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Abstract

Short-term wind and wind power forecasts are required for the reliable and economic op-

eration of power systems with significant wind power penetration. This thesis presents

new statistical techniques for producing forecasts at multiple locations using spatio-

temporal information. Forecast horizons of up to 6 hours are considered for which

statistical methods outperform physical models in general. Several methods for pro-

ducing hourly wind speed and direction forecasts from 1 to 6 hours ahead are presented

in addition to a method for producing five-minute-ahead probabilistic wind power fore-

casts. The former have applications in areas such as energy trading and defining reserve

requirements, and the latter in power system balancing and wind farm control.

Spatio-temporal information is captured by vector autoregressive (VAR) models

that incorporate wind direction by modelling the wind time series using complex num-

bers. In a further development, the VAR coefficients are replaced with coefficient func-

tions in order to capture the dependence of the predictor on external variables, such as

the time of year or wind direction. The complex-valued approach is found to produce

accurate speed predictions, and the conditional predictors offer improved performance

with little additional computational cost.

Two non-linear algorithms have been developed for wind forecasting. In the first,

the predictor is derived from an ensemble of particle swarm optimised candidate so-

lutions. This approach is low cost and requires very little training data but fails to

capitalise on spatial information. The second approach uses kernelised forms of pop-

ular linear algorithms which are shown to produce more accurate forecasts than their

linear equivalents for multi-step-ahead prediction.

Finally, very-short-term wind power forecasting is considered. Five-minute-ahead
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parametric probabilistic forecasts are produced by modelling the predictive distribution

as logit-normal and forecasting its parameters using a sparse-VAR (sVAR) approach.

Development of the sVAR is motivated by the desire to produce forecasts on a large

spatial scale, i.e. hundreds of locations, which is critical during periods of high instan-

taneous wind penetration.
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Preface

Since the industrial revolution in the first half of the 19th century, demand for energy

to power high-tech societies and lifestyles has increased exponentially. That demand

has, to date, largely been met by burning fossil fuels, a by-product of which is the

emission of carbon dioxide into the atmosphere. At present, the daily release of over

100 million tones of this invisible gas goes largely unnoticed, while the lives of many

have never been more comfortable thanks to the abundance of on-demand energy and

derived products. In 2011 cumulate anthropogenic CO2 emissions reached over 2000Gt,

half of which has been emitted since 1970. The concentration of CO2 in the Earth’s

atmosphere is increasing, and recently passed 400ppm (parts per million), well above

the 1850 level of 285ppm and the estimated safe upper limit of 350ppm. Emissions of

CO2 and other greenhouse gases are driving global climate change, the effects of which

are beginning to be felt around the world.

Quoting from the 2014 Intergovernmental Panel on Climate Change synthesis re-

port [1]: “Climate change will amplify existing risks and create new risks for natural

and human systems. Risks are unevenly distributed and are generally greater for dis-

advantaged people and communities in countries at all levels of development.” Those

risks include increased frequency and duration of extreme weather events, ocean acidifi-

cation, sea level rise, and increased/decreased precipitation depending on region. Large

fractions of animal and plant species face extinction due to climate change. Food and

water security are at risk without significant adaptation. Urban areas face increased

risks to people, assets, economies and ecosystems, including risks from heat stress,

storms and extreme precipitation, inland and coastal flooding, landslides, air pollution,

drought, water scarcity, sea level rise and storm surges. Rural areas are expected to
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experience major impacts on water availability and supply, food security, infrastructure

and agricultural incomes, including shifts in the production areas of food and non-food

crops around the world.

The need for action has never been more apparent.

In 1988 the UN and World Meteorological Organization established the Intergov-

ernmental Panel on Climate Change to assess scientific information on all aspects of

climate change and its impacts in order to formulate a realistic response. This lead to

the adoption of the Kyoto Protocol in 1997, which set various targets for developed

countries to reduce emissions. However, the 2009 UN climate summit in Copenhagen

failed to produce any legally binding targets for global emission control and by the end

of the first phase of the Kyoto Protocol in 2012, many large emitters had failed to ratify

or removed themselves from the treaty, including the US, Canada, Russia and Japan.

While many developed nations now have domestic emission targets, including the US

and China, hopes for global commitment to curb greenhouse gas emissions rest with

the 2015 climate summit in Paris later this year.

The European Union is one of the few original signatories of the Kyoto Protocol

which has legally binding emissions reduction targets at present. The block has tar-

gets to reduce emissions by 20% compared to 1990 levels and to be generating 20%

of electricity from renewables by 2020. Specific targets vary between member states

depending on their ability to make reductions. The long-term goal for the EU is to

reduce emissions by 80–95% by 2050.

The UK became the first country to set long-range carbon reduction targets in law

with the Climate Change Act 2008. The Act outlines a framework for transitioning to

a low-carbon economy requiring an 80% cut in carbon emissions by 2050 compared to

1990 levels. At present in the UK power generation accounts for around one quarter

of greenhouse gas emissions. De-carbonising the UK power sector over the next three

and a half decades will require a huge reduction in fossil fuel use and a large increase

in renewable energy generation in combination with other low-carbon energy sources

and energy efficiency measures.
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The way energy systems are operated will have to change to accommodate high

levels of variable, weather dependent renewable generation, and an important part of

any solution will be forecasting.
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Chapter 1

Introduction

1.1 The Power System

Many of the world’s power systems were developed over the past century: initially to

power electric lighting, then to transmit electricity from a few large power stations

to individual cities or industrial complexes, and later becoming increasingly intercon-

nected eventually providing a reliable power supply on national and even continental

scales. Unlike resources that can be easily stored, electricity supply must meet de-

mand in real time. If more power is produced than consumed, the frequency of the AC

power system increases, and vice versa. Even a small change in frequency is enough

to damage synchronous machines and other equipment. Other limits on voltage, line

and transformer capacity, reactive power and phase angle are imposed for similar rea-

sons. Modern power systems are highly controlled and include protection systems to

maintain safe operation and protect equipment.

Today, power system operators act in conjunction with electricity markets to pro-

vide secure and economic supply. Electricity networks form natural monopolies which

were traditionally operated by vertically integrated public companies that generated,

transmitted and distributed electricity to consumers. However, the liberalization of

electricity markets, beginning in the UK in the 1980s, has seen the vertical disintegra-

tion and privatisation of the electricity industry, and the creation of new markets for

energy, ancillary services and capacity [5].
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Figure 1.1: Total capacity (a) and proportion of capacity (b) of global non-hydro
renewable power by continent. Source: US Energy Information Administration.

During the same period, the mix of generation technologies began to change. Elec-

tricity generation has been dominated by large synchronous machines, driven by ther-

mal power stations since the early 20th century, and power systems have been designed

to accommodate them: high voltage transmission systems carry power form large power

stations to load centres, where it is distributed to customers at a lower voltage. How-

ever, the beginning of the 21st century has seen the rapid growth of renewable electricity

generation in developed countries motivated by the threat of climate change [6,7], and

the desire of states to reduce reliance on energy imports [8]. The growth of renewable

generation capacity is illustrated in Figure 1.1, and wind capacity in Figure 1.2.

Weather dependent renewable generation such as wind and solar power are variable

and often spread over large geographical areas, connecting to power systems at the

distribution level. The rise in so-called distributed generation poses a challenge to

power systems that were built for large synchronous machines connected close to load

centres. Electricity markets and power system operators are having to adapt to ever

increasing penetration of variable generation, and one key component of that transition

is forecasting variable generation [9].
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Figure 1.2: Global wind power capacity by continent. Source: US Energy Information
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1.2 Wind Power Forecasting

Given that the wind, and therefore the power generated by wind turbines, is variable,

and that electricity supply must meet demand in real time, the need for wind power

forecasts is clear [10]. Furthermore, since the day-to-day running of today’s liberalised

energy industry is marketised, all participants in the industry are exposed to the effects

of increasing the penetration of variable generation. With financial penalties for over-

/under-delivering on generation, and repercussions for electricity price and balancing

costs, forecasting is critical to economic operations, as well as technical [9]. Wind farm

developers and operators also have an interest in future production to minimise lost

energy capture when performing maintenance, protect assets against extreme weather

events and identify locations with an abundant wind resource [11].

Power Systems

To optimally utilise variable renewable generation, such as wind power, power systems

and the way they are operated are changing: transmission networks must connect

distant renewable generation to load centres, distribution networks must accommodate

small and medium scale generation, and operators must consider the stochastic nature

of this new variable generation when performing scheduling tasks. Many decisions

relating to power system operation are increasingly informed by forecasts on a variety

of temporal and spatial scales, and the upper limit on the level of variable generation

that can be accommodated by a given power system will ultimately be set by the skill of

these forecasts, and their users. A recent survey of US power system operators identifies

the growing importance of forecasting for reliable grid operations, with one of the key

findings being that “wind power forecast[ing] is the most important pre-requisite for

successfully integrating wind energy into power systems” [12].

More specifically, integrating wind power and maintaining security of supply re-

quires careful management of transmission constraints and scheduling of conventional

generation, which to be done most efficiently, requires accurate intra-day and day-ahead

forecasts [13–16]. Furthermore, it is well established that moving to a probabilistic ap-

proach is of as much benefit as moving from naive to advanced point forecasting [17,18].
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Reducing the requirement for fast-responding back-up generation is critical in realis-

ing the maximum de-carbonisation wind power offers and requires skilful forecasts and

decision-making [19–21].

Electricity Markets

Electricity markets were designed for dealing with mainly dispatchable generation and

fairly predictable demand allowing for extensive forward contracting accompanied by

a real-time mechanism to facilitate power system operation. As recently as a decade

ago their future evolution in many developed countries was expected to remain in

this paradigm, as demonstrated by a 2005 paper describing US electricity markets

and their future evolution that includes no mention of the potential role of renewable

generation [22]. Meanwhile, Denmark was learning how to operate liberalised power

markets with high volumes of wind power, occasionally approaching 100% instantaneous

penetration [23].

Today, with many governments committed to reducing CO2 emissions, electricity

markets in developed countries are increasingly having to operate with, and plan for,

high renewable energy penetration. Participants in existing markets rely on forecasts

to make optimal trading decisions, while new market structures are being proposed to

address some of the failings of markets designed for conventional generation [24–28].

Operations and Maintenance

Finally, maintenance costs contribute a significant portion to the cost of energy over the

lifetime of a wind farm. Onshore, operations and maintenance (O&M) costs typically

make up around 5% of the cost of energy, whereas offshore the figure can be much

higher, from 20% to 30% or more, depending on the distance of the farm from shore.

Wind forecasts allow non-essential maintenance to be scheduled to minimise lost energy

capture onshore, and are essential for scheduling maintenance offshore where safety

constraints on vessel operation and crew transfer are very restrictive.
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1.3 Objective of Research

It is the objective of this research to develop new prediction techniques for application

to short- and very-short-term wind power forecasting. Forecasts on this time scale are

typically made using recent measurements as an input to a statistical model. Numerous

such models are described in the literature, each with its own merits. However, spatial

techniques, where measurements made at multiple locations are used as inputs, are

underdeveloped and have many attractive benefits. Capturing spatial correlation has

been shown to improve forecast skill in small scale studies and is here expanded and

generalised to national-scale forecasting problems. Furthermore, by including wind

direction, which can have a large influence on wind farm power generation and is

often overlooked, it is believed that significant improvements in short-term wind power

forecasting can be made.

Spatial models may also be built to directly forecast power production removing

the need to model wind farm power curves. This is investigated in conjunction with a

method for producing very-short-term forecasts with a much higher spatial dimension,

a problem facing power systems operators with very high wind penetration.
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State-of-the-Art in Wind Power

Forecasting

The history of wind power forecasting can be traced back to the late 1970s when it

was identified as a key requirement for operating large scale wind power plants [29].

A good example of early work is by Brown et al. [30] who used wind speed forecasts

and a wind turbine power curve to produce forecasts, published in 1984∗. Brown

identified the need to understand how wind might contribute to future ‘multisource’

energy networks, and recognised at this early stage that “once a wind power generator

is supplying power to an energy system, a method of forecasting wind power a few hours

in advance is required to ensure efficient utilization of the power.” Over the following

30 years research activity in this area has expanded, most significantly since the early

2000s, as wind power has been adopted around the world.

Wind power forecasting is regarded as a high priority research area that is expected

to reduce energy and power system running costs, and improve power system reliabil-

ity [12, 32]. The International Energy Agency highlights advances in forecasting in its

2013 technology roadmap [33] using Spain as an example where forecast errors from 1

to 48 hours ahead have reduced significantly between 2008 and 2013. However, it goes

on to stress the importance of further research and development (R&D) in short-term

forecasting saying: “Improving the accuracy of short-term wind forecast is needed for

∗In 1984 the first European Wind Energy Conference was held, Vestas began serial production of a
75kW turbine, and California had installed 8469 turbines with a combined capacity of 609MW [31].
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the operation of wind power plants, especially for electricity markets and the power

system.” As a result, both academic and commercial institutions are investing in fore-

casting R&D and the state-of-the-art is advancing rapidly. Energy forecasting more

generally has grown into a broad and fast moving research area featured in many inter-

national conferences and publications. In 2012, point wind power and load forecasting

challenges comprised the first Global Energy Forecasting Competition [34], and at-

tracted a large number of entries. The 2014 competition expanded to include solar

power and electricity price forecasting, and probabilistic forecasts.

The European Commission funded research project ANEMOS.plus—“Advanced

Tools for the Management of Electricity Grids with Large-Scale Wind Generation”

in partnership with the SafeWind project produced a broad literature review of the

state-of-the-art in short term prediction of wind power in 2011, containing some 386

references, which serves as a starting point for this review [35]. Another extensive re-

view was produced by the Argonne National Laboratory in 2009 [36]. A more compact

review of short-term wind speed forecasting for power system operations is presented

in [37,38]. A brief history of the field is available in [39].

This thesis is primarily concerned with short-term statistical prediction, though

an overview of longer-term and physical methods is offered since there is a degree of

overlap.

2.1 Basis of the Forecasting Problem

2.1.1 Nature of Wind Power Generation

Before proceeding to prediction, it is important to understand the nature of the quantity

that we wish to predict, and the inherent limitations of the problem. The type of

measurements being considered are of importance: wind speed may be recorded at a

single moment in time or averaged over a short period, 10 minute and 1 hour means are

typical for meteorological records [40]; the height at which the measurements are made

and local geography will influence the characteristics of the measured data; and the

reliability and accuracy of the measurement equipment will impact on the predictability
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of the resulting time series [41–43].

Long-term Wind Characteristics

The Weibull distribution [44] is considered the standard for describing wind speed over

long periods of time (typically one or more years) [45], and sites are often characterised

by the parameters of a Weibull distribution. The European Wind Atlas [46], for exam-

ple, provides estimates of the wind resource across Europe in terms of the parameters of

the Weibull distribution. The two parameter probability density function of a Weibull

random variable x is given by

f(x; k, λ) =
k

λ

(x

λ

)k−1
e−( x

λ
)k x > 0 (2.1)

where k > 0 is the shape factor and λ > 0 is the scale factor.

However, other distributions, such as the Gamma distribution, may provide a better

fit at some locations and others have been proposed more recently, such as the M-Rice

wind speed frequency distribution [47]. Directional information is important to con-

sider, particularly in situations where the layout of a wind farm means that the power

produced depends on both wind speed and direction due to wake interactions within

the farm or complex terrain. A number of bivariate distributions for characterising

both wind speed and direction are compared in [48], and similarly analysed in [49].

In the special case of k = 2, the Weibull distribution reduces to the Rayleigh

distribution. This result provides a link to directional representations of the wind since

the Rayleigh distribution describes how the Euclidean norm of two perpendicular i.i.d.

Gaussian variables is distributed. This is demonstrated in Appendix B.1. This result

has been used by some authors to model wind speed and direction as perpendicular

components in Cartesian space which has the pleasing result of supporting Gaussian

processing while maintaining a representative marginal distribution of wind speed.

Variations in wind speed are observed on a variety of scales, as illustrated by the van

der Hoven spectrum [50] in Figure 2.1. The spectrum can be divided into three regions:

the macro-meteorological range, the spectral gap, and the micro-meteorological range.

The macro-scale includes annual variation, synoptic variation (passing weather systems
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Figure 2.1: Van der Hoven spectrum from the original 1957 paper showing (from
left to right) the synoptic, diurnal and turbulent peaks. Measurements were made
at Brookhaven National Laboratory at roughly 100m above ground level.

with a frequency of approximately 4 days), and diurnal variation. The micro-scale

contains the turbulent peak with a frequency of around 1 minute. There is very little

energy in the spectral gap, the region between 10 minutes and 2 hours, which is often

used implicitly to separate diurnal and higher-frequency fluctuations of turbulence.

What is Wind?

Wind, in its simplest sense, is the motion of gas particles that comprise our planet’s

atmosphere; so we could define the wind speed as the speed of those particles, in what

ever direction they happen to be travelling. This, however, would be incredibly difficult

to measure and not of very much use for our needs: a wind turbine with a rotor diameter

of 100m in 10ms−1 wind could interact with of the order of 1030 particles per second

that would neither be travelling at the same speed nor in the same direction.

A different approach is required. As we are motivated by the power produced by

wind turbines, we need only concern ourselves with a wind speed (and later direc-

tion) representative of that which is seen by the wind turbine rotor. Furthermore, in

most cases, it is the behaviour of large groups of wind turbines generating a significant

amount of power that are of interest. Therefore, the high frequency (order ≤ min-
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utes) changes in power output from individual turbines can be negated since they are

smoothed out when considering the aggregate power of a wind farm, or group of wind

farms.

Now that we have an idea of what wind speed might be, the practicality of measuring

it requires some attention. The work-horse of wind measurements for a number of

decades has been the cup anemometer. While other measurement devices are beginning

to be used, LIDAR and sonic anemometers for example, the vast majority of current

weather stations and met masts are equipped with cup anemometers and almost all

historic data sets comprise cup anemometer measurements. A number of standards

exist describing the procedures for calibrating and installing cup anemometers: ASTM

D 5096–02, ISO 17713–1, and IEC 61400–12–1. The latter refers specifically to assessing

the power performance of wind turbines. A review of these and other anemometry

standards is offered in [51].

Cup anemometers have the advantage of being robust and relatively cheap; however,

they suffer from a delayed response to changes in wind speed, and respond quicker to

increases in wind speed than decreases. This results in an over-speeding effect resulting

in an overestimation of the wind speed. Sufficiently fast responding anemometers should

be used for the resolution of measurements being made. Other concerns include the

effect of a vertical wind component and response in cold weather/icing.

Common time scales that are relevant for application to power system operations

are 1 minute, 10 minute and 1 hour mean power generation, and it is the short-term

prediction of wind speed and wind power on these time scales that is considered in this

work. If the measured wind speed is not made at turbine hub height, the wind shear

must be estimated and a correction applied [45]. This must be done carefully as it can

be a significant source of error that should be avoided.

Wind Power Conversion

The amount of power generated by a wind turbine depends on the power in the air

flow incident on its rotor and the efficiency of the conversion process. This power is
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calculated using the power equation

P =
1

2
ρπR2v3Cp , (2.2)

where ρ is the density of the air, R is the rotor radius, v is the wind speed, and Cp is

the power coefficient. The power coefficient is a measure of the aerodynamic efficiency

of the turbine and has an upper limit, called the Betz limit, of Cp,max = 16
27 ≈ 0.593.

This limit is set by the need to allow air from which energy has been extracted to move

away from the rotor, making way for new high-energy air. Modern wind turbines can

achieve aerodynamic efficiency close to 0.55, but after mechanical and electrical losses

this drops to less than 0.5 at the output terminal [10,45].

The cubic relationship with the wind speed only forms part of the full power curve.

The power curve for a modern, utility scale, variable speed, pitch regulated turbine is

made up of 4 parts: 1) below cut-in wind speed (typically ∼ 3 to 4ms−1) where the

turbine does not operate, 2) between cut-in and rated wind speed where the turbine

is operated to maximise Cp and energy capture as in Equation (2.2), 3) above rated

wind speed where the power is limited to the turbine’s rated power, the rating of the

generator, drive train and so on, 4) above some cut-out wind speed (typically ∼ 25ms−1)

the turbine is shut-down to prevent damage [45]. A typical power curve is sketched in

Figure 2.2.

In reality, however, the relationship between wind speed and power is difficult to

model because the conversion process is effected by many external factors such as

mechanical wear, blade erosion, yaw misalignment, and poor quality wind speed mea-

surements, among others. As a result, power curve models can introduce uncertainty

when producing power forecasts and in some cases, particularly very-short-term fore-

casting, it may be preferable to model power alone to remove the need for a power

curve model all together.

2.1.2 Types of Forecast

Wind and wind power forecasts come in a variety of forms to satisfy the end user.

Different decisions are made on different spatial and temporal scales, and forecasts must
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Figure 2.2: Typical power curve for a modern, utility scale, variable speed, pitch regu-
lated wind turbine.

reflect this: distribution system operators may be concerned with individual wind farms

connected to their system, a transmission system operator may be concerned with the

aggregate wind power at different connection points; likewise, there is no need to know

what the wind speed is for every minute of the next day when trading hourly periods of

generation; similarly predicting the next hour’s mean power does not help wind farm

controllers. A brief list of forecast horizons and the decisions they may inform is given

in Table 2.1.

Some decisions can benefit from probabilistic forecasts, such as interval or quantile

forecasts, or from predictions of specific events, such as large changes in power out-

put or crossing some threshold. These different types of forecast are described in the

proceeding text.

Point Forecasts

Point forecasts are the simplest and most familiar type of forecast. They comprise

a single prediction of some future observation, e.g. “the wind speed will be 10ms−1
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one hour from now.” Point forecasts, sometimes called deterministic forecasts, are

favoured by many practitioners because of their ease of use: a non-expert can produce,

communicate and interpret point forecasts with relative ease. Most media that provide

weather forecasts for public consumption will offer a point forecasts for precisely this

reason.

Probabilistic Forecasts

Point forecasts are inherently uncertain, and while they offer a ‘best estimate’ of some

future quantity, they provide no information as to how confident one can be in that out-

come being realised. Probabilistic forecasts offer more information than a point forecast

by providing an estimate of the likelihood of a range of possible outcomes, information

that is essential for optimal decision-making in many situations. Probabilistic forecasts

are the optimal input to decision-making problems with non-symmetric cost functions.

For example, if the penalty for a shortage of wind generation is different to the penalty

for a surplus, then the optimal bid is not the expected power but a quantile [52].

Probabilistic forecasts come in a variety of forms: Quantile forecasts, for instance,

estimate the probability that an observation will exceed some value, e.g. “there is

a 90% chance that the wind speed will be greater than 5ms−1 one hour from now.”

Similarly, an interval forecast predicts the probability that an observation will fall

within some interval. Information pertaining to the full range of possible outcomes

is contained in a predictive distribution, where the full probability density function

for a future observation is estimated, this may take the form of either a parametric

or non-parametric distribution. Zhang et al. provide a more detailed review of these

techniques in [53].

When multiple connected forecasts are required, such as the wind power generation

at several wind farms in the same region, capturing dependence between observations

is extremely important.∗ In these situations scenario forecasts capture both spatial

structures and temporal structures necessary for multi-stage decision making problems.

∗The 2008 financial crisis has been partly attributed to use of Gaussian copulas to calculate the risk
associated with sub-prime mortgage derivatives that strictly assumed the independence of individual
component mortgages, which were in fact deeply connected.
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Over the past 20 years there has been a shift from deterministic to probabilistic fore-

casting in applications from economic and financial risk management to demographic

and epidemiological projections [54]. The ability to quantify the confidence of a pre-

diction is extremely valuable to decision makers and is now a common requirement of

many forecasting tools, including those designed for wind power.

Ramp Forecasts

A large proportion of the errors in wind power forecasting are the result of incorrectly

predicting large changes in power, called ramp events. In general the magnitude of

such changes are forecast well, but the time at which they occur is not, resulting in

large errors [38]. Increasingly, efforts are being made to better predict these events but

they remain a significant challenge [55, 56]. Drew et al. have used reanalysis weather

data to evaluate the effect of building the planned Round 3∗ offshore wind farms in the

UK concluding that the magnitude of ramp events could increase 5-fold by 2025 [57].

