
High Performance
Pattern Matching
and Data Remanence on
Graphics Processing Units

Xavier J. A. Bellekens

A thesis submitted for the degree of Doctor of Philosophy to the

Centre for Intelligent and Dynamic Communications,

University of Strathclyde.

April 2016

This thesis is the result of the author’s original research. It has been composed by the

author and has not been previously submitted for examination which has led to the

award of a degree.

The copyright of this thesis belongs to the author under the terms of the United King-

dom Copyright Acts as qualified by University of Strathclyde Regulation 3.49. Due

acknowledgement must always be made of the use of any material contained in, or

derived from, this thesis.

Signed:

Date:

ii

‘Power is in tearing human minds to pieces and putting them together again in new

shapes of your own choosing.’

—George Orwell,

“1984”, 1984.

i

Abstract

Pattern matching is an important task in a plethora of different fields ranging from

computer science to medical application, but is also a resource consuming problem.

With the increase in network link speed, and the tremendous amounts of data generated,

serial pattern matching on Central Processing Unit (CPU) is close to being rendered

obsolete. The ubiquitous Graphics Processing Unit (GPU) have become the focus of

much interest within the scientific community due to their highly parallel computing

capabilities, and cost effectiveness offered by the hardware.

This thesis presents an empirical investigation of massively parallel single and multi

pattern matching algorithms, as well as security and privacy concerns for data pro-

cessing on GPUs. This thesis demonstrates a trie reduction algorithm that reduces the

size of the data stored in GPU memory. GPUs have a limited amount of memory and

with the increasing number of patterns to be searched for, space complexity is of great

importance. This work addresses these challenges and investigates different memory

hierarchies for different matching problems increasing the overall performance.

This work also presents a Digital Forensic (DF) and Reverse Engineering (RE)

methodology based on an evaluation of the different memory hierarchies present in

a GPU.

The results of the investigation presented in this thesis show that single and multi-

pattern matching algorithms can benefit of the massively parallel capabilities of GPUs

when implemented with hardware design in mind. Furthermore, it is demonstrated that

data offloaded to the GPU is subject to data leaks.

ii

Acknowledgements

First and foremost I would like to thank my supervisor Dr. Robert Atkinson, for giving

me the opportunity to undertake this work and for his advice and guidance when I

needed them the most. Secondly I would like to thank Dr. Christos Tachtatzis for the

lengthy discussions, the numerous advices, and his patience during those 4 years.

I would also like to thank everybody at Agilent Technologies and Keysight Technolo-

gies for the opportunity to undertake this research, their support and advices.

I would also like to thank my internal and external examiners, Dr. Louise Crockett

and Dr. Allan Tomlinson for their valuable suggestions and advice which further helped

enhance my thesis.

I am also grateful for my friends, for their unconditional friendship, and believ-

ing I could achieve this much. Thank you — In alphabetical order — Iwan Brique-

mont, Grégoire Del Lisse, Quentin Franssen, Dr. Andrew Hamilton, Dr. Jakub Konka,

Dominique Labrut, Benjamin Lefebvre, Kamila Nieradzinska, Dr. Amar Seeam,

Nadezhda Shivarova, Dr. Neil Sinclair, and Olivier Vencencius.

Finally I would like to thank my parents, for their support throughout my studies,

my sister for all the laughter and advices, and my grand-dad who came to visit me in

Scotland despite being a centenarian.

iii

Contents

Abstract ii

Acknowledgements iii

List of Publications ix

Acronyms x

1 Introduction 1

1.1 Research Objectives . 2

1.2 Thesis Statement . 3

1.3 Main Contributions . 3

1.4 Thesis Outline . 4

2 Pattern Matching 7

2.1 Single Pattern Matching . 7

2.1.1 Naive Pattern Matching Algorithm 8

2.1.2 Knuth-Morris-Pratt Algorithm 9

2.1.3 Boyer-Moore-Horspool Algorithm 13

2.2 Multi-Pattern Matching . 19

2.2.1 Deterministic Finite Automaton 19

2.2.2 Deterministic Acyclic Finite State Automatons 21

2.2.3 Aho-Corasick Algorithm . 22

2.3 Summary . 25

iv

3 Pattern Matching on GPU 26

3.1 Problem Statement . 26

3.2 CUDA Programming Model . 27

3.2.1 Single Instruction Multiple Thread Model 30

3.3 GPU Architecture . 31

3.3.1 GPU Memory Model . 33

3.3.2 Experimental System Architecture 35

3.4 Background . 36

3.5 GPU-Accelerated Knuth-Morris-Pratt Algorithm 40

3.5.1 Pre-processing Engine . 41

3.5.2 Pattern Matching Engine . 42

3.5.3 Code Optimisations . 44

3.5.4 Experimental Evaluation . 44

3.6 GPU-Accelerated Boyer-Moore-Horspool Algorithm 49

3.6.1 Pre-Processing Engine . 49

3.6.2 Pattern Matching Engine . 50

3.6.3 Experimental Evaluation . 52

3.7 GPU-Accelerated Failure-Less Aho-Corasick Algorithm 56

3.7.1 Engine Architecture . 56

3.7.2 GLoP Architecture . 60

3.7.3 Evaluation . 62

3.8 Summary . 65

4 Highly Efficient Memory-Compression Scheme 67

4.1 Problem Statement . 68

4.2 Background . 69

4.3 Highly Efficient-Memory Compression Scheme 72

4.3.1 Storage Model . 73

4.3.2 Trie Compression . 81

v

4.4 Processing-Engine . 87

4.4.1 Performance Optimisation . 89

4.5 Performance Evaluation . 90

4.5.1 Prefix Size Matches . 93

4.5.2 Memory Requirements . 93

4.5.3 Sustained Throughput . 97

4.5.4 Overall Timing Breakdown . 99

4.6 Node Expansion Allegory . 104

4.6.1 Storage Model . 105

4.6.2 Processing Engine . 107

4.7 Throughput and Performance Evaluation 108

4.8 Processing-Engine Performance Comparisons 111

4.8.1 Throughput and Performance Analysis on Amazon EC2 112

4.9 Summary . 114

4.9.1 Price Vs Performance . 115

4.9.2 Limitations . 116

5 Data Remanence and Privacy on GPU 117

5.1 Problem Statement . 117

5.2 Background . 119

5.2.1 Security, Privacy and Confidentiality on GPUs 119

5.2.2 Digital Forensic and Reverse Engineering 120

5.3 CUDA Programming Layer . 122

5.3.1 CUDA Binaries . 122

5.4 Experimental Environment . 126

5.5 Data Remanence on GPUs . 127

5.5.1 Global Memory Scenario . 128

5.5.2 Shared Memory Scenario . 129

5.5.3 Texture Memory Scenario . 130

vi

5.5.4 Experimental Results . 131

5.6 Strategies for Digital Forensic . 136

5.6.1 Anti-Forensic Measures . 140

5.7 Strategies for Reverse Engineering . 141

5.7.1 Static Analysis . 144

5.7.2 Dynamic Analysis . 150

5.7.3 Extended Digital Forensic Methodology 153

5.7.4 Intellectual Property Protection 154

5.8 Summary . 157

6 Conclusions and Future Work 159

6.1 Conclusion . 159

6.2 Future Work . 164

6.2.1 Data Transfer . 164

6.2.2 Single Pattern Matching . 165

6.2.3 Highly Efficient Parallel Failure-less Aho-Corasick 165

6.2.4 Pattern Matching Prototyping and Deployment 166

6.2.5 Digital Forensic and Reverse Engineering 166

Bibliography 167

A Unit Testing 189

A.1 Introduction . 189

A.2 Unit Testing . 189

vii

List of Publications

[1] X. Bellekens, C. Tachtatzis, A. Hamilton, P.-L. Dubouilh, K. Nieradzinska, and

R. C. Atkinson, “A node expansion allegory for gpu accelerated pattern match-

ing,” in IEEE Transactions on Parallel and Distributed Systems, IEEE, April 2016 (Under

Submission).

[2] X. Bellekens, G. Paul, J. M. Irvine, C. Tachtatzis, and R. C. Atkinson, “Strategies

for protecting intellectual property when using graphics processing units CUDA

applications,” in Proceedings of the 9th International Conference on Security of Information

and Networks, SIN ’16, (New York, NY, USA), ACM, 2016.

[3] X. Bellekens, G. Paul, J. M. Irvine, C. Tachtatzis, R. C. Atkinson, T. Kirkham, and

C. Renfrew, “Data remanence and digital forensic investigation for CUDA graphics

processing units,” in Integrated Network Management (IM), 2015 IFIP/IEEE International

Symposium on, pp. 1345–1350, May 2015.

[4] X. J. A. Bellekens, C. Tachtatzis, R. C. Atkinson, C. Renfrew, and T. Kirkham, “A

highly-efficient memory-compression scheme for GPU-accelerated intrusion detec-

tion systems,” in Proceedings of the 7th International Conference on Security of Information and

Networks, SIN ’14, (New York, NY, USA), pp. 302:302–302:309, ACM, 2014.

[5] X. J. A. Bellekens, C. Tachtatzis, R. C. Atkinson, C. Renfrew, and T. Kirkham,

“Glop: Enabling massively parallel incident response through GPU log processing,”

in Proceedings of the 7th International Conference on Security of Information and Networks, SIN

’14, (New York, NY, USA), pp. 295:295–295:301, ACM, 2014.

viii

[6] X. Bellekens, R. Atkinson, C. Renfrew, and T. Kirkam, “Investigation of GPU-

based pattern matching,” in 14th Annual Post Graduate Symposium on the Convergence

of Telecommunications, Networking and Broadcasting, (Liverpool, UK), PGNET13, June

2013.

ix

Acronyms

AC Aho-Corasick

ALU Arithmetic-Logic Unit

API Application Program Interface

ASCII American Standard Code for Information Interchange

BMH Boyer-Moore-Horspool

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

DAFSA Deterministic Finite State Automaton

DAWG Directed Acyclic Word Graph

DFA Deterministic Finite Automaton

DF Digital Forensic

DMA Direct Memory Access

DNA Deoxyribonucleic Acid

DRAM Dynamic Random Access Memory

DOS Denial of Service

x

DPI Deep Packet Inspection

DRAM Dynamic random-access memory

DtoH Device to Host

ECC Error-correcting code memory

ELF Executable and Linkable Format

GLoP GPU Log Processing

GPGPU General-Purpose Graphics Processing Unit

GPU Graphics Processing Unit

HEPFAC Highly Efficient Parallel Failure-less Aho-Corasick

HPC High Performance Computers

HtoD Host to Device

IDS Intrusion Detection Systems

IP Intellectual Property

JIT Just-In-Time

KMP Knuth-Morris-Pratt

LCU Logic Control Units

MIMD Multiple Instructions Multiple Data

MISD Multiple Instruction Single Data

MT Mersene Twister

OS Operating System

xi

PCB Printed Circuit Board

PCI Peripheral Component Interconnect

PFAC Parallel Failure-less Aho-Corasick

PTX Parallel Thread Execution

RAM Random Access Memory

RE Reverse Engineering

SASSM Shader ASSeMbly

SDK Software Development Kit

SFU Special Function Units

SIMD Single Instruction Multiple Data

SIMT Single Instruction Multiple Thread

SISD Single Instruction Single Data

SM Streaming Multiprocessors

SRAM Static random-access memory

xii

Chapter 1

Introduction

Data processing requirements and computer networks have been growing in size, speed

and complexity over the last decade. According to Cisco, as many as 50 billion devices

will be interconnected and generating data by 2020 [1]. These trends will also affect

greatly Intrusion Detection Systems (IDS) [2], malware analysis [3] and digital foren-

sics [4]. The increasing number of interconnected devices often have poor security and

become targets of choice for numerous attacks. High throughput traffic for fast file anal-

ysis is therefore crucial. Furthermore, other fields such as medical sciences require sig-

nificant processing power in order to analyse genomes in reasonable times [5]. Database

engines are the core of the web, storing information generated and require fast and ef-

ficient ways to retrieve data [6]. As biological, textual, and security threats continue to

grow at exponential rates, the costs involved in terms of execution time and memory

resources increases accordingly, requiring faster software and hardware [7] [8]. There

has been an increasing interest pattern matching in order to solve problems of differ-

ent nature over the years. As such, the field of pattern matching is divided into single

and multi-pattern matching algorithms. To this end the work presented in this thesis

investigates parallel implementation of both single and multi-pattern algorithms as well

as security and privacy concerns of offloading data to a GPU, allowing applications to

increase their matching throughput.

1

1.1 Research Objectives

This thesis explores the feasibility of off-the-shelf massively parallel single and multi-

pattern matching as well as security and privacy aspects of GPU accelerated applica-

tions. The concept of offloading pattern matching to GPU was initially proposed by Ja-

cob et al. in 2006 [9]. The work presented made use the Cg language in order to offload

the pattern matching engine to a graphics card and used the Knuth-Morris-Pratt (KMP)

algorithm to increase the throughput of an IDS. With the hardware advancement in re-

cent years, the release of new GPUs and the novel Compute Unified Device Architec-

ture (CUDA) framework, General-Purpose Graphics Processing Unit (GPGPU) pro-

cessing is becoming more common. Pattern matching and data analytics can benefit

from off-the-shelf massively parallel computation. It is for this reason that this thesis

explores the problem of pattern matching on GPUs as well as the security and privacy

implications of offloading sensitive data for computation. More specifically, the main

objectives of this theses are to:

1. Review and investigate the potential of single pattern matching algorithms on

GPUs;

2. Analyse multi-pattern matching algorithms for large scale data processing using

different memory hierarchies;

3. Create a memory scheme, allowing reduced memory requirements of patterns

stored on the limited memory of the GPU;

4. Investigate data remanence and privacy of data stored in different memory hier-

archies of the GPU as well as identify information yielded by the CUDA binaries;

5. Establish a Digital Forensic (DF) and Reverse Engineering (RE) methodology, to

enable data acquisition and facilitate memory and CUDA binary analysis;

It is important to recognise that pattern matching applications require a high level

of reliability, throughput and flexibility. Therefore algorithms that are scalable and ap-

2

proaches that take advantage of massively parallel hardware to increase data process-

ing will be the key to the future of pattern matching and data processing in numerous

fields [10] [11].

1.2 Thesis Statement

Pattern matching is a complex task requiring increasing processing power. This work

investigates massively parallel hardware to increase the throughput of single and multi-

pattern matching algorithms. Moreover, with the increase of cloud computing and

GPU-as-a-service, an analysis of security and privacy highlighting data remanence and

digital forensic challenges is provided.

1.3 Main Contributions

The work presented in this thesis complements the existing state of the art through the

following contributions:

• A novel implementation of different single-pattern matching algorithms on GPU.

By offloading the pattern matching operations to the GPU, the implementations

takes advantage of techniques such as loop unrolling and memory hierarchies

in order to increase their performances on off-the-shelf massively parallel hard-

ware [12].

• A GPU Log Processing (GLoP) algorithm is introduced, using a variant of the

Parallel Failure-less Aho-Corasick (PFAC) algorithm for high performance log

monitoring. The scalability of the algorithm is analysed, along with two different

memory implementations, allowing for evaluating the performance of different

memory hierarchies in situ. Additionally, a state table reduction algorithm based

on the Boyer-Moore-Horspool (BMH) bad character table is implemented [13].

• A Highly Efficient Parallel Failure-less Aho-Corasick (HEPFAC) algorithm is pre-

3

sented: the first version takes advantage of global memory and stores the trie

using a one-dimensional breadth-first / row major ordered array and makes

use of bitmapped nodes and a trie reduction algorithm. A second version of

the HEPFAC algorithm is implemented using a two-dimensional node expan-

sion allegory. The algorithms takes advantage of texture memory, increasing the

throughput of the algorithm by a factor of 2.5 when applied to large alphabets.

The algorithm is evaluated against different alphabet sizes and multiple optimi-

sation techniques (memory locality, loop unrolling, coalesced memory access).

Furthermore, the algorithm is evaluated on Amazon EC2 cloud allowing other

researchers to compare their results on the same hardware and drive more effi-

cient conclusions [14].

• A methodology for forensic investigation on GPUs and RE of CUDA based ap-

plication is presented. The methodology describes ways to acquire remanent data

stored in the different types of memories, making use of 3 types of GPUs (High

End, Consumer and Mobile). Furthermore, the methodology highlights privacy

and intellectual property concerns as well as data leakage in CUDA based ap-

plications, whilst providing a mean to identify and analyse their content. The

methodology is derived and subsequently validated using different CUDA-based

applications in order to preserve the integrity of the obtained data [15].

1.4 Thesis Outline

This thesis consists of six chapters and one appendix. Chapter 2 provides details and

concepts on sequential single and multi-pattern matching algorithms, defining the core

algorithms of the field. This chapter also introduces key work, such as the Determin-

istic Finite State Automaton (DAFSA) and the Directed Acyclic Word Graph (DAWG)

algorithms, demonstrating branch reduction techniques. Furthermore it outlines the

Aho-Corasick (AC) algorithm which is a direct extension of the single pattern matching

4

algorithm KMP and is a popular multi-pattern algorithm.

Chapter 3 introduces the concepts of GPU architecture and presents parallel imple-

mentation of single and multi-pattern matching algorithms. It starts with the CUDA

programming model, defines the Single Instruction Multiple Thread (SIMT) model

and then moves onto a brief description of memory hierarchies and optimisations.

An overview of GPU architecture fundamentals is presented to highlight GPU limi-

tations and memory optimisations employed in parallel programming. Furthermore,

prior work in the field is outlined, describing different parallel implementation of sin-

gle and multi-pattern matching algorithms. A novel implementation of the KMP algo-

rithm is then presented making use of optimisations in order to increase the processing

throughput of the algorithm. A similar approach is then presented for the BMH algo-

rithm. The chapter concludes with the presentation of an innovative modified version

of the PFAC algorithm, adapted to GLoP, demonstrating possible solutions to the im-

pediments of massively parallel single-pattern matching algorithms.

In Chapter 4 the studied problem transforms into a memory storage requirement.

An overview of the state of the art is presented and a novel HEPFAC algorithm is pre-

sented. The algorithm reduces the size of a trie for efficient data transfer to and from the

GPU as well as reduced data storage requirements. The algorithm takes advantage of

different memory hierarchies and is evaluated against different alphabet sizes, memory

requirements and optimisation. The chapter concludes with a performance analysis on

public cloud architectures in order to facilitate future research.

Whilst considering the numerous algorithm applicabilities of novel single and multi-

pattern matching algorithms, Chapter 5 is dedicated to security and privacy, highlight-

ing potential problems such as data remanence and data leaks on GPUs. This chapter

demonstrates data remanence in different memory hierarchies and on different GPU

architectures. The work described builds upon prior research to evaluate and develop

5

a DF and RE methodology, allowing digital forensic investigators to investigate crimes

committed using massively parallel off-the-shelf hardware.

Finally Chapter 6 draws conclusions, brings together all research aspects proposed

in this thesis and discusses future work.

6

Chapter 2

Pattern Matching

This chapter explains the concepts and importance of pattern matching. To this end,

firstly the most common single pattern matching algorithms are described. Furthermore

multi-pattern matching algorithms and different types of deterministic finite automa-

tons are outlined.

2.1 Single Pattern Matching

Single pattern matching plays a key role in theoretical computer science. It is widely

used for text processing, intrusion detection systems, anti-virus engines, information

retrieval and Deoxyribonucleic Acid (DNA) sequencing [16].

Apostolico et al. [17] describe the problem of single pattern matching as finding all oc-

currences of a pattern P = {p0, p1, pm−1} of length m in a text string T = {t0, t1, tn−1}

of length n, where the patterns and the texts are expressed in an alphabet Σ. For ex-

ample, DNA is represented by an alphabet of four characters |Σ| = 4, while American

Standard Code for Information Interchange (ASCII) is represented by an alphabet of

two-hundreds and fifty six characters |Σ| = 256,Σ = a, b, c,

Single pattern matching algorithms can be as simple as the naive pattern matching

algorithm which is described first, to lay the cornerstone of the field, or more sophisti-

7

cated such as the Knuth-Morris-Pratt algorithm which is described subsequently high-

lighting the efficiency of shifting the pattern to speed the matching process up. Finally

the Boyer-Moore-Horspool algorithm is outlined demonstrating the performance of the

bad character table.

2.1.1 Naive Pattern Matching Algorithm

The naive algorithm also known as brute-force algorithm is the foundation of the pat-

tern matching field. The idea behind the algorithm is to align the pattern P with the

text T and compare each character against the text T .

C A CA G T
A C TG

A C TG
A C TG

A C TG
A C TG
A C TG
A C TG

Text:
Pattern:

Step 1
Step 2
Step 3
Step 4
Step 5
Step 6

+1

+1

Figure 2.1
Naive Pattern Matching Algorithm Workflow

Figure 2.1 demonstrates the steps the naive algorithm requires to match the pat-

tern P against the text T . When a mismatch occurs (Step 1), the pattern P is shifted to

the right by one position and the comparison restarts from the first letter of the pattern.

When a match occurs (Step 2), the next characters of the pattern P [1] is compared

against the next character of the text T [2] until a mismatch occurs (Step 3), or until the

pattern P is fully matched (Step 6).

The naive method is simple but inefficient, in particular when the pattern contains

repeated characters, or when the pattern is matched against a large text. The worst case

running time of the algorithm is O(nm) where m denotes the length of the pattern P

and n denotes the length of the text T .

8

2.1.2 Knuth-Morris-Pratt Algorithm

The Knuth-Morris-Pratt (KMP) algorithm improves upon the brute-force algorithm,

by introducing and improving it with a failure table [18] [19].

The failure table is constructed prior to any searches, in order to permit portions of

the text T to be skipped during the matching process.Constructing the failure table es-

sentially requires to match the pattern against itself. This is done by iterating through

the pattern P from the start towards the end, identifying the longest prefix of the pat-

tern [19].

Column 0 1 2 3 4 5 6

Pattern A C A A C T C

1 2 3 4 5 60

Failure Table

- - - - - -0Match

0

Figure 2.2
Knuth-Morris-Pratt Failure Table Construction

The procedure to compute the failure table is shown in Figure 2.2. Prior to any com-

putation the cell at column 0 of the failure table is assigned to 0 (Figure 2.2, Right) and

the value of Match is set to 0 (Figure 2.2, Left). Match identifies the longest prefix cur-

rently identified in the pattern. To compute the failure table the algorithm undertakes

the following steps:

Column 0 1 2 3 4 5 6

Pattern A C A A C T C

Step 1 A C A A C T C

1 2 3 4 5 60

Failure Table

- - - - - -0

0 - - - - -0
i j0

Match

Figure 2.3
Knuth-Morris-Pratt Failure Table Construction Step 1

Step 1: Figure 2.3 shows that the two characters at column i = 0 and j = 1 are

compared, since “A” is different from “C”, a mismatch has occurred and the cell at

9

column 1 of the failure table is set the to the current value of Match. The column pointer

i = 0 remains unchanged while the column pointer j is incremented by 1.

Column 0 1 2 3 4 5 6

Pattern A C A A C T C

Step 1 A C A A C T C

Step 2 A C A A C T C

1 2 3 4 5 60

Failure Table

- - - - - -0

0 - - - - -0

0 1 - - - -0

i j

i j

0

1

Match

Figure 2.4
Knuth-Morris-Pratt Failure Table Construction Step 2

Step 2: In the next step shown in Figure 2.4, since j was incremented by one,the char-

acter at column i = 0 and j = 2 are compared; since the characters are the same, a

match has occurred, the value of Match is incremented by 1. This value corresponds to

the current longest prefix matched. The cell in the failure table corresponding to the

index j = 2 is set to the value of Match. Finally, the column indexes i and j are both

incremented by 1.

Column 0 1 2 3 4 5 6

Pattern A C A A C T C

Step 1 A C A A C T C

Step 2 A C A A C T C

Step 3 A C A A C T C

1 2 3 4 5 60

Failure Table

- - - - - -0

0 - - - - -0

0 1 - - - -0

0 1 0 - - -0

i j

i

i

j

j

0

1

0

Match

Figure 2.5
Knuth-Morris-Pratt Failure Table Construction Step 3

Step 3: The characters at column i = 1 and j = 3 are compared; Since “C” and “A”

are different, a mismatch has occurred and the value of Match is reset to 0. The cell

corresponding to index j in the failure table is set to the value to the current value of

Match as shown in Figure 2.5. Furthermore, the column pointer i is set to the value of

the cell at column i− 1 in the failure table. Hence, i is now equal to 0, while j remains

unchanged as shown in Figure 2.6.

10

Column 0 1 2 3 4 5 6

Pattern A C A A C T C

Step 1 A C A A C T C

Step 2 A C A A C T C

Step 3 A C A A C T C

Step 4 A C A A C T C

Step 5 A C A A C T C

Step 6 A C A A C T C

Step 7 A C A A C T C

Step 8 A C A A C T C

1 2 3 4 5 60

Failure Table

- - - - - -0

0 - - - - -0

0 1 - - - -0

0 1 0 - - -0

0 1 1 - - -0

0 1 1 2 - -0

0 1 1 2 0 -0

i j

i

i

i

i

i

i

i

j

j

j

j

j

j

j 0 1 1 2 0 00

0 1 1 2 0 -0

0

1

0

1

2

0

0

0

Match

Figure 2.6
Final Failure Knuth-Morris-Pratt Failure Table Construction

The process continues until the column pointer j has traversed all characters in the

pattern as shown in Figure 2.6. Table 2.1 depicts the successful computed failure table

for the assumed pattern. It is worth noting that the variable Match is either incremented

by 1 whenever a prefix is identified, or, otherwise, reset to 0.

Table 2.1
Failure Table

P A C A A C T C

Failure table 0 0 1 1 2 0 0

When the failure table is successfully computed, the algorithm initiate its second

phase, the matching process.

The matching algorithm starts by aligning the pattern with the text string. The first

character of the pattern is then matched against the first character of the text string. For

each match, the text to pattern comparison continues until a full match occurs. In the

event of a mismatch, the column index corresponding to the mismatch is looked up in

the failure table and the pattern is shifted from the left to the right corresponding to the

11

value obtained in the failure table plus 1.

Column 0 1 2 3 4 5 6 7 8 9 10 11

Text A C A C T A C A A C T C

Pattern A C A A C T C

A C A A C T C

A C A A C T C

A C A A C T C

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9

Step 10

Step 11

Step 12

Step 13

Step 14

Step 15

1

2

3

3

1

2

2

0

0

1

2

3

4

5

6

A C A A C T C

A C A A C T C

A C A A C T C

A C A A C T C

A C A A C T C

A C A A C T C

A C A A C T C

A C A A C T C

A C A A C T C

A C A A C T C

A C A A C T C

Match

1+1

1+1

0+1

0 1 2 3 4 5 6

0 0 1 1 2 0 0

0 0 1 1 2 0 0

0 0 1 1 2 0 0

0 0 1 1 2 0 0

0 0 1 1 2 0 0

0 0 1 1 2 0 0

0 0 1 1 2 0 0

0 0 1 1 2 0 0

0 0 1 1 2 0 0

0 0 1 1 2 0 0

0 0 1 1 2 0 0

0 0 1 1 2 0 0

0 0 1 1 2 0 0

0 0 1 1 2 0 0

0 0 1 1 2 0 0

0 0 1 1 2 0 0

Failure Table

Figure 2.7
Knuth-Morris-Pratt Matching Algorithm Workflow.

Figure 2.7 illustrates the pattern matching workflow for the KMP algorithm, using

the failure table computed previously and represented in Table 2.1. Prior to the match-

ing phase, the pattern P is aligned with the text T and the value of Match is set to 0.

Step 1: The first letter of the pattern P , is matched against the first letter of the text

T . Since “A” is equal to “A” a match has occurred and the matching process continues.

The Match variable is incremented by 1 (match = 1).

Step 2: The second letter of the pattern P is matched against the second letter of the

text T . Since “C” is equal to “C” a match has occurred and the matching process

continues. The Match variable is incremented by 1 (match= 2).

Step 3: The third letter of the pattern P is matched against the third letter of the text

T . Since “A” is equal to “A” a match has occurred and the matching process continues.

The Match variable is incremented by 1. This process continues until a mismatch has

occurred.

12

Step 4: The fourth letter of the pattern P is compared against the fourth letter of the

text T . Since “A” is not equal to “C” a mismatch occurs. Note that the value of the

variable “Match” is equal to 3. The algorithm now looks up the cell in the failure table

whose column is equal to the value of Match. This is the cell at column 3 of the failure

table which holds the value of 1. The algorithm then shifts the pattern from left to

right by the value retrieved from the failure table plus 1; that is, the pattern is shifted

by 2 positions with respect to the text. Similarly to the procedure for computing the

failure table. Since a mismatch has occurred in this step, Match is reset to 0 before the

algorithm progresses.

This process continues until the entire text has been traversed. Note that due to the

pre-computation of the failure table, the algorithm is able to find a full match in the text

in less steps than a naive algorithm.

The worst and average complexity for the for the searching phase of the algorithm

are Θ(n) and O(m + n) respectively, where n represents the length of the text T and

m represents the length of the pattern P [20].

2.1.3 Boyer-Moore-Horspool Algorithm

The BMH algorithm uses a similar technique as the one used in the KMP algorithm;

however, the comparisons, are made from the right to the left [21] [22]. The algorithm

uses a bad character table to compare the suffix of the pattern against the text string,

allowing the matching process to avoid numerous unnecessary comparisons.

The bad character table is constructed prior to the searching process in order to

reduce the number of comparisons required to match a patternP against a text string T .

This is done by identifying the alphabet Σ = {A,C, T} inside the pattern and by

computing the longest shift that can be applied for a particular letter in the alphabet

during the searching phase.

13

A C A A C T CPattern

A C T *Step 0

Step 2 6 - - 7

Step 3 6 5 - 7

Step 4 4 5 - 7

Step 5 3 5 - 7

Step 6 3 2 - 7

Step 7 3 2 1 7

7 - 0 -1 =

7 - 1 -1 =

7 - 2 -1 =

7 - 3 -1 =

7 - 4 -1 =

7 - 5 -1 =

0 1 2 3

Step 1 - - - 77

Patten Column Index 0 1 2 3 4 5 6

Bad Character Table

Step 8 3 2 1 7-

Figure 2.8
Boyer-Moore-Horspool Bad Character Table Construction

Figure 2.8 presents the procedural steps required to create the bad character table.

Prior to the construction, the length of the pattern is calculated, let m be the length of

the pattern, m = 7.

Step 0: The alphabet Σ of the pattern is identified programatically. The alphabet rep-

resents individual occurrences of every letter present in the pattern, all other letters are

represented by the “∗” symbol. The alphabet Σ represents the header of the table in

Figure 2.8 (Step 0).

A C A A C T CPattern

A C T *Step 0

0 1 2 3

Step 1 - - - 77

Patten Column Index 0 1 2 3 4 5 6

Bad Character Table

Figure 2.9
Boyer-Moore-Horspool Bad Character Table Construction; First Step

Step 1: The length of the pattern (m = 7) is assigned to the last column of the bad

character table (Column 3) as shown in Figure 2.9.

14

Step 2: The bad character shift is computed for the first letter of the pattern at column

index 0 (“A”) by using Equation 2.1.

m− PatternColumnIndex− 1 = shift (2.1)

The result is then placed in the column corresponding to the letter “A” of the bad

character table (Column 0) as shown in Figure 2.10

A C A A C T CPattern

A C T *Step 0

Step 2 6 - - 77 - 0 -1 =

0 1 2 3

Step 1 - - - 77

Patten Column Index 0 1 2 3 4 5 6

Bad Character Table

-

Figure 2.10
Boyer-Moore-Horspool Bad Character Table Construction

Step 3: The bad character shift is computed for the second letter of the pattern at col-

umn 1 (“C”) by using Equation 2.1. The subsequent result is then placed in the column

corresponding to the letter “C” of the bad character table (Column 1) Figure 2.11

15

A C A A C T CPattern

A C T *Step 0

Step 2 6 - - 7

Step 3 6 5 - 7
7 - 0 -1 =

7 - 1 -1 =

0 1 2 3

Step 1 - - - 77

Patten Column Index 0 1 2 3 4 5 6

Bad Character Table

Figure 2.11
Boyer-Moore-Horspool Bad Character Table Construction

Step 4: The bad character shift is computed for the third letter of the pattern at col-

umn 3 (“A”) by using Equation 2.1. The subsequent result is then placed in the column

corresponding to the letter “A” of the bad character table (Column 0), as shown in

Figure 2.12

A C A A C T CPattern

A C T *Step 0

Step 2 6 - - 7

Step 3 6 5 - 7

Step 4 4 5 - 7

7 - 0 -1 =

7 - 1 -1 =

7 - 2 -1 =

0 1 2 3

Step 1 - - - 77

Patten Column Index 0 1 2 3 4 5 6

Bad Character Table

Figure 2.12
Boyer-Moore-Horspool Bad Character Table Construction

The process is repeated until the end of the pattern. Note that the last letter of the

pattern will keep its existing value if it has previously been defined, or will be given

the length of the pattern if the letter had not been encountered earlier in the process.

Table 2.2 depicts the successful computation of the bad character table for the assumed

pattern.

16

Table 2.2
Bad Character Table

Σ A C T *

Bad Character Table 3 2 1 7

With the bad character table computed, the algorithm can initiate the matching

process.

The matching process of the BMH algorithm starts by aligning the pattern with the

text string. The last character of the pattern is then matched against the corresponding

character of the text string. For each match the two previous corresponding characters

are compared against each other until a full match occurs. In the event of a mismatch,

the bad character table indicates the number of position the pattern shall be shifted

from the left to the right, however, note that the matching process starts from the right

to the left.

Column 0 1 2 3 4 5 6 7 8 9 10 11

Text A C A C T A C A A C T C

Pattern A C A A C T C

A C A A C T C

A C A A C T C

Step 1

Step 2

Step 3

∑ Pattern A C T *

3 2 1 7

Bad Character Table

A C A A C T CStep 4

A C A A C T CStep 5

A C A A C T CStep 6

A C A A C T CStep 7

A C A A C T CStep 8

A C A A C T CStep 9

A C A A C T CStep 10

A C A A C T CStep 11

A C A A C T CStep 12

3 2 1 7

3 2 1 7

3 2 1 7

3 2 1 7

3 2 1 7

3 2 1 7

3 2 1 7

3 2 1 7

3 2 1 7

3 2 1 7

3 2 1 7

shift = 2

shift = 3

Match

1

1

0

0

0

1

2

3

4

5

6

7

Figure 2.13
Boyer-Moore-Horspool Pattern Matching Workflow

The searching process of the BMH algorithm is demonstrated in Figure 2.13. Prior

to the search the pattern P is aligned with the text T and the value of Match is set to 0.

17

Step 1: The last letter of the pattern P at column 6 is compared against the corre-

sponding letter of the text string. As a match has occurred Match is incremented by 1

and the column index is decremented by 1.

Step 2: As a match occurred previously, the letter of the pattern P at column 5 is

compared against the corresponding letter of the text string. Since “T” is not equal to

“A” a mismatch occurrs. The value of Match is reset to 0 and the bad character table is

consulted to determine the number of places the pattern must be shifted to the right.

As the “C” character was previously matched successfully, the lookup occurs in column

2 (“C”) of the bad character table (Figure 2.13, Right).

Step 3: The pattern is shifted from the left to the right by the value retrieved from the

bad character table in column “C”.

Step 4: The last letter of the patternP (Column 8) is compared against the correspond-

ing letter of the text string. Since “C” is different from “A” a mismatch has occurred.

As there are no prior matches, the bad character table is consulted at the column cor-

responding to the letter “A” of the text string.

Step 5: The pattern is shifted from the left to the right by the value retrieved from the

bad character table in column “A”.

The process continues until the entire text has been traversed. The complexity in the

average case for the searching phase of the algorithm is Θ(n) where n represents the

length of the text and O(nm) in the worst case where m represents the length of the

pattern. The complexity of the pre-processing phase is O(m + σ) where σ represents

the length of the alphabet Σ.

18

2.2 Multi-Pattern Matching

Multi-pattern matching is a natural extension of the single pattern matching problem.

It is described by Crochemore et al. [23] as the problem of finding all occurrences of

patterns in a finite set X = {P1, P2, Pn} in a given text string T of length n.

In this section the core-concepts of multi-pattern matching are outlined. Firstly, dif-

ferent types of deterministic finite automata are presented. The Aho-Corasick algo-

rithm is described highlighting its similarities and improvements over the single pattern

matching KMP algorithm.

2.2.1 Deterministic Finite Automaton

Deterministic Finite Automaton (DFA) is a finite state machine accepting or rejecting

a finite number of states and producing only one computation for each pattern [24].

DFAs are commonly used to model the behaviour of physical machines [24], patterns

recognition and regular expressions [25].

A finite automaton can be defined as set of states Q, having only one initial state and

one or multiple accepting states. Its initial state is denoted as I ∈ Q while the accepting

states are denoted F ⊆ Q.

The matching is done by starting at state I and matches the text string T =

{t1, t2, ..., tn} against the different states of the automaton. The transition function be-

tween all states q ∈ Q is denoted ∆ and the alphabet used in the matching is denoted

Σ. The full automaton A is represented in Equation 2.2 [20] [26].

