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ABSTRACT 

Limit and shakedown analyses are powerful methods in designing pressure 

vessel components and other engineering structures. With the development of 

computer technology the use of finite element analysis as an alternative tool for 

engineering structure design has become ever more increasing. In this thesis the 

finite element method utilises the novel elastic compensation method to carry 

out the limit and shakedown analyses on variety engineering structures: nozzles 

in pressure vessels, plates with a central hole and frame structures. 

There are two main objectives of the present study. One of them is to conduct 

limit and shakedown analyses on a series of thick cylinders, nozzle/sphere inter- 

sections under internal pressure, plates with a hole and frame structures under 

multiple loading conditions using the initially developed elastic compensation 

method based on 2-D solid element models. A comparision of the lower, upper 

bound limit loads and shakedown solutions is made with the results available 

in literature or with new elasto-plastic analyses. The results obtained using the 

elastic compensation method were found to be of useful accuracy. Another 

is to further develop the elastic compensation method using generalised yield 

criteria. Then the procedure is implemented to beam and shell finite elements to 

calculated limit loads for beam and shell structures. A number of 2-D and 3-D 

frames were examined using a general yield surface. The obtained results were 

compared with that of theoretical plastic analysis and with the results available 
in literature and were found to be in good agreement. Parametric studies of 

nozzle/sphere intersections and nozzle/cylinder intersections under internal pres- 

sure were carried out using Ilyushin's and Ivanov's generalised yield criteria. The 

results calculated were compared with the solutions obtained using the initiallý 

elastic compensation method and with the solutions available in literature and 

were found to also be in good agreement. The newly developed elastic compen- 

sation procedure using generalised yield criteria was found to be more economic 
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and useful in engineering design. 

From this study, some new design methods based on limit and shakedown 
loads are proposed for nozzle/sphere intersections and for other engineering struc- 

tures. The newly developed elastic compensation procedure using generalised 

yield criteria is highly recommended in structural design for a quick limit load 

estimation. 
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CHAPTER1 

INTRODUCTION 

1.1 Introductory Remarks 

The conventional methods of analYsis and design of engineering structures are 

often based on a permissible working stress whose value is well within the elastic 
limit. The concentrations of stress that occur at sudden changes in cross section 

are usually disregarded in the elastic analysis. Since the results of the elastic 

analysis cease to hold when the yield limit is exceeded at the most critical cross 

section, the elastic design of a structure requires a margin of safety that ensures 

a fully elastic response. A limitation of structural designs based on the elastic 

analysis is evident from the fact that minor structural imperfections, which have 

no effect on the overall strength of the structure, have a marked influence on the 

elastic behaviour. 

The load-carrying capacity of a structure made of a ductile material is rarely 

exhausted at the onset of plastic yielding, since excessive deflections do not occur 
before the load is appreciably higher than that at the elastic limit. This effect 
is more pronounced in statically indeterminate structures, where there is a redis- 
tribution of stress beyond the elastic limit, resulting in a marked increase in tile 

carrying capacity. It follows that an economical design of a structure can be based 

on a suitable safety f actor applied to the load for which the overall deflection be- 

gins to increase in a more or less unrestricted manner. Such a load is called the 

collapse load, which can be determined by the methods of plastic analysis with- 
out having to consider the intervening elastic/plastic range of deformation. The 

calculations involved in the plastic analysis are much simpler than those required 
in the corresponding elastic analysis. The influence of work-hardening is usually 
neglected in the plastic analysis so that the estimated carrying capacity is alwaYs 
conservative. 
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The strength of a structure is characterized by its collapse load which is ob- 
tained on the basis of certain idealizations. Considering a nonhardening elas- 
tic/plastic structure, a state of plastic collapse is defined as one for which the 
deflections, regarded as small, continue to increase under constant external loads. 

Since the bending moment distribution remains unchanged during the collapse, 
the change in curvature vanishes everywhere except at certain critical cross sec- 
tions where the bending moment attains the fully plastic value. Infinitely large 

curvatures give rise to a link-type mechanism for plastic collapse. The ratio of 
the collapse load to the working load, known as the load factor, represents the 

margin of safety under service conditions. 

According to the lower bound theorem of limit analysis, an external load in 

equilibrium with a distribution of bending moment which nowhere exceeds the 
fully plastic value is less than or equal to the collapse load. Such a distribution of 
bending moment is referred to as statically admissible. The upper bound theoIT111. 

on the other hand, states that the load obtained by equating the external work 
done by it to the internal work absorbed at the plastic hinges in any assumed 

collapse mechanism is greater than or equal to the collapse load. The deformation 

mode represented by a collapse mechanism is said to be kinematically admissible. 
The two limit theorems can be obtained to form a uniqueness theorem which states 
that if any statically admissible distribution of bending moment can be found in a 
structure that has sufficient number of yield hinges to produce a mechanism, the 

corresponding load is equal to the collapse load. When a structure is subjected 
to a number of loads which may or may not increase in strict proportion to one 
another, plastic collapse will occur at the first combination of loads for which a 
statically admissible bending moment distribution that satisfies the mechanism 
condition can be found. The load-carrying capacity of the structure can therefore 
be determined for any given ratios of the applied loads in the state of collapse. 
without any reference to the loading history. It follows that the collapse load is 

unaffected by initial internal stresses, as well as by any flexibility of support and 
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imperfect fit of members. If the problem is not statically determined at collapse, 

the distribution of bending moment will depend, however, on such factors as the 

history of loading, initial stresses, and settlement of supports. 

An important corollary of the lower bound theorem is that the collapse load 

cannot be decreased by increasing the strength of any part of the structure. In- 

deed, the bending moment distribution corresponding to the state of collapse will 

remain statically admissible for the modified structure in which the fullY plastic 

moment is increased at one or more cross sections. The load-carrying capacity 

of the structure can therefore be determined for any given ratios of the applied 
loads in the state of collapse, without any reference to the loading history. This 

conclusion follows from the fact that the mechanism corresponding to the state 

of collapse will produce in the modified structure an internal work that is less 

than or equal to that in the unmodified structure. The resulting upper bound 

obtained for the weakened structure, therefore, cannot exceed the collapse load 

for the original structure. 

It is seen from above description that limit analysis provides an alternative to 
incremental elastic-plastic analysis for determining a limit load. A knowledge of 

the limit load enables determination of the reserve strength that exists in struc- 

tures beyond the initial yield. The key to establishing the limit behaviour of a 

structure or component is the nature of the collapse mechanisms. These have 

only really been established for simple generic components and load conditions. 
An alternative and a simpler resource is to invoke the upper and lower bound the- 

orems and obtain limit bounds on the exact solution. However, this procedure 

can also be often mathematically intractable and is therefore limited to simple 
descriptions. 

Limit load calculations form the basis for the design of several pressure ves- 
sel components and other structures - for example in BS 5500 Appendix A [BSI 

1994] it is stated that '... there should be the same theoretical margin against gross 
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plastic deformation for all design details as that provided against gross plastic 
deformation in major membrane areas ... In establishing conformity with this cri- 

terion investigations should take account of plastic behaviour. If the theory of 

plastic limit analysis is employed, the limit load may be taken as the load pro- 
ducing gross plastic deformation, although this may be a conservative estimate... ' 

(A. 3.1.1). A similar adoption of limit analysis can also be found in ASINIE MTV 

Code [1995]. 

These do not really specify how the limit load should be used as the basis for 

design. It would be expected that the important primary membrane and bending 

stresses in pressure vessels would remain limited to yield - then the limit load 

could be used as the basis for determining the design margin (currently primary 

membrane stresses are limited to two thirds of yield, with primary membrane 

plus bending allowed to take values up to yield). 

The availability of computers revolutionalised the approach to limit analysis. 
It has enabled analysts to apply incremental plastic theory to complex compo- 

nents. Analysis models were more realistically simulated in plastic analysis, and 

the limit solutions obtained were closer to the actual limit loads. With rapid ini- 

provement in the speed and memory size of the ordinary desk-top computers, cou- 

pled with advancement in the development of finite element software progran-is. 

elastic-plastic finite element analysis became more prevalent in limit analys-i. s. 
However, the elastic-plastic requires much greater computing resource than elas- 
tic analysis and requires the definition of materials models and is consequently 

much more expensive to perform. Direct calculation of limit load, using t lie Lipper 

and lower bound theorems by finite element method, has also proved difficulty. 

A recent summary by Berak and Gerdeen [1990] demonstrated an effective tech- 

nique using finite element procedures for simple two-dimensional problenis btlt 

concluded with the observation that'... this procedure is particularly applicable to 

the solution of complex problems using parallel processing on a superconiputer... '. 
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In recent years, many researchers have been concentrated on the increased use 

of elastic finite element analysis as a means of obtaining the limit loads. A new 
technique - known as elastic compensation - which requires only elastic finite 

element analysis has been shown to give good lower and upper bound estimates 
for limit loads in a variety of pressure vessel components and other structures 
[Mackenzie and Boyle 1993]. The writer has been working in the Stratliclyde 

Research Group on elastic compensation while the method was being developed. 

In the above we have seen that the concept of a limit load can be used to 

provide a basis for design against plastic collapse on initial application of load. 

However, during the operational life of most structures the loading history be- 

comes roughly cyclic. It gives rise to the possibility of low-cycle fatigue in regions 

of peak stress, but here we are interested in overall structural behaviour due to 

cycles of load. 

Our description of computer behaviour for cyclic loads is mostly limited to 

the assumption of perfect plasticity. Two concepts are important - that of shake- 
down and that of ratchetting (which is what happens if a condition of shake- 
down is not achieved). In general for cyclic loading we design for shakedown in 

order to avoid ratchetting which can lead to incremental collapse. For Cyclic 
loading shakedown is the condition that after first cycle of load, the component 
behaviour is purely elastic; some plastic strain does take place in the first Cycle 
but not in the second or subsequent cycles. The highest load for which we Cali 

assure shakedown is called shakedown load. 

The evaluation of shakedown loads is also quite difficult, and these have oiilx- 
been established for simple components. Most shakedown loads which have been 

published make use of so-called shakedown theorems. For example Nlelan*s 
Theorem states that'... if any distribution of self-equilibrating residual stress caii 
be found which, when taken together with the elastic stress (assuming perfectly 
plastic behaviour for the load cycles) constitute a system of stress wit hin t lie yield 
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limit, then the structure will automatically reach this stress condition or a better 

one and will shakedown... '. 

The design and assessment of complex structures subjected to histories of 

variable load remains a challenge to the analyst. In design the need for full in- 

elastic analysis is removed in all but extreme cases by the use of simple design 

Codes, such as ASME B&PV [1995] and BS 5500 [1994], based upon limit load 

and shakedown concepts. These Codes tend to be conservative, sometimes exces- 

sively so, and are particularly difficulty to formulate for non-proportional loading. 

The ability to generate limit load and shakedown limits by linear finite element 

analysis can provide some advantages over full inelastic analysis in some circuni- 

stances. As described above, a new technique, called elastic compensation, can 
be used to calculate lower and upper bound limit loads of a structure. It will 
be shown in this thesis that the procedure can also be used to obtain lower and 

upper bound shakedown limits. 

1.2 Objective and Scope of the Project 

The main objectives of the present study were to further develop the elastic 

compensation method and to conduct limit and shakedown analysis on a series of 

pressure vessel components under internal pressure, plate with a hole and beani 

structures under multiple loading conditions. A comparision of the lower and 

upper bound limit loads and shakedown solutions are made with results available 
in literature or with new elasto-plastic analyses. 

A preview of the scope of the thesis is given in the following: 

At the beginning of the study, the author collected many papers on the- topic 

of research. In order to find out a better procedure, a general literature survey 

on limit and shakedown analysis by finite element method is given in Chapter 2. 
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Chapter 3 gives a literature survey on the development of the modified elastic 

modulus method. In this Chapter an introduction to the elastic compensation 

method is also presented and the implementation of the lower bound, upper bound 

limit theorems and lower bound shakedown theorem is examined. A few exam- 

ples, such as thick cylinders and frames, are also given in order to demonstrate 

how the method is working. The results obtained are then compared with the 

existing solutions. 

In Chapter 4 the elastic compensation method is used in conjunction with 

elastic finite element analysis to obtain the lower, upper bound limit loads and 

shakedown limits for a square plate with a hole under various loading conditions. 
The results calculated are compared with the solutions available in the literature. 

In Chapter 5, a design study is conducted to obtain the lower and upper bound 

limit loads for nozzles in spherical pressure vessels under internal pressure. Again 

the elastic compensation method is used in conjunction with elastic finite element 

analysis to obtain these results. For the thinner models, the obtained results are 

compared with the results available in the literature; for the thicker models. 
because of lacking available solutions the results calculated are compared with 

new elasto-plastic results and some comments are made for the purpose of design. 

In Chapter 6, a design study is also conducted to calculate the lower and 

upper bound shakedown limits for all models analysed in Chapter 5. Again the 

obtained results are compared with the existing solutions and with the ASNIE 
B&PV Code [1995] and also some comments are made for the purpose of design. 

Generalised yield criteria for beams and thin shells are surveyed in Chapter 7. 
These criteria are then implemented to structural finite elements using elastic 
compensation to calculate lower bound limit loads for beam and shell structures. 

In Chapter 8, a number of two dimensional beams and frames and a three 
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dimensional frame are analysed using the procedure proposed in Chapter 7. The 

obtained results are compared with that of plasticity theory and with the results 

available in the literature. 

In Chapter 9, a parametric study is carried out to obtain lower bound limit 

loads for nozzles in spherical shells and nozzles in cylindrical shells under inter- 

nal pressure using the method proposed in Chapter 7. The results calculated are 

compared with the solutions obtained in Chapter 5 and available in the literature. 

Finally, Chapter 10 concludes the thesis with a summary of the findings of 
the research work and with recommendation to further work. 

Before the PhD project the author carried out sixteen months research work 

which related to the present project in the Research Group. Some research results 
have been published in the past five years and the published papers are given in 
Appendix I. 
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CHAPTER 2 

A BRIEF REVIEW OF LIMIT AND SHAKEDOWN 
ANALYSIS OF STRUCTURES BY FINITE ELEMENT 

METHOD 

2.1 Introduction 

Limit analysis is concerned with the determination of the maximum load 

amplification (or load or safety factor) which can be sustained by a perfectly 

plastic structure subjected to given loads. Information regarding the stress-state 

at collapse and the collapse mechanism may be obtained as a by-product. While 

the material properties are usually described as being rigid-plastic, the required 

perfectly-plastic terminal stage need not be preceded by rigidity. 

The two essential notions of limit analysis had been developed in full general- 0 
ity and rigour by the early fifties in the form of the static (or safe or lower bound) 

theorem and the kinematic (or unsafe or upper bound) theorem. 

If an elasto-plastic structure is subjected to a program of variable- repeated 

mechanical or thermal loads, then the structure may fail by incremental collapse 
(or ratchetting) or by alternating plasticity (or low cycle fatigue). However, for 

some lower value of the load factor, the structure may, after a number of load- 

ing cycles, load and unload elastically; that is to say plastic strains will cease 
to develop. The structure is said to shakedown, and the object of shakedown 
analysis is to determine the maximum value of the load factor (safety factor) for 

which this phenomenon applies. 

For doing this project, the author has collected many papers on the limit and 
shakedown analyses of structures. In order to benefit other researchers on the 

related research projects, in this Chapter, a brief literature review of limit and 
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shakedown analysis of structures by finite element method will be carried out 

respectively. 

2.2 A Brief Review of Limit Analysis of Structures by Finite Ele- 

ment Method 

The application of limit analysis to structures began with the attempt to pre- 

dict the collapse loads of steel structures. In 1914 Kazinczy concluded from his 

experiments on clamped steel beams that the theory of elasticity could not provide 

a realistic estimate of the load-carrying capacity [Kazinczy 19141. He introduced 

the concept of plastic hinges and developed several principles and methods which 

even today are valid and used in engineering practice [Kazinczy 1933,19421. Kaz- 

inczy's early work failed to receive the attention it merited, partly because it was 

written in Hungarian and partly because of the war. Hence, a few years later 

Kist [1917] independently presented similar ideas. Taking plastic behaviour of 

the material into account, Maier-Leibnitz [1928) carried out experiments with 

continuous steel beams and Ingerslev [19211 and Johansen (1932] investigated the 

plastic behaviour of reinforced concrete slabs. 

The problem of accumulating plastic deformations was first investigated by 

Grfining [19261. Girkmann [1931] and Bleich [1932] dealt with the load-carrying 

capacity of steel frames. This work was continued by Baker [1938] who carried 

out intensive experimental and theoretical investigations, and published the first 

book on plastic analysis of steel frames [Baker, Horne and Heyman 19.561. 

The lower and upper bound theorems of limit analysis were first established 

- for frames and plates - by Gvozdev [1936]. Like Kazinczy's work G%-ozdeN-'s 

results did not attract attention because of the war. Thus, these theorenis were 
independently derived by Greenberg and Prager [1951] for beam and frames. 

Drucker, Greenberg and Prager [1951,1952] for plane and general continuum 
problem respectively. These theorems have been developed to bracket the limit 
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load, because they are easier to obtain than exact solutions. The formal proofs 

of these theorems are well documented and can be found in the texts of Symonds 

[1962]; Hodge [1963] and Calladine [1965,1985]. The theoretical limit analysis 

of engineering structures using these theorem can be found in a large number of 
books, such as Baker et al. [1956], Neal [1956,1977], Heyman [1957,1964], Hodge 

[1959,1963], Massonnet and Save [1965], Baker and Heyman [1969,1971], Horne 

[19711, Save and Massonnet [1972], Martin [1975], Chakrabarty [1987], Kaliszky 

[1989) and Lubliner [19901. 

Mathematical programming methods for solutions of the limit analysis prob- 
lem were first studied for trusses, beams and frames. The first identifications of 
the limit analysis of trusses as a linear programming (LP) problem are generally 

attributed to Charnes and Greenberg and to Prager [Prager 19571. There are so 

many references, nowadays, on the limit analysis of structures by mathematical 

programming methods. The detailed mathematical programming applications to 

the limit analysis of structures can be found in the review papers of Maier and 
Munro [1982] and Maier and Lloyd [1986]. This review will only concentrate on 
the finite element method. 

2.2.1 Direct Finite Element Method 

The finite element method is a numerical procedure for analysing structures 

and continua and is well known to be extremely efficacious for the analysis of 
complex structures, both linear and non-linear. The finite element method call 
also be used to calculate the limit load of a structure and in this case bounds are 
obtained by maximising and minimising the load factor. The validity of the ap- 
proach is dependent upon the limit load theorems of plasticity which impl% that 
load factors calculated on the basis of assumed displacement fields are in excess 
of the true value, while load factors calculated on the basis of equilibrium stress 
fields which nowhere violate the yield condition, are less than the true value. In 
the displacement method the free parameters are chosen to minimise the load 
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factor while in the stress method the free parameters are chosen to maximise the 

load factor. 

The first finite element method for determining upper bounds on the limit 

load for perfectly plastic plane stress problems was developed by Hayes and Mar- 

cal [1967]. By means of a finite element technique, they constructed a parametric 
family of kinematically admissible velocity fields and then obtained a best upper 

bound by minimising the associated load multiplier. Three years later. a com- 

plementary method for finding the lower bound on the limit load for plane stress 

problems was described by Belytschko and Hodge [1970]. In this case, the finite 

element technique is used to construct a parametric family of equilibrium stress 

fields. A couple of years later, the finite element method used to determine limit 

loads for complex structures has been demonstrated by Ranaweera and Leckie 

[1972]. After giving several examples, they pointed out that the procedures ap- 

pear to be expensive in computer time. 

Up to now the mentioned references above only concern the plane stress prob- 
lems and plate bending problems. It is Nguyen [1976] who first developed a new 
hybrid finite element with an arbitrary stress field in the interior and a quadratic 
displacement field on the boundary to be applied to the direct limit analysis of 

plates and shells. The results of the analysis were very encouraging. 

In the early 1980s, Casciaro and Cascini (1982] proposed a mixed variational 

principle for the limit analysis of rigid perfect plastic continua and derived a 

mixed finite element discrete formulation. A number of examples have been pre- 

sented in both structural and soil mechanics. 

Recently, a finite element technique for limit analysis of structures has been 

demonstrated by Berak and Gerdeen [1990]. The technique is developed for cal- 

culating bounds to the limit load multiplier for two-dimensional structures which 

obey the von Mises yield criterion. They indicated that their 'finite element for- 
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mulations are more general and more rigorous, resulting in more accurate solu- 
tions for the upper and lower bounds of limit load'. After presenting a number of 
two-dimensional examples, they concluded that: '... Although the upper-bound 

procedure can give a considerable saving of computer time when simple elements 

are used, the lower-bound solution process remains expensive, since the usage of 
building block elements is inevitable. ... Both of the finite element limit analysis 

procedures, however, are ideally suited for parallel processing on super comput- 

ers. 1 

'The variational formulation of the upper and lower-bound problems is com- 

pletely general and can be extended to more complicated problems such as shells 

of revolution or nonsymmetric shells. ... Because shell elements have more degrees 

of freedom, the computational time will be increased significantly. Therefore. par- 

allel processing on a super-computer is recommended if the finite element limit 

analysis procedures are applied to such elements. ' 

2.2.2 Elastic Plastic Finite Element Method 

Nowadays, elastic-plastic finite element analysis is well developed technique 

and a numberof non-linear programs are commercially available, such as ABAQUS 

[1995] and ANSYS [1993]. Therefore, the references on this field will not be re- 

viewed here. 

2.2.3 Modified Elastic Modulus Finite Element Method 

The reduced elastic modulus method was initially developed as a stress Cat- 
egorisation tool for piping systems to determine the nature of elastic follow-III) 
but was later extended to more general pressure vessel applications. The met Itod 

seeks to classify stresses by comparing the simulated inelastic response of a mate- 
rial with models of ideal primary and secondary stress. The basis of the method 
was outlined by Jones and Dhalla (1981,1986] in a procedure for classiýying local 
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clamp induced stresses in Liquid Metal Fast Breeder Reactor pipes. 

It is Marriott [1988] who noted that the elastic reduced modulus procedure, 

which was used to address problems in elastic follow up in piping systems by both 

Dholla [1984] and Severud [1984], could be used to determine the lower bound 

limit load of a structure by performing iterative elastic finite element analysis 

and invoking the lower bound limit load theorem. Marriott's procedure is a truI3 

iterative elastic procedure: 

An initial elastic analysis is performed and all elements with stress intensity 

greater than the (Code allowable) stress S,, are identified. The elastic modulus 

of these elements are then individually reduced on an element basis, according to 

the equation: 
ER = Eo 

sm 
si (2.1) 

where 

EO = Previous elastic modulus 

S.. = Code allowable stress 

SI = Stress intensity of element 

The analysis is then rerun and the next set of results is obtained. Using these 

results the elastic modulus of those elements which are still greater than S,, are 

reduced and the analysis is rerun again. This procedure is carried on in an it- 

erative fashion until the maximum element stress intensity is less than S,, or 

converges to some other values. 

As well as defining a methodology for categorising pressure vessel stresses. 
Marriot also noted that the reduced modulus method in conjunction with the 
lower bound limit load theorem could be used to define a lower bound limit load 

for the component. A lower bound limit load solution is one in which a staticallv 

admissible stress field exists in which the stress nowhere exceeds the 
.. Ss N ield tre s of 

the material. In his procedure if the maximum stress after a number of iterations 
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is less than yield stress then the applied load has satisfied the lower bound limit 

load criterion. On the other hand, if the converged solution gives a maximum 

stress which is greater than the yield stress then the applied load does not meet 
the lower bound limit load criterion. 

Seshadri [1991] and Seshadri and Fernando [19911 proposed a method for ap- 

proximate estimates of limit load using the modified elastic modulus method. re- 
ferred to as the GLOSS-R-Node (Generalised LOcal Stress Strain Re-distribution 

Node) method. The basic concept of this method is that when inelasticity oc- 

curs and the stresses are redistributed in a component, there are certain loca- 

tions where the stresses will remain constant. These locations are defined as 

re-distribution-node or r-nodes. The r-nodes stresses are insensitive to material 

model and may be considered as reference stress similar to creep analysis refer- 

ence and skeletal stress [Boyle and Spence, 1983]. The reference stress a,., f at the 

r-node is related to the yield stress of an elastic perfectly plastic material by the- 

expression. 

0',., f = flay (2.2) 

where y is less than one prior to plastic hinge formation and equal to one when the 
hinge occurs; when an elastic perfectly plastic material is assumed. By calculating 
the r-node stress o,,., i corresponding to a given load P, the limit load PL for a 

statically determinate structure can be obtained from the expression 

'Y p aref 
(2.3) 

The collapse load for the case when two r-nodes form across the thickness. as 
is the case when direct loads are accompanied by bending action, is given by the 

expression 

pi Al} L : -- 
O'y I P, M 

0'ref 

where IP, M} is the primary membrane and bending load combination. 

The basic procedure to find the GLOSS r-node is as follows: A linear elastic 
finite element analysis of a mechanical component or structure is carried out for 
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the prescribed loading and the pseudo-elastic stresses are obtained. The elastic 

modulus of the model is then locally modified on an element to element basis 

according to the equation 
E, = 

aj Eo 
or 

(2.., -)) 

Where E,,,, is the modified element modulus, EO the original modulus. a the 

element stress and aj is the equivalent stress chosen so that stress redistribution 

occurs in most of the component. A second linear elastic analysis is then carried 

out and the position of the r-node or nodes are obtained at which the stresses 

are unchanged. Using these stress values the limit load then can be calculated 
by using either equations (2.3) or (2.4). 

Although the GLOSS r-node method can be used to calculate limit loads 

for certain components, the concept of r-node especially in 3D models, is quite 
difficult both to visualize and calculate. Also fine through thickness finite ele- 

ment meshes are required in order to use the method effectively. This will lead 

to 3D models with very refined meshes with subsequent problems in computer 

processing time and memory storage space. In practice, software and comput- 
ing restrictions generally restrict the number of through thickness meshes in 3-1) 

pressure vessel models to three or four elements. 

Based on the modified elastic modulus method, Carter and Ponter [1992] de- 

veloped a linear elastic finite element method to calculate lower and upper bound 

limit loads boundaries which has been implemented for planar finite element 
structures under both plane stress and plane strain conditions. They have also 
developed a theoretical background, although this has not been published at tile 
time of writing. The procedure is as follows: 

1. An elastic analysis of the structure is performed for the applied loads P as- 
suming that the elastic modulus E is initially constant throughout the structure 
giving the elastic stress distribution a, (x, P, E) from which %-on Mises equivalent 
stress distribution 0[ai(x, PE)] is calculated. This establishes the relationship 
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of the stresses to the yield surface. 

2. The elastic modulus is then modified throughout the structure according 

to the ratio of the current elastic modulus to the equivalent stress at that point 

Ei (x) = uy 
E 

(2.6) 
O[ul(x, P, E)] 

3. The limit load is then calculated from 

PI =p 
ay (2.7) L 0[o,, (x, P, 

Finally this procedure is iterated to a stable solution by returning to step 1. 

recalculating the elastic stress distribution using the new elastic moduli E, (x) to 

give 0'2(X, P, E, (x)) and thus the new equivalent stress distribution. This is then 

applied to step 2 and step 3 to give E2(x) and PL2 respectively. The procedure is 

convergent in approximately 5 iterations. 

The elastic compensation method as first devised by Mackenzie and Boyle 

[1993a] is based on the modified elastic modulus method; in particular. Mar- 

riott's lower bound theorem approach and Seshadri's redistribution technique, to 

obtain lower and upper bound limit loads by several elastic finite element anal- 

yses. This is done by selectively correcting the elastic modulus in finite element 
in each iteration in order to mimic the form of the limit state stress distribution 

hence forming the plastic hinges for the collapse mechanism. By invoking the 
lower bound limit load theorem, conservative limit loads can then be obtained. 
Then by using the compatible displacement and strain fields from the same el- 

ement model and substituting them into the upper bound theorem an tipper 
bound solution to the model could be calculated [Niackenzie ft al.. 1992.199: 3]. 
[Nadarajah et al., 1993], [Shi et al., 1993]. The method will be reviewed ill niore 
detail in the next Chapter. 
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2.3 A Brief Review of Shakedown Analysis of Structures by Finite 

Element Method 

The fact that the collapse loads calculated according to limit analysis may fail 

to provide a proper measure of structural safety in the case of variable repeated 

loads, was pointed out for the first time by Graning [1926] as early as 1926 and 

later by Bleich [19321, who proved the static shakedown theorem for a system 

of beams of ideal I-cross-section. In 1936 Melan [1936] presented a more general 

theorem and later extended it to the general case of a continuum [1938a, 19381)]. 

It is worth realizing that at that stage the shakedown theory was developed quite 

independently of the limit analysis theory. It is well known that in 1938 Gvozdev 

[1938] arrived at his fundamental results in the limit analysis of elastic- perfectly 

plastic structures subjected to single loading. 

In 1950 Neal [1950] presented a method of shakedown analysis for frames bý 

analysing possible mechanisms of plastic flow. The first solution to the shake- 

down problem in continuum media were arrived at in papers of Symonds (19-51] 

and Hodge [1954]. In both papers the shakedown was limited by the alternat- 

ing (i. e. j of changing sign) yielding; the corresponding magnitudes load factors 

were compared with those of the limit analysis. It was Koiter [19561, who first 

recognized the fact that the theorem on plastic collapse should be understood as 

limiting cases of shakedown theorems corresponding to the coinciding of the up- 

per and lower bounds for each of the contributing external actions. Based on this 

analogy, Koiter put forward the kinematic shakedown theorem and thus stated 

and proved the plastic analysis theorems, i. e. the limit analysis and shakedown 

ones in the form used nowadays [1960]. 

At present the shakedown theory constitutes a well established branch of plas- 
ticity theory. A complete account of it can be found in books of Martin [197)]. 

Gokhfeld and Chernniavsky [1980], K6nig [1987], Lubliner [1990] and ill re%-ie%v 

paper of K6nig and Maier [1981]. 
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By using discrete finite element approach, Maier [1970] proved all the above 

shakedown theorems for a very general class of piecewise linear hardening rules 
[Maier 1969,1972a]. He also pointed out that shakedown problems can be han- 

dled by means of mathematical programming methods and the precise duality 

of the static and kinematic approaches holds. The detailed mathematical pro- 

gramming applications to shakedown analysis can be found inthe review papers 

of Maier and Munro [19821 and Maier and Lloyd [19861. Here only a, few papers 

using an equilibrium finite element technique with nonlinear programming ap- 

plied directly to the shakedown theorems will be reviewed. 

2.3.1 Direct Finite Element Method 

A general method has been firstly developed by Belytschko [19721 for the de- 

termination of lower bounds on the shakedown load for plane stress problems 

using finite element method. The method is formulated by means of Melan's 

shakedown theorem. Two years latter, Corradi and Zavelani [1974] developed a 
finite element method to calculate shakedown load for two and three dimensional 

structures by applying Bleich and Melan's theorem. Then a finite element for- 

mulation for shakedown problems using a yield criterion of the mean has been 

derived by Ngnyen and Konig [1979]. They concluded that hybrid stress elements 

are probably the most suitable type in generating the necessary self-stress state 
for shakedown problems. 

In the early of 1980s, Ngnyen and Palgen (1980-19811 carried out a shakedown 

analysis by displacement method and equilibrium finite element. Lower bounds of 
the safety factor of elastic perfectly plastic structures with respect to shakedown 

were obtained by use of an equilibrium finite element approach and nonlinear pro- 

gramming techniques. Then, the lower bound shakedown finite element analysis 

of elastic perfectly plastic thin plates and shells with symmetry of revolution has 

been performed by Ngnyen and Alorelle [19821. The finite element formulation 
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is based on Melan's theorem. In the analysis a new finite element is developed 

which allows to discretise the shells into a series of conical shells. A few Years 
later the shakedown analysis of axisymmetric elastic perfectly plastic sandwich 

shells has been presented by Morelle [19861 using a new upper bound formulation 

based on a special form of Koiter's theorem concerning piecewise linearised yield 

surfaces. 

In 1988, Genna [1988] presented a nonlinear inequality, finite element ap- 

proach to the direct computation of shakedown load safety factors. The main 
features of this computation are the use of local, a posteriori linearisation of the 

yield surface, which allows the prescription of a maximum violation of the con- 

stitutive law, and the use of a physically oriented solution algorithm to the linear 

complementarity problem to which the shakedown analysis is reduced. Mean- 

time, a general finite element method for shakedown analysis has been performed 
by Shen [1988] based on Melan's theorem and mathematical programming tech- 

nique. Recently, a lower bound finite element computational shakedown analysis 

of axisymmetric shells has been carried out by Lu et al. [1991). 

2.3.2 Modified Elastic Modulus Finite Element Method 

It was mentioned in Section 2 of this Chapter that several modified elastic 

modulus methods can be used to calculate the limit loads of structures. In this 
Section, these methods are applied to shakedown analysis of structures. 

After developing GLOSS (Generalised LOcal Stress Strain) method for esti- 
mating creep damage in pressurised components experiencing multiaxial relation 
and elastic follow-up type behaviour [Seshadri 1990], in 1992 Seshadri and Ge 
[1992] presented a simple method for estimating residual stresses and assessing 
shakedown loads using the GLOSS analysis. 

As described in the Section 2 of this Chapter Carter and Ponter [19921 devel- 
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oped a linear elastic finite element method to calculate lower and upper bound 

limit load boundaries based on the modified elastic modulus method. In the 

same paper they also presented a procedure for calculating shakedown load of a 

structure. The proposed procedure is as follows: 

The structure is assumed to be subject to a constant mechanical load and 

a cyclically varying thermal load. For this the elastic stress distribution can be 

factorized into mechanical and thermal terms 

O'(X) ' UP (X) + OT (X) (2.8) 

where the thermo-elastic stress C'T(X) is calculated in the absence of any mechan- 
ical load such that the maximum value over the loading cycle t= (0 - T-) at any 

point in the structure is used 

O'T(X) = MaxfO'T(X, t)l (2.9) 

The elastic modulus is then scaled according to the combination of the nie- 

chanical and thermal stresses by 

Ei (x) = 
oly (2.10) O[UP(X) + UT(X)] 

This can be shown to work for all values of the thermal stress distribution 

including inside the plastic shakedown region where CrT > 2oy. The mechanical 

load at the boundary between shakedown and ratchetting of the structure is now 

given by 

PI S" P(O'ylfO[O'P(X) + O'T(X)I}max) 

Thus the thermo-elastic stress distribution acts as an initial stress field to the 

procedure. 

After developing the elastic compensation method for calculating lower and 

upper bound limit loads of structures, Mackenzie and Boyle [19931)] proposed a 

method for calculating lower bound shakedown load using the flastic compfilsa- 
tion method and Melan's theorem. The method will be described in detail in the 

next Chapter. 
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2.4 Summary 

It has been seen from the above brief review that there are many publications 

on limit and shakedown analysis of structures by the finite element method but 

for some problems it is necessary to carry out further research. For example, for 

the problem of a nozzle in spherical pressure vessels, most of publications in the 

past have been concentrated on thin shell problems. There are very few para- 

metric studies have been done to obtain the limit and shakedown loads for thick 

nozzle/sphere problems. 

In the era of computer technology, the use of finite element analysis to calcu- 

late plastic (limit) loads is one of several options a designer could use. However. 

the use of non-linear finite element analysis to obtain plastic (limit) loads still 

requires extensive computing resources and is consequently much more difficult 

to perform. The use of non-linear finite element analysis is also difficult as it 

requires the definition of material properties and control of iterative procedures. 

Even with a load against deflection plot obtained from the finite element analysis. 

there is still an uncertainty in predicting the plastic (limit) loads as there are so 

many different techniques proposed by the various authors, for example Gerdeen 

[1979] and Blachut [1995). 

From the design point of view, the lower and upper bound limit loads and 

shakedown loads will be of great importance. Hence using linear elastic finite 

element analysis to calculate these loads as an alternative tool to non-linear finite 

element analysis will be a vital step forward in design. In the next Chapter, the 

reduced modulus method, modified modulus method and elastic compensation 

method will be reviewed in more detail. 
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CHAPTER 3 

THE METHOD OF ELASTIC COMPENSATION: AN 
OVERVIEW 

3.1 Introduction 

With increasing access to powerful computers and the availability of finite el- 

ement software, inelastic analyses are no longer prohibitive but do require inuch 

greater computing resources than elastic analysis and are consequently much more 

expensive to perform. However, robust approximate methods, such as the- elastic 

compensation method developed by Mackenzie and Boyle [1993], provide simple 

and useful ways of obtaining useful design information from limit load analysis. 

The elastic compensation method is a unique procedure which uses the results 

of an elastic finite element analysis, coupled with a reduced modulus scheme. to 
determine the approximate limit load of a component under single or multiple 

loadings using the lower and upper bound limit load theorems. 

The procedure is simple and straight forward; therefore, it can be easily -auto- 

mated' and applied as a batch program, hence relieving the analyst of the tedious 

task of manual programming. This also reduces human errors. 

In this Chapter, a brief survey on the background of the reduced elastic mod- 

ulus method and the modified elastic modulus method and the concept of elastic 
compensation method will be discussed. Also a practical approach usin. - this 

method will be described. 
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3.2 Reduced Elastic Modulus Methods 

The reduced elastic modulus method was initially developed as a stress cat- 

egorisation tool for piping systems to determine the nature of elastic follow-up 

but was later extended to more general pressure vessel applications. The method 

seeks to classify stresses by comparing the simulated inelastic response of a niate- 

rial with models of ideal primary and secondary stress. The basis of the niethod 

was outlined by Jones and Dhalla [1981,1986] in a procedure for classiý%Iing lo- 

cal clamp induced stresses in Liquid Metal Fast Breeder Reactor pipes. Tlieý 

found that the clamp induced stresses tend to redistribute due to material or 

geometric non-linearity, and thus these could be considered as secondary stress 

and secondary stress limits could be applied. However, what was of more inter- 

est is the way in which the effect of local inelasticity was assessed and not in 

the actual categorisation. It was found that instead of performing an inelastic 

analysis to find the behaviour of inelastic response, an iterative elastic analYsis 

could be used. In this analysis, the loaded region of the structure was system- 

atically weakened by the reduction of the local modulus of elasticity to simulate 

the effect of local inelasticity. It was found that this approach was not only less 

expensive in computing time, but it adequately simulated the inelastic behaviour 

of the pipe/clamp structure for the purpose of design. Dhalla and Jones called 

this method the 'elastic secant modulus procedure'. 

The reduced modulus method was used by Dhalla [1984] and independentlY 

by Severud [19841 to address problems in elastic follow-up in piping systenis. Us- 

ing only elastic piping flexibility programs, the inelastic response aild follow up 

characteristic of the piping system could be simulated by reducing the elastic 

modulus in highly loaded bends in ail iterative elastic analysis. In their publica- 
tions they examined the conservatism and accuracy of this method by coiliparing 
the results with inelastic analyses. Boyle and Nakamura [1987]. Nakaniura and 
Boyle [19871 studied the approach used by Severud/Dlialla amoiig.,, -t others. and 
concluded that although this method is practical. it is only useful tO dell1011- 
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Figure 3.1: Idealised load-controlled and deformation-controlled response 

strate that elastic follow up is not a problem for a given piping system. They 

also advised that in this method some care has to be taken especially in the se- 

lection of the elements chosen for modulus reduction. Boyle and Spence [1988] 

presented a method for assessing elastic follow-up in high temperature piping 

systems based on the Severud/Dhalla modulus reduction method and as a de- 

velopment of Roche's classification procedure [Roche 1986]. Further appraisal of 

the method was presented by Gambioni et al. [19891 the following year. 

The success of the reduced modulus method in piping design led to its being 

applied to stress categorisation problems in pressure vessel components in the 

late 1980's. In 1987 Dhalla implemented the reduced modulus method for stress 

categorisation problems in pressure vessel components. The procedure was based 

on partitioning elastically calculated stresses at highly loaded regions of a pressure 

vessel component into primary and secondary stresses. These stresses were then 

applied with appropriate stress limits. The Dhalla reduced modulus procedure 
for stress categorisation is described below: 

The elastic stress (aa) generated by an applied mechanical load or thermal 
deformation is represented by point A in Figure 3.1. If the local region experiences 

no decrease in stress due to inelastic (plastic or creep) deformation then the 
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applied pressure loading, and the resulting stress can be classified as primary. 
That is, the stress (, a) would be constant for different elastic moduli El and E2 

used in two elastic analyses; where, El is the elastic modulus E and E2 simulates 

the local inelastic response (E2 = E, ' = alj). Of cource, the calculated strain 

would increase from & to f-I due to the reduced material flexibility. The Line AB, 

in Figure 3.1 represents a 100% load-controlled response at a constant elastic 

stress (, a) . The correponding strain ratio would vary inversly with the elastic 

modulus ratio 
E21E, when a* = constant 

In contract, if the appiled loading is deformation-controlled (and without any 

elastic follow-up effect) then the change in elastic moduli would not affect the pre- 

dicted elastic local strain, c", but the elastic local stress would decrease from (aa) 

to (a'). Thus, Line AC in Figure 3.1, represents a 100% deformation-controlled 

response at a constant elastic strain a. The correponding stress ratio (aalab) 

would vary in direct proportion to the elastic moduli ratio (ElIE2) 

or"/or' = EIIE2 when f' = constant (3.2) 

In general, it is difficulty to judge a priori the correct ASME Code stress 

classification at structural discontinuities. For example, the stress generated at 

structural discontinuities of internally pressurised vessels may result in a mixed 

response indicated by Line AD, in Figure 3.1. The primary-secondary stress 

classification procedure for the mixed response is surnmarised in the following: 

1. Perform an elastic analysis and identify the most highly loaded location in 

the structure. 
2. Estimate inelastic (either plastic or creep) strain accumulated at this loca- 

tion. This estimate could be very rough. The strain may be the maximum strain 
for assumed load-controlled response (point B in Figure 3.1), or a specified limit 

such as the 1% membrane strain defined in ASME Code case N-47. 

3. Calculate the minimum secant modulus E, n at a point which corresponds 
to the initial elastic stress level a" and estimated total strain level Cb. Assign this 

reduced modulus to highly stressed regions in the- structure. 
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4. Perform at least three elastic analyses assuming equivalent elastic moduli 

varying between the material Young's modulus E to the minimum estimated 

secont, modulus E, n for the most highly stressed local regions of the structure. The 

response is to establish a trend of stress relaxation with respect to the reduction 
in secant modulus. 

5. Plot the equivalent elastic analysis prediction on a generalised stress- 

strain plot; then relate the local response to either 100% load-controlled or 100% 

deformation-controlled response as represented by Lines AB and AC, respectively, 

in Figure 3.1, or a mixed response shown by Line AD. 

The effective stresses and strains for the original elastic and the reduced mod- 

ulus analyses at the high stress region are then plotted on a normalised stress 

strain plot. The effective stress is taken to be equivalent or von Mises stress. In 

the elastic and reduced modulus analyses, the corresponding equivalent strain is 

simply the equivalent stress divided by the elastic or reduced elastic modulus re- 

spectively. Figure 3.2 shows the normalised stress strain plot for a single reduced 

modulus analysis. Lines between elastically calculated point A and the reduced 

modulus calculated points R on the normalised plot are referred to as mixed re- 

sponse lines. The mixed response line is defined in term of 0 in Figure 3.2. 

In the procedure used by Dhalla, the pseudo elastic stress O'A is partitioned 

into primary and secondary components, depending on the angle 0. If 0 is 0', the 

stress component is taken as 100% load control, hence 100% primary stress. For 

mixed response as above, the amount of primary stress is calculated by 

PSF 
0 

(3.3) 
90 

Where PSF =Primary stress factor. 

Marriott [1988] suggested that a modified version of the reduced modulus 

procedure could be used to perform limit analysis. In his analysis, an initial 

elastic analysis is performed and all elements with stress intensity greater than 
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Figure 3.2: Dhalla's normalised stress strain plot [19861 

the (Code allowable) stress S,,, are identified. The elastic moduli of these elements 

are then individually reduced on an element basis, according to the equation: 

ER : -, 2 

where 

EO = Previous elastic modulus 

S,, = Code allowable stress 

SI = Stress intensity of element 

(3.4) 

The analysis is then rerun and the next set of results is obtained. Using these 

results the elastic modulus of those elements which are still greater than S" 

are reduced and the analysis is rerun again. This procedure is carried on in an 

iterative fashion until the maximum element stress intensity is less than S.. or 

converges to some other values. This procedure is illustrated in Figure 3.3. 

As well as defining a methodology for categorising pressure vessel stresses, 
Marriott also noted that the reduced modulus method in conjunction with the 
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Figure 3.3: Procedure used by Marriott [1988] for modulus reduction 

lower bound limit load theorem could be used to define a lower bound limit load 

for the component. A lower bound limit load solution is one in which a statically 

admissible stress field exists in which the stress nowhere exceeds the yield stress of 
the material. In his procedure if the maximum stress after a number of iterations 

is less than yield stress then the applied load has satisfied the lower bound limit 

load criterion. On the other hand, if the converged solution gives a maximum 

stress which is greater than the yield stress then the applied load does not meet 
the lower bound limit load criterion. 

Marriott also proposed a tentative guideline for the classification of stresses 
from a finite element analysis. If S, the stress on the nth iteration, is less than 
S,,, and the slope of the locus of S is greater in magnitude than (1/2) the Young's 

modulus, then the stresses in excess of S,, are secondary. However, if S,, on the 

nth iteration is less than S.,,, and the slope of the locus of S is less than (1/2) 
Young's modulus, then the stress is all primary regardless of whether S,, :5S.. 
or not. 

Elastic Line 
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Roche [1988,1989] and Boyle [1989] have identified the underlying problem 
in design by analysis as the categorisation of stress, and suggested that such 

categorisation could not be based on elastic analysis alone. Both showed that 

structural behaviour similar to elastic follow-up in piping systems could confer 

primary characteristics on what was essentially thought to be secondary stress. 

Several papers by Seshadri et al [1991a, 1991b, 1991c] have applied the re- 

duced elastic modulus procedure in a number of areas. The method used by 

Seshadri incorporated the aspects of both the Dhalla and Marriot procedures. 

The modulus reduction is based on equivalent stress in a similar manner to that 

used by Dhalla. However, the modulus is reduced on an element by element basis 

as in Marriot's method. An elastic analysis is performed and all elements with 

equivalent stress greater than the material yield stress are identified. Assum- 

ing 100% displacement control and elastic-perfectly plastic material, inelasticity 

would cause the stress to fall to aY whilst strain maintains its original level. The 

reduced elastic modulus required to give these values of stress and strain in elastic 

solution is: 

ER = Eý a' 
or, 

where 

ER = the reduced modulus value 

E,, = the original modulus 

ay = the material yield stress 

a, = the centriodal equivalent stress of the element 

In 1990 and 1991, Seshadri showed that the reduced elastic modulus analysis 
provided a simplified method for estimating creep damage in pressurised com- 
ponents experiencing multiaxial relaxation and elastic follow-up type behaviour. 
In his publications he introduced the term GLOSS (Generalised LOcal Stress 
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Strain) to the reduced modulus vocabulary and used the GLOSS diagram to par- 
tition creep damage into load and deformation controlled fractions. Other work 
[Vaidynathan et al. 1989] extended the GLOSS method to elevated temperature 

component design. Seshadri [1990] also extended the GLOSS analysis procedure 
to inelastic analyses of pressure vessel components. The GLOSS method was ap- 

plied to several problems of practical interest involving plastic analysis, multiaxial 

stress relation and strain concentration factors in notched components and found 

that this method can be used to simulate inelastic behaviour to good effect. Also 

this method was used to address the problem of stress classification in pressure 

components by Seshadri [1990]. 

The problem of using reduced elastic modulus method procedure to cate- 

gorise stresses in simple components has been addressed by Boyle and Mackenzie 

[1991], Mackenzie and Boyle [1992]. In their early work they found that the elas- 
tic follow-up type of response used in such a procedure to classify stresses was 

not only dependent on component geometry but also on load level. This meant 
that when the load is increased or decreased the value of primary and secondary 

stresses changed considerably. They also found that the stress categories given 
by these procedures for simple pressurised components did not coincide with cat- 

egories defined for these components in the Codes. It was argued that if the 

procedure could not be verified for simple components, for which categories have 

been defined, it was unsafe to use these procedures for more complex designs. 

However, while this work has questioned the viability of the reduced elastic mod- 

ulus method for stress categorisation, it has opened the door for the method to 
be used in simplified pseudo-inelastic analysis. 

3.3 Modified Elastic Modulus Method 

Seshadri [19911 and Seshadri and Fernando [1991] proposed a method for ap- 
proximate estimates of limit load using the modified elastic modulus method, 
referred to as the GLOSS-R-Node method. The basic concept of this method is 
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that when inelasticity occurs and the stresses are redistributed in a component, 
there are certain locations where the stresses will remain constant. These loca- 

tions are defined as re-distribution-nodes or r-nodes. The r-nodes stresses are 
insensitive to material model and may be considered as reference stress similar to 

creep analysis reference and skeletal stress [Boyle and Spence, 1983]. The refer- 

ence stress a,., f at the r-node is related to the yield stress of an elastic perfectly 

plastic material by the expression. 

aref (3.5) 

where it is less than one prior to plastic hinge formation and equal to one when the 

hinge occurs; when an elastic perfectly plastic material is assumed. By calculating 

the r-node stress a,, f corresponding to a given load P, the limit load PL for a 

statically determinate structure can be obtained from the expression 

PL 
= oly p 0'ref 

(3.6) 

The collapse load for the case when two r-nodes form across the thickness, as is 

the case when direct loads are accompanied by bending action, is given by the 

expression 

Ps M} L --: -- --! 
ýy jPv M} (3.7) 

0'rel 
where IP, M} is the primary membrane and bending load combination. ' 

The basic procedure to find the GLOSS r-node is as follows: A linear elastic 
finite element analysis of a mechanical component or structure is carried out for 

the prescribed loading and the pseudo-elastic stresses are obtained. The elastic 

modulus of the model is then locally modified on an element to element basis 

according to the equation 
0'-Eo 
ol 

(3.8) 

Where E.. is the modified element modulus, Eo the original modulus, a the el- 
ement stress and ai is the equivalent stress chosen so that stress redistribution 
occurs in most of the component. A second linear elastic analysis is then carried 
out and the position of the r-node or nodes are obtained at which the stresses 
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are unchanged. Using these stress values the limit load then can be calculated 
by using either equations (3.6) or (3.7). 

