Distress Detection
Guide to DVD content

December 27, 2012

Contents

1

2

Introduction
The DCA replication experiment files
The forensic investigation files

Detector files

4.1 systemdirectory o
4.2 systemovrhd directoryo
4.3 systeminstr directory

Detector effectiveness evaluation files

5.1 Dataset files
5.2 Experiment automation scriptso
53 Resultsfiles

Performance study files

6.1 Dataset files. Lo

6.2 Application saturation points
6.2.1 Test automation scripts
6.2.2 Results and analysis files

6.3 Runtime overheads
6.3.1 Experiment automation scripts
6.3.2 Results and analysis files

6.4 Attack processing times
6.4.1 Experiment automation scripts
6.4.2 Results and analysis files

6.5 Accumulating alerts
6.5.1 Experiment automation scripts
6.5.2 Results and analysis files

1 Introduction

This DVD contains the source code, datasets, experiment automation scripts,
results files, and data analysis files produced during experimentation with
Distress Detection (DD).

2 The DCA replication experiment files

The DCA implementation, datasets, experiment automation scripts and full
results from the DCA replication experiment can be found within the dca
directory.

The dcam-0.1 directory in dca contains the source files for the DCA
implementation, whilst libtissuek-1.0 contains the source files for the
libtissue framework. This is slightly modified where tissue signals are
transferred to cells without any interfering noise. Amnother minor modi-
fication enhances the framework with a time stamp for the last periodic
signals input. This enhancement was required in order to synchronize the
libtissue server with tcreplay, and to avoid the same input signals being
read by the cells multiple times. These modifications concern tissue.h and
tissue.c. The original libtissue framework is found in libtissue-1.0.

The dataset directory in dca contains all the attack and normal ses-
sions as well as the probes required for the creation of the dataset. These
can be found in the sessions and instrumentation sub-directories re-
spectively. The createtcr sub-directory contains the scripts used to con-
vert the probe log files into antigen and signal tcreplay input files that
can be found in botnet. Finally, the experiments directory contains the
script for computing the scaling factors from the attack/normal session logs
(scalingfactors.pl), the experiment automation script (botnet_expmcav
.pl), and the script utilized to compute the mean MCAVs (computeavgmcav.pl).

The results directory in dca contains the full results along with the
libtissue parameters file used for the experiments. The full results con-
sist of MCAVs for the antigen sampled during each experiment step. The

analysis directory contains the files used to analyze the input signals.

3 The forensic investigation files

The probes, datasets, and full results from the forensic investigation can be
found within the dangersig directory.

The dataset directory in dangersig contains all the attacks, their nor-
mal behavior counterparts, and the probes used. The apachemods and
phpbbvuln sub-directories contain the vulnerable apache module and ph-
pBB scripts respectively. The attacks exploiting these vulnerabilities can be
found in attacks. These consist of metapsloit 3.2 auxiliary modules and
their front-end Perl scripts. The Perl scripts that automate the execution
of the normal HTTP requests can be found in normal. Finally, the probes
used during attack and normal HTTP request execution can be found in
instrumentation.

The results directory in dangersig contains the results files for the
nine attacks and their normal behavior counterparts. Individual results for
attacks and their normal behavior counterparts can be found within the
sub-directories labeled A1 to A9 respectively. The full results consist of the
log files that were forensically analyzed. Files are named according to the
probe that produces them (e.g. netprobe and hostprobe). The files whose

name is prefixed with an n correspond to the normal behavior logs.

4 Detector files

The source code for the distress detectors are included in the detectors

directory. Its three sub-directories contain the following:-

system Contains the detectors used for the detector effectiveness evalua-

tion.

systemovrhd Contains the upgraded detectors used to measure runtime

overheads during the performance study.

systeminstr Contains instrumented detectors used to measure the various

processing times during the rest of performance study experiments.

