algorithm by [2.16].

[2.16]

When the parallel-serial design is considered, then there is a further clock cycle overhead

incurred, due to the pipelined adder tree type structure used to compute the sum of the

output of the individual serialised PC units. Hence, the sample rate equation for the real

valued parallel-serial LMS/NLMS algorithm is given by [2.17], while the sample rate

equation for the complex valued parallel-serial LMS/NLMS algorithm is given by [2.18].

[2.17]

where ceil() is the ceiling function (rounding up to the nearest integer) and log2 represents

fsampling fclk=

fsampling fclk 2.N  6+=

fsampling fclk 2.N  9+=

fsampling fclk 2.N  ceil 2 PC log  6+ +=
44

the base two logarithm.

[2.18]fsampling fclk 2.N  ceil 2 PC log  9+ +=
45

3 Numerical Performance Analysis
The compiler has been tested for the numerical accuracy of the results, in order to ensure

that the hardware implementation of the design matches the original algorithm given in

the literature. To achieve this, the fixed point Adaptive LMS Compiler has been tested

against a floating point “Golden Reference” design featured in The MathWorks Simulink

tool. Results are given for several different parameter options of the Adaptive LMS

Compiler which confirm the correct operation of the implementation.

The “Golden Reference” used is the LMS Filter block found in the DSP System Toolbox

blockset. In order to compare the results within Simulink, a Xilinx System Generator

“Black Box” block is used, which allows the user to simulate custom HDL within

Simulink by invoking Mentor Graphics Modelsim cosimulation.

For each test scenario, a Mean Squared Error (MSE) performance analysis has been

carried out. In such an analysis, several simulations of different random input data are

carried out, where the parameters of the LMS IP core are fixed. The sample by sample

error is squared, and then the mean is taken of each sample point using the data obtained

from different simulations. The figures display both the MSE results, and the fixed and

floating point samples overlayed upon one another. For each filter architecture, results are

given for both the case of a 20 coefficient filter and that of a 50 coefficient filter, in order

to give a greater confidence in the validity of the results.

[3.1]

where:

MSE E efp efxp– 2 =
46

 = floating point error signal.

 = fixed point error signal.

3.1 Real Valued Arithmetic Serial LMS Filter Results

Figure 3.1 and Figure 3.2 show the numerical simulation results for the case of a 20

coefficient filter and a 50 coefficient filter. It can be observed that as the relative

magnitude of the error signal decreases, there is a closer match between the results from

the fixed point adaptive filter compiler and the floating point golden reference. This can

be explained due to rounding/saturation noise in the fixed point implementation causing

slightly different results to appear. The small error between the fixed point Adaptive LMS

Compiler and the floating point golden reference confirms the correct operation of the

generated HDL.

efp

efxp
47

0 200 400 600 800 1000
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Sample (k)

M
ea

n
S

qu
ar

ed
 E

rr
or

 (
A

ve
ra

ge
d

O
ve

r
5

S
im

ul
at

io
ns

)

MSE Analysis: 20 Coefficient Real Valued Serial LMS

0 200 400 600 800 1000 1200
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Sample (k)

E
rr

or
 M

ag
ni

tu
de

Error Signal: 20 Coefficient Real Valued Serial LMS

Floating Point
Fixed Point

Figure 3.1: Test Case 1: 20 Coefficient Real Valued Serial LMS
48

The results for the remaining architectures all follow a similar trend. For the purpose of

completeness, these results are contained in Section 13: Appendix A.

0 200 400 600 800 1000
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Sample (k)

M
ea

n
S

qu
ar

e
E

rr
or

 (
A

ve
ra

ge
d

O
ve

r
5

S
im

ul
at

io
ns

MSE Analysis: 50 Coefficient Real Valued Serial LMS

0 200 400 600 800 1000 1200
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Sample (k)

E
rr

or
 M

ag
ni

tu
de

Error Signal: 50 Coefficient Real Valued Serial LMS

Floating Point
Fixed Point

Figure 3.2: Test Case 2: 50 Coefficient Real Valued Serial LMS
49

4 Hardware Implementation Results
In this section, results from the implementation of the Adaptive LMS Compiler using the

Xilinx ISE synthesis and implementation tool are given. A Xilinx Virtex 6 XCV0605

FPGA is targeted in all cases. The results show the relative trade-offs which can be made

when using each of the various architectures. For readers unfamiliar with the various

resources targeted on Xilinx FPGAs or FPGAs in general, a short introductory section is

presented prior to the results.

4.1 FPGA Technology Mapping

When targeting an HDL design to an FPGA, there are several metrics which can be used

to evaluate the overall performance and cost of the design. Firstly, it is common to

evaluate the overall performance of the design via the maximum critical path. Taking the

reciprocal of this value allows the hardware engineer to work out a value (within

tolerance) for the maximum achievable clock frequency of the design.

It is important to realise however that this is not necessarily the same as the maximum

sampling frequency of the incoming data. If parts of the design are serialized, then this

will limit the sampling frequency at the input. The design will require several clock cycles

in order to compute a single sample, therefore a reduction by an integer factor is

introduced. All of the results in this section are therefore presented in terms of sampling

frequency, although the reader can use the formulae presented in Section 2.6 to compute

the given clock frequency.

The Adaptive LMS Compiler allows the user to impart varying degrees of serialization on

the design, which allows for trade offs to be made between the resources utilized on the
50

device and the overall sampling frequency. There are several resources in question which

can be examined.

In the following analysis, three basic units are examined - LUT utilization, DSP48

utilization and slice register utilization. The LUT is a basic building block of the FPGA

fabric. Any digital function can be represented by the interconnection of LUTS. By

investigating how the LUT cost increases or decreases for given configurations of the

LMS compiler, it is possible to evaluate the cost of the control logic used to determine

how data is passed around the filter architecture.

In order to investigate the hardware cost in terms of multiply-add operations, the DSP48

utilization can be investigated. DSP48s are high speed multiply-add resources present on

Xilinx FPGA for the purpose of performing high speed arithmetic operations. Targeting

these resources is critical to achieving a high speed, low power design. Such devices are

however, limited in number on the FPGA. By configuring the various serialization

options on the Adaptive LMS Compiler, it is possible to time-share a single DSP48

between multiple coefficients of the design. Examining the actual implementation results

verifies that this is the case.

The final basic hardware resource under investigation is the slice register utilization. Slice

registers are small memory elements which can be interconnected to form shift registers.

For designs where some parts of the architecture are serialized, data needs to be held for

several clock cycles. It is therefore important to investigate the slice register utilization in

order to quantify the cost associated with serialization.

4.2 Real Valued Arithmetic Results

4.2.1 Sampling Frequency Results

Firstly, the sampling frequency achieved under varying degrees of serialization is

quantified. As expected, the highest possible sampling frequency rates are achieved under

fully parallel operation. The parallel-serial architecture allows trade-offs to be made

between the overall number of PCs and the coefficients per PC, therefore there is a degree

of variation in the results that can be obtained. It can be observed that for the fully serial
51

architecture, the sampling frequency continuously decreases as the number of coefficients

is increased, due to the increasing number of clock cycles required to compute a single

output sample. In the parallel-serial case, we can observe that the sampling frequency is

relatively constant with increasing PC, but decreases as more coefficients are computed

per core.

It is interesting to note that the sampling frequency results obtained from the NLMS

configuration are in general lower than those obtained from the LMS configuration. The

NLMS architecture features division operations which incur a high critical path, therefore

limiting the maximum sampling frequencies which can be obtained.

Figure 4.1: Sampling Frequency Results of Real Valued Parallel - Serial LMS
Architecture
52

Figure 4.2: Sampling Frequency Results of Real Valued Parallel - Serial NLMS
Architecture

Figure 4.3: Sampling Frequency Results of Real Valued Parallel and Serial LMS
Architectures
53

4.2.2 DSP48 Utilization

As previously noted, examining the DSP48 utilization allows the correct operation of the

Adaptive LMS Compiler to be verified. For the parallel-serial architecture, the multipliers

are time-shared and therefore there should be a constant DSP48 cost when the number of

PCs is fixed at a set value. This is observed in Figure 4.7 and Figure 4.8, which show a

linear increase in DSP48S with increasing PCs. It is also observed that for the parallel

filter architecture, there is a linear increase of DSP48 utilization as the number of

coefficients increases.

Figure 4.4: Sampling Frequency Results of Real Valued Parallel and Serial NLMS
Architectures
54

Figure 4.5: DSP48 Utilisation of Real Valued Parallel LMS Architecture

Figure 4.6: DSP48 Utilisation of Real Valued Parallel NLMS Architecture
55

Figure 4.7: DSP48 Utilisation of Real Valued Parallel - Serial LMS Architecture

Figure 4.8: DSP48 Utilisation of Real Valued Parallel - Serial NLMS Architecture
56

4.2.3 LUT Utilization

As LUTS are general purpose logic elements used in all the architectures for various

functions, the cost scales up with increasing number of overall coefficients. The LUT cost

is far greater in the NLMS architecture when compared to the LMS architecture due to the

complex division logic.

Figure 4.9: LUT Utilisation of Real Valued Parallel and Serial LMS Architectures
57

Figure 4.10: LUT Utilisation of Real Valued Parallel and Serial NLMS Architectures

Figure 4.11: LUT Utilisation of Real Valued Parallel - Serial LMS Architecture
58

4.2.4 Slice Register Utilization

The slice register utilization increases across all the architectures with an increasing

number of coefficients, however it is of particular interest to note this resource cost for the

serial and parallel-serial arhitectures. For these architectures, extra registers are required

to store samples between computation. It is interesting to observe that the fully serial

architecture is actually more costly to implement than the fully parallel architecture up to

around 20 coefficients. This is due to the fixed overhead of pipeline registers which are

inserted into the serial datapath to minimize the critical path.

Figure 4.12: LUT Utilisation of Real Valued Parallel - Serial NLMS Architecture
59

Figure 4.13: Slice Register Utilisation of Real Valued Parallel and Serial LMS
Architectures

Figure 4.14: Slice Register Utilisation of Real Valued Parallel and Serial NLMS
Architectures
60

Figure 4.15: Slice Register Utilisation of Real Valued Parallel - Serial LMS
Architecture

Figure 4.16: Slice Register Utilisation of Real Valued Parallel - Serial NLMS
Architecture
61

4.3 Complex Valued Arithmetic Results

4.3.1 Sampling Frequency Results

In general, the sampling frequencies obtained when complex arithmetic is employed are

lower than those obtained for real valued arithmetic. Complex valued arithmetic

operations are achieved as a compound of several real valued operations, therefore the

critical path is increased. Extra pipeline registers were inserted in order to counter this,

however as shown by the results, further pipelining work is required to obtain the

throughput achieved in the real-valued arithmetic architecture.

Figure 4.17: Sampling Frequency Results of Complex Valued Parallel - Serial
LMS Architecture
62

Figure 4.18: Sampling Frequency Results of Complex Valued Parallel - Serial
NLMS Architecture
63

Figure 4.19: Sampling Frequency Results of Complex Valued Parallel and
Serial LMS Architectures
64

4.3.2 DSP48 Utilization

Due to complex valued arithemetic being formed as a compound of several real valued

operations, the DSP48 utilization is in general greater for the complex valued case when

compared to the real valued arithmetic equivalent. The general relationship of linear

scaling with increasing parallelization is maintained however.

Figure 4.20: Sampling Frequency Results of Complex Valued Parallel and
Serial NLMS Architectures
65

Figure 4.21: DSP48 Utilisation of Complex Valued Parallel LMS Architecture
66

Figure 4.22: DSP48 Utilisation of Complex Valued Parallel NLMS
Architecture
67

Figure 4.23: DSP48 Utilisation of Complex Valued Parallel Serial LMS
Architecture
68

4.3.3 LUT Utilization

The overall LUT utilization is greater when complex valued arithmetic is employed as

opposed to real valued arithmetic, due to the increased operation count incurred.

Figure 4.24: DSP48 Utilisation of Complex Valued Parallel - Serial NLMS
Architecture
69

Figure 4.25: LUT Utilisation of Complex Valued Parallel and Serial LMS
Architectures
70

Figure 4.26: LUT Utilisation of Complex Valued Parallel and Serial NLMS
Architectures
71

Figure 4.27: LUT Utilisation of Complex Valued Parallel - Serial LMS
Architecture
72

4.3.4 Slice Register Utilization

Again, the general relationship between increasing number of coefficients and increasing

resource consumption is observed for slice register utilization under complex valued

arithmetic. The overall cost is increased by a factor due to the extra operation count of

complex valued arithmetic.

Figure 4.28: LUT Utilisation of Complex Valued Parallel - Serial NLMS
Architecture
73

Figure 4.29: Slice Register Utilisation of Complex Valued Parallel and Serial
LMS Architectures
74

Figure 4.30: Slice Register Utilisation of Complex Valued Parallel and Serial
NLMS Architectures
75

Figure 4.31: Slice Register Utilisation of Complex Valued Parallel - Serial
LMS Architecture
76

Figure 4.32: Slice Register Utilisation of Complex Valued Parallel - Serial
NLMS Architecture
77

4.4 Discussion

There are a number of interesting observations to be made from the data regarding

differing sample rates, LUT and slice register utilization between the different

architectures. In this section, a concise summary of the most important results is given.

Firstly, it can be observed from the plots of sampling frequency against number of

processor cores/ coefficients per core, there is a clear trend towards decreasing sampling

frequency with increasing coefficients per core/ number of processor cores. Note that

sampling frequency in this context is used to refer to the maximum rate at which data can

be clocked into the LMS filter. Hence, it can be reasoned that as the number of cores/

coefficients per core increases, the resulting clock rate decreases due to the increasing

complexity of the control logic used to orchestrate the shuttling of data amongst the filter

cores. With further pipeline stages added to the control logic, a more flat distribution with

higher overall sampling rate might be expected. In general, lower sampling rates are

achieved for the cases where complex valued arithmetic is employed as opposed to real

valued arithmetic. This again points to a potential pipelining issue. Further registers

should be added to the complex arithmetic cores in order to mitigate against the increased

critical path resulting from complex arithmetic.

Looking at the results of DSP48 utilization amongst the various architectures, a linear

increase in the number of DSP48s occupied can be observed as the number of filter

coefficients increases. This is the expected result - the number of coefficents/ processor

cores should be linearly related to the number of DSP48s utilized. It can be observed that

for the parallel-serial filter architectures, the number of DSP48s used varies only with the

number of processor cores used - increasing the number of coefficients per processor core

has no effect on the utilization which is the expected behaviour.

A general trend of utilization remaining flat can be observed for all the plots concerning

parallel-serial implementation. While the number of DSP48s only varies with processor

core number, there is a slight increase in the slice register utilization/ LUT utilization as

the number of coefficients varies for a fixed number of processor cores. This slight

variation in LUT/ slice register utilization can be attributed to the extra control logic

required when the number of coefficients per core increases. Clearly the variation for
78

fixed processors/increasing coefficients is much less than for the case of increasing

processor cores/fixed coefficients.

Regarding the slice register utilization results for the parallel/serial cases, it is interesting

to note that initially the fully serial implementation is more expensive to implement than

the fully parallel implementation in terms of the number of registers used. This offset is

due to the fixed number of pipelining stages inserted into the fully serial architecture.

Recall that the extra pipelining stages cannot be inserted into the fully parallel architecture

and therefore initially this implementation uses fewer registers than fully serial.