A = (Q,Σ, I, F,∆) (2.2)

19

The transition relation between states is defined by Equation 2.3 [20].

∆ = Q× Σ → Q (2.3)

Figure 2.14 represents a deterministic finite automaton. DFAs can only have one state

active at a time, allowing only one path of the DFA to be followed when matching

patterns.

11

6 1

0

7 2

8 9

10

3

4

11 5

A

C

G T

A A

T

T

A

A

C

G

115

C

Figure 2.14
Deterministic Finite State Automaton

The states of the DFA are organised as a directed graph such as shown in Fig-

ure 2.14. Transitions are followed when the letter of the pattern is matched against the

text string. For example, the DFA represented in Figure 2.14 contains four different pat-

terns, X(Q) = {A,C,G,A, T}, {A,C, T,A, T}, {T,A,A,C,C}, {T,A,A,C,G}, it

also contains two accepting states F represented by node 11 and 5. Accepting states or

final states define a set of valid transitions through the trie. A pattern is matched, only if

q ∈ F is reached. In case of a mismatch, the matching restarts either from the starting

state I (node 0) or follows a transition link (e.g. Transition link between node 11 and 4).

20

The complexity of the searching phase of the algorithm is linear and is represented

as follows, O(n) where n represents the length of the input string, as there is only one

path possible from the starting state I to the ending state F .

2.2.2 Deterministic Acyclic Finite State Automatons

DAFSA are also known as DAWG and are space efficient representations of tries 1 [26]

while allowing to search for a string in O(m) where m represents the length of the input

string, DAFSA reduce the overall number of nodes required for the representation of

the trie [27].

Daciuk et al. [26] describes DAFSA as a 5 tuple automaton represented in Equa-

tion 2.2, containing only acyclic transition functions ∆. The size of the automaton is

defined as |A| and is equal to the number of states. |Q|.X(Σ) is the set of all patterns

over Σ, where Q represents the set of states, X the set of patterns and Σ the alphabet.

The properties of a minimal automaton are defined by Watson et al. [28] [29].

2

1

$

3

4 5

87

L

A

B

O

B

96

SS

10 11

end end

end end

2

1

$

3

L

A

B

O

4

S

5

end

 Patterns : LAB
 LOB

 LABS
 LOBS

Trie A Trie B

Figure 2.15
Conversion of a Trie to a Deterministic Acyclic Finite State Automaton.

1The word “trie” comes from the word retrieve and is used to designate a tree where each transition represents the letter of a
given alphabet.

21

Figure 2.15 demonstrates the properties of two tries, “A” and “B”, both containing

the same four patterns, X = {L,A,B}, {L,A,B, S}, {L,O,B}, {L,O,B, S} how-

ever the number of nodes and vertices required for trie A is much higher than the one

required by the DAFSA represented by trie B. The primary difference between both

tries, is the reduction of prefixes and suffixes at all levels of the trie, while allowing mul-

tiple vertices leading to a particular state. Note that by convention the $ sign represents

the root node.

The construction of the DAFSA requires two steps, the first one is the creation of the

trie, while the second one will travel the trie merging similar suffixes and prefixes, as

well removing and adding vertices.

A variant of the directed acyclic finite state automaton has been described by Fredriks-

son et al.[30] optimising further the space required by the DAFSA by modifying the data

structures required by each node.

2.2.3 Aho-Corasick Algorithm

The AC algorithm [31] is an extension of the Knuth-Morris-Pratt algorithm [20] that

builds a deterministic finite automaton, or trie, with the sets of patterns X . Additional

vertices also known as failure links added to the trie facilite the transition from one

pattern to another.

The failure links, allow the matching process to search every pattern present in the

trie in a single pass against the text string. This feature makes the AC algorithm one of

the most common multi-pattern matching algorithms used.

The AC trie is built in two stages, the first stage consists of building the trie such

as A = (Prefix(X), ϵ,X, δ,Q) where A represents the automaton, Prefix(X) the

prefixes of the set of states Q, ϵ the empty character, X the set of patterns and δ the tran-

sition function. The transition function is defined by δ(p, pn) = ppn where p represents

22

a pattern in the set of patterns X and pn represents a character of the pattern p. Hence

the trie transition can be defined as ppn ∈ Prefix(X). The second stage consists of

adding failure vertices to the nodes at any state q, such as δ(q, pn) represents the longest

suffix of Prefix(X) [32].

State 0

State 1

State 2

State 3

State 4

State 5

State 6

State 7

State 8

 Input Symbol Next State
H
S
.

1
2
0

I
E
.

3
4
0

H
.

5
0

S
.

6
0

R
.

7
0

E
.

1-8
0

S
.

2
0

. 0

E
.

4
0

S
.

2
0

State 9

Patterns : HIS
 HERS

 SHE

6

6

6

$

1 2

43 5

87

9

6

H S

H

E

I

S R

S

E

Figure 2.16
Aho-Corasick Automaton

Figure 2.16 shows an Aho-Corasick trie for the patternsX = {H, I, S}, {H,E,R, S}, {S,H,E}

and its failure links represented by dashed-lines. Note that the failure links from the

nodes to the root have been omitted intentionally to avoid confusion and that double

circled states represent accepting states. The failure links to the root represents a mis-

match at any state q. These links are represented in the state table (Figure 2.16, right)

with the input symbol “.” leading to the state 0 of the tree.

23

6

6

6

$

1 2

43 5

87

9

6

H S

H

E

I

S R

S

E

Text H I S H E

Figure 2.17
Aho-Corasick Searching Process

Figure 2.17 shows how the AC automaton is able to match multiple patterns in one

pass over a text string by using the failure links. When reaching the terminal state of the

first pattern in node 6, the automaton can then follow the failure link to match the next

word and complete a subsequent match.

The computational complexity of the Aho-Corasick search process is O(n+k) where

n is the length of the text string and k the number of occurred patterns appearing in

the text string. The AC algorithm time complexity is linear and has contributed to its

widespread adoption in multiple fields, ranging from pattern matching, through DNA

sequencing [33] to intrusion detection systems.

24

2.3 Summary

Pattern matching is the dominant method to identify strings in numerous applications

such as intrusion detection systems and DNA sequencing, in this chapter different sin-

gle and multi-pattern matching algorithms were introduced. Firstly the two main single

pattern matching algorithms were explained. The Knuth-Morris-Pratt algorithm intro-

duced the failure tables and demonstrated major improvements over the naive pattern

matching algorithm and its main competitor, the Boyer-Moore-Horspool algorithm in-

troducing the bad character table as well as left-matching.

Secondly, different algorithms of multi-pattern matching were described, such as

DFAs and DAFSAs. The Deterministic Finite State Automaton introduced the con-

cept of state reductions in order to create Directed Acyclic Word Graphs. The popular

Aho-Corasick algorithm was also described and presented as an extension of the KMP

single pattern matching algorithms.

These algorithms represent the cornerstone of the field of single and multi -pattern

matching. Parallel versions of these algorithms will be extensively studied, in future

chapters of this thesis, with a focus optimisation in order to increase the overall through-

put, using off-the-shelf hardware.

25

Chapter 3

Pattern Matching on GPU

3.1 Problem Statement

Computing models can be categorised into serial and parallel computing, resulting in

two major processing approaches. Serially executed algorithms are essentially running

on CPU. This execution strategy assigns a time interval called “quantum” to each pro-

cess running on the CPU and executes them in a round robin fashion. At the end of

the quantum, the CPU is preempted and is assigned to another process [34]. On the

other hand, parallel computing utilises multiple processors to parallelise and simulta-

neously compute independent given tasks. This process is known as task parallelism.

However, when given multiple independent data chunks to process concurrently, the

process is known as data parallelism. The latter process, is well suited to GPUs, which

are mapping data elements to parallel threads.

With the recent increase in processing requirements due to the amount of data be-

ing generated (e.g. search engines, DNA/RNA sequencing, data mining and IDS) and

the increasing complexity of data processing, manufacturers resorted to increasing the

number of processing cores to increase the performance of CPUs [35]. Given the com-

prehensive instruction set and the ability to execute independent instructions per thread

CPUs are unable to scale to hundreds of cores per chip and have been unable to cope

26

with the current processing requirements [36]. With the exponentially increasing data

processing demand and CPU hardware limitations, GPUs are fulfilling the processing

requirements as their architecture is well suited to address data parallelism challenges by

performing massively parallel processing with the drawback of a simplified instruction

set.

Traditional pattern matching algorithms run on a CPU and require a large amount of

processing power due to the increasing pattern complexity and the expanding amount

of data. High performance pattern matching applications can therefore benefit from

multi-core off-the-shelf devices such as GPUs [37]. Their relatively small number of

Logic Control Units (LCU) and high number of Arithmetic-Logic Unit (ALU) allow ap-

plications such as pattern matching to benefit from their massively parallel performance

through the CUDA framework.

To this end, this chapters starts with an overview of the CUDA programming model

and outlines the GPU architecture. It then moves onto a description of the current state

of the art. Finally the contributions of this chapter are presented, in the form of a novel

implementation and empirical investigation of two single-pattern matching algorithms

and followed by the implementation and analysis of a novel GPU Log Processing library.

3.2 CUDA Programming Model

In 2006, Nvidia introduced the CUDA framework, a parallel computing platform and

programming model allowing researchers to take advantage of the General Purpose

Graphics Processing Unit (GPGPU) computations. GPGPU programming allows to

take advantage of the massively parallel multithreading architecture by sending data

from the host computer to the device GPU, allowing data to be processes at high rates.

These applications, performing at supercomputer level, range from financial comput-

ing, fluid dynamics to DNA sequencing.

27

C/C++ Application

CUDA Architecture

GPU

CPU

CUDA Driver

CUDA Runtime

CUDA Libraries

Application

Figure 3.1
The CUDA Architecture and Programming Pipeline

GPUs can be represented as a massively-parallel many-core-processor. Therefore

applications requiring data chunks to be processed concurrently can benefit from the

multi-threaded environment, allowing each thread to process different chunks of data.

The computation is done through the CUDA Software Development Kit (SDK). The

CUDA SDK allows the programmer to communicate with the GPU using the ANSI

C/C++ programming language which has been extended with a new set of directives

and libraries. The code is compiled with the nvcc compiler on the CPU to the instruc-

tion set of the target architecture as shown in Figure 3.1.

Algorithms taking advantage of GPU processing power consist of one or multiple

phases executed either on the CPU or the GPU. The segments of code exhibiting data

28

parallelism are delegated to the GPU. The code that runs on the GPU is called a Kernel

and is executed in six distinct steps: (I) The host allocates space on the GPU to transfer

data; (II) The data is transferred from the host memory to the GPU memory using the

Direct Memory Access (DMA) controller; (III) The host instructs the GPU to execute

the kernel; (IV) The GPU executes the code in a massively parallel fashion; (V) The

results are retrieved from the GPU by the host; (VI) The GPU memory is released from

the host.

Block (0,0) Block (1,0)

Block (0,1) Block (1,1)

Block (2,0)

Block (2,1)

Block (1,1)

Thread (0,0)

Thread (0,1)

Thread (0,2)

Thread (1,0)

Thread (1,1)

Thread (1,2)

Thread (2,0)

Thread (2,1)

Thread (2,2)

Grid

Kernel

Figure 3.2
Grid and Threading Model

Kernels are executed in parallel, launching a finite number of threads to exploit the

data parallelism capabilities of the GPU. Threads are organised in thread blocks, which

are further organised into a grid as shown in Figure 3.2. All threads of a thread block

are scheduled on the same streaming multiprocessor, however, more than one block

can occupy the streaming multiprocessor at the same time. The threads within a thread

block are organised into groups of 32 threads called warps. These are executed in a

round robin fashion by the warp scheduler allowing multiprocessors to maximise the

resources available on the GPU. This resource allocation is also based on the thread

model, defining the operation of each thread on data points.

29

3.2.1 Single Instruction Multiple Thread Model

The earliest taxonomy of parallel execution was presented by Flynn [38] and is divided

in 4 types. These types are based on the number of instructions available and the num-

ber of data streams the architecture can handle.

SISD MISD

SIMD MIMD

Single Instruction
Stream

Multiple Instruction
Stream

Single Data
Stream

Multiple Data
Stream

Figure 3.3
Flynn’s Taxonomy

Figure 3.3 shows the four types, Single Instruction Single Data (SISD) describes the

execution of a sequential algorithm, executing one instruction at the time. Single In-

struction Multiple Data (SIMD) implies the execution of multiple data streams against

the same instruction. Multiple Instruction Single Data (MISD) involves the execution

of multiple instructions performing operations on a single data stream. Finally Mul-

tiple Instructions Multiple Data (MIMD) requires multiple instructions to operate on

multiple data streams [38].

Nvidia’s parallel programming standard relies on the Single Instruction Multiple

Thread (SIMT) model. Both the SIMD and the SIMT are related and work in a sim-

ilar fashion. Both models broadcast the same instruction to multiple execution units.

However, the difference relies in the increased flexibility of the SIMT model, which

30

allows the hardware and the software to take advantage of three key differences. The

first one is the multiple register set for a single instruction. By using a “Scalar” spelling,

the CPU is allowed to launch a thread per element. All the threads are then executed

by the warp scheduler at a given cycle executing the same instruction, hence Single In-

struction Multiple Threads. Each thread however processes different data as it possesses

its own registers. The second factor is the possibility to use multiple memory addresses

for a single instruction, allowing threads to access a different memory address via a

single instruction without any latency costs required by the “address computation” re-

quired in a SIMD architecture. Finally the SIMT architecture allows the threads to

follow multiple flow paths for a single instruction; the downside is that this operation

has tremendous cost at runtime as only one flow path is executed at a time, hence, re-

quiring some threads to “wait”, introducing further slow down, through randomised

memory accesses [39]. Nevertheless these key differences allow researchers to design

efficient algorithms on GPGPUs by designing code for operations required by a sin-

gle thread working on one data element. This is ultimately extended by the CUDA

framework at runtime for multiple data elements based on the thread block and grid

configurations [40] [41] [42].

3.3 GPU Architecture

Three distinct GPU architectures are able to run CUDA. The first one was the Tesla

generation brought along with the first version of the CUDA framework in 2006. The

second generation was Fermi in 2010 and the third one, used in this research, is the

Kepler architecture released in late 2012.

31

CPU Memory GPU Memory

PCI Express
Memory Controller Memory Controller

CPU GPU

Figure 3.4
CPU and GPU Simplified Architecture

Figure 3.4 shows a simplified architecture of the CPU and the GPU. Note that both

the CPU and the GPU have their own memory controllers and communicate together

through the 16-lane Peripheral Component Interconnect (PCI) slots. Both the CPU and

the GPU have their own virtual memory spaces. As a result the CPU is not able to read

or write to the device memory. Applications must therefore explicitly allocate, copy and

transfer data from one to another in order to process it, or to retrieve results [43].

The computational power of GPUs comes from Streaming Multiprocessors (SM).

Each CUDA-enabled GPU architecture provides from two to a dozen SMs. More

specifically each streaming multi-processor contains multiple execution units for 32-

bit integer for single and double-precision floating point operations, a warp scheduler

coordinating the executions units, dedicated hardware for texture mapping and Special

Function Units (SFU) allowing the approximation of different mathematical functions

(log, exp, sin, cos, etc). The streaming multiprocessors also contain two on-chip memory

blocks: 48 KB of constant cached memory broadcasting data to the SMs and 64 KB of

shared memory allowing data to be shared between multiple threads [43][44].

32

core core core core core core

core core core core core core

core core core core core core

core core core core core core

core core core core core core

core core core core core core

core core core core core core

core core core core core core

core core core core core core

core core core core core core

core core core core core core

core core core core core core

core core core core core core

core core core core core core

core core core core core core

core core core core core core

ld/st

ld/st

SFU

SFU

ld/st

ld/st

SFU

SFU

ld/st

ld/st

SFU

SFU

ld/st

ld/st

SFU

SFU

ld/st

ld/st

SFU

SFU

ld/st

ld/st

SFU

SFU

ld/st

ld/st

SFU

SFU

ld/st

ld/st

SFU

SFU

core core core core core core

core core core core core core

core core core core core core

core core core core core core

core core core core core core

core core core core core core

core core core core core core

core core core core core core

core core core core core core

core core core core core core

core core core core core core

core core core core core core

core core core core core core

core core core core core core

core core core core core core

core core core core core core

ld/st

ld/st

SFU

SFU

ld/st

ld/st

SFU

SFU

ld/st

ld/st

SFU

SFU

ld/st

ld/st

SFU

SFU

ld/st

ld/st

SFU

SFU

ld/st

ld/st

SFU

SFU

ld/st

ld/st

SFU

SFU

ld/st

ld/st

SFU

SFU

Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit

Warp Scheduler Warp Scheduler Warp Scheduler Warp Scheduler

Register File

Shared Memory / L1 Cache Constant Cache

Figure 3.5
Kepler Streaming Multiprocessor

Figure 3.5 shows one streaming multiprocessor for the Kepler-class architecture. The

number of streaming processors also known as CUDA cores, is increased by a factor

of 6 compared to the latest Fermi architecture and features 192 CUDA cores. This

architecture also possesses 13 streaming multi-processors, for a total of 2496 CUDA

cores. The Nvidia Kepler K20m also amounts up to 7.1 billion transistors on a die area

of 561 mm2 and achieves a theoretical memory bandwidth of 208 GB/s.

3.3.1 GPU Memory Model

The data processed by the GPU can be stored in five different types of memories on

the GPU. Each memory type can be accessed through the CUDA framework, and each

has it own strength and weakness, trading complexity for speed. Highly optimised code

takes into consideration all memory type and uses the appropriate memory, in order to

increase the throughput of the algorithm.

33

Global Memory

Constant Memory

Texture Memory

Shared Memory

Thread
(0,0)

Registers

Local Memory

Texture Cache

Constant Cache

Thread
(1,0)

Registers

Block (0,0)

Shared Memory

Thread
(0,0)

Registers

Local Memory

Texture Cache

Constant Cache

Thread
(1,0)

Registers

Block (1,0)

Figure 3.6
On-chip and Off-chip Device Memory Space

Global memory is the main off-chip memory abstraction used by the kernel. It is used

to read and write to the device memory. Global memory requires up to 600 cycles to

be accessed and is therefore considered slow. However, it is the largest memory space

available on the GPU. To achieve the best performance when reading or writing data,

warps must operate in a coalesced fashion and perform contiguous memory accesses.

Algorithm design must take this into consideration for speed critical applications. Oth-

erwise, un-coalesced memory access leads to a high penalty depending on the chip

implementation. Lastly global memory is also accessible to all threads launched by the

kernel [43] [44] [45].

Constant memory is a read-only memory optimised to broadcast information to multi-

ple threads. The compiler uses constant memory to store “constant” variables defined

either by the researcher in the code, or to store values that are not easily computed. The

memory is a partition of the device memory, accessed through a specific set of instruc-

tions. The GPU accesses the memory over a constant cache of 64 KB located on the

streaming multiprocessor. The constant cache is able to deliver a single value to every

thread in a warp in a single clock cycle. However, this performance is lost if threads re-

34

quire different values and the process takes up to 600 clock cycles to complete [43] [44].

Local memory is off-chip memory, which contains the stack of every thread launched

by the CUDA kernel. The memory also contains variables that cannot be contained by

the registers, is not cached and can be read and written by each thread. Local memory

can take up to 600 clock cycles to access [43] [45].

Texture memory is off-chip memory and like constant memory, texture memory is ac-

cessed through read instructions. These are required to use a texture cache located in

the streaming multiprocessor. The cache is optimised for read only-accesses and does

not require the accesses to be coalesced unlike global memory. The memory layout is

optimised for 1D, 2D and 3D spatial locality [46]. Texture calls defined in the code

define the type of data stored, as well as the access scheme (type of data stored i.e float,

double, int). The memory can be read by all threads in a block and is optimised to

speed up regularly executed operations through caching, as texture memory requires

the same amount of clock cycles as global memory [43] [44].

Shared memory is a fast on-chip memory. It is primarily used to exchange data between

threads within a block. Shared memory only requires up to 2 clock cycles to be accessed

and is often used to store resources that need fast access [45]. The total size of shared

memory is 64 KB. However, the default configuration is set to 48 KB of shared memory

and 16 KB is assigned to the L1 cache. Shared memory can be read and written to by

any thread [43] [47].

3.3.2 Experimental System Architecture

The different algorithms proposed have been assessed on a Supermicro server supplied

with two Intel Xeon E5-2620 six core CPUs running at 2.0 GHz. The server as a total

of 64 GB Random Access Memory (RAM) and is running Ubuntu Server 11.10 (kernel

version 3.0.0-12-server). It is also composed of a Nvidia Tesla K20m graphic card. The

35

card consists of a single Printed Circuit Board (PCB), composed of 192 CUDA cores

distributed over 13 multiprocessors. The K20m has 5 GB of global memory and permits

up to 26,624 active threads, with each streaming processor handling up to 2048 active

threads.

3.4 Background

Pattern matching is the art of finding one or multiple patterns in a text string, regardless

of the complexity of the pattern and the length of the text. Pattern matching has diverse

applications ranging from medical to computer security.

Peng and Chen discussed the use of GPUs for large-scale pattern matching in CUgrep:

A GPU-based High Performance Multi-string Matching System [48]. They implemented a par-

allelised version of the Backward Nondeterministic Dawg Matching algorithm (BNDM)

in order to create a web page matching system. They made use of three different data

structures and created two “B-tables”, the first one containing for each character a bit-

mask and the second one containing compressed bit-masks allowing the algorithm to

take advantage of small memory spaces. During the matching process, the text repre-

senting the web pages was split into chunks of 2 KB, and the number of launched threads

was equal to the number of pattern. The chunks of data were analysed sequentially. The

algorithm achieved a speedup of 40 times compared to the sequential equivalent when

using a Tesla C1060 over its CPU counterpart [48].

Schatz et al. [49] presented “Cmatch” in Fast Exact String Matching on the GPU. The

algorithm is a GPU-based exact string matching algorithm for DNA sequences. It takes

advantage of data structure, organised as a suffix-tree. The tree is constructed on the

CPU and organised in two arrays, the node array and the children array. Both arrays

are stored in texture memory of the GPU. The children nodes are organised in adjacent

cells for locality. The DNA sequence and the two tree arrays are sent to the GPU prior

36

to the matching phase. The DNA sequence is then divided into multiple chunks and

processed in parallel. The algorithm is 35 times faster than its equivalent CPU-based

version by using an Nvidia GTX 8800 and a 3.0 GHz Intel Xeon processor.

CUDA AGrep was presented in A Fast CUDA Implementation of Agrep Algorithm for Ap-

proximate Nucleotide Sequence Matching by Li et al. [50]. The algorithm aims at match-

ing patterns in DNA and RNA sequences. The text string (DNA/RNA genome) uses

a binary representation, where each nucleotide is represented by only 2 bits. The

genome is then stored in global memory. During matching, the genome is divided

into subgenomes, were each thread is used to process 4,096 nucleotides. Nucleotides

are shuffled to achieve coalesced memory accesses during matching. By using an

NVIDIA GeForce GTX285 graphics card, the authors achieved 70 fold and 36 fold

speedups over the CPU-version of the k-difference AGrep algorithm depending on the

maximum length of the patterns.

Lin et al. [51] proposed a multi-GPU Knuth-Morris-Pratt algorithm. The patterns

are aggregated in a 1D array and are then divided by the number of GPUs in use,

to be transferred to their respective GPUs along with the text string. The respective

failure tables of each pattern is calculated on the GPU. The resulting matches are

stored in a one dimensional array returned to the CPU. The GPU cards used were

an NVIDIA Tesla S1060 and C1060, the authors achieved 97 times speed up over the

counterpart Intel Xeon CPU.

An Intrusion Detection System on GPU was presented by Hung et al. [52]. The algo-

rithm is divided into three phases. Firstly the packets are concatenated into a 1D array

and the patterns are processed into hierarchical hash tables. The hash tables are stored

by levels into 1 dimensional arrays; the number of levels is dependent on the length of

the pattern. Each cell of the hash table contains either, a final state, a next state (in the

next hash table) or a null pointer. Both are then sent to the GPU for the second phase,

37

the matching process. During the matching process, each thread will process the same

amount of data. When a match is found the corresponding match is written into a match

table stored in the GPU global memory. Finally, the match table is transferred from the

GPU to the CPU memory. The algorithm achieves a throughput of 2.3 Gbit/s when

using an NVIDIA GeForce GTS 450, demonstrating 11 fold speedup over a sequential

Aho-Corasick algorithm running on an Intel i3 CPU processor.

In Efficient Pattern Matching on GPUs for Intrusion Detection Systems Tumeo et al. [53]

present a modified version of the Aho-Corasick algorithm for GPUs. The algorithm

was designed to assign one single TCP/IP packet to each thread, allowing more threads

to be launched and avoid overlapping between text chunks being matched. The al-

gorithm was designed with a buffering mechanism allowing packets to be transferred

during the matching process to produce a continuous feed. The results were organised

in an multidimensional array, containing the packet index, the packet symbol and the

matching state. The algorithm uses memory improvements and benefits from a binary

representation of the Aho-Corasick states to reduce the overall memory requirements.

The input structure was also redesigned by the author to reduce the loading memory

transaction times. The authors demonstrated their algorithm on two Nvidia cards, a

GeForce 9500M GS and a Tesla C1060, the optimised code shows 2.85 times improve-

ments on the GeForce card and 6.67 times improvement on the Tesla card over the

CPU implementation on an Intel Xeon E5345.

A GPU file carving algorithm has been presented by Marziale et al. [54] in Massive

threading: Using GPUs to increase the performance of digital forensics tools. File carving algorithms

are used by forensic investigators to retrieve files from an hard disk drive image. This is

performed by looking for file headers and footers, also known as magic numbers. In this

paper, they presented a parallelised version of an earlier work, the Scalpel carving tool.

However, unlike the CPU algorithm running a modified version of the Boyer-Moore

algorithm, the GPU runs a simple sequential searching algorithm. The algorithm works

38

as follows. Firstly the searching rules (patterns) are copied to constant memory on the

GPU prior to the search. Secondly, 10MB (text strings) blocks of data are sent to the

GPU sequentially. The current block is stored in the GPU Dynamic random-access

memory (DRAM); each thread is assigned 160 bytes to process and overlaps the next

chunk of data by the length of the longest rule minus 1. The simple sequential algorithm

implemented by Marziale et al. yields 2.22 times improvement over the CPU version of

the Scalpel algorithm, with a disk image of 20 GB on an Nvidia 8800 GTX graphic

card.

Lin et al. [55] presented a Parallel Failure-Less Aho-Corasick (PFAC) algorithm to

accelerate string matching on GPU in Accelerating String Matching Using Multi-Threaded

Algorithm on GPU. The idea behind the library, is to remove the failure-functions from

the Aho-Corasick algorithm to reduce the thread divergence, as well as the number of

pointers required in each trie node. The matching process works as follows; each thread

is assigned one letter and travels the trie until a match is detected. When a match is de-

tected, the thread ID is sent back to the CPU. However, when a mismatch is detected the

thread computational process is terminated. The PFAC library was further improved

in [56] by binding the state transition table to texture memory to benefit from the 6 kb

cache reducing the memory transaction from global memory. A second optimisation

lies in caching text string data in shared memory during the matching process to ben-

efit from the low clock cycle access during the thread matching overlapping. The final

improvement comes from introducing perfect hashing to reduce the overall memory re-

quirements of PFAC, storing only valid transition for the failure-less AC trie [57]. The

library demonstrated 3.9 Gbps throughput on an Nvidia GeForce GTX 295 and the

implementation of perfect hashing required 4 times less memory.

Prior work described in this section was realised on older versions of the CUDA

framework using outdated GPU hardware, increasing the throughput of the different

algorithms by increasing the numbers of GPUs. The following Chapters presented in

39

this thesis take advantage of the latest GPUs hardware and CUDA framework in or-

der to improve the performances of pattern matching by using techniques such as loop

unrolling, dynamic parallelism, and stacked memory, offered in the latest software and

hardware version. Moreover, the algorithms are specifically designed with the hardware

architecture in mind taking full advantage of the possibilities offered.

3.5 GPU-Accelerated Knuth-Morris-Pratt Algorithm

The Knuth-Morris-Pratt algorithm presented in section 2.1 has been chosen for its

simplicity and efficiency on CPU. Furthermore, it is the precursor of the multi-pattern

Aho-Corasick algorithm. The algorithm also presents opportunities for parallelisation

strategies on GPUs and the ability to store its failure table efficiently in shared mem-

ory. Only a limited number of studies have considered improving upon the run-time

performance of crucial single pattern matching algorithms, often improving its speed

by running it concurrently on multiple GPUs [58] [59].

One solution proposed by Lin et al. in [59] allows 97 times speed ups over their CPU

counterpart, but the methodology used presents multiple drawbacks. In particular, the

algorithm requires the use of the OpenMP Application Program Interface (API) increas-

ing considerably the complexity of the algorithm. On the other hand the improvements

of the implementation rely on the number of GPUs used to boost the overall through-

put. A more suitable solution would be to improve and parallelise the KMP algorithm

by taking advantage of the different memory types of the GPU and best coding prac-

tices as well as improving and modifying the core of the serial version, demonstrating the

high efficiency of the algorithm running on a single GPU, while keeping the complexity

of the algorithm to a minimum.

40

3.5.1 Pre-processing Engine

As described in Section 2.1.2 the first phase of the KMP algorithm consists of a pre-

processing phase. This step is realised before the patterns and text string are transferred

to the GPU. The patterns and failure table are serialised by the pre-processing engine.

The serialisation of patterns offers a simple way to keep track and arrange the patterns

in a two dimensional array. A second two dimensional array containing the failure table

is also computed for each of the patterns.

As the KMP algorithm is a single-pattern algorithm the processing engine is required

to analyse the text as often as there are patterns. The process is time consuming and

greatly benefits from the parallel nature of the GPU as described later in Section 3.5.4.

N
um

ber of Pattens

KMP

Load PattensPatterns

Create
Failure Tables

Serialise
Patterns

Serialise
Failure Tables

Load Text
StringText String

Send Data to
Device

Matching
Phase

Send Result to
Host

Load Data to
Shared
Memory

Match Pattern
vs

Text Sting

Store Results
in

Global
Memory

Pre-Processing Engine

Pattern Matching Engine

1
2
3
4

1
2
3
4

Serialising
Operation

Patterns

Failure Table

Figure 3.7
Flow Chart for the Pre-Processing and Pattern Matching Engine of the KMP algorithm

The pre-processing engine follows the steps described in Figure 2.7 in order to cre-

ate failure-tables corresponding to every patterns, before storing them in the 2D array.

Figure 3.7 demonstrates how the pre-processing engine aggregates the patterns and

the failure tables. The failure tables and corresponding patterns can be found at the

41

row ID of each table, avoiding the need for hash table linking patterns and failure ta-

bles as shown in Figure 3.7 (Top-Right – serialisation operation: Pattern Table RowID3

corresponds to the Failure Table RowID3). Figure 3.7 (Bottom) also shows the steps un-

dertaken by the pattern matching engine explained in the next section.

3.5.2 Pattern Matching Engine

In order to parallelise the algorithm and maximise the transfer from the host to the

device, the failure tables are serialised into a single array. This technique is recom-

mended in order to avoid synchronisation delays between the CPU and the GPU for

small batch transfers, hence, reducing the overall transfer time.

A T A C G T T C
. . .

Thread 0 Thread 1

Pattern : CGTT

A T A C G T T C
. . .

Thread 0 Thread 1

Figure 3.8
Patterns Divided Between Two Chunks of Data

The searching phase on the other hand can be parallelised by ordering each thread to

process a number of characters, equal to the length of the longest patternP in the failure

table. As each single thread is looking for a given number of characters, the threads must

overlap the searching area of their right neighbouring thread to avoid missing patterns

split over two chunks. A text chunk represent a portion of text analysed by a single

thread.

42

Figure 3.8 (Top) shows that the pattern P = CGTT is split over two different chunks

searched by two neighbouring threads. The problem is resolved in Figure 3.8 (Bottom)

by purposely requesting Thread0 to overlap the searched chunk of Thread1 by the

length of the longest pattern in the failure table minus 1. This technique allows every

pattern in the text to be matched regardless of the size of the chunks processed by indi-

vidual threads. The chunk sizes are calculated as shown in Equation 3.1, let N be the

length of the text, M be the length of the pattern and ChunkLength be the total length

of the chunks matched by every thread.

ChunkLength =
N

TotalThreadNumber

+ (M − 1) (3.1)

Figure 3.9 demonstrates how the processing engine stores the text and patterns before

being loaded in the processing engine.

Pre-Processing
Engine

Patterns

Failure Table

CPU

Patterns

GPU

Matching
Engine

Global
Memory

Shared
Memory

Output

Results

Figure 3.9
Pattern Processing Engine

Both the patterns and failure table are stored in global memory, before being trans-

ferred to shared memory before the matching. The results of the matches are stored in

global memory, before being retrieved by the host computer and displayed to the user.

43

3.5.3 Code Optimisations

When launched by the CPU, the failure tables are stored on the GPU as 2 dimen-

sional arrays in global memory; the text string is also loaded into global memory. Prior

to the matching process of the first pattern, the failure table is loaded into shared mem-

ory along with the pattern shown Figure 3.10. The searching phase benefits from the

shared memory as each thread searches the same pattern at the same time, resulting in

faster memory accesses and higher throughput.

A T C A C G T T

A T C A C G T T

... ...

Pattern
Global Memory

Shared Memory

Figure 3.10
Threads loading patterns from global memory into shared memory simultaneously

The matching section of the implementation benefits from loop unrolling. This tech-

nique transforms the matching code “for” loop, allowing the optimisation of the exe-

cution [60]. This is done by avoiding a testing operation at each iteration of the loop,

removing control instructions and branching penalties. The loop unrolling is achieved

by re-writing the “for” loop in a number of individual statements [61].

3.5.4 Experimental Evaluation

To measure the improvements of the algorithm over its sequential version, different

data sets have been used. In this way, the performance of the algorithm was evaluated

against different type of alphabets length. Variations in the number of patterns, pattern

length and number of threads were also considered. The performance of the algorithm

44

was recorded using the standard time measurement API offered by the CUDA frame-

work, however, in order to avoid errors introduced by background processes competing

for resources, the results have been averaged over 500 runs, as this is standard prac-

tice [62] [63].

The first dataset used is the Yersnia Pestis bacteria’s DNA, with an alphabet Σ = 4

and a size of 4.6 Mb. The second dataset used is a password file leaked on the internet

with an alphabet Σ = 26 and a total size of 4.0 Mb. These datasets were chosen as

they illustrate common problems encountered in different applications such as DNA

sequencing, single string searching software, or more specific such as intrusion detection

systems and digital forensic applications.

�������

������

�����

����

��

���

���

����

��� ���� ����� ������

��������������

�
��
�
��
�
�
�
�

�������������

������������������

�����������������
�����������������
����������������
����������������
���������������
���������������

Figure 3.11
Results over Multiple Pattern Sizes and Thread Numbers

Figure 3.11 demonstrates the execution time of the algorithm running on CPU and

GPU. The figure depicts different scenarios and demonstrates the impact of GPU mul-

tithreading over the CPU serial implementation. When a small number of threads are

launched on the GPU, the CPU demonstrates better performance. This demonstrates

45

the need for the GPU to be able to cache and use round robin techniques between the

threads and warps launched in order to hide latencies and exhibit good performance.

Following the properties exhibited in Figure 3.11, it is possible to ascertain that in

order to benefit from the power of the GPU and benefit from parallelisation, a significant

number of threads is required by the kernel. Note that Figure 3.11 is represented using

a logarithmic scale.

�����

����

��

���

���

����

���������� ����������� ������������

�
��
�
��
�
�
�
�

��������������

������������������

���
���

Figure 3.12
Execution time of Knuth-Morris-Pratt on CPU Vs GPU over different number of patterns

Figure 3.12 depicts the performance of the KMP algorithm over different number

of patterns. The patterns used in the experiment have a constant length of 20 char-

acters chosen pseudo-randomly from the Yersinia Pestis DNA test string. As shown the

performance of the algorithm is decreasing according to the number of patterns being

matched. Note that Figure 3.12 is represented using a logarithmic scale.

46

��

��

���

���

����

���� ���� ����� �����

�
��
�
��
�
�
�
�

�������������

������������������

������� ������� ����������� �����������

Figure 3.13
Speedups comparisons over multiple file sizes and pattern sizes

Figure 3.13 exhibits the comparison of the Knuth-Morris-Pratt algorithm over two

text, the Yersinia Pestis DNA data and the leaked Password file. Both datasets are evaluated

against different pattern lengths on the CPU and the GPU. As shown in Figure 3.13 the

algorithm demonstrates a speedup of 14 fold over the CPU version of the algorithm,

with a pattern length varying from m = 20 on text string with alphabet Σ = 4 and

demonstrates performances of 10.2 folds over the CPU version of the algorithm against

a text string of alphabet Σ = 26 with pattern length of m = 20.

As demonstrated in Figure 3.13, threads mismatch earlier with larger alphabets,

hence reducing the thread divergence, making the matching process more efficient.