Although the GLOSS r-node method can be used to calculate limit loads 

for certain components, the concept of r-nodes especially in 3D models, is quite 
difficult both to visualize and calculate. Also fine through thickness finite ele- 

ment meshes are required in order to use the method effectively. This will lead 

to 3D models with very refined meshes with subsequent problems in computer 

processing time and memory storage space. In practice, software and comput- 

ing restrictions generally restrict the number of through thickness meshes in 3-D 

pressure vessel models to three or four elements. 

Based on the modified elastic modulus method, Carter and Ponter [1992] de- 

veloped a linear elastic finite element method to calculate lower and upper bound 

limit loads boundaries which has been implemented for planar finite element 

structures under both plane stress and plane strain conditions. They have also 
developed a theoretical background, although this has not been published at the 

time of writing. 

It is seen from the literature review that the concept of modifying the elastic 

modulus of the elements in a finite element model, has proved to be a useful tool 

in simplified inelastic analysis. Nonetheless, the GLOSS r-node method intro- 

duces several good ideas into the calculation of limit loads by modified modulus 

analysis, not least the idea of increasing as well as decreasing local modulus. This 

provided an impetus for a new method of obtaining limit and shakedown loads 

referred as the elastic compensation method. In the next Section the elastic com- 

pensation method will be reviewed in detail. 

3.4 Elastic Compensation Method 

The elastic compensation method as first devised by Mackenzie and Boyle 
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Figure 3.4: Three bar truss with vertical loading 

[1993a] is based on the modified elastic modulus method; in particular, Mar- 

riott's lower bound theorem approach and Seshadri's redistribution technique, to 

obtain lower and upper bound limit loads by several elastic finite element anal- 

yses. This is done by selectively correcting the elastic modulus in finite element 
in each iteration in order to mimic the form of the limit state stress distribution 

hence forming the plastic hinges for the collapse mechanism. By invoking the 

lower bound limit load theorem, conservative limit loads can then be obtained. 
Then by using the compatible displacement and strain fields from the same ele- 

ment model and substituting them into the upper bound theorem an upper bound 

solution to the model could be calculated [Mackenzie et aL, 1993]. 

Before going into the potential of such a procedure simple example problems 

are considered where exact limit loads are calculated using this method. 

3.4.1 Limit Load for a Three Bar Truss Under Vertical Loading 

Each bar is uniform and has an area equal to A. If o,,, 0'21 a3 are the stresses 
in the bars then the equilibriums are: 
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Vertical equilibrium 

(a3A + a, A) cos 60' + a2A =Q (3.9) 

Horizontal equilibrium 

Thus 

ajA = a3A, a, = a3 (3.10) 

)+ U2 2- 
2 

(3.11) 
2A 

ul + -Z -Q (3.12) 
A 

Similarly if el, 62) C3 are the strains in the three bars and q is the vertical 
displacement at their common joint then the strain or displacement relations are: 

C3 
q)1-q (3.13) 
2 2L 4L 

f-2 -q 
(3.14) 

L 

The three bar constitutive relations: 

Ec (3.15) 

Therefore substituting equations (3.13), (3.14) and (3.15) into equation (3.12) 

O'l + 0'2 = El -1 + E2,1 -Q (3.16) 
4LLA 

1 
(3.17) q= 

'QL (El 
+ 4E2) A 

Substituting equation (3.17) into equations (3.13) and (3.14) 

151 --: -- C3 : -- -'L --Q (3.18) 
4L A(El + 4E2) 
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C2 ý- I-Q (3.19) 
L A(El + 4E2) 

Substituting equations (3.18) and (3.19) into equation (3.15) yields 

O'l = Or3 = Ele, - 
QEI (3.20) 

A(El + 4E2) 

0'2 = E2 C2 
4QE2 

- (3.21) 
A(El + Uý2) 

Elastic solution 
Assuming the bars are of the same material, that is, El = E2 = E3, and 

substituting into equations (3.20) and (3.21), the bar elastic stresses are 

al = 0.5 -Q (3.22) 
5A 

Oý2 -Q (3.23) 
5A 

First yield 

By inspection, first yield occurs in bar 2 when Q= Qy. At first yield 

4Qj, 
172 : -- ýA- ý-- O'y (3.24) 

Rearranging, the load at first yield and stress in bars 1 and 3 at first yield are 

given by the equations: 
Qy =5 ayA (3.25) 

4 

aly = 63y = 

ly- 

= 
O'y 

(3.26) 
5A 4 

Post yield 
Assuming perfect plasticity and post yield force increment of AQ 

AF, + AF2 ý AQ (3.27) 
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or 
Au, + Ao, - 

AQ (3.28) 

For perfect plasticity, AO'2 = 0. Therefore 

AQ (3.29) 
A 

Limit load 
The limit load is reached when bar 1 yields. That is: 

O'l ý-- O'ly + AaIL O'y (3.30) 

or 
Oly AQL 

= 0, -+Y (3.31) 
4A 

Therefore the post yield load increment to the limit state is 

AQL = A(oy - y) =3o,, yA (3.32) 
4i 

The limit load QL is therefore given by the expression: 

QL --= Qy + AQL --= 
5 

cyA +3 ayA = 2ayA (3.33) 
44 

Modulus modification method 
The elastic moduli in the bars are modified based on the results of the initial 

elastic analysis according to the expression: 

E.. = Eo 
s 
a 

(3.34) 

where E.. is the modified modulus, EO is the original modulus, a the elastically 

calculated stress in the bar and S arbitrary stress given by 

S=aay where O<a< 1 (3.35) 
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Thus the modified moduli are given by the expression 

E,.,, = Eo aa, (3.36) 

Substituting the bar stresses from equations (3.22) and 3.26) into equation (3.36), 

the elastic solution for bar 1 will be 

4Qy5A QV Eoa 
5A 

4Eoa Q 
(3.37) 

and similarly for bar 2 substituting equations (3.23) and (3.24) into equation 
(3.36) 

Em2 ý EOOLY ý-- EOaQY (3.38) 
aQ 

Substituting the modified moduli into the expression for bar stresses (equations 

(3.20) and (3.21)) 

U 1' 0'3 
QE .. Q (3.39) 

A(E .. I+ 
4Em2) 2A 

a 
4QEm2 Q (3.40) 

A(E,,,, + 4EM2) 2A 

The modified modulus solution gives equal stress in all three bars. At limit 

load the stress in all three bars is equal to ay, thus the modified modulus stress 
distribution is similar to the limit stress distribution. 

At the limit load Q QL, all three bars yield; that is ol ý-- 0'2 == 0'3 = O'y) 

thus 
QL 

- U,, QL = 2oyA (3.41) 
2A 

which agrees exactly with the elastic perfectly plastic solution. 
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Figure 3.5: Beam under pure bending 

3.4.2 Limit Load for a Beam Under Pure Bending 

The limit load for rectangular beam under pure moment loading calculated 
by elastic perfectly plastic analysis is 

ML (3.42) 

where ML is the plastic moment and My is the moment to cause first yield in the 

beam and is equal to aybd2/6. cry is the yield stress of the material. 

The limit load can also be established by modified modulus analysis. Ap- 

plying equilibrium to a section through the beam, noting the symmetric stress 

distribution: 
h 

M=2b azdz 
0 

(3.43) 

The material constitutive equation and assumed strain-displacement relation- 

ship are: 

a= E(., )f- (3.44) 

C= PCZ (3.45) 

where 

E= Young's modulus 
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x= (1/radius of curvature of a beam in bending) 

Substituting into the equilibrium equation: 

0 0 
M=2b Ih E(, )tcz'dz = id, (3.46) 

where 
Ih 

Z2 
(I 

I, = 2b 
0 

E(. dz (3.47) 

Elastic solution 
The well known elastic solution for stress at point z through thickness is 

ore = 
Mz 

(3.48) 
I 

where I is the second moment of area of the beam 

I= 
2bh 3 

(3.49) 
3 

First yield occurs at z=h for load My 

ay = 
Myh 

(3.50) 
I 

The elastic modulus at point z through thickness is modified according to the 

equation 
E. = Eo a (3.51) 

where ci is an arbitrary constant of value 0<a< 

Substituting equations (3.48) and (3-50) into equation (3.51) gives 

E. ) = 
ly h 

EoceL (3.52) 
Mz 

Substituting equation (3.52) into equation (3.47) 

1hM h2 I, = 2bEoaL' hM3 zdz = 2bEoa ' h(T) = bEoa 'h (3.53) m 
10 

mm 
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ELASTIC SOLUTION 

2 Mh 
31 

MODIFIED MODULUS SOLUTIOI 

Figure 3.6: Stress distribution through thickness for beam under pure bending 

Substituting equation (3.49) into (3-53) 

3 MY 
2 

Eoa TW7I (3.54) 

From the moment curvature relationship, M= tch 

M 2M2 
(3.55) N=Tj = 3EoaMII 

Substituting equation (3.55) into equation (3.45) 

C' = Kz =2 
M2Z 

(3.56) 
3 EOaMjI 

Sustituting equations (3.52) and (3.56) into equation (3.44) 

2Mh 
31 

(3.57) 

Clearly the modified modulus stress is constant through thickness. Thus the 

form of modified modulus stress distribution is similar to the limit state stress 
distribution. See Figure 3.6. 
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At limit load, the stress at all points z through thickness will be ay; that is 

a, = ay. Therefore 

Rearranging: 

2 MLh 
_ 

Mjh (3.58) 
311 

ML 3 my (3.59) 
2 

which agrees exactly with the inelastic solution. 

3.5 Upper Bound Limit Loads by Elastic Compensation 

In this section the upper bound theorem is implemented in conjunction with 

the elastic compensation method to obtain exact limit loads for the two problems 

examined in the previous sections. 

The upper bound limit load theorem states that if, for a given load the rate 

of dissipation of internal energy in a body is equal to the rate at which external 
forces do work in any postulated mechanism of deformation, the applied load 

set will be equal to or greater than the plastic collapse load [Calladine 1985]. 

Mathematically, a complete plastic collapse requires definition of P and a, an 

equilibrium set of loads and stresses respectively, and it and i, a geometrically 

compatible set of displacement and strain increments, respectively. An upper- 
bound solution requires only a partial or incomplete plastic collapse solution to 

be defined; specifically, il* and i*, representing any compatible sets of displace- 

ment and strain increments, respectively, which define a geometrically possible 

mode of deformation. The asterisk notation therefore denotes a solution which is 

incomplete in the sense that the stress field is not defined. Applying virtual work 
to the problem, it can be shown [Calladine 1985] 

b*dV 
v 

(3.60) 
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where b* is the increment of dissipation of energy per unit volume calculated for 

the incomplete solution. The increment of energy dissipation per unit volume for 

a Tresca perfectly plastic material is given by the expression 

(3.61) 

where ji*j is the greatest principal strain rate magnitude. In the case of a Mises 

perfectly plastic material, the more complex expression is given by 

23 (j. 
'2Y 

+ jY2ý' + jý2 b=ý+ j2 + j2 - 
jXj i-ý +-2. 

") (3.62) ay 3XYzYY4 

or 

aYV2[( )2 + )2 + )2] 2 [(il 
- i2 (3.63) 

9 

where IiI: i=1,2,3 are the principal strain rates and ý, iy, i-. are total compo- 

nent strain rates and j,, y, jy, j,., are engineering shear strain rates. 

An upper-bound limit load for a structure can be obtained by substituting 

the elastic compensation displacement increment field iý* and strain increment 

field i* into the upper bound theorem as expressed in equation (3.60). However, 

this approach can lead to practical problems since calculating the work term 

can be laborious if corresponding load and displacement vectors are not directly 

accessible in the finite element program, (pressure loads on nonplanar surfaces 

present particular problems). In practice, it is more convenient to take advantage 

of the linear elastic nature of the elastic compensation solution: as the solution 
is elastic, the external work done must equal the elastic strain energy of the 

structure; thus 

Ep .*= u 
IV 

ai*dV 

where a is the elastically calculated stress, and i* the elasticly calculated strain 
increment. Thus, the upper bound theorem inequality may be written 

IV 
ai*dV < f)*dV (3.64) 
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Using this equation the upper bound limit load for a structure can be calcu- 
lated. This will be demonstrated in the following problems. 

3.5.1 Three Bar Truss Under Vertical Loading 

Using equation (3.60), for a three bar structure 

33 
Eaieivi =Ea, fivi (3.65) 
i=1 i=1 

CrIC1VI + 0262V2 + 63f3V3 O'y(f1VI + f2V2 + IE3V3) (3.66) 

61 = 0'3) C1 = 63) VI V3 = 2AL, V2 = AL (3.67) 

2Ao, lc, L + Aa262L + 2Aalc, L = av(2ALe, + AL62 + 2ALC3) (3.68) 

4a, le, + a2f2 = av(2el + 62 + 2f3) (3.69) 

After modulus reduction from equations (3.39) and (3.40) 

Q a2 - 2A 

Therefore 

Substituting QL for Q 

Q- ,Q 4 TA cl -r TA 112 av(4e, + C2) (3.70) 

Q A(4cl + f2) ay(4cl + C2) (3.71) 
2 

Q= 2oyA (3.72) 

QL = 2ayA (3.73) 

which again agrees with the exact solution. 
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3.5.2 Beam Under Pure Bending 

Using symmetry and applying the upper bound theorem gives 

00 a0 
2f 

h 
acdz = 2ay 

fh 
edz (3.74) 

Substituting equations (3.56) and (3.57) into equation (3.74) 

4 A13 h-h 
zdz =2a 

A12 h 
: dz (3.75) 

9 Eoali. 7 J2 
Jo 

EoaAly I 
fo 

y 

2 M3 h3 A12 h2 
(3.76) 

9 EoaMYI2 3 O'y EoaAfy I 

2Mh 
-1 ol (3.77) 

913y 

From equation (3.50) 

Let M= AIL 

Aly h 
ay =I 

2. AlLh Aly h 
91= 31 

(3.78) 

AIL =3 my (3.79) 
2 

which again is the exact solution. 

3.6 Procedures for Estimating Limit Loads by Finite Element 

Analysis 

The elastic compensation method has been further developed by the Stratli- 

clyde group as a robust technique for evaluating limit loads for CoIIIl)IeX StrUC- 

tures: see Mackenzie and Boyle [1993b, 1994]-, Mackenzie d al. [1992. [993. 

1994a, 1994b, 1994c, 1993]; Nadarajah et al. [1993]; Shi (t al. [199: 3]: Hamilton 
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et al. (1994,19951. 

The elastic compensation method is based on an iterative elastic analrsis 

procedure and application of the lower and upper bound limit load theorems. 

In the elastic compensation method, limit loads are bounded by modifYing the 

moduli of all the elements in the model. In a series of elastic anaIN-sis IiiglitY 

loaded elements have their modulus reduced and lowly loaded elements have 

their's increased. The resulting stress and strain fields are then slibstituted into 

the appropriate bounding theorems to derive the limit loads. 

In the elastic compensation method, an initial linear elastic finite eleniew 

analysis is performed for a nominal design loading Po to establish tile elastic stress 
field a,. This analysis forms iteration zero in a series linear elastic analysis i1i 

which the moduli of elements are systematically modified to redistributethe stress 
in the component. In each subsequent iteration, the modulus of each element is 

modified according to an equation of the form: 

Ei= E(i-1) 0'- (: 3.80) 
0'(i-1) 

where subscript i is the iteration number, a,, a nominal stress value and o, (i-, ) 
the maximum (unaveraged) nodal equivalent stress associated with the- element 
from the previous solution. The value chosen for a,, in Eqn. (3.80) is somewhat 

arbitrary - usually equal to or two thirds of yield. Care has to be taken. however. 

to ensure that the divisor of Eqn. (3.80) does not approach zero as this could lead 

to numerical problems in the finite element solution. This iterative procedure 

redistributes the stress in the component and over a number of iteratiotis tlie iiel 

effects is to decrease the maximum stress in the model as illustrated iii Fig. : 3. -j- 0 

3.6.1 A Procedure for Estimating Lower Bound Limit Loads 

A lower estimate of the limit load is calculated by invoking the IoNver botnid 

limit theorem, which sates that if a statically admissible stress field in which Ow 

stress nowhere exceeds yield exists for a given component under given loading. 
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Figure 3.7: Maximum stress for each iteration. 

the loading is a lower bound on the limit load (Calladine 1985). The elastic com- 

pensation solution meets the first requirement of the lower bound t heorem int lia t 
it is statically admissible (subject to the usual finite element approximations). AS 

the iteration solutions are linear elastic, the stress magnitude is proportional to 

the applied load. A lower bound limit load can therefore be established by cal- 

culating the load required to give a maximum (unaveraged) nodal stress equal to 

nominal yield strength cy from proportionality. Considering the iteration giviilg 

the lowest value of maximum nodal stress a, 

al, PL = pl- 
, 

(3.81) 

where PL is the best estimate of lower bound limit load given by the above proce- 
dure. The applied load set P, is not restricted to single loads and inay represelit 

multiple forces, moments, pressures, etc., in the manner of proportional loadill.,, " 
in conventional limit analysis. 

3.6.2. A Procedure for Estimating Upper Bound Limit Loads 

In a linear elastic analysis, the upper bound theorem may be expressed bY 
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Figure 3.8: Plot of strain energy and energy dissipation against applied external 

load 

inequality (3.64) 

IV 
ai"dV < f)*dV 

or 

U<D 

The strain energy U of a linear elastic body varies with the applied load set 

squared. The dissipation of internal energy D varies directly with the applied 

load set. Thus, 
U=I ai*dv = Ap2 (3.82) 

Iv 

D= jv D*dV = BP (3.83) 

Plotting strain energy and energy dissipation against applied external load 

gives curves of the form shown in Fig. 3.8. When the strain energy aiid eiierox 0ý 11). 
dissipation curves intersect, the equality is satisfied and the (tipper bound) limit 

load is established. The intersection can be calculated by performing a finito 0 
element analysis for an arbitrary load set P, and evaluating the correspouditig 15 
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strain energy U, and energy dissipation DI. Substituting the calculated values 
into Eqs. (82) and (83) gives 

A= 
Ull 

B= 
D, 

Pil P, 

and the strain energy and energy dissipation may be expressed as 

U=Llp2, D=D'P 
p2 I pi 

The applied load set P is an upper bound limit P,, load when U=D: that is. 

U, 
P. 2 

= 
D, 

p. Ti pl 

and, hence, the upper bound limit load is given by the expression 

D, 
ul 

(3.84) 

It is a routine matter to evaluate approximations to U, and D, froin the re- 

sults of a finite element analysis. Both strain energy and the model strain field, 

are given as results of the finite element analysis. 

3.7 A Procedure for Calculating Lower Bound Shakedown Loads 

It has long been known that there is an analogy between the limit load and 

shakedown bounding theorems in plasticity. Early on the Stratliclyde Grotip 

decided to investigate the application of elastic compensation finite element pro- 

cedure to shakedown also. 

There have been several attempts to obtain shakedown loads directly usiwr 
finite element methods; for example, Belytschko [1972] and Corradi and Zavelalli 

[1974] applied linear programming techniques directly to the shakedown theo- 

rem. These analyses were typically computationally expensive and oifly simple 
two dimensional structures were examined. In this section a simple procedure for 
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indirectly calculating lower bound shakedown loads by the elastic compensatioii 

approach is briefly presented. The details of formulation can be found in Macken- 

zie and Boyle [1993]. 

In the elastic compensation procedure the stress and displacement fields gen- 

erated by iterative elastic analysis procedure are substituted into INfelan's lower 

bound shakedown theorem, which states: 

For a given load set P, if any distribution of self- eq u ilib riathig resid- 

ual stresses a, can be found, (assuming perfect plasticity), which U, ýi (I? 

taken together with elastically calculated stresses a, constitute a sys- 

tem of stresses within the yield limit ay then P is a lower boutid shakf - 
down load set and the structure will shake down. 

The requirement of Melan's theorem is simply to show that a structure Nvill 

shake down for a given load and this can be assured by establishing an acceptable 

residual stress system - it does not necessarily have to be the actual residual stress 

system in the real structure at that load level. By definition the load level fol. 

which this is demonstrated will be a lower bound on the so called shakedown load. 

A simplified outline of the proposed approximate procedure is given in the 

following: 

For a given load set P, the lower bound shakedown theorem can be stated as 
follows. If 

ar : 10r, 
-Imax 

5 Cy (3.85) 

exits and satisfies the condition: 

lul- + Celmax :5 o'Y (3.86) 

where, 

0'r -The -residual stress field. 

ae - The elastic stress field. 
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ay - The material yield stress. 

P- the lower bound shakedown load set. 

In the elastic compensation method, an initial elastic finite element analysis 
is performed for a nominal design loading pd to establish the elastic stress field 

a,. This analysis forms iteration zero in a series of linear elastic analyses in w1lich 

the moduli of elements are systematically modified to redistribute the stress in 

the component. In each subsequent iteration, the modulus of each elenient is 

modified according to the eqn. (3.80): 

Ei = E(i-, ) 

where subscript i is the iteration number, a,, a nominal stress value and (7; -1 
tile 

maximum (unaveraged) nodal equivalent stress associated with the element froni 

the previous solution. 

The redistributed stress field calculated for each iteration is designated as 

a possible shakedown stress field a, i: that is, the stress field in the component 

under full load after shakedown has occurred. This stress field is taken to be the 

sum of the initial elastic stress field a, and a residual stress field cr,. i (for iteration 

0: 

asi = ae + a,. i (3.87) 

Thus, the residual stress field a,. is defined implicity in the elastic compensation 

procedure, such that: 

ari = asi - O'e (ISS) 

Shakedown criterion (3.85) may therefore be rewritten as: 

Iasi - Ce 15 ay (: I. S! )) 

As the elastic compensation procedure is linear, the magnitude of the stress 
field is proportional to the applied load set. Therefore 

pa 
Td ; 7d 
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Where pd and ad are a nominal applied load set and resulting stress field respec- 

tively. The elastic and shakedown stress fields can therefore be written: 

Ord 
P 

e pd (: 3.91) 

asi = ad. 
P 

(3.92) 
st Pd 

Substituting expressions eqns. (3.91) and (3.92) into eqn. (3.88) and invoking the 

shakedown criterion eqn (3.85) gives: 

Fd- 

Similarly, criterion eqn. (3.86) gives: 

dP 10'silmax O, i Td- !ý O'y (3.94) 

At shakedown, either the residual stress is at yield: 

dd 
Pi i 10'silmax 

---: 
10' 

._a Td- st e 
Imax- O'y 

with the maximum shakedown stress less than or equal to yield, or the maxinitini 

shakedown stress is at yield: 

ad, 
L2 i ICsilmax =I silmax pd (3.96) 

with the maximum residual stress less than or equal to yield. Equation (3.95) 

gives a shakedown load Pli for iteration i, such that 

pli = P, ay (3.97) last - ac 

and eqn. (3.96) gives a shakedown load P2i for iteration i, such that 

P2i -, ý pd O'u (: 3.98) 
d I or 
.9&. 

Imax 

Equation (3.98) which is equivalent to the equation for the iteration i lower boulid 

limit load used in elastic compensation limit load calculation. 

The lower bound shakedown load Pj calculated for iteration i is the smaller 
of the two calculated loads Pli and P2i, that is; 

P-i = nl"'I(Pli, P2i) (3.99) 
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The best lower bound shakedown load calculated by the elastic compensation 

method is the highest iteration shakedown load Pj given by the procedure: 

P. j = max(P., j) (3.100) 

In practice, the best lower bound limit loads and shakedown loads are usuallY 

given by different iterations in the elastic compensation procedure. 

3.8 Example 1: Limit Analysis of Pressurized Cylinder 

The elastic compensation method has been successfully verified by the Strath- 

clyde Group to obtain limit loads for different pressure vessel components. In this 

section, the elastic compensation method will be demonstrated in the calculatioii 

of lower and upper bound limit loads for pressurised thick cylinders. 

3.8.1 Cylinder Model Geometry 

In the following study, eleven different thick cylinders under internal pres- 

sure are analyzed. For the all models the cylinder outer radius was constant 

at b= 550mm and the inner radius a was varied to give a range of ratios 

of bla = 1.1,1.25,1.5,1.75,2,2.25,2.5,2.75,3,3.25 and 3.5, with wall thickness, 

verying from 50 mm to 392.9 mm. The detailed model geometries are sliown iii 

Table 3.1. 

3.8.2 Finite Element Model 

It is known from previous studies [Mackenzie, Shi and Boyle 19941 1 11M t 11(- 

accuracy of the elastic compensation method is significantly affected by inesh den- 

sity and element order. Therefore, in this study the element models of each -r- 

ometry were generated using eight node isoparametric plane element in 
. INS) 

(PLANE82) [1994]. The element is defined by eight nodes haviii- two degree" of 
freedom at each node: translations in the nodal x and y directions. The eleinvit, 
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Table 3.1: Cylinder model geometry 

Model b (mm) a (min) bla 

THICK1 550 500 1.1 

THICK2 550 
1 

440 1.25 

THICK3 550 366.7 1.5 

THICK4 550 314.3 1.75 

THICK5 550 275 2.0 

THICK6 550 244.4 2.25 

THICK7 550 220 2.5 

THICK8 550 200 2.75 

THICK9 550 183.3 
1 

3.0 

THICK10 550 169.2 3.25 

THICK11 550 157.1 3.5 

Table 3.2: Finite element numbers of models 

Model b (mm) a (mm) b/a Elements Through 

Thickness 

Total Element-, 

THICK1 550 500 1.1 10 260 

THICK2 550 440 1.25 15 390 

TIIICK3 550 366.7 1.5 20 .520 
THICK4 550 314.3 1.75 90 520 

THICK5 550 275 2.0 25 650 

THICK6 550 244.4 2.25 25 650 

THICK7 550 220 2.5 30 780 

THICK8 550 200 2.75 30 780 

THICK9 550 183.3 3.0 30 7,. ", 0 
TIIICK10 550 

1 
169.2 3.2 5 40 10-11) 

THICK11 550 1 157.1 3.5 40 1010 
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may be used as a biaxial plane element or as an axisymmetric element: fLirtlier 

information on PLANE82 can be found in Appendix III. The Tresca yield crite- 

rion was used in the elastic compensation analysis. 

The finite element meshes were fine enough according to the computing IiIiii- 

tation and the elements through thickness were varied from 10 to 40 accordinv to 

the ratios of bla, as shown in Table 3.2. The finite element mesh and boundarý 

conditions for THICK8 is illustrated in Figure 3.9. The initial elastic modulus 

value for all models is equal to 200E3N/mrn 2 with a Poisson's ratio of 0.3. The 

yield stress of the material is equal to 30ON/77irn2 and the Tresca yield criterion 

is used in this Chapter. 

3.8.3 Lower and Upper Bound Limit Pressures 

As the elastic compensation procedure is completely automated it can be 

programmed with little difficulty. In ANSYS, the entire procedure can be ini- 

plemented as an ANSYS Design Parametric Language (ADPL) macro (see Ap- 

pendix II), as illustrated by the flow diagram in Figure 3.10 for calculating tile 

lower and upper bound limit load. The macro reads stresses from tile ANSYS 

results file (file. rst), calculates new Young's modulus values for each element. 

writes an input file with appropriate material property and element modification 

commands, reads the modification file into the ANSYS pre-processor 1PREP7 

and repeats the solution procedure. All the user is required to input is the nuill- 

ber of iterations i to be performed. 

The lower and upper bound limit loads for the thick cylinders Nvere obtained 

using the elastic compensation method which was carried out using MAC. -) ýInd 
TRIAL1 in Appendix II. Up to 10 iterations were perforined for each 11iodel in 

this case and the modulii were modified according to eqn (3.80) 

Ei = E(i-, ) 

where subscript i is the iteration number, a,, a nominal stress valtie atid (7(j-j) 

61 



-4 
EA 

ot f-i z r- CV) 

r C-1 0 
IN %0 LO 

: 4 : ý4-w -OX r 1 r L22 41 R 0W (n 
, n, w 1-4 C*4 (1) H 
>4 INNN 
cn 9-4 P 04 ra Ml to E-4 

PS >4 >HWW 0 
3w c, q cw aj E-4 0 0x : 0.4 

$4 
a) 

E-4 

.Z 

"0 

"0 
9.1 
Z 
0 

62 



Table 3.3: Varision of maximum non-averaged nodal stress with itcration 

Iteration Maximum non-averaged 

nodal stress (Nlnln, 2) 

0 92.06 

1 55.059 

2 47.668 

3 44.639 

4 43.102 

5 42.245 

6 41.745 

7 41.446 

8 41.265 

9 41.155 

10 41.088 

the maximum (unaveraged) nodal equivalent stress associated with the element 
from the previous solution. 

An example of the maximum non-averaged Tressca nodal stresses obtained 
from the lower bound solution for the model THICKS is shown in Ta, ble: 3.3. Tliv 

model has a applied internal pressure Po = 401V/mm. 

For model THICK8, the lower bound limit pressure can be obtained from 

eqn 3.81. 

p 
300 

1= 41.088 x 40 = 292.06 N/mm. 

The upper bound limit pressure was then obtained by using the stress and 

strain fields of the model after final iteration. By running ANSYS ADPL niacro 
'TRIAL1' (see Appendix II), the followings were calculated: 

Energy dissipation D=0.637787.55E-05 

Strain energy U=0.8378389E-06 
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Then, the upper bound limit pressure can be evaluated, eqn. (3.84). as 

D2 
Ux 40 = 304.49N/min 

The lower and upper bound limit pressures for all other models were ob- 

tained by the similar process as illustrated above. The calculated first yield P,. 

lower bound limit P1 and upper bound limit P,, pressures are compared with tile 

theoretical ultimate pressure PL obtained by the eqn. (3.101), in Table : 3.4 and 

Figure 3.11. It can be seen from Table 3.4 and Figure 3.11 that the results calcit- 
lated are in very good agreement with theoretical results, especially in the Case 

of upper bound limit pressure which are almost the same as those obtained bY 

the eqn. (3.101). 

PL 

3.9 Example 2: Lower Bound Shakedown of Pressurized CYlinder 

The previous eleven models used for the lower and upper bound limit analyses 

are also used to obtain the lower bound shakedown pressures in this section. An 

ANSYS ADPL macro for shakedown is an extension to the previous macro used 
in the calculation of the lower bound limit pressure. The macro is shown in Ap- 

pendix II and the function of this macro is shown via a flowchart in Figure : 3.12. 

The model's mesh, boundary conditions and applied load condition are the saine 

as before. 

The lower bound shakedown pressure for the model THICKS is illustratvd 

in Table 3.5. Column 4 and 5 in Table 3.5 shows the lower bound shilkedowii 

pressure obtained from the maximum shakedown stress (eqn. 1.98) and the max- 
imurn residual stress (eqn. 3.97), respectively. Column 6 in the Table 3.5 shows 
the lower bound shakedown pressure (min (PI, P2)) obtained after each iteril- 

tion. The optimum shakedown pressure of 253.06N/m 1712 occurs at iteratioti :1 
is shown in bold. Unaveraged stress intensity contour plots related to tlie lo%%-('I- 

bound limit and shakedown pressures calculated for THICKS are showii in Fil, 
1- 
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ure 3.13 for the elastic stress (iteration 0), Figure 3.14 for the shakedown stress 
(iteration 1), Figure 3.15 for the residual stress (iteration 1), Figure : 3.16 for the 

shakedown stress (iteration 3), Figure 3.17 for the residual stress (iteration : 3). 

Figure 3.18 for the shakedown stress (iteration 10) and Figure : 3.19 for the resid- 

ual stress (iteration 10), respectively. 

For all the other models, the lower bound shakedown pressures Nvere ob- 
tained in the similar way as described above. The calculated shakedown pres- 

sures are compared with the theoretical results obtained by the equation P, = 

min(Pu, 2P,, ) in Table 3.6 and Figure 3.20. These show that the IoNver botind 

shakedown loads calculated are also very close to the theoretical results. 
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Figure 3.10: Elastic compensation limit load macro flow diagram for i iterations 
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Table 3.4: Limit pressures of thick cylinders 

Model b/a Py PL P, P. 

THICK1 1.1 26.03 28-59 28.32 28.6 

THICK2 1.25 54.00 66.94 65.95 
1 

66.95 

THICK3 1.5 83.33 121.64 119.15 121.64 

THICK4 1.75 101.07 167.88 163.19 167.95 

THICK5 2 112.57 207.94 202.11 
1 
208.11 

THICK6 2.25 120.50 243.28 235.26 243.71 

THICK7 2.5 126.13 274.89 265.98 275.48 

THICK8 2.75 130.35 303.48 292.06 304.49 

THICK9 3.0 133.59 329.58 315-08 331.17 

THICK10 3.25 135.98 353.60 338.18 355.05 

THICK11 3.5 137.99 375.83 355.24 377.35 

4) 

it 

-0- First yield 
- Ibeoretical limit 
-r- Lower bound 

Upper bound 

1.0 1.5 2.0 2.5 3.0 3.5 4.0 
b/a 

Figure 3.11: Limit pressures of thick cylinders 
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Table 3.5: Variation of maximum shakedown, residual stress and shak(do irti prf A- 

sure with iterations 

Iteration 10"Im" 

2) (N/mm 

10', Imax 

(N/MM2) 

Oly P2 :- POIC'solmax- 

(NIMnl. 2) 

P1 

2) (N/mm 

-7 

07mm') 
I 

0 92.06 

55-06 37.00 217.94 324.32 217.9 1 

2 47.67 44.39 251.73 270.33 251.73 

3 44.64 47.42 268.82 253.06 253.06 

4 43.10 48.96 278.42 245.10 215.10 

5 42.24 49.81 284.09 240.99 240.92 

6 41.75 50.32 287.43 238.47 238.4 7 

7 41.45 50.62 289.51 237.06 2.37.06 

8 41.27 50.80 290.98 236.22 236.22 

9 41.16 50.91 291.55 235.71 235.71 

10 41.09 50.97 
1 

292.04 
1 

235.43 235.13 
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Table 3-6: Lower bound shakedown pressures of thick cylinders 

Model b/a pv 
(N/MM2) 

2 Py 

(N/rnM2) 

PU 

(N/mm') 
min (Pu, 2 Py) 

(N/MM2) 

P. 

(N/mM2) 

THICKI, 1.1 
1 

26.03 56-06 28.59 28.59 28.32 

THICH2 1.25 54.00 108.0 66.94 66.94 65.95 

THICK3 1.5 83.33 166.66 121.64 121.64 119.15 

THICK4 1.75 101.07 202.14 167.88 167.88 163.19 

THICK5 2.0 112.57 225.14 207.94 207.94 202.11 

THICK6 2.25 120.50 241.0 243.28 241.0 235.26 

THICK7 2.5 126.13 252.26 274.89 252.26 250.57 

THICK8 2.75 130.35 260.7 303.48 260.7 253.05 

THICK9 3.0 133.59 267.18 329.58 267.18 263.48 

THICK10 3.25 135.98 271.96 353.6 271.96 269.25 

THICK11 3.5 137.99 275.98 375.83 275.98 270.10 

U 

0 4.1 

--o- First yield 
-- 7leomLical shakedown 

.6 Shakedown 
--r- Lower bound limit 

1.0 1.5 2.0 2.5 3.0 3.5 4.0 
b/a 

Figure : 3.20: Lower bound shakedown pressures of thick cylinders 
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3.10 Example 3: Limit Analysis of Beam Structures 

So far the elastic compensation method has been developed for -solid' finite 

elements (as in the thick cylinder problem). One of the main features of this 

thesis has been to extend to beam and shell elements. Before considering this. 

it is worthwile examining the computational problems involved in using elastic 

compensation for frame problems with solid elements. 

3.10.1 One-Bay, One-Story Frame 

For the one-bay, one-story frame subject to combined loads, shown in Fig- 

ure 3.21, the finite element model was created using eight node axisynimetric 

solid element (ANSYS PLANE82) and the finite element mesh is shown in Fig- 
I 

ure 3.22. A total 600 elements were used. The lower and upper bound limit loads 

calculated using the elastic compensation method are compared with the results 

of Lubliner [1990] in Figure 3.23. Again the comparison is good. 

3.10.2 One-Bay, Two-Story Frame 

For the one-bay, two-story frame, shown in Figure 3.24 taken from K6nil.,,, 

[1987], the finite element mesh for h1L = 1/4 is shown in Figure 8.25. Eleniew 

numbers used in this problem were 600. The lower and upper limit load interac- 

tion diagrams are compared with those of K6nig [19871 in Figures : 3.26 aii(I : 3.27 

which show, good results. 

3.11 Summary 

The elastic compensation method described above gives solution-, to t lie lower 

and upper bound limit loads of structures. From a design point of t lie lower 

and upper bound limit loads and shakedown loads are of great importance. hi 0 
the next few Chapters the elastic compensation method will be tised in roiijimc- 
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tion with elastic finite element analysis to obtain lower and upper limit loads and 

shakedown loads for structures including pressure vessel components. plate AvitIl 

a central hole and frame structures for design purposes. However this nietliod 

still needs to be further developed to calculate upper bound shakedown loads 

of the structures. Due to the high running cost for solid element models. espe- 

cially for 3D models, lower costing shell element and beam element are needed Io 
implemented to the elastic compensation. These work will be done in tli is Project. 
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F2 

Figure 3.21: One-bay, one-story frame 

Figure 3.22: Finite element mesh of one-bay. one-story frame 
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Figure 3.23: Results of one-bay. one-story frame 
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Figure 3.25: Finite element mesh of two-bay, two-story frame 
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Figure 3.26: Results of one-bay. two-story frame. h1L = 1/4 
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Figure 3.27: Results of one-bay, two-story frame, h1L = 1/2 
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CHAPTER 4 

LIMIT AND SHAKEDOWN LOAD INTERACTION 
DIAGRAMS 

4.1 Introduction 

In Chapter 3 the elastic compensation method devised by the Stratliclyde 

Group has been reviewed. The method was verified for a few simple problems 

and it was shown that useful limit and shakedown loads could be found. A,,, --- 

pointed out in Chapter 3, the Strathclyde Group has applied the elastic com- 

pensation, method to a wide range of structural problems. However so far few 

demonstrations of the method for load interaction have been given. To reniedy 

this in this Chapter the application of elastic compensation to the evaluation of 

interaction diagrams for limit and shakedown loads is examined for the (simple) 

problem of a plate with a hole under proportional biaxial load. Before doing tli is. 

the problem is reviewed: 

A theoretical investigation of the lower and upper bound limit loads of ;i 

square plate with central circular hole was carried out firstly by Hodge [19-531 

using the Tresca yield criterion, and then by Gaydon and McCrum [1954] using 

the von Mises yield criterion. 

Hayes and Marcal [19671 developed a finite element method for determillili', 

upper bounds on the limit load for this problem. Three years later. Belytscliko 

and Hodge [1970] proposed a complementary method for finding, the lower boinid 

on the limit load for this problem using the finite element tecImique. A Inixe(I 
formulation and mixed finite elements for limit analysis of this problem has been 

discussed by Casciaro and Cascini [19821. More recently the same problem hasi 

been analysed by Hamilton et al. [1995] by the elastic compensatioti niet lio(I. 
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For shakedown, this problem is a popular benchmark for calculating shake- 
down loads using finite element methods and several authors have published so- 
lutions over the years. Belytschko [1972] was the first to provide a finite elenletit 

solution of this problem: he used an equilibrium finite element technique with 

nonlinear programming applied directly to the lower bound shakedown theorem. 

Hung and Palgen [1980] used a similar approach, but discussed the results in more 
detail. Corradi and Zavelani [1974] on the other hand used linear prograninihig 

and also derived a dual formulation which gave a (pseudo) upper bOLII1(1. Re- 

cently Genna [19881 has demonstrated a finite element technique which is base([ 

on a nonlinear inequality formulation with linearization of the yield surface. 

Shakedown with nonlinear strain-hardening material using finite element met ho, I 

has been developed by Stein et al. [19921. They investigated the same probletil 
in cases of both elastic-perfectly plastic material and nonlinear strain-hardening 

material and concluded that for this system under the given loading. the straill- 
hardening had no influence on the shakedown behaviour, that is. the results for 

an elastic-perfectly plastic material are the same as for a nonlinear kinematic 

hardening material. Their results are quite similar as those of Corradi and Zave- 

lani [1974]. 

In this chapter, the lower and upper bound limit and shakedown loads will be 

carried out by the elastic compensation method and finite element, analysis. tlieii 

these results will be compared with elasto-plastic analysis and results from t1le 
literature . 

4.2 Limit Load Interaction Diagram by Elastic Compensation 

In this section, the elastic compensation method is applied to the plane S. -tress 

problem of a plate with a circular hole under uniaxial tension an([ various collibi- 

nations of biaxial loads P, and P2. The loads are proportional. LoNver aild upper 
bound limit loads are calculated using elastic compensation and compared wii 1i 
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P2 

Pi 

Figure 4.1: Plate with a hole under biaxial loads P, and P2 

the results from elasto-plastic finite element analysis and results given ill t lie liter- 

ature. The problem geometry is shown in Figure 4.1 and the finite element niesli 
is developed using eight node axisymmetric solid element PLAN82 ill ANS) *S 

as shown in Figure 4.2. For all models, 450 elements were used. Cotilplitatiotis 

were made for a Poisson's ratio of 0.3 and yield stress of 300 NInzin'. 

The lower and upper bound limit loads calculated for various load combina- 
tions, (based on 10 analysis iterations), are compared with elastic-plastic analysis 
limit loads (elastic-perfectly plastic material model) in Table 4.1 and Figure 4.3 

and results from the literature in Table 4.2 and are generally in good agreenienf. 

4.3 Shakedown Load Interaction Diagram by Elastic Compensation 

In this section, as an illustration the elastic compensation method is applied 

to the same problem. This problem is a popular benchmark for calculating shake- 0 
down loads using finite element methods. A brief review has been 

Oiveii in I he 
beginning of this chapter. All of these formulations are quite complex bitt more 
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Figure 4-2: Finite element mesh and boundary conditions 



Table 4.1: Values of normalised limit loads P2/a,, using elastic conipensatioa 

PIIP2 First yield Limit load 

(Lower bound) 

Limit load 

(Upper bound) 

Elasto-Plastic 

Limit load 

1.00 0.483 0.85 3 0.908 0.883 

0.90 0.458 0.858 0.940 - 
0.75 0.422 0.850 0.965 0.917 

0.60 0.391 0.856 0.958 - 
0.50 0.373 0.857 0.953 0.900 

0.40 0.356 0.838 0.932 - 

0.25 0.334 0.815 0.904 0.873 

0.10 0.314 0.767 0.859 - 
0.00 0.302 0.747 0.830 0.800 

-0.5 0.254 0.564 0.645 0.61: 3 

-1.0 0.219 0.450 
1 

0.494 
1 

0.467 

importantly require special purpose finite element analysis software. The elas- 

tic compensation procedure for calculating lower and upper bound sliakedowil 

loads in Chapter 3 will be used here again to obtain the lower and upper bound 

shakedown loads for the plate with a circular hole under tension and various 

combinations of proportional biaxial loads. The finite element program ANS)"S 

is used: the writer has automated the elastic compensation procedure tising the 

ANSYS ADPL macro language, see Appendix II. The problem geometry. finite 

element mesh and symmetry boundary conditions are the same as in the previous 

section. In this case the load set will be taken as 

P, = P(Plo +f (*, ýIpl) 
0+ f(tPkP2) A2 P(PI k 

The coefficients Pl', AP1, P2, AP2 are constaids for a given analysis bw can bo 

chosen independently to reflect different families of load cycles. Here two specific 

93 



Table 4.2: Values of normalised limit loads P21a, from the literature 

Method PI / P2 Limit load 

(Lower bound) 

Limit Load 

(Upper bound) 

Offier 

1.0 0.9 0.929 

Gaydon and McCrurn 0 0.8 0.8 

-1.0 0.447 0.492 

Belytschko and Hodge 0 0.793 0.824 

Hayes and Marcal 0 - 0.885 - 
Genna 0 - - 0.791 

Belytschko 1.0 0.8 - - 
0 0.78 - - 

Rimarnawi and Dogan 0 - - 0.8 

1.0 - - 0.892 

Casciaro and Cascini 0 - - 0.8035 

-1.0 - - 0.4678 

Corradi and Zavelani 1.0 0.691 0.8 0.767 

0 0.691 0.8 0.691 

families will be studied by way of example: 

Casel Po - Po 0 API = AP AP2 =P I-2 
Case2 APi = P20 =0 Plo = AP AP2 =P 

where the ration A will take on different values. The results will be nornialised 

with respect to Play 

Elastic compensation lower and upper bound shakedown loads for these fani- 

ilies of load cases are evaluated and the results shown in Table 1.3 aii(I LA for 

various of A. Also shown are initial yield and the corresponding lower mid upper 
bound limit loads. In each case 10 iterations were used: the best hinit and sliiike- 
down loads are usually given by different iterations in the elastic compensatioii 
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Table 4.3: Normalised lower bound shakedown and limit loads Pla, using elastic 

compensation 

A First yield Limit load Shakedown 

Case 1 

Shakedown 

Case 2 

1.00 
1 

0.483 0.853 0.853 0.423 

0.75 0.422 0.850 0.826 0.497 

0.50 0.373 0.857 0.739 0.569 

0.25 0.334 0.815 0.640 0.589 

0.00 0.302 0.747 0.578 0.578 

-0.5 0.254 0.564 0.496 0.563 
r T-o- 

0.219 0.450 0.435 0.450 

procedure. 

It can be seen from Table 4.3 that for A=1, the lower bound shakedown load. 

for case 1, equals the lower bound limit load. Also it should be noted that insonie 

instances, specifically when the lower bound shakedown load is very close to tlie 
lower bound limit load, the upper bound shakedown load value drops below the 
lower bound shakedown load value. This could be explained by numerical errors 
in the finite element model and the approximate nature of the bound calcLilations. 
However Martin [1975] maintains that where the lower shakedown and limit loads 

are close then the need to calculate the upper bound shakedown load is nullified. 
In other words in this situation the failure will be by gross plastic collapse rat lier 

than incremental failure in the form of ratcheting and theshakedown botiii(Is itiv 
invalid. 

The results can now be compared to previously published soltitions [B(-- 

lytschko, 19721, [Corradi and Zavelani, 19741, [flung and Palgen. 1980]. [Geimii. 

1988], but some careful interpretation is required: 
Shakedown and limit interaction diagrams are shown in Figure -1.1 as a coill- 
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Table 4.4: Normalised upper bound shakedown and limit loads Plo,, usi iig clast ic 

compensation 

A First yield Limit load Shakedown 

Case 1 

Shakedown 

Case 2 

1.00 
1 

0.483 0.908 0.781 0.466 

0.75 0.422 0.965 0.779 0.516 

0.50 0.373 0.953 0.748 0.54-1 

0.25 0.334 0.904 0.713 0.632 

0.00 0.302 0.830 0.667 0.667 

-0.5 0.254 0.645 
1 

0.545 0.553 

-1.0 0.219 0.494 1 0.425 0.433 

posite from Corradi and Zavelani [1974] and Hung and Palgen [19801: these are 
typical of the results found using programming techniques. In these diagrams I tro 

elastic and limit domains are distinguished: here these will be denoted as saff /y 

and interaction domains. For example the elastic safety domain ensures elastic 
behaviour for any load combination in the specified region-, however for propor- 
tional loading the derived interaction domain lies adds elastic load combinatioiis 

which are guaranteed to be safe, while again there are safe load combinations otit- 

side the safety domain. The safety domabis thus ensure either elastic behaviotir 

or avoidance of gross plastic collapse, but ignore any interaction by assuinim, 

the load histories to be wholly independent. It is important to appreciate thitt 

shakedown domain shown in Figure 4.4 by mathematical programming is also ii 

safety domain. Acceptable shakedown load combinations can, and (to. lie outside 
the safety domain. Analysis using programming techniques can oiil. %- estiiiiov 

safety domains since load domains are searched for worst possible conibiiiatiotis. 
without regard to actual load history during the cycle. This can be seen ror i be 

two load families considered here: interaction diagrams are shown in Fi-gure 1.. -) 

and 4.6 for lower and upper bound solutions from elastic compensation. It raii be 

seen that load Case i does give acceptable shakedown load combiiwit ioiis ow side 
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the safety domain, while load Case 2 lies closer to the safety domain. The effect 

of including the true load cycle history is evident. 

4.4 Conclusions 

The development of bounding procedure for limit and shakedown analys-is (I(-- 

scribed here has been kept simple so that the major steps can be easily identifted. 