The plots of LUT utilization for fully parallel and fully serial architectures illustrate a

linear increase in the resources used for the fully parallel case against a relatively constant

LUT utilization for the fully serial implementation. This illustrates the efficiency of the

fully serial implementation in terms of resource cost when implementing very large

filters.

In general, the plots show the expected trend in terms of trade off between hardware cost

and data throughput - as the filter is serialized to a greater degree, the overall throughput

of the filter is decreased. This is a fundamental engineering trade off when designing

filters for HDL implementation. In general the goal is to serialize the filter as far as

possible while still meeting the throughput requirement given by the application in

question.
79

Part 2 - A Survey of QRD-RLS FPGA Implementation

The LMS algorithm is a robust and relatively cheap algorithm to implement, however it

can be slow to converge and is sensitive to the eigenvalue spread of the autocorellation

matrix, (see 1.5). As the demands for increasing data rates continue, there is the need to

consider solutions which converge much faster than LMS. QRD-RLS algorithms provide

such a solution. There are many different ways with which to implement such an

algorithm.

This part of the thesis seeks to give a detailed overview of the various methods available

for performing QRD-RLS, with particular focus on the Givens based systolic array

architectures which are highly suited to VLSI implementation. Section 5 provides a

general introduction to the method of QRD, looking at the well known Gram Schmidt,

Householder and Givens methods. The relative merits of each are discussed from the

perspective of VLSI implementation. Following this, in Section 6, a general overview of

the Givens based QRD-RLS systolic array architecture is given. Then, in Section 7

various methods for obtaining the least squares solution from the systolic array

architecture are given. Section 8 looks at how the previously discussed systolic array can

be optimized either for speed or to lower the overall resource consumption. Finally,

Section 9 gives an overview of a Gram Schmidt VLSI implementation, such that a

comparison can be made.
80

5 QR Decomposition Methods
The QR Decomposition is a process for which an input matrix, is transformed into the

product of an upper triangular matrix and orthogonal matrix . The three well known

methods for performing such a procedure are:

- Gram Schmidt

- Householder Reflections

- Givens Rotations

When studying the relative merits of an algorithm, attention should be paid to the

numerical stability, memory requirements, and operation count. For FPGA/ASIC

implementation, the potential for parallelization also plays a key role. If the algorithm is

highly sequential in nature, there will be potentially no speed-up achieved when running

on an FPGA. In this section we will review each of the three algorithms and discuss the

potential advantages/disadvantages of each.

5.1 Gram Schmidt

Gram Schmidt, [10], provides a procedure by which a set of k linearly dependent vectors

 can be transformed to form an orthonormal basis spanning

the sub-space k. A property of the orthogonal matrix , is that it forms an orthonormal

basis of the space spanned by . Therefore, performing Gram-Schmidt process on the

input matrix , treating the columns as linearly independent vectors in the subspace, k,

we can achieve the orthogonal matrix .

A

R Q

S a1 a2 a3  ak    =

Q

A

A

Q q1 q2 q3  qk    =
81

The procedure comprises subtracting from its projection, onto the subspace

currently constructed. The projection operation is defined by [5.1].

[5.1]

The procedure then follows as:

[5.2]

[5.3]

[5.4]

The classic Gram-Schmidt method presented above can produce vectors, , that are non-

orthogonal in the presence of finite precision arithmetic due to small rounding errors etc.

A simple modification which incurs no extra operation cost can be used to take into

account the loss of orthogonality; this is known as Modified Gram-Schmidt method

(MGS), [12]. In order to ensure orthogonality at each step, the intermediate result of the

projection subtraction is used in the calculation, allowing for any round off errors

introduced at each stage to be corrected for. Consider the computation of the third

ak zk

projz
z a 
z z 

-------------a=

k 1 z1 a1= = q1

z1
z1 2

------------=

k 2 z2 a2 projz1
a2 –= = q2

z2
z2 2

------------=

k N zN aN projzj
aN

j 1=

N 1–

–= = qN
qN
qN 2

-------------=

q

82

orthogonal vector, .

[5.5]

Instead of carrying out the calculation in one instruction, firstly calculate:

[5.6]

then

[5.7]

Therefore the intermediate results are re-orthogonalized against one another, resulting in

numerical stability in the presence of non-exact arithmetic. Note that, although the

operation count is not increased in the modified routine, the memory access pattern

becomes more irregular, which may degrade performance in software implementation.

Using the modified routine gives results which are numerically equivalent to the

Householder method [12], (to be discussed in next section). The Householder method is

well known to be numerically stable, therefore by extension we can confirm MGS as a

numerically stable routine.

In order to use Gram Schmidt to compute the QR decomposition, the method is applied,

treating the k columns of the input matrix as the vectors to be orthonormalized. Then,

[5.8]

and

[5.9]

z3

z3 a3 projz1
a3 – projz2

a3 –=

z3' a3 projz1
a3 –=

z3 z3' projz2
z3' –=

Q q1 q2  qk   =

R

q1 a1  q1 a2  q1 a3  

0 q2 a2  q2 a3  

0 0 q3 q3  

   

=

83

5.2 Householder Reflections

Householder reflections, [13], provide a numerically robust method to compute QR. It is

often the preferred method for computation on sequential machines, used in many

numerical computing libraries, e.g LAPACK [14]. Although Gram Schmidt can produce

results of similar accuracy with reorthogonalization in place, the memory access of

Householder is more suited to software implementation.

Householder transformations are a linear, norm preserving procedure. The process is

illustrated graphically in Figure 5.1, below. For ease of exposition, a 2-dimensional

subspace is shown, however the method can be readily extended to higher dimensional

problems. The goal is to perform a transformation on vector x, such that all of the

information is represented in one element. This represents an annihilation of elements in

the vector, which we can extend later to perform a full QR decomposition of an input

matrix. To achieve such a transformation, x is reflected with respect to the hyperplane,

which is perpendicular to , . y y


y

Figure 5.1: Householder Reflections

y
T

x

xP
84

The vector can be constructed from:

[5.10]

where represents a column of the identity matrix with column index i.

The Householder matrix is then constructed using:

[5.11]

where is the identity matrix.

Householder reflections can therefore be used to form a series of matrices, where:

[5.12]

Therefore, in order to perform a full QR decomposition of the input matrix, a series of

 reflections must be performed (where is the number of columns), (Figure 5.2).

Every non-zero element of the matrix is altered when each orthogonal matrix is

applied. The calculation of each Householder matrix, , can only be performed after the

orthogonalization matrix has ben applied. Therefore, it is not possible to parallelize the

orthogonalization and the processing bound is limited by the () Householder

reflections.

y

y x x 2ai+=

ai

H

H I 2yy
T

–=

I

Qi

Qi
Ii 0

0 Hi
=

N 1– N

Figure 5.2: QR Decomposition via Householder Reflections

x x x

x x x

x x x

x' x' x'

0 x' x'

0 x' x'

x' x' x'

0 x'' x''

0 0 x''

Q1 Q2

Qi

H

N 1–
85

Householder is an excellent method for floating point processor implementation. The

regularity of the memory access pattern, coupled with the use of common floating point

operations makes the algorithm very suited to modern processor architectures. The highly

sequential nature, along with requirement for non-fixed point friendly operations such as

square root (from the L2 norm used to calculate), mean that it is not the method of

choice for FPGA/ASIC implementation. The Givens method discussed next provides a

more VLSI friendly choice of implementation.

5.3 Givens Rotations

The method of Givens rotations, [15], like Householders reflections is a norm-preserving,

orthogonal transformation. Unlike Householder reflections, however, Givens rotations

can be more readily parallelized. The basic operation is that of a [2x2] matrix:

[5.13]

Such a matrix will rotate the [2x1] element vector by the specified angle. From

straightforward geometry, we can compute the angles required in order to rotate the vector

onto the axis:

 ; [5.14]

In matrix notation, we can represent the Givens Matrix, G, as:

[5.15]

For a Givens rotation performed on the row , column , the , terms will appear on

the intersection points of row , column .

Unlike Householder reflections, for each element that is annihilated from the input matrix,

y

cos sin

sin– cos

cos
x

x
2

y
2

+
---------------------= sin

y–
2

x
2

y
2

+

---------------------–=

G

1 0 0 0 0 0

0 cos 0 sin 0 0

0 0 1 0 0 0

0 sin– 0 cos 0 0

0 0 0 0 0 1

=

i j c s

j i
86

only a subset of the elements of the matrix are altered, with each unitary rotation matrix

that is applied (see Figure 5.3). This opens up potential for Givens rotations to be applied

in parallel, unlike Householder where each orthogonal matrix , must be applied

sequentially in turn.

To ease the computational requirements we desire an algorithm which can recursively

update the matrix without having to perform a full matrix-by-matrix multiplication at each

time step. Consider the example illustrated in Figure 5.4, where a full QR decomposition

has been performed on the 5x5 data matrix , and a new row has arrived. Instead of

performing a full QR decomposition of the matrix formed with the new row, we can

exploit the fact that the matrix is almost in the upper triangular form. Treating the new

Qi

Figure 5.3: Givens Rotations Example

Q1

1 5 9

2 6 10

3 7– 11

2.24 7.60 12.97

0 1.79– 3.58–

3 7– 11

=

Q2

2.24 7.60 12.97

0 1.79– 3.58–

3 7– 11

3.74 1.07– 16.57

0 1.79– 3.58–

0 10.28– 3.82–

=

Q3

3.74 1.07– 16.57

0 1.79– 3.58–

0 10.28– 3.82–

3.74 1.07– 16.57

0 10.43– 4.38–

0 0 2.87

=

A

87

row and previous row as a recursion, we can form the update of each row iteratively, for

each new row that arrives.

r r r r

0 r r r

0 0 r r

0 0 r r

0 0 0 r

x x x x

r r r r

0 r r r

0 0 r r

0 0 0 r

Figure 5.4: Recursive QR Decomposition

r r r r

0 r r r

0 r r r

0 0 r r

0 0 0 r

r r r r

0 r r r

0 0 r r

0 0 0 r

0 0 0 r

r r r r

0 r r r

0 0 r r

0 0 0 r

0 0 0 0

Q1 Q2

Q3

Q4
88

6 Givens Based QRD-RLS
Implementation
In this section, the basic concepts behind Givens rotation based systolic array

architectures are developed. We look at how an array of common processing elements can

be interconnected to form a recursive QRD processor. Highly efficient CORDIC

arithmetic is explored as a suitable candidate for FPGA implementation of both real and

complex valued QRD systolic arrays.

6.1 QRD-RLS Systolic Array Architecture

We previously examined how the QRD could be formed recursively with each new row

of data that arrives. This is the essential idea behind the well known systolic array

architecture for QR decomposition (Figure 6.1), first proposed by Gentleman and Kung

[17]. The systolic array architecture comprises two different types of processing element,

named boundary cell, and internal cell. The boundary cell takes the input formed by the

current , and previous input data, forming a vector which is rotated onto the

axes, annihilating the lower element. In doing so, the angle by which the vector was

rotated is stored, and passed along to the internal cells, where the vector is rotated. The

variable , is known as the forgetting factor. It is a small constant (in the order of

0.9999999...) which ensures that the systolic array will gradually de-emphasize older

samples. Without such a constant in place, the systolic array will attempt to find the

solution to all data, both past and present, and potentially may never converge.

k  k 1– 



89

In order to form the least squares solution, Gentlemen and Kung also showed in [17] how

an “on the fly” least squares computation can be performed concurrently with the

triangularization of the input matrix. Consider that the essential problem is to solve the

r r r r

Figure 6.1: Systolic Array Architecture for QR Decomposition

r

r

Boundary Cell (Givens Generation)

Internal Cell (Givens Rotation)

r r r

r r

r

xbc k 

ci k 

si k 

ci k 1– 

si k 1– 

xic k 

xout k 

ci k 

si k 

if then

;

else

xbc k  0=

ci k  1= si k  0=

ci k  r k  r
2

k  x
2

bc k + 
1 2–

=

si k  xbc k  r
2

k  x
2

bc k + 
1 2–

=

r k 1+  1 2
r

2
k  x

2
bc k + 

1 2
=

r k  si k xic k  1 2
ci k r k 1– +=

xout k  ci k xic k  1 2
si k r k –=
90

following:

[6.1]

This can be achieved by appending an additional column to the systolic array, and

orthogonalizing in the same manner, (Figure 6.2).

The least squares solution can then be obtained via backsubstitution, as will be discussed

in Section 7.1. Before moving on however, it is important to note the potential for

CORDIC arithmetic to be used in the architecture.

6.2 CORDIC Arithmetic for Boundary/Internal Cells

The Coordinate Rotation DIgital Computer (CORDIC) algorithm, [18],is a numerically

robust, multiplier free algorithm suitable for performing a variety of trigonometric

functions using only shift and add arithmetic. It arises from a simplification of the Givens

rotations previously discussed.

Rwls Qd p= =

Figure 6.2: Systolic Array with Additional Column Appended

p

r r r r

r r r

r r

r

p

p

p

91

The classic Givens rotations are given by:

[6.2]

[6.3]

after simple rearrangement:

[6.4]

[6.5]

Now, consider when the terms are restricted such that , where is a real

valued integer number. That is to say, only rotations which equate to powers of two terms

are permitted. Then, [6.4], [6.5] become:

[6.6]

[6.7]

The decision factor in [6.6], [6.7] takes into account both clockwise and anti-

clockwise rotations.

Now in order to reduce the algorithm to a shift-add form, the term is dropped.

Therefore, each rotation that is performed incurs a gain of . If we perform a

rotation as a fixed succession of clockwise and anticlockwise power of two micro-

rotations, then as , the accumulated processing gain from each micro

rotation can be precomputed and applied to the output, see [6.8]. As this value is a

constant, it can be applied using multiplier free Canonic Signed Digit arithmetic or other

similar methods at the input or output of the CORDIC unit.

[6.8]

In order to perform a rotation by an arbitrary angle, we require decision logic at each

micro-rotation to determine whether to rotate clockwise or anti-clockwise. This can be

performed by introducing a third, accumulator, which keeps track of the current angle

x' x cos y sin–=

y' y sin x cos–=

x'  x y tan– cos=

y'  y x tan+ cos=

tan tan 2
i–

= i

x'  x yd2
i–

– cos=

y'  y xd2
i–

+ cos=

d 1=

cos

1 cos 

cos cos–=

Kn 2
i–

atancos=

zi
92

rotated:

[6.9]

By determining whether the current angle held in the accumulator is greater than or less

than the desired angle of rotation, the decision factor for the next stage in the CORDIC

pipeline can be generated:

[6.10]

In the example shown in Figure 6.3 below, it is desired to rotate the input vector by .

After the first rotation, the angle stored in the angle accumulator is .

The second rotation therefore performs an anti-clockwise rotation to bring the

accumulated angle to . A third clockwise rotation brings the angle held in the

accumulator to . The total angle accumulated relative to the input is therefore

. Further rotations will bring the error in rotation down further. Note how the

magnitude of the vector grows with each iteration performed. This can be corrected at the

output as previously discussed.

z' z d+=

d 1if z 0 
1otherwise–




=

30
30 45– 15–=

11.6

3.4–

33.4
93

In addition to being able to rotate an input vector by a given angle, CORDIC can also be

used in the so-called “Vectoring Mode”. In this mode, the input vector is iteratively

rotated onto the x axis. In order to achieve this the decision factor is now generated by

looking at the sign of the input, [6.11].

