
Distress Detection

Guide to DVD content

December 27, 2012

Contents

1 Introduction 1

2 The DCA replication experiment files 1

3 The forensic investigation files 2

4 Detector files 2
4.1 system directory . 3
4.2 systemovrhd directory . 4
4.3 systeminstr directory . 5

5 Detector effectiveness evaluation files 5
5.1 Dataset files . 5
5.2 Experiment automation scripts 6
5.3 Results files . 6

6 Performance study files 7
6.1 Dataset files . 8
6.2 Application saturation points 9

6.2.1 Test automation scripts 9
6.2.2 Results and analysis files 9

6.3 Runtime overheads . 9
6.3.1 Experiment automation scripts 9
6.3.2 Results and analysis files 9

6.4 Attack processing times . 10
6.4.1 Experiment automation scripts 10
6.4.2 Results and analysis files 10

6.5 Accumulating alerts . 11
6.5.1 Experiment automation scripts 11
6.5.2 Results and analysis files 12

1 Introduction

This DVD contains the source code, datasets, experiment automation scripts,

results files, and data analysis files produced during experimentation with

Distress Detection (DD).

2 The DCA replication experiment files

The DCA implementation, datasets, experiment automation scripts and full

results from the DCA replication experiment can be found within the dca

directory.

The dcam-0.1 directory in dca contains the source files for the DCA

implementation, whilst libtissuek-1.0 contains the source files for the

libtissue framework. This is slightly modified where tissue signals are

transferred to cells without any interfering noise. Another minor modi-

fication enhances the framework with a time stamp for the last periodic

signals input. This enhancement was required in order to synchronize the

libtissue server with tcreplay, and to avoid the same input signals being

read by the cells multiple times. These modifications concern tissue.h and

tissue.c. The original libtissue framework is found in libtissue-1.0.

The dataset directory in dca contains all the attack and normal ses-

sions as well as the probes required for the creation of the dataset. These

can be found in the sessions and instrumentation sub-directories re-

spectively. The createtcr sub-directory contains the scripts used to con-

vert the probe log files into antigen and signal tcreplay input files that

can be found in botnet. Finally, the experiments directory contains the

script for computing the scaling factors from the attack/normal session logs

(scalingfactors.pl), the experiment automation script (botnet expmcav

.pl), and the script utilized to compute the mean MCAVs (computeavgmcav.pl).

The results directory in dca contains the full results along with the

libtissue parameters file used for the experiments. The full results con-

sist of MCAVs for the antigen sampled during each experiment step. The

analysis directory contains the files used to analyze the input signals.

1

3 The forensic investigation files

The probes, datasets, and full results from the forensic investigation can be

found within the dangersig directory.

The dataset directory in dangersig contains all the attacks, their nor-

mal behavior counterparts, and the probes used. The apachemods and

phpbbvuln sub-directories contain the vulnerable apache module and ph-

pBB scripts respectively. The attacks exploiting these vulnerabilities can be

found in attacks. These consist of metapsloit 3.2 auxiliary modules and

their front-end Perl scripts. The Perl scripts that automate the execution

of the normal HTTP requests can be found in normal. Finally, the probes

used during attack and normal HTTP request execution can be found in

instrumentation.

The results directory in dangersig contains the results files for the

nine attacks and their normal behavior counterparts. Individual results for

attacks and their normal behavior counterparts can be found within the

sub-directories labeled A1 to A9 respectively. The full results consist of the

log files that were forensically analyzed. Files are named according to the

probe that produces them (e.g. netprobe and hostprobe). The files whose

name is prefixed with an n correspond to the normal behavior logs.

4 Detector files

The source code for the distress detectors are included in the detectors

directory. Its three sub-directories contain the following:-

system Contains the detectors used for the detector effectiveness evalua-

tion.

systemovrhd Contains the upgraded detectors used to measure runtime

overheads during the performance study.

systeminstr Contains instrumented detectors used to measure the various

processing times during the rest of performance study experiments.

