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Abstract 

The complex dynamics which describe the motion of a spacecraft far from a massive planetary 

body or in a highly perturbed environment close to minor celestial objects raises two fundamental 

but related problems. The first is represented by the difficulty to accurately predict the evolution of 

its orbit even over short period when its initial conditions are known with a small degree of 

confidence. The second is given by the need for precise real time estimation of the trajectory when 

the spacecraft orbits near the asteroid’s surface to avoid impacting on it. 

The main example of the first problem is the perturbed four body problem for the Earth-Sun-Moon 

system. Earth-Sun Lagrangian Point Orbits (LPOs) are often selected for astrophysics and solar 

terrestrial missions while low cost missions aim at exploiting the so called Weak Stability 

Boundaries (WSB) to move at low propellant expense within the Earth sphere of influence. As 

current and future missions are planned to be placed on LPOs, it is a critical aspect to clear these 

regions at the end of operations to avoid damages to other spacecraft.  

For the second problem, we have a great number of asteroids and comets orbiting the inner solar 

system; they represent the so-called minor celestial objects which are very interesting for science 

since they preserve the remnants of the early formation of the planets and could shed light on the 

origins of life. At the same time they are very appealing for future commercial applications for the 

high content of precious ore. Among these celestial objects, the family of Near Earth Objects 

(NEOs) follows trajectories which lie close to, and sometimes cross, the Earth’s orbit. The impact 

hazard with the Earth has started to become considered as serious threat.  



Over the last three decades a number of missions have flown to and explored asteroids and comets, 

relying heavily on ground support with limited autonomy. In order to perform either asteroid’s 

exploration or collision hazard protection, autonomous navigation is needed, also to deal with the 

uncertain environment. Then the manipulation of asteroids’ orbit and attitude for deflection 

purposes is therefore required and an interesting problem to be studied. 

The aim of the research presented in this dissertation is to identify and develop methodologies for 

uncertainty propagation for spacecraft orbit and the application to orbit determination for complex 

nonlinear space mechanics problems, with particular care paid to the case of close proximity 

operations which are required when performing missions to minor celestial objects. The results are 

not limited only to this kind of problem but can be applied also to different scenarios. 

A first set of results focuses on the prediction of the trajectory evolution under initial condition 

uncertainties. The accuracy of the propagation of uncertainties is intimately related to the process of 

trajectory estimation, which relies on the use of the covariance matrix. The covariance matrix gives 

an idea of the dispersion of the spacecraft in terms of position and velocity. Different techniques to 

propagate the covariance matrix are used to predict the evolution of the trajectory when the initial 

conditions are known only to a certain degree of accuracy. They are compared under a highly 

nonlinear scenario where a spacecraft is injected into a disposal orbit towards an impacting 

trajectory with the Moon from a Lagrangian Point Orbit.  

A second set of results focuses on the identification of the estimation techniques applied to a single 

spacecraft. The estimation process performs well depending on the capability to propagate the 

covariance matrix and to incorporate the new information. A number of filtering techniques based 



on the Kalman and H
 filters, employing different methods to handle the propagation of the 

covariance matrix, are presented and tested in typical nonlinear environments, i.e. a WSB transfer 

an asteroid proximity, to draw precious information on their performance. The analyses demonstrate 

that only a hybrid Kalman- H
 filter can enable the spacecraft to estimate its trajectory with a good 

balance between accuracy and computational costs. Then this method is applied to the navigation of 

spacecraft formation about a NEO showing that the navigation performance is significantly 

improved by sharing relative information among the spacecraft and the overall system is shown to 

be fault-tolerant. 

Finally the orbit’s and attitude manipulation of a small asteroid using a laser ablation system is 

analysed. An on-board state estimation and control algorithm is presented that simultaneously 

provides an optimal proximity control and control of the rotational motion of the asteroid. During 

the deflection, the proximity motion of the spacecraft is coupled with the orbital and rotational 

motion of the asteroid. The combination of the deflection acceleration, solar radiation pressure, and 

gravity field and plume impingement will force the spacecraft to drift away from the asteroid. In 

turn, a variation of the motion of the spacecraft produces a change in the modulus and direction of 

the deflection action which modifies the rotational and orbital motion of the asteroid.  
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1 Introduction  

The motion of a spacecraft far from a massive planetary body or in a highly perturbed environment 

close to minor bodies cannot be considered Keplerian. For instance Lagrangian Point Orbits (LPOs) 

within the sphere of influence of the Earth exploit the effects of the Sun and the Moon, and small 

perturbation can lead the spacecraft to leave its position. LPOs are often selected for astrophysics 

and solar terrestrial missions. As current and future missions are planned to be placed on these 

orbits, it is a critical aspect to clear these regions at the end of operations to avoid damages to other 

spacecraft. Nonetheless the disposal conditions are uncertain and an efficient disposal strategy must 

take into account this aspect.  Also the motion at minor celestial bodies, whose rotating gravity field 

is strongly inhomogeneous, can be quite complicated. Missions to minor celestial objects, mostly 

asteroids and comets, either for asteroid hazard mitigation or science exploration in particular to 

study the origin of the solar system and the life on Earth, require one or more spacecraft to operate 

relatively close to the surface where the effects are magnified. Imprecise knowledge of the 

spacecraft trajectory can lead to impart incorrect orbit maintenance and, as a consequence, to impact 

on the asteroid’s surface.  

For these reasons this thesis will develop methodologies for uncertainty propagation of spacecraft 

orbit disposal and the application to the orbit determination to allow a spacecraft formation to 

navigate about an asteroid, and methods for a single spacecraft to estimate required information 

while deflecting a small asteroid and controlling its rotational state. For our analysis, we will mainly 

consider methods to estimate the spacecraft trajectory in real time using onboard instruments, but 

we will test some cases in the four body problem with measurements coming from ground tracking.  
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In this chapter we will introduce the motivations and objectives of the study. We will contextualize 

the need for disposal analysis and describe Monte Carlo methods for uncertainty propagation of the 

initial orbit dispersion. Then we will give an updated summary of missions to minor celestial 

bodies. In this context, we will focus on the degree of autonomy, the presence of ground support 

and difficulties of proximal phase’s operations. We will also present a small overview of asteroid’s 

threat mitigation methods. 

Eventually, a summary of the methodologies developed and implemented in this thesis is provided. 

1.1 Research Motivation and Objectives 

The aim of this research is to investigate methodologies for uncertainty propagation and optimal 

state estimation for complex nonlinear problems in space flight mechanics. In particular two 

interesting problems targeted in this thesis are the motion of a spacecraft in the sphere of influence 

of the Earth and the motion of spacecraft in the proximity of asteroids. 

In the first case, the trajectory disposal and transfer to the Moon in the perturbed four body problem 

are highly unstable and affected by the infinitesimal variation of the initial conditions. In turn the 

highly nonlinear dynamics can lead to huge deviations at the end of the transfer and to large errors 

in the estimation of its state if its propagation is not tackled properly.  

In the second case, missions to minor celestial objects comprise a wide variety of purposes and can 

be carried out with different technologies and approaches. There are two kinds of missions which 

are currently envisaged. The first one regards the scientific exploration of minor celestial objects, 

the second one foresees the use of a deflection technique to deflect or modify asteroid’s trajectory 
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for hazard mitigation or capture. It is paramount that the two scopes are not mutually exclusive and 

tend to overlap. In any case, the navigation in close proximity of asteroids can be complicated due 

to the fact that the environment is uncertain especially if the asteroid presents irregular shape and is 

rotating. The motion of the spacecraft close to the asteroid is unstable and the perturbations acting 

on it are sufficient to strip a spacecraft out of its orbit (Hu et al., 2004; Bellei et al., 2009). The 

common problems, which are required to be addressed, allow studying scientific exploration cases 

and extending the results to a deflection mission.  

Several estimation techniques have been proposed and are currently in use in a variety of 

applications. Not all these techniques can be used or adapted to this kind of mission, for different 

criteria, such as flexibility, computational time and accuracy. 

Therefore, the first research objective is to consider the uncertainty prediction problem to 

implement and exploit tools to predict spacecraft trajectory evolution under uncertainty. In order to 

obtain general analysis, the methods will be tested in the perturbed four body problem (i.e. 

considering the non-uniform gravity field and the contribution of the solar radiation pressure).  The 

second objective is to identify which estimation techniques are more promising and could be 

employed for real time operations. For this purpose we considered the navigation of a spacecraft in 

the chaotic dynamics of a Weak Stability Boundary (WBS) transfer (Belbruno, 1987) and in the 

proximity motion of the irregular (433) Aphophis asteroid to identify the best solution using 

available technology. In this respect, we considered a more complicated problem where the best 

solution is applied to the analysis of a fault-tolerant spacecraft control near Aphophis, because 

future missions will require cooperation from multiple spacecraft to achieve the mission’s goals.       
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The last objective is to study a methodology to deal with the deflection of an asteroid employing 

only on-board instruments. Under such kind of mission, the spacecraft needs to control its own 

trajectory with respect to the asteroid, while applying the deflection strategy. This means that the 

spacecraft will be subjected to an unknown environment and to the interaction with the asteroid by 

the deflection, whose effects are not fully predictable. In order to assess the effectiveness and 

efficiency of the deflection, the complete interaction, through an integrated simulation, has to be 

modelled. The integrated simulation is required to take into account as many variables as possible to 

describe the deflection with high fidelity. For instance, the deflection method could need to rely on 

the knowledge of the asteroid’s rotational velocity and attitude. In order to derive these variables, it 

would be necessary to know the position and velocity of the spacecraft, which depend also on the 

deflection strategy.  

1.2 Background  

1.2.1 LPO End of Life Disposal Problem 

As explained in Colombo et al. (2014), Libration Point Orbits (LPOs) are often selected for 

astrophysics and solar terrestrial missions as they offer vantage points for the observation of the 

Earth, the Sun and the Universe. The neighbourhood of the Lagrangian collinear libration points L1 

and L2 of the Sun – Earth system has been recognised as a vantage location for astrophysics and 

solar missions since the end of the 70's, with the NASA ISEE-3 mission (Perozzi and Ferraz-Mello, 

2010). Indeed, orbits around L1 and L2 are relatively inexpensive to be reached from the Earth and 

ensure a nearly constant geometry for observation and communication geometry, because the L1 

and L2 libration orbits always remain close to the Earth at a distance of roughly 1.5 million km. 
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Moreover, L2 is situated on the Sun – Earth line beyond the Earth and thus it is suitable for highly 

precise telescopes requiring great thermal stability. Also, since the Sun, the Earth and the Moon are 

always behind the spacecraft, L2 LPO ensures a constant geometry for observation with half of the 

entire celestial sphere available at all times. Therefore, long periods of uninterrupted scientific 

observation are possible with nearly no background noise from radiations (Eismont et al., 2003). 

No guidelines currently exist for LPO missions’ end-of-life; however, as current and future 

missions are planned to be placed on these orbits, it is a critical aspect to clear these regions at the 

end of operations (Armellin et al., 2014). In fact, orbits about the Libration points lie in a highly 

perturbed environment due to the chaotic behaviour of the multi-body dynamics (Canalias et al., 

2004); moreover, due to their challenging mission requirements, they are characterised by large-size 

spacecraft. Therefore, the uncontrolled spacecraft on manifold trajectories could re-enter to Earth or 

cross the low Earth orbit and geostationary Earth orbit protected regions. Finally, the end-of-life 

phase can enhance the science return of the mission and the operational knowledge base.  

The chaotic nature of the interaction between the spacecraft and the surrounding environment  

during orbital transfers and the low confidence level in key spacecraft components (such as 

propulsion and attitude control) imposes expensive and time consuming ground support campaign 

to ascertain whether the spacecraft will follow the designed trajectory. In the case of disposal 

manoeuvres this is undesired also considering that this could be the last manoeuvre available. For 

this reason the disposal option must be tested in order to assure high disposal rates and possibly 

inform the mission planning that a mid-course correction manoeuvre could be required.  
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1.2.2 Uncertainty Propagation  

For the disposal problem, orbit uncertainty quantification and propagation play a major role 

(Vetrisano and Vasile, 2016). For nonlinear orbital dynamics, it is not possible to make simplifying 

assumptions on the orbit evolution because the probability distribution may not remain Gaussian, in 

particular during long disposal periods. In this work we investigate the use of different methods 

applied to the propagation of the uncertainty with respect to the knowledge of the initial spacecraft 

position and velocity prior at the disposal manoeuvre. In particular this work focuses on a new 

application of Polynomial Chaos (PC) methods (Ghanem and Spanos, 1991; Ghanem and Dham, 

1998; Xiu and Karniadakis, 2002; Le Matre et al., 2004; Ghanem and Doostan, 2006) for the 

quantification of disposal rate success from LPO to the Moon. 

The objective of the uncertainty analysis on the initial conditions is to predict the evolution of the 

disposal orbit under system performance and environmental perturbations, as well as to allocate 

possible correction manoeuvres. Extensive efforts have been devoted to the development of 

accurate numerical algorithms so that simulation predictions are reliable in the sense that numerical 

errors are well under control and understood. In 2006, Park and Scheeres derived analytical 

expressions of a nonlinear trajectory solution using a higher order Taylor series approach and 

applied the results to spacecraft orbit determination by integrating the so called State Transition 

Tensors (STTs). The STTs map analytically the local nonlinear motion of the spacecraft at the 

current epoch to the initial deviated conditions from the nominal trajectory. The main characteristic 

and advantage of using the higher order STTs reside in that they can be used to propagate many 

samples and the covariance matrix using only algebraic formulas. The problem with this approach 
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is that the number of equations to be solved to have a representation of the solutions around the 

nominal trajectory grows dramatically with the order of the representation and therefore 

simplification could be required to treat the equations analytically.  

One of the most commonly used methods is Monte Carlo Sampling (MCS). In MCS, one generates 

independent realizations of random inputs based on their prescribed probability distribution. For 

each realization the data is fixed and the problem becomes deterministic. Upon solving the 

deterministic realisations of the problem, one collects an ensemble of solutions, i.e. realisations of 

the random solutions. From this ensemble, statistical information can be extracted, e.g. expected 

mean value, variance, etc. Although MCS is straightforward to apply as it only requires repetitive 

executions of deterministic simulations, typically a large number of executions are needed, for the 

solution statistics converge relatively slowly.  

A PC expansion, or PCE, provides a means for approximating the solution to a large set of 

stochastic ordinary differential equations. PCE have been applied to a number of fields, among 

them nuclear reactor design (Gilli et al., 2012), structural mechanics (Shi and Ghanem, 2004; 

Ghanem and Doostan, 2006), fluid dynamics (Knio and Le Maître, 2006; Hosder et al., 2006; Najm 

2009), estimation (Blanchard et al., 2010) etc. For some applications in statistics see Evans and 

Swartz (1992). In the space field the method was used in Jones and Alireza (2013) to estimate the 

collision probability for two satellites, while it was applied to the 2-body uncertainty propagation 

problem in Cheng et al. (2011).   

The PCE approach of computing disposal probability requires no fundamental simplifying 

assumptions, and reduces the computation time compared to Monte Carlo sampling. The attractive 
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attributes of this method are its strong mathematical rigor and ability to produce functional 

representations of any stochastic quantities (Eldred et al., 2011).  

One method to reconstruct a PCE is the stochastic Galerkin approach, which seeks to directly 

construct an approximation for the unknown stochastic solution based on complete orthogonal 

polynomials (Ghanem and Spanos, 1991). The stochastic Galerkin method exploits an assumption 

of smoothness of the stochastic solution in the random domain and returns high accuracy and faster 

convergence rate. Nonetheless, as the number of uncertain parameters of the problem increases, the 

efficiency of the problem results affected because the number of polynomial bases needed to obtain 

accurate reconstructions increases dramatically. 

For this purpose, the alternative method of stochastic collocation has been studied by Xiu and 

Hesthaven (2005), Babuska et al. (2007) and Ganapathysubramanian and Zabaras (2007). The idea 

beneath the stochastic collocation approach is to approximate the unknown stochastic response by a 

polynomial interpolation function in the multi-dimensional random domain. The interpolant is 

constructed by samples taken from the deterministic problem at a pre-determined set of nodes. This 

approach offers high accuracy as the stochastic Galerkin method as well as easy implementation as 

the sampling-based methods.  

The computational effort required for the collocation approach is directly proportional to the 

number of support nodes used for reconstructing the response function. As a result, the key issue for 

this approach represented by the selection of the support nodes, such that using the minimal number 

of nodes to achieve good approximations. One such possible choice for constructing the multi-

dimensional interpolation is to use tensor product of appropriate one-dimensional interpolation 
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functions. Babuska et al. (2007) proposed a methodology which employs a collocation scheme 

based on tensor product of one-dimensional interpolation functions using Gauss quadrature nodes. 

Although, the tensor product approach can easily extend the one-dimensional interpolation formula 

to the multi-dimensional case, it suffers from the curse of dimensionality, as also in this case the 

number of realizations required constructing the PCE response increases exponentially with the 

number of random dimensions. As proposed in Xiu and Hesthaven (2005), a more attractive choice, 

is based on sparse grids generated using the Smolyak algorithm (Smolyak, 1963). Smolyak’s 

construction, often called sparse grid, provides a general tool for constructing efficient algorithms 

able to solve multivariate problems with orders of magnitude reduction in the number of support 

nodes while giving the same level of approximation as the usual tensor product. In this framework, 

the work of Genz and Keister (1996) introduced fully symmetric interpolatory integration rules for 

Smolyak sparse grid of Gauss-Hermite nodes.  

In this thesis we will exploit the sparse-grids of Genz and Keister (1996), because they proved to be 

accurate and efficient at lower number of support nodes. Moreover these grids are suited for 

employing the orthogonality properties of Hermite polynomials, reducing the complexity of the 

integrations required to calculate PCE interpolants. In this way the PCE can conveniently generate 

the complete probabilistic distribution (e.g. probability density function PDF) of the output 

response at a certain instant of time. Consequently, the lower order statistic moments, such as mean 

and standard deviation as well as the impact rate in this case, can be derived directly from the 

approximated PDF. 
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1.2.3 Near Earth Objects Problem 

Near Earth Objects (NEO), the majority of which are asteroids, are defined as any minor celestial 

object with a perihelion less than 1.3 AU and an aphelion greater than 0.983 AU. A subclass of 

these, deemed Potentially Hazardous Asteroids (PHA), are defined as those with a Minimum 

Orbital Intersection Distance (MOID) from the Earth’s orbit less than or equal to 0.05 AU and a 

diameter larger than 150 m. As of 28th of April 2016, 14331 NEOs have been detected; of those, 

about 3600 have a diameter between 0.3 and 1 km, and 1690 are listed as PHA1. Impacts from 

asteroids of about 1 km or more in diameter are considered to be capable of causing global climate 

change and the destruction of ozone, with a land destruction area equivalent to a large state or 

country. Those with an average diameter of 100 m can cause significant tsunamis and/or the land 

destruction of a large city. It is estimated that there are between 30000–300000 NEOs with 

diameters around 100 m, meaning a large number of NEOs are still undetected. NEOs have been 

generating a growing scientific interest because, as primordial remnants of our solar system, they 

preserve precious information on its formation, composition and evolution. Besides, their collision 

with the early Earth would have influenced the shape and composition of our planet. Some NEOs 

are especially attractive targets for low-cost missions, because of their orbital accessibility with 

current technologies. This easy accessibility suggests the possibility to use them as source of raw 

materials and for the settlement of future human outposts (Seboldt et al., 2000). Nevertheless, NEO 

collision with the Earth represents a possible threat to mankind. In particular, small size asteroids 

                                             

1 http:// neo.jpl.nasa.gov/stats 
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pose a concrete threat on the short term, with significant expected damages at regional level. 

Advances in orbit determination and theoretical studies on hazard characterisation have increased 

the capability of predicting potential impacts (Chapman et al., 1994). In April 2013, the American 

administration approved the NASA budget for 2014, and it included $ 105 million for the first year 

of funding for a mission to retrieve a small asteroid of roughly 7 to 10 meters diameter, using 

propulsion, to move it into a high Earth orbit, possibly a high lunar orbit. The origin of this mission 

was a study by the private Keck Institute titled ‘Asteroid Retrieval Feasibility Study’ which was 

published in April 2012.  

One of the main goals of this thesis is to study navigation techniques applied to the deflection of an 

asteroid's orbit, in case we detect one headed on a collision course with Earth (Vetrisano et al., 

2014). The manipulation of asteroids, in fact, still remains an open problem. Increasing our 

capabilities in asteroid orbit and attitude manipulation is therefore required, both for protection of 

collision hazard and for future asteroid exploitation.  

In the last three decades a number of probes have explored asteroids and comets, relying on a strong 

support from ground. Such an approach is advantageous when the communication time is reduced 

and allows performing computationally expensive planning which could not be done with the 

current on-board computers. In practice it means that the spacecraft needs to be visible during 

critical phases, limiting the tasks the mission could accomplish. On the contrary when distances or 

visibility constraints do not permit to heavily rely on ground support, the spacecraft necessarily has 

to use its own on-board system to pursue mission’s goals and navigation. On-board systems allow 

increasing scientific returns but are intrinsically less reliable because of the sensors failures that 

could occur when intervention from ground is not possible.  
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1.2.4 Missions to Minor Celestial Objects 

A number of missions have flown to asteroids and comets. Some of them encountered asteroids on 

their way to outer planets, but they can reasonably be deemed among this small group. The 

following list contains a brief description of the most relevant missions, relatively to this study:  

 The Halley Armada, as the probes which visited the Halley’s comets in 1986, was 

composed of the Soviet Vega 1 and Vega 2, the Japanese probes Suisei and Sakigake, the 

NASA Explorer the ESA GIOTTO. The Japanese and American spacecraft are less 

interesting because they approached or observed the comet from noticeable distance; the 

one which flew the closest was Suisei at 151,000 km. Vega 1 and Vega 2 were directed 

towards the comet after performing a fly-by of Venus and having released their respective 

descent module to the atmosphere of that planet. These spacecraft made their closest 

encounter with the comet at 8,890 and 8,080 km respectively on the 4
th
 and 6

th
 March 

1986. The information collected from the on-board cameras was used to help pinpoint 

Giotto’s close fly-by of the comet. Because of the dust, Vega 1 was affected by 80% 

power loss, while the available power was reduced to 40% on Vega 2.  The objectives of 

the mission were to obtain the first images of a nucleus of a comet and study the 

composition of the volatile components. Giotto was the first spacecraft to make close up 

observations of the comet at 596 km on March 13 and returned both images and scientific 

data back to Earth, surprisingly surviving despite being hit by some small particles. One 

impact sent it spinning off its stabilized spin axis so that its antenna no longer always 

pointed at the Earth, and importantly, its dust shield no longer protected its instruments. 
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Nonetheless Giotto was able to re-stabilize itself and continued gathering science data. 

After a hibernation period, the spacecraft was retargeted for a flyby with the comet 26P 

Grigg-Skjellerup on July 10, 1992, which it approached to a distance of about 200 km. 

 Deep Impact was launched to the comet 9P Tempel 1 on the 12
th
 January 2005. The main 

goal of the mission was to hit the comet with an impactor spacecraft and to observe the 

nucleus during the impact, collecting images and performing analysis of the internal 

structure. The spacecraft reached out the comet on July 4, 2005 and released the impactor. 

Using spacecraft optical observations of the comet and conventional ground-based 

navigation techniques, the joined spacecraft were manoeuvred at 880,000 km to a 

collision trajectory with the nucleus of Tempel 1, and the impactor was released 24 h 

before impact. Then the flyby spacecraft was manoeuvred to a path with a closest 

approach of 500 km from the comet where it could observe the impact. 

 Deep Space 1 was the first to test new technologies like a new propulsion system (ion 

drive) and an autonomous navigation through the interplanetary space. The spacecraft 

made a flyby with the asteroid (9969) Braille on July 28, 1999. Deep Space 1 was 

intended to perform the flyby at 56,000 km/h at only 240 m from the asteroid. Due to 

technical difficulties, including a software crash shortly before approach, the craft instead 

passed Braille at a distance of 26 km.  Then the spacecraft made a close encounter with 

the periodic comet 19P/Borrelly on September 22, 2001 capturing many images of its 

nucleus from a distance of about 2.200 km. The spacecraft carried an experiment for 

artificial intelligence system being given primary command of a spacecraft. Known as 

Remote Agent, the software ran on the on-board computer of Deep Space 1, more than 
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96,500,000 km from Earth. The tests were a step toward robotic explorers that are less 

costly and more independent from ground control.2 

 Galileo had as scientific objectives Jupiter and its moons, but on its way it came within 

1,600 km of the 6.1 km asteroid 951 Gaspra on October 29, 1991. On August 28, 1993 the 

spacecraft had a second encounter with the 32 km asteroid 243 Ida at a distance of 2,400 

km and discovered for the first time the presence of a satellite orbiting around it, called 

Dactyl. Both the asteroids are in the main belt. 

 NEAR Shoemaker was the first probe orbiting around a NEA, the 17 km (433) Eros down 

to 35 km altitude. The spacecraft, during its voyage to Eros, made a flyby of a 61 km 

main belt asteroid (253) Mathilde on June 27, 1997 from a distance of 2,400 km. After a 

first attempt of an orbital insertion failed owing to a problem at the propulsion system, 

finally on February 14, 2000 NEAR Shoemaker entered in orbit around Eros and began to 

map its surface. The mission was concluded on February 12, 2001. Before exhausting the 

fuel supply, the spacecraft attempted a controlled descent on (433) Eros (not really a 

landing because it was not provided of legs for this purpose). In this way NEAR 

Shoemaker became also the first probe to land on an asteroid. 

 MUSES-C Hayabusa was the first spacecraft designed to deliberately land on an asteroid 

and then take off. Hayabusa was not designed to land but only to touch down the surface 

with its sample capturing device. However, it was the first craft designed from the outset 

to make physical contact with the surface of an asteroid. The scientific objective of 

                                             

2 http://ti.arc.nasa.gov/tech/asr/planning-and-scheduling/remote-agent/ 
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MUSES-C was the analysis of the surface of a Near Earth Asteroid and returning a 

sample to the Earth. The target of the mission was the asteroid (25143) Itokawa. The 

spacecraft arrived in the middle of September 2005, orbiting for about five months around 

Itokawa. Hayabusa surveyed the asteroid surface from a distance of about 20 km. After 

this the spacecraft moved closer to the surface at 70 m, and then approached the asteroid 

for a series of soft landings and for the collection of samples at a safe site. Autonomous 

optical navigation was employed extensively during this period because the long 

communication delay prohibited Earth-based real-time commanding. Artificial target 

markers were released in order to cancel the surface relative velocity during descent. 

While flying in deep space, the spacecraft suffered from many hardware failures (i.e. ion 

thrusters and reaction wheels), which would have compromised the mission without the 

intervention and support from ground. 

 Stardust was the first spacecraft directed to a comet after the mission Giotto in 1986. It 

was launched in the year 1999 and made a close encounter with the 5 km radius periodic 

comet 81P Wild 2 in January 2004. The original encounter distance was planned to be 

150 km, but this was changed to minimize the risk of catastrophic dust collisions. Stardust 

flew within 240 km of the comet 81P Wild 2, catching samples of comet particles and 

scoring detailed pictures of the nucleus. The capsule carrying cometary particles (the first 

sample return mission for this kind of missions) successfully touched down on January 

15, 2006 at the U.S. Air Force Utah Test and Training Range. On November 2, 2002 the 

spacecraft passed within about 3,079 km of the asteroid (5535) Annefrank and images of 

it were taken on January 2, 2004. After the completion of this mission, NASA planned to 
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revisit Tempel 1 on February 14, 2011 to finish the investigation begun in 2005 when the 

Deep Impact mission blasted a crater into the comet. In January 2009 Stardust-NExT 

(New Exploration of Tempel 1 as the extension of the mission was called) used the 

Earth's gravity to change trajectory and increase speed. Stardust-NExT encountered 

Tempel 1 at about at the same point in the comet's orbit a couple of weeks after the 

comet's perihelion. The spacecraft made its closest approach to the comet at a distance of 

approximately 178 km.  

 Rosetta was a robotic spacecraft built and launched by the European Space Agency to 

perform a detailed study of the 4 km comet 67P/Churyumov–Gerasimenko. The 

spacecraft was launched in 2004, and performed two successful asteroid flyby missions 

on its way to the comet. The craft completed its fly-by of asteroid 2867 Šteins at 800 km 

distance in September 2008 and of 21 Lutetia at 3162 km in July 2010. The spacecraft 

rendez-voused with the comet 67P/Churyumov–Gerasimenko in August 2014 and was 

able to release the lander Philae which landed on the comet surface after touching down 

three times. 

Among this numerous family of spacecraft, only few flew or orbited around a minor celestial 

object. Only the mission MUSES-C performed proximity operations at distances below 1 km for an 

extended period of 5 months. The probe Philae did not land on the predicted spot due to a 

combination of technical and environmental factors (Garmier et al., 2015).   

From these examples one can see that the risk of failures of one sensor or the whole spacecraft is 

quite high for different reasons. The presence of dust and particles is the first cause of failure, and 
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then the missions could require the instruments to work continuously or to face a long period in 

hibernation before starting operations.  

What complicates proximity operations the most is that the shape of the asteroid and its rotational 

motion can be quite unknown before acquiring final orbit. Moreover the perturbations acting on the 

spacecraft, mainly the rotating non-uniform gravity field and solar radiation pressure  can drive the 

spacecraft out of its orbit. Generally the gravitational harmonics of the minor celestial bodies are 

estimated from onboard data collected during a close fly-by (Morley et al., 2009) or during 

approach phases (Scheeres et al., 2004a) or by ground based radar imaging data (Scheeres et al., 

2004b). Then flying and maintaining a spacecraft around or close to the asteroid could be 

complicated by the fact the knowledge of these figures is affected by uncertainties due to the 

relatively low information available.  

The majority of missions which have flown to minor celestial objects received vital support from 

ground, either to detect the asteroid or to perform their mission. Determining the relative position 

and velocity with high accuracy from ground requires the use of the so-called delta differential one-

way ranging (DDOR). The DDOR technique is very expensive because it needs the simultaneous 

use of at least two largely separated ground stations, receiving the signal transmitted from the probe 

and for calibration from a radio source, e.g. quasar. The main drawback of ground support is that it 

requires the collection for a long time of big batch of data to be processed through a suitable 

recursive method, e.g. recursive weighted-least squares.  

For instance combining DDOR measurements from ground with images from one single camera, 

the Hayabusa mission performed a suitable set of dogleg manoeuvres to observe the asteroid from 



18 
 

different phase angles, while refining asteroid trajectory and acquire the object. The dogleg 

approach required performing small manoeuvres and, as a consequence, the approach lasted more 

than 1 month, considerably longer than a direct rendezvous with the asteroid. Reducing the time to 

approach the asteroid is important when responsiveness is critical to start, for instance, a deflection 

mission.  

When real-time operations are required, recursive methods cannot be employed because they would 

require storing a large amount of data on the onboard memory. For this reason, sequential methods 

based on the nonlinear Kalman filter (KF) family have been widely used in space since the mission 

Apollo. Nonetheless, also including the Philae lander on Rosetta, only two cases successfully 

employed a fully autonomous system to guide the spacecraft. Hayabusa used an Extended Kalman 

Filter (EKF) to process optical and on-board ranging measurements during the very last phases of 

the descent and landing onto the asteroid Itokawa. The impactor of Deep Impact used its 

autonomous navigation software based on the so-called Unscented Kalman Filter (UKF) to guide 

itself for 24 hours to an impact point in a lighted portion of the nucleus using images. Only 

Hayabusa, though, proved that methods based on optical navigation camera and laser light 

radar/laser range finder integrated measurements represent feasible options for a single spacecraft to 

approach, hover and land on the asteroid (Kubota et al., 2003; Li et al., 2006).  

