
A High-order Method for

Computational Hypersonic

Aerothermodynamics

Vincenzo Fico

Department of Mechanical Engineering

University of Strathclyde

A thesis submitted for the degree of

PhilosophiæDoctor

October 2011

mailto:vincenzo.fico@stfc.ac.uk
http://www.strath.ac.uk/mecheng/
http://www.strath.ac.uk/

Declaration

This thesis is the result of the authors original research. It has been com-

posed by the author and has not been previously submitted for examination

which has led to the award of a degree. The copyright of this thesis belongs

to the author under the terms of the United Kingdom Copyright Acts as

qualified by University of Strathclyde Regulation 3.50. Due acknowledge-

ment must always be made of the use of any material contained in, or

derived from, this thesis.

Signed:

Date:

Abstract

In this thesis we study and develop a high-order high-resolution numerical

method for hypersonic flow simulation in the framework of high perfor-

mance computing. A compact-Total Variation Diminishing (TVD) method

for the Euler equations is selected as a solution method to study, extend

and improve. A method to solve the Navier-Stokes equations is proposed,

combining this compact-TVD method with a Kinetic Splitting technique for

the Navier-Stokes flux. The resulting method has improved shock capturing

properties and a computational advantage over operator splitting conven-

tional methods. The stability and accuracy of the method are demonstrated

through a wide range of test cases, including typical hypersonic flows.

We consider how this method may be used in the context of high-performance

computing, exploring the three main paradigms of modern supercomput-

ing: parallelisation through message passing, parallelisation through mem-

ory sharing and acceleration through Graphic Processing Units. A novel

algorithm to parallelise our compact-TVD method using message passing is

presented. The algorithm is based on structured-block partitioning and is

an improvement over previous algorithms that employ the same approach.

Our multi-block algorithm is proven to be suitable for massively parallel

computing: we study its parallel performance and find that its parallel ef-

ficiency is about 90% when running a simulation of 1 million cells using 1

thousand Central Processing Unit (CPU) cores. We then present a strategy

to parallelise our compact-TVD method in the complex computing envi-

ronment of a Graphic Processing Unit (GPU). Our strategy consists of two

steps: 1) algorithm break-down into elementary tasks; 2) adoption of a task-

dependent domain partitioning. Our task-dependent partitioning strategy

is shown to be very effective: the speed-up is about 29× with respect to one

CPU core when running a simulation of 3 million nodes.

To Andrea, who showed me the light ...

Acknowledgements

I would like to thank my supervisors Prof. David Emerson and Prof. Ja-

son Reese for the careful proof-reading of this thesis. I thank Prof. Dave

Emerson for his constant support, and for being always available for dis-

cussion and help during these three years. Thanks to Prof. Jason Reese

for trying to transmit me his great passion for research. Thanks to Dr.

Charles Moulinec for being a good friend and sharing interesting perspec-

tives on fluid mechanics, and life in general. I also thank Dr. Ming Jiang

for introducing me to his philosophical view on the charming world of com-

puter science. I finally thank the staff at STFC Daresbury Laboratory, for

providing the most friendly work environment one could ask for.

Contents

List of Figures vi

List of Tables xv

1 Introduction 1

1.1 High-accuracy methods with spectral-like resolution for gasdynamics . . 6

1.1.1 Basics of compact schemes . 6

1.1.2 Compact methods for gasdynamics 9

1.2 A brief history of High Performance Computing 11

1.3 Computational Fluid Dynamics and High Performance Computing . . . 16

1.3.1 Parallel application of compact schemes 16

1.3.2 GPU-accelerated CFD . 17

1.4 Objectives and thesis outline . 20

2 A compact-TVD method for the solution of the Euler equations 22

2.1 Conservative compact-upwind finite difference schemes 22

2.1.1 Derivation of conservative compact-upwind formulas 23

2.1.2 Resolution properties . 25

2.1.3 Boundary closures . 29

2.2 Split-flux upwind-TVD schemes . 30

2.2.1 Solution of one-dimensional scalar conservation laws 32

2.3 Solution of the Euler equations . 33

2.3.1 Characteristic decomposition . 35

2.3.2 Variants of the method . 37

2.3.3 A modification to the characteristic decomposition 39

2.4 Time discretisation . 40

iii

CONTENTS

2.5 Implementation and boundary conditions 41

2.5.1 Boundary conditions based on extrapolation 42

2.5.2 Characteristic boundary conditions 43

2.6 Summary . 45

3 Solution of the Navier-Stokes equations 46

3.1 Inclusion of viscous effects . 47

3.2 Kinetic Flux Vector Splitting for the Navier-Stokes equations 49

3.2.1 Moments of the Boltzmann equation 49

3.2.2 Kinetic split fluxes . 52

3.2.3 Chapman-Enskog split fluxes . 55

3.3 Numerical method for the Navier-Stokes equations 58

3.3.1 Stress tensor and heat flux vector calculation 59

3.3.2 Differentiation of the viscous flux 60

3.3.3 Boundary conditions . 62

3.3.4 Thermodynamic model . 63

3.4 Summary . 64

4 HPC implementations of the Navier-Stokes solver 65

4.1 Parallel implementation of the Navier-Stokes solver 66

4.1.1 Multi-block domain decomposition algorithms 66

4.1.2 Slab/drawer domain decomposition algorithm 72

4.1.3 Hybrid parallelisation of the Navier-Stokes solver 75

4.2 GPU-accelerated Navier-Stokes solver 78

4.2.1 GPU hardware and programming models 78

4.2.2 Key implementation details of the GPU Navier-Stokes solver . . 83

4.3 Summary . 91

5 Validation of the compact-TVD method 92

5.1 Simulation of inviscid flows . 94

5.1.1 The Lax shock tube . 94

5.1.2 The forward-facing step . 99

5.1.3 Double Mach-reflection . 110

5.2 Simulation of viscous flows . 119

iv

CONTENTS

5.2.1 Shock layer . 119

5.2.2 Self-similar boundary layer . 122

5.3 Laminar shock-boundary layer interaction 128

5.4 Hypersonic blunted cone . 134

5.5 Summary . 144

6 HPC applications of the compact-TVD method 145

6.1 Application of the hybrid multi-task and multi-thread NS solver 145

6.1.1 One-dimensional Riemann problems 146

6.1.2 Supersonic flow past a cone-cylinder configuration 149

6.1.3 Shock-jet interaction . 157

6.1.4 Parallel performance . 168

6.2 Application of the GPU NS solver . 175

6.2.1 Vortex pairing in a compressible mixing layer 176

6.2.2 Hypersonic compression ramp . 184

6.2.3 Performance of the GPU implementation 191

6.3 Summary . 197

7 Conclusions 204

7.1 Simulation of inviscid flows . 204

7.2 Simulation of viscous flows . 204

7.3 Parallel application of the Navier-Stokes solver 206

7.4 GPU application of the Navier-Stokes solver 206

7.5 Suggestions for future work . 207

References 208

v

List of Figures

1.1 Hypersonic laminar shock-boundary layer interaction: high temperature

and thin shock layer result in a very high wall heat flux on a flat plate-

wedge geometry. 2

1.2 Density contours for vortex pairing in a compressible mixing layer: to

correctly simulate this phenomenon requires higher-order numerical meth-

ods. 3

1.3 Modified wave-number vs. wave-number for first derivative approxima-

tions: (a) second order central differences; (b) fourth order central dif-

ferences; (c) sixth order central differences; (d) standard Padé scheme

(β = c = 0, α = 1/2); (e) sixth order tri-diagonal scheme (β = c = 0,

α = 1/3); (f) eighth order tri-diagonal scheme (β = 0); (g) eighth order

penta-diagonal scheme (c = 0); (h) tenth order penta-diagonal scheme;

(i) spectral-like penta-diagonal scheme; (j) exact differentiation. Repro-

duced from Lele (3). 5

1.4 CDC 6600, one of the first supercomputers, designed in the ’60s. 11

1.5 Cray X-MP, example of supercomputer design in the ’80s, based on vec-

tor processors. 12

1.6 Cray Jaguar, an example of a modern MPP system, rated the third

fastest supercomputer in the world in June 2011. 13

2.1 Dispersion and dissipation properties for different approximation schemes.

–�–: fifth-order compact-upwind; –©–: fifth-order explicit-upwind; —–:

exact solution. 26

vi

LIST OF FIGURES

4.1 Parallel algorithms for compact schemes based on structured-block do-

main decomposition. 67

4.2 Schematic of the data layout in main memory for the distributed-memory

slab decomposition algorithm (34). 73

4.3 Schematic of drawer domain decomposition (74). A model domain of

(4×4×4) cells is partitioned in 4 sub-domains when ξ-parallel grid-lines

are processed. 74

4.4 Schematics of quad-core processor architecture. 75

4.5 Schematic of the GPU architecture. 79

4.6 Memory access pattern for coalesced device memory transactions. 82

4.7 Thread-blocking strategy for different kernels. Each colour identifies a

multiprocessor. The dimension-lines indicate the dimensions of thread-

blocks. 84

5.1 Density at time t = 0.8 for the Lax problem: —, analytical solution; ◦,
numerical solution. 95

5.2 Velocity at time t = 0.8 for the Lax problem: —, analytical solution; ◦,
numerical solution. 96

5.3 Pressure at time t = 0.8 for the Lax problem: —, analytical solution; ◦,
numerical solution. 97

5.4 Density at time t = 0.8 for the Lax problem: —, analytical solution; ◦,
numerical solution. 98

5.5 Mach 3 forward-facing step in a wind tunnel: the multi-block mesh (three

different colours). 99

5.6 Mach 3 forward-facing step in wind tunnel. Density contours, 30 equally

spaced levels between: 0.2365 and 5.647, (a)–(b); 0.2628 and 7.564, (c)–

(d). Mesh resolution: 80 × 240 cells. PPMLR results from Woodward

and Colella (78). 100

5.7 Mach 3 forward-facing step in wind tunnel. Density contours, 30 equally

spaced levels between: 0.2805 and 7.717, (a)–(b); 0.2669 and 6.650, (c)–

(d). Mesh resolution: 80 × 240 cells. PPMLR results from Woodward

and Colella (78). 101

vii

LIST OF FIGURES

5.8 Mach 3 forward-facing step in wind tunnel. Density contours, 30 equally

spaced levels between: 0.2688 and 6.602, (a)–(b); 0.2673 and 6.383, (c)–

(d). Mesh resolution: 80 × 240 cells. PPMLR results from Woodward

and Colella (78). 102

5.9 Mach 3 forward-facing step in wind tunnel, 30 equally spaced contours

of: density between 0.2568 and 6.067, (a)–(b); pressure between 0.2752

and 11.82, (c)–(d). Mesh resolution: 80×240 cells. PPMLR results from

Woodward and Colella (78). 103

5.10 Mach 3 forward-facing step in wind tunnel. Vertical velocity contours at

time t = 4: 30 equally spaced levels between -1.005 and 1.461. Dashed

lines denote negative values. Mesh resolution: 80 × 240 cells. PPMLR

results from Woodward and Colella (78). 104

5.11 Mach 3 forward-facing step in wind tunnel. Contours of entropy ratio,

s = p/ργ , at t = 4: 30 equally spaced levels between 0.6325 and 1.115.

Mesh resolution: 80 × 240 cells. PPMLR and MUSCL results from

Woodward and Colella (78). 105

5.12 Mach 3 forward-facing step in wind tunnel. Density contours at time

t = 4: 30 equally spaced levels between 0.090338 and 6.2365. ADER-

WENO results from Balsara et al. (79). 106

5.13 Mach 3 forward-facing step in wind tunnel. Density contours at time

t = 4, 30 equally spaced levels between: 0.090338 and 6.2365, (a)–(b);

0.32 and 6.15, (c)–(d). Mesh resolution: 320× 960 cells. ADER-WENO

results from Balsara et al. (79), explicit-WENO results from Li and

Qiu (80). 107

5.14 Physical and computational problems for the simulation of the shock

reflection over a wedge. 111

5.15 Different configurations of shock reflection over a wedge. IS is the inci-

dent shock trevelling at speed Us, RS and RS2 are reflected shocks, MS

and MS2 are Mach-stems, and SL and SL2 are slip-lines. 112

5.16 Double Mach-reflection, 30 equally spaced contours of: density between

1.731 and 20.92; pressure between 10.30 and 549.4. Mesh resolution:

120× 480 cells. PPMDE results from Woodward and Colella (78). . . . 113

viii

LIST OF FIGURES

5.17 Double-Mach reflection. Contours of entropic ratio, s = p/ργ : 30 equally

spaced levels between and 0.8190 and 12.11. Mesh resolution: 120× 480

cells. PPMDE results from Woodward and Colella (78). 114

5.18 Double Mach-reflection. Density contours: 30 levels equally spaced be-

tween 1.5 and 22.9705. WENO results from Shi et al. (82). 115

5.19 Double Mach-reflection. Density contours: 30 levels equally spaced be-

tween 1.3965 and 22.882. ADER-WENO results from Balsara et al. (79). 116

5.20 Double Mach reflection. Density contours: 30 levels equally spaced be-

tween 1.5 and 22.7. Mesh resolution: 480× 1920 cells. Explicit-WENO

results from Li and Qiu (80). 117

5.21 Solutions to the shock layer problem: —, analytical solution; ◦, our

numerical solution. 120

5.22 Solutions to the shock layer problem: —, analytical solution; ◦, our

numerical solution. 121

5.23 Supersonic flow over a flat plate: steady state solution computed on

108× 270 cells. 123

5.24 Temperature contours (Kelvin) and velocity profiles in the boundary

layer for the supersonic flat plate. 124

5.25 Boundary layer profiles: —, self-similar solution; �, numerical solution

on 54× 135 cells; ◦, numerical solution on 108× 270 cells. 125

5.26 Interaction of an oblique shock wave with a laminar boundary layer over

a flat plate. Reproduced from Reyhner and Flügge-Lotz (87). 128

5.27 Shock-boundary layer interaction: steady-state solution computed on

108× 270 cells. 129

5.28 Separation bubble in the shock-boundary layer interaction: (a) veloc-

ity profiles and (b) streamlines superimposed on temperature contours.

Temperatures are expressed in Kelvin. 130

5.29 Numerical and experimental results for the shock-boundary layer inter-

action: �, experiment by Hakkinen et al. (88); —, CU5-TVD; −−, CFD

by Yao et al. (89). 131

5.30 Comparison between blunted-cone and blunted-wedge hypersonic flows.

Reproduced from Cleary (92). 134

5.31 Computational grid for the hypersonic blunted cone test case. 135

ix

LIST OF FIGURES

5.32 Hypersonic blunted-cone: steady-state contours of entropy, expressed in

J/K. 135

5.33 Hypersonic blunted-cone: steady-state (a) stagnation pressure and (b)

Pitot pressure countour plots. 136

5.34 Stagnation and Pitot pressures as function of the Mach number. 137

5.35 Computed flow variables at station x/Rn = 16.69 as a function of the

distance from the cone surface: –4–, stagnation pressure, Pa; –�–, Mach

number; –◦–, Pitot pressure, Pa. 137

5.36 Nose of the hypersonic blunted-cone: steady-state (a) density and (b)

pressure contour plots. 138

5.37 Nose of the hypersonic blunted-cone: (a) temperature and (b) Mach

number contour plots. 139

5.38 Hypersonic blunted-cone. Surface pressure coefficient: �, experiment by

Cleary (92); —, present method. 140

5.39 Hypersonic blunted-cone. Pitot pressure coefficients: �, experiment by

Cleary (92); —, present method. 141

6.1 Results for RP2 at time t = 0.15: ©, multi-block solution; �, single-

block solution; —, exact solution. 147

6.2 Results for RP3 at time t = 0.15: ©, multi-block solution; �, single-

block solution; —, exact solution. 148

6.3 Computational grids for the supersonic flow past a cone-cylinder geom-

etry. The flow is simulated using both a multi-block mesh, shown in the

upper part, and a single-block mesh, shown in the lower part. 150

6.4 Mach 4 flow past a cone-cylinder geometry: density contours at indicated

times, 20 equally-spaced levels between 0.1428 and 1.428. Comparison

between multi-block (upper part) and single-block (lower part) solutions. 151

6.5 Mach 4 flow past a cone-cylinder geometry: pressure contours at indi-

cated times, 24 equally-spaced levels between 0.98 and 2.66. Comparison

between multi-block (upper part) and single-block (lower part) solutions. 152

x

LIST OF FIGURES

6.6 Mach 4 flow past a cone-cylinder geometry: Mach number contours at

indicated times, 96 equally-spaced levels between 0.04 and 4.6. Com-

parison between multi-block (upper part) and single-block (lower part)

solutions. 153

6.7 Wall coefficients for Mach 4 flow past a cone-cylinder geometry: com-

parison between multi- and single-block solutions. 154

6.8 Effect of characteristic decomposition and domain partitioning on the

simulation of the supersonic flow past a cone-cylinder configuration. Ve-

locity profiles and Mach number contours are shown at a station on the

cylinder surface. 155

6.9 Initial density contours and mesh partitioning for the shock-jet interac-

tion. The case is simulated using both a multi-block (Fig. 6.9(b), upper

part) and a single-block (Fig. 6.9(b),lower part) mesh. Only the block

boundaries are marked as the mesh is too fine to be shown. The scale of

the axes is in metres while the density is in kg/m3. 158

6.10 Shock-jet interaction: density contours at indicated times, 40 equally

spaced levels between 0.05 kg/m3 and 1.2 kg/m3. Comparison between

multi-block (upper part) and single-block (lower part) solutions. The

scale of the axes is in metres. 159

6.11 Shock-jet interaction: density contours at indicated times, 40 equally

spaced levels between 0.05 kg/m3 and 1.2 kg/m3. Comparison between

multi-block (upper part) and single-block (lower part) solutions. The

scale of the axes is in metres. 160

6.12 Shock-jet interaction: density contours at time t = 120 µs, 40 equally

spaced levels between 0.05 kg/m3 and 1.2 kg/m3. Comparison between

multi-block (upper part) and single-block (lower part) solutions. The

scale of the axes is in metres. 161

6.13 Shock-jet interaction: pressure contours at indicated times, 60 equally

spaced levels between 110 kPa and 700 kPa. Comparison between multi-

block (upper part) and single-block (lower part) solutions. The scale of

the axes is in metres. 162

xi

LIST OF FIGURES

6.14 Shock-jet interaction: pressure contours at indicated times, 60 equally

spaced levels between 110 kPa and 700 kPa. Comparison between multi-

block (upper part) and single-block (lower part) solutions. The scale of

the axes is in metres. 163

6.15 Shock-jet interaction: pressure contours at time t = 120 µs, 60 equally

spaced levels between 110 kPa and 700 kPa. Comparison between multi-

block (upper part) and single-block (lower part) solutions. The scale of

the axes is in metres. 164

6.16 Shock-jet interaction: Mach number contours at indicated times, 40

equally spaced levels between 0.05 and 1.9. Comparison between multi-

block (upper part) and single-block (lower part) solutions. The scale of

the axes is in metres. 165

6.17 Shock-jet interaction: Mach number contours at indicated times, 40

equally spaced levels between 0.05 and 1.9. Comparison between multi-

block (upper part) and single-block (lower part) solutions. The scale of

the axes is in metres. 166

6.18 Shock-jet interaction: Mach number contours at time t = 120 µs, 40

equally spaced levels between 0.05 and 1.9. Comparison between multi-

block (upper part) and single-block (lower part) solutions. The scale of

the axes is in metres. 167

6.19 Strong scalability tests. Speed-ups for two computational grids of 3×105

and 106 cells are shown. 169

6.20 Strong scalability tests. Specific times for two computational grids of

3× 105 abd 106 cells are shown. 170

6.21 Weak scalability test. The shock-jet interaction is simulated keeping a

constant load of about 3× 105 cells per quad-core processor. 171

6.22 Scalability test for the OpenMP implementation of the slab decomposi-

tion algorithm. The shock-jet interaction is simulated over 3× 105 cells

using a quad-core processor. 172

6.23 Compressible mixing layer, density contours at indicated times: 30 equally

spaced levels between 0.35 and 1.35. 177

6.24 Compressible mixing layer, pressure contours at indicated times: 30

equally spaced levels between 0.08 and 0.4. 178

xii

LIST OF FIGURES

6.25 Compressible mixing layer, temperature contours at indicated times: 30

equally psaced levels between 0.72 and 1.18. 179

6.26 Compressible mixing layer, vorticity contours at indicated times: 55

equally spaced levels between 0.05 and 2.75. 180

6.27 Vorticity (a) and momentum (b) thickness time-evolutions: —, ACM44

method (96); �, CUDA-CU5-TVD-NS. 181

6.28 Hypersonic flow over a compression ramp: Mach number contour plots

at y − z planes. 184

6.29 Hypersonic flow over a compression ramp: Mach number contour plots

at two x − y planes. The left plane is the ramp symmetry plane, while

the right one is at the edge of the ramp. 185

6.30 Hypersonic flow over a compression ramp: Mach number contour plots

at the ramp surface plane. 186

6.31 Hypersonic flow over a compression ramp: cross flow at the corner of the

ramp. 187

6.32 Hypersonic flow over a compression ramp: contour plots and streamlines

at the symmetry plane. 188

6.33 Hypersonic flow over a compression ramp: contour plots at the symmetry

plane. 189

6.34 Hypersonic flow over a compression ramp: wall coefficients; –, CUDA-

CU5-TVD-NS; �, experiment (98). 190

6.35 Hypersonic flow over a compression ramp: Stanton number; – CUDA-

CU5-TVD-NS; �, experiment (98). 191

6.36 Performance of the multi-thread CPU and GPU implemetations of the

indicated tasks for different mesh sizes. 198

6.37 Performance of the multi-threaded CPU and GPU implemetations of the

indicated tasks for different mesh sizes. 199

6.38 Performance of the multi-threaded CPU and GPU implemetations of the

indicated tasks for different mesh sizes. 200

6.39 Performance of the multi-threaded CPU and GPU implemetations of the

indicated tasks for different mesh sizes. 201

6.40 Performance of the multi-threaded CPU and GPU implemetations of the

matrix transpose for different mesh sizes. 202

xiii

LIST OF FIGURES

6.41 Performance of the multi-thread CPU and GPU Navier-Stokes solvers

for different mesh sizes. 202

xiv

List of Tables

1.1 World top 10 supercomputers, extracted from the top500 published in

June 2011(http://www.top500.org/lists/2010/11). 14

4.1 Occupancy for the custom kernels employed by the GPU Navier-Stokes

solver. 90

6.1 Initial condition for the Riemann problems (RP) designed by Toro (93). 146

6.2 Specific runtimes of multi-thread CPU NS solver. The shock-jet inter-

action is simulated over 3× 105 cells using a quad-core processor. 174

6.3 Specific runtimes on a single CPU core for different procedures and dif-

ferent grid size. 193

6.4 Specific runtimes of multi-thread CPU and GPU NS solvers for two grid

sizes. 196

xv

http://www.top500.org/lists/2010/11

1

Introduction

Vehicles accessing space, such as launchers, shuttles and capsules, fly at very high

speeds, typically much higher than the speed of sound in the surrounding medium.

This condition is effectively expressed using the flight Mach number, M∞, defined as

the ratio of the vehicle speed, V∞, to the local speed of sound, a∞. Space vehicles

often fly at Mach numbers as high as 25, and hence are in the so-called hypersonic flow

regime, conventionally defined by M∞ > 5 (1). Hypersonic flight conditions are design

conditions for these vehicles, because they are associated with very high thermal and

mechanical loads (Fig. 1.1). Simulation of these flows using Computational Fluid Dy-

namics (CFD) is, therefore, a key point in the design and verification of space vehicles,

not only because it represents a cost-effective and quicker alternative to experimental

verification, but also because experimental realisation and measurement of hypersonic

flow conditions is often not feasible.

Hypersonic flow simulations are extremely challenging. Some of the outstanding

issues in hypersonic flow simulation are: modelling of thermodynamic non-equilibrium

phenomena, incorporation of boundary layer transition location models, simulation of

ablation and gas-surface interactions, accurate modelling of radiation, accurate simu-

lation of time-dependent separated flows, turbulent transport in the presence of real

gas effects, handling of complex geometries and control surfaces, accurate simulation of

localised heating due to jet and shock impingement, grid adaptation to resolve critical

flow features such as shocks and shear layers. In this thesis we focus on the kernel of a

fluid dynamic simulation, the numerical method used to solve the governing equations.

Today, most CFD codes for hypersonic flow simulation employ second order shock-

1

Figure 1.1: Hypersonic laminar shock-boundary layer interaction: high temperature and

thin shock layer result in a very high wall heat flux on a flat plate-wedge geometry.

capturing schemes. Two common problems with these methods are: 1) high levels of

dissipation, making them poor candidates for Large Eddy Simulation (LES); and 2)

inadequate grid convergence properties. Sandham and Yee (2), for example, demon-

strated that second-order total variation diminishing (TVD) schemes are unsuitable

for Direct Numerical Simulation (DNS) of vortex pairing in a compressible shear layer

(Fig. 1.2). It follows that there is considerable interest in designing robust and reliable

high-order and high-resolution methods suitable for compressible, and in particular

hypersonic, flow simulation.

Standard mesh-based numerical methods to solve partial differential equations can

be divided into three main categories: finite difference (FD), finite volume (FV) and

finite element (FE). In this thesis we consider finite difference methods, although the

method studied can be applied in FV and FE frameworks as well, as long as a structured

grid is considered. Two important characteristics of numerical methods are:

• Formal accuracy, that relates the discretisation error to the grid size. By defi-

nition, an nth order accurate FD scheme computes a numerical derivative f ′i of

any function f(x) at a node xi, such that the difference between the numerical

derivative and the exact derivative df(xi)/dx is of magnitude ∆xn, where ∆x is

the grid size, i.e.:

f ′i =
df(xi)

dx
+O(∆xn).

• Resolution properties, that relate the range of length scales effectively resolved

on a certain grid to the grid size. If the function to be discretised contains a wave

of a certain spatial wavelength, the higher the resolution of the FD method, the

2

(a) (b) (c) (d) (e)

Figure 1.2: Density contours for vortex pairing in a compressible mixing layer: to cor-

rectly simulate this phenomenon requires higher-order numerical methods.

fewer grid points per wavelength are needed to capture the wave evolution, or,

equivalently, on a particular grid higher resolution FD methods capture the time

evolution of waves with smaller wavelengths. More about resolution properties is

explained in Section 1.1.

It is clear that the formal accuracy determines the grid convergence properties of the

numerical method, i.e. how quickly the computed solution converges to the exact so-

lution as the grid is refined, and therefore it is important for any type of simulation.

On the other hand, resolution properties are relevant only in applications, such as

aeroacoustics, LES and DNS of turbulence, where the interaction between waves is the

phenomenon to be simulated, and so it is crucial that the way the numerical method

captures waves of different wavelength does not affect their simulated interaction.

3

1.1 High-accuracy methods with spectral-like resolution for gasdynamics

CFD simulations can be very time consuming and so the time taken for the simula-

tion to complete is a core issue. This is true especially for compressible flow simulations,

where the non-linear character of the governing equations requires the use of compu-

tationally intensive numerical methods. Since the 1980s it was clear that in scientific

and technical computing some of the tasks a program performs are not inter-dependent

and so they could in principle be executed in parallel. Having many processing units

performing these tasks in parallel can dramatically reduce the compute-time over a

single processing unit. This very general idea is behind all parallel computers, from

the vector processors developed in the 1980s to modern hybrid supercomputers hosting

several shared-memory compute-nodes and accelerators. Modern High Performance

Computing (HPC) is based on parallel processing, which is nowadays such a funda-

mental element of scientific computing in general, and of CFD in particular, that often

certain numerical methods are preferred over others just because they are more suit-

able for parallel implementation. Certain types of CFD simulations are, in fact, only

feasible if run on many Central Processing Units (CPUs). Also, CFD simulations are

often part of a design or optimisation loop, and so are run many times. In these cases

speeding up the simulation is a need rather than an option. While the improved per-

formance of a single-core CPU has a direct positive impact on the performance of any

code, using multiple CPUs, in a distributed or shared memory environment, requires

careful thinking and often a re-design of the serial algorithm.

In this thesis we study and develop a high-order high-resolution numerical method

for hypersonic flow simulation in the framework of high performance computing. In

section 1.1 we build the background for the numerical method we have studied, intro-

ducing the basics of compact finite difference schemes. In section 1.2 we report a brief

history of high performance computing, in order to understand the current scenario. In

section 1.3 we review the HPC applications of CFD that are relevant to our research.

Finally, in section 1.4, we highlight the main contribution of our work and outline the

thesis.

4

1.1 High-accuracy methods with spectral-like resolution for gasdynamics

Figure 1.3: Modified wave-number vs. wave-number for first derivative approximations:

(a) second order central differences; (b) fourth order central differences; (c) sixth order

central differences; (d) standard Padé scheme (β = c = 0, α = 1/2); (e) sixth order tri-

diagonal scheme (β = c = 0, α = 1/3); (f) eighth order tri-diagonal scheme (β = 0); (g)

eighth order penta-diagonal scheme (c = 0); (h) tenth order penta-diagonal scheme; (i)

spectral-like penta-diagonal scheme; (j) exact differentiation. Reproduced from Lele (3).

5

1.1 High-accuracy methods with spectral-like resolution for gasdynamics

1.1 High-accuracy methods with spectral-like resolution

for gasdynamics

1.1.1 Basics of compact schemes

Many physical phenomena possess a range of space and time scales, turbulent flow

being a common example. The simulation of these processes require all the relevant

scales to be properly represented in the numerical model. These requirements have

led to the development of spectral methods (4, 5). The use of spectral methods is,

however, limited to flows with simple domains and simple boundary conditions. For this

reason, compact methods have also been developed; these have spectral-like resolution

properties, are cheaper to use than spectral and pseudo-spectral schemes, and are easier

to handle, especially when complex geometries are involved.

The interest in compact schemes started with the work of Lele (3). Lele devel-

oped compact approximations to first and second order derivatives in a finite difference

framework and used Fourier analysis to determine the error involved with such approx-

imations. We take Lele’s paper as a reference to explain how compact schemes are

developed and why they may be preferred to explicit finite difference schemes.

Given the values of a function f(x) on a set of grid nodes, explicit FD formulas

compute the function derivative as a linear combination of the given function values.

For simplicity, consider a uniformly spaced mesh and let h be the grid spacing. Given

function values at nodes, fi = f(xi), the finite difference approximation, f ′i , to the first

derivative, df(xi)/dx, depends on the function values at neighbouring nodes. For in-

stance, for second and fourth-order central differences, the approximation f ′i depends on

sets (fi−1, fi+1) and (fi−2, fi−1, fi+1, fi+2), respectively. In spectral methods, however,

the value of f ′i depends on all of the nodal values. Compact finite difference schemes

mimic this global dependence. They are a generalisation of Padé schemes, derived by

writing the approximation in the form:

βf ′i−2 + αf ′i−1 + f ′i + αf ′i+1 + βf ′i+2 =

c

6h
(fi+3 − fi−3) +

b

4h
(fi+2 − fi−2) +

a

2h
(fi+1 − fi−1). (1.1)

Writing f(x) and f ′(x) as Taylor polynomials with xi as the starting point, the relations

between the coefficients a, b, c and α, β are found by matching the Taylor coefficients

6

1.1 High-accuracy methods with spectral-like resolution for gasdynamics

of various orders. The first unmatched coefficient determines the formal accuracy of

the formula Eq. 1.1. These constraints are:

a+ b+ c = 1 + 2α+ 2β (second order)

a+ 22b+ 32c = 23!
2!(α+ 22β) (fourth order)

a+ 24b+ 34c = 25!
4!(α+ 24β) (sixth order)

a+ 26b+ 36c = 27!
6!(α+ 26β) (eighth order)

a+ 28b+ 38c = 29!
8!(α+ 28β) (tenth order).

If f(x) is periodic, then the system of Eqs. 1.1 written for each node is a closed linear

system in the unknown derivative values. This system is a cyclic penta-diagonal (tri-

diagonal) system when β is nonzero (zero). The general non-periodic case requires

additional relations appropriate for the near-boundary nodes. As the derivatives are

computed through the solution of a linear system, in compact schemes, as well as in

spectral schemes, the numerical derivative at a node depends on all of the function

values along a grid line. This is a way to explain the improved resolution properties of

compact FD formulas over the explicit ones, as is shown later in this section.

The system of Eqs. 1.1, along with a mathematical transformation between a non-

uniform physical mesh and a uniform computational mesh, provides derivatives on a

non-uniform mesh. The most interesting schemes are obtained for β = 0 and c = 0,

as: (i) the resulting system is tri-diagonal, and thus efficient algorithms, such as the

Thomas algorithm, can be employed for the inversion; (ii) the stencil is narrow, and

so handling the boundaries is easier. In this sub-family, the most accurate scheme is

sixth-order accurate, and has the following coefficients:

α = 1/3, β = 0, a = 14/9, b = 1/9, c = 0.

Lele (3) performed a Fourier analysis of this scheme, among others, and the results are

shown in Fig. 1.3. The way this analysis was performed is outlined in the following.

Consider a uniform mesh made of N nodes, such that xi = h(i − 1), where i =

1, 2, . . . , N , and assume the function f(x) is periodic over the computational domain,

i.e. f1 = fN . The Fourier decomposition of f(x) is:

f(x) =

N/2∑
k=−N/2

f̂k exp

(
2πikx

L

)
, (1.2)

7

1.1 High-accuracy methods with spectral-like resolution for gasdynamics

where i =
√
−1 and f̂k are the Fourier coefficients. Since f(x) is real-valued, its

Fourier coefficients satisfy the condition f̂k = f̂∗−k for 1 ≤ k ≤ N/2 and f̂0 = f̂∗0 ,

where ∗ denotes the complex conjugate. Introducing the scaled wave-number, k̂ =

2πkh/L = 2πk/N , and the scaled coordinate, x̂ = x/h, the basis functions for the

Fourier expansions can be written as: exp(ik̂x̂). The exact first derivative of Eq. 1.2

with respect to x̂ is a function with Fourier coefficient f̂ ′k = ik̂f̂k. The differencing

error of the first derivative may be assessed by comparing the Fourier coefficients of

the derivative obtained from the differencing scheme (f̂ ′k)fd with the exact Fourier

coefficients f̂ ′k. For central difference schemes (f̂ ′k)fd = ik̂′f̂k, where the modified wave

number k̂′ is real-valued. Each finite difference scheme corresponds to a particular

function k̂′(k̂). Exact differentiation corresponds to the straight line k̂′(k̂) = k̂, and

spectral methods provide the exact answer. Plots of the modified wave number k̂′

against wave-number k̂ are shown in Fig. 1.3, taken from Lele (3), for a variety of

schemes. Note that the domain in terms of the scaled wave number is k̂ ∈ [0, π].

With this procedure, resolution characteristics of different schemes can be compared.

It is particularly interesting to compare the curves labelled “c” and “e” in Fig. 1.3,

corresponding to explicit and compact sixth order schemes, respectively. Even though

the two schemes have the same formal accuracy, the compact one stays close to the

exact differentiation over a wider range of wave-numbers.

Compact schemes have been extensively studied over the past two decades. Tam

et al. (6), for example, developed dispersion-relation-preserving (DRP) finite difference

schemes. The basic idea of these schemes is to optimise the coefficients of the compact

schemes to improve their resolution properties in order to resolve waves solved with

a few number of points per wavelength. The schemes presented by Lele and Tam

et al. are intrinsically non-dissipative, as central differences are used to approximate

the derivatives. Centred algorithms cannot prevent odd-even decoupling, which gives

rise to high-frequency oscillations even in smooth regions. Extra filtering procedures,

which are equivalent to adding numerical dissipation in an ad hoc manner, are needed

in order to stabilise the computation. For example, central difference schemes fourth-

order accurate or higher are unstable when coupled with high-order boundary schemes

using one-sided finite difference approximations (7, 8). Carpenter et al. (8) showed that

for a sixth-order inner compact central scheme, only a third-order boundary scheme can

8

1.1 High-accuracy methods with spectral-like resolution for gasdynamics

be used without introducing instability. This results in a globally fourth-order accurate

scheme even if the inner scheme is sixth-order accurate.

A small amount of numerical dissipation is often necessary in practical applications

in order to damp oscillations arising from initial and boundary conditions. For this

purpose, compact upwind schemes have been developed (9, 10, 11) which drop the

restriction of symmetric coefficients, allowing the scheme to be upwind even with a

centred stencil. The upwinding introduces an amount of dissipation which is limited to

high wave-numbers and can be adjusted by a careful design of the scheme.

Finite volume compact schemes have also been attempted by several authors (9,

12, 13), who have demonstrated that a conservative formulation, in addition to having

inherent advantages for the computation of compressible flows, also provides better

resolution properties compared to a non-conservative approach.

1.1.2 Compact methods for gasdynamics

Even asymmetric compact schemes cause non-physical oscillations when applied di-

rectly to flows with discontinuities. The non-physical oscillations (Gibbs phenomena)

do not decay in magnitude when the grid is refined. Several methods have been pro-

posed to stabilise compact schemes when resolving flows with discontinuities. These

methods belong to one of the following three categories.

The first class are those proposed by Cook and Cabot (14, 15), Fiorina and Lele (16)

and Cook (17). Higher-order background dissipation terms are added to a central

scheme. These artificial dissipation terms are related to very high order derivatives

so that the error introduced is smaller than the truncation error of the scheme. This

strategy is by far the most accurate, as one has full control of the amount of dissipation

introduced, just sufficient to resolve discontinuities and damp unphysical oscillations.

Drawbacks of this strategy are: (i) the fine tuning required for the artificial diffusivity

coefficients, often case-dependent; (ii) the complexity; (iii) the loss of the compactness

of the stencil, because of the higher-order derivatives in the artificial dissipation terms.

Into the second category fall methods which blend the compact scheme with an

essentially non-oscillatory scheme, such as ENO/WENO (18, 19, 20). Compact and

ENO/WENO schemes have complementary properties: compact schemes have excel-

lent resolution properties but oscillatory behaviour near discontinuities; ENO/WENO

9

1.2 A brief history of High Performance Computing

schemes are non-oscillatory but dissipative even for intermediate wave-numbers, and un-

satisfactory in smooth regions with moderately high field gradients. By switching from

a compact to a ENO/WENO scheme near discontinuities one can achieve uniformly

high accuracy solutions with high resolution in smooth regions and non-oscillatory be-

haviour in regions with steep gradients. However, a free threshold parameter, which

controls the switch between the compact and the ENO/WENO scheme, needs to be

tuned, and some of the hybrid schemes (9, 21) experience non-smooth transition near

the interface where the schemes switch. Spurious waves will eventually propagate into

the smooth regions, as reported by Adams and Shariff (9). Ren et al. (22) have devel-

oped a characteristic-wise hybrid scheme, which can be regarded as an improvement of

the method proposed by Pirozzoli (21).

Methods belonging to the third category rely on a classical limiting strategy. Cock-

burn and Shu (23) have developed a non-linear limiter to avoid spurious oscillations

while maintaining the formal accuracy of the scheme. However, in their numerical

tests, spurious oscillations were still evident. Ravichandran (24) employed a TVD lim-

iter combined with a Kinetic Flux Vector Splitting (KFVS) method to improve the

stability of compact upwind schemes, proposing a third order scheme supposed to de-

generate to first order accuracy at the extrema. Recently, Tu and Yuan (25) proposed

a method where a compact upwind scheme is limited through a characteristic-based

approach. The limiting approach is not as common as the hybridising approach, as

degeneration of accuracy near extrema is an undesirable feature when solving, for ex-

ample, shock-turbulence interaction problems. Furthermore, Cockburn and Shu (23)

found that the introduction of minmod limiters in centred schemes affects the accu-

racy of the solution even in smooth regions, if there are spurious oscillations there to

suppress. On the other hand, Ravichandran (24) showed that upwinding the compact

scheme and employing kinetic splitting provides effective damping of spurious oscilla-

tions in smooth regions, and thus the accuracy degenerates just across discontinuities.

This approach is attractive also for its relative simplicity and robustness, and lower

computational cost.

10

1.2 A brief history of High Performance Computing

Figure 1.4: CDC 6600, one of the first supercomputers, designed in the ’60s.

1.2 A brief history of High Performance Computing

Many applications, especially in the area of scientific and technical computing, have al-

ways increasing computational requirements, and so drive the development of machines

much more powerful than common computers, often referred to as supercomputers.

The term supercomputer itself is rather fluid, and, because of the fast improvements in

computing technologies, today’s supercomputer tends to become tomorrow’s ordinary

computer. The term High Performance Computing (HPC) refers to scientific and engi-

neering applications which require the use of supercomputers. In the past two decades

supercomputers’ outstanding computing power has been achieved through having sev-

eral inter-connected Central Processing Units (CPUs) working in parallel to solve a

problem, and so today the terms parallel computing and high-performance computing

are closely related.

The first computers were actually supercomputers, special devices developed for

military or research applications, often unique. This is the case, for example, of Colossus

(1943) and Manchester Mark I (1945) in the UK, and of MIT Whirlwind (1950) in the

US. The first parallel computer is probably UNIVAC LARC (26), developed in the US

11

1.2 A brief history of High Performance Computing

Figure 1.5: Cray X-MP, example of supercomputer design in the ’80s, based on vector

processors.

at Lawrence Livermore Laboratory in 1960: it used two CPUs for computing and a

processor dedicated to Input/Output (I/O) operations. The success of this computer

was very limited, because at the time CPUs ran slower than the main memory they

were attached to. Therefore, there was a significant time where the main memory was

idle. This idle time was exploited by the CDC 6600, shown in Fig. 1.4, often considered

the first successful supercomputer design (27). The CDC 6600 computer, designed by

Seymour Cray, had 10 Peripheral Processors (PPs) and a single CPU. The CPU was

able to perform arithmetic and logic operations only and was controlled in turn by one

of the PPs. While a PP was using the CPU to perform some computation, the others

were performing other tasks, such as loading data into the main memory, and so all

of the PPs were effectively working in parallel. Furthermore, because the CPU had to

handle arithmetic and logic operations only, it had a simple design and was much faster

than any other CPU at the time. Therefore, the CDC 6600 is also the first example

of a Reduced Instruction Set Computer. In 1965 it was the fastest computer in the

12

1.2 A brief history of High Performance Computing

Figure 1.6: Cray Jaguar, an example of a modern MPP system, rated the third fastest

supercomputer in the world in June 2011.

world, with a peak speed of 36 Mega FLoating-point OPerations per Second (FLOPS).

