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ABSTRACT

Limit and shakedown analyses are powerful methods in designing pressure
vessel components and other engineering structures. With the development of
computer technology the use of finite element analysis as an alternative tool for
engineering structure design has become ever more increasing. In this thesis the
finite element method utilises the novel elastic compensation method to carry
out the limit and shakedown analyses on variety engineering structures: nozzles

in pressure vessels, plates with a central hole and frame structures.

There are two main objectives of the present study. One of them is to conduct
limit and shakedown analyses on a series of thick cylinders, nozzle/sphere inter-
sections under internal pressure, plates with a hole and frame structures under
multiple loading conditions using the initially developed elastic compensation
method based on 2-D solid element models. A comparision of the lower, upper
bound limit loads and shakedown solutions is made with the results available
in literature or with new elasto-plastic analyses. The results obtained using the
elastic compensation method were found to be of useful accuracy. Another
is to further develop the elastic compensation method using generalised yield
criteria. Then the procedure is implemented to beam and shell finite elements to
calculated limit loads for beam and shell structures. A number of 2-D and 3-D
frames were examined using a general yield surface. The obtained results were
compared with that of theoretical plastic analysis and with the results available
in literature and were found to be in good agreement. Parametric studies of
nozzle/sphere intersections and nozzle/cylinder intersections under internal pres-
sure were carried out using Ilyushin’s and Ivanov’s generalised yield criteria. The
results calculated were compared with the solutions obtained using the initiallv
elastic compensation method and with the solutions available in literature and
were found to also be in good agreement. The newly developed elastic compen-

sation procedure using generalised yield criteria was found to be more economic
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and useful in engineering design.

From this study, some new design methods based on limit and shakedown
loads are proposed for nozzlé/ sphere intersections and for other engineering struc-
tures. The newly developed elastic compensation procedure using generalised

yield criteria is highly recommended in structural design for a quick limit load

estimation.
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CHAPTER 1

INTRODUCTION

1.1 Introductory Remarks

The conventional methods of analysis and design of engineering structures are

often based on a permissible working stress whose value is well within the elastic
limit. The concentrations of stress that occur at sudden changes in cross section
are usually disregarded in the elastic analysis. Since the results of the elastic
analysis cease to hold when the yield limit 1s exceeded at the most critical cross
section, the elastic design of a structure requires a margin of safety that ensures
a fully elastic response. A limitation of structural designs based on the elastic
analysis is evident from the fact that minor structural imperfections, which have
no effect on the overall strength of the structure, have a marked influence on the

elastic behaviour.

The load-carrying capacity of a structure made of a ductile material is rarely
exhausted at the onset of plastic yielding, since excessive deflections do not occur
before the load is appreciably higher than that at the elastic limit. This effect
1s more pronounced in statically indeterminate structures, where there is a redis-
tribution of stress beyond the elastic limit, resulting in a marked increase in the
carrying capacity. It follows that an economical design of a structure can he based
on a suitable safety factor applied to the load for which the overall deflection be-
gins to increase in a more or less unrestricted manner. Such a load is called the
collapse load, which can be determined by the methods of plastic analysis with-
out having to consider the intervening elastic/plastic range of deformation. The
calculations involved in the plastic analysis are much simpler than those required
In the corresponding elastic analysis. The influence of work-hardening is usually

neglected in the plastic analysis so that the estimated carrying capacity is always

conservative.



The strength of a structure is characterized by its collapse load which is ob-
tained on the basis of certain idealizations. Considering a nonhardening elas-
tic/plastic structure, a state of plastic collapse is defined as one for which the
deflections, regarded as small, continue to increase under constant external loads.
Since the bending moment distribution remains unchanged during the collapse.
the change in curvature vanishes everywhere except at certain critical cross sec-
tions where the bending moment attains the fully plastic value. Infinitely large
curvatures give rise to a link-type mechanism for plastic collapse. The ratio of

the collapse load to the working load, known as the load factor, represents the

margin of safety under service conditions.