At the same time, increasing the pattern size requires more comparisons to occur, in-

creasing the divergence, hence slowing down the matching process [49].

47

Table 3.1
Throughput Comparison in Gbps

File Threads Number of Patterns
Throughput GPU

in Gbps

Throughput CPU

in Gbps

DNA 10 000 1 19.827875 0.47744

DNA 10 000 10 1.98144 0.06703

DNA 10 000 100 0.18429 0.00618

DNA 10 000 1000 0.01824 0.000624

Password 10 000 1 18.5337 0.62786

Password 10 000 10 1.8932 0.08896

Password 10 000 100 0.19854 0.008957

Password 10 000 1000 0.019975 0.0007941

The Knuth-Morris-Pratt algorithm demonstrates good performances with different

alphabet sizes and demonstrates up to 19.8 Gbps of throughput when matching one

pattern of size m = 20, with an alphabet of Σ = 4 and up to 18.5 Gbps with a pattern

of size m = 20 and an alphabet of Σ = 26. However, when increasing the number

of patterns to be matched the overall performance of the algorithm decreases. The

algorithm also slows down with the increasing pattern length, demonstrating modest

performance with larger number of patterns and larger pattern sizes as demonstrated

in Table 3.1.

On the other hand, the Boyer-Moore-Horspool serial algorithm is known to perform

better than the KMP in practice [21] [22]. These properties lead to an investigation

of a massively parallel version of the BMH algorithm, in order to draw a comparison

between the two most popular single pattern matching algorithms.

48

3.6 GPU-Accelerated Boyer-Moore-Horspool Algorithm

The serial version of the Boyer-Moore-Horspool algorithm is known to perform better

than its KMP counterpart due to the large shifts it can make as it starts matching from

the end of the pattern, as explained in [64] [65]. The algorithm is also know to perform

better with smaller alphabets [17] [66].

One solution proposed by Zhou et al. in [67] shows a 40 time speed up over their

counterpart CPU. The methodology presented, makes use of shared memory to store

the text string. Each chunk of text string is stored separately in shared memory, this

technique requires the authors to use a bank conflict solution and clear the chunks cur-

rently in use before copying new chunks in shared memory. A more suitable solution

would be to store the chunks in global memory, reduce the coding complexity and

modify the core of the sequential version to increase the efficiency of the algorithm.

The implementation presented in this section follows this approach and stores the text

string in global memory, while storing the patterns in shared memory. Furthermore,

the implementation takes advantage of loop unrolling to increase the overall matching

throughput and reduce branching.

3.6.1 Pre-Processing Engine

The serial BMH algorithm consists of two phases, the first is a pre-processing phase

which is realised before the pattern matching occurs, as described in Section 2.1.3. In

the parallel version, the pre-processing phase is itself divided in two. The first step is

to create a bad character table for all the patterns being searched for. The second step

requires the patterns to be serialised in a 2D array. The serialisation phase allows the

user to transfer all patterns and their corresponding bad character tables in a single

transfer.

49

BMH

Load PattensPatterns

Create
Bad Character

Table

Serialise
Patterns

Serialise
Bad Charater

Tables
Load Text

StringText String

Pre-Processing Engine

1
2
3
4

1
2
3
4

Serialising
Operation

Patterns

Bad Char Table

Figure 3.14
Boyer-Moore-Horspool Pre-processing Flowchart

Figure 3.14 illustrates the pre-processing steps undertaken before the matching pro-

cess takes place. These steps are solely realised on the CPU. As for the KMP algorithm,

the pattern and its corresponding bad character table can be found at the same rowID

of both tables. This technique avoids the use of a tertiary table, or hash table to link the

patterns and their bad character tables.

3.6.2 Pattern Matching Engine

The pattern matching engine is the core of the matching algorithm. In order to be

parallelised, the patterns and the bad character table are sent in one batch from the

host to the device. This ultimately limits the number of requests sent to the GPU.

50

Load Text
StringText String

Serialised
Patterns

Serialised
Bad Character

Tables

GPU Data Transfer

Load Patterns in
Shared Memory

Load Bad Char
table in Shared

Memory

Matching
Phase

Match Pattern
against Text

string

Store Results in
Global Memory

N
um

ber of PatternsSend
Results to

Host

GPU

CPU

Figure 3.15
Boyer-Moore-Horspool Matching Engine Flowchart

Figure 3.15 displays the behaviour of the pattern matching engine. As the data is

stored in global memory, the patterns and corresponding bad character tables are stored

in shared memory. The algorithm repeats this task according to the number of pattern

to be searched for. This ultimately limits the throughput of the algorithm. Following

the matching phase, the results are stored in global memory along with the matching

indices. When the matching phase finishes, the results are sent back to the host and

displayed to the user.

Unlike the KMP algorithm, the BMH algorithms starts to match backwards, but,

the chunks of data analysed by the BMH algorithms are of similar length, and threads

overlap each other, in order to match split patterns, as shown in Figure 3.8.

As with the KMP algorithm the loop unrolling technique is used, allowing the op-

timisation of the code execution. The loop unrolling technique helps in reducing the

51

branching penalties by re-writing the loop in a number of individual statements.

3.6.3 Experimental Evaluation

In order to analyse the performance of the algorithm and measure the improvements

over its sequential version, two datasets are used. These allow evaluation of the perfor-

mance of the algorithm against various alphabet sizes, number of patterns and pattern

lengths. The dataset used in this experiments is the same as the one described in Sec-

tion 3.5.4, allowing a thorough comparison of both the KMP and BMH algorithm.

�����

����

��

���

���

����

���������� ����������� ������������

�
��
�
��
�
�
�
�

��������������

��������������������

���
���

Figure 3.16
Execution time of Boyer-Moore-Horspool on CPU Vs GPU over different number of patterns

Figure 3.16 displays the performance of the BMH algorithm when exposed to dif-

ferent numbers of patterns. The patterns are uniformly chosen from the Yersinia Pestis

DNA test string. The throughput decreases with the increasing number of patterns.

This behaviour is expected, as the algorithm is required to skim through the text string

as many times as there are patterns to be matched, hence the throughput decreases with

the increasing number of patterns.

52

�����

����

����

��

��

���

���

����

���� ���� ����� �����

�
��
�
��
�
�
�
�

�������������

��������������������

������� ������� ����������� �����������

Figure 3.17
Speedups comparisons over multiple file sizes and pattern length

Figure 3.18 demonstrates the behaviour of the algorithm when used against patterns

varying in length from m = 20 to m = 500 and against two different datasets. It is also

shown that the BMH algorithm reacts counterintuitively with the increasing length of

patterns. With the increasing length of the patterns and more characters to match, the

overall throughput of the algorithm increases for the same number of patterns being

matched. This phenomenon is due to the length of the pattern and the numerous mis-

matches occurring during the matching phase, inherently speeding the matching pro-

cess, this phenomenon is described in [66] and in [68] where the same phenomenon is

observed on a CPU implementation.

53

�����

����

����

��

��

���

���

����

���� ���� ����� �����

�
��
�
��
�
�
�
�

�������������

��

������� ������������ ������� ������������

Figure 3.18
Summary comparisons of the Boyer-Moore-Horspool and Knuth-Morris-Pratt algorithm over
multiple data files and pattern sizes

Figure 3.18 compares the throughput of the BMH and KMP algorithm over different

pattern lengths. As shown, the BMH performs better when matching both the text

string of alphabet size Σ = 4 and of size Σ = 26. The behaviour of both algorithm

regarding the length of the pattern are antithetical, the KMP throughput decreases

with the growing length of the patterns while the BMH algorithm displays the opposite

behaviour.

As explained earlier, this is due to the divergence occurring during the matching

phase, as well as the number of characters the BMH algorithm is able to skip by starting

the matching from the end of the pattern, while the KMP algorithm is required to

continue its matching process towards the end of the pattern, hence requiring more

comparisons in order to match the same pattern.

54

Table 3.2
Throughput Comparison in Gbps

File Threads Number of Patterns
Throughput GPU

in Gbps

Throughput CPU

in Gbps

DNA 10 000 1 24.56211 1.01128

DNA 10 000 10 2.49981 0.09532

DNA 10 000 100 0.24735 0.009302

DNA 10 000 1000 0.02424 0.000929

Password 10 000 1 26.24363 1.23796

Password 10 000 10 2.68947 0.12620

Password 10 000 100 0.25902 0.01095

Password 10 000 1000 0.024875 0.0009788

In Table 3.2 the BMH algorithm is evaluated against two datasets of alphabet size

Σ = 4 and Σ = 26, as well as against different number of patterns. The GPU imple-

mentation demonstrates 24 Gbps throughput when matching a single pattern with an

text string and alphabet of size Σ = 4, and as expected the throughput increases when

matching a single pattern against a text string of alphabet size Σ = 26. This behaviour

is observable both on the CPU and the GPU and has previously been observed on a

CPU [68]. The results also demonstrates over 26 fold increase in processing time over

its CPU counterpart while matching a single pattern, and over 25 fold speedups when

matching a thousand patterns at the same time.

This section demonstrated empirically the possibilities of single pattern matching

on GPU and demonstrated the improvements of the massively parallel versions of the

algorithm against their CPU counterpart, however, it was also highlighted that single-

pattern matching algorithms do not cope well with matching increasing numbers of

patterns. The next section evaluates a multi-pattern algorithm approach in order to

increase throughput when matching one or more patterns, taking advantage of tree like

55

structures.

3.7 GPU-Accelerated Failure-Less Aho-Corasick Algorithm

The Aho-Corasick algorithm presents multiple advantages over single-pattern match-

ing algorithms, the main one being its processing throughput due to it’s ability to match

numerous patterns while traversing the text string only once, increasing drastically the

matching throughput.

3.7.1 Engine Architecture

The parallel version of the Aho-Corasick however introduces the same problem as

encountered by the KMP and BMH algorithms and requires boundary checking and

overlapping. This requires the execution time of the thread to rise as shown in Equa-

tion 3.2 [57].

TotalThreadT ime = Chunck + LongestPatternLengthSize − 1 (3.2)

When matching a text string with the parallel version of the Aho-Corasick algo-

rithm, each thread is assigned to a chunk of the text string and is required to travel

the cyclic trie. Due to the non-deterministic transitions of the AC algorithm the threads

may travel through different path leading to divergence as they backtrack through the

trie using the failure transitions to match different patterns in a single pass, as shown in

Figure 3.19 [69].

56

A T A C G T T C
. . .

Thread 0 Thread 1

Pattern : CGTT

. . .

Figure 3.19
Overlapping Patterns with the parallelised Aho-Corasick algorithm

Figure 3.19 depicts the boundary problems introduced by allocating a chunk to each

thread [53] [70]. When matching the pattern CGTT , thread 0 and thread 1 will scan

the text and compare the letters against the automata stored in memory. In order to

fully match the searched pattern thread 0 will have to overlap the chunk attributed to

thread 1 by the size of the pattern-1.

The boundary and divergence problems can be hindered by using the PFAC algo-

rithm introduced by Lin et al. in [56]. The failure transitions of the AC are removed from

the trie, reducing drastically the number of valid transitions, hence reducing thread di-

vergence [71].

This technique is also used by Memeti et al. in [72] in Accelerating DNA Sequence Analysis

using Intel Xeon Phi where the authors propose to remove the failure links of the AC

algorithm to allow one valid transition for each states of the automaton and guarantee

a constant number of operations for each thread.

57

Furthermore, the PFAC algorithm can be adapted to different environments, as

demonstrated by Aragon et al. [73] in Pattern matching in OpenCL: GPU vs CPU en-

ergy consumption on two mobile chipsets where the PFAC algorithm is implemented using

openCL [74] on CPU and GPU mobile devices demonstrating the reduced power con-

sumption and capabilities of the PFAC pattern matching algorithm.

A T A C G T T A
. . .

Pattern : CGTT

Thread 0

Thread 1

Thread 2

Thread 4

Thread 6

Thread 3

Thread 5

Thread 7

A T A C G T T A
. . .

Pattern : CGTT

Thread 3

Part A

Part B

Figure 3.20
Parallel Failure-less Aho-Corasick

Figure 3.20 (Part A) shows how the threads are assigned to each letter of the text string.

This technique allows the first access to memory to be coalesced, hence each thread in a

warp to access contiguous memory. As the threads start matching, a number of them will

mismatch and will be terminated liberating resources. As shown in Figure 3.20 (Part B),

58

thread 3 will fully match the pattern “CGTT” and will overlap the letters allocated to

thread 4, 5 and 6 which have mismatched and have thus been terminated during the

first matching step. This technique reduces the work of each thread to the minimum, as

the threads are terminated when no valid transition is found. However, the technique

is subject to load imbalance as some threads will match more characters and require

more time than their counterparts [57] [75].

In this work, the PFAC trie is improved upon by combining it with a trie reduction

scheme, limiting the total depth of the trie to the minimum number of nodes required.

This technique has previously been implemented by Vasiliadis et al. [76], on a standard

Aho-Corasick algorithm, achieving a false positive rate below 0.0001% with a trie depth

of 8.

This technique combined with the PFAC trie reduced the divergence by limiting the

work of each thread to achieve a full match, while reducing dramatically the memory

footprint required to store the trie, on the GPU. The use of a failure-less trie successfully

exploits the massively parallel nature of the GPU by assigning each thread to one byte

of memory to start the matching process as demonstrated in Figure 3.20.

59

States A C G T

0 1 - - -

1 - 2 - -

2 - 3 - -

3 - 4 - -

4 - 5 - -

5 -1 - - -

Pattern : ACCGA

Left

3 - 4 -

4 - 5 -

5 -1 - -

Right

0 1 - -

1 - 2 -

2 - 3 -

States A C G

Figure 3.21
Reduced Trie Storage

In order to improve the memory footprint of the algorithm, the trie is stored in a

compact 2D array. Traditionally, patterns are stored in state tables containing the entire

alphabet as shown in Figure 3.21 (Left), however, the number of sparse cells increases

exponentially. Therefore, it is possible to decrease the memory footprint by only allo-

cating cells with the alphabet required by the patterns as shown in Figure 3.21 (Right).

An application of the algorithm presented in this work is provided subsequently, high-

lighting the architecture of the implementation and the throughput achieved.

3.7.2 GLoP Architecture

The GLoP algorithm developed in this work and presented in this thesis supports two

types of GPU memory architectures. The first one stores the patterns and text strings

directly in global memory, while the second one, stores the patterns in global memory

and the text strings in texture memory, allowing the algorithm to take full advantage

60

of the texture cache. Both memory storage techniques present advantages and disad-

vantages. The global memory implementation requires coalesced memory accesses in

order to provide efficient throughput, however, allows read and write memory oper-

ations. At the same time, texture memory provides cached data, but only allows read

operations.

Syslog
Manager

Logs

Rules

Industrial
System

GPU
Farm

Pull

Figure 3.22
GLoP Algorithm Applied to a Massively Parallel Log Management System

As shown in Figure 3.22, the GLoP algorithm was implemented along with a log

management system, allowing the use of memory efficient massively parallel pattern

matching algorithm, to find patterns for deficient hardware sending logs, improve upon

data analysis, or give the ability to forensic investigators to use the algorithm in big data

incident response cases after a data breach in large networked systems.

Figure 3.22 demonstrates the typical scenario for the architecture. The industrial

system archives its logs through the syslog manager [77], which pushes the logs towards

the GPU system. The rules are fed to the GPU system and can be edited according to

the requirements and needs of the log management system. As shown, the algorithm

can be used on a single GPU for smaller systems and be extended or outsourced to a

GPU farm, if more processing power is required.

61

3.7.3 Evaluation

In order to test the algorithm, different log files have been analysed and generated.

The synthetic log files have been generated using the Mersenne Twister (MT) uniform

pseudo-random number generator [78] and have an exact size of 5 MB and 100 MB.

The uniqueness of each file is ensured by computing its SHA256 hash. The perfor-

mances of the algorithm are also tested against the previously described Knuth-Morris-

Pratt and Boyer-Moore-Horspool algorithms, in order to demonstrate the potential of

the parallelised multi-pattern matching GLoP algorithm against parallelised version of

single-pattern matching algorithm, as well as a serial implementations of the GLoP al-

gorithm.

�������

������

��

���

������

���������� ���������� ����������� ����������� ������������

�
�
��
�
�
�
�
�
��
��
�
�
�
��
�
�
�
��
�
�
�
�
�

���������������������

���
���

Figure 3.23
Comparison Between GLoP running on GPU and CPU

Figure 3.23 demonstrates the throughput achieved by the GLoP algorithm running

on GPU with the patterns and the text string stored in global memory (Note the log-

arithmic scale). Figure 3.23 also highlight the weaknesses of the serial version of the

GLoP algorithm running on the CPU. The GLoP algorithm also demonstrates that the

failure-less trie approach maintains a constant throughput independent of the number

62

of patterns (as expected from a multi-pattern matching algorithm [79]) as the maximum

number of matched nodes for each thread corresponds to the trie length, defined by the

trie reduction scheme, limiting the total depth of the trie. As shown in Figure 3.23 the

GLoP algorithm achieves up to 11 Gbps throughput on GPU while the corresponding

CPU version achieves throughput of only 1.7 Mbps. The throughput is measured using

the CUDA event elapsed time function and quantified with the following Equation 3.3;

Throughput =
8 ∗N

Timegpu
(3.3)

Where Timegpu is the time elapsed during which the algorithm is running on the

device, and 8 ∗ N is the input length of the text in which the patterns are searched

(bytes).

��

��

���

���

���

���

���������� ���������� ����������� ����������� ������������

�
�
��
�
�
�
�
�
��
��
�
�
�
��
�
�
�
��
�
�
�
�
�

������������������������������������

����������������
���������������

Figure 3.24
Comparison Between Data Processing from Global and Texture Memory

The implementation of the GLoP algorithm is further improved by using texture

memory. The operations performed by the algorithm are identical with the only differ-

63

ent being that the pattern table is being stored in texture memory.

Figure 3.24 highlights the throughput difference between patterns stored in global

memory and texture memory. Furthermore, Figure 3.24 emphasises the importance

and the throughput gained by cached data in texture memory, allowing threads to

read memory in an non-coalesced fashion [80] and therefore demonstrates an over-

all throughput of 20 Gbps compared to global memory which demonstrates an overall

throughput of 11 Gbps regarding the number of patterns used over synthetic data log

files of 100 MB.

���

����

����

�����

�����

�����

������

������

���������� ����������� ������������

�
�
��
�
�
�
�
�
��
��
�
�
�
��
�
�
�
��
�
�
�

��������������

������������������

���
���
����

Figure 3.25
Comparison Between Single and Multi-Pattern Matching

Figure 3.25 demonstrates the efficiency of the multi-pattern GLoP algorithm against

its counterpart single-pattern matching algorithm. As described earlier the throughput

of the GLoP library on texture memory is constant, whereas the KMP and BMH al-

gorithms are greatly affected by the number of patterns being matched. The GLoP

algorithm using texture memory is able to demonstrate over 10 fold the performances

of the KMP and over 7 folds the performance of the BMH algorithm when matching

10 patterns concurrently.

64

3.8 Summary

Graphics Processing Units are first and foremost off-the-shelf massively parallel de-

vices dedicated to display graphics, however, it has been demonstrated that by using

the CUDA framework, GPUs offer significant performance improvement by using their

parallel capabilities in order to increase the overall processing throughput of computers.

Previous studies have shown that the performance obtained by running pattern

matching on GPUs offered significant improvement over the counterpart serial imple-

mentation, however, the majority of those studies have focused on the design of pattern

matching algorithms distributed over multiple GPUs in order to increase the through-

put, instead of focusing on the quality of the code and optimisations offered by the

CUDA framework and hardware available.

This work demonstrated the use of different techniques in order to increase the

throughput of single and multi-pattern matching on GPU. The Knuth-Morris-Pratt

and Boyer-Moore-Horspool algorithms were designed with a focus on efficiency, ex-

ploiting the different types of memory and loop unrolling techniques in order to in-

crease the throughput of the algorithm and exploit the features from the CUDA frame-

work and hardware. The KMP algorithm demonstrated over 19.8 Gbps throughput

while matching a single pattern, while the BMH algorithm demonstrated over 24 Gbps

throughput while matching DNA.

Both single pattern matching algorithms present however some setbacks, such as the

need to skim through the text to identify each pattern. This phenomenon decreases

the overall throughput of the single pattern matching algorithm, although the perfor-

mance of the GPU still demonstrates 29 fold throughput over its CPU counterpart when

matching a thousand patterns, demonstrating the potential of these experiments and the

applicability of GPUs in pattern matching.

65

In order to solve the problems uncovered in the implementation of single pattern

matching algorithms, a variant of the Aho-Corasick multi-pattern algorithm was inves-

tigated, allowing each thread to be discarded at mismatch. This technique was used

to create the GLoP matching library. The efficacy of the library was demonstrated in

Section 3.7.3 with two different memory schemes. The first memory scheme stores the

patterns in global memory, demonstrating over 10 Gbps throughput, while the second

memory scheme storing the patterns in texture memory, demonstrated over 20 Gbps

throughput when matching over a thousand patterns simultaneously.

Previous implementations made of state tables, but did not handle the state explosion

and increasing number of null cells required so store large patterns. In contrast our

implementation limited the depth of the trie, reducing the overall size requirements

and combined the bad character table technique from the BMH algorithm, which only

stored the alphabet Σ of the patterns, allowing to reduce the sizes even further.

While this memory improvement is welcome, GPUs have a limited amount of mem-

ory, that will quickly saturate when used with a large number of patterns such as intru-

sion detection system, anti-virus, or GPU Log Processing rules. This matter is further

investigated in the following Section.

66

Chapter 4

Highly Efficient Memory-Compression

Scheme

The amount of data requiring analytics has increased dramatically in the last decade,

and analysing large datasets has become key in underpinning innovation. This also

represents a new era in data exploration, however it uncovers a number of challenges

known as the 3Vs, Volume, Variety and Velocity [81].

Some of these challenges can benefit from massively parallel hardware such as

GPUs [82], dramatically increasing the processing throughput of parallelised algo-

rithms. However, off-the-shelf GPUs possess a limited amount of memory, driving the

requirements for compressed data structures [83] [84].

Taking advantage of compressed data structures also enables faster data transfer be-

tween the host and the device, as well as enabling users to offload intensive computa-

tions to the older GPUs with restricted amount of memory while benefiting from their

massively parallel capabilities [85] [86].

This chapter outlines a highly efficient memory compression scheme for pattern

matching on GPU, modifying the core of the PFAC algorithm creating a novel Highly

67

Efficient Parallel Failure-less Aho-Corasick (HEPFAC) algorithm. Furthermore its effi-

ciency is demonstrated and compared against the state-of-the-art.

4.1 Problem Statement

Graphics Processing Units are used in a plethora of different research fields, enhancing

computational performance of personal desktops to GPU farms. The numerous fea-

tures of modern GPUs and the CUDA libraries available allow for a large variety of

algorithms to be modified to run on GPUs and benefit from their massively parallel

capabilities.

To take advantage of these features, the computations need to be executed on the

GPU and the data hosted in RAM (Host Memory) need to be transferred onto the

GPU memory before any computation can occur as described earlier in Section 3.2.

These are executed in six different steps, from the initialisation of the GPU to the GPU

memory release.

The GPU computation improves the throughput of the algorithm, but the data trans-

fer from the CPU and the GPU is often designated as the bottleneck of the architecture,

increasing the overall processing time [87] [88]. The memory management process of

the GPU also often allocates pointers sparsely depending on the free memory avail-

able, causing problems when working with a large number of data structures and point-

ers [89] [90].

Furthermore the domains to which pattern matching algorithms apply are in con-

stant expansion and are increasingly demanding. The number of patterns to be matched

is increasing exponentially [91] with over 82,000 new malware patterns reported every-

day in 2013 and over 200,000 new malware patterns reported per day in 2014 [92]. This

trend is also valid in other domains such as data mining [93] and DNA analysis [94],

demonstrating high requirements for efficient pattern storage when performing pattern

68

matching on GPUs.

This chapter firstly elaborates on the current state-of-the-art and the background,

then moves onto the proposed memory compression scheme. A description of the stor-

age model, the node reduction technique and the trie compression are given. The per-

formances of the proposed algorithms are evaluated against different alphabet sizes,

memory requirements and throughput. A second version of the algorithm is then pro-

posed allowing for a further increase in the throughput by using a different memory

representation allowing to make use of the different memory hierarchies included in

GPUs. The throughput of algorithm is then evaluated and a performance analysis on

the Amazon EC2 cloud is outlined.

4.2 Background

A GPU-based anti-virus search engine was proposed by Vasiliadis et al.[76]. The

search engine presented by the authors, was massively parallelised using a modified

version of the Aho-Corasick trie. The GrAVity engine presented by the authors uses

a storage mechanism called prefix matching, where only the prefix of the signatures

are stored, while the leaf nodes store the remainder of the patterns, also known as

suffix. The authors reduce the overall number of trie levels to eight resulting in less

than 0.0001% of false positives. A false positive occurs when the text string contains

at least eight characters of the pattern but the remainder of the pattern has a different

suffix. The authors demonstrated over 100 times the performances of ClamAV on an

Intel Xeon E5520 CPU versus an NVIDIA GeForce GTX295, which is composed of

2 Printed Circuit Board (PCB)s. The GrAVity implementation however presents a ma-

jor memory problem as described by the authors, with each node of the trie requiring

1 Kb of memory.

69

Seamans et al. [95] present one the first parallel hybrid (CPU/GPU) engine for virus

matching in Fast Virus Signature Matching on the GPU. The authors parallelised the match-

ing engine by searching for 2 bytes of the virus signatures in each files. The two first

bytes of the signature are then mapped to a 64,000-entry array, leading to one or more

signatures. When a file matches the two first bytes, the entry array is consulted and the

four following bytes are compared. When a match is detected the host is notified and the

file is compared against the full signature. The authors demonstrated 27 fold improve-

ment by using an NVIDIA GeForce 7800 GTX over their CPU implementation on a

3 GHz Intel Pentium 4. The authors however pointed out a lack of flexibility of their

approach and the limitations of the 64,000 entry arrays. Another downside of the six-

bytes approach is the six-bytes pre-matching technique, which requires each signatures

to have a unique starting sequence.

Trapnell et al. [96] presented MUMmerGPU in Optimizing Data Intensive GPGPU Com-

putations for DNA Sequence Alignment. The MUMmerGPU library allows to accelerate data-

intensive computation for next generation DNA sequences. This is realised by creat-

ing a stackless depth-first-search kernel, also known as threaded tree, running on an

nVidia GeForce 8800 GTX and demonstrating 13 fold performances compared to the

CPU version of the code running on a 3.0 GHz dual-core Intel Xeon 5160. The au-

thors presented two versions of the code, MUMmerGPU 1.0 and MUMmerGPU 2.0,

with the second version performing 4 times as fast as the first. The second version of

the algorithm stores the pattern in two-dimensional layout in texture memory. The au-

thors uses the Ukkonen’s algorithm in order to construct the suffix trie [97]. The nodes

of the trie are divided in 16 byte structs called the nodes and children structs. The node

structures contains the depth of the node and the address of the parent and suffix nodes,

whereas the children struct contains the address of the five possible children (A,C,G,T

and $) requiring 32 bytes of data to store each node, with an alphabet of Σ = 4.

70

Burtscher et al. [98] describes a tree-based implementation of the barnes-hut algo-

rithm in An Efficient CUDA Implementation of the Tree-Based Barnes Hut n-Body Algorithm. The

algorithm describes the implementation of an n-body algorithm in a tree like fashion.

The tree is stored in 1D stack, representing elements in an array instead of a heap ob-

ject. This allows the authors to avoid the use of pointers and translating the pointers

between the host memory and the device memory. The authors demonstrate 72 times

speedup over the CPU serial implementation using a nVidia Quadro FX 5800 GPU,

when simulating over 5,000,000 bodies. An efficient use of stacks (array based) tree lev-

els is demonstrated, in order to store the tree, however the trie implementation demon-

strates significant un-coalesced accesses to memory, reducing the overall throughput.

Vasiliadis et al. [99] present a multi-parallel IDS in MIDeA: a multi-parallel intrusion detec-

tion architecture. The authors implement two versions of the Aho-Corasick algorithm: the

AC-Compact and the AC-Full. The compact version uses compact state tables, whereas

the full version describes the standard Aho-Corasick algorithm. The AC-Compact ver-

sion demonstrates 77% throughput of the AC-Full version, however a 37 fold compres-

sion improvement. The state table however, demonstrates poor flexibility since in the

worst case scenario, the AC-Compact and the AC-Full table require the same amount

of memory. The algorithm achieves 5.2 Gbps throughput with zero packet loss running

on two nVidia GeForce GTX480 graphics cards.

Lee et al. [100] demonstrate how the space required by the Aho-Corasick state ta-

bles can be reduced. The authors describe a method to compress the state tables of

the finite automaton generated of the AC algorithm by removing the unnecessary fail-

ure links generated by the AC algorithm. To limit the depth of the trie they adopt a

novel banded-row format and compress the state transition table, using linked lists in

order to reduce the overall memory requirements. The authors demonstrate their mem-

ory scheme achieving 39.7 percents reduction in memory requirements when selecting

5,000 patterns randomly in comparison with the original version of the AC algorithm

71

and improve by 83.9% the original banded-row format used in the Clam AntiVirus.

Pungila et al. [101] propose a compressed Aho-Corasick and Commetz-Walter au-

tomaton for GPU-accelerated pattern matching. The automaton constructed by the

authors is stored as a one dimensional array, such as described earlier in [96] and [98] .

The automaton is created on the host computer and flattened in a depth-first-search

fashion. The authors uses array indexes on the host and restore the pointers once the

automaton is stored in GPU memory by using a hash table. Their experiments are per-

formed using an Nvidia GTX 560Ti and achieves a throughput of 1420 Mbps, or 33

fold improvement over their counterpart CPU version of the AC-CW algorithm run-

ning on an Intel Core i7.

4.3 Highly Efficient-Memory Compression Scheme

The algorithm presented in this thesis is based on the PFAC algorithm, described in

Section 3.7. As a brief reminder, the PFAC algorithm solves the boundary problem

introduced by allocating chunks to each thread. It also decreases the divergence intro-

duced by the failure links.

The Aho-Corasick is known as being the multi-pattern matching evolution of the

Knuth-Morris-Pratt algorithm [20] and has demonstrated superior performance in Sec-

tion 3.7 when modified and implemented in a 2D state table. The investigation and

implementation of this algorithm concluded that it is suitable as the algorithm is suffi-

ciently modular to be improved upon and significantly decreases its memory footprint

in order to create a highly efficient memory compression scheme.

The algorithm is implemented as a library with the objective of significantly reducing

the memory footprint of the trie, while achieving high throughput. To accomplish this,

the core of the PFAC algorithm is modified in order to create a Highly Efficient Parallel

Failure-less Aho-Corasick (HEPFAC) algorithm along with a reduced data structure, a

72

highly-efficient storage model, a trie compression algorithm and prefix matching.

4.3.1 Storage Model

The primary component of the highly efficient memory compression scheme is the

storage model of the HEPFAC. The abstract memory representation of the HEPFAC

trie shown in Figure 4.1 helps understand possible improvements the algorithm can

sustain and the way these can be achieved.

In order to achieve an efficient storage model, the patterns added to the trie are sorted

alphabetically. As the patterns are arranged in alphabetical order, common prefixes can

be identified and merged together. This first step is executed on the CPU. Each of the

patterns are then added to the trie in a breadth-first construction model. This model

enables the construction of the trie level by level, requiring each letter of the same level

to be added first.

73

Patterns:
 AAA
 BBC
 BCD

1 2

R

A B

Breadth-First-Construction

Patterns:
 AAA
 ABC
 BCD

A

1 2

3 4 5

R

A

B

B

C

Patterns:
 AAA
 ABC
 BCD

A

A

1 2

3 4

6 7

5

8

R

A

B

C

B

C

D

Step 1 Step 2

Step 3

Figure 4.1
Breadth-First-Construction Trie

Figure 4.1 demonstrates the required steps in order to create the trie in a breadth-first

fashion. Figure 4.1 (Step I) shows that the first letter of each lexicographically ordered

pattern is added to the first level of the trie (Note that R denotes the root of the trie), in

Figure 4.1 (Step II). The second level of the trie is added by adding sequentially each

second letter of each pattern. At this stage the number of levels is based on the longest

alphabetically ordered pattern.

The breadth-first created trie is an efficient construction model: it allows to control

the number of trie levels required, consequently reducing the overall size of the trie by

limiting its depth and by only adding pattern prefixes.

74

Patterns:
 AAA
 ABC
 BCD

A

A

1 2

3 4

6 7

5

8

R

A

B

C

B

C

C

- R -

1 - 2

3 4 5

6 7 8

R 1 2 3 4 5 6 7 8

Breadth-First-Construction

Matrix

Row Major Ordering

Figure 4.2
Row-Major-Ordering Matrix

Once the trie is constructed, it is represented in memory as a row-major-ordered

array [102] [103]. This array aims at removing the need of memory pointers and store

the trie in a contiguous block of memory. The removal of pointers is advantageous when

working with different types of memory layouts and in order to avoid pointer translation

between the GPU and CPU memory [96] [104].

Figure 4.2 shows how the process is achieved. The breadth-first constructed trie can

be represented as a matrix; levels are then added sequentially in a row-major ordered

array. Note that for simplicity the content of the cell (for the trie transversal) is not

represented.

Transposing the trie from the tree representation to a matrix is optional. In order to

optimise the process, this step was removed and the trie was constructed directly from

75

the ordered patterns into a 1D breadth-first / row-major ordered array, requiring no

pointer translation into indexes and fewer node copies, decreasing the code complexity

and the trie construction process time.

During the construction of the trie, each node is assigned with an offset representing

his first child. As the trie is ordered in a breadth-first / row major ordering array, the

children of each node are consecutively ordered in the array.

Patterns:
 AAA
 ABC
 BCD

offset = 1;
bitmap[8];

offset = 3;
bitmap[8];

offset =5;
bitmap[8];

offset = 6;
bitmap[8];

offset = 7;
bitmap[8];

offset = 8;
bitmap[8];

offset = -1;
bitmap[8];

offset = -1;
bitmap[8];

0:0
1:0
2:0
3:0
4:0
...

25:0
26:0
27:0
28:0
29:0
30:0
31:0

0:0
1:0
2:0
3:0
4:0
...

25:0
26:0
27:0
28:0
29:0
30:0
31:0

0:0
1:0
2:0
3:0
4:0
...

25:0
26:0
27:0
28:0
29:0
30:0
31:0

0:0
1:0
2:0
3:0
4:0
...

25:0
26:0
27:0
28:0
29:0
30:0
31:0

0:0
1:0
2:0
3:0
4:0
...

25:0
26:0
27:0
28:0
29:0
30:0
31:0

0:0
1:0
2:0
3:0
4:0
...

25:0
26:0
27:0
28:0
29:0
30:0
31:0

0:0
1:0
2:0
3:0
4:0
...

25:0
26:0
27:0
28:0
29:0
30:0
31:0

0:0
1:0
2:0
3:0
4:0
...

25:0
26:0
27:0
28:0
29:0
30:0
31:0

Node 0 Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7

offset = -1;
bitmap[8];

Node 8

Figure 4.3
Bitmapped Array Trie

Bitmap: Each node of the trie contains a bitmap. A bitmap is a succinct representation

of an alphabet using one bit to identify 1 character of the alphabet. For example, DNA

only requires an alphabet Σ = 4, hence requiring 4 bits to map all the characters (’A’,

’C’, ’G, ’T’) of the alphabet.

76

If a bit is set to 1, it is assumed that the corresponding character is present in the

bitmap. If set to 0, it is assumed that the corresponding character is not present in the

bitmap. This technique is used to provide compact data storage, allowing succinct data

structures, hence reducing memory requirements.

Figure 4.3 shows the content of each node. Each of the trie nodes is composed of an

offset pointing towards their first child and a bitmap. An accepting state is represented

by the offset being equal to −1. Figure 4.3 shows a bitmap of 8∗32 bits representing the

256 letters of the ASCII alphabet [105]. It is important to note the size of the bitmap

can vary with the requirements, (e.g. DNA requires an alphabet Σ =4, hence, reducing

the size of the bitmap from 8 to 1).

This technique allows the reduction of the memory footprint of the algorithm. Com-

mon algorithms often use an integer array representation of the 256 letters alphabet,

where each cell is an integer of 4 bytes, requiring 1024 bytes per cell for the ASCII

alphabet. The technique presented in this thesis allows to use 32 bytes to represent the

ASCII, demonstrating a memory reduction of 32 fold per nodes [106].

R A B A B C A C D

Patterns:
 AAA
 ABC
 BCD

A C D

0 1 2 3 4 5 6 7 8

Figure 4.4
First Child Pointer

The offset field in every node represents their first child. In order to find the children

of a node, a simple formula based on a population count of the bitmap array is used, as

shown in Equation 4.1. The formula operates as follows; let ChildNode be the index of

77

the child searched for, curNode the current node, Offset the index of the first child of the

current node and i the population count up to the ASCII value of the child required.