In 1972 Cray left CDC to found Cray Research Inc., later becoming Cray Inc., which

today is one of the leading HPC companies.

The CDC 6600 was able to overlap computing and memory I/O, but from the com-

puting point of view it was still a serial machine. The first machines able to perform

several calculations in parallel appeared in the 1970s and were based on vector proces-

sors. At the time the main memory was big enough to store all the necessary data

and the CPUs were much faster than the main memory, so the problem was how to

effectively exchange data between the CPU and the main memory. Vector processors

applied a single algorithm to a large data set, fed in the form of an array. This type of

processing, referred to as Single Instruction Multiple Data (SIMD) in Flynn’s taxon-

omy (28), relied on certain features of such processors; while instruction pipelining and

different functional units for different instructions were already featured in previous de-

signs, peculiar to vector processors were data pipelining and the availability of several

functional units for the same instruction. Supercomputers powered by a vector pro-

cessor were the CDC Star-100 (1974), Cray-1 (1975) and the CDC Cyber 205 (1981),

the last one achieving a peak speed of 400 MFLOPS. Vector processors first exploited

the parallel nature of some algorithms, i.e. the property of such algorithms to be split

into tasks which are not inter-dependent, and so can be performed in parallel without

altering the final result. This idea was taken a step further and machines like the Cray

13

1.2 A brief history of High Performance Computing

Rank Site Computer

1 Riken AICS, Japan Kei - Fujitsu 8-core SPARC64 VIIIfx

2 NSC Tianjin, China
Tianhe-1A - NUDT 6-core Intel X5670

2.9 GHz, NVIDIA M2050 GPU

3 DOE/SC/ORNL, US Jaguar - Cray XT5 6-core AMD 2.6 GHz

4 NSC Shenzhen, China
Nebulae - Dawning TC3600 Blade,

Intel X5650, NVIDIA C2050 GPU

5 GSIC Center Tokyo, Japan
Tsubame - HP ProLiant SL390s G7

node, NVIDIA M2050 GPU

6 DOE/NNSA/LANL/SNL, US Cielo - Cray XE6 8-core AMD 2.4 GHz

7 NASA Ames, US
Pleiades - SGI Altix 4-core Intel

X5670 2.9 GHz

8 DOE/SC/LBNL/NERSC, US Hopper - Cray XE6 12-core 2.1 GHz

9 CEA, France
Tera-100 - Bull bullx super-node

S6010/S6030

10 DOE/NNSA/LANL, US
Road Runner - IBM BladeCenter

PowerXCell i8 / AMD 1.8 GHz

Table 1.1: World top 10 supercomputers, extracted from the top500 published in June

2011(http://www.top500.org/lists/2010/11).

X-MP (1983), Cray-2 (1985), Cray Y-MP (1988) and ETA-10G (1989) were powered by

4 to 8 vector processors attached to a shared memory. For example, the Cray X-MP,

shown in Fig. 1.5, had 4 vector processors and achieved a peak performance of 400

MFLOPS.

In the 1990s improvements in scalar processors, particularly microprocessors, re-

sulted in the decline of traditional vector processors in supercomputers and the ap-

pearance of vector processing techniques in mass-market CPUs. Attention turned then

to Massively Parallel Processing (MPP) systems, hosting hundreds of CPUs, each one

attached to its own memory, and interconnected through a fast network. This type of

architecture has dominated the HPC scene since. Indeed, MPP machines fully exploit

the parallelism of an algorithm and allow the maximum flexibility, having hundreds of

CPUs working independently, following a Multiple Instruction Multiple Data (MIMD)

type of processing (28). Also, these systems can employ commodity hardware and

benefit from the hardware development driven by the mass-market, and so they are

14

http://www.top500.org/lists/2010/11

1.2 A brief history of High Performance Computing

very cost-effective. On the negative side, even the most parallel algorithms require

some information to be shared between the CPUs. In a distributed memory system

information sharing takes place through message passing within the network, and the

communication cost can significantly impact the overall performance. Latest designs

of processors, hosting several execution units or cores, each one acting as a CPU, have

further complicated the problem: the cores share memory and network interconnects

and so making effective use of the available resources is far from trivial. Some of the

most famous MPP systems are Intel ASCI Red (1995), IBM ASCI White (2000), Earth

Simulator (2002), IBM ASCI Blue Gene (2005), Cray Jaguar (2009). For example, the

Cray Jaguar XT5 system (http://www.nccs.gov/computing-resources/jaguar/),

shown in Fig. 1.6, has 18,688 compute nodes, each one containing two hex-core proces-

sors. With a peak speed of 1.75 Peta FLOPS (PFLOPS), it is currently (June 2011)

rated the third fastest supercomputer in the world.

Recently, a new trend has emerged in HPC, where standard CPUs are used in com-

bination with co-processors. These devices are used by the CPU to parallel process

large arrays of data in a SIMD fashion. Devices of this type are, for example, Graphic

Processing Units (GPUs) and Power Cell processors. Originally developed for the mass-

market and used for video processing, they employ those vector processing techniques

first exploited by vector processors in the 1980s, improved over two decades to achieve

computing powers up to Tera FLOPS. The applications that could use such computing

power were limited by the special-purpose nature of video processing and the difficulty

to program these devices. While these limitations have hindered the popularity of Cell

Processors, GPUs have evolved to become more useful as general-purpose vector proces-

sors, and a computer science sub-discipline has arisen to exploit this capability, namely

General-Purpose computing on Graphics Processing Units (GPGPU). In the first 10

positions of the top500, the list of the world’s most powerful computers, published

in June 2011 (http://www.top500.org/lists/2010/11), the second, fourth and fifth

positions are occupied by systems using GPUs as co-processors (Table 1.1). In tenth

position lies the Road Runner: this was the first system able to break the PFLOPS

barrier, and employs Cell Processors as accelerators. Another reason for the recent

success of accelerators is their high energy efficiency: power consumption has become

such an important issue in HPC that, for example, IBM has traded processor speed

for a lower power consumption in its MPP system Blue Gene. The GPU accelerated

15

http://www.nccs.gov/computing-resources/jaguar/
http://www.top500.org/lists/2010/11

1.3 Computational Fluid Dynamics and High Performance Computing

Tianhe-1A is capable of 2.57 PFLOPS consuming 4 MW, while the traditional system

Jaguar is only capable of 1.75 PFLOPS but consumes 6.9 MW.

1.3 Computational Fluid Dynamics and High Performance

Computing

1.3.1 Parallel application of compact schemes

Computational Fluid Dynamics applications are among those driving the development

of high performance computing. Typical CFD applications that require the use of

HPC are climate and ocean modelling, DNS and LES of turbulence, and, in general,

applications where the smallest length scale to be simulated is much smaller than the

size of the domain. The parallel implementation of CFD methods is a very extensive

topic, and reviewing how parallel computing has been used to solve CFD problems is

not the scope of this section. Here we focus only on the parallel computing applications

of compact finite-difference schemes.

Compact schemes have a semi-global nature, as a linear system must be solved to

compute spatial derivatives along grid lines. Efficient parallelisation of these schemes

therefore represents a significant challenge. Nevertheless, parallel implementation of

such methods is of great interest, because, as highlighted in section 1.1, they are excep-

tional candidates for DNS and LES of turbulence, that are, indeed, highly computation-

ally intensive. Previously, Sun and Moitra (29) and Povitsky (30) devised parallel algo-

rithms for the solution of the underlying linear system, but, as highlighted by Ladeinde

et al. (31), these algorithms scale poorly at high processor counts. Improved scalability

can be achieved if a structured-block domain decomposition technique is employed:

Gaitonde (32) and Sengupta et al. (33) have employed compact schemes to advance

independently the solution in overlapping sub-domains. Laizet et al. (34) have pro-

posed a dual-domain decomposition, namely slab decomposition, which changes during

a single time step depending on the spatial direction processed. Their incompressible

DNS code showed good parallel performance, even though in some tests communication

took up to 40% of the total simulation time because of the global data transposition

implied by the dual decomposition.

The class of compact upwind methods developed by Pirozzoli (21) have opened new

possibilities for the application of a classical and efficient parallel multi-block strategy

16

1.3 Computational Fluid Dynamics and High Performance Computing

to compact schemes. These compact schemes compute a numerical flux function, unlike

other compact schemes which compute derivatives, and so a multi-block parallelisation

approach can be implemented by simply enforcing the continuity of the numerical

flux function across block-interfaces. Chao et al. (35) have exploited this possibility

by developing a multi-block compact method. Their parallel algorithm is based on a

compact-WENO scheme employing domain decomposition.

The parallelisation strategies discussed so far are task-based and rely on the Single

Program Multiple Data (SPMD) programming model. The modern trend in High

Performance Computing is to increase the number of cores sharing the memory on a

compute-node. In a shared memory environment, thread-based parallelism is possible,

based on the Symmetric Multi-Processing (SMP) programming model. For large-scale

fluid dynamics calculations employing compact schemes, this is particularly interesting,

as efficient parallelisation in a distributed memory environment is possible by weakly

relaxing the global dependency of the scheme. As noted by Chao et al. (35), this

will affect the global resolution properties of the scheme as the number of cores is

increased. In a shared memory environment, parallelisation is in principle possible

without modifying the numerical method (and so preserving the resolution properties),

even though attention must be paid in order to achieve good parallel performance.

Many investigations into dual-level parallelism have been published. For example,

Huan and Tafti (36) combined multi-threading and multi-tasking to achieve a good

load balance when the governing equations are solved using Adaptive Mesh Refinement.

Gropp et al. (37) have shown that decreasing the number of tasks and increasing the

number of threads can speed up explicit flux computation as the mesh size increases.

Recently, Rabenseifner et al. (38) have shown that a dual-level parallelism mapped

onto the machine topology can significantly speed up a parallel block-tri-diagonal CFD

solver.

1.3.2 GPU-accelerated CFD

In the last decade the mass-market has driven the development of extremely powerful

Graphic Processing Units, extensively used to run computer animations. The devel-

opment of the hardware and also of high-level programming languages, such as Cg,

BrookGPU, OpenCL and CUDA, has made GPUs attractive for scientific computing

in general, and CFD in particular.

17

1.3 Computational Fluid Dynamics and High Performance Computing

Fluid dynamic simulations have been one of the first testing grounds for GPU-

accelerated physics-based animations. Flow solvers for computer graphics are based on

Stam’s method (39), the so-called Stable Fluids algorithm. This is a semi-Lagrangian

method solving the Navier-Stokes equations, and is very quick and suitable for vector

processing. It is also stable and so, even though it is explicit in time, it allows large

time-steps to be used in unsteady simulations. The method is not accurate enough

for engineering computation, but it captures the major characteristics of fluid motion,

and so it is very popular for physics-based graphics applications where accuracy is not

essential but speed is. Applications of Stam’s method can be found, for example, in the

work by Liu et al. (40) and Harris et al. (41). Liu et al. (40) performed several 3D flow

simulations, e.g. flow over a city, and their goal was to have a real-time solver along

with visualisation running on the GPU, while Harris et al. (41) used Stam’s method

for cloud visualisation.

Accurate CFD methods can also benefit from the computing power of GPUs. How-

ever, performance strongly depends on the hardware, as one may expect, but also on

the method, mostly because of the very tight constraints on the memory access patterns

on GPUs, and, surprisingly, on the programming language, because compiler optimi-

sations play a fundamental role in GPUs even more than in CPUs. In the following

we review some applications and corresponding performance figures. Speed-ups are

referenced to a single-core CPU implementation of the same method, unless differently

specified.

Fluid dynamic simulations of engineering interest have been performed using Lattice-

Boltzmann methods. The Lattice-Boltzmann model (LBM) is attractive for GPU pro-

cessors since it is simple to implement, is extremely parallel, and incurs a significant

computational cost. Early work by Li et al. (42, 43) showed modest speed-ups around

6×, obtained using Cg on an NVIDIA GeForce FX 5900 Ultra. More recent work

has shown the real potential of GPUs for LBM. Tölke and Krafczyk (44) achieved a

speed-up of 100× with their CUDA implementation of the LBM on an NVIDIA 8800

Ultra, while Simek et al. (45) performed atmospheric dispersion simulations, achieving

speed-ups as high as 77×.

More standard CFD methods are less GPU-friendly and rarely achieve such high

performance. Incompressible flow solvers have been implemented on a single GPU

by Scheidegger et al. (46) and Cohen and Molemaker (47). Scheidegger et al. (46)

18

1.3 Computational Fluid Dynamics and High Performance Computing

implemented the 2D Simplified Marker And Cell (SMAC) method (48), a technique

used for free-surface flow simulations, and obtained speed-ups on NVIDIA GeForce

FX 5950 Ultra and 6800 Ultra varying from 7× to 21×. Cohen and Molemaker (47)

implemented an incompressible Navier-Stokes multi-grid solver with Boussinesq ap-

proximation. Their implementation on an NVIDIA Tesla C1060 was 8× faster than a

multi-threaded code running on a quad-core Intel Xeon E5420 at 2.5GHz. Their code

supports double precision, although this made it 46% to 66% slower than in single

precision.

Extremely relevant to our present research is the work on compressible Euler equa-

tions by Brandvik and Pullan (49, 50) and Elsen et al. (51). Brandvik and Pul-

lan (49, 50) implemented a FV structured solver for the Euler equations in 2D and

3D and considered both BrookGPU and CUDA tool-kits. They achieved speed-ups of

29× in 2D and 16× in 3D when using CUDA, while using BrookGPU they could only

achieve a speed-up of 3× in 3D. Elsen et al. (51), instead, successfully used BrookGPU

to port a subset of a Navier-Stokes solver. The GPU-based code solves the 3D com-

pressible Euler equations on a single GPU. They simulated the flow over a hypersonic

vehicle using an NVIDIA GTX8800 and measured speed-ups from 15× to 40× with

respect to a single core of an Intel Core 2 Duo E6600 2.4GHz.

The numerical methods used by Brandvik and Pullan (49, 50) and Elsen et al. (51)

are second-order accurate at most. Work on higher-order shock-capturing methods

on GPUs is extremely limited. Antoniou et al. (52) performed LES on the Rayleigh-

Taylor instability using a GPU implementation of a WENO scheme. They used up

to 4 devices, available in an NVIDIA Tesla S1070. Speed-ups from 17× to 27× were

reported when using a single device vs. two cores of a 3.0 GHz quad-core Intel Xeon

X5450. Griebel and Zaspel (53) ported to GPU part of a 3D two-phase incompressible

Navier-Stokes code. The code is based on the level set technique, and employs WENO

formulas for the level set re-initialisation stage. This stage was ported to GPU using

CUDA and double precision arithmetic was used. For this task, speed-ups from 9× to

13× with respect to a single core of a 2.66 GHz quad-core Intel Core i7 were measured.

To our knowledge, the only GPU application of a compact scheme can be found in

the work by Hagen et al. (54). They implemented a FV structured solver for the Euler

equations using Cg. Several numerical schemes for the cell-face fluxes were considered,

including a compact-WENO scheme (55). They considered two compute-nodes: the

19

1.4 Objectives and thesis outline

first had an Intel Xeon 2.8 GHz as host and an NVIDIA GeForce 6800 Ultra as acceler-

ator; the second had an AMD Athlon X2 4400+ as host and an NVIDIA GeForce 7800

GTX as accelerator. For each node, speed-ups were measured comparing run-times on

the host to run-times on the attached device. They simulated a 2D shock-jet interac-

tion and measured speed-ups from 8× to 9× for the first node, and from 14× to 19×
for the second node. The higher speed-ups found for the second node were attributed

to an under-performing compiler: while in the first node the Intel compiler could fully

exploit the potential of the Intel CPU, in the second node the GNU compiler could not

generate an optimal code for the AMD CPU.

1.4 Objectives and thesis outline

The focus of this thesis is the application of compact schemes for the simulation of

hypersonic flows. Compact schemes are of interest for applications which require higher-

order accuracy and spectral-like resolution, such as LES and DNS of turbulence. As

these applications are in general extremely computationally demanding, it is essential

to study such methods in the context of high-performance computing.

In section 1.1.2 three classes of compact-based methods for gasdynamics have been

discussed: methods of the first type use higher order dissipation terms, those of the

second type blend compact and ENO/WENO schemes and those of the third type apply

TVD filters. We have selected a compact-TVD scheme for the Euler equations (25), as

a solution method to study, extend and improve. This method has been chosen because

it is believed to be a good compromise between accuracy, robustness and computational

cost. The description of the method, along with our modifications and improvement,

is the subject of Chapter 2.

We also propose a method to solve the Navier-Stokes equations, combining this

compact-TVD method with a Kinetic Splitting technique for the Navier-Stokes flux (56).

The resulting method has improved shock capturing properties and a computational

advantage over conventional methods based on operator splitting. The stability and

accuracy of the method are demonstrated through a wide range of test cases. A detailed

description of the numerical method is the subject of Chapter 3.

We then consider how this method may be used in the context of high-performance

computing, exploring the three main paradigms of modern supercomputing:

20

1.4 Objectives and thesis outline

• Parallelisation through message passing. We explore a new parallelisation tech-

nique, assessing its performance and impact on computed results.

• Parallelisation through memory sharing. We highlight performance issues and

identify the causes.

• Acceleration through GPU. We develop a compressible Navier-Stokes code based

on a compact scheme running entirely on a GPU. We identify a strategy to over-

come the memory constraints associated with GPU computing, and we quantify

obtainable speed-ups.

The different parallelisation strategies are discussed Chapter 4.

We assess the capability of our method over an extensive set of test cases, involving

one-, two- and three-dimensional flows, supersonic and hypersonic flows, and com-

pressible DNS-oriented test cases. These tests are all presented along with reference

experimental results, analytical or independent numerical solutions in Chapters 5 and

6. Finally, in Chapter 7 we draw our conclusions.

21

2

A compact-TVD method for the

solution of the Euler equations

In this chapter we describe the compact-TVD method proposed by Tu and Yuan (25)

and the techniques it employs. The chapter is structured as follows: in section 2.1 the

theory of conservative compact-upwind approximations for derivatives is outlined. The

compact formula is given, along with its boundary closures, and its properties discussed.

In section 2.2 upwind-TVD schemes based on flux splitting are introduced and two

limiter functions are given. Section 2.3 describes how the techniques introduced in

sections 2.1 and 2.2 are combined to obtain the inviscid flow solver proposed by Tu and

Yuan (25). In section 2.4 the time discretisation is given. Finally, section 2.5 provides

details about the implementation of the method and the enforcement of boundary

conditions.

2.1 Conservative compact-upwind finite difference schemes

In this section we present the compact scheme used to discretise the inviscid flux in the

Euler solver proposed by Tu and Yuan (25). This method belongs to a class of methods

derived by Pirozzoli (21), which possess features highly desirable for the simulation of

compressible flows:

• they are upwind and therefore have built-in numerical dissipation for improved

stability;

22

2.1 Conservative compact-upwind finite difference schemes

• they are conservative and correctly locate discontinuities, according to the Lax-

Wendroff theorem (57).

In section 2.1.1 we detail the derivation of this class of methods. In section 2.1.2

we present a resolution study, showing why compact formulas may be preferred to

explicit ones. Finally, in section 2.1.3 we present the formulas employed at the domain

boundaries in non-periodic problems.

2.1.1 Derivation of conservative compact-upwind formulas

As customary, f(x) is a function whose values are known on a set of nodes, x1, x2, . . . , xN ,

and values of its derivative, f ′(x), over the same set of nodes must be determined. The

nodes are equally spaced over the domain and h is the grid spacing. Unlike more con-

ventional compact schemes, such as those in section 1.1, the derivative is not directly

reconstructed, but computed from the numerical flux function. The numerical flux

function f̂(x) is, by definition, a function such that the difference between its values

at the intermediate nodes i + 1/2 and i − 1/2 gives a rth order approximation of the

derivative f ′(xi):

1

h
(f̂i+1/2 − f̂i−1/2) = f ′(xi) +O(hr), i = 1, 2, . . . , N. (2.1)

Computing the derivative from the numerical flux function automatically generates

a conservative discretisation. Reconstructing the numerical flux is equivalent to an

interpolation problem (18), where values of a function g(x) at the intermediate nodes,

xi+1/2 for i = 1, 2, . . . , N , must be evaluated from its cell-average values,

gi =
1

h

∫ xi+1/2

xi−1/2

g(x) dx, i = 1, 2, . . . , N.

Functions f(x) and g(x) are related by:

f̂i+1/2 = ĝi+1/2, fi = gi, (2.2)

where ĝi+1/2 is the estimated value of g(x) at intermediate node xi+1/2. Given the

identities in Eq. 2.2, Eq. 2.1 is equivalent to:

ĝi+1/2 = g(xi+1/2) +O(hr). (2.3)

23

2.1 Conservative compact-upwind finite difference schemes

A compact reconstruction of g(x) around the intermediate node xi+1/2 is:

L2∑
l=−L1

αlĝi+1/2+l =

M2∑
m=−M1

amgi+m, (2.4)

that is equivalent to:

L2∑
l=−L1

αlf̂i+1/2+l =

M2∑
m=−M1

amfi+m, (2.5)

where L1, L2,M1,M2 are integer constants that determine the stencil for the recon-

struction. Assuming that the function g(x) can be expanded in a Taylor series up to

order R around xi+1/2,

g(x) =

R−1∑
n=0

g
(n)
i+1/2

(x− xi+1/2)n

n!
+O(hR), (2.6)

then, as the cell-average value of g(x) can be written as

gi+m =
Gi+m+1/2 −Gi+m−1/2

h
,

where G(x) is the primitive function of g(x), i.e.

G(x) =

R−1∑
n=0

g
(n)
i+1/2

(x− xi+1/2)n+1

(n+ 1)!
+O(hR+1),

the following expression for the cell-average values of g(x) holds:

gi+m =
K−1∑
n=0

g
(n)
i+1/2

1

(n+ 1)!
[mn+1 − (m− 1)n+1]hn +O(hR+1). (2.7)

Inserting Eqs. 2.6 and 2.7 into Eq. 2.4, recalling Eq. 2.3 and matching the coefficients

for the nth power of h, the following formula is found:

(n+ 1)

L2∑
l=−L1

αll
n =

M2∑
m=−M1

am[mn+1 − (m− 1)n+1]. (2.8)

For a rth order interpolation, where r ≤ R, Eq. 2.8 shows that a system of r equations,

for n = 0, . . . , r − 1, must be satisfied. The resulting linear system must be solved to

determine the coefficients αl (L1 +L2 + 1 unknowns) and am (M1 +M2 + 1 unknowns).

24

2.1 Conservative compact-upwind finite difference schemes

As the linear system is homogeneous, at least one coefficient must be set to a non-

zero quantity in order to exclude the trivial solution (all coefficients equal to zero), for

example a−M1 = 1, and so the unknown coefficients are L1 + L2 +M1 +M2 + 1.

Choosing L1 = L2 = M1 = M2 = 1 yields compact-upwind interpolations with a

narrow stencil, which only require the inversion of a tri-diagonal matrix. The most

accurate scheme on this stencil is fifth-order accurate and has coefficients:

α−1 = 9, α0 = 18, α1 = 3, a−1 = 1, a0 = 19, a1 = 10.

Recalling Eq. 2.2, a fifth-order compact-upwind reconstruction formula for the numer-

ical flux function is obtained:

9f̂i−1/2 + 18f̂i+1/2 + 3f̂i+3/2 = fi−1 + 19fi + 10fi+1. (2.9)

It is important to point out that the system of Eqs. 2.9 is diagonally dominant,

and so its numerical inversion through a tri-diagonal direct solver, such as the Thomas

algorithm, is stable.

2.1.2 Resolution properties

Equation 2.5 is very general, in fact it describes any conservative linear finite-difference

(FD) formula. Therefore, starting from Eq. 2.5, the resolution properties of any con-

servative linear FD scheme can be investigated using the linear advection equation:

vt(x, t) + cvx(x, t) = 0, c > 0, (2.10)

as a model equation. A mono-chromatic wave with wavenumber k will be investigated,

with v(x, 0) = ejkx set as the initial condition, where j =
√
−1. The exact solution to

this problem is:

v(x, t) = ejk(x−ct). (2.11)

The semi-discrete form of Eq. 2.10, when using a uniform grid, xi = ih for i =

1, 2, . . . , N , is:
dvi(t)

dt
+ c

v̂i+1/2(t)− v̂i−1/2(t)

h
= 0. (2.12)

The initial condition is vi(0) = ejk̂i, where k̂ = kh is the scaled wavenumber. It is related

to the number of grid-points per wave-length, np, by: k̂ = 2π/np. As the minimum

25

2.1 Conservative compact-upwind finite difference schemes

(a) Dispersion curve

(b) Dissipation curve

Figure 2.1: Dispersion and dissipation properties for different approximation schemes.

–�–: fifth-order compact-upwind; –©–: fifth-order explicit-upwind; —–: exact solution.

26

2.1 Conservative compact-upwind finite difference schemes

number of points to describe a wave is np = 2, the range of scaled wave-numbers to

consider is k̂ ∈ [0, π]. The solution to the semi-discrete problem is assumed to have the

form:

vi(t) = e
jk̂
(
i− c

h
Z(k̂)

k̂
t
)
, (2.13)

where Z(k̂) is a complex-valued function, called a transfer function. Since at any time

the numerical flux function, v̂i+1/2(t), is a linear combination of exponential functions

like vi(t), the following expression holds:

v̂i+1/2+l(t) = v̂i+1/2(t)ejk̂l. (2.14)

Substituting Eqs. 2.13 and 2.14 into Eq. 2.5, gives:

v̂i

l=L2∑
l=−L1

αle
jk̂(1/2+l) = vi

m=M2∑
m=−M1

ame
jk̂m. (2.15)

Substituting Eqs. 2.13 and 2.14 into Eq. 2.12, gives:

jZ(k̂)vi = v̂i(e
jk̂/2 − ejk̂/2),

which, recalling that sinx = (ejx − e−jx)/2j, is equivalent to:

Z(k̂)vi = 2v̂i sin k̂/2. (2.16)

Combining Eqs. 2.15 and 2.16, we finally obtain the following expression for the transfer

function:

Z(k̂) = 2 sin k̂/2

∑M2
m=−M1

ame
jk̂m∑L2

l=−L1
αlejk̂(l+1/2)

. (2.17)

The transfer function, Z(k̂), completely defines the capability of a numerical scheme

to propagate a wave with a certain wavenumber. Separating real and imaginary parts

of the transfer function, the numerical solution reads:

vi(t) = e
c
h

Im[Z(k̂)]te
jk̂
(
i− c

h
Re[Z(k̂)]

k̂
t
)
. (2.18)

Comparing the numerical solution, Eq. 2.18, with the exact solution, Eq. 2.11, it is

evident that:

27

2.1 Conservative compact-upwind finite difference schemes

• The exact solution is a wave with constant amplitude, while the numerical so-

lution’s amplitude changes proportionally to e
c
h

Im[Z(k̂)]t. For c > 0, a numerical

method is stable if Im[Z(k̂)] ≤ 0. Also, for a stable scheme, Im[Z(k̂)] represents

the dissipation error, as it determines how the wave amplitude is damped over

time.

• The exact solution translates in time at speed c, while the numerical solution

translates at speed cRe[Z(k̂)]/k̂. Therefore, Re[Z(k̂)] represents the dispersion

error.

In Fig. 2.1 the dissipation and dispersion properties of two schemes are compared. We

consider the fifth-order compact-upwind formula, Eq. 2.9, and the fifth-order explicit-

upwind formula:

f̂i+1/2 =
1

30
fi−2 −

13

60
fi−1 +

47

60
fi +

9

20
fi+1 −

1

20
fi+2, (2.19)

which can be retrieved from the general formula, Eq. 2.5, by choosing L1 = L2 = 0,

M1 = M2 = 2 and requiring fifth-order accuracy. The transfer function of an exact

differentiation, Z(k̂) = k̂, is also shown as a reference. The comparison is interesting

for several reasons: 1) it shows that, for a fixed formal accuracy, there is a gain in

using a more computationally demanding compact formula over an explicit one; 2)

any fifth-order conservative ENO/WENO scheme degenerates to Eq. 2.19 in smooth

regions, and so Fig. 2.1 is also a comparison between a compact scheme and the best an

ENO/WENO scheme with the same accuracy can achieve; 3) the two formulas Eq. 2.9

and Eq. 2.19 are combined in the multi-block scheme discussed in section 4.1.1, whose

properties are intermediate between the compact and the explicit scheme.

Examining Fig. 2.1(a), we see that the explicit formula fails to propagate waves

captured with 4 grid points per wavelength (k̂ = 1.5708) at the right speed. On the

other hand, the compact formula is able to propagate waves captured with as few grid

points per wavelength as 3 (k̂ = 2.0944) at the right speed.

Examining Fig. 2.1(b), we see that the compact formula is less dissipative than the

explicit one for wavenumbers up to k̂ ≈ 2.4 (2 < np < 3), while it is more dissipative at

higher wave-numbers. The higher dissipation of waves with k̂ > 2.4 is, in fact, useful for

two reasons: first, such waves are propagated at the wrong speed, as emerges from the

28

2.1 Conservative compact-upwind finite difference schemes

analysis of Fig. 2.1(a); second, they can represent high-frequency spurious oscillations,

and so dissipating them improves accuracy and stability.

This last consideration has a fundamental consequence for compressible fluid dy-

namics applications. In order to capture discontinuities, these high-order formulas are

filtered using a TVD limiter, as is explained in section 2.2; spurious oscillations create

local extrema, and are damped by the TVD filter by reducing the local accuracy; it

follows that, if the high-order formula is able to suppress spurious high-frequency oscil-

lations, the limiter does not detect local extrema, it is not active and so the accuracy

is preserved.

2.1.3 Boundary closures

The development of appropriate boundary closures is crucial in order for a compact

scheme to work properly (3), mostly because of the global nature of the reconstruction

step, which involves all the nodes simultaneously. Indeed, boundary closures criti-

cally impact the stability characteristics of the scheme, and a stability study based

on decomposition into Fourier harmonics may lead to wrong conclusions. A stability

analysis of the full discretisation therefore becomes necessary. Most problems are not

periodic, and so appropriate boundary closures for the formula Eq. 2.9 must be used.

Gustafsson (58) showed that using boundary closures (n − 1)th-order accurate, along

with an nth-order accurate scheme for the interior, is sufficient to maintain nth-order

accuracy over the whole domain. Pirozzoli (21) proposed the following fourth-order

explicit boundary closures:

f̂1/2 =
1

4
f0 +

13

12
f1 −

5

12
f2 +

1

12
f3, (2.20)

f̂N+1/2 =
25

12
fN −

23

12
fN−1 +

13

12
fN−2 −

1

4
fN−3, (2.21)

which can be derived from Eq. 2.5, by imposing α0 = 1, fourth-order accuracy, L1 =

L2 = 0, M1 = 0 and M2 = 3 for the intermediate node i = 1/2, and M1 = 3 and M2 = 0

for the intermediate node i = N + 1/2. In Eq. 2.20, the quantity f0 is evaluated at

node x0, which is either a boundary point, for a vertex-based discretisation, or a ghost

point, for a cell-centred discretisation. In either case, f0 is used to enforce a physical

boundary condition. These boundary closures are therefore consistent with the physical

nature of the problem, i.e. the propagation of right-running disturbances: while Eq. 2.20

29

2.2 Split-flux upwind-TVD schemes

carries information about the boundary condition at the left boundary, Eq. 2.21 simply

extrapolates a value from the interior.

Pirozzoli (21) conducted a linear stability analysis of the discretisation employing

Eq. 2.9 for the interior and Eqs. 2.20 and 2.21 near the boundaries. He concluded that

the discretisation is linearly stable regardless of the number of grid-points, and also

that the boundary closures have a stabilising effect with respect to the periodic case.

2.2 Split-flux upwind-TVD schemes

The total variation of a function u(x, t), over a domain x ∈ Ω, is defined as:

TV [u](t) =

∫
Ω

∣∣∣∣∂u(x, t)

∂x

∣∣∣∣ dx, (2.22)

or, if the function is given on a set of nodes xi, for i = 1, 2, . . . , N :

TV [u](t) =
N−1∑
i=1

|∆ui+1/2(t)| =
N−1∑
i=1

|ui+1(t)− ui(t)|. (2.23)

A desirable feature of numerical methods for hyperbolic conservation laws is that the

total variation of the computed solution is a non-increasing function of time, i.e.

t2 > t1 ⇒ TV [u](t2) ≤ TV [u](t1). (2.24)

The solution of hyperbolic conservation laws can be discontinuous in space, and, when

computed numerically, may contain unphysical oscillations, due to interpolation across

discontinuities. Total Variation Diminishing (TVD) methods produce solutions free

from spurious oscillations even when the solution is discontinuous. Unfortunately, linear

TVD methods are only first order accurate (59). High-order TVD methods are non-

linear, and are usually constructed using a high-order linear method along with a non-

linear flux or slope limiter function. Since Harten (59) devised the first high-order TVD

methods, many others have been proposed, the most common of which can be found

in any standard CFD book. In this section we introduce two flux limiter functions

devised by Tu et al. (60). Tu and Yuan (25) showed that combining either of these

limiters with the compact linear formula Eq. 2.9 yields a stable and accurate scheme.

Therefore, we employ these limiters for our simulations.

30

2.2 Split-flux upwind-TVD schemes

Consider the scalar conservation law:

∂u

∂t
+
∂f(u)

∂x
= 0, (2.25)

whose semi-discrete conservative form, over a grid with uniform spacing ∆x, is:

∂u

∂t
+
hi+1/2 − hi−1/2

∆x
= 0, (2.26)

where hi±1/2 are values of a TVD numerical flux function.

Unlike the wave equation, Eq. 2.10, where disturbances are known to travel in a

certain direction depending on the sign of the constant c, in the more general case

of Eq. 2.25 one must distinguish between right-running and left-running disturbances.

Two approaches to this problem are Flux Difference Splitting, as in Roe’s scheme, and

Flux Vector Splitting (FVS), such as the Steger-Warming scheme. We are concerned

with FVS techniques, which split the flux into two contributions:

f(u) = f+(u) + f−(u).

For a scalar conservation law positive and negative fluxes can be defined as follows:

f+(u) =

{
f(u) if f ′(u) > 0
0 if f ′(u) ≤ 0

, (2.27)

f−(u) =

{
0 if f ′(u) ≥ 0
f(u) if f ′(u) < 0

. (2.28)

Given a flux splitting technique to calculate f±(u), the TVD numerical flux function

is split accordingly:

hi+1/2 = h+
i+1/2 + h−i+1/2, (2.29)

and computed as a sum of a low-order flux and a high-order correction:

h+
i+1/2 = f+

i + φ+
i+1/2, h−i+1/2 = f−i+1 − φ

−
i+1/2. (2.30)

The high-order correction is computed limiting a high-order numerical flux function.

Tu et al. (60) proposed two flux limiters:

φA(a, b, c) =

{
sgn(a) min(|a|, |b|), if a, b, c have the same sign,
0, otherwise.

φB(a, b, c) =

{
sgn(a) min

(
|a|, |b|, 2bc

|a|+|c|+ε

)
, if a, b, c have the same sign,

0, otherwise,

31

2.2 Split-flux upwind-TVD schemes

where ε is an arbitrary small constant to avoid division by zero. The type A limiter is

a version of the well known minmod limiter, while type B is a combination of the latter

limiter and a version of the van Leer limiter. The high-order correction is computed

from the flux limiter as follows:

φ+
i+1/2 = φ(∆f̂+

i+1/2,∆f
+
i+1/2,∆f

+
i−1/2),

φ−i+1/2 = φ(∆f̂−i+1/2,∆f
−
i+1/2,∆f

−
i+3/2).

(2.31)

In Eqs. 2.31, φ is either φA or φB, and

∆f̂+
i+1/2 = f̂+

i+1/2 − f
+
i , (2.32)

∆f̂−i+1/2 = f−i+1 − f̂
−
i+1/2, (2.33)

∆f±i+1/2 = f±i+1 − f
±
i , (2.34)

where f̂±i+1/2 are the positive and negative part of any high-order numerical flux function

at the intermediate node xi+1/2.

The principle such limiter functions are based on is rather simple. Consider,

for example, the positive flux (analogous considerations can be made for the nega-

tive flux). First, it is assumed to be a monotonic function of u (Eq. 2.27), and so

the behaviour of f+(u) reflects the behaviour of u. If u does not have a local ex-

tremum (∆f+
i+1/2∆f+

i−1/2 ≥ 0) and the high-order reconstruction does not introduce

one (∆f̂+
i+1/2∆f+

i+1/2 ≥ 0 and |∆f̂+
i+1/2| ≤ |∆f

+
i+1/2|), then the high-order reconstruc-

tion verifies the TVD property, and so it is used (h+
i+1/2 = f̂i+1/2). Otherwise, a

first-order reconstruction that verifies the TVD property (18) is used (h+
i+1/2 = f+

i).

A rigorous proof that the scheme described in this section is TVD, is given by Tu et

al. (60) and is not reproduced here.

2.2.1 Solution of one-dimensional scalar conservation laws

Combining the fifth-order compact-upwind scheme described in section 2.1, and the

TVD limiters described in section 2.2, to solve the scalar conservation law is straight-

forward. The positive part of the high-order numerical flux function f̂+
i+1/2 is calculated

by solving the tri-diagonal system Eq. 2.9 with boundary closures Eqs. 2.20 and 2.21,

32

2.3 Solution of the Euler equations

i.e.

f̂+
1/2 =

1

4
f+

0 +
13

12
f+

1 −
5

12
f+

2 +
1

12
f+

3 , (2.35)

9f̂+
i−1/2 + 18f̂+

i+1/2 + 3f̂+
i+3/2 = f+

i−1 + 19f+
i + 10f+

i+1, i = 1, · · · , N, (2.36)

f̂+
N+1/2 =

25

12
f+
N −

23

12
f+
N−1 +

13

12
f+
N−2 −

1

4
f+
N−3. (2.37)

The scheme to compute the negative part of the high order numerical flux function

f̂−i+1/2 can be obtained from the scheme above by symmetry considerations, and reads:

f̂−1/2 =
25

12
f−1 −

23

12
f−2 +

13

12
f−3 −

1

4
f−4 , (2.38)

3f̂−i−1/2 + 18f̂−i+1/2 + 9f̂−i+3/2 = 10f−i + 19f−i+1 + f−i+2, i = 1, · · · , N, (2.39)

f̂−N+1/2 =
1

4
f−N+1 +

13

12
f−N −

5

12
f−N−1 +

1

12
f−N−2. (2.40)

The correction to the low-order numerical flux φ±i+1/2 is then calculated according to

Eq. 2.31. The high order limited numerical flux function hi+1/2 is finally computed by

Eqs. 2.29 and 2.30.

2.3 Solution of the Euler equations

In this section we describe the solution of the Euler equations of gas dynamics using

the compact-TVD method developed by Tu and Yuan (25). In a Cartesian reference

frame (x, y, z), the Euler equations read:

∂Q

∂t
+
∂E

∂x
+
∂F

∂y
+
∂G

∂z
= 0, (2.41)

where

Q =


ρ
ρu
ρv
ρw
ρE

 , E =


ρu

ρu2 + p
ρuv
ρuw
ρuH

 ,

F =


ρv
ρvu

ρv2 + p
ρvw
ρvH

 , G =


ρw
ρwu
ρwv

ρw2 + p
ρwH

 .

(2.42)

Here, ρ is the mass density, (u, v, w) the components of the velocity vector V along

(x, y, z), respectively, p the pressure, H the total enthalpy, H = a2/(γ − 1) + V 2/2,

33

2.3 Solution of the Euler equations

a =
√
γp/ρ is the speed of sound, and γ the adiabatic index. In order to solve Eq. 2.41

on domains of arbitrary shape using FD methods, it is expressed in general coordinates,

(ξ, η, ζ),

∂Q̃

∂t
+
∂Ẽ

∂ξ
+
∂F̃

∂η
+
∂G̃

∂ζ
= 0, (2.43)

where:

Q̃ =
Q

J
, Ẽ =

ξxE + ξyF + ξzG

J
, (2.44)

F̃ =
ηxE + ηyF + ηzG

J
, G̃ =

ζxE + ζyF + ζzG

J
. (2.45)

The metrics ξx, ξy, ξz, ηx, ηy, ηz, ζx, ζy, ζz define a transformation from an arbitrarily-

shaped physical domain to a cubic domain, and J is the Jacobian of the transformation.

In order to use FD formulas on equally spaced grids, this transformation is generally

chosen such that the computational grid in physical space maps onto a uniform grid in

computational space.

Using the method of lines to solve Eq. 2.43, the problem is split into three one-

dimensional problems. We describe how the problem is solved for direction ξ, and the

same algorithm is applied along η and ζ. The 1D problem along ξ is:

∂Q̃

∂t
+
∂Ẽ

∂ξ
= 0, (2.46)

whose semi-discrete conservative form is:

∂Q̃i
∂t

+
Ei+1/2 − Ei−1/2

∆ξ
= 0. (2.47)

As in the scalar one-dimensional example, the flux is split into its positive and negative

parts, computed as the sum of a first-order term and a high-order correction:

E+
i+1/2 = Ẽ+

i + φ+
i+1/2, E−i+1/2 = Ẽ−i+1 − φ

−
i+1/2.

The core of the method is the estimation of the high-order correction, φ±i+1/2, which

must yield the most accurate TVD numerical flux reconstruction. The computation

consists of two steps:

• a linear procedure for the estimation of the high-order numerical flux function;

• a non-linear procedure to filter the high-order numerical flux and make it TVD.

34

2.3 Solution of the Euler equations

The linear procedure is essentially the same as for the scalar case: positive and negative

parts of the high-order numerical flux function, Ê±i+1/2, are reconstructed component-

by-component by solving the linear systems given by Eqs. 2.35–2.37 and Eqs. 2.38–2.40,

respectively. The non-linear procedure, instead, needs to be modified. The limiter intro-

duced in section 2.2, like most limiters, is based on the assumption that the behaviour

of the computed solution only depends on the reconstructed behaviour of the corre-

sponding flux. In a system of conservation laws, each component of the vector of the

conserved variables Q̃ is coupled to the others via the corresponding part of the flux

Ẽ(Q̃), and so application component-by-component of the limiter may not be enough

to enforce the TVD property of the computed solution. For this reason, a characteristic

decomposition of the Euler equations is used for the non-linear part of the method, as

detailed in the following.