The sample benchmark problem presented in this chapter illustrates the Ilse of 

the elastic compensation method in limit and shakedown analyses for proportinal. 
loading and the results indicate that the method can be used to calculate lower 

and upper bound limit and shakedown loads for actual proportional load Iiistories 

with useful accuracy. The procedure automatically calculates both lower and up- 

per bound limit and shakedown loads and, most significantly, -requires otily fla. stic 

analysis capability. Thus a significant amount of valuable design information can 
be obtained from a single, easily implemented, analysis procedure. 
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CHAPTER 5 

LIMIT ANALYSIS OF NOZZLES IN PRESSURE 
VESSELS 

5.1 Introduction 

Limit analysis of nozzles in spherical pressure vessels tinder internal pressure 
has been received considerable attention in the past three decades. COIISe- (jUeRt ly. 

many methods for estimating the limit load have been developed. 

In this Chapter, a brief review of limit analysis for nozzles in pressure ves-sels 
is given first and then a parametric study of the limit loads for nozzles inspherica I 

pressure vessels will be carried out using the elastic compensation niethod. 

5.2 Brief Review of Limit Analysis of Nozzle/Spherical Intersections 

Under Internal Pressure 

The basic principles of the application of limit analysis to shells have been 

developed since about 1950. The application of these principles to problems of 

technological significance has occurred since about 1958 and the subject is still 
developing. By the early sixties researchers have been looking into methods to 

derive the limit pressure for flush cylindrical nozzle in a spherical pressitre vessel. 
Three papers Lind [1964], Gill [1964] and Cloud [1965] were pUblislied at aboilt 

the same time. 

The paper by Lind [1964] considers the shell nozzle junction as shown in Fi"'- M 
ure 5.1 for a rigid-plastic material obeying the Tresca criterion. The cross-sectioll 

of Figure 5.1 is basically the intersection of a cylindrical nozzle ands-pherical SlIell 

with fillet radii on the inside and outside at the junction. The limit pressure is- 

calculated corresponding to plastic hinges forining at points 1,2. : 3. with teiisile 
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circumferential yield between 1 and 3. The hinge circle, 2, is at the jLIIICti0II Of 
the cylinder and sphere. 

Gill's [1964] paper derives upper and lower bounds to the limit pressure for 

a flush cylindrical nozzle in a spherical vessel using the one moment limited in- 

teraction surface. The analysis is based on the mechanism shown in Figure 15.2 

consisting of hinge circles in the branch, sphere and at the junction. Between 

hinge circles there is a radially outward movement and hence the material in this- 

region is at circumferential yield. The mechanism also implies an outward rigid 
body displacement of the branch. 

The theoretical analysis presented in the paper by Cloud [19651 is very sini- 
ilar to Gill's [1964]. The one-moment limited intersection surface is used aild a 
lower bound is found by putting Me = A40 in the sphere 'equilibrium equatiol)s. 
The paper also considers the effect of different lengths and thicknesses of integral 

reinforcement of the spherical shell. Cloud [1965] also reports three tests carried 

out to compare the theory with experimental results. 

The more general problem of the limit analysis of the junction of cylindrical 

and spherical shell is considered in the paper of Dinno and Gill [196.5al wliicll 

covers a wide range of parameters from the nozzle of [Gill 1964] to the case 

Cross sectional 

o412 area A 

3 

Figure 5.1: Shell nozzle junction 
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* Hinge circles 

Forces Oisplacements 

Figure 5.2: Collapse mechanism of a nozzle in a spherical vessel 

where the cylinder and sphere have the same diameters. i. e. the cylindrical 

vessel with hemispherical ends. A full investigation is given of clifferelit ratios 

of branch/sphere thickness which in particular establishes the conditioll. "i linder 

which the three-hinge mechanism of (Lind 1964, Gill 1964, Cloud 1965] is valid. 
Ellyin and Sherbourne (1965a, 1965b] have made similar studies of this problem. 

In 1965, Leckie and Payne [1965] represented Gill's [1964] results for limit 

pressure against a single dimensionless nozzle geometry parameter p for w1riolts 

nozzle to shell thickness ratios. Gill (1970] has also presented suniniarised resUlt. s 
in a similar form. 

Following the experimental programme carried out by Cloud [196-55]. some fur- 

ther tests on six nozzles carried out by Dinno and Gill [19651)] with more elaborate 
instrumentation confirmed that the pattern of stress is similar to that assunied in 

the theory. The experimental limit pressures were in all cases soniewhat hi, lier 

than the limit pressures as calculated using the one-moment limited interactioll 

surface. However the specimens used by Dinno and Gill had a tYpical fillet weld 

at the nozzle sphere junction which would increase the strength of the structure. 

One significant feature of the experimental results [Dinno and Gill. 19651)] is 
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the increase of pressure with deformation after the limit pressure, an effect whicl) 

appears to be partly due to the effect of change of geometry and partlY due Io 

strain hardening of the material. The change of geometry problem has been StUd- 
ied theoretically by Allman and Gill [19681. The theory only gives the initial rate 

of change of limit pressure with change of geometry at zero change of geometry 
for a rigid-plastic material and is based on a development of Gill (19641. Thi, 

change of geometry effect, taken in conjunction with the experimental results of 
Cloud [1965], Dinno and Gill [1965b] suggests that theoretical limit pressures for 

flush nozzles in spherical vessels predicted by the type of analysis discu. s. s. -ed cail 
be used as a design basis where appropriate, and that there is an inherent niargiii 

of safety due to the effect of deformation under load. 

In the early seventies, Robinson and Gill [1973] proposed a method to cal- 

culate a lower bound to the limit pressure of a cylindrical branch in a splierical 

pressure vessel using non-linear programming techniques. The stress restiltants 
in the branch and vessel were expressed in terms of an independeiA set of vari- 

ables and the Ilyushin's yield surface obeying von Mises yield criterion was tised. 
Force/moment equilibrium at the junction of the branch and sphere was satisried 

approximately by using one overall inequality constraint and the pressitre was 
then optimised subject to the yield and equilibrium constraints. Tliey obtained 

results for a wide range of nozzle/sphere parameters which were then pres-ented 
in graphical form. Recently this problem has been re-examined by Nadarajah ft 

al. (1993] and Mackenzie et al. [1992] [1993] by elastic compensation. 

In this Chapter a detailed parameter study of the limit behaviour of iiozzl(, s 
is presented. 
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Figure 5.3: The geometry of axisymmetric nozzle in spherical shell 

5.3 Approximate Limit Analysis of Nozzle/Spherical Intersections 

Under Internal Pressure 

5.3.1 Model Geometry 

The nozzle/spherical shell geometries are shown in Figure . 5.3. Here the di- 

mensionless geometry parameter p: p= -11-(11)12 is used as same as that in flie RT 

paper of Leckie and Payne [1965]. In Figure 5.3, r is the radius to mid-section 

of the nozzle, R the radius to mid-section of the shell, t the thickness of tile 

nozzle, T the thickness of the sphere, and f the fillet radius at the nozzle/sphere 
intersection. For the nozzles with T= 10nim, f= 5n2m. and for the remainder 
f= t/3. The fillet of radius f at the nozzle/sphere intersection is modeled ill 

order to counter the problem of singularities at re-entrant corners in ela'itiritly 
theory. P is the internal pressure and P,. the radial outward pressure as sliown. 

For first stage of the study the radius ratio was taken constant at R/v = --) 
(R = 1000mm, r= 200mm), with thickness T=t varied from 250nim to 

23.67mm over 9 models, (this naturally leads to some rather curious nozzle gv- 

ometries). The detailed geometric parameters are shown in Table For all 
the models examined the modulus of elasticity is taken as 200E3NImm' with 
Poisson's ratio 0.3. The yield stress of the material is taken as 300N1mm2. 
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Table 5.1: Nozzle model geometry, r= 200nan. 

Nozzle 1 2 3 4 5 6 7 8 9 

R(mm) 1000 1000 1000 1000 1000 1000 1000 1000 1000 

r(mm) 200 200 200 200 200 200 200 200 
1 

200 

T(mm) 250 160 111.1 81.6 62.5 40 33.06 27.8 2: 1.67 

RIT 4 6.25 9 12.25 
1 

16 
1 

25 30.25 : 36 -12.2 

p 0.4 0.5 0.6 0.7 1 0.8 1 1.0 1.1 1.2 1.3 

Further a series of nozzle/spherical models with set sphere ra(liLl,,. SIAlel-V 

thickness and nozzle thickness (T = t) were investigated such that RIT and f/T 

was constant. Nozzle radius r was varied to give a range of values for p. R was set 

at R= 1000 and seven wall thicknesses examined (T = 10,20,40,100.120.140.160) 

give seven groups of models with constant shell radius to thickne. " ratio of 

RIT = 100,50,25,10,8.33,7.14, and 6.25. In this way. the variation 
in limit load with two dimensionless geometry parameters p and RIT was inves- 

tigated. Eighty four models were thus studied! 

5.3.2 Finite Element Model 

All eighty four models of each geometry were developed using eight node ax- 

isymmetric solid element in ANSYS (PLANE82). The models were rest ra i ned i ii 

the meridional direction, but allowed to move radially. at a distance sufficiewlY 
far removed from the nozzle. A typical finite element mesh, in this case for inodel 

number 67, is shown in Figure 5.4. For the different models with differew tliirk- 

ness the element numbers through thickness are different. The detailed vienients 

used through wall thickness for all models are given in Table 5.2. 

For the models with internal pressure P, it was necessary to apply a radial 

outward load (pressure) P, at the end of the nozzle due to the intertial pressitre 
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Table 5.2: Elements used through wall thickticss 

Nozzle T(mm) RIT Elements through thickness 

1 250.0 4.0 14 

2 160.0 6.24 14 

3 111.1 9.0 10 

4 81.6 12.25 10 

5 62.5 16.0 10 

6 40.0 25.0 8 

7 33.06 30.25 8 

8 27.8 36.0 5 

9 23.67 42.2 5 

10a-10k 10.0 100.0 5 

10-20 20.0 50.0 5 

21-31 40.0 25.0 5 

32-42 100.0 10.0 10 

43-53 120.0 8.33 10 

54-64 140.0 7.14 10 

65-74 160.0 
1 

6.26 10 
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acting on the nozzle; the values of load being calculated as 

pl, 
- 

Prj2 
r2 - r? 09 

where r,, is outside radius and ri inside radius of the shell. The botindary condi- 

tions of models is shown in Figure 5.5. 

5.3.3 Lower and Upper Bound Limit Loads 

The lower and upper bound limit pressures, P1 and P,, are obtained by ati- 

tornatically running elastic compensation macros (see Appendix II) w1iich are 
defined in the ANSYS Design Parametric Language (ADPL). In this case tell 

elastic re-analyses are used during elastic compensation. The results calculated 

are normalised according to the expression 

R 
p 

2Tay 

Normalised lower and upper bound limit pressures, 77, and T,, respect ivelY. 

normalised pressure to first yield pressure Fy- and normalised elasto-plastic limit 

pressures Pp- (will be demonstrated in next section) for models 1 to 9 are givell 
in Table 5.3 and plotted against the nozzle geometry parameter p in Figure 5.9. 

Lower bound limit loads by Leckie and Payne [1965] are also given in Table 5.3 

and Figure 5.9. For other seven groups of models with constant shell raditis to 

thickness ratio of RIT = 100,50,25,10,8.33,7.14 and 6.2.5, the results of flie 

elastic compensation analyses are compared with Robinson and Gill [197: 3]. 7Tp-, +(;. 
for the thiner shells and with new elasto-plastic analysis (will be discussed later). 

for thicker nozzles, RIT < 10, where there does not appear to be any coinparable 

results available in the literature (due to the limitations of shell theol-Y). Vie 

results are presented in Tables 5.4-5.10 and Figures 5.10-5.16 and stuniiiarise'l 

and compared with the results of Leckie and Payne [1965] in Figures 5.17-5. tS. 
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5.4 Elasto-Plastic Finite Element Analyses 

Elasto-plastic analysis is also a useful tool in determining the Collapse load 

of structures but of course more computationally expensive. Here elasto-plastic 

analysis is used to verify the elastic compensation results. ANSYS provides dif- 

ferent geometrically non-linear options, such as large strain. large deflection ati(I 

stress stiffening, to assist in non-linear static analysis. In addition. it also provides 

for material non-linearities in the structural model. In the elasto-plastic nio(lel 

used in the project, the non-linear options used are large strain, large deflection 

classical bi-linear kinematic hardening as the material's non-linea, r property. Each 

of these options will be discussed in detail. Before doing that let us first review 

the methods used to indentify the plastic or 'collapse' load as a. lower bOL111d 011 

the limit load from elasto-plastic analysis. 

Tangent Intersect Load (P,, ) 

A collapse load has been defined by Save [1972] by drawing tangents to tli(- 

elasticand plasticparts of theload and displacement curve as shown in Figure 5.6. 

The load at the intersection of the two tangents is taken as a definition of t1le 

collapse load, P,. The value of the collapse load obtained by this method is 

sensitive to where the tangent is drawn in the plastic range. If the load wid 
displacement curve exhibits a relatively straight line portion beyOnd the -knee, iii 

the curve, the tangent intersect method can give consistent results. 

Twice-Elastic-Deformation Load (P2. ) 

The twice-elasti c-deformat ion load defined as tile load at which tile (tenectioll 

or strain reachs twice the value of the elastic deflection (b. ) or elastic straiii ai 
the first yield load (P, ) as shown in Figue 5.7. This definition has been tised ill 

the ASNIE Boiler and Pressure Vessel Code. 1974 edition [19741. 'nis inetilod 
depends on the yield load, Py and the elastic deflection. Tile vield load or el"Ist ic 
deflection can be obtained through the use of strain gauges ill experiment.. 's Or 
through approximations from the load and displacement curve. Gerdeen ill (197911 
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Figure 5.7: Twice-elastic- deformation load method 

reported that this method is the most conservative but is subject to error t1irougli 

the approximation of the yield. 

Twice-Elastic Slope Load (PO) 

This collapse load is. defined to be the value at the intercept of a lino drawn 

from the origin of a load and displacement curve at a slope of twice tile valile of 
the slope of the elastic portion of the curve as shown in Figure 5.8. 'nis iiietiwti 
has been adopted in Section 111 (1975] and Section VIII [1977] of tile ASNIF" Boiler 

and Pressure Vessel Code. The definition can be expressed as: 

Pj, when tan 0=2 tan 0 
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"0 

P4 

py 

Figure 5.8: Twice-elastic-slope method 

where 
PO = the twice-elastic-slope pressure 

tan 0= slope of the elastic portion of the curve 

This method is least subject to error but is impossible to evaluate in sonie cases. 

0.2 Percent Offset Strain Load (PO. 2) 
This is defined as the load causing a permanent strain of 0.2 per cent. Pd., 

is similar to the 0.2% offset definition used to define yield strength tinder siliII)k., 

tension. A strain basis for defining a plastic load may be subjected to error in 

locating the exact location of the maximum strain. Strain is also a load pliv- 

nomenon, say a bending strain at a yield hinge, and is not indicative of overall 

plastic collapse as other yield hinges may be present. 

5.4.1 Finite Element Model 

The finite element models of each geometry were also developed usiiip, eiglil 

node axisymmetric solid element in ANSYS (PLANE82). The element has plas- 

ticity, large deformation and large strain capabilities and is well suited for niodol- 
ing complex structures. The models were restrained in the meridional direction. 
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but allowed to move radially, at a distance sufficiently far removed from the noz- 

zle. The finite element meshes are the same as used for elastic compensation. 

5.4.2 Limit Loads from Elasto-Plastic Analysis 

The twice elastic slope method was used as a basis of obtaining the elasto- n 
plastic limit loads. These were obtained from graphs plotting the applied lowl 

and the displacement. The results calculated are also normalised accordin, to 

the expression 

R 
p 

2Tay 

The elasto-plastic limit loads for all models were tabulated in Table 5.4 Io 

5.10 and also shown in Figures 5.10 to 5.16. 

The normalised elasto-plastic limit pressures, Pp- are compared Nvith the lower 

and upper bound limit loads obtained by the elastic compensation method ii) 

Tables 5.4-5.10 and Figures 5.10-5.16. 

5.5 Discussion of Results 

Figure 5.9 shows that the lower bound pressures for the models 1-9 calculated 

using 2D solid element PLANE82 are slightly lower than Leckie and Ilayne*, 

plot [1965] except for values of p larger than I where the obtained restilts are 

much lower than values of Leckie and Payne with the value of p hicreasing. Re C5 
upper bound limit pressures calculated for all nine models are higher than t1le 0 
results of Leckie and Payne. These results form good limit bounds for tI ic niodels. 

For three sets of thinner nozzles, i. e. RIT = 100,50,25. it can be seen from 
Figures 5.10 to 5.12 that the lower bound limit pressures calctilated arv gencrally 

close to the results of Robinson and Gill [1973] and the obtain(A Lll)l)('I' I)OtIIId 

limit loads are close to the values of elasto-plastic analyses. 
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Figures 5.13 to 5.16 show that for thicker models, i. e. RIT = 10.8.33.7.14.6.2-). 

the upper bound limit loads calculated are very close to but slightly higher thaii 

the elasto-plastic limit loads, but the lower bound limit loads are nitich lower. 

5.6 Concluding Comments 

Comparing the results of the parametric study with result.,, - from literattire 

and incremental elastic-plastic analysis (with an elastic-perfectly plastic milte- 

rial model) indicates that the elastic compensation method is a robust method 

for bounding limit loads without recourse to complex incremental elastic-plastir 

analysis. The results of the study also indicate that whilst the lower bound limit 

load is a function of the dimensionless geometry parameter p used by Leckie ft 

al, Figures 5.17 to 5.18, it cannot be fully characterised by this single parameter. 
The spread in the results for the lower and upper bound limit preSSUre for flie 

various RIT ratios indicates that this parameter also has an influence. 
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Table 5.3: Normalised lower and upper bound litnit pressure of -no:: Irs vcrstis p, 

r= 200mm, R= 1000mm 

1.0 

2 0.7 

E. 0.6 

Nozzle T(mm) p PV A A, L+P 

1 250 0.4 0.361 0.9911 23 1.000 0.969 

2 160 0.5 0.414 0.898 0.990 0.944 

3 111.1 0.6 0.446 0.862 0.974 0.911 

41 81.6 0.7 
1 
0.463 0.818 0.952 0.876 

5 1) r 62.5 0.8 0.468 0.777 0.923 0.841 

6 40 1.0 0.435 
1 

0.696 0.850 0.71-5 

7 33.06 1.1 0.399 0.659 0.812 0.747 

8 27.8 1.2 0.393 0.615 0.770 0.725 

9 23.67 1.3 0.366 0.577 0.741 0.1-00 

0.9 

0.8 

0.5 
V 

4 

zo 0.3 

0.2 - Fust yield 
-0- Lower bound 

-iAp- Uýr bound 
0.1 

-41- L+P 

O. C 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

(r/R)*(R/T)**(1/2) 

Figure 5.9: Normalised lower and upper bound limit pressure of nozzles versus p. 
200mm, R= 1000mm 

119 



Table 5.4: Normalised lower and upper bound litnit pressure of tio: --Ifs. T= 

10mm, RIT = 100 

1 

C 

C 

CIS 

0c z 
C 

C 

C 

Nozzle r(mm) p PV R-1 Pu PR+G PP 

10a 10 0.1 0.429 0.953 1.0 - 0.992 

10b 20 0.2 0.442 0.904 1.0 - 0.992 

loc 30 0.3 0.459 0.885 1.0 - 0.975 

l0e 50 0.5 0.47 0.85 0.993 0.876 0.958 

lof 60 0.6 0.469 0.799 0.993 0.836 0.917 

log 70 0.7 0.465 0.769 0.968 0.80 0.883 

10h 80 0.8 0.459 0.709 0.918 0.744 0.85 

i0i 90 0.9 0.44 0.698 0.901 0.711 0.817 

loj 100 1.0 0.412 0.651 0.81-1 0.68 0.792 

l0k 
1 

200 
1 

2.0 0.257 0.455 1 0.561 0.472 0.542) 

73 

- F i ld irst y e 
-0- Lower bound 

-AI- Upper bound 

-w- R+G 

-0- E+P 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 
(r[R)*(R/T)**(1/2) 

Figure 5.10: Normalised lower and upper bound limit pressure of nozzles. T 
10mm, RIT = 100 
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Table 5.5: Normalised lower and upper bound limit pressure of nozzles, T= 

20mm, RIT = 50 

1 

C 

C 

0 

0 

0 

Nozzle r(mm) p Py PI Pu PR+G PP 

10 14.14 0.1 0.469 0.955 1.0 - 0.992 

11 28.28 0.2 0.436 0.9 1.0 - 0.992 

12 56.57 0.4 0.464 - 0.833 
1 

0.997 0.928 0.967 

13 70.71 0.5 0.471 0.803 0.99 0.888 0.933 

14 84.85 0.6 0.473 0.776 0.977 0.846 0.90 

15 98.99 0.7 0.471 0.745 0.955 0.81 0.867 

16 113.1 0.8 0.467 0.715 0.923 0.1-74 0.833 

17 127.3 0.9 0.448 0.685 0.884 0.736 0.817 

18 141.2 1.0 0.419 0.657 0.843 0.704 0.7183 

19 212.1 1.5 0.32 0.541 0.683 0.583 0.658 

20 282.8 2.0 0.264 0.463 0.584 0.496 0.5.5 

! 
--S I 

Fust yieId 
Lower bound 

-A- Upper bound 

F+P 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

(r/R)*(R/T)**(1/2) 

Figure 5.11: Normalised lower and upper bound limit pressure of nozzles. T 
20mm, RIT = 50 
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Table 5.6: Normalised lower and upper bound limit pressure of no:: Ics, T= 

40mm, RIT = 25 

1 

C 

C 

C 

0 

0 

Nozzle r(mm) p py R-1 Pu PR+G PP 

21 40 0.2 0.432 0.92 1.0 - 0.996 

22 60 0.3 
1 

0.443 0.888 
1 

0.999 0.974 0.992 

23 80 0.4 0.457 0.859 0.996 0.941 0.975 

24 100 0.5 0.467 0.829 0.99 0.90.5 0.958 

25 120 0.6 0.471 0.802 0.976 0.87 0.917 

26 140 0.7 1 
0.473 0.774 

1 
0.954 0.832 0.896 

27 160 0.8 1 0.471 0.748 1 0.924 0.80 0.86 7 

28 180 0.9 0.467 0.718 0.888 0.768 0.838 

29 200 1.0 0.462 0.692 0.851 0.74 0.808 

30 300 
I 

1.5 
1 

0.353 
1 

0.579 0.702 0.61 5 17 r, 0.6,5 

400 1 2.0 1 0.291 1 0.495 0.607 0.518 - 

Fnt i ld y e 
Lower bound 
Upperbound 

R+G 
-41- E+P 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

(r/R)*(R/T)**(1/2) 

Figure 5.12: Normalised lower and upper bound limit pressure of nozzles. T 
40mm, RIT = 25 
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Table 5.7: Normalised lower and upper bound litnit pressure of no--: 1cs. T= 

100mm, RIT = 10 

1 

C 

C 

2 
, CA (A 21 
c2. 

0c z 

C 

C 

0 

Nozzle r(mm) p py P-1 P. pp 

32 63.24 0.2 0.424 0.949 1.0 1.0 

33 94.87 0.3 0.407 0.934 1.0 0.992 

34 126.5 0.4 0.426 0.909 0.997 
1 

0.983 

35 158.1 0.5 0.441 0.880 0.990 0.975 

36 189.7 0.6 0.451 0.855 0.975 0.950 

37 221.4 0.7 0.457 0.830 0.951 0.917 

38 253.0 0.8 0.459 0.802 0.920 
1 0.883 

39 284.6 0.9 0.459 0.775 0.886 0.850 

40 316.2 1.0 0.457 0.748 0.851 0.825 

41 474.3 1.5 0.3 2 0.629 0.712 0.692 

42 632.5 2.0 0.317 0.552 
1 

0.631 0.608 

R l d M pe 
-0- Lower bound 

Upper bound 
E+P 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 
(r/R)*(R/T)**(1/2) 

Figure 5.13: Normalised lower and upper bound limit pressure of nozzles. T 
100mm, RIT = 10 
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Table 5.8: Normalised lower and upper bound limit pressure of nozz-Ifs. T= 

120mm, RIT = 8.33 

1. ( 

o. c 
O. E 

0.7 

O. E 

O. E 

0.4 

0.2 

0.2 

0.1 

O. C 

Nozzle r(mm) p Py R-1 P. pp 

43 69.28 0.2 0.455 0.950 1.0 1.0 

44 103.92 0.3 0.401 0.936 1.0 1.0 

45 13856 0.4 0.417 0.912 0.998 0.993 

46 173.21 0.5 0.432 0.884 0.990 0.972 

47 207.85 0.6 0.443 0.859 0.974 0.944 

48 242.49 0.7 0.450 0.833 0.950 0.917 

49 277.13 0.8 0.453 0.801 0.918 
1 

0.896 

50 311.77 0.9 0.454 
1 

0.779 0.883 1 0.861 

51 346.41 1.0 0.453 0.749 0.849 0.833 

52 519.62 1.5 0.385 0.630 0.713 0.708 

53 692.82 2.0 0.337 0.555 
1 

0.637 0.625 

: 77 ý 

First yield 
Lower bound 
Upper bound 
E+P 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

(r/R)*(R/T)**(1/2) 

Figure 5.14: Normalised lower and upper bound limit pressure of nozzles. T 
120mm, RIT = 8.33 
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Table 5.9: Normalised lower and upper bound limit pressure of noz--Ics, T= 

140mm, RIT = 7.14 

1 

C 

C 

2 
CA 
cn 
2 

El. 

"0 

C 

C 

C 

Nozzle r(rnm) p py A P. pp- 

54 112.4 0.3 0.394 0.936 1.0 1.0 

55 149.67 0.4 0.408 0.913 0.999 0.994 

56 187.08 0.5 0.423 0.886 0.996 0.976 

57 224.5 0.6 0.435 0.861 0.974 0.952 

58 261.92 0.7 0.443 0.836 0.948 0.926 

59 299.33 0.8 0.447 
1 

0.803 0.916 
1 

0.893 

60 336.75 0.9 0.449 0.777 0.882 0.863 

61 374.17 1.0 0.448 0.749 0.847 0.833 

62 467.7 1.25 0.442 0.685 0.771 0.762 

63 1 562.25 1 1.5 0.399 0.628 0.712 0.702 

64 1 654.79 1 1.75 0.370 0.590 0.670 0.655 

-A 

First yield 
Lower bound 

" Upper bound 
-4 ý E+P 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

(r/R)*(R/T)**(1/2) 

Figure 5.15: Normalised lower and upper bound limit pressure of nozzle., -,. T 

140mm, RIT = 7.14 
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Table 5.10: Normalised lower and upper bound limit pressure of nozzles, T= 

160mm, RIT = 6.25 

1.0 

C 

C 

cl 

C 

0 

0 

Nozzle r(mm) p py P, P. pp 

65 120 0.3 0.389 0.936 1.0 1.0 

66 160 0.4 0.399 0.914 0.999 0.995 

67 240 0.6 0.427 0.862 0.973 0.958 

68 280 0.7 0.436 0.837 0.947 0.927 

69 320 0.8 0.441 0.804 0.914 0.896 

70 360 0.9 
1 
0.443 0.777 0.879 0.864 

71 400 1.0 0.443 0.748 0.845 0.833 

72 500 1.25 0.439 
1 
0.686 0.769 0.760 

73 600 1.5 0.414 0.27 0.712 0.798 

L- 
74 

1 
700 

1 
1.75 

1 
0.389 0.586 

1 
0.672 

1 0.656 1 

Fi l rst yte d 
-411-m Lower txiund 
-A- Upper Imund 
-0- E+P 

U. 2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

(r/R)*(R/T)**(1/2) 

Figure 5.16: Normalised lower and upper bound limit pressure of nozzles. T 
160rnm, RIT = 6.25 
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1.0 

0.9- 

0.8- 

0.7- 
mi 

0.6- 

0.5- 

0.4 '1111iiiii 
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

(r/R)*(R/T)**(1/2) 

Figure 5.17: Normalised lower bound limit pressure of nozzles versus p, summary 

of results 

1.0- 

0.9- 

0.8- 

E 
0.7- 

0.6- 

0.5- 

0.4 'i11iiiiiii 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

(r/R)*(R/T)**(1/2) 

Figure 5.18: Normalised upper bound limit pressure of nozzles versus p. suniniarY 

of results 

L+P 
0- R/T=100 ::: 
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... X.. -. Rfr-10 .......... 
Rfr=8.33 
Rn=7.14 
RIT-6.25 

-L+P 

0. - 
ivr. loo 
Rfr-50 
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X.. R/T-10 
Rlr=9.33 
Rfr=7.14 
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CHAPTER 6 

SHAKEDOWN ANALYSIS OF NOZZLES IN 
SPHERICAL PRESSURE VESSELS 

6.1 Introduction 

Currently design of pressure vessels allows plastic deformations to occur at 

discontinuities such as nozzle intersections. While it is possible to calculate the 

stress and strain distribution in the elastic-plastic range, the results of these cal- 

culations are of limited use because they are so dependent on residual stresses 

and loading history. Limit load and shakedown performance however are his- 

tory independent and for that reason do provide practical guidance in making 

design decisions. If a structure is loaded statically, a knowledge of its limit load 

is usually sufficient. When the loading is cyclic shakedown performance become- s- 
important because, by restricting the cyclic loading to the shakedown limit, the 

designer is assured that, after initial plastic deformation, further deformation is 

in the elastic range; the possibilities of incremental collapse or reversed plasticity 

are thus removed. 

Limit pressures have already been obtained for the problem of radial nozzle 
intersecting a spherical pressure vessel in the previous Chapter. In this Chapter. 

lower and new upper bound shakedown pressures for the same problem will be 

estimated by the elastic compensation method. 

6.2 A Brief Review of Shakedown Analysis of Nozzles in Spherical 

Pressure Vessel 

Melan's lower bound shakedown theorem was first applied to the shakedown 
of pressure vessels by Leckie [1965]. Using only the elastic solution and Tresca 

yield criterion, he obtained lower bound shakedown factors for radial nozzles in 
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spheres under internal pressure. Later Leckie and Penny [19671 found the lower 

bound estimates of shakedown pressure, thrust and moment loadings for a noz- 

zle/sphere intersection by using standard linear programming techniques. Their 

results have been presented in a useful graphical form. Findlay and Spence [1968) 

explained how shakedown loads could be obtained from a knowledge of the post- 

yield behaviour of pressure vessels. A simple graphical technique to estimate 
the shakedown loads for both cylinder/sphere and cylinder/cylinder intersections 

was suggested by Macfarlane and Findlay [19721, while the cyclic pressure tests 

were carried out on spherical pressure vessels with radial and oblique nozzles by 

Proctor and Flinders [1972]. The experiments demonstrate that the value of the 

cyclic pressure at which incremental straining occurs is close to the estimated 

shakedown pressure. 

Recently Lu and Xue [19911 derived lower bound shakedown loads for axi- 

symmetric shells by using the stress function method. In their paper a self- 

equilibrated stress obtained from the stress functions of thin shells is used for 

the static shakedown theorem as a residual stress. In combination with finite 

element method, a linear programming formulation of the shakedown analysis of 

axisymmetric shells is derived. Some examples of the plates and shells were given 
by them. 

More recently, Mackenzie and Boyle [1993] have proposed a simple method of 

estimating shakedown loads for complex structures using the elastic compensa- 
tion procedure. A similar technique has been presented independently by ('arter 

and Ponter [1992]. 
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6.3 Leckie and Penny's Method [1967] 

It is worthwhile here recording the method used by Leckie and Penny [1967]. 

It uses more approximations than elastic compensation, and, in fact, is more 

elaborate as will be demonstrated below. 

6.3.1 Assuptions and Definitions 

It is well known for practical pressure vessels that the maximum stresses occur 

in the spherical portion at the point of intersection, although in some exceptional 

geometries, when the nozzle is very thin or the opening is large, maximum stresses 

can occur in the nozzle. In Leckie and Penny's [1967] paper, such exceptional 

cases were excluded and their investigation was confined to a study of stresses in 

the sphere. The material of the shell is assumed to be elastic perfectly plastic 

and to yield according to the Tresca yield criterion. Accordingly if the stresses at 

the surface are co in the meridional direction, cro in the circumferential direction. 

and if the radial stress is neglected then the yield criteria are 

010 1 :5 OY, 10'a 1 :5 OY, I ao - 0,0 1 :5 O'y 

where ay is the yield stress obtained from a simple tension test. 

6.3.2 The Elastic Solutions 

Elastic solutions were already established, Penny and Leckie [1963]. for tile 

the present geometries subjected to pressure, thrust and moment loadings. The 

solutions were obtained using the usual procedure of shell analysis of stiperini- 

posing on to the membrane solution the effects of the edge forces which ensure 

compatibility of displacement of adjoining shells at their junction. In t lie case of 
the axisymmetric loadings of pressure and thrust the two-self-eqUilibratilig edge 
forces are the horizontal force H and the moment Al as shown in Figure 6.1. 
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6.3.3 The Shakedown Calculation for Pressure Loading 

The method is based on Melan's theorem which states: 
For a given load set P, if any distribution of self-equilibraling residual strfssf. s 

can be found which when taken together with elastically calculated stress(s misti- 
tute a system of stresses within the yield limit (for the whole cycle) th(ti P is a 
lower bound shakedown load set and the structure will shakedown. 

In the case of the shell structure under consideration, the local increases of 

stress are due to the edge forces H and M, and in order to counteract their effect 

residual self-equilibrating edge forces 7T and TIF in directions opposite to those 

of H and M were postulated. Within the shell itself, suitable stress systems in 

equilibrium with 77 and -M are provided by the linear elastic theory. 

For a geometry with given values of r/R, RIT and t1T = (tlT)I, where r is 

the radius to mid-section of the nozzle, R the radius to mid-section of the shell, I 

the thickness of the nozzle and T the thickness of the sphere, the stresses at t lie 

junction (where they are most severe) given by Leckie and Penny [1967) were: 

Mt 

///2 

H' -"M 

Figure 6.1: Edge forces for axisYmmetric loading 
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Inner surface Outer surface 

010lay plip P12P 

colas, P13P P14P 

where 

pR 
2Tay 

The stresses caused by the edge forces (H1, All) acting alone were found by 

subtracting the membrane stresses, yielding the following stresses: 

Inner surface Outer surface 

a, kloly (Pil - 1)p (P12 1)P 

0'0/0'y (P13 - 1)P (P14 1)P 

If residual values 7T, and All were chosen such that 7T, = (-alp)HI and AI, 

(-alp)MI then the maximum residual stresses were: 

Inner surface Outer surface 

O'Olay -(Pit - 1)Cf -(P12 - 1)a 

0'9/0'y -(P13 - 1)a -(P14 - 1)Ce (6.2) 

These stresses were referred to as the a residual stress group by Leckie and Penny 

[1967]. 

i Leckie and Penny [1967] then derived a second set of residual stresses by usitig 

the results of the elastic calculation for the same values r1R, RIT but using a 

different value for t1T = (t/T)2. This ensured that the edge forces 112 and -112 
resulting from such calculations were in a proportion different from that of tile 

H1, Af, edge forces. Proceeding as for the a residual stress group and assuming 

this time residual values of 712 = -(Olp)II2 and -, 112 = -(, 311)). 11.2 then tile 

stresses resulting from the 0 residual stress group were: 
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Inner surface Outer surface 

a, klay -(P21 - 1))3 -(P22 - 1)0 

ore/ory -(P23 - I)t3 -(P24 - 1)0 (6.3) 

Other stress residuals determined by Leckie and Penny [1967] in this way, by 

selecting another thickness ratio (tlT)3 say, would simply be a linear combination 

of the previous two results since, at the level of the present calculations. the only 

unknowns were the residual horizontal force 77 and the residual moment M. 

Using the a and P groups as the assumed residual stresses the total elastic 

and residual stresses in the loaded state obtained by Leckie and Penny [1967] 

were: 

Inner surface Outer surface 

C4klCy P11P - (Pll - 1)0 - (P21 - 1)# P12P - (P12 - 1)a - (P22 - 00 

CrO/O'y P13P - (P13 - 1)a - (P23 - 1)# P14P - (P14 - 1)a - (P24 - 1)13 (6.4) 

and in the unloaded state the stresses were given by the above stresses with F) = 0. 

The next step was to find the value of a and # which maximize the value of 

p according to the 12 limiting conditions 

ay ay ay 

for the inside and outside surfaces and in the loaded and unloaded conditions. 

This problem was resolved by Leckie and Penny [19671] using the 
form' of linear programming which is stated as follows: 

Maximize f= cjxj subject to the conditions 

biL :5 yj = aijxi 
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bý and by are the lower and upper values of a fixed vector. In the present case 9t 

= {-1-1-1--1-1-1-1-1-1-1-1-1} 

= {1 1111111111 1} 

.I 

aij = 

pil -(Pll - -(P21 - 

P13 -(P13 - -(P23 - 

Pll - P13 -(Pll - P13) -(P21 - P23) 

P12 -(P12 - -(P22 - 

P14 -(P14 - -(P24 - 

P12 - P14 -(P12 - P14) -(P22 - P24) 

0 -(Pll - -(P21 - 

0 -(P13 - -(P23 - 

0 -(Pll-P13) -(P21-P23) 

0 -(P12 - -(P22 - 

0 -(P14 - -(P24 - 

0 -(P12 - P14) -(P22 - P24) 

xj = ýp ce ßil Ci = 11 0 01 

(6.6) 

This process was performed on a computer for a large number of shell geome- 

tries for both flush and protruding nozzles by Leckie and Penny [196-5]. Plotthig 

the shakedown pressures on the basis of the geometric parameter p= rlRýR-IT 

yields the graphs shown in Figure 6.3 for the flush nozzles. 

6.4 Shakedown Requirements in Pressure Vessel by Design Codes 

It is worthwhile here reviewing the requirements of the pressure vessel design 

codes for shakedown since this rule will be compared to the elastic compensatioli 

results later. As will be seen the design rule for shakedown is very simple. and 
based only on a calculation of the elastic stresses. 
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The design by analysis rules included in Pressure Vessel Codes such as ASNIE 

Boiler and Pressure Vessel (B&PV) Code Section III and VIII (Division 2) [ASME. 

1989] and the UK Code BS5500: Specification for unfired fusion weld(d pr(s. 5111-( 

vessels [BSI, 19911 define criteria intended to preclude a number of failure meclia- 

nisms; gross plastic deformation, incremental collapse, buckling and fatigue. The 

specific problem is really that of incremental collapse, more commonly known as 

ratchetting. Ratchetting is associated with cyclic loading and describes a post- 

yield phenomenon in which the stress system reaches a cyclic state (after a few 

cycles of load) but plastic strain increases incrementally with each cycle. This is 

clearly undesirable and potential source of failure through plastic deformation. 

Ratchetting may be precluded by limiting the stress to the elastic range but this 

restrictive approach is unnecessary if shakedown of the structure can be assured. 

In the shakedown condition, a component which accumulates some plastic strain 
in the first (few) load cycles subsequently settles down to wholly elastic behaviour. 

with no further plastic strain as the load continues to cycle. Design for shakedown 
is clearly desirable, provided some limited plastic strain is tolerable in the first 

few cycles. 

I There are many ways of interpreting the various B&P'V Code rules (both 

ASME and BSI), but it is important to understand them in the context of the 

Code failure criteria. Firstly all stresses calculated must satisfy the specified crite- 

ria which protect against fatigue. Once this limit has been achieved any localised 

peak stress can be ignored, and the remaining primary plus secondary stress niusit 

satisfy the shakedown criteria. Finally the primary stress (which could lead to 

gross plastic deformation) is identified and yield limited. 

The ASME B&PV Code rules for design by analysis limit the primary stress. -es 
in various ways depending on the nature of the stress. Membrane stress is lim- 

ited to about two thirds of yield while membrane plus bending stress is limited to 

yield; that is, no plastic strain is tolerable. Ignoring peak stresses, the reniainitig 

secondary stress is limited by the shakedown condition. The ASNIE W-Pk' Code 
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enforces shakedown in an approximate manner through the 3S,,, secondary stress 
limit (where S,, is the allowable for primary membrane) which is approximately 

equivalent to twice yield. ASME VIII Division 2 Appendix 4- 136.7 Silliplifi(d 

Elastic-Plastic Analysis states that the range of primary plus secondary nleni- 
brane plus bending stress intensity, excluding thermal bending, must be less than 

3S,,,. (Additional requirements are also imposed on fatigue calculations). 

Two observations are important here. Firstly, the 3S,, limit for shakedown 

is approximate since it is assumed to be valid for all possible components and 

loads. This is contrary to detailed theoretical and experimental studies of the 

shakedown behaviour of many components [Leckie and Penny 1967, Proctor and 

Flinders 1968]. Secondly, overall shakedown is not achieved since the calculated 

peak stresses are not include. This distinction is interesting since it's design in- 

tent predates more modern studies on shakedown (for example by Toulios and 

White 1991). 

Clearly, the present ASME rules for shakedown could be improved by allow- 
ing a direct check for shakedown, which is possible in the BSI rules. BS-5-500 

Appendix A. 3.1.2 Incremental collapse, states that 'The stress system imposed 

should shakedown to elastic action within the first few operating cycles'. To 

demonstrate conformance with this requirement 'a shakedown analysis (e. g. See 

G. 2.6) should preferably be employed' (the specified alternative being elastic 

analysis and stress categorisation). The method of predicting shakedown loads 

used in Appendix G. 2.6 Spherical shells: shakedown loads for radial tio--: 4.9 is 

based on that used by Leckie and Penny [1967] to calculate shakedown load's for 

axisymmetric nozzles subject to pressure, thrust and moment loads. 

6.5 Shakedown Loads by Elastic Compensation 

The lower bound elastic compensation shakedown formulation was devised by 
Mackenzie and Boyle [1993]; a new upper bound shakedown formulation devised 
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by the Strathclyde Group will be presented in this section. Here a. brief re-cap 

of the finite element implementation of the method is given. In fact the niethod 
is quite simple - the elastic compensation procedure is straightforward and does 

not rely on any major approximations or assumptions, it merely is a useful a, 11d 

powerful technique for generating suitable admissible strain fields for the upper 
bound theorem and residual stress fields for the lower bound theorem. 

6.5.1 Lower Bound Shakedown Loads by Elastic Compensation 

To begin with, it will be assumed that the load set is proportiotial, that is 

P(t) = l4po +f MAPI 

where PO and AP are assumed to be fixed, M is variable load factor and f (t) 

is a scalar function representing the variation over the cycle. Further it will be 

assumed that the function f(t) takes the form shown in Figure 6.2. In this case 
the amplitude of the load set AP is applied then removed during the cycle around 

a constant set P0. 

For a proportional on/off load cycle Melan's theorem only needs to be checked 
twice during the cycle, at end-of-cycle (t = T) 

10', 
-Imax '5 O'y 

f(t) 
1 

Figure 6.2: On/off load set variation 

(6.7) 
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and at mid-cycle (t = T/2) 

I ar + Ceý'j max 
5 17y (6.8) 

It should be noted that in eqn. (6.8) the dependence on the load factor has beell 

" is defined as the elastic solution at mid-cycle when f (t) made explicit since o,, 

This load set is fairly typical of many practical situations, particularly in pres- 

sure vessels - it serves mainly to introduce the use of the elastic conlPensation 

procedure in a simple and clear manner. 

For the lower bound estimate, a specific residual stress field. denoted I)Y 

is now constructed: 

An initial linear elastic finite element analysis is performed for the nominal 
load set P ... .. corresponding to a unit load factor p=1 and f(t) = 1: this 

establishes a nominal elastic stress field a,. According to the elastic compensa- 

tion procedure described in Chapter 3 this initial analysis forms iteration --f-ro 
in a series of linear elastic analyses in which the elastic moduli of elements are 

systematically modified to redistribute the stress field in the structure. In eacil 

subsequent iteration, the modulus of every element in the model is modified ac- 

cording to an equation of the form: 

Ei = E(i-1) 010 (6.9) 
0, (i-1) 

where subscript i is the iteration number, a,, a nominal stress value and a(i-, ) tlle 

maximum (unaveraged) nodal equivalent stress associated with the Clenient from 

the previous (i - 1)th solution. The nodal stresses used from the finite eleinelit 

analysis should be unaveraged across elements (ie. not the usual averaged nodal 
data calculated for contouring) since the elastic modulus of adjacent elements 

will be different. The value chosen for ao in eqn. (6.9) is somewhat arbitrary - 
usually equal to or two thirds of yield, it simply serves to adjust, the elastic inod- 

ulii during the analysis - it is the relative change in modulus which is iniportaw. 
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not its absolute value.. Care has to be taken, however, to ensure that the dix, isor 

of eqn. (6.9) does not approach zero as this could lead to numerical problems in 

the finite element solution. 

Thus for the ith iteration corresponding to the nominal load set the redis- 

tributed stress field, oi', is obtained. The residual stress field, a, 'j. is no%%- dcffii(d 

by the difference 
1 01, i = 01! - ell 8 

A lower bound shakedown load factor p can now be constructed: 
Since the elastic compensation procedure is based on linear elastic behaviour. 

the magnitude of the elastic, elastic compensation and residual stress fields for 

any value of the load factor must be proportional to the load factor, 

ajA = Ila aý = pal, a. = a'ý - OT = Ila' esI ri Ir 

Then, substituting eqns. (6-11) into the shakedown inequalities eqns. (6.7) mid 

(6.8) gives 
10'r"sl,,, 

ax = Plarlilmax :5 Cy (6.12) 

11 10, 
r',. 

+= ßiori + ue y elmar 

respectively. 

The optimal load factor can now be derived by applying the equality in 

eqns. (6.12) and (6.13). Either the maximum residual stress just reaches yield at 

end of cycle, so that from eqn. (6.12) 

I 
1110'rilmax = O'y 

which can be rearranged as 

ory ay PAi ý1 (6.1-1) To-, "i -I. 
Oe 

or the maximum residual plus elastic stress is at yield at mid-cycle. in NvIiich case 

= ju 
Ia ii + oril =a + Oe rev 
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and 
YBi ' -- 

Oly or, (6.15) 101i + Oellmax I Ol I 
max 

In eqns. (6.14) and (6.15) the denominations have also been expressed in terms 

of the elastic compensation stress, a! using eqn. (6.10), since this, together with 
I the corresponding elastic stress, a, are usually available. 

For the ith iteration the lower bound shakedown load factor pi is the smaller 

of the two calculated factors above: 

pi = min(pAi, JIBi) (6.16) 

The elastic compensation procedure is run for several iterations (usually no 

more than ten elastic re-analyses are required) and the best lower bound shake- 
down load factor calculated using elastic compensation is the highest shakedown 
load factor pi obtained from the iteration sequence 

= max(, ui) (6.17) 

6.5.2 Upper Bound Shakedown Loads by Elastic Compensation 

We now turn to the derivation of the upper bound load factor. Ail tipper 
bound criterion for shakedown (usually referred to as kinematic shakedown) was 

presented by Koiter [1960]. It has been used extensively, together with Melan's 

theorem, in the estimation of shakedown loads; a useful survey has been given 
by Konig [1987]. However the major application has been to frame and plate 

structures, and although a few finite element techniques (using unconventional 

mathematical programming methods) have been proposed in the literatilre. there 
has been no generally applicable method for complex structures. This stildy will 
demonstrate a new upper bound method for the estimation of shakedown load 

using conventional linear elastic finite element analysis. As a consequence. the 

method is based on a novel interpretation of Koiter's theorem and makes use of 
the fundamental properties of solutions generated using the elastic compen-Satioil 

method. 
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Suppose that the load set acting on the structure is denoted by, P(t) (and 

can presented several simultaneous loads acting at the same time). The so-called 

weak form [Lubliner, 1990] of Koiter's upper bound shakedown theorem will be 

used: 
(Koiter's Theorem) For a prescribed load set P(t) cyclic witli period T. if 

any kinematically admissible velocity v* can be found such that 

0vA0V (I 
(I 

s- () v 
jT fp(t) - v*dV +f Tp(t) - v*dS) dt > ITf b*dVdt 

where b* is the rate of plastic energy dissipation per unit volume corresponding 

to the strain rate i* which is compatible with v* and where fp(t) and Tp(t) are 

the (idealised) body force and surface traction corresponding to the load set de- 

fined over the body V bounded by surface S, then shakedown has not taken place. 

The rate of energy dissipation per unit volume for a perfectly plastic material 

with a Tresca criterion is given by 

= o. I*I 

and for a von Mises criterion by 
1/2 [2 

(i*2 + i*2 + i*2) 
231 

where li*j :i=1,2,3 are the principal strain rates for the kinematical admissible 
field and a. the yield stress. 

It can be seen that the upper bound shakedown theorem requires the dermition 

of a suitable kinematical admissible deformation for the component which satis- 
fies inequality eqn. (6.18). By definition the load level for which this is verified 

will be an upper bound on the shakedown load (since it ensures non-shakedown). 

The fact that the theorem requires velocities and strain rates is non-essential 

- it is only the compatible distribution which is required. It should also be noted 

that in the statement of the theorem given by eqn. (6.18) it is assunic., d that 
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homogeneous boundary conditions for the velocity are specified. However in the 

procedure which will be derived below, since the stress and strain fields used in 

the theorem have been derived through elastic compensation procedure for the 

same boundary value problem, this requirement is unnecessary in practice and is 

simply stated in this form for simplicity., 

Each elastic compensation iteration, as well as providing a residual stress field, 

also gives a compatible displacement and strain field. Hence these can be used to 
define a kinematically determinate mode of deformation for the structure which 

can be applied to the upper bound theorem. However, this is achieved indirf ctly: 
Due to the form of the proportional load set considered here, the velocity 1, ' 

and strain rate field Z* will be associated in the following with the compatible 
displacement and strain field at mid-cycle (ie when f (t) = 1) derived from elastic 

compensation. 