Each of the directories is further divided into the sigprobes and sandbox
directories that contain the client-side and server-side components for each

detector respectively. The following file naming conventions are used:

e The wpt, wrt and webiot prefixes identify artifacts associated with the
first, second and third detectors respectively. The prefixes represent
the component-threat category pairs from which the detection scopes
of the detectors are derived, namely: web process tampering (wpt),

web repository tampering (wrt), and web I/O tampering (webiot).

e The cl and s suffixes identify client-side and server-side detector arti-

facts respectively.

e The pamp and danger infixes are associated with detector artifacts
that process suspicious HTTP requests and attack symptoms respec-

tively, and refer to the immunology terms by which they are inspired.

e All buffering and alert queue directories are identified by the ¢ suffix.

4.1 system directory

This directory includes the detectors used for the detector effectiveness eval-
uation.

Detector 1 client-side artifacts:

wptpampcl.pl The suspect probe.
wptdangercl.pl The symptom probe.

startwpt.pl The front-end script that launches all client-side components

with the parameters used during experimentation.

Detector 2 client-side artifacts - same files as detector 1 files but having
a wrt prefix.

Detector 3 client-side artifacts:

webiotcl.pl The combined suspects and symptom probe.

startwebiot.pl The front-end script that launches all client-side compo-

nents with the parameters used during experimentation.
Detector 1 server-side artifacts:

wptpamps.pl The suspect alerter.

runcode The C program used for machine-code execution attempts.

wptdangers.pl The symptom alerter and the attack request detector.

startwpt.pl The front-end script that launches all server-side components

with the parameters used during experimentation.
wptpampq The directory used to buffer input HT'TP requests.
execdir The directory in which content execution is attempted.
wptprimeq The suspect alerts directory.
wptdangerq The symptom alerts directory.
wptalertsq The distress alerts directory.

Detector 2 server-side artifacts - same files as detector 1 files but having
a wrt prefix.

Detector 3 server-side artifacts:

webiots.pl The symptom/suspect alerter and attack request detector com-

ponents.

startwebiot.pl The front-end script that launches all server-side compo-

nents with the parameters used during experimentation.
webiotprimeq The suspect alerts directory.

webiotbufferinqg The directory employed to store HI'TP requests along

with their local context.
webiotalertsq The distress alerts directory.

Miscellaneous server-side - ddiptables.conf is the iptables configu-
ration file employed to restore the firewall configuration at the start of every

detector execution during experimentation.

4.2 systemovrhd directory

This directory includes the version of the detectors as upgraded for the
performance study, but not as yet instrumented.

Additional files for detector 3 - webiotpreprocs.pl contains the local
context aggregation that is shifted to the server side and upgraded for perfor-
mance. The webiotbuffs directory is used to buffer the yet un-aggregated

local context events, providing random access to the aggregation process.

4.3 systeminstr directory

This directory includes the instrumented versions of the detectors used for
the performance study. In all the source code files, the instrumentation
code can be identified as code sections highlighted by the #instr comment.
Further notes:

Directory size snapshots - The scripts with the repsnaphots.pl suffix
represent external instrumentation code executed periodically that tracks
the sizes of the suspect and symptom alert directories. These scripts are
launched through the start*.pl scripts.

Interval mode instrumentation - All start*.pl scripts take an interval
mode argument. Whenever this argument is set to 0 the instrumentation
is continuously active. When set to 1, instrumentation code is active only
during the first minute of every 5 minute interval. The purpose of the
‘interval mode’ is to keep log file sizes manageable during the long running
‘accumulating alerts’ experiments.

Log directories - All directories with the *perflogs suffix store the var-

ious log files created by the instrumented detectors.

5 Detector effectiveness evaluation files

All dataset files, experiment automation scripts, and full results for the
detector effectiveness experiments can be found in the del, de2, and de3

directories, for detectors 1-3 respectively.

5.1 Dataset files

Dataset files can be found within the dataset sub-directory of each of the
effectiveness directories. Resources used to create the background traffic can
be found in the normal sub-directory, whilst resources used for attack cre-
ation can be found in the attacks sub-directory. Source code for vulnerable
phpBB scripts can be found in the vulnscripts sub-directory, whilst the
source code and binaries for the vulnerable apache module reside within the

dso sub-directory.