2.3.1 Characteristic decomposition

The inviscid flux is a linearly homogeneous function of the conserved variables, and so

the Euler equations can be written in the following non-conservative form:

∂Q̃

∂t
+ Ã

∂Q̃

∂ξ
= 0. (2.48)

In Eq. 2.48, the flux Jacobian matrix is introduced:

Ã =
dẼ

dQ̃
= |∇ξ|dĚ

dQ
= |∇ξ|A, (2.49)

where |∇ξ| =
√
ξ2
x + ξ2

y + ξ2
z is the L2-norm of the ξ-metrics vector, and

Ě =
J

|∇ξ|
Ẽ (2.50)

is the inviscid flux per unit-area through a surface normal to the local ξ-direction.

The flux Jacobian matrix A has five real eigenvalues, not all distinct. Defining the

unit-vector parallel to the local ξ-direction, (nx, ny, nz) = ∇ξ/|∇ξ|, and the velocity

component along the same direction, Vn = unx + vny + wnz, the eigenvalues are:

λ1 = Vn − a, λ2 = λ4 = λ5 = Vn and λ3 = Vn + a. Also, A has a full set of linearly

independent eigenvectors, and so it can be decomposed as follows:

A = RΛL,

35

2.3 Solution of the Euler equations

where Λ is a diagonal matrix with the eigenvalues of A on the diagonal, R and L are

the right and left eigenvector matrices, respectively. If the differential form LdQ̃ has a

potential W , such that dW = LdQ̃, then an alternative form of Eq. 2.48 is:

∂W

∂t
+ |∇ξ|Λ∂W

∂ξ
= 0, (2.51)

and W is the vector of the characteristic variables.

Characteristic variables evolve independently, as Λ is a diagonal matrix, and so a

component-wise application of the method may be suitable for Eq. 2.51. For the Euler

equations, characteristic variables exist only if the entropy is conserved along a stream

line, i.e. the entropy conservation law can be considered in lieu of the total energy

conservation law. Therefore, characteristic decomposition is allowed but it is incorrect

across surfaces where entropy is produced, such as shock waves. The method under

study employs characteristic decomposition in its non-linear part, as detailed in the

following.

The flux increments are projected along characteristic directions:

∆Ŵ+
i+1/2 = Lli+1/2(Ê+

i+1/2 − Ẽ
+
i), ∆W+

i+1/2 = Lli+1/2(Ẽ+
i+1 − Ẽ

+
i),

∆Ŵ−i+1/2 = Lri+1/2(Ẽ−i+1 − Ê
−
i+1/2), ∆W−i+1/2 = Lri+1/2(Ẽ−i+1 − Ẽ

−
i).

(2.52)

Different superscripts are used for the left eigenvector matrices, Lli+1/2 and Lri+1/2: char-

acteristic directions are not uniform in space, so one must choose where eigenvectors

should be evaluated. Different possibilities are available, as explained in section 2.3.2.

Quantities ∆Ŵ±i+1/2 and ∆W±i+1/2 are, respectively, high and low-order upwind evalua-

tions of the characteristic flux increments. Since they are expected to be independent,

they can be limited according to Eq. 2.31:

δW+
i+1/2 = φ(∆Ŵ+

i+1/2,∆W
+
i+1/2,∆W

+
i−1/2), (2.53)

δW−i+1/2 = φ(∆Ŵ−i+1/2,∆W
−
i+1/2,∆W

−
i+3/2). (2.54)

Finally, the correction φ±i+1/2 is calculated projecting the limited increment of the char-

acteristic flux back into the conserved variable space:

φ+
i+1/2 = Rli+1/2δW

+
i+1/2, φ−i+1/2 = Rri+1/2δW

−
i+1/2,

where Rli+1/2 and Rri+1/2 are right eigenvector matrices, whose evaluation is consistent

with the left eigenvector matrices.

36

2.3 Solution of the Euler equations

2.3.2 Variants of the method

Several variants of the method described in section 2.3.1 can be generated by changing

some of the basic techniques it relies on. These techniques are:

• TVD filter. As seen in section 2.2, two limiters, namely type A and B, may be

used. Type A is expected to be more accurate while type B is expected to be

more stable.

• Characteristic decomposition. In general, the characteristic decomposition

is not uniform in space, so one must choose a state to evaluate the eigenvectors.

Referring to Eqs. 2.52, two popular choices are:

– Upwind evaluation, i.e. Lli+1/2 = L(Qi) and Lri+1/2 = L(Qi+1).

– Evaluation at an average state Qi+1/2 between Qi and Qi+1, i.e. Lli+1/2 =

Lri+1/2 = L(Qi+1/2). A popular choice is the Roe average state, defined as:

ρi+1/2 =
√
ρiρi+1,

Φi+1/2 =
√
ρiΦi+

√
ρi+1Φi+1√

ρi+
√
ρi+1

, Φ = u, v, w,H.
(2.55)

The upwind evaluation is expected to be more stable, while the evaluation based

on the Roe average state is expected to be more accurate.

• Flux Vector Splitting (FVS). Several FVS techniques are available in the

literature. We have considered classic splittings, namely Steger-Warming and

van Leer, and a splitting based on the kinetic theory of gases, namely the Kinetic

Splitting.

The Steger-Warming split flux can be expressed as:

Ě± = RΛ±LQ, Λ± =
Λ± Λ

2
. (2.56)

This separates left and right-running waves based on the eigenvalues, and it is

not differentiable at sonic points.

37

2.3 Solution of the Euler equations

The van Leer split flux can be written as:

Ě+ = Ě if Mn > 1

Ě+ = Ě+
mass



1
u+ a

γ (2−Mn)nx
v + a

γ (2−Mn)ny
w + a

γ (2−Mn)nz

ek + 2a2 1+(γ−1)Mn− γ−1
2
M2
n

γ2−1


if 0 < Mn < 1,

Ě+ = Ě − Ě− if Mn < 0,

(2.57)

and

Ě− = Ě − Ě+ if Mn > 0,

Ě− = Ě−mass



1
u+ a

γ (−2−Mn)nx
v + a

γ (−2−Mn)ny
w + a

γ (−2−Mn)nz

ek + 2a2 1−(γ−1)Mn− γ−1
2
M2
n

γ2−1


if 0 < Mn < 1,

Ě− = Ě if Mn < −1,

(2.58)

where:

Mn = Vn/a, Ě±mass = ±1

4
ρa(Mn ± 1)2, ek =

u2 + v2 + w2

2
.

The van Leer FVS is known to be smoother than the Steger-Warming FVS, being

differentiable over the whole range of Mach numbers.

The Kinetic FVS is a less common technique, where left and right-running dis-

turbances are computed from microscopic considerations. Some details about

how the fluxes are derived are given in section 3.2. Here we give the expression

for the inviscid kinetic split flux. Parameters for the splitting are the peculiar

velocity c =
√

2p/ρ (61), the normal speed ratio Sn = Vn/c, the coefficients

p± = 1/2[1 ± erf(Sn)] and ε = exp
(
−S2

n

)
/2
√
π. Having defined these parame-

ters, the kinetic split flux is:

Ě± =


Ě±mass

Ě±massu+ nxpp
±

Ě±massv + nypp
±

Ě±massw + nzpp
±

Ě±massH ∓ pcε/2

 , (2.59)

where Ě±mass = ρ(Vnp
±± cε) is the kinetic split mass flux. It is the most accurate

but also the most computationally expensive, because it requires the evaluation

of error and exponential functions.

38

2.3 Solution of the Euler equations

2.3.3 A modification to the characteristic decomposition

In section 2.3.2 we presented several variants of the original method proposed by Tu and

Yuan. We anticipate here results discussed in section 5.1.1, i.e. that the characteristic

decomposition is essential to suppress spurious oscillations, but changing the limiter, the

evaluation of the eigenvector matrices or the flux splitting has a rather marginal impact

on the computed solution. On the other hand, in several simulations we found essential

a modification we introduce in the limiting step, and this new feature is discussed in

this section.

In the original method, the limited characteristic flux is computed by Eqs. 2.53 and

2.54. For example, the limiting equation for the positive flux is:

δW+
i+1/2 = φ(∆Ŵ+

i+1/2,∆W
+
i+1/2,∆W

+
i−1/2),

where:

∆Ŵ+
i+1/2 = Lli+1/2(Ê+

i+1/2 − Ẽ
+
i),

∆W+
i+1/2 = Lli+1/2(Ẽ+

i+1 − Ẽ
+
i),

∆W+
i−1/2 = Lli−1/2(Ẽ+

i − Ẽ
+
i−1).

We note that the quantity ∆W+
i−1/2 is based on a characteristic decomposition that is, in

general, different from the one ∆Ŵ+
i+1/2 and ∆W+

i+1/2 are based on. The characteristic

decomposition is meaningful only at a grid node, because, for example, the entropy may

not be conserved across grid nodes. Therefore, we propose to use the same characteristic

decomposition for all of the characteristic flux increments involved in the limiting, and

re-define ∆W+
i−1/2 as:

∆W+
i−1/2 = Lli+1/2(Ẽ+

i − Ẽ
+
i−1).

Analogously, for the negative flux we compute:

∆W−i+3/2 = Lri+1/2(Ẽ−i+2 − Ẽ
−
i+1),

unlike the original method, where:

∆W−i+3/2 = Lri+3/2(Ẽ−i+2 − Ẽ
−
i+1).

This modification may seem marginal but, in fact, it has proven essential when the

domain has boundaries with regions of very high curvature, such as corners. Without

39

2.4 Time discretisation

our modification, compression corners generate high numerical noise and, at hypersonic

Mach numbers, negative pressure values upstream from the corner. Expansion corners

are even more problematic, as they generate negative pressure values at moderatly high

(supersonic) Mach numbers. Our modification, on the other hand, allows oscillation-

free and stable simulation of corner flows. An example of how this modification improves

stability and accuracy of the method is presented in section 6.1.2.

2.4 Time discretisation

The method described in section 2.3 provides a discretisation for the spatial operator

L in a system of conservation laws:

∂Q

∂t
= L (Q). (2.60)

The numerical model is fully defined once an approximation for the time derivative

is specified. For time-accurate solutions a common choice is an explicit Runge-Kutta

scheme.

The state vector Q at time tn, Qn = Q(tn), is known, and its value at time tn+1 =

tn + ∆t, Qn+1 = Q(tn+1), needs to be computed. In an m-stage explicit Runge-Kutta

scheme, this is accomplished by calculating m intermediate states Q(i) between Qn and

Qn+1, according to

Q(i) = Q(0) + ∆t

i−1∑
k=0

ci,kL (Q(k)), i = 1, 2, . . . ,m, (2.61)

where Q(0) = Qn and Q(m) = Qn+1 and ci,k are the Runge-Kutta coefficients. Runge-

Kutta schemes can achieve high formal accuracy in time. However, there are two

specific drawbacks:

• the number of operations per time step increases as well as the storage require-

ment, because m intermediate states need to be computed;

• if L is a TVD spatial operator and the numerical solution is required to be TVD,

then the maximum allowed time step for stability decreases as the time accuracy

of the scheme increases.

40

2.5 Implementation and boundary conditions

Shu and Osher (19) devised a class of Runge-Kutta schemes, which, if L is a TVD

spatial operator, compute TVD solutions and, for given time-accuracy, have the least

restrictive stability condition. Within this family of schemes, a popular choice is the

third-order one:

Q(0) = Qn,

Q(1) = Q(0) + ∆tL (Q0),

Q(2) = Q(0) + ∆t1
4 [L (Q(0)) + L (Q(1))],

Q(3) = Q(0) + ∆t1
6 [L (Q(0)) + L (Q(1))] + 2

3L (Q(2)),

Qn+1 = Q(3).

(2.62)

This scheme has the same stability requirement as the first-order scheme, therefore

no reduction of the maximum allowed time step is introduced by increasing the time

accuracy; furthermore, intermediate states (0) and (1) share the same Runge-Kutta

coefficients (c2,0 = c2,1 = 1/4 and c3,0 = c3,1 = 1/6), so one can set a single array to

store the quantity [L (Q(0)) + L (Q(1))].

2.5 Implementation and boundary conditions

The method described in this chapter has been implemented in two new codes. The

first code, which we call CU5-TVD-NSK, is written in C++ language. It employs a

FD cell-centred discretisation, i.e. the computational domain is divided into cells and

the nodes for the FD discretisation are placed at the cell-centres. Indeed, this type

of discretisation is less common than the vertex-based one in FD codes, and we have

chosen it because it has an inherent advantage for the solution method studied when

multi-block computational grids are considered, as explained in section 4.1.1. We have

developed a parallel version of CU5-TVD-NSK, which we call CU5-TVD-NSK-MB,

employing dual-level parallelism. This topic is discussed in section 4.1

The second code, which we call CUDA-CU5-TVD-NS, is written in the C language.

It employs a FD vertex-based discretisation, i.e. the computational domain is divided

into cells and the nodes for the FD discretisation are the vertices of the cells. The

reason for having two implementations of the same method is that the code developed

first, CU5-TVD-NSK, has a structure unsuitable for GPU computing, while the second,

CUDA-CU5-TVD-NS, was developed specifically for GPUs. This topic is discussed in

section 4.2.

41

2.5 Implementation and boundary conditions

For the Euler solver, the only difference between the two codes is the placement of

the FD nodes (cell-centres versus cell-corners), but the different placement of the FD

nodes impacts the way the boundary conditions are enforced. For the Navier-Stokes

solver, the two codes also differ in the way viscous effects are accounted for, as explained

in section 3.3.2.

2.5.1 Boundary conditions based on extrapolation

In CU5-TVD-NSK, the boundary conditions are enforced providing the computational

domain with ghost cells, where fluid dynamic variables are either imposed by the bound-

ary conditions or extrapolated from the interior. Consider, for example, a ξ-constant

surface, where n denotes the ξ-parallel unit vector pointing into the computational do-

main, the ghost node is identified by the index i = 0 and the first interior node by the

index i = 1. For the solution of the Euler equations, the following boundary conditions

have been implemented:

• Supersonic inflow: inflow primitive variables, (ρin, uin, vin, win, pin), provided

as an input, are imposed at the ghost node.

• Subsonic inflow: inflow density and velocity are imposed at the ghost node,

while the pressure is linearly extrapolated from the interior.

• Supersonic outflow: primitive variables at the ghost node are linearly extrap-

olated from the interior.

• Subsonic outflow: density and velocity at the ghost node are linearly extrapo-

lated from the interior, while the pressure is set to its outflow value pout, provided

as an input.

• Slip-wall: there is no mass flux through the boundary surface, and derivatives

of pressure, density and tangential velocity in the direction normal to the surface

are zero. This is easily imposed by assigning the following values to the primitive

variables at the ghost node:

ρ0 = ρ1,
u0 = u1 − 2Vn,1nx,
v0 = v1 − 2Vn,1ny,
w0 = w1 − 2Vn,1nz,
p0 = p1.

(2.63)

42

2.5 Implementation and boundary conditions

2.5.2 Characteristic boundary conditions

We have provided our code CUDA-CU5-TVD-NS with Characteristic Boundary Con-

ditions (CBC), because these are more accurate than those based on extrapolation, and

more suitable for future potential DNS applications. For the theory of CBC we refer

to the fundamental works by Thompson (62) and Poinsot and Lele (63), and to the

recent work by Landmann et al. (64).

In the CBC approach, the governing equations are solved at the boundaries. Con-

sider, for example, the boundary ξ = 0. The governing equations read:

∂Q

∂t
+ |∇ξ|∂Ě

∂ξ
= S, (2.64)

where

S = J

[
Ě
∂ (|∇ξ|/J)

∂ξ
+
∂F̃

∂η
+
∂G̃

∂ζ

]
. (2.65)

The variables appearing in Eqs. 2.64 and 2.65 have the same meaning as in section 2.3.

Projecting Eq. 2.64 into characteristic directions, it becomes

∂W

∂t
+ |∇ξ|Λ∂W

∂ξ
= SW , (2.66)

where
∂W

∂t
= L

∂Q

∂t
, Λ

∂W

∂ξ
= L

∂Ě

∂ξ
, SW = LS

and

Λ =


Vn − a 0 0 0 0

0 Vn 0 0 0
0 0 Vn + a 0 0
0 0 0 Vn 0
0 0 0 0 Vn

 .
In Eq. 2.66, ∂W/∂t is the unknown, SW is computed in the same fashion as for internal

nodes, and the wave amplitude, Λ∂W/∂ξ, is computed differently depending on the

sign of the eigenvalues. More precisely, incoming waves, identified by λ > 0, are used

to enforce physical boundary conditions, outgoing waves, identified by λ < 0, are

computed from the interior, and steady waves, identified by λ = 0, have obviously zero

amplitude.

The amplitude of outgoing waves is computed as follows. A fourth-order accurate

amplitude is computed (65):(
Λ∂ξŴ

)
0

=
1

∆ξ
L

(
−25

12
Ě0 + 4Ě1 − 3Ě2 +

4

3
Ě3 −

1

4
Ě4

)
,

43

2.5 Implementation and boundary conditions

as well as the first-order accurate amplitudes:

(Λ∂ξW)i =
1

∆ξ
L(Ěi+1 − Ěi), i = 0, 1.

The TVD property is then enforced by applying the minmod limiter:

Λ
∂W

∂ξ
= minmod

((
Λ∂ξŴ

)
0
, (Λ∂ξW)0 , (Λ∂ξW)1

)
,

where:

minmod(a, b, c) =

{
a if ab > 0, bc > 0 and |a| < |b|,
b otherwise.

Two types of boundaries have been implemented:

• Farfield. The physical boundary condition to be enforced is zero amplitude of in-

coming waves at any time. The characteristic formulation Eq. 2.66 is particularly

amenable for this purpose: the wave amplitude is either set to zero or computed

from the interior depending on the sign of the corresponding eigenvalue.

• Slip-wall. The physical boundary condition to be enforced is zero mass flow

across the boundary at any time. Initialising the flow at the boundary so that:

Q2nx +Q3ny +Q4nz = 0,

the condition:
∂

∂t
(Q2nx +Q3ny +Q4nz) = 0 (2.67)

must be verified at any time. This equation is written in terms of the characteristic

variables using the relation ∂tQ = R∂tW , and reads:

5∑
i=1

(nxR2,i + nyR3,i + nzR4,i)
∂Wi

∂t
= 0. (2.68)

The amplitude of the first (outgoing) wave is computed from the interior. Second,

fourth and fifth waves have zero amplitude, because λ2 = λ4 = λ5 = Vn = 0.

Finally, the amplitude of the third (incoming) wave is computed from Eq. 2.68.

Once the wave amplitudes have been computed according to the boundary type, the

time derivative of the characteristic variables vector is computed:

∂W

∂t
= SW − Λ

∂W

∂ξ
,

and, finally, the time derivative of the conserved variable vector:

∂Q

∂t
= R

∂W

∂t
.

44

2.6 Summary

2.6 Summary

In this chapter we have presented the compact-TVD method for the Euler equations

that we use as a starting point for our study. We have considered several variants to the

original method proposed by Tu and Yuan (25) and proposed to use the high accuracy

Kinetic FVS instead of the classic Steger-Warming. Moreover, we have introduced a

modification to the characteristic treatment employed in the TVD filtering step. The

impact of this modification will be shown in section 6.1.2.

45

3

Solution of the Navier-Stokes

equations

In this chapter we present two methods for solving the Navier-Stokes equations based on

the compact-TVD method presented in Chapter 2. One method employs the classical

operator splitting, and is implemented in the code CUDA-CU5-TVD-NS. The other,

implemented in the code CU5-TVD-NSK, employs the kinetic flux vector splitting

for the Navier-Stokes flux, proposed by Chou and Baganoff (56). This method is

interesting because it is more stable and has lower computational cost than a method

differentiating the inviscid flux with the same compact-TVD method, while using a

central operator to differentiate the viscous flux. Even more important, a method

employing this technique is ideal for future extension to non-equilibrium flows, either

interfacing the CFD solver with a particle method, or including non-equilibrium effects

into the flux. In the first case, the CFD solver provides an exact flux boundary condition

for the particle method, including the viscous component. In the second case, because

any non-equilibrium split flux degenerates to the kinetic split flux where equilibrium is

reached, consistency between equilibrium and non-equilibrium regions of the flow field

is automatically guaranteed.

In section 3.1 we use a simplified model to explain how the methods differ, outlining

their advantages and drawbacks. In section 3.2 we present in detail the Kinetic Split-

ting as derived by Chou and Baganoff (56), identifying its merits and approximations.

Finally, in section 3.3 we describe in detail our Navier-Stokes solvers.

46

3.1 Inclusion of viscous effects

3.1 Inclusion of viscous effects

When solving the compressible Navier-Stokes equations using a compact finite-difference

method, a shock-capturing scheme can be used to discretise the inviscid flux, i.e. the

Euler flux, while the viscous flux can be discretised separately by means of a central

difference operator. In order to explain as simply and clearly as possible the different

ways to include viscous effects, we shall consider the following one-dimensional scalar

conservation law as a model for the Navier-Stokes equations:

∂u

∂t
+

∂

∂x

(
f(u) + k(u)

∂u

∂x

)
= 0. (3.1)

A stable semi-discretisation of Eq. 3.1 is:

∂u

∂t
+DTVD

up f −DkDu− kD2u = 0, (3.2)

where DTVD
up is the operator representing the compact-upwind TVD scheme described

in section 2.2, and D and D2 are compact-central operators for the first and second

derivatives, respectively. In Eq. 3.2 the derivative of the viscous flux has been expanded

via the chain rule, as suggested by Lele (3), to improve numerical stability.

Expanding the derivative of the viscous flux leads to very complicated expressions

when the Navier-Stokes equations in general coordinates are considered. For this reason

many authors, see for example Zhong (66), have discretised the viscous flux by applying

twice a central operator for the first derivative, along with an upwind operator for the

inviscid flux. This leads to the following semi-discrete form of Eq. 3.1:

∂u

∂t
+DTVD

up f −D(kDu) = 0. (3.3)

This is the approach used in our code CUDA-CU5-TVD-NS. A third option for dis-

cretising Eq. 3.1 is
∂u

∂t
+DTVD

up (f − kDu) = 0. (3.4)

This is the approach used in our code CU5-TVD-NSK. Such a discretisation is possible

as long as a splitting technique for the total flux ftot = f − kux is available. To the

best of our knowledge, this has never before been investigated. The advantages of the

latter discretisation over conventional ones are:

47

3.1 Inclusion of viscous effects

• It is computationally less expensive, since three linear systems are solved to com-

pute derivatives, while five and four linear systems must be inverted when solving

Eqs. 3.2 and 3.3, respectively. This computational advantage is even more re-

markable when multi-dimensional problems and the Navier-Stokes equations are

considered.

• It is fully conservative.

• The high-order compact reconstruction is applied to the total flux, which is very

likely to be smoother than the inviscid flux, and so fewer spurious oscillations are

expected.

• Since the total flux incorporates the physical viscosity and is better reconstructed,

limiting such a flux is less prone to over-damping.

The major drawback of a method based on a discretisation like that of Eq. 3.4 is due

to the upwinding of the viscous flux, which does not mimic the physical non-directional

nature of this flux. This may possibly lead to instability for some diffusion-dominated

flows and so requires careful testing.

As mentioned above, Eq. 3.4 relies on the availability of a splitting technique for

the total flux. The Kinetic Flux Vector Splitting proposed by Chou and Baganoff (56),

and discussed in section 3.2, is suitable for flux splitting the Navier-Stokes equations.

The splitting was used by Chou and Baganoff in the framework of a finite-volume

approach, and was made second-order via the Monotone Upstream-centred Schemes for

Conservation Laws (MUSCL) approximation.

An attempt to combine the robustness and physical accuracy of kinetic splitting

with the high formal accuracy and resolution properties of compact schemes can be

found in the work by Ravichandran (24). The author employed a kinetic splitting for

the inviscid flux, like the one in section 2.3.2, along with a compact-TVD scheme to

solve the Euler equations, and the test cases clearly showed the higher accuracy with

respect to a second-order MUSCL scheme employing the same splitting.

A conceptual problem arises when the Navier-Stokes equations are considered. The

shock-capturing method proposed by Tu and Yuan (25) is characteristic-based, as the

Euler flux is projected into characteristic space, and then limited. This is an important

step for the scheme to be TVD, as it is demonstrated in section 5.1.1, and should not

48

3.2 Kinetic Flux Vector Splitting for the Navier-Stokes equations

be removed. On the other hand, projecting the Navier-Stokes flux into characteristic

space seems to be incorrect, because the characteristic curves can only be defined for

the inviscid flux. However, we argue that: (i) in diffusion-dominated regions of the flow

field, where the viscous flux plays an important role and the Euler flow approximation

is no longer valid, no spurious oscillations occur, and so neither the limiter nor the

projection into characteristic space affect the flux reconstruction; (ii) in convection-

dominated flow regions, such as across a shock wave, where the solution is affected by

the limiting action, the Euler approximation is fully recovered, and the projection into

the characteristic space is a meaningful operation.

3.2 Kinetic Flux Vector Splitting for the Navier-Stokes

equations

In this section the splitting technique for the Navier-Stokes equations, devised by Chou

and Baganoff (56), is presented. This technique is based on kinetic theory and was

meant to be applied in hybrid continuum-particle solvers, i.e. methods that solve the

Navier-Stokes equations in flows where the continuum hypothesis holds, while using the

Direct Simulation Monte Carlo (DSMC) method to compute regions of rarefied flow.

The flux splitting was devised to provide one-side fluxes from the continuum region at

the interface between regions where different methods are used.

We first describe briefly how conservation laws of gas dynamics are derived as

moments of the Boltzmann equation, giving the kinetic expressions of the fluxes; then

introduce the concept of kinetic splitting, valid for any velocity distribution function;

finally we give the expression of the split flux when a Chapman-Enskog expansion of

the distribution function is assumed, i.e. when the Navier-Stokes equations are the

governing equations.

3.2.1 Moments of the Boltzmann equation

In this section some basic concepts of kinetic theory are presented. They can be found

in many works on kinetic theory, such as by Grad (67), Chapman and Cowling (61)

and Bird (68).

Consider an ideal monatomic gas in the absence of external forces, and assume the

gas is sufficiently dilute for binary collisions to dominate. In this case the Boltzmann

49

3.2 Kinetic Flux Vector Splitting for the Navier-Stokes equations

equation, which governs the gas dynamics, is:

∂(nf)

∂t
+ ck

∂(nf)

∂xk
=

[
∂(nf)

∂t

]
coll

, (3.5)

where n is the number density, defined as the number of molecules per unit volume, f is

the velocity distribution function, ck is the component along direction xk of the molec-

ular velocity, the repeated index k denotes a sum, and the right hand side represents

the collision integral. Moment equations are obtained by multiplying the Boltzmann

equation by a function of the molecular velocity Q(ci) and integrating over the velocity

space. A moment equation then reads:

∂

∂t
(n < Q >) +

∂

∂xk
(n < ckQ >) = ∆[Q], (3.6)

where the two operators are:

< Q >=

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

Qfdc1dc2dc3, (3.7)

and

∆[Q] =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

Q

[
∂(nf)

∂t

]
coll

dc1dc2dc3. (3.8)

Molecular mass, momentum and kinetic energy, QINV = {m,mci,mc2/2}, possess the

following property: if any of them is chosen as function Q(ci) to evaluate the moment,

then in the corresponding moment equation the collisional term evaluates to zero,

∆[QINV] = 0. Hence, they are usually referred to as collisional invariants. This result

holds for any distribution function function f and any molecular interaction law.

The moment equations generated using the collisional invariants are the conserva-

tion laws of gas dynamics:

∂

∂t
(ρ) +

∂

∂xk
(ρ < ck >) = 0, (3.9)

∂

∂t
(ρ < ci >) +

∂

∂xk
(ρ < ckci >) = 0, (3.10)

∂

∂t
(ρ < c2/2 >) +

∂

∂xk
(ρ < ckc

2/2 >) = 0, (3.11)

where ρ = mn is the mass density. Introducing the peculiar velocity components

Ci = (ci − ui), where ui =< ci > is the mass velocity, one can define the central

50

3.2 Kinetic Flux Vector Splitting for the Navier-Stokes equations

moments:

Pi,j = ρ < CiCj >, (3.12)

p = Pk,k/3, (3.13)

τi,j = −Pi,j + pδi,j , (3.14)

e = < C2/2 >, (3.15)

qi = ρ < CiC
2/2 >, (3.16)

where Pi,j is the stress tensor, p is the pressure, τi,j is the viscous stress tensor, e is the

internal energy for monatomic gas, and qi is the heat flux vector for a monatomic gas.

The conservation laws of gas dynamics can then be written in the familiar form:

∂

∂t
(ρ) +

∂

∂xk
(ρuk) = 0, (3.17)

∂

∂t
(ρui) +

∂

∂xk
(ρukui + Pk,i) = 0, (3.18)

∂

∂t

[
ρ

(
e+

u2

2

)]
+

∂

∂xk

[
ρuk

(
e+

u2

2

)
+ Pk,iui + qk

]
= 0. (3.19)

If the gas is not monatomic but has an internal structure, the energy mc2/2 must

be replaced by (mc2/2 + ε), where ε is the additional internal energy per particle. It is

reasonable to argue that the quantities:

QINV = {m,mci, (mc2/2 + ε)}. (3.20)

are still conserved in a collision, and so Eq. 3.8 again evaluates to zero. Eqs. 3.9 and

3.10 and, consequently, Eqs. 3.17 and 3.18 are fully recovered, while Eq. 3.11 is replaced

by:

∂

∂t
(ρ < c2/2 > +n < ε >) +

∂

∂xk
(ρ < ckc

2/2 > +n < ckε >) = 0. (3.21)

Substituting the central moments, defined by Eqs. 3.13–3.16, into Eq. 3.21 reproduces

the same algebra as for monatomic gas, and leads to

∂

∂t

[
ρ

(
e+

u2

2

)
+ ρeint

]
+ (3.22)

∂

∂xk

[
ρuk

(
e+

u2

2

)
+ Pk,iui + qk + (n < Ckε > +ρukeint)

]
= 0,

51

3.2 Kinetic Flux Vector Splitting for the Navier-Stokes equations

where eint =< ε > /m is the energy due to the internal molecular structure. Therefore,

Eq. 3.19 is also recovered if the definition of the internal energy, Eq. 3.15, is replaced

by:

e =< C2/2 > +eint, (3.23)

and the definition of the heat flux vector, Eq. 3.16, is replaced by:

qi = ρ < CiC
2/2 > +n < Ciε > . (3.24)

When computing eint, a joint distribution f(Ci, ε) should be considered. However, if

all internal molecular energy modes are in equilibrium, both internally and with the

translational degrees of freedom, then Ci and ε are statistically independent variables,

and, therefore, f(Ci, ε) reduces to a product of functions. Based on this assumption,

the following expression is obtained:

eint =
1

2

(
5− 3γ

γ − 1

)
RT, (3.25)

where R is the gas constant and T the translational temperature. Note that, for a

monatomic gas, γ = 5/3 and eint = 0.

This derivation shows that the conservation equations, Eqs. 3.17–3.19, hold for

any velocity distribution function. For example, choosing the equilibrium distribu-

tion, namely the Maxwellian distribution, Eqs. 3.17–3.19 become the Euler equations;

choosing the Chapman-Enskog distribution, Eqs. 3.17–3.19 become the Navier-Stokes

equations. The expressions of these distribution functions are given in section 3.2.3

3.2.2 Kinetic split fluxes

Moment equations, Eq. 3.6, for the collisional invariants can be expressed as:

∂U

∂t
+
∂Fk
∂xk

= 0, (3.26)

where the state vector U and the total flux vector Fk are:

U = n < QINV >, (3.27)

Fk = n < ckQ
INV > . (3.28)

We stress that the five fluxes defined by Eq. 3.28 are total fluxes. These general

expressions contain both the inviscid fluxes as well as non-equilibrium components

52

3.2 Kinetic Flux Vector Splitting for the Navier-Stokes equations

due to viscous stress and heat flux. Kinetic splitting of the total flux is achieved by

splitting the integration in velocity space. For example, when splitting the flux along

the x1 direction, the integration is split as:∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞
{. . .}dc1dc2dc3 ≡∫ ∞

−∞

∫ ∞
−∞

(∫ 0

−∞
+

∫ ∞
0

)
{. . .}dc1dc2dc3 ≡ (3.29)∫ ∞

−∞

∫ ∞
−∞

(∫ −u1
−∞

+

∫ ∞
−u1

)
{. . .}dC1dC2dC3.

In the following, we consider the splitting along the x1-direction of the flux component

along the same direction, F1. Analogous considerations can be made for directions x2

and x3. Also, for simplicity, we drop the subscript and write F in lieu of F1.

As in any flux splitting formula, a kinetic split flux is written as: F = F+ + F−.

Peculiar to kinetic splitting, instead, are the use of the kinetic expression for the flux,

Eq. 3.28, and the splitting of the integral over velocity space, Eq. 3.29. Combining the

two, we obtain:

F− = n

∫ ∞
−∞

∫ ∞
−∞

∫ −u1
−∞

(C1 + u1)QINVfdC1dC2dC3, (3.30)

F+ = n

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−u1

(C1 + u1)QINVfdC1dC2dC3. (3.31)

These relations are actually used to compute F when f is known. We introduce the

following physically descriptive notation:

F+
zero =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−u1

fdC1dC2dC3, (3.32)

F+
mass = ρ

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−u1

(C1 + u1)fdC1dC2dC3, (3.33)

F+
momx1

= ρ

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−u1

(C1 + u1)2fdC1dC2dC3, (3.34)

F+
momx2

= ρ

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−u1

(C1 + u1)(C2 + u2)fdC1dC2dC3, (3.35)

F+
energytr

= ρ

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−u1

(C1 + u1)
1

2
[(C1 + u1)2 +

(C2 + u2)2 + (C3 + u3)2]fdC1dC2dC3, (3.36)

F+
energyint

= n

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−u1

(C1 + u1)εfdC1dC2dC3. (3.37)

53

3.2 Kinetic Flux Vector Splitting for the Navier-Stokes equations

A notation analogous to Eqs. 3.32–3.37 is introduced for the negative flux, where the

integration over C1 runs from −∞ to −u1.

The quantity F+
zero defines how the velocity distribution function itself is split, and

satisfies the normalisation condition F+
zero+F−zero = 1 for a probability distribution. The

quantities F+
momx1

and F+
momx2

are the positive fluxes of the momentum components

along x1 and x2, respectively. The flux of the x3-component is not listed because

its expression is analogous to that of the x2-component. The quantities F+
energytr

and

F+
energyint

are the positive fluxes of the total energy for a monatomic gas and of the

energy due to the internal molecular structure, respectively. The positive flux of the

total energy for a gas with internal molecular structure is the sum of the two:

F+
energy = F+

energytr
+ F+

energyint
. (3.38)

When computing the contribution F+
energyint

, the integral is further split into a contri-

bution due to the thermal velocity C1 and a contribution due to the mass velocity u1:

F+
energyint

= ∆q+
Eucken + ρu1e

+
int. (3.39)

This splitting is motivated by the difficulty in modelling the first term, ∆q+
Eucken, that

represents the diffusive flux of energy due to the internal molecular structure. It is the

positive part of the second term appearing in the heat flux kinetic expression, Eq. 3.24,

and its explicit computation requires a joint distribution function, f(Ci, ε), which is not

available. Therefore, Eucken’s model is used, which replaces < C1ε > by a quantity

proportional to the temperature gradient:

∆qEucken = ∆q+
Eucken + ∆q−Eucken = −K∇T. (3.40)

Within this approximation, ∆qEucken is absorbed into the diffusive flux of the trans-

lational energy, provided a thermal conductivity for a gas with internal structure,

k = k(1) +K, is used instead of the value for a monatomic gas, k(1).

The term ρu1e
+
int, on the other hand, represents the advective flux of the energy

due to the internal molecular structure, and it is easily computed as:

ρu1e
+
int = F+

masseint, (3.41)

where eint is given by Eq. 3.25, since the model assumes equilibrium for the internal

degrees of freedom.

54

3.2 Kinetic Flux Vector Splitting for the Navier-Stokes equations

Finally, for the purpose of flux splitting, the total flux of the energy due to the

internal molecular structure is identified with its advective component:

F+
energyint

≡ F+
masseint, (3.42)

while its diffusive component is accounted for by considering a modified thermal con-

ductivity.

3.2.3 Chapman-Enskog split fluxes

A gas flow that is in local thermodynamic equilibrium is represented locally by a

Maxwellian distribution, and a gas flow that is slightly disturbed from the equilib-

rium state is represented locally by the Chapman-Enskog (CE) distribution. The CE

distribution (61) is obtained as an approximate solution to the Boltzmann equation for

a monatomic gas and is expressed as a product of a local Maxwellian distribution and

a polynomial function of the thermal velocity components, Ci:

fCE = fMax(1 + φ1 + φ2), (3.43)

where:

fMax = (2πRT)−3/2 exp(−C2/2RT),

φ1 = −
(
ρ

p2

)(
k(1) ∂T

∂xk

)
Ck(C

2/5RT − 1),

φ2 = −
(
ρ

p2

)(
µ(1) ∂uj

∂xk

)(
CjCk −

1

3
C2δj,k

)
,

and where k(1) is the coefficient of thermal conductivity and µ(1) is the coefficient of

viscosity as determined by the Chapman-Enskog procedure, and δj,k is the Kronecker

delta. Both temperature and velocity gradients appear as parameters in fCE and

notational efficiency can be gained by introducing the Navier-Stokes-Fourier expressions

for stress and heat flux:

qCE
i = −k(1) ∂T

∂xi
, (3.44)

τCE
i,j = µ(1)

(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3
µ(1)

(
∂uk
∂xk

)
δi,j . (3.45)

Substituting Eq. 3.43 into Eqs. 3.32–3.37, all integrands become products of polyno-

mials in the thermal velocity components, Ci, and the Maxwellian distribution, fMax.

55

3.2 Kinetic Flux Vector Splitting for the Navier-Stokes equations

Therefore, the integration is relatively straightforward, and details can be found in

the work by Chou (69). Terms containing odd powers of C2 and C3 evaluate to zero,

because fMax is a symmetric function, while terms containing even powers are known

functions of RT . Integration in the C1 component is split into integrals from −u1 to 0

and from 0 to∞, obtaining exponential and error functions (68). Finally, the following

expressions are obtained:

F±zero = 1/2[(1± α1)± α2(S1τ̂
CE
1,1 + (2S2

1 − 1)qCE
1)], (3.46)

F±mass = ρ
√
RT/2[(1± α1)S1 ± α2(1 + χ1)], (3.47)

F±x1−mom = p[(1± α1)(S2
1 + 1/2(1− τ̂CE

1,1))± α2(S1 + q̂CE
1)], (3.48)

Fx2−mom =
√

2RT [S2F
±
mass] + 1/2p[−(1± α1)τ̂CE

1,2 ± α2q̂
CE
2], (3.49)

F±tr-energy = p
√
RT/2[(1± α1)(S2(5/2 + S2) + χ2)±

α2(2 + S2 + χ3)], (3.50)

F±int-energy = ρu1e
±
int =

1

2

(
5− 3γ

γ − 1

)
RTF±mass, (3.51)

where

α1 = erf(S1),

α2 =
1√
π

exp(−S2
1),

χ1 = S1q̂
CE
1 +

1

2
τ̂CE

1,1 ,

χ2 =
5

2
q̂CE

1 − (S1τ̂
CE
1,1 + S2τ̂

CE
1,2 + S3τ̂

CE
1,3),

χ3 = S2q̂
CE
2 + S3q̂

CE
3 − χ1(1 + S2

2 + S2
3)− τ̂CE

1,1 ,

Si = ui/
√

2RT,

S2 = S2
1 + S2

2 + S2
3 ,

τ̂CE
i,j = τCE

i,j /p,

q̂CE
i =

2

5
qCE
i /(p

√
2RT).

As with Eqs. 3.32–3.37, the split flux of the x3-momentum is not listed as its expres-

sion is analogous to that of the x2-momentum. Note that Eqs. 3.47–3.51 satisfies the

consistency condition F+ + F− = F , and Eq. 3.46 satisfy the normalisation condition

Fzero = F+
zero + F−zero = 1.

56

3.2 Kinetic Flux Vector Splitting for the Navier-Stokes equations

Eqs. 3.46–3.50 are not affected by the internal molecular structure of the gas, i.e.

by the value of γ. Therefore, they should not contain γ explicitly, when expressed

appropriately. This is accomplished by introducing the speed ratio, Si = ui/
√

2RT ,

often employed in kinetic theory instead of the Mach number (that contains γ through

the speed of sound).

It is worth recalling the approximation behind these expressions when a gas with

internal molecular structure is considered. In this case, ∆qEucken is absorbed into

Ftr-energy by replacing k(1) with k = k(1) + K in Eq. 3.45. Even assuming Eucken’s

approximation holds, this does not guarantee that the splitting is correct, i.e. that,

when the modified conductivity is introduced into χ2 and χ3 in Eq. 3.50, it will properly

account for the absorption of the split quantities ∆q±Eucken in Eq. 3.51. Furthermore,

the expression Eq. 3.25, employed in Eq. 3.51, is based on the assumption that Ci and

ε are statistically independent variables. If the same assumption were used to evaluate

< C1ε >, then we would have ∆qEucken = n < C1ε >= n < C1 >< ε >= 0, as by

definition < C1 >= 0, and Eucken’s approximation would be lost.

If the non-equilibrium parameters τ̂CE and q̂CE are set to zero, then the kinetic

split flux for a Maxwellian distribution, i.e. the Euler split flux, is recovered:

F±zero = 1/2(1± α1), (3.52)

F±mass = ρ
√
RT/2[(1± α1)S1 ± α2], (3.53)

F±x1−mom = p[(1± α1)(S2
1 + 1/2)± α2S1], (3.54)

Fx2−mom =
√

2RT [S2F
±
mass], (3.55)

F±tr-emergy = p
√
RT/2[(1± α1)S2(5/2 + S2)± α2(2 + S2)], (3.56)

F±int-energy =
1

2

(
5− 3γ

γ − 1

)
RTF±mass. (3.57)

These expressions, derived as outlined in this section by Chou and Baganoff (56), are

also found in the works by Patterson (70), Pullin (71), Mandal and Deshpande (72)

and Mallet et al. (73).

