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Abstract 

Smart residential home systems have good potential for more efficient use of energy, 

reduced cost and less effects to environment. In order to adapt to new technologies such 

as electric vehicles (EVs), photovoltaic (PV) system, photovoltaic-thermal (PV-T) system, 

and solar water heater (SWH) system, novel demand side management (DSM) methods 

are required to effectively control EV and renewable technologies for residential energy 

systems. More importantly, customers play a key role in DSM as they have the energy 

usage choices according to their preferences. To understand the benefits for residential 

EV end users, their usage behaviours, such as driving behaviour, charging and discharging 

periods, willingness to participate to vehicle to grid (V2G), need to be considered in the 

DSM.  

In this thesis work, a novel DSM model framework is developed for a residential 

home system, considering EV, energy storage system (ESS), renewable technologies, and 

human behaviours. Survey data are collected and analysed to support the model 

development. Based on model, minimisation of the energy costs of residential home 

systems is explored by controlling the charging/discharging status of EV and a separate 

ESS under practical constraints. Key factors such as the degradation cost of EV and ESS 

batteries, user’s driving behaviour, and different types of electricity tariffs are included in 

the optimisation. Extensive case studies have been undertaken to investigate the operation 

strategies under various scenarios. The options and potential benefits of V2G are 

discussed. 

To further investigate the DSM for residential homes with the use of renewable 

energy, two solar water heating systems, the hybrid PV-T and the PV-SWH, are 

considered into the energy cost evaluation. Models for both PV-T and PV-SWH are 

formulated and added into the modelling framework for residential home systems. Built 

on the work of optimal charging/discharging of EV and ESS, the optimal switch 

operations of the PV-SWH system have been calculated, through which further cost 

reduction can be achieved. For the option of PV-SWH with limited solar panel space, the 

split of areas between PV and SWH is determined through a pseudo-optimisation route. 
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Numerical studies have been conducted to examine the economic benefits of solar 

thermal collectors, the comparisons between PV-T and PV-SWH, and the effective use 

of the limited solar panel area for PV-SWH.  

Finally, different appraisal methods are applied to analyse the investment worth of 

the residential energy household systems with optimal DSM. The most beneficial 

investment solutions are obtained from the relevant case studies. 

Through the above systematic investigation of DSM for smart home energy systems, 

improved understanding on how to reduce energy cost for end users are obtained, 

including new insights on the benefits and conditions of V2G for EV users. The 

established modelling framework can easily include sub energy systems, e.g. EV, ESS, and 

renewable energy systems. Complex variation factors such as EV driving behaviour, 

external environment temperature, solar radiation, electricity tariffs are considered to 

achieve optimal operation strategies to reduce energy cost at residential home level. 

Financial analysis is applied to analyse the investment worth of these residential energy 

household systems. The optimal system choices for the end user are discussed through 

case studies. 
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Chapter 1 Introduction 

1.1 Background 

Electric vehicles (EVs) can contribute to deeply reduce greenhouse gas emission if 

the charging load of EV supplied from renewable energy resources [1]. In recent research 

development, minimisation of EV charging cost including vehicle-to-grid (V2G) has been 

widely investigated while considering battery degradation [2-4]. It can help to alleviate the 

peak demands of power and minimise the energy cost of users. With V2G, an EV can be 

used as an energy storage device that is able to inject the stored electric power back to the 

grid. This can be applied as a new type of energy source and utilised together with energy 

storage system (ESS) to achieve optimal operation of power systems [5]. In addition, the 

EV customers’ driving usage such as driving time, parking time, and daily driving distance, 

which would certainly influence the charging and discharging of EVs and the cost [6]. In 

order to understand the benefits for residential EV end users, novel demand side 

management (DSM) method is required to effectively control EV and renewable 

technologies for residential energy systems; therefore, the mathematical optimisation 

method can be applied to find out the ‘best’ values of operating variables. The objective 

of the method aims to minimise the energy cost for residential energy system by 

controlling EV charging and renewable generation on/off status considering V2G and 

customer driving behaviours, such as driving behaviour, charging and discharging periods, 

willingness to participate to V2G.  

1.2 Motivation and scope  

In order to significantly reduce greenhouse gas emission and tackle the increasing 

carbon emission problem, electric vehicles (EVs) have become popular in the past decade, 

and the charging load of EVs supplied from renewable energy resources can help to 

alleviate transport emission [7, 8]. A reduction of 47%~78% greenhouse gas emissions 

can be achieved through the photovoltaic (PV)-powered EV technology, and the feed-in 

tariff (FIT) of PV power and the investment interest rate can be used in policy making 

tools to develop low carbon transportation systems [9]. In comparison to traditional 
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combustion vehicles, PV-powered EVs have nearly 100% pollutant reduction potential 

for 𝐶𝑂2, 𝑆𝑂2 and 𝑁𝑂 [10]. 

In order to adapt to renewable generation technology, the traditional grids need to 

be evolved to smart grid. Smart grid is an electricity network that can intelligently interact 

with all of the users connected to it [11, 12] . It can help to manage the variability of 

renewable resources, enable consumers actively get involved, and allow more actions of 

consumption be responded back to the grid operator through smart metering systems. In 

the future, more and more end users will contribute to energy management in smart grid 

systems. This requires demand side management (DSM) activities that would improve 

utilisation of renewable resources to supply power to the end users. More importantly, 

customers play a major role in DSM as they have the choice from a range of products 

according to their preferences [13, 14]; therefore, analysis of DSM for smart residential 

homes becomes crucial in saving energy cost. To support systematic DSM under various 

scenarios, a mathematical modelling framework needs to be established for residential 

home energy systems, based on which DSM optimisation strategies can be explored.  

As EVs become popular for energy management at the demand side, minimising the 

charging cost of EV is prerequisite to attract more end users to participate in the DSM 

schemes or other policies, therefore, optimal charging control of EVs, which aims to 

reduce cost of users, should be investigated. In addition, with the development of vehicle 

to grid (V2G) technology, an EV can be used as an energy storage device that is capable 

of injecting the stored electric power back to the grid. EVs can be applied as a new type 

of energy source and utilised together with the energy storage system (ESS) to achieve 

more cost reductions [15]. It is therefore important to include EV and ESS into the smart 

home energy system model . 

Though V2G techniques provide wider options for control and optimisation of EV 

systems, V2G operation increases the cost of battery degradation, which needs to be 

considered in its applications [16]. Another issue is whether the EV owners would be 

willing to participate in a V2G program. The economic viability of V2G, primarily 

affected by the high cost of discharging to the grid, is a big issue for EV owners. This is 

often related to factors such as battery degradation, expensive battery pack and low FIT. 

It is discussed in [17] that a V2G service can lead to a reduced life-cycle of an EV. The 
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power aggregators should operate either on pay-as-you-go basis or provide consumers 

with advanced cash payment in order to attract more EV owners participating in V2G. 

The promised rate of return for V2G may not be sufficient to attract widespread V2G 

participation due to the cost in grid connection, purchase of electricity and battery 

degradation [18]. The EV’s battery pack will need to be replaced more frequently with 

V2G operation [19]. The battery aging cost induced by V2G may exceed the benefit 

brought from V2G, and substantial subsidies are required to trigger V2G service [20]. 

Therefore, it is important for residential home owners to consider whether V2G is 

economically beneficial in reducing their overall energy cost.  

EV driving behaviours affect implementation of DSM programmes [21]. When EV 

is considered into the cost minimisation model of end users, the information of vehicle 

usage, such as driving time, parking time, and daily driving distance, will be important 

factors that influence the charging and discharging of EVs and the cost accordingly [21]. 

The EV usage factor has been ignored in most research. In this thesis, the EV usage 

probabilities will be included in the mathematical model. Quantities such as probabilities 

of EV parking and plugging in at home, probability of EV parking outside, probability 

that the EV is under driving and the probability of each driving, etc. will be obtained 

through survey data. 

The use of renewable energy is a recent trend for smart residential homes. For a 

residential household energy management system, PV is not the only way to utilize the 

solar energy for the cost and energy reduction. Another technology that can help end 

users to reduce daily energy consumption is solar water heater (SWH). Comparing to PV 

which supplies power directly to the home, the electric back-up element of SWH can be 

controlled to supply sufficient amount of hot water as required. In this thesis, 

combination of PV and SWH will be considered in the residential home energy use 

optimisation system.  

To support DSM at residential homes, initial investments are required for purchasing 

equipment for PV, SWH and ESS, which are usually not cheap for family users. Whether 

the cost savings calculated from the optimal operation can compensate the initial 

investments could be an issue. In this thesis, financial analysis will be performed using 
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appropriate appraisal methods to assess and analyse the overall cost savings under the 

optimisation scheme when initial investment is considered.  

1.3 Overview and contribution of this research 

The main contribution of the thesis are summarised as follows: 

1. A mathematical model framework has been established for a typical residential home 

energy system, which includes an EV, an ESS, and other residential loads, with grid 

connection. The EV usage patterns are also considered in this model with driving 

and parking probabilities calculated from survey data. The practical survey is designed 

to include driving usage at different time periods. Information such as the driving 

distance, starting time and duration when the vehicle is away from home, time 

duration for parking outside and at home, has been collected and processes. This 

modelling scheme can be conveniently expanded to include components such as PV 

and SWH systems. 

2. Based on the established model, the optimal charging and discharging strategies for 

EV and ESS are determined for various scenarios under the fixed and the time-of-

use (TOU) tariffs. In the case study, the threshold level of the export tariff is 

calculated, below which the V2G benefit cannot be achieved. 

3. One renewable energy option, the solar thermal system, has been included in the 

optimisation of the residential home energy system, keeping the EV/ESS charging 

design in the same framework. The benefits of using a solar thermal collector for the 

end users have been investigated from the economic point of view. Two hybrid 

options are considered and compared, the combined PV-SWH system and the 

photovoltaic thermal (PV-T) system. For PV-SWH system, the split of the limited 

solar panel area between SWH and PV is determined when other DSM factors are 

optimised under the same design framework.  

4. To assess the payback of the above energy optimisation systems, annual cost savings 

are calculated for three different residential systems. Different appraisal methods are 

applied and compared to analyse the investment worth of these residential energy 

household systems. The optimal system choices for the end users are discussed 
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through case studies, such as EV selection, solar hybrid system selection, SWH panel 

size selection, indications of the installing costs and so on.  

1.4 Roadmap through this dissertation 

Chapter 2 reviews fundamentals of DSM, classifications of relevant methods and 

some current challenges. Optimisation methods for DSM are also briefed in this chapter 

including problem formulation, optimisation model building process and algorithms of 

integer programming. 

Chapter 3 gives an overview of the fundamentals of EV and V2G technology. The 

optimal charging management of EVs has been reviewed. Literature review also includes 

the charging management under V2G and some doubts on V2G technology are raised. 

In addition, the basics of solar energy and its use in residential household are introduced. 

The fundamentals of solar thermal model are presented, and studies related to load 

management for domestic water heating are reviewed.  

Chapter 4 builds a mathematical model for a residential household energy system, 

considering EV, ESS, renewable supply, grid connection and other loads. The design 

objective with the model is to minimise the end user’s energy costs by managing the 

charging/discharging status of EV and ESS. The design problem can be taken as the 

individual DSM optimisation problem from the user’s interaction with the grid. The 

battery degradation cost model and the model of uncertain driving probabilities are also 

developed. Comprehensive case studies are investigated on impacts of different FITs, 

impacts of different initial SOC and terminal SOC, whether V2G is beneficial to the users. 

Comparisons are made with typical settings without DSM optimisation.  

Chapter 5 expands the study to include controlling of the renewable energy. A 

household energy system model is developed that also involves solar thermal systems. By 

controlling the on/off status of electricity back-up system of the solar thermal part, in 

addition to the EV and ESS charging/discharging status, the end user’s cost can be further 

reduced. Relevant case studies have been investigated to examine the impacts of solar 

energy on cost reductions such as the hot water temperature, the interaction between 

residential SWH system and PV system, hybrid PV-SWH system, hybrid PV-T system. 
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Chapter 6 explores return-of-investment of the household energy system built on 

the work of the previous two chapters. Several appraisal methods are reviewed, such as 

payback period (PB), discounted payback period (DPB) and net present value (NPV). 

They are applied to assess and analyse the investment return period of the energy system 

with optimised DSM. The annual costs of different types of household energy systems 

are calculated and compared from financial point of view.  

Chapter 7 summarises the contributions and outcomes of this thesis. Future works 

that can be built upon the findings of this work are also discussed.   

1.5 Publications 

Journal article: 

Yanyi Sun, Hong Yue, Jiangfeng Zhang and Campbell Booth, "Minimisation of 

residential energy cost considering energy storage system and EV with driving usage 

probabilities," IEEE Transactions on Sustainable Energy, Early Access, September 2018. 

(DOI: 10.1109/TSTE.2018.2870561) 

Conference paper: 

Yanyi Sun, Hong Yue, Jiangfeng Zhang and Campbell Booth, "Minimisation of 

residential energy costs for PV-SWH and PV-T systems," in 12th IFAC Symposium on 

Dynamics and Control of Process Systems, including Biosystems (DYCOPS2019), 

Florianópolis, Brazil, April 2019: 1-6. (oral presentation) 
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Chapter 2 Introduction to Demand 

Side Management (DSM) and 

Optimisation Basics 

In this chapter, the concept of traditional power grid is firstly introduced in Section 2.1. 

In order to address the issues faced by the traditional power grid, such as environmental 

side effects and growing energy demand, the traditional power grid should be evolved and 

the notion of smart grid is discussed in Section 2.2. In smart grid, the end users play an 

important role in that the actions of energy consumption can be fed back to the grid 

operator through the smart metering system enabling local energy demand management; 

therefore, the fundamentals of DSM, which can help to reduce the end user’s cost of 

energy and air pollution through reducing energy use, is introduced in Section2.3. 

Furthermore, DSM methods can be classified based on the planning horizon, impact of 

the applied measures on the customer process and the optimisation model used, which 

are introduced in Section 2.4. The obstacles and challenges when implementing DSM 

program are discussed in Section 2.5. Optimisation is a key technique to achieve DSM. 

The basics of an optimisation model is introduced in 2.6. The general procedure for 

optimisation is summarised in Section 2.6.1. Then, the details of how to formulate an 

optimisation model is given in Section 2.6.2. In this thesis, the controlling variables are 

on-off status of the household devices, so the relevant problem can be formulated as an 

integer programing problem. One method of integer programing optimisation is 

introduced in Section 2.7.  

2.1 Traditional power grids 

Traditional power grids are designed to deliver electricity from producers, which are 

central power plants, to consumers through high voltage transmission lines. Central 

power plants usually burn fossil fuel, such as coal, natural gas, and oil, to produce the 

electricity, for large scale and continuous operation of power grid. However, the 

environmental adverse effects are serious for fossil-fuel plants, e.g. greenhouse gas 
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emission produced by burning coal, destruction of large areas of land for mining of coal, 

unpleasant odours of natural gas, and leaks of crude oil under the sea [22]. Therefore, 

renewable energy sources, such as solar energy and wind energy are widely encouraged to 

substitute the traditional power sources. In UK, the government targets to deliver 15% 

of the energy consumption from renewable sources by 2020 [23]. An overall policy for 

production and promotion of energy from renewable sources in EU has been established, 

and 20% of the total energy needs with renewables are required to be fulfilled by 2020. In 

China, the wind power capacity has increased from 0.567GW in 2003 to 91GW in 2013, 

and the government plans to grow it to 200GW by 2020 [24]. Multiple benefits can be 

obtained by implementing a variety of renewable energy, such as reduce the demand for 

traditional energy, reduce air pollution, mitigate climate change, and promote economic 

development [25]. However, some challenges and barriers exist when synchronising large 

scale of renewable generation. For example, higher penetration of renewable energy 

sources with traditional power grids will affect the stability of grids due to the fact that 

renewable generations are intermittent and uncertain [26]. Therefore, the optimal 

dispatching of larger scale intermittent resources becomes more critical and the traditional 

power grids need to be improved to cope with the change of generation. In addition to 

the change of generation results from environmental stress, traditional grids also need to 

face other changes on technology, values of society, and economy. Thus, system security, 

operation safety, power quality, cost of supply and energy transmission efficiency need to 

be re-examined in order to meet the new requirements of these changes by taking 

renewables [27]. The traditional grids need to be evolved to smart grid. 

2.2 Smart grids 

According to [27], “smart grid is an electricity network that can intelligently integrate 

the actions of all users connected to it – generator, consumers and those that assume both 

roles – in order to efficiently deliver sustainable, economic and secure electricity supplies. 

It employs innovative products and services together with intelligent monitoring, control, 

communication and self – healing technologies”.  

The goals of the smart grids have been summarised in [28] as follows: provide power 

quality for the range of needs in a digital economy; accommodate all generation and 
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storage options; enable new products, services, and markets; enable consumers actively 

get involved; operate resiliently against physical and cyber-attack and natural disasters; 

anticipate and respond to system disturbances in a self-healing manner; optimise asset 

utilisation and operating efficiency. 

Like the traditional grids, smart grids also consist of four main parts, which are 

generation, transmission, distribution, and utilisation. The main differences between 

smart grids and traditional grids are the smart communication and networking, which can 

help to manage the variability of renewable resources, facilitate access to distributed 

generation on a high share, balance supply and demand in a manner that is best for the 

power grid, enable distributed control of both power generation and power, improve the 

energy system at the side of consumption, optimally schedule the use of loads for both 

individual and industrial end users and so on [28, 29]. It is noticed that the end users play 

an important role in the operation of smart grid since actions of consumption can be fed 

back to the grid operator through smart metering systems thus enabling local energy 

demand management.  

The residential sector is currently a major consumption of electricity in many 

countries. According to [30], residential sector is the biggest sector of the total U.S. retail 

sales of electricity, which occupies 38% of total electricity consumption. In EU, the 

electricity used by households is around 25% of the total consumption [31].  In UK, the 

residential electricity demand is occupied 30% of total electricity consumption [32]. The 

house consumption of electricity from one hour to another varies a lot during a day, which 

can be illustrated in Fig. 2 - 1 using literature data [33]. The electricity consumption 

reaches a peak point over a certain time period that can induce heavy stress on the grid. 

Therefore, how to manage and control the energy demand becomes a crucial issue to 

relieve the grid stress and improve the efficiency of energy use. To address this issue, 

DSM has been put forward to influence the load with less cost compared to building a 

new power plant or installing extra electricity storage device. DSM also helps to promote 

the locally generated energy consumed by local loads. 
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Fig. 2 - 1 An illustration of average hourly load variation during a day [33] 

2.3 Fundamentals of demand side management 

DSM is traditionally seen as changing the load shape in power system in order to 

help the energy providers reduce the peak load demand. It is also one of the important 

functions in smart grid that allow customers to choose from a range of products following 

their preferences [14] [28]. Key motives of DSM are to reduce the total cost to meet 

energy demand, and reduce air pollution. In [34], the potential of DSM efficiency 

improvement has been estimated. The average annual energy savings from the selected 

DSM technologies are approximately 2,160GWh over a period of 10 years, and 

considerably reducing CO2 emissions through the selected technologies. Other motives 

of DSM are to maintain power system reliability or help to reduce the need for network 

expansion. In [35], a method for assessment of system reliability has been proposed and 

developed. It suggests that DSM schemes can help to reduce network congestion and 

improve reliability and quality of network supply. 

2.3.1 Architecture and components of DSM frameworks 

The fundamental components of DSM can be categorized into end user’s domain 

and smart grid domain. In the end user domain and particularly for residential users, 

necessary components include local generator, smart devices, sensors, ESS, and energy 

management unit. Through these components, residential users can manage electricity 

power for their own usage, provide data for remote control and monitoring, store energy 
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that allow DSM to be flexible, and exchange information with other parts of the system. 

These components are able to interact with each other, and manage the electric resources 

based on intelligent DSM schedules [36]. All of these components are connected through 

one or more home area networks (HANs) within the user’s domain. It can be either wired 

networks or wireless. Then the user’s domain is connected to the smart grid domain 

through wide area networks (WANs), such as cellular networks that can guarantee 

reliability and quality of service in data transmission. A typical DSM framework for 

residential home is shown in Fig. 2 - 2.  

 

Fig. 2 - 2 DSM framework for residential home systems [36] 

2.3.2 Types of demand side management activities 

In this section, two categories of DSM activities are introduced, which are energy 

reduction programmes and load management programmes.  

2.3.2.1 Energy reduction programmes 

Some of the energy reduction programmes reduce consumer’s demand through 

more efficient processes, buildings or equipment [37]. They include a large number of 

measures called housekeeping items. Some of these “energy saving tips” can be 

implemented without extra cost, while others may require significant capital investment. 
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For example, hot water heating is a major activity in industrial and commercial sectors. 

Poor boiler operation may result in a significant energy loss, thus improvement of boiler 

performance is a practical and low cost option for enterprises. Other activities such as 

improving performance of steam systems, managing the lighting system, and controlling 

the compressed air system will also contribute to energy savings while keeping the low 

cost.  

The no-cost or low-cost measures can be summarised as below: 

a) Sealing and insulation: look for hot air escapes, and failed insulation in floors, 

walls, doors, windows, fans, vans, heating, electric outlets and so on; 

b) Hot water storage tank: limit the temperature of water to a fixed value, use 

insulating blankets and pipes.  

c) Washing machines: only run with full load; 

d) Replace incandescent lighting with compact fluorescent lamps (CFLs); 

e) Use curtains to insulate sunlight if hot, or let sun in if cold. 

However, if some of the measures need to replace the existing equipment or install 

a new one, significant investment will be necessary and the relevant payback period needs 

to be considered and investigated, for example, replace old appliances with new and 

efficient ones; install solar water heater instead of traditional electric water heater (EWH); 

install double glazing windows. 

Another group of commonly used measures of energy reduction programmes are 

energy management activities, which typically cover the following measures [37]: energy 

purchasing; metering and billing; performance measurement; energy policy development; 

energy surveying and auditing; awareness-raising, training and education; capital 

investment management.  

The specific projects of energy management depend on the nature of the 

organisation, budget, and staff skills. They are continuous process, in which the energy 

performance is continuously monitored and the efficient use of energy is constantly 

improved and maintained. Once the top management has been approved in the 

organisation, an important part of the energy manager’s job is to collect and analyse data, 

and be aware of load profiles or time-of-use for all forms of energy consumption. The 
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load management programmes are needed when the energy manager obtains reliable 

quantitative information of load profiles through automated measurement and recording 

equipment. 

2.3.2.2 Load management programmes 

Load management programmes have been more stable over time than most other 

customer programmes [38]. From strong load growth, load management can provide 

significant opportunities for effective DSM that can reduce or postpone use of new 

generating facilities, therefore the operating cost of energy system can be reduced through 

changing the load shape [14]. Load management programmes focus on reducing customer 

use strategically at the time of high utility-system load. The goal is to avoid construction 

of generation, production, and delivery facilities that only operate for a few hours per year 

and/or the costly wholesale purchases when customer loads can be shifted or displaced 

at less cost. There are six generic load shape objectives considered in load management 

programmes, which are shown as follows [14, 28, 38]: 

(1) Peak clipping is a form of load management that focuses on reducing the peak 

demand to mitigate the burden of grid at peak times. It is a direct load control 

technique to make reduction of the peak loads, and can help to increase the security 

of smart grid [14, 28, 38]. The diagram of peak clipping load shape is shown in Fig. 

2 - 3.  

 

Fig. 2 - 3 Peak clipping [37] 
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(2) Valley filling is form of load management where the demand valleys are filled by 

building off-peak capacities. The difference between the peak and valley load levels 

can be reduced through this technique, and it constructs the off-peak demand by 

applying direct load control. The technique can be achieved by thermal energy 

storage that displaces fossil fuel loads[37]. Fig. 2 - 4 shows the diagram of valley filling. 

 

Fig. 2 - 4 Valley filling [37] 

(3) Load shifting can shift loads from peak time to off-peak time, and takes advantage 

of time independence of loads. Load shifting is different from peak clipping because 

the peak load is present in the overall demand whereas it is removed in the clipping 

method. Popular applications of load shifting include using storage water heating, 

storage space heating, coolness storage, and customer loads shifting [37]. Fig. 2 - 5 

shows the load shape of the load shifting technique.  

 

Fig. 2 - 5 Load shifting [37] 
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(4) Strategic conservation aims to stimulate demand reduction programmes directed at 

customer consumption in order to achieve load shape optimisation. Examples of 

strategic conservation usually include weatherization and appliance efficiency 

improvement [14, 37]. Fig. 2 - 6 schematically represents strategic conservation. 

 

Fig. 2 - 6 Strategic conservation [37] 

(5) Strategic load growth is based on increasing the market share of loads supported by 

energy conversion, storage system or distributed energy resources. It intends to 

improve customer productivity and environmental compliance while increasing the 

sale of power for the utilities. The valleys and peaks can be filled and increased, and 

unsustainable energy practices can be diverted to more efficient practices. This is 

represented schematically in Fig. 2 - 7[37]. 

 

Fig. 2 - 7 Strategic load growth [37] 

(6) Flexible load shaping: the load shape can be flexible if customers are willing to change 

power usage over time for various incentives. The future load shape needs to be 

anticipated, which includes demand side activities forecasted over the planning 
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horizon [13]. It is mainly based on reliable smart grid, and the idea is shown in Fig. 2 

- 8.  

 

Fig. 2 - 8 Flexible load shape [37] 

Among these load management programmes, load shifting is a classic form of load 

management and is widely applied. The key factor in load shifting is energy storage. In 

this thesis, three types of loads are directly controlled, which are EV, ESS and SWH. All 

of these loads have energy storage function. By considering the renewable generation, e.g. 

PV, and TOU electricity tariff, the load shifting can be achieved. Details of these loads 

shifting results are shown in Chapter 4 and Chapter 5  

2.4 Classification of DSM methods 

There are many DSM methods to apply, which can be classified based on the 

planning horizon, impact of the applied measures on the customer process and the 

corresponding optimisation model used.  

2.4.1 Classification by planning horizon and impact  

DSM methods can be classified based on the planning horizon and the impact of 

the applied measures on the customer process, which include energy efficiency, TOU 

tariff, and demand response (DR), as shown in Fig. 2 - 9. According to reference [39], the 

quicker the changes are processed and done, the more unwanted impacts imposed on the 

customers’ processes.  
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Fig. 2 - 9 Categories of DSM based on planning horizon [39] 

It can be seen from Fig. 2 - 9, energy efficiency measures result in immediate and 

permanent energy and emissions savings, which include permanent changes on 

equipment or improvements on the physical properties of the system.  

