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Abstract

One of the most complex and challenging problems faced by the world today is

that of water scarcity which has been recognized as a global risk. According to

experts, freshwater scarcity affects close to two-thirds of the world’s population at

least one month of the year while half a billion people are estimated to be living

under water scarcity throughout the year. Climate change, population growth,

increased reliance on irrigated agriculture and changes in land-use threaten to

exacerbate water scarcity risk. In recent decades, solutions to these challenges and

threats have been proposed through various interventions such as the Millennium

Development and Sustainable Development Goals (MDGs and SDGs respectively).

Responsible management of water systems and resources entails having a thorough

understanding of the quantity and quality of these resources. Researchers have used

simplistic 1-dimensional models to complex semi-distributed models to understand

how water systems such as lakes, rivers and entire basins are replenished.

However, most studies have focussed on only one aspect of the hydrologic

cycle when quantifying freshwater resources. In the past decade or so, the issue

of integrated hydrologic modelling (IHM) where surface- and groundwater is

modelled as an integrated unit has gained traction in the research community.
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More recently, it has become fashionable to couple integrated hydrologic models

coupled with atmospheric models to account for climate change. Notwithstanding

this development, there is still no unified and systematic methodology and/or

framework that has been adopted by the water research community for integrated

hydrologic modelling. This, coupled with the challenge of filtering through the

many spatial climate data products offered by the climate research centres, makes

the task all the more challenging. This has led to a slow adoption of these models

by the water resources community.

This thesis applies integrated hydrologic models (SWAT-MODFLOW) coupled

with atmospheric models to two watersheds (River Nith Catchment and Shire River

Basin) from different climatic settings to determine the quantity and availability of

future water resources. The River Nith Catchment (RNC) is located in South-West

Scotland, UK while the Shire River Basin (SRB) is located in Southern Malawi.

Downscaling of Global Circulation Models (GCMs) that were used to force the

integrated hydrologic models was done using the quantile mapping method. Six

GCMs and a total of thirty-six climate scenarios and hydrological models under

RCP4.5 and RCP8.5 were developed for the SRB while five GCMs and a total of

thirty climate and hydrological models under RCP4.5 and RCP8.5 were developed

for the RNC. In total, sixty-six models were developed for the two study areas

encompassing climate change and variability analyses, surface-water modelling and

groundwater recharge modelling. The methodology was found to be applicable in

both temperate and semi-arid climates.

This thesis documents methods that can be used to model climate change

impacts on groundwater resources using a multi-GCM and integrated hydrologic

modelling approach using freely available data and tools within an Integrated
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Water Resources Management (IWRM) framework. It is the hope of the author

that these tools and methodologies will be adopted by the wider IWRM community

in an effort to meet Sustainable Development Goal number 6 (SDG 6) by 2030.

The contribution to research of this thesis can be viewed from four perspectives.

Firstly, a novel method for GCM subset selection incorporating Symmetrical

Uncertainty (SU), Probability Density Function (PDF) ranking and the Random

Forest Algorithm was developed. Secondly, this is the first time such a model has

been applied for future water resources quantification in both the RNC and SRB.

Thirdly, this work has demonstrated that it is possible to do high quality predictive

hydrological modelling that can be incorporated into climate adaptability planning

using freely available remotely-sensed climate data. Fourthly, the methodology

developed in this thesis provides a basis for a unified framework (i.e. software tools

adopted in this work including related software) and methodology for integrated

hydrologic modelling that can be applied in different climatic settings using freely

available hydro-climatic data products.
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—The greatest challenge to any

thinker is stating the problem in

a way that will allow a solution.

Bertrand Russell

1
Introduction

This chapter provides a brief discussion on the background, context and motivation

of the work presented in this thesis. Section 1.1 provides a short background to

the study in terms of the challenges associated with anthropogenic climate change

and it’s impact on water resources. Section 1.2 introduces the study sites that

were selected in this thesis and also discusses the rationale behind the choice of

the same. Section 1.3 provides the aims and objectives of this study. Section 1.4

is a statement on the significance of this research and lastly, Section 1.5 provides

a brief description of the structure of this thesis.
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1.1 Background

Changes in the hydro-climatic and socio-economic landscapes has led many re-

searchers and policy makers worldwide to conclude that there is a sustained and

increasing pressure on freshwater resources (Veldkamp et al., 2016). In particular,

an ever increasing global population, adoption and expansion of irrigated agri-

culture, higher demands for freshwater due to changing lifestyles and a changing

climate has aggravated water scarcity both at regional and global levels (Mekonnen

and Hoekstra, 2016; Veldkamp et al., 2016). It is estimated that approximately 4

billion people globally experience severe water scarcity at least 1 month of the

year (Mekonnen and Hoekstra, 2016) and that generally, about half of the world’s

population will be living in water-stressed areas by 2025 (WHO, 2017).

Climate change impacts on the hydrologic cycle is an interesting and active

area of research riddled with a lot of uncertainty. However, there has been signifi-

cant efforts made by different organisations and research groups to understand

and reduce the uncertainty associated with climate change impacts on future

hydrological cycles. For instance, many research groups have successfully em-

ployed the multimodel ensemble approaches as a way of reducing uncertainty when

investigating climate change impacts on water resources (e.g. Allen and Ingram,

2002; Christensen and Lettenmaier, 2007; Tebaldi et al., 2004; Tebaldi and Sanso,

2009; Tebaldi et al., 2005). Thus, more skilful and reliable climate predictions

are increasingly being generated and incorporated into future hydrological impact

studies worldwide.

While a lot of climate change impacts research has been done with respect to

discrete aspects of the hydrological cycle (i.e., atmospheric processes, surface water,
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groundwater etc.), most of the research has focussed on impacts and management

of surface-water systems. Few studies have investigated the potential effects of

climate change on subsurface resources and fewer still have studied in detail all

aspects of the hydrological cycle as a single system composed of multiple processes

and subsystems that interact with each other. Groundwater is an important fresh

water resource globally estimated to be the main source of potable water for more

than 1.5 billion of the Earth’s population (Healy, 2010). Approximately 98% of

the world’s fresh water reserves are stored underground and thus groundwater is

an important buffer against surface-water shortfalls in drought years (Margat and

VanDerGun, 2013). Although, it is true that there has been an accelerated interest

in understanding groundwater response to climate change in the last decade,

there is need for multi-disciplinary efforts aimed at improving our understanding

of climate change on surface- and groundwater as an integrated unit and the

resulting feedback on other processes of the hydrological cycle. Moreover, from an

adaptation to global change perspective, it is only prudent that potential future

climate impacts on water resources be studied from a holistic perspective that

aims to understand all aspects of the hydrological cycle (Green et al., 2011a).

1.2 Study Sites

1.2.1 River Nith Catchment (RNC)

The River Nith Catchment (RNC) derives its name from the River Nith which is

the largest river in south-west Scotland, United Kingdom (UK) (see Figure 1.1).

The catchment covers an area of approximately 1450 km2.

The River Nith begins lies in the hills of East Ayrshire and discharges into
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Figure 1.1 Location of the River Nith Catchment

the Solway Firth at Airds point. The RNC extends east to the Lowther Hills and

south to the Solway Firth (CBEC, Mott MacDonald, Walking-the-Talk, 2013).

The RNC is drained by the River Nith and it’s tributaries. Historical Baseflow

indices (BFIs) of the Nith and its tributaries ranges from 0.38 to 0.53. Mean

annual rainfall in the RNC is approximately 1429 mm but varies spatially within

the catchment – the north receiving more rainfall than the south.

Because of the integrated modelling approach adopted in this thesis, climate

and surface-water modelling was done for the entire RNC while groundwater
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modelling focussed only on the Dumfries Basin (DB) aquifer, a subarea of the

RNC. The DB is located in the lower portion of the RNC and is one of the most

productive aquifers in Scotland (MacDonald et al., 2005).

1.2.2 Shire River Basin

The Shire River Basin is located south of Malawi and is drained by the Shire River,

Malawi’s largest river. The Shire River is the only outlet of Lake Malawi and

flows for about 520 km south of Malawi before it merges with the Zambezi River

in Mozambique. The SRB is part of the larger Zambezi River Basin. Strictly

speaking, the “Shire River Basin” refers to the hydrological basin that is south of

Lake Malawi and also within Malawi (more of a planning unit than a hydrological

basin). In this thesis however, SRB is used in the context of a hydrological

trans-boundary basin as shown in Figure 1.2. The SRB covers approximately 16%

of Malawi in area.

Malawi’s water resource includes natural lakes, perennial and seasonal rivers,

groundwater aquifers, several small- to medium-size reservoirs and a few large

multi-purpose reservoirs (Chidammodzi and Muhandiki, 2017). In the SRB, the

Shire River is the largest River which is a source of domestic and industrial water.

It is divided into three stages namely; the Upper, Middle and Lower Shire. The

Upper Shire sits at about 470 metres above sea level (masl) where it flows through

Lake Malombe and through the Kamuzu Barrage at Liwonde. The Middle Shire

begins from Liwonde where it drops seven metres in 50 km as it flows across a

broad plain before steeply dropping 360 m over a distance of 70 km (MoAIWD,

2017). Thus this portion of the river is ideal for hydropower generation due to

availability of head.
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The Lower Shire emanates from Kapichira falls where it flows through a

floodplain and a wetland called the Elephant Marsh. It is in this region where

a lot of settlements can be found which rely on the river for traditional and

commercial agriculture among other needs (MoAIWD, 2017). Baseflow indices at

selected gauges in the SRB range from 0.90 to 0.97 (Shire River gauges) and 0.19

to 0.64 (tributaries of the Shire River) according to Kelly et al. (2019).

1.2.3 Rationale for Study Site Selection

Two sites from two continents were selected as study sites in this thesis (see

Table 1.1). The main reason for this is so that a comparative study can be

undertaken between a data-rich region (River Nith Catchment) and a data-scarce

region (Shire River Basin). In particular, we endeavoured to establish the efficacy

of methods developed and tested in data-rich regions when applied to data-scarce

regions. Additionally, the two study sites have completely different climate types

so it would be interesting to test whether the methodology developed here is

suitable for different climatic settings. Thus, in as far as analyses and application

of developed methodologies in this thesis are concerned, except in limited cases, it

was determined to maintain uniformity between the two regions.

The DB aquifer is one of the most productive aquifers in Scotland which

provides domestic and industrial water needs of Dumfries town. The aquifer has

been studied extensively in the last few decades but, to the best of our knowledge,

few studies have been done to investigate surface-water and groundwater recharge

and availability under climate change in this region.

Due to an increasing population in the SRB (estimated at 22% of Malawi’s

population), pressure on freshwater resources is increasing. Climate change coupled
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Table 1.1 Summary description of study sites

Description
Catchment

SRB (Malawi) RNC (UK)
Area (km2) 28076.18 1450.49
Type of Climate Warm Subtropical Temperate Maritime
Annual Rainfall (mm) 1133 1429
Average Temperature 24 °C 9 °C
Dorminant Landcover Savanna (47.2% of

basin)
Dryland cropland and
pasture (91.6% of
catchment)

Population 4,500,000 64,000

with competing demands for water for domestic, agricultural, industrial and power

generation threatens the security of water resources in the SRB. These threats are

recognized by the Government of Malawi (GoM) as highlighted in “The Malawi

Growth and Development Strategy (MGDS III)” which is the fourth medium-term

national development strategy formulated to contribute to the attainment of

Malawi’s long-term development aspirations as enshrined in the Vision 2020 and

will be implemented from 2017 to 2022 (Government of Malawi, 2017). Thus there

is a call for the promotion of research, technology development and transfer in

climate change and meteorology in order to improve climate change management

in the country.

Lessons drawn from research efforts in the RNC, which is a First World and

data-rich region, can be used to inform similar research efforts in the SRB. This,

in addition to insights gained from testing the applicability of these methods in

different climate settings, is the motivation for this work.
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1.3 Research Aims and Objectives

The main aim of this thesis is to investigate future availability of freshwater

resources in the RNC and SRB using a holistic approach. This entails thorough

analyses of different components of the hydrologic cycle. Another important aspect,

which can be considered to be a sub-aim, is the use of free and/or open source

software (FOSS) in this research as a way of promoting openness, shareability and

reproducibility of results. Additionally, researchers from developing countries find

it uneconomical to obtain licenses for commercial and proprietary software thus

limiting the types of research they can do. FOSS curtails some of the limitations

associated with acquiring expensive proprietary licenses for research purposes.

The main aim will be accomplished through the following specific objectives:

(1) Downscaling of twenty-nine Couple Model Intercomparison Project Phase 5

(CMIP5) Global Circulation Models (GCMs) to local watershed scales for

the RNC and SRB.

(2) Selection of a subset of GCMs to be used for forcing hydrologic models in

the RNC and SRB. A methodology of combining the GCM subset to form

ensemble climate models will also be explored.

(3) Development of SWAT hydrologic models for the study areas to investigate

future streamflow, blue and green water availability up to the end of the

21st century.

(4) Development of MODFLOW models to simulate groundwater recharge

including surface-water/groundwater interactions. In order to simulate the

hydrologic cycle as an integrated system with respect to climate change,

the SWAT model which simulates land-atmosphere interactions will be
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coupled to MODFLOW-NWT, a model capable of simulating subsurface

processes such as groundwater recharge, vadose zone percolation via the

UZF1 package, river-aquifer interactions and evapotranspiration among

many other uses (Bailey et al., 2016).

(5) Assessment of whether the methodology developed in this research is appli-

cable in different climate and development settings i.e. temperate versus

semi-arid climate and data-rich RNC versus data sparse SRB.

1.4 Significance of Research

Understanding the impacts of climate change on water resources requires a holistic

assessment of surface- and groundwater resources and their interactions. In this

thesis, a methodology that quantifies future surface- and groundwater availability

has been presented. A method aimed at downscaling GCMs from regional to

local watershed scales is discussed along with a comprehensive methodology for

the selection of a subset of GCMs from the many models provided by different

research institutions. Furthermore, for the first time in the study areas, integrated

hydrologic models aimed at understanding land-atmosphere interactions have

been developed. Results arising from this research will inform parallel and future

research efforts and also feed into climate change adaptation planning especially

in the SRB.

1.5 Organisation of Thesis

This thesis is composed of eight chapters. A short description of the chapters is

given in this section.
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Chapter 1: Chapter one is a short introduction of the study areas and also

provides a brief description of the problem and motivation of the thesis.

Chapter 2: Chapter 2 is a detailed background and literature review of climate

change and it’s impact on water resources. Furthermore, a detailed analysis

of the tools and methods that have previously been employed to simulate

climate change, surface hydrology and groundwater hydrology are discussed.

Chapter 3: In chapter 3, a detailed discussion of the methods employed in this

thesis is presented. The methods and tools discussed in this chapter are

related to climate change assessments, surface water hydrology, groundwater

hydrology and integrated hydrologic modelling. Details of the General

Circulation Models selected and for modelling climate change in the two

study areas are also presented.

Chapter 4: Chapter 4 presents climate change modelling efforts and results

for the River Nith Catchment and Shire River Basin using a multi-GCM

approach.

Chapter 5: Chapter 5 discusses the development and application of hydrological

models for the RNC and SRB. Impacts of future climate change on streamflow

of selected rivers are presented and discussed. Furthermore, future climate

change impacts in the context of the Blue-Green Water Nexus are presented

and discussed as well.

Chapter 6: Chapter 6 discusses the development of groundwater models aimed at

understanding the impact of climate on groundwater resources. Additionally,

development and application of integrated hydrologic models in the context

of future climate change impacts is presented.
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Chapter 7: Chapter 7 discusses challenges in the implementation of IWRM solu-

tions and principles in Malawi in light of the findings and recommendations

of Chapters 4 to 6.

Chapter 8: Chapter 8 is a summary and synthesis of the research findings in

this thesis.



—We live on an island surrounded

by a sea of ignorance. As our is-

land of knowledge grows, so does

the shore of our ignorance.

John Archibald Wheeler

2
Background

This chapter provides a detailed review of the state of the art in anthropogenic

climate change and associated impact on water resources availability. A review of

the analytical tools used in climate, surface- and groundwater modelling is also

presented.
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2.1 Climate Change – Key Aspects

2.1.1 Climate Change, Variability and Global Warming

Climate change encompasses natural processes and anthropogenic changes in the

composition of the atmosphere or on land. These changes or variations have

to be statistically significant with respect to the mean state of the climate or

“average weather” over an extended period of time, ideally decades or longer (IPCC,

2001). In 1992, the United Nations Framework Convention on Climate Change

(UNFCCC) made a distinction between climate change and climate variability

by attributing the former to human or anthropogenic activities and the latter to

natural causes (UNFCCC, 1992).

Global warming, on the other hand, is the increase in the average terrestrial

temperature as a result of the build-up of greenhouse gases (GHGs). Greenhouse

gases’ (carbon dioxide, methane, nitrous oxide, ozone and water vapour) concentra-

tions have been measured for decades and historical concentrations reconstructed

for the last hundreds of thousands of years (Keeling et al., 1976; Thoning et al.,

1989). These are responsible for the dramatic changes in the climate and the

hydrologic cycle. Of all the greenhouse gases, atmospheric CO2 concentration is

the primary indicator of climate change. According to Petit et al. (1999), current

levels of CO2 and CH4 are unprecedented during the past 420, 000 years. In

essence, going by the aforementioned definition of climate change, global warming

is just one aspect of climate change (USGS, 2018).
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2.1.2 Climate and Emission Scenarios

Socio-economic and emission scenarios are tools used to understand the complex

interactions of the global climate system, ecosystems and how much humans could

contribute to future climate change. More precisely, emission scenarios provide

descriptions of potential future discharges of substances that can alter the Earth’s

radiation balance such as GHGs and aerosols; including information on related

biophysical processes such as land-use and land-cover. Climate scenarios, on

the other hand, are representations of plausible future climate conditions (i.e.,

rainfall, temperature, etc.) (Moss et al., 2010). Other types of scenarios include

environmental and vulnerability scenarios. In this research, the term “scenarios”

is used as a generic term encompassing all forms of scenarios as applied in climate

science.

In the context of climate change research, scenarios are not necessarily used

to predict the future but to explore and evaluate the uncertainty about human

contributions to climate change and the implications of different plausible fu-

tures (Bjørnæs, 2013; Moss et al., 2010). Scenarios are used as input for climate

models runs and provide a basis on which possible climate impacts, mitigation

strategies and costs can be assessed (van Vuuren et al., 2011). Climate models or

General Circulation Models (GCMs) can be defined as computer methods and

tools that describe the physical processes of the climate system. Using mathemat-

ical equations, these models are capable of simulating the transfer of energy and

materials in the atmosphere and thus describe atmospheric processes such as the

frequency of monsoons and El Niño events. Table 2.1 provides an overview of the

history of emission scenarios.
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Table 2.1 History of prominent sets of emissions scenarios after Bjørnæs (2013)

Year Name Used in

1990 SA90 First Assessment Report

1992 IS92 Second Assessment Report

2000 SRES - Special Report on Emmissions

and Scenarios

Third and Fourth Assess-

ment Reports

2009 RCP - Representative Concentration

Pathways

Fifth Assessment Report

Historically, a variety of scenarios have been used by climate and water

researchers to understand and model climate change impacts on water resources.

The climate scenarios are varied with respect to their philosophical underpinnings

and assumptions ranging from stylized emission trajectories (i.e., annual percentage

increases in global average GHGs) to advanced representations of emissions and

socio-economic factors that influence greenhouse gas emissions (Bjørnæs, 2013;

Van Vuuren and O’Neill, 2006). Scenarios are derived from information produced

by integrated assessment models (IAMs). By combining key elements of biophysical

and economic systems, IAMs can depict how increased discharges of GHGs in the

atmosphere can affect temperature and thus economic dynamics.

Figure 2.1 depicts the history of Coupled Model Intercomparison Project

(CMIP) models that have contributed to the IPCC assessment reports. In prepa-

ration for the Fifth Assessment Report (AR5), a new approach for developing

and selecting scenarios in climate change research was developed (Bjørnæs, 2013).

This change stemmed from the need to have a new set scenarios from the research

community and policy makers. It was argued, for example, that in addition to the
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Figure 2.1 History of CMIPs and their contributions to IPCC Assessment Reports
(ARs); adapted from Fig.1 of Emori et al. (2016)

no-climate-policy scenarios explored previously (e.g. Special Report on Emission

Scenarios, SRES and prior to that IS92), there was need to explore the impact

of different climate policies (Moss et al., 2010; van Vuuren et al., 2011). Based

on recommendations from an IPCC expert meeting held in September, 2007 in

Noordwijkerhout, The Netherlands (Moss et al., 2008), four representative concen-

tration pathways (RCPs) radiative forcing levels (see Table 2.2) were chosen (van

Vuuren et al., 2011). The current RCPs are set to be replaced by the Shared

Socio-economic Pathways (SSPs) (Kriegler et al., 2012) from CMIP6 (Bjørnæs,

2013).

In this research, climate change impacts were tested at RCP4.5 (comparable to

SRES scenario B1) and RCP8.5 (comparable to SRES scenario A1 F1) radiative

forcing levels. RCP4.5, developed by the Pacific Northwest National Laboratory,

United States, represents a future with ambitious emissions reductions and can be

considered as an intermediate mitigation scenario (Bjørnæs, 2013; van Vuuren et al.,

2011). RCP8.5 was developed by the International Institute for Applied System

Analysis in Austria and is a high emission scenario consistent with a future with

no deliberate policy changes to ensure that emissions are reduced (Bjørnæs, 2013;
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Table 2.2 Overview of representative concentration pathways (RCPs); adapted from
van Vuuren et al. (2011)

RCP Description Reference – IAM

RCP8.5 Rising radiative forc-
ing pathway leading to
8.5 W/m2 (∼1370 ppm CO2
eq) by 2100.

(Riahi et al., 2007) – MES-
SAGE

RCP6 Stabilization without over-
shoot pathway to 6 W/m2

(∼850 ppm CO2 eq) at sta-
bilization after 2100

((Fujino et al., 2006; HI-
JIOKA et al., 2008) – AIM

RCP4.5 Stabilization without over-
shoot pathway to 4.5 W/m2

(∼650 ppm CO2 eq) at sta-
bilization after 2100

(Clarke et al., 2007; Smith
and Wigley, 2006; Wise
et al., 2009) – GCAM

RCP2.6 Peak in radiative forcing at
∼3 W/m2 (∼490 ppm CO2
eq) before 2100 and then de-
clines to 2.6 W/m2 by 2100).

(van Vuuren et al., 2007,
2006) – IMAGE

van Vuuren et al., 2011). The main characteristics of each RCP are summarised

in Table A.1.

2.1.3 The Hydrologic Cycle

The hydrologic cycle is simply a description of the continuous movement of water

within the Earth and atmosphere and usually described in terms of three main

processes, namely evaporation, condensation, and precipitation (see Figure 2.2).

Climate change and variability affects the hydrologic cycle in subtle ways that

can be observed over short or longer time frames. For example, Smith (1978)

reports that the terrestrial environment which includes runoff, surface-water and
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biological processes responds rapidly to climate change; usually within a year.

On the other hand, continental ice sheets and oceans take a considerably longer

time, on the order of decades or even centuries, before significant changes are

measurable (Smith, 1978).

2.1.3.1 Impact on Surface- and Groundwater Resources

Climate change and it’s impact on surface water bodies has been studied extensively

in the literature. Abbaspour et al. (2009) investigated the impact of climate change

on precipitation and water resources (blue and green water) in Iran using the SWAT

model where it was projected that wet regions would get wetter while dry regions

would get drier. Globally, temperate regions are rarely expected to experience

drought while arid to semi-arid regions are expected to experience droughts and

extreme events such as heatwaves and floods. Kishiwa et al. (2018) used a coupled

SWAT and WEAP model to assess current and future surface-water availability

under a changing climate in the Pangani River Basin in Tanzania. Their study

projected future increase in rainfall and consequently long-term streamflow in the

Pangani River Basin. A common theme in most of the studies that have used

transient GCMs coupled with rainfall-runoff models is the variability in the results

from one GCM to another. This deficiency in GCMs is expected to diminish with

improved GCM skill and the use of multi-model GCM ensembles (Greve et al.,

2018; Zhao et al., 2018).

While many studies exist that have investigated the availability and security

of surface-water resources, the same cannot be said about groundwater. However,

in the last decade or so, there has been increasing interest in groundwater and

climate change. More recently, studies in integrated hydrologic modelling have also
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Figure 2.2 A depiction of the hydrologic cycle (Source: USGS Water Science School).

emerged to more accurately represent the different components of the hydrologic

cycle. One of the possible reasons why groundwater (flow with respect to climate

change) is less studied may be attributed to lack of ground truth data (Taylor

et al., 2013). Worldwide and especially in developing countries, there is a shortage

of groundwater level monitoring data without which verification and validation of

groundwater models would be difficult.

Generally, groundwater is affected by climate change directly and indirectly.

Groundwater is affected directly by changes in focussed (e.g. from ephemeral

streams and lakes e.t.c.) or diffuse rain-fed recharge and indirectly via changes in

groundwater abstraction for industrial and agricultural purposes (Taylor et al.,

2013). Havril et al. (2018) studied the impacts of climate change on groundwater

flow systems in the Tihany Peninsula in Hungary. Their study revealed that
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decreasing recharge significantly affects the groundwater flow system hierarchy.

In another study, McCallum et al. (2010) investigated impacts of climate change

on groundwater in Australia with a particular emphasis on groundwater recharge.

Their study concluded that groundwater recharge (diffuse) is mostly affected by

changes in rainfall intensity.

In this thesis, using methods described in Chapter 3, the impact of potential

climate change on precipitation and consequently diffuse and focussed ground-

water recharge is investigated by quantifying changes in rainfall intensity and

groundwater/surface-water interactions.

2.2 Uncertainty in Climate Impact Studies

2.2.1 Uncertainty in Climate Input Data

There are many sources of uncertainty in climate change impact studies. One of

these sources, and evidently the largest contributor to uncertainty in hydrological

impact assessments, is climate change projections from Global Circulation Models

(GCMs) and Greenhouse Gases Emissions Scenarios (GHGES) (Chen et al.,

2011). Mahlman (1997) posited that “significant reduction of key uncertainties”

in projections of anthropogenic climate warming “will require a decade or more”.

More than two decades later, uncertainty in hydrological impact studies is still

mostly attributed to output from GCMs (see for example, Brisson et al., 2015;

Chen et al., 2012, 2013, 2016; Fang et al., 2015; Ficklin et al., 2016; Shen et al.,

2018). It is therefore important to recognise, explore, quantify and reduce the

inevitable uncertainty associated with societal impact studies, especially in cases

where results of such studies can influence policy formulation by water resources
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managers and political leaders.

Many studies have been done to assess, quantify and reduce uncertainty in

climate change impact studies. For example, Wilby and Harris (2006) presented

a probabilistic framework for evaluating different components of uncertainty in

climate change impact studies using changing low flows in the River Thames.

An ensemble of four GCMs, two statistical methods, two emission pathways,

two hydrological model (CATCHMOD) structures and parameters, were used to

explore the uncertainty in low flows for the River Thames by the 2080s. Wilby and

Harris (2006) concluded that low flows were most sensitive to inherent uncertainty

in climate change scenarios and choice of GCM while the hydrological model

parameters and the increase in the emission pathway with time was comparatively

insignificant. Chen et al. (2011) investigated how the choice of a downscaling

method (see Section 2.3) can be a source of uncertainty in hydrological impacts of

climate change studies. Using an ensemble of seven GCMs, three GHGES, six

downscaling methods and a rainfall-runoff model (HSAMI), they discovered that

a large uncertainty envelope was linked to the choice of a downscaling method.

Overall, the study concluded that regression-based statistical downscaling methods

contribute the most to the uncertainty envelope than other statistical downscaling

techniques. Shen et al. (2018) estimated the uncertainty and its temporal variation

in relation with GCMs in quantifying climate change impacts on hydrology. A

total of twenty CMIP5 GCMs under RCP4.5 and RCP8.5 emission pathways

were used in the study to determine the uncertainty envelope for future climate

and streamflow using the HMETS hydrological model. The study developed

a methodology, using a set of statistical metrics (i.e. mean, median, extremes

etc.), that combine statistical techniques such as wavelet analysis, Mann-Kendall
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trend test and polynomial regression to evaluate the temporal variation. In

other studies, the uncertainty stemming from GHGES has been investigated.

For example, Maurer (2007) used eleven GCMs and two emission pathways to

investigate hydrologic impact uncertainty due to choice of a GCM and GHGES.

The study concluded that emission pathways play an important role in determining

the extent and degree of impacts to water resources. In a similar investigation for

the same region, Ficklin et al. (2016) used Coupled Model Intercomparison Project

Phase 5 (CMIP5) projections to evaluate the hydrologic impact on snowmelt-

dominated mountain runoff-generating regions of the western United States. The

study found that, while projections made using the older generation CMIP3

GCMs were still valid, there was need to “re-evaluate” the projected climatic

impacts on the water resources; indicating that there are differences in potential

impacts modelled using equivalent emission pathways of the CMIP3 and CMIP5

projections (see also Ayers et al., 2016).

These and many more studies in the literature signify the paramount need to

pay particular attention to hydrological model climate inputs uncertainty before

carrying out any hydrological modelling and interpretation.

One of the ways in which uncertainty in climate impact assessments can

be reduced is through the use of multi-model projections (e.g. Christensen and

Lettenmaier, 2006; Fischer et al., 2012). Tebaldi and Knutti (2007) reports of

cases where the El Niño Southern Oscillation (ENSO) forecasts have been found

to be better than single-model forecasts. The premise on which this idea is

anchored derives from the assumption that combining different models, each with

their own inherent structural and parametrization weaknesses, results in a partial

cancellation of these errors leading to better prediction skill than their constitutive
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models (Tebaldi and Knutti, 2007). In this research, a multi-model climate

ensemble approach using CMIP5 projections was employed. In a study conducted

by Knutti and Sedlacek (2013) to test the robustness of CMIP5 projections,

the authors conclude that some uncertainties are persistent ‘and may even grow

temporarily’ but that this should not stop professionals working on climate impacts

from making decisions and directing policy (Knutti and Sedlacek, 2013).

2.2.2 Uncertainty Due to Land-use Change and

Classification

Anderson (1976) defines land use simply as “man’s activities on land which are

directly related to the land”. Land cover, on the other hand, “is the result of land

use at a certain moment in time” (Mucher et al., 1993).

Figure 2.3 Impact of land use and climate variability on hydrological response as a
function of scale (Adapted from Fig.1 of Bloeschl et al. (2007).)

Anthropogenic influences on the hydrology of watersheds such as land use
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change have been investigated extensively in the literature. In particular, the issue

of tropical deforestation and it’s effect on climate and biodiversity has received a lot

of attention since the 1980s (Bonell, 1999). However, investigating the impacts of

land cover/use change on the hydrologic components of a catchment is problematic

because of several reasons. Firstly, hydrologic components (e.g. streamflow) can

be influenced by atmospheric processes such as local climate, and thus influence

the amount and timing of streamflow (Bruijnzeel, 2006). Secondly, the classic

methodology of studying such problems (i.e. “paired catchment experiment”),

in which streamflow from preferably two adjacent catchments of comparable

characteristics (e.g. topography, geography, vegetation) are expressed in terms

of each other and subsequently compared under a changing land cover, is time-

consuming (typically > 5 years) and expensive. Thus, there is a decline in the

number of such experiments in the last few decades with an inclination towards a

computer simulations approach (Bruijnzeel, 2006).

Generally, approaches to understanding the impacts of land-use change on the

hydrologic components of a catchment need to consider the effects of scale (Bloeschl

et al., 2007; Costa and Foley, 1997). According to Kiersch et al. (2002), “impacts

of land use activities on hydrological and sediment-related processes can only be

verified at smaller scales (upto some tens of square kilometres) where they can be

distinguished from natural processes and other sources of degradation”. Figure 2.3

is a hypothesized understanding of the impact of land use and climate variability

on hydrological response as a function of scale after Bloeschl et al. (2007).

However, despite this understanding, there is need to investigate the interplay

of many other factors between catchment-scale land-use change and hydrological

processes. Many studies have attempted to address some of these issues such
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as the effect of land-use change on flood frequency, runoff-generation processes

and the relationship between land-use and internal dynamics of the hydrological

cycle (Bronstert, 2004). Costa et al. (2003) documents, for example, that the

annual mean discharge for the Tocantins River in the Tocantins basin in central

Brazil, increased by 24% due to a deforestation of about 30% in the basin. Due to

the structural differences and varying dynamics between watersheds, it is difficult

to infer that watersheds (even at the same spatial scale) would respond in the

same way when subjected to similar external stresses. Furthermore, there is a

high degree of uncertainty associated with the parameterisation of land cover

properties because of the difficulty involved in obtaining or measuring reliable

observations (Eckhardt et al., 2003). Also, upscaling of point measurements to

basin scale can lead to loss of information and thus induce some uncertainty.

To this extent, there is some degree of uncertainty from the land-use inputs

introduced into watershed models when assessing the impact of climate change and

variability on a hydrological system. The land-use used in this study, for example,

was considered to be stationary for the baseline period and further assumed to be

stationary during the projected future period. Historical and emerging studies

have recognised the need for distributed watershed models to dynamically simulate

land-use changes in the reference or baseline (observed) period. Recently, a new

model (Moriasi et al., 2019) developed in the Python programming language is

able to dynamically update land-use in the SWAT model while running multi-year

simulations (see also Section 8.5).



2.2 Uncertainty in Climate Impact Studies 27

2.2.3 Uncertainty in the Conceptual Understanding

Uncertainty in groundwater and environmental modelling in general can arise due

to errors in the conceptual model (structural uncertainty). While most research

is focussed on the determination of optimal parameter values using parameter

estimation methods, the uncertainty in the conceptualization process itself is

typically ignored by these methods (Rojas et al., 2008). Typically, groundwater

modellers rely on a single hydrogeological conceptual model (which is translated

to a mathematical model) of the site being modelled. This, according to Neuman

(2003b), leads to the errors summarised in Table 2.3.

Table 2.3 Summary of conceptual model errors encountered in groundwater and
environmental modelling

Model Error Case

Type I Arises when one rejects or omits valid alternative models
Type II Arises when one adopts or fails to reject an invalid conceptual

model

Generally, Type II errors lead to statistical bias in the analyses of model

uncertainty due to reliance on an invalid model while Type I errors lead to

underestimation of uncertainty through under sampling of the relevant model

space. Most studies focus on the bias and uncertainty introduced through model

parameterization yet reliance on an inadequate conceptual-mathematical model is

a source of relatively much larger biases and uncertainty, leading to unjustified

overconfidence in the model results (Neuman, 2003b).

Having recognized the seriousness of this type of uncertainty, especially when

modelling complex environmental problems, many strategies have been proposed

to reduce such uncertainty. Refsgaard et al. (2006) proposed a six step frame-
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work for assessing the predictive uncertainties of environmental models used for

extrapolation (i.e. where field data is unavailable for calibration). The method-

ology involves the use of multiple conceptual models which are assessed with

respect to their predictive bias and uncertainty. This approach is desirable in

situations where field data or observations are lacking. Traditionally, when field

data is available, the model is calibrated against a sample of the available data

and model predictions compared with an independent set of field data. The

differences between the simulated and observed values are then used to make

inferences about the model’s conceptual error leading to it’s acceptance, rejec-

tion or refinement. Where data are unavailable, a more robust methodology is

required to quantify and reduce the conceptual error. Neuman (2003b) proposed

a Maximum Likelihood Bayesian Model Averaging (MLBMA) method of assessing

the joint predictive uncertainty of many competing deterministic or stochastic

models. Similarly, Rojas et al. (2008) suggested a method (see also Rojas et al.,

2010a,b) that combines generalized likelihood uncertainty estimation (GLUE) and

Bayesian model averaging (BMA) to assess model structural uncertainty. The

authors applied the methodology to a three-dimensional hypothetical case and

determined that conceptual model uncertainty alone contributed up to 30% of

the total uncertainty.

In this study, watershed models were calibrated using field data and thus the

uncertainty associated with the parameterization and conceptual understanding

was quantified. Similarly, for the groundwater models, model calibration and

uncertainty quantification was performed based on ground truth data. Improve-

ments and recommendations of how to refine the conceptual understanding were

advanced.
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2.3 GCM Downscaling and Bias Correction

2.3.1 Statistical Downscaling

Statistical downscaling (SD) is a process where quantitative statistical relationships

are established between large-scale atmospheric variables (predictors) and local-

scale variables (predictands) (Wilby et al., 2004). Implicit in this definition

is the assumption that the relationship between predictor variables and local

climate variables (e.g. precipitation at weather station) will always be the same.

SD methods can be used in climate impact studies and especially hydrological

assessments provided sufficient point meteorological observations are available to

derive the statistical relationships (Green et al., 2011b). Wilby and Wigley (1997)

classified SD models into four categories:

Regression methods: In these methods, linear or non-linear relationships be-

tween predictors and predictands are established. Generally, a regression

equation relating the predictors and the predictands is derived before be-

ing ‘forced’ using data from a GCM (Wilby and Wigley, 1997). Future

precipitation and temperature values are then predicted by the model.

Synoptic weather typing: where observed station or area-average meteorolog-

ical data are statistically related to a weather classification scheme. Local-

scale meteorological variables are then ‘conditioned’ on the corresponding

(daily) weather patterns by deriving conditional probability distributions for

the observed data (Wilby and Wigley, 1997). Future climate scenarios are

then constructed by resampling from the observed data distributions or by

the use of combined Monte Carlo and Markov chain techniques to generate
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synthetic data and then resampling from this data (Green et al., 2011b).

Stochastic weather generators: In these methods, local climate data is gen-

erated by modifying parameters of first- or multiple-order Markov chain

weather generators scaled in direct proportion to corresponding parameters

in GCMs (Green et al., 2011b).

Limited-area climate models: This is where a higher resolution limited-area

climate model (LAM) is embedded within a GCM using transient boundary

conditions defined by the GCM. One of the limitations of these methods is

that they demand considerable computing resources and are just as expensive

to run as a traditional GCM (Wilby and Wigley, 1997).

2.3.2 Statistical Downscaling Methods and Models

There are many methods and software currently in use for statistical downscaling

of GCMs. Statistical DownScaling Model (SDSM) (Wilby et al., 2002b) and the

Long Ashton Research Station Weather Generator (LARS-WG) (Racsko et al.,

1991; Semenov and Barrow, 1997; Semenov et al., 2002, 1998), are probably the

two most widely used canned statistical downscaling software. Many researchers

worldwide have conducted climate impact assessments using the help of these

decision support tools. Some studies (e.g. Dibike and Coulibaly, 2005; Hashmi

et al., 2011; Hassan et al., 2014) have compared the performance of the two models

in quantifying the effects of climate change at local scales.Generally, the two models

are capable of simulating extreme events with a high level of confidence (Hashmi

et al., 2011). Hassan et al. (2014) applied SDSM and LARS-WG to simulate and

downscale meteorological variables such as precipitation and temperature in the

Peninsular of Malaysia and concluded that SDSM performed better LARS-WG
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despite slightly underestimating wet and dry spells. In almost all cases, the two

models do not provide identical results. This is attributed to the differences in the

underlying approaches and philosophy of the two models. However, the statistical

trends that are inferred from time-series generated by the two models are usually

in agreement (Hassan et al., 2014). The next sections describe the main differences

in simulation approach of the two models.

2.3.2.1 LARS-WG

LARS-WG is a stochastic weather generator developed at the UK Long Ashton

Research Station (Semenov and Barrow, 1997) capable of simulating weather data

for a single station under both current and future climate scenarios (Racsko et al.,

1991; Semenov et al., 2002). Fundamentally, the weather generator uses observed

point station data such as maximum and minimum temperature, precipitation

and solar radiation, to determine a set of parameters for probability distributions

of weather variables. The correlations between the weather variables are then

estimated and the resulting set of parameters used to generate synthetic weather

time series of arbitrary length by randomly selecting values from the appropriate

distributions (Semenov, 2007).

Dry and wet days are distinguished depending on whether precipitation is

greater than zero. Probability distributions of dry and wet series, daily precipita-

tion, minimum and maximum temperatures and solar radiation, are approximated

in LARS-WG by a semi-empirical distribution (SED), defined as the cumulative

probability distribution function (PDF) (Semenov and Stratonovitch, 2010). Pre-

viously, LARS-WG used ten intervals (n) in the SED but in the current version,

LARS-WG5, 23 intervals are used offering a more accurate representation of the
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observed distribution. For each climatic variable v, a value of a climatic variable

vi corresponding to the probability pi is calculated as;

vi = min{v : P (vobs ≤ v) ≥ pi}i = 0, . . . , n (2.1)

Where, P is the probability based on the observed data, {vobs}. Po and Pn, for

each climatic variable, are fixed with the value of 0 and 1, respectively, with

corresponding values of vo = min{vobs} and vn = max{vobs}. Furthermore, to

allow for accurate approximation of the extreme values of a climatic variable,

some pi are assigned close to 0 or 1, dependent on whether the values of the

variables are extremely low or high respectively, while the remaining values of

pi are distributed evenly on the probability scale (Semenov and Stratonovitch,

2010).

In order to simulate events with extremely high daily precipitation that occur

with very low probability such as hurricanes and typhoons, 3 values close to 1,

allowing for better approximation, are used in LARS-WG (i.e., pn−1 = 0.999,

pn−2 = 0.995 and pn−3 = 0.985). Also, owing to the fact that very low daily

precipitation (i.e., < 1mm) which has a high probability of occurrence and has

little effect on the output of a process-based model, v1 and v2 equal to 0.5mm

and 1mm respectively, were proposed by Semenov and Stratonovitch (2010) to

simulate rainfall within the interval [0,1] and the corresponding pi defined as;

pi = P (vobs ≤ vi), i = 1, 2 (2.2)

Similarly, for maximum and minimum temperature, 2 values close to 0 and 2

values close to 1 (i.e., p2 = 0.01, p3 = 0.02 and pn−1 = 0.99 and pn−2 = 0.98) are
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used in SEDs to account for extremely low and high temperatures respectively.

For extremely long wet and dry series, pn−1 = 0.99 and pn−2 = 0.98 (both close

to 1) are used in the SEDs. In the case of radiation, all pi values for 0 < i < n

are distributed evenly between the extreme values (Semenov and Stratonovitch,

2010).

2.3.2.2 SDSM

SDSM is a robust statistical downscaling and decision support tool for assessing

local climate change impacts. It is described as a hybrid of a stochastic weather

generator and regression based methods (Wilby et al., 2002a, 2003). Gener-

ally, SDSM uses local-scale weather generator parameters, such as precipitation

occurrence and intensity, to linearly condition large-scale coarse GCM and Na-

tional Center of Environmental Prediction (NCEP) output, usually referred to as

predictors (j = 1, 2 . . . , n) as follows:

ωi = α0 +
n∑

j=1
αjû

(j)
i (2.3)

where ωi is the conditional probability of precipitation occurrence on day i, αj are

regression coefficients approximated via ordinary least squares method for each

month, and û
(j)
i are normalized predictors. By stochastically comparing ωi with

the output of a linear random-number generator, ri, wet- and dry-spell sequences

can be determined.

In the second step, a conditional distribution is constructed if precipitation

occurrence is established (i.e. ωi ≤ ri) by regressing precipitation (can be fourth

root, Natural log or inverse-normal transformed) amounts at the station on large-
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scale predictors using:

Zi = β0 +
n∑

j=1
βjû

(j)
i + ε (2.4)

where Zi is the z-score, βj are regression coefficients approximated via ordinary

least squares method for each month, and ε is an error term modelled stochastically

by a series of serially independent Gaussian numbers (Semenov and Stratonovitch,

2010). In other words, the rainfall yi on day i can be approximated by:

yi = F −1 [φ(Zi)] (2.5)

where φ is the normal cumulative distribution function and F is the empirical

function of yi (Hassan et al., 2014).

2.3.2.3 Quantile Mapping

A survey of published literature reveals two different reasons for applying quantile

mapping (QM): 1) it is commonly used as a bias correction method applied to

observed and simulated climate model data at similar scales and 2) as a way of

downscaling coarse climate data to finer local scales (either observed or gridded

reanalysis data) (Cannon et al., 2015). Furthermore, the software tools discussed

above, despite being popular, are not easily amenable to automation. In fact,

even if LARS-WG is free for research purposes, one is required to register with

the author to obtain a license. The QM method has been implemented in free

software languages such as Python and R and can thus be easily automated for

reproducibility and scalability.

In this study, QM was applied for both bias correction and downscaling, and

as such, hereinafter, the method is referred to as Bias Correction and Spatial
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Downscaling (BCSD) (e.g. Ahmed et al., 2013; Maurer and Hidalgo, 2008; San-

gelantoni et al., 2018). The details of the implementation used in this thesis is

given in Chapter 3.

2.4 Water-Food-Energy-Climate Nexus

The global population is faced with a myriad of interrelated wicked and complex

problems that threaten national and international security (Bazilian et al., 2011).

At the heart of this so-called nexus of looming threats, three main areas, namely,

water, energy and food security, are identified. These threats, on their own,

are major threats to economic and security stability especially in developing

countries, but become increasingly important when examined from a climate

change perspective. Consequently, water security has been identified as the

proverbial gossamer linking together this web of food, energy and climate (World

Economic Forum Water Initiative and others, 2012). Addressing these challenges

demands fresh perspectives and flexible forms of governance (Leck et al., 2015).

Water, energy and food (WEF) sectors are at the heart of the nexus approach

because of the way they are inextricably linked to each other. The nexus approach

aims at overall resource use efficiency and benefits in production and consumption

by addressing externalities across these sectors. Furthermore, the interrelations

across and between sectors, and how the actions of one system impacts the others,

are described in the nexus approach (Hoff, 2011).

As can be seen from Figure 2.4, water supply security, food security and energy

security are all dependent on the availability of water resources. Water supply is

dependent on the availability of energy, hydropower energy production is dependent

on the availability of water resources and food production is dependent on the
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Figure 2.4 The water, energy and food security nexus (Hoff, 2011)

availability of water resources. This interdependency is one of the foundations

of the nexus paradigm and needs to be taken into account by policy makers and

other stake holders. A threat to the security of any of the WEF and associated

components results in a threat to many other system components due to their

interconnectedness as depicted in Figure 2.5. In most cases, the perspective of the

policy-maker determines the approach taken towards the WEF nexus (Bazilian

et al., 2011; Harris, 2002). For example, from an energy perspective, water and

biomass in form of energy crops are generally an input or resource requirement

and food is considered to be the output; from a water perspective, food and energy

systems are consumers of the resource; from a food perspective, energy and water

are inputs. The approach or perspective adopted will largely influence the policy

design (Bazilian et al., 2011).

The WEF nexus differs from the IWRM approach and similar holistic ap-
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proaches to environmental decision-making in that the latter “takes water as its

point of departure” while the former approaches WEF from a systems dynamics

point of view (Leck et al., 2015). The point remains, however, that path depen-

dency in modelling and data availability, together with other complexities, often

results in policy makers operating along nexus lines, adopting one perspective and

later incorporating others (Bazilian et al., 2011; Leck et al., 2015; Rees, 2013).
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Source: World Economic Forum Global Risks Perception Survey 2016
Note: Survey respondents were asked to select the three trends that are the most important in shaping global development in the next 10 years. For each of the three trends 
identified, respondents were asked to select the risks that are most strongly driven by those trends. The global risks with the most connections to trends are spelled out in the 
figure. See Appendix B for more details. To ensure legibility, the names of the global risks are abbreviated; see Appendix A for the full name and description

Figure 2.5 Risks interconnection map (WEF, 2017)
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2.5 Methods for Quantifying Groundwater/

Surface-water Interactions

2.5.1 Surface-water Models

River basin models such as SWAT and PRMS have modules that calculate

groundwater/surface-water (GW/SW) interactions (see Section 3.7.3). PRMS and

SWAT can both calculate groundwater storage, inflows and outflows to and from

each HRU. Baseflow and groundwater flow out of the model domain that is not due

to streamflow constitute outflows while recharge constitutes inflow (Markstrom

et al., 2015). However, the simulation of groundwater processes is not adequate in

these models when compared to MODFLOW. Thus PRMS has in the last decade

been coupled with MODFLOW-NWT to form GSFLOW; and more recently,

SWAT has been coupled with MODFLOW-NWT to form SWAT-MODFLOW.

This allows for a comprehensive assessment of GW/SW interactions.

2.5.2 Groundwater Flow Modelling

The use of groundwater flow models in understanding important aquifers has

been in existence for decades. For example, in 1978, the Regional Aquifer System

Analysis (RASA) program of the U.S. Geological Survey was for the first time

employed to simulate large scale aquifer systems (Zhou and Li, 2011). This

culminated into production of hundreds of reports which continue to inform the

insights of modern day groundwater modellers. More importantly, groundwater

flow models are still being employed, more so than ever before, in understanding

subsurface water flow and aquifer systems, especially as technology has progressed
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and more computational power is available to groundwater professionals. A model

is simply an approximation or representation of a real system (Fetter, 2000).

Groundwater flow models can either be physical or numerical. An example of

a physical model is a laboratory-scale tank with columns filled with sand and

saturated with water so that groundwater heads and flows can be observed and

measured directly (Anderson et al., 2015; Kresic, 2006).