Offshore Wind Power Forecasting

The properties of the wind in the offshore environment can be very different to those

onshore. The reduced diurnal heating of the surface and the effect of low roughness

over vast areas on the atmospheric boundary layer mean that the wind does not exhibit

some properties which are familiar onshore [58, 59]. Therefore, authors have proposed

methods specifically for offshore wind power forecasting, such as [60,61]. Rogers et al.

have produced a comparison of prediction accuracy on- and offshore in [62] concluding

that the performance of offshore forecasting lies somewhere between onshore sites with

simple terrain, which can be forecast with relatively high accuracy, and onshore sites

in complex terrain that are more difficult to forecast.

∗The Crown Estate, which owns the seabed around the UK, has leased areas of the seabed for wind
farm development in 3 rounds, to date. Round 3 represents the largest areas with 24GW of capacity
leased to developers. Construction of the first round 3 wind farm, Rampion Offshore Wind Farm,
began in 2015.
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2.2 Physical Models

Numerical weather prediction (NWP) forms the basis of most meteorological forecasts.

NWP involves using observations to estimate the current state of the atmosphere and

oceans in order to compute their future states. The atmospheric model is initialised and

a set of linearised equations describing atmospheric physics, including the Navier-Stokes

equation and ideal gas law, are solved on a 3-dimensional grid. Both the initialisation

of atmospheric parameters and the linearisation of the governing equations are critical

in producing meaningful forecasts.

A number of NWPs covering different regions of the planet are run in several coun-

tries around the world using measurements from weather satellites and radiosondes.

Despite some of the most powerful supercomputers in the world being used for NWP,

spatial and temporal resolution are limited. Weather forecasts are typically issued with

forecast horizons of between 7 and 10 days; with spatial resolution ranging from 5km to

25km; and temporal resolution of either 1 or 3 hours. Longer term climate forecasts are

made but at much lower resolution. Due to the vast computational expense of NWPs,

forecasts are typically issued every 6 or 12 hours [63,64].

In Europe, some national weather service providers run NWPs including the UK

Met Office, Météo-France and Deutcher Wetterdienst, Germany. The European Centre

for Medium-Range Weather Forecasts (ECMWF) is an intergovernmental organisation

supported by 34 states formed in 1975 to produce medium-range numerical weather

predictions for Europe. ECMWF runs many NWPs ranging from days ahead to months

and seasons. The need for high resolution forecasts has led to the creation of a number

of other European groups producing limited-area, high-resolution NWPs (ALADIN,

COSMO, HIRLAM) [35].

Significant post-processing is required to derive wind power forecast from NWP

outputs. Post-processing NWPs is a large area of research that has lead to the de-

velopment of model output statistics (MOS) which aim to calibrate the forecast where

possible for specific variables or locations. Modelling the wind power conversion process

is necessary and can be a source of additional uncertainty. A review of how NWPs are

used for short-term wind power forecasting can be found in [35].
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A complete wind power forecasting system should utilise both physical and statisti-

cal modelling techniques which is the case for most operational commercial models [36].

Landberg and Troen [65, 66] developed a wind power forecasting tool called Prediktor

which takes NWP wind speed and direction forecasts and transforms them to the local

site before applying a power curve model. Statistical improvement can be achieved

using MOS throughout the process. The Wind Power Prediction Tool (WPPT) has

been developed by the Technical University of Denmark and is operated by the spin-off

company ENFOR [67]. The WPPT uses adaptive recursive least squares estimation of

the parameters of conditional parametric models to find the best connection between

the NWP predicted wind speeds for the site and the measured power for each forecast

horizon. The WPMS model, using neural networks, was developed in Germany and is

used by E.On, RWE and National Wind Power in the UK [68,69]. DNV–GL (formerly

Garrad Hassan) [70] has a forecasting model called GH Forecaster, based on NWP

forecasts from the UK Met Office. It uses multi-input linear regression techniques to

convert from NWP to local wind speeds.

An important technique within NWP is ensemble forecasting, which involves run-

ning the NWP simulations multiple times with the estimates of the initial atmospheric

conditions perturbed and/or different physical models [71, 72]. Ideally, the ensembles

would be thought of as samples from a probability distribution function reflecting the

uncertainty of the unperturbed forecast. The result is a probabilistic forecast from

which the likelihood of different futures can be assessed, while, importantly, capturing

spatial relationships, as discussed by Möller et al. [73], for example. University College

Cork has developed wind power forecasting methodologies based on ensemble fore-

casts [74–77] and produced an operational forecasting system MSEPS (Multi-Scheme

Ensemble Prediction System) based on a 2-step process: in the first step a physical

reference power is computed, and in a second step the reference power is localised sta-

tistically and with the help of weather classes defined by the ensemble weather input.

A large volume of research aiming to improve wind power forecasts using NWPs

has been undertaken over the last decade: Galanis et al. applies a Kalman filter to

NWP data to improve wind and temperature forecasts [78]. Howard and Clark employ
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a physical model to improve forecasts based on local terrain [79]. Khalid et al. use

NWP predictions to supplement an autoregressive power prediction technique in [80]

while Lee et al. use neural networks to produce power forecasts [81]. Raw ensemble

forecasts are un-calibrated and measurements fall outside of the ensemble forecast, as a

result, processes for calibrating ensemble forecasts have been developed. Specifically for

wind power, Sloughter et al. proposes a method for the calibration of the wind speed

output [82], while Pinson proposes the adaptive calibration of the bivariate (u, v)-

wind to improve prediction [83]. A comparison of the COSMO and ECMWF model

applications to short-term wind power forecasting can be found in [84].

In the wind power forecasting track of the 2014 Global Energy Forecasting Com-

petition, the task was to produce day-ahead forecasts of the 1st–99th quantiles of wind

power generation at 10 wind farms on a rolling bases using NWP forecasts and his-

toric power generation as inputs. The top-ranking entries were dominated by machine

learning techniques such as gradient boosting machines and various clustering and op-

timisation algorithms. They will be published in a forthcoming special issue of the

International Journal of Forecasting.

A few examples of NWP based wind power forecasting systems have been high-

lighted here to show the breadth of techniques in the literature; for a more detailed

survey see [36].

2.3 Statistical Methods

For short forecasting horizons statistical methods are superior to physical models for

three reasons. Firstly, NWPs take several hours to produce and are typically only issued

every 6 or 12 hours; so when the forecast is issued, the most recent input measurements

will be several hours old. Secondly, NWP outputs are produced on spatial grids of

varying resolution, not at specific points of interest, such as wind farms. As a result,

spatial interpolation is required to produce forecasts at the location of interest which

adds a further layer of complexity and potential source of error, particularly in complex

terrain. Finally, users requiring very-short-term forecasts with temporal resolution finer

than 1 hour suffer from the same interpolation problems as in the spatial case. For
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these reasons a complete wind power forecasting tool will use statistical methods for

the first 4–8 hours with a smooth transition to physical models for longer horizons.

There are two approaches to statistical wind power forecasting. The first is to fore-

cast power directly, the second is to produce a wind speed (and direction) prediction

and then combine that with a wind turbine or farm power curve model. The latter al-

lows the stochastic wind speed to be separated from the power curve, though modelling

the power curve presents its own challenges.

2.3.1 Linear Methods

The wind is frequently modelled as an autoregressive (AR) process, where the resulting

prediction is a linear combination of past measurements (Appendix A.1), however,

a classical AR process has zero mean and is homoscedastic — the wind speed and

power do not fit these criteria. Therefore, either the wind speed/power time series

must be transformed to meet these requirements or the AR model must be modified to

accommodate them. Furthermore, wind and power time series are non-stationary, that

is to say that their statistical properties change over time.

A popular approach is to fit a standard AR model after removing diurnal and sea-

sonal trends to leave a residual series with the necessary properties [89–92]. Hill et al.

go further by fitting a vector autoregressive model in order to utilise the spatial cor-

relation between geographically separated sites, which is discussed in detail below.

El-Fouly et al. employ an autoregressive approach modelling both wind speed and

direction as independent variables to make predictions for a given day based on one-

year and two-year-old measurements from the same day in previous years [93]. While

the process of removing diurnal and seasonal trends helps, the synoptic trends, which

contain far more energy than the diurnal as illustrated by Figure 2.1, are difficult to

remove since their period is variable. The resulting de-trended time series are therefore

still non-stationary, albeit to a lesser degree.

Others fit an autoregressive moving average (ARMA) model which models trends

in the data, though this still assumes a constant variance [94–100]. Autoregressive inte-

grated moving average (ARIMA) models, which attempt to remove the non-stationary
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part of the wind with an initial differencing step, are described in [101,102]. Pinson et al.

have proposed Markov-switching models in [61, 103] whereby multiple autoregressive

models are fit, each representing different regimes, and either switched between (in the

first case) or mixed (in the second). These sophisticated approaches consistently out-

perform simple AR based methods for the locations they are demonstrated on, however,

few have been generalised to model and forecast multiple locations. A user interested

in forecasts at multiple locations would have to identify the most suitable method for

each location and run them in parallel.

Multi-scale analysis is used as an alternative to de-trending in [104] through a

combination of second-order blind identification and autoregressive modelling. Many

approaches based on wavelet analysis have been presented [105–109], as well as the

empirical mode decomposition [110]. While such approaches are attractive and utilise

powerful tools for analysing and modelling wind and power time series, in the forecasting

paradigm they suffer from lag effects when combining forecasts on multiple scales which

negatively impact accuracy.

Temperature and vertical wind component are included in the hypercomplex ap-

proach suggested in [111–113] where the 3D wind vector and air temperature or at-

mospheric pressure are modelled as quaternions and predictions are made using linear

predictors estimated by stochastic gradient methods. These methods have been very

successful for ultra-short-term forecasting (<1 second) with potential applications in

wind turbine control, however, they have not been demonstrated on time scales relevant

to power system operation. Exogenous variables, such as temperature and pressure,

have been incorporated on longer time scales in conditional models and are surveyed

in the next section.

2.3.2 Adaptive and Conditional Approaches

The characteristics of both the wind and wind power conversion process are not static;

they vary slowly over time. The behaviour of the wind changes with season and the

seasons themselves vary significantly from year to year. Further, the wind turbine power

curve changes as the condition of the turbine varies with wear and maintenance [114].
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Models used for forecasting should capture, or at least track, these changes in order to

produce consistent and skilful forecasts. Linear models can often be updated recursively

by algorithms such as the recursive least squares (RLS) and least mean squares (LMS)

algorithms [115, 116], though these approaches will only track slow changes, and with

some lag.

Conditions experienced by a wind farm may also change quickly, if the wind direc-

tion shifts, or if the local weather system changes. Wind farm power curves can depend

strongly on wind direction and change over time, as illustrated by Jeon and Taylor

in [117,118], who use conditional kernel density estimation to produce wind power den-

sity and quantile forecasts from wind speed and direction forecasts. Regime-switching

methods model these different behaviours separately and can utilise exogenous vari-

ables, such as wind direction, to switch between models [61,103,119–124].

Alternatively, regression coefficients may be replaced with coefficient functions to

directly model a specific feature [125], such the motion of weather systems [126].

2.3.3 Machine Learning and Neural Networks

The complex non-linear nature of wind and wind power time series has motivated

the application of machine learning algorithms to the prediction problem. In general,

these algorithms attempt to learn the response of some unknown, potentially non-linear

system linking some set of know inputs to known outputs. Once the system have been

learnt, outputs may be estimated given some new input.

Artificial neural networks are statistical learning algorithms inspired by biological

neural networks and many variations of the basic approach have been used to produce

wind and wind power forecasts, for example [127–130]. Neural networks have been used

to forecast wind time series in [131–134], for example, and are combined with a fuzzy

logic model in [135]. Wan et al. produce 1-hour-ahead wind power interval forecasts

using an extreme learning machine [136].

Neural networks are easily extended to the complex domain to capture directional

information. Gautama et al. develops a test for detecting the complex-valued nature

of time series in [137] and it is applied to hourly mean wind speeds by Goh et al.
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in [132]. It is found that the wind time series being examined exhibits the properties of

a complex-natured time series and that there are, therefore, advantages to modelling

the wind as a complex-valued time series. Goh et al. go on to demonstrate that their

neural network approach does indeed perform better when treating the wind a complex

time series than as a Cartesian bivariate one.

Other learning algorithms have also been employed, often in combination with other

statistical techniques: a genetic algorithm is used to train a fuzzy model for prediction

in [138], and a clustering algorithm trains the fuzzy model in [139]. Markov chains [140]

and data mining [141] have been utilised, among others, plus various hybrid approaches

such as [142,143].

Neural networks offer an easy to implement solution to a challenging problem but

are not favoured by many in the statistical community since they are effectively a ‘black

box’ offering little insight into why some variants perform well and others do not. The

wind and wind power prediction problem is set in the real world and governed by

physical processes that are well understood. It is preferable to use that understanding

to design and develop predictors, rather than relying on abstract learning algorithms.

2.3.4 Spatio-temporal Prediction

Many forecast users, particularly utility-scale wind generators and power system oper-

ators, are not simply concerned with the production of individual wind farms but with

their entire generation portfolio in the case of utilities, or all wind on the power system

in the case of power system operators (aggregated by region or feed-in point to trans-

mission system). In both cases it is desirable to model and forecast spatio-temporal

features in order to improve the accuracy of point forecasts and to evaluate the un-

certainty of aggregate generation forecasts. Spatio-temporal wind speed and direction

forecasting offers the possibility of improved speed prediction if multiple locations are

modelled by capturing the propagation of changes in wind speed to downwind sites, as

demonstrated in [128].

Hering and Genton compare three spatial models in [122] that incorporate wind

direction. In the first technique, also described in [121], different regimes are identified
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associated with different wind directions. Independent prediction models are then

applied to the wind speed depending on the current regime, determined by the most

recent measurements. In the second, the sine and cosine of the wind direction are

included in a linear predictor of wind speed, removing the need to identify specific

regimes. The third model predicts perpendicular Cartesian components of the wind

vector by fitting a bivariate skew-t regression model to the de-trended components. The

third method produces less accurate wind speed forecasts, but it is the only method

that forecasts wind direction. The same methods are applied to an economic dispatch

model in [144] set in West Texas and demonstrate significant economic advantage vs.

simple AR and persistence forecasts.

The three models described in [122] use information from three locations positioned

favourably along the Colombia River Gorge. Likewise, [128] use a measurement station

positioned up-wind in the prevailing wind direction to improve forecasts at a specific

location. More general models, such as those described in [92], use measurements taken

across an entire country with no specific knowledge of the topography at individual

sites to improve predictions using vector-valued linear models. For large-scale spatial

forecasting automated model fitting, numerical robustness and computational efficiency

become serious considerations. This aspect is addressed by Sanandaji et al. who build

a low-cost sparse spatio-temporal predictor inspired by techniques from compressive

sensing [145] and by this thesis.

Capturing spatial information in probabilistic models is also an important problem.

The potential benefits of using spatial information were realised in [146] and have been

investigated more recently in [147, 148]. An alternative type of probabilistic forecast

is proposed in [140] where the probability of the wind speed increasing, decreasing

or staying the same in the next time step is predicted. Other contributions have

sought to build efficient probabilistic spatial models with sparse Gaussian random fields

[147,149,150] which can be sampled to produce ensemble-type forecasts.
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2.4 Reference Models and Forecast Evaluation

In the most general sense, the best forecast is that which allows the end user to make

decisions in some optimal fashion, often to minimise costs or maximise returns, as in

energy trading, for example. Ideally, the predictor should optimise the cost function of

the higher level problem. Probabilistic forecasts are optimal inputs to decision-making

problems under uncertainty but modelling complex decisions can be challenging. In-

stead, many practitioners use point forecasts to inform their decisions. These forecasts

are commonly evaluated based on analysis of forecast errors and compared to the per-

formance of reference models. However, it should be noted that the forecast with

the lowest average error does not necessarily produce the greatest economic return, as

illustrated by Bessa et al. in [151].

The simplest reference model is the persistence forecast. This method supposes

that the value of xt at some future time t+∆ will be unchanged from time t, i.e.

x̂t+∆ = xt , (2.3)

where ·̂ denotes a forecast. The forecast error is given by

et = x̂t − xt . (2.4)

This simple technique performs (perhaps surprisingly) well for short-term wind and

wind power prediction largely due to the relatively slow evolution of weather phenom-

ena. The performance of the persistence forecast is sometimes considered a measure of

the ‘predictability’ of a particular time series and is still used by some practitioners in

the energy industry today for short-term forecasting. Any complex forecasting tech-

nique must demonstrate robust improvement over persistence to justify the additional

cost and effort of its use.

Point forecasts are typically evaluated in terms of root mean squared error (RMSE)
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and/or mean absolute error (MAE) given by

RMSE =

√

√

√

√

1

N

N
∑

t=1

e2t (2.5)

and

MAE =
1

N

N
∑

t=1

|et| , (2.6)

respectively. The RMSE is a common cost function in linear prediction problems since

its minimisation presents a quadratic problem that can be solved either directly through

differentiation, or iteratively by gradient decent, for example. However, MAE may be a

more representative measure of utility in situations where the economic cost of a forecast

error is proportional to the magnitude of the error, as opposed to its square. Both of

these scores are often presented in terms of percentage improvement over persistence.

Further analysis can be performed to assess the quality of point forecasts. Linear

predictors often assume normal i.i.d. errors and this assumption may be tested to

validate the original assumption. Deviation from assumed properties may indicate

the presence of systematic biases but lead to developments that could improve the

predictor’s performance.

In Chapters 3 and 4 of this thesis both wind speed and direction are forecast by mod-

elling the wind as a complex random variable. Analysing the errors in this framework

requires some thought since the complex prediction error alone is neither representative

of the accuracy of the speed part of the prediction or the directional part, it is a combi-

nation of both. For example, a perfect prediction of the wind speed with an erroneous

direction would be indistinguishable from a perfect direction prediction with erroneous

speed without some additional information, as illustrated in Figure 2.3. Obviously, the

speed and direction components can be separated and errors calculated, but predictors

are formulated by minimising the complex prediction error, or a function thereof.

Probabilistic forecasts require slightly more involved validation since their skill is

a combination of two properties: sharpness and reliability. A sharp forecast is one

with narrow prediction intervals, a reliable one produces forecasts with the empirical
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R

I

Error in Magnitude

Vector Error

Figure 2.3: Illustration of the difference between the errors in magnitude associated
with speed only prediction methods, and the vector error calculated after predicting
the complex wind vector. The speed and vector prediction are illustrated by the dashed
circle and arrow, respectively, and the actual wind speed and direction by the solid circle
and arrow.

probabilities that match the nominal ones, for example the 25% quantile should be

exceeded 25% of the time [152, 153]. Sharpness can be quantified by the continuous

rank probability score (CRPS) or the log score. For a cumulative predictive distribution

F̂t(x) of random process X at time t, the CRPS is given by

CRPS =
1

T

T
∑

t=1

∫ 1

0
{F̂t(x)− 1(x ≥ xt)}2dx (2.7)

where xt is the realisation of X at t and 1(·) is the indicator function. CRPS rewards

sharpness and reduces to MAE when the forecast is deterministic. The log score is the

mean negative log of the predictive distribution f̂t(xt) evaluated at the corresponding

observation,

Log Score =
1

T

T
∑

t=1

− ln
(

f̂t(xt)
)

. (2.8)

Due to its logarithmic nature, the log score is not as robust as the CRPS: measurements

in the tails of the predictive distribution are heavily penalised and the score returns ∞
if a single measurement falls where the predictive distribution is numerically zero.

A reliable or calibrated forecast f̂ of a real process with observed distributions
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(gt)t=1,2... satisfies

1

T

T
∑

t=1

gt ◦ f̂−1
t (p) → p (2.9)

for all p ∈ (0, 1); i.e. if the event X = x is forecast with probability p, it must be

observed with probability p. Reliability is usually evaluated using reliability diagrams,

which are plots of nominal probabilities vs. observed outcomes [154,155].

2.5 Summary and Discussion

Wind power forecasting has received a lot of attention from both academic and commer-

cial enterprises over the past 30 years or so. A vast array of techniques have emerged

capable of producing informative forecasts on a wide range of spatial and temporal

scales. Forecasting beyond the next few hours typically requires large amounts of input

data, often generated by physical models such as NWPs, whereas for shorter horizons

statistical methods are preferred.

Until recently, the majority of short-term predictors were location specific, having

been designed to perform well on a specific data set or at locations that exhibit certain

properties, such as strong prevailing winds, reliable diurnal trends and so on. Others

are more general, such as neural network based techniques, but can be computationally

expensive and unreliable.

Ultimately, the needs of the end user will determine the appropriate forecasting

methodology for a given problem, and it is perhaps for this reason that many utilities,

power system operators and weather forecasting organisations employ staff specifically

to meet their wind power forecasting needs, when they can be justified economically.

In a recent survey of power system operators, respondents were asked to rate the im-

portance of a variety of forecast products: next-hour forecasts were ranked as highly

important by 70% of respondents, more than any other product in the survey, fol-

lowed by ramp forecasts (62%) and ensemble forecasts (50%) [12]. However, a number

of companies still rely on persistence for short-term forecasts because it is simple to

implement and robust.

Several approaches have been proposed to capitalise on the spatial correlation be-
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tween the wind speed and direction at geographically distributed sites, however, there

is a lack of low-cost, easy to implement techniques that could be applied on a regional

or national scale. Furthermore, there is increasing demand for very-short-term forecasts

to aid the balancing of power systems with high wind penetration. When considering

many 10s or 100s of locations, sparsity is desirable for numerical robustness and com-

putational efficiency. All of these factors are combined in the smart grid paradigm of

highly interconnected and communicative power systems which will require a suite of

forecasts to operate most effectively and realise their potential.

This thesis aims to address some of the emerging and future needs for short- and

very-short-term wind power forecasts on a large spatial scale. Throughout, scalability,

ease of implementation, and computational efficiency guide the development of new

statistical techniques for producing wind and wind power forecasts.

2.6 Main Contributions of this Thesis

The work presented in this thesis has contributed several new statistical methodolo-

gies to the wind and wind power forecasting community and literature. The focus is

on statistical methods: in the Chapters 3 and 4, linear and non-linear techniques for

short-term spatio-temporal wind speed and direction forecasting are developed, respec-

tively. The aim is to produce low-cost predictors for hourly mean wind speed and

direction up to 6 hours in advance. Spatial modelling can be used to capture spatio-

temporal structures and produce accurate forecasts with relatively low computational

demands compared to physical modelling. Wind speed and direction are modelled as

the magnitude and phase of complex numbers and multiple spatial locations are used

to build multi-channel filters∗ for prediction, inspired by techniques from signal pro-

cessing. These filters are then conditioned on external variables, time of year [156–158]

and wind direction [159], and methods for non-linear parameter estimation are investi-

gated [160,161].

In Chapter 4 very-short-term power forecasting is considered. A method for pro-

∗Multi-channel filtering (signal processing) is very closely related to multi-variate time series analysis
(statistics). The Wiener filter, which is used throughout this thesis, is mathematically equivalent to
the maximum likelihood estimate of a vector autoregressive model.
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ducing parametric probabilistic power forecasts is developed for the spatial case using

the logit-normal distribution and vector autoregressive modelling [162]. Motivated by

the need to produce such forecasts on a very large spatial scale, where fitting traditional

VAR is impractical, a sparse parametrisation of VAR models is pursued. In addition, a

novel exponential smoothing scheme is developed to better track changes in volatility.

31



Chapter 3

Linear Wind Prediction

The study of linear time series as produced a vast array of powerful tools for analysing,

synthesising and predicting real world observations [85]. These tools are so revered, in

fact, that often a lot of effort is put into linearising time series so that they approximate

linearity and these tools can be employed. It suffices here to define a linear time series

as an ordered list of numbers, each of which can be written as a weighted sum of the

others. A technical definition is included in Appendix A.1. In this chapter, wind speed

and direction are modelled as the magnitude and phase of a complex random variable

and assumed linear. Linear tools are then used to predict wind time series.