TOU tariff increases the electricity price on certain periods of time when the demand 

is high, so energy consumers pay the actual lower rates for off-peak usage and higher rates 

for on-peak usage. In addition, users’ operating plan is usually defined over the next day 

period, which is also called day-ahead planning; therefore, some predictions of data, such 

as energy generation of local sources and devices usage preference for the next day, are 

required [39]. 

DR is a form of dynamic DSM. It can be categorised as market DR and physical DR. 

Market DR includes real-time pricing, price signals and incentives. It relies on certain 

market places where prices are formed and products are traded. Most of the transactions 

are done day-ahead. Real-time pricing will not be delayed because the users’ plan is re-

defined based on real time events and data. Another form of DR is physical DR which 

can achieve real load shedding for grid relief that cannot be done via prices alone. It will 

send out binding requests for demand management if grid needs maintenance or line fault 

happens in parts of the infrastructure [39].  
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2.4.2 Classification by optimisation models 

Mathematical optimisation methods are developed to find out the ‘best’ values of 

system design and operating policy variables that will lead to the highest levels of system 

performance [40]. If DSM systems are classified by the corresponding optimisation model, 

it can be classified based on user’s interaction and optimisation approach [36].  

From the perspective of user’s interaction, the end users can be either individually 

managed or jointly managed [36]. If customers are individually and separately managed, 

the maximised benefit of single end user will be guaranteed. On the other hand, users 

collaborate in defining their operating plans usually aim to increase the performance of 

grid or benefit the company. In further classification, the techniques can be selected as 

either deterministic or stochastic when designing a new DSM optimization model [36]. In 

deterministic DSM problems, the parameters of DMS systems such as energy prices, 

renewable generation profile, load curve and devices usage preferences are defined as 

deterministic variables. In stochastic techniques, they are represented as random variables 

in order to consider stochastic nature in the decision making process. More details of the 

optimisation are discussed in Section 2.6.  

To sum up, the target objectives need to be determined in the first place before 

building an optimisation model, e.g., whether customers are individually managed or 

jointly managed, whether the model benefits grid or customers. Then, an appropriate 

technique will be selected depending on the types of DSM systems’ data. Finally, the time 

scale of the model needs to be considered. Different planning horizon will lead to 

different results to the DSM. A classification tree of DSM is presented in Fig. 2 - 10.  
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Fig. 2 - 10 Categories of DSM classified by optimisation model [36] 

2.5 Demand side management challenges 

Obstacles and challenges  exist when implementing DSM programme  [41]. Firstly, 

the lack of appropriate market mechanisms in current market structures is a barrier for 

implementation of DSM. For example, it is argued in [42] that DSM is not comparable to 

current combustion turbine generating plants though the former is capable of providing 

more flexible power supply. Another problem when implementing DSM programs is to 

establish effective communication between the supply-side and the demand-side. This 

problem has been solved, to some extent, with the advent of smart grid [43].  

Furthermore, end-user behaviour is another issue, which compounds the problem 

of market design for DSM. This is because reactions of the end users are uncertain and 

complex - they may have many different priorities [41, 42]. The corresponding demand 

curve is difficult to extract from user behaviours, which depend on many time varying 

external factors, ranging from the consumers’ showering time to cooking time, winter to 

summer, etc. If EV is plugged-in on residential sector, the vehicle usage needs to be 

considered in the design of energy management mechanism. Therefore, a proper analysis 

of the cost benefits of energy use needs to be carried out. A new DSM model for 
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residential home systems should include factors that reflect the benefits and attitudes 

from the consumer’s perspective, such as the cost to the consumer, the ease-of-use, etc.  

In addition, how to persuade the consumers to participate in DSM is a problem. 

Most of the end users are lack of sufficient understanding of the benefits from DSM, 

especially in developing countries. They are more likely care about whether the DSM 

strategies can directly bring economic benefits for them; therefore, the DSM strategies 

should be considered from the end user’s perspective in order to attract more end users 

to participate in DSM. The methodologies for quantification of costs and benefits are 

imperative to improve the awareness of energy efficiency and DSM programs. 

Finally, DSM-based solutions tend to increase the complexity of the system 

operation when compared with traditional solutions [41]. Other challenges for 

implementation of DSM are also identified by [37], such as potential losses in power 

production when implementing DSM programmes, variations in the prices of electricity 

and other fuels, insufficient data available and so on. Fig. 2 - 11 shows the critical 

challenges of DSM programs.  

 

Fig. 2 - 11 Challenges of DSM [37] 
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2.6 Introduction of optimisation  

2.6.1 Optimisation classifications and a general procedure 

Optimisation is to obtain the best option among all possible solutions. A basic 

optimised function can be expressed as follows. Suppose 1 2 3, , , nx x x x   are the n  

decision variables considered, the decision vector can be represented as

 1 2 3, , ,X
T

nx x x x . If the function is written as ( )f X  then the optimization problem 

can be expressed as: 

 max  ( ),f X   (2.1) 

to find the point 
X , where ( )f 

X  gives the largest value of ( )f X , and 

 min ( ),f X   (2.2) 

to find the point 
X , where ( )f 

X  gives the smallest value of ( )f X . 

An optimisation problem can be classified into different groups following different 

specifications. It can be classified as deterministic and stochastic (probabilistic). The 

former has its decision variables and their functional relationships being deterministic. 

The latter has random variables [44]. An optimisation problem can also be classified into 

static and dynamic optimisation. In static optimisation, decision variables are independent 

of time. In dynamic optimisation, the decision variables are time-dependent, therefore, 

the optimal results are impacted by time-varying factors, for example, the TOU price in 

cost minimisation of energy system [44].  

An optimisation problem can be solved using analytical methods or numerical 

methods. In analytical methods, calculus is used to get the solution, the optimisation 

function is often continuous and differentiable. Several techniques can be utilized, such 

as maxima-minima, partial differentiation, complete differentiation, integration and 

definite integration. In numerical methods, problems are solved by searching the optimal 

values at discrete points. They are often used for complex problems [44].  
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According to [44], the first step in an optimisation procedure is to define the problem. 

Key aspects include the optimisation objectives or goals, the decision variables, the 

feasible range of decision variables, and the system restrictions or constraints.  The next 

step is to describe the system using a suitable model. The model can be static or dynamic, 

deterministic or stochastic, linear or nonlinear by nature. Then, the optimisation problem 

needs to be solved by a computation method. When the problem is complex, numerical 

methods are often used to find the optimal solution. Next, the optimal solution and results 

need to be validated against data or understanding of the real system. The final step is 

decision-making and implementation, where the optimal strategy is implemented and put 

to work in practice. In addition, the feedback of the implementation may help to extend 

the problem for further investigation.  

2.6.2 Formulation of optimisation problem 

For an optimisation problem, the decision variables need to be identified first. 

Suppose 1 2 3, , , nx x x x   are the n  decision variables considered, the decision vector can 

be represented as:  1 2 3, , ,X
T

nx x x x . The optimisation performance index is a scalar 

function of X , ( )f X . The optimisation problem is then formulated as 

 * arg min ( )X Xf   (2.3) 

A minimisation function can be expressed as equivalent to a maximisation function 

and vice versa, by multiplying (-1), which is max - ( )Xf . 

An optimisation problem may or may not have constraints. If the problem requires 

some limitations in achieving the objective, the constraints need to be designed after 

building the objective function. There are two types of constraints, which are equality 

constraints and inequality constraints. The limitations on the behaviour, performance or 

functionality of the system are commonly represented by inequality constraints. These 

inequality constraints are classified into two types which are maximum and minimum. 

Mathematically, the maximum constraints are expressed as less than or equal to ( )   a 

certain boundary that limits the system behaviour. The minimum constraints limits the 
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system with a lower boundary ( ) where a quantity less than the limiting point is not 

allowed.  

After setting up the constraints, the next step is to specify the feasible domains of 

the variables, which can be called boundary conditions [44]. Three types of the conditions 

are introduced in the following context, unrestricted condition, non-negative condition, 

and integer condition. The unrestricted conditions represent that the variables can be 

selected as any values. The non-negative conditions represent that any values of the 

variables cannot be negative, and the optimal solutions will be ignored if they are of 

negative values. These can be mathematically expressed as 0ix  . If the variables are not 

allowed to be fractional, the integer condition is taken, which is expressed as x Z . In 

this thesis, the controllable variables are the on-off states of the household devices, such 

as EV, ESS and SWH, so the boundary conditions of the variables are the integer 

conditions. More details on how to solve the integer programming problems, either linear 

or nonlinear, are introduced in Section 2.7. The procedure of formulation of an 

optimisation problem include the following 4 steps, which are shown in Fig. 2 - 12 [44].  

Step1: selecting the decision variables 

Step2: formulate the objective function 

Step3: setting the constraints 

Step4: identifying the conditions of variables 
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Fig. 2 - 12 Formulation of an optimisation problem [44] 

2.7 Optimisation methods 

In this thesis, the controlling variables are on-off status of the household devices, 

such as EV, ESS and SWH; therefore, the relevant optimisation problem can be classified 

as integer programing problem. In this section, the form of the integer programing 

problem is introduced.  

2.7.1 Integer programming 

In many optimisation problems, the decision variables are allowed to be fractional, 

which is often a realistic assumption [45]. However, for some problems, the fractional 

solutions are not realistic, for instance, it would be meaningless to have a solution calling 

for the manufacture of half a table or for the chartering of 1.2 airplanes; the decision 

variables must be assumed only integer values for these problems, which can be also called 

inter programming problems [46]. According to [47], integer programming deals with 

problems of maximising or minimising a performance function of decision variables 

subject to inequality and equality constraints, applying integer restrictions on some or all 

of the variables. A linear integer optimisation problem can be expressed as: 

Formulation

Decision 
variables

Identify 
conditions

Integer

Non-negative

Unrestricted

Constraints 
set ≤,=,≥

Objective 
function

Maximise

Minimise
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where 
jc ,

ija and ib  are different constant values. 

If all of the variables are restricted to be integer, then the problem is called pure integer 

problem. If some, but not all, decision variables are limited to be integer values, the problem 

is said to be a mixed integer program [47]. A special case that by limiting the value of 
jx  to 0 

or 1, then the model is expressed as: 
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where 
jc ,

ija and ib  are different constant values. 

This type of an integer programming problem is called binary programming problem. If 

all of the variables are restricted to be 0 or 1, then the problem is called pure binary 

programming problem [47]. If some, but not all, decision variables are limited to be 0 or 1, 

the problem is said to be a mixed binary programming problem [47]. For some integer 

programming problems, the objective function or constraints are nonlinear so they are 

called nonlinear integer programming. An example of non-linear integer optimisation 

problem can be expressed as: 
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where 
jc ,

ija , 
ib  and 

id are different constant values. 

In this thesis, the objective is to minimise the end user’s household energy cost, 

where the decision variables are charging and discharging of batteries, and on/off status 

of electrical appliance; therefore, the problem can be expressed as integer programming 

problem. An intelligent method, GA, is employed to solve the optimisation problem.  

2.7.2 Genetic algorithm 

Genetic Algorithm is a type of evolutionary algorithms that are inspired by the 

process of evolution in human and animal life. It is developed by John Holland and his 

collaborators in 1960s and 1970s [48]. The basis of the GA corresponds to the process of 

Charles Darwin’s theory of natural selection [49, 50]. All livings carry the gene information 

to build cells and pass the genetic traits to offspring. If the inherited genes make offspring 

fit and strong, they are more likely to be passed to the next generation. On the contrast, 

offspring with poor inherited genes is more likely to die and not reproduce. Therefore, 

the species who carry the good genes become more successful and stronger to suit the 

environment. The main contribution of Holland’s work demonstrates that rapid 

improvements of bit strings could occur under certain transformation with an appropriate 

control structure, and GA would tend to global convergence even in large and 

complicated search spaces [51]. GA has been developed and applied to a wide range of 

optimisation problems, such as graph colouring, pattern recognition, financial markets, 

multi objective engineering optimisation [52]. The GA for an optimisation problem is 

based on binary coded genetics, which means an optimisation function will be encoded 

as arrays of bit strings to represent chromosomes. Selection of their fitness, and other 
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operations of strings are determined by genetic operators. The procedure of GA can be 

summarised by the following steps [49, 52, 53]: 

a) encode the objective function; 

b) define a fitness function; 

c) create a population of the individuals; 

d) execute the evolution cycle or iterations by evaluating the fitness of all the 

individuals; 

e) create a new population by performing crossover and mutation; 

f) reproduce fitness-proportionate; 

g) replace the old population and iterate the process using the new population; 

h) repeat step d) to step g) until finding the optimal solution; 

i) decoding the optimal solution to the required range of decision variables. 

In this work, the optimisation problem is to minimise the end user’s energy cost, 

where the decision variables are the charging/discharging status of EV and ESS. So, the 

problem can be expressed as a binary integer programming problem. Unlike linear 

programming problems, the integer programming problems are difficult to solve. Several 

traditional algorithms could be applied such as cutting-planes and branch and bound 

programming; however, they are not both fast and reliable at the same time when dealing 

with the complex problems. Compared to the traditional optimisation algorithms, there 

are many advantages of GA. For example, it is conceptually simple, and no gradient 

information are required in the algorithm. It can be used to adapt solutions to changing 

circumstances, therefore it is robust to variations in the environment. Furthermore, GA 

has the ability to deal with complex problems, and it can deal with various types of 

optimisation problems whether the objective functions are stationary or non-stationary, 

linear or non-linear, continuous or discontinuous, integer or real. In GA, all points of a 

population act like independent agents, they can be carried out in several processors, and 

the population can explore the searching space in many directions simultaneously. 

Different variables can be manipulated at the same time and a GA algorithm is inherently 

parallel in searching [52, 54, 55]. Also, the convergence of GA in the sense of probabilities 

has been widely used in practice. Matlab has a built-in function for GA, which is applicable 

to mixed integer nonlinear programming problems. Thereofore, GA has been selected to 

get the solution. 
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2.8 Summary 

In this chapter, the smart gird is introduced, in which the end users play an important 

role. DSM can help the grid operator manage the end user’s demand, through which the 

end user’s energy cost and air pollution through can be reduced. Classifications of DSM 

methods have been presented based on the planning horizon, impact of the applied 

measures on the customer process and the optimisation problems. The obstacles and 

challenges when implementing DSM program are discussed.  

The formulation of the optimisation problem is crucial for DSM. The basics on how 

to build an optimisation problem and get the solution are introduced. The optimisation 

problems in this thesis work are categorised as integer programing problem. The integer 

programming optimisation and the GA algorithm are briefed.  
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Chapter 3 Smart Home Energy 

System with EV and Solar Water 

Heater: a Review 

EVs have become popular in the past decade in order to reduce greenhouse gas 

emission in transportation systems. Many countries have established schemes targeting to 

replace the combustion vehicles with EVs in order to achieve zero emissions after a few 

decades. It can be predicted that EVs will eventually become the most common vehicle 

for households in the future. In residential home energy systems, SWH can be utilized to 

replace EWH and satisfy the daily hot water demand, which can help the end user to 

reduce the electricity consumption. Since the switching status of EV and SWH can be 

controlled, the impacts of their operation on energy saving should be investigated from 

the DSM perspective. In this chapter, the basic scheme and controlling strategies of EV 

and SWH systems have been reviewed. A new technology on EV discharging, V2G, is 

introduced. Section 3.1 presents fundamentals of EV and V2G technology. Some studies 

related to the optimal charging management of EVs are reviewed in Section 3.2. In 

Section 3.3, the studies of EV charging and discharging strategies involving V2G are 

reviewed. The fundamentals of SWH is presented in Section 3.4, and relevant existing 

studies of load management for domestic water heating is reviewed in Section 3.5. 

3.1 Introduction of EV and V2G 

3.1.1 Fundamentals of electric vehicle 

An EV uses one or more electric motors for propulsion instead of a traditional 

petrol/diesel engine. A rechargeable battery that can be charged by common household 

electricity is used to store the energy to power the electric motors. When the accelerator 

pedal is pressed, the power is converted from the DC battery to AC for the electric motor; 

then the accelerator pedal sends a signal to the controller which adjusts the vehicle’s speed 

by changing the frequency of the AC power from the inverter to the motor. The motor 
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connects and turns the wheels through a cog. When the brakes are pressed, the motor 

becomes an alternator and produces power, which is sent back to the battery. The key 

components of an EV and a schematic are shown in Fig. 3 -  1. 

 

Fig. 3 -  1 A schematic of EV [56] 

The early type of electric motor was invented by Anoys Jedlik who created a small 

electric model car by his new motor in 1828 [57]. In fact, the transportation power is 

dominated by petroleum-derived fuels for a long time because of the high cost, heavy 

weight, and short driving range of battery EVs. However, batteries are becoming cheaper 

and lighter in weight, and the traditional liquid fuel will be eventually replaced because 

EVs can help to reduce adverse dissemination when they are combined with a broad use 

of renewable and carbon free energy sources in the transportation sector. EVs can be 

categorised into several types: hybrid EVs (HEVs), plug-in hybrid EVs (PHEVs) and 

battery EVs (BEVs) [58]. 

HEVs are powered by two drive systems, which are gasoline engine with a fuel tank 

and electric motor with a battery. They start off using the electric motor, then the control 

system will switch to gasoline engine if vehicle speed rises. Both systems can turn the 

transmission at the same time, and are controlled by an internal controller which ensures 

the best running for the driving conditions. HEVs cannot be charged from the electricity 

grid. All of the electric energy is generated from the gasoline and from the vehicle’s own 

braking system which is called regenerative braking. This is a process that the heat 

generated from brakes is converted to electricity form to drive the electric motor [58, 59].  
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PHEVs are also powered by both of the electric motor and the internal combustion 

engine. However, the battery, which drives the electric motor, can be plugged into the 

power gird and recharged. The owners can achieve more fuel cost savings from PHEVs 

than traditional HEVs because of the use of electricity from grid [58, 59].  

BEVs are not supported by traditional combustion engine and only powered by 

electric motor and battery, so they must be plugged into the grid or other external source 

of electricity to charge the battery. Like other types of EVs, regenerative braking can also 

help BES to recharge its battery. The pros and cons of different types of EVs are shown 

in Table. 3 - 1[58, 59].  

Table. 3 - 1 Pros and cons of different types of EV[58, 59] 

EV types Pros Cons 

HEVs  Longer driving distance than BEVs 

 Less fuel consumption and emissions 
than traditional combustion vehicles 

 Complex mechanical design of both 
gasoline engine and electric motor 

 Still produces emissions 

 No ability to charge at home 

 The costs of operation are more expensive 
than BEVs but less than traditional 
gasoline vehicles 

PHEVs  Longer driving distance than BEVs 

 Less fuel consumption and emissions 
than traditional combustion vehicle 

 Can be partially charged  

 Very simple mechanics  

 Still produces emissions 

 The costs of operation are more expensive 
than BEVs but less than HEVs. 

BEVs  No emissions 

 Ability to charge at home 

 Fast and smooth acceleration without 
noise 

 Much lower cost of operation  

 Shorter driving distance than other 
vehicles 

 The price of the vehicle is slightly more 
expensive than other similar level vehicles 

 

3.1.2 Briefs of vehicle to grid technology 

The core part of an EV is its battery pack, which could be used as energy storage 

device. When the electricity in this energy storage is allowed to flow from vehicles to the 

power grid, it is called “vehicle to grid (V2G)” technology. V2G technology refers to the 

capability of controllable and bi-directional electrical energy flow between a vehicle and 

the electrical grid [60]. It also includes vehicle to home or vehicle to building that EV’s 

battery can be used to service household or local building’s electrical load without 

transferring to the power grid. 

Some benefits could be achieved through V2G technology. From the perspective of 

grid or company, V2G can help to provide power to the grid when the demand is high, 
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and charge the battery of EV when the demand is low. Therefore, both of peak shaving 

and valley filling can be achieved if charging and discharging of EV are properly controlled. 

Through the V2G technology, EVs can also be considered as an ESS to suppress the 

oscillation and peak deviation in grid frequency [61]. In addition, the charging station of 

EVs can be utilised as renewable energy storage, which can smooth the intermittency of 

renewable power generation and support the increased use of renewable energy. 

Therefore, there is no need to build the new energy storage facility and the financial cost 

of the grid’s company can be reduced. On the other hand, EV owners may obtain rewards 

if the grid company provides an attractive incentive scheme to encourage the participation 

of V2G. Also, V2G could play a vital role during power outages. It can help the owners 

support the critical electrical appliances during the outage period.  

There are still some doubts when applying the V2G technology, such as whether the 

battery degradation could be compensated by the power selling price or market incentives, 

and whether the EV owners are willing to discharge their EVs at a certain time.  

3.2 Optimal charging management of EV 

In some recent studies, the potential impact of EV charging on distribution network 

has been investigated, and optimised charging strategies have been developed in order to 

relieve the pressure on the network. A mathematical model is proposed in [62], which 

aims to determine the optimal size and site of PHEV charging stations in distribution 

networks. The objective is to maximise benefits of the distributed system. Several 

constraints on power qualities have been involved such as the power flow balance, the 

voltage limits, the thermal limits of substations. The test results show that not only the 

cost of the distributed system can be reduced through the optimisation, but also the 

voltage and the load profile can be improved. Though load and price uncertainties are 

considered in their work, the uncertainty behaviours of the customer, such as departure 

and arrival time of EV, are lacking. Another study [63] proposes a linear programming 

method, which controls the charging rate of individual vehicles in order to maximise the 

total power that can be delivered to the vehicles. In order to ensure that the operation is 

within network limits, voltage and thermal loading constraints are also involved. Results 

show that high penetrations of EV can be accommodated on existing residential networks 
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with little or no need for upgrading network infrastructure. This study assumes that all 

EV batteries have the same capacity of 20kWh, and the objective was to return an average 

state of charge (SOC) of 99.9% for all EVs. The battery capacities of EVs are, however, 

different from each other in practice. The higher-capacity EVs could not be guaranteed 

with charging to the same SOC level as the lower - capacity EV. A decentralised online 

algorithm is proposed in [64], in which each EV charging rate is calculated and guided 

through the updating valley level of the utility. Simulation results show that power loss 

can be reduced, and the value of the online solution is larger with higher penetration 

compared with the offline solution. Another charging control method is proposed in [65] 

for the situations where frequent communication with EVs is not possible, and the ideal 

valley filling can be achieved. In this work, modelling of EV arrivals and departures as 

random events are also lacking, and the battery state of health is not considered. In [66], 

EVs are controlled as the DR in order to mitigate the intermittent effects of wind 

generation. It shows that the grid frequency regulation can be improved, and the cost 

reduction of the generation can be achieved with 99.5% charging of EVs. The battery 

capacity of all EVs is assumed to be the same as 16kWh. Also, this study assumes that the 

charging of EVs are free to control to support reserves and no rewards are given to EV 

owners. This can be an issue when controlling the EVs as the DR, since the willingness 

of customers’ participation must be considered in practice.  

There are studies aiming to minimise the EV charging cost either for the charging 

station or for the EV owners. For example, a mixed-objective formulation from both 

system and customer perspectives is proposed in [67], which shows that the valley filling 

can be successfully achieved for the system and the customer’s charging cost can be 

minimised under TOU rate structure. The paper indicates that the results are validated 

using actual driving behaviour data from the National Household Travel Survey. In [68], 

a dynamic programming framework is proposed to determine an optimal charging 

strategy at parking-lots. The driving behaviours including the arrival time, the departure 

time and the arrival SOC are modelled as Poisson process. The method has been verified 

that it can significantly decrease the energy cost for a commercial parking-lot. A charging 

scheme in the parking station is presented in [69], which satisfies EV charging and 

coordinates DR programs. In this study, uncertainty arrival behaviours of vehicles are 

represented as a Gaussian model, and four types of battery capacities are considered. The 
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results show that the proposed approach can help to maximise the EV numbers for 

charging and minimise the monetary expense. However, EV may not always be charged 

at parking-lots, and the EV parking time at home is much longer than parking outside for 

vehicle owners during 24 hours period. The Poisson distribution or the Gaussian 

distribution can be inadequate to describe the probabilities that EVs are parked at home.  

With integration of renewable energy and ESS, designs of EV charging stations are 

proposed considering EV car park and renewable resources [70-75]. It’s been shown that 

the utilisation of renewable energies, ESS and DSM would reduce the impact on the grid 

and increase the profits of the parking lots. A scheme for a PV-powered EV charging 

station is proposed in [76], in which EVs are classified into three types, premium, 

conservative and green. The premium EVs are ensured that they are charged to the 

maximum possible states whenever the EVs leave the charging station. Conservative EVs 

are charged to the state as set up by the owners. Green EVs are similar to the conservative 

EVs except that they are allowed to discharge the power. The objective is to reduce the 

effect of intermittency of the generation and the cost of energy trading for charging 

station. Simulation results show that increasing penetration of green vehicles can reduce 

the total energy trading cost by 85% in summer and 82% in winter. Green vehicle owners’ 

charging cost can also be reduced between 42.7% and 49.4%. However, each discharging 

of the green vehicle will result in additional battery degradation cost, which needs to be 

considered in the calculation of the owners’ charging cost. Another optimisation strategy 

for EV charging could achieve 51.52% cost reduction for a single EV [77], but the cost 

of battery degradation and the EV driving behaviours are not considered.  

3.3 Optimal charging of EV involving V2G technology 

V2G has been considered in many EV charging scenarios. Recent studies on V2G 

control and optimal charging strategies have focused to reduce the power load fluctuation, 

frequency fluctuation, voltage variation and uncertain generation of renewable energy. A 

decentralised V2G control method to suppress frequency fluctuation is proposed in [78], 

where a battery SOC holder control strategy is presented to maintain battery residual 

energy, and a frequency regulation charging method is applied to schedule EV charging 

and provide frequency regulation. In another study [79],  a new supplementary load 
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frequency control (LFC) method is proposed using EV and heat pump water heater 

(HPWH) as controllable loads. This new LFC method can effectively suppress frequency 

fluctuation, and reduce the required battery energy storage system (BESS) capacity. To 

shave peak load and compensate uncertainties of renewable generation, scheduling 

schemes for V2G operation have been proposed [80-82], with the aim to smooth the 

fluctuation in load profiles and improve the operation efficiency and grid security. It 

concludes that V2G can support the grid to shave the peak demand and reduce grid 

operational costs under suitable energy policy strategies.  