[6.11]

An example of CORDIC operating in the vectoring mode is given in Figure 6.4 below.

The vector has an initial angle of . The first rotation pushes the vector over the x axis

by . Therefore, the second rotation is performed in the anticlockwise direction. The

third rotation can then be made in the clockwise direction. At the end of the series of

rotations, the angle held in the accumulator is . Further

iterations will bring the vector closer to the axis, and will therefore improve the accuracy

of the angle estimate.

Figure 6.3: CORDIC Rotation Mode

45


–

26.6


+

14–


x

y

y

di
1if sign y  0 

1otherwise–



=

30

15

45– 26.6 14–+ 32.4–=
94

:

CORDIC arithmetic can be used to perform the processing tasks required by the boundary

and internal cells of the systolic array architecture previously discussed. Using CORDIC

in vectoring mode will annihilate an element of the input vector by forcing it onto the axis;

this is the operation of the boundary cell. The resulting angle can be passed along to the

internal cells, for which CORDIC in rotation mode can be used. This results in a highly

efficient architecture, whereby the previously required square root and multiplications are

removed.

6.3 Complex Systolic Array using CORDIC Arithmetic

Up until now, we have only considered the processing of real valued input data in the

systolic array. The equations for the boundary and internal cell shown in Figure 6.1 can

be readily extended to the complex domain.

Figure 6.4: CORDIC Vectoring Mode

45


– 26.6


+

14–


x

y

95

The extension of CORDIC arithmetic into the complex domain for QRD-RLS filtering

has been investigated independently in both [21] and [22]. To achieve the boundary cell

operation, the circuit shown in Figure 6.5 can be used. The circuit takes in the real and

imaginary components of the complex valued input, and performs a CORDIC vectoring

operation, such that the imaginary part of the input is annihilated. Then, the basic

recursion of the boundary cell is performed, whereby a vector is formed from the ,

 values, and the previous element is annihilated. The angles and used to null

the imaginary component and perform the recursion are passed along to the complex

rotation cells.

To compute the complex Givens rotations, the circuit shown in Figure 6.6 is employed.

The components labelled Givens rotation differ slightly in [21] and [22]. In the former, a

standard CORDIC rotation cell is employed, while in the latter, the Givens rotation

k 
k 1–   

Figure 6.5: Complex Boundary Cell Operation using CORDIC Arithmetic

CORDIC

VECTORING

MODE





Re xin k   Im xin k  

Re x'in k  Re x'in k 1–  

CORDIC

VECTORING

MODE
96

presented in [5.13] is directly computed using multiply and add logic. The advantage of

using CORDIC for the Givens rotation is that it increases the regularity of the combined

circuit. Indeed, in [21] a “CORDIC Super Cell” (CSC) which can perform either complex

boundary cell, or complex internal cell operations is used for each element in the array.

Also, as previously discussed, using CORDIC exclusively results in a multiplier free

design. Using Multiply ACCumulate (MAC) logic to compute the Givens rotations is

advantageous in [22] as they are specifically targeting a Xilinx FPGA. Such devices

feature embedded MACs, known as DSP48s, [23], which would have been otherwise left

idle.

Figure 6.6: Complex Internal Cell Operation

Givens Rotation

Re xin k   Im xin k  

Givens Rotation Givens Rotation

 Re xout k   Im xout k  









97

7 Least Squares Solution Computation
In previous sections we have examined how a systolic array with CORDIC arithmetic

results in an efficient architecture for performing the QRD and forming the equation

. Now we will explore several ways in which the least squares solution can

be obtained.

7.1 Back-Substitution

An obvious method for extracting the weights is to directly solve the system of equations

formed by the upper triangular matrix, using Gaussian elimination, also known as back-

substitution. Indeed, this is the method proposed by Gentleman and Kung in their original

paper detailing the systolic array [17]. The basic idea is shown in Figure 7.1 below.

Rwls Qd=
98

There are two immediate problems with this approach however:

• Gaussian elimination is known to be an approach that can be numerically unstable.
High precision arithmetic and row pivoting are generally required to ensure correct
computation for any input.

• During the computation of the weight vector, the QRD must be halted, stalling new
data from the input until the procedure is complete.

For these reasons, it can be preferable to perform the Gaussian Elimination using a sepa-

rate floating point processor in tandem with the FPGA logic. An interesting approach is

taken in [24], where an embedded soft processor is instantiated in the FPGA fabric. The

processor features single floating point arithmetic, and custom divide operations using

hardware acceleration, allowing the Gaussian elimination to be computed in a fast and nu-

merically stable fashion without having to couple an FPGA and external processor togeth-

er.

7.2 Implicit Weight Extraction

The previously discussed backsubstitution approach has several limitations which prevent

a full systolic array implementation being realized which can keep pace with the input

p

r r r r

r r r

r r

r

p

p

p

Figure 7.1: Back-Substitution Approach for Least Squares Solution

w1

w2

w3

w4

x k  x k 1–  x k 2–  x k 3–  d k 
99

data. McWhirter, [25], was the first to propose a systolic architecture which can compute

the least squares solution in real-time without needing to stall the input data for weight

extraction. In fact, the proposed systolic array does not explicitly compute the weights and

perform the well known equation, [7.1], to compute the residual. The residual is instead

computed on the fly, at the same time as the QRD is performed.

[7.1]

McWhirter introduces an additional processing requirement to the boundary cells of the

systolic array. Now, the boundary cells are also required to compute the product of

cosines, produced by the diagonal interconnect of boundary cells, (shown in Figure 7.2).

The product of cosines is then multiplied by the output of the column which produces the

orthogonally rotated desired vector, , directly producing the residual. The reader

can refer to [26] for a full proof.

e k  Rwls d k –=

d k 
100

As an alternative to computing the product of cosines in the boundary cells, an additional

column of internal cells can be appended onto the systolic array where the input is unity

(Figure 7.3). This can result in a more regular architecture which can be more easily

folded, in order to share resources.

Figure 7.2: McWhirter Systolic Array with Direct Residual Extraction

p

r r r r

r r r

r r

r

p

p

p

r

Boundary Cell (Givens Generation)

xbc k 
ci k 

si k 

if then

;

else

xbc k  0=

ci k  1= si k  0=

ci k  r k  r
2

k  x
2

bc k + 
1 2–

=

si k  xbc k  r
2

k  x
2

bc k + 
1 2–

=

r k 1+  1 2
r

2
k  x

2
bc k + 

1 2
=

out inci k =

x k  x k 2–  x k 3– 

in

out

x k 1–  d k 

e k 
101

There are many applications where only the error signal is required. This is

common in the adaptive beamforming scenario, where the antenna array is steered using

the residual obtained from the least squares solution.

7.3 Weight Flushing

A trivial extension to the architecture mentioned in the previous section allows the filter

weights to be extracted directly. The method known as “weight flushing”, [27], consists

of freezing the systolic array once the QRD has been performed, and then providing the

identity matrix, , as input. This corresponds to measuring the impulse response of the

system.

Figure 7.3: Modified McWhirter Systolic Array with Direct Residual
Extraction

p

r r r r

r r r

r r

r

p

p

p









x k  x k 1–  x k 2–  x k 3–  d k  1

e k 

e k 

I

102

7.4 Downdating Method

Building upon the McWhirter Systolic array with direct residual extraction previously

presented, we can create an architecture that can extract the filter weights at the same rate

as the QRD is computed. The QRD-RLS downdating architecture, discussed in [28], [29],

[30], allows for the “on the fly” computation of the weight vector, while both the QRD is

performed and the residual extracted.

With the downdating method, we apply the same orthogonal rotation matrix, , (used to

create), to a block matrix consisting of and , [7.2].

[7.2]

After some simplification, the recursion shown in [7.3] is obtained.

[7.3]

We can therefore form a recursive, parallel weight extraction QRD-RLS systolic array

architecture by appending an additional lower triangular array to compute and a

row of weight extraction cells which satisfy the recursion given in [7.3], as shown in

Figure 7.4.

Two new cells are therefore introduced into the systolic array architecture, namely the

downdating cell and weight extraction cell. The downdating cell performs almost the

same operation as the internal cell in the upper triangular (left-side) QRD array. The only

difference is that while the forgetting factor for the internal cell is , the forgetting factor

for the downdating cell is . As noted in [29], this is potentially an issue for numerical

stability. The forgetting factor in the downdating section is greater than unity, and so any

small errors in orthogonalization computed by the left-side, lower triangular array will be

amplified over time, and eventually the algorithm may diverge.

Q

R R
T–

k 1–     0
T

Q k  R
T–

k 1–    

0
T

R
T–

k 

g
T

k 
=

w k  w k 1–  g k e k –=

R
T–

k 


 1–
103

Figure 7.4: QRD-RLS with Downdating

p

r r r r

r r r

r r

r

p

p

p









x k  x k 1–  x k 2–  x k 3–  d k  1

e k 

r
1–

r
1–

r
1–

r
1–

w

r
1–

r
1–

r
1–

r
1–

r
1–

r
1–

w w w

0

0

0

0

r
1–

Downdating Cell

r k  si k xic k   1 2– 
ci k r 1–

k 1– +=

xout k  ci k xic k   1 2– 
si k r 1–

k –=

Weight Extraction Cell

w

xic k 

xout k 

ci k 

si k 

ci k 

si k 

e k 

gi k  gi k 

w k 
w k  w k 1–  g k e k –=
104

8 Optimization for Throughput
Increase or Resource Minimization
In this section several techniques are examined in order to maximize the throughput of the

systolic array architecture, or for the conflicting goal of minimizing the resources

consumed.

8.1 Fine Grain Pipelining

The previously discussed systolic array architectures are fully pipelined at the cell level,

commonly referred to in the literature as coarse-grain pipelining. The iteration bound is

therefore limited by the minimum time taken to compute the result of an individual cell.

However, the internal circuitry of an individual cell in the systolic array can not be directly

pipelined due to the feedback loop created by the recursive operation. For applications

requiring very high throughput, this lower limit may prove to become a problem. In this

section we examine how the Annihilation Reordering Look Ahead technique can be used

to pipeline the QRD-RLS systolic array without altering the numerical behaviour of the

algorithm.

8.1.1 Processing Element Iteration Bound

Before discussing the potential strategies to mitigate against the lower iteration bound

presented at the cell level, we will first look at the problem in greater detail. Consider the

boundary cell in the systolic array, which must rotate the vector formed by the incoming

sample and the previous upper triangular element , where CORDIC

arithmetic is used. Figure 8.1, illustrates the macro-level CORDIC rotator is composed of

a connection of several CORDIC micro-rotations, each of which rotate the input by a

xbc k  r k 1– 
105

fixed angle, .

Due to the presence of the feedback loop, it is not possible to pipeline inside the CORDIC

2
i–

Figure 8.1: A Detailed Look at CORDIC Based Boundary Cell (Givens
Generation)

CORDIC Vectoring Unit

xbc k 

r k 1– 



r k 

CORDIC

Iteration 1

CORDIC

Iteration 2

CORDIC

Iteration 3

CORDIC

Iteration 4

CORDIC Vectoring Unit

xbc k 

r k 1–  0

CORDIC Iteration

>>i

>>i

+-

+-

+-

di

const

r k 



106

rotation block without affecting the numerical behaviour of the algorithm. It is also

commonplace to select the number of iterations of the CORDIC algorithm as being equal

to one less than the input wordlength. It is unfortunate then, that if the working precision

at the input is increased by bits, then the number of CORDIC iterations must also

increase by , and therefore the critical path will increase. Without pipelining being

performed inside the QRD cells, it is not possible to increase the precision of the

computation without affecting the rate at which it is executed.

8.1.2 Look Ahead Technique

The problem of inserting pipeline registers where a feedback loop is present is clearly not

isolated to QRD-RLS. Pipelining a system where recursion is present is a well studied

problem. The look ahead technique [31] is a well known method for allowing pipeline

delays to be inserted where feedback is present. In order to reduce the iteration bound of

the algorithm, additional concurrency is created in the feedforward section of the

algorithm, which allows for registers to be inserted in the feedback section of the

algorithm.

The look ahead technique has been applied to the problem of pipelining IIR filter

structures in [32]. A simple example can be used to explain the concept. Consider a first

order IIR digital filter which can be described by [8.1].

[8.1]

The recursion when looking ahead one sample is represented by [8.2].

[8.2]

We can observe that [8.1] and [8.2] have the same iteration bound. If however, we recast

[8.2] into the form given in [8.3], we can pipeline the multiplier in the feedback path,

achieving a speed up of two.

[8.3]

In the z-domain, such a transformation corresponds to inserting extra poles and zeros in

the unit circle which cancel one another out. Extra concurrency is created in the system

N

N 1–

y k 1+  a y k  b x k +=

y k 2+  a ay k  bx k +  bx k 1+ +=

y k 2+  a
2
y k  abx k  bx k 1+ + +=
107

without affecting the numeric behaviour. Figure 8.2 shows the look ahead technique

applied in [8.1], [8.2] and [8.3] in terms of the corresponding Signal Flow Graph at each

stage.

8.1.3 Annihilation-Reordering Look Ahead QRD-RLS

The look ahead technique has been applied to the problem of QRD-RLS systolic array

Figure 8.2: Look Ahead Applied to 1st Order IIR Digital Filter

x k 

z 1–

z 2–

z 2–

z 1–

a
2

bab

b

x k 

a

z 1–x k 

b

b

a

a

y k 

y k 

y k 
108

implementation in [34], to produce a QRD-RLS systolic array which can be arbitrarily

pipelined without loss of orthogonality. It is assumed that CORDIC arithmetic is used in

both the boundary and internal cells.

In order to introduce additional concurrency to the QRD update process, each upper

triangular element, , is formed as the update of a block of input data, size , where

is the desired speedup. The operations of the boundary cells in a [4x4] QR decomposition,

where a speedup of 3 is desired are shown in Figure 8.3.

The recursive update of the elements are computed with each time step, and so pipeline

registers cannot be placed across the feedback section in the current form. The

annihilation reordering transformation instead annihilates the block input data in a column

by column fashion, meaning that the diagonal elements are only updated at the last time

step (Figure 8.4).

r M M

Figure 8.3: Block Update QR Decomposition

r r r r

0 r r r

0 0 r r

0 0 0 r

x x x x

x x x x

x x x x

k

k-1

k-2

k-3

r r r r

0 r r r

0 0 r r

0 0 0 r

0 x x x

x x x x

x x x x

k

k-1

k-2

k-3

r r r r

0 r r r

0 0 r r

0 0 0 r

0 0 x x

x x x x

x x x x

k

k-1

k-2

k-3

r r r r

0 r r r

0 0 r r

0 0 0 r

0 0 0 0

0 0 0 0

0 0 0 0

k

k-1

k-2

k-3

r r r r

0 r r r

0 0 r r

0 0 0 r

0 0 0 0

0 0 0 0

x x x x

k

k-1

k-2

k-3

r r r r

0 r r r

0 0 r r

0 0 0 r

0 0 0 0

x x x x

x x x x

k

k-1

k-2

k-3Q4

Q1 Q2

Q3

Q5

r

r

109

The resulting hardware architecture of the processing element, shown in Figure 8.5,

allows the extra latency created by the transformation to be applied across the CORDIC

cell contained in the feedback loop, [44].