Groundwater modelling is particularly useful for predicting or forecasting

future conditions and also for understanding how current conditions came to

be (Kresic and Mikszewski, 2012; Rushton, 2003). In the context of Integrated

Water Resources Management (IWRM), groundwater management decisions can

benefit from insights generated by groundwater models. Anderson et al. (2015)

state that since “...the subsurface is hidden from view and analysis is hampered

by lack of field observations, a model is the most defensible description of a

groundwater system for informed and quantitative analyses as well as forecasts

about the consequences of proposed actions”. This reason and perhaps many more,

strengthen the need and importance of performing groundwater flow modelling at

the beginning of every hydrogeological investigation.

Using specialized packages such as the UZF (Unsaturated-Zone Flow package)

(Niswonger et al., 2006), SFR (Streamflow-Routing package) (Niswonger and

Prudic, 2005) and RIV (river package) (Harbaugh et al., 2000), one is able to

simulate GW/SW exchanges between streams and aquifers. In this thesis, the

RIV package was used to simulate and account for GW/SW fluxes.
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2.5.3 Limitations of Groundwater Flow Modelling

Although groundwater flow models can aid our understanding of subsurface flow

and related phenomena, it is important not to lose sight of the many assumptions

made in trying to simulate the environment. Thus, it is necessary for groundwater

modelling results to be presented in a context where uncertainty and the nature

thereof is explicitly stated (Anderson et al., 2015). The importance of such

information to end users such as policy makers or environmental managers cannot

be overstated. The major weaknesses associated with groundwater modelling are

discussed below.

2.5.3.1 Uncertainty

In the context of hydrological modelling, uncertainty can be further classified

into aleatory/intrisic and epistemic uncertainties. Aleatory uncertainties relate

to apparent random variability and can be quantified by probabilistic terms

whereas epistemic uncertainties arise from a limitation or lack in knowledge

and understanding. The latter, it is suggested, can be reduced by taking more

precise measurements or by using new techniques altogether (Beven and Young,

2013) while the former cannot be reduced either by the availability of more

information or by new science(Anderson et al., 2015). Thus aleatoric uncertainties

are more amenable to probabilistic description methods. Currently, Bayesian

multimodel averaging (BMA) (Neuman, 2003a,b) is the most popular of such

probabilistic methods where the uncertainty in the knowledge of the physics

underlying hydrological processes is characterized using multiple structures (Gong

et al., 2013).

Uncertainty in groundwater models can arise from many sources. Limited
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understanding of the geology, code selection (Anderson et al., 2015), conceptu-

alization of the groundwater model and input parameters used to calibrate and

constrain the model are possible sources of uncertainty. With regard to the con-

ceptual model, geological uncertainty mainly arises from two sources: the medium

in which flow is occurring and the hydraulic parameters of the medium (Refsgaard

et al., 2012). Accounting for this type of uncertainty is still an active area of

research. One of the ways in which this uncertainty can be reduced is by the

use of a multimodel approach (Refsgaard et al., 2012). For example, Poeter and

Anderson (2005) demonstrated the usefulness of multimodel inference based on

Kullback-Leibler (K-L) information in selecting the best model. This approach

lends itself well to the equifinality concept, advocated for by Beven (2006a), where

multiple models are accepted as possible representations of the hydrological system.

However, challenges related to model evaluation and model error representation

still remain. For example, in order to simulate different scenarios or hypotheses

about the environment, one needs to have observations or parameterisations

of those processes to be simulated (in most cases this is actually a hindcasting

problem) (Beven, 2006a). One way of achieving this is by stochastic generation of

hydrological models. However, this leads to the problem of overparameterization

and thus no matter how perfect a model is defined from a mathematical perspec-

tive, it will still be subject to equifinality even if non-error-free parameters are

used to define the boundary conditions and to drive the model (Beven, 2006a).

Although the equifinality thesis may seem as an attractive method of specifying

and quantifying uncertainty related to hydrological modelling, it is often shunned

in policy and decision making situations where one best model or solution is

desired (Anderson et al., 2015). Thus, it behoves climate and water experts to
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develop systematic and pragmatic guidelines for environmental managers and

policy makers tasked with the heavy responsible of translating probabilities into

adaptation responses (Wilby and Harris, 2006). In this research, calibration

constrained approaches such as those available in the PEST (Doherty et al.,

1994) and SWATCUP (for the surface-water models) software suites were used to

estimate the uncertainty in the hydrological models.

2.5.3.2 Nonuniqueness

In surface- and groundwater model calibration the inverse problem is almost always

expected to be underdetermined and thus mathematically ill-posed (Anderson

et al., 2015). In other words, there are more unknown parameters than there are

observations or field measurements. Thus it is not reasonable to constrain the

model calibration to one solution since many different combinations of parameters

are able to reproduce the observed values. Herein lies the problem or shortcoming

with history matching. The modeller is thus faced with the task of picking one

solution from many to present to decision-makers who, in many instances, demand

for a single unique solution (Anderson et al., 2015).

While it is true that there are multiple solutions to the inverse problem in

hydrologic model calibration, it is usually the case that some of the solutions are

geologically or hydrologically infeasible. Thus the modeller is expected to either

select the best and realistic solution or regulate the calibration using advanced

calibration tools such as Tikhonov regularization (Tikhonov and Arsenin, 1977) and

singular value decomposition (SVD). Hunt et al. (2019) revisited Freyberg’s (1988)

classroom problem which revealed problems associated with ‘point calibration’

aimed at getting a good histrorical fit “even at the expense of geological realism”
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(Hunt et al., 2019), including the shortcomings of simplistic trial-and-error methods

where no rigorous quantitative evaluation of the results can be made (Hunt et al.,

2019). Their findings established the following; a) that even after thirty-one

years since Freyberg’s classroom experiment and in spite of the great strides that

have been made in automated parameter estimation tools, the nonuniqueness

problem still exists but can now be better handled via soft-knowledge Tikhonov

regularization and SVD, b) that introducing pilot points (higly parameterized

inversion) yields better performance in the calibration process and that, c) to

achieve better results from the calibration campaign, suggestions offered by

Anderson et al. (2015) to the effect that, both head and flux targets should be

used since the correlation between hydraulic conductivity and recharge cannot be

overcome using only head data for calibration, are valid.

In this thesis, it has been proposed that (see Chapter 7) that alongside

recommendations proposed by Hunt et al. (2019) and Anderson et al. (2015),

particularly in groundwater model calibration, a secondary step in the form of

multi-objective optimization (MOO) should be performed to help the decision-

maker select not only the best model but the most probable given a set of

constraints.

2.5.4 Integrated Hydrologic Modelling

Integrated hydrologic models (IHMs) present exciting opportunities to understand

groundwater/surface-water interactions which could lead to a holistic approach

to managing both surface and subsurface water resources. Recently, a lot of

research has been devoted to the study and application of IHMs to the solution

of complex hydrologic and environmental problems. For example, Dehghanipour
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et al. (2019) explored sustainable management options for agricultural production

and downstream flow to the shrinking Urmia Lake using a coupled dynamically

coupled MODFLOW and WEAP model. Somers et al. (2019) used the GSFLOW

model to test the extent to which, in the future, groundwater will buffer the

loss of glacial meltwater in the typically proglacial Shullcas Watershed in central

Peru. Their study concluded that the groundwater component improves our

current understanding of the interplay between glaciers, surface- and groundwater

under a changing climate. Chunn et al. (2019) applied the SWAT-MODFLOW

model to the Little Smoky River watershed in western Alberta, Canada in a

bid to evaluate potential impacts of climate change and water withdrawals on

groundwater–surface water interactions. Their study revealed that uncontrolled

groundwater abstractions could have more immediate effects on streamflow than

climate change.

Despite the many advantages of IHMs, they require specialised knowledge and

a lot of temporal-spatial data input to set-up, calibrate, validate and apply (Tian

et al., 2018). More specifically, model preparation requires one to have highly

specialised GIS and computer programming skills (Gardner et al., 2018). In recent

years, however, tools aimed specifically at easing the laborious exercise of input

data preparation for free and open-source IHMs have been developed. Gardner

et al. (2018) for example developed a python toolset that builds input for GSFLOW

while Park et al. (2019) developed a QGIS plugin (QSWATMOD) that is used to

prepare and run SWAT-MODFLOW models. In this thesis, QSWATMOD was

used to prepare, run and post-process SWAT-MODFLOW results.
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2.6 Potential Groundwater Recharge

Estimation

Groundwater recharge is defined as the vertical flow of water reaching the phreatic

surface or water table and adding to the groundwater storage (Healy, 2010). Water

flowing from other aquifers through a semi-permeable layer such as an aquiclude,

for example, is included by some authors in their definition of recharge. Others

refer to such flow as interaquifer flow. Herein, the definition of groundwater

recharge is limited to two forms i.e. diffuse and focussed recharge as illustrated in

Fig. 2.6.

Figure 2.6 Schematic representation of recharge processes from infil-
tration to interaquifer flow (adapted from Healy (2010)).

Diffuse recharge, sometimes referred to as local or direct recharge, is defined as
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recharge that reaches the water table by infiltrating the soil surface and percolating

the unsaturated zone in response to a precipitation event and is usually distributed

over large areas (Allison, 1988; Healy, 2010; Simmers, 2017). Focussed recharge is

defined as “the movement of water from surface-water bodies, such as streams,

canals, or lakes, to an underlying aquifer” and usually varies spatially than diffuse

recharge (Healy, 2010). Infiltration refers to the entry of water from the ground

surface into the subsurface. It is more aptly referred to as potential recharge

since it may become recharge when it reaches the water table or return to the

atmosphere via evapotranspiration or simply remain in the vadose zone for some

time (Healy, 2010; Rushton, 2017). Aquicludes or low permeability materials may

prevent the downward movement of water in the vadose zone and thus create

perched aquifers and induce other types of groundwater flow such as forcing water

from lakes or springs (Mansour et al., 2018). In this thesis, because these processes

are neither examined in detail nor accounted for, the terms “groundwater recharge”

and “infiltration” are used interchangeably to mean potential recharge.

Many techniques including water-budget, modelling, physical, chemical and

heat tracer methods have been used to estimate recharge. Stable environmental

isotopes such as deuterium (2H) and oxygen-18 (18O) and radioactive isotopes

such as tritium (3H) and carbon-14 (14C) have been used extensively since the

early 1950s to estimate average recharge to groundwater (e.g. Gaye and Edmunds,

1996; Kalin, 2000; Sharma and Hughes, 1985).

Some groundwater recharge estimation methods such as numerical modelling,

chemical and tracer methods etc., are data-intensive while others such as hy-

drograph separation methods require less data. Arnold et al. (2000) used two

methods, i.e., SWAT’s water balance method and a modified hydrograph recession
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curve displacement technique, to estimate groundwater recharge in the Upper

Mississippi river basin, Cairo, Illinois, United States. The authors point out that

the hydrograph recession displacement method simulated recharge just as well as

the SWAT model with the only data input requirement being daily streamflow

records.

2.7 Modelling Code Selection

2.7.1 MODFLOW

MODFLOW is a modular three-dimensional finite difference groundwater flow mod-

elling code developed by the United States Geological Survey (USGS)1 (McDonald

and Harbaugh, 1988) and is widely considered to be the de-facto groundwater

modelling code. Many iterations (referred to as “core versions”) of the code have

been released as open source code to the public since its early development in the

80s (i.e. MODFLOW-88, MODFLOW-96, MODFLOW-2005 and MODFLOW-6).

MODFLOW solves the following governing partial differential equation for

three-dimensional groundwater flow:
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where Kxx, Kyy and Kzz are values of hydraulic conductivity along the x, y

and z coordinate axes, which are assumed to be parallel to the major axes of

hydraulic conductivity (L/T ), h is the potentiometric head (L), W is a volumetric

flux per unit volume representing sources and/or sinks of water, with W < 0 for
1http://water.usgs.gov/ogw/modflow

http://water.usgs.gov/ogw/modflow
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flow out of the groundwater system and W > 0 for flow into the system (T −1), Ss

is the specific storage of the porous material (L−1) and t is time (T ).

Numerous MODFLOW versions, other than the core versions, have been

developed, mainly to address specific problems. Issues of saltwater intrusion,

solute transport, surface and groundwater interactions, karst groundwater flow

modelling, local refinement with nested and unstructured grids, and problems

associated with unconfined groundwater flow problems have led to the development

of many MODFLOW variants such as MODFLOW-NWT, MODFLOW-USG,

GSFLOW, MODFLOW-OWHM, MODFLOW-LGR and SEAWAT.

Of particular note is the problem of the occurrence of “dry cells” which has

been documented extensively in the literature (e.g. Bedekar et al., 2012; Hunt and

Feinstein, 2012; Painter et al., 2008). Generally, when the calculated head in a cell

falls below the base of the cell, the cell becomes “dry” and is excluded from future

calculations as it is considered to be inactive by MODFLOW. Doherty (2001) has

summarised the problems associated with the occurrence of dry cells as follows:

• Recharge assigned to a cell by MODFLOW may never enter the groundwater

model domain if the respective cell is declared inactive. Although this can

be circumvented by assigning recharge to the top active cell of the grid as

opposed to specific cells, recharge can still be lost if the bottom layer dries

out and thus lead to a propagation of dry cells within the model domain.

• The drying/rewetting capability of some MODFLOW solvers (e.g. BCF2 (Mc-

Donald et al., 1991)) causes numerical instability and non-convergence issues.

To alleviate this problem, the convergence criterion can be set to an unusu-

ally higher value and the iteration interval between rewetting of dry cells

also set high; although this could lead to unacceptable budget errors and
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questionable groundwater flow solutions.

• Calibrating MODFLOW models using nonlinear parameter estimation codes

such as PEST or UCODE, rewetting of cells can introduce a degree of

granularity to model outputs. Furthermore, the inversion process can be

severely hampered when observation wells are situated in dry cells.

To solve the drying/rewetting issue in MODFLOW, Waterloo Hydrogeologic1

developed MODFLOW-SURFACT (Panday and Huyakorn, 2008) and more re-

cently, the USGS released MODFLOW-NWT (Hunt and Feinstein, 2012; Nis-

wonger et al., 2011). MODFLOW-NWT is a Newton-Raphson formulation for

MODFLOW-2005 that is designed to improve the solution of unconfined groundwa-

ter flow problems (Niswonger et al., 2011). Recently, it has become fashionable to

couple watershed models with MODFLOW-NWT such as GSFLOW (Markstrom

et al., 2008) and SWAT-MODFLOW (Bailey et al., 2016). The Newton-Raphson

solver (NWT) in MODFLOW-NWT has also been implemented in MODFLOW-

OWHM (Hanson et al., 2014), MODFLOW-USG (Panday et al., 2013) and in

MODFLOW 6 (Hughes et al., 2017; Langevin et al., 2017), the current core version

release of MODFLOW.

In this research, MODFLOW-NWT was used to solve the groundwater flow

problem. MODFLOW-NWT was fully coupled with the SWAT model for form

SWAT-MODFLOW. All MODFLOW models were developed using free and open-

source software.
1https://www.waterloohydrogeologic.com/

https://www.waterloohydrogeologic.com/
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2.7.2 Soil and Water Assessment Tool (SWAT)

The Soil and Water Assessment Tool (SWAT) is a comprehensive, semi-distributed

river basin or watershed scale model developed by Dr. Jeff Arnold for the

United States Department of Agriculture (USDA) Agricultural Research Ser-

vice (ARS) (Arnold et al., 2012, 1998; Neitsch et al., 2011). Swat has been

designed and used to model the impact of management on water, evaluation

of streamflow (e.g., Githui et al., 2009; Govender and Everson, 2005; Patil and

Ramsankaran, 2017; Rahman et al., 2013; Strauch et al., 2012; Thampi et al., 2010;

Vazquez-Amabile and Engel, 2005; Wang et al., 2008), simulation of sediment,

nutrient and pollutant transport (e.g., Ayele et al., 2017; Betrie et al., 2011a,b; Jha

et al., 2004a; Lemann et al., 2016) in gauged and ungauged watersheds (Douglas-

Mankin et al., 2010; Gassman et al., 2007). The SWAT model model has proved

to be a robust tool for these types of problems and many researchers worldwide

have adopted it as a tool of choice among many competing alternatives (e.g,

PRMS (Leavesley et al., 1983), Hydrologic Engineering Center - River Analysis

System (HEC-RAS) (Brunner, 2010), etc.). A detailed description of how the

SWAT model simulates hydrological processes is given in Section 3.7.2.

Many researchers have used SWAT to assess the impacts of climate change on

surface water resources. For example, Ficklin et al. (2009) used the SWAT model

to simulate the hydrological response to climate change of the San Joaquin River

watershed, California, in the United States. Specifically, the study investigated

how varying atmospheric CO2, temperature and precipitation can affect the

hydrological regime of a watershed. Using a SWAT model conditioned on monthly

streamflows, the study concluded that a changing climate has significant effects on

water yield, streamflow, evapotranspiration and irrigation water use. Eckhardt and
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Ulbrich (2003) investigated the potential impact of anthropogenic climate change

on groundwater recharge and streamflow in a central European low mountain range.

The study used a modified version of SWAT to simulate projected recharge and

streamflow under two climate change scenarios. The results of the study indicated

that there were changes in the projected mean annual cycle of groundwater

recharge and streamflow.

From an ecohydrological and climate change perspective, impacts of land-

use/landcover and climate changes on future streamflows and other watershed

hydrological components have been modelled globally using the SWAT model (see

for example Leemhuis et al., 2017; Pandey et al., 2017; Rodrigues da Silva et al.,

2018; Setyorini et al., 2017; Yin et al., 2017b). Determination of the hydrological

response of highly pressured ecosystems or watersheds to various external stresses

is important for water managers and policy makers from a sustainability viewpoint.

In the context of Malawi, very few studies have been conducted to assess the

impact of climate and landuse/landcover (LU/LC) changes on the hydrological

regime of different watersheds in the country. One study by Palamuleni et al.

(2011) applied the SWAT model to assess the impact of LU/LC changes in the

Upper Shire River Basin. To date, this is the only study that has addressed this

issue using a combination of GIS techniques and a hydrological model. In this

study, future hydrologic forecasts were conducted using the SWAT model but the

LU/LC was considered to be stationary – that is, conditions existing during the

baseline period were considered to persist into the future.
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2.7.3 SWAT-MODFLOW

SWAT-MODFLOW (Bailey et al., 2016), an amalgamation of SWAT and MOD-

FLOW, was selected for integrated hydrologic modelling because of it’s wide

application in different settings across the world (e.g., Aliyari et al., 2019; Bailey

et al., 2016; Chung et al., 2015; Gao et al., 2019a; Kim et al., 2017; Molina-Navarro

et al., 2019a; Semiromi and Koch, 2019; Wei and Bailey, 2019). Details of the

software and it’s application in this thesis can be found in Section 3.7.3.

GSFLOW was also considered as a possible tool for integrated hydrologic

modelling. However, due to the fact that PRMS (surface-water modelling engine in

GSFLOW) has not been applied extensively, especially in semi-arid or arid regions,

SWAT-MODFLOW was adopted instead. It should be noted that GSFLOW

uses MODFLOW-NWT (also used in SWAT-MODFLOW) as the groundwater

modelling engine. Future work considerations may look at the applicability of

GSFLOW to Malawi and subsequently assessment of uncertainty associated with

different IHMs.

2.8 Model Calibration

2.8.1 Quantifying Model Performance

One of the main limitations of hydrologic and hydroclimatic models is uncertainty

and nonuniqueness (Anderson et al., 2015). This is because the parameter space

(i.e. the set of all possible combinations of values of parameters that are used to

simulate the environment by a model) can contain many different combinations of

spatial parameters that can lead to mathematically equivalent predictions (BEVEN
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and BINLEY, 1992). Modern practice requires the environmental modeller to

report multiple calibrated models or error bounds constructed around a preferred

calibrated model forecast but, as has been discussed earlier, this is not desirable

in IWRM where decisions with societal impacts often have to be made based on

one “correct” model (Anderson et al., 2015; Beven, 2006b).

During calibration of atmospheric or hydrological models, it is necessary to

quantify the performance of the model (also referred to as Model Evaluation).

Here, the “goodness-of-fit”, or in other words, how closely the simulated results fit

the observed data, is determined by pairwise comparisons of simulated results and

observed data. Sometimes, a visual inspection of the goodness-of-fit is carried out

by plotting simulated and observed values on a graph and judging whether the

model is simulating the system correctly based on the “match” between the two

plots. The state-of-the-art, however, is to use statistical techniques to quantify the

performance. The most widely used statistical metrics to assess how well a model

can simulate reality include the Pearson’s product-moment correlation coefficient

(r) and the coefficient of determination (R2) (Legates and McCabe, 1999). However,

according to Legates and McCabe (1999), these metrics can indicate that a model is

a good simulator when in fact it is not. This is because correlation-based measures

are oversensitive to outliers and are insensitive to additive and proportional

differences between model predictions and observation (Legates and McCabe,

1999). Other measures of goodness-of-fit that have been considered in this research

include Nash-Sutcliffe Efficiency (NSE) (Nash and Sutcliffe, 1970b), Modified

NashSutcliffe Efficiency (mNSE), Relative Nash-Sutcliffe efficiency (rNSE) , Mean

Error (me), Mean Absolute Error (mae), Root Mean Square Error (RMSE),

Normalized Root Mean Square Error (nrms),Ratio of Standard Deviations (rSD),
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Index of Agreement (d) (Willmott, 1981), Modified Index of Agreement (md),

Relative Index of Agreement (rd), Coefficient of Persistence (cp), Percent Bias

(pbias), Kling-Gupta efficiency (KGE), the coefficient of determination multiplied

by the slope of the linear regression between simulated results and observed data

(bR2), and volumetric efficiency (VE). A discussion of how some of these metrics

were applied to assess model performance is given in Chapter 3.

2.8.2 Groundwater Model Calibration

Groundwater models are a highly simplified representation (conceptual understand-

ing) of the subsurface system. This is because subsurface systems and aquifers

are never known exactly and as such they must be mapped to a model space that

adequately represents field conditions i.e. translating the conceptual model into a

numerical model. This translation is necessary but further simplifies the concep-

tual model so that the numerical model is computationally tractable (Anderson

et al., 2015, p. 376).

Model input parameters are measured in the field but often represent a small

portion of the subsurface system (Carrera et al., 2005). In spite of this shortcoming,

the values of heads and fluxes measured in the field usually have a higher degree of

confidence associated with them than parameter values. Thus, model calibration,

as is applied in groundwater modelling, belongs to a class of numerical methods

known as “inversion” because the groundwater model in this case is posed as

an inverse problem (Anderson et al., 2015, p. 376). In other words, the known

(heads) must be inverted to find the unknown(aquifer properties) (Anderson et al.,

2015, p. 397).

Practically, field observations are usually limited in number and thus relatively
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few parameters can be estimated. Moreover, because of the spatial-temporal

distribution of model inputs, the pool of parameter values could easily be infinite.

Through a process referred to as parameterization, model inputs can be defined

using a limited number of parameter values (Hill and Tiedeman, 2006, p. 5).

In this research, the popular groundwater calibration software, Parameter

EStimation Tool (PEST), was used to calibrate the groundwater flow models.

PEST is a model-independent, non-linear parameter estimation software and

currently one of the most advanced software for environmental model calibration

and uncertainty analysis (Doherty, 2003; Doherty et al., 1994). PEST is an

open-source (but also supported in commercial graphical user interfaces [GUIs])

software that can be downloaded from http://www.pesthomepage.org/PEST.php.

Detailed theory on which PEST is based can be found in (Doherty, 2015).

Many examples of the application of PEST for the calibration of hydrological

models can be found in the extant literature. Al-Abed and Whiteley (2002)

used PEST to calibrate water-quantity parameters of the Hydrological Simulation

Program Fortran (HSPF) model for the Grand River watershed located in southern

Ontario, Canada. The study concluded that automatic calibration using the PEST

model produced reliable results for the watershed and recommended that GIS

data is used in the model development process. Baginska et al. (2003) performed

a sensitivity analysis of the key parameters of the Annualized Agricultural Non-

point Source (AnnAGNPS) model in a study aimed at predicting the export of

nitrogen and Phosphorous from Currency Creek, a small catchment in the Sydney

region, South Australia. In their study, PEST was recommended as a tool that

can considerably reduce the time needed for identification of key parameters and

consequently selection of input values.

http://www.pesthomepage.org/PEST.php
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2.8.3 Surface-water Model Calibration

For the calibration of surface water models (i.e SWAT models), the popular cali-

bration tool, SWAT Calibration Uncertainties Program (SWAT-CUP) (Abbaspour

et al., 2007) was used. The following algorithms are implemented in SWAT-CUP:

• Sequential Uncertainty Fitting version 2, SUFI-2 (Abbaspour et al., 2004,

2007)

• Particle Swarm Optimization, PSO (Eberhart and Kennedy, 1995; Kennedy

and Eberhart, 1995)

• Generalised Likelihood Uncertainty Estimation, GLUE (BEVEN and BIN-

LEY, 1992)

• Parameter Solution, ParaSol (van Griensven and Bauwens, 2003)

• Markov Chain Monte Carlo, MCMC (Kuczera and Parent, 1998)

It is important to note that SWAT calibration is not limited to the aforemen-

tioned algorithms. For example, Bekele and Nicklow (2007) successfully used a

multi-objective automatic calibration routine employing the Non-dominated Sort-

ing Genetic Algorithm II (NSGA-II) to calibrate a SWAT model for daily stream-

flow and sediment concentration. Zhang et al. (2010) compared the performance

of a multi-algorithm, genetically adaptive multi-objective method (AMALGAM)

with two evolutionary multi-objective optimization methods (i.e. Strength Pareto

Evolutionary Algorithm 2 (SPEA2) and Non-dominated Sorted Genetic Algorithm

II (NSGA-II)) for multi-site calibration of SWAT. The authors concluded that

AMALGAM performed better or as good as the single-algorithm methods for

multi-site calibration of the SWAT model.

Recently, SUFI-2 has been used extensively for calibrating SWAT models. It’s

sudden popularity can be attributed to the fact that it is easily accessible via
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SWAT-CUP and also because of the readily available documentation for application

of the algorithm to SWAT calibration. Furthermore, some studies have compared

the performance of SWAT-CUP based algorithms and recommended SUFI-2 as

the best performing algorithm. Wu and Chen (2015), for example, used GLUE,

SUFI-2 and ParaSol to evaluate uncertainty estimates in hydrological modelling

for the Wenjing River watershed, China. The study concluded that, while ParaSol

produced slightly higher NSE values than SUFI-2 (0.77 vs 0.75 respectively),

SUFI-2 generated more balanced prediction uncertainty ranges than the other

methods. Additionally, SUFI-2 and ParaSol required fewer simulations to achieve

good results in comparison to GLUE, highlighting their computational efficiency.

Schuol et al. (2008a) applied SUFI-2 algorithm to the calibration of a SWAT

model aimed at estimating freshwater availability for a large area (4 million km2)

covering eighteen countries in West Africa. The authors concluded that SUFI-2

was very efficient in localizing an optimum parameter range with a relatively small

number of iterations considering the vastness of the area being modelled and the

associated computational demand.

In this study, SUFI-2 algorithm was used for calibration of the SWAT models.

Details of the SWAT-CUP calibration routine applied in this study are given in

Chapter 3.

2.9 Water Governance

According to the Global Water Partnership (GWP) water governance (Rogers

and Hall, 2003) is defined as follows; ‘Water governance refers to the range of

political, social, economic and administrative systems that are in place to develop

and manage water resources, and the delivery of water services, at different levels
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of society.’ The term “governance” itself denotes some form of administrative

authority through an agreed upon set of laws so as to prevent anarchy within a

society. Such authority, usually exercised by governments, should be extended to

the management of water resources to ensure equitable and sustainable use of the

water resources. However, it has been argued by some analysts that governance

should not be assumed to be synonymous with government; that it is instead a

convergence point of different actors and stake-holders from public and private

institutions including civil society and the general population (Tortajada, 2010).

Thus, by it’s very nature, IWRM cannot thrive without effective water governance

especially in the face of climate change and shortage of freshwater resources.

Many studies have emerged that have concentrated on forecasting future

availability of water resources in the face of climate change and extreme weather

(e.g., de Moraes Takafuji et al., 2019; Donevska and Panov, 2019; Erler et al.,

2019; Mirmasoudi et al., 2019; Qian et al., 2018). However, without effective

water governance and attendant policies, inequitable allocation and delivery of

water supplies including many other challenges associated with water security

could soon become irremediable especially in developing countries. Thus, good

governance and consequently effective water governance, is central to the success

of IWRM in developing countries such as Malawi.

Some researchers (e.g, Castro, 2007; Pahl-Wostl et al., 2008) have posited

that to enhance water governance (including the global water governance (GWP)

paradigm), there should be a healthy interplay between ‘techno-scientific, socio-

economic, political, and cultural aspects of water management activities’ (Castro,

2007). In this thesis, techno-scientific aspects of the research and their potential

application to the solution of IWRM challenges especially in the developing world,
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are presented and discussed in Chapter 8.

2.10 Research Gap

Groundwater and surface water are often studied in isolation with respect to

climate change and variability even though the two systems are related and

considered as one resource from a hydrological perspective. Many studies have

been published that have investigated the effects of climate change and variability

on surface water resources globally (for example, Chiew and McMahon, 2002;

Ficklin et al., 2009; Jha et al., 2004b; Jones et al., 2006; Luo et al., 2013; Miller

et al., 2003; Stonefelt et al., 2000; Yilmaz and Imteaz, 2011). Meanwhile, few

studies have investigated the effects of climate change on groundwater resources

and fewer still have simulated both surface water and groundwater and the

interactions thereof with respect to climate change and variability. As Hunt et al.

(2013) note, using a simplistic method such as applying a percentage reduction

(or increase) in the steady-state groundwater recharge rate, one can thus simulate

a climate change scenario. However, such a simplistic methodology can come

at a cost of missing important “inter-annual temporal characteristics of climate

change” or interactions between the groundwater system and other hydrologic

systems (Hunt et al., 2013). In the past decade, many IHMs have been developed

and applied to the study of hydrologic systems under climate stress conditions.

However, there are still relatively few studies that have applied these models

to help solve IWRM problems around the world. By harnessing the power of

integrated hydrologic modelling, it is hoped that the contribution made through

this thesis will help to inform IWRM policy decisions in Malawi and in the UK in

the quest to meet the expectations of SDG6.
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2.11 Summary

In this chapter a review of the state-of-the-art in climate change impacts on

hydrology/hydrogeology has been presented. Uncertainty in these types of studies

is a critical issue that needs to be taken into consideration. Such uncertainties can

propagate from GCMs to hydrologic models – a situation which can be further

exacerbated by structural uncertainties in the hydrologic models themselves. Thus,

it is a requirement that uncertainties arising from such processes, that is climate

and hydrologic modelling, are mitigated at each step of the process. With respect

to integrated hydrologic modelling, it is evident that free and open-source software

tools for this task are still in their infancy. GSFLOW and SWAT-MODFLOW

(extensively applied) are the main players in this category with the latter being

selected for integrated hydrologic modelling in this thesis.

While a lot of studies have been done to assess impacts of climate on surface-

water and groundwater as separate units, few studies have been dedicated to

the study of surface- and groundwater bodies as an integrated unit. In Malawi,

specifically, where the impacts of climate change are hypothesized to be more

severe, there is an urgent need to quantify availability of freshwater resources

and formulate climate adaptation plans to be incorporated into policy documents

for a sustainable future. There is enough evidence of successful application of

integrated hydrologic models especially in temperate regions and a few isolated

studies in semi-arid to arid regions such as Malawi. The recently developed

SWAT-MODFLOW model, forced with CMIP5 projections, will be tested in a

temperate and semi-arid climate to assess it’s suitability as a decision support

tool in hydro-climatic adaptation studies.



—The important work of moving

the world forward does not wait

to be done by perfect men.

George Eliot

3
Materials and Methods

In this chapter, methods and tools that were used in this thesis are introduced.

Firstly, the research design is introduced. Thereafter, data collection and data

preparation methods are discussed. Software tools and methods related to climate,

hydrology and hydrogeology are discussed thereafter. Finally, a series of statistical

tests that are used to assess model performance are presented.
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3.1 Research Design

3.1.1 Research Methodology

Quantitative research, the methodology adopted in this thesis, is a form of scholarly

inquiry where data, generated in “quantitative form”, is analysed using rigorous

quantitative methods (Kothari, 2004). In this paradigm, a researcher begins

by formulating a theory, collecting data to support or refute the theory and

finally arrives at conclusions and recommendations (Creswell and Creswell, 2017).

In addition, the researcher may decide to carry out additional inquiry using a

more refined approach or recommend as possible avenues of further inquiry to

other researchers. In the context of this thesis, “quantitative research” involved

firstly, analysing quantitative observations of natural and physical phenomena (e.g.

climate, hydrological cycle etc.) and secondly, building models that can simulate

and explain these phenomena. Specifically, Chapters 4 to 6, for example, include

detailed analyses of climate, surface water hydrology and groundwater models

respectively. A schematic summary of the quantitative methods used in this thesis

is presented in Figure 3.1.

3.1.2 Comparative Analysis Approach

Application of the methods in this research begins by applying the methodology to

a data-rich region before applying the same methodology to a data-scarce region

(see Section 1.2.3). Thereafter, conclusions were made with respect to a) impact

of climate change in the two regions and b) generalizability of the methodology

(i.e can be applied in different settings).
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Figure 3.1 Schematic summary of the methodology used in this research



3.2 Data collection 65

3.2 Data collection

3.2.1 Meteorological Data

3.2.1.1 Shire River Basin

The Malawi Meteorological Services (MMS) Department is responsible for meteo-

rological data collection dating all the way back to the 1890s when the country

was still a British protectorate. Until the mid 1940s, climate data was collected

mostly by untrained personnel working in climate stations that also did not op-

erate consistently. In the mid 1940s, however, a systematic network of stations

under a meteorological authority began finally culminating in what is now the

MMSD (MMSD, 2018). Meteorological data (rainfall, minimum and maximum

temperature) were collected from the MMS.

3.2.1.2 River Nith Catchment

For the RNC, it was difficult to obtain reliable long term station data. Most

stations within the catchment have records which are either outside the baseline

period or within the baseline period but are too short to be used for statistical

downscaling. Because of this reason, reanalysis data were used as observations

to develop the statistical downscaling models. Reanalysis data are attractive in

that they contain minimal or no missing data and are a consistent spatial and

dynamic representation of the climate system (Deng et al., 2017). For both the

RNC and SRB, the ability of two reanalysis data, namely Climatic Research

Unit (CRU) (Mitchell and Jones, 2005) and Climate Forecast System Reanalysis

(CFSR) (Saha et al., 2010), to reproduce the baseline hydrological regime was
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compared. Pre-calibration results revealed that the CRU products were suitable

for the RNC while the CFSR data produced better results in the SRB.

3.2.2 Global Circulation Models

Global circulation models used in this study were downloaded from the Centre

for Environmental Data Analysis (CEDA) 1. CMIP5 regional and global climate

models were downloaded and saved on disk. To reduce computation time, the

downloaded GCMs were clipped to country level scale i.e. United Kingdom in the

case of River Nith Catchment and Malawi in the case of the Shire River Basin.

The clipping was done using Climate Data Operators (CDO) (Schulzweida et al.,

2006) software toolkit.

3.2.3 Topographical Maps

Topographical maps for Dumfries and the Shire River Basins were downloaded

from the Shuttle Radar Topography Mission (SRTM) (van Zyl, 2001) USGS

website, EarthExplorer 2. For both basins, 90m digital elevation models (DEMs)

were ultimately used for delineating the watersheds.

3.2.4 Land-use and Soil Maps

Land-use maps used in this study are derived from the USGS Global Land Cover

Characterization database (EarthExplorer) with 24 classifications of land-use. Soil

maps were downloaded from the TEXAS A&M UNIVERSITY SWAT website 3.

This product is based on the FAO-UNESCO Soil Map of the World.
1http://www.ceda.ac.uk/
2https://earthexplorer.usgs.gov/
3https://swat.tamu.edu/data/

http://www.ceda.ac.uk/
https://earthexplorer.usgs.gov/
https://swat.tamu.edu/data/
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3.2.5 Streamflow Data

3.2.5.1 Streamflow Data for the RNC

Streamflow data for the RNC was downloaded from the National River Flow

Archive (NRFA) website1. The gauging stations from the NRFA are part of the

United Kingdom Benchmark Network 2 (UKBN2) which is a subset of gauging

stations from the national hydrometric network that are suitable for identification

and interpretation of climate-driven hydrological trends (Harrigan et al., 2018).

Table 3.1 is a summary of the gauges using for streamflow analyses for the RNC.

Table 3.1 UKBN2 rivers in the RNC suitable for hydrological trend analyses

Station Region River Location Easting Northing Area (km2) ME BFI

79002 SEPA-SW Nith Friars Carse 292300 585100 799 288 0.39

79004 SEPA-SW Scar Water Capenoch 284500 594100 142 318.7 0.31

BFI Baseflow Index
ME Median Elevation (m AOD)
SEPA Scottish Environment Protection Agency

3.2.5.2 Streamflow Data for the SRB

Streamflow data for the SRB was obtained from the Ministry of Irrigation and

Water Development. Data from three gauging stations i.e. Lichenya, Rivirivi

and Ruo were ultimately used for SWAT calibration and streamflow assessments

under a changing climate. This is due to the large portions of missing data in the

other stations rendering them unsuitable for infilling and subsequent hydrological

assessments.
1https://nrfa.ceh.ac.uk

https://nrfa.ceh.ac.uk


3.3 GCM Selection 68

3.3 GCM Selection

Selection of the appropriate set of GCMs to be used in climate change studies is

a challenge that is yet to be unanimously resolved. Many approaches have been

used in the past to tackle this problem ranging from simplistic multi-model means

to complex statistical and data-driven methods (Biemans et al., 2013; Immerzeel

et al., 2013; Lutz et al., 2016; Warszawski et al., 2014). In this study, a subsection

from 29 GCMs for the SRB and RNC were assessed numerically and found to be

capable of closely reproducing the historical record.

Several methods have been employed to assess the performance of climate

models. In the literature, GCM selection methods have been classified into

two broad categories namely, the past-performance approach and the envelope

approach. In the former, GCMs are ranked and selected based on their ability

to simulate the historical climate (Raju and Kumar, 2014) while in the latter, a

subset of GCMs covering a wide range of projections is selected from the available

climate models (Warszawski et al., 2014). It has become fashionable to combine

both methods in order to overcome the disadvantages of the methods when used

singularly. For example, the past-performance approach does not consider the

agreement between GCMs in simulating the possible future climate whereas the

envelope approach does not address the issue of the GCMs’ ability to simulate

historical climate (Pour et al., 2018; Salman et al., 2018). According to Lutz

et al. (2016), a combination of the two methods can overcome these drawbacks by

first screening out the models based on their past-performance and then further

selecting an ensemble of GCMs based on their projections near to the higher or

lower sides of the projection range (Salman et al., 2018). However, it is argued
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here that because such a methodology is done sequentially, it relies heavily on

the past-performance approach, which has been used extensively in the literature

alongside other metrics such as the ability to reproduce extremes. Thus in this

research, a combination of two methods that are past-performance based are used

to rank and then select a subset of GCMs to be used for climate change impact

assessment.

A survey of the literature suggests that filter and wrapper feature selection

methods such as correlation coefficients, information entropy, clustering, weighted

skill score, Bayesian weighting and multiple-criteria decision-making have been

employed widely in the climate sciences (Pour et al., 2018). In order to select a

suitable subset of GCM models for the study regions, GCMs were ranked using two

methods. Firstly, a feature selection algorithm to rank the GCMs was employed.

Thereafter, the GCMs were ranked using a probability density function (PDF)

based skill score methodology after Perkins et al. (2007). In the first instance

the information entropy based method, Symmetrical Uncertainty (Flannery et al.,

1992), was used to rank the GCMs. The methodology for GCM selection and

downscaling can be summarised as follows;

1. Downloading GCM ensembles with daily data

2. Development of PDFs

3. Ranking of GCMs using PDF based skill scores (Top 15 GCMs selected)

4. Development of SU models

5. Ranking of GCMs based on SU metrics (Top 10 GCMs selected)

6. Selection of final subset of GCMs (7 GCMs of which 6 were selected for the

SRB and 5 for the RNC)

7. Selection of statistical downscaling method
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8. Statistical downscaling of future climate

9. Development of ensemble model using the selected GCMs.

In this thesis, the GCM selection method also relied on the research by

McSweeney et al. (2015) who used a multi-criteria rating system approach on a

range of metrics to select a subset of GCMs that were suitable for climate change

studies across multiple regions (i.e. Europe and Africa). For full details of the

methodology that was used in their study, refer to McSweeney et al. (2015). Based

on the evidence presented in their research where they compare their methodology

to previous regional studies, the methodology used in this thesis can be considered

to be robust and applicable for GCM selection in multiple regions since the results

in this thesis correlate with theirs. The key difference between the methodology

used in this research and theirs lies in the fact that simple numerical and statistical

analyses were employed here offering many advantages such as robustness and

interpretability. The methodology is described in detail in the following sections.

3.3.1 Symmetrical Uncertainty

SU is a simple goodness of feature measure that has been used in many hydro-

meteorological studies. Pour et al. (2018), for example, used SU to select a GCM

ensemble for assessment of spatial and temporal changes in rainfall of Bangladesh.

Salman et al. (2018) used SU as part of a hybrid methodology to rank and select

the GCMs for projection of spatio-temporal changes in temperature of Iraq with

uncertainties.

SU is based on the information-theoretical concept of entropy which measures
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the uncertainty of a random variable. The entropy of a variable X is defined as

H(X) = −
∑

i

P (xi) log2(P (xi)) (3.1)

and the entropy of X after observing values of another variable Y is defined like

so:

H (X|Y ) = −
∑

i

P (yj)
∑

j

P (xi|yj) log2 (P (xi|yj)) , (3.2)

where P (xi) is the prior probability for all of the values of X, and P (xi|yj) is

the posterior probabilities of X given the values of Y . The amount by which the

entropy of X decreases reflects additional information about X that is provided

by Y , and is called the information gain (IG) which can be mathematically

represented as:

IG (X|Y ) = H (X) − H (X|Y ) . (3.3)

Feature Y , according to this measure, is regarded to be more correlated with

feature X than to feature Z if IG(X|Y ) > IG(Z|Y ).

For two random variables X and Y , information gain is symmetrical. Symmetry

is a desired property for a measure of correlations between features. However,

information gain is biased in favour of features with more values. Moreover, the

values have to be normalized to ensure they are comparable and have the same

effect (Kannan and Ramaraj, 2010). Thus, we choose Symmetrical Uncertainty

defined as follows:

SU = 2
[

IG (X|Y )
H (X) + H (Y )

]
(3.4)

SU compensates for the IG’s bias towards features with more values. These

values are normalised within the range [0, 1]. The value 1 denotes that knowledge
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of either one of the values completely predicts the value of the other, whereas the

value 0 indicates that X and Y are independent. SU treats a pair of features

symmetrically (Shreem et al., 2016).

3.3.2 PDF-Based Ranking

In this method, according to Perkins et al. (2007), a simple ‘skill score’ based on

the comparison between simulated GCM hind-cast and observed historical data

is developed. In the other words, the similarity between two PDFs is estimated

by calculating the cumulative minimum value of two distributions of each binned

value, whereby the common area between the two PDFs is measured (Perkins

et al., 2007). Where a model replicates the historical period perfectly, a value

of one is assigned. This value represents the ‘skill score’ (Sscore) of the GCM at

that particular station or grid point in the case of gridded data. It is the total

sum of the probability at each bin centre in a given PDF. Conversely, if a model

simulates the historical PDF poorly, it’s Sscore will be close to zero meaning there

is little to no overlap between the observed and simulated PDFs (Perkins et al.,

2007). Mathematically, Sscore is represented as follows;

Sscore =
n∑
1

minimum(Zm, Zo), (3.5)

where Zm and Zo are the frequency of values in a given bin from the model and

observed data respectively and n is the number of bins used to calculate the PDF

for a given region.

Perkins et al. (2007) demonstrated the robustness of this method against

uncertainty in the spatial-temporal coverage of the observations (Perkins and

Pitman, 2009). Furthermore, this method has been found to be robust against
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data limitations such as the presence of gaps and outliers as is the case in the SRB

(Perkins et al., 2013). In this thesis, this method was applied to rank and filter

the GCMs before applying the SU technique described in the preceding section.

3.4 Statistical Downscaling

The method employed for statistical downscaling of GCM models in this study is

the non-parametric quantile mapping method. Non-parametric quantile mapping

methods have been shown to be more reliable in reducing systematic biases in

GCM outputs (e.g. Cho et al., 2016; Gudmundsson et al., 2012; Ngai et al.,

2017; Themessl et al., 2011) perhaps due to the fact that they do not fit a

parametric distribution to the data thus making them more flexible that other

methods. However, one needs to be concerned about the possibility and dangers

of using such a highly adaptable method i.e. ability to fit any quantile-quantile

relation. If observed data are few (short time period of observations), potential

over-fitting issues could arise and thus lead to unrealistic realisations of projected

climate (Gudmundsson et al., 2012).

Generally, in quantile mapping, an attempt is made to find a function h

that maps a modelled variable Psim such that it’s new distribution equals the

distribution of the observed variable Pobs (Gudmundsson et al., 2012). This

transformation can be mathematically depicted as follows;

Pobs = h(Psim) (3.6)

and, according to Gudmundsson et al. (2012), where the distribution of the
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variable of interest is known, the transformation can be formulated as,

Pobs = F −1
obs(Fsim(Psim)), (3.7)

where Fsim is the CDF of Psim and F −1
obs is the inverse CDF (i.e. quantile function)

corresponding to Pobs.

In the case of non-parametric quantile mapping, Eq. (3.7) can be solved using

the ECDFs of observed and simulated values instead of assuming parametric

distributions. Tables of empirical percentiles are used to approximate ECDFs

and the values in between the percentiles approximated using linear interpola-

tion (Gudmundsson et al., 2012).

In this study, the qmap package by Gudmundsson et al. (2012) in the free and

open source R programming environment was used to bias correct and downscale

GCM model outputs for the RNC and SRB.

3.5 Ensemble Climate Model

In both the SRB and RNC, at least five global circulation models were adopted

for climate change impact assessments. It is a well known and documented

phenomenon that GCM climate projections vary from one model to the other due

to the inherent structural differences in the models (Pour et al., 2018). Because

each model is considered to be a possible future outcome, the experiments in this

study were designed in such a way that each GCM would drive a hydrological

model and only average the outputs at the end of hydrological modelling to assess

climate impact. However, the case where a GCM ensemble model constructed by

averaging the GCM downscaled outputs is used to drive the hydrological models
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(i.e. surface- and groundwater models) was also considered. A comparison between

results of such models with those of post-hydrologic simulation ensemble results

was made and observations that could open up new opportunities for further

inquiry in the future noted. Results are presented and discussed in Chapters 5

to 7.

A machine learning based model was developed for averaging individual GCM

outputs. Machine learning, also known as statistical learning refers to a vast set of

tools that are used for understanding data (James et al., 2013). These algorithms

are sometimes referred to as ‘black boxes’ because they have little connection

to the underlying physical processes related to the data they are modelling. In

hydrology specifically, See et al. (2007) document that one of the criticism of these

methods or hydroinformatics as more general term, is that they don’t add any

scientific knowledge or improved understanding to the field of hydrology in general

(Worland et al., 2018). However, data-driven models have the unique advantage of

generating predictions or forecasts high in accuracy and in a parsimonious manner.

The equations describing the multiple variables used in building the machine

learning models may take a different form than the actual equations describing

the physics of the hydrologic system being modelled (Cherkassky et al., 2006).

Be that as it may, the power of machine learning can be harnessed in situations

where accurate predictions are required over physical interpretability (Worland

et al., 2018).

Data-driven models have been used extensively in the literature to simulate

environmental processes such as rainfall-runoff modelling (e.g. Dibike et al., 2001;

Taormina and Chau, 2015), streamflow prediction (Li et al., 2019a; Liu et al.,

2019; Niu et al., 2019; Ren et al., 2018; Yan et al., 2019; Yaseen et al., 2018; Zhu
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et al., 2019) and climate downscaling (Alizamir et al., 2018; Knighton et al., 2019;

Ren et al., 2019; Rhee and Im, 2017; Sachindra et al., 2018; Yin et al., 2017a).

The random forest (RF) machine learning algorithm was used to build an

ensemble GCM model for rainfall and temperature in the SRB and RNC using

downscaled GCM variables as predictors. For completeness, a comparison between

the RF model and the multi-model ensemble mean was made for purposes of

determining a suitable ensemble model that can reproduce the historic or baseline

climate realistically. Details of the models are given in the following sections.

3.5.0.1 Random Forest

The random forest (Breiman, 2001) model, a non-parametric statistical regression

algorithm, was used to generate an ensemble mean from the selected subset of

GCMs.

3.5.0.2 Multi-model Ensembles Mean

The multi-model ensembles mean is a simple arithmetic mean of the models which

can be expressed as follows;

S(t) = 1
N

N∑
i=n

Pn(t), (3.8)

where S(t) is the ensemble mean at time t, N is the total number of GCMs and

Pn(t) is the projection of the nth GCM at time t (Wang et al., 2018).
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3.6 Handling of Missing Data

Incomplete time-series data can present serious challenges in the application of

climate and hydrological modelling. One of the common, scientific and principled

ways that hydrologists, water managers and policy makers undertake to understand

the hydrologic system is by observing changes in hydrological processes over

time (Viglione et al., 2010). It follows, therefore, that inadequate, incomplete and

incorrect observed data, when used to model the environment, may yield misleading

results and conclusions. Hydro-meteorological data, globally, is riddled with these

deficiencies but more so for developing countries such as Malawi (GYAUBOAKYE

and SCHULTZ, 1994; Mwale et al., 2012). Generally, missing and dubious hydro-

meteorological data occurrence can be attributed to several reasons among which

are; lack of adequate resources and/or funding to support the data collection

programme, lack of personnel to record readings and maintain malfunctioning

instruments, lack of qualified personnel to carry out the required data quality

control before presenting the data to end users, other systematic and random

errors (e.g. loss of water from rain gauge during measurement, adhesion loss on the

surface of the rain gauge, possible tree growth near instrument, etc.)(Teegavarapu

and Chandramouli, 2005).