ChildNode = curNode → offset+ i (4.1)

In order to find the second child of the root node, or find if the the root node has a

child “B”, a population count of the bitmap array is made, counting the number of bits

set to 1 before the ASCII value of the letter “B” (ASCII=66).

Figure 4.4 shows that the root node has two children, “A” (Array Position 1) and “B”

(Array Position 2). Figure 4.3 shows that “A” is represented as a bit set to 1 at position 65

and “B” is represented as a bit set to 1 at position 66.

R A B A B C A C D

Patterns:
 AAA
 ABC
 BCD

A C D

0 1 2 3 4 5 6 7 8

Offset =1
Bitmap = { 1, Position 65}
 { 1, Position 66}

Figure 4.5
First Child of the Root Node

In order to match the pattern P = {BCD} the following steps are required:

Step 1 A population check is made on the bitmap of the root node; As the letter “B”

is a child of the root node, the ASCII position 66 of the bitmap is set to 1. If the bitmap

returned 0 at ASCII position 66 the pattern matching process would have stopped, as

the letter “B” would not have been present as a child.

78

Step 2 To find the position of the node “B” in the array, a population count of the

bitmap of the root node is made. The population count is counting the number of bits set

to 1 before the ASCII position of the first letter of the pattern “B” (ASCII position= 66)

as shown in Figure 4.5. As the root node only possesses two children, the population

count returns the value 1, as the bit corresponding to “A” (ASCII position = 65) is set

to 1 and is the only bit set before the 66 th bit representing the letter “B”.

Step 3 In order to calculate the position of the letter “B” in the array, the result of

population count from step 2 is added to the offset as shown in Equation 4.1. The

value returned by the population count is i = 1, and the offset of the current (root) node

is equal to the position of its first child, in this case offset=1. Hence the child node (“B”)

can be found at position 2 in the breadth-first / row major ordered array as shown in

Figure 4.5.

R A B A B C A C D

Patterns:
 AAA
 ABC
 BCD

A C D

0 1 2 3 4 5 6 7 8

Offset =5
Bitmap = { 1, Position 67}

Figure 4.6
First Child of the Letter “B”

Step 4 A population check is made on the bitmap of the new parent node ’B’ (Node 2);

As the letter “C” is a child of the node 2, the ASCII position 67 of the bitmap is set to 1.

If the bitmap returned 0 at ASCII position 67 (Corresponding to the letter “C”) the

pattern matching process would have stopped, as the letter “C” would not have been

present as a child as shown in Figure 4.6.

79

Step 5 In order to find the second letter (“C”) in the pattern “BCD”, a population

count of the parent bitmap node (letter “B”) is made . The population count is counting

the number of bits set to 1 before the ASCII position of the second letter of the pattern

(“C” ASCII = 67). As “B” has no other children, the population count returns 0.

Step 6 In order to calculate the position of the letter “C” in the array, Equation 4.1 is

used. The value returned by the population count is i = 0, and the offset of the current

(“B”) node is equal to the position of its first child, in this case offset=5 as shown in

Figure 4.6 . Hence the child node (“C”) can be found at position 5 in the breadth-first

/ row major ordered array as shown in Figure 4.4.

R A B A B C A C D

Patterns:
 AAA
 ABC
 BCD

A C D

0 1 2 3 4 5 6 7 8

Offset =8
Bitmap = { 1, Position 68}

Figure 4.7
First Child of the Letter “C”

Step 7 In order to find the third letter (“D”) of the pattern “BCD”, a population count

of the bitmap node corresponding to the letter “C” is made. The population count is

counting the number of bits set to 1 before the ASCII position of the third letter of the

pattern (“D” ASCII = 68) as shown in Figure 4.7. As “C” has no other children, the

population count returns 0.

Step 8 In order to calculate the position of the letter “D” in the array, Equation 4.1 is

used. The value returned by the population count is i = 0, and the offset of the current

(“C”) node is equal to the position of its first child, in this case offset=8. Hence the child

80

node (“D”) can be found at position 8 in the breadth-first / row major ordered array as

shown in Figure 4.7.

These steps demonstrate how patterns are identified in the trie and are undertaken by

every single thread. When the child of a given node is not present at the corresponding

ASCII position (e.g. “A” ASCII = 65) in the bitmap, the population count will be equal

to 0. The current thread will then be terminated whilst other threads will continue their

matching process independently.

This memory representation of the trie can be further optimised to reduce the mem-

ory footprint by truncating the trie to a depth of 8th level, and by merging common

pattern suffixes together. These techniques are discussed further in Section 4.3.2.

4.3.2 Trie Compression

The trie compression is the key part of the memory footprint reduction. It helps by

reduce the number of nodes and eliminating redundant pattern suffixes. With the high

number of patterns and the exponential increase of data, the number of nodes in the

trie can become substantial, increasing drastically the memory footprint of the trie and

making trie transfer prohibitive.

The trie reduction is alphabet dependent and demonstrates a strong correlation be-

tween similar suffixes and large alphabets [107] [108]. The proposed reduction tech-

nique allows reduction of the number of nodes on the last three levels of the trie, mak-

ing use of unique branches and removing redundant paths. This process happens in

four steps. Note that for convenience this example uses a visual representation of the

trie, hence is demonstrated in a tree like structure rather than an array, in order to

demonstrate the steps undertaken by the compression process and the effects on the

trie branches, but it is equally applicable to a 1D memory representation of the trie.

81

0

1

2

3

4

5

6

7

8

23

9

10

25

11

12

13

28

14

15

16

17

31

18

19

20

37

21

22

41

43

24 44

45

26

27

46

48

29 49

30 50

51

32

33

52

34

35

54

36 56

57

38

39

58

40 60

61

42 62

63

64

65

66

47 67

68

69

70

71

72

53 73

74

55 75

76

77

78

59 79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

Figure 4.8
Full Truncated Trie

Step 1 The first step consists of truncating the trie and reducing the total length of

the patterns. Figure 4.8 shows a trie of 20 Patterns truncated to a length of 8 after the

root node. The constrained length allows each thread to perform the same amount of

work when a pattern is fully matched, reducing thread divergence. A similar technique

has previously been implemented by Vasiliadis et al. [76], on a different multi-pattern

82

matching algorithm, achieving a false positive rate below 0.0001% with a trie depth of

8. This work verifies the technique independently for the HEPFAC trie presented in this

thesis in Section 4.5 and evaluates it against different alphabet sizes in order to allow

better performances against different types of alphabets, allowing applicability in the

medical, security, computer science and other domains using custom alphabets sizes.

Step 2 The second step consists of eliminating every last node of every pattern and

merging them into one last node. This reduction can be calculated as follows; let Qfinal

be the total number of nodes after merging the last nodes together, Q be the total num-

ber of nodes before merging and P be the total number of patterns,

Q− (| P | −1) = Qfinal (4.2)

Equation 4.2 demonstrates the expression that can be used to calculate the number

of nodes after the second step of the compression. As the parents are able to identify

their children, the last node of each pattern is unnecessary and therefore discarded and

merged into one shared final node.

83

0

1

2

3

4

5

6

7

8

10

9

11

12

13

14

15

16

17

18

19

20

21

22

23

24

26

27

46

47

100 120

-1

101 121

102 122

103

104

105

106

107

108

109

28 48

110

111

112

113

114

115

116

117

118

119

29 49

30 50

31 51

32

33

52

53

34

35

54

55

36 56

37 57

38

39

58

59

25

40 60

41 61

42 62

43 63

44 64

45 65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

Figure 4.9
Last Node Reduction Step

Figure 4.9 demonstrates that last node compression does not affect the branches of

84

the trie as the last node is only created to acknowledge a full match. In fact the offset

of the last node can be set to −1, allowing the threads to register the full match while

avoiding them keeping track of the trie levels.

Step 3 The third step is the most important regarding the trie compression, as it re-

duces the number of branches in the trie. The compression is applied on the three last

levels of the trie, merging similar suffixes. This step is achieved by comparing each of

the branches against their neighbouring tree-node suffixes and merging similar suffixes.

Patterns :
ABCDEF
ACDDDD
CCDDEF
FFFFFF

$

1

C F

2 3

5 6 7

9 10 11

13 14 15

17 18 19

4

8

12

16

20

F

F

F

F

F

CC

D

D

F

EE

F

D

D

D

D

A

B

C

D

$

1

C F

2 3

5 6 7

9 10 11

13 14

16 17

4

8

12

15

18

F

F

F

F

F

CC

D

F

D

D

D

D

A

B

C

D

E

Figure 4.10
Branches with Similar Suffixes are Merged Together

Figure 4.10 provides an example of branch reduction for the set of pattern

X = {ABCDEF}, {ACDDDD}, {CCDDEF}, {FFFFFF}. The patterns suf-

fixes ending by DEF are merged together reducing the overall number of nodes re-

quired to store the trie in memory.

85

0

1

2

3

4

5

6

7

8

23

9

10

25

11

12

13

28

14

15

16

17

31

18

19

20

37

21

22

41

43

24 44

45

26

27

46

48

29 49

30 50

51

32

33

52

34

35

54

36 56

57

38

39

58

40 60

61

42 62

63

64

65

66

47 67

68

69

70

71

72

53 73

74

55 75

76

77

78

59 79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

-1

Figure 4.11
Reduced Trie

86

Figure 4.11 shows the reduced trie. Different branches have been merged at different

levels drastically reducing the number of nodes required to store the initial trie contain-

ing 142 nodes, against 114 nodes for the reduced trie, demonstrating a total reduction

of 20%.

These reduction and compression steps are achieved on the host, before sending

the reduced trie to the GPU along with the text strings. The process of sending and

matching patterns on the GPU is described subsequently.

4.4 Processing-Engine

The text strings are forwarded to the processing engine for analysis. The purpose of the

processing engine is to match the text sequences against the patterns stored in global

memory and transfer the results back to the GPU.

GPU
Pattern
Storage

GPU
Data
Buffer

Letter Sequence Analysis

Letter Sequence Analysis

Letter Sequence Analysis

Letter Sequence Analysis

.

.

.

Result
Buffer

Host
Result

Data
Transfer

GPU Engine

Figure 4.12
Overview of the GPU Processing Engine.

Figure 4.12 demonstrates the steps that occur between the data transfer from the

host to the GPU and from the GPU to the host. The GPU engine also illustrates the

matching technique used, where the text string is stored in global memory in a data

87

buffer. Each letters of the text string are subsequently matched against the trie as shown

previously in Figure 3.20.

Small data files are aggregated together in a single buffer for analysis, as the PCIe

throughput degrades with small data transfers from the host to the GPU due to the

overhead added by the buffering and transfer; this has been observed by different re-

searchers [79] [109].

IDLE

Time
CPU GPU

Pre-processing

Copy Data to Buffer

Threads are Assigned
to letters

ASCII values are
converted into integers

Bitmap Population
Counts on Current
Nodes are made

Match Letter

Output Result

Copy Results to Host

Print Results

Match

Mismatch:
Terminate Thread

Step to Next Node

0

Figure 4.13
Overview of the Execution Flow.

Figure 4.13 shows the overall execution flow adopted by the HEPFAC algorithm over

time. This flow highlights the idle state of the CPU during the matching process, which

inherently allows the CPU to concentrate on other tasks while the GPU matches the

text string against the different patterns. The matching process operated on the GPU

follows the steps described in Section 4.3.1.

88

4.4.1 Performance Optimisation

Having detailed the overall architecture of the HEPFAC algorithm, a number of op-

timisations improving the overall computations are described. The core idea behind

the optimisation techniques introduced is to increase the processing throughput of the

algorithm.

The fist optimisation applied to the HEPFAC algorithm is the implementation of

grid level concurrency. This is achieved by creating multiple execution streams. CUDA

streams refers to a sequence of operations that can be conducted serially or in a concur-

rent fashion. This technique allows to overlap different types of operation in an asyn-

chronous fashion.

a) Synchronous Execution

Data Transfer to
GPU

GPU Execution

Data Transfer
From GPU

Data Transfer to
GPU

GPU Execution

Data Transfer
From GPU

b) Asynchronous Execution

Data Transfer to
GPU GPU Execution Data Transfer

From GPU

Data Transfer to
GPU GPU Execution Data Transfer

From GPU

Stream 0

Stream 1

Stream 0

Stream 1

Time

Figure 4.14
Data Transfer Using Asynchronous Execution on the GPU in Order to Overlap Execution
Streams.

Figure 4.14 (a) (Synchronous Execution) demonstrates a simple timeline of the differ-

ent operations performed by the algorithm serially, while Figure 4.14 (b) Asynchronous

Execution) demonstrates kernel computations evenly distributed amongst the two con-

current streams. Due to common hardware and the shared resources the execution of

the two different streams are serialised and the data transfer can only be overlapped

when used with a duplex PCIe bus. Note that the number of concurrent streams is

89

limited by the available resources on the GPU, such as the register and shared mem-

ory [110].

In order to increase the performance of the processing engine and reduce thread

divergence, the matching process uses a loop unrolling technique [111]. This technique

allows to increase the work per thread, reduces the instruction counts and increases the

branch prediction resulting in higher throughput [112] [113]. This process increases

total code space, however the trade-off between code space and speed is significant in

this case, this technique also increases the register usage, but once again the trade-off is

significant and the overall matching throughput increases significantly [114].

4.5 Performance Evaluation

The performance evaluation of the proposed HEPFAC algorithm is made as follows:

Firstly the evaluation of the prefix matching analysis is realised. Secondly the memory

requirements for the tries are realised, comparing with state of the art research. Thirdly

the overall throughput of the engine architecture is analysed including the data transfer

and trie creation. Finally the performance measurements of the matching engine are

presented.

The performances of the algorithm are assessed by using synthetic files generated

by the Mersene Twister (MT) uniform pseudo-random number generator [78] as it

is the most widely used. Each evaluation is performed 100 times against 5 different

synthetic files representing different alphabet sizes, demonstrating the potential of the

algorithm in different scientific fields and highlighting particular characteristics such as

throughput, prefix matching sizes and compression.

Furthermore the use of synthetic files allows the creation of a control environment,

in order to perform advanced testing. It is acknowledged that real-world traces allow

a realistic representation of the sustained throughput, however, synthetic traces have

90

the advantage of highlighting and isolating specific behaviours which are often not well

represented in real-world traces [115] [116]. The different characteristics of the traces

have been varied as much as possible in order to cover the different aspects required by

the evaluation and to demonstrate the performances sustained in different types of envi-

ronment. Such testing is often used by researchers and is a common and recommended

practice throughout academia and industry [117] [118] [119].

91

�������������

��

����

�����

������

�� �� �� � � � � � �

�
�
��
�
��
�
��
�
�
��
�
�
�

������������

���������
���������
���������
����������
����������

���
����

�����

�����
�����
�����
�����

�� �� �� � � � � � �

�
�
��
�
��
�
��
�
�
��
�
�
�

������������

����������
����������
����������
����������
����������

���
����

����

�����

�����
�����

�� �� �� � � � � � �

�
�
��
�
��
�
��
�
�
��
�
�
�

������������

����������
����������
����������
����������
����������

���
����

����

����

����

����

�� �� �� � � � � � �

�
�
��
�
��
�
��
�
�
��
�
�
�

������������

����������
����������
����������
����������
����������

����

����

����

����

����

����

�� �� �� � � � � � �

�
�
��
�
��
�
��
�
�
��
�
�
�

������������

����������
����������
����������
����������
����������

Figure 4.15
Comparison of Full Pattern Matches Based on their Prefix Sizes and Alphabet Used

92

4.5.1 Prefix Size Matches

The technique of prefix matching is alphabet dependent [120]. The probability of

a prefix being identified as unique depends on the size of the alphabet. For example

small alphabets decrease the total number of combinations of letters and unique pat-

terns require more effort to be identified. Conversely larger alphabets require more

combinations, requiring fewer computations to uniquely identify a pattern [121]. This

is demonstrated in Figure 4.15. The top figure shows that, a trie depth of over 12 char-

acters is required to uniquely identify a pattern of Σ = 4, whereas patterns of alphabets

Σ = 8 and Σ = 10 require at least a depth of 9 to be uniquely identified.

The trend is verified in Figure 4.15 (2, 3 and 4). Figure 4.15 (5) shows that alphabets

overΣ = 44 only require 5 characters to be uniquely identified. Applying this technique

to the HEPFAC allows the reduction of the overall trie size while eliminating numbers

of false positive matches. It is assumed that further manual or automatic matching is

implemented on the host in order to confirm the full match, while offloading the heavy

pattern matching to the GPU.

4.5.2 Memory Requirements

In Sections 3.5, 3.6 and 3.7, different algorithms were presented and their memory re-

quirement were highlighted, demonstrating high memory footprints. However in Sec-

tion 4.3.2 a trie compression algorithm was presented on a reduced bitmapped trie

leading towards reducing memory footprint to a minimum. In this section, the reduced

bitmapped trie is analysed against different trie implementations and compared against

state of the art implementations by other researchers.

93

�����

������

�������

������

������

�
�
�
�
���
��
�

�
�
�
�
�
���
��
�

�
�
�
�
�
���
��
�

�
�
�
�
�
���
��
�

�
�
�
�
�
���
��
�

�
�
�
�
�
���
��
�

�
�
�
�
�
���
��
�

�
�
�
�
�
���
��
�

�
�
�
�
�
���
��
�

�
�
�
�
�
���
��
�

�
�
�
�
�
�
���
��
�

�
��
�
���
��
�
��
�

���������������������������������

���������

����������������������
�����������
����������

��������������

Figure 4.16
Trie Size Comparisons Without Node Reduction for Small Alphabet

Figure 4.16 shows the performances of the bitmapped reduce trie over an alphabet of

Σ = 4. It shows how the HEPFAC algorithm scales over different number of patterns.

The truncated patterns used for this experiment were 20 characters long. The reduc-

tion achieved by the bitmapped reduced trie demonstrates an average size reduction

improvement of 38% compared to the simple bitmapped trie. (Note the logarithmic

scale of the Y axis).

As shown, the binary trie demonstrates a higher memory footprint than the bitmapped

array trie, even though the data structure of the binary trie is smaller. This is due to

the explosion of the number of nodes required in order to store every pattern leading

to high memory requirements. The array trie demonstrates similar properties as each

characters of the ASCII alphabet is represented by 4 bytes.

94

�����

������

�������

������

������

�
�
�
�
���
��
�

�
�
�
�
�
���
��
�

�
�
�
�
�
���
��
�

�
�
�
�
�
���
��
�

�
�
�
�
�
���
��
�

�
�
�
�
�
���
��
�

�
�
�
�
�
���
��
�

�
�
�
�
�
���
��
�

�
�
�
�
�
���
��
�

�
�
�
�
�
���
��
�

�
�
�
�
�
�
���
��
�

�
�
�
�
�
�
���
��
�

�
��
�
���
��
�
��
�

�����������������������������������

���������

����������������������
�����������
����������
��������������

Figure 4.17
Trie Size Comparisons Without Node Reduction for Large Alphabet

Figure 4.17 depicts similar properties to Figure 4.16. However, the trie demonstrates

a smaller gap between the bitmapped trie and the bitmapped reduced tries. This phe-

nomenon is due to lower suffix reduction rates.

As the alphabet size has increased to Σ = 52 the number of similar branches de-

creases, leading to a smaller number of branches being merged, hence reducing the

gap between both implementations. Despite the increasing number of unique suffixes

the trie still demonstrates a memory foot print reduction of 16% against its bitmapped

trie counterpart.

Note that the array trie and the binary trie displayed in Figure 4.17 are not affected

by the increase of the alphabet size as they are not alphabet dependent and therefore

the average memory footprint demonstrated by these implementations is similar to the

one presented in Figure 4.16.

95

Table 4.1
Memory Comparison between different state of the art implementations.

Alphabet Sizes Nodes HEPFAC PFAC [57] Pungila et al. [101] GrAVity [76]

Σ = 4 1000,000 5 MB 12 MB 7 MB 1000 MB

Σ = 32 1,703,023 12.9 MB 24.18 MB 15.02 MB 1703 MB

Σ = 256 352,921 12.1 MB 15.18 MB 13.41 MB 345 MB

The bitmap can also be adapted to the size of the alphabet and occupy Σ bits. Ta-

ble 4.1 shows that given alphabets of Σ = 4, 32 and 256 and a corresponding bitmap

size, the HEPFAC described in this thesis demonstrates the best compression. It is of

importance to note that the results depicted in Table 4.1 do not include the HEPFAC

trie compression step, as this step is data dependent. Instead the comparison is solely

made against the node sizes of the state of the art approaches.

Table 4.1 shows that the PFAC implementation requires a node data structure of

15 bytes, requiring a total of 24.18 MB over 1,703,023 nodes. It also demonstrates that

the approach described by Pungila et al. [101] using Aho-Corasick and the Commentz-

Walter (AC-CW) algorithm requires 10 bytes per node for a total of 15.02 MB over the

same number of trie nodes. The HEPFAC approach described in Section requires 1.87

times less memory than PFAC and 1.16 times less memory than AC-CW approach. Fur-

thermore, the approach proposed by Vasiliadis et al. [76] in GrAVity requires 345 MB

for an alphabet of Σ = 256, for total of 352,921 nodes whereas our approach without

the trie compression only requires 12.1 MB, demonstrating 28.5 fold memory savings.

It is also possible to approximately infer the memory requirements of the different

algorithms proposed in [57], [101] and [76] for different alphabets as described [101]

in order to draw comparisons and demonstrate that the HEPFAC implementation pre-

sented in this thesis is the most memory efficient algorithm when used with the same

number of nodes.

96

4.5.3 Sustained Throughput

In this section the throughput of the matching algorithm is evaluated against different

types of alphabet sizes and against different number of patterns.

����

��

��

�
��
�
�
�
�
��

�
��
�
�
�
�
��

�
��
�
�
�
�
��
�

�
��
�
�
�
�
��
�

�
��
�
�
�
�
��
�

�
��
�
�
�
�
��
�

�
��
�
�
�
�
��
�

�
��
�
�
�
�
��
�

�
��
�
�
�
�
��
�

�
��
�
�
�
�
��
�

�
��
�
�
�
�
��
�

�
��
�
�
�
�
��
�

�
��
�
�
�
�
��
�

�
�
��
�
�
�
�
�
��
��
�
�
�
�

���������������������������������

��������
��������
��������
���������
����������
�����������

Figure 4.18
Sustained Throughput for Small Alphabet Sizes Versus the Number of Patterns

Figure 4.18 shows the average speed of the HEPFAC algorithm for small alphabet

sizes. It is demonstrated that larger alphabet sizes perform better than smaller alphabet

sizes. The throughput is also affected by the number of patterns being matched by the

engine. When matching only 1 pattern with an alphabet ofΣ = 8 the algorithm demon-

strates over 1 Gbps of throughput, however, when matching only one pattern with an

alphabet of Σ = 52 the algorithm demonstrates a throughput of 4.5 Gbps, whereas

when matching 1000 patterns with an alphabet of Σ = 52 the algorithm demonstrates

an average of 1 Gbps throughput. The throughput increase is due to the amount of

threads facing early termination during a mismatch as the alphabet sizes grows. To

conclude, the throughput increases with the alphabet size.

97

Figure 4.18 also displays interesting properties regarding the throughput over small

alphabets when matching a small amount of patterns. For 3, 5, 10, and 100 patterns

the throughput sustained by the algorithm follows the same trend and displays similar

properties. This is due to the small number of patterns and the reduced divergence

involved during the matching.

����

��

��

���

�
��
�
�
�
�
��
�

�
��
�
�
�
�
��
�

�
��
�
�
�
�
��
�

�
��
�
�
�
�
��
�

�
��
�
�
�
�
��
�

�
��
�
�
�
�
��
�

�
��
�
�
�
�
��
�

�
��
�
�
�
�
��
�

�
��
�
�
�
�
��
�

�
�
��
�
�
�
�
�
��
��
�
�
�
�

��������������������������������

���������
����������
����������
�����������
������������
�������������

Figure 4.19
Sustained Throughput for Large Alphabet Sizes Versus the Number of Patterns

Figure 4.19 shows the throughput attained by the matching engine over larger al-

phabets. When using an alphabet of Σ = 92 matching one single pattern the through-

put reaches 8.5 Gbps, however when matching 1000 patterns the throughput reaches

1 Gbps. A similar trend was expressed in Figure 4.18.

Figure 4.19 displays another property of the HEPFAC algorithm. When using large

alphabets and small number of patterns (over Σ = 52), the throughput increases with

the smaller number of patterns, whereas Figure 4.18 demonstrated similar properties.

This effect is due to the increasing number of character combinations, decreasing the

thread divergence and the depth a single thread has to travel before being discarded.

98

4.5.4 Overall Timing Breakdown

The overall throughput of the HEPFAC algorithm is quantified by aggregating different

measurements together. These time measurements correspond to different aspects of

the algorithm, such as the array construction, the trie reduction, the transfer from the

host to the device and the searching phase.

�������

������

�����

����

��

�
�
�
�
���
��
�

�
�
�
�
���
��
�

�
�
�
�
�
���
��
�

�
�
�
�
�
���
��
�

�
�
�
�
�
���
��
�

�
�
�
�
�
�
���
��
�

�
�
�
�
�
�
���
��
�

�
��
�
�
�
�
��
�
��
��
�
��
�
�
�
�

�����������������

�������

������

�����

����

��
�
�
�
�
���
��
�

�
�
�
�
���
��
�

�
�
�
�
�
���
��
�

�
�
�
�
�
���
��
�

�
�
�
�
�
���
��
�

�
�
�
�
�
�
���
��
�

�
�
�
�
�
�
���
��
�

�
��
�
�
�
�
��
�
��
��
�
��
�
�
�
�

��������������

Figure 4.20
CPU Processing Time During the Construction and Reduction Phase

Figure 4.20 (Left) shows the processing time taken in seconds by the construction of

the trie, over different numbers of patterns, with a trie depth of 8 levels. Figure 4.20

(Right) highlights the processing time of the trie reduction, over the same amount of

patterns, with a similar trie depth. The trie construction and reduction time increases

when the number of patterns increases. This is an expected behaviour, as more pro-

cessing is required to process the patterns during the construction and the reduction of

the trie, with the increasing number of patterns.

99

�������

�����

�����

�����

�����

�����

�����

�����

�����

�����

����

�
�
�
�
���
��
�

�
�
�
�
�
���
��
�

�
�
�
�
�
���
��
�

�
�
�
�
�
���
��
�

�
�
�
�
�
�
���
��
�

�
�
�
�
�
�
���
��
�

������������������

�
��
�
�
�
�
��
�
��
��
�
��
�
�
�
�

Figure 4.21
Linear Fit for the Trie Construction

The construction process is demonstrated to be linear as shown in Figure 4.21. That

is, the processing time increases linearly as the number of patterns increases. The best fit

can be calculated as follows. Let a and b be the constant parameters and x the number

of patterns. Then, the relationship between the number of patterns and the processing

time can be described according to Equation 4.3.

f(x) = a · x+ b (4.3)

In order to fit the data points from the trie reduction algorithm the constant

parameters of the linear fit demonstrated in Equation 4.3 can be set as follows,

a = 0.0000226253 and b = 0.000122627, where a represents the processing time

per pattern, and b the fixed overhead time. The coefficient of determination is R2 =

0.999854 and demonstrate that the linear regression model has an accuracy over 99%.

100

�������

�����

�����

�����

�����

�����

�����

�����

�����

�����

����

�
�
�
�
���
��
�

�
�
�
�
�
���
��
�

�
�
�
�
�
���
��
�

�
�
�
�
�
���
��
�

�
�
�
�
�
�
���
��
�

�
�
�
�
�
�
���
��
�

��������������������������������������

�
��
�
�
�
�
��
�
��
��
�
��
�
�
�
�

Figure 4.22
Quadratic Fit for the Trie Reduction

The reduction process follows a quadratic polynomial regression, as demonstrated in

Figure 4.22. The quadratic model demonstrates one of the limitations of the reduction

algorithm. That is, the time increases in a quadratic fashion, with the increasing number

of patterns. However, as demonstrated in Figure 4.20 (Right) and Figure 4.22, the time

requirement for the trie reduction is low and requires less than a tenth of a second to

reduce over 2000 patterns.The best fit can be calculated as follows. Let a, b, c and d be

the constant parameters and x the number of patterns. The relationship between the

number of patterns and the reduction time can be described according to Equation 4.4.

f(x) = a+ b · x+ c · exp(d) · x2 (4.4)

Equation 4.4 demonstrates the quadratic fit, with the following constant parameters

a = 0.00102858, b = 0.0000203226, c = 1.0828241444881265 and d = −8. The

coefficient of determination is R2 = 0.999507 and demonstrates an accuracy of the

101

quadratic fit over 99%.

��

���

���

���

���

���

���

���

���

���

����

�
�
�
�
���
��
�

�
�
�
�
���
��
�

�
�
�
�
�
���
��
�

�
�
�
�
�
���
��
�

�
�
�
�
�
���
��
�

�
�
�
�
�
�
���
��
�

�
�
�
�
�
�
���
��
�

�
��
�
�
�
�
��
�
��
��
�
��
�
�

����������������������

���������������� �������������

Figure 4.23
Overall CPU Preprocessing Breakdown

The overall pre-processing time is combined and analysed in Figure 4.23. With the

increasing number of patterns, the time requirements for the trie reduction overtake

that of the trie construction. This behaviour is expected, as previously described in Fig-

ure 4.21 and Figure 4.22.

As the reduction phase of the algorithm is required to analyse and merge similar

branches together, the time requirement increases. This behaviour is due to the number

of iterations required at each level during the branch merging process.This particular

behaviour of the algorithm is explicitly highlighted in Figure 4.23.

102

��

���

���

���

���

���

���

���

���

���

����

�
�
�
�
���
��
�

�
�
�
�
���
��
�

�
�
�
�
�
���
��
�

�
�
�
�
�
���
��
�

�
�
�
�
�
���
��
�

�
�
�
�
�
�
���
��
�

�
�
�
�
�
�
���
��
�

�
��
�
�
�
�
��
�
��
��
�
��
�
�

�������������

������ ���� ����

��

���

���

���

���

���

���

���

���

���

����

�
�
�
�
���
��
�

�
�
�
�
���
��
�

�
�
�
�
�
���
��
�

�
�
�
�
�
���
��
�

�
�
�
�
�
���
��
�

�
�
�
�
�
�
���
��
�

�
�
�
�
�
�
���
��
�

�
��
�
�
�
�
��
�
��
��
�
��
�
�

��������������

������ ���� ����

Figure 4.24
Overall GPU Preprocessing Breakdown Over Different Alphabets

Figure 4.24 shows the overall GPU processing time breakdown including the search-

ing phase, the Host to Device (HtoD) transfer and the Device to Host (DtoH) trans-

fer. Individual execution times for different pattern numbers and various alphabets are

shown. Figure 4.24 does not include the pre-processing time, as the trie is only con-

structed once and the asynchronous execution of the data transfers have been aggre-

gated together.

Figure 4.24 (Left) demonstrates a trend where the DtoH transfer requirements de-

crease with the increasing number of patterns; this trend can also be seen in Figure 4.24

(Right). This behaviour is due to two factors. The first factor speculates that, as the num-

ber of patterns increases, more branches can be merged together, hence reducing the

trie size and thus the transfer time. While the second factor and most likely the one

with the most impact speculates that as the number of patterns increases, the diver-

gence during the searching phases increases as well, requiring more time during the

searching phase. Hence the transfer time decreases proportionally.

103

The first factor is expected to have an impact on the overall processing time, as

demonstrated in Figure 4.24 (Right), with an increasing alphabet size less branches

are merged together and more time is required for the DtoH transfer. However, as the

number of pattern increases the overall time required for the DtoH transfer the time

required by the searching phase increases, hence requiring over 90% of the overall pro-

cessing time.

As displayed by the results, the throughput of the HEPFAC algorithm demonstrates

8.5 Gbps, however, the searching phase still accounts for over 90% of the overall pro-

cessing time. In order to decrease the time required by the searching phase and increase

the throughput of the algorithm, multiple modifications to the core of the algorithm are

required, such as the memory representation of the bitmap and the type of memory

storage used by the algorithm. These optimisations and core modifications are investi-

gated in the subsequent section.

4.6 Node Expansion Allegory

In order to increase the processing throughput of the HEPFAC algorithm, different

modifications of the storage scheme and the searching phase are undertaken. This pro-

cess has been called “node expansion allegory”, as the expansion of the nodes is a figure

of speech.

The node expansion allegory uses a similar construction technique as the one de-

scribed in Section 4.3. However the ability to store the nodes in a different mem-

ory scheme allows the algorithm to increases its processing throughput by a factor of

12 compared to its original version while demonstrating same compression. This is pos-

sible by taking advantage of GPU architecture (memory, 2D locality) and the core mod-

ification of the search engine of the HEPFAC.

104

4.6.1 Storage Model

The primary component of the memory compression scheme lies in the way data is

stored in memory as previously described in Section 4.3.1, however, in order to increase

the throughput of the algorithm a second version of the algorithm was created. This

version undergoes the same three steps during the construction process, namely:

Step 1 Patterns are added to the trie in a breadth-first construction row-major ordering

array.

Step 2 The trie is constructed using bitmaps and offsets only identifying the first child

of the current node.

Step 3 The trie undergoes the reduction process, merging all last nodes together, as

well as merging similar branches based on the last three levels.

The core changes to the storage scheme occur during step 2 and 3, the data is re-

ordered in a matrix fashion, after the breadth-first has occurred. This modification helps

the nodes to be stored in texture memory and take advantage of the cache. Texture

memory also increases throughput as no coalesced accesses are required.

In order to accommodate the changes to the storage scheme, the search algorithm is

modified. The modification helps finding the first child of the current node while using

a two dimensional matrix instead of the row major ordered array used in the previous

implementation.

105

Node[0]
offset=1
bitmap[8]

Node[1]
offset=3
bitmap[8]

Node[2]
offset=5
bitmap[8]

Node[3]
offset=6
bitmap[8]

Node[4]
offset=7
bitmap[8]

Node[5]
offset=8
bitmap[8]

Node[6]
offset=0
bitmap[8]

Node[7]
offset=0
bitmap[8]

Node[8]
offset=0
bitmap[8]

0:0
1:0
2:0
...

29:0
30:0
31:0

0:0
1:0
2:0
...

29:0
30:0
31:0

0:0
1:0
2:1
...

29:0
30:0
31:0

0:0
1:0
2:0
...

29:0
30:0
31:0

0:0
1:0
2:0
...

29:0
30:0
31:0

0:0
1:0
2:0
...

29:0
30:0
31:0

0:0
1:0
2:0
...

29:0
30:0
31:0

0:0
1:0
2:0
...

29:0
30:0
31:0

bitmap[0] bitmap[1] bitmap[2] bitmap[3] bitmap[4] bitmap[5] bitmap[6] bitmap[7] offset=1

bitmap[0] bitmap[1] bitmap[2] bitmap[3] bitmap[4] bitmap[5] bitmap[6] bitmap[7] offset=3

bitmap[0] bitmap[1] bitmap[2] bitmap[3] bitmap[4] bitmap[5] bitmap[6] bitmap[7] offset=5

bitmap[0] bitmap[1] bitmap[2] bitmap[3] bitmap[4] bitmap[5] bitmap[6] bitmap[7] offset=6

bitmap[0] bitmap[1] bitmap[2] bitmap[3] bitmap[4] bitmap[5] bitmap[6] bitmap[7] offset=7

bitmap[0] bitmap[1] bitmap[2] bitmap[3] bitmap[4] bitmap[5] bitmap[6] bitmap[7] offset=8

bitmap[0] bitmap[1] bitmap[2] bitmap[3] bitmap[4] bitmap[5] bitmap[6] bitmap[7] offset=0

bitmap[0] bitmap[1] bitmap[2] bitmap[3] bitmap[4] bitmap[5] bitmap[6] bitmap[7] offset=0

bitmap[0] bitmap[1] bitmap[2] bitmap[3] bitmap[4] bitmap[5] bitmap[6] bitmap[7] offset=0

Node[0]

Node[1]

Node[2]

Node[3]

Node[4]

Node[5]

Node[6]

Node[7]

Node[8]

Pattern :
ABC
ADB
CCC A C B D C C B C

A

C

B

D

C

C

B

C

N
ode Expansion Allegory

Figure 4.25
Node Expansion Allegory: Memory Scheme Transformation

The main difference in the storage scheme resides in the internal organisation of the

data nodes. Previously each node stored an offset and a bitmap such as demonstrated in

Figure 4.25 (Top). Each of the nodes was self contained in a data structure, whereas the

improvement allowed the nodes to co-exist in a two dimensional matrix as demonstrated

in Figure 4.25 (Bottom). Each row represents one node, containing nine cells. The first

8 cells contain 32 bits each for a bitmap of Σ = 256, while the ninth cell contains the

offset identifying the first child of the current node.

As the storage scheme is exclusively represented by integers in a two dimensional ar-

ray, the data can be stored in texture memory. The characteristics of the texture mem-

106

ory as described in Section 3.3.1 is the optimised memory layout for two dimensional

spatial locality. Another requirement of texture memory is that it can only store primi-

tive data types such as integer, float and double, making the storage of the first implantation

of the HEPFAC algorithm impossible as each node is represented by a structure con-

taining an array of integers representing the bitmap, and an integer value representing

the offset.