Figure 8.4: Annihilation Reordering Look Ahead QRD-RLS

r r r r

0 r r r

0 0 r r

0 0 0 r

x x x x

x x x x

x x x x
k

k-1

k-2

k-3

r r r r

0 r r r

0 0 r r

0 0 0 r

x x x x

x x x x

0 x x x
k

k-1

k-2

k-3

r r r r

0 r r r

0 0 r r

0 0 0 r

x 0 x x

0 x x x

0 x x x
k

k-1

k-2

k-3

r r r r

0 r r r

0 0 r r

0 0 0 r

0 0 0 0

0 0 0 0

0 0 0 0
k

k-1

k-2

k-3

r r r r

0 r r r

0 0 r r

0 0 0 r

0 0 x x
0 0 x x
0 0 x x

k

k-1

k-2

k-3

r r r r

0 r r r

0 0 r r

0 0 0 r

0 x x x

0 x x x

0 x x x
k

k-1

k-2

k-3Q4

Q1 Q2

Q3

Q5
110

The resulting [4x4] systolic array obtained after annihilation reordering look ahead is

applied with a desired speedup of 3 is shown in Figure 8.6. The increased performance

resulting from additional pipeline registers results in a much greater hardware overhead.

This is the trade-off of the annihilation reordering look ahead transformation, increased

throughput is gained at the expense of greater hardware complexity.

Figure 8.5: Pipelined CORDIC Processing Element

C

C

C

z 3–

x k 

x k 1– 

x k 2– 

r k r k 3– 
111

Figure 8.6: Annihalation Reordering Look Ahead Pipelined Systolic Array

p

r r r r

r r r

r r

r

p

p

p









x1 k 

e k 

Boundary Cell

1 0 0x2 k  x3 k  x4 k  d k 

Internal Cell

C

C

C

z
3–

1

2

3

1

2

3

C

C

C

z
3–

1

2

3
112

8.2 Resource Sharing Folded Systolic Array

While the previous section considered techniques to allow for the maximum possible

throughput from a QRD-RLS systolic array architecture, there are also scenarios where

the required throughput is much lower than that provided by the fully parallel systolic

array architecture. In such instances, individual processing elements may be sitting idle

for a large percentage of the time.

When folding the QRD-RLS systolic array architecture, either a linear array or processing

element style architecture can be chosen, as shown in Figure 8.7. In the linear array style

of architecture, the fully parallel QRD-RLS systolic array architecture is folded onto a

single row (the largest of the rows in the systolic array). The data rate is then reduced to

, where is the number of rows, [36]. Further folding results in the internal and

boundary cells being folded onto a reduced subset of cells, which together comprise a

single QR processor.

fs N N
113

Mapping the fully parallel QRD-RLS systolic array onto a single QRD-RLS processor is

an interesting problem. Due to the different functionality of the internal and boundary

cells, in [24], two separate CORDIC blocks are used for internal and boundary cells, i.e.

in vectoring and rotation modes. The implementation in [22] is similar, however a MAC

is used instead of CORDIC rotation for the internal cell.

The work in [36] seeks to alleviate the requirement for two distinct components to

compute boundary cell and internal cell functions. In this implementation, a modified

version of the CORDIC algorithm, referred to as Coarse-Angle Rotation Mode CORDIC

is introduced. The modified version of the CORDIC algorithm regularizes the function of

the CORDIC processing element by removing the angle data path. Instead of calculating

the total angle rotated in order to annihilate an element of the input vector, the decision,

, taken at each iteration is stored. Instead of the decision factor being directly computed

r r r r p 

Figure 8.7: Folded QRD RLS Systolic Array: (a) Linear Array (b) Processing Element

BRAM

CONTROL

BRAM

CONTROL

BRAM

CONTROL

BRAM

CONTROL

(a)

(b)

r r

di
114

in the internal cell, it can therefore be applied at each stage, retrieving the stored decision

factors previously calculated in vectoring mode.
115

9 Comparison to Gram Schmidt
Implementation
Although the Givens rotation based systolic array is immediately favourable for FPGA/

ASIC implementation, there are scenarios where Gram-Schmidt/Householder methods

can be considered. To allow a balanced conclusion to be drawn between the different

methods, in this section we review an implementation using Gram Schmidt for a complex

MIMO receiver.

The implementation of Gram Schmidt for complex valued QR Decomposition is consid-

ered in [38]. The task is to perform QR decomposition targeted at a 3G LTE system. Note

that the paper was published in 2008, prior to the LTE standard being formalized. De-

ployed LTE systems use a pre-coding matrix based on Householder transformation,

which allows for an MMSE equaliser to be used in practice, see [39] for an overview.

The requirements of the LTE standard are considered in order to influence the hardware

architecture. The authors assume a [4x4] matrix is to be decomposed, from the format

specified in [40].The authors relate the period over which this can be performed whilst

keeping pace with the input data to the coherence time of the channel, i.e. the period in

which the impulse response is stationary, defined by [9.1].

[9.1]

With m/s being the speed of light, km/h being the speed of the

receiver and GHz being the carrier frequency, the coherence time is calculated

as 1.8ms. For LTE, Orthogonal Frequency Division Multiplexing (OFDM) is used, which

gives rise to a maximum of 2048 subcarriers, as defined in [41]. Therefore the QR

tcoh c vfc =

c 3 10
8= v 250=

fc 2.4=
116

decomposition of the [4x4] input matrix should be computed in

. This is a relatively relaxed requirement.

In addition to the requirement in terms of computation time, the reusability of the

hardware for other high level functions required in LTE is considered. In addition to

MIMO decoding, the Fast Fourier Transform (FFT) is another high level function

required, for ODFM modulation/demodulation. To compute the FFT, complex valued

arithmetic is required; the authors therefore propose that highly specialized systolic array

processing cells in the form of CORDIC vectoring/rotation units are not suitable as they

have limited potential for re-use.

With the aforementioned requirements in mind, a general purpose processing architecture

based on Transport Triggered Architecture (TTA) is proposed [42]. This is a form of

computing architecture which allows for parallel computing resources, such as complex

mutlipliers, adders, sqrt etc. to be effectively shared for multiple functions. Each resource

is denoted as a Functional Unit (FU), and are interconnected by a shared bus, as shown in

Figure 9.1.

1.8ms  2048 8.7s=

Figure 9.1: Modified Gram Schmidt TTA Processing Architecture

Bus Connection

CMUL CADDSUB
LOAD/
STORE A 1/SQRT

LOAD/
STORE B

REGISTER
5X32 CONTROL
117

The most demanding module of the processor in terms of computation is the inverse

square root operation. To simply the operation, an approximation is used, which exploits

the fact that a fixed wordlength of 16 bits is used throughout the architecture, with 4

integer, 11 fractional and 1 sign bit. Firstly, instead of modelling the highly non linear

, the term is substituted, where u is a shifted version of x,

represented by [9.2].

[9.2]

where the trailing zeros are denoted by . Therefore:

[9.3]

Then with the substitution in place:

[9.4]

As the non-linearity is now softened in the square root calculation, a first order

polynomial can be used to approximate the calculation. Seeing as the wordlength is fixed

in this case, constant terms for computing the first order polynomial which yield low cost

shift arithmetic are obtained via exhaustive search, yielding the expression given in [9.5].

[9.5]

The resulting hardware architecture is able to compute the QRD of 2048 [4x4] input

matrices within the time frame given by the coherence time of 1.8ms, using a master clock

running at 160MHz. The architecture is generic enough that with minor modification, it

can be used to compute other high level functions such as FFT. A fully folded QRD-RLS

array could be used to perform the same process, likely with lower hardware cost, due to

the use of CORDIC arithmetic, however this would be less flexible for use by other

functions.

1 x  1 1 u+ 

x 0.000  01u =



x 2
 1.u=

1

x
------ 1

2
–

1 u+ 
------------------------------ 2


2

1

1 u+
----------------= =

1

1 u+
---------------- 0.965820

1
4
---u–

1
32
------u–
118

119

10 Conclusion
The purpose of this work was to determine the key techniques, challenges and research

trends in the implementation of adaptive filters. To achieve this, two objectives were set

out at the beginning of the project:

• Complete a practical implementation of the LMS algorithm, investigating
architectures of varying parallelism.

• Carry out a survey of the QRD-RLS algorithm to determine the state of the art in
terms of implementation architectures.

In this concluding section we will investigate some of the common themes between LMS

and QRD-RLS implementation, along with future research directions in the topics

touched upon in the thesis, before giving some final concluding remarks.

Common Topics Between LMS and QRD-RLS Implementation

Having studied both LMS and QRD-RLS implementations, it is possible to identify

common techniques, considerations and challenges between the two algorithms. In this

subsection, the key overlapping areas shall be discussed.

In both implementations the application of pipelining proved difficult. Intuitively, we can

understand that this is due to the recursive operations present in the algorithm. For the

LMS algorithm, there does not exist a solution which does not result in alteration of the

numerical behaviour of the algorithm, whereas for the QRD-RLS algorithm, the only

solution which does not alter the numerical behaviour of the algorithm, results in a linear

increase in the complexity of the resulting hardware.
120

Both algorithms can also be unfolded in a variety of ways. The LMS algorithm perhaps

offers more flexibility in this regard, as the parallel-serial architecture allows for many

combinations of coefficients per processor core. The analog in terms of QRD-RLS

unfolding would be the linear array style of architecture, however in this case, the array

must be sized as the row with the maximum number of columns. For subsequent rows, an

incremental number of processing elements are left idle. This is in contrast to the parallel-

serial LMS architecture where every processing element is fully occupied at every time

step.

Future Research Direction

As with any project, time was a major constraint, therefore there were parts of the LMS

compiler, that if given extra time could have been improved.

In order to form the serial and parallel-serial architectures, control logic was created in

order to regulate the flow of input data to the MAC units used to implement the

algorithmic operations. In both of the implementations an Addressable Shift Register

construct was used to implement the queuing system for the input data. In order to

improve timing in the generated LMS compiler circuit, BRAM should be used to

implement the input queueing system as an alternative. Due to the coding style used in the

LMS compiler, the ASR must be built out of gates, registers and multiplexer logic. Such

logic incurs a high critical path on the device due to both combinatorial logic used to select

elements from the shift register, and the high fanout of multiplexing logic. Using

embedded BRAM allows for low latency memory access to be achieved. This may have

allowed the synthesis results to be improved. However, seeing as there is one cycle

latency requirement for each write/read operation that is performed, the surrounding

control logic may require some redesign to incorporate such a modification.

In addition to the modifications to the memory architecture used in the LMS compiler,

further work could be carried out in the pipelining of the serial and parallel-serial

architectures. Although in both the fully serial and parallel-serial cases, the input and

output of the multiplication operations is pipelined, there are two coding styles used in the

VHDL which likely inhibit the registers from being pushed into the DSP48 slice itself for

maximum throughput processing. Firstly, the pipeline stages are not inserted at the same
121

level of hierarchy as the multiplication operation itself. This potentially inhibits the

synthesis tool from pushing the added registers into the DSP48 slices. Therefore, the

pipeline stages should be firstly moved into the same component as the multiplication

operation. Once this has been achieved, then carrying out both the multiplication

operation and pipelining operation in the same process statement is preferable to ensure

that the synthesized circuit will utilize the high speed pipeline registers located inside the

DSP48 slice.

With the two modifications discussed for the LMS algorithm in place, and therefore the

critical path in the architecture truly minimized, it is possible that the serial and parallel-

serial architectures could achieve clock frequencies in the region of 350MHz. From the

presented implementation results, we can see that the fully parallel implementation of the

complex valued LMS algorithm runs under 25MHz for a 30 coefficient filter. Using the

parallel-serial LMS architecture with 10 PCs computing 3 coefficients each and running

at the hypothetical 350MHz clock rate, the resulting sampling frequency is given by

[10.1].

[10.1]

Therefore, if the LMS compiler is modified to achieve higher clock frequency, then the

resulting filter can be achieved using the parallel-serial option of the LMS compiler, at

reduced hardware cost and higher processing rate.

Regarding the research carried out on QRD-RLS implementation, it seems that the

pipelining of the systolic array architecture has the potential to be studied further. The

current limiting factor of the intra-cell latency is quite limiting for FPGA implementation.

A fully parallel CORDIC architecture of 16 iterations for example, is not likely to run

above 100MHz, the critical path of 16 adders and other related combinatorial logic is too

great to achieve such rates. Although the Annihilation Reordering Look Ahead

Transformation can allow for arbritrary pipelining to be applied across the internal cells,

there is a linear increase in the hardware complexity, which can result in hardware of great

complexity being required.

fs
fclock

ceil PC log  9+
--- 350

13
--------- 26MHz= = =
122

Concluding Remarks

In the beginning of this thesis, it was implied that the superior convergence properties of

the QRD-RLS algorithm would result in widespread usage as adaptive equalizers in future

communications systems. It is therefore interesting to note the trend towards reducing the

processing requirements of the equalizer in wireless MIMO 4G and 5G communication

systems via precoding stage. This decision in the system design results in the LMS

algorithm still being in use in cutting edge wireless communications systems, even five

decades after it was first presented in the literature. The low complexity implementation,

combined with relative robustness to noise results in LMS still being a very popular

algorithm.

Although the LMS algorithm is relatively straightforward to implement in the fully

parallel form, the serial and parallel-serial architectures are quite complex in terms of the

memory and control structures used to shuttle data to/from the shared components. This

highlights the difficulty of FPGA design, where every construct (memory, counter etc.)

must be explicitly instantiated in the HDL implementation. For engineers working on

large systems, it is important to operate at the macro level, rather than spending much of

the time working on small, micro-level details. This highlights the requirement for the IP

industry, which provide system designers with high level interfaces to control the

corresponding low level detail.

The research into QRD-RLS implementation highlighted the issues with the explicit

weight extraction architectures. The backsubstitution architecture was shown to be ill

suited for implementation on the FPGA due to the numerical ill conditioning of the

division operations and the requirement to halt adaptation of the systolic array while the

backsubstitution routine is performed. While the downdating architecture uses only

multiply and add operations, and does not require halting of the systolic array adaptation,

the inverse forgetting factor used in the processing elements amplify errors over time, and

hence numerical stability cannot be guaranteed without periodic reinitialization to clear

the accumulated error. Although the issues with explicit weight extraction architectures

exist, the implicit weight extraction architecture in the form of McWhirter’s systolic array

with error signal generation is both well suited for FPGA implementation, and

numerically stable. Many applications such as adaptive beamforming in phased array
123

systems only require the error signal in order to steer the array, the weight vector is not

needed.

As both the data throughput requirements and general complexity of wireless systems

increase, we can expect that a QRD-RLS compiler will be required in the coming years.

It will be interesting to see if there will be such a time when the requirements of the system

mean that RLS algorithms become the norm for implementation rather than the classic

LMS algorithm which is still predominately the most popular choice.
124

11 References
[1] S.Haykin, “Adaptive Filter Theory”, Fourth Edition, Prentice Hall, 2002.

[2] A.H.Sayed, “Adaptive Filters”, First Edition, Wiley, 2011

[3] S.Qureshi, “Adaptive Equalisation”, Proceedings of the IEEE, vol.73, pp. 1349-
1387, 1985.

[4] B.Widrow, J.McCool, M.Ball, “The Complex LMS Algorithm”, Proceedings of the
IEEE, vol. 63, Issue 4, pp. 719-720, 1975.

