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Abstract

To ensure the safe operation of many safety critical structures such as nuclear

plants, aircraft and oil pipelines, non-destructive imaging is employed using piezo-

electric ultrasonic transducers. These sensors typically operate at a single fre-

quency due to the restrictions imposed on their resonant behaviour by the use of

a single length scale in the design. To allow these transducers to transmit and

receive more complex signals it would seem logical to use a range of length scales

in the design so that a wide range of resonating frequencies will result. In this the-

sis we derive a mathematical model to predict the operating characteristics of an

ultrasound transducer that achieves this range of length scales by adopting a frac-

tal architecture; the fractal in this case being the Sierpinski gasket. Expressions

for the electrical and mechanical fields that are contained within this structure

are expressed in terms of a finite element basis. A renormalisation approach is

then used to calculate the key components from the discrete matrices that arise.

The propagation of an ultrasonic wave in this transducer is then analyzed and

used to derive expressions for the non-dimensionalised electrical impedance and

the transmission and reception sensitivities as a function of the driving frequency.

Comparing these key performance measures of the fractal transducer to an equiva-

lent standard (Euclidean) design shows that the fractal devices have a significantly

higher reception sensitivity and a significantly wider bandwidth.
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Chapter 1

Introduction

1.1 Motivation and background

Ultrasonic transducers are devices that convert electrical energy into mechanical vi-

bration and conversely can convert mechanical energy into an electrical signal [1–3].

These devices can be used to interrogate a medium by emitting a wave (electrical

to mechanical energy) and then listening to the same wave after it has traversed

the medium (mechanical to electrical energy). Piezoelectric ultrasonic transducers

typically employ composite structures to improve their transmission and reception

sensitivities [4–8]. Many biological species produce and receive ultrasound such as

moths, bats, dolphins and cockroaches. The man-made transducers tend to have

very regular geometry on a single length scale whereas the natural systems exhibit

a wide variety of intricate geometries often with resonators over a range of length

scales [9–18]. Due to this characteristic, man-made transducers are unable to oper-

ate over a wide range of frequencies and hence result in transmission and reception

sensitivities with narrow bandwidths. The resolution of ultrasonic imaging is in-

timately linked to the bandwidth of the transducer, with wide bandwidth devices
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corresponding to the best resolution. One approach to designing a new transducer

is to experimentally assess its operating ability, however this is very time consum-

ing. Each device requires materials to be sought, cut to the desired shape, bonded

to other components such as matching and backing layers, and is expensive and

time consuming. In addition, to determine its transmission sensitivity the device

has to be immersed in a water tank, input voltages of different frequencies applied,

and a hydrophone placed at some distance from the transducer to monitor the out-

put. An assessment can also be made by connecting the transducer to an electrical

circuit and measuring its electrical impedance over a range of frequencies. Given

the large number of variables present in any design then the use of mathematical

models to assess radically new concepts such as that proposed in this thesis is fully

justified. Hence, to assess the benefits of having transducers with a wider range

of length scales it would be useful to build mathematical models of them. That

still leaves the question as to what particular design we should choose for this

wideband transducer. One structure whose geometrical components consist of a

range of length scales is a fractal [19–21]. Another motivating factor for focusing

on a fractal design is that there have been a number of mathematical approaches

which describe wave propagation in fractal media in other applications [22–31].

1.2 Literature review

1.2.1 Ultrasound

Ultrasound is an oscillating sound pressure wave with a frequency greater than

the upper limit of the human hearing range (20 Hz - 20 KHz). current ultrasound

technology ranges from 20 KHz to 10 MHz which is then subdivided into three

main regions: low frequency, often used for high power ultrasound (20 - 100 KHz);
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intermediate frequency, where medium power ultrasound is often used (100 KHz - 1

MHz); and high frequency, for low power ultrasound applications (1 - 10 MHz) [32–

34].

1.2.2 Ultrasound applications

Low frequency, high power ultrasound is used in sonar (SOund Navigation And

Ranging) systems [35]. Such systems operate over a very large spatial range in

a fluid and mimic the sensor configuration of echo locating bats. Such systems

have recently been applied in sensor-based robotics [36]. Specific sonar applica-

tions require many space-time processing procedures and associated tradeoffs. To

optimize acoustic performance, system analysis and design should reflect the dy-

namics of the medium, sonar and target [37–41]. The examination of welds is of

particular interest to the Non-Destructive Testing (NDT) community, given their

role in safety critical structures in nuclear power plants, aero engines, pipelines,

etc. They are subject to cyclic loads and, as with any type of bond, constitute

the weak point of the structure [42]. Ultrasonic testing is the most commonly

used method in NDT and is one which greatly benefits from modelling throughout

the design of the ultrasound transducer and the signal processing algorithms in

an inspection process [43–45]. Ultrasound techniques are relatively cheap, simple

and energy efficient, and have also been used in non-imaging applications and,

for example, have become an emerging technology in food processing. Ultrasound

technology used in food systems are divided as low and high intensity ultrasound

applications. The changes to the physical properties of ultrasound, such as scat-

tering, attenuation and acoustic velocity caused by food materials have also been

used in food quality assurance applications [46–50]. Ultrasound has been used in

wastewater sludge pretreatment [51,52]. Municipal wastewater sludge, particularly
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waste activated sludge (WAS), is more difficult to digest than primary solids due

to a rate-limiting cell lysis step. The cell wall and the membrane of prokaryotes

are composed of complex organic materials, which are not readily biodegradable.

The exposure of the microbial cells to ultrasound energy ruptures the cell wall

and membrane and releases the intracellular organics in the bulk solution, which

enhances the overall digestibility. Therapeutic ultrasound is defined as the use

of ultrasound for the treatment of diseased or injured organs or bodily struc-

tures [53,54]. There were many early attempts in the past to use ultrasound for

therapy for a variety of applications and these have led to clinical applications

which are now used routinely. Such progress has been made possible by a number

of factors including advances in transducer design, more accurate measurement

and calibration of acoustic power and careful experiments to determine the precise

nature of the chemical processes taking place during and following the exposure

of tissue to ultrasound [55,56]. Applications of ultrasound in medicine for thera-

peutic purposes are now well established. Low-power ultrasound of about 1 MHz

has been widely applied since the 1950s for physical therapy in conditions such as

tendinitis and bursitis [57–59]. In the 1980s, high-pressure-amplitude shock waves

came into use for mechanically resolving kidney stones, and lithotripsy rapidly re-

placed surgery as the most frequent treatment choice [60–62]. The use of ultrasonic

energy for therapy continues to expand, and approved applications now include

cataract removal [63–65], surgical tissue cutting and hemostasis, transdermal drug

delivery [66,67], bone fracture healing [68,69] and prostate cancer [70,71]. There

are of course many uses of ultrasound imaging in medicine including the screening

in pregnancy and detection of abnormalities in early pregnancy [72–76]. Therapeu-

tic ultrasound typically has well-defined benefits and risks; undesirable bioeffects

can occur, including burns from thermal-based therapies and severe hemorrhage
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from mechanical-based therapies (eg, lithotripsy) [55,77]. High intensity focused

ultrasound (HIFU) offers a promising method for hemorrhage control [78]. An im-

portant advantage of HIFU is that it can deliver energy to deep regions of tissue or

in difficult to access anatomical regions where hemorrhage is occurring, allowing

cauterization at depth of parenchymal tissues [79]. Ultrasound has been used to

evaluate musculoskeletal injuries in athletes [80–84]; however, ultrasound applica-

tions extend well beyond musculoskeletal conditions, many of which are pertinent

to athletes. Ultrasound can potentially be used to assist athletes with monitor-

ing their muscle glycogen stores and the diagnosis of multiple nonmusculoskeletal

conditions within sports medicine [85–87]. The first ultrasound scoring system of

tendon damage in Rheumatoid Arthritis (RA) has also been developed [88–90].

Currently, there are researchers focusing on using microbubbles as a transporta-

tion mechanism for localized drug delivery, specifically in the treatment of various

cancers, where high power ultrasound is used to burst the microbubbles and release

their contents [91–100]. In many industrial processes high power ultrasound is used

to noninvasively agitate a liquid using ultrasonication [101]. Sound waves propa-

gate into the liquid media resulting in alternating high-pressure (compression) and

low-pressure (rarefaction) cycles. During rarefaction, high-intensity sonic waves

create small vacuum bubbles or voids in the liquid, which then collapse violently

(cavitation) during compression, creating very high local temperatures [102–104].

1.2.3 Fractals

For the explanation of a fractal, we will give the following as a working definition.

Lets think about a ball of string which can be observed as a three-dimensional

ball, at one level of enlargement, or, upon closer examination, as a one-dimensional

string. The string tries to fill a three-dimensional space, but cannot complete this
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action because of the gaps in the ball of string. As we expand the string, we can

define a dimension (fractal dimension) to the object which captures its space-filling

capacity at the level of enlargement. In our example, this is going to be a real

number that decreases from three to one. Normally it is going to be non-integer

that provides a description of how well the object fills the topological dimension

with which it is surrounded. The idea of non-integer dimension is one feature of

fractals that provides a useful categorization of the geometry. At the core of these

objects is the concept of self-similarity.

1.2.4 Fractal applications

In certain circumstances these structures are self-similar. This means that when

we zoom in to a subset of the object the resultant image is indistinguishable from

the original. This idea can be described by fractal mathematics and the fractal

dimension of a structure [105–111]. This quantity conveys the usual meaning of

dimension but is regularly not an integer. These concepts have been successfully

used in a variety of applications such as brain image analysis and fracture patterns,

brain tumour segmentation and detection [112,113], digital imaging [114,115] and

image compression [116–118]. The fractals that are observed in nature are known

as random or statistical fractals. In these cases, self-similarity relates to an ap-

proximate measure, and it only applies over a range of length scales. However,

there is a possibility to create a mathematical object identified as a determinis-

tic fractal. The common idea behind this method is to shrink and duplicate an

object. However, this process is repeated an unlimited number of times. It is

interesting to realise that self-similarity can happen on all scales. These math-

ematical fractals are essential since they can provide valuable insight into some

principles pertaining to their naturally occurring counterparts [19,23]. Computer
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simulations deliver a productive way into the study of the interaction of fractal

geometry and physical models to test any theoretical results. One area of intensive

research is in growth models [119–121]. These simulations follow some basic rules

that try to capture some particular physical mechanisms. In the deposition of par-

ticles modelling these rules dictate how the particle arrives at the surface, and the

fate of the particle afterwards. This model can be advanced by permitting surface

diffusion where the particle can move to a local minimum inside a certain radius

from its surface impact point [122,123]. The heights of the columns are therefore

connected, and the resultant interface is more smooth. Another model that has

been extensively examined is Diffusion Limited Aggregation (DLA) [124–127]. In

this model, the particles go through a random walk before they come to rest when

they come into contact with a substrate. In the simplest model, the particle re-

mains in the same position once it hits the substrate and does not undergo any

surface diffusion. The initial configuration (substrate) is typically a single seed

and the structure that develops is a fractal.

1.2.5 Fractal graphs

By viewing components in a fractal structure as vertices and then describing the

connectivity between these components as edges, a fractal graph can be created.

This has certain advantages which includes their amenability to describing wave

propagation in these fractal structures by discretising the associated field equation.

Researchers have used a Green functions approach for the study of the discrete

Schrodinger equation on two families of fractal graphs [128–130]. These are used

to study eigenstate localization. More generally they present a method for con-

structing orbits in closed form for the dynamics of certain rational, planar maps.

The mappings arise from renormalisation recursion relations for the Green func-
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tions. Renormalisation has certain advantages in that it can be quickly calculate

the key elements of the inverse matrices for any fractal generation level. It also,

allows analytic insight and allows us to consider steady state solutions (infinite

fractal generation level). Its disadvantages are that it only applies to a certain

class of fractals (finitely ramified), and one can only get information on the dy-

namics of the fractal at the boundary vertices. In some cases it is possible to solve

analytically the full recursion equations using methods which one uses to solves

systems of nonlinear difference equations. This permits a detailed analysis of the

scaling properties of the physical processes. Artificial as they may be, regular

fractal graphs are attractive for several reasons. One is that statistical or dy-

namical models defined on such graphs often renormalise exactly [131–135]. Thus

model properties on one length scale are connected by exact recursion relations

to the same properties on another length scale. The scaling laws are extracted by

linearizing the recursions relationships about a fixed point.

1.2.6 Wave propagation in fractal domains

There is of course extensive literature regarding wave propagation in Euclidean

media. Therefore, researchers are interested in the effects that fractal geometry

can have on the nature of the waveforms. An extensive literature now exists which

uses a range of techniques to develop a sound mathematical basis [136–138]. It

can be shown that the geometrical properties of the transporting medium has a

marked effect upon the propagating wave [139]. The fractal geometries can be clas-

sified as one of two types [140]. The first type is where there is a fractal boundary

to a Euclidean domain [141]. This interface can act as an impenetrable bound-

ary to some homogeneous transporting medium or as the interface between two

different homogeneous phases. Another type is where the transporting medium
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itself is fractal, for example, a fractal lattice or a mass fractal [142]. Researchers

have investigated a nonlinear diffusion equation on certain unbounded fractal do-

mains [26], and others have discussed reactiondiffusion wave propagation in fractal

lattices of infinite generation level [23].

1.2.7 Fractal ultrasonic transducers

There are a few researchers who have modelled a piezoelectric ultrasound trans-

ducer with a fractal geometry and compared its operational qualities with that

of a homogeneous (Euclidean) design [19–21,143]. Here the fractal that was used

to simulate this self-similar transducer was the Sierpinski gasket [19–21,143]. The

graph counterpart of the Sierpinski gasket was used to express the electrical and

mechanical fields in terms of a finite difference methodology. A fractal medium was

used as this contains a wide range of length scales and yields to a renormalisation

approach. The propagation of an ultrasonic wave in this heterogeneous medium

was then analyzed and used to construct expressions for the electrical impedance,

and the transmission and reception sensitivities of this device as a function of the

driving frequency. The resulting comparison between the fractal transducer and

Euclidean transducer showed a marked increase in the reception sensitivity of the

fractal device [19,20]. It is worth noting that the use of finite elements as the basis

for a study of fractal ultrasound transducers has not been attempted before in the

literature.

1.3 Outline of Thesis

The aim of this PhD thesis is to use finite elements to model fractal ultrasonic

transducers and to use renormalisation to compare these transducers with tradi-
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tional designs. Chapters 2, 3 and 4 constitute the original work in this thesis.

Chapter 2 constructs the first finite element model of a fractal ultrasound trans-

ducer consisting of a piezoelectric material and then uses this model to compare

its operational qualities with that of a standard (Euclidean) design. The fractal

that is used to simulate this self-similar transducer is the Sierpinski gasket. The

piezoelectric equations are described and then embedded in this modelling frame-

work via a finite element formulation. The resulting discrete algebraic system then

yields to a renormalisation approach. This then facilitates the analytical study of

the performance of these fractal devices.

Chapter 3 builds a model of a fractal ultrasound transducer consisting of a piezoelectric-

polymer composite and compares this model’s operational qualities with that of a

standard (simple) design. The governing equations are derived from the general

tensor equations. This framework enables the deployment of different parameter-

isations and a scenario where the displacement acts out of the plane of the graph,

with the electric field operating within the plane of the graph, will be examined.

We will use a finite element methodology and introduce new basis functions to ex-

press the wave fields within the graph. This Galerkin approach leads to a discrete

formulation that lends itself to a renormalisation approach. The Sierpinski gasket

will be used for the simulation of a self-similar transducer. Such an ultrasonic

transducer would start with an equilateral triangle of piezoelectric crystal. This

equilateral triangle is composed of four identical equilateral sub-triangles whose

side length is half of the original. The first generation (n = 1) would be obtained

by replacing the central sub-triangle by a polymer material. This process is then

repeated for several generations with the removed sub-triangles from the smallest
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triangles being filled with a polymer. As in Chapter 2 a comparison between this

device and an equivalent standard composite design is undertaken.

Chapter 4 studies the complement (or dual) of the standard Sierpinski gasket.

Using the complement is vital as it has a range of triangle sizes whereas the Sier-

pinski gasket is composed of triangles of the same size for a given fractal generation

level. It therefore has a much stronger coupling to a wide range of length scales and

resonators. This appears to be the first time this dual graph has been constructed

and hence the first time that any form of wave propagation in this structure has

been considered. The dual graph is introduced and constructed by a process which

starts from the order n = 1 design (which consists of four piezoelectric triangles).

As in Chapter 2 the finite element model of a fractal ultrasound transducer con-

sisting of a piezoelectric material is used to compare the fractal design (using the

renormalisation derivation) with a conventional standard (Euclidean) design.
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Chapter 2

A fractal ultrasonic transducer

based on the Sierpinski gasket

2.1 Introduction

This chapter constructs a model of a fractal ultrasound transducer and then uses

this model to compare its operational qualities with that of a standard (Euclidean)

design. The fractal that will be used in this chapter to simulate this self-similar

transducer is the Sierpinski gasket [144]. Such an ultrasonic transducer would

start with an equilateral triangle of piezoelectric crystal, and the next generation

(n = 1) would be obtained by replacing this by three copies of itself, each of

which being half the size of the original triangle. This process is then repeated

for several generations (see Figure 2.1). The degree of a vertex is the number

of edges incident to it, so the Sierpinski gasket graph of degree 3, SG(3), is the

graph counterpart of the Sierpinski gasket [145] (see Figure 2.2). The graph is

constructed by a process which starts from the Sierpinski gasket of order n = 1

(which consists of three piezoelectric triangles), assigns a vertex to the centre of
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each of these triangles and, by connecting these vertices together with edges, the

SG(3) graph at generation level n = 1 is constructed. The graph has side length

L units which remains constant as the generation level n increases. Therefore,

as n increases, the length of the edge between adjacent vertices tends to zero

and in this limit the graph will perfectly match the space filling properties of

the original Sierpinski gasket [7]. The total number of vertices is N = 3n and

h(n) = L/(2n − 1) is the edge length of the fractal graph. The vertex degree is

3 apart from the boundary vertices (input/output vertices) which have degree 2

and M = 3(3n − 1)/2 denotes the total number of edges. These boundary vertices

will be used to interact with external loads (both electrical and mechanical) and

so we introduce fictitious vertices A,B and C to accommodate these interfacial

boundary conditions (see Figures 2.4 and 2.5). Let us denote by Ω the set of points

lying on the edges or vertices of SG(3) and denote the region’s boundary by ∂Ω.

n = 0 n = 1 n = 2 n = 3 n = 4

Figure 2.1: The first few generations of the Sierpinski gasket.

n = 1 n = 2 n = 3

Figure 2.2: The first few generations of the Sierpinski gasket graph SG(3).
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2.2 Model derivation

It will be useful to develop a more general model consisting of two phases for

the work in Chapter 3 as this model reduces to the single phase (piezoelectric

material only) to be studied first in this chapter. The graph represents the vibra-

tions of piezoelectric and polymer materials (here the focus will be on PZT-5H

and HY1300/CY1301 hardset respectively [2,146]) that have been manufactured

to form a Sierpinski gasket. The interplay between the electrical and mechani-

cal behaviour of the graph vertices is described by the piezoelectric constitutive

equations [2,3]

Tij = cijklSkl − ekijEk , (2.2.1)

Di = eiklSkl + εikEk , (2.2.2)

where Tij is the stress tensor, cijkl is the stiffness tensor, Skl is the strain tensor,

ekij is the piezoelectric tensor, Ek is the electric field vector, Di is the electrical

displacement tensor and εik is the permittivity tensor (where the Einstein sum-

mation convention is adopted). The strain tensor is related to the displacement

gradients ui,j by

Sij =
ui,j + uj,i

2
, (2.2.3)

and the electric field vector is related to the electric potential φ via

Ei = −φ,i.

The dynamics of the piezoelectric material is then governed by

ρT üi = Tji,j, (2.2.4)
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subject to Gauss’ law

Di,i = 0 (2.2.5)

where ρT is the density and ui is the component of displacement in the direction

of the ith basis vector. So, combining equations (2.2.4) and (2.2.1) gives

ρT üi = cjiklSkl,j − ekjiEk,j. (2.2.6)

Combining equations (2.2.5) and (2.2.2) gives

Di,i = eiklSkl,i + εikEk,i = 0. (2.2.7)

We will restrict attention to the out of plane displacement only (a horizontal shear

wave) by stipulating that

u = (0, 0, u3(x1, x2, t)) . (2.2.8)

This choice of parameterisation will simplify the algebra significantly and will lead

to a scalar dynamical equation. It also will allow us to consider the transverse

vibrations of the device which is the primary engineering interest in its application.

There are of course other parameterisations that could be chosen and a suitable

choice would also afford the study of the vector elastodynamical equations. So,

since only u3,1 and u3,2 are nonzero, then equation (2.2.6) gives

ρT ü3 = c13klSkl,1 + c23klSkl,2 − ekj3Ek,j. (2.2.9)
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From equation (2.2.3) we get

Sij =























1
2
u3,1 i = 1, j = 3 or i = 3, j = 1

1
2
u3,2 i = 2, j = 3 or i = 3, j = 2

0 otherwise,

so that equation (2.2.9) gives

ρT ü3 = c1331u3,11 + c1332u3,21 + c2331u3,12 + c2332u3,22 − ekj3Ek,j.

The piezoelectric material is polarised in the x3 direction and so, from the prop-

erties of PZT-5H (see Appendix A.4), then

ρT ü3 = cT44(u3,11 + u3,22)− ekj3Ek,j

since cT55 = cT44 and the Voigt notation has been used. Now if E = (E1(x1, x2), E2(x1, x2), 0)

then

ρT ü3 = cT44(u3,11 + u3,22)− e113E1,1 − e123E1,2 − e213E2,1 − e223E2,2.

That is

ρT ü3 = cT44(u3,11 + u3,22)− e15E1,1 − e14E1,2 − e25E2,1 − e24E2,2.

Then

ρT ü3 = cT44(u3,11 + u3,22)− e24 (E1,1 + E2,2) , (2.2.10)
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since e15 = e24 and e14 = e25 = 0. From equation (2.2.7) we get, for PZT-5H,

e113S13,1 + e131S31,1 + e223S23,2 + e232S32,2 + εT11E1,1 + εT22E2,2 = 0.

That is

e15u3,11 + e24u3,22 + εT11E1,1 + εT22E2,2 = 0.

Therefore

e24(u3,11 + u3,22) + εT11 (E1,1 + E2,2) = 0

since εT11 = εT22 for PZT-5H. So we get

E1,1 + E2,2 = −e24
εT11

(u3,11 + u3,22).

Substituting this into equation (2.2.10) gives

ρT ü3 = cT44(u3,11 + u3,22) +
e224
εT11

(u3,11 + u3,22).

That is

ρT ü3 = µT (u3,11 + u3,22).

A similar analysis can be conducted for the polymer phase. The dynamical equa-

tion in each phase can be written as

ü3 = c2∇2u3
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subject to continuity of displacement and force at the boundary with the mechan-

ical loads, where c is the shear wave velocity defined as

c =











cT =
√

µT/ρT , PZT-5H

cP =
√

µP/ρP , polymer
(2.2.11)

∇2 = ∂2/∂x21 + ∂2/∂x22, µT = cT44 + e224/ε
T
11 is the piezoelectrically stiffened shear

modulus in the ceramic phase, µP = cP44 is the shear modulus of the polymer, ρT/P

is the density in the T -piezoelectric / P - polymer phase, e24 is an element of the

piezoelectric tensor and εT11 is an element of the permittivity tensor of PZT-5H.

The polymer’s material tensors are given in the Appendix A.4 and the derivation

cP follows similar lines to these for the piezoelectric material. Note that in this

chapter we will study a single phase transducer (piezoelectric material only) and

hence c = cT . We impose the initial conditions u3(x, 0) = u̇3(x, 0) = 0 and the

boundary conditions of continuity of displacement and force on ∂Ω.

By introducing the non-dimensionalised variable θ = cT t/h then (dropping the

subscript on u)

∂2u

∂θ2
= h2∇2u. (2.2.12)

Applying the Laplace transform L : θ → q then gives

q2 ū = h2 ∇2ū. (2.2.13)

We will seek a weak solution ū ∈ H1(Ω) where on the boundary ū = ū∂Ω ∈ H1(∂Ω).

Now multiplying by a test function w ∈ H1
B(Ω), where H1

B(Ω) := {w ∈ H1(Ω) :

w = 0 on ∂Ω}, integrating over the region Ω, and using Green’s first identity
∫

Ω
ψ ∇2φ dv =

∮

∂Ω
ψ(∇φ . n) dr −

∫

Ω
∇φ .∇ψ dv, where n is the outward pointing
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unit normal of surface element dr, gives

∫

Ω

q2 ū w dx = h2
∮

∂Ω

w(∇ū . n) dr − h2
∫

Ω

∇ū .∇w dx.

Now h2
∮

∂Ω
w(∇ū . n) dr is zero since w = 0 on ∂Ω and so, we seek ū ∈ H1(Ω) such

that

q2
∫

Ω

ū w dx = −h2
∫

Ω

∇ū .∇w dx

where w ∈ H1
B(Ω).

2.3 Galerkin discretisation

Using a standard Galerkin method we replace H1(Ω) and H1
B(Ω) by the finite

dimensional subspaces SS and SB = SS ∩H1
B(Ω). Let UB ∈ SS be a function that

approximates ū∂Ω on ∂Ω, then the discretised problem involves finding Ū ∈ SS

such that

q2
∫

Ω

Ū W dx = −h2
∫

Ω

∇Ū .∇W dx,

whereW is the test function expressed in this finite dimensional space. Let{φ1, φ2, . . . , φN}

form a basis of SB and set W = φj, then

q2
∫

Ω

Ū φj dx = −h2
∫

Ω

∇Ū .∇φj dx, j = 1, . . . , N. (2.3.1)

Furthermore, let φI , I = {N + 1, N + 2, N + 3} form a basis for the boundary

vertices and let

Ū =
N
∑

i=1

Uiφi +
∑

i∈I
UBi

φi. (2.3.2)
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Hence, equation (2.3.1) becomes

N
∑

i=1

(
∫

Ω

(q2φiφj + h2∇φi .∇φj)dx

)

Ui =

−
∑

i∈I

(
∫

Ω

(q2φiφj + h2∇φi .∇φj)dx

)

UBi
(2.3.3)

where j ∈ {1, 2, . . . , N}. That is

AjiUi = bj (2.3.4)

where

Aji = q2
∫

Ω

φiφj dx+ h2
∫

Ω

∇φi .∇φj dx, (2.3.5)

and

bj = −
∑

i∈I

(
∫

Ω

(q2φiφj + h2∇φi .∇φj)dx

)

UBi
. (2.3.6)

It is important to now explicitly record the fractal generation level n and so equa-

tion (2.3.5) can be written

A
(n)
ji = q2H

(n)
ji + h2K

(n)
ji , (2.3.7)

where

H
(n)
ji =

∫

Ω

(φjφi)dx (2.3.8)

and

K
(n)
ji =

∫

Ω

(∇φj .∇φi)dx. (2.3.9)

The graph basis function at vertex xj is chosen to be (see Figure 2.3)
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Figure 2.3: The graph basis function φj at vertex xj = (xj , yj).

φj(x, y) =











a+ bx+ cy + d(x2 + y2) j ∈ {1, . . . , N}

a+ d(x2 + y2) j ∈ I,
(2.3.10)

where (x, y) ∈ Ω and a, b, c, d ∈ R are coefficients to be determined. Hence

∇φj(x, y) =











(b+ 2dx, c+ 2dy) j ∈ {1, . . . , N}

(2dx, 2dy) j ∈ I.
(2.3.11)

Futhermore, the φj are defined as localised basis functions such that

φj(x, y) =











1 if (x, y) = (xj , yj)

0 if (x, y) = coordinates of vertices adjacent to vertex j,

(2.3.12)

and φj(x, y) = 0 at all points which do not lie in the edges adjacent to vertex

j. For each generation level of the SG(3) graph the coordinates of the vertices
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1 2

3

A B

C

(0, 0) (h, 0)

(h/2,
√
3h/2)

(−h, 0) (2h, 0)

(h,
√
3h)

1©

2©3©

4© 5©

6©

Figure 2.4: The Sierpinski Gasket graph SG(3) at generation level n = 1. Vertices
1, 2 and 3 are the input/output vertices, and vertices A (or 4), B (or 5) and C (or
6) are fictitious vertices used to accommodate the boundary conditions. The graph
has 6 elements (circled numbers), with two vertices adjacent to each element.

are known (see the Appendix A.1 for a detailed description for n = 1 and n = 2).

Using equation (2.3.12) the coefficients in equation (2.3.10) can be determined (see

the Appendix A.1 for the values of these coefficients for n = 1 and n = 2). From

equation (2.3.10) the equation (2.3.8) can be written as, for e ∈ {1, . . . ,M},

eH
(n)
ji =

∫

e

(

aj + bjx+ cjy + dj
(

x2 + y2
)) (

ai + bix+ ciy + di
(

x2 + y2
))

dx

=

∫

e

(

ajai + (ajbi + aibj)x+ (ajci + aicj)y + (cjbi + cibj)xy + bjbix
2

+cjciy
2 + (ajdi + aidj)

(

x2 + y2
)

+ (bjdi + bidj)x
(

x2 + y2
)

+(cjdi + cidj)y
(

x2 + y2
)

+ djdi
(

x2 + y2
)2
)

dx. (2.3.13)
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1 2

3

4 5

6

7 8

9

A B

C

(0, 0) (h, 0)

(h/2,
√
3h/2)

(2h, 0) (3h, 0)

(5h/2,
√
3h/2)

(h,
√
3h) (2h,

√
3h)

(3h/2, 3
√
3h/2)

(−h, 0) (4h, 0)

(2h, 2
√
3h)

1©

2©3©

4© 5©

6©7©

8© 9©
10©

11©12©

13© 14©

15©

Figure 2.5: The Sierpinski Gasket graph SG(3) at generation level n = 2. Vertices
A (or 10), B (or 11) and C (or 12) are fictitious vertices used to accommodate
the boundary conditions. The graph has 15 elements (circled numbers), with two
vertices adjacent to each element.

For a particular element lying between vertex i and vertex j the isoparametric

representation, given by

(x(s), y(s)) = ((xj − xi)s+ xi, (yj − yi)s+ yi) (2.3.14)

is employed (see Figure 2.6), where s1 = 0 and s2 = 1 and dx = h ds. Substituting

s1

(xi, yi)

s2

(xj, yj)

s

Figure 2.6: An isoparametric element (edge) between vertex (xi, yi) and vertex
(xj , yj).
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this equation into equation (2.3.13) gives, for e ∈ {1, . . . ,M},

eH
(n)
ji = h



































∫ 1

0
(s2 − 1)2 ds = 8

15
if j = i = p

∫ 1

0
(s2 − 1)(s− 2)s ds = 11

30
if j, i ∈ {p, q}, j 6= i

∫ 1

0
(s− 2)2s2 ds = 8

15
if j = i = q

0 otherwise

where element e connects vertex p to vertex q. For the boundary elements e ∈

{M + 1,M + 2,M + 3},

eH
(n)
ji = h











∫ 1

0
(s2 − 1)2 ds = 8

15
if j = i = q

0 otherwise

where q is the corner vertex of the SG(3) graph connected to element e. Assembling

the full matrix in equation (2.3.8) gives, for generation level n = 1

H
(1)
ji = h













8
5

11
30

11
30

11
30

8
5

11
30

11
30

11
30

8
5













= h Ĥ
(1)
ji , (2.3.15)
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and at generation level n = 2,

H
(2)
ji = h





















































8
5

11
30

11
30

0 0 0 0 0 0

11
30

8
5

11
30

11
30

0 0 0 0 0

11
30

11
30

8
5

0 0 0 11
30

0 0

0 11
30

0 8
5

11
30

11
30

0 0 0

0 0 0 11
30

8
5

11
30

0 0 0

0 0 0 11
30

11
30

8
5

0 11
30

0

0 0 11
30

0 0 0 8
5

11
30

11
30

0 0 0 0 0 11
30

11
30

8
5

11
30

0 0 0 0 0 0 11
30

11
30

8
5





















































. (2.3.16)

So, from equations (2.3.15) and (2.3.16), we can write matrix H , for n > 2 as

H
(n)
ji = h





















































Ĥ
(n−1)
ji

11
30
V

(n)
ji

11
30
V

(n)
ji

11
30
V

(n)
ji Ĥ

(n−1)
ji

11
30
V

(n)
ji

11
30
V

(n)
ji

11
30
V

(n)
ji Ĥ

(n−1)
ji





















































,

where Ĥ
(n−1)
ji = H

(n−1)
ji /h and V

(n)
ji = 1D(n)(ji) is the adjacency matrix for the

subgraph of SG(n)(3) consisting of the edges D(n) that connect each of the three

SG(n−1)(3) graphs (for n = 2, D(2) = {{2, 4}, {3, 7}, {6, 8}} and for n = 3,

D(3) = {{5, 10}, {9, 19}, {18, 23}} (see Figures 2.4 and 2.5)). (where 1{A}(a) is

28



the indicator function which equals 1 if a ∈ A, and 0 otherwise). That is,

H
(n)
ji = h

(

¯̂
H

(n−1)
ji +

11

30
V

(n)
ji

)

,

where
¯̂
H

(n−1)
ji is a block diagonal matrix consisting of three blocks of matrix Ĥ

(n−1)
ji .