Other studies of optimal charging/discharging control of EV concentrate on the 

cost/benefits of Grid Company or end user. For example, an optimal scheduling of EV 

charging and V2G at household level is given in [83], which takes into account the cost 

of battery degradation and price uncertainty. Results of the case studies show that V2G 

will not happen if the battery degradation cost is larger than the benefits from the grid 

company. If the battery cost is low and the degradation cost is close to zero, V2G could 

be attractive to the end users. Therefore, the degradation characteristics play an important 

role in evaluation of the degradation cost, V2G application, and the pattern of EV 

charging. Though the relevance of the battery degradation has been revealed, quantitative 

analysis of the charging-related cost and vehicle usage are missing.  

An optimisation charging model proposed in [84] is used to minimise the total 

energy cost, comprising of V2G integration and DR strategies. The results show that 58% 

cost reduction can be achieved through the proposed strategy, and meanwhile the 

consumption load is restricted by peak power limiting DR. However, the battery 

degradation costs are not considered in their model. In [16], smart charging of EV and 

V2G is performed to increase the self-consumption of PV from 49% to 87%, and the 

demand peaks are decrease by 27%-67%. This study also reveals that battery usages will 

be dramatically increased if V2G is applied; therefore, the benefits of V2G needs to be 

weighed against this issue. An optimal charge scheduling is proposed in [85] considering 

V2G technology and relevant battery wear cost. The main objective is to minimise the 

total charging when the battery degradation costs due to V2G are included. Their results 

show that the reward value under the assumed FIT can cover the degradation cost, and 

could encourage the EV owners to participate in V2G program. However, the minimum 

assumed FIT value, $0.2/kWh, is too high compared with the realistic value. According 
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to the government’s report of UK, the FIT is £0.0485/kWh, and the electricity price is 

around £0.16/kWh.  

There are doubts on the economic viability of V2G, primarily due to the high cost 

of discharge to the grid; this is often related to factors such as battery degradation, 

expensive battery pack and low FIT. V2G service can also lead to reduced life-cycle of an 

EV. Power aggregators should operate either on pay-as-you-go basis or provide consumer 

with advanced cash payment in order to attract more EV owners participating in V2G 

[17]. The rate of return for V2G is not always sufficient to induce widespread V2G 

participation due to connection capital costs, electricity purchase costs, and battery 

discharging degradation costs [18]. The EV’s battery pack is likely to be replaced more 

often when V2G service is applied.[19]. Another optimisation investigation in [20] 

suggests that the battery aging cost induced by V2G exceeds the revenue brought from 

V2G, and the substantial subsidies are needed to trigger V2G service.  

3.4 Solar water heater (SWH) technology and applications 

In this section, the basics of solar energy and typical applied technologies including 

photovoltaic (PV) and solar water heater (SWH) are introduced. The fundamentals of 

SWH are presented. The benefits, drawbacks and effects on use of SWH are discussed.  

3.4.1 Solar energy 

Currently, the global electricity consumption is increasing [86]. Large scale power 

plants usually burn fossil fuel, such as coal, natural gas and oil, to generate electrical power, 

which induce huge environmental side effects. These drive development for the 

renewable energy sources, such as wind, solar, wave and tidal, hydropower and biogas. 

Among these sources, solar energy is more attractive than others due to its abundance 

and free of cost all across the globe. It is radiant light and heat received from the sun 

harnessed on earth that has been recognised as the most important renewable energy 

source [87]. It is considered as the source of all the energy for life in the world. 

Technologies to utilise the solar energy have been invented, such as solar heating, solar 

thermal energy, and photovoltaics. In 1890s, the first commercial SWH was made and 

sold in USA, and SWH is the most worldwide installed solar thermal systems for heating 
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water by the end of 2013 [88-90]. In 1912, the first solar thermal power station was 

constructed by Shuman in Maadi. In the 1950s, the first commercial PV cells, which can 

be utilised to convert sunlight into electrical energy, were invented at Bell Labs [91]. As 

the technology advances, the conversion efficiency of solar PV and SWH become higher, 

and the instalment prices are reduced. They have been widely used for household 

applications. Both PV and SWH can help to reduce the electricity consumption of the 

end user. For example, the end user can install the PV panel to directly generate the 

electricity power for their own usage. SWH can be utilised to replace EWH and satisfy 

the daily hot water demand, which can also reduce the electricity consumption. Compared 

with PV, SWH is much easier to be controlled due to its switching on-off characteristics. 

In this thesis, the PV generation is considered as a given fixed parameter and SWH is set 

as the decision variable. 

3.4.2 Solar water heater basics 

SWHs collect the solar radiation and transfer the energy for water heating. It 

combines five basic components which are solar thermal collectors, heat transfer system, 

storage system, control system, and auxiliary hot water system. Solar thermal collector is 

a device to collect the heat by absorbing solar radiation. Then, the heat energy is absorbed 

by the heat transfer fluid, such as water, non-freeze liquid, or air, and transferred to heat 

in the domestic hot water through the heat transfer system. The storage system is used to 

store the thermal energy in a water type and supply daily hot water consumption. The 

control system is used to manage the collection, storage, and distribution of the thermal 

energy. Since hot water peak demand is usually in the morning or late evening and does 

not coincide with times of maximum solar radiation, the auxiliary hot water system is 

necessary to guarantee the hot water demand when solar energy is not sufficient. This is 

typically a conventional electric resistance to heat the water [92, 93]. There are two types 

of SWHs depending on the way the heat transfer is transported: passive systems, and 

active systems.   

The passive systems can also be called natural circulation systems that occur by 

natural convection and no pumps are employed. They can be further classified into direct 

and indirect types. In a direct system, the potable water is heated directly in the collector. 
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In an indirect system, the potable water is heated by the heat transfer fluid. Fig. 3 -  2 

shows a classical passive system [93]. 

An active system can also be called forced circulation system that use pumps or fans 

to circulate the heat transfer fluid through the collector. Similar to passive systems, active 

systems can also be direct or indirect. The direct active systems use a pump to circulate 

water directly through collector and into the storage tank, which are usually applied in 

areas that the temperature of climates do not freeze the water. For the areas where 

freezing temperatures occur, the indirect active systems will be applied that use pumps to 

circulate heat transfer fluid through the collectors; then, the heat energy will be transferred 

from the fluid to the domestic water supply trough heat exchangers. The active systems 

are usually more expensive than passive systems, and more difficult to retrofit in houses. 

Fig. 3 -  3 shows a schematic diagram of a direct active system [93].  

In this thesis, the passive system is applied because it is less expensive than active 

system. In addition, it is more reliable and easier to maintain due to there are no electrical 

components involved and do not rely on pumps and controllers. 

 

Fig. 3 -  2 Diagram of a passive SWH [93] 

 



58 

 

 

Fig. 3 -  3 Diagram of an active SWH [93] 

3.4.3 Benefits, drawbacks and effects on use of SWH 

Since SWH was invented, the potential impacts of its application have been 

investigated from many studies in different countries, such as the reduction of greenhouse 

gas, cost savings, payback period, and some drawbacks. In this subsection, the use of 

SWH and its applications have been reviewed.  

The potential application of SWH is investigated in Turkey [94]. It is found that 

SWH market is still strong without incentives by government. The major factors, which 

influence the popularisation of SWH, are government financial incentive program, 

payback period, availability of local dealers, and climatic conditions. The market potential 

and development of SWH in Algeria is discussed in [95]. It shows that SWH systems have 

not been sufficiently developed in Algeria due to the availability of natural gas at low price, 

and the SWH devices which are imported from EU are too expensive. SWHs can be used 

to reduce peak electricity demand, save on carbon emission, and improve householder’s 

standard in South African [96]. However, householders may abandon using SWH if there 

are no clear benefits within a few months, or if technical problems occurred. The water 

used will be increased for users who use heater frequently although the electricity bills can 

be reduced. This may not be an issue for areas with abundant water resources, but it could 

be a big issue for the water-scarce area [96]. In Iran, one direct effect on the use of SWH 

is environmental issue, and the financial support from the government has the most 

influence on SWH market [97]. The potential benefits from using SWH in Zimbabwe is 
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discussed in [98]. It is demonstrated that the electricity peak demand in winter and the 

final energy demand can be reduced by 13% and 27% respectively, assuming a 50% 

penetration rate of SWH potential demand, and SWH can help to save up to $250 million 

in energy cost, and the CO2 emissions can be reduced by 29% over the 25-year period. 

In Brazil, the reduction of carbon dioxide while using SWH is assessed, and compared 

with electric showers [99]. It shows that SWH is not useful in hot climactic regions 

because these areas require much more cooling demand than hot water demand. In 

another study on SWH use in Brazil [89], the influence of human behaviour is considered. 

The benefits of SWH in low-income families vary depending on the users and the use of 

SWH technology. Lack of technological understanding and unable to mix the hot and 

cold water efficiently become the major factors affecting the use of SWHs. The policy 

measures are evaluated in Japan on the spread of PV and SWH to reduce carbon dioxide 

emission from residential sector [100]. The factors that can influence consumer’s 

preferences such as installation cost and energy prices are considered. The public 

perception must be improved on the fact that the carbon dioxide emission can be reduced 

considerably by using SWH, and reducing the initial cost is more effective than reducing 

operating expenditure for carbon dioxide reduction in case of PV.  

Two pathways to low carbon energy, SWH and PV, are compared in China [101]. 

Although SWH technology has received less financial and political support from the 

central government compared with PV, it can also contribute a lot to low carbon energy 

since it is applied everywhere across the country, especially in rural areas. The analysis of 

the comparison between PV and SWH in China is illustrated in [102], with a focus on the 

cost and benefit for users. The optimal SWH setting area is recommended to be 3-4𝑚2 

for each residential home. The study shows that only when the solar panel’s area is larger 

than 6𝑚2, PV can utilise more solar energy than SWH.  

The payback period of SWH in Malaysia and Taiwan are investigated [103] and [104]. 

Factors of cost and benefit from financial perspective are taken into account. The 

reduction of harmful gas with SWH application is reported in [103], where it presents that 

promoting the use of SWH can save large electricity consumption for Malaysia. By 

comparing SWH and the traditional EWH, it is found that the payback period is shorter 

if the EWH is substituted by SWH [104].  
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The benefits, drawbacks and the impacts of SWHs are summarised in Table. 3 - 2.  

Table. 3 - 2 Benefits, drawbacks and impacts of SWH’s application 

Benefits Drawbacks Factors influencing its application 

 Reduce peak electricity demand 

 Reduce carbon emission 

 Improve householder’s life 

standard 

 Reduce final energy demand 

 Payback period is shorter 

 The market is still strong without 

government incentives 

 The purchase cost is expensive 

if it is exported from EU 

 Users may abandon it for lack 

of clear benefits or technical 

problems 

 Not very useful in hot 

climactic areas 

 May result in higher water 

consumption 

 Not competitive if the natural 

gas price is low 

 Government financial incentive 

programme 

 Payback period 

 Availability of local dealers 

 Climatic condition 

 Initial installation cost 

 Energy prices 

 Environmental and technological 

understanding from customer 

perspectives 

3.5 Load management for domestic water heating 

Water heating is one of the major energy consumption all around the world [105]. It 

occupies 11% of the total residential energy consumption in USA, 14% in EU, 22% in 

Canada, 25% in Australia and Russia, 30% in Japan, 29% in Mexico, and 27% in China. 

One traditional way to heat the water is to use EWH. As its operation can be interrupted 

and the switching status of EWH can be shifted in time, control of EWH may have a 

large DSM potential. An optimal operation scheduling of EWHs under dynamic pricing 

is proposed in [106]. Simulation results indicate that total energy cost is reduced around 

30% for guaranteed water temperature of 60℃. The energy cost decreases with higher 

upper temperature set point because the higher temperature set point leads to higher 

thermal energy stored in hot water in tank. The optimal scheduling enables EWH to warm 

the water during the lower energy prices period. In [107], an optimised control of the 

domestic hot water heaters for DSM is implemented and tested, and it shows an averaged 

reduction of cost approximately of 12%.  

According to the daily hot water usage data from UK government report [108](Fig. 

3 -  4) , the peak period of hot water usage is between 7:00am to 9:00 am in the morning. 

The daily solar radiation data are selected from the area of Glasgow in UK, which are 

sourced from [109], as shown in Fig. 3 -  5. It can be seen in conjunction with the daily 

solar radiation curve in Fig. 3 -  5 that the hot water can be heated by solar radiation 
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during the peak period if EWH is substituted by solar thermal type of heater such as SWH; 

therefore, less electricity energy will be consumed and the total energy cost will be reduced 

further.  

 

Fig. 3 -  4 Average daily hot water consumption [108] 

 

Fig. 3 -  5 Average hourly solar radiation in each month [109] 

The effects of disconnections of residential water heaters are examined in [110], 

which indicates an additional averaged consumption increase after the disconnections due 

to the payback effect. Thus, an optimal scheduling with the constraint of a smooth load 

curve is needed. The influence of electricity consumption on the performance of SWH is 

considered to be huge [111]. How to optimally control the SWH and other residential 

loads for DSM are required. In [112], a method of diminishing marginal utility for optimal 

design of SWH is proposed, where the optimal size of the solar collector area and the 

storage tank volume are determined to be 194𝑚2 and 89𝑚3 for the case study system. 
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The study is based on a building site rather than a single house situation. For residential 

home systems, the benefits could be further improved if economic hybrid PV-thermal 

systems and additional ESS are considered. 

3.6 Summary 

In this chapter, the EV and V2G technologies relevant to the thesis work are 

introduced including optimal charging management of EV with and without V2G. Some 

doubts on use of V2G technology are presented. Furthermore, the fundamentals of solar 

thermal system are introduced. Some existing studies of load management for domestic 

water heating are reviewed.  
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Chapter 4  Minimisation of 

Household Energy Cost 

Considering ESS and EV with 

Driving Behaviour 

EVs can be applied to reduce the (peak time) pressure on grid via the V2G 

technology. There is a constant debate on whether V2G is an economically viable option 

due to its high battery degradation cost. This question will be addressed, in this chapter, 

by considering whether customers could benefit from V2G programme under different 

FITs. Section 4.1 introduces the infrastructure of the residential home energy system. The 

power model is established in Section 4.2, where the EV driving behaviour is considered. 

The cost model including the key factors is described in Section 4.3. Case studies and 

results are discussed in Section 4.4. A summary is given in Section 4.5.  

4.1 Residential home energy system 

The residential loads in a typical home energy system are usually cannot be controlled, 

and the renewable generation is not included. In a smart home energy system, a PV 

generation is assumed to be installed. In order to adapt the variability and intermittency 

of  PV generation, energy storage system (ESS) is very important to the smart home 

energy system, which can help the end user to storage the extra electricity power generated 

from PV and output power in an emergency situation or during the peak load period. 

Therefore, the infrastructure of the residential home energy system is illustrated in Fig. 4 

- 1, where the components include a PV power system, an EV, an ESS, the lumped other 

residential loads, and the power grid. In Fig. 4 - 1, 1 0P   is the output power from the 

PV system, 2P  is the EV charging or discharging power, and 
3P  is the input/output 

power of the ESS. Both 2P  and 
3P  are variables to be controlled in the system. The 

remaining load of the residential home is represented by 
4 4( 0)P P  . The smart home 
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system is connected to the grid; the power to and from the grid is represented by 
5P . The 

physical topological structure of the entire residential system is shown in Fig. 4 - 2. 

 

Fig. 4 - 1 Infrastructure of the residential home energy system 

 

Fig. 4 - 2 Physical topological structure of the entire residential system 
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In Fig. 4 - 1, the arrows towards the optimisation (controller) block are defined as 

the positive direction indicating that the power jP  flows into the block. In this study, the 

total operational cost of the energy system is considered over a 24 hours’ time period with 

the sampling period of 1 hour. In this case, there are 24 time periods or slots, each being 

denoted by index i  ( 1,2, ,24i  ).The initial time period is assumed to start from 8:00 

am where the time slot is set to be i=1. The units for all power flows are in kW. The basic 

relationship of the power flows can be described by the following power balance equation.  

 
5

1

( ) 0 ( 1,2, ,24)j

j

P i i


    (4.1) 

It should be noted that 2( )P i  and 
3( )P i  are the two variables that can be adjusted 

through optimisation, while 
1( )P i  and 4( )P i  are fixed given information, and 5( )P i  can 

be calculated from (4.1) when the other four power factors are available.  

4.2 Residential home system power model 

4.2.1 Power for PV, ESS and EV with V2G 

The PV power can be described by  

1( ) ( )i AP i I                                                       (4.2) 

Here ( )I i  is the solar irradiance ( 2kW/m ); (0 1)    is the solar irradiance to 

electricity conversion efficiency which is selected as 15% in this work; A  is the solar panel 

area ( 2m ). 

The charging/discharging power of EV and the power corresponding to on-off 

status of ESS can be described by the following expression. 

 2

, if EV is discharing 

( ) , if EV is charging 

0, otherwise

a

P i a

 


 



  (4.3) 
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 3

, if ESS is discharing 

( ) , if ESS is charging 

0, otherwise

a

P i a

 


 



  (4.4) 

a  (kW) is a positive real number used for both EV and ESS; is the discharging efficiency 

accounting for the energy conversion loss, which is selected as 90% according to [113]. 

An intermediate term 2P  is used in (4.3) to refer to EV charging and discharging power 

without consideration of driving behaviours. In this work, the charging/ discharging 

powers for EV and ESS are assumed to be constant within each time slot. The levels of 

battery charging/discharging are considered to be the same for ESS and EV. 

To simplify the model, when the vehicle is under the driving status, the discharging 

power is assumed to be constant and equal to the discharging power for V2G; therefore, 

variations of the power due to the change of driving behaviours such as acceleration or 

deceleration are ignored. That being said, the corresponding energy charged/discharged 

can be determined by the averaged charging/discharging effects.  

4.2.2 Power model for EV considering driving behaviour 

In order to characterise the uncertain nature of a car usage, a practical survey of 

vehicle daily usage is designed. The different driving purposes and usage in time are 

included in the survey. Information such as the driving distance for each drive, starting 

time and duration when the vehicle is away from home, time duration for parking outside, 

has been collected. Details of the survey and results are presented in Appendix. Then the 

raw data is processed and used to calculate the following probabilities:  

 1kp i : the probability of EV parking and plugging in at home within time slot i  ; 

 2kp i : the probability that the EV is under driving within time slot i ; and 

 3kp i : the probability that the EV is parking outside within time slot i. 

The sum of  1kp i  and  2kp i is equal to 1, i.e. 

     1 2 3 1k k ki ip p + p i+ =                                              (4.5) 
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In this study, these variations have been analysed from a real questionnaire (see 

Appendix A), in which the data has been transformed to the corresponding probabilities 

(see 4.3). Then, the mathematical expectation of the driving power consumption within 

each time slot is calculated. 

The power flow from EV to the controller depends on whether the battery is under 

charging or discharging operation. Considering the driving probabilities, the EV power 

can be described as follows:  

        
 

2 1 22

1

dN

k EV k

l tot

l

al

d l p
P p Q p

d
i P i i i



       (4.6) 

where totald  is the maximum distance (km) the EV can drive with a fully charged battery, 

EVQ  is the EV battery capacity (kWh). The total number of drives is represented by dN , 

 d l  is the l-th driving distance and lp  is the probability corresponding to  d l  

( 1, , dl N ).When an EV is parking outside, it is assumed to be disconnected from the grid; 

therefore, no charging or discharging activities take place, and the term  3kp i  can be 

ignored for this situation. More details on EV driving behaviour can be seen in the survey 

results in Appendix. 

As can be seen from (4.6), the second term is the mathematical expectation of 

driving power consumption. The daily use of a vehicle has many uncertainties for various 

reasons. When the EV’s owner plugs out the vehicle from the charging slot leaving home, 

the remaining SOC of the EV will be different from when it is plugged back to the slot 

after the driving. The application of V2G technology will be influenced when considering 

these variations.  

4.3  Calculations of vehicle driving/parking probabilities  

The results of survey are shown in Appendix. A.  According to the data in Table A. 

1 and Table A. 3, the probability of EV being used outside of home for different purposes 

under certain time can be calculated. Therefore, the probability of EV being used outside, 
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   2 3 kkp i p i , for each sampling time can be obtained, and,   1kp i  can be calculated 

through (4.5), as shown in Table. 4 - 1. 

Table. 4 - 1 Probabilities of EV usage (normalised in percentage for each column) 

Time period 7:00-

10:00 

10:00-14:00 14:00-17:00 17:00-20:00 20:00-23:00 After 

23:00 

   2 3 kkp i p i  
28.24 15.21 15.19 27.88 10.19 2.77 

 1kp i  
71.76 84.79 84.81 72.12 89.81 97.23 

According to the Table A. 1 and Table A. 2, the driving distance  d l and the 

probability of different driving distance, lp , can be obtained, which are shown in Table. 

4 - 2.  

Table. 4 - 2 Probability of different driving distance (normalised in percentage for each row) 

 d l , 

miles  

< 1  1-3  3-5  5-10  10-20  20-40  40-80  80-

120  

120-

160  

160-

200  

200+  

 lp   
10.47 22.52 18.9 15.55 9.86 6.58 5.62 4.52 1.04 1.21 3.73 

 
According to the data in Table A. 1, Table A. 4 and Table A. 5, the probability of 

driving time and outside parking time can be calculated, as shown in Table. 4 - 3and Table. 

4 - 4, respectively. Assume that the inbound return driving time is the same as the 

outbound driving time for each trip, then it is calculated that the mean of the time that an 

EV is driving on road in a 24 hour period is around 140 minutes. The mean of the outside 

parking time can also be obtained, which is around 158 minutes. Therefore, when the EV 

is not plugged in at home, the probability of driving and parking outside can be 

approximately calculated, which are 46.94% and 53.06% respectively.  

 

Table. 4 - 3 Probability of different driving time (normalised in percentage for each row) 

Driving time 

duration (one way) 

< 10 mins 10 -20 mins 20 -30 mins 30 mins-1 

hr 

1 -2 hrs 2 -3 hrs 4 hrs 

Probability 12 25 19 18 9 5 12 
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Table. 4 - 4 Probabilities of different outside parking time (normalised in percentage) 

Parking time 

duration 

< 10 mins 10 -20 

mins 

20 -30 

mins 

30 mins -1 

hr 

1 -2 hrs 2 -3 hrs 3 -5 hrs 6 hrs 

Probability  10 10 9 11 16 14 9 21 

 

According to Table. 4 - 1, and the probability that the EV is driving on the road at 

time point i , both  2kp i , and  3kp i , can be obtained, which are shown in Table. 4 - 5.  

Table. 4 - 5  Probability of EV being outside of home (normalised in percentage) 

Time period 7:00-10:00 10:00-14:00 14:00-17:00 17:00-20:00 20:00-23:00 After 

23:00 

 2kp i  
13.26 7.14 7.13 13.08 4.78 1.30 

 3kp i  
14.99 8.07 8.06 14.79 5.41 1.47 

 

4.4 Residential home cost model 

The purpose of design is to minimise the total operational cost of the energy system, 

over a 24 hours’ time period, via charging and discharging scheduling, so that the user’s 

profit is maximised. The cost function, totalC , consists of the following parts: the 

degradation costs of the EV battery (
EVC ) and the ESS battery (

ESSC ) due to charging 

and discharging, the EV battery cost caused by driving ( EV outsideC  ), the cost to purchase 

electricity from the grid (
purchaseC ), and also the income from selling electricity to the grid 

(
incomeC ) that is deducted from the total cost.  

  total EV ESS EV outside purchase incomeC C C C C C      (4.7) 

4.4.1 EV and ESS battery degradation cost model 

According to [114], a battery degradation consists of three parts: temperature related 

degradation, SOC related degradation, and the DOD related degradation. The 

temperature related degradation is caused by the fluctuations in charging power or 
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discharging power. It is negligible for the EV parking at home and for the ESS since their 

charging/discharging current and voltage are usually stable. Therefore, only the SOC and 

DOD related degradation are considered in the following.  

 SOC-related degradation cost 

For both EV and ESS, the hourly cost of SOC - related degradation can be 

represented as follows [114]: 

  
 

0 ,
365 24

SOC

max

SOC i
C C

CF y
i

  
 

  
  (4.8) 

where 0C  is the battery purchase price,  SOC i  is the value of SOC within time slot i . 

The two parameters,   and  , are determined by linear regression from the measured 

data, which are calculated to be 51.59 10  and 66.41 10 , respectively [115]; maxCF  is the 

maximum capacity fade constant which is assumed to be 20% after y  years of battery 

use [115]. 

The relationship between charging /discharging power P and the SOC can be 

determined as INSOC SOC P Q   [116], where INSOC  is the initial value for the SOC, Q is 

the battery capacity. Since the driving probabilities will be considered, the EV’s SOC can 

be derived from [116] as: 

    21

1EV i

EV IN

EV

SOC SOC P
Q

i





     (4.9) 

From (4.8) and (4.9), the SOC - related degradation daily cost of the EV parking at 

home within the i -th time period is represented as follows:   

   0
21
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iEV
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m
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ax EV

VC SOC P
C

i
CF y Q 

 



   

  


 

  
  (4.10) 

 DOD-related degradation cost 
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The DOD - related degradation cost per discharging cycle (£/cycle) can be 

expressed by 0  
 

DOD

total

L

N
C 

 


 
 where   totalN  is the total number of discharging cycles 

corresponding to DODL [114]. DODL  is the DOD of a particular discharging cycle, 

which can be obtained as EV-Discharge EVP Q , where EV-DischargeP  is the total discharging power 

for V2G during the day. It can be expressed as: 

    EV-Discharge

24

2 21
sgn( )

i
P iP iP


    (4.11) 

and the sign function  sgn   is defined as: 

  
1,

0
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  (4.12) 

 The value of   totalN  is related to the DOD [117], as depicted in Fig. 4 - 3. In this study, 

the polynomial function between   totalN  and DODL  is obtained through curve fitting, as 

represented by (4.13). 