According to the lower bound theorem of limit analysis, an external load in
equilibrium with a distribution of bending moment which nowhere exceeds the

fully plastic value is less than or equal to the collapse load. Such a distribution of

bending moment is referred to as statically admissible. The upper bound theorem.
on the other hand, states that the load obtained by equating the external work
done by it to the internal work absorbed at the plastic hinges in any assumed
collapse mechanism is greater than or equal to the collapse load. The deformation
mode represented by a collapse mechanism is said to be kinematically admissible.
The two limit theorems can be obtained to form a uniqueness theorem which states
that if any statically admissible distribution of bending moment can be found in a
structure that has sufficient number of yield hinges to produce a mechanism. the
corresponding load is equal to the collapse load. When a structure is subjected
to a number of loads which may or may not increase in strict proportion to one
another, plastic collapse will occur at the first combination of loads for which a
statically admissible bending moment distribution that satisfies the mechanism
condition can be found. The load-carrying capacity of the structure can therefore
be determined for any given ratios of the applied loads in the state of collapse.
without any reference to the loading history. It follows that the collapse load is

unaffected by initial internal stresses, as well as by any flexibility of support and
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imperfect fit of members. If the problem is not statically determined at collapse,

the distribution of bending moment will depend, however, on such factors as the

history of loading, initial stresses, and settlement of supports.

An important corollary of the lower bound theorem is that the collapse load
cannot be decreased by increasing the strength of any part of the structure. In-
deed, the bending moment distribution corresponding to the state of collapse will
remain statically admissible for the modified structure in which the fully plastic
moment is increased at one or more cross sections. The load-carrying capacity
of the structure can therefo;re be determined for any given ratios of the applied
loads in the state of collapse, without any reference to the loading history. This
conclusion follows from the fact that the mechanism corresponding to the state
of collapse will produce in the modified structure an internal work that is less
than or equal to that in the unmodified structure. The resulting upper bound

obtained for the weakened structure, therefore, cannot exceed the collapse load

for the original structure.

It is seen from above description that limit analysis provides an alternative to
incremental elastic-plastic analysis for determining a limit load. A knowledge of
the limit load enables determination of the reserve strength that exists in struc-
tures beyond the initial yield. The key to establishing the limit behaviour of a
structure or component is the nature of the collapse mechanisms. These have
only really been established for simple generic components and load conditions.
An alternative and a simpler resource is to invoke the upper and lower bound the-
orems and obtain limit bounds on the exact solution. However, this procedure
can also be often mathematically intractable and is therefore limited to simple

descriptions.

Limit load calculations form the basis for the design of several pressure ves-

sel components and other structures - for example in BS 5500 Appendix A [BSI

1994] it is stated that “...there should be the same theoretical margin against gross



plastic deformation for all design details as that provided against gross plastic
deformation in major membrane areas...In establishing conformity with this cri-
terion investigations should take account of plastic behaviour. If the theorv of
plastic limit analysis is employed, the limit load may be taken as the load pro-
ducing gross plastic deformation, although this may be a conservative estimate...’

(A.3.1.1). A similar adoption of limit analysis can also be found in ASME B&PV
Code [1995].

These do not really specify how the limit load should be used as the basis for
design. It would be expected that the important primary membrane and bending
stresses in pressure vessels would remain limited to yield - then the limit load
could be used as the basis for determining the design margin (currently primarv

membrane stresses are limited to two thirds of yield, with primarv membrane

plus bending allowed to take values up to yield).

The availability of computers revolutionalised the approa,(;h to limit analysis.
It has enabled analysts to apply incremental plastic theory to complex compo-
nents. Analysis models were more realistically simulated in plastic analysis, and
the limit solutions obtained were closer to the actual limit loads. With rapid im-
provement in the speed and memory size of the ordinary desk-top computers. cou-
pled with advancement in the development of finite element software programs.
elastic-plastic finite element analysis became more prevalent in limit analvsis.
However, the elastic-plastic requires much greater computing resource than elas-
tic analysis and requires the definition of materials models and is consequently
much more expensive to perform. Direct calculation of limit load, using the upper
and lower bound theorems by finite element method, has also proved difficulty.

A recent summary by Berak and Gerdeen [1990] demonstrated an effective tech-
nique using finite element procedures for simple two-dimensional problems but
concluded with the observation that‘...this procedure is particularly applicable to

the solution of complex problems using parallel processing on a supercomputer...".