57

3.3 Numerical method for the Navier-Stokes equations

3.3 Numerical method for the Navier-Stokes equations

In a Cartesian reference frame (x, y, z) the Navier-Stokes equations in vector conserva-

tion form read:

∂Q

∂t
+
∂(E + Ev)

∂x
+
∂(F + Fv)

∂y
+
∂(G+Gv)

∂z
= 0. (3.58)

The quantities Q, E, F and G were introduced in section 2.3 when discussing the Euler

equations, and their expressions are given in Eqs. 2.42. The viscous flux components

along x, y and z are:

Ev =


0
−τx,x
−τx,y
−τx,z

−τx,xu− τx,yv − τx,zw + qx

 ,

Fv =


0
−τy,x
−τy,y
−τy,z

−τy,xu− τy,yv − τy,zw + qy

 ,

Gv =


0
−τz,x
−τz,y
−τz,z

−τz,xu− τz,yv − τz,zw + qz

 .

The stress tensor τ and the heat flux vector q are:

τ =

 τx,x τx,y τx,z
τy,x τy,y τy,z
τz,x τx,y τz,z

 = µ(∇V +∇V †)− 2
3µ(∇ · V)I,

q =


qx
qy
qz

 = −cpµ/Pr∇T.

(3.59)

In the above equations, V is the velocity vector, with u, v and w its components along

the x, y and z directions, respectively, T is the temperature, µ the viscosity, Pr = cpµ/k

the Prandtl number, k the thermal conductivity, cp the constant-pressure specific heat,

I the identity tensor and superscript † denotes tensor transposition.

58

3.3 Numerical method for the Navier-Stokes equations

In order to solve Eq. 3.58 on domains of arbitrary shape using FD methods, Eq. 3.58

is cast in its general coordinate form:

∂Q̃

∂t
+
∂(Ẽ + Ẽv)

∂ξ
+
∂(F̃ + F̃v)

∂η
+
∂(G̃+ G̃v)

∂ζ
= 0. (3.60)

The quantities Q̃, Ẽ, F̃ and G̃ are defined in Eqs. 2.44–2.45, and the viscous flux

components in general coordinates are:

Ẽv =
ξxEv + ξyFv + ξzGv

J
,

F̃v =
ηxEv + ηyFv + ηzGv

J
,

G̃v =
ζxEv + ζyFv + ζzGv

J
.

The metrics ξx, ξy, ξz, ηx, ηy, ηz, ζx, ζy, ζz define a transformation from an arbitrarily-

shaped physical domain to a cubic domain, and J is the Jacobian of the transformation.

In order to use FD formulas on equally spaced grids, this transformation is generally

chosen such that the computational grid in physical space maps onto a uniform grid in

the computational space.

Using the method of lines to solve Eq. 3.60, the problem is split into three one-

dimensional problems, and the algorithm applied to solve the one-dimensional problem

along ξ, for example, is applied along η and ζ as well. The 1D problem along ξ reads:

∂Q̃

∂t
+
∂(Ẽ + Ẽv)

∂ξ
= 0. (3.61)

3.3.1 Stress tensor and heat flux vector calculation

The calculation of the stress tensor and the heat flux vector requires the evaluation of

velocity and temperature gradients. The derivatives are computed in the computational

space using classical FD compact-central formulas, and then projected into the physical

space.

Let f be any of the velocity components, u, v, w, or the temperature, T . Let i be

the index running from 0 to N + 1 along a ξ-parallel grid line, h the (constant) grid

spacing in computational space, and f ′i = fξ(xi,j,k, yi,j,k, zi,j,k) the derivative at node

(i, j, k). The following sixth-order FD compact-central formula can be found in the

work by Lele (3), and is used to compute derivatives at the interior nodes:

f ′i−1 + 3f ′i + f ′i+1 =
1

h

[
7

3
(fi+1 − fi−1) +

1

12
(fi+2 − fi−2)

]
, i = 2, . . . , N − 1. (3.62)

59

3.3 Numerical method for the Navier-Stokes equations

The basic steps for deriving this formula are outlined in section 1.1. Boundary closures

can be derived in a similar fashion, removing the constraints of a symmetric stencil and

coefficients. The following sixth-order compact boundary closures can be found in the

work by Zhong (66), and are used to compute derivatives at nodes 0 and 1:

f ′0 + 5f ′1 =
1

h

(
−197

60
f0 −

5

12
f1 + 5f2 −

5

3
f3 +

5

12
f4 −

1

20
f5

)
, (3.63)

1

8
f ′0 + f ′1 +

3

4
f ′2 =

1

h

(
−43

96
f0 −

5

6
f1 +

9

8
f2 +

1

6
f3 −

1

96
f4

)
. (3.64)

The boundary closures for nodes N and N + 1 can be inferred from these by symmetry

considerations. We recall that indices 0 and N + 1 denote ghost nodes for CU5-TVD-

NSK and boundary nodes for CUDA-CU5-TVD-NS. Solving the tri-diagonal linear

system of Eqs. 3.62 at interior nodes and Eqs. 3.63 and 3.64 at boundary nodes, the

ξ-derivatives at all nodes are computed.

The same procedure is applied along η and ζ grid lines, and, eventually, the deriva-

tives in computational space, fξ, fη and fζ , are known at all nodes. The gradient in

the physical domain is finally computed using the metrics:

∇f =


fx
fy
fz

 =

 ξx ξy ξz
ηx ηy ηz
ζx ζy ζz


fξ
fη
fζ

 .

Velocity and temperature gradients are used in Eqs. 3.59 to compute the stress tensor

and the heat flux vector, which are then fed into Eqs. 3.66 and 3.67.

3.3.2 Differentiation of the viscous flux

CUDA-CU5-TVD-NS employs the classic operator splitting. In Eq. 3.61 inviscid and

viscous fluxes are separated: ∂ξ(Ẽ+Ẽv) = ∂ξẼ+∂ξẼv. The inviscid flux is differentiated

as in the Euler solver described in section 2.3, while the viscous flux is differentiated

using the compact central formula Eq. 3.62 with boundary closures Eqs. 3.63 and 3.64.

We adopted this approach so that we could use the characteristic boundary conditions

described in section 2.5.2 with minor modifications.

CU5-TVD-NSK, instead, follows the fully conservative discretisation model, Eq. 3.3.

Defining the Navier-Stokes (NS) flux, ẼNS = Ẽ + Ẽv, Eq. 3.61 has the same formal

expression as Eq. 2.46, and the same solution algorithm described in section 2.3 can be

applied, provided a suitable expression for the NS split flux, Ẽ±NS , is given.

60

3.3 Numerical method for the Navier-Stokes equations

This expression is provided by the kinetic splitting Eqs. 3.47–3.51, when x1 is the ξ-

parallel direction, identified by the unit vector (nx, ny, nz) = ∇ξ/|∇ξ|. Transformation

from the (x, y, z) reference frame to the (x1, x2, x3) reference frame is achieved through

the rotation matrix:

B =

 cosφ 0 − sinφ
0 1 0

sinφ 0 cosφ

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 ,
where:

sinφ = nz, cosφ =
√

1− sin2 φ
sin θ = ny/ cosφ, cos θ = nx/ cosφ.

The velocity, heat flux and stress tensor in the (x1, x2, x3) reference frame are computed

as follows: 
u1

u2

u3

 = B


u
v
w

 , (3.65)


q1

q2

q3

 = B


qx
qy
qz

 , (3.66)

 τ1,1 τ1,2 τ1,3

τ2,1 τ2,2 τ2,3

τ3,1 τ3,2 τ3,3

 = B

 τx,x τx,y τx,z
τy,x τy,y τy,z
τz,x τz,y τz,z

B†. (3.67)

Once these quantities are known, Eqs. 3.47–3.51 are used to compute F±mass, F
±
x1−mom,

F±x2−mom, F±x3−mom, F±tr-energy and F±int-energy. The fluxes of the momentum components

in the (x, y, z) reference frame are then computed:
F±x−mom

F±y−mom

F±z−mom

 = B†


F±x1−mom

F±x2−mom

F±x3−mom

 ,

and, finally, the NS split flux:

Ẽ±NS =
|∇ξ|
J


F±mass

F±x−mom

F±y−mom

F±z−mom

F±tr-energy + F±int-energy

 .

61

3.3 Numerical method for the Navier-Stokes equations

3.3.3 Boundary conditions

When the Navier-Stokes equations are the governing equations and the continuum

hypothesis holds, steady solid walls are modelled as no-slip surfaces. At a no-slip

surface, by definition, the velocity is zero.

CU5-TVD-NSK employs a cell-centred FD discretisation and this no-slip condition

is enforced by simply assigning to the ghost node a velocity opposite to the one in the

first interior node. So, if subscript 0 denotes the ghost node and subscript 1 the first

interior node, V0 = −V1.

A result of the theory of boundary layers over flat surfaces is that the pressure

gradient normal to the surface is zero. Although this condition is not exact if the

surface has a curvature, it is commonly used in CFD, and easily implemented by simply

assigning to the ghost node the same pressure as in the first interior node, i.e. p0 = p1.

For the second thermodynamic variable, two types of no-slip wall are considered:

• Adiabatic wall: the condition of zero heat flux normal to the wall is simply

enforced by assigning to the ghost node the same temperature as the first interior

node, i.e. T0 = T1.

• Isothermal wall: the temperature in the ghost node is linearly extrapolated

from the wall temperature, Tw, and the temperature at the first interior node,

T1, i.e. T0 = 2Tw − T1.

CUDA-CU5-TVD-NS, instead, employs a vertex-based discretisation and charac-

teristic boundary conditions. The Navier-Stokes Characteristic Boundary Conditions

(NSCBC) follow the same formulation as the CBC described in section 2.5.2, but in

Eq. 2.64 the right-hand-side includes the viscous terms:

S = J

[
Ě
∂ (|∇ξ|/J)

∂ξ
+
∂F̃

∂η
+
∂G̃

∂ζ
+
∂Ẽv
∂ξ

+
∂F̃v
∂η

+
∂G̃v
∂ζ

]
.

Provided this definition of S is adopted, the formulation for farfield and slip-wall bound-

aries is identical. A third type of boundary, namely isothermal no-slip wall, has been

implemented for viscous simulations. The physical boundary condition to be enforced is

zero velocity and fixed wall temperature, Tw. Initialising the flow field at the boundary

62

3.3 Numerical method for the Navier-Stokes equations

so that

Q =


ρ
0
0
0

ρcpTw

 ,

the condition

∂tQ = ∂tρ


1
0
0
0

cpTw

 (3.68)

must be ensured at any time. Following the NSCBC approach, ∂tρ should be computed

from the characteristic equation corresponding to the outgoing wave. In our tests, this

approach led to a large overestimation of the wall-density and, eventually, to instabil-

ity. Therefore, we drop the characteristic treatment and simply compute ∂tρ from the

continuity equation. The excellent agreement between computed wall pressures and

experimental measurements, shown in section 6.2.2, demonstrates the validity of this

assumption. Finally, the time derivative of the conserved variables vector is computed

from Eq. 3.68.

3.3.4 Thermodynamic model

We use the non-dimensional form of the Navier-Stokes equations, i.e. the variables are

non-dimensionalised as follows:

ρ =
ρd

ρref
, p =

pd

ρrefV
2
ref

, T =
T d

Tref
, t =

tdVref
Lref

,
u
v
w

 =
1

Vref


ud

vd

wd

 ,


x
y
z

 =
1

Lref


xd

yd

zd

 ,

where the superscript d denotes dimensional quantities and the subscript ref denotes

reference values, expressed in consistent units. In our codes the adiabatic index, γ, the

Prandtl number, Pr, the reference Mach number, M = Vref/aref , and the reference

Reynolds number, Re = ρrefVrefLref/µref , are supplied as input. The reference speed

of sound is aref =
√
γRrefTref , where Rref is the reference gas constant.

We use the calorically perfect gas model. The non-dimensional equation of state is:

p = ρ
1

γM2
T,

63

3.4 Summary

where the non-dimensional gas constant is: R = RrefTref/V
2
ref = 1/γM2. For this

definition of the non-dimensional gas constant, the non-dimensional constant-pressure

specific heat is:

cp =
γR

γ − 1
=

1

(γ − 1)M2
.

The non-dimensional viscosity is: µ = µd/µrefRe, and is computed through Suther-

land’s law:

µ(T) =
1

Re
T 3/2 1 + TS

T + TS
,

where TS = 110.4/Tref , if Tref is expressed in Kelvin.

3.4 Summary

In this chapter we have presented two Navier-Stokes solvers based on the compact-TVD

method described in Chapter 2. One method relies on the classic operator splitting to

include viscous effects, while the second employs a splitting for the Navier-Stokes flux.

Our main contribution is having identified the possibility to combine the Kinetic

FVS for the NS flux, devised by Chou and Baganoff (56), with the compact-TVD

method. Combining the two techniques has several advantages:

• the computational cost of the compact scheme, associated with the solution of

linear systems to compute derivatives, is reduced because fewer linear systems

are solved;

• the loss of accuracy associated with the TVD filter is mitigated, because the filter

is applied to the NS flux, which is smoother than the inviscid flux.

The method is validated in Chapter 5.

64

4

HPC implementations of the

Navier-Stokes solver

In this chapter we describe how the Navier-stokes solvers presented in Chapter 3 have

been developed in order to take advantage of the latest HPC systems. Original contribu-

tions included in this chapter are: 1) a novel algorithm employing a memory-dependent

partitioning strategy, suitable for MPP systems of multi-core processors; 2) a novel al-

gorithm that, employing a task-dependent partitioning strategy, is able to exploit the

computing power of GPUs.

Compact methods for gas dynamics are computationally intensive and potential

applications, such as DNS and LES, challenge the capabilities of modern computers.

Therefore, it is essential for numerical codes based on compact methods to be able to

use efficiently the most powerful computing facilities and devices.

Despite the success of compact methods in solving relatively simple problems, few

large scale simulations of complex problems have been reported. A fundamental ob-

stacle that prevents compact methods from being applied to large scale simulations

is their semi-global nature: the derivative of any variable along a grid-line at a node

depends on all of the nodes on that grid-line. It is evident that this dependence makes

the parallel calculation of the derivative difficult, and why the serial algorithm must be

re-designed in order to scale to multiple processing units.

Today, supercomputers are MPP systems hosting up to thousands of interconnected

CPUs, each one with its own memory attached. Very often, each of these CPUs hosts

several execution units, referred to as cores. In some of the most advanced supercom-

65

4.1 Parallel implementation of the Navier-Stokes solver

puters, each CPU has also a co-processor attached, which is a powerful parallel machine

on its own. These features of modern supercomputers present outstanding challenges

for a scientific programmer wishing to make the best use of the available resources.

First, we have devised a strategy to parallelise our Navier-Stokes solver, when the

computing device is a cluster of inter-connected CPUs, each one with its own memory.

Then, we have modified this algorithm to exploit the multi-core architecture of modern

CPUs. In order to do so, a different parallelisation strategy, relying on the avalability

of a memory shared between several execution units, is nested into the distributed-

memory parallel algorithm. These topics are covered in section 4.1. Finally, we have

devised an implementation of the Navier-Stokes solver that is able to use efficiently

the computing power of a GPU co-processor. A new code has been developed for this

purpose, because the GPU architecture is not as flexible as the CPU one, and therefore

the code performance is extremely sensitive to the implementation. Details of the issues

to be faced and of the implemented solutions are given in section 4.2.

4.1 Parallel implementation of the Navier-Stokes solver

In section 4.1.1 we describe several parallel algorithms for compact schemes based

on structured-block domain-decomposition that is suitable for a distributed-memory

computing arcitecture. In section 4.1.2 a different parallisation approach, suitable for

a shared-memory environment, is described. In section 4.1.3 our Navier-Stokes solver

employing dual-level parallelism is presented.

4.1.1 Multi-block domain decomposition algorithms

The first attempts to parallelise compact methods aimed to solve in parallel the un-

derlying linear system. In our case, for example, the system of Eqs. 2.35–2.38 could

be solved in parallel. Such parallel algorithms were developed during the 1990s: Sun

and Moitra (29) devised the reduced Parallel Diagonal Dominant (PDD) algorithm

for the parallel inversion of tri-diagonal linear systems, and Povitsky (30) devised the

Parallel Thomas Algorithm (PTA). Both algorithms are direct solvers and scale very

poorly with the number of processors, as shown by Ladeinde et al. (31). These authors

conducted a systematic comparison of the two solvers for flow simulations, concluding

that the PDD method scales better than the PTA, but with measured speed-ups of

66

4.1 Parallel implementation of the Navier-Stokes solver

(a) Schwarz method.

(b) Gaitonde’s method (CC6-MB).

(c) Chao’s method.

(d) Present method (CU5-MB).

Figure 4.1: Parallel algorithms for compact schemes based on structured-block domain

decomposition.

67

4.1 Parallel implementation of the Navier-Stokes solver

only about 50% on 16 processors. It is, therefore, evident that these direct solvers are

not suitable for massively parallel computing.

For compact finite-difference methods, several authors have considered a multi-

block approach, widely used for finite-difference and finite-volume explicit schemes.

In a multi-block approach, the computational domain is partitioned into several sub-

domains or blocks. From the computing point of view, if several processors are available

each one is assigned the task of solving the governing equations in one of the sub-

domains. Domain-partitioning explicitly enforces data locality, and so it suits the

distributed-memory architecture of large clusters, where the bottle-neck for achieving

good parallel performance is the data transfer between processors.

When solving a problem of a global nature using domain decomposition, the Schwarz

method is commonly used. It is an iterative procedure to find an approximate solution

to a given problem by solving many problems of smaller size. In principle, it can be

applied as a serial method, but it is popular in parallel computing because the smaller

problems can be solved independently by several processors with a few communications

per iteration. For compact schemes, the global problem to be solved is the linear system

to compute the derivatives. Consider, for example, the model problem pictured in

Fig. 4.1(a): it is a grid line with 10 nodes where derivatives must be computed using a

compact scheme and two sub-domains. This model problem is used in this section to

compare several parallelisation strategies. The sub-domains D1 and D2 overlap and, for

this example, the width of the overlap region is arbitrarly set to 4 nodes. According to

the Schwarz method, the derivatives of a variable at the nodes are computed by solving

two linear systems: P1 in sub-domain D1 and P2 in sub-domain D2. In general,

two different solutions will exist in the overlap region. In Fig. 4.1(a), nodes 5 and 6,

coloured in grey, are shared nodes: they are used to assess the consistency between the

two computed solutions. If they do not agree within a certain tolerance, the two linear

systems are solved again with modified interface-boundary conditions: the solution of

the problem P2 at node 7 is used as a boundary condition to modify P1, while the

solution of the problem P1 at node 4 is used as a boundary condition to modify P2.

Indeed, the nodes 4 and 7 are interface-boundary nodes and are identified by the colour

white. The process is repeated until the solutions to the local problems in the overlap

region agree within a certain tolerance.

68

4.1 Parallel implementation of the Navier-Stokes solver

From a parallel computing point of view, in a Schwarz procedure the cost of com-

munication is very limited: once per iteration the values of the solution at two shared

nodes must be communicated between processors for the consistency check, while the

values at two interface-boundary nodes must be communicated to supply boundary

values for the next iteration. The major drawback is obviously the iterative nature of

the procedure.

Gaitonde (32) devised a non-iterative Schwarz-like procedure for compact schemes,

that we call CC6-MB. A schematic of this procedure is shown in Fig. 4.1(b): Gaitonde

removed the shared nodes (grey), substituted them with interface-boundary nodes

(white) and set the width of the overlap region to 4. The author was concerned with the

parallelisation of a FD code based on the sixth-order compact central formula Eq. 3.62

with a five-points stencil, repeated here for the sake of clarity:

f ′i−1 + 3f ′i + f ′i+1 =
1

h

[
7

3
(fi+1 − fi−1) +

1

12
(fi+2 − fi−2)

]
.

In this equation f is a fluid dynamic variable, f ′ its derivative and h the (uniform) grid

spacing. In Gaitonde’s approach, Eq. 3.62 is applied up to node 5 in sub-domain D1,

and from node 6 in sub-domain D2, and so the effect of the boundary closures at the

block-interface is minimised. They are used at the interface-boundary nodes, where the

computed solution is overwritten by that computed in the neighbour sub-domain, and

therefore they have a non-direct impact only, through the computed solution at internal

nodes. Indeed, Gaitonde’s method represents a cost-effective approach to the solution

of the global problem, as, unlike the Schwarz method, it does not require iterating.

Also, it has the same communication cost as a Schwarz iteration: the fluid dynamic

variables at four interface-boundary nodes must be communicated between processors

to simulate the next time step.

Gaitonde attempted to minimise the effect of the boundary closures at the block-

interface while keeping a narrow overlap region, i.e. a low communication cost. His

attempt was only partially successful: he found that smooth flow features could be

distorted because of the block-interface treatment, and an accurate solution could not

be obtained without appropriate filtering. An obvious cure to this problem would

be to widen the overlap region, but this would increase the communication cost and

ultimately worsen the scalability of the algorithm.

69

4.1 Parallel implementation of the Navier-Stokes solver

An attempt to improve the block-interface treatment was made by Sengupta et

al. (33). These authors identified a weak point in the different dissipation character-

istics of left and right boundary closures. The opposite signs of the FD coefficients at

opposite boundaries are responsible for a lack of dissipation at the left boundary and

an excess of dissipation at the right boundary. This is a general issue that becomes

critical when domain decomposition is employed. It is responsible for the distortion of

the flow features observed at the block-interface in Gaitonde’s method. Sengupta et

al. simulated the propagation of a wave-packet through a multi-block domain: when

the packet crosses a block-interface a spurious wave-packet is generated because of

the different dissipation properties of the boundary closures employed at the interface-

boundary nodes in the neigbouring sub-domain. Sengupta et al. solved this problem

by performing the compact differentiation along a grid line twice with inverse index

orientation. The derivative at a node was then set to the average between the two

computed values. Indeed, the resulting compact scheme has symmetric properties and,

when applied in a multi-block framework using Gaitonde’s procedure, does not gener-

ate spurious wave-packets. This multi-block compact solver was tested on a supersonic

cone-cylinder geometry. Although the test appeared to be successful, the method has

a non-conservative block-interface treatment, and so its general applicability to com-

pressible flow simulations is questionable.

The class of compact-upwind methods described in section 2.1.1 has opened new

possibilities for the application of a classical and efficient parallel multi-block strategy

to compact schemes. These methods compute a numerical flux function, unlike others

which compute derivatives, and so they are more suitable for the developement of a

conservative block-interface treatment. Chao et al. (35) have exploited this possibility

by developing a multi-block compact method. Their parallel algorithm is based on

the compact-WENO method proposed by Ren (22), and uses the fifth-order compact

formula, Eq. 2.9, for the discretisation of the positive inviscid flux. Eq. 2.9 at the

intermediate node i+ 1/2 reads:

9f̂i−1/2 + 18f̂i+1/2 + 3f̂i+3/2 = fi−1 + 19fi + 10fi+1,

where f̂ represents the numerical flux function. A schematic of Chao’s procedure

is shown in Fig. 4.1(c). Node 6 is shared between D1 and D2, and so the solution

at this node must be unique for the two sub-domains. Since the derivative at this

70

4.1 Parallel implementation of the Navier-Stokes solver

node depends on the numerical flux at the intermediate nodes, 11/2 and 13/2, the

consistency condition is enforced by using the fifth-order explicit formula, Eq. 2.19, at

these intermediate nodes, repeated here for clarity:

f̂i+1/2 =
1

30
fi−2 −

13

60
fi−1 +

47

60
fi +

9

20
fi+1 −

1

20
fi+2.

Provided the fluid dynamic variables are consistent between the two sub-domains from

node 3 to node 8, the same values of the numerical flux function at the intermediate

nodes 11/2 and 13/2 are computed independently in the two sub-domains. Analo-

gous considerations for the negative flux lead to the conclusion that the fluid dynamic

variables must be consistent from node 3 to node 9.

Chao’s method can be seen as a Schwarz procedure where the original linear system

is perturbed at the block-interface, in order to automatically guarantee the consistency

of the solution at the shared node and avoid iterating. The overlap region is seven-nodes

wide, but the solution at the six interface-boundary nodes only must be exchanged be-

tween processors: the seventh node is the shared node, where the consistency is auto-

matically guaranteed. The overlap region is wider than in Gaitonde’s method because

of the non-symmetric stencils of the upwind formulas, and so the communication cost

is slightly higher. On the other hand, these upwind formulas are preferable for the

simulation of compressible flows for the reasons discussed in Chapter 2.

Independently from Chao et al., we have conducted a similar effort, starting from

the compact-TVD method proposed by Tu and Yuan (25) that we modified as explained

in section 2.3.3. We have faced the same basic problem, i.e. the parallelisation of the

compact scheme given by Eq. 2.9, employed in Tu and Yuan’s compact-TVD method as

well as in Ren’s compact-WENO method. A schematic of our procedure, which we call

CU5-MB, is pictured in Fig. 4.1(d). We do not employ any shared node, and so there is

no need to enforce the consistency of the solution between blocks. Instead, we enforce

the continuity of the numerical flux function across blocks by using the explicit formula,

Eq. 2.19, to compute the numerical flux at the block-interface. This can be seen as a

consistency condition: neighbouring sub-domains do not share any node, but they do

share an intermediate node; since the numerical flux is computed at the intermediate

nodes, it must be consistent between blocks.

Comparing Fig. 4.1(c) and Fig. 4.1(d), the difference between Chao’s method and

ours is clear. In our procedure, Eq. 2.19 is used at the intermediate node 11/2 only,

71

4.1 Parallel implementation of the Navier-Stokes solver

and the same value of the numerical flux is computed independently in the sub-domains

D1 and D2, provided the fluid dynamic variables are consistent from node 3 to node

8. Therefore, the overlap region is six nodes wide, one node narrower than in Chao’s

method. This does not reduce the accuracy, because in Chao’s method one node is

shared and its computation in both sub-domains is redundant. Having a narrower

overlap region does not impact the communication cost of our method but it decreases

its computational cost, because one of the sub-domains is narrower. In 1D this is a

negligible saving, but in 3D a whole plane of nodes for each block-interface is not re-

quired to be computed. However, the most interesting difference is perhaps the smaller

impact of the domain-decomposition on the computed solution: the explicit formula

is applied at one intermediate node instead of two, therefore a smaller perturbation is

introduced on the original linear system.

Summarising, both Chao’s multi-block method and ours have several advantages

with respect to Gaitonde and Sengupta’s methods:

• they do not use boundary closures at the block-interface, and so issues like the

distortion of smooth flow features and the formation of spurious wave-packets do

not arise;

• they are fully conservative, because the single-block method as well as the block-

interface treatment is conservative.

The only disadvantage is the higher communication cost, as the solution at six nodes in-

stead of four is exchanged between neighbouring processors. Comparing Chao’s method

and ours, we believe that ours better exploits the numerical-flux-based formulation of

Eq. 2.9: it does not employ any unnecessary shared node, has a lower computational

cost and, more importantly, introduces a smaller perturbation on the original linear

system.

4.1.2 Slab/drawer domain decomposition algorithm

The algorithms described in section 4.1.1 solve in parallel the linear system to compute

the derivatives using compact FD formulas. They have been explained by reference

to a one-dimensional model problem. The extension to a multi-dimensional case is

straightforward and involves the parallel solution of several linear systems to compute

derivatives along different gridlines and directions.

72

4.1 Parallel implementation of the Navier-Stokes solver

(a) Processing along ξ-direction (b) Processing along η-direction

Figure 4.2: Schematic of the data layout in main memory for the distributed-memory

slab decomposition algorithm (34).

In a multi-dimensional case a linear system must be solved for each grid line: while

processing a certain direction, all grid lines parallel to it can be processed independently

in parallel. This idea has been exploited by Laizet et al. (34), who have proposed

a dual-domain decomposition, namely slab decomposition, which changes during a

single time step depending on the spatial direction computed. A schematic of the slab

decomposition algorithm is in Fig. 4.2. A two-dimensional model problem is considered,

where the domain is made of 100 cells: 10 cells per direction. The cell centres are

the nodes of the finite-difference discretisation. The work-load is shared between two

processes. We use the term process instead of processor to stress the fact that a process

could be a task assigned to a core of a multi-core processor.

The algorithm is conceptually very simple: each process is assigned 5 grid lines

parallel to the direction ξ, when computing the derivatives along ξ, and 5 grid lines

parallel to the direction η, when computing the derivatives along η. A remarkable

complexity of implementation results from such conceptual simplicity: in general the

processes do not have access to the same memory and therefore global transposition of

the variables involved in the computation must be performed each time the processing

direction changes. Such complexity is evident even for the model problem represented

in Fig. 4.2. When swapping the processing direction from ξ to η, Process0 transposes

the variables on sub-domain D1, sends the variables on sub-domain D2 to Process1,

receives the variables on sub-domain D3 from Process1 and transposes them.

73

4.1 Parallel implementation of the Navier-Stokes solver

Figure 4.3: Schematic of drawer domain decomposition (74). A model domain of (4×4×4)

cells is partitioned in 4 sub-domains when ξ-parallel grid-lines are processed.

The global transpose is a very expensive operation. If a 2D computational-grid of

(NpN)2 nodes were assigned to Np processes, the global transposition operation would

require each process to exchange N2 values with (Np − 1) processes and transpose Np

matrices of size (N ×N). For the same grid and computational structure, a multi-

block algorithm employing an overlap region No nodes wide would require a process

to exchange No

√
NpN values with 4 processes. For Np � 1, the ration between the

communication cost of the slab decomposition and that of a multi-block algorithm is√
NpN/4No, which evaluetes to about 40 for typical values such as Np = N = 100

and No = 6. Laizet et al. (34) implemented slab decomposition in their incompressible

DNS code and reported that in some tests communication took up to 40% of the total

simulation time. Nevertheless, the strong scalability of their code is not as bad as one

may expect (90% parallel efficiency on 1024 compute-cores for a 4 billion node mesh).

This is due to the high computational cost of the algorithm combined with a careful

optimisation: the computation time per process is high and so it is comparable to the

communication time per process only at high process counts; also, the communication

is carefully overlapped with the local transposition of the matrices.

74

4.1 Parallel implementation of the Navier-Stokes solver

(a) SMP quad-core processor (Intel Xeon) (b) NUMA quad-core processor (AMD Opteron)

Figure 4.4: Schematics of quad-core processor architecture.

An additional issue with the slab decomposition is that the maximum number of

processes is limited by the minimum grid dimension: referring to the model problem in

Fig. 4.2, not more than 10 processes (1 per grid line) can be employed, although 100

nodes must be computed. This is an issue, expecially for two dimensional problems.

For three dimensional problems, the cap on the process count is the minimum num-

ber of nodes in a plane, a much less restrictive constraint. The 3D extension of slab

decomposition is usually referred to as drawer decomposition (74), because the parti-

tioned domain resembles a set of drawers. The basic principle is that if, for instance,

the direction ξ is being processed, the domain can be partitioned along both η and ζ

directions. A schematic of drawer domain decomposition is shown in Fig. 4.3.

The main advantage of slab/drawer decomposition is that, unlike the multi-block

methods described in section 4.1.1, it does not introduce any perturbation on the

original linear system, i.e. parallel and serial solutions are identical.

4.1.3 Hybrid parallelisation of the Navier-Stokes solver

We have parallelised CU5-TVD-NSK exploiting both distributed- and shared-memory

models. We refer to the parallel implementation as CU5-TVD-NSK-MB. Two different

parallelisation strategies are employed, depending on the memory model.

75

4.1 Parallel implementation of the Navier-Stokes solver

In a distributed-memory environment, multi-block domain decomposition is used.

Our implementation follows the SPMD programming model and uses the Message Pass-

ing Interface (MPI) (www.mcs.anl.gov/research/projects/mpi). For each stage of

the Runge-Kutta method, an MPI-process executes the following tasks:

1. Enforces boundary conditions at domain boundaries.

2. Exchanges fluid dynamic variables at interface-boundary nodes with neighbours.

3. Computes velocity and temperature gradients using the CC6-MB method.

4. Computes stress tensor and heat flux vector at internal nodes.

5. Exchanges stress tensor and heat flux vector at interface-boundary nodes with

neighbours.

6. Computes the Navier-Stokes split flux at internal and interface-boundary nodes.

7. Computes the high-order numerical flux function using the CU5-MB method.

8. Applies the characteristic-based TVD limiter to the numerical flux.

9. Computes the time-derivative at internal nodes.

Indeed, tasks 2 and 5 involve communication between processors, and therefore repre-

sent the bottle neck for the scalability of the code. Task 5 could perhaps be avoided,

and our tests have revealed that it has a negligible effect on the results. Nevertheless,

we recommend performing it to enforce more precisely the continuity of the numerical

flux across blocks. Overlap between computation and communication has not been

implemented and is left as a future developement.

The CC6-MB method is modified to employ six overlap nodes instead of four: these

nodes are necessary for the CU5-MB method and so using them in the CC6-MB method

improves accuracy at no additional cost. Sengupta’s fix (33) is not considered as the

CC6-MB method is used only for viscous quantities.

In a shared-memory environment the slab/drawer domain decomposition is used.

Our implementation follows the SMP programming model and is based on the Open

Multi-Processing (OpenMP) interface (http://openmp.org). Since the OpenMP pro-

cesses, or threads, have access to a shared memory-space, data transposition is not

76

www.mcs.anl.gov/research/projects/mpi
http://openmp.org

4.1 Parallel implementation of the Navier-Stokes solver

necessary and therefore is not performed: this simplifies the algorithm, whose

implementation reduces to careful unrolling of loops over the grid-lines.

Tasks 1, 3, 4 and 6–9 are performed in parallel by the available threads, each one

assigned a certain number of grid-lines parallel to the processing direction. The multi-

thread execution follows a fork-join model: the master thread executes the serial tasks;

a team of threads is created before executing a parallel task and destroyed when the

task is completed. This model presents two issues for code scalability: first, the serial

tasks do not scale with the number of threads; second, thread creation and destruction

introduce an overhead. The first issue is not important in our case, because all tasks but

those involving MPI communication can be performed in parallel. We have addressed

the second issue by compounding tasks 6–8 in a single OpenMP parallel region. Tasks

1, 3, 4 and 9 are relatively light and the overhead of thread creation and destruction

essentially nulls the speed-up of the multi-thread execution, as seen in the test discussed

in section 6.1.4. A third, and more important, issue of the multi-thread parallelisation is

that the SMP programming model may not reflect the processor architecture. Fig. 4.4

compares two common implementations of a quad-core processor. Fig. 4.4(a) is a

schematic of a true SMP architecture, where several CPUs share a Memory Control

Hub (MCH) to access the same main memory. Memory latency and bandwidth are

symmetric, i.e. they are the same for all CPUs. Fig. 4.4(b), instead, is a schematic of

a Non-Uniform Memory Access (NUMA) architecture. Each CPU has its own memory

attached and memory sharing is implemented at software level. NUMA architectures

have the following advanges over the SMP ones: access of a CPU to its own memory is

direct, and so quicker; CPUs do not compete to use a shared MCH. On the other hand,

memory latency and bandwidth are strongly non-symmetric: accessing Memory2 and

Memory3 for CPU1 is slower than accessing Memory1, and accessing Memory4 is even

slower. In a fork-join execution, assuming the master thread is assigned to CPU1, most

data is likely to be stored in Memory1; this means that during the parallel execution

all CPUs compete for the use of the memory controller of CPU1. No effort has been

made to tackle this problem, as we do not target one architecture in particular.

The shared-memory parallel algorithm is nested into the distributed-memory par-

allel algorithm in a funnelled mode. Each MPI-process has a master thread and several

slave threads: all of the threads process local data in parallel, but the master thread

only is allowed to communicate with other MPI-processes.

77

4.2 GPU-accelerated Navier-Stokes solver

4.2 GPU-accelerated Navier-Stokes solver

The GPU architecture is very stiff to program: great performance can be achieved if

the code implementation meets certain requirements, but there is modest or no gain in

speed with respect to CPUs if such requirements are missed. This point is explained

in section 4.2.1.

In order to comply with these strict requirements, we had to write a new code,

different from CU5-TVD-NSK, that we call CUDA-CU5-TVD-NS. This code uses a

slighly different numerical method and the differences have been discussed in section 3.3.

CUDA-CU5-TVD-NS is tailored for the GPU architecture and its development

represents, in our opinion, an interesting case study. In section 4.2.2 we give some

implementation details. These details are the key to understanding how it is possible

to obtain the results shown in section 6.2.3, and may form a useful guideline for scientific

programmers addressing similar problems.

4.2.1 GPU hardware and programming models

In this section we describe the GPU hardware and programming models, and provide

some specifications of the GPU we have used to develop and test CUDA-CU5-TVD-NS:

the Nvidia Tesla S1070.

A Tesla S1070 comprises four devices like the one sketched in Fig. 4.5. Each device

comprises N multi-processors (N = 30 for the Tesla S1070). Each multi-processor

comprises M scalar processors (M = 8 for the Tesla S1070 as well as most GPUs).

These processors are slow compared to CPU cores (for the Tesla S1070 they are clocked

at 1.44 GHz versus 2–3 GHz typical of modern CPUs) and are managed by a single

instruction unit: this means that they work in parallel only if they are able to execute

the same instruction.

The programming model corresponding to this architecture is called Single Instruc-

tion Multiple Thread (SIMT). A procedure executing a SIMT program is called a kernel.

A kernel is executed in parallel by creating a computational structure made of several

thread-blocks. Threads within a thread-block are organised in a one-, two- or three-

dimensional structure. The thread-blocks are organised in a one- or two-dimensional

structure, referred to as block-grid. Indeed, this computational structure maps on the

architecture: each block runs on a multi-processor and each thread on a processor. In

78

4.2 GPU-accelerated Navier-Stokes solver

Figure 4.5: Schematic of the GPU architecture.

79

4.2 GPU-accelerated Navier-Stokes solver

order to avoid confusion, when talking about GPUs we will use the term grid to define

an organised structure of thread-blocks, and computational-grid to define a set of FD

nodes. The SIMT model is a generalisation of the SIMD model adopted to program

vector processors: threads may execute independent serial tasks as well as data-parallel

instructions. In practice, SIMT programs achieve the best performance when running

in a SIMD fashion.

The device has a very deep memory hierarchy, comprising:

• Registers. The role of registers is the same as in CPUs. In the Tesla S1070 each

processor has 2048 32-bit registers.

• Shared memory. This is a low-latency low-capacity memory shared among

processors belonging to the same multi-processor. Temporary variables necessary

to the kernel execution should be stored here. Each multi-processor has 16 KB

of shared memory divided into 16 banks.

• Constant cache. This is read-only, shared among processors belonging to the

same multi-processor, and can be used to store variables that remain constant

during the kernel execution. Each multi-processor has 8 KB of constant cache.

• Texture cache. This is read-only and shared among processors belonging to the

same multi-processor. It has a built-in linear interpolation mechanism and so it

can be used to compute fast one-, two- and three-dimensional linear interpolations

on data that remain constant during the kernel execution. Each multi-processor

has 8 KB of texture cache.

• Device memory. This is a high-latency high-capacity memory, shared among

multi-processors belonging to the same device. It plays the same role as the main

memory does in CPUs. The difference between the two is that the device mem-

ory is not cached, and so any expression making explicit reference to a variable

residing in device memory results in an expensive memory transaction. The Tesla

S1070 has 4 GB of device memory per device.

A multi-processor can perform 8 accesses to either shared or device memory per clock

cycle. On the other hand, accessing the shared memory has zero latency, while ac-

cessing the device memory has a latency of 400–800 clock cycles. It follows that most

80

4.2 GPU-accelerated Navier-Stokes solver

GPU performance issues are related to the device memory access. Indeed, algorithms

amenable to GPU computing are those with high arithmetic intensity, defined as the

ratio of the number of arithmetic operations to the number of memory transactions.

This is by far the most important factor impacting the kernel performance, and is re-

lated to the nature of the task the kernel executes. Other fundamental guidelines for

performance are given in the following, in order of importance.

1. Use the shared memory as workspace

Using the shared memory as workspace aims to minimise the device memory

access. A typical kernel workflow is:

• load data from device memory to shared memory;

• synchronise all threads within a block to ensure each thread can safely read

the data loaded by other threads;

• process data in shared memory;

• synchronise threads again to ensure all data has been written to shared

memory;

• write data back to device memory.

The synchronisation steps can be removed, with performance gain, if the threads

work on independent chunks of data.

2. Issue coalesced device memory transactions

A multi-processor can access up to 16 32-bit words (16 single-precision floating-

point numbers, for example) residing in the device memory, with a single memory

transaction. Such a memory transaction is said to be coalesced and takes place

only if certain constraints are satisfied. These constraints depend on the compute

capability of the device, that is an index used to identify different classes of GPUs.

For the least capable devices, the constraints are verified if 16 consecutive threads

within a block access, in order, 16 words stored in contiguous memory locations.

For scientific programming, where data is arranged in large arrays, satisfying

the coalescing constraints usually means mapping thread-blocks on contiguous

segments of arrays. This concept is illustrated in Fig. 4.6. If the coalescing

constraints are not verified, 16 separate memory transactions are issued, one per

word, with dramatic (negative) impact on performance.

81

4.2 GPU-accelerated Navier-Stokes solver

Figure 4.6: Memory access pattern for coalesced device memory transactions.

3. Maximise multi-processor occupancy

The slow device memory access can be hidden by overlapping computation and

device memory transactions. This is accomplished by assigning multiple threads

to a single processor. Suppose a block of 16 threads is assigned to a multi-

processor so that each of the 8 processors is assigned two threads. First, the

8 processors load data from device memory for threads 0–7. Then, the data

loading for threads 8–15 is overlapped with the computation for threads 0–7.

Indeed, a block-size of 16 threads is sub-optimal, because a memory transaction

comprises 8 words at best (i.e. if it is coalesced). Therefore, the minimum block-

size for performance is 32 threads, also called a warp: in this case, coalesced

memory transactions comprise 16 words and memory transactions for threads

16–31 are overlapped with computation for threads 0–15. In fact, the instruction

unit schedules and manages threads in warps, and so the block-size should always

be a multiple of 32.

A multi-processor can run many warps concurrently. The maximum number of

active warps per multi-processor is a hardware limitation and is 32 for a Tesla

S1070. The occupancy for a certain kernel is defined as the ratio of the number

of active warps per multi-processor during the kernel execution to the maximum

number of active warps. The number of active warps during the kernel execution

depends on how much of the memory resources (registers and shared memory)

82

4.2 GPU-accelerated Navier-Stokes solver

the kernel allocates per thread. Having high occupancy is expecially important

for kernels with low arithmetic intensity, but it is secondary for kernels with high

arithmetic intensity, where the amount of computation on a few active warps may

be already large enough to hide the memory latency.