 

    24 3 5

 

1.06 ( ) 2.80 ( ) 2.66 1.07 0.17 10

total DOD

DOD DOD DOD DOD

N f L

L L L L

  

            
 

 (4.13) 

 

Fig. 4 - 3 Battery lifecycle number vs. DOD from manufacturer’s data [117] 
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Hence, the DOD degradation cost per discharging cycle can be written as 

 0
DOD

DOD

L
C

f L




. Assume that there are 1n  discharging cycles during 24 hours, with each 

of them corresponding to a DOD degradation cost, then the DOD related degradation 

daily cost is represented as follows: 
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   (4.14) 

Following (4.14), the DOD related degradation cost of EV parking at home within 

time period i , denoted by  EV

DODC i , can be written as: 
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   (4.15) 

Similarly for the ESS, the SOC related degradation cost and the DOD related 

degradation cost within the i-th time period, denoted by  ESS

SOCC i  and  ESS

DODC i , 

respectively, are written as follows:  

   3
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   (4.17) 

where ESSQ  is the ESS battery capacity.  

The overall battery degradation cost of EV and ESS over 24 hours is the sum of 

degradation cost from SOC and DOD for both EV and ESS at each hour, thus  

         
24

1

EV EV ESS ESS

EV ESS SOC DOD SOC DOD

i

i i iC C C C iC C


       (4.18) 
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4.4.2 EV cost due to driving  

In this thesis, it has been assumed that EV has a 20% maximum capacity fade 

constant value which is represented by maxCF . The whole EV’s battery lifetime is 

represented by y  years; therefore, in order to calculate the degradation costs due to EV 

driving outside of home, we assume that the average daily battery degradation cost, 

EV averageC  , is the total daily degradation cost, which can be calculated by the following 

equation (4.19) 
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  (4.19) 

Considering the driving probabilities, EV outsideC   can be calculated as follows 
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where   
24

1

21 1 k

i

ip



  
 
  is the probability of using vehicle outside home during the 

day.  

4.4.3 Purchasing costs and selling incomes from/to grid 

The total electricity purchasing cost, purchaseC , is determined by  5P i  only where 

4

5 1 jj
P P


  , therefore 

       
24

5 5

1

sgnpurchase

i

C P Pi i i


    (4.21) 

where   i  is the unit electricity price. 

Here only the positive values of  5P i  are considered in the purchasing cost.  
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According to [118], the FIT value, consists of two parts: the generation tariff, 

 generation i , and the export tariff,  export i . The generation tariff is a fixed payment from 

the electricity supplier for every kWh of electricity the renewable system generates, such 

as PV in this work. The export tariff is the unit payment for every kWh of electricity the 

system exports back to the electricity supplier. Therefore, the income incomeC  from selling 

electricity to the grid is determined by the negative values of  5P i  and the total electricity 

generation from the PV system, and the daily income can be written as follows: 

           
24 24

5 5 export 1 generation

1 1

sgn 1  +income

i i

C P i P i i P i i 
 

        (4.22) 

4.4.4 Overall cost function and the optimisation problem 

Taking (4.18), (4.21) and (4.22) into (4.7) will give the total cost over a daily period. 

The cost within each time period is a function of 2P  and 3P . The displayed SOC in an 

EV’s panel is from 0% to 100%, which corresponds to the allowed driving distance 

ranging from 0 to the maximum, respectively. In this study, the following two constraints 

are considered for the displayed SOC. 

  min max

EV EV

EV display iSOC SOC SOC    (4.23) 

   maxmin

ESS ESS

ESS display iSOC SOC SOC    (4.24) 

In addition, when the EV is plugged in to the slot at home, the SOC value at the 

end of the control period, i.e., at 24i  , needs to be larger than the SOC required for 

the next driving. This constraint is termed as the minimal terminal SOC constraint and is 

given as follows: 

  2 1004
exp EV

EV dispaly LB

total

d
SOC SOC

d
      (4.25) 

where expd  is the expected driving distance over the next driving period. It can be taken 

as the expected driving distance over the next day if the period is 24 hours. The ratio of 
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exp totald d  represents the required SOC for the next driving period, which is defined as 

the lower bound of the terminal SOC, denoted as 
EV

LBSOC .  

Taking all the above constraints into account, the following optimisation problem is 

formulated to minimise the total operating cost of the energy system. 
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                         (4.26) 

In this work, the optimisation problem is to minimise the end user’s energy cost, where 

the decision variables are the charging/discharging status of EV and ESS. Therefore, the 

optimisation problem is an integer programming problem. The GA algorithm has been 

applied to solve this problem. A flow diagram of the optimisation model has been shown 

in Fig. 4 - 4. 

 

Fig. 4 - 4 A flow diagram of the optimisation model  
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4.5 Case studies: implementation, results and discussions 

In this section, the optimal charging/discharging operations of EV and ESS for the 

residential home energy system are studied under different scenarios. 

4.5.1 System specifications 

Two types of tariff are considered and compared in the case study; namely, the fixed 

tariff and the time-of-use (TOU) tariff. The fixed tariff is £0.152 per kWh, sourced from 

the Energy Shell Company. The 2014 TOU tariff is taken from the Scottish and Southern 

Energy Public Limited Company [119]. The peak time period is from 17:00 to 20:00, and 

the corresponding tariff is £0.234/kWh. The night time period is from 01:00 to 07:00, 

and the corresponding tariff is £0.061/kWh. The rest of the day is regarded as the off-

peak time period and the tariff is £0.117/kWh. The two tariffs are illustrated in Fig. 4 - 5. 

 

Fig. 4 - 5 Comparison of the fixed tariff and the TOU tariff 

The solar PV rating is less than 10kW, and the solar panel area for PV generation is 

selected to be 16𝑚2. Usually, the export tariff is regulated by the government, which is 

5.03 pence/kWh in UK. In addition, if the PV system is less than 10 kW, the generation 

tariff is 3.93 pence/kWh up to now [118]. Each EV’s battery price, shown in Table. 4 – 

6, is estimated from the data in [120], which equals approximately 30% of the total 

projected price. The TESLA Powerwall is selected for the ESS battery storage. It has the 

capacity of 6.4kWh and the cost of $3,000 (approximately￡2,300) per pack. Also, the 

ESS capacity can be expanded through the connection to multiple TESLA Powerwalls. 
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The grid voltage supply to the residential house is assumed to be 230V, and the 

charging/discharging current for EV and ESS are all 10A. In this chapter, the whole 

battery life of EV is assumed to be 15 years, so the average daily degradation costs, 

EV averageC 
,  due to driving can be obtained as shown in Table. 4 – 6.  

Table. 4 – 6 Price of EV battery packs 

Brand TESLA TESLA BMW I3 SMART LEAF 

Capacity (kWh) 75 100 33 17.6 40 

Projected EV Price (£) 64700 86200 34070 21465 21990 

Evaluation Price of Battery(£) 19410 25860 10221 6440 6597 

Unit Capacity Cost (£/kWh) 258.8 258.6 309.7 365.8 164.9 

EV averageC 
(£) 0.70 0.94 0.37 0.23 0.24 

The data for other residential loads such as lighting, cooking ,heating, 

washing/drying and heating, excluding EV and ESS, are sourced from [33], which is 

shown in Fig. 4 - 6. The solar raidation is selected from [109],  which is the average hourly 

solar radition in January and it is shown in Fig. 4 - 7.  

 

Fig. 4 - 6 Other residential loads during the selected day [33] 
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Fig. 4 - 7 Solar radiation in January [109] 

4.5.2 Numerical studies under different terminal SOC constraints and 

initial SOC of EV 

In this case study, the initial values of the displayed SOC in the ESS is fixed as 0%. 

The selected EV model is BMW I3, for which the battery pack’s price is approximately 

£10,221. The operational cost minimisation problem in (4.26) is solved under different 

values of EV

LBSOC .  

Both fixed tariff and TOU tariff are applied, and the minimal operation costs under 

different levels of EV

LBSOC  are shown in Fig. 4 - 8 for fixed tariff and Fig. 4 - 9 for TOU 

tariff, respectively. It can be seen that user’s cost increases with the increase of EV

LBSOC  

provided that I

EEV

LB N

VSOC SOC . This is because the EV needs to be charged in order to 

ensure a higher remaining SOC at the end of the control period. If I

EEV

LB N

VSOC SOC , then 

the user’s minimal operational cost stays at the same minimum value as shown in Table. 

4 - 7 and Table. 4 - 8, which means no charging or discharging takes place. The optimised 

results on 𝑃2(𝑖) and 𝑃3(𝑖) show that there is no discharging either from EV or from ESS 

when I

EEV

LB N

VSOC SOC , which means that there is no power sold back to the grid under 

this circumstances. This is because the value of the export tariff is too low, and the 

degradation cost of battery discharging cannot be compensated under such a low tariff. 

In addition, it can be observed that the operational cost under the given TOU tariff is 

lower than that of the fixed tariff.  
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Fig. 4 - 8 Impact of different SOC constraints and initial SOC of EV under fixed tariff 

 

 

Fig. 4 - 9 Impact of different SOC constraints and initial SOC of EV under TOU tariff 

The impact of the initial SOC of EV, N

EV

ISOC , to the minimal operational cost is 

studied next. Here EV

LBSOC  is fixed at 50%. N

EV

ISOC  is assumed to take a set of values 

between 0 to 100%, and all other system parameters are kept the same as in Section 4.5.2. 

The results are also shown in Fig. 4 - 8 and Fig. 4 - 9. 

It can be observed that the operational cost to charge the same amount of energy to 

the battery will increase when the initial SOC increases. For example, according to the 

results of the fixed tariff in two scenarios shown in Table. 4 - 7 and Table. 4 - 9, the 

optimal operational cost is £4.68 to charge the EV from 0IN

EVSOC   to 50%EVSOC  ; 

however, it can be seen from Table. 4 – 9 that a slightly higher cost of £4.73 is needed to 
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charge the EV from 50%E

IN

VSOC   to 100%EVSOC  , although in both cases, charging 

of the battery requires the same amount of energy. The underlying reason can be 

understood from (4.8), where it shows that a lower initial SOC will lead to a lower battery 

degradation cost. For the TOU tariff, the results give a similar conclusion that the 

operational cost decreases with the increase of the initial SOC.  

Table. 4 - 7 Minimal operational cost under the fixed tariff and different EV

LBSOC   

EV

LBSOC  (%) 
Cost (£) EV

LBSOC  (%) 
Cost (£) 

0 2.23 60 2.76 

10 2.23 70 3.34 

20 2.23 80 3.74 

30 2.23 90 4.37 

40 2.23 100 4.73 

50 2.23   

Table. 4 - 8 Minimal operational cost under the TOU tariff and different EV

LBSOC  

EV

LBSOC  (%) 
Cost (£) EV

LBSOC  (%) 
Cost (£) 

0 1.65 60 1.91 

10 1.65 70 2.24 

20 1.65 80 2.6 

30 1.65 90 2.96 

40 1.65 100 3.33 

50 1.65   

Table. 4 - 9 Daily operational cost under different initial SOC with the fixed tariff 

Initial SOC (%) Cost (£) Initial SOC (%) Cost (£) 

0 4.68 60 2.23 

10 4.25 70 2.23 

20 3.66 80 2.23 

30 3.32 90 2.23 

40 2.69 100 2.23 

50 2.23   
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Table. 4 - 10 Daily operational cost under different initial SOC with the TOU tariff 

Initial SOC (%) Cost (£) Initial SOC (%) Cost (£) 

0 3.24 60 1.65 

10 2.86 70 1.65 

20 2.47 80 1.65 

30 2.17 90 1.65 

40 1.9 100 1.65 

50 1.65   

4.5.3 Impacts of different EV models 

In this section, the influence of EV models is examined. The tariffs and the 

specifications for the PV and the ESS are the same as in the previous discussions. The 

initial value of SOC is set to be 50% for all EV models, and 0% for the ESS. In order to 

keep the minimum cost and the maximum residual SOC for EV, the lower bound of the 

terminal SOC for EVs is selected to be the same as the initial SOC, i.e., 

50%EV EV

LB INSOC SOC  .  

With the fixed tariff of £0.152/kWh, Table. 4 - 11 shows the daily minimal 

operational cost under different choices of EV models. From the customer’s cost 

perspective, the most economic EV model is the 17.6kWh SMART, which has the 

minimal daily operational cost of £2.23 and its purchase cost of the battery pack is £6,440. 

There are two reasons that can explain why SMART can achieves the lowest daily cost. 

Firstly, according to (4.8), if the battery purchase cost is higher, the degradation cost will 

be higher. However, this does not imply that the minimal operational cost of an EV with 

higher battery capacity will always be larger than that with lower battery capacity. Another 

important factor is the driving efficiency of EV. In Table. 4 - 11, the driving efficiency is 

shown in the third column, and it is evaluated by the driving distance per kWh denoted 

by mu . It can be observed that a higher value of mu  provides a lower daily operational 

cost. Therefore, the daily cost depends on both of the EV battery price and the driving 

efficiency. 
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Table. 4 - 11 Daily cost for different types of EV models under fixed tariff 

EV models Operational cost (£) Unit driving distance 𝑢𝑚 

(miles/kWh) 

BMW I3 2.23 4.28 

SMART 2.17 5.63 

LEAF 2.21 4.20 

TESLA (75) 2.64 4.05 

TESLA (100) 2.71 3.93 

 

Next, the TOU tariff is employed to check the impacts of EV models, and Table. 4 

- 12 shows the resulting daily minimal operational cost under different battery capacities. 

It can be observed again that the 17.6kWh SMART is again the most economic one. 

Table. 4 - 12 Daily cost for different EV models under TOU tariff 

EV models Operational cost (£) 

BMW I3 1.65 

SMART 1.58 

LEAF 1.61 

TESLA (75) 2.02 

TESLA (100) 2.10 

Fig. 4 - 10 illustrates the operational cost comparison between the fixed and the 

TOU tariffs. It can be seen that the 17.6kWh SMART has the lowest operational cost 

under both tariffs, and the given TOU tariff is much more economical compared to the 

given fixed tariff.  



83 

 

 

Fig. 4 - 10 Daily operational cost under different battery capacities 

 

4.5.4 Impacts of different  export i  of FITs 

The 
export  value of FIT will affect end users whether to participate in V2G market 

or not. In the following simulation, the initial SOC values are set to be 100% for both EV 

and ESS (fully charged). The lower bound of terminal SOC is selected as 0% so as to 

check the maximum possible amount of energy discharged and obtain the minimum value 

of 
export  which allows V2G profitable. After comparing different EV 

charging/discharging results from the optimisation, it is found that EV will start to 

discharge power only if the export tariff is larger than the threshold value of £0.25/kWh 

for the fixed tariff, and £0.15/kWh for the TOU tariff. The simulation result shows that 

the export tariff has to be at least £0.96/kWh in order to achieve a positive net income 

under a fixed tariff, and £0.60/kWh under a TOU tariff. These results are shown in Table. 

4 - 13 and Table. 4 – 14 for the fixed and the TOU tariffs, where a negative value of 

operational cost implies there is a positive net income. Fig. 4 - 11 and Fig. 4 - 12 show the 

results of EV and ESS charging/discharging status for the TOU tariff, where ‘+1’ means 

discharging, ‘-1’ means charging, and ‘0’ means no charging or discharging taking place. 

It can be found from Fig. 4 - 11 that the EV discharging time is within the electricity 

consumption peak time period. This can help to shave the peak load for the end user, so 

it can be concluded that the charging/discharging profiles of EV and ESS are influenced 

by the electricity tariff. In addition, the charging/discharging profiles of EV is also 
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influenced by the probability of EV parking at home. According to the survey data, the 

probability of EV parking at home during night time is much higher than during the day 

time; therefore, the EV charging/discharging can be operated more often during the night 

time. 

Compared with EV, such a parking-at-home probability factor is not applicable to 

ESS, so the electricity tariff is the only factor that influences the scheduling of ESS 

charging/discharging. When the electricity tariff is fixed, there are in general many 

random solutions for ESS satisfying all the constraints, including the SOC constraints. 

Therefore it is of less interest to discuss the fixed tariff situation. As can be seen from Fig. 

4 - 12, ESS is charged during the off-peak time when the tariff is the lowest, and 

discharged during the peak-time when the tariff is the highest. This verifies that the results 

calculated through the model are reasonable for practical applications, and the 

optimisation solution is more efficient under the TOU tariff than that under the fixed 

tariff. The results of minimal with respect to 
export  is compared for fixed and TOU tariffs 

in Fig. 4 - 13. It shows that the TOU tariff provides more benefit for the user. 

 
Fig. 4 - 11 EV charging/discharging profile under TOU tariff 
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Fig. 4 - 12 ESS charging/discharging profile under TOU tariff 

 

 

Fig. 4 - 13 Impact of export tariff to daily minimal operational cost 

 

Table. 4 - 13 Daily minimal operational cost under fixed tariff 

FIT (£) Cost (£) FIT (£) Cost (£) 

0.05 2.23 0.3 2.12 

0.06 2.23 0.4 1.98 

0.08 2.23 0.5 1.76 

0.1 2.23 0.6 1.41 

0.15 2.23 0.8 0.72 

0.2 2.23 0.9 0.13 

0.25 2.19 0.93 -0.01 
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Table. 4 - 14 Daily minimal operational cost under TOU tariff 

FIT (£) Cost (£) FIT (£) Cost (£) 

0.05 1.65 0.2 1.55 

0.06 1.65 0.3 1.4 

0.08 1.65 0.4 1.19 

0.1 1.65 0.5 0.54 

0.15 1.62 0.6 -0.01 

4.5.5 Impacts of different probabilities of EV plugging in at home  

In this case, the initial SOC value is set at 50% and the lower bound of the terminal 

SOC is 60%. Therefore, no matter how the other factors are varied, such as load change 

characteristics, PV generation characteristics and so on, the EV must be charged at least 

10% (60%-50%) in order to satisfy the constraint. To investigate the impacts of different 

probabilities of EV parking at home, three sets of values are applied, 50%, 80%, and the 

probability value calculated from the survey. The electricity tariff is selected as TOU, 

which is shown in Fig. 4 - 5. 

Results of EV charging status and daily cost for different probabilities are shown in 

Fig. 4 - 14, Fig. 4 - 15, Fig. 4 - 16 and Table. 4 - 15. It can be seen from these results that 

EV is only charged during night time period with the TOU tariff regardless of the parking 

probabilities. This is because the night time tariff is the lowest during the 24 hours period 

(1:00am to 7am). In addition, the results show that with the lower parking probabilities at 

home, it requires more times for charging the same amount of power, and this will lead 

to higher cost for the end user. 

 
Fig. 4 - 14 EV charging/discharging profile under plugging-in probabilities of survey 
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Fig. 4 - 15 EV charging/discharging profile if plugging-in probabilities is 80% 

 
Fig. 4 - 16 EV charging/discharging profile if plugging-in probabilities is 50% 

Table. 4 - 15 Daily cost of different plugging-in probabilities 

Probability of plugging-in EV charging times Total cost (£) 

50% 4 1.92 

80% 3 1.84 

Survey result 2 1.78 

4.5.6 Battery degradation cost distribution due to active V2G 

For the EV driving on the road, the expected value of the driving distance can be 

calculated from mathematical expectation formula, which is 28.7 miles according to the 

survey data in Table A. 1and Table A. 2. In addition, the probabilities of EV driving on 

the road within each time slot,  2kp i , are shown in Table. 4 - 5. Taking the BMW i3 as 

an example, if the EV is fully charged, the total driving distance is 188 miles according to 

the manufacture’s report, so the expectation value of EV driving discharge, 

 E drivingDOD  can be obtained through  2kp i  *28.7/188, as shown in Table. 4 - 16. In 

this study, the output power for V2G service is assumed to be fixed at 2.3kW, so the 

DOD due to V2G for BMW i3 will be 7.0% for each sampling time, i.e., 2.3/33. The 

probability of EV parking and plug in at home at time point i ,  1kp i , are shown in 
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Table. 4 - 1, from which the expectation value of EV discharged at home (V2G), 

 2E V GDOD  at time point i  can be obtained and listed in the following table. 

Table. 4 - 16 Battery degradation cost due to V2G if it happens 

Time Period 7:00 - 10:00 10:00 – 14:00 14:00 - 17:00 17:00 - 20:00 20:00 – 23:00 After 23:00 

 E drivingDOD  2.02% 1.08% 1.08% 1.99% 0.72% 0.20% 

 2E V GDOD  5.02% 5.94% 5.94% 5.05% 6.29% 6.81% 

Degradation cost 

percent due to 

V2G 

71.31% 84.62% 84.62% 71.73% 89.73% 97.15% 

4.5.7 Comparison between the cases with and without considering 

battery degradation cost 

Here we consider the scenario when the battery degradation cost is ignored in the 

operational cost minimisation, and compare it with the previous cases where the battery 

degradation cost is included. This comparison is made with a focus on the impact of 

different EV capacities under the TOU tariff. All the initial values are the same as those 

in subsection 4.5.1. The results are shown in Table. 4 - 17 and Fig. 4 - 17. 

 

Fig. 4 - 17 Impact of battery degradation to daily minimal operational cost 
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Table. 4 - 17 Comparison of daily minimal operation cost 

EV Models Operational cost with battery degradation 

(£) 

Operational cost without battery 

degradation (£) 

BMW I3 1.65 1.23 

SMART 1.58 1.22 

LEAF 1.61 1.25 

TESLA (75) 2.02 1.27 

TESLA (100) 2.10 1.28 

From Fig. 4 - 17, it can be observed that the daily cost of users is much lower when 

the battery degradation cost is ignored. However, this is not realistic because battery 

degradation always exists during charging and discharging processes. According to the 

results in Section 4.5.4, the given export tariff value cannot compensate the battery 

degradation cost for V2G service. It can be seen from results in Table. 4 - 16 that the 

V2G degradation costs occupy a large portion of the total battery degradation costs in all 

time periods; therefore, the optimisation without considering battery degradation cost is 

not feasible for the benefit of the end users.  

4.5.8 Comparison of optimised strategy with baseline solutions  

In this section, the user’s daily cost under existing non-optimised operational 

schedule is compared with the optimised cost. ESS is not considered here as it is not 

popular in most of the non-optimised residential uses. The EV charging cost for driving, 

EV drivingC  , depends on how much the electricity power is charged to the battery, while 

the charging amount can be represented by the change of SOC. In addition, the expected 

charging amount of SOCs for different EVs in order to fulfil the tentative daily driving 

distance can be represented as  
1

dN

total ll
d l p d

 ; therefore, the daily driving costs can 

be expressed as: 

 
 

1

=  
dN

EV driving

l o al

l

t t

d l p
C

d




    (4.27) 

where   is the electricity price.  
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The battery degradation cost also needs to be added into the total cost. The average 

daily battery degradation costs for driving usage, EV averageC  , are calculated through (4.19). 

The overall non-optimised daily cost is calculated to through(4.28), which is also the 

baseline for cost reduction analysis.  

            

   

24

5 5

1

5 exp

24

1

1

+

sgn sgn 1

       

ort

generation EV driving EV avera

non

ge

i

opt

total

i

C P P i P i i

P i i C

i i

C

 

  







    

















  (4.28) 

Under the fixed tariff, the costs of selected EVs without optimisation are listed in 

Table. 4 - 18. The costs comparison with and without optimization are shown in Table. 4 

- 19, from which it can be seen that the total daily cost without optimisation is much 

higher than the optimised cost. The highest cost saving is found to be 18% for TESLA 

(100) in under the fixed tariff.  

Table. 4 - 18 Different EVs’ daily charging cost without optimisation (fixed tariff) 

EV BMW I3 SMART LEAF TESLA(75) TESLA(100) 

Capacity(kWh) 33 17.6 40 75 100 

EV drivingC 
(£) 0.77 0.85 0.98 0.98 1.03 

Table. 4 - 19 Total daily cost comparison (fixed tariff) 

EV Models Total cost without optimisation (£) Total cost after optimisation (£) Cost reduction (%) 

BMW I3 2.49 2.23 10% 

SMART 2.43 2.17 11% 

LEAF 2.56 2.21 14% 

TESLA (75) 3.04 2.64 13% 

TESLA (100) 3.32 2.71 18% 

For TOU tariff, the daily charging costs for EVs without optimization are listed in 

Table. 4 - 20. The total daily cost saving is calculated to be 42% ~ 48% if the non-

optimised charging time includes peak hours, and it is 18% ~ 19% if the non-optimised 

charging happens during night only, as shown in Table. 4 - 21. The obtained cost 

reduction in this work is higher than the case studies in [121], where the cost savings is 

up to 15.5%.  
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Table. 4 - 20 Different EVs’ charging costs without optimisation (TOU tariff) 

EV models Peak time (£) Off-peak time (£) Night time (£) 

BMW I3 1.18 0.59 0.32 

SMART 1.31 0.65 0.36 

LEAF 1.52 0.76 0.41 

TESLA (75) 1.51 0.75 0.41 

TESLA (100) 1.59 0.79 0.43 

Table. 4 - 21 Total daily cost comparison (TOU tariff) 

EV models After 
optim. (£) 

Non-optim. 
Peak time 
charging 
(£) 

Cost 
reduct. 

Non-optim. 
Off-peak 
time 
charging 
(£) 

Cost 
reduct. 

Non-optim. 
night time 
charging 
(£) 

Cost 
reduct. 

BMW I3 1.58 2.88 45% 2.23 29% 1.93 18% 

SMART 1.65 2.87 42% 2.28 27% 2.01 18% 

LEAF 1.61 3.10 48% 2.34 31% 1.99 19% 

TESLA (75) 2.02 3.60 44% 2.84 29% 2.50 19% 

TESLA (100) 2.10 3.75 44% 2.95 29% 2.59 19% 

In addition, the total energy cost under the fixed tariff is higher than that under TOU 

tariff. It can be concluded that the EV owner is likely to have more benefit under the 

TOU tariff than that under the fixed tariff. The comparison on charging/discharging 

degradation cost impacts before and after optimisation are summarised in Table. 4 - 22. 

Table. 4 - 22 Comparison of charging/discharging/degradation costs with and without optimisation 

Cost impacts With optimisation Without optimisation 

EV 

charging/discharging 

 For fixed tariff, EV is charged when the parking 

probability is high, which will lead to lower cost.  

 For a TOU tariff, EV is charged when the tariff is 

the lowest; and EV has higher probabilities of charging when 

the probabilities of parking at home is higher.  

 V2G could happen with high FIT  

 EV charging happens 

randomly throughout 24 hours no 

matter which tariffs are applied.  

 NO V2G function even 

when FIT is high enough to 

compensate the degradation cost.  

EV degradation 
 Depends on the optimisation solution. For 

example, if more discharging happens with higher FIT, the 

degradation cost will be higher. However, the total cost will be 

reduced. If FIT is unchanged, the degradation cost will be 

similar to the value without optimisation.  

 Mainly results from the 

amount of SOC charged/discharged 

and the daily driving distance.  