Similarly, from equation (2.3.11) the equation (2.3.9) can be written as

eK
(n)
ji =

∫

e

(bj + 2djx, cj + 2djy).(bi + 2dix, ci + 2diy)dx,

=

∫

e

(

bibj + 2(djbi + dibj)x+ 4didjx
2 + cicj + 2(dicj + djci)y

+4didjy
2
)

dx. (2.3.17)

Substituting equation (2.3.14) into equation (2.3.17) gives, for e = 1, . . . ,M

eK
(n)
ji =

4

h



































∫ 1

0
s2 ds = 1

3
if j = i = p

∫ 1

0
s(s− 1) ds = −1

6
if j, i ∈ {p, q}, j 6= i

∫ 1

0
(s− 1)2 ds = 1

3
if j = i = q

0 otherwise

(2.3.18)

where element e connects vertex p to vertex q. For the boundary elements e ∈

{M + 1,M + 2,M + 3} then equation (2.3.17) becomes

eK
(n)
ji =

4

h











∫ 1

0
s2 ds = 1

3
if j = i = q

0 otherwise
, (2.3.19)

where q is the corner vertex of the SG(3) graph connected to element e (for n = 1,

q ∈ {1, 2, 3}, and for n = 2, q ∈ {1, 5, 9}). Note that there is only one combination

of basis functions in these exterior piezoelectric elements since the left hand side

of equation (2.3.3) does not involve the basis functions at boundary vertices I
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denoted by φI . Combining equations (2.3.18) and (2.3.19) to assemble the full

matrix in equation (2.3.9) gives, for generation level n = 1,

K
(1)
ji =

1

h













4 −2
3

−2
3

−2
3

4 −2
3

−2
3

−2
3

4













=
1

h
K̂

(1)
ji , (2.3.20)

and at generation level n = 2,

K
(2)
ji =

1

h





















































4 −2
3

−2
3

0 0 0 0 0 0

−2
3

4 −2
3

−2
3

0 0 0 0 0

−2
3

−2
3

4 0 0 0 −2
3

0 0

0 −2
3

0 4 −2
3

−2
3

0 0 0

0 0 0 −2
3

4 −2
3

0 0 0

0 0 0 −2
3

−2
3

4 0 −2
3

0

0 0 −2
3

0 0 0 4 −2
3

−2
3

0 0 0 0 0 −2
3

−2
3

4 −2
3

0 0 0 0 0 0 −2
3

−2
3

4





















































. (2.3.21)
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So, from equations (2.3.20) and (2.3.21), we can write matrix K, for n > 2 as

K
(n)
ji =

1

h





















































K̂
(n−1)
ji

−2
3
V

(n)
ji

−2
3
V

(n)
ji

−2
3
V

(n)
ji K̂

(n−1)
ji

−2
3
V

(n)
ji

−2
3
V

(n)
ji

−2
3
V

(n)
ji K̂

(n−1)
ji





















































,

where K̂
(n−1)
ji = hK

(n−1)
ji . That is,

K
(n)
ji =

1

h

(

¯̂
K

(n−1)
ji − 2

3
V

(n)
ji

)

,

where
¯̂
K

(n−1)
ji is a block diagonal matrix consisting of three blocks of matrix K̂

(n−1)
ji .

Combining equations (2.3.20) and (2.3.15) gives equation (2.3.7) as

A
(1)
ji = h













α β β

β α β

β β α













= h Â
(1)
ji , (2.3.22)
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where α = (8/5)q2 + 4 and β = (11/30)q2 − 2/3. Similarly, for generation level

n = 2,

A
(2)
ji = h





















































α β β 0 0 0 0 0 0

β α β β 0 0 0 0 0

β β α 0 0 0 β 0 0

0 β 0 α β β 0 0 0

0 0 0 β α β 0 0 0

0 0 0 β β α 0 β 0

0 0 β 0 0 0 α β β

0 0 0 0 0 β β α β

0 0 0 0 0 0 β β α





















































. (2.3.23)

So, from equations (2.3.22) and (2.3.23), we can write matrix A, for n > 2 as

A
(n)
ji = h





















































Â
(n−1)
ji βV

(n)
ji βV

(n)
ji

βV
(n)
ji Â

(n−1)
ji βV

(n)
ji

βV
(n)
ji βV

(n)
ji Â

(n−1)
ji





















































,

where Â
(n−1)
ji = A

(n−1)
ji /h. That is,

A
(n)
ji = h

(

¯̂
A

(n−1)
ji + βV

(n)
ji

)

, (2.3.24)
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where
¯̂
A

(n−1)
ji is a block diagonal matrix consisting of three blocks of matrix Â

(n−1)
ji .

A similar treatment can be given to equation (2.3.6) to give (where m = (N+1)/2)

b
(n)
j =



































−
(

∫

eM+1
(q2φN+1φj + h2∇φN+1 .∇φj) dx

)

UA, j = 1

−
(

∫

eM+2
(q2φN+2φj + h2∇φN+2 .∇φj) dx

)

UB, j = m

−
(

∫

eM+3
(q2φN+3φj + h2∇φN+3 .∇φj) dx

)

UC , j = N

0 otherwise,

(2.3.25)

where M + 1,M + 2 and M + 3 are the set of edges MI , UA, UB and UC are

the mechanical displacements at the fictitious vertices A,B and C respectively.

From equation (2.3.25) let us start to find b
(n)
1 at element e = M + 1 (see Fig-

1A

(0, 0) (h, 0)

(h/2,
√
3h/2)

(−h, 0) e =M + 1

Figure 2.7: The boundary element for e =M + 1

ure 2.7), which is connected between vertex A at (xA, yA) = (−h, 0) and vertex

1 at (x1, y1) = (0, 0). From equation (2.3.14) we get (x(s), y(s)) = ((x1 − xA)s +

xA, (y1 − yA)s+ yA) = (h(s− 1), 0) and dx = h ds, gives

b
(n)
1 = −h

(∫

M+1

(

q2φAφ1 + h2∇φA .∇φ1

)

ds

)

UA. (2.3.26)
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From equation (2.3.10) the basis functions at vertex A in element e =M + 1 is

φA(x, y) =
x2 + y2

h2
(2.3.27)

and at vertex 1 is

φ1(x, y) = 1− x2 + y2

h2
. (2.3.28)

Substituting equation (2.3.14) into equations (2.3.27) and (2.3.28) gives

φA (x(s), y(s)) = φA (h(s− 1), 0) = (s− 1)2 (2.3.29)

and

φ1 (x(s), y(s)) = φ1 (h(s− 1), 0) = (2− s)s. (2.3.30)

From equation (2.3.11), equations (2.3.27) and (2.3.28) gives

∇φA(x, y) =

(

2x

h2
,
2y

h2

)

(2.3.31)

and

∇φ1(x, y) =

(−2x

h2
,
−2y

h2

)

. (2.3.32)

Substituting equation (2.3.14) into equations (2.3.31) and (2.3.32) gives

∇φA (x(s), y(s)) =

(

2(s− 1)

h
, 0

)

(2.3.33)

and

∇φ1 (x(s), y(s)) =

(

2(1− s)

h
, 0

)

. (2.3.34)
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Substituting equations (2.3.29), (2.3.30), (2.3.33) and (2.3.34) into equation (2.3.26)

gives

b
(n)
1 = h

(

4

3
− 2

15
q2
)

UA.

Now from equation (2.3.25) let us consider b
(n)
m at element e = M + 2 (see Fig-

B

((2n − 2)h, 0) ((2n − 1)h, 0)

((2n+1 − 3)h/2,
√
3h/2)

(2nh, 0)

m = (N + 1)/2

e =M + 2

Figure 2.8: The boundary element for e =M + 2

ure 2.8), which is connected between vertex m at (xm, ym) = ((2n − 1)h, 0) and

vertex B at (xB, yB) = (2nh, 0). From equation (2.3.14) we get (x(s), y(s)) =

((xB − xm)s+ xm, (yB − ym)s+ ym) = ((s+ 2n − 1)h, 0) and dx = h ds, gives

b(n)m = −h
(
∫

M+2

(

q2φBφm + h2∇φB .∇φm

)

ds

)

UB. (2.3.35)

From equation (2.3.10) the basis functions at vertex B in element e =M + 2 is

φB(x, y) =
−(2n − 1)2h2 + x2 + y2

(2n+1 − 1)h2
(2.3.36)

and at vertex m is

φm(x, y) = 2n(2− 2n) +
2(2n − 1)x

h
− x2 + y2

h2
. (2.3.37)

35



Substituting equation (2.3.14) into equations (2.3.36) and (2.3.37) gives

φB (x(s), y(s)) =
s(s+ 2n+1 − 2)

2n+1 − 1
(2.3.38)

and

φm (x(s), y(s)) = 1− s2. (2.3.39)

From equation (2.3.11), equations (2.3.36) and (2.3.37) gives

∇φB(x, y) =

(

2x

(2n+1 − 1)h2
,

2y

(2n+1 − 1)h2

)

(2.3.40)

and

∇φm(x, y) =

(

2(2n − 1)

h
− 2x

h2
,
−2y

h2

)

. (2.3.41)

Substituting equation (2.3.14) into equations (2.3.40) and (2.3.41) gives

∇φB (x(s), y(s)) =

(

2(s+ 2n − 1)

(2n+1 − 1)h
, 0

)

(2.3.42)

and

∇φm (x(s), y(s)) =

(−2s

h
, 0

)

. (2.3.43)

Substituting equations (2.3.38), (2.3.39), (2.3.42) and (2.3.43) into equation (2.3.35)

gives

b(n)m = h

(

1 +
1

3(2n+1 − 1)
+

(11− 15× 2n)

30(2n+1 − 1)
q2
)

UB.
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A similar calculation, for b
(n)
N at element e =M + 3 shows

b
(n)
j = h



































η
(n)
j UA, j = 1

η
(n)
j UB, j = m

η
(n)
j UC , j = N

0 otherwise,

(2.3.44)

where

η
(n)
j =











4
3
− 2

15
q2, j = 1

1 + 1
3(2n+1−1)

+ (11−15×2n)
30(2n+1−1)

q2, j = m or N.
(2.3.45)

Note that the value of η
(n)
j where j ∈ {m,N} is dependent on the generation level

n. For generation level n = 1,

b
(1)
j = h



































(4
3
− 2

15
q2)UA, j = 1

(10
9
− 19

90
q2)UB, j = 2

(10
9
− 19

90
q2)UC , j = 3

0 otherwise,

and for generation level n = 2,

b
(2)
j = h



































(4
3
− 2

15
q2)UA , j = 1

(22
21

− 7
30
q2)UB , j = 5

(22
21

− 7
30
q2)UC , j = 9

0 otherwise.

2.3.1 Application of the mechanical boundary conditions

Mechanical and electrical loads will be introduced to the transducer at its bound-

aries as displayed in Figure 2.9. In the mechanical load at the front face of the
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transducer the governing equation is [3]

ρL
∂2uL
∂t2

= µL
∂2uL
∂x2L

,

where ρL is the density of the load material, uL is its displacement and µL is its

shear modulus. That is

∂2uL
∂t2

=
µL

ρL

∂2uL
∂x2L

and so, nondimensionalising in a similar fashion to equation (2.2.12), gives

∂2uL
∂θ2

=

(

hcL
cT

)2
∂2uL
∂x2L

where cL is the wave speed in the load (c2L = µL/ρL). Taking Laplace transforms

as was done in equation (2.2.13) gives

d2ūL
dx2L

−
(

qcT
hcL

)2

ūL = 0.

Hence, the displacement in the load is

ūL(xL) = ALe
(−qcT xL/hcL) +BLe

(qcT xL/hcL), (2.3.46)

where AL, BL are constants (AL is the amplitude of the incoming wave that is

received by the transducer (in transmission mode AL is zero) and BL is the ampli-

tude of the transmitted wave (transmission mode) or reflected wave (in reception

mode)) and xL is the local coordinate in the mechanical load (see Figure 2.10).

Similarly the displacement in the backing layer (subscript B) is given by

ūB(xB) = ABe
(−qcTxB/hcB) +BBe

(qcT xB/hcB),
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Figure 2.9: Physical layout of the fractal transducer.

where AB, BB are constants (in both transmission and reception modes AB is

the amplitude of the wave transmitted into the backing material and BB is the

amplitude of the incoming wave), xB is the local coordinate in the backing ma-

terial and cB is the wave speed in the backing material. As the backing layer is

highly attenuative it is assumed that there is only a wave travelling away from the

piezoelectric layer (SG(3)) interface (xB = 0) in the direction of increasing xB,

and so we set BB = 0. Continuity of displacement at the transducer-mechanical
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Figure 2.10: The multilayer model.

load interface and the symmetry of the SG(3) graph give

UA = ūB(0) = AB, (2.3.47)

UB = ūL(0) = AL +BL, (2.3.48)

UC = ūL(0) = AL +BL. (2.3.49)

The force F on each vertex is given by F = ArT , where Ar = ξL/(2n−1) = ξh(n)

is the cross-sectional area (Ar) of each edge of the fractal graph. Recall that in this

chapter we will be restricting attention to a transducer composed of a piezoelectric

material alone (so single phase and no polymer phase).

From equation (2.2.8) only u3,1 and u3,2 are nonzero and so the only nonzero

components of equation (2.2.1) and due to the properties of PZT-5H (see Appendix

A.4) [147,148], we get

T11 = T12 = T21 = T22 = T33 = 0,

and

T13 = T31 = c1313S13 + c1331S31 − e113E1.
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That is

T5 = cT55 (S13 + S31)− e15E1,

and, using equation (2.2.3), since from equation (2.2.8) u1,3 = 0, then

T5 = cT44u3,1 − e24E1,

since cT55 = cT44 and e15 = e24. Similarly we get

T23 = T32 = c3223S23 + c3232S32 − e232E2,

that is

T4 = cT44u3,2 − e24E2.

Similarly, from equation (2.2.2), for PZT-5H, the only nonzero components are

D1 = e24u3,1 + εT11E1,

and

D2 = e24u3,2 + εT11E2,

whereD3 is zero. Given the geometry of the graph, the positioning of the boundary

vertices, and the load conditions there is a line of symmetry given by x1 = x2 (see

Figure 2.11). Hence, E1 = E2 = E and u3,1 = u3,2 then D1 = D2 = D and

T5 = T4 = T , and so

D = e24u3,1 + εT11E.

That is

E = −ζS +
D

εT11
(2.3.50)
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Figure 2.11: The line of symmetry given by x1 = x2

where ζ = e24/ε
T
11 and S = u3,1 = dū/dx. Also, we have

T = cT44u3,1 − e24E

and substituting equation (2.3.50) gives

T =

(

cT44 +
e224
εT11

)

u3,1 −
e24
εT11

D.

That is

T = µTS − ζD. (2.3.51)

Hence, from equation (2.3.51),

F = ArT = ArµTS − ζDAr.

By applying an electrical chargeQ at one of the transducer-electrical load interfaces

then Gauss’ law (equation (2.2.5)) gives D = Q/Ar. Since S = dū/dx, then

F = ArµT
dū

dx
− ζQ. (2.3.52)
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So from the continuity of force we get F (ūm) = FL(ū∂Ω) = FL(xL = 0), where FL

is the force in the mechanical load. That is, from equation (2.3.46),

ArµT
(UB − Um)

h
− ζQ = ArµL

(

qcT
hcL

)

(−AL +BL), (2.3.53)

and so

UB − Um − ζQ

µT

(

h

Ar

)

=
ZL

ZT
q(−AL +BL), (2.3.54)

where the mechanical impedance of the load is ZL = µLAr/cL and of the transducer

is ZT = µTAr/cT . At each generation level of the Sierpinski gasket transducer the

ratio of the cross-sectional area of each edge to its length is denoted by ξ = Ar/h
(n).

The overall extent of the SG(3) is fixed and so the length of the edges will steadily

decrease and, by fixing ξ, the cross-sectional area will also decrease as the fractal

generation level increases. Hence, equation (2.3.54), and its equivalent at the front

face of the transducer, can be written

U1 − UA − ζQ

µT ξ
=

ZB

ZT
q(−AB), (2.3.55)

UB − Um − ζQ

µT ξ
=

ZL

ZT

q(−AL +BL), (2.3.56)

ZB is the mechanical impedance of the backing material. Substituting equation

(2.3.47) into equation (2.3.55) gives UA = γ1U1 + δ1 and substituting equations

(2.3.48) and (2.3.49) into equation (2.3.56) gives

UB = γmUm + δm = UC = γNUN + δN , (2.3.57)
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where

γj =































(1− qZB

ZT
)−1, j = 1

(1− q ZL

ZT
)−1, j = m or N

0 otherwise

(2.3.58)

and

δj =































−γ1 ζQ
µT ξ

, j = 1

γm

(

ζQ
µT ξ

− 2ALq
ZL

ZT

)

, j = m or N

0 otherwise.

(2.3.59)

Hence, equation (2.3.44) becomes

b
(n)
j = hγ̄

(n)
j Uj + hδ̄j

(n)
j = 1, m or N (2.3.60)

where γ̄
(n)
j = η

(n)
j γj and δ̄j

(n)
= η

(n)
j δj. Putting equation (2.3.60) into equation

(2.3.4) gives

Â
(n)
ji Ui = γ̄

(n)
j Uj + δ̄j

(n)
.

Hence,

(Â
(n)
ji − B̂

(n)
ji )Ui = δ̄j

(n)
, i = 1, m or N
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where

B̂
(n)
ji =





















































γ̄1 0 · · · · · · 0

0 0
. . .

...

...
. . .

. . .

0 0

γ̄m

0 0

. . .
. . .

...

...
. . . 0 0

0 · · · · · · 0 γ̄N





















































. (2.3.61)

That is

F
(n)
ji Ui = δ̄j

(n)
,

and so

Ui = G
(n)
ji δ̄j

(n)
, (2.3.62)

where

G
(n)
ji =

(

F
(n)
ji

)−1

=
(

Â
(n)
ji − B̂

(n)
ji

)−1

(2.3.63)

represents the Green’s transfer matrix.

2.4 Renormalisation

From equation (2.3.62) the desired basis function weightings in equation (2.3.2) at

each vertex in Ω are then given by

U
(n)
j = G

(n)
j1 δ̄

(n)
1 +G

(n)
jm δ̄

(n)
m +G

(n)
jN δ̄

(n)
N . (2.4.1)
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In particular we will be interested in U
(n)
1 , U

(n)
m and U

(n)
N and so we only need

to be able to calculate the pivotal Green’s functions G
(n)
ij , i, j ∈ {1, m,N}. If

1 b e m

d q

r z

N

Figure 2.12: Three Sierpinski Gasket graphs of generation level n−1 are connected
by the edges in bold ((dr), (be), (qz)) to create the Sierpinski Gasket graph at
generation level n.

we temporarily ignore matrix B̂ in equation (2.3.63) (this matrix originates from

consideration of the boundary conditions) then, due to the symmetries of the SG(3)

graph (and hence in matrix A(n)), we have

Ĝ
(n)
ii = Ĝ

(n)
jj = x̂, say, where i, j ∈ {1, m,N} (2.4.2)

(i.e corner-to-same-corner), and

Ĝ
(n)
jk = Ĝ

(n)
hk = ŷ, say, where j, k, h ∈ {1, m,N}, j 6= k 6= h (2.4.3)

(i.e corner-to-other-corner), where

Ĝ(n) =
(

Â(n)
)−1

. (2.4.4)

For clarity, at level n + 1, we denote, X̂ = Ĝ
(n+1)
ii and Ŷ = Ĝ

(n+1)
ji where j, i,∈

{1, m,N}, j 6= i. The matrix is symmetrical and consequently, Ĝ
(n)
ij = Ĝ

(n)
ji . From
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equation (2.2.12), since

θ(n) =
cT
h(n)

t, (2.4.5)

then L : θ(n) → q(n) where q(n) = iω̂(n) = i2πf̂ (n) = i2π
(

cT/h
(n)
)−1

f (n), f̂ (n) is

the nondimensionalised natural frequency, ω̂(n) is the nondimensionalised angular

frequency and f (n), and ω(n) are the dimensionalised equivalents. In order to

use the renormalisation approach detailed below then we set q = q(n) = q(n+1).

This simply means that the output from the renormalisation methodology (and

hence the electrical impedance and transmission/reception sensitivities) at a given

q (fixed) is then that quantity at frequency f (n) at fractal generation level n. So

when comparing outputs at different fractal generation levels one must ensure that

the frequency is scaled appropriately (by (cT/h
(n))−1) when re-dimensionalising.

An iterative procedure can be developed from equation (2.3.24) which can be

written as

Â(n+1) =
¯̂
A(n) + βV (n+1), n > 1.

where V
(n)
ji = 1D(n)(ji), D(n) = {{b, e}, {d, r}, {q, z}, {e, b}, {r, d}, {z, q}} (see Fig-

ure 2.12). Since
¯̂
G(n) is a block-diagonal matrix and from equation (2.4.4) then

(

Ĝ(n+1)
)−1

=
(

¯̂
G(n)

)−1

+ βV (n+1).

That is
(

¯̂
G(n)

)−1

=
(

Ĝ(n+1)
)−1

− βV (n+1).
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Hence, using the Nn×1 ×Nn×1 identity matrix denoted by In+1,

In+1 =
¯̂
G(n)

(

(

Ĝ(n+1)
)−1

− βV (n+1)

)

=
¯̂
G(n)

(

(

Ĝ(n+1)
)−1

− βV (n+1)Ĝ(n+1)
(

Ĝ(n+1)
)−1
)

=
¯̂
G(n)

(

In+1 − βV (n+1)Ĝ(n+1)
)(

Ĝ(n+1)
)−1

.

Hence,

Ĝ(n+1) =
¯̂
G(n) − β

¯̂
G(n)V (n+1)Ĝ(n+1). (2.4.6)

To calculate G
(n)
ji the boundary conditions must be reintroduced. From equation

(2.3.63),
(

G(n)
)−1

= Â(n) − B̂(n).

Now, from equation (2.4.4)

(

G(n)
)−1

=
(

Ĝ(n)
)−1

− B̂(n).

Hence,

In =
(

Ĝ(n)
)−1

G(n) − B̂(n)G(n),

and so

Ĝ(n) = G(n) − Ĝ(n)B̂(n)G(n).

Hence,

G(n) = Ĝ(n) + Ĝ(n)B̂(n)G(n). (2.4.7)
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2.4.1 Derivation of the pivotal recursion relationships

The (i, j)th element of the matrix equation (2.4.6) can be written as,

Ĝ
(n+1)
ij =

¯̂
G

(n)
ij −

∑

h,k

β
¯̂
G

(n)
ih V

(n)
hk Ĝ

(n+1)
kj . (2.4.8)

The system of linear equations in Ĝ
(n+1)
ij will create the renormalisation recursion

relationships for the pivotal Green’s functions. However, these recursions do not

include the boundary conditions. Since the subgraphs of Figure 2.12 only con-

nect to each other at the corners, it will transpire that the recursions in equation

(2.4.8) only involve two pivotal Green’s functions, namely, corner-to-same-corner

and corner-to-other-corner; the so called input/output vertices. To proceed, we

now need to determine x̂ and ŷ as defined in equations (2.4.2) and (2.4.3). Using

equation (2.4.8) we get

Ĝ
(n+1)
11 =

¯̂
G

(n)
11 −

∑

h,k

β
¯̂
G

(n)
1h V

(n)
hk Ĝ

(n+1)
k1 ,

where
¯̂
G

(n)
ij is a block-diagonal matrix where each block has dimensions d × d so

¯̂
G

(n)
ij = 0, ∀j > d. Also V

(n)
hk = 1D(n)(hk) is the adjacency matrix for the subgraph

of SG(n)(3) consisting of the edges D(n) that connect each of the three SG(n−1)(3)

graphs (D(n) = {{d, r}, {b, e}, {q, z}, {r, d}, {e, b}, {z, q}} (see Figure 2.12)) and .

So, we get

Ĝ
(n+1)
11 = Ĝ

(n)
11 − β

¯̂
G

(n)
1d V

(n)
dr Ĝ

(n+1)
r1 − β

¯̂
G

(n)
1b V

(n)
be Ĝ

(n+1)
e1

and

Ĝ
(n+1)
11 = Ĝ

(n)
11 − βĜ

(n)
1NĜ

(n+1)
r1 − βĜ

(n)
1mĜ

(n+1)
e1

49



since, by symmetry
¯̂
G

(n)
1d = Ĝ

(n)
1N , Ĝ

(n)
1N = Ĝ

(n)
1m and Ĝ

(n+1)
r1 = Ĝ

(n+1)
e1 . That is

X̂ = x̂− 2βŷĜ
(n+1)
e1 , (2.4.9)

since, Ĝ
(n)
11 = x̂ (corner-to-same-corner), Ĝ

(n)
1N = Ĝ

(n)
1m = ŷ (corner-to-other-corner);

and so at generation level n+ 1, Ĝ
(n+1)
11 = X̂ (see equation (2.4.4)). Similarly,

Ĝ
(n+1)
e1 =

¯̂
G

(n)
e1 −

∑

h,k

β
¯̂
G

(n)
eh V

(n)
hk Ĝ

(n+1)
k1

= −β ¯̂
G(n)

ee V
(n)
eb Ĝ

(n+1)
b1 − β

¯̂
G(n)

eq V
(n)
qz Ĝ

(n+1)
z1

= −βĜ(n)
11 Ĝ

(n+1)
b1 − βĜ

(n)
1NĜ

(n+1)
z1 .

Therefore

Ĝ
(n+1)
e1 = −βx̂Ĝ(n+1)

b1 − βŷĜ
(n+1)
z1 . (2.4.10)

Also

Ĝ
(n+1)
b1 =

¯̂
G

(n)
b1 −

∑

h,k

β
¯̂
G

(n)
bh V

(n)
hk Ĝ

(n+1)
k1

= Ĝ
(n)
m1 − β

¯̂
G

(n)
bb V

(n)
be Ĝ

(n+1)
e1 − β

¯̂
G

(n)
bd V

(n)
dr Ĝ

(n+1)
r1

= ŷ − βĜ(n)
mmĜ

(n+1)
e1 − βĜ

(n)
mNĜ

(n+1)
e1 .

Hence

Ĝ
(n+1)
b1 = ŷ − βĜ

(n+1)
e1 (x̂+ ŷ), (2.4.11)
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since Ĝ
(n+1)
r1 = Ĝ

(n+1)
e1 . Finally,

Ĝ
(n+1)
z1 =

¯̂
G

(n)
z1 −

∑

h,k

β
¯̂
G

(n)
zh V

(n)
hk Ĝ

(n+1)
k1

= −β ¯̂
G(n)

zr V
(n)
rd Ĝ

(n+1)
d1 − β

¯̂
G(n)

zz V
(n)
zq Ĝ

(n+1)
q1

= −βĜ(n)
m1Ĝ

(n+1)
b1 − βĜ(n)

mmĜ
(n+1)
z1 .

Therefore

Ĝ
(n+1)
z1 = −βŷĜ(n+1)

b1 − βx̂Ĝ
(n+1)
z1 , (2.4.12)

since Ĝ
(n+1)
d1 = Ĝ

(n+1)
b1 and Ĝ

(n+1)
q1 = Ĝ

(n+1)
z1 . Equations (2.4.9) to (2.4.12) provide

four equations in the four unknows X̂, Ĝ
(n+1)
e1 , Ĝ

(n+1)
b1 and Ĝ

(n+1)
z1 which can be

written in matrix form as



















1 2βŷ 0 0

0 1 βx̂ βŷ

0 β(x̂+ ŷ) 1 0

0 βx̂ βŷ 1





































X̂

Ĝ
(n+1)
e1

Ĝ
(n+1)
b1

Ĝ
(n+1)
z1



















=



















x̂

0

ŷ

0



















. (2.4.13)

So, solving this by the augmented matrix approach and back-substitution we get,

X̂ = x̂+
2β2ŷ2 (x̂+ βx̂2 − βŷ2)

(1 + βx̂+ βŷ) (1− β2x̂2 − βŷ + β2ŷ2)
, (2.4.14)

Ĝ
(n+1)
e1 =

−βŷ (x̂+ βx̂2 − βŷ2)

(1 + βx̂+ βŷ) (1− β2x̂2 − βŷ + β2ŷ2)
,

Ĝ
(n+1)
b1 =

ŷ(1 + βx̂)

(1 + βx̂+ βŷ) (1− β2x̂2 − βŷ + β2ŷ2)
, (2.4.15)

and

Ĝ
(n+1)
z1 =

−βŷ2
(1 + βx̂+ βŷ) (1− β2x̂2 − βŷ + β2ŷ2)

. (2.4.16)
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Now, for Ŷ = Ĝ
(n+1)
m1 , equation (2.4.8) gives

Ĝ
(n+1)
m1 =

¯̂
G

(n)
m1 −

∑

h,k

β
¯̂
G

(n)
mhV

(n)
hk Ĝ

(n+1)
k1

= −β ¯̂
G(n)

meV
(n)
eb Ĝ

(n+1)
b1 − β

¯̂
G(n)

mqV
(n)
qz Ĝ

(n+1)
z1

= −βĜ(n)
m1Ĝ

(n+1)
b1 − βĜ

(n)
mNĜ

(n+1)
z1 .

Therefore

Ŷ = −βŷ
(

Ĝ
(n+1)
b1 + Ĝ

(n+1)
z1

)

. (2.4.17)

Putting equations (2.4.15) and (2.4.16) into equation (2.4.17) gives

Ŷ =
−βŷ2(1 + βx̂− βŷ)

(1 + βx̂+ βŷ) (1− β2x̂2 − βŷ + β2ŷ2)
. (2.4.18)

The boundary conditions can now be considered by rewriting the (i, j)th element

of the matrix equation (2.4.7) as,

G
(n)
ij = Ĝ

(n)
ij +

∑

h,k

Ĝ
(n)
ih B̂

(n)
hk G

(n)
kj

and so we have,

G
(n)
11 = Ĝ

(n)
11 +

∑

h,k

Ĝ
(n)
ih B̂

(n)
hk G

(n)
k1

= Ĝ
(n)
11 + Ĝ

(n)
11 B̂

(n)
11 G

(n)
11 + Ĝ

(n)
1mB̂

(n)
mmG

(n)
m1 + Ĝ

(n)
1NB̂

(n)
NNG

(n)
N1.

Therefore

x = x̂+ x̂γ̄1x+ 2ŷγ̄my (2.4.19)
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since B̂
(n)
11 = γ̄1, B̂

(n)
mm = B̂

(n)
NN = γ̄m from equation (2.3.61). Similarly,

G
(n)
1m = Ĝ

(n)
1m +

∑

h,k

Ĝ
(n)
mhB̂

(n)
hk G

(n)
k1

= Ĝ
(n)
m1 + Ĝ

(n)
m1B̂

(n)
11 G

(n)
11 + Ĝ(n)

mmB̂
(n)
mmG

(n)
m1 + Ĝ

(n)
mN B̂

(n)
NNG

(n)
N1.

Hence

y = ŷ + ŷγ̄1x+ x̂γ̄my + ŷγ̄my. (2.4.20)

Letting G
(n)
mm = z and G

(n)
mN = r then,

G(n)
mm = Ĝ(n)

mm +
∑

h,k

Ĝ
(n)
mhB̂

(n)
hk G

(n)
km

= Ĝ(n)
mm + Ĝ

(n)
m1B̂

(n)
11 G

(n)
1m + Ĝ(n)

mmB̂
(n)
mmG

(n)
mm + Ĝ

(n)
mN B̂

(n)
NNG

(n)
Nm.

Therefore

z = x̂+ ŷγ̄1y + x̂γ̄mz + ŷγ̄mr. (2.4.21)

Finally,

G
(n)
mN = Ĝ

(n)
mN +

∑

h,k

Ĝ
(n)
mhB̂

(n)
hk G

(n)
kN

= Ĝ
(n)
mN + Ĝ

(n)
m1B̂

(n)
11 G

(n)
1N + Ĝ(n)

mmB̂
(n)
mmG

(n)
mN + Ĝ

(n)
mN B̂

(n)
NNG

(n)
NN .