4. Minimise shared-memory bank-conflicts

The shared memory is organised in 16 banks of 1 KB capacity each. As for the

device memory, 16 32-bit words can be accessed in a single memory transaction

if certain constraints are satisfied. For shared memory, the 16 words must reside

in different banks. If not, 16 separate memory transactions are issued. Shared

memory allocation complies with the following rule: 16 contiguous 32-bit words

are stored by default in 16 consecutive memory banks. Methods to realise memory

access free from bank conflicts are strongly algorithm dependent.

4.2.2 Key implementation details of the GPU Navier-Stokes solver

Assuming a computational grid of (Nξ ×Nη ×Nζ) nodes, the pseudo-code for CU5-

TVD-NSK reads:

for k from 1 to Nζ

for j from 1 to Nη

process ξ-parallel grid-line (j, k)
end

end

for i from 1 to Nξ

for k from 1 to Nζ

process η-parallel grid-line (k, i)
end

end

for j from 1 to Nη

for i from 1 to Nξ

process ζ-parallel grid-line (i, j)
end

end

This code structure is unsuitable for GPU acceleration. The GPU has a many-core

architecture and one may be tempted to assign each core one or more grid lines to

process, in a drawer-decomposition fashion. This approach would not work for two

reasons:

83

4.2 GPU-accelerated Navier-Stokes solver

(a) Kernels approaching the mesh as a set of nodes.

(b) Kernels approaching the mesh as a set of grid-lines.

(c) Kernels approaching the mesh as a set of planes.

Figure 4.7: Thread-blocking strategy for different kernels. Each colour identifies a mul-

tiprocessor. The dimension-lines indicate the dimensions of thread-blocks.

84

4.2 GPU-accelerated Navier-Stokes solver

• access to the device memory would be coalesced for one dimension and serialised

for the other two;

• processing a grid line requires much temporary data, which does not fit in the

shared memory and would be allocated in the device memory.

Alternatively, one may think of having all cores processing in parallel the same grid-line.

This approach would not work either, because:

• a single grid-line would not supply the GPU with enough data and computation

to exploit its potential;

• the overhead of repeated kernel launches (one per grid line per dimension) would

significantly increase the runtime.

This is why we had to re-engineer the code from its very basics, in order to make

its structure amenable to GPU computing. The new code, CUDA-CU5-TVD-NS, is

written in C language to expose the data layout and favour structured programming.

In the following we present its key implementation details by systematically discussing

how the guidelines given in section 4.2.1 impact its structure.

1. The shared memory is used as workspace

This requirement has a fundamental effect on the code structure. The shared

memory is relatively small (16 KB per multi-processor) and therefore a compli-

cated CFD algorithm, with several MB of temporary data, cannot be carried out

in a single kernel. Instead, the algorithm is split into several elementary tasks,

each one coded into a separate kernel. Indeed, structured programming is more

appropriate in this case than object-oriented programming. The tasks are highly

data-parallel, because they are performed for all of the nodes of the computa-

tional grid. In this case, the SIMT kernels run in a SIMD fashion, for maximum

performance.

We use single-precision arithmetic. The Tesla S1070 is capable of double-precision

arithmetic, but the computing-speed is significantly lower than for single-precision.

Furthermore, in double-precision the memory requirement doubles, leading to oc-

cupancy issues. On the other hand, Hagen et al. (54) simulated a shock-jet

interaction both in single- and double-precision using a compact-WENO scheme

85

4.2 GPU-accelerated Navier-Stokes solver

and their results were not affected by the reduced precision. We have validated

our code against third-party double-precision numerical results and experimental

data, and some of these tests are presented in sections 6.2.1 and 6.2.2.

The kernels are written in CUDA and have a C Application Programming Inter-

face (API). They are collected in a library, that we call CUDA-CFD. It comprises

the following procedures:

• cudaCons2prim(): computes primitive fluid dynamic variables from the con-

served variables.

• cudaSplitFlux(): computes the inviscid kinetic split flux.

• cudaTVD(): applies the characteristic-based TVD limiter to the numerical

flux function.

• cudaODErhs(): computes the spatial derivative from the numerical flux func-

tion.

• cudaViscosity(): computes the viscosity from the temperature.

• cudaNSCBC(): enforces the boundary conditions (NSCBC).

• cudaSdmv(): executes the component-by-component vector operation: wi =

αwi + βuivi, where u, v, w are vectors and α, β scalar constants.

Other tasks can be expressed as algebraic vector-vector operations. The CUBLAS

library, provided with the CUDA Toolkit (http://developer.nvidia.com/object/

cuda_archive.html), is a collection of CUDA kernels with C API performing

algebraic matrix and vector operations. It is a highly optimised GPU version

of the well known Basic Linear Algebra Subprograms (BLAS) library (www.

netlib.org/blas). The CUBLAS subroutines cublasSaxpy(), cublasScopy()

and cublasSscal() are extensively used in our code.

The tri-diagonal matrices for the compact reconstructions are inverted before the

beginning of the time loop, and the inverse matrices are used in the time loop.

A matrix-vector multiplication involves more floating-point operations than the

inversion of a tri-diagonal system, and our choice is motivated by convenience.

The development of a fast GPU tri-diagonal solver is not a trivial matter and it is

still a research topic (75, 76). The CULA library (www.culatools.com) is a GPU

86

http://developer.nvidia.com/object/cuda_archive.html
http://developer.nvidia.com/object/cuda_archive.html
www.netlib.org/blas
www.netlib.org/blas
www.culatools.com

4.2 GPU-accelerated Navier-Stokes solver

version of the well known Linear Algebra Package (LAPACK) (www.netlib.org/

lapack). Although LAPACK includes a tri-diagonal solver, CULA does not but

it is reasonable to believe that one will be developed: our code could be easily

modified in the future to use such a solver. On the other hand, highly optimised

subroutines for matrix-vector and matrix-matrix products are available in the

CUBLAS library: cublasSgemv() and cublasSgemm(), respectively. Finally, the

test presented in section 6.2.3 shows that computing the compact reconstruction

using the inverse matrix is relatively inexpensive with respect to other tasks, and

so further speed-up of this task will only have a minor impact on the CFD code

runtime.

2. Device memory access is coalesced

Several tasks approach the computational-grid as a collection of grid-lines par-

allel to the processing direction. This is the case with the compact reconstruc-

tion, the TVD limiting and the computation of the spatial derivatives from the

numerical flux. The boundary condition enforcement, instead, approaches the

computational-grid as a collection of planes orthogonal to the processing direc-

tion. All of these tasks require different data layouts for different processing di-

rections in order to achieve coalesced device memory access. This is accomplished

by transposing data on swapping processing direction.

Source code and documentation of an optimised GPU matrix transpose are in-

cluded in the Nvidia GPU Computing Software Developement Kit (http://

developer.download.nvidia.com/compute/cuda/sdk/website/samples.html).

We have wrapped part of that source code into a procedure with C API, that

we have called cudaTranspose(). Data transposition introduces additional com-

putation, but it is largely justified by the performance gain due to the coalesced

device memory access. Data transposition also allows us to perform a compact

reconstruction for the whole computational-grid with one call to cublasSgemm(),

instead of calling cublasSgemv() once per grid-line. This delivers a great im-

provement in performance, not only because the overhead of the kernel call is

minimum but also because cublasSgemm() has much higher occupancy than

cublasSgemv().

87

www.netlib.org/lapack
www.netlib.org/lapack
http://developer.download.nvidia.com/compute/cuda/sdk/website/samples.html
http://developer.download.nvidia.com/compute/cuda/sdk/website/samples.html

4.2 GPU-accelerated Navier-Stokes solver

Provided the data is properly laid out in memory, an appropriate thread-blocking

strategy must be adopted to ensure coalesced memory access. Since our kernels

run in a SIMD fashion, thread-blocks map onto sub-sets of the computational-grid

(the structured-blocks used in domain-decomposition algorithms such as those

discussed in section 4.1.1). From this point of view, the GPU-accelerated tasks

can be divided into three groups.

Tasks belonging to the first group approach the computational-grid as a collec-

tion of nodes. The kernels corresponding to these tasks are: cudaCons2prim(),

cudaSplitFlux(), cudaViscosity() and cudaSdmv(). A simple thread-blocking

strategy is adopted for these kernels: the data is seen as a 1D array, and so it

is partitioned in a 1D grid of 1D thread-blocks. In this case, achieving coalesced

memory access is trivial and there is no need for any particular data layout. This

concept is illustrated in Fig. 4.7(a).

Tasks belonging to the second group approach the computational-grid as a collec-

tion of grid-lines parallel to the processing direction. The kernels corresponding

to these tasks are cudaTVD(), cudaODErhs() and cudaTranspose(). The data

is seen as a 2D array, and so it is partitioned in a 2D grid of 2D thread-blocks.

This concept is illustrated in Fig. 4.7(b).

The data layout in the device memory must be such that nodes on a grid-line

parallel to the processing direction map onto contiguous memory locations. If so,

coalesced data access is ensured by setting the first thread-index to run parallel

to the processing direction (direction i in Fig. 4.7(b)).

Finally, in the third group is cudaNSCBC() only. Enforcing the boundary con-

ditions is a task approaching the computational-grid as a collection of planes

orthogonal to the processing direction. The data layout must be such that nodes

belonging to a plane orthogonal to the processing direction map onto contiguous

memory locations. The domain comprises the first and last plane only, and it

is partitioned in a 2D grid of 1D thread-blocks. This concept is illustrated in

Fig. 4.7(c). Coalesced memory access is realised setting the thread index to run

orthogonal to the processing direction (in Fig. 4.7(c), assuming (j, k, i) layout

and column-major ordering, the thread index runs parallel to j and within (j, k)

planes).

88

4.2 GPU-accelerated Navier-Stokes solver

3. The occupancy is maximised

Occupancy data for our kernels are shown in Table 4.1. When discussing occu-

pancy issues, it is useful to group the kernels by the thread-blocking strategy.

The kernels employing a 1D grid of 1D thread-blocks are the easiest to opti-

mise. They are cudaCons2prim(), cudaSplitFlux(), cudaViscosity() and

cudaSdmv(). The block size is chosen to maximise the occupancy, and ranges from

128 to 256. All of these kernels have 100% occupancy except cudaSplitFlux():

this kernel performs a more demanding task and uses more registers than the oth-

ers. Therefore, for this kernel the occupancy is limited by the maximum number

of registers available.

The kernels employing a 2D grid of 1D or 2D thread-blocks present a greater chal-

lenge. These are cudaODErhs(), cudaTranspose(), cudaTVD() and cudaNSCBC().

The first block-dimension is set to the warp size and the second block-dimension

is chosen to maximise the occupancy. Both cudaODErhs(), cudaTranspose()

have an optimum block-size of (32 × 8), achieving 100% and 75% occupancy,

respectively. The different occupancy is due to cudaTranspose() using more

shared memory per block. The procedures cudaTVD() and cudaNSCBC() are the

most problematic, because the characteristic decomposition uses much temporary

data. For both kernels, a warp requires nearly half of the shared memory to run;

therefore, only two active warps per multi-processor are allowed, achieving 6%

occupancy. We set the block-size to (32 × 1), but a block-size (32 × 2) would

achieve exactly the same performance, while a block-size (32×N), with N > 2,

would cause the kernel to fail with a segmentation fault.

4. Shared memory access is free of bank conflicts

We explain how bank-conflict-free access is achieved with three examples.

A scalar variable like the density is allocated in shared memory as a 1D array:

__shared__ float density[SIZE];

Each thread stores its own value of the density as a component of this array,

and so SIZE is the total number of threads within a thread-block, which in turn

is a multiple of the warp-size. Since a single-precision floating-point number is

89

4.2 GPU-accelerated Navier-Stokes solver

Procedure
Threads

per block

Registers

per thread

Shared memory

per block
Occupancy

cudaCons2prim() 256 10 88 B 100%

cudaSplitFlux() 128 21 112 B 66%

cudaTVD() 32 50 6520 B 6%

cudaODErhs() 256 12 56 B 100%

cudaViscosity() 256 5 40 B 100%

cudaNSCBC() 32 62 7836 B 6%

cudaSdmv() 128 7 68 B 100%

cudaTranspose() 256 10 4264 B 75%

Table 4.1: Occupancy for the custom kernels employed by the GPU Navier-Stokes solver.

a 32-bit word, threads within half-warp access 16 different banks, with no bank

conflicts.

In a similar fashion, a vector variable like the velocity is allocated as a 2D array:

__shared__ float velocity[SIZE][DIMS];

The array is stored in row-major order, so each thread stores its velocity compo-

nents in DIMS successive banks. Since there are 16 = 24 banks, if DIMS is odd,

threads within the half-warp access 16 different banks. If DIMS is even, the array

is set to occupy more memory than needed:

__shared__ float velocity[SIZE][DIMS+1];

This is a standard technique often referred to as padding.

A tensor variable like the eigenvector matrix is allocated as a 2D array:

__shared__ float eigVecMatrix[SIZE][DIMS*DIMS];

Each thread stores its matrix as a 1D array of DIMS*DIMS components, and ap-

propriate indexing is used to map the matrix on this 1D array. With regard to

the memory access, the same considerations as for vector variables hold.

90

4.3 Summary

4.3 Summary

Novel contributions presented in this chapter are:

• An algorithm to parallelise our compact-TVD method. The algorithm is based

on structured-block partitioning and improves previous algorithms that employ

the same approach (32, 33, 35). Our algorithm is fully conservative and does not

distort smooth flow features, although introduces a perturbation on the original

linear system to compute derivatives. The effect of this perturbation is assessed

in section 6.1.

• A strategy to parallelise our compact-TVD method over a cluster of multi-core

processors. We propose to combine our multi-block parallel algorithm with the

slab/drawer decomposition algorithm: the small communication cost of the multi-

block algorithm makes it ideal to divide the work between processors; the slab/drawer

decomposition is used to divide the work between the cores of a processor. The

performance of the hybrid algorithm is assessed in section 6.1.4.

• A strategy to parallelise our compact-TVD method in the complex computing

environment of a GPU. Our strategy consists of two steps:

– algorithm break-down into elementary tasks;

– adoption of a task-dependent domain partitioning.

Breaking the algorithm into elementary tasks allows us to meet the tight memory

constraints of the GPU. The runtime of each task is minimised by choosing the

appropriate domain partitioning. The performance of this algorithm is assessed

in section 6.2.3.

91

5

Validation of the compact-TVD

method

In this chapter we assess the accuracy of the inviscid flow solver that was the subject of

Chapter 2, and validate the viscous flow solver that was described in Chapter 3. The

simulations have been carried out using the CPU code CU5-TVD-NSK, whose main

features are:

• differentiation of the Navier-Stokes kinetic split flux through a compact-TVD

scheme;

• 2D-axisymmetric formulation;

• cell-centred FD discretisation;

• boundary conditions enforcement by extrapolating fluid dynamic variables at

extra-boundary nodes.

The simulation of inviscid flows is the subject of section 5.1. Tu and Yuan (25)

have presented several standard 1D and 2D inviscid test cases, and we have repeated

most of them. However, in this chapter we just show three inviscid tests, delivering new

information with respect to Tu and Yuan’s analysis. The first test case is a shock tube

problem. The results for this test are shown in Tu and Yuan’s work, and we present ours

here for two reasons. First, the consistency between our results and theirs confirms the

correctness of our implementation. Second, as mentioned in section 2.3.2, by changing

some of the techniques the compact-TVD method relies on, several versions of it can be

92

generated. We use this classic 1D test to assess the impact of these different techniques.

The second test case is supersonic flow over a forward-facing step. It is a classic test and

we compare our results to time-accurate results obtained by several authors. We use

this test to conduct a first resolution study. The third test is the double Mach-reflection

of a strong shock. This is a classic test as well, and so we can compare our results to

those obtained by other authors with different methods of comparable accuracy. We

use this test to conduct a further resolution study.

In section 5.2 we conduct a validation study of the compact-TVD method for viscous

flow simulation. Motivation and merits of this study are:

• The compact-TVD method has only been applied previously to the Navier-Stokes

equations in a single case, without characteristic decomposition and with the

classical operator splitting, by Tu et al. (60). Comparison to experimental data

or analytical solution has not been shown before. Therefore the validation and

assessment of the method for viscous flow simulation is an original contribution

of this thesis work.

• Experience with the Navier-Stokes flux splitting technique is extremely limited, so

it is interesting to further assess its capabilities. Furthermore, the technique has

only been used in combination with second-order MUSCL interpolation. There-

fore, to our knowledge, this study is the first application of this splitting in com-

bination with a scheme that is higher than second-order accurate.

The tests are presented in order of complexity. We start with a one-dimensional test

case, namely the simulation of a shock layer, for which an analytical solution exists. We

then proceed to consider a two-dimensional test case, namely the supersonic boundary

layer over a flat plate. For this case an analytical solution exists as well. Then, we

consider the interaction between an oblique shock wave and a supersonic boundary

layer. This interaction results in a very complex flow-field, for which experimental re-

sults are available. Finally, we present a test case representative of a typical hypersonic

simulation: the hypersonic flow past a blunted-cone. For this case experimental results

are also available.

93

5.1 Simulation of inviscid flows

5.1 Simulation of inviscid flows

Our simulations have been run at Courant number CFL = 0.4. On a 2D finite-

difference grid with nodes indexed by (i, j), the Courant number is defined as CFL =

max (CFLξ,CFLη), where:

CFLξ = maxi,j (Vi,j · ∇ξi,j + ai,j |∇ξi,j |) ∆t
∆ξ ,

CFLη = maxi,j (Vi,j · ∇ηi,j + ai,j |∇ηi,j |) ∆t
∆η .

In this definition of CFLξ and CFLη, V is the velocity vector, ∇ξ and ∇η the metrics,

a the speed of sound, ∆ξ and ∆η the (uniform) grid spacings along ξ and η directions,

respectively, and ∆t the time step. The adiabatic index was set to γ = 7/5.

5.1.1 The Lax shock tube

The first test case is the one-dimensional Riemann problem proposed by Lax (77). A

diaphragm placed at x = 0 separates two regions where a gas is at different states.

In the Lax problem the left state is ρ = 0.445, u = 0.698, p = 3.528, and the right

state is ρ = 0.5, u = 0, p = 0.571. At time t = 0 the diaphragm is removed and the

two states are free to interact. This test case is a good benchmark for shock capturing

methods because a strong contact discontinuity develops, which is usually smeared over

several cells. The state of the system at t = 0.8 has been computed on a grid of 100

cells, equally spaced over the domain x ∈ [−3, 3]. Comparison of density, velocity and

pressure profiles with the exact solution is shown in Figs. 5.1–5.3.

The method is shown to be very accurate, delivering a sharp description of dis-

continuities, capturing the shock wave in two points and the contact surface in three

points. A minor problem appears at the tail of the left-running expansion fan, where

the method fails to completely suppress a spurious oscillation. This is barely visible in

the density profile (shown also by Tu and Yuan (25)), while it is clear in the pressure

and velocity profiles (not shown by Tu and Yuan). Modifications of the original method

proposed by Tu and Yuan may be considered: changing the flux splitting technique,

the limiter, and the characteristic decomposition. We have investigated the effect of

these and the following considerations arise from the analysis of Figs. 5.1–5.3.

The characteristic decomposition is a key feature of the method. If the flux is lim-

ited component-wise, i.e. no projection into characteristic space is performed, spurious

low-amplitude oscillations appear in the velocity and pressure, and a strong overshoot

94

5.1 Simulation of inviscid flows

(a) Steger-Warming FVS, limiter B, upwind char-

acteristic decomposition.

(b) Steger-Warming FVS, limiter B, no character-

istic decomposition.

(c) Steger-Warming FVS, limiter A, upwind char-

acteristic decomposition.

(d) Steger-Warming FVS, limiter B, central char-

acteristic decomposition.

(e) Van Leer FVS, limiter B, upwind characteristic

decomposition.

(f) Kinetic FVS, limiter B, upwind characteristic

decomposition.

Figure 5.1: Density at time t = 0.8 for the Lax problem: —, analytical solution; ◦,
numerical solution.

95

5.1 Simulation of inviscid flows

(a) Steger-Warming FVS, limiter B, upwind char-

acteristic decomposition.

(b) Steger-Warming FVS, limiter B, no character-

istic decomposition.

(c) Steger-Warming FVS, limiter A, upwind char-

acteristic decomposition.

(d) Steger-Warming FVS, limiter B, central char-

acteristic decomposition.

(e) Van Leer FVS, limiter B, upwind characteristic

decomposition.

(f) Kinetic FVS, limiter B, upwind characteristic

decomposition.

Figure 5.2: Velocity at time t = 0.8 for the Lax problem: —, analytical solution; ◦,
numerical solution.

96

5.1 Simulation of inviscid flows

(a) Steger-Warming FVS, limiter B, upwind char-

acteristic decomposition.

(b) Steger-Warming FVS, limiter B, no character-

istic decomposition.

(c) Steger-Warming FVS, limiter A, upwind char-

acteristic decomposition.

(d) Steger-Warming FVS, limiter B, central char-

acteristic decomposition.

(e) Van Leer FVS, limiter B, upwind characteristic

decomposition.

(f) Kinetic FVS, limiter B, upwind characteristic

decomposition.

Figure 5.3: Pressure at time t = 0.8 for the Lax problem: —, analytical solution; ◦,
numerical solution.

97

5.1 Simulation of inviscid flows

(a) Fifth-order WENO (b) Fifth-order compact + TVD.

Figure 5.4: Density at time t = 0.8 for the Lax problem: —, analytical solution; ◦,
numerical solution.

in the density profile appears between the shock and the contact surface. If the charac-

teristic processing is performed, the upwind evaluation of the eigenvector matrix pro-

vides a more diffusive scheme, giving a slightly less accurate description of the constant

state between the contact surface and the shock, but also a lower-amplitude spurious

oscillation at the tail of the expansion fan.

The effect of the flux vector splitting technique is not as remarkable. However, a

slight improvement of the kinetic splitting over van Leer and Steger-Warming in con-

trolling the unphysical oscillation at the tail of the expansion fan is observed. Changing

the limiter is shown to have a negligible effect.

In Fig. 5.4, a fifth-order WENO scheme (19) and the current method are compared

in terms of predicted density profiles: it can be seen that, even though the WENO

scheme is uniformly high-accuracy, our compact-TVD method better captures the shock

and the contact discontinuity, and, ultimately, has better agreement with the exact

solution.

In the simulations presented in the rest of this thesis, kinetic splitting, upwind

characteristic decomposition and type B limiter are used. Upwind characteristic de-

composition and type B limiter improve the stability: since we target hypersonic flows,

a slightly more dissipative method is likely to operate correctly at higher Mach num-

bers, where stronger shocks form. The use of the kinetic splitting, instead, is motivated

by consistency with the viscous solver. The viscous solver employs a splitting for the

98

5.1 Simulation of inviscid flows

Figure 5.5: Mach 3 forward-facing step in a wind tunnel: the multi-block mesh (three

different colours).

Navier-Stokes flux that reduces to the kinetic splitting for the Euler flux in the inviscid

case.

5.1.2 The forward-facing step

The test discussed in this section was identified by Woodward and Colella (78) as a

benchmark for compressible high-order numerical methods. The geometry is rather

simple: a supersonic wind tunnel with a step on the lower wall. The wind tunnel is

1 length-unit high and 3 length-units long. The step is 0.2 length-units high and it

is located at 0.6 length-units from the left end of the tunnel. The free-stream Mach

number is M∞ = 3, and the free-stream primitive variables are

ρ∞ = 7/5, u∞ = 3, v∞ = 0, p∞ = 1.

The simulation is started impulsively, i.e. at time t = 0 the flow is at the free-stream

conditions everywhere. The inlet of the tunnel is a supersonic inflow, and the outlet

a supersonic outflow. The tunnel walls are modelled as slip-walls. The domain is

partitioned into three blocks as shown in Fig. 5.5, and the multi-block version of the

code, CU5-TVD-MB, is used. The grid has uniform spacing ∆x = ∆y = 1/80.

The flow reaches the steady state after about 12 time-units, but the steady flow

has a relatively simple structure. For this reason, Woodward and Colella suggested

computing the time evolution up to 4 time units, which is characterised by complicated

99

5.1 Simulation of inviscid flows

(a) PPMLR, t = 0.5.

(b) CU5-TVD-MB, t = 0.5.

(c) PPMLR, t = 1.

(d) CU5-TVD-MB, t = 1.

Figure 5.6: Mach 3 forward-facing step in wind tunnel. Density contours, 30 equally

spaced levels between: 0.2365 and 5.647, (a)–(b); 0.2628 and 7.564, (c)–(d). Mesh resolu-

tion: 80× 240 cells. PPMLR results from Woodward and Colella (78).

100

5.1 Simulation of inviscid flows

(a) PPMLR, t = 1.5.

(b) CU5-TVD-MB, t = 1.5.

(c) PPMLR, t = 2.

(d) CU5-TVD-MB, t = 2.

Figure 5.7: Mach 3 forward-facing step in wind tunnel. Density contours, 30 equally

spaced levels between: 0.2805 and 7.717, (a)–(b); 0.2669 and 6.650, (c)–(d). Mesh resolu-

tion: 80× 240 cells. PPMLR results from Woodward and Colella (78).

101

5.1 Simulation of inviscid flows

(a) PPMLR, t = 2.5.

(b) CU5-TVD-MB, t = 2.5.

(c) PPMLR, t = 3.

(d) CU5-TVD-MB, t = 3.

Figure 5.8: Mach 3 forward-facing step in wind tunnel. Density contours, 30 equally

spaced levels between: 0.2688 and 6.602, (a)–(b); 0.2673 and 6.383, (c)–(d). Mesh resolu-

tion: 80× 240 cells. PPMLR results from Woodward and Colella (78).

102

5.1 Simulation of inviscid flows

(a) PPMLR, density at t = 4.

(b) CU5-TVD-MB, density at t = 4.

(c) PPMLR, pressure at t = 4.

(d) CU5-TVD-MB, pressure at t = 4.

Figure 5.9: Mach 3 forward-facing step in wind tunnel, 30 equally spaced contours of:

density between 0.2568 and 6.067, (a)–(b); pressure between 0.2752 and 11.82, (c)–(d).

Mesh resolution: 80× 240 cells. PPMLR results from Woodward and Colella (78).

103

5.1 Simulation of inviscid flows

(a) PPMLR

(b) CU5-TVD-MB

Figure 5.10: Mach 3 forward-facing step in wind tunnel. Vertical velocity contours at

time t = 4: 30 equally spaced levels between -1.005 and 1.461. Dashed lines denote negative

values. Mesh resolution: 80× 240 cells. PPMLR results from Woodward and Colella (78).

flow structures. This time evolution is shown in terms of density contours in Figs. 5.6-

5.9. These figures include our results as well as those obtained by Woodward and

Colella using the PPMLR method (78). The evolution can be summarised as follows.

A bow shock forms ahead of the step (Figs. 5.6(a)–5.6(b)), and is reflected on the upper

wall of the tunnel (Figs. 5.6(c)–5.6(d)) and curved by the interaction with the expansion

fan generated at the corner of the step. The reflected shock then hits the surface of the

step (Figs. 5.7(a)–5.7(b)) and is further reflected. Later, the regular reflection on the

upper wall turns into a Mach-reflection (Figs. 5.7(c)–5.7(d)) and a contact discontinuity

develops (Figs. 5.8(a)–5.8(b)). Finally, a second reflection appears on the upper wall

(Figs. 5.8(c)–5.8(d)), while the Mach-stem moves upstream (Figs. 5.9(a)–5.9(b)).

This evolution is very difficult to simulate for several reasons:

• The Mach-stem is nearly orthogonal to the wall and moves slowly upstream.

Many numerical methods fail to predict slowly moving discontinuities parallel to

the grid lines. Some Riemann solvers are unstable in these conditions (81).

104

5.1 Simulation of inviscid flows

(a) PPMLR

(b) CU5-TVD-MB

(c) MUSCL

Figure 5.11: Mach 3 forward-facing step in wind tunnel. Contours of entropy ratio,

s = p/ργ , at t = 4: 30 equally spaced levels between 0.6325 and 1.115. Mesh resolution:

80× 240 cells. PPMLR and MUSCL results from Woodward and Colella (78).

105

5.1 Simulation of inviscid flows

(a) Fourth-order ADER-WENO, 80 × 240 cells.

(b) CU5-TVD-MB, 80 × 240 cells.

(c) Fourth-order ADER-WENO, 160 × 480 cells.

(d) CU5-TVD-MB, 160 × 480 cells.

Figure 5.12: Mach 3 forward-facing step in wind tunnel. Density contours at time t = 4:

30 equally spaced levels between 0.090338 and 6.2365. ADER-WENO results from Balsara

et al. (79).

106

5.1 Simulation of inviscid flows

(a) Fourth-order ADER-WENO

(b) CU5-TVD-MB

(c) Fifth-order explicit-WENO

(d) CU5-TVD-MB

Figure 5.13: Mach 3 forward-facing step in wind tunnel. Density contours at time t = 4,

30 equally spaced levels between: 0.090338 and 6.2365, (a)–(b); 0.32 and 6.15, (c)–(d).

Mesh resolution: 320× 960 cells. ADER-WENO results from Balsara et al. (79), explicit-

WENO results from Li and Qiu (80).

107

5.1 Simulation of inviscid flows

• The formation of the Mach-stem is a threshold phenomenon. If the bow shock

is smeared over too many cells, the Mach-stem forms too late, and, even if the

method is capable of correctly predicting its motion, it does not reach its correct

position.

• Downstream from the reflection, a contact discontinuity develops. Sharp detec-

tion of such a discontinuity is extremely difficult.

• The contact discontinuity is a vortex sheet and suffers from the Kelvin-Helmholtz

instability. This physical instability results in the roll-up of the vortex sheet and

may be triggered by post-shock oscillations. The appearance of this instability

depends on how the numerical method controls these oscillations, and its devel-

opment depends on the dissipation characteristics of the numerical method.

The corner of the step is the centre of an expansion fan, and so a singular point for the

flow-field. Large numerical errors are introduced at this point, affecting the simulated

flow field to an extent that depends on the numerical method. The most common

error observed is the formation of a numerical boundary layer on the step surface. The

interaction between a shock wave and this numerical boundary layer may dramatically

alter the simulated evolution. Woodward and Colella tailored their code to achieve the

best results on this simulation, and, in order to minimise the error inevitably introduced

at the corner, explicitly imposed the conservation of entropy and total enthalpy in the

cells neighbouring the corner. The cells involved were the first four cells from the

corner in the first row above the step surface, and the first two cells from the corner in

the second row above the step surface. In these cells the density was reset to enforce

entropy conservation:

ρright = ρleft

(
pright
pleft

) 1
γ

,

while the velocity magnitude was reset to enforce total enthalpy conservation:

V 2
right = V 2

left +
2γ

γ − 1

(
pleft
ρleft

−
pleft
ρleft

)
.

Even adopting this solution, an over-expansion is predicted at the corner, as well as a

weak oblique shock downstream where the over-expanded flow hits the step surface.

The PPMLR solver is based on a Lagrangian method employing two successive

piece-wise parabolic reconstructions and a Riemann solver. Also, in the remapping

108

5.1 Simulation of inviscid flows

step grid jittering is performed in order to improve the computation of slowly moving

discontinuities. In addition, as stated before in this section, Woodward and Colella

implemented a “patch” for entropy and total enthalpy at the corner. For these reasons,

their results represent an excellent reference solution. In Figs. 5.6-5.11 for our results

we use the same contour levels as Woodward and Colella, and so the figures are a direct

comparison between the CU5-TVD-MB and PPMLR method.

Our results compare very well to Woodward and Colella’s. The discontinuities are

captured as sharply, with no appreciable post-shock oscillations. Speed and location

of discontinuities agree at any time. The Mach-stem forms at time t = 2 in both

simulations, and its final location at time t = 4 is the same for both methods. The CU5-

TVD-MB method is somewhat less effective in capturing the contact discontinuity, as

its description is not quite as sharp. This could be attributed to the boundary closures:

as the triple-wave point moves from the top wall towards the step, the resolution of the

contact discontinuity improves.

The worse resolution of the contact surface could also be linked to its instability.

The PPMLR method seems to predict the onset of the Kelvin-Helmholtz instability

between time 2.5 and 3 (Figs. 5.8(a) and 5.8(c)), but there is no trace of it at time

4 (Fig. 5.9(a)). In our simulation the instability does manifest: it is hardly visible

from the density contours, but it is clear in the vertical-velocity contours, shown in

Fig. 5.10. Woodward and Colella also simulated the phenomenon using a second-order

MUSCL scheme that did detect the instability. They state that the post-shock os-

cillations trigger the instability in the MUSCL simulation, and these oscillations are

better controlled by the PPMLR method. In our case though, there are no appreciable

post-shock oscillations and more likely the higher accuracy and better resolution prop-

erties are responsible for the onset of the instability. This statement is corroborated

by comparing the contours of the entropy ratio, s = p/ργ , for the three methods in

Fig. 5.11. This comparison also highlights the presence of a numerical boundary layer

on the step surface in our simulation, where no special fix has been adopted at the

corner. This boundary layer is responsible for the Mach-reflection of the shock hitting

the step surface, visible in both density and pressure contours, but has no major effect

far from the step surface.

We have used this test to perform a resolution study. Three grids are considered,

where ∆x = ∆y = 1/80, 1/160, 1/320. The results are shown in Figs. 5.12 and 5.13.

109

5.1 Simulation of inviscid flows

Increasing the grid resolution, the flow structure does not change but:

• The discontinuities thin. The thickness of discontinuities, expressed in number

of grid points, is a property of the method, and therefore the finer the grid the

sharper the discontinuities.

• The numerical boundary layer on the step surface thins. As with the discon-

tinuities, its thickness expressed in number of grid-points is a property of the

method.

• The roll-up of the contact surface is better captured.

In Figs. 5.12, 5.13(a) and 5.13(b), our results are compared to those obtained by Balsara

et al. (79) using a fourth-order ADER-WENO method. The same contour levels are

used and therefore the two methods can be directly compared. On the coarse mesh

(Figs. 5.12(a) and 5.12(b)), CU5-TVD-MB is more effective in controlling the high-

frequency spurious oscillations. The two methods show similar roll-up of the slip-line

and similar grid-convergence property. The ADER-WENO method does not predict a

numerical boundary layer on the step surface.

Finally, in Figs. 5.13(c) and 5.13(d) our results on the finest grid are compared to

those obtained by Li and Qiu (80) using a fifth-order explicit-WENO method. The same

contour levels are used for the two contour plots. The results are virtually identical

away from the slip-line, indicating that for smooth flows the explicit formula Eq. 2.19

(employed by Li and Qiu), and the compact formula Eq. 2.9, are essentially equivalent.

Indeed, the roll-up of the slip-line is better captured by the compact-TVD method.

Both methods predict a numerical boundary layer that determines a Mach-reflection at

the step surface. However, downstream from this second Mach-reflection, the density

is smooth in Li and Qiu’s results, while it is oscillating in ours: this is likely due to the

instability of the slip-line departing from this second triple-wave point.

5.1.3 Double Mach-reflection

The last inviscid test we present is the reflection of a strong shock over a wedge. A

schematic of the physical problem is shown in Fig. 5.14(a). The shock wave travels at

speed Us and at time t = 0 hits the wedge. This phenomenon has been extensively

studied in the past both analytically and experimentally, see for example the work

110

5.1 Simulation of inviscid flows

(a) Schematic of the physical problem. (b) Schematic of the computational problem .

Figure 5.14: Physical and computational problems for the simulation of the shock reflec-

tion over a wedge.

by Ben-Dor (83). The reflection has a different structure depending upon the Mach

number of the incident shock, Ms, and the wedge angle, θw. These configurations are

shown in Fig. 5.15 and are:

(a) Regular reflection. The incident shock (IS) is reflected at the wedge and the

reflected shock (RS) is curved all the way to the symmetry plane, allowing the

flow to be parallel to the wedge at the wedge surface behind the incident shock.

(b) Mach-reflection. A Mach-stem (MS) forms, locally normal to the wedge surface,

intersecting the incident and reflected shocks into a triple-wave point. From this

point also a curved slip-line (SL) departs.

(c) Complex Mach-reflection. The reflected shock shows a kink absent in the simple

Mach-reflection.

(d) Double Mach-reflection. The slip-line generated at the triple-wave point is re-

flected on the wedge surface as a shock. This reflected shock (RS2) intersects the

first reflected shock (RS), and a second triple-wave point forms instead of the

kink. From this point a second slip-line (SL2) departs.

In Fig. 5.15 the reflected shock is detached from the wedge and, at the symmetry plane,

is normal to the flow direction. In fact, this feature appears if a deviation equal to the

wedge angle is not possible through an oblique shock for the Mach number of the flow

111

5.1 Simulation of inviscid flows

(a) Regular reflection (b) Mach-reflection.

(c) Complex Mach-reflection (d) Double Mach-reflection.

Figure 5.15: Different configurations of shock reflection over a wedge. IS is the incident

shock trevelling at speed Us, RS and RS2 are reflected shocks, MS and MS2 are Mach-

stems, and SL and SL2 are slip-lines.

behind the incident shock. Otherwise the reflected shock is attached to the leading

edge and locally not normal to the flow direction.

Starting from a regular reflection, the configuration evolves into a Mach-reflection,

a complex Mach-reflection and a double Mach-reflection, if either the Mach number of

the incident shock increases, or the wedge angle decreases. For all reflections the flow

is self-similar: as the shock moves downstream, the flow structure does not change but

simply “stretches”.

112

5.1 Simulation of inviscid flows

(a) PPMDE, density.

(b) CU5-TVD, density.

(c) PPMDE, pressure.

(d) CU5-TVD, pressure.

Figure 5.16: Double Mach-reflection, 30 equally spaced contours of: density between

1.731 and 20.92; pressure between 10.30 and 549.4. Mesh resolution: 120 × 480 cells.

PPMDE results from Woodward and Colella (78).

113

5.1 Simulation of inviscid flows

(a) PPMDE

(b) CU5-TVD

Figure 5.17: Double-Mach reflection. Contours of entropic ratio, s = p/ργ : 30 equally

spaced levels between and 0.8190 and 12.11. Mesh resolution: 120 × 480 cells. PPMDE

results from Woodward and Colella (78).

Following Woodward and Colella (78), we simulate the double Mach-reflection,

obtained by setting:

Ms = 10, θw =
π

6
.

In order to avoid meshing a domain where the boundaries are not orthogonal to each

other, the computational domain is set as a rectangle whose long edges are parallel to

the wedge, as shown in Fig. 5.14(b). The new reference frame (x, y) is rotated by π/6

with respect to the original reference frame (X,Y). We denote by lowercase letters,

namely (u, v), the components of the velocity vector in the (x, y) reference frame, and

by capital letters, namely (U, V), those in the (X,Y) reference frame.

The left boundary in Fig. 5.14(b) is a supersonic inflow boundary, where the inflow

conditions are set equal to the exact post-shock conditions, denoted by subscript “2”,

according to the standard notation for steady shock waves. According to the same

convention, the pre-shock conditions are denoted by subscript “1”. The pre-shock

114

5.1 Simulation of inviscid flows

(a) Fifth-order WENO, 480 × 1920 cells (b) Fifth-order WENO, 960 × 3840 cells

(c) CU5-TVD, 240 × 960 cells (d) CU5-TVD, 480 × 1920 cells

(e) Ninth-order WENO, 240 × 960 cells (f) Ninth-order WENO, 960 × 3840 cells

Figure 5.18: Double Mach-reflection. Density contours: 30 levels equally spaced between

1.5 and 22.9705. WENO results from Shi et al. (82).

115

5.1 Simulation of inviscid flows

(a) Fourth-order ADER-WENO, 240 × 960 cells (b) Fourth-order ADER-WENO, 480 × 1920 cells

(c) CU5-TVD, 240 × 960 cells (d) CU5-TVD, 480 × 1920 cells

Figure 5.19: Double Mach-reflection. Density contours: 30 levels equally spaced between

1.3965 and 22.882. ADER-WENO results from Balsara et al. (79).

conditions are:

p1 = 1, ρ1 = 1.4, u1 = v1 = 0,

and the post-shock conditions are:

p2 = 116.4, ρ2 = 8, u2 = 7.14471, v2 = −4.125.

The lower boundary is a supersonic inflow up to the corner, located at x = 1/6, and

then is a slip-wall. This forces the second Mach-stem (MS2 in Fig. 5.15(d)) to be

attached to the wedge. At the right boundary the zero-gradient condition is enforced.

The exact motion of the shock wave is assigned at the top boundary. In the (x, y)

reference frame the shock speed is:

us =
Msa1

cosπ/6
,

where a1 is the speed of sound in the pre-shock conditions. The solution at time

t = 0.2 has been computed on the domain (x, y) ∈ [0, 4] × [0, 1], using a uniform grid

116

5.1 Simulation of inviscid flows

(a) Fifth-order explicit-WENO

(b) CU5-TVD

Figure 5.20: Double Mach reflection. Density contours: 30 levels equally spaced between

1.5 and 22.7. Mesh resolution: 480 × 1920 cells. Explicit-WENO results from Li and

Qiu (80).

with ∆x = ∆y = 1/120, and is shown in Figs. 5.16 and 5.17. Our solution is compared

to the reference solution computed by Woodward and Colella (78) using the PPMDE

method (the Eulerian variant of the PPMLR method). The same contour levels for the

two methods are used, and so the figures are directly comparable.

The slip-line that originates from the main Mach-stem suffers from the Rayleigh-

Taylor (RT) instability: this is a well known phenomenon characterising interfaces

between fluids with different densities. Commonly, such instability is triggered by

gravity, but in this case the driving force is the stream-wise pressure gradient at the

wedge surface. The instability results in a jet of denser fluid, usually referred to as a

117

5.1 Simulation of inviscid flows

finger, penetrating the lower density region. The slip-line is also a vortex-sheet, and

so affected by the Kelvin-Helmholtz (KH) instability. This instability results in the

roll-up of the slip-line.

These two features are perhaps the most difficult to predict in this simulation, as

numerical methods introduce locally high numerical dissipation to capture discontinu-

ities, and such dissipation tends to stabilise the slip-line. On the other hand, many

Riemann solvers do not introduce enough dissipation and over-predict the length of the

RT finger which protrudes even beyond the Mach-stem.