ESS 

charging/discharging 

 For fixed tariff, ESS will be charged/discharged 

randomly.  

 For TOU tariff, ESS will be charged when the 

tariff is the lowest, and discharged when the tariff is high.  

 EV charging happens 

randomly throughout 24 hours no 

matter which tariffs are applied. 

 NO V2G  
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 V2G could happen with high FIT.  

ESS degradation 
 Similar to EV degradation  Mainly results from the 

amount of SOC charged/discharged 

and the discharging time periods 

throughout a day. 

4.6 Summary 

In this chapter, an operational cost minimisation modelling framework is established 

for a residential energy system comprising of an EV, an ESS, a PV system, other 

residential loads, and the grid connection. To address the uncertain customer driving 

behaviours, the probabilities of different driving time periods are obtained through a set 

of survey data. The survey was developed to cover various factors including driving 

purposes, driving time periods and distance, and also EV parking time, etc.  

The design objective is to minimise the overall cost of the residential energy system 

during a day through optimal scheduling of charging and discharging of EV and ESS. 

Extensive simulation studies have been conducted. The impacts of the initial and the 

terminal SOC values are tested, where the results show that the total operational cost 

remains at the same minimum value if the initial SOC value is larger than or equal to the 

lower bound of the terminal SOC. This is because the existing export  is not large enough 

to compensate for the battery degradation cost, and thus, there is no power return either 

from ESS to home supply or from EV through V2G. Also, the overall cost measure will 

increase when the initial SOC is smaller than the lower bound of the terminal SOC. The 

overall cost for the end user will be slightly smaller if charging the same amount of energy 

to EV from a lower initial SOC.  

Several EV models are considered, and the economical choice has been explored. 

Different impacts of export  of FIT are discussed. The results show that the EV will only 

start to discharge to grid when the export  is larger than or equal to £0.25/kWh for fixed 

tariff, and £0.15/kWh for TOU tariff in the case study. It can be concluded that V2G can 

only be profitable to end users when export  is larger than a certain threshold. This 

threshold could be decreased if the battery degradation cost can be reduced in the future.  
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Furthermore, a comparison is made with the non-optimised operation. It shows that 

the proposed optimisation can achieve cost savings from 9% to 15% under the selected 

fixed tariff, and from 18% to 48% under the given TOU tariff.  



94 

 

Chapter 5 Household Energy Cost 

Optimisation with Renewable 

Technologies: Solar Thermal and 

Photovoltaic Systems  

In this chapter, the household energy optimisation has been extended to include 

solar energy supply. Solar energy has been regarded as one of the most abundant 

renewable sources. Photovoltaic (PV) systems transfer solar energy into electric form. PV-

T is a hybrid system that converts solar radiation into electrical and thermal energy. For 

residential users with limited solar panel area, there are two options to achieve economic 

use of solar energy. One is to install both PV and solar water heater (SWH) systems, called 

PV-SWH, another one is to apply the PV-T system. Both options of PV-SWH and PV-T 

systems need to be discussed. 

The modelling framework established in Chapter 4 has been expanded to include 

SWH systems. In addition to scheduling of EV and ESS charging/discharging, the 

switching on/off status of SWH is also controlled in DSM. The remaining part of this 

chapter is organised as follows. Section 5.1 introduces the two options of applying solar 

energy for water heating at residential homes. Section 5.2 presents the solar thermal model 

for water heating. The household energy system model that involves SWH is described in 

Section 5.3. Results and analysis from case studies are discussed in Section 5.4. 

Conclusions are given in Section 5.5. 

5.1 Introduction to PV-SWH and PV-T systems 

5.1.1  PV-SWH system 

SWHs collect the solar radiation and transfer the energy for water heating. Details of 

SWH basics have been introduced in subsection 3.4. Because of the temperature of hot 
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water should be within certain specified range for the ease of usage, too large area of SWH 

collectors is unnecessary at some high solar radiation area or during summer season. If 

the installation area for solar collector panels is limited for household users, combination 

of PV and SWH system can utilize the limited solar energy more efficiently to achieve 

economic energy savings for end user; so, this hybrid PV-SWH system is applied in this 

study. 

5.1.2  PV-T system 

PV-T is the system that convert solar radiation into electrical and thermal energy [122]. It 

combines both of solar cell and solar thermal collector, and converts solar radiation into electricity 

and captures the remaining energy for water heating usage. Therefore, PV-T collectors provide 

an efficient way to use solar energy and is more efficient than PV or solar thermal alone. The 

efficiency of PV cells will drop with the increase of the operating temperature of PV panels; 

however, water circulation in PV-T system can help to carry heat away from the PV cells, thereby 

cooling the cells and thus improving the electrical efficiency. Although PV-T system is an effective 

way to utilise the solar energy, the thermal component of this system will be under-performed 

compared to the solar thermal collector. Several studies have investigated the performance of PV-

T system, and compared it to PV system or solar thermal system. In [123], a mathematical model 

of PV-T system is developed to calculate the system performance. The results show that the 

average thermal and electrical efficiency of the hybrid PV-T are 65% and 13.7%, respectively. In 

[124], it is concluded that there is a 2% increase in electrical efficiency of PV cells in PV-T system, 

and a 5% decrease in the thermal component of PV-T system compared to traditional SWH 

system. In [122], the electrical conversion efficiency of the PV-T system is improved about 10% 

compared to the PV system, and the maximum thermal efficiency of the system was found to be 

51%.  

Comparisons of PV-T with SWH or PV alone are seen in a few literature above, but the 

comparison of PV-T with combined SWH and PV is missing. In this work, the cost reductions 

between PV-T and PV-SWH will be investigated for residential users. 

5.2 Solar thermal model for water heating  

The collector, storage tank, loads and heat losses have been considered in this model 

[93]. To simplify the model, hot water in the storage tank is assumed fully mixed or non-

stratified, and the storage tank is kept at a uniform temperature. Besides, the hot water 
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outlet flow rate is assumed to be constant, the make-up water temperature is also constant, 

and the energy losses at the heat exchanger and pipes are ignored. The energy balance of 

the storage tank can be given as (5.1): 

        
d

d

s
p u e l tlt

T
MC P P P P tt t

t
      (5.1) 

where 𝑇𝑠 is the temperature inside the tank; M is the mass of storage capacity (kg); 𝐶𝑝 is 

the specific heat of water, which is 4,187𝐽 (𝑘𝑔 ∙ ℃)⁄ . The collected solar power delivered 

to the storage tank is represented by 𝑃𝑢 and the power removed from the storage tank to 

load is 𝑃𝑙 . 𝑃𝑡𝑙 is the power loss from storage tank, and 𝑃𝑒 is the auxiliary electricity heat 

power. According to the energy system model in (4.26), there are 24 time periods or slots 

and each being denoted by index i  ( 1,2, ,24i  ), and the sampling time is 1 hour; 

therefore, (5.1) can be rewritten in discrete form as : 

          ( 1) ( )p s s u e l tlMC T T P i Pi i ii P Pi        (5.2) 

The collected solar power delivered to the storage tank can be given by [125]: 

          u C R L s ai iP A F S U T Ti i     (5.3) 

where CA  is solar collect area ( 2m  ),  S i is absorbed radiation at time point i , RF  is the 

heat removal factor, which is 0.88 in this study and sourced from [126], and LU  is the 

product of the overall heat loss coefficient which is selected as 26.6W/ m （ C） [125]. 

The storage tank hot water’s temperature at time i  is represented by  sT i , and  aT i  is 

the ambient temperature where the storage tank is located.   

The absorbed radiation can be expressed as [125],: 

      S i iI   (5.4) 

where  I i  is solar irradiance, and   is transmittance absorbance product which is 

selected as 0.86 [127].  

The power removed from the storage tank to load can be written as: 
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         l p s muP mC ti iT T i      (5.5) 

where m  is the mass flow rate ( kg/hour ),  muT i  is the make-up water temperature, t  

is equal to the sampling time 1 hour. The storage tank power loss is given by [125]  

         tl s aP UA Ti i iT    (5.6) 

where U  is the storage tank loss coefficient and A  is the tank area, their product (UA ) 

is 2.8 W/ C  on operation status and 1.9 W/ C  on stand-by status [128]. 

From (5.3) to (5.6), the temperature inside the tank, in (5.2), can be rewritten as  
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 (5.7) 

5.3 Household energy system model involving SWH 

The expanded smart home system is similar to the residential home system in 

Chapter 4. Again, the arrows towards the controller are defined as the positive direction 

which is the same as the home energy system in Chapter 4. The smart home energy system 

involving SWH is shown in Fig. 5 - 1. 
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Fig. 5 - 1 Smart home energy system involving SWH  

In Fig. 5 - 1, 1 0P   is the output power of the PV system, 2P  is the EV charging or 

discharging power, and 3P  is the input/output power of the ESS. eP  is the power of the 

back-up electric element in the SWH. 2P , 3P  and eP  are decision variables to be controlled 

in the optimisation design. The remaining load of the residential home is represented by

4 4( 0)P P  . The smart home system is connected to the grid and the input and output 

power to and from the grid is represented by 5P . The operation time period of the home 

system is considered as 24 hours with the sampling period of 1 hour; therefore, there are 

24 time periods or slots, each being denoted by index i   ( 1,2, ,24i  ). The initial time 

period is assumed to start from 8:00 am which corresponds to 1i  . The power balance 

equation of the smart home system can be described as in (5.8).  

 
5

1

( ) ( ) 0 ( 1,2, ,24)j e

j

P i P i i


     (5.8) 

It should be noted that 2P , 3P  and eP  are the three variables that can be controlled 

through the model. The expressions of 2P and 3P  have been formulated in Chapter 5, 

which are shown in (4.3), (4.4) and (4.6). The back-up electric element’s power, eP , is 

expressed as follows. 
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  (5.9) 

The purpose of design is also to minimise the total operational cost of the energy 

system over a 24 hours’ time period; therefore, the end user’s profits can be maximised. 

The cost function, 
totalC , consists of the following parts, which is the same as (4.7): the 

cost to purchase electricity from the grid ( purchaseC ), the degradation cost of the EV battery 

( EVC ), the degradation cost of the ESS battery ( ESSC ), the EV battery cost caused by 

driving (
EV outsideC 

), and also the income from selling electricity to the grid (
incomeC ). In 

this chapter, the battery degradation cost models of EV and ESS are the same as Chapter 

4. The electricity purchasing cost and the income from selling electricity to the grid are 

also the same as in Chapter 4, which are shown in (4.21) and (4.22). The values of  5P i  

is calculated by 
4

5 1
( )j ej

P P P


   . The total cost over the control period, totalC , while 

considering the variable eP , can be expressed as: 
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  (5.10) 

The cost within each time period is a function of 2P , 3P  and eP . The displayed SOC 

in an EV’s panel is from 0% to 100%, which corresponds to the allowed driving distance 

ranging from 0 to the maximum, respectively. The two constraints for the displayed SOC 

of EV and ESS are considered as shown in (4.23) and (4.24). To ensure that the EV has 

enough power for next driving period, the minimal terminal SOC constraint should be 

given as well, which is the same as in (4.25). Furthermore, the comfort hot water 

temperature for human is around 40 C . The hot water outlet temperature of the cylinder 

is usually set to be 50 ~ 65 C , then use cold water to mix to around 40 C  during shower. 

The hot water temperature in the storage tank should be confined in a certain range in 

order to satisfy the hot water demand throughout the day [116]. The following constraint 

is applied.  
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    s expectedT T Zi i    (5.11) 

where Z is the permissible error range of the temperature;  expectedT i is the expected hot 

water’s temperature at time period i . Taking all the above factors into account, the 

following optimisation problem is formulated to minimise the the total operating cost of 

for the smart home energy system. 
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  (5.12) 

As can be seen from (4.3), (4.4) and (5.9), the decision variables can be considered 

as the 0/1 or (0,1,-1), which makes an integer programming problem and the same with 

Chapter 4. However, the model built in Chapter 5 is non-linear optimisation problem. 

According to the literature review in Chapter 2, GA has the ability to deal with complex 

problems, and it can deal with various types of optimisation problems whether the 

objective functions are linear or non-linear, integer or real. Matlab has a built-in function 

for GA, which is applicable to mixed integer nonlinear programming problems. 

Thereofore, the GA algorithm has been applied again to solve the optimisation problem 

through MATLAB tool box. A flow diagram of the optimisation model included SWH 

has been shown in Fig. 5 -2. 
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Fig. 5 - 2 A flow diagram of the optimisation model including SWH  

5.4 Case studies: implementation, results and discussion 

In this section, the smart home system, which is depicted in Fig. 5 - 1, will be studied 

in the optimisation framework for different scenarios. The relevant input data, such as 

daily load curve, hot water demand, and solar radiation and so on are collected from 5.4.1.  

5.4.1 System specifications 

Same as in Chapter 4, two types of tariffs are considered in the following case studies, 

the fixed tariff and time-of-use (TOU) tariff. Both of these tariffs are sourced from the 

same references in subsection 4.5.1, as shown in Fig. 4 - 5.  

The solar PV’s generation tariff and FIT are taken from [46, 82], and the solar PV 

rating is selected as less than 10kW. The brand and type of the EV is Tesla Model S P100, 

the battery capacity is 100kWh. According to Table. 4 – 6, the battery price of this EV is 

approximately equal to £25,860. Furthermore, another product of Tesla, which is 

Powerwall, is selected as the ESS. Each Powerwall has the capacity of 6.4kWh and cost 

$3,000 (approximately £2,400). The grid voltage supplied to this home is the standard 

household AC voltage of UK which is 240V, and the charging / discharging current of 

EV and ESS are all assumed equal to 10A. The power of the back-up electric heater is 
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1.1kW for which the rated voltage is equal to the standard home voltage and the current 

is 5A. According to [129], the smallest area of solar panel is around 16
2m , so the 

maximum radiation absorbed area for both of SWH and PV systems are set as 16
2m . 

The storage tank’s volume for SWH is 80L. 

The average hourly residential load curve is shown in Fig. 5 - 3, which is sourced 

from UK official government’s report [33]. The average hourly solar irradiance is sourced 

from [109], where the area is near Glasgow, UK. The selected months are January for 

winter case and July for summer case, as shown in Fig. 5 - 4 and Fig. 5 - 5. The average 

hourly hot water consumption is sourced from[108], as shown in Fig. 5 - 6. The make-up 

water for the SWH are usually 8 C  in winter and 15 C  in summer. According to report 

[130], the average daily indoor ambient temperature are 18.3 C  in winter and 21 C  in 

summer, which are used for the case studies. 

 

Fig. 5 - 3 Average hourly load variation during a day [33] 

 



103 

 

 

Fig. 5 - 4 Average hourly solar radiation during a day in January [109] 

 

Fig. 5 - 5 Average hourly solar radiation during a day in July [109] 

 

Fig. 5 - 6 Average daily hot water consumption [108] 
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In the following case studies, the initial SOC of EV and ESS are set as 80% and 

0%, respectively. The terminal SOC value of EV is set as 80%. The expected temperature 

for each sampling time period is set as 50 C . 

5.4.2 Analysis of factors that directly influence the hot water 

temperature 

In this subsection, the factors that directly influence the hot water temperature are 

analysed. The selected solar collected area is 0𝑚2 for SWH and 16
2m  for PV system. In 

this simulation, the selected season is winter, the initial water temperature of the storage 

tank is set as 8 C . The simulation length is 48 hours, the results are shown in Fig. 5 - 7  

 

Fig. 5 - 7 Hot water temperature for winter season (48hours) 

 

It shows in Fig. 5 - 7 that since the initial temperature is low, the hot water’s 

temperature keeps on increasing, in the first 4 hours, in order to reach the zone in (5.11). 

Once the water temperature is close to the expected 50 C , it fluctuates around this value. 

In the constraint in (5.11), the constant 𝑍 is set as 2 C , so the hot water’s temperature 

value is only allowed to fluctuate 2 C  above and below the expected value. In the 

simulation, the temperature variation exceeds this range. The main reason is that the 

selected sampling time t (1 hour) is too long for an effective adjustment. There are two 

ways to solve this problem. One is to shorten the sampling time t . This is not practical 

in the simulation since many other data collected are sampled hourly, such as solar 
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radiation, water consumption, and load curve, etc. Besides, it is arguable if the hourly data 

is simply averaged to half form or quarter form. Another way is to increase the constraint 

band. In the next simulations, the temperature of the hot water for local usage is allowed 

to fluctuate 5 C , i.e., Z = 5. 

According to subsection 5.4.1, the total solar collect area is limited to 16
2m , so if 

the collect area for SWH needs to be increased, PV area will be decreased the same 

amount that is increased in the SWH. Fig. 5 - 8 show the running results with different 

areas of SWH and PV in winter. It can be seen from Fig. 5 - 8, during the peak solar 

radiation time, the water temperature increases extremely high with larger area of SWH, 

and largely exceeds the constraint value. The maximum temperature of water is 100℃, 

the maximum area for SWH can observed as 9.6 
2m . 

 

Fig. 5 - 8 Temperature results with different areas of SWH and PV (winter case) 

The results for summer period are shown in Fig. 5 - 9, where the maximum SWH 

area is dropped to 3.2𝑚2. From both results in winter and in summer, it can be concluded 

that the absorbed solar radiation is a key factor that directly influences the hot water 

temperature when SWH is applied. Also, the results prove that large applicable area for 

SWH system is not necessary in high solar radiation area or in summer season.  
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Fig. 5 - 9 Temperature results with different areas of SWH and PV (summer case) 

Another factor which directly influences the water temperature is the hot water 

consumption at each time period. To investigate this influence, a winter case is selected. 

The SWH area is 4.8m2  and the PV area is 11.2𝑚2 . The hot water consumption is 

assumed to the same at all time during one day in order to see the temperature change for 

different daily consumptions. As can be seen from the results shown in Fig. 5 - 10, the 

average water temperature in a day decreases when the hot water consumption increases.  

 

Fig. 5 - 10 Average hourly hot water consumption (L) 

5.4.3 Comparison for different areas of SWH and PV 

In this subsection, impacts of SWH and PV are analysed. The selected season is 

winter and the tariff is fixed. To test the impact of PV and SWH separately, PV’s area is 

set as 0m2 at first, which means only SWH is used. Fig. 5 - 11 shows that the daily cost is 

decreased with the increase of the area of SWH.  
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Fig. 5 - 11 Daily cost with different areas of SWH 

Then, the SWH’s area is set as constant, which is 9.6𝑚2. Without considering the 

total area constraint, the PV’s area is varied from 1.6 m2 to 9.6 m2. The daily costs 

results are shown in Fig. 5 - 12, from which it can be seen that the cost also decreases 

with the increase of the PV area.  

 

Fig. 5 - 12 Daily cost with different areas of PV 

Next consider the situation that the total area for collecting solar radiation is limited 

by 16𝑚2. If user wants to apply SWH and PV together, the PV’s area will be decreased 

by the same amount increased in SWH area. The optimal selection, under which the user’s 

cost is minimum, between SWH area and PV area needs to be determined. Comparing 

Fig. 5 - 11 with Fig. 5 - 12, it can be observed that larger area of SWH seems to result in 

higher cost reduction than PV. It can be expected that SWH is more efficient than PV 

when used for water heating. However, this does not mean that a larger area of SWH is 

the more cost saving option for the user. This is because the daily hot water consumption 
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is not unlimited, excessive area of SWH will be wasted. Fig. 5 - 13 shows the daily cost 

comparison in a winter day, under two tariffs, when different areas of SWH and PV are 

applied. It can be seen from Fig. 5 - 13, if the selected tariff is the fixed tariff, the minimum 

cost is £2.22 when the optimally selected areas for SWH and PV are 4.8𝑚2 and 11.2𝑚2, 

respectively. If the tariff is TOU, the minimum cost is £1.82 and the areas of SWH and 

PV are 6.4𝑚2 and 9.6𝑚2, respectively. Fig. 5 - 14 shows the optimised cost results when 

the selected season is summer. As can be seen from Fig. 5 - 14, no matter which tariff is 

applied, the best option is 1.6𝑚2 for SWH and 14.4𝑚2 for PV. Comparing the cost 

between two different tariffs in both Fig. 5 - 13 and Fig. 5 - 14, the user will obtain more 

profits if the TOU tariff is applied.  

 

Fig. 5 - 13 Cost comparison of diffrerent SWH’s area in winter 

 

Fig. 5 - 14 Cost comparison of diffrerent SWH’s area in summer 

Fig. 5 - 15 and Fig. 5 - 16 show the hot water’s temperature against time when the 

tariff is TOU. In summer time, the hourly water temperature fluctuates around the 

expected temperature, and the variations are mostly within the acceptable range, when 
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the SWH area is set to be 0 m2 and 1.6 m2. In winter time, the suitable SWH area is up to 

4.8 m2.   

 

Fig. 5 - 15 Hot Water temperature curve for TOU tariff in winter (different SWH area) 

 

 

Fig. 5 - 16 Hot water temperature curve for TOU tariff in summer (different SWH area) 

5.4.4 Analysis of tank volume, seasonal impacts to SWH area 

In this section, the fixed tariff is applied in the simulation. The specific heat capacity 

c  can be described by the ratio of the heat added to (or removed from) an object to the 

resulting temperature change as follows: 

 
*

E
c

M T



   (5.13) 
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where E  is the energy change (J), M  is mass of object (kg), and T  is the temperature 

change (℃). The object for SWH is water, the specific heat capacity 𝑐 is a constant. 

Assume the temperature change T  is constant, then it can be found that the larger mass 

of water needs more energy added or removed from water. When the energy change E  

is fixed, larger mass of water will result in less change of temperature. Therefore, the 

volume of the storage tank in SWH system is another factor that influences the hot water 

temperature, the user’s cost, and the optimal selection of SWH collecting area. Fig. 5 - 17 

shows the maximum SWH’s area under different volumes of storage tanks, ranging from 

80L to 240L. 

 

Fig. 5 - 17 Comparison of different volumes of storage tank 

From the results in Fig. 5 - 17, it can be seen that larger tank volume can absorb 

more energy from the solar radiation so the applicable SWH area can be larger. Results 

on daily costs in winter are shown in Fig. 5 - 18, when different storage volumes and 

different SWH areas are applied. The best match of SWH and PV, which can achieve the 

minimum daily cost, can be observed from these figures and Table. 5 - 1.  
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Fig. 5 - 18 Comparison of daily cost for different storage volume and different SWH area in winter 

 

Table. 5 - 1 Optimum match of SWH and PV for different storage volume in winter 

Storage Volume (L) 80 120 160 200 240 

PV area (
2m  ) 

11.2 11.2 9.6 9.6 8 

SWH area (
2m  ) 

4.8 4.8 6.4 6.4 8 

Cost (£) 2.22 2.07 1.98 1.88 1.83 

As can be seen from Table. 5 - 1, the minimum cost for the end user decreases with 

the increase of the storage volume. In addition, larger storage volume needs more SWH 

area to achieve the optimal cost. The best trade-off between SWH and PV’s area are 

shown in the above table. As can be seen from Fig. 5 - 18, the cost is decreased with the 

increasing area of the SWH. After reaching the minimum cost, the cost will increase if the 

SWH’s area is further increased. The reason is that the SWH’s area is already big enough 

for the water heating usage at the minimum cost point. If the area is increased further, it 

will waste the available solar panel’s area which can be utilised for PV. This result is 

consistent to the conclusions in subsection 5.4.2 that unnecessary large SWH’s area is not 

suitable for the high solar radiation’s area or summer season.  

The solar radiations are different at different time of the year; therefore, the optimal 

areas of SWH and PV for different months are calculated to be different, as shown in 

Table. 5 - 2. It can be seen that larger area of SWH is required in the low solar radiation 

months which is autumn/winter period from October to February. The area of SWH is 

relative low during the spring/summer period from March to September. In order to 
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satisfy the hot water demand throughout the whole year, the average value of SWH’s area 

during the whole year has been selected as the recommended SWH area, which is 30% of 

total area of the solar panel. 

However, in practice, once SWH and PV are installed, their areas cannot be 

arbitrarily changed; otherwise, the labour costs would be much higher than the savings of 

energy costs.    

Table. 5 - 2 Optimal areas of SWH and PV for different months 

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

PV Area 70% 70% 80% 80% 90% 90% 90% 90% 80% 80% 70% 70% 

SWH Area 30% 30% 20% 20% 10% 10% 10% 10% 20% 20% 30% 30% 

Cost (£) 2.22 1.15 0.16 -0.56 -0.83 -0.72 -0.61 -0.38 0.09 1.51 2.18 2.28 

5.4.5 Switch on-off of SWH 

According to the above analysis, the area of SWH is selected as 30% of the total 

available area for solar panel. Using this area setting, the solutions of SWH back-up 

electricity switch on/off status are shown in Fig. 5 - 19 for summer, and in Fig. 5 - 20 for 

winter. As can be seen from the results, in order to guarantee the daily hot water demand, 

the back-up electricity will be switched on more often in winter than in summer. This is 

mainly because the solar radiation is much less in winter. In addition, no matter during 

summer or winter, the SWH back-up electricity is switched on more often during night 

time, when the hot water demand still exists but there is no solar radiation. In this case 

study, the solutions are obtained based on the average daily hot water consumption from 

multiple end users, which is shown in Fig. 5 - 6. However, the habits of hot water 

consumption are different from case to case, the optimal solutions for each single end 

users will also be different.  
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Fig. 5 - 19 SWH back-up switch on/off status in July 

Fig. 5 - 20 SWH back-up switch on/off status in January 

5.4.6 Comparison with PV-T hybrid system  

In this subsection, the options of PV-T and PV - SWH in cost reduction has been 

discussed. The storage tank’s volume is 80L, the selected EV is TESLA MODEL S 100. 

The thermal part of PV-T system model is assumed similar to SWH model in (5.7). The 

electrical conversion efficiency of the PV-T system is selected to be 10% higher than the 

PV system as suggested in [122]. The thermal efficiency of the PV-T system is 5% lower 

than the SWH system sourced from [124]. Therefore, for the PV-T mathematical model, 

the PV power equation (4.2) and the absorbed radiation equation (5.4) should be rewritten 

as: 

 1( ) ( ) 110%i iP I A      (5.14) 

       95%S Ii i     (5.15) 

The minimum daily cost of the end user is calculated by the optimisation route in 

(5.12). Table. 5 - 3 shows the annual cost for two different hybrid systems. Table. 5 - 4 
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show the daily cost results in each month. It can be seen that the cost of PV-T is lower 

than the PV-SWH system. The end user can make profit with the PV-T system is installed. 