The reach of linear methods extends to the analysis of multiple time series, such

as measurements of the same variable made simultaneously at multiple locations. Un-

derstanding the relationship between such time series can allow inferences to be made

about others out-with the original group (in techniques such as spatial interpolation

or kriging [88]), or to inform the prediction of one times series using information from

another [86]. Throughout this chapter, and thesis, the latter approach is employed and

is called spatio-temporal prediction, since spatial information from the recent past is

used to inform predictions.

In this chapter spatio-temporal predictors for hourly mean wind speed and direction

are made from 1 to 6 hours ahead at multiple locations. Forecasts on this time scale

are important when predicting the power produced by wind turbines for power system

operation, energy trading and maintenance scheduling [9,10,163]. When working with
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large volumes of data computational efficiency and the numerical properties of calcula-

tions are important considerations. Here, low-complexity predictors are developed that

are simple to implement and fast to compute so that they may be easily employed as

part of more computationally demanding problems, such as generation scheduling or

energy trading, and by non-expert users.

Inspired by methodology developed in the field of signal processing, the wind speed

and direction are modelled via the magnitude and phase of a complex-valued time series

[132,137,164,165]. A multichannel adaptive filter is set to predict this signal, based on

its past values and the spatio-temporal correlation between wind signals measured at

multiple geographical locations. Furthermore, complex-linear processing is significantly

less computationally costly than bivariate approaches, such as those in [122].

In Section 3.1, motivated by the annual cycle of the seasons, a cyclo-stationary

predictor is developed based on the Wiener filter — an optimal minimum mean squared

error predictor, followed by a similar predictor conditioned on the wind direction, rather

than season, in Section 3.2. Finally, the numerical properties of complex-linear and

widely-linear predictors are compared in Section 3.3.

3.1 Seasonal Prediction

This section aims to produce a low-complexity predictor for the hourly mean wind speed

and direction from 1 to 6 h ahead at multiple sites distributed around the UK. The wind

speed and direction are modelled via the magnitude and phase of a complex-valued time

series. A multichannel adaptive filter is set to predict this signal on the basis of its past

values and the spatio-temporal correlation between wind signals measured at numerous

geographical locations. The filter coefficients are determined by minimising the mean

squared prediction error. To account for the seasonal variation of the wind time series

and the underlying system, a cyclo-stationary Wiener solution is developed, which is

shown to produce an accurate predictor [166]. An iterative solution, which provides

lower computational complexity, increased robustness towards ill-conditioning of the

data covariance matrices (since the need to invert the covariance matrices is avoided),

and the ability to track time-variations in the underlying system, is also presented.
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The approach is tested on wind speed and direction data measured at various sites

across the UK. Results show that the proposed approaches are able to predict wind

speed as accurately as state-of-the-art wind speed forecasting benchmarks while simul-

taneously providing valuable directional information.

3.1.1 Data Model and Adaptive Prediction

Complex Valued Wind Data Model

Wind speed and direction across M geographically separate sites are embedded in a

vector-valued complex time series x[n] ∈ C
M , where the speed and direction of the

wind form the magnitude and phase of the complex samples, and n is the discrete time

index. The measured time series from individual spatial locations form the channels

of a multichannel data model. Since the real and complex components of the wind

signal are connected, i.e. x[n] is a complex process [165], it is both sensible and simple

to pursue complex processing. As well as the mathematical economies of complex

processing, the complex representation offers geometrical insight without the need for

a bivariate coordinate system.

Based on the expectation operator E{·}, we define the space-time covariance matrix

Rxx[n, τ ] = E{x[n]xH[n− τ ]} , Rxx[n, τ ] ∈ C
M×M , (3.1)

which contains auto-correlation sequences of the M wind signals on its main diagonal,

and the cross-correlation sequences between different site measurements on the off-

diagonals. The vector xH[n] denotes the conjugate transpose of x[n]. In the case of

wide-sense stationary data, the space-time covariance matrix will only depend on the

lag parameter τ and takes on the Hermitian form Rxx[τ ] = RH
xx[−τ ].

With respect to wind speed and wind direction, the former is likely non-stationary

and non-linear, while the latter can be volatile and depend heavily on the physical

characteristics of the measurement site. Furthermore, the seasonal and diurnal trends

that characterise our human experience of the wind are themselves variable. Below,

the potential non-linear nature of the wind is ignored and linear processing is pursued.

34



Chapter 3. Linear Wind Prediction

The assumption of stationarity is dropped for a quasi-stationary behaviour, whereby

the space-time covariance matrix can be assumed to be stationary — and therefore

only dependent on the lag parameter τ — for sufficiently short time windows [167].

Optimal Mean-Squared Error Predictor

We consider the problem of predicting ∆ samples ahead, based on M spatial measure-

ments in x[n] and a time window containing N past samples for each site. Therefore,

the prediction error can be formulated as

e[n] = x[n]−
N−1
∑

ν=0

WH[n, ν]x[n−∆− ν] (3.2)

= x[n]−WH
nxn−∆ , (3.3)

with

W n =


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
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














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∈ C
MN×M , xn =























x[n]

x[n− 1]

...

x[n−N + 1]























∈ C
MN . (3.4)

The matrices W [n, ν] ∈ C
M×M describe the predictor’s reliance on all spatial measure-

ments taken ν + ∆ samples in the past, at time instance n. Specifically, [W [n, ν]]p,q

addresses the influence of the measurement at site p onto the prediction at the qth

location. In order to simply use the Hermitian transpose operator in (3.3), W [n, ν]

contains the complex conjugate prediction filter coefficients.

The error covariance matrix derived from (3.3), Ree[n] = E{e[n]eH[n]} ∈ C
M×M ,

is obtained by taking expectations over the ensemble, and in itself may be varying with

time n. Note that in case of stationarity, the dependency of both W n and Ree[n] on

n vanishes. We will carry forward n since it is well known that the wind signal is

non-stationary and develop a cyclo-stationary solution in Section 3.1.1.
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Calculating Ree[n] using (3.3) yields a quadratic expression in W n,

Ree[n] = E
{

(x[n]−WH
nxn−∆)(x

H[n]− xH
n−∆W n)

}

,

= Rxx[n, 0]− E{x[n]xH
n−∆}W n −WH

nE{xn−∆x
H[n]}+WH

nE{xn−∆x
H
n−∆}W n ,

= Rxx[n, 0]−Rxx[n]W n −WH
nR

H
xx[n] +WH

nRxx[n]W n , (3.5)

where

Rxx[n] =

[

Rxx[n,∆] , Rxx[n,∆−1] , . . . , Rxx[n,∆−N+1]

]

, (3.6)
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. (3.7)

We assume that x[n] is stationary over at least 2∆ samples, which is reasonable since

∆ = 1, ..., 6 hours and the annual cycle of seasons has a fundamental period of 8760

hours. As a result, Rxx[n] is Hermitian and positive semi-definite [168]. The matrix

Rxx[n] admits a unique solution to minimise the mean square error,

W n,opt = argmin
Wn

trace{Ree[n]} . (3.8)

It can be shown that trace{Ree[n]} is quadratic in W n, such that the solution to (3.8)

can be found by matrix- and complex-valued calculus [169]. Finding the minimum

requires equating the gradient w.r.t. the unconjugated predictor coefficients in W ∗
n to

zero. We utilise results from [169] which show that for constant matrices A and B the

expressions

∂trace{AWH
nB}/(∂W ∗

n) = BA (3.9)

and

∂trace{AW nB}/(∂W ∗
n) = 0 (3.10)
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hold. Applying this, and using the product rule for differentiation of the quadratic

term in (3.5), yields

∂

∂W ∗
n

trace{Ree[n]} = −RH
xx[n] +Rxx[n]W n . (3.11)

Finally, setting the gradient on the right had side of (3.11) equal to zero yields the

optimal predictor coefficients that minimise trace{Ree[n]},

W n,opt = R−1
xx

[n]RH
xx[n] , (3.12)

which is the well-known Wiener-Hopf solution [170,171].

Cyclo-stationary Solution

The cyclo-stationary solution is based on the assumption that windows of data of

length L+ 1 are approximately stationary, and furthermore, that the statistics of that

period are the same during the equivalent window in all years. The covariance matrix

Rxx[n, τ ] is estimated by calculating the expectation using only data in the quasi-

stationary window centred on n from each year of available training data. In the

estimation of Rxx[n, τ ], assume cyclo-stationarity, i.e. Rxx[n, τ ] = Rxx[n− kT, τ ], with

k ∈ N and T the fundamental period, i.e. 1 year. On the basis of cyclo-stationarity

and data available for K past years, the estimation of the covariance matrix for time

n is calculated as

R̂xx[n, τ ] =
1

K(L+ 1)

K
∑

k=1

( L
2
∑

ν=−L
2

x[n− kT − ν]xH[n− kT − ν − τ ]

)

+
2

L

L
2
∑

ν=1

x[n− ν]xH[n− ν − τ ] . (3.13)

The optimal prediction filter for time n can then be calculated as

W n,opt = R̂−1
xx

[n]R̂H
xx[n] . (3.14)
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Figure 3.1: Diagram illustrating input data used for the estimation of the cyclo-
stationary covariance matrix at time index n.

The input data for the estimation of the cyclo-stationary covariance matrix at time

index n is illustrated in Figure 3.1.

Determining the window length L is a trade-off between consistency of performance

and excess error caused by the inclusion of mismatched statistics. The window must

be short enough to capture the common properties of the season but also long enough

to smooth the effects of extreme events from individual years.

Iterative Prediction Filter

As an alternative to the Wiener-Hopf solution defined by (3.12), the quadratic MSE cost

function has motivated lower-cost iterative approaches such as the method of steepest

descent where

W n+1 = W n − µ
∂

∂W ∗
n

trace{Ree[n]} , (3.15)

i.e. the algorithm steps in the direction of the negative gradient of the cost function

in proportion to the learning rate, µ. Amongst iterative schemes, Widrow’s stochas-

tic gradient technique called the least-mean square (LMS) algorithm [172] has proven

simple and robust, whereby Ree[n] is replaced by the poor instantaneous estimate

R̂ee[n] = e[n]eH[n]. The differentiation ∂
∂W ∗

n
trace{e[n]eH[n]} = −xne

H[n] leads to the

straightforward update equation

W n+1 = W n + µxne
H[n] . (3.16)

Assuming a sufficiently small value of µ, the iterative nature of (3.16) averages out the

gradient noise that results from the poor estimation of Ree[n].

For the stationary case, selecting µ presents a trade-off between convergence speed
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and mean squared error. For a large value of µ within the learning rate bounds [170,171],

the filter coefficients will quickly converge towards the Wiener-Hopf solution, however

the gradient noise contributes inaccuracy toW which negatively impacts the predictor’s

performance. Choosing a smaller µ reduces the effect of noise on the filter coefficients

— reducing excess MSE — at the cost of convergence speed.

Under non-stationary conditions, the optimal filter coefficients are time dependent;

the LMS algorithm will track this dependence, albeit with some lag [173]. Now the

trade-off when choosing µ lies between accurate tracking and minimising lag. Conver-

gence speed is still also a consideration. The tracking ability and relative simplicity of

the LMS algorithm offer a powerful and computationally inexpensive predictor com-

pared to other similar algorithms [174,175].

3.1.2 Testing and Results

Data Used for Testing

The proposed approaches are tested on wind data provided by the British Atmospheric

Data Centre, which comprises of recordings over 6 years — from 00:00h on 1/3/1992 to

23:00h on 28/2/1998 — obtained from 13 sites across the UK as detailed in Figure 3.2.

The measurements are taken in open terrain at a height of 10m, and comprise hourly

averages that are quantised to a 10◦ angular granularity and integer multiples of one

knot (0.515ms−1) [2]. For this study, only sites with near complete continuous data

are used and any prediction errors affected by a missing or erroneous data points

are discarded. For the purposes of calculating data covariance matrices, missing and

erroneous data was again discarded and the normalisation factors in (3.13) adjusted

accordingly. Predictions and errors affected by missing data are thus mitigated. The

performance of each filter is assessed by measuring the RMSE and improvement over

the persistence method, which is a common benchmark for such forecasts [176].

Wiener Solution

The estimated stationary Wiener filter for the complete data set was calculated on the 5

year training data and tested on the remaining year of data for comparison to the cyclo-
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Figure 3.2: Geographical distribution of 13 Met. Office stations supplying test data.

stationary Wiener and LMS approaches. In order to implement the cyclo-stationary

approximation, the optimum window size L that best approximates stationarity with

a sufficiently consistent estimation was found through numerical testing, shown in Fig-

ure 3.3, to be L equivalent to 15 weeks. Data windows from some sites are closer to

being stationary than others and this is reflected in the final filter’s performance.

While the notation in (3.13) suggests to re-calculate the Wiener filter coefficients at

every time step, for the sake of computational complexity, the coefficient set was only

updated once every 24 time steps, i.e. once a day. In tests this proved to be sufficiently

short compared to the much longer data window L, and incurred no penalty in terms

of performance.

Least Mean-Squares Algorithm

As discussed in Section 3.1.1, there are trade-offs to be made when choosing the filter

length, N , and the learning rate, µ, of the LMS algorithm. The filter length and learning
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Figure 3.3: Cyclo-stationary filter performance depending on the window length L in
terms of MSE averaged across all locations and normalised w.r.t. a stationary Wiener
filter (L = 52 weeks) for all look-ahead times ∆.

rate are chosen to minimise excess MSE caused by poor tracking of the non-stationarity

and the effects of noise.

In order to characterise the tracking ability of the LMS algorithm, the filter weights

are initialised with the Wiener-Hopf solution of Section 3.1.1, using (3.12) and the

training data. Based on the resulting tracking performance in Figure 3.4 for a combi-

nation of values for the filter length N and the learning rate µ, approximate optimal

performance is determined for N = 5 and µ = 2.5 × 10−5, which have been employed

for all further tests with the LMS predictor below.

Figure 3.5 shows the typical variation of the filter coefficients during the year of

test data. Clearly the LMS algorithm fails to match the tracking ability of the cyclo-

stationary Wiener filter. This should not come as a surprise since each LMS update

relies on only very recent information whereas the cyclo-stationary filter additionally

relies on information from previous weeks and years.
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Speed RMSE (ms−1) Velocity RMSE (ms−1)

Site ∆ CSWF LMS VAR(2) Persistence CSWF LMS Persistence

Boulmer

1 1.09 1.09 1.15 1.20 1.54 1.55 1.64

2 1.50 1.49 1.57 1.71 2.08 2.09 2.35

3 1.76 1.74 1.83 2.06 2.41 2.43 2.85

4 1.97 1.95 2.03 2.34 2.68 2.70 3.27

5 2.14 2.12 2.18 2.56 2.91 2.95 3.64

6 2.30 2.27 2.30 2.73 3.12 3.17 3.95

Coningsby

1 0.84 0.85 0.87 0.93 1.22 1.22 1.32

2 1.17 1.18 1.21 1.36 1.67 1.67 1.92

3 1.40 1.41 1.45 1.68 1.98 1.99 2.38

4 1.58 1.60 1.64 1.94 2.23 2.24 2.77

5 1.74 1.76 1.80 2.17 2.45 2.46 3.09

6 1.87 1.91 1.93 2.37 2.63 2.65 3.37

Leuchars

1 1.08 1.08 1.09 1.15 1.52 1.52 1.59

2 1.49 1.49 1.50 1.63 2.07 2.07 2.25

3 1.77 1.75 1.76 1.97 2.43 2.44 2.74

4 2.00 1.98 1.98 2.25 2.72 2.74 3.14

5 2.20 2.18 2.17 2.50 2.98 3.01 3.48

6 2.37 2.36 2.32 2.71 3.20 3.24 3.77

Shawbury

1 1.01 1.00 1.03 1.10 1.43 1.42 1.56

2 1.37 1.33 1.38 1.54 1.90 1.89 2.20

3 1.62 1.56 1.60 1.85 2.23 2.23 2.67

4 1.83 1.77 1.79 2.10 2.50 2.51 3.07

5 2.01 1.94 1.95 2.32 2.73 2.76 3.41

6 2.15 2.10 2.09 2.51 2.93 2.98 3.70

Mean Across
All Sites

1 1.11 1.11 1.15 1.20 1.64 1.64 1.74

2 1.51 1.50 1.52 1.66 2.20 2.20 2.42

3 1.78 1.77 1.78 1.98 2.59 2.59 2.92

4 2.01 2.00 1.98 2.24 2.90 2.91 3.34

5 2.20 2.20 2.14 2.46 3.16 3.19 3.70

6 2.36 2.37 2.28 2.64 3.39 2.43 4.01

Table 3.1: Root mean-squared speed and vector prediction errors (RMSE) from four
selected sites, and the mean taken across all thirteen sites in the model for the cyclo-
stationary Wiener filter (CSWF), least mean-squares algorithm (LMS), vector autore-
gressive (VAR(2)) and persistence.
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Figure 3.4: Tracking performance of LMS algorithm for different filter lengths when
initialised with the stationary Wiener solution.

Results

Prediction results from the cyclo-stationary Wiener solution and LMS algorithm are

shown in Table 3.1, while improvement over persistence is shown in Figure 3.6 along

with the stationary Wiener filter for comparison. The LMS algorithm’s tracking ability

provides a clear improvement on the stationary Wiener filter though not as much as

the cyclo-stationary Wiener solution. The largest improvements are seen at greater

look-ahead times where the performance of the persistence method worsens.

Time series of 1-hour-ahead CSWF and LMS complex valued wind forecasts are

illustrated in Figure 3.7, and 1- and 6-hour-ahead wind speed forecasts are illustrated

in Figures 3.8a and 3.8b.

To compare the proposed approaches with others, it is noted that for non-site-

specific spatial multichannel prediction to date only wind speed has been considered.

Compared to the complex prediction error el[n] of the predicted estimate x̂l[n] at a site

l, i.e. the lth component in (3.3), an error for the speed-only component, es,l[n], can be

defined as

es,l[n] = |xl[n]| − |x̂l[n]| . (3.17)
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Figure 3.5: Variation of a typical Cyclo-stationary, LMS and stationary Wiener auto-
correlative filter coefficient during prediction year.

However, note that due to Schwartz’ inequality, |es,l[n]| ≤ |el[n]|, such a comparison is

difficult.

The accuracy of the cyclo-stationary Wiener filter’s wind speed prediction for spe-

cific look-ahead periods, ∆, has been calculated and is compared to the mathematically

similar vector autoregressive (VAR(2)) method of [92] in Figure 3.9a. The autoregres-

sive coefficients of the VAR(2) model are static and calculated using the Yule-Walker

approach on the de-trended test data [86]. The annual and diurnal trends were de-

termined by fitting Fourier series to the test data for individual sites: a three term

series for the annual trend and four two-term series for the diurnal trend, one for each

season [92]. The improvement of the wind vector forecast over persistence is illustrated

in Figure 3.9b.

We see that the performance of the speed part of the cyclo-stationary Wiener filter’s

prediction is comparable to the speed-only VAR(2) method overall, though the perfor-

mance of both approaches varies from site to site. The directional Wiener filter shows

greater improvement over persistence but it should be noted that this is improvement

in the directional speed forecast error for both the CSWF and persistence and therefore

cannot be directly compared to speed-only forecasts.
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Figure 3.6: Improvement over persistence for the stationary Wiener filter, cyclo-
stationary Wiener filter and LMS filter.

3.1.3 Summary

The aim of this work was to propose a low-cost spatio-temporal adaptive filter for pre-

dicting the hourly mean of both wind speed and direction, based on spatial information

drawn from geographically separated sites. With prediction methods of comparable

complexity to date either restricted to single-site data but with multiple parameters

captured e.g. in complex valued time series, or restricted to speed prediction only when

based on multiple measurement locations, the proposed method CSWF fills a gap in

research.

We have developed a new cyclo-stationary Wiener filter which is motivated by

the approximately annual cycles in the data, and leads to the estimation of a cyclo-

stationary covariance matrix, which is assumed to be quasi-stationary over sufficiently

small intervals. The calculation of this covariance matrix aims to keep the data window

sufficiently short in order to discard out-dated samples from the estimation, while the

cyclic inclusion of several years’ of data enhances consistency of estimates. An iterative,

stochastic gradient predictor has also been suggested, which utilises a multichannel least

mean squares algorithm. The LMS is motivated by its significantly lower complexity
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Figure 3.7: Real and imaginary parts of the 1-hour-ahead wind forecasts for Boulmer
starting at 3pm on 2nd August 1998.

compared to the Wiener solution, its enhanced numerical stability due to the avoidance

of matrix inversions, and its favourable tracking performance.

The proposed methods have been tested on wind measurements obtained at 13

locations in the UK over a period of 6 years. The results have been assessed against

persistence, and generally show superior performance of the cyclo-stationary Wiener

filter over a stationary version and the LMS, which supports the assumption of cyclo-

stationarity of the data. The cyclo-stationary Wiener filter and LMS provide speed and

vector predictions with greater accuracy than persistence and the simplicity of the LMS

algorithm is found to come at only a small cost in vector prediction accuracy and no

cost in speed prediction accuracy. Finally, the performance of the proposed methods

is compared to the speed-only spatial prediction VAR(2), as described in [92]. The

proposed filters are found to produce wind speed predictions of comparable accuracy

to VAR(2) while, significantly, also providing directional information. The general

applicability of the cyclo-stationary Wiener filter and the multichannel LMS prediction

methods provide a valuable alternative to other statistical techniques which are often

have to be tailored to local conditions or are computationally demanding.
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(a) 1-hour-ahead wind speed forecasts for Boulmer.
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(b) 6-hour-ahead wind speed forecasts for Boulmer.

Figure 3.8: 1- and 6-hour-ahead wind speed forecasts for Boulmer starting at 3pm on
2nd August 1998.
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(a) Wind speed forecast error improvement compared to persistence.
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(b) Wind vector forecast error improvement compared to persistence.

Figure 3.9: Improvement over persistence of VAR(2) and cyclo-stationary Wiener pre-
dictions for four sites. Both the velocity and speed error of the Wiener predictions are
shown for comparison to the speed-only VAR(2) method. Site (i): Boulmer, Site (ii):
Coningsby, Site (iii): Leuchars, Site (iv): Shawbury.
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3.2 Continuous Directional Regimes

In this section a conditional predictor is developed: the predictor’s coefficients are re-

placed with coefficient functions which depend explicitly on the wind direction. This

approach is motivated by the desire to capture causality in the spatio-temporal relation-

ship between locations; the propagation of weather fronts across a region for example.

Direction has been captured in complex-valued neural networks, for example in

[132, 133, 135], but these only model individual spatial locations. Others have devel-

oped regime-switching approaches which predict the wind speed depending on which

direction-based regime the most recent measurements fall into, for example [121, 123,

124]. Two bivariate models are described in [122] that predict wind speed and direction;

the first is regime-based and models the wind speed and direction, while the second

models perpendicular Cartesian components of the wind speed. All of these predictors

are trained on a continuous series of the most recent measurements made at multiple

locations. Other regime-switching approaches, such as the Markov-switching autore-

gressive model proposed in [61], show that regime determination and selection may be

data-driven and need not depend on an exogenous variable.

Furthering the development of complex-valued prediction, reported in Section 3.1

and [157], this work aims to extend the regime-switching type approaches, which com-

monly contain 2 or 3 fixed regimes (though the predictor for each regime is commonly

adaptive) specific to the target prediction site. By introducing the concept of continu-

ous directional regimes, an adaptive spatial predictor is developed which is optimised

at regular intervals for the current wind conditions at multiple sites on a national scale

based on the wind’s behaviour during periods of similar conditions in the past.