4.6.2 Processing Engine

The patterns are forwarded independently of the text strings to the processing engine

for analysis. The role of the processing engine is to retrieve the patterns stored in texture

memory and compare them against the text string stored in global memory, in order to

identify the patterns searched for.

GPU
Global

Memory
Buffer

Letter Sequence Analysis

Letter Sequence Analysis

Letter Sequence Analysis

Letter Sequence Analysis

.

.

.

Result
Buffer

Host
Result

Text String

GPU Engine

GPU
Texture
Memory Signatures

Cache

Figure 4.26
Node Expansion Allegory Texture Memory Processing Engine

Figure 4.26 shows the layout of the processing engine. The GPU accesses the pat-

terns via the texture memory cache and specialised hardware, the patterns are then

matched against the text string residing in global memory. When the searching phase

is completed, the results are sent back to the host.

107

4.7 Throughput and Performance Evaluation

The performances of the second version of HEPFAC algorithm are evaluated against

different files generated using the Mersene Twister (MT) uniform pseudo-random num-

ber generator [78]. The throughput is represented by the average of 100 evaluations

against 5 different synthetic files representing different alphabet sizes.

�������

������

��

���
���

����� �����

�
��
��
��
��
��
��
��
��

���

���
�����������������
������������������

Figure 4.27
Comparison of the Different Versions of the HEPFAC Algorithm

Figure 4.27 demonstrates the performances of the different versions of the HEPFAC

algorithm when analysed against different text strings. Both implementations demon-

strate the performance of the algorithm when matching concurrently 1000 patterns

randomly selected in the text string.

The algorithm demonstrates constant performance regarding the size of the text

string as shown Figure 4.27 (logarithmic scale); it also demonstrates over 9.59 fold in-

crease compared to its earlier version, demonstrating a throughput of 12.40 Gbps.

108

����

��

��

���

���

�
���������

�
���������

�
���������

�
���������

�
���������

�
���������

�
���������

�
���������

�
���������

�
��
��
��
��
��
��
��
��

���

�����������������
����������������
���������������������
��������������������

Figure 4.28
Performance Comparison Between the First and Second implementations of the HEPFAC al-
gorithm

The node expansion provided by the second version of the HEPFAC algorithm

demonstrates over 11 times improvement over its global memory counterpart imple-

mentation, when used with a large alphabet and matching a thousand patterns. The

algorithm also demonstrates a 2.5 fold improvement when matching a single pattern

over larger alphabets. The matching phase observes the same properties as the first ver-

sion of the HEPFAC implementation, with the throughput increasing along with the

alphabet size as shown in Figure 4.28.

The modified memory scheme confers on the algorithm the ability to store a large

portion of the trie in the cache and eliminates the requirements for coalesced mem-

ory accesses, in contrast with global memory, which requires coalesced memory access,

hence reducing the performance of the first version of the HEPFAC algorithm as shown

in Figure 4.28 (note the logarithmic scale).

109

��

���

���

�
���������

�
���������

�
���������

�
���������

�
���������

�
���������

�
���������

�
���������

�
���������

�
��
��
��
��
��
��
��
��

���

���������
����������
����������
�����������
������������
�������������

Figure 4.29
Throughput Analysis of the second version of the HEPFAC Algorithm with Different Pattern
Number

Figure 4.29 demonstrates the performances of the second version of the HEPFAC

algorithm when used over different number of alphabets and an increasing number

of patterns. With the increasing number of patterns the throughput of the algorithm

increases, the algorithm also demonstrates better performances when matching a lower

number of patterns simultaneously, due to the reduced amount of divergence between

the threads when matching.

The algorithm also demonstrates similar throughput for 1,3,5, and 10 patterns; this

behaviour had been observed previously in Figure 4.19 in the first implementation of

the HEPFAC algorithm, however the throughput was significantly different between

smaller and larger alphabets, whereas in Figure 4.29 the throughput has negligible vari-

ance. This is speculated to be due to the cache; as the trie is small, a large amount of

the trie can be cached, hence, lower variance between smaller and larger alphabets is

observed.

110

4.8 Processing-Engine Performance Comparisons

The evaluation of different versions of the HEPFAC algorithm was made by using an

off-the-shelf GPU. However, as the performance of the algorithm depends on the archi-

tecture of the GPU and the datasets, it is currently not possible to evaluate the through-

put of the algorithm against current research in the field.

Researcher, do not release the sources of their algorithms or their implementations.

Current research indicates the lack of available binary and datasets, for throughput

comparison in the field of pattern matching. The sources of the code are often not

released for intellectual property concerns, or are part of current and ongoing research,

whereas the lack of binary is due to the increasing number of architectures for which

the algorithm requires to be compiled.

In order to mitigate the hardware problem and allow other researchers in the field to

compare the performances of their algorithm against the HEPFAC, the searching phase

has been run on an Amazon EC2 Cloud instance. The g2.2xlarge AWS EC2 instance

offers the possibility to run code on Nvidia GRID K520, containing 2 GK104 GPUs,

featuring 8 GB GDDR5 (4 GB/GPU).

With the increasing data processing requirements Amazon AWS EC2 offers GPU

computing at a reasonable rate of $0.65 per hour [122]. Cloud computing allows re-

searchers to run their algorithms individually while allowing other researchers to com-

pare the performance of their algorithm, harmonising the hardware dependence prob-

lem.

In order to solve the datasets problem, the synthetic datasets can be released via a

repository on Github, or a dedicated website, allowing to compare the performance of

the pattern matching engine against the same data.

111

4.8.1 Throughput and Performance Analysis on Amazon EC2

The throughput of the algorithm is evaluated on the Amazon EC2 Cloud with different

synthetic datasets. The performances presented in this section are the results obtained

solely by the execution of the matching kernel on the GPU.

��

��

���

���

���

�
��
�
�
�
�
��

�
��
�
�
�
�
��

�
��
�
�
�
�
��

�
��
�
�
�
�
��
�

�
��
�
�
�
�
��
�

�
��
�
�
�
�
��
�

�
��
�
�
�
�
��
�

�
��
�
�
�
�
��
�

�
��
�
�
�
�
��
�

�
��
�
�
�
�
��
�

�
��
�
�
�
�
��
�

�
��
�
�
�
�
��
�

�
��
�
�
�
�
��
�

�
��
�
�
�
�
��
�

�
��
�
�
�
�
��
�

�
��
�
�
�
�
��
�

�
��
�
�
�
�
��
�

�
��
�
�
�
�
��
�

�
��
�
�
�
�
��
�

�
��
�
�
�
�
��
�

�
��
�
�
�
�
��
�

�
��
�
�
�
�
��
�

�
��
�
�
�
�
��
�

�
��
�
�
�
�
��
�

�
��
�
�
�
�
��
�

�
�
��
�
�
�
�
�
��
��
�
�
�
�

���

���������
�����������
������������
�������������

Figure 4.30
Throughput Analysis of the second version of the HEPFAC Algorithm with Different Pattern
Number on the Amazon EC2 Cloud

The HEPFAC algorithm demonstrates over 15 Gbps throughput when matching a

single pattern and over 10 Gbps throughput when matching a thousand patterns over

an alphabet Σ = 52 on the Amazon EC2 Cloud as shown in Figure 4.30 (note the

logarithmic scale of the Figure). The Amazon EC2 implementation observes the same

trends as those obtained on the Nvidia K20 GPU. With the increase of alphabet size the

throughput rises, and the increasing number of patterns are reducing the throughput

of the algorithm, due to divergence as explained in Section 4.7. The algorithm also

demonstrates a slow increase in throughput when matching a single pattern, as observed

earlier.

112

��

���

���

���

�
��
�
�
�
�
��
�

�
��
�
�
�
�
��
�

�
��
�
�
�
�
��
�

�
��
�
�
�
�
��
�

�
��
�
�
�
�
��
�

�
��
�
�
�
�
��
�

�
��
�
�
�
�
��
�

�
��
�
�
�
�
��
�

�
��
�
�
�
�
��
�

�
�
��
�
�
�
�
�
��
��
�
�
�
�

��

����������������
��������������������
�������������
�����������������

Figure 4.31
Throughput Analysis of the second version of the HEPFAC Algorithm with Different Pattern
Number on the Amazon EC2 Cloud and the Nvidia K20

Figure 4.31 draws a comparison between the results obtained on the Amazon EC2

cloud and the results obtained on the Nvidia K20. The results demonstrate better per-

formance on the Amazon cloud EC2 with the Nvidia GRID K520 when matching one

single pattern over all the alphabets. However when matching a thousand patterns con-

currently, the Amazon cloud performs very similarly to the Nvidia K20; it is speculated

this is due to the similar architecture of both GPUs.

The technique of comparing throughput over similar hardware and with similar data

in order to experiment and compare results is already in application in other domains

such as biology [123]. Using the Amazon EC2 cloud is cost effective and allows re-

searchers in the domains using pattern matching to evaluate their algorithms against

each other, draw conclusions and further improve research.

113

4.9 Summary

Data compression is the art of reducing the number of bytes required to store the same

amount of data. This chapter introduced a novel and highly efficient memory compres-

sion scheme.

Two versions of the algorithm are presented in this work, making use of an efficient

storage model, augmented by a bitmap in order to reduce the size of the nodes and a

trie reduction algorithm merging the similar trie branches together.

The first version of the HEPFAC algorithm was demonstrated in Section 4.3. The trie

is constructed on the CPU in an 1D breadth-first / row-major ordered array fashion,

allowing each cell to reside in contiguous memory. Each node contains a bitmap and an

offset, the bitmap allows to reduce the number of integers required to store the alphabet.

Once the trie is fully constructed, the algorithm truncates the trie in accordance with

the alphabet in use. Finally similar suffixes are merged together in order to reduce the

number of branches and number of nodes required to store the trie in memory.

The second version of the HEPFAC algorithm was demonstrated in Section 4.6. The

trie is constructed on the CPU using a novel node expansion allegory algorithm, which

allows the trie to be stored in a 2D memory scheme, while preserving the size of the trie.

The trie is constructed using the same process as the first version of the HEPFAC.

The first version of the HEPFAC was solely stored in global memory and while it

demonstrated over 8 Gbps throughput while matching a single pattern, it also presented

significant drawbacks, such as throughput limitations while increasing the number of

patterns being matched. This problem was subsequently solved in the second version of

the HEPFAC where the trie was stored in texture memory. This allowed to increase the

matching throughput, while preserving the size of the trie. Storing the nodes in a 2D

array, in texture memory allowed the threads to access un-coalesced memory without

114

penalty.

Moreover in this chapter the construction and the reduction algorithm were anal-

ysed against different pattern sizes and alphabets, demonstrating the performance of

the algorithm such as the linear time construction and the quadratic time for the trie

reduction.

It is strongly believed that a number of applications can benefit from the memory re-

duction proposed in this work, such as GPU firewalls, deep packet inspection, spam fil-

ters, RNA sequencing and genetic matching systems, as these applications are required

to process increasing amounts of data and as GPUs memory is a scarce resource.

4.9.1 Price Vs Performance

In order to achieve the performance and the ability to use the latest features of the

CUDA framework, the Nvidia Tesla K20x was selected, along with two Intel Xeon

E5-2620 CPU, as well as the Amazon EC2.

Table 4.2
Hardware Price

Model Quantity Price Per Unit

Intel Xeon E5-2620 2 £ 263.65

Nvidia Tesla K20 1 £ 1186

Amazon EC2 1 £ 0.46/h

Table 4.2 demonstrates a total of £ 1714 as of June 2013 producing a throughput per

pounds cost of 7.24 Mbps/£while preserving the limited size of the trie to a minimum.

115

4.9.2 Limitations

The first version of the HEPFAC was subject to different limitations trading off the

throughput for the space requirement. Furthermore, the un-coalesced memory accesses

during the matching increased the overall processing time. However the second version

of the HEPFAC algorithm subsequently overcame these limitations by storing the pat-

terns in texture memory.

The construction and reduction algorithm are also subject to limitations, with the in-

creasing number of patterns; the trie construction time will grow linearly, while the trie

reduction will grow in a quadratic fashion, requiring more pre-processing time. These

limitation can currently be discarded as the time required for reducing the 60,000 Cla-

mAV rules [76] is a 40 Seconds at first launch of the algorithm.

The existence of GPU cloud is a testament for their usefulness and capabilities. As

demonstrated in Table 4.2, GPU cloud Computing provides an affordable alternative

to the Nvidia K20. However cloud computing comes with limited data privacy, raising

a number of issues which will be explored in the next chapter.

116

Chapter 5

Data Remanence and Privacy on GPU

5.1 Problem Statement

With the exponential growth of data analytics and data storage, GPUs have been

used in various research as cost-effective off-the-shelf High Performance Computers

(HPC). Different work has shown their efficacy in Intrusion Detection Systems [124],

Deep Packet Inspection [125], pattern matching [126], as well as database processing

[127]. These applications leverage the highly parallel processing capabilities offered by

General-Purpose Graphics Processing Unit but do not ensure the confidentiality of the

data processed. Moreover cloud providers often describe GPU-as-a-service as secure,

however, while this is often true for the Operating System (OS) other component of the

system such as GPUs can be impacted by data remanence and data leakage. This is

exacerbated by the large onboard memory of the GPU.

GPUs are inherently used to offload computationally intensive tasks from the CPU;

often such tasks require the processing of confidential information such as cryptographic

keys [128], network traffic [129], or financial data [130]. Graphics Processing Units are

often described as HPCs and marketed as (GPU-as-a-service) such as the Amazon AWS

EC2.These infrastructures often share resources between multiple actors and can be

used intentionally by malicious users for password cracking [131], browser information

117

retrieval [132]or to conceal malware [133].

Even within single-user environments, using more than one application on the same

GPU may pose risks; if a user runs an intrusion detection system or malware scanner

on their GPU, subsequent GPU-accelerated software may have access to the memory

used by the antivirus scanner, which scanned files with restricted access permissions.

Therefore there is potential for GPU memory to contain protected information, since

the GPU is regarded as a trusted processing device.

Furthermore there is a growing need for Reverse Engineering (RE) in the field of

GPU programming. As the number of threats increases, RE can be used to gain an

understanding of code being executed; for example in software auditing, the use of

reverse engineering could ensure that software handling sensitive data is not abusing its

privileges. Additionally, as GPU applications often represent a commercial investment

of the originating company, reverse engineering can pose a direct threat through the

theft of Intellectual Property (IP) [134].

This chapter investigates the feasibility and practicality of digital memory forensics

on different GPU architectures with different versions of the CUDA framework. To this

end the state of the art is outlined, followed by an investigation and evaluation of the

possibilities of Reverse Engineering for CUDA applications, with a particular focus on

security and privacy concerns for applications holding IP. Static and dynamic analysis

techniques for RE in order to help digital forensic investigators are then highlighted.

Finally a novel RE and DF methodology is presented.

118

5.2 Background

5.2.1 Security, Privacy and Confidentiality on GPUs

Maurice et al. [135] discuss the confidentiality issues related to GPUs in virtualised envi-

ronments in Confidentiality Issues on a GPU in a Virtualised Environment. The authors demon-

strate data leakage in a virtualised cloud computing environment, with privacy issues

created by the different virtualisation techniques alongside the security implications. For

their experimental setup Maurice et al. use KVM and XEN, running a Linux kernel.

The research focuses on global memory data leakage and demonstrates the ability to

recover data, including situations where a malicious user is able to recover data while

launching a virtual machine after the original author has stopped his virtual machine,

bypassing the security mechanism in place. The authors then describe cloud counter-

measures.

Ladakis et al. [136] demonstrates the ability to run a keylogger on the GPU in You

Can Type, but You Can’t Hide: A Stealthy GPU-Based Keylogger. The authors demonstrate a

novel approach, by stealthily hiding a keylogger on the graphics card, redirecting the

keyboard buffer directly to the GPU from the DMA without requiring modifications

to the linux kernel code. The malware is able to run on two different Nvidia graphics

cards, respectively a GTX 480 and a GT 360. The authors demonstrate the possibility

of recovering every keystroke on the keyboard and apply a regular expression algorithm

on the recovered data in order to find credit card numbers. Finally the author discuss

different countermeasures in order to prevent GPU malwares.

A GPU-Assisted Malware is presented by Vasiliadis et al. [133]. The authors demon-

strate the abilities for malware to increase its robustness by hiding in GPUs. The mal-

ware implemented by Vasiliadis et al. is made using unpacking and run-time poly-

morphism techniques. The authors then improve their malware in GPU-Assisted Mal-

ware [137] and implement a brute-force unpacking technique, with a run-time polymor-

119

phism as well as running different parts of the malware on different GPU architectures.

The author also describe potential attack vectors and future threats. The authors then

describe possible defences against malware and discuss GPU malware detection sys-

tems.

Danisevskis et al. [138] demonstrate how mobile GPUs can be used as an effec-

tive payload delivery method for numerous new types of attacks. The authors demon-

strate these attacks in the context of mobile devices, using the capabilities of the Direct

Memory Access in order deliver malicious applications as well as for privilege esca-

lation. The paper highlights mobile GPUs weaknesses and describes a successful at-

tack. Furthermore, a proof of concept against a phone running Android and using an

ARM Mali MP 400 GPU is described. The papers also emphasises the problems en-

gendered by the use of different programming models on mobile GPUs.

A GPU vulnerability allowing malicious user to steal webpages is proposed by

Lee et al. [139] in Stealing Webpages Rendered on Your Browser by Exploiting GPU Vulnerabilities.

The paper demonstrates that new memory allocated by the host on the GPU is not

properly initialised, on both Nvidia’s and AMD graphics cards. By exploiting different

vulnerabilities the authors are capable of dumping webpages with an RGB histogram

accuracy of up to 95.4 %. The authors also demonstrate that the attack can be executed

during the execution of the rendering or after the rendering is done and is tested against

5 different platforms including an Nvidia GeForce 210, an Nvidia Tesla C2050, an

Nvidia GeForce GTX 780 and AMD Radeon HD 7850 and an AMD FirePro W9000.

5.2.2 Digital Forensic and Reverse Engineering

Byrne et al. [140] present the conclusions of an experiment of reverse engineering

Fortran software into an Ada implementation, allowing the authors to upgrade the ex-

isting documentation and extract software design information directly from the fortran

binary. The authors then used the gained information to understand the design con-

120

straints and the inner flow of the software. Byrne et al. follow a 7 step process including

the collection of information, examination of information, extraction of the structure,

the recording functionality, the recording of data-flow, the recording of the control-flow

and the control of the final re-designed application in Ada. The experiment revealed

major issues such as the problems occurring during re-engineering of the software and

the erroneous information obtained. The authors then describe the lessons learned.

Kato et al. [141] demonstrate in their paper Implementing Open-Source CUDA Runtime

how often GPUs are treated as blackboxes due to the proprietary strategies implemented

by vendors. Kato et al. highlight in detail the GPUs architectures and the run-time mech-

anisms, helping research to tackle novel problems occurring in GPU architectures and

dedicated software. In their work the authors propose an open-source implementation

of the CUDA runtime based on linux and targeted towards Nvidia GPUs.

In the paper The impact of GPU-assisted malware on memory forensics: A case study [142]

the authors analyse the impact of GPU-assisted malware and highlight the difficulties

of GPU assisted malware and memory forensics. The authors primarily discuss numer-

ous techniques malicious software could use in order to hide its presence from the user

and the host antivirus. The authors then describe how the host’s memory forensic could

highlight the presence of such an application and different cases in which forensic inves-

tigators might require access to the GPU memory. The authors focus their research on

the Intel Integrated Graphic Devices (IGDs), using the Linux Direct Rendering Infras-

tructure (DRI), allowing them to access the GPU using user space applications. They

also highlight the possibilities of different scenarios on other GPU devices. The authors

also developed a set of custom tools in order to parse a number information retrieved

via the GPU memory and by the operating system.

Breß et al. [143] demonstrate how to retrieve information from a co-processing GPU

for databases in Forensics on GPU Co-processing in Databases – Research Challenges, First Ex-

121

periments and Countermeasures. The key challenges for digital forensic are pointed out by

the authors, while focusing on global memory, the authors demonstrate the ability to

retrieve data. The authors clearly outline the requirements for a forensic methodology

while pointing out possible solutions as well as anti-forensic methods in order to increase

the privacy of databases systems using GPUs as co-processors.

Di Pietro et al. [144] describe security issues related to GPGPU and particularly

Nvidia GPUs working with the CUDA framework. The work described in CUDA Leaks:

Information Leakage in GPU Architectures highlights severe information leaks from the differ-

ent memory, on the Fermi and Kepler architectures and described shared vulnerabilities

between these architectures. The case study described by Di Pietro et al. also demon-

strates vulnerabilities that can affect real world applications, such as AES encryption

algorithm running on GPUs. The authors also highlight shared memory vulnerabilities

and identify partial register spilling on both Tesla C2050 and the GeForce GT 640. Fi-

nally the authors propose different countermeasures for the shared and global memory,

such as for the registers.

5.3 CUDA Programming Layer

5.3.1 CUDA Binaries

The CUDA framework allows developers to take advantage of the massively parallel

processing capabilities of graphics processors, allowing GPUs to become widely avail-

able general purpose computing devices. The CUDA framework largely extends the

instruction set of to the C99/C++ languages, allowing developers to take full advan-

tage of the parallel nature of the hardware, through the use of a flexible abstraction

model.

CUDA applications are compiled by nvcc (the Nvidia CUDA Compiler). The com-

piler takes a set of source files as input and generates a variety of compiled output

122

formats, allowing backward and forward compatibility between devices. The standard

output format from the nvcc compiler is an Executable and Linkable Format (ELF)-

based host executable, which is executed like any standard program on the host CPU.

This program then initialises the GPU via the CUDART library and loads the rele-

vant CUDA code onto the GPU. The ELF binary is a container, holding a variety of

different formats of program code.

The GPU code present in the CPU-executed ELF binary is known as a kernel. When

invoked, the kernel first allocates the required memory on the GPU and loads the de-

sired data onto the device for processing. After processing, the resulting output is trans-

ferred back to the host CPU memory and the GPU memory is released for use by other

applications.

While a regular piece of software to be executed on the host CPU would typically be

translated to machine code, there are a number of different output formats that CUDA

code can take. All of these output formats can be bundled in the ELF binary. Some of

these make the process of reverse engineering of the compiled code considerably easier

than others.

The highest level of abstraction is the original CUDA C/C++ source code. It is highly

unlikely, however, that source code for a given binary would be available to a forensic

investigator attempting to ascertain what was being done by a piece of software on

a GPU. Nonetheless, if open-source code was being used (and an investigator could

determine this), it may be possible to acquire the source code from the original authors

and inspect it to understand the operation of that code.

The CUDA source code of a given piece of CUDA software is not distributed as part

of the executable binary. Like with regular programming languages for host CPUs, the

source code undergoes compilation to produce an executable binary for the target in-

struction set. Due to the rapid development and improvements in GPU technology and

123

their associated capabilities, CUDA GPUs do not all support the same baseline instruc-

tion set as is the case with an x86-based CPU, for example. Where almost all general

purpose desktop CPUs support the 8086 instruction set with full backward compatibil-

ity, this is not the case with Nvidia CUDA GPUs [145] [146] [43].

CPU & GPU
source file NVCC

PTX
Code

Host
Code

cubin
file

ELF
Executable

CUDA
Driver

Figure 5.1
Compilation Process

Compiled CUDA binary code is often referred to as a Cubin, a contraction of CUDA

and binary, which contains executable machine code, designed to run on a given target

architecture. As a result of the heavily architecture-dependent nature of Cubin executa-

bles, the Nvidia CUDA nvcc compiler compiles CUDA source code into a platform-

independent intermediary language, known as Parallel Thread Execution (PTX). PTX

is laid out in an assembly-like structure using basic primitive instructions for all opera-

tions, while still remaining GPU-agnostic (allowing for the same code to be executed on

different GPUs) [147]. It is produced by the nvcc compiler, which translates CUDA code

into PTX rather than directly to assembly, as a conventional CPU compiler would. The

CUDA graphics driver can process the resulting PTX, producing native binary code (a

cubin), capable of being executed on the GPU [148] [110]. Figure 5.1 demonstrates the

compilation process achieved by nvcc. The code executed on the host is compiled using

the GCC compiler while the code executed on the GPU is translated into PTX code and

Shader ASSeMbly (SASSM) instructions before being bundled with the host code in a

single cubin file that will later on be executed by the CUDA driver.

124

If a host ELF binary contains PTX intermediary code, a suitable CUDA binary for

any supported GPU architecture can be compiled at runtime (including, GPUs which

were not released at the time of writing the code), since the PTX code is platform-

agnostic and can be targeted at the detected GPU architecture based on the register

mapping data contained within the CUDA driver. By including PTX code in the output

binary, the compiled CUDA host ELF executable will be as generic as possible and will

enjoy a degree of forward compatibility with future GPUs [43]. Given the nature of

the PTX format, however, its presence will significantly aid the disassembly and reverse

engineering processes, since it yields highly readable and generic intermediate-language

code somewhat similar in nature to Android’s intermediary Dalvik code [149], that can

be understood with relative ease.

SASSM is used as a definition of the instruction set implemented by the GPU. Each

major GPU architecture (Tesla, Fermi, Kelper) has its own instruction set [43]. This

allows new GPU architectures to change their underlying technical design, to improve

performance without need for consideration of backwards compatibility. By combin-

ing the appropriate target specific register definitions with platform-independent PTX

code, the GPU driver can produce an executable SASSM re-bundled into a CUDA

binary (Cubin), designed for execution on the correct GPU architecture.

As such, from the perspective of a forensic investigator wishing to carry out an inves-

tigation of code running on a GPU, they are likely to encounter one of two scenarios.

The first and most likely scenario is that the code running on the GPU was executed

using a host binary containing PTX code for the algorithm in question. Since the host

binary contains the PTX code, it is relatively straightforward to extract the PTX sec-

tion of the binary and use it to determine the operation of the CUDA code in question.

The second and less likely scenario is that the code being executed on the GPU has

the PTX section stripped, perhaps in order to hinder inspection or reverse engineering

of the code. In this case, the platform-specific compiled Cubin code must therefore be

125

disassembled, to yield a listing of the machine code being executed.

5.4 Experimental Environment

The different experiments have been realised on two different machines, assessing mo-

bile, consumer and high end devices. The high end and consumer grade devices, are

respectively an Nvidia K20m graphics card, composed of a single PCB, consisting of

192 CUDA cores and 13 multiprocessors and an Nvidia GTX 295 composed of 2 PCB,

each of them containing 240 CUDA cores, distributed over 30 multiprocessors. The

GTX 295 is constituted of a total of 2 GB of RAM. Both graphics cards have been

used on a Supermicro server, including two Intel Xeon E5-2620 and running Ubuntu

14.04.3 LTS.

Table 5.1
Experimental Environment Specifications

GPUs GTX 295 Tesla K20m Tegra K1

Number of GPUs 2 1 1

CUDA Version 5.5, 6.0, 6.5 5.5, 6.0, 6.5 6.0

CUDA Capabilities 1.3 3.5 3.2

GPU Architecture GT200B Kepler GK110 Kepler GK20a

Warp Size 32 32 32

CUDA Cores 8 192 192

Multiprocessors 30 13 1

Global Memory 896 MB 5 GB 2 GB

The tests carried on the mobile device have been done on a Nvidia Jetson Tegra K1,

corresponding to the first mobile processor released by Nvidia. The Tegra k1 is based on

the Kepler architecture, featuring one streaming multi-processor of 192 CUDA cores.

The CPU is an NVIDIA 4-Plus-1 Quad-Core ARM Cortex-A15 “r3” with 2 GB of

shared RAM. The Jetson board is running Ubuntu 14.04.3 LTS.

126

The experiments have been realised using different versions of the CUDA framework

for the consumer and high end graphics card, as demonstrated in Table 5.1; the mobile

GPU however is only tested against the version 6.0 of CUDA, as this was the only

version released for the Jetson TK1 at the time of the experiment.

5.5 Data Remanence on GPUs

General security flaws and data leakage on GPUs have been highlighted in different

studies [135] [143] [144], however the majority of these studies concentrated on one

type of GPU applied to a specific scenario, such as cloud computing, or a type or RAM,

such as global memory. This section builds upon the former studies and demonstrates

data remanence on global, shared and texture memory and is reproduced on consumer,

mobile and professional grade GPUs. Different version of the CUDA framework are

also used in order to assess the different improvement and security countermeasures

present in the different updates. Furthermore a digital forensic methodology is also pre-

sented, allowing digital forensic investigators to understand the architecture of graphics

processing units and take the different memory requirements of GPUs into considera-

tion when required to retrieve data.

127

Global Memory

Network Traces

Legitimate User

Memory Allocation

Global Memory

Malicious User

cudaMemcpy cudaMemcpy

Memory Allocation

A B

Figure 5.2
Global Memory Retrieval

5.5.1 Global Memory Scenario

Global memory represents the largest memory on the GPU. Global memory is used

to store a large amount of data to process it. In order to test data leakage and data

remanence, the following scenario is established:

Network traces containing confidential data are sent to the GPU and stored in global

memory. A primary and legitimate user runs the network traces through an algorithm

until receiving the required results. The traces are sent from the host to the device,

following the standard procedure, using cudaMalloc and cudaMemcpy as shown in Fig-

ure 5.2 (A).

After the execution of the first process (by the legitimate user), a second independent

user with malicious intention, runs a malicious application, requiring the allocation of

the same, or larger amount of memory. The memory allocated by the malicious user will

allow him to fully or partially recover the remanent data on the GPU. Figure 5.2 (B)

shows the process of memory allocation by the malicious user. The malicious user is

128

allocating the entire memory space available in global memory, then requests all data

stored on the device to the host memory by using the cudaMemcpyDeviceToHost function.

Global Memory

Legitimate User

Global Memory

Malicious User

Shared Memory

Network Traces

Shared Memory
Memory

Allocation

cudaMemcpycudaMemcpy

A B

Figure 5.3
Shared Memory Retrieval

5.5.2 Shared Memory Scenario

Shared memory is on-chip memory, set to either 48 KB or 16 KB (defined by the user)

as discussed in Section 3.3.1, allowing threads to exchange data between each other, as

well as having fast access to data.

In this scenario a large amount of data is transferred by the legitimate user to global

memory. In an attempt to process data faster the legitimate user copies data from global

memory to shared memory as shown in Figure 5.3 (A); once the computation is finished,

the legitimate user uses the cudaMemcpyDeviceToHost in order to copy the results back to

the host.

Figure 5.3 (B), shows the malicious user action, requesting data directly from shared

memory. This action is performed by allocating an array of the size of shared memory,

transferring that data back to a buffer located in global memory, in an attempt to transfer

the data back to the host by using the cudaMemcpyDeviceToHost function.

129

This scenario offers the possibility to the the malicious user to locate and retrieve a

total or partial amount of data stored in shared memory. In order to recover data, it

is assumed that the legitimate user is not writing multiple times at the same location

in shared memory, otherwise only the last data written will be leaked. Furthermore,

shared memory might be using wear levelling in order to increase the longevity of the

memory (Static random-access memory (SRAM)), inherently allowing the malicious

user to retrieve 48 KB of data when allocating a full buffer [150] [151].

5.5.3 Texture Memory Scenario

Texture memory requires the same amount of clock cycles as global memory in order to

be accessed, however, texture memory offers the use of a cache and does not require co-

alesced memory accesses as explained in Section 3.3.1. These properties makes texture

memory uniquely suited for different specific algorithms.

This scenario, enables the legitimate user to take advantage of the singular proper-

ties of texture memory, allocating memory texture by using the function cudaBindTex-

tureToArray. Once the data is transferred onto the GPU, the legitimate user is able to

process it’s data faster, benefiting from the cache and the non-required coalesced mem-

ory accesses.

130

Global Memory

Legitimate User

Global Memory

Malicious User

Shared Memory Shared Memory

Texture Texture

Traces Empty
Array

cudaBindTexture
toArray

cudaBindTexture
toArray

A B

Figure 5.4
Texture Memory Retrieval

Figure 5.4 (A) shows the legitimate user processing data via the texture memory. Fig-

ure 5.4 (B) shows, the allocation of an empty array in texture memory, by the malicious

user, in order to retrieve data stored in texture memory. It is important to note, that the

only difference is that texture memory accesses DRAM through specific hardware and

provides cached data to the user.

5.5.4 Experimental Results

This section demonstrates the results obtained by executing the different scenarios, on

the consumer, mobile and high end GPU and discusses results obtained using the dif-

ferent versions of the CUDA framework.

Global Memory: In order to execute the first scenario, a two dimensionnal array of 2000

integer entries was created and stored in global memory. The legitimate user processing

was simulated by simultaneously multiplying the integers by two. The array was then

sent back from the device to the host.

131

The malicious user was simulated by allocating an array of the size of global memory,

on the host, without transferring data to the GPU, the malicious user then instructed

data to be copied from the device to the host.

The data retrieved by the malicious user was 100% identical to the data computed

by the legitimate user. Hence, 100 % of the legitimate user’s data remained in DRAM

and was leaked by the GPUs. This process was carried out on the mobile, consumer

and high end GPU demonstrating similar results.

The consumer and high end devices were also tested against CUDA version 5.5, 6.0

and 6.5, demonstrating similar data leaks. The vulnerability demonstrated on the three

different GPUs can be attributed to the lack of secure software practices as discussed

by [135] [143]. These security issues can also be solved by improving the GPU hardware

and clearing the memory, after each use.

Shared Memory: The scenario was executed by sending an array of 2000 integer entries,

stored in global memory. The array was then sent to shared memory in order to be

processed and multiplied by two. The following steps were followed by the legitimate

user in order to compute its data:

• Data transfer from the host to the device

• The two dimensional array is stored in shared memory

• The data stored in shared memory is multiplied by two and stored in the same

cells.

• The original data (stored in global memory) is sent back from the device to the

host.

In order to evaluate the data recovered by the malicious user, the data multiplied by

two are left in shared memory and not transferred back to the host, in which case the

132

legitimate user would be required to store the data in global memory before being able

to transfer the data back.

The malicious user allocated an empty array in global memory, the empty array was

then filled with the content of shared memory and transferred back from the device to

the host. This process was realised on the three different devices.

By using CUDA version 5.5, 6.0 or 6.5, the malicious user was able to retrieve

the content of shared memory by using standard I/O functions. In their work Di

Pietro et al. [144] state that shared memory is zeroed after execution, however in the ex-

periments described in this chapter, the data remained on the GPUs after the legitimate

user processed its data. It is assumed that the behaviour of shared memory encountered

by Di Pietro et al. is due to Error-correcting code memory (ECC) being activated on

their GPU. The results presented by Di Pietro et al. did not take in account the fact that

ECC is often disabled on computers as it allows to achieve better throughput perfor-

mance [152] [153], and that consumer GPUs often do not possess ECC, as highlighted

in [154] and in [155]. Hence, not reflecting the GPU landscape.

ECC is not activated on our consumer and high end GPUs in order to preserve the

consistency of our tests, as ECC could not be enabled on the Nvidia Jetson Tegra K1.

Texture Memory: The texture memory was evaluated in a similar fashion to global and

shared memory, with the difference that in order to store the data in texture memory a

specific texture binding function was required on the host code.

The scenario was executed as follows; the legitimate user created an array of integer

registered by the texture binding function, a second array of random number of the

same size (2000 integer) was then allocated in global memory, the multiplication kernel

was then launched from the CPU and only the data contained by the the second array

stored in global memory was accessed and multiplied by two. The data stored in global

133

memory was then send back to the host.

The data stored in texture memory were not used nor accessed by the legitimate user,

as texture memory is a read-only memory. In order to retrieve the data stored in texture

memory and multiply them by two, the results would have had to be stored in global

memory, eventually corrupting the data leakage demonstration.

The malicious user was simulated by allocating an arrays of 2000 integer in global

memory. The malicious user then proceeded to read texture memory and store the

results into the global memory array. Finally the array stored in global memory is sent

back to host, containing the data.

The data could be retrieved 100 % of the time, when using the ‘printf ’ procedure,

with CUDA version 6.0 and 6.5, however the data could only be copied back to the

host 20 % of the time. When using CUDA 5.5 the data could be dumped back to the

host 100 % of the time. The undefined behaviour of CUDA 6.0 and 6.5 leads to the

conclusion that this was not a security mechanism implemented by Nvidia, but rather

a quirk due to the CUDA driver as described in [144] [156].

Host and Devices Test Cases: Extensive experiments were carried out in order to demon-

strate data remanence in off-the-shelf graphics cards under various realistic situations

such as switching user, device reset and the hard reboot of the host machine. These

results are organised into tables, “Y” meaning data remanence was observed on the

GPU, “N” meaning the attempt of data recovery was unsuccessful and “N/A” stands

for not applicable.

134

Table 5.2
User Switch

GPUs GTX 295 Tesla K20m Tegra K1

Global Memory Y Y Y

Shared Memory Y Y Y

Texture Memory Y Y Y

Table 5.2 demonstrates and compares the behaviour of the mobile, consumer and

high end GPUs, when a malicious process is run by a user after the legitimate user has

run its algorithm. The results demonstrates that “user switching” does not affect data

remanence on the GPU regarding the type of memory. The inherent sharing of memory

at GPU level regardless of the user level separation on the host allows to highlight data

leakage concerns, as well as potential for forensic investigations.