In Malawi, a combination of all or some of the aforementioned reasons is

responsible for the lack of continuous and reliable hydro-meteorological data (Ku-

mambala, 2010; Mwale et al., 2012). It, therefore, becomes imperative to carry

out diligent quality control and estimation/imputation of gaps in observed hydro-

meteorological time series data before attempting to use these data in environmen-

tal models; not only to improve the performance and confidence in the models’
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ability to simulate the environment, but also to reduce the uncertainty associated

with the input data (Adeloye and Rustum, 2012).

3.6.1 Commonly Used Infilling or Imputation Techniques

Numerous techniques have been employed for estimation of missing gaps in the

physical and social sciences. Infilling or imputation in this study is defined as

the process of repairing time series data where observations are missing due to

disruption of data collection, systematic and random errors (Bardossy and Pegram,

2014). Generally, these methods range from simple deterministic interpolation

models to complex machine learning, stochastic and data-driven methods.

While most infilling methods trace their development from the applied math-

ematics sciences, most applications have been in the social and bioinformatic

sciences. However, the past few decades have seen a rise in application of these

techniques in hydrology. A range of methods have been applied to reconstruct

missing gaps in hydrology such as; univariate regressive methods (e.g. Bennis

et al., 1997; Lo Presti et al., 2010), artificial neural networks (e.g. Coulibaly and

Evora, 2007; Khalil et al., 2001; Kim and Pachepsky, 2010; Singh and Datta, 2007),

self organizing maps (e.g. Adeloye and Rustum, 2012; Kalteh and Berndtsson,

2007; Kalteh and Hjorth, 2009; Mwale et al., 2012, 2014; Nanda et al., 2017),

data-driven methods (e.g. Ahani et al., 2018; Deng and Wang, 2017; Oriani et al.,

2017).

In this research, infilling was applied to streamflow and meteorological time-

series data. Although gaps were present in meteorological data, application of

these data in the SWAT model in particular may not be problematic. This is

because the SWAT model has the ability to use a user defined weather database
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to generate climatic data or to fill in gaps in observed records (Fuka et al.,

2014a; Neitsch et al., 2011). The Climate Forecast System Reanalysis (CFSR)

global meteorological dataset was used for this purpose in the SWAT model.

However, despite this important capability of the SWAT model, reconstruction of

missing gaps in the meteorological data was a necessary step before statistically

downscaling GCM outputs to point or station scale. Thus meteorological data

for the observed (baseline) period did not include missing gaps at the time of

application in the SWAT model.

In a recent study (Javier Miro et al., 2017), ten methods for massive imputation

of missing rainfall data series were tested and validated for both monthly and

daily data. The results indicated that the Non-linear Principal Component

Analysis (NLPCA) method and its variants was among the three best performing

methods from a pool which featured the popular and successful Self-Organizing

Map, (SOM) (Kohonen, 1998) method. According to Javier Miro et al. (2017),

this was unexpected as the SOM method has successfully been applied in the

past to reconstruct missing gaps in both rainfall and streamflow time series (e.g.

Adeloye and Rustum, 2012; Kalteh and Berndtsson, 2007; Kalteh and Hjorth,

2009; Mwale et al., 2012, 2014; Nanda et al., 2017, to select a few from plenty in

the literature). However, the success of the SOM in different climatic settings and

watersheds cannot be overlooked. For example, in the SRB, Mwale et al. (2012,

2014) successfully used the SOM to augment observed rainfall and streamflow

time series data with reported R2 values greater than 0.9 (streamflow) and 0.7

(rainfall).
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3.6.2 Adopted Infilling Method

While the NLPCA and SOM methods have been applied successfully for infilling

missing gaps in datasets worldwide, we decided not to adopt these methods. This

is because these methods are essentially forms of neural networks that require

additional data or ‘features’ to be used in predictive modelling. In most cases,

such data is not available. For example, Mwale et al. (2012) got better results

when the SOM algorithm was trained on a combination of water levels and

streamflow. Where many gauges are present, a multivariate relationship is created

where information in terms of weights from one station is used to predict or infer

values in other gauges. Thus correlation (e.g., correlation between water levels

and streamflow) plays a significant role in the results of the SOM and NLPCA

methods.

In this thesis, a univariate method was employed for streamflow missing data

imputation. Climate data was augmented and gap-filled using reanalysis products

as discussed in Section 3.2.1.2. The freely available imputeTS (Moritz and Bartz-

Beielstein, 2017) package written in the R programming language was adopted

for carrying out this task.

To test the imputation methodology, streamflow records from 5 gauging

stations in the RNC were relied upon. This is because of the high integrity of

this data which has little to no missing gaps. Thereafter, 20% of the observations

were then sampled at random without replacement and omitted using custom

scripts written in the R programming language. The time period considered for

all the gauging stations is from 1st January, 1970 to 31st December, 2014 for

uniformity. The imputeTS package implements a lot of methods for imputation

but in this case it was found that the na_kalman algorithm performed better than
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the others. The na_kalman function implements “Imputation by ARIMA State

Space Representation and Kalman Smoothing” methodology whose details can be

found in Moritz and Bartz-Beielstein (2017).

Results of the imputation process are summarised in Table 3.2. With the

exception of Nith at Drumlanrig, the imputation performed very well with Nash-

Sutcliffe Efficiency (NSE) and R2 values > 90. ME and MAE values were small in

all cases except for the gauging station at Drumlanrig. It should be noted that an

entire year (2002) was missing from this gauging station which could potentially

explain the lower NSE and R2 values. Notwithstanding this, the NSE and R2

values are satisfactory and acceptable, proving the versatility of the na_kalman

function implemented in the imputeTS package.

Table 3.2 Performance of the infilling technique adopted in this study

Station
Metric

ME MAE RMSE PBIAS % NSE R2

Nith at Friars Carse -0.04 2.24 10.20 -0.10 0.91 0.91

Nith at Hall Bridge -0.01 0.55 2.43 -0.20 0.92 0.92

Scar Water at Capenoch -0.03 0.58 2.57 -0.50 0.90 0.90

Cluden Water at Fiddlers Ford -0.04 2.24 10.20 -0.10 0.91 0.91

Nith at Drumlanrig -11.30 11.82 20.08 -39.30 0.67 0.87

3.7 Hydrologic Models Development

3.7.1 MODFLOW

All MODFLOW models were designed and implemented in ModelMuse (Winston,

2009), a free graphical user interface (GUI) for MODFLOW developed by the
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USGS. The GUI enables a modeller to import model input files such as topographic

data is ASCII or raster data, GIS shapefiles containing model parameters and

many other text files. The conceptual models were developed by pre-processing

model inputs mostly in a GIS (QGIS) environment before importing them into

ModelMuse.

In the future, it is intended to automate the design and implementation of these

models using FloPy written in the Python programming language. This will enable

independent reviewers and/or end users of the models to easily reproduce the

results. The main attraction of using ModelMuse in this case is that MODFLOW

outputs can readily be coupled with SWAT using tools such as QSWATMOD

or SWATMOD-Prep developed by Park et al. (2019) and Bailey et al. (2017)

respectively.

3.7.2 SWAT

For assessment of surface-water and related hydrologic components, the SWAT

model was used. The model is freely available and can be downloaded from

https://swat.tamu.edu/. In this research, SWAT 2012 version was used for

simulating hydrologic processes. If model files are already prepared elsewhere, one

can simply run the model using the downloaded executable files from the website.

If the model files are to be prepared from scratch, two options are available via

ArcSWAT and QSWAT. ArcSWAT is a public domain plugin for the commercial

GIS platform ArcGIS while QSWAT, also in the public domain, is a plugin for

the free GIS platform QGIS.

Depending on the purpose of the project, multiple model inputs are required

for SWAT. Firstly topographic data was downloaded and fed into the model.

https://swat.tamu.edu/
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Initially, the watersheds were delineated using a 1 arc-second resolution DEM

but achieved poor results during watershed delineation, calibration and heavy

use of computer resources. When the same process was attempted using a 3

arc-second resolution DEM, results were greatly improved. Other SWAT inputs

include LU/LC data which should be supplied in raster format, soil types of the

study area also supplied in raster format and finally weather data supplied as text

files.

In this study, the ArcSWAT interface was used to develop the SWAT models

to overcome the prohibitively long processing times of QSWAT. The QSWAT

interface takes a considerably longer time to process large DEMs. For example,

processing the DEM for the SRB took approximately 17 hours and 22 minutes

compared to 20 minutes on an HP desktop computer with an Intel Core i7-

6500U processor and 16GB RAM. Because of the need to frequently revise the

experiments and model structure, a decision was made to go for the advantageous

speeds offered by the ArcSWAT interface. Conveniently, to enable knowledge

exchange and sharing between modellers and other stakeholders, the ArcSWAT

models were converted to QSWAT using a freely available tool made available

by the QSWAT developers. Although there are a few visual changes such as the

subbasin numbers, the structure of the model remains essentially the same.

In general, the SWAT model can and has been used to predict the impact of

climate change, management on water, sediment and agricultural sediment yields

in both gauged and ungauged basins (Arnold et al., 1998). The model divides a

watershed or basin into smaller units referred to as subbasins. The hydrological

processes in the subbasins are controlled by smaller units called "hydrologic

response units" or HRUs. Model input data such as DEMs, LU/LC, climate
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and soil data are then used to compute hydrological processes, sedimentation,

soil temperature, crop growth, nutrients and agricultural management using

subroutines coded in the FORTRAN programming language (Arnold et al., 1998).

A generic SWAT model operation flow-chart is present in Figure 3.2. After

developing the SWAT models, the free software tool, SWAT-CHECK, which is

used to summarise and visualize SWAT results was run. The tool also provides a

feature which allows to check for errors in the SWAT model.

3.7.3 SWAT-MODFLOW

In order to address the issue of integrated hydrologic modelling, two popular hydro-

logical modelling tools namely, SWAT and MODFLOW, were used. The models

have individual weaknesses and limitations that can be overcome by harnessing

the strengths of the discrete models in a synergistic manner. For example, while

SWAT has a dedicated module for simulating groundwater components (ARNOLD

et al., 1993), it is not possible to calculate distributed parameters such as hydraulic

conductivity because the model is lumped (Kim et al., 2008). Additionally, the

SWAT model presents some difficulties when it comes to adequately expressing

the spatial distribution of groundwater recharge rates and levels (Kim et al., 2008).

Conversely, the strength of MODFLOW lies in its ability to adequately and accu-

rately simulate subsurface flow. However, one disadvantage of MODFLOW is the

difficulty associated with determining the groundwater recharge quantities when

used as the main input to the groundwater model (Kim et al., 2017). Additionally,

the issue of high correlation between hydraulic conductivity and recharge rates

makes groundwater flow modelling results amenable to uncertainty. Thus, it is

important to know or at least obtain the closest estimates to reality of groundwater
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recharge rates to adequately constrain model solutions for accurate predictions.

SWAT-MODFLOW provides a robust platform for integrated hydrologic modelling

(IHM) where different aspects of the hydrologic cycle can be modelled.

This study employs a coupled SWAT-MODFLOW model recently developed by

Bailey et al. (2016). It should be noted that there have been many other successful

attempts at coupling SWAT and MODFLOW (e.g. Chung et al., 2010; Galbiati

et al., 2006; Luo and Sophocleous, 2011; Sophocleous and Perkins, 2000) for

application to a variety of watersheds around the world. However, the integrated

model used in this study has many advantages over the previous models such as

the ability to couple SWAT and MODFLOW models of varying spatial extent; an

efficient Hydrologic Response Unit (HRU) grid cell mapping scheme, geographically

located HRUs and the integration of MODFLOW-NWT for robust handling of

dry cells in the unconfined aquifers (Bailey et al., 2016). A general overview of

the capabilities of the SWAT-MODFLOW model used in this study is shown in

Fig. 3.3.
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Figure 3.3 General overview of SWAT-MODFLOW (modified from Park et al. (2019))

3.8 Metrics of a “Good Model”

3.8.1 SWAT

In order to assess SWAT and MODFLOW models’ performance during calibra-

tion and validation, statistical and graphical model evaluation techniques were

employed. The model evaluation statistics used in this thesis are presented here.

1. Nash-Sutcliffe Efficiency (NSE): The Nash-Sutcliffe efficiency (NSE),

proposed by Nash and Sutcliffe (1970a) is defined as the ratio of the sum of

absolute squared differences between the observed and simulated values to

the variance of the observed values (Krause et al., 2005). The metric is an

indication of “how well the plot of observed versus simulated data fits the
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1:1 line” (Moriasi et al., 2007). It is calculated as follows:

NSE = 1 −


n∑

i=1
(Y obs

i − Y sim
i )2

n∑
i=1

(Y obs
i − Y mean)2

 (3.9)

where Y obs
i is the ith observed value, Y sim

i is the ith simulated value, Y mean

is the mean of observed values and n is the total number of observations.

NSE ranges between −∞ and 1 with NSE value of 1 being the optimal

value.

2. Percent Bias (PBIAS): Percent bias is a measure of the average tendency

of the predicted values to be larger or smaller than the observed values (Gupta

et al., 1999; Moriasi et al., 2007). It is calculated as follows:

PBIAS =


n∑

i=1
(Y obs

i − Y sim
i ) ∗ (100)

n∑
i=1

(Y obs
i )

 (3.10)

where PBIAS is the deviation of the variable being evaluated, expressed as

a percentage.

3. Coefficient of determination (r2) : The coefficient of determination r2

describe the degree of collinearity between simulated and observed data

and the proportion of the variance in measured data explained by the

model (Moriasi et al., 2007). It ranges from 0 to 1 with a value of zero

denoting no correlation and a value of 1 denoting less error variance. It is

calculated as:

r2 =


n∑

i=1
(Oi − O)(Pi − P )√

n∑
i=1

(Oi − O)2
√

n∑
i=1

(Pi − P )2


2

(3.11)
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where O and P are observed and predicted values respectively.

4. Mean Error (ME): The mean error is the mean difference of the residual

errors between two continuous variables defined as follows;

ME = 1
n

n∑
i=1

(hm − hs)i (3.12)

where hm and hs are the measured and simulated heads respectively, and

n is the number of targets. A small ME is an indication that the overall

model fit is unbiased or in other words, the simulated values are generally

neither too high nor too low (Anderson et al., 2015). Generally, ME is only

capable of describing the model bias and is hence considered to be a poor

or weak indicator of goodness of model fit.

5. Mean Absolute Error (MAE): The mean absolute error is defined as

the mean of the absolute value of the residual (Anderson et al., 2015). It is

defined as follows;

MAE = 1
n

n∑
i=1

|(hm − hs)|i (3.13)

MAE is considered to be a better indicator of model fit because the positive

and negative residuals do not cancel as is the case with ME. Thus, MAE

values are usually larger than ME (Anderson et al., 2015).

6. Root Mean Squared Error (RMSE): is defined as the average of the

squared residuals between two continuous variables. It is given by;

RMSE =
 1

n

n∑
i=1

(hm − hs)2
i

0.5

(3.14)

One of the disadvantages of RMSE is that it is sensitive to the effects of

outlier residuals and thus typically larger than the MAE.
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7. Nash–Sutcliffe Efficiency (NSE): This metric is particularly useful when

comparing observed and simulated hydrographs for transient models (An-

derson et al., 2015). Again, NSE ranges from −∞ to 1, with values close to

1 indicating good model fit.

NSE = 1 −

n∑
i=1

|(hm − hs)|2i
n∑

i=1

∣∣∣(hm − hm)
∣∣∣2
i

(3.15)

where hm is the mean of observed head.

3.9 SWAT and MODFLOW Calibration

3.9.1 Calibaration with SWAT-CUP

The SWAT calibration strategy employed in this research involves the application

of SUFI-2 algorithm implemented in SWAT-CUP. SUFI-2 was selected for multi-

gauge streamflow calibration and prediction uncertainty due to its popularity and

ease of implementation. The performance and choice of an algorithm to use for

calibration is dependent on, inter alia, factors such as modeller’s familiarity with

the algorithm, size of watershed, strength of computational resources and time

constraints. Because of the different philosophical underpinnings of the algorithms

implemented in SWAT-CUP, the user is left with some freedom of how they can

formulate the objective function, generalized likelihood measure or likelihood

function; thus, an unbiased comparison between these algorithms is not possible

and would be subjective at best (Yang et al., 2008).
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3.9.2 Conceptual and Theoretical Basis of SUFI-2

Uncertainty in the SWAT driving variables such as rainfall and temperature

including uncertainty in the conceptual model, observed data (e.g. streamflow,

evapotranspiration), is accounted for in SUFI-2 by the P -factor, which is the

percentage of observed data bracketed by the 95% prediction uncertainty (95PPU).

The 95PPU is calculated at the 2.5% (XL) and 97.5% (XU) percentiles of the

cumulative distribution of output variables obtained via Latin Hypercube (LH)

sampling. 95PPUs represent an envelope of possible and good solutions generated

by certain parameter ranges in a stochastic calibration approach (Abbaspour

et al., 2007; Setegn et al., 2010). In a SUFI-2 calibration campaign, to quantify

the fit between observed and simulated results (95PPU), two statistics are used:

P -factor and R-factor. The P -factor ranges from 0 to 1, where 1 indicates perfect

model simulation considering uncertainty (Abbaspour et al., 2004, 2015). For

streamflow calibration, Abbaspour et al. (2015) recommend a value > 0.7 or 0.75

to be adequate. For the R-factor, which is the ratio of the average thickness of

the 95PPU band and the standard deviation of the measured variable, a value

of < 1.5 would be desirable (Abbaspour et al., 2015). According to (Abbaspour

et al., 2007) the SUFI-2 procedure can be summarised as follows:

1. In the first instance, the objective function is formulated.

2. In the second step, meaningful parameter ranges (i.e. absolute minimum and

maximum) for the parameters being optimized are defined. It is assumed

that all parameters are uniformly distributed within the region bounded by

the range of parameter values defined as follows:

bj : bj,abs_min ≤ bj ≤ bj,abs_max, j = 1, . . . , m, (3.16)
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where bj is the j-th parameter and m is the number of parameters to be

estimated.

3. The third step involves an “absolute sensitivity analysis” in the initial stages

of calibration for all parameters.

4. Next, initial uncertainty ranges are assigned to parameters for the first round

of LH sampling as follows;

bj : [bj,min ≤ bj ≤ bj,max], j = 1, . . . , m. (3.17)

The ranges defined by Eq. (3.17) are generally smaller than the absolute

ranges. The sensitivity analysis carried out in step 3 can be used as a guide

in selecting appropriate ranges.

5. In this step, a LH sampling is carried out to produce n parameter combi-

nations, where n is the desired number of simulations (should be between

500 – 1000). After the simulated program is run for n times, the simulated

output variable(s) of interest are saved.

6. In this step the objective function, g(b), is calculated and the sensitivity

matrix, J , of g(b) is computed using:

Ji,j = ∆gi

∆bj

, i = 1, . . . , Cn
2 , j = 1, . . . , m, (3.18)

where Cn
2 and j are the number of rows and columns in J respectively.

Thereafter, the equivalent of a Hessian matrix, H, and the covariance

matrix, C, are calculated as;

H = JT J , (3.19)
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C = s2
g(JT J)−1, (3.20)

where s2
g is the variance of g(b) values resulting from the n runs.

7. In this step the 95% confidence interval and estimated standard deviation

of a parameter bj is calculated from the diagonal elements of the covariance

matrix like so;

sj =
√

Cjj (3.21)

bj,lower = b∗
j − tv,0.025sj (3.22)

bj,upper = b∗
j + tv,0.025sj, (3.23)

where b∗
j is the parameter b for one of the best solutions (i.e. parameters

which produce the smallest value of the objective function) and v is the

degrees of freedom (n − m).

8. Here, parameter correlations and sensitivities are calculated using Eqs. (3.24)

and (3.25) as follows;

rij = Cij√
Cii

√
Cjj

(3.24)

g = α +
m∑

i=1
βibi. (3.25)

Parameter correlations are evaluated using diagonal and off-diagonal terms

of the covariance matrix while parameter sensitivities are calculated by

multiple regression of the LH generated parameters against the objective

function values.

9. In this step, the goodness of fit is assessed by the uncertainty measures

calculated from the percentage of measured data bracketed by the 95PPU
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band, and the average distance d̄ between (XL) and (XU) from:

d̄X = 1
k

k∑
l=1

(XU − XL)l, (3.26)

where k is the number of observed data points. Thereafter, the R-factor

mentioned earlier is calculated using Equation (3.27);

R-factor = d̄X

σX

, (3.27)

where σX is the standard deviation of the measured variable X.

10. Finally, parameters are ranked according to their sensitivities and highly

correlated parameters identified.

3.9.3 MODFLOW Calibration

A typical MODFLOW calibration flowchart is given in Figure 3.4. Data prepara-

tion of input files was done using a combination of GUIs (Excel) and programming

scripts (Python and R programming languages). Most of the steps highlighted

in Figure 3.4 are performed automatically by PEST which relies on instructions

supplied by the ‘pest control file’. The pest control file contains information

about the optimization algorithms and other boundary conditions specified by the

modeller. During MODFLOW calibration, boundary conditions and model con-

ceptualizations were changed before fresh calibration campaigns were performed.

3.9.4 Calibration Periods

For the SWAT model, calibration was done using streamflow gauge data whereas for

MODFLOW, the steady-state model was calibrated using historical groundwater
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Figure 3.4 Flowchart highlighting the major steps of calibrating a predictive ground-
water model (Adapted from (Anderson et al., 2015, p. 399))

heads. Calibration periods for the SWAT model were thus dependent on the

streamflow time-series data for each station. For the RNC, SWAT simulation was

set to run from January 1979 to December 2005 but the calibration parameters

were applied according to their time definition in SWAT-CUP as shown in Table 3.3.

However, the model was assigned a “warm-up” period of 6 years so results were

only printed from January 1985 to December 2005. Similarly, the SRB model was

assigned to run from January 1975 to December 2005 with a warm-up period of 6
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years so results were only printed from January 1981 to December 2005.

Table 3.3 SWAT and MODFLOW calibration periods for the RNC and SRB

SWAT MODFLOW

Station
Calibration Validation Calibration

From To From To From To
RNC

Scar Water at Capenoch Jan-85 Dec-00 Jan-01 Dec-05

Jan-79 Dec-05
Cluden Water at Fiddlers Ford Jan-85 Dec-00 Jan-01 Dec-05
Nith at Friars Carse Jan-85 Dec-00 Jan-01 Dec-05
Lochar Water at Kirkblain Bridge Jan-85 Dec-00 Jan-01 Dec-05

SRB
Rivi-Rivi River at Balaka Jan-86 Dec-89 Jan-90 Sep-91

Jan-75 Jan-05Ruo River at M1 Roadbridge Jan-85 Dec-89 Jan-90 Oct-91
Lichenya River at Mini Mini Estate Jan-81 Dec-88 Jan-89 Oct-91

MODFLOW for the two regions was calibrated for same period as the SWAT

models with the same “spin-up” or warm-up times. However, in the case of

MODFLOW, there was no need for a validation period since no observed data was

withheld for validation. This follows observations and recommendations made by

Anderson et al. (2015) and Doherty and Hunt (2010) against ‘withholding’ data

during calibration as a groundwater model cannot be validated. Rather, it can

only be invalidated but at a certain level of confidence (Doherty and Hunt, 2010).

3.10 Statistical Tests

Various statistical tests were used to assess linear relationships, variability of

variables and also to detect trends in hydro-meteorological data. Beyond simple

descriptive statistics, non-parametric tests were employed for trend detection since

they do not assume that the data follows a particular distribution Furthermore,

non-parametric tests are more capable of handling outliers in the data including
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many forms of non-normality (Kadioglu, 1997; Lanzante, 1996). The following is

a brief description of the statistical methods that were employed in this research:

1. Mann-Kendall trend test (MK test): Introduced by Mann (1945) and

modified by Kendall (1975), the Mann-Kendall trend test is one of the most

popular non-parametric techniques for detecting changes in time-series data.

In hydrological and climate change studies, many researchers have used

this test to detect statistically significant trends in hydro-meteorological

data (e.g. Ahmad et al., 2015; Gocic and Trajkovic, 2013; Tabari and Talaee,

2011; Yue et al., 2002a; Yue and Wang, 2002). The Mann-Kendall test

statistic is calculated as:

S =
n−1∑
k=1

n∑
j=k+1

sgn(xj − xk) (3.28)

where n is the number of data points, xk and xj are data points in time-series

k and j(j > 1) respectively. The term sgn(xj − xk) is the sign function

defined as:

sgn(xj − xk) =



+1 if (xj − xk) > 0

0 if (xj − xk) = 0

−1 if (xj − xk) < 0

(3.29)

The variance of the test statistic, S, is given by

Var(S) = 1
18

[
n(n − 1)(2n + 5) −

m∑
i=1

ti(ti − 1)(2ti + 5)
]

(3.30)

where n is the number of the data values, m is the number of tied groups

and ti is the number of data points in the ith group. A tied group is defined

as a set of sample data having the same value. According to Kendall (1975);
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Mann (1945), where the sample size n > 10, the standard normal variable

Z is computed as follows:

Z =



S−1√
V ar(S)

if S > 0

0 if S = 0

S+1√
V ar(S)

if S < 0

(3.31)

where positive values of Z indicate increasing trends while negative values

of Z depict decreasing trends. Trends are tested at a specified α significance

level where the null hypothesis is rejected for absolute values of Z greater

than Z1−α/2 obtained from standard normal distribution tables. For example,

using a significance level α = 0.05 (i.e 5% significance level) as was used in

this research, the null hypothesis of no trend is rejected if |Z| > 1.96. At

1% significance level, the null hypothesis of no trend would be rejected if

|Z| > 2.576.

2. Effects of serial correlation: Studies by vonStorch (1995) have shown

that it is necessary to remove serial correlation from time-series data by

a procedure known as “pre-whitening” (i.e. make the series free of auto-

correlation). This is a necessary step in time-series data where a lag-one

autoregressive AR(1) and linear trend are present. The former alters the

variance of the estimate of S while the latter “alters the estimate of the mag-

nitude of serial correlation” (Yue et al., 2002b). However, research by Yue

et al. (2002b); Yue and Wang (2002) have argued that while pre-whitening

can effectively remove the AR(1) component, it has the unwanted side-effect

of removing a portion of the trend, if at all a trend exists; thus the slope
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of the trend is smaller after pre-whitening than it is prior to pre-whitening.

The net effect is that significant trends may be underestimated. The authors

advocated for a trend-free pre-whitening (TFPW) approach that detrends

the series before pre-whitening leading to a more accurate estimate of the

true AR(1). In addition to the traditional MK test, this approach was

also adopted in this research. The TFPW procedure can be summarized

as follows (refer to Yue et al. (2002b) for a comprehensive mathematical

treatment of the TFPW):

• Firstly, the slope of a trend in the sample is computed by the Theil–Sen

approach (TSA) (Sen, 1968; Thiel, 1950a,b,c).

• Secondly, the identified trend is assumed to be linear and removed from

the sample data if the slope differs from zero, resulting in a detrended

time-series.

• In the third step, the lag-1 serial correlation coefficient of the detrended

series from step 2 is calculated and the AR(1) component removed.

• Lastly, the modified residual series and the identified trend are combined

and the tradition MK test applied to assess the significance of the trend

in the combined series.

3. Theil-Sen estimator (TSE): Developed by Sen (1968), Theil-Sen esti-

mator method (also referred to as the Sen’s slope estimator method) is a

non-parametric technique for estimating the magnitude of trends in time-

series data. In the TSE method, a linear model is used to estimate the

slope of the trend and the variance of the residuals should be constant in
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time (da Silva et al., 2015) as follows:

Qi = Xj − Xk

j − K
for i = 1, . . . , n (3.32)

where Xj and Xk are the data points at times j and k (j > k), respectively.

Where only one datum exists in each time period, N = n(n − 1)/2, where

n is the number of time periods. Conversely, N < n(n − 1)/2 if there are

multiple observations in one or more time periods. Ranking the n values of

Qi in ascending order, the median of the slope or TSE is calculated as:

Qmed =


Q[(n+1)/2], if n is odd

Q[n/2]+Q[(n+2)/2]
2 , if n is even

(3.33)

Positive and negative Qmed values (sign of Qmed) indicate increasing and

decreasing trends respectively while the magnitude of Qmed indicates the

steepness of the trend. The confidence interval of Qmed at a specified

probability is calculated to determine whether the median slope is statistically

different from zero as follows:

Cα = Z1−α/2

√
V ar(s) (3.34)

where V ar(S) is as defined in Eq. (3.30) and Z1−α/2 is obtained from the

standard normal distribution. Thereafter, M1 = (n − Cα)/2 and M2 =

(n + Cα)/2 are computed such that the upper and lower limits of the

confidence interval, Qmax and Qmin are the (M2 +1)th largest and the (M1)th

largest of the n-ordered slope estimates (Gilbert, 1987). The slope Qmed is
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statistically different than zero if the two limits (Qmin and Qmax) have similar

sign (Gocic and Trajkovic, 2013). TSE has been used recently by many

researchers to estimate the magnitude of trends in hydro-meteorological

time series (e.g. Kingra et al., 2018; Le Brocque et al., 2018; Sanikhani et al.,

2018; Sharannya et al., 2018; Zelenakova et al., 2018).

3.11 Additional Software and Tools

For reproducibility, tasks that are laborious and repetitive were implemented

using custom scripts written in the R and Python programming languages. For

example, most of the plotting was conducted in these two languages. R is a

free programming language that is used for statistical analyses and graphics and

is used widely by researchers around the world. Python is a general purpose

programming language that is also heavily used for machine and deep learning in

industry and academia. Owing to the ubiquity of hydro-climatic packages and

libraries for R and Python written by experts in these fields, it is easy to automate

some analyses and results plotting. Using the powerful of such powerful scripting

languages, climate and water scientists can easily handle large volumes of data

and quickly get insights from the data than the traditional point-and-click method

required by most canned software solutions. For some static plots and diagrams,

the free professional quality vector graphics software, Inkscape was employed.

3.12 Chapter Summary

In this chapter, the methodology used in this research has been developed and

discussed. For rainfall-runoff modelling, the SWAT model was proposed while
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MODFLOW was proposed as a subsurface hydrological modelling tool. While

most methods required the use of canned software, it was necessary at certain

points to design and implement custom solutions using customs scripts developed

in the R and Python programming languages. A novel technique which employs

two proven and tested techniques was developed for the selection of a suitable

GCM subset to be used for climate analyses. Furthermore, a methodology that

can be used for studying and quantifying availability of surface- and groundwater

resources in both temperate and semi-arid climates was developed. Specifically

for the SRB, this is a novel approach, which at the time of writing this thesis, has

never been applied before in Malawi. Previous studies have focussed on surface-

water and groundwater availability and security as separate units in isolation

while this study proposed to study aspects of the hydrologic cycle holistically.

Additionally, the direction of this research at all times was to ensure that the

methodology could be applied in different settings and reproduced using free and

open source software as is recommended and preferred in modern science.



—The trouble with weather fore-

casting is that it’s right too often

for us to ignore it and wrong too

often for us to rely on it.

Patrick Young

4
Climate modelling

In this chapter, climate analyses for the RNC and SRB are presented. Firstly, a

brief description of how observed climate data was treated is presented. Secondly,

proposed GCM selection and downscaling methods are applied and verified. Finally,

future climate projections for the RNC and SRB are presented.
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4.1 Introduction

Changes in large-scale hydrological variables have been linked to an observed

warming climate over several decades. Increasing atmospheric water vapour

content and changes in the intensity and pattern of precipitation have been

observed over the recent decades; insignia of the degree to which global warming

and climate change has impacted the hydrological cycle (Bates et al., 2008). In

this chapter, a multiple GCM approach has been used to investigate early, mid

and late century climate change in the River Nith Catchment and Shire River

basins. Outputs of GCM models have been used by many researchers as inputs

to hydrological models in an effort to determine the potential impacts of climate

change on water resources (surface-water and groundwater). The results from

this chapter underpin the main drivers of the hydrological models (Chapter 5)

developed for the RNC and SRB prior to subsequent coupling with groundwater

flow models (Chapter 6) for the respective basins.

4.2 Missing Data

Missing data can present challenges in climate analyses such as estimation of long

and short term trends, modelling extreme weather events and in the assessment

of future climate projections. The methodology adopted in this thesis involves

statistically downscaling coarse GCM projections to a local scale based on point

meteorological data. Thus, long term complete historical records were required for

the statistical downscaling exercise to be viable. For brevity, a brief description of

the methodology that was used to deal with the missing data problem is presented;

technical and mathematical details behind the techniques employed for infilling
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are presented in Section 3.6.

In the RNC, Dumfries station data was complete and as such there was no

need for further treatment beyond data quality checks. However, it was necessary

to augment the RNC baseline weather data with reanalysis data due to the fact

that only one station had a reliable long-term record. In the SRB, there was no

single station with complete data hence an assessment of the missingness was

conducted in the first instance as shown in Table 4.1.

Table 4.1 Percentage of missing data for the baseline period in the SRB. Bold values
indicate variables with more than 10% of missing data

Station Variable

prcp (%) Tmax(%) Tmin(%)

Bvumbwe 0 3.51 4.05
Chichiri 0 4.66 4.26
Chileka 0 <0.1 0.57
Makhanga <0.1 18.86 20.48
Mangochi <0.1 2.53 2.56
Mimosa <0.1 6.22 6.23
Ngabu 0 7.02 6.75
Thyolo 0 9.70 11.04

All stations in the SRB had complete or small gaps in the rainfall data that

could easily be filled using simple techniques such as replacing missing values

with the annual mean or replacing them with that of the last non-missing day.

The former has the disadvantage of ignoring the seasonality of rainfall while the

latter depends on the persistence of the weather; thus both methods can introduce

considerable bias in the rainfall data. For this particular scenario, the number

of consecutive days with no rainfall values was small enough (i.e. between one

to seven consecutive days) to warrant the use of the second method. In the case

of temperature, except for Chileka, all stations had significant gaps in the data
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series requiring a more robust method of treatment.

4.3 Reanalysis Products Selection

As discussed in Section 4.2, station data was augmented with gridded reanalysis

data in the RNC. For the SRB, a choice had to be made whether to use reanalysis

data which had complete records or use station or point data with a lot of missing

records. Before settling on the weather products to use for GCM downscaling, a

thorough but simple methodology was adopted whereby the hydrologic (rainfall-

runoff) model would be employed to assess the suitability of the weather products.

The methodology involved constructing a hydrologic model (SWAT) and forcing it

with gridded reanalysis products (Section 3.2.1.2). A selection was made between

CFSR and CRU products by comparing uncalibrated streamflow hydrographs

produced by each of the reanalysis products with the baseline hydrographs. The

gridded products that produced the best performing hydrographs measured by

the NSE and RMSE was selected for GCM downscaling and other hydrological

analyses. In the case of the SRB, the model was also forced with observed

station data and the resulting uncalibrated hydrographs compared with reanalysis

products.

For the RNC, it was discovered that CRU products were superior in reproducing

the baseline hydrology while in the SRB, station data performed better than CRU

and CFSR products. In fact, CRU data was the worst performing in the SRB,

highlighting the need for a careful selection of reanalysis products representative

of the local climate before hydrological analyses can commence. This is especially

true for regions with sparse data or for regions where station data is not readily

accessible.



4.4 GCM Selection 107

4.4 GCM Selection

In order to select a subset of GCMs to be used for climate change impact analyses

in the RNC and SRB, a multi-criteria decision approach as outlined in Section 3.3

was employed. For consistency, the idea was to select a subset of GCM models

that are useful for climate change impact studies in both the RNC and SRB. In

other words, a subset of GCMs is selected for one region using a multi-criteria

decision approach and the same subset applied elsewhere. Here, the global

CFSR meteorological dataset is employed as observed variables for climate change

analyses in the RNC. CFSR data was used to augment the one reliable long-term

station time-series data at Dumfries. Gridded products are post-processed climate

data that are derived from observed or station surface climate variables (Hewitson

et al., 2014). Thus, the decision to select GCMs based on RNC climate is premised

on the suspicion that the CFSR products for the RNC are more reliable than

those of the SRB due to the quality, or lack thereof, of the station data that

informed the latter. Detailed descriptions of the methods and algorithms used in

the GCM selection procedure are provided in Chapter 3. For ease of reference, a

short summary is provided here.

Firstly, a total of 29 GCMs were resampled to a spatial resolution of 38 km

using bilinear interpolation to conform to the CFSR resolution since the GCMs

have varying spatial resolutions. Thereafter, GCMs were ranked based on 1) the

ability of the GCMs to reproduce the PDF of the observed series at each grid

point in the RNC and, 2) based on the SU algorithm. Initially, 15 GCMs were

selected from the 29 GCMs using the PDF system performed on rainfall data.

Thereafter, based on the SU algorithm applied to both minimum and maximum
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temperature, the top 10 GCMs were selected. Finally, only those GCMs (i.e. 7

GCMs listed in Table 4.2) appearing in McSweeney et al. (2015) were selected for

climate change impact assessment.

A total of six GCMs were used for climate impact assessment and modelling

in the SRB while five were selected for the RNC. Even though bcc-csm1-1-m is

suitable for the RNC according to McSweeney et al. (2015), it was omitted due to

it’s poor performance in the RNC based on the methodology above. The GCMs

that were selected for each region are presented in Table 4.2. For each future

projection, the following three standard forecast horizons were considered: 2020s

(2010-2039), 2050s (2040-2069) and late century 2080s (2070 -2099).

Table 4.2 Selected GCMs for the SRB and RNC climate downscaling

GCM
Resolution

Scenario Centre(Lat × Lon)

BCC-CSM1-1-Ma 2.8◦ × 2.8◦ RCP4.5 Beijing Climate Center, China Meteorological AdministrationRCP8.5

CCSM4a,b 0.94◦ × 1.25◦ RCP4.5 National Center of Atmospheric Research, USARCP8.5

CNRM-CM5a 1.4◦ × 1.4◦ RCP4.5 Centre National de Recherches Meteorologiques, FranceRCP8.5

GFDL-ESM2Ga,b 2.0◦ × 2.0◦ RCP4.5 NOAA Geophysical Fluid Dynamics Laboratory, USARCP8.5

HadGEM2-ESa,b 1.25◦ × 1.9◦ RCP4.5 Met Office Hadley Center, UKRCP8.5

INMCM4b 1.5◦ × 2◦ RCP4.5 Institute of Numerical Mathematics of the Russian Academy of SciencesRCP8.5

MPI-ESM-LRa,b 1.9◦ × 1.9◦ RCP4.5 Max Planck Institute for MeteorologyRCP8.5

a Denotes model was used in the Shire River Basin
b Denotes model was used in the River Nith Catchment

While results from McSweeney et al. (2015) indicate that more GCMs could

have been included in this study (about 8 or 10), it was decided to use fewer GCMs

than recommended. The decision to use fewer GCMs than were available was

based on time constraints and availability of computing resources. This is because

the methodology adopted required the hydrologic (SWAT) and groundwater

(MODFLOW) models to be forced with one GCM at a time before calculation of the
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ensemble mean using the machine learning methods described later in this chapter.

This was necessary in order to determine whether using a GCM multi-model

ensemble (MME) developed using robust statistical learning methods is better

than the MME of the hydrologic models driven by single GCMs. Furthermore, the

performance of each GCM was assessed to pick out the differences in projections

in hydrologic models driven by respective GCMs. To the best of the author’s

knowledge, this question has not been explored fully and hence an attempt is

made to address it, as part of this research’s sub-aims. Moreover, the use of

multiple GCMs and climate change scenarios helps water resources managers and

policy makers to make decisions forearmed with the knowledge and understanding

of the uncertainties captured by such studies. More importantly, McSweeney

et al. (2015) note that we cannot with certainty link a model’s incapability to

simulate baseline climate to the plausibility of the model’s future projections; thus

a precautionary “one-model-one-vote” approach has in the past been adopted

as a way of interpreting ensemble projections. The choice, therefore, to leave

out a GCM in favour of another, is sometimes quite subjective and left to the

modeller. Evidently, it would be an advantage to the climate science community

to have robust methods of quantifying and reducing uncertainties in climate

data ensembles in addition to decisions that are robust “against alternative

future climate outcomes” and amenable to change once new evidence is made

available (Dessai et al., 2009; Knutti, 2010; Lempert and Schlesinger, 2000).

4.5 Downscaling GCM Outputs

As discussed in Section 3.4 the nonparametric quantile mapping method (Gud-

mundsson et al., 2012) was used to downscale GCM data to a station-scale
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resolution. Again, the reason this method was adopted is twofold; ease of im-

plementation and success of the method in the climate, hydrology and related

sciences. Further, according to Gudmundsson et al. (2012), nonparametric trans-

formations have the “advantage that they can be applied without the specific

assumptions about the distribution” of the climate data to be statistically bias

corrected. Section 2.2 of this thesis discussed the many sources of uncertainty

in climate change studies, not least of which is uncertainty due to the statistical

downscaling method. Custom scripts written in the R programming language

and the qmap (Gudmundsson et al., 2012) package were used to prepare observed

data, pre-process and downscale GCM data.

Before bias-correcting GCM results for each grid point of the CFSR climate

predictands in the RNC, the GCMs were downscaled to the same horizontal

resolution (i.e., ∼ 38km horizontal resolution) as that of the CSFR climate data.

For the SRB, the GCM outputs were downscaled to point station scale and

thereafter biases statistically adjusted.

4.6 Performance and Uncertainty Evaluation

For the SRB, statistical downscaling and bias correction was done for twenty-nine

CMIP5 GCMs and RCMs. Due to time constraints, only one downscaling and

bias correction method was employed in this research and thus, it was necessary to

validate it against predefined performance metrics. Raw and bias corrected GCM

outputs were used to assess the ability of the bias correction method to reproduce

nine metrics i.e mean, standard deviation, 25th, 50th, 75th, 90th, 95th and

99th percentiles, and maximum value as prescribed in Shen et al. (2018). Three

representative stations from three clusters of meteorological stations identified in
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Ngongondo et al. (2011) were used in the verification exercise (see Table 4.3).

Table 4.3 Selected stations for bias correction method verification. Stations were
selected from regions identified in Ngongondo et al. (2011). Stations that have been
used in this research are highlighted in bold.

Region Stations
Representative

Station

G1 Chikwawa, Makhanga, Nchalo, Ngabu Ngabu

G2 Balaka, Chikweo, Chingale, Liwonde, MangochiMangochi, Monkeybay

G3
Bvumbwe, Chanco, Chichiri, Chileka,

ChilekaMakoka, Mimosa, Mwanza, Naminjiwa,
Neno, Satemwa, Thyolo, ZombaRTC

Figures 4.1 to 4.3 show the performance of the bias correction (BC) method

(hereinafter referred to as BCM) with respect to reproducing the aforementioned

performance metrics. Raw and corrected GCM statistics are presented in the

left and right columns of the figures respectively. The X-axes represent the 29

GCMs that were used to verify the bias correction method while the Y-axes are

the observed statistics from the mean to the maximum value numbered from 1

(mean) to 9 (maximum). The lighter the colour shading in the graphs the lesser

the bias and vice versa.

All figures show a significant amount of bias in the raw GCMs. Furthermore, for

all stations, the bias with respect to the observed statistics appear to be similar.

For example, considerable bias in representing the 25th and 50th percentiles

in precipitation can be seen in all the three representative stations. The bias

correction method managed to reduce this bias significantly for all stations except

Mangochi where some residual bias can be observed. The BC method was

particularly efficient at reducing biases in the historical temperature simulations
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than in precipitation. Many studies in the literature have reported about the

superiority of temperature simulations over precipitation (see for example, Behnke

et al., 2016; Byun and Hamlet, 2018; Fowler et al., 2007; Joshi et al., 2015; Schoof

and Pryor, 2001). This phenomenon can be attributed to atmospheric variability

as opposed to problems in the GCM or downscaling method (Eden et al., 2012).
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Figure 4.1 Biases of raw and corrected GCM outputs in the baseline period for Chileka.
The Y-axis represents nine statistics namely, mean, standard deviation, 25th, 50th, 75th,
90th, 95th and 99th percentiles, and maximum value from 1 to 9 respectively. The
X-axis represents 29 GCMs that were considered for this study. Biases for precipitation
are presented as the relative difference of the aforementioned statistics between the
GCM and observed data while those of maximum and minimum temperatures are
represented by the absolute difference
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Figure 4.2 Biases of raw and corrected GCM outputs in the baseline period for
Mangochi. The Y-axis represents nine statistics namely, mean, standard deviation,
25th, 50th, 75th, 90th, 95th and 99th percentiles, and maximum value from 1 to 9
respectively. The X-axis represents 29 GCMs that were considered for this study.
Biases for precipitation are presented as the relative difference of the aforementioned
statistics between the GCM and observed data while those of maximum and minimum
temperatures are represented by the absolute difference
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Figure 4.3 Biases of raw and corrected GCM outputs in the baseline period for Ngabu.
The Y-axis represents nine statistics namely, mean, standard deviation, 25th, 50th, 75th,
90th, 95th and 99th percentiles, and maximum value from 1 to 9 respectively. The
X-axis represents 29 GCMs that were considered for this study. Biases for precipitation
are presented as the relative difference of the aforementioned statistics between the
GCM and observed data while those of maximum and minimum temperatures are
represented by the absolute difference

4.7 Multi-GCM Ensemble

For the RNC, the multi-GCM ensemble or River Nith Catchment Ensemble

GCM Mean (RNC-EGCMM) was calculated at each grid point using the machine

learning based Random Forest algorithm described in Section 3.5. The RF model

has been used in many other studies to obtain a multi-model ensemble mean of



4.8 RNC Baseline and Future Climate Assessment 115

projections (see for example, Bunn et al., 2015; Keenan et al., 2011; Salman et al.,

2018). The RF model was constructed using the Scikit-learn package in the the

python programming language. For the RNC, the averaging was done at each grid

point whereas in the SRB it was done for each station. For brevity, performance

assessments of the multi-GCM ensemble is only shown for Dumfries station in the

RNC and Chileka station in the SRB.

4.8 RNC Baseline and Future Climate

Assessment

4.8.1 RNC Baseline Climate

4.8.1.1 Exploratory Data Analysis

In order to understand the nature of the Dumfries station climate data, initial

statistical techniques aimed at discovering patterns, evaluating summary statistics

and testing hypotheses were employed. These techniques are generally referred to

as exploratory data analysis (EDA) and are usually graphical in nature. Fortu-

nately, Dumfries climate data had complete records and thus no infilling and data

cleaning was required.

Exploratory data analysis plots of winter precipitation for the baseline period

(top three graphs of Figure 4.5) reveal unique patterns in the data. The histogram

and density plot is heavily skewed to the right indicating that the data is not

normally distributed. The Q-Q plot, which is a visual way of testing data for

normality, shows a curved graph further confirming that the sample data are not

normally distributed. Furthermore, the box plot shows that the data are positively
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skewed and that there is a significant presence of outliers. That precipitation

data are usually skewed is to expected as many researchers have investigated this

phenomenon (see for example, Marchenko and Genton, 2010; Wilson and Toumi,

2005).

In the case of Tmax and Tmin, their Q-Q plots are nearly linear and thus an

indication that the data could be normally distributed. However, for both Tmax

and Tmin, there is clear evidence of outliers in the upper right corners of the Q-Q

plots indicating that there there could be some slight skewness in the data. Further

investigation using histogram, density and box plots revealed that the data are

nearly normally distributed with evidence of some slight negative skewness. The

box plots have a distinct shape with a few outliers towards the lower end of the

temperature scale.

Figure 4.5 shows correlograms of precipitation, Tmax and Tmin. Correlograms

or Autocorrelation Functions (ACF) are used to investigate autocorrelation or

serial dependency in time series data (Khan et al., 2006). All three plots show that

there is evidence of statistically significant correlation at lag 1. For precipitation,

the ACF values exponentially decay before increasing again at higher lags. As

the ACF values decay, they are mostly within the 95% confidence bands and

are therefore insignificant. In the case of Tmax and Tmin, all the ACF values are

significant, i.e. outside the horizontal dashed blue line, indicating that there is

serial correlation in the temperature data.

4.8.1.2 Trend Analyses

As a result of the exploratory data analyses, it was concluded that non-parametric

statistical tests be used to identify trends in the climate data. Non-parametric
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Figure 4.4 Exploratory data analysis plots of daily precipitation (Figs. A, B, C); daily
maximum temperature (Figs. D, E, F), and daily minimum temperature (Figs. G, H, I)
for winter season at Dumfries

tests are robust and less affected by the presence of outliers in the data and

many forms of non-normality (Lanzante, 1996). One of the most commonly used

non-parametric tools for detecting changes in climatic data is the Mann-Kendall

trend test (Kendall, 1975; Mann, 1945), whose null hypothesis is that the data are

independent and randomly ordered (Hamed and Rao, 1998). However, when the
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Figure 4.5 Empirical autocorrelation (Correlogram) plots of (a) monthly precipitation,
(b) monthly mean maximum temperature and (c) monthly mean minimum temperature
for the baseline period at Dumfries

data is characterised by the presence of positive autocorrelation, as can be seen

in Figure 4.5, the probability of detecting artificial trends in the data increases.