1.2.5 NEOs Deflection Strategies 

In the past two decades, different techniques for asteroid manipulation have been studied and 

compared. The majority of them consider a variation in the asteroid’s nominal orbit due to a change 

in linear momentum. The mitigation strategies can be catalogued depending on their interaction 
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with the asteroid, as with contact or contactless. For completeness sake, a brief description of the 

solutions, which foresees a spacecraft to accomplish the mission, is given in the following. 

For instance contact solutions comprise:  

 kinetic impactors or nuclear interceptors (when deflagrated on the surface of the asteroid), which 

produce an impulsive change in the linear momentum of the asteroid; 

 mass drivers or pogo-stick which produces a multi-impulsive change in the linear momentum of 

the NEO by ejection of material or by a series of hard landing on the asteroid; 

 attached propulsion devices which imparts a low-thrust acceleration continuously modifying the 

linear momentum. 

Contactless solutions comprises all the methods which produce a low-thrust accelerations on the 

asteroid, e.g. gravity tractor, ion-beam-shepherd and surface ablation by a light source. 

The gravity tractor consists of a spacecraft hovering above the asteroid; the gravitational attraction 

between the two bodies is exploited to pull the asteroid and move it. The ion-beam shepherd directs 

a beam of quasi-neutral plasma impinging against the asteroid’s surface to create a small force on it 

(Bombardelli et al., 2011). The ablation method is achieved by irradiating the asteroid with a light 

source. This can be either collected and focused solar radiation or a laser light source (Vasile and 

Maddock, 2012). Within the illuminated focal point, the absorbed energy increases the temperature 

of the asteroid, enabling it to sublimate. The ablated material then expands to form an ejecta plume. 

The resulting thrust induced by the ejecta plume pushes the asteroid away from its original 

trajectory.  
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Unlike contact solutions, contactless solutions have the advantage of not being affected by the 

uncertainties on the asteroid surface and composition, because they do not need physical contact 

with the NEO. 

Amongst the many possibilities to deflect NEOs, Sanchez et al. (2009) demonstrated that surface 

ablation is one of the most promising methods for asteroid deflection. Moreover, in a study 

supported by the European Space Agency (ESA), the ion-beam-shepherd and the ablation concepts 

were also considered appealing for a technology demonstrator intended to deflect a small rocky 

asteroid (Vasile et al., 2013).   

1.3 Methodologies Developed and Implemented 

The present research focuses on the uncertainty propagation for the four body problem and optimal 

estimation techniques mainly applied to the proximal motion of an asteroid for both scientific and 

hazard mitigation purposes. 

The first scope of this research is to investigate valid techniques alternative to full Monte Carlo 

simulations which allows predicting the evolution of uncertainty region in the case of disposal 

trajectory impacting on the Moon.  

The second scope is to identify these methods which allow performing fast and reliable on-board 

estimation. Nonetheless, part of the work is also applied to particular cases of deep space 

navigation, during flight along the so called Weak Stability Boundaries regions, in which ground 

estimate are the only state of the art available solution. This case permits us to briefly explore the 

design of the manoeuvre under uncertainty. Given the fact that the motion along these regions is 
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highly nonlinear and chaotic one can derive precious information, and then use the outcomes for the 

asteroid case.  

The results are applied to the case of a single spacecraft performing formation flying with a 

relatively big asteroid. The motion in formation with the asteroid requires, then, to implement also a 

suitable navigation strategy to prevent the spacecraft from colliding onto the asteroid. The concept 

is extended to the investigation of the state estimation technique to data fuse the measurements 

coming from multiple heterogeneous sensors mounted on a disaggregated spacecraft flying in 

formation with a minor body. Each satellite employs and processes the measurements coming from 

its own on board measurements combined with the information available from the other members of 

the formation. Various sets of sensors are mounted on different satellites in the formation. It is 

shown that the decentralised processing allows the formation to be single point failure tolerant, 

since the failure of one spacecraft marginally affects spacecraft operations. When failure on a single 

spacecraft occurs, other members of the formation can supply for the necessary information which 

still allows the spacecraft to determine its orbit. A particular strategy applicable to a number of 

spacecraft is developed and results are applied to a four spacecraft formation. The use of a 

disaggregated spacecraft, or swarm, endows each of the members of the formation with a higher 

degree of autonomy allowing for accurate autonomous orbit determination with limited intervention 

from ground. This capability goes into the direction of reducing mission management costs and 

increasing real time operations which allows extending mission objectives.  

Since the actual asteroid trajectory could be uncertain prior to the beginning of the operations, we 

propose to employ on-board optical observations from the formation flying towards the asteroid 

along with ground station tracking to improve the asteroid’s trajectory estimate prior to starting the 
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orbit acquisition. On board optical measurements from navigation cameras have been widely used 

in recent years during deep space navigation and approach (Konimato et al., 2006). For instance, as 

mentioned previously, relying only on one single camera, the Hayabusa mission performed a 

suitable set of dogleg manoeuvres to observe the asteroid from different phase angles, refine 

asteroid trajectory and acquire the object. As a consequence of repetitive small manoeuvres and 

subsequent ground observations, this kind of approach lasts longer than a direct rendezvous at the 

asteroid.  

The final scope is to apply the identified estimate solution to the case of the deflection and 

manipulation of a small asteroid using laser ablation for a technology demonstration, considering 

one single spacecraft. During the deflection, the proximity motion of the spacecraft is coupled with 

the orbital and rotational motion of the asteroid. In fact, a change in the angular velocity of the 

asteroid induces a variation of the sublimation rate that, in turn, affects both the orbital and 

rotational motion of the asteroid. At the same time a change in the sublimation rate, orbital and 

rotational motion affects the proximity motion of the spacecraft as it changes the perturbations due 

to the impingement with the plume of gas, the gravity of the asteroid and the relative acceleration 

between asteroid and spacecraft. Given that the spot size of the laser beam needs to be kept below 

an acceptable limit to guarantee constant sublimation, the spacecraft needs to manoeuvre to 

maintain its relative distance under the effect of perturbations that are a function of the sublimation 

process. Kahle et al. (2005) and Colombo et al. (2006) showed that the lower is the angular velocity 

of the asteroid the higher is the imparted deflection acceleration. In this way the simultaneous 

control of both the spacecraft relative position and the asteroid angular velocity is strongly needed. 

The rotational motion of the asteroid is then controlled by off-setting the thrust vector, induced by 
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the laser, with respect to the centre of mass. The spacecraft proximity motion and the instantaneous 

rotational velocity of the asteroid are estimated through two filters: an augmented Unscented 

Kalman Filter to determine the spacecraft trajectory from optical and laser ranging measurements, 

and a batch filter which processes optical flow measurements from the camera to reconstruct the 

rotational velocity of the asteroid.  

1.4 Dissertation Organisation  

This dissertation is divided into 6 chapters, which introduce different aspects of the research on the 

optimal estimation techniques and uncertainty analysis. In general, the first part of each chapter 

explains the theoretical development and the method adopted, subsequently some results are 

presented as the application of the theory. The thesis is organised as follows. 

Chapter 2 explains the different and commonly used techniques which can be used for orbit 

uncertainty propagation. These are applied to the case of the disposal of a spacecraft towards an 

impacting trajectory with the Moon. In particular it proposes the use of polynomial chaos expansion 

to perform fast and accurate Monte Carlo simulations.  

Chapter 0 introduces the reader to the state of the art estimation techniques. The different 

formulations are tested in different environments to draw necessary information and select the most 

suitable filter to be employed in the next chapters. In particular we tested part of these techniques in 

the four body problem for the case of the European Student Moon Orbiter (ESMO) and in the case 

of close proximity operations around the asteroid (433) Apophis. 
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Chapter 4 presents the application of the identified most suitable estimation technique to the case of 

a single spacecraft and a formation in the proximity of the asteroid Aphophis. In Section 4.6 we 

exploit the concept of the formation to propose an asteroid’s trajectory refinement without the use 

of dogleg manoeuvre.  

Chapter 5 presents an approach to control the rotational motion of an asteroid while a spacecraft is 

deflecting its trajectory through laser ablation. 

Finally Chapter 6 summarises the finding of this research and gives an insight into possible further 

developments of this study that will be subject of future work. 

1.5 Contributions 

The contents of this dissertation have been published or are being published in five stand-alone but 

highly related journal papers where I am the first author. I also contributed with my work to other 

three journal papers.     

The analyses and comparisons for the propagation of trajectory uncertainties were used to assess the 

disposal strategy for the spacecraft Herschel in the ESA/GSP study "End-Of-Life Disposal 

Concepts for Lagrange-Point and Highly Elliptical Orbit Missions" during 2013 and 2014. The 

rigorous comparison has been submitted for revision to Advances in Space Research. 

The outcomes of the different navigation strategies applied to the deep space navigation of the 

European Student Moon Orbiter are comprised in three different papers published in 2012.  The 

journals were Acta Astrounatica, Celestial Mechanics and Dynamical Astronomy and the Journal of 

Astrodynamics. 
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The results on the comparative assessment of different navigation strategies for the spacecraft 

formation were presented at the 63rd International Astronautical Congress, Naples, Italy, 2012. A 

more exhaustive version of this study was published on the journal of Advances in Space Research. 

Finally the algorithm which simulates the integrated spacecraft navigation and asteroid 

manipulation was presented at The Sixth International Meeting on Celestial Mechanics in Viterbo, 

Italy in September 2013. This study was published on the journal Celestial Mechanics and 

Dynamical Astronomy.  
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2 Uncertainty Propagation 

In this Chapter we consider different techniques that can be applied to the analysis and study of the 

evolution of trajectory uncertainties. In particular we consider the use of high order State Transition 

Tensors (STTs), Unscented Transformations (UT) and Polynomial Chaos Expansion (PCE) applied 

to the analysis of the disposal of a spacecraft from a Libration point in the Earth-Sun system to the 

Moon under the effects of initial orbit uncertainties. The problem of the perturbed four body 

problem is particularly interesting because it is highly nonlinear when the orbit approaches the 

Moon and it allows us to introduce the techniques which will be used in Chapter 0 for the 

estimation of the orbit evolution.  

This Chapter presents the use of PCEs as a non-intrusive approach to propagate uncertainty in 

dynamical systems. The Chapter will compare the use of PCEs against high order Taylor 

expansions and the use of standard covariance matrix propagations. It will be shown that the use of 

the ellipsoid of uncertainty that corresponds to the propagation of the covariance matrix with a first 

order Taylor expansions is not enough to correctly capture the dispersion of the trajectories that 

result in a crash on the Moon. Furthermore, it will be shown that the use of low order PCEs 

outperforms high orders Taylor expansions of similar order and it is competitive against a full scale 

Monte Carlo sampling. 

This Chapter is organised as follows. Section 2.1 describes the disposal trajectory dynamics for 

Herschel. Then, Section 2.2 presents the methods that were used for uncertainty propagation of the 

initial disposal conditions. Section 2.3 compares the different techniques and applies the most 

The content of this Chapter is being revised in 

Advances in Space Research as Vetrisano, M. 

and Vasile, M.: ‘Analysis of Spacecraft Disposal 

Solutions from LPO to the Moon with High 

Order Polynomial Expansions’, April, 2017. 

https://doi.org/10.1016/j.asr.2017.04.005 
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suitable one to the study of the impact conditions. In particular in Section 2.3.1 we consider a 

numerical and topological comparison to select the PCE method. Eventually Section 2.3.2 analyses 

the impact rate and dispersion shape on the Moon at impact for two different levels of initial 

uncertain distributions. 

2.1 Dynamic Equations for Spacecraft Disposal towards the Moon  

We first introduce the perturbed equations of motion for a spacecraft moving in the Earth-Moon 

system. In fact we are interesting in predicting statistical quantities such as the rate of impact on the 

Moon for a Lagrangian Point Orbit (LPO) mission. Herschel, launched on 14 May 2009 towards a 

Lissajous orbit around the outer collinear Lagrange point (L2) of the Sun-Earth System, is a multi-

user observatory mission, dedicated to perform astronomical observations in the far-infrared and 

sub-millimetre wavelength range. Given the limited amount of propellant and the relatively short 

flight time, the envisaged end-of-life strategy foresees a disposal manoeuvre into a lunar impacting 

trajectory (Colombo et al., 2013; Colombo et al., 2015). At the end of life the spacecraft can rely on 

a limited ground support, thus the actual disposal trajectory will only be known with a low degree 

of confidence. As current and future missions are planned to be placed on LPO it is a critical aspect 

to clear these regions when the mission is not active anymore. It is fundamental to assess the 

influence of uncertainties in the initial trajectory in the evolution of the trajectory towards the re-

entry or impact on a celestial body. In particular, the following sections and experiments considered 

the disposal toward the Moon of the Herschel spacecraft through an impact trajectory.  
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2.1.1 Problem Definition 

The dynamics of this problem is the perturbed four body problem with the contribution of SRP and 

the higher order gravity harmonics of the Moon in the Earth Centred Ecliptic reference Frame 

(ECEF):       
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where the trajectory of the spacecraft is given in terms of position and velocity  r v . The sum of 

Eq.(1) contains the gravity accelerations exerted by the Sun and the Moon; Sscr  and Mscr  are the 

their respective distances from the spacecraft, while their positions with respect to the Earth are 

given SEr  and MEr  respectively; E , S , M  are constants of Earth, Sun and Moon.  Solara  is the 

solar pressure modelled as follows (Kubo-aka and Sengoku, 1999): 
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where A, msc are the satellite cross section area and mass respectively, CR the radiation pressure 

coefficient and srpS  is the solar radiation pressure at 1 AU equal to the ratio between the solar 

constant 1AUP  and the speed of light lightc . nma  includes only the higher order terms (with n, m>0 

since the zero order is already included in the nominal dynamics).  

In fact, due to the non-uniform density distribution and its rotation, the Moon cannot be regarded as 

a perfect sphere. The asphericity of this body gives rise to perturbations that affect all orbital 
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elements, especially at low altitude. The model that has been considered to describe these effects is 

based on the standard Legendre polynomials of the gravity field potential as defined by 

Cunningham (1970). This allows an efficient computation of the potentials and resulting 

perturbation as a function of the Cartesian coordinates in the body fixed reference frame. The 

gravity potential U  can be written as: 

 
0 0

n
M

nm nm nm nm

n mM

U C V S W
R

 

 

                                             (3)                          

where MR  the Moon mean radius, nmC , nmS  are the potential coefficients that describe the 

distribution of the mass within the body. For the Moon the potential coefficients are the ones from 

100th-degree gravity model ‘LP100K’. nmV  and nmW  satisfy the recurrence relations: 
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1, 1 1, 12

(2 1)

(2 1)

B
mm m m m m

B
mm m m m m

R
V m xV yW

r

R
W m xW yV

r

   

   

  

  

                                         (4)                        

and 
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                                 (5)                      

where r is the distance of the spacecraft form the centre of mass of the body. The set of equations 

hold for 1n m   if 1,n mV   and 1,n mW   are set to zero. Furthermore, the initial values 00 BV R r
 
and 

00 0W   are known. The recursions used here are stable, which means that small numerical errors in 

the computation of the low-order terms do not  affect results for high orders. The overall 
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acceleration [ ]M T

nm M M M
x y za  (M is used to indicate that is expressed in the Moon fixed 

equatorial frame) due to the gravity field is equal to the gradient U  and can be directly calculated 

from 
nmV  and 

nmW  as 

, ,M nm M nm M nm

nm nm nm

x x y y z z      

with partial accelerations 
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    (5)                                                      

Being the acceleration defined in the Moon fixed reference frame a rotation to the inertial frame is 

necessary. Given that the equations of motion for the complete model have been defined in the 

ECEF, the results from Seidelmann et al. (2006) have been considered for the Moon. The nonlinear 

process in Eq.(1) can be discretized in time and written as: 

 1 ,k kf t x x                                                                (6)                                                      

where we explicitly state the dependency of the dynamics from the time given that the actual 

relative positions of the Sun, Earth and Moon deeply affect this kind of trajectory. 
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Figure 1  reports the disposal trajectory towards the Moon for the spacecraft Herschel, in November 

2011. The initial condition for the propagation was: 

0 0 0(t ) (t ) (t )

887698.5k 1402038.8 387608.7 -0.0963 / -0.0485 / 0.0744 / .

T
TT

m km km km s km s km s

  
 

  

x r v

The propagation of 60 days did include also the solar radiation pressure with 

2

0.0075R

sc

A m
C

m kg
 and harmonics terms up to degree 10th for the Moon in this case. Note that this 

trajectory will also be used as the reference one in the following analyses. 

 

Figure 1. Disposal trajectory towards the Moon for Herschel. 

2.2 Uncertainty Propagation Techniques 

We now review a number of techniques for uncertainty propagation which were considered during 

this work. We start first with Monte Carlo, then we show the semi-analytic method of the high order 

Taylor expansions, and eventually we move to the quasi-Monte Carlo ones, i.e. the unscented 

transformation and polynomial chaos method. 
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2.2.1 MC Sampling - Calculation of Mean and Covariance 

The MC samples at initial time are generated using a random generator. In order to exploit higher 

convergence rates, we have to generate the initial ensemble by randomly selecting the initial points 

in a proper way. In fact it could happen that the generated samples are correlated especially when 

the number of points is not very high. The mean value of the distribution could be biased by some 

value with respect to the nominal one and the covariance matrix could be full instead of being 

diagonal, as reported in the following equations:  

0 1

0 01

1

1
( )( )

1

N c

ii

N c c T

i ii

N

N







  




χ

χ χ

P χ χ χ χ

                                             (7)                                                                                 

where 0χ is the centre of the grid, and 
χ

P  is the correlation matrix. We   used the superscript c for 

the generated samples c

iχ  to indicate that they are correlated. One way to circumvent this problem 

is to apply the Mahalanobis decorrelation transformation (Mardia et al., 1979), which allows 

transforming correlated points of the grid c

iχ  into uncorrelated ones iχ : 

  1/2

0

c

i i

 χχ P χ χ                                                       (8)                                                               

This is a convenient procedure, which we will exploit when generating the sample population for 

STTs and PCE techniques. 
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2.2.2 High-order Taylor Expansions 

In this section we review the use of high order Taylor expansions in the spatial dimension to 

propagate uncertainty in dynamical systems.  

This section describes the fundamental aspects which this method is based on. The local spacecraft 

dynamics can be described by applying a Taylor series expansion about the reference nominal 

trajectory x0 for some initial deviation 0x : 

0 0 0 0 0( ) ( , ; ) ( , ; )t t t t t     x x x x                                              (9) 

  is the solution flow which maps the initial state at 0t  to t . The s-th order solution can be 

expressed using the Einstein summation convention: 

1 1

0

, ...

( , ) 0 0
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!

p p

s
ii

t t

p

x t x x
p

                                                          (10) 

where  1.. 1,....,p n    denotes the i  component of the state vector corresponding to the s-th 

derivative, n is the number of components of the state vector and: 

1 0
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0 0
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, ... ( , ) 0 0

( , ) 0 0

ξ x
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j j

p i

i t t

t t

t t
t t

 

 






 





 

ξ
x                                        (11) 

The higher-order partials of the solution define the global state transition tensors, which map the 

initial deviations at time 0t  to the deviation at time t . The higher order effects are included in the 

STTs. Note that for s=1, the STTs reduces to the simple state transition matrix. The differential 

equations up to the third order are given by the following equations (Park and Scheeres, 2006a):  
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         (12) 

where  , , 1,....,n    and , , {1,..., }a b c n  are the indexes for the first, second and third order 

derivative. 1, ... pi
f

 
 are the partials of the dynamics and are computed as follows: 

1

1
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                                             (13) 

Note that the partial derivatives in Eqs.(11) and (13) are calculated with respect to the nominal 

trajectory. The calculation of the STTs requires the forward integration of 
1

1
6

s q

q



  differential 

equations starting with initial values 
0 0

,

( , ) 1i a

t t  , if i a , and zero otherwise. When the order is 

3s  , the 1554 equations need to be integrated simultaneously.  

Moreover the computational time and complexity are increased by the numerical evaluations of the 

analytical partials of the dynamics. In this work, the partials were computed analytically using the 

symbolic manipulator in the MATLAB
RM

 Symbolic Toolbox. As an example, the third order STTs 

integration along a 5 day period required approximately 8 hours using a Windows 7 OS 3.16Ghz 

Intel
(R)

Core
(TM)

2 Duo CPU.  

The coupled integration of thousands equations could introduce numerical errors when integrated 

over a long period of time. For this reason a good practice is to consider the nominal trajectory and 

to integrate the STTs over a short period time, say 1 day. The intermediate STTs are called local 
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STTs. While the global STTs map the deviation at the initial time 
0t  to the deviation at time 

1kt 
, 

the local STTs map the deviation at time 
kt  to the deviation at time 

1kt 
.  

Figure 2 shows the result of the propagation for 5 days of the variation vector, with respect to the 

actual trajectory, by using up to the fourth order local STTs. 

 

Figure 2. Position (left) and velocity (right) with local STTs. 

A value of 0 [2500 2500 2500 0.01 / 0.01 / 0.01 / ]Tkm km km km s km s km s x was used to 

magnify the error over this short period. The third and fourth orders prove to be the most accurate. 

The corresponding errors at the end of 5 days are reported in Table 1.  

Table 1. Propagation error using STTs. 

Order 1 2 3 4 

Position 
error [m] 

585.111 3.133 0.189 0.190 

Velocity 
error [m/s] 

3.5∙10
-3
 2.4∙10

-5
 9.6∙10

-7
 8.8∙10

-7
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It is clear that the linear approach is not sufficiently accurate. A second order approach keeps the 

error relatively small. Nonetheless the third and fourth orders show higher precision, especially for 

what concerns the velocity errors which is about two orders of magnitude smaller than the second 

order one.   

Once the state transition tensors are available for some time interval 
1[ , ]k kt t 

, the mean and 

covariance matrix of the relative dynamics at kt  can be mapped analytically to  1kt   as a function of 

the probability distribution at kt . From kt  to 1kt   the propagated mean and covariance can be stated 

as: 

            

 

1 1

1

1 1 1 1

1 1

.

1 1 1 1 ( , )

1

1 1 1 1 1

. .

( , ) ( , )

1

1
( ; ) ( ; ) [ ]

!

[( )( )]

1
[ ]

! !

p p

k k

p q p q

k k k k

s
ii i i i

k k k k k k t t k k

p

ij i i j j

k k k k k

s
i i

t t t t k k k k

q

t t E x x
p

P E x m x m

E x x x x
p q

  

      

     

   

     



 

 

   



    

 



    

   

 





m m m m

1 1

1

s
i j

k k

p

m m  





  (14)

   

 

where { , } {1,..., }i j n    are the indexes for the different order derivative. If one sticks to the 

hypothesis of an initial Gaussian distribution, the joint characteristic function for a Gaussian 

random vector can be computed as (see Park and Scheeres, 2006b and Park, 2007) 
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where 1j    and the expected higher moments can be computed using: 
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When generating a number of discrete samples, the mean and covariance matrix are mapped 

between each step k using the STTs as  

0 0

1

1
( ) ( ; , )
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i i k

k

t t x t
N


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 m                                                    (17)                                                     
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where equal weights were given to all the samples. 

2.2.3 Unscented Transformation 

This technique, which is based on MC sampling, works on the premises that one can well 

approximate the posteriori covariance by propagating a limited set of optimally chosen samples 

(Julier et al., 1995). The set of sigma points iχ  are then given as: 
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x

x P

x P

                                           (19) 

where   is a matrix consisting of (2 1)n   vectors, with  2

ukf ukf ukfn n     , ukf  is a scaling 

parameter, constant ukf  determines the extension of these vectors around kx . We set ukf
 
equal to 

10
-3

 and  ukf  is set equal to 3 n . 

The sigma points are transformed or propagated through the nonlinear function, the so-called 

unscented transformation, to give: 
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, 1 ,( , )i k i kf t   , i=0, 1,…, 2n                                                             (20) 

The predicted mean of the state vector 
k


x , the covariance matrix 

,x k

P  can be approximated using 

the weighted mean and covariance of the transformed vectors: 
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where  m

iW  and  c

iW  are the weighted sample mean and covariance given by: 
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                                          (22) 

and 
ukf  is used to incorporate prior knowledge of the distribution with 2ukf   (Crassidis and 

Junkins, 2004). 

2.2.4 Polynomial Chaos Expansions 

The use of Taylor expansions requires having access to the dynamic model and to calculate high 

order derivatives. The number of partial to be propagated grows significantly with the size of the 

problem and the order of the expansion, therefore one can see the propagation of each partial as a 

sample to be evaluated. Advanced software packages like COSYinfinity (Valli et al., 2013) can 

perform this evaluation very efficiently; on the other hand one may still want to use the idea of 

sampling but to obtain a polynomial representation of the propagated region of uncertainty using a 
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limited number of samples. One way to do it is to use stochastic collocation or stochastic 

expansions. In both cases an access to the model and its derivatives is not required. In this section, 

the use of PCE to propagate uncertainties in dynamic models is introduced.  

The main aspects of this method involve (1) solving the system of stochastic state equations via the 

PCE methodology to gain efficiency; and (2) sampling the PCE approximation of the stochastic 

solution with an arbitrarily large number of samples, at virtually no additional computational cost, 

to drastically reduce the sampling errors.  

The PCE method employs a set of polynomial functions, used as orthogonal basis, to approximate 

the function form between the stochastic response output and each of its random inputs. The chaos 

expansion for a component l of a generic response G takes the form:      

1 1 2

1 1 1 2 1 2 1 2 3 1 2 3

1 1 2 1 2 3

0 0 1 2 3

1 1 1 1 1 1

( ) ( , ) ( , , ) ...
i i i

l i i i i i i i i i i i i

i i i i i i

G a B a B a B a B     
  

     

                 (23) 

 

where iχ  are random inputs and iB  is a generic multi-variable polynomial. This expression can be 

simplified by replacing the order-based indexing with a term-based indexing: 

 
0

( )l lj j

j

G 




  χ                                                              (24) 

 

where there is a one-to-one correspondence between 
1 2 3i i ia  and lj , and between  

1 2
( , ,..., )

vn i i iB     

and ( )j χ . Each of the ( )j ξ  is a multivariate polynomials which involve products of the one-

dimensional polynomials. In practice, one truncates the infinite expansion at a finite number of 

random variables and a finite expansion order, p: 
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Using Hermite polynomials, a multivariate polynomial ( )B ξ  of order n is defined from: 
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which can be shown to be a product of one-dimensional Hermite polynomials involving a multi-

index j

im : 
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As an example Table 2 reports the one-dimensional Hermite polynomials up to the 6
th

 order. For a 

Hermite multivariate polynomial the number of coefficients of the expansions for each uncertain 

variable is given by 
( )!

! !

v

v

i n

i n



 

which shows that the expansions tend to increase quite rapidly with 

the number of variables and order.  In the PCE approach, simulations are used as black boxes and 

the calculation of chaos expansion coefficients for response metrics of interest is based on a set of 

simulation response evaluations. To calculate these responses, PCE coefficients have been 

evaluated using spectral projection (Eldred et al., 2011). The spectral projection approach projects 

the response G against each basis function using inner products and employs the polynomial 

orthogonality properties to extract each coefficient. Each coefficient of the Eq.(25) can be 

calculated as: 
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where the inner product involves a multi-dimensional integral over the support range of the 

weighting function ( ) χ . 

Table 2. One-dimensional Hermite polynomials up to the 6
th

 order. 

n  ( )n   

1   

2 2 1   

3 3 3   

4 4 26 3    

5 5 310 15     

6 6 4 215 45 15      

 

2.2.4.1 Gauss-Hermite Cubature Rules  

The multi-dimensional integral of Eq.(24) has been evaluated using Smoliak sparse grid (Agarwal 

et al., 2003). At each point of the grid is associated a suitable weight which depends on the choice 

of the basis, the order of the polynomial and the accuracy one wants to achieve, such that the 

integral in Eq.(28)  can be written as the sum of discrete number of terms: 

1

( ) ( ) ( ) ( )
ngrid

l j l i j i i

i

G d G w




   χ χ χ χ χ

  
                                  (29) 

In this way using a limited number of points over the Smolyak grid one can propagate the uncertain 

parameters at a certain instant of time and project the response to obtain the PCE representations. 

Analytical expressions of the mean and covariance matrix are then available as: 
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Rμ  and 
RP  are the exact moments of the expansion, which converge to moments of the true 

response function. It is possible to construct the initial polynomial expansion description by 

choosing a suitable cubature rule. We used Gauss-Hermite cubature rules, which have to be used in 

the case of Hermite polynomials. The interested reader can refer to the work of Genz and Keister 

(1996), where the sparse grids are discussed and efficiently calculated for this class of polynomials, 

by exploiting symmetric interpolatory integration rules for multidimensional integrals over infinite 

regions with a Gaussian weight function. In the work of Genz and Keister (1996) it is shown that a 

Gaussian integral for a polynomial of order n can be calculated perfectly using a grid of level 

2 1l n  .    

In Figure 3 we show the normalised Smoliak grid for 3 uncertain parameters 1 , 2  and 3  using 

Hermite polynomials as bases using grids with different level of accuracy.  

As one can see when the level of accuracy is increased the grid is populated by a higher number of 

samples, which cover also a broader uncertain space. For example the maximum uncertain 

parameter reaches 1.7 σ for a level 2 grid, while it is 4 σ for a level 6 grid. This gives the chance to 

better describe the evolution of the uncertain space exploring regions with very low probability.    
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Figure 3. Smoliak grid for Hermite polynomials with different level of accuracy 

Table 3 shows the minimum number of points needed to calculate the discrete integrals of Eq.(29) 

for 6 uncertain variables as a function of the order of the polynomials. As a reference for classic 

sparse grid cubature rules, the nodes for numerical integration were obtained from Heiss and 

Winschel (2007) where the polynomial exactness for a Gaussian distribution is given for 2 1n l  . 

Table 3. Minimum number of points required for calculating Gaussian integrals of a certain 

order. 

Order 1 3 5 7 9 11 

Genz-Keister 

sparse grid 

1 13 73 257 749 2021 

Classic 

Sparse grid 

1 13 85 389 1433 4541 

As one can see Genz-Keister grids allows decreasing the number of sampling points as the order of 

the polynomial increases while maintaining the same accuracy level (see the work of Genz and 
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Keister, 1996 where a detailed comparison was carried out).  In this way a further computational 

speed gain can be achieved.  

2.3 Results 

We will first show the comparison between the presented methods of Section 2.2 and select the 

most suitable alternative to MC technique. Then we will apply this to the study of the impact on the 

surface of the Moon for the disposal trajectory of Section 2.1.1 by considering initial uncertain 

disposal conditions. 

2.3.1 Comparisons 

Given that the uncertainty analysis of disposal trajectories from LPO to the Moon is a new 

application of PCE in astrodynamics, we first compare the methods presented in Section 2.2 to 

evaluate their accuracy and computational cost and establish which one provides the best 

representation of the dispersion of the final states. Section 2.3.1.1 derives the reference distribution 

using a Monte Carlo Simulation. Section 2.3.1.2 compares the ability of each method to correctly 

predict mean and covariance versus their computational cost while Section 2.3.1.3 tests the ability 

of STT and PCEs to represent the full distribution. The dynamical model used in all the tests in this 

section includes only Earth, Sun and Moon and light pressure and does not consider the full 

harmonic expansion of the gravity field of the Moon or the n-body perturbation pba . The dynamic 

equations were numerically integrated with an explicit, variable step size, Runge-Kutta integration 

method with respectively a 10
-9
 and 10

-9
 relative and absolute accuracies. 
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2.3.1.1 Reference Distribution 

In this section we derive the reference distribution used in the following comparisons. The 

distribution is derived from a full MC simulation using the complete model. The simulation was run 

for an increasing number samples, from 10
4
 to 10

6
, to verify the correctness of the predicted 

distribution. 