In recent years, many researchers have been concentrated on the increased use
of elastic finite element analysis as a means of obtaining the limit loads. A new
technique - known as elastic compensation - which requires only elastic finite
element analysis has been shown to give good lower and upper bound estimates
for limit loads in a variety of pressure vessel components and other structures
[Mackenzie and Boyle 1993]. The writer has been working in the Strathclvde

Research Group on elastic compensation while the method was being developed.

In the above we have seen that the concept of a limit load can be used to
provide a basis for design against plastic collapse on initial application of load.
However, during the operational life of most structures the loading history bhe-
comes roughly cyclic. It gives rise to the possibility of low-cycle fatigue in regions

of peak stress, but here we are interested in overall structural behaviour due to

cycles of load.

Our description of computer behaviour for cyclic loads is mostly limited to
the assumption of perfect plasticity. Two concepts are important - that of shake-
down and that of ratchetting (which is what happens if a condition of shake-
down is not achieved). In general for cyclic loading we design for shakedown in
order to avoid ratchetting which can lead to incremental collapse. For cvclic
loading shakedown is the condition that after first cycle of load, the component
behaviour is purely elastic; some plastic strain does take place in the first cvcle
but not in the second or subsequent cycles. The highest load for which we can

assure shakedown is called shakedown load.

The evaluation of shakedown loads is also quite difficult, and these have onlv

been established for simple components. Most shakedown loads which have been

published make use of so-called shakedown theorems. For example Melan's
Theorem states that’...if any distribution of self-equilibrating residual stress can
be found which, when taken together with the elastic stress (assuming perfectly

plastic behaviour for the load cycles) constitute a system of stress within the vield



limit, then the structure will automatically reach this stress condition or a better

one and will shakedown...’.

The design and assessment of complex structures subjected to histories of
variable load remains a challenge to the analyst. In design the need for full in-

elastic analysis is removed in all but extreme cases by the use of simple design

Codes, such as ASME B&PV [1995] and BS 5500 [1994], based upon limit load

and shakedown concepts. These Codes tend to be conservative, sometimes exces-
sively so, and are particularly difficulty to formulate for non-proportional loading.
The ability to generate limit load and shakedown limits by linear finite element
analysis can provide some advantages over full inelastic analysis in some circum-
stances. As described above, a new technique, called elastic compensation, can
be used to calculate lower and upper bound limit loads of a structure. It will

be shown in this thesis that the procedure can also be used to obtain lower and

upper bound shakedown limits.

1.2 Objective and Scope of the Project

The main objectives of the present study were to further develop the elastic
compensation method and to conduct limit and shakedown analysis on a series of
pressure vessel components under internal pressure, plate with a hole and beam
structures under multiple loading conditions. A comparision of the lower and
upper bound limit loads and shakedown solutions are made with results available

in literature or with new elasto-plastic analyses.

A preview of the scope of the thesis is given in the following:

At the beginning of the study, the author collected many papers on the topic

of research. In order to find out a better procedure, a general literature survey

on limit and shakedown analysis by finite element method is given in Chapter 2.



Chapter 3 gives a literature survey on the development of the modified elastic
modulus method. In this Chapter an introduction to the elastic compensation
method is also presented and the implementation of the lower bound, upper bound
limit theorems and lower bound shakedown theorem is examined. A few exam-
ples, such as thick cylinders and frames, are also given in order to demonstrate

how the method is working. The results obtained are then compared with the

existing solutions.

In Chapter 4 the elastic compensation method is used in conjunction with
elastic finite element analysis to obtain the lower, upper bound limit loads and
shakedown limits for a square plate with a hole under various loading conditions.

The results calculated are compared with the solutions available in the literature.

In Chapter 5, a design study is conducted to obtain the lower and upper bound

limit loads for nozzles in spherical pressure vessels under internal pressure. Again

the elastic compensation method is used in conjunction with elastic finite element
analysis to obtain these results. For the thinner models, the obtained results are
compared with the results available in the literature; for the thicker models.
because of lacking available solutions the results calculated are compared with

new elasto-plastic results and some comments are made for the purpose of design.