[5] Yi, Y., Woods, R.Woods, Ting, L.K.,Cowan, C.F.N., “High Speed FPGA-Based
Implementations of Delayed-LMS Filters”, The Journal of VLSI Signal Processing,
Springer, vol. 39, pp. 113-131, 2005

[6] A.P, Liavas, P.A. Regalia, “On the Numerical Stability and Accuracy of the
Conventional Recursive Least Squares Algorithm”, IEEE Transactions on Signal
Processing, vol. 47, no. 1, pp. 88-96, 1999

[7] G.E. Bottomley, “A Novel Approach for Stabilizing Recursive Least Squares
Filters”, IEEE Transactions on Signal Processing, vol. 39, Issue 8, pp. 1770-
1779,1991

[8] R.L. Smith, “Algorithm 116: Complex Division”, Communications of the ACM”,
vol. 5, Issue 8, pp. 435, 1962

[9] R.Woods, J.Mcallistar, Y.Yi, G.Lightbody, “FPGA-based Implementation of Signal
Processing Systems”, First Edition, Wiley, 2008.

[10] Y.K. Wong, “An Application of Orthogonolization Process to the Theory of Least
Squares”, The Annals of Mathematical Statistics, vol. 6, no. 2, pp. 53-75, 1935

[11] A. Bjorck, “Numerics of Gram Schmidt Orthogonolization”, Linear Algebra and its
Applications, vol. 197-198, pp. 297-316, 1994

[12] A. Bjorck, C.C. Paige, “Loss and Recapture of Orthogonality in the Modified Gram-
Schmidt Algorithm”, Siam Journal on Matrix Analysis and Applications, vol. 13, no.
125

1, pp. 176-190, 1992

[13] A. S. Householder, “Unitary Triangularization of a Nonsymmetric Matrix, Journal
of the ACM, vol. 5, no. 4, pp. 339-342, 1958

[14] LAPACK QR Documentation, available from - http://www.netlib.org/lapack/lug/
node40.html

[15] W.Givens, “Computation of Plane Unitary Rotations Transforming a General
Matrix to Triangular Form”, Journal of the Society for Industrial and Applied
Mathematics, vol. 6, no. 1, pp. 26-50, 1958

[16] W. M. Gentleman, “Error Analysis of QR Decomposition by Givens
Transformations”, Linear Algebra and its Applications, vol. 10, no. 3, pp. 189-197,
1975

[17] W.M. Gentleman and H.T. Kung, “Matrix Triangularization by Systolic Arrays”.
SPIE Proceedings on Real-Time Signal Processing IV, vol. 298, pp. 19-26, 1981

[18] Volder, Jack E., "The CORDIC Trigonometric Computing Technique," IRE
Transactions on Electronic Computers, vol. 8, no. 3, pp. 330-334, 1959

[19] J. S. Walther, “A Unified Algorithm for Elementary Functions”, in Proc. Sprzng
Joint Computer Conf., Atlantic City, NJ, pp. 379-385, 1971

[20] Andraka, R. “A Survey of CORDIC Algorithms for FPGA Based Computers”, http:/
/www.andraka.com/files/crdcsrvy.pdf

[21] B. Haller, J.Gotze, J.R. Cavallero, “Efficient Implementation of Rotation Operations
for High Performance QRD-RLS Filtering”, IEEE International Conference on
Application-Specific Systems, Architectures and Processors, pp. 162 -174, 1997

[22] C. Dick., F. Harris, M. Pajic, D. Vuletic, "Real-Time QRD-Based Beamforming on
an FPGA Platform," Fortieth Asilomar Conference on Signals, Systems and
Computers, pp. 1200-1204, 2006

[23] Xilinx DSP48 User Guide, avaialable from - http://www.xilinx.com/support/
documentation/user_guides/ug479_7Series_DSP48E1.pdf

[24] Altera White Paper, “Implementation of CORDIC-Based QRD-RLS Algorithm on
Altera Stratix FPGA with Embedded Nios Soft Processor Technology”, https://
www.altera.com/en_US/pdfs/literature/wp/wp_qrd.pdf

[25] J. G. McWhirter, “Recursive Least Squares Minimization using a Systolic Array”,
Electronics Letters, IEEE, vol. 19, no. 18, pp. 729-730, 1983

[26] J. A. Apolinaro, M.D Miranda, “QRD RLS Adaptive Filtering”, First Edition,
Springer, Chapter 3, pp. 60-64

[27] Ward, C.; Hargrave, P.; McWhirter, J.G., "A Novel Algorithm and Architecture for
126

Adaptive Digital Beamforming,", IEEE Transactions on Antennas and Propagation,
vol. 34, no. 3, pp. 338-346, 1986

[28] Bin Yang; B Ahme, Johann F., "Rotation-based RLS Algorithms: Unified
Derivations, Numerical Properties, and Parallel Implementations,",IEEE
Transactions on Signal Processing, vol. 40, no. 5, pp. 1151-1167, 1992

[29] M Harteneck, R.W Stewart, J.G. McWhirter, I.K Proudler, “Algorithmic
Engineering Applied to the QR-RLS Algorithm”, Proceedings of 4th International
Conference on Mathematics in Signal Processing, 1996

[30] TT.J Shepard, J. Hudson, “Parallel Weight Extraction from a Systolic Adaptive
Beamformer”, Proc IMA Conference on Mathematics in Signal Processing, 1988

[31] Parhi, K.; Messerschmitt, D.G., "Look-Ahead Computation: Improving Iteration
Bound in Linear Recursions,", IEEE International Conference on Acoustics, Speech,
and Signal Processing, vol. 12, pp. 1855-1858, 1987

[32] Parhi, K.K.; Messerschmitt, D.G., "Pipeline Interleaving and Parallelism in
Recursive Digital Filters. I. Pipelining using Scattered Look-Ahead and
Decomposition," , IEEE Transactions on Acoustics, Speech and Signal Processing,
vol. 37, no. 7, pp. 1099-1117, 1989

[33] K.K. Parhi, “VLSI Digital Signal Processing Systems: Design and Implementation,
Chapter 10: Pipelined and Parallel Recursive and Adaptive Filters”, Example taken
from slides, Available at: http://www.ece.umn.edu/users/parhi/SLIDES/chap10.pdf,
1999

[34] Jun Ma; Parhi, K.K.; Deprettere, E.F., "Annihilation-Reordering Look-Ahead
Pipelined CORDIC-based RLS Adaptive Filters and their Application to Adaptive
Beamforming," IEEE Transactions on Signal Processing, vol. 48, no. 8, pp. 2414-
2431, 2000

[35] Lan-Da Van; Chih-Hong Chang, "Pipelined RLS Adaptive Architecture using
Relaxed Givens Rotations (RGR)," . ISCAS. IEEE International Symposium on
Circuits and Systems, vol. 1, pp. 37-40, 2002

[36] Q. Gao, L. Crockett, R.W. Stewart, “Coarse Angle Rotation Mode CORDIC Basic
Single Processing Element QR-RLS Processor”, 17th European Signal Processing
Conference, 2009

[37] Gao, L.; Parhi, K.K., "Hierarchical Pipelining and Folding of QRD-RLS Adaptive
Filters and its Application to Digital Beamforming," IEEE Transactions on Circuits
and Systems II: Analog and Digital Signal Processing, vol. 47, no. 12

[38] Salmela, P.; Burian, A.; Sorokin, H.; Takala, J., "Complex-valued QR Decomposition
Implementation for MIMO Receivers,", IEEE International Conference on Acoustics,
Speech and Signal Processing, pp. 1433-1436, 2008
127

[39] J. Lee, J.K Han, C. Zhang, “MIMO Technologies in 3GPP LTE and LTE Advanced”,
Eurasip Journal on Wireless Communication and Networking, 2009

[40] “3GPP TR 25.876 Multiple Input Multiple Output in UTRA”, 3rd Generation
Partnership Project, Tech Rep, 2005

[41] R. Bachl, P.Gunreben, S. Das, S.Tasesh, “The Long Term Evolution Towards a New
3GPP Air Interface Standard”, Bell Labs Technical Journal, vol. 11, no. 4, pp. 25-
51, 2007

[42] H. Corporaal, “Design of Transport Triggered Architectures”, in 4th Great Lakes
Symposium Design Automation of High Performance VLSI Systems, Notre Dame,
IN, USA, pp. 130-135, 1994.

[43] Yi-Gang Tai; Chia-Tien Dan Lo; Psarris, K., "Applying Out-of-Core QR
Decomposition Algorithms on FPGA-Based Systems," International Conference on
Field Programmable Logic and Applications, pp. 86-91, 2007

[44]K.K Parhi, J. Ma, “QRD RLS Adaptive Filtering”, First Edition, Springer, Chapter
10 - “On Pipelined Implementations of QRD-RLS Adaptive Filters”
128

12 Acknowledgements
First of all, I would like to thank my supervisor, Prof Robert Stewart for motivating me to

keep writing up this thesis, and for helping me to understand key aspects of adaptive

filtering theory. Thank you for all of the DSP and FPGA insights you have shared over

the last few years and for helping to point me in the right direction in my studies.

I am also deeply indebted to Dr Louise Crockett for reading through the drafts of the thesis

and offering much needed feedback. I couldn’t have finished this piece of work without

the time you spent reviewing it. Thank you so much.

I would also like to thank my MathWorks managers, Bharath Venkataraman and Garrey

Rice for encouraging me to write up this thesis. Many thanks to both of you.

I will also take the opportunity to thank my colleagues in the MathWorks Glasgow office

for many fruitful discussions and support. Often times a seemingly insurmountable issue

is found to be trivial after talking it through.

Lastly but by no mean least, I thank my parents for all of the support and encouragement

they have provided over the years.
129

13 Appendix A: Additional Numerical
Performance Analysis Results

13.1 Real Valued Arithmetic Parallel-Serial LMS Filter Results

0 200 400 600 800 1000
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Sample (k)

M
ea

n
S

qu
ar

e
E

rr
or

 (
A

ve
ra

ge
d

O
ve

r
5

S
im

ul
at

io
ns

MSE Analysis: 20 Coefficient Real Valued Parallel−Serial LMS

0 200 400 600 800 1000 1200
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Sample (k)

E
rr

or
 M

ag
ni

tu
de

Error Signal: 20 Coefficient Real Valued Parallel − Serial LMS

Floating Point
Fixed Point

Figure 13.1: Test Case 3: 20 Coefficient Real Valued Parallel - Serial LMS
130

0 200 400 600 800 1000
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Sample (k)

M
ea

n
S

qu
ar

e
E

rr
or

 (
A

ve
ra

ge
d

O
ve

r
5

S
im

ul
at

io
ns

MSE Analysis: 50 Coefficient Real Valued Parallel−Serial LMS

0 200 400 600 800 1000 1200
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Sample (k)

E
rr

or
 M

ag
ni

tu
de

Error Signal: 50 Coefficient Real Valued Parallel − Serial LMS

Floating Point
Fixed Point

Figure 13.2: Test Case 4: 50 Coefficient Real Valued Parallel - Serial LMS
131

13.2 Complex Valued Arithmetic Serial LMS Filter Results

0 200 400 600 800 1000
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Sample (k)

R
e(

M
ea

n
S

qu
ar

e
E

rr
or

)
(A

ve
ra

ge
d

O
ve

r
5

S
im

ul
at

io
ns

)

MSE Analysis: 20 Coefficient Complex Valued Serial LMS

0 200 400 600 800 1000 1200
−0.5

0

0.5

1

1.5

2

Sample (k)

E
rr

or
 M

ag
ni

tu
de

Error Signal: 20 Coefficient Complex Valued Serial LMS

Floating Point
Fixed Point

Figure 13.3: Test Case 5: 20 Coefficient Complex Valued Serial LMS
132

13.3 Complex Valued Arithmetic Parallel-Serial LMS Filter

0 200 400 600 800 1000
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Sample (k)

M
ea

n
S

qu
ar

e
E

rr
or

 (
A

ve
ra

ge
d

O
ve

r
5

S
im

ul
at

io
ns

)

MSE Analysis: 50 Coefficient Complex Valued Serial LMS

0 200 400 600 800 1000 1200
−1.5

−1

−0.5

0

0.5

1

1.5

2

Sample (k)

E
rr

or
 M

ag
ni

tu
de

Error Signal: 50 Coefficient Complex Valued Serial LMS

Floating Point
Fixed Point

Figure 13.4: Test Case 6: 50 Coefficient Complex Valued Serial LMS
133

Results

0 200 400 600 800 1000
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Sample (k)

M
ea

n
S

qu
ar

e
E

rr
or

 (
A

ve
ra

ge
d

O
ve

r
5

S
im

ul
at

io
ns

)

MSE Analysis: 20 Coefficient Complex Valued Parallel−Serial LMS

0 200 400 600 800 1000 1200
−1

−0.5

0

0.5

1

1.5

Sample (k)

E
rr

or
 M

ag
ni

tu
de

Error Signal: 20 Coefficient Complex Valued Parallel − Serial LMS

Floating Point
Fixed Point

Figure 13.5: Test Case 7: 20 Coefficient Complex Valued Parallel - Serial LMS
134

0 200 400 600 800 1000
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Sample (k)

M
ea

n
S

qu
ar

e
E

rr
or

 (
A

ve
ra

ge
d

O
ve

r
5

S
im

ul
at

io
ns

)

MSE Analysis: 50 Coefficient Complex Valued Parallel−Serial LMS

0 200 400 600 800 1000 1200
−1

−0.5

0

0.5

1

1.5

2

Sample (k)

E
rr

or
 M

ag
ni

tu
de

Error Signal: 50 Coefficient Complex Valued Parallel − Serial LMS

Floating Point
Fixed Point

Figure 13.6: Test Case 8: 50 Coefficient Complex Valued Parallel - Serial LMS
135

13.4 Real Valued Arithmetic Serial NLMS Filter Results

0 200 400 600 800 1000
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Sample (k)

M
ea

n
S

qu
ar

e
E

rr
or

 (
A

ve
ra

ge
d

O
ve

r
5

S
im

ul
at

io
ns

)

MSE Analysis: 20 Coefficient Real Valued Serial NLMS

0 200 400 600 800 1000 1200
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Sample (k)

E
rr

or
 M

ag
ni

tu
de

Error Signal: 20 Coefficient Real Valued Serial NLMS

Floating Point
Fixed Point

Figure 13.7: Test Case 9: 20 Coefficient Real Valued Serial NLMS
136

0 500 1000 1500 2000
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Sample (k)

M
ea

n
S

qu
ar

e
E

rr
or

 (
A

ve
ra

ge
d

O
ve

r
5

S
im

ul
at

io
ns

)

MSE Analysis: 50 Coefficient Real Valued Serial NLMS

0 500 1000 1500 2000 2500
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Sample (k)

E
rr

or
 M

ag
ni

tu
de

Error Signal: 50 Coefficient Real Valued Serial NLMS

Floating Point
Fixed Point

Figure 13.8: Test Case 10: 50 Coefficient Real Valued Serial NLMS
137

13.5 Real Valued Arithmetic Parallel-Serial NLMS Filter Results

0 200 400 600 800 1000
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Sample (k)

M
ea

n
S

qu
ar

e
E

rr
or

 (
A

ve
ra

ge
d

O
ve

r
5

S
im

ul
at

io
ns

)

MSE Analysis: 20 Coefficient Real Valued Parallel−Serial NLMS

0 200 400 600 800 1000 1200
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Sample (k)

E
rr

or
 M

ag
ni

tu
de

Error Signal: 20 Coefficient Real Valued Parallel − Serial NLMS

Floating Point
Fixed Point

Figure 13.9: Test Case 11: 20 Coefficient Real Valued Parallel -
Serial NLMS
138

0 500 1000 1500 2000
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Sample (k)