5.2 Experiment automation scripts

Scripts that automate the entire sequence of experiment steps for each de-
tector can be found within the sessions sub-directory of each of the effec-
tiveness directories. File contents are as follows:

Selenium test suite files - These are the files names prefixed by
(wpt lwrt |httpt), followed by attack* or normal#*. These files contain all
attack and background traffic browsing sessions executed by selenium.

sessionend.pl - A Perl script hosted on the web application server that
carries out a number of tasks at the start and end of each experiment step.
Specifically it restarts all client and server-side distress detector processes,
performs recovery of web application recovery attacks and re-starts it, and
makes a copy of the results of the experiment steps.

(wpt |wrt |webiot)testfunc.pl - These perl scripts execute the entire
sequence of experiment steps for each detector. These scripts execute the
selenium sessions, launch stand-alone attacks, launch attack handlers and
call sesssionend.pl between each experiment step. Comments concerning
the pre-requisites of experiment execution can be found at the start of each

script.

5.3 Results files

The results files can be found within the results sub-directory of each of the
effectiveness directories. Each results directory in turn contains a series of
sub-directories for the results of each experiment step. Within each stepXXX

sub-directory, the are four sub-directories containing the following content:

e (wpt|wrt)pampq - Contains a file for each monitored HTTP request.
e (wpt|wrt|webiot)primeq - Contains all suspect alert files.

e (wpt|wrt)dangerq - Contains all symptom alert files.

o (wptlwrt|webiot)alertq - Contains all distress alert files.

e webiotcounters - Due to the large number involved, the third detector
does not retain a copy of them. Instead, each stepXXX directory con-
tains a webiotcounters file showing the number of HTTP requests,
HTTP response chunks, and back-end request packets monitored dur-

ing that experiment step.

e xywwfiles - The results directories for detectors 1 and 2 also con-
tain a number of stepXXX directories ending with the wwwfiles suffix.
These contain files copied from phpBB indicating whether heap over-
flow attacks executed successfully. In detector 1, files named stepXXX
indicates the successful establishment of a remote shell connection
through which these files are created as part of its handling. In detec-
tor 2, the number of <script>location.replace
("http://192.168.147.130")</script> strings at the end of each
phpBB cache file indicates how many heap overflow payloads executed

successfully.

6 Performance study files

All dataset files, experiment automation scripts, results and analysis files
from the performance study experiments are found in the eff1, eff2, and
eff3 directories, for detectors 1-3 respectively. The following file naming

conventions are used:

e The htitperf substring is used for naming automation scripts that call
httperf and are deployed on the workload generation machine, as well

as for the logs produced by them.

e The perfparams substring is used for naming automation scripts uti-
lized for the application saturation points, and the logs produced by
them. The name refers to the function of the saturation point tests in

setting parameters for the performance study.

e The monuvrhd substring is used for naming automation scripts utilized

for the runtime overheads experiments, and the logs produced by them.

e The latency substring is used for naming automation scripts utilized
for the ‘attack processing times’ experiments, and the logs produced by
them. This name refers to the detection latency that attack processing

times contribute to.

e The monper substring is used for naming automation scripts utilized
for the ‘alerts accumulation’ experiments, and the logs produced by

them. This name refers to the long monitoring periods involved.

6.1 Dataset files

Dataset files comprise the background web traffic encoded as httperf session
files based on the selenium test suites used for the effectiveness evaluation,
and an attack for each detector utilized for the ‘attack processing times’
experiment encoded as selenium test suites.

For each detector, its corresponding httperf session file was produced
by first replaying the selenium suite, with all web traffic being recorded
by a tshark probe. The httperf session files were then created out of
the sequence of requests and the post content captured by tshark. The
final session files are trimmed to a thousand requests in order to adhere to
httperf’s limit. The intermediate and final session files resulting from this
process reside in the dataset/httperf path within each of the directories.
The final sessions are those in the *req.perf files. Within these session
files, individual HTTP requests are defined as separate sessions, enabling full
control of the request rate. This is done since httperf’s -rate command-
line option controls the rate of the generated workload at the session, rather
than the individual, HTTP request level®.