In Chapter 6, a design study is also conducted to calculate the lower and
upper bound shakedown limits for all models analysed in Chapter 5. Again the
obtained results are compared with the existing solutions and with the ASME

B&PV Code [1995] and also some comments are made for the purpose of design.
Generalised yield criteria for beams and thin shells are surveyed in Chapter 7.
These criteria are then implemented to structural finite elements using elastic

compensation to calculate lower bound limit loads for beam and shell structures.

In Chapter 8, a number of two dimensional beams and frames and a three



dimensional frame are analysed using the procedure proposed in Chapter 7. The

obtained results are compared with that of plasticity theory and with the results

available in the literature.

In Chapter 9, a parametric study is carried out to obtain lower bound limit

loads for nozzles in spherical shells and nozzles in cylindrical shells under inter-
nal pressure using the method proposed in Chapter 7. The results calculated are

compared with the solutions obtained in Chapter 5 and available in the literature.

Finally, Chapter 10 concludes the thesis with a summary of the findings of

the research work and with recommendation to further work.

Before the PhD project the author carried out sixteen months research work
which related to the present project in the Research Group. Some research results
have been published in the past five years and the published papers are given in
Appendix I.
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CHAPTER 2

A BRIEF REVIEW OF LIMIT AND SHAKEDOWN
ANALYSIS OF STRUCTURES BY FINITE ELEMENT
METHOD

2.1 Introduction

Limit analysis is concerned with the determination of the maximum load
amplification (or load or safety factor) which can be sustained by a perfectly-
plastic structure subjected to given loads. Information regarding the stress-state
at collapse and the collapse mechanism may be obtained as a by-product. While
the material properties are usually described as being rigid-plastic, the required

perfectly-plastic terminal stage need not be preceded by rigidity.

The two essential notions of limit analysis had been developed in full general-
ity and rigour by the early fifties in the form of the static (or safe or lower bound)

theorem and the kinematic (or unsafe or upper bound) theorem.

If an elasto-plastic structure is subjected to a program of variable-repeated
mechanical or thermal loads, then the structure may fail by incremental collapse
(or ratchetting) or by alternating plasticity (or low cycle fatigue). However. for
‘some lower value of the load factor, the structure may, after a number of load-
Ing cycles, load and unload elastically; that is to say plastic strains will cease
to develop. The structure is said to shakedown, and the object of shakedown
analysis 1s to determine the maximum value of the load factor (safety factor) for

which this phenomenon applies.

For doing this project, the author has collected many papers on the limit and

shakedown analyses of structures. In order to benefit other researchers on the

related research projects, in this Chapter, a brief literature review of limit and
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shakedown analysis of structures by finite element method will be carried out

respectively.

2.2 A Brief Review of Limit Analysis of Structures by Finite Ele-
ment Method

The application of limit analysis to structures began with the attempt to pre-
dict the collapse loads of steel structures. In 1914 Kazinczy concluded from his
experimentson clamped steel beams that the theory of elasticity could not provide
a realistic estimate of the load-carrying capacity [Kazinczy 1914|. He introduced
the concept of plastic hinges and developed several principles and methods which
even today are valid and used in engineering practice {Kazinczy 1933, 1942]|. Kaz-
inczy’s early work failed to receive the attention it merited, partly because it was
written in Hungarian and partly because of the war. Hence, a few years later

Kist [1917] independently presented similar ideas. Taking plastic behaviour of
the material into account, Maier-Leibnitz [1928] carried out experiments with

continuous steel beams and Ingerslev [1921] and Johansen [1932] investigated the

plastic behaviour of reinforced concrete slabs.

The problem of accumulating plastic deformations was first investigated by
Grining [1926]. Girkmann [1931] and Bleich [1932] dealt with the load-carrying
capacity of steel frames. This work was continued by Baker [1938] who carried
out intensive experimental and theoretical investigations, and published the first

book on plastic analysis of steel frames [Baker, Horne and Heyman 1956).