M
ea

n
S

qu
ar

e
E

rr
or

 (
A

ve
ra

ge
d

O
ve

r
5

S
im

ul
at

io
ns

)

MSE Analysis: 50 Coefficient Real Valued Parallel − Serial NLMS

0 200 400 600 800 1000 1200
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Sample (k)

E
rr

or
 M

ag
ni

tu
de

Error Signal: 50 Coefficient Real Valued Parallel − Serial NLMS

Floating Point
Fixed Point

Figure 13.10: Test Case 12: 50 Coefficient Real Valued Parallel-Serial NLMS
139

13.6 Complex Valued Arithmetic Serial NLMS Filter Results

0 200 400 600 800 1000
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Sample (k)

M
ea

n
S

qu
ar

e
E

rr
or

 (
A

ve
ra

ge
d

O
ve

r
5

S
im

ul
at

io
ns

)

MSE Analysis: 20 Coefficient Complex Valued Serial NLMS

0 200 400 600 800 1000 1200
−1

−0.5

0

0.5

1

1.5

2

Sample (k)

E
rr

or
 M

ag
ni

tu
de

Error Signal: 20 Coefficient Complex Valued Serial NLMS

Floating Point
Fixed Point

Figure 13.11: Test Case 13: 20 Coefficient Complex Valued Serial NLMS
140

0 200 400 600 800 1000
10

−5

10
−4

10
−3

10
−2

10
−1

Sample (k)

M
ea

n
S

qu
ar

e
E

rr
or

 (
A

ve
ra

ge
d

O
ve

r
5

S
im

ul
at

io
ns

)

MSE Analysis: 50 Coefficient Complex Valued Serial NLMS

0 200 400 600 800 1000 1200
−1

−0.5

0

0.5

1

1.5

2

2.5

Sample (k)

E
rr

or
 M

ag
ni

tu
de

Error Signal: 50 Coefficient Complex Valued Serial NLMS

Floating Point
Fixed Point

Figure 13.12: Test Case 14: 50 Coefficient Complex Valued Serial NLMS
141

0 200 400 600 800 1000
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Sample (k)

M
ea

n
S

qu
ar

e
E

rr
or

 (
A

ve
ra

ge
d

O
ve

r
5

S
im

ul
at

io
ns

)

MSE Analysis: 20 Coefficient Complex Valued Parallel−Serial NLMS

0 200 400 600 800 1000 1200
−1

−0.5

0

0.5

1

1.5

Sample (k)

E
rr

or
 M

ag
ni

tu
de

Error Signal: 20 Coefficient Complex Valued Parallel − Serial NLMS

Floating Point
Fixed Point

Figure 13.13: Test Case 15: 20 Coefficient Complex Valued Parallel - Serial NLMS
142

13.7 Complex Valued Arithmetic Parallel-Serial NLMS Filter
Results

0 200 400 600 800 1000
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

Sample (k)

M
ea

n
S

qu
ar

e
E

rr
or

 (
A

ve
ra

ge
d

O
ve

r
5

S
im

ul
at

io
ns

)
MSE Analysis: 50 Coefficient Complex Valued Parallel−Serial NLMS

0 200 400 600 800 1000 1200
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Sample (k)

E
rr

or
 M

ag
ni

tu
de

Error Signal: 50 Coefficient Real Valued Parallel − Serial NLMS

Floating Point
Fixed Point

Figure 13.14: Test Case 16: 50 Coefficient Complex Valued Parallel - Serial
NLMS
143

13.8 Real Valued Arithmetic Parallel NLMS Filter Results

0 200 400 600 800 1000
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Sample (k)

M
ea

n
S

qu
ar

e
E

rr
or

 (
A

ve
ra

ge
d

O
ve

r
5

S
im

ul
at

io
ns

)

MSE Analysis: 20 Coefficient Real Valued Parallel NLMS

0 200 400 600 800 1000 1200
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Sample (k)

E
rr

or
 M

ag
ni

tu
de

Error Signal: 20 Coefficient Real Valued Parallel NLMS

Floating Point
Fixed Point

Figure 13.15: Test Case 17: 20 Coefficient Real Valued Parallel NLMS
144

0 200 400 600 800 1000
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

Sample (k)

M
ea

n
S

qu
ar

e
E

rr
or

 (
A

ve
ra

ge
d

O
ve

r
5

S
im

ul
at

io
ns

)

MSE Analysis: 50 Coefficient Real Valued Parallel NLMS

0 200 400 600 800 1000 1200
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Sample (k)

E
rr

or
 M

ag
ni

tu
de

Error Signal: 50 Coefficient Real Valued Parallel NLMS

Figure 13.16: Test Case 18: 50 Coefficient Real Valued Parallel NLMS
145

13.9 Complex Valued Arithmetic Parallel NLMS Filter Results

0 200 400 600 800 1000
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

M
ea

n
S

qu
ar

e
E

rr
or

 (
A

ve
ra

ge
d

O
ve

r
5

S
im

ul
at

io
ns

)

Sample (k)

MSE Analysis: 20 Coefficient Complex Valued Parallel NLMS

0 200 400 600 800 1000 1200
−1

−0.5

0

0.5

1

1.5

2

Sample (k)

E
rr

or
 M

ag
ni

tu
de

Error Signal: 20 Coefficient Complex Valued Parallel NLMS

Floating Point
Fixed Point

Figure 13.17: Test Case 19: 20 Coefficient Complex Valued Parallel NLMS
146

0 200 400 600 800 1000
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

M
ea

n
S

qu
ar

e
E

rr
or

 (
A

ve
ra

ge
d

O
ve

r
5

S
im

ul
at

io
ns

)

Sample (k)

MSE Analysis: 50 Coefficient Complex Valued Parallel NLMS

0 200 400 600 800 1000 1200
−1

−0.5

0

0.5

1

1.5

2

Sample (k)

E
rr

or
 M

ag
ni

tu
de

Error Signal: 50 Coefficient Complex Valued Parallel NLMS

Figure 13.18: Test Case 20: 50 Coefficient Complex Valued Parallel NLMS
147

	Abstract
	Test Case 20: 50 Coefficient Complex Valued Parallel NLMS......................................147

	1 Introduction
	1.1 Adaptive Signal Processing
	The area of adaptive signal processing is concerned with the design of self-learning filters for a variety of applications, [1],[2],[3]. The generic model of an adaptive filter is given in Figure 1.1. Here, we consider the adaptive filter as being a ...
	The commonly used notation given in the literature is now defined:
	There are several general scenarios in which adaptive signal processing may be employed. The most exploited scenario from a communications standpoint is that of adaptive equalisation [3]. Here, the adaptive filter is employed in order to counter the ...

	1.2 Least Mean Squares Algorithm
	One of the most popular and widely used adaptive filtering algorithms in both industry and academia is the Least Mean Squares (LMS) algorithm, which has been applied to a wide variety of applications such as equalisation, echo cancellation and adapti...
	The LMS algorithm, given in [1.1], [1.2] and [1.3], aims to find the optimal set of filter weights which shall minimise the MSE.
	where is a constant commonly referred to as the step size, with bounds (for stable convergence) defined in [1.4].
	N is the order of the LMS filter, i.e. the number of coefficients, and E[] is the expectation function.
	An alternative bound on the step size is given by 1.5, where is the greatest eigenvalue of the autocorrelation matrix . This shows that the convergence rate of the LMS algorithm is sensitive to the eigenvalue spread of the input.
	The LMS algorithm may be represented in either the real valued or complex valued form; the inclusion of the complex valued algorithm is a necessity for many practical applications, particularly in the context of communications systems, where the inpu...
	The complex LMS algorithm differs from the real valued LMS algorithm by the use of complex arithmetic operations (Figure 1.4), and a single complex conjugate operation which must be performed [1.6], [4].
	where denotes the complex conjugate operation.
	The hardware cost of the complex valued algorithm is significantly greater than that of the real valued case, arising from the computational requirements of complex arithmetic. Complex addition incurs double the cost of real valued addition, whereas ...

	1.3 QRD- Recursive Least Squares Algorithm
	The LMS algorithm uses the mean squared error as the performance criterion with which to update the filter weights. Due to this approximation, the rate at which the error signal converges towards steady state is limited. Where algorithm performance i...
	The cost function of the least squares solution is defined as the total sum of squared errors:
	where is the error signal vector, representing the difference between input and desired signal.
	where is the desired signal vector, is the input data matrix, and is the weight vector.
	Rearranging the result in [1.11] gives the least squares solution for computing the weight vector, [1.12].
	The recursive least squares solution can be derived from [1.12]. The derivation will not be presented here for brevity, however the reader is referred to [2] for a full proof. The (complex) RLS algorithm is presented in [1.13],[1.14], [1.15], [1.16].
	where should be initialized to . is a small constant referred to as the forgetting factor which de-emphasizes older samples. is the identity matrix. All other parameters are initialized to 0. H represents the Hermitian transpose.
	It is well known that the RLS algorithm suffers from numerical stability issues in the presence of finite precision arithmetic. The requirement for division operations results in high dynamic range requirements, leading to floating point arithmetic b...
	The QR factorization takes an input matrix .and decomposes it into an upper triangular matrix and orthogonal matrix , as shown in Figure 1.5.
	Now, looking back at the least squares solution given by [1.12], we can substitute and simplify to reach the QR least squares solution, [1.21], where the k indes is dropped for the sake of clarity:
	Performing the QR decomposition is numerically robust in the presence of finite precision arithmetic. Once the QR decomposition has been performed, the least squares solution weight vector, , can be found via straightforward backsubstitution, (Figure...

	1.4 FPGA Technology
	FPGAs are a type of VLSI technology which offer a compromise between the performance of Application Specific Integrated Circuit (ASIC) implementation and the flexibility of DSP implementation. From a high level of abstraction, an FPGA can be thought ...
	In contrast to an ASIC implementation, FPGAs are programmed (and reprogrammed) by the designer as required after manufacture. ASICs on the other hand are manufactured for one specific purpose and are limited in terms of programmability after fabricat...
	DSP/GPUs also offer an implementation platform which can be repeatedly programmed “in the field”. However, such devices are general purpose for many applications, and as such there is a performance hit from the associated generality of the hardwa...
	While FPGA implementation features the aforementioned advantages, such devices are not straightforward to program for non hardware orientated engineers. In contrast to implementation on floating point DSP, FPGAs in general will support only fixed poi...
	The so called “design-gap” when programming FPGAs due to the unfamiliarity of many embedded firmware engineers with hardware-specific concepts is one of the primary blocking factors for more widespread FPGA adoption. In light of this, many FPGA v...

	1.5 Aims and Objectives
	In this project, we seek to close the design gap associated with the FPGA implementation of the LMS adaptive filtering algorithm. A high level compiler is detailed which allows for many implementation styles to be rapidly prototyped. The user is able...
	The work carried out on the Adaptive LMS Compiler began during the course of the BEng (Hons) final year project (University of Strathclyde, 2011). At the end of this period, fully parallel and fully serial architectures for LMS supporting either real...
	In addition to the non-trivial extension of the LMS architecture to support parallel-serial processing, it was during the MPhil programme that the extensive numerical verification and hardware implementation study was carried out. This study represen...
	The thesis also presents a detailed survey of QRD-RLS implementation from the FPGA design perspective. Discussion is given on the various architectural design optimizations which can be made in order to form an effective, fixed point implementation. ...

	1.6 Project Outline
	As previously noted, the project is divided into two separate but related parts. Firstly, practical work is carried out in the design of an “Adaptive LMS Compiler”, suitable for automating the generation of RTL for LMS based adaptive filtering. S...
	In the first part of this report, the work carried out on the creation of an Adaptive LMS Compiler is detailed. Chapter 2 gives an overview of the various hardware architecture designs for fully parallel, fully serial and parallel-serial LMS/NLMS arc...

	2 Hardware Architecture Overview
	The Adaptive LMS Compiler offers the user the option of both the standard LMS algorithm and the NLMS algorithm in both the real valued and complex valued form. Three distinct filter architectures - fully parallel, fully serial and a flexible parallel...
	In this section, a brief overview of each architecture (parallel, serial, parallel - serial) is given - where the operation of the control hardware needed in order to implement varying degrees of serialisation is discussed. Further information is als...
	2.1 FPGA Design Introduction
	In this section, an overview of the fundamental FPGA design terminology is provided. An important concept to begin with is that of the critical path. When designing for hardware, the maximum rate at which the device can be clocked is limited by the m...
	In order to increase the clock frequency, thereby increasing the overall throughput of samples from the input to the output of the circuit, a technique known as pipelining is employed. Pipelining consists of inserting registers throughout the combina...
	Another key concept of FPGA design is that of parallelization. When designing for custom hardware, the designer has complete control over the hardware resources used in the architecture. For the example of an FIR filter - in fully parallel mode, a se...
	The following sections describe the hardware architecture for the Adaptive LMS Compiler. The compiler allows the user to have full control over the hardware resources used to implement a filter of given order.

	2.2 The Fully Parallel LMS Filter
	The most straightforward manner by which the LMS algorithm may be mapped into hardware is that of a fully parallel architecture (Figure 2.3). In this implementation, two Multiply ACcumulate (MAC) components are required for each coefficient of the fi...
	Although the fully parallel architecture has the highest hardware cost of the various architectures, the advantage of this approach lies in the relationship between the maximum clock frequency and the maximum sampling frequency, given by , which allo...

	2.3 The Fully Serial LMS Filter
	In order to allow for a scalable implementation to be realised, the LMS filter may be serialised, whereby a single MAC unit (which when combined with appropriate control logic is referred to as a Processor Core (PC)) is time-shared in order to calcul...
	To achieve full serialisation, it is necessary to operate the processor core at a faster rate than the input data, and hence the sampling frequency of the input data is constrained by an integer factor, [2.1].
	where N is the number of coefficients computed by the serialised processor core, PIPELINE is an integer delay incurred by pipeline optimisation (architecture and parameter dependent) and is the maximum clock rate of the FPGA - which the processing el...
	Figure 2.2 provides an overview of the fully serial architecture. The Processor Core (PC) is the main computational unit of the design, and computes both the filter output and the updated weight values. The Error Signal / Weight Update, (ES/WU), logi...
	Also present in the design is an Input Control (IC) unit - this component controls the input data samples that are passed to the PC, and takes into account the pipeline delay of both the multiplier present in the PC and that present in the ES/WU logi...
	Figure 2.5 gives a closer look at the internal operation of the Processor Core. The PC consists of a single MAC component which is time shared via a 2:1 multiplexer for both the filtering operation and the weight update operation. A set of internal s...
	The PC must receive the correct samples of input data at the appropriate sample instants in order for the numerical integrity of the algorithm to be maintained. To achieve this, a State Machine Counter (SMC) (i.e a combination of an FSM and a counter...
	An overview of the sample by sample output from the SMC is given in Figure 2.7. Where zeros are present, this indicates that the state machine is taking into account the pipeline stages of the architecture.