Indeed, PPMDE and CU5-TVD methods predict the same flow structure. Minor

differences in density and pressure contour lines (Fig. 5.16) are observed in the region

underneath the second Mach-stem. The length and structure of the RT jet are very

similar. The major difference is the shape of the slip-line: while PPMDE does not

detect the KH instability, CU5-TVD clearly shows the roll-up of the slip-line, even at

such a low resolution. The different shape of the slip-line is particularly evident in the

contours of the entropic ratio, s = p/ργ , shown in Fig. 5.17. The roll-up also causes

the slip-line to protrude upstream. Finally, we note that the slip-line originating from

the second triple-wave point is very weak and not visible in the density contours.

We have used this test case to perform a further resolution study. The flow over

a supersonic step discussed in section 5.1.2 does not possess many small-scale features

and a good second-order scheme is sufficient to simulate it. On the other hand, the

small-scale structures, arising from the combination of RT and KH instabilities, require

the use of higher-order schemes.

In Fig. 5.18 our results are compared to those obtained by Shi et al. (82) who used

fifth- and ninth-order WENO schemes. Fig. 5.18(f) represents a reference solution,

computed by Shi et al. on a very fine grid of 960 × 3840 cells using the ninth-order

WENO scheme. Note that the main features of the slip-line are well described by

CU5-TVD on the 480 × 1960 grid (Fig. 5.18(d)), as well as by the fifth-order WENO

scheme on the 960 × 3840 grid (Fig. 5.18(b)). It is interesting to observe that CU5-

TVD achieves on the 240× 960 grid (Fig. 5.18(c)) a resolution close to the ninth-order

WENO scheme on the same grid (Fig. 5.18(e)), and to the fifth-order WENO scheme

on the 480× 1960 grid (Fig. 5.18(a)).

In Fig. 5.19 our results are compared to those obtained by Balsara et al. (79) who

used a fourth-order hybrid ADER-WENO method, and our results clearly show better

118

5.2 Simulation of viscous flows

resolution for all grid sizes. Finally, Fig. 5.20 compares CU5-TVD to the hybrid fifth-

order explicit-WENO method used by Li and Qiu (80). As for the supersonic step,

away from the slip-line the two solutions are virtually identical, confirming that the

fifth-order explicit formula Eq. 2.9 (used by Li and Qiu), and the fifth-order compact

formula Eq. 2.19, are equivalent for smooth flows. The roll-up of the slip-line, instead,

is better described by the compact-TVD method than by the explicit-WENO method.

Summarising, this resolution study indicates that:

• a fifth-order WENO scheme needs twice as many nodes per direction to achieve

the same resolution as our compact-TVD method;

• the compact-TVD method performs better than hybrid methods of comparable

accuracy, combining a high-resolution formula and a WENO scheme;

• a lack of dissipation in the compact-TVD method may be responsible for the

slip-line protruding upstream in the simulation of a double-Mach-reflection.

5.2 Simulation of viscous flows

Viscous flow simulations reported in this section were run at a Courant number CFL =

0.1 and a Neumann number Neu = 0.05. The Courant number has been introduced

in section 5.1. The Neumann number is used to ensure the numerical stability of the

viscous discretisation. On a 2D FD grid where the nodes are indexed by (i, j) it is

defined as:

Neu = maxi,j

{
νi,j

[(
|∇ξi,j |

∆ξ

)2

+

(
|∇ηi,j |

∆η

)2
]}

∆t,

where ν = µ/ρ is the dynamic viscosity. The tests presented here required the compu-

tation of a steady state. The numerical method we use is for time-accurate simulations

and hence not efficient for steady-state calculations because there is a severe time-step

restriction for stability. Convergence was assumed to be achieved when no appreciable

variation in the quantities of interest was observed on the numerical grid used.

5.2.1 Shock layer

The shock wave formation is an inviscid phenomenon, as it is related to the coales-

cence of compression waves. While shock waves are discontinuities in inviscid flows,

119

5.2 Simulation of viscous flows

(a) Density (b) Velocity

(c) Pressure (d) Temperature

Figure 5.21: Solutions to the shock layer problem: —, analytical solution; ◦, our numer-

ical solution.

in viscous flows they are regions where the variation of fluid dynamic variables occurs

within a spatial distance much smaller than the length scale of the flow field. The

region where the fluid evolves from the state upstream of the shock wave to the down-

stream state is called the shock layer. Its thickness can be as small as a few molecular

mean free paths, even in a macroscopically continuum flow, and so the Navier-Stokes

equations are generally not suitable for describing the shock layer. An analytical so-

lution to the Navier-Stokes equations is available for the one-dimensional shock layer

problem (84). The solution procedure is based on the self-similar function technique,

and the complete derivation can be found in Lagerstrom (84). While this solution can

be of limited physical significance, because of the breakdown within the shock layer of

the continuum hypothesis, which the Navier-Stokes equations rely on, it can be em-

120

5.2 Simulation of viscous flows

(a) Mach number (b) Entropy

(c) Stagnation Pressure (d) Dilatation

Figure 5.22: Solutions to the shock layer problem: —, analytical solution; ◦, our numer-

ical solution.

ployed as a benchmark for numerical methods. Denoting by subscripts “1” and “2” the

states upstream and downstream of the steady shock wave, respectively, and defining

the following quantities:

m = ρ1u1 = ρ2u2, Ua =
u1 + u2

2
, V =

u1 − u2

2
, H = h1 +

u2
1

2
= h2 +

u2
2

2
,

the shock layer is described by the following equations (84):

ρ(ξ)u(ξ) = m, (5.1)

u(ξ)− Ua = V tanh

 −V m(γ + 1)ξ/Ua

2γ + 2(γ − 1)
(

1
Prtot

− 1
)
 , (5.2)

h(ξ) +
u(ξ)2

2
= H. (5.3)

121

5.2 Simulation of viscous flows

The quantity ξ is a transformed spatial variable such that:

x(ξ) =

∫ ξ

0
µtotdξ̃. (5.4)

The modified viscosity µtot incorporates the bulk viscosity µb, i.e. µtot = 2µ+ µb, and

the modified Prandtl number is Prtot = cpµtot/k, where cp is the constant pressure

specific heat and k the thermal conductivity. The self-similar nature of the solution is

clear from Eqs. 5.1–5.3: the fluid dynamic variables are functions of ξ, whose spatial

scale is in turn a function of the modified viscosity µtot: dξ = µtotdx.

We have computed a steady shock layer, with shock Mach number Ms = 1.5, as in

the work by Lele (3). The problem solved is dimensionless, and a simple linear viscosity

law, µ = T , is assumed, so that the integral in Eq. 5.4 can be solved analytically. We

set µb = −2/3µ, according to the Stokes hypothesis, the Prandtl number is Pr = 3/4

and the isentropic index is γ = 7/5. The upstream conditions are:

ρ1 = 7/5, u1 = 1.5, p1 = 1.

The gas constant is set to R = 5/7, so that T1 = 1, and the downstream conditions are

given by the Rankine-Hugoniot relations. In Figs. 5.21 and 5.22 the results obtained

on 300 uniformly spaced cells over the domain x ∈ [−45, 48] are compared to the exact

analytical solution.

Variables such as density, velocity, pressure, temperature and Mach number are

monotonic, and so easy to capture. The challenge in this test case is the correct predic-

tion of dilatation, ∂xu, entropy and stagnation pressure. These quantities experience a

peak within the shock thickness, that can only be captured if such a small length-scale

is well resolved. Figs. 5.21 and 5.22 show excellent agreement between the numerical

and analytical solutions for all variables.

5.2.2 Self-similar boundary layer

In this section we present the simulation of a steady supersonic laminar boundary layer

over a flat plate, and we validate our results against an exact solution, namely the

compressible self-similar boundary layer.

Under certain assumptions, i.e. steady two-dimensional flow, zero stream-wise pres-

sure gradient and thin boundary layer, the Navier-Stokes equations can be simplified

122

5.2 Simulation of viscous flows

(a) Density, kg/m3

(b) Pressure, Pa

Figure 5.23: Supersonic flow over a flat plate: steady state solution computed on 108×270

cells.

123

5.2 Simulation of viscous flows

Figure 5.24: Temperature contours (Kelvin) and velocity profiles in the boundary layer

for the supersonic flat plate.

into the so called boundary layer equations:

∂ρu

∂x
+
∂ρv

∂y
= 0, (5.5)

ρu
∂u

∂x
+ ρv

∂u

∂y
=

∂

∂y

(
µ
∂u

∂y

)
, (5.6)

∂p

∂y
= 0, (5.7)

ρu
∂h

∂x
+ ρv

∂h

∂y
= µ

(
∂u

∂y

)2

+
1

Pr

∂

∂y

(
µ
∂h

∂y

)
. (5.8)

These equations can be expressed in terms of transformed coordinates (ξ, η), such

that in the transformed plane the solution does not depend on the ξ coordinate. The

appropriate transformation from the physical plane (x, y) to the transformed plane

(ξ, η) is based on the work started in 1940 by Illingworth, Stewartson, Howarth and

Dorodnitsyn, and eventually systematised by Levy and Lees (1). The transformation,

often referred to as the Lees-Dorodnitsyn transformation, is:

ξ =

∫ x

0
ρeueµedx, η =

ue√
2ξ

∫ y

0
ρdy, (5.9)

124

5.2 Simulation of viscous flows

(a) Non-dimensional velocity (b) Mach number

(c) Non-dimensional temperature (d) Friction coefficient

Figure 5.25: Boundary layer profiles: —, self-similar solution; �, numerical solution on

54× 135 cells; ◦, numerical solution on 108× 270 cells.

where ρe, ue and µe are, respectively, density, x-velocity and viscosity at the edge of the

boundary layer. We note that, as these variables depend just on x, ξ does not depend

on y, i.e. ξ = ξ(x). It can be proved that, for certain types of wall-bounded flows,

such as the flow past a flat plate, the ratios of velocity and specific enthalpy to their

respective values at the edge of the boundary layer do not depend on ξ. Therefore, two

functions f(η) and g(η) can be defined so that:

u/ue = f ′(η), h/he = g(η). (5.10)

In this type of boundary layer the pressure is uniform, i.e. ∂p/∂ξ = ∂p/∂η = 0. These

mathematical properties of the boundary layer equations describe a precise physical

phenomenon: moving along the body surface, the profiles of the fluid dynamic variables

125

5.2 Simulation of viscous flows

along the direction normal to the surface do not change if they are scaled according to

the local flow conditions.

Applying the transformation 5.9 to Eqs. 5.5–5.8, we obtain a system of two ordinary

differential equations (ODE) in the variables f and g:{
(Cf ′′)′ + ff ′ = 0,(

C
Prg

′)+ fg′ + C u2e
he

(f ′′)2 = 0,
(5.11)

where C = ρµ/ρeµe. The full mathematical derivation is omitted here, as it can be

found in most fluid mechanics books, for example the one by Anderson (1). The ODE

system 5.11 is third order in f and second order in g, so three boundary conditions for

f and two for g must be specified to close the problem. These boundary conditions

are:
f(0) = f ′(0) = 0 (no-slip wall),
f(∞) = g(∞) = 1 (boundary layer edge),
g(0) = hw/he (isothermal-wall) or g′(0) = 0 (adiabatic-wall).

(5.12)

Self-similar solutions of the compressible boundary layer equations have been used

in the past to study the effect of increasing Mach numbers and wall cooling on friction

and heat transfer (85). We compute compressible self-similar boundary layer profiles

and use them to validate our CFD code. The problem given by the ODE system 5.11

and the boundary conditions 5.12 is not an initial value problem (IVP), because not all

boundary conditions are specified on the same side of the domain. Therefore, it cannot

be solved with standard techniques. We follow Van Driest (85) and solve the problem

via a shooting method (86). The self-similar boundary layer profiles are expressed in

terms of the following non-dimensional variables:

u∗ = u/u∞, T ∗ = T/T∞, M∗ = u/
√
γp/ρ τ∗ =

τx,y
√
Re∞,x

1/2ρ∞u2
∞

,

where Re∞,x is the free-stream Reynolds number based on the distance from the leading

edge.

The free-stream conditions for the CFD simulation are taken from an experiment

studying the shock-boundary layer interaction, presented in section 5.3. The domain is

(x, y) ∈ [−0.1, 1.7] × [0, 1.2]m2. The free-stream Mach number, Reynolds number per

metre and temperature are, respectively:

M∞ = 2, Re∞,1 = 2.96× 105m−1, T∞ = 117K.

126

5.3 Laminar shock-boundary layer interaction

Top and left boundaries are modelled as supersonic inflow boundaries. The bottom

boundary is a slip-wall up to x = 0, and a no-slip adiabatic wall for x > 0. At the

left boundary the zero-gradient condition is enforced. The fluid is air, with isentropic

index γ = 7/5, gas constant Rair = 287.06m2/s2K and Prandtl number Pr = 0.725.

Density and pressure contours of the steady-state solution are shown in Fig. 5.23.

Two grids of different resolution have been considered. The coarse grid consists of

54 × 135 cells; the grid is equally spaced in the x-direction and refined near the wall

in the y-direction, with minimum cell size ∆ymin = 5 × 10−4m. In the fine grid the

spacing is halved in both directions.

Data along y at a certain x station must be extracted and post-processed in order to

compare the CFD results to the self-similar profiles. One of the underlying hypotheses

of the boundary layer equations is the negligibility of the stream-wise pressure gradi-

ent. This hypothesis is not applicable in the region near the leading edge, where the

attached shock interacts with the boundary layer. A viscous interaction parameter

χ̄ = M3
∞
√
C/Re∞,x, where C = ρwµw/ρeµe, can be used to assess the nature of the

interaction (1). High values of χ̄, typically χ̄ > 3, indicate a strong interaction between

the external field and the boundary layer. We extract profiles at the station x = 1.4m,

where the viscous interaction parameter is χ̄ = 0.01224, well below the threshold value

for the weak viscous interaction. Temperature contours and velocity profile at this

station are shown in Fig. 5.24. The data extracted is used to calculate Mach number,

M∗, non-dimensional velocity, u∗, non-dimensional temperature, T ∗, and friction coef-

ficient, τ∗. These quantities are compared to the self-similar profiles in Fig. 5.25, and

good agreement is observed on the coarse grid. The solution is essentially converged on

this grid, and grid refinement only slightly improves the temperature profile. The wall

temperature computed on the finest grid is slightly lower than the analytical one. This

can be explained as follows: in the CFD simulation the Mach number of the external

flow is slighly less than the free-stream Mach number, because of the shock wave at

the leading edge, while the analytical solution is computed for a Mach number of the

external flow equal to the free-stream Mach number.

127

5.3 Laminar shock-boundary layer interaction

(a) Schematic of the interaction. (b) Typical wall-pressure profile.

Figure 5.26: Interaction of an oblique shock wave with a laminar boundary layer over a

flat plate. Reproduced from Reyhner and Flügge-Lotz (87).

5.3 Laminar shock-boundary layer interaction

The shock-boundary layer interaction (SBLI) is one of the most extensively studied phe-

nomena in compressible fluid dynamics. This type of interaction occurs in a very wide

range of applications, such as supersonic and hypersonic propulsion and flight. It often

determines boundary layer separation, deteriorating the aerodynamic efficiency that is

important for supersonic applications, and increasing the local heat transfer that is crit-

ical in hypersonic applications. In this section we consider the two-dimensional interac-

tion of an oblique shock with a laminar boundary layer over a flat plate. A schematic of

this interaction is shown in Fig. 5.26, reproduced from Reyhner and Flügge-Lotz (87).

The shock wave impinges on the boundary layer and applies a strong adverse pres-

sure gradient on it. If the shock is sufficiently strong, a separation bubble forms. The

bubble starts upstream from the shock impingement location, as the high pressure be-

hind the shock feeds upstream through the subsonic portion of the boundary layer. At

the location where the boundary layer separates, identified by the letter S in Fig. 5.26,

the external supersonic flow deviates from the main flow direction, and so compression

waves form, which, at a certain distance from the interaction, coalesce into the so-called

separation shock. These compression waves cause a rise in the wall pressure. The sep-

arated boundary layer subsequently turns back toward the plate, and an expansion fan

forms in the external flow. The corresponding pressure variation does not reach the

wall, shielded by the separation bubble, and therefore a plateau, characteristic of the

SBLI, appears in the wall pressure profile. Finally, the boundary layer reattaches to the

128

5.3 Laminar shock-boundary layer interaction

(a) Density, kg/m3

(b) Pressure, Pa

Figure 5.27: Shock-boundary layer interaction: steady-state solution computed on 108×
270 cells.

129

5.3 Laminar shock-boundary layer interaction

(a) Velocity profiles

(b) Streamlines

Figure 5.28: Separation bubble in the shock-boundary layer interaction: (a) velocity

profiles and (b) streamlines superimposed on temperature contours. Temperatures are

expressed in Kelvin.

130

5.3 Laminar shock-boundary layer interaction

(a) Wall pressure coefficient

(b) Wall skin-friction coefficient

Figure 5.29: Numerical and experimental results for the shock-boundary layer interaction:

�, experiment by Hakkinen et al. (88); —, CU5-TVD; −−, CFD by Yao et al. (89).

131

5.3 Laminar shock-boundary layer interaction

surface at a location identified by the letter R in Fig. 5.26; the external flow deviates

through compression waves, which cause a second rise in wall pressure and coalesce

downstream into the so-called reattachment shock.

We have considered the experimental flow conditions of Hakkinen et al. (88). The

experiment was performed in the continuous flow supersonic wind tunnel of the Gas

Turbine Laboratory of the Massachusetts Institute of Technology in 1959. The plate

was equipped with static-pressure orifices, connected to mercury manometers, and a

thermocouple, read by means of a potentiometer. Stagnation pressure and temperature

were observed similarly, with an orifice and a thermocouple installed in the settling

chamber. A small slit-mouth tube was used to measure the skin-friction by taking

measurements with the tube resting on the plate. A theory for the use of small impact

pressure probes as skin-friction meters states that the difference between the pressure

measured by the probe resting on the surface and the undisturbed local static pressure

is related to the local shear stress through a power law with exponent 5/3. Hakkinen

et al. used this theory to calibrate the tube as a skin-friction meter, by comparing

the tube readings with the measurements of an absolute floating element skin-friction

meter. The instrument was not able to measure negative values of the shear stress,

and so shear stress measurements are only valid before the separation and after the

reattachment points.

The free stream Mach number was M∞ = 2 and the Reynolds number based on

free stream properties and the distance L of the shock impingement point from the

plate leading edge was Re∞,L = 2.96 × 105. The impinging shock was generated by a

3◦ wedge, resulting in a shock strength p3/p∞ = 1.4, where p3 is the static pressure

downstream from the SBLI. The shock impingement location was about 5cm from the

plate leading edge. The plate was about 15cm long, and the interaction took place

within 10cm from the leading edge.

In our simulation the computational domain is (x, y) ∈ [−0.5cm, 8.5cm]×[0cm, 6cm],

and the plate leading edge is placed at x = 0cm. A grid independency analysis was

carried out and it was found that results on a grid of 108 × 270 cells are converged.

The grid is equally spaced in the x-direction, and exponentially stretched in y-direction

with a minimum cell thickness ∆ymin = 1.7×10−3cm. The supersonic inflow boundary

condition was enforced on the left and top boundaries, while zero gradient was enforced

132

5.3 Laminar shock-boundary layer interaction

on the right boundary. On the bottom boundary, the surface ahead of the plate leading

edge is a slip-wall, while the plate surface is an adiabatic no-slip wall.

In Fig. 5.27 steady-state density and pressure contours are shown, and all of the

features of the interaction are observed. Density and pressure distributions are sim-

ilar, but while the pressure is constant across the boundary layer thickness and the

separation bubble, these zones are identified by a lower density. This results from the

adiabatic-wall condition: as the temperature increases from its value in the external

flow to its adiabatic-wall value, while the pressure remains constant, the density de-

creases. The oscillation in the top-right part of both pictures results from the reflection

on the top boundary of a disturbance generated at the left boundary. It is due to the

fact that the impinging shock has a finite thickness in the computational domain while

it has no thickness in the ghost cells, where the supersonic inflow boundary condition

is applied. The pattern of this reflection is such that it does not affect the simulation

of the SBLI.

In Fig. 5.28 a zoom into the shock impingement location shows details of the sep-

arated flow. Velocity profiles and streamlines clearly show the core of the separation

vortex, located downstream from the impingement location, and how the bubble thins

after the shock reflection.

In Fig. 5.29 the non-dimensional wall-pressure, pw/p∞, and the skin-friction co-

efficient, Cf = 2τw/ρ∞u
2
∞, are plotted as functions of the distance from the plate

leading edge, normalised by the shock impingement location xs. The present method

is compared to both experimental data and the recent CFD data obtained by Yao et

al. (89) using a fourth-order explicit-TVD FD method. The features of the pressure

profile (primary pressure rise - pressure plateau - secondary pressure rise) are correctly

captured, and the agreement is excellent with both experimental measurements and

previous CFD data. On the skin-friction coefficient, the agreement between our CFD

and Yao et al. is excellent. Both their CFD results and ours agree with experimental re-

sults in the region upstream from the separation but predict a wider separation bubble

and a lower friction after reattachment. Similar results were obtained by Katzer (90)

and Wasistho (91), and this suggests that the validity of these experimental data must

be questioned. Katzer, in particular, suggested that three-dimensional effects due to

the presence in the experiment of side walls could be the cause of such a discrepancy.

133

5.4 Hypersonic blunted cone

Figure 5.30: Comparison between blunted-cone and blunted-wedge hypersonic flows.

Reproduced from Cleary (92).

5.4 Hypersonic blunted cone

In this section we demonstrate through a test case the capability of the current method

to simulate hypersonic flows. We consider a sphere-cone geometry, common in hyper-

sonic applications and often tested experimentally.

The hypersonic flow past a blunted-cone presents several interesting features, de-

picted in Fig. 5.30 that is reproduced from Cleary (92). First, the geometry is ax-

isymmetric and so the shock wave is much closer to the body surface than in the

two-dimensional case. Furthermore, the fluid passing through the strong part of the

bow shock experiences a reduction in stagnation pressure and forms a low-density and

high-entropy layer that, because of the conical shape, diminishes in thickness as it moves

downstream. Near the nose, the flow field is similar to the one predicted by blast-wave

theory (1) while, many nose radii downstream, the flow features are essentially those of

a flow past a sharp cone, except for the thin entropy layer. Since the entropy layer thins

moving downstream along the cone, the flow over-expands to surface pressures below

the sharp cone value, and then re-compresses, with the surface pressure asymptotically

approaching the sharp cone value. Finally, the thinning of the entropy layer interacts

134

5.4 Hypersonic blunted cone

Figure 5.31: Computational grid for the hypersonic blunted cone test case.

Figure 5.32: Hypersonic blunted-cone: steady-state contours of entropy, expressed in

J/K.

135

5.4 Hypersonic blunted cone

(a) Stagnation pressure, Pa

(b) Pitot pressure, Pa

Figure 5.33: Hypersonic blunted-cone: steady-state (a) stagnation pressure and (b) Pitot

pressure countour plots.

136

5.4 Hypersonic blunted cone

Figure 5.34: Stagnation and Pitot pressures as function of the Mach number.

Figure 5.35: Computed flow variables at station x/Rn = 16.69 as a function of the

distance from the cone surface: –4–, stagnation pressure, Pa; –�–, Mach number; –◦–,

Pitot pressure, Pa.

137

5.4 Hypersonic blunted cone

(a) Density, kg/m3

(b) Pressure, Pa

Figure 5.36: Nose of the hypersonic blunted-cone: steady-state (a) density and (b)

pressure contour plots.

138

5.4 Hypersonic blunted cone

(a) Temperature, K

(b) Mach number

Figure 5.37: Nose of the hypersonic blunted-cone: (a) temperature and (b) Mach number

contour plots.

139

5.4 Hypersonic blunted cone

Figure 5.38: Hypersonic blunted-cone. Surface pressure coefficient: �, experiment by

Cleary (92); —, present method.

with the bow shock in such a way that a high-stagnation pressure layer forms, which

encloses the low-stagnation pressure layer adjacent to the surface.

Hypersonic flow conditions very often involve phenomena such as real gas effects,

chemical reactions, rarefaction. We have simulated the experimental flow conditions

of Cleary (92), in which the free-stream conditions were such that these phenomena

could be neglected and the flow could be simply described by the non-reacting Navier-

Stokes equations and the perfect gas thermodynamic model. The test was run in the

Hypersonic Wind tunnel of NASA Ames in 1969. The model was a blunted-cone with

15◦ half-angle, a nose curvature-radius Rn = 2.54cm and a base diameter db = 30.48cm.

It was instrumented with orifices along the surface to measure the wall pressure, and

movable pitot probes were mounted on the top at the station x/Rn = 3.59 and on

the bottom at x/Rn = 16.67. The model was internally cooled. According to Cleary,

surface temperatures were well below the adiabatic-wall temperature during the entire

run, which was about two minutes long, but the author does not provide any value for

the wall temperature. In order to evaluate the effect of varying wall temperature he

made Pitot-pressure measurements both at the beginning and at the end of the run

but he did not observe any significant difference. Cleary estimated the precision of

the pressure coefficients to be within ±4%. In the experiment the free-stream Mach

140

5.4 Hypersonic blunted cone

(a) x/Rn = 3.59

(b) x/Rn = 16.67

Figure 5.39: Hypersonic blunted-cone. Pitot pressure coefficients: �, experiment by

Cleary (92); —, present method.

141

5.4 Hypersonic blunted cone

number, Reynolds number per metre and stagnation temperature were:

M∞ = 10.6, Re∞,1 = 3.28× 106m−1, T0,∞ = 1111K.

The computational domain and grid for our simulation are shown in Fig. 5.31. The

cone has no angle of attack, so the axisymmetric formulation is used and only half

of the flow field is computed. The boundary conditions are: slip-wall on the axis,

supersonic inflow at the top boundary, zero-gradient at the right boundary, no-slip

isothermal-wall at the body surface. The wall temperature is set to 300K. The top

boundary is a parabola, with the minimum and maximum distances from the body

surface ηmin/Rn = 0.18 and ηmax/Rn = 3.5, respectively. A grid independency analysis

was performed and results were found to be converged on a grid of 158 × 107 cells.

The grid is uniform along the body-fitted coordinate ξ, while it was exponentially

stretched in the coordinate normal to the cone surface η, with minimum cell thickness

∆ηmin/Rn = 4 × 10−4. The fluid is air, with isentropic index γ = 7/5, gas constant

Rair = 287.06m2/s2K, and Prandtl number Pr = 0.725.

In Fig. 5.32 entropy contours for the computed solution are shown. An entropy

layer is clearly created at the blunt nose and it thins as the flow moves downstream

along the conical part of the geometry. In Fig. 5.33(a) stagnation pressure contours

are shown. The low-stagnation-pressure layer on the body surface is clearly visible, as

well as the high-stagnation-pressure layer enclosing it. In Fig. 5.33(b) Pitot pressure

contours are shown. The Pitot pressure is the pressure measured by a Pitot probe, i.e.

the local stagnation pressure if the flow is subsonic, or the local stagnation pressure

downstream of a normal shock if the flow is supersonic. This can be expressed by the

formula:
ppitot
p

= k

(
1 +

γ − 1

2
M2

) γ
γ−1

,

where:

k =


1 if M ≤ 1,(

γ+1
2
M2

1+ γ−1
2
M2

) γ
γ−1
(

1
2γ
γ+1

M2− γ−1
γ+1

) γ
γ−1

if M > 1.

We introduce this quantity because the experimental data supplied by Cleary are Pitot

probe readings.

Pitot pressure contours look very different from stagnation pressure contours be-

cause, fixing the static pressure, while the stagnation pressure monotonically increases

142

5.4 Hypersonic blunted cone

with the Mach number, the Pitot pressure drops heavily for Mach numbers between 1

and 3, and then approaches zero asymptotically. This can be seen in Fig. 5.34, where

Pitot and stagnation pressure ratios (ppitot/p and p0/p) are plotted as a function of the

Mach number. The most remarkable effect of this dependency on the blunted cone flow

field is a very high Pitot pressure layer appearing in the conical part of the geometry. In

Fig. 5.35 Mach number, stagnation pressure and Pitot pressure are shown as functions

of the distance from the cone surface at x/Rn = 16.67. Crossing the shock, the Mach

number drops from 10 to 6, causing the stagnation pressure to reduce by 2/3 and the

Pitot pressure to treble. In the region between the shock and the entropy layer, the

Mach number is constant, and both stagnation and Pitot pressures rise as the static

pressure rises. Finally, in the entropy layer both stagnation and Pitot pressures drop,

although the Pitot pressure curve is less steep for supersonic Mach numbers.

In Figs. 5.36 and 5.37 steady-state contours of density, pressure, temperature and

Mach number at the nose are shown. The strong bow shock is captured sharply, no

spurious oscillations are observed and the flow features in the shock layer are smooth.

In Fig. 5.36(a), the highest values of density are not visible as they are located in a

very thin layer enclosing the wall. Fig. 5.36(b) clearly shows the pressure diminishing

below the sharp cone value on the blunt nose and increasing further downstream.

Our results are compared to the experimental measurements in Figs. 5.38 and 5.39

in terms of pressure coefficient:

Cp =
p− p∞
1/2ρu2

∞
. (5.13)

In Fig. 5.38 the wall pressure coefficient (p is the wall pressure pw in Eq. 5.13) is plotted

as function of the axial coordinate. Our CFD compares very well with the experimental

data; the over-expansion below the sharp cone pressure as well as the successive re-

compression are correctly captured. In Fig. 5.39, the Pitot pressure coefficient (p is the

Pitot pressure ppitot in Eq. 5.13) as a function of the distance from the cone surface is

plotted at stations x/Rn = 3.59 and x/Rn = 16.67. At x/Rn = 3.59 (Fig. 5.39(a)),

the Pitot pressure experiences a jump across the shock, then diminishes across shock

and entropy layers, and drops more quickly in the boundary layer. All of these features

are correctly captured in our simulation and the agreement with the measurements

is good. At x/Rn = 16.67 (Fig. 5.39(b)), the Pitot pressure increases in the shock

layer, and diminishes in the entropy and boundary layers. In the shock layer our CFD

143

5.5 Summary

predicts Pitot pressure coefficients about 10% higher than the ones measured (that are

accurate within ±4%), while there is good agreement within the entropy and boundary

layers. In fact, the coefficients measured in the shock layer are lower than what an

inviscid calculation would suggest, and Cleary explains this discrepancy as a not-well-

understood viscous effect, although no strong viscous effects are expected to take place

in the shock layer.

5.5 Summary

In this chapter we have presented inviscid and viscous flow simulations performed using

our compact-TVD method.

Inviscid flow simulations are performed to investigate the resolution properties of the

method. Typically our compact-TVD method shows better resolution than methods of

comparable accuracy that employ a WENO scheme to capture discontinuities.

Viscous flow simulations are performed to validate the code. Our numerical results

are in excellent agreement with exact solutions of smooth compressible flows, namely

the shock-layer and the supersonic boundary layer over a flat plate. Comparison to

experimental results is provided for two simulations, namely the shock-boundary layer

interaction and the hypersonic flow past a blunted cone. For the shock-boundary

layer interaction, wall pressures are in good agreement with the experimental data. A

discrepancy between our CFD and experimental values of the friction coefficient after

reattachment is found. Howerver, our prediction agrees with independent CFD data

by other authors (89, 90, 91). For the hypersonic flow past a blunted cone, our results

are in good agreement with the experimental data, although a minor discrepancy is

observed at some points downstream from the conical shock.

144

6

HPC applications of the

compact-TVD method

In Chapter 4 we presented two algorithms to speed up the compact-TVD method

on HPC architectures, such as distributed-memory clusters of multi-core processors

(section 4.1) and GPUs (section 4.2). These algorithms are new contributions of this

work, and their potential and limitations are studied in this chapter.

In section 6.1 we study the impact of the perturbation introduced on the original

linear system in the multi-block NS solver, and quantify the achievable speed-ups.

In section 6.2 we validate the GPU implementation of the NS solver and study its

performance.

6.1 Application of the hybrid multi-task and multi-thread

NS solver

The hybrid NS solver presented in section 4.1 embeds the slab/drawer partitioning (34)

into a structured-block decomposition algorithm. The multi-block algorithm, namely

the CU5-MB method, substitutes boundary closures with explicit interface-boundary

formulas at block-interface boundaries. This procedure introduces a perturbation on

the linear system to compute the numerical flux function. In this section we now present

five test cases to study how this perturbation impacts the computed results. For each

case we compute single- and multi-block solutions and compare them. The simulations

have been carried out using the CU5-TVD-MB code.

145

6.1 Application of the hybrid multi-task and multi-thread NS solver

In section 6.1.1 we present two one-dimensional Riemann problems. They are the

most challenging Riemann problems among those suggested by Toro (93) to test high-

order methods for gas dynamics.

In section 6.1.2 we simulate supersonic flow past a cone-cylinder geometry. This test

was used by Sengupta et al. (33) to assess the accuracy of their multi-block compact

method. The sharp leading edge, the expansion corner between the cone and the

cylinder, and the heavy partitioning (each block comprises only 9 internal nodes in the

axial direction) challenge our multi-block numerical method.

In section 6.1.3 we simulate the interaction between a shock wave and a low-density

jet. This test was used by Don and Quillen (94) to assess the accuracy of spectral

and ENO schemes. The shock-jet interaction results in a very complex flow structure,

and the improved resolution properties of the compact formula over the explict one are

expected to manifest in the simulated flow field. Furthermore, the shock-jet interaction

results in waves continuously crossing block-interface boundaries and interacting. For

these reasons, this is the right test to identify any loss in resolution or failure in wave-

propagation of the multi-block method.

Finally, in section 6.1.4 we use the shock-jet interaction case to study the parallel

performance of the multi-block method, isolating its distributed- and shared-memory

components.

6.1.1 One-dimensional Riemann problems

We consider the set of four one-dimensional Riemann problems (RP) designed by

Toro (93) to test high-order methods for gas dynamics. These tests present differ-

ent challenges, and generally a numerical method fails on one of them, at least. Two

constant states, PL = (ρL, uL, pL)T and PR = (ρR, uR, pR)T , are separated by a discon-

tinuity at x = 0.5. The states are listed in Table 6.1 for all tests. Exact and numerical

RP ρL uL pL ρR uR pR

1 1 0.75 1.0 0.125 0.0 0.1

2 1 -2.0 0.4 1.0 2.0 0.4

3 1 0.0 1000.0 1.0 0.0 0.01

4 5.99924 19.5975 460.894 5.99242 -6.19633 46.0950

Table 6.1: Initial condition for the Riemann problems (RP) designed by Toro (93).

146

6.1 Application of the hybrid multi-task and multi-thread NS solver

(a) Density (b) Velocity

(c) Pressure (d) Internal energy

Figure 6.1: Results for RP2 at time t = 0.15: ©, multi-block solution; �, single-block

solution; —, exact solution.

solutions are found in the spatial domain 0 ≤ x ≤ 1. Numerical solutions are computed

on a uniform grid of 100 cells using both single- and multi-block methods. For the

multi-block simulation, the domain is partitioned into four equally sized blocks, each

one comprising 25 internal nodes and 3 interface-boundary nodes per block interface.

The two solutions are compared against each other and against the solution computed

by an exact Riemann solver.

RP1 and RP4 are solved successfully and the results are not shown here: single-

and multi-block solutions are identical, and both follow perfectly the exact solution. As

with the Lax shock-tube presented in section 5.1.1, shocks are captured in two points

and contacts in three.

The results for RP2 and RP3 are shown in Figs. 6.1 and 6.2, respectively. These

147

6.1 Application of the hybrid multi-task and multi-thread NS solver

(a) Density (b) Velocity

(c) Pressure (d) Internal energy

Figure 6.2: Results for RP3 at time t = 0.15: ©, multi-block solution; �, single-block

solution; —, exact solution.

two tests are more challenging and the compact-TVD method shows its limits.

The exact solution of RP2 consists of two symmetric rarefaction waves and a contact

wave of zero speed. The region between the rarefaction waves is close to vacuum, which

makes this problem a suitable test for assessing the performance of numerical methods

for low-density flows. The stable Courant number is CFL = 0.1 for this test, while

CFL = 0.4 is stable for the other tests. Our compact-TVD method fails to accurately

predict the near-vacuum condition. However, this failure is common to many numerical

methods and ours performs better than many others considered by Toro (93). The TVD

limiter fails to damp spurious oscillations at the tail of the rarefaction wave: oscillations

are evident in the internal energy profile, mainly due to the oscillation in the density,

and are quite noticeable in the velocity profile. The difference between the multi-block

148

6.1 Application of the hybrid multi-task and multi-thread NS solver

and single-block solution is visible, although very small. The over-prediction of the

internal energy as well as the amplitude of the spurious oscillation in the near-vacuum

conditions is not significantly affected by the domain partitioning.

The exact solution of RP3 consists of a right-travelling shock wave, a contact surface

and a left-running rarefaction wave. This structure is similar to that in the Lax test,

but the shock is stronger and the region between the shock and the contact is thinner.

The challenge in this test case is resolving the region between the contact discontinuity

and the shock wave. The compact-TVD method is able to accurately predict the

density peak, although the uniform density region between the contact discontinuity

and the shock wave is not captured. Spurious oscillations are observed at the tail of

the expansion wave, as in Test 2, and visible in pressure, velocity and internal energy

profiles. Single- and multi-block solutions differ slightly in this oscillation region and

in the region across the discontinuities. The region across the discontinuities is about

8 nodes wide, comparable to the numerical thickness of the discontinuities (about 3

nodes each). Therefore, the difference between single- and multi-block solution in that

region is irrelevant, as the only meaningful quantities (width of the region and density

peak) are consistent between the two.

6.1.2 Supersonic flow past a cone-cylinder configuration

In this section we examine the effect of the multi-block partitioning on the simulation

of wall-bounded flows. We consider axisymmetric supersonic flow past a cone-cylinder

configuration at zero angle of attack. This test case was used by Sengupta et al. (33) to

validate their multi-block compact method. More precisely, the authors showed that,

unlike Gaitonde’s multi-block compact method (32), theirs does not distort smooth

flow features.

The problem is dimensionless: lengths are normalised with respect to the cylinder

diameter, Dcyl, density and temperature with respect to their respective free-stream

values, ρ∞ and T∞, velocity components with respect to the free-stream speed of sound,

a∞, and the pressure with respect to ρ∞a
2
∞. The free-stream Mach and Reynolds

numbers are, respectively,

M∞ =
u∞
a∞

= 4, Re∞ =
ρ∞u∞Dcyl

µ∞
= 4.48× 106.

149

6.1 Application of the hybrid multi-task and multi-thread NS solver

Figure 6.3: Computational grids for the supersonic flow past a cone-cylinder geometry.

The flow is simulated using both a multi-block mesh, shown in the upper part, and a

single-block mesh, shown in the lower part.

The cone has a semi-angle δc = 9.46◦ and a base diameter Dcyl = 1. The computational

grid is shown in Fig. 6.3: it consists of 180×112 cells, and is uniform in the axial direc-

tion, while exponentially stretched in the radial direction, with minimum cell thickness

∆yw = 4×10−4. Both a single- and a multi-block grid are considered. The multi-block

grid is partitioned along the axial direction only, and consists of 20 blocks, each one

comprising 9×112 internal nodes. Such a heavy partitioning, with only a few nodes per

block in the axial direction, aims to amplify any difference in the behaviour of single-

and multi-block solvers. The supersonic inflow condition is imposed at left and top

boundaries, while the supersonic outflow condition is imposed at the right boundary.

A slip-wall condition is imposed at the axis, while the cone-cylinder surface is modelled

as a no-slip adiabatic wall. The simulation is started impulsively, i.e. the free-stream

150

6.1 Application of the hybrid multi-task and multi-thread NS solver

(a) Density at time t = 1

(b) Density at time t = 8

Figure 6.4: Mach 4 flow past a cone-cylinder geometry: density contours at indicated

times, 20 equally-spaced levels between 0.1428 and 1.428. Comparison between multi-block

(upper part) and single-block (lower part) solutions.

151

6.1 Application of the hybrid multi-task and multi-thread NS solver

(a) Pressure at time t = 1

(b) Pressure at time t = 8

Figure 6.5: Mach 4 flow past a cone-cylinder geometry: pressure contours at indicated

times, 24 equally-spaced levels between 0.98 and 2.66. Comparison between multi-block

(upper part) and single-block (lower part) solutions.

152

6.1 Application of the hybrid multi-task and multi-thread NS solver

(a) Mach number at time t = 1

(b) Mach number at time t = 8

Figure 6.6: Mach 4 flow past a cone-cylinder geometry: Mach number contours at in-

dicated times, 96 equally-spaced levels between 0.04 and 4.6. Comparison between multi-

block (upper part) and single-block (lower part) solutions.

153

6.1 Application of the hybrid multi-task and multi-thread NS solver

(a) Wall-pressure coefficient, Cp,w

(b) Skin-friction coefficient, Cf

Figure 6.7: Wall coefficients for Mach 4 flow past a cone-cylinder geometry: comparison

between multi- and single-block solutions.

154

6.1 Application of the hybrid multi-task and multi-thread NS solver

(a) Single-block, global characteristic decomposi-

tion

(b) Single-block, local characteristic decomposi-

tion

(c) Multi-block, global characteristic decomposi-

tion

(d) Multi-block, local characteristic decomposi-

tion

Figure 6.8: Effect of characteristic decomposition and domain partitioning on the simu-

lation of the supersonic flow past a cone-cylinder configuration. Velocity profiles and Mach

number contours are shown at a station on the cylinder surface.

155

6.1 Application of the hybrid multi-task and multi-thread NS solver

conditions:

ρ∞ = 1, u∞ = 4, v∞ = 0, p∞ = 5/7,

are imposed everywhere in the flow-field at time t = 0, and the time-evolution is

computed up to t = 8.