The lower and upper bound theorems of limit analysis were first established

- for frames and plates - by Gvozdev [1936]. Like Kazinczy’s work Gvozdev's

results did not attract attention because of the war. Thus. these theorems were
independently derived by Greenberg and Prager [1951] for heam and frames.
Drucker, Greenberg and Prager [1951, 1952] for plane and general continuum

problem respectively. These theorems have been developed to bracket the limit
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load, because they are easier to obtain than exact solutions. The formal proofs
of these theorems are well documented and can be found in the texts of Symonds
[1962]; Hodge [1963] and Calladine [1965, 1985]. The theoretical limit analysis
of engineering structures using these theorem can be found in a large number of
books, such as Baker et al. [1956], Neal [1956, 1977], Heyman [1957, 1964], Hodge
[1959, 1963], Massonnet and Save [1965], Baker and Heyman [1969, 1971], Horne
[1971], Save and Massonnet [1972], Martin [1975], Chakrabarty [1937], Kaliszky
11989] and Lubliner [1990].

Mathematical programming methods for solutions of the limit analysis prob-
lem were first studied for trusses, beams and frames. The first identifications of
the limit analysis of trusses as a linear programming (LP) problem are generally
attributed to Charnes and Greenberg and to Prager [Prager 1957]. There are so
many references, nowadays, on the limit analysis of structures by mathematical
programming methods. The detailed mathematical programming applications to
the limit analysis of structures can be found in the review papers of Maier and
Munro [1982] and Maier and Lloyd [1986]. This review will only concentrate on

the finite element method.

2.2.1 Direct Finite Element Method

The finite element method is a numerical procedure for analysing structures
and continua and is well known to be extremely efficacious for the analvsis of
complex structures, both linear and non-linear. The finite element method can
also be used to calculate the limit load of a structure and in this case bounds are
obtained by maximising and minimising the load factor. The validity of the ap-
proach is dependent upon the limit load theorems of plasticity which imply that
load factors calculated on the basis of assumed displacement fields are in excess
of the true value, while load factors calculated on the basis of equilibrium stress

fields which nowhere violate the yield condition, are less than the true value. In

the displacement method the free parameters are chosen to minimise the load
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factor while in the stress method the free parameters are chosen to maximise the

load factor.

The first finite element method for determining upper bounds on the limit
load for perfectly plastic plane stress problems was developed by Hayes and Mar-
cal [1967]. By means of a finite element technique, they constructed a parametric
family of kinematically admissible velocity fields and then obtained a best upper
bound by minimising the associated load multiplier. Three years later. a com-
plementary method for finding the lower bound on the limit load for plane stress
problems was described by Belytschko and Hodge [1970]. In this case, the finite
element technique is used to construct a parametric family of equilibrium stress
fields. A couple of years later, the finite element method used to determine limit

loads for complex structures has been demonstrated by Ranaweera and Leckie
[1972]. After giving several examples, they pointed out that the procedures ap-

pear to be expensive in computer time.

Up to now the mentioned references above only concern the plane stress prob-
lems and plate bending problems. It is Nguyen {1976] who first developed a new
hybrid finite element with an arbitrary stress field in the interior and a quadratic
displacement field on the boundary to be applied to the direct limit analysis of

plates and shells. The results of the analysis were very encouraging.

In the early 1980s, Casciaro and Cascini {1982] proposed a mixed variational
principle for the limit analysis of rigid perfect plastic continua and derived a
mixed finite element discrete formulation. A number of examples have been pre-

sented in both structural and soil mechanics.

Recently, a finite element technique for limit analysis of structures has been
demonstrated by Berak and Gerdeen [1990]. The technique is developed for cal-
culating bounds to the limit load multiplier for two-dimensional structures which

obey the von Mises yield criterion. They indicated that their ‘finite element for-
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mulations are more general and more rigorous, resulting in more accurate solu-
“tions for the upper and lower bounds of limit load’. After presenting a number of
two-dimensional examples, they concluded that: ‘... Although the upper-bound
procedure can give a considerable saving of computer time when simple elements
are used, the lower-bound solution process remains expensive, since the usage of
building block elements is inevitable. ... Both of the finite element limit analysis
procedures, however, are ideally suited for parallel processing on super comput-

ers.’

‘The variational formulation of the upper and lower-bound problems is com-
pletely general and can be extended to more complicated problems such as shells
of revolution or nonsymmetricshells. ... Because shell elements have more degrees
of freedom, the computational time will be increased significantly. Therefore. par-
allel processing on a super-computer is recommended if the finite element limit

analysis procedures are applied to such elements.’