Hence

r = ŷ + ŷγ̄1y + x̂γ̄mr + ŷγ̄mz. (2.4.22)

The four equations (2.4.19),(2.4.20),(2.4.21) and (2.4.22) can be solved to express

x, y, r, z in terms of x̂, ŷ, γ̄1, γ̄m. Solving equations (2.4.19),(2.4.20) for x and y

gives

x =
x̂+ 2ŷγ̄my

1− x̂γ̄1
. (2.4.23)

53



Substituting equation (2.4.23) into equation (2.4.20) gives

y = ŷ + ŷγ̄1

(

x̂+ 2ŷγ̄my

1− x̂γ̄1

)

+ x̂γ̄my + ŷγ̄my.

Therefore

y =
ŷ

(1− x̂γ̄1) (1− γ̄m(x̂+ ŷ))− 2ŷ2γ̄1γ̄m
. (2.4.24)

Rearranging equation (2.4.21) we get

z (1− x̂γ̄m) = x̂+ ŷγ̄1y + ŷγ̄mr.

That is

z =
x̂+ ŷγ̄1y + ŷγ̄mr

1− x̂γ̄m
. (2.4.25)

Substituting this equation into (2.4.22) gives

r (1− x̂γ̄m) = ŷ + ŷγ̄1y + ŷγ̄m

(

x̂+ ŷγ̄1y + ŷγ̄mr

1− x̂γ̄m

)

which can be written as

r =
ŷ (1 + γ̄1y)

1− x̂γ̄m
+
ŷγ̄m (x̂+ ŷ(γ̄1y + γ̄mr))

(1− x̂γ̄m)
2 .

Therefore

r =
ŷ (1 + γ̄1y (1 + γ̄m(ŷ − x̂)))

(x̂γ̄m − 1 + ŷγ̄m) (x̂γ̄m − 1− ŷγ̄m)
. (2.4.26)
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2.5 Electrical impedance and transmission sen-

sitivity

In transmission mode there is no force incident on the front face of the transducer

and so in equation (2.3.59) AL = 0. Consider one edge in the graph connecting

vertex 1 to vertex N , and apply a charge Q at vertex N . The voltage V is defined

as follows

V =

∫ L

0

Edx

and using equation (2.3.50)

V =

∫ L

0

(

−ζS +
D

εT11

)

dx

=

∫ L

0

(

−ζ dū
dx

+
D

εT11

)

dx.

Now integrating and using D = Q/Ar as used in equation (2.3.52) gives

V = −ζ(UN − U1) +
QL

Arε
T
11

= −ζ(UN − U1) +
Q

C0
(2.5.1)

where the transducer capacitance is given by C0 = Arε
T
11/L. Since the charge

Q =
∫

IT dt =
√

(ρT /µT ) h
∫

IT dθ where IT is the current and θ = cT t/h then, by

taking Laplace transforms, gives

Q =

√

ρT
µT

h
IT
q
.

That is

IT =
qQµT ξ

ZT
, (2.5.2)
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where ZT =
√
µTρTAr. The electrical impedance of the device, denoted by ZE , is

given by

ZE =
V

IT
, (2.5.3)

substituting equations (2.5.1) and (2.5.2) into equation (2.5.3) gives

ZE =
ZT

C0qµT ξ

(

1− ζC0 (UN − U1)

Q

)

. (2.5.4)

Now using equation (2.4.1)

U
(n)
1 = G

(n)
11 δ̄

(n)
1 +G

(n)
1mδ̄

(n)
m +G

(n)
1N δ̄

(n)
N

= G
(n)
11 δ̄

(n)
1 + δ̄(n)m

(

G
(n)
1m +G

(n)
1N

)

= G
(n)
11 δ̄

(n)
1 + 2G

(n)
1mδ̄

(n)
m

since G
(n)
1m = G

(n)
1N and δ̄

(n)
N = δ̄

(n)
m . This can be calculated since G

(n)
11 = x is given

by equations (2.4.14) and (2.4.23) and G
(n)
1m = y is given by equations (2.4.18) and

(2.4.24). From equation (2.3.59) and the definition of δ̄
(n)
j in equation (2.3.60)

gives

U
(n)
1 = − ζQ

µT ξ

(

η
(n)
1 γ1G

(n)
11 − 2η(n)m γmG

(n)
1m

)

. (2.5.5)

Note that in equation (2.3.59) δm = γmζQ/(µT ξ) since AL = 0. Similarly,

U
(n)
N = G

(n)
N1δ̄

(n)
1 +G

(n)
Nmδ̄

(n)
m +G

(n)
NN δ̄

(n)
N

= G
(n)
N1δ̄

(n)
1 + δ̄(n)m

(

G
(n)
Nm +G

(n)
NN

)

.

Therefore

U
(n)
N = − ζQ

µT ξ

(

η
(n)
1 γ1G

(n)
N1 − η(n)m γm

(

G
(n)
Nm +G

(n)
NN

))

. (2.5.6)
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Substituting equations (2.5.5) and (2.5.6) into equation (2.5.4) gives

ZE =
ZT

C0qµT ξ

(

1 +
ζ2C0

µT ξ

(

γ1η
(n)
1

(

G
(n)
N1 −G

(n)
11

)

+ γmη
(n)
m

(

−G(n)
Nm −G

(n)
NN + 2G

(n)
1m

))

)

,

and so

ZE =
ZT

C0qµT ξ

(

1 +
ζ2C0

µT ξ
(σ1 + σ2)

)

where

σ1 = γ1η
(n)
1

(

G
(n)
N1 −G

(n)
11

)

and σ2 = γmη
(n)
m

(

−G(n)
Nm −G

(n)
NN + 2G

(n)
1m

)

,

and G
(n)
N1 = G

(n)
Nm = G

(n)
1m = y is given by equations (2.4.18) and (2.4.24) and

G
(n)
11 = G

(n)
NN = x is given by equations (2.4.14) and (2.4.23). Hence, the non-

dimensionalised electrical impedance (ẐE) is given by

ẐE(f ;n) =
ZE

Z0
=

ZT

C0qµT ξZ0

(

1 +
ζ2C0

µT ξ
(σ1 + σ2)

)

(2.5.7)

where Z0 is the series electrical impedance load in the connecting circuitry. This

can be compared with the non-dimensionalised form for the electrical impedance

of the standard (Euclidean) transducer (
¯̂
ZE) [6,8,149]

¯̂
ZE(f) =

1

qC0Z0

(

1− ζ2C0

2qZT
(KFTF +KBTB)

)

, (2.5.8)

where TF = 2ZT/(ZT+ZL), TB = 2ZT/(ZT+ZB) are non-dimensional transmission

coefficients, KF and KB are also non-dimensional and are given by

KF =
(1− e−qτ )(1− RBe

−qτ )

(1−RFRBe−2qτ )
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and

KB =
(1− e−qτ )(1− RF e

−qτ )

(1−RFRBe−2qτ )

where RF = (ZT−ZL)/(ZT+ZL), RB = (ZT−ZB)/(ZT+ZB) are non-dimensionalised

reflection coefficients and τ = L/cT is the wave transit time across the device. In

order to calculate the transmission sensitivity, consider the circuit shown in Fig-

ure 2.9. The current across the transducer IT is given by [8]

IT =
aV

ZE + b
(2.5.9)

where a = ZP/(Z0 + ZP ), b = Z0ZP/(Z0 + ZP ) and ZP is parallel electrical

impedance load. Continuity of force at the front face given by equation (2.3.53)

and continuity of displacement given by equation (2.3.49) (with AL = 0) gives

FF = FL(xL = 0) = ArµL

(

qcT
hcL

)

UC . (2.5.10)

Substituting equation (2.3.57) into equation (2.5.10) gives

FF = ArµL

(

qcT
hcL

)

(γmUm + δm) .

From equations (2.3.58) and (2.3.59) with AL = 0 then

FF = ArµL

(

qcT
hcL

)(

γmUm + γm
ζQ

µT ξ

)

.

Therefore

FF =
ξµLqcT
cL

γm

(

Um +
ζQ

µT ξ

)

, (2.5.11)

58



since ξ = Ar/h. To obtain Um we make use of equation (2.4.1) to obtain

U (n)
m = − ζQ

µT ξ

(

η
(n)
1 γ1G

(n)
m1 − η(n)m γm

(

G(n)
mm +G

(n)
mN

))

.

Therefore equation (2.5.11) becomes

FF =
µLqcT
cL

(

ζQ

µT

)

γm

(

−η(n)1 γ1G
(n)
m1 + η(n)m γm

(

G(n)
mm +G

(n)
mN

)

+ 1
)

. (2.5.12)

Substituting equation (2.5.9) into equation (2.5.2) gives

Q =
aV ZT

(ZE + b)qµT ξ
, (2.5.13)

then substituting this into equation (2.5.12) gives

FF

V
=

ZLζa

(ZE + b)µT ξ
γm

(

−η(n)1 γ1G
(n)
m1 + η(n)m γm

(

G(n)
mm +G

(n)
mN

)

+ 1
)

,

since ZL = µLAr/cL, and so

FF

V
=

ZLζa

(ZE + b)µT ξ
K(n)

where

K(n) = γm

(

−η(n)1 γ1G
(n)
m1 + η(n)m γm

(

G(n)
mm +G

(n)
mN

)

+ 1
)

.

The non-dimensionalised transmission sensitivity (ψF ) is then given by

ψF (f ;n) =
FF

V

(

1

ζC0

)

=
aZL

(ZE + b)µT ξC0

K(n). (2.5.14)
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This expression can be compared to the equivalent transmission sensitivity (ψE)

in the standard (Euclidean) design [6,8,149]

ψE(f) =
FE

V

(

1

ζC0

)

= −aAT λ̂KF

2C0

(

1− ζ2λ̂ (KFTF +KBTB)

2qZT

)−1

, (2.5.15)

where FE the force produced at the front face of the standard transducer, λ̂ =

C0/(1 + qC0b) and AT = 2ZL/(ZL + ZT ) are dimensionless constants.

2.6 Reception sensitivity

In reception mode AL is now non zero because the front face will be subject to a

force (given by the incoming signal). From equations (2.3.59) and (2.3.62)

U
(n)
1 = − ζQ

µT ξ
η
(n)
1 γ1G

(n)
11 +

(

ζQ

µT ξ
− 2ALq

ZL

ZT

)

2η(n)m γmG
(n)
1m

and

U
(n)
N = − ζQ

µT ξ
η
(n)
1 γ1G

(n)
N1 +

(

ζQ

µT ξ
− 2ALq

ZL

ZT

)

η(n)m γm

(

G
(n)
Nm +G

(n)
NN

)

.

Putting these into equation (2.5.1) gives

VF =
ζ2Q

µT ξ
η
(n)
1 γ1

(

G
(n)
N1 −G

(n)
11

)

+

(

ζ2Q

µT ξ
− 2ζALq

ZL

ZT

)

η(n)m γm

(

2G
(n)
1m −G

(n)
Nm −G

(n)
NN

)

+
Q

C0

.

Then

VF =
ζ2Q

µT ξ
σ1 +

ζ2Q

µT ξ
σ2 − 2ζALq

ZL

ZT
σ2 +

Q

C0
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and so

VF = Q

(

ζ2

µT ξ
(σ1 + σ2) +

1

C0

)

− 2ζALq
ZL

ZT

σ2. (2.6.1)

From equation (2.3.52) the force in the load (ζ = 0) is given by

F = ArµL
dūL
dxL

. (2.6.2)

From equation (2.3.46)

dūL
dxL

=

(

qcT
hcL

)

(

BLe
(qcT xL/hcL) − ALe

(−qcT xL/hcL)
)

,

and so, at xL = 0,

dūL
dxL

=

(

qcT
hcL

)

(−AL) ,

since in receiving mode BL = 0. Substituting this into equation (2.6.2) we get

F =
ξqcTZL

Ar

(−AL) .

Then

AL =
−FAr

ξqcTZL
.

Substituting this and equation (2.5.13) into equation (2.6.1) becomes

VF =
aVFZT

(ZE + b)qµT ξ

(

ζ2

µT ξ
(σ1 + σ2) +

1

C0

)

+
2Fζσ2
ξµT

,

since µT = ZT cT/Ar, and so

VF

(

1− aZT

(ZE + b)qµT ξ

(

ζ2

µT ξ
(σ1 + σ2) +

1

C0

))

=
2Fζσ2
ξµT

,
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and hence

VF
F

=
2ζσ2
ξµT

(

1− aZT ζ
2(σ1 + σ2)

(ZE + b)qµ2
T ξ

2
− aZT

(ZE + b)qµT ξC0

)−1

.

The non-dimensionalised reception sensitivity (φF ) is then

φF (f ;n) =
VF
F

(e24L)

=
2ζe24Lσ2
ξµT

(

1− aZT ζ
2(σ1 + σ2)

(ZE + b)qµ2
T ξ

2
− aZT

(ZE + b)qµT ξC0

)−1

. (2.6.3)

This expression can be compared to the equivalent reception sensitivity (φE) in

the standard (Euclidean) design [6,8,149]

φE(f) =
VE
F

(e24L) =
−ζTFKF λ̂∗e24L

qZT

(

1− ζ2λ̂∗ (KFTF +KBTB)

2q2ZTZE

)−1

, (2.6.4)

where VE the voltage produced by the standard transducer and λ̂∗ = qC0b/(1 +

qC0b). Having derived expressions for the main operating characteristics of this

new device it is necessary to compare these with those of a standard device to

assess any practical benefits arising from this novel design.

2.7 Steady state solutions

The fractal case arises when we allow the generation level n to tend to infinity

and we assume that the recursion relationships converge to a steady state (we

denote these steady state solutions by a ∗ superscript). Note we will examine the

convergence of these recursion relationships later when we consider the pre-fractal

SG(3) transducer (finite generation levels).
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Case A: ŷ∗ = 0

If ŷ∗ = 0 then equation (2.4.9) is automatically satisfied (since X̂ = x̂ = x̂∗) and

from equations (2.4.10) and (2.4.11) we get

Ĝ∗
e1 = −βx̂∗Ĝ∗

b1 (2.7.1)

and

Ĝ∗
b1 = −βx̂∗Ĝ∗

e1. (2.7.2)

Substituting equation (2.7.1) into equation (2.7.2) gives

Ĝ∗
b1

(

1− β2x̂∗2
)

= 0.

Therefore Ĝ∗
b1 = 0 or x̂∗ = ±1/β. In the former case then Ĝ∗

e1 = 0 and in the

latter case Ĝ∗
b1 = ∓Ĝ∗

e1. From equation (2.4.12) we get

Ĝ∗
z1(1 + βx̂∗) = 0.

Therefore Ĝ∗
z1 = 0 or x̂∗ = −1/β. Now bringing in the boundary conditions

equation (2.4.25) gives

z =
x̂∗

1− x̂∗γ̄m

where x̂∗ 6= 1/γ̄m. From equation (2.4.23) we get

x =
x̂∗

1− x̂∗γ̄1

where x̂∗ 6= 1/γ̄1. From equation (2.4.20) we get

y = x̂∗γ̄my.
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That is

y = 0

since x̂∗ 6= 1/γ̄m. From equation (2.4.22) we get

w = x̂∗γ̄mw.

That is

w = 0

since x̂∗ 6= 1/γ̄m. In the case where Ĝ∗
b1 = Ĝ∗

e1 = Ĝ∗
z1 = 0 we denote the solution

as x∗ = χ, χ ∈ C and in the case where x̂∗ = ±1/β we denote the solutions as

Ĝ∗
b1 = ∓λ, Ĝ∗

e1 = ∓λ and Ĝ∗
z1 = θ (or 0 when x̂∗ = 1/β) where λ, θ ∈ C. The full

set of solutions are summarised in the table below.

Case x̂∗ ŷ∗ Ĝ∗
b1 Ĝ∗

e1 Ĝ∗
z1 x y w z note

A1 −1
β

0 λ −λ θ −1
β+γ̄1

0 0 −1
β+γ̄m

β 6= γ̄1, β 6= γ̄m

A2 1
β

0 −λ λ 0 1
β−γ̄1

0 0 1
β−γ̄m

β 6= γ̄1, β 6= γ̄m

A3 χ 0 0 0 0 χ
1−χγ̄1

0 0 χ
1−χγ̄m

γ̄1 6= 1
χ
, γ̄m 6= 1

χ
,χ 6= ± 1

β

Case B: ŷ∗ 6= 0

If ŷ∗ 6= 0 then from equation (2.4.9) we get

−2βŷ∗Ĝ∗
e1 = 0
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since X̂ = x̂ = x̂∗ and Ŷ = ŷ = ŷ∗. That is

Ĝ∗
e1 = 0

since β 6= 0, ŷ∗ 6= 0. Substituting this into equations (2.4.10) and (2.4.11) we get

x̂∗Ĝ∗
b1 + ŷ∗Ĝ∗

z1 = 0 (2.7.3)

and

Ĝ∗
b1 = ŷ∗. (2.7.4)

Substituting equation (2.7.4) into equation (2.7.3) gives

Ĝ∗
z1 = −x̂∗. (2.7.5)

Substituting equations (2.7.4) and (2.7.5) into equation (2.4.12) gives

x̂∗ + βx̂∗2 − βŷ∗2 = 0. (2.7.6)

Note that x̂∗ 6= 0 since this would imply that ŷ∗ was zero. Also substituting

equations (2.7.4) and (2.7.5) into equation (2.4.17) gives

ŷ∗ = −βŷ∗ (ŷ∗ − x̂∗) .

That is

ŷ∗ = x̂∗ − 1

β
. (2.7.7)
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Putting this into equation (2.7.6) gives

x̂∗ =
1

3β
. (2.7.8)

Putting this into equation (2.7.7) gives

ŷ∗ =
−2

3β
. (2.7.9)

Now putting equations (2.7.8) and (2.7.9) into the boundary conditions equation

(2.4.24) gives

y =
−2β

3β2 − 3γ̄1γ̄m + β(−γ̄1 + γ̄m)
. (2.7.10)

Putting equations (2.7.8),(2.7.9) and (2.7.10) into equations (2.4.23) and (2.4.26)

gives

x =
β + 3γ̄m

3β2 − βγ̄1 + βγ̄m − 3γ̄1γ̄m

and

w =
−2β(β − γ̄1)

(β − γ̄m) (3β2 − 3γ̄1γ̄m + β(−γ̄1 − γ̄m))
. (2.7.11)

Substituting equations (2.7.8),(2.7.9),(2.7.10) and (2.7.11) into equation (2.4.25)

gives

z =
β2 − 3γ̄1γ̄m + β(γ̄1 + γ̄m)

(β − γ̄m) (3β2 − 3γ̄1γ̄m + β(−γ̄1 + γ̄m))
.

Note that from equation (2.4.5), h(n) → 0 and q(n) → 0 as n → ∞, and so from

equation (2.5.7) the non-dimensionalised electrical impedance tends to infinity

((ẐE(f ;n)) → ∞), from equation (2.5.14) the non-dimensionalised transmission

sensitivity tends to zero (ψF (f ;n) → 0), and from equation (2.3.58) γj → 1 and
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from equation (2.3.60) γ̄j → η∗j . From equation (2.3.45) we get

η∗j =











4
3
, j = 1

1, j = m or N.

From equation (2.6.3) the non-dimensionalised reception sensitivity is

φ∗
F (f ;n) =

2ζe24Lσ
∗
2

ξµT

(

1− aZT (µT ξ + C0ζ
2(σ∗

1 + σ∗
2))

µTZT ξ + C0bqξ2µ
2
T + C0ζ2ZT (σ

∗
1 + σ∗

2)

)−1

,

and, since q(n) → 0, then

φ∗
F (f ;n) =

2ζe24Lσ
∗
2

ξµT (1− a)
,

where

σ∗
2 =



































1
1+β

, in case A1

1
1−β

, in case A2

χ
χ−1

, in case A3

−3(3β+4)
9β2+β−12

in case B.

2.8 Results

From a practical perspective, these fractal transducers will only be able to be man-

ufactured at low generation levels. The formulation presented above will allow us

to compare the fractal design with a conventional (Euclidean) design in terms

of the key operating characteristics of the transmission and reception sensitivity

spectra [150]. Within each, the presence of higher amplitudes, multiple resonances,

and improved bandwidth (the range of frequencies over which the performance ex-

ceeds a certain decibel level) are the key performance indicators of interest in this

section. The model (equations (2.2.1), (2.2.2), (2.2.4) and (2.2.5)) has been imple-
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mented in Mathematica [150]. We have started from fractal generation level n = 1

and formed its matrix (equation (2.3.22)). Since this has a very low dimension

we simply invert it to produce the initial conditions for the renormalisation equa-

tions. These are then iterated to the desired fractal generation level (equations

(2.4.2), (2.4.3), (2.4.14) and (2.4.18)) and then put into the electrical impedance,

transmission and reception sensitivities (equations (2.5.7), (2.5.14) and (2.6.3)).

2.8.1 Electrical impedance and transmission/reception sen-

sitivities

In Figure 2.13 the overall trend of the curve is that of a capacitor (1/(C0f) profile

where C0 is the transducer capacitance and f is the frequency) with prominent

resonances. The important features of this plot, that the design engineer is inter-

ested in, are the location and magnitude of the first minimum (fr) and the first

maximum (fa) turning points. The first minimum is where the mechanical reso-

nance (or series resonance) occurs and, as this provides the least resistance to the

electrical energy being supplied, is the frequency at which the device should be

used in transmission mode; this device will produce its maximum force on the me-

chanical load at this frequency. The absolute value of the electrical impedance at

this frequency (ẐE(fr)) is also important since, the lower (ẐE(fr)) is, the higher

will be the peak transmission sensitivity of the device (ψ(fr)). The first maxi-

mum (known as the anti-resonance or parallel resonance frequency) is where the

electrical impedance of the device peaks and is therefore the optimal frequency to

operate the device in reception mode. From the parameter values for PZT5-H then

the piezoelectrically stiffened velocity (cT ) in equation (2.2.11) is approximately

2370 m/s and, with an overall device length of L = 1 mm, then the corresponding

frequency is approximately fa = cT/(2L) = 1.2 MHz. This agrees reasonably well
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with the reception sensitivity maximum for the homogenised estimate for fa (the

full line in Figure 2.13). Let us start by examining the performance of the first

generation graph (n = 1).

2 4

20

25

30

35

40

f(MHz)

ẐE,
¯̂
ZE (dB)

Figure 2.13: Non-dimensionalised electrical impedance (equation (2.5.7)) versus
frequency for the SG(3) graph transducer (ẐE) at fractal generation level n =
1 (dashed line). The non-dimensionalised electrical impedance of the standard

(Euclidean) transducer (
¯̂
ZE) (equation (2.5.8)) is plotted for comparison (full line).

Parameter values are given in Appendix A.5.

Figure 2.13 shows that for the standard (Euclidean) design (full line), the me-

chanical resonance is fr = 0.9 MHz and the electrical resonance is fa = 1.2 MHz.

The electrical impedance of the fractal graph has its first resonance at around 0.5

MHz (at a lower frequency than the Euclidean case) and any higher frequency

resonances are absent at this stage.
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Figure 2.14: Non-dimensionalised transmission sensitivity (equation (2.5.14)) ver-
sus frequency for the SG(3) graph transducer (ψF ) at fractal generation level n = 1
(dashed line). The non-dimensionalised transmission sensitivity of the standard
(Euclidean) transducer (ψE) (equation (2.5.15)) is plotted for comparison (full
line). Parameter values are given in Appendix A.5.

As discussed above, the frequency of the first minimum (fr) in the electrical

impedance, corresponds precisely to the first maximum in the transmission sen-

sitivity as shown in Figure 2.14 where the first maximum appears at 0.9 MHz.

The transmission sensitivity at generation level n = 1 has a maximum amplitude

(gain) that is higher than the Euclidean case (standard design) at its lower operat-

ing frequency (26 dB at 0.3 MHz compared to 24 dB at 0.9 MHz for the Euclidean

case). Although the bandwidth around this peak sensitivity is smaller than that

of the Euclidean case. It can been seen, unusually, that the fractal device has a

very flat response from 2 MHz upwards at a sensitivity level of 19 dB albeit at a

much reduced decibel level from the main peak.
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Figure 2.15: Non-dimensionalised reception sensitivity (equation (2.6.3)) versus
frequency for the SG(3) graph transducer (φF ) at fractal generation level n =
1 (dashed line). The non-dimensionalised reception sensitivity of the standard
(Euclidean) transducer (φE) (equation (2.6.4)) is plotted for comparison (full line).
Parameter values are given in Appendix A.5.

Also, the frequency of the first maximum (fa) of the electrical impedance, cor-

responds precisely to the first maximum in the reception sensitivity as shown in

Figure 2.15, where the first maximum appears at 1.2 MHz. With regard to the

reception sensitivity the fractal design at generation level n = 1 does show some

encouraging results with a much higher peak amplitude than that of the Euclidean

case and at a lower operating frequency (at 0.6 MHz its sensitivity is 36 dB whereas

the peak sensitivity of the standard device is 12 dB at 1.2 MHz).
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Figure 2.16: Non-dimensionalised electrical impedance (equation (2.5.7)) versus
frequency for the SG(3) graph transducer (ẐE) at fractal generation level n =
2 (dashed line). The non-dimensionalised electrical impedance of the standard

(Euclidean) transducer (
¯̂
ZE) (equation (2.5.8)) is plotted for comparison (full line).

Parameter values are given in Appendix A.5.

The electrical impedance profile of the fractal design at generation level n = 2 and

the standard design follow a similar profile with more resonances being present in

the fractal case due to the presence of a range of length scales in the new design.

Indeed, for all the results that we will show, the resonant modes occur at higher

frequencies as the generation level increases (that is, as the length scale of the

graph edges decreases).
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Figure 2.17: Non-dimensionalised transmission sensitivity (equation (2.5.14)) ver-
sus frequency for the SG(3) graph transducer (ψF ) at fractal generation level n = 2
(dashed line). The non-dimensionalised transmission sensitivity of the standard
(Euclidean) transducer (ψE) (equation (2.5.15)) is plotted for comparison (full
line). Parameter values are given in Appendix A.5.

In terms of the transmission sensitivity at generation level n = 2, the maximum

amplitude is somewhat higher in the fractal design than the Euclidean case (32 dB

at 2.4 MHz compared to 27 dB at 3.5 MHz for the Euclidean case). Once again

the bandwidth around this peak sensitivity is smaller than that of the Euclidean

case.
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Figure 2.18: Non-dimensionalised reception sensitivity (equation (2.6.3)) versus
frequency for the SG(3) graph transducer (φF ) at fractal generation level n =
2 (dashed line). The non-dimensionalised reception sensitivity of the standard
(Euclidean) transducer (φE) (equation (2.6.4)) is plotted for comparison (full line).
Parameter values are given in Appendix A.5.

The reception sensitivity at generation level n = 2 has again a much higher peak

amplitude than that of the Euclidean case at its lower operating frequency (at

1 MHz its sensitivity is 34 dB whereas the peak sensitivity of the standard (Eu-

clidean) device is 15 dB at 1.2 MHz).
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Figure 2.19: Non-dimensionalised electrical impedance (equation (2.5.7)) versus
frequency for the SG(3) graph transducer (ẐE) at fractal generation level n =
3 (dashed line). The non-dimensionalised electrical impedance of the standard

(Euclidean) transducer (
¯̂
ZE) (equation (2.5.8)) is plotted for comparison (full line).

Parameter values are given in Appendix A.5.

As the generation level increases a greater range of length scales exist within the

fractal design and so an increasing number of resonant modes emerge. For the

fractal design the electrical impedance profile has many resonance frequencies at

generation level n = 3 (f
(3)
r = 2.2 MHz and f

(3)
a = 2.3 MHz) and this suggests

that it is a complex interaction between the edge lengths in the graph associated

with the various generation levels that are causing these resonances; so the internal

geometry is dictating the device behaviour as anticipated.
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Figure 2.20: Non-dimensionalised transmission sensitivity (equation (2.5.14)) ver-
sus frequency for the SG(3) graph transducer (ψF ) at fractal generation level n = 3
(dashed line). The non-dimensionalised transmission sensitivity of the standard
(Euclidean) transducer (ψE) (equation (2.5.15)) is plotted for comparison (full
line). Parameter values are given in Appendix A.5.

As before the transmission sensitivity maximum amplitude at fractal generation

level n = 3 is higher than the Euclidean case (43 dB at 2.3 MHz compared to 28

dB at 3.5 MHz for the Euclidean case). However, this peak in the transmission

sensitivity results in a reduced bandwidth; if we take the noise floor to be 3 dB

below the peak gain of the standard transducer (that is 25 dB) then the operational

bandwidth of the standard transducer is 0.25 MHz whereas the fractal transducer

only has an operational bandwidth of around 0.07 MHz.
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Figure 2.21: Non-dimensionalised reception sensitivity (equation (2.6.3)) versus
frequency for the SG(3) graph transducer (φF ) at fractal generation level n =
3 (dashed line). The non-dimensionalised reception sensitivity of the standard
(Euclidean) transducer (φE) (equation (2.6.4)) is plotted for comparison (full line).
Parameter values are given in Appendix A.5.

The reception sensitivity at fractal generation level n = 3 is now more closely

matched to the standard design in terms of peak amplitude (at 2.3 MHz its sensi-

tivity is 25 dB and the peak sensitivity of the standard (Euclidean) device is 15 dB

at 1.2 MHz). Again, if we take the noise floor to be around 3 dB lower than the

peak gain of the standard design (so a 12 dB level) then the operational bandwidth

of the fractal design is 0.11 MHz compared to 0.19 MHz from the standard design.

2.8.2 Convergence

The norm of the difference between the energy in the power spectrum at succes-

sive generation levels, integrated with respect to frequency, is calculated for the
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transmission/reception sensitivities, as follows

m
∑

i=1

|ψF (fi;n)− ψF (fi;n+ 1)| = ψ∗
F (n), (2.8.1)

and
m
∑

i=1

|φF (fi;n)− φF (fi;n+ 1)| = φ∗
F (n). (2.8.2)

where ψ∗
F (n) and φ

∗
F (n) record the convergence of the transmission and reception

sensitivities respectively as the fractal generation level increases. Figures 2.22

and 2.23 shows the dependence of these norms on the generation level.
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ψ∗
F (n) (dB)

Figure 2.22: Non-dimensionalised transmission sensitivity (ψ∗
F (n)) (equa-

tion (2.8.1)) converges as the fractal generation level increases. This sensi-
tivity converges by generation level n = 10 over this frequency range where
fi ∈ [0.1, 10]MHz.
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Figure 2.23: Non-dimensionalised reception sensitivity (φ∗
F (n)) (equation (2.8.2))

versus successive generation levels. This sensitivity converges by generation level
n = 16 over this frequency range where fi ∈ [0.1, 10]MHz.