The uncertain quantities are assumed to be uncorrelated and normally distributed with standard 

deviation  
4 4 4[5 5 5 / 3.89 10 / 7.68 10 / 2.59 10 / ]Tkm km km s km s km s km s     σ   and zero 

mean. These values are typical position errors for this kind of mission (see Godard et al. 2009) and 

will be used for the analysis in the remainder of this paper. The variation in velocity represents 1% 

(1) of the disposal manoeuvre. Note that trajectories are propagated up to 12 hours before the 

nominal impact because the numerical integration of the STTs beyond that point resulted very 

difficult due to the proximity to the singularity (represented by the Moon centre) of the equations of 

motion. 

Figure 4 to Figure 6 show the contour plots of the resulting distributions in the final position 

projected on the plane x-y and the final velocity projected on the plane x-z. These projections show 

the most significant nonlinearities and asymmetries in the final distributions. The probability 

density was computed as the ratio between fraction of particles within a circle centred in each MC 

sample and the corresponding area. Radii of 100 km for the position and of 20 cm/s for the velocity 

were used. To be noted that final distributions are not Gaussian, although the initial samples were 

drawn from a Gaussian distribution.  
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Figure 4 to Figure 6 show the shape can be described fairly well even with 10,000 samples, 

although the tails fail to cover all the range which only more samples are able to describe. More 

samples define low probability density more accurately such that the transition between the 

different density levels becomes smoother, as in Figure 6.  

 
Figure 4. Statistical distribution for Monte Carlo Simulation and 10,000 samples: x-y position 

distribution (a), x-z velocity distribution (b). 

 
Figure 5. Statistical distribution for Monte Carlo Simulation and 100,000 samples: x-y 

position distribution (a), x-z velocity distribution (b). 

a) b) 

a) b) 
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Figure 6. Statistical distribution for Monte Carlo Simulation and 1,000,000 samples: x-y 

position distribution (a), x-z velocity distribution (b). 

If we then evaluate the impact rate for these cases as reported in Table 4, we see that the relative 

difference is below 0.3 per mille between 10
5
 and 10

6
 samples. We can conclude that 10

5
 is a 

sufficient sample size to describe the distribution of the final states in the case under investigation. 

Table 4. Impact rate convergence for increasing number of MC samples. 

Number of samples 10,000  100,000 1,000,000 

Impact rate % 19,740 19.951 20.007 

Difference % -1.335 -0.029 / 

 

2.3.1.2 Estimation of Mean and Covariance  

The first comparative analysis considers the evolution of the maximum error on the estimation of 

mean and covariance calculated with the methods in Section 2.2. The maximum error was defined 

as the absolute value of the difference between the mean calculated with UT, PCE, SSTs and the 

one calculated with MCS plus the maximum norm of the difference between the covariance matrix 

calculated with UT, PCE, SSTs and the one calculated with MCS. Figure 7  reports the results for 

a) b) 
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the STTs, with order up to 4, and the UT, while Figure 8 shows the same analysis for PCE, with 

order up to 6. PCE were generated using grids with l n  because we noticed that the best results 

are achieved when the number of samples is higher than the number of coefficients in the 

expansion.  

Figure 7 shows that the error remains negligible for 40 days till the contribution of the gravity of the 

Moon becomes significant. At that point the first order STTs depart from the MCS reference 

solution. At the end of the simulation when the trajectories get closer to the moon and the 

distribution gets stretched, the order of the STTs needs to be increased to recover the nonlinearities. 

The accuracy of the results depends on the order for the STTs for both the position (Figure 7a) and 

velocity (Figure 7b). Remarkably, the UT is equivalent to second order STTs at representing the 

dispersion of the position but is better than the 4
th
 order STTs at representing the dispersion of the 

velocities. Although the UT is not modelling the full shape of the distribution, it is still able to pick 

a set of points that provides a good approximation of the covariance. The STTs of order 4, instead, 

do not capture with sufficient accuracy the deformation of the uncertainty region and, as a 

consequence, the subsequent calculation of the covariance results less accurate. The result in Figure 

8 shows that, in this test case, a PCE of order 2 achieves a better approximation of mean and 

variance of STTs of order 4 for both position and velocity. In particular, the error in velocity, at the 

final time, is about one order of magnitude lower than the 4
th

 order STTs and the UT.  
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Figure 7. Maximum position (left) and velocity (right) error for STTs and UT with respect to 

the MC simulation. 

 

Figure 8. Maximum position (left) and velocity (right) error for STTs and UT with respect to 

the MC simulation. 

Table 5 reports the maximum error in position and velocity at the end of the simulation, and for 

convenience the computational time to the end of simulation. As the order of the expansion 

increases it goes down to less than 2 cm/s (order 6). This accuracy was obtained with less than one 

twelfth of the Monte Carlo simulations. The most expensive methods are the ones that need to 

integrate a great number of coupled differential equations for the STTs. In fact the computational 
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cost for a 4
th

 order STTs has the same order of magnitude as the propagation of 10
5
 samples of the 

full MC simulation. A 6th order PCE is as computationally expensive as 3rd order STTs. It is also 

true that we did not fully exploit the symmetry of the tensors, which can potentially lead to halve 

the CPU time to compute them. Nonetheless the overall computational cost would favour other 

methods over the STTs.  

Table 5. Comparison between STTs, PCE and MC simulation for 56 days propagation from 

LPO to Moon disposal manoeuvre. A 64-bit Linux  CentOS 5.4 2.93GHz Intel(R) Xeon(TM) 

X5570 was used. 

Method Maximum position 
error (1-σ) [km] 

Maximum velocity 
error (1-σ) [m/s] 

Number of 
integrations (i) 
/points (p) 

CPU time [s] 

UT 107.59 8.869 13 (p) 63.53 

STTs 1n   265.20 18.282 42 (i) 221 

STTs 2n   110.32 13.061 258 (i) 1269 

STTs  47.30 13.222 1554 (i) 9,683 

STTs 4n   17.47 11.743 9330 (i) 154,931 

PCE 2n   3.13    1.06    73 (p) 222 

PCE 3n   2.76    0.258    257 (p) 773 

PCE 4n   2.19    0.101    749 (p) 2,244 

PCE 5n   2.25    0.048    2021 (p) 6,050 

PCE 6n    2.24 0.017 4725 (p) 14,139 

MC 0 0 10
5
 (p) 299,093  

2.3.1.3 Approximation of the Full Distribution 

The second comparative analysis computes the maximum absolute difference (maximum absolute 

error) in the distributions of position and velocity at the final time between the STTs, the PCE and 
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the full MCS predictions with 10
5
 samples. With the STTs the distribution is derived by integrating 

all the partials only once and then running a MCS on expansion (10).  

Figure 9  to Figure 12 show the resulting distributions for different levels of expansion. Note that 

the distribution returned by the UT would look like the one in Figure 10.  

 

Figure 9. Statistical distribution with 1st order STTs x-y position distribution (a), x-z velocity 

distribution (b). 

 

Figure 10. Statistical distribution with 2nd order STTs: x-y position distribution (a), x-z 

velocity distribution (b). 

a) b) 

a) b) 
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While the position distribution can be approximated quite well with low order STTs (Figure 9a) to 

Figure 12a)), the same is not possible for the velocity (Figure 9b) to Figure 12b)). The distribution 

obtained from STTs of order 1, for both position and velocity, are simply ellipsoids (see Figure 9). 

This first order approximation partially captures the shape of the distribution in position but fails to 

represent the velocities.  

 

Figure 11. Statistical distribution with 3rd order STTs: x-y position distribution (a), x-z 

velocity distribution (b). 

 

Figure 12. Statistical distribution with 4st order STTs: x-y position distribution (a), x-z 

velocity distribution (b). 

a) b) 

a) b) 
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From Figure 10 one can see that the 2
nd

 order STTs distribution of velocity has a teardrop shape 

which is still far from the result in Figure 6. The third order STT approximation performs slightly 

better (Figure 11b)) and only the fourth order STTs approximation resembles the uncertain region 

obtained with the full MCS, although with many samples scattered far from the actual uncertain 

region (see Figure 12b)). 

 

Figure 13. Statistical distribution with 2nd order PCE: x-y position distribution (a), x-z 

velocity distribution (b). 

 

Figure 14. Statistical distribution with 3rd order PCE: x-y position distribution (a), x-z 

velocity distribution (b). 

a) 

a) 

b) 

b) 
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PCEs show better accuracy in the description of the distribution (see Figure 13 to Figure 17). A 2
nd

 

order PCE provides a better representation than 2nd and 3rd order STTs, as can be seen in Figure 13. 

The representation improves as the order increases from 3
rd

 to 6
th
 (see Figure 14b) to Figure 17b)).  

 

Figure 15. Statistical distribution with 4th order PCE: x-y position distribution (a), x-z 

velocity distribution (b). 

 

Figure 16. Statistical distribution with 5th order PCE: x-y position distribution (a), x-z 

velocity distribution (b). 

The 6th order PCE distributions, in Figure 17, are almost coincident with the full the ones derived 

from the full MCS. The PCE displayed the remarkable ability to globally represent the distribution 

b) 

b) 

a) 

a) 



59 
 

better than the SSTs. As to be expected the STTs representation is more accurate nearer the nominal 

solution and loses accuracy as the sampled points move away from it. The PCE instead is computed 

by sampling globally over the uncertain space and, thus, achieves a better global representation. 

 

Figure 17. Statistical distribution with 6th order PCE: x-y position distribution (a), x-z 

velocity distribution (b). 

2.3.2 Impact Analysis 

Through the numerical comparison of Section 2.3.1.1 as well with the topological comparisons in 

Section 2.3.1.3, we have seen that the PCEs outperform the UT and STTs methods. Given the 

numerical accuracy and capability to describe the distribution of position and velocity components, 

we want to see if we can use the PCE expansion to estimate the impact rate of the proposed disposal 

trajectory. The impact rate impactr  is calculated by finding the number of sampled trajectories impactsN  

intersecting the Moon surface:  

100 %
impacts

impact

samples

N
r

N
                                                            (31) 

a) b) 
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The impact is identified when the periselene is below the radius of the Moon:

 
( )perigee Moonr Riχ                                                          (32)

 

 

where 
perigeer  is the response function representation of the periapsis in terms of initial uncertain 

parameters; 
MoonR  is the Moon mean radius. The response function has been sampled 10

5
 times with 

the samples generated through the Mahalanobis decorrelation transformation (see Section 2.2.1). 

The approximation that we used here is to reconstruct the distribution few hours before the nominal 

impact time and then consider the orbital parameters to derive the distribution of the impacting 

particles following the criteria of Eq.(31). The orbital anomaly 
impact

 
corresponding to the 

intersection with the Moon surface is given by the following: 

: ( , )impact Moonr R  iχ                                                       (33) 

In this way it is then possible to convert the intersection point back to Cartesian coordinates and 

represent the distribution of the impacting particles on the Moon. This is due to the fact that the 

description of the distribution cannot be performed using a low degree polynomial as the particle 

will impact at different instants of time while some of them will miss the surface. 

We first compare the impact rate for MC and PCE in Table 6. We can deduce that as the order of 

the PCE increases, the error relatively to MC simulations reduces, at least starting from order 3. The 

increase in order 3 can be adducted to the samples distribution itself. We see that a 6
th
 order  

We want to see then if this accuracy reflects in the distribution on the Moon surface. Figure 18 to 

Figure 20 report the samples density and distribution on the south hemisphere of the Moon where 
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all the impacting samples end up. PCE produces an impact rate which is just a 1% higher than the 

true value from MC. 

Table 6. Impact rate comparison between MC and PCE: 1% manoeuvre error and 5 km 

dispersion error (per component). 

 MC  PCE ord 2 PCE ord 3 PCE ord 4 PCE ord 5 PCE ord 6 

Impact rate % 19.951 20.858 21.007 20.515 20.430 20.180 

Relative error % / 4.55 5.41 2.83 2.40 1.14 

The density distribution was defined as the ratio between the particles hitting a circle of 30 km 

radius centred on each impacting particle and the total number of particles and the corresponding 

area. As one can see the distribution and particle density are very similar.  

 

Figure 18. Particles dispersion and density at impact for 1% manoeuvre error and 5 km 

dispersion error (per component): MC (left) and PCE order 2 (right). 

Apparently the low order distributions spread over the south hemisphere similarly to the MC, 

although the error in impact rate is quite high. Indeed the areas with higher probability density of 

MC in the left picture of Figure 18 are better represented by the higher order. 
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Figure 19. Particles dispersion and density at impact for 1% manoeuvre error and 5 km 

dispersion error (per component): PCE order 3 (left) and PCE order 4 (right). 

 

Figure 20. Particles dispersion and density at impact for 1% manoeuvre error and 5 km 

dispersion error (per component): PCE order 5 (left) and PCE order 6 (right). 

The reason is due to the fact that the PCE representation of low order is particularly effective at 

reconstructing the area closer to the mean, given the shape of the grid shown in Figure 3 of Section 

2.2.4.1. At the same time all the impacting particles are concentrated in the area closer to the 

nominal trajectory. If we want to obtain a distribution more similar to the MC one, we might need 
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to use more samples for the higher order. In fact if we employ 200,000 samples as in Figure 20, the 

distribution for order 6 becomes more similar to the MC one. Remind that we do not need 

additional integration, thus no additional integration time is required. 

 

Figure 21. Particles dispersion and density at impact for 1% manoeuvre error and 5 km 

dispersion error (per component): PCE order 6 with 200,000 samples. 

As a confirmation of this, we consider another case where the dispersion in position is limited to 1 

km per component, while the one for the velocity is just 0.1% of the disposal manoeuvre. In this 

way almost all the samples will impact the Moon, as shown in Table 7. As in the previous case we 

see that the higher order PCE are more accurate in the description of the overall impact statistics. In 

general there is a very good agreement between MC simulation and PCE expansions.  

The difference is less than 0.05 % with the actual number calculated with MC. The error for a 6
th
 

order is even lower than 0.005%, thanks to the less deformation extent of this distribution. 

Nonetheless it is possible to use a lower order to capture the whole statistics. 
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Table 7. Impact rate comparison between MC and PCE: 0.1% manoeuvre error and 1 km 

dispersion error (per component). 

 MC  PCE ord 2 PCE ord 3 PCE ord 4 PCE ord 5 PCE ord 6 

Impact rate % 92.326 92.354 92.337 92.331 92.331 92.329 

Relative error % / 0.03 0.012 0.005 0.005 0.004 

In fact one can see from Figure 22 to Figure 24 that the particles are less scattered with respect to 

the previous case.  The actual shape of the MC distribution of Figure 22 left is similar to the one 

reported in Figure 18 left, although it is less extended over the surface.  

 

Figure 22. Particles dispersion and density at impact for 0.1% manoeuvre error and 1 km 

dispersion error (per component): MC (left) and PCE order 2 (right). 

It is also clear from this figure that the effect of non-linearities in Figure 18 is to spread and move 

the area where the density is relatively higher. In fact the maximum density is approximately one 

order of magnitude higher than the previous case (4.5∙10
-4

 against 5.4∙10
-5

). For what concerns the 

PCE representation, any order can describe the distribution fairly well, as direct consequence of the 

lower level of dispersion. 
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Figure 23. Particles dispersion and density at impact for 0.1% manoeuvre error and 1 km 

dispersion error (per component): PCE order 3 (left) and PCE order 4 (right). 

 

Figure 24. Particles dispersion and density at impact for 0.1% manoeuvre error and 1 km 

dispersion error (per component): PCE order 5 (left) and PCE order 6 (right). 

2.4 Summary 

In this Chapter we have applied the STTs and PCE expansions to the study of the propagation of 

uncertainties in the initial conditions for the disposal from LPO to the Moon. We studied in 

particular the disposal of Herschel from the Lagrangian Point L2 where the initial disposal 
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conditions are affected by uncertainties due to both orbit determination and system performance.  

Multivariate Hermite polynomials were employed, because they have infinite support range and 

they can easily be applied to the propagation of the initial conditions uncertainty.  

It emerged that PCE are an appropriate tool for this type of analyses and provide accurate 

predictions at low computational cost. The particular PCE proposed in this Chapter is based on 

multivariate Hermite polynomials with integration over Genz and Keister sparse-grids. Multivariate 

Hermite polynomials are chosen because they have infinite support and can well represent mixtures 

of Gaussian distributions. Two key features of PCE are exploited: the ability to produce functional 

representations of any generic stochastic distribution and the direct derivation of the statistical 

moments from the coefficients of the PCE expansion. The latter is used when comparing the lower 

order statistic moments, i.e. the mean and covariance, against UT and low order SSTs while the 

former is exploited when computing the impact rate.  

The MC method has been used to validate the procedures. The main drawback of MC is represented 

by the slow convergence rate which requires running a great number of simulations. Unless more 

efficient method to deal with the propagation of higher order terms of the STTs, also the STTs have 

proved to be not that efficient in terms of computational time. This is a problem when several 

reference trajectories have to be tested. On the contrary, the PCE expansion proves to be a valid 

alternative for dealing with such a problem with considerable less computational effort and the 

capability to include nonlinear effects with no approximation. In fact we have seen that first order 

Taylor expansions cannot properly handle the propagation of the covariance matrix especially when 

the trajectory comes closer to the Moon where the nonlinear effects are also magnified by the non-
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uniform gravity field of this body. The resulting distribution would be completely wrong with 

respect to the actual one. 

The results show that, for such a complex nonlinear problem, one can efficiently and accurately 

approximate the response function using a statistical polynomial approximation. Once the 

coefficients of the expansions have been obtained, one can generate many samples and apply any 

criteria to draw figures of interests. In our case we obtained the number of impacts on the Moon 

surface. The only care that must be used regards the minimum order required to obtain a 

satisfactory approximation. In principle one can test the PCE methods for the disposal problem, and 

identify the order of polynomials which can describe the disposal statistic with the required 

accuracy. Then one can stick to this order for similar disposal trajectories. We have seen that when 

the initial dispersion is quite small, the error between PCEs and MC is not meaningful. In fact we 

have noticed that the critical part of the transfer is represented by the last few hours before the 

nominal impact, because the deformation and stretch of the distribution become untreatable with a 

low order expansion if the initial dispersion is relatively big. For this reason we have had to 

simplify the final phase considering the Keplerian elements of the PCE samples. When considering 

the final distribution on the Moon, we have seen that the PCE solution resembles the MC, keeping 

in mind that a perfect superimposition is not possible unless the order of the polynomials is 

dramatically increased. 
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3 Filtering Techniques 

This Chapter presents an overview of the main state of the art estimation techniques commonly 

applied to nonlinear dynamics problems. Two main families of filters were considered in the 

following of this chapter. The first family is the one of Kalman filters and the second one is the one 

of H
 filters, also called minmax filters. These works on different premises but both share a 

common structure, in which the variables object of the estimation process are first propagated 

between the instants of time, in which the measurements are received, to obtain a time update 

estimate at the subsequent time the new measurements are available. At this stage the measurements 

are included via a suitable gain to obtain a measurement update. Examples of the application of 

these techniques are provided in the Sun-Earth-Moon four-body problem framework and in the 

Sun-Asteroid three-body problem during proximal motion, for a number of filters which inherits the 

method seen for uncertainty propagation of Chapter 2. 

3.1 Kalman Filtering  

Before introducing the following nonlinear filter based on the extension of the Kalman Filter, it 

seems opportune to briefly describe how the Kalman filter (KF) was derived. There are different 

versions of Kalman filter, based on continuous or discrete dynamics. Given the fact that all the work 

of this thesis is based on discrete set of measurements, we decided to deal this topic using the 

discrete system. 

Part of the content of this Chapter was 
published in Vetrisano, M., Vasile, M.: 

‘Navigating to the Moon along low-energy 

transfers: The case of the European Student 

Moon Orbiter’. Celestial Mechanics and 

Dynamical Astronomy, Springer 2012. DOI 
10.1007/s10569-012-9436-9 
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First of all consider a generic linear discrete-time system between two subsequent instant of time kt  

and 1kt 
 as 

1 1

1 1 1 1

u

k k k k k k

k k k k

 

   

  

 

x F x G u w

y H x ς
                                                     (34)                                                 

kx  is the state variable, whose dynamics depends on the matrix 
kF  which rules the evolution of the 

system between two subsequent instant of time, if no known input ku  is applied through the matrix 

u

kG ; 1ky  is the set of available measurements of the variable kx  through the measurement matrix 

1kH . kw  and kς  are white, zero-mean, uncorrelated process, or system, and measurement noise 

respectively. Statistical properties of these noises are known: 
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 where [...]E  is used to indicate the expected value of the quantity between brackets, k j  is the 

Kronecker delta function ( 1k j    if k =j, 0k j    otherwise). The goal is to estimate the state kx  

based on the knowledge of kF - kG  and the availability of noisy measurements 1ky . Using all the 

measurements up to the time k, it is possible to form an a posteriori estimate kk


x . The "+" 

superscript indicates that the estimate is a posteriori. If all of the measurements are available up to 
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time k-1, one can look for an a priori estimate 
kk


x . The "-" superscript denotes that the estimate is a 

priori.  

In order to derive the Kalman filter structure, we want to find an estimator of Eq.(34) as 

 1 1 1 1 1 1( )k k k k k k

  

       x x K y H x                                                (36) 

1k



x  is obtained by Eq.(34) without considering the noise; 1kK  is the Kalman gain which has to be 

found through an optimality criterion. The optimality criterion is to minimize the sum of the 

variances of the estimation errors at time 1k  , which is given by the following: 

 1 1 1 1 1 1 1 1[( ) ] [( ) ( )] ( )T T

k k k k k k k kJ E E Tr    

           ε ε x x x x P                         (37) 

where 1kP  is the covariance matrix of the state, and Tr  indicates the trace of the matrix. Before 

minimising the function, let us have a look at 1kP  by substituting 1
ˆ
k


x  from Eq.(36) 
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         (38) 

where we have exploited that the measurements noise and the state are not correlated and 



 1[ ] 0T
k kE ε ς . Before calculating the Kalman gain, we need to calculate the covariance matrix 1k



P  

as a function of the posteriori covariance matrix at the previous time step. This is simply given by 

the definition of covariance matrix and of the dynamics equations in Eq.(34): 
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Now the Kalman gain is obtained by deriving the function 1kJ 
 with respect to 1kK  and setting it 

equal to zero: 

 1
1 1 1 1 1 1
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2( ) 2Tk
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                                        (40) 

In this way the Kalman gain is given as: 

 1

1 1 1 1 1 1 1( )T T

k k k k k k k
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       K P H H P H R                                               (41) 

The set of equations Eqs.(41), (39) and (36) represents the general form of the linear discrete-time 

Kalman filter, which is a starting point for the following nonlinear methods based on the Kalman 

filter. 

3.2 The Extended Kalman Filter 

The EKF is a well-known dynamic optimal filter which was first employed in the Apollo program 

(Battin and Levine, 1970). The EKF linearizes the equations of motion about the estimated state.  

The dynamics and measurements model used in the filtering are as follows: 

( ) ( ( ), , )

( , , )k k k

t t t

t





x f x w

y h x ς
                                                              (42) 
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where ( ( ), , )t tf x w  is a vector field of the dynamical system. The function ( , , )k kth x ς  is the 

measurements model, 
kx  is the kth

 state vector at the measurement time 
kt .  

The EKF is composed of two conceptually distinct phases: the time update and the measurements 

update. The time update phase consists of the propagation of the latest estimate 
k


x  to obtain an a-

priori estimate at current epoch 1k



x  with the corresponding covariance matrix 1k



P  (Montenbruck 

and Gill, 2000):  

                            
1 1

1
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x x x x

P F P F
                                                      (43) 

where the predicted state 1k



x  is obtained by integrating forward Eq.(42) starting from the latest 

state estimate k


x ; 1kF  represents the state transition matrix (STM), commonly indicated as 1kΦ , 

coming from the linearization of the dynamic equations about the updated state:  
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f x
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                  (44) 

being ( , )k k kt tΦ  equal to the identity matrix. The measurement update phase consists of the 

computation of the Kalman gain 1kK  and the state estimate 1k



x  and covariance matrix, 1k



P  

updates: 
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                                                (45) 

where 
1kH is the Jacobian matrix of the measurement function. The Kalman gain as reported in 

Eq.(45) minimizes the a posteriori error covariance matrix. It represents a function of the relative 

certainty of the measurements and current state. As the gain increases the measurements are trusted 

more and the estimates rely less on the prediction model. On the contrary as the gain decreases, 

measurements tend to be ignored and the estimate relies more heavily on the prediction model.  

3.3 The Unscented Kalman Filter 

The unscented Kalman filter (Julier et al., 1995) works on the premises that by using a limited set of 

optimally chosen sample, it should be easier to approximate a Gaussian distribution than to 

approximate a nonlinear function. The UKF was shown to be preferable to the Extended Kalman 

filter (EKF) in the case of nonlinear systems as the expected error in terms of mean and covariance 

matrix is lower, and it does not require the derivation of the Jacobian matrix (Crassidis and Junkins, 

2001). 

Once the dynamics and measurement models have been defined as in Eq.(42), one can briefly 

describe the Unscented Kalman filter. The filter state vector and covariance matrix updates are 

represented as follows: 
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where the innovation process 
kυ  and the gain 

kK are: 
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The matrix xy

kP  is the cross-correlation between k


x  and k


y .The approach used in the filter design 

requires augmenting the covariance matrix with: 

x x
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                                                          (48) 

where xw
kP  is the correlation between the state error and process noise, xv

kP  is the correlation 

between the state error and measurement noise, and wv

kP  is the correlation between the process 

noise and measurement noise, which is zero in this case. If L is the number of elements per column 

of the augmented covariance matrix a

kP , then a set of 2L samples a

k ( )i , with i = 1,..,2L called 

sigma points, are generated such that: 

a a

k k k
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k k
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i i
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σ x
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x
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

                                                               (49) 

where η is a suitable scaling factor, a

kx  is the augmented state, 
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q is the dimension of w,  and z is the dimension of 
ky . The sampled sigma points are then: 
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k

x  is the vector of the first n  (size of 
kx ) elements of a

k , k

w  is a vector of the next q elements of 

a

k  and k

  is the vector of the last z components of a

k . The sigma points are transformed or 

propagated using the UT of Eq.(20), here specialised for the state and measurements calculation: 
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The predicted mean of the state vector, the covariance matrix and the mean observation can be 

approximated using the weighted mean and covariance of the transformed vectors similarly to 

Eq.(21): 
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where m

iW , c

iW  are suitable weighting factors calculated exactly as in Eq.(22). Finally the updated 

covariance and the cross correlation matrix are: 
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                                (54)  

In this way it is possible to update the filter to the next observation and prediction at time 
1kt 
 using 

the equations reported in Eq.(46).  

3.4 High Order Semi-Analytic Extended Kalman Filter 

Park and Scheeres (2006a, 2006b) derived analytical expressions of a nonlinear trajectory solution 

using higher order Taylor series approach and applied the results to spacecraft trajectory 

calculation, in particular navigation and manoeuvre design. In their work they presented a semi-

analytic filtering method by exploiting the STTs to sequentially update the state vector with 

contributions from each measurement. They called this nonlinear filter High-order semi-Analytic 

Extended Kalman filter (HAEKF), since the implementation follows the same steps of the 

conventional Kalman filter. When applied to spacecraft navigation the advantage of using the 

higher order semi-analytic extended Kalman filter is that the STTs can be calculated offline prior to 

their usage in the filter itself. This section describes the fundamental aspects which this method is 

based on. We use here the results of Section 2.2.2, where we introduced the STTs for uncertainty 

propagation. 

When implementing the filter it is necessary to calculate the STTs at each intermediate time, in 

between 0t  and t , at which a new measurement is available. The intermediate STTs are called local 
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STTs. Whereas the global STTs map the deviation at the initial time t0 to the deviation at time 
1kt 
, 

the local STTs map the deviation at time 
kt  to the deviation at time 

1kt 
. 

There are two methods to compute the local STTs. The first method integrates all the partials from 

kt  to 
1kt 
 without using the information from the global STTs. The second method, indeed, 

calculates the local STTs from 
kt  to 

1kt 
, having previously integrated the global STTs over the 

time spans 0t - kt  and 0t - 1kt  . The local STTs can be calculated by computing the Inverse State 

Transition Tensors (ISTTs) via series reversion, as follows: 
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        (55) 

where 1 2 3, , {1,..., }j j j n  are the indexes for the first, second and third order derivative. Note that 

the series reversion requires the calculation of the inverse of the state transition matrix. The inverse 

matrix needs to be calculated with high precision otherwise the terms in the expansion result can be 

affected by a considerable error. 

The solution calculated using the STTs obtained by series reversion produces oscillations towards 

the end of the integration period. Figure 25 shows the result from Vetrisano et al., 2012 for the 

propagation during 2.5 days of the variation vector, with respect to an Earth departing trajectory, 

0 [2500 2500 2500 0.01 / 0.01 / 0.01 / ]Tkm km km km s km s km s x  by using third order 

global STTs, third order integrated local STTs and third order local STTs calculated via series 

reversion.  
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Figure 25. Position a) and velocity b) errors using global STTs, integrated local STTs and 

local STTs obtained via series reversion. 

The solution calculated using the STTs obtained by series reversion produces oscillations towards 

the end of the integration period. In order to avoid this problem, in the remainder of this work, the 

integrated local STTs are used. In order to avoid this problem, in the remainder of this work, the 

integrated local STTs are used. Once the state transition tensors are available for some time interval 

1[ ]k kt t , the mean and covariance matrix of the relative dynamics at kt  can be mapped 

analytically to 1kt   as a function of the probability distribution at 
kt . Similarly to Eq.(14), the 

propagated mean and covariance from kt  to 1kt   can be stated as: 
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where { , } {1,..., }i j n    are the indexes for the first, second and third order derivative.  The 

assumption in the construction of the filter is, however, that the statistical distribution remains close 

to Gaussian. This assumption was proved to provide a sufficiently accurate state estimation (Park 

and Scheeres, 2006a; Park, 2007). If one sticks to the hypothesis of a Gaussian distribution, the 

joint characteristic function for a Gaussian random vector can be computed as in Eq.(16) and the 

state prediction and associated covariance can be calculated as follows: 
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For the measurements update phase it is assumed that the linearization of the measurements 

function provides a sufficient approximation. In this way the Kalman gain 1kK , the state estimate 

1k



m  and the covariance matrix 1k



P  can be computed as follows: 

1

1 1 1 1

1 1 1 1 1

1 1 1 1

( ( ))

( )

T T

k k k k k k

k k k k k

k k k k


 

   

  

    

 

   

   

  

 

K P H H P H R

m m K y h m

P I K H P
 

                                            (58) 

where 1k



m  substitutes 1
ˆ

k



x . The linear assumption simplifies the problem a great deal since the 

updated phase does not require the computation of the higher order partials of the measurements 

equations. In this way the filter velocity is increased, but at the same time the precision is not 

affected considerably. Note that when s = 1, the HAEKF becomes the linear Kalman filter, whose 

performance is inferior to the EKF, as demonstrated by Mayback (1982). Since the STTs are 

integrated offline with respect to the nominal trajectory, the idea is to use second and third order 
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expansions in order to incorporate the nonlinear effects exploiting the advantages given by the pre-

integration. 

3.5 Case Study - Weak Stability Boundaries 

In this section we provide the application of the EKF, UKF and HAEKF to the case of the European 

Student Moon Orbiter (ESMO). ESMO was the fourth small satellite mission within ESA’s 

Education Satellite Program. As shown in Figure 26 the spacecraft would use its chemical 

propulsion system (Croisard et al., 2009) to transfer itself from GTO to its lunar operational orbit at 

the Moon using a Weak Stability Boundares (WSB) transfer (Belbruno, 1987).  