2.2.2 Elastic Plastic Finite Element Method

Nowadays, elastic-plastic finite element analysis is well developed technique
and a number of non-linear programs are commercially available, such as ABAQUS

[1995] and ANSYS [1993]. Therefore, the references on this field will not be re-

viewed here.

2.2.3 Modified Elastic Modulus Finite Element Method

The reduced elastic modulus method was initially developed as a stress cat-

egorisation tool for piping systems to determine the nature of elastic follow-up
but was later extended to more general pressure vessel applications. The method -
seeks to classify stresses by comparing the simulated inelastic response of a mate-
rial with models of ideal primary and secondary stress. The basis of the method

was outlined by Jones and Dhalla [198]1, 1986] in a procedure for classifving local
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clamp induced stresses in Liquid Metal Fast Breeder Reactor pipes.

It is Marriott [1988] who noted that the elastic reduced modulus procedure,

which was used to address problems in elastic follow up in piping systems by both

Dholla [1984] and Severud [1984], could be used to determine the lower bound
limit load of a structure by performing iterative elastic finite element analysis
and invoking the lower bound limit load theorem. Marriott’s procedure is a truly
iterative elastic procedure:

An initial elastic analysis is performed and all elements with stress intensity
greater than the (Code allowable) stress Sy, are identified. The elastic modulus

of these elements are then individually reduced on an element basis, according to

the equation:

Sm
= A—— 2-
Ern = Eq 7, (2.1)

where
Ey = Previous elastic modulus
S,. = Code allowable stress

ST = Stress intensity of element

The analysis is then rerun and the next set of results is obtained. Using these
results the elastic modulus of those elements which are still greater than 5,, are
reduced and the analysis is rerun again. This procedure is carried on in an it-

erative fashion until the maximum element stress intensity is less than S,, or

converges to some other values.

As well as defining a methodology for categorising pressure vessel stresses.
Marriot also noted that the reduced modulus method in conjunction with the
lower bound limit load theorem could be used to define a lower bound limit load
for the component. A lower bound limit load solution is one in which a statically
admissible stress field exists in which the stress nowhere exceeds the vield stress of

the material. In his procedure if the maximum stress after a number of iterations
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1s less than yield stress then the applied load has satisfied the lower bound limit

load criterion. On the other hand, if the converged solution gives a maximum
stress which is greater than the yield stress then the applied load does not meet

the lower bound limit load criterion.

Seshadri [1991] and Seshadri and Fernando [1991] proposed a method for ap-
proximate estimates of limit load using the modified elastic modulus method. re-

ferred to as the GLOSS-R-Node (Generalised LOcal Stress Strain Re-distribution

Node) method. The basic concept of this method is that when inelasticity oc-
curs and the stresses are redistributed in a component, there are certain loca-
tions where the stresses will remain constant. These locations are defined as
re-distribution-node or r-nodes. The r-nodes stresses are insensitive to material
model and may be considered as reference stress similar to creep analysis refer-

ence and skeletal stress [Boyle and Spence, 1983]. The reference stress o,¢s at the

r-node is related to the yield stress of an elastic perfectly plastic material by the

expression.

Oref = [0y (2.2)

where p is less than one prior to plastic hinge formation and equal to one when the
hinge occurs; when an elastic perfectly plastic material is assumed. By calculating

the r-node stress o,.s corresponding to a given load P, the limit load P, for a

statically determinate structure can be obtained from the expression

Oy

P =

P (2.3)

Oref
The collapse load for the case when two r-nodes form across the thickness. as
1s the case when direct loads are accompanied by bending action, is given by the
expression

Ty

{P,M)}, =

I

(P, M} (2.4)

o'ref

where {P, M} is the primary membrane and bending load combination.

The basic procedure to find the GLOSS r-node is as follows: A linear elastic

finite element analysis of a mechanical component or structure is carried out for
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the prescribed loading and the pseudo-elastic stresses are obtained. The elastic

modulus of the model i1s then locally modified on an element to element basis

according to the equation

En = 2LE, (2.5)
g

Where E,, is the modified element modulus, Fy the original modulus. ¢ the
element stress and o; is the equivalent stress chosen so that stress redistribution
occurs in most of the component. A second linear elastic analysis is then carried
out and the position of the r-node or nodes are obtained at which the stresses

are unchanged. Using these stress values the limit load then can be calculated

by using either equations (2.3) or (2.4).