The data model and approach to spatial prediction are introduced in Section 3.2.1

and the minimum mean squared error predictor and proposed continuous directional

regime predictor are derived in Sections 3.2.1 and 3.2.1. The testing procedure and

results are presented in Section 3.2.2 and a summary is provided in 3.2.3.
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3.2.1 Data Model and Spatial Prediction

At discrete time n, the wind speed and direction at M locations are embedded as the

magnitude and phase of a complex valued vector x[n] ∈ C
M . The spatial covariance

matrix is defined based on the expectation operator, E{·}, asRxx[n, τ ] = E{x[n]xH[n−
τ ]}. Where xH[n] denotes the Hermitian transpose of x[n] and τ is a general lag

parameter.

It is well known that wind speed and wind direction are likely non-stationary (has

time-varying probability distribution) and otherwise non-linear; both can be volatile

and, direction particularly, can depend heavily on the physical characteristics of the

measurement site. Furthermore, the seasonal and diurnal trends that characterize our

human experience of the wind are themselves variable. In the succeeding text, we ignore

the potential non-linear nature of the wind and restrict ourselves to linear processing

but drop the assumption of stationarity for a quasi-stationary behaviour, whereby the

space-time covariance matrix can be assumed to be stationary—and therefore only

dependent on the lag parameter τ—for sufficiently short time windows [167].

MMSE Predictor

Consider again the problem of predicting ∆ samples ahead while minimising the mean-

squared prediction error (MSE), based on M spatial measurements in x[n] and a time

window containing N past samples for each site. The prediction error can be formulated

as

e[n] = x[n]−
N−1
∑

ν=0

WH[n, ν]x[n−∆− ν] (3.18)

= x[n]−WH
nxn−∆ , (3.19)
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with
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
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




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


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




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


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
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
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∈ C
MN .

(3.20)

The matrices W [n, ν] ∈ C
M×M describe the predictor’s reliance on all spatial measure-

ments taken ν +∆ samples in the past, at time instance n.

Following the same analysis as Equations (3.5)–(3.12) yields the Wiener solution

W n,opt = R−1
xx

[n]RH
xx[n] . (3.21)

Continuous Directional Regimes

To condition the predictor on wind direction, the time dependent covariance matrix

Rxx[n, τ ] is estimated by including only historic data for periods when the wind di-

rection was similar to that of, or in the same directional regime as, the most recent

measurements. A continuous directional regime refers to the sliding range of angles, 2Θ,

centred on the most recent measurement of wind direction. Each mini-series of N + 1

samples (corresponding to the concatenation of x[n] and xn−∆ in (3.19)) contributing

to the estimation of W n,opt are assumed to be jointly stationary.

Each historic measurement x[i] that is in the same directional regime of the most

recent measurement must be accompanied by its N preceding samples which may not lie

within the current regime, therefore define R̃xx[n, δ, τ ] = Rxx[n−δ, τ ] before proceeding.

The estimation of the spatial covariance matrix can now be written as

R̃xx[n, δ, τ ] =
1

|P [n]|
∑

i∈P [n]

x[i− δ]xH[i− δ − τ ] , (3.22)
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where |P [n]| is the cardinality of the set P [n] containing the time indexes p that satisfy

∣

∣

∣

(

argx[p]− argx[n]
)

mod (−π, π]
∣

∣

∣ < Θ , (3.23)

where argx[i] ∈ (−π, π] and argx[n] denotes the circular mean of argx[n].

Using this covariance matrix, Equation (3.5) is rewritten as

R̃ee[n] = R̃xx[n, 0, 0] − R̃xx[n]W n −WH
n R̃

H
xx[n] +WH

n R̃xx[n]W n , (3.24)

where

R̃xx[n] =

[

R̃xx[n, 0,∆] , R̃xx[n, 0,∆+1] , . . . , R̃xx[n, 0,∆+N−1]

]

,(3.25)

R̃xx[n] =























R̃xx[n,∆, 0] . . . R̃xx[n,∆, N−1]

R̃xx[n,∆+1,−1] R̃xx[n,∆+1, N−2]

...
. . .

...

R̃xx[n,∆+N−1,−N+1] . . . R̃xx[n,∆+N−1, 0]























. (3.26)

Finally the Wiener-Hopf solution (3.21) becomes

W̃ n,opt = R̃−1
xx

[n]R̃H
xx[n] , (3.27)

By estimating the spatial covariance for a specific directional regime, the propa-

gation of changes in wind speed and direction from upwind to downwind sites can be

captured. The inclusion of mismatched information corresponding to periods during

which the wind direction was significantly different to the present, which would have

the effect of smoothing, or at least skewing the directional dependence of the predictor,

is avoided.

The regime specific optimal predictor can be recalculated at each time step or at

regular intervals to reduce computational expense at little cost in accuracy.
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3.2.2 Testing and Results

The proposed method will be compared to the cyclo-stationary Wiener filter (CSWF) of

Section 3.1 and [157], and persistence. Persistence predicts that the future wind speed

will be the same as the most recent measurement. Like the direction based approach

described in this section, the CSWF also make a quasi-stationary assumption but this

time based on the cyclic seasonal behaviour of the wind; the space-time covariance is

estimated using historic data from the same season as the current prediction.

The cyclo-stationary covariance matrix is estimated as

R̂xx[n, τ ] =
1

K(L+1)

K
∑

k=1







L
2
∑

ν=−L
2

x[n− kT − ν]xH[n− kT − ν − τ ]







+
2

L

L
2
∑

ν=1

x[n− ν]xH[n− ν − τ ] , (3.28)

where L is the length of each cyclo-stationary window, K is the number years of training

data being used, and T is the period of the cyclo-stationary, i.e. 1 year. For the dataset

in question, L = 20 weeks was found to be optimal and K = 5 to make use of all

available training data.

Test Data

The data used for testing is from the Hydra dataset [3] of hourly mean potential wind at

multiple locations across the Netherlands, shown in Figure3.10. Data from 2001–2005

inclusive is used as training data and data from 2006 is used for testing.

The measured wind speed has been corrected for the effects of shelter from buildings

or vegetation. The resulting potential wind is an estimate of the wind speed that could

have been measured at 10m height if the station’s surroundings were free of obstacles

and flat with a roughness length equal to that of grass onshore (0.03m) and water

offshore (0.002m). For more information on this process see [3].

This transformation aids spatial prediction by removing biases present at individual

measurement locations that would otherwise interfere with the spatio-temporal corre-
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lation of the data. The procedure is simple to implement once information regarding

the terrain surrounding a weather station is known.

In order to assess the performance of the proposed predictor on spatial datasets of

different sizes, it is tested first on 4 central locations and then on larger datasets with

sites added progressively beginning with those closest to the original 4, illustrated in

Figure 3.11.

Results

The range of wind direction in a regime, Θ, is taken to be 2π
3 since the performance at

this range is found by numerical testing to yield better results than π
3 and π. Given the

large range of wind direction, the improvement in prediction is perhaps best thought of

as due to the exclusion of mismatched data, rather than the inclusion of well matched

data. The number of historic samples, |P |, that contribute to the estimation of the

covariance matrix for a given regime ranges from 33 230 to 37 043 depending on sites

in the data model and the wind direction.

The order of regression N is taken to be 3 since any more significantly increases

the computational complexity for negligible reduction in prediction error. For the same

reason, the covariance matrix is only recalculated every 24 time steps, i.e. once per

day.

The performance of the 1-hour-ahead (∆ = 1) forecast in terms of root mean

squared error (RMSE) for the CDR and CSWF predictors is plotted in Figure3.11 for

data models containing information from between 4 and 27 sites. The proposed CDR

predictions are consistently more accurate than the CSWF, but only by a small margin.

There is a clear reduction in RMSE at all prediction locations as the amount of

spatial information is increased. Particularly large improvements are seen at specific

sites when new data from nearby locations is added; for example, at site 260 when sites

240, 248 and 256 are added to the data model. Site 249 also sees marked improvement

when a number of surrounding sites are included in the data model. Time series plots

of the 1-hour-ahead predictions produced by predictors built using 4 and 27 sites are
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Figure 3.10: Map of the Netherlands showing the location of weather stations and their
reference numbers.
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Figure 3.11: Root Mean Squared Error (RMSE) for 1-hour-ahead forecast at sites,
labelled by station number, for data models containing 4 to 27 sites.

illustrated in Figures 3.12 and 3.13 showing complex-valued wind and wind speed,

respectively.

The performance of the directional predictor is compared to persistence for look-

ahead times from 1 to 6 hours in Table 3.2. The CDR is an improvement on persistence

at all look-ahead times, with approximately twice the reduction in RMSE for the 27

site data model compared to that containing only 4 sites.

3.2.3 Summary

This work proposes a new spatio-temporal predictor for hourly mean wind speed and

direction at multiple measurement locations. Inspired by approaches which define fixed,

discrete regimes based on wind direction, an adaptive predictor based on continuous

direction regimes (CDR) is derived and tested, and shown to produce accurate forecasts
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Figure 3.12: Real and imaginary parts of the 1-hour-ahead wind forecasts for site 248
(Wijdenes) starting at 3pm on 2nd August 2006. Predictions from a model containing
4 sites and a model containing 27 sites are displayed.
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Figure 3.13: 1-hour-ahead wind speed forecasts for site 248 (Wijdenes) starting at 3pm
on 2nd August 2006. Predictions from a model containing 4 sites and a model containing
27 sites are displayed.
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RMSE (ms−1)

Persistence
Data Model

Location ∆ 4 Sites 27 Sites

248: Wijdenes

1 1.68 1.59 1.44

2 2.26 2.10 1.87

3 2.69 2.50 2.22

4 3.05 2.83 2.54

5 3.36 3.12 2.84

6 3.63 3.36 3.10

260: De Bilt

1 1.37 1.23 1.09

2 1.73 1.53 1.34

3 2.03 1.79 1.58

4 2.28 2.01 1.80

5 2.51 2.21 2.00

6 2.70 2.37 2.18

273: Marknesse

1 1.55 1.35 1.23

2 2.05 1.74 1.53

3 2.46 2.09 1.82

4 2.81 2.39 2.10

5 3.11 2.66 2.37

6 3.37 2.88 2.61

275: Deelen

1 1.66 1.43 1.32

2 2.13 1.78 1.61

3 2.51 2.09 1.88

4 2.82 2.35 2.14

5 3.10 2.59 2.37

6 3.34 2.80 2.58

Table 3.2: Comparison of CDR Root Mean Squared Error at the 4 sites in the smallest
data model to persistence and when included in a larger data model at look-ahead
times from ∆ = 1 to 6 hours.
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for look-ahead times of 1 to 6 hours.

The CDR is a spatial covariance-based minimum MSE predictor, it is innovative in

its selection of training data in real time to exclude mismatched historic data based on

the most recent measurements. This approach was motivated by the idea that spatial

dependence between wind speed measurements at different locations depends on the

wind direction. The spatial covariance matrix is estimated using only data from periods

during which the wind direction was within a fixed range of its present direction from

which the adaptive predictor is calculated.

The new predictor is tested on the Hydra dataset and compared to persistence and

the cyclo-stationary Wiener filter, another spatial-covariance-based adaptive predictor.

The CDR is found to produce forecasts which are a significant improvement on per-

sistence and consistently more accurate than the CSWF, if only by a small margin.

Furthermore, it is shown that the prediction error is reduced as more spatial informa-

tion is added to the data model.

While it is relatively crude, the proposed method performs well and provide encour-

aging support for the future refinement of this type of approach, perhaps building-in

constraints on wind speed or choosing specific measurement sites to improve prediction

at some target location.

3.3 Augmented Wiener Filter

So far in this chapter, wind speed and direction have been forecast in a complex-linear

framework with the goal of producing simple and efficient predictors that capitalise on

spatial information. Various approaches have been developed to condition the predictor

on physical conditions: season and average wind direction. In this final development,

the structure of the input data is examined for the possibility of sacrificing some com-

putational efficiency for improved performance.

Linear operations have been applied to complex quantities (then termed strictly

linear or C-linear) in exactly the same way as to real ones, but with some limitations
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that must be appreciated. Consider the C-linear transformation

y = kx, x, y, k ∈ C (3.29)

with x = xr + jxi and y = yr + jyi where xr, xi, yr, yi ∈ R. Writing the product in

terms of its real and imaginary parts







yr

yi






=







Re k −Im k

Im k Re k













xr

xi






(3.30)

and comparing that to the more general R2 transformation







yr

yi






=







M11 M12

M21 M22













xr

xi






(3.31)

illustrates the limitation: the R
2 transformation is only C-linear iff M11 = M22 and

M12 = −M21. The complex equivalent of (3.31) is the widely linear transformation

y = k1x+ k2x
∗ . (3.32)

Detailed discussions on widely linear processing can be found in [164,165,177].

Wind measurements have been modelled as C-linear and cyclo-stationary in Section

3.1 and [157], and as C-linear and conditionally stationary in Section 3.2 and [159] with

computational efficiency in mind. However, in order to quantify any improvements in

performance that could be achieved by sacrificing complexity, this section explores a

widely linear model, which comes at the expense of doubling the filter order.

The data model is described in Section 3.3.1 and the minimum mean squared error

predictor is derived in 3.3.1, with the cyclo-stationary estimation of the covariance

matrices outlined in 3.3.1. The data used for testing and test results are presented in

Section 3.3.3 and a summary is provided in 3.3.4.
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3.3.1 Data Model and Prediction

At discrete time n, the wind speed and direction at M locations are embedded as

the magnitude and phase of a complex valued vector x[n] ∈ C
M . The spatial co-

variance matrix is defined based on the expectation operator, E{·}, as Rxx[n, τ ] =

E{x[n]xH[n − τ ]}, where xH[n] denotes the Hermitian transpose of x[n] and τ is a

general lag parameter.

Furthermore, in widely linear processing it is useful to also define the complementary

covariance matrix based on the expectation operator as R̃xx[n, τ ] = E{x[n]xT[n− τ ]}.
In addition, by considering the augmented vector x[n], which is the concatenation of

x[n] and its conjugate, the augmented covariance matrix is defined as Rxx[n, τ ] =

E{x[n]xH[n− τ ]},

Rxx[n, τ ] = E

















x[n]

x∗[n]







[

xH[n− τ ] xT[n− τ ]

]











=







Rxx[n, τ ] R̃xx[n, τ ]

R̃∗
xx[n, τ ] R∗

xx[n, τ ]






. (3.33)

Notice that since Rxx is positive semi-definite, and therefore has a non-negative deter-

minant, the limit |Rxx|2 ≥ |R̃xx|2 follows and sets an upper bound for the determinant

of R̃xx.

It is well known that wind speed and wind direction are likely non-stationary and

non-linear, both can be volatile and, direction particularly, can depend heavily on the

physical characteristics of the measurement site. Furthermore, the seasonal and diurnal

trends that characterise our human experience of the wind are themselves variable.

In the succeeding text, the potential non-linear nature of the wind is ignored and

linearity is assumed. The assumption of stationarity is dropped for a quasi-stationary

behaviour, whereby the space-time covariance matrix can be assumed to be stationary

— and therefore only dependent on the lag parameter τ — for sufficiently short time

windows [167].
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MMSE Predictor

We consider the problem of predicting ∆ samples ahead while minimising the mean-

squared prediction error (MSE), based on M spatial measurements in x[n] and a time

window containing N past samples for each site, plus the complex conjugates of the

same. Therefore, the prediction error can be formulated as

e[n] = x[n]−
N−1
∑

ν=0

(

PH[n, ν]x[n−∆− ν] +QH[n, ν]x∗[n−∆− ν]
)

(3.34)

= x[n]−WH
nxn−∆ , (3.35)

with

W n =








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






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




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


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



, xn =
























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





















x[n]

x[n− 1]
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x[n−N + 1]

x∗[n]

x∗[n− 1]
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x∗[n−N + 1]






























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




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











(3.36)

The matrices P [n, ν],Q[n, ν] ∈ C
M×M describe the predictor’s reliance on all spatial

measurements and their conjugates, respectively, taken ν + ∆ samples in the past, at

time instance n.

The error covariance matrix derived from (3.35), Ree[n] = E{e[n]eH[n]} ∈ C
M×M ,

is obtained by taking expectations over the ensemble, and in itself may be varying

with time n. Note that in case of stationarity, the dependency of both W n and Ree[n]

on n vanishes. We will carry forward n since it is well known that the wind signal

is non-stationary and develop an approximately stationary solution in Section 3.3.1.

Calculating Ree[n] using (3.35) yields a quadratic expression in W n,
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Ree[n] = E
{

(x[n]−WH
nxn−∆)(x

H[n]− xH
n−∆W n)

}

,

= Rxx[n, 0]− E{x[n]xH
n−∆}W n −WH

nE{xn−∆x
H[n]}+WH

nE{xn−∆x
H
n−∆}W n ,

= Rxx[n, 0]−Rxx[n]W n −WH
nR

H
xx[n] +WH

nRxx
[n]W n , (3.37)

where

Rxx[n] =
[

Rxx[n,∆] , Rxx[n,∆+1] , . . . , Rxx[n,∆+N−1] ,

R̃xx[n,∆] , R̃xx[n,∆+1] , . . . , R̃xx[n,∆+N−1]
]

, (3.38)

R
xx
[n] =







Rxx[n] R̃xx[n]

R̃∗
xx
[n] R∗

xx
[n]






, (3.39)

Rxx[n] =























Rxx[n−∆, 0] . . . Rxx[n−∆, N−1]

Rxx[n−∆−1,−1] Rxx[n−∆−1, N−2]

...
. . .

...

Rxx[n−∆−N+1,−N+1] . . . Rxx[n−∆−N+1, 0]























. (3.40)

We assume that x[n] is stationary over at least 2∆ samples. As a result, R
xx
[n] is

Hermitian and therefore positive semi-definite [168]. This property together with full

rank of R
xx
[n] admits a unique solution to minimises the mean square error,

W n,opt = argmin
Wn

trace{Ree[n]} . (3.41)

It can be shown that trace{Ree[n]} is quadratic in W n, such that the solution to (3.41)

can be found by matrix- and complex-valued calculus [169]. Finding the minimum

requires equating the gradient with respect to the unconjugated predictor coefficients

in W ∗
n to zero. We utilise results from [169] which show that for constant matrices A

and B the expressions

∂trace{AWH
nB}/(∂W ∗

n) = BA (3.42)
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and

∂trace{AW nB}/(∂W ∗
n) = 0 (3.43)

hold. Applying this, and using the product rule for differentiation of the quadratic

term in (3.37), yields

∂

∂W ∗
n

trace{Ree[n]} = −RH
xx[n] +R

xx
[n]W n . (3.44)

Finally, setting the gradient on the right-hand side of (3.44) equal to zero yields the

optimum predictor coefficients that minimise trace{Ree[n]},

W n,opt = R−1
xx

[n]RH
xx[n] , (3.45)

which is the well-known Wiener-Hopf solution [170,171].

If the process x[n] is uncorrelated with its conjugate, i.e. R̃xx = 0, all the matrices

Q[n, ν] = 0 and the prediction problem reduces to the C-linear case.

Cyclo-Stationary Covariance Matrix

The cyclo-stationary covariance matrix (and its associated complementary covariance

matrix) is formulated based on the assumption that windows of data of length L are

approximately stationary, and furthermore, that the statistics of that period are the

same during the equivalent window in all years. The covariance matrix Rxx[n, τ ] is

estimated by calculating the expectation using only data in the quasi-stationary window

centred on n from each year of available training data. In the estimation of Rxx[n, τ ],

assume cyclo-stationarity, i.e. Rxx[n, τ ] = Rxx[n − kT, τ ], with k ∈ N and T the

fundamental period, i.e. 1 year. On the basis of cyclo-stationarity and data available
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for K past years, the estimation of the covariance matrix for time n is performed as

R̂xx[n, τ ] =
1

K(L+1)

K
∑

k=1







L
2
∑

ν=−L
2

x[n− kT − ν]xH[n− kT − ν − τ ]







+
2

L

L
2
∑

ν=1

x[n− ν]xH[n− ν − τ ] , (3.46)

and the complementary covariance matrix is calculated in the same way but with

the Hermitian transpositions replaced by standard transpositions. The widely linear

optimal prediction filter for time n can then be calculated by replacing the quantities in

the Wiener solution (3.45) by their estimates derived from (3.46) inserted into (3.38)–

(3.40).

3.3.2 Testing and Results

Test Data

The proposed approach is tested on wind data provided by the British Atmospheric

Data Centre, which comprises of recordings over 6 years — from 00:00h on 1/3/1992

to 23:00h on 28/2/1998 — obtained from 13 sites across the UK. The measurements

are taken in open terrain at a height of 10m and sampled at hourly intervals, comprise

hourly averages that are quantised to a 10◦ angular granularity and integer multiples

of one knot (0.515ms-1) [2].

Widely linear processing is advantageous for improper signals, or cross-improper

in the multichannel case, i.e. if R̃xx 6= 0. The statistical hypothesis test for the

impropriety of complex vectors described in [178] has been applied to the test data. The

test unambiguously rejected the hypothesis H0 : R̃xx = 0 in favour of H1 : R̃xx 6= 0

indicating that the data is improper and therefore that widely linear processing is

appropriate. The test for impropriety is described in Appendix B.3.
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Cyclo-stationary Estimation

In the estimation of the cyclo-stationary covariance matrix, (3.46), K = 5 to make use

of all available training data and the optimal window length L is chosen heuristically

to be 15 weeks. The filter length is chosen to be 2N = 6 since the gains from increasing

it further are negligible.

3.3.3 Results

The widely linear predictor yields improved prediction performance in terms of root

mean squared error for all 13 channels and at all look-ahead times. As one would expect

the new predictor yields greater improvement over its C-linear equivalent at sites with

larger complementary correlation and lower directional variance.

Results from two channels that showed the least improvement (9 and 12) and the

two that showed the most (7 and 10) are detailed in Table 3.3. The distribution of the

arguments of these four channels are illustrated by the histograms in Figure 3.14. The

sites in Figures 3.14a and 3.14b show little improvement and have arguments, or wind

directions, spread evenly over a wide range of angles, whereas the sites in Figures 3.14c

and 3.14d demonstrate large improvement and have very narrow distributions, corre-

sponding to low directional variance and high complementary correlation. Plots of the

1- and 6-hour-ahead predictions are illustrated in Figures 3.15 and 3.16.

The complementary autocorrelation coefficients for all 13 channels are plotted in

Figure 3.17. The two channels showing the least improvement over the C-linear pre-

dictor have relatively small complementary auto-correlation coefficients where as those

showing large improvement have relatively large values. This illustration serves as

a crude indication of significance but should not be interpreted as the cause of the

difference in performance.

3.3.4 Summary

In this section a multichannel widely linear cyclo-stationary Wiener filter for the pre-

diction of hourly mean wind speed and direction from 1 to 6 hours ahead has been

derived and tested. The performance of the proposed filter is compared to that of its
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(a) Site 9: Peterhead Harbour (b) Site 12: Tain Range

(c) Site 7: Leuchars (d) Site 10: Rhoose

Figure 3.14: Circular histograms of hourly-mean wind direction measurements at 4
selected sites from the 1 year of data used for testing.
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RMSE (ms−1) %

Site ∆ CSWF WLCSWF Improvement

9:
Peterhead
Harbour

1 1.73 1.72 0.5

2 2.35 2.33 0.8

3 2.77 2.74 1.0

4 3.11 3.08 1.0

5 3.40 3.37 1.1

6 3.66 3.62 1.0

12: Tain Range

1 1.97 1.96 0.4

2 2.47 2.45 0.6

3 2.78 2.75 0.8

4 3.03 3.00 1.1

5 3.23 3.19 1.2

6 3.41 3.36 1.3

7: Leuchars

1 1.52 1.50 1.1

2 2.07 2.02 2.0

3 2.43 2.36 2.9

4 2.72 2.63 3.4

5 2.98 2.87 3.7

6 3.20 3.07 3.9

10: Rhoose

1 1.67 1.66 0.4

2 2.18 2.15 1.3

3 2.59 2.54 1.8

4 2.98 2.91 2.3

5 3.31 3.21 2.7

6 3.59 3.48 3.0

Table 3.3: Root Mean Squared Errors (RMSE) for the cyclo-stationary (CSWF) and
widely linear (WLCSWF) Wiener filters at look-ahead times (∆) from 1–6 hours.
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Figure 3.15: Real and imaginary parts of the 1-hour-ahead wind forecasts for Boulmer
starting at 3pm on 2nd August 1998.
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Figure 3.16: 1-hour-ahead wind speed forecasts for Boulmer starting at 3pm on 2nd

August 1998.
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Figure 3.17: Scatter plot of complementary auto-correlation coefficients at zero lag for
the 13 measurement locations. The four examples used in Figure3.14 and Table 3.3 are
labelled by site number.