2.9 Conclusions

A model of a piezoelectric ultrasound transducer with a fractal geometry has been

constructed and its operational qualities compared with that of a standard (Eu-

clidean) design. The fractal that was used to simulate this self-similar transducer

was the Sierpinski gasket [144]. The graph counterpart of the Sierpinski gasket

SG(3) [145] was used to express the electrical and mechanical fields in terms of

a finite element methodology [7]. As this was the first time that a finite element

analysis has been performed on this structure then some new basis functions were

derived. The fractal design has multiple length scales (the standard design typi-

cally has a single length scale) and, since these are resonating devices, this resulted

in a rich set of resonating frequencies. Indeed the broadband resonators found in
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nature and in musical instruments rely on this principle. The finite element for-

mulation resulted in a matrix equation whose solution yielded to a renormalisation

approach. This is turn led to a small set of recursion relationships for the pivotal

Green’s functions that drive the calculation of the transmission/reception sensitiv-

ities of the device. The focus was on low generation levels of the fractal as these

are most likely to adhere to manufacturing constraints. The results showed that

the fractal transducer resonates at many more frequencies than the standard (Eu-

clidean) transducer. Importantly, the fractal transducer gave rise to a significantly

higher amplitude transmission and reception sensitivity than the standard (Eu-

clidean) design. The convergence of the fractal device’s performance as the fractal

generation level increases was also considered. It was seen that, in both transmis-

sion and reception modes, the outputs converge by generation levels n = 10 and

n = 16 respectively. These encouraging results suggest that it will be worthwhile

studying other fractal transducer designs.
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Chapter 3

A fractal ultrasonic transducer

based on the Sierpinski gasket

with both piezoelectric and

polymer phases

3.1 Introduction

This chapter builds a model of a composite fractal ultrasound transducer and

compare this model’s operational qualities with that of a standard (simple) de-

sign. We will use a finite element methodology and introduce new basis functions

to express the wave fields within the graph. This Galerkin approach leads to a

discrete formulation that lends itself to a renormalisation approach. The Sier-

pinski gasket will be used for the simulation of a self-similar transducer in this

chapter [9,10,144,145]. Such an ultrasonic transducer would start with an equilat-

eral triangle of piezoelectric crystal. This equilateral triangle is composed of four
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identical equilateral sub-triangles whose side length is half of the original. The

first generation (n = 1) would be obtained by replacing the central sub-triangle

by a polymer material. This process is then repeated for several generations with

the removed sub-triangles from the smallest triangles being filled with a polymer

(see Figure 3.1). The associated graph is constructed by a process which starts

from the order n = 1 design (which consists of three piezoelectric triangles and

one polymer triangle), assigns a vertex to the centre of each of these triangles and,

by connecting these vertices together with edges, the SG(3,4) graph at generation

level n = 1 is constructed (see Figure 3.2). The polymer triangle has a vertex de-

noted by a non-filled circle which was degree 3 whereas each piezoelectric triangle

has a vertex denoted by a filled circle and has degree 4. The graph has side length

L units which remains constant as the generation level n increases. Therefore, as

n increases, the length of the edge between adjacent vertices tends to zero and in

this limit the graph will perfectly match the space filling properties of the original

Sierpinski gasket [7]. The total number of vertices is 3n + 3n−1 = N (n) + 1 where

N (1) = 3 and N (2) = 11 (see Figures 3.3 and 3.4) and h(n) = L/(2n−1) is the edge

length between any two adjacent piezoelectric vertices. The piezoelectric vertex

degree is 4 (apart from the boundary vertices (input/output vertices) which have

degree 3) and M = (5 × 3n − 3)/2 denotes the total number of edges. These

boundary vertices will be used to interact with external loads (both electrical and

mechanical) and so we introduce fictitious vertices A,B and C to accommodate

these interfacial boundary conditions (see Figures 3.3 and 3.4). Denote by Ω the

set of points lying on the edges or vertices of SG(3,4) and denote the region’s

boundary by ∂Ω. Note that the edges joining the piezoelectric vertices to the

polymer vertices are composed of a piezoelectric section (shown by the full line in

Figure 3.3 along the edge joining vertex 1 to 4) and a polymer section (shown by
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the dashed line along this same edge). In what follows we will retain the freedom

to vary the fraction of piezoelectric material in this edge from ν = 1 (piezoelectric

material only) to ν = 0 (polymer material only).

n = 0 n = 1 n = 2 n = 3 n = 4

Figure 3.1: The first few generations of the Sierpinski gasket. The black trian-
gles are a piezoelectric material and the smallest white triangles are a polymer
material.

n = 1 n = 2 n = 3

Figure 3.2: The first few generations of the Sierpinski gasket graph SG(3,4).

By introducing the non-dimensionalised variable θ = ct/h then (temporarily drop-

ping the subscript on u and the superscript on h)

∂2u

∂θ2
=
h2

c2T
c2 ∇2u. (3.1.1)

Applying the Laplace transform L : θ → q then gives

q2 ū =
h2

c2T
c2 ∇2ū. (3.1.2)
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We will seek a weak solution ū ∈ H1(Ω) where on the boundary ū = ū∂Ω ∈ H1(∂Ω).

Now multiplying by a test function w ∈ H1
B(Ω), where H1

B(Ω) := {w ∈ H1(Ω) :

w = 0 on ∂Ω}, integrating over the region Ω, and using Green’s first identity
∫

Ω
ψ ∇2φ dv =

∮

∂Ω
ψ(∇φ . n) dr −

∫

Ω
∇φ .∇ψ dv, where n is the outward pointing

unit normal of surface element dr, gives

∫

Ω

q2 ū w dx =
h2

c2T
c2
∮

∂Ω

w(∇ū . n) dr − h2

c2T
c2
∫

Ω

∇ū .∇w dx.

Now h2
∮

∂Ω
w(∇ū . n) dr is zero since w = 0 on ∂Ω and so, we seek ū ∈ H1(Ω) such

that

q2
∫

Ω

ū w dx = −h
2

c2T
c2
∫

Ω

∇ū .∇w dx

where w ∈ H1
B(Ω).

3.2 Galerkin discretisation

Using a standard Galerkin method we replace H1(Ω) and H1
B(Ω) by the finite

dimensional subspaces SS and SB = SS ∩H1
B(Ω). Let UB ∈ SS be a function that

approximates ū∂Ω on ∂Ω, then the discretised problem involves finding Ū ∈ SS

such that

q2
∫

Ω

Ū W dx = −h
2

c2T
c2
∫

Ω

∇Ū .∇W dx,

where W is the test function expressed in this finite dimensional space. Let

{φ1, φ2, . . . , φN , φN+1} form a basis of SB and set W = φj, then

q2
∫

Ω

Ūφj dx = −h
2

c2T
c2
∫

Ω

∇Ū .∇φj dx, j = 1, . . . , N + 1. (3.2.1)
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Furthermore, let ψI , I = {N + 2, N + 3, N + 4} form a basis for the boundary

vertices and let

Ū =

N+1
∑

i=1

Uiφi +
∑

i∈I
UBi

ψi. (3.2.2)

Hence, equation (3.2.1) becomes

N+1
∑

i=1

(

q2
∫

Ω

φiφj dx+
h2

c2T
c2
∫

Ω

∇φi .∇φj dx

)

Ui =

−
∑

i∈I

(

q2
∫

Ω

ψiφj dx+
h2

c2T
c2
∫

Ω

∇ψi .∇φj dx

)

UBi
(3.2.3)

where j ∈ {1, 2, . . . , N,N + 1}. That is

AjiUi = bj (3.2.4)

where

Aji = q2
∫

Ω

φiφj dx+
h2

c2T
c2
∫

Ω

∇φi .∇φj dx, (3.2.5)

and

bj = −
∑

i∈I

(

q2
∫

Ω

ψiφj dx+
h2

c2T
c2
∫

Ω

∇ψi .∇φj dx

)

UBi
. (3.2.6)

It is important to now explicitly record the fractal generation level n and so equa-

tion (3.2.5) can be written

A
(n)
ji = q2H

(n)
ji +

(

h(n)
)2

c2T
K

(n)
ji , (3.2.7)

where

H
(n)
ji =

∫

Ω

(φjφi)dx, (3.2.8)
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and

K
(n)
ji = c2

∫

Ω

(∇φj .∇φi)dx. (3.2.9)

1 2

3

4

A B

C

(0, 0) (h, 0)

(h2 ,
√
3h
2 )

(h2 ,
h

2
√
3
)

(−h, 0) (2h, 0)

(h,
√
3h)

1©

2©3©

4© 5©

6©

7© 8©

9©

Figure 3.3: The modified Sierpinski Gasket graph SG(3,4) at generation level
n = 1. Vertices 1, 2 and 3 are the input/output piezoelectric vertices, vertex 4 is a
polymer vertex, and vertices A (or 5), B (or 6) and C (or 7) are fictitious vertices
used to accommodate the boundary conditions. The graph has 9 elements (circled
numbers), with two vertices adjacent to each element.

3.2.1 Transformations of the fundamental basis functions

In this section we will consider transformations of some fundamental basis func-

tions φ̂J , φ̂K and ψ̂I (see Figures 3.5, 3.6 and 3.7) to get basis functions φJ , φK

and ψI at each vertex in the graph. These basis functions will be based on a

fundamental basis function for the interior piezoelectric vertices (J), one for the

interior polymer vertices (K) and one for the exterior piezoelectric vertices (I).
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√
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√
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√
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√
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Figure 3.4: The modified Sierpinski Gasket graph SG(3,4) at generation level
n = 2. Vertices A (or 13), B (or 14) and C (or 15) are fictitious vertices used
to accommodate the boundary conditions. The graph has 24 elements (circled
numbers), with two vertices adjacent to each element.

We choose the design of the fundamental basis functions φ̂J as shown in Figure 3.5

with vertices (
√
3h/2, h/2), (

√
3h/2,−h/2), (h/

√
3, 0) and (−

√
3h/2, h/2). The

φ̂J basis function is defined such that (we ease the notation by setting x1 = x, and

x2 = y)

φ̂j(x, y) =











1 if (x, y) = (xj , yj)

0 if (x, y) = coordinates of vertices adjacent to vertex j.

(3.2.10)

The basis functions have a compact support and are identically zero outside the

edges that are incident upon the particular vertex.
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Figure 3.5: Plan view of φ̂J , the fundamental basis function for the piezoelectric
vertices; it is symmetric with respect to the x′ axis.
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2
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Figure 3.6: Plan view of φ̂K , the fundamental basis function for the polymer
vertices.
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y ¾

I D
(0, 0) (h, 0)

Figure 3.7: Plan view of φ̂I , the fundamental basis function.

For the fundamental basis functions φ̂J (see Figure 3.5) we have five vertices and

so the functional form has five unknowns. Setting

φ̂J(x, y) = a + bx+ cy + dx2 + ey2, (3.2.11)

then, by applying equation (3.2.10), we get

φ̂J(0, 0) = a = 1, (3.2.12)

φ̂J

(

h√
3
, 0

)

= 1 +
h√
3
b+

h2

3
d = 0, (3.2.13)

φ̂J

(√
3h

2
,
h

2

)

= 1 +

√
3

2
hb+

h

2
c+

3

4
h2d+

h2

4
e = 0, (3.2.14)

φ̂J

(√
3h

2
,
−h
2

)

= 1 +

√
3

2
hb− h

2
c+

3

4
h2d+

h2

4
e = 0 (3.2.15)

and

φ̂J

(

−
√
3h

2
,
h

2

)

= 1−
√
3

2
hb+

h

2
c+

3

4
h2d+

h2

4
e = 0. (3.2.16)
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Equations (3.2.13) to (3.2.16) provide four equations in the four unknowns b, c, d

and e, which give b = 0, c = 0, d = −3/h2 and e = 5/h2 and substituting these

into equation (3.2.11) gives

φ̂J(x, y) = 1− 3

h2
x2 +

5

h2
y2. (3.2.17)

Similarly, for the fundamental basis function φ̂K (see Figure 3.6), we have four

vertices, so we need to form an equation with four unknowns, so consider

φ̂K(x, y) = a + bx+ cy + d
(

x2 + y2
)

. (3.2.18)

By applying equation (3.2.10), then we get

φ̂K(0, 0) = a = 0, (3.2.19)

φ̂K(h, 0) = hb+ h2d = 0, (3.2.20)

φ̂K

(

h

2
,

√
3h

2

)

=
h

2
b+

√
3h

2
c+ h2d = 0 (3.2.21)

and

φ̂K

(

h

2
,
h

2
√
3

)

=
h

2
b+

h

2
√
3
c+

h2

3
d = 1. (3.2.22)

Equations (3.2.20) to (3.2.22) provide three equations in the three unknowns b, c

and d, which gives b = 3/h, c =
√
3/h and d = −3/h2, and substituting these into

equations (3.2.18) gives

φ̂K(x, y) =
3

h
x+

√
3

h
y − 3

h2
(

x2 + y2
)

. (3.2.23)

Similarly, for the fundamental basis functions ψ̂I (see Figure 3.7), we have two
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vertices, so consider

ψ̂I(x, y) = a + d
(

x2 + y2
)

. (3.2.24)

By applying equation (3.2.10), we get

ψ̂I(0, 0) = a = 1

and

ψ̂I(h, 0) = 1 + h2d = 0.

This equation gives d = −1/h2, and substituting this into equation (3.2.24) gives

ψ̂I(x, y) = 1− 1

h2
(

x2 + y2
)

. (3.2.25)

Having established the fundamental (canonical) basis functions for each type of

vertex in the graph we now need to calculate the specific basis functions for each

vertex. In order to do this each fundamental basis function is mapped onto the

specific vertex by a series of transformations such as a translation, a rotation, or

a reflection in the x or y axis. This has to be performed for each vertex in the

graph and below we illustrate the process by detailing the transformations for a

small subset of these vertices. The form of the basis function centred on vertex 1

at fractal generation level n = 1 is obtained by relating it to the canonical basis

function φ̂J shown in Figure 3.5 as given by equation (3.2.17) (with respect to the

(x′, y′) coordinate frame shown in red in Figure 3.8).
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Figure 3.8: The plan view of the basis function φ1, before transformation. The
coordinate axis x′ lies along the edge JD in Figure 3.5.

The one step in transforming φ1 to the canonical basis function φ̂J is via a rotation

of −π/6 (clockwise) (see Figure 3.9). The anticlockwise rotation by an amount θ

is obtained by multiplying the basis vectors by the matrix

Rθ =







cos θ − sin θ

sin θ cos θ






.
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Figure 3.9: The plan view of φ1, after the rotation (final transformation).

So, for example, at fractal generation level n = 1,

φ1 = R−π
6
φ̂J(x, y)

= φ̂J

(

x cos
(

−π
6

)

− y sin
(

−π
6

)

, x sin
(

−π
6

)

+ y cos
(

−π
6

))

= φ̂J

(√
3

2
x+

1

2
y,−1

2
x+

√
3

2
y

)

= 1− 3

h2

(√
3

2
x+

1

2
y

)2

+
5

h2

(

−1

2
x+

√
3

2
y

)2

= 1− 1

h2
x2 +

3

h2
y2 − 4

√
3

h2
xy. (3.2.26)
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Figure 3.10: The plan view of the basis function φ2, before transformation.

In Figure 3.10 the plan view of the basis function centred on vertex 2 at fractal

generation level n = 1 is shown. To transform this plan view of φ2 to the plan

view of φ̂J then we simply need to transform the (x, y) axis in Figure 3.10 to the

(x′, y′) axis in Figure 3.5. So the first step is via a translation of x2 = (h, 0) to

x′2 = (0, 0) (see Figure 3.11). In general, the translation of the basis vectors to the

point (xj , yj) is given by the transformation

RT (xj) =







x− xj

y − yj






.
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Figure 3.11: The plan view of φ2, after the first transformation.

The second step in transforming φ2 to φ̂J is via a reflection in the (y axis) (see

Figure 3.12). Reflection in the y axis can be obtained by multiplying the basis

vectors by the matrix

RR =







−1 0

0 1






.
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Figure 3.12: The plan view of φ2, after the second transformation.

Then from this plan view of φ2, the third (final) step in transforming φ2 to φ̂J is

via a rotation of −π/6 (clockwise) (see Figure 3.13).
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Figure 3.13: The plan view of φ2, after the third (final) transformation.

So, for example, at fractal generation level n = 1,

φ2 = R−π
6
◦RR ◦RT (x2)φ̂J(x, y)

= R−π
6
◦RRφ̂J(x− h, y)

= R−π
6
φ̂J (−(x− h), y)

= φ̂J

(

−(x− h) cos
(

−π
6

)

− y sin
(

−π
6

)

,−(x− h) sin
(

−π
6

)

+ y cos
(

−π
6

))

= φ̂J

(

−(x− h)

√
3

2
+

1

2
y,

1

2
(x− h) +

√
3

2
y

)

= 1− 3

h2

(

−(x− h)

√
3

2
+

1

2
y

)2

+
5

h2

(

1

2
(x− h) +

√
3

2
y

)2

=
2

h
x− 4

√
3

h
y − 1

h2
x2 +

3

h2
y2 +

4
√
3

h2
xy. (3.2.27)
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Figure 3.14: The plan view the basis function φ3, before transformation.

To transform φ3 (see Figure 3.14) to the canonical basis function φ̂J (see Figure

3.5) we need a translation of x3 = (h/2,
√
3h/2) (see Figure 3.15).
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Figure 3.15: The plan view of φ3, after the first step of transformation.
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The second (final) step in transforming φ3 to φ̂J is via a rotation of π/2 (anticlock-

wise) (see Figure 3.16).
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Figure 3.16: The plan view of φ3, after the second step of transformation.

So,

φ3 = Rπ
2
◦RT (x3)φ̂J(x, y)

= Rπ
2
φ̂J

(

x− h

2
, y −

√
3h

2

)

= φ̂J

(

−y +
√
3h

2
, x− h

2

)

= 1− 3

h2

(

−y +
√
3h

2

)2

+
5

h2

(

x− h

2

)2

= −5

h
x+

3
√
3

h
y +

5

h2
x2 − 3

h2
y2. (3.2.28)
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To transform the basis function ψ5 (see Figure 3.17) to the canonical basis function

ψ̂I shown in Figure 3.7 as given by equation (3.2.25). So the one step is via a

translation of x5 = (−h, 0) to x′5 = (0, 0) (see Figure 3.18).
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Figure 3.17: The plan view of the basis function ψ5, before transformation.
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Figure 3.18: The plan view of ψ5, after the translation (final transformation).

So, for example, at fractal generation level n = 1,

ψ5 = RT (x5)ψ̂I(x, y)

= ψ̂I(x+ h, y)

= 1− 1

h2
(

(x+ h)2 + y2
)

= −2

h
x− 1

h2
x2 − 1

h2
y2. (3.2.29)
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Figure 3.19: The plan view of the basis function ψ6, before transformation.

To transform the basis function ψ6 (see Figure 3.19) to the canonical basis function

ψ̂I (see Figure 3.7), the first step is a translation of x6 = (2h, 0) (see Figure 3.20).
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Figure 3.20: The plan view of ψ6, after the first step of transformation.
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The second (final) step in transforming ψ6 to the canonical basis function ψ̂I is

via a rotation of π (see Figure 3.21).
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Figure 3.21: The plan view of ψ6, after the second (final) step of transformation.

So,

ψ6 = Rπ ◦RT (x6)ψ̂I(x, y)

= Rπψ̂I(x− 2h, y)

= ψ̂I(−x+ 2h,−y)

= −3 +
4

h
x− 1

h2
x2 − 1

h2
y2. (3.2.30)
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Figure 3.22: The plan view of the basis function ψ7, before transformation.

To transform ψ7 (see Figure 3.22) to the canonical basis function ψ̂I (see Figure

3.7), the first step is a translation of x7 = (h,
√
3h) (see Figure 3.23).
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Figure 3.23: The plan view of ψ7, after the first step of transformation.
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The second (final) step in transforming ψ7 to ψ̂I is via a rotation of 2π/3 (anti-

clockwise) (see Figure 3.24).

x

y

x¾
y¾

D

1 2

3

4

5 6

7

Figure 3.24: The plan view of ψ7, after the second (final) step of transformation.

So,

ψ7 = R 2π
3
◦RT (x7)ψ̂I(x, y)

= R 2π
3
ψ̂I

(

x− h, y −
√
3h
)

= ψ̂I

(

−1

2
(x− h)−

√
3

2

(

y −
√
3h
)

,

√
3

2
(x− h)− 1

2

(

y −
√
3h
)

)

= −3 +
2

h
x+

2
√
3

h
y − 1

h2
x2 − 1

h2
y2. (3.2.31)
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Related steps from φj and ψj to their respective canonical basis function
j (1) Translation (RT ) (2) Reflection (RR) (3) Rotation (Rθ)

1 − − −π/6
2 (h, 0) y axis −π/6
3 (h

2
,
√
3h
2
) − π/2

4 − − −
5 (−h, 0) − −
6 (2h, 0) − π

7 (h,
√
3h) − 2π/3

Table 3.1: The related steps of the transformation from φj, j = 1, . . . , 4 and ψj ,
j = 5, 6, 7 to their respective canonical basis function in fractal generation level
n = 1.

A summary of the transformations required for each basis function at fractal gen-

eration level n = 1 is given in Table 3.1. A table summarising the coefficients that

subsequently arise for each basis function is given in Appendix A.2.
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Figure 3.25: The plan view of the basis function φ7, before transformation.

The above process can then be repeated for fractal generation level n = 2. Recall

that at each generation level the overall length of the graph remains fixed (L)

and the edge length h decreases. As such the canonical basis function given by

equation (3.2.17) can still be applied here since it will be automatically scaled as

its coefficients depend on h. For example, to transform φ7 (see Figure 3.25) to φ̂J

(see Figure 3.5), the first step is a translation of x7 = (5h/2,
√
3h/2) (see Figure

3.26).
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Figure 3.26: The plan view of φ7, after the first transformation.

The second step in transforming φ7 to φ̂J is via a reflection in the y axis (see Figure

3.27).
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Figure 3.27: The plan view of φ7, after the second transformation.

Then from this plan view of φ7, the third (final) step in transforming φ7 to φ̂J is

via a rotation of π/2 (anticlockwise) (see Figure 3.28).
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Figure 3.28: The plan view of φ7, after the third (final) transformation.

So,

φ7 = Rπ
2
◦RR ◦RT (x7)φ̂J(x, y)

= Rπ
2
◦RRφ̂J

(

x− 5h

2
, y −

√
3h

2

)

= Rπ
2
φ̂J

(

−x+ 5h

2
, y −

√
3h

2

)

= φ̂J

(

−y +
√
3h

2
,−x+ 5h

2

)

= 30− 25

h
x+

3
√
3

h
y +

5

h2
x2 − 3

h2
y2. (3.2.32)
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Figure 3.29: The plan view of the basis function φ9, before transformation.

To transform φ9 (see Figure 3.29) to φ̂J (see Figure 3.5) the first step is a translation

of x9 = (h,
√
3h) (see Figure 3.30).
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Figure 3.30: The plan view of φ9, after the first transformation.

The second related step is a reflection in the (y axis) (see Figure 3.31).
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Figure 3.31: The plan view of φ9, after the second transformation.

Then from this plan view of φ9, the third (final) step is a rotation of −5π/6

(clockwise) (see Figure 3.32).
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Figure 3.32: The plan view of φ9, after the third (final) transformation.

Hence,

φ9 = R−5π
6

◦RR ◦RT (x9)φ̂J(x, y)

= R−5π
6

◦RRφ̂J(x− h, y −
√
3h)

= R−5π
6
φ̂J(−x+ h, y −

√
3h)

= φ̂J

(√
3

2
x−

√
3h

2
+

1

2
y −

√
3h

2
,
1

2
x− h

2
−

√
3

2
y +

3h

2

)

= 1− 3

h2

(√
3

2
x+

1

2
y −

√
3h

)2

+
5

h2

(

1

2
x−

√
3

2
y + h

)2

= −3 +
14

h
x− 2

√
3

h
y − 1

h2
x2 +

3

h2
y2 − 4

√
3

h2
xy. (3.2.33)
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Figure 3.33: The plan view of the basis function φ10, before transformation.

To transform φ10 (see Figure 3.33) to φ̂J (see Figure 3.5) the first step is a trans-

lation of x10 = (2h,
√
3h) (see Figure 3.34).
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Figure 3.34: The plan view of φ10, after the first transformation.

The second (final) step is a rotation of −5π/6 (clockwise) (see Figure 3.35).
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Figure 3.35: The plan view of φ10, after the second (final) transformation.

So,

φ10 = R−5π
6

◦RT (x10)φ̂J(x, y)

= R−5π
6
φ̂J(x− 2h, y −

√
3h)

= φ̂J

(

−
√
3

2
x+

√
3h+

y

2
−

√
3h

2
,−1

2
x+ h−

√
3

2
y +

3h

2

)

= 1− 3

h2

(

−
√
3

2
x+

1

2
y +

√
3h

2

)2

+
5

h2

(

−1

2
x−

√
3

2
y +

5h

2

)2

= 30− 8

h
x− 14

√
3

h
y − 1

h2
x2 +

3

h2
y2 +

4
√
3

h2
xy. (3.2.34)
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Related steps from φj and ψj to their respective canonical basis function
j (1) Translation (RT ) (2) Reflection (RR) (3) Rotation (Rθ)

1 − − −π/6
2 λ(h, 0) y axis −π/6
3 λ(h

2
,
√
3h
2
) − π/2

4 − − −
5 λ(2h, 0) − −π/6
6 λ(3h, 0) y axis −π/6
7 λ(5h

2
,
√
3h
2
) y axis π/2

8 λ(5h
2
, h
2
√
3
) − −

9 λ(h,
√
3h) y axis −5π/6

10 λ(2h,
√
3h) − −5π/6

11 λ(3h
2
, 3

√
3h
2

) − π/2
12 λ(3h

2
, 7h
2
√
3
) − −

13 λ(−h, 0) − −
14 λ(4h, 0) − π

15 λ(2h, 2
√
3h) − 2π/3

Table 3.2: The related steps of the transformation from φj, j = 1, . . . , 12 and ψj ,
j = 13, 14, 15 to their respective canonical basis function in fractal generation level
n = 2, where λ = 1/3.

A table showing all the transformations required to create the basis functions,

for fractal generation level n = 2, is shown in Table 3.2. Another table showing

the coefficients that arise from this process for each basis function is given in

Appendix A.2. To aid in the visualisation of these basis functions an example

is provided in the graph below, which shows the graph basis functions φj where

j = 1, 2 and 3, which are the interior PZT-5H vertices at fractal generation level

n = 1 (see Figure 3.3). The graph basis functions φ1 at vertex (0, 0) (as shown

in green in Figure 3.36) is connected to vertex 2 through element 1, vertex A

through element 7, vertex 3 through element 3 and vertex 4 through element 4.

The graph basis functions φ2 at vertex (h, 0) (as shown in blue in Figure 3.36) is

connected to vertex 1 through element 1, vertex B through element 8, vertex 3

through element 2 and vertex 4 through element 5. The graph basis functions φ3
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at vertex (h/2,
√
3h/2) (as shown in blue in Figure 3.36) is connected to vertex 1

through element 3, vertex 2 through element 2, vertex C through element 9, and

vertex 4 through element 6.

Figure 3.36: The basis functions φj where j = 1, 2 and 3 at fractal generation level
n = 1.

The graph below shows the graph basis functions φ4 which is the interior polymer

vertex at fractal generation level n = 1 (see Figure 3.3). The graph basis functions

φ4 at vertex (h/2, h/2
√
3) (as shown at Figure 3.37) is connected to vertex 1

through element 4, vertex 2 through element 5 and vertex 3 through element 6.
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Figure 3.37: The basis function φ4 at fractal generation level n = 1.

The graph below shows the graph basis functions ψj where j = 5, 6 and 7 which are

the exterior vertices at fractal generation level n = 1 (see Figure 3.3). The graph

basis functions ψ5 at vertex (−h, 0) (as shown in red in Figure 3.38) is connected

to vertex 1 through element 7. The graph basis functions ψ6 at vertex (2h, 0) (as

shown in blue in Figure 3.38) is connected to vertex 2 through element 8. The

graph basis functions ψ7 at vertex (h,
√
3h) (as shown in green in Figure 3.38) is

connected to vertex 3 through element 9.
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Figure 3.38: The basis functions ψj where j = 5, 6 and 7 at fractal generation level
n = 1.

The graph below shows the graph basis functions φj where j = 1, 2 and 3 which

are some of the interior PZT-5H vertices at fractal generation level n = 2 (see

Figure 3.4). The graph basis functions φ1 at vertex (0, 0) (as shown in green in

Figure 3.39) is connected to vertex 2 through element 1, vertex A (that is, vertex

13) through element 22, vertex 3 through element 3, and vertex 4 through element

4. The graph basis functions φ2 at vertex (h, 0) (as shown in blue in Figure 3.39)

is connected to vertex 1 through element 1, vertex 5 through element 7, vertex 3

through element 2, and vertex 4 through element 5. The graph basis functions φ3

at vertex (h/2,
√
3h/2) (as shown in blue in Figure 3.39) is connected to vertex 1

through element 3, vertex 2 through element 2, vertex 9 through element 14, and

vertex 4 through element 6.
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Figure 3.39: The basis functions φj where j = 1, 2 and 3 at fractal generation level
n = 2.

The graph below shows the graph basis functions φj where j = 5, 6 and 7 which

are some of the interior PZT-5H vertices at fractal generation level n = 2 (see

Figure 3.4). The graph basis functions φ5 at vertex (2h, 0) (as shown in green in

Figure 3.40) is connected to vertex 2 through element 7, vertex 6 through element

8, vertex 7 through element 10, and vertex 8 through element 11. The graph

basis functions φ6 at vertex (3h, 0) (as shown in blue in Figure 3.40) is connected

to vertex 5 through element 8, vertex B (that is, vertex 14) through element

23, vertex 7 through element 9, and vertex 8 through element 12. The graph

basis functions φ7 at vertex (5h/2,
√
3h/2) (as shown in blue in Figure 3.40) is

connected to vertex 5 through element 10, vertex 6 through element 9, vertex 10

through element 15, and vertex 8 through element 13.
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Figure 3.40: The basis functions φj where j = 5, 6 and 7 at fractal generation level
n = 2.

The graph below shows the graph basis functions φj where j = 9, 10 and 11 which

are some of the interior PZT-5H vertices at fractal generation level n = 2 (see

Figure 3.4). The graph basis functions φ9 at vertex (h,
√
3h) (as shown in green

in Figure 3.41) is connected to vertex 3 through element 14, vertex 10 through

element 16, vertex 11 through element 18, and vertex 12 through element 19. The

graph basis functions φ10 at vertex (2h,
√
3h) (as shown in blue in Figure 3.41) is

connected to vertex 7 through element 15, vertex 9 through element 16, vertex 11

through element 17, and vertex 12 through element 20. The graph basis functions

φ11 at vertex (3h/2, 3
√
3h/2) (as shown in blue in Figure 3.40) is connected to

vertex 9 through element 18, vertex 10 through element 17, vertex C (that is,

vertex 15) through element 24, and vertex 12 through element 21.
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Figure 3.41: The basis functions φj where j = 9, 10 and 11 at fractal generation
level n = 2.

The graph below shows the graph basis functions φj where j = 4, 8 and 12 which

are the interior polymer vertices at fractal generation level n = 2 (see Figure

3.4). The graph basis functions φ4 at vertex (h/2, h/2
√
3) (as shown in green

in Figure 3.42) is connected to vertex 1 through element 4, vertex 2 through

element 5 and vertex 3 through element 6. The graph basis functions φ8 at vertex

(5h/2, h/2
√
3) (as shown in blue in Figure 3.42) is connected to vertex 5 through

element 11, vertex 6 through element 12 and vertex 7 through element 13. The

graph basis functions φ12 at vertex (3h/2, 7h/2
√
3) (as shown in red in Figure 3.42)

is connected to vertex 9 through element 19, vertex 10 through element 20 and

vertex 11 through element 21.
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Figure 3.42: The basis functions φj where j = 4, 8 and 12 at fractal generation
level n = 2.

The graph below shows the graph basis functions ψj where j = 13, 14 and 15

which are the exterior vertices at fractal generation level n = 2 (see Figure 3.4).

The graph basis functions ψ13 at vertex (−h, 0) (as shown in green in Figure 3.43)

is connected to vertex 1 through element 22. The graph basis functions ψ14 at

vertex (4h, 0) (as shown in blue in Figure 3.43) is connected to vertex 6 through

element 23. The graph basis functions ψ15 at vertex (2h, 2
√
3h) (as shown in red

in Figure 3.43) is connected to vertex 11 through element 24.
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Figure 3.43: The basis functions ψj where j = 13, 14 and 15 at fractal generation
level n = 2.