Each of the directories is further divided into the sigprobes and sandbox

directories that contain the client-side and server-side components for each

detector respectively. The following file naming conventions are used:

2

• The wpt, wrt and webiot prefixes identify artifacts associated with the

first, second and third detectors respectively. The prefixes represent

the component-threat category pairs from which the detection scopes

of the detectors are derived, namely: web process tampering (wpt),

web repository tampering (wrt), and web I/O tampering (webiot).

• The cl and s suffixes identify client-side and server-side detector arti-

facts respectively.

• The pamp and danger infixes are associated with detector artifacts

that process suspicious HTTP requests and attack symptoms respec-

tively, and refer to the immunology terms by which they are inspired.

• All buffering and alert queue directories are identified by the q suffix.

4.1 system directory

This directory includes the detectors used for the detector effectiveness eval-

uation.

Detector 1 client-side artifacts:

wptpampcl.pl The suspect probe.

wptdangercl.pl The symptom probe.

startwpt.pl The front-end script that launches all client-side components

with the parameters used during experimentation.

Detector 2 client-side artifacts - same files as detector 1 files but having

a wrt prefix.

Detector 3 client-side artifacts:

webiotcl.pl The combined suspects and symptom probe.

startwebiot.pl The front-end script that launches all client-side compo-

nents with the parameters used during experimentation.

Detector 1 server-side artifacts:

wptpamps.pl The suspect alerter.

runcode The C program used for machine-code execution attempts.

3

wptdangers.pl The symptom alerter and the attack request detector.

startwpt.pl The front-end script that launches all server-side components

with the parameters used during experimentation.

wptpampq The directory used to buffer input HTTP requests.

execdir The directory in which content execution is attempted.

wptprimeq The suspect alerts directory.

wptdangerq The symptom alerts directory.

wptalertsq The distress alerts directory.

Detector 2 server-side artifacts - same files as detector 1 files but having

a wrt prefix.

Detector 3 server-side artifacts:

webiots.pl The symptom/suspect alerter and attack request detector com-

ponents.

startwebiot.pl The front-end script that launches all server-side compo-

nents with the parameters used during experimentation.

webiotprimeq The suspect alerts directory.

webiotbufferinq The directory employed to store HTTP requests along

with their local context.

webiotalertsq The distress alerts directory.

Miscellaneous server-side - ddiptables.conf is the iptables configu-

ration file employed to restore the firewall configuration at the start of every

detector execution during experimentation.

4.2 systemovrhd directory

This directory includes the version of the detectors as upgraded for the

performance study, but not as yet instrumented.

Additional files for detector 3 - webiotpreprocs.pl contains the local

context aggregation that is shifted to the server side and upgraded for perfor-

mance. The webiotbuffs directory is used to buffer the yet un-aggregated

local context events, providing random access to the aggregation process.

4

4.3 systeminstr directory

This directory includes the instrumented versions of the detectors used for

the performance study. In all the source code files, the instrumentation

code can be identified as code sections highlighted by the #instr comment.

Further notes:

Directory size snapshots - The scripts with the repsnaphots.pl suffix

represent external instrumentation code executed periodically that tracks

the sizes of the suspect and symptom alert directories. These scripts are

launched through the start*.pl scripts.

Interval mode instrumentation - All start*.pl scripts take an interval

mode argument. Whenever this argument is set to 0 the instrumentation

is continuously active. When set to 1, instrumentation code is active only

during the first minute of every 5 minute interval. The purpose of the

‘interval mode’ is to keep log file sizes manageable during the long running

‘accumulating alerts’ experiments.

Log directories - All directories with the *perflogs suffix store the var-

ious log files created by the instrumented detectors.

5 Detector effectiveness evaluation files

All dataset files, experiment automation scripts, and full results for the

detector effectiveness experiments can be found in the de1, de2, and de3

directories, for detectors 1-3 respectively.

5.1 Dataset files

Dataset files can be found within the dataset sub-directory of each of the

effectiveness directories. Resources used to create the background traffic can

be found in the normal sub-directory, whilst resources used for attack cre-

ation can be found in the attacks sub-directory. Source code for vulnerable

phpBB scripts can be found in the vulnscripts sub-directory, whilst the

source code and binaries for the vulnerable apache module reside within the

dso sub-directory.