C-linear equivalent to quantify the benefits of increasing computational complexity to

accommodate the widely linear model.

The widely linear model captures information contained in the complementary auto-

and cross-covariance which is inaccessible in a strictly linear formulation. In addition,

the cyclo-stationary estimation of the covariance matrices captures the seasonal be-

haviour of the wind which would otherwise lead to the inclusion of mismatched data in

the estimation of the covariance matrices.

The predictors are tested on wind measurements made at 13 locations distributed

geographically around the UK over a period of 6 years. The widely linear predictor

shows improved prediction versus its C-linear equivalent at all 13 locations. The loca-

tions which exhibit greater improvement are those with the least directional variation
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and associated high complementary auto-correlation.

3.4 Conclusions

This chapter has introduced linear spatial prediction and developed predictors of wind

speed and direction using a complex-valued data model. Linear statistical techniques

facilitate spatial modelling at relatively low computational expense and with robust per-

formance. In addition, the linear framework is highly flexible and allows for predictors

to be conditioned on exogenous variables. Two such conditional approaches have been

developed, one based on the time of year, or season, and the second on average wind

direction over a region. It is demonstrated that the conditional approaches outperform

the non-conditional predictors, as well as an iterative scheme and persistence.

The seasonal characteristics of the wind have been captured by excluding mis-

matched data when training a Wiener filter based predictor for a given time of year.

For the test dataset, well-matched data was determined do be contained in a time win-

dow of length 15 weeks centred on the time of year for which the predictor is being

implemented. The windows of training data are assumed quasi-stationary and multiple

years of historic data are used to ensure stable parameter estimates. The coefficients

of the final predictor vary cyclically with the season and quasi-stationarity of the wind

time series hence the name cyclo-stationary Wiener filter.

The performance of the CSWF has been compared to an adaptive approach, the

LMS algorithm, a static/stationary Wiener filter and persistence. The LMS algorithm

tracks changes in wind dynamics, albeit slowly and with some lag, and the static Wiener

filter does not capture any changes in dynamics. The CSWF performed better than

all the benchmarks of the one-year test period, with the LMS outperforming the static

Wiener filter and persistence. Capturing the seasonal variation in wind dynamics has

a positive effect on the performance of the predictors. Furthermore, directly modelling

the seasonal variation by selecting only relevant training data is shown to be superior

to tracking variation with an adaptive algorithm.

The second method was developed based on conditioning the linear predictor on

wind direction, rather than the time of year. In this case, training data are considered
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to be well-matched if they correspond to a time when the average wind direction over

the region was similar to that at the target time. The proposed predictor depends on

direction in a continuous way, and is termed ’continuous directional regimes’ — this is

a generalisation of so-called ’regime switching’ approach, which trained a small number

of predictors for specific wind directions.

The CDR predictor demonstrates very similar performance to the CSWF, offering

minor improvement at a few sites, and negligible difference in performance at others.

In addition, this study demonstrated that performance of both methods is enhanced

by the inclusion of more spatial information; in other words, the more locations from

a given region in the data model, the more accurate the forecast will be at all sites.

Finally, the complex-linear Wiener filter has been extended to the widely linear

Wiener filter to capture additional covariate information available only when both the

standard input and it’s conjugate are considered. This extension increases the com-

plexity of problem but is shown to yield improved performance at all sites, particularly

those with distinct directional regimes where the complex-linear assumption of rota-

tional invariance is least valid. Sites with distinct directional regimes benefit from the

full widely-linear treatment, whereas those without gain little from the added complex-

ity.

In this chapter the flexibility of linear time series methods has been exploited to de-

velop several predictors that are able to capitalise on long-term physical characteristics

of wind time series. However, it has also exposed the limitations of such approaches:

the performance of a linear predictor depends on the relevance of the data used to

train it to the moment at which it is being tested. In many real world applications, not

least wind modelling, where the assumption of linearity is stretched, breaking a large

problem down into smaller problems which better approximate linearity is wise. Any

linear approach will at some point reduce to a trade off between extracting only useful

covariate information and including a sufficient number of training samples to generate

reliable parameter estimates.

With that in mind, the next chapter explores two non-linear methods: the first

is designed to quickly track changes in wind dynamics, and the second attempts to
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identify and exploit non-linear features in the wind time series.
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Non-linear Wind Prediction

In the previous chapter making linear assumptions about the wind time series allowed

the formulation of optimal predictors in the mean-squares sense. However, the wind

is known to be non-linear meaning that assuming linearity excludes potentially useful

information from the forecasting problem, and possibly introduces systematic biases.

In this chapter, two non-linear predictors are developed in an attempt to better capture

the dynamics of the wind.

The first is based on particle swarm optimisation, a social algorithm inspired by

the behaviour of swarms in nature [179, 180]. While the prediction is still a weighted

(linear) sum of the most recent observations, the weights are determined by the swarm,

which searches for optimal solutions based on the predictor’s recent performance. Each

particle in the swarm is a candidate solution that moves around the problem-space

influenced by its own performance and that of the best performing particle in the swarm.

PSO is suited to problems which are irregular, noisy and change over time, unlike

conventional recursive approaches based on gradient descent or quasi-Newton methods.

It is demonstrated that the ensemble mean of multiple PSO predictors produces more

consistent performance than individual PSO predictors.

The second non-linear approach is based on kernel methods, a relatively new class

of learning algorithm developed initially for classification problems, but with many

other useful applications, including regression and prediction. Kernel methods are

characterised by the use of kernel functions and the so-called kernel trick : samples of
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data are projected into a high-dimensional feature space, via some non-linear function,

where linear processing may be more effective than in the original problem space. The

kernel trick allows this processing to take place without exact knowledge of the non-

linear function since that information is not needed to compute inner-products in the

feature space, only the kernel function is required. Here, kernelised forms of the LMS

and RLS algorithms are used to produce spatio-temporal wind speed forecasts.

The particle swarm optimisation-based approach is presented in Section 4.1, fol-

lowed by kernel methods in Section 4.2. Some general conclusions are then drawn in

Section 4.3.

4.1 Particle Swarm Optimised FIR Prediction

This section describes an ensemble particle-swarm-optimised filtering technique for 1-

hour-ahead prediction of hourly mean wind speed and direction. The performance of

the method is assessed by testing it on data from 13 locations around the UK where it

performs comparably to linear techniques but is able to provide significant improvement

at a subset of locations.

The non-stationarity of the wind can be partially attributed to diurnal and sea-

sonal cycles, which have been modelled in [92,157], among others, by de-trending and

developing conditional predictors, such as the cyclo-stationary Wiener filter of Chap-

ter 3. In addition, synoptic variation (passing weather systems) contributes further

non-stationary features. Linear filters satisfy the requirement for low complexity but

are limited by their delayed response to changes in wind regime, which occur as a result

of changing atmospheric conditions.

Therefore, in this section a prediction method that lifts the linear assumption of

the previous chapter is pursued. In particular, particle swarm optimisation has been

applied to FIR filters for prediction [142, 179, 181, 182]. These adaptive filters exhibit

a good response to sudden changes in wind regime while retaining the ability to track

cyclic non-stationarities that have been captured in the linear case. Furthermore, an

ensemble of particle swarm optimised FIR filters is found to produce the most consistent

1-hour-ahead prediction.
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The wind model and particle swarm optimisation (PSO) algorithm are described in

Sections 4.1.1 and 4.1.2, and the application of PSO to the wind model for prediction

is detailed in Sections 4.1.2 and 4.1.2. Results from testing the proposed algorithm are

presented and discussed in Section 4.1.3 before some conclusions and suggestions for

future work are presented in Section 4.1.4.

4.1.1 Wind Model

The hourly mean wind speed and direction at discrete time index t are modelled as the

magnitude and phase of a complex random variable, y[t], which is the weighted linear

combination of N past measurements of y[t] and some error of unknown statistics,

ǫ[t]. The past measurements of y[t] and the complex prediction coefficients, wτ [t], are

arranged as vectors yt and w[t] of size N , respectively,

y[t] =

N
∑

τ=1

wτ [t]y[t− τ ] + ǫ[t] = wT[t]yt + ǫ[t] , (4.1)

where the coefficients of w[t] form a time dependent FIR filter of length N , and (·)T

denotes the transpose operator.

We choose w[t] to make a prediction, ŷ[t], of y[t] by minimising the prediction error

ǫ[t]. The prediction problem can now be written thus:

ŷ[t] = wT[t]yt , (4.2)

ǫ[t] = y[t]− ŷ[t] . (4.3)

By making assumptions about the statistical properties of ǫ[t], one could proceed to

formulate a number of linear predictors for y[t], however, it is our goal to proceed

without making such assumptions.
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4.1.2 Prediction Based on Particle Swarm Optimisation

Review of Particle Swarm Optimisation

The particle swarm optimisation algorithm [179, 183], is a powerful and intuitive tool

inspired by the social behaviour of swarms in nature. A group of candidate solutions,

or particles, are flown through a given problem space with their velocities influenced

by both their own performance, evaluated by some cost function, and that of the most

successful member of the swarm.

Particle accelerations are randomly perturbed to produce the swarm-like behaviour

observed in nature and to allow for the problem space to be appropriately explored.

The swarm is accelerated towards the best known minima of the cost function while

continuously searching for a better solution.

Algorithm: The ith particle occupies the position pi[t] at time t in a prob-

lem space governed by cost function C(p), has velocity vi[t], memory of

its own previous best position, pi,best, and knowledge of the previous best

position of any particle pg,best. A maximum particle velocity vmax is set to

prevent divergence.

1. Initialise particles with random positions and velocities in the problem

space for time step t = 0. Assign pi,best := pi[0] for all particles and

set pg,best := arg min
pi,best

(

C(pi,best)
)

.

Repeat:

2. For each particle, calculate C(pi[t]):

if C(pi[t]) < C(pi,best) then pi,best := pi[t] ,

if C(pi[t]) < C(pg,best) then pg,best := pi[t] .
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pi[t]

pi,best
pg,best

vi[t− 1]

vi[t]

Figure 4.1: Illustration of the PSO algorithm. The velocity of particle i at time t is
determined by its previous velocity vi[t−1], memory of its previous best position pi,best,
and the locations and the previous best position of any particle in the swarm pg,best.

3. Update velocity, vi[t], and position of each particle:

vi[t+ 1] = c0vi[t] + r1c1(pi,best − pi[t]) + r2c2(pg,best − pi[t]) ,

if vi[t+ 1] > vmax then vi[t+ 1] := vmax ,

pi[t+ 1] = pi[t] + vi[t+ 1] ,

where r1, r2 ∼ U(0, 1) are random weights, c0 is the inertial weight, c1

is the cognition acceleration, and c2 is the social acceleration.

4. Advance one time step and return to Step 2.

The velocity update for the ith particle is illustrated in Figure 4.1.

PSO for FIR Prediction

The algorithm described in Section 4.1.2 is applied to the FIR predictor described by

(4.2). Each particle in the swarm is a candidate for the FIR filter w[t] and at each

time step the best performing particle is selected to make the next prediction. The

problem space is therefore the N -dimensional complex space C
N . Each particle, pi[t],

is a candidate for w[t] and is therefore a complex vector of length N .

The cost function to be minimised is the absolute value of the prediction error,

|ǫ[t]|. When a new measurement is received, the potential past performance of all the
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particles can be evaluated and the best performing particle selected to make the next

prediction. Note that the progression of the algorithm would be exactly the same if

the cost function were ǫ[t]2 since only the ranking of particles is of consequence, not

the relative values of the cost function.

In addition to the basic algorithm, a maximum particle speed, vmax, is enforced to

restrict the step-size of particles in the problem space in order to control the resolution

of the optimization and prevent it from diverging, akin to [182, 184]. If a particle’s

speed exceeds vmax, it is reduced to vmax.

Since the wind signal is non-stationary, the optimal solution is not static in the

problem space and the PSO must be adjusted to allow for out-of-date solutions to

be forgotten. Therefore, the particles are given a finite memory of the previous best

locations pi,best and pg,best.

Finally, due to the stochastic nature of the algorithm, the most consistent prediction

is produced by generating an ensemble of FIR filters, each individual filter optimised

by a separate particle swarm, and taking the mean prediction to be the ensemble

prediction. Therefore, an ensemble of particle swarm optimised FIR (EPSO-FIR) filters

is constructed.

The kth member of the ensemble comprising K members optimises wk[t] to produce

the prediction ŷk[t], as in (4.2). The ensemble prediction, ỹ[t],

ỹ[t] =
1

K

K
∑

k=1

ŷk[t] , (4.4)

is the mean of the individual members’ predictions.

Parameter Choice

The parameters of the PSO have been chosen heuristically, after extensive tests, to

produce appropriate swarm behaviour and to minimise the root mean-squared error

over the prediction period. Each parameter was perturbed in turn and the prediction

error and behaviour of the swarm evaluated visually until a satisfactory parameter set

was arrived at. Table 4.1 details the parameter values.
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Parameter Value

c0 1.5

c1 0.5

c2 0.5

vmax 0.05

No. of Particles 25

Memory 48

Ensemble Size 20

Table 4.1: List of parameter values used in PSO algorithm.

The coefficients of the velocity equation are chosen to produce swarm-like behaviour

to enable the PSO algorithm to function as intended. This requires a balance between

cognition and social acceleration to maintain a healthy particle distribution, and a

sufficiently large inertial weight to ensure that the problem space is adequately explored.

The maximum velocity is chosen to limit the distance each particle can travel in a single

time step.

Each particle is given a memory of 48 time steps, i.e. 48 hours, since this is the

time scale that the weather systems which govern the wind regime move across the

UK, and is therefore an important component scale related to the wind signal’s non-

stationarity. An ensemble of 20 particle swarm optimised filters is found to produce

consistent performance with little to be gained from using a larger ensemble.

4.1.3 Results

In this section the proposed method is applied to wind measurements in order to pro-

duce 1-hour-ahead forecasts. The performance of the ensemble of particle swarm op-

timised FIR filters (EPSO-FIR) is compared to the complex LMS algorithm (CLMS),

[172,185], and a single channel cyclo-stationary Wiener filter (CSWF) described in [156]

as examples of state-of-the-art linear predictors.

All quoted errors are root mean-squared error (RMSE),

RMSE =

√

√

√

√

1

T

T
∑

t=1

ǫ[t]ǫ∗[t] , (4.5)
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Figure 4.2: Locations of the 13 meteorological stations from which measurements have
been used. Numbering corresponds to Table 4.3.

where the prediction error ǫ[t] is the difference between the predicted and measured

wind velocity, i.e. not wind speed or direction independently.

Description of Data

The proposed approach is tested on wind data provided by the British Atmospheric

Data Centre, which comprise hourly measurements made from 00:00h on 1/3/1997 to

23:00h on 28/2/1998 at 13 sites across the UK detailed in Figure 4.2. The measurements

are taken in open terrain at a height of 10m, and comprises hourly averages that are

quantised to a 10◦ angular granularity and integer multiples of one knot (0.515ms−1) [2].

Prediction

Some example time series from individual and ensemble predictions are illustrated in

Figures 4.3 and 4.4. The individual filters are able to track large and fast changes in

the wind speed well but do not do so consistently. This tracking is often accompanied
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Site
Individual Ensemble

PSO-FIR PSO-FIR

Boulmer 2.0568–2.8172 1.6347

Cheivenor 1.7105–2.3543 1.3361

Langdon Bay 1.9056–2.4388 1.6326

Peterhead Harbour 2.1990–2.9896 1.8113

Roose 1.8201–2.1254 1.5887

Table 4.2: Comparison of the RMSE (ms−1) from individual predictors and the RMSE
from the corresponding ensemble prediction

# Site CLMS CSWF EPSO-FIR

1 Boulmer 1.6252 1.6238 1.6347

2 Chivenor 1.7812 1.7790 1.3361

3 Coningsby 1.2939 1.2932 1.3231

4 Gorleston 1.6071 1.6090 1.6462

5 Hawarden Airport 1.5984 1.5948 1.6401

6 Langdon Bay 1.7399 1.7423 1.6326

7 Leuchars 1.5783 1.5717 1.6026

8 Machrihanish 2.0591 2.0532 2.0945

9 Peterhead Harbour 1.7801 n/a∗ 1.8113

10 Rhoose 1.7596 1.7578 1.5887

11 Shawbury 1.5326 1.5314 1.5701

12 Tain Range 2.0262 2.0224 2.1034

13 West Freugh 1.8260 1.8289 1.8626

Table 4.3: Comparison of 1 hour ahead RMSE (ms−1) for the complex LMS (CLMS)
algorithm, cyclo-stationary Wiener filter (CSWF) and the ensemble of particle swarm
optimised FIR filters (EPSO-FIR). The RMSE for the best performing method is high-
lighted in bold.
∗ Implementation of the CSWF was not possible for Peterhead Harbour due to insuffi-
cient training data
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by a significant over-shoot as the filter fails to anticipate the sudden change in gradient.

The inconsistent behaviour of the individual filters is lost when an ensemble of

predictions is averaged, resulting in an overall reduction in error but a systematic lag

in response to large changes in wind speed.

The benefit of taking the mean prediction from an ensemble of PSO optimised

predictors is significant. The RMSE, measured over the entire year of predictions, for

the ensemble prediction is substantially lower than that for the individual predictors.

Some examples are given in Table 4.2.

The results from the EPSO-FIR prediction and the two linear methods are listed

in Table 4.3. The EPSO-FIR is out performed by the other two methods at 10 of the

13 locations by approximately 4%, however, it performs substantially better than both

the CLMS and CSWF at three sites with a 15% reduction in RMSE, notably the three

most southerly sites in the data set, see Figure 4.2.

The results provide evidence that PSO can afford a significant performance advan-

tage for at least some sites in the current setting of the method. Whether there are any

anomalies in those three sites that favour PSO over our previous techniques is difficult

to established based on only three sites, and will be the subject of future investigation.

The behaviour of the particle swarm is good: the distribution of particles is such

that a sensible region of the problem space is explored. The algorithm converges quickly

and tracks the non-stationary wind signal well. The density evolution of the real part

of the first element of the PSO particles is shown in Figure 4.5. Also of note is that the

EPSO-FIR requires very little training data, approximately 2N samples to populate the

filter and converge, compared to the CLMS which, depending on the choice of learning

rate and training strategy, requires several months of data, and the CSWF which needs

several years worth of training data in order to capture the seasonal trends in the wind

data.

4.1.4 Summary and Future Work

The proposed ensemble particle swarm optimised FIR predictor offers similar perfor-

mance to linear techniques of higher complexity, which require substantially more train-
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(a) Chivenor, 31/05/97–09/06/97
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Figure 4.3: Wind speed, individual PSO-FIR prediction and ensemble prediction
(EPSO-FIR) for Chivenor (a) shows 31/05/97–09/06/97, while (b) shows 01/06/97–
03/06/97.
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(a) Rhoose, 31/05/97–09/06/97
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Figure 4.4: Wind speed, individual PSO-FIR prediction and ensemble prediction
(EPSO-FIR) for Rhoose. (a) shows 31/05/97–09/06/97, while (b) shows 01/06/97–
03/06/97.
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Figure 4.5: An example of the density evolution of the real part of the first element of
the particles in a swarm for the first 1000 time steps of prediction.

ing data, and still has great potential for further development. The PSO algorithm is

found to be efficient and converges quickly, tracking the non-stationary wind signal

well.

The potential for tracking large changes in wind speed is of great interest since this

is a weakness of the simple linear and many substantially more complex techniques

which are currently employed for short-term wind prediction.

The performance of this early-development approach is encouraging, and the method

warrants further investigation. Both the complex LMS and cyclo-stationary Wiener fil-

ter saw significant improvement when expanded to process information from multiple

sites simultaneously, taking advantage of the spatial correlation between different loca-

tions, as in Chapter 3 and [157]. An attempt was made to incorporate spatial informa-

tion by simply concatenating the input vector with measurements from other locations

akin to the linear approaches. However, this negatively impacted the performance of

both individual ensemble members and the EPSO-FIR overall.

86



Chapter 4. Non-linear Wind Prediction

Other techniques that have combined PSO with multi-scale analysis such as wavelet

decomposition, [142,181]. These show some promise and could be combined with with

other appropriate PSO variations [182,183,186].

4.2 Kernel Methods

To date, the majority of statistical methods used for wind speed prediction have been

linear despite the well established non-linear nature of the wind. Here a relatively new

and exciting class of learning algorithms called kernel methods is explored. Kernel

methods enable the linear processing of non-linear ‘features’ in some high-dimensional

feature space. This approach retains many desirable properties of linear processing

(fast learning algorithms, unique optimal solution) while making it possible to capture

some non-linearities.

Over the last decade, many kernel methods have been developed and now represent

a distinct class of learning algorithms. Such methods are based on the so-called ‘kernel

trick’, a result which allows the inner product of a non-linear function defined by

a Mercer kernel (Mercer’s Theorem [187]) to be calculated while the function itself

remains unknown [188]. This has advantageous properties in function estimation and

classification; support vector machines, for example, rely on kernel methods.

A direct application of non-linear function estimation is regression, where some

non-linear mapping is followed by linear processing in a high (or infinite) dimensional

feature space. The kernel trick removes the need to identify the mapping associated

with the a given Mercer kernel which may not be available or be difficult to calculate;

the only challenge is selecting an appropriate kernel for the problem at hand.

Several linear methods have been ‘kernelised’ including the popular least means

squares (LMS) [189] and recursive least squares (RLS) [190] algorithms, plus extensions,

[191–194] for example. Reported applications to forecasting include high frequency

wind prediction [194,195] and load forecasting [196], among others.

In this section two kernel methods are employed to produce short-term wind fore-

casts: a simple kernelised LMS (KLMS) algorithm and the kernel RLS (KRLS) of [190]

are studied. The theory of kernel methods is briefly introduced in Section 4.2.1 and

87



Chapter 4. Non-linear Wind Prediction

the prediction problem is stated in Section 4.2.2 followed by descriptions of the KLMS

and KRLS algorithms. A case study is then presented in Section 4.2.3, including how

the algorithms and benchmarks were implemented, and their performance is evaluated.

Finally, conclusions are drawn in Section 4.2.4.

4.2.1 Kernel Methods

Kernel methods are a class of learning algorithm which use Mercer kernels in order to

produce non-linear versions of conventional linear learning algorithms. The kernel trick

allows the inner product of two input vectors in some high-dimensional Hilbert space

H (often called the feature space) to be calculated without explicit knowledge of the

feature vectors (the non-linear projection of the input vectors in H).

First the Mercer kernel is introduced: a continuous, symmetric, positive-definite

function k : X × X → R, X ∈ R
n (or C

n). Mercer’s theorem states that any Mercer

kernel k(·, ·) can be expressed as the inner product of some fixed non-linear function

{φ(x) : X → H1, x ∈ X},

k(xi,xj) = 〈φ(xi), φ(xj)〉H1
, (4.6)

where H1 is a real- or complex-valued reproducing kernel Hilbert space, for which k(·, ·)
is a reproducing kernel and 〈·, ·〉H1

is the corresponding inner product in H1.

Equation (4.6) states that if xi and xj are mapped onto H1 by φ(xi) and φ(xj),

respectively, then the inner product of these functions can be calculated by evaluating

the kernel k(xi,xj), even if the mapping φ(·) is unknown. This result is known as the

Kernel trick.