However, the initial investment cost of PV-T is much higher than the traditional PV or 

SWH system. Whether the PV-T system can benefit the end user from long-term 

perspective should be analysed. In this thesis, details of relevant financial analysis are 

presented in next chapter. 

Table. 5 - 3 Annual cost comparison between PV-T and PV-SWH 

PV-T Annual cost (£) -140.5 

PV-SWH Annual cost (£) 197.4 

 

Table. 5 - 4 Daily cost comparison between PV-T and PV-SWH for different month (£) 

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

PV-T Cost  1.92 0.61 -0.72 -1.96 -2.53 -2.22 -1.98 -1.52 -0.86 0.95 1.77 1.92 

PV-SWH 

Cost 

2.22 1.15 0.16 -0.56 -0.83 -0.72 -0.61 -0.38 0.09 1.51 2.18 2.28 

5.4.7 Comparing with non-optimised solution 

The results between optimised and non-optimised options are compared in this 

section. In non-optimised calculation, simply add together each power consumption and 

PV power generation at all times, and then multiply the sum by the electricity tariff or 

FIT. Therefore, the daily total cost can be obtained through the summation of the cost 

over all time intervals. In order to obtain a reasonable comparison, the initial input data 

of the non-optimised calculation are chosen to be the same as the optimised calculation, 

such as solar radiation, load curve, electricity tariff. The SWH is ignored but the PV system 

is included in the non-optimised solution, which means all of the solar panel area is utilised 

for the PV system. Following [131], the power consumption for water heating has been 

included with EWH. In addition, ESS is not included in the non-optimised calculation 

and the EV relevant part is fixed. 

Table. 5 - 5 shows the annual cost comparison between the optimised and non-

optimised results. It can be seen that the cost of user can be effectively reduced. When 
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PV-T system is adopted, the annual cost will be reduced 100% and end user can make 

profit around £140 per year.  

Table. 5 - 5 Annual cost comparison between optimised and non-optimised results 

System type Optimised Annual Cost (£) Non-optimised Annual Cost 

(£) 

Cost Reduction 

PV-SWH 197.4 890.4 77% 

PV-T -140.5 890.4 100% 

5.5 Summary 

In this chapter, the residential home cost reduction system has been expanded to 

include solar energy supply. The hourly hot water temperature under optimal control for 

different area of solar thermal collector is obtained, and the factors that influence the 

water temperature are investigated. The sufficient areas of solar thermal collector for 

different seasons are calculated. It’s been found that larger area of SWH are unnecessary 

for area with strong solar radiation since PV system can be used to achieve cost reductions. 

Comparing SWH with PV, the results show that SWH is more efficient than PV when 

transfer the solar energy for water heating. Therefore, solar thermal water heater is still 

necessary to achieve the economic benefit for the end users but the area should be limited.  

Both TOU and fixed electricity tariffs are applied in the case studies, and it has been 

shown that the user will obtain more benefit under the TOU tariff. In addition, the trade-

off decision between the SWH area and the PV area is made based on the modelling 

framework. The case study shows that the volume of water storage tank has influence on 

choosing the area of solar thermal collector.  

Moreover, the hybrid PV-T system is compared to PV – SWH system. Results show 

that the hybrid PV-T system can achieve more cost savings than the combination of PV 

and SWH systems. The cost which is obtained through the optimised has been compared 

with the non-optimised model, and the results show that the optimised setting can reduce 

the cost by at least 77% for a typical residential home. 
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Chapter 6 Financial Analysis of the 

Household Energy System 

In the previous two chapters, minimisation of residential home energy cost has been 

explored considering EV, ESS and PV. Through the developed optimisation framework, 

the energy cost can be minimised by scheduling of charging and discharging of EV and 

ESS batteries, switch on and off of SWHs, optimal setting of SWH area. However, initial 

investments of the equipment, such as PV, SWH and ESS, are usually very high. Whether 

the cost savings calculated from the optimisation route can compensate the investments 

can be an issue. In this chapter, three appraisal methods are applied to assess and analyse 

the investment worth of the residential energy system. The basics of appraisal methods 

are introduced in Section 6.1. Section 6.2 presents the financial model of the residential 

energy system. Results and analysis of the residential home energy system are discussed 

in Section 6.3. Conclusions are given in Section 6.4. 

6.1 Fundamentals of appraisal method 

In this section, fundamentals of several appraisal methods are introduced, including 

payback period (PB), discounted payback period (DPB) and net present value (NPV).  

6.1.1 Payback period (PB) and discounted payback period (DPB) 

The initial investments of SWH, PV, and ESS for a smart home are usually very high 

even though they could bring benefits for the residential users. Also, the operation costs, 

maintenance costs and replacement costs of the storage battery need to be considered by 

the end-users to see whether they could save money comparing with using the traditional 

home energy systems. For this purpose, appraisal methods need to be applied to analyse 

the investment worth. The PB is one appraisal method that considers the period of time 

taken for the future net cash inflows to match the initial cash outlay [132]. For example, 

company A wants to purchase a new machine with a cost of £40,000, which can generate 

the operating cash flow of 16,000 in each subsequent year. The payback period of this 
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newly purchased machine can be analysed by the cash flow. Table. 6 - 1 gives the annual 

cash flow and cumulative cash flow for this project.  

Table. 6 - 1 Annual cash flow and cumulative cash flow  

Year OPF  (£) Cumulative cash flow (£) 

0 -40,000 -40,000 

1 16,000 -24,000 

2 16,000 -8,000 

3 16,000 8,000 

   

There are two approaches of PB, the short cut method and the unequal cash flow 

method. The short cut method is applied when the amounts of annual operating cash 

flows expected from a potential capital asset acquisition are equal each year. For the above 

example, the annual operating cash flows are equal each year, so the short cut calculation 

can be used to determine the payback period as shown in (6.1).  

 IC
PB

OPF
   (6.1) 

where IC  is the initial investment such as the equipment cost and the installation cost. 

OPF is the annual operating cash flow ( OPF ), which refers to the amount of cash 

inflows and outflows within the life cycle of an investment project after it is put into 

operation. The cash inflows refer to the operating cash income which is positive amount, 

and the cash outflows refer to operating cash expenses and taxes paid which are negative 

amount. Equation (6.1) is used to calculate the payback period of the earlier example, and 

the PB result is 2.5 years. 

Another approach is called unequal cash flows method, which deals with the 

amount of operating cash flow that are not expected to be the same amount each year. 

The method begins with the acquisition cost, and subtract the expected cash flows for 

each year until the point in time that all of the cash has been recovered. The portion of 

final recovery year is calculated and the payback period is equal to the number of full years 

plus the portion of final recovery year. According to the second method, it can be 

observed form Table. 6 - 1 that the cumulative cash flow for this project reduces to -

£8,000 at the end of year 2, and improves to £8,000 at the end of year 3; therefore, the 

payback period can be calculated by  
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8,000
(2 )  = 2.5 

16,000
PB


   

The result is the same as the first method.  

There are good reasons of using the PB method for business analysis. First it is 

simple to understand and calculate. It can help managers to make a quick evaluation on 

projects. Second, the PB can be used to compare the relative risk of projects with varying 

periods, which is essentially a popular measure of risk, and can help the analyst to 

determine how quickly money can be returned from an investment.  

Although PB is one of the most popular and simple methods to analyse the return-

of-investment, there are problems with PB as a measure of investment worth. According 

to [133, 134], one of the serious problems is that the time value of money (TVM) is 

ignored in PB. TVM is the concept that receiving money at the present time is of greater 

benefit than the same amount in the future because of its potential earning capacity. This 

principle of TVM explains why money can earn interest, which can be expressed by the 

following formula.  

 (1 )n tr
FV PV

n

     (6.2)  

where FV is the future value of money; PV is the present value of money; r  is the 

interest rate; n  is number of compounding periods per year; t  is the number of years. 

For example, assume the invested cost is the same as in the previous example for 2.5 years 

at 8% interest, which is £40,000, and the number of compounding periods is 2 per year, 

then the future value of that money can be calculated as  

2.5*28%
40,000 (1 ) 48,666

2
FV      

In this case, the future value of this money, £48,666, is more than two and half 

years ago; therefore, the net cash inflows cannot match the future value of the initial 

cash outlay when the payback period is 2.5 years.  

Another limitation in PB is that the payback analysis fails to compare the overall 

profitability of two different projects because the inflows of cash that occur beyond the 
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payback period are not considered in the analysis. For two proposed investments which 

might have similar payback periods, the cash inflows of one project might steadily decline 

after the end of its payback period, and the other project’s cash inflows might steadily 

increase after its payback period. Many capital investments may require the investment 

returns over years that are much longer than the payback period. Therefore, the PB 

analysis cannot be the only measure of the return-of-investment. In addition, the cash 

flows that occur with capital investments are full of complexities which are not taken into 

account in the PB analysis. For example, the PB analysis only considers one large cash 

outflow followed by steady cash inflows thereafter, but additional cash outflows may be 

required  and inflows may fluctuate in accord with sales and revenues [135]. Due to these 

limitations and drawbacks, the PB method is usually used as the preliminary evaluation, 

and other appraisal methods should be considered as the supplemented evaluations, such 

as DPB and NPV. 

To counter the error caused by TVM, the DPB method is usually applied. It can help 

the analyst to calculate the result to break even in a project by discounting future cash 

flows and recognising the TVM. It reflects the amount of time to break even in a project 

not only based on cash flows, but also when they occur and the prevailing rate of return 

in the market [135]. Equation (6.3) shows the calculation of discounted cash inflow for 

each period.    

 
(1 )

OPF
DCI

dr 



  (6.3) 

where DCI is the discounted cash inflow; OPF is operating cash flow; dr is the 

discounted rate;  is the period to which the cash inflow relates. It can be noticed that 

the discounted rate, dr , and the cash inflow related period,  , are the crucial factors that 

influence the cash value. The term 
1

(1 )dr 
 can be considered as the cash inflow value 

factor. 

Back to the previous example shown in Table. 6 - 1. Assuming the discounted rate,

dr , is 8%. The cash inflow value factor, the discounted cash inflow, and the cumulative 

discounted cash inflow can be calculated, and shown in Table. 6 - 2. 
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Table. 6 - 2  Annual discounted cash inflow and cumulative discounted cash inflow 

Year OPF  (£) Cash inflow factor  Discounted cash flow 

(£) 

Cumulative discounted 

cash flow (£) 

0 -40,000 1 -40,000 -40,000 

1 16,000 0.9295 14,872 
-25,128 

2 16,000 0.8573 13,717 
-11,411 

3 16,000 0.7938 12,701 
1,290 

According to the unequal cash flows method, the discounted payback period can 

be calculated as: 

 
11411

(2 ) years 2.9 years
12701

DPB


     

It can be seen that the discounted payback period is longer than the traditional 

payback period, and the result is more reliable since it accounts for TVM. However, it still 

ignores the cash inflows from project after the payback period; therefore, the method of 

NPV is applied to analyse the profitability of the investment or project as the 

supplemented evaluation.  

6.1.2 Net present value  

NPV is defined as the difference between the present value of cash inflows and 

outflows over a period of time [132, 136]. This method is usually applied to evaluate the 

desirability of investment opportunities. Project managers can make decisions whether 

the investment should be accepted or rejected depending on the results calculated through 

this method. The NPV index can be expressed as: 

       
31 2

2 3
1

, ,
1+ 1+ 1+ 1+ 1+

n
t t

I It t
t

OPF OPF OPFOPF OPF
NPV C C

r r r r r

          (6.4)  

where tOPF  is the operating cash flow during the time period t ; IC  is the total initial cost 

of investment; n  is the project’s life and r  denotes the required rate of return-of-

investment, which can also be called the discount rate. As can be seen from the above 

equation that the NPV of a project is determined by three factors: the sum of the net 

annual cash flows, the discount rate and the initial outlay. A positive NPV means that if 
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the earnings generated by the project exceeds the initial cost, then it will be a profitable 

investment. On the other hand, the investment with a negative NPV will result in a net 

loss, and it should be rejected by the decision maker. Fig. 6 - 1 shows the decision chart 

following NPV. 

 

Fig. 6 - 1 Decision chart of NPV 

Using the same example in this chapter that company A wants to purchase a new 

machine with a cost of £40,000, which can generate the operating cash flow of 16,000 in 

each subsequent year. However, at the end of the third year, the machine will be sold in 

£10,000, and the discount rate is 8% for each year. According to the above information, 

the annual cash flows of company A and the NPV can be calculated as shown in Table. 

6 - 3, from which it can be seen that the NPV is positive at the end of the third year; 

therefore, the investment of this new machine can be accepted by the manager.  

Table. 6 - 3 Aannual cash flows and NPV of company  

Year OPF  (£) 
Discount factor 

 

1

1+
t

r
 

Present value of cash flow 

(£) 

1 16,000 0.9295 14,872 

2 16,000 0.8573 13,717 

3 16,000 0.7938 12,701 

Total present value of cash flow (£) 

Initial investment (£) 

NPV at the end of third year 

41,290 

-40,000 

+1,290 
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6.2 Financial model of the household energy system  

The optimisation design in Chapter 4 and Chapter 5 aim to minimise daily energy 

cost of residential home end-users. The cost savings come from the decrease in energy 

costs, which in turn, increase the income; therefore, they are taken as operating cash 

income. Equation (6.5) expresses OPF  for investigating the payback period of the smart 

home energy system.  

 s mOPF C C    (6.5) 

where sC  is the annual cost savings; 
mC is the annual maintenance fees of the smart home 

system. The annual cost savings can be calculated by (6.6), and the relevant data can be 

obtained from the results in Chapter 5. 

 s non opt optC C C    (6.6)  

Here non optC   is the annual cost following a standard setting without optimisation; optC  

is the annual cost obtained by the optimised solution. In addition, the energy cost model 

built in Chapter 4 includes all the energy consumption costs of the household, such as 

cost of EV driving and household load demand. The non-optimised annual cost, non optC  , 

should include both fuel consumption of traditional vehicle and electricity consumption 

of the household user, which can be expressed as:  

 non opt e drivingC C C     (6.7)  

where eC  is the annual electricity cost without optimisation, drivingC is the annual fuel 

consumption cost of the traditional vehicle.  

According to the smart home system built in Chapter 5, the initial investment of this 

system can be written as: 

 argI pv ess ch ing controlC ic ic ic ic      (6.8)  
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where pvic , 
essic  are the installation costs of PV and ESS, respectively. argch ingic  is the 

installation cost of EV home charging system, and controlic  is the installation cost of the 

smart home control system. 

The payback period and the NPV for the smart home can be rewritten as:  

 
argpv ess ch ing control

e driving opt m

ic ic ic ic
PB

C C C C

  


  
  (6.9) 

 
 

 
arg

1

( )
1+

n
e driving opt m t

pv ess ch ing controlt
t

C C C C
NPV ic ic ic ic

r

  
      (6.10)  

6.3 Financial analysis of the residential home energy system  

In this section, the investment worth of the residential energy system is assessed by 

the appraisal methods introduced in section 6.2. The relevant input data, such as OPF, 

initial investment, and annual maintenance cost is calculated and collected. Financial 

analysis for different scenarios are compared and discussed.  

6.3.1 System specifications  

Two types of electricity tariff are considered in the financial analysis, and their values 

have been shown in Fig. 4 - 5, Chapter 4. In this case study, the smart home system 

considered does not include SWH and the solar PV’s rating is selected to be less than 

10kW. Following [137], the solar panel area is selected as 16
2m  for a house. Each 

Powerwall has the capacity of 6.4kWh and the cost of $3,000 (approximately £2,400). In 

the following case studies, the ESS capacity has been expanded through the connection 

of multiple Powerwall, i.e. 4 Powerwall packs, so the total capacity is 25.6kWh and the 

cost is around £9,600. Several types of EVs have been selected, which are based on quoted 

prices of the retailer in UK. In addition, the relevant prices of the battery are estimated 

by reference [120].The relevant prices’ details have been shown in Table. 6 - 4. To analyse 

the benefits of the household over a whole year, the monthly solar radiation variations 

need to be considered, and the average hourly solar radiation in each month is shown in 

Fig. 3 -  5. Furthermore, the average hourly residential load is shown in  Fig. 4 - 6. 
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Table. 6 - 4 Prices of different EV’s battery 

Brand TESLA75 TESLA100 BMW I3 SMART LEAF 

Capacity (kWh) 75 100 33 17.6 40 

Projected EV Price (£) 64,700 86,200 34,070 21,465 21,990 

Evaluation Price of Battery(£) 19,410 25,860 10,221 6,440 6,597 

Unit Capacity Cost (£/kWh) 258.8 258.6 309.7 365.8 164.9 

 

6.3.2 Energy cost of traditional household system 

A traditional household usually has no self-power supply equipment, such as PV and 

small wind turbine, and its electricity power is usually provided by external power grid. In 

addition, the end users of traditional household may also use natural gas for cooking or 

heating, and the vehicles they select are usually combustion vehicles. The energy 

consumption can be divided into three parts: electricity consumption, natural gas 

consumption and petrol/diesel consumption. In this case, it is assumed that the natural 

gas load is powered by or converted into electric power, such as cooking and heating, 

therefore only electricity consumption and petrol/diesel consumption for driving are 

considered.  

The end user’s daily cost of the electricity consumption can be calculated from 

equation (6.11)  as shown below: 

    
24

1

electricity load

i

C iiP 


    (6.11) 

where  loadP i  is the hourly electricity consumption during time period i ;  i  is the 

electricity tariff during time period i . The daily costs of electricity consumption are 

calculated to be £1.99 for the fixed tariff, and £1.87 for the TOU tariff. The annual cost 

of electricity consumption, eC , is calculated through the daily cost multiplied by 365, 

which are £726.35 and £682.55 for fixed and TOU tariff, respectively.  

The probabilities of monthly car fuel costs are obtained through the same survey 

used in Chapter 4, which are shown in Table. 6 - 5. In order to simplify the calculations, 

the median value for each spending interval is applied; therefore, the results of expected 
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value of the car fuel costs are calculated based on the median value, which are also shown 

in Table. 6 - 5. The total annual energy cost for a household includes both of the electricity 

cost and the car fuel cost, see also(6.7). With fixed and TOU tariffs, the annual costs are 

£2,472.35 and £2,428.55, respectively.  

Table. 6 - 5 Monthly car fuel costs 

Monthly car fuel costs Probabilities Median value(£) Expected value(£) 

less than £40 5% 20 1.0 

between £41 and £80 26% 60 15.6 

between £81 and £160 36% 120 43.2 

between £161 and £240 16% 200 32.0 

between £241 and £300 11% 270 29.7 

between £300 and £500 6% 400 24.0 

Total monthly expected cost 

Total annual expected cost, drivingC  

145.5 

1746 

6.3.3 Energy cost of smart home without/with optimisation control 

To calculate the energy cost of smart household without optimisation control, 

equation (4.28)in Chapter 4 has been applied in this case. Both of EV charging costs duet 

to driving, EV drivingC  , and the average daily battery degradation costs for EV, EV averageC  , 

are sourced from Section 4.5.8. The daily costs of the electricity consumption for different 

months under the fixed tariff without optimisation have been calculated and shown in 

Table. 6 - 6. Typical EV models are included in this analysis. It is observed that the cost 

is the lowest for SMART owners, and highest for TESLA 100kWh owners. 

Table. 6 - 6 Daily energy consumption cost of different month under fixed tariff without optimisation (£) 

EV Models Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

BMW I3 2.49 2.09 1.61 1.06 0.73 0.79 0.97 1.31 1.60 2.07 2.31 2.64 

SMART 2.43 2.03 1.56 1.00 0.66 0.74 0.91 1.26 1.54 2.02 2.25 2.58 

LEAF 2.56 2.17 1.69 1.14 0.80 0.87 1.05 1.39 1.67 2.15 2.39 2.71 

TESLA75 3.03 2.64 2.16 1.61 1.27 1.34 1.52 1.86 2.15 2.62 2.85 3.18 

TESLA100 3.32 2.92 2.45 1.89 1.56 1.63 1.81 2.15 2.43 2.91 3.14 3.47 
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Since the residential load curve is the averaged profile for all days in a year, the cost 

per month for different EV models can be obtained through multiplying the daily cost by 

30. Fig. 6 - 3 show the monthly and annual cost for different EV models without 

optimisation under the fixed tariff. It can be seen that no matter which EV is selected, 

the end user spends lowest in May because the solar radiation is highest during this month.  

 

Fig. 6 - 2 Energy consumption cost for different months under fixed tariff without optimisation 

 

Fig. 6 - 3  Annual energy consumption cost under fixed tariff without optimisation 

If the electricity tariff is TOU, we assume the EV is only charged during the night 

time, so only the night time tariff is applied for charging EV. Same to the case of fixed 

tariff, the daily costs of the electricity consumption during different months under the 

TOU tariff without optimisation are also calculated through (4.28), which are shown in 

Table. 6 - 7. Since the residential load is the averaged value for all days, the cost per month 

for different EV models is calculated by multiplying 30 to the daily cost. Fig. 6 - 4 and 
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Fig. 6 - 5 show the monthly and annual costs for different EV models without 

optimisation under the TOU tariff. 

Table. 6 - 7 Daily energy consumption cost of different month under TOU tariff without optimisation (£) 

EV Models Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

BMW I3 1.85 1.52 1.08 0.46 0.11 0.21 0.37 0.73 1.04 1.50 1.69 1.97 

SMART 1.75 1.42 0.98 0.37 0.02 0.11 0.27 0.63 0.94 1.39 1.59 1.87 

LEAF 1.81 1.48 1.03 0.42 0.07 0.16 0.33 0.68 0.99 1.45 1.65 1.93 

TESLA75 2.27 1.95 1.50 0.89 0.54 0.63 0.80 1.15 1.46 1.92 2.12 2.39 

TESLA100 2.53 2.20 1.76 1.14 0.80 0.89 1.05 1.41 1.72 2.18 2.38 2.65 

 

Fig. 6 - 4 Energy consumption cost for different months under TOU tariff without optimisation 

 

Fig. 6 - 5 Annual energy consumption cost under TOU tariff without optimisation 

 



128 

 

It is noted that the most economic EV models is still the SMART when the electricity 

tariff is TOU and the EV is charged during the night time. There are two reasons that can 

explain why SMART is most economic for EV owners. Firstly, its battery degradation 

cost is the lowest compared to other EVs as can be seen from Fig. 6 - 6. Secondly, its 

driving efficiency is the highest compared with other EVs as shown in Table. 4 - 11.  

 

Fig. 6 - 6 Battery degradation cost for different EVs 

Table. 6 - 8 shows the charging costs for different types of EV for the same driving 

distance of 100 miles. It is found that the charging cost for SMART is the lowest. This 

advantage will be more obvious when the electricity price is high.  

Table. 6 - 8 Charging costs for different types of EVs for the same distance driving 

Brand TESLA100 TESLA75 BMW I3 SMART LEAF 

Charging Cost (£) 3.87 3.75 3.55 2.70 3.62 

According to the residential home energy cost optimisation in Chapter 4, the overall 

cost of the end user can be reduced through the optimal scheduling of battery 

charging/discharging for EV and ESS. The solar radiation data in Chapter 4 is the 

averaged January data of several years. In order to obtain the annual minimum cost for 

the end user, other month’s solar radiation data need to be considered to recalculate the 

minimum cost of each month. Table. 6 - 9 and Table. 6 - 10 show the optimised daily 

costs, over 12 months, under the fixed tariff and the TOU tariff, respectively. Table. 6 - 

11 show the optimised annual costs for several EVs. Fig. 6 - 7 and Fig. 6 - 8 show the 

monthly costs after optimisation under the fixed and the TOU tariffs, respectively 
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Table. 6 - 9 Daily energy consumption cost of different month under fixed tariff after optimisation (£) 

EV Models Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

BMW I3 2.23 1.22 0.20 -0.70 -0.90 -0.76 -0.63 -0.36 0.02 1.61 2.18 2.26 

SMART 2.17 1.15 0.15 -0.71 -0.99 -0.83 -0.71 -0.44 -0.04 1.55 2.11 2.21 

LEAF 2.21 1.19 0.18 -0.70 -0.99 -0.83 -0.71 -0.44 0.00 1.58 2.16 2.25 

TESLA75 2.64 1.62 0.60 -0.28 -0.57 -0.41 -0.29 -0.02 0.43 2.01 2.61 2.67 

TESLA100 2.71 1.69 0.67 -0.22 -0.51 -0.34 -0.22 0.04 0.49 2.08 2.66 2.74 

 

Fig. 6 - 7 Energy consumption cost for different months under fixed tariff after optimisation 

Table. 6 - 10 Daily energy consumption cost of different month under TOU tariff after optimisation (£) 

EV Models Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

BMW I3 1.65 0.63 -0.38 -1.21 -1.49 -1.34 -1.22 -0.95 -0.56 1.03 1.60 1.59 

SMART 1.58 0.55 -0.45 -1.31 -1.59 -1.43 -1.31 -1.04 -0.64 0.95 1.51 1.52 

LEAF 1.61 0.59 -0.42 -1.30 -1.59 -1.43 -1.31 -1.04 -0.60 0.98 1.56 1.55 

TESLA75 2.03 1.02 -0.01 -0.88 -1.17 -1.01 -0.89 -0.62 -0.18 1.41 2.01 1.97 

TESLA100 2.10 1.08 0.06 -0.83 -1.12 -0.95 -0.83 -0.57 -0.12 1.47 2.05 2.04 
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Fig. 6 - 8 Energy consumption cost for different months under TOU tariff after optimisation 

Table. 6 - 11 Smart Home Annual energy consumption costs with different EVs after optimisation (£) 

Tariff TESLA100 TESLA75 BMW I3 SMART LEAF 

Fixed tariff 354.8 330.0 192.5 168.6 178.4 

TOU tariff 132.5 110.7 -18.1 -49.8 -40.6 

Comparing the annual cost of SMART to other EVs under different electricity tariffs, 

the annual cost of SMART is still the lowest. It can be stated that SMART is currently the 

most economical EV from energy saving point of view. 

6.3.4 Financial analysis of the smart home system without/with 

optimised control 

6.3.4.1 Calculation of the annual cost savings sC  

Two methods of return-of-investment, PB and NPV, have been applied to investigate 

the economic benefits of the smart home energy system. The methods have been 

presented in Section 6.1. The annual cost savings sC  in each subsequent year after the 

initial investment are calculated through (6.6). The data of cash flows for the calculations, 

such as non optC   and optC are sourced from the case studies in subsection 6.3.2 and 6.3.3. 