	2.4 The Parallel-Serial LMS Filter
	The flexibility that serialisation brings to the design may be extended further with the development of a parallel-serial type architecture. The parallel-serial LMS filter uses a parallel array of PCs, each of which serially computes the results of s...
	The parallel-serial architecture allows for a trade off to be reached between the hardware cost and throughput requirements of the design. As evidenced by [2.2], the hardware cost (number of PC components) may be traded against the number of coeffici...
	where N is the total number of coefficients computed in the LMS filter, PC is the total number of Processor Core components employed in the parallel-serial design and is the overhead incurred due to pipeline optimisation (architecture and parameter d...
	Note that the sampling frequency calculation may also be expressed in the alternate form given by [2.3].
	where is the number of coefficients computed per PC.
	An overview of the parallel serial LMS architecture is given in Figure 2.9. The original single ASR of length N featured in the fully serial architecture is partitioned into several ASRs of length , referring to the number of coefficients computed pe...
	As each PC computes only a partial sum of the overall filter output, it is necessary for a parallel addition of each of the PC outputs to be performed. To achieve this, an adder tree type structure is used (as opposed to a linear summation). The adde...
	Following the tree summation stage, an accumulator component is present - this is necessary due to the serial nature of the design. Recall that at each iteration, each PC will compute the result of only a single coefficient, and hence the PC summatio...
	It should be noted that the weight update operation is contained within the PCs and follows the same process as was described for the fully serial case.
	The sample by sample operation of the parallel-serial LMS filter design is summarised in Figure 2.10, for the case of a 16 coefficient filter comprising 4 PCs computing 4 coefficients each. In order to be concise, the diagram does not take into accou...

	2.5 The Normalised LMS Filter and Smith’s Algorithm
	The Adaptive LMS Compiler also features support for the Normalised LMS (NLMS) algorithm, with a choice of either parallel, serial or parallel-serial architecture and real or complex valued arithmetic. NLMS is perhaps the most popular variant of the L...
	As previously discussed, the step size bounds of the conventional LMS algorithm are given by [2.4].
	where N is the tap length of the LMS filter and is the expectation function performed upon the input data samples.
	From this straightforward relationship, it is observed that in order to guarantee convergence using the LMS algorithm, prior knowledge of both (a) the filter length and (b) the magnitude values of the input data samples must be known. While (a) is us...
	The NLMS algorithm guarantees convergence, provided that the normalised step size is bounded by . The signal flow graph of the NLMS architecture is given in Figure 2.11, where the algorithm has been implemented in a parallel-serial type architecture.
	The NLMS algorithm is summarised by [2.5], [2.6] and [2.7], in the complex form. The real valued equivalent is obtained by substituting the Hermitian operations for transpose operations and by removing the conjugation operations.
	where is used to denote the Hermitian transpose (i.e the conjugate transpose) and is used to denote the complex conjugate.
	The hardware realisation of the NLMS algorithm in the parallel-serial form is given by Figure 2.11.
	A key point regarding the NLMS algorithm is the requirement for not only multiply and add operations, but also for the operation of division. Fixed point division is well known to be numerically ill-conditioned, producing both very small and very lar...
	The issue of dynamic range requirements arising from numerical ill conditioning in fixed point implementation is often met with one of two different solutions:
	The first solution is perhaps obvious, however the issue is that the cost of the hardware implementation is somewhat linked to the wordlength that is specified. For this reason, the second solution is employed. For the case of real valued arithmetic,...
	Consider the conventional “pen and paper” formula for complex division, arising from rudimentary algebra, [2.8].
	With reference to [2.7], consider the denominator of the complex division operation, . Due to the use of Hermitian operations, it is possible to reduce the complex multiplication to a simpler form:
	noting that and , we then obtain:
	As is achieved via the sum of individual samples used within each tap of the NLMS filter (see Fig.2.11), the value at the output of the summation will rise as the number of taps of the NLMS filter increases. Hence a greater number of integer bits wil...
	In addition to the formula presented in [2.8] for performing complex division, there also exists a method of computation known as Smith’s algorithm, [8]. In this method, either or is extracted from the denominator, resulting in an algorithm which...
	From a first glance, it might appear that Smith’s algorithm has an increased computational complexity. However, by performing appropriate manipulation of the algorithm, an implementation can be achieved which requires fewer dedicated arithmetic com...
	Firstly, it can be noted that in the separate formulae given in parenthesis in [2.11], the arithmetic operations remain constant, only the values passed to each operation change. Hence, the equation may be re-written in a more general form, [2.12].
	A 2:1 multiplexer can be applied to each of the generic variables given in [2.12], where the SELECT signal is controlled by a logical test to determine whether or . The values which each variable should take with respect to the SELECT signal are list...
	From Table 2.11, it is apparent that there is a degree of commonality between the values which each variable should take in each case. In fact, the number of variables can be reduced to four, (as opposed to the sixteen listed), as illustrated in Table 2
	The previously given equation for Smith’s algorithm may then be rewritten as a result of the commonality identified in the algorithm, [2.13].
	By writing the equation in this form, we can note further commonality in the arithmetic operations performed, allowing for the complex division operation to be performed using 3 divides, 3 multiplications, 3 additions, four 2:1 multiplexers and a low...

	2.6 Sample Rate and Hardware Cost Trade Off
	In each of the various LMS architectures, there is a fundamental trade off to be made between the achievable sample rate of the design, and the hardware cost. As the folding factor (i.e. the degree of serialisation) is increased, then the work which ...
	Although the sample rate restrictions have been highlighted in previous sections, they have not been given a comprehensive study. In this section, the corresponding sample rate equation for each of the various architectures is given definitively.
	In the fully parallel case, for both the LMS and NLMS algorithms (real valued and complex valued), there is no serialisation imparted on the design, and hence the sample rate of the input data can match the rate at which each element of the LMS archi...
	For the case of the fully serial LMS/NLMS filter architecture, the number of clock cycles taken to compute the result is a function of the number of coefficients employed in the design, which is multiplied by two seeing as a single PC component is em...
	For the case of the complex valued LMS/NLMS algorithm, complex valued multipliers mean that an extra pipeline delay is incurred of three clock cycles, giving the sample rate equations for the fully serial complex LMS/NLMS algorithm by [2.16].
	When the parallel-serial design is considered, then there is a further clock cycle overhead incurred, due to the pipelined adder tree type structure used to compute the sum of the output of the individual serialised PC units. Hence, the sample rate e...
	where ceil() is the ceiling function (rounding up to the nearest integer) and log2 represents the base two logarithm.

	3 Numerical Performance Analysis
	The compiler has been tested for the numerical accuracy of the results, in order to ensure that the hardware implementation of the design matches the original algorithm given in the literature. To achieve this, the fixed point Adaptive LMS Compiler h...
	The “Golden Reference” used is the LMS Filter block found in the DSP System Toolbox blockset. In order to compare the results within Simulink, a Xilinx System Generator “Black Box” block is used, which allows the user to simulate custom HDL w...
	For each test scenario, a Mean Squared Error (MSE) performance analysis has been carried out. In such an analysis, several simulations of different random input data are carried out, where the parameters of the LMS IP core are fixed. The sample by sa...
	where:
	= floating point error signal.
	= fixed point error signal.
	3.1 Real Valued Arithmetic Serial LMS Filter Results
	Figure 3.1 and Figure 3.2 show the numerical simulation results for the case of a 20 coefficient filter and a 50 coefficient filter. It can be observed that as the relative magnitude of the error signal decreases, there is a closer match between the ...
	The results for the remaining architectures all follow a similar trend. For the purpose of completeness, these results are contained in Section 13: Appendix A.

	4 Hardware Implementation Results
	In this section, results from the implementation of the Adaptive LMS Compiler using the Xilinx ISE synthesis and implementation tool are given. A Xilinx Virtex 6 XCV0605 FPGA is targeted in all cases. The results show the relative trade-offs which ca...
	4.1 FPGA Technology Mapping
	When targeting an HDL design to an FPGA, there are several metrics which can be used to evaluate the overall performance and cost of the design. Firstly, it is common to evaluate the overall performance of the design via the maximum critical path. Ta...
	It is important to realise however that this is not necessarily the same as the maximum sampling frequency of the incoming data. If parts of the design are serialized, then this will limit the sampling frequency at the input. The design will require ...
	The Adaptive LMS Compiler allows the user to impart varying degrees of serialization on the design, which allows for trade offs to be made between the resources utilized on the device and the overall sampling frequency. There are several resources in...
	In the following analysis, three basic units are examined - LUT utilization, DSP48 utilization and slice register utilization. The LUT is a basic building block of the FPGA fabric. Any digital function can be represented by the interconnection of LUT...
	In order to investigate the hardware cost in terms of multiply-add operations, the DSP48 utilization can be investigated. DSP48s are high speed multiply-add resources present on Xilinx FPGA for the purpose of performing high speed arithmetic operatio...
	The final basic hardware resource under investigation is the slice register utilization. Slice registers are small memory elements which can be interconnected to form shift registers. For designs where some parts of the architecture are serialized, d...

	4.2 Real Valued Arithmetic Results
	Firstly, the sampling frequency achieved under varying degrees of serialization is quantified. As expected, the highest possible sampling frequency rates are achieved under fully parallel operation. The parallel-serial architecture allows trade-offs ...
	It is interesting to note that the sampling frequency results obtained from the NLMS configuration are in general lower than those obtained from the LMS configuration. The NLMS architecture features division operations which incur a high critical pat...
	As previously noted, examining the DSP48 utilization allows the correct operation of the Adaptive LMS Compiler to be verified. For the parallel-serial architecture, the multipliers are time-shared and therefore there should be a constant DSP48 cost w...
	As LUTS are general purpose logic elements used in all the architectures for various functions, the cost scales up with increasing number of overall coefficients. The LUT cost is far greater in the NLMS architecture when compared to the LMS architect...
	The slice register utilization increases across all the architectures with an increasing number of coefficients, however it is of particular interest to note this resource cost for the serial and parallel-serial arhitectures. For these architectures,...

	4.3 Complex Valued Arithmetic Results
	In general, the sampling frequencies obtained when complex arithmetic is employed are lower than those obtained for real valued arithmetic. Complex valued arithmetic operations are achieved as a compound of several real valued operations, therefore t...
	Due to complex valued arithemetic being formed as a compound of several real valued operations, the DSP48 utilization is in general greater for the complex valued case when compared to the real valued arithmetic equivalent. The general relationship o...
	The overall LUT utilization is greater when complex valued arithmetic is employed as opposed to real valued arithmetic, due to the increased operation count incurred.
	Again, the general relationship between increasing number of coefficients and increasing resource consumption is observed for slice register utilization under complex valued arithmetic. The overall cost is increased by a factor due to the extra opera...

	4.4 Discussion
	There are a number of interesting observations to be made from the data regarding differing sample rates, LUT and slice register utilization between the different architectures. In this section, a concise summary of the most important results is given.
	Firstly, it can be observed from the plots of sampling frequency against number of processor cores/ coefficients per core, there is a clear trend towards decreasing sampling frequency with increasing coefficients per core/ number of processor cores. ...
	Looking at the results of DSP48 utilization amongst the various architectures, a linear increase in the number of DSP48s occupied can be observed as the number of filter coefficients increases. This is the expected result - the number of coefficents/...
	A general trend of utilization remaining flat can be observed for all the plots concerning parallel-serial implementation. While the number of DSP48s only varies with processor core number, there is a slight increase in the slice register utilization...
	Regarding the slice register utilization results for the parallel/serial cases, it is interesting to note that initially the fully serial implementation is more expensive to implement than the fully parallel implementation in terms of the number of r...
	The plots of LUT utilization for fully parallel and fully serial architectures illustrate a linear increase in the resources used for the fully parallel case against a relatively constant LUT utilization for the fully serial implementation. This illu...
	In general, the plots show the expected trend in terms of trade off between hardware cost and data throughput - as the filter is serialized to a greater degree, the overall throughput of the filter is decreased. This is a fundamental engineering trad...
	The LMS algorithm is a robust and relatively cheap algorithm to implement, however it can be slow to converge and is sensitive to the eigenvalue spread of the autocorellation matrix, (see 1.5). As the demands for increasing data rates continue, there...
	This part of the thesis seeks to give a detailed overview of the various methods available for performing QRD-RLS, with particular focus on the Givens based systolic array architectures which are highly suited to VLSI implementation. Section 5 provid...

	5 QR Decomposition Methods
	The QR Decomposition is a process for which an input matrix, is transformed into the product of an upper triangular matrix and orthogonal matrix . The three well known methods for performing such a procedure are:
	- Gram Schmidt
	- Householder Reflections
	- Givens Rotations
	When studying the relative merits of an algorithm, attention should be paid to the numerical stability, memory requirements, and operation count. For FPGA/ASIC implementation, the potential for parallelization also plays a key role. If the algorithm ...
	5.1 Gram Schmidt
	Gram Schmidt, [10], provides a procedure by which a set of k linearly dependent vectors can be transformed to form an orthonormal basis spanning the sub-space k. A property of the orthogonal matrix , is that it forms an orthonormal basis of the space...
	The procedure comprises subtracting from its projection, onto the subspace currently constructed. The projection operation is defined by [5.1].
	The procedure then follows as:
	The classic Gram-Schmidt method presented above can produce vectors, , that are non- orthogonal in the presence of finite precision arithmetic due to small rounding errors etc. A simple modification which incurs no extra operation cost can be used to...
	Instead of carrying out the calculation in one instruction, firstly calculate:
	then
	Therefore the intermediate results are re-orthogonalized against one another, resulting in numerical stability in the presence of non-exact arithmetic. Note that, although the operation count is not increased in the modified routine, the memory acces...
	In order to use Gram Schmidt to compute the QR decomposition, the method is applied, treating the k columns of the input matrix as the vectors to be orthonormalized. Then,
	and

	5.2 Householder Reflections
	Householder reflections, [13], provide a numerically robust method to compute QR. It is often the preferred method for computation on sequential machines, used in many numerical computing libraries, e.g LAPACK [14]. Although Gram Schmidt can produce ...
	Householder transformations are a linear, norm preserving procedure. The process is illustrated graphically in Figure 5.1, below. For ease of exposition, a 2-dimensional subspace is shown, however the method can be readily extended to higher dimensio...
	The vector can be constructed from:
	where represents a column of the identity matrix with column index i.
	The Householder matrix is then constructed using:
	where is the identity matrix.
	Householder reflections can therefore be used to form a series of matrices, where:
	Therefore, in order to perform a full QR decomposition of the input matrix, a series of reflections must be performed (where is the number of columns), (Figure 5.2).
	Every non-zero element of the matrix is altered when each orthogonal matrix is applied. The calculation of each Householder matrix, , can only be performed after the orthogonalization matrix has ben applied. Therefore, it is not possible to paralleli...
	Householder is an excellent method for floating point processor implementation. The regularity of the memory access pattern, coupled with the use of common floating point operations makes the algorithm very suited to modern processor architectures. T...

	5.3 Givens Rotations
	The method of Givens rotations, [15], like Householders reflections is a norm-preserving, orthogonal transformation. Unlike Householder reflections, however, Givens rotations can be more readily parallelized. The basic operation is that of a [2x2] ma...
	Such a matrix will rotate the [2x1] element vector by the specified angle. From straightforward geometry, we can compute the angles required in order to rotate the vector onto the axis:
	In matrix notation, we can represent the Givens Matrix, G, as:
	For a Givens rotation performed on the row , column , the , terms will appear on the intersection points of row , column .
	Unlike Householder reflections, for each element that is annihilated from the input matrix, only a subset of the elements of the matrix are altered, with each unitary rotation matrix that is applied (see Figure 5.3). This opens up potential for Given...
	To ease the computational requirements we desire an algorithm which can recursively update the matrix without having to perform a full matrix-by-matrix multiplication at each time step. Consider the example illustrated in Figure 5.4, where a full QR ...