Hence, the Trend Free Pre-whitening (TFPW) (Yue et al., 2002b) procedure was

employed before assessing the significance of the trend using the Mann-Kendall

test.
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TFPW Mann-Kendall (MK-TFPW) and Sen’s slope estimator tests results

are presented in Table 4.4. Results were calculated on monthly, seasonal and

annual timescales where DJF, MAM, JJA and SON are winter, spring, summer and

autumn respectively. Bold values indicate statistical significance at 95% confidence

level. Positive values indicate an upward tend while negative values indicate a

downward trend. Precipitation trends at the annual timescale are positive although

not statistically significant. Similarly, increasing but insignificant trends were

detected at the seasonal timescale except for autumn were insignificant decreasing

trends were detected. With the exception of March, September and December,

increasing trends were detected at the monthly timescale. A significant decreasing

trend was detected for March (only detected via MK-TFPW) while a significant

increasing trend was detected for April (detected via both MK and MK-TFPW).

While the trends are statistically significant, the magnitude of change is around

1.5 mm month−1 and overall is insignificant at the annual and seasonal scales.
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Table 4.4 Results of Mann–Kendall, Pre-Whitened Mann-Kendall and Sen’s slope estimator statistical tests for Dumfries station
conducted on monthly and seasonal time scales. Bold values indicate statistical significance at 95% confidence level. Z, Zc, Q,
Qc, pval and pvalc are the MK Z-statistic (traditional MK), TFPW-MK Z-statistic (i.e after Trend-Free Pre-whitening (TFPW)),
TSE for original data series, TSE after TFPW, P-value for original data series and P-value after TFPW respectively.

Variable Statistic
Month Season

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec DJF MAM JJA SON Annual

Z 0.00 0.90 -1.60 2.75 0.85 1.24 0.15 -0.20 -1.22 0.82 0.17 -0.14 0.48 0.54 0.31 -0.03 1.16
Zc 0.54 0.61 -2.64 2.71 0.46 0.93 0.57 -0.21 -0.89 0.43 -0.04 -0.75 0.86 0.39 0.57 -0.07 0.75

Prcp Q 0.02 1.20 -1.18 1.57 0.77 0.77 0.08 -0.17 -1.24 1.20 0.20 -0.15 0.77 1.04 0.55 -0.13 3.21
Qc 0.54 0.96 -1.56 1.55 0.46 0.67 0.41 -0.20 -0.93 0.57 -0.03 -0.90 1.25 0.43 1.02 -0.29 1.91
pval 1.00 0.37 0.11 0.01 0.40 0.21 0.88 0.84 0.22 0.41 0.87 0.89 0.63 0.59 0.76 0.97 0.25
pvalc 0.59 0.54 0.01 0.01 0.64 0.35 0.57 0.83 0.37 0.67 0.97 0.45 0.39 0.69 0.57 0.94 0.45

Z 1.70 2.72 2.96 1.51 1.43 -0.22 0.32 1.38 3.28 1.16 1.44 0.88 2.67 3.35 1.00 3.14 3.37
Zc 2.39 2.96 3.14 1.75 1.03 0.43 0.71 1.96 3.14 0.82 1.46 1.61 3.68 3.07 1.64 2.96 3.82

Tmax Q 0.06 0.08 0.09 0.04 0.04 0.00 0.01 0.05 0.07 0.02 0.03 0.03 0.07 0.06 0.03 0.04 0.04
Qc 0.09 0.09 0.09 0.05 0.04 0.01 0.02 0.07 0.07 0.02 0.03 0.05 0.08 0.06 0.04 0.04 0.05
pval 0.09 0.01 0.00 0.13 0.15 0.83 0.75 0.17 0.00 0.25 0.15 0.38 0.01 0.00 0.32 0.00 0.00
pvalc 0.02 0.00 0.00 0.08 0.30 0.67 0.48 0.05 0.00 0.41 0.14 0.11 0.00 0.00 0.10 0.00 0.00

Z 2.06 2.07 1.89 2.24 2.75 1.89 0.46 1.16 0.83 -1.00 1.70 0.24 2.24 3.23 1.63 1.34 2.79
Zc 2.32 2.14 1.64 2.46 2.28 1.53 0.89 1.89 1.36 -1.21 1.28 0.71 2.78 3.07 2.57 1.00 3.93

Tmin Q 0.08 0.06 0.06 0.04 0.06 0.03 0.01 0.02 0.03 -0.03 0.05 0.01 0.05 0.05 0.02 0.02 0.04
Qc 0.10 0.07 0.05 0.05 0.06 0.03 0.02 0.04 0.03 -0.04 0.05 0.01 0.06 0.05 0.03 0.02 0.04
pval 0.04 0.04 0.06 0.02 0.01 0.06 0.65 0.25 0.40 0.32 0.09 0.81 0.02 0.00 0.10 0.18 0.01
pvalc 0.02 0.03 0.10 0.01 0.02 0.12 0.37 0.06 0.18 0.23 0.20 0.48 0.01 0.00 0.01 0.32 0.00
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Both minimum and maximum temperatures exhibit significant upward trends

at annual and seasonal scales except for summer which shows an upward but

insignificant trend. The change is about 0.4 °C decade−1 for both Tmax and Tmin

and about 1.24 °C for the entire baseline period (i.e. 1975 – 2005).

4.8.2 RNC Baseline Downscaling

Bias correction and statistical downscaling results of the historical GCM data for

the RNC are presented in Figures B.1 to B.3. Biases in the downscaled variables

were adjusted in order to have statistically similar data series for the historical

period. From statistical and visual inspections, there was a good match between

the observed and simulated data in the RNC.

Ensemble climate model results showed similar and in many grids superior

results than individual GCMs when compared to the reanalysis data. An interest-

ing outcome of using data-based methods to combine the GCM results is that the

ensemble model was more reliable in reproducing the wet and dry spell lengths

than the individual GCMs. Thus, while these methods may be considered to

be “black boxes”, they hold a lot of promise for more reliability and ability to

accurately simulate hydro-climatic phenomena.

One consideration to take when developing machine learning based models

is to find a good balance between accuracy and generalization. Models that are

overfitted during the training phase tend not to generalize well when introduced

to new or unseen data and thus a trade-off needs to be made in the training and

testing phases to ensure that models that generalize well (i.e., perform well during

the testing phase) are favoured ahead of models that have high accuracy in the

training phase but not so accurate in the testing phase. Similarly, care has to be
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taken that “underfitting” is avoided.

4.8.3 RNC Future Climate Results and Discussion

Here, future climate is assessed using the River Nith Catchment Ensemble GCM

Mean (RNC-EGCMM). Again, only seasonal differences in precipitation and

temperature for the RNC are presented in Figures 4.6 to 4.11. With respect

to precipitation, the highest differences between baseline and future values are

observed in winter (RCP4.5 and 8.5) and least in spring (RCP8.5) and summer

(RCP4.5). Mean seasonal precipitation under RCP4.5 is expected to increase by

+10% to +24% in the winter season with the highest increase observed towards

the end of the century. In the 2020s, spring precipitation change under RCP4.5

ranges between +3% and +5% while the 2050s experience a drop in precipitation

of about -3% compared to baseline conditions. The late century sees slightly

elevated precipitation changes of about +4% to +7% under RCP4.5. As alluded

to earlier, summer precipitation decreases across the century with percentage

changes ranging between -6% and -4%. In the autumn season, a similar trend as

that observed in spring is exhibited where the 2050s experience slightly reduced

precipitation by up to -2% while the 2020s and 2080s see no significant change from

baseline conditions. Under RCP8.5, summer precipitation decreases significantly

by up to -11% of baseline values while winter precipitation increases by up to

27%.

Maximum and minimum temperatures in the RNC are presented as absolute

changes from the baseline. In the case of maximum temperature, a steady increase

in the mean seasonal temperatures is immediately clear across the time horizons

from Figs. 4.8 and 4.9 under both RCP4.5 and 8.5. In the winter season, maximum
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temperatures maintain baseline conditions in the 2020s with increases in the mid-

to late-century of up to 1.5 °C under RCP4.5 and up to 3.8 °C under RCP8.5.

There is a slight change of about +1 °C in spring mean Tmax in the 2020s but

minor increases of +1.2 °C to +1.4 °C observed in the mid- to late-century. The

highest Tmax changes under RCP4.5 were observed in summer where an increase

of between +1.7 °C to +1.8 °C in the 2050s and up to +1.9 °C in the 2080s was

observed. Similarly, under RCP8.5, Tmax in the summer rises up to ++3.8 °C by

the late century.

Minimum temperatures, on the other hand, only increase by about +0.5 °C

in the 2020s for all seasons except winter where an increase of up to +1 °C is

observed under RCP4.5 and up to +2.5 °C under RCP8.5. In spring and autumn,

Tmin rises by +1 °C and +1.4 °C in the 2050s and 2080s respectively. Summer

Tmin rises by +1.4 °C in the 2050s and +1.6 °C in the 2080s. In winter, where the

highest changes are observed, Tmin rises by +1.6 °C and +1.7 °C in the mid- and

late-century respectively under RCP4.5.

A peculiar pattern is observed for maximum and minimum temperature changes

where the winters and summers get warmer by the end of the century. The rest of

the seasons get warmer too but only slightly. Furthermore, the diurnal temperature

range (DTR) appears to decrease, especially in winter, possibly due to the daily

minimum temperatures increasing faster than the maximum daily temperatures

(e.g., Braganza et al., 2004).

Increases in winter rainfall is consistent with results obtained by Watts et al.

(2015) who reported similar results as well as recent findings by Murphy et al.

(2018) who report “warmer, wetter winters and hotter, drier summers” over land.
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Figure 4.6 RNC future precipitation under RCP4.5 as calculated by the RNC-EGCMM.
Seasonal percentage changes in precipitation are presented row-wise while time is
presented column-wise.
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Figure 4.7 RNC future precipitation under RCP8.5 as calculated by the RNC-EGCMM.
Seasonal percentage changes in precipitation are presented row-wise while time is
presented column-wise
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Figure 4.8 RNC future Tmax under RCP4.5 as calculated by the RNC-EGCMM.
Seasonal absolute changes in temperature are presented row-wise while time is presented
column-wise
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Figure 4.9 RNC future Tmax under RCP8.5 as calculated by the RNC-EGCMM.
Seasonal absolute changes in temperature are presented row-wise while time is presented
column-wise
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Figure 4.10 RNC future Tmin under RCP4.5 as calculated by the RNC-EGCMM.
Seasonal absolute changes in temperature are presented row-wise while time is presented
column-wise
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Figure 4.11 RNC future Tmin under RCP8.5 as calculated by the RNC-EGCMM.
Seasonal absolute changes in temperature are presented row-wise while time is presented
column-wise
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4.9 SRB Baseline and Future Climate

Assessment

4.9.1 SRB Baseline Climate

For purposes of investigating the long term statistical trends for the baseline

climate (i.e. 1975 – 2005) in the SRB, eight meteorological stations with less

than 10% missing daily data and overlapping the baseline period were selected for

analysis. Treatment of missing data is discussed in Section 4.2. Attributes of the

stations and meteorological data are given in Table 4.5.

Table 4.5 Selected meteorological stations in the SRB

No. Station Latitude Longitude Elevation (m) Period

1 Bvumbwe -15.92 35.07 1146 1960 – 2016

2 Chichiri -15.8 35.05 1132 1965 – 2015

3 Chileka -15.68 34.97 767 1949 – 2016

4 Makhanga -16.52 35.15 76 1960 – 2015

5 Mangochi -14.43 35.25 482 1961 – 2016

6 Mimosa -16.08 35.58 652 1958 – 2016

7 Ngabu -16.5 34.95 102 1960 – 2016

8 Thyolo -16.15 35.22 820 1961 – 2015

Regional climate in the SRB is influenced by the topography and surface

fluxes and the transport mechanisms of prevailing moisture organized by weather

systems (Jury and Gwazantini, 2002; Torrance, 1972). Generally, Malawi’s climate

is sub-tropical and mostly dry except for the warm and wet season which stretches



4.9 SRB Baseline and Future Climate Assessment 131

from November to April. During this period, approximately 95% of the annual

precipitation takes place (MMSD, 2017). The position of the Inter-tropical

Convergence Zone (ITCZ) mainly dictates the intensity and onset of the rainy

season. The oscillation of the ITCZ, which varies from year to year, and the

influence of the Indian Ocean Sea Surface Temperatures are responsible for the

inter-annual variability in the rainy season (McSweeney et al., 2014). In addition,

the El Nino Southern Oscillation (ENSO) cycles have been reported to be a

significant factor contributing to the inter-annual rainfall variability (e.g. Jury

and Mwafulirwa, 2002; McSweeney et al., 2014; Ngongondo, 2006; Pilskaln, 2004).

Within the SRB, analysis of the baseline climate reveals the prevalence of rainfall

variablity south of Malawi as can be seen from Figure 4.12.

Station Ngabu, for example, receives the least amount of rain in December

but receives significantly higher rainfall than Mangochi in January. The other

stations, while showing some variability, are consistent in their ranking for all the

months except Mimosa which shows a significant departure from all the stations.

Interestingly, analysis of the available Mimosa station rainfall data suggests that

the station consistently recorded higher rainfall in March than February, a trend

which was not captured by the other stations. However, from Figure 4.13,it can

be seen that this trend is particularly true for the upper ranges of mean monthly

rainfall in February for this station than for the lower ranges. The mean February

rainfall, however, is close to the median, suggesting in general that the station

consistently recorded higher rainfall amounts for this month. Furthermore, the

station receives a considerable amount of rainfall during the relatively dry winter

months (JJA) as can be seen from Fig. 4.12. This unusual trend was captured

by another study (Nicholson et al., 2014) where a detailed analysis of rainfall
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climatology for Malawi was undertaken. In their study, the authors documented

that there is “a brief period of reduced rainfall in mid-February that appears to

signal a shift in the prevailing rainfall and circulation regime” (Nicholson et al.,

2014). Furthermore, their study concluded that the early rainy season (DJF) is

dominated by tropical influences while the late rainy season (MA) is dominated by

extra-tropical influences and that the interannual variability in these two periods

is uncorrelated (Nicholson et al., 2014). These aspects of the SRB climate arising

from Nicholson et al. (2014) study have not been further investigated in this

thesis. However, it is the author’s view and recommendation that these aspects

be explored in future studies from a hydrologic perspective.
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Figure 4.12 Rainfall variability in the SRB for the baseline period (1975-2005): (a)
Rainfall climatologies (b) Seasonal rainfall
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Figure 4.13 Box plots of mean monthly precipitation in the SRB
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4.9.2 Historical Precipitation Downscaling and Bias

Correction

Figures 4.1 to 4.3 have shown the effectiveness of the quantile mapping bias

correction method in downscaling GCM outputs to the SRB local scale. From

a monthly perspective, climatologies indicate that the historical GCMs have

considerable inherent bias. Taking bcc-csm1-1m GCM as an example, it can be

seen from Figure 4.14 that the historical portion of the GCM before quantile

mapping is biased for each of the eight climate stations in the SRB. The GCM

overestimates rainfall in some months and underestimates in others. At Chileka,

Makhanga, Mangochi and Ngabu, the raw GCM overestimates rainfall for almost

all the months except January; whereas for Bvumbwe, Chichiri, Mimosa and

Thyolo, rainfall was underestimated for all the months except April, May and

June.

This trend, as expected, was not uniform for all the GCMs (see Figures B.4

to B.8). CCSM4 GCM consistently overestimated rainfall for almost all the

months at all the stations except Mimosa and Thyolo where the model was

able to reproduce nearly accurate estimations of the historical period before

empirical adjustment. A similar trend was observed for HadGEM2-ES where a

good agreement between the observed and raw GCM data can be seen at Bvumbwe,

Mimosa and Thyolo. The rest of the GCMs were able to simulate the historical

period fairly well except GFDL-ESM2G which had some considerable departure

from historical means. This demonstrates the implicit uncertainty in the CMIP5

models and the need for using a multi-model ensemble (MME) in climate change

studies.
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In all cases, as discussed earlier in Section 4.6, the BCM was able to accurately

downscale GCM precipitation output with respect to the control or baseline period.

Many studies have reported lower skill in downscaling precipitation via the use

of stochastic and multiple linear regression methods, such as those implemented

in LARS-WG and SDSM respectively, than for temperature. In this study the

BCM reliably downscaled and reduced the biases in the coarse GCM precipitation

output.

4.9.3 Historical Temperature Downscaling and Bias

Correction

After downscaling and correcting for biases for the historical period, the following

observations were made;

• Correlation between observed and raw GCM values was significantly better

for temperature than precipitation. In the case of maximum and minimum

temperatures (Tmax and Tmin respectively), the raw GCM values were rea-

sonably representative of the baseline period. Stations Chileka, Makhanga,

Mangochi and Ngabu were accurately modelled by the GCMs. At stations

Bvumbwe, Chichiri, Mimosa and Thyolo, Tmax was overestimated by an aver-

age of 5 °C. GFDL-ESM2G (see Figure B.12) overestimated Tmax for the wet

period at Chichiri and Bvumbwe while at Makhanga and Ngabu, the GCM

underestimated Tmax by an average of 7 °C. A similar observation was made

at the same stations with HadGEM2-ES (Fig. 4.15) where the overestimation

was higher and the underestimation lower than GFDL-ESM2G.

• All the GCMs heavily overestimated Tmax and Tmin at Bvumbwe and

Chichiri with the majority also overestimating Thyolo. In this regard, the
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GCMs can be regarded as having moderate to good skill in reproducing the

historical temperature records in the SRB. Furthermore, the BCM reliably

reduced biases in the monthly mean temperatures as can be observed in

Figures B.10 to B.19.

4.9.4 Historical Wet/Dry Spell Lengths

The downscaled and bias corrected GCMs were also tested in terms of how well

they reproduced the wet- and dry-spell lengths for the historical period. A wet

(dry) spell is defined as the number of consecutive rainy (non-rainy) days (Ratan

and Venugopal, 2013) and is calculated here on a monthly basis. The following

observations were made;

• Of all the GCMs, HadGEM2-ES and MPI-ESM-LR were more skilful in

reproducing the wet-spell lengths before and after bias correction (see Fig-

ures B.24 and 4.16). Generally, the GCMs showed poor skill in reproducing

the mean wet-spell lengths especially for the wet months of December, Jan-

uary, February, March and April. Even after bias correction, we observed

poor wet-spell prediction skill among all GCMs. Corrected historical simula-

tions for all GCMs were at least two wet-spell days longer than the observed

baseline period.

• Wet-spell length prediction skill for the dry months was much higher for all

GCMs and for all stations in the SRB when compared with the wet months.

CCSM4 and GFDL-ESM2G showed relatively poor skill in the dry months

for all stations except Chileka and Bvumbwe. In all cases, i.e. before and

after bias correction, the GCMs over-predicted the wet-spell duration for

the dry months by at least one day.
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• In the case of dry-spell lengths, the reverse of the wet-spell prediction was

observed (e.g. Figure 4.17). This means that all the GCMs showed a

tendency to underestimate the wet spell lengths for the dry period while

the dry-spell prediction score was higher for the wet months. Almost all the

GCMs underestimated the dry-spell lengths with a few exceptions in some

months in GCM MPI-ESM-LR (see Figure B.29).



4.9 SRB Baseline and Future Climate Assessment 139

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month

0

50

100

150

200

250

Pr
ec

ip
ita

tio
n 

(m
m

)

bcc-csm1-1 precipitation at Bvumbwe

Baseline
GCM-corrected
GCM-uncorrected

(a)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month

0

50

100

150

200

250

Pr
ec

ip
ita

tio
n 

(m
m

)

bcc-csm1-1 precipitation at Chichiri

(b)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month

0

50

100

150

200

250

Pr
ec

ip
ita

tio
n 

(m
m

)

bcc-csm1-1 precipitation at Chileka

(c)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month

0

25

50

75

100

125

150

175

200

Pr
ec

ip
ita

tio
n 

(m
m

)

bcc-csm1-1 precipitation at Makhanga

(d)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month

0

50

100

150

200

250

Pr
ec

ip
ita

tio
n 

(m
m

)

bcc-csm1-1 precipitation at Mangochi

(e)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month

0

50

100

150

200

250

300

Pr
ec

ip
ita

tio
n 

(m
m

)

bcc-csm1-1 precipitation at Mimosa

(f)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month

0

25

50

75

100

125

150

175

200

Pr
ec

ip
ita

tio
n 

(m
m

)

bcc-csm1-1 precipitation at Ngabu

(g)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month

0

50

100

150

200

250

Pr
ec

ip
ita

tio
n 

(m
m

)

bcc-csm1-1 precipitation at Thyolo

(h)

Figure 4.14 Performance of bcc-csm1-1m downscaled precipitation in the SRB
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Figure 4.15 Performance of HadGEM2-ES downscaled maximum temperature in the
SRB
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Figure 4.16 Performance of HadGEM2-ES in predicting wet spell lengths in the SRB
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Figure 4.17 Performance of HadGEM2-ES in predicting dry spell lengths in the SRB
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4.9.5 Future Climate Results and Discussion

For the future period, climate change assessment results of the ensemble model

are presented for the three representative stations. Rainfall results are presented

as relative changes (percentage) whereas temperature results are presented as

absolute changes (see Figures 4.18 to 4.20).

4.9.5.1 Rainfall

At Chileka and Ngabu, the model predicts a +5% to +8% increase in rainfall in

the 2020s for the DJF months. A similar pattern was observed at Mangochi but

at relatively higher percentages (increase and decrease). This could be attributed

to lake effects on the precipitation regime of regions in close proximity to Lake

Malawi according to a recent study by Diallo et al. (2018). Although a significant

increase in precipitation was observed in regions close to the northern part of the

lake, their study concluded that the lake-atmosphere interactions have significant

impact on the surrounding regions. By the 2050s, RCP4.5 predicts reduced rainfall

at all the representative stations for all months except DJF which depicts a slight

increase ranging from +8% to +10% when compared to baseline. Under the

RCP8.5 scenario, all stations show increased rainfall of up to +10% in the 2050s

in the DJF period while the rest of the months depict reduced rainfall ranging

between -10% to -38%. At Chileka and Mangochi, 2080s rainfall under RCP4.5

increases significantly in the DJF and JJA months by up to +25% whereas at

Ngabu, rainfall is expected to increase by +15%. Under RCP8.5 the wet months

of DJF see increased rainfall of up to +15% in the 2080s at all stations with

the rest of the months showing significant decreases in rainfall. From an annual

perspective and under all scenarios, rainfall is expected to increase slightly in the
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future with the 2050s seeing less rainfall relative to the 2020s and 2080s.

By and large, the future is expected to be wetter in the middle portion (DJF)

of the rainy season and drier through the cool and dry seasons. The early and

late stages of the rainy season is expected to experience decreased rainfall of up to

-40% and -18% respectively. The consequence is that the rainy season may become

shorter due to late onset and early cessation of rainfall. Additionally, timing

of the planting season of cash crops that sustain most (60%) of the subsistence

farmers in the SRB could also be affected leading to poor crop yields. Extreme

precipitation events are likely to increase leading to floods in various parts of the

basin. The northern part of the basin is expected to experience more rains than

the south. The Shire River Basin Ensemble GCM Mean (SRB-EGCMM) results

are consistent with results published in a recent study by Zuzani et al. (2019a)

which showed decreasing trends in March to December rainfall in the SRB. This

trend is expected to persist into the future as demonstrated by this study.

4.9.5.2 Temperature

Although here, future Tmax and Tmin results of the ensemble model are presented,

individual GCMs were in agreement with respect to the sign of the change unlike

the case for rainfall. As discussed already in Chapter 2, this is to be expected

since GCMs have better skill at modelling temperature than precipitation.

Tmax at all stations under RCP4.5 increases by about +0.8 °C to +1.2 °C. In

the 2050s Tmax rises by about +1.8 °C to +2.5 °C representing the largest increase

between successive forecast time horizons in the century. By the 2080s, Tmax

ranges between +2 °C to +3 °C. Tmin at all stations under RCP4.5 increases by an

average of +1 °C, +1.7 °C and +2.4 °C in the 2020s, 2050s and 2080s respectively.
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DTR reduces significantly at all stations when compared to baseline due to daily

minimum temperatures increasing faster than the maximum daily temperatures.
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Figure 4.18 Chileka future SRB-EGCMM results for rainfall, maximum and minimum
temperatures. Figures A,C and E are projected results under RCP4.5 while figures B,D
and F represent RCP8.5 results
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Figure 4.19 Mangochi future SRB-EGCMM results for rainfall, maximum and mini-
mum temperatures. Figures A,C and E are projected results under RCP4.5 while figures
B,D and F represent RCP8.5 results
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Figure 4.20 Ngabu future SRB-EGCMM results for rainfall, maximum and minimum
temperatures. Figures A,C and E are projected results under RCP4.5 while figures B,D
and F represent RCP8.5 results
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It was observed that all GCMs predict rising minimum and maximum tem-

peratures for both the SRB and RNC. Generally, It has been documented by the

IPCC and many other researchers in the literature that confidence in temperature

estimates is higher than for other climate variables such as precipitation (Randall

and Wood, 2007). While there certainly is some variations from one model to

another, climate projections are all unidirectional in terms of the sign of the

change. This wasn’t the case with rainfall which exhibited considerable variance

in projections.

In the case of the Africa, Mechoso et al. (1995) for example, talk about

the ‘double Inter Tropical Convergence Zone (ITCZ)’ problem which remains

a major source of error and uncertainty when simulating the annual cycle in

the tropics in most AOGCMs (Randall and Wood, 2007). Elsewhere, climate

modelling has discernibly improved but is still a challenge over Africa (James et al.,

2018). Moreover, none of the current generation of GCMs were built in Africa

although there are plans to start developing the first global models in African

research institutions (Engelbrecht et al., 2009) that will improve models from

international modelling centres over Africa (James et al., 2018). It is expected that

these modelling centres will contribute to a more reliable understanding of the

many factors such as the sharp gradients in temperature, strong land-atmosphere

interactions, prominent modes of interannual and interdecadal rainfall variability

(James et al., 2018), and the influences of the ITCZ and ENSO on the rainfall

patterns and variability.
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4.10 limitations

One of the limitations of this study, particularly for the RNC where only one

station (Dumfries) was considered, was the use of CRU reanalysis data. As

has been mentioned earlier, CRU and CFSR data sets were used to augment

Dumfries and SRB stations’ data respectively in order to have representative

spatial distributions of local climate over the basins. However, reanalyses data

often inherit biases from their driving models and can thus lead to optimistic

verification when forecasts made with these data sets are verified against their own

analysis (Monhart et al., 2018; Park et al., 2008). Due to the many climate and

hydrological studies that incorporated gridded data sets and reported favourable

results, the methodology that is employed in this thesis can confidently be applied

in the RNC and SRB. However, it is highly recommend that future studies

investigate this concern further.

Another limitation of this study is that climate impact assessments were

conducted using only one downscaling method. In subsequent studies, it would

be prudent to consider uncertainty with respect to the choice of the downscaling

method for the SRB and RNC.

4.11 Chapter Summary

A total of twenty-nine GCMs were downscaled of which a subset of seven (six used

in the SRB and five in the RNC) was selected for purposes of assessing future

climate change under two RCPs in the SRB and RNC. In the case of the RNC,

significant changes in precipitation under RCP4.5 and 8.5 are observed in winter

of up to +24% and +28% respectively by the late century. The summers are
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expected to be in a slight deficit of up to -4% and -16% under RCP4.5 and 8.5

respectively by the late century. Tmax and Tmin, especially in the winters and

summers, are expected to increase by up to 1.9 °C and 1.8 °C respectively under

RCP4.5. Significant changes are observed under RCP8.5 where Tmax and Tmin is

projected to rise by up to 3.8 °C and 2.5 °C respectively by the late century. Also,

the DTR decreases possibly due to the daily minimum temperatures increasing

faster than the maximum daily temperatures.

In the case of the SRB, Tmax and Tmin projections by all GCMs indicate a mean

rise in temperature of 1 °C, 1.5 °C and 2 °C in the short term, mid- and late century

respectively under RCP4.5. Under RCP8.5, the mean rise in temperature was

found to be 1 °C, 2.5 °C and 5 °C in the short, mid- and late century respectively.

In the case of rainfall, there was a lot of variation in projections from one GCM

to another. This is to be expected as there are a lot of factors that affect rainfall

projections such as the structure of the GCMs, internal and interannual variability.

In summary, by the late century, there could be increased rainfall of up to +15%

in the middle stages of the rainy season while the early and late stages of the rainy

season could experience decreased rainfall by up to -40% and -18% respectively.

Thus, agriculture and in particular timing of the planting of cash crops such as

maize is expected to be affected due to the late onset and early cessation of rains.

Hence, robust climate adaptation planning and the migration to climate resilient

sustainable agriculture is recommended especially in the rural parts of the SRB.

Generally, the effects of climate change are more severe in the SRB than RNC

with respect to Tmax, Tmin and rainfall. Although possible rainfall quantities

have been projected, this study did not aim to assess the nature of occurrence

of precipitation. It is possible that the rise in precipitation in both the RNC
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and SRB could manifest as storms or extreme precipitation events mixed with

intra-monthly droughts.



—If you would be a real seeker after

truth, it is necessary that at least

once in your life you doubt, as far

as possible, all things.

Rene Descartes

5
Hydrological Modelling

Detailed hydrological analyses for the RNC and SRB are provided in this chapter.

A brief discussion on the objectives of this chapter is provided first. Thereafter the

rest of the chapter is split into discussions of hydrological analyses for the RNC

and later the SRB. A summary of the pertinent insights gained from application

of the methodology developed in this research to a data-rich versus data-scarce

region is then presented. Finally, effects of climate change on water surface water

resources in the two catchments are discussed.
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5.1 Introduction

To fully understand the impacts of climate change and other environmental stresses

on water resources, a holistic investigation involving all the components of climate,

hydrological cycle and the environment should be carried out. This chapter

describes the development of semi-distributed models for the RNC and SRB based

on the SWAT hydrological model. Water balance components for the two study

areas were calculated for the baseline and future periods. Furthermore, using

SWAT models forced with future climate predictions, quantifications of future

streamflow availability was made along with the associated uncertainties.

As a secondary objective and as earlier stated, hydrological models were devel-

oped for a data-rich region (i.e. RNC) first before applying the same methodology

to a region with sparse data (SRB in this case). Observations were then made

on whether the methodology is transferable from one region (i.e. data-rich) to

the other (i.e. data-scarce). Thus, the structure of this chapter is such that the

methodology and data needs for the RNC, together with the simulated results

and analyses, are first presented before presenting that of the SRB. Where there

was a notable deviation in methodology from that of the RNC, comments have

been made accordingly.

5.2 Description of the Study Sites

The basic layouts of the two study basins i.e. RNC and SRB are presented in

Figures 5.1a and 5.1b respectively. The RNC is mainly drained by the River Nith

and its tributaries while the SRB is drained by the Shire River and its tributaries.
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5.3 RNC Hydrologic Modelling

5.3.1 Model Setup

Model delineation, parametrization and pre-processing of input data was done

using a combination of tools. Model delineation relied on tools provided in

QSWAT, a QGIS based SWAT model interface used for pre- and post-processing

of SWAT inputs and outputs. The QSWAT interface successfully delineated and

parametrized the RNC SWAT model but was converted to the ArcGIS interface

due to the latter being an order of magnitude faster. This was necessitated by the

fact that conceptual modelling and parametrization was varied numerous times

before a hydrologically correct model was configured. In the following sections,

steps involved in the model setup are discussed in detail.

5.3.1.1 Watershed Delineation

Model delineation in the SWAT model requires a spatially georeferenced DEM.

The elevation of the RNC ranges between 0 and 724m amsl (Figure 5.2a). The

RNC was delineated by selecting an outlet point (outlet of a watershed above the

respective point) near the coastal edge of the catchment as the River Nith drains

into the Solway Firth. Initial attempts to delineate the model did not result in

satisfactory results. Subsequently, an attempt to improve catchment delineation by

using the “Burn-in” feature of ArcSWAT (QSWAT also) was made. This method

improves the hydrographic segmentation and sub-watershed boundary delineation

(Luo et al., 2011) by slightly reducing the elevation of parts of the DEM intersected

by the ‘real’ streams (in this case obtained via Google Earth software). Using

this method, stream and watershed delineation was greatly improved. When the
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same method was applied to a 3 arc-second resolution Shuttle Radar Topography

Mission (STRM) DEM (i.e. STRM 90m), even better results were achieved than

earlier attempts using a 1 arc-second resolution DEM. Consequently, this method

was adopted as the optimum resolution for the SWAT model. A threshold drainage

area of 1000 ha was chosen as a suitable compromise between accuracy of stream

delineation and number of subbasins produced since the lower the subbasins the

lower the computational demand and time. This resulted in a watershed with 83

subbasins, 516 HRUs and a total area of 145049.31 ha.

5.3.1.2 Land-use/Landcover

After delineation of the watershed, SWAT requires land-use data before construct-

ing the HRUs. The land-use raster was converted to the same coordinate reference

system (CRS) as the DEM and clipped to the extent of the watershed in QGIS.

Within the RNC, a total of seven land-use classes were defined. From Table 5.1, it

can be seen that dryland cropland and pasture (CRDY) constitutes the majority

of the RNC.

Table 5.1 Distribution of LU/LC classes in the River Nith Catchment

Land-use Description Area (ha) % Watershed

CRDY Dryland Cropland and Pasture 107129.25 76.32
CRGR Cropland/Grassland mosaic 24726.786 17.62
WEWO Wooded Wetland 5054.0681 3.6
WEHB Herbaceous Wetland 244.4172 0.17
FODB Deciduous Broadleaf Forest 1267.9468 0.9
URMD Residential-medium density 802.0428 0.57
WATB Water Bodies 1143.9142 0.81
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5.3.1.3 Soil data

Similar to the process followed in the preceding section, soil maps (see Figure 5.2c)

were converted to rasters and reprojected to the same CRS as that of the DEM

used to delineate the watershed. After clipping the soil layer to the watershed
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extent in the QGIS environment, four soil classes were identified. The majority of

the catchment is dominated by soils of type ‘Dystric Cambisols’ (Table 5.2).

Table 5.2 Distribution of Soil classes in the River Nith Catchment

Soil Class Description Area (ha) % Watershed

Bd42-1-2b-6406 Dystric Cambisols 71205.51 49.09
Bg12-2ab-6463 Gleyic Cambisols 6080.54 4.19
Od26-a-6587 Dystic Histosols 35113.09 24.21
Pp3-1b-6619 Placid Podzols 32650.17 22.51

5.3.1.4 Weather data

Weather data was prepared and selected using the methodology presented in

Section 4.3. Uncalibrated hydrographs in the RNC produced with CRU datasets

were all above NSE = 0.5 and thus the model could have been accepted as suitable

for hydrological analyses without calibration (e.g. Arnold et al., 2012).

5.3.1.5 Simulation period

The baseline RNC SWAT model was run from 1979 to 2005. Six years were

assigned to the model as a “warm-up” period. This means that SWAT ran the

simulation from 1979, but only printed results for the last 21 years (i.e., 1985 to

2005).

5.3.2 Model calibration and validation

To calibrate the RNC model, the SUFI-2 algorithm was applied using the SWAT-

CUP interface. In the first stage, a local sensitivity analysis for the four streamflow

variables was performed by setting the lower and upper bounds of the calibration

parameters. A total of thirteen parameters related to surface run-off and baseflow
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were selected for sensitivity analysis before one iteration of 1000 simulations was

run in SWAT-CUP. With respect to computation time, the RNC model took a

total time of 5.78 hours to complete one iteration of 1000 simulations. It should

also be noted that during model construction, the ‘Multiple HRUs’ option was

selected when subdividing the watershed into HRUs. If the option ‘Dominant Land

Use, Soils, Slope’, one HRU for each subbasin would be created and consequently,

the dominant land use, soil, and slope class in the subbasin simulated in the

resulting HRU. Similarly, if the ‘Dominant HRU’ option is selected, one HRU

for each subbasin is created and the dominant unique combination of land use,

soil, and slope class in the subbasin used to simulate the HRU. The Multiple

and Dominant HRU options were not explored in this research but it would be

interesting to see how these options affect streamflow and nutrient transport

modelling in the SRB in a future study. Moreover, these options have been shown

by Schuol et al. (2008b) to reduce significantly the computation time of the SWAT

model calibration.

After the initial iteration was done, a global sensitivity analysis was performed

by regressing the Latin hypercube generated parameter against the objective

function values as discussed in Chapter 3. The objective function used in this

study is the NSE. The results of the sensitivity analysis are presented in Figure 5.3

and Table 5.10. Using the p-value derived from a t-test as a measure of the

relative significance, it can be seen from Figure 5.3 that parameters GW_DELAY,

ESCO and SOL_BD were the most significant parameters. A short description

of the parameters is given in Table 5.3. Parameters below the p = 0.05 line

are significant at the 95% confidence level and thus are a meaningful addition

to the model as the changes in these parameters are related to changes in the
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response variable. In the same vein, values which had very high p-values such as

CH_N2, ALPHA_BF and GWQMN and were subsequently removed from further

calibration iterations leaving a total of ten parameters in the final calibration setup.

These parameters were continuously changed throughout the SUFI-2 calibration

process in a campaign to maximise the objective function. Three more calibration

iterations were performed for the period between 1985 to 2000 on a monthly

time-step before an optimal solution was reached. When the optimal solution

was reached, i.e. when a point was reached when further iterations did not lead

to any improvement in the p-factor and R-factor, the calibration process was

stopped and the calibrated parameters accepted as the final solution. The final

corrected parameters and their calibrated ranges for the RNC model are presented

in Table 5.4.



5.3 RNC Hydrologic Modelling 161

While it is possible to select any of the ten available objective functions

available in the SUFI-2 algorithm, the NSE was selected due to it’s popularity in

hydrology as a performance metric. However, it would be good science to test the

effect of each of the different objective functions implemented in SWAT-CUP on

the calibration process in future studies.

Because SUFI-2 is a semi-automated calibration technique, the algorithm

needs to be guided between successive iterations to avoid suggesting physically

impossible and meaningless parameter values. It is incumbent upon the modeller

to have a fairly good understanding of the physical processes in the basin or

watershed being modelled. Further, the modeller should have an appreciation

of the desirable SWAT parameter ranges that are recommended for successful

calibration. Here, the calibration protocol in Abbaspour et al. (2015) was followed

to guide the direction of the calibration process in addition to the desirable

parameter range knowledge which was known a priori.

Having examined and accepted the optimal solution, one iteration of 500

simulations was run to validate the model using observations between the years of

2000 and 2005. The optimal parameters solved during the calibration stage were

used without any changes during the validation period.

5.3.3 Climate change impacts on streamflow - RNC

Changes in streamflow has been a topic of interest to water resources specialist

for many decades now. These changes are usually classified into two categories

i.e. climatic and non-climatic. The former can manifest as either climate change

or natural variability while the latter can be due to a lot of factors such changes

in LU/LC, water control and diversions, dams, bridges, tunnels and irrigation.
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Table 5.3 Description of SWAT parameters used in the RNC calibration process

No. Parameter Description

1 REVAPMN Threshold water depth in the
shallow aquifer for “revap” [mm]

2 GW_REVAP Groundwater “revap” coefficient

3 CN2 Initial SCS runoff curve number for
moisture condition II

4 ALPHA_BF Baseflow alpha factor (1/days)

5 GWQMN
Threshold depth of water in the shallow
aquifer required for return flow to occur
(mm H2O)

6 CH_N2 Manning’s “n” value for the main channel
7 GW_DELAY Groundwater delay time (days)
8 ESCO Soil evaporation compensation factor

9 SOL_AWC Available water capacity of the soil layer
(mm H2O/mm soil)

10 SOL_BD Moist bulk density (Mg/m3 or g/cm3)
11 ALPHA_BNK Baseflow alpha factor for bank storage (days)
12 SOL_K Saturated hydraulic conductivity (mm/hr)

13 CH_K2 Effective hydraulic conductivity in main
channel alluvium (mm/hr)

Analysing streamflow records for temporal trends that can be attributed to

climate change, however, is a very difficult task and one fraught with many traps

such as the occurrence of “change points” which can mask or amplify temporal

trends (Dierauer et al., 2017). Fortunately, all the gauge records in the RNC were

subjected to a hydrometric data screening process that categorized each station

according to a suitability benchmark which is explained in Harrigan et al. (2018).

According to the NRFA, out of all the gauging stations in the catchment, only

Scar Water at Capenoch (79004) and Nith at Friars Carse (79002) were found

to be most suited for identification and interpretation of long-term hydrological

variability and change. Therefore, in this study, climatic change in streamflow

was assessed with reference to these two stations.
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Figure 5.4 Graphs of river discharge calibration and validation for selected rivers in
the RNC: a) Scar Water at Capenoch, b) Cluden Water at Fiddlers Ford, c) Nith at
Friars Carse and d) Lochar Water at Kirkblain Bridge

5.3.3.1 Baseline Trends

Mann-Kendall trend test results at 5% significant level indicate that at SWC, there

is a significant upward trend for high flows (Q5) and medium flows (Q50) while
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Table 5.4 Calibrated parameter values with their range for the RNC arranged according
to their sensitivity in decreasing order

Rank
Parameter

Op.* File Fitted
Min. Value Max. Valuename type Value

1 GW_DELAY v .gw 6.0452 -1.0911 11.2340
2 ESCO a .hru 0.5009 0.4872 0.5713
3 SOL_BD r .sol 0.4026 0.2497 0.5572
4 SOL_K r .sol 0.4763 0.1511 0.5531
5 SOL_AWC r .sol 0.3647 0.2511 0.4610
6 REVAPMN v .gw -0.7476 -1.7157 -0.4666
7 CH_K2 v .rte -23.7681 -29.4653 -21.0993
8 ALPHA_BNK v .rte 0.7241 0.6714 0.8465
9 CN2 v .mgt 0.0551 0.0517 0.1033
10 CH_N2 v .rte 0.2489 0.2145 0.2527

* Denotes the mathematical operation being applied on the parameter where v means
the existing parameter is to be replaced by a given value, a means a given value is
added to the existing parameter value and r means an existing parameter value is
increased by the given value as a percentage.

for low flows (Q95) there is an insignificant upward trend. At NFC, both high

flows and medium flows show a significant increasing trends at the 5% significant

level. Again, low flows trends are positive (increasing) but insignificant. Generally,

Harrigan et al. (2018) report that analyses show there is an increase in annual

mean flows (AMF) across the UK but especially in Scotland. Additionally, the

trends reveal a tendency for an increase in high flows over the past 50 years.

Detailed UK-wide streamflow trend analyses can be found in Harrigan et al.

(2018).

5.3.3.2 Future Streamflow Impacts

Climate results downscaled from 5 GCMs were used to force SWAT models under

RCP4.5 and RCP8.5 scenarios. The relative percentage change between future

periods and the observed period for stations 79002 and 79004 was then calculated.
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Percentage changes were calculated for the winter period (DJF) because of two

reasons. Firstly, this is the wettest period in the RNC and secondly, all the GCMs

predicted an increase in precipitation in the winter period.

Figures 5.5 to 5.10 show results from streamflow analyses for the future

period. The “No_Observation” module of SWAT-CUP was used to calculate the

uncertainty (95PPU) associated with the future simulations using the calibrated

parameters shown in Table 5.4. Ideally, the future simulations should be compared

with observed baseline values but as was demonstrated in Section 5.3.2, the model

cannot simulate the baseline period with absolute accuracy. By comparing future

simulated values with the actual observed values, biases from the model simulated

results can lead to spurious effects and thus lead to erroneous interpretations of

impact (Shen et al., 2018). To negate the effect of such biases, simulated future

streamflow was compared with model simulated baseline streamflow; a method

which has been successfully employed in many other studies (e.g., Chen et al.,

2011; Jung et al., 2012; Minville et al., 2008; Shen et al., 2018).

Scar Water at Capenoch (SWC): As expected, the changes in streamflow

are not in agreement from one GCM to another. The sign of the change,

however, is more consistent than the magnitude of the change. For example,

at least three of the five GCMs are in agreement with the sign of the change

(i.e. decrease in monthly streamflow) at Scar Water at Capenoch in the

2020s for all RCPs. However, due to structural differences in the GCMs,

uncertainties exist in the climate inputs which further propagate through

the SWAT models; thus the magnitude of change is significantly different

from one GCM to the next. A similar downward trend is projected in the

2050s by almost all GCMs under RCP4.5 while almost all GCMs indicate
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an upward shift in monthly streamflow. In the late century, at least three of

the GCMs show an upward trend under all scenarios. Generally, the relative

changes are insignificant when compared to the baseline when analysed

at the M95PPU . However, it should be noted that there is significant

uncertainty associated with these projections as is depicted by the shaded

bands.

Nith at Friar’s Carse (NFC): Similar to the case of SWC, noticeable differ-

ences in both the sign and magnitude of the change in streamflow was

observed. Under RCP4.5 the general consensus is that there will be a slight

decrease in monthly streamflow in the 2020s except for HadGEM2-ES and

INMCM4 which project positive changes in the streamflow. Under RCP8.5,

the projection is negative for all GCMs except for INMCM4 which shows

a significant change in the opposite direction. There is a further decrease

(about 3%) in streamflow in the mid-century from 3 GCMs under RCP4.5

while the late-century sees an increase in streamflow from most of the GCMs.

Under RCP8.5, most of the models project an increase in streamflow in the

mid- to late-century.

Ensemble Models: One of the problems that has been considered in this thesis

is the issue of ensemble modelling. It is widely accepted in the literature

that ensemble models offer better predictions or projections by overcoming

biases inherent in individual models and also uncertainties arising due to

the structural composition of the models. In fairness, hydrological models

are fraught with many uncertainties that have been discussed in detail in

Section 2.2. In climate studies, however, the issue of how to average model

results has been heavily studied and is still an active area of research. The



5.3 RNC Hydrologic Modelling 167

goal in this thesis was to understand how climate change affects aspects

of the hydrologic cycle in the RNC and SRB. As such, it is important to

consider issues of how to combine different projections and incorporate them

into impact studies. After GCM selection, one issue considered in this

research is the fact that each GCM realisation is a possible future which

has to be taken into consideration; which begs the question – how are the

model results to be combined and/or averaged? Is it at the GCM selection

stage or at the hydrological modelling stage? With respect to streamflow,

the findings for the RNC are summarised as follows;

+ Hydrologic projections were found to be different from one model

to another. In the RNC for example, for each time-scale, it was

rare that 4 out 5 GCMs would depict the same sign or direction in

streamflow change. While it is numerically implausible to expect the

same magnitude of change, where the sign of change is in agreement,

most of the models show similar magnitudes of change.

+ Figures 5.9 and 5.10 show results of a hydrologic model forced with

the River Nith Catchment Ensemble GCM Mean (RNC-EGCMM)

and the River Nith Catchment SWAT Ensemble Model Mean (RNC-

SWATEMM) – a simple arithmetic average of the SWAT models,

respectively. From these two figures, it is unclear which approach

should be recommended. For example, both results agree on the

direction of change, and to some extent on the magnitude of change,

under all scenarios. The two figures are in agreement that the 2020s

will experience a slight decrease in streamflow while the 2050s and

2080s see an increase when compared to the baseline values.
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From a modelling perspective, and based on experience, constructing hy-

drologic models based on an ensemble GCM climate model is the more

parsimonious approach especially in developing countries with limited com-

puting and manpower resources. Whether this approach is transferable

to other regions is investigated further by using the SRB case study (see

Section 5.4.3).
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Figure 5.6 Projected future streamflow at Scar Water at Capenoch for the RCP8.5
Scenario. Each GCM is represented row-wise and time-scales column-wise. Shaded
bands are the 95PPU bands for the simulated future period. The solid simulated lines
are the average of the 95PPU (M95PPU)
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Figure 5.7 Projected future streamflow at Nith at Friars Carse for the RCP4.5 Scenario.
Each GCM is represented row-wise and time-scales column-wise. Shaded bands are the
95PPU bands for the simulated future period. The solid simulated lines are the average
of the 95PPU (M95PPU)
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Figure 5.8 Projected future streamflow at Nith at Friars Carse for the RCP8.5 Scenario.
Each GCM is represented row-wise and time-scales column-wise. Shaded bands are the
95PPU bands for the simulated future period. The solid simulated lines are the average
of the 95PPU (M95PPU)
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Figure 5.9 Projected future streamflow ensemble (SWAT forced with the RNC-
EGCMM) in the RNC under RCP4.5 and RCP8.5 scenarios. Each GCM is repre-
sented row-wise and time-scales column-wise. Shaded bands are the 95PPU bands for
the simulated future period. The solid simulated lines are the average of the 95PPU
(M95PPU)
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Figure 5.10 Projected future streamflow ensemble (SWAT model averaged results,
otherwise referred to as RNC-SWATEMM) in the RNC under RCP4.5 and RCP8.5
scenarios. Each GCM is represented row-wise and time-scales column-wise. Shaded
bands are the 95PPU bands for the simulated future period. The solid simulated lines
are the average of the 95PPU (M95PPU)
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5.3.4 Blue-Green Water Nexus

Following the analyses of the response of river discharges to climate change in

the early, mid and late 21st century, freshwater availability was analysed for the

RNC. For consistency, the time discretization for the model was the same as for

river discharge. Again, the semi-distributed hydrological model SWAT was used

to quantify the water balance components in the RNC and therefore compute

freshwater availability.