Table 5.3
GPU Reset

GPUs GTX 295 Tesla K20m Tegra K1

Global Memory Y Y N/A

Shared Memory Y Y N/A

Texture Memory Y Y N/A

Table 5.3 shows the results of a GPU reset. This action on the GPU is carried out us-

ing the nvidia_smi tool available in the CUDA framework [135] [157]. It is demonstrated

that a reset of the GPU does not affect the memory content of both the consumer and

high end grade devices, however, it demonstrates that the mobile device does not have

the capability to reset the GPU.

The possibility of data recovery for forensic investigation is demonstrated even after a

GPU reset carried out via the official tools, released by Nvidia. The results also highlight

that GPU resets should not be relied on, in order to erase or annihilate data remaining

135

in memory.

Table 5.4
Hard Reboot of the Host Machine

GPUs GTX 295 Tesla K20m Tegra K1

Global Memory N N N

Shared Memory N N N

Texture Memory N N N

Table 5.4 demonstrates that the GPU memory suffers from the same effect as host

RAM, where when a hard reboot is carried out, all data in host RAM is lost. This occurs

as data retention in the RAM requires power to be constantly applied to the device. As

long as the GPU is powered, data can be recovered from all three of the memory types

on the GPUs.

5.6 Strategies for Digital Forensic

Digital forensic investigators require a protocol and a methodology to follow, proceed-

ing from the most volatile memory to the least volatile, allowing them to present signif-

icant evidence in court cases, in a reliable and verifiable fashion [158] [159]; however,

extracting shared and texture memory occurs through global memory. In order to avoid

overwriting any remanent content, global memory retrieval is prioritised.

In this section, a novel methodology is proposed, shortening the time of investigation

and allowing higher confidence in data integrity. The methodology presented in [135]

requires investigators to reverse engineer the proprietary driver, which is a time con-

suming and a complex task, leading to uncertainty in the data integrity. Data in mem-

ory might be changing during the acquisition proposed in [135], hence the proposed

methodology might be hindered for some forensic analysis [160].

136

In contrast, this novel methodology does not require reverse engineering of the

CUDA driver and follows the United States’ Department of Justice recommendations

that consists of “Preparation and Extraction” and “Identification” steps [161]. The

novel methodology requires the controlled modification of program code running on

the GPU while aiming at preserving the content of memory; this is not unlike mobile

phone digital forensics where the requirements are similar [162] [163]. In GPU and

mobile scenarios, non-invasive approaches are not always possible due to technical lim-

itations and requirements.

Obtaining
and imaging
forensic data

Forensic
Request

Preparation
& extraction

Identification

Analysis

Forensic
Reporting

Case Level
Analysis

Figure 5.5
Digital Forensic Methodology Process Overview

The methodology focuses on the three intermediate steps of the forensic investigation

proposed in [161], as shown in Figure 5.5. The US Department of Justice proposes a

seven steps methodology, from the data obtention to the case level analysis. The novel

methodology proposed in this section focuses on the preparation, identification and

analysis steps of the methodology.

Figure 5.6 demonstrates the steps forensic investigators should follow in order to ob-

tain forensically sound data. As described in Section 5.5.4, the GPU must remain pow-

ered during the data recovery process and the machine should be secured physically,

137

ensuring an appropriate use of the power supply in order to maintain the data in a live

state.

Computer is
Turned on

Data
Collection

Process
Running on

GPU

Identify
GPU Model

Seize
and

Analyse

Identify
Process

Stop
Process

Ability to
identify
sources

Analyse log
files and

process names

Copy
Executables

for
Investigation

Copy Sources
for

Investigation

Compile
dump

executable

Dump
Global

Memory

Dump
Shared
Memory

Dump
Texture
Memory

yes

yes

yes

no

no

no

Verify
Data

Integrity

Preparation

Extraction

Identification

Figure 5.6
Digital Forensic Methodology

Preparation: The preparation phase is the most important part of the methodology and

it requires the forensic investigator to clearly identify the model of the GPU encoun-

tered, helping the investigator to understand the underlying architecture of the graphics

card. This will also help the forensic investigator to identify the environment of graphics

138

card, such as a multi-GPU system, a virtualised environment or a mobile GPU. Dur-

ing this phase the investigator is also required to verify if one or multiple processes are

currently running on the GPU. The process identification will further help the forensic

investigator to determine what data is being processed, or what computations the GPU

has been instructed

Extraction: In the case where a process is running on the GPU, the process in ques-

tion needs to be identified from the host operating system. Once clearly identified, the

process can be stopped, such that the forensic investigator is able to dump the differ-

ent memories one by one. The forensic investigator shall also investigate the computer

hard drive in order to find the sources of the algorithm running on the GPU, or the

binary and make copies of them for the analysis phase satisfying any other evidential

requirements, such as retaining and comparing file checksums.

Based on the identification of the GPU and associated architecture in the “Prepa-

ration” phase, the investigators can now compile an appropriate “dump” executable,

allowing them to access one or more GPUs in the system to recover Global, Shared

and Texture memory. This compilation must take place on another computer, to pre-

vent unintentional interference with potential forensic evidence on the computer under

investigation.

Identification: The data retrieved from the running of the executable can be analysed by

using standard forensic tools as well as freely available CUDA tools. In order to analyse

the process sources for investigation, the full featured Nsight editor provided by Nvidia

can be used, where simulations, profiling and in depth analysis can be performed [41].

Furthermore, the executables retrieved can be analysed and tested on sample GPUs to

generate a behavioural analysis of the software. The executable can be further anal-

ysed through decompilation by using nvdisasm, nvidia-debugdump tools or cuobjdump [41].

Analysis of the data dumped from global, shared or texture memory can be analysed

139

using standard memory analysis tools such as the sleuth-kit [164] to retrieve strings in

the recovered data. The reverse engineering of the binaries might also lead the foren-

sic investigator to understand the process running on the GPU. Strategies for reverse

engineering of CUDA binaries are described in the next section.

The proposed methodology and scenarios are subsequently validated by a study from

Zhang et al. [165] titled “Forensically Sound Retrieval and Recovery of Images from GPU Memory,

were the authors demonstrate how to retrieve 24 bit TIFF images from the GPU in a

forensically sound manner by using the same techniques as described in Section 5.5 and

Section 5.6 . The study demonstrates that pictures viewed in Windows Photo Viewer

using GPU acceleration can be retrieved from GPU memory and identified visually.

The study also demonstrates that softwares such as the Windows Photo Viewer might

store data on the GPU in a different format than the one used on the host, but can be

recovered and identified by applying a colour depth map test.

5.6.1 Anti-Forensic Measures

Memory Overwriting The most obvious means of mitigating threats revolving around

recovery of data from GPU memory is to overwrite the memory contents, thus prevent-

ing techniques such as those discussed from recovering data successfully. By considering

the performance implications of erasing GPU memory at time of initialisation, it is clear

that for performance-optimised software, there remains motivation to avoid overwrit-

ing GPU memory, to reduce the performance overhead of erasing previous data from

memory. These methods were proposed in [143] and [144].

Dynamic Parallelism To extend this technique, dynamic parallelism can be used, re-

quiring a kernel composed of one or more threads, which itself contains another kernel,

responsible for the erasure of sensitive data following its access. This technique would

reduce the required zeroing time and can be easily implemented by programmers, or

added in CUDA libraries, due to running within a second kernel separate from the

140

original code.

Another potential technique is to plant misleading data within GPU memory, using a

second kernel, running in parallel with the first, through dynamic parallelism. With two

kernels writing, calculating and modifying data in GPU memory, forensic examination

would be made significantly more complex, due to the ease with which decoy data may

be placed in memory, for the forensic examiner to deal with.

Dead Man’s Handle Monitoring The dead man’s handle technique can also be used to run

two processes on the GPU, which simultaneously monitor each other. In the event of

one process being disturbed or terminated such as by someone attempting to terminate

the process to begin dumping memory, the remaining process would initiate a memory-

erasing routine, using the massively parallel hardware to wipe the entire GPU memory

in a matter of seconds.

5.7 Strategies for Reverse Engineering

The reverse engineering of software is the process through which the means of operation

of a piece of software can be discovered. The process of reverse engineering software for

CPU architectures (such as x86 and x86_64) is well-documented [166] [167]. Despite

this, the techniques commonly applied to CPU-based software are not necessarily opti-

mal when dealing with CUDA, which is effectively another layer of abstraction on top

of an existing computer, introducing its own nuances, aiding the reverse engineering

process.

Reverse engineering of CUDA-based GPU binaries may be necessary, for example, to

investigate the extent and impact of a security breach, where suspected malicious code is

executed on a GPU [136]. Being able to identify the operations carried out may allow

an investigator to establish the potential exposure of confidential information, or to

identify what operations were carried out on data previously held on the GPU. Analysis

141

may be necessary for the purpose of creating intrusion detection system signatures or

the detection and classification of similar threats in future.

Reverse engineering can also be used to gain an understanding of code being exe-

cuted. An example would be in software auditing where the use of reverse engineering

could ensure that software handling sensitive data is not abusing its privileges. Addition-

ally, as GPU applications often represent a commercial investment of the originating

company, reverse engineering can pose a direct threat through the theft of Intellectual

Property (IP) [134], as well as serve in the case of a digital forensic investigation.

Reverse engineering is split into two different categories, those of static and dynamic

analysis. In static analysis, the source binary is not executed; instead the binary is loaded

in a disassembler, in order to be parsed and the machine code is mapped to human

readable instructions such as an assembly listing format. This process can be executed,

with or without the availability of the source code. Various open source static analysis

tools are available, from original Unix operating systems such as the strings utility

which looks for readable text strings contained within a file, through to specialist Nvidia

tools to extract information from CUDA binaries.

In contrast, dynamic reverse engineering involves the execution of the code, typically

on a virtualised or debuggable physical environment [168], through the use of a debug-

ger. This permits the flow of the code to be monitored, altered or interrupted by using

breaks during the execution. These abilities allow to gain an insight into the operation

of the code and a better understanding of the different functions of interest. Different

variables can also be altered in order to understand the code under scrutiny. Debugging

can also be used to identify system calls and functions of interest, such as the CUDA

API libraries of the calls made by the software to the CUDA driver.

It is important to note that, within the context of analysis of CUDA code being ex-

ecuted on a GPU, a distinction between the host code and the device code must be

142

made. While host code can be reverse engineered using standard techniques [169],

there is currently very limited research into the background information necessary to

investigate the CUDA-based code [133] [170].

The ability to investigate the operations of a CUDA-based software is of great im-

portance, specifically given the well-documented use of GPUs for the unauthorised pro-

cessing of potentially confidential data, as well as for use in compression and cryptog-

raphy [171]. With the possibility of sensitive data being exposed to massively parallel

processing on a daily basis, the ability for digital forensic investigators to respond to

security incidents involving the potential compromise of these systems and rapidly in-

vestigate the precise nature of the suspect code involved, is critical to presenting an

effective incident response.

Reverse Engineering

Static
Analysis

Dynamic
Analysis

Strings

ltrace

disassembler

cuobjdump

CUDA
Specific

CUDA
SpecificDebugger

cuda-gdb

ptxas

nvdisasm

Figure 5.7
Digital Forensic Road Map

The SANS institute recommends static analysis as the first step when performing

reverse engineering [172]. When analysing a cubin, different strategies can be adopted

143

as shown in Figure 5.7. Multiple tools are available directly from the CUDA framework

(dashed) to reveal the operations carried out by a piece of software. These tools are

not specifically designed for reverse engineering, however, many standard / basic Unix

utilities can be used to retrieve essential information from the binaries. The next section

describes the different steps undertaken in the reverse engineering process of a software,

by using the different tools provided by Nvidia and by the standard Unix tools, for static

and dynamic analysis, demonstrating, a considerable potential for side-information to

be identified simply from these basic utilities.

5.7.1 Static Analysis

The CUDA binary generated by the Nvidia compiler leaks a number of pieces af

information potentially damaging for companies concerned about IP, however this in-

formation can also be used efficiently to discover the insight of a piece of software writ-

ten by a malicious user and taking advantage of the massively parallel capabilities of

a GPU. This section demonstrates different techniques to obtain valuable information

against a simple open-source application and highlight the informations which could

be recovered from the host ELF executable.

The first sample application studied in this work demonstrates the reverse engineer-

ing of a hash brute-forcing application, which is a task often offloaded to the GPU due

to the highly parallel nature of the algorithm. The application accepts two different

hash inputs – MD4/5 hashes and the dictionary containing the plain text of different

words; both are subsequently transferred to the GPU in order to make a comparison

between the hash and the elements stored in the dictionary. If a match is found the

result is returned to the host CPU.

144

__cudaparm__Z5bruteforce_dict_a

__cudaparm__Z5bruteforce_md5C_b

__cudaparm__Z5bruteforce2_dict_a

__cudaparm__Z5bruteforce2_md4_b

Figure 5.8
Recovering all Function Instances and Arguments

Figure 5.8 demonstrates the output of the strings utility run against the ELF file pro-

duced by nvcc, allowing the forensic investigator to retrieve the name of every function

in the code. The strings utility tool is designed to display all printable text strings of four

or more characters in length when applied to an object, or a binary.

The output demonstrated in Figure 5.8 is the default behaviour of the nvcc compiler.

This is naturally useful as the original variables and function names are not stripped out

from the binary, allowing a forensic investigator to imply the behaviour of the software.

Both CUDA-specific tools and the common CPU reverse engineering tools can be

used against the CUDA-produced ELF binary. Figure 5.8 shows the name of the func-

tions used for a simple MD4 and MD5 brute-force application. Two functions have

been found (bruteforce, bruteforce2) as well as their required arguments, the dictionary

and the md4-5 hash — dict_a being the first argument and the md4-5_b being the second

argument.

Being able to see the names of functions, as well as their incoming parameter def-

initions, can be useful when carrying out reverse engineering, as it offers a rapid way

to gain familiarity with the layout of the code in question. Additionally, presuming the

developer of the CUDA software was not taking active steps to avoid this analysis, such

as deliberately naming functions in a meaningless manner, there may be considerable

side information about the operation of the program able to be determined simply from

the naming of functions and parameters.

145

__global__

void bruteforce(char dict, char md5){

...

}

Figure 5.9
Original Function Declaration

Figure 5.9 shows the original function declaration in the source code of the example

presented in Figure 5.8. As shown previously the figure is named “bruteforce” and re-

ceives two distinct arguments “dict” and “md5”.

bruteforce

leftSalt

rightSalt

dictionary

password

Figure 5.10
Name of the Constant Variables in the Software.

The names of the constant variables can also be gathered in the executable, using the

strings command. Figure 5.10 shows the constant variable names used in the applica-

tion. This behaviour is unlike traditionally compiled C applications and may be useful

for an investigator wishing to gain a quick understanding of the operation of the code.

146

checkCUDAError(”Wrong Memory Allocation”)

checkCUDAError(”UnAllocated Variable”)

checkCUDAError(cudaError_t cuError)

Figure 5.11
CUDA Error Comments Embedded in the Code.

Figure 5.11 reveals the error defined by the developer of the original code, as well

as standard errors defined by the framework. Custom error messages allow the forensic

investigator to gain valuable understanding of the behaviour of the different algorithms

and functions. By using CUDA specific tools the forensic investigator can retrieve all

information initially for the author of code.

ld.param.u64 %rd1, [_Z5VecAddPcPi_param_0];
ld.param.u64 %rd2, [_Z5VecAddPcPi_param_1];
cvta.to.global.u64 %rd3, %rd1;
cvta.to.global.u64 %rd4, %rd2;
mov.u32 %r1, %tid.x;
cvt.u64.u32 %rd5, %r1;
mul.wide.u32 %rd6, %r1, 4;
add.s64 %rd7, %rd4, %rd6;
ld.global.u32 %r2, [%rd7];
add.s64 %rd8, %rd3, %rd5;
ld.global.u8 %r3, [%rd8];
add.s32 %r4, %r3, %r2;
st.global.u8 [%rd8], %r4;
ret;

PTX SASSM

1
2
3
4
5
6
7
8
9

10
11
12
13
14

MOV R1, c[0x0][0x44];
S2R R0, SR_TID.X;
MOV32I R3, 0x4;
IMAD.U32.U32 R6.CC, R0, R3,c[0x0][0x148];
IMAD.U32.U32.HI.X R7, R0, R3,c[0x0][0x14c];
IADD R4.CC, R0, c[0x0][0x140];
IADD.X R5, RZ, c[0x0][0x144];
LD.E R0, [R6];
LD.E.U8 R3, [R4];
IADD R0, R3, R0;
ST.E.U8 [R4], R0;
EXIT;
BRA 0x70;
NOP;

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Figure 5.12
Comparing PTX code and SASSM code

cuobjdump The cuobjdump tool allows the forensic investigator to dump information

directly from the binary, such as the .section assembly directives, which can yield valu-

able information about the different variables, functions and arguments, as well as in-

formation about the memory layout of function arguments and the type of storage used

for each variable. It is also possible to dump the PTX code, as well as the SASSM code

and a standalone Cubin binary.

147

A second code sample is shown in Figure 5.12, to highlight the difference between

the PTX code on the right and the SASSM code on the left. This code demonstrates a

simple vector addition between two variables.

The PTX code shows the name of the function and the number of parameters re-

ceived (line 1, 2). It shows that both are stored in global memory (line 3, 4). The vector

addition is then performed. Similar instructions can be seen for the SASSM code, how-

ever, as PTX is a higher-level language, it is easier to understand and infer the kernel

C source code, as discussed by Dong et al. [173]. In particular, PTX contains variable

names and function names, conveying semantic information, unlike SASSM which is

directly using registers.

148

Figure 5.13
Representation of the Different Functions

ptxas The ptxas tool compiles PTX code into GPU-specific micro-code. After retriev-

ing the PTX code from the ELF binary, the forensic investigator can use the ptxas tool

to create an object file of the CUDA functions, if they wish to carry out further dynamic

analysis and actually execute the code in a controlled environment.

Using the PTX code, it is also possible to add debug information to the object file, as

well as line number information, to assist during later stages of the disassembly process.

nvdisasm Nvdisasm is an hybrid static and dynamic analysis tool, which allows a foren-

sic investigator to extract information from the standalone CUDA binary (Cubin) and

present this information in a readable format. As such, it is possible to create a flowchart

149

of the different function calls used in the software, as well as their relation to each other

as shown in Figure 5.13. The tool is also able to show register usage alongside each

executed instruction and can therefore be considered a form of dynamic analysis tool,

since it effectively executes the code, in order to establish which registers would be used

to store values during execution. This is useful if attempting to establish the contents of

a register at a given point, perhaps due to later usage of that register elsewhere in the

PTX or disassembled code. In the case of a multi-tenant computing situation, where

GPUs are shared between several independent users of a system such as in platform-

as-a-service situations, this could be used to carry out pre-execution behavioural checks

against CUDA software, to attempt to identify malicious behaviours, such as attempt-

ing to dump the contents of all GPU registers, or to allocate the full extent of available

GPU memory in a single array. This could be attempts to exploit data remanence of

GPUs to extract data processed by a previous user of the shared GPU.

5.7.2 Dynamic Analysis

Dynamic analysis is the second step of our proposed reverse engineering process. This

analysis makes use of information previously retrieved from static analysis, such as the

function flowchart, the PTX code and the object files generated. The CUDA framework

comes with its own debugger, allowing a forensic investigator to run the host CPU code

in a pseudo-virtualised environment.

cuda-gdb Cuda-gdb is the official CUDA debugger. It allows programmers to run their

algorithm on the host system, while being able to use a set of debug instructions to

pause and step through code, analyse memory requirements, variable values and thread

positions. Cuda-gdb is based upon the GNU gdb utility, which is a standard x86 debugger.

While running code through the cuda-gdb debugger, the investigator is able to place

breakpoints within the complied SASSM code, which is the machine-code that is actu-

ally executed on the GPU, in order to better understand the behaviour of the software,

150

as shown in Figure 5.14. The first line places a breakpoint on the GPU kernel “VecAdd”

and the third line then executes the main CPU code, thus launching the kernel on the

GPU. The breakpoint is then triggered when the kernel loads, allowing for further de-

bug commands to be executed, such as inspecting variable values or stepping through

code line-by-line. For example, the investigator can request the debugger provide in-

formation on the state of the kernel, such as the number of threads (line 5), when the

breakpoint is encountered, the code execution temporarily pauses.

(cuda-gdb) b _Z6vecAddPiS_S_

Breakpoint 1 at 0x4026ff

(cuda-gdb) r

(cuda-gdb) cuda kernel block thread

kernel 1, block(1,0,0), thread(1024,0,0)

Figure 5.14
Cuda-gdb primitives to analyse the behaviour of the code

Furthermore, the debugger can be used to ascertain more detailed information on

nuances of the flow of the software and to complete any missing information that static

analysis did not reveal. The PTX code obtained during static analysis can also be used

to extend dynamic analysis, by making small adjustments to its assembler-like code, in

order to force a specific set of operations to be carried out. The Just-In-Time (JIT) com-

pilation capabilities of the framework are then used to create and execute the PTX code

rapidly on the GPU, allowing for rapid modifications and testing cycles to be completed.

As shown in Figure 5.15, by loading both the object file and PTX code at runtime,

the forensic investigator can modify the behaviour of the PTX code before it is JIT-

compiled and executed, therefore allowing for further dynamic analysis of the code. By

making small alterations to the instructions in the PTX code as needed, the JIT compiler

then produces a new object file, which is executed, allowing for the rapid modification

151

Table 5.5
Reverse Engineering Strategy and Extraction Result Summary

ELF Binary Tools
ELF CUBIN PTX SASSM cuobjdump PTXas nvdisasm cuda-gdb

Variables Yes Yes No No No No No No
Functions Name Yes Yes Yes Yes Yes No Yes Yes

Functions Arguments Yes Yes No No No No No No
CUDA Errors Yes Yes No No No No No No

PTX Yes Yes N/A No Yes No No No
SASSM Yes Yes No N/A Yes No Yes Yes
CUBIN Yes N/A No No Yes No Yes No

Code Logic No No Yes Yes No Yes Yes Yes

and testing of modified versions of the CUDA code. This allows different portions of the

code to be examined in isolation and can reduce the time needed for dynamic analysis

by allowing unneeded portions to be“short-circuited” out in the PTX, thus allowing an

investigator to focus only on areas of interest. Being able to rapidly alter and execute

modified code is a significant advantage to anyone attempting to reverse engineer the

software, although this is only possible if a PTX section is present in the binary. It was

found that this is the default behaviour of the nvcc compiler, meaning it is likely that

CUDA binaries encountered elsewhere will contain this section, thus aiding dynamic

analysis.

./vectorAdd

Vector Addition

Using Device 0: ”Tesla K20m”

Module Path <./vectorAdd_kernel64.\ac{PTX}>

loading module: <./vectorAdd_kernel64.\ac{PTX}>

Figure 5.15
Just In Time Compilation

The results achieved by the reverse engineering strategy, using the different types

of outputs produced by the different formats generated by the nvcc compiler are sum-

152

marised in Table 5.5 where “Yes” represents the possibility of retrieving data, “No” the

impossibility of retrieving data and “N/A” indicates a given test was not applicable. The

results demonstrate the possibilities of reverse engineering for forensic investigators and

highlight possible intellectual property concerns regarding the format and informations

yielded by the different binaries. Perhaps most significantly, these findings highlight that

more information about a given CUDA program can be obtained from direct analysis

of the binaries, which is not readily exposed using the NVidia tools. It is therefore im-

portant for developers to note that a binary which reveals no valuable information when

inspected with the NVidia tools may still contain such information, accessible directly

through the techniques discussed.

5.7.3 Extended Digital Forensic Methodology

The forensic methodology presented in Section 5.6 is further extended allowing foren-

sic investigators to analyse the source code and the behaviour of an application based

on the results presented earlier in Section 5.7, detailing reverse engineering strategies.

Figure 5.16 shows the extend methodology, including the reverse engineering step.

The reverse engineering step starts with an incentive to identify the tools offered by

the CUDA framework; as new tools may be added in the future, these may offer better

reverse engineering support, as well as help forensic investigator understand the be-

haviour of an algorithm, based on the different informations leaked by the ELF binary.

This step is then divided in static and dynamic analysis as recommended by NIST,

at this stage the methodology follows the procedure described earlier in Section 5.7.

The final steps join the previously described Identification step, as this step will allow the

forensic investigator to corroborate the information gathered during the Extraction and

Reverse Engineering steps, allowing him to draw conclusions or continue his analysis of the

evidence gathered.

153

Computer is
Turned on

Data
Collection

Process
Running on

GPU

Identify
GPU Model

Seize
and

Analyse

Identify
Process

Stop
Process

Ability to
identify
sources

Analyse log
files and

process names

Copy
Executables

for
Investigation

Copy Sources
for

Investigation

Compile
dump

executable

Dump
Global

Memory

Dump
Shared
Memory

Dump
Texture
Memory

yes

yes

yes

no

no

no

Verify
Data

Integrity

Preparation

Extraction

Identification

Static Analysis

Dynamic
Analysis

Reverse Engineering

Identify
CUDA
Tools

Gather
information

(strings)

Analyse Code
(PTX)
(ptxas)

Analyse Code
(SASSM)

(cuobjdump)

Map Behaviour
(nvidisasm)

Analyse
Behaviour
(cuda-gdb)

Figure 5.16
Digital Forensic Methodology Extended

5.7.4 Intellectual Property Protection

It should be noted that as with all security measures which attempt to prevent the ex-

traction of intellectual property from compiled software code, the code in question must

ultimately be executed on the GPU, meaning that attempts to make reverse engineer-

ing and disassembly more difficult are ultimately a form of security through obscurity.

It is clear, however, that it is possible to produce binaries which are less easily reverse

engineered, thus increasing the time and expertise needed to carry out analysis and gain

an understanding of the binary in question.

154

In the field of CPU-executed code, on standard operating system platforms, obfus-

cated compilers exist [174], which are designed to produce unintuitive and difficult

to reverse engineer binaries, which feature extraneous complexity in their compiled

code. These complexities may have an impact on performance, if there is an increase in

the number of instructions executed by the processor. For massively parallel processing

(such as that carried out by GPU), performance of the code in question is significant,

with the same code being executed in parallel across many hundreds of cores simulta-

neously. Any increase in the number of instructions carried out by the streaming mul-

tiprocessor would result in a significant reduction in performance across all cores. For

a higher number of simultaneous threads being executed, the number of wasted clock

cycles added by the obfuscation would increase, since each stream processor runs the

same code and it would ultimately lead to more divergence of the threads.

While it would be possible to wrap the CUDA host ELF binary to make it more

difficult to carry out static analysis, it is worth considering that ultimately the GPU

must execute the Cubin binary. Such obfuscation, while not impacting on performance

of the calculations, would be relatively easily overcome by using dynamic analysis. By

using the cuda-gdb debugger to carry out dynamic analysis, it would be possible to step

through execution of the binary until it had suitably decrypted or de-obfuscated the

Cubin or the PTX code and then extract it for direct analysis.

It is therefore recommend that, as per the demonstration of the reverse engineer-

ing process of a CUDA binary, a developer may attempt to hinder reverse engineering

through the use of meaningless and repeated variable names and functions. This strat-

egy is similar to that used in Java by dexguard and proguard [175], yet proves effective in

slowing down static analysis of the code in question. Using this technique would offer

some protection of both the Cubin and PTX code from simple static analysis, by posing

a stumbling block to easy visual inspection of the code. Alternatively, a tool like strip

could potentially be modified to support CUDA, allowing for the removal of readable

155

strings from compiled code as demonstrated in Figure 5.17, Z53456789 represents the

obfuscated function name and 234 represents the first argument name of the function.

__cudaparm__Z53456789_234_a

__cudaparm__Z53456789_236_b

Figure 5.17
Obfuscated Functions and Arguments Names

Additionally, if the CUDA code is able to be targeted to a single GPU architecture

and does not need forward compatibility, the PTX code present in the CUDA binary

can be removed when the binary code for the architecture is present and it is found that

the resulting modified binary still executed correctly on the target platform, despite the

PTX listing being removed. If it is necessary for code to be executable on many different

GPUs, a “fat” binary can be created for each GPU architecture and platform such as

shown in Figure 5.18.

Standard Compilation (Part A)

$ nvcc vector.cu -arch=compute_20 -code=compute_20,sm_20
$ /usr/local/cuda-6.5/bin/cuobjdump -ptx ~/ReverseEngineering/ReverseEngineering/a.out

Fatbin elf code:
================
arch = sm_20
code version = [1,7]
producer = <unknown>
host = linux
compile_size = 64bit
identifier = vector.cu

Fatbin elf code:
================
arch = sm_20
code version = [1,7]
producer = cuda
host = linux
compile_size = 64bit
identifier = vector.cu

Fatbin ptx code:
================
arch = sm_20
code version = [3,2]
producer = cuda
host = linux
compile_size = 64bit
compressed
identifier = vector.cu

.version 3.2

.target sm_20

.address_size 64

.visible .entry _Z10vector_addPiS_S_(

.param .u64 _Z10vector_addPiS_S__param_0,

.param .u64 _Z10vector_addPiS_S__param_1,

.param .u64 _Z10vector_addPiS_S__param_2,
[...]

Fat Binary Compilation (Part B)

$ nvcc vector.cu -gencode arch=compute_20,\"code=sm_20\" -gencode arch=compute_30,\"code=sm_30\"
$ /usr/local/cuda-6.5/bin/cuobjdump -ptx ~/ReverseEngineering/ReverseEngineering/a.out

Fatbin elf code:
================
arch = sm_20
code version = [1,7]
producer = <unknown>
host = linux
compile_size = 64bit
identifier = vector.cu

Fatbin elf code:
================
arch = sm_30
code version = [1,7]
producer = <unknown>
host = linux
compile_size = 64bit
identifier = vector.cu

Fatbin elf code:
================
arch = sm_20
code version = [1,7]
producer = cuda
host = linux
compile_size = 64bit
identifier = vector.cu

Fatbin elf code:
================
arch = sm_30
code version = [1,7]
producer = cuda
host = linux
compile_size = 64bit
identifier = vector.cu

Figure 5.18
Comparison of Standard and Fat Compilation Process.

The first command executed in Figure 5.18 (Part A) shows the process to compile

a simple CUDA code file, using the default compiler settings. The second command

shows the retrieval of the PTX code from the binary file resulting from the compi-

156

lation, using cuobjdump. As expected, it is possible to retrieve the PTX code from the

binary (Bottom of Part A). During the “fat” binary compilation, as shown in Figure 5.18

(Part B), the first line shows the command required to compile a “fat” binary using nvcc.

The second line shows that, upon inspection by cuobjdump, the ELF binary no longer

contains a PTX section. While this dramatically increases the size of the ELF binary, as

it contains the SASSM code for each target architecture, it hinders reverse engineering

by preventing the use of the Just-In-Time technique described earlier.

5.8 Summary

Data remanence is the residual representation of data stored in memory after having

been erased, or de-allocated [176]. Chapter 3 and 4 highlighted the different techniques

for pattern matching on GPUs in different contexts and for different critical applica-

tions. This chapter evaluated data remanence in GPU memory on a range of devices

including high end devices and mobile devices. Moreover a methodology for digital

forensics was proposed and evaluated, as well as different strategies for reverse engi-

neering of CUDA applications.

Different scenarios were established, in order to store data efficiently in global, shared

and texture memory on three GPUs. The remanent data was then recovered using dif-

ferent techniques, allowing to avoid the compromise of these data. It was demonstrated

that legitimate data remains in memory after being freed by the host, moreover, these

data were exposed to malicious users and could be retrieved using different procedures.

Different anti-forensic measures were highlighted in order to prevent malicious users

to access data after the termination of the main process. A methodology for digital

forensics was also proposed based on the evaluation of the different scenarios, allowing

forensic investigators to understand GPU architecture and memory types, while taking

advantage of the techniques proposed to gather evidence of crimes committed on GPUs.

157

Strategies for reverse engineering of CUDA software were also detailed and analysed.

Both static and dynamic reverse engineering techniques were considered and applied

to different CUDA executables. Finally the digital forensic methodology proposed in

Section 5.6 was augmented with a reverse engineering section strengthening the overall

methodology and giving the possibility to forensic investigator to gather evidence via

the CUDA executables and determine the ability and the potential of an executable.

With the increasing GPU market, the underlying architecture of the hardware might

be subject to changes and the methodology might require changes in order to accom-

modate forensic investigators, however with the increasing amount of data processed

on GPUs and with the current generalisations of GPGPU processing it is believed that

forensic investigators will soon be confronted with crimes committed using massively

parallel devices. This extended methodology offers them a step by step methodology.

158

Chapter 6

Conclusions and Future Work

6.1 Conclusion

Graphics Processing Units are able to provide the user with an off-the-shelf massively

parallel device enabling significant data processing and throughput increases over a

range of applications as demonstrated in this thesis. The work carried out highlighted

that in order to take advantage of GPUs the data offloaded for computation requires

careful consideration, and software optimisation in order to take full advantage of the

hardware and of the different memory hierarchies available. The availability and pop-

ularity of massively parallel devices in recent years has led to unprecedented levels of

data processing techniques allowing to further advance the fields of pattern matching.

This thesis presented research in single and multi pattern matching techniques, as

well as digital forensic and reverse engineering strategies. By using the GPU as a mean of

offloading data processing for single and multi pattern matching this work demonstrated

the potential of off-the-shelf GPUs within different areas such as IDS and DNA se-

quencing. Furthermore, the importance of data compression due to the limited amount

of memory has been highlighted. To this end, different algorithms have been imple-

mented. The risk of data remanence and data leakages on GPUs have also been ex-

posed. Different strategies such as anti-forensic and anti-reverse engineering techniques

159

have been proposed, as well as an extended digital forensic methodology, for digital

forensic investigators facing GPU malware cases, or crime committed with the help of

GPUs.

Chapter 3 provides innovative parallel implementations for the two most popular

single pattern matching algorithms, the KMP and the BMH algorithm. Both demon-

strated improvement over their sequential versions. It was shown that by taking advan-

tage of the different memory layouts available on the GPU, as well as making use of

optimisations techniques such as loop unrolling, the KMP and BMH algorithms were

able to demonstrate throughput in the order of a gigabit per second. It was however

demonstrated that these algorithms were not performing well with an increasing num-

ber of patterns. In order to overcome the limitations of single-pattern matching algo-

rithms a novel implementation of the failure-less Aho-Corasick algorithm using state

tables was made, allowing each thread to match one single character, and be discarded

at mismatch, increasing the throughput. The algorithm led to increased storage require-

ments due to the empty cells of the state table. However the use of compact state tables

reduced the initial space requirements. The algorithm was conceived to scale in order to

be used for log management of industrial systems and was developed with these features

in mind.

Finally it was shown that single pattern matching algorithms were outperforming

multi-pattern matching algorithms when matching one single pattern, demonstrating

over 19 Gbps for the KMP and over 24 Gbps for the BMH, however, the single-pattern

matching algorithms performances degraded with the increasing number of patterns. It

was further noted that by using different memory types, single and multi-pattern match-

ing were able to improve their overall matching performances. The failure-less Aho-

Corasick algorithm presented using reduced state table increased its original through-

put from 10 Gbps to 20 Gbps, over 1000 patterns on a single GPU by taking advantage

of texture memory.

160

This chapter has attained multiple achievements; the main contributions are sum-

marised as follows:

• The implementation of two high performance single pattern matching algo-

rithms, utilising the ubiquitous GPU for offloading string matching operations.

The implementation is freely available as a single-pattern matching library.

• An innovative GPU Log Processing library is developed for high performance

passive log monitoring, easing the analysis of faults, and intrusions, within indus-

trial systems. The algorithm is scalable allowing to process increasing amount of

data at high rates.

In Chapter 4 a novel Highly Efficient Parallel Failure-less Aho-Corasick algorithm is

presented. This novel algorithm aims at reducing the size of the trie stored in memory,

as GPU memory is a scarce resource. The novel algorithm makes use of different algo-

rithmic features to reduce and compress the data represented in the trie. To this aim,

the nodes of the first version presented are stored in a 1D array, constructed in a breath-

first construction fashion, each node only stores a bitmap of its children and an offset

allowing to reduce the space complexity of each nodes to a minimum. Furthermore,

the last nodes of the trie and similar suffixes are merged together. The first version of

the HEPFAC offers excellent data compression performance, however, the initial de-

sign demonstrates a trade-off between space complexity and throughput. To this end, a

second version of the algorithm is presented. In this version the memory scheme made

use of a 2D breadth-first constructed trie. This core modification allowed the trie to be

stored in texture memory, making use of the cache and allowing un-coalesced mem-

ory accesses. This novelty allowed to increase the throughput 13 folds when matching

1000 patterns over an alphabet of 52 characters. Moreover, the algorithm was analysed

against different number of alphabets, demonstrating its behaviour for different fields

ranging from medical (DNA Matching) to security applications (IDS). With the number

of GPU models and architectures, and the difficulties of comparing algorithms running

161

on different hardware, the performances were evaluated on the Amazon cloud, allowing

other research institutions to evaluate the performance of their implementation against

the work presented in this thesis and further advance the field of research.