	6 Givens Based QRD-RLS Implementation
	In this section, the basic concepts behind Givens rotation based systolic array architectures are developed. We look at how an array of common processing elements can be interconnected to form a recursive QRD processor. Highly efficient CORDIC arithm...
	6.1 QRD-RLS Systolic Array Architecture
	We previously examined how the QRD could be formed recursively with each new row of data that arrives. This is the essential idea behind the well known systolic array architecture for QR decomposition (Figure 6.1), first proposed by Gentleman and Kun...
	In order to form the least squares solution, Gentlemen and Kung also showed in [17] how an “on the fly” least squares computation can be performed concurrently with the triangularization of the input matrix. Consider that the essential problem is...
	This can be achieved by appending an additional column to the systolic array, and orthogonalizing in the same manner, (Figure 6.2).
	The least squares solution can then be obtained via backsubstitution, as will be discussed in Section 7.1. Before moving on however, it is important to note the potential for CORDIC arithmetic to be used in the architecture.

	6.2 CORDIC Arithmetic for Boundary/Internal Cells
	The Coordinate Rotation DIgital Computer (CORDIC) algorithm, [18],is a numerically robust, multiplier free algorithm suitable for performing a variety of trigonometric functions using only shift and add arithmetic. It arises from a simplification of ...
	The classic Givens rotations are given by:
	after simple rearrangement:
	Now, consider when the terms are restricted such that , where is a real valued integer number. That is to say, only rotations which equate to powers of two terms are permitted. Then, [6.4], [6.5] become:
	The decision factor in [6.6], [6.7] takes into account both clockwise and anti- clockwise rotations.
	Now in order to reduce the algorithm to a shift-add form, the term is dropped. Therefore, each rotation that is performed incurs a gain of . If we perform a rotation as a fixed succession of clockwise and anticlockwise power of two micro- rotations, ...
	In order to perform a rotation by an arbitrary angle, we require decision logic at each micro-rotation to determine whether to rotate clockwise or anti-clockwise. This can be performed by introducing a third, accumulator, which keeps track of the cu...
	By determining whether the current angle held in the accumulator is greater than or less than the desired angle of rotation, the decision factor for the next stage in the CORDIC pipeline can be generated:
	In the example shown in Figure 6.3 below, it is desired to rotate the input vector by . After the first rotation, the angle stored in the angle accumulator is . The second rotation therefore performs an anti-clockwise rotation to bring the accumulate...
	In addition to being able to rotate an input vector by a given angle, CORDIC can also be used in the so-called “Vectoring Mode”. In this mode, the input vector is iteratively rotated onto the x axis. In order to achieve this the decision factor i...
	An example of CORDIC operating in the vectoring mode is given in Figure 6.4 below. The vector has an initial angle of . The first rotation pushes the vector over the x axis by . Therefore, the second rotation is performed in the anticlockwise directi...
	:
	CORDIC arithmetic can be used to perform the processing tasks required by the boundary and internal cells of the systolic array architecture previously discussed. Using CORDIC in vectoring mode will annihilate an element of the input vector by forcin...

	6.3 Complex Systolic Array using CORDIC Arithmetic
	Up until now, we have only considered the processing of real valued input data in the systolic array. The equations for the boundary and internal cell shown in Figure 6.1 can be readily extended to the complex domain.
	The extension of CORDIC arithmetic into the complex domain for QRD-RLS filtering has been investigated independently in both [21] and [22]. To achieve the boundary cell operation, the circuit shown in Figure 6.5 can be used. The circuit takes in the ...
	To compute the complex Givens rotations, the circuit shown in Figure 6.6 is employed. The components labelled Givens rotation differ slightly in [21] and [22]. In the former, a standard CORDIC rotation cell is employed, while in the latter, the Given...

	7 Least Squares Solution Computation
	In previous sections we have examined how a systolic array with CORDIC arithmetic results in an efficient architecture for performing the QRD and forming the equation . Now we will explore several ways in which the least squares solution can be obtained
	7.1 Back-Substitution
	An obvious method for extracting the weights is to directly solve the system of equations formed by the upper triangular matrix, using Gaussian elimination, also known as back- substitution. Indeed, this is the method proposed by Gentleman and Kung i...
	There are two immediate problems with this approach however:

	7.2 Implicit Weight Extraction
	The previously discussed backsubstitution approach has several limitations which prevent a full systolic array implementation being realized which can keep pace with the input data. McWhirter, [25], was the first to propose a systolic architecture wh...
	McWhirter introduces an additional processing requirement to the boundary cells of the systolic array. Now, the boundary cells are also required to compute the product of cosines, produced by the diagonal interconnect of boundary cells, (shown in Fig...
	As an alternative to computing the product of cosines in the boundary cells, an additional column of internal cells can be appended onto the systolic array where the input is unity (Figure 7.3). This can result in a more regular architecture which ca...
	There are many applications where only the error signal is required. This is common in the adaptive beamforming scenario, where the antenna array is steered using the residual obtained from the least squares solution.

	7.3 Weight Flushing
	A trivial extension to the architecture mentioned in the previous section allows the filter weights to be extracted directly. The method known as “weight flushing”, [27], consists of freezing the systolic array once the QRD has been performed, an...

	7.4 Downdating Method
	Building upon the McWhirter Systolic array with direct residual extraction previously presented, we can create an architecture that can extract the filter weights at the same rate as the QRD is computed. The QRD-RLS downdating architecture, discussed...
	With the downdating method, we apply the same orthogonal rotation matrix, , (used to create), to a block matrix consisting of and , [7.2].
	After some simplification, the recursion shown in [7.3] is obtained.
	We can therefore form a recursive, parallel weight extraction QRD-RLS systolic array architecture by appending an additional lower triangular array to compute and a row of weight extraction cells which satisfy the recursion given in [7.3], as shown i...
	Two new cells are therefore introduced into the systolic array architecture, namely the downdating cell and weight extraction cell. The downdating cell performs almost the same operation as the internal cell in the upper triangular (left-side) QRD ar...

	8 Optimization for Throughput Increase or Resource Minimization
	In this section several techniques are examined in order to maximize the throughput of the systolic array architecture, or for the conflicting goal of minimizing the resources consumed.
	8.1 Fine Grain Pipelining
	The previously discussed systolic array architectures are fully pipelined at the cell level, commonly referred to in the literature as coarse-grain pipelining. The iteration bound is therefore limited by the minimum time taken to compute the result o...
	Before discussing the potential strategies to mitigate against the lower iteration bound presented at the cell level, we will first look at the problem in greater detail. Consider the boundary cell in the systolic array, which must rotate the vector ...
	Due to the presence of the feedback loop, it is not possible to pipeline inside the CORDIC rotation block without affecting the numerical behaviour of the algorithm. It is also commonplace to select the number of iterations of the CORDIC algorithm as...
	The problem of inserting pipeline registers where a feedback loop is present is clearly not isolated to QRD-RLS. Pipelining a system where recursion is present is a well studied problem. The look ahead technique [31] is a well known method for allowi...
	The look ahead technique has been applied to the problem of pipelining IIR filter structures in [32]. A simple example can be used to explain the concept. Consider a first order IIR digital filter which can be described by [8.1].
	The recursion when looking ahead one sample is represented by [8.2].
	We can observe that [8.1] and [8.2] have the same iteration bound. If however, we recast [8.2] into the form given in [8.3], we can pipeline the multiplier in the feedback path, achieving a speed up of two.
	In the z-domain, such a transformation corresponds to inserting extra poles and zeros in the unit circle which cancel one another out. Extra concurrency is created in the system without affecting the numeric behaviour. Figure 8.2 shows the look ahead...
	The look ahead technique has been applied to the problem of QRD-RLS systolic array implementation in [34], to produce a QRD-RLS systolic array which can be arbitrarily pipelined without loss of orthogonality. It is assumed that CORDIC arithmetic is u...
	In order to introduce additional concurrency to the QRD update process, each upper triangular element, , is formed as the update of a block of input data, size , where is the desired speedup. The operations of the boundary cells in a [4x4] QR decompo...
	The recursive update of the elements are computed with each time step, and so pipeline registers cannot be placed across the feedback section in the current form. The annihilation reordering transformation instead annihilates the block input data in ...
	The resulting hardware architecture of the processing element, shown in Figure 8.5, allows the extra latency created by the transformation to be applied across the CORDIC cell contained in the feedback loop, [44].
	The resulting [4x4] systolic array obtained after annihilation reordering look ahead is applied with a desired speedup of 3 is shown in Figure 8.6. The increased performance resulting from additional pipeline registers results in a much greater hardw...

	8.2 Resource Sharing Folded Systolic Array
	While the previous section considered techniques to allow for the maximum possible throughput from a QRD-RLS systolic array architecture, there are also scenarios where the required throughput is much lower than that provided by the fully parallel sy...
	When folding the QRD-RLS systolic array architecture, either a linear array or processing element style architecture can be chosen, as shown in Figure 8.7. In the linear array style of architecture, the fully parallel QRD-RLS systolic array architect...
	Mapping the fully parallel QRD-RLS systolic array onto a single QRD-RLS processor is an interesting problem. Due to the different functionality of the internal and boundary cells, in [24], two separate CORDIC blocks are used for internal and boundary...
	The work in [36] seeks to alleviate the requirement for two distinct components to compute boundary cell and internal cell functions. In this implementation, a modified version of the CORDIC algorithm, referred to as Coarse-Angle Rotation Mode CORDIC...

	9 Comparison to Gram Schmidt Implementation
	Although the Givens rotation based systolic array is immediately favourable for FPGA/ ASIC implementation, there are scenarios where Gram-Schmidt/Householder methods can be considered. To allow a balanced conclusion to be drawn between the different ...
	The requirements of the LTE standard are considered in order to influence the hardware architecture. The authors assume a [4x4] matrix is to be decomposed, from the format specified in [40].The authors relate the period over which this can be perform...
	With m/s being the speed of light, km/h being the speed of the receiver and GHz being the carrier frequency, the coherence time is calculated as 1.8ms. For LTE, Orthogonal Frequency Division Multiplexing (OFDM) is used, which gives rise to a maximum ...
	In addition to the requirement in terms of computation time, the reusability of the hardware for other high level functions required in LTE is considered. In addition to MIMO decoding, the Fast Fourier Transform (FFT) is another high level function r...
	With the aforementioned requirements in mind, a general purpose processing architecture based on Transport Triggered Architecture (TTA) is proposed [42]. This is a form of computing architecture which allows for parallel computing resources, such as ...
	The most demanding module of the processor in terms of computation is the inverse square root operation. To simply the operation, an approximation is used, which exploits the fact that a fixed wordlength of 16 bits is used throughout the architecture...
	where the trailing zeros are denoted by . Therefore:
	Then with the substitution in place:
	As the non-linearity is now softened in the square root calculation, a first order polynomial can be used to approximate the calculation. Seeing as the wordlength is fixed in this case, constant terms for computing the first order polynomial which yi...
	The resulting hardware architecture is able to compute the QRD of 2048 [4x4] input matrices within the time frame given by the coherence time of 1.8ms, using a master clock running at 160MHz. The architecture is generic enough that with minor modific...

	10 Conclusion
	The purpose of this work was to determine the key techniques, challenges and research trends in the implementation of adaptive filters. To achieve this, two objectives were set out at the beginning of the project:
	In this concluding section we will investigate some of the common themes between LMS and QRD-RLS implementation, along with future research directions in the topics touched upon in the thesis, before giving some final concluding remarks.
	Having studied both LMS and QRD-RLS implementations, it is possible to identify common techniques, considerations and challenges between the two algorithms. In this subsection, the key overlapping areas shall be discussed.
	In both implementations the application of pipelining proved difficult. Intuitively, we can understand that this is due to the recursive operations present in the algorithm. For the LMS algorithm, there does not exist a solution which does not result...
	Both algorithms can also be unfolded in a variety of ways. The LMS algorithm perhaps offers more flexibility in this regard, as the parallel-serial architecture allows for many combinations of coefficients per processor core. The analog in terms of Q...
	As with any project, time was a major constraint, therefore there were parts of the LMS compiler, that if given extra time could have been improved.
	In order to form the serial and parallel-serial architectures, control logic was created in order to regulate the flow of input data to the MAC units used to implement the algorithmic operations. In both of the implementations an Addressable Shift Re...
	In addition to the modifications to the memory architecture used in the LMS compiler, further work could be carried out in the pipelining of the serial and parallel-serial architectures. Although in both the fully serial and parallel-serial cases, th...
	With the two modifications discussed for the LMS algorithm in place, and therefore the critical path in the architecture truly minimized, it is possible that the serial and parallel- serial architectures could achieve clock frequencies in the region ...
	Therefore, if the LMS compiler is modified to achieve higher clock frequency, then the resulting filter can be achieved using the parallel-serial option of the LMS compiler, at reduced hardware cost and higher processing rate.
	Regarding the research carried out on QRD-RLS implementation, it seems that the pipelining of the systolic array architecture has the potential to be studied further. The current limiting factor of the intra-cell latency is quite limiting for FPGA im...
	In the beginning of this thesis, it was implied that the superior convergence properties of the QRD-RLS algorithm would result in widespread usage as adaptive equalizers in future communications systems. It is therefore interesting to note the trend ...
	Although the LMS algorithm is relatively straightforward to implement in the fully parallel form, the serial and parallel-serial architectures are quite complex in terms of the memory and control structures used to shuttle data to/from the shared com...
	The research into QRD-RLS implementation highlighted the issues with the explicit weight extraction architectures. The backsubstitution architecture was shown to be ill suited for implementation on the FPGA due to the numerical ill conditioning of th...
	As both the data throughput requirements and general complexity of wireless systems increase, we can expect that a QRD-RLS compiler will be required in the coming years. It will be interesting to see if there will be such a time when the requirements...

	11 References
	12 Acknowledgements
	First of all, I would like to thank my supervisor, Prof Robert Stewart for motivating me to keep writing up this thesis, and for helping me to understand key aspects of adaptive filtering theory. Thank you for all of the DSP and FPGA insights you hav...
	I am also deeply indebted to Dr Louise Crockett for reading through the drafts of the thesis and offering much needed feedback. I couldn’t have finished this piece of work without the time you spent reviewing it. Thank you so much.
	I would also like to thank my MathWorks managers, Bharath Venkataraman and Garrey Rice for encouraging me to write up this thesis. Many thanks to both of you.
	I will also take the opportunity to thank my colleagues in the MathWorks Glasgow office for many fruitful discussions and support. Often times a seemingly insurmountable issue is found to be trivial after talking it through.
	Lastly but by no mean least, I thank my parents for all of the support and encouragement they have provided over the years.

	13 Appendix A: Additional Numerical Performance Analysis Results
	13.1 Real Valued Arithmetic Parallel-Serial LMS Filter Results
	13.2 Complex Valued Arithmetic Serial LMS Filter Results
	13.3 Complex Valued Arithmetic Parallel-Serial LMS Filter Results
	13.4 Real Valued Arithmetic Serial NLMS Filter Results
	13.5 Real Valued Arithmetic Parallel-Serial NLMS Filter Results
	13.6 Complex Valued Arithmetic Serial NLMS Filter Results
	13.7 Complex Valued Arithmetic Parallel-Serial NLMS Filter Results
	13.8 Real Valued Arithmetic Parallel NLMS Filter Results
	13.9 Complex Valued Arithmetic Parallel NLMS Filter Results