 

Figure 26. Typical trajectory for WSB transfers in the Earth Centred Inertial frame. The blue 

line  represents the Moon’s orbit around the Earth, the black-red line is the WSB transfer 

from Earth to Moon, which is preceded by the apogee raising strategy (shown in more detail 

in the right plot) close to the Earth. 

This type of transfer was selected due to its associated propellant saving, and to cope consistently 

with a variety of injection conditions resulting from the fact ESMO would have been a secondary 
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payload with no control on the launch date. The WSB transfer employs the 3-body dynamics of the 

Sun, Earth, and Moon advantageously in order to change the orbit plane, and to raise the perigee of 

the orbit from the Earth up to the Moon. The equations of motion used for propagation are based on 

the n-body formulation where in this case the motion of the mass-less spacecraft is influenced by 

the Sun, Earth, and Moon point masses are the same as Eq.(1) (Bate et al., 1971), recalled here for 

convenience: 

                            
3 3 3 3 3

Ssc SE MscE ME
S M

Ssc SE Msc MEr r r r r
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r v

r r r r
v r

                                   (59) 

where r and v are respectively the position and velocity vectors of the spacecraft with respect to the 

Earth in the J2000 inertial reference frame, Sscr  and Mscr  are the Sun-spacecraft and Sun-Earth 

vectors, Mscr  and MEr  are the Moon-spacecraft and Moon-Earth vectors, E , S , M are the 

planetary constants of Earth, Sun and Moon respectively. The position of Sun and Moon with 

respect to the Earth and the spacecraft are calculated using analytical ephemeris (Vallado, 2000), 

accounting for secular variations in the orbital elements of both the Earth and the Moon. An 

analytical model was used to describe the secular variation of the angles between the Earth-

equatorial and the Moon-equatorial reference frame. 

When considering the perturbed equations of motion, one needs to consider also the contribution of 

the solar radiation pressure. The dynamics model used in the filtering takes the following form 

(Montenbruck and Gill, 2000): 
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where ( ( ), )t tf x  is the set of nonlinear continuous-time equations in the second of Eq., 
wa  is the 

random noise acceleration produced by the attitude system, Solara  was calculated using Eq.(2) 

In this case we considered a spacecraft mass of about 500 kg and a cross section area of 1.4 m
2
. A 

value of 1.2 for CR was also assumed. 

3.5.1 Orbit Determination 

The Orbit Determination, OD, is performed by processing raw measurements coming from the only 

available ground station of Raisting, located in Germany, whose coordinates are listed in Table 8. 

The set of measurements includes range and range rate   and  , from the ground station, plus the 

pointing angles A, E (respectively azimuth and elevation).  

Table 8. Raisting ground station location. 

Latitude λ 
[deg] 

Longitude υ 
[deg] 

Altitude above mean 
sea level [m] 

 Minimum Elevation 
angle [deg] 

47.90221 11.11579 553 1 

 

Since the actual position of the spacecraft is given in the Earth Centred Inertial (ECI) reference 

frame, it is necessary to write the state of ESMO as it was seen in the local South East Zenith (SEZ) 

reference frame of the ground station as shown in Figure 27. 
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The range in the ECI reference frame is given by the difference in position of the spacecraft and 

ground station location (Montenbruck and Gill, 2000): 

                    
ECI ECI site ECI ρ r r                                                           (61) 

where 
site ECIr  is the ECI position of the ground station. The range and velocity vectors in the SEZ 

frame are given by the following transformations:   

     
SEZ ECEF ECI ECEF

SEZ ECEF ECI ECEF

T

SEZ ECI

T

SEZ ECI

 

 
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

ρ A A ρ

ρ A A v
                                                      (62) 

where ASEZ-ECEF and AECI-ECEF are respectively the transformation matrix from the Earth Centred 

Earth fixed (ECEF) reference frame to SEZ and the transformation matrix from ECEF to ECI:        
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A

                                 (63) 

g  and g  are the latitude and longitude of the ground station; 280.4606g t    is the rotation 

angle between the ECI and ECEF reference frame about the z-axis; Ω is the Earth’s angular speed 

expressed in deg/day and t is the time expressed in MJD2000.  
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Figure 27. Reference frames (Vallado, 2000) 

Finally the set of simulated measurements is obtained from the SEZ position and velocity: 
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                                                              (64)                                                                

being S , E , and Z  the components of the range in the SEZ frame. 

The actual measurements were simulated by perturbing the nominal ones defined in Eq.(64) with a 

random noise with normal distribution. In this way the observation equations become 

 
''

( , , , )k E Ah t E A            z r ς                                (65) 
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We considered OD measurement errors (1σ) of 15 m on range (
 ), of 0.5 mm/s on range-rate (

 ), 

and 20 mdeg on angles ( E  and A ).  

3.6 Filter Comparison 

This section presents a comparison among the three filters described in Section 3.1 in order to 

define the most suitable filtering technique. The results in this section will be used in the next 

Chapter to show the impact of the different methods on the navigation.  

As a representative example, this section reports the results for the first orbit determination 

campaign, which is allocated soon after the final translunar injection manoeuvre. The initial state 

vector in the Earth Centred Inertial (ECI) frame at the beginning of the Earth-WSB leg with 

0t  5497.31 MJD2000 is:  

 5681.1 3862.8 336.3 5.948 / 8.852 / -1.198 /
T

km km km km s km s km s  x . 

It is considered that a 2.5 days orbit determination campaign is then performed. The set of pseudo-

measurements is taken every 10 minutes, when the spacecraft is visible from the ground station. 

The time step between measurement samples is higher than the one used in the following sections to 

emphasize the effects of dynamics non-linearities. In fact, a desirable benefit of high order 

nonlinear filters would be to reduce the number of steps to obtain the same order accuracy. It is 

therefore important that the reduction of the number of steps compensates for the higher cost of 

each step. 
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In the evaluation of the three filters, many different sets of pseudo measurements were simulated 

but the results showed negligible difference in the filter performance given the state and 

measurement uncertainties considered in the comparison. During the filtering process comparison, 

then, the same measurements have been used and it is assumed that the system dynamics is known 

completely.  

Figure 28 shows the comparison when the dispersion of the initial states of the spacecraft is 

assumed to follow a Gaussian distribution with zero mean and standard deviation equal to 100 km 

in position and 0.1 km/s in velocity. The initial position guess is randomly generated with initial 

error of 100 km and 0.1 km/s in position and velocity.  

 

Figure 28. Comparison of the absolute errors for 100 km position uncertainties and 0.1 km/s 

velocity uncertainties.  

From Figure 28, we can see that the second and third order HAEKF and UKF present better 

convergence results and produce a more accurate estimate than the EKF. The increments in velocity 

and position error (straight line in Figure 28) are due to the propagation of the last estimate since the 
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spacecraft is not visible during that period and measurements are not available. If an initial 

uncertainty in position and velocity equal to 1% of the nominal state vector is considered, the UKF 

shows superior performance over the other filter methods, as shown in Figure 29.  

 

Figure 29. Comparison of the absolute errors for uncertainties on position and velocity equal 

to 1% of the nominal unperturbed trajectory.  

The absolute errors are computed more accurately by the UKF, with a final position error lower 

than 1 km and velocity error lower than 10
-5 

km/s. The higher precision is due to the fact that the 

measurements models are used without introducing any linearization assumption. Even if the third 

order HAEKF provides a solution essentially equivalent to the UKF when the initial guess is 

relatively close to the actual position and good results in the other case, it yields a much slower 

filter process. 

Table 9 reports the elapsed CPU time necessary to process all the measurements by the different 

filters during the 2.5 days observational period. The most computational intensive filter is 

represented by the third order HAEKF itself, while the elapsed CPU time for the second order 
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HAEKF and UKF is about 50 seconds. The EKF is the fastest method but it is still the least precise 

when compared to the other methods. 

Table 9. Elapsed CPU time for the filtering processes, using a 64-bit Linux CentOS 5.4 

2.93GHz Intel(R) Xeon(TM) X5570 , and absolute error for the estimated state. 

 EKF UKF HAEKF s=2 HAEKF s=3 

Elapsed CPU time [s] 20.52 47.02 45.06 1737.22 

Absolute position error [km] 6.657 0.765 2.081 1.602 

Absolute velocity error [km/s] 2.648·10-5 4.939·10-6 1.117·10-5 7.905·10-6 

The EKF required the integration of 2 42n n   equations (necessary for the update of the estimated 

state and the integration of the STM), being 6n  , and the UKF required the integration of 

(2 1) 78n n   equations (for the updated estimated state and the propagation of the sigma points) 

between each measurement update. Moreover, the higher cost of the UKF with respect to the EKF 

is also given by the definition of the innovation process in Eq.(51) and Eq.(53). Although the 

HAEKF required only 6 integrations between each measurement update in Eq.(57), less than the 

UKF and EKF, the number of joint functions evaluations and summations required computing the 

mean value and covariance matrix in Eq.(56)-(57) between each measurement update is 

2
1

1

1 1

6 6
s s

q p

q p




 

 
  
 

  , which is equal to 66822 and 2397854 for 2s   and 3s   respectively. 

3.6.1 Manoeuvre Design 

We make a step back to the propagation analysis to consider how the statistical information from 

the filtering can be used in the design of manoeuvre correction. The major impact of the estimation 

process is on the control of the spacecraft trajectory. A poor estimate could lead to an incorrect 

implementation of trajectory correction manoeuvres (TCMs) when deviations between the nominal 
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trajectory and the estimated one occur. We wanted to compare the effects on the navigation for 

UKF and HAEKF filters in exam in Section 3.6. We showed that the EKF present the worse 

performance for the studied problem.  

Intermingled along the transfer and in between the orbit determination some TCMs are optimally 

timed and executed to reduce the error with respect to the nominal trajectory. Thus, the goal of each 

TCM is to minimise the deviation from the nominal trajectory at certain points, called waypoints, 

along the transfer. During the observation period the measurements are assumed to be received 

every 60 seconds (Thornton and Border, 2003). 

Following each TCM, an orbit determination campaign estimates both position and velocity. Two 

TCMs are allocated after each OD to correct the trajectory up to the next waypoint twp. At each 

waypoint, the nominal state of the spacecraft is 
nominal ( )wptx  and the state provided by the 

implementation of the TCMs is ( , )wptx u . Each TCM is defined by its time of execution TCMt  and 

the components of the velocity variation with respect to the local velocity vector.  

Given the different nature of the two filters, one can compare a classical approach to navigation, 

using a deterministic approach for the UKF and a statistical approach for the HAEKF.  

In the first case, the following constrained optimisation problem is then solved to optimally allocate 

and size each pair of TCMs: 

1 2

nominal

min

. .

( , ) ( ) 0

TCM TCM
U

wp wp

v v

s t

t t


 

 

u

x u x

                                                              (66)  
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where the control vector u  contains the TCM’s time of execution and v  components. Thus, the 

scheduling (time and date), direction and magnitude of the TCM must be optimised.  

Conversely, in the second case the following problem proposed by Park and Scheeres (2006b) was 

solved:   

   
1

2 2
int int

1min [ ( ; , ; )]
TCM

waypo waypo TCM TCM TCM TCM

r r r vE t t   


  
v

m m m v                  (67)  

with:  

int

2

TCM waypo

v  v m                                                                    (68)  

This method represents the so called nonlinear statistical targeting correction method introduced by 

Park and Scheeres (2006b) for the high-order expansion semi-analytical method. The statistical 

information contained in the covariance matrix at the end of the OD is included in the propagation 

of the mean trajectory using Eq.(57). Thus the correction manoeuvre is based on the mean of the 

propagation of all the possible trajectories from the OD and not on the only mean estimate 

propagation. In this way the TCMs are setting to zero the mean of all trajectory deviations at the 

waypoint.  

It has to be pointed out that if the manoeuvres are performed, the actual state error at the waypoint 

will be not zero, but the statistical mean error will be zero, if the STTs order is sufficiently accurate 

to take into account all the nonlinear effects. In this comparison, the time and location of the TCM 

and waypoint was fixed for all the filters and to be consistent with problem of Eq.(67), the problem 

of Eq.(66) was modified by imposing a condition on the final velocity equivalent to Eq.(68). 
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Table 10 reports the results for both the optimized manoeuvre and statistical targeting correction 

applied to the first waypoint. Since the orbit determination estimate for the UKF  proved to be the 

most accurate, optimised manoeuvres were calculated on the basis of 100 runs, while the nonlinear-

statistical targeting corrections were calculated for the HAEKF ( 2,3s  ) results. The actual 

trajectory is the one corresponding to the propagation of 1% perturbed trajectory whose estimated 

state is reported in Figure 29. The waypoint was placed at six days after the end of the orbit 

determination. It is assumed that the correction manoeuvres are not affected by errors. As it can be 

seen, the results are almost the same in terms of total correction for all filters. This is achieved due 

to the fact the effects of the non-linearity are included in both methods. The best actual state is 

achieved by optimising the TCMs on the basis of the estimated state by UKF. The optimized 

manoeuvre method allows us to consider the actual nonlinear dynamics, while higher orders 

introduce an approximation. 

Table 10. OD impacts on Navigation using optimized and nonlinear statistical  targeting 

correction methods. A 64-bit Linux  CentOS 5.4 2.93GHz Intel(R) Xeon(TM) X5570 was used. 

 Optimised manoeuvre 

correction 

Statistical targeting correction 

 UKF HAEKF s=2 HAEKF s=3 

CPU time [s] 2452.721 0.599 27.974 

Total correction Δv [m/s] 77.104 77.083 77.101 

Actual position error [km] 2.89 12.10 10.56 

Actual velocity error [m/s] 0.003 0.032 0.025 

The CPU time difference is considerable for the optimised manoeuvre. In this case the STTs 

approach results faster because the trajectory is not integrated, and the computational cost is due to 

the fminsearch operations.  
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As pointed out by Park and Scheeres (2006b) when the navigation data are accurate, both the 

correction manoeuvres are essentially the same. The nonlinear-statistical targeting correction 

depends on the statistical knowledge about the state vector (given by the covariance matrix), 

whereas the optimised manoeuvre relies only on the mean value.  

The statistical targeting correction method results to be a flexible method since the evaluation of the 

manoeuvre can be done in one minimisation, while the optimised method need to be assessed by a 

Monte Carlo simulation. Anyway in the case of the statistical targeting correction method the 

effects of nonlinearities are significant and it would be necessary to increase the STTs order since 

the final actual state is less precise than the one obtained using the optimised method.  

3.7 Unscented Particle Filter 

A popular solution strategy for the general filtering problem is to use sequential Monte Carlo 

methods, also known as particle filters. These methods allow for a complete representation of the 

posterior distribution of the states, so that any statistical estimates, such as the mean and variance, 

can be easily computed. They can therefore, deal with any nonlinearities or distributions. 

The particle filter belongs to the family of Monte Carlo sequential filter, in which a set of weighted 

particles, drawn from the simulations, are used to map integrals to weighted sums. In this way the 

posterior distribution 0: 1:( | )k kp x y  can be approximated by: 

( )
0:

0: 1: 0:

1

1
( | ) ( )

p

i
k

N

k k k

ip

p dx
N




  x
x y                                                (69) 
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where the random samples  ( )

0: : 1:i

k i Nx , are drawn from the posterior distribution and δ(d) 

denotes the Dirac delta function. Consequently, any expectations of the form 

 0: 0: 0: 1: 0:[ ( )] ( ) ( : )t k t k k k kE g g p dx x x y x                                          (70) 

can be approximated by the following estimate 

( )

0: 0:

1

1
[ ( )] ( )

pN

i

t t t t

ip

E g g
N 

 x x                                                     (71) 

where the particle ( )

0:

i

kx  is assumed to be independent and identically distributed. Since sampling 

from the posterior distribution 0: 1:( | )k kp x y  is not always possible, it is common practice to sample 

from a proposal distribution 0: 1:( | )k kq x y . By sampling from this distribution, the expectation of 

interest in Eq.(70) can be approximated by the following estimate: 

( ) ( )

0: 0: 0:
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t k k k k
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x x x                                                  (72) 

where ( )i

kw  are the normalized importance weights given by 

( )
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( )p

i
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k N j

kj

w
w

w



                                                              (73) 

and ( )i

tw  is obtained from 

( ) ( ) 1

0: 1 1:

( | ) ( | )

( | , )

i i t t t t
t t

t t t

p p
w w

q






y x x x

x x y
                                                  (74) 

The proposal distribution must be similar to the actual distribution, which is unknown. For this 

reason the most popular choice (van der Merwe et al., 2000; Gordon et al., 1993) is to use 
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0: 1 1: 1( | , ) ( | )k k k k kq p x x y x x                                                  (75) 

which simplifies Eq.(74), but at the same time can lead to degeneracy. This problem consists in the 

fact that only a few particles will have significant importance weights when their likelihood is 

evaluated. 

To avoid the degeneracy, a resampling stage may be used to eliminate samples with low importance 

weights and multiply samples with high importance weights. 

Since we can sample from the proposal distribution and evaluate the likelihood and transition 

probabilities, all we need to do is generate a prior set of samples and iteratively compute the 

importance weights. This procedure, known as sequential importance sampling (SIS) (van der 

Merwe et al., 2000), allows us to obtain the type of estimates described by Eq.(72). 

The implemented particle filter descends from the one described in van der Merwe et al. (2000) and 

exploits unscented Kalman filter to generate the importance proposal distribution. For this reason it 

was named Unscented Particle Filter, UPF. The use of UKF allows the particle filter to incorporate 

the latest observations into a prior updating routine. 

The unscented Kalman Filter is able to more accurately propagate the mean and covariance of the 

Gaussian approximation to the state distribution, than the EKF. In comparison to the EKF, the UKF 

tends to generate more accurate estimates of the true covariance of the state. Distributions generated 

by the UKF generally have a bigger support overlap with the true posterior distribution than the 

overlap achieved by the EKF estimates. This is in part related to the fact that the UKF calculates the 

posterior covariance accurately to the 3
rd

 order, whereas the EKF relies on a first order biased 

approximation. For this reason the UKF was chosen to generate the proposal distribution generation 
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within the particle filter framework. The UKF also has the ability to scale the approximation errors 

in the higher order moments of the posterior distribution allowing for heavier tailed distributions. 

The implemented UPF is composed of three basic steps: 

1) Initialization: Np particles within the a priori distribution are generated 

2)  Importance sampling step: the UKF as described in Section 3.3 is performed on each 

particle, and the importance sampling weights are calculated from Eq.(74). Note that the 

Gaussian assumption implies that the posterior distribution after the update is given by a 

normal distribution: 

 
 

1 1
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                (76) 

3) Resampling: all the particles whose weight is below 1/ (4 )pN  are discarded and replace by 

particles drawn from the higher values of weight at step 2. In this way the resampling 

operations is reduced while avoiding the degeneracy issue. 

At each iteration, it is possible to estimate the posterior distribution as in Eq.(69) and to calculate 

mean and covariance matrix from Eq.(72): 
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                                       (77) 

Because the sigma points set used in the UKF are deterministically designed to capture certain 

characteristic of the prior distribution, one can explicitly optimize the algorithm to work with 
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distributions that have heavier tails than Gaussian distributions, i.e. Cauchy or Student-t 

distributions. This characteristic makes the UKF very attractive for the generation of proposal 

distributions. 

3.8 Polynomial Chaos Based Ensemble Kalman Filter 

As for the particle filter, the ensemble Kalman filter (EnKF) has been under extensive investigation 

regarding its properties and efficiency (Li and Xiu, 2009). Compared to other variants of the 

Kalman filter, EnKF is straightforward to implement, as it employs random ensembles to represent 

solution states. This, however, introduces sampling errors as for the PF that affect the accuracy of 

EnKF in a negative manner. Though sampling errors can be easily reduced by using a large number 

of samples, in practice this is undesirable as each ensemble member is a solution of the system. An 

efficient EnKF implementation is to employ polynomial chaos expansion, PCE. The main aspects 

of this method involve (1) solving the system of stochastic state equations via the PCE methodology 

to gain efficiency; and (2) sampling the PCE approximation of the stochastic solution with an 

arbitrarily large number of samples, at virtually no additional computational cost, to drastically 

reduce the sampling errors.  

The basics of PCE technique for covariance and mean state propagation were already introduced in 

Section 2.2.4 where we saw that these statistical quantities can be drawn directly from the 

coefficients of the polynomial expansion through Eq.(30). So it is possible to describe in details the 

so called Ensemble Kalman filter based on polynomial chaos expansion. We did not use the 

approach of Li and Xiu (2009), because the way they proposed to update the ensemble is not as 

robust as the one usually employed in the EnK filter. Moreover their work focuses on linear 
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systems, so our approach does include the full dynamics without any further approximation. The 

only approximation introduced here descends from the expansion and the number of samples used 

to describe statistical properties. 

An initial ensemble is required at time t0. Assuming we have an initial best-guess estimate and some 

idea of the error in this estimate expressed through a covariance matrix, we may generate an initial 

ensemble by taking the best-guess estimate and adding random perturbations from a distribution 

determined by the covariance matrix. It is possible to construct the initial polynomial expansion 

description by choosing a suitable cubature rule. We used the Gaussian-Hermite cubature rule, 

which has to be used in the case of Hermite polynomials (Eldred et al., 2011). 

Let  

0

( , ) ( ) ( )
p

k j k j

j

t t 



 x χ α χ                                                    (78) 

be the solution of the forecast equations at each time step, where 
j


α , the expansion coefficient of 

degree up to p, are obtained through the spectral projection. 

Once a description of the update step is available through the projection, one can generate a large 

number of forecast state realizations on randomly chosen coordinates of the grid c

iχ , denoted with 

i


x . We chose to generate the ensemble by randomly selecting points c

iχ  on the grid. The reason for 

the superscript c is due to a problem which arises in this way: the grid is biased, i.e. it will be 

centred on a point which is not zero, and also the points could result in being correlated.  
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where 
0χ  is the centre of the grid, and 

χ
P  is the correlation matrix. I circumvented this problem by 

applying the Mahalanobis decorrelation transformation to transform correlated points of the grid c

iχ  

into uncorrelated ones iχ  using Eq.(8). 

The mean and the covariance matrix of the forecast ensemble ˆ
i


x  are denoted as ˆ

e


x  and e


P . This 

value could be calculated directly from Eq.(30), but since the number of samples affects the actual 

procedure, it is convenient to redefine these values as: 
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It is convenient to introduce the forecast ensemble matrix  

1 2

1
( ... )

1
N

N

   


X x x x                                                   (81) 

and the ensemble perturbation matrix: 

1 2

1
( ... )

1
x e e N e

N

         


P x x x x x x                                       (82) 

Then the ensemble covariance matrix may be expressed as: 
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  P P P                                                                    (83) 

Using each sample one may obtain the corresponding forecast measurement ensemble 

( , )i k ih t y x , which does not include the noise. Similarly to the ensemble matrix and covariance 

matrix, it is possible to draw the same quantities referred to the measurements: 
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where 
1

1 N

e iiN 
 y y .To obtain the desired statistics from the analysis ensemble an observation 

ensemble has to be define as: 

ˆ ˆ( ( , ,0) ( , , ))i k i k ih t h t   y y x x ς                                                   (85) 

which leads to an observation matrix and an observation perturbation matrix: 
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                                      (86) 

In this way, one defines an observation ensemble covariance matrix eR  which, in the linear case, is 

coincident with the measurement noise covariance matrix R : 

T

e y yR R R                                                                 (87) 

An ensemble version of the update step results: 
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 ( )e

   X X K Y Y                                                          (88) 


X  is the update ensemble matrix. eK  is the ensemble Kalman gain, which would be equal to 

 
1

T T

e e e


  P H HP H R  if the problem was linear. For the ensemble nonlinear case, the Kalman gain 

becomes: 

 1( )T T T

e x y y y y y

  K P P P P R R                                                   (89) 

So one obtains a large number of update state samples from the columns of the 1i iN  x X . The 

update step can be described using the PCE technique as: 
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where in this case the coefficients of the expansion are calculated using equal weights: 

 
12

1 1
( )

N

j i j ii

j
N

 



 
  

 
α x χ                                               (91) 

Using the PCE approach, at each step one can obtain a large number of forecasts, simply by 

sampling the polynomial chaos expansion at almost no additional computational cost (required in 

the case of integration of many other samples).  

3.9 H-infinity Filter 

The Kalman filter is the best estimator to minimize the variance of the state covariance matrix when 

certain conditions are met (Mayback, 1982). In fact the Kalman filter is the minimum variance 



101 
 

estimator if the noise is Gaussian, and it is the linear minimum variance estimator if the noise is not 

Gaussian.  Nonetheless, one needs to know the mean and correlation of the noise 
kw  and 

kς  at each 

time instant. Secondly, we need to know the covariance matrices kQ  and 
kR of the noise processes. 

Finally, the system model matrices 
kF  and 

kH  are also required. The Kalman filter uses 
kQ  and 

kR , along with 
kF  and kH , as design parameters, so if these matrices are not known, it may be 

difficult to successfully use a Kalman filter.  

If one desires to minimize a different cost function, such as the worst-case estimation error, then the 

Kalman filter may not accomplish these objectives. 

Even though the Kalman filter has proved to work reasonably well when the Kalman filter 

hypotheses are not satisfied, another alternative which was explored here is the H  filter, also 

called the min-max filter. The H  filter does not assume to precisely know the noise statistics, and 

it minimizes the worst-case estimation error. 

A common way to derive the H  filter is to use a game theory approach. A full procedure for the 

H  filter can be found in (Simon, 2006), so in the following only the main results will be shown. 

For simplicity we recall the standard linear discrete-time equations similarly to Eq.(34) between two 

subsequent instant of time kt  and 1kt   as 

 
1k k k k

k k k k

  

 

x F x w

y H x ς
                                                         (92) 
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where the input variables  were not included. 
kw  and 

kv  may be random variables with unknown 

statistics, or they may be deterministic and nonzero mean. The scope is to estimate 
1kz , a linear 

combination of the state to estimate, as 

  
k k kz L x                                                                  (93) 

where  
1kL  is a user-defined matrix, which could be equal to the identity matrix if one wants to 

directly estimate 1kx . The estimate of kz  is denoted kz , while the estimate of the state at time zero 

is 0x . The estimate of kz  is based on the measurements up to a certain time (N-1). Using the game 

theory approach to H  filtering, the objective function to minimize while finding the estimate kkz  is 

given as: 

       

 1 1 1
0

1 2

0

1 12 2 2

0 0 0

k

k k

N

k kkk

N

k kQ Rk

J
  












  





S

P

z z

x x w ς
                                    (94) 

where kS is a suitable matrix; 
2

(...) (...) (...)
k

T

k
M

M represents the norm of a vector weighted on the 

generic matrix kM . The natural system dynamics, the adversary nature, will provide the system 

with disturbances kw  and kς , and initial condition 0x such that to maximise the function 1J . In 

other words the nature’s goal is to maximise the estimation error ( )k kkz z . The terms at the 

dominator of  1J  prevent the nature to achieve very large value by using very high value for kw  

and kς , and initial condition 0x .  



103 
 

In this way, one can see the fundamental difference with the Kalman filter. In Kalman filtering, 

nature is assumed to be indifferent. Thanks to the fact that the statistics of noise is given, one can 

use that knowledge to obtain a statistically optimal state estimate. 

Nature cannot change this statistical knowledge to degrade our state estimate. Conversely, in the 

case of H  filtering, nature actively seeks to degrade the state estimate as much as possible. 
0P , 

kQ , kR , and kS  in Eq.(94) are symmetric positive definite matrices chosen by the design process 

based on the specific problem.  In this way, one can deduce that 0P , kQ , kR are analogous to those 

same quantities in the Kalman filter, if those quantities are known. Thus, if one knows that the 

initial estimation error, the process noise, and the measurement noise statistics, then one should use 

those quantities for 0P , kQ , kR  in the H  estimation problem. In the Kalman filter, there is 

nothing analogous to the kS  matrix given in Eq.(94). The Kalman filter minimizes the weighted 

sum of estimation error variances for all positive definite kS  matrices. But in the H  the choice of 

kS  affects the filter gain as will be shown later. The direct minimisation of the function is not 

tractable, so one can define a threshold to find an estimate kkz  that gives 

1 1
H

H

J




                                                                   (95) 

where H 
 is a performance bound. In this way one obtains a new function 

HJ


: 

 1 1 1
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1 1
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H k kk k kQ Rk
H H
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  
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 





 
        

 
 

P S
x x z z w ς               (96) 
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The minmax problem becomes: 

0

*

ˆ , ,
min max

k k k

H HJ J
 


z w ς x
                                                        (97) 

Considering that 
k k kz L x , it is equivalent to look for a ˆ

kx  that minimizes 
HJ


, so the problem 

can be stated as: 

0

*

ˆ , ,
min max

k k k

H HJ J
 


x w ς x
                                                      (98) 

One can replace kv considering that kw  and kv , 0x  fully determine the value of 
HJ


, so the 

function can be alternatively described as: 

 
0

*

ˆ , ,
min min

k k k
H HJ J
 


x w y x
                                                                 (99) 

Considering the second equation in Eq.(92) one can see that 

 1 1

2 2

k k
k k k kR R  ς y H x                                                  (100) 

In this way, referring to Eq.(93): 

2 2 2
( ) ( ) ( ) ( )

k k k

T T

k kk k k k k k k k k k k k k       
S S S

z z L x x x x L S L x x x x                  (101) 

where T

k k k kS L S L . By substituting Eqs.(100) and (101) into Eq.(96), a final version of the 

function is obtained 
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 Where  0 x  and 
k  are defined by the above expression. To solve the problem, one needs to 

find a stationary point of J  with respect to 
0x  and 

kw , which is also a stationary point with respect 

to 
kx  and 

ky . 

In order to find a stationary point with respect to 
0x  and 

kw , one needs to look for the maximum of 

the 
HJ


 subjected to the constraint 
1k k k k  x F x w . Using the technique of Lagrange multipliers, 

used in constrained optimisation, this means to find constrained maximum of the function in the 

form: 
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                            (103) 

where kλ  are the Lagrange multipliers and 1( )T

k k k k k kH    λ F x w  is the Hamiltonian function. 

The term 
2

H 

 is introduced to scale the Lagrange multiplier by a constant to make the ensuing the 

resolution more straightforward. The conditions that are required for a constrained stationary point 

with respect to 0x  and kw  are: 

0 0,...,
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x
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                                            (104) 
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The conditions for the stationary point with respect to 
kx  and 

ky  are given by: 

 

0 0,...,
ˆ

0 0,..., 1

a

k

a

k

J
k N

J
k N


 




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x

y

                                                    (105) 

In order for the identified stationary points 
kx  to be a minimum, the second derivative of the 

function with respect to kx  must be positive. It results that this value is as follows: 
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The value of kS  in Eq.(101) should always be positive definite, which means that kS  will be 

positive definite. This means that kx will be a minimizing value of 
HJ


 if kP  is positive definite. So 

the condition required for to minimize 
HJ


 is that  
1

1 1T

k H k k k k



  P S H R H , or equivalently 

 1 1T

k H k k k k


  P S H R H , be positive definite.  