Finally it was demonstrated that the two versions of the HEPFAC algorithm outper-

formed the state of the art storage requirements due to the proposed reduction scheme.

It was also demonstrated that global memory allowed to increase the overall through-

put of the algorithm against different alphabets, compared to the CPU. However it

presented significant drawbacks in terms of coalesced memory accesses and divergence

leading to throughput degradation and it exhibited 1 Gbps throughput. However it was

demonstrated that by modifying the core of the HEPFAC algorithm, enhancing its two-

dimensional locality and taking advantage of texture memory, an improvement of 10

fold over the first version of the HEPFAC could be achieved.

The main contribution of this Chapter is summarised as follows:

• A novel Highly Efficient Parallel Failure-less Aho-Corasick algorithm is intro-

duced for high performance pattern matching with a reduced space complexity.

The memory scheme presented is modular and can be used within a wide range

of applications (medical, IDS, anti-viruse, etc).

Chapter 5 highlights potential security concerns of offloading data to the GPU in or-

der to profit from their computational power, as proposed in Chapter 3 and Chapter 4.

In this chapter different scenarios are presented to demonstrate the dangers of data

remanence on GPUs. The scenarios are executed on different memory architectures,

including global, shared and texture memory, on a range of GPUs, including, mobile,

consumer, and high-end devices. It was demonstrated that a malicious user could im-

plement different attacks in order to retrieve data stored on the GPU against the will of

the legitimate user. To this end, anti-forensic measures were presented, allowing legiti-

mate users to protect confidential data such as DNA from being leaked by the GPU after

being used. Moreover, a novel methodology for data acquisition is presented, allowing

162

digital forensic investigator to retrieve data stored in the different memory offered by

the GPU. Furthermore, different strategies for reverse engineering are explored, in or-

der for the user to understand how to preserve their IP. It is also demonstrated that

multiple features are leaked by the binary generated by the CUDA framework. Reverse

engineering techniques for CUDA binaries are also explored, making use of specific

static and dynamic analysis. The forensic methodology is further enhanced by the ad-

dition of a novel reverse engineering methodology for CUDA binaries, allowing digital

forensic investigators to examine the memory of the GPUs.

Finally the evaluation of the different memories demonstrated data remanence in

GPU memory and allowed the design of a digital forensic methodology. Furthermore,

the evaluation and analysis of the CUDA binaries permitted to highlight intellectual

property concerns and data leakage through the binary, leading to the conception of

the reverse engineering methodology intended for digital forensic investigators.

The main contribution of this Chapter is summarised as follows:

• A novel Digital Forensic and Reverse Engineering methodology is presented,

highlighting security and privacy concern on off-the-shelf hardware. The method-

ology allows investigators, to gather and analyse remanent data stored in Graph-

ics Processing Unit memory.

Within this thesis the potential of off-the-shelf GPUs for pattern matching has been

demonstrated, optimisation methods for single and multi-pattern matching have been

detailed and analysed, and security and privacy concerns on GPU hardware have been

exposed along with countermeasures. Offloading pattern matching to the GPU is ex-

pensive, through consumption of computational power; through memory requirements;

through security and privacy, however if done right the GPU can efficiently demon-

strate high computational power, and increase the overall throughput of sequential sin-

gle and multi-pattern matching applications. This thesis has described approaches to

fulfil those aims.

163

6.2 Future Work

Further to the methods proposed in this work, additional research steps should be un-

dertaken as follows.

6.2.1 Data Transfer

This thesis did not consider data transfer from the network to the GPU but rather fo-

cused on algorithmic theory for massively parallel devices and optimisations, in order

to increase the throughput of a given single or multi-pattern algorithm. In other words

it was assumed that the data acquisition was made transparently regarding the prob-

lems one could encounter transferring data from the network to the user-land where the

CUDA framework operates. This limits the applicability of the results presented within

the thesis to a real-life application for two main reasons.

Firstly, the data transferred to the GPU is static and has been generated using a syn-

thetic data generator. Synthetic data allowed more control, and is used in industry for

testing, however in real-life application one could encounter unknown parameters, such

as a Denial of Service (DOS) attack. These scenarios could possibly limit the throughput

of the IDS as discussed by Tuck et al. [177].

Secondly, the data offloaded to the GPUs are serialised and transferred via a single

or multiple buffers, meaning, that the buffer sizes have been chosen to accommodate

the synthetic files. For example, if network data were acquired from a network interface

card and fed to the GPU, empty buffers, or partially full buffers would inevitably lead

to performance degradation as there is no scheduling mechanism in place to alleviate

this phenomenon as discussed by Sagman et al. [178].

164

6.2.2 Single Pattern Matching

Further work in the memory representation of both, the KMP and BMH should be

carried out. Serialising the failure table, the bad character table and the pattern could

enable different memory representation schemes and lead to throughput improvements

when matching one or more patterns. Further investigation on the maximum length

of the patterns should also be carried out. This could allow the users to fix a depth

limit for the patterns and increase the data transfer from the Host to Device, as well as

increasing the overall algorithms throughput. Other single pattern matching should be

parallelised such as the Rabin–Karp [179] and the Bitap algorithm [180] in order to

draw throughput comparisons between the different algorithms.

6.2.3 Highly Efficient Parallel Failure-less Aho-Corasick

The reduction algorithm demonstrated in this work merges sequentially similar branches

in the trie. Although effective, a better reduction algorithm should be investigated in or-

der to accommodate larger number of patterns while decreasing the time required for

the reduction. Moreover, a reduction algorithm for the node expansion allegory should

be investigated. The memory scheme of the node expansion allegory translates the 1D

nodes into 2D nodes although, a number of cells will remain empty due to the nature

of ASCII alphabet (as some symbols will not be used). Therefore a sparse matrix al-

gorithm should be investigated in order to further reduce the storage space required.

A convenient compressed row storage algorithm is discussed by Vasquez et al. [181].

This algorithm should allow to reduce the number of empty cells in the bitmap allegory

discussed in Section 4.6 and further reduce the overall size of the bitmapped tree. This

would however increase the computation required to look through the 2D node and

may have a negative impact on the throughput of the algorithm.

165

6.2.4 Pattern Matching Prototyping and Deployment

Future work should consider the prototyping and deployment of the algorithms in a real

time scenario, such as an intrusion detection system. By solving a real world problem in

a data network, and attempting to detect intrusions, some of the previous suggestions of

future work will be addressed. Moreover, analysing a data link will allow to detect differ-

ent algorithm behaviours and identify unexpected actions undertaken. Furthermore, as-

pects of the deployment such as mismatches, unexpected actions, throughput increase,

degradation and security and privacy will lead to valuable outcome, and lessons learnt

will be extremely valuable to researchers, academia and future stakeholders.

6.2.5 Digital Forensic and Reverse Engineering

The ability to retrieve residual information of data stored in memory, and analyse mas-

sively parallel code is important. Further work into the different memory on a GPU and

the type of data that could be retrieved should be carried out. Furthermore Windows,

Mac, and Linux binaries, as well as newer versions of the CUDA framework should be

analysed, in order to identify future data leaks and preserve privacy. Future work on an

alternative method to gather residual information should be a priority, in order to en-

sure data preservation, and avoid data contamination. The CUDA framework should

be reverse engineered, as well as Nvidia drivers in order to understand the data storage

mechanism and the transfer component from the HtoD, in order to help future digital

forensic investigations and remain up to date.

166

Bibliography

[1] D. Evans, “The internet of things how the next evolution of the internet is chang-

ing everything,” tech. rep., Cisco, 2015. Accessed: 2016-01-01.

[2] M. A. Jamshed, J. Lee, S. Moon, I. Yun, D. Kim, S. Lee, Y. Yi, and K. Park,

“Kargus: a highly-scalable software-based intrusion detection system,” in Proceed-

ings of the 2012 ACM conference on Computer and communications security, pp. 317–328,

ACM, 2012.

[3] A. Gupta, S. Dutta, and V. Mangla, “Malware attacks on smartphones and their

classification based detection,” in Contemporary Computing, pp. 242–253, Springer,

2011.

[4] R. I. J. Bayne, E. Ferguson, “OpenCL acceleration of digital forensic methods,”

Proceedings of CyberForensics, 2014.

[5] M. Drory Retwitzer, M. Polishchuk, E. Churkin, I. Kifer, Z. Yakhini, and

D. Barash, “Rnapattmatch: a web server for rna sequence/structure motif detec-

tion based on pattern matching with flexible gaps,” Nucleic Acids Research, 2015.

[6] E. Sitaridi and K. Ross, “GPU-accelerated string matching for database appli-

cations,” The VLDB Journal, pp. 1–22, 2015.

[7] S. A. Manavski and G. Valle, “Cuda compatible GPU cards as efficient hardware

accelerators for smith-waterman sequence alignment,” BMC Bioinformatics, vol. 9,

no. 2, pp. 1–9, 2008.

167

[8] R. Sommer, V. Paxson, and N. Weaver, “An architecture for exploiting multi-

core processors to parallelize network intrusion prevention,” Concurrency and Com-

putation: Practice and Experience, vol. 21, no. 10, pp. 1255–1279, 2009.

[9] N. Jacob and C. Brodley, “Offloading ids computation to the GPU,” in Computer

Security Applications Conference, 2006. ACSAC ’06. 22nd Annual, pp. 371–380, Dec

2006.

[10] G. Scott, M. England, K. Melkowski, Z. Fields, and D. T. Anderson, “GPU-

based postgreSQL extensions for scalable high-throughput pattern matching,”

in Pattern Recognition (ICPR), 2014 22nd International Conference on, pp. 1880–1885,

IEEE, 2014.

[11] A. Kalia, D. Zhou, M. Kaminsky, and D. G. Andersen, “Raising the bar for using

GPUs in software packet processing,” pp. 409–423, May 2015.

[12] X. Bellekens, I. Andonovic, R. Atkinson, C. Renfrew, and T. Kirkham, “Investi-

gation of GPU-based pattern matching,” in The 14th Annual Post Graduate Sympo-

sium on the Convergence of Telecommunications, Networking and Broadcasting (PGNet2013),

2013.

[13] X. J. A. Bellekens, C. Tachtatzis, R. C. Atkinson, C. Renfrew, and T. Kirkham,

“Glop: Enabling massively parallel incident response through GPU log process-

ing,” in Proceedings of the 7th International Conference on Security of Information and Net-

works, SIN ’14, (New York, NY, USA), pp. 295:295–295:301, ACM, 2014.

[14] X. J. A. Bellekens, C. Tachtatzis, R. C. Atkinson, C. Renfrew, and T. Kirkham,

“A highly-efficient memory-compression scheme for GPU-accelerated intrusion

detection systems,” in Proceedings of the 7th International Conference on Security of Infor-

mation and Networks, SIN ’14, (New York, NY, USA), pp. 302:302–302:309, ACM,

2014.

168

[15] X. Bellekens, G. Paul, J. M. Irvine, C. Tachtatzis, R. C. Atkinson, T. Kirkham,

and C. Renfrew, “Data remanence and digital forensic investigation for cuda

graphics processing units,” in Integrated Network Management (IM), 2015 IFIP/IEEE

International Symposium on, pp. 1345–1350, May 2015.

[16] J. W. Kim, E. Kim, and K. Park, “Fast matching method for dna sequences,”

in Combinatorics, Algorithms, Probabilistic and Experimental Methodologies, pp. 271–281,

Springer, 2007.

[17] A. Apostolico, Pattern Matching Algorithms. Oxford University Press, USA, 1997.

[18] J. James H. Morris and V. R. Pratt, “A linear pattern-matching algorithm,” Tech-

nical Report 40, 1970.

[19] D. E. Knuth, J. James H. Morris, and V. R. Pratt, “Fast pattern matching in

strings,” SIAM Journal on Computing, vol. 6, no. 2, pp. 323–350, 1977.

[20] G. Navarro and M. Raffinot, Flexible Pattern Matching in Strings: Practical On-Line

Search Algorithms for Texts and Biological Sequences. Cambridge University Press, 2002.

[21] R. S. Boyer and J. S. Moore, “A fast string searching algorithm,” Commun. ACM,

vol. 20, pp. 762–772, Oct. 1977.

[22] R. N. Horspool, “Practical fast searching in strings,” Software: Practice and Experi-

ence, vol. 10, no. 6, pp. 501–506, 1980.

[23] M. Crochemore, A. Czumaj, L. Gaşieniec, T. Lecroq, W. Plandowski, and

W. Rytter, “Fast practical multi-pattern matching,” Information Processing Letters,

vol. 71, no. 3–4, pp. 107 – 113, 1999.

[24] M. O. Rabin and D. Scott, “Finite automata and their decision problems,” IBM

J. Res. Dev., vol. 3, pp. 114–125, Apr. 1959.

[25] D. Gusfield, Algorithms on Strings, Trees and Sequences. Cambridge University Press,

1997. Cambridge Books Online.

169

[26] J. Daciuk, B. W. Watson, S. Mihov, and R. E. Watson, “Incremental construction

of minimal acyclic finite-state automata,” Comput. Linguist., vol. 26, pp. 3–16, Mar.

2000.

[27] A. Blumer, J. Blumer, D. Haussler, A. Ehrenfeucht, M. Chen, and J. Seiferas,

“The smallest automation recognizing the subwords of a text,” Theoretical Com-

puter Science, vol. 40, no. 0, pp. 31 – 55, 1985. Eleventh International Colloquium

on Automata, Languages and Programming.

[28] W. B. W, “A taxonomy of finite automata minimization algorithms,” Eindhoven

University of Technology, Department of Mathematics and Computing Science Computing Sci-

ence Section, 1993.

[29] B. W. Watson, Taxonomies and toolkits of regular language algorithms. Eindhoven Uni-

versity of Technology The Netherlands, 1995.

[30] K. Fredriksson, “Succinct backward-dawg-matching,” J. Exp. Algorithmics, vol. 13,

pp. 8:1.8–8:1.26, Feb. 2009.

[31] A. V. Aho and M. J. Corasick, “Efficient string matching: An aid to bibliographic

search,” Commun. ACM, vol. 18, pp. 333–340, June 1975.

[32] O. AitMous, F. Bassino, and C. Nicaud, Combinatorial Pattern Matching: 23rd Annual

Symposium, CPM 2012, Helsinki, Finland, July 3-5, 2012. Proceedings, ch. An Efficient

Linear Pseudo-minimization Algorithm for Aho-Corasick Automata, pp. 110–

123. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

[33] Y. Dandass, S. Burgess, M. Lawrence, and S. Bridges, “Accelerating string set

matching in FPGA hardware for bioinformatics research,” BMC Bioinformatics,

vol. 9, no. 1, p. 197, 2008.

[34] A. Tanenbaum and H. Bos, Modern Operating Systems. Pearson Education, 2014.

[35] G. Moore, Cramming More Components Onto Integrated Circuits. McGraw-Hill, 1965.

170

[36] L. J. Flynn, “Intel halts development of 2 new microprocessors.”

http://www.nytimes.com/2004/05/08/business/intel-halts-development-

of-2-new-microprocessors.html. Accessed: 2015-05-30.

[37] Y. Zhou, Hardware Acceleration For Power Efficient Deep Packet Inspection. PhD thesis,

Dublin City University, August 2012.

[38] M. Flynn, “Some computer organizations and their effectiveness,” Computers,

IEEE Transactions on, vol. C-21, pp. 948–960, Sept 1972.

[39] B. Wang, Mitigating GPU Memory Divergence for Data-Intensive Applications. PhD the-

sis, Auburn University, 2015.

[40] Y. Kreinin, “SIMD < SIMT < SMT: parallelism in NVIDIA GPUs.”

http://yosefk.com/blog/simd-simt-smt-parallelism-in-nvidia-gpus.html. Ac-

cessed: 2015-05-30.

[41] Nvidia, “OpenCL prog ramming for the CUDA architecture.”

http://www.nvidia.com/content/cudazone/download/opencl/nvidia_opencl

_programmingoverview.pdf. Accessed: 2015-05-30.

[42] N. B. Lakshminarayana and H. Kim, “Effect of instruction fetch and memory

scheduling on GPU performance,” Workshop on Language, Compiler, and Architecture

Support for GPGPU, pp. 1–10, 2010.

[43] N. Wilt, The CUDA Handbook: A Comprehensive Guide to GPU Programming. Pearson

Education, 2013.

[44] C. Li, Y. Yang, Z. Lin, and H. Zhou, “Automatic data placement into GPU

on-chip memory resources,” in Code Generation and Optimization (CGO), 2015

IEEE/ACM International Symposium on, pp. 23–33, Feb 2015.

[45] M. Akhloufi, Applied Vision and Robotics Workshop 2012. Moulay Akhloufi.

171

[46] S. Venkatasubramanian and R. W. Vuduc, “Tuned and wildly asynchronous

stencil kernels for hybrid CPU/GPU systems,” in Proceedings of the 23rd Interna-

tional Conference on Supercomputing, ICS ’09, (New York, NY, USA), pp. 244–255,

ACM, 2009.

[47] D. Kirk et al., “NVIDIA CUDA software and GPU parallel computing architec-

ture,” in ISMM, vol. 7, pp. 103–104, 2007.

[48] J. Peng and H. Chen, “Cugrep: A GPU-based high performance multi-string

matching system,” in Future Computer and Communication (ICFCC), 2010 2nd Inter-

national Conference on, vol. 1, pp. V1–77–V1–81, May 2010.

[49] M. Schatz and C. Trapnell, “Fast exact string matching on the GPU,” Center for

Bioinformatics and Computational Biology, 2007.

[50] H. Li, B. Ni, M.-H. Wong, and K.-S. Leung, “A fast CUDA implementation of

agrep algorithm for approximate nucleotide sequence matching,” in Application

Specific Processors (SASP), 2011 IEEE 9th Symposium on, pp. 74–77, June 2011.

[51] K.-J. Lin, Y.-H. Huang, and C.-Y. Lin, “Efficient parallel knuth-morris-pratt al-

gorithm for multi-GPUs with CUDA,” in Advances in Intelligent Systems and Ap-

plications - Volume 2 (J.-S. Pan, C.-N. Yang, and C.-C. Lin, eds.), vol. 21 of Smart

Innovation, Systems and Technologies, pp. 543–552, Springer Berlin Heidelberg, 2013.

[52] C.-L. Hung, H.-H. Wang, C.-Y. Chang, and C.-Y. Lin, “Efficient packet pattern

matching for gigabit network intrusion detection using GPUs,” in High Perfor-

mance Computing and Communication 2012 IEEE 9th International Conference on Embed-

ded Software and Systems (HPCC-ICESS), 2012 IEEE 14th International Conference on,

pp. 1612–1617, June 2012.

[53] A. Tumeo, O. Villa, and D. Sciuto, “Efficient pattern matching on GPUs for

intrusion detection systems,” in Proceedings of the 7th ACM International Conference on

Computing Frontiers, CF ’10, (New York, NY, USA), pp. 87–88, ACM, 2010.

172

[54] L. Marziale, G. G. R. III, and V. Roussev, “Massive threading: Using {GPUs}

to increase the performance of digital forensics tools,” Digital Investigation, vol. 4,

Supplement, no. 0, pp. 73 – 81, 2007.

[55] C.-H. Lin, S.-Y. Tsai, C.-H. Liu, S.-C. Chang, and J.-M. Shyu, “Accelerating

string matching using multi-threaded algorithm on GPU,” in Global Telecommuni-

cations Conference (GLOBECOM 2010), 2010 IEEE, pp. 1–5, Dec 2010.

[56] C.-H. Lin, C.-H. Liu, L.-S. Chien, and S.-C. Chang, “Accelerating pattern

matching using a novel parallel algorithm on GPUs,” Computers, IEEE Transactions

on, vol. 62, pp. 1906–1916, Oct 2013.

[57] C.-H. Lin, C.-H. Liu, L.-S. Chien, S.-C. Chang, and W.-K. Hon,

“PFAC library: GPU-based string matching algorithm.” http://on-

demand.gputechconf.com/gtc/2012/presentations/S0054-PFAC-Library-

GPU-Based-String-Matching-Algorithm.pdf. Accessed: 2015-05-30.

[58] C. J. dos Santos Brito, L. G. Costa, J. M. X. Teixeira, and V. Teichrieb, “Oper-

ações paralelas sobre bases massivas de strings,”

[59] K.-J. Lin, Y.-H. Huang, and C.-Y. Lin, “Efficient parallel knuth-morris-pratt al-

gorithm for multi-GPUs with CUDA,” in Advances in Intelligent Systems and Ap-

plications - Volume 2 (J.-S. Pan, C.-N. Yang, and C.-C. Lin, eds.), vol. 21 of Smart

Innovation, Systems and Technologies, pp. 543–552, Springer Berlin Heidelberg, 2013.

[60] K. Dohi, K. Benkrid, C. Ling, T. Hamada, and Y. Shibata, “Highly efficient

mapping of the smith-waterman algorithm on CUDA-compatible GPUs,” in

Application-specific Systems Architectures and Processors (ASAP), 2010 21st IEEE Inter-

national Conference on, pp. 29–36, July 2010.

[61] S. Ryoo, C. I. Rodrigues, S. S. Stone, S. S. Baghsorkhi, S.-Z. Ueng, J. A. Stratton,

and W.-m. W. Hwu, “Program optimization space pruning for a multithreaded

173

GPU,” in Proceedings of the 6th Annual IEEE/ACM International Symposium on Code

Generation and Optimization, CGO ’08, (New York, NY, USA), pp. 195–204, ACM,

2008.

[62] C. S. Kouzinopoulos and K. G. Margaritis, “String matching on a multicore

GPU using CUDA,” in Informatics, 2009. PCI ’09. 13th Panhellenic Conference on,

pp. 14–18, Sept 2009.

[63] M. H. Sosnick and W. T. Hsu, “Implementing a finite difference-based real-time

sound synthesizer using GPUs.,” in NIME, pp. 264–267, 2011.

[64] Y. Huang, X. Pan, Y. Gao, and G. Cai, “A fast pattern matching algorithm for bi-

ological sequences,” in Bioinformatics and Biomedical Engineering, 2008. ICBBE 2008.

The 2nd International Conference on, pp. 608–611, IEEE, 2008.

[65] Z. Qu and X. Huang, “The improving pattern matching algorithm of intrusion

detection,” Procedia Engineering, vol. 15, pp. 2841–2846, 2011.

[66] K. Fredriksson, “Fast algorithms for string matching with and without swaps.

unpublished manuscript, http://www.cs.uku.fi/ fredriks/pub/ papers/sm-w-

swaps.pdf,” 2000.

[67] J. Zhou, H. An, X. Li, M. Xu, and W. Zhou, “Implementation of string match

algorithm BMH on GPU using CUDA,” Energy Procedia, vol. 13, no. Complete,

pp. 1853–1861, 2011.

[68] W. Frakes and R. Baeza-Yates, Information Retrieval: Data Structures & Algorithms.

Prentice Hall, 1992.

[69] K. Ikeuchi, J. Wijekoon, S. Ishida, and H. Nishi, “GPU-based multi-stream an-

alyzer on application layer for service-oriented router,” in Embedded Multicore Socs

(MCSoC), 2013 IEEE 7th International Symposium on, pp. 171–176, Sept 2013.

174

[70] S. Soroushnia, M. Daneshtalab, J. Plosila, and P. Liljeberg, 8th International Con-

ference on Practical Applications of Computational Biology & Bioinformatics (PACBB 2014),

ch. Heterogeneous Parallelization of Aho-Corasick Algorithm, pp. 153–160.

Cham: Springer International Publishing, 2014.

[71] K. Kusudo, F. Ino, and K. Hagihara, “A bit-parallel algorithm for searching

multiple patterns with various lengths,” Journal of Parallel and Distributed Computing,

vol. 76, no. 0, pp. 49 – 57, 2015. Special Issue on Architecture and Algorithms

for Irregular Applications.

[72] S. Memeti and S. Pllana, “Accelerating DNA Sequence Analysis using Intel Xeon

Phi,” ArXiv e-prints, June 2015.

[73] E. Aragon, J. M. Jiménez, A. Maghazeh, J. Rasmusson, and U. D. Bordoloi,

“Pattern matching in opencl: GPU vs CPU energy consumption on two mobile

chipsets,” in Proceedings of the International Workshop on OpenCL 2013, 2014, IWOCL

’14, (New York, NY, USA), pp. 5:1–5:7, ACM, 2014.

[74] J. E. Stone, D. Gohara, and G. Shi, “Opencl: A parallel programming standard

for heterogeneous computing systems,” IEEE Des. Test, vol. 12, pp. 66–73, May

2010.

[75] S. Soroushnia, M. Daneshtalab, J. Plosila, T. Pahikkala, and P. Liljeberg, “High

performance pattern matching on heterogeneous platform,” J. Integrative Bioin-

formatics, vol. 11, no. 3, 2014.

[76] G. Vasiliadis and S. Ioannidis, “Gravity: A massively parallel antivirus engine,”

in Recent Advances in Intrusion Detection (S. Jha, R. Sommer, and C. Kreibich, eds.),

vol. 6307 of Lecture Notes in Computer Science, pp. 79–96, Springer Berlin Heidelberg,

2010.

[77] R. Gerhards, “The syslog protocol,” march 2009. Request for Comments RFC

5424 (Proposed Standard), IETF.

175

[78] M. Matsumoto and T. Nishimura, “Mersenne twister: A 623-dimensionally

equidistributed uniform pseudo-random number generator,” ACM Trans. Model.

Comput. Simul., vol. 8, pp. 3–30, Jan. 1998.

[79] G. Vasiliadis, S. Antonatos, M. Polychronakis, E. Markatos, and S. Ioanni-

dis, “Gnort: High performance network intrusion detection using graphics pro-

cessors,” in Recent Advances in Intrusion Detection (R. Lippmann, E. Kirda, and

A. Trachtenberg, eds.), vol. 5230 of Lecture Notes in Computer Science, pp. 116–134,

Springer Berlin Heidelberg, 2008.

[80] J. A. Anderson, C. D. Lorenz, and A. Travesset, “General purpose molecular

dynamics simulations fully implemented on graphics processing units,” Journal of

Computational Physics, vol. 227, no. 10, pp. 5342 – 5359, 2008.

[81] P. Zikopoulos, C. Eaton, et al., Understanding big data: Analytics for enterprise class hadoop

and streaming data. McGraw-Hill Osborne Media, 2011.

[82] C.-W. Tsai, Y.-L. Yang, M.-C. Chiang, and C.-S. Yang, “Intelligent big data anal-

ysis: a review,” International Journal of Big Data Intelligence, vol. 1, no. 4, pp. 181–191,

2014.

[83] J. Blom, T. Jakobi, D. Doppmeier, S. Jaenicke, J. Kalinowski, J. Stoye, and

A. Goesmann, “Exact and complete short-read alignment to microbial genomes

using graphics processing unit programming,” Bioinformatics, vol. 27, no. 10,

pp. 1351–1358, 2011.

[84] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, “Starpu: a unified

platform for task scheduling on heterogeneous multicore architectures,” Concur-

rency and Computation: Practice and Experience, vol. 23, no. 2, pp. 187–198, 2011.

[85] T. J. Hansen, M. Mørup, and L. K. Hansen, “Non-parametric co-clustering of

large scale sparse bipartite networks on the GPU,” pp. 1–6, Sept 2011.

176

[86] T. Willhalm, N. Popovici, Y. Boshmaf, H. Plattner, A. Zeier, and J. Schaffner,

“SIMD-scan: Ultra fast in-memory table scan using on-chip vector processing

units,” Proc. VLDB Endow., vol. 2, pp. 385–394, Aug. 2009.

[87] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk, and W.-

m. W. Hwu, “Optimization principles and application performance evaluation

of a multithreaded GPU using CUDA,” in Proceedings of the 13th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, PPoPP ’08, (New York,

NY, USA), pp. 73–82, ACM, 2008.

[88] A. R. Brodtkorb, T. R. Hagen, and M. L. Soetra, “Graphics processing unit

(GPU) programming strategies and trends in GPU computing,” Journal of Parallel

and Distributed Computing, vol. 73, no. 1, pp. 4 – 13, 2013. Metaheuristics on GPUs.

[89] T. B. Jablin, P. Prabhu, J. A. Jablin, N. P. Johnson, S. R. Beard, and D. I. Au-

gust, “Automatic CPU-GPU communication management and optimization,”

SIGPLAN Not., vol. 46, pp. 142–151, June 2011.

[90] T. B. Jablin, P. Prabhu, J. A. Jablin, N. P. Johnson, S. R. Beard, and D. I. Au-

gust, “Automatic CPU-GPU communication management and optimization,”

in Proceedings of the 32Nd ACM SIGPLAN Conference on Programming Language Design

and Implementation, PLDI ’11, (New York, NY, USA), pp. 142–151, ACM, 2011.

[91] P. L a b s , “ 2 0 1 3 a n n u a l r e p o r t p a n d a l a b s . ”

http://www.pandasecurity.com/mediacenter/src/uploads/2014/07/Annual-

Report-PandaLabs-2013.pdf. Accessed: 2015-09-05.

[92] P. L a b s , “ 2 0 1 4 a n n u a l r e p o r t p a n d a l a b s . ”

http://www.pandasecurity.com/mediacenter/src/uploads/2015/02/Pandalabs2014-

DEF2-en.pdf. Accessed: 2015-09-05.

[93] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, “From data mining to knowledge

discovery in databases,” AI magazine, vol. 17, no. 3, p. 37, 1996.

177

[94] C. L. Lu, T. C. Wang, Y. C. Lin, and C. Y. Tang, “Robin: a tool for genome

rearrangement of block-interchanges,” Bioinformatics, vol. 21, no. 11, pp. 2780–

2782, 2005.

[95] H. Nguyen, GPU gems 3. Addison-Wesley Professional, 2007.

[96] C. Trapnell and M. C. Schatz, “Optimizing data intensive GPGPU computa-

tions for DNA sequence alignment,” Parallel Comput., vol. 35, pp. 429–440, Aug.

2009.

[97] E. Ukkonen, “On-line construction of suffix trees,” Algorithmica, vol. 14, no. 3,

pp. 249–260, 1995.

[98] M. Burtscher and K. Pingali, “An efficient CUDA implementation of the tree-

based barnes hut n-body algorithm,” GPU computing Gems Emerald edition, p. 75,

2011.

[99] G. Vasiliadis, M. Polychronakis, and S. Ioannidis, “Midea: A multi-parallel in-

trusion detection architecture,” in Proceedings of the 18th ACM Conference on Computer

and Communications Security, CCS ’11, (New York, NY, USA), pp. 297–308, ACM,

2011.

[100] T.-H. Lee and N.-L. Huang, “An efficient and scalable pattern matching scheme

for network security applications,” in Computer Communications and Networks, 2008.

ICCCN ’08. Proceedings of 17th International Conference on, pp. 1–7, Aug 2008.

[101] C. Pungila and V. Negru, “A highly-efficient memory-compression approach for

GPU-accelerated virus signature matching,” in Information Security (D. Gollmann

and F. Freiling, eds.), vol. 7483 of Lecture Notes in Computer Science, pp. 354–369,

Springer Berlin Heidelberg, 2012.

[102] S. Chang, Data Structures and Algorithms. Series on software engineering and knowl-

edge engineering, World Scientific, 2003.

178

[103] R. Hyde, The Art of Assembly Language, 2nd Edition:. No Starch Press Series, No

Starch Press, 2010.

[104] A. Aho, J. Hopcroft, and J. Ullman, The design and analysis of computer algorithms.

Addison-Wesley series in computer science and information processing, Addison-

Wesley Pub. Co., 1974.

[105] J. Bentley, Programming Pearls. ACM Press Series, Addison-Wesley, 2000.

[106] A. Aho, J. Hopcroft, and J. Ullman, Data Structures and Algorithms. Addison-Wesley

series in computer science and information processing, Addison-Wesley, 1983.

[107] R. Vaarandi, “A breadth-first algorithm for mining frequent patterns from event

logs,” in Intelligence in Communication Systems (F. Aagesen, C. Anutariya, and V. Wu-

wongse, eds.), vol. 3283 of Lecture Notes in Computer Science, pp. 293–308, Springer

Berlin Heidelberg, 2004.

[108] SODA ’96: Proceedings of the Seventh Annual ACM-SIAM Symposium on Discrete Algo-

rithms, (Philadelphia, PA, USA), Society for Industrial and Applied Mathematics,

1996.

[109] G. Vasiliadis, M. Polychronakis, S. Antonatos, E. Markatos, and S. Ioannidis,

“Regular expression matching on graphics hardware for intrusion detection,”

in Recent Advances in Intrusion Detection (E. Kirda, S. Jha, and D. Balzarotti, eds.),

vol. 5758 of Lecture Notes in Computer Science, pp. 265–283, Springer Berlin Heidel-

berg, 2009.

[110] J. Cheng, M. Grossman, and T. McKercher, Professional CUDA C Programming.

EBL-Schweitzer, Wiley, 2014.

[111] G. S. Murthy, Optimal loop unrolling for GPGPU programs. PhD thesis, The Ohio

State University, 2009.

179

[112] G. Murthy, M. Ravishankar, M. Baskaran, and P. Sadayappan, “Optimal loop

unrolling for GPGPU programs,” in Parallel Distributed Processing (IPDPS), 2010

IEEE International Symposium on, pp. 1–11, April 2010.

[113] V. Sarkar, “Optimized unrolling of nested loops,” International Journal of Parallel

Programming, vol. 29, no. 5, pp. 545–581, 2001.

[114] M. Hugue, “Loop unroll ing advantages and disadvantages.”

http://cmsc411.com/techniques/loop-unrolling-advantages-and-

disadvantages. Accessed: 2015-09-29, University of Maryland.

[115] B. D. Noble, M. Satyanarayanan, G. T. Nguyen, and R. H. Katz, “Trace-based

mobile network emulation,” in ACM SIGCOMM Computer Communication Review,

vol. 27, pp. 51–61, ACM, 1997.

[116] C. Williamson, “On filter effects in web caching hierarchies,” ACM Transactions

on Internet Technology (TOIT), vol. 2, no. 1, pp. 47–77, 2002.

[117] J. Wang and Y. Hu, “Wolf - a novel reordering write buffer to boost the per-

formance of log-structured file systems,” in Proceedings of the Conference on File and

Storage Technologies, FAST ’02, (Berkeley, CA, USA), pp. 47–60, USENIX Associ-

ation, 2002.

[118] V. M. Lo, J. Mache, and K. J. Windisch, “A comparative study of real workload

traces and synthetic workload models for parallel job scheduling,” in Proceedings of

the Workshop on Job Scheduling Strategies for Parallel Processing, IPPS/SPDP ’98, (Lon-

don, UK, UK), pp. 25–46, Springer-Verlag, 1998.

[119] M. Zink, K. Suh, Y. Gu, and J. Kurose, “Characteristics of youtube network

traffic at a campus network – measurements, models, and implications,” Computer

Networks, vol. 53, no. 4, pp. 501 – 514, 2009. Content Distribution Infrastructures

for Community Networks.

180

[120] M. Nicolae and S. Rajasekaran, “On string matching with mismatches,” Algo-

rithms, vol. 8, no. 2, pp. 248–270, 2015.

[121] M. A. Sahli, Towards a Database System for Large-scale Analytics on Strings. PhD thesis,

King Abdullah University of Science and Technology, 2015.

[122] Amazon, “Amazon ec2 pricing.” https://aws.amazon.com/ec2/pricing/. Ac-

cessed: 2015-10-19.

[123] G. Sakellari and G. Loukas, “A survey of mathematical models, simulation ap-

proaches and testbeds used for research in cloud computing,” Simulation Modelling

Practice and Theory, vol. 39, pp. 92 – 103, 2013. S.I.Energy efficiency in grids and

clouds.

[124] O. Villa, A. Tumeo, and D. Sciuto, “Efficient pattern matching on GPUs for

intrusion detection systems,” tech. rep., Pacific Northwest National Laboratory

(PNNL), Richland, WA (US), 2010.

[125] L. Wang, S.-H. Chen, J.-S. Su, and M.-J. Xu, “GPU-based regular expression

match engine for deep packet inspection [j],” Application Research of Computers,

vol. 11, p. 091, 2010.

[126] L. Wang, S. Chen, Y. Tang, and J. Su, “Gregex: GPU based high speed regular

expression matching engine,” in Innovative Mobile and Internet Services in Ubiquitous

Computing (IMIS), 2011 Fifth International Conference on, pp. 366–370, IEEE, 2011.

[127] P. Bakkum and K. Skadron, “Accelerating sql database operations on a GPU with

CUDA,” in Proceedings of the 3rd Workshop on General-Purpose Computation on Graphics

Processing Units, pp. 94–103, ACM, 2010.

[128] M. Alomari and K. Samsudin, “A framework for GPU-accelerated AES-XTS

encryption in mobile devices,” in TENCON 2011 - 2011 IEEE Region 10 Conference,

pp. 144–148, Nov 2011.

181

[129] N.-F. Huang, H.-W. Hung, S.-H. Lai, Y.-M. Chu, and W.-Y. Tsai, “A GPU-based

multiple-pattern matching algorithm for network intrusion detection systems,”

in Advanced Information Networking and Applications - Workshops, 2008. AINAW 2008.