The fundamental (canonical) basis function φ̂J (see equation (3.2.11)) has five

unknowns because we have four adjacent vertices and hence five conditions on

this function and this leads to equation (3.2.17). Similarly, φ̂K has four unknowns

and four conditions (as these vertices are degree 3) and ψ̂I has two unknowns

and two conditions (as there are degree 1). However, after we use the above

transformations, the graph basis function appear more complicated, for example

some now have terms in x, y and xy non-zero coefficients. Hence the graph basis

functions are given by

φj(x, y) =











aj + bjx+ cjy + djx
2 + fjy

2 + gjxy j ∈ J

aj + bjx+ cjy + dj(x
2 + y2) j ∈ K

(3.2.35)

and

ψj(x, y) = aj + bjx+ cjy + dj(x
2 + y2) j ∈ I (3.2.36)

where (x, y) ∈ Ω and a, b, c, d, f and g ∈ R are coefficients to be determined

by transforming equations (3.2.17), (3.2.23) and (3.2.25) (see Appendix A.2) and

J = {1, 2, 3} at n = 1, J = {1, 2, 3, 5, 6, 7, 9, 10, 11} at n = 2 which are the interior
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piezoelectric vertices, K = {4} at n = 1 and K = {4, 8, 12} at n = 2 which are

the polymer vertices and I = {5, 6, 7} at n = 1, I = {13, 14, 15} at n = 2 which

are the exterior piezoelectric vertices. Hence

∇φj(x, y) =











(bj + 2djx+ gjy , cj + 2fjy + gjx) j ∈ J

(bj + 2djx , cj + 2djy) j ∈ K
(3.2.37)

and

∇ψj(x, y) = (bj + 2djx, cj + 2ejy) j ∈ I. (3.2.38)

For each element (edge) e where e ∈ MJ (which is the set of elements in the

interior that are piezoelectric), for eH
(n)
ji where j, i ∈ {1, 2, . . . , N,N + 1} we can

write equation (3.2.8) (using equation (3.2.35)) as

MJH
(n)
ji =

∫

e

(

(aj + bjx+ cjy + djx
2 + fjy

2 + gjxy)

.(ai + bix+ ciy + dix
2 + fiy

2 + gixy)
)

dx

=

∫

e

(

ajai + (ajbi + aibj)x+ (ajci + aicj)y + (ajdi + aidj + bjbi)x
2

+(ajfi + aifj + cjci)y
2 + (ajgi + aigj + bjci + bicj)xy + (bjdi +

bidj)x
3 + (cjfi + cifj)y

3 + (bjfi + bifj + cjgi + cigj)xy
2 + (bjgi +

bigj + cjdi + cidj)x
2y + (fjgi + figj)xy

3 + (djgi + digj)x
3y + (djfi

+difj + gjgi)x
2y2 + djdix

4 + fjfjy
4
)

dx. (3.2.39)

Similarly, for each element (edge) e where e ∈MK (which is the set of elements in
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the interior that are a polymer - piezoelectric mix), then

MKH
(n)
ji =

∫

e

(

(

aj + bjx+ cjy + djx
2 + fjy

2 + gjxy
)

.
(

ai + bix+ ciy +

di(x
2 + y2)

)

)

dx

=

∫

e

(

ajai + (ajbi + aibj)x+ (ajci + aicj)y + (bibj + ajdi + aidj)x
2

+(cicj + ajdi + aifj)y
2 + (bicj + bjci + aigj)xy + (bjdi + bidj)x

3 +

(cjdi + cifj)y
3 + (bjdi + bifj + cigj)xy

2 + (cjdi + cidj + bigj)x
2y +

digjxy
3 + digjx

3y + (didj + difj)x
2y2 + didjx

4 + difjy
4
)

dx. (3.2.40)

For the boundary elements e ∈ MI (which is the set of elements that connect to

the exterior) note that MIH
(n)
ii = MJH

(n)
ii where i ∈ J (corner vertices). For

s = 0

p (xp, yp)

s = 1

q (xq, yq)

s

Figure 3.44: An isoparametric element (edge) between piezoelectric vertices
p (xp, yp) and q (xq, yq).

s = 0

p (xp, yp)

s = 1

q (xq, yq)

s = ν

s

Figure 3.45: An isoparametric element (edge) between piezoelectric vertex
p (xp, yp) and polymer vertex q (xq, yq). The fraction of piezoelectric material in
this edge is given by ν.

a piezoelectric element lying between vertex p and vertex q the isoparametric

representation, given by

(x(s), y(s)) = ((xj − xi)s+ xi, (yj − yi)s+ yi) (3.2.41)
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is employed, where s = 0 and s = 1 and dx = h ds (see Figure 3.44). For the

elements that join a piezoelectric vertex to a polymer vertex a similar represen-

tation is used but here dx = h/
√
3 ds and the region between s = 0 and s = ν

is piezoelectric and that between s = ν and s = 1 is polymer (see Figure 3.45).

Substituting this into equations (3.2.39) and (3.2.40) gives

H
(n)
ji =























h
∫ 1

0
φjφi ds if e ∈MJ

h√
3

∫ 1

0
φjφi ds if e ∈MK

h
∫ 1

0
φjφi ds if e ∈MI .

(3.2.42)

Let us start with an interior piezoelectric element (e ∈ MJ ), say e = 1 ∈ MJ

which is connected between vertex 1 at (xi, yi) = (0, 0) and vertex 2 at (xj , yj) =

(h, 0). From equation (3.2.41) we get (x(s), y(s)) = (hs, 0) and then from equations

(3.2.35) and (3.2.42) we get

e=1H
(1)
11 = h

∫ 1

0

φ1(hs, 0)φ1(hs, 0) ds

= h

∫ 1

0

(

1− s2
)2
ds

=
h

30
(16).

Similarly,

e=1H
(1)
12 = h

∫ 1

0

φ1(hs, 0)φ2(hs, 0) ds

= h

∫ 1

0

(

1− s2
) (

2s− s2
)

ds

= h

∫ 1

0

(

1− s2
)

(2− s) s ds

=
h

30
(11),
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where we note that e=1H
(1)
21 = e=1H

(1)
12 . Also

e=1H
(1)
22 = h

∫ 1

0

φ2(hs, 0)φ2(hs, 0) ds

= h

∫ 1

0

(

2s− s2
)2
ds

= h

∫ 1

0

(2− s)2 s2 ds

=
h

30
(16).

So for each interior piezoelectric element (e ∈MJ ),

MJH
(n)
ji =

h

30























16 if j = i

11 if j 6= i

0 otherwise.

(3.2.43)

For a piezoelectric - polymer element (e ∈ MK), let us take the example e =

5 ∈ MK which is connected between vertex 2 at (xi, yj) = (h, 0) and vertex 4 at

(xj , yj) = (h/2, h/(2
√
3)). From equation (3.2.41) we get (x(s), y(s)) = (−h/2s +

h, h/(2
√
3)s) and then from equations (3.2.35) and (3.2.42) we get

e=5H
(1)
22 =

h√
3

∫ 1

0

φ2

(−h
2
s + h,

h

2
√
3
s

)

φ2

(−h
2
s+ h,

h

2
√
3
s

)

ds

=
h√
3

∫ 1

0

(

1− s2
)2
ds

=
h

30
√
3
(16).
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Similarly,

e=5H
(1)
24 =

h√
3

∫ 1

0

φ2

(−h
2
s + h,

h

2
√
3
s

)

φ4

(−h
2
s+ h,

h

2
√
3
s

)

ds

=
h√
3

∫ 1

0

(

1− s2
)

(2− s) s ds

=
h

30
√
3
(11),

where we note that e=5H
(1)
42 = e=5H

(1)
24 . Also

e=5H
(1)
44 =

h√
3

∫ 1

0

φ4

(−h
2
s + h,

h

2
√
3
s

)

φ4

(−h
2
s+ h,

h

2
√
3
s

)

ds

=
h√
3

∫ 1

0

(2− s)2 s2 ds

=
h

30
√
3
(16).

So, for each piezoelectric - polymer element (e ∈MK),

MKH
(n)
ji =

h

30
√
3























16 if j = i

11 if j 6= i

0 otherwise.

(3.2.44)

Note that from equation (3.2.7) since MKH
(n)
ji = h/

√
3
( ∫ ν

0
φjφi dx+

∫ 1

ν
φjφi dx

)

=

h/
√
3
∫ 1

0
φjφi dx, then ν does not explicitly appear. On the edges inMK there will

be a jump in the material properties and hence a jump in the observed dynamics

in each section of the edge. However, as our basis functions are only defined at

vertices at the extremities of these edges then, as a modelling assumption, this

phenomenon is simply averaged out (so it is just the volume fraction of polymer

that is modelled rather than the spatial location of a jump in material properties).

Hence we have used quadratic polynomials as our basis functions. It would be
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possible to put two elements with a vertex at the interface between the piezoelectric

and the polymer material on these edges to capture this jump. We will see later

that for c2K
(n)
ji for e ∈MK , we need to apply equation (2.2.11) where MKc2K

(n)
ji =

h/
√
3(c2T

∫ ν

0
∇φj .∇φi ds + c2P

∫ 1

ν
∇φj .∇φi ds) and so ν does appear explicitly in

that case. For exterior piezoelectric elements (e ∈ MI = {M + 1,M + 2,M + 3}),

let us take the example for one element that is e = 7 ∈ MI which is connected

between vertex 1 at (xi, yj) = (0, 0) and vertex 5 at (xj , yj) = (−h, 0) and apply

equation (3.2.41) to get (x(s), y(s)) = (hs, 0). Then from equations (3.2.35) and

(3.2.42) we get

e=7H
(1)
11 = h

∫ 1

0

φ1(hs, 0)φ1(hs, 0) ds

= h

∫ 1

0

(

1− s2
)2
ds

=
h

30
(16).

Similarly, for each exterior piezoelectric element (e ∈MI),

MIH
(n)
ji =

h

30











16 if j = i = q

0 otherwise
(3.2.45)

where q is the corner vertex of the SG(3,4) graph connected to element e (for

n = 1, q ∈ {1, 2, 3}, and for n = 2, q ∈ {1, 6, 11}). The left hand side of equation

(3.2.3) does not involve the basis functions (ψI) which are located at boundary

vertices I. As such the integrals are zero unless φi = φj where i, j ∈ {1, m,N}.
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Assembling the full matrix in equation (3.2.8) gives, for generation level n = 1

H
(1)
ji = h



















8
45
(9 +

√
3) 11

30
11
30

11
30

√
3

11
30

8
45
(9 +

√
3) 11

30
11

30
√
3

11
30

11
30

8
45
(9 +

√
3) 11

30
√
3

11
30

√
3

11
30

√
3

11
30

√
3

48
30

√
3



















= h Ĥ
(1)
ji (3.2.46)

and at generation level n = 2,

H
(2)
ji = h









































































0 0 0 0 0 0 0 0

Ĥ
(1)
ji

11
30

0 0 0 0 0 0 0

0 0 0 0 11
30

0 0 0

0 0 0 0 0 0 0 0

0 11
30

0 0 0 0 0 0

0 0 0 0 Ĥ
(1)
ji 0 0 0 0

0 0 0 0 0 11
30

0 0

0 0 0 0 0 0 0 0

0 0 11
30

0 0 0 0 0

0 0 0 0 0 0 11
30

0 Ĥ
(1)
ji

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0









































































. (3.2.47)
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So, from equations (3.2.46) and (3.2.47), we can write matrix H , for n > 2 as

H
(n)
ji = h





















































Ĥ
(n−1)
ji

11
30
V

(n)
ji

11
30
V

(n)
ji

11
30
V

(n)
ji Ĥ

(n−1)
ji

11
30
V

(n)
ji

11
30
V

(n)
ji

11
30
V

(n)
ji Ĥ

(n−1)
ji





















































,

where Ĥ
(n−1)
ji = H

(n−1)
ji /h and V

(n)
ji = 1D(n)(ji) is the adjacency matrix for the

subgraph of SG(n)(3) consisting of the edges D(n) that connect each of the three

SG(n−1)(3) graphs (for n = 2, D(2) = {{2, 5}, {3, 9}, {7, 10}} (see Figure 3.4), and

for n = 3, D(3) = {{6, 13}, {11, 25}, {23, 30}}). (where 1{A}(a) is the indicator

function which equals 1 if a ∈ A, and 0 otherwise). That is,

H
(n)
ji = h

(

¯̂
H

(n−1)
ji +

11

30
V

(n)
ji

)

, (3.2.48)

where
¯̂
H

(n−1)
ji is a block diagonal matrix consisting of three blocks of matrix Ĥ

(n−1)
ji .

Similarly for eK
(n)
ji we can write equation (3.2.9) (using equation (3.2.37)) as

MJK
(n)
ji = c2

∫

e

((bj + 2djx+ gjy, cj + 2fjy + gjx).(bi + 2dix+ giy, ci + 2fiy + gix)) dx

= c2
∫

e

(

bjbi + 2(bjdi + bidj)x+ (bjgi + bigj)y + 4djdix
2 + gjgiy

2

+2(djgi + digj)xy + cjci + (cjgi + cigj)x+ 2(cjfi + cifj)y + gjgix
2

+4fjfiy
2 + 2(fjgi + figj)xy

)

dx.
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For each element (edge) e where e ∈ MK or e ∈MI

MKK
(n)
ji = MIK

(n)
ji = c2

∫

e

(bj + 2djx, cj + 2djy).(bi + 2dix, ci + 2diy)dx,

= c2
∫

e

(

bibj + 2(djbi + dibj)x+ 4didjx
2 + cicj + 2(dicj + djci)y

+4didjy
2
)

dx.

By using the definition of c in equation (2.2.11) and using equation (3.2.41) then

we can write equation (3.2.9) as

K
(n)
ji =























hc2T
∫ 1

0
∇φj .∇φi ds if e ∈MJ

h√
3

(

c2T
∫ ν

0
∇φj .∇φi ds+ c2P

∫ 1

ν
∇φj .∇φi ds

)

if e ∈MK

hc2T
∫ 1

0
∇φj .∇φi ds if e ∈MI ,

(3.2.49)

where ν is a parameter indicating the volume fraction of piezoelectric material in

edge e ∈ MK . For e ∈MJ , from equations (3.2.37) and (3.2.49) we get

MJK
(n)
ji = hc2T



































52
h2

∫ 1

0
s2 ds if j = i = p

−44
h2

∫ 1

0
s(s− 1) ds if j, i ∈ {p, q}, j 6= i

52
h2

∫ 1

0
(s− 1)2 ds if j = i = q

0 otherwise.

That is

MJK
(n)
ji =

2

3h
c2T



































26 if j = i = p

11 if j, i ∈ {p, q}, j 6= i

26 if j = i = q

0 otherwise.

135



Similarly for e ∈MK ,

MKK
(n)
ji =

h√
3



































12
h2 (c

2
T

∫ ν

0
s2 ds+ c2P

∫ 1

ν
s2 ds) if j = i = p

12
h2 (c

2
T

∫ ν

0
s(s− 1) ds+ c2P

∫ 1

ν
s(s− 1) ds) if j, i ∈ {p, q}, j 6= i

12
h2 (c

2
T

∫ ν

0
(s− 1)2 ds+ c2P

∫ 1

ν
(s− 1)2 ds) if j = i = q

0 otherwise.

That is

MKK
(n)
ji =

2

3h
c2T



































2
√
3
(

ν3 +
c2P
c2T
(1− ν3)

)

if j = i = p
√
3
(

ν2(2ν − 3)− c2P
c2T
(ν − 1)2(1 + 2ν)

)

if j, i ∈ {p, q}, j 6= i

2
√
3
(

ν(ν2 − 3ν + 3)− c2P
c2T
(ν − 1)3

)

if j = i = q

0 otherwise.

Similarly for e ∈MI ,

MIK
(n)
ji = hc2T











52
h2

∫ 1

0
s2 ds if j = i = q

0 otherwise.

That is

MIK
(n)
ji =

2

3h
c2T











26 if j = i = q

0 otherwise.

Assembling the full matrix in equation (3.2.9) gives, for generation level n = 1

K
(1)
ji =

c2T
h



















D 22
3

22
3

R

22
3

D 22
3

R

22
3

22
3

D R

R R R E



















=
c2T
h
K̂

(1)
ji , (3.2.50)
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whereD = 52+4/
√
3 (ν3 + c2P/c

2
T (1− ν3)), R = 2/

√
3 (ν2(2ν − 3)− c2P/c

2
T (ν − 1)2(1 + 2ν))

and E = 4
√
3 (ν(ν2 − 3ν + 3)− c2P/c

2
T (ν − 1)3). For generation level n = 2

K
(2)
ji =

c2T
h









































































0 0 0 0 0 0 0 0

K̂
(1)
ji

22
3

0 0 0 0 0 0 0

0 0 0 0 22
3

0 0 0

0 0 0 0 0 0 0 0

0 22
3

0 0 0 0 0 0

0 0 0 0 K̂
(1)
ji 0 0 0 0

0 0 0 0 0 22
3

0 0

0 0 0 0 0 0 0 0

0 0 22
3

0 0 0 0 0

0 0 0 0 0 0 22
3

0 K̂
(1)
ji

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0









































































. (3.2.51)

So, from equations (3.2.50) and (3.2.51), we can write matrix K, for n > 2 as

K
(n)
ji =

c2T
h





















































K̂
(n−1)
ji

22
3
V

(n)
ji

22
3
V

(n)
ji

22
3
V

(n)
ji K̂

(n−1)
ji

22
3
V

(n)
ji

22
3
V

(n)
ji

22
3
V

(n)
ji K̂

(n−1)
ji





















































,
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where K̂
(n−1)
ji = hK

(n−1)
ji /c2T . That is,

K
(n)
ji =

1

h

(

¯̂
K

(n−1)
ji +

22

3
V

(n)
ji

)

, (3.2.52)

where
¯̂
K

(n−1)
ji is a block diagonal matrix consisting of three blocks of matrix K̂

(n−1)
ji .

Combining equations (3.2.46) and (3.2.50) gives equation (3.2.7) as

A
(1)
ji = h



















α β β P

β α β P

β β α P

P P P ϑ



















= h Â
(1)
ji , (3.2.53)

where α = (q2/30)
(

48 + (16/
√
3)
)

+52+(4/
√
3) (ν3 + c2P/c

2
T (1− ν3)) , β = 11q2/30+

22/3, P = 11q2/30
√
3 + (2/

√
3) (ν2(2ν − 3)− c2P/c

2
T (ν − 1)2(1 + 2ν)) and ϑ =

48q2/30
√
3 + (4

√
3) (ν(ν2 − 3ν + 3)− c2P/c

2
T (ν − 1)3). Similarly, for generation
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level n = 2,

A
(2)
ji = h









































































0 0 0 0 0 0 0 0

Â
(1)
ji β 0 0 0 0 0 0 0

0 0 0 0 β 0 0 0

0 0 0 0 0 0 0 0

0 β 0 0 0 0 0 0

0 0 0 0 Â
(1)
ji 0 0 0 0

0 0 0 0 0 β 0 0

0 0 0 0 0 0 0 0

0 0 β 0 0 0 0 0

0 0 0 0 0 0 β 0 Â
(1)
ji

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0









































































. (3.2.54)

So, from equations (3.2.53) and (3.2.54), we can write matrix A, for n > 2 as

A
(n)
ji = h





















































Â
(n−1)
ji βV

(n)
ji βV

(n)
ji

βV
(n)
ji Â

(n−1)
ji βV

(n)
ji

βV
(n)
ji βV

(n)
ji Â

(n−1)
ji





















































,
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where Â
(n−1)
ji = A

(n−1)
ji /h. That is,

A
(n)
ji = h

(

¯̂
A

(n−1)
ji + βV

(n)
ji

)

, (3.2.55)

where
¯̂
A

(n−1)
ji is a block diagonal matrix consisting of three blocks of matrix Â

(n−1)
ji .

A similar treatment, can be given to equation (3.2.6) by using the definition of c

that appears in equation (2.2.11) to give (where m = (N + 1)/2)

b
(n)
j =



































−
(

∫

eM+1
(q2ψN+2φj + h2∇ψN+2 .∇φj) dx

)

UA, j = 1

−
(

∫

eM+2
(q2ψN+3φj + h2∇ψN+3 .∇φj) dx

)

UB, j = m

−
(

∫

eM+3
(q2ψN+4φj + h2∇ψN+4 .∇φj) dx

)

UC , j = N

0 otherwise,

(3.2.56)

where M + 1,M + 2 and M + 3 are the set of edges MI , UA, UB and UC are

the mechanical displacements at the fictitious vertices A,B and C respectively.

Now consider equation (3.2.56) to find b
(n)
m at element e = M + 2 (see Fig-

B

((2n − 2)h, 0) ((2n − 1)h, 0)

((2n+1 − 3)h/2,
√
3h/2)

(2nh, 0)

((2n+1 − 3)h/2, h/(2
√
3))

m = (N + 1)/2

e =M + 2

Figure 3.46: The boundary element for e =M + 2

ure 3.46), which is connected between vertex m at (xm, ym) = ((2n − 1)h, 0) and

vertex B at (xB, yB) = (2nh, 0). From equation (3.2.41) we get (x(s), y(s)) =
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((xB − xm)s+ xm, (yB − ym)s+ ym) = ((s+ 2n − 1)h, 0) and dx = h ds, gives

b(n)m = −h
(
∫

M+2

(

q2ψBφm + h2∇ψB .∇φm

)

ds

)

UB. (3.2.57)

From equation (3.2.36) the basis functions at vertex B in element e =M + 2 is

ψB(x, y) = 1− (x− 2nh)2 + y2

h2
(3.2.58)

and from equation (3.2.35) the basis functions at vertex m is

φm(x, y) =
(2n+1 − 22n)h2 − x2 + 4

√
3xy + 3y2 + (2n+1 − 2)h(x− 2

√
3y)

h2
.

(3.2.59)

Substituting equation (3.2.41) into equations (3.2.58) and (3.2.59) gives

ψB (x(s), y(s)) = (2− s)s (3.2.60)

and

φm (x(s), y(s)) = 1− s2. (3.2.61)

From equations (3.2.37) and (3.2.38), equations (3.2.58) and (3.2.59) gives

∇ψB(x, y) =

(

2(2nh− x)

h2
,
−2y

h2

)

(3.2.62)

and

∇φm(x, y) =

(

(2n+1 − 2)h− 2x+ 4
√
3y

h2
,
4
√
3(1− 2n)h+ 4

√
3x+ 6y

h2

)

.

(3.2.63)
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Substituting equation (3.2.41) into equations (3.2.62) and (3.2.63) gives

∇ψB (x(s), y(s)) =

(

2− 2s

h
, 0

)

(3.2.64)

and

∇φm (x(s), y(s)) =

(

−2s

h
,
4
√
3s

h

)

. (3.2.65)

Substituting equations (3.2.60), (3.2.61), (3.2.64) and (3.2.65) into equation (3.2.57)

gives

b(n)m = h

(

2

3
− 11

30
q2
)

UB.

A similar calculation, for b
(n)
1 at element e =M +1 and b

(n)
N at element e =M +3

shows

b
(n)
j = hη



































UA, j = 1

UB, j = m

UC , j = N

0 otherwise,

(3.2.66)

where

η =
2

3
− 11

30
q2. (3.2.67)

For generation level n = 1,

b
(1)
j = h

(

2

3
− 11

30
q2
)



































UA, j = 1

UB, j = 2

UC , j = 3

0 otherwise,
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and for generation level n = 2,

b
(2)
j = h

(

2

3
− 11

30
q2
)



































UA , j = 1

UB , j = 6

UC , j = 11

0 otherwise.

3.3 A Homogenised model of the transducer

In this section we introduce a homogenised model of this composite transducer

[8,151–153] that will be compared with the renormalisation approach being devel-

oped here; this comparison being made at a low number of fractal generation levels

(these are the most interesting cases as these are potentially manufacturable). The

Figure 3.47: Illustration of a standard 1-3 composite transducer where the ceramic
is black and the polymer is white. It clearly shows the regularity in the structure
and the reliance on a single length scale.

homogenised model described below can be thought of as the operating character-

istics that one would obtain from a conventional (i.e. non-fractal) 1-3 composite

transducer as illustrated in Figure 3.47. The constitutive relations for the indi-

vidual phases have a compact form, within the ceramic (E) phase, and within the

polymer (P ) phase [147,148]. From equation (2.2.1), and due to the properties of
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PZT-5H (see Appendix A.4), we get

T11 = T12 = T21 = T22 = T33 = 0,

and

T13 = T31 = c1313S13 + c1331S31 − e113E1.

That is

T5 = c55(S13 + S31)− e15E1,

and, using equation (2.2.3), since from equation (2.2.8) u1,3 = 0, then

T5 = c44u3,1 − e24E1, (3.3.1)

since c55 = c44 and e15 = e24. Similarly we get

T23 = T32 = c3223S23 + c3232S32 − e232E2,

that is

T4 = c44u3,2 − e24E2. (3.3.2)

So we rewrite equations (3.3.1) and (3.3.2), for the piezoelectric phase as

T T
5 = cT44u

T
3,1 − e24E

T
1

and

T T
4 = cT44u

T
3,2 − e24E

T
2 . (3.3.3)
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Similarly, for polymer phase we get

T P
5 = cP44u

P
3,1,

and

T P
4 = cP44u

P
3,2, (3.3.4)

since there is no piezoelectric effect in the polymer phase. From equation (2.2.2)

we get for the piezoelectric phase

DT
1 = e24u

T
3,1 + εT11E

T
1 , (3.3.5)

and

DT
2 = eT24u

T
3,2 + εT11E

T
2 ,

and for the polymer phase we get

DP
1 = εP11E

P
1 , (3.3.6)

and

DP
2 = εP11E

P
2 ,

where DT
3 , D

P
3 are zero and εP11 is an element of the permittivity tensor of polymer.

We assume uniform fields in each phase that any movement (strain) in the polymer

phase is compensated by a strain in the piezoelectric phase, and so we can write

ū3,1 = vuT3,1 + v̄uP3,1, (3.3.7)
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and

ū3,2 = vuT3,2 + v̄uP3,2, (3.3.8)

where v is the volume fraction of the piezoelectric phase where this is calculated

via

v(n) =

3
2
(3n − 1)

(

L
2n−1

)

+ 3n
(

L
(2n−1)

√
3

)

ν

3
2
(3n − 1)

(

L
2n−1

)

+ 3n
(

L
(2n−1)

√
3

)

where 3(3n − 1)/2 is the number of elements that are piezoelectric (MJ ), 3
n is the

number of elements that are a polymer-piezoelectric composite (MK), L/(2
n − 1)

is the length of elements MJ , L/
(

(2n − 1)
√
3
)

is the length of elements MK and

ν as defined in equation (3.2.49). That is

v(n) =
3
2
(3n − 1) + 3n−

1
2 ν

3
2
(3n − 1) + 3n−

1
2

,

and v̄(n) = 1 − v(n) is the volume fraction of the polymer phase. For example at

generation level (n = 1) if ν = 1 then v = 1 and if ν = 0 then v = 3/(3 +
√
3).

Assuming the electric fields are similarly averaged then

Ē1 = vET
1 + v̄EP

1 , (3.3.9)

and

Ē2 = vET
2 + v̄EP

2 . (3.3.10)

Assuming that the stresses in each phase are equal then

T̄4 = T T
4 = T P

4 (3.3.11)
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and

T̄5 = T T
5 = T P

5 .

If the electrical displacements are also equal in each phase then

D̄1 = DT
1 = DP

1 (3.3.12)

and

D̄2 = DT
2 = DP

2 .

From the symmetry of the SG(3,4) graph (see Figure 2.11) then we have

ū3,2 = ū3,1 = ū, (3.3.13)

since uT3,2 = uT3,1 = uT , and uP3,2 = uP3,1 = uP . We take the electric fields to be the

same in both phases, namely,

Ē1 = Ē2 = Ē, (3.3.14)

since ET
1 = ET

2 = ET , and EP
1 = EP

2 = EP . Also

T̄4 = T̄5 = T̄ , (3.3.15)

and

D̄1 = D̄2 = D̄. (3.3.16)

From equations (3.3.11), (3.3.15), (3.3.13) and (3.3.14) we can write equation

(3.3.3) as

T̄ = cT44u
T − e24E

T , (3.3.17)
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and from equations (3.3.12), (3.3.16), (3.3.13) and (3.3.14) we can write equation

(3.3.5) as

D̄ = e24u
T + εT11E

T . (3.3.18)

For the polymer phase, we have from equations (3.3.11), (3.3.15) and (3.3.13) that

we can write equation (3.3.4) as

T̄ = cP44u
P , (3.3.19)

and from equations (3.3.12), (3.3.16) and (3.3.14) we can write equation (3.3.6) as

D̄ = εP11E
P . (3.3.20)

From equation (3.3.13) we can write equations (3.3.8) and (3.3.7) as

ū = S̄ = vuT + v̄uP , (3.3.21)

and from equation (3.3.14) we can write equations (3.3.9) and (3.3.10) as

Ē = vET + v̄EP . (3.3.22)

From equation (3.3.19) we get

uP =
T̄

cP44
, (3.3.23)

and from equation (3.3.20) we get

EP =
D̄

εP11
. (3.3.24)
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Hence, from equations (3.3.21) and (3.3.23) we get

uT =
1

v

(

S̄ − v̄
T̄

cP44

)

, (3.3.25)

and from equations (3.3.22) and (3.3.24) we get

ET =
1

v

(

Ē − v̄
D̄

εP11

)

. (3.3.26)

Substituting equations (3.3.25) and (3.3.26) into equation (3.3.17) gives

T̄ = cT44
1

v

(

S̄ − v̄
T̄

cP44

)

− e24
1

v

(

Ē − v̄
D̄

εP11

)

.

That is

T̄

(

1 +
v̄cT44
vcP44

)

=
cT44
v
S̄ − e24

v
Ē +

v̄e24
vεP11

D̄. (3.3.27)

Also, substituting equations (3.3.25) and (3.3.26) into equation (3.3.18) gives

D̄ =
e24
v

(

S̄ − v̄
T̄

cP44

)

+
εT11
v

(

Ē − v̄
D̄

εP11

)

.

That is

D̄

(

1 +
v̄εT11
vεP11

)

=
e24
v
S̄ − v̄e24

vcP44
T̄ +

εT11
v
Ē.

Hence,

D̄ =
εP11e24

vεP11 + v̄εT11
S̄ − v̄e24ε

P
11

cP44(vε
P
11 + v̄εT11)

T̄ +
εP11ε

T
11

vεP11 + v̄εT11
Ē.

That is

D̄ =
εP11e24
ε̄∗

S̄ − v̄e24ε
P
11

cP44ε̄
∗ T̄ +

εP11ε
T
11

ε̄∗
Ē, (3.3.28)
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where ε̄∗ = vεP11 + v̄εT11. Putting this into equation (3.3.27) gives

T̄

(

1 +
v̄cT44
vcP44

)

=
cT44
v
S̄ − e24

v
Ē +

v̄e224
vε̄∗

S̄ − v̄2e224
vcP44ε̄

∗ T̄ +
v̄e24ε

T
11

vε̄∗
Ē

that is

T̄

(

1 +
v̄cT44
vcP44

+
v̄2e224
vcP44ε̄

∗

)

=

(

cT44
v

+
v̄e224
vε̄∗

)

S̄ +

(

v̄e24ε
T
11

vε̄∗
− e24

v

)

Ē,

and so

T̄
(

vcP44ε̄
∗ + v̄cT44ε̄

∗ + v̄2e224
)

=
(

cT44c
P
44ε̄

∗ + v̄cP44e
2
24

)

S̄ +
(

v̄cP44e24ε
T
11 − cP44e24ε̄

∗) Ē.

That is

T̄ = c̄44S̄ − ē24Ē, (3.3.29)

since c̄44 = (cT44c
P
44ε̄

∗+v̄cP44e
2
24)/

(

vcP44ε̄
∗ + v̄cT44ε̄

∗ + v̄2e224
)

and ē24 = (cP44e24vε
P
11)/(vc

P
44ε̄

∗+

v̄cT44ε̄
∗ + v̄2e224). Substituting this into equation (3.3.28) gives

D̄ =
εP11e24
ε̄∗

S̄ +
εP11ε

T
11

ε̄∗
Ē − v̄e24ε

P
11

cP44ε̄
∗ (c̄44S̄ − ē24Ē),

that is

D̄ =

(

εP11e24
ε̄∗

− v̄e24ε
P
11c̄44

cP44ε̄
∗

)

S̄ +

(

εP11ε
T
11

ε̄∗
+
v̄e24ε

P
11ē24

cP44ε̄
∗

)

Ē.

Now

εP11e24
ε̄∗

− v̄e24ε
P
11c̄44

cP44ε̄
∗ =

εP11e24
ε̄∗

− v̄e24ε
P
11

(

cT44c
P
44ε̄

∗ + v̄cP44e
2
24

)

cP44ε̄
∗ (vcP44ε̄

∗ + v̄cT44ε̄
∗ + v̄2e224)

=
cP44e24vε

P
11

vcP44ε̄
∗ + v̄cT44ε̄

∗ + v̄2e224
= ē24.
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So

D̄ = ē24S̄ + ε̄11Ē,

where ε̄11 = (εP11ε
T
11)/ε̄

∗ + (v̄e24ε
P
11ē24)/(c

P
44ε̄

∗). We then have

Ē =
D̄

ε̄11
− ē24
ε̄11

S̄, (3.3.30)

and so we can rewrite equation (3.3.29) as

T̄ = c̄44S̄ − ē24

(

D̄

ε̄11
− ē24
ε̄11

S̄

)

.

That is

T̄ = µ̄T S̄ − ζ̄D̄, (3.3.31)

where µ̄T = c̄44 + ē224/ε̄11 and ζ̄ = ē24/ε̄11. The specific acoustic impedance of the

composite is then [151],

Z̄T =
√
µ̄T ρ̄T

where ρ̄T = vρT + v̄ρP is the average density, and the longitudinal velocity is [151],

c̄T =

√

µ̄T

ρ̄T
.

In order to calculate the transmission sensitivity, consider the circuit shown in

Figure 2.9. The current across the transducer ĪT is given by [8]

ĪT =
aV̄

ZE + b
(3.3.32)

where a = ZP/(Z0+ZP ), b = Z0ZP/(Z0+ZP ), Z0 is the series electrical impedance

load in the connecting circuitry and ZP is the parallel electrical load. In a similar
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way to equation (2.5.8) the non-dimensionalised form for the electrical impedance

of the standard (Euclidean) transducer (
¯̂
ZE) is then [8]

¯̂
ZE(f) =

1

qC̄0Z0

(

1− ζ̄2C̄0

2qZ̄T

(

K̄F T̄F + K̄BT̄B
)

)

, (3.3.33)

where T̄F = 2Z̄T/(Z̄T+ZL), T̄B = 2Z̄T/(Z̄T+ZB) are non-dimensional transmission

coefficients, K̄F and K̄B are also non-dimensional and are given by

K̄F =
(1− e−qτ̄ )

(

1− R̄Be
−qτ̄
)

(

1− R̄F R̄Be−2qτ̄
)

and

K̄B =
(1− e−qτ̄ )

(

1− R̄F e
−qτ̄
)

(

1− R̄F R̄Be−2qτ̄
)

where R̄F = (Z̄T−ZL)/(Z̄T+ZL), R̄B = (Z̄T−ZB)/(Z̄T+ZB) are non-dimensionalised

reflection coefficients and τ̄ = L/c̄T is the wave transit time across the device.