The Gaussian kernel is frequently used in real world applications with particular

success in time series prediction problems [197]. It is the expansion function for an

infinite dimensional feature space and is given by

k(xi,xj) = exp
(

−||xi − xj||2
)

(4.7)

and used throughout this study [188]. While other kernels could be chosen, the Gaussian
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f̂(·)
xt ŷt

z−∆ +

yt

et

−

Figure 4.6: Non-linear system f(·) set-up to predict the vector quantity yt some ∆
samples ahead based on input xt.

kernel has a physical interpretation as a measure of similarity, which is fitting here,

and has out-performed other candidate kernels (triangular and polynomial) in similar

work [190, 194]. The choice, or construction, of kernels is very much an open problem

and the subject of ongoing research.

4.2.2 Prediction Algorithms

Prediction Set-up

The prediction problem is outlined in Fig. 4.6, whereby the purpose of a potentially

non-linear function f(·) is to look ∆ samples ahead in time, estimating yt ∈ R
n (or

C
n) from the input vector xt ∈ R

m (or C
m) containing space-time data comprising

measurements yt−∆, yt−∆−1, .... The predictor is written

ŷt = f(xt) . (4.8)

The aim in the context of a prediction problem is to find an estimate f̂(·) of f(·)
which minimises the estimation error in the mean squared sense, i.e.

J =
∑

t

|et|2 =
∑

t

|yt − f̂(xt)|2 (4.9)

The linear approximation of this problem is given by f̂(xt) = Axt where A ∈ R
n×m

(or Cn×m) is a coefficient matrix whose entries are to be determined. Many estimation

schemes based on this approximation have been studied.

Alternatively, the approximation can be stated in terms of the mapping φ(·) to

place us in a non-linear setting, writing f̂(xt) = Aφ(xt) with A ∈ R
n×l (or Cn×l). The

properties of Mercer kernels make it possible to derive estimation schemes for f(·) in a
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high l-dimensional feature space without performing calculations in such a space. This

combines simple implementation of linear methods with the advantageous properties

of working with a non-linear mapping.

In the remainder of this section two popular linear algorithms, the least mean

squares (LMS) and recursive least squares (RLS), are presented in their conventional

linear and kernelised forms and discussed. Only wind speed, which is real valued, is

considered therefore in the proceeding sections all quantities are real valued and the

conjugations necessary in the complex case are not included.

Kernel LMS

The LMS algorithm comprises an update scheme based on gradient decent for the

coefficient matrix A given by

A0 = 0n×m (4.10)

et = yt −Atxt (4.11)

At+1 = At + µetx
T
t , (4.12)

where the prediction ŷt = Atxt and µ is the positive learning rate which controls the

trade-off between confidence in individual samples and convergence speed.

When kernelised, the update step (4.12) becomes

At+1 = At + µetφ
T(xt) (4.13)

however to express the algorithm in terms of inner products it is more convenient to

write

At+1 = µ
t
∑

i=1

eiφ
T(xi) (4.14)

which allows the prediction to be written

ŷt = µ
t
∑

i=1

eiφ
T(xi)φ(xt) . (4.15)
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Finally, if φ(·) is chosen to be an expansion function of some reproducing kernel Hilbert

space the inner product in (4.15) can be computed using the corresponding generating

kernel k(·, ·), i.e.

ŷt = µ

t
∑

i=1

eik(xi,xt) . (4.16)

Notice however that as t increases so does the number of terms in the sum required

to produce an estimate. This quickly becomes impractical and must be avoided. We

therefore impose a sparsity constraint, by retaining a finite dictionary, D, of input

vectors. At each time step t the input vector is compared to the dictionary Dt−1; if the

minimum distance between xt and Dt−1 exceeds some sparsity parameter ν it is added

to the dictionary, i.e. Dt := Dt−1 ∪ {xt}, else Dt := Dt−1. The estimation is now

ŷt = µ
∑

i∈Dt−1

eik(xi,xt) . (4.17)

Kernel RLS

The RLS algorithm attempts to minimise the cost function (4.9) at each time step,

rather than the mean squared error as in the LMS algorithm. The cost function is

rewritten as

J(w) =

t
∑

i=1

(yi −Aφ(xi))
2 = |Yt −ΦT

t w|2 (4.18)

where Yt and Φt are output and projected input data matrices, and w is a weight

vector. As before, working in some high dimensional feature space is undesirable, so

writing the optimal weight vector as wt =
∑t

i=1 αiφ(xi) = Φtα the kernel trick allows

the cost function to be expressed as

J(α) = |Yt −Ktα|2 , (4.19)

where [Kt]i,j = k(xi,xj); i, j = 1, ..., t, is called the kernel matrix.

In theory the minimiser, α = K−1
t Yt could be computed recursively using the

conventional RLS algorithm, however, as with the kernelised LMS algorithm, the com-

plexity of the calculation would increase with each new sample, in addition to possible
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over-fitting when the number of samples becomes large. We therefore sparsify the algo-

rithm by retaining a finite dictionary of samples and replacing Kt with the dictionary

kernel matrix [K̃t]i,j = k(xi,xj); xi,xj ∈ D, and αt with the reduced weights α̃t. The

dictionary is updated in the same manor as described for the KLMS algorithm.

The KRLS algorithm closely resembles the classical RLS algorithm with the excep-

tion that if the dictionary changes size, so must the reduced weight vector α̃t. and

precision matrix Pt. The full derivation of the KRLS algorithm can be found in the

original paper [190]; pseudo code is presented here without proof.

Initialisation: K̃1 = [k(x1,x1)], K̃
−1
1 = [1/K̃1], α̃1 = [y1/K̃1], P1 = [1],

sparsity parameter: ν.

for t=2,3,...

Compute: k̃t−1(xt) where [k̃t−1(xt)]i = k(xi,xt), i ∈ D

Make Prediction: ŷt = k̃
T
t−1(xt)α̃t

Compute: at = K̃−1
t−1k̃t−1(xt)

Compute: δt = k(xt,xt) + k̃
T
t−1(xt)at

Case 1: The new sample is approximately linearly independent with re-

spect to the current dictionary, satisfying δt > ν, therefore the new sample,

xt, is added to the dictionary. The matrices K̃−1
t , Pt and α̃t are updated

as follows:

K̃−1
t =

1

δt







K̃−1
t−1 + ata

T
t −at

−aT
t 1






(4.20)

Pt =







Pt−1 0

0T 1






(4.21)

α̃t =







α̃t−1 − at

δt
(yt − k̃

T
t−1(xt)at)

1
δt
(yt − k̃

T
t−1(xt)at)






(4.22)
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Case 2: The new sample is approximately linearly dependent with respect

to the current dictionary, satisfying δt ≤ ν, so the new sample is not added

to the dictionary and K̃−1
t = K̃−1

t−1. The matrices Pt and α̃t are updated

as follows:

Pt = Pt−1 −
Pt−1ata

T
t Pt−1

1 + aT
t Pt−1at

(4.23)

qt
def

=
Pt−1at

1 + aT
t Pt−1at

(4.24)

α̃t = α̃t−1 + K̃−1
t qt

(

yt − k̃
T
t−1(xt)at

)

(4.25)

end for

Sparsity

Both the KLMS and KRLS algorithms retain a dictionary of input samples as a sparse

representation of the complete history of input samples up to some time. It is an

important property of the dictionary that it is finite, and it can be shown to be so with

only mild conditions on the data and kernel function. If x ∈ X and φ(x) ∈ H then

if X is compact, and the sparsity parameter is positive (ν > 0), the dictionary will be

finite. For a rigorous proof, see [190].

It should be noted that for these algorithms to be fully adaptive they should incorpo-

rate some forgetting mechanism whereby out-of-date dictionary elements are ‘forgotten’

in order to track changing dynamics of the process being modelled. A sophisticated

multi-kernel LMS algorithm is developed in [194] which includes this feature, as well as

the ability to combine multiple kernel functions. The drawback, of course, is the need

to determine the parameters for each of these mechanisms.

4.2.3 Case Study

The kernelised LMS and RLS algorithms are implemented to produce 1 to 6 hour

ahead predictions of wind speed at six locations in the same region. Their performance
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is compared to several conventional benchmarks, including the conventional LMS and

RLS algorithms.

Test Data

The data used for testing is from the Hydra dataset of hourly mean potential wind at

multiple locations across the Netherlands. Six locations within 150km of each other

are considered here with measurements from 2001 used as a training set and data from

2002 used for testing. The measured wind speed has been corrected for the effects of

shelter from buildings or vegetation. The resulting potential wind is an estimate of the

wind speed that could have been measured at 10m height if the station’s surroundings

were free of obstacles and flat with a roughness length equal to that of grass onshore

(0.03m) and water offshore (0.002m). For more information on this process see [3].

In addition, the data have been normalised so that they occupies the range [0, 1] by

division their maximum value.

This transformation aids spatial prediction by removing biases present at individual

measurement locations that would otherwise interfere with the spatio-temporal corre-

lation of the data. The procedure is simple to implement once information regarding

the terrain surrounding a weather station is known.

Implementation

The KLMS and KRLS are employed to predict the wind speed at the six locations which

are embedded in the vector yt ∈ R
6. The prediction of yt made with measurements

available at time t−∆ (or ∆ steps ahead) is denoted ŷt|t−∆. The input vector xt|t−∆

for a ∆ = 1 step-ahead prediction is the concatenation of p lagged values of yt, i.e.

xt|t−1 = (yT
t−1, ...,y

T
t−p)

T, and for horizons of ∆ > 1 where not all lags are available,
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predictions are used

xt|t−∆ =





































ŷt−1|t−∆

...

ŷt−∆+1|t−∆

yt−∆

...

yt−p





































. (4.26)

This is the so-called direct forecasting approach where forecast are used as input data

to produce multi-step-ahead forecasts; the alternative would be to build separate pre-

dictors for each forecast horizon and run them in parallel. In this study only forecast

horizons up to 6 hours are of concern, or ∆ = 1, ..., 6 and the forecasts for each horizon

are made in parallel by distinct predictors. The number of temporal lags is a trade-off

between accuracy and computational expense, and is chosen as p = 6 for the KLMS

and p = 3 for the KRLS since the improvement in accuracy was negligible for greater

values.

The sparsification parameter and LMS learning rate are determined heuristically by

exhaustive search to minimise the residual error on the training data. The sparsification

parameter is ν = 0.02 for the KRLS and ν = 0.1 for the KLMS. The KLMS learning

rate was chosen to be µ = 0.01.

Benchmarks

An important benchmark is the persistence forecast which supposes that the future

wind speed will be the same as the most recent measurement. While its implemen-

tation is trivial its performance is still considered acceptable by many practitioners,

particularly in situations where more complex approaches offer only modest gains. The

persistence forecast ∆-hours ahead is given by

ŷt|t−∆ = yt−∆ . (4.27)
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In order to compare the kernelised algorithms to conventional techniques and high-

light the value of spatial information two non-recursive linear time series models are

used as further benchmarks in addition to the conventional LMS and RLS algorithms.

The first is the non-spatial autoregressive (AR) model which is given by

ŷt|t−∆ =
∆−1
∑

i=1

aiŷt−i|t−∆ +

p
∑

i=∆

aiyt−i (4.28)

for each location. The number of lags p is determined by the Akaike information

criterion, and the parameters ai are determined by maximum likelihood estimation

assuming independent identically distributed (i.i.d.) Gaussian prediction errors [198].

The second is the vector generalisation of AR, the vector autoregressive model

(VAR). As in the multivariate kernelised algorithms, the measurements at multiple

locations are embedded in the vector yt and the model is written

ŷt|t−∆ = Axt|t−∆ , (4.29)

where xt is given by Equation (4.26). Once again the number of lags p is determined

by the Akaike information criterion and assuming i.i.d. Gaussian errors the coefficient

matrix A ∈ R
n×np is determined by maximum likelihood estimation [198].

The conventional LMS algorithm, with update scheme given in equations (4.10)–

(4.12) and learning rate µ = 0.0005, and conventional RLS with update scheme

et = yt −Atxt (4.30)

kt =
xT
t Qt

1/λ + xT
t Qtxt

(4.31)

Qt+1 = Qt −Qtxtkt (4.32)

At+1 = At + etkt , (4.33)

and forgetting factor λ = 0.9995 are also included for comparison with their kernelised

versions. The look-ahead indexing has been dropped here to avoid notational clutter

but the principle still applies.

The AR and VAR methods are non-recursive, that is to say that their parameters
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Figure 4.7: Mean root mean squared error across all 6 sites for Kernelised algorithms
and benchmarks.

are estimated directly from the training data and are then fixed throughout the test

period. The other methods, with the exception of persistence, are recursive and as such

are initialised and then run sequentially through the training and test data, updating

their parameter estimates at each step.

Results

Performance is evaluated in terms of root mean squared error, which is given by the

expression

RMSE∆ =

√

√

√

√

1

T

T
∑

t=1

(ŷt|t−∆ − yt)2 (4.34)

for the samples y1, ..., yT in the test dataset at each location and for each forecast

horizon ∆ = 1, ..., 6.

The performance of the kernelised algorithms and benchmarks is illustrated in Fig-

ure 4.7 in terms of mean RMSE accross the six sites in the dataset. An example fore-
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Figure 4.8: Forecast time series 1- and 6-hours-ahead produced by KRLS algorithm
beginning on 10th February 2002.

cast time series is illustrated in Figure 4.8. The most simplistic approaches, persistence

and AR, perform significantly worse at all forecast horizons than the more sophisti-

cated VAR, RLS and KRLS. Both the LMS and its kernelised version (KLMS) have

intermediate performance, reflective of their complexity, though the KLMS performs

particularly poorly for the 1 and 2 hour ahead predictions.

The improvement over persistence is shown in Figure 4.9 for the VAR, RLS and

KRLS predictions. All three exhibit similar performance for 1 and 2 hour ahead fore-

casts, but the KRLS outperforms the two linear methods for the longer horizons. It is

also notable that the KLMS improves relative to the LMS at longer forecast horizons.

In both cases the kernelised versions of linear algorithms offer improved 5 and 6 hour

ahead predictions. The performance of the AR model is particularly poor, especially

when compared to persistence, possible due to over-fitting.
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Figure 4.9: Percentage improvement vs. persistence for the VAR and KRLS forecasts.

4.2.4 Summary and Future Work

For the short-term spatio-temporal prediction of wind speed, two examples from a new

class of learning algorithms called kernel methods have been investigated. The kernel

least mean squares and kernel recursive least squares algorithms are non-linear exten-

sions of their conventional linear forms and have been applied to a dataset comprising

wind speed measurements made at six locations in the Netherlands over a period of 2

years. The KRLS in particular shows significant improvement over several established

linear benchmarks, especially for longer forecast horizons.

The case study was restricted to a modest number of spatial locations since the

kernelised algorithms struggled with large numbers (m ≫ 6) of sites despite the spatial

model with m = 6 performing much better than non-spatial, i.e. m = 1. The same

is characteristic of linear models but is observed at a larger spatial dimension. Others

have developed variations on kernelised algorithms, such as the multi-kernel approach of

Tobar et al. in [194]. Alternative kernel structures that discriminate between temporal
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and spatial input data may address this issue and yield improved performance. Alter-

natively, the proposed approach could be implemented on subsets of a larger spatial

dataset.

4.3 Conclusions

The techniques presented in this chapter have demonstrated the advantages of non-

linear methods for wind prediction. Two learning algorithms have been employed

to produce wind predictions based on recent measurements; both exhibit desirable

properties, and common among them is the relatively small amount of training data

required to begin producing skilful forecasts.

The ensemble particle swarm optimised FIR filter offers comparable performance to

linear methods over all, and significantly improved performance at a subset of locations.

The algorithm demonstrates fast convergence and tracking ability compared to linear

methods of comparable complexity. In fact, the amount of training data required is

tiny compared to algorithms such as the LMS or RLS — a property that could be

exploited in a hybrid approach, using the PSO to quickly find an approximate solution

before switching to a more robust method, since the PSO itself struggles with the more

complex spatial prediction problem.

Kernel methods have been shown to improve over linear methods for multiple step-

ahead spatio-temporal prediction. The performance of the KRLS predictor 3–6 hour

ahead is particularly good, offering significant improvement over the linear benchmarks

for these horizons, whereas the KLMS does not beat the conventional LMS algorithm.

The KLMS offers potential for development, see [194] for example, and possible appli-

cation to directly producing short-term wind power forecasts.

100



Chapter 5

Very-Short-Term Wind Power

Forecasting

In this chapter, a spatio-temporal method for producing very-short-term parametric

probabilistic wind power forecasts at a large number of locations is presented. The

large-scale integration of wind power presents operational challenges for both power

systems [10] and electricity markets [9] due to the stochastic nature of the wind itself.

Power systems with a high wind penetration, or areas of concentrated wind genera-

tion (e.g. offshore), require skilled very-short-term forecasts to operate effectively, and

spatial information is highly desirable. In addition, probabilistic forecasts are widely

regarded as necessary for optimal power system management as they quantify the un-

certainty associated with point forecasts.

Very-short-term forecasts are required for applications including balancing and the

optimal operation of reserves [163,199], and wind farm control [200,201]. Furthermore,

the stochastic nature of the wind and complexity of the problem calls for a spatio-

temporal probabilistic treatment in order to make optimal decisions under inherent

uncertainty. Here, a parametric framework is used based on the logit-normal distribu-

tion, the parameters of which are forecast. The location parameter for multiple wind

farms is modelled as a vector-valued spatio-temporal process, and the scale parameter

is tracked by modified exponential smoothing. A state-of-the-art technique for fitting

sparse vector autoregressive models is employed to model the location parameter and
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demonstrates numerical advantages over conventional vector autoregressive models.

This chapter describes a single predictor for very-short-term probabilistic forecast-

ing on large, previously intractable, spatial scales. The model fitting procedure is com-

pletely data driven making it ideal for smart grid applications where many generators

share a single, highly interconnected power system and capturing spatial dependence

is desirable. Two state-of-the-art statistical techniques are combined: a parametric

probabilistic framework based on the logit-normal distribution, as in [202, 203], and

model the location parameter of that distribution as a sparse vector autoregressive

process [204]. Further, a novel exponential smoothing scheme is described featuring

dynamic forgetting factor to track the scale parameter and compare it to the boundary

weighted scheme described in [203].

The method is tested on a dataset of 5 minute mean wind power generation at

22 wind farms in Australia. five-minute-ahead forecasts are produced and evaluated

in terms of point and probabilistic forecast skill scores and calibration. Conventional

autoregressive and vector autoregressive models serve as benchmarks.

The framework for producing spatial probabilistic forecasts based on the logit-

normal distribution and transformation is outlined in Section 5.1. The spatio-temporal

modelling of the location parameter and the procedure for fitting sparse vector au-

toregressive models are described in Section 5.2. The tracking of the scale parameter

is addressed in Section 5.3. In Section 5.4 the proposed method is tested on to a

case study of 22 wind farms in southeastern Australia and results are presented and

discussed. Conclusions are drawn in Section 5.5.

5.1 Spatial Probabilistic Forecast Framework

The power generated by a wind farm at any given time is bounded between zero, when

no turbines are operating, and nominal, when all turbines are generating their rated

power output. As a result, wind power cannot be directly modelled using conven-

tional unbounded Gaussian distributions. Truncated Gaussian, censored Gaussian and

generalised logit-normal distributions have all been proposed to model the conditional

density of wind power motivated by the desire to work in a linear Gaussian frame-
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work [203, 205]. In what follows, data are normalised by their corresponding nominal

power such that they occupy the range [0, 1].

In the proceeding derivation wind power observations are assumed to be logit-

normal distributed and data are transformed along the lines of [203]. The complete

distribution is a discrete-continuous mixture of the logit-normal distribution with the

possibility of probability masses on the bounds of the interval [0, 1].

The logit-normal transformation is given by

y = γ(x) = ln
( x

1− x

)

, x ∈ (0, 1) , (5.1)

with inverse

x = γ−1(y) =
(

1 + e−y
)−1

, y ∈ R . (5.2)

Assuming that the variable X is logit-normal distributed, the transformed variable

Y = γ(X) is normally distributed. The logit-normal distribution has density function

f(x) =
1

σ
√
2π

1

x(1− x)
exp

[

− 1

2

{γ(x)− µ

σ

}2]

, (5.3)

where location and scale parameters µ and σ2 are directly connected to the mean and

variance of Y ∼ N(µ, σ2). The location parameter can be interpreted as the expected

value of wind power, and the scale parameter as a measure of spread.

Consider now the stochastic process {Xt} and its transformation {Yt} with real-

isations {xt} and {yt}, respectively. The full predictive distribution of Xt, including

probability masses on the bounds, is given by the sum of the logit-normal distribution,

L(µt, σ
2
t ), and probability masses w0

t and w1
t corresponding to zero and nominal power,

respectively. It is written as

Xt ∼ δ0w
0
t + δ1w

1
t + (1−w0

t − w1
t )L(µt, σ

2
t ) , (5.4)
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with

w0
t = Φ

{γ(η) − µt

σt

}

,

w1
t = 1− Φ

{γ(1− η)− µt

σt

}

, (5.5)

where δx is the Dirac delta function at x, Φ is the cumulative distribution function of

a standard normal variable, and η is the order of the measurement precision. Wind

power values less than η, or greater than 1−η, are considered to be 0 or 1, respectively.

The key result is that the predictive density of {Xt} is parametrized by the conditional

mean and variance of {Yt} ∼ N(µt, σ
2
t ) only.

In order to calculate density forecasts for the wind power at some future time,

{Xt+k}, it is only necessary to forecast the location and scale parameters of the predic-

tive distribution, which are the mean and variance of the transformed process {Yt+k}.
Finally, {Yt+k} is be modelled as an autoregressive process (AR), or a vector autore-

gressive process (VAR) in the spatial case. Indeed, the spatial case is the main focus

of this chapter.

The wind power measurements from multiple wind farms are logit-normal trans-

formed and embedded in a vector-valued time series, and the expected future value for

each vector element provides the forecast of the location parameter for the predictive

distribution at the corresponding site. The scale parameter could be similarly modelled,

but for simplicity it is assumed to be slowly varying and is tracked by an exponential

smoothing scheme on a site-by-site basis.

For a vector-valued process, such as a series of measurements made at multiple

locations, dependencies between vector elements may exist on a range of scales. Such

spatio-temporal dependence can be captured by VAR models and produce more skilful

forecasts than independent AR models. However, as the spatial dimension becomes

large, VAR models quickly become difficult to estimate as the number of parameters

increases with the square of the dimension, and useful spatial information is increasingly

diluted. It is therefore advantageous pursue a sparse parametrisation of VAR models

whereby coefficients linking sites that exhibit spatial co-dependence are retained in
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the model, and those that do not are omitted. The resulting sparse-VAR (sVAR) is

a refined parametrisation of the full VAR model and requires a fewer training data

compared to the full VAR equivalent.

5.2 From VAR to sVAR

5.2.1 Definitions

First consider the problem of calculating the predictive density for the wind power

generation at a single wind farm. The power measured at the wind farm at time t is

contained in the time series {xt}. The logit-normal transformation of {xt} is {yt} and

this series is modelled as an autoregressive process of order p, denoted AR(p). The

expression relating the future observation yt+k to previous measurements is written

yt+k =

p
∑

τ=1

aτyt−τ+1 + ǫt+k , (5.6)

where aτ is the autoregressive coefficient for the τ th lag, and ǫt is additive Gaussian

noise with finite variance σ2. The expected value of yt+k is

µ̂t+k =

p
∑

τ=1

aτyt−τ+1 (5.7)

which along with σ2 parametrises the predictive distribution of {Yt+k} ∼ N(µ̂t+k, σ
2)

conditional on the p previous measurements.

Next consider the problem of calculating the predictive density for the wind power

generation at M spatially separate wind farms. The power measured at each wind farm

at time t is contained in the vector valued time series {xt} where each xt ∈ [0, 1]M .

The logit-normal transformation and predictive distributions of {xt} are all calculated

by applying Equations (5.1)–(5.5) element-wise. It is then possible proceed working

with the transformed vector-valued time series {yt}, where yt ∈ R
M .