In Figs. 6.4–6.6 the time-evolutions computed on single- and multi-block grids are

compared in terms of density, pressure and Mach number. The solution is shown at

times t = 1 and t = 8, in order to compare single- and multi-block results both in

the transient and at the steady state. The steady flow has a rather simple structure:

there is a conical shock attached to the cone leading-edge and an expansion fan at the

corner between the cone and the cylinder. The flow over-expands at this corner and

re-compresses along the cylinder. The agreement between our single- and multi-block

solutions is good both in the transient and at the steady state. However, Figs. 6.4–6.6

only provide information on the behaviour of the external flow. Information on how

the boundary layer is captured is contained in Figs. 6.7 and 6.8. Fig. 6.7 shows the wall

coefficients as functions of the axial coordinate. While the wall-pressure profiles match

perfectly (Fig. 6.7(a)), the single-block method computes a consistently higher friction

at the expansion corner (Fig. 6.7(b)). Single- and multi-block skin-friction coefficients

agree up to the expansion corner; at the corner the single-block solution contains a

non-physical peak, while the multi-block solution smoothly evolves into a cylindrical

flow; agreement between the two solutions is slowly recovered downstream. This be-

haviour confirms the difficulty the compact-TVD method has in capturing expanding

flows, as shown by the Riemann problems in sections 5.1.1 and 6.1.1. An interesting

finding of this study is that, for viscous corner-flows, the block-partitioning eases this

problem. This can be explained as follows: in the multi-block solution a block-interface

boundary is located at the corner, where an explicit formula is used; this formula is

more dissipative than the compact formula used at internal nodes, and so stabilises the

computed solution.

Fig. 6.8 shows Mach number contours and velocity profiles in the boundary layer

at a late station along the cylinder. At this station the error introduced at the corner

in the single-block solution has vanished, and so single-block (Fig. 6.8(b)) and multi-

block (Fig. 6.8(d)) solutions clearly agree. Figs. 6.8(a) and 6.8(c) show results computed

without the modification we introduce on the characteristic decomposition, described

in section 2.3.3. Without our modification, the single-block solver cannot be started

156

6.1 Application of the hybrid multi-task and multi-thread NS solver

impulsively: negative values of pressure and density at the corner are computed for any

arbitrarily small time step. We ran the first 100 time steps at first-order accuracy and

used the computed solution to initialise the high-order simulation. Furthermore, the

steady state solution contains an overshoot at the border of the boundary layer, clearly

visible in Fig. 6.8(a). We explain this phenomenon as follows. The existence of the

characteristic variables for the Euler equations is related to the conservation of entropy.

Across the boundary layer, entropy is not conserved and therefore the characteristic

equations should not be used instead of the Euler equations. Tu and Yuan’s limiting

strategy relies on the use of the characteristic equations along a grid line and fails to

suppress some spurious oscillations. These spurious oscillations are greatly amplified

by the block-partitioning, as shown in Fig. 6.8(c), and dramatically deteriorate the

accuracy of the solution. On the other hand, in our limiting strategy the characteristic

decomposition is computed at the spatial location where the flux is limited and used for

all nodes involved in the limiting. Our single- and multi-block solutions do not contain

any spurious oscillation at the border of the boundary layer (Figs. 6.8(b) and 6.8(d)).

Finally, the main outcomes of the analysis conducted in this section are:

• Our modification to the characteristic treatment greatly improves the accuracy in

simulating wall-bounded flows, and is absolutely essential to retain the accuracy

on multi-block grids.

• Viscous corner flows pose a serious challenge to the compact-TVD method, even

if our modified characteristic treatment is used. Block-partitioning seems to im-

prove the accuracy in simulating this type of flow, because the formulas used at

block-interface boundaries make the method more dissipative.

6.1.3 Shock-jet interaction

In this section we present the simulation of a planar shock wave propagating in air

and interacting with a cylindrical jet of lighter fluid. This test was proposed by Don

and Quillen (94) and represents a technique used to enhance the mixing between the

reactants in combustion engines. The authors used the test to investigate the ability of

FD ENO and spectral schemes to simulate such mixing. They ran inviscid multi-species

simulations, where the cylindrical jet was made of hydrogen. We use exactly the same

set-up but we do not model the presence of multiple species. Since the flow is inviscid,

157

6.1 Application of the hybrid multi-task and multi-thread NS solver

(a) Density contours at time t = 0.

(b) Mesh partitioning.

Figure 6.9: Initial density contours and mesh partitioning for the shock-jet interaction.

The case is simulated using both a multi-block (Fig. 6.9(b), upper part) and a single-block

(Fig. 6.9(b),lower part) mesh. Only the block boundaries are marked as the mesh is too

fine to be shown. The scale of the axes is in metres while the density is in kg/m3.

158

6.1 Application of the hybrid multi-task and multi-thread NS solver

(a) Density at time t = 20 µs

(b) Density at time t = 40 µs

Figure 6.10: Shock-jet interaction: density contours at indicated times, 40 equally spaced

levels between 0.05 kg/m3 and 1.2 kg/m3. Comparison between multi-block (upper part)

and single-block (lower part) solutions. The scale of the axes is in metres.

159

6.1 Application of the hybrid multi-task and multi-thread NS solver

(a) Density at time t = 60 µs

(b) Density at time t = 80 µs

Figure 6.11: Shock-jet interaction: density contours at indicated times, 40 equally spaced

levels between 0.05 kg/m3 and 1.2 kg/m3. Comparison between multi-block (upper part)

and single-block (lower part) solutions. The scale of the axes is in metres.

160

6.1 Application of the hybrid multi-task and multi-thread NS solver

Figure 6.12: Shock-jet interaction: density contours at time t = 120 µs, 40 equally spaced

levels between 0.05 kg/m3 and 1.2 kg/m3. Comparison between multi-block (upper part)

and single-block (lower part) solutions. The scale of the axes is in metres.

there is no species diffusion; furthermore, hydrogen and air are both diatomic gases,

so the isentropic index is γ = 7/5 for both. Hence, modelling multiple species has no

impact on the structure of the simulated flow. In the following we describe the test

set-up as in Don and Quillen, bearing in mind that in our simulations the hydrogen jet

is simply a zone of less dense fluid.

Initial density contours for this test case at time t = 0 are shown in Fig. 6.9(a).

The planar shock is located at xs = 0.05 cm at time t = 0 and is moving downstream

at Mach Ms = 2. The hydrogen jet has its centre at (xH2 , yH2) = (2.5 cm, 0 cm) and a

radius rH2 = 2 cm. Initially it has a diffused boundary with the surrounding air, i.e.

the conserved variables at the interface are modified according to the factor:

s(r) = exp

[
−α

(
r

rH2

)δ]
,

161

6.1 Application of the hybrid multi-task and multi-thread NS solver

(a) Pressure at time t = 20 µs

(b) Pressure at time t = 40 µs

Figure 6.13: Shock-jet interaction: pressure contours at indicated times, 60 equally

spaced levels between 110 kPa and 700 kPa. Comparison between multi-block (upper

part) and single-block (lower part) solutions. The scale of the axes is in metres.

162

6.1 Application of the hybrid multi-task and multi-thread NS solver

(a) Pressure at time t = 60 µs

(b) Pressure at time t = 80 µs

Figure 6.14: Shock-jet interaction: pressure contours at indicated times, 60 equally

spaced levels between 110 kPa and 700 kPa. Comparison between multi-block (upper

part) and single-block (lower part) solutions. The scale of the axes is in metres.

163

6.1 Application of the hybrid multi-task and multi-thread NS solver

Figure 6.15: Shock-jet interaction: pressure contours at time t = 120 µs, 60 equally

spaced levels between 110 kPa and 700 kPa. Comparison between multi-block (upper

part) and single-block (lower part) solutions. The scale of the axes is in metres.

where r is the radial distance from the centre of the jet, α = − ln ε, with ε being the

machine zero, and δ = 16. The undisturbed region ahead of the shock has pressure

p∞ = 1 atm and temperature T∞ = 1000 K. The density is determined by the perfect

gas equation with gas constant Rair = 286.9 J/kg K. The jet is in equilibrium with the

surrounding air, so the hydrogen-to-air density ratio is determined by the the ratio of

the molecular weights ρH2/ρair = MWH2/MWair = 4.003/28.97. The flow peoperties

behind the shock wave are determined via the normal shock wave relations, given

the shock Mach number Ms = 2. The case is symmetric around the x-axis, so the

computational domain comprises just half of the jet and is (x, y) ∈ [0 cm, 20 cm] ×
[0 cm, 6.5 cm]. The computational grid consists of 752× 376 equally spaced cells. The

simulation is run both on a single- and on a multi-block grid. The multi-block grid is

partitioned in both directions and consists of 10 × 10 blocks, as shown in Fig. 6.9(b).

164

6.1 Application of the hybrid multi-task and multi-thread NS solver

(a) Mach number at time t = 20 µs

(b) Mach number at time t = 40 µs

Figure 6.16: Shock-jet interaction: Mach number contours at indicated times, 40 equally

spaced levels between 0.05 and 1.9. Comparison between multi-block (upper part) and

single-block (lower part) solutions. The scale of the axes is in metres.

165

6.1 Application of the hybrid multi-task and multi-thread NS solver

(a) Mach number at time t = 60 µs

(b) Mach number at time t = 80 µs

Figure 6.17: Shock-jet interaction: Mach number contours at indicated times, 40 equally

spaced levels between 0.05 and 1.9. Comparison between multi-block (upper part) and

single-block (lower part) solutions. The scale of the axes is in metres.

166

6.1 Application of the hybrid multi-task and multi-thread NS solver

Figure 6.18: Shock-jet interaction: Mach number contours at time t = 120 µs, 40 equally

spaced levels between 0.05 and 1.9. Comparison between multi-block (upper part) and

single-block (lower part) solutions. The scale of the axes is in metres.

Upper and lower boundaries are modelled as slip-walls, the left boundary as a subsonic

inflow and the right boundary as a subsonic outflow.

Figs. 6.10–6.18 show the interaction from 20 µs to 120 µs in terms of density, pres-

sure and Mach number. In these figures, the upper part is the multi-block solution, and

the bottom part is obtained mirroring the single-block solution around the symmetry

plane. The shock passes through the hydrogen jet and compresses it. The jet is a region

with different speed of sound (aH2/aair =
√
ρair/ρH2) and so the shock is diffracted. A

double Mach-reflection forms at the top of the jet (Fig. 6.10(a)). The hydrogen jet is

convected downstream and at time t = 40 µs (Figs. 6.10(b)) a narrow jet of air begins

to penetrate it and rolls up forming a vortex. At time t = 60 µs (Fig. 6.11(a)) a second

jet of air penetrates the hydrogen jet. The mushroom-type shape of this air jet reveals

the nature of this mixing, related to the Rayleigh-Taylor (RT) instability, discussed in

167

6.1 Application of the hybrid multi-task and multi-thread NS solver

section 5.1.3. In this case the instability is triggered by the sudden acceleration of the

hydrogen-air interface due to the propagating shock. The hydrogen jet is broken into

two contra-rotating jets (Fig. 6.11(b)). The pressure gradient (Fig. 6.14(b)) associated

with the rotation of these two jets favours the formation of more RT fingers. At time

t = 120 µs (Fig. 6.12) the flow has a very complex structure. The jet is broken in

two parts and its interface is deformed by many RT fingers; a contact rolls up (Kelvin-

Helmoltz instability) and a shock, originated at the beginning of the interaction and

reflected at the domain boundary, is reaching the jet.

Despite the complexity of the flow structure, the agreement between single- and

multi-block solutions is excellent. Up to time t = 60 µs the solutions are virtually

identical. At time t = 80 µs some minor differences start to appear: the single-block

solver predicts one long RT finger entering the jet, while the multi-block solver predicts

two shorter fingers (Figs. 6.11(b), 6.17(b)). At time t = 120 µs the differences are more

evident, though still minor: the single-block solver predicts one more finger entering

the jet, and all fingers are generally longer than in the multi-block solution (Figs. 6.12,

6.18); the shocklet close to the symmetry plane is not sharply captured in the multi-

block solution (Fig. 6.15).

Finally, we can conclude that in this case the computed results are not significantly

affected by the block-partitioning.

6.1.4 Parallel performance

We have made an assessment of the parallel performance of the multi-block compact-

TVD method for the shock-jet interaction problem. The simulations have been run

on the Cray XT4 facility of the UK National Supercomputing Service, HECToR (www.

hector.ac.uk). The XT4 system comprises 1,416 compute blades, each of which has

4 quad-core processor sockets. This amounts to a total of 22,656 cores, each of which

acts as a single CPU. The processor is an AMD 2.3 GHz Opteron. The point-to-point

bandwidth is 2.17 GB/s and the latency between two processors is around 6 µs.

Strong scalability tests have been run for different problem sizes. The strong scala-

bility represents the ability to speed-up a certain computation by using more processors.

Hence, in a strong scalability test a fixed work-load is shared by an increasing number

of processors, and the variation in the compute time is tracked. For a CFD application,

the work-load is represented by the grid size. A coarse grid of 752 × 376 (≈ 3 × 105)

168

www.hector.ac.uk
www.hector.ac.uk

6.1 Application of the hybrid multi-task and multi-thread NS solver

(a) 3 × 105 cells

(b) 106 cells

Figure 6.19: Strong scalability tests. Speed-ups for two computational grids of 3 × 105

and 106 cells are shown.

169

6.1 Application of the hybrid multi-task and multi-thread NS solver

Figure 6.20: Strong scalability tests. Specific times for two computational grids of 3×105

abd 106 cells are shown.

cells and a fine grid of 1504 × 752 (≈ 106) cells have been considered. The simula-

tions have been run on an increasing number of cores, starting with 4 and doubling the

number at each stage. For a fixed number of cores and grid resolution, each simulation

has been run first in pure MPI mode and then in hybrid MPI/OpenMP mode. In

pure MPI mode, the domain was partitioned into as many blocks as cores. In hybrid

MPI/OpenMP mode, the domain was partitioned into as many blocks as quad-core

processors, and each block was processed in parallel by the four cores belonging to the

processor, each one assigned with an OpenMP thread.

Fig. 6.19 shows the results of the strong scalability tests in terms of speed-up,

defined as the ratio between the time taken to run the simulation on a certain number

of cores and the time taken to run the same simulation on one quad-core processor:

Speed-up(n) =
Time taken on 4 cores

Time taken on n cores
.

The speed-up is a dimensionless parameter and ideally varies linearly with the number of

cores. Therefore, it represents an immediate way of looking at scalability properties. On

the other hand, the speed-up usually improves as the work-load increases (as explained

later in this section), and so it is misleading to compare speed-up curves for different

problem sizes. For this reason, in Fig. 6.20 we show the same results in terms of specific

170

6.1 Application of the hybrid multi-task and multi-thread NS solver

Figure 6.21: Weak scalability test. The shock-jet interaction is simulated keeping a

constant load of about 3× 105 cells per quad-core processor.

time, defined as the time taken to simulate one time step, divided by the number of

cells:

Specific time =
Time to compute one time step

Number of cells
.

The specific time allows direct comparison between the scalability for different problem

sizes, and also gives information on the serial performance of the code. Speed-ups and

specific times are averaged over 100 time steps and do not include the time spent in

input/output (I/O) operations.

A parallel efficiency can be defined as the ratio of the speed-up to the ideal speed-up,

or, equivalently, as the ratio of the specific time to the ideal specific time. In pure MPI

mode, efficiencies of about 90% are achieved on 256 cores for the coarse grid and on 1024

cores for the fine grid, which is an excellent result. As the number of cores increases the

work-load per core decreases, the time spent in core-to-core communication becomes

comparable to the time each core spends in computation and eventually begins to

dominate it. This causes the speed-up curve to reach a maximum: for higher core

counts the communication time is higher than the computing time and so the runtime

increases. For the coarse grid this happens at about 4000 cores (Fig. 6.19(a)), while

for the fine grid the code is still scaling at 16000 cores (Fig. 6.19(b)). The compute

time increases about linearly with the problem size (as all cells are involved in the

171

6.1 Application of the hybrid multi-task and multi-thread NS solver

Figure 6.22: Scalability test for the OpenMP implementation of the slab decomposition

algorithm. The shock-jet interaction is simulated over 3 × 105 cells using a quad-core

processor.

computation), while the communication time increases as the square root of the problem

size in 2D (as boundary cells only are involved in the communication); therefore, the

larger the problem size the higher the core count for which the communication time

becomes comparable to the compute time.

Fig. 6.21 shows the results of a weak scalability test in terms of speed-up. The

weak scalability represents the ability to tackle larger problems by sharing the higher

work-load between more processors. Therefore, in a weak scalability test the work-

load increases with the core count, in such a way that the work-load per core remains

constant. Ideally, larger problems are solved in the same time, if the work-load per core

is kept constant, and so the ideal speed-up is equal to 1. Hence, in a weak scalability

test there is no difference between speed-up and parallel efficiency.

We have considered a fixed work-load of about 3×105 cells per quad-core processor

and used up to 256 cores (about 2 × 107 cells). We could not consider higher core

counts because our code has a serial I/O and the memory requirements for problems

larger than 2 × 107 cells exceed the memory available to a single processor. In pure

MPI mode, the parallel efficiency is about 98% on 256 cores and the speed-up curve is

close to horizontal.

172

6.1 Application of the hybrid multi-task and multi-thread NS solver

In all scalability tests, the parallel efficiency in hybrid MPI/OpenMP mode is about

70% of that in pure MPI mode if the same number of cores is employed. This difference

in performance results from two concurrent factors:

1. The communication between processors.

In hybrid mode the communication is more efficient, as the cores do not compete

for the same interconnector and each processor is assigned one structured-block

only. This results in fewer bigger messages to be sent, and hence higher inter-

processor bandwidth.

2. The scalability over one quad-core processor.

The distributed-memory algorithm requires intra-processor communication, un-

like the shared-memory one. This is clearly a disadvantage, but it is mitigated

by the architecture-aware MPI implementation, able to perform intra-processor

communication faster than inter-processor communication. On the other hand,

the scalability of the shared-memory kernel is affected by several factors:

(a) The memory access properties of the processor (NUMA or SMP). This issue

has been discussed in section 4.1.3 and its effects are analysed later in this

section.

(b) The algorithm is parallel only in the most computationally expensive part:

the computation of the flux divergence. Slave threads lie idle during some

serial computations performed by the master thread and during communi-

cation.

(c) Thread synchronization is required for each processing dimension, while in

the distributed-memory algorithm, processes are synchronized just once for

all dimensions.

The advantage of the hybrid mode in communication is evident at very high core

counts. In the strong scalability tests (Figs. 6.19 and 6.20), at high core counts the

communication time in pure MPI mode dominates the computing time, and better

efficiency is achieved in hybrid mode because less communication is required. This is

clearly shown for the coarse mesh (Fig. 6.19(a)), while for the fine mesh it would likely

happen at a core count higher than the maximum number of cores available, as can

be argued from Fig. 6.20. In the weak scalability test (Fig. 6.21), besides the lower

173

6.1 Application of the hybrid multi-task and multi-thread NS solver

Shared-memory algorithm options Specific time, µs

1 thread 2 threads 4 threads

PD-SS 22.6 14.5 14.7

PD-DS 22.6 14.4 14.1

FP-SS 22.7 14.1 16.5

FP-DS 22.7 16.7 16.0

Table 6.2: Specific runtimes of multi-thread CPU NS solver. The shock-jet interaction is

simulated over 3× 105 cells using a quad-core processor.

efficiency, the speed-up curve is close to horizontal, denoting efficient inter-processor

communication.

In the following, we study the scalability of the shared-memory algorithm only. We

simulate the shock-jet interaction on the coarse grid using one quad-core processor and

an increasing number of threads. Different code configurations are considered.

In PD (Parallel Divergence) configuration, the flux divergence is computed in par-

allel; in FP (Full Parallel) configuration, boundary condition enforcement, variables

initialisation and variables update are also performed in parallel.

Furthermore, since the OpenMP parallelism is based on loop unrolling, we consider

different scheduling strategies, namely static and dynamic. In static scheduling, the

slabs are equally divided between the available threads. In dynamic scheduling, the

slabs are assigned to the threads as they become available. There is an overhead

associated with dynamic scheduling, as the master thread checks at runtime which

threads are available. We use the acronyms SS and DS referring to static and dynamic

scheduling, respectively.

Specific runtimes for the shared-memory kernel are shown in Table 6.2, and corre-

sponding speed-ups plotted in Fig. 6.22. Passing from one to two cores there is about

60% gain in speed for FP-SS, PD-SS and PD-DS configurations, but only 37% for the

FP-DS configuration. In this configuration, the overhead of dynamic scheduling over-

whelms the little speed-up (note the difference between FP-SS and PD-SS speed-ups

for two cores) gained from parallelising the light tasks. Passing from two to four cores,

the runtime increases using static scheduling, while there is a small improvement us-

ing dynamic scheduling. This clearly reveals how the memory access properties of the

processor dramatically affect the performance.

174

6.2 Application of the GPU NS solver

The AMD Opteron has a Non-Uniform Memory Access (NUMA) architecture. As

explained in section 4.1.3, in NUMA processors memory sharing is implemented at

software level, but the memory is physically distributed (Fig. 4.4). All cores try to

access the same memory bank and compete for the same memory controller. Hence,

they are forced to lie idle while waiting to fetch data from the main memory, and cannot

work effectively in parallel. Furthermore, slave cores access the memory of the master

core with lower bandwith, and the overall runtime is higher than for two cores. This is

particularly evident for the FP-SS configuration, where the light tasks are dramatically

slowed down by the reduced memory bandwidth. The dynamic scheduler assigns more

tasks to the fast cores, i.e. those with higher memory bandwidth, and so it is able to

slighly improve the runtime using four cores.

Poor scalability on NUMA processors is an issue common to global and semi-global

methods (95). For these methods data locality is difficult to enforce because either the

solution at one node depends on all nodes within the domain (global methods), or its

domain of dependency changes with the processing direction (semi-global methods).

The performance of the shared-memory kernel can be improved by explicitly moving

data between the cores (95). We have not implemented this modification for two

reasons:

• Moving data between cores essentially means performing a distributed-memory

transpose, as in the distributed-memory slab/drawer decomposition (34). Since

the algorithm becomes as complex as in a distributed-memory environment, and

most MPI implementations are architecture-aware, the use of a shared-memory

programming model is not justified as it does not significantly affect the perfor-

mance (74).

• If an SMP processor is used, the agorithm scales excellently without distributed-

memory transposition, as shown in the results presented in section 6.2.3.

6.2 Application of the GPU NS solver

In this section we present validation results and performance assessment of our GPU

Navier-Stokes solver, CUDA-CU5-TVD-NS.

175

6.2 Application of the GPU NS solver

Many standard tests, such as those presented in Chapter 5, have been performed to

validate CUDA-CU5-TVD. Computed results are analogous to those shown in Chap-

ter 5, and so are not repeated here. In this section we present two new simulations,

with a dual purpose: first, we add new information on the capability of the numerical

method; second, we show that the reduced precision (in CUDA-CU5-TVD-NS floating-

point operations are performed in single-precision, while double-precision is employed

in CU5-TVD-NSK) does not impact the results either in time-accurate simulations

(section 6.2.1) nor in steady-state calculations (section 6.2.2).

The first test is the time-accurate simulation of vortex pairing in a compressible

mixing layer (96). For this test, presented in section 6.2.1, we validate our results

against numerical data obtained by Sandham and Yee (96).

The second test case is hypersonic flow over a compression ramp. In this simula-

tion the shock-boundary layer interaction results in a large region of separated flow,

whose extent is strongly affected by the finite span of the ramp, as shown by Rudy

et al. (97). In section 6.2.2 our results are validated against experimental data (98),

showing CUDA-CU5-TVD-NS’s capability to simulate 3D hypersonic flows.

Finally, in section 6.2.3 we assess the performance gain of the GPU implementation

over a multi-thread CPU implementation.

6.2.1 Vortex pairing in a compressible mixing layer

The simulation of vortex pairing in a mixing layer is a classic test case for high-order

numerical methods. Two viscous streams at different velocities flow parallel to each

other; since the streams are viscous, a layer forms between the two streams, where

the fluid dynamic variables smoothly pass from one free-stream condition to the other.

Such a region is called a mixing layer and is subject to the Kelvin-Helmoltz instability.

Numerically, the mixing layer evolution is studied either spatially or temporally. In a

spatial mixing layer, a suitably big domain encloses the two streams and the instability

is studied as it develops both in time and space along the domain. In a temporal

mixing layer, the problem is periodic along the direction parallel to the streams, and

the development of the instability is studied in time only.

We simulate a temporal mixing layer with convective Mach number :

Mc =
U1 − U2

a1 + a2
= 0.8,

176

6.2 Application of the GPU NS solver

(a) t = 40

(b) t = 80

(c) t = 120

(d) t = 160

Figure 6.23: Compressible mixing layer, density contours at indicated times: 30 equally

spaced levels between 0.35 and 1.35.

177

6.2 Application of the GPU NS solver

(a) t = 40

(b) t = 80

(c) t = 120

(d) t = 160

Figure 6.24: Compressible mixing layer, pressure contours at indicated times: 30 equally

spaced levels between 0.08 and 0.4.

178

6.2 Application of the GPU NS solver

(a) t = 40

(b) t = 80

(c) t = 120

(d) t = 160

Figure 6.25: Compressible mixing layer, temperature contours at indicated times: 30

equally psaced levels between 0.72 and 1.18.

179

6.2 Application of the GPU NS solver

(a) t = 40

(b) t = 80

(c) t = 120

(d) t = 160

Figure 6.26: Compressible mixing layer, vorticity contours at indicated times: 55 equally

spaced levels between 0.05 and 2.75.

180

6.2 Application of the GPU NS solver

(a) Vorticity thickness, δω

(b) Momentum thickness, θ

Figure 6.27: Vorticity (a) and momentum (b) thickness time-evolutions: —, ACM44

method (96); �, CUDA-CU5-TVD-NS.

181

6.2 Application of the GPU NS solver

where subscripts 1 and 2 denote upper and lower streams, respectively, U the velocity

and a the speed of sound. The set-up is the same as in Sandham and Yee (96). The

velocity components are normalised with respect to the velocity difference between

upper and lower stream, Vref = U1 − U2, and U2 = −U1. The base velocity field is:

u(x, y) = 0.5 tanh(2y),

for which u(x, y → ±∞) = ±0.5. Lengths are normalised with respect to the vorticity

thickness:

δω =
U1 − U2

max
∣∣∣ ddy (ρ̄uρ̄)∣∣∣ , (6.1)

computed at time t = 0. In Eq. 6.1 an over-bar denotes averaging over the x-direction:

f̄(y) =
1

Lx

∫ Lx

0
f(x, y)dx,

where either f = ρu or f = ρ, and Lx = 30 is the domain size in the x-direction.

Temperature and density are normalised with respect to their free-stream values, T1 =

T2 and ρ1 = ρ2, respectively, and the pressure with respect to ρ1(U1 − U2)2. The

pressure is uniform throughout the flow field, while the temperature varies so that the

total enthalpy remains constant:

T (x, y) = T1 +
1

2cp

(
u(x, y)2 − u2

1

)
.

The reference temperature is Tref = 300 K, and the reference Mach and Reynolds

numbers are, respectively:

M =
U1 − U2

a1
= 1.6, Re =

ρ1(U1 − U2)δω(t = 0)

µ1
= 1000.

The instability is triggered by adding a perturbation:

u′(x, y) = −2y

b
exp

(
−y

2

b

)
Lx
2π

2∑
k=1

ak
k

sin

(
2πkx

Lx
+ φk

)
,

v′(x, y) = exp

(
−y

2

b

) 2∑
k=1

ak cos

(
2πkx

Lx
+ φk

)
,

to the base velocity field. The perturbation is divergence-free and has parameters:

a1 = 0.01, a2 = 0.05, φ1 = φ2 = −π/2, b = 10.

182

6.2 Application of the GPU NS solver

The domain is (x, y) ∈ [0, Lx] × [−Ly/2, Ly/2], with Lx = 30 and Ly = 100. The

grid consists of 192× 192 nodes, equally spaced in the x-direction and stretched in the

y-direction. The stretching is obtained mapping a grid, uniform in the transformed

coordinate −1 ≤ η ≤ 1, onto the physical coordinate y, according to:

y =
Ly
2

sinh(byη)

sinh by
,

with stretching factor by = 3.4. The problem is periodic in the x-direction, while y-

constant boundaries are modelled as slip-walls. The evolution is computed up to time

t = 160, and the results are shown in Figs. 6.23–6.26 in terms of density, pressure, tem-

perature and vorticity. Two vortices form (Figs. 6.23(a), 6.24(a), 6.25(a), 6.26(a)) and

start to rotate clockwise causing the formation of shocklets in the two transonic streams

(Figs. 6.23(b), 6.24(b), 6.25(b), 6.26(b)). During the rotation the vortices come close

to each other and nearly merge (Figs. 6.23(c), 6.24(c), 6.25(c), 6.26(c)). Finally, while

completing a rotation of 360◦, they also move apart (Figs. 6.23(d), 6.24(d), 6.25(d),

6.26(d)).

The computation of the pairing process is very sensitive to the dissipation properties

of the numerical method. Therefore, the compressibility poses a significant challenge

as numerical diffusion is necessary to capture the shocks (2). Our computed evolution,

shown in Figs. 6.23–6.26, agrees with the one computed by Sandham and Yee (96) using

the ACM44 method (fourth-order explicit central FD method + artificial compressibil-

ity + second-order TVD filter). A quantitative comparison is shown in Fig. 6.27. Two

measures of the shear-layer thickness, namely the vorticity thickness, Eq. 6.1, and the

momentum thickness:

θ =

∫ Ly/2

−Ly/2
ρ̄(U1 − ū)(ū− U2)dy,

are shown. Both thicknesses experience an initial growth followed by a short flat region.

Such behaviour corresponds to growth and saturation of the instability responsible for

the formation of the two vortices. A second growth in the thicknesses is observed,

and is associated with the growth of the instability responsible for the pairing motion.

Finally, viscous effects cause the vortex motion to end, and the shear-layer to thin.

Our results are in excellent agreement with those of Sandham and Yee. The evolu-

tion of the vorticity thickness is followed in every detail, while we compute a slightly

higher peak in the momentum thickness. We have also computed the evolution using

183

6.2 Application of the GPU NS solver

Figure 6.28: Hypersonic flow over a compression ramp: Mach number contour plots at

y − z planes.

the double-precison CPU code; the results are virtually identical to those in single-

precision and so are not shown.

6.2.2 Hypersonic compression ramp

The hypersonic compression ramp is a classic example of a viscous/inviscid interaction,

like the shock/boundary layer interaction over a flat plate discussed in section 5.3.

A stream-wise positive pressure gradient forms in the boundary layer, caused by the

impingement of an oblique shock for the flat-plate case, and by a sudden inclination of

the wall for the compression-ramp. The physics of the flow is the same as that described

184

6.2 Application of the GPU NS solver

Figure 6.29: Hypersonic flow over a compression ramp: Mach number contour plots at

two x− y planes. The left plane is the ramp symmetry plane, while the right one is at the

edge of the ramp.

in section 5.3: the high pressure propagates upstream through the subsonic part of the

boundary layer causing flow separation and reattachment.

We have simulated the experimental flow conditions of Holden and Moselle (98).

The ramp consists of a flat plate of length L = 0.4389 m, followed by a wedge of the

same length with 24◦ semi-angle. The ramp is 0.6096 m wide and has no side walls.

The free-stream Mach and Reynolds numbers are:

M∞ =
V∞
a∞

= 14.1, Re =
ρ∞V∞L

µ∞
= 103700.

The free-stream temperature is T∞ = 88.88 K. The model is internally cooled and the

185

6.2 Application of the GPU NS solver

Figure 6.30: Hypersonic flow over a compression ramp: Mach number contour plots at

the ramp surface plane.

wall temperature is Twall = 297.2 K. Experimental values of the pressure coefficient,

friction coefficient and Stanton number at the ramp center-line are available. The

Stanton number is:

St =
qw

ρ∞V∞(H∞ −Hw)
,

where qw is the wall heat flux, and H∞ and Hw are the free-stream and wall total

enthalpy, respectively.

Rudy et al. (97) showed that the short width of the ramp and the absence of side

walls in this experiment yielded a 3D flow structure: 2D flow simulations typically

predict a longer separation region and lower peaks of wall pressure, friction and heat

186

6.2 Application of the GPU NS solver

(a) Border of the ramp (b) Symmetry plane

Figure 6.31: Hypersonic flow over a compression ramp: cross flow at the corner of the

ramp.

flux. On the other hand, 3D simulations are in good agreement with the experimental

data.

We run a 3D simulation employing a grid of 198 × 64 × 32 nodes. The grid is

finer in the x–direction at the leading edge and at the corner. In the y–direction it is

geometrically stretched with ∆yw = 6× 10−5. The grid is uniform in the z–direction.

We simulate half of the geometry and enforce the slip-wall boundary condition at

the boundary z = 0. The ramp surface is modelled as an isothermal no-slip wall and

it is 22 nodes wide in the z–direction. The surface upstream from the plate leading-

edge is modelled as a slip-wall. Farfield boundary conditions are enforced at all other

boundaries.

Steady-state Mach number contours of the simulated 3D flow are shown in Figs. 6.29–

6.33. In Fig. 6.29 x− y slices of the flow field at the symmetry plane and at the ramp

border are shown. It is evident that the separation region, identified by the low Mach

numbers, shrinks from the symmetry plane along the span of the ramp. Figs. 6.28 and

6.30 show that border effects increase as the slope of the ramp changes.

Fig. 6.31 shows the cross flow at the ramp corner: the cross flow is driven by

the span-wise pressure gradient in the shock layer and goes from the symmetry plane

towards the border of the ramp. Fig. 6.32 shows the Mach number and the streamlines

187

6.2 Application of the GPU NS solver

(a) Mach number

(b) Streamlines

Figure 6.32: Hypersonic flow over a compression ramp: contour plots and streamlines at

the symmetry plane.

188

6.2 Application of the GPU NS solver

(a) Pressure

(b) Temperature

Figure 6.33: Hypersonic flow over a compression ramp: contour plots at the symmetry

plane.

189

6.2 Application of the GPU NS solver

(a) Pressure coefficient

(b) Friction coefficient

Figure 6.34: Hypersonic flow over a compression ramp: wall coefficients; –, CUDA-CU5-

TVD-NS; �, experiment (98).

190

6.2 Application of the GPU NS solver

Figure 6.35: Hypersonic flow over a compression ramp: Stanton number; – CUDA-CU5-

TVD-NS; �, experiment (98).

in the separation region at the symmetry plane. Pressure and temperature contours at

the symmetry plane are shown in Fig. 6.33.

Finally, the computed wall coefficients are compared to the experimental data in

Figs. 6.34 and 6.35. The extent of the separation region is correctly predicted. The

overall agreement is good, although our code slightly over-predicts the pressure peak

and under-predicts the heat flux after reattachment.

6.2.3 Performance of the GPU implementation

In this section we assess the performance of our GPU-accelerated Navier-Stokes solver,

namely CUDA-CU5-TVD-NS. Since CU5-TVD-NSK and CUDA-CU5-TVD-NS are

quite different in terms of implementation, a performance comparison between the two

codes would be rather misleading. Therefore, we have ported CUDA-CU5-TVD-NS to

CPU, and we refer to this implementation as OMP-CU5-TVD-NS. This also gives us

the opportunity to extend the performance analysis of the method in a shared-memory

environment, as presented in section 6.1.4. The structured programming adopted in

191

6.2 Application of the GPU NS solver

CUDA-CU5-TVD-NS made the porting easy. The only differences between the two

codes are:

1. Data arrays are allocated in the CPU memory instead of the GPU memory.

2. CUBLAS calls are substitued by BLAS calls.

3. The library OMP-CFD is used in lieu of CUDA-CFD.

The OMP-CFD library is a multi-thread CPU version of CUDA-CFD: all procedures

but cudaTranspose() have been ported to CPU using OpenMP and analogous parti-

tioning strategies. Data transposition is performed using the function mkl_somatcopy()

from the Intel Math Kernel Library (MKL) (http://software.intel.com/en-us/

articles/intel-mkl). Also, all BLAS calls link to the MKL multi-thread implemeta-

tion of the appropriate procedure.

Our tests were performed on the Distributed Computing (DisCo) system CSEHT at

STFC Daresbury Laboratory (http://www.cse.scitech.ac.uk/disco). The DisCo

cluster hosts 8 Nehalem servers, each one consisting of an Intel Xeon quad-core 2.8 GHz

and an Nvidia Tesla S1070 graphic card. Each Tesla comprises four GPUs, each one

with its own memory. Neither CUDA-CU5-TVD-NS nor OMP-CU5-TVD-NS possess

distributed-memory capabilities, and so we only use one quad-core CPU and one GPU.

We first analyse the performance of each procedure, so that the performance of the

code can be properly interpreted. The procedures are tested on three dummy grids:

G1, consisting of 32 × 32 × 32 (≈ 33 × 103) nodes; G2, consisting of 64 × 64 × 64

(≈ 262 × 103) nodes; G3, consisting of 128 × 128 × 128 (≈ 2 × 106) nodes. Table 6.3

gives the specific runtimes,

Procedure specific runtime =
Procedure runtime

Number of calls×Grid size
,

on a single CPU core. The specific times shown are averaged over 100 calls to each

procedure.

The most time-consuming task is the characteristic TVD filter (procedure ompTVD()),

taking about seven times as long as the computation of the kinetic split flux (proce-

dure ompSplitFlux()) and the compact reconstruction (procedure sgemm()). Specific

times are about constant with the grid size for all procedures except ompNSCBC() and

sgemm().

192

http://software.intel.com/en-us/articles/intel-mkl
http://software.intel.com/en-us/articles/intel-mkl
http://www.cse.scitech.ac.uk/disco

6.2 Application of the GPU NS solver

Procedure Specific time, 10−4µs

33× 103 nodes 262× 103 nodes 2× 106 nodes

ompTVD() 47.6 49.2 49.5

ompSplitFlux() 7.17 7.24 7.33

sgemm() 2.53 4.36 7.80

ompNSCBC() 5.44 2.54 1.32

ompODErhs() 1.47 1.57 1.69

ompCons2prim() 1.14 1.24 1.28

ompSdmv() 0.358 0.360 0.369

ompTranspose() 0.333 0.282 0.310

ompViscosity() 0.106 0.105 0.146

Table 6.3: Specific runtimes on a single CPU core for different procedures and different

grid size.

The time taken to enforce the boundary conditions grows as a 2/3 power law of the

grid size, because boundary nodes only are involved, and so the specific time decreases

with the grid size.

On the other hand, the cost of a matrix-matrix product grows super-linearly with

the matrix size, and so the specific runtime of sgemm() increases with the grid size.

Assuming that the OMP-CU5-TVD-NS specific runtime is about equal to the sum

of the specific runtimes of the three most time-consuming procedures, the use of the

matrix-matrix multiplication brings up the specific time by about 10% when going

from G1 to G3. Therefore, the use of a tri-diagonal solver in lieu of the matrix-matrix

multiplication is estimated to reduce the runtime by 10% at most on grids of a few

million nodes. In practice, the impact of the compact reconstruction on the total

runtime is much smaller, because the matrix transposition has a large impact on the

runtime. Although the matrix transpose is inexpensive with respect to other tasks, it is

performed many more times and, eventually, affects significantly the runtime, as shown

later in this section.

In Figs. 6.36–6.40 procedure speed-ups are shown, where:

Speed-up =
Runtime on one CPU core

Runtime
.

The CPU code runs on an Intel Xeon E5560. This processor has Hyper-Threading (HT)

capability, allowing each core to run up to two threads in parallel. The HT technology

193

6.2 Application of the GPU NS solver

enables overlapping between different operations of different threads; if, for example,

a core is assigned threads 0 and 1, it runs additions for thread 0 in parallel with

multiplications for thread 1. Although this is not equivalent to running two threads

on two separate cores, some codes do show improved performance. Therefore, we show

CPU speed-ups on up to eight threads, although the eight threads run, in fact, on four

cores.

Fig. 6.36(a) shows speed-up for the most time-consuming task, the characteristic-

based TVD filter. The CPU implementation scales linearly with the number of threads,

achieving a speed-up of 7.9 on four cores using HT. This is an outstanding result and

testifies to the high quality of the implementation and of the processor. The speed-up

is weakly sensitive to the grid size, ranging from 7.1 to 7.9 on eight threads as bigger

problems are considered. Despite the great perfomance of the CPU implementation,

the GPU outperforms it by far, running more than 50 times faster on the finest grid.

This datum is particularly important, as cudaTVD() has 6% multi-processor occupancy

only (see Table 4.1). It demonstrates that the high arithmetic intensity of the task

minimises the impact of the occupancy. The speed-up is weakly sensitive to the grid

size, ranging from 45.7 to 50.7 as bigger problems are considered.

Analogous results are found for the computation of the kinetic split flux (Fig. 6.36(b)).

The CPU implementation scales linearly with the number of threads, but the GPU im-

plementation shows even better performance than in the previous case, achieving a

speed-up of 68.5 on the finest grid. Indeed, this is due to the higher multi-processor

occupancy achieved by the cudaSplitFlux() procedure (Table 4.1).

Speed-up results for the compact reconstruction show a more complex behaviour

(Fig. 6.37(a)). The MKL implementation of sgemm() scales super-linearly on grids G1

and G2 up to four threads, and linearly on the finest grid G3. HT delivers a super-linear

speed-up on the intermediate grid G2 and improves the speed-up on the fine grid G3,

but it worsens it on the coarse grid G1. This irregular behaviour is likely related to

the cash-memory usage. Expected speed-ups are between 6 and 7 on four cores with

HT enabled. The behaviour of cublasSgemm() is more regular. The speed-up is about

21.5 on intermediate and fine grids, while only 8.4 on the coarse one, that apparently

does not supply enough computation to use effectively all GPU cores.

The NSCBC procedure shows super-linear speed-up on the CPU, and is weakly

sensitive to the grid size, with speed-ups ranging from 7.9 to 9.1 on eight threads

194

6.2 Application of the GPU NS solver

(Fig 6.37(b)). The GPU speed-up is very sensitive to the grid size and varies between

21.9 and 37.5. The reason for such sensitivity is that boundary nodes only are involved

in the computation, and therefore even the intermediate grid G2 is not enough to use

effectively all of the GPU cores. Speed-ups are still quite high (especially considering

the low occupancy) because of the high arithmetic intensity.

Procedures implementing “light” tasks show similar behaviour. Such tasks are:

computation of the ODE right hand side (RHS) from the numerical flux function

(Fig. 6.38(a)), conversion of the conserved variables into primitive (Fig. 6.38(b)), component-

by-component vector multiplication (Fig. 6.39(a)). The CPU speed-up is close to linear

with the number of threads. Speed-ups on the finest grid G3 are somewhat worse than

those on the other two grids, most likely because of an unfavourable memory path.

GPU speed-ups are good, ranging from 8.8 to 17.3, but not better because the tasks

have low arithmetic intensity.