Although the GLOSS r-node method can be used to calculate limit loads
for certain cbmponents, the concept of r-node especially in 3D models. is quite
difficult both to visualize and calculate. Also fine through thickness finite ele-
ment meshes are required in order to use the method effectively. This will lead
to 3D models with very refined meshes with subsequent problems in computer
processing time and memory storage space. In practice, software and comput-
ing restrictions generally restrict the number of through thickness meshes in 3-D

pressure vessel models to three or four elements.

Based on the modified elastic modulus method, Carter and Ponter [1992] de-
veloped a linear elastic finite element method to calculate lower and upper bound
limit loads boundaries which has been implemented for planar finite element
structures under both plane stress and plane strain conditions. Thev have also

developed a theoretical background, although this has not been published at the

time of writing. The procedure is as follows:

1. An elastic analysis of the structure is performed for the applied loads P as-
suming that the elastic modulus E is initially constant throughout the structure
giving the elastic stress distribution o1(z, P, E') from which von Mises equivalent

stress distribution ¢[oy(z, P, E)] is calculated. This establishes the relationship
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of the stresses to the yield surface.

2. The elastic modulus is then modified throughout the structure according

to the ratio of the current elastic modulus to the equivalent stress at that point

E

Eiz) = "V 4loi(z, P, E)]

(2.6)

3. The limit load is then calculated from

g

PL B P(ﬁ[al(:r,P, E)]

(2.7)

max

Finally this procedure is iterated to a stable solution by returning to step 1.
recalculating the elastic stress distribution using the new elastic moduli £;(x) to
give o2(z, P, E1(z)) and thus the new equivalent stress distribution. This is then
applied to step 2 and step 3 to give F3(z) and P} respectively. The procedure is

convergent in approximately 5 iterations.

The elastic compensation method as first devised by Mackenzie and Boyle
[1993a] is based on the modified elastic modulus method; in particular. Mar-
riott’s lower bound theorem approach and Seshadri’s redistribution technique, to

obtain lower and upper bound limit loads by several elastic finite element anal-

yses. This is done by selectively correcting the elastic modulus in finite element
in each iteration in order to mimic the form of the limit state stress distribution
hence forming the plastic hinges for the collapse mechanism. By invoking the
lower bound limit load theorem, conservative limit loads can then be obtained.
Then by using the compatible displacement and strain fields from the same el-
ement model and substituting them into the upper bound theorem an upper
bound solution to the model could be calculated [Mackenzie et al.. 1992. 1993].

[Nadarajah et al., 1993], [Shi et al., 1993]. The method will be reviewed in more
detail in the next Chapter.
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2.3 A Brief Review of Shakedown Analysis of Structures by Finite
Element Method

The fact that the collapse loads calculated according to limit analysis may fail
to provide a proper measure of structural safety in the case of variable repeated
loads, was pointed out for the first time by Griining {1926] as early as 1926 and
later by Bleich [1932], who proved the static shakedown theorem for a system
of beams of ideal I-cross-section. In 1936 Melan [1936] presented a more general
theorem and later extended it to the general case of a continuum [1938a, 1938h].
It is worth realizing that at that stage the shakedown theory was developed quite
independently of the limit analysis theory. It is well known that in 1938 Gvozdev

[1938] arrived at his fundamental results in the limit analysis of elastic-perfectly

plastic structures subjected to single loading.

In 1950 Neal {1950] presented a method of shakedown analysis for frames by

analysing possible mechanisms of plastic flow. The first solution to the shake-
down problem in continuum media were arrived at in papers of Symonds [1951}
and Hodge [1954]. In both papers the shakedown was limited by the alternat-
ing (i.e.; of changing sign) yielding; the corresponding magnitudes load factors
were compared with those of the limit analysis. It was Koiter {1956], who first
recognized the fact that the theorem on plastic collapse should be understood as
limiting cases of <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>