22nd International Conference on, pp. 62–67, March 2008.

[130] M. Lee, J. hong Jeon, J. Kim, and J. Song, “Scalable and parallel implemen-

tation of a financial application on a GPU: With focus on out-of-core case,” in

Computer and Information Technology (CIT), 2010 IEEE 10th International Conference on,

pp. 1323–1327, June 2010.

[131] D. Apostal, K. Foerster, A. Chatterjee, and T. Desell, “Password recovery using

MPI and CUDA,” in High Performance Computing (HiPC), 2012 19th International

Conference on, pp. 1–9, Dec 2012.

[132] S. Lee, Y. Kim, J. Kim, and J. Kim, “Stealing webpages rendered on your browser

by exploiting GPU vulnerabilities,” in 35th IEEE Symposium on Security & Privacy

(S&P), 2014.

[133] G. Vasiliadis, M. Polychronakis, and S. Ioannidis, “GPU-assisted malware,” in

Malicious and Unwanted Software (MALWARE), 2010 5th International Conference on,

pp. 1–6, Oct 2010.

[134] G. Naumovich and N. Memon, “Preventing piracy, reverse engineering, and

tampering,” Computer, vol. 36, no. 7, pp. 64–71, 2003.

[135] C. Maurice, C. Neumann, O. Heen, and A. Francillon, “Confidentiality issues

on a GPU in a virtualized environment,” in Financial Cryptography and Data Security

(N. Christin and R. Safavi-Naini, eds.), vol. 8437 of Lecture Notes in Computer Science,

pp. 119–135, Springer Berlin Heidelberg, 2014.

[136] E. Ladakis, L. Koromilas, G. Vasiliadis, M. Polychronakis, and S. Ioannidis, “You

can type, but you can’t hide: A stealthy GPU-based keylogger,” in Proceedings of

the 6th European Workshop on System Security (EuroSec), 2013.

182

[137] G. Vasiliadis, M. Polychronakis, and S. Ioannidis, “GPU-assisted malware,” In-

ternational Journal of Information Security, vol. 14, no. 3, pp. 289–297, 2015.

[138] J. Danisevskis, M. Piekarska, and J.-P. Seifert, “Dark side of the shader: Mo-

bile GPU-aided malware delivery,” in Information Security and Cryptology – ICISC

2013 (H.-S. Lee and D.-G. Han, eds.), vol. 8565 of Lecture Notes in Computer Science,

pp. 483–495, Springer International Publishing, 2014.

[139] S. Lee, Y. Kim, J. Kim, and J. Kim, “Stealing webpages rendered on your browser

by exploiting GPU vulnerabilities,” in Proceedings of the 2014 IEEE Symposium on

Security and Privacy, SP ’14, (Washington, DC, USA), pp. 19–33, IEEE Computer

Society, 2014.

[140] E. J. Byrne, “Software reverse engineering: A case study,” Software: Practice and

Experience, vol. 21, no. 12, pp. 1349–1364, 1991.

[141] S. Kato, “Implementing open-source cuda runtime,” in Proceedings of the 54the

Programming Symposium, 2013.

[142] D. Balzarotti, R. D. Pietro, and A. Villani, “The impact of GPU-assisted malware

on memory forensics: A case study,” Digital Investigation, vol. 14, Supplement 1,

pp. S16 – S24, 2015. The Proceedings of the Fifteenth Annual {DFRWS} Con-

ference.

[143] S. Breß, S. Kiltz, and M. Schäler, “Forensics on GPU coprocessing in databases–

research challenges, first experiments, and countermeasures.,” in BTW Work-

shops, pp. 115–129, Citeseer, 2013.

[144] R. Di Pietro, F. Lombardi, and A. Villani, “Cuda leaks: information leakage in

gpu architectures,” arXiv preprint arXiv:1305.7383, 2013.

[145] N. Firasta, M. Buxton, P. Jinbo, K. Nasri, and S. Kuo, “Intel avx: New frontiers

in performance improvements and energy efficiency,” Intel white paper, 2008.

183

[146] K. Mayank, H. Dai, J. Wei, and H. Zhou, “Analyzing graphics processor unit

(GPU) instruction set architectures,” in Performance Analysis of Systems and Software

(ISPASS), 2015 IEEE International Symposium on, pp. 155–156, March 2015.

[147] Nvidia, “Using inline PTX assembly in CUDA,”

[148] S. Cook, CUDA Programming: A Developer’s Guide to Parallel Computing with GPUs.

Applications of GPU computing series, Morgan Kaufmann, 2013.

[149] H. Huang, S. Zhu, P. Liu, and D. Wu, “A framework for evaluating mobile app

repackaging detection algorithms,” in Trust and Trustworthy Computing (M. Huth,

N. Asokan, S. Čapkun, I. Flechais, and L. Coles-Kemp, eds.), vol. 7904 of Lecture

Notes in Computer Science, pp. 169–186, Springer Berlin Heidelberg, 2013.

[150] S. Mittal, J. Vetter, and D. Li, “A survey of architectural approaches for managing

embedded dram and non-volatile on-chip caches,” Parallel and Distributed Systems,

IEEE Transactions on, vol. 26, pp. 1524–1537, June 2015.

[151] P. Van Aubel, D. J. Bernstein, and R. Niederhagen, “Investigating sram pufs in

large CPUs and GPUs,” in Security, Privacy, and Applied Cryptography Engineering,

pp. 228–247, Springer, 2015.

[152] G. Shainer, A. Ayoub, P. Lui, T. Liu, M. Kagan, C. R. Trott, G. Scantlen, and P. S.

Crozier, “The development of mellanox/nvidia GPUdirect over infiniband—a

new model for GPU to GPU communications,” Computer Science - Research and

Development, vol. 26, no. 3, pp. 267–273, 2011.

[153] N. Maruyama, A. Nukada, S. Matsuoka, et al., “Software-based ecc for

GPUs,” in 2009 Symposium on Application Accelerators in High Performance Computing

(SAAHPC’09), vol. 107, 2009.

184

[154] I. S. Haque and V. S. Pande, “Hard data on soft errors: A large-scale assessment

of real-world error rates in GPGPU,” in Cluster, Cloud and Grid Computing (CCGrid),

2010 10th IEEE/ACM International Conference on, pp. 691–696, IEEE, 2010.

[155] D. Fellner and S. Spencer, eds., GH ’07: Proceedings of the 22Nd ACM

SIGGRAPH/EUROGRAPHICS Symposium on Graphics Hardware, (Aire-la-Ville,

Switzerland, Switzerland), Eurographics Association, 2007. 437077.

[156] F. Lombardi and R. Di Pietro, “Towards a GPU cloud: Benefits and security

issues,” in Continued Rise of the Cloud (Z. Mahmood, ed.), Computer Communica-

tions and Networks, pp. 3–22, Springer London, 2014.

[157] Nvidia, “Nvidia SMI,” 2011. https://developer.nvidia.com/sites/NVML

_cuda5/nvidia-smi.4.304.pdf.

[158] D. Brezinski and T. Killalea, “Guidelines for evidence collection and archiving,”

2002. https://www.ietf.org/rfc/rfc3227.txt.

[159] K. J. Jones, R. Bejtlich, and C. W. Rose, Real Digital Forensics: Computer Security and

Incident Response. Addison-Wesley Professional, 2005.

[160] C. Malin, E. Casey, and J. Aquilina, Malware Forensics Field Guide for Linux Systems:

Digital Forensics Field Guides. Digital forensics field guides, Elsevier Science, 2013.

[161] Department of Justice, “Digital forensics analysis methodology,” Aug. 2007.

http://www.justice.gov/criminal/cybercrime/docs /forensics_chart.pdf.

[162] N. Son, Y. Lee, D. Kim, J. I. James, S. Lee, and K. Lee, “A study of user data

integrity during acquisition of android devices,” Digital Investigation, vol. 10, Sup-

plement, no. 0, pp. S3 – S11, 2013. The Proceedings of the Thirteenth Annual

{DFRWS} Conference 13th Annual Digital Forensics Research Conference.

185

[163] A. Distefano, G. Me, and F. Pace, “Android anti-forensics through a local

paradigm,” Digital Investigation, vol. 7, Supplement, pp. S83 – S94, 2010. The

Proceedings of the Tenth Annual {DFRWS} Conference.

[164] K. Jones, R. Bejtlich, and C. Rose, Real Digital Forensics: Computer Security and Incident

Response. Addison-Wesley, 2006.

[165] Y. Zhang, B. Yang, M. Rogers, and R. Hansen, “Forensically sound retrieval

and recovery of images from GPU memory,” in Digital Forensics and Cyber Crime

(J. James and F. Breitinger, eds.), vol. 157 of Lecture Notes of the Institute for Computer

Sciences, Social Informatics and Telecommunications Engineering, pp. 53–66, Springer In-

ternational Publishing, 2015.

[166] E. Chikofsky and I. Cross, J.H., “Reverse engineering and design recovery: a

taxonomy,” Software, IEEE, vol. 7, pp. 13–17, Jan 1990.

[167] T. Systä and U. Tamperensis, “Static and dynamic reverse engineering tech-

niques for Java software systems,” 2000.

[168] G. Giunta, R. Montella, G. Agrillo, and G. Coviello, “gVirtuS: A GPGPU trans-

parent virtualization component.”

[169] E. Eilam, Reversing: Secrets of Reverse Engineering. Wiley, 2011.

[170] P. Stewin, J.-P. Seifert, and C. Mulliner, “Poster: Towards detecting DMA mal-

ware,” in Proceedings of the 18th ACM Conference on Computer and Communications Secu-

rity, CCS ’11, (New York, NY, USA), pp. 857–860, ACM, 2011.

[171] S. Manavski, “CUDA compatible GPU as an efficient hardware accelerator for

AES cryptography,” in Signal Processing and Communications, 2007. ICSPC 2007.

IEEE International Conference on, pp. 65–68, Nov 2007.

[172] D. Distler, “SANS institute - malware analysis: An introduction,”

186

[173] Q. Dong, T. Li, S. Zhang, X. Jiao, and J. Leng, “Ptx2kernel: Converting ptx code

into compilable kernels,” 2015.

[174] D. Low, “Protecting Java code via code obfuscation,” Crossroads, vol. 4, pp. 21–23,

Apr. 1998.

[175] K. Makan and S. Alexander-Bown, Android Security Cookbook. Packt Publishing,

2013.

[176] S. Skorobogatov, “Data remanence in flash memory devices,” in Cryptographic

Hardware and Embedded Systems – CHES 2005 (J. Rao and B. Sunar, eds.), vol. 3659

of Lecture Notes in Computer Science, pp. 339–353, Springer Berlin Heidelberg, 2005.

[177] N. Tuck, T. Sherwood, B. Calder, and G. Varghese, “Deterministic memory-

efficient string matching algorithms for intrusion detection,” in INFOCOM 2004.

Twenty-third AnnualJoint Conference of the IEEE Computer and Communications Societies,

vol. 4, pp. 2628–2639 vol.4, March 2004.

[178] S. Kim, S. Huh, X. Zhang, Y. Hu, A. Wated, E. Witchel, and M. Silberstein,

“GPUnet: Networking abstractions for GPU programs,” in 11th USENIX Sym-

posium on Operating Systems Design and Implementation (OSDI 14), (Broomfield, CO),

pp. 201–216, USENIX Association, Oct. 2014.

[179] R. M. Karp and M. Rabin, “Efficient randomized pattern-matching algo-

rithms,” IBM Journal of Research and Development, vol. 31, pp. 249–260, March

1987.

[180] B. Dömölki, “A universal compiler system based on production rules,” BIT Nu-

merical Mathematics, vol. 8, no. 4, pp. 262–275.

[181] F. Vázquez, G. Ortega, J.-J. Fernández, and E. M. Garzón, “Improving the per-

formance of the sparse matrix vector product with GPUs,” in Computer and Infor-

187

mation Technology (CIT), 2010 IEEE 10th International Conference on, pp. 1146–1151,

IEEE, 2010.

[182] P. Runeson, “A survey of unit testing practices,” Software, IEEE, vol. 23, no. 4,

pp. 22–29, 2006.

[183] J. Zhao, “Data-flow-based unit testing of aspect-oriented programs,” in Computer

Software and Applications Conference, 2003. COMPSAC 2003. Proceedings. 27th Annual

International, pp. 188–197, IEEE, 2003.

188

Appendix A

Unit Testing

A.1 Introduction

This Appendix provides information on the Unit Testing process used to evaluate the

accuracy of the HEPFAC algorithm, reduction and compression stages.

Unit testing is a software development practice allowing to independently scrutinise

the operations of an algorithm, in order to evaluate its correctness [182] [183]. Infor-

mation regarding the automatic unit testing designed for the HEPFAC algorithm are

provided in the next section.

A.2 Unit Testing

In order to test the storage model, the trie reduction and the matching process described

in Chapter 4, a number of tests have been created, and are organised as follows:

I: A defined number of strings are chosen from a text string.

II: A breadth first row major ordered trie is constructed. At this stage visual and textual

information is provided for visual inspection.

189

III: The trie is truncated and reduced. This stage involves a visual and textual repre-

sentation of the trie for visual inspection.

IV: The trie traversed in order to march all patterns present in the trie.

V: The patterns are searched against a text string on the GPU verifying that the pat-

terns are present in the text at corresponding indices.

1 adegijaf

2 afbccdfd

3 cbgdiiib

4 cfbedhfe

5 dffciahf

6 eiffbbie

7 ghfhjijj

8 hgdgbcji

9 hgeibfjc

10 ijddgaig

Figure A.1
10 Patterns Chosen Randomly from a Text String

In order to evaluate the algorithm 10 patterns are chosen from a text string. These

patterns are chosen by using the MT uniform pseudo-random number generator. Fig-

ure A.1 shows the 10 patterns chosen during the first stage of the evaluation.

The trie is then constructed and a textual representation of the trie is provided to the

user.

190

1 treeArray[0].offset 1 -> prev_node 0 -> nodeID 0

2 treeArray[1].offset 8 -> prev_node 0 -> nodeID 1

3 treeArray[2].offset 10 -> prev_node 0 -> nodeID 2

4 treeArray[3].offset 12 -> prev_node 0 -> nodeID 3

5 treeArray[4].offset 13 -> prev_node 0 -> nodeID 4

6 treeArray[5].offset 14 -> prev_node 0 -> nodeID 5

7 treeArray[6].offset 15 -> prev_node 0 -> nodeID 6

8 treeArray[7].offset 16 -> prev_node 0 -> nodeID 7

9 treeArray[8].offset 17 -> prev_node 1 -> nodeID 8

10 treeArray[9].offset 18 -> prev_node 1 -> nodeID 9

11 treeArray[10].offset 19 -> prev_node 2 -> nodeID 10

12 treeArray[11].offset 20 -> prev_node 2 -> nodeID 11

13 treeArray[12].offset 21 -> prev_node 3 -> nodeID 12

14 treeArray[13].offset 22 -> prev_node 4 -> nodeID 13

15 treeArray[14].offset 23 -> prev_node 5 -> nodeID 14

16 treeArray[15].offset 24 -> prev_node 6 -> nodeID 15

17 treeArray[16].offset 26 -> prev_node 7 -> nodeID 16

18 treeArray[17].offset 27 -> prev_node 8 -> nodeID 17

19 treeArray[18].offset 28 -> prev_node 9 -> nodeID 18

20 treeArray[19].offset 29 -> prev_node 10 -> nodeID 19

21 treeArray[20].offset 30 -> prev_node 11 -> nodeID 20

22 treeArray[21].offset 31 -> prev_node 12 -> nodeID 21

23 treeArray[22].offset 32 -> prev_node 13 -> nodeID 22

24 treeArray[23].offset 33 -> prev_node 14 -> nodeID 23

25 treeArray[24].offset 34 -> prev_node 15 -> nodeID 24

26 treeArray[25].offset 35 -> prev_node 15 -> nodeID 25

Figure A.2
Breadth-First Row Major Order Constructed Trie

191

1 treeArray[26].offset 36 -> prev_node 16 -> nodeID 26

2 treeArray[27].offset 37 -> prev_node 17 -> nodeID 27

3 treeArray[28].offset 38 -> prev_node 18 -> nodeID 28

4 treeArray[29].offset 39 -> prev_node 19 -> nodeID 29

5 treeArray[30].offset 40 -> prev_node 20 -> nodeID 30

6 treeArray[31].offset 41 -> prev_node 21 -> nodeID 31

7 treeArray[32].offset 42 -> prev_node 22 -> nodeID 32

8 treeArray[33].offset 43 -> prev_node 23 -> nodeID 33

9 treeArray[34].offset 44 -> prev_node 24 -> nodeID 34

10 treeArray[35].offset 45 -> prev_node 25 -> nodeID 35

11 treeArray[36].offset 46 -> prev_node 26 -> nodeID 36

12 treeArray[37].offset 47 -> prev_node 27 -> nodeID 37

13 treeArray[38].offset 48 -> prev_node 28 -> nodeID 38

14 treeArray[39].offset 49 -> prev_node 29 -> nodeID 39

15 treeArray[40].offset 50 -> prev_node 30 -> nodeID 40

16 treeArray[41].offset 51 -> prev_node 31 -> nodeID 41

17 treeArray[42].offset 52 -> prev_node 32 -> nodeID 42

18 treeArray[43].offset 53 -> prev_node 33 -> nodeID 43

19 treeArray[44].offset 54 -> prev_node 34 -> nodeID 44

20 treeArray[45].offset 55 -> prev_node 35 -> nodeID 45

21 treeArray[46].offset 56 -> prev_node 36 -> nodeID 46

22 treeArray[47].offset 57 -> prev_node 37 -> nodeID 47

23 treeArray[48].offset 58 -> prev_node 38 -> nodeID 48

24 treeArray[49].offset 59 -> prev_node 39 -> nodeID 49

25 treeArray[50].offset 60 -> prev_node 40 -> nodeID 50

26 treeArray[51].offset 61 -> prev_node 41 -> nodeID 51

27 treeArray[52].offset 62 -> prev_node 42 -> nodeID 52

Figure A.3
Breadth-First Row Major Order Constructed Trie

192

1 treeArray[53].offset 63 -> prev_node 43 -> nodeID 53

2 treeArray[54].offset 64 -> prev_node 44 -> nodeID 54

3 treeArray[55].offset 65 -> prev_node 45 -> nodeID 55

4 treeArray[56].offset 66 -> prev_node 46 -> nodeID 56

5 treeArray[57].offset 67 -> prev_node 47 -> nodeID 57

6 treeArray[58].offset 68 -> prev_node 48 -> nodeID 58

7 treeArray[59].offset 69 -> prev_node 49 -> nodeID 59

8 treeArray[60].offset 70 -> prev_node 50 -> nodeID 60

9 treeArray[61].offset 71 -> prev_node 51 -> nodeID 61

10 treeArray[62].offset 72 -> prev_node 52 -> nodeID 62

11 treeArray[63].offset 73 -> prev_node 53 -> nodeID 63

12 treeArray[64].offset 74 -> prev_node 54 -> nodeID 64

13 treeArray[65].offset 75 -> prev_node 55 -> nodeID 65

14 treeArray[66].offset 76 -> prev_node 56 -> nodeID 66

15 treeArray[67].offset 0 -> prev_node 57 -> nodeID 67

16 treeArray[68].offset 0 -> prev_node 58 -> nodeID 68

17 treeArray[69].offset 0 -> prev_node 59 -> nodeID 69

18 treeArray[70].offset 0 -> prev_node 60 -> nodeID 70

19 treeArray[71].offset 0 -> prev_node 61 -> nodeID 71

20 treeArray[72].offset 0 -> prev_node 62 -> nodeID 72

21 treeArray[73].offset 0 -> prev_node 63 -> nodeID 73

22 treeArray[74].offset 0 -> prev_node 64 -> nodeID 74

23 treeArray[75].offset 0 -> prev_node 65 -> nodeID 75

24 treeArray[76].offset 0 -> prev_node 66 -> nodeID 76

25 treeArray[77].offset 0 -> prev_node 0 -> nodeID 0

26 treeArray[78].offset 0 -> prev_node 0 -> nodeID 0

27 treeArray[79].offset 0 -> prev_node 0 -> nodeID 0

28 treeArray[80].offset 0 -> prev_node 0 -> nodeID 0

Figure A.4
Breadth-First Row Major Order Constructed Trie193

Figure A.2, A.3, A.4 provide the user with the possibility of a textual inspection. It

also provides information on the NodeID, in order to identify the parent of every single

node.

This part of the unit testing is also able to provide the nodes in a GraphViz friendly

output, allowing a graphical representation of the trie, as shown in Figure 4.8 in Chap-

ter 4. The next stage involves the identification of all terminal nodes.

1 Last Nodes Array :

2 67 68 69 70 71 72 73 74 75 76

3 57 58 59 60 61 62 63 64 65 66

4 47 48 49 50 51 52 53 54 55 56

Figure A.5
Identification of the terminal nodes, their parents, and grand-parents

Figure A.5 identifies the last nodes of the array, their parents and grand parents, this

information is subsequently used by the branch reduction algorithm in order to reduce

the branches. This information can be compared against the GraphViz output provided

in the previous test described in Figure A.4. The trie is subsequently reduced.

194

1 treeArray[0].offset 1 -> prev_node 0 -> nodeID 0

2 treeArray[1].offset 8 -> prev_node 0 -> nodeID 1

3 treeArray[2].offset 10 -> prev_node 0 -> nodeID 2

4 treeArray[3].offset 12 -> prev_node 0 -> nodeID 3

5 treeArray[4].offset 13 -> prev_node 0 -> nodeID 4

6 treeArray[5].offset 14 -> prev_node 0 -> nodeID 5

7 treeArray[6].offset 15 -> prev_node 0 -> nodeID 6

8 treeArray[7].offset 16 -> prev_node 0 -> nodeID 7

9 treeArray[8].offset 17 -> prev_node 1 -> nodeID 8

10 treeArray[9].offset 18 -> prev_node 1 -> nodeID 9

11 treeArray[10].offset 19 -> prev_node 2 -> nodeID 10

12 treeArray[11].offset 20 -> prev_node 2 -> nodeID 11

13 treeArray[12].offset 21 -> prev_node 3 -> nodeID 12

14 treeArray[13].offset 22 -> prev_node 4 -> nodeID 13

15 treeArray[14].offset 23 -> prev_node 5 -> nodeID 14

16 treeArray[15].offset 24 -> prev_node 6 -> nodeID 15

17 treeArray[16].offset 26 -> prev_node 7 -> nodeID 16

18 treeArray[17].offset 27 -> prev_node 8 -> nodeID 17

19 treeArray[18].offset 28 -> prev_node 9 -> nodeID 18

20 treeArray[19].offset 29 -> prev_node 10 -> nodeID 19

21 treeArray[20].offset 30 -> prev_node 11 -> nodeID 20

22 treeArray[21].offset 31 -> prev_node 12 -> nodeID 21

23 treeArray[22].offset 32 -> prev_node 13 -> nodeID 22

24 treeArray[23].offset 33 -> prev_node 14 -> nodeID 23

25 treeArray[24].offset 34 -> prev_node 15 -> nodeID 24

26 treeArray[25].offset 35 -> prev_node 15 -> nodeID 25

27 treeArray[26].offset 36 -> prev_node 16 -> nodeID 26

Figure A.6
Reduced Breadth-First Row Major Ordered Array

195

1 treeArray[27].offset 37 -> prev_node 17 -> nodeID 27

2 treeArray[28].offset 38 -> prev_node 18 -> nodeID 28

3 treeArray[29].offset 39 -> prev_node 19 -> nodeID 29

4 treeArray[30].offset 40 -> prev_node 20 -> nodeID 30

5 treeArray[31].offset 41 -> prev_node 21 -> nodeID 31

6 treeArray[32].offset 42 -> prev_node 22 -> nodeID 32

7 treeArray[33].offset 43 -> prev_node 23 -> nodeID 33

8 treeArray[34].offset 44 -> prev_node 24 -> nodeID 34

9 treeArray[35].offset 45 -> prev_node 25 -> nodeID 35

10 treeArray[36].offset 46 -> prev_node 26 -> nodeID 36

11 treeArray[37].offset 47 -> prev_node 27 -> nodeID 37

12 treeArray[38].offset 48 -> prev_node 28 -> nodeID 38

13 treeArray[39].offset 49 -> prev_node 29 -> nodeID 39

14 treeArray[40].offset 50 -> prev_node 30 -> nodeID 40

15 treeArray[41].offset 51 -> prev_node 31 -> nodeID 41

16 treeArray[42].offset 52 -> prev_node 32 -> nodeID 42

17 treeArray[43].offset 53 -> prev_node 33 -> nodeID 43

18 treeArray[44].offset 54 -> prev_node 34 -> nodeID 44

19 treeArray[45].offset 55 -> prev_node 35 -> nodeID 45

20 treeArray[46].offset 56 -> prev_node 36 -> nodeID 46

21 treeArray[47].offset 57 -> prev_node 37 -> nodeID 47

22 treeArray[48].offset 58 -> prev_node 38 -> nodeID 48

23 treeArray[49].offset 59 -> prev_node 39 -> nodeID 49

24 treeArray[50].offset 60 -> prev_node 40 -> nodeID 50

25 treeArray[51].offset 61 -> prev_node 41 -> nodeID 51

26 treeArray[52].offset 62 -> prev_node 42 -> nodeID 52

27 treeArray[53].offset 63 -> prev_node 43 -> nodeID 53

Figure A.7
Reduced Breadth-First Row Major Ordered Array

196

1 treeArray[54].offset 64 -> prev_node 44 -> nodeID 54

2 treeArray[55].offset 65 -> prev_node 45 -> nodeID 55

3 treeArray[56].offset 66 -> prev_node 46 -> nodeID 56

4 treeArray[57].offset 67 -> prev_node 47 -> nodeID 57

5 treeArray[58].offset 67 -> prev_node 48 -> nodeID 58

6 treeArray[59].offset 67 -> prev_node 49 -> nodeID 59

7 treeArray[60].offset 67 -> prev_node 50 -> nodeID 60

8 treeArray[61].offset 67 -> prev_node 51 -> nodeID 61

9 treeArray[62].offset 67 -> prev_node 52 -> nodeID 62

10 treeArray[63].offset 67 -> prev_node 53 -> nodeID 63

11 treeArray[64].offset 67 -> prev_node 54 -> nodeID 64

12 treeArray[65].offset 67 -> prev_node 55 -> nodeID 65

13 treeArray[66].offset 67 -> prev_node 56 -> nodeID 66

14 treeArray[67].offset 0 -> prev_node 57 -> nodeID 67

15 treeArray[68].offset 0 -> prev_node 58 -> nodeID 68

16 treeArray[69].offset 0 -> prev_node 59 -> nodeID 69

17 treeArray[70].offset 0 -> prev_node 60 -> nodeID 70

18 treeArray[71].offset 0 -> prev_node 61 -> nodeID 71

19 treeArray[72].offset 0 -> prev_node 62 -> nodeID 72

20 treeArray[73].offset 0 -> prev_node 63 -> nodeID 73

21 treeArray[74].offset 0 -> prev_node 64 -> nodeID 74

22 treeArray[75].offset 0 -> prev_node 65 -> nodeID 75

23 treeArray[76].offset 0 -> prev_node 66 -> nodeID 76

24 treeArray[77].offset 0 -> prev_node 0 -> nodeID 0

25 treeArray[78].offset 0 -> prev_node 0 -> nodeID 0

26 treeArray[79].offset 0 -> prev_node 0 -> nodeID 0

27 treeArray[80].offset 0 -> prev_node 0 -> nodeID 0

Figure A.8
Reduced Breadth-First Row Major Ordered Array

197

Figure A.6, A.7, A.8 provide a visual inspection for the breadth-first row major or-

dered array. This step of the reduction is also provided with a GraphViz version in

order to provide the user with a visual inspection of the trie.

1 47 48 49 50 51 52 53 54 55 56

2 To ->

3 47 48 49 50 51 52 53 54 55 56

Figure A.9
Merged nodes

A list of merged nodes is also provided to the user, along with a list of terminal nodes,

this allows the user to compare the output of this test against the visual representation

made by the GraphViz output as shown in Figure A.9. Note that in this example the

patterns provided have no common suffixes and therefore none of the branches are

merged together. Textual and visual outputs are provided for inspection.

198

1 treeReduced[0].offset 1 -> Supposed Node ID 1

2 treeReduced[1].offset 8 -> Supposed Node ID 2

3 treeReduced[2].offset 10 -> Supposed Node ID 3

4 treeReduced[3].offset 12 -> Supposed Node ID 4

5 treeReduced[4].offset 13 -> Supposed Node ID 5

6 treeReduced[5].offset 14 -> Supposed Node ID 6

7 treeReduced[6].offset 15 -> Supposed Node ID 7

8 treeReduced[7].offset 16 -> Supposed Node ID 8

9 treeReduced[8].offset 17 -> Supposed Node ID 9

10 treeReduced[9].offset 18 -> Supposed Node ID 10

11 treeReduced[10].offset 19 -> Supposed Node ID 11

12 treeReduced[11].offset 20 -> Supposed Node ID 12

13 treeReduced[12].offset 21 -> Supposed Node ID 13

14 treeReduced[13].offset 22 -> Supposed Node ID 14

15 treeReduced[14].offset 23 -> Supposed Node ID 15

16 treeReduced[15].offset 24 -> Supposed Node ID 16

17 treeReduced[16].offset 26 -> Supposed Node ID 17

18 treeReduced[17].offset 27 -> Supposed Node ID 18

19 treeReduced[18].offset 28 -> Supposed Node ID 19

20 treeReduced[19].offset 29 -> Supposed Node ID 20

21 treeReduced[20].offset 30 -> Supposed Node ID 21

22 treeReduced[21].offset 31 -> Supposed Node ID 22

23 treeReduced[22].offset 32 -> Supposed Node ID 23

24 treeReduced[23].offset 33 -> Supposed Node ID 24

25 treeReduced[24].offset 34 -> Supposed Node ID 25

26 treeReduced[25].offset 35 -> Supposed Node ID 26

27 treeReduced[26].offset 36 -> Supposed Node ID 27

Figure A.10
Collated Terminal Nodes.

199

1 treeReduced[27].offset 37 -> Supposed Node ID 28

2 treeReduced[28].offset 38 -> Supposed Node ID 29

3 treeReduced[29].offset 39 -> Supposed Node ID 30

4 treeReduced[30].offset 40 -> Supposed Node ID 31

5 treeReduced[31].offset 41 -> Supposed Node ID 32

6 treeReduced[32].offset 42 -> Supposed Node ID 33

7 treeReduced[33].offset 43 -> Supposed Node ID 34

8 treeReduced[34].offset 44 -> Supposed Node ID 35

9 treeReduced[35].offset 45 -> Supposed Node ID 36

10 treeReduced[36].offset 46 -> Supposed Node ID 37

11 treeReduced[37].offset 47 -> Supposed Node ID 38

12 treeReduced[38].offset 48 -> Supposed Node ID 39

13 treeReduced[39].offset 49 -> Supposed Node ID 40

14 treeReduced[40].offset 50 -> Supposed Node ID 41

15 treeReduced[41].offset 51 -> Supposed Node ID 42

16 treeReduced[42].offset 52 -> Supposed Node ID 43

17 treeReduced[43].offset 53 -> Supposed Node ID 44

18 treeReduced[44].offset 54 -> Supposed Node ID 45

19 treeReduced[45].offset 55 -> Supposed Node ID 46

20 treeReduced[46].offset 56 -> Supposed Node ID 47

21 treeReduced[47].offset 57 -> Supposed Node ID 48

22 treeReduced[48].offset 58 -> Supposed Node ID 49

23 treeReduced[49].offset 59 -> Supposed Node ID 50

24 treeReduced[50].offset 60 -> Supposed Node ID 51

25 treeReduced[51].offset 61 -> Supposed Node ID 52

26 treeReduced[52].offset 62 -> Supposed Node ID 53

27 treeReduced[53].offset 63 -> Supposed Node ID 54

Figure A.11
Collated Terminal Nodes.

200

1 treeReduced[54].offset 64 -> Supposed Node ID 55

2 treeReduced[55].offset 65 -> Supposed Node ID 56

3 treeReduced[56].offset 66 -> Supposed Node ID 57

4 treeReduced[57].offset 67 -> Supposed Node ID 58

5 treeReduced[58].offset 67 -> Supposed Node ID 59

6 treeReduced[59].offset 67 -> Supposed Node ID 60

7 treeReduced[60].offset 67 -> Supposed Node ID 61

8 treeReduced[61].offset 67 -> Supposed Node ID 62

9 treeReduced[62].offset 67 -> Supposed Node ID 63

10 treeReduced[63].offset 67 -> Supposed Node ID 64

11 treeReduced[64].offset 67 -> Supposed Node ID 65

12 treeReduced[65].offset 67 -> Supposed Node ID 66

13 treeReduced[66].offset 67 -> Supposed Node ID 67

14 treeReduced[67].offset -1 -> Supposed Node ID 68

Figure A.12
Collated Terminal Nodes.

Figure A.10, A.11, A.12 provide the user with a textual and visual output in order

to inspect the last node reduction process. In this particular example, the number of

nodes is reduced by the number of patterns +1. This is due to the lack of branches

being merged. This process is described by Equation 4.2 in Section 4.3.2.

Subsequent to the trie reduction, the trie is traversed in order to match all patterns

and provide the user with a description of the trie.

201

1 a 0 -> 1

2 d 1 -> 8

3 e 8 -> 17

4 g 17 -> 27

5 i 27 -> 37

6 j 37 -> 47

7 a 47 -> 57

8 f 57 -> 67

9 Match at 0

10 a 0 -> 1

11 f 1 -> 8

12 b 9 -> 18

13 c 18 -> 28

14 c 28 -> 38

15 d 38 -> 48

16 f 48 -> 58

17 d 58 -> 67

18 Match at 1

Figure A.13
Matching Pattern 1 and 2

202

1 c 0 -> 1

2 b 2 -> 10

3 g 10 -> 19

4 d 19 -> 29

5 i 29 -> 39

6 i 39 -> 49

7 i 49 -> 59

8 b 59 -> 67

9 Match at 2

10 c 0 -> 1

11 f 2 -> 10

12 b 11 -> 20

13 e 20 -> 30

14 d 30 -> 40

15 h 40 -> 50

16 f 50 -> 60

17 e 60 -> 67

18 Match at 3

19 d 0 -> 1

20 f 3 -> 12

21 f 12 -> 21

22 c 21 -> 31

23 i 31 -> 41

24 a 41 -> 51

25 h 51 -> 61

26 f 61 -> 67

27 Match at 4

Figure A.14
Matching Pattern 3, 4 and 5

203

1 e 0 -> 1

2 i 4 -> 13

3 f 13 -> 22

4 f 22 -> 32

5 b 32 -> 42

6 b 42 -> 52

7 i 52 -> 62

8 e 62 -> 67

9 Match at 5

10 g 0 -> 1

11 h 5 -> 14

12 f 14 -> 23

13 h 23 -> 33

14 j 33 -> 43

15 i 43 -> 53

16 j 53 -> 63

17 j 63 -> 67

18 Match at 6

19 h 0 -> 1

20 g 6 -> 15

21 d 15 -> 24

22 g 24 -> 34

23 b 34 -> 44

24 c 44 -> 54

25 j 54 -> 64

26 i 64 -> 67

27 Match at 7

Figure A.15
Matching Pattern 6, 7 and 8

204

1 h 0 -> 1

2 g 6 -> 15

3 e 15 -> 24

4 i 25 -> 35

5 b 35 -> 45

6 f 45 -> 55

7 j 55 -> 65

8 c 65 -> 67

9 Match at 8

10 i 0 -> 1

11 j 7 -> 16

12 d 16 -> 26

13 d 26 -> 36

14 g 36 -> 46

15 a 46 -> 56

16 i 56 -> 66

17 g 66 -> 67

18 Match at 9

Figure A.16
Matching Pattern 9 and 10

205

1 verification done

2 Match at 0

3 Match at 1

4 Match at 2

5 Match at 3

6 Match at 4

7 Match at 5

8 Match at 6

9 Match at 7

10 Match at 8

11 Match at 9

12 verification reduced done

Figure A.17
Pattern Matching Verification Output

During the trie traversal, all patterns are matched; this is shown in Figure A.13, A.14, A.15

and Figure A.16. This is also acknowledged by a second matching process, matching all

patterns against the trie as shown in Figure A.17. This process demonstrates the validity

of the trie reduction, compression and the terminal node merging. A final test can be

triggered to match the patterns against one or more text strings on the GPU.

206

1 Match at 8

2 Match at 1513139

3 Match at 1533723

4 Match at 1686587

5 Match at 2671179

6 Match at 2671752

7 Match at 3219378

8 Match at 3513334

9 Match at 3981157

10 Match at 4563424

11 Positive Matches in Text String 10

Figure A.18
Positive Matches Found on GPU in a Text String

Figure A.18 shows the results obtained by matching the trie against a defined text

string, as well as the final number of matches. This allows to test the trie reduction

algorithm against a number of different synthetic text strings and ensure its accuracy.

207