Note that the capacitance of the device is given by C̄0 = Arε̄11/L. The non-

dimensionalised transmission sensitivity for the standard (Euclidean) transducer

(ψE) (similar to equation (2.5.15)) is then [149]

ψE(f) =
FE

V

(

1

ζ̄C̄0

)

= −aĀT
¯̂
λK̄F

2C̄0

(

1− ζ̄2
¯̂
λ(K̄FTF + K̄BTB)

2qZ̄T

)−1

, (3.3.34)

where FE the force produced at the front face of the standard transducer,
¯̂
λ =

C̄0/(1 + qC̄0b) and ĀT = 2ZL/(ZL + Z̄T ) are dimensionless constants. The non-

dimensionalised reception sensitivity for the standard (Euclidean) transducer (φE)

(similar to equation (2.6.4)) is then [6]

φE(f) =
VE
F

(ē24L) =
−ζ̄TF K̄F

¯̂
λ∗ē24L

qZ̄T

(

1− ζ̄2
¯̂
λ∗(K̄FTF + K̄BTB)

2q2Z̄TZE

)−1

, (3.3.35)
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where VE the voltage produced by the standard transducer and
¯̂
λ∗ = qC̄0b/(1 +

qC̄0b). Having derived expressions for the main operating characteristics of a

homogenised device these will be used to compare with the characteristics of the

fractal device using the renormalisation approach. This will allow us to assess any

practical benefits arising from this novel design.

3.4 Renormalisation model of the transducer op-

erating characteristics

The transducer is electrically coupled to a power supply and is immersed in a

mechanical load and appropriate electrical and mechanical boundary conditions

can be applied. The derivation follows similar lines to those in Section 2.3.1.

In this chapter, the force F on each vertex is given by F = ArT̄ . Hence, from

equations (2.3.52) and (3.3.31), applying an electrical charge Q̄ at one of the

transducer-electrical load interfaces then

F = Arµ̄T
dū

dx
− ζ̄Q̄. (3.4.1)

So from the continuity of force we get F (ūm) = FL(ū∂Ω) = FL(xL = 0), where FL

is the force in the mechanical load. That is, from equation (2.3.46),

Arµ̄T
(UB − Um)

h
− ζ̄Q̄ = ArµL

(

qcT
hcL

)

(−AL +BL), (3.4.2)

and so

UB − Um − ζ̄Q̄

µ̄T

(

h

Ar

)

=
ZL

¯̄ZT

q(−AL +BL), (3.4.3)
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where the mechanical impedance of the load is ZL = µLAr/cL and of the transducer

is ¯̄ZT = Arµ̄T/cT . At each generation level of the Sierpinski gasket transducer the

ratio of the cross-sectional area of each edge to its length is denoted by ξ = Ar/h
(n).

The overall extent of the SG(3,4) is fixed and so the length of the edges will steadily

decrease and, by fixing ξ, the cross-sectional area will also decrease as the fractal

generation level increases. Hence, equation (3.4.3), and its equivalent at the front

face of the transducer, can be written

U1 − UA − ζ̄Q̄

µ̄T ξ
=

ZB

¯̄ZT

q(−AB), (3.4.4)

UB − Um − ζ̄Q̄

µ̄T ξ
=

ZL

¯̄ZT

q(−AL +BL), (3.4.5)

ZB is the mechanical impedance of the backing material. Substituting equation

(2.3.47) into equation (3.4.4) gives UA = γ1U1 + δ1 and substituting equations

(2.3.48) and (2.3.49) into equation (3.4.5) gives

UB = γmUm + δm = UC = γNUN + δN , (3.4.6)

where

γj =























(

1− qZB/
¯̄ZT

)−1

, j = 1
(

1− qZL/
¯̄ZT

)−1

, j = m or N

0 otherwise

(3.4.7)

and

δj =























−γ1ζ̄Q̄/ (µ̄T ξ) , j = 1

γm

(

ζ̄Q̄/ (µ̄T ξ)− 2ALqZL/
¯̄ZT

)

, j = m or N

0 otherwise.

(3.4.8)
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Hence, equation (3.2.66) becomes

b
(n)
j = hγ̄jUj + hδ̄j j = 1, m or N (3.4.9)

where γ̄j = ηγj and δ̄j = ηδj . Putting equation (3.4.9) into equation (3.2.4) gives

Â
(n)
ji Ui = γ̄jUj + δ̄j .

Hence,
(

Â
(n)
ji − B̂

(n)
ji

)

Ui = δ̄j , i = 1, m or N

where

B̂
(n)
ji =





















































γ̄1 0 · · · · · · 0

0 0
. . .

...

...
. . .

. . .

0 0

γ̄m

0 0

. . .
. . .

...

...
. . . 0 0

0 · · · · · · 0 γ̄N





















































. (3.4.10)

That is

F
(n)
ji Ui = δ̄j ,

and so

Ui = G
(n)
ji δ̄j , (3.4.11)

where

G
(n)
ji =

(

F
(n)
ji

)−1

=
(

Â
(n)
ji − B̂

(n)
ji

)−1

(3.4.12)
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represents the Green’s transfer matrix.

The calculation of the pivotal elements of G
(n)
ji in equation (3.4.11) can be con-

ducted as before in Section 2.4.1 using renormalisation. Due to the block structure

of A
(n)
ji as described in equation (3.2.55) being so similar to that in equation (2.3.24)

the derivation of the renormalisation equation is identical and leads to equations

(2.4.14) and (2.4.18), and also when the boundary conditions are included from

equations (2.4.23) to (2.4.26). The major difference however is that the initial-

isation of these recursion relationships is different since A
(1)
ji given by equation

(3.2.53) is different from A
(1)
ji given by equation (2.3.22).

3.5 Electrical impedance and transmission and

reception sensitivities

The derivation of the electric impedance and the transmission and reception sen-

sitivities follow a very similar derivation to that in Sections 2.5 and 2.6. We

simply need to replace ζ by ζ̄ (using equation (3.3.31)), C0 by C̄0 = Arε̄11/L

(using equation (3.3.33)) and µT by µ̄T (using equation (3.3.31)) to give the non-

dimensionalised electrical impedance (ẐE) as

ẐE(f ;n) =
ZE

Z0
=

ZT

C̄0qµT ξZ0

(

1 +
ζ̄2C̄0η

µ̄T ξ
(σ1 + σ2)

)

(3.5.1)

where

σ1 = γ1

(

G
(n)
N1 −G

(n)
11

)

and σ2 = γm

(

−G(n)
Nm −G

(n)
NN + 2G

(n)
1m

)

,
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and γj is given by equation (3.4.7), η is given by equation (3.2.67), G
(n)
11 = G

(n)
NN = x

is given by equations (2.4.14) and (2.4.23) and G
(n)
N1 = G

(n)
Nm = G

(n)
1m = y is given by

equations (2.4.18) and (2.4.24). Similarly, the non-dimensionalised transmission

sensitivity (ψF ) is then given by

ψF (f ;n) =
FF

V̄

(

1

ζ̄C̄0

)

=
aZLZT

¯̄ZT (ZE + b)µT ξC̄0

K(n), (3.5.2)

where

K(n) = γm

(

−η
(

γ1G
(n)
m1 − γm

(

G(n)
mm +G

(n)
mN

))

+ 1
)

,

and ¯̄ZT is given by equation (3.4.3). Similarly, the non-dimensionalised reception

sensitivity (φF ) is then given by

φF (f ;n) =
V̄F
F

(ē24L)

=
2ζ̄ ē24Lησ2

ξµ̄T

(

1− aZT ζ̄
2η(σ1 + σ2)

(ZE + b)qµT µ̄T ξ2
− aZT

(ZE + b)qµT ξC̄0

)−1

. (3.5.3)

3.6 Steady state solutions

The true fractal case arises when we allow the fractal generation level n to tend to

infinity and we assume that the renormalisation recursion relationships converge

to a steady state (we denote these steady state solutions by a ∗ superscript). Note

we will examine the convergence of these recursion relationships later (see section

3.7.3) when we consider the pre-fractal SG(3,4) transducer (at increasing but finite

fractal generation levels).
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Case A: ŷ∗ = 0

If ŷ∗ = 0 then equation (2.4.9) is automatically satisfied (since X̂ = x̂ = x̂∗) and

from equations (2.4.10) and (2.4.11) we get

Ĝ∗
e1 = −βx̂∗Ĝ∗

b1 (3.6.1)

and

Ĝ∗
b1 = −βx̂∗Ĝ∗

e1. (3.6.2)

Substituting equation (3.6.1) into equation (3.6.2) gives

Ĝ∗
b1

(

1− β2x̂∗2
)

= 0.

Therefore Ĝ∗
b1 = 0 or x̂∗ = ±1/β. In the former case then Ĝ∗

e1 = 0 and in the

latter case Ĝ∗
b1 = ∓Ĝ∗

e1. From equation (2.4.12) we get

Ĝ∗
z1 (1 + βx̂∗) = 0.

Therefore Ĝ∗
z1 = 0 or x̂∗ = −1/β. Now bringing in the boundary conditions

equation (2.4.25) gives

z =
x̂∗

1− x̂∗γ̄m

where x̂∗ 6= 1/γ̄m. From equation (2.4.23) we get

x =
x̂∗

1− x̂∗γ̄1

where x̂∗ 6= 1/γ̄1. From equation (2.4.20) we get

y = x̂∗γ̄my.
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That is

y = 0

and from equation (2.4.22) we get

w = x̂∗γ̄mw,

giving

w = 0.

In the case where Ĝ∗
b1 = Ĝ∗

e1 = Ĝ∗
z1 = 0 we denote the solution as x∗ = χ, χ ∈ C

and in the case where x̂∗ = ±1/β we denote the solutions as Ĝ∗
b1 = ∓λ, Ĝ∗

e1 = ∓λ

and Ĝ∗
z1 = θ (or 0 when x̂∗ = 1/β) where λ, θ ∈ C. The full set of steady state

solutions for this branch of solutions are summarised in the table below.

Case x̂∗ ŷ∗ Ĝ∗
b1 Ĝ∗

e1 Ĝ∗
z1 x y w z note

A1 −1
β

0 λ −λ θ −1
β+γ̄1

0 0 −1
β+γ̄m

β 6= γ̄1, β 6= γ̄m

A2 1
β

0 −λ λ 0 1
β−γ̄1

0 0 1
β−γ̄m

β 6= γ̄1, β 6= γ̄m

A3 χ 0 0 0 0 χ
1−χγ̄1

0 0 χ
1−χγ̄m

γ̄1 6= 1
χ
, γ̄m 6= 1

χ
,χ 6= ± 1

β

Case B: ŷ∗ 6= 0

If ŷ∗ 6= 0 then from equation (2.4.9) we get

−2βŷ∗Ĝ∗
e1 = 0,
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and so

Ĝ∗
e1 = 0.

Substituting this into equations (2.4.10) and (2.4.11) we get

x̂∗Ĝ∗
b1 + ŷ∗Ĝ∗

z1 = 0 (3.6.3)

and

Ĝ∗
b1 = ŷ∗. (3.6.4)

Substituting this equation into equation (3.6.3) gives

Ĝ∗
z1 = −x̂∗. (3.6.5)

Substituting equations (3.6.4) and (3.6.5) into equation (2.4.12) gives

x̂∗ + βx̂∗2 − βŷ∗2 = 0. (3.6.6)

Note that x̂∗ 6= 0 since this would imply that ŷ∗ was zero. Also substituting

equations (3.6.4) and (3.6.5) into equation (2.4.17) gives

ŷ∗ = −βŷ∗ (ŷ∗ − x̂∗) .

That is

ŷ∗ = x̂∗ − 1

β
. (3.6.7)

Putting this into equation (3.6.6) gives

x̂∗ =
1

3β
. (3.6.8)
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Putting this into equation (3.6.7) gives

ŷ∗ =
−2

3β
. (3.6.9)

Now putting equations (3.6.8) and (3.6.9) into the boundary conditions equation

(2.4.24) gives

y =
−2β

3β2 − 3γ̄1γ̄m + β(−γ̄1 + γ̄m)
. (3.6.10)

Putting equations (3.6.8),(3.6.9) and (3.6.10) into equations (2.4.23) and (2.4.26)

gives

x =
β + 3γ̄m

3β2 − βγ̄1 + βγ̄m − 3γ̄1γ̄m

and

w =
−2β(β − γ̄1)

(β − γ̄m) (3β2 − 3γ̄1γ̄m + β(−γ̄1 − γ̄m))
. (3.6.11)

Substituting equations (3.6.8),(3.6.9),(3.6.10) and (3.6.11) into equation (2.4.25)

gives

z =
β2 − 3γ̄1γ̄m + β(γ̄1 + γ̄m)

(β − γ̄m) (3β2 − 3γ̄1γ̄m + β(−γ̄1 + γ̄m))
.

Note that from equation (2.4.5), h(n) → 0 and q(n) → 0 as n → ∞, and so from

equation (3.5.1) the non-dimensionalised electrical impedance tends to infinity

((ẐE(f ;n)) → ∞), from equation (3.5.2) the non-dimensionalised transmission

sensitivity tends to zero (ψF (f ;n) → 0), and from equation (3.4.7) γj → 1 and

from equation (3.4.9) γ̄j → η∗. From equation (3.2.67) we get

η∗ =
2

3
.
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From equation (3.5.3) the non-dimensionalised reception sensitivity is

φ∗
F (f ;n) =

2ζ̄ ē24Lη
∗σ∗

2

ξµ̄T

(

1− aZT

(

ξµ̄T + C̄0ζ̄
2η∗(σ∗

1 + σ∗
2)
)

ξµ̄TZT + ξ2µT µ̄T bqC̄0 + C̄0ζ̄2η∗ZT (σ
∗
1 + σ∗

2)

)−1

,

and, since q(n) → 0, then

φ∗
F (f ;n) =

4ζ̄ ē24Lσ
∗
2

3ξµ̄T (1− a)
,

where

σ∗
2 =



































1
1+β

, in case A1

1
1−β

, in case A2

χ
χ−1

, in case A3

−3(3β+4)
9β2+β−12

in case B.

3.7 Results

As in Section 2.8 we will compare the fractal design with a conventional (Eu-

clidean) design in terms of the key operating characteristics of the transmission

and reception sensitivity spectra [150]. A careful examination of the transmission

and reception sensitivities of the fractal device as the fractal generation level is in-

creased has been performed. However, to keep the presentation here succinct and

to produce results that are pertinent to devices that can be physically produced,

we will focus on fractal generation levels n = 4, n = 5 and n = 6.
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3.7.1 Electrical impedance and transmission/reception sen-

sitivities

A typical profile of the electrical impedance spectrum (magnitude) given by equa-

tion (3.5.1) is shown in Figures 3.48 (n = 4), 3.51 (n = 5) and 3.54 (n = 6) (dashed

line); it is compared to the equivalent profile given by a model of the traditional de-

sign (3.3.33) (full line). Similar to the discussion in Section 2.8.1, it can be seen in

2 4

35

40

45

f(MHz)

ẐE,
¯̂
ZE (dB)

Figure 3.48: Non-dimensionalised electrical impedance (equation (3.5.1)) versus
frequency for the SG(3,4) graph transducer (ẐE) at fractal generation level n =
4 (dashed line). The non-dimensionalised electrical impedance of the standard

(Euclidean) transducer (
¯̂
ZE) (equation (3.3.33)) is plotted for comparison (full

line). Parameter values are given in Appendix A.5.

Figures 3.48, 3.51 and 3.54 that, for the standard design (full line), the mechanical

resonance fr = 1.7 MHz and the electrical resonance fa = 2.4 MHz. These fre-

quencies correspond precisely to the first maximum in the transmission sensitivity

plots (Figures 3.49, 3.52 and 3.55, full line) and the reception sensitivity plots (Fig-

ures 3.50, 3.53 and 3.56 full line). From the parameter values for PZT5-H then
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Figure 3.49: Non-dimensionalised transmission sensitivity (equation (3.5.2)) versus
frequency for the SG(3,4) graph transducer (ψF ) at fractal generation level n = 4
(dashed line). The non-dimensionalised transmission sensitivity of the standard
(Euclidean) transducer (ψE) (equation (3.3.34)) is plotted for comparison (full
line). Parameter values are given in Appendix A.5.

in equation (2.2.11) the piezoelectrically stiffened velocity (cT ) is approximately

2370 m/s and the polymer stiffened velocity (cP ) is approximately 992 m/s and,

with an overall device length of L = 0.5 mm, then the corresponding frequency for

low volume fractions of polymer is approximately fa = cT/(2L) = 2.4 MHz. This

agrees reasonably well with the reception sensitivity maximum for the homogenised

estimate for fa (the full line in Figure 3.48). For the fractal design the electrical

impedance resonance frequencies are actually lower in this case (f
(4)
r = 0.25 MHz,

f
(5)
r = 0.54 MHz, f

(6)
r = 1.2 MHz and f

(4)
a = 0.45 MHz, f

(5)
a = .93 MHz, f

(6)
a = 2

MHz) and this suggests that the polymer phase is damping the higher resonances

and also bringing the dominant resonances to lower frequencies due to the lower

wave velocities it supports. Importantly, the magnitude of the electrical impedance

at the electrical resonance frequency is higher than the traditional design; there
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Figure 3.50: Non-dimensionalised reception sensitivity (equation (3.5.3)) versus
frequency for the SG(3,4) graph transducer (φF ) at fractal generation level n =
4 (dashed line). The non-dimensionalised reception sensitivity of the standard
(Euclidean) transducer (φE) (equation (3.3.35)) is plotted for comparison (full
line). Parameter values are given in Appendix A.5.

is about a 5 dB increase for n = 6. This results in the reception sensitivity spec-

trum having a much larger gain for n = 6; there is a 7 dB improvement in the

reception sensitivity gain from the traditional design to the fractal design (see

Figure 3.56). Importantly, this peak in the reception sensitivity also results in an

enhanced bandwidth; if we take the noise floor to be 3 dB below the peak gain of

the traditional design (that is 5 dB) then the operational bandwidth of the tradi-

tional design is 1.5 MHz whereas the fractal design has an operational bandwidth

of around 3 MHz. It should be borne in mind of course that no matching layers

(or indeed an optimised backing layer) have been used in this design, and that

the transducer is solely composed of the piezoelectric-polymer composite material.

Let us start by examining the performance of the first generation graph (n = 4).

Figure 3.48 shows that the electrical impedance of the fractal graph has its first
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resonance (the electrical resonance) around f
(4)
r = 0.25 MHz (at a lower frequency

than the Euclidean case fr = 1.7 MHz) and that the higher frequency resonances

are absent. Figure 3.49 shows that the transmission sensitivity of the fractal design

has a maximum amplitude (gain) that is lower than the Euclidean case (standard

design) at its lower operating frequency (26 dB at 0.23 MHz compared to 31 dB

at 1.7 MHz for the Euclidean case). If we take the noise floor to be 3 dB below the

peak gain of the traditional design then the operational bandwidth of the tradi-

tional design is 0.5 MHz whereas the fractal design has no operational bandwidth.

Figure 3.50 shows that the reception sensitivity of the fractal design does show

some encouraging results with a much higher peak amplitude than that of the

Euclidean case and at a lower operating frequency (at 0.32 MHz its sensitivity is

14 dB whereas the peak sensitivity of the standard device is 8 dB at 2.4 MHz).

Following this is an examination of the next generation level (n = 5). Also in

generation level n = 5 the electrical impedance of the fractal graph has its first

resonance at around 0.5 MHz (at a lower frequency than the Euclidean case) and

that the higher frequency resonances are absent.
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Figure 3.51: Non-dimensionalised electrical impedance (equation (3.5.1)) versus
frequency for the SG(3,4) graph transducer (ẐE) at fractal generation level n =
5 (dashed line). The non-dimensionalised electrical impedance of the standard

(Euclidean) transducer (
¯̂
ZE) (equation (3.3.33)) is plotted for comparison (full

line). Parameter values are given in Appendix A.5.
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Figure 3.52: Non-dimensionalised transmission sensitivity (equation (3.5.2)) versus
frequency for the SG(3,4) graph transducer (ψF ) at fractal generation level n = 5
(dashed line). The non-dimensionalised transmission sensitivity of the standard
(Euclidean) transducer (ψE) (equation (3.3.34)) is plotted for comparison (full
line). Parameter values are given in Appendix A.5.

The transmission sensitivity of the fractal design in generation level n = 5 has

a maximum amplitude (gain) that is lower than the homogenised case (standard

Euclidean design) at its lower operating frequency (at 0.55 MHz its sensitivity is

26 dB and the peak sensitivity of the standard (Euclidean) device is 29 dB at 1.7

MHz). The bandwidth of around 25 dB is smaller than that of the Euclidean case

(see Table 3.3).
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Figure 3.53: Non-dimensionalised reception sensitivity (equation (3.5.3)) versus
frequency for the SG(3,4) graph transducer (φF ) at fractal generation level n =
5 (dashed line). The non-dimensionalised reception sensitivity of the standard
(Euclidean) transducer (φE) (equation (3.3.35)) is plotted for comparison (full
line). Parameter values are given in Appendix A.5.

The reception sensitivity of the fractal design in generation level n = 5 has again a

much higher peak amplitude than that of the Euclidean case at its lower operating

frequency (at 0.6 MHz its sensitivity is 14 dB whereas the peak sensitivity of the

standard (Euclidean) device is 8 dB at 2.4 MHz). This examination can continue

and below we consider the sixth generation level (n = 6) performance.
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Figure 3.54: Non-dimensionalised electrical impedance (equation (3.5.1)) versus
frequency for the SG(3,4) graph transducer (ẐE) at fractal generation level n =
6 (dashed line). The non-dimensionalised electrical impedance of the standard

(Euclidean) transducer (
¯̂
ZE) (equation (3.3.33)) is plotted for comparison (full

line). Parameter values are given in Appendix A.5.

At fractal generation level n = 6 the electrical impedance of the fractal graph has

its first resonance at around 1.2 MHz. This is at a higher impedance gain than

the Euclidean case (which resonates at a higher frequency) and again the higher

frequency resonances are absent.
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Figure 3.55: Non-dimensionalised transmission sensitivity (equation (3.5.2)) versus
frequency for the SG(3,4) graph transducer (ψF ) at fractal generation level n = 6
(dashed line). The non-dimensionalised transmission sensitivity of the standard
(Euclidean) transducer (ψE) (equation (3.3.34)) is plotted for comparison (full
line). Parameter values are given in Appendix A.5.

The transmission sensitivity of the fractal design in generation level n = 6 has a

maximum amplitude (gain) that is lower than the Euclidean case (at 1.1 MHz its

sensitivity is 26 dB and the peak sensitivity of the standard device is 28 dB at

1.7 MHz). Once again the bandwidth around 25 dB is smaller than that of the

homogenised case.
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Figure 3.56: Non-dimensionalised reception sensitivity (equation (3.5.3)) versus
frequency for the SG(3,4) graph transducer (φF ) at fractal generation level n =
6 (dashed line). The non-dimensionalised reception sensitivity of the standard
(Euclidean) transducer (φE) (equation (3.3.35)) is plotted for comparison (full
line). The red arrow shows the bandwidth of the fractal transducer is around 3
MHz and the bandwidth of the Euclidean transducer is around 1.5 MHz as shown
by the blue arrow (see Table 3.3). Parameter values are given in Appendix A.5.

As before the reception sensitivity maximum amplitude of the fractal design (in

generation level n = 6) is higher than the Euclidean case (14 dB at 1.3 MHz

compared to 8 dB at 2.4 MHz for the Euclidean case), with the bandwidth around

this peak sensitivity being bigger than that of the Euclidean case.
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Design (n) fr fa ψmax φmax BWT BWR

(MHz) (MHz) (dB) (dB) (MHz) (MHz)

Fractal (4) 0.3 0.5 26.0 14.0 0 0.5
Standard 1.7 2.4 31.0 8.0 0.3 1.5

Fractal (5) 0.5 0.9 26.0 14.0 0.2 1.5
Standard 1.7 2.4 29.0 8.0 0.8 1.5

Fractal (6) 1.2 2.0 26.0 14.0 0.5 3.0
Standard 1.7 2.4 28.0 8.0 1.0 1.5

Table 3.3: A comparison between the operating characteristics of a fractal trans-
ducer and an equivalent standard design at fractal generation levels n = 4, 5 and
6. The mechanical resonance frequency is denoted by fr (MHz), the electrical
resonance frequency is denoted by fa (MHz), the transmission sensitivity gain is
denoted by ψmax (dB), the reception sensitivity gain is denoted by φmax (dB), the
transmission sensitivity bandwidth is denoted by BWT (MHz) and the reception
sensitivity bandwidth is denoted by BWR (MHz).

3.7.2 Homogeneous Euclidean transducers

Figure 3.57: Non-dimensionalised electrical impedance of the standard (Euclidean)

transducer
¯̂
ZE(f) (dB) (equation (3.3.33)) versus frequency f(MHz) and volume

fraction of ceramic ν for a 1-3 composite transducer. Parameter values are given
in Appendix A.5.

The electrical impedance of the standard (Euclidean) design was calculated using
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the homogenisation approach that led to equation (3.3.33). As can be seen in

Figure 3.57 the resonances (peaks in the electrical impedance amplitude) only

appear once the volume fraction of the polymer (ν) exceeds a threshold of roughly

0.95.

Figure 3.58: Non-dimensionalised transmission sensitivity of the standard (Eu-
clidean) transducer ψE(f) (dB) (equation (3.3.34)) versus frequency f(MHz) and
volume fraction of ceramic ν for a 1-3 composite transducer. Parameter values are
given in Appendix A.5.

At the low volume fraction of the polymer (ν) there is a number of resonances. As

the volume fraction increases these resonances shift to higher frequencies. It can

be seen that the peak sensitivity is 28 dB and the bandwidth around this peak

sensitivity is bigger at the low volume fractions of the polymer (ν).
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Figure 3.59: Non-dimensionalised reception sensitivity of the standard (Euclidean)
transducer φE(f) (dB) (equation (3.3.35)) versus frequency f(MHz) and volume
fraction of ceramic ν for a 1-3 composite transducer. Parameter values are given
in Appendix A.5.

At low volume fractions of the polymer (ν) there are a number of resonances in

the low frequency regime. As the volume fraction of ceramic increases the peak

sensitivity increases as well.

3.7.3 Convergence

Similar to Section 2.8.2, the norm of the difference between the energy in the power

spectrum at successive generation levels, integrated with respect to frequency, can

be calculated for the transmission/reception sensitivities. Figure 3.60 shows the

dependence of these norms on the generation level. Scrutiny of the underlying

spectra shows that the transmission sensitivity accrues more and more resonances

as the fractal generation n increases. As the length scale of the smallest edge

is decreasing with n then resonances at higher frequencies appear; note that the

lack of damping in the model permits these resonances to have amplitudes which
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would not be present in an experimental setting. As n is increased further, then the

various peaks become quite dense and a very flat response emerges which does not

change over the frequency range of interest (up to 10 MHz). Hence, the successive

spectra start to reach a steady state and this accounts for the steady state that is

reached after n = 10. A similar story holds for the reception sensitivity.

5 10 15 20
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6

n

ψ∗
F (n), φ

∗
F (n) (dB)

Figure 3.60: The convergence of the transmission and reception sensitivities is
examined by plotting the differences in the energies in successive spectra as the
fractal generation level increases. Non-dimensionalised transmission sensitivity
(ψ∗

F (n)) (equation (2.8.1)) (full line) and non-dimensionalised reception sensitivity
(φ∗

F (n)) (equation (2.8.2)) (dashed line) versus the fractal generation level. The
transmission sensitivity converges by generation level n = 10 and the reception
sensitivity by generation level n = 5, over this frequency range where fi ∈ [0.1, 10]
MHz.

3.8 Conclusions

The performance of a composite piezoelectric ultrasound transducer, where its in-

ternal architecture is a fractal, is compared with that of a traditional design. The
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former case is modelled using a renormalisation approach whereas the latter case

is modelled using homogenisation. In Chapter 2, only ceramic elements were used,

however in this chapter, this was improved on by using a combination of ceramic

and polymer elements. New basis functions for this two phase material whose sup-

port is the underlying fractal graph, were developed for the finite element analysis.

To assess the performance of this new device a new model for a homogenised device

was derived. This represents the standard designs that are commonly used whereby

the piezoelectric and polymer constituents are on the same length scale and are

often arranged in a periodic structure. Low fractal generation levels (n = 4, 5

and 6) of the fractal transducer was investigated as these are in the regime most

likely to be amenable to manufacture. A significantly higher amplitude reception

sensitivity was produced by the fractal transducer when compared to the standard

design; note however that a lower transmission sensitivity amplitude resulted. The

convergence of the fractal device’s performance as the fractal generation level in-

creases was also considered. It was seen that, in both transmission and reception

modes, the outputs converge by generation level n = 10 and n = 5 respectively.

The reception sensitivity also resulted in a wider bandwidth than the standard

design; if we take the noise floor to be 3 dB below the peak gain of the traditional

design (around 5 dB) the bandwidth of the fractal transducer is around 3 MHz

but 1.5 MHz for the Euclidean transducer (see Figure 3.56 and Table 3.3).
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Chapter 4

A fractal ultrasonic transducer

based on the complement of the

Sierpinski gasket

4.1 Introduction

This chapter derives a model of a fractal ultrasound transducer and compare its

distinctive properties with that of a standard transducer design. The complement

of the Sierpinski gasket fractal is utilized in this chapter to simulate this self-

similar transducer [9,10,144]. This transducer starts off as an equilateral triangle

of piezoelectric crystal, connected to three half sized copies of itself (see Figure 4.1).

The next generation (n = 2) connects three half-sized copies of the smaller triangles

to each of these triangles. Continuing in this way what we will call the complement

(or dual) of the standard Sierpinski gasket is produced. Using the complement (the

black triangles in Figure 4.1) should prove to be a significant advance as it has

a range of triangle sizes whereas the Sierpinski gasket is composed of triangles
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of the same size (the white triangles in Figure 4.1) for a given fractal generation

level. The dual graph
(

SG(3)
)

is introduced and constructed by a process which

starts from the order n = 1 design (which consists of four piezoelectric triangles),

assigns a vertex to the centre of each of the smaller triangles and, by connecting

these vertices together with edges whose length is the side length of the larger

triangle, the SG(3) weighted graph at generation level n = 1 is constructed (see

Figure 4.2). The Sierpinski gasket has side length L units which remains constant

as the generation level n increases. The length of the smallest edge in the weighted

graph SG
(n)

(3) is h(n) = L/2n and the longest edge length that connects the

three SG
(n−1)

(3) graphs is h(1) = L/2. Then the overall diameter of the graph is

L
(n)
SG = nL/2 and the total number of vertices is Nn = 3n. The vertex degree is

3 apart from the boundary vertices (input/output vertices) which have degree 2

and Mn = 3(3n − 1)/2 denotes the total number of edges at generation level n.

The boundary vertices are used to interact with external loads (both electrical and

mechanical) and fictitious vertices A,B and C are introduced to cope with these

interfacial boundary conditions later on (see Figures 4.3 and 4.4). Denote by Ωn

the set of points lying on the edges or vertices of the weighted graph SG
(n)

(3) and

denote the region’s boundary by ∂Ωn.

n = 1 n = 2 n = 3

LLL

Figure 4.1: The first few generations of the Sierpinski gasket (white triangles). The
black triangles (the complement of the Sierpinski gasket) consist of piezoelectric
material. The side length of the Sierpinski gasket is L for all generation levels.
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n = 1 n = 2 n = 3

L/2L/2L/2

L/4L/4

L/8

Figure 4.2: The first few generations of the weighted Sierpinski gasket graph SG(3).

By introducing the non-dimensionalised variable θ = cT t/h
(n) then (temporarily

dropping the subscript on u and the superscript on h(n))

∂2u

∂θ2
=
(

h(n)
)2 ∇2u. (4.1.1)

Applying the Laplace transform L : θ → q then gives

q2 ū =
(

h(n)
)2 ∇2ū. (4.1.2)

We will seek a weak solution ū ∈ H1(Ωn) where on the boundary ū = ū∂Ωn ∈

H1(∂Ωn). Now multiplying by a test function w ∈ H1
B(Ωn), where H1

B(Ωn) :=

{w ∈ H1(Ωn) : w = 0 on ∂Ωn} , integrating over the region Ωn, and using Green’s

first identity
∫

Ωn
ψ ∇2φ dv =

∮

∂Ωn
ψ (∇φ . n) dr −

∫

Ωn
∇φ .∇ψ dv, where n is the

outward pointing unit normal of surface element dr, gives

∫

Ωn

q2 ū w dx =
(

h(n)
)2
∮

∂Ωn

w(∇ū . n) dr −
(

h(n)
)2
∫

Ωn

∇ū .∇w dx.