In principle the elastic compensation procedure could be applied at any instant 

t during the load cycle and an elastic compensation stress field, corresponding to 

the load set Pt, derived. Let the instantaneous elastic compensation stress field for 

the ith iteration be denoted by ai(t). Since this stress field is in equilibriull? with 
the applied load set it can be applied to the left hand side of Koiter'S ineqllality. 

eqn. (6.18), using virtual work (Green's theorem): 

0V0V 

IT (I 
ai(t)i*dV) ý! 

fTj b*dVdt 
0v () v 

This substitution is a significant feature of the upper bound procedure derived 

here and leads to a simple upper bound analysis when combined with the elastic 

compensation analysis. It is more usual, for example in Koiter's proof of t1le 
theorem [1960] and in many practical analyses [Konig, 1987], to make this stib- 
stitution with the elastic stress field. 

Three further fundamental properties of the elastic compensation analysis call 
be used to simplify eqn. (6.19) further: (i) the strain field i' is assumed constant. 
(ii) the load set is considered proportional and (iii) the elastic compensation stress 
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field is a linear elastic solution. 

Firstly, with these properties the time integrals in eqn. (6.19) can be easilY 

evaluated to give 
U aili*dV ý: 

v 9 -1 
b*dV =D (6.20) IV 

v 

where quantities U and D have been defined. 

Secondly, the strain energy U from the (linear) elastic compensation analysis 

must very with the square of the load factor and the dissipation of internal energy 
D must be proportional to the load factor, 

,2 
IV 

aýi*dV = M2U, 

D=pI bl*dV = pD, (6.22) 
tv 

where U, and D, are defined for the nominal load set Pa at mid-cycle (%vith load 

factor p=1 and f(t) = 1). The quantities D, and U, are evaluated directly in 

the elastic compensation procedure. 

The upper bound load factor in the load cycle for the ith elastic compensation 

analysis therefore occurs when equality is reached in eqn. (6.20) 

(6.2-3) 

Finally, the optimal upper bound from the sequence of the analysis is 

pupper = min(pi) 
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6.6 A Parameter Study 

A parameter study is made here of pressurised nozzle/spherical vessels. as 

an extension of previous limit analyses in Chapter 5. Eighty four geometries. 

the same as those in Chapter 5, are investigated by the elastic compensation 

procedure, with the program ANSYS, using the eight noded isopa, raiiietric ax- 
isymmetric solid element PLANE82. A suite of macros, see Appendix 11, liave 

been developed in the ANSYS Parametric Design Language to automatically nui 

through the elastic compensation procedure and evaluate both lower and upper 

bounds for shakedown analysis. The user then only needs to set up the initial 

elastic analysis and run the APDL macro. A maximum of 10 iterations were used 
in the elastic compensation analyses. The upper bound shakedown solutions cal- 

culated in the finite element analysis are approximate since energy and energy 
dissipation integrals are calculated by a summation based on element centroidal 

stress and strain data and element volume; since the summation is done over the 

whole finite element model the overall approximation error is small. More elab- 

orate summation procedures could easily be devised but have so far been found 

to be unnecessary. 

The model geometry, parameters and boundary conditions are the same as 

that in Chapter 5. An internal pressure is applied and cycled from zero up to 

maximum P' = pP,,,, at mid-cycle and back to zero. A radial outward pressure 
P,. (equivalent to a capped nozzle pressure load) is required in the finite element 

model; this is evaluated as 
Pr 

Pa 
- 
ri2_ 

(6.25) 
r2 - r? 09 

where r,, is outside radius and ri inside radius of the shell. 

For all the models examined the modulus of elasticity is taken as 200E3. %'1m ot" 

with Poisson's ratio 0.3. The yield stress of the material is taken as 30ONlinin '2 

The lower and upper bound shakedown pressures, P1. and P,,,,. were calculated 
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according to the equations (6.17) and (6.24) and normalised according to the 

equation: ý 

RP 
T=- 2Tay 

The normalised lower and upper bound shakedown pressures, 751, and T),,,. 

with two dimensionalless geometry parameters p and R/T were plotted in Fig- 

ures 6.3 to 6.11 and tabulated in Tables 6.1 to 6.8 respectively, where 

- 
rrR 

introduced by Leckie and Penny [1967]. The shakedown pressures are compared 

with the elastically calculated load corresponding to the ASNIE BS--PV Code 

(elastic) secondary stress limit, 3S,,,, and published results of Leckie and Penny 

[1967], 15L+p. 

6.7 Discussion of Results 

Figures 6.3 to 6.10 show that the elastic compensation lower bound shake- 
down pressures 751, are less than ASME B&PV 3S,,, limit for all the nozzle con- 
figuration considered. The Ft. curves are similar in form to the 3,5" CUrves bilt 

the calculated lower bound shakedown pressure values are generally closer to 
the Leckie and Penny [1967] results, 'FL+p. TI, and PL+p are fairly similar for 

most values of p for the three higher RIT rations of 100,50 and 27), however. 

P1. is significantly greater than PL+P for most of the p values in the nozzles of 
RIT = lo, 8.33,7.14 and 6.25, except at p=0.3 where the lower botuid slialý(, - 
down pressures calculated are much lower than -PL+p. The 3S" curves for fliese 

nozzles, i. e. RIT = 10,8.33,7.14 and 6.25, have fairly similar pattern ils lower 
bound solutions in the region of p=1.0 to 0.2. 

As Leckie and Penny only considered variation of shakedown load with ge- 
ometry parameter p, their results are constant for all the RIT ratios conssidered, 
However, both the elastic compensation pressures FiS, 75US and secomlary stress 
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limit 3S,, vary with the RIT ratio, Figures 6.3 to 6.12. The results presented 
10 ýv show that the Leckie and Penny's lower bound shakedown pressure TL+P i-S 0 el. 

than the secondary stress limit pressure 3S.. except for RIT = 7.14,6.25. p=0.3 
in Figure 6.13. 

It can be seen from the Tables 6.2 to 6.4 that for the three sets higher RIT 

ratios of 100,50 and 25, the lowest shakedown factor is 1.498 with the model 

number 29 and the highest factor is 1.97 with the model number 10a. For the four 

sets lower RIT ratios of 10,8.33,7.14 and 6.25, however, the lowest shakedown 
factor is 1.506 with the model number 74, and the highest factor is 1.927 with 

the model number 32 as shown in Tables 6.5 to 6.8. 

Figures 6.3 to 6.10 and 6.12 show that the elastic compensation upper bound 

solutions are 20 to 25 per cent higher than the results of Leckie and Penny [1967] 

with similar curve patterns for all models. Also, the obtained upper bound shake- 
down pressures are higher than the lower bound solutions. Comparing with 3S... 

allowable pressures, it can be seen that for values of p greater than 0.7 the up- 

per bound solutions are lower than 3S,,,, for p smaller than 0.7 the upper bound 

shakedown pressures are higher than 3S,,,. The greatest differences between ob- 
tained upper bound solutions and 3S,, allowable pressures lie in the regions of 

small diameter nozzles (where the use of the parameter p is questionable). 

146 



6.8 Concluding Comments 

It could be concluded from the discussion above that the shakedown pres- 

sures vary not only with the geometry parameter p used to characterize nozzles 

by Leckie and Penny, but also with the radius to thickness ratio of the sphere. 

This additional parameter should be considered when deriving design curves for 

shakedown loads. The obtained results also suggest that the Leckie and Penny 

curves may not be conservative for all radius to thickness ratios. 

The elastic compensation shakedown pressures for the RIT ratios of 10.8-33- 

7.14 and 6.25 are significantly greater than the Leckie and Penny values for most of 

the geometry range considered, suggesting that design to the BS5500 Code could 

be over- conservative if the Leckie and Penny curves are used. However. BS. 57500 

simply requires that 'a shakedown analysis (e. g. See G. 2.6) should preferably 
be employed' thus design based on the elastic compensation method would be 

acceptable. 

The upper bound shakedown results would suggest that the 3S,, limits are 

not conservative, especially for the RIT ratios of 10,8.33,7.14 and 6.25 the 3S... 

limits are much higher than the upper bound pressures for the values of p greater 

than 0.8. In the writer's experience (discussed in previous Chapters) the tipper 
bound is usually more reliable since the lower bound is quite strict. 

A method has been developed here which allows both upper and lower shake- 
down loads on pressure vessels to be estimated with useful accuracy. The niethod 
has been verified for the classic example of radial nozzle in aspherical pressure 

vessel and compared to the established solution of Leckie and Penny. The niet hod 

can be easily easily extended to three dimensional geometry and other fornis of 
load cycling. 
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Table 6.1: Normalised shakedown pressure of nozzles, r= 200mm 

Nozzle T(mm) p PS, PI, PU3 3S, PL+P P1.9 / Py 

1 250.0 0.4 0.361 0.707 0.982 0.722 0.790 1.958 

2 160.0 0.5 0.414 0.781 1 
0.979 0.828 

1 
0.780 1.886 

3 111.1 0.6 0.446 0.849 0.963 0.892 0.770 1.901 

4 81.60 0.7 0.463 0.818 0.935 0.926 0.750 1.767 

5 62-50 0.8 0.468 0.777 0.90 0.936 0.720 1.660 

6 40.00 1.0 0.435 0.696 1 
0.811 0.870 0.660 1.600 

7 33.06 1.1 0.399 0.654 0.767 0.798 0.630 1.639 

8 27.80 1.2 0.393 0.615 0.721 0.786 0.610 1.5 .5 
9 23-67 1.3 0.366 

F075777 
1 

0.682 
1 

0.1-32 
1 

0.570 1.577 
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Figure 6.3: Normalised shakedown limit pressure of nozzles versus p. r= 
200mm, R= 1000mm 
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Table 6.2: Normalised shakedown pressure of noz--Ies, T= 10inin, RIT = 100 

Nozzle r(mm) p Ty TI. P., 3S,,, 7ýL+P Ps / Py 

10a 10 0.1 0.429 0.845 1.0 0.858 0.820 1.970 

10b 20 0.2 0.442 0.857 1.0 0.884 0.805 1.939 

loc 30 0.3 0.459 0.850 0.997 0.918 0.80 1.852) 

10d 40 0.4 0.467 0.849 0.993 0.934 0.7190 1.818 

10e 50 0.5 0.470 0.850 0.988 0.940 0.780 1.809 

lof 60 0.6 0.469 0.799 0.962 0.938 0.770 1.701 

log 70 0.7 0.465 0.769 0.946 0.930 0.730 1.651 

10h 80 0.8 0.459 0.709 0.917 0.918 0.720 1.545 

i0i 90 0.9 0.440 0.698 0.854 0.880 0.690 1.586 

loj 100 1.0 0.412 0.651 0.804 0.824 0.660 1.580 

l0k 200 2.0 0.257 0.432 0.494 
1 0.514 1 0.435 1.681 

101 300 3.0 0.183 
, 

0.312 - U66 T 0.340 1.70.3 
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Figure 6.4: Normalised shakedown pressure of nozzles versus p. T 
10mm, RIT = 100 
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Table 6.3: Normalised shakedown pressure of nozzles, T= 20mm. RIT = 50 

Nozzle r(mm) p Py Pi. 75", 3S,,, 'FL+P PsIPY 

10 14.14 0.1 0.469 0.908 1.0 0.938 0.820 1.936 

11 28.28 0.2 0.436 0.833 1.0 0.872 1 
0.805 1.911 

12 56.57 0.4 0.464 0.833 0.994 0.928 0.790 1.79.3 

13 70.71 0.5 0.471 0.803 0.985 
1 

0.942 0.780 1.70.5 

14 84.85 0.6 0.473 0.776 0.968 0.946 0.770 1.6-11 

15 98.99 0.7 0.471 0.745 0.937 0.942 0.750 1.58: 3 

16 113.1 0.8 0.467 0.715 0.895 0.934 0.720 1.531 

17 127.3 0.9 0.448 0.685 0.846 0.896 0.690 1.526 

18 141.2 1.0 0.419 
1 

0.653 0.796 0.838 0.660 1.5-58 

19 212.1 1.5 0.320 0.522 0.617 0.640 0.540 1.631 

20 282.8 2.0 0.264 0.438 0.519 0.528 0.435 1.659 

I 
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Figure 6.5: Normalised shakedown pressure of nozzles versus p. T= 

20mm, RIT = 50 
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Table 6.4: Normalised shakedown pressure of nozzles, T= 40mm. RIT = 25 

Nozzle r(mm) p Py PI, P., 3S. PL+P Ps / Py 

21 40 0.2 0.432 0.823 1.0 0.864 0.805 1.905 

22 60 0.3 0.443 0.835 0.999 0.886 0.80 
1 

1.88.5 

23 80 0.4 0.457 0.859 0.995 0.914 0.790 1.880 

24 100 0.5 0.467 0.829 0.985 0.934 0.780 1.1 

25 120 0.6 0.471 0.802 0.967 0.942 0.770 1.70: 3 

26 140 0.7 0.473 0.774 0.937 0.946 0.7150 1.636 

27 160 0.8 0.471 0.748 0.897 0.942 
1 

0.720 1.588 

28 180 0.9 0.467 0.718 0.852 0.934 0.690 1.537 

29 200 1.0 0.462 0.692 0.807 0.924 0.660 1.498 

30 300 1.5 0.353 0.579 0.641 0.706 0.540 1.610 

31 400 2.0 0.291 0.495 0.545 0.582 0.4351 1.653 
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Figure 6.6: Normalised shakedown pressure of nozzles verstis p. T= 

40mm, RIT = 25 
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Table 6.5: Normalised shakedown pressure of no. %-Ies, T= 100mm. RIT = 10 

Nozzle r(mm) p Py Pi. P., 3S.. FL+P P. / Py 

32 63.24 0.2 0.424 0.817 1.0 0.848 0.805 1.997 

33 94.87 0.3 0.409 0.783 0.999 0.818 0.80 1.914 

34 126.5 0.4 
1 

0.426 0.796 
1 

0.994 0.852 0.790 1 1.869 

35 158.1 0.5 0.441 0.844 0.984 0.882 0.780 1.914 

36 189.7 0.6 0.451 0.823 0.964 0.902 0.71710 1.82.5 

37 221.4 0.7 0.457 0.821 0.933 0.914 0.750 
1 

1.796 

38 253.0 0.8 0.459 0.797 0.894 0.918 0.720 1.736 

39 284.6 0.9 0.459 0.775 0.852 0.918 0.690 1.688 

40 316.2 1.0 0.457 0.748 0.811 0.914 0.660 1.637 

41 474.3 1.5 0.372 1 
0.629 0.659 

1 0.744 0.540 1.691 

_42 
632.5 1 2.0 1 31 0.7 0.526 f 0.581 1 0.634 1 0.435 1 1.659_ 
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Figure 6.7: - Normalised shakedown pressure of nozzles versus p. T 
100mm, RIT = 10 
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Table 6.6: Normalised shakedown pressure of nozzles, T= 120mm. RIT = 8.33 

Nozzle r(mm) p Py 751" R,. 3S,,, FL+p P., / Py 

43 69.28 0.2 0.455 0.871 1.0 0.910 0.805 1.914 

44 103.9 0.3 
1 

0.401 0.764 0.999 0.802 0.80 1.90.5 

45 138.6 0.4 0.417 0.773 0.994 0.834 0.790 1.8-54 

46 173.2 0.5 0.432 0.814 0.983 0.864 0.780 1.884 

47 207.9 0.6 0.443 0.826 0.962 0.886 0.770 1.86.5 

48 242.5 0.7 1 
0.45 0.819 0.929 0.90 0.7150 1.82 

49 277.1 0.8 0.453 0.801 0.890 0.906 0.720 1.768 

50 311.8 0.9 0.454 0.779 0.848 0.908 0.690 1.716 

51 346.4 1.0 0.453 0.749 0.807 0.906 0.660 
1 

1.653 

52 519.6 1.5 0.385 0.626 1 0.660 1 0.770 0.540 1.626 

53 
T 

692.8 1 2.0 1 0.337 592 1 0.674 0.435 1.528 
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Figure 6.8: Normalised shakedown pressure of nozzles versus p. T 

120mm, RIT = 8.33 
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Table 6.7: Normalised shakedown pressure of nozzles, T= 140min. RIT = 7.14 

Nozzle r(mm) p 75Y 751, 77., 3S, FL+p PlPy 

54 112.3 0.3 0.394 0.743 0.998 0.788 0.80 1.886 

55 149.7 1 0.4 0.408 0.772 1 0.993 0.816 1 0.790 1.89. ) 

56 187.1 0.5 0.423 0.791 0.981 0.846 0.7180 1.87 

57 224.5 0.6 0.435 0.827 0.959 0.870 0.1-70 1.901 

58 261.9 0.7 0.443 0.822 0.926 0.886 0.7150 1.8-36 

59 299.3 0.8 0.447 0.803 0.886 
1 0.894 0.720 1.796 

60 336.8 0.9 0.449 0.777 0.844 0.898 0.690 
1 

1.731 

61 
1 

374.2 1.0 0.448 
1 

0.749 0.804 0.896 0.660 1.672 

62 467.7 1.25 0.442 0.686 0.720 0.884 
1 

0.60 1.5. ) 
63 561.3 1.5 0.399 0.628 0.662 0.798 0.540 1.15: 36 

64 654.8 1 1.75 0.370 
1 

0.590 0.624 0.740 0.490 1.4 76 
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Figure 6.9: Normalised shakedown pressure of nozzles versus p. T 
140mm, RIT = 7.14 
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Table 6.8: Normalised shakedown pressure of nozzles, T= 160mm, RIT = 6.2.5 

Nozzle r(mm) p PU 751, 7ý. 3S,, 75L+p P. / P,, 

65 120 0.3 0.389 0.723 0.997 0.778 0.80 1.8-59 

66 160 0.4 0.399 0.761 0.992 0.798 0.790 1.907 

67 
1 

240 0.6 0.427 
1 

0.818 0.956 
1 

0.854 0.770 1.916 

68 280 0.7 0.436 0.822 0.922 0.872 0.730 1.88.5 

69 320 0.8 0.441 0.804 0.881 0.882 0.720 1.82: 3 

70 360 0.9 0.443 0.777 0.839 0.886 0.690 1.754 

71 400 1.0 0.443 0.748 0.799 0.886 0.660 
1 

1.688 

72 500 1.25 0.439 0.686 0.718 0.878 0.60 1.563 

73 600 1.5 0.414 0.627 0.666 0.828 0.540 1.471 

74 700 1.75 0.389 0.586 0.634 0.778 0.490 1.494 
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Figure 6.10: Normalised shakedown pressure of nozzles verstis p. T 
160mm, RIT = 6.25 
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Figure 6.11: Normalised lower bound shakedown pressure of nozzles versus p. 

summary of results 

1.0- 

0.9- 

0.8- 

"a 

0.7- 

,a 4. ) 

0.6- 

0.5- 

0.4 'i111iiiii1 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

(r/R)*(R/T)**(1/2) 

Figure 6.12: Normalised upper bound shakedown pressure of nozzles versus p. 
summary of results 
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CHAPTER7 

GENERALISED YIELD CRITERIA FOR 

STRUCTURAL ELEMENTS 

7.1 Introduction 

One of main the features of this thesis has been the extension of elastic conl- 

pensation to include structural beam and shell elements. In Chapter 3 it was 

demonstrated that the use of solid elements led to unnecessarily excessive coni- 

putations for simple frame problems, as expected. 

The extension of elastic compensation to shell and beam analysis is achieved 
here through so-called generalised yield criteria. Generalised yield concepts have 

been used in limit analysis of beam and shell structures for a long time. There 

are many kinds of yield surfaces reported in the literature over the years. In this 

Chapter the generalised yield criteria for beams and thin shells will be reviewed 

at first and then finite element implementations for beam elements and shell ele- 

ments using the elastic compensation will be derived. 

7.2 Yield Criteria for Beams 

The yield or limit surface concept has been used in inelastic franie analysis 
to describe the full plastification of thin sections under sectional forces (normal 

force, shear forces, bending moments, twisting or torsional moment and warping 

or bimoment). However, the complexity of the generalised yield surface is niainlY 
due to the relatively large number of sectional force parameters used in tile de- 

scription of the yield surface. In addition, it is now well recognized that -exact* 

representation of these yield conditions in terms of combined stress re stilt alits. 

even for the simplest geometry of cross section, are not always available (Hodge 

1959, Horne 1968]. Consequently, a wide variety of approximations have been 
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suggested in the literature. For example, considering the plaizar frame case. a 

common assumption in modeling the plastic behavior has been to assume that 

the cross section will yield due to bending moment alone, as in Jennings and 
Majid [1965), Vijakkhana et al. [19741, and Liapunov [1974]. The interaction 

between axial force and bending moment was considered by Korn and Galanibos 

[19681, and Harung and Millar [1973] in establishing the yield surface of two- 
dimensional frames. 

For circular sections, the relations between the plastic capacities of bending 

moment and torque was studied by Hill and Siebel [1951,19531. The interaction 

between plastic bending and twisting of I-sections with warping restraint was in- 

vestigated by Boulton [1962], Dinno and Gill [1964], and Dinno and Merchant 

[1965], and was demonstrated to be significant. 

A family of four-dimensional hyperplanar facets was used by Porter and Powell 
[19711 to approximate a five-dimensional yield surface for a pipe section subjected 
to internal pressure as well as other loadings. For C- and Z-sections. the yield 

surface equations were obtained by Gjelsvik [1981] and Doddazio et, a/. [19831. 

respectively, by neglecting the effect of uniform or St Venant torsion. 

Yang and Fan [1988] presented the yield surface equations for I-section with 

nonuniform torsion using five stress resultants (i. e., normal force, two bending 

moments, warping moment and torsion). In this latter approach, a coniponent 

yield surface will be formed for each of thin-walled plates, i. e., the flanges aild 
web, of which the section in composed. Utilizing the stress resultant properties 
of the I-section, the component yield surfaces can be represented by faillilies or 
two-dimensional curves. The advantage of this approach is the renloval of large 

number of slope- discont i nuous yield surface elements. 

I Several attempts have been also made for the exact derivation of the vield SLIr- 
face equations in special cases. For instance, neglecting the warping effect. Morris 
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and Fenves [1969] determined the yield surface for a number of doubly symmetric 

sections, in terms of an axial force, two bending moments, and a torque. Usilig 

the concept of superposition, Santathadaporn and Chen [1970], Chen aiid Atsuta 

[1977], and Zhou and Chen [1985] obtained exact yield surface for variOLIS3 cross- 

section subjected to axial force and biaxial moments. 

In general, the yield surface can be represented by a single-equatioli Surface 

or multi-faceted surface and also yield surfaces for some commonly used steel 

sections can be expressed in terms of the location of the central axis [Morris 

and Fenves 1969], [Santathadaporn and Chen 1970]. However, for a practical 

structural analysis, it is more convenient to approximate the yield surface by a 

single equation. Orbison et al. [1982] developed a yield surface equation for light- 

to medium-weight wide-flange sections. Al-Bermani and Kitipornchai [1990] de- 

rived yield surface equations for angle and circular hollow sections wliile D11all 

and Chen [1990] proposed a generalized four-parameter yield surface equatioli of 
this type for doubly symmetric sections (wide-flange, thin-walled circular tube. 

thin-walled box, rectangular and solid circular sections). This latter reference 

also included extensive comparisons of various proposed forms. For motiosyni- 

metric and asymmetric sections (channel, tee single- and double-angle sectiolis). 

the yield surface equations were obtained by Kitipornchai et al. [19911. Based oil 

stress resultants approach, Gendy and Saleeb [1993) presented two approximated 
forms for yield surface equations, semi-quadratic and linear, as reasonable (upper 

and lower) bounds for two representative cases; i. e., rectangular and wide flaiige 

sections. The full plastification surface equation has been developed by Attalla 

et al. [1994] for H-shaped sections subjected to axial force and biaxial beiidiiig. 

7.2.1 Generalised Yield Surface 

Considering a slender beam subjected to axial force, F,, two shearing forcvs. 

F. and F-., two bending moments, Aly and a warping moment. . 11,. and a 
torque, T,,, Figure 7.1, (the warping moment is not shown since the nature of this 
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x4 

z 

Fx 

Figure TA: Beam element with applied forces and moments 

th 

Figure 7.2: Rectangular and wide flange beam cross sections 

moment is dependent on section properties). Two different shapes of cross sec- 

tion will be examined: a rectangular section and a wide flange section. Figure T. 2. 

The generalised yield conditions are expressed in terms of the non-diniensionil'I 

quantities 

Where 

F, fy = 
Fy 

. f. fx = 
P., r Fp, F� , 

Aly Ai. - T, 

. Uptu ý T, MY Mz Mw 
Ilipy, i ip 

ý, p3t, 
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Fp., = full plastic axial force about x-x principle axis 

Fpy = full plastic axial force about y-y principle axis 

Fp, = full plastic axial force about z-z principle axis 

Alpy = full plastic bending moment about y-y principle axis 

Alp, = full plastic bending moment about z-z principle axis 

Mp. = full plastic warping moment 

Tp., = full plastic torsion due to St Venant 

For a rectangular section, Figure 7.2, the fully plastic moments are: 

Fpx = cr bh, Fpy =I bhl y 73'0'y 

122 
MP? j = -o, hb , 

Mp, bh 
4y4y 

Fp z1b -'ý 73 0"' 

TP. 9 v b2 h 
2 vý'3- y 

where ay is the yield stress, b is the width and h is the depth, as shown in Fig- 

ure 7.2. 

For a wide flange section: 

1 
Fpx =u Af (2 + ß), F, -'0, Af, Fp, = -oyilw y' Py -73« y v3- 

MPY Af bf, Alp, uyAf d (i + Alpw 1 
er Af bf d 

2y4g 
Af (tf + Ot- TPSV = 73'0'y 4) 

with 0=A,, IAf, is the ratio of web area, A, to flange area, Af. bf the flange 

width, tf the flange thickness, t,, the web thickness and d the depth of the section 
as shown in Figure 7.2. 

7.2.2 Duan and Chen's Yield Criteria 

The general shape of the yield surface proposed by Duan and Clien (1990] for 

a double symmetrical section under axial force and biaxial bending moments is 
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described by 

M",. (l - fPr. + M",. (l - (i - fýyry(l - fP)a. =o (7.2) 
yz 

where the four parameter ay, a, gy and P.. are dependent on the sectional shapes. 

area distribution, and axial forces. For example, for a rectangular section under 
biaxial loading, P. = flý. =2 and ay = a.. = 1.7 + 1.3f,.. 

7.2.3 Gendy and Salleb's Yield Criteria 

Based on work by Duan and Chen [1990], a simple and general yield surface for 

space frames subjected to axial force, two shearing forces, two bending moments. 
bimoment and torque was proposed by Gendy and Salleb [1993] for two differeiit 

shapes of cross-sections, i. e., rectangular and wide flange sections, and under the 

perfectly plastic material assumption. Also two yield criteria were proposed: an 

upper bound, which is quite accurate, and a less accurate lower bound (based on 
linear iterpolation). 

The upper bound of Gendy and Saleeb has a yield function, fl, with quadrat ic 

form 
f =f2+f2+f2+ 

1 
M2+ 22 +t2 

TY YT mz+mw at, l=O (7.: 1) 1xyx 

where Ay and A, depend on the shape of the cross-section as: rectangular cross- 

section 

Ay = Ax =1_ fx2 (7.4) 

and wide flange cross-section 

f 7,3 Ay A.. =I-1.1 x (7.5) 

The lower bound yield function, f2, has the linear form 

f2 = f, + f, + f,, +IM, +I+ in: + 771", + (7.6) 
77y Ilz 
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where 77y and -q, are also two parameters dependent on the cross-section shapes: 

rectangular cross-section 

77Y 77Z : -- 1+ fx (7.7) 

and wide flange cross-section 

75,77. 
77y =1+0.3f. 

0- 
,=1+ 

(1.1 + #)fx(1.1+0.413) (7.8) 

In the the following, the generalised yield criteria, eqns. (7.3) and (7.6). Nvill 
be used in the form 

Ili = (i + May, Ill :5 ay (7.9) 

112 
---: 

(I + f2)0'yi 112 :5 Cy 

Specifically only equation (7.10), the lower bound yield criteria will I)e used 
for the work in this study and the effects of warping are not considered. 
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Figure 7.3: Stress resultants 

7.3 Yield Criteria for Shells 

In many previous studies of limit analysis problems on nozzle/s- p here and 

nozzle/cylinder intersections, shell theories have been used. Therefore for these 

analyses, it is necessary to obtain the yield surfaces for the materials based o1i the 

shell variables. The equilibrium equations of thin shells are most convenientlY 

written in terms of stress resultants as shown in Figure 7.3 and it is therefore 

also desirable to express the yield condition in terms of stress res tilt aiit.,, -. This 

was first examined b Ilyushin (1948] for the general thin shell obeying the N-Oil y. 
Nfises yield criterion. The Kirchhoff-Love hypothesis of straight nornials retimin- 
ing straight and normal to the mid-surface was adopted. as was the aSSLIIIII)tiOll 
that the normal stress has negligible influence on the yield condition. In 1954 
Onat and Prager [1954] derived the yield condition for a rotationally syninietric 
shell obe ing the Tresca criterion. However, the resultin-, - four-dimensional viel(l y0 

surface (with variables nj, n2, mi and m2) is a function of three pamnieters 
p7 q, r and so the yield condition is not expressed in terms only of the stress 

166 



resultants. However, it is possible in this case to eliminate p, q and r and to 

obtain a yield surface in terms of nj, n2, mi and m2. 

In 1961 Hodge [1961] derived a parametric representation of the yield surface 
for a rotationally symmetric shell with the von Mises criterion. Again there are 
three parameters p, q and r but this time it is not possible to eliminate them 

all. The approach of Hodge [1961] is different from Ilyushin [1948] where even for 

non-rotationally symmetric shells the quadratics of stress resultants are fluictiolis 

of only two parameters and ji. However, the physical assumptions imply that 

these yield surfaces are equivalent and indeed p and q are evidently alternative 

parameters for C and p in the rotationally symmetric case. 

Ilyushin published his work in Russian [1948] and in French [19361. but aii 
English version of his work was not available until it was translated by Crisfield 

[1974]. Various other approximations have been made to the exact llyusl1in stir- 
face and these have been discussed in some detail by Robinson (1971]. This work 

was discussed by Burgoyne [1979], and one of the alternative yield surfaces, that 
due to Ivanov [1967], has been used subsequently in numerical studies of plate 

and shell buckling problems by Crisfield [1979]. Ivanov uses a quadratic rep- 

resentation of yield surface in Q-space, as opposed to the linear representation 

of the approximate Ilyushin yield surface. Very recently Burgoyne and Brennaii 

[1993] presented a reparametrization of the IlYushin yield criterion for thin plates. 
These yield surfaces will be briefly introduced in the following subsection. More 

detailed reviews can be found in the books of Olszak & Sawczuk (1967). Save &-, 

Massonnet (1972) and Zyczkowski (1981). 

7.3.1 Generalized Yield Condition 

The principal stress resultants on an element of rotationally symmetric sliell 

with rationally symmetric loading are NI, NI, All, A12 as shown in Figure T. 1. 
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Figure 7.4: Shell element 

The yield criterion may be written 

(Ni, JV2 1 -41111 1112) -"": 
1 (7.11) 

This expression for a rigid ideally plastic material means that for conibina- 

tions of NI, N2, MI, 112 for which f<I the shell element is rigid. When 

1, plastic flow takes place and f can never exceed unity. 

7.3.2 Hodge [1954] Yield Surface for a Sandwich Shell (Tresca 'Nla- 

terial) 

In 1954 Hodge derived a generalised yield surface for a sandwich shell ushig 

Tresca's yield criterion. A simplified outline of the process is described as follows: 

Supposing an ideal sandwich shell is cýmposed of two thin sheets. each of 

thickness T separated by a core of thickness 2H'. which have a tensile yield stres.; 

a' and are so thin that stress variation across each sheet can be ne-lected. 11id Y0 
the core has sufficient stuffness to maintain the separation of the sheets but 110 
tensile strength. 
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H' 

H 

Figure 7.5: Stress distribution in ideal sandwich shell 

Under these definitions, 

No = 2a'T, Alo = 2a'H'T (7.12) 
yy 

The corresponding values for a uniform shell of thickness 211 are 

No = 2ayH, A= oyH' 

Therefore, the two shells will be equivalent if 

c'T =a H, H'= 
1H 

yy2 

Figure 7.5 shows the stress distribution at a typical point in the shell. Evi- 

dently the stress resultants are 

N, = T(a+ + a-), N2 = T(a+ -) 112+ or2 

Ali = H'T(orT - a, +), A12 = IPT(aý - a2+) T. 15 
12 

In theory, and in most of the examples that follow, it is conveiiiem to deal 

exclusively with dimensionless quantities. To this end we denote by NO-the niax- 
imum direct stress which the shell can withstand in uniaxial tension uid by 

. 1/, ) 

169 



Figure 7.6: Tresca yield condition 

the maximum uniaxial bending moment and define 

ni = NIINo, n2 = N21NO 

MI /-AIO 
IM2 --'ý J112 /, AIO) 

K, ---ý (Mo1Xo)Kjj K2 :: -- (HOINO)K2 (7.16) 

where K, is the curvature in the circumferential direction and K2 the curvature 
in the meridional direction. 

Solving eqns. (7.16) for the stresses and introducing dimensionless stress re- 

sultants from eqns. (7.13) and (7.17) following forms are obtained 

a+ = o, (n, - ml), a' = a'(n2 -7712) y2 

al- = o, ' (n, +mI), a2 = Orl (112 + 1712) (7.17) yy 

Tresca's yield condition states that the maximum shearing stress is less than 
half the tensile yield stress; hence 

1 (7.18) max(lail, 
10'21, IOl 

- 0'21) :5 O'Y 

The six inequalities implied by (7.18) must be satisfied by the stress in both the 
top and bottom sheets as given by eqns. (7.17). Therefore, the Tresca yield con- 
dition for the ideal sandwich shell consists of the twelve linear expressions listed 
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Table 7.1: Tresca condition for sandwich shell [Hodge, 1960] 

Face (071,62) Point Stress Equation Strain-Rate Vector 

Top I Bottom 

1 AB n, - mi =1 it (1,0, - 1,0) 

2 BC n2 - M2 =1 11(0,1,0, - 1) 

3 CD -nj + n2 + MI - M2 : -- 1 /1(- 1,1,1, - 1) 

4 DE -ni + m, =1 it (- 1,0.1,0) 

5 EF -n2 + M2 =1 it (0, - 1,0,1) 

6 FA n, -n2 -MI +M2 =1 p(l, -1, -1,1) 

7 AB n, + m, =I it (1,0,1,0) 

8 BC n2 + M2 ý1 11(0,1,0,1) 

9 CD -ni + n2 - MI + M2 =1 

0 DE -ni - mi =1 /1(-l, 0, -1,0) 

a EF -n2 - M2 /1(0, - 1,0, - 1) 

FA n, - n2 + Ml - M2 

in Table 7.1. Since each of the faces of the resultant yield surface corresponds 
to one of the original Tresca yield conditions (Figure 7.6), a correspondence be- 

tween physical stress point and stress-resultant point may be set tip as indicated 

in Table 7.1. 

The direction of the strain-rate vector is the same for all stress points on i 

given face; it is given by the gradient of the equation of- the face as indicated 

in the last column of Table 7.1. At tile intersection of two or more faces. it is 

evident that the resulting strain-rate vector may be any linear conibiwition witli 

positive coefficients of the strain-rate vectors for the corresponding sides. 
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7.3.3 Onat and Prager [1954] Yield Surface for a Uniform Shell 

(M-esca Material) 

A generalised yield surface based on Tresca's condition for a uniform shell was 
first obtained by Onat and Prager [1954]. Here their method will be presented 
briefly. 

The first step is to define the strain-rate vector in terms of a, magnitude 

parameter v and three direction parameters p, q and r. Thus 

ý2 1 61 + 62 

4k, 4k2 4 ki + k2 

Therefore, the strain-rate vector is 

q= v[-4p(q - r), -4r(p - q), q-r, p- q] (7.20) 

The stain rates in the material are now known in terms of p, q, and r shice 

ii = 61 + 2(ki, i2 = 62 + 2(k2 

C being the dimensionless coordinate in the thickness direction. Therefore, for 

any given p, q and r, ii and i2 can be found for each C. The vector (ii, i2) 

must be normal to the Tresca yield hexagon (Figure 7.6), hence the stresses are 

easily found. Finally, an integration yields the stress resultants in ternis of t1le 

parameters p, q, and r. An ingenious graphical method is used in the paper of 
Onat and Prager [1954] to reduce the computations. The results are summarized 
in Table 7.2 which is subject to the following interpretations: 

In all cases the upper or lower signs must be used consistently in a given lille. 

the correct choice being that which makes Q-q positive. 
If p, q and r are all distinct and all within the interval (-12,7). flivii flie 

'intermediate parameter' in Table 7.2 is the one of p, q, r which lies between t1w 

other two. 

If p, q, and r are still distinct but one or more is greater than 7. it nitist be 

replaced by -1 2 
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Table 7.2: Tresca condition for uniform shell [Hodge, 1960] 

Intermediate Stress Resultants 

Parameter ni 122 in, 1112 

p T-(p+q) T-(p-r) ±lT-2(pl+q 2) ±2(r2 _ (12) 

q :: F (p + q) :: F (q + r) ±1:: F 2 (p2 + q2) ±1 :F 2(q 2+1.2) 

r :: F (q - p) :F (q + r) ±2(p2 + q2) 

T 
±-Tý-2(q2 + 1.2) 

If any of the parameters p, q or r become indeterminate as computed from 

eqns. (7.20), then the other two parameters must necessarily be equal. ror exam- 

ple, if 62 = k2 = 0, r is indeterminate and p=q. The appropriate yield surface 

is obtained when p is set equal to q in either of the first two lines of Table 7.9 

and eliminated from those stresses which are independent of r. Thus, if 1) =q 
the yield surface is 

2) (7.22) 

Simmilarly, if r=q, either of the last two lines of Table 7.2 leads to 

2) M2 n2 (7.23) 

Then, if p=r, the first or third lines show that 

MI - M2 ±[l - 
(nl 

- n2 )2] (7.24) 

Finally, if p=q=r, Table 7.2 can be used with the convention that the 'hiterme- 
diate parameter' corresponds to the absolutelY largest numerator of eqns. (7.19). 

7.3.4 Hodge [1961] Yield Surface for Sandwich Shell (Mises Mate- 

rial) 

Seven years later after his generalised yield surface for a sandwich sliell mis 
derived using Tresca's criterion, Hodge, in 1961, obtained a generalised * yield 
condition for the same problem using von Mises's criterion [11odge 1961). 11is 
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formulation is very briefly presented as following: 

In terms of principal stresses a,, a2, the Mises yield condition takes the forni 

011 U10'2 + U2 y 

Therefore, the desired yield condition is obtained by substituting eqns. (7.16) hi 

eqn. (7.25). This leads to two nonlinear equations, 

(n, + ml)' - (n, + mi)(n2 + M2) + (n2 + M2 )2 

(n, (n, - mi)(n2 - M2) + (n2 - m2 )2 <1 (7.26) 

For a point on the yield surface, the equality sign must hold in one equation 

of (7.26) and the inequality in the other. The strain-rate vectors corresponding 
to equality in (7.26), respectively, are 

v[2(n, ± mi) - (n2 ± 7712)t 

2(n2 ± M2) - (n, ± mi), 

2(m, ± ni) - 
("12 ± n2), 

2(7n2 ± n2) - (m, ± ni)] (7.27) 

If the equality sign holds in both parts of (7.26), the stress point is on the 
intersection of the two hypersurfaces; the strain-rate vector may be any linear 

combination with positive coefficients of the two vectors defined in (7.27). 

7.3.5 Hodge [1961] Yield Surface for Uniform Shell (Mises Material) 

Following his work for a sandwich shell, Hodge, at meantime. derived a gen- 

eralised yield surface for a uniform shell using von Nlises's yield criterioll [11odge 

1961], but due to the complexity of the formulation this condition will not be 

presented here. 
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Table 7.3: One-moment limiled-interaction surfaef 

Face Equation Strain-rate Vector 
(il 

9 
i29 ý2) 

n, =1 jl(1,0,0) 

2 n2 '1 ß(0,1,0) 

3 -nl + n2 ß(-l' 1,0) 

4 -nl = jl(-l' 0,0) 

5 -n2 = Wol 
-11 0) 

6 ni -n2 =1 p(11 -1,0) 

7 rn2 1 m(0,0,1) 

8 -M2 1 jl(0,0, -1) 

7.3.6 Other Approximate Yield Surfaces 

Each of the generalised shell yield surfaces discussed above has been applied 

to a variety of problems, but inevitably because of the complexity involved the 

problems solved are not often of practical importance. Therefore, some atteiitiou 

has been given to the formulation of simpler approximate generalised yield sur- 
faces since then. 

7.3.6.1 One-Moment Limited-Interaction Surface 

One such approximation has been proposed by Drucker and Sliield (1959]. 

They argue that in most rotationally symmetric shell problenis the nionients mv 

generally small compared with the direct stresses. Therefore, they igiiored com- 

pletely the hoop moment M2. The longitudinal moment in, must be retained 

if boundary conditions are to be satisfied, but any interaction between it mid 
the direct stresses is neglected. The resulting yield condition is defined by t1w 

eight planes listed in Table 7.3; it will be referred to as a one-nioniew limited- 

interaction surface. 
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Although the one-moment limited-interaction surface may lead to practicallY 

important results in problems for which its assumptions are reasonably valid. it 

is open to certain theoretical objections. In the first place, in order to eliminate 

m, from the problem, the equilibrium equations must be modified. Therefore. 

the theorems of limit analysis are no longer applicable. Further, it is not clear 

whether the arguments used to show that moments are unimportant in the case 

of static loading are equally valid under dynamic loads. Finally, even shells %vliicli 

are not shallow in the large may contain regions near the axis of symmetry where 

m, is locally important. 

7.3.6.2 Two-Moment Limited-Interaction Surface 

A modification of the one-moment limited-interaction surface which appears 
to eliminate some of its drawbacks while at the same time retaining much of its 

simplicity was proposed by Hodge [1960]. This surface, called the two-inomeilt 

limited-interaction surface, is based on the premise that in most sliell problems 
the moments and direct forces will not be of simultaneous importance so that 

yield relations between moment and force are of limited importance. However. 

the theory recognizes that either moment or direct force may dominate so that 

all resultants must be included. Thus, all interaction between force and force, or 
between moment and moment, is maintained, but all interactions between force 

and moment are neglected. The result is a linear surface in four diniensioiial 

space defined by the twelve planes listed in Table 7.4. Evidently. the twelve 

planes represent the six conditions on direct stresses in the absence of inonielits 

and the six conditions on moments in the absence of direct stresses. 
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Table 7.4: Two-moment limited-interaction stufacc 

Face Equation Strain-rate Vector 
(ile i21 kli 

-ý2 
) 

1 n, ß (1, 0, 0, 0) 

2 n2 ß(0, 1, 0, 0) 

3 -n, + n2 1 ß(-le 11 01 0) 

4 -nl = jl(-l' 0, 0, 0) 

5 -n2 = Wo, 
-1, 0, 0) 

6 n, -n2 ß(1, -1, 0, 0) 

7 M, ß (0, 0, 1, 0) 

8 M2 jl(0, 0, 0, 1) 

9 -Ml + rn2 1 ß(Oe 01 -11 1) 

0 -ml li (0, 0, -1, 0) 

a -M2 ß(01 0, 0, -1) 
ß1 Ml - M2 =11 ß(0, 0, 11 -1) 

7.3.7 Iluyshin (1948] Yield Surface for a Uniform Shell (Mises Ma- 

terial) 

The first investigation of yield conditions for shells was carried out by 11yushin 

[1948]. He derived an exact form of the yield surface for a linear elastic, perfectlY 

plastic isotropic material which obeys von Mises yield criterion. 

The shell is assumed to be thin, so that --IR terms have been neglected in 

comparison with unity (z is thickness of shell and R is any radius Of CUrvattire). 
The shell material is assumed to be isotropic and does not strain harden. The 

non-dimensional stress resultants are defined: 

T/2 T/2 
nl, 2 61,2dz and 1711,2 al. 2: (I-: 

aT 

IT 

/2 T2 
I 

T/2 

where 

(7.28) 

177 



61,2 -a stress component, 

ay - yield stress of material in simple tension, 

T- thickness of shell, 

nl, 2 - dimensionless stress resultants acting on a shell element, 11 Nla'UT, 
2 M1,2 -dimensionless bending moments acting on a shell element, 7n 4,111a. VT 

The material is assumed to obey von Mises' yield criterion: 
(01 2_ 01U2 + G' 22) 

U2 

2+ 
30'12 

(7.29) 
y 

It will then be convenient to define quadratic stress intensities Qt, Q... and 

Qt, as: 

Qt =n2 +n 
2- 

njn2 +3n 2 
12 12 

Qm = M2 + M2 12- MIM2 + 3m212 

Qtm = nim, -I nIM2 -1 n2rn' + n2M2+ U1211112 (7.30) 22 

Corresponding to the quadratic stress intensities, quadratic strain intensities 

can also be defined: 

C2 + C2 + C2 p 12- CIC2 12 

p', = tC2 + tC2 _+ K2 12 KIK2 12 (7.31) 

PIIC == KI (Cl +1 62) + K2(C2 +1 IEI) + K12CI2 
2 5- 

where 
1EIi IE27 IE12 - strain components, 

N19 K2, K12 - dimensionless curvature components. 

There are six stress resultants for any element of the shell. ni. n2. till. MI. 

M2 and M12, so the yield surface will be a function of five parameters. By coii- 

sidering the three non-dimensional quadratic stress intensities. Qt, Q, " aiid Q1111. 

the surface can be reduced to a surface in a 3-dimensional space. and call thus 

be represented by two independent parameters. Ilyushin [1918] represented t1le 
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surface in terms of two non-dimensional parameters C and it. The derivation can 
be found in Crisfield's paper [1974a], and the resulting equations summarized as: 

1 
Qt= _(1,2tp2 +2 2) 

A2 
I 

Qtm 
22 02+ A2 2+ U2 20 + 2, N: ) 

Q, =4 
[/1202(112+A2) + 22 (4/t2 + A2) +2 U2 A20-2 112ý, V+ 2-2\2 \+\ 2j (7.32) 

A4 

where 

1, 
[1 +, ý, 

f(j --g2)] 
I loge loge 

A JA 

j --7) 
± (JT y2) 

I ---T -- (1f 
-)± 

J(Cý2 
- p2), 

subject to the conditions that 

<1 

p<C<1 (7.33) 

(Note that Ilyushin actually used (A) instead of (C) written here; this has been 

changed to avoid confusion with the plastic strain rate multiplier which is coll- 

ventionally also represented by A). Either the plus sign is taken throughout or 
the minus sign throughout. This formulation results in a negative Qt, " but it is 

shown that by using a different range of C and it we obtain the reflexion of the 

above surface about Qt,,, = 0. Since only JQj,, j will be considered, this additioiial 

part yields nothing new. 
Ilyushin then goes on to give several particular cases where this relation caii 

be expressed directly in terms of Qt, Q,, and Qt,,,: 
G) P, > 0, P,, = 0, for which the yield surface is Q .. =0, Qt = 1. 
(ii) P. > 0, P, = 0, for which Q .. =1, Qt = 0, 
Gii) P, > 0, P,, > 0, P,,,, = 0. With this latter case C=1 and therefore 

Qtm = 0. The other two quadratic forms Qt and Qm are expressed in terins of p 
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but it is shown that for all values of p 

1 Qt + Q,. < 1.096 

Therefore a first approximation to the yield surface is, for all C and p, 

Yi = Qt + Q,. =1 (7.34) 

(iii) contains (i) and (ii) as limiting cases. 
Let ting a vector a= (2n I-n21 V33 -n2,2 V3--nj 2) and b= (2m 1-n1 . 2. V-3 -in . 2.2 V"--3-11 11-2 

and applying the Schwarz inequality 

lal. JbI > la-bl 

yields 

I QtQ,. ý! Qtm 

which occurs only when ni/m, = n2/M2 = nl2/? 'nl2, the yield condition beconies, 

Y2 = Q. = (1 - Qt)' (7.: 3. ' )) 

In this case the parameter p=0 and 0< Qt :51. The maximum,. -altie of JQt I 

occurs when 

2 Qt and lQt,, l 
93 

This lies on the planes 

1'3= Qj + Q. + lQt. lIV3- =1 (7.36) 

7.3.8 Iluyshin [1948] Yield Surface for a Sandwich Shell (Mises Ma- 

terial) 

Now consider the von Mises sandwich shell yield criterion. In this approx- 
imation the uniform shell is replaced by a sandwich one in which a central 
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core carries the shear stresses q, and q2 and the outer layers carry stresses 
(nl+ml, n2+rn2, nl2+MI2)and(ni-mi, t12-7712,7112-11112)respectively. 

For details see Nakamura [1963]. Therefore, we have two yield criteria: 

(n, ± ml)' + (n2 ± M2 )2 
- (n, ± mi)(n2 ± M2)+3(1112 ± 17112) 

-< 
I 

where the plus sign is used throughout for one face and the minus sign for the 

other. Thus 

Y4 = Qt + Q,,, + 21Qt,,, l =1 (7.37) 

If yielding occurs on one face only, the normality rule gives 

KI ý-- ±(It N2 ---: 
±f2t N12 " ±(12 

On the other hand, 

(i) if P, > 0, P,, = 0, yielding occurs on both faces and we get Qt = 1, Qt,, = 0. 