These httperf session files undergo one final modification before they
are ready to use. As httperf is unable to handle MIME post content
correctly (observed during a number of experiment trial runs), all HTTP
POST requests containing forum posts ended up raising suspect alerts. This
issue was fixed by a work-around that replaced all POST content that had
not raised a suspect alert during the effectiveness evaluation, with a non-
MIME string. Therefore, the session files that are actually called by the
experiment automation scripts are the ones named *regqmime.perf, and
reside in the dataset/sessions directory.

One further httperf session file is found in effl/dataset/sessions.
It contains a session file for the baseline step of the ‘application saturation
points’ test. This session comprises simply of a single request to index.html,
which is then called as many times as required using its corresponding au-
tomation script.

The selenium test suites are very similar to those used for effectiveness
evaluation, with minor modifications accounting for the concurrent employ-

ment of httperf. Given that the web traffic generated by httperf fails to

"http:/ /www.hpl.hp.com/research /linux /httperf/httperf-man.txt

change the state of phpBB in terms of post submissions, attacks are pre-
ceded by additional requests that ensure the necessary database updates
required by the attacks to succeed. In all three cases, these additional re-
quests consist of the creation of a new topic within phpBB’s default forum.
In the case of third detector, additional follow-up requests ensure the re-
trieval of the stored malicious forum post. The retrieval of this post ensures

the completion of the attack, and therefore the possibility of detecting it.

6.2 Application saturation points
6.2.1 Test automation scripts

These tests are executed through the *perfparams.pl Perl scripts found in
dataset/sessions of each directory. These scripts are intended to be exe-
cuted from the workload generation machine. These scripts execute httperf

sessions with a gradually increasing request rate.

6.2.2 Results and analysis files

The output of the test automation scripts comprise httperf log files, named
xperfparams.res, that reside in results/stepperfparams of each direc-
tory. For analysis, these results are first transformed into a more polished
form and stored in the *perfparams.xls files, and subsequently are visu-
alized in *spssgraphs.spv. These files reside within the analysis sub-

directory of each directory.
6.3 Runtime overheads

6.3.1 Experiment automation scripts

These experiments are automated through the *monovrhd.pl scripts found
in dataset/sessions of each directory, intended for execution by the work-
load generation machine. These scripts execute httperf sessions at a fixed

request rate.

6.3.2 Results and analysis files

Results produced by this experiment consist of httperf log files and reside in
results/stepmonovrhd of each directory. The *_base.res, *_probes.res,

and *_full.res files contain the results for the baseline, probes-only, and

full configurations respectively. For analysis, these results are first trans-
formed into a more polished form and stored in *monovrhd.xls files, and
subsequently are visualized in *spssgraphs.spv. All of them reside in the

analysis sub-directories for each detector.

6.4 Attack processing times
6.4.1 Experiment automation scripts

These experiments are automated through a combination of three scripts
found in dataset/sessions of each directory, where both httperf ses-
sions and selenium test suites are executed. The *latencyhttperf.pl
scripts are launched from the workload generation machine and are respon-
sible for executing the httperf sessions. Given the employment of attacks,
sessionend.pl scripts are deployed on the virtual machine hosting the web
application and are responsible to recover the state of the web application
following successful attacks.

Finally, *1latency.pl scripts comprise the front-end scripts through which
the experiments are launched. These scripts are deployed on the work-
load generation virtual machine that resides on the same physical machine
as the monitored web application (the one used for effectiveness evalua-
tion). These scripts first connect to the workload generator to initiate
xlatencyhttperf.pl execution, and then proceed to launch the web at-
tack through selenium. On attack execution completion, the execution
of *latencyhttperf.pl is interrupted, and the sessionend.pl script is
executed in order to recover the state of the web application, restart the
detector, as well as retain a copy of the results from the detector log files,
as otherwise these will be lost on detector restart. The *latency.pl scripts
are parameterized by the number of experiment steps to execute and the
rate at which background traffic is generated. Through a single command

it is possible to execute all experiment steps.

6.4.2 Results and analysis files

The results for this experiment reside in the results sub-directory within
each directory. For each detector, the directories stepl to step100 store
the results for each experiment step. In all the three experiments, steps

1-10 corresponds to 10 steps executed at a 1 req/s rate, steps 11-20 the

10

steps executed at a 2 req/s, and so forth. The *latencyhttperf.res files
store the statistics computed by httperf for the background traffic at each
step. The lower saturation points as a consequence of the ‘full configuration’
deployment of detectors can be observed from them.