The individual terms in this expression are always positive definite, so the condition to minimize 

HJ


can be obtained if the term 
H k

S  is sufficiently small. This can be obtained by considering 

small value of the performance index H 
, or by the choice of small values in either kS  or kL . 
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Eventually, from the resolution of the set of Eqs.(104) and (105) with the constraints of Eq.(106), 

one obtains the structure of the H
 filter algorithm similarly to the one of the Kalman filter in 

Section 3.1: 

  
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                               (107) 

The following condition must hold at each time step k in order for the above estimator to be a 

solution to the problem 

  1 1 0T

k H k k k k


   P S H R H                                                  (108) 

3.10 Extended H-Infinity Filter  

In the case of nonlinear discrete time system, the H  filter can be adapted as in the case of the 

extended Kalman filter of Section 3.2. This means that the structure of the filter in Eqs.(107) and 

(108) remains the same, but in this case the system dynamics and the measurements matrix are 

obtained by linearising the equations: 
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where kH  is the Jabobian  matrix of the measurements function, calculated around the state estimate 

at the time k , differently from the extended Kalman filter, where it was calculated at time k+1, 

around the propagated estimate. At each time step the extended H
 filter must satisfy the constraint 

 1 1 0T

k H k k k k k


 

  P S H R H , where in this case the performance parameter was tuned at each 

iteration. An effective way to assure the above constraint is to impose: 
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By introducing a scaling parameter this condition is assured if  
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where   is obviously greater than one. The structure in Eq.(107) can be arranged in a more 

convenient way which will be used also in the next Section for the Unscented H  filter: 
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where 1

,e k


R  is defined as: 
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The extended H
 filter has an observer structure similar to that of the extended Kalman filter, and Q 

and R play a similar role as the covariance matrices of the process noise and the measurement noise 

in the extended Kalman filter. Moreover, the extended H
 filter reduces to the extended Kalman 

filter when 
H k

 tend to infinity. Thus, the 
H k

 may be thought of as a tuning parameter to 

control the trade-off between H  filter performance and minimum variance performance. 

Considering that we are interested in the whole set of state variables, for simplicity we used identity 

matrices for both kS  and kL . The update step becomes: 

    
1 1

1T

k k k k k H k d


 
  

  P P H R H I                                          (114)

 

where dI  is the identity matrix.  

3.11 The Unscented H-infinity Filter  

As the extended H  filter adopts the idea of the extended Kalman filter, the inherent disadvantages 

associated with the extended Kalman filter, such as the smoothing and lower nonlinearity 

requirements of the nonlinear functions and the computation errors of Jacobian matrices, remains a 

challenge to overcome. Analogously to the extended H  filter, one can exploit other instruments 

developed in the Kalman filter framework, such as unscented transformation, to overcome the 

approximation of the Jacobian matrices (Li and Jia, 2010). 

Using the unscented transformation and substituting the results from Eqs.(47) and (54) 
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where  
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One can see that the parameter 
H k


 needs to be chosen such that the determinant of k


P  is positive 

definite. This in guaranteed if the parameter satisfies the constraint of Eq.(111), which, exploiting 

the properties of the unscented transformation for 1( ) xy

k k k

 H P P , becomes: 

    
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1 1 1 1 1 1max ( ) ( ) [( ) ]xy xy T
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Similarly to the extended H  filter, we used identity matrices for both k
S and kL  because we are 

interested in the whole set of state variable. In this way the updated covariance matrix becomes: 

1 1 1 1 1( ) ( ) ( ) [( ) ]xy xy T

k k k k k k k H k d


        

  P P P P R P P I                              (118) 

3.12 Case Study - Proximity Motion 

In this section, we are going to compare the performance of all but the EKF and HAEKF filters. We 

have already shown that the UKF presents superior performance to these the HAEKF and EKF for 

the nonlinear WSB transfer problem.  

First we describe the problem of proximity motion for a spacecraft in formation with an asteroid. 

Chapter 4 will deal with the same problem for the case of a formation of 4 spacecraft. It is 

convenient to describe the dynamic motion of each spacecraft in the rotating Hill reference frame. 
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In the proximity of the asteroid, the spacecraft is subject to the force due to solar pressure, the 

gravity of the asteroid, the gravity of the Sun, the centrifugal and Coriolis forces.  

With reference to Figure 30, two coordinate systems are defined. 

a) Inertial heliocentric reference frame  S I,J,K (Cui et al., 2010): the Sun is the centre of the 

frame, I-axis directs to the Vernal equinox, J-axis is perpendicular to I-axis in the fundamental 

plane. K-axis points out perpendicular with respect to fundamental plane following the right-

handed coordinates system.  

b) Asteroid Hill rotating reference frame  ˆ ˆ ˆ
h h h x ,y ,z : the centre A is the barycentre of the 

asteroid, x-axis is in the orbit radius direction, while y-axis is perpendicular to x-axis in the 

orbit plane, z-axis completes the right-handed coordinates system which is on the out-of-plane 

direction. The relative position [ , , ]h T

h h hx y z r  and velocity [ , , ]h T

h h hx y z r  of spacecraft 

with respect to the asteroid are described in this coordinate system. 

 

Figure 30. Definition of the reference coordinate systems. 
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It is assumed that the asteroid is an ellipsoid with semi-axes 
Ia , 

Ib  and Ic  (Scherees, 2012). The 

asteroid rotates around the z-axis with angular velocity A  as in Figure 31. 

 

Figure 31. Asteroid body frame with respect to the Hill frame. 

The geometric shape model of the asteroid is expressed as 

 

2 2 2

1b b b

I I I
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a b c
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     
                                                        (119) 

where la , lb  and lc  are the semi-axes physical dimensions of the asteroid and the subscript b refers 

to the body frame  B i, j,k . 

It has been demonstrated that the second-degree and second-order gravity field terms dominated the 

orbital stability of the spacecraft for close proximity motion to uniformly rotating asteroid 

(Scherees, 2012). Therefore, the gravity field of the asteroid could be expressed as the sum of a 

spherical field plus a second-degree and second-order field (Hu, 2002), 
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where 
A  is the asteroid gravitational constant, r is the relative distance between the spacecraft 

and the asteroid, and the harmonic coefficients C20 and C22 are a function of the semi-axes 
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A , A  are the latitude and longitude angles, respectively as shown in Figure 31. They are defined 

as 
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t is the time. It is assumed that the body frame is coincident with the asteroid Hill frame at the 

beginning of the simulations. In this analysis, the spacecraft is subject to the force due to the gravity 

of the Sun, solar pressure and the irregular gravity of the asteroid. Other forces induced by 

spacecraft operations with mirrors are not considered. The nonlinear relative equations of motion 

are given by (Vasile and Maddock, 2012):  
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with 

 
2

2 A

A

A A

r

r

r r

 



 



                                                           (124) 

  is the true anomaly of the asteroid, Ar  and scr  are the orbit radius of the asteroid and spacecraft, 

respectively; Ar  is the radial velocity of the asteroid. Note that the perturbations acting on the 

asteroid trajectory are assumed to be null and no effects such as solar radiation and spacecraft 

tugging is considered. The only perturbations modelled are the ones acting on the spacecraft. 

Beyond the gravitational perturbations from the asteroids, the major perturbation is due to the solar 

radiation 
Solara , acting on the solar mirrors along the xh-axis. 

Additional noise [ , , ]w wx wy wza a aa  is in the order of 10-9 m/s2, due to acceleration caused by the 

unbalanced attitude control manoeuvres. During the analysis a mass of about 500 kg and maximum 

cross section area of 20 m
2
 were considered. A mean value of 1.2 for RC  general an uncertainty of 

20% solar pressure is introduced as random noise.  
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3.12.1 Camera Model 

To reconstruct the navigation measurement, the camera takes the images of the surface features 

with the position available during the characterization phase to estimate the spacecraft motion. The 

measurement model is expressed in the camera coordinate system.  

First, the geometric relationship is defined in the asteroid Hill rotating reference frame. The position 

vector of the i-th feature is i
surfacex , which is selected randomly on the asteroid surface according to 

Eq.(119). The spacecraft position vector with respect to the asteroid is defined as SCr , while 

i

Surf SCx  refers to the position vector from the estimated spacecraft to the feature.  A certain number 

of points are taken on the asteroid surface. With respect to Figure 32, the position of each point is 

given as: 

 i i
Surf SC surface SC  x x r                                                       (125) 

 

Figure 32. Measurements models for relative navigation geometry. 
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Then these points are given in the camera reference frame in the components ( , , )icam cam camx y z : 

 

i i
c Surf SC camera

i i
c Surf SC camera

i i
c Surf SC camera

x

y

z







 

 

 

x x

x y

x z

                                                        (126) 

where camerax , cameray  and cameraz  represent the axes of the camera coordinate system. If 

i i i i
x y zv v v   v  is the normalized local vector corresponding to each point, the position of the 

surface point in terms of pixel can be defined as: 

 
v

/

/

i i
x c width

i i
y c width

u v t p

v t p
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
                                                           (127) 

where / i

c zt f v  , f  and widthp  are the focal length and  pixel width of the camera, respectively. 

The coordinates ( )v,i Tiu  are obtained by the image of the feature point on the screen of the camera. 

A representation of this stage of the process is reported in Figure 33.  

 

Figure 33.  Centroid identification. 
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The centroid coordinates ( ,c cx y ) are obtained by the mean position of all the points on the screen of 

the camera. From the pixel representation on the screen of the camera, local azimuth and elevation 

angles can be obtained as: 
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The measurements from the camera are affected by both attitude and pixelization errors. Note that 

here the illumination conditions are not considered, so it is assumed that each spacecraft sees the 

whole visible surface from its position. This is sensible if one assumes that a complementary map 

could be built while starting the orbit acquisition, combining the pictures from the whole formation.  

Considering the Gaussian white measurement noise cς , the camera observation equation is 

presented as 

   
T

c c c c c ch     y ς ςx                                                  (129) 

3.12.2 LIDAR Model 

LIDAR works at a range from 50 km to 50 m which provides range from the spacecraft to the target 

object. It is assumed that LIDAR illuminates the point on the surface that corresponds to the 

centroid (Dionne et al., 2009). Then, this distance is simply given by: 

 
c

surfacel  r x                                                               (130) 
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where c

surfacex  is the position of the point on the asteroid’s surface along the centroid direction. The 

observation equation of LIDAR including the measurement noise is described as 

 d d l lh l    z x                                                         (131) 

Its accuracy depends on the characteristics error of the sensor, along with a bias defined by the 

mounting error of the instrument, 
l  is the zero-mean Gauss white measurement noise. 

If the range l is pre-processed in combination with the angular measurements from Eq.(129), a 

relative position vector from the spacecraft to the surface point can be constructed as 

 c

c

l

h



 
 

  
 
  

y x ς                                                         (132) 

where z is the measurement vector obtained from the combination of camera and LIDAR,  h x  is 

the vector containing the model measurements, ς  is the Gauss white noise. 

3.12.3 Comparison 

We considered a single spacecraft flying in formation with the asteroid Aphophis, whose 

characteristics are enlisted in Table 11. The initial condition for spacecraft trajectory is  

 0.4932k -5.1123 -1.3581 0 / 0 / 0 /
T

m km km km s km s km sx  

with respect to Hill reference frame.  
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Table 11. Orbital and physical properties of 99942 Apophis 

Element Notation Value 

Semi-major axis aA 0.9224 AU 

Eccentricity eA 0.1912 

Inclination iA 0.05814 rad 

Longitude of ascending note ΩA 3.05682 rad 

Argument of periapsis ϖA 2.2061 rad 

Orbital Period TA 323.5969 d 

Gravitational constant μA 1.801599×10
-9

km
3
/s

2 

Physical dimensions al,bl,c l 191 m, 135 m, 95 m 

Rotational velocity ωA 5.8177×10
-5 

rad/s 

Since the spacecraft does not orbit the asteroid, this condition was arbitrarily set in order to avoid 

the spacecraft impacting onto the asteroid during filtering process of 1 day. We used an accuracy 

10l   m (1-sigma) and 
3 310 10c

    ς  rad (1-sigma) on the LIDAR and camera’s angles 

respectively. A biased of 1 m on the range and 0.5∙10
-3

 rad on angles was also assumed. The initial 

position guess was generated with initial error of 20% in position and 10
-5

 km/s in velocity. The 

dispersion of the initial states of the spacecraft was equal to 50% of the initial guess. For this 

comparison we considered 100 runs for each filter, because given the proximity and reduced initial 

dispersion the results are very sensitive to the measurements set. Figure 34 shows the root mean 

square error, RMSE for position and velocity. The trends are very similar, except that the UPF 

presents a higher peak in the initial transient. This is essentially due to the fact that at the beginning 

many particles are generated in the low probability regions, and this leads to higher errors which are 

compensated as the filter starts converging. Also the UKF has a similar peak with a longer transient 

in the position error. The EnKF and the H  filters converge towards lower error regions without 

initial peaks. Nonetheless the UPF has a low RMSE in both the position and velocity components 

because it shows faster convergence in the initial transient. 
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Figure 34. RMSE for a) position and b) velocity. 

Table 12 reports statistical quantities for this comparison. As one can see, among the Kalman 

family the PF and EnKF order 3 achieves the best performances, the first in terms of position while 

the second achieves in terms of velocity error. Moreover increasing the polynomial order slightly 

improves the convergence towards lower error region, meaning that a second order polynomial is 

capable to describe with accuracy the statistics quantities. Nevertheless, the computational time 

(a) 

(b) 
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results the highest compare to the EHF, UHF and UKF. The PF requires about 2 orders of 

magnitude more time than the UKF. This is due to the UT which has been applied at each step to 

100 particles, i.e. 7200 integrations plus the resampling process. 

Table 12. Elapsed CPU time per run for the filtering processes of the proximity motion, using 

a 64-bit Linux  CentOS 5.4 2.93GHz Intel
(R)

 Xeon
(TM)

 X5570 , and absolute error for the 

estimated state. 

 UKF PF EnKF ord. 2 EnKF ord. 3 EHF UHF 

Mean CPU time per simulation [s] 362 38732 8222 12112 302 380 

RMS position error [m] 23.49 17.43 18.59 18.55 18.62 18.30 

RMS velocity error [mm/s] 1.78 1.19 0.91 0.89 0.99 0.83 

The EnKF requires much time because the update step needs repetitive operations on 104 samples, 

whilst the propagation step needs to propagate 73 and 253 samples respectively against 42 of the 

EHF and 72 of the UKF and UHF. The UHF results to be the most accurate with an acceptable 

computational time, even though the gain with respect to the EHF is not very high. This means that 

by sampling with a relatively small interval, the linear approximation is still valid. The example 

showed that the measurements noise is moderately non-Gaussian, so the assumption of Gaussian 

noise is still valid for this kind of problem although the H  filters showed better convergence 

properties. 

3.13 Summary 

In this chapter, the main families of Kalman and H-infinity have been introduced and explained in 

details. We compared different filters applied to the case of the European Student Moon Orbiter for 

a WSB transfer and to the case of a spacecraft proximal motion close to the asteroid Aphophis. We 

have seen that the main difference between Kalman filters is represented by the way the statistics 
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values represented by the covariance matrix and the mean are propagated. For highly nonlinear 

problems such as the WSB transfer a first order propagation, i.e. the EKF, is not accurate enough to 

describe the evolution of the statistics under nonlinear dynamics. The results show that the 

computational cost of the operation is not compatible with on-board systems when one seeks higher 

accuracy. The higher order terms could be a solution because the STTs could be calculated offline 

and then used with simple algebraic formulas. Nonetheless STTs can be suitable only for missions 

in which the dynamics are well known and the spacecraft follows the nominal trajectory with a 

small deviation. If the spacecraft had to follow a completely different trajectory, STTs should be 

calculated and would be very demanding for on board systems. 

The Unscented Kalman Filter outperforms other Kalman filters, mainly in terms of balance between 

accuracy and computational cost. UKF is best choice for on-board application, especially when the 

system and measurements noises are (quasi) Gaussian. Particle filters such as the UPF and EnKF 

based on polynomial chaos are very precise as well but they are very demanding for the required 

computational time.  

When no precise apriori information relatively to these noises is available, the minmax filters, i.e. 

Extended and Unscented H-infinity Filter, must be preferred for their capability to minimize the 

expected error when the system and measurements noises are maxima. From our analysis the best 

compromise between accuracy and computational time is represented by the Unscented H-infinity 

filter which has hybrid characteristics between the Kalman and the H-infinity filter, thanks to the 

use of a tuning parameter and to the UT which allows propagating the mean and the covariance 

accurately, thanks to the better inclusion of the non-linear effects with respect to the EHF. 
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4 Collaborative Formation at NEOs  

In this Chapter we want to apply a suitable filter technique to the case of a formation flying in 

formation with a relatively big asteroid. The asteroid 99942 Apophis was considered, also because 

is seen as good representative of PHAs with relatively low aphelion. Method based on optical 

navigation camera and laser light radar/laser range finder integrated measurements has been proved 

to be a feasible option for a single spacecraft to approach or land on the asteroid. Although a 

formation would require controlling an increased number of degrees of freedom, one could exploit 

higher flexibility to achieve the mission’s goal and improve system’s performance. This Chapter 

proposes to complement spacecraft to asteroid information from camera and ranging instrument 

with inter-spacecraft measurements. For multiple spacecraft systems, the inter-spacecraft relative 

observations can be evaluated to obtain better estimations. A Lyapunov controller is also 

implemented for each member of the formation to counteract the effect of the perturbations using a 

low thrust propulsion system. A suitable data fusion process to handle a variable number of 

spacecraft is presented. We demonstrate that the navigation accuracy is improved by sharing the 

information within the member of the formation, even in presence of failures and contingencies. 

Another aspects treated in this work is the possibility to use 2-spacecraft as in-orbit observatory to 

improve asteroid’s trajectory estimate prior to starting the orbit acquisition. Since actual missions to 

PHAs would require short warning and the actual asteroid’s trajectory could be uncertain, on-board 

optical observations from the formation could be used along with ground station tracking.  On board 

optical measurements from navigation cameras have been widely used in recent years during deep 

space navigation and approach Konimato et al. (2006). For instance, relying only on one single 

The content of this Chapter was published in 

Vetrisano, M. and Vasile, M., 2015: 

‘Autonomous navigation of a spacecraft 

formation in the proximity of an asteroid’. 

Advances in Space Research. Volume 56, Issue 8, 
Pages 1547-1804 (15 October 2015). 

doi:10.1016/j.asr.2015.07.024 
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camera, the Hayabusa mission performed a suitable set of dogleg manoeuvres to observe the 

asteroid from different phase angle, refine asteroid trajectory and acquire the object. A dogleg 

approach, though, requires performing small manoeuvres and, as a consequence, lasts longer than a 

direct rendezvous at the asteroid. It is shown for different approach configurations that a 2-

spacecraft formation can improve the accuracy of the asteroid ephemeris without performing dog-

leg manoeuvres. It is also considered to employ the Sun Doppler shift effects to increase the 

accuracy of the orbit determination following work of Yim et al. (2000) for the deep space 

navigation of a single spacecraft.  

4.1 Dynamic Models  

Spacecraft formation dynamics in the proximity of an asteroid is complicated due to the small mass 

and irregular shape of the target asteroid. The asteroid is considered as the leading member of the 

spacecraft formation. The following sections provide the dynamic model to illustrate the state 

variables which will be considered for the navigation later in Section 4.3. 

4.1.1 Formation Dynamics 

The reference systems and the dynamic equations are the same as the ones introduced in Section 

3.12. The nonlinear relative equations of motion are the same of Eq.(123), reported again for 

simplicity considering the contribution of a possible control action:  
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with x y zu u u   u  is a control input which will be defined later in Section 4.1.3. 

Beyond the gravitational perturbations from the asteroids, the major perturbation is again the solar 

radiation pressure Solara  (see Eq.(2) for its definition). Additional noise [ ]
x y zw w w wa a aa  is in 

the value of 10
-9 

m/s
2
, due to the acceleration caused by the unbalanced attitude control manoeuvres.  

For what concerns the proximal motion, a formation of 4 spacecraft is considered following the 

work of (Vasile and Maddock, 2012). The estimated state variables are 3 dimensional position and 

velocity of the 4 spacecrafts, and a total of twenty-four states to characterize the formation. The 

corresponding state equation of the navigation system is described as 

  1 1 1 1 1 1 2 2 2 2 2 2

3 3 3 3 3 3 4 4 4 4 4 4

[

]

h h

T

f x y z x y z x y z x y z

x y z x y z x y z x y z

  



x x w

w
                       (134) 

where 1 1 2 2 3 3 4 4[ , , , , , , , ]h h h h h h h h h T

SC SC SC SC SC SC SC SC              x r r r r r r r r  is the state vector containing 

the relative position and velocity of all spacecrafts. For simplicity we omitted the subscript h, thus 

all the components refers to the Hill reference frame.  , ,
T

i i ix y z  and  , ,
T

i i ix y z  are the relative 

velocity and acceleration of the i-th spacecraft with respect to asteroid, respectively, ww a  is the 

white Gaussian process noise. 
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The spacecraft formation is assumed to fly in the proximity of 99942 Apophis. 99942 Apophis is 

particularly interested due to its high impact probability and a logical choice for a deflection 

mission. The Keplerian elements along with the physical properties of Apophis were already listed 

in Table 11. 

The initial conditions for spacecraft trajectories are given in terms of coordinate variation with 

respect to the asteroid’s nominal trajectory, as reported in Table 13. These orbits were designed in 

Vasile and Maddock (2012) to maintain the spacecraft close to the asteroid, reduce the requirements 

for control and contamination from plumes and allow the spacecraft formation to point the solar 

beam towards the same spot on the surface. During the analysis, an initial mass of spacecraft is 500 

kg with the maximum cross section area is about 20 m
2
. A mean value of 1.2 for the reflectivity 

coefficient is assumed. In general, an uncertainty of 20% solar pressure is introduced as random 

noise. 

Table 13. Initial spacecraft trajectory parameters. 

 hx (km) hy (km) hz (km) hx (10
-9

km/s) hy (10
-9

km/s) hz (10
-9

km/s) 

SC1 0.0323     -0.5000  -0.774 0.193 -4.480 -7.837 

SC2 0.046 -1.039 -0.608 0.051 -18.120 -6.350 

SC3 0.0323 -0.503 0.307 0.259 -4.533 -3.652 

SC4 0.092 -1.104 0.451 0.009 -1.467 -4.942 

Without the effects of perturbation the evolution of the formation during one revolution of the 

asteroid around the Sun would be represented by periodic non-Keplerian orbits as reported in Figure 

35. 
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Figure 35. Nominal trajectories. 

4.1.2 Dynamic Equations of Asteroid and Spacecraft in the Heliocentric Frame  

In order to integrate the set of Eq.(133), the dynamics equations of the asteroid can be written as  

3

A A

Sun
A A

Ar





 

r v

r r
                                                             (135) 

where 
Av  is the asteroid velocity in the heliocentric frame. Note that the perturbations acting on the 

asteroid are assumed to be null and no effects such as solar radiation and spacecraft tugging is 

considered.   

When considering deep space navigation, also the spacecraft dynamics are given in heliocentric 

frame. In this case for each spacecraft the state equations become 
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 where [ , ]T

SC i SC i SC i  x r r  is  the spacecraft state in the heliocentric frame, SC iw  is a Gaussian 

white noise similarly to w  of Eq.(134) . 

4.1.3 Control Strategy 

Given Eq.(133), the resultant of all the disturbing forces acting on the spacecraft is clearly not zero. 

The combined effect from the perturbations is that the spacecraft will crash on the asteroid, as 

shown in Figure 36.  The impacts occur in less than one day. 

 

Figure 36. Relative distance under all perturbations. 

Thus, it is clear that a control force is required to maintain the spacecrafts orbits as close as possible 

to the nominal ones. 
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Given the reduced distances from the asteroid, one can assume that centrifugal and Coriolis forces 

are negligible compared to solar pressure, while the inhomogeneous gravity of the asteroid and any 

other non-spherical terms in the gravity field expansion result in only a small perturbation, then a 

simple control law based on the control Lyapunov function can be built up (Vasile and Maddock, 

2012):  

      2 2 221 1

2 2
ref ref refV v x x y y z z                                         (137) 

where [ ]Tref ref ref refx y z r  are the coordinates of a spacecraft along the nominal formation orbit 

in the Hill reference frame, [ ]Tx y z r  is the actual position of the spacecraft;   is the elastic 

coefficient. It is assumed that the motion along the reference formation orbit is much slower than 

the control action. The Lyapunov function of Eq.(137) is 0 when the spacecraft is on the reference 

trajectory, which represents the equilibrium point of the variated system. The necessary condition 

for the stability of the equilibrium point is that there must be a controller u which makes 0dV dt  . 

Thus the temporal variation V  of is a negative definite function, which means that the choice of the 

control law of Eq.(138) ensures that the equilibrium point of the system is asymptotically stable. A 

controller which satisfies this condition can be defined as follows: 

 3
( ) A

Sun ref dc
r


     



 
      

 
u a r r r r v                                   (138) 

where cd  is a steady dissipative coefficient. If the actual trajectory of the spacecraft is known, the 

continuous control in Eq.(138) can now be introduced into the full dynamic model in Eq.(133). 

Nevertheless, the trajectory is estimated by the navigation system, while the actual position of the 
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spacecraft is never known exactly. The predicted estimation is then used by the controller to 

maintain the relative formation (shown later in Section 4.3). Once the controller is inserted in the 

spacecraft dynamics, one obtains a close loop problem in which control is performed together with 

estimation, and the filter equations have to consider the action of the controller itself. During the 

controlled phases, it is assumed that the asteroid trajectory is precisely known, the state variables to 

be estimated are the only ones related to the spacecraft formation. 

4.2  Measurements Model 

An accurate measurement model plays a key role in the navigation problem in order to obtain 

precise orbit determination. The main navigation measurements come from on-board high 

resolution camera and LIDAR. The camera provides image information which is limited by the 

range ambiguity, while the LIDAR provides the range measurement which complements the 

navigation system. In Section 4.2.1 and 4.2.2, the models used for relative navigation are described. 

The absolute navigation measurement models used to refine the asteroid trajectory are built up in 

Section 4.2.3 and 4.2.4.  With reference to Figure 37, the set of information provided by the sensors 

assembly is given by: 

1) High resolution camera which provides elevation and azimuth angles of the feature point on the 

asteroid surface. 

2) LIDAR which measures the distance from the spacecraft to the asteroid surface. 

3) Inter-spacecraft measurements which include the relative angular measurements along with the 

distance between two spacecrafts. 

4) Range and range rate obtained from ground station. 
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5) Sun Doppler shift sensor descends from the radial velocity of the spacecraft with respect to the 

Sun.  

 
Figure 37. Measurements models for (a) relative navigation geometry (b) absolute navigation 

geometry. 

When dealing with on-board sensors, these are affected by pointing errors. In theory, two 

intermediate reference frames should be required:  

1) Spacecraft coordinates system  , ,sc sc scSC x y z  (Li et al., 2007): the origin of this frame lies in 

the spacecraft’s mass centre; three body axes of symmetry are defined as three coordinate axes. 

2) Camera coordinates system  ˆ ˆ ˆ, ,c c cC x y z : the centre C is the perspective projection of the 

camera. cz -axis is parallel to the optical axis of the camera and directed to the centre of the 

asteroid. Image plane is defined as c c co x y . To simplify mathematics, it is assumed that the 

spacecraft and camera coordinate system are coincident. 

(a) (b) 
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Given that spacecraft attitude dynamics is not modelled, for sake of simplicity during the proximity 

phases the spacecraft coordinate system is assumed to be aligned with the Hill frame A (see Section 

3.12.3).  During the deep phase navigation the coordinate system is aligned with the inertial frame 

S. Thus, it is assumed that the attitude of each spacecraft is known with a level of precision 

corresponding to the one of the star tracker on two axes.  

4.2.1 Camera and LIDAR Model  

We already have seen a camera and a LIIDAR model in Section 3.5, in which a simple pinhole 

model was used. In this case we want to analyze in more detail, how the different sources of error 

affect the measurement. With reference to Figure 38, a generic point on the surface of the asteroid, 

with position [ ]T

p c c cx y zr  in the reference frame of the camera, is defined on the image plane 

of the camera as: 

 
c

cc

yu f

zv x

  
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   
                                                              (139) 

where cx  is the distance of the point from the image plane along the boresight direction and f  is 

the focal length of the camera. The position in the camera reference frame is given by:  

                                                            (140) 

where   is the rotation matrix from the Hill’s reference frame to the camera frame   is  the vector 

position of the points with respect to the centre of the Hill’s reference frame given in Eq.(125). The 

coordinates of the point on the image plane measured in pixels are given by Eq.(127). 
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The mean position of all the points on the image plane of the camera defines the coordinates of the 

centroid of the asteroid. 

 

Figure 38. Pin-Hole camera model. 

It is assumed that the centroid of the asteroid identifies the position of the centre of mass; therefore 

by measuring the angular position of the centroid one can estimate the angular position of the centre 

of mass in the reference frame of the camera. The azimuth and elevation angles of the centroid are 

given by Eq.(128). 

The measurement from the camera is affected by both the spacecraft attitude pointing and 

pixelization errors. The latter error is due to the fact that the image of the asteroid is formed by a 

discrete number of pixels and this could lead to an incorrect position of a surface feature on the 

image plane.  

By manipulating Eq.(128) and considering the pixelization error 
p , one can write the observation 

equation:  
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By expanding Eq.(140) up to the first order in the noise component, one obtains: 
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   (141)       

From Eq.(141) one can see that the worst case error is achieved when the point is located at the 

centre of the screen. This means that in the worst case 
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So the model for the observation equations used in the filter becomes: 
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Note that here the illumination conditions are not considered, so it is assumed that each spacecraft 

sees the whole visible surface from its position. This is sensible if one assumes that a 

complementary map could be built while starting the orbit acquisition, combining the pictures from 

the whole formation.  

The ranging measurements are here reported for easing the reading of the document: 

 h
Sl l l lCy h l     r                                                  (144) 

with l  white measurement noise. The accuracy of this measurement depends on the characteristic 

error of the sensor, along with a bias defined by the mounting error of the instrument, l  is the zero-

mean Gauss white measurement noise. 

Combining the LIDAR with the camera a relative position vector from the spacecraft to the surface 

point can be constructed as seen in Section 3.12.2: 
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where z is the measurement vector obtained from the combination of camera and LIDAR,  h x is 

the vector containing the model measurements, ς  is the Gauss white noise. 

4.2.2 Inter-spacecraft Measurements 

The set of inter-spacecraft measurements is represented by the relative position vector between two 

spacecraft in the formation. Similarly to the model in Section 4.2.1 this is composed of the relative 

distance and the local azimuth and elevation (Oh et al., 2007). The measurements are given by the 

on-board camera and ranging instruments from one spacecraft to the other. For example, if the 

spacecraft 1 measures the relative position of spacecraft 2, the measurements are given as following 
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where reld  is the relative distance between the two spacecrafts, rel  and rel  are respectively the 

local azimuth and elevation angles measured from one spacecraft to the other,  12 12,
T

x y  is the 

coordinates of spacecraft 2 on the screen of the camera on spacecraft 1. The observation equation is 

given as 

   1 2,h h

SC SC

T

rel rel rel rel rel rel relh d      z ς ςr r                                (147) 
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where [ ], ,
rel rel

T

rel d    ς  is the zero-mean Gauss white measurement noise.  

4.2.3 Ground Station Measurements 

The set of measurements defined by range   and range rate   with respect to the ground station is 

the typical set used to estimate spacecraft trajectory from Earth (Thornton et al., 2003), and is 

employed during deep space navigation. The observation equation were already given in Eq.(64), 

but the final set are here reported without the use of angles which is commonly excluded by the 

deep space orbit determination process (Thornton et al., 2003): 

   SC

T

g g g gh     z ςr ς                                                (148) 

with gς  is assumed to be the zero-mean Gauss white measurement noise.  