Now
(

h(n)
)2 ∮

∂Ωn
w(∇ū . n) dr is zero since w = 0 on ∂Ωn and so, we seek ū ∈
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H1(Ωn) such that

q2
∫

Ωn

ū w dx = −
(

h(n)
)2
∫

Ωn

∇ū .∇w dx

where w ∈ H1
B(Ωn).

4.2 Galerkin discretisation

Using a standard Galerkin method we replace H1(Ωn) and H1
B(Ωn) by the finite

dimensional subspaces SS and SB = SS ∩H1
B(Ωn). Let UB ∈ SS be a function that

approximates ū∂Ωn on ∂Ωn, then the discretised problem involves finding Ū ∈ SS

such that

q2
∫

Ωn

Ū W dx = −
(

h(n)
)2
∫

Ωn

∇Ū .∇W dx, (4.2.1)

where W is the test function expressed in this finite dimensional space.

Definition 4.2.1. Denote the set of vertices in Ωn as VΩn, the set of fictitious

vertices as V∂Ωn (these are vertices Nn + 1, Nn + 2 and Nn + 3), the set of interior

vertices as VΩo
n

(

so VΩo
n
= VΩn \ V∂Ωn

)

, and the set of input/output vertices as V∂Ωo
n

(these are vertices 1, mn = (Nn + 1)/2 and Nn). EΩn is the set of edges in Ωn, the

set of edges joining vertices in V∂Ωo
n
to vertices in V∂Ωn is denoted E∂Ωn and EΩo

n
is

the set of the interior edges
(

EΩo
n
= EΩn \ E∂Ωn

)

. Denote by E
(p)
Ωo

n
the set of edges

in EΩo
n
of length h(p) and by Ē

(p)
Ωo

n
three copies of E

(p)
Ωo

n
(the adjacency matrix for

ĒΩo
n
is a block diagonal matrix where each block is the adjacency matrix for EΩo

n
).

E
(p)
Ωn

and Ē
(p)
Ωn

are defined similarly using the complete set of edges in Ωn. Also

Ē∂Ωn is three copies of the boundary edges E∂Ωn . Hence Ē
(p−1)
Ωn−1

= E
(p)
Ωn

if p < n,

Ē
(p−1)
Ωo

n−1
= E

(p)
Ωo

n
for p 6 n and E

(p)
Ωo

n
= E

(p)
Ωn

if p < n.

Let φj, j ∈ VΩo
n
form a basis of SB and set W = φj , then equation (4.2.1)
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becomes

q2
∫

Ωn

Ū φj dx = −
(

h(n)
)2
∫

Ωn

∇Ū .∇φj dx. (4.2.2)

Furthermore, let φi, i ∈ V∂Ωn form a basis for the boundary vertices and let

Ū =
Nn
∑

i=1

Uiφi +
∑

i∈V∂Ωn

UBi
φi. (4.2.3)

Hence, equation (4.2.2) becomes

Nn
∑

i=1

(∫

Ωn

(

q2φjφi +
(

h(n)
)2 ∇φj .∇φi

)

dx

)

Ui =

−
∑

i∈V∂Ωn

(
∫

Ωn

(

q2φjφi +
(

h(n)
)2 ∇φj .∇φi

)

dx

)

UBi
(4.2.4)

where j ∈ VΩo
n
. That is

AjiUi = bj (4.2.5)

where

Aji = q2
∫

Ωn

φjφi dx+
(

h(n)
)2
∫

Ωn

∇φj .∇φi dx, (4.2.6)

and

bj = −
∑

i∈V∂Ωn

(
∫

Ωn

(q2φjφi +
(

h(n)
)2 ∇φj .∇φi)dx

)

UBi
. (4.2.7)

It is important to now explicitly record the fractal generation level n and so equa-

tion (4.2.6) can be written

A
(n)
ji = q2H

(n)
ji +

(

h(n)
)2
K

(n)
ji , (4.2.8)

where

H
(n)
ji =

∫

Ωn

(φjφi)dx. (4.2.9)
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and

K
(n)
ji =

∫

Ωn

(∇φj .∇φi) dx. (4.2.10)

1 2

3

4 5

6

(0, 0) (h(1), 0)

(h(1)/2,
√
3h(1)/2)

(−h(1), 0) (2h(1), 0)

(h(1),
√
3h(1))

1©

2©3©

4© 5©

6©

Figure 4.3: The Sierpinski Gasket dual graph SG(3) at generation level n = 1. Ver-
tices {1, 2, 3} ∈ VΩo

n
or V∂Ωo

n
in this level n = 1 are the input/output vertices, and

vertices {4, 5, 6} ∈ V∂Ωn are fictitious vertices used to accommodate the boundary
conditions. The graph has 6 elements (circled numbers), with two vertices adjacent
to each element.

Lemma 4.2.1. The basis function φj for vertex j in the element (the edge) joining

vertices j and k at fractal generation level n is given by

φj (x, y, xj, yj, xk, yk, xm, ym, xl, yl) =
(

(y − yk)(xm + xl)− (x− xk)(ym + yl)

+2(xyk − xky) + xjy − xjyk − xyj + xkyj + xyk − xky
)/(

(yj − yk)(xm + xl)

− (xj − xk)(ym + yl) + 2(xjyk − xkyj)
)

(4.2.11)

where, for edges of length greater than h(n) and n > 2, the two other adjacent
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1 2

3

4 5

6

7 8

9

10 11

12

(0, 0) (h(2), 0)

(h(2)/2,
√
3h(2)/2)

(3h(2), 0) (4h(2), 0)

(7h(2)/2,
√
3h(2)/2)

(3h(2)/2, 3
√
3h(2)/2) (5h(2)/2, 3

√
3h(2)/2)

(2h(2), 2
√
3h(2))

(−h(2), 0) (5h(2), 0)

(5h(2)/2, 5
√
3h(2)/2)

1©

2©3©

4© 5©

6©7©

8© 9©

10©

11©12©

13© 14©

15©

Figure 4.4: The Sierpinski Gasket dual graph SG(3) at generation level n = 2.
Vertices {1, . . . , 9} ∈ VΩo

n
and vertices {1, 5, 9} ∈ V∂Ωo

n
. Vertices {10, 11, 12} ∈ V∂Ωn

are fictitious vertices used to accommodate the boundary conditions. The graph
has 15 elements (circled numbers), with two vertices adjacent to each element.

vertices to vertex j are l and m. For interior edges of length h(n) and n > 1 then

vertex l is equal to vertex j and vertex m is the vertex that is connected to vertex j

by the other edge of length h(n) (for exterior edges (these will have length h(n)) then

vertices l and m are also the two interior vertices adjacent to vertex j). Hence,

∇φj(x, y, xj, yj, xk, yk, xm, ym, xl, yl) =
(

−(yj + ym + yl) + 3yk
(yj − yk)(xm + xl)− (xj − xk)(ym + yl) + 2(xjyk − xkyj)

,

xj + xm + xl − 3xk
(yj − yk)(xm + xl)− (xj − xk)(ym + yl) + 2(xjyk − xkyj)

)

. (4.2.12)
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1 5

9

10 14

18

19 23

27

28 29

30

(0, 0) (4h(3), 0)

(2h(3), 2
√
3h(3))

(8h(3), 0) (12h(3), 0)

(10h(3), 2
√
3h(3))

(4h(3), 4
√
3h(3)) (8h(3), 4

√
3h(3))

(6h(3), 6
√
3h(3))

Figure 4.5: The Sierpinski Gasket dual graph SG(3) at generation level n = 3. Ver-
tices {28, 29, 30} ∈ V∂Ωn are fictitious vertices used to accommodate the boundary
conditions. The graph has 42 elements, with two vertices adjacent to each element.

Proof. The basis function is chosen to be linear having a value of one at vertex

j and a value of zero at vertex k. So φ
(n)
j is a straight line lying in a plane SP

containing the points P2 = (xk, yk, 0) and P1 = (xj , yj, 1) (see Figure 4.6). To make

this plane unique a third point is required. When edge jk is longer than h(n) then,

to retain the symmetry inherent to the SG graph this third point is chosen as the

centroid of the triangle formed by the two other vertices (xm and xl) connected to

vertex j and vertex j itself. When an interior edge jk has length h(n) then this third

point is chosen as the centroid of the triangle formed by the two interior vertices

that are connected to vertex j by edges of length h(n). So let P3 be the point
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P1

P2

P3

(xj, yj, 1)

(xk, yk, 0)

mj

l

k

a

b

a× b

SP

Figure 4.6: Basis function at vertex j with adjacent vertices l, m and k in the
SG(3) graph. P3 is the centroid of the triangle with vertices j,m and k. The plane
SP contains the points P1, P2 (vertex k) and P3.

(xj + xm + xl, yj + ym + yl, 0)/3. The vectors a =
−−→
OP1 −

−−→
OP3 and b =

−−→
OP2 −

−−→
OP3

lie in this plane and so the equation of the plane is (a × b) · x = (a × b) · P1.

Rearranging this equation for the third component of x gives this formula for the

basis function. The gradient then follows.

The resulting basis functions for fractal generation levels n = 1 and n = 2 are

shown in Figures 4.7 and 4.8. For each generation level of the SG(3) graph the

coordinates of the vertices are known (see Appendix A.3 for a detailed description

for n = 1 and n = 2). For a particular element lying between vertex j and vertex
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Figure 4.7: The basis functions φj where j ∈ J and I at fractal generation level
n = 1.

i the isoparametric representation, given by

(x(s), y(s)) = ((xj − xi)s+ xi, (yj − yi)s+ yi) (4.2.13)

is employed (see Figure 4.9), where s1 = 0 and s2 = 1 and dx = h(p) ds. Note that

the superscript (p) has been used here since there will be a range of edge lengths

h(p), p = 1, . . . , n in the generation level n SG(3) graph.
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Figure 4.8: The basis functions φj where j ∈ J and I at fractal generation level
n = 2.

s1

(xi, yi)

s2

(xj, yj)

s

h(p)

Figure 4.9: An isoparametric element (edge) between vertex (xi, yi) and vertex
(xj , yj) at generation level p.

4.3 Derivation of the matrix recursions

Using the basis function derived in Lemma 4.2.1 it can be shown that the matrix

H at fractal generation level n can be related to its counterpart at level n− 1.
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Lemma 4.3.1.

Ĥ
(n)
ji =

¯̂
H

(n−1)
ji +Υ(n)W

(n)
ji + ϑ(n)P

(n)
ji , j, i ∈ VΩo

n
(4.3.1)

where H̄
(n−1)
ji is a block diagonal matrix consisting of three blocks of matrix H

(n−1)
ji

for n > 2,
¯̂
H

(n−1)
ji = H̄

(n−1)
ji /h(n), Ĥ

(n)
ji = H

(n)
ji /h

(n), Υ(n) = (2n−1 − 1)/3, ϑ(n) =

2n−1/6, W
(n)
ji = 1

V
(1)
Ωn

(j)1{0}(i − j) (where 1{A}(a) is the indicator function which

equals 1 if a ∈ A, and 0 otherwise) and P
(n)
ji = 1

E
(1)
Ωn

(ji).

Proof. By using equations (4.2.9) and (4.2.13) for edge jk of length h(p) then,

jkH
(n,p)
cd =

∫

jk∈EΩn

φc φd dx = 2n−ph(n)
∫ 1

0

φc (x(s), y(s)) φd (x(s), y(s)) ds.

(4.3.2)

From equation (4.2.11), the basis function at vertex j (which has coordinates (a, b))

along a typical edge jk ∈ E
(p)
Ωn

where p < n is

φj(x, y) =
1

h(n)

(

(a− x)
(

3 + 2(1+p−n)
)

− (b− y)
√
3 + h(n)

)

(4.3.3)

and at vertex k (which has coordinates (a + 2(n−p−1)h(n), b+ 2(n−p−1)
√
3h(n))) is

φk(x, y) =
1

h(n)

(

(a− x)
(

3 + 2p−n
)

−
√
3(b− y)

(

1 + 2p−n
)

)

. (4.3.4)

Substituting equation (4.2.13) into equations (4.3.3) and (4.3.4) gives

φj (x(s), y(s)) = 1− s

and

φk (x(s), y(s)) = s.
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Now if (c = d = j) or (c = d = k) in equation (4.3.2) then

jkH
(n,p)
jj = 2n−ph(n)

∫ 1

0

(1− s)2 ds =
2n−p

3
h(n) = jkH

(n,p)
kk

and if (c = j and d = k) or (c = k and d = j) in equation (4.3.2) then

jkH
(n,p)
jk = 2n−ph(n)

∫ 1

0

(1− s) s ds =
2n−p

6
h(n) = jkH

(n,p)
kj .

A similar calculation can be conducted for the case p = n albeit the basis functions

calculation is slightly different and follows the prescription in the proof of Lemma

2. So equation (4.3.2) becomes, for jk ∈ E
(p)
Ωn

, n > 1 and p 6 n

jkH
(n,p)
cd = 2n−ph(n)























1
3

if (c = d = j) or (c = d = k)

1
6

if (c = j and d = k) or (c = k and d = j), j 6= k

0 otherwise.

(4.3.5)

We now consider the basis functions at input/output vertices V∂Ωo
n
and the inte-

gration of equation (4.3.2) in the boundary edges jk ∈ E∂Ωn . Equation (4.3.2)

becomes

jkH
(n,n)
cd = h(n)











1
3

if (c = d = j ∈ V∂Ωo
n
)

0 otherwise.
(4.3.6)

The matrix H
(n)
cd is assembled element by element (edge by edge) as follows

H
(n)
cd =

n
∑

p=1

∑

jk∈E(p)
Ωn

jkH
(n,p)
cd =

n
∑

p=2

∑

jk∈E(p)
Ωn

jkH
(n,p)
cd +

∑

jk∈E(1)
Ωn

jkH
(n,1)
cd . (4.3.7)

190



The first term on the right hand side of this equation can be written

n
∑

p=2

∑

jk∈E(p)
Ωn

jkH
(n,p)
cd =

n−1
∑

p=2

∑

jk∈E(p)
Ωn

jkH
(n,p)
cd +

∑

jk∈E(n)
Ωn

jkH
(n,n)
cd

=
n−2
∑

p
′
=1

∑

jk∈E(p
′
+1)

Ωn

jkH
(n,p

′

+1)
cd +

∑

jk∈E(n)
Ωn

jkH
(n,n)
cd .

Since E
(p)
Ωo

n
= Ē

(p−1)
Ωo

n−1
, E

(p)
Ωn

= Ē
(p−1)
Ωn−1

, and E∂Ωn ⊆ Ē∂Ωn−1 ⊆ Ē
(n−1)
Ωn−1

for 1 < p < n,

then, E
(n)
Ωn

= E
(n)
Ωo

n
∪E∂Ωn = Ē

(n−1)
Ωo

n−1
∪E∂Ωn =

(

Ē
(n−1)
Ωn−1

\ Ē∂Ωn−1

)

∪E∂Ωn = Ē
(n−1)
Ωn−1

\
(

Ē∂Ωn−1 \ E∂Ωn

)

. Hence,

n
∑

p=2

∑

jk∈E(p)
Ωn

jkH
(n,p)
cd =

n−2
∑

p′=1

∑

jk∈Ē(p
′
)

Ωn−1

jkH
(n,p

′

+1)
cd +

∑

jk∈Ē(n−1)
Ωn−1

jkH
(n,n)
cd

−
∑

jk∈Ē∂Ωn−1
\E∂Ωn

jkH
(n,n)
cd

=

n−1
∑

p′=1

∑

jk∈Ē(p
′
)

Ωn−1

jkH
(n,p

′

+1)
cd −

∑

jk∈Ē∂Ωn−1
\E∂Ωn

jkH
(n,n)
cd .

It can be shown that jkH
(n,p

′

+1)
cd = jkH

(n−1,p
′

)
cd , and then from equation (4.3.6),

n
∑

p=2

∑

jk∈E(p)
Ωn

jkH
(n,p)
cd = H̄

(n−1)
cd − h(n)

3
W

(n)
cd (4.3.8)

since in Ē∂Ωn−1 \ E∂Ωn we have c = d in equation (4.3.5), and H̄
(n−1)
cd is a block

diagonal matrix of dimension Nn×Nn consisting of three blocks given by H
(n−1)
cd of

dimension Nn−1 ×Nn−1. Now the second term on the right hand side of equation
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(4.3.7) can be written

∑

jk∈E(1)
Ωn

jkH
(n,1)
cd = 2n−1h(n)

(

1

6
P

(n)
cd +

1

3
W

(n)
cd

)

.

Combining this with equation (4.3.8) then equation (4.3.7) becomes

Ĥ
(n)
ji =

¯̂
H

(n−1)
ji +

1

3
(2n−1 − 1)W

(n)
ji +

2n−1

6
P

(n)
ji

where
¯̂
H

(n−1)
ji = H̄

(n−1)
ji /h(n) and Ĥ

(n)
ji = H

(n)
ji /h

(n).

q
(

a + 2n−2h(n), b +
√
3(2n−2h(n))

)

p (a, b)

h(1) = L/2

h(n) = L/2n

Figure 4.10: The element (edge) between vertices p and q with the longest length

h(1) in SG(3). Here h(n) denotes the length of the smallest edge in SG
(n)

(3) where
h(n) = L/2n.
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A similar approach can be used to derive the matrix K
(n)
ji .

Lemma 4.3.2.

K̂
(n)
ji =

¯̂
K

(n−1)
ji + ǫ(n)W

(n)
ji + χ(n)P

(n)
ji , j, i ∈ VΩo

n
(4.3.9)

where K̄
(n−1)
ji is a block diagonal matrix consisting of three blocks of matrix K

(n−1)
ji

for n > 2,
¯̂
K

(n−1)
ji = h(n)K̄

(n−1)
ji , K̂

(n)
ji = h(n)K

(n)
ji , ǫ(n) = 2n−1 (12 + 24−2n + 3 (23−n))−

28 and χ(n) = 2n−1 (12 + 23−2n + 3 (23−n)).

Proof. By using equations (4.2.10) and (4.2.13) for edge jk of length h(p) then,

jkK
(n,p)
cd =

∫

jk∈EΩn

∇φc .∇φd dx = 2n−ph(n)
∫ 1

0

∇φc (x(s), y(s)) .∇φd (x(s), y(s)) ds.

(4.3.10)

Equations (4.3.3) and (4.3.4), give for jk ∈ E
(p)
Ωn

where p < n

∇φj(x, y) =
1

h(n)

(

−
(

3 + 2(1−n+p)
)

,
√
3
)

and

∇φk(x, y) =
1

h(n)

(

−
(

3 + 2p−n
)

,
√
3
(

1 + 2p−n
)

)

.

Now if (c = d = j) or (c = d = k) in equation (4.3.10) then

jkK
(n,p)
jj = 2n−ph(n)

∫ 1

0

1

h(n)

(

−
(

3 + 2(1−n+p)
)

,
√
3
)

.
1

h(n)

(

−
(

3 + 2(1−n+p)
)

,
√
3
)

ds

=
2n−p

h(n)
(

12 + 2(2−2n+2p) + 3
(

2(2−n+p)
))

= jkK
(n,p)
kk
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and if (c = j and d = k) or (c = k and d = j) in equation (4.3.10) then

jkK
(n,p)
jk =

2n−p

h(n)

∫ 1

0

(

−
(

3 + 2(1−n+p)
)

,
√
3
)

.
(

−
(

3 + 2p−n
)

,
√
3
(

1 + 2p−n
)

)

ds

=
2n−p

h(n)
(

12 + 2(1−2n+2p) + 3
(

2(2−n+p)
))

= jkK
(n,p)
kj .

Hence, for jk ∈ E
(p)
Ωn

, n > 2 and p < n

jkK
(n,p)
cd =

2n−p

h(n)























12 + 2(2−2n+2p) + 3
(

2(2−n+p)
)

if (c = d = j) or (c = d = k)

12 + 2(1−2n+2p) + 3
(

2(2−n+p)
)

if (c = j and d = k) or (c = k and d = j)

0 otherwise.

(4.3.11)

A similar calculation can be undertaken for the case when jk ∈ E
(n)
Ωo

n
and p = n.

It transpires that

jkK
(n,n)
cd =

1

h(n)























4 if (c = d = j) or (c = d = k)

2 if (c = j and d = k) or (c = k and d = j)

0 otherwise.

(4.3.12)

Similarly, for the boundary edges jk ∈ E∂Ωn , equation (4.3.10) becomes

jkK
(n,n)
cd =

1

h(n)











28 if (c = d = j ∈ V∂Ωo
n
)

0 otherwise.
(4.3.13)

As before the matrix K
(n)
cd is assembled in an element by element (edge by edge)

manner via

K
(n)
cd =

n
∑

p=1

∑

jk∈E(p)
Ωn

jkK
(n,p)
cd =

n
∑

p=2

∑

jk∈E(p)
Ωn

jkK
(n,p)
cd +

∑

jk∈E(1)
Ωn

jkK
(n,1)
cd . (4.3.14)
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The first term on the right hand side of this equation can be written

n
∑

p=2

∑

jk∈E(p)
Ωn

jkK
(n,p)
cd =

n−1
∑

p=2

∑

jk∈E(p)
Ωn

jkK
(n,p)
cd +

∑

jk∈E(n)
Ωn

jkK
(n,n)
cd

=
n−2
∑

p
′
=1

∑

jk∈E(p
′
+1)

Ωn

jkK
(n,p

′

+1)
cd +

∑

jk∈E(n)
Ωn

jkK
(n,n)
cd .

Since E
(p)
Ωn

= Ē
(p−1)
Ωn−1

for 1 < p < n, and E
(n)
Ωn

= E
(n)
Ωo

n
∪ E∂Ωn = Ē

(n−1)
Ωo

n−1
∪ E∂Ωn =

(

Ē
(n−1)
Ωn−1

\ Ē∂Ωn−1

)

∪ E∂Ωn = Ē
(n−1)
Ωn−1

\
(

Ē∂Ωn−1 \ E∂Ωn

)

. Hence,

n
∑

p=2

∑

jk∈E(p)
Ωn

jkK
(n,p)
cd =

n−2
∑

p′=1

∑

jk∈Ē(p
′
)

Ωn−1

jkK
(n,p

′

+1)
cd +

∑

jk∈Ē(n−1)
Ωn−1

jkK
(n,n)
cd

−
∑

jk∈Ē∂Ωn−1
\E∂Ωn

jkK
(n,n)
cd

=
n−1
∑

p′=1

∑

jk∈Ē(p
′
)

Ωn−1

jkK
(n,p

′

+1)
cd −

∑

jk∈Ē∂Ωn−1
\E∂Ωn

jkK
(n,n)
cd .

It can be shown that jkK
(n,p

′

+1)
cd = jkK

(n−1,p
′

)
cd , and then from equation (4.3.13),

n
∑

p=2

∑

jk∈E(p)
Ωn

jkK
(n,p)
cd = K̄

(n−1)
cd − 28

h(n)
W

(n)
cd (4.3.15)

by a similar argument to that in Lemma 4.3.1. Examining the second term on the

right hand side of equation (4.3.14), and using equation (4.3.11) with p = 1, gives

∑

jk∈E(1)
Ωn

jkK
(n,1)
cd =

2n−1

h(n)
(

12 + 23−2n + 3
(

23−n
))

P
(n)
cd

+
2n−1

h(n)
(

12 + 24−2n + 3
(

23−n
))

W
(n)
cd .
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Combining this with equation (4.3.15) then equation (4.3.14) becomes

K̂
(n)
ji =

¯̂
K

(n−1)
ji + ǫ(n)W

(n)
ji + χ(n)P

(n)
ji

where
¯̂
K

(n−1)
ji = h(n)K̄

(n−1)
ji , K̂

(n)
ji = h(n)K

(n)
ji , ǫ(n) = 2n−1 (12 + 24−2n + 3 (23−n))−

28 and χ(n) = 2n−1 (12 + 23−2n + 3 (23−n)).

Theorem 4.3.3.

Â
(n)
ji =

¯̂
A

(n−1)
ji + α(n)W

(n)
ji + β(n)P

(n)
ji , (4.3.16)

where Ā
(n−1)
ji is a block diagonal matrix consisting of three blocks of matrix A

(n−1)
ji

for n > 2,
¯̂
A

(n−1)
ji = Ā

(n−1)
ji /h(n), α(n) = q2Υ(n) + ǫ(n) and β(n) = q2ϑ(n) + χ(n).

Proof. Combining equations (4.3.1) and (4.3.9) gives equation (4.2.8) as

Â
(n)
ji = q2

(

¯̂
H

(n−1)
ji +Υ(n)W

(n)
ji + ϑ(n)P

(n)
ji

)

+
(

¯̂
K

(n−1)
ji + ǫ(n)W

(n)
ji + χ(n)P

(n)
ji

)

= q2
¯̂
H

(n−1)
ji +

¯̂
K

(n−1)
ji + α(n)W

(n)
ji + β(n)P

(n)
ji .

As discussed in [9] when redimensionalising we need to rescale the frequency by

(cT/h
(n))−1. Hence,

Â
(n)
ji =

¯̂
A

(n−1)
ji + α(n)W

(n)
ji + β(n)P

(n)
ji ,

where
¯̂
A

(n−1)
ji = q2

¯̂
H

(n−1)
ji +

¯̂
K

(n−1)
ji .
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B

(a− h(n), 0) (a, 0)

(a− h(n)/2,
√
3h(n)/2)

(a + h(n), 0)

mn = (Nn + 1)/2

e =Mn + 2

Figure 4.11: The boundary element for e =Mn + 2

A similar treatment can be given to equation (4.2.7)

Lemma 4.3.4.

b
(n)
j = h(n)η Ui 1E∂Ωn

(ji), j ∈ V∂Ωo
n
, i ∈ V∂Ωn (4.3.17)

where η = 4− q2/6.

Proof. By using equations (4.2.7) and (4.2.13) for edge ji then,

b
(n)
j = −

∑

i∈V∂Ωn

(

∫

ji∈E∂Ωn

(

q2φjφi +
(

h(n)
)2 ∇φj .∇φi

)

dx

)

UBi

= −h(n)
∑

i∈V∂Ωn

(

∫ 1

0

(

q2φj (x(s), y(s))φi (x(s), y(s))

+
(

h(n)
)2 ∇φj (x(s), y(s)) .∇φi (x(s), y(s))

)

ds

)

UBi
(4.3.18)

where j ∈ V∂Ωo
n
. From equation (4.2.11), the basis function at vertex j ∈ V∂Ωo

n

(without loss of generality we will examine the vertex with coordinates (a, 0)) along
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a typical edge ji ∈ E∂Ωn is

φj(x, y) =
1

h(n)

(

a+ h(n) − x− 3
√
3y
)

(4.3.19)

and at vertex i ∈ V∂Ωn

(

which has coordinates
(

a + h(n), 0
))

is

φi(x, y) =
1

h(n)

(

−a+ x+
y√
3

)

. (4.3.20)

Substituting equation (4.2.13) into equations (4.3.19) and (4.3.20) gives

φj (x(s), y(s)) = 1− s (4.3.21)

and

φi (x(s), y(s)) = s. (4.3.22)

In addition equations (4.3.19) and (4.3.20), give

∇φj (x(s), y(s)) =
1

h(n)

(

−1,−3
√
3
)

(4.3.23)

and

∇φi (x(s), y(s)) =
1

h(n)

(

1,+
1√
3

)

. (4.3.24)

Substituting equations (4.3.21) to (4.3.24) into equation (4.3.18) gives

b
(n)
j = h(n)

(

4− q2

6

)

Ui j ∈ V∂Ωo
n
, i ∈ V∂Ωn and ji ∈ E∂Ωn .
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4.3.1 Application of the mechanical boundary conditions

Appropriate electrical and mechanical boundary conditions can be applied in a

similar fashion to those in Sections 2.3.1 and 3.4 leading to the following theorem.

In this chapter, the cross-sectional area (Ar) of each edge of the fractal graph is

Ar = ξL/2n = ξh(n) and the length of the shortest edge decreases as the generation

level increases and so, by fixing ξ, the cross-sectional area will also decrease as the

fractal generation level increases.

Theorem 4.3.5.

Ui = G
(n)
ji δ̄j , (4.3.25)

where

G
(n)
ji =

(

Â
(n)
ji − B̂

(n)
ji

)−1

(4.3.26)

represents the Green’s transfer matrix, B̂
(n)
ji = diag{γ̄1, . . . , γ̄mn, . . . , γ̄Nn}, γ̄j =

ηγj, δ̄j = ηδj,

γj =























(1− qZB/ZT )
−1 , j = 1

(1− qZL/ZT )
−1 , j = mn or Nn

0 otherwise,

(4.3.27)

δj =























−γ1ζQ/ (µT ξ) , j = 1

γmn (ζQ/ (µT ξ)− 2ALqZL/ZT ) , j = mn or Nn

0 otherwise,

(4.3.28)

ZB is the mechanical impedance of the backing material, ZL = µLAr/cL is the

mechanical impedance of the load, ZT = µTAr/cT , ζ = e24/ε
T
11, Q is the electrical

charge, ξ = Ar/h
(n), Ar is the cross-sectional area of the electrode, AL is the

amplitude of the incoming wave that is received by the transducer (in transmission

mode AL is zero), µL is the shear modulus of the load material and cL is its wave
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speed.

Proof. From equation (2.3.57), Ui = γjUj + δj , i ∈ V∂Ωn, j ∈ V∂Ωo
n
, ji ∈ E∂Ωn and

hence, equation (4.3.17) becomes

b
(n)
j = h(n)γ̄jUj + h(n)δ̄j , j ∈ V∂Ωo

n
. (4.3.29)

Putting this equation into equation (4.2.5) gives

Â
(n)
ji Ui = γ̄jUj + δ̄j .

Hence,
(

Â
(n)
ji − B̂

(n)
ji

)

Ui = δ̄j.

4.4 Renormalisation

This section follows a similar derivation as that in Section 2.4 to derive a renor-

malisation recursion relationship. An iterative procedure can be developed from

equation (4.3.16) which can be written as

Â(n+1) =
¯̂
A(n) + α(n+1)W (n+1) + β(n+1)P (n+1), n > 1.

Using Theorem 4.3.5 a recursion relationship can be derived that relates the pivotal

elements of the matrix G
(n+1)
ji to those in G

(n)
ji in a similar fashion to the derivation

of equation (2.4.6).
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1 b e mn

d q

r z

Nn

Figure 4.12: Three weighted Sierpinski Gasket graphs of generation level n − 1

(SG
(n−1)

(3)) are connected by the edges in bold
(

(d, r), (b, e) and (q, z)
)

to create

the weighted Sierpinski Gasket graph at generation level n (SG
(n)

(3)).

Lemma 4.4.1.

Ĝ(n+1) =
¯̂
G(n) − ¯̂

G(n)
(

α(n+1)W (n+1) + β(n+1)P (n+1)
)

Ĝ(n+1) (4.4.1)

where Ĝ(n) = (Â(n))−1 and
¯̂
G(n) is a block diagonal matrix consisting of three blocks

of matrix Ĝ(n).

Proof. From equations (4.3.25) and (4.3.27) it is clear that we only need to know

the elements of G
(n)
ji in columns 1, mn and Nn. In addition we will only require

elements Uj , j ∈ V∂Ωo
n
and so we only need to be able to calculate the pivotal

Green’s functions G
(n)
ji , j, i ∈ V∂Ωo

n
. If we temporarily ignore matrix B̂ in equation

(4.3.26) (associated with the application of the boundary conditions) then, due to

the symmetries of the weighted SG graph, we have

(

Ĝ(n+1)
)−1

=
(

¯̂
G(n)

)−1

+ α(n+1)W (n+1) + β(n+1)P (n+1).
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That is
(

¯̂
G(n)

)−1

=
(

Ĝ(n+1)
)−1

−
(

α(n+1)W (n+1) + β(n+1)P (n+1)
)

.

Hence, using the Nn×1 ×Nn×1 identity matrix denoted by In+1,

In+1 =
¯̂
G(n)

(

(

Ĝ(n+1)
)−1

−
(

α(n+1)W (n+1) + β(n+1)P (n+1)
)

)

=
¯̂
G(n)

(

(

Ĝ(n+1)
)−1

−
(

α(n+1)W (n+1) + β(n+1)P (n+1)
)

Ĝ(n+1)
(

Ĝ(n+1)
)−1
)

=
¯̂
G(n)

(

In+1 −
(

α(n+1)W (n+1) + β(n+1)P (n+1)
)

Ĝ(n+1)
)(

Ĝ(n+1)
)−1

.