Each step* directory contains the log files corresponding to the five
distress detector components produced by the instrumented versions of the
detectors. These are: *pampcl.log and *pamps.log for the suspect probes
and alerters, *dangercl.log and *dangers.log for the symptom probes
and alerters, and the *attackid.log for the attack request detector. Each
log entry represents the processing time for a single input/correlation run
and has the following structure: ‘entry identifier’, ‘start time-stamp’,‘end
time-stamp’. Some log files have a supplementary *init log file that provides
for a higher-precision start time-stamp for processes that buffer their inputs
as files. The *attackid.log file has a fourth entry field containing the
identifiers for the matched HTTP requests and attack symptoms. This
fourth field is left empty for those alert correlation runs that do not raise a
distress alert.

The *latencycompile.pl scripts, found in the analysis sub-directory
of each directory, are used to extract individual attack processing times from
the instrumentation logs. These scripts iterate through the experiment step
directories and for each directory the entries corresponding to the attack
are extracted. The process starts by identifying the entry corresponding
to the attack in each *attackid.log, recognized by its non-empty fourth
field, and then iterates through all other log files in order to extract all the
associated entries. The extracted results are stored in a *latencytable.csv
file, which is subsequently transformed into a more polished form stored as
xlatency.x1ls. Analysis of these results can be found in *spssgraphs. spv,
with eff1/latency_comparative.spv visualizing the combined results for
the three detectors.

6.5 Accumulating alerts

6.5.1 Experiment automation scripts

These experiments are automated using three scripts found in dataset/sessions
of each directory. The *monperhttperf.pl scripts are launched from the

workload generation machine, executing the httperf sessions. The

11

sessionend.pl scripts are the same ones used for the ‘attack processing
times’ experiments.

In contrast to the ‘attack processing times’ experiments, the *monper.pl
and *monperhttperf .pl scripts are disconnected from each other, and so ex-
periment execution first requires the execution of *monper.pl in experiment
start mode, immediately followed by the execution of the *monperhttperf.pl
script. At the point in time when the detector crashes, or *monperhttperf .pl
completes execution, *monper . pl script is executed again in experiment ter-
mination mode to make a copy of the log files.

At the start of each experiment step tsharkbug.pl is also executed si-
multaneously to the client-side probes. This script provides a work-around
for a tshark bug that retains an open handle to deleted ring buffer files,
thus continuing to consume secondary storage space. Whilst it is not pos-
sible to close these handles on tshark’s behalf without actually restarting
tshark, this work-around flushes the content of the ring buffer files marked
as deleted, relinquishing the occupied disk space. In the case of the second
detector, the backupsession.pl script is also executed at the start of each
step. This script takes care of the initiation of the maintenance procedure

mid-way through each experiment run.

6.5.2 Results and analysis files

The results are stored in results/step101-104, each containing the results
of an individual experiment run. Results are similar to the ones produced by
the ‘attack processing times’ experiments, but with two differences. First,
this time the log files are produced by instrumentation executed in interval
mode, and therefore only contain information gathered in the first minute of
each five minute interval. Log entries are filtered on the basis of their start
time-stamp, meaning that processing times with a duration larger than a
minute are recorded as long as the time-stamp falls in the first minute of a
five minute interval. This approach was taken in order to keep the size of
these log files manageable. Second, *repsnapshots.log contain the size for
the suspect and symptom alert directories.

The *monpercompile.pl and *monperaggr . pl scripts, found in analysis
sub-directory of each directory, are used to extract the processing times from
the detector instrumentation logs. For each measurement, its correspond-

ing log file(s) is processed to compute the average processing time for each

12

five minute interval, with the output stored in *monpertable.csv. Finally,
*monpertable.csv is transformed into a more polished as *monper.xls.
This file also contains the computation of the comparative detector up-times
for the various live web-site traffic statistics. Analysis of these results resides
in *spssgraphs.spv, with eff1/analysis/monperfunction_comparative

.spv visualizing the combined results for the three detectors.

13