4.2.4 Sun Doppler Shift Sensor Model 

The Doppler shift from sun-light can be measured by using a resonance-scattering spectrometer 

instrument which allows measuring the radial velocity of the spacecraft with respect to the Sun 

(Yim et al., 2000). This sensor is useful during the deep space navigation since the formation could 

be not visible from ground during some period. The measurement model of Doppler shift can be 

modelled by the following equation: 

SC

Sun SC SC SC SC

SC SCr r
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r r r v
                                                   (149) 

The observation equation is given by 
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where 
SC

Sun T

SC SC SCr  r r  is the relative radial velocity of  spacecraft relative to the Sun. 
Sun  is the 

measurement noise which is assumed to be a white Gaussian noise process. 

4.3 Navigation Strategy 

A suitable filtering technique needs to be implemented in order to process the measurements 

defined in Section 4.2. Given the nonlinear dynamics of the problem in terms of both estimation and 

control, a natural choice is to use a nonlinear filtering technique. As seen in Section 3.12, the UKF 

is preferable to other nonlinear Kalman filter techniques, such as the particle filter and the high 

order expansions filters, because it can accurately handle with nonlinearities at low computational 

cost. Even though the Kalman filter has proved to work reasonably well when the Kalman filter 

hypotheses are not satisfied, another alternative filter, the H  filter showed the best accuracy with a 

similar computational time. The H  filter does not assume to precisely know the noise statistics, 

and it minimizes the worst-case estimation error. The choice of H  filter is preferable when the 

Gaussian hypotheses are not fully satisfied as when biases in the instruments are not detected 

(Simons, 2006). Using the estimate theory formalism, the nonlinear discrete-time process in 

Eq.(134) and measurement equations in Section 4.2 are given by: 
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with  ~ 0,k kw N Q ,  ~ 0,k kv N R , which 
kQ  is process noise covariance, 

kR  is measurement 

noise covariance; 
ku  represents the control input required to counteract the perturbations on the 

spacecraft (see Section 4.1.1). The control is based on the estimated state x , represented by r  and 

r , position and velocity of each spacecraft with respect to the asteroid. Thus the controller defined 

in Eq.(138) becomes: 
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We defined the control input as a function of time to stress that the control is a continuous function 

between kt  and 1kt   and it is based on the estimated current position and velocity of the spacecraft. 

The estimated motion ( )k tr  and ( )k tr  between kt  and 1kt   in which the measurements are received 

and processed is simply given by the integration of Eq.(134) without the contribution of w . The 

initial conditions are the estimated position and velocity from the filter at time kt . We now show in 

Figure 39 an example of the combined filter and controller process for spacecraft 3 with different 

level of initial actual position error.  

Being the closest spacecraft to the asteroid, spacecraft 3 experiences the highest level of 

perturbations from the gravity field of the asteroid. The controller gain   is set again as 10
−6

/s
2
 

whiles the steady dissipative coefficient dc  is as 10
−3

/s. The error for initial guess was equal to 10% 

in position and 1 mm/s on each components of the velocity. The whole process was simulated for 1 

day. In this case the spacecraft could rely on relative and intersatellite measurements. The error on 
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range
l  was 10 m, while the one on angles 

,   was 2.6∙10
-3

 degrees. The intersatellite error was 

2l   m, and 3

, 10
rel rel    degrees.  

As one can see after an initial transient, the spacecraft is able to gain the nominal trajectory in less 

than 1 day even when the initial position error is 50% of the nominal trajectory, i.e. 300 m from the 

asteroid. 

Eventually, for completeness, we want to show that the UHF has superior performance to the 

classical UKF, EKF and EHF. As an example, we considered the case of spacecraft 1 flying in the 

proximity for 2 day. We run 100 simulations to assess the statistical relevance of this comparison. 

Differently from the previous example, the spacecraft could rely only on relative measurements. In 

this case we use an error on range, l  of 50 m, biased of 10 m (1-sigma), and on angles 
,   of 

2.6∙10-3 degrees, biased of 10-3 degrees (1-sigma).  

The error for initial guess was equal to 20% in position and 1 cm/s on each components of the 

velocity. The scaling parameter for UHF was 35  . The initial spacecraft displacement was set to 

10% of the nominal trajectory. Matrix kR  was defined as a constant diagonal matrix with 

components equal to the ones of the previous case. 
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Figure 39. Relative distance for different level of initial position error for spacecraft 3. 
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Figure 40 shows the results of the orbit determination for the EKF and UKF while Figure 41 shows 

the ones for EHF and UHF. Both results are expressed in terms of root mean square error (RMSE) 

plus 1-sigma dispersion with respect to the mean value.  

 

Figure 40. Estimated a) position and b) velocity (continuous line) and dispersion (1-sigma, 

dashed line) for UKF and EKF. 

 

Figure 41. Estimated a) position and b) velocity RMSE (continuous line) and dispersion (1-

sigma, dashed line) for UHF and EHF. 

a) b) 

a) b) 
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From the figures one can see that the estimated position and velocity errors differ significantly 

between the UKF and UHF and between the EKF and the EHF. The UHF appears better, although 

marginally, than the EHF, in particular in the controlled case. The reason can be found in the 

coupled interaction between state estimation and control process. In fact a small variation in the 

estimated state causes the controller to apply a higher or lower thrust level. This causes the 

nonlinear dynamics to produce quite diverse trajectories, see Figure 42. We based the selection of 

the filter technique on the average RMSE and on the maximum steady state expected error (1-

sigma) after 1 day of operation, reported in Table 14.  

 

Figure 42. Controlled a) position and b) velocity average RMSE for UKF, EKF, UHF and 

EHF. 

A further confirmation comes from the Wilcoxon signed-rank test (Gibbons and Chakraborti, 2011) 

applied to the results of the different filters. When two sets of samples overlap completely the 

Wilcoxon signed-rank test reports 1, while 0 is obtained when the sets are completely independent. 

When we cross-checked the samples from the Kalman against the H-infinity filters, the results was 

below 10
-18

, while the cross-check between the UKF and EKF gave 0.643 and the one between 

a) b) 
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UHF and EHF was 0.538. This confirms that the realizations produce different results for the 

Kalman and H-infinity families on this particular problem.  As one can see, the UHF presents 

superior performance compared to the other filters both in terms of estimated and controlled 

trajectory. The UHF is more accurate than the UKF with a RMSE that is 25% lower in position and 

about 30% in velocity. When one considers the maximum expected errors, the UHF also presents 

the best results.  

Table 14. Average RMSE comparison for different filters - SC1 

               Filter technique 

  UKF EKF UHF EHF 

RMSE position [m] 24.03 24.30 17.78 18.18 

RMSE velocity [mm/s] 2.27 2.41 1.59 1.88 

RMSE controlled position [m] 27.27 27.89 20.39 20.50 

RMSE controlled velocity [mm/s] 4.67 4.90 4.63 4.67 

One advantage of the UHF over the EHF is that it does not require the derivation and propagation of 

the Jacobian matrix, similarly to the UKF with the EKF (Crassidis and Junkins, 2004). Although the 

computational cost is 20% greater than for the EHF, nonetheless we considered the UHF as baseline 

filter because of its higher accuracy in the estimation of the fully controlled trajectory. 
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4.4 Data Fusion Process 

Having defined the filtering and control processes, each spacecraft needs to manage the on-board 

system and share information efficiently. This section describes the data fusion process 

implemented to address this issue. 

Each spacecraft receives the whole set of measurements coming from all the members and builds 

the necessary matrices. It is assumed that the measurements are received at the same time. 

Otherwise, the measurements may be unavailable at a certain stage of the simulation. This would 

affect the forecasting and the updating stages, since it would introduce inconsistency between the 

forecast measurements and the measurements that the system actually receives. The data fusion 

management can be described as a small number of process steps: 

At initial time t0, an initial state vector and covariance matrix are assembled from the initial 

guess 0
ix  and covariance 0

iP  of each spacecraft ( 1: sci N ): 
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1. At each time kt  (k=1,2…) a set of measurements is received, a total array of measurements is 

assembled along with error covariance matrix using the available measurements i

kz  and 

instruments covariance error 0

i
R : 
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2. Based on the type of measurement the unperturbed set of equations ( , )k kth x  is defined on 

the basis of the model introduced in Section 4.2. 

3. The UHF is then employed between the two instants (
kt , 1kt 

), obtaining the filter gain and 

the predicted state vector and measurements at time
1kt 
. 

4. At time 1kt   predicted and actual measurements are available. If the number of measurements 

is lower than the predicted number, only the consistent measurements between the two steps 

are considered in the update step. This is obtained either by removing the predicted 

measurements and the correspondent columns and rows in the filter gain or by giving a null 

value to the correspondent elements in the filter gain. If the number of actual measurements 

at time 1k   is higher than the one at the previous instant, then kR  and ( , )k kth x  are 

consistently redefined and steps from 2 to 4 are repeated. 

4.5 Results 

Simulations focus on the condition that the spacecraft formation is flying in the proximity of 

Apophis. The final part of Section 4.1.1 showed that the spacecraft would fall on the asteroid in less 

than one day without control. The implemented controller of Section 4.1.3 requires a reliable and 

fast estimation in order to maintain the formation. The camera resolution is set as 2048x2048 pixels, 

the field of view is set as 30 degrees and the focal length is 1.212x10
-3 

m. Table 15 summarizes 
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conservative measurements errors used in the simulations. The LIDAR range error is set as 10 m 

according to Kubota et al. (2003), and a precision of 2 m is used for inter-spacecraft LIDAR range 

measurement error. Angular measurement and attitude error are from Yim et al. (2000).  

Table 15. Sensors error for close proximity navigation. 

 Parameter variation (1-sigma) 

  Precision Worst Case Precision Bias 

C-angles 
,   [deg] 2.6∙10

-3 / 5∙10
-4 

LIDAR l  [m] 10 50 1 

I-distance d [m] 2 10 1 

Local Angles 
,rel rel   [deg] 10

-3 / 5∙10
-4 

Attitude [deg] 10
-3

 / 5∙10
-4

 

(C: camera, I: intersatellite) 

 

For the asteroid refinement part, the measurements from Earth are taken from the ground station of 

Malindi (-2.9956° latitude and 40.1945° longitude). Typical errors considered in this Chapter are 

given in Table 16. 

Table 16. Measurements error for asteroid refinement (1-sigma). 

Characteristics Unit Value 

Camera pointing angles rad 10-3 

G-Range m 20 

G-Range rate mm/s 0.5 

Doppler shift mm/s 0.1 

(G: Ground station) 

Range and range rate noise are from Thornton et al. (2003) while a Doppler shift sensor’s accuracy 

is equal to the one used in Yim et al. (2000). 
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4.5.1 Non-collaborative vs. Collaborative case 

First we show that the collaboration among the members of the formation improves the accuracy of 

the estimates. The simulation spans 2 days with a time interval between measurements of 10 

minutes. We repeated the test 100 times to assess the statistical relevance of the results. An initial 

uncertainty of max 20% in the position vector components and 10
-5

 km/s on the velocity vector 

components, with respect to the reference trajectory, was considered for all the simulations. 0P  is a 

diagonal matrix with elements equal to the square of the initial state uncertainty for each spacecraft. 

The process noise covariance matrix Q was set to 10
-24
I66 for the non-collaborative case and 10

-

24
I2424 for the collaborative one. The observation error covariance matrix R is a square and 

diagonal matrix with the square of observation noise on its diagonal terms. In these two cases we 

considered that the sensors were working at nominal conditions as reported in Table 15. The 

process noise w and the measurement noise ς  were assumed to be uncorrelated with each other and 

with their previous values over time.  

Figure 43 and Figure 44 report the results for the non-collaborative and collaborative case 

respectively. Figure 43a), b) and Figure 44a), b) refers to the RMSE for the estimated position and 

velocity while Figure 43c), d) and Figure 44c), d) shows the RMSE for the controlled trajectory. In 

the non-collaborative case the error is higher than in the collaborative case.  
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Figure 43. Non-Collaborative case: RMSE for estimated a) position, b) velocity, c) controlled 

position and d) controlled velocity. 

In general the initial peaks in the controlled velocity are higher for SC-2 and SC-4 because the 

control exerts a thrust proportional to the position error. Given the initial conditions for the 

estimated and the actual trajectory, the control increases the velocity to cope with the actual 

trajectory deflection. SC-3 experiences the worst convergence in terms of accuracy in the estimated 

and controlled trajectory. When the intersatellite measurements are included, the convergence is 

improved both in terms of accuracy and time for all the spacecraft. In fact from Figure 44a), d) one 

can see how the error moves towards lower RMSE regions in about 0.1 day with respect to 0.5 day 

of Figure 43c), d). 

a) b) 

c) d) 
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Figure 44. Collaborative case: RMSE for estimated a) position, b) velocity, c) controlled 

position and d) controlled velocity.  

The magnitude of the oscillations is reduced, and the initial peaks in the estimated and controlled 

velocity results are lower than the non-collaborative case (see Figure 43b), d) and Figure 44b), d)). 

For the non-collaborative case the maximum error in the estimated velocity is about 3.5 cm/s (see 

Figure 44b) while this value reduces to circa 2.5 cm/s with collaboration (Figure 44b)). Similarly 

the collaboration reduces the maximum error in the controlled velocity to about 5 cm/s (Figure 

44d)), compared to the 6.5 cm/s as in the non-collaborative case (Figure 43d). 

a) b) 

c) 
d) 
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Table 16 reports the average RMSE of each spacecraft. As one can see, the worst performance is 

achieved by SC-3, which experiences the higher level of perturbations, being the closest to the 

asteroid. When additional information from the intersatellite measurements is added, the 

improvement is quite considerable especially for SC-3, with the maximum RMSE in the controlled 

position equal to less than 50% than the non-collaborative case. For the non-collaborative case the 

maximum error in the estimated position is 37.70 m, while the collaboration reduces this value to 

17.61 m. Similarly the maximum error in the controlled position is reduced to about 18.56 m from 

45.57 m. 

Table 17.  Average RMSE in estimated and controlled trajectory for the collaborative and un-

collaborative case  

 
 No-collaboration Collaboration 

SC1 

position/max 1-σ [m] 14.77/20.72 9.35/12.62 

velocity/max 1-σ [mm/s] 1.4/1.31 0.8 /0.62 

controlled position/max 1-σ [m] 16.94/22.32 11.05 /13.46 

controlled velocity/max 1-σ [mm/s] 2.1/1.94 1.7/1.45 

SC2 

position/max 1-σ [m] 12.65/24.93 9.05/11.76 

velocity/max 1-σ [mm/s] 1.2/0.70 0.6/0.45 

controlled position/max 1-σ [m] 14.99/22.67 11.06/12.29 

controlled velocity/max 1-σ [mm/s] 2.2/2.52 1.9/1.29 

SC3 

position/max 1-σ [m] 26.73/37.70 11.60/17.61 

velocity/max 1-σ [mm/s] 4.1/6.1 1.4/1.59 

controlled position/max 1-σ [m] 30.81/45.57 12.45 /18.56 

controlled velocity/max 1-σ [mm/s] 3.2/4.3 1.8 /2.31 

SC4 

position/max 1-σ [m] 11.56/13.58 7.04/9.88 

velocity/max 1-σ [mm/s] 1.2/0.67 0.5/0.40 

controlled position/max 1-σ [m] 20.93/18.20 8.85/10.43 

controlled velocity/max 1-σ [mm/s] 1.5/1.7 1.6/1.13 
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4.5.2 Failures  

In order to assess the increased flexibility and robustness provided by intersatellite link, the 

following contingency scenarios were analysed: 

1. LIDAR and camera fail on SC-1; 

2. LIDAR and camera fail on SC-1 and SC-2; 

3. LIDAR and camera fail on SC-1 and poor LIDAR on SC-4; 

4. LIDAR and camera fail on SC-1 and SC-2 and poor LIDAR on SC-3 and SC-4;  

5. LIDAR and camera fail on SC-1 and SC-2 with poor inter-satellite links on SC-1 and SC-

2 and poor LIDAR on SC-3 and SC-4.  

Table 18 reports the different test cases used to assess the improvement of the estimates even in 

case of absence of measurement or of failure by means of the decentralized navigation system. 

Table 18. Sensors set on spacecraft formation 

Case SC-1 SC-2 SC-3 SC-4 

1 I C, L/R, I C, L/R, I C, L/R, I 

2 I I C, L/R, I C, L/R, I 

3 I C, L/R, I C, L/R, I C, L/R*, I 

4 I I C, L/R*, I C, L/R*, I 

5 I* I* C, L/R*, I C, L/R*, I 

C-camera, L/R-LIDAR, I-inter-satellite, *worst case condition 

The initial conditions are the same for the collaborative case and the covariance matrix 0P , similarly 

the process noise covariance Q and R are built as before. Figure 45 and Figure 46 report only the 

trend for SC-3 and SC-4 as they present the worst and best cases in terms of RMSE for all the cases. 

The results for SC-1 and SC-2 are pretty similar and are not reported for simplicity. The trend for 
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cases 1 to 4 is very similar to the collaborative case, demonstrating that the intersatellite link 

compensates for poor or incomplete direct measurements. In case 5, instead, spacecraft SC-3 

experiences higher levels of error with oscillations due to the filter and control coupling and 

perturbations, see Figure 45a) and b). The controller is not able to converge as well as in the other 

case, shown in Figure 45c) and d).  

 

Figure 45. SC-3 failures: RMSE for estimated a) position, b) velocity, c) controlled position 

and d) controlled velocity. 

  

a) 
b) 

c) d) 
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Figure 46a) and b) show that for SC-4, the oscillatory behaviour due to the coupling between filter 

and controller is less pronounced in cases 1 to 4. While in case 5, SC-4 has behaviour comparable to 

the one of SC-3, with the maximum controlled position and velocity error respectively in the range 

30-50 m and 3-6 mm/s (after the initial transient response), see c) and d).   

 

  

Figure 46. SC-4 failures: RMSE for estimated a) position, b) velocity, c) controlled position 

and d) controlled velocity. 

The average RMSE of estimated and controlled trajectory of each spacecraft are summarized in 

Table 19. The results show that the overall performance of the formation is, in general, better than 

a) b) 

c) d) 
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for the non-collaborative case. One thing should be noted: in Cases 1 to 3, some of the spacecraft 

experience an improvement with respect to the collaborative case with all the instruments working.  

Table 19. Average RMSE of the estimated and controlled trajectory in case of failures. 

SC  Case 1 Case 2 Case 3 Case 4 Case 5 

1 position/max 1-σ [m] 7.79/9.67 9.22/11.95 9.50/12.84 10.75/11.79 17.96/19.02 

velocity/max 1-σ 

[mm/s] 

0.65/0.54 0.70/0.68 0.72/0.82 0.78/0.65 1.51/1.05 

controlled position/max 

1-σ [m] 

9.13/10.33 10.51/12.86 10.79/14.01 12.10/12.41 19.99/20.63 

controlled velocity/max 

1-σ [mm/s] 

1.51/1.11 1.65/1.13 1.79/1.30 1.86/1.15 2.65/2.14 

2 position/max 1-σ [m] 7.97/9.24 8.75/9.50 9.13/11.26 10.58/10.13 20.62/20.63 

velocity/max 1-σ 

[mm/s] 

0.56/0.35 0.60/0.38 0.62/0.48 0.65/0.36 1.48/2.14 

controlled position/max 

1-σ [m] 

9.67/9.68 10.50/10.03 10.89/11.94 12.27/10.41 23.35/24.14 

controlled velocity/max 

1-σ [mm/s] 

1.72/1.07 1.87/0.99 1.79/1.19 2.00/0.99 3.11/2.99 

3 position/max 1-σ [m] 12.57/19.39 14.11/21.37 11.40/15.66 15.49/21.51 26.89/43.97 

velocity/max 1-σ 

[mm/s] 

1.61/1.77 1.87/2.20 1.32/1.48 2.08/2.26 3.9/5.52 

controlled position/max 

1-σ [m] 

13.63/21.19 15.60/23.93 12.20/15.79 17.13/23.95 31.78/51.93 

controlled velocity/max 

1-σ [mm/s] 

1.99/2.53 2.17/2.71 1.75/1.81 2.28/2.82 3.79/5.56 

4 position/max 1-σ [m] 6.16/7.12 7.54/6.97 7.64/752 10.10/13.54 26.39/31.60 

velocity/max 1-σ 

[mm/s] 

0.47/0.31 0.56/0.35 0.53/0.36 0.65/0.66 2.09/1.48 

controlled position/max 

1-σ [m] 

7.75/7.39 9.11/7.21 9.23/8.04 11.43/13.59 30.04/33.72 

controlled velocity/max 

1-σ [mm/s] 

1.49/0.79 1.66/0.82 1.55/0.96 1.77/1.34 3.59/3.49 

The explanation of this behaviour resides in the fact that the biases on the camera pointing towards 

the asteroid introduce a considerable error in the filtering process and the centroid identification is 
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not as precise as the intersatellite measurements. The result is that having less measurements 

relative to the asteroid has beneficial effects on the mean error.  Cases 4-5 prove that the system is 

able to determine and maintain the trajectory without losing the proximity with the asteroid but the 

lack of inter-satellite links has a significant impact on the navigation and control capabilities of the 

formation. Even though the number of failures would not allow Spacecraft 1-2 alone to estimate 

their trajectories, the collaboration increases the reliability of the system and the robustness against 

sensors failures. 

4.6 Asteroid Ephemerides Refinement 

During the approach phase, the on-board measurements can be employed in combination with the 

absolute measurements from the ground station to refine the trajectory of the asteroid. Two different 

sets of measurements were considered for this analysis: the first set combines ground tracking with 

line of sight measurements taken from the spacecraft, while the second includes also a Sun Doppler 

shift sensor among the on-board measurements.  

In the following, it is assumed that two spacecraft will approach the asteroid at the same time when 

the asteroid is at perihelion. In such a situation, if the spacecraft formation travels from the Sun 

direction, given its visual magnitude of 19.7, the asteroid could be detected from a distance of about 

2,000,000 km (Vetrisano et al., 2013). We conservatively assumed that both spacecraft will 

concurrently start the acquisition of the target at 1,000,000 km from the asteroid.   

The configuration of the approach and acquisition phase is depicted in Figure 47. The initial 

conditions are given with respect to the asteroid’s Hill reference frame in terms of distance apd , 
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azimuth   and elevation  . Both spacecraft are placed at 1,000,000 km with an approach velocity 

apv  of 100 m/s in magnitude directed along the spacecraft-to-asteroid vector. In the Hill reference 

frame the position and velocity vectors for the i-th spacecraft can be written as: 

[cos cos cos cos sin ]

[cos cos cos cos sin ]

h h

sc i A ap i i i i i

h h

sc i A ap i i i i i

d

v

     

     





 

 

r r

r v
                                  (155) 

where the superscript h refers to the Hill reference frame. 

From Figure 47 one can see that if the two spacecraft are separated by a small angle, the asteroid 

trajectory becomes poorly observable as it is not possible to accurately triangulate the position of 

the asteroid.  

 

Figure 47. Approach and acquisition phase configuration. 
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Direct distance measurement from the asteroid to the spacecraft cannot be acquired using the 

LIDAR, neither can the distance be derived from a single camera unless complicated dogleg 

manoeuvres are adopted, because the shape of the asteroid might not be known in advance or the 

camera might not have a sufficiently high resolution. Therefore, the angular separation of the two 

spacecraft, seen from the asteroid, needs to be sufficiently high. As an example, Figure 48 reports 

the estimated error with respect to the actual trajectory of the asteroid when only a single spacecraft 

is used. The measurements are acquired over two weeks. The initial estimated position of the 

asteroid is randomly taken on a sphere with radius 10,000 km centred on the actual position, while 

for the estimated velocity a sphere of 2.5 m/s radius with respect to the actual velocity is 

considered. The 1-sigma dispersion in position is 50,000 km and 90 m/s in velocity. These error 

values are higher than the one used in Vetrisano et al. (2013) for a single spacecraft performing a 

dogleg approach to an asteroid whose trajectory is not precisely known.  

 

Figure 48. Asteroid estimate a) position and b) velocity error in 14 days using only on-board 

optical observation from a single spacecraft with ground station tracking. 

a) b) 
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It is clear that in this case the problem is not observable since the type of information is not 

sufficient to improve the estimate without a dogleg approach. In fact the error increases with time. 

Consider two spacecraft where their positions are known with an initial accuracy of 1000 km and 

velocity with an accuracy of 0.1 m/s in magnitude. The sensors on-board the spacecraft and the 

ground station tracking system provide the navigation algorithm with 5 measurements for each 

spacecraft: line-of-sight angles and Doppler shift, range and range rate from Earth. In total there are 

up to 10 measurements acquired every 1 hour. 

Table 20 reports the results for different configurations of   and  , each one simulated 100 times. 

It is assumed that the measurement acquisition and state estimation processes run for 7 days.  

Table 20. Analysed configurations and final estimated error without and with Doppler shift. 

 Configuration  

1 2 3 4 5 6 7 

 

SC-1 

τ [deg] 90 180 135 135 135 135 135 

λ [deg] 0 0 0 0 0 0 0 

 

SC-2 

τ [deg] 270 270 270 139 136 135.5 135.5 

λ [deg] 3 3 3 3 3 3 0.5 

No 

Doppler 

Position 

error [km] 

31.38 5.657 8.04 17.50 25.14 26.25 115.25 

Velocity 

error 

[cm/s] 

10.09 1.936 1.961 6.263 8.010 8.269 37.49  

Doppler Position 

error [km] 

26.89 5.791 8.09 17.09 25.67 26.48 101.97 

Velocity 

error 

[cm/s] 

9.087 1.905 1.915 6.288 8.227 8.405 35.81 
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The first spacecraft was placed on the nominal orbit plane of the asteroid while the second 

spacecraft was given a maximum out of plane component equal to the asteroid’s initial dispersion in 

position that corresponds to a value of 3 degrees for  . As expected, without the use of the Doppler 

measurement, when the two spacecraft are almost aligned along the same spacecraft-to-asteroid 

vector (see configurations 1-4-5-6-7), the estimated error, both in position and in velocity, is higher 

than when they are not (see cases 2 and 3). 

When the Doppler measurement is added, there is a general improvement of these estimates, 

especially for cases 1 and 7. However, for other configurations, the use of the Sun Doppler shift 

measurements does not lead to a noticeable improvement in the results. 

Figure 49 and Figure 50 show the trend for the estimated position and velocity. As one can see from 

Figure 49a) and Figure 50a), the position error converges towards low values in less than one day as 

the first set of measurements is received.  

Conversely from Figure 49b) and Figure 50b), the estimated velocity error needs between two and 

four days to converge. The peaks in the velocity error are due to the unavailability of ground station 

measurements when only on-board sensors are employed. When the Doppler shift is not considered 

the magnitude of these peaks is higher, with a maximum value of 42.3 m/s in case 1. When the 

Doppler shift is used, the maximum value slightly reduces to 39.6 m/s.  



161 
 

 

Figure 49. Asteroid estimate a) position and b) velocity error in 7 days combined on-board 

optical observation measurements with ground station tracking. 

 

Figure 50. Asteroid estimate a) position and b) velocity error in 7 days combined on-board 

optical observation measurements with ground station observation and sun Doppler.  

When the two spacecraft are very close as in configuration 7, the problem is not well conditioned 

because the measurements from the formation are almost coincident, and, thus, more affected by the 

measurement error. This can be seen in Figure 50a), where there are small peaks in position till day 

4. With Doppler shift measurement, the peaks in position error disappear after 2 days, while the 

velocity error presents a slightly fastest convergence rate, as shown in Figure 50b). 

a) 

a) 

b) 

b) 
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It can be concluded that the combined use of on-board and ground station measurements improves 

the position estimate by approximately 3 orders of magnitude in 1 week. The use of Doppler 

instrument has beneficial effects since it helps the filter converge faster towards lower error regions 

when ground station tracking is not available. Nonetheless, the improvement is not equally 

significant for all the approach configurations.  

4.7 Summary 

This Chapter presents different navigation strategies for a 4-spacecraft formation in the proximity of 

the asteroid Apophis. Simulations base on UHF are implemented in order to data fuse the 

measurements from each spacecraft to estimate their relative states with respect to the asteroid. 

Different test cases are addressed to evaluate the improvement of navigation performance by adding 

the inter-spacecraft position measurements and the robustness against failures.  

We showed that a disaggregated spacecraft formation where relative measurements are being shared 

and fused into the UHF is fault tolerant to multiple sources of instruments failures. The following 

conclusions can be drawn. The UHF-based navigation algorithm is used to estimate the relative 

state of each spacecraft with respect to the asteroid simultaneously. The navigation system achieves 

better localization performance by incorporating the inter-spacecraft range and angular 

measurements. The collaboration within the members of the formation increases the spacecraft 

navigation accuracy and improves the navigation and control performance on the aspects of stability 

and convergence property. The findings is not limited only to the explored scenario but can be also 

extended to any spacecraft formation where inter-satellite links are available.  
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In the considered scenario, the estimated error is decreased by more than 50% in position and 60% 

in velocity when the inter-spacecraft measurements are included. The results indicate that the inter-

spacecraft measurements aiding navigation can better solve the problem of the orbit determination 

of spacecraft formation in the proximity of the asteroid. The disaggregate processing of the 

available measurements allows for higher flexibility as well for higher precision with respect to the 

single spacecraft data processing. This approach has proved to be robust against instruments failures 

and poor performance..  

Furthermore, we have analysed the absolute orbit determination of the asteroid using on-board 

measurement combined with the ranging information from the ground station. We have shown that 

the combined use of on-board and ground station measurements can improve the asteroid’s orbit 

estimate during the approach phases. There is a significant improvement in the estimated position 

accuracy, about 3 orders of the magnitude while the velocity is as precise as 1 cm/s. A better 

knowledge of the asteroid’s orbit can be used for correction manoeuvres planning, thus approaching 

the asteroid could be accomplished with less propellant consumption. The method can be applied to 

the approach phases or during deep space missions to improve known and newly discovered 

asteroid’s orbits. 
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5 Deflecting Small Asteroids 

This Chapter investigates the use of the developed techniques for controlling the rotational motion 

of a small asteroid for a scientific demonstrator, while the spacecraft deflects the asteroid’s 

trajectory through laser ablation. During the deflection, the proximity motion of the spacecraft is 

coupled with the orbital and rotational motion of the asteroid. In fact, a change in the angular 

velocity of the asteroid induces a variation of the sublimation rate that, in turns, affects both the 

orbital and rotational motion of the asteroid. At the same time a change in the sublimation rate, 

orbital and rotational motion affects the proximity motion of the spacecraft as it changes the 

perturbations due to the impingement with the plume of gas, the gravity of the asteroid and the 

relative acceleration between asteroid and spacecraft. Since the spot size of the laser beam needs to 

be kept below an acceptable limit to guarantee constant sublimation, the spacecraft needs to 

manoeuvre to maintain its relative distance under the effect of perturbations that are a function of 

the sublimation process. As shown in the works of Kahle et al. (2005) and Colombo et al. (2006) 

the lower is the angular velocity of the asteroid the higher is the imparted deflection acceleration. 

For this reason the simultaneous control of both the spacecraft relative position and asteroid’s 

angular velocity is paramount. 

The asteroid is modelled as a tumbling ellipsoid with a random initial angular velocity vector. The 

rotational motion of the asteroid is then controlled by off-setting the thrust vector, induced by the 

laser, with respect to the centre of mass. Analytic formulas for rotational control are developed in 

order to maximise the control torque along the instantaneous angular velocity.  

The content of this Chapter was published in 
Vetrisano, M., Colombo, C., Vasile, M.: 

‘Asteroid rotation and orbit control via laser 

ablation’. Advances in Space Research. 