Freshwater, as defined in the context of this research, is composed of blue

water flow (BWF), green water flow (GWF) and green water storage (GWS).

Generally, blue water refers to water found in aquifers, lakes and dams while green

water is the water found as moisture in soil (commonly referred to as blue and

green water resources). It follows, therefore, that water flow in these media can

be defined as blue water flow (water flowing through rivers and aquifers) and

green water flow (water vapour flowing back to the atmosphere) (Falkenmark

and Rockstrom, 2006). Freshwater availability underpins food security, public

health, ecosystem protection and many other facets critical to SDG 6 attainment.

According to Schuol et al. (2008b), green water has largely been ignored as part

of the water resource despite it’s great importance for rain-fed agriculture which

stands at more than 95% in sub-Saharan Africa. Furthermore, in terms of both

BW and GW, It is estimated that agriculture is globally responsible for 70% of

fresh groundwater that is abstracted from aquifers, lakes and rivers (Chang et al.,

2016; FAO, 2016). Till about a decade ago, the vast majority of water resources

research by the academic community and water-resource planners focussed on

BWF since it mostly “served the needs of engineers who were involved in water

supply and infrastructure projects quite well” (Falkenmark and Rockstrom, 2006).
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Since the realization of the importance of a holistic approach to freshwater

assessments, many studies have contributed to this body of knowledge by publish-

ing various methodologies and applications of freshwater modelling efforts and

tools. Schuol et al. (2008b) modelled blue and green water availability for the

whole of Africa using the SWAT hydrological model. Using the SUFI-2 algorithm,

they were able to calibrate and quantify the uncertainty of the model results.

They concluded that the model and its results could be used to inform policy

and other studies on climate change, virtual water trade and water and food

security among others. Results from this study were compared with those of

Schuol et al. (2008b) even though their results were presented at continent-scale.

Another study by Afshar et al. (2018) used the MIROC-ESM GCM to model

long-term spatial variability of blue and green water footprints in the Kashafrood

River Basin in Iran. They considered two RCP scenarios to force their SWAT

model under future conditions. The study concluded that their methodology

can be effectively applied in other arid or semi-arid regions. Zhao et al. (2016)

studied the impacts of land-use change and climate variability on blue and green

water resources in the Weihe River Basin, north-west China. In their study the

authors concluded that the variability of water resources in the basin was mainly

attributed to climate variability. Abbaspour et al. (2015) developed a continental-

scale water quality model for Europe using the SWAT model. Their model results

provided information support to the European Water Framework Directive on

water availability and quality. These and many other studies have highlighted the

significance of considering a blue-green water nexus approach when discussing

climate adaptation strategies with respect to IWRM.

In this study, 5 GCMs described in Chapter 4 were used to assess the impacts
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of climate change on freshwater resources in the RNC. Using the same time

discretization as for streamflow analyses, i.e 3 time horizons dividing the 21st

century, 30 models were constructed and used to compute the water balances in

the RNC. Practically, one model was constructed and calibrated as discussed in

the previous sections. Thereafter, the 30 scenarios were simulated in SWAT-CUP

where uncertainty analyses were carried out and defined using the 95PPU. For

reporting purposes, the average of the 95PPU (M95PPU) was used. Details of the

95PPU were discussed in Chapter 3. This is an essential step in environmental

modelling where uncertainty of the input parameters, knowledge of the watershed

and the model construction process, inter alia, have to be taken into consideration.

Moreover, there exists no unique set of parameters that can be used to define and

parameterize a model, a phenomenon referred to as non-uniqueness and discussed

in detail in Chapter 2.

5.3.4.1 Baseline Blue Water/Green Water availability

The main water balance components calculated for the baseline RNC model are

summarised in Figure 5.11. As discussed earlier, blue water in this thesis is

discussed in terms of flow and thus is defined as the sum of the water yield and

deep groundwater recharge. Green water, according to Falkenmark and Rockstrom

(2006), is separated into green water resources or storage, the renewable part that

is important for rain-fed agriculture and can thus potentially generate economic

returns (Cuceloglu et al., 2017). The other component is green water flow which

is composed of actual evaporation (considered to be the non-productive part) and

actual transpiration (the productive part); together usually referred to as actual

evapotranspiration (Cuceloglu et al., 2017).
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Figure 5.11 Schematic illustration of blue and green water components as defined in
this study

BWF, GWF and GWS for the baseline period were calculated and presented

at the 50% probability level of the 95PPU. The average annual values of the water

balance components were calculated and are presented in Figure 5.12.

Further, in order to illustrate the reliability of blue and green water resources,

the coefficient of variation (CV) was calculated for the entire baseline period in

each subbasin. According to Schuol et al. (2008b), the CV “is an indicator for the

reliability of a freshwater resource”. The CV was calculated as follows;

CV = σ

µ
× 100 (5.1)

where σ is the standard deviation and µ is the mean of the annual variables for

each season for each subbasin. A lower value of the CV indicates lower interannual

variability and hence higher reliability while larger values of CV indicate higher

interannual variability and consequently less reliability of water resources.
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The average BWF for the entire watershed is 2500 mm y−1. Some subcatch-

ments have BWF potential of up to 3000 mm y−1. For the most part, the model

shows BW CV values ranging from 11% to 25%. The average baseline BW CV

for the RNC is around 12% and lower (indicating lower interannual variability)

especially in the northern part towards New Cumnock, East Ayrshire. Towards the

south, the model shows increasing BW CV values and is therefore an indication of

higher interannual variability of BWF when compared to the rest of the catchment.

GWF values are approximately 250 mm y−1 for most of the basin except

towards the south of the catchment where GWF is consistently over 300 mm y−1.

This could be as a result of increasing industrial farming activities in the Dumfries

area. CV values for GWF are low throughout the RNC indicating low prevalence

of interannual GWF variability.

With regard to GWS, there is an increase of GWS towards the south. The

reason for this trend is likely a combination of land-use and soil cover in the RNC.

On a catchment scale, the average GWS is about 150 mm. CV values for GWS

are generally low, although Figure 5.12F shows increasing interannual variability

southwards. For practical purposes, there is little to no indication of interannual

variability in the GWS values for the baseline period.
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Figure 5.12 Water balance components in the RNC for the baseline period; (a) Blue
Water Flow (BWF), (b) Green Water Flow (GWF), (c) Green Water Storage (GWS),
(d),(e) and (f) are coefficients of variation expressed as a percentage for BWF, GWF
and GWS respectively.
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5.3.4.2 Future BW/GW availability

Future BW/GW availability was assessed by constructing SWAT models forced

with a) single GCMs and b) an ensemble GCM climate model (MMEGCM-SWAT

described earlier). Thereafter, results were compared to the baseline values to

determine projected changes in BW/GW availability.

Figures 5.13 to 5.26 show percentage differences in BW/GW availability for the

future period in the SRB. Positive values indicate an increase in the component

being simulated compared to the baseline whereas negative values indicate a

decrease in BW/GW. In the 2020s, BWF ranges between -8% and -1%, GWF

between +0.8% and +3.5% according to CCSM4 under RCP4.5. Similarly under

RCP8.5 the trend is downwards for BWF according to CCSM4, especially south

of the RNC. GWS availability continues to decline throughout the century but

only marginally while GWF increases by up to +12% in the late century. GFDL-

ESM2G shows a slightly positive picture under RCP4.5 than CCSM4. For example,

in the late-century, BWF (Figure 5.15C) is predicted to be slightly above baseline

values for most of the catchment whereas GWF decreases slightly throughout

the century when compared to CCSM4. GWS predictions by GFDL-ESM2G are

similar to those made by CCSM4 under RCP4.5 and RCP8.5. HadGEM2-ES

is consistent with the other GCMs in the prediction of BWF and GWS but

predicts higher GWF values of up to +15% and +17% under RCP4.5 and RCP8.5

respectively. INMCM4 predicts little to no change from baseline values under

both RCPs for most of the catchment except in the Dumfries region where slightly

lower values in BWF are expected as the century progresses. Similar results were

obtained by models forced with MPI-ESM-LR under all RCPs except for GWF

where values of up to +11% and +20% are expected under RCP4.5 and RCP8.5
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respectively.

For the most part, all the 5 GCMs are in many instances agreeable on the

magnitude and direction of the change. Generally, all GCMs predicted little

to no change (on average a range of 1% to 3% in either direction) in GWS.

Most of the variation in predictions are related to BWF followed by GWF.

Accordingly, uncertainties calculated using the 95PPU were higher for BWF

than GWF and GWS. A possible explanation for this phenomenon could be

related to the selection of parameters used in the calibration process and omission

of important processes such as springs and irrigation. Following the guidelines

provided by Abbaspour et al. (2018), parameters related to snow-melt (e.g. SFTMP,

SMTMP etc. ) are not to be calibrated simultaneously with other parameters to

avoid introducing identifiability problems. Thus these parameters (not shown in

Figure 5.3 and Table 5.3) were fitted first, set to their best values and subsequently

removed from further calibration as per Abbaspour et al. (2018). It is against this

background that it was suspected snow-melt parameters could have played a role

in the large uncertainty observed in BWF simulations. Furthermore, it is possible

that important hydrological processes such as reservoirs and springs could have

been missed leading to miscalculations in the water balances.
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Figure 5.13 CCSM4 RCP4.5 water balance components in the RNC for the future
projected period. BW is blue water and GW is green water. Results are percentage
differences from baseline period using the M95PPU
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Figure 5.14 CCSM4 RCP8.5 water balance components in the RNC for the future
projected period. BW is blue water and GW is green water. Results are percentage
differences from baseline period using the M95PPU
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Figure 5.15 GFDL-ESM2G RCP4.5 water balance components in the RNC for the
future projected period. BW is blue water and GW is green water. Results are
percentage differences from baseline period using the M95PPU
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Figure 5.16 GFDL-ESM2G RCP8.5 water balance components in the RNC for the
future projected period. BW is blue water and GW is green water. Results are
percentage differences from baseline period using the M95PPU
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Figure 5.17 HadGEM2-ES RCP4.5 water balance components in the RNC for the
future projected period. BW is blue water and GW is green water. Results are
percentage differences from baseline period using the M95PPU
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Figure 5.18 HadGEM2-ES RCP8.5 water balance components in the RNC for the
future projected period. BW is blue water and GW is green water. Results are
percentage differences from baseline period using the M95PPU
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Figure 5.19 INMCM4 RCP4.5 water balance components in the RNC for the future
projected period. BW is blue water and GW is green water. Results are percentage
differences from baseline period using the M95PPU
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Figure 5.20 INMCM4 RCP8.5 water balance components in the RNC for the future
projected period. BW is blue water and GW is green water. Results are percentage
differences from baseline period using the M95PPU
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Figure 5.21 MPI-ESM-LR RCP4.5 water balance components in the RNC for the future
projected period. BW is blue water and GW is green water. Results are percentage
differences from baseline period using the M95PPU.
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Figure 5.22 MPI-ESM-LR RCP8.5 water balance components in the RNC for the future
projected period. BW is blue water and GW is green water. Results are percentage
differences from baseline period using the M95PPU.
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Figures 5.23 and 5.24 are averaged results of the five models presented earlier.

Because of the little variation in the single models, the ensemble means are close

to the results discussed earlier. Under RCP 4.5, the models show little to no

increase (-6.5% to +1.5%) in BWF and GWS (-2% to 0%). GWF is expected to

slowly and gradually increase up to +7.5% in the late-century. Similar values are

predicted under RCP8.5 for BWF (-5.5% to 0%) and GWS (-3.5% to +1.5%).

GWF ranges between +0.5% and +14%, a steadily increasing trend towards the

late-century.

Results of BW/GW simulations using a SWAT model forced with the RNC-

EGCMM are shown in Figures 5.25 and 5.26. Here, it is noticeable that there

is a significant difference from the single models presented earlier. For example,

under RCP4.5, the model predicts generally a rise in BWF availability of about

+8% for the northern portion of the catchment and up to +24% south of the

catchment, a trend that is consistent throughout the century according to this

model. This is in contrast to the single and River Nith Catchment SWAT Ensemble

Model Mean (RNC-SWATEMM) (Figures 5.23 and 5.24) models that consistently

predict a decrease in BWF south of the catchment. In the case of GWF, there is a

considerable decrease in GWF south of the catchment of up to -12% whereas the

rest of the catchment shows a mean decrease of -4% in the 2020s. In the 2050s the

values are somewhat similar but in the late-century, the model generally predicts

a return to baseline levels for most of the catchment while the south remains in a

deficit of up to -19%. In the case of GWS, there appears to be little to no change

in the 2020s for most of the catchment except the south where a mean increase

of about 3% is predicted. The results are in the same range for the rest of the

century.
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Under RCP8.5, the RNC-EGCMM forced model predicts marginally (roughly 2

percentage point increase across the century) higher BWF availability. The range

however is similar to the one observed under RCP4.5. Thus BWF simulations

according to this model represent the largest variability when compared to the

models driven by a single GCM. In the case of GWF, the model predicts a steady

increase up to +5% by the end of the century. In the 2020s there is a slight deficit

in GWF of about -3% for the northern portion of the catchment while the south

is predicted to decrease by up to -20%. In the mid-century, GWF in the northern

portion of the catchment returns to baseline levels and marginally (+5% for some

parts of the catchment) increases by the late-century. Notwithstanding this, the

southern portion of the basin continues to be in deficit throughout the century.

For GWS, the model predicts similar values as those of RCP4.5 throughout the

century.

One thing that is certain is that the model forced with the RNC-EGCMM shows

markedly different results than the models forced with single GCMs especially

for BWF and GWF. Whether this is an artefact of the random forest model used

to average the downscaled GCM outputs or simply a better representation of

the future hydrological events in the catchment remains to be determined. The

ensemble models are expected to cancel the biases introduced by the single models

but as has been shown in this research, it remains unclear which approach should

be adopted. Perhaps, a more pertinent question should be whether it is justifiable

to only select a subset of GCMs to be used in impact assessment studies? The

investigation of this question is explored in the literature, at least from a climate

perspective, with mixed opinions and is definitely outside the scope of this research.

From a hydrological point of view, the recommendation provided in Section 5.3.3.2
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is reiterated to the effect that hydrologists consider constructing hydrologic models

based on ensemble GCM climate outputs since a) this is the most parsimonious

approach from a modelling perspective and b) ensemble climate model results

are generally believed and recommended by many researchers to be more reliable

than their constituent climate models.
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Figure 5.23 Ensemble mean (RNC-SWATEMM) RCP4.5 water balance components
in the RNC for the future projected period. BW is blue water and GW is green water.
Results are percentage differences from baseline period using the M95PPU
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Figure 5.24 Ensemble mean (RNC-SWATEMM) RCP8.5 water balance components
in the RNC for the future projected period. BW is blue water and GW is green water.
Results are percentage differences from baseline period using the M95PPU
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Figure 5.25 Ensemble mean (RNC-EGCMM) RCP4.5 water balance components in
the RNC for the future projected period. BW is blue water and GW is green water.
Results are percentage differences from baseline period using the M95PPU
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Figure 5.26 Ensemble mean (RNC-EGCMM) RCP8.5 water balance components in
the RNC for the future projected period. BW is blue water and GW is green water.
Results are percentage differences from baseline period using the M95PPU.
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5.3.5 RNC Modelling Summary

From Table 5.5, streamflow projections from all 5 GCMs indicate that there is

little to no threat on streamflow availability as a result of anthropogenic climate

change in the RNC. While there could be intra-annual changes where, because of

projected increases in winter rainfall resulting in winter streamflow being higher

than baseline or historical values, overall streamflow availability in the future

resembles baseline values throughout the century. All GCMs, except GFDL-

ESM2G at SWC and HadGEM2-ES at NFC (significant downward and upward

change respectively), are in agreement that there is no significant departure from

baseline values.

The direction and magnitude of change is not always in agreement but varies

from one GCM to another. The general consensus, however, is that the change is

insignificant across all time horizons. While GFDL-ESM2G consistently predicts

some decrease in streamflow availability in the 2020s under RCP4.5 and 8.5 at

SWC (significant) and NFC (insignificant), the projections for other time horizons

are in agreement with the other GCMs. It should be noted and emphasized here

that these results assume that the LU/LC is stationary in the future. Any changes

in the LU/LC and water abstractions may lead to adverse outcomes than those

reported here.

Table 5.6 shows a summary of the areal mean change of projected water

balance components in the RNC with respect to the baseline period. All GCMs

indicate no significant change in availability of future water balance components

in the RNC.
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Table 5.5 Summary of RNC future streamflow changes with respect to the baseline
period. Changes within ±10 % of baseline values are considered to be insignificant
(green boxes) whereas changes above +10% (red boxes) and below −10 % (blue boxes)
are considered to be significant.

GCM

Scenario
RCP4.5 RCP8.5

2020s 2050s 2080s 2020s 2050s 2080s
Scar Water at Capenoch

CCSM4 -7.5 -0.6 -1.8 -4.1 1.9 -0.5
GFDL-ESM2G -10.9 -5.9 -3.0 -11.3 -6.0 -2.5
HadGEM2-ES 1.2 9.0 7.1 -0.8 -0.9 5.2
INMCM4 2.8 -3.3 1.8 6.4 6.0 6.9
MPI-ESM-LR -3.7 -4.3 0.8 -8.3 0.5 5.0
Ensemble (RNC-EGCMM) -2.8 -0.2 1.8 -2.6 1.2 3.9
Ensemble (RNC-SWATEMM) -3.6 -1.0 1.0 -3.6 0.3 2.8

Nith at Friars Carse
CCSM4 -5.2 1.2 0.3 -2.0 3.6 1.2
GFDL-ESM2G -8.8 -3.8 -1.0 -9.1 -3.9 -0.7
HadGEM2-ES 3.2 10.6 9.1 1.3 1.0 7.8
INMCM4 4.5 -1.4 3.4 8.3 7.6 8.4
MPI-ESM-LR -1.7 -2.4 2.4 -6.0 2.1 6.3
Ensemble (RNC-EGCMM) -1.1 1.3 3.4 -0.8 2.7 5.3
Ensemble (RNC-SWATEMM) -1.6 0.8 2.8 -1.5 2.1 4.6

GCM

Scenario
RCP4.5 RCP8.5

2020s 2050s 2080s 2020s 2050s 2080s
Scar Water at Capenoch

CCSM4 -7.5 -0.6 -1.8 -4.1 1.9 -0.5
GFDL-ESM2G -10.9 -5.9 -3.0 -11.3 -6.0 -2.5
HadGEM2-ES 1.2 9.0 7.1 -0.8 -0.9 5.2
INMCM4 2.8 -3.3 1.8 6.4 6.0 6.9
MPI-ESM-LR -3.7 -4.3 0.8 -8.3 0.5 5.0
Ensemble (RNC-EGCMM) -2.8 -0.2 1.8 -2.6 1.2 3.9
Ensemble (RNC-SWATEMM) -3.6 -1.0 1.0 -3.6 0.3 2.8

Nith at Friars Carse
CCSM4 -5.2 1.2 0.3 -2.0 3.6 1.2
GFDL-ESM2G -8.8 -3.8 -1.0 -9.1 -3.9 -0.7
HadGEM2-ES 3.2 10.6 9.1 1.3 1.0 7.8
INMCM4 4.5 -1.4 3.4 8.3 7.6 8.4
MPI-ESM-LR -1.7 -2.4 2.4 -6.0 2.1 6.3
Ensemble (RNC-EGCMM) -1.1 1.3 3.4 -0.8 2.7 5.3
Ensemble (RNC-SWATEMM) -1.6 0.8 2.8 -1.5 2.1 4.6

Increase Insignificant Change Decrease

Although the results presented in Table 5.6 do not reflect spatial heterogeneity,

it is evident that all the models are in agreement with each other from a general

perspective. For example, even though the SWAT model forced with the RNC-

EGCMM shows significant differences in water balance components between the

northern and southern regions of the catchment (see Figures 5.25 and 5.26), the

areal mean values do not differ significantly from the rest of the models. In the

case of GWF, at least 70% of the models are in agreement that there is significant

increase in this component towards the end of the century.
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Table 5.6 Summary areal mean change of projected future water balance components
in the RNC with respect to the baseline period. Changes within ±10 % of baseline
values are considered to be insignificant (green boxes) whereas changes above +10%
(red boxes) and below −10 % (blue boxes) are considered to be significant

GCM

Scenario
RCP4.5 RCP8.5

2020s 2050s 2080s 2020s 2050s 2080s
BWF

CCSM4 -3.2 -2.8 -1.0 -1.8 -3.2 -6.4
GFDL-ESM2G -3.2 -4.5 0.5 -7.2 -2.6 -2.8
HadGEM2-ES 3.0 -3.5 1.1 1.0 -4.1 -6.9
INMCM4 0.4 -2.9 -2.2 3.4 1.1 -1.2
MPI-ESM-LR -1.1 -3.1 1.0 -3.2 -0.6 -1.5
Ensemble (RNC-EGCMM) 8.8 6.6 10.1 8.2 8.4 7.9
Ensemble (RNC-SWATEMM) -0.8 -3.4 -0.1 -1.6 -1.9 -3.8

GWF
CCSM4 1.4 6.5 7.3 3.8 8.1 12.6
GFDL-ESM2G 1.8 2.8 2.4 1.4 6.1 12.3
HadGEM2-ES 4.2 8.5 13.1 5.3 12.9 14.8
INMCM4 -3.5 -0.4 -1.3 -1.6 0.2 3.8
MPI-ESM-LR 2.8 6.9 9.5 5.6 9.9 17.0
Ensemble (RNC-EGCMM) -6.8 -4.3 -3.3 -5.9 -2.5 0.7
Ensemble (RNC-SWATEMM) 1.3 4.9 6.2 2.9 7.4 12.1

GWS
CCSM4 0.0 -0.9 -0.5 -0.2 -0.8 -1.5
GFDL-ESM2G 0.1 -0.3 -0.1 -0.1 -0.5 -1.0
HadGEM2-ES -0.4 -1.6 -1.3 -0.5 -1.5 3.8
INMCM4 -0.6 -0.5 -0.6 -0.4 -0.4 -0.7
MPI-ESM-LR -0.3 -0.2 -0.1 0.0 -0.6 -1.0
Ensemble (RNC-EGCMM) 1.1 1.0 1.1 1.1 1.0 1.0
Ensemble (RNC-SWATEMM) -0.2 -0.7 -0.5 -0.2 -0.8 -0.1

GCM

Scenario
RCP4.5 RCP8.5

2020s 2050s 2080s 2020s 2050s 2080s
BWF

CCSM4 -3.2 -2.8 -1.0 -1.8 -3.2 -6.4
GFDL-ESM2G -3.2 -4.5 0.5 -7.2 -2.6 -2.8
HadGEM2-ES 3.0 -3.5 1.1 1.0 -4.1 -6.9
INMCM4 0.4 -2.9 -2.2 3.4 1.1 -1.2
MPI-ESM-LR -1.1 -3.1 1.0 -3.2 -0.6 -1.5
Ensemble (RNC-EGCMM) 8.8 6.6 10.1 8.2 8.4 7.9
Ensemble (RNC-SWATEMM) -0.8 -3.4 -0.1 -1.6 -1.9 -3.8

GWF
CCSM4 1.4 6.5 7.3 3.8 8.1 12.6
GFDL-ESM2G 1.8 2.8 2.4 1.4 6.1 12.3
HadGEM2-ES 4.2 8.5 13.1 5.3 12.9 14.8
INMCM4 -3.5 -0.4 -1.3 -1.6 0.2 3.8
MPI-ESM-LR 2.8 6.9 9.5 5.6 9.9 17.0
Ensemble (RNC-EGCMM) -6.8 -4.3 -3.3 -5.9 -2.5 0.7
Ensemble (RNC-SWATEMM) 1.3 4.9 6.2 2.9 7.4 12.1

GWS
CCSM4 0.0 -0.9 -0.5 -0.2 -0.8 -1.5
GFDL-ESM2G 0.1 -0.3 -0.1 -0.1 -0.5 -1.0
HadGEM2-ES -0.4 -1.6 -1.3 -0.5 -1.5 3.8
INMCM4 -0.6 -0.5 -0.6 -0.4 -0.4 -0.7
MPI-ESM-LR -0.3 -0.2 -0.1 0.0 -0.6 -1.0
Ensemble (RNC-EGCMM) 1.1 1.0 1.1 1.1 1.0 1.0
Ensemble (RNC-SWATEMM) -0.2 -0.7 -0.5 -0.2 -0.8 -0.1

Increase Insignificant Change Decrease
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5.4 SRB Hydrologic Modelling

5.4.1 Model Setup

Data required to successfully run SWAT for the Shire River Basin was obtained

from sources mentioned in Chapter 3. The SWAT model requires at the minimum,

four spatial input data – namely topographic, land-use/land-cover, soil and weather

data. Topographic, soil and land-use inputs for the SRB are shown in Fig. 5.27.

The preparation and post-processing of the data inputs was achieved using a

combination of tools such as ESRI ArcGIS® (for cleaning and preparing spatial

input data), ArcSWAT (Olivera et al., 2006a,b), R programming language (R

Core Team, 2017) for preparation of input text files and extraction of output data

and Python-Matplotlib (Hunter, 2007) for visualizing of model output results. A

minimum drainage area of 10 km2 was selected resulting in a discretization of 340

subbasins and 1820 HRUs.

5.4.1.1 Weather data

Daily rainfall, maximum and minimum temperature data from eight climate

stations were used to run the SWAT model for the baseline period. The data

processing and quality assessment is described in Chapter 3 and Section 4.3. Apart

from the aforementioned parameters, SWAT requires daily values of solar radiation,

relative humidity and wind speed. For the SRB, observed solar radiation, relative

humidity and wind speed data were not only unreliable but had large gaps such

that imputation was not justified.

In SWAT, the user can create a custom weather generator in cases where

observed station data are missing. This feature is also useful for estimation of
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missing values in observed records (Neitsch et al., 2011). For the contiguous United

States, SWAT natively includes the WXGEN weather generator model (Sharpley

and Williams, 1990) to generate synthetic climate data or for imputation of

missing values in observed records. For the SRB, the National Centres for

Environmental Prediction (NCEP) Climate Forecast System Reanalysis (CFSR)

global weather database (Dile and Srinivasan, 2014; Fuka et al., 2014b) was used

for the aforementioned purposes.

In order to model the distribution of rainfall in the SRB, the skewed distribution

function was used. Alternatively, one can use the modified exponential distribution

which requires fewer inputs and is mostly useful in watersheds where data on

precipitation events is limited (Neitsch et al., 2011). In this research, the skewed

distribution was selected due to the availability of sufficient precipitation data.

5.4.1.2 Land-use/Landcover

A total of 13 land-use classes were identified from the land-use raster and clipped

to the extent of the SRB basin. The original land-use classification codes of

the input raster were changed to match those used in the SWAT model. From

Table 5.7, Savanna landcover dominates almost half of the basin followed by

land-use of the type CRDY that covers about 35% of the watershed.

5.4.1.3 Soil data

A raster soil map classified using the FAO classification system was clipped to the

watershed extent and a total of 17 soil classes identified. Soils of the type Ferric,

Humic and Eutric Luvisols (Table 5.8) dominate most of the basin
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Figure 5.27 SWAT model inputs for the SRB; (A) LU/LC map map (B) Soil map and
(C) Topography map.

5.4.1.4 Simulation period

The baseline SWAT model was run from 1975 to 2005. Six years were assigned to

the model as a “warm-up” period. This means that SWAT ran the simulation

from 1975, but only printed results for the last 25 years (i.e., 1981 to 2005).
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Table 5.7 Distribution of LU/LC classes in the Shire River Basin

Land-use Description Area (ha) % Watershed

CRDY Dryland Cropland and Pasture 978264.99 34.84
SAVA Savanna 1326194.91 47.24
WATB Water Bodies 31656.87 1.13
BSVG Baren or Sparsely Vegetated 19485.09 0.69
FODB Deciduous Broadleaf Forest 173054.52 6.16
FOEB Evergreen Broadleaf Forest 44109 1.57
GRAS Grassland 5442.57 0.19
CRWO Cropland/Woodland Mosaic 160662.96 5.72
FOMI Mixed Forest 64418.67 2.29
CRGR Cropland/Grassland Mosaic 2730.33 0.1
URMD Residential-Medium Density 1598.13 0.06
FOMI Mixed Forest 64418.67 2.29
CRGR Cropland/Grassland Mosaic 2730.33 0.1

5.4.2 Model calibration and validation

The SRB model was calibrated by applying the SUFI-2 algorithm in SWAT-CUP.

A local sensitivity analysis was applied for the three streamflow variables by setting

the lower and upper bounds of the calibration parameters. A total of thirteen

parameters related to surface run-off and baseflow were selected for sensitivity

analysis before one iteration of 1000 simulations was run in SWAT-CUP. Due to

the number of HRUs in the model, computation time was significantly increased.

For example, the SRB model took a total time of 26.56 hours compared to 5.78

hours for the RNC model.

Results of the global sensitivity analysis are presented in Figure 5.28. Using

the p-value derived from a t-test as a measure of the relative significance, it

can be seen that parameters REVAPMN, GW_REVAP and CN2 were the most

significant parameters. A short description of the parameters is given in Table 5.9.

Parameters below the p = 0.05 line are significant at the 95% confidence level and



5.4 SRB Hydrologic Modelling 206

Table 5.8 Distribution of Soil classes in the Shire River Basin

Soil Class Description Area (ha) % Watershed

Fr18-2-3b-572 Humic Ferralsols 46228.14 1.65
Je51-2-3a-688 Eutric Fluvisols 316793.97 11.28
WATER-1972 Water Body 34115.04 1.22
I-Bc-c-644 Lithosols 279041.40 9.94
Fo75-2-3a-534 Humic Ferralsols 311282.64 11.09
Lf88-1-2b-777 Ferric Luvisols 493557.66 17.58
Ne54-2-3b-844 Eutric Nitosols 76495.86 2.72
Ne1-3b-819 Eutric Nitosols 405959.04 14.46
Je58-2-3a-693 Eutric Fluvisols 346.68 0.01
Je7-3a-697 Eutric Fluvisols 112859.28 4.02
V1-3a-950 Vertisols 210063.33 7.48
Fo92-2-3b-554 Humic Ferralsols 2617.92 0.09
I-Bc-V-642 Lithosols 46385.64 1.65
Lf87-2-3b-776 Ferric Luvisols 164370.42 5.85
Oe4-a-857 Eutric Histosols 53885.97 1.92
Bc7-2-3b-450 Chromic Cambisols 106337.79 3.79
I-L-1b-647 Lithosols 147277.26 5.25

thus are a meaningful addition to the model as the changes in these parameters

are related to changes in the response variable. In the same vein, values which

had very high p-values such as CH_K2, SOL_K and ALPHA_BNK and were

subsequently removed from further calibration iterations leaving a total of ten

parameters in the final calibration setup. These parameters were continuously

changed throughout the SUFI-2 calibration process in a campaign to maximise

the objective function. Four more calibration iterations were performed for the

period between 1981 to 1990 on a monthly time-step before an optimal solution

was reached. When the optimal solution was reached, the calibration process was

stopped and the calibrated parameters accepted as the final solution. The final

corrected parameters and their calibrated ranges for the SRB model are presented

in Table 5.10.
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Figure 5.28 Global sensitivity analysis results for the SRB. Dashed blue line is the
p = 0.05 line.

Having examined and accepted the optimal solution, one iteration of 500

simulations was run to validate the model using observations between the period

of 1991 and 1992. The optimal parameters solved during the calibration stage

were used without any changes during the validation period. As can be seen from

Figure 5.29

5.4.3 Climate Change Impacts on Streamflow

Assessment of historical streamflow records in the SRB and identification of

change points and trends proved to be difficult for the SRB due to the many

gaps in the records. Although complete records were obtained by the use of

an infilling technique described in Chapter 3, it was decided against performing

trend tests on such data as it may result in spurious results due to the possibility
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Table 5.9 Description of SWAT parameters used in the SRB calibration process

No. Parameter Description

1 REVAPMN Threshold water depth in the
shallow aquifer for "revap" [mm]

2 GW_REVAP Groundwater "revap" coefficient

3 CN2 Initial SCS runoff curve number for
moisture condition II

4 ALPHA_BF Baseflow alpha factor (1/days)

5 GWQMN
Threshold depth of water in the shallow
aquifer required for return flow to occur
(mm H2O)

6 CH_N2 Manning’s "n" value for the main channel
7 GW_DELAY Groundwater delay time (days)
8 ESCO Soil evaporation compensation factor

9 SOL_AWC Available water capacity of the soil layer
(mm H2O/mm soil)

10 SOL_BD Moist bulk density (Mg/m3 or g/cm3)
11 ALPHA_BNK Baseflow alpha factor for bank storage (days)
12 SOL_K Saturated hydraulic conductivity (mm/hr)

13 CH_K2 Effective hydraulic conductivity in main
channel alluvium (mm/hr)

of the introduction of unnatural signals in the data. Even though infilling is

a last resort measure which is desirable for water resources management and

modelling, especially in watersheds where incomplete data is ubiquitous, it is

contended here that analysing for trends in the synthetic data could lead to

misinterpretation of trends and thus affect the implementation of adaptation

plans. Projected streamflow is represented by a solid line, upper and lower bands

(shaded) representing the M95PPU, U95PPU and L95PPU respectively. The

percentage change in streamflow between the baseline and future periods for the

wet months (DJFMA) are indicated on the graphs.

Lichenya River: At Lichenya, most of the GCMs predict a mean increase of

streamflow of about 12% and 16% under RCP4.5 and 8.5 respectively (see
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Table 5.10 Calibrated parameter values with their range for the SRB arranged according
to their sensitivity in decreasing order

Rank
Parameter

Op.* File Fitted
Min. Value Max. Valuename type Value

1 REVAPMN v .gw 85.0243 73.4199 91.5801
2 GW_REVAP a .gw 0.0931 0.0931 0.1225
3 CN2 r .mgt 0.0695 0.0640 0.1336
4 ALPHA_BF v .gw 0.9261 0.9033 1.0335
5 GWQMN a .gw 0.8824 0.7865 1.3606
6 CH_N2 v .rte 0.0762 0.0680 0.1623
7 GW_DELAY v .gw 348.6659 281.4008 358.2752
8 ESCO a .bsn 0.9209 0.9111 0.9458
9 SOL_AWC r .sol -0.3538 -0.3971 -0.2678
10 SOL_BD r .sol -0.4550 -0.5594 -0.3339

* Denotes the mathematical operation being applied on the parameter where v means
the existing parameter is to be replaced by a given value, a means a given value is
added to the existing parameter value and r means an existing parameter value is
increased by the given value as a percentage.

Figures 5.30 and 5.31). In both cases, BCC-CSM1-1-M and HadGEM2-ES

project a slight decrease in streamflow signifying little or no change when

compared with the baseline period. MPI-ESM-LR projects higher positive

changes when compared with the other models under all scenarios and for all

time periods. In the mid-century under RCP4.5, 3 GCMs project an increase

in streamflow while the rest project a decline. Generally the indication is

that there will be little to no change in streamflow when compared to the

baseline. The same conclusion can be made for RCP8.5 where the models

are split half-way between an increase or decrease in streamflow. In the

late-century, at least five GCMs depict an increase in streamflow of about

12% and 14% under RCP4.5 and 8.5 respectively.

Rivi-rivi River: During the wet period (typically November to April), the un-

certainty associated with the streamflow simulation is high as can be seen
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Figure 5.29 Graphs of river discharge calibration and validation for selected rivers in
the SRB: a) Rivi-Rivi River at Balaka, b) Ruo River at M1 Roadbridge (Nsuwadzi)
(Ruo) and c) Lichenya River at Mini Mini Estate

from Figures 5.32 and 5.33. When compared to the baseline, the mod-

els predict a mean rise in streamflow of about +46% in the 2020s under

RCP4.5. The variation between models is much bigger under RCP8.5 with

GFDL-ESM2G predicting as high +93.28% increase when compared with

the baseline streamflow while the rest of the GCMs all predict approximately

+30% increase in streamflow. The same trend is observed in the mid-century

where all models predict an increase of approximately +40% and +60%
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under RCP4.5 and 8.5 respectively. The only exception is BCC-CSM1-1-M

which drastically differs from the other GCMs in terms of magnitude and

direction for mid-century streamflow under RCP8.5. In the late-century,

five of the six GCMs predict a mean increase in streamflow of about +37%

and +48% under RCP4.5 and 8.5 respectively. Again, MPI-ESM-LR gives

significantly large percentage changes of 102 and 169 under RCP4.5 and

8.5 respectively. In general the GCMs are in agreement concerning the

magnitude and direction of change.

Ruo River: At Ruo, two GCMs (BCC-CSM1-1-M and HadGEM2-ES) under

RCP4.5 in the 2020s projected a decrease in streamflow as in Lichenya above

(Figures 5.34 and 5.35). On the other hand, three GCMs showed decreases

in streamflow for the same time-scale under RCP8.5. In the 2050s, a similar

scenario is observed where half of the GCMs are diametrically opposed in

terms of the sign of change under both RCPs. Inevitably, it is difficult to

interpret such conflicting results arising from the modelling exercise and thus

beckoning the use of the methodology discussed in Section 5.3.3.2. Unlike

the projections at Lichenya and Rivirivi, all GCMs there is a split decision

regarding the direction of change for all time scales and under all RCPs.

Again, the uncertainty represented by the 95PPU is wider over the wet

months than the dry period.

Ensemble models: Figures 5.36 and 5.37 are the Shire River Basin SWAT

Ensemble Model Mean (hereinafter SRB-SWATEMM) results and the results

of SWAT forced with the Shire River Basin Ensemble GCM Mean (SRB-

EGCMM) respectively. The SRB-SWATEMM results are a simple arithmetic

mean of the SWAT models driven by individual GCMs and thus the results
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do not depart too far from the individual models. For example, from

Figure 5.36, it is observed that at Rivi-rivi, the mean results predict a

46% rise in streamflow under RCP4.5 and 8.5 in the 2020s as calculated

above. The median increase in the 2020s is +37% but because of two

GCMs which predict as high as +50% and +90% increase, the mean as

expected is slightly shifted towards the outliers. Conversely, the SRB-

EGCMM forced model predicts decreased streamflow in all the rivers in

the 2020s under the two RCPs. This is not surprising especially for models

that had a split-choice with respect to the direction of change. However,

at gauging stations where the majority of the models predicted positive

changes, this was an interesting outcome strengthening the debate as to

whether hydrologic models constructed with a single GCM could actually be

trusted? In the 2050s, the SRB-EGCMM forced model projects on average

a -10% decrease in streamflow in all the rivers. It should be noted, however,

that the uncertainty range is wider at Rivi-rivi than other rivers during

the wet months signifying increased uncertainty in the SUFI-2 predictions.

In the 2080s, the SRB-EGCMM forced model predicts a slightly further

decrease in streamflow compared to the 2050s except at Rivi-rivi where

the model predicts a 10% increase under RCP8.5. Based on the ability of

the ensemble GCM model to reproduce the historical streamflow period

and based on recommendations from the IPCC about the use of multi-

model ensembles (Stocker et al., 2010), the use of the SRB-EGCMM to

force hydrologic models in impact studies is highly recommended. This can

help in overcoming uncertainties associated with individual GCMs such as

internal variability.
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Results of the SRB-EGCMM forced model are in agreement with the future

temperature and rainfall projections since on an annual basis, the SRB-EGCMM

predicts for almost all stations a net rise of less than +10% in rainfall under

RCP4.5 and 8.5 while temperatures rise by at least 2 °C. On a seasonal basis,

almost all the stations indicate a drop in MAM precipitation in the SRB especially

in the 2050s under RCP4.5. In the drier months of JJA and SON a reduction

in precipitation of up to 40% especially in the mid- and late-century can be

observed. In general, the change effects on streamflow are largely controlled by

precipitation, although baseflow could be an important factor too. Conversely,

temperature changes may also affect the streamflow regimes due to the fact that

when air temperatures increase, streamflow reduces and vice versa (DeWalle et al.,

2000). Other factors that could affect the future streamflow regime in the SRB

include LU/LC changes, urbanisation and groundwater discharge or baseflow. In

addition to the analyses here, these factors need to be incorporated into watershed

management plans to mitigate against the impacts of climate change.
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Figure 5.30 Projected future streamflow at Lichenya for the RCP4.5 Scenario. GCMs
are represented row-wise and time-scales column-wise
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Figure 5.31 Projected future streamflow at Lichenya for the RCP8.5 Scenario. GCMs
are represented row-wise and time-scales column-wise
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Figure 5.32 Projected future streamflow at Rivirivi for the RCP4.5 Scenario. GCMs
are represented row-wise and time-scales column-wise
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Figure 5.33 Projected future streamflow at Rivirivi for the RCP8.5 Scenario. GCMs
are represented row-wise and time-scales column-wise
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Figure 5.34 Projected future streamflow at Ruo for the RCP4.5 Scenario. GCMs are
represented row-wise and time-scales column-wise
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Figure 5.35 Projected future streamflow at Ruo for the RCP8.5 Scenario. GCMs are
represented row-wise and time-scales column-wise
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Figure 5.36 Projected future streamflow at Lichenya, Ruo and Rivirivi using the simple
arithmetic mean of SWAT models for the future RCP4.5 and RCP8.5 scenarios



5.4 SRB Hydrologic Modelling 221

2
5
7

10
12
15
17
20
22

Li
ch

en
ya

Ri
ve

r
RC

P4
.5

 
 D

is
ch

ar
ge

(m
3 s

1 )
% change = -6.82

A
2020s

Observed
Simulated

2
5
7

10
12
15
17
20
22

% change = -11.87

B
2050s

Observed
Simulated

2
5
7

10
12
15
17
20
22

% change = -7.65

C
2080s

Observed
Simulated

2
5
7

10
12
15
17
20
22

Li
ch

en
ya

Ri
ve

r
RC

P8
.5

 
 D

is
ch

ar
ge

(m
3 s

1 )

% change = -6.14
D

2
5
7

10
12
15
17
20
22

% change = -10.55

E

2
5
7

10
12
15
17
20
22

% change = -11.52

F

2
5
7

10
12
15
17
20

Ri
vi

ri
vi

Ri
ve

r
RC

P4
.5

 
 D

is
ch

ar
ge

(m
3 s

1 )

% change = -8.34G

2
5
7

10
12
15
17
20 % change = -11.18H

2
5
7

10
12
15
17
20 % change = -8.72I

2
5
7

10
12
15
17
20

Ri
vi

ri
vi

Ri
ve

r
RC

P8
.5

 
 D

is
ch

ar
ge

(m
3 s

1 )

% change = -7.47J

2
5
7

10
12
15
17
20 % change = -7.76K

5

10

15

20 % change = 9.91

L

5
7

10
12
15
17
20
22

Ru
o

Ri
ve

r
RC

P4
.5

 
 D

is
ch

ar
ge

(m
3 s

1 ) % change = -14.05

M

5
7

10
12
15
17
20
22

% change = -18.46

N

5
7

10
12
15
17
20
22

% change = -15.47

O

J F M A M J J A S O N D

5
7

10
12
15
17
20
22

Ru
o

Ri
ve

r
RC

P8
.5

 
 D

is
ch

ar
ge

(m
3 s

1 ) % change = -13.56

P

J F M A M J J A S O N D

5
7

10
12
15
17
20
22

% change = -17.03

Q

J F M A M J J A S O N D2
5
7

10
12
15
17
20
22

% change = -18.62

R

Figure 5.37 Projected future streamflow at Lichenya, Ruo and Rivirivi using SRB-
EGCMM forced SWAT model simulations under RCP4.5 and RCP8.5 scenarios
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5.4.4 Blue-Green Water Nexus

At national level, Adhikari and Nejadhashemi (2016) investigated the impacts of

climate change on water resources in Malawi using the SWAT model forced by six

GCMs under emission scenario RCP8.5. Although the study did not distinguish

categorically between green and blue water resources, some components of these

water resources were modelled such as PET, ET, surface runoff, water yield

and soil moisture. Their study captured spatio-temporal variations of the water

balance components across Malawi projected into the future period.

In this study, a total of 6 GCMs described in Chapter 4 were used to assess

the impacts of climate change on freshwater resources in the upper and lower

shire basin (collectively referred to as Shire River Basin, SRB, in this thesis).

Using the same time discretization as for streamflow analyses, i.e 3 time horizons

dividing the 21st century, 36 models were constructed and used to compute the

water balances in the SRB.

5.4.4.1 Baseline Blue Water/Green Water Availability

BWF, GWF and GWS for the baseline period were calculated and presented at

the 50% probability level of the 95PPU. The average annual values of the water

balance components were calculated and are presented in Figure 5.38. The average

BWF for the entire basin is 742 mm y−1 (ranging from 240 to 1750 mm y−1). Only

a few catchments have BWF potential of up to 1750 mm y−1. The western part

of the basin covering Thyolo, Mulanje, parts of Blantyre and Chikwawa districts

have the highest potential for bluewater (CV ≥ 1000mm y−1) while the northern

and southern parts of the basin (Mwanza, Balaka, Machinga, Mangochi, parts

of Ntcheu, part of Chikwawa and Nsanje districts) has the lowest potential (CV
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≤ 700mm y−1). Mean GWF for the entire basin is 510 mm y−1 with Mwanza,

Chikwawa, Thyolo, Mulanje, Luchenza and the Mozambican town of Milange

showing the highest potential for green water flow. Average GWS in the basin is

60 mm with GWS potential following similar trends as for GWF.

From Figure 5.38, it can be seen that the model shows increased reliability

of BW resources in parts of Blantyre, Mwanza, Neno, Balaka, parts of Ntcheu

and Mangochi. In the South of the Basin, with the exception of some parts of

Chiradzulu, Thyolo and Nsanje, there is evidence of higher interannual variability

of BWF.

In the case of GWF, areas surrounding Blantyre, Neno, Mwanza, parts of

Balaka and Ntcheu districts show increasing reliability (CV ≤ 10%) of GW

resources than the rest of the basin. Here too the model shows lower reliability

(CV ≥ 18%) in GWF south of the basin and especially the southern part of

Nsanje district. Spatially, the range of CV values for GWF was much smaller

than that for BWF. One explanation could be that, judging from the spatial

distribution of rainfall in the basin, it appears that BWF is hugely influenced

by this pattern and thus inherits and exhibits similar variability as that of

rainfall. GWF appears not to be more robust to the effect of the spatial rainfall

pattern. This can be explained by examining Table 5.7 and noticing that land-use

classes CRDY (Dryland cropland and pasture) and SAVA (Savanna) collectively

constitute approximately 82% of the entire watershed. Also, it is known that

evapotranspiration is affected by vegetative cover, leaf area index (LAI), leaf

shape and many other factors including soil characteristics. From the foregoing,

it can be inferred that LU/LC plays a major role in controlling GWF and thus

less variability in GWF, controlled mostly by LU/LC, can be seen than processes
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dominantly controlled by rainfall which is less predictable.

A similar trend as that of GWF was observed in GWS. Generally, there is

evidence of higher reliability (CV ≤ 10%) of GWS in Thyolo, Blantyre, Neno,

Mwanza, Balaka and Machinga districts than in the rest of the watershed. Also, it

should be noted that the range in the CV is still smaller here than that observed

for BWF.
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Figure 5.38 Water balance components in the SRB for the baseline period; (a) Blue
Water Flow (BWF), (b) Green Water Flow (GWF), (c) Green Water Storage (GWS),
(d),(e) and (f) are coefficients of variation expressed as a percentage for BWF, GWF
and GWS respectively
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5.4.4.2 Future BW/GW Availability

Similar to the approach in Section 5.4.3, SWAT models forced with single GCMs

were constructed, the results of which were compared with MMEGCM-SWAT

and the simple arithmetic mean of the singular GCM SWAT models. Figures 5.39

to 5.50 show percentage differences in BW/GW availability for the future period

in the SRB. Positive values indicate an increase in the component being simulated

compared to the baseline whereas negative values indicate a decrease in BW/GW.

In the 2020s, BWF ranges between -45% and +40%, GWF between -13% and

+14% according to BCC-CSM1-1-M, for example, under RCP4.5. The deficit in

BWF is predicted in the southern part of the basin covering Chikwawa, Nsanje,

Thyolo, Chiradzulu and Mulanje with the greatest deficit observed in Chikwawa

and Nsanje. This trend is captured by almost all the GCMs with respect to BWF,

that is, an increase in BWF in the northern parts of the SRB and a deficit in

BWF in the southern parts when compared to baseline values.

In the mid-century, most GCMs predict a slight decrease in BWF when

compared with 2020s values, except CCSM4 (Figure 5.42B) and CNRM-CM5

(Figure 5.44B) under RCP8.5 which predict an increase of about +25% and

+55% respectively in the extreme cases when compared to the same time period.

MPI-ESM-LR is a unique case where BWF is predicted to increase under all

scenarios throughout the century with values as high as +105% and +165% in the

late-century under RCP4.5 and 8.5 respectively. BCC-CSM1-1-M (Figure 5.40B)

under RCP8.5 is also unique in that BWF decreases by up to -25% and -60% in

the southern and northern parts of the basin respectively in the extreme case,

when compared to baseline values. Generally, not all the GCMs agree on the

magnitude and direction of change with respect to BWF. However, all the GCMs
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predict an increase in BWF north of the basin and a decrease in the south. The

increase in BWF in the north could be a symptom of the close proximity of Lakes

Malawi and Malombe. Higher temperatures, decreased rainfall especially in the

2050s and land-use patterns could be responsible for the increasing decrease in

BWF in the southern-most reaches of the basin.