5

5.2 Experiment automation scripts

Scripts that automate the entire sequence of experiment steps for each de-

tector can be found within the sessions sub-directory of each of the effec-

tiveness directories. File contents are as follows:

Selenium test suite files - These are the files names prefixed by

(wpt|wrt|httpt), followed by attack* or normal*. These files contain all

attack and background traffic browsing sessions executed by selenium.

sessionend.pl - A Perl script hosted on the web application server that

carries out a number of tasks at the start and end of each experiment step.

Specifically it restarts all client and server-side distress detector processes,

performs recovery of web application recovery attacks and re-starts it, and

makes a copy of the results of the experiment steps.

(wpt|wrt|webiot)testfunc.pl - These perl scripts execute the entire

sequence of experiment steps for each detector. These scripts execute the

selenium sessions, launch stand-alone attacks, launch attack handlers and

call sesssionend.pl between each experiment step. Comments concerning

the pre-requisites of experiment execution can be found at the start of each

script.

5.3 Results files

The results files can be found within the results sub-directory of each of the

effectiveness directories. Each results directory in turn contains a series of

sub-directories for the results of each experiment step. Within each stepXXX

sub-directory, the are four sub-directories containing the following content:

• (wpt|wrt)pampq - Contains a file for each monitored HTTP request.

• (wpt|wrt|webiot)primeq - Contains all suspect alert files.

• (wpt|wrt)dangerq - Contains all symptom alert files.

• (wpt|wrt|webiot)alertq - Contains all distress alert files.

• webiotcounters - Due to the large number involved, the third detector

does not retain a copy of them. Instead, each stepXXX directory con-

tains a webiotcounters file showing the number of HTTP requests,

HTTP response chunks, and back-end request packets monitored dur-

ing that experiment step.

6

• *wwwfiles - The results directories for detectors 1 and 2 also con-

tain a number of stepXXX directories ending with the wwwfiles suffix.

These contain files copied from phpBB indicating whether heap over-

flow attacks executed successfully. In detector 1, files named stepXXX

indicates the successful establishment of a remote shell connection

through which these files are created as part of its handling. In detec-

tor 2, the number of <script>location.replace

("http://192.168.147.130")</script> strings at the end of each

phpBB cache file indicates how many heap overflow payloads executed

successfully.

6 Performance study files

All dataset files, experiment automation scripts, results and analysis files

from the performance study experiments are found in the eff1, eff2, and

eff3 directories, for detectors 1-3 respectively. The following file naming

conventions are used:

• The httperf substring is used for naming automation scripts that call

httperf and are deployed on the workload generation machine, as well

as for the logs produced by them.

• The perfparams substring is used for naming automation scripts uti-

lized for the application saturation points, and the logs produced by

them. The name refers to the function of the saturation point tests in

setting parameters for the performance study.

• The monvrhd substring is used for naming automation scripts utilized

for the runtime overheads experiments, and the logs produced by them.

• The latency substring is used for naming automation scripts utilized

for the ‘attack processing times’ experiments, and the logs produced by

them. This name refers to the detection latency that attack processing

times contribute to.

• The monper substring is used for naming automation scripts utilized

for the ‘alerts accumulation’ experiments, and the logs produced by

them. This name refers to the long monitoring periods involved.

7

6.1 Dataset files

Dataset files comprise the background web traffic encoded as httperf session

files based on the selenium test suites used for the effectiveness evaluation,

and an attack for each detector utilized for the ‘attack processing times’

experiment encoded as selenium test suites.

For each detector, its corresponding httperf session file was produced

by first replaying the selenium suite, with all web traffic being recorded

by a tshark probe. The httperf session files were then created out of

the sequence of requests and the post content captured by tshark. The

final session files are trimmed to a thousand requests in order to adhere to

httperf’s limit. The intermediate and final session files resulting from this

process reside in the dataset/httperf path within each of the directories.

The final sessions are those in the *req.perf files. Within these session

files, individual HTTP requests are defined as separate sessions, enabling full

control of the request rate. This is done since httperf’s -rate command-

line option controls the rate of the generated workload at the session, rather

than the individual, HTTP request level1.