Volume 56, Issue 8, Pages 1547-1804 (15 

October2015). doi:10.1016/j.asr.2015.06.035 
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The spacecraft proximity motion and the instantaneous rotational velocity of the asteroid are 

estimated through two filters: an augmented UKF that determines the spacecraft trajectory from 

optical and laser ranging measurements, and a batch filter which processes optical flow 

measurements from the camera to reconstruct the rotational velocity of the asteroid. It will be 

shown that, through the proposed control method, the time required to achieve a given variation of 

velocity can be substantially decreased and the displacement of the asteroid from its nominal 

unperturbed orbit maximised. 

This Chapter is organised as follows. Section 5.1 briefly introduces the ablation model employed. 

Then, Section 5.2 describes the spacecraft dynamics and control during operations. Section 5.3 

presents the asteroid rotational dynamics and the control to decrease the angular velocity. Section 

5.4 focuses on the proximity and rotational motion reconstruction. Finally, Section 5.5 shows the 

results for the proposed mission scenario. 

5.1 Ablation Model 

This section outlines the ablation model used to predict the effect of the sublimation process on the 

asteroid and on the spacecraft. For further details, the interested reader can find an exhaustive 

description in (Vasile et al., 2013; Vasile et al., 2013b; Gibbings et al., 2013).  

The force acting on the asteroid LF  is given by the product of the velocity of the ejected gas v  and 

the mass flow rate of the ablated materialm :  

 L sF vm                                                                (156) 
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where 0.88s   is a constant scatter factor used to account for the non-unidirectional expansion of 

the ejecta. The mass flow rate is given by the integral, over the area illuminated by the laser, of the 

mass flow rate per unit area  : 

0

2
max out

in

y t

rot

t

m V dt dy                                                       (157) 

where rotV  is the speed at which the surface of the asteroid is moving under the spotlight, maxy  is the 

maximum width of the spot and int  and outt  are the entry and exist times from the spotlight of a 

point of the surface moving with velocity rotV . The mass flow rate   per unit area is expressed as:  

 *

v IN RAD CONDE P Q Q                                                            (158) 

where INP  is the absorbed laser power per unit area, *

vE  is an augmented sublimation enthalpy, 

CONDQ  the conduction and RADQ  the radiation loss per unit area. The augmented enthalpy 

* *

0( , , , , )v v S p vE E T T C C v  depends on the initial surface temperature 0T , the sublimation temperature 

ST , the heat capacity of solid phase vC , vapour phase pC  and the mean ejection velocity v .  

The input power INP  in Eq.(158) is computed assuming that the beam is generated by an electrically 

pumped laser. The electric power is generated by a solar array with conversion efficiency S . The 

electric power is then converted into laser power with efficiency L . The surface of the asteroid is 

absorbing only the fraction (1 )M S    of the incoming light, where S  is the albedo at the 
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frequency of the laser light. One can consider this as the worst case scenario. The absorbed power 

per square meter at the spot is therefore: 

 1

2

AU SA
IN g M P L S

spot AU

P A
P

A r
                                                         (159) 

where   is a degradation factor due to contamination, P  is the efficiency of the power system, 

1AUP  is the solar constant at 1 Astronomical Unit (AU), 
SAA  is the area of the solar arrays, 

spotA  is 

the area of the spot and AUr  is the distance from the Sun measured in AU. The term g  accounts for 

the fraction of laser light absorbed by the ejected gas. The degradation factor can be computed by 

following Kahle et al. (2006) and taking the plume density ( , )plume r   at any given distance r  from 

the spot location, and elevation angle   from the surface normal. The ejecta thickness on any 

exposed surface, h, grows linearly with the mean ejection velocity at the asteroid surface v  and the 

plume density ( , )plume r  , which decreases as the distance from the asteroid increases (Vasile et al. 

2013). The increasing thickness of the contaminants will ultimately reduce the power generated by 

the solar arrays and, therefore, the laser output power. The consequence is a reduction of the thrust 

imparted onto the asteroid until the sublimation ceases completely and the thrust with it. The 

reduction of the power generated by the solar arrays, τ can be computed from the Beer-Lambert-

Bougier law:  

 
he                                                                (160) 

where η is the absorbance per unit length of the accumulated ejecta.  
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5.1.1 Optimal distance from the asteroid and force due to the sublimation 

The asteroid’s orbital velocity variation given by the ablation process can be computed as: 

 
 
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At

F t
v dt

m t
                                                             (161) 

where 
Am  is the mass of the asteroid which is decreasing due to the sublimation process. From the 

ablation model presented in the previous section one can see that the thrust LF  is a function of both 

the power input to the laser and the distance from the spot, as the contamination of the solar arrays 

depends on the mass flow rate. Figure 51 represents the contour line of the thrusting time required 

to achieve a Iv  of 1 m/s with the laser positioned at a distance of 50 meters from an S-class 

asteroid with a mean radius of 2.18 m, a spinning rate of 19.47 rotations per hour and a mass of 

130,000 kg. The thrusting time is plotted against the power input to the laser and the radius of the 

laser spot. Table 21 reports the parameters used for the calculation of Eq.(159) and (160). 

Table 21. Laser system coefficients. 

Parameter Value 

g  1 

M  0.84 

P  0.85 

L  0.55 

S  0.3 

  2∙10-4cm-1 

Ac  1361 J/(K∙kg) 

A  4.51 W/(m∙K) 

A  3500 kg/m3 

sT  3800 K 
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Figure 51shows that a variation of 20% in the radius of the spot corresponds to an increase in the 

deflection time that is between 40 to 50 days (about 22-24% of the maximum deflection time).  

 

Figure 51. Thrusting time required to achieve 1 m/s velocity change with a shooting distance 

of 50 m. 

A variation of the radius of the spot corresponds to the defocusing of the beam and is due to two 

reasons: the excavation of a groove along the surface of the asteroid and the variation of the relative 

position of the spot from the laser source due to the rotation of the asteroid and the relative motion 

of the spacecraft. The distance from the focal point, along the beam, at which the beam radius is 

0 2w  (known as Rayleigh length in Siegman, 1986), with w0 the radius at the focal point, is about 

3 m, assuming a 50 mm in diameter focusing mirror, at a nominal distance of 50 m from the laser 

source to the spot. With reference to Figure 51, if the nominal radius is 0.8 mm at 3 m from the 

focal point the beam radius would be 1.13 mm. This means that at the rate of 19.47 rotations per 

hour a fluctuation of the distance within the Rayleigh length would yield a variation of about 24% 

of the deflection time. It follows that the Rayleigh length can be used to derive a requirement on the 

control of the distance between the spacecraft and the surface of the asteroid, which can be 
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converted in a requirement on the control of the distance between the spacecraft and the asteroid 

centre of mass as it will be illustrated in Section 5.3.  

The variation of the deflection time with the defocusing of the beam is however a function of the 

rotation rate. In fact, if one assumes a constant input power of 860 W, a nominal spot size of 0.8 

mm (Vasile et al., 2013), and an optics designed to focus the beam at a nominal distance of 50 m 

from the laser source, a variation of the distance will produce a bigger cross section spotA  of radius 

w  on the surface of the asteroid consistently with the Rayleigh length, as shown in the following 

equation: 
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where l  is the distance from the spot, sinfocu gl  is the focusing length. This means that the light 

intensity at the spot decreases as the distance of the laser source from the surface departs from the 

focusing distance. Furthermore, Eq.(157) and (161) give a mass flow that decreases if the surface 

under the laser moves faster. Therefore, if one assumes a flat surface moving with velocity rotV  

transversally to the incident light and positioned at a distance l from the laser source the resulting 

thrust is the one represented in Figure 52.  

As one can see, the force increases as the velocity rotV  decreases and an absolute maximum is 

reached when rotV  is zero and the distance equals the focusing length. Moreover, for higher values 

of velocity, moving by 3 m with respect to the focusing length causes a reduction of about 75% of 
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the nominal value. With reference to Figure 52b), the trend is almost linear in the distance although 

a curvature can be seen. For lower velocities, the variation of the force with the distance is less 

pronounced, because the surface resides under the laser for longer time.  

 

Figure 52. a) Force due to the sublimation process with respect to the laser distance from the 

spot and the velocity of the surface under the spot light; b) cross section showing the force 

trend with respect to the distance at increasing tangential velocity. 

If the incident laser beam is not perpendicular to the surface the spot deforms from a circle to a n 

ellipse and its area increases. The travel time of a point under the spot light int - outt   then changes 

depending on the direction of the velocity rotV  with respect to the local normal and Eq.(157) needs 

to be modified to account of the actual geometry. In this Chapter a simpler and more conservative 

approach is taken. Instead of calculating the exact travelling time the light intensity is simply 

reduced by modifying Eq.(162) as follows: 
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where 
laser normal 

 is the angle between the incident laser beam and local normal. The area given by 

Eq.(163) is then used in both Eq.(157) and (161). As one can see as the cross section increases with 

this angle, the power density decreases and progressively reduces to zero for nearly tangential 

configurations.  

5.2 Proximity Motion Dynamics and Control 

During the ablation process the spacecraft flies in close formation with the asteroid, thus it is 

convenient to describe the motion of the spacecraft in the rotating Hill reference frame. In the 

proximity of the asteroid, the spacecraft is subject to the force due to solar radiation pressure, the 

gravity of the asteroid, the gravity of the Sun, the centrifugal and Coriolis forces, the recoil of the 

laser, and the force induced by the impingement with the plume. Moreover, the asteroid is 

accelerating under the effect of laser ablation, and, thus, the spacecraft experiences the same 

acceleration in magnitude but in the opposite direction. 

The asteroid’s orbit around the Sun is defined with respect to the Sun-centred equatorial inertial 

reference frame  I J K  as shown in Figure 53a). In this work, it is assumed that the asteroid is an 

ellipsoid with semi-axes Ia , Ib , and Ic  defined in the body fixed reference frame 

 i j k (principal axes of inertia) as shown Figure 53b). With reference to Figure 53a), r  is the 

position vector of the spacecraft with respect to the asteroid, ar  and SCr  are respectively the 

position of the asteroid and the spacecraft in the inertial frame. The spacecraft state vector relative 

to the asteroid is defined as [ , ] [ , , , , , ]
h h h

h h T T

h h h x y zx y z v v v  r r  in the Hill reference frame.  
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Figure 53. (a) Definition of the inertial and Hill’s reference frames; (b) definition of the 

asteroid’s body fixed reference frame. 

The potential of the gravity field of the asteroid was expressed using the second order 

approximation given already in Eq.(120). When including the effects of the deflective action and 

considering the whole tri-dimensional dynamics, the set of equations of motion in Eq.(123) 

becomes: 
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where the superscript h refers to the projection onto the Hill’s local axes. The acceleration ar , 

which the asteroid is subjected to, in the inertial frame is defined as: 
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a gr  represents the dynamics of the asteroid trajectory under gravitational effects only. The second 

component on the right hand side of Eq.(165) represents the tugging effect exerted by the spacecraft 

on the asteroid, and 
L L Ama F  is the acceleration due to the laser ablation process (see Section 

5.1). The quantity θ  is the angular velocity with which the reference frame rotates. In the local 

reference frame the variation of θ  can be derived from: 

 ( ) 2 ( )h h h h h h h h

a a a a a L      r θ r r θ r r a                                             (166) 

being h

La  the projection of La  onto the Hill reference frame. Eq.(166) states that the instantaneous 

variation of the angular momentum with respect to time is proportional to the induced deflection 

acceleration La . The acceleration 
3

( , )h h h ha
p L sc a scm U

r


 


    a a F r r r  comprises all the 

perturbative accelerations acting on the spacecraft. The force vector ( , )h h

sc aF r r  includes all the 

perturbations due to solar radiation pressure, the laser recoil and plume impingement (Vasile et al., 

2013): 

 

2

2

2

( )
( , )

( , )

( ) ( ) ( )

h h
h h AU a

Solar a R srp M

sc Sc

h
h h AU

recoil a sys srp SA

sc

h
h

plume plume plume eq

r
C S A

r r

r
S A

r r

r v r A
r





 




   



  
  

 

 
  

 



r r
F r r

r
F r r

r
F r

                                  (167) 

where RS  is the reflectivity coefficient and srpS  is the solar flux at 1 AU, sys M P L S      is the 

system efficiency, MA  is the area of the solar arrays plus the area of spacecraft bus, eqA  is the 
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spacecraft cross section area facing the incoming plume of gas, 
plume  and 

plumev  are respectively the 

plume’s density and velocity.  

5.3 Proximity Control Strategy 

In section 5.1.1 it was suggested that the Rayleigh length could be used to derive a requirement on 

the relative distance between laser head and asteroid’s surface. If one considers rotV  equal or lower 

than 19.47 rotations per hour (see Section 2.1), then a Rayleigh length of up to 3 m can be deemed 

to be acceptable without any control of the relative position. On the other hand, in order to control 

the rotational motion of the asteroid the laser needs to hit different points on its surface while the 

asteroid is rotating. It is therefore necessary to ensure that the difference between the focal distance 

and the distance between the laser head and the surface remains within the Rayleigh length at all 

times. 

Let us consider the asteroid to be an ellipsoid with semi-axes 3Ia   m, 2.3Ib   m and 1.5Ic   m, 

with Ib  the spinning axis, and the spacecraft located at a constant distance of 50 m from the 

asteroid’s Centre of Mass (CoM) in the plane perpendicular to Ib . Furthermore, let us assume that 

the focal distance is 49.3 m from the laser head. With reference to Figure 54a), the difference 

between the focusing length and the distance between the laser head and the surface of the asteroid 

can now be calculated for each visible (i.e. reachable from the laser) point on the surface and for 

rotation angles.  

If the modulus of this difference was greater than the Rayleigh distance, then the yield of the 

sublimation process would be compromised and might even cease. Figure 54b) shows the 
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maximum difference between the range to surface and the focusing length for different rotation 

angles first around ˆ
hx  and then ˆ

hz . Given the symmetry of the problem, only rotation angles from -

90 to 90 degrees were considered. The discontinuity at about ± 25 degrees and ±86 degrees is due to 

the fact that the maximum variation goes from surface points closer to the spacecraft to points 

located farther from it. The maximum variation is reached at 0 degrees when the major axis is 

aligned with the asteroid-spacecraft direction and at ±35 degrees when the range to surface is 

maximum. We can see that the maximum difference between the range to a surface point and the 

focusing length is about 2.3 m. 

       

Figure 54. a) Difference between range to a surface point and the focusing length with 

Rayleigh length b) Maximum difference as a function of the asteroid rotation around 

Ib (spacecraft positioned at 50 m from the asteroid’s CoM and focusing length of 49.3 m). 

Given the maximum acceptable excursion of 3 m defined by the Rayleigh length, the spacecraft 

needs to be maintained within a 0.7 m radius control sphere around its nominal position with 

respect to the centre of mass of the asteroid. Nonetheless in order to compensate estimation errors 

and maintain the variations of the thrust due to the defocusing and laser normal   contained and 

a) b) 
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maintain the laser at optimal operative conditions, we decided to activate the control logics for a 0.4 

m control sphere. In the following, it is assumed that the nominal position is placed at 50hy    m 

with respect to the asteroid centre of mass.  

If 
1 2 3[ , , ]Td d dd  is the displacement from the nominal position in the Hill’s reference frame, a 

correction manoeuvre v  is then implemented when 2edd , where ed  is the diameter of the 

sphere.  

In the derivation of the control, it is assumed that the acceleration 
pa  acting on the spacecraft is 

constant within the control sphere. Under this assumption, the magnitude of each component iv  of 

the correction manoeuvre can be derived from the evolution of the displacement id  in a time 

interval t . If s
id  is the value of the displacement component when the spacecraft touches the 

limits of the control sphere and s

iv  the corresponding velocity component, then the displacement 

after an interval t  from the implementation of the control manoeuvre is: 

 
2
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s s

i i i i p i

t
d d v v t a


                                                     (168) 

where 
,p ia  is the i-th component of the acceleration pa  at the time the correction is performed. The 

control impulse bit iv can now be allocated such that the spacecraft reaches a displacement 

s

i id d   with the corresponding velocity equal to zero. The time ct  to reach this condition is: 

   ,

,

0
s

s i i
i i p i c c
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v + v
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
                                                  (169) 



178 
 

By substituting ct into Eq.(168), one obtains the value of the i-th component of the correction 

manoeuvre:  

  
2

2

,2 2 0s s s

i i i i p i iv v v v a d                                              (170) 

Eq.(170) has two roots, one of which produces a positive value of ct . Section 5 will present the 

navigation strategy to estimate the displacement s

id , velocity s

iv  and disturbing acceleration 
pa .   

5.4 Asteroid Rotational Dynamics and Control 

From Figure 52 one can see that the ablation force is higher when the velocity 
rotV  is lower because 

the time interval [ ]in outt t  to sublimate the surface tends to infinity. The velocity 
rotV  is given by 

the modulus of the cross product of the instantaneous angular velocity ω  and s , the position vector 

of the spot on the surface of the asteroid, with components [ ]b b b T

x y zs s ss  in the body frame: 

rotV  ω s  

This means that decreasing the asteroid’s angular velocity can increase the yield of the ablation 

process.  The asteroid’s rotational motion is governed by the following system of differential 

equations: 
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where 
1 2 3 4[ ]Tq q q qq  is the quaternions vector, [ ]T

x y z
  ω  is the angular velocity 

vector in the body frame, 
aI  is the matrix of inertia of the asteroid, 

cM  is the control torque, and Π  

is given by: 
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Perturbative torques from the Sun light pressure and the YORP effect are neglected because their 

cumulative effect is negligible with respect to the torque induced by the laser. A strategy to reduce 

the spinning rate of the asteroid is to apply a control torque proportional to the opposite of the 

angular velocity vector: 

 
c 

ω
M

ω
                                                             (173) 

The actual control torque cM  that can be generated is given by the cross product of the thrust b

LF  

with the position vector s:  
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where thrust b

LF  is the thrust vector, projected in body axes, produced by the ablation process at 

point s on the surface of the asteroid (see Figure 55a)).  
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In the following it is assumed that the asteroid is an ellipsoid with a regular and smooth surface, and 

that b
LF  is aligned with the vector normal to the surface and pointing inside the body of the asteroid. 

The normal n  to the surface can be calculated as the gradient of the surface function as follows: 

2 2 2 2 2 2
( ' ( ) 1) ( ' ( ) )

b bb bb b
y yx xz z

I I I I I I

s ss ss s
t t

a b c a b c

 
     

 
n s A s s A s                     (175) 

The achievable control torque then becomes: 
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With reference to Figure 55b), it is convenient to parameterize the position of a point on the surface 

with the two angles   and  : 
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where   is the azimuth and   is the polar angle taken from the minor semi-major axis (see Figure 

55b)).  

The achievable torque then can be rewritten as: 
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Figure 55. Angular velocity control scheme (a); control arm representation in body frame (b). 

The required control toque is given by the projection of cM  on the angular velocity vector: 
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where xc , yc , and zc  are the cosine directors of the angular velocity in the body frame and 

( )eqr   s n ω  is here called equivalent control arm. A way to derive the point of application of the 

laser, given by the two angles   and   would be to solve the following maximization problem: 

a) b) 
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Figure 56a) shows the maximum achievable projection of the control torque on the rotation velocity 

vector for different configurations of the ellipsoid. The different configurations are obtained by 

rotating the asteroid along the axes ˆ
hx  and ˆ

hz . Figure 56b), instead, shows the misalignment 

between the applied torque and the angular velocity vector, for the same configurations. The 

solution of problem in Eq.(180) produces misalignment angles of up to 60 degrees, which would 

generate undesirable torque components along the directions orthogonal to the angular velocity. 

This effect is due to the direction of the thrust generated by the ablation process. Thus, a different 

strategy is to solve the following problem:  
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Figure 56c) and d) show that if one optimizes eqr , the maximum achievable torque is lower but the 

maximum angle between the control torque and the angular velocity is about 35 degrees. Hence, 

even though optimizing eqr  yields a lower control torque with respect to the maximization of M ,  
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it has the beneficial effect of reducing the misalignment between 
cM  and ω  for each spacecraft-

asteroid configuration. 

 

Figure 56. Maximum achievable torque: a) optimizing maximum torque M , c) optimizing 

eqr . Angle between control torque and the angular velocity: b) optimizing maximum torque 

M  d) optimizing eqr . 

Figure 57 shows the modulus of eqr  and the point of application of the laser for a particular 

configuration of the asteroid at an instant of time in which the body axes are aligned with the Hill’s 

axes and the angular velocity is aligned with ˆ
hz . The rainbow scale in Figure 57b) corresponds to 

the magnitude of eqr  for each location on the surface of the ellipsoid. Negative values refer to a 

a) b) 

c

) 

d) 
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torques increasing the angular velocity. This is a trivial case for which no constraint given by the 

configuration and the visibility from the spacecraft is imposed. The maxima are localised along the 

equator of the ellipsoid with azimuth angles of 132 and 312 degrees, which depend on the value of 

the ratio between 
Ia  and 

Ib .  

 

Figure 57. Equivalent control arm a) with respect to azimuth and polar angles, b) on the 

ellipsoid surface. 

In the following, two constraints are imposed. One constraint is on the minimum angular velocity to 

be controlled. The asteroid angular velocity control is applied until the angular velocity reaches a 

value of 10
-3

 rad/s. This value has been chosen after considering that the optical flow implemented 

as in Section 5.2 achieves an accuracy of comparable magnitude. The second constraint is on the 

relative asteroid-spacecraft configuration which will limit the region the laser could be pointed at 

and, subsequently, also the angle between laser beam direction and local normal. In this case a limit 

angle of 60 degrees between the local normal and the line of sight from the spacecraft to the spot 

was set to avoid nearly tangent conditions for the laser. The limit on the view angle partially 

account for the change in spot size due to the elevation of the beam over the surface of the asteroid. 

a) b) 
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Note that a non smooth surface could lead to a thrust that is not aligned with the local normal; 

however, since the surface that the laser can hit must be visible from the spacecraft, a torque 

opposite to the one expected assuming an expansion along the local normal is not possible. It is 

instead possible that the thrust vector and the vector connecting the spot with the barycentre form an 

angle that closer to 90 degrees producing a higher torque than expected. These effects due to the 

surface morphology can be the subject of a future work.    

5.5 Proximity and Rotational Motion Reconstruction 

The motion of the spacecraft relative to the asteroid and the asteroid’s rotational velocity are 

estimated by combining optical measurements from a camera with ranging information from a laser 

range finder and measurements from an impact sensor. The impact sensor, in particular, is used to 

measure the change in momentum due to the flow of ejecta impinging the spacecraft. The 

measurements then are processed through an UKF. Section 5.5.1 illustrates the measurement model. 

Then, Section 5.5.2 describes the proximity motion reconstruction while Section 5.5.3 shows the 

rotational motion reconstruction from optical flow measurements.  

5.5.1 Measurement Model 

The model of the camera and the LIDAR are the same already used and expanded in Section 4.2. 

An impact sensor is used to measure the mass flow from the ablation process. These sensors 

provide information on the mean velocity and the mass flow per unit area of the ejecta plume. These 

can be used to estimate the force exerted by the ejecta plume as:  

 
/plume laser s S C attitude SC plumeF m v A m a                                                 (182) 
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where 
laserm  is the mean mass flow per unit area, 

sv  is the mean ejecta velocity at the spacecraft, 

/S C attitudeA 
 is the cross section of the spacecraft with respect to the ejection velocity (which depends 

on spacecraft attitude) and it is assumed to be equal to 
eqA  as in Eq.(167). The value of the term 

plumea  in Eq.(182) is estimated as part of the filtering process in Section 5.5.2.  The observation 

equation is, thus, given as 

 plume rel plume plplume SC plume umea m ay h                                         (183) 

where 
plume  is the zero-mean Gauss white measurement noise.  

The full set of observation equations is given by: 

,( , ) ( , ) ( ) ( )
T T

h h h h

plume camera l plume plume camera l plumeh a h h h a             y r ςq r ςq r   (184) 

where ς  comprises the measurement noises of all the sensors. 

5.5.2 Proximity Motion Reconstruction 

Given the non-linearities in the measurements and dynamics, it was decided to use an UKF to 

derive an estimate of the state and pa . It was found, in fact, that in order for the proposed proximity 

control to work, the state of the spacecraft needs to be known quite accurately while pa  is required 

only when the correction manoeuvre is performed.  

In order to maintain the desired distance from the surface of the asteroid, the control strategy 

requires the determination of the state vector [ , ] [ , , , , , ]
h h h

h h T T

h h h x y zx y z v v v  r r  and an estimation 

of the acceleration pa  (see Eq.(170)).  
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The components of 
pa  due to the laser recoil and solar radiation pressure are assumed to be well 

known because the acceleration due to solar pressure can be precisely estimated before the 

deflection operations begin and the laser recoil can be tested on ground. The component of 
pa  that 

cannot be estimated only relying on models is the one due to the laser ablation itself, given the 

expected large degree of uncertainty in the outcome of the ablation process. 

If the acceleration induced by the ablation h

La  and the one due to the plume impingement 
plumea  

were aligned, the camera and the LRF would suffice to determine the overall acceleration. Indeed, 

the acceleration induced by the plume impingement is directed along the asteroid-spacecraft 

direction, but the acceleration on the asteroid is directed along the local normal to the surface.  

It would not be possible to estimate 
plumea  and h

La  without any additional information. The impact 

sensor gives the necessary information. 

The proposed method is the one used to estimate biases, commonly implemented to estimate solar 

radiation pressure (Maybeck, 1979). In this case, it consists of augmenting the state vector the UKF 

needs to determine by two variables [ , ]h T

L plumea a . The augmented state vector then becomes 

[ , , , ] [ , , , , , , , ]
h h h

h h h T h T

L plume h h h x y z L plumea a x y z v v v a a  x r r  and the augmented dynamics reads as: 
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      (185)                                     

where scw , Lw  and 
plumew  are system noises. As shown in Section 5.1, the perturbative 

accelerations due to the laser ablation are dependent on the rotation velocity and on the distance. 

One needs to consider the thrust will be applied to produce the designed control torque in regions 

which presents similar geometry in terms of normal and control arm (i.e. tangential velocity). Then, 

taking into account also that the control torque will slowly decrease the angular velocity, the 

tangential velocity variation will be limited, and thus the magnitude of the exerted acceleration. 

This is especially true if the control acts such that spacecraft maintains its distance almost fixed. In 

this sense the variation in position due the perturbations will produce a variation to laser and plume 

accelerations which can be assimilated to noise processes, whose instantaneous dynamics is null in 

the short period. The dynamic equations associated to the acceleration from the laser ablation and 

plume impingement are thus time independent. It has been hereafter considered a level of system 

noise equal to the 10% of the actual value of the acceleration due to the laser and plume 

impingement at the beginning of each simulation. Treating these accelerations as biases is a strong 

assumption because it implies that their dynamics is slowly varying with time. In order to integrate 
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Eq.(185), one needs to update the instantaneous value of h

ar , 
h

θ  in Eqs.(165) and (166) with the 

estimated current value of the acceleration exerted on the asteroid:: 

 
h h

L Laa n                                                                   (186) 

The total perturbative acceleration acting on the spacecraft is then given by: 
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where the gravity gradient depends on the spacecraft position and attitude of the asteroid.  

By using the estimate theory formalism the integration of the nonlinear discrete-time process in 

Eq.(185) and measurement equations in Section 5.5.1 can be expressed as: 
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with  ~ 0,k kNw Q  the system noise in Eq.(185),  ~ 0,k kNς R  is the measurements noise in 

Eq.(184). The matrix kQ  is the process noise covariance matrix and the matrix kR  is the 

measurement noise covariance matrix.  

In order to implement the UKF, we have to tailor the formulation for this kind of problem. The set 

of sigma points i  are transformed through the nonlinear function as: 
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where 
kq  represents the estimated attitude of the asteroid at step k . In order to evaluate Eq.(189), 

one needs to have an estimate of the attitude of the asteroid between the time steps 
kt  and 

1kt 
. In 

this work this is given by integrating the first set of equations in Eq.(171), by using the estimated 

values of quaternions 
kq  and asteroid angular velocity 

kω  as follows: 

 1 1

1
( ) ( )

2
k k k k k kt t   q q Π ω q                                             (190) 

The estimation process is hereafter specialized for the current problem. The mean value and 

covariance of z  are approximated using the weighted mean and covariance of the transformed 

vectors: 
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The predicted mean of the state vector k


x , the covariance matrix 

,x k

P  and the mean observation k


z  

can be approximated using the weighted mean and covariance of the transformed vectors: 
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The updated covariance 
,y kP  and the cross correlation matrix 

,xy kP  are: 
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Finally, the filter state vector , , , ,[ , , ],
h h h

h T

h h h x y z L plumk ex y z v v v a ax  and covariance updated matrix 

,x kP  are calculated as in Eq.(46).  Note that, the estimation process produces h

ar  and 
h

θ  by 

integrating Eqs.(165) and (166), and using the value La  estimated through the Kalman filter. 

Once estimated values for the position and velocity of the spacecraft in the Hill’s reference frame 

are available, one can calculate the displacement and velocity variation from the nominal position 

as: 
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where 0t

hx   m, 50t

hy    m, 0t

hz   m are the components of the nominal position, while the 

nominal velocity is zero on all the components. The estimated perturbative acceleration is then: 
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5.5.3 Asteroid Rotational Motion Reconstruction 

In order to control the rotational motion of the asteroid, it is necessary to estimate its instantaneous 

angular velocity. Moreover knowledge of the asteroid’s angular velocity is required to compute an 

estimate kq  of the asteroid attitude from the prediction step of the UKF. Tracking feature points on 

the asteroid’s surface can be used to measure the asteroid’s angular velocity.  

By applying the time derivative to both sides of the pin-hole camera model in Eq.(139) (Longuet-

Higgins et al., 1980), one can relate the optical flow with the angular and linear velocity of the 

asteroid: 
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with: 
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 
ω p V                                        (197)                                                 

The vectors /B CV  and /B Cω  are respectively the linear and angular velocities of the asteroid relative 

to the camera, assuming that the camera is static in the Hill’s reference frame. The relative velocity 

vector is defined as: 

 /

h

B C HCV R r                                                             (198) 

The vector [ , , ]a a a a T

c c c cx y zp  gives the position of a point on the surface of the asteroid with respect 

to the centre of the Hill’s reference frame, projected onto the reference frame of the camera: 
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a

c HC surfacep R x                                                         (199) 

For a single point on the surface of the asteroid Eq.(196) can now be written as: 
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with: 
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The angular velocity can be obtained directly from Eq.(200) or by re-arranging the equation so that 

the angular velocity becomes a function of the linear velocity: 
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/

( , )
B C

cf
ω

M r  and 
/

( , )
B C

cf
V

M r  are the partitions of ( , )cfM r  relatively to the angular and linear 

velocity of the asteroid. The algorithm requires knowing the relative position and relative attitude 

between the spacecraft and the asteroid to determine the relative position of each feature points. The 

relative position and velocity of the spacecraft with respect to the centre of mass of the asteroid can 

be extracted from the proximity motion reconstruction. It is here assumed that the centre of mass of 

the asteroid and the centre of the Hill’s reference frame almost coincide except for an error bias

CoMx . 
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Furthermore, it is assumed that the attitude of the asteroid at time 
0t  and the position of each 

surface point with respect to the centre of mass are obtained from an observation campaign prior to 

the beginning of the ablation process. An estimation of the a

cp  vector at any time during the ablation 

process can be obtained from: 

0

0( , )( )a a a a bias

c c c c SC attitude HC surface SC attitude HC surface CoM surfacex y z  
      p R R x R R R q q x x ς    (203) 

where 0

surfacex  is the actual position of a feature point at 0t , 
surfaceς  is an error which derives from the 

camera and LRF measurements required to build a three dimensional map of the asteroid,  

SC attitudeR  is the attitude matrix of the spacecraft, which affects the pointing of the camera on two 

axes and 0( , )kR q q  is the rotation matrix from the initial asteroid’s attitude 0q  to the current 

attitude q . The position of a feature point with respect to the camera then becomes: 
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If one then introduces the pixelisation error, then the two matrices in Eq.(202) become: 
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and u  and v  are approximated with / t u at two consecutive instants of time 1k   and k . The 

flow field then becomes: 
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Introducing Eqs.(203), (204), (205) and (206) into Eq.(202) and solving for the angular velocity 

give: 
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Finally, the estimated angular velocity kω  to be used in Eq.(173) is obtained by rotating 

/( )k k B Cω R q ω  from the camera frame to the asteroid frame. Including other points’ 

measurements, to give additional information and filter the error, /B Cω  can be estimated using the 

batch least squares method: 
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where the   sign stands for pseudo-inverse, and all the points give equal contribution to the 

solution (i.e. the weight associated to their corresponding information is equal to 1). The algorithm 
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allows extracting velocity and attitude rates from at least three tracked feature points from two 

consecutive frames.   