With respect to GWF, the projected changes range generally between ±12%

of baseline values for almost all the GCMs. In terms of the direction of change,

not all the GCMs are in agreement. For example, BCC-CSM1-1-M (except under

RCP8.5, Figure 5.40), CCSM4, CNRM-CM5 and MPI-ESM-LR all predict a

slight increase in GWF in the 2020s, an increase of about 3 percentage points

in the mid-century when compared to 2020s values and slightly lower values in

the late-century, comparable to 2020s values. The rest of the GCMs predict

lower-than-baseline values in the mid- and late-century.

GWS follows a similar trend as that of GWF where some GCMs predict a

steady increase in GWS throughout the century and others predict a slight decline

by the late-century. However, almost all the GCMs are in agreement that some

parts of Blantyre, Chiradzulu, Thyolo, Mulanje and Phalombe show a decline

(below baseline values by the 2050s) in GWS as the century progresses.
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Figure 5.39 BCC-CSM1-1-M RCP4.5 water balance components in the SRB
for the future projected period. BW is blue water and GW is green water.
Results are percentage differences from baseline period using the M95PPU
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Figure 5.40 BCC-CSM1-1-M RCP8.5 water balance components in the SRB
for the future projected period. BW is blue water and GW is green water.
Results are percentage differences from baseline period using the M95PPU
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Figure 5.41 CCSM4 RCP4.5 water balance components in the SRB for the
future projected period. BW is blue water and GW is green water. Results are
percentage differences from baseline period using the M95PPU
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Figure 5.42 CCSM4 RCP8.5 water balance components in the SRB for the
future projected period. BW is blue water and GW is green water. Results are
percentage differences from baseline period using the M95PPU
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Figure 5.43 CNRM-CM5 RCP4.5 water balance components in the SRB for
the future projected period. BW is blue water and GW is green water. Results
are percentage differences from baseline period using the M95PPU.
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Figure 5.44 CNRM-CM5 RCP8.5 water balance components in the SRB for
the future projected period. BW is blue water and GW is green water. Results
are percentage differences from baseline period using the M95PPU
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Figure 5.45 GFDL-ESM2G RCP4.5 water balance components in the SRB
for the future projected period. BW is blue water and GW is green water.
Results are percentage differences from baseline period using the M95PPU
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Figure 5.46 GFDL-ESM2G RCP8.5 water balance components in the SRB
for the future projected period. BW is blue water and GW is green water.
Results are percentage differences from baseline period using the M95PPU
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Figure 5.47 HadGEM2-ES RCP4.5 water balance components in the SRB for
the future projected period. BW is blue water and GW is green water. Results
are percentage differences from baseline period using the M95PPU
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Figure 5.48 HadGEM2-ES RCP8.5 water balance components in the SRB for
the future projected period. BW is blue water and GW is green water. Results
are percentage differences from baseline period using the M95PPU
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Figure 5.49 MPI-ESM-LR RCP4.5 water balance components in the SRB for
the future projected period. BW is blue water and GW is green water. Results
are percentage differences from baseline period using the M95PPU
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Figure 5.50 MPI-ESM-LR RCP8.5 water balance components in the SRB for
the future projected period. BW is blue water and GW is green water. Results
are percentage differences from baseline period using the M95PPU
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Figures 5.51 and 5.52 are averaged results of the six models presented earlier.

In the case of the SRB as opposed to the RNC, BWF has been characterized

by a lot of variability from one GCM to the next. Apart from the uncertainty

emanating from the choice of GCM, inherent GCM variability and choice of

downscaling method, it is surmised that the major source of uncertainty in BWF

in the SRB is related to the model construction and parameterization. Firstly, the

lack of high integrity climate data (in spite of the availability of gridded data sets

such as those of the CFSR and CRU) in the region could be a potential source

of error that could propagate through the climate downscaling process all the

way to the hydrological assessments. As pointed out in Chapters 3 and 4, point

meteorological station data performed better than CFSR and CRU in terms of

reproducing uncalibrated streamflow hydrographs for selected gauging stations

in the basin. However, these data had a lot of gaps which were eventually filled

and augmented using the methods described in Section 3.6. The uncertainty

introduced using this necessary process could easily propagate through to the

hydrologic modelling and thus have an effect on the outcomes. Secondly, the

region has sparse streamflow datasets that are also characterized by gaps and

hence necessitating the need for infilling. Here too some uncertainty, perhaps even

more insidious than the one introduced by climate processes, could have been

introduced. This is in contrast to the results obtained for the RNC, where input

data (climate and streamflow) are of high integrity.

Generally under RCP4.5, BWF ranges between -36% and +45% throughout

the century. In the 2050s, the deficit in the southern half of the basin is higher

than the 2020s and late-century by at least 6 percentage points. On average,

BWF increases by about 20% north of the basin and decreases by about 9% in
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the southern portion. GWF ranges between -12% and +5% and slowly declines

by at least 2 percentage points by the end of the century. Similarly, GWS ranges

between -14% and +6% and slowly declines by 4 percentage points by the end of

the century.

Under RCP8.5, BWF ranges between -38% and +58%. In the 2020s, BWF in

the southern portion of the basin is about 16% lower than baseline values and

about 23% higher in the north. A similar trend is seen in the 2050s, with the

2080s seeing BWF values increase in the south by at least 7 percentage points

on average and about 10 percentage points in the north. GWF in the 2020s

decreases by about 3% of baseline values for most parts of the basin except for

some parts of Blantyre, Chiradzulu, Thyolo, Mulanje and Phalombe where the

deficit could go up to -8%. Further north, GWF increases by up to 7%. In the

2050s, GWF values essentially remain the same as that of the 2020s while in the

late-century, GWF decreases by up to -9% of baselines values for most of the

basin except the northern parts of Chikwawa where the deficit goes up to -19%.

GWS in the early- and mid-century ranges between -15% and +8% and essentially

remains unchanged from baseline values except, again, some parts of Chikwawa,

Blantyre, Chiradzulu, Thyolo, Mulanje and Phalombe where the deficit is on

average about -12%. In the late-century, GWS remains unchanged from baseline

values in Mangochi and Nsanje whereas in some parts of Chikwawa, Blantyre,

Chiradzulu, Thyolo, Mulanje and Phalombe, GWS decreases by up to -20%.
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Figure 5.51 Ensemble mean (SRB-SWATEMM) RCP4.5 water balance com-
ponents in the SRB for the future projected period. BW is blue water and GW
is green water. Results are percentage differences from baseline period using
the M95PPU
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Figure 5.52 Ensemble mean (SRB-SWATEMM) RCP8.5 water balance com-
ponents in the SRB for the future projected period. BW is blue water and GW
is green water. Results are percentage differences from baseline period using
the M95PPU.
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Results of BW/GW simulations using a SWAT model forced with the SRB-

EGCMM are shown in Figures 5.53 and 5.54. The range in BWF values is similar

to those of the multi-model means shown in Figures 5.51 and 5.52. The range in

GWS and GWF is markedly wider than observed in other models.

Under RCP4.5, the southern part of the basin experiences a slight decrease in

BWF of about 3% from historical values except for the western part of Chikwawa

where a deficit of up to -27% is expected. In this region, the values remain the

same in the 2050s but the rest of the lower of the basin remains more or less

the same as baseline values. The northern half of the basin is generally 25%

higher than baseline values up to a maximum of 50% in the northern-most reaches

of the basin by the late-century. GWF in the 2020s is generally the same as

baseline values in parts of Chikwawa, Blantyre, Chiradzulu, Thyolo, Mulanje and

Phalombe whereas the rest of the basin sees at increase in GWF by at least 18%.

Notable exceptions are in isolated areas within the southern-most tip of Chikwawa

where values are as high as +60%. These values remain, in general, the same in

the mid-century with a marginal decrease towards the 2080s. GWS in the basin,

with the exception of Nsanje, Mangochi and southern Chikwawa, is on average

about 28% higher than baseline values and slowly decreases to about 24% by

the late-century. GWS in southern Chikwawa and Nsanje is 40%, 35% and 32%

higher than baseline values in the 2020s, 2050s and 2080s respectively.

BWF under RCP8.5 follows a similar trend as that of RCP4.5 but remains

unchanged in the 2020s from baseline conditions for most parts in the southern

half of the basin. Again, the extremes are in Chikwawa where deficits up to

-31% are predicted. This trend is persistent throughout the the 2050s. North

of the basin, BWF availability is generally about 35% above baseline values in
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the 2020s and 2050s, eventually increasing up to 60% by the late-century in the

northern-most reaches of the basin. BWF in the rest of the basin varies slightly

(about +4 percentage points) from the 2050s scenario. Generally, BWF values

under RCP8.5 do not change much from the RCP4.5 scenario according to this

model. The same applies for GWF and GWS where the variation is within 2

percentage points, except in the late-century where GWS is expected to go as

high as +80% for some parts in the north and south of the basin.

In the case of the SRB, the ensemble models are comparable with respect

to BWF. As earlier stated, BWF determination is fraught with uncertainty in

the SRB than in the RNC; thus, to obtain comparable figures between the two

ensemble models speaks to the efficacy of averaging model results when multiple

GCMs and scenarios are involved. Due to the wider ranges in GWF and GWS,

values of which were in agreement in almost all the GCMs, it is surmised that

the SRB-EGCMM forced model did not perform well for these variables, except

for BWF which is in agreement with streamflow results from the same model.

However, it is possible that this could be an artefact of the model conceptualization,

calibration and other uncertainties highlighted earlier rather than an inadequacy

of the methodology. Again, without considering this particular case in isolation, it

is concluded that the most parsimonious ensemble method which produces results

consistent with the historical period should be employed by the environmental

modeller.
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Figure 5.53 Ensemble mean (SRB-EGCMM) RCP4.5 water balance compo-
nents in the SRB for the future projected period. BW is blue water and GW is
green water. Results are percentage differences from baseline period using the
M95PPU
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Figure 5.54 Ensemble mean (SRB-EGCMM) RCP8.5 water balance compo-
nents in the SRB for the future projected period. BW is blue water and GW is
green water. Results are percentage differences from baseline period using the
M95PPU
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5.4.5 SRB Modelling Summary

Table 5.11 provides a summary of streamflow modelling in the SRB. Results from

the modelling campaign at all stations except Rivirivi are mixed with some GCMs

indicating significant increase or decrease in streamflow availability while others

indicate no significant departure from baseline values.

At Rivirivi, all GCMs except SRB-EGCMM indicate significant increase in

projected future streamflow. At Lichenya and Ruo, SRB-EGCMM and MPI-ESM-

LR show significant departures from baseline values and sometimes from one time

horizon to another. This could be attributed to the inability of the climate model

(MPI-ESM-LR) to capture local climate dynamics in the region since the other

GCMs do not exhibit this feature at all stations. On the other hand, going by the

“one model one vote” approach, the results indicated by MPI-ESM-LR GCM could

be a plausible future – further justifying the need for averaging the representations

from different GCMs in an attempt to reduce the overall uncertainty. In the case

of SRB-EGCMM, it is surmised that the RF algorithm could be responsible for the

sharp departure from baseline values. The SRB-EGCMM tends to under-predict

future streamflow availability at all stations and in almost all future time horizons.

Conversely, the SWAT model ensemble (SRB-SWATEMM) reflects the mean

change predicted by the six GCMs and is for the most part in contrast with

results predicted by its counterpart ensemble model (SRB-EGCMM). According

to SRB-SWATEMM, future streamflow availability at Lichenya and Ruo does not

significantly depart from baseline values while at Rivirivi, streamflow is expected

to significantly increase in the future.
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Table 5.11 Summary of SRB projected future streamflow changes with respect to
the baseline period. Changes within ±10 % of baseline values are considered to be
insignificant (green boxes) whereas changes above +10% (red boxes) and below −10 %
(blue boxes) are considered to be significant

GCM

Scenario
RCP4.5 RCP8.5

2020s 2050s 2080s 2020s 2050s 2080s
Lichenya

BCC-CSM1-1-M 5.5 -1.5 5.0 -0.6 1.5 1.2
CCSM4 7.4 6.4 2.7 12.8 14.9 6.9
CNRM-CM5 10.5 9.7 13.2 3.2 24.9 14.0
GFDL-ESM2G 14.7 -8.8 -7.7 30.1 -5.0 -4.3
HadGEM2-ES -7.0 -8.5 11.1 -3.3 -8.6 -2.1
MPI-ESM-LR 21.3 27.8 30.3 16.2 12.0 34.7
Ensemble (SRB-EGCMM) -6.8 -11.9 -7.7 -6.1 -10.6 -11.5
Ensemble (SRB-SWATEMM) 8.7 4.2 9.1 9.7 6.6 8.4

Rivirivi
BCC-CSM1-1-M 37.6 59.5 28.6 36.9 -3.7 27.3
CCSM4 49.3 35.4 38.3 38.0 50.2 51.8
CNRM-CM5 41.3 29.4 46.3 27.2 85.2 50.6
GFDL-ESM2G 56.6 15.7 15.2 93.3 37.3 45.2
HadGEM2-ES 51.8 39.9 58.2 53.0 47.5 66.0
MPI-ESM-LR 40.6 83.4 102.0 31.9 73.6 169.6
Ensemble (SRB-EGCMM) -8.3 -11.2 -8.7 -7.5 -7.8 9.9
Ensemble (SRB-SWATEMM) 46.2 43.9 48.1 46.7 48.4 68.4

Ruo
BCC-CSM1-1-M -0.4 -7.0 -0.6 -6.5 -3.7 -3.7
CCSM4 1.0 0.9 -3.0 6.2 9.0 1.3
CNRM-CM5 4.3 3.8 7.2 -3.0 18.6 8.3
GFDL-ESM2G 8.5 -13.8 -12.9 23.5 -10.0 -9.1
HadGEM2-ES -12.6 -13.5 5.3 -9.0 -13.5 -7.2
MPI-ESM-LR 15.1 21.6 23.8 10.2 6.8 29.1
Ensemble (SRB-EGCMM) -14.1 -18.5 -15.5 -13.6 -17.0 -18.6
Ensemble (SRB-SWATEMM) 2.6 -1.3 3.3 3.6 1.2 3.1

GCM

Scenario
RCP4.5 RCP8.5

2020s 2050s 2080s 2020s 2050s 2080s
Lichenya

BCC-CSM1-1-M 5.5 -1.5 5.0 -0.6 1.5 1.2
CCSM4 7.4 6.4 2.7 12.8 14.9 6.9
CNRM-CM5 10.5 9.7 13.2 3.2 24.9 14.0
GFDL-ESM2G 14.7 -8.8 -7.7 30.1 -5.0 -4.3
HadGEM2-ES -7.0 -8.5 11.1 -3.3 -8.6 -2.1
MPI-ESM-LR 21.3 27.8 30.3 16.2 12.0 34.7
Ensemble (SRB-EGCMM) -6.8 -11.9 -7.7 -6.1 -10.6 -11.5
Ensemble (SRB-SWATEMM) 8.7 4.2 9.1 9.7 6.6 8.4

Rivirivi
BCC-CSM1-1-M 37.6 59.5 28.6 36.9 -3.7 27.3
CCSM4 49.3 35.4 38.3 38.0 50.2 51.8
CNRM-CM5 41.3 29.4 46.3 27.2 85.2 50.6
GFDL-ESM2G 56.6 15.7 15.2 93.3 37.3 45.2
HadGEM2-ES 51.8 39.9 58.2 53.0 47.5 66.0
MPI-ESM-LR 40.6 83.4 102.0 31.9 73.6 169.6
Ensemble (SRB-EGCMM) -8.3 -11.2 -8.7 -7.5 -7.8 9.9
Ensemble (SRB-SWATEMM) 46.2 43.9 48.1 46.7 48.4 68.4

Ruo
BCC-CSM1-1-M -0.4 -7.0 -0.6 -6.5 -3.7 -3.7
CCSM4 1.0 0.9 -3.0 6.2 9.0 1.3
CNRM-CM5 4.3 3.8 7.2 -3.0 18.6 8.3
GFDL-ESM2G 8.5 -13.8 -12.9 23.5 -10.0 -9.1
HadGEM2-ES -12.6 -13.5 5.3 -9.0 -13.5 -7.2
MPI-ESM-LR 15.1 21.6 23.8 10.2 6.8 29.1
Ensemble (SRB-EGCMM) -14.1 -18.5 -15.5 -13.6 -17.0 -18.6
Ensemble (SRB-SWATEMM) 2.6 -1.3 3.3 3.6 1.2 3.1

Increase Insignificant Change Decrease

Areal mean change in water balance components in the SRB are presented

in Table 5.12. As expected, results from one GCM to another are not always in
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agreement. While these results do not show the spatial-temporal changes (e.g. as

presented in Figures 5.39 to 5.50) in the basin, they provide a summary picture of

the realisations from each model and the variation thereof. The variability in the

models are more visible for BWF than GWF and GWS since all three possible

outcomes (denoted by the coloured cells in Table 5.12) are predicted.

In the case of SRB, the performance of the model forced with the SRB-EGCMM

is not so different than the rest of the models. This is in contrast with the scenario

observed in the RNC. However, the model tends to overestimate the availability

of water balance components in the SRB when compared with the rest of the

models. In the case of GWS for example, the results of SRB-EGCMM deviate

significantly from the rest of the models. Thus, the results from this model should

be interpreted with caution.

GFDL-ESM2G and HadGEM2-ES consistently project decreased future GWF

and GWS availability in almost all time horizons. Not only are the two models

in agreement with respect to the direction of change, they both predict similar

magnitudes of change. This is in sharp contrast with the other models which

indicate that there is minor change in GWF and GWS future availability when

compared with baseline values. This highlights the importance of considering

results from a committee of models as opposed to relying on a single GCM

prediction.

Generally, water balance components in the SRB when investigated from a

regional spatio-temporal perspective, indicate that there are regional variations in

future BWF, GWF and GWS availability. The greatest variability is observed for

BWF which is expected to increase in the north while the south is expected to be

in deficit.
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Table 5.12 Summary areal mean change of projected future water balance components
in the SRB with respect to the baseline period. Changes within ±10 % of baseline
values are considered to be insignificant (green boxes) whereas changes above +10%
(red boxes) and below −10 % (blue boxes) are considered to be significant

GCM

Scenario
RCP4.5 RCP8.5

2020s 2050s 2080s 2020s 2050s 2080s
BWF

BCC-CSM1-1-M -5.1 -6.1 -9.0 -14.3 -26.8 -14.9
CCSM4 5.1 -1.4 -4.5 4.5 7.3 -4.3
CNRM-CM5 3.0 -6.2 8.1 -8.6 20.1 5.7
GFDL-ESM2G 12.4 0.8 -12.5 37.1 6.1 1.5
HadGEM2-ES -7.8 -9.6 9.4 -5.3 -13.8 -9.9
MPI-ESM-LR 10.3 23.7 32.2 1.1 3.0 31.9
Ensemble (SRB-EGCMM) 12.0 7.7 11.9 12.0 7.1 9.7
Ensemble (SRB-SWATEMM) 3.0 0.2 4.0 2.4 -0.7 1.7

GWF
BCC-CSM1-1-M 0.6 0.1 -1.6 1.4 -1.9 -1.4
CCSM4 -2.0 -4.7 -8.9 -4.2 0.2 -7.8
CNRM-CM5 1.8 4.4 5.0 5.0 5.4 4.0
GFDL-ESM2G -10.4 -13.5 -13.0 -8.4 -15.5 -19.9
HadGEM2-ES -11.7 -10.9 -10.5 -8.3 -13.7 -20.0
MPI-ESM-LR 3.1 1.0 -4.3 1.3 -2.3 -5.8
Ensemble (SRB-EGCMM) 9.6 9.1 7.8 9.9 8.9 6.4
Ensemble (SRB-SWATEMM) -3.1 -3.9 -5.6 -2.2 -4.6 -8.5

GWS
BCC-CSM1-1-M 4.8 2.0 -1.3 3.7 -5.0 -3.1
CCSM4 2.9 -4.5 -13.1 -4.6 -0.8 -6.2
CNRM-CM5 6.8 6.6 5.0 7.3 3.7 4.6
GFDL-ESM2G -7.5 -11.1 -10.9 -1.7 -14.5 -17.2
HadGEM2-ES -8.4 -11.7 -10.3 -4.7 -17.2 -14.5
MPI-ESM-LR 3.2 -1.8 -3.7 1.7 -3.3 -0.9
Ensemble (SRB-EGCMM) 31.0 26.9 24.1 31.4 25.4 31.5
Ensemble (SRB-SWATEMM) 0.3 -3.4 -5.7 0.3 -6.2 -6.2

GCM

Scenario
RCP4.5 RCP8.5

2020s 2050s 2080s 2020s 2050s 2080s
BWF

BCC-CSM1-1-M -5.1 -6.1 -9.0 -14.3 -26.8 -14.9
CCSM4 5.1 -1.4 -4.5 4.5 7.3 -4.3
CNRM-CM5 3.0 -6.2 8.1 -8.6 20.1 5.7
GFDL-ESM2G 12.4 0.8 -12.5 37.1 6.1 1.5
HadGEM2-ES -7.8 -9.6 9.4 -5.3 -13.8 -9.9
MPI-ESM-LR 10.3 23.7 32.2 1.1 3.0 31.9
Ensemble (SRB-EGCMM) 12.0 7.7 11.9 12.0 7.1 9.7
Ensemble (SRB-SWATEMM) 3.0 0.2 4.0 2.4 -0.7 1.7

GWF
BCC-CSM1-1-M 0.6 0.1 -1.6 1.4 -1.9 -1.4
CCSM4 -2.0 -4.7 -8.9 -4.2 0.2 -7.8
CNRM-CM5 1.8 4.4 5.0 5.0 5.4 4.0
GFDL-ESM2G -10.4 -13.5 -13.0 -8.4 -15.5 -19.9
HadGEM2-ES -11.7 -10.9 -10.5 -8.3 -13.7 -20.0
MPI-ESM-LR 3.1 1.0 -4.3 1.3 -2.3 -5.8
Ensemble (SRB-EGCMM) 9.6 9.1 7.8 9.9 8.9 6.4
Ensemble (SRB-SWATEMM) -3.1 -3.9 -5.6 -2.2 -4.6 -8.5

GWS
BCC-CSM1-1-M 4.8 2.0 -1.3 3.7 -5.0 -3.1
CCSM4 2.9 -4.5 -13.1 -4.6 -0.8 -6.2
CNRM-CM5 6.8 6.6 5.0 7.3 3.7 4.6
GFDL-ESM2G -7.5 -11.1 -10.9 -1.7 -14.5 -17.2
HadGEM2-ES -8.4 -11.7 -10.3 -4.7 -17.2 -14.5
MPI-ESM-LR 3.2 -1.8 -3.7 1.7 -3.3 -0.9
Ensemble (SRB-EGCMM) 31.0 26.9 24.1 31.4 25.4 31.5
Ensemble (SRB-SWATEMM) 0.3 -3.4 -5.7 0.3 -6.2 -6.2

Increase Insignificant Change Decrease
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The implication of these results, especially in the central and southern part of

the SRB, is that firstly, there will be decreased availability of “liquid” or “blue”

water availability for domestic and industrial usage. Since this type of water is

abstracted from rivers, lakes and from groundwater aquifers, there is need for

optimised use of these water resources amidst many competing needs. Secondly,

decreased BWF and GWF (possibly due to increasing temperatures) availability

in the central and southern portions of the basin indicate decreased capacity for

irrigated and rainfed agriculture. This could threaten food security for thousands

of people in rural Malawi who are dependent on these two traditional forms of

crop production. Robust agricultural and water policies aimed at sustainable

management and equitable distribution of limited water resources should be

formulated and implemented by the GoM and other stakeholders. For example,

irrigation methods that are inefficient and unsustainable could be replaced with

efficient irrigation methods such as drip irrigation.

5.5 Chapter Summary

In this chapter, comprehensive hydrological analyses were carried out to determine

the impacts of climate change on water resources in the RNC (data-rich region)

and SRB (data-sparse region). The main objective of this chapter was to assess

future availability of freshwater resources in the RNC and SRB using open-source

software tools. Future projected streamflow and water balance components were

simulated in both regions using a similar methodology. This was done so as

to determine whether the methodology developed here is applicable globally

i.e. first world regions with high integrity ground truth data vs developing regions

with sparse or non-existent ground truth data. The results indicate that the
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methodology developed here can be used in multi-regional studies effectively. Also,

forcing discrete hydrological models with discrete GCMs and only averaging their

results afterwards is a promising methodology albeit expensive. Most literature

use an ensemble GCM mean to force hydrological models as recommended by

the IPCC but the consequences of this approach on hydrological results and

uncertainty has not been thoroughly investigated. Here, it is proposed that going

by the ‘one vote per model’ approach, also advocated for by the IPCC, each GCM

from a subset of GCMs selected for the particular region should be allowed to

manifest itself singularly in the hydrological model before a committee of such

models is averaged. In countries fraught with power shortages and lack of or

limited access to computing infrastructure, this could be a challenge. Possible

solutions to this dilemma are discussed in Chapter 7.

In general, there is little impact on future streamflow and water balance

components in the RNC. The southern part of the RNC is expected to be in slight

deficit with respect to BWF (approximately 7 to 9% lower than baseline values)

in the short- to medium term (i.e. 2020s and 2050s). Similarly, future streamflow

in the RNC varies by about ±9% from baseline values indicating no significant

change. These results indicate that the RNC, and in general temperate regions,

are more robust to climate change and variability.

In the SRB, results indicate that some regions (especially northern portions of

the SRB) will experience an increase in streamflow while others are expected to

experience a decrease in streamflow. This trend is consistent with findings from

Zuzani et al. (2019b) that show that historical streamflow records in the SRB

exhibit both increasing and decreasing trends. Regions with increased streamflow

will basically be more vulnerable to floods while regions with decreased streamflow
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may experience challenges in the agricultural, energy and domestic water supply

sectors. In the same vein, central and southern portions of the SRB are expected

to receive reduced BWF or “liquid” water which can also affect agricultural, energy

and water supply sectors. The need for robust climate change adaptation and

preparedness plans in the SRB, especially in the rural setups where the most

vulnerable groups are women and children, cannot be overemphasized. In terms

of irrigated agriculture, commitment should be made to ensure that inefficient

and unsustainable irrigation methods are replaced by more efficient systems such

as drip irrigation.

Following streamflow and water balance simulation campaigns in the RNC

and SRB, one thing is certain – effects of climate change are more severe in

the SRB than the RNC. Regional impacts of climate change have been studied

extensively and well documented in the literature. Unsurprisingly, these results

are in agreement with previous studies that have asserted that climate change

impacts are more severe in the tropics than in temperate regions. The most

important outcome of the findings in this chapter, however, is to mobilise interest

and effort in ensuring that adaptive capability in vulnerable regions such as the

SRB is enhanced.



—We are at the very beginning of time

for the human race. It is not unrea-

sonable that we grapple with prob-

lems. But there are tens of thousands

of years in the future. Our respon-

sibility is to do what we can, learn

what we can, improve the solutions,

and pass them on.

Richard Feynman

6
Integrated Hydrologic Modelling

This chapter discusses the development and application of integrated hydrologic

models in the RNC (particularly Dumfries Basin) and later in the SRB. SWAT

models developed in the previous chapter were coupled with regional groundwater

flow models developed with MODFLOW-NWT. The focus of the discussion is on

the impacts of climate change on groundwater recharge in the early, mid- and

late-century. A total of thirty-six scenarios were developed for the SRB using

integrated hydrologic models while for the Dumfries Basin thirty scenarios were

considered under RCP4.5 and RCP8.5.
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6.1 Purpose and Scope

As mentioned in the preamble to this chapter, the impact of climate change on

groundwater processes, and in particular groundwater recharge, is assessed for the

Dumfries and Shire Rivers Basins. The SRB groundwater model is a regional scale

model and is thus intended to simulate basin-wide effects rather than localized

effects while the Dumfries Basin is intended to simulate spatio-temporal processes

at the aquifer scale. The groundwater flow models were specifically intended to

simulate spatio-temporal patterns of groundwater recharge through the vadose

zone to the aquifers. Again, the analyses begin with the Dumfries Basin, a region

with relatively abundant ground truth data of high integrity, then on to the SRB

where data is sparse and in some cases non-existent. Furthermore, the efficacy of

ensemble models is investigated as has been pointed out in the previous chapters.

6.2 Data Requirements

Distributed recharge models require a lot of input data and tremendous effort by

the modeller to prepare the data in a format acceptable by the model. In the case

of SWAT-MODFLOW, data inputs used to construct the separate SWAT and

MODFLOW models are shared between the two linked models in the recharge

calculation process (described in Section 6.3.4). Climate data for each day is

required to run the model on a daily basis. For the SRB, station meteorological

data obtained from the MMS was used in the construction of the SWAT model

and downscaled future climate projections, described in Chapter 4, were used

to simulate future hydrological trends in the basin. For the RNC, Dumfries

station data augmented with CRU climate data was used in the baseline SWAT
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model construction while projected future climate was used for future hydrological

analyses. 90m horizontal resolution SRTM DEMs were used to construct the

SWAT and MODFLOW models for both the SRB and RNC as discussed in

Chapter 5.

6.3 Dumfries Basin Groundwater Modelling

6.3.1 Dumfries Basin Conceptual Model

6.3.1.1 Aquifer definition

The Dumfries aquifer is a 25 km long and 10 km wide semi-elliptical basin

containing the Quaternary sediments of the River Nith and Lochar Water including

their tributaries. It is divided into two layers consisting of the upper Quaternary

deposits and the underlying Permian sediments which are in hydraulic contact.

Groundwater is inferred to flow from the north to the south-east in the northern

part of the basin while in the central portion of the basin, groundwater flow is

towards the rivers.

6.3.1.2 Bedrock Geology

The DB is characterized by two types of sediments from distinct geological periods

(i.e. Quaternary and Permian periods) infilled to depths greater than 1000m (Mac-

Donald et al., 2000). The Permian sediments of the Dumfries basin, as can be

seen from Figure 6.1, is divided into two formations: the Locharbriggs Sandstone

formation in the east and the Doweel Breccia Formation in the west (Brookfield,

1978; MacDonald et al., 2000).
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Figure 6.1 Permian geology of the Dumfries Basin (after Jackson et al., 2004)
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The Doweel Breccia is predominantly composed of sedimentary breccia in-

terbedded with sandstone, extending eastward toward the centre of the basin

where it interfingers with the Locharbriggs Sandstone (Jackson et al., 2004). The

Locharbriggs Formation is a conglomerate of medium to fine-grained aeolian sand-

stone with large scale cross bedding. The sandstone is predominantly constituted

of sub rounded to very well rounded quartz with less than five percent basalt and

feldspar, weakly cemented by silica (MacDonald et al., 2000). A steeply dipping

succession of grey, fine-grained, wacke sandstone and mudstone of Silurian age

that is intruded by the Criffel-Dalbeattie granodiorite to the south-west of the

basin is overlain by unconformably by the Permian basin-fill sequence (Jackson

et al., 2004). The Permian basin-fill sequence is estimated to be between 1.1 and

1.4 km thick by air-born gravity modelling data. Bouger gravity anomaly data

suggests the basin to be fault-bounded by a series of en echelon faults along its

western margin and fault bounded also to the north-east (Jackson et al., 2004;

Robins and Ball, 2006).

6.3.1.3 Quaternary Geology

The superficial deposits of the Dumfries Basin consist mostly of glacial deposits

formed during the main late Devensian (MLD) glaciation (Jackson et al., 2004;

McMillan et al., 2011). Figures 6.2 and 6.3 show a summary of the depositional

units or Quaternary domains in the basin. To the north-west of Dumfries, an

overconsolidated sandy diamicton with wacke and sandstone clasts deposit sits atop

the Permian deposits. It is considered to be the lodgement till of the Dimlington

Stadial ice sheet (Robins and Ball, 2006). Ice, originating in the Southern Uplands,

formed a streamlined topography of rock ridges aligned towards the south-east
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Figure 6.2 Quaternary geology of the Dumfries Basin (Jackson et al., 2004)

of the basin. Active retreat of the Nith glacier during deglaciation took place

in a north-westerly direction to pinning points (bedrock highs) at Cargenbridge,

Maxwelltown and Locharbriggs (Jackson et al., 2004).

To the south-east of Locharbriggs, deposits of fine sand, silt and clay, with

dropstones, ended up in ephemeral glacial lakes. Tabular spreads of cross-bedded

sand and pebbly gravel overlay these glaciolacustrine deposits (Robins and Ball,

2006). Further deglaciation advanced the Nith glacier resulting in the formation

of a moraine, characterised by moundy topography that extends in an arc between

Locharbriggs and Cargenbridge (Jackson et al., 2004). The gravel and till deposits

of the moraine, which are estimated at over 30m in thickness, comprise most
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of the moraine but beds of sheared glaciolacustrine sand and silt can also be

found (Robins and Ball, 2006). Post-deglaciation relative sea level rise resulted in

the deposition of extensive deposits of bedded sand, clay and silt to the south of

Dumfries.

These deposits now form dissected terraces which generally lie at an elevation

of 10 to 15m aOD as a result of isostatic rebound (Jackson et al., 2004).

6.3.1.4 Surface Water

The DB is drained mainly by the River Nith which flows onto the basin from its

northern edge and discharges south into the Solway Firth. The Nith has many

tributaries but from the DB perspective, Cluden Water is it’s major tributary.

The second catchment in the Dumfries Basin is that of the Lochar Water which is

a smaller river that runs approximately parallel to the Nith from north to south

along the eastern edge of the aquifer (Jackson et al., 2004). Flows in these rivers

are measured using permanent gauging stations, each located on one of the three

major rivers in the basin as discussed in Chapter 4. Using a combination of results

from the three permanent and temporary spot gauging stations, Jackson et al.

(2004) made the following observations;

1. River Nith, Cluden Water and Cargen Water are responsible for most of the

water flowing onto the basin during the summer period

2. There is increased flow in the southern portion of the Lochar Water that

is suspected to be a combination of water yield from the peat deposits,

drainage and spring flow from the high ground to the west and from the

Wath Burn.

Robins and Ball (2006) alludes to the fact that lack of comprehensive surface
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Figure 6.3 Cross-section north-west to south-east showing the superficial deposits in
the Dumfries Basin (Robins and Ball, 2006)

water flow data can cause uncertainties in the conceptual and groundwater mod-

elling processes, citing in particular the lack of flow records as close as possible to

the tidal limit of the River Nith. This is crucial for an accurate assessment of the

water balance in the Nith catchment.

6.3.1.5 Groundwater

Generalisations have been made about groundwater flow in the DB as groundwater

monitoring points are mostly located in the central part of the basin. Generally,

groundwater flow direction in the northern part of the basin is towards the south-

east while flow in the central part of the basin is predominantly towards the rivers;

finally, in the southern part of the basin, flow is inferred to be occuring away from

the Larchfield-Caerlaverock Ridge (Jackson et al., 2004).
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6.3.1.6 Summary of Conceptual Model

A schematic summary of the DB conceptual model after Robins and Ball (2006)

is presented in Figure 6.4. Generally, the conceptual model can be summarized as

follows (Robins and Ball, 2006);

• The basin boundary is constrained as a no-flow boundary owing to the

presence of low hydraulic conductivity Palaeozoic rocks surrounding the

basin.

• Most of the recharge to the bedrock aquifer is believed to occur in the

north-western and central part of the basin via the superficial deposits. In

areas of the basin underlain by clay or silt grade deposits, direct rainfall

recharge may be significantly inhibited. Furthermore, some indirect recharge

to the aquifer is expected in the northernmost part of the basin.

• Groundwater lateral flow is indicated to be towards the River Nith and

also towards the western-central part of the basin where a heavily pumped

groundwater sink is located.

• Hydraulic contact between the superficial deposits and the bedrock aquifer

does not occur throughout the basin.

• Discharge from the basin directly to the sea is inhibited by marine and

alluvial silts.

6.3.2 Model Development

6.3.2.1 Spatial Discretization

The DB model domain has an areal extent of about 187 km2 with a grid coverage

comprising a total of 93 columns and 106 rows, each at a 200 m horizontal
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Figure 6.4 Schematic conceptual flow model of the Dumfries Basin aquifer (Fig. 5.5,
Robins and Ball, 2006)

resolution. The model is vertically discretized into 2 layers namely, superficial

deposits (~ 20m thickness) and a lower layer representing the bedrock aquifers

(~ 200m thickness). The lower layer was divided into two zones representing the

Doweel Breccia and Locharbriggs Sandstone formations (see Figure 6.1). The
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superficial deposits vary in depth across the basin but for purposes of numerical

representation, the upper layer was set to 20m depth but can be as thin as 10m is

some sections (Jackson et al., 2004).

6.3.2.2 Temporal Discretization

Groundwater flow for the DB was simulated from January 1981 to December 2005

(same time discretization as the RNC swat model). Initially, because this model

was intended to be subsequently coupled with the corresponding SWAT model,

the model was run in ‘steady-state’ mode for a period of two years (i.e. 1981 and

1982) after which transient flow was simulated from 2007 to 2005. The steady-

state simulation was used to generate starting heads which were subsequently

used in solving the groundwater flow equation at the beginning of the transient

simulation. The transient period was discretized into monthly time-steps initially

for calibration purposes but when coupled with the SWAT model, the model was

forced to run on daily time-steps.

6.3.2.3 Hydrologic Boundaries

The DB is surrounded by low hydraulic conductivity Palaeozoic rocks hence the

active area of the DB groundwater flow model is characterized as a ‘no flow’ (i.e.,

specified flow or Neumann conditions) boundary, except for a small portion towards

the south-east of the basin where the prevalence of Carboniferous limestones and

calcareous sandstones allow for some leakage across the boundary (Akhurst et al.,

2006; Jackson et al., 2004). Here the model is specified as a specified head (i.e.,

Dirichlet conditions). Internal boundaries specified as sources and sinks include

rivers, recharge zones (calculated using SWAT and passed to MODFLOW cells)
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and pumping wells defined using MODFLOW packages RIV, RCH and MNW2

respectively.

6.3.2.4 Hydraulic Properties

The horizontal hydraulic conductivities (HK) of the Superficial and Quaternary

deposits were calculated via a ‘pilot-point’ method using geostatistical methods

implemented in PEST. This is an automated parameterization method where

hydraulic conductivity values of model cells are assigned by interpolation based on

pilot points. The advantage of using PEST for this exercise versus other methods

where geostatistical algorithms such as inverse-distance weighting or kriging are

applied to assign HK cell values via interpolation, lies in the unique feature of

PEST referred to as regularization. This feature ensures that the inversion process

is stable by minimizing an objective function subject to constraints provided by

the user (i.e. prior information) that define the expected ranges of the values.

This is a slight departure from the zonation method employed by Jackson et al.

(2004) to define the hydraulic conductivity zones used for their DB groundwater

flow model. The vertical hydraulic conductivities (VK) for layers 1 and 2 were

initially set at values of 10 and 20 respectively. Thereafter, PEST determined the

values to be 6 and 27 for layers 1 and 2 respectively.

6.3.2.5 Calibration

Calibration of the groundwater model was done separately using the automated

parameter estimation tool PEST. As mentioned in Section 6.3.2.4, PEST calibra-

tion was run with the assistance of regularization. We used field measurement data

(groundwater wells) collected by Jackson et al. (2004) to calibrate the groundwater
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flow model. Although the groundwater levels were recorded on different dates with

possible interference from pumping in others, the collated data represents the most

complete collection of groundwater heads in the DB (Jackson et al., 2004). For the

transient period, one borehole with a long record of groundwater levels was used

to calibrate the model. Despite the UK being a data-rich region when compared

to other developing regions such as Malawi, the Dumfries Aquifer is considered to

be among data-scarce aquifers in Scotland (Gaus and Dochartaigh, 2000), despite

being studied for over 30 years (MacDonald et al., 2000). Thus, little groundwater

data was available for a more comprehensive calibration campaign. Where data is

available, there is limited access to the data which is held by institutions such

as SEPA and the BGS. Notwithstanding this limitation, access to a long record

of groundwater level observations coupled with variable recharge values from the

SWAT model (which benefited from the rich and freely available hydrological

data), the transient model was considered to be adequately calibrated for this

thesis’ objectives. The accuracy of the calibration was checked by comparing the

observed and simulated heads.

Calibration of the SWAT model is detailed in Section 5.4.2. The SWAT param-

eters that produced the best simulation for the baseline period calibration were

used to set-up the initial baseline coupled model. The coupled SWAT-MODFLOW

model was calibrated using the classical trial-and-error method and then opti-

mised using PEST. In order to check the effectiveness of the coupled model in

simulating hydrologic processes within the basin and watershed, a comparison was

made between observed streamflow hydrographs and those obtained using SWAT

and SWAT-MODFLOW respectively. Goodness-of-fit statistics are presented in

Table 6.1.
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Table 6.1 Goodness-of-fit statistics used to compare the performance of SWAT and SWAT-MODFLOW (SWAT-MF) in simulating
monthly streamflow in the RNC

Metric
Station

Scar Water at
Capenoch

Cluden Water at
Fiddlers Ford

Nith at
Friars Carse

Lochar Water at
Kirkblain Bridge

SWAT SWAT-MF SWAT SWAT-MF SWAT SWAT-MF SWAT SWAT-MF
ME 0.53 0.37 0.85 0.60 7.00 5.00 -0.19 -0.13
MAE 1.81 1.52 2.58 2.25 10.10 8.33 0.44 0.37
MSE 5.53 3.54 12.11 7.70 159.58 96.49 0.34 0.25
RMSE 2.35 1.88 3.48 2.77 12.63 9.82 0.58 0.50
NRMSE % 55.10 44.00 55.40 44.20 60.20 46.80 35.30 30.50
PBIAS % 8.90 6.30 10.00 7.10 23.80 17.00 -8.60 -6.00
RSR 0.55 0.44 0.55 0.44 0.60 0.47 0.35 0.30
rSD 0.79 0.72 0.85 0.73 0.83 0.72 0.93 0.79
NSE 0.70 0.81 0.69 0.80 0.64 0.78 0.87 0.91
mNSE 0.49 0.57 0.51 0.57 0.42 0.52 0.68 0.73
rNSE -3.13 -2.59 -2.48 -2.24 -2.59 -1.76 0.69 0.72
d 0.90 0.93 0.90 0.93 0.89 0.93 0.97 0.97
md 0.70 0.74 0.72 0.74 0.68 0.72 0.84 0.85
rd -0.36 -0.26 -0.08 -0.11 -0.07 0.07 0.91 0.91
cp 0.73 0.83 0.72 0.82 0.65 0.79 0.87 0.90
r 0.84 0.93 0.84 0.92 0.87 0.94 0.94 0.97
R2 0.71 0.86 0.71 0.85 0.75 0.89 0.89 0.94
bR2 0.67 0.79 0.68 0.79 0.71 0.88 0.80 0.83
KGE 0.73 0.70 0.76 0.71 0.68 0.67 0.87 0.78
VE 0.69 0.74 0.70 0.73 0.66 0.72 0.80 0.83



6.3 Dumfries Basin Groundwater Modelling 268

SWAT-MODFLOW improved the simulation of monthly streamflow at all

the stations. It should be noted here that the statistics for the SWAT model

presented in Table 6.1 are a composite of the calibrated and validation periods for

a fair comparison with SWAT-MODFLOW since groundwater model calibration

in modern times omits the validation process. Thus, goodness-of-fit statistics

provided as insets in Figure 5.4 may slightly differ from those presented here.

6.3.2.6 Sensitivity Analysis

Sensitivity analysis of the groundwater model was also done using PEST. Unlike

SWAT-CUP, sensitivity values are calculated during the last iteration of the

optimization campaign (Fisher et al., 2016). As expected, the parameter that was

found to be most sensitive to input parameters is hydraulic conductivity.

6.3.3 Description of the Coupling Process

At the core of the SWAT-MODFLOW coupling process is the concept of hydrologic

response units (HRUs) and disaggregated HRUs (DHRUs). DHRUs divide each

original HRU into contiguous areas within a sub-basin in order to allow HRU

calculations to be geo-located (Bailey et al., 2016). “Mapping” subroutines are

used within SWAT-MODFLOW to relate HRUs to MODFLOW grid cells and

MODFLOW river cells to SWAT stream channels. SWAT calculates daily deep

percolation or recharge for each HRU. The HRUs are subsequently mapped to each

individual DHRU and then mapped to each MODFLOW grid cell in accordance to

the percent area of the DHRU contained in the respective grid cell for use by the

Recharge package. Groundwater hydraulic heads and groundwater-surface water

interactions are thereafter calculated by MODFLOW. To accurately simulate
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groundwater-surface water interactions, MODFLOW computes groundwater dis-

charge volumes computed on a cell-by-cell basis, sums and adds them to in-stream

flow for each SWAT sub-basin. Finally, SWAT completes the stream routing

calculations for the day on a continuous loop to the end of the simulation (Bailey

et al., 2016).

6.3.4 Baseline and Future Recharge Estimation

Average recharge over the baseline period was calculated in mm/day (see Figure 6.5)

using the SWAT-MODFLOW model. Daily recharge values are passed onto the

groundwater model from the SWAT model during the simulation. From Figure 6.5,

the average recharge in the DB is about 1.5 mm day−1 with the most recharge,

contrary to the results published by Jackson et al. (2004), occurring in the Doweel

Breccia as can be inferred from the latitudinal and longitudinal density plots of

mean Groundwater Recharge (GWRch) on the top and right axes of the figure.

The initial conceptualization of the Dumfries Aquifer hydrologic processes based

on Jackson et al. (2004) may thus need to be revised and/or investigated further

following this integrated modelling campaign. However, it should be noted that

there could be structural differences in the formulations of this model versus their

model which could lead to a discrepancy in results. The recharge appears to

be mostly dominated by the hydraulic properties of the aquifers as opposed to

the land-use since approximately 74.6% of the landuse is cropland and pasture

(denoted as CRDY in SWAT). The higher recharge zones in the central portion

of the basin may not be apparent in the hydrograph analyses due to possible

interference from abstraction wells for domestic, agricultural and industrial water

needs.
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Figure 6.5 Average baseline daily recharge (mm/day) provided by SWAT to each
MODFLOW Grid Cell. Gray margins along the top and right axes are density plots of
latitudinal and longitudinal averages of GWRch

Once the long term baseline recharge was established, comparisons between

baseline recharge conditions versus future projections was made as shown in

Figures 6.6 to 6.10. Thereafter, a simple average of five separate IHMs (here-

inafter River Nith Catchment SWAT-MODFLOW Ensemble Model Mean [RNC-

SWATMFEMM]) was used to compare differences in recharge values between

future projections and baseline values (Figure 6.11) whereas one IHM whose

SWAT model is driven by the RNC-EGCMM was used to compare differences in

recharge values between baseline and future periods (Figure 6.12).
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Figure 6.6 Percentage differences in groundwater recharge (GWRch) between the
baseline period and future periods for the Dumfries Basin as simulated by CCSM4
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Figure 6.7 Percentage differences in groundwater recharge (GWRch) between the
baseline period and future periods for the Dumfries Basin as simulated by GFDL-
ESM2G
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Figure 6.8 Percentage differences in groundwater recharge (GWRch) between the
baseline period and future periods for the Dumfries Basin as simulated by HadGEM2-
ES
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Figure 6.9 Percentage differences in groundwater recharge (GWRch) between the
baseline period and future periods for the Dumfries Basin as simulated by INMCM4
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Figure 6.10 Percentage differences in groundwater recharge (GWRch) between the
baseline period and future periods for the Dumfries Basin as simulated by MPI-ESM-LR
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As expected, there were slight differences in GWRch values from one model to

another both in the sign and magnitude of change. Ensemble models, also, seem to

disagree along the same lines. In almost all cases, the RNC-EGCMM driven IHM

suggests increased GWRch in some parts of the Locharbriggs Sandstone of about

+ 30% to +40%. For the rest of the basin, the model predicts up to +10% increase

in GWRch in the 2020s, up to +12% in the 2050s and up to +18% in selected

regions of the DB in the 2080s under RCP4.5. Slightly higher ranges are expected

under RCP8.5 with GWRch increasing by up to +12% in the 2020s, +5% to +15%

in the mid-century and only up to +6% in the late century. The RNC-EGCMM

forced IHM did not predict any decrease in GWRCh when compared with the

baseline period. It is unclear whether this is an artefact of the model construction

and parametrisation or that of the climate. In any case and for most of the basin,

the changes in GWRch are considered negligible save for a few regions.

The RNC-SWATMFEMM predicts an increase of up to +2% in the 2020s, a

decrease of GWRch of between -2% to -4% in the mid-century and an increase

of up to +6% in the late-century under RCP4.5. An increase of up to +22% is

observed in the 2020s and 2050s under RCP8.5 while the 2080s are expected to

see an increase of up to +3% under the same emission scenario.