These httperf session files undergo one final modification before they

are ready to use. As httperf is unable to handle MIME post content

correctly (observed during a number of experiment trial runs), all HTTP

POST requests containing forum posts ended up raising suspect alerts. This

issue was fixed by a work-around that replaced all POST content that had

not raised a suspect alert during the effectiveness evaluation, with a non-

MIME string. Therefore, the session files that are actually called by the

experiment automation scripts are the ones named *reqmime.perf, and

reside in the dataset/sessions directory.

One further httperf session file is found in eff1/dataset/sessions.

It contains a session file for the baseline step of the ‘application saturation

points’ test. This session comprises simply of a single request to index.html,

which is then called as many times as required using its corresponding au-

tomation script.

The selenium test suites are very similar to those used for effectiveness

evaluation, with minor modifications accounting for the concurrent employ-

ment of httperf. Given that the web traffic generated by httperf fails to

1http://www.hpl.hp.com/research/linux/httperf/httperf-man.txt

8

change the state of phpBB in terms of post submissions, attacks are pre-

ceded by additional requests that ensure the necessary database updates

required by the attacks to succeed. In all three cases, these additional re-

quests consist of the creation of a new topic within phpBB’s default forum.

In the case of third detector, additional follow-up requests ensure the re-

trieval of the stored malicious forum post. The retrieval of this post ensures

the completion of the attack, and therefore the possibility of detecting it.

6.2 Application saturation points

6.2.1 Test automation scripts

These tests are executed through the *perfparams.pl Perl scripts found in

dataset/sessions of each directory. These scripts are intended to be exe-

cuted from the workload generation machine. These scripts execute httperf

sessions with a gradually increasing request rate.

6.2.2 Results and analysis files

The output of the test automation scripts comprise httperf log files, named

*perfparams.res, that reside in results/stepperfparams of each direc-

tory. For analysis, these results are first transformed into a more polished

form and stored in the *perfparams.xls files, and subsequently are visu-

alized in *spssgraphs.spv. These files reside within the analysis sub-

directory of each directory.

6.3 Runtime overheads

6.3.1 Experiment automation scripts

These experiments are automated through the *monovrhd.pl scripts found

in dataset/sessions of each directory, intended for execution by the work-

load generation machine. These scripts execute httperf sessions at a fixed

request rate.

6.3.2 Results and analysis files

Results produced by this experiment consist of httperf log files and reside in

results/stepmonovrhd of each directory. The * base.res, * probes.res,

and * full.res files contain the results for the baseline, probes-only, and

9

full configurations respectively. For analysis, these results are first trans-

formed into a more polished form and stored in *monovrhd.xls files, and

subsequently are visualized in *spssgraphs.spv. All of them reside in the

analysis sub-directories for each detector.

6.4 Attack processing times

6.4.1 Experiment automation scripts

These experiments are automated through a combination of three scripts

found in dataset/sessions of each directory, where both httperf ses-

sions and selenium test suites are executed. The *latencyhttperf.pl

scripts are launched from the workload generation machine and are respon-

sible for executing the httperf sessions. Given the employment of attacks,

sessionend.pl scripts are deployed on the virtual machine hosting the web

application and are responsible to recover the state of the web application

following successful attacks.

Finally, *latency.pl scripts comprise the front-end scripts through which

the experiments are launched. These scripts are deployed on the work-

load generation virtual machine that resides on the same physical machine

as the monitored web application (the one used for effectiveness evalua-

tion). These scripts first connect to the workload generator to initiate

*latencyhttperf.pl execution, and then proceed to launch the web at-

tack through selenium. On attack execution completion, the execution

of *latencyhttperf.pl is interrupted, and the sessionend.pl script is

executed in order to recover the state of the web application, restart the

detector, as well as retain a copy of the results from the detector log files,

as otherwise these will be lost on detector restart. The *latency.pl scripts

are parameterized by the number of experiment steps to execute and the

rate at which background traffic is generated. Through a single command

it is possible to execute all experiment steps.

6.4.2 Results and analysis files

The results for this experiment reside in the results sub-directory within

each directory. For each detector, the directories step1 to step100 store

the results for each experiment step. In all the three experiments, steps

1-10 corresponds to 10 steps executed at a 1 req/s rate, steps 11-20 the

10

steps executed at a 2 req/s, and so forth. The *latencyhttperf.res files

store the statistics computed by httperf for the background traffic at each

step. The lower saturation points as a consequence of the ‘full configuration’

deployment of detectors can be observed from them.