Table. 6 - 12 shows the annual cost savings for different EV models under the fixed and 

TOU tariffs. It can be seen that the annual cost savings are much higher after optimisation, 
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and SMART is still the most economic option for the end user compared to other types 

of EVs.   

Table. 6 - 12 Smart home annual cost savings, sC , under fixed and TOU tariffs (£) 

Brand TESLA S100 TESLA S75 BMW I3 SMART LEAF 

Without optimisation (fixed tariff) 1,582 1,686 1,882 1,903 1,855 

With optimisation (fixed tariff) 2,118 2,142 2,280 2,303 2,293 

Without optimisation (TOU tariff) 1,807 1,900 2,053 2,088 2,068 

With optimisation (TOU tariff) 2,296 2,318 2,446 2,478 2,469 

 

6.3.4.2 Calculation of maintenance fees, installation cost and OPF  

For the smart home system, the main annual maintenance fees come from the costs 

of maintaining PV system. According to[138], one component of PV system needs to be 

changed over the lifespan is the inverter, which converts the DC output of PV panel into 

the AC required by local grids, and the average cost of an inverter is about £1,000. The 

inverter is assumed to be changed once during total PV lifespan. Furthermore, the solar 

panels need to be cleaned about every six months when they are contaminated by dirt, 

debris and pollution. This service, which is done by specialist, usually costs more than 

£50 quoted from [139]. According to [139], most manufactures offer the 25-year standard 

solar panel warranty, so the total PV lifespan is selected as 25 years in this work. Table. 6 

- 13 shows the annual maintenance costs for PV system.  

Table. 6 - 13 Annual maintenance costs, mC , for PV system 

PV lifespan Annual Inverter cost (£) Annual maintenance cost  (£) Annual total costs (£)  

25 years 
40 100 140 

The annual operating cash flow, OPF , after the first initial investment of the smart 

home can be calculated through (6.5). The data of sC and mC  are sourced from Table. 6 

- 12 and Table. 6 - 13. Results of OPF for different types of EV are shown in the 

following table.  
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Table. 6 - 14 Annual operating cash flow, OPF , (£) 

EV 
Tesla S100 Tesla S75 BMW I3 SMART LEAF 

With optimisation (fixcd tariff) 
1,442 1,546 1,742 1,763 1,715 

Without optimisation (fixed tariff) 
1,667 1,760 1,913 1,948 1,928 

With optimisation (TOU tariff) 
1,978 2,002 2,140 2,163 2,153 

Without optimisation (TOU tariff) 
2,156 2,178 2,306 2,338 2,329 

The initial investment of smart home system is mainly from the installation costs of 

the whole smart home system. According to (6.8), the installation costs are the costs of 

installing PV, ESS, EV home charging system, and smart home control system. Table. 6 

- 15 shows the initial investment for setting up a smart home system built in Chapter 5. 

The data are sourced from [113, 140-142]. The total initial investment of smart home 

system with 4kW PV system and one pack of Tesla Powerwall, IC , will be £10,148. 

Table. 6 - 15 Initial investment for a smart home system 

Equipment PV ESS EV charging device Smart home system 

Installation cost (£) 1,505/kW 2,300/pack 647 1,181 

6.3.4.3 Payback periods and NPV for smart home systems 

According to (6.9), the payback period for different types of EVs can be obtained 

as shown in Table. 6 - 16.  

Table. 6 - 16 Payback period of the residential system for different types of EV (years) 

EV Models PB w/o optimisation 

(fixed tariff) 

PB w/o optimisation 

(TOU tariff) 

PB with optimisation 

(fixed tariff) 

PB with optimisation 

(TOU tariff) 

BMW I3 5.80 5.30 4.70 4.40 

SMART 5.80 5.20 4.70 4.30 

LEAF 5.90 5.30 4.70 4.40 

TESLA 75 6.60 5.80 5.10 4.70 

TESLA 100 7.00 6.10 5.10 4.70 

Average 6.22 5.54 4.86 4.50 
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According to Table. 6 - 16, it can be concluded that the payback period is longer if 

the price of EV is higher but its efficiency is lower; however, the payback period can be 

significantly reduced through optimised DSM. The overall payback period of the smart 

home system under the optimised control is always shorter compared to the system 

without optimisation.  

The preliminary analysis on return-of-investment has been performed using the 

payback period method. Next the TVM index, expressed in (6.3), is applied for 

complementary analysis in DPB. In this case, the discounted rate is selected as 2.4% which 

is same with the inflation rate in UK [143]. The cash inflow value factor, the discounted 

cash inflow, and the cumulative discounted cash inflow for different EV can be calculated 

as shown from Appendix, Table B. 1 ~Table B. 20. Table. 6 - 17 shows the payback 

period after discounting the cash flow.  

Table. 6 - 17 Payback period (DPB) for different types of EV after discounting the cash flow (years) 

EV w/o optimisation 

(fixed tariff) 

w/o optimisation 

((TOU tariff) 

with optimisation 

(fixed tariff) 

with optimisation 

(TOU tariff) 

BMW I3 6.35 5.74 5.10 4.71 

SMART 6.27 5.63 5.04 4.64 

LEAF 6.46 5.69 5.06 4.66 

TESLA 75 7.23 6.28 5.47 5.00 

TESLA 100 7.80 6.66 5.54 5.06 

Average DPB 6.82 6.00 5.24 4.81 

 

As can been seen from Table. 6 - 17, the payback period after discounting the cash 

flow is longer than the case without considering the discounted cash flow. The averaged 

discounted payback periods are also shown in Table. 6 - 17. The EV that can achieve the 

lowest DPB to match the initial cash outlay is still the SMART after discounted the cash 

flow.  

Assuming that the time required for the initial investment return of the smart home 

system is the averaged DPB. If they are not integer number, we will round it up to the 

nearest integer, e.g. if DPB is 6.35 years, then we select 7 years as the time of return-of-

investment. In order to analyse whether the selected EV can achieve profitability on 

expected year of recovering the investment, the NPV method is applied to further analyse 

the profitability of the investment. According to [132], a positive NPV on the expected 
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year of recovering the investment denotes that the earnings generated by the project 

exceeds the initial costs, which can be accepted by the users. On the other hand, the 

investment with a negative NPV should be rejected by the users. Table. 6 - 18 shows the 

results of NPV under different cases.                

Table. 6 - 18 Results of NPV signal for different cases 

EV NPV signal w/o 

optimisation (fixed 

tariff) 

NPV w/o 

optimisation (TOU 

tariff) 

NPV with 

optimisation (fixed 

tariff) 

NPV with 

optimisation (TOU 

tariff) 

BMW I3 + + + + 

SMART + + + + 

LEAF + + + + 

TESLA 75 - - - - 

TESLA 100 - - - - 

     

It can be seen from Table. 6 - 18, three types of EV, which are BMW i3, SMART, 

and LEAF, are acceptable for the users either with or without optimal control, if the time 

required for the investment return of the smart system is selected following the above 

assumption. For TESLA 75 and TESLA 100, the relevant NPVs are negative either for 

fixed tariff or TOU tariff. The main reason is because of their battery packs are much 

higher than other EVs, so the battery degradation costs are much higher. End user has to 

spend longer time to return the initial investment.  

6.3.5 Financial analysis of the residential home system including SWH 

The above analyses calculates the payback period of the smart home system, which 

includes PV, ESS, and EV, either with optimal control or without optimal control. The 

results show that if users select the SMART EV, then the initial investment can be 

returned quicker than other types of EVs under both the fixed and the TOU electricity 

tariffs. In this section, another controllable device, the solar thermal water heater, has 

been added into the smart home energy system. Two different solar thermal systems are 

compared, the PV-SWH system and the PV-T system. Only the fixed tariff has been 

applied. The split areas for PV-SWH is selected from the result in 5.4.4 The same three 

methods, PB, DPB and NPV, are applied to investigate the return-of-investment.  
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Table. 6 - 19 shows the average daily cost for different months when the SWH is 

used (the selected EV is SMART). Comparing Table. 6 – 19 with Table. 6 - 9, it can be 

seen that the daily energy cost has been successfully reduced with the use of SWH, which 

is mainly resulted from energy savings of the hot water consumption. In addition, it can 

be observed that larger volume of water tank will reduce the user’s daily cost further. 

However, if the volume of tank is too large for the end user who has a relatively lower 

daily hot water demand, then the cost reduction will be decreased. Also, the purchase cost 

of larger volume tank is higher. In the following annual cost analysis, a tank with the 

volume of 160L is considered for SWH. This tank size can sufficiently guarantee the daily 

hot water consumption for a household up to three people [144]. Table. 6 - 20 and Table. 

6 – 21 show the minimum costs for different type of EVs with PV-SWH system and PV-

T system, respectively. 

Table. 6 - 19 Daily energy consumption cost (£) of different months for different volumes of SWH 

Volume 

(L) 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

80  1.67 0.70 -0.23 -1.03 -1.24 -1.11 -1.03 -0.82 -0.44 1.10 1.63 1.71 

120 1.57 0.65 -0.27 -1.06 -1.29 -1.16 -1.07 -0.85 -0.47 1.07 1.56 1.61 

160 1.47 0.60 -0.30 -1.11 -1.34 -1.23 -1.13 -0.89 -0.50 1.00 1.49 1.51 

200 1.46 0.59 -0.33 -1.14 -1.38 -1.28 -1.18 -0.94 -0.55 0.95 1.47 1.51 

240 1.45 0.53 -0.39 -1.21 -1.42 -1.31 -1.25 -0.99 -0.59 0.91 1.42 0.70 

Table. 6 - 20 Daily energy consumption cost (£) for different type of EVs with 160L of SWH 

EV Models Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

SMART 1.47 0.60 -0.30 -1.11 -1.34 -1.23 -1.13 -0.89 -0.50 1.00 1.49 1.51 

BMW I3 1.53 0.67 -0.25 -1.10 -1.25 -1.16 -1.05 -0.81 -0.44 1.06 1.56 1.56 

LEAF  1.51 0.64 -0.27 -1.10 -1.34 -1.23 -1.13 -0.89 -0.46 1.03 1.54 1.55 

TESLA 75 1.93 1.06 0.14 -0.68 -0.92 -0.81 -0.71 -0.47 -0.04 1.45 1.98 1.96 

TESLA 

100 

1.98 1.01 0.15 -0.67 -0.88 -0.80 -0.69 -0.45 0.02 1.50 2.07 2.05 

Table. 6 - 21 Daily energy consumption cost (£) for different type of EVs with 160L of PV-T 

EV Models Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

SMART 1.17 0.06 -1.18 -2.51 -3.04 -2.73 -2.50 -2.03 -1.45 0.44 1.08 1.15 

BMW I3 1.23 0.13 -1.13 -2.50 -2.95 -2.66 -2.42 -1.95 -1.39 0.50 1.15 1.20 

LEAF  1.21 0.10 -1.15 -2.50 -3.00 -2.70 -2.45 -2.00 -1.41 0.47 1.13 1.19 
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TESLA 75 1.63 0.52 -0.74 -2.08 -2.62 -2.31 -2.08 -1.61 -0.99 0.89 1.57 1.60 

TESLA 100 1.68 0.47 -0.73 -2.07 -2.58 -2.3 -2.06 -1.59 -0.93 0.94 1.66 1.69 

     

 

Fig. 6 - 9 Cost reduction of different months with SWH  

The annual costs for PV-SWH, PV-T are shown in Table. 6 - 22. Regardless of EV 

types, the cost has been significantly reduced with the use of solar energy supply. The cost 

reduction varies from one month to another, which is the difference between Table. 6 - 

9 and Table. 6 - 20 . Fig. 6 - 9 shows the cost reductions at different months. It can be 

seen that the cost reductions are higher during the winter season, and lower during the 

summer season. This is because of the area of SWH is selected to be sufficient for winter 

case, which is 30% of total area from subsection 5.4.4, and it is too large for summer time.  

In addition, PV is included in non-SWH system, which can also help to reduce the 

total cost. If the system includes SWH, larger area of SWH means less area of PV is 

installed. Therefore, higher solar irradiance will result in lower cost reduction. 

Furthermore, the inlet water temperature during the summer season, which is 15℃, is 

higher than the winter season (8℃), so less solar irradiance for heating the water is needed. 

In summary, the benefits of SWH during the summer season are less than the winter 

season from the economic point of view.  

Table. 6 - 22 Annual cost comparison between PV-SWH and PV-T (£) 

EV Models Annual cost with PV-SWH Annual cost with PV-T Annual cost without SWH 

SMART -13.78 -350.40 192.5 

BMW I3 9.05 -324.85 168.6 
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LEAF -5.32 -335.80 178.4 

TESLA75 147.96 -186.15 330.0 

TESLA100 156.22 -177.02 354.8 

 

With the above results, the optimized daily cost of the smart home can be calculated 

including SWH, as shown in Table. 6 - 20. It’s reported in [145] that the maintenance 

costs of SWH are very low, and most SWH systems come with up to 10 years warranty 

and require little maintenance. Thus the annual maintenance costs of SWH are ignored in 

this case, and the annual operation and maintenance of the smart home system are the 

same as Section 6.3.4. Therefore, the OPF for different types of EVs can be calculated, 

and the results are shown in Table. 6 - 23.  

 

Table. 6 - 23  OPF for different types of EVs with PV-SWH 

EV Models OPF with PV-SWH (£) OPF with PV-T (£) 

SMART 2,346.08 2,682.70 

BMW I3 2,323.25 2,657.20 

LEAF 2,337.62 2,668.10 

TESLA75 2,184.34 2,518.50 

TESLA100 2,175.65 2,508.90 

The initial investment of smart home system is mainly from the installation costs of 

the whole smart home system. In this case, the SWH has been included, so the cost of 

installing SWH should be added into the total installation costs. According to [146], the 

cost of a typical SWH system is around £500. In addition, if SWH system is installed, the 

area for installing PV panel will be decreased, so the PV system is decreased to 2kW. 

Therefore, initial investment for setting a smart home system with a 2kW PV system, one 

pack of Tesla Powerwall and a typical SWH system will be £7,638, which is calculated 

from the data in Table. 6 - 15. If a PV-T system is applied, the total roof area can be 

utilised for the solar panel. In this case, it is assumed that the electricity output part of 

PV-T can be increased to 3kW. According to [147], the PV-T installation cost is 10% 

higher than the traditional PV system, so the relevant cost will be 1,505*3*110%=£4,966. 

The overall cost of the smart home system will be £9,094. According to (6.1), the payback 

periods for PV-SWH and PV-T system can be obtained as shown in Table. 6 - 24.  
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Table. 6 - 24 Comparison of PB and DPB for PV-SWH and PV-T (years) 

EV Models PB of PV-SWH PB of PV-T  DPB of PV-SWH DPB for PV-T 

BMW I3 3.30 3.39 3.47 3.67 

SMART 3.33 3.42 3.43 3.58 

LEAF 3.31 3.41 3.44 3.60 

TESLA75 3.54 3.61 3.70 3.82 

TESLA100 3.56 3.62 3.71 3.84 

As can be seen from the Table. 6 - 24, the payback period of the whole smart home 

systems are decreased when the PV-SWH or PV-T is included. One reason is that the size 

of PV system is decreased, which cause the decrease of the initial costs. Another reason 

is that the solar thermal collector can help to reduce the energy cost, and the installation 

costs of a PV-SWH system or PV-T system are not very high. Furthermore, results show 

that the payback periods are shorter if the selected hybrid PV solar thermal system is PV-

SWH system. Table. 6 - 24 also shows the results when the discounted rate is included in 

the calculation of payback-period, and the DPB is shorter if the solar thermal system is 

included compared to non-thermal system.  

According to the results of Table. 6 - 22, the annual cost can be decreased if the solar 

thermal system is included in the smart home system. Next, the NPV method is applied 

for further analysis. The lifetime of SWH is selected as 10 years according to [148]. In this 

study, cash inflows of 9 years are calculated for both PV-SWH and PV-T systems, which 

are shown in Appendix. B. The index of NPV, which indicates whether the investment 

should be accepted, is obtained as shown in Table. 6 - 25. In this case, all NPV values are 

positive, which means the cost savings generated by the smart home system exceeds the 

initial cost on the expected year with all selected EVs, and the system with the solar 

thermal system can be accepted. When comparing the cash inflows of 9 years periods 

between PV-SWH and PV-T systems, as shown by Table. 6 - 26, the profits of the smart 

home system will be higher for the PV-T option. For this reason, the hybrid PV-T system 

can be recommended for the end user from long term perspective of the investment. 

Table. 6 - 25 NPV signal of the residential system including SWH 

EV Models NPV for PV-SWH NPV for PV-T 

BMW I3 + + 
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SMART + + 

LEAF + + 

Tesla 75 + + 

Tesla 100 + + 

Table. 6 - 26 9 years cumulative discounted cash flow for PV-T and PV-SWH systems 

EV Models PV-T system (£) PV-SWH system (£) 

BMW I3 12,185 10,966 

SMART 12,393 11,150 

LEAF 12,273 11,086 

Tesla 75 11,080 9,853 

Tesla 100 11,000 9,789 

6.4 Summary 

In this chapter, three appraisal methods, PB, DPB and NPV, have been applied to 

analyse the investment worth of the residential home energy system. In the case study, 

the solar radiation levels at different months are considered to calculate the average daily 

costs in each month, based on which the annual cost savings can be calculated. Three 

different residential systems have been investigated, which are the traditional household 

energy system, the smart home energy system without optimisation, and the optimised 

smart home energy system. The energy costs of these three systems have been calculated. 

The financial analysis shows that the end user can achieve more economic benefits from 

smart homes compared to the traditional residential home system. Comparing the non-

optimised smart home system with the optimised system, it can be concluded that the 

optimisation scheme can help to reduce the payback period. Case study results show that, 

for a typical smart home setting with EV, the average optimised payback period is 4.7 

years which is 1.2 years shorter than the non-optimised system. In addition to PB, the 

DPB method is applied to avoid the TVM problem; the discounted payback period for 

optimised and non-optimised smart home systems are compared. Furthermore, the NPV 

analysis is applied and the results suggest that three types of EVs can be accepted by the 

end users, which are SMART, BMW, and LEAF.  



140 

 

Financial analysis has also been made to compare the PV-SWH system and the PV-

T system. The NPV analysis result indicate that both systems can be accepted for all types 

of EVs. The average payback period of the smart home system with solar thermal 

collectors (either PV-SWH or PV-T), will be much short than the home without thermal 

collectors. In addition, the uncertainty of findings in Chapter 6 are mainly resulted from 

two aspects. One is the initial investment of the smart home system which is fixed type, 

such as EV battery pack purchase costs, PV panel costs, energy system costs and 

maintenance costs. The other one is the factor that influence the results calculated from 

the mathematical model, which is unfixed type, such as electricity tariff, different initial 

values and driving probabilities. 
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Chapter 7 Conclusions 

7.1 Conclusions 

Traditional power grids face barriers and challenges when synchronising large scale 

renewable generation due to the intermittent characteristics of these resources. In order 

to address these issues related to grid connection, ESS can be used to store energy for 

future needs and thus relieve the adverse impact of renewable generation. A popular 

energy storage device is battery pack, which is also the core part of an EV. In fact, an EV 

can be used as the storage energy device that is able to inject the stored electric power 

back to the grid, which is called V2G. This can be applied as a new type of energy source 

and utilised together with ESS in order to achieve optimal operation of power systems. 

With the development of these new technologies, the traditional grids need to be 

upgraded into smart grid that can help to manage the variability of renewable resources 

and intelligently interact with all users connected to the grid. More importantly, end users 

will attribute to energy management in smart grid systems in the future; therefore, DSM 

is required to influence the load, and help to promote the utilisation of renewable 

resources for the end users. In DSM, customers play an important role as they have the 

choice from a range of products according to their preference. For residential home users, 

a household energy management system can benefit the customers and encourage them 

to participate in V2G.  

As EVs have become more and more popular for residential users, reducing the 

charging cost of EVs is crucial to attract more end users to participate DSM schemes or 

other energy policies. For this reason, optimised charging control of EVs, which aims at 

cost reduction for users, should be investigated. In addition, with V2G involved, the 

energy cost of the end user could be further reduced when ESS is utilised together. 

However, there is an issue in applying V2G, which is economic viability of V2G due to 

the high discharging cost. This is often related to factors such as battery degradation, 

expensive battery pack and low FIT. Furthermore, when EV is considered into the cost 

minimisation model of end users, the customer’s driving behaviours are also affect 
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implementation of DSM programmes, and will certainly influence the cost reductions and 

the charging and discharging control of EVs for the household energy management. 

When solar energy supply is provided to a residential home, PV and SWH systems 

are two established technologies. The SWH back-up electricity system can be controlled 

following the switching on-off characteristics.  

To achieve DSM optimisation for smart home systems, initial investments on PV, 

SWH and ESS, cannot be ignored. Whether the cost savings calculated from the 

optimisation can compensate the investments needs to be examined.  

In this thesis, a mathematical model is built for a residential energy system consisting 

of an EV, an ESS, renewable generation (PV), and other residential loads. The end user’s 

driving behaviours are considered in this model with the probabilities calculated from 

survey data. The main objective of this model is to minimise the cost of end user by 

controlling charging/discharging status of EV and ESS.  The relevant battery degradation 

cost due to V2G are also considered in the optimisation, and whether the existing export 

tariff is profitable for V2G application has been revealed through case studies. 

Furthermore, this model can be conveniently expanded to include more controllable 

components. Two hybrid solar thermal systems, PV-SWH and PV-T, are considered and 

compared. The benefits of solar thermal system for the end user are investigated from the 

economic point of view. The split of the limited solar panel area between SWH and PV 

is determined when other DSM factors are optimised together under the same modelling 

framework. Finally, different appraisal methods are applied to analyse the investment 

worth of the residential systems. Comparisons of different household systems and the 

optimal system choices are given, such as EV selection, indications of the installing costs 

and so on. The input data are assumed to be fixed in the case studies, so the results 

calculated from the mathematical model would be influenced by different input data, such 

as electricity tariff, different initial values and driving probabilities. However, the 

mathematical model built in this study can be easily applied with different input data, and 

the results can also indicate a helpful guidance for the end user under different situation.  

In the case studies, the original input data are sourced from different companies in 

U.K, such as electricity tariffs, FIT, battery prices of different EVs.  Other residential daily 

load consumption and solar radiation are also selected as the original input data which are 
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assumed to be fixed on each sampling time. With use of selected input data, results of 

case studies show that the total operational cost remains at the same minimum value if 

the initial SOC value is larger than or equal to the lower bound of the terminal SOC from 

the previous driving. This is because of the existing export tariff in U.K is not large 

enough to compensate for the degradation cost of battery’s discharging, and thus, there 

is no power return either from ESS to home supply or from EV to grid through V2G. 

The overall cost measure will increase when the initial SOC is smaller than the lower 

bound of the terminal SOC, and it will be slightly smaller if charging the same amount of 

energy to EV from a lower initial SOC. Several different EV models are studied, and the 

economical choice has been provided. Different impacts of the export tariff are discussed. 

The results show that the EV will only start to discharge when the export tariff is larger 

than or equal to £0.25/kWh for the fixed tariff, and £0.15/kWh for the TOU tariff in the 

case studies. These thresholds could be decreased if the battery degradation cost can be 

decreased in the future. In comparison to the non-optimised typical operation without 

the optimal DSM, it is found that the proposed optimal solution can achieve cost savings 

from 9% to 15% under the selected fixed tariff, and from 18% to 48% under the given 

TOU tariff.  

When SWH is included in this residential energy system, the sufficient areas of solar 

thermal collector for different seasons are obtained. Comparing SWH with PV, the results 

also show that SWH is necessary to achieve the best economic benefit for the end user 

and the trade-off decision for different area of SWH and PV are obtained. The factors 

that influence the water temperature are also investigated. Moreover, the hybrid PV-T 

system is compared to the hybrid system of PV and SWH. Results show that PV-T system 

can achieve more cost savings than a combination of PV and SWH. The cost which is 

obtained through the optimisation have been compared with the non-optimised settings, 

and the results show that the optimisation can reduce the cost at least 77%. 

Finally, several appraisal methods are applied to assess and analyse the investment 

worth of the residential energy system under the developed optimisation. Results show 

that the smart home’s end user can achieve more economic benefits compared to the 

traditional residential home system. Comparing the results of non-optimised residential 

home system to optimised systems, it can be concluded that the optimised DSM can help 

to reduce the payback period. In addition, the average payback period after the 
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optimisation is 4.7 years which is 1.2 years shorter than the non-optimised situation. If 

the discounted rate is introduced to discount the cash flow in order to avoid the problem 

of TVM, the average discounted payback period are 5.0 years and 6.4 years for optimised 

and non-optimised solutions, respectively. Furthermore, the results of NPV signal for 

different scenarios indicate that three types of EV are more likely to be accepted by the 

end users, which are SMART, BMW, and LEAF. The economic benefits of renewable 

devices, which are PV-SWH and PV-T, are analysed through the above appraisal methods. 

The NPV analysis indicates that both of PV-SWH and PV-T can be accepted for all types 

of EVs, and the average payback period of residential system will be much shorter than 

the system without the solar thermal system. This is mainly resulted from the energy 

savings from the hot water consumption. Though the payback period of PV-SWH system 

is shorter than PV-T system, PV-T system is still recommended if the user wants to 

achieve more benefits from a long term perspective. 

7.2 Future perspectives 

The works presented in this thesis proposed a novel DSM model framework for a 

residential home system, considering EV, energy storage system (ESS), renewable 

technologies, solar thermal technologies and human behaviours. In the light of the 

direction that this work took, the following research avenues may be of interest to both 

academia and industry: 

 The main objective of this work is to minimise the energy cost of end user for 

a single residential household system. In the future research, the household 

system will be expanded to a residential building size system with distribution 

network, such as commercial building, hospital and so on. Multiple EVs and 

end users will be considered where they can be jointly managed through the 

optimisation scheme. The benefits for both sides of end users and grid operator 

will be investigated. Larger size of PV system and SWH system will be 

considered.  

 The ESS applied in this study is for a single household, which is a small battery 

based storage. For larger systems, fuel cells can be used as a back-up power 

system.  It can also be implemented as part of the combined heat and power 
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(CHP) system, where the thermal energy from the fuel cell exhaustion is 

recovered and used to heat or cool residential buildings. Therefore, a CHP 

system will be established by considering renewable generation, fuel cell, for a 

residential building. The investment worth of the residential building energy 

system will also be analysed through the appraisal methods. 