(ii) if P,. > 0, P, = 0, yielding occurs on both faces and Q,, = 1. Qt = 0. 

(iii) if P, > 0, P, > 0, P,,, = 0, then again yielding occurs on both faces and 
so: 

Qt + Q,,, + 2Qt,, =1 

Qt + Q,,, - 2Qt,,, =1 

Hence 

Qtm --. = 0 and Qt + Qm =1 

Thus for restrictions (i), (ii) and (iii) the sandwich shell condition mid 11yushin's 

condition are equivalent. 

7.3.9 Rozenblyum [1954] Yield Surface for a Uniform Shell (Mises 

Material) 

Rozenblyurn [19541 proposed another alternative yield surface by assiunhig 

a linear stress distribution across the shell thickness and postulating the Yield 
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condition as an average. The resulting yield surface is 

+3 (7.38) 
4 

It can immediately be seen that this is very similar to equation (7.31). It is in- 

dicated by Robinson [1971] that equation (7.38) is not a very good approxiniat ioii. 

7.3.10 Ivanov [1967] Yield Surface for a Uniform Shell (Mises Ma- 

terial) 

The approximate yield surfaces so far considered have been linear in tile. 

variables Qt, Q,,, and Qt, with the exception of equation (7.35), which was 
Qm = (1 - Qt)'. The equation (7.36) is very close to the optimum linear approxi- 

mation but by introducing more complicated expressions it is possible to get closer 
bounds. This has been done by Ivanov [19671. He presents two approxiniations: 

1 1Q2 
+Q2 =1 y5 = Qt +2 Q�, + 

ý4 
' tm (7.39) 

11 1/4(QtQm - Q2 
y6 = Qt + -Q", + -Q2 + Q2 

Qt + 0- 
tm =1 (7.40) 

2 
ý4 

m tm ASQ, 
Ivanov's surfaces overcome many of the difficulties associated with the approxi- 

mate Ilyushin yield surface; it has no discontinuities except one in slope at Qt =I 

where the exact surface also has a slope discontinuity, and equation (7.40) always 
lies within 1% of the exact surface. 

All these approximations discussed in this subsection have been reviewed by 

Robinson [1971] who concludes that Ilyushin's original approximation eqn. (7.36) 

is the best of linear (in Qt, Q, Qt,,, space) surfaces. lie also shows t Ilat I 11v 

maximum error by using eqn. (7.36) is about 6 per cent on the safe side and 3.5 

per cent on the unsafe side. 
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7.3.11 Robinson [1988] Yield Surface for Axi-SYnimetric Thin Cylin- 

der (Mises Material) 

Assuming the transverse shear stresses can be neglected and that the sliell nia- 
terial. obeys the von Mises yield criterion, a simple yield surface, for axi-syninietric 

thin cylinders loaded axi-symmetrically, was obtained by Robinson [1988] by mak- 
ing the assumption A12 = 1MI, where M2 is the hoop bending moment and . 11, 2 

the axial bending moment. The proposed yield surface is 

232 V3 
n', +n - nin2 + m, + -Tlnlmll =1 (7.41) 124 

Robinson [1988] concludes that for the yield surface equation (7.36) the effect 

of equation (7.41) is to produce an answer which is conservative by at most 2.5 

per cent, and in practice probably much less and also indicates that this conclu- 

sion will still be valid if transverse shear force is included in the yield stirfice. 

7.3.12 The Effect of Transverse Shear Stresses on The Yield Surface 

All the yield surfaces mentioned so far have neglected the influence of trans- 

verse shear stresses on the yield function. The effect of transverse shear stresses 

on the yield surface has been considered in the works of Shopio [1961], llaybl and 
Sherborne [1972] and Robinson [1973]. The detailed yield surface formulatiolis 

can be found in Robinson's paper [1973]. 

It was proposed by Robinson [1971] that the dimensionless transverse sheýir 
stress resultants can be included in Qt which would then equal n'2 + n2 -nI n2 + 12 
322 n12 + 3ql + 3q2' because in most cases q, and q2 are less than 0.1 in inagnitilde 

and hence the transverse shear terms would be less than 0.06. In his latter paper. 
Robinson [1973] proved this suggestion. Then the approximate yield surfaces can 

obtained by replacing Qt in the yield functions 11, Y2, Y3'- V4. Y-5) alld ); 6 I)V 
2 Qt + Qq where Qq = 3q' + 3q It is found that [Robinson 197: 3] the- iI 12g 

bounds are very little different. 
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A new function has been suggested by Robinson [1973]: 

114[(Qt + Qq)Qli? - Qtrnl 2 0.2 4 VfQýq IQt, ý,, 11 Y7 = Qt + Qq + 2Qm ++ Wtm 
Qj + Qq + 0.48Q,, 

lQm 
(7.42) 

which is accurate to within about plus or minus 2 per cent in all cases. 

From these studies it can be concluded that the transverse shear stress resul- 

tants have negligible effect on the yield condition in most thin shell applications. 

7.3.13 Other Subsequent Yield Surfaces 

In 1974 Crisfield [1974b] proposed a modified form of Ilyushin's yield surface. 

This modification makes the yield criterion more suitable for use in the collapse 

analysis of thin steel plates and shells under buckling loads. Again in 19T9 Criis- 

field [1979] proposed a modified form of Ivanov's yield surface for the analysis of 

imperfect thin steel plates subject to unaxial compression. 

An alternative theory of elastic-plastic behaviour of shells has been proposed 

by Bieniek and Funaro [1976], who recognized that the subsequent yield surface 

translates in the hyperspace of moments. Very recently, Burgoyne and Brennan 

[1993] presented a reparametrization of the Ilyushin yield criterion for thin plates 

which produces a simpler (though still exact) form which is suitable for use in 

practical formulations. 

7.4 Finite Element Implementation by Elastic Compensation 

7.4.1 Beam Element Implementation 

As described in the Chapter 3, elastic compensation analysis is a tecImique 

which uses conventional elastic finite element analysis to simulate plastic failitre 

mechanisms in complex structures. An initial elastic analysis, correspoii(ling to 

an isotropic homogeneous material, is first carried out. rollowing this a sequence 
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of linear elastic analysis are performed such that the stress field in the CLIrrent. 

say ith analysis, is used to modify the elastic modulus of each element for the 

next, (i + 1)th analysis, according to the simple ratio 

E(7 + i) = Ei' a, (7.43) i 04 I 

where Ej' is current value of Young's modulus in element e, E(ei+, ) is the new valLle 

for the next analysis. From eqn. (7.43) the elastic moduli are modified according 

to the ratio of a nominal stress value, o,,, to the maximum nodal equivalent stress 

associated with element e7 cie. Using this simple procedure high stressed elements- 
have their modulus reduced while low stressed elements have their's increased. 

Each analysis in the sequence is carried out for some nominal load set. P, ': the 

values used for the nominal stress and load set are not important - stress used in 

eqn. (7.43) should be the unaveraged value, since the elastic moduli of adjacent 

elements are different it would be incorrect to average across elements. 

The resulting redistributed stress and strain fields can be used with the botind- 

ing theorems of plasticity to estimate safe load factors. For example for a single 
load: 

The lower bound limit load elastic compensation procedure carries out the 

analysis sequence for the nominal load set until the maximum stress in the whole 
finitegnodel, can be reduced no further using eqn. (7.43). Then, invokitig the 

lower bound limit load theorem and using the fact that each elastic Compensation 

analysis must give stresses proportional to the applied load (since tile iiiateriill 
behaviour is linear elastic in elastic compensation), a lower bound hillit load call 
be constructed as 

PL = P. CY 
crm, x 

In the above, from eqns. (7.43) and (7.44), the elastic compensation procedure 
is described for two-dimensional plane or three dimensional solid finite elemem 

models. However it is now shown how the method can be extended to lower 

bound limit analysis for slender beams using a generalised yield criterion. specif- 
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ically the approximate forms of Gendy and Saleeb [1993], eqns. (7.3) and (7.6). 

By an obvious extension of eqns. (7.43) and (7.44), for a frame composed of 

slender beams, if either the Gengy and Saleeb generalised beam yield criteria 

are used with the nominal stress a, rather than the actual yield stress, then 

eqn. (7.43) may be written to modify the elastic modulus of a beam element f, as 

Ee E' 0', 
ljý I 

(7.4.5) 

where Hie is the appropriate yield function from eqn. (7.9) or (7.10) evaluated for 

the (unaveraged) nodal stress resultants in element e. As in the above, the elastic 

compensation procedure carries out several re-analyses for the nominal load set 
but now until the maximum yield function in the beam model, can be 

reduced no further. then the lower bound limit load is 

PL = P. cry (7.46) rImax 

7.4.2 Shell Element Implementation 

Until now, the elastic compensation procedure has been used with two-diniensioiial 

plane or three dimensional [Nadarajah 1993] solid finite element models and beani 

element implementation. In this subsection the method is extended to a shell el- 

ement based on a generalised yield criterion. Here both Ilyushin and Ivanov yield 

surfaces will be used. 

It is more convenient to define stress function QNi Qjq and QN, 11 rIS: 

QN = Nj + N22 
- NIN2 + 3NI2 

Qm = 
A112 + A122 

-. All A12 + 3-11112 

1- QNM = NI-All - ;; NIA12 -1 
N011 + N2-112 + 3JV12-1112 

2 

However Ilyushin's approximate yield surface eqn. (7.36) can be rewritten as: 

M 
IQN. 111 2 

IL = QN + QAI + V3- ay (7.48) 

186 



and Ivanov's yield surface eqn. (7.40) can be rewritten as: 

rJ2 = QN + 
QM 

+ý 
[Q, 241 

+ Q2, ýfj +1 
ýQNQM - Q2NA[ 2 (7.49) IV 24N4 QN + 0.48( 

By an obvious extension of eqns. (7.43) and (7.44), for a shell finite element 

model, if either the Ilyushin, eqn. (7.48), or Ivanov, eqn. (7.49) generalised yield 

surfaces are used with the nominal stress a, rather than the actual yield stress. 

then eqn. (7.43) may be rewritten to modify the elastic modulus of a shell element 

as 

Ei = E(i-, ) (7.50) 

where II(j-j) is the yield function, eqn. (7.48) or (7.49), evaluated for the (unaver- 

aged) nodal stress resultants in each element. As in the above, the elastic coni- 

pensation procedure carries out several re-analyses now according to eqn. (7.50) 

until the maximum yield function in the shell model, for the nominal load 

set, can be reduced no further, then the lower bound limit load is 

PL 

= P. 'Y rimax 

7.5 Discussion 

(7.51) 

The extention of elastic compensation method based generalised yield criteria 

and the finite element implementations of beam and shell elements using the ex-. 

tended elastic compensation procedure have been demonstrated in this Chapter. 

In following two Chapters, we will use the proposed procedure to analyse bealil 

and shell structures. 
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CHAPTER 8 

GENERALISED LIMIT ANALYSIS OF BEAMS AND 
FRAMES 

8.1 Introduction 

In Chapter 3 limit analysis of frames was carried out using a solid finite ele- 

ment model. In Chapter 7 the elastic compensation method based on Gendy and 
Salleb's generalised yield criterion has been developed. In this chapter, a number 

of beams and frames will be analysed to obtain limit loads using this method. 
The results calculated using the elastic compensation procedure will be compared 

with those obtained by plastic theory. 

8.2 Limit Solutions for Simple Structures by Plastic Theory 

Limit loads for a number of beams and frames has been obtained by many 
researchers based on the simple plastic theorems, such as Neal [1956,1977]. Baker 

and Heyman [1969,19711 and Chakrabarty [19871. In this section, some simple 
limit solutions will be presented for completeness, again to emphasise the relative 

simplicity of elastic compensation by comparison. 

The plastic methods can be applied to beams and frames of any material. pro- 

vided that the members behave reasonably closely in accordance with the plastic 
hinge assumption. This means that whenever the bending moment reaches a 
critical value a plastic hinge formes and can undergo extensive rotation while the 
bending moment remains sensibly constant. 

The plastic hinge hypothesis forms the basis of the calculation of plastic col. 
lapse loads. When a frame structure is subjected to steadily increasing loads. 

the formation of the first plastic hinge does not in general cause plastic collapse. 
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Further increase of the loads can usually be carried, and other plastic hinges form 

successively until finally there are enough hinges to permit a mechanism motion. 
Plastic collapse then occurs. This process has been examined for a number of 

simple structures by many researchers in the past years. In this section, three 

simple examples will be presented. For completeness, again to emphasise the 

relative simplicity of elastic compensation by comparision. 

8.2.1 Simply Supported Beam 

The first structure to be considered is a simply supported beam of uniform 

cross section, which has a span L and is subjected to a central concentrated load 

P, as shown in Figure 81(a). The bending moment diagram for this beam is 

shown in Figure 8.1(b), the maximum sagging bending moment at the centre of 
the beam being PL14. Since the beam is statically determinate, the form of this 
diagram is independent of the properties of the beam, and in particular of the 

assumed (M, te) relation, where M is bending moment and r. the curvature of 
the beam. 

If P is increased steadily from zero, the beam at first behaves elastically. 
Eventually the central bending moment reaches the value Alp, and a plastic 
hinge forms beneath the load. The beam then continues to deflect at constant 
load as the plastic hinge rotates, and so fails by plastic collapse. The- plastic 
collapse load P, is determined by equating the magnitude of the central bending 

moment to the plastic moment, giving 
I 

PL Alp 

4AIp 

L 

Since bending moments at other cross sections are less than . 11p. the beani 

remains elastic everywhere except at the central cross section. The constancY of 
the load, and therefore of the bending moments during plastic collapse. implies 

constancy of the curvatures. The increase of deflection during collapse is therefore 
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Figure 8.1: Simply supported beam with central concentrated load 
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due solely to the rotation at the central plastic hinge. This effect is illustrated in 

Figure 8.1(c) and (d). Curve (i) in Figure 8.1(c) is the deflected form of the beam 

just as the collapse load P,, is attained, but before any rotation has occurred at 

the central plastic hinge. Curve (ii) is the deflected form of the beam after the- 

central hinge has undergone rotation through an arbitrary angle 20. The curved 

shape of each half of the beam is the same in case (ii) as in case (i). Figure S. I (d) 

shows the changes of deflection which have occurred during plastic collapse, ob- 
tained as the difference between the deflections in case (ii) and case (i); each half 

of the beam is straight in this figure. These changes of deflection are thus due 

solely to the rotation at the plastic hinge. Figure 8.1(d) represents the collapse 

mechanism for this simple case. 

The elastic central deflection ý of the beam is PL'148EI. As the collapse 
load is attained the central deflection 8, at the point of collapse is therefore given 

by 
PL 3 AlpL 3 

8EI 12EI 

making use of eqn. (8.1). The behaviour of the beam can now be summarized 

on a diagram relating the load P to"the central deflection b. This load- deflect ion 

relation as Ocb in Figure 8.2. Oc is the behaviour in the elastic range. and cb 

represents plastic collapse under constant load, the increase of deflection from C 
to b being LO/2, as in the mechanism of Figure 8.1(d). 

The hinge rotation and therefore the additional deflection developed durhig 
0 

plastic collapse in indefinite. However, if very large deflections occurred. the 

change in geometry of the structure would affect the conditions of equilibrium. 
for example by enabling the load to be supported partly by direct tension in the 

two halves of the beam. The simple plastic theory does not concern itself Nvitli 

such effects; it predicts the loads at which large deflections are imminent. as at 
the point c in Figure 8.2. 

The broken curve commencing at a in Figure 8.2 shows qualitatively the effect 

of taking into account the difference between the yield moment. 11, and the plastic 
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Figure 8.2: Load-deflection relation for simply supported beam 

moment Alp. Elastic behaviour would cease at the yield load P. when the central 

bending moment was Aly, where 

py = 
4Afy 

= 
4AIp P, 

LýT= Tv 

v being the shape factor. Plastic collapse would still occur at the same value of 

P as before, but greater deflections would be-developed before collapse. 

For this simple example the ratio of the collapse load P, to the yield load P, 

is equal to v, the shape factor. The ratio of P, to P. is aways v for any staticallý 

determinate structure, in which the greatest bending moment is proportional to 

the load and occurs at the same position regardless of the value of the load. Yield 

occurs when this greatest bending moment is equal to Aly, and collapse OCCUrs 

when it is equal to Alp, for the introduction of a single hinge is always sufficient 

to reduce a statically determinate structure to a mechanism. It follows that the 

ratio of P, to Py is the same as the ratio of Alp to Al., which by definition is the 

shape factor v. 

Equation (8.1) shows how the plastic collapse load was calculated by eqLiating 0 
the maximum bending moment to the plastic moment. This is a statical proCedUre 
but the collapse load can also be found by a kinematical procedure. Durhig 

collapse there is no change in elastic strain energy stored in beam. since the 
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bending moment distribution remains unaltered. The work done by loads during 

a small motion of the collapse mechanism is therefore equal to the work absorbed 
in the plastic hinge, since the motion is quasi-statical. In the mechanism motion 

of Figure 8.1(d) the load P, moves through a distance L012 and so does work 
P, L012. The rotation at the plastic hinge is 20, so that the work adsorbed in the 
hinge is 2AIpO. It follows that 

I 
PLO = 2AIpO 

2 

4AIp 
L 

which agrees with eqn. (8.1). 

8.2.2 Fixed-Ended Beam 

The behaviour of a fixed-ended beam of uniform cross section and length L, 

carrying a uniformly distributed load P, will now be considered. In what follows 

a consistent sign convention will be used for bending moments, curvatures and 
hinge rotations. Positive bending moments are those which cause tensile stresses 
in the fibres adjacent to the broken line in Figure 8.3(a), and positive curvatures 

and hinge rotations correspond to tensile strain in the same fibres. 

The bending moment diagram has the parabolic form shown schematically in 

Figure 8.3(b); a statical analysis gives the equilibrium equation 

M2 - All = 
PL 

(8.2) 
8 

The beam has one statical indeterminacy or redundancy; the separate values of 
AII and A12 cannot be found from equilibrium alone. 

The state of deformation depicted in Figure 8.3(c) forms the basic of the 

subsequent calculations. Here the beam has developed a slope - ol at entire 
span is presumed to be behaving elastically. An elastic analysis (by. for example. 
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Figure 8.3: Fixed-ended beam with uniformly distributed load 

elementary beam theory) gives the following compatibility equation: 

Af, 
1 

PL _ 
2EIO, 

U2 L 

and it can also be shown that 
PL 3 

LOI (8.4) 
384EI 4 

If P is increased steadily from zero the behaviour is at first wholly elastic. 
so that 01 = 0. Equations (8.2), (8-3) and (8.4) then solve to give the elastic 
solution 

All =1 PL 
12 

A12 = PL T4 

PL 3 

384EI 
Elastic behaviour ceases when Af, = -Alp, so that plastic hinges form at each 

end of the beam. The yield load Py is therefore given by 

-1 PvL = -Alp 12 , 
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Table 8.1: Fixed-ended beam: proportional loading 

APL PL All- A AIL 
. 

dil El 
- 

8EI 
- - Af, mp )tf, . 4f p 

Tf,; L Af PLI T 

12 -1 0.5 0 1/32 

4 0 0.5 -1/6 5/96 
1 16 

1 
-1 1 -1/6 1/1 

py = 
12AIp 

(8.5) 
L 

At this value of the load, the state of the beam is as given in the first line of 
Table 8.1. Figure 8.4(a) shows the deflected form of the beam at the load P, and 
Figure 8.4(b) shows the corresponding bending moment diagram. If P increases 

from P,, to P,, + AP, the plastic hinge at each end of the beam will undergo 

rotation while All remains constant at the value -Alp. All changes occurring in 

this 'step' will be denoted by the prefix A. Figure 8.4(c) shows the corresponding 
deflected form of the beam during this step, which is characterized by 

AI, = -, AIP, AM, = 0, Aol < 0. 

Equations (8.2), (8.3) and (8.4) become 

APL 
8 

(8.6) 

0=-1 APL - 
2EIAO, 

(8.7) U2 L 

AS = 
APL 3_1 

LAO, (8.8) 
T8- -4E 1 -4 

Since AAII is zero, there is only one unknown bending moment increment 
AA12, whose value is obtained immediately from the equilibrium equation (8.6). 
The beam is therefore statically determinate in this step. However. there is now 
a new geometrical unknown A01. This is found from the compatibility equation 
(8.7) to be 

APL' 
(8.9) ý-4EI 

Substituting in eqn. (8.8) 
5APL 3 

384EI 
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Figure 8.4: Behaviour of fixed-ended beam above yield load 
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Equations (8.6), (8.9) and (8.10) show that the incremental relations between 

AP, AM2, A0, and Ab are those for a simple supported beam. This is beCaLlSe 

the conditions AAII = 0, A0,54 0 correspond to simply supported end condi- 

tions. 

At the beginning of this step the value of A12 is 0.5AIp, as shown in Table S. 1. 

As AP increases, M2 increases in accordance with eqn. (8.6) until it reaches the 

value Mp. The bending moment distribution is then as shown in Figure 8.4(d). 

The corresponding value of AP is given by 

APL 
0.5mp + -8 = Alp 

AP = 
4AIp 

L 

From eqns. (8.9) and (8.10) the corresponding values of A0, and Ab are 
AlpL 
6EI 

Ab 5AIpL 2 
96EI 

These incremental values are entered in the second line of Table 8.1, atid 

the third line shows the resulting situation at the end of the step, with P= 

12MpIL + 4MpIL = 16MpIL. 

When P has this value, a plastic hinge forms at the mid-point, and the beam 

then collapses, the collapse mechanism being as shown in Figure 8.4(e). The 

collapse load P, is 

P, = 16AIpIL (8.11) 

When P=P, but before the central plastic hinge has begun to rotate. the 

beam is said to be at the point of collapse. The conditions at the point of collapse 

are those given in the last line of Table 8.1. The hinge rotations -0 at, each end 

of the beam which are shown in the collapse mechanism of Figure SA(e) are ad- 
ditional to the rotations -AIpL16EI which have already developed at the point 

of collapse. 
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Figure 8.5: Load-deflection relation for fixed-ended bearn 

The load-deflection relation is shown in Figure 8.5, in which Oy represents the 

elastic behaviour up to P., yc represents the elastic-plastic step and cb represents 

plastic collapse by the mechanism of Figure 8.4(e). The broken curve conimeiic- 

ing at a shows schematically the type of relation which would be obtained if tlle 

yield moment My was less than Afp. 

This load-deflection relation is typical for a beam or frame with one redun- 

dancy. When the first plastic hinge forms at the yield load (in this case a syninlet- 

rical pair of hinges), the structure is rendered statically determinate for further 

increases of the load, and the plastic hinge rotations which then occur cause a 

reduction in the slope of the load-deflection relation. Collapse does not, occlir 

until a further plastic hinge forms, thus reducing the structure to a nieclianism. 
In general a finite increase in the load above the yield value will be required to 

bring the bending moment at the final plastic hinge position up to the pliistic 

moment. 

The behaviour of the fixed-ended beam is thus fundamentally different from 

the behaviour of the simply supported beam, for which the load-deflection rclii- 
tion was shown in Figure 8.2. In that case the formation of a single plastic hinge 

caused collapse, and the ratio of the collapse load P, to the yield load P, was t he 
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shape factor v. However, for the fixed-ended beam just considered the yield load 

Py is 12MplvL, while the collapse load P, is 1GAIpIL, so that the ratio of P, ' 

to Py is 4v13. The greater margin between the yield and collapse loads for the 

fixed-ended beam is consequence of the single redundancy which exists in tlii. s 

case. 

It can be seen by inspection that there is only one possible collapse niechanisin 
for the fixed-ended beam, this being the symmetrical mechanism of Figure 8.4(e). 

This enables the plastic collapse load to be calculated directly by either a, statical 

or a kinematical procedure. 

The statical procedure consists simply of sketching the bending moment dia- 

gram at collapse, as in Figure 8.4(d). It is seen that 

P, L 
8= 

2AIp 

PIC - 
16AIP 

L 

The kinematical procedure is based on the collapse mechanism of Figure 8.4(e). 

Since the central deflection is L012, the average vertical displacement, of the 

uniformly distributed load P, if L014, so that the work done by the load during 

this mechanism motion is P,, LO14. At each plastic hinge the work absorbed niust 
be positive, and is the product of Alp and the magnitude of the hinge rotatioll. 
Equating the work done to the work absorbed, 

1 
PLO = Alp(O) + Alp(20) + Alp(O) = 4, lfpO 

4 

16AIp 
L 

8.2.3 Interaction Diagram of a Portal Frame 

The last example to be considered is the rectangular portal frame whose di- 

mensions and loading are shown in Figure 8.6(a). All the members of this frame 
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Figure 8.6: Plastic collapse of a portal frame 

-20 

are uniform with flexural rigidity EI and plastic moment Alp. The joints at 

sections 2 and 4 are rigid, and the columns are rigidly built-in at their bases I 

and 5. The sign convention for bending moment, curvature and hinge rotation 

is again that positive value correspond to tensile stresses or strains in the fibers 

adjacent to the broken line. 

Within each of the four segments of the frame which are straight and free froni 

external load, namely 12,23,34 and 45, the shear force must be constant. Tlie 

bending moment must therefore vary linearly along each of these segments. The 

values of the bending moments Mi, A12, A13, A14 and A15 at the five nuinbered 

cross sections therefore specify the bending moment distribution througliout the 

frame. Moreover, since the bending moment cannot exceed Vp in nwiguitude 

at any cross section, it follows that plastic hinges can only occur at the eilds of' 
these segments. Thus, the only possible locations of plastic hinges are the five 

numbered sections. 

The frame has three redundancies, for if a cut were made at any section. aii(I 
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the shear force, axial force and bending moment were specified at this section. it 

would become statically determinate. It follows that there must be two equations 

of equilibrium connecting the five bending moments. For the determination of 

the bending moments which occur when the frame is wholly elastic there intist 

therefore be three equations of compatibility. For situations in which solue plastic 
hinges have developed, it is still possible to develop three approximate equations 

of compatibility, and the two equations of equilibrium will still apply 

There are three possible mechanisms, shown in Figure 8.6(b) to (d). each 

representing a virtual displacement pattern defined by a hinge rotation 0. In 

the panel mechanism (b), the horizontal load H moves through a distance hO 

producing a virtual work of amount HhO. Equating this to the virtual work 

absorbed at the hinges, we have 

All(-O) + A12(0) + A14(-O) + Als(O) = hIlO 

or 

- All + A12 - A14 + AIS -= Hh (8.12) 

In the beam mechanism (c), the vertical load V does work of amount 1-710, while 

no work is done by horizontal load H. The principle of virtual work gives 

M2(-O) + A13(20) + Af4(-O) = V10 

or 

- A12 + 2Af3 - A14 
= Vl (8.1: 3) 

The combined panel and beam mechanism (d) involves virtual works HhO and 
V10 done by the horizontal and vertical loads respectively, and the work equation 
becomes 

, 
All (-0) +AI3(20) +. AI, 1(-20) + j%I. 5(O) = I1h0 + 1,10 

or 

- All + 2AI3 - 2AI4+ Als = Ilh + V'l (8.11) 
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Since eqn. (8.14) may be obtained by adding together (8.12) and (8.13). only two 

of these equations are independent. This is a consequence of the fact that the 

frame has three redundancies and five unknown critical moments. 

We are concerned here with only positive values of H and V. If the frame 

actually collapses in the mode of Figure 8.6(b), the magnitude of the beiidiiig 

moment at each of the four plastic hinges must be equal to Alp. Since the sigii 

of the bending moment must be the same as that corresponding hinge rotation. 
M, = -Alp, A12 = Alp, M4 = -Alp, and Als = Alp for this mode of collapse. 
The bending moment distribution, which is linear in each segment of the frame 

(the shearing force bending moment), will be statically admissible if -Mp < 

M3 :5 Alp. Equations (8.12) and (8.13) therefore furnish 

Hh = Olp, 0 <- VI <- 2AIp (S. I r)) 

When the mechanism of Figure 8.6(c) represents the actual mode of collapse. it is 

necessary to set M, = -Mp, A13 =Alp, and A14 = -, Afp in equations (8.12) and 
(8.13). Using the restrictions -Alp :5 All :5 Alp and Alp :5 A15 :5 Alp required 
by the condition of static admissibility, we have 

VI = 4AIp, 0< Hh < 2. Alp 

Finally, regarding the mechanism of Figure 8.6(d) as actual for the state of 

collapse, and setting All = -Alp, A13 = Alp, A14 = -Alp and M. 3 = 311, 

in eqns (8.12) and (8.13), relationship between II and V under the restriction 

-Alp :5 A12 < Alp is obtained as 

Hh + Vl = 6AIp, 2AIp :5 IIh < 4,11p (8.17) 

The relationship between H and V producing plastic collapse is sliown grapid- 

cally in Figure 8.7, the mode of collapse associated with each linear segment of flie 
diagram being as indicated. Such a diagram, known as an i0cractiott diaymn). 

is always a convex locus enclosing the origin. Any combination of 11 and V rep- 
resented by a point inside the diagram constitutes a safe state of external loadhign 
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The collapse equation corresponding to any assumed mechanism of collapse 

may be directly obtained by a kinematical analysis in which the work doile by t he 

external loads is equal to the work absorbed at the plastic hinges. Since plastic 

work is always positive, the sign convention may be dispensed with in Nvritiilg 
down the work equation, from which an upper bound can be derived. 

8.3 Limit Analysis by Generalised Yield Criterion 

The limit behaviour of beams and frames have been described briefly in the 

previous section based on the simple plastic theorems. In this section the sanie 

problems will be carried out using the Gendy and Saleeb's lower bound yield cri- 

terion, eqn (7.3). 

Nine examples will be analyzed: seven have been taken from the literature 

(Candy and Saleeb [1993], Baker and Heyman [1971]) for comparison and include 

three standard beam benchmark problems, three two-dimensional franies with 

proportional loading and one three dimensional frame. In addition to these. two 

two-dimensional frames with combined load (Lubliner [1990] and Konig [1987]) 

are also examined. In all models the effects of warping are not considered. The 

lower bound limit loads were calculated using eqn. (7.64). 

The finite element software ANSYS (1994) is used here. The element types 

used throughout are either a two noded beam element (ANSYS MEAN13) for two 
dimensional problems or a two noded three dimensional beam element (AA'SYS 

BEAM4) for the space frame. A macro has been written in the A. VS)"S Para- 

metric Design Language (APDL), see Appendix II, to carry out the elastic com- 

pensation analysis automatically. The user thus only needs to set up tile iiiitial 

elastic analysis and then call the APDL macro, which takes over tlie s-olittion 
sequence and terminates with the best calculated lower bound limit state. The 
frame finite element models required are not conventional. Each franie nieniber 

needs to be modeled with several beam elements in order to correctly simulate 
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Figure 8.8: Simple supported beam 

the collapse mechanism. For example in the problems considered here typicallY 

fifty elements were used in each member. 

In practice, for large frame problems some mesh refinement would be re- 

quired in the vicinity of the simulated collapse mechanisms to obtain a good 
lower bound. This is not particularly difficult in modern finite element analYsis 

systems. A fairly simple procedure to efficiently implement elastic compen. "atioli 

can be derived: an initial analysis sequence be run to establish critical regioris - 
the finite element model in these regions would be refined and the sequeiice re- 

run, and so on. Frame members which do not contain critical re-iows- would iiot 

require refinement. Again this would be fairly straightforward ushig an APDL 

macro. This procedure was not found necessary in the current problenishice otil. N. 
test examples are examined. 

1. A simple supported beam 

The first example is a beam of a rectangular cross-section simple supporte(I 

at each ends and subjected to a concentrated load at the middle of tile beani 

as shown in Fig. 8.8, where L= 6000mm. b= 59.5171m. h= 120mm and 

av = 2101V/mm2. A total of 100 elements were meshed in the finite element 

model. The lower bound limit load calculated is 60 K. N and the plastic collapýse 
load eqn. (8.1), P: = 4AIpIL, is 63 KN. where . 

11p is the fully plastic monient 
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Figure 8.9: Fixed-ended beam carrying a uniformly distributed load 

and L is the length of the beam. Evidently, the solution using the ela-stic coni- 

pensation method is a good estimate of the limit load. 

2. A fixed-ended beam carrying a uniformly distributed load 

The second example is a fixed-ended beam with a rectangular cross-sectiun 

and a uniformly distributed load as shown in Fig. 8.9, where L= 1000nmi. 1) = 

30mm, h= 100mm and a,, = 210N/mml. In the finite element niesli. 100 

elements were developed. The lower bound limit load calculated ushi, " elastic 

compensation is 231.7 KN which can be compare with the exact plastic collapse 
load 252 KN obtained by the equation (8.11), P, = 16., 11plL. 

3. A clamped end beam problem 
The third example is a beam of a rectangular cross-section clamped at both 

ends and subjected to a concentrated load as shown in Fig. 8.10. where L= 

1000mm, b= 30mm, h= 100mm and a. = 210., Y/imn2. The element numbers 

meshed in this problem were 100. The lower bound limit load calculated usilig :5 
elastic compensation is 78.6 KN and the limit load obtained by Gendy aiid Saleel) 

is 80 KN. Evidently, the solution using the elastic compensation method is good 

agreement with the theoretical result. 
4. A two-bay frame problem 

The fourth example is a two-bay frame with geometry and loading as shown 
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Figure 8.11: Two-bky frame 
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in Fig. 8.11. The lower bound limit load calculated using elastic compensation is 

sis given I)%- found to be 86.5 KN while the 'exact' solution of classical limit analy, 
Baker and Heyman [19711 is 91 KN. 

5. A one-bay, two-story frame problem 

In Fig. 8.12. the geometric and materialdata for one-bay. two-story fralue are 

given. The lower bound limit load obtained by the elastic compensation niethod 
is 38.7 KN which can again be compared with the result of 40KN from Baker and 
Heyman [1971]. 

6. A two-bay, two-story frame problem 
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Figure 8.12: One-bay, two-story frame 

A two-bay, two-story frame with geometry and loading as shown in Fig. S. 1: 3. 

The material data are taken from the previous example. The lower bound limit 

load from elastic compensation is 40.4 KN which can be compared to the result 

of 45 KN [Gendy and Saleeb 1993]. 
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Figure 8.13: Two-bay, two-story frame 

7. A space frame problem 
A space frame shown in Fig. 8.14. from Gengy and Saleeb [1993]. The colunius 

and beams are made of TV10 x 60 and TV18 x 60 sections, respectively. Each 

member is of length L= 144 in. (3.7 m). The material properties are: E= 

30,000 ksi (206.7 GPa); G= 11,500 ksi (79.2 GPa); and oy = 34 ksi (234 NIPa). 

Gendy and Saleeb also quote results from two other sources, (Marino [19701. 

Yang and Fan [1988]); the load deflection curves reported in Gendy and Saleeb 

[19931 are reproduced in Figure 8.15. and the limit load obtained by the elastic 

compensation method is superimposed. 

8. One-bay, one-story frame under combined load 

A one-bay, one story frame subject to combined loads is shown in Figure S. 16. 

taken from Lubliner [1990]. An interaction diagram can be constructed froin elas- 
tic compensation; the result is shown in Figure 8.17 together with the solutions 
from Lubliner and Chapter 3 (. Alp is plastic moment of fraine). 
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Figure 8.14: Three-dimensional frame with wide-flange cross-section 
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Figure 8.15: Horizontal displdcement at the loaded point of a three-dimensional 

frame with wide-flange cross-section 
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Figure 8.16: One-bay, one-story frame 

9. One-bay, two-story frame under combined load 

Finally a one-bay, two-story frame is shown in Figure 8.18 taken from KUig 

[1987]. The beam-to-column stiffness ratio is 2, ý42_ and the ratio of plastic nio- 

ments in beams and columns is 2: 1, and the ratios of h1L are: 1/4.1/2.1 

and 2. Limit load interaction diagrams are compared with the results obtailled 
in Chapter 3 using solid element model and those of K6nig [1987] in Figures S. 19 

to 8.22. In these, p= 7511AIp, w =Xll. Alp, p is normalized vertical load 
. 

w is normalized horizontal load, 75 is vertical loads calculated from the analysis. 
77 is horizontal loads calculated from analysis and Alp is plastic moment of frame. 

8.4 Shakedown Analysis by Elastic Compensation 

To find the shakedown load, various methods have been developed. We of' 
these is based on mathemetical programming [Maier et al. 1982.1986) [K(311ig 

1987]. But the computing time required by this method increases expoiientially 

as structures become larger and larger thus making this method impractical for 

the analysis of real structures. In this study, the shakedown load can be obtained 
by the elastic compensation method. 
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Figure 8.17: Results of one-bay, one-story frame 

According to the statical shakedown theorern, a framed structure will shake 
down under a set of loads varying between prescribed limits if 

Al, : 1111'. 1'.., :5 . 11P (S. 1 18) 

exists and satisfies the condition: 

I Alr + AT, I max :ý -IIP 

Since the conditions of the shakedown theorem include those of the lower 

bound theorem of plastic collapse, the limiting load for shakedown cannot excee, 
the load corresponding to static collapse: * 

P. < PL (8.20) 

It is known from previous Chapter that if either the Gengy an([ Saleeb (1993 
01 

generalised beam yield criteria are used with the nominal stress a,,. rather thim 
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the actual yield stress, then the elastic modulus of a beam element f, may be 

written as 

E('i+, ) = Ei7' 

where Hj' is the appropriate yield function from eqn. (7.9) or (7.10) evaluated for 

the (unaveraged) nodal stress resultants in element e. As in the above. the ela. 'sitic 

compensation procedure carries out several re-analyses for the noniinal load set 
but not until the maximum yield function in the beam model. can be 

reduced no further. Then the lower bound limit load is 

PL 

= P. 'y Ilmax 

The redistributed moment calculated by the elastic compensation procedure 
for each iteration is designated as a possible shakedown moment 11, j: that is. t lie 

moment in the component under full load after shakedown has occurred. This 

moment is taken to be the sum of the initial elastic moment AI, and a residual 

moment AIj (for iteration i): 

Al. j = A. + Ali (8.21) 

Thus, the residual moment Af,. is defined implicity in the elastic compensation 

procedure, such that: 

Al'i = -Afi - Afý (8.22) 

Shakedown criterion (8.18) may therefore be rewritten as: 

I Al. i - AL 1 :5 Alp (8.23) 

As the elastic compensation procedure is linear, the magnitude of tlie moment 
is proportional to the applied load set. Therefore 

p- 
. 111 

Td- ý- 
il Id (8.21) 

Where P' and Afd are a nominal applied load set and resulting moment resipvc- 
tively. The elastic and shakedown moments can therefore be written: 

dP All Al; 7Td (8.25) 
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(8.26) Td 

Substituting expressions (8.25), (8.26) into (8.23) and invoking shakedown crite- 

rion (8.18) gives: 
1111 - Id. _ Aldl, 

"', 
P< 

Alp (8.27) 
ril : IA 

as e -pd - 

Similarly, criterion (8.19) gives: 

(8.28) :5 AlP 

At shakedown, either the residual moment is at full plastic: 

lAlsd d 
I- 

Ale 
r Max e 

Imax 
Pli 

= Alp (8.29) pd 

with the maximum shakedown moment less than or equal to full plastic, or the 

maximum shakedown moment is at full plastic: 

P2 i JAI. ilmax ý- JAIsdilmaxT7,1 
--": -AlP 

(S.: 30) 

with the maximum residual moment less than or equal to full plastic. Equation 

(8.29) gives a shakedown load Pii for iteration i, such that 

Pli = pd 
Alp 

dl Ale 
e max 

and equation (8.30) gives a shakedown load P2i for iteration i, such that 

P2i --: -- Pd 
Jllp 

(8.32) Pl. di Imax 

The lower bound shakedown load P., j calculated for iteration i is the smaller 

of the three calculated loads Pli, P2i and PL that is; 

P. j = min(Pli, P2j, PL) 

Two two-dimensional frames with combined load analysed by the p1wtic tbe- 

ory will also examined by the proposed method and using Gendy and Salve-d's 
(1993) lower bound yield criteria eqn. (7.10). For the fixed-base rectanglilkir por- 
tal frame shown in Figure 8.23, the lower bound shakedown loads calculated arv 
shown in Figure 8.24 together with those of calculated by the plastic theory. For 
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the two-story frame shown in Figure 8.25, the all results are shown in Figure 8.26. 

8.5 Concluding Comments 

It is known from previous sections that the limit loads obtained by the elastic 

compensation method based on generalised yield criteria are in good agreement 

with the theoretical results. It can be seen from the Figure 8.24 and 8.26 that 

the lower bound shakedown loads calculated by the elastic compensation method 

are very close to the theoretical solution. 

In this chapter, the lower bound limit and shakedown loads of 2-D and 3-D 

beam and frame structures were obtained by the elastic compensation method. 
The calculated lower bound limit loads obtained by the proposed method are 
found to be quite accurate. The elastic compensation method can therefore be 

used to estimate the limit loads of complex structures for design purposes WithOUt 

resource to complex inelastic analysis. 
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Figure 8.18: One-bay, two-story frame 
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Figure 8.19: Results of one-bay, two-story frame, h1L = 1/4 
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Figure 8.20: Results of one-bay, two-story frame, h1L = 1/2 
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Figure 8.21: Results of one-bay, two-story frame, h1L =1 
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Figure 8.22: Results of one-bay, two-story frame, h1L =2 
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Figure 8.23- Incremental collapse of a portal frame under variable repeated loads 
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Figure 8.24.: Interaction diagrams for a fixed-base portal frame under static and 

cyclic loading 
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Figure 8.2S: A two-story frame with possible collapse mechanisms 
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CHAPTER 9 

GENERALISED LIMIT ANALYSIS OF NOZZLES IN 
SHELLS 

9.1 Introduction 

In Chapter 5 limit analysis of the nozzle problem was presented. Iii (I'liapter 7. 

the elastic compensation procedure based on Ilyushin's and Ivanov*s gelieralised 

yield criterion has been developed. In this Chapter, a parametric study of t1w 
limit loads for nozzles in spherical and also for cylindrical pressure vessels will be 

carried out respectively, using this method and compared to the previous resull s. 

9.2 Generalised Limit Analysis of Nozzles in Spherical Shells 

9.2.1 Model Geometry 

Thirty one pressuried axisymmetric nozzle/sphere models with fi%ed spliere 

radius, sphere thickness and nozzle thickness (t1T = 1) are investigated ill stick 

a way that the, ratios RIT and t1T are held constant. The nozzle/spherical shell 

geometries are shown in Figure 9.1. Here the dimensionless geonietry paranieter 
P: P= -I: - 

(: ýý) 12' 
is used as same as that in the paper of Leckie and Payne [1965]. Ill RT 

Figure 9.1, r is the radius to mid-section of the nozzle, R the radius to inid-sect ioll 

of the shell, t the thickness of the nozzle and T the thickness of the sphere. 1) is 

the internal pressure and Pr the radial outward pressure as shown. 
I The shell radius R is fixed at R= 1000 and three %vall tliickness are eNainilled 

(T = 10,20 and 40mm) giving three groups of models with constant sliell radiiis 
to thickness ratio of RIT = 100,50 and 23. In this wky, the variatioli ill limit 
load with two dimensionless geometry parameters p and RIT was investigatA. 
For all the models examined the modulus of elasticity is taken as 200 1;, '3. N'/m nt-' 
with Poisson's ratio 13. The yield stress of the material is taken as 300AYn""2. 
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Figure 9.1: The geometry of axisymmetric nozzle in spherical shell 

9.2.2 Finite Element Model 

Finite element models were created in ANSYS using two noded axisYniniet ric 

structural shell element SHELL51. The models were restrained in the ineridiolial 
direction, but allowed to move radially, at a distance sufficiently far renim-ed from 

the nozzle. Internal pressure P and radial nozzle pressure P, equivalew to ýtii 

capped nozzle pressure load, 

Pl. -- 
Prj2 

_ 
r2 - r? 0t 

where r. is outside radius and ri inside radius of the shell, were applied. 'ne 

model finite element mesh for model 10j is shown in Figure 9.2. The niodel loild- 

ings and boundary conditions are the same as that of solid element niodel iii 

Chapter 5. 

9.2.3 Limit Loads of Nozzles in Spherical Shells 

The calculated elastic compensation limit pressures. PIL alld PIV- 0I)IiIiII041 
using Ilyushin's and Ivanov's yield functions, ecin (7.48) and e(In (7.19) respec- 

tively, are normalized according to the equation: 

pRp 
2Tall 
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These are compared in Tables 9.1-9.3 and Figures 9.3-9.5 with elils-tic-perfect Iy 

plastic finite analysis, Pp-, with the previous solutions in Chapter -') - tile first 

yield pressure, Py-, the lower and upper bound limit pressures. Tj all([ 71-,, - ; md 

the Robinson and Gill [19731 lower bound limit solution PR+G. 

9.2.4 Discussion of Results 

The results show that there is no real distinction between the re-Stilts u-shm'. 
Ilyushin or Ivanov yield function. It can be seen from Figures 9.3 to 9.5 t liat t It(, 

limit pressures calculated lie closer to the previous lower bound solution (01ap- 

ter 5) for lower values of p and closer to the upper bound for higher valties. blit. 

in Figures 9.3 to 9.5, shows a different slope to the results derived liet-e tisilig 
Ilyushin or Ivanov's approximate yield function. The Robinson and Gill [1973] 

solution is also bounded by the previous solutions (Chapter 5). In fact Robiiisoii 

and Gill [1973] also used Ilyushin's approximate shell yield function. but 11se'l 

optimisation techniques applied to the lower bound limit load theorem but (liese 

were based on approximate polynomial representations for theshell stresses aild 

would not be expected to reflect the actual stress system close to collaj), e. 

9.2.5 Concluding Comments 

Comparing the results of the parametric study with results from literatill. q. 

and incremental elastic-plastic analysis (with an elast i c- perfect ly plastic nuitv- 

rial model) indicates that the elastic compensation method is a robtist niollod 
for bounding limit loads without recourse to complex increnient, 11 ehistic-plilstiv 

analysis. The results of the study also indicate that Nvliilst the lower I)ollllfl linlil 

load is a function of the dimensionless geometry parameter p itsed by Leckie ,I 
al, it cannot be fully characterised by this single parameter. The spreild ill t1lo 

results for the lower and upper bound limit pressure for the viirious /? /'/' n1lio, 
indicates that this parameter also has an influence. 
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It has been shown here that efficient estimates of lower bound limit loads ill 

axisymmetric nozzle in spherical shells and other axisymn-letric sliell sti-lictill-es. 

such as torispherical and conical ends and a skirted vessel [Boýyle. llaliiilloil. Slli 

and Mackenzie, 1995], can be obtained using approximate shell-type yiel(l 
tions. While detailed elasto-plastic finite element analyses of axisyninietric sliell 

structures can be easily derived, the approach suggested here only re(Itiii-es a few 

elastic analyses and would be a more economic way of generating eitlier I lie large 

number of results required to take in a more complete parameter stirvey or a (11tick 

estimate of plastic collapse loads in complex ring stiffened vessels. The iiext st vp 

would be to extend this approach to more complex three dimensioiial presstire 

vessel geometries. 
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Table 9.1: Normalised lower and upper bound limit pi-csium of )io: --I(s. 7' = 
10mm, RIT = 100 

Nozzle r(mm) p Py p-, Pu PIL TII' PI? +G 111 
10a 10 0.1 0.429 0.953 1.0 0.992 0.98.1 0.992 

lob 20 0.2 0.442 0.904 1.0 0.966 0.96 0.992 

loc 30 
f 

0.3 0.459 
1 

0.885 1.0 0.925 
1 

0.918 0.9 7 -15 
loe 50 0.5 0.47 0.85 0.993 0.91 0.899 0.876 0.958 

lof 60 0.6 0.469 0.799 0.993 0.831 0.831 0.8: 36 0.917 

log 70 0.7 0.465 0.769 0.968 0.804 0.813 0.80 0.88: 3 

10h 1 
80 0.8 1 0.459 0.709 0.918 

1 
0. j73 0.781 0.744 1 0.8. ) 

loi 90 0.9 0.44 0.698 0.901 0.74 0.15 0.71 0.817 

loj 100 1.0 0.412 0.651 0.817 0.714 0.725 0.68 0.792 

lOk 
1 

200 
1 

2.0 0.257 0.455 
1 

0.561 0.523 
1 

0.539 
1 0. -172 1 

0 

1.0- 

0.9- 

0.8- 

0.7- 

0.6- 
E 
ý2 0.5- 

0.4 - 

0.3- 

0.2- 

0.1- 

0.0- 

-- -Zý- . ýi §- 

l First yie d 
Lower bound 

-sh- Upper bound 
-0- llyushin 
- Ivanov 

R+G 
E+P 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

(r/R)*(R/T)**(1/2) 

Figure 9.3: Normalised lower and upper bound limit pressure of 11ozzles. T 

10mm, RIT = 100 
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Table 9.2: Normalised lower and upper bound litnit pr(ssure of noz-: 4. s. T= 

20mm, RIT = 50 

Nozzle r(mm) p Py P, Pu PIL pf V PR + ri PP 
10 14.14 0.1 0.469 0.955 1.0 0.97 0.963 - 0.992 

11 28.28 0.2 0.436 0.9 1.0 0.952 0.9-14 - 0.992 

12 56.57 0.4 
1 

0.464 0.833 0.997 
1 

0.896 0.893 
1 

0.928 0.961 
1 

13 70.71 0.5 0.471 0.803 0.99 0.868 0.866 O. SSS 0.933 

14 84.85 0.6 0.473 0.776 0.977 0.84 0.838 0.8-16 0.90 

15 98.99 0.7 0.471 0.745 0.955 0.791 0.815 0.81 0.867 

16 113.1 0.8 0.467 0.715 0.923 0.783 
1 

0.792 0.774 0.833 

17 127.3 0.9 0.448 0.685 0.884 0.756 0.767 0.7-36 0.817 

18 141.2 1 1.0 0.419 0.657 0.843 0.1-32 0.747 0.704 0.78: 3 

19 212.1 1.5 0.32 0.541 0.683 0.657 0.649 0.583 0.6 -') 8 

20 282.8 2.0 
1 

0.264 0.463 0.584 
1 

0.56 0.573 1 0.496 (). --) -') 

1 

C 

C 

2 

M 
u 
Gn 

C 

C 

C 

let 

First yield 
Lower bound 
Upper bound 

-0- flyushin 
- lvam)v 
-. V- R+G 
-4p- E+P 

I I I 1 1 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 
(r/R)*(R/T)**(1/2) 

Figure 9.4: Normalised lower and upper bound limit pressure of nozzles. 7' = 
20min, RIT = 50 

237 



Table 9.3: Normalised lower and upper bound limit pressure of no----hs. T= 

40mm, RIT = 25 

Nozzle r(mm) p PV PI Pu PIL P11, PI? +G PP 

21 40 0.2 0.432 0.92 1.0 0.947 0.928 - 0.996 

22 60 0.3 0.443 0.888 0.999 0.927 0.919 0.974 0.992 

23 80 0.4 0.457 0.859 0.996 0.90 0.895 0.911 0.975 

24 100 0.5 0.467 0.829 0.99 0.871 0.873 0.905 0.958 

25 120 0.6 0.471 0.802 0.976 0.843 0.848 0.87 0.917 

26 140 0.7 0.473 0.774 0.954 0.817 0.825 0.832 0.896 

27 160 0.8 0.471 0.748 0.924 0.792 1 0.803 0.80 0. S, 67 

28 180 0.9 0.467 0.718 0.888 0.769 0.781 0.768 0.838 

29 200 1.0 0.462 0.692 0.851 0.749 0.762 0.74 0.808 

30 300 1.5 0.353 0.579 0.702 0.6 0.6 6 0.61.3 
1 
0.67.5 

31 .0 0.291 0.495 
1 

0.60 - - 0.518 - 

C 

C 

c. C 

"Ci 

C 

C 

C 

F ld irst yie 
Lower bound 
Upper bound 

-0- llyuswn 
Ivano 
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1 
:; 

- R+G 
. -41- E+P 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

(r/R)*(R/T)**(1/2) 

Figure 9.5: Normalised lower and upper bound limit pressure of iiozz1vs. 7' 
40mm, RIT = 25 
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9.3 Generalised Limit Analysis of Nozzles in Cylinder Shells Under 

Internal Pressure 

9.3.1 Brief Review of Limit Analysis of Nozzles in Cylinder Shells 

Under Internal Pressure 

Lower Bound Limit Analysis 

The problem of two intersecting cylindrical sliells under internal presstire is a 

common situation in the pressure vessel industry. Because of the lack of rotational 

symmetry the problem of the limit analysis of a branch in a cylindrical vessel is 

much more difficulty than the case of a spherical vessel, but there are a, number of 

attempts at theoretical solutions. The first appears to be due to Goodall [19671 

who obtained some lower bound solutions for the small radius radial nozzle us- 
ing the shallow shell equations and the approximate Tresca two-monient linlited 

interaction yield surface. The assumed stress field was very simple, as a result ()I' 
which it was not possible to get strict equilibrium of forces and moments at t1w 
intersection. 