As an example, Figure 58 reports the error on the estimation of the angular velocity during 14 days 

operations time. A total of 10 features were considered at each time. The pixelization error 
p  is 

equal to the dimension of the pixel (78.5 μm according to Table 24). The asteroid surface is known 

with an accuracy 
surfaceς  of 15 cm (3-σ) and the bias bias

CoMx  on the position of the barycentre is 20 cm 

(3-σ), which is equal to about 10% of the mean radius. The position and velocity of the spacecraft, 

h r  and hr , are estimated with an accuracy of 20 cm and 0.1 mm/s (3-σ) respectively. An attitude 

determination error on 2 axes of 10
-3

 degrees is also considered. The figure shows that with the 

assumed measurement errors, the system is able to determine the angular rate as precise as few 

milliradians per second. 

 

Figure 58. Angular velocity estimation error. 
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For sake of comparison if one derived the angular velocity from Eq.(200) instead of Eq.(207) the 

accuracy would be lower, as shown in Figure 59. In the case of Eq.(200), the error is higher with 

respect to the case of Eq.(207) because the optical flow method is not able to extract the linear 

velocity as accurately as the one obtained from the Kalman filter.  

 

Figure 59. Comparison between different methods of optical flow. 

5.6 Results 

The selected candidate for the deflection mission is here assumed to be the Near Earth Object 2006 

RH120 whose characteristics are listed in Table 22. The criteria for the candidate selection are 

explained in Vasile et al. (2013). Asteroid 2006 RH120 is a small rocky asteroid with an estimated 

mass of 130 tonnes.  

Rot. Only 
 

Full method 
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Table 22. Orbital elements of 2006 RH120 at Epoch MJD2000 2456200.5 (12 September 2012) 

(http://ssd.jpl.nasa.gov/sbdb.cgi?sstr=2006%20RH120). 

Orbital Element Value 

a 1.033252056035198 AU 

E 0.02447403062284801 

q 1.007964213574672 AU 

i 0.5952660003048117 deg 

node 51.14334927580387 deg 

M 221.2498016727181 deg 

tp 2456348.356001016605 JD 

period 383.6258326667335 days 

n 0.9384143854377558 deg/d 

Q 1.058539898495724 AU 

It is assumed here that the ablation process starts when the asteroid is at perihelion. The initial 

angular velocity is  / 0.0052,0.0052,0.0332 rad/sB

T

C ω . As before, the asteroid is assumed to be 

an ellipsoid with 3Ia   m, 2.3Ib   m and 1.5Ic   m, and its principal axes of inertia are aligned 

with the Hill’s frame axes at the beginning of operations. 

Table 23 reports the spacecraft characteristics considered for the simulations. The spacecraft is 

assumed to be a cube with two symmetric deployable solar panels. The solar arrays are assumed to 

point towards the Sun for the whole simulation. In this way the cross section eqA  results to be less 

than 1/5 of the area MA  subjected to the solar radiation pressure. The initial state vector of the 

spacecraft is 4 4 4

0 [0.1 50.1 0.1 10 / 10 / 10 / ]Tm m m m s m s m s   x . 

In addition to the example presented in this section, the algorithm was run for different initial 

angular velocities and configurations. In particular it was tested on three worst case scenarios in 

which the largest component of   was directed along one of the principal axis of inertia with 

http://ssd.jpl.nasa.gov/sbdb.cgi?sstr=2006%20RH120
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different spacecraft-asteroid relative configurations, and the matrix of inertia was dense with extra-

diagonal terms with a magnitude up to 30% of the minimum inertia value. 

Table 23. Spacecraft characteristics. 

Element Value 

Mass 500 kg 

RC  0.18 

MA  8.4 m
2 

eqA  1.6 m
2
 

The camera is assumed to have a 30 degrees field of view, 2048 pixels resolution, and a 30 cm focal 

length. The focal length and resolution are such that at 50 m distance an object of approximately 4 

m diameter occupies about 10 degrees of the field of view. In this way, it is assured that the asteroid 

remains completely within the camera’s field of view during ablation.  

Table 24 reports the magnitude of the errors considered during the simulation and estimation 

process. 

Table 24. Errors in the measurements model. 

Error Value  

p  78.5 μm 

l  10 cm  (1σ) 

cameraς  2.6∙10
-3

 deg/s (1σ) 

plume  5% measured value (1σ) 

S/C Attitude determination 10-3 deg/s on two axes (1σ) 
bias

CoMx  20 cm (3σ) 

surfaceς  15 cm (3σ) 

The accuracy of the LRF l  is consistent with the current state of the art for this kind of technology 

(Hashimoto et al., 2003). A 5% random variation in the measured mass flow rate was added to take 
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into account a possible fluctuation in the yield of the ablation process. The attitude determination 

error on 2 axes corresponds to the accuracy of a star-tracker (Yim et al., 2000). 

5.6.1 Spacecraft Proximity Control 

Figure 60 shows the error in the filter estimates for both position and velocity. It is assumed that the 

spacecraft starts ablating with an initial state estimation  

4 4 4

0 [0.2 50.2 0.2 2 10 / 2 10 / 2 10 / ]Tm m m m s m s m s      x . From Figure 60a), the 

estimate is as precise as 20 cm in position, while in Figure 60b) the velocity error is less than 0.1 

mm/s. The higher error is along the y-component, which is almost coincident with the pointing 

direction of the LRF.   

 

Figure 60. Spacecraft Control: estimated position (a) and velocity error (b). 

Conversely, when one considers the actual error with respect to the desired position (i.e. spacecraft 

placed with zero velocity at 50 m along track), the discrete control sometimes fails to maintain the 

spacecraft within 0.4 m as shown in Figure 61a). For clarity we report also the norm of the 

a) b) 
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controlled position error. The maximum error in velocity in b is around 1 mm/s which is obtained at 

the boundaries of the control box.  

The change in sign of the velocity components is due to the actuation. Figure 61b) shows that the 

main perturbations are confined in the x-y plane of the Hill’s frame. This is consistent with the fact 

that the solar radiation pressure is directed along x-axis and that the force has to be contained in the 

x-y plane in order to apply a control torque mainly directed as z-axis. 

Nonetheless, the peaks outside the control boundaries are not detrimental to the overall process 

itself because their frequency and the magnitude are low, also considering the actual point the laser 

impinges. In fact Figure 62 reports the actual defocusing due to spacecraft and asteroid rotation 

control, which results contained within the Rayleigh length of 3 m.  

 

Figure 61. Discrete Control: actual controlled position (a) and velocity error (b). 

b) a) 
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Note that the combination of the visibility, rotation of the asteroid and constraint on the angle 

between the laser and the normal vector directions lead to impinge mainly on surface spots closer to 

the spacecraft (i.e. below the focussing length). 

 

Figure 62. Discrete Control: actual defocusing due to spacecraft and asteroid rotation control. 

5.6.2 Estimated Perturbations during Proximity Operations 

Estimating the perturbations acting on the spacecraft in real time is required to implement the 

control strategy defined in Section 5.2. Figure 63 shows the trend of the estimated perturbations due 

to laser ablation with respect to the actual values.  
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Figure 63. Estimated acceleration from the laser and plume force vs. the actual acceleration. 

The perturbative force due to the ablative process increases with time as one can see from the 

figure. This is due to the fact that the angular velocity diminishes and the efficiency of the ablative 

process increases. After about 12 days it converges to a nearly constant value, which corresponds to 

a rotational velocity of about 10
-3

 rad/s. When the asteroid reaches this rotational velocity the 

rotational control is terminated. The figure shows that there is a good agreement between the actual 

and the estimated perturbative accelerations, although the level of measurements noise affects the 

steady state estimate.  

5.6.3 Asteroid Rotational Velocity Control 

In the absence of any perturbation acting on the spacecraft, the implemented rotation control 

strategy would produce an effective reduction of the asteroid angular velocity in about 6.2 days as 

shown in Figure 64, where the components of the angular velocity in the body fixed frame are 

represented. As one can see the control torque acts efficiently along the three directions. The 

angular velocity, as well as the third component, decreases almost monotonically as shown in 
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Figure 64a),b). The other two components converge towards the zero velocity condition with 

progressively decreasing oscillations (Figure 64c),d)). When the spacecraft proximity control and 

all the perturbation effects, as well as the angle between the laser beam and the normal to surface, 

are included in the model, a similar trend in a different time is obtained as shown in Figure 65.  

 

 

Figure 64. Asteroid rotation control with spacecraft fixed at 50 m. a) Absolute magnitude and 

b) z, c) x and d) y axes of the body fixed frame. 

a) b) 

c) 
d) 
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 Also in this case the components of the angular velocity refer to the body fixed frame. The inertia 

matrix of the asteroid is almost diagonal with the extra-diagonal terms equal to 1/100 of the 

maximum inertia.   

  

  

Figure 65. Rotational velocity of the asteroid considering the actual incidence of the laser. a) 

Absolute magnitude and b) z, c) x and d) y axes of the body fixed frame. 

Also in this case, Figure 65a) and c) show a similar trend for the angular velocity and the bz  

component with oscillations in the final part of the simulations. The time required to almost halt the 

a) b) 

c) d) 
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asteroid rotation is about 12 days. It takes about 5 days more than the case where the spacecraft is 

fictitiously maintained fixed at 50 m from the asteroid and the laser beam cross section varies only 

because of the rotation of the asteroid. From Figure 65c) and d) one can see that the other two 

components converge towards zero as the previous case after 12 days, then all the components 

present oscillations. These are due to the fact that the main component of the angular velocity 

moves continuously among the components. The oscillations in the position of the spacecraft, as 

shown in Section 5.6.1, cause also the laser beam to periodically defocus. Moreover, the whole 

control procedure is affected by the accuracy level provided by the optical flow method and the 

estimated position of the spacecraft with errors in the exerted control torque. 

Regarding the other tests mentioned in Section 5.6, we found that the worst case was the one with 

all the angular velocity directed along the tangential direction and coincident with the maximum 

axis of inertia (at initial time), which we show in Figure 66. It required about 28 days converging to 

10
-3

 rad/s. The reason for the extended duration is of course due to the relative spacecraft-asteroid 

configuration where the laser can be pointed where the control arms are less effective. To speed up 

the deceleration the spacecraft will be required to hover at fixed position in an out of plane 

configuration. In this way the control time will go down to about 12 days as in the case we are 

analysing. So once the rotation is almost halt the spacecraft can be position along the tangential 

direction to maximise the deflection. 
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Figure 66.  Rotational velocity of the asteroid with angular velocity directed as the orbit 

tangent and aligned to the maximum axis of inertia. Spacecraft is also placed along the 

tangent. 

5.6.4 Effect of the Asteroid’s Rotation on its Deflection 

The sublimation thrust in Eq.(156) induces a slow and constant variation of the orbit of the asteroid. 

As explained in Section 5.4, the asteroid angular velocity control is performed until the angular 

velocity reaches a value of 10
-3

 rad/s. It is assumed that the deflection action on the asteroid starts at 

asteroid’s perihelion and the rotation control is active for up to 14 days, as shown in Section 5.6.3. 

It is assumed that, once the desired rotational velocity is reached at time it , the laser beam is 

pointed in such a way that the resulting thrust vector goes through the centre of mass of the asteroid. 

In reality a misalignment of the thrust is expected but can be easily corrected by monitoring the rate 

of change of ω  so that the average thrust vector is as desired. From Figure 67a) it can be seen that 

the thrusting time to achieve a target Iv  of 1 m/s can be decreased from 220 days up to 110 days 

with only 7 days of control of the rotation of the asteroid.  
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Figure 67. a) Thrust time to achieve the target delta-velocity change as function of the initial 

rotational velocity of the asteroid. b) Actual acceleration onto the asteroid as function of time 

with different initial rotational velocities of the asteroid (colour bar). The black portion of the 

lines represents the time needed to achieve the target change in velocity of 1 m/s. 

While the target delta-velocity is independent of the direction of thrust, the effect on the 

displacement from its nominal position at a given point along the orbit (called check-point in the 

following) depends on the direction of the thrust. Let a, e, i,  ,p  and M be respectively the semi-

major axis, eccentricity, inclination, anomaly of the ascending node, anomaly of the pericentre and 

mean anomaly of the nominal orbit of the asteroid. The effect of the deflection is calculated at 

predefined check-points. Let checkt  be the instant of time corresponding to a generic check point.  If 

check  is the true anomaly of the asteroid, and *

check check     the corresponding argument of 

latitude, one can write the variation of the position of the asteroid after deviation, with respect to its 

unperturbed position, by using the proximal motion equations as in (Vasile and Colombo, 2008) 

and (Colombo et al., 2009): 

    checka check p checkt t r A α                                                    (209) 

a) b) 
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where  
T

a h a h a h ax y z     r  with 
h ax 

, 
h ay 

 and 
h az 

 the displacements in the radial, 

transversal and out-of-plane directions in the Hill’s reference frame centred at the unperturbed 

position of the asteroid at the check point (see Figure 68). The vector 

 check

T

p pt a e i M         α  is the variation of the orbital parameters at the 

check-point and the matrix 
checkA  transforms the variation of the orbital parameters in trajectory 

displacements.  

 

Figure 68. Asteroid’s proximal motion. 

The assumption used to compute Eq.(209) is that the variation of the relative position 
a ar  r  is 

small compared to the unperturbed orbit radius checkr , that is a checkr r . 

When a low-thrust deviation action such as the one in Eq.(156) is applied over the interval  i et t , 

where e checkt t  is the time when the manoeuvre ends, the total variation of the orbital parameters 
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 checkp tα  can be computed by integrating Gauss’ planetary equations over the thrusting arc. Note 

that the derivative of M in Gauss’ planetary equations 

2

2 1 sin cosa a
t n

e r rdM b
n a a

dt eav p a
 

  
     

  

 

takes into account the instantaneous change of the orbit geometry at each instant of time  i et t t  

and the variation of the mean motion n due to the change in the semi-major axis along the thrust arc. 

The total variation M  in the mean anomaly between the proximal and the unperturbed orbit was 

found to be (Colombo et al., 2009): 

  check check e i check i i e eM M M n n t n t n t M                                  (210) 

where in  is the nominal angular velocity,  

                                                        
 

Sun

3en
a a





     

is the variated angular velocity and 
2

2 1 sin cos
e

i

t

a a
t n

t

e r rb
M a a dt

eav p a
 

  
      

  
 . 

From Eq.(209) one can compute the effect of the deflection action at the check-points check et t . The 

deflection depends on the direction of the thrust (see Vasile and Colombo, 2008) as visible in 

Figure 69. The figure represents the deviation in Eq.(209) achieved in the thrusting time  i et t as a 

function of the initial rotational velocity of the asteroid at time it . The figure reports also the ideal 

cases in which the thrust is applied along the tangent (black continuous line), normal (dash-dotted 
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line) and out-of-plane (dotted line) direction. The bold black line corresponds to the deviation 

achieved with the actual mean thrust vector. As expected, the deflection is contained between the 

two extremes of pure tangential and pure out-of-plane deflections.   

 

Figure 69. Deviation of the asteroid at the check point as function of the initial rotational 

velocity of the asteroid.  

The reason why the bold black line does not decrease monotonically with the number of revolutions 

is that the mean thrust direction depends on the angular velocity of the asteroid at the end of the 

rotational control phase. Since the control only reduces the angular rate but does not control the 

direction of the angular velocity the resulting direction of the thrust is not purely tangential but can 

have components along all the three directions. 

5.7 Summary 

This Chapter has dealt with the problem of simultaneous spacecraft navigation and asteroid’s orbit 

and attitude control using a laser ablation system for the problem of asteroid’s threat mitigation. In 

order to keep the efficiency of the deflective action at the highest, we have presented a strategy to 
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reduce the asteroid’s rotational velocity, while maintaining the optimal focussing of the laser. For 

this reason a precise guidance, navigation and control system has been implemented to control the 

position of the spacecraft within a limit sphere at a given distance from the asteroid.  

The navigation problem is tackled by considering the use of on-board instruments and combining a 

UKF with an optic flow filter to estimate of the asteroid’s rotational rate, spacecraft trajectory and 

the ablative force. Camera and ranging instruments are used to estimate the spacecraft relative 

motion, while additional information from an impact sensor is used to separate the plume 

impingement contribution from the actual acceleration due to the laser ablation. In this way, it is 

possible to accurately estimate the deflection action on the asteroid without relying on any 

interaction model between the laser and the asteroid. We have showed that laser ablation can be 

employed to reduce the angular velocity of the asteroid by pointing the laser off-barycentre.  

In the considered example it is shown that, if an initial map of the asteroid and estimation of its 

attitude and centre of mass are available, it is possible to decrease the asteroid’s angular velocity in 

less than two weeks of operations with a moderate size laser. It is also demonstrated that the control 

of the rotation can significantly improve the deflection action for the same power at the laser.  

The methodology developed in this Chapter can be extended to de-orbiting space debris around the 

Earth. In fact, also in that case there will be an uncooperative target (the debris) possibly tumbling, 

chased by the laser carrying spacecraft which will have to point the laser beam onto suitable points 

of the surface. By knowing the geometry of the debris, the concept of control arm can be exploited 

to control the rotational velocity of the debris while assuring that the overall effect will drive the 

debris to re-enter the atmosphere.    
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6 Conclusions 

The main contributions of this thesis is the identification and the development of methodologies for 

uncertainty propagation for spacecraft orbit and the application to orbit determination, particularly 

to asteroid’s close proximity operations.  

In this Chapter we will provide an overview of the work done. The main results of this thesis are 

summarised and commented. On the base of the findings of this study, an outline of future works 

and some recommendations are given.  

6.1 Summary and Conclusions  

In order to perform uncertainty analysis and state estimation suitable for complex nonlinear 

problem for spaceflight, we first analysed which techniques can be suitable for uncertainty 

propagation in the orbital dynamics for the practical and nonlinear problem of end-of-life disposal 

in the perturbed Sun-Earth-Moon four-body problem. In general if one wants to achieve higher 

accuracy in the propagation of the mean and covariance matrix, more computational power is 

needed and this will not be cost effective compared to a full MC. The higher order Taylor 

expansions could be a solution because the STTs can be calculated once and then used with simple 

algebraic formulas. Nonetheless if the spacecraft is not close to the nominal trajectory with a small 

deviation, the STTs have to include high terms and the integration time will be more demanding 

than a full MC. The PCE is an interesting tool to study the propagation of the initial dispersion 

around the nominal trajectory and  draw statistical information. We saw that the use of Genz-

Keister sparse grid permits to decrease the number of samples, obtaining results which are very 
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close to the Monte Carlo simulations but at lower computational cost. The accuracy in the model is 

such that not only the statistical parameters (mean, covariance and impact probability) were very 

precise but also the overall reconstructed distributions were described precisely. 

Then we used these techniques to evaluate the propagation of the mean and covariance matrix 

within the estimation process. This propagation step is in fact fundamental to obtain an accurate 

estimate of the uncertain trajectory. We investigated two main families of filters, i.e. Kalman filters 

and the H
 filters also called minmax filters. Having a common structure the comparison is 

straightforward. The measurements are included via a suitable gain to obtain a state estimate update. 

The analysis of the Sun-Earth-Moon four-body problem and the Sun-asteroid three-body problem 

provided the test cases to identify the right balance between precision and computational cost. 

The unscented H-infinity filter showed the best compromise thanks to the hybrid characteristics 

between the Kalman and the H-infinity filter, and the use of a tuning parameter with the UT 

providing a satisfactory propagation of mean and the covariance. But also the more classical UKF, 

EKF and EHF provided good results with low CPU burden. Particle filters such as the UPF and 

EnKF based on polynomial chaos expansions are very accurate as well but they are very demanding 

for the required computational time.  

Although in general not very much attractive when the nonlinear effects are strong, we saw that the 

propagation step via STTs offers a precious tool to include the effects of uncertainty in designing 

suitable correction manoeuvres which statistically drive the trajectory onto the nominal one. Such 

an approach represents a valid alternative to the classical design based on Monte Carlo simulations.  
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Having identified a suitable filter technique we applied it to the case of a formation flying around 

asteroid 99942 Apophis. We saw that by complementing the spacecraft to asteroid information from 

camera and ranging instrument with inter-spacecraft measurements the system can achieve better 

estimations and higher accuracy in trajectory control. In particular the navigation accuracy is 

improved by sharing the information within the members of the formation. Moreover the system 

proved to be failure tolerant when several instruments fail or provide very poor information.  

Exploiting the optical information from the formation, the possibility to refine the asteroid’s 

trajectory estimate prior to starting the orbit acquisition was also considered. It was shown for 

different approach configurations that the combined use of on-board and ground station 

measurements can enhance the asteroid’s orbit estimate during the approach phases. There is a 

significant improvement in the estimated position accuracy, about 3 orders of the magnitude while 

the velocity is as precise as 1 cm/s. A better knowledge of the asteroid’s orbit can be used for 

planning correction manoeuvres, thus approaching the asteroid could be accomplished with less 

propellant consumption. Besides, this technique can also be used to refine the trajectories of other 

potentially hazardous asteroids which the spacecraft formation might encounter during deep space 

navigation phases. 

Finally we investigated an approach to control the rotational motion of a small asteroid for a 

scientific demonstrator, while the spacecraft deflects the asteroid’s trajectory through laser ablation. 

This task required the simultaneous control of both the spacecraft relative position and asteroid’s 

angular velocity. Analytic formulas for rotational control were developed in order to maximise the 

control torque along the instantaneous angular velocity. For this purpose the spacecraft proximity 

motion and the instantaneous rotational velocity of the asteroid were estimated through a camera 
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and ranging instruments. A precise guidance, navigation and control system was implemented to 

control the position of the spacecraft within a limit sphere at a given distance from the asteroid. 

Eventually we estimated  the perturbations due the laser ablation using a procedure employed for 

biases,  by including the additional information coming from an impact sensor without relying on 

ablation model (except for the asteroid geometry). It was shown that laser ablation can be employed 

to reduce the angular velocity of the asteroid by pointing the laser off-barycentre. If an initial map 

of the asteroid and estimation of its attitude and centre of mass are available, it is possible to 

decrease the asteroid’s spin rate in few days of operations with a moderate size laser. The control of 

the rotation can significantly improve the deflection action for the same total mass into space. 

6.1.1 Key Contributions 

The key contributions presented with this thesis can be summarized as follows: 

 It is for the first time considered the use of Polynomial Chaos Expansions to study a 

spacecraft trajectory evolution under uncertain initial conditions for the case of disposal 

strategy. Compared to a full MC simulation, the use of PCE results in being the most 

computationally effective methods, in terms of CPU time and accuracy of results, when 

compared to other methods such as the high order expansions tensors, for their capability to 

include the effects of non-linearities over long propagation intervals. 

 It is demonstrated through several examples and applications that the spacecraft trajectory 

estimation through the Unscented Kalman Filter outperforms other Kalman filters, mainly in 

terms of balance between accuracy and computational cost. UKF is the best choice for on-

board application, especially when the system and measurements noises are (quasi) 
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Gaussian. When no precise a-priori information relatively to these noises is available, the 

minmax variant of the UKF, that is the Unscented H-infinity, has to be preferred for its 

capability to minimize the expected error when the system and measurements noises are 

maxima. 

 We showed that a disaggregated spacecraft formation where relative measurements are being 

shared and fused into the UHF is fault tolerant to multiple sources of instruments failures. 

The findings is not limited to the explored scenario but can be extended to any spacecraft 

formation where inter-satellite links are available.  

 It is proposed and analysed the combined use of ranging and optical measurements from a 

two-spacecraft formation to refine asteroid’s trajectory knowledge during deep space flight 

to avoid implementing complex approach strategies (i.e. dog-legs manoeuvres). The method 

can be applied to the approach phases or during deep space missions to improve known and 

newly discovered asteroid’s orbits. It is shown that depending on the relative configuration 

this technique can accurately determine the trajectory of the asteroid.   

 It is for the first time treated the problem of simultaneous spacecraft navigation and 

asteroid’s orbit and attitude control using a laser ablation system for the problem of 

asteroid’s threat mitigation. This navigation problem is tackled by considering the use of on-

board instruments (camera, altimeter and impact sensors) and combining a UKF with an 

optic flow filter to estimate of the asteroid’s rotational rate, spacecraft trajectory and the 

ablative force. The asteroid’s control is solved with the developed concept of control arm 

which allows reducing the overall angular velocity by identifying the points where resulting 

control torque acts mainly in the opposite direction of the rotational velocity vector. 
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6.2 Limitations of This Work 

During the final phases of the impacting trajectory in Section 2.3.2 we had to use a simplified 

approach to evaluate the distribution on the surface. This was due to the strong deformations and 

stretch distribution can incur because of gravity field of the Moon, which leads the particles to 

impact at different times. If one tried to represent the final phase using the PCE approach, a very 

high order multivariate, and thus a very dense sparse grid, would be required. As a consequence one 

would lose the computational convenience of the PCE technique over a full MC analysis. This 

difficulty in dealing the last and closest phases with PCE suggests that additional study is required 

to handle the strong deformation. 

For the formation analysis of Chapter 4, we considered a minimum set of instruments to perform 

the mission with the possibility to share the necessary information from the other spacecraft in the 

case of failure. Nonetheless having used a fixed configuration we did not take into account the fact 

that some spacecraft could have their intersatellite link obstructed by the asteroid as well as no 

possibility to use the camera for optical navigation. Moreover we do not address the technological 

requirements for the intersatellite link to point towards the other member of the formation, although 

expensive low power flash-LIDAR camera could be used.  

During the asteroid deflection scenario of Chapter 5, we used a simplified shape model for the 

asteroid, where the composition and geometry characteristics were basically well defined (despite 

the position of the centre of mass). This was in line with the way the NEOs missions have been 

carried out, where a global mapping campaign of the asteroid is performed by ground using the 

information taken from the spacecraft. Nonetheless, accurately knowing the geometry (i.e. the mesh 
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of the asteroid and local normal) could be too expensive for the on-board computer. In order to be 

compliant with reduced computational resources a low fidelity mesh could be stored and used. This 

of course could impact the overall performance of the deflective action and might produce a change 

in the deflection strategy itself. Moreover we assumed that there is an actuation system (either the 

laser optics or the attitude control) able to point the laser on the selected points on the surface. The 

simulation of the whole GNC system, comprising the attitude dynamics and control, could be an 

additional factor which could affect the efficiency of the deflective action. 

6.3 Remarks for Future Work 

In addition to the research studied in this thesis, some analyses and hints for future research which 

could complement or improve the results are presented. These considerations are given hereafter. 

An important area of research is the application of PCE to the propagation and control of asteroid’s 

trajectory deflection under uncertainty. In fact for some asteroids the deflection could push the 

object through key-holes which would increase the impact risk rather than reducing it. This event is 

something which needs to be thoroughly assessed. Future works will see the application of PCE to 

the study of uncertainty effects on other trajectories which can involve multi-revolutions and fly-

bys. Given the difficulties to handle highly perturbed sections of the propagations during close 

encounters where region of the uncertain space will impact the surface of the body, a smart 

approach could be required. For instance one could first perform an analysis similar to the one of 

Chapter 2 to filter out impacting particles generated through the sampling of the reconstructed PCE 

distribution. Then the surviving particles can be used to reconstruct the post encounter distribution 

when these are sufficiently far from the body. Eventually the same techniques, based on sparse 
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grids, could be used on the post-encounter reconstruction. Alternatively to this discrete procedure, 

one could think of adaptively dividing the uncertain region in a suitable number of sub-domains, 

where the degree of the polynomials can be maintained relatively low. For the sub-domains creation 

the solution of Wittig et al. (2014) developed for differential algebra techniques can be a starting 

point of investigation. Moreover one could include other uncertain variables such as the attitude and 

solar radiation pressure to analyse the evolution of the trajectory with PCE.      

In recent years there have been developed a great number of filtering techniques based on the 

Kalman and H-infinity filter. An interesting area that could be applied to the spacecraft navigation 

for mission to minor celestial objects is represented by the adaptive filtering and control which have 

been applied to several fields, most notably aeronautics (Vrabie et al., 2013) with few application to 

spacecraft orbit determination (for example relative navigation in Li et al., 2015). These methods 

are particularly appealing for their capability to deal with complex systems that have unpredictable 

parameter deviations and uncertainties such as the imprecise knowledge of the gravity field of a 

minor body. Autonomous adaptive techniques can be used to characterise unknown systems in 

time-variant environments. The advantage of such an approach will be to dramatically decrease the 

number of ground operations which are required to characterize the asteroid’s environment before 

spacecraft final approach. In this way the navigation system would be adaptable to any size of 

asteroid with little support from Earth. Of course this capability needs concurrent improvement in 

the hardware and artificial intelligence since the system has to be smart and computationally 

powerful enough in order to auto-tune itself and make decisions.  

In the case of formation flying scenario, an improvement in the dynamic model could include more 

gravitational harmonics as well as the perturbations due to the asteroid tugging and surface ablation. 
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The interaction will produce deviations from the nominal asteroid trajectory, which implies that it 

will be necessary to estimate the asteroid’s trajectory during the formation proximal motion and 

operations. Future research could analyse the influence of the number of the spacecrafts in the 

formation on navigation performance. Moreover it could consider a redundant set of sensors, and 

then study suitable spacecraft failure detection, identification and compensation systems for 

different phases. In the case the ranging instruments failure, for instance, a camera could supply 

enough information to the spacecraft to navigate if the physical size of the asteroid had been 

identified before the failure. When the spacecraft is in shadow and if the camera is able to identify 

the border of the body, this could provide some information to obtain a rough estimation to navigate 

relatively safe at least for short period. Alternatively a suitable technique based on differential 

correction guidance might be necessary to estimate the size and then navigate safely without the 

intervention from ground.  

For the deep space approach of the two spacecraft, one could pursue two possible investigations. 

The first one is to process the on-board angular measurements and ground tracking in conjunction 

with dogleg manoeuvres to improve the asteroid trajectory estimate. The second is to implement a 

fully autonomous on-board system on the two spacecraft, similarly to the AutoNav system used by 

Deep Space 1 (Bhaskaran, 2012), with the possibility for them to communicate through a low gain 

antenna which can be used also as a range measurements (given the needs of a precise on-board 

clock). 

For what concerns the deflection of asteroids, future research could foresee a trade-off between the 

attitude pointing and a mechanism pointing for the laser through a complete GNC simulator where 

the attitude of the spacecraft is simulated. This could also drive the selection of different control 
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pointing strategy, taking into account that millions of laser focusing cycles can be envisaged for a 

mission lasting several years. Moreover a practical study of the navigation strategy, taking into 

account the control complexity of the system, can be performed over other contactless solution to 

assess the impact on the total deflection during the same operative interval. In all the case non-

uniform shapes could be considered extending the results to bigger asteroids, to evaluate the 

robustness of the whole strategy against unknown geometrical and material characteristics. 
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