Hence,

Ĝ(n+1) =
¯̂
G(n) − ¯̂

G(n)
(

α(n+1)W (n+1) + β(n+1)P (n+1)
)

Ĝ(n+1).

To calculate G
(n)
ji the boundary conditions must be reintroduced and in fact

this is given by equation (2.4.7), which is reproduced here for convenience,

G(n) = Ĝ(n) + Ĝ(n)B̂(n)G(n). (4.4.2)

4.4.1 Derivation of the pivotal recursion relationships

The renormalisation recursion relationships for the pivotal Green’s functions arise

from the system of linear equations in Ĝ
(n+1)
ji . The three subgraphs of Figure 4.12

have a single connection point to one another at the corners and, due to the

symmetries of the SG graph, the recursions in equation (4.4.1) give rise to only two

pivotal Green’s functions, known as, corner-to-same corner
(

Ĝ
(n)
ii = x̂, say, where

i ∈ V∂Ωo
n

)

and corner-to-other-corner
(

Ĝ
(n)
jk = ŷ, say, where j, k ∈ V∂Ωo

n
, j 6= k

)

;

the so called input/output vertices. For ease of notation let, X̂ = Ĝ
(n+1)
ii and
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Ŷ = Ĝ
(n+1)
ji where j, i ∈ V∂Ωo

n
, i 6= j. The matrix is symmetrical and consequently,

Ĝ
(n)
ij = Ĝ

(n)
ji .

Lemma 4.4.2. The renormalisation recursion relations for the pivotal Green’s

functions (ignoring temporarily the boundary conditions) are given by

X̂ =
3 (x̂− ŷ) (x̂+ 2ŷ) + ∆1 +∆2

3 (x̂+ ŷ)
(4.4.3)

and

Ŷ =
−β(n+1)ŷ2

(

1 + (x̂− ŷ)
(

α(n+1) + β(n+1)
))

δ1δ2
(4.4.4)

where ∆1 = 2ŷ2/δ1, ∆2 = 2ŷ2
(

2 + (x̂− ŷ)
(

2α(n+1) + β(n+1)
))

/δ2, δ1 = 1 +

(x̂+ ŷ)
(

α(n+1) + β(n+1)
)

and δ2 = 1+2x̂α(n+1)−ŷβ(n+1)+(x̂2 − ŷ2)
(

(

α(n+1)
)2 −

(

β(n+1)
)2
)

.

Proof. The (i, j)th element of the matrix equation (4.4.1) can be written as,

Ĝ
(n+1)
ji =

¯̂
G

(n)
ji −

∑

h,k

¯̂
G

(n)
jh

(

α(n+1)W
(n+1)
hk + β(n+1)P

(n+1)
hk

)

Ĝ
(n+1)
ki . (4.4.5)

From the definitions of W
(n)
ji and P

(n)
ji (see Lemma 4.3.1) since the block diagonal

structure implies
¯̂
G

(n)
1h = 0 if h > Nn, we get

Ĝ
(n+1)
11 =

¯̂
G

(n)
11 −

∑

h,k

¯̂
G

(n)
1h

(

α(n+1)W
(n+1)
hk + β(n+1)P

(n+1)
hk

)

Ĝ
(n+1)
k1

=
¯̂
G

(n)
11 −

(

¯̂
G

(n)
1b

(

α(n+1)W
(n+1)
bb Ĝ

(n+1)
b1 + β(n+1)P

(n+1)
be Ĝ

(n+1)
e1

)

+
¯̂
G

(n)
1d

(

α(n+1)W
(n+1)
dd Ĝ

(n+1)
d1 + β(n+1)P

(n+1)
dr Ĝ

(n+1)
r1

)

)

= Ĝ
(n)
11 −

(

Ĝ
(n)
1b

(

α(n+1)Ĝ
(n+1)
b1 + β(n+1)Ĝ

(n+1)
e1

)

+Ĝ
(n)
1N

(

α(n+1)Ĝ
(n+1)
b1 + β(n+1)Ĝ

(n+1)
e1

)

)
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where be, dr ∈ E
(1)
Ωn

and in particular b = (Nn + 1) /2 = mn, d = Nn, e = Nn + 1

and r = 2Nn + 1. From symmetry
(

Ĝ
(n+1)
b1 = Ĝ

(n+1)
d1 , Ĝ

(n+1)
e1 = Ĝ

(n+1)
r1

)

, then

X̂ = x̂− 2ŷ
(

α(n+1)Ĝ
(n+1)
b1 + β(n+1)Ĝ

(n+1)
e1

)

. (4.4.6)

Similarly,

Ĝ
(n+1)
b1 =

¯̂
G

(n)
b1 −

∑

h,k

¯̂
G

(n)
bh

(

α(n+1)W
(n+1)
hk + β(n+1)P

(n+1)
hk

)

Ĝ
(n+1)
k1

=
¯̂
G

(n)
b1 −

(

¯̂
G

(n)
bb

(

α(n+1)W
(n+1)
bb Ĝ

(n+1)
b1 + β(n+1)P

(n+1)
be Ĝ

(n+1)
e1

)

+
¯̂
G

(n)
bd

(

α(n+1)W
(n+1)
dd Ĝ

(n+1)
d1 + β(n+1)P

(n+1)
dr Ĝ

(n+1)
r1

)

)

= Ĝ
(n)
mn1 −

(

Ĝ(n)
mnmn

(

α(n+1)Ĝ
(n+1)
b1 + β(n+1)Ĝ

(n+1)
e1

)

+Ĝ
(n)
mnNn

(

α(n+1)Ĝ
(n+1)
b1 + β(n+1)Ĝ

(n+1)
e1

)

)

.

That is

Ĝ
(n+1)
b1 = ŷ −

(

α(n+1)Ĝ
(n+1)
b1 + β(n+1)Ĝ

(n+1)
e1

)

(x̂+ ŷ) .

Hence,

Ĝ
(n+1)
b1 =

ŷ − β(n+1)Ĝ
(n+1)
e1 (x̂+ ŷ)

1 + α(n+1) (x̂+ ŷ)
. (4.4.7)
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Also

Ĝ
(n+1)
e1 =

¯̂
G

(n)
e1 −

∑

h,k

¯̂
G

(n)
eh

(

α(n+1)W
(n+1)
hk + β(n+1)P

(n+1)
hk

)

Ĝ
(n+1)
k1

= − ¯̂
G(n)

ee

(

α(n+1)W (n+1)
ee Ĝ

(n+1)
e1 + β(n+1)P

(n+1)
eb Ĝ

(n+1)
b1

)

− ¯̂
G(n)

eq

(

α(n+1)W (n+1)
qq Ĝ

(n+1)
q1 + β(n+1)P (n+1)

qz Ĝ
(n+1)
z1

)

= −Ĝ(n)
11

(

α(n+1)Ĝ
(n+1)
e1 + β(n+1)Ĝ

(n+1)
b1

)

−Ĝ(n)
1N

(

α(n+1)Ĝ
(n+1)
q1 + β(n+1)Ĝ

(n+1)
z1

)

where q = 2Nn and Z = 2Nn +mn. Since Ĝ
(n+1)
q1 = Ĝ

(n+1)
z1

Ĝ
(n+1)
e1 = −x̂α(n+1)Ĝ

(n+1)
e1 − x̂β(n+1)Ĝ

(n+1)
b1 − ŷ

(

α(n+1) + β(n+1)
)

Ĝ
(n+1)
q1 .

Hence,

Ĝ
(n+1)
e1 =

−x̂β(n+1)Ĝ
(n+1)
b1 − ŷ

(

α(n+1) + β(n+1)
)

Ĝ
(n+1)
q1

1 + x̂α(n+1)
. (4.4.8)

Finally,

Ĝ
(n+1)
q1 =

¯̂
G

(n)
q1 −

∑

h,k

¯̂
G

(n)
qh

(

α(n+1)W
(n+1)
hk + β(n+1)P

(n+1)
hk

)

Ĝ
(n+1)
k1

= − ¯̂
G(n)

qe

(

α(n+1)W (n+1)
ee Ĝ

(n+1)
e1 + β(n+1)P

(n+1)
eb Ĝ

(n+1)
b1

)

− ¯̂
G(n)

qq

(

α(n+1)W (n+1)
qq Ĝ

(n+1)
q1 + β(n+1)P (n+1)

qz Ĝ
(n+1)
z1

)

= −Ĝ(n)
Nn1

(

α(n+1)Ĝ
(n+1)
e1 + β(n+1)Ĝ

(n+1)
b1

)

−Ĝ(n)
NnNn

(

α(n+1)Ĝ
(n+1)
q1 + β(n+1)Ĝ

(n+1)
z1

)

.

That is

Ĝ
(n+1)
q1 = −ŷ

(

α(n+1)Ĝ
(n+1)
e1 + β(n+1)Ĝ

(n+1)
b1

)

− x̂
(

α(n+1) + β(n+1)
)

Ĝ
(n+1)
q1 .
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Hence,

Ĝ
(n+1)
q1 =

−ŷ
(

α(n+1)Ĝ
(n+1)
e1 + β(n+1)Ĝ

(n+1)
b1

)

1 + x̂ (α(n+1) + β(n+1))
. (4.4.9)

Equations (4.4.6), (4.4.7), (4.4.8) and (4.4.9) provide four equations in the four

unknows X̂, Ĝ
(n+1)
b1 , Ĝ

(n+1)
e1 and Ĝ

(n+1)
q1 . Rearranging these equations gives (using

Mathematica [150])

X̂ =
3 (x̂− ŷ) (x̂+ 2ŷ) + ∆1 +∆2

3 (x̂+ ŷ)
.

Also

Ĝ
(n+1)
b1 =

ŷ
(

1 + α(n+1) (x̂2 − ŷ2)
(

α(n+1) + β(n+1)
)

+ x̂
(

2α(n+1) + β(n+1)
))

δ1δ2
,

(4.4.10)

Ĝ
(n+1)
e1 =

−ŷβ(n+1)
(

x̂+ (x̂2 − ŷ2)
(

α(n+1) + β(n+1)
))

δ1δ2
, (4.4.11)

and

Ĝ
(n+1)
q1 =

−ŷ2β(n+1)

δ1δ2
. (4.4.12)

Now, for Ŷ = Ĝ
(n+1)
s1 , where s = mn+1, equation (4.4.5) gives

Ĝ
(n+1)
s1 =

¯̂
G

(n)
s1 −
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h,k
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G

(n)
sh
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)
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sq
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qq Ĝ
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q1 + β(n+1)P (n+1)

qz Ĝ
(n+1)
z1

)

= −Ĝ(n)
mn1

(

α(n+1)Ĝ
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(n+1)
b1

)

−Ĝ(n)
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α(n+1)Ĝ
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)
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since Ĝ
(n+1)
z1 = Ĝ

(n+1)
q1 , Ĝ

(n)
se = Ĝ

(n)
m1 and Ĝ

(n)
sq = Ĝ

(n)
mnNn

. Hence,

Ŷ = −ŷ
(

α(n+1)Ĝ
(n+1)
e1 + β(n+1)Ĝ

(n+1)
b1

)

− ŷ
(

α(n+1) + β(n+1)
)

Ĝ
(n+1)
q1 . (4.4.13)

Putting equations (4.4.10), (4.4.11) and (4.4.12) into this equation gives

Ŷ =
−β(n+1)ŷ2

(

1 + (x̂− ŷ)
(

α(n+1) + β(n+1)
))

δ1δ2
.

The boundary conditions can now be considered and in fact we recover equa-

tions (2.4.23) to (2.4.26). The recursion relationships (4.4.3) and (4.4.4) require

initial values for x̂ and ŷ. To obtain these the matrix Â(1) is formed from equation

(4.2.8) where H(1) is given by inserting n = 1 into equations (4.3.5), (4.3.6) and

(4.3.7), and K(1) from equations (4.3.12), (4.3.13) and (4.3.14). It transpires that

Â
(1)
ii = 36+ q2 where i = 1, 2, 3 and Â

(1)
ji = 2+ (q2/6) where j, i = 1, 2, 3 and j 6= i.

Hence x̂ = Ĝ
(1)
11 = ((Â(1))−1)11 and ŷ = Ĝ

(1)
12 = ((Â(1))−1)12.

4.5 Electrical impedance and transmission and

reception sensitivities

The derivation of the operating characteristics of the device follows similar lines

as presented in Sections 2.5 and 2.6. In this chapter, note that we have one η

represented in equation (4.3.17), so this can be related with Chapter 2 as η
(n)
1 =

η
(n)
m = η. Hence, the non-dimensionalised electrical impedance (ẐE) is given by

ẐE(f ;n) =
ZE

Z0
=

ZT

C0qµT ξZ0

(

1 +
ζ2C0η

µT ξ
(σ1 + σ2)

)

(4.5.1)
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where

σ1 = γ1

(

G
(n)
Nn1

−G
(n)
11

)

and σ2 = γmn

(

−G(n)
Nnmn

−G
(n)
NnNn

+ 2G
(n)
1mn

)

.

The non-dimensionalised transmission sensitivity ψF is given by

ψF (f ;n) =
FF

V

(

1

ζC0

)

=
aZL

(ZE + b)µT ξC0
K(n), (4.5.2)

where

K(n) = γmn

(

−η
(

γ1G
(n)
mn1 − γmn

(

G(n)
mnmn

+G
(n)
mnNn

))

+ 1
)

.

The non-dimensionalised reception sensitivity φF is given by

φF (f ;n) =
VF
F

(e24L)

=
2ζe24Lησ2

ξµT

(

1− aZT ζ
2η(σ1 + σ2)

(ZE + b)qµ2
T ξ

2
− aZT

(ZE + b)qµT ξC0

)−1

.(4.5.3)

These expressions can be compared with the non-dimensionalised form for the

electrical impedance (
¯̂
ZE(f)), transmission (ψE) and reception (ψE) sensitivities

of the standard (Euclidean) transducer that are given by equations (2.5.8), (2.5.15)

and (2.6.4), respectively.

4.6 Results

As in Sections 2.8 and 3.7 we can compare the fractal design with a conven-

tional standard (Euclidean) design in terms of the key operating characteristics.

As before, the presence of higher amplitudes, multiple resonances, and improved

bandwidth are the key performance indicators of interest in this section. A careful

examination of the transmission and reception sensitivities of the fractal device as
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the fractal generation level is increased has been performed. However, to keep the

presentation here succinct and to produce results that are pertinent to devices that

can be physically produced, we will focus on fractal generation level n = 3. From

a practical perspective, these fractal transducers will only be able to be manufac-

tured at low fractal generation levels. To perform a fair comparison, the volume of

piezoelectric material in the standard (Euclidean) design (volE) and fractal design

(volF ) are kept consistent. The volume of the piezoelectric material in the standard

(Euclidean) design is volE = L2dE = LAE , where L is the length of the front face

(see Figure 4.13), dE is the thickness and AE is the area occupied by the electrode.

The volume of the piezoelectric material in the fractal design is volF = SndF ,

where Sn is the area of the front face of the fractal piezoelectric design at gener-

ation level n (the black area in Figure 4.14) and dF is the thickness. The area of

each level n triangle is
√
3L2/4n+1 and there are 3n−1 of them. Therefore the area

Sn is then given by Sn =
√
3L2(1− (3/4)n+1)/4 and equating volE and volF gives

dF = L2dE/Sn. The fractal transducer has one electrode of area A
′

F = dFh
(n) at

one face and two electrodes of area A
′

F each on the opposite face (see Figure 4.14).

As the device operates essentially as a capacitor in this circuit, and since the total

capacitance of two capacitors in parallel is just the sum of those two capacitances,

then we take the total area to be AF = 2A
′

F . Hence, AF = 2dFh
(n) = 2dFL/2

n,

and we define the design ratio to be ξ = 2dF . So by choosing a particular value for

the design ratio ξ, the fractal generation level n, the thickness dE and the length

L, this sets dF , which in turn sets AE , AF and the volume of piezoelectric material.

As the sensitivity of a device is very much dictated by the volume of piezoelectric

material then this is why we have chosen to keep this identical in both the frac-

tal and Euclidean designs. In the results shown here we have chosen to keep the

sidelengths of the two transducers equal and this results in the surface area of the
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fractal device being smaller than that of the Euclidean device and the thickness of

the fractal device being larger than the Euclidean device. There is an alternative

design route whereby we could adjust the sidelengths of the fractal device to be

larger than the Euclidean device in such a way that the volumes, surface areas,

and thicknesses are equal for both devices. When one examines this second sce-

nario one finds that the sensitivity plots are very similar. A typical profile of the

Figure 4.13: Volume of the standard (Euclidean) transducer (volE).

electrical impedance spectrum (magnitude) given by equation (4.5.1) is shown in

Figure 4.15 (n = 3) (dashed line); it is compared to the equivalent profile given by

a model of the standard (Euclidean) design given by equation (2.5.8) (full line).

The overall trend of the curve is that of a capacitor (1/(C0f) profile where C0

is the transducer capacitance and f is the frequency) with prominent resonances.

From the above analysis AE =
√
3(1− (3/4)n+1)2n−3AF and the coefficient of AF

is monotonically increasing as a function of the fractal generation level n and is

greater than one for all n > 3. Hence, reasonable values of n, AE ≫ AF . Since
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Figure 4.14: A three-dimensional schematic of the Sierpinski Gasket ultrasonic
transducer at fractal generation level n = 2. The black triangles are the front
faces of the piezoelectric material. The device is connected to an electrical circuit
as shown where each electrode has surface area AF .

C0 = AE/F ε
T
11/L then C0E ≫ C0F (where C0E/F

is the transducer capacitance

in the E-standard (Euclidean) / F -fractal design) and so 1/(C0Ef) ≪ 1/(C0F f).

Since the standard (Euclidean) design has a larger capacitance then this explains

why its electrical impedance is in general lower (see the discussion in Section 2.8.1).

It can be seen in Figure 4.15, for the standard (Euclidean) design (full line), the

mechanical resonance fr = 0.9 MHz and the electrical resonance fa = 1.2 MHz.

These frequencies correspond of course to the first maximum in the transmission

sensitivity plot (Figure 4.16, full line) and the reception sensitivity plot (Figure

4.17, full line). As in Section 2.8.1 fa = cT/(2L) = 1.2 MHz which agrees with

the reception sensitivity maximum for the homogenised estimate for fa (the full

line in Figure 4.15). For the fractal design the electrical impedance resonance

frequencies are much higher (f
(3)
r = 4.2 MHz and f

(3)
a = 4.3 MHz) as the edge
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Figure 4.15: Non-dimensionalised electrical impedance (equation (4.5.1)) versus
frequency for the SG(3) transducer (ẐE) at fractal generation level n = 3 (dashed
line). The non-dimensionalised electrical impedance of the standard (Euclidean)

transducer (
¯̂
ZE) (equation (2.5.8)) is plotted for comparison (full line). Parameter

values are given in Appendix A.5.

lengths in the graph are shorter in the dual graph. Importantly, the magnitude

of the electrical impedance at the electrical resonance frequency is lower than the

standard (Euclidean) design; there is about a 2 dB drop. As there is no damping

mechanism in the model, and no backing or matching layers, the values of the

electrical impedance at the resonances do, to some extent, depend on the spatial

resolution used when plotting. Figure 4.16 shows that the transmission sensitivity

of the fractal design has a maximum amplitude (gain) that is higher than the Eu-

clidean case (standard design) at its lower operating frequency (37 dB at 4.2 MHz

compared to 32 dB at 3.5 MHz for the Euclidean case). If we take the noise floor to

be 3 dB below the peak gain of the standard (Euclidean) design (that is the 29 dB

level in this plot) then the operational bandwidth of the standard (Euclidean) de-

sign is 0.2 MHz whereas the fractal design has an operational bandwidth of around
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Figure 4.16: Non-dimensionalised transmission sensitivity (equation (4.5.2)) ver-
sus frequency for the SG(3) transducer (ψF ) at fractal generation level n = 3
(dashed line). The non-dimensionalised transmission sensitivity of the standard
(Euclidean) transducer (ψE) (equation (2.5.15)) is plotted for comparison (full
line). Parameter values are given in Appendix A.5.

0.1 MHz. Figure 4.17 shows that the reception sensitivity spectrum has a much

larger gain; there is a 18 dB improvement in the reception sensitivity gain from

the standard (Euclidean) design to the fractal design. This peak in the reception

sensitivity also results in an enhanced bandwidth; if we take the noise floor to be 3

dB below the peak gain of the standard (Euclidean) design (that is the 14 dB level

in this plot) then the operational bandwidth of the standard (Euclidean) design is

0.2 MHz whereas the fractal design has an operational bandwidth of around 3.2

MHz.

213



2 4 6

-40

-20

20

40

f(MHz)

φF/E (dB)

Figure 4.17: Non-dimensionalised reception sensitivity (equation (4.5.3)) versus
frequency for the SG(3) transducer (φF ) at fractal generation level n = 3 (dashed
line). The non-dimensionalised reception sensitivity of the standard (Euclidean)
transducer (φE) (equation (2.6.4)) is plotted for comparison (full line). Parameter
values are given in Appendix A.5.

Design fr fa ψmax φmax BWT BWR

(MHz) (MHz) (dB) (dB) (MHz) (MHz)

Fractal (F ) 4.2 4.3 37.0 35.0 0.1 3.2
Standard (E) 0.9 1.2 32.0 17.0 0.2 0.2

Table 4.1: A comparison between the operating characteristics of a fractal trans-
ducer and an equivalent standard design at fractal generation level n = 3. The
mechanical resonance frequency is denoted by fr (MHz), the electrical resonance
frequency is denoted by fa (MHz), the transmission sensitivity gain is denoted by
ψmax (dB), the reception sensitivity gain is denoted by φmax (dB), the transmis-
sion sensitivity bandwidth is denoted by BWT (MHz) and the reception sensitivity
bandwidth is denoted by BWR (MHz).

4.6.1 Convergence

A careful study of the non-dimensionalised electrical impedance, transmission

sensitivity and reception sensitivity spectra show that more resonances appear as
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Figure 4.18: The convergence of the non-dimensionalised electrical impedance
(equation (4.5.1)) versus frequency for the SG(3) graph transducer for fractal gen-
eration level n = 1, 2, 3 and 4.
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Figure 4.19: The convergence of the non-dimensionalised transmission sensitiv-
ity (equation (4.5.2)) versus frequency for the SG(3) graph transducer for fractal
generation level n = 1, 2, 3 and 4.

the fractal generation level increases (see Figures 4.18, 4.19 and 4.20). So far we

have examined the performance of the pre-fractal transducer since such a design

could be manufactured. From a mathematical perspective if would be of interest
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Figure 4.20: The convergence of the non-dimensionalised reception sensitivity
(equation (4.5.3)) versus frequency for the SG(3) graph transducer for fractal gen-
eration level n = 1, 2, 3 and 4.

to examine the fractal design whereby the number of generation levels tends to

infinity. Such an investigation would of course rely on the renormalisation recursion

relationships given by equations (4.4.3) and (4.4.4) having steady state solutions.

To empirically assess whether or not such solutions exist one can plot the output

from the model as a function of the fractal generation level. Similar to Section

2.8.2, the norm of the difference between the energy in the power spectrum at

successive generation levels, integrated with respect to frequency, can be calculated

for the transmission/reception sensitivities. Figure 4.21 shows the dependence of

these norms on the generation level. Scrutiny of the underlying spectra shows

that the transmission sensitivity accrues more and more resonances as the fractal

generation n increases. As the length scale of the smallest edge is decreasing with

n then resonances at higher frequencies appear; note that the lack of damping

in the model permits these resonances to have amplitudes which would not be

present in an experimental setting. As n is increased further, then the various
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peaks become quite dense and a very flat response emerges which does not change

over the frequency range of interest (up to 10MHz). Hence, the successive spectra

start to reach a steady state and this accounts for the steady state that is reached

after n = 6. A similar story holds for the reception sensitivity.

5 10 15 20

5

10

15

20

n

ψ∗
F (n), φ

∗
F (n) (dB)

Figure 4.21: The convergence of the transmission and reception sensitivities is ex-
amined by plotting the differences in the energies in successive spectra as the fractal
generation level increases. Non-dimensionalised transmission sensitivity (ψ∗

F (n))
(equation (2.8.1)) (full line) and non-dimensionalised reception sensitivity (φ∗

F (n))
(equation (2.8.2)) (dashed line) versus the fractal generation level. The transmis-
sion sensitivity converges by generation level n = 6 and the reception sensitivity
by generation level n = 15, over this frequency range where fi ∈ [0.1, 10]MHz.

4.7 Conclusions

The fractal that was used to simulate the self-similar transducer in this chapter

was the Sierpinski gasket (or rather its complement) [144]. The weighted graph

counterpart of this fractal (denoted SG(3)) [145] was used to express the electrical

and mechanical fields in terms of a finite element methodology [7]. The finite ele-
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ment analysis required yet another set of new basis functions. The fractal design

has multiple length scales (the standard (Euclidean) design typically has a single

length scale) and, since these are resonating devices, this resulted in a rich set of

resonating frequencies. The finite element formulation yielded again to a renormal-

isation approach and two coupled recursion relationships for the pivotal Green’s

functions drove the calculation of the transmission and reception sensitivities of

the device. The results showed that this pre-fractal transducer resonates at more

frequencies than the standard (Euclidean) transducer. Importantly, the fractal

transducer gave rise to significantly higher amplitude transmission and reception

sensitivities than the standard (Euclidean) design, a 5 dB increase in transmis-

sion mode and a 18 dB increase in reception mode. The reception sensitivity also

resulted in a wider bandwidth than the standard (Euclidean) design; a 3 MHz

increase. The convergence of the fractal device’s performance as the fractal gen-

eration level increases was also considered. It was seen that, in both transmission

and reception modes, the outputs converge by generation level n = 6 and n = 15

respectively.
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Chapter 5

Conclusion

5.1 Aim

The aim of this PhD thesis was to investigate the benefits of fractal geometry in ul-

trasound transducer design. Three designs for a fractal ultrasound transducer were

constructed and compared to a standard design. The two fractals that were used

in these self-similar transducers were the Sierpinski gasket and its complement.

5.2 Motivation

The graph counterpart of the Sierpinski gasket was used to express the electrical

and mechanical fields in terms of a finite element methodology. This is the first

time that ultrasound wave propagation in a fractal structure has been modelled

using a finite element analysis and so this required new basis functions. The

standard design has a single length scale whereas the fractal design has multiple

length scales, and since these are resonating devices, this resulted in a rich set

of resonating frequencies. Indeed the broadband resonators found in nature and

in musical instruments depend on this principle. The finite element formulation
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resulted in a matrix equation whose solution yielded to a renormalisation approach.

This is turn led to a small set of recursion relationships for the pivotal Green’s

functions that drive the calculation of the transmission and reception sensitivities

of the devices. The focus was on low fractal generation levels as these are most

relevant to manufacturing constraints.

5.3 Results

In Chapter 2, we compared the operational qualities of a fractal transducer with

that of a standard transducer, and showed that the fractal transducer resonates

at many more frequencies than the standard transducer. Importantly, at certain

generation levels the fractal transducer gave rise to a significantly higher ampli-

tude transmission and reception sensitivity than the standard design. At fractal

generation level n = 3, the transmission sensitivity spectrum had a 15 dB gain im-

provement; from 28 dB in the standard transducer to around 43 dB in the fractal

transducer. However the bandwidth around this peak sensitivity was smaller than

that of the standard (Euclidean) case. The fractal device’s performance converged

in both transmission and reception modes as the fractal generation level increased

to around n = 10 and n = 16 respectively. Note that it was not possible to com-

pare the results here to the previously conducted finite difference modelling [19]

as this studied the in-plane vibrations of the device rather than the out-of-plane

(thickness direction) vibrations studied here.

In Chapter 3, we had a more realistic fractal transducer design that used a com-

bination of ceramic and polymer elements. At fractal generation level n = 6, we

showed that a significantly higher amplitude reception sensitivity was produced by
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the fractal transducer when compared to the standard design; note however that

a lower transmission sensitivity amplitude resulted. The reception sensitivity also

resulted in a wider bandwidth than the standard design. The fractal device’s per-

formance converged again in both transmission and reception modes as the fractal

generation level increased to around n = 10 and n = 5 respectively.

In Chapter 4, a comparison between the operating characteristics of the com-

plement of the Sierpinski gasket fractal transducer and an equivalent standard

transducer, showed that as before, the model predicts that the fractal transducer

has more resonance frequencies. Indeed, this appears to be the first investiga-

tion of this particular fractal. Furthermore, the fractal transducer also resulted

in a higher amplitude (or gain) in transmission and reception sensitivities than

the standard design; a 5 dB increase in transmission mode and around a 18 dB

increase in reception mode. The reception sensitivity also produced a wider band-

width than the standard design; a 3 MHz increase. However, the standard design

produced a wider bandwidth than the fractal design. The fractal device’s perfor-

mance converged once again in the transmission and reception modes as the fractal

generation level increased.
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Fractal Device fr fa ψmax φmax BWT BWR

(MHz) (MHz) (dB) (dB) (MHz) (MHz)

SG(3) at n = 3 2.2 2.3 43.0 25.0 0.07 0.11

SG(3,4) at n = 6 1.2 2.0 26.0 14.0 0.5 3.0

SG(3) at n = 3 4.2 4.3 37.0 35.0 0.1 3.2

Table 5.1: A comparison between the operating characteristics of the different
fractal transducers, which are a fractal ultrasonic transducer based on the Sierpin-
ski gasket SG(3) at fractal generation level n = 3 (Chapter 2), a fractal ultrasonic
transducer based on the Sierpinski gasket with both piezoelectric and polymer
phases SG(3,4) at fractal generation level n = 6 (Chapter 3) and a fractal ul-
trasonic transducer based on the complement of the Sierpinski gasket SG(3) at
fractal generation level n = 3 (Chapter 4). The mechanical resonance frequency is
denoted by fr (MHz), the electrical resonance frequency is denoted by fa (MHz),
the transmission sensitivity gain is denoted by ψmax (dB), the reception sensitivity
gain is denoted by φmax (dB), the transmission sensitivity bandwidth is denoted by
BWT (MHz) and the reception sensitivity bandwidth is denoted by BWR (MHz).

A comparison between the different transducer designs in this thesis can be per-

formed. The fractal generation level of each transducer has been chosen to produce

the best results for that design. As shown in the Table 5.1 the SG(3) transducer

produces the highest peak transmission sensitivity (43 dB). The SG(3) fractal

transducer produced the highest amplitude (35 dB) in reception sensitivity and

the widest bandwidth (3.2 MHz). The SG(3,4) fractal transducer also generated

the broadest bandwidth (0.5 MHz) in transmission mode.
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5.4 Further work

The positive results in this theoretical work have subsequently led to engineers

manufacturing these fractal devices [154]. One area of future work could involve a

comparison between the theoretical results presented here and these experimental

findings. These encouraging results suggest that it will be worthwhile studying

other fractal designs. Some work in this direction has been recently undertaken

by other authors [155].
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Appendix A

Appendix

A.1 Geometrical and basis function details for

fractal generation levels of the SG(3) graph

Adjacent vertices to (xj , yj)
j (xj, yj) (xj+1, yj+1) (xj+2, yj+2) (xj+3, yj+3)

1 (0, 0) A 2 3
2 (h, 0) 1 3 B

3 (h
2
,
√
3
2
h) 1 2 C

A (−h, 0) 1
B (2h, 0) 2

C (h,
√
3h) 3

Table A.1: Coordinates of the vertices and a list of the adjacent vertices to vertex
(xj , yj) for fractal generation level n = 1 of the SG(3) graph. The vertex labelling
is given in Figure 2.4.
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Adjacent vertices to (xj , yj)
j (xj , yj) (xj+1, yj+1) (xj+2, yj+2) (xj+3, yj+3)

1 (0, 0) A 2 3
2 (h, 0) 1 3 4

3 (h
2
,
√
3
2
h) 1 2 7

4 (2h, 0) 2 5 6
5 (3h, 0) 4 6 B

6 (5h
2
,
√
3
2
h) 4 5 8

7 (h,
√
3h) 3 8 9

8 (2h,
√
3h) 6 7 9

9 (3h
2
, 3

√
3

2
h) 7 8 C

A (−h, 0) 1
B (4h, 0) 5

C (2h, 2
√
3h) 9

Table A.2: Coordinates of the vertices and a list of the adjacent vertices to vertex
(xj , yj) for fractal generation level n = 2 of the SG(3) graph. The vertex labelling
is given in Figure 2.5.

j a b c d

1 1 0 0 − 1
h2

2 0 2
h

0 − 1
h2

3 0 1
h

√
3
h

− 1
h2

A 0 1
h2

B −1
3

1
3h2

C −1
3

1
3h2

Table A.3: Coefficients of the