Lower bound results using Y, eqn. (7.34) have been presented by Ellyin mid 
Turkkan [19711. Although using non-linear programming and von Mises yield 

criterion, their method of handing the intersection equilibrium equations is (Ittile 
different and, in addition, their assumed stress distribution has a fixed ininiber 
of terms in the series expansion. Moreover, there appears to be an inconsistency 

in the analysis concerning the equilibrium across the zones eniplPyed. Difrerelit 

pressures have been used in each zone whereas a lower bound stres. s field sliwild 
be in equilibrium with the same pressure everywhere. Itesults wvre giveii for it 
large number of parameters but unfortunately there seenis to be errors hi t1w 

analysis [Robinson 1978] and so the results will not be true lower bottwis. 

Erbatur [1972] did a general lower bound analysis valid for oblique iiozzles 
also, but, because of limitations imposed by computer store. tile reý, Illts obtaiiied 
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were not very satisfactory. In 1975 Robinson [1975) using thin shell theory %vitli 

series expansion for the stress resultants and using Ilyushin's approxhimte yield 

surface (Y3), eqn. (7.36), obtained a lower bound limit presure. The coofficients 

in the series were optimised using a non-linear programming teclutique. llow- 

ever it was reported that occasionally the program failed to converge at values 

of (r/R < 0.5), and the results obtained for large nozzles (r1R > 0.8) were lower 

than lower bounds available at that present time. 

In 1976 Biron et al. [19761 attempted a lower bound fornitilatioii ushig M 
Ilyushin's approximated yield surface (Il), eqn. (7.34), and dividingthe struct It rv 
into segments. Within the segments the stress resultans are approxinulte by a 
finite series, the coefficients of which are optimised. It was fOU11d Out bY Biroli 

that strict satisfaction of the continuity equation at the junction of the 11ozzle 

and cylinder was not possible, hence a tolerance Bi necessary for a satisfiictorY 

solution was introduced. It was pointed out by the author that there was sonie 
difficulty in deciding the value of Bi necessary for satisfactory solution. llellcv 

this method does not seem to give a satisfactory solution. 

Srinivasaiah and Schroeder [1977] in 1977 found a lower bound limit pressure 

of cylinder/cylinder intersection based on three dimensional stress fields expaii(led 
in series at every point of the shell and of the intersection. The. e(litation's theY 

obtained were solved using a computer so as to obtain the limit pressure which did 

not voilate yield condition. The von Mises yield condition was used thl-oughoill 

the volume of the branch and cylinder. However, it was found that t he limit 1)1. (, s- 

sure tended to fluctuate as the number of the collocation sectiom wei-v hict-vasc(I 

and at the same time high residuals were found at a few collocat ioii poijit s. whicIl 

rendered the lower bounds to be low for design if diameter ratios of the cYlilidel-s 
were smaller than 0.5. 

In Robinson's paper [19771 a non-linearprograniming a pproach a nd tIwI lYitss IIiII 

yield surface Y3, eqn. (7.36), have been used. Then a parametric study for a lower 
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bound limit pressure for the case of a flush nozzle in cylindrical vessel under ill- 

ternal pressure has been carried out by Robinson [1978]. A lower botind soltitioii 
for various parameters of cylinder to cylinder intersection was obtained bY tis- 
ing both shallow and deep shell theories. The results lie obtained were used to 

plot various graphs. For these graphs, the higher of the shallow of deep sliell 

results was taken. These graphs are useful for finding the lower boinid linlit 

pressure for various parameters of nozzle/cylinder intersection. Finally Ile niade 

comparisons between theoretical and experimental results for certain parameters. 
It was pointed out that experimental results would be subjected to a, great deal 

of uncertainty for many resons: (i) the effect of anisotropy and strain hardening 

of material used and consequently difficulty in defining yield stress, (ii) differilig 

amount of weld material at the intersection of the two shells, (iii) local defects 

due to geometry inaccuracies or inhomogeneties. In addition to these there is a 

major uncertainty because of the number of ways in which plastic load cotild 
be estimated as mentioned earlier. 

Upper Bound Limit Analysis 

Upper bounds for radial nozzles in the range r/R < 0.5 were obtiined 1). % 
Cloud and Rodabaugh [19681 but their results are not true upper botuids iis 

several terms were omitted from the equations. They assumed the two-inoinelit 
limited interaction yield surface. However, because of the neglect of severa I terins 

and some approximations made, this method can be regarded as giviiig oiil. %- I 

rough estimate, but it has the advantage that values can be obtained froin it 
formula. 

Schroeder and Rangeranjan [1969] developed an tipper bowid amilysis vidid 
for radial nozzles with r/R > 0.4, and using Ilyushin's first yield ,, oirfilce VI. 

eqn. (7.34). The equation was solved using a computer wldch did flie wimericill 
integration and minimisation to obtain the upper bound limit pressurv. Tile III). 
per bound solution when compared with experimental results sliowed t1lat it %%-; Is 
about 20% higher. In this analysis the assumed velocity field had some dogree ol' 
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freedom so that is was possible to gradually lower the upper bouiid bY allo%viiig 

a more general velocity field. Hence the bounds were improved still flirtlier bY 

Schroeder [1971], Schroeder and Roy[1971] for the entire range of (r/R). It mis 
found that the new analysis gave an upper bound solution which was lo\\-er t lia ii 
the solution obtained by Schroeder and Rangeranjan [1969]. 

Experimental Investigation 

Some experimental work on the behaviour of branches in cYlindrical vessels 

beyond the elastic limit has been reported by a number of researchers. such as 

Rose [1965], Winkler et al. [1965], Cottam and Gill [1966], Clare and Gill [P)661. 

Rodabaugh and Cloud [1968], Calladine and Goodall [1969], Ellyin [19761 (19771 

and Schroeder et al [19771. 

Since the late 1970's very few more detailed analyses for limit presstn-e liavv 

been published and more emphasis has been placed on deriving specific residis 
for particular geometries either through testing or detailed elasto-plastic flilite 

element analysis. Very recently a detailed study, using the elastic conipenisatioii 

method, of cylinder-cylinder intersections under internal pressure and iii-plalle 

moment loading by Nadarajah [19931 and Nadarajah et al. [1997)] has sillown t1lat 
fairly detailed three dimensional finite element modeling is required to obtaiii 

acceptable bounds. This is computationally expensive (but still intich I esis t lia ii 
detailed elasto-plastic analysis Nadarajah et al. [1995]). A simpler approarli 

would thus be preferable. In last section a simple but effective teciiiii(Itie for t1w 

calculation of lower bound limit loads for axisyninietric thin sliells was dviiioii- 

strated. The key feature of that study is the use of approxiiiiate yield critel-ia 
for thin shells. In this section this approach is extended to geiieral sliell si i-iic- 
tures and demonstrated for the pressurised cylinder-cyliii(ter intersect ioti pmbleiii 
through a detailed parameter survey. The finite element inodeliiig aiid alialYsis 
time which may be required is greatly reduced. 
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H 

Figure 9.6: Cylinder/cylinder geometry 

9.3.2 Model Geometry 

The basic geometry and notation are given in Figure 9.6: the in. -Ain cylin(ler 
has mean radius R and thickness T while the 'nozzle' has mean radius r ajid 

thickness t. The length of the cylinder is denoted by L; the height. of t1w nozzle 
from the axis of the main cylinder is denoted by II. 

A series of twenty seven models are developed correspondhig to three diffvr- 

ent ratios of cylinder radius to thickness, (RIT) = 50,100 and 200. For eacIl 

of these models three different ratios of nozzle to cylinder radius are coiisidervd. 
(r/R) 0.1,0.2,0.4, and three different ratios of nozzle to cylhider fliickiwss. 
(t1T) 1,0.5,0.25. These are surnmarised in Table 9.4. The geoniorir pilriun- 

eters, R, L and H were constant for each model with vaILWS R= 500111111.1, = 
2000mm and H= 700mm. 
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9.3.3 Finite Element Model 

The finite element model is developed using S-node structural sliell elvinvill 
SHELL93 in ANSYS [1994]. In all the finite element models. a (Itiarler of tll(- 

nozzle and cylinder was modeled with an internal pressure and it t ota I of 2 1-5 ele- 

ments; typical models are shown in Figure 9.7. The mesh used is characteristic of' 
thin shell finite element models used for nozzle problems and will be demorts-trated 

to give useful results for limit loads in comparison with previous SOIL16011S. 110%%'- 

ever it should be noted that in general some mesh refinement would be requ i red iII 

the vicinity of the simulated collapse mechanisms to obtain a good lower homid. 

This is not particularly difficulty in modern finite element analysis systems: it 

is suggested here, for elastic compensation, that an initial analysis sequeilce be 

run to establish critical regions - the mesh in these regions would be refilied and 
the sequence re-run, and so on. This procedure was not found necess-ary in tile 

current problem. In addition, since shell elements only are required on a ineslied 
doubly curved surface such mesh refinement is straight forward - this is tiol flie 

case if brick elements are used in a full three dimensional model Nadarajali [1993] 

and Nadarajah et al. [19951! 

Symmetric boundary conditions were imposed on the two planes of synnnetry. 
At the ends of the nozzle and the cylinder axial pressure was also applied. A cou- 

straint in the circumferential direction was also placed on the end of t lie cylilider. 
The loads and boundary conditions applied here are the same as Nadarajah [1993]. 

given in Figure 9.8, and are thus adopted for comparison purposes. Shnilat-lY. the 
(initial) elastic modulus and Poisson's ratio were taken as 200E: 3 . \7nmiý' aiid 0.3 

respectively with nominal yield stress of material was taken as : 300 NInmil. 
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9.3.4 Discussion of Results 

The elastic compensation was performed automatically through im . INS) 'S 

Design Parametric Language (ADPL) macro which is the same as previous svc- 

tion. Up to six iterations are performed for each model and the niodidus- is cor- 

rected using the equation (7.50). Then the elastic compensation Iiinit pressilres 

for Ilyushin's, PIL, and Ivanov's, Piv, generalised yield criteria were obtaiiied 

using eqn. (7.51). To assist in a comparison with previously published results. 

pressures are normalised according to the equation: 

7=R 
Muy 

The normalised limit pressures, FIL and Tiv, obtained by tlie elastic coni- 

pensation procedure are surnmarised in Table 9.4 and shown in Figures 9.9 to 0 
9.11 for RIT = 50, Figures 9.12 to 9.14 for RIT = 100, Figures 9.15 to 9.17 Im- 

RIT = 200. 

These results are compared to the lower, 731, and upper, F,,. botind hinit pres- 

sures and extrapolated results from detailed elasto-plastic analysis, FP. These re- 

sults are taken from Nadarajah et al. [1995]: S-node isoparanietric solid Clenleilts 
(SOLID45 of ANSYS) were used for elastic compensation lower bound aii(I upper 
bound limit analyses and up to 14 iterations were required. the elas-to-plast ic aii, 11- 

yses were carried out using 4-node shell elements (SlIELL43 of ANSVS). Also 

shown are Robinson's [1978] lower bound limit pressure, Fj? which was derive(I 

using Ilyushin's generalised yield criteria and a nonlinear programming leclinique. 

It can be seen from the Table 9.4 that the normalised linfit pressures. T111. 

and PIV, obtained by the elastic compensation procedure, ba. sed oii 11yu., 11ill 

or Ivanov's equation respectively are generally higher than the resiilts Oblaillvd 
from Robinson [1978] and Nadarajah tt a/. [1995]. More sigiiirtcautlY. fliv liew 

shell lower bound estimate is very close to the elasto-plastic shell malysis. Alm). 

the results obtained from Ilyushin and Ivannov's criteria are coinparable (awl hi 
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Table 9.4: Normalised limit pressures for the cylinder-cylin der intr rs(clions 

RIT tIT r/R PR PP 1 PL Pt, PIL fit' 

50 1.0 0.1 0.931 0.92 0.82 1.0 0.85 0.8: 3 

50 0.5 0.1 0.827 0.81 0.74 0.93 0.82 0.82 

50 0.25 0.1 0.770 - 0.66 - 0.9-1 0.71 

50 1.0 0.2 0.666 0.75 0.61 0.87 0.10 0.70 

50 0.5 0.2 0.526 0.64 0.51 0.74 0.61 0.60 

50 0.25 0.2 0.479 - 0.42 - 0.60 0.59 

50 1.0 0.4 0.401 0.47 0.37 0.52 0.51 0.51 

50 0.5 0.4 0.283 0.36 0.26 0.40 0.41 0.42 

50 0.25 0.4 0.234 - 0.21 - 0.35 0. -36 
100 1.0 0.1 0.850 0.87 0.74 1.0 0.82 0.81 

100 0.5 0.1 0.715 0.77 0.64 0.87 0.69 0.70 

100 0.25 0.1 0.671 - 0.55 - 0.62 0.61 

100 1.0 0.2 0.550 0.62 0.49 0.74 0.64 0.61 

100 0.5 0.2 0.425 0.50 0.39 0.60 0.. 59 0.59 

100 0.25 0.2 0.381 - 0.32 - 0.46 0.47 

100 1.0 0.4 0.259 0.37 0.28 0.42 0.41 0.41 

100 0.5 0.4 0.161 0.25 0.18 0.30 0.34 0.33 

100 0.25 0.4 0.138 - 0.14 - 0.23 0., 21 

200 1.0 0.1 0.691 0.19 0.69 0.87 0.78 0.78 

200 0.5 0.1 0.556 0.64 0.52 0.66 1 0.58 0.59 , 
200 

1 
0.25 0.1 

1 
0.513 - 0.44 -1 0. -15 0.17 ý 

200 1.0 0.2 0.418 0.55 0.38 0.61 0. -52 0. -33 
200 0.5 0.2 0.327 0.41 0.30 0.48 0.44 0.15 

200 0.25 0.2 0.286 - 0.20 - 0.23 0.26 

200 1.0 0.4 0.201 0.29 0.19 0.: 3: 3 0.: 12 0.32 
200 0.5 0.4 0.131 0.18 0.1: 3 0.22 0.22 0.2: 1 

200 
1 

0.25 
1 0.4 1 0.117 0.09 0.11 0.11 

248 



fact only results based on liyushin's function. 731L, are used in Figures 9.9 to! ). ] 7. 

9.3.5 Concluding Comments 

This section describes a simple technique for the estimation of lower botiiid 

limit loads using conventional plastic shell analysis and the elastic Compelisatioll 

method. This new technique has been applied to the problem of estiniathig limit 

pressures in cylinder/cylinder intersections and compared to more detailed Solid 
finite element lower and upper bound analysis, to elasto-plastic shell fiiiile ele- 

ment analysis, and to previous solutions from the literature. 

It can be concluded that the new simpler elastic compensation metliod for 

thin shell finite element analysis can be used to give practical (lower hollild) lifilit 

loads. Since the new method is based on thin shell analysis considerable benefit", 

over full three dimensional analysis are feasible and the technique has natch J)o- 
tential, for future application. 
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CHAPTERIO 

CONCLUSIONS , 

10.1 Introduction 

The development of a new, simple finite element method is presented which 

can greatly simplify limit and shakedown analysis of a range of complex sti, tic- 

tures. It is attractive to stress analysts and designers. This development has beeli 

achieved in this study using the novel elastic compensation method which has 

been developed by the Strathclyde Research Group and in this thesis. 

The method of elastic compensation has been shown in this study to givv 

accurate bounds on plastic limit loads for a range of complex geometries using 

elastic finite element analysis only, such as thick cylinders and nozzle/splivi-v 
intersections under internal pressure and plates with a central 110le subjected tO 

multiple loading conditions. The method has been further developed based oil t lie 

use, of generalised yield surface of structural components (beanis and sliells) 
in plasticity for limit analysis of large complex structures. such as thin-walled 

structures and frames. The extension of elastic compensation to shakedown lias 

also been investigated. This new procedure has been shown to provide hoth lower 

and upper bounds to shakedown for a single load and interaction diagrams for 

multiple loading. The shakedown procedure has been verified on a, range ofst ruc- 
tural problems. The algorithms required to carry out elastic compensation Ilave 

been formalised as a set of macros in the ANSYS Parametric Desigii Laiigttagp 

[1993]. The detailed findings from the study are summarised in tile followiii", 

Section. 
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10.2 Detailed Findings 

10.2.1 Elastic Compensation Using Solid Elements 

The eight noded isoparametric solid element PLANES2 in ANSYS was tised 
in the elastic compensation analysis for calculating lower and upper bolind limit 

loads and shakedown limits for a range of structures, such as pressurised cYlindens. 

one-bay, one-story and one-bay, two story frames subjected to multiple loadin iii 

Chapter 3, plates with a central hole subjected to multiple loading conditions it) 

Chapter 4 and nozzle/sphere intersections under internal pressure in (I hapter '). 

It was found that the limit load bounds obtained are generally within 10'A or 

each other; further the bounds could be improved with increasing niesli densitY 

in the regions of the failure mechanism [Mackenzie, Shi and Boyle, 199 11 aild t 1w 

upper bound is generally closer to the elasto-plastic solution. 

10.2.2 Elastic Compensation Using Beam Elements 

As one aim of this project, the elastic compensation method has been further 

developed based on the use of generalised yield criteria of structural coillpollent. ", 
(beams and shells) in plasticity for limit analysis of large complex t1iiii-widled 

structures in this study. 

Both two noded beam elements BEAN13 and BEAN14 in ANSYS were lised 
in the elastic compensation limit analysis of a number of 2-D and 3-1) beitin 

and frame structures using generalised yield criteria, respectively. The ciflcid'Ited 
lower bound limit loads obtained for a single load and interaction diigi., 1111S I*or 

multiple loading are very accurate, and the computing tinie is significitialy re- 
duced. 
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10.2.3 Elastic Compensation Using Shell Elements 

The two noded axisymmetric structural shell element SIIELL-51 awl eiglo 

noded structural shell element SHELL93 were used in the elastic compensatioil 

limit'analyses of nozzles in spherical and cylindrical shells under internal pressure 

based on Ilyushin's and Ivanov's generalised yield criteria. respectix-ely. It ýVas 

found that the limit pressures calculated lie closer to the previous loii-er bound 

solution (solid element) for lower values of a dimensionless geometry parameter p: 

p= and closer to the upper bound for higher values, and very iniportantly 
RT 

the computing time is significantly reduced compared to the solid element for t lie 

same problem. 

10.2.4 Limit Loads of Nozzles in Spherical Vessels 

Limit load bounds for eighty four nozzles in spherical pressure vessels have 

been obtained in Chapter 5 by using eight noded isoparametric solid eleniew 
PLANE82 in ANSYS. The results obtained have been shown to give accitrate 
bounds on limit loads for the geometries comparing to the results from literatill-v 

[Leckie and Penny, 1965], [Robinson and Gill, 1973] and new elasto-plast ic anii IY- 

sis (with an elastic-perfectly plastic material model). It was found that flic 

bound limit load is a function of a dimensionless geometry parameter p proposed 
by Leckie et al, but it cannot be fully characterised by this single paranieter. Tho 

spread in the results for the lower and upper bound limit pressure for the variotts 

radius to thickness ratios indicates that this parameter also has an infliwitce. 

It has also been shown that efficient estimates of lower boinid litnit loiids iii 

axisymmetric nozzle in spherical shells, Chapter 9, and other axisyinnietric sliell 

structures, such as torispherical and conical ends and a skirted vessel [Boyle 0 

al, 1995], can be obtained using approximate shell-type yield functiotis. \\'Ilil(- 

detailed elasto-plastic finite element analyses of axisyninictricsliell Strilctill-vs ('ý111 
be easily derived, the approach suggested here only re(Itiii-es a few e4istic aiiiii. v- 
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ses and would be a more economic way of generating either the large munber ol, 

results required to take in a more complete parameter survey or a (Ittick estiniale 

of plastic collapse loads in complex ring stiffened vessels. 

10.2.5 Limit Loads of Nozzles in Cylindrical Vessels 

A series of twenty seven nozzles in cylindrical shells under interiial pressill-v 
have also been carried out in Chapter 9. The obtained results were conipared wil 1i 

the lower and upper bound limit pressures and detailed elasto-plastic aiialYsis jwv- 

viously obtained by Nadarajah et al. [1995], and also compared to Robilisoll's 

[1978] lower bound limit pressure, which was derived using Ilyushin's generalised 

yield criteria and a nonlinear programming technique. It was shown that the- 

obtained results were generally higher than the results obtained from Robinsoti 

[1978] and Nadarajah et al. [1995]. More significantly. the new lower botind 

estimate is very close to the elasto-plastic shell analysis. Since the new Ine-Olod 
is based on thin shell analysis considerable benefits over full three diniens-ioiial 

analysis are feasible and the technique has much potential for future applicatioii. 

10.2.6 Shakedown Loads of Nozzles in Spherical Vessels 

The extension of elastic compensation to shakedown has been verified for 

both lower and upper bounds to shakedown loads for the 

under internal pressure. 

The lower and upper bound shakedown limits for eighty fotir iiozzl(, s iii splivr- 
ical pressure vessels have been carried out in Chapter 6. The restills sliow tliii 
the elastic compensation lower bound shakedown pressures are less diiiii ASNIF. 
B&,. PV Code 35,,, limit for all the nozzle configuration considered. 'I'lle sli; lkv- 
down curves are similar in form to the 3S,, curves but the cilciilated lower ImIll)(I 

shakedown pressure values are generally closer to the Leckie and PoilIlY (19671 I. V. 
sults. 
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As Leckie and Penny only considered variation of shakedown load with tliv 

geometry parameter p, their results are constant for all the radius to thickiie., s 

ratios considered. However, both the elastic compensation pressures alid S(, C- 

ondary stress limit 3S,,, vary with the radius to thickness ratio. The results 

also show that the Leckie and Penny's lower bound shakedown pressure is lower 

than the secondary stress limit pressure 3S,, except for radius to thickimss ratios 
RIT = 7.14,6.25, p=0.3. The detailed discussion can be found in Chapter 6. 

The results also show that the elastic compensation tipper boLind soltition, 

are 20 to 25 per cent higher than the results of Leckie and Penny [1967] witli 

similar patterns for all models. Comparing with 3S.. allowable pressures. it caii 

be seen that for values of p greater than 0.7 the upper bound solutions are lower 

than 3S,,,, for p smaller than 0.7 the upper bound shakedown pressures are Iliglier 

than 3S, The greatest differences between obtained upper bound sollitions aild 
3S,, allowable pressures lie in the regions of small diameter nozzles (wliere t1w 

use of the parameter p is questionable). 

It can be concluded for nozzles in spherical pressure vessels that the shake- 
down pressures vary not only with the geometry parameter p used to characterize 

nozzles by Leckie and Penny, but also with the radius to thickness ratio of t1le 

sphere. This additional parameter should be considered when deriviii", desigii e3 n 
curves for shakedown loads. The obtained results also suggest that t1le lxckiv 

and Penny curves may not be conservative for all radius to thickness ratios. 

. The elastic compensation shakedown pressures for the RIT ratios of 10.8.33. 

7.14 and 6.25 are significantly greater than the Leckie and Penny valiws for Illosl 

of the geometry range considered, suggesting that design to the BS 5500 Codo 

[1994] could be over-conservative if the Leckie and Penny curves are itsed. llow- 

ever, BS 5500 simply requires that 'a shakedown analysis (e. g. See G. 2.6) shotild 

preferably be employed' thus design based on the elastic conipensation niet liod 
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would be acceptable. 

The upper bound shakedown results would suggest that the limits- are 

not conservative, especially for the RIT ratios of 10,8.33,7.14 and 6.25 flie 3S... 

limits are much higher than the upper bound pressures for the valLies of p greater 01 
than 0.8. In the writer's experience the upper bound is usually more reliable silice 
the lower bound is quite strict. 

10.2.7 Limit and Shakedown Loads of Frarnes Under Multiple Load- 

ing 

Limit and shakedown analyses of a number of 2-D and 3-D beani aiid fraine 

structures using generalised yield criteria have been carried out in Chapter S. 

The calculated lower bound limit loads obtained for a single load and iiiteractioll 

diagrams for multiple loading are accurate as compared to known solittioiis iii t liv 

literature. It is seen from this study that the limit loads and shakedown limits ob- 
tained are good agreement with the theoretical results. The elastic coil] pensa t iol i 

method can therefore be used to estimate the limit and shakedown loads of coin- 

plex structures for design purposes without resource to complex inelastic aiialysis. 

10.2.8 Application of Design by Analysis 

The ability to estimate plastic collapse mechanisms, through lit-nit and sillakv- 
down analysis, of complex shell and frame structures has significant potviiiial 

outwith the mechanical engineering field to the design of large civil and build- 

ing structures. The techniques developed here offer considerable advantalg-os 
over existing methods since conventional elastic finite elenient analYsis ran bo 

used. 

In the pressure vessel industry there is still considerable hiteirst iii Ow 

research of Strathclyde Group. The elastic compensation method 11,1s bevii 
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ornmended in the recent ASME White Paper [Pastor et al, 1994] on pressitre 

vessel design by analysis. The White Paper arose from requests from the I'S 

pressure vessel industry to address well known deficiencies in desigii bY ; millY- 

sis based on elastic analysis. The recommendations of an AS. NlE/PVF1/PVRC 

Committee, set up to investigate these requests, concluded that flie fititire 1aY 

in inelastic analysis and estimation of plastic failure mechanisms awl 1jiglilighted 

the advantages of elastic compensation. 

10.3 Recommendations for Further Work 

Finally, in concluding the entire study and its findings, the suggestioiis arv 

recommended for further work: 
Since the elastic compensation based on the generalised Yield criteria isi a 

newly developed technique, the effectiveness of the method for differew nieslivs 

especially for three dimensional models should be examined. A parametric study 

on the limit loads for nozzles in cylindrical shells under in-plane nionient of the 

nozzle should also examined. The results obtained from this inethod caii tlivii lj(- 

compared with that of available in literature to check the accuracy. 

So far the elastic compensation method has been used to obtain IoNver aii(I 

upper bound limit loads and shakedown limits of structures without anY cradýs. 
it is possible that the method can be used to obtain limit loads of cracked struc- 
tures and composite structures. 

Further, it is possible that the elastic compensation nietliod can be exivilled 
to estimated stability in brittle-plastic structures ( such as rwicrete or rorlý). 
And it is also possible that the method can be used in structural shape optinii- 
sation. At present some of these work are being carried out iii t1tv StratliclYdo 
Research Group. 
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ABSTRACT 

A simple method of estimating limit loads using a sequence of elastic 
finite element analyses and the lower bound theorem, termed elastic 
compensation, is demonstrated on the problem of the estimation of the 
limit behaviour of torispherical pressure vessel heads. Two possible 
techniques of elastic compensation are discussed, one which has general 
application and one possibly specific to heads. The results are compared 
to a series of detailed elastic-plastic finite element analyses and to 
classical solutions. 

1 INTRODUCTION 

In order to overcome problems with stress categorisation in design by 
analysis, and to allow the use of design based on limit analysis, the 
authors' have proposed a simple technique, based on repeated finite 
element analysis with successive modifications to the elastic modulus, 
which can be used to develop suitable stress fields for the lower bound 
theorem. This technique-which is referred to here as elastic 
compensation-has been shown to give accurate results for simple 
problems, and for selected generic pressure vessel problems. ' This 
procedure is not new, but now has been shown to provide a systematic 
*Visiting Scholar, Hebei Electric Power Survey & Design Institute, Shijiazhuang, 
Hebei, People's Republic of China. 
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procedure which can be used to estimate limit loads reliably using 
routine elastic analysis. 

The aim of the present paper is to demonstrate the applicability of 
the method of elastic compensation for the classic problem of a 
pressurised torispherical head. Two different interpretations of the 
procedure-one quite general to any pressure vessel component, the 
other verified here for heads-are discussed. The results are compared 
with detailed elastic plastic analysis and with existing solutions. 

2 PLASTIC BEHAVIOUR OF TORISPHERICAL HEADS 

The literature on the structural behaviour of torispherical heads is well 
established. Three early papers on plastic collapse mechanisms were 
published by Drucker and Shield" in the late 1950s. In these papers, a 
limit analysis of torispherical and toriconical heads as shells of 
revolution using a simplified yield surface for a Tresca material was 
developed. Ibis led to a simple approximate formula for the limit 
pressure: 

Pr, = 
(0-33 

+ 5.5 r+ 28(l - 2-2 r)( t )2 
_ 0-0006 

DLDL 

where the dimensions for a torispherical end are given in Fig. 1. This 
formula, for thin heads, is implicit in most pressure vessel design rules 
usually combined with the 'Formdehngrenze' method' for thicker 
heads. 

Many studies followed the pioneering work of Drucker and Shield: 
for example, Biron and Charleux" and Taylor and Robinson, " using 
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various thin shell yield criteria, developed more detailed limit analyses 
while Crisp" and Simonen and Hunter" used elasto-plastic analysis, this 
latter paper also took into account the effect of change of geometry on 
the behaviour of ellipsoidal and torispherical heads. Calladinell pre- 
sented a novel and interesting analysis of the limit pressure of 
torispherical ends leading to a further simple formula which gave results 
similar to Shield and Drucker. Experimental work in the plastic 
deformation of torispherical heads has been reported by Save, " Findlay 
et aL " and Kirk and Gill 14 among others. A summary has been given by 
Gerdeen. 15 

The general pattern of behaviour of torispherical ends under internal 
pressure is thus well understood. As pressure builds up, it tends to 
force the spherical cap outwards along the axis and the meridional 
membrane tensions pull the toroidal knuckle inwards towards the axis. 

For thin walled heads, if the torus wall is thick enough to avoid 
buckling but thin compared with the radius of the knuckle, and the 
material does not work-harden, a plastic hinge circle will form at B, 
Fig. 1, to permit the central region of the knuckle to compress in the 
circumferential direction and bend inwards. A hinge circle will form at 
C in the spherical cap and the third hinge circle A usually forms in the. 
cylinder. The entire knuckle region between A and C is plastic since 
inward motion of appreciable extent coincides with plastic contraction 
of the circumference. The deformation pattern is shown in Fig. 2. 

For thicker vessels, the first hinge circle may form in the cylinder or 
in the spherical region. This can be seen in the following. 

In order to determine the elasto-plastic behaviour and limit pressure 
in representative torispherical heads, four geometries are employed, 

A 

Fig. 2. Torispherical head deformation mechanism. 
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TABLE 1 
Head Shape Parameters and Dimensions 

Head t1D ND r1D RID D t 
No. (in) (in) 

31 0-015 0-151 0-092 1-541 37-00 0-555 
32 0-015 0-207 0-070 0-813 37-00 0-555 
4 0-050 0-250 0-125 0.750 37-00 1-85 

26 0-050 0-207 0-125 1-021 37-00 1-85 

taken from Townley et al.; ̀ , " Table I gives the detailed dimensions of 
the models. The models are analysed independently here using the 
finite element analysis system ANSYS. The elasto-plastic analysis 
undertaken here includes large deformation effects. The post yield 
behaviour is based on a Von Mises criterion, and a perfectly-plastic 
material is assumed initially. The material properties are taken from 
Townley et al. as: Young's modulus 29EO6 psi, Poisson's ratio 0.29, and 
yield stress 30 300 psi. 

Although the collapse mechanism is known, the sequence of hinge 
formation with increasing pressure depends on the geometry. For Head 
No. 31, the three hinge mechanisms form almost simultaneously at a 
pressure of about 410 psi; further slight increases in pressure bring the 
head close to collapse. In the case of Head No. 32, the first hinge forms 
in the knuckle region at a pressure of 520 psi, followed by the second 
hinge in the spherical cap at a pressure of 600 psi, and finally at a 
pressure of 636 psi, the third hinge forms in the cylinder-the pressure 
can be increased further to about 685 psi before the head is close to 
collapse as the hinge circles spread. In Head No. 4, the first hinge 
mechanism forms in the cylinder at a pressure of 3050 psi, the second in 
the spherical cap at 3275 psi and the third in the knuckle at 3425 psi 
which is close to collapse. For Head No. 26 the first hinge forms in the 
spherical cap at 2600 psi, the second in the knuckle at 2750 psi and the 
third in the cylinder at 2860 psi again close to collapse. 

Representative plots of these detailed elasto-plastic analyses are 
given in Figs 3-6 showing pressure versus equivalent strain at the most 
highly stressed point. From this a simple criterion for plastic collapse 
has been proposed by Townley, who defined the excessive deformation 
pressure as that required to produce an equivalent plastic strain of 1%. 
In the case of torispherical heads, this definition leads to a slightly 
lower value of pressure for plastic collapse, but the differences are not 
of practical significance. It should be noted that this definition 
corresponds closely to the pressure values when three hinge circles form 
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Fig. 6. Elasto-plastic analysis of Head 26. 

in the present analyses which could be taken as the definition of the 
onset of collapse. 

3 ESTIMATION OF LIMIT LOADS BY ELASTIC 
COMPENSATION 

These analyses can be'taken as the basis for a demonstration of the 
elastic compensation procedure. Here the general method described by 
the authors' will be examined first, followed by a modification which 
gives improved results for the present problem. 

3.1 A simple lower bound 

The basis of this method of estimating limit loads by elastic finite 
element analysis is the lower bound theorem. The aim is to generate 
the best admissible stress field, corresponding to the highest load such 
that derived stresses are in equilibrium and do not violate the yield 
condition. For a given load, the admissible stress field is derived by a 
sequence of elastic calculations where the elastic moduli of selected 
regions are modified to bring local stresses below yield-this is referred 
to as elastic compensation. The problem is then to determine the best 
load value, that is the highest which can be used, with as few as possible 
load steps. 

The simplest method is to set an arbitrary load level (perhaps the 
design load PD so that the initial elastic analysis can be uscd in a 
conventional design by analysis) and to carry through the sequence of 
elastic calculations such that the elastic modulus in each element is 
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modified accordin'g to 

Ei = Ei-, cr� 
ai-i 

I 
9 

for the ith iteration, where a, -, 
is the maximum unaveraged nodal 

equivalent in the element from the previous finite element solution. 
Tle value of or,, is somewhat arbitrary, since the solution will later be 
scaled, but is usually taken as half or two-thirds yield. This is not 
critical. After several iterations the maximum stress in the model 
generally exhibits a net decrease until a near limit value, UR, after the 
Rth iteration is reached. This provides an admissible stress field for the 
given load. Since the solution is linear elastic the best lower bound 
estimate of the limit load, PL, can be found through proportionality 

PL ý- PD ay 
aR 

which corresponds to the highest load such that the final compensated 
stress in the elastic reduction procedure, a, just reaches yield. This 
procedure can of course be extended to combined loading in several 
ways. 

This procedure can be carried out automatically, with no user 
intervention. The results-referred to as Method I-are shown in Table 
4 (below) compared to the results of the detailed clasto-plastic analyses 
with the criterion of a 1% equivalent strain limit. These are discussed 
later. 

3.2 An improved procedure 

The above basic procedure can be modified in a number of ways to give 
improved results. These improvements usually require more analyses. 
One possibility, discussed in the context of flush nozzles, is in a 
companion paper. 2A further variation is given here in which an 
improved result can be obtained by a single sequence of analyses for a 
given load level and a simple formula. 

The basis for this modification is the general elastic reduced modulus 
procedure 1.2 used by several authors. In this a load level above that for 
the first yield is set and the elastic moduli of only those elements above 
yield are reduced according to the rule E(alaj where a. is the 
calculated (von Mises) effective stress for each of the selected elements. 
This procedure is repeated until the compensated elastically calculated 
stress is below yield. This final stress field could be used as an 
admissible stress, with the given load level a lower bound on the limit 
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load. The load is increased and the reduction procedure repeated. 
Eventually further load increases will not allow compensated stresses to 
be brought below yield and thus the best lower bound can be 
determined. 'Mis of course requires several analyses at each load level, 
as mentioned previously, but does give results very close to the limit 
load found from detailed elasto-plastic analysis. 

However this can be considerably simplified if it is observed that the 
reduced modulus procedure, at loads close to the limit load, gives 
similar predictions of the strain level, specifically near collapse at about 
1% strain. This is shown for Head No. 32 in Fig. 7. Based on this 
observation and an examination of a range of analysis results the 
following simplified procedure, which only requires analysis at one load 
level, has been devised. This is presented here as an alternative 
interpretation of the elastic compensation results: 

" Perform an elastic analysis with the load condition P about 
50-80% above that for first yield, P, 

" Perform the reduced modulus analyses as described before. 
" Finally estimate the limit pressure using the following approxim- 

ate relation for the most highly stressed element: 
PL 

1/2-4F (3) 
P 

where PL is the limit pressure, EL is the equivalent limit strain and 
e, is the elastic strain from the reduced modulus procedure with 

F- 
Er, (4) 
17Y 

70 

so 

-r4 50 
m 
t 40 

30 

20 

10 

A0 
Reduced modulus 

- E12StiC P12SVC 
E123tiC 

B 

0 0-2 0-, 

Fig. 7. Results for elasto-plastic, 

4 0.6 
Strain, 01. 

elastic and 
Head 32. 

0-8 1-0 1-2 

elastic compensation analyses for 

21-7 



A method of estimating limit loads /I/ 121) 

-1.4A 
I 

1991 
2i 

STRESS, 

%VG) 
047311 
89 
377 

.8 5 
89 
54 

19 
85 
50 
i6 

TABLE 2 
[lead 32 Modulus Reduction 

lteration No. o"I'll 
(psi) 

55 377 
40969 
34508 
32459 
31 419 
30902 

F, 
(psi) 

290 (H X) 00 
158075 30 
9707209 
773828o 
0808,82 1 
6450250 

2 7S 

Fig. 8. Equivalent stress contour plot from initial elastic analysis of I lead 32. 



130 Jinhua Shi, D. Mackenzie, J. T. BoYle 

ANSYS 4.4A 
: -'EC 3 1991 
I): 04: 20 
Pl, JT NO. I 

. REP7 ELEMENTS 
MAT NUM 

17 8 

Fig. 9. Modified elements and stress contour plot: first iteration. 



A method of estimating limit loads /1/ 131 

ANSYS -I A 
Nov 4 19ql 
I" : 36: 33 
P1,0T NO. I 
POST1 STRESS 

-EP-1 
ITER-1 
:;: E (AVG) 
: 'XX -0.05141, 
,; ýIN -1913 
ý3KX -40969 

: ý%, -1 
'III ST-2 

. 
47 

-17.8 
I. 44 
1913 

53 
59 2) 

ý4932 )272 
611 

110 

Fig. 9--cowd. 

0 



132 JinhUa Shi, D. Mackenzie, J. T. Bovic 

ANSYS 4.4A 
: IFC 3 1991 
'0: 42: 37 : 
'!, OT NO .I PREP7 ELEMENT S 

MAT NUM 

IV -1 
DI ST-2.47 
XF -17.8 
YF =i . 44 

Fig. 10. Modified elements and stress contour plot: SCCOIId iteiation. 

1 



A method ofesuniating linut loads /11 1 ý1.3 

ý; .1.4A 
4 1991 

12: 58 
NO. I 

l' ,; Tl STRESS 

E (AVG) 
PMX =0.054403 

. SMN -1378 
, ýMX -36630 

.; T=2 . 
47 

-17.8 
YF I. 44 

1 1-78 
95 

ý129 
45 

162 
1479 
-1 796 

Fig. 10-- contd. 



134 Jinhua Shi, D. Mackenzie, J. T. Bovie 

ANI YS4 AA 
F"3 1991 

0: 51 
)LC)ý NO. I 
PREP7 ELEMENTS 
IAT NUM 

)IST-2.47 
-17.8 

Fig. 11. Modified elements and stress contour plot: Ouid iietation. 



A method of estimating limit loads 111 135 

ANSYS 4.4A 
5 1991 

l): 06: 01 
P1,0T NO. I 
POST1 STRESS 
STEP-1 
'TER-1 

, -E (AVG) 
"MX -0.05672 

. 
'ý! N -1597 

-;: -! X -34568 

, --2 
. 

47 
X, -17.9 

-1 . 44 
597 

4 
ý2m "87 

; 51 

-41 

Fig. 11--contd. 

2s' 



136 Jinhua Shi, D. Mackenzie, J. T Boyle 

I.,; A 
)91 

I 
NENTS 

Fig. 12. Modified eiements and stress contour plot: fouith iteration. 

28.5 



A method of estimating limit loads 111 137 

ANSYS 4 ;A 
NOV 5 1991 
'. 0: 28: 58 
PLOT NO. 1 
POST1 STRESS 
STEP-1 
ITER-1 
SIE (AVG) 
DMX -0.058545 
ý, MN -1124 
SMX -33317 

. ýV -I 
'! )IST-2.47 
, xF -17.8 

F -1.44 
-A 

-132 
') 9 
86 

3 

Fig. 12--contd. 

2S6 



138 Jinhua Shi, D. Mackenzie, J. T Boyle 

ANSYS 4AA 
DEC 3 1991 
14: 16: 30 
PLOT NO. I 
PREP7 ELEMENTS 
MAT NUM 

ZV -1 
*DIST-2.47 
*XF -17.8 
*YF -1.44 

Fig. 13. Modified elements and stress contour plot: ninth iteration. 

2,, '-, '7 



A method of estimating limit loads I// I.; () 

V; Sys 4.4A 
5 1991 

1.2 : 14 
: ý)T NO. I 

i':; Tl STRESS 

E (AVG) 
ýý! X -0.062754 

-403.679 
: ýMX -30902 

ZV -1 
*D I ST-2.4 7 

-17.8 
-1 . 

44 

-103 - 
679 

A '92 
'191 
IJ 70 

3959 

0736 

-11 

Fig. 13----contd- 



140 Anhua Shi. D. Mackenzie. J. T. Boyle 

The factor of 2.4 in eqn (3) is relatively insensitive to the chosen load 
level. By way of example, this procedure is given in detail for Head No. 
32. The applied pressure is set at 626 psi. Details of the initial finite 
element model are shown in Fig. 8 together with a contour plot of 
equivalent stress. 

The elastic compensation procedure is carried out and it is found that 
after nine successive reductions, the maximum effective stress is 
reduced to 30 902 psi which is close enough to the yield stress, 
30 300 psi. Successive values of the elastic modulus for the most highly 
stressed element are given in Table 2. Plots of modified elements and 
contour plots of effective stress in the vicinity of the most highly 
stressed element for several iterations are given in Figs 9-13. The full 
reduction sequence for the most highly stressed element can be seen in 
Fig. 7. At the ninth iteration, the strain in the most highly stressed 
element can be evaluated as, 

a,, 30 902 
= 0-0048 -E, ý5- 025 9 

Then the factor, F=4.594. If OL ý 0*0 1. then the limit pressure is found 
to be PL = 669. Full calculations for the other heads are given in Table 
3. 

TABLE 3 
Head 32: Approximate Evaluation of Limit Load 

Head p el F EL PL 
no. (psi) (psi) 

31 380-5 0-0041 3-92 0-01 418 
32 626 0-0048 4-59 0-01 669 
4 3304 0-0041 3-92 0.01 3633 

26 2550 0-0038 3-64 0-01 2848 

4 DISCUSSION 

The approximate limit pressures for the four heads found using this 
simple procedure, labelled as Method 2. together with those of Method 
1 and the detailed elasto-plastic analysis are given in Table 4. The 
results from Drucker and Shield's formula for thin heads are also 
shown. From this it can be seen that both methods give good agreement 
with Clasto-plastic analysis. Method I givens systematic lower bounds, 
but only 80% of that estimated by elasto-plastic analysis in some cases. 
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TABLE 4 
Comparison of Estimated Limit Pressures 

141 

Head Elasto- Method I Method 2 Eqn. (1) 
No. plastic (psi) (psi) (psi) 

(psi) 

31 417 344 418 293 
32 685 568 669 626 
4 3425 3262 3633 4789 

26 2890 2381 2848 3307 

The error of Method 2 is 6% at most but on the high side (although still 
probably safe given the strain criterion). Among the four heads, only 
Head No. 32 conformed well with Drucker and Shield's formula. For 
thicker walled heads, this paper's method gives better results than that 
of Drucker and Shield (as expected). 
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ABSTRACT 

A simple method for estimating lower bound limit loads by an 
iterative elastic analysis procedure called the elastic compensation 
method is discussed. The method aims to establish an admissible 
stress f icid for the lower bound limit load theorem and is quite general. 
Several sample analyses of pressurised components are presented and 
calculated limit loads compared with solutions from the literature. It 
is concluded that the method is suitable for calculating lin-Lit loads 
for design purposes. 

INTRODUMON. 
In recent paper, Kalnins and Updike[ II considered the role of limit 
and elastic-plastic analyses in pressure vessel design and concluded 
that: 

"... an elastic analysis may not provide an effective way for 
calculating an allowable pressure that prevents gross dis- 
tortion with a specific margin of safety. Unless a plastic 
analyýsis is also performed, there is no way of assessing the 
margin of safety provided by elastic analysis... " 

Traditionally, such a plastic (or limit) analysis requires inelastic 
analysis of the component, however, work on stress categorisation 
by reduced modulus analysis has indicated that it is often possible to 
ga u ge the effect of local inelasticity in pressuriscd components by an 
iterative elastic finite element analysis procedure in which local 
elastic material pro n. Cs re systematically modified in order to 
simulate inelastic berav1oura[21[3jj4j[5jj61j7J. In this paper. a simple 
systematic procedure for estimating lower bound limit loads by 
iterative elastic analysis, referred to as the medtod of elastic com- 
pensation. is presented. The procedure is one of several investigated 
by the writers as part of a research ojC' into stress catcgorisation Pr CCKt 
in pressure vessel design funded by the U Science and Engineering 
Research Council[8]19][ 10]. 
The estimation of limit loads by performing iterative elastic finite 
element analysis and invoking the lower bound limit load theorem 
was proposed by Marriott in ref. 3. The lower bound limit load 
theorem may be stated as follows: 

If a statically admissible stress field in which the stress 
nowhere exceeds the yield exists for a given component 
under a given loading system, the loading is a lower bound 
limit load. 