The new time series is modelled as a vector autoregressive process of order p,
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VAR(p), expressed as

yt+k =

p
∑

τ=1

Aτyt−τ+1 + ǫt+k , (5.8)

with matrices Aτ ∈ R
M×M containing the VAR coefficients, and zero-mean Gaussian

noise ǫt ∈ R
M with non-singular covariance matrix Σǫ. The expected value of yt+k is

given by

µ̂t+k =

p
∑

τ=1

Aτyt−τ+1 . (5.9)

Typically the VAR coefficients and the noise covariance matrix are determined by

maximum likelihood estimation, yielding the Yule-Walker equations for the case when

the VAR(p) process is Gaussian and no constraints are placed on the parameters. How-

ever, estimating all pM2 VAR coefficients quickly becomes impractical for models of

large spatial dimension and can lead to noisy coefficient estimates and unstable predic-

tions, particularly when insufficient training data are available. A recently proposed

method for the sparse estimation of the coefficient matrices offers an alternative to the

conventional VAR that can overcome these drawbacks.

5.2.2 sVAR Fitting

A 2-stage procedure for fitting a sparse vector autoregressive model has been proposed

by Davis et al. in [204]. The first stage selects symmetric pairs of coefficients to be

included in the sparse model based on the corresponding pair of time series’ conditional

dependence. The second stage refines the initial selection based on ranking individual

coefficients by their t-statistic. At each stage the set of coefficients selected is that

which minimises the Bayesian information criterion (BIC). This approach is detailed

in the remainder of this section, for further discussion see Davis et al. [204].

Stage 1

The goal of stage 1 is to determine the order of temporal regression, p, and choose N

pairs of off-diagonal coefficients to be retained in the sparse model. This is achieved by

eliminating pairs of series which are determined to be conditionally uncorrelated and

setting the corresponding VAR coefficients (at all lags) to zero. All diagonal coefficients,
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i.e. those containing auto-covariate information, are retained in stage 1.

Let {yt,i} denote the ith marginal series of the process {yt}. If two distinct time

series {yt,i} and {yt,j} (i 6= j) are conditionally uncorrelated then their partial spectral

coherence PSCij(ω) = 0 for ω ∈ (−π, π]. The PSC can be computed efficiently from the

spectral density matrix fY (ω) of the process {yt}, where the (i, j)th element of fY (ω) is

the usual (cross-)spectrum between {yt,i} and {yt,j}. The PSC is the negative rescaled

inverse of the spectral density matrix, as demonstrated in [206]. Let gY (ω) = fY (ω)−1,

then

PSCij(ω) = −
gYij (ω)

√

gYii (ω)g
Y
jj(ω)

, ω ∈ (−π, π] , (5.10)

where gYij (ω) denotes the (i, j)th entry of gY (ω).

In practice, however, the estimated PSC will not be exactly zero for a finite num-

ber of samples. We therefore rank each pair of time series by a summary statistic,

Ŝij, calculated from the estimated PSC, which is denoted PŜCij(ω), taken to be the

supremum of the squared PSC estimate, i.e.,

Ŝij = sup
ω

|PŜCij(ω)|2 . (5.11)

Large values of Ŝij indicate pairs of series which are likely to be conditionally correlated;

therefore, consider the constrained VAR models containing the top N pairs of off-

diagonal coefficients plus the M diagonal coefficients, all other coefficients are zero.

This reduces the number of parameters to be estimated from pM2 to (M + 2N)p.

Finally, the maximum likelihood estimates of constrained VAR models are calcu-

lated for predetermined sets of values for p and N . When VAR parameters are con-

strained the parameter estimates and covariance matrix Σǫ are commingled and their

estimates must be updated iteratively until convergence, see [86] for details. The pair

of parameters (p̃, Ñ) that minimise the BIC are taken forward to stage 2. The BIC is

given by

BIC(p,N) = −2 logL(Â1, ..., Âp) + log T · (M + 2N)p (5.12)

where L(Â1, ..., Âp) is the maximised likelihood of the constrained VAR model, given
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by [86, Chapter 5], and T is the length of the training data.

Stage 2

The first stage selects VAR coefficients based on conditional correlation according to

the BIC, however, it is unable to discriminate between the 2p̃ coefficients associated

with each pair of series, nor between the p̃ diagonal coefficients associated with each

individual series. The aim of the second stage is therefore to refine the selection of

coefficients made by stage 1.

Begin by ranking the non-zero VAR coefficient estimates from the stage 1 model

[Aτ ]ij , τ = 1, ..., p̃ by their t-statistic, which is

Λi,j,τ =
[Aτ ]ij

s.e.([Aτ ]ij)
. (5.13)

The standard error, s.e.(·), of [Aτ ]ij is computed from the asymptotic distribution of

the constrained maximum likelihood estimator of the stage 1 model, see [86].

Large values of Λi,j,τ imply significance in the model so the n coefficients with the

largest t-statistic values are retained. Once again, the BIC for a set of constrained

VAR models containing n parameters is calculated and the value n = ñ which gives

the minimum BIC value is determined. Here, the BIC is given by

BIC(p, ñ) = −2 logL(Â1, ..., Âp) + log T · ñp . (5.14)

The resulting sVAR model has an autoregressive order of p̃ and contains ñ non-zero

coefficients; it is denoted sVAR(p̃,ñ).

5.2.3 Implementation of sVAR

The spectral density matrix used in the calculation of partial spectral coherence must

be estimated from available training data. The periodogram smoothed by a modified

Daniell kernel is used here, as in [204], though alternative spectral density estimates

could be employed.

The BIC is a smooth convex function of the number of parameters being estimated
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which allows for efficient implementation of the sVAR procedure: once the turning point

of the function has been found, the minimum is known and the fitting algorithm can

advance. Since the parameter estimation and BIC calculation are relatively expensive

this represents a significant speed-up over a naive approach.

It is well documented that the properties of meteorological time series, including

wind speed, change slowly over time with changes of season and climate; therefore, it is

appropriate to allow the parameters of time series models to track this variation, if it is

not modelled directly. The same applies to wind power as a weather-dependant process.

Recursively updating AR parameters is frequently practised and can easily extend to

VAR models; however, it is not possible to modify the sparsity structure of the proposed

sVAR model in a simple way. Indeed, the idea of slowly varying parameters conflicts

with abruptly choosing to include or remove a coefficient.

In order to capture these gradual changes the sVAR is trained on a window of

the most recent measurements, and then re-trained in the same way periodically, i.e.,

at any time t, the model is trained on past observations between t − L and t − 1,

where L is the training window length. For comparison, the AR and VAR benchmarks

are trained in the same fashion. Note that the parameters of an sVAR (with a fixed

sparsity structure) could be updated in a recursive framework (such as a least squares

update [115]) in the same way as a conventional AR or VAR model, but this would

distract from our main investigation so is not done here.

The scale parameter should also be allowed to track changes in dynamics resulting

meteorological variation, and that is the subject of the next section.

5.3 Dynamic Tracking of Scale Parameter

The scale parameter σ2
t+k,i of {Yt+k,i} is estimated recursively by exponential smooth-

ing for each site i ∈ {1, ...,M} independently, i.e. assuming no spatial dependence. To

avoid notational clutter the second index is dropped in this section.

Here, two variations on exponential smoothing are implemented and their perfor-

mance compared. First, the boundary weighted forgetting factor, which down-weighs

observations when the location parameter is close to the bounds of the [0, 1] interval,
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akin to [203]. The logit-normal transformation is particularly sensitive in these regions

and this approach is designed to robustify the smoothing scheme. The second scheme

employs a ‘dynamic forgetting factor’ motivated by regime-switching type behaviour

often exhibited by weather-dependent processes.

Boundary Weighted Forgetting Factor

In a modification to standard exponential smoothing, observations are down weighted

by a factor ωt when the expected power γ−1(µ̂t+k) is close to the bounds due to the

sensitivity of the logit-normal transformation in these regions [203]. The factor ωt is

given by

ωt = 4γ−1(µ̂t+k)
(

1− γ−1(µ̂t+k)
)

. (5.15)

and the smoothing scheme is written

σ̂2
t+k = λ∗

t σ̂
2
t + (1− λ∗

t )(yt − µ̂t)
2 (5.16)

where λ∗
t = 1− (1− λ)ωt.

Dynamic Forgetting Factor

The behaviour of wind power generation can switch quickly between periods of smooth

generation and periods of volatile generation. In the event of such a switch it is nec-

essary to briefly but dramatically reduce the forgetting factor in order to forget out

of date, mismatched information. Therefore, when the difference between the squared

residual, ǫ2t , and estimated scale parameter σ̂2
t is large, the forgetting factor is reduced.

The dynamic forgetting factor is given by the logit function as follows,

λ∗
t = λ− b

1 + exp[c(a − E t)]
, (5.17)

where Et = |σ̂2
t − ǫ2t |. The parameters a and b control the threshold location and

the minimum value that λ∗
t can take, respectively, and c controls the gradient of the

transition.
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5.4 Application and Case Study

5.4.1 Dataset

The proposed approach is tested on 5 minute mean wind power data provided by the

Australian Energy Market Operator [4], which comprises recordings of wind farm power

generation at 22 wind farms in south-eastern Australia. Data from 2012 and 2013 are

available comprising 210 528 measurements at each site; all have been normalised by

the nominal power of the corresponding wind farm so that they occupy the range [0, 1].

Wind farm locations are plotted in Figure 5.1. The 2012 data are used as a training set

on which the implementation of the fitting procedure is optimised by cross-validation,

and the parameters of the exponential smoothing scheme are chosen. The 2013 data

are then used to evaluate the performance of the predictor, the results of which are

presented and discussed in Section 5.4.3. The results comprise the analysis of more

than 2.3 million individual forecasts. The complete dataset as used in this paper is

available to download from [207]. In this study, only predictions for t + 1 (one step

ahead) are considered, though cases with forecast for t+k could be similarly produced.

5.4.2 Implementation

The size of data window, L, used to train the AR, VAR and sVAR is determined

heuristically, by cross-validation using the training dataset. The chosen window length

is that which minimises the point prediction root-mean-squared error (RMSE) since

this is the cost function minimised in the predictors’ estimation. A new model is fit for

each calendar month to be forecasts to track changes in the time series dynamics (as

discussed in Section 5.2.3); this choice is somewhat arbitrary but provides a satisfactory

trade-off between accuracy and computational expense. Results of the window length

selection procedure are illustrated in Figure 5.2. The optimal window length is L = 60

days for the AR model and L = 150 days for the sVAR. As already mentioned, the

conventional VAR model is extremely data-hungry and computationally expensive to

fit and as a result a VAR model cannot be fit with more than L = 270 days of training

data on the computer being used (64-bit operating system, 8GB of RAM, Intel Core

111



Chapter 5. Very-Short-Term Wind Power Forecasting

135 140 145 150

−
4
2

−
4
0

−
3
8

−
3
6

−
3
4

−
3
2

Longitude

L
a
ti
tu

d
e

22

1
20

15

2

11

17

18

3

14

84

19

7
9

12
13

6

16

5
10

21

Figure 5.1: Location of 22 sites located in south-eastern Australia used in the data
model. Boxed regions correspond to those in Figure 5.3.

i7-2600 3.4GHz processor). Each VAR model is therefore trained on the maximum

L = 270 days of data.

The optimal window length is directly related to the number of parameters being

estimated in each of the three models. The AR has pM parameters so only requires a

modest amount of training data, whereas the VAR has pM2 parameters and as a result

requires much more training data to produce reliable parameter estimates. The sVAR

offers a compromise: increase the number of parameters to take advantage of spatial

information, but only include those parameters deemed significant.

The basic forgetting factor for both exponential smoothing schemes is chosen such

that the effective memory is 2000 samples (λ = 0.9995). The parameters of the dynamic

forgetting factor exponential smoothing scheme are chosen by expert judgement such

that the forgetting factor does not drop bellow 0.5 (b = 0.4995), such that the forgetting

factor is reduced when the squared residuals exceed 0.1 (a = 0.1), and such that the

gradient of the logit function is sharp (c = 50).
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Figure 5.2: Variation of root mean squared error (RMSE) of AR, VAR and sVAR
models with training window length.
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5.4.3 Results

The proposed technique is implemented on the test dataset in the manor determined

by the cross-validation exercise described above.

The 2-stage method for fitting an sVAR model results in the inclusion of 5%–10% of

the possible pM2 parameters. The number of lags is typically p̃ = 3. A superposition

of the VAR coefficient matrices, taking the absolute value of each element, from one

sVAR model is illustrated in Figure 5.3. There is a strong diagonal structure with off-

diagonal coefficients appearing in blocks corresponding to groups sites that are close

to one another geographically, precisely the sites one would expect to display spatio-

temporal dependence.

The 10 minute-ahead sVAR forecasts made over a 24 hour period, and the behaviour

of the variable forgetting factor are presented in Figure 5.4. Prediction intervals from

10%–90% are illustrated by shading. The variable forgetting factor behaves as intended,

decreasing to allow fast learning when the behaviour switches, and then returning to

normal. The width of the prediction intervals behave accordingly and widen quickly

during volatile periods, and narrowing during periods of relative calm.

Both point and probabilistic forecast scores are used to quantify the skill of the

proposed and benchmark methods. Point forecasts are assessed using the familiar root

mean squared error, RMSE =
√

1
T

∑T
t=1(xt − x̂t)2, and mean absolute error, MAE =

1
T

∑T
t=1 |xt − x̂t|, where x̂t = γ−1(µ̂t) is the predicted value of xt.

The skill of the distributional forecasts is quantified by the continuous rank proba-

bility score (CRPS) and log score [152]. The CRPS is given by

CRPS =
1

T

T
∑

t=1

∫ 1

0
{F (x|µ̂t, σ̂t)− 1(x ≥ xt)}2dx (5.18)

where F is the cumulative form of the predictive distribution and 1(·) is the indi-

cator function. CRPS rewards sharpness and reduces to MAE when the forecast is

deterministic.

The log score is the mean negative log of the predictive distribution evaluated

at the corresponding observation, Log Score = 1
T

∑T
t=1 − ln

(

f(xt|µ̂t, σ̂t)
)

. Due to its
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Figure 5.3: Superposition of January 2013 sVAR coefficient matrices taking absolute
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sparse model and are therefore equal to zero at all lags. Boxed regions correspond to
those in Figure 5.1.
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logarithmic nature, the log score is not as robust as the CRPS: measurements in the

tails of the predictive distribution are heavily penalised and the score returns ∞ if a

single measurement falls where the predictive distribution is numerically zero.

Point and probabilistic forecast skill scores are listed in Table 5.1 and probabilistic

scores are broken-down by calendar month in Table 5.2. The persistence point forecast,

which is simply x̂t+k = xt, is also included in Table 5.1. Point forecast scores show that

the sVAR improves on all the benchmarks in terms RMSE, and all but persistence in

terms of MAE. Persistence does not offer probabilistic information, which is required

for optimal decision making under uncertainty, hence the move to more sophisticated

approaches.

With the boundary weighted tracking of the scale parameter, the sVAR performs

very well in terms of CRPS but has a poor log score, when compared to the other

models. The high log score is an effect of the very sharp predictive distribution close

to the upper and lower bounds where measurements are more likely to be found in

the tails of the distribution. The AR and VAR models, with their higher variance and

broader predictive distributions, are not exposed to this affect as frequently and this is

reflected in their comparatively low log scores.

When the scale parameter is tracked by the proposed dynamic forgetting factor

scheme, all three models see significant improvement in both CRPS and log score

compared to the boundary weighted scheme. Notably, the improved behaviour of the

predictive distributions close to the bounds has brought the log score of the sVAR in

line with the AR and VAR models. In this case, the sVAR performs marginally better

than the two benchmarks in terms of both CRPS and log score.

Reliability (or calibration) of probabilistic forecasts is critical and can be assessed

with quantile-quantile reliability diagrams, such as in Figure 5.5. A calibrated forecast

with nominal proportion α should cover the observation α% of the time. In Figure 5.5

nominal quantiles from 5% to 95% in steps of 5% are evaluated.

The forecasts produced by the sVAR with the boundary weighted scale factor

smoothing is reliable and the best calibrated of the six forecasts, followed by the sVAR

with dynamic smoothing. The boundary weighted smoothing scheme results in better
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weighted (BW) and dynamic (D) forgetting factors.
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Persistence AR VAR sVAR

RMSE 3.956 3.970 3.962 3.954

MAE 2.308 2.347 2.358 2.343

BW λ
CRPS n/a 1.843 1.837 1.801

Log Score n/a 5.080 5.067 5.909

Dynam.
λ

CRPS n/a 1.751 1.751 1.745

Log Score n/a 4.634 4.629 4.622

∆% vs
BW λ

CRPS ∆% n/a 5.0% 4.7% 3.0%

Log Score ∆% n/a 8.8% 8.6% 21.8%

Table 5.1: Mean skill scores (RMSE, MAE and CRPS as % of nominal power) across
all sites with % improvement (∆%) for dynamic vs boundary weighted (BW) forgetting
factor.

calibration than the dynamic smoothing scheme for the sVAR and AR models, but the

opposite is true for the conventional VAR. The calibration of forecasts produced by the

AR model with dynamic smoothing is particularly poor.

5.4.4 Discussions

It has been demonstrated that the proposed approach produces forecasts that are a

non-negligible improvement on two competitive benchmarks in terms of several skill

scores and reliability, while also offering attractive numerical properties through sparse

parametrisation. The sVAR makes it possible to model data of high spatial dimen-

sion that would be impractical, or impossible, with a conventional VAR approach. In

addition, the data-driven detection of dependence structures means that the benefits

of a spatial treatment can be realised without knowledge of precise locations, or in

situations where many generators are located in a small area, as is commonplace in the

smart grid paradigm. This technique is equally applicable to other forecasting problems

where VARs have been used, such as wind speed [157] and solar power forecasting [208],

including short-term forecasting at other temporal resolutions, e.g. hourly.

However, the sVAR comes with some limitations: Regression parameters are com-

monly updated by a process of recursive estimation [115], or replaced with coefficient

functions of some covariate such as wind direction [122, 209]. While in principle these
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Month AR VAR sVAR

January
CRPS 1.910 1.896 1.897

Log Score 4.788 4.788 4.781

February
CRPS 1.826 1.819 1.812

Log Score 4.752 4.755 4.749

March
CRPS 1.796 1.780 1.779

Log Score 4.685 4.691 4.681

April
CRPS 1.375 1.383 1.380

Log Score 4.351 4.355 4.337

May
CRPS 1.617 1.637 1.634

Log Score 4.570 4.565 4.565

June
CRPS 1.486 1.500 1.483

Log Score 4.434 4.435 4.425

July
CRPS 1.544 1.567 1.548

Log Score 4.460 4.449 4.436

August
CRPS 1.831 1.840 1.829

Log Score 4.712 4.697 4.686

September
CRPS 1.717 1.710 1.700

Log Score 4.606 4.595 4.594

October
CRPS 2.001 1.999 1.990

Log Score 4.759 4.739 4.739

November
CRPS 2.020 2.007 2.009

Log Score 4.790 4.778 4.777

December
CRPS 1.883 1.871 1.875

Log Score 4.703 4.697 4.692

All
CRPS 1.751 1.751 1.745

Log Score 4.634 4.629 4.622

Table 5.2: Mean probabilistic forecast skill scores with dynamic forgetting factor bro-
ken down by calendar month (CRPS as % of nominal power). The best scores are
highlighted in bold.
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techniques could be applied to an sVAR model, they would not be able to capture

possible changes in the sparsity structure.

Computational cost is of interest: while the MLE of a single constrained VAR model

takes around 2 minutes, compared to 4 for the full VAR, the calculation is repeated

making the total time to fit an sVAR an order of magnitude larger than the conventional

VAR. However, the stopping criterion described in Section 5.2.3 may be refined, and

other speed-ups are possible such as parallelising the fitting procedure. There exist

alternative methods for fitting sparse regression models, such as quasi-MLE, [210], and

penalised linear regression (e.g. lasso [211]) which can be implemented by very efficient

algorithms which are available in common software packages. However, reformulating

the problem as one of linear regression comes at a cost as both the temporal ordering

of samples and any error cross-covariance between spatial locations is negated.

Furthermore, retaining full covariance information may offer opportunities for fu-

ture development. While the deterministic part of the forecast methodology described

in this paper utilises spatial information, the scale parameter, and by extension the

predictive distribution, for each location are calculated independently. A more general

probabilistic forecast could consider the full joint predictive distribution taking into

account the full covariance structure of observations.

The framework facilitated by the logit-normal transformation allows us to work

in the familiar Gaussian domain, however, a generalisation of this transformation has

been proposed in [203] for wind power forecasting. By including a shape parameter

to control the skewness of the transformation, the properties of the transformed data

may be improved. The optimal shape parameter to fit the marginal distribution of the

data can be calculated by standard techniques, however, the same is not true of the

conditional distributions, which are of concern here. In [203] the optimal shape param-

eter for the conditional distributions of a univariate time series is determined by an

iterative process, which would be extremely time consuming in the spatial case, partic-

ularly if individual shape parameters were assigned to each location. Furthermore, the

effects of using different shaped transformations on the spatio-temporal dependencies

of the transformed data are unknown. For these reason, the generalised logit-normal
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transformation is left for future investigation.

5.5 Conclusions

This chapter describes a large-scale spatial technique for producing very-short-term

probabilistic forecasts of wind power generation at multiple locations. A parametric

framework for distributional forecasts based on the logit-normal transformation and

distribution is combined with a spatio-temporal model for the distribution’s location

parameter, and two competing smoothing schemes for it’s scale parameter are pre-

sented. The location parameter is first modelled as a vector autoregressive process,

and then as a sparse vector autoregressive process (sVAR), dramatically reducing the

number of coefficients requiring estimation, and by extension the computational ex-

pense of model fitting and the volume training data required.

In a case study, the sVAR technique has been used to produce 5 minute ahead

probabilistic forecasts of wind power at 22 wind farms in south-eastern Australia for a

test period of 1 year. The performance of the sVAR is compared to conventional VAR

and AR models yielding improvement in terms of both deterministic and probabilistic

skill scores, as well as in the reliability of the distributional forecasts.

This work was motivated by the desire to produce accurate very-short-term forecasts

at multiple wind farms, ultimately on a national scale, i.e., at 100s of wind farms. Future

work should extend to spatial dimensions of this order, other forecast horizons, and

consider building an adaptive sVAR, possibly with a dynamic sparsity structure. The

parametric framework could also be extended by moving to the generalised logit-normal

distribution and transformation which would require the development of an efficient

method for determining the optimal shape parameter(s) with respect to conditional

distributions.
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Conclusions

As the penetration of wind power increases on power systems around the world so

does the importance of having access to accurate wind power forecasts on a wide range

of spatial and temporal scales. This thesis has described a range of new techniques

for short-term wind and wind power forecasting. The considered approaches have all

been developed to utilise readily available spatial information in a computationally

efficient way. Capturing the relationships between geographically separate locations

has been shown to increase forecast skill while providing forecasts at multiple locations

simultaneously. Furthermore, improving the scalability of such predictors has been

made possible by employing a sparse predictor model.

6.1 Summary of Contributions

Wind speed and direction forecasts are often combined with wind farm power curves to

produce wind power forecasts. In Chapter 3 wind speed and direction were modelled

as the magnitude and phase of complex numbers and are forecast by highly efficient

complex-linear multi-channel predictors. Inspired by developments in the field of signal

processing, these methods are easy to implement, fast to compute and produce point

predictions with lower error than their non-spatial equivalent and persistence, the stan-

dard benchmark. The wind speed part of the forecast is of comparable accuracy to the

equivalent real-valued speed-only methods, indicating that incorporating direction does

not come at the expense of accurate speed prediction.
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To refine the forecasts, the coefficient matrices of the predictor have been 1) esti-

mated recursively and 2) conditioned on the time of year or mean wind direction. The

recursive approach provides a step-improvement in performance compared to the static

approach, and the conditional predictors provide the same improvement again. Only a

negligible difference in performance between the predictors conditioned on time of year

or wind direction was observed.