 The driving behaviours of the end user are described through a practical survey. 

It can describe a single user’s driving behaviours but may not suitable for 

multiple end users. In a residential building, the end users’ vehicles are parked 

in a building car park. A typical car park traffic flow model will be added to 

describe the driving behaviours for the residential building.  
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Appendix  

A. Survey Data 

The survey was conducted by designed questionnaires and there were 201 

respondents participated, each with a full time job, a driving license and aged between 22 

to 55 years old. The area Most of them responded the survey through online service, and 

the time period for this survey was between Oct 2016 and Jan 2017. The averaged 

probabilities from the 201 questionnaires are summarised in the tables below, in which all 

the figures are normalised in percentage.   

Table A. 1 Purpose of driving and probabilities 

Purpose of driving Probability (%) 

a. Shopping  20.96 

b. Dating/Camping/Entertainment (Entertain.) 25.55 

c. Go to work/meeting (Business) 23.95 

d. Pick up friends/children 16.97 

e. Travel for other purposes (Others) 12.57 

Table A. 2 Driving distance (normalised in percentage for each row) 

Driving 

distance, 

miles 

< 1 1-3 3-5 5-10 10-20 20-40 40-80 80-

120  

120-

160 

160-

200 

> 200 

a. Shopping 28.14 46.71 14.37 6.59 2.99 0.00 1.20 0.00 0.00 0.00 0.00 

b. Entertain.  4.19 14.97 21.56 17.96 14.97 14.97 5.99 3.59 1.20 0.00 0.60 

c. Business 4.79 19.16 21.56 25.75 13.17 6.59 7.78 0.60 0.00 0.60 0.00 

d. Pick up  10.78 25.75 28.14 17.96 9.58 4.79 2.40 0.60 0.00 0.00 0.00 

e. Others 4.79 0.60 4.19 2.40 5.39 2.40 11.98 26.35 5.99 7.78 28.14 

Table A. 3 Driving time period (normalised in percentage for each row) 

Driving time period  7:00-10:00 10:00-14:00 14:00-17:00 17:00-20:00 20:00-23:00 After23:00 

a. Shopping  15.09 11.20 15.09 44.79 13.83 0.00 

b. Entertain. 11.47 17.93 18.65 28.68 18.61 4.66 

c. Business 49.71 15.44 14.31 17.53 2.26 0.75 

d. Pick up 37.18 8.61 11.35 32.79 6.65 3.42 
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e. Others 32.22 25.71 15.95 12.00 7.61 6.51 

Table A. 4 Driving time duration (normalised in percentage for each row) 

Driving time duration  < 10 

mins 

10 -20 

mins 

20 -30 

mins 

30 mins-1 hr 1 - 2 hrs 2 -3 hrs 4 hrs 

a. Shopping  34.73 43.71 13.77 7.19 0.60 0 0 

b. Entertainment 4.19 11.38 23.35 29.34 15.57 7.79 8.38 

c. Business 7.78 28.14 26.35 21.56 8.39 3.59 4.19 

d. Pick up 9.58 37.13 22.16 20.36 7.77 1.80 1.20 

e. Others 2.99 1.20 1.20 2.40 12.57 13.77 65.87 

Table A. 5 Parking time duration (normalised in percentage for each row) 

Parking time duration  < 10 

mins 

10 -20 

mins 

20 -30 

mins 

30mins-1 

hr 

1 - 2 hrs 2 -3 hrs 4 hrs 6 hrs 

a. Shopping  6.59 10.78 15.57 37.13 20.36 7.19 2.38 0 

b. Entertainment 4.19 2.99 4.19 4.79 25.75 34.13 13.78 10.18 

c. Business 4.79 3.59 4.79 4.19 13.17 11.38 16.17 41.92 

d. Pick up 28.95 31.34 20.56 4.19 5.99 5.39 1.78 1.80 

e. Others 5.99 4.19 1.20 2.99 4.79 4.79 10.18 65.87 

B. Annual cash flow and cumulative cash flow for different cases 

Table B. 1 BMW annual cash flow and cumulative cash flow without optimisation if electricity tariff is 

fixed 

Year 
OPF (£) Cash inflow factor Discounted cash flow 

(£) 

Cumulative discounted 

cash flow (£) 

0 
-10,148 1 -10,148 -10,148 

1 
1,742 0.9766 1,701 -8,447 

2 
1,742 0.9537 1,661 -6,785 

3 
1,742 0.9313 1,622 -5,163 

4 
1,742 0.9095 1,584 -3,579 

5 
1,742 0.8882 1,547 -2,031 

6 
1,742 0.8674 1,511 -520 

7 
1,742 0.8470 1,475 955 

8 
1,742 0.8272 1,441 2,396 

9 
1,742 0.8078 1,407 3,803 
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Table B. 2 SMART annual cash flow and cumulative cash flow without optimisation if electricity tariff is 

fixed 

Year 
OPF (£) Cash inflow factor Discounted cash flow 

(£) 

Cumulative discounted 

cash flow (£) 

0 
-10,148 1 -10,148 -10,148 

1 
1,763 0.9766 1,722 -8,426 

2 
1,763 0.9537 1,681 -6,745 

3 
1,763 0.9313 1,642 -5,103 

4 
1,763 0.9095 1,603 -3,500 

5 
1,763 0.8882 1,566 -1,934 

6 
1,763 0.8674 1,529 -404 

7 
1,763 0.8470 1,493 1,089 

8 
1,763 0.8272 1,458 2,547 

9 
1,763 0.8078 1,424 3,971 

Table B. 3 LEAF annual cash flow and cumulative cash flow without optimisation if electricity tariff is 

fixed 

Year 
OPF (£) Cash inflow factor Discounted cash flow 

(£) 

Cumulative discounted 

cash flow (£) 

0 
-10,148 1 -10,148 -10,148 

1 
1,715 0.9766 1,675 -8,473 

2 
1,715 0.9537 1,636 -6,838 

3 
1,715 0.9313 1,597 -5,240 

4 
1,715 0.9095 1,560 -3,681 

5 
1,715 0.8882 1,523 -2,157 

6 
1,715 0.8674 1,488 -670 

7 
1,715 0.8470 1,453 783 

8 
1,715 0.8272 1,419 2,202 

9 
1,715 0.8078 1,385 3,587 

Table B. 4 TESLA 75 annual cash flow and cumulative cash flow without optimisation if electricity tariff 

is fixed 

Year 
OPF (£) Cash inflow factor Discounted cash flow 

(£) 

Cumulative discounted 

cash flow (£) 

0 
-10,148 1 -10,148 -10,148 

1 
1,546 0.9766 1,510 -8,638 

2 
1,546 0.9537 1,474 -7,164 
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3 
1,546 0.9313 1,440 -5,724 

4 
1,546 0.9095 1,406 -4,318 

5 
1,546 0.8882 1,373 -2,945 

6 
1,546 0.8674 1,341 -1,604 

7 
1,546 0.8470 1,309 -294 

8 
1,546 0.8272 1,279 985 

9 
1,546 0.8078 1,249 2,233 

Table B. 5 TESLA 100 annual cash flow and cumulative cash flow without optimisation if electricity tariff 

is fixed 

Year 
OPF (£) Cash inflow factor Discounted cash flow 

(£) 

Cumulative discounted 

cash flow (£) 

0 
-10,148 1 -10,148 -10,148 

1 
1,442 0.9766 1,408 -8,740 

2 
1,442 0.9537 1,375 -7,365 

3 
1,442 0.9313 1,343 -6,022 

4 
1,442 0.9095 1,311 -4,710 

5 
1,442 0.8882 1,281 -3,429 

6 
1,442 0.8674 1,251 -2,178 

7 
1,442 0.8470 1,221 -957 

8 
1,442 0.8272 1,193 236 

9 
1,442 0.8078 1,165 1,401 

Table B. 6 BMW annual cash flow and cumulative cash flow without optimisation if electricity tariff is 

TOU 

Year 
OPF (£) Cash inflow factor Discounted cash flow 

(£) 

Cumulative discounted 

cash flow (£) 

0 
-10,148 1 -10,148 -10,148 

1 
1,913 0.9766 1,868 -8,280 

2 
1,913 0.9537 1,824 -6,455 

3 
1,913 0.9313 1,782 -4,674 

4 
1,913 0.9095 1,740 -2,934 

5 
1,913 0.8882 1,699 -1,235 

6 
1,913 0.8674 1,659 425 

7 
1,913 0.8470 1,620 2,045 

8 
1,913 0.8272 1,582 3,627 

9 
1,913 0.8078 1,545 5,173 
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Table B. 7 SMART annual cash flow and cumulative cash flow without optimisation if electricity tariff is 

TOU 

Year  
OPF (£) Cash inflow factor Discounted cash flow 

(£) 

Cumulative discounted 

cash flow (£) 

0 
-10,148 1 -10,148 -10,148 

1 
1,948 0.9766 1,902 -8,246 

2 
1,948 0.9537 1,858 -6,388 

3 
1,948 0.9313 1,814 -4,574 

4 
1,948 0.9095 1,772 -2,802 

5 
1,948 0.8882 1,730 -1,072 

6 
1,948 0.8674 1,690 618 

7 
1,948 0.8470 1,650 2,268 

8 
1,948 0.8272 1,611 3,879 

9 
1,948 0.8078 1,574 5,453 

Table B. 8 LEAF annual cash flow and cumulative cash flow without optimisation if electricity tariff is 

TOU 

Year  
OPF (£) Cash inflow factor Discounted cash flow 

(£) 

Cumulative discounted 

cash flow (£) 

0 
-10,148 1 -10,148 -10,148 

1 
1,928 0.9766 1,883 -8,265 

2 
1,928 0.9537 1,839 -6,426 

3 
1,928 0.9313 1,796 -4,631 

4 
1,928 0.9095 1,754 -2,877 

5 
1,928 0.8882 1,712 -1,165 

6 
1,928 0.8674 1,672 507 

7 
1,928 0.8470 1,633 2,140 

8 
1,928 0.8272 1,595 3,735 

9 
1,928 0.8078 1,557 5,293 

Table B. 9 TESLA 75 annual cash flow and cumulative cash flow without optimisation if electricity tariff 

is TOU 

Year  
OPF (£) Cash inflow factor Discounted cash flow 

(£) 

Cumulative discounted 

cash flow (£) 

0 
-10,148 1 -10,148 -10,148 

1 
1,760 0.9766 1,719 -8,429 

2 
1,760 0.9537 1,679 -6,751 
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3 
1,760 0.9313 1,639 -5,112 

4 
1,760 0.9095 1,601 -3,511 

5 
1,760 0.8882 1,563 -1,948 

6 
1,760 0.8674 1,527 -421 

7 
1,760 0.8470 1,491 1,070 

8 
1,760 0.8272 1,456 2,526 

9 
1,760 0.8078 1,422 3,947 

Table B. 10 TESLA 100 annual cash flow and cumulative cash flow without optimisation if electricity 

tariff is TOU 

Year 
OPF (£) Cash inflow factor Discounted cash flow 

(£) 

Cumulative discounted 

cash flow (£) 

0 
-10,148 1 -10,148 -10,148 

1 
1,667 0.9766 1,628 -8,520 

2 
1,667 0.9537 1,590 -6,930 

3 
1,667 0.9313 1,552 -5,378 

4 
1,667 0.9095 1,516 -3,862 

5 
1,667 0.8882 1,481 -2,381 

6 
1,667 0.8674 1,446 -935 

7 
1,667 0.8470 1,412 477 

8 
1,667 0.8272 1,379 1,856 

9 
1,667 0.8078 1,347 3,203 

Table B. 11 BMW annual cash flow and cumulative cash flow after optimisation if electricity tariff is fixed 

Year BMW 
OPF (£) Cash inflow factor Discounted cash flow 

(£) 

Cumulative discounted 

cash flow (£) 

0 
-10,148 1 -10,148 -10,148 

1 
2,140 0.9766 2,090 -8,058 

2 
2,140 0.9537 2,041 -6,017 

3 
2,140 0.9313 1,993 -4,024 

4 
2,140 0.9095 1,946 -2,078 

5 
2,140 0.8882 1,901 -177 

6 
2,140 0.8674 1,856 1,679 

7 
2,140 0.8470 1,813 3,492 

8 
2,140 0.8272 1,770 5,262 

9 
2,140 0.8078 1,729 6,991 
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Table B. 12 SMART annual cash flow and cumulative cash flow after optimisation if electricity tariff is 

fixed 

Year  
OPF (£) Cash inflow factor Discounted cash flow 

(£) 

Cumulative discounted 

cash flow (£) 

0 
-10,148 1 -10,148 -10,148 

1 
2,163 0.9766 2,112 -8,036 

2 
2,163 0.9537 2,063 -5,973 

3 
2,163 0.9313 2,014 -3,958 

4 
2,163 0.9095 1,967 -1,991 

5 
2,163 0.8882 1,921 -70 

6 
2,163 0.8674 1,876 1,806 

7 
2,163 0.8470 1,832 3,638 

8 
2,163 0.8272 1,789 5,428 

9 
2,163 0.8078 1,747 7,175 

Table B. 13 LEAF annual cash flow and cumulative cash flow after optimisation if electricity tariff is fixed 

Year  
OPF (£) Cash inflow factor Discounted cash flow 

(£) 

Cumulative discounted 

cash flow (£) 

0 
-10,148 1 -10,148 -10,148 

1 
2,153 0.9766 2,103 -8,045 

2 
2,153 0.9537 2,053 -5,992 

3 
2,153 0.9313 2,005 -3,987 

4 
2,153 0.9095 1,958 -2,029 

5 
2,153 0.8882 1,912 -117 

6 
2,153 0.8674 1,868 1,751 

7 
2,153 0.8470 1,824 3,575 

8 
2,153 0.8272 1,781 5,356 

9 
2,153 0.8078 1,739 7,095 

Table B. 14 TESLA 75 annual cash flow and cumulative cash flow after optimisation if electricity tariff is 

fixed 

Year 
OPF (£) Cash inflow factor Discounted cash flow 

(£) 

Cumulative discounted 

cash flow (£) 

0 
-10,148 1 -10,148 -10,148 

1 
2,002 0.9766 1,955 -8,193 

2 
2,002 0.9537 1,909 -6,284 

3 
2,002 0.9313 1,864 -4,419 
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4 
2,002 0.9095 1,821 -2,598 

5 
2,002 0.8882 1,778 -820 

6 
2,002 0.8674 1,737 916 

7 
2,002 0.8470 1,696 2,612 

8 
2,002 0.8272 1,656 4,268 

9 
2,002 0.8078 1,617 5,885 

Table B. 15 TESLA 100 annual cash flow and cumulative cash flow after optimisation if electricity tariff is 

fixed 

Year  
OPF (£) Cash inflow factor Discounted cash flow 

(£) 

Cumulative discounted 

cash flow (£) 

0 
-10,148 1 -10,148 -10,148 

1 
1,978 0.9766 1,932 -8,216 

2 
1,978 0.9537 1,886 -6,330 

3 
1,978 0.9313 1,842 -4,488 

4 
1,978 0.9095 1,799 -2,689 

5 
1,978 0.8882 1,757 -932 

6 
1,978 0.8674 1,716 784 

7 
1,978 0.8470 1,675 2,459 

8 
1,978 0.8272 1,636 4,095 

9 
1,978 0.8078 1,598 5,693 

Table B. 16 BMW annual cash flow and cumulative cash flow after optimisation if electricity tariff is TOU 

Year  
OPF (£) Cash inflow factor Discounted cash flow 

(£) 

Cumulative discounted 

cash flow (£) 

0 
-10,148 1 -10,148 -10,148 

1 
2,306 0.9766 2,252 -7,896 

2 
2,306 0.9537 2,199 -5,697 

3 
2,306 0.9313 2,148 -3,549 

4 
2,306 0.9095 2,097 -1,452 

5 
2,306 0.8882 2,048 596 

6 
2,306 0.8674 2,000 2,597 

7 
2,306 0.8470 1,953 4,550 

8 
2,306 0.8272 1,908 6,457 

9 
2,306 0.8078 1,863 8,320 
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Table B. 17 SMART annual cash flow and cumulative cash flow after optimisation if electricity tariff is 

TOU 

Year 
OPF (£) Cash inflow factor Discounted cash flow 

(£) 

Cumulative discounted 

cash flow (£) 

0 
-10,148 1 -10,148 -10,148 

1 
2,338 0.9766 2,283 -7,865 

2 
2,338 0.9537 2,230 -5,635 

3 
2,338 0.9313 2,177 -3,458 

4 
2,338 0.9095 2,126 -1,331 

5 
2,338 0.8882 2,077 745 

6 
2,338 0.8674 2,028 2,773 

7 
2,338 0.8470 1,980 4,754 

8 
2,338 0.8272 1,934 6,688 

9 
2,338 0.8078 1,889 8,576 

Table B. 18 LEAF annual cash flow and cumulative cash flow after optimisation if electricity tariff is 

TOU 

Year  
OPF (£) Cash inflow factor Discounted cash flow 

(£) 

Cumulative discounted 

cash flow (£) 

0 
-10,148 1 -10,148 -10,148 

1 
2,329 0.9766 2,275 -7,873 

2 
2,329 0.9537 2,221 -5,652 

3 
2,329 0.9313 2,169 -3,483 

4 
2,329 0.9095 2,118 -1,365 

5 
2,329 0.8882 2,069 704 

6 
2,329 0.8674 2,020 2,724 

7 
2,329 0.8470 1,973 4,696 

8 
2,329 0.8272 1,927 6,623 

9 
2,329 0.8078 1,881 8,504 

Table B. 19 TESLA 75 annual cash flow and cumulative cash flow after optimisation if electricity tariff is 

TOU 

Year 
OPF (£) Cash inflow factor Discounted cash flow 

(£) 

Cumulative discounted 

cash flow (£) 

0 
-10,148 1 -10,148 -10,148 

1 
2,178 0.9766 2,127 -8,021 

2 
2,178 0.9537 2,077 -5,944 
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3 
2,178 0.9313 2,028 -3,915 

4 
2,178 0.9095 1,981 -1,935 

5 
2,178 0.8882 1,935 0 

6 
2,178 0.8674 1,889 1,889 

7 
2,178 0.8470 1,845 3,734 

8 
2,178 0.8272 1,802 5,536 

9 
2,178 0.8078 1,759 7,295 

Table B. 20 TESLA 100 annual cash flow and cumulative cash flow after optimisation if electricity tariff is 

TOU 

Year 
OPF (£) Cash inflow factor Discounted cash flow 

(£) 

Cumulative discounted 

cash flow (£) 

0 
-10,148 1 -10,148 -10,148 

1 
2,156 0.9766 2,106 -8,042 

2 
2,156 0.9537 2,056 -5,986 

3 
2,156 0.9313 2,008 -3,978 

4 
2,156 0.9095 1,961 -2,018 

5 
2,156 0.8882 1,915 -103 

6 
2,156 0.8674 1,870 1,768 

7 
2,156 0.8470 1,826 3,594 

8 
2,156 0.8272 1,783 5,377 

9 
2,156 0.8078 1,742 7,119 

Table B. 21 BMW annual cash flow and cumulative cash flow after optimisation  for PV-SWH system 

Year 
OPF (£) Cash inflow factor Discounted cash flow 

(£) 

Cumulative discounted 

cash flow (£) 

0 
-7,638 1 -7638 -7,638 

1 
2,323 0.9766 2,269 -5,369 

2 
2,323 0.9537 2,215 -3,154 

3 
2,323 0.9313 2,163 -991 

4 
2,323 0.9095 2,113 1,122 

5 
2,323 0.8882 2,063 3,186 

6 
2,323 0.8674 2,015 5,201 

7 
2,323 0.8470 1,968 7,168 

8 
2,323 0.8272 1,922 9,090 

9 
2,323 0.8078 1,877 10,966 
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Table B. 22 SMART annual cash flow and cumulative cash flow after optimisation  for PV-SWH system 

Year 
OPF (£) Cash inflow factor Discounted cash flow 

(£) 

Cumulative discounted 

cash flow (£) 

0 
-7,638 1 -7638 -7,638 

1 
2,346 0.9766 2,291 -5,347 

2 
2,346 0.9537 2,237 -3,110 

3 
2,346 0.9313 2,185 -925 

4 
2,346 0.9095 2,134 1,209 

5 
2,346 0.8882 2,084 3,293 

6 
2,346 0.8674 2,035 5,328 

7 
2,346 0.8470 1,987 7,315 

8 
2,346 0.8272 1,941 9,255 

9 
2,346 0.8078 1,895 11,150 

Table B. 23 LEAF annual cash flow and cumulative cash flow after optimisation  for PV-SWH system 

Year 
OPF (£) Cash inflow factor Discounted cash flow 

(£) 

Cumulative discounted 

cash flow (£) 

0 
-7,638 1 -7638 -7,638 

1 
2,338 0.9766 2,283 -5,355 

2 
2,338 0.9537 2,230 -3,125 

3 
2,338 0.9313 2,177 -948 

4 
2,338 0.9095 2,126 1,179 

5 
2,338 0.8882 2,077 3,255 

6 
2,338 0.8674 2,028 5,283 

7 
2,338 0.8470 1,980 7,264 

8 
2,338 0.8272 1,934 9,198 

9 
2,338 0.8078 1,889 11,086 

 Table B. 24 TESLA 75 annual cash flow and cumulative cash flow after optimisation for PV-

SWH system 

Year OPF (£) Cash inflow factor Discounted cash flow 

(£) 

Cumulative discounted 

cash flow (£) 

0 
-7,638 1 -7638 -7,638 

1 
2,184 0.9766 2,133 -5,505 

2 
2,184 0.9537 2,083 -3,422 

3 
2,184 0.9313 2,034 -1,388 

4 
2,184 0.9095 1,986 598 
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5 
2,184 0.8882 1,940 2,538 

6 
2,184 0.8674 1,894 4,432 

7 
2,184 0.8470 1,850 6,282 

8 
2,184 0.8272 1,807 8,089 

9 
2,184 0.8078 1,764 9,853 

Table B. 25 TESLA 100 annual cash flow and cumulative cash flow after optimisation for PV-SWH 

system 

Year 
OPF (£) Cash inflow factor Discounted cash flow 

(£) 

Cumulative discounted 

cash flow (£) 

0 
-7,638 1 -7638 -7,638 

1 
2,176 0.9766 2,125 -5,513 

2 
2,176 0.9537 2,075 -3,438 

3 
2,176 0.9313 2,027 -1,411 

4 
2,176 0.9095 1,979 568 

5 
2,176 0.8882 1,933 2,501 

6 
2,176 0.8674 1,887 4,388 

7 
2,176 0.8470 1,843 6,231 

8 
2,176 0.8272 1,800 8,031 

9 
2,176 0.8078 1,758 9,789 

Table B. 26 BMW annual cash flow and cumulative cash flow after optimisation for PV-T system 

Year 
OPF (£) Cash inflow factor Discounted cash flow 

(£) 

Cumulative discounted 

cash flow (£) 

0 
-9,094 1 -9,094 -9,094 

1 
2,657 0.9766 2,595 -6,499 

2 
2,657 0.9537 2,534 -3,965 

3 
2,657 0.9313 2,474 -1,491 

4 
2,657 0.9095 2,417 926 

5 
2,657 0.8882 2,360 3,286 

6 
2,657 0.8674 2,305 5,590 

7 
2,657 0.8470 2,250 7,841 

8 
2,657 0.8272 2,198 10,039 

9 
2,657 0.8078 2,146 12,185 

Table B. 27 SMART annual cash flow and cumulative cash flow after optimisation  for PV-T system 

Year 
OPF (£) Cash inflow factor Discounted cash flow 

(£) 

Cumulative discounted 

cash flow (£) 
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0 
-9,094 1 -9,094 -9,094 

1 
2,683 0.9766 2,620 -6,474 

2 
2,683 0.9537 2,559 -3,915 

3 
2,683 0.9313 2,499 -1,416 

4 
2,683 0.9095 2,440 1,024 

5 
2,683 0.8882 2,383 3,407 

6 
2,683 0.8674 2,327 5,734 

7 
2,683 0.8470 2,273 8,007 

8 
2,683 0.8272 2,219 10,226 

9 
2,683 0.8078 2,167 12,393 

Table B. 28 LEAF annual cash flow and cumulative cash flow after optimisation  for PV-T system 

Year 
OPF (£) Cash inflow factor Discounted cash flow 

(£) 

Cumulative discounted 

cash flow (£) 

0 
-9,094 1 -9,094 -9,094 

1 
2,668 0.9766 2,606 -6,488 

2 
2,668 0.9537 2,544 -3,944 

3 
2,668 0.9313 2,485 -1,459 

4 
2,668 0.9095 2,427 967 

5 
2,668 0.8882 2,370 3,337 

6 
2,668 0.8674 2,314 5,651 

7 
2,668 0.8470 2,260 7,911 

8 
2,668 0.8272 2,207 10,118 

9 
2,668 0.8078 2,155 12,273 

Table B. 29 TESLA 75 annual cash flow and cumulative cash flow after optimisation  for PV-T system 

Year 
OPF (£) Cash inflow factor Discounted cash flow 

(£) 

Cumulative discounted 

cash flow (£) 

0 
-9,094 1 -9,094 -9,094 

1 
2,519 0.9766 2,460 -6,634 

2 
2,519 0.9537 2,402 -4,232 

3 
2,519 0.9313 2,346 -1,886 

4 
2,519 0.9095 2,291 405 

5 
2,519 0.8882 2,237 2,643 

6 
2,519 0.8674 2,185 4,828 

7 
2,519 0.8470 2,134 6,961 

8 
2,519 0.8272 2,084 9,045 
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9 
2,519 0.8078 2035 11080 

Table B. 30 TESLA 100 annual cash flow and cumulative cash flow after optimisation  for PV-T system 

Year 
OPF (£) Cash inflow factor Discounted cash flow 

(£) 

Cumulative discounted 

cash flow (£) 

0 
-9,094 1 -9,094 -9,094 

1 
2,509 0.9766 2,450 -6,644 

2 
2,509 0.9537 2,393 -4,251 

3 
2,509 0.9313 2,337 -1,914 

4 
2,509 0.9095 2,282 368 

5 
2,509 0.8882 2,228 2,596 

6 
2,509 0.8674 2,176 4,772 

7 
2,509 0.8470 2,125 6,898 

8 
2,509 0.8272 2,075 8,973 

9 
2,509 0.8078 2,027 11,000 
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