Both models are in agreement that under RCP8.5, higher GWRch is expected,

perhaps due to increased precipitation especially in the winter season. In the

2050s, spring precipitation is expected to fall by about -3% so it could possibly

explain the drop in GWRch under RCP4.5 in the same time period as predicted

by DG-Ens-IHM. Both models predict decreased GWRch in the 2080s under

the two emission scenarios. This can be confirmed by the climate projection

results of Chapter 4 which show no significant changes in winter precipitation,
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decreased summer precipitation and increased temperatures in the 2080s. Again,

it cannot be conclusively decided whether the RNC-EGCMM driven IHM or RNC-

SWATMFEMM can be considered to be a better representation of the future. Both

models take into consideration the inherent variability of the single GCMs and

how the associated uncertainty can be reduced via ensemble averaging. Improved

GCM skill, sufficient watershed and groundwater observations can certainly help

to improve the quality of IHMs especially in the case where they are used as

predictive models.
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Figure 6.11 Percentage differences in groundwater recharge (GWRch) as simulated by
SWAT-MODFLOW between the baseline period and future periods for the Dumfries
Basin. Results are a simple average of the separate SWAT-MODFLOW models (RNC-
SWATMFEMM)
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Figure 6.12 Percentage differences in groundwater recharge (GWRch) as simulated
by SWAT-MODFLOW between the baseline period and future periods in the SRB.
MODFLOW was coupled with a SWAT model forced with the RNC-EGCMM.
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6.3.5 RNC Groundwater Recharge Modelling Summary

Table 6.2 provides a summary of areal mean percentage change in GWRch in the

RNC. With the exception of the model forced with the RNC-EGCMM, all models

projected insignificant change in GWRch when compared with baseline values.

The sign of change, even though the magnitudes are classified as insignificant, is

not always in harmony across the models. However, as already established in the

preceding chapters, this is expected due to many factors but including inherent

variability in the GCM models.

The model forced with the RNC-EGCMM projects a significant decrease in

groundwater recharge across all time horizons under RCP4.5 and 8.5. However,

results from this model and particularly for the RNC, as discussed in Chapter 5,

should be treated with caution. Again, the cause for this behaviour is unknown

but suspected to be an artefact of the random forest algorithm when averaging

the models.

Historically, Robins and Ball (2006) report of a sharp increase in groundwater

abstraction in the DB during the late 1980s and early 1990s followed by a steady

increase up to around 2015. In the future, uncontrolled and indiscriminate

abstraction of groundwater can be a potential issue in vulnerable regions of the

DB that are projected to be in a recharge deficit. Further studies are recommended

aimed at understanding recharge mechanisms in the DB that are not diffuse-based

but largely controlled by flow through fracture networks.

In general there is little to no threat to groundwater resources in the DB based

on anticipated anthropogenic climate change as simulated under RCP4.5 and 8.5

scenarios.
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Table 6.2 Summary areal mean percentage change in projected groundwater recharge
(GWRch) in the RNC with respect to the baseline period. Changes within ±10 % of
baseline values are considered to be insignificant (green boxes) whereas changes above
+10% (red boxes) and below −10 % (blue boxes) are considered to be significant.

GCM

Scenario
RCP4.5 RCP8.5

2020s 2050s 2080s 2020s 2050s 2080s
CCSM4 -4.0 -3.6 -4.2 -2.6 -2.8 -7.8
GFDL-ESM2G -4.2 -4.0 0.5 -7.7 -3.2 -3.3
HadGEM2-ES 0.4 -5.0 -1.8 -0.8 -6.0 -13.4
INMCM4 0.2 -3.2 -3.5 2.7 1.2 -1.8
MPI-ESM-LR -1.5 -2.6 -2.6 -4.4 -2.3 -4.3
Ensemble (RNC-EGCMM) -16.2 -17.0 -16.1 -16.6 -16.0 -16.8
Ensemble (RNC-SWATMFEMM) -1.3 -3.7 -1.8 -2.6 -2.6 -5.7

GCM

Scenario
RCP4.5 RCP8.5

2020s 2050s 2080s 2020s 2050s 2080s
CCSM4 -4.0 -3.6 -4.2 -2.6 -2.8 -7.8
GFDL-ESM2G -4.2 -4.0 0.5 -7.7 -3.2 -3.3
HadGEM2-ES 0.4 -5.0 -1.8 -0.8 -6.0 -13.4
INMCM4 0.2 -3.2 -3.5 2.7 1.2 -1.8
MPI-ESM-LR -1.5 -2.6 -2.6 -4.4 -2.3 -4.3
Ensemble (RNC-EGCMM) -16.2 -17.0 -16.1 -16.6 -16.0 -16.8
Ensemble (RNC-SWATMFEMM) -1.3 -3.7 -1.8 -2.6 -2.6 -5.7

Increase Insignificant Change Decrease

6.4 SRB Groundwater Modelling

6.4.1 Conceptual Model

6.4.1.1 Aquifer definition

The major aquifers in the valley, in increasing importance, as noted by Bradford

(1973) are, weathered and fractured basement rocks, Karro and Cretaceous sedi-

mentary rocks, weathered and fractured basalt, and finally the unconsolidated

deposits on the valley floor (Bradford, 1973). Generally, there exists three types

of aquifers in Malawi that can be summarised (CGS, 2018; JICA, 2014) as follows;

• The Weathered Basement (WB) aquifers of the plateau that are extensive

and low yielding,

• Higher yielding Quaternary Alluvial (QA) aquifers of the lakeshore plains

and the Shire Valley.
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• Fractured Basement (FB) aquifer whose groundwater resource potential is

considered negligible.

6.4.1.2 Geologic Setting

The Lower Shire Valley has a complex geological structure because it is located

within the East African Rift System. Consequently, there are a number of faults

in the region with considerable throw (Bradford, 1973). The most notable faults

are the Mwanza, Thyolo and Namalambo faults. The valley floor is occupied

mostly by Quaternary sediments such as gravels, sands and poorly-sorted silts.

The Malawi Basement Complex underlies the valley and is composed mostly

of biotite gneisses. Alluvial formations are in abundance in the SRB covering

the northern-most parts of the basin from Mangochi to Matope and also in the

low-lying regions of Chikwawa and Ngabu (see Figure 6.13).

Precambrian to lower Palaeozoic age crystalline metamorphic and igneous

rocks form what is mainly referred to as the basement complex which supplies

approximately 60% of potable water to the population (Chilton and Smith-

Carington, 1984; Chilton and Foster, 1995; Mapoma and Xie, 2014).

6.4.1.3 Surface Water

The SRB is mainly drained by the Shire River (largest river in Malawi) which

flows south towards Mozambique where it flows into the Zambezi River. Acting as

the only outlet of Lake Malawi, flows in the Shire River are highly regulated via

the Kamuzu Barrage at Liwonde. The Shire River has many benefits to Malawi

such as hydroelectric power generation at Nkula, Tedzani and Kapichira falls,

supply of water to the city of Blantyre and its peri-urban areas by the Blantyre
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Figure 6.13 Geology of the SRB with names of the sites that were surveyed during
exploratory drilling for the SRB Hydrogeological and Water Quality Mapping under
the SRB Management Program (Phase 1) Project. (Fig. 2, CGS, 2018)
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Water Board, irrigation of sugar plantations at Nchalo and also supporting the

fisheries industry in the Elephant Marsh of the Lower Shire River flood plains.

6.4.1.4 Groundwater

The weathered basement aquifers mainly occur on the highland areas and are an

important source of rural water supply (JICA, 2014). The weathered basement

aquifers are generally divided into three layers: the laterite layer mainly composed

of red clay or completely weathered silt; saprolite layer and the medium weathered

layer, considered to be the best water yielding zone within the weathered basement

aquifer, occurring between 15 and 30m (JICA, 2014).

6.4.2 Model Development

6.4.2.1 Spatial Discretization

In order to develop a fully integrated model, it was necessary that the surface-water

model developed in Chapter 5 fully overlaps the groundwater model. It should

be noted, however, that SWAT-MODFLOW is capable of linking separate SWAT

and MODFLOW models that only partially overlap. The regional groundwater

model developed for the SRB overlapped with about 70% of the SWAT model.

This is because the groundwater model was spatially restricted to areas for which

data was available i.e. part of the Shire Basin within the Malawi boundary. The

SRB groundwater model domain spans an area of about 21,751 km2.

6.4.2.2 Temporal Discretization

The SRB groundwater model is simulated from January, 1975 to December, 2005.

A ‘warm-up’ period of 6 years was included at the beginning of the simulation to
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account for uncertainties in model initialization; thus a period of 25 years should

be considered as the simulated period. Moreover, when the MODFLOW model

was coupled with SWAT, the same warm-up period was used and thus results of

the first six years are discarded and not recorded in the simulation results files. As,

alluded to earlier, this is because of the uncertainty related to model initialization

that renders the first few years’ results less reliable.

For the future scenarios, the calibrated groundwater model was coupled with

SWAT to simulate future recharge and groundwater/surface-water interactions in

the basin. Each future-scenario 30 year time slice was simulated independently

since the associated future SWAT models were developed separately too.

6.4.2.3 Hydraulic Properties

Similar to the approach used for the DB, PEST was used in regularization mode

to parameterize the model HK. Layers 1 and 2 of the model were defined as

‘convertible’ so that where the layers are partially saturated, the storage coefficient

(SC) would be, for all intents and purposes, equal to the specific yield (SY). Layer

3 was defined as confined. Initial values of HK were assigned based on tests done

by CGS (2018). A single vertical anisotropy value of 10 was initially assigned to

the model before calibration. This means that the VK is assumed to be 10 times

smaller than the HK. After calibration, the vertical anisotropy was determined

to be 18. For the alluvium deposits, this value seems to be a little higher than

expected. This is expected for a regional model with sparse ground truth data.

Thus aquifer property values at a finer scale are required to verify and/or improve

parameterization of the model.
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6.4.2.4 Hydrologic Boundaries

Due to the vast expanse of the SRB groundwater model, three types of hydraulic

boundaries were defined. The East and West boundaries were defined under

Neumann conditions as no-flow boundaries. This is easily done in ModelMuse

by setting the cells outside the perimeter of the model as ‘inactive’ because the

model does not support the use of IBOUND arrays to define which cells belong to

the modelled area. The northern portion of the model which borders with the

lake is specified as a constant head boundary and defined by the GHB package

in ModelMuse. The southern boundary of the basin is defined as a general head

boundary by the GHB package. Internal boundaries were defined by the RIV and

RCH packages.

6.4.2.5 Model Calibration

Groundwater monitoring data for the SRB during the baseline period are non-

existent and as such calibration efforts for the SRB groundwater model were riddled

with a lot of uncertainty. Between 2009 and 2015, a number of hydrometric stations

in the SRB commenced groundwater level monitoring activities. Even so, where

such records exist, data are sparse and range from a few months to 3 or 4 years

on a monthly time-scale. Thus it was difficult to calibrate the MODFLOW model

using reliable long-term spatio-temporal hydrometric data. Aquifer and baseline

heads characterization was dependent on data collected on behalf of the Malawi

Government by the Council for Geoscience and PBM Consultants in 2017.

Initially, the coupled model was run using parameters obtained from individual

SWAT and MODFLOW (steady-state) calibrations. This resulted in an initial

set of results such as hydraulic heads, recharge and groundwater/surface-water
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fluxes for the baseline period. The simulated hydraulic heads, in particular,

were compared to the observed spatial hydraulic head distribution to check

for departures from the stand-alone MODFLOW model. As expected, there

was significant departure from the observed heads simulated by the stand-alone

MODFLOW model especially at higher elevations. To correct this, simulated

recharge supplied to the MODFLOW cells during the coupled simulations were

obtained and used to constrain the MODFLOW model in a fresh calibration

campaign. Furthermore, other parameters that control GW/SW interactions

(i.e River Package parameters) such as the stage, elevation of the bottom of the

river bed and hydralic conductance of the riverbed, were calibrated using the

trial-and-error method. Using volume fluxes and observed heads as calibration

targets, PEST was used to calibrate the transient MODFLOW model. Table 6.3

provides a summary of the goodness-of-fit statistics that were used to compare

hydrographs obtained from SWAT and SWAT-MODFLOW. The coupling of

the groundwater model to the SWAT model marginally improved streamflow

simulation at some stations and significantly at others – consolidating the claims

made by the developers and users of SWAT-MODFLOW about the enhanced

simulation capabilities of such a combination.

Again, goodness-of-fit statistics provided as insets in Figure 5.29 may slightly

differ from those presented here since the statistics for the SWAT model presented

in Table 6.3 are a composite of the calibrated and validation periods for a fair

comparison with SWAT-MODFLOW.
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Table 6.3 Goodness-of-fit statistics used to compare the performance of SWAT and
SWAT-MODFLOW (SWAT-MF) in simulating monthly streamflow in the SRB.

Metric
Station

Rivi-Rivi River
at Balaka

Ruo River at M1
Roadbridge

Lichenya River
at Mini Mini

Estate
SWAT SWAT-MF SWAT SWAT-MF SWAT SWAT-MF

ME 0.52 0.50 -0.41 -0.42 0.29 0.14
MAE 4.04 3.69 3.84 3.18 3.20 2.61
MSE 37.51 34.10 30.44 21.61 22.88 16.12
RMSE 6.12 5.84 5.52 4.65 4.78 4.01
NRMSE % 62.50 59.60 48.10 40.50 56.20 47.20
PBIAS % 8.10 7.70 -3.20 -3.20 2.80 1.40
RSR 0.63 0.60 0.48 0.41 0.56 0.47
rSD 0.73 0.75 0.89 0.86 1.02 0.96
NSE 0.60 0.64 0.77 0.83 0.68 0.78
mNSE 0.41 0.46 0.56 0.64 0.52 0.60
rNSE -2.44 -1.71 0.73 0.77 0.71 0.75
d 0.85 0.87 0.93 0.95 0.92 0.94
md 0.66 0.69 0.77 0.81 0.76 0.80
rd -0.26 0.03 0.92 0.93 0.92 0.93
cp 0.67 0.69 0.74 0.81 0.63 0.74
r 0.78 0.80 0.88 0.92 0.85 0.88
R2 0.61 0.65 0.77 0.84 0.71 0.78
bR2 0.44 0.48 0.68 0.74 0.69 0.74
KGE 0.65 0.67 0.83 0.83 0.84 0.88
VE 0.37 0.43 0.70 0.76 0.69 0.75

6.4.2.6 Summary of the Conceptual Model

There is limited data in the SRB to form a conclusive picture of the hydrogeological

processes therein. From the sparse data that has been collated within the SRB

by various consultants, researchers and agencies, conceptualization of the SRB

groundwater processes is as follows;

1. Groundwater flow is inferred to flow in a north-south direction. In reality,

preferential pathways such as faults and local topography plays an important

role in the direction of flow.
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2. It is assumed that the Shire River and it’s tributaries are in hydraulic contact

with the alluvial aquifer units in the SRB.

3. Most of the groundwater recharge is assumed to take place in the highlands

(north-west of the basin) and consequently discharge in the lower Shire basin

valleys.

4. Unconsolidated sedimentary aquifers are assumed to be highly responsive to

precipitation events

5. Although groundwater is abstracted for industrial, agricultural and domestic

use in the SRB, these abstractions have not been incorporated into the

model. Instead, the focus is on more regional phenomena such as recharge

and GW/SW interactions and how these processes respond to future climate

conditions.

6.4.3 Description of the Coupling Process

Unlike the DB, the SRB SWAT model extent fully overlaps the groundwater model.

SWAT model HRUs were mapped onto MODFLOW grid cells and MODFLOW

river cells defined by the RIV package mapped to SWAT stream channels using

subroutines within SWAT-MODFLOW. Details of the mapping schemes can be

found in Bailey et al. (2016) although a brief description has been provided in

Section 6.3.3.

6.4.4 Baseline Recharge Estimation

The long term average daily recharge and head for the baseline (1981 – 2005)

period in the SRB is presented in Figures 6.14 and 6.15. The calculated recharge

is related to the spatial distribution of rainfall in the basin. Groundwater level
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response to precipitation variability is affected by a lot of factors among which are;

spatial variability in hydraulic properties and distance from recharge areas (Green

et al., 2011a). Thus it is important to study current and future groundwater

recharge mechanisms and trends in order to predict availability and impact of

climate change on groundwater resources.

According to Sherif and Singh (1999), groundwater resources can be divided

into four categories namely; confined aquifers with impermeable upper layers,

phreatic aquifers in wet regions, unconfined aquifers in dry and arid regions and

finally, coastal aquifers subject to sea water intrusions. Most of the SRB can

be classified as semi-arid (Joshua et al., 2016) with groundwater aquifers that

respond almost immediately to precipitation events and thus fall into the third

category of the aforementioned classifications.
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Figure 6.14 Long term daily average recharge for the rainy season in the SRB
for the baseline period (1981 – 2005).
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Figure 6.15 Average Cell-by-Cell Groundwater Hydraulic Head in the SRB
for the baseline period (1981 – 2005).
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6.4.5 Future Groundwater Recharge Estimation

As was discussed in Section 2.6, numerical models were employed to calculate

climate change impacts on groundwater recharge. Aquifers are mainly recharged

via direct precipitation and interaction with surface-water bodies such as rivers

and lakes. The coupled SWAT-MODFLOW model was used to calculate potential

climate change impacts on future recharge (i.e. diffuse and focussed recharge) in

the SRB. The SWAT-MODFLOW model produces, as one of its outputs, spatial

groundwater recharge results for the simulation period that are useful in visualizing

temporal changes due to climate (Molina-Navarro et al., 2019b). Groundwater

recharge is one of the most important inputs to groundwater models simulated

with MODFLOW. However, in most cases, groundwater modellers use simplistic

assumptions and the zonal approach to estimate recharge for groundwater models.

As noted by Semiromi and Koch (2019), while such groundwater models calibrated

for recharge are capable of satisfactorily reproducing groundwater heads, they

can simply be considered to be “mathematical marionettes, dancing to match the

calibration data even if their underlying premises are unrealistic” (Kirchner, 2006).

This is because such methods fail to account for spatial variability of recharge

rates due to many factors such as varying geology, irrigation practices, landuse

and landcover (Semiromi and Koch, 2019). Because SWAT-MODFLOW is a

tightly coupled hydrologic model, most of the weaknesses of stand-alone SWAT

(e.g. simplified groundwater module in SWAT) and MODFLOW (e.g. inability to

capture most of the hydro-climatic processes owing to surface and atmospheric

processes) are eliminated and thus greatly improving the simulation of surface- and

groundwater processes and interactions for better water resources management

and adaptation planning.
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Groundwater recharge for the SRB was calculated differently than for the RNC

because the SRB SWAT model overlaps the groundwater model. The wet period

in the SRB usually stretches from November to April where approximately 95%

of precipitation takes place. This means that there is little to no precipitation

for half of the year in the SRB, as is typical of semi-arid regions in sub-Saharan

Africa. However, because of agricultural and irrigation activities and GW/SW

interactions in some parts of the SRB, groundwater recharge is calculated and

presented as an annual average. Again, the SWAT-MODFLOW models were

forced with 6 GCMs and percentage differences in recharge between the future

period and baseline periods calculated (i.e. positive values indicate increase in

recharge while negative values indicate a decrease in wet season recharge).

Figures 6.16 to 6.21 show the percentage differences in groundwater recharge

(GWRch) from the baseline period. SWAT-MODFLOW calculates the ground-

water recharge for each HRU (HRUs were mapped onto MODFLOW grid cells).

This approach is advantageous over other simplistic methods mentioned earlier in

that the estimated daily deep percolation or groundwater recharge is a function

of the LU/LC and other land surface-atmosphere interactions.

As was observed in Chapter 4, GCMs vary widely in terms of their represen-

tation of climate, particularly precipitation. The same trend was observed in

Chapter 5 when assessing the impacts of climate on future streamflow. Similarly,

there is relatively wide disagreement and uncertainty between models about future

groundwater recharge. Under the RCP4.5 scenario, BCC-CSM1-1-M generally

predicts a decrease in groundwater recharge in the short term of up to 20% for

most of the basin except parts of Chikwawa and Thyolo where an increase of

around 10% is predicted. In the mid- to late-century, areas surrounding the



6.4 SRB Groundwater Modelling 295

southern parts of Chikwawa and Thyolo experience a surplus in groundwater

recharge whereas the rest of the basin experiences mostly a slight decrease of up

to -25% especially in the 2050s. Under the same conditions CCSM4 predicts even

higher (+30% to +50% change in the short term and up to +40% change in the

late century) ranges for the surplus in GWRch in Southern Chikwawa and Thyolo

with little to negligible change in the rest of the basin. CNRM-CM5 predicts

little to insignificant increase in GWRch in most areas of the basin except for the

southern part of the basin increases of up to +30% can be observed throughout the

century. GFDL-ESM2G predicts slightly increased (up to 15%) levels of GWRch

in the early century for most parts of the basin whereas the high recharge zones in

the highlands and down the basin in the valleys of Chikwawa and Thyolo, recharge

values are expected to go up by up to +60%. In the late century, the values drop to

baseline levels with a few areas showing elevated levels of GWRch of up to +15%.

HadGEM2-ES shows the same trend as GFDL-ESM2G except where a surplus

in GWRch is predicted, it is approximately 2 times higher than GFDL-ESM2G.

MPI-ESM-LR predicts on average about +20% increase in GWRch, in the 2020s

and minimal changes (0 to +5%) in GWRch in the mid- to late-century.

Similarly, under RCP8.5, results vary from one GCM to another. Also, the

direction of change for each time slice is not in agreement among the GCMs. The

percentage differences in GWRch between the future periods and the baseline

varies between -20% to +30% for most of the basin.
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Figure 6.16 Percentage differences in groundwater recharge (GWRch) as simulated
by SWAT-MODFLOW between the baseline period and future periods in the SRB.
MODFLOW was coupled with a SWAT model forced with the BCC-CSM1-1-M GCM
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Figure 6.17 Percentage differences in groundwater recharge (GWRch) as simulated
by SWAT-MODFLOW between the baseline period and future periods in the SRB.
MODFLOW was coupled with a SWAT model forced with the CCSM4 GCM
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Figure 6.18 Percentage differences in groundwater recharge (GWRch) as simulated
by SWAT-MODFLOW between the baseline period and future periods in the SRB.
MODFLOW was coupled with a SWAT model forced with the CNRM-CM5 GCM
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Figure 6.19 Percentage differences in groundwater recharge (GWRch) as simulated
by SWAT-MODFLOW between the baseline period and future periods in the SRB.
MODFLOW was coupled with a SWAT model forced with the GFDL-ESM2G GCM
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Figure 6.20 Percentage differences in groundwater recharge (GWRch) as simulated
by SWAT-MODFLOW between the baseline period and future periods in the SRB.
MODFLOW was coupled with a SWAT model forced with the HadGEM2-ES GCM
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Figure 6.21 Percentage differences in groundwater recharge (GWRch) as simulated
by SWAT-MODFLOW between the baseline period and future periods in the SRB.
MODFLOW was coupled with a SWAT model forced with the MPI-ESM-LR GCM
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In Chapter 4, it has already been demonstrated that, due to the structural

differences in the GCMs and the inherent variability and uncertainty associated

with rainfall simulation in hydrometric studies, results may differ from one study

to another depending on a number of factors – some of which are GCM selection

and the baseline period selected for model training and future comparisons. In

keeping up with one of the sub-aims of this thesis – that of testing the most

suitable way of combining GCMs and hydrologic models for impact assessments –

results of the ensemble models that were considered in this study are presented

here. Particularly, a comparison is made between two sets of results, namely a) a

simple average of the separate hydrologic (SWAT-MODFLOW) models (hereinafter

SRB-SWATMFEMM) and b) results of an integrated hydrologic model whose

SWAT model is forced with the SRB-EGCMM.

Under RCP4.5, SRB-SWATMFEMM (Figure 6.22) predicts no change in

GWRch up to an upper limit of +15% change in the 2020s for most of the basin.

The percentage changes in the high recharge zones referred to earlier are expected

to be as high as +40% but mostly within +15% to +25%. The SRB-EGCMM

forced model (Figure 6.23) gives a similar prediction of +15% increase in recharge

for most of the basin with a few isolated areas showing a minor decrease of about

-15%. Similarly, some areas in the southern part of the basin are predicted to

receive up to +25% more recharge than baseline. In the 2050s, up to +10% more

GWRch is expected for most parts of the basin as predicted by both models

whereas in the 2080s, this model predicts at least +5% higher GWRch than

SRB-SWATMFEMM which generally predicts up to +15% increase in GWRch

for most of the basin.

Under RCP8.5, SRB-SWATMFEMM generally predicts a fluctuation in GWRch
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of between -5% to +5% in the 2020s, up to +10% in the 2050s and no change for

most of the basin in the 2080s compared to baseline conditions. The SRB-EGCMM

forced IHM predicts a range of +10% to +25% increase in GWRch in the 2020s,

a slight drop of +5% to +10% in the 2050s and a similar range of +5% to +12%

in the 2080s.

Comparing the two models, it can be concluded that averaging the separate

IHMs resulted in a reduction of the biases inherent in each model. Moreover, as

established in Chapter 5, the SWAT models are sensitive to the climate data input

and hence uncertainty propagates from the GCMs all the way to the hydrologic

processes within the SWAT models. Thus, the importance of using multi-model

ensembles in IWRM models as demonstrated previously by many other studies in

the literature cannot be overemphasized.

Groundwater recharge changes in the basin are not significant in most parts

of the SRB. While there were some slight variations in predictions among the

IHMs, results from the SRB-SWATMFEMM and SRB-EGCMM forced IHM are

in agreement with each other at basin-scale. Furthermore, these results are in

agreement with those of Cuthbert et al. (2019b) who show that groundwater in

sub-Saharan Africa, contrary to previous studies (e.g. Jimenez Cisneros et al.,

2014), is more resilient than previously thought, especially in arid to semi-arid

areas. In areas that are humid to sub-humid and where the water-table is shallow,

their study suggests pumping of groundwater could potentially create “room for

recharge to occur” (Cuthbert et al., 2019b) as these areas show the least potential

for GWRch. In contrast, in arid and semi-arid climates, recharge potential and

groundwater response time (GRT) is higher than in more humid climates. The

results here indicate that higher recharge is expected in areas that receive less
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than 800mm of rainfall annually (parts of Chikwawa and Thyolo) than in areas

where annual rainfall is in excess of 1200mm. Thus groundwater resources in these

areas could very well be less vulnerable to climate change impacts on precipitation

and could potentially take up to a century before equilibrating or reacting to

current anthropogenic effects on climate (Cuthbert et al., 2019a).

Another often overlooked insight from the study of Cuthbert et al. (2019a,b)

is the importance of losing rivers and streams in recharging aquifers. A possible

explanation of why the regions in Chikwawa could be expected to receive higher

amounts of recharge when compared to the rest of the basin is related to the

higher probability and prevalence of floods in these areas as opposed to higher

areas and thus receive a lot of water from the highlands via several pathways

such as “flash-like” streamflow culminating into floods in this region and also via

groundwater flow from the north. These areas are prone to flooding during intense

episodic rainfall events which could lead to increased recharge during the flood

periods. Thus, the importance of the intensity of rainfall and/or the occurrence of

floods are important pathways for aquifer recharge in arid and semi-arid regions

(Cuthbert et al., 2019b). In Chapter 4, results indicate rainfall in the SRB is

expected to increase slightly at an annual scale but more importantly, on average

a 20% increase in rainfall is expected in the wet months of December–January.

While climate change is expected to bring along extreme precipitation events

(e.g. intense rainfall and floods), groundwater in the shallow and deep aquifers is

expected to be replenished during these extreme episodic rainfall events.

From a climate preparedness and adaptability point of view, it is recommended,

that during intense rainfall events, measures should be put in place to capture

and store flood flows so as to enhance “focussed” (see Section 2.6) groundwater
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recharge in the SRB (Cuthbert et al., 2019b) via a known strategy referred to as

‘managed aquifer recharge’ (MAR).
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Figure 6.22 Percentage differences in groundwater recharge (GWRch) as simulated by
SWAT-MODFLOW between the baseline period and future periods in the SRB. Results
are a simple average of the models (SRB-SWATMFEMM) presented in Figures 6.16
to 6.21
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Figure 6.23 Percentage differences in groundwater recharge (GWRch) as simulated
by SWAT-MODFLOW between the baseline period and future periods in the SRB.
MODFLOW was coupled with a SWAT model forced with the SRB-EGCMM model
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MAR is widely documented in the literature (e.g. Assaf, 2009; MacDonald

and Calow, 2009; Scanlon et al., 2012; Shah, 2009; Usher et al., 2006; Wu et al.,

2012) as an efficient method of recycling storm-water or treated sewerage effluent

(Dillon et al., 2010) in developed countries and regions such as the USA, Canada,

Australia and Europe. MAR is suitable for both rural and urban water supply

needs and has great potential for contributing to water security especially under

the threats posed by climate change and variability.

Which management measures are needed to 
secure groundwater resource sustainability 
under climate-change scenarios ? 

If groundwater systems are to perform their 
potentially critical role in climate-change 
adaptation, they will require (like any other 
‘infrastructure’) proper management.  The action 
required must embrace both :

•  demand-side management to ensure that 
groundwater withdrawals are revised in 
alignment with realistic assessments of average 
renewable resources, taking into account the 
need to conserve environmental discharges 
and to minimise dependence on non-
renewable groundwater
•  supply-side management by promoting an 
appropriate range of recharge enhancement 
measures, taking into account potential 
climate-change induced changes in rainfall 
patterns and the need to ensure adequate 
water quality for aquifer recharge.

The specification of these measures will require 
significant investigation and financial investment, 
since at present the level of funding allocated 
for ‘managing natural infrastructure’ and for 
implementing IWRM, in most cases, remains 
totally inadequate. Harvesting of urban rainfall  
and stormwater run-off can, in effect, be ‘banked’ 
in aquifers for subsequent recovery during drought.
   
The predicted increase in the frequency of
intense rainfall episodes at many latitudes, as a 
result of global warming, favours and necessitates  
much greater attention to ‘managed aquifer 
recharge’ (MAR). It is important that the MAR 
technique selected is appropriate for the 
hydrological setting of the given location.  The 
performance of different MAR techniques is now 
well documented, although they are often 
challenging to operationalise. In some countries 
they contribute up to 10% of the abstracted 
groundwater resource, but globally the ratio is 
nearer 1%. 
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3Figure 6.24 Managed Aquifer Recharge options that can be adopted by water man-
agement agencies (Fig. 3 IAH, 2019).

Figure 6.24 depicts the range of MAR options that can be adopted by national

agencies and adapted to their local settings. A suitability for MAR mapping

exercise is recommended for the SRB to identify regions where efficient focussed

recharge is feasible via MAR schemes. In the Lower Shire Valley (LSV), the

prevalence of alluvial deposits leaves limited space for storage of storm-water
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since groundwater levels tend to be shallow in these deposits. However, where

groundwater levels are indicated to be at depth, MAR is recommended as these

aquifers have good storage and transmissive capacities (Gale, 2005).

6.4.6 Impacts of Land-use/Land-cover

While there is particular emphasis on reforestation in Malawi, there seems to

be no proper guidance from professionals in the hydrology/hydrogeological and

ecological sectors on how this is to be implemented. In the first instance, an

understanding of the soil type and it’s memory (i.e. how well soils preserve

the properties of the forest with respect to hydrology after clearing), needs to

be established. Secondly, the rooting characteristics, which are important for

groundwater recharge, need to be understood before a species of plants is adopted

in the rehabilitation process. For example, it has been documented that eucalypts

are capable of mining groundwater up to a depth of 18 m in the subsurface

and thus lead to dramatic changes in soil moisture content and groundwater

storages (Bloeschl et al., 2007).

Even though the results of this research were premised on a stationary LU/LC,

the importance of changes in LU/LC on catchment processes such as evapotran-

spiration that has been demonstrated (i.e. higher ET) to be a cause of decreased

groundwater recharge in warmer climates (Aslam et al., 2018) cannot be ignored.

Thus an important recommendation is for relevant authorities to ensure that

LU/LC is controlled and preserved for optimised groundwater recharge. In reality,

this is much easier said than done as a balance should be struck between ecological

conservation and agricultural/livelihood needs. For example, the main cause of

deforestation in Malawi is due to the search for arable land by peasant farmers
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and also due to the indiscriminate cutting of trees for charcoal which is a major

source of energy in most communities. An emphasis again is made of the need for

increased capacity in tackling complex and wicked problems associated with the

water-energy-food (WEF) nexus.

6.4.7 SRB Groundwater Recharge Modelling Summary

A summary of the areal percentage change in groundwater recharge with respect

to the baseline period in the SRB is provided in Table 6.4.

Table 6.4 Summary areal mean percentage change in projected groundwater recharge
(GWRch) in the SRB with respect to the baseline period. Changes within ±10 % of
baseline values are considered to be insignificant (green boxes) whereas changes above
+10% (red boxes) and below −10 % (blue boxes) are considered to be significant.

GCM

Scenario
RCP4.5 RCP8.5

2020s 2050s 2080s 2020s 2050s 2080s
BCC-CSM1-1-M -0.5 -1.5 -6.0 -24.2 -25.7 -15.1
CCSM4 14.3 -0.1 8.1 13.4 13.7 -1.1
CNRM-CM5 12.6 2.0 15.6 -1.8 20.7 12.0
GFDL-ESM2G 20.0 28.7 -3.6 47.5 23.4 2.7
HadGEM2-ES 4.1 6.3 24.4 3.3 -0.7 -4.0
MPI-ESM-LR 25.6 35.1 47.3 10.5 7.4 22.8
Ensemble (SRB-EGCMM) 16.1 9.2 24.0 25.3 17.6 20.4
Ensemble (SRB-SWATMFEMM) 12.7 11.7 14.3 8.1 6.5 2.9

GCM

Scenario
RCP4.5 RCP8.5

2020s 2050s 2080s 2020s 2050s 2080s
BCC-CSM1-1-M -0.5 -1.5 -6.0 -24.2 -25.7 -15.1
CCSM4 14.3 -0.1 8.1 13.4 13.7 -1.1
CNRM-CM5 12.6 2.0 15.6 -1.8 20.7 12.0
GFDL-ESM2G 20.0 28.7 -3.6 47.5 23.4 2.7
HadGEM2-ES 4.1 6.3 24.4 3.3 -0.7 -4.0
MPI-ESM-LR 25.6 35.1 47.3 10.5 7.4 22.8
Ensemble (SRB-EGCMM) 16.1 9.2 24.0 25.3 17.6 20.4
Ensemble (SRB-SWATMFEMM) 12.7 11.7 14.3 8.1 6.5 2.9

Increase Insignificant Change Decrease

Here, it can be seen that the models indicate significant increase in groundwater

recharge in at least 50% of the time horizons while the rest indicate no significant

change from baseline values. BCC-CSM1-1-M is an outlier as it is the only model

that projected significant decrease in GWRch under RCP8.5. Under RCP8.5,

the ensemble models are not entirely in agreement with the magnitude of change
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especially under RCP8.5. Again, the areal mean values do not reflect the entire

picture as they are influenced to a great degree by outliers and extreme values.

6.5 Limitations

As is prevalent with any modelling exercise, the following limitations were identified

with modelling efforts in the SRB and DB;

• For the SRB models, the construction of the regional groundwater model

did not take into consideration the occurrence of geological faults that may

have a bearing on localised flows, GW/SW interactions and groundwater

recharge.

• To reduce the time and computational burden due to the vast extent of

the modelled area, cell sizes were deliberately exaggerated. This could lead

to a loss in information and accuracy especially with respect to GW/SW

interactions. However, other studies that involved the use of isotope data

and sub-regional models support the conclusions made in this chapter and

thus the results can be used as an initial estimate and understanding of the

complex groundwater processes in the SRB.

• For the DB and SRB, only one conceptualization was used but studies have

shown that this can lead to ‘underdispersive and prone-to-bias predictions’

(Rojas et al., 2008). Thus future modelling efforts beyond the scope of this

thesis will endeavour to reduce conceptual model uncertainty by considering

multiple representations of the subsurface hydrology.
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6.6 Chapter Summary

This chapter is a culmination of the attempts in this thesis to model the atmo-

spheric and terrestrial phases of the hydrologic cycle. SWAT models described

in Chapter 5 were coupled with MODFLOW-NWT in order to achieve this task.

Here, again, a similar methodology was applied in both the DB and SRB in

line with objective number 5 presented in Section 1.3. According to the results

presented in this chapter, the SWAT-MODFLOW model can be used successfully

by water resources managers to understand and quantify risk and vulnerability to

surface- and groundwater resources.

In the case of the DB, a large portion of the Locharbriggs Sandstone Formation

and the northernmost portion of the Doweel Breccia Formation are projected to

experience a slight decrease in groundwater recharge under RCP4.5 (up to -6%)

and significant decrease under RCP8.5 (up to -22%). The rest of the basin is

projected to experience little to no change in groundwater recharge under both

RCP4.5 and 8.5. However, recharge pathways in the DB have been documented

to be heavily controlled by flow through near vertical fractures particularly in the

north-west and other areas with the basin. Thus, the results presented in this

chapter may not fully capture all the mechanisms that control recharge through

the Quaternary and Permian deposits. From a general perspective, there is no

significant change in groundwater recharge from baseline values except towards the

late-century under RCP8.5. Thus, the threat to future groundwater availability

in the DB due to anthropogenic climate change is minimal based solely on the

ability of the aquifer to recharge itself. Other external stresses on the aquifer such

as uncontrolled and indiscriminate water abstractions may lead to unsustainable
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water levels.

Results indicate that groundwater resources, especially in the low-lying alluvial

formations of the SRB, are more resilient to climate change than previously

hypothesized. Shallow basement and alluvial aquifers in the SRB generally depict

temporal fluctuations in response to seasonal precipitation trends. Groundwater

recharge to the deeper aquifers may exhibit a different recharge mechanism

altogether. While BWF in the central and southern parts of the SRB is indicated

to be in a slight deficit according to results presented in Chapter 5, there is

potential for increased groundwater recharge to the shallow but especially deeper

aquifers in these regions. Under RCP4.5 groundwater recharge is expected to

increase by up to +30% by mid- to late-century in the southern region of the SRB

while recharge in the rest of the SRB is expected to be similar to baseline values.

Under RCP8.5, groundwater recharge south of the SRB is expected to increase

by up to +20%. Groundwater recharge in the rest of the basin is expected to

remain unchanged from baseline values except in the mid- to late-century when

recharge is expected to decrease by up to -10%. Thus, groundwater may act as

a buffer against droughts in rural communities of the SRB if it is managed and

exploited in a sustainable manner. It should be mentioned, however, that these

results reflect future changes with the condition that LU/LC is held constant.

Changes in LU/LC and abstraction scenarios which are unsustainable could result

in potentially different outcomes than presented here.

It terms of the modelling aspect, it has been shown that integrated modelling

is an approach that can be applied both in data-rich and data-sparse regions as

an initial step in understanding GW/SW interactions and as a decision-making

tool in the allocation of surface- and groundwater resources. Additionally, it
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has been shown that integrated modelling can improve the representation of the

hydrologic system and consequently confidence in the projections. This is a crucial

requirement for water managers and policy makers alike since insights gained from

such scientific endeavours impact entire communities and nations from a policy

perspective. Moreover, the IWRM community can benefit greatly from knowledge

generation and sharing of how hydrological processes in different settings and

environments evolve in the presence of climate change.

Uncertainty in the results and non-agreement between models for the same

GCM scenarios remains a challenge. Uncertainty in the results are probably due

to what many other researchers have unanimously observed, namely choice of

GCM, choice of downscaling method and choice of representative concentration

pathway (or emission scenario in some cases) (Smerdon, 2017).

In view of the foregoing, the following recommendations have been proposed;

1. There is need to introduce deliberate and aggressive hydrometric data

collection in the SRB in order to increase current understanding of the

complex system dynamics in the region. In addition to gaining insights

about the quantity of groundwater in any region, high integrity groundwater

level monitoring data is also required for adequate calibration of groundwater

models. Currently, the MoAIWD has assessed that the few groundwater

monitoring boreholes in the SRB are either vandalised, inaccessible, clogged

or simply not maintained. In order to enhance IWRM efforts in the SRB,

heavy investment in the installation of monitoring points and training of

site caretakers and loggers should be prioritised.

2. The feasibility of Managed Aquifer Recharge (MAR) should be given consid-

eration as an adaptation measure to mitigate against the impacts of climate
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change and variability especially in the most vulnerable zones of the SRB.



—I never guess. It is a capital mis-

take to theorize before one has

data. Insensibly one begins to

twist facts to suit theories, in-

stead of theories to suit facts.

Sir Arthur Conan Doyle

7
IWRM in Developing and Transition

Countries - A Case of Malawi

The application of scientific techniques aimed at understanding and quantifying

water resources availability in the Shire River Basin and the threats thereof, have

yielded insights that could support the implementation of robust decision-making

in the context of the IWRM framework. Challenges and opportunities for IWRM

implementation and/or improvement in Malawi are discussed here.
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7.1 Introduction

In light of the many threats to the sustainability of water resources, there is

need to revisit the issue of IWRM and its application, especially in developing

and transition countries. While it is true that there are challenges of IWRM

application are more pronounced in developing and transition countries, there

also exists many opportunities for applying some of the solutions discussed and

proposed in this chapter to IWRM challenges in such regions.

Thus far, in trying to meet the objectives set out for this thesis, the focus has

been limited to the quantification of surface and groundwater resources at the

exclusion of other equally pressing and important aspects of SDG 6. Hopefully,

through the pages of this chapter, IWRM needs and challenges in the face of

climate change in southern Malawi can be highlighted. From the results presented

in Chapters 4 to 6, it has been shown that climate change is a potential threat to

water security in the SRB. Interventions are needed to ensure that the SRB and

the entire Malawi attains SDG 6 by 2030. A recent report by UN-Water (2018)

has indicated that “at current progress SDG 6 is not on track to be achieved by

2030”. Most of the challenges cited in their report resonate with IWRM challenges

that have been identified in Malawi and other developing nations. In this chapter,

IWRM challenges in Malawi that can hamper the implementation of interventions

suggested in the preceding chapters are discussed and possible solutions offered.
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7.2 Overview of IWRM Challenges in

Developing Countries

At the very core of the IWRM paradigm is the desire and aim to develop coherent

policies that will guide the distribution of freshwater resources in an equitable and

sustainable way (GWP, 2011). This means adopting an approach that recognizes

the integration between water and parallel policy sectors ((Benson et al., 2015))

such as energy, food and climate change (hence the nexus approach discussed

in Chapter 2). Inevitably, it is not difficult to immediately see the need for

trans-disciplinary assessment of competing needs within the IWRM and/or WEF

nexus paradigms. For example, among the competing water needs in the SRB is

hydropower generation, irrigated agriculture and domestic water supply. These

different sectors need to work together to ensure sustainable distribution and

usage of water resources in the face of imminent water scarcity.

From a general perspective in developing countries such as Malawi, for IWRM

to be successfully implemented, there is need to consider the strengthening of

human resources development (Al Radif, 1999), development of infrastructure for

the monitoring and control of water resources and establishment of institutions that

will superintend the implementation of IWRM objectives and describe normative

procedures for integrating the many aspects of IWRM at policy, economic and

scientific levels. Many studies (e.g. Allan and Rieu-Clarke, 2010; Braune and

Xu, 2008; Swatuk, 2005) have highlighted the important role of government and

governance structures in the successful implementation of IWRM. Thus, here, we

reiterate the need for sectoral and cultural reforms within the GoM governance

structures with respect to IWRM needs. While a lot of progress has been made



7.3 Technical and Institutional IWRM challenges in Malawi 318

by both governmental and non-governmental players in the IWRM space and

ultimately towards the attainment of SDG 6 in Malawi, a lot of ground is yet to

be covered before this is a reality. In the following sections, these challenges are

discussed with consideration of the potential threats to water resources in the

SRB that have been uncovered in the preceding chapters.

7.3 Technical and Institutional IWRM

challenges in Malawi

7.3.1 Capacity Building Needs

A study by Mkandawire and Mulwafu (2006) revealed a scarcity of well trained

water resources personnel and professionals in both public and private sector

organizations. The study highlighted that most training institutions in Malawi do

not offer courses in IWRM proper and that most respondents in the survey from

the government and private sectors received some aspects of IWRM training from

meetings and workshops (Mkandawire and Mulwafu, 2006). Of note is the authors’

recommendation for Malawi to deliberately engage in capacity building by way of

equipping technicians and other water personnel with formal IWRM training, as

opposed to the sole reliance of donor agencies or other professional networks to

provide the required training and equipment (Mkandawire and Mulwafu, 2006).

The Water Resources Act of 2013 and the National Water Policy (GoM, 2005)

are key pieces of legislation and policy/procedure respectively for management

of water resources in Malawi. The former supersedes the 1969 act and provides

updated guidelines on the management of water resources in Malawi including
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the establishment of the National Water Resources Authority (NWRA), whose

main duty is to superintend the development and management of water resources

in Malawi. The latter acknowledges “IWRM as the basis for sustainable water

development” (Chidammodzi and Muhandiki, 2017), the application of which

is specified in the 2013 Act. This is an important step in the successful im-

plementation of IWRM in Malawi. However, as noted by Chidammodzi and

Muhandiki (2017) in a recent study, the main IWRM challenges in Malawi are

related to (i) “inadequate awareness of IWRM and lack of motivation among water

professionals”, (ii) “lack of specialized training in water institutions”, (iii) “lack

of human resources”, (iv) “irresponsibility of officials” and (v) “lack of IWRM

models”. Addressing these challenges should be one of Malawi’s most urgent needs

but should not be treated as a panacea for IWRM challenges and shortcomings.

Rather, the process itself should be seen as a learning expedition which should

be refined iteratively until the attainment of SDG 6 by 2030. In this thesis, lack

of quality climate and streamflow records has been acknowledged and cosmetic

treatment of the data applied before hydroclimatic models were developed. One

of the reasons for poor ground truth data, inter alia (see also Section 3.6), is the

lack of personnel to record readings and maintain malfunctioning instruments.

Thus, addressing operational and capacity needs in this area can positively impact

environmental data collection and hydroclimatic modelling campaigns in the SRB

and Malawi at large.

7.3.2 Limited Availability of Ground Truth Data

The lack of reliable streamflow gauging station records in Malawi and the SRB in

particular presents a lot of challenges when it comes to water resources management
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and modelling and implementation of adaption strategies. A quick browse through

the GRDC catalogue reveals a reasonable number of gauging stations across

the Malawi hydrologic network. However, one quickly gets frustrated at the

numerous gaps in the streamflow records and thus rendering them unsuitable for

identification and interpretation of long-term hydrological variability and change.

While attempts were made in this thesis and other works (e.g. Mwale et al., 2012)

to obtain complete streamflow records by use of infilling techniques, care has to

be applied to avoid the potential introduction of biases and unwanted signals into

the data. Furthermore, data cleaning and preparation, while unavoidable and

certainly a prerequisite to most modelling tasks, requires an enormous amount of

effort on the modeller or data analyst to ensure ground truth data is validated and

that the signal in the actual observations is conserved following the application of

infilling and/or other time-series analysis techniques. This, often, is an unwelcome

distraction to the modeller or scientist from focussing on the objectives for which

ground truth data was collected in the first place. Thus, as already mentioned,

establishment of more weather and water monitoring stations equipped with

state-of-the-art instruments and skilled operators is of supreme importance to

alleviate this challenge.

7.3.3 Policy Coherence Issues

IWRM in the context of climate change introduces extra complexity with regard

to policy formulation and coherence across multiple sectors. For example, climate

adaptation strategies and related policies between the agricultural and water

sectors need to be interlinked as climate change introduces interacting challenges

across the WEF nexus as discussed in Section 2.4 (England et al., 2018). A multi-
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sectoral adaptation planning paradigm is essential when dealing with the cross-

cutting issues associated with climate change. According to a study by Stringer

et al. (2014), the importance of cross-sectoral partnerships and collaborations

in the management of climate change impacts have been recognised by the

establishment of inter-ministerial climate change committees and task forces in

Southern African countries including Malawi. However, in the particular case of

Malawi, England et al. (2018) note that there are challenges with “institutional

and governance arrangements” aimed at tackling climate change adaptation

strategies. According to the study, the main issues identified were related to

1) limited use of climate information (also highlighted by Vincent et al. (2017))

2) policies with different time-frames and ages across sectors and 3) “the lack of

integrated planning between national policies and international environmental

agreement communications” (England et al., 2018; Stringer et al., 2014, 2010).

With regard to the first issue, Vincent et al. (2017) observes that only 5–10 day and

seasonal forecasts are being used in government decision making and that there

is no evidence of any department using “short-, medium- or long-term climate

projections in their current decision making, despite the availability of regionally

downscaled information from various sources”. The authors further argue that

more relevant and useful information include a) the distribution of rainfall within

a season b) 2–3 week lead-time climate forecasts c) extreme event projections

in the short term (1–5 years) and d) climate projections in the medium term

(typically 6–20 years). Use of climate projections enable water professionals to

predict and quantify the availability and occurrence of water resources. Thus,

at the very least, agricultural, water and energy sectors need to collaborate to

ensure that they are in agreement with respect to water availability, allocation,
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management and adaptation planning.

7.4 Way Forward

Based on results from this research, recommendations have been made that will

highlight areas for improvement in terms of implementation of IWRM in the SRB

under the threat of climate change. It has long been recognised that IWRM is not

meant to be a prescriptive tool but rather an approach that should guide water

resources managers and other relevant stakeholders in their pursuit for better

water resources management (Chidammodzi and Muhandiki, 2017). Similarly,

the recommendations made here are based on experience and international best

practice; they are in no way prescriptive but can be used as a guide to enhance the

use and assimilation of climate and hydrologic data into water policy formulation

and adaptation planning as guided by the IWRM framework.

7.4.1 Data Collection and Sharing

Understanding climate change and other societal problems related to the WEF

nexus requires concerted efforts by various scientists and institutes to both generate

and share hydro-meteorological and related data. Discovery science, especially

in poor and developing regions, should be given the utmost attention as it is the

very foundation of scientific inquiry in the hydrological sciences and forms the

evidence base for sustainable water resources management (Tetzlaff et al., 2017).