Each step* directory contains the log files corresponding to the five

distress detector components produced by the instrumented versions of the

detectors. These are: *pampcl.log and *pamps.log for the suspect probes

and alerters, *dangercl.log and *dangers.log for the symptom probes

and alerters, and the *attackid.log for the attack request detector. Each

log entry represents the processing time for a single input/correlation run

and has the following structure: ‘entry identifier’,‘start time-stamp’,‘end

time-stamp’. Some log files have a supplementary *init log file that provides

for a higher-precision start time-stamp for processes that buffer their inputs

as files. The *attackid.log file has a fourth entry field containing the

identifiers for the matched HTTP requests and attack symptoms. This

fourth field is left empty for those alert correlation runs that do not raise a

distress alert.

The *latencycompile.pl scripts, found in the analysis sub-directory

of each directory, are used to extract individual attack processing times from

the instrumentation logs. These scripts iterate through the experiment step

directories and for each directory the entries corresponding to the attack

are extracted. The process starts by identifying the entry corresponding

to the attack in each *attackid.log, recognized by its non-empty fourth

field, and then iterates through all other log files in order to extract all the

associated entries. The extracted results are stored in a *latencytable.csv

file, which is subsequently transformed into a more polished form stored as

*latency.xls. Analysis of these results can be found in *spssgraphs.spv,

with eff1/latency comparative.spv visualizing the combined results for

the three detectors.

6.5 Accumulating alerts

6.5.1 Experiment automation scripts

These experiments are automated using three scripts found in dataset/sessions

of each directory. The *monperhttperf.pl scripts are launched from the

workload generation machine, executing the httperf sessions. The

11

sessionend.pl scripts are the same ones used for the ‘attack processing

times’ experiments.

In contrast to the ‘attack processing times’ experiments, the *monper.pl

and *monperhttperf.pl scripts are disconnected from each other, and so ex-

periment execution first requires the execution of *monper.pl in experiment

start mode, immediately followed by the execution of the *monperhttperf.pl

script. At the point in time when the detector crashes, or *monperhttperf.pl

completes execution, *monper.pl script is executed again in experiment ter-

mination mode to make a copy of the log files.

At the start of each experiment step tsharkbug.pl is also executed si-

multaneously to the client-side probes. This script provides a work-around

for a tshark bug that retains an open handle to deleted ring buffer files,

thus continuing to consume secondary storage space. Whilst it is not pos-

sible to close these handles on tshark’s behalf without actually restarting

tshark, this work-around flushes the content of the ring buffer files marked

as deleted, relinquishing the occupied disk space. In the case of the second

detector, the backupsession.pl script is also executed at the start of each

step. This script takes care of the initiation of the maintenance procedure

mid-way through each experiment run.

6.5.2 Results and analysis files

The results are stored in results/step101-104, each containing the results

of an individual experiment run. Results are similar to the ones produced by

the ‘attack processing times’ experiments, but with two differences. First,

this time the log files are produced by instrumentation executed in interval

mode, and therefore only contain information gathered in the first minute of

each five minute interval. Log entries are filtered on the basis of their start

time-stamp, meaning that processing times with a duration larger than a

minute are recorded as long as the time-stamp falls in the first minute of a

five minute interval. This approach was taken in order to keep the size of

these log files manageable. Second, *repsnapshots.log contain the size for

the suspect and symptom alert directories.

The *monpercompile.pl and *monperaggr.pl scripts, found in analysis

sub-directory of each directory, are used to extract the processing times from

the detector instrumentation logs. For each measurement, its correspond-

ing log file(s) is processed to compute the average processing time for each

12

five minute interval, with the output stored in *monpertable.csv. Finally,

*monpertable.csv is transformed into a more polished as *monper.xls.

This file also contains the computation of the comparative detector up-times

for the various live web-site traffic statistics. Analysis of these results resides

in *spssgraphs.spv, with eff1/analysis/monperfunction comparative

.spv visualizing the combined results for the three detectors.

13