OVisiting Scholar, Hebei Electric Power Survey and Design Institute 
Shijiazhuang, Hebei, People's Republic of China 

The statically admissible stress field maybe any linear elastic solution 
for the given component geometry and loading. Applying the lower 
bound theorem to a linear elastic solution based on isotropic homo- 
geneous material properties gives a lower bound corresponding to 
the inifial yield load for the component which. in general, will be a 
poor approximation to the actual collapse load. Marriott, however, 
proposed that lower bound limit loads can be obtained"to any desired 
degree of accuracy" by applying reduced modulus procedures in an 
iterative elastic finite element analysis which causes the initially 
calculated (isotropic) stresses to redistribute to lower values. If an 
elastic solution which satisfies the lower bound theorem can be 
established for a component subject togivcn load. that load is a lower 
bound on the limit load of the component. 
An alternative method forestimating limit loads by an iterative elastic 
procedure has been proposed by Seshadri and Fernando. The GLOSS 
r-node method[ III uses two clasdc analyses to determine points or 
P-modes (related to skeletalpoints in reference stress techniques for 
creep analysis) at which the stresses are essentially statically 
detcrminate. Ilie r-node method has been shown to give good esti. 
mates of limit loads for a number of components but. at present, has 
the apparent disadvantage of requiring manual intervention in the 
procedure. Problems may arise in determining, and Indeed inter. 
pretinj, what is mcant by r-nodes in non-axisymmetric 3-D struc. 
tures. 
The procedure discussed here, the elastic compensation method, is 
based on the earlier work of Marriott and Seshadri. 

THE ELASTIC COMPENSATION METHOD. 
InidAlly. an CIAStiC finite element Analysis or the component Is per. 
formed for the specified design loading, P,. The results of this 
homogeneous isotropic CIAStiC AnAlySiS Can be used in A standard 
design by analysis, but in addition is used as iteration sero in a series 
of linearelastic analyses in which the modulii of elements are changed 
in order to redistribute the stress in the component. In each subsequent 
iteration. the modulus of cach flement is modified According 10 An 
equation of the form: 

Eo ., ) 
C. 

(Cro - 
whcre subscript i is the iteration number, a. a nominal stress value 
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and a(i-, ) the maximum (unaveraged) nodal equivalent stress 
associated with the element from the previous solution. This pro- 
cedure is similar to that used in theGLOSS r-nodemethod, anddiffers 
slightly from Marriott's procedure in which only elements with stress 
intensity S greater than the code allowable Sm have their modulii 
reduced according to the expression: 

m Ei = E(j 
- J)SS 

The value of cy. in (1) is somewhat arbitrary - usually half or two 
thirds yield - and has not been found to be critical in the example 
problems considered below. Some care has to be taken, however, to 
ensure that the nodal stress in the divisor of (1) does not approach 
zero as, for example, could happen at the mid-surface of components 
subject to pure bending. This would lead to elements of excessively 
high stiffness in the model and possible numerical problems in the 
finite element solution. 
Plotting the maximum stress in the model against iteration number 
results in a graph of the form shown in Figure 1. The procedure may 
cause the maximum stress to increase or decrease between iterations 
but it is generally found that over a number of iterations there is a net 
decrease in maximum stress with respect to the initial solution. 

CF_ 

0, 

cy, 
a, 

Figure 1. Maximwn stressfor each iteration. 

The initial solution is a homogeneous isotropic linear elastic solution. 
The subsequent solutions are inhomogeneous and anisotropic but are 
still linear elastic and hence the component stress is proportional to 
the applied load. These solutions can be used to define lower bound 
limit loads for the component by invoking the lower bound theorem: 
Consider an arbitrary solution, iteration r, as illustrated in Figure 1. 
For the given load P,,, the maximum stress given by iteration r is cr, 

. where cr, may be greater or less than the yield stress. As the solution 
is linear, the load P, to give a maA. mum stress of ay in the solution 
can be calculated from the proportionality of the solution; that is, 

P, oy 
P', CT, 

Hencc 

PI=Pd 
Or 

CY, 

Ile above solution meets the requirements of the lower bound limit 
loadtheorem in that it is statically admissible andthe maximum stress 
does not exceed yield. '17hus load P, is a lower bound limit load for 
the component. 
Limit loads can be evaluated for any iteration in the above manner, 
however, the best lower bound limit load is given by considering the 

solution in which the maximum stress has the lowest value, say 
iteration R, in which the maximum stress is a,. T'his solution gives 
a lower bound limit load 

PL = P, a, 
CYR 

where PL is the best estimate of limit-load given by the above pro- 
cedure. 

SAMPLE ANALYSES. 
Five problems illustrating the use of the elastic compensation method 
are presented below. All the analyses were performed using the 
ANSYS finite element program. 

3.1 Beam under combined bending and tension. 

Ile first example is that of a beam of unit depth and thickness 
under combined tension and bending, as illustrated in Figure 2. 

om 

Figure 2. Beam under combined loading 

The beam material has Young's modulus E= 29E6 psi and yield 
stress cry = 30E3 psi. Ile theoretical collapse load of a cantilever 
beam under direct force P and moment M is given by the 
expression: 

7,1 P" 
M 

=, [, -(P)l where, if d is the depth of the beam: 

Py = cyrd and My = 
cryd2 

6 

Three finite element models of the beam with 6,12 and 24 linear 
quadrilateral plane stress elements through the depth were created 
and up to 8 iterations based on the cquation: 

Ei = E« 
-, ) 

20E3 
cr(i - 1). 

were performed for each model. The elastic compensation results 
are compared with the exact solution and GLOSS r-node results 
with a mesh of 25 elements through depth (from ref. 11) in Figure 
3. 

Clearly, the finer the mesh the better the estimated limit load. 
However. it is found that finermestics may require greater numbers 
of iterations than course meshes to give a good solution. A typical 
plot of maximum model stress against iteration is shown in Figure 
4. This illustrates that although a 16 element mesh eventually gives 
a better estimate of limit load than 6 or 12 element meshes, the 
initial stress reduction is poor in comparison with the courser 
meshes. 
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Figure 3. Lower bound limit load by iterative elastic analysis. 
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Figure 4. Maximum model stressfor each iteration. 

3.2 Thick Cylinder. 

Three thick cylinders under plain strain conditions as were 
investigated. The material properties used were: 

E= 200E3 N/mm' v=0.3 (y, = 300 N/mm' 

The theoretical limit pressure of a thick cylindersubject to internal 
pressure based on the Von Mises yield criterion is given by the 
equation: 

PL =2 CF. In ý3 

where r. is the outer radius and r, the inner radius of the cylinder. 
The dimensions of the cylinders investigated here are given in 
Table 1. 

MODEL r, (mm) rý (mm) 

1 20 30 

2 20 40 

3 20 50 

Table 1. Thick olituier dirnemions, 

Two models were created for each cy I indergeoniary, with me shes 
of 7 and 15 linear isoparametnc axisymmetric solid elements 
through thickness, and 8 elastic compensation iterations were 
performed foreach model. The lower bound limit pressures given 
by the elastic compensation method and the theoretical limit loads 
are compared in Tables 2 and 3. 

MODEL I, INIITPRI-'SSLJREN/nim2 

7 ELS. 15 ELS THEO. 

1 125.4 128.7 140.5 

2 212.2 222.4 240.1 

3 274.7 292.3 317.4 

Table 2. Elastic compensation and theoretical limit pressures. 

MODEL 

PFL"Lý-, 

J% PLý 
PL(J-) 

1 89.2 91.6 

2 88.4 92.6 

3 86.6 92 

Table 3. Comparison of elastic compensation and theoretical 
limit loatis. 

3.3 Torispherical End. 

The third example is a torispherical end, as illustrated in Figure 5: 

where 

th 1) = 17 in. -- = 0.015 -0 207 - 0.07 and = () 91.1 
1) 1) 1) 1) 

The material propenies were: 

E= 29E6 psi (1, = 303M psi vý0,29 

An axisyrnmetric finite element modcl of the head with four linear 
quadrilateral isopararnetric solid elements through thickness, as 
shown in Figurr 6, was created and 15 elastic compensation iter- 
ations perfortried. The maximum stress is plotted against iteration 
in Figurr 7. 

29 1 

Figure 5, Torispherical end 
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Figure 6. Torispherical headfinite element model. 
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Figure 7. Maximwn stress per iteration. 
The elastic compensation (EQ lower bound limit load limit load 
is compared with an incIastically calculated limit load, (the pres- 
sure at 1% equivalent strain), and the lower bound lin-Lit load given 
by the Shield & Drucker expression[ 12]: 

PD= 0.33+5.5r 1+28 1-2.2L -0.0006 DLDL 

X Lý 

in Table 4. 

EC Po INELA LC EC 
S. 

) 

PD 
CY0 

( 
INFJAS 

568psi 626psi 685psi 90.7 82.9 

Table 4. Comparison of elastic compensation, inelastic and 
Shield & Drucker limit pressure. 

3.4 Nozzle in Spherical Shell 

The fourth example is a nozzle in a spherical shell. illustrated in 
Figure 8, under internal pressure and radial nozzle load. 

Figure 8. Nozzle geometry. 
The material properties used were: 

E- 2OOE3 N/mm2 v-0.3 Cyr = 300 N/mm' 

An axisymmetric finite element model of the nozzle was created 
using quadratic isoparametric elements, as illustrated in Figure 9. 
internal pressure and a radial thrust equivalent to that caused by a 
Flosed. end were applied to the model and 15 elastic compensation 
iterations were performed. 

Figure 9. Nozzle finite element model. 
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The lower bound limit pressure calculated by the elastic com- 
pensation procedure (EQ is compared with Robinson's non-linear 
programming lower bound (ROB) in Table 5. 

EC ROB EC ( ), 
7 0 ROB 

2.09 2.15 97.2 
N/mm2 N/mm2 

Table 5. Comparison of elastic compensation and Robinson 
limit pressure for nozzle intersection. 

3.5 Toriconical end. 
The final example is a toriconical end, as illustrated in Figure 10, 
under internal pressure. 

............................ I ............ .... ............ ...... I ............... ... 
3 ELEME 

08 

06 

04 

0.2 

69 12 is 
ITERATION 

Figure 12. Model I maximum stress per iteration. 
The estimated lower bound limit pressures given by the elastic 
compensation analyses (MOD I and M0132) are compared with 
the Gcrdeen & Hutula theoretical plastic limit load[ 131 (G&I i) in 
Table 6. 

MODI MOD21 L G&IT j(MOD$j 

&H 
(! LO5DT$ 

G&JI 

] 

9.7E 10.25 1 12.02 1 81.3 1 85.3 

D= 1000mm L=0.06 cE = 45* 
D 

Figure 10. Toriconical end. 
The material properties are: 

E= 200E3 N/mm' v=0.3 cy, = 300 N/mm' 

PLIOT .1 

rPLS 

ST: 4-7 1-1 
,v 

Yr 

Figure 11. Toriconical head model I finite element model 

Two axisyrrLmetric finite element models of linear isoparamct . ric 
solid elements were created: Model 1. with 3 elements through 
thickness and Model 2 with 6 elements through thickness. Model 
I is shown in Figure 11. 

The elastic compensation procedure, with up to 15 iterations, was 
applied to both models. A plot of maximum equivalent stress per iteration for model I is shown in Figure 12. 

Table 6. Comparison of elastic compensation and Gerdeen & 
Hutula limit load. 

DISCUSSION. 
Ile sample analyses presented above illustrate the use of the elastic 
compensation method in determining lower bound lirrdt loads for 
design purposes. Clearly, the accuracy of the method depends to 
some extent on the particular component geometry, loading and finite 
element model, however, the advantage of the proposed method is 
that it is general and can be used to obtain approximate conservative 
limit loads with minimal intervention on the part of the designer.. It 
is fairly simple to write model preprocessing and postprocessing 
programs to perform the procedure automatically and, in addition, it 
would be fairly simple for commercial software vendors to incor. 
porate such routines in their products: for example. using macros in 
ANSYS. 
Alternative approaches tocalculating limit loads by iterative analysis, 
such as the r-node method, may give more accurate values for limit 
load for specif ic components but such procedures require greater user 
input: for example, dctermining the location of r-nodes etc. At first 
sight the computing cost of performing the iterative elastic com- 
pensation method may seem expensive but it must be emphasised 
that the cost of performing say eight elastic analyses of a component 
is almost insignificant in comparison with a non-linear elasto-plastic 
analysis of the same component using suitable load steps and con- 
vergence criteria to obtain good approximate limit loads, particularly 
for 3-D structures. 
It is expected that further work will allow 1 ine-tuning" of the elastic 
compensation method in order enhance the accuracy of the solution 
for given generic components, however. the procedure given above 
has been shown to be robust (in all of the examples considered thus 
far) and can be used to establish lower bound limit loads for design 
purposes without recourse to complex inelastic analysis or extensive 
manual intervention. 
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0. Mackenzie 

C. Nadarajah Simple Bounds on Limit Loads by 
J. Shi Elastic Finite Element Analysis 

A method for bounding limit loads by an iterative elastic continuum finite element 

J. T. Boyle anakysis procedure, referred to as the elastic compensation method, is proposed. A 

number ofsample problems are considered, based on both exact solutions andfinite 
element anakysis, and it is concluded that the method may be used to obtain fimit- 

Department of Mechanical Engineering. load boundsfor pressure vessel design by analysis applications with useful accuracy. 
University of Strathclyde. 
Glasgow, Scotland. U. K. 

1 Introduction 
In current practice, pressure vessel design by analysis is most 

commonly based on elastic finite element analysis and the rules 
defined in Codes such as the ASME Boiler and Pressure Vessel 
Code Sections III and Vill (Division 2) [1] and BS5500 [2]. 
This approach gives rise to two significant problems in the 
design: elastic analysis is used to assess possible inelastic fail. 
ure mechanisms and the design by analysis rules are essentially 
based on shell theory. These problems introduce the concept 
of stress categories into the design procedure: the designer 
performs the analysis and partitions the calculated stresses into 
peak, Primary and secondary stress categories, each of which 
is associated with distinct failure mechanisms, (fatigue, gross 
distortion and ratcheting, respectively) and subject to different 
limiting values. Code guidelines are given for categorization 
of stresses at pamicular locations arising from specific loading; 
however, these guidelines are often based on shell theory con- 
cepts such as membrane and bending stresses which are not 
directly applicable to 2-D and 3-D solid finite element results. 
A number of categorization techniques (such as stress line- 
arization [3) and reduced modulus categorization methods [41) 
have been proposed to aid the designer in appropriate cate- 
gorization of stress; however, to date, no satisfactory solution 
has been found 15,61 and stress categorization remains prob- 
lematic. 

The foregoing problems essentially arise from current prac- 
tice: the Code rules in fact allow the designer to circumvent 
categorization problems by performing plastic or limit analyses 
of the component which, unlike elastic analysis, take account 
of stress redistribution upon yield. (Indeed, it has recently been 
argued that plastic analysis should be the preferred method 
for assessing failure modes associated with gross distortion due 
to a single application of pressure 171. ) Plastic and limit analysis 
can be performed using nonlinear finite element programs; 
however, nonlinear finite element analysis is intrinsically more 
difficult to perform than elastic analysis: material models 
must be defined, the iterative solution procedure must be suit. 

Contributed by the Pressure Vessels and Piping Division for publication in 
'he JOURNAL OF PRESSURE VESSEL TECHNOLOGY. Manuscript received by the PVP 
01%islon, June 29,1992; revised manuscript received November 18,1992. As- 
lociaie Technical Editor: M. Moktarian. 

ably controlled, and much greater computing resources are 
required. In order to make the transition from elastic to ine. 
lastic or limit-load-based design for real structures, simplified 
analysis methods are required. 

One simplified method for calculating lower-bound limit 
loads by iterative elastic finite element analysis has previously 
been presented (see references 18-111). The elastic compen- 
sation method was developed from the reduced modulus stress 
categorization method [121, in which the effects of material 
inelasticity are simulated by repeated elastic analyses in which 
the elasticity modulus of the component is systematically re- 
duced at regions'of high stress. Marriott proposed that this 
method could be extended to limit analysis by using modulus 
reduction techniques in conjunction with the lo wer-bound limit- 
load theorem [13). An alternative method of calculating limit 
loads by repeated elastic analysis has been proposed by Ses- 
hadri et al. [141. In the GLOSS r-node method, statically de. 
terminate stresses at locations referred to as r-nodes are 
identified by iterative elastic analysis in which regions of high 
stress have their modulus reduced, while regions of low stress 
have theirs increased. The stresses at the r-node locations are 
insensitive to the assumed material model and considered to 
be reference stresses similar to creep reference stresses 1151. 

The object of the elastic compensation method as defined 
in references [8-111 is to establish a stress field suitable for 
substitution into the lower-bound theorem by systematically 
modifying the local elastic modulus in a finite element model 
so as to cause the stress to redistribute. Initially a conventional 
elastic finite element analysis is performed for an arbitrary 
load set, P1. This initial homogeneous isotropic solution is 
taken as iteration zero in a series of linear elastic analyses, in 
which the elastic modulus of each element is modified ac- 
cording to an expression of the form 

E, -E 
a', 

"', (au-1)) 

where subscript I is the iteration number, a, a nominal stress 
value, and a(i- 1) the maximum (unaveraged) nodal equivalent 
stress associated with the element calculated in the previous 
iteration. This iterative procedure redistributes the stress in the 
component and over a number of iterations the net effect is 
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Fig. I MaxIMUM StreS3 for each Iteration 

to decrease the maximum stress in the model as illustrated in 
Fig. 1. 

A lower-bound limit load can then be calculated by invoking 

the lower-bound limiE-load theorem, which states that if a 
statically admissable stress field in which the stress nowhere 
exceeds yield exists for a given component under given loading, 
the loading is a lower bound on the limit load. The elastic 
compensation solution meets the first requirement of the lower- 
bound theorem in that it is statically admissible (subject to the 
usual finite element approximations). As the iteration solutions 
are linear elastic, the stress magnitude is proportional to the 
applied load. A lower-bound limit load can therefore be es- 
tablished by calculating the load required to give a maximum 
(unaveraged) nodal stress equal to the nominal yield strength 
ay from proportionality. Considering the iteration giving the 
lowest value of maximum nodal stress aR 

P" = P. ; 
'-Y 

aR 

where PL is the best estimate of limit load given by the foregoing 
procedure. The applied load set P, is not restricted to single 
loads and may represent multiple forces, moments, pressures, 
etc., in the manner of proportional loading in conventional 
limit analysis. This paper extends the foregoing method to 

allow calculation of limit-load bounds by considering the up. 
per-bound limit-load theorem. 

Up#er-Bound Limit Loads 
The upper-bound limit-load theorem states that if, for a 

given load set, the rate of dissipation of internal energy in a 
body is equal to the rate at which external forces do work in 
any postulated mechanism of deformation. the applied load 
set will be equal to or greater than the plastic collapse load 
1161. Mathematically, a complete plastic collapse solution re- 
quires definition of P and a, an equilibrium set of loads and 
stresses respectively, and i and ti, a geometrically compatible 
set of displacement and strain increments, respectively. An 
upper-bound solution requires only a partial or incomplete 
plastic collapse solution to be defined; specifically, iiO and eo' 
representing any compatible sets of displacement and strain 
increments, respectively, which define a geometrically possible 
mode of deformation. The asterisk notation therefore denotes 
a solution which is incomplete in the sense that the stress field 
is not defined. Applying virtual work to the problem. it can 
be shown 116] 

rpý * 
-. 5 

IV b*dV 

where D* is the increment of dissipation of energy per unit 
volume calculated for the incomplete solution. The increment 
of energy dissipation per unit volume for a Tresca perfectly 
plastic material is given by the expression 
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Fig. 2 Two-bar structure 

15* -a, l i* 

where Ii*I is the greatest principal strain rate magnitude. In 
the case of a Mises perfectly plastic material, the more complex 
expression 

is valid, where Iij01: 1-1,2,3 are the principal strain rates. 
The upoer-bound theorem requires the definition of a geo- 

metrically possible mode of deformation for the compo- 
nent: essentially, compatible sets of displacement and strain 
increments must be defined. This is done automatically when 
the elastic compensation iteration procedure is applied to a 
finite element model. The elastic compensation procedure re- 
sults in an anisotropic inhomogeneous linear elastic solution, 
the compatible displacement and strain fields of which can be 
used to define a geometrically possible mode of deformation 
of the structure. 

An upper-bound limit load for a structure can be obtained 
by substituting the elastic compensation displacement incre- 
ment field ý* and strain increment field i* into the upper. 
bound theorem as expressed in Eq. (1). However, this approach 
can lead to practical problems as calculating the work term 
can be laborious if corresponding load and displacement vec- 
tors are not directly accessible in the f inite element program, 
(pressure loads on nonplanar surfaces present particular prob- 
lems). In practice, it is more convenient to take advantage of 
the linear elastic nature of the elastic compensation solu- 
tion: as the SOlUEion is elastic, the external work done must 
equal the elastic strain energy of the structure; thus 

EN 0. IV 
cri W 

where a is the elastically calculated stress, and i* the elasticafly 
calculated strain increment. Thus, the upper-bound theorem 
inequality may be written 

Jv 
ai *dV: s 

jv L5*dV 

Example 1: Two-Bar Structure. The limit load of a simple 
two-bar structure as illustrated in Fig. 2 was considered in 
reference [8), where it was shown that the Emit load given by 
the elastic compensation method was identical to the exact 
limit load, given by the expression 

Fl. L2(A, +A2) 
7y AjL2+A2Lj 

where FL and Fy represent limit load and yield load. respec. 
tively. The same result is found if the elastic compensation 
solution is substituted into the upper-bound limit-load theorem 
as given in the foregoing. The elastic stress in each bar may 
be evaluated simply as 

FEIL2 FEzL , 
wl- AIEIL2+AlE2Ll -"-A, ELz+A2E2L, 

ýr, 
Transactlons of the ASME - E-,, LI 
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Fig. 3 Beam under pure bending 

where initially El = E2 = E0. Assuming bar 2 to be longer 
than bar 1, first yield will occur in bar I when F= Fy 

FyL2 
al- A IL2+A., L I= 

ay 

Using elastic compensation, the elastic modulii in the bars 
are corrected based on the results of the initial elastic analysis 
according to the expression 

E. =E. 
S 

a 

where E. is the modified modulus, E,, is the original modulus, 
a the elastically calculated stress in the bar, and S an arbitrarily 
chosen value of stress. Substituting the expression for corrected 
modulus into the bar stress equations gives 

FF 
a' ýTt +A_, 

02 
1 +Az 

that is, a, = a2. Applying the upper-bound theorem to the 
elastic compensation analysis gives 

ýV 
aed V at*dV 

which simplifies to 

E ajý' V, at*, Vi 40 a, ay -- 
t-I A, -rAj 

for the simple bar structure. Substituting the expressions for 

a,, a2 and ay into the foregoing gives 
FL L, (A, +A2) 
Fy AIL, +A2L, 

which agrees with the exact solution. 

Example 2: Beam Under Pure Bending. The limit load of 
a rectangular beam under a pure bending moment as illustrated 
in Fig. 3 was considered in reference 181, where it was shown 
that the limit load given by the elastic compensation method 
was identical to the exact limit load 

ML=lm, 2 
The same result is found if the elastic compensation solution 

is substituted into the upper-bound limit-load theorem as given 
in the foregoing. Applying the elastic compensation procedure 
to the beam results in the following strain and stress distri- 
butions [81: 

2 Aez 
3 E,, aMyl 

2 Mh 
31 

where E. is the initial elastic modulus, My the moment at first 
yield, and ci an arbitrary constant such that 0< ct < 1. 
Considering symmetry, applying the upper-bound theorem 
gives 
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Fig. 4 Plot of strain energy and energy dissipation against applied 
external load 

10 
oedz = 20 r 

10, 
edz 

or 
4 0h3 2 AA2 

m=r ,Mi ay Eýamyl 

which simplified and rearranged yields the exact limit load 

ML -1 my 
2 

3 Upper-Bound Limit Loads by FEA 
In a linear elastic analysis, the upper-bound theorem may 

be expressed by inequality (2) 
Jv 

ai *di, 
--s 

jv 
15*dV 

or 
U: 5D 

The strain energy U of a linear elastic body varies with the 
applied load set squared. The dissipation of internal energy D 
varies directly with the applied load set. Thus, 

U- 
IV 

ai *dj, -AP (3a) 

D=j 
v 

Z)*dV=BP (3b) 

Plotting strain energy and energy dissipation against applied 
external load gives curves of the form shown in Fig. 4. 

When the strain energy and energy dissipation curves inter- 
sect, the load is an upper bound on the limit load. The inter. 
section can be calculated by performing an analysis for an 
arbitrary load set P, and evaluating the corresponding strain 
energy U, and energy dissipation DI. Substituting the calcu. 
lated values into Eqs. (3a) and (3b) gives 

A-U, B-D' F. P. 

and the strain energy and energy dissipation may be expressed 
as 

U= 
Ul 

P1 D-2-1 P F P, 
The applied load set P is an upper-bound limit P, load when 

U=A that is, 
U, 

Pu2 _DIP. "T'. P, 

and, hence, the upper-bound limit load is given by the exprcs- 
sion 
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Fig. 6 Beam under combined loading 
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Fig. 6 Beam under combined loading limit-load bounds by Iterativ* 
elastic analysis 

------------------ 

Fig. 7 Nozzleisphere intersection 

Table I Series A nozele cilmensions 

NO= 9 P. 
(mm) 

F. 
(inno 

R, 
(M-) 

A. H 
(rnm) 

A' ISO Iss Soo 505 Soo 

ffl 

100 120 Soo 520 sw 

A3 250 255 500 520 460 

A4 250 1 260 1 500 510 550 

Table 2 Sed@$ A limit pressures (NIMM) 
L- ftýd I 9-F UPP. G"w 

Al 2.09 2.34 21 

A2 Is, 111 184 

A3 S. " - 04 

A4 - 06 -1 486 

Table 3 Series 8 nozzle dimensions 

NOZZLE lý 
(mm) 

P. 
(MM) 

R. 
(mm) 

R. 
(rnm) 

H 
(MM) 

Bi 

1 

iso iss 500 $os 600 

02 100 120 500 520 600 

Table 4 Series 8 limit pressures (NImm) 

Speamen LowerSound l E-P I Upper Bound IB Lower 
, ound 11 

Upper 1 

Bound 1191 

al 

1 

47. S I S7.5 1 83.7 1 33.71 37.46 

82 1042 1 117 1 142.5 1 170 1 233.3 1 

to 8 iterations were performed for each model and the modulus 
correction equation used throughout was 

E, - E(j- 1) 
20E3 

47(1- I)M&X 

where a(, is the maximum (unaveraged) nodal stress cal- 
culated in the previous -analysis. The bounded limit surface 
given by the elastic compensation procedure is compared with 
the exact solution in Fig. 6. 

Nozzle/Sphere Intersection. Limit-load bounds were cal. 
culated for six thin nozzle/sphere intersections. The models 

P. P, were created from higher order (quadratic) axisymmetric ele. U, ments with three or four elements through wall thickness. The 
modulus correction equation used was 

4 FEA Examples 
In this section a number of example problems are investi- 

gated by finite element analysis using the program ANSYS 
[ 171. The upper-bound solutions calculated in the finite element 
analysis are approximate as the strain energy and energy dis- 
sipation integrals are calculated approximately by a summation 
based on element centroidal data and volume. Nonlinear elas- 
tic-plastic finite element analysis, used for comparison pur. 
poses, is based on an elastic-perfectly plastic material model. 

Beam Under Bending and Tension. As an example of the 
foregoing, consider a beam of unit width and depth under 
combined direct and bending loading, as illustrated in Fig. 5. 
The theoretical collapse load of a cantilever beam of unit width 
under direct force P and moment M is given by the expression 

M. 3 
I_tP) 

2] 
ýZy 2[ kp--, ) 

where, for a beam of depth d, Py = ayd and My - ayd216. 
In the finite element model, 12 linear quadrilateral plane 

stress elements were taken through the depth of the beam. Up 

E, - E(j- 1) 
200 

0'(i- I)Max 

where a(i- is the maximum (unaveraged) nodal stress cal- 
culated in the previous analysis. 

Series A intersections, defined in Table I and Fig. 7. were 
subjected to internal pressure loading only. Lower and upper- 
bound limit loads obtained by the elastic compensation pro- 
cedure are compared with elastic-perfectly plastic finite element 
analysis, and the lower-bound results of Robinson and Gill 
[181 in Table 2. Series B intersections, defined in Table 3 and 
Fig. 7 were subject to radial downward load on the nozzle 
only. 

Lower and upper-bound limit loads obtained by the elastic 
compensation procedure are compared with elastic-perfectly 
plastic finite element analysis and with rigid-perfectly plastic 
analysis upper and lower-bound solutions in which the nozzle 
was considered to be a rigid boss [191 in Table 4. 

TorispheriC21tiesd. Limit-load bounds were calculated for 
four torispherical heads as defined in Fig. 8 and Table 5. 
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Fig. 8 Torlspherical head geometry 

Finite element models were created in ANSYS using a uni- 
form mesh with six higher order (quadratic) quadrilateral 
axisymmetric elements through wall thickness. The modulus 
correction equation used was 

209 

a(, - [)max 
where of, -I Irnax is the maximum (unaveraged) nodal stress cal- 
culated in the previous analysis. The calculated limit-load 
bounds are compared with the elastic-plastic calculated limit 
loads (pressure at I percent equivalent strain) in Table 6. 

5 Discussion and Conclusion 
In general, the elastic compensation limit loads calculated 

in the foregoing sample analyses are found to be of useful 
accuracy, particularly in the case of the upper-bound loads, 
which are very close to the inelastically calculated limit load. 
However, it should be noted that the calculated upper-bound 
limit loads may not be true upper bounds as the energy integrals 
calculated in the sample analyses are approximate values, based 
on centroidal stresses and strains. Elements which integrate 
the energy terms by Gaussian quadrature are currently being 
developed by a colleague ef the writers and it may be that the 
true upper-bound loads are higher. 

The proposed method has several features convenient to the 
design engineer: it can be implemented automatically in 
standard linear elastic commerical finite element programs 
(thus, minimal manual intervention is required) and, unlike 
nonlinear methods, detailed inelastic material models, loading 
histories and nonlinear iteration/convergence controls are not 
required. However, investigation of the procedure is at an early 
stage and further work is required to examine the effects of 
mesh density, etc., on the accuracy of the solution 120). 
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Abstract-The elastic compensation method is a continuum finite element based method ror calculating 
lower bound limit loads by iterative elastic analysis. This paper considers the effects the finite element mesh 
density, element order and the iterative elastic procedure itself have on the calculated limit loads for a 
number of sample problems. It is round that the calculated value of lower bound limit load improves with 
mesh density and higher element order. It is noted that in practice designers are often restricted to working 
with fairly course meshes (due to computational considerations) and a method for calculating approximate 
limit loads using fairly coarse meshes is proposed. 

1. INTRODUMON 

Structural limit loads can be calculated by a number 
of analysis techniques, the state of the art being 
incremental finite element analysis by specialist non- 
linear programs such as ABAQUS. However, calcu- 
lation of limit loads by detailed inelastic analysis can 
be difficult and expensive: material models must be 
defined, appropriate load step and iteration controls 
applied and greater computing resources are required 
than for a comparable elastic analysis. In practice, 
limit analysis for design considerations is often per- 
formed using simplified methods, most commonly 
based on limit load bounding theorems. The bound- 
ing theorem approach has several advantages over 
elastic-plastic analysis: the solution is path indepen. 
dent, detailed material models are not required (the 
material is implicitly assumed to be rigid-perfectly 
plastic or elastic-perfectly plastic) and the solution 
procedure is linear (that is, non-iterative). The dis- 
advantage of simple methods based on bounding 
theorems is that they cannot be used for detailed 
calculations of plastic deformation: they address 
structural strength, not stiffness. 

One area in which calculation of limit loads is of 
great interest is pressure vessel design (where gross 
plastic collapse is a possible failure mcchanism)[1]. 
Recently, simple finite clement based methods for 
calculating lower bound and approximate limit loads 
of prcssuriscd components (modelled by continuum 
finite elements) have been proposed by Marriot [2] 
and Seshadri and Fernando [3] respectively. Both of 
these methods are based on iterative elastic analysis. 
In Marriott's method, the elastic moduli of highly 
loaded elements are systematically reduced in an 
iterative elastic analysis procedure so as to cause 

t Author to whom correspondence should be addressed. 

the stress to redistribute. If, after redistribution, the 
maximum stress in the model is less than the yield, 
the applied load satisfies the lower bound limit load 
theorem: 

If a statically admissible stress field in which the 
stress nowhere exceeds the yield exists for a given 
component under a given loading system, the 
loading is a lower bound limit load. 

In Seshadri's method, the GLOSS r-node method, 
iterative elastic analysis is used to identify the 
location of statically determinate stresses in the 
component; that is, stresses which are effectively 
insensitive to the assumed material model. These 

positions are defined as redistribution-nodcs, or 
r-nodes, and r-node stresses treated in a similar 
manner to reference stresses in the analysis of 
creep [4]. The r-node method is used to calculate 
approximate limit loads for components based on 
the assumption that plastic collapse will not occur 
provided the r-node stresses are less than yield. The 
present writers combined aspects of both the above 
methods in a third simplified method which seeks to 
obtain lower bound limit loads by iterative elastic 
(continuum) finite element analysis [5-71. The elastic 
compensation method can be used to define lower 
bound limit loads for any structure modelled by 

continuum finite elements: that is, 2-D and 3-D solid 
elasticity elements. The basic procedure is described 
in the next section. 

2. THE ELASTIC COMPENSATION METHOD 

Initially, a finite element model is created (using 
2-D or 3-D continuum elements) and a nominal load 
set Pd (generally comprising or a number of different 
types of load such as point forces, pressure, etc. ), 
applied. A linear elastic finite element analysis is then 
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performed and the linear elastic stress field obtained. CY 
This solution forms iteration zero in a series of linear 
elastic analyses of the model. After each iteration, M ------------ M- 
the elastic modulus of each element in the model is 
modified according to the equation: 

E, = E,, 

where subscript i is the present iteration number, 
a. a nominal stress value and a, - 1, the maximum 
(unavcraged) nodal equit-alent stress associated with 
the element from the previous solution. It must be 
ensured that the nodal stress in the divisor of the 
compensation equation (1) does not approach zero 
as, for example, could happen at the mid-surface of 
components exhibiting beam or shell type behaviour 
when subject to pure bending. This would lead to 
elements of excessively high stiffness in the model and 
possible numerical problems in the finite element 
solution. 

Plotting the maximum stress in the model against 
iteration number results in a graph of the form shown 
in Fig. 1. Modifying the modulus of elasticity of the 
elements causes the stress to redistribute between 
iterations. In some cases the redistribution may cause 
the maximum stress in the model to increase between 
iterations but it is generally found that over a number 
of iterations there is a net decrease in maximum stress 
with respect to the initial solution. 

The stress fields obtained for each iteration meet 
the lower bound limit load theorem requirement of 
statical admissibility (within the usual limitations of 
the finite element procedure) but the maximum stress 
may or may not violate the requirement that it should 
not exceed yield. depending on the magnitude of the 
applied load set Pd. The best value for lower bound 
limit load possible for a given stress distribution is 
one in which the maximum stress is yield. The value 
of the applied load giving such a maximum stress 
can be calculated from simple proportionality. As the 
iterative analyses are linear elastic, the magnitude of 
the maximum stress in the model is proportional to 
the applied load. For an arbitrary iteration, say r in 

a- 

0, 
0, 

Fig. 1. Maximum stress for each iteration. 

Fig. 2. Beam under pure bending. 

Fig. 1, the applied load set Pd gives a maximum stress 
of a, (which may be greater or less than yield). Thus 
the load set P, to give a maximum stress of ay in the 
model is simply: 

PI ý Pd av 
a, 

Load set P, is a lower bound limit load set for 
the component comprising of individual loads in the 
same proportion as they occur in the applied load 
set Pd. The best lower bound limit load is given by 
considering the solution in which the maximum stress 
has the lowest value, say iteration R, in which the 
maximum stress is alt. This solution gives a lower 
bound limit load: 

PL ý Pd ay 

17R 

where load set PL is the best estimate of limit load 
given by the above procedure. 

A number of limit analyses using the elastic 
compensation procedure have been presented in rer- 
erences [5-71, where it was shown that the method 
could be used to calculate useful lower bound limit 
loads in pressure vessel design. The object of this 
paper is to examine the effect of aspects of finite 
element modelling on the accuracy of the solution. 

I BASIC CONSIDERATIONS 

Mesh density has an intrinsic and significant effect 
on the accuracy of limit loads given by the elastic 
compensation method. This can be demonstrated by 
considering the limit behaviour of a beam under pure 
bending. A closed form elastic compensation solution 
for the limit load or a rectangular beam under 
pure bending, as illustrated in Fig. 2, was presented 
in reference [51, where the calculated limit load was 
shown to agree exactly with the elastic-perfectly 
plastic solution: that is, 

ML 
ýU-y 

where ML is the limit moment and My the moment 
at first yield of the beam. 

In a continuum finite element analysis of such 
a beam, it must be discretized into a number of 
elements through depth. Consider a beam with six 
elements through depth, as shown in Fig. 3. An initial 
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homogeneous elastic solution based on Engineers 
Theory of' Beam Bending gi% es a stress field in " hich 
the axial stress varjes %%ith : according, to: 

Af: 

The elastic modulus ot' each element in the bearn 
is modified by substituting stresses calculated in the 
initial solution, iteration 0, into the compensation 
equation: 

a 
= 

where a, is the maximum stress calculated within the 
domain of the element in iteration 0. Considering 
symmetry, one hall' of the bearn need be considered. 
elements 1- 3 in Fig. 3. Applying the compensation 
equation gives: 

" 1ý E(: )--E, --F, ) - for 0-<-- <- - 
(. 11 I'll, 

E,:, = E, = E, lo r 
/I 
, <-< -- <- 

211 
33 

F-,., = E, = k, ý 
' C)r -- ýý - -< hý 

17��� 1 

This procedure effectively results in an inhonio- 
geneous or composite bearn model. the elastic 
modulus being constant in each element. Applýing 
equilibrium to a section through the beam, noting the 
symmetric stress distribution, gives: 

At = 211 
i" 

(T, ., -- (I --. 

where m- is the width ofthe bearn. Assuming uniamal 
stress and the plane sections remain plane: 

(; = E, ,, 
(= h-- 

the beam moment curvature equation becomes: 

if = 211 k 1, 

E, 2d 

Substituting for E, in 1, givesý 

fI, 
d: + E, d: + 1, = 2it E, 

1 
= -- [EI + 7F, + 27 

z 
-- 

3- +h 
2 

-h Fig. I Dis,: reuzed beam 

From strain displacementi 

27Af: 
Ij I(El + 7E., + 19E, ) 

40S 

Substituting the IMIX111IL1111 clastic stress in 

each clement into the compensation equation and 
rearranging, it is found that: 

Therefore 

L', ý and L', ý 

27M 54 At 
I(E, + 7F, + 19E, ) 65 E, 

From the stress strain relationship aý the 
stress field is defined piecewise across the depth by 
the equations: 

C: fo r0 

F2 C- Cor 
/1 2/1 
33 

2h 
E, fo r h. 

Thus the stress tield gi%en by the clastic compensation 
procedure IS &M-0111MIJOUS, as 1111.1s(raled III Fig. 4, 
with maximum stress: 

54 Ath 
65 1 

A lover hound oil file linut load is given hý 

calculating the moment ITSUlling In ýl maximurn stress 
of' vield in the fwarn. It is simple to show that tills 
occurs . \heii Af - Af, A hcrcý 

Af, 05 
- 1,2 

It, S4 

.1 teductlon of' 20',, in the calculated linut load 
in comparison ý%ith file C011111111OLPl)' varying elastic 
conipcilsation solution 
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z 54 Mh 
65 T 

h 

ELASTIC 
DISTRIBUTION 

-, 0- DISCONTINUOUS 
-ELASTIC COMPENSATION 

DISTRIOLMON 

a 
Fig. 4. Discontinuous stress distribution given by elastic 

compensation. 

This simple problem highlights three important 
features of the elastic compensation procedure: 

" Discretization per se introduces conservative 
error to the limit load calculation. 

" In general, the modulus compensation procedure 
leads to discontinuous stress fields and care 
must be taken to ensure that lower bound limit 
load calculations arc based on unareraged 
stresses. Many commercial programs average 
stress results to give a smooth stress distribution 
by default. Smoothed stress fields may violate the 
lower bound theorem requirement for a statically 
admissible stress field, as smoothing algorithms 
do not take account of equilibrium. Smoothed 
stress fields may be used to give approximate 
limit loads but to obtain true lower bound limit 
loads unaveraged stresses must be used. 
The value of or. used in the compensation 
equation (1) has little effect on the solution and 
can be arbitrarily chosen (this has been vcrified 
in analyses of other sample problems in which 
values of half yield, two thirds yield, and yield 
gave almost identical solutions). 

4. MODELLING CONSIDERATIONS: 
EXAMPLE PROBLEMS 

In order to investigate the effect of a number of 
modelling parameters on the elastic compensation 
solution, a number of finite element analysis sample 
problems are considered: four torispherical pressure 
vessel heads, as defined in Fig. 5 and Table 1, 
and two toriconical heads, as defined in Fig. 6 
and Table 2, all subject to internal pressure. Finite 

Table 1. Torisphericat end dimensions 

I h r L 
Model D (in) T) b T) -D 

TORI 37 0.015 0.207 0.07 0.813 
TOR2 37 0.05 0.207 0.125 1.021 
TOR3 37 0.07 0.207 0.07 0.813 
TOR4 37 0.14 0.207 0.07 0.813 

Table 2. Toriconical end dimensions 

r 
Model D (mm) D2 
CONI 1000 0.06 45 20 
CON2 1000 0.06 75 40 

element analysis was performed using the commercial 
finite element program ANSYS. The elastic compen- 
sation procedure was performed automatically by 
defining ANSYS ADPL macros. Two types of 
ANSYS element were used; the four-node axisym- 
metric solid clement STIF42 (linear with added shape 
functions) and the eight node axisymmctric solid 
clement STIF82 (higher order, quadratic). Finite 
element models of TORI and CONI (with three 
elements through thickness) are shown in Figs 7 
and 8. 

4.1. Mesh density and element order 
In any infinite element analysis, the user must 

dcfine the element type and the mesh density for the 
model. Both these factors effect the accuracy of a 
conventional finite element solution and, from the 
simple example above, the discrctization procedure 
is expected to effect the elastic compensation results. 
The effect of element order and mesh density on 

. III 

-40 

Fig. S. Torispherical end (E - 29E6 (psi), av - 30,300 psi, 
v-0.29). 

Fig. 6. Toriconical end (E - 200E3 N, mm2; v-0.3. 
ay - 300 N Imm'). 
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Fig. 7. TORI finite element model: three elements through thickness. 

TORI and CONI maximum stress values in the 
initial elastic analysis is illustrated in Figs 9 and 10, 
where the maximum von Mises stress d. normalized 
with respect to the maximum von Mises stress calcu- 
latcd for the finest STIF82 mesh, is plotted against 
both the number of elements and number of nodes 
through thickness for up to 10 uniform elements 
through the wall thickness. 

4.2. Variation in maximum stress ivith iteration 

The maximum normalized von Mises stress per 
iteration for models TORI and CONI is plotted 
against iteration number for a number of mesh 

densities, (indicated by the number of elements 
through wall thickness), in Figs 11 and 12. Clearly, 
the effect of the elastic compensation procedure is to 
cause a net reduction in stress over a number of 
iterations, although an increase may occur between 
iterations in some cases. The case of stress increasing 
between iterations is seen more clearly in a similar 
plot for TOR2, as shown in Fig. 13. 

4.3. Variation of calculated limit load with mesh 
density 

The yariation is calculated limit load with mesh 
density (nodes through wall) for TORI and CONI 

. V'144, 
1614 4 : 07 
, LOT 00. 
PRXPI tL&HWS 
"PC mm 
TDIS 
P" s 

IV -L 
DIST:, 4: 2.147 
xr 0 
Yr -97.4as 

Fig. 8. CON I finite element model: three elements through thickness. 
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0a461 10 
ELEMENTS THROUGH THICKNESS 

Fig. 9. TORI maxir 

(iteration 8) is shown in Figs 14 and 15. The limit load 
for each mesh has been normalized with respect to the 
yield load calculated from the initial elastic analysis 
for that mesh. Both the mesh density and element 
order effects the calculated value of the limit load: 
finer meshes and higher order shape functions give 
better lower bound limit loads. 

03a 
. 11 THROUGH 

" '; 
HICK'NESS 

num normalized stress. 

4.4. Comparison with elastic-plastic analysis 
Lower bound limit loads calculated by the elastic 

compensation method, P, are compared with limit 
loads calculated by elastic-perfectly plastic analysis. 
P., in Table 3. The limit criteria for inelastic analysis 
was taken to be load at 1% total strain. The results 
shown are higher order (STIF82) meshes. 
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Finite element modelling for limit analysis 
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Fig. 12. CONI maximum normalized stress per iteration. 

Table 3. Comparison of elastic stresses in the elastic compensation method is illus- 
compensation and elastic-plastic trated in Table 4 for the four torispherical heads: 
analysis lower bound limit loads TORI with four elements through thickness and 

P. TOR2 and TOR4 with 10 elements through thAness 
Component P., and TOR3 with six elements through thickness. PL 

TORI 0.84 and P. are the lower bound and approximate limit 
TOR2 0.84 loads respectively. 
TOR3 0.80 
TOR4 0.85 
CONI 0.89 S. DISCUSSION AND CONCLUSIONS 
CON2 0.86 

The sample problems considered above highlight 

several important aspects of finite element modelling 

4.5. Approximate limit loads by elastic'compensation 
for limit analysis by the elastic compensation method. 
In the examples presented, the method gives values 

It was stated above that many commercial pro- 

grams automatically average stress results to give 
a smooth stress field which may not satisfy criteria Table 4. Lower bound and approximate 

of the lower bound theorem and that only limit loads 

unaveraged stresses should be used if a lower bound P, P. 

limit load is required. However, smoothed stresses Component P-P P-P 

can be used to calculate approximate limit loads for TORI 0.78 0.80 

components which may be closer to the actual limit TOR2 0.84 0.90 

load than a lower bound calculated by corresponding TOR3 0.80 0.89 

unaveraged results. The effect of using averaged 
TOR4 0.85 0.89 
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Fig. 13. TOR2 maximum normalized stress per iteration. 
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of lower bound limit load within I I% to 20% or 
loads calculated by elastic-plastic analysis, however. 
the accuracy of the method is significantly effected 
by mesh density and element order. The best results 
are given by high density high order meshes but. in 

pl. 
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y 
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Fig. 15. CON t lower bound limit load (iteration 8). 

practice, computing and perhaps software limitations 
may restrict the model to a more modest size and 
some compromise between accuracy and expediency 
must be made. Approximate limit loads can be 
calculated by substituting averaged or smoothed 
stress fields into the lower bound theorem. Such stress 
fields may violate the lower bound theorem but they 
do appear to give good approximate solutions using 
even fairly course meshes. The use of the smoothed 
stress field approach may be particularly useful in 
3-D continuum analysis, where practical computing 
and software restrictions limit the permissible mesh 
density: for example, in pressure vessel applications 
models commonly have two or three elements 
through thickness. 
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ABSTRACT 
A parametric study of limit loads for pressurised axisymmetric 

nozzle/sphere intersections with equal nozzle/shell thickness is 

presented. Lowerand upper bound limit loads are calculated by the 
elastic compensation method and results are found to be consistent 
with alternative analyses from the literature. 

INTRODUCTION 
limit analysis of axisymmetric nozzles under internal pressure 

has received considerable attention in the literature. In the 1960s, 
Gill', Dinno et al2 and Ellyin et al" used approximate shell type 
circumscribing yield surfaces to develop lower and upper bound 
limit pressures according to principles discussed by Drucker and 
Shield"', for a flush cylindrical nozzle ina spherical pressurevessel. 
Leckie and Payne replotting Gill's results for limit pressure against 
a single dimensionless nozzle geometry parameter p for various 
nozzle to shell thickness ratios, where 

P RT 
andris the nozzle radius, R the sphere radius, and Tthethickness 

of the sphere, as illustrated in Figure 1. 
Gill" has also presented summarised rcsults in a similar form. 

Robinson and Gilla proposed an improved solution to the problem 
in the early 1970s, using linear programming techniques based on 
approximate shell type yield criterion of llyushin9. Tbus the 
majorityof published results forthe limitpressureof nozzle/sphcre 
intersections have assumed thin shell theory and usually an 
approximate yieldcriterion; results haveproved reliable within the 
limitations related to the thin shell assumptions. limited elas- 
to-plastic finite element solutions and experimental results for 
specific geometries can be foundinthe literature; these have mostly 
confirmed the approximate limit pressures. A more complete 
review of the topic is presented in reference". 

In this paper a parametric study of axisymmetric nozzle/spherica I 
shell models with equal nozzle/shell thickness is presented. Lower 
a nd upper bound limit pressures are obtained for 74 nozzle 
geometries using the elastic compensation method, which is 
defined in detail in references' ""'. The elastic compensation 
method is an iterative elasticanalysis procedure in which the elastic 
moduli of individual elements are weighted to produce stress, strain 
and displacement fields suitable for application of the lower and 
upper bound limit load theorems. A similar technique has been 
presented by Carter & PonteO4. Flots of upper and lower bound 
limit pressure versus the nozzle geometry parameterp and R/Tratio 
are presented and compared with results from the literature and to 
new elasto-plastic analyses. 