The computation of the viscosity is a light task but it performs well (Fig. 6.39(b)).

The CPU implementation does not show the loss of speed-up on the finest grid, but

scales almost linearly with the number of threads for all three grid sizes. The GPU

speed-up is much higher, ranging from 45.7 to 50.7 as the problem size increases. This

can likely be attributed to a higher arithmetic intensity.

The matrix transpsition is the weak point of both CPU and GPU implementations

(Fig. 6.40). Apparently, the MKL procedure mkl_somatcopy() is not multi-thread, as

no speed-up is seen as the number of threads is increased. The GPU implementation

does not perform particularly well either, as speed-ups range from 4.3 to 12.3 depending

on the grid size. The multi-processor occupancy is rather high, 75%, therefore the low

speed-ups as well as the high sensitivity to the problem size are due to the low arithmetic

intensity. Matrix transposition is, from the point of view of the arithmetic intensity,

equivalent to a copy operation: each number is fetched from a memory location and

copied somewhere else.

Finally, Fig. 6.41 shows the overall performance of the Navier-Stokes solvers. The

hypersonic compression ramp is simulated on a “coarse” grid consisting of 198×64×32

(≈ 4× 105) nodes, and on a fine grid consisting of 396× 128× 64 (≈ 3.1× 106) nodes.

Specific times for the NS solvers averaged over 100 time steps are shown in Table 6.4.

Going from one to two threads, OMP-CU5-TVD-NS runs from 1.5 to 1.8 times

faster, depending on the grid size. This datum is very similar to the 1.6 speed-up ob-

195

6.2 Application of the GPU NS solver

Number of grid nodes Specific time, µs

CPU GPU

1 thread 2 threads 4 threads 8 threads

3.9× 105 16.7 11.4 6.4 4.1 0.7

3.1× 106 23.2 12.7 7.4 5.2 0.8

Table 6.4: Specific runtimes of multi-thread CPU and GPU NS solvers for two grid sizes.

tained running CU5-TVD-NSK on two cores of a quad-core AMD Opteron (Fig. 6.22).

On the other hand, running OMP-CU5-TVD-NS on the Intel Xeon, we obtain a speed-

up between 4.1 and 4.5 when using four cores with HT enabled, versus 1.6 obtained

running CU5-TVD-NSK on four cores of the AMD Opteron. This datum supports the

conclusion that the poor speed-up seen on the Opteron is due to its NUMA architecture,

as the Intel Xeon SMP architecture allows the code to scale beyond two cores.

Although OMP-CU5-TVD-NS scales very well, its speed-up is less impressive than

the 8× speed-up seen for most procedures. The reason for the performance gap lies

in the matrix transposition. This operation is not parallel and is performed for many

variables; it therefore has a non-negligible effect on the total runtime, that becomes

more and more important as the number of threads increases.

The GPU code is between 24.3 and 29.3 times faster than the CPU code running se-

rially. These speed-ups are intermediate between the very high values (40–70) achieved

by tasks with high arithmetic intensity and the lower values (10–20) achieved by those

with low arithmetic intensity. As for the CPU implementation, the performance is

strongly bounded by the performance of the matrix transposition, and the effect on the

GPU is even greater: the most time-consuming tasks for the CPU are also those that

experience the greater speed-up on the GPU, and so the transposition time represents

for the GPU a bigger percentage of the total runtime.

Data transposition is the price paid by semi-global methods. It is essential for the

code to follow the best memory pattern, which is a requirement for all procedures to be

accelerated. Therefore, further speed-up of the code is unlikely to be achieved by looking

at the matrix transpose procedure, which is already highly optimised. More likely,

further speed-up could be obtained by trying to increase the ocupancy of procedures

with high arithmetic intensity and low occupancy, such as cudaTVD() and cudaNSCBC().

This could be achieved by breaking the procedures into sub-procedures with slighly

196

6.3 Summary

lower arithmetic intensity but also less demanding memory requirements and so higher

occupancy.

6.3 Summary

Novel contributions presented in this chapter are: a study of the effect of the domain

decomposition on the computed solution for our multi-block algorithm, and a study of

its parallel performance; the validation of our GPU code and a study of its performance.

Our findings can be summarised as follows:

• For a flow as complex as a shock-jet interaction, single- and multi-block solutions

have only a few minor differences. Interesting results are found for the supersonic

flow past a cone-cylinder: the multi-block partitioning seems to cure a problem

shown by the single-block method in capturing the boundary layer at the ex-

pansion corner between conical and cylindrical parts of the geometry. This test

also allows us to show that our modification to the characteristic decomposition

described in section 2.3.3 is essential to simulate this corner flow.

• Our multi-block algorithm is suitable for massively parallel computing: the par-

allel efficiency is about 90% when running a simulation of one million cells using

one thousand CPU cores. We also highlight the performance issue of compact

methods running on NUMA processors: our compact-TVD method does not scale

beyond two cores on a NUMA processor if the shared-memory slab decomposition

is used.

• Our GPU code is validated against two tests cases: more have been performed

but their results, similar to those shown in Chapter 5 for the CPU code, are not

shown. Despite single-precision being used in the floating-point calculations, the

GPU code successfully simulates vortex pairing in a compressible mixing layer

and 3D hypersonic flow over a compression ramp.

• Our task-dependent domain decomposition is shown to be very effective: the GPU

speed-up is about 29× with respect to one CPU core when running a simulation of

3 million nodes. Our multi-thread CPU code employing the same decomposition

achieves 4× speed-up when running on four cores of an SMP processor. We have

197

6.3 Summary

(a) Characteristic-based TVD filter

(b) Kinetic Flux Vector Splitting

Figure 6.36: Performance of the multi-thread CPU and GPU implemetations of the

indicated tasks for different mesh sizes.

198

6.3 Summary

(a) Compact reconstruction, MKL sgemm() vs. cublasSgemm()

(b) Navier-Stokes Characteristic Boundary Conditions enforcement

Figure 6.37: Performance of the multi-threaded CPU and GPU implemetations of the

indicated tasks for different mesh sizes.

199

6.3 Summary

(a) ODE RHS computation from numerical flux function

(b) Coversion of conserved variables into primitive

Figure 6.38: Performance of the multi-threaded CPU and GPU implemetations of the

indicated tasks for different mesh sizes.

200

6.3 Summary

(a) Component-by-component vector multiplication

(b) Viscosity computation

Figure 6.39: Performance of the multi-threaded CPU and GPU implemetations of the

indicated tasks for different mesh sizes.

201

6.3 Summary

Figure 6.40: Performance of the multi-threaded CPU and GPU implemetations of the

matrix transpose for different mesh sizes.

Figure 6.41: Performance of the multi-thread CPU and GPU Navier-Stokes solvers for

different mesh sizes.

202

6.3 Summary

studied how each elementary task contributes to the overall speed-up and found

that the matrix transposition imposes a cap on the performance: it has no speed-

up on the CPU because its implementation is not multi-thread, while it has a

speed-up of only about 10× on the GPU because of its low arithmetic intensity.

203

7

Conclusions

In this thesis we have presented the development of a high-order high-resolution nu-

merical method for hypersonic flow simulation in the framework of high performance

computing. Our major findings are summarised in this chapter.

7.1 Simulation of inviscid flows

In Chapter 2 we presented the compact-TVD method for the Euler equations that we

used as a starting point for our study. The method proposed by Tu and Yuan (25)

was chosen because of its high-accuracy and good resolution properties, its conservative

formulation, stability and relatively low computational cost. We used the high-accuracy

Kinetic FVS, unlike Tu and Yuan who use the classic Steger-Warming FVS.

Inviscid flow simulations were performed to investigate the resolution properties of

the method, and results shown in Chapter 5. We found that our compact-TVD method

shows better resolution than methods of comparable accuracy that employ a WENO

scheme to capture discontinuities.

7.2 Simulation of viscous flows

In Chapter 3 we presented a Navier-Stokes solver based on the compact-TVD method

presented in Chapter 2. This solver employs a splitting for the Navier-Stokes flux.

Our main contribution is having identified the possibility to combine the Kinetic

FVS for the NS flux, devised by Chou and Baganoff (56), with the compact-TVD

method. Combining the two techniques has several advantages:

204

7.2 Simulation of viscous flows

• the computational cost of the compact scheme, associated with the solution of

linear systems to compute derivatives, is reduced because fewer linear systems

are solved;

• the loss of accuracy associated with the TVD filter is mitigated, because the filter

is applied to the NS flux, which is smoother than the inviscid flux.

In Chapter 5 the method was validated against steady viscous flows. The explicit time

discretisation makes the method less ideal for steady state calculations, as the tight

time-step restriction for stability leads to long computing times. On the other hand,

the method is intended to be applied mainly for time-accurate unsteady simulations.

If steady state calculations are to be performed in the future, an implicit time discreti-

sation will have to be implemented.

Our numerical results were in excellent agreement with exact solutions of smooth

compressible flows, namely the shock-layer and the supersonic boundary layer over a flat

plate. Comparison to experimental results was provided for two simulations, namely

the shock-boundary layer interaction and the hypersonic flow past a blunted cone. For

the shock-boundary layer interaction, wall pressures were in excellent agreement with

the experimental data. A discrepancy between our CFD and experimental values of

the friction coefficient after reattachment was found. However, our prediction agreed

with independent CFD data by other authors (89, 90, 91). For the hypersonic flow past

a blunted cone, our CFD was in good agreement with the experimental data, although

a minor discrepancy was observed at some points downstream from the conical shock.

In section 6.1.2 we highlighted the difficulty the method has in capturing viscous

supersonic flows around expansion corners. The test case was the supersonic flow

past a cone-cylinder geometry, and the expansion corner was the one between the

conical and cylindrical parts of the geometry. The method predicted a high-amplitude

unphysical oscillation in the boundary layer profiles all along the geometry. We tackled

this problem by modifying characteristic treatment in the TVD limiting step, as detailed

in section 2.3.3. This eased the problem although did not completely solve it, as the

friction coefficient was still overpredicted at the corner.

205

7.3 Parallel application of the Navier-Stokes solver

7.3 Parallel application of the Navier-Stokes solver

In Chapter 4 we presented a novel algorithm to parallelise our compact-TVD method.

The algorithm is based on structured-block partitioning and improves previous algo-

rithms that employ the same approach (32, 33, 35). Our algorithm is fully conservative,

does not distort smooth flow features and introduces a minimal perturbation on the

original linear system to compute derivatives.

In Chapter 6 we studied the effect of this perturbation on the computed solution.

For a flow as complex as a shock-jet interaction single- and multi-block solutions have

only a few minor differences. Interesting results were found for the supersonic flow past

a cone-cylinder: the multi-block partitioning seemed to cure the problem shown by the

single-block method in capturing the boundary layer at the expansion corner between

the conical and cylindrical parts of the geometry.

Our multi-block algorithm was proven to be suitable for massively parallel comput-

ing: we studied its parallel performance and found that its parallel efficiency is about

90% when running a simulation of one million cells using one thousand CPU cores.

In Chapter 4 we also presented a strategy to parallelise our compact-TVD method

on a cluster of multi-core processors. We proposed combining our multi-block parallel

algorithm with the slab/drawer decomposition algorithm (34): the small communica-

tion cost of the multi-block algorithm made it ideal to divide the work between pro-

cessors; the slab/drawer decomposition was used to divide the work between the cores

of a processor. In Chapter 6 we studied the performance of the shared-memory kernel

and found that the shared-memory slab decomposition algorithm did not scale beyond

two cores. We identified the reason for such a poor scaling in the NUMA architecture

of the processor used: in section 6.2.3 we showed that a code implementing a similar

method and partitioning strategy scaled linearly up to four cores on an SMP processor.

7.4 GPU application of the Navier-Stokes solver

In Chapter 4 we presented a strategy to parallelise our compact-TVD method in the

complex computing environment of a GPU. Our strategy consisted of two steps:

• algorithm break-down into elementary tasks;

• adoption of a task-dependent domain partitioning.

206

7.5 Suggestions for future work

Breaking the algorithm into elementary tasks allows us to meet the tight memory

constraints of the GPU. The runtime of each task was minimised by choosing the

appropriate partitioning strategy.

In Chapter 6 our GPU code was validated against two tests cases: more have been

performed but their results, similar to those shown in Chapter 5 for the CPU code,

were not shown. Despite single-precision being used in the floating-point calculations,

the GPU code successfully simulated vortex pairing in a compressible mixing layer and

3D hypersonic flow over a compression ramp.

In Chapter 6 we also presented a performance study of our GPU code. Our task-

dependent partitioning strategy was shown to be very effective: the speed-up was about

29× with respect to one CPU core when running a simulation of 3 million nodes. We

studied how each elementary task contributed to the overall speed-up and found that

the matrix transposition imposes a cap on the performance: it has a speed-up of only

about 10× on the GPU because of its low arithmetic intensity.

7.5 Suggestions for future work

Our GPU code, CUDA-CU5-TVD-NS, shows excellent performance when running on

a single GPU. In the future the code could undergo two major developments:

• Development of CPU-GPU work-sharing capability: part of the computation

could be performed by the host CPU in parallel with the GPU. Tasks with low

arithmetic intensity could perhaps be offloaded on the CPU: our experiments

show that GPU runtimes for these tasks are only marginally better than quad-core

CPU runtimes (see for example Fig. 6.38(a)). The development of this capability

requires careful thinking: data transfer between device and host memory is slow,

and, if not overlapped with computation, can outrule the benefit of work-sharing

between GPU and CPU.

• Development of distributed-memory capability: the work-load could be shared

between multiple GPUs using our multi-block algorithm, CU5-MB, for example.

The code could be applied in the fields of compressible LES, DNS and aeracoustics,

where the use of a compact scheme is expected to provide an advantage over codes

using explicit finite difference schemes.

207

References

[1] S. K. Lele. Compact finite difference schemes with

spectral-like resolution. Journal of Computational

Physics, 103:16–42, 1992. vi, 5, 6, 7, 8, 29, 47, 59, 122

[2] S. Laizet, E. Lamballais, and J.C. Vassilicos. A numeri-

cal strategy to combine high-order schemes, com-

plex geometry and parallel computing for high

resolution DNS of fractal generated turbulence.

Computers & Fluids, 39(3):471 – 484, 2010. vii, 16, 73,

74, 145, 175, 206

[3] N. Li and S. Laizet. 2DECOMP&FFT-A Highly Scal-

able 2D Decomposition Library and FFT Inter-

face. In CUG 2010 Proceedings, 2010. vii, 74, 75, 175

[4] P. Woodward and P. Colella. The numerical simu-

lation of two-dimensional fluid flow with strong

shocks. Journal of Computational Physics, 54:115–173,

1984. vii, viii, ix, 99, 100, 101, 102, 103, 104, 105, 113,

114, 117

[5] Dinshaw S. Balsara, Tobias Rumpf, Michael Dumbser,

and Claus-Dieter Munz. Efficient, high accuracy

ADER-WENO schemes for hydrodynamics and

divergence-free magnetohydrodynamics. J. Com-

put. Phys., 228:2480–2516, April 2009. viii, ix, 106, 107,

110, 116, 118

[6] Gang Li and Jianxian Qiu. Hybrid weighted essentially

non-oscillatory schemes with different indicators.

J. Comput. Phys., 229:8105–8129, October 2010. viii, ix,

107, 110, 117, 119

[7] Jing Shi, Yong-Tao Zhang, and Chi-Wang Shu. Resolu-

tion of high order WENO schemes for complicated

flow structures. Journal of Computational Physics,

186(2):690 – 696, 2003. ix, 115, 118

[8] T.A. Reyhner and I. Flügge-Lotz. The interaction of

a shock wave with a laminar boundary layer. In-

ternational Journal of Non-Linear Mechanics, 3(2):173 –

199, 1968. ix, 128

[9] R. J. Hakkinen, I. Greber, L. Trilling, and S. S. Abarbanel.

The Interaction of an Oblique Shock Wave with a

Laminar Boundary Layer. Memo 2-18-59W, NASA,

1959. ix, 131, 132

[10] Y. Yao, L. Krishnan, N. D. Sandham, and G. T. Roberts.

The effect of Mach number on unstable dis-

turbances in shock/boundary-layer interactions.

Physics of Fluids, 19(5):054104–+, May 2007. ix, 131,

133, 144, 205

[11] J. W. Cleary. An experimental and theoretical in-

vestigation of the pressure distribution and flow

fields of blunted cones at hypersonic Mach num-

bers. Technical Report TN D-2969, NASA, 1969. ix, x,

134, 140, 141

[12] N. D. Sandham and H. C. Yee. Performance of low

dissipative high order shock-capturing schemes

for shock-turbulence interactions. Technical Report

NASA-CR-208354, NASA Ames Research Center, 1998.

xiii, 176, 181, 182, 183

[13] M. S. Holden and J. R. Moselle. Theoretical and ex-

perimental studies of the shock wave-boundary

layer interaction on compression surfaces in hy-

personic flow. Technical Report ARL 70-0002, Wright

Patterson Aerospace Research Laboratories, 1970. xiii,

176, 185, 190, 191

[14] E. F. Toro. Riemann Solvers and Numerical Methods

for Fluid Dynamics: A Practical Introduction. Springer,

Berlin Heidelberg, 1997. xv, 146, 148

[15] John D. Jr. Anderson. Hypersonic and High-Temperature

Gas Dynamics. AIAA Education Series. American Insti-

tute Aeronautics and Astronautics, second edition, 2006.

1, 124, 126, 127, 134

[16] N. D. Sandham and H. C. Yee. A numerical study of a

class of TVD schemes for compressible mixing lay-

ers. Technical Report NASA-TM-102194, NASA Ames

Research Center, 1989. 2, 183

[17] D. Gottlieb and S. A. Orszag. Numerical analysis of spec-

tral methods. SIAM, Philadelphia, 1977. 6

[18] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang.

Spectral methods in fluid dynamics. Springer-Verlag, New

York, 1987. 6

[19] C. K. W. Tam and J. C. Webb. Dispersion-relation-

preserving finite difference schemes for compu-

tational acustics. Journal of Computational Physics,

107:262–281, 1993. 8

[20] C. D. Pruett, T. A. Zang, C. L. Chang, and M. H. Carpen-

ter. Spatial direct numerical simulation of high

speed boundary layer flows. Part I. Algorithmic

consideration and validation. Theoretical Computa-

tional Fluid Dynamics, 7:397–424, 1995. 8

[21] M. H. Carpenter, D. Gotlieb, and S. Abarbanel. The sta-

bility of numerical boundary treatments for com-

pact high order finite difference schemes. Journal

of Computational Physics, 108:272–295, 1993. 8

[22] N. A. Adams and K. Shariff. A high-resolution hybrid

compact-ENO scheme for shock-turbulence inter-

action problems. Journal of Computational Physics,

127:27–51, 1996. 9, 10

[23] A. I. Tolstykh and M. V. Lipavskii. On performance of

methods with third and fifth order compact up-

wind differencing. Journal of Computational Physics,

140:205–232, 1998. 9

[24] M. Zhuang and R. F. Cheng. Optimized up-

wind dispersion-relation-preserving finite differ-

ence schemes for computational aeroacustics.

AIAA Journal, 36:2146–2148, 1998. 9

208

http://www.sciencedirect.com/science/article/B6V26-4XFGJ8H-1/2/19fe193d72cc48a9aa788736651d6130
http://www.sciencedirect.com/science/article/B6V26-4XFGJ8H-1/2/19fe193d72cc48a9aa788736651d6130
http://www.sciencedirect.com/science/article/B6V26-4XFGJ8H-1/2/19fe193d72cc48a9aa788736651d6130
http://www.sciencedirect.com/science/article/B6V26-4XFGJ8H-1/2/19fe193d72cc48a9aa788736651d6130
http://portal.acm.org/citation.cfm?id=1508315.1508376
http://portal.acm.org/citation.cfm?id=1508315.1508376
http://portal.acm.org/citation.cfm?id=1508315.1508376
http://dx.doi.org/10.1016/j.jcp.2010.07.012
http://dx.doi.org/10.1016/j.jcp.2010.07.012
http://www.sciencedirect.com/science/article/B6WHY-485NN54-3/2/3843228061efe1566d07c10398c89ea5
http://www.sciencedirect.com/science/article/B6WHY-485NN54-3/2/3843228061efe1566d07c10398c89ea5
http://www.sciencedirect.com/science/article/B6WHY-485NN54-3/2/3843228061efe1566d07c10398c89ea5
http://www.sciencedirect.com/science/article/B6TJ2-46R017G-D/2/4f13049154ffd46a43c8a096d2d6a0df
http://www.sciencedirect.com/science/article/B6TJ2-46R017G-D/2/4f13049154ffd46a43c8a096d2d6a0df

REFERENCES

[25] D. Gaitonde and J. S. Shang. Optimized compact-

difference-based finite-volume schemes for linear

wave phenomena. Journal of Computational Physics,

138:617–643, 1997. 9

[26] M. H. Kobayashi. On a class of Padéfinite volume

methods. Journal of Computational Physics, 156:137–

180, 1999. 9

[27] A. W. Cook and W. H. Cabot. A high-wavenumber vis-

cosity for high-resolution numerical method. Jour-

nal of Computational Physics, 195:594–601, 2004. 9

[28] A. W. Cook and W. H. Cabot. Hyperviscosity for

shock-turbulence interaction. Journal of Computa-

tional Physics, 203:379–385, 2005. 9

[29] B. Fiorina and S. K. Lele. An artificial nonlinear dif-

fusivity method for supersonic reacting flows with

shocks. Journal of Computational Physics, 222:246–264,

2007. 9

[30] A. W. Cook. Artificial fluid properties for large

eddy simulation of compresible turbulence mix-

ing. Physics of Fluids, 19:055103, 2007. 9

[31] A. Harten, B. Engquist, S. Osher, and S. Chakravarthy.

Uniformly high order essentially non oscilla-

tory schemes, III. Journal of Computational Physics,

71:231–303, 1995. 9, 23, 32

[32] C. W. Shu and S. Osher. Efficient implementa-

tion of essentially non-oscillatory shock-capturing

schemes. Journal of Computational Physics, 77:439–471,

1988. 9, 41, 98

[33] C. W. Shu and S. Osher. Efficient implementa-

tion of essentially non-oscillatory shock-capturing

schemes II. Journal of Computational Physics, 89:32–

78, 1983. 9

[34] S. Pirozzoli. Conservative hybrid compact-WENO

schemes for shock-turbulence interaction. Journal

of Computational Physics, 178:81–117, March 2001. 10,

16, 22, 29, 30

[35] Y. X. Ren, M. Liu, and H. Zhang. A characteristic-

wise hybrid compact-WENO scheme for solving

hyperbolic conservation lows. Journal of Computa-

tional Physics, 192:365–386, 2003. 10, 70

[36] B. Cockburn and C. W. Shu. Nonlinearly stable com-

pact schemes for shock calculations. SIAM Journal

of Numerical Analysis, 31:607–627, 1994. 10

[37] K. S. Ravichandran. Higher order KFVS algorithms

using compact upwind difference operators. Jour-

nal of Computational Physics, 130:161–173, 1997. 10, 48

[38] G. H. Tu and X. J. Yuan. A characteristic-based

shock-capturing scheme for hyperbolic problems.

Journal of Computational Physics, 225:2083–2097, 2007.

10, 20, 22, 30, 33, 45, 48, 71, 92, 94, 204

[39] H. Lukoff. From Dits to Bits: a personal history of the

electronic computer. Robotics Press, Portland, OR, 1979.

11

[40] J. E. Thornton. Design of a computer - the control data

6600. Scott, Foresman and Co., Glenview, IL, 1970. 12

[41] M. J. Flynn. Some Computer Organizations and

Their Effectiveness. IEEE Transactions on Comput-

ers, C-21:948–960, September 1972. 13, 14

[42] X. H. Sun and S. Moitra. A fast parallel tridiagonal

algorithm for a class of CFD applications. Techni-

cal Paper 3585, NASA, 1996. 16, 66

[43] A. Povitsky. Parallel directional split solver based

on reformulation of pipelined Thomas algorithm.

Technical Report CR-1998-208733, NASA, 1998. 16, 66

[44] F. Ladeinde, X. Cai, M. Visbal, and D. Gaitonde. Parallel

implementation of curvilinear high-order formu-

las. International Journal of Computational Fluid Dy-

namics, 17:2886–2898, 2003. 16, 66

[45] Datta V. Gaitonde. Further Development of

a Navier-Stokes Solution Procedure Based on

Higher-Order Formulas. In 37th AIAA Aerospace

Sciences Meeting and Exibit, number AIAA-1999-0557,

Reno, NV, January 1999. American Institute of Aero-

nautics and Astronautics. 16, 69, 91, 149, 206

[46] T. K. Sengupta, A. Dipankar, and A. Kameswara Rao. A

new compact scheme for parallel computing us-

ing domain decomposition. Journal of Computational

Physics, 220:654–677, 2007. 16, 70, 76, 91, 146, 149, 206

[47] J. Chao, A. Haselbacher, and S. Balachandar. A

massively parallel multi-block compact-WENO

scheme for compressible flows. Journal of Compu-

tational Physics, 228:7473–7491, 2009. 17, 70, 91, 206

[48] W. Huang and D. K. Tafti. A Parallel Comput-

ing Framework for Dynamic Power Balancing in

Adaptive Mesh Refinement Applications. In Pro-

ceedings of Parallel CFD 1999, Williamsburg, VA, US

(1999), May 1999. 17

[49] W. D. Gropp, D. K. Kaushik, D. E. Keyes, and B. F. Smith.

High-performance parallel implicit CFD. Parallel

Computing, 27(4):337 – 362, 2001. 17

[50] R. Rabenseifner, G. Hager, and G. Jost. Hybrid

MPI/OpenMP Parallel Programming on Clus-

ters of Multi-Core SMP Nodes. In 17th Euromi-

cro International Conference on Parallel, Distributed and

Network-based Processing, pages 427–436, Weimar, Ger-

many, February 2009. 17

[51] J. Stam. Stable fluids. In Proceedings of the 26th

annual conference on Computer graphics and interactive

techniques, SIGGRAPH ’99, pages 121–128, New York,

NY, USA, 1999. ACM Press/Addison-Wesley Publishing

Co. 18

[52] Y. Liu, X. Liu, and E. Wu. Real-Time 3D Fluid Sim-

ulation on GPU with Complex Obstacles. In Pro-

ceedings of the Computer Graphics and Applications, 12th

Pacific Conference, PG ’04, pages 247–256, Washington,

DC, USA, 2004. IEEE Computer Society. 18

[53] M. Harris. Fast fluid dynamics simulation on the

GPU. In ACM SIGGRAPH 2005 Courses, SIGGRAPH

’05, Los Angeles, California, 2005. ACM. 18

[54] W. Li, X. Wei, and A. Kaufman. Implementing lat-

tice Boltzmann computation on graphics hard-

ware. The Visual Computer, 19:444–456, 2003.

10.1007/s00371-003-0210-6. 18

209

http://www.sciencedirect.com/science/article/B6V12-42MFDG7-2/2/fd58d46aca108fa96977d7c1b4642d3f
http://dx.doi.org/10.1145/311535.311548
http://portal.acm.org/citation.cfm?id=1025128.1026048
http://portal.acm.org/citation.cfm?id=1025128.1026048
http://doi.acm.org/10.1145/1198555.1198790
http://doi.acm.org/10.1145/1198555.1198790
http://dx.doi.org/10.1007/s00371-003-0210-6
http://dx.doi.org/10.1007/s00371-003-0210-6
http://dx.doi.org/10.1007/s00371-003-0210-6

REFERENCES

[55] W. Li, Z. Fan, X. Wei, and A. Kaufman. GPU-Based flow

simulation with complex boundaries. In GPU Gems

2, pages 747–764. Addison-Wesley, 2003. 18

[56] J. Tölke and M. Krafczyk. TeraFLOP computing on

a desktop PC with GPUs for 3D CFD. Int. J. Com-

put. Fluid Dyn., 22:443–456, August 2008. 18

[57] V. Simek, R. Dvorak, F. Zboril, and J. Kunovsky. To-

wards Accelerated Computation of Atmospheric

Equations Using CUDA. In Proceedings of the UKSim

2009: 11th International Conference on Computer Mod-

elling and Simulation, pages 449–454, Washington, DC,

USA, 2009. IEEE Computer Society. 18

[58] C. E. Scheidegger, J. L. D. Comba, and R. D. Da Cunha.

Practical CFD Simulations on Programmable

Graphics Hardware using SMAC. Computer Graph-

ics Forum, 24:715–728, 2005. 18

[59] J. M. Cohen, , and J. Molemake. A Fast Double Pre-

cision CFD Code Using CUDA. In 21st Interna-

tional Conference on Parallel Computational Fluid Dy-

namics (ParCFD2009), 2009. 18, 19

[60] A.A. Amsden and F.H. Harlow. The SMAC method:

a numerical technique for calculating incompress-

ible flows. Technical Report LA-4370, Los Alamos Na-

tional Laboratory, 1970. 19

[61] T. Brandvik and G. Pullan. Acceleration of a two-

dimensional Euler flow solver using commodity

graphics hardware. Journal Proceedings of the Insti-

tution of Mechanical Engineers, Part C: Journal of Me-

chanical Engineering Science, 221(12):1745–1748, 2007.

19

[62] T. Brandvik and G. Pullan. Acceleration of a 3D

Euler Solver using Commodity Graphics Hard-

ware. In 46th AIAA Aerospace Sciences Meeting, num-

ber AIAA-2008-607, Reno, NV, January 2008. American

Institute of Aeronautics and Astronautics. 19

[63] E. Elsen, P. LeGresley, and E. Darve. Large calculation

of the flow over a hypersonic vehicle using a GPU.

J. Comput. Phys., 227:10148–10161, December 2008. 19

[64] A. S. Antoniou, Karantasis K. I., E. D. Polychronopou-

los, and J. A. Ekaterinaris. Acceleration of a Finite-

Difference WENO Scheme for Large-Scale Simu-

lations on Many-Core Architectures. In Proceedings

of 48th AIAA Aerospace Science Meeting, number AIAA-

2010-0525, Orlando, FL (2010), January 2010. American

Institute of Aeronautics and Astronautics. 19

[65] M. Griebel and P. Zaspel. A multi-GPU accelerated

solver for the three-dimensional two-phase incom-

pressible Navier-Stokes equations. Computer Sci-

ence - Research and Development, 25:65–73, 2010. 19

[66] T. Hagen, K. A. Lie, and J. Natvig. Solving the Euler

Equations on Graphics Processing Units. In Vas-

sil Alexandrov, Geert van Albada, Peter Sloot, and Jack

Dongarra, editors, Computational Science ICCS 2006,

3994 of Lecture Notes in Computer Science, pages 220–

227. Springer Berlin / Heidelberg, 2006. 19, 85

[67] D. Levy, G. Puppo, and G. Russo. A fourth-order cen-

tral WENO scheme for multidimensional hyper-

bolic systems of conservation law. SIAM J. Sci.

Comput., 24:480–506, 2002. 19

[68] S. Y. Chou and D. Baganoff. Kinetic flux-vector split-

ting for the Navier-Stokes equations. Journal of

Computational Physics, 130:217–230, 1997. 20, 46, 48,

49, 57, 64, 204

[69] R. J. Le Vecque. Numerical methods for conserva-

tion laws. Lectures in Mathematics. Birkhauser-Verlag,

Basel, 1990. 23

[70] B. Gustafsson. The convergence rate for difference

approximations to mixed initial boundary value

problems. Math. Comput., 29:396–406, 1975. 29

[71] A. Harten. High Resolution Schemes for Hyper-

bolic Conservation Laws,. Journal of Computational

Physics, 49(3):357–393, 1983. 30

[72] G. H. Tu, X. J. Yuan, Z. Q. Xia, and Z. Hu. A class of

compact upwind TVD difference schemes. Applied

Mathematics and Mechanics, 27:765–772, 2006. 30, 31,

32, 93

[73] S. Chapman and T. G. Cowling. The mathematical the-

ory of non-uniform gases. Cambridge University Press,

Cambridge, 1960. 38, 49, 55

[74] Kevin W. Thompson. Time dependent boundary con-

ditions for hyperbolic systems. Journal of Computa-

tional Physics, 68(1):1–24, 1987. 43

[75] T. J. Poinsot and S. K. Lelef. Boundary conditions for

direct simulations of compressible viscous flows.

Journal of Computational Physics, 101(1):104–129, 1992.

43

[76] B. Landmann, A. Haselbacher, J. Chao, and C. Yu. Char-

acteristic boundary conditions for compressible

viscous flows on curvilinear grids. In Proceedings

of 48th AIAA Aerospace Science Meeting, number AIAA-

2010-1084, Orlando, FL (2010), January 2010. 43

[77] D. Gaitonde and M. Visbal. High-order schemes for

Navier-Stokes equations: algorithm and imple-

mentation into FDL3D. Technical Report AFRL-

VA-WP-RT-1998-3060, Air Force Research Laboratory,

Write-Patterson Air Force Base, 1998. 43

[78] X. Zhong. High-order finite-difference schemes

for numerical simulation of hypersonic boundary

layer transition. Journal of Computational Physics,

144:662–709, 1998. 47, 60

[79] H. Harold Grad. On the kinetic theory of rarefied

gases. Communications on Pure and Applied Mathemat-

ics, 2:331–407, 1949. 49

[80] G. A. Bird. Molecular gas dynamics and the direct simu-

lation of gas flows. Clarendon Press, Oxford, 1994. 49,

56

[81] S. Y. Chou. Kinetic flux-vector splitting for the Navier-

Stokes equations. PhD thesis, Stanford University, 1995.

56

[82] G. N. Patterson. Molecular flow of gases. Wiley, New

York, 1956. 57

[83] D. I. Pullin. Direct simulation methods for com-

pressible inviscid ideal-gas flows. Journal of Compu-

tational Physics, 34:231–244, 1980. 57

210

http://portal.acm.org/citation.cfm?id=1451677.1451680
http://portal.acm.org/citation.cfm?id=1451677.1451680
http://portal.acm.org/citation.cfm?id=1524878.1525284
http://portal.acm.org/citation.cfm?id=1524878.1525284
http://portal.acm.org/citation.cfm?id=1524878.1525284
http://dx.doi.org/10.1111/j.1467-8659.2005.00897.x
http://dx.doi.org/10.1111/j.1467-8659.2005.00897.x
http://www.jcohen.name/papers/Cohen_Fast_2009_final.pdf
http://www.jcohen.name/papers/Cohen_Fast_2009_final.pdf
http://portal.acm.org/citation.cfm?id=1454779.1454864
http://portal.acm.org/citation.cfm?id=1454779.1454864
http://dx.doi.org/10.1007/s00450-010-0111-7
http://dx.doi.org/10.1007/s00450-010-0111-7
http://dx.doi.org/10.1007/s00450-010-0111-7
http://dx.doi.org/10.1007/11758549_34
http://dx.doi.org/10.1007/11758549_34
http://www.sciencedirect.com/science/article/B6WHY-45S92D8-41/2/49d4fd656f2b0e843a9b18abb30f6b59
http://www.sciencedirect.com/science/article/B6WHY-45S92D8-41/2/49d4fd656f2b0e843a9b18abb30f6b59
http://www.sciencedirect.com/science/article/B6WHY-4DD1WHX-1BS/2/22c7c43efada1696b46f0578fd36dd09
http://www.sciencedirect.com/science/article/B6WHY-4DD1WHX-1BS/2/22c7c43efada1696b46f0578fd36dd09
http://www.sciencedirect.com/science/article/B6WHY-4DD1RBK-V/2/7ebefc82befb037501746b6532d76965
http://www.sciencedirect.com/science/article/B6WHY-4DD1RBK-V/2/7ebefc82befb037501746b6532d76965

REFERENCES

[84] J. C. Mandal and S. M. Deshpande. Kinetic flux vector

splitting for Euler equations. Computer and Fluids,

23:447–478, 1994. 57

[85] E. R. Mallet and J. C. Pullin. Numerical study of

hypersonic leeward flow over a blunt nosed delta

wing. AIAA Journal, 33:1626–1633, 1995. 57

[86] Yao Zhang, Jonathan Cohen, and John D. Owens. Fast

tridiagonal solvers on the GPU. SIGPLAN Not.,

45:127–136, January 2010. 86

[87] Dominik Goddeke and Robert Strzodka. Cyclic Re-

duction Tridiagonal Solvers on GPUs Applied to

Mixed-Precision Multigrid. IEEE Trans. Parallel

Distrib. Syst., 22:22–32, January 2011. 86

[88] Peter D. Lax. Weak solutions of nonlinear hy-

perbolic equations and their numerical computa-

tion. Communications on Pure and Applied Mathematics,

7(1):159–193, 1954. 94

[89] J. J. Quirk. A contribution to the great Riemann

solvers debate. International Journal of Numerical

Methods in Fluids, 18:115–173, 1994. 104

[90] G. Ben-Dor. Analytical solution of double-Mach re-

flections. AIAA Journal, 18:1036–1043, 1980. 111

[91] P. A. Lagerstrom. Laminar flow theory. Princeton Uni-

versity Press, Princeton, 1964. 120, 121

[92] E. R. Van Driest. Investigation of boundary layer

in compressible fluids using the Crocco method.

Technical Report TN 2597, NASA, 1952. 126

[93] L. Crocco. Sulla trasmissione del calore da una lam-

ina piana a un fluido scorrente ad alta velocità.

L’Aerotecnica, XII:181–197, 1932. 126

[94] Edgar Katzer. On the lengthscales of laminar

shock/boundary-layer interaction. Journal of Fluid

Mechanics, 206:477–496, 1989. 133, 144, 205

[95] Bono Wasistho. Spatial Direct Numerical Simulation of

Compressible Boundary Layer flow. PhD thesis, Univer-

siteit Twente, Enschede, December 1997. 133, 144, 205

[96] W. S. Don and C. B. Quillen. Numerical simulation of

shock-Cylinder interactions I. Resolution. Journal

of Computational Physics, 122:244–265, 1995. 146, 157

[97] M. Nordén, H. Sverker, and M. Thuné. OpenMP versus

MPI for PDE solvers based on regular sparse nu-

merical operators. Future Generation Computer Sys-

tems, 22:194–203, 2006. 175

[98] David H. Rudy, James L. Thomas, and Ajay Kumar. Com-

putation of laminar viscous-inviscid interactions

in high-speed internal flows. In Computational Fluid

Dynamics Symposium on Aeropropulsion, pages 473–486,

NASA Lewis Research Centre, January 1991. 176, 186

211

http://doi.acm.org/10.1145/1837853.1693472
http://doi.acm.org/10.1145/1837853.1693472
http://dx.doi.org/10.1109/TPDS.2010.61
http://dx.doi.org/10.1109/TPDS.2010.61
http://dx.doi.org/10.1109/TPDS.2010.61
http://dx.doi.org/10.1002/cpa.3160070112
http://dx.doi.org/10.1002/cpa.3160070112
http://dx.doi.org/10.1002/cpa.3160070112
http://doc.utwente.nl/29651/
http://doc.utwente.nl/29651/

	List of Figures
	List of Tables
	1 Introduction
	1.1 High-accuracy methods with spectral-like resolution for gasdynamics
	1.1.1 Basics of compact schemes
	1.1.2 Compact methods for gasdynamics

	1.2 A brief history of High Performance Computing
	1.3 Computational Fluid Dynamics and High Performance Computing
	1.3.1 Parallel application of compact schemes
	1.3.2 GPU-accelerated CFD

	1.4 Objectives and thesis outline

	2 A compact-TVD method for the solution of the Euler equations
	2.1 Conservative compact-upwind finite difference schemes
	2.1.1 Derivation of conservative compact-upwind formulas
	2.1.2 Resolution properties
	2.1.3 Boundary closures

	2.2 Split-flux upwind-TVD schemes
	2.2.1 Solution of one-dimensional scalar conservation laws

	2.3 Solution of the Euler equations
	2.3.1 Characteristic decomposition
	2.3.2 Variants of the method
	2.3.3 A modification to the characteristic decomposition

	2.4 Time discretisation
	2.5 Implementation and boundary conditions
	2.5.1 Boundary conditions based on extrapolation
	2.5.2 Characteristic boundary conditions

	2.6 Summary

	3 Solution of the Navier-Stokes equations
	3.1 Inclusion of viscous effects
	3.2 Kinetic Flux Vector Splitting for the Navier-Stokes equations
	3.2.1 Moments of the Boltzmann equation
	3.2.2 Kinetic split fluxes
	3.2.3 Chapman-Enskog split fluxes

	3.3 Numerical method for the Navier-Stokes equations
	3.3.1 Stress tensor and heat flux vector calculation
	3.3.2 Differentiation of the viscous flux
	3.3.3 Boundary conditions
	3.3.4 Thermodynamic model

	3.4 Summary

	4 HPC implementations of the Navier-Stokes solver
	4.1 Parallel implementation of the Navier-Stokes solver
	4.1.1 Multi-block domain decomposition algorithms
	4.1.2 Slab/drawer domain decomposition algorithm
	4.1.3 Hybrid parallelisation of the Navier-Stokes solver

	4.2 GPU-accelerated Navier-Stokes solver
	4.2.1 GPU hardware and programming models
	4.2.2 Key implementation details of the GPU Navier-Stokes solver

	4.3 Summary

	5 Validation of the compact-TVD method
	5.1 Simulation of inviscid flows
	5.1.1 The Lax shock tube
	5.1.2 The forward-facing step
	5.1.3 Double Mach-reflection

	5.2 Simulation of viscous flows
	5.2.1 Shock layer
	5.2.2 Self-similar boundary layer

	5.3 Laminar shock-boundary layer interaction
	5.4 Hypersonic blunted cone
	5.5 Summary

	6 HPC applications of the compact-TVD method
	6.1 Application of the hybrid multi-task and multi-thread NS solver
	6.1.1 One-dimensional Riemann problems
	6.1.2 Supersonic flow past a cone-cylinder configuration
	6.1.3 Shock-jet interaction
	6.1.4 Parallel performance

	6.2 Application of the GPU NS solver
	6.2.1 Vortex pairing in a compressible mixing layer
	6.2.2 Hypersonic compression ramp
	6.2.3 Performance of the GPU implementation

	6.3 Summary

	7 Conclusions
	7.1 Simulation of inviscid flows
	7.2 Simulation of viscous flows
	7.3 Parallel application of the Navier-Stokes solver
	7.4 GPU application of the Navier-Stokes solver
	7.5 Suggestions for future work

	References