Finally, the cost of assuming that complex-valued wind time series are proper (in

order to produce the most computationally efficient predictor possible) is quantified by

producing and testing a widely-linear multi-channel filter. The RMSE for the widely-

linear filter was found to be 0.4–1.1% lower than the complex-linear filter for 1-hour-

ahead prediction, and 1.0–3.9% lower for 6-hour-ahead prediction, depending on the

variability of wind direction at each test site.

Two quite different non-linear methods were employed to forecast the wind in Chap-

ter 4. The first, an ensemble of particle swarm optimised prediction filters, is extremely

fast to train and requires only a short training period before its predictions are reliable,

though it was unable to make use of spatial information. While this approach showed

no improvement in general over the spatial linear methods of Chapter 3, the perfor-

mance at 3 sites was significantly better. However, due to the non-physical nature of

the algorithm, it is difficult to identify the reason(s) for this.

The second part of Chapter 4 examined kernel methods, a class of learning algo-

rithm that facilitates linear processing in some high-dimensional feature space at very

low computational expense using the kernel trick. The kernelised LMS and RLS al-

gorithms were investigated with the latter showing most promise. Both approaches

utilise a dictionary of features against which input data is compared, a kind of pattern

recognition. While the performance of the KRLS is comparable to the linear meth-

ods of Chapter 3 for 1 and 2 hour-ahead forecasts, the 3–6 hour-ahead forecast are a

significant improvement.

Finally, a method for producing spatial forecasts on a large-scale (many 10s or

hundreds) is developed in Chapter 5, specifically for producing very-short-term prob-

abilistic wind power forecasts. Five-minute-ahead probabilistic forecasts are produced
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using only power measurements as inputs to a sparse vector autoregressive model. The

doubly-bounded and non-Gaussian nature of wind power predictive distributions is

accommodated by the logit-normal transformation and distribution which makes para-

metric probabilistic forecasting straightforward. The sparse-VAR approach enables

large numbers of locations to be modelled by identifying and retaining VAR parame-

ters that capture spatial dependence, and excluding those which do not. In the pre-

sented case study, the approach only provides a modest improvement in point forecast

accuracy over persistence, but provides sharp and reliable distributional forecasts.

6.2 Future Work

While several methods have been developed for producing spatio-temporal forecasts

during this research programme there are of course many possible developments and

extensions that could improve their performance and usefulness to end users. This

section outlines some thoughts on possible future work.

Linear Methods: While sophisticated approaches tailored to specific applications

may be able to offer superior performance, linear methods for producing short-term

forecasts will remain important because they are simple to implement and robust. They

are also easily extended to take advantage of exogenous information, such as time of year

or wind direction as demonstrated in this thesis. However, there are many other sources

of potentially useful information, and no clear way of choosing between them (and the

danger of over parametrisation if they are all included). Possible candidates include

time of day, to capture the diurnal trend, atmospheric stability, or air temperature

and pressure. The latter two can serve as a proxy for air density which could have

practical benefits in short-term wind power forecasting since the power in the wind

is proportional to both the cubed wind speed and air density. A simple and robust

technique for identifying useful information and model selection could be a powerful

and valuable tool.

Kernel Methods: The application of established kernel methods in this thesis

has found them to be capable of producing high quality wind forecasts capitalising

on spacial information, particularly for multiple step-ahead prediction. However, their
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performance suffers dramatically if the spatial dimension is increased beyond a small

number of sites, suggesting that they struggle to discriminate between useful and re-

dundant inputs. Advances in kernel methods may be able to address this drawback,

similarly, effectively partitioning large scale spatial problems into numerous small-scale

problems could also provide a solution.

Sparse-VAR Power Forecasting: The sVAR, as described in Chapter 5, of-

fers a powerful data-driven method for sparsifying conventional VAR models, but the

time consuming process of iteratively estimating multiple constrained-VAR models is

a significant drawback. If model selection could be performed by a method other than

minimising the BIC this could be avoided. Furthermore, the skill of the probabilistic

forecast could be improved if the generalised logit-normal transformation and distribu-

tion were utilised; however, this would require the development of an efficient method

for determining the optimal shape parameter(s) with respect to conditional distribu-

tions, and consideration for the effect of using different shape parameters for different

locations on spatio-temporal dependencies.
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Definitions

A.1 Linear and Non-linear Stochastic Processes

A stochastic process (Yt, t ∈ Z) is said to be a linear process if for every t ∈ Z

Yt =

∞
∑

j=0

ajxt−j (A.1)

where a0 = 1, (xt, t ∈ Z) is i.i.d. with E{xt} = 0, E{x2t } < ∞, and
∑∞

j=0 aj < ∞.

That is to say that a stochastic process Yt is linear if it can be expressed as the finite

linear combination of past values of a zero mean, finite variance explanatory variable

xt. Any process which does not meet these conditions is described as non-linear.

A.2 Stationarity

A stochastic process is said to be strict-sense stationary if all of its stochastic proper-

ties are invariant to shifts of the time origin. That is to say that the joint distribution

of the random vector [x(t1), x(t2), . . . , x(tN )] is the same as the joint distribution of

[x(t1 + τ), x(t2 + τ), . . . , x(tN + τ)] for any dimension N and shift τ .

A stochastic process is said to be wide-sense stationary if its mean is invariant to

shifts of the time origin and the covariance function depends only on the time difference
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τ = t1 − t2 such that

rx(t1, t2) = rx(t1, t1 − τ) = rx(τ) . (A.2)

In general, a strict-sense stationary process is wide-sense stationary, but a wide-sense

stationary process is not necessarily strict-sense stationary. However, since a Gaussian

random process is defined by only its mean and variance, if it is wide-sense stationary,

it is also strict-sense stationary.

Two stochastic processes are said to be jointly stationary if both processes are

individually stationary, and their cross correlation is invariant under shifts of the time

origin.

A stochastic process is said to be cyclo-stationary if its stochastic properties vary

periodically with shifts of the time origin. For example, the mean of a cyclo-stationary

process must satisfy

µ(t) = µ(t+ T ) (A.3)

where T is the period of the cyclo-stationary variation.

A.3 Covariance Matrices

The covariance matrix, Rxx of vector-valued stochastic process x[t] ∈ C
N is a measure

of how much the elements of x[t] vary with respect to each other over time, for a given

time lag, τ . It is defined by

Rxy[t, τ ] = E{(x[t]−E{x[t]})H(x[t− τ ]− E{x[t− τ ]})} (A.4)

however an number of simplifications can often be made. The expectation of x[t] is

often zero, or is made zero by some transformation, and if x[t] is wide-sense stationary,

the dependence of Rxx on t can be dropped, yielding the more common expression

Rxx[τ ] = E{x[t]Hx[t− τ ]} (A.5)
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For a complex processes, Rxx takes the anti-symmetric Hermitian form RH
xx[τ ] =

Rxx[−τ ].

The cross-covariance matrix, Rxy of vector-valued stochastic processes x[t],y[t] ∈
C
N is a measure of how much the elements of x[t] vary with the elements of y[t] over

time, again at a given time lag, τ . It is defined by

Rxy[t, τ ] = E{(x[t]− E{x[t]})H(y[t− τ ]− E{y[t− τ ]})} (A.6)

again, the inner expectations are often zero. However, x[t] and y[t] must be jointly

stationary for the dependence on t to be dropped. In the jointly stationary case

Rxy[τ ] = E{x[t]Hy[t− τ ]} . (A.7)

Again from complex processes, Rxy takes the anti-symmetric Hermitian form RH
xy[τ ] =

Rxy[−τ ].
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Mathematical Results

B.1 Weibull & Rayleigh Distributions

The Weibull distribution is well established as the standard distribution for wind speed

for sufficiently long periods of time. It was inspired in Weibull’s original 1951 paper [44]

buy the desire for a simple description of problems where the occurrence of an event

in any part of an object may be said to have occurred in the object as a whole. For

example, if a single link in a chain fails, the chain as a whole is said to have failed.

The resulting distribution was found to fit data in a number of situations better than

previously existing distributions.

The two parameter probability density function of a Weibull random variable x is

given by

f(x; k, λ) =
k

λ

(x

λ

)k−1
e−( x

λ
)k x > 0 (B.1)

where k > 0 is the shape factor and λ > 0 is the scale factor. For the case when k = 2,

the Weibull distribution reduces to the Rayleigh distribution which has the pleasing

property of being distribution of the hypotenuse of two perpendicular zero mean Gaus-

sian random variables. This is of interest since many approaches to directional wind

forecasting treat the wind as a bivariate random variable in Cartesian space.
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Derivation

Let X and Y be perpendicular i.i.d. Gaussian random variables, and Z2 = X2 + Y 2.

The probability density functions of X and Y are

PX(x) =
1

σ
√
2π

e−
x2

2σ2 (B.2)

and

PY (y) =
1

σ
√
2π

e−
y2

2σ2 (B.3)

respectively, and as X and Y are independent, their joint probability density function

is

PXY (x, y) =
1

2πσ2
e−

x2+y2

2σ2 . (B.4)

The joint probability that X lies between x and x+ dx, and that Y lies between y and

y + dy is therefore

PXY (x < X ≤ x+ dx, y < Y ≤ y + dy) =
1

2πσ2
e−

x2+y2

2σ2 dxdy . (B.5)

Making a transformation to polar coordinates, z =
√

x2 + y2 and dxdy = zdzdθ,

PXY (x < X ≤ x+dx, y < Y ≤ y+dy) = PZΘ(z < Z ≤ z+dz, θ < Θ ≤ θ+dθ) , (B.6)

PZΘ(z < Z ≤ z + dz, θ < Θ ≤ θ + dθ) =
1

2πσ2
e−

z2

2σ2 zdzdθ . (B.7)

Finally, since Z and Θ are independent, and PZΘ does not depend on θ, Θ has the

uniform distribution

PΘ(θ) =
1

2π
, 0 < θ ≤ 2π (B.8)

and Z has the distribution

PZ(z) =
z

σ2
e−

z2

2σ2 , z ≥ 0 (B.9)

which is the Rayleigh distribution.
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B.2 Equivalence of VAR and Wiener Filter

The multi-channel predictor with constant coefficients described in this section produces

each prediction in the same way as the VAR method [86, 92] but for complex-valued

signals. The only difference being the different organisation of data and prediction

coefficient matrices. Here, this equivalence is demonstrated using.

The VAR(p) method consideringm separate sites is formulated, equation (3) in [92],

as follows:

y(t) = Φ1y(t− 1) +Φ2y(t− 2) + ...+Φpy(t− p) + e(t) (B.10)

Where y(t) is a m × 1 vector containing the wind speed for each site at time t and

e(t) is a p× 1 vector containing the prediction error. The prediction can therefore be

expressed as y(t)− e(t). Each Φi is a m×m matrix containing the coefficients of the

model relating the influences between the wind speed at the m sites.

The Yule-Walker equations are obtained by post–multiplying (B.10) by yH(t − h)

and taking the expectation of both sides [86].

E{y(t)yH(t− h)} =

p
∑

k=1

ΦkE{y(t− k)yH(t− h)} (B.11)

Now, using the covariance matrix defined by

Γy(h) = E{y(t)yH(t− h)}, (B.12)

(B.11) becomes

Γy(h) =

p
∑

k=1

ΦkΓy(h− k). (B.13)

The Wiener–Hopf equation is obtained by operating on the integral describing the

prediction, ŷt+λ, of the zero–mean stochastic process xt at time t+ λ.

ŷ(t+ λ) =

∫ t

−∞
w(t, s)x(s)ds (B.14)
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Choosing w such that the prediction error is minimised in the mean-squares sense and

applying the orthogonality principal, that is requiring the estimation error to be per-

pendicular to all data used to generate the estimate, yields the Wiener-Hopf equation.

Ryx(t+ λ) =

∫ ∞

0−
w(τ)Rx(t− τ)dτ, ∀t > 0 (B.15)

For a discrete time, stationary random vector, y[n], equation (B.14) for a filter with

p coefficients can be written as

ŷ[n] =

p
∑

k=1

w[k]x[n− k] (B.16)

The Wiener filter is the optimum filter in the minimum mean–square error sense, here

the prediction error is

e[n] = x[n]− ŷ[n]. (B.17)

The filter is optimised when the mean–squared error,

||e[n]||2 = E{e[n]eH[n]}, (B.18)

is minimised. By the orthogonality principal, which states that this error is minimised

when orthogonal to each of the data vectors, x[t − l], l = 1, 2, .... The inner product,

denoted by < A,B >= E{ABH}, of the error and data vectors is therefore zero [212].

〈

x[n]−
p
∑

k=1

w[k]x[n− k],x[n− l]
〉

= 0 (B.19)

for l = 0, 1, 2, ...; or

〈

x[n],x[n− l]
〉

=
〈

p
∑

k=1

w[k]x[n− k],x[n− l]
〉

(B.20)

and using definition of the inner product

E{x[n]xH[n− l]} =

p
∑

k=1

w[k]E{x[n− k]xH[n− l]} (B.21)
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Γx[l] =

p
∑

k=1

w[k]Γx[l − k]. (B.22)

Comparing (B.22) to (B.13) we see that the Wiener–Hopf equation for a discrete time

signal and p coefficient filter reduces to the Yule–Walker equation for a VAR(p) process.

B.3 A Test for Impropriety of Complex-Valued Gaussian

Vectors

Here a description of how to implement a test for the impropriety of complex-valued

Gaussian vectors is given. Its derivation follows that of the test described in [178]; for a

full derivation and discussion of associated statistics please refer to the original paper,

and references therein.

Let x = [x1, x2, ..., xp] denote a complex-valued zero mean random vector of length

p. The covariance matrix of x is defined as Rxx = E{xxH}, which is Hermitian

and positive semi-definite. In addition, there is a complimentary covariance matrix

associated with x which is defined as R̃xx = E{xxT}, which is complex and symmetric.

The complete second order structure of x is contained in the covariance matrix of

the so-called augmented vector

x =







x

x∗






(B.23)

which is called the augmented covariance matrix, is give by

Rxx = E{xxH} = E

















x

x∗







[

xH, xT

]











=







Rxx R̃xx

R̃∗
xx R∗

xx






. (B.24)

If the complimentary covariance of x is R̃xx = 0, x is said to be a proper complex-

valued random vector ; conversely, if R̃xx 6= 0, x is said to be an improper complex-valued

random vector.

Hypothesis tests have been developed to determine if a random vector is proper or

not, with the hypothesis H0 : R̃xx = 0 being tested against H1 : R̃xx 6= 0. Tests based
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on i.i.d. samples of x are described in [213,214], but here the real valued representation

described in [178] is followed since it allows for easy reference to the rich discussion in

the original paper and to accommodate links available in the statistical literature.

Real Valued Notation

The complex process x can be written x = a + ib, where a = Re(x) and b = Im(x).

Defining

x̂ =







a

b






∈ R

2p×1 , (B.25)

the covariance matrix Γ = E{x̂x̂H} can be partitioned into four p× p matrices

Γ =







Raa Rab

Rba Rbb






. (B.26)

Now let H+ denote the set of 2p× 2P positive definite matrices of “complex” from







K1 −K2

K2 K1






(B.27)

where K1 is symmetric and K2 is anti-symmetric (K2 = −KT
2 ), and therefore K1+iK2

is Hermitian. Also let R denote the set of matrices







J1 J2

J2 −J1






(B.28)

where J1 and J2 are symmetric. Then Γ can be written as

Γ = Γ̇+ Γ̈ (B.29)
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where

Γ̇ =
1

2







Raa +Rbb Rab −Rba

Rba −Rab Rbb +Raa






∈ H+ (B.30)

and

Γ̈ =
1

2







Raa −Rbb Rab +Rba

Rba +Rab Rbb −Raa






∈ R . (B.31)

Now

Rxx = E{xxH} = (Raa +Rbb) + i(Rba −Rab) (B.32)

and

R̃xx = E{xxT} = (Raa −Rbb) + i(Rba +Rab) (B.33)

If R̃xx = 0, then Raa = Rbb = Re(Rxx)/2, and Rab = −Rba = −Im(Rxx)/2. So a

test for propriety should be based on the hypothesis test H0 : Γ̈ = 0 versus H1 : Γ̈ 6= 0.

Test Statistics

Let x̂1, ..., x̂n be n independent, normally distributed random vectors with zero mean

and covariance matrix Γ. The matrix Λ = nΓ can be written as Λ = Λ̇ + Λ̈ in the

same way as equations (B.29)–(B.31). Furthermore, it can be represented in the form

Λ = CDCT with D =







Ip +L 0

0 Ip −L






(B.34)

where L = daig(l1, ..., lp), 1 > l1 ≥ ... ≥ lp ≥ 0, and ±l1, ...,±lp are the eigenvalues of

Λ̇
−1

Λ̈.

It can be shown that the hypothesis test can be restated as H0 : det(D) = 1. A

test follows as: accept H0 iff

T1(n, p) ≡ det(D) =

p
∏

k=1

(1− l2k) ≥ c1 (B.35)

where c1 is a constant which determines the size, α, (false alarm probability) of the
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test, such that Pr
(
∏p

k=1(1− l2k) < c1|Γ
)

= 1−α A second test can be similarly derived:

accept H0 if

T2(n, p) ≡
1

2
trace(Λ̇

−1
Λ̈Λ̇

−1
Λ̈) =

p
∑

k=1

l2k ≤ c2 (B.36)

where c2 is a constant which determines the size (false alarm probability) of the test,

such that Pr
(
∑p

k=1 l
2
k > c2|Γ

)

= 1− α.

Given a specified size of the test α, the intervals [0, c1] and [c2, p] need to be de-

termined. The null hypothesis is rejected if the sample value of the test statistic falls

within each interval, so we must find the critical values c1 and c2.

This is done numerically: for a given (n, p) combination, n independent 2p vectors

are sampled from a normal distribution with zero mean and covariance matrix Γ = I2p.

Then, ∆, ∆̇ and ∆̈ = ∆ − ∆̇ are calculated, followed by the test statistics T1(n, p)

and T2(n, p). This is repeated until smooth empirical cumulative distributions of T1

and T2 are available. From these the critical values of c1 and c2 can be “looked-up” for

a given test size α.

Alternatively, a χ2 approximation for the distribution of T1 can be made, but is not

detailed here. See [178,215] for details.

Example

The test has been applied to the MIDAS test data used in Chapter 3, Section 3.3.2.

The training data comprise n = 43824 samples from p = 13 complex-valued time series.

In order to produced smooth empirical distributions of T1 and T2 and determine the

critical values of c1 and c2, the random sampling procedure described above is repeated

50 000 times. The resulting distributions are illustrated in Figure B.1 and the critical

values for a range of α and listed in Table B.1.

The values of the test statistics from the MIDAS training dataset are T1 = 0.0982 ≪
c1 and T2 = 1.78443 ≫ c2, so H0 is rejected for H1 with negligible probability of a false

positive.
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(a) Distribution of T1.
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(b) Distribution of T2.

Figure B.1: Distribution of impropriety test statistics T1 and T2 showing critical values
for α = 1% chance of false positive.
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(1-α)% 90% 95% 99%

c1 0.9953 0.9951 0.9948

c2 0.0047 0.0049 0.0052

Table B.1: Critical values c1 and c2 of test statistics T1 and T2, respectively.

B.4 Maximum Likelihood Estimation of Constrained VAR

Models

The coefficient matrices of a sparse vector autoregressive model sVAR(p,n), given by

yt+k =

p
∑

τ=1

Aτyt−τ+1 + ǫt+k , (B.37)

yi, ǫi ∈ R
M , Aτ ∈ R

M×M ,

can be expressed as

α = vec (A1, ...,Ap) = Rγ , (B.38)

where α = vec (A1, ...,Ap) is the pM2 × 1 vector of coefficients obtained by column-

stacking the matrices A1, ...,Ap; R is a pM2×nmatrix of known constants with rank n;

and γ is an n×1 vector of unknown parameters. The matrix R is the constrain matrix

and determines which VAR coefficients are zero and which are to be estimated, one

entry in each column is 1, specifying a VAR coefficient, and all others are 0. The vector

γ contains the VAR coefficients to be estimated that are mapped onto the matrices

A1, ...,Ap by R.

The maximum likelihood estimation of the VAR coefficients for a constrained model

of the form in Equation (B.38) is given in by Lütkepohl in [86, Chapter 5]. The

coefficients α and noise covariance matrixΣ are the solutions to the following equations,

α̂ = R{RT(LLT ⊗ Σ̂
−1

)R}−1RT(L⊗Σ−1)Y , (B.39)

Σ =
1

T − p

T
∑

t=p+1

(yt − ŷt)(yt − ŷt)
T (B.40)
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where ⊗ is the Kronecker product and

Lt = (yt,yt−1, ...,yt−p+1)
T , (B.41)

L = (L0,L1, ...,LT−1) , (B.42)

Y = vec(y1,y2, ...,yT ) , (B.43)

ŷt =

p
∑

τ=1

Âτyt−τ+1 . (B.44)

In the unconstrained case, i.e. R = IpM2 , the maximum likelihood estimator for the

VAR coefficients does not involve the noise covariance matrix Σ. However, under the

parameter constraints (B.38) the parameter estimates (B.39) are commingled with the

estimate of the covariance matrix Σ̂. Therefore, the estimators α̂ and Σ̂ are updated

iteratively until convergence to obtain the maximum likelihood estimate of the VAR

coefficients.
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Appendix C

Publications Arising from this

Thesis

A number of publications have been produced during the development of this thesis:

Journal Papers

1. J. Dowell and P. Pinson, “Very-Short-Term Wind Probabilistic Wind Power Fore-

casts by Sparse Vector Auto-regression”, IEEE Transactions on Smart Grid, avail-

able online, 2015.

2. V. M. Catterson, D. McMillan, I. Dinwoodie, M. Revie, J. Dowell, J. Quigley, K.

Wilson, “An economic impact metric for evaluating wave height forecasters for

offshore wind maintenance access,” Wind Energy, available online, 2014.

3. J. Dowell, S. Weiss, D. Hill and D. Infield, “Short-Term Spatio-Temporal Predic-

tion of Wind Speed and Direction”, Wind Energy, 17, pp. 1945–1955, 2013.

Book Chapters

1. R. Bessa, J. Dowell, P. Pinson, Chapter: Renewable Energy Forecasting, in “In-

ternational Handbook of Smart Grid Development,” Wiley, 2015.

Conference Papers

1. J. Dowell, S. Weiss, D. Infield, “Kernel Methods for Short-term Spatio-temporal

Wind Prediction,”, IEEE PES General Meeting, Denver, CO, 2015.
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2. J. Dowell, S. Weiss and D. Infield, “Spatio-Temporal Prediction of Wind Speed and

Direction by Continuous Directional Regime”, Probabilistic Methods Applied to

Power Systems Conference, Durham, UK, July, 2014. ∗Best student paper award.

3. J. Dowell, S. Weiss, D. Infield and S. Chandna, “A Widely Linear Wiener Filter

for Wind Prediction”, IEEE Statistical Signal Processing Workshop, Gold Coast,

Australia, July, 2014.

4. J. Dowell and S. Weiss “Short-term Wind Prediction Using an Ensemble of Par-

ticle Swarm Optimised FIR Filters”, Intelligent Signal Processing Conference,

London, UK, December, 2013.

5. J. Dowell, A. Zitrou, L. Walls, T. Bedford and D. Infield, “Analysis of Wind and

Wave Data to Assess Maintenance Access to Offshore Wind Farms”, European

Safety and Reliability Conference, Amsterdam, Netherlands, September, 2013.

6. J. Dowell, S. Weiss, D. Hill and D. Infield, “A Cyclo-stationary Complex Multi-

channel Wiener Filter for the Prediction of Wind Speed and Direction”, European

Signal and Image Processing Conference, Marrakech, Morocco, September, 2013.

7. J. Dowell, S. Weiss, D. Hill and D. Infield, “Improved Spatial Modelling of Wind

Fields”, EWEA Annual Event, Vienna, Austria, February, 2013.
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