PARAMETER STUDY OF AXISYMMETRIC NOZZLE IN 
SPHERICAL SHELL 

The model geometry parameters are shown in Figure 1. A fillet 
of radiusfxt/2&t the nozzle/sphere intersection is modelled inordcr 
to counter the problem of singularities at re-entrant comers in 
elasticity theory. The internal pressure is P and the radial outward 
pressure P,, as shown. For the first stage of the study the radius 
ratio was constant at R/r= 5 (11=1000, rz200mm), with thickness 
Tat varied from 250mm to 23.67mm over 9 models, (this naturally 
leads to some rather curious nozzle geometries). The detailed 
geometric parameters are shown in Table 1. 

Ilie modulus of elasticity was 200E3N/mm2. Poisson's ratio 0.3 
and yield stress 30ON/mM2 throughout. Results are based on the 
Von Mises yield criterion. Fnite element analysis was performed 
using the program ANSYS, with the eight noded isoparametric 
axisymmetric solid element ST11`82 used throughout. Cut surface 
boundary conditions allowing radial expansion but precluding 
meridional displacement were applied at a distance sufficiently far 
removed from the nozzle for the effect of the constraint to be 
negligible. A typical finite element mesh is shown in Figure 2. 
Internal pressure P and radial nozzle pressure 11, (equivalent to an 
capped nozzle pressure load) were applied, where 
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Pr2 
P, - 

- r, 

Calculated lower and upper bound limit load pressures, P, and P. 
respectively, are normal ised according to the expression 

T_ R 
Pi 

MY, 

Normalised lower and upper bound limit pressures, T, and 

respectively, and normalised pressure to first yield F, for models 
I to 9 are given in Table 2 and plotted against the nozzle geometry 
parameter p in Figure 3, (a maximum of 10 elastic compensation 
iterations were used in the analyses). Lower bound limit loads by 
Leckie and Payneare also given in Table 2 and Figure 3. 

Following this initial study, a series of models with set sphere 
radius, sphere thickness and nozzle thickness (t/T=1) was invesfi- 
gated such that R/T and VT was constant. Nozzle radius r was 
varied to give a range of values forp. RwassetatR=1000andsix 
wall thicknesses examined (T=20,40,100,120,140,160) giving six 
groups of models with constant shell radius to thickness ratio of 
R/T=50,25,10,8.33.7.14 and 6.25. In this way, the variation in 
limit load with two dimensionless geometry parameters p and RIT 
was investigated. 

The results of the elastic compensation analyses are compared 
with Robinson and Gills for the thinner shells and with new 
elasto-plastic analysis (with an elastic-perfectly plastic material 
model) for thicker nozzles, RIT<=10, where there does not appear 
to be any comparable results available in the literature (due to the 
limitations of shell theory). The results are presented in Tables 3-6 
and Figures 4-7 for RIT=50,25,10,6.25 (results for R/T=8.33 and 
7.14 have been omitted for brevity) and summarised and compared 
with the results of Leckie and Payne6 in Figures 8 and 9. 

DISCUSSION AND CONCLUSIONS 
Comparing the results of the parametric study with results from 

the literature and incremental elastic-plastic analysis (with an 
elastic-perfectly plastic material model) indicates that the elastic 
compensation method is a robust method for bounding limit loads 
without recourse to complex incremental elastic-plastic analysis. 
711he results of the study also indicate that whilst the lower bound 
limit load is a function of the dimensionless geometry parameter p 
used by Leckie d al, it cannot be fully characterised by this single 
parameter. 77he spread in the results for the lower and upper bound 
limit pressure for the various R/Tratios indicates that this parameter 
also has an influence. 
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TABLE 1 NOZZLE MODEL GEOMETRY, r=200mm, 
R=l 000mm 

Noz. 1 2 3 14 5 a 17 8 9 

R 1000 1 ow 1000 1000 1000 1000 1000 
- 

1000 1000 

200 200 200 200 200 200 200 200 200 

T 
(mm 

250 160 111.1 81.6 62.5 40 33.06 

1 

27.8 

1 

23.67 

1 
4 625 

1 
91 12.25 16 25 30.251 36 1 42.2 

p ()ý .4 0.4 0.5 1 0.6 1 C 
- 

t 

. 31 13 

FIGURE 2. TWICAL FINITE ELEMENT MESH FOR 
NOZZLE/SPHERE INTERSECTION. 
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TABLE 2 NORMALISED LOWER BOUND LIMIT PRES- 
SURE OF NOZZLES, r=200mm, R=1000mm. 

Nozzle T(mm) p P, L+P" 

1 250 0.4 0.361 0.923 1.000 0.969 

2 160 0.5 0.414 0.898 0.990 0.944 

3 111.1 0.6 0.446 0.862 0.974 0.911 

4 81.6 0.7 0.463 0.818 0.952 0.876 

5 62.5 0.8 0.468 0.777 0.923 0.841 

6 40 1.0 0.435 0.696 0.850 0.775 

7 33.06 1.1 0.399 0.659 0.812 0.747 

8 27.8 1.2 0.393 0.615 0.770 
- 

0725 

91 
r 

23.67 1.3 
, 

0.366 
1 0.577 1 00741 1 

7.7700 
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FIGURE 3. NORMALISED LOWER BOUND LIMIT PRES- 
SURE OF NOZZLES VERSUS p, r=200mm, R=l 000mm 



TABLE 3 NORMALISED LOWER BOUND LIMIT PRES- 
SURE OF NOZZLES, T=20MM, Rfr=50 

Nozzle r(nwn) P R+G" 

10 14.14 0.1 0.469 0.955 1.0 

11 28.28 0.2 0.436 0.90 1.0 - 
12 56.57 0.4 0.464 0.833 0.997 0.928 

13 70.71 0.5 1 0.471 0.803 0.99 0.888 

14 84.85 0.6 0,473 0.776 0.977 0.846 

15 98.99 0.7 0.471 0.745 0.955 0.810 

Is 113.1 0.8 0.467 0.715 0.923 0.774 
17 127.3 0.9 0.448 0.685 0.884 0.736 

18 1412 1.0 , 0.419 1 0.657 0.843 1 0.704_ 

19 212.1 1.5 0.32 1 0.541 0.683 0.583 
20 282.8 2.0 1 0.264 1 0.463 0.584 0.496 

12 r; 

08 
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FIGURE 4. NORMALISED LOWER BOUND LIMIT PRES- 

SURE OF NOZZLES VERSUS p, T=20mm, Rrr=50 

TABLE 4 NORMALISED LOWER BOUND LIMIT PRES- 
SURE OF NOZZLES, T=40mm, Rrr=25 

Nozzle I(mm) p T. T, F. R+G" 

21 40 0.2 0.432 0.920 1.0 

22 so 0.3 0.443 0.888 0.999 0.974 

23 so 0.4 0.457 0.859 0.996 0.941 

24 100 0.5 0.467 0.829 1 0.990 0.90S 

25 120 0.6 0.471 0,802 0.976 0.870 

26 140 0.7 0.473 0.774 0.954 0.832 

27 160 0.8 0.471 0.748 0.924 0.800 

28 180 0.9 0.467 0.718 0.888 0.768 

29 200 1.0 0.462 0.692 0.851 0.740 

30 300 1.5 0.353 0.579 

j 

0.702 0.61S 

31 400 2.0 0.291 0.49 5 0.607 0.5118 

12 - 

P 
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FIGURE 5. NORMALISED LOWER BOUND LImIT PRES- 
SURE OF NOZZLES VERSUS p, T=40MM, R/T=25 
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TABLE 5 NORMALISED LOWER BOUND LIMIT PRES- 
SURE OF NOZZLES, T=100mm. R/T=10 

Nozzle F(-) p F. ii, p7. E/P 

32 6324 02 0.424 0.949 1.0 1.0 

33 94.87 0.3 0.407 0.934 1.0 

34 126.5 0.4 0.426 0.909 0.997 0.9a3 

35 158.1 0.5 1 0.441 0.88 0.990 

36 189.7 0.6 0.451 0.855 0.975 0.933 

37 221.4 0.7 0.457 0.83 0.951 

38 253.0 0. a 0.459 0.802 0.920 0.883 

39 1 284.6 0.9 0.459 0.775 0.886 

40 316.2 1.0 1 0.457 1 0.748 1 0.851 0.817 

41 474.3 1.5 1 0.372 0.629 0.712 - 
42 632.5 2.0 0.317 0.552 - --' - --- 

0 05 1 15 2 
FIGURE S. NORMALISED LOWER BOUND LIMIT PRES- 

SURE OF N=LES VERSUS p, T=l 00mm, R/T=l 0 

TABLE 6 NORMALISED LOWER BOUND LIMIT PRES- 
SURE OF NOZZLES, T=l 60mm. Rrr=6.25 

Nozzle r(mm) E/P 

65 120 0.3 0.389 
--- 

0.936_ 1.0- 1.0 

66 160 0.4 0.399 0.914 0.999 - 
67 240 0.6 0.427 0,862 0.973 0.948 

68 280 0.7 0.436 0.837 0.947 

69 320 0.8 0.44 t 0.804 0.914 0.885 

70 360 0.9 0.443 0.777 0.879 

71 400 1.0 0. "3 0.748 0.845 0.823 

72 Soo 125 0.439 0.686 0.769 

73 600 1.5 0.414 0.627 , 0.712 1 . 687 O 

74 700 1.75 0.389 O. Sw 1 0.672 1 

E: ] 

0. 

12 

. ..... . ..... . ..... . .... 

08 .... . ...... . ..... . ..... . ..... 

06 ... . ..... . ..... . ..... . ...... . ....... . ..... . ..... . ..... . ................ 

0.4 . ..... 

02 .... ..... . ..... . ..... . ..... . ...... . ..... . ..... ....... . ..... 

p- (r/R) (Rr[Y'2 

0L 
0 0. 

FIGURE 7. NORMALISED LOWER BOUND LIMIT PRES- 
SURE OF NOZZLES VERSUS p, T= I 60mm, R/T=6.25 
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AeSTRACT 
An investigation of the shakedown behaviour of equal-thickness 

;j. xjsNmmetric nozzles in spheres is presented. The elastic 
com'pensation method is used to obtain shakedown loads rora range 
ofnozzle configurations. The calcul-ited shakedown pressures are 
compared with shakedown curves from the literature and the ASME 
B& PV Code Section VIII Division 2 primary plus secondary stress 
requirements. 

INTRODUCTION 
I'he design by analysis rules included in Pressure Vessel CcxJes 

suchas ASNIEBoiler and Pressure Vessel (XVI) Code Sections 
III and Vill (Division 2) (ASME. 1989) and the UK CWe BS5500: 
Cnfiredfusion vieldedpressure vevrels (BSI, 19141) dcfine criteria 
in preclude a number of failure mechanisms. gross plastic 
deformation, incremental cWlapse, buckling and fatigue. This 

paper examines the specific problem of incremental collapse, more 
commonly known as ratchetting. Ratchetting is associated with 
cyclic loading and describes a post-yield phenomenon in which the 
stress system reaches a cyclic state (after a Few cycles of load) but 
plasticýtmin increases inercmentallv with each cvclc. I'his is cleariv 
undesirable and a potential source of failure through plastic 
deformation. 

Ratchetting may be precluded by limiting the stress to the elastic 
range but this rest H ctive approach is unnecessary if shakedu%n of 
the structure can be assured. In the shakedown condition. a 
component which accumulates some plastic strain in the first (few) 
load cycles subsequently settles down to wholly elastic behaviour 
with no further plastic strain as the load continues to cycle. Design 
for shakedown is clearly desirable, provided some limited plastic 
strain is tolerable in the first few cvclcs, 

The B&PV Code rules for design based on elastic analysis mav 
he interpreted in the context of the Code failure criteria as follows: 

All elastically calculated stresses must satisfy the specified 
, atigue criteria. 

" The primary plus secondary stress must satisfy the shakedown 
criterion. 

" The primary stress must satisfy the gross plastic deformation 
criterion. 

Codestress; limits are defined in termsof the (primary membrane) 
allowable stress S., which isapproximately equivalerittotwo thirds 
vield. The ASME B&PV Code (Section Vill Division 2 Appendix 
4- 134) shakedown criterion requires the primary plus secondary 
Stress intensity, derived from the highest value at any point across 
the thickness of a section (neglecting peak), to be limited to 3S.: 
that is, the elastically calculated stress range is limited to less than 
twice yield (ASME, 1969). This criterion seeks to ensure overall 
(or plastic) shakedown, in which the structural response is 
controlled by a dominant elastic core (Toulios & White 1991). 
Local plastic action due to peak stress is assumed to be constrained 
by the surrounding elastic region and peak stress can therefore be 
neglected in the shakedown analysis. 

The 3S. limit forshakedown is applied to all possible components 
forall possible loads, however, experimental and theoretical studies 
of the shakedown behaviour of many components have suggested 
that ratchetting may cccur for cycli1Z stress ranges below the 2a, 
limit. Proctor & Strong (068) have reported experimental 
shakedown loads for 110ZLICS in spheres at less than the 2crr range 
and Leckie & Penny (IQ67) report similarresults for analysis based 
on Melan's lower bound theorem and thin shell theory. 

In BS5500, a direct check for shakedown is possible: Appendix 
A. 3.1.2 Incremental collapse, states that "The stress system 
imposed should shakedown to elastic action within the first few 
operating cycles". To demonstrate conformance with this 
requirement "a shakedown analysis (e. g. See G. 2.6) should 
preferably be employed" (the specified alternative being elastic 
analysis and stress categorisation). The method of predicting 
shakýedown loads used in Appendix G. 2.6 Spherical shells: 
shakedot4n loadsfor radial m. )zzles is based on that used by Leckie 
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& Penny (N67) to calculate shakedown loads for axisymmetric 
n-1771CS subject to pressure, thrust and moment loads. Tbc Leckie 

and Pcnny method is based on Melan's theorem: 
For a -iven load set P, if any distribution of self-equilibriating 

residua I stresses can be found K hich K hen taken together KA 
elastically calculated stresses constitute a system ofstresses within 
the yield limit (for the whole cycle) then P is a lower bound 

shakedown load set and the structure Kill shake down. 
Leckie and Penny used elastic thin shell solutions for a variety of 

nozzle loading configurations to obtain shakedown loads cur%, es for 

a wide range of nozzle geometries (although the assumption-, 
inherent in the thin shell theory used may restrict the accuracy of 
solutions for thick vessels). 

Since the work of Penny and Leckie, several alternative methods 
for calculating shakedown loads using various finite clement 
formulations have been proposed. Ideally, an incremental 

clastic-plastic analysis can be run for a number ofcycles and strain 
accumulation examined to determine if shakedown occurs for a 
particular loading. This approach is time consuming and only 
determines whether or not shakedown occurs for the considereZI 
load: trial and error must be used to establish the highest shakedown 
load. Bclytschko (1972) and Corradi & Zavelani (1974) applied 
linear programming techniques directly to the shakedown theorems 
but this computationally intensive approach has only been applied 
to simple two dimensional structures. However, Mackenzie & 
Boyle (1993) proposed a simpler method for calculating lower 
bound shakedown loads based on iterative elastic finite element 
analvsis and Mclan's lower bound shakedown load theorem. I'lie 

method uses the elastic compensation method (previously proposed 
for limit analysis (Mackenzie el al. 1993)) to obtain elastic and 
residual stress fields suitable for substitution into Melan's lower 
bound limit load theorem. In many respects, the method is an 
extension nf Pennyand Leckie*s shell analysis approach lo2-D and 
3-1) solid finite element analysis. 

T-he advantage of adopting bounding theorems for calculating 
shakedown loads is that they only require incomplete plasticity 
solutions. Melan*s theorem states that a structure will shakedown 
for a given load if an acceptable residual stress system can be 
identified. The specified residual stress field need not he the actual 
residual stress system in the real structure. In addition. 
compatibility requirements and constitutive relations need not he 

considered. The elastic compensation approach proposed by 
Mackenzie and Boyle requires much less computing effort than 
alternative finite element shakedown analysis procedures and can 
be applied to 2-D and 3-D solid finite element models. In this paper, 
shakedown loads given by the elastic compensation method are 
compared with those given by Penny and Leckie and the twice yield 
load criterion used in Code elastic analysis. 

LOWER BOUND SHAKEDOWN LOADS BY ELASTIC 
COMPENSATION 

The lower bound elastic compensation shakedown formulation 
has previously been described by Mackenzie and Boyle (1993). 
Ilere a brief re-cap of the finite element implementation of the 
method is given. It is assumed here that the applied load is cycled 
from zero up to a specified value then back down to zero, The aim 
is to find the maximum allowable load forshakedown to occur, this 
Will be the shakedown load. The following notation is used: 

cir, is a residual stress field 

cy, the elastic stress field 

oy the material yield stress 
In the elastic compensation method, an initial linear elastic finite 

element analysis is performed for a nominal design loading Pd to 
establish the elastic stress field cr, 17his analysis forms iteration 
zero in a series of linear elastic analyses in which the moduli of 
elements are systematically modified to redistribute the stress in 
the component. In each subsequent iteration, the modulus of each 
element is modified according to the equation: 

E, - E(, 

where subscript i is the iteration number, cy. a nominal stress value 
and the maximum (unaveraged) nodal equivalent stress 
associated with the element from the previous solution. The value 
chosen fora. in (1) is somewhat arbitrary - usually half or two thirds 
yield. 

The redistributed stress field calculated for each iteration is 
designated as a possible shakedown stress field cr,,: that is, the stress 
f ield in the component underfull load aftershakedown hasoccurred. 
This stress field is taken to be the sum of the initial elastic stress 
field a, and a residual stress field cy, (for iteration i): 

0" - a. + (11, (2) 

T'hus, the residual stress field cy, is defined implicitly in the elastic 
compensation procedure, such that. 

G'i - a., - 0. (3) 

Since the load is cycled from zero to a specified value, tvw 
conditions for shakedown must be considered since the residual 
stress must itself be within the yield limit (when the zero load 
condition is reached during the cycle) to satisfy Melan's theorem. 
The two conditions are expressed as pressures P, and P2, for each 
iteration i, where 

P, - P, CYY 
(4a) 

I al. - Cý I.. 

P, - P, (4b) 
10,111. 

The lower bound shakedown load Ps, calculated for iteration i is 
the smaller of the two calculated loads P,, and P,,, that is: 

Ps, - min(P,,. P,, ) (5) 
The best lower bound shakedown load is the highest iteration 

shakedown load P,,: 
Ps - rnax(P�) 

SHAKEDOWN LOADS FOR AXISYMMETRIC NOZZLES 
The axisymmetric model geometry and various parameters are 

shown in Figure 1. A fillet of radius fzt/3 is included at the outside 
of the intersection to avoid a re-entrant comer singularity in the 
solution. The internal pressure is Pdand the radial outward pressure 
P, (equivalent to an capped nozzle pressure load) were applied, 
where 
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17) 

'ne modulus of elasticity was 200EWmm', Poisson's ratio 0.3 

and vield stress 300N, 'mm. The von Mises vield criterion was 
assumed. Finite element analysis was performed using the program 
ANSYS (Swanson Analysis Systems, Inc., 1993), using the eight 
noded isoparametric axisymmetric solid element PLANE82. Cut 

surface boundary conditions allowing radial expansion but 

precluding meridional displacement were applied at a distance 

sufficiently far removed from (he nozzle for the effect of the 
constraint to be negligible. A typical finite element mesh is shown 
in Figure 22. 

Shakedown pressures P,, and Pý were ca Icula led acLx)rdi ng to the 
equations (4a) and (4b) and normalized according to the equation: 

-R 
2 -7c,,. P 

11he variation in shakedown load with mo dimensionim 
geometry parameters p and RIT was investigated. where 

p- 
r (R)' 
RT 

Three series of models were examined, within which the sphere 
radius(R) and wall thicknesses (t-7) were held constant and nozzle 
radius r varied to give a range of values for geometry parameter p. 
R -as set at 1000mm throughout, and three wall thicknesses 
examined - l0mm, 20mm and IOOMM - giving three groups of 
models with constant shell radius to thickness ratio of RIT=I(X), 50 
arid 10 respectively. 

Normalised lower bound shakedown pressures calculated by the 
elastic compensation method, T., arc plotted against the nozzle 
geometry parameter pin Figures 3 to 5 rorRIT ratios of 100,50and 
10 rcSPCCtively. A maximum of 10 iterations were used in the elastic 
compensation analyses. I'he normalized shakedown pressures are 
compared with published results of Leckie and Penny (1967) TLp, 

and the load corresponding to an elastic stress range of.? S. (2a. ), 

j5, For simplicity, Fv. is based on the total elastic stress; that 
is, primary plus seoondiry plus peak stress are included in the 
considcred elastic stresses. This assumption is conscrva*, ive with 
respect to the ASME (overall) 3S. shakedown criterion, which 
considers only primary plus secondary stress, and corresponds to a 
criterion for strict shakedown. ý 

As Leckie & Penny only considered variation of shakedown load 
with geometry parameterp, their results are constant forall the R/T 

ratios considered. I lowever, it has been found that both TI. and T'v. 

%. ary with the RIT ratio. The results presented show that the Leckie 
&Penny shakedown pressure Tp is lower than the secondary stress 

limit pressure T.,, except for high R/Tand p values (large diameter 

nozzles) in Figure 3. 

The elastic compensation shakedown pressures T. are less than 
P, for all the nozzle configurations considered. 77he F, curves 
are similar in form to the T.. curves but the calculated shakedown 
pressure values are generally closer to the Penny & Leckie results. 
P, and Pip are fairly similar for most values of p for the two higher 
RfTratios of 100 and 50, however, 17, is significantly greater than 
Pip for most of the p values in the RIT=10 nozzle. 

DISCUSSION AND CONCLUSIONS 
Figures 3 to 5 show that elastic compensation methodlower bound 

shakedown pressures are consistently lower than the pressure 
corresponding to an elastic stress range of 3S., the shakedown 
criterion implicit in the ASME B&PV Code. As the method is a 
lower bound, these results do not by themselves demonstrate 
unconservatism in the Code shakedown limit but they do support 
experimental results suggesting that ratchetting can occur at loads 
lower than predicted by the 3S. criterion. (The writers are currently 
developing an upper bound elastic compensation shakedown 
procedure which will be useful in determining whether or not the 
Code secondary stress limit is conservative). 

Figures 3 to 5 also suggest that the shakedown pressure varies not 
only with the single geometry parameter p used to characterize 
nozzles by Leckie & Penny, but also with the radius to thickness 
ratio of the vessel. This additional geometry parameter should be 
considered when deriving design curves for shakedown loads. For 
this reason, the lower bound curves of Leckie & Penny may not be 
conservative for geometries (radius to thickness ratios) satisfying 
the specified geometry parameter p, (although it is noted that the 
curves compare results based on two different types of analysis - 
shell analysis and 2-D solid finite element analysis - and in that 
respect the Figures do not compare like with like). 

The elastic compensation shakedown pressures for the RIT ratio 
of 10 are significantly greater than the Leckie and Penny values for 
most of the geometry range considered, suggesting that design to 
the 13SS500 Code could be over-conservative if the Leckie and 
Penny curves are used. However, BS5500 simply requires that "a 
shakedown analysis .... should preferably be employed" thus design 
based on the elastic compensation method would be acceptable. 

The technique used in this paper provides a simple method for 
calculating shakedown loads in pressure vessels. This has been 
demonstrated for the example case of nozzles in spherical shells 
under internal pressure. This particular problem was chosen as data 
is available in the literature for comparison purposes: in practice, 
the allowable load for this type of component is usually controlled 
by the gross plastic collapse failure criterion and Code minimum 
thickness/reinforcement requirements. However, the elastic 
compensation method can be applied to more complex three 
dimensional geometry, under combined loading (and other forms 
of load cycle) in which the shakedown criterion may be more 
critical. 
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FIGURE 2. TYPICAL FINITE ELEMENT MESH FOR 
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APPENDIX II 

MACROS FOR THE ELASTIC COMPENSATION METHOD 

AII. 1 MACROS FOR SOLID ELEMENTS 

MAC5 

/com ******** ELASTIC COMPENSATION METHOD 
/com 
/com LOWER BOUND LIMIT LOAD 
/com AND 
/com SHAKEDOWN LOAD BATCH FILE 
/com 
/com INPUT FILE = model. log 
/com GRAPHICS RESULTS FILE = res. f33 
/com TEXT RESULTS FILE = record 
/com NO. ITERATIONS = 10 
/com YIELD STRESS = 300N/mm2 
/com ADDITIONAL FILES = emodi, ext3, 
/com post, text. 
/com 
/com VON MISES YIELD CRITERIA 
/com PLANE82 2D 8-NODE SOLID and 
/com SOLID45 3D 8-NODE SOLID 
/com 
/com 
/com 
/com define arrays for storage 
/com 
*dim, shake,, 10 
*dim, resid,, 10 
*dim, comp,, 10 
*dim, itemp,, 10 
/com 
/com 
/com 
/com ITERATION 0: ELASTIC SOLUTION 
/com 
/nopr 
/inp. model, log 
/Posti 
set 
/com 
/com WRITE ELASTIC SOLUTION TO A LOAD CASE FILE 
/com FOR SHAKEDOWN CALCS. 
/com 
lcwrite, l 
/com 
/inp, post 
/com 
/com 
/com PLOT ELASTIC RESULTS TO FILE=res. f33 
/com 
/title, ITERATION 0: ELASTIC STRESS FIELD 
/show, res, f33 
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/windo, 1, -O. 8, O. 8, -O. 8, O. 8 
/gline, 1, -1 
/cont, 1,5 
/dscale, 1,1 
plnsol, s, eqv 
/com get max stress from last plot into parm. elas 
*get, elas, plnsol,, max 
reset 
/com 
/com 
/com 
/com READ STRESS AND CALCULATE NEW MODULUS FOR EACH 
/com ELEMENT WRITE NEW MODULUS VALUES TO FILE=PREPMOD 
/com 
/com /inp, ecor 
i=0.0 
/inp, emodi 
/com 
/com 
/com PERFORM MODULUS MODIFICATION FOR EACH 
/com ITERATION USING A DO LOOP 
/com 
iters=10 
/com 
*do, I, I, iters, l 

*status, I 
/com 
/com 
/com READ IN PREPMOD FILE TO CHANGE 
/com MODULUS OF EACH ELEMENT AND SOLVE 
/com 
/com /inp, modi 
/com 
/prep7 Re-enter preprocessor 
/nopr 
/com resume and keep current parameters 
parsav, all 
resume * Resume last model 
parres, new 
*use, PREPMOD * Use command file 
save 
f inish 
/solve 
solve 
f ini 
/Posti 
/com 
/com 
/com PLOT SHAKEDOWN AND RESIDUAL 
/com RESULTS TO FILE=res. f33 
/com 
/inp, post 
/inp, ext3 /com 
/com 
/com READ STRESS AND CALCULATE NEW MODULUS FOR EACH ELEMENT 
/com WRITE NEW MODULUS VALUES TO FILE=PREPMOD 
/com 
/inp, emodi 
/com 
/com 
/com 
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/com WRITE RESULTS OUT TO TEXT FILE: record 
/com CALCULATE LIMIT LOAD AND SHAKEDOWN 
/com LOAD MULTIPLIERS 
/inp, text 
/com 
/com 

/com 
*enddo 
/com 
/com end do loop 
/com 
exit 

EMODI 

SET 
ETABLE, VMI, NMISC, S 
ETABLE, VMJ, NMISC, 10 
ETABLE, VMK, NMISC, 15 
ETABLE, VML, NMISC, 20 
ETABLE, VMM, NMISC. 25 
ETABLE, VMN, NMISC, 30 
ETABLE, VMO, NMISC, 35 
ETABLE, VMP, NMISC. 40 
SM=300 
NU=0.3 
/NOPR 
*GET, EMAX, ELEM,, NUM, MAX 
/COM 
*CFOPEN, PREPMOD 
ENUM=I 
: LBI 
*GET, EVMI, VMI, ENUM 
*GET, EVMJ, VMJ, ENUM 
*GET, EVMK, VMK, ENUM 
*GET, EVML, VML, ENUM 
*GET, EVMM, VMM, ENUM 
*GET, EVMN, VMN, ENUM 
*GET, EVMO, VMO, ENUM 
*GET, EVMP, VMP, ENUM 

MNUM=ENUM+10 old command 
this command allows different 
materials to be used(upto 10) 

*GET, MMUM, ELEM, ENUM, ATTR, MAT 
*GET, EXVAL, EX, MNUM 
SMAX=EVMI 
*IF, EVMJ, LE, SMAX,: SK1 
SMAX=EVMJ 
: SKI 
*IF, EVMK, LE, SMAX,: SK2 
SMAX=EVMK 
: SK2 
*IF, EVML, LE, SMAX,: SK3 
SMAX=EVML 
: SK3 
*IF, EVMM, LE, SMAX,: SK4 
SMAX=EVMM 
: SK4 
*IF, EVMN, LE, SMAX,: SK5 

* Read results file 

Define SM as max stress: ie yield 
Define first run Poisson ratio 

* Get max element number as EMAX 

Open command file PREPMOD 
For first element do: 

* Material number 

* Material number 
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SMAX=EVMN 
: SKS 
*IF, EVMO, LE, SMAX,: SK6 
SMAX=EVMO 
: SK6 
*IF, EVMP, LE, SMAX,: SK7 
SMAX=EVMP 
: SK7 
SF=SM/SMAX 
ER=EXVAL*SF 
*IF, I, GT, 0.0,: KKi 
MN"=ENUM+10 
: KK1 
*CFWRITE, MP, EX, MNUM, ER 
*CFWRITE, MAT, MNUM 
*CFWRITE, EMOD, ENUM 
: LB2 
ENUM=ENUM+l 
*IF, ENUM, LE, EMAX,: LBI 
*CFCLOS 
FINISH 

EXT3 

* Evaluate reduction factor 
* Define new elastic stiffness 
* check for elastic solution 

* Write to commands to PREPMOD 

* Next element 

* Close command file 

LCDEF. 2 
LCFACT, 2, -1 
LCASE, 2 
/WINDO. 1, -O. 8, O. 8, -O. 8, O. 8 
/TITLE, SHAKEDOWN STRESS FIELD 
/GLINE, 1, -1 
/CONT, 1.5 
/DSCALE, 1.1 
PLNSOL, S, EQV 
LCFILE, 1 
LCASE, 1 
LCOPER, ADD, 2 
/WINDO, i. -0.8, O. 8. -O. 8. O. 8 
/TITLE, RESIDUAL STRESS FIELD 
/GLINE, 1. -1 
/CONT, 1.5 
/DSCALE, 1.1 
PLNSOL, S, EQV 
/COM 
/COM Get max stress from last plot into 
/COM parm rsmax and array shake 
/COM 
*GET, RSMAX, PLNSOL,, MAX 
RESID(I)=RSMAX 

POST 

ETABLE, VMI, NMISC, S 
ETABLE, VMJ, NMISC, 10 
ETABLE, VMK, NMISC, 15 
ETABLE, VML, NMISC, 20 
ETABLE, VMM, NMISC, 25 
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ETABLE, VMN, NMISC. 30 
ETABLE, VMO, NMISC, 35 
ETABLE, VMP, NMISC. 40 

TEST 

/Com 
/COM Get max between shake and resid arrays 
/Com for shakedown calculation 
/Com 
*VDPER, COMP(l), SHAKE(l), MAX, RESID(l) 
/Com 
/COM Open file for output of results 
/Cam 
*CFOPEN, RECORD 
*VWRITE, ELAS 
U", Elastic =", f8.2, //) 
*VWRITE, 
(11 Iteration Shakedown Residual Comp"'M 
ITEMP(I)=I 
*VWRITE, ITEMP(l), SHAKE(l), RESID(l), COMP(l) 
(4fl2.2, /) 
/Com 
/COM Calculate limit load and shakedown load multipliers 
/Com 
/COM Get min value in each of the shake and comp arrays 
/COM for shakedown and limit calculations 
/CDM 
*VSCFUN, SHMAX, MIN, SHAKE(l) 
LMULT=SM/SHMAX 
*VWRITE, LMULT, SHMAX 
(//. " Limit multiplier =", f8.3, f8.2, /) 
*VSCFUN, CMAX, MIN, COMP(l) 
SMULT=SM/CMAX 
*VWRITE, SMULT, CMAS 
(11 Shakedown multiplier =", f8.3, f8.2, /) 
*VWRITE, SM 
(11 Yield Stress (N/mm2) =", f8.2) 
/COM 
/COM 
*CFCLOSE, RECORD 

TRIAM 

/POSTI 
RESUME 
SET 
ETABLE, PRSI, S, l 
ETABLE, PRS2, S. 2 
ETABLE, PRS3, S. 3 *ELEMENT PRINCIPAL STRESS 
LCDEF, 2 
LCFACT, 2, -l 
LCASE, 2 
LCFILE, l 
LCASE, l 
LCOPER, ADD, 2 
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*GET, EMAX, ELEM,, NUM, MAX 
*CFOPEN, eqsts 
T=O 
ENUM=i 
: LBI 
*GET, SPI, PRS1, ENUM 
*GET, SP2, PRS2, ENUM 
*GET, SP3, PRS3, ENUM 
A=ABS((SPI-SP2))**2 
B=ABS((SP2-SP3))**2 
C=ABS((SP3-SPI))**2 
D=(A+B+C) 
T=SQTR(D)/SQRT(2) 
*CFWRIT, F, T 
ENUM=ENUM+l 
*IF, ENUM. LE, EMAX,: LBI 
*CFCLOSE 
FINISH 

TRIAL2 

/POSTI 
RESUME 
SET, 1,1 
ETABLE, EQVS, S, EQV 
ETABLE, EVL, VOLU 
ETABLE, EQVSN, EPEL, EQV 
*SET, YS, 300 
*GET, EMAX, ELEM,, NUM, MAX 
*CFOPEN, eqstn 
T=O 
A=O 
SN=O 
ENUM=l 
: LBi 
*GET, ES, EQVS, ENUM 
*GET, V, EVL, ENUM 
*GET, ESN, EQVSN, ENUM 
K=V*ESN 
*CFWRITE, EN, K 
Q=V*ESN*ES 
W=V*ESN*YS 
T=T+Q 
A=A+W 
SN=SN+K 
ENUM=ENUM+l 
*IF, ENUM, LE, EMAX,: LBI 
*CFCLOSE 
*CFDPEN. energy 
*CFWRITE, D, A 
*CFWRITE, U, T 
*CFWRITE, N, SN 
*CFCLOSE 
FINI 

*Equivalent stress 
*Element volume 
*Elastic equivalent strain 
*Define YS as yield stress 
*Get max element number as EMAX 
*Open equivalent strain file 
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All. 2 MACROS FOR SHELL ELEMENTS 

BATCH93 

/BATCH, list ! optional command (to run in batch mode) /com *** ELASTIC COMPENSATION METHOD *** 
/com GENERAL YIELD SURFACE LOAD BATCH FILE FOR SHELL 93 
/com --------------------------------------------------- /com 
/com INPUT FILE = model. log 
/com GRAPHICS RESULTS FILE = res. f33 
/com 
/com. CREATE MODEL IN PREP7: READ IN model. log 
/com 
/inp, model93, log 
/com SOLVE - ITERATION 0 
/inp, model93, solu 
/postl 
set 
/com WRITE ELESTIC SOLUTION TO A LOAD CASE FILE FOR SHAKEDOWN CALCS. 
lcwrite, i, eresu Write current load case to jobname. 11 
/inp, post93 
/title, ITERATION 0: ELASTIC STRESS FIELD 
/show, res, f33 
/windo, 1, -O. 8, O. 8, -O. 8, O. 8 
shell, top 
plnsol, s, eqv 
shell, bot 
plnsol, s, eqv 
/page ... 6000 
/output, elastic 
pretab 
/output 
reset 
/com WRITE 'PREPMOD' 
/inp, ecor93 
/sys, cp YSURF YSURFO 
/com MODIFY PREP7 
/com 
/com ITERATION 1 
/com 
/inp, modi 
/inp, model93, solu /postl 
csys. 1 
/inp, post93 
/inp, ext93 
reset 
/inp, emodi93 
/sys. cp YSURF YSURFI 
/com 
/com ITERATION 2 
/com 
/inp, modi 
/inp, model93, solu /posti 
csys'l 
/inp, post93 
/inp, ext93 
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reset 
/inp, emodi93 
/sys, cp YSURF YSURF2 
/Com 
/Com 
/Com 
/inp, modi 
/inp, model93, solu 
/Posti 
Csys'l 
/inp, post93 
/inp, ext93 
reset 
/inp, emodi93 
/sys, cp YSURF YSURF3 
/Com 
/Com 
/Com 
/inp, modi 
/inp, model93, solu 
/Postl 
Csys'l 
/inp, post93 
/inp. ext93 
reset 
/inp, emodi93 
/sys, cp YSURF YSURF4 
/Com 
/Com 
/Com 
/inp, modi 
/inp, model93, solu 
/Posti 
Csys'l 
/inp, post93 
/inp, ext93 
reset 
/inp, emodi93 
/sys, cp YSURF YSURFS 
/Com 
EXIT 

ECOR93 

ITERATION 3 

ITERATION 4 

ITERATION 5 

SET 
ETABLE, NTX, SMISC, l 
ETABLE, NTY, SMISC, 2 
ETABLE, NTXY, SMISC. 3 
ETABLE, MMX, SMISC, 4 
ETABLE, MMY, SMISC, 5 
ETABLE, MMXY, SMISC, 6 
SM=300 
E=2OOe6 
NU=0.3 
TI=S 
T2=10 
CMAX=6 
/NOPR 
*GET, EMAX, ELEM,, NUM, MAX 

* Read results file 

* Define SM as max stress: ie yield 
* Define first run elastic modulus 
* Define first run Poisson ratio 
* Nozzle thickness 
* Cylnder thickness 
* Max column number 

* Get max element number as EMAX 
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*CFOPEN, MAXENO 
*CFWRITE, R, EMAX 
*CFCLOS 
/Com 
*CFOPEN, PREPMOD 
ENUM=l 
: LBI 
T=Tl 
/INP, ilyushin 
MNUM=ENUM+10 
ER=E 
ER=E/SQRT(W) 
*CFWRITE, MP, EX, MNUM, ER 
*CFWRITE, MAT, MNUM 
*CFWRITE, EMOD, ENUM 
: LB2 
ENUM=ENUM+l 
*IF, ENUM, LE, 50,: LBI 
: LB3 
T=T2 
/INP, ilyushin 
MNUM=ENUM+10 
ER=E 
ER=E/SQRT(W) 
*CFWRITE, MP, EX, MNUM, ER 
*CFWRITE, MAT, MNUM 
*CFWRITE, EMOD, ENUM 
: LB4 
ENUM=ENUM+l 
*IF, ENUM, LE, EMAX,: LB3 
*CFCLOS 
*CFOPEN, YSURF 
ENUM=l 
: LB5 
T=Tl 
/INP. ilyushin 
*CFWRITE, ys, w 
: LB6 
ENUM=ENUM+l 
*IF, ENUM, LE, 200,: LBS 
: LB7 
T=T2 
/INP, ilyushin 
*CFWRITE, ys, w 
: LB8 
ENUM=ENUM+l 
*IF, ENUM, LE, EMAX,: LB7 
*CFCLOS 
/GOPR 
/Com FIRST ITERATION ELEMENT 
FINISH 

EMODI93 

SET 
ETABLE, NTX, SMISC, l 
ETABLE, NTY, SMISC, 2 
ETABLE, NTXY, SMISC, 3 
ETABLE, MMX, SMISC, 4 

* Open file to store max el no 

* Open command file PREPMO 
* For first element do: 

* Ilyushin yield surface 
* Material number 

* Define new elastic stiffness 
* Write to commands to PREPMOD 

* Next element 

* Material number 

* Define new elastic stiffness 
* Write to commands to PREPMOD 

* Close command file 
* Open command file YSURF 
* For first element do: 

* Next element 

* Next element 

MODULUS CORRECTION COMPLETE 
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* Read results file 



ETABLE, MMY, SMISC, S 
ETABLE, MMXY, SMISC, 6 
SM=300 * Define SM as max stress: ie yield 
NU=0.3 * Define first run Poisson ratio 
T1=5 * Nozzle thickness 
T2=10 * Cylnder thickness 
CMAX=6 * Max column number 
/NOPR 

ELEM,, NUM, MAX *GET EMAX * Get max element number as EMAX 
, , 

*CFOPEN, MAXENO * Open file to store max el no 
*CFWRITE, R, EMAX 
*CFCLOS 
/COM 
*CFOPEN, PREPMOD * Open command file PREPMO 
ENUM=1 * For first element do: 
: LB1 
T=T1 
/INP, ilyushin 
MNUM=ENUM+10 * Material number 
*GET, EXVAL, EX, MNUM 
ER=EXVAL/SQRT(W) * Define new elastic stiffness 
*CFWRITE, MP, EX, MNUM, ER * Write'to commands to PREPMOD 
*CFWRITE, MAT, MNUM 
*CFWRITE, EMOD, ENUM 
: LB2 
ENUM=ENUM+l * Next element 
*IF, ENUM, LE, 200,: LB1 
: LB3 
T=T2 
/INP, ilyushin 
MNUM=ENUM+10 * Material number 
*GET, EXVAL, EX, MNUM 
ER=EXVAL/SQRT(W) * Define new elastic stiffness 
*CFWRITE, MP, EX, MNUM, ER * Write to commands to PREPMOD 
*CFWRITE, MAT, MNUM 
*CFWRITE, EMOD, ENUM 
: LB4 
ENUM=ENUM+1 
*IF, ENUM, LE, EMAX,: LB3 
*CFCLOS Close command file 
*CFOPEN, YSURF Open command file YSURF 
ENUM=1 For first element do: 
: LB5 
T=T1 
/INP. ilyushin 
*CFWRITE, ys, w 
: LB6 
ENUM=ENUM+1 Next element 
*IF, ENUM, LE, 50,: LBS 
: LB7 
T=T2 
/INP. ilyushin 
*CFWRITE, ys, w 
: LB8 
ENUM=ENUM+l Next element 
*IF, ENUM, LE, EMAX,: LB7 
*CFCLOS 
/GOPR 
/COM FIRST ITERATION ELEMENT MODULUS CORRECTION COMPLETE 
FINISH 
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EXT93 

LCDEF, 2 
LCFACT, 2, -i 
LCASE, 2 
/WINDO, l. -O. 8, O. 8, -O. 8. O. 8 
/TITLE, SHAKEDOWN STRESS FIELD 
SHELLJOP 
PLNSOL, S, EQV 
SHELL, BOT 
PLNSOL, S, EQV 
/PAGE 

... 6000 
/OUTPUT, results 
PRETAB 
/OUTPUT 
LCFILE, l, ERESU 
LCASE, l 
LCOPER, ADD, 2 
/WINDO, l, -0.8,0.8, -0.8, O. 8 
/TITLE, RESIDUAL STRESS FIELD 
SHELLJOP 
PLNSOL, S, EQV 
SHELL, BOT 
PLNSOL, S, EQV 

ILYUSHIN 

/COM ILYUSHIN YIELD SURFACE MACRO 
CNUM=l 
*GET, ENTX, ETAB, CNUM, ELEM, ENUM 
CNUM=2 
*GET, ENTY, ETAB, CNUM, ELEM, ENUM 
CNUM=3 
*GET, ENXY, ETAB, CNUM, ELEM, ENUM 
CNUM=4 
*GET, EMMX, ETAB, CNUM, ELEM, ENUM 
CNUM=5 
*GET, EMMY, ETAB, CNUM, ELEM, ENUM 
CNUM=6 
*GET, EMXY, ETAB, CNUM, ELEM, ENUM 
A=SM*T 
B=SM*T*T 
Nl=ENTX/A 
N2=ENTY/A 
N12=ENXY/A 
MI=4*EMMX/B 
M2=4*EMMY/B 
M12=4*EMXY/B 
C=NI*Nl 
D=N2*N2 
F=Nl*N2 
G=3*NI2*NI2 
H=MI*Ml 
I=M2*M2 
J=MI*M2 
K=3*MI2*Ml2 
O=Nl*Mi 
PQ=0.5*NI*M2 

* For first column do: 

* For second column 

* For third column 

* For fourth column 

* For fifth column 

* For sixth column 
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Q=O. S*N2*Ml 
R=N2*M2 
U=3*NI2*MI2 
QT=C+D-F+G 
QM=H+I-J+K 
QTM=O-PQ-Q+R+U 
V=ABS(QTM)/3**O. S 
W=QT+QM+V 

IVANOV 

/COM IVANOV YIELD SURFACE MACRO 
CNUM=l 
*GET, ENTX, ETAB, CNUM, ELEM, ENUM 
CNUM=2 
*GET, ENTY, ETAB, CNUM, ELEM, ENUM 
CNUM=3 
*GET, ENXY, ETAB, CNUM, ELEM, ENUM 
CNUM=4 
*GET, EMMX, ETAB, CNUM, ELEM, ENUM 
CNUM=5 
*GET, EMMY, ETAB, CNUM, ELEM, ENUM 
CNUM=6 
*GET, EMXY, ETAB, CNUM, ELEM, ENUM 
A=SM*T 
B=SM*T*T 
NI=ENTX/A 
N2=ENTY/A 
N12=ENXY/A 
MI=4*EMMX/B 
M2=4*EMMY/B 
M12=4*EMXY/B 
C=NI*Nl 
D=N2*N2 
F=Nl*N2 
G=3*NI2*NI2 
H=MI*Ml 
I=M2*M2 
J=MI*M2 
K=3*MI2*MI2 
O=Nl*Mi 
PQ=O. S*NI*M2 
Q=O. S*N2*Ml 
R=N2*M2 
U=3*NI2*MI2 
QT=C+D-F+G 
QM=H+I-J+K 
QTM=D-PQ-Q+R+U 
VI=0.25*(QT*QM-QTM**2) 
V2=QT+0.48*QM 
V3=Vl/V2 
V4=0.25*QM*QM+QTM*QTM 
VS=V4**O. S 
W=QT+0.5*QM-V3+VS 

* For first column do: 

* For second column 

* For third column 

* For fourth column 

* For fifth column 

* For sixth column 
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POST93 

SET Read results file 
ETABLE, SVTI, NMISC, S 
ETABLE, SVTJ, NMISC, 15 
ETABLE, SVTK, NMISC, 25 
ETABLE, SVTL, NMISC, 35 
ETABLE, SVBI, NMISC, 10 
ETABLE, SVBJ, NMISC, 20 
ETABLE, SVBK, NMISC, 30 
ETABLE, SVBL, NMISC, 40 
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APPENDIX III 

ANSYS FINITE ELEMENT LIBRARY 

BEAM3 2-D Elastic Beam 

BEAM3 is a uniaxial element with tension, compression, and bending capa- 
bilities. The element has three degrees of freedom at each node: translations in 

the nodal x and y directions and rotation about the nodal z-axis. 

HEIGHr 

y 

BEAM3 2-D Elastic Beam 

ýi 
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BEAM4 3-D Elastic Beam 

Beam4 is a uniaxial element with tension, compression, torsion and bending 

capabilities. The element has six degrees of freedom at each node: translations 

in the nodal x, y and z directions and rotations about the nodal x, y, and z axes. 

A T5 E TE TE 

T6 

z 

6 q/ WY 

K (optional) 

BEAM4 3-D Elastic Beam 

(If node K is omitted and 0= 0*, 
the element y wds is parallel to 
the global X-Y plane. ) 
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PLANE82 2-D 8-Node Structural Solid 

PLANE82 is a higher order version of the two-dimensional, four-node ele- 

ment (PLANE42). It provides more accurate results for mixed (quadrlateral- 

triangular) automatic meshes and can tolerate irregular shapes without as much 
loss of accuracy. The 8-node elements have compatible displacement shapes and 

are well suited to model curved boundaries. 

The 8-node element is defined by eight nodes having two degrees of freedom at 

each node: translations in the nodal x and y directions. The element may be used 

as a plane element or as an axisymmetric element. The element has plasticity, 

creep, swelling, stress stiffening, large deflection and large strain capabilities. 

(I 
y 

(orAxial) 

X (or Radial) 
\. I.. / 

D2 

PLANE82 2-D 8-Node Structural Solid 
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SHELL43 Plastic Shell 

SHELL43 is well suited to model nonlinear, flat or warped, thin to moderately- 
thick shell structures. The element has six degrees of freedom at each node: 
translations in the nodal x, y and z directions and rotations about the nodal x, y, 

and z axes. The deformation shapes are linear in both in-plane directions. For the 

out-of-plane motion, it uses a mixed interpolation of tensorial components. The 

element has plasticity, creep, stress stiffening, large deflection and large strain 

capabilities. 

t7% 
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SHELL43 Plastic Shell 
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SHELL51 Axiisymmetric Structural Shell 

SHELL51 has four degrees of freedom at each node: translations in the nodal 

x, y, and z directions and a rotation about the nodal z axis. Extreme orientations 

of the conical shell element result in a cylindrical shell element or an annular disc 

element. The shell element may have a linearly varying thickness. The element 
has plasticity, creep, swelling, stress stiffening, large deflection, and torsion capa- 
bility. 
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72 

SHELL51 Axisymmetric Structural Shell 
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SHELL93 8-Node Structural Shell 

SHELL93 is particularly well suited to model curved shells. The element has 

six degrees of freedom at each node: translations in the nodal x, y, and z direc- 

tions and a rotation about the nodal x, y, and z axes. The deformation shapes 

are quadratic in both in-plane directions. The element has plasticity, stress stiff- 

ening, large deflection, and large strain capabilities. 
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SOLID45 3-D Structural Solid 

SOLID45 is used for the three-dimensional modelling of solid structures. The 

element is defined by eight nodes having three degrees of freedom at each node: 

translations in the nodal x, y, and z directions. The element has plasticity, creep, 

swelling, stress stiffening, large deflection and large strain capabilities. 

Ip 

Mement Coordinate 
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KEY01yr(4)=I) 
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SOLID45 3-D Structural Solid 
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