The evidence from this research work in Malawi shows that there is urgent need

of data generation that may be useful in understanding environmental systems

and their evolution in the face of climate change. The main challenge that was
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encountered in the SRB with respect to hydrological modelling is the limited

and in some cases non-existent groundwater level monitoring data. This presents

challenges when it comes to groundwater model calibration. Continuous daily or

monthly groundwater level data of sufficient length (typically 20 years or more)

is required for adequate calibration of groundwater models. Another issue that

is equally important when it comes to groundwater modelling is the density of

groundwater monitoring points hence the need to install multiple groundwater

monitoring points across the basin.

While a lot of effort from various stakeholders has been directed towards

ensuring that the SRB is able to cope with the adverse effects of climate change

by 2030 in line with SDG 6, more effort is required to build capacity on the

technical and planning aspects of IWRM. There is evidence of attempts to collect

hydrometric data in the past, particularly streamflow data across the stream

network in Malawi. However, this data is encumbered with a lot of gaps and

inconsistencies so that a lot of treatment is required before working with it. For

example, in Chapter 5, only three stations free of the influence of controlled flows

from Lake Malawi via the Kamuzu Barrage were used to calibrate the SRB SWAT

model. A lot more streamflow gauge records of high integrity would have enhanced

the quality of the model, as opposed to the current available records that are

plagued with a lot of gaps. Consequently, uncertainty in the SRB simulations

is more pronounced than in the RNC. Thus investments in water quantity and

quality monitoring in the basin should be of paramount priority in addition to

the efforts that are concentrated on providing potable water to rural communities.

Capacity building in terms of training personnel to install, record and maintain a

network of streamflow gauges across developing countries such as Malawi should
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be given urgent attention. Similarly, installation of groundwater monitoring wells

and the subsequent recording of high quality groundwater quantity and quality

data should be prioritised in the interest of quality and timely science.

Figure 7.1 Water points in Southern Malawi mapped by the CJF between 2011 – 2018
(Fig. 1, Miller et al., 2018)

In the past decades, there has been a lot of aid to the WASH sector in Malawi

from the donor community to lessen the burden of access to clean water especially

in rural areas. Consequently, a lot of boreholes have been sunk over the years

by various donors to alleviate this pressure. However, there has been little to no
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follow-up by the donor community in terms of finding out what the impact of

these interventions have been on the communities. There are a few organisations

have invested resources to monitor borehole functionality in these areas post-

installation. WaterAid (2003 – 2005) and Engineers Without Borders – Canada

(2009 – 13) are among the few organisations that have endeavoured to establish

water point database systems (Miller et al., 2018). What should be encouraged

is the establishment of a platform from which such data could be shared and

accessed by various stakeholders.

In the last eight years, the Scottish Government Climate Justice Fund (CJF)

under the Water Futures Programme has worked with the Malawi Ministry of

Irrigation, Agriculture and Water Development (MoAIWD) to not only help

Malawi achieve SDG 6 by providing infrastructure and access to fresh water

supplies in rural Malawi, but to also collect valuable data (e.g., Figure 7.1) from

new and existing water points across southern Malawi (Miller et al., 2018). To

this end, the CJF Programme in 2011 embarked on a thorough scoping exercise

of all Management Information System (MIS) platforms which culminated into

the adoption of mWater, an online MIS tool (Miller et al., 2018). Using this tool,

various data such as functionality of boreholes, water point surveys, sanitation

surveys, irrigation, drilling and water quality data shall be collated and made

accessible to stakeholders in real time. Thus, management of water resources by

relevant stakeholders can be enhanced by targeting development and/or attention

to regions of greatest need. Adoption and further development of the mWater

tool by the wider WASH sectors is recommended by Miller et al. (2018).

Discovery science, data collection and generation in developing countries is an

urgent and immediate need. The emergence of tools and technologies (e.g. machine



7.4 Way Forward 326

and deep learning algorithms) that can help organisations derive insight from

complex and multi-faceted environmental data provides a unique opportunity

to help develop solutions that, hitherto, seemed unattainable. The use of such

technologies and innovations will spur the integration of “socio-economic and

stakeholder factors” with GCMs and hydrologic models that are better suited for

decision making in developing countries and other semi- to arid regions (Burt and

McDonnell, 2015). The availability of ground truth and other forms of data of

high integrity will help researchers improve existing and future hydrologic models

and also ease the development and adoption of robust decision support systems

(DSS).

7.4.2 Capacity Building in IWRM Sectors

7.4.2.1 Skilled Workers Shortage

As noted in Section 7.3.1, there is a shortage of skilled personnel in the Malawi

WASH sectors (includes government ministries and NGOs). Consequently, efforts

to collect and generate high integrity data on which most of the decisions and

policies should be predicated, are frustrated. Outside other logistical challenges

such as access to monitoring stations (e.g., blocked access roads, limited trans-

portation etc.), shortages of skilled water resources personnel can be alleviated

by implementing recommendations such as those of Mkandawire and Mulwafu

(2006). The same challenges apply when it comes to implementation of IWRM

measures especially in rural and remote areas of the SRB. This research has

established that effects of climate change are more severe in Malawi, and by

extension other areas of similar climate, than in temperate regions. Climate

change adaptation and preparedness demands that all stakeholders such as the
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GoM, NGOs and communities are all aware of the different but coordinated roles

they are supposed to play. Rural communities are constantly to be engaged on the

practice of sustainable water use (e.g. borehole-garden permaculture advocated for

by Rivett et al. (2018)). However, most of these efforts are spearheaded by NGOs

as observed by Mkandawire and Mulwafu (2006). Adequate training of personnel

working in IRWM and related departments will ensure that enough manpower is

on the ground to implement and share IWRM principles within rural communities

in the SRB. Here, universities and other tertiary institutions will play a major

role to supplement efforts being made by NGOs and the donor community.

7.4.2.2 Role of the Donor Community

Chapters 4 to 6 have highlighted possible challenges associated with rainfall

and freshwater shortages in rivers, streams and lakes. Furthermore, Chapter 6

has highlighted the potential robustness of groundwater aquifers in the central

portion of the SRB even under climatic stress. The donor community such as

the CJF, JICA and the World Bank have funded and supported the installation

of groundwater abstraction points fitted with hand pumps in rural communities

of the SRB. While such efforts are welcome, they should be preceded by proper

feasibility studies and robust well design and installation programmes. Multiple

wells in the SRB are non-functional due to poor borehole drilling and pump

installation.

In terms of training, recently the CJF programme has provided short courses to

water resources personnel from the government and private sectors. Participants

have been taught at a minimum, the basics of IWRM and international best

practice in this sector. Shared experiences from various fora such as workshops
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organised by the CJF have also helped in ensuring various IWRM stakeholders

learn from the successes and mistakes of their colleagues in different regions of

Malawi. There is need for other donor agencies to come on board and offer basic

IWRM training in addition to installation of boreholes and other reticulation

systems in rural communities. More importantly, such investments either by the

donor community or GoM, should be done with full consideration of the concept

of “Stranded Assets” as proposed by Kalin et al. (2019) to ensure sustainable and

judicious SDG 6 investment strategies.

7.4.2.3 Role of Tertiary Institutions

Tertiary institutions such as universities and colleges should encourage the training

of highly skilled IWRM personnel such as hydrologists, hydrogeologists and many

other related fields and sub-fields. Where more specialized training beyond the

current ability of local universities are required, training could be outsourced

elsewhere or capacity built over time in both government and private tertiary

institutions. The emergence of tools and paradigms to identify solutions to water

problems such as IWRM and the nexus approach require transdisciplinary efforts

in order to satisfy the water needs of interacting social and natural systems (Grigg,

2019). Thus, critical skills training for IWRM personnel should be of paramount

importance especially for Malawian Government MoAIWD officials. In addition,

similar to what the CJF WFP have done in recent years, exchange programmes

where officials travel to learn and share experiences from first world countries

should be encouraged. Short courses such as MOOCs offering water resources

management and related training should be subscribed to as these can be accessed

remotely.
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7.4.2.4 Software and Computing Infrastructure

The ubiquity of open-source hydrologic modelling software tools is a positive

step in ensuring collaboration and sharing of research findings among key WASH

sectors such as NGOs, Government institutions and private agencies. Commercial

and proprietary software can be inhibitively expensive for many individuals

and organisations in developing countries. Furthermore, collaborations between

different organizations or groups would require all parties to have the same software

and thus limiting or hindering participation from groups that do not have the

requisite software.

Free and open-source sofware (FOSS) 1 tools commonly used and required

in hydrologic modelling include but not limited to the following; QGIS (QGIS

Development Team and others, 2015), SWAT, MODFLOW, HEC-RAS (Brunner,

2002), HEC-HMS (Feldman, 2000), MT3D-USGS (Bedekar et al., 2016), MT3DMS

(Zheng and Wang, 1999), PRMS (Markstrom et al., 2015) and GSFLOW (Mark-

strom et al., 2008). In this thesis, a deliberate choice was made to use freely

available software to promote reproducibility and sharing of research findings, a

stance which, in recent years, has been supported by many other scientists (Baker,

2016; Mair, 2016). Scientific programming tools such as R and Python have been

used extensively in hydrological and climate studies. Researchers often publish

the code and associated data in repositories such as GitHub 2 or as supplementary

material to their published papers. Often-times such scripts are finally collated

and bundled into a library or package that can be installed from public code

repositories along with vignettes that describe how functions in the library can be
1In this thesis, free software tools that are free but not necessarily open-source are included

in this definition.
2https://github.com/
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applied to solve a particular problem. This is an important advantage for scientists

and researchers in developing countries who have limited access to proprietary

software such as MATLAB® and ArcGIS among many others. Additionally, using

open-source scientific languages such as R and Python, one can easily automate

the entire workflow from data collection via web-scraping to data analysis and

visualization. In the R programming environment, tools such as R Markdown

(Xie, 2017; Xie et al., 2018) can integrate analysis, visualization and publication so

that the end result is a document or vignette complete with results and associated

code.

However, adopting FOSS for IWRM scientific needs requires a lot of investment

in training scientists and other practitioners in the efficient use of these tools.

From experience, hydrologic modelling using FOSS requires considerable effort

and knowledge of related pieces of software to achieve the same result using a

commercial GUI. For example, commercial groundwater modelling software such

as Groundwater Modelling System (GMS) and Visual MODFLOW incorporate

GIS and groundwater modelling tools in the same package so that most of the

data preparation using external GIS tools is diminished or eliminated. Although

free tools such as ModelMuse are now catching up to these commercial software, it

is still considerably easy to pre-process, model, calibrate and post-process results

in commercial tools than in FOSS. Thus, a balance needs to be made between

productivity (including reliability of results) and cost-saving. If available personnel

are not yet well versed in the use of FOSS tools, a slow transition is recommended.

With specific reference to surface- and groundwater model calibration, com-

mercial software has a lot to offer than FOSS which often has isolated tools that

make it almost impossible to streamline the modelling workflow. Furthermore,



7.4 Way Forward 331

there is a lot of time investment required to learn these tools and be able to

use them efficiently. This is in contrast to the commercial software tools alluded

to earlier that incorporate the whole process from conceptual design to model

calibration. Model calibration, an often underrated and neglected step in the

modelling workflow, is one of the most computation intensive tasks requiring

not only a deep understanding of the watershed/aquifer being simulated, but of

the underlying physics of the calibration tools themselves. For example, the two

most popular groundwater model calibration software tools employed by many

hydrogeologists, UCODE and PEST, have not been integrated into free ground-

water modelling tools such as ModelMuse. Although, some progress has been

made to integrate PEST++ (Welter et al., 2015) and PEST into free groundwater

modelling tools such as FloPy, not many people have adopted these tools due to

the huge overhead required to successfully use and adopt these tools. Consider,

too, the works of Fisher et al. (2016) who are proponents of reproducibility in

groundwater modelling. Although most of their model is reproducible, it is not

possible to reproduce the calibrated model as the calibration was done outside

of the R Programming environment which handled the reproducible components.

Similarly, free surface hydrologic modelling platforms such as SWAT and PRMS

do not offer inbuilt calibration, perhaps due to the fact that initial developers’

interests and experience were not in mathematical optimization. Thus, develop-

ment in calibration tools for these popular software remains in the domain of

mathematical optimization specialists and programmers who are interested in

building stand-alone applications. Again, the importance of having well trained

personnel working with these tools versus commercial packages such as FEFLOW,

GMS, SMS, MIKE-SHE and Visual MODFLOW cannot be stressed enough.
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On the hardware front, experience shows that integrated modelling is a compute

intensive exercise often requiring high-end graphics and processing hardware. As

a minimum, the recommendation is to use machines with at least 16 GB RAM

and i5 processors. In this research, for example, processing the SRB DEM

using QGIS took prohibitively long processing times. To mitigate this, powerful

and faster computer hardware is recommended. Ideally, laptops and desktops

specifically designated as ‘workstations’ would be a cost effective option where

high-performance computing (HPC) is inaccessible. With respect to operating

systems, it is generally observed that most hydrologic software are developed for

Microsoft Windows based operating systems. Hence the recommendation here

is biased towards computers running Windows based operating systems. It is

possible to install two or more operating systems on one computer so that a switch

to another can be made when required. For example, experience shows that it is

faster to run some optimization modules on a Linux OS (also free and open-source)

or it’s variants than on Windows based OS. Hence the ability to dual-boot Linux

and Windows on one machine is desired as it eliminates the need of having two

computers host the operating systems. Ultimately, access to HPC services would

be recommended to shorten simulation times. For example, calibration of SRB

SWAT model took close to 2 months to achieve acceptable results on a machine

with 16 GB RAM and a 2.7 GHz intel core i7 processor. On an HPC cluster, this

can be processed in under an hour leading to faster delivery of research results to

relevant stakeholders.

Another important aspect is that of data storage. With the advent of cloud

storage services, many organizations and institutions are migrating their data

from local data centres to cloud storage facilities. The advantage of cloud storage
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is that end-users do not need to worry about maintaining their local storage

databases. Moreover, cloud storage and related services allow on-demand and

high-quality access to applications and services without implementing the same

locally (Wang et al., 2013).

7.4.2.5 Modelling and Research Centres

Finally, there is need to strengthen research centres in Malawi and related regions

so that they are capable of generating high quality hydrometric data and models

that are more representative of local conditions. It was highlighted, for example,

in Section 4.9.5.2 that climate modelling is still a challenge in Africa as has been

observed in many GCMs (James et al., 2018). GCMs that are more representative

of African climate and conditions coupled with high integrity ground truth data

will enable climate scientists and hydrologists build robust models that can be

used to underpin IWRM decisions and policies in their respective countries.

7.4.3 Robust Adaptation Strategies

7.4.3.1 Dealing with uncertainty

In Section 2.2, various sources of uncertainty associated with climate change and

impact studies were presented. Furthermore, it was demonstrated how that climate

change and variability is expected to affect the quantity of both surface- and

groundwater resources. Many plausible scenarios and outcomes, all necessitating

the need for adaptation measures, were also presented and discussed. The question,

which naturally arises, is how to deal with the uncertainty and formulate the best

adaptation plan given the plausibility of multiple future scenarios? Given the many

challenges related to future scenario modelling and inter-sectoral policy coherence
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issues in developing countries, conditions arise where the uncertainty can be

classified as “deep” according to Walker et al. (2013). From their definition, deep

uncertainty arises when “one is able to enumerate multiple plausible alternatives

without being able to rank the alternatives in terms of perceived likelihood” (Roach

et al., 2018; Walker et al., 2013).

From Fig. 7.2, it can be seen that under Walker et al.’s (2013) classification of

deep uncertainty (i.e., Level 4 uncertainty), multiple unranked plausible futures

with known outcomes exist, typical of climate change and related impact studies.

Maier et al. (2016) present a multi-disciplinary perspective on the interaction of

1) uncertainties, 2) scenarios, 3) robustness and 4) adaptive strategies. In the case

of Malawi and other developing countries, the interplay between the third and

fourth components is of the utmost importance since deep uncertainty is a feature

of all climate change and adaptation studies. From a quantitative perspective,

a special emphasis is made for the need to have all key stakeholder institutions

across the WEF nexus to first of all agree on the level of involvement in the

mathematical modelling of the future. In other words, a consensus needs to be

reached on which software to use, which scenarios to consider, purpose of the

model, which metrics to use to quantify model errors and uncertainty and so on.

In most cases, a multi-model and integrated approach may be required so that all

systems in the WEF nexus are catered for.

7.4.4 Multi-objective Optimization

Following on from the previous section, the goal of efficient and effective water

resources management in the face of uncertainty and multiple competing interests

is not an easy one. In the face of climate change, managers and decision makers
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Figure 7.2 Figure depicting uncertainty levels and how they evolve (Fig. 1, Walker
et al., 2013)

are faced with a complex task of choosing the optimal solution that satisfies water

demands from multiple sectors at the lowest cost possible (Nouiri, 2014).

In this thesis, an integrated GWSW modelling methodology that provides

a quantitative measure of available future water resources under a changing

climate has been developed. The methodology relied upon FOSS tools such as
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MODFLOW and SWAT. These can easily be adopted by IWRM personnel to build

a powerful and robust decision support system (DSS). A robust decision according

to Rosenhead and Mingers’s (2001) definition is “one that opens many paths

towards favourable outcomes while closing off many paths towards unfavourable

ones” (Lempert and Groves, 2010). However, due to the challenges of multi-

decision making highlighted earlier, there is need to enhance the DSS process by

adopting multi-objective optimization (MOO) techniques as shown in Figure 7.3.

DSS

SWAT

MOD-
FLOW

MOO

Expert
Input

DDM

Figure 7.3 Components of a proposed Decision Support System for IWRM in Malawi

Multi-objective optimization techniques have been used in many parts of the

world to determine the best management decisions and policies. A list of some

recent applications of MOO to the solution of water management problems is

given in Table 7.1.

Due to competing water demands, it is becoming increasingly necessary to

employ MOO as a tool that can help decision-makers to arrive at optimal solutions

that will satisfy the demands economically. The tools (i.e. algorithms) for MOO

with respect to their application in IWRM are becoming better, efficient and
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Table 7.1 Applications of multi-objective optimization techniques in water resources
management

Objective Algorithm/Software Reference
River basin
management

Borg MOEA, ε-DSEA Al-Jawad et al. (2019)

Wastewater system
management

Triangle Splitting
Method, CPLEX 12.7

Rezaei et al. (2019)

Optimization of water
consumption structure
based on water
shortage risk

LFP, MOP, BP,
BMLFP

Wang et al. (2019)

Allocation of
agricultural land and
water resources

CCP Li et al. (2019b)

Quantifying predictive
uncertainty associated
with groundwater flow
and reactive transport
models

MOPSO Siade et al. (2019)

Optimize the allocation
of surface and
groundwater resources

NSGA-II Banihabib et al. (2019)

Optimal allocation of
water resources

NSGA-II Gao et al. (2019b)

Equality and benefit for
water allocation

GBSO, CCP, NSGA-II Dai et al. (2018)

Sustainable irrigation
water allocation

IFMONLP Li et al. (2017)

Inclusion of deeply
uncertain factors
directly into a
multi-objective search
procedure

Borg MOEA, MORDM Watson and Kasprzyk
(2017)

more parsimonious due to the active research in this area as indicated by the

publications listed in Table 7.1. Thus these tools can be adopted and applied
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using minimal computing resources even though HPC would be favoured. This is

an advantage for the IWRM community in developing countries where informed

policy formulation is of the utmost importance to avert the negative impacts of

climate change. To the best of the author’s knowledge at the time of writing this

thesis, there is no published records indicating the application of a methodology

such as the one depicted in Figure 7.3 for optimum water resources allocation

using open-source tools specifically in Malawi. It is hoped that this work will open

channels of dialogue and further inquiry into the adoption of these methods for

robust decision-making in the IWRM sector – especially in developing countries

such as Malawi.

7.4.5 Policy formulation and Implementation

Policy formulation and planning of adaptation strategies should be done in a

way that ensures that all parallel and competing interests within the WEF

nexus paradigm are addressed. More importantly, there is need for coherent

trans-sectoral policy and adaptation planning for a highly uncertain future (i.e.,

multiple plausible futures) due to climate and socio-economic changes. Chapter 4

highlighted the possible shortening of the rainy season and how this could affect

the timing of the planting season for most cash crops in the SRB like maize,

a staple food in Malawi. Also, Chapter 5 highlighted possible future blue and

green water scarcity and how this could also affect irrigated agriculture and

freshwater supply. Robust policies and initiatives aimed at ensuring optimized and

sustainable utilization of blue water resources is highly recommended to mitigate

against future BWF shortages especially in the central and southernmost regions

of the SRB. Significant strides in this area at local village level have already
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been made as pointed out by Rivett et al. (2018) in their study on the use of

borehole-garden permaculture to realise the full potential of rural water supplies in

Malawi. However, similar and advanced basin scale efforts in the face of possible

climate change and competing water requirements must be implemented to ensure

that the SRB is both economically and technologically capable to adapt to climate

change.

Synchronization of policies between agricultural, energy and water supply

sectors is important and recommended to ensure adequate preparedness during

times of water scarcity. Additionally, policy synchronization may help to eliminate

duplication of similar efforts across sectors. The role of local government is also

important in coordinating implantation of water management policies and planning

of settlements to ensure that water resources, both surface- and groundwater, are

not stressed due to increasing populations.

7.5 Summary

Due to increasing water risks identified in Chapters 4 to 6, systematic and

coordinated efforts towards climate change preparedness are required to ensure

the attainment of SDG 6 in the SRB. In this chapter, challenges that can hinder

implementation of IWRM policies and climate adaptation agendas in the SRB

have been discussed and recommendations provided. IWRM challenges in the

developing world and particularly Malawi – but directly related to the work

presented in this thesis – were identified at the exclusion of many other equally

important challenges.

Capacity building in the water sector is the most important challenge that

was identified and one that needs urgent attention. Recommendations made in
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Chapters 4 to 6 can only be realised if there are coordinated efforts from the GoM,

NGOs and other stake holders at the policy formulation and implementation stages.

Lack of adequate well trained water resources personnel, lack of adequate and well

maintained water monitoring equipment, lack of facilities and other logistical issues

are among the challenges identified with respect to capacity building. Additionally,

lack of adequate investment and financing in rural water supply and sanitation was

identified as a major challenge in the SRB. Investment in the training of personnel

and establishment of adequate infrastructure that will improve the management

of water resources in the SRB should not be seen as a cost but an investment that

will result in positive contributions to the Gross Domestic Product (GDP) in the

long term.

Finally, inter-sectoral policy coherence was recommended to ensure that cli-

mate adaptability planning is done in a holistic manner especially in the face of

competing water needs.



Life can only be under-

stood backwards; but it

must be lived forwards.

Soren Kierkegaard

8
Conclusions and Recommendations

In this chapter, a summary discussion of the findings from each chapter of this

thesis with respect to the objectives defined in Chapter 1 is provided. Thereafter, rec-

ommendations arising from the findings of this research along with considerations

for future works are discussed.
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8.1 Summary of Findings

� In Chapter 2, a detailed literature review discussing aspects of anthropogenic

climate change and the resulting impact on surface- and groundwater re-

sources was presented. The state-of-the-art in surface- and groundwater

modelling was reviewed and discussed. The core finding from the literature

review is that climate change impact assessment is a trans-disciplinary ex-

ercise requiring a holistic assessment all the components of the hydrologic

cycle. Secondly, most of the literature is in agreement that there are many

sources of uncertainty and error in this process hence any assessment should

quantify and report the uncertainty so that policy and decision makers are

able to make informed and unbiased decisions.

� Chapter 3 provides a discussion of the methodologies developed and/or

adapted for this research. The main hydrological tools that were used in

this research (i.e. SWAT and MODFLOW) were introduced. The main

focus in this chapter was to propose a methodology that relied mostly on

free and open-source software for ease of collaboration and reproducibility.

With respect to climate analyses and projections, a novel GCM subset

selection methodology that employs the SU, PDF and a machine learning

method was presented. For purposes of data preparation and cleaning, a

parsimonious univariate method for infilling of missing data in streamflow

records was tested and applied. The ubiquity of gaps in streamflow and

climate data in developing regions makes this method appealing since it is

not as compute-intensive as most of the methods used in literature such as

neural networks. The methodology proposed in this chapter was intended to
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be applied in the RNC (temperate climate) and SRB (mild tropical climate).

� In Chapter 4, the bias correction and spatial downscaling (BCSD) method

proposed in Chapter 3 was tested and applied in downscaling a total of

twenty-nice GCMs, of which seven were finally selected for the two study

sites in line with objectives 1 and 2 of this research. The method was

found to be useful for downscaling global scale climate forecasts to local

watershed scales for hydrological analyses in both the RNC and SRB. The

BCSD method was applied to GCM future projections to obtain local-scale

forecasts for 3 time horizons referred to as the 2020s (early-century), 2050s

(mid-century) and 2080s (late-century). In the case of the RNC, significant

changes in precipitation under RCP4.5 and 8.5 are observed in winter of

up to +24% and +28% respectively by the late century. These results are

consistent with previous research which shows that future winter rainfall

is likely to increase. Summer precipitation in the RNC decreases (up to

-16%) across all forecast horizons and for all scenarios considered. Maximum

and minimum temperatures are expected to increase by 1.9 °C and up to

3.8 °C by the end of the century. In the SRB, there could be increased

rainfall by the late-century of up to +15% in the middle stages of the rainy

season while the early and late stages of the rainy season could experience

decreased rainfall by up to -40% and -18% respectively. This could result

in late onset and early cessation of rainfall and thus affect timing of the

planting of cash crops such as maize for subsistence farmers in the SRB.

Adequate climate adaptation planning and the migration to climate resilient

sustainable agriculture is recommended especially in the rural parts of the

SRB. Maximum and minimum temperatures in the SRB increases by up to
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2.5 °C and in the worst case by up to 5.0 °C under RCP8.5. The ensembles of

GCM projections created by combining the GCM subset (6 for the SRB and

5 for the RNC) via the Random Forest algorithm was used in subsequent

hydrological analyses.

� Chapter 5 presents results of hydrological modelling in the RNC and SRB

as a fulfilment of objective number 3. The main idea in this chapter was to

force SWAT models with a subset of GCMs identified in Chapter 4. Most

importantly, a comparison was made between the performance of SWAT

models developed for a data-rich region (RNC) versus a data-sparse region

(SRB). Future streamflow and blue/green water availability in the RNC and

SRB was assessed successfully using open-source software tools. Modelling

results indicate that there is little impact on future streamflow and water

balance components in the RNC. The southern part of the RNC is expected

to be in slight deficit with respect to BWF (approximately 7 to 9% lower

than baseline values) in the short- to medium term (i.e. 2020s and 2050s).

Similarly, future streamflow in the RNC varies by about ±9% from baseline

values indicating no significant change. RNC modelling results indicate

that, generally, temperate regions are more robust to climate change and

variability. In the SRB, it was found that some regions (especially northern

portions of the SRB) will experience an increase in streamflow while others

are expected to experience a decrease in streamflow. Regions with increased

streamflow may basically be more vulnerable to floods while regions with

decreased streamflow may experience challenges in the agricultural, energy

and domestic water supply sectors. Central and southern portions of the

SRB are expected to receive reduced BWF or “liquid” water which can also
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affect agricultural, energy and water supply sectors. It becomes imperative,

therefore, to substitute inefficient and unsustainable irrigation practices

with more efficient systems such as drip irrigation. Robust climate change

adaptation and preparedness plans in the SRB to mitigate against potential

future water risks should be a priority. Thus, results and recommendations

arising from this chapter should be taken into consideration by relevant

policy makers and water management authorities.

� In Chapter 6, development of integrated hydrologic models (IHMs) for the

RNC and SRB was presented. In line with objectives 4 and 5, groundwater

flow models developed using MODFLOW-NWT and coupled with SWAT

models were tested and applied first in the Dumfries Basin (DB) and

subsequently the SRB. Groundwater recharge for future time horizons

was computed and presented. In DB, a large portion of the Locharbriggs

Sandstone Formation and the northernmost portion of the Doweel Breccia

Formation are projected to experience a slight decrease in groundwater

recharge under RCP4.5 (up to -6%) and significant decrease under RCP8.5

(up to -22%). The rest of the basin is projected to experience little to no

change in groundwater recharge under both RCP4.5 and 8.5. Again, the

threat to future groundwater availability in the DB due to anthropogenic

climate change is minimal based solely on the ability of the aquifer to recharge

itself although other external stresses on the aquifer such as uncontrolled and

indiscriminate water abstractions may lead to unsustainable water levels. In

the SRB, it was discovered that the low-lying alluvial formations of the SRB

are more resilient to climate change than previously hypothesized. Under

RCP4.5 groundwater recharge is expected to increase by up to +30% by
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mid- to late-century in the southern region of the SRB while recharge in

the rest of the SRB is expected to be similar to baseline values. Under

RCP8.5, groundwater recharge south of the SRB is expected to increase by

up to +20%. For the rest of the basin, groundwater recharge is expected to

remain unchanged from baseline values except in the mid- to late-century

when recharge is expected to decrease by up to -10%. Thus, groundwater

may act as a buffer against potential droughts and water scarcity in rural

communities of the SRB if it is managed and exploited in a sustainable

manner.

� Chapter 7 discusses important aspects of IWRM and climate change adapta-

tion implementation in developing countries like Malawi in light of insights

gained from this research. Persistent and endemic IWRM challenges such

as lack of capacity in terms of well trained water resources personnel and

infrastructure are discussed and recommendations for the GoM proposed.

The significance of this chapter is that it highlights IWRM challenges that

can hinder consideration and implementation of the findings and recom-

mendations of Chapters 4 to 6. Finally, possible solutions that may help

mitigate against adverse effects of climate change in the SRB in the context

of IWRM were presented.

8.2 Recommendations

Recommendations arising from this research have been presented in previous

chapters including and especially Chapter 7. Here, a brief summary of the

recommendations is provided as follows;

" In the SRB, there is potential for shortening of the rainy season. Even though
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our models indicate that DJF rainfall is expected to slightly increase, the

mechanisms under which this may happen is not known. For example, it is

possible to have half a month’s rainfall in one day while the rest of the month

is relatively dry (case of intra-seasonal and intra-monthly drought). Monthly

mean values, in this case, do not mean anything more than just an indication

of the possible rainfall quantity expected. Thus, the recommendation is

that in the future, subsistence and commercial farmers in the SRB should

be encouraged to plant drought-resistant crops such as cassava in place of

crops such as maize which require a lot of water.

" Because of the potential for decreased BWF and GWF in the southern part

of the SRB, farmers using ineffective and unsustainable irrigation methods

should be encouraged to substitute them with more efficient and sustainable

methods such as drip irrigation and other permaculture farming practices.

" The resilience of groundwater aquifers to climate change is a positive result

for SRB communities. Investment in borehole drilling within rural SRB is

thereby recommended to ensure that communities have access to potable

water. However, the CJF-WFP has identified that the most important cause

of non-functional boreholes is poor drilling and installation of the boreholes.

Thus, hydrogeological feasibility studies should judiciously performed prior

to siting of borehole locations including proper well design and drilling

considerations.

" Hydro-meteorological data collection, summarized in three themes below, is

one of the major issues in the SRB. The following specific recommendations

were made:

1. Climate impact studies rely on historical climate observations as well
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as GCM outputs to project and prepare for possible future climate

scenarios. While the role of satellite remote sensing in climate im-

pact studies cannot be overemphasized, climate data recorded from

meteorological stations are important in understanding local ground

conditions. The ubiquity of remotely sensed climate products should

be complemented with ground observations for completeness. Thus

the GoM through the Ministry of Natural Resources, Energy and En-

vironment and other stakeholders in the SRB should aim at ensuring

that climate variables are recorded on a daily or sub-daily basis at

the current weather stations. Setting up of new climate stations to

increase the density of meteorological stations in the SRB should also

be considered as a priority. Most importantly, quality assurance and

control should be emphasized by screening the data and storing it in a

format that lends itself easily to analyses without much pre-processing.

Some climate stations in the SRB had unrealistic values which, unless

detected early during the pre-processing stage, could adversely affect

downscaled GCM results.

2. There should be deliberate efforts aimed at improving the quality

and integrity of data collected from the streamflow gauge network

in the SRB and the rest of Malawi. Historical streamflow records in

the SRB are fraught with gaps and inconsistencies that, for the most

part, reduces the efficacy of the said data in hydrological modelling.

Lessons can be learned from the United Kingdom Benchmark Network 2

(UKBN2) campaign in the UK (result of which were used in this thesis)

that aims at ensuring that streamflow records are screened and assessed
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for suitability in climate-driven hydrological trends interpretation. Lack

of capacity in terms of adequate training of water monitoring assistants

(WMAs), including modern streamflow monitoring equipment, should

be given urgent attention by the Ministry of Agriculture, Irrigation

and Water Development (MoAIWD).

3. There is need for continuous monitoring of groundwater levels in the

SRB and the rest of the country. The sparseness of historical groundwa-

ter level data makes it difficult to calibrate and constrain groundwater

models for more robust predictive modelling. Some of the major prob-

lems associated with sparse or non-existent groundwater data is the

issue of vandalism and lack of personnel (WMAs) to record the readings.

Introduction of automatic groundwater level loggers in monitoring wells

protected with locking steel lids can mitigate against these limitations.

" There should be deliberate plans and policies to meet training requirements

for WASH sector personnel in the SRB. The role of local and international

tertiary learning institutions in ensuring ease of access to IWRM training in

whatever form cannot be overemphasized. The donor community, NGOs and

GoM should work in tandem to identify and provide training opportunities

for water resources personnel to ensure effective application of IWRM across

all sectors.

" The tools and methods developed in this thesis may be incorporated as part of

a decision support system (DSS) to assist the GoM and aligned stakeholders

in their short-, medium- and long-term climate-change adaptation and

water security planning. More specifically, an understanding of the spatial

distribution of future water resources (both surface- and groundwater) in the
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SRB is invaluable in the identification of vulnerable regions – consequently

leading to timely climate preparedness and adaptation strategies. Another

advantage is the open-source nature of the tools employed in this thesis;

leading to a zero- or low-cost yet robust DSS that easily be adopted by

IWRM professionals across all sectors.

" A multi-sectoral adaptation planning paradigm should be adopted by all

IWRM stakeholders especially and including the GoM to ensure policy

coherence with respect to water, energy, climate and food.

" Managed aquifer recharge (MAR) is recommended as a viable method for

capturing and storing flood flows to enhance groundwater recharge.

8.3 Limitations

Limitations associated with this research are summarized below:

Stationary LU/LC: LU/LC for the HRUs in the SRB and RNC was considered

to be stationary throughout the 21st century; that is, LU/LC conditions

that prevailed during the baseline period were assumed to remain constant

throughout the future simulated period. This is a significant limitation as

conditions in the future may neither be reflective of past nor present condi-

tions. While this approach is conservative, there is need for an independent

LU/LC projected changes study that will feed into the models developed in

this research for refined understanding of future hydrological impacts.

Downscaling Method: Another important source of uncertainty as discussed in

Section 2.2.1 is the choice of GCM downscaling method. In this thesis, only

one downscaling method was employed and hence limitations associated with

the method selected in this research can be propagated to the hydrologic
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models. Moreover, because the experiments were conducted using only one

downscaling method, it was difficult to quantify the uncertainty associated

with the methodology adopted here versus other downscaling methods. One

known limitation with the methodology adopted in this thesis is that of the

stationarity assumption; that is, an assumption is made that the performance

of an empirical statistical downscaling (ESD) method for baseline conditions

is indicative of the skill it exhibits when applied to future climate projections

(Dixon et al., 2016). It has been shown that, depending on the region, there

exists some downscaling errors, especially in coastal areas and also during

warmer months arising from the use of ESDs (Dixon et al., 2016).

Conceptual Modelling: Another source of uncertainty that needs to be con-

sidered is the surface and groundwater conceptual modelling. The issue of

multiple conceptual models has been given enough attention in the literature

(e.g. Hojberg and Refsgaard, 2005; Troldborg et al., 2007) to the extent that

different conceptualizations may lead to different results.
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8.4 Research Contribution

A summary of the contributions to research that this thesis has yielded is presented

in the box frame below.

Novelty

Summary of Research Novelty

1. In this thesis, a novel method for GCM selection that can potentially

reduce inherent bias and uncertainty in future projections has been

proposed. The application of the SU and PDF methods, combined

with machine learning based methods for selection of a subset of GCMs

for hydrological simulations is a parsimonious methodology that can be

applied by researchers in both and temperate and semi-arid climates.

2. To the best of the author’s knowledge, this is the first time a regional

integrated (i.e., both surface- and groundwater) modelling approach

has been applied to the RNC and SRB to quantify availability of

future water resources up to the end of the 21st century. The results

from this work can be used for climate adaptation planning and as a

baseline for future research especially in the SRB.

3. This work has demonstrated that, for hydrological modelling, available

remotely-sensed and reanalysis climate data can be used in lieu of

missing point meteorological data. Furthermore, it has been shown

that it is imperative to test different reanalysis products for a particular

region to determine which product is the most suitable. For example,

applying the same methodology to the SRB and RNC, it was discovered

that CRU reanalysis data was more suitable for the RNC while CFSR

products were suitable for the RNC.

4. This work provides a basis for a unified framework and methodology
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Noveltyfor integrated hydrologic modelling that can be applied in different

climatic settings using freely available hydro-climatic data products.

8.5 Considerations for Future Works

In this section, a summary of proposed future works is presented. It is the author’s

hope that the following suggestions shall be implemented in the shortest possible

time so as to advance and/or enhance the methodology and results presented in

this thesis.

1. While only two RCP scenarios (i.e. RCP4.5 and 8.5) were considered, it is

intended to extend the models to include RCP6 which is consistent with a

future where the application of a range of technologies and strategies for

reducing greenhouse gas emissions are applied.

2. Due to the multiple future scenarios generated by this study and following

the discussion presented in Section 7.4.4, it is the view of the author that

multi-objective optimization be employed to address the trade-offs between

model calibration and an uncertain or contested predictive model outcome(s);

the result of which would allow decision-makers to consider the likelihood of

a model prediction or outcome to occur in spite of the parameters chosen

to calibrate the model (see Section 2.5.3.2 on non-uniqueness) (Siade et al.,

2019).

3. Since LU/LC was considered to be stationary in the future (see Section 8.3),

it is possible that results presented in this thesis could be conservative

especially for Malawi where issues of deforestation and significant land-cover

change/removal are prevalent. Thus it is planned to take into consideration
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the effects of a changing climate and land-use on hydrologic components in

the SRB and RNC. Recently a tool developed by Moriasi et al. (2019) is

capable of updating land-use in the SWAT model while running multi-year

simulations.

4. The issue of model structure uncertainty is one that needs to be considered

in future works to assess the significance of this uncertainty on the results of

this research. This objective will also include current and projected LU/LC

scenarios as has been stated above.

5. It is intended to test the feasibility of incorporating data-based models as

predictive tools for surface- and groundwater resources availability. The

machine- and deep-learning models will be trained and validated against

results obtained in this thesis. The idea is to improve the methodology used

in this thesis so that similar results can be obtained with great confidence

parsimoniously.

6. SWAT and MODFLOW models created in this thesis are not reproducible

programmatically. This means that one has to rely completely on GUIs

such as ModelMuse and QSWAT to create similar models. In the future, the

model creation process will be automatized using the Python programming

language to facilitate ease of reproducibility.

7. Currently, the authors of QSWATMOD have decided to port it to Python

3.x since FloPY, the groundwater modelling engine, will cease Python 2.7x

support. Thus, all SWAT-MODFLOW models developed in this thesis will

be converted into a future Python 3.x QSWATMOD compatible version

programmatically as suggested above.
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Table A.1 Main characteristics of each RCP after van Vuuren et al. (2011)

Scenario
RCP2.6 RCP4.5 RCP6 RCP8.5Component

Greenhouse gas Very low Medium-low mitigation high mitigation High baseline
emissions Very low baseline Medium baseline

Agricultural Medium Very low for both Medium for Medium for
Area for cropland cropland and pasture cropland but very both cropland

and pasture low for pasture and pasture
(total low)

Air pollution Medium-Low Medium Medium Medium-high
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Figure B.1 GCMs’ ability to simulate precipitation for the baseline period (1981–2005)
in the River Nith Catchment after bias correction.
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Figure B.2 GCMs’ ability to simulate summer maximum temperature for the baseline
period (1981–2005) in the River Nith Catchment after bias correction.
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Figure B.3 GCMs’ ability to simulate summer minimum temperature for the baseline
period (1981–2005) in the River Nith Catchment after bias correction.
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Figure B.4 Performance of CCSM4 downscaled precipitation in the SRB
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Figure B.5 Performance of CNRM-CM5 downscaled precipitation in the SRB
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Figure B.6 Performance of GFDL-ESM2G downscaled precipitation in the SRB
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Figure B.7 Performance of HadGEM2-ES downscaled precipitation in the SRB
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Figure B.8 Performance of MPI-ESM-LR downscaled precipitation in the SRB
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Figure B.9 Performance of bcc-csm1-1m downscaled maximum temperature in the
SRB
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Figure B.10 Performance of CCSM4 downscaled precipitation in the SRB
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Figure B.11 Performance of CNRM-CM5 downscaled maximum temperature in the
SRB
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Figure B.12 Performance of GFDL-ESM2G downscaled maximum temperature in the
SRB
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Figure B.13 Performance of MPI-ESM-LR downscaled maximum temperature in the
SRB
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Figure B.14 Performance of bcc-csm1-1m downscaled minimum temperature in the
SRB
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Figure B.15 Performance of CCSM4 downscaled minimum temperature in the SRB
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Figure B.16 Performance of CNRM-CM5 downscaled minimum temperature in the
SRB
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Figure B.17 Performance of GFDL-ESM2G downscaled minimum temperature in the
SRB
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Figure B.18 Performance of HadGEM2-ES downscaled minimum temperature in the
SRB
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Figure B.19 Performance of MPI-ESM-LR downscaled minimum temperature in the
SRB
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Figure B.20 Performance of bcc-csm1-1-1m in predicting wet spell lengths in the SRB
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Figure B.21 Performance of CCSM4 in predicting wet spell lengths in the SRB



B.1 Shire Basin climate modelling 421

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month

0

2

4

6

8

10

W
et

 s
pe

ll 
le

ng
th

 in
 d

ay
s

CNRM-CM5 wet spell lengths at Bvumbwe

Baseline
GCM-corrected
GCM-uncorrected

(a)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month

0

2

4

6

8

10

W
et

 s
pe

ll 
le

ng
th

 in
 d

ay
s

CNRM-CM5 wet spell lengths at Chichiri

(b)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month

0

2

4

6

8

10

W
et

 s
pe

ll 
le

ng
th

 in
 d

ay
s

CNRM-CM5 wet spell lengths at Chileka

(c)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month

0

2

4

6

8

10

W
et

 s
pe

ll 
le

ng
th

 in
 d

ay
s

CNRM-CM5 wet spell lengths at Makhanga

(d)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month

0

2

4

6

8

10

12

14

16

W
et

 s
pe

ll 
le

ng
th

 in
 d

ay
s

CNRM-CM5 wet spell lengths at Mangochi

(e)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month

0

2

4

6

8

10

W
et

 s
pe

ll 
le

ng
th

 in
 d

ay
s

CNRM-CM5 wet spell lengths at Mimosa

(f)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month

0

2

4

6

8

10

W
et

 s
pe

ll 
le

ng
th

 in
 d

ay
s

CNRM-CM5 wet spell lengths at Ngabu

(g)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month

0

2

4

6

8

10

W
et

 s
pe

ll 
le

ng
th

 in
 d

ay
s

CNRM-CM5 wet spell lengths at Thyolo

(h)

Figure B.22 Performance of CNRM-CM5 in predicting wet spell lengths in the SRB
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Figure B.23 Performance of GFDL-ESM2G in predicting wet spell lengths in the SRB
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Figure B.24 Performance of MPI-ESM-LR in predicting wet spell lengths in the SRB
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Figure B.25 Performance of bcc-csm1-1-1m in predicting dry spell lengths in the SRB
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Figure B.26 Performance of CCSM4 in predicting dry spell lengths in the SRB



B.1 Shire Basin climate modelling 426

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month

0

5

10

15

20

25

D
ry

 s
pe

ll 
le

ng
th

 in
 d

ay
s

CNRM-CM5 dry spell lengths at Bvumbwe

Baseline
GCM-corrected
GCM-uncorrected

(a)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

D
ry

 s
pe

ll 
le

ng
th

 in
 d

ay
s

CNRM-CM5 dry spell lengths at Chichiri

(b)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month

0

5

10

15

20

25

D
ry

 s
pe

ll 
le

ng
th

 in
 d

ay
s

CNRM-CM5 dry spell lengths at Chileka

(c)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

D
ry

 s
pe

ll 
le

ng
th

 in
 d

ay
s

CNRM-CM5 dry spell lengths at Makhanga

(d)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month

0

5

10

15

20

25

D
ry

 s
pe

ll 
le

ng
th

 in
 d

ay
s

CNRM-CM5 dry spell lengths at Mangochi

(e)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

D
ry

 s
pe

ll 
le

ng
th

 in
 d

ay
s

CNRM-CM5 dry spell lengths at Mimosa

(f)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

D
ry

 s
pe

ll 
le

ng
th

 in
 d

ay
s

CNRM-CM5 dry spell lengths at Ngabu

(g)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

D
ry

 s
pe

ll 
le

ng
th

 in
 d

ay
s

CNRM-CM5 dry spell lengths at Thyolo

(h)

Figure B.27 Performance of CNRM-CM5 in predicting dry spell lengths in the SRB
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Figure B.28 Performance of GFDL-ESM2G in predicting dry spell lengths in the SRB
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Figure B.29 Performance of MPI-ESM-LR in predicting dry spell lengths in the SRB



B.1 Shire Basin climate modelling 429

(a) RCP4.5

DJF MAM JJA SON Annual0

200

400

600

800

1000
R

ai
nf

al
l (

m
m

)
bcc-csm1-1-m rainfall at Chileka

Baseline
RCP4.5-20s
RCP4.5-50s
RCP4.5-80s

(b) RCP8.5

DJF MAM JJA SON Annual0

200

400

600

800

1000

R
ai

nf
al

l (
m

m
)

bcc-csm1-1-m rainfall at Chileka

Baseline
RCP8.5-20s
RCP8.5-50s
RCP8.5-80s

(c) RCP4.5

DJF MAM JJA SON Annual0

100

200

300

400

500

600

700

800

R
ai

nf
al

l (
m

m
)

bcc-csm1-1-m rainfall at Mangochi
(d) RCP8.5

DJF MAM JJA SON Annual0

100

200

300

400

500

600

700

800
R

ai
nf

al
l (

m
m

)
bcc-csm1-1-m rainfall at Mangochi

(e) RCP4.5

DJF MAM JJA SON Annual0

100

200

300

400

500

600

700

800

R
ai

nf
al

l (
m

m
)

bcc-csm1-1-m rainfall at Ngabu
(f) RCP8.5

DJF MAM JJA SON Annual0

100

200

300

400

500

600

700

800

R
ai

nf
al

l (
m

m
)

bcc-csm1-1-m rainfall at Ngabu

Figure B.30 bcc-csm1-1-1-m seasonal and annual future projections for rainfall in the
SRB.
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Figure B.31 CCSM4 seasonal and annual future projections for rainfall in the SRB.
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Figure B.32 CNRM-CM5 seasonal and annual future projections for rainfall in the
SRB.
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Figure B.33 GFDL-ESM2G seasonal and annual future projections for rainfall in the
SRB.
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Figure B.34 HadGEM2-ES seasonal and annual future projections for rainfall in the
SRB.
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Figure B.35 MPI-ESM-LR seasonal and annual future projections for rainfall in the
SRB.
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Figure B.36 bcc-csm1-1-1-m future projections for maximum temperature in degree
Celsius. Shaded region represents baseline period (1975–2005)
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Figure B.37 CCSM4 future projections for maximum temperature in degree Celsius.
Shaded region represents baseline period (1975–2005)
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Figure B.38 CNRM-CM5 future projections for maximum temperature in degree
Celsius. Shaded region represents baseline period (1975–2005)
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Figure B.39 GFDL-ESM2G future projections for maximum temperature in degree
Celsius. Shaded region represents baseline period (1975–2005)
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Figure B.40 hadGEM2-ES future projections for maximum temperature in degree
Celsius. Shaded region represents baseline period (1975–2005)
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Figure B.41 MPI-ESM-LR future projections for maximum temperature in degree
Celsius. Shaded region represents baseline period (1975–2005)
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Figure B.42 bcc-csm1-1-m future projections for minimum temperature in degree
Celsius. Shaded region represents baseline period (1975–2005)
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Figure B.43 CCSM4 future projections for minimum temperature in degree Celsius.
Shaded region represents baseline period (1975–2005)
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Figure B.44 CNRM-CM5 future projections for minimum temperature in degree
Celsius. Shaded region represents baseline period (1975–2005)
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Figure B.45 GFDL-ESM2G future projections for minimum temperature in degree
Celsius. Shaded region represents baseline period (1975–2005)
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Figure B.46 hadGEM2-ES future projections for minimum temperature in degree
Celsius. Shaded region represents baseline period (1975–2005)
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Figure B.47 MPI-ESM-LR future projections for minimum temperature in degree
Celsius. Shaded region represents baseline period (1975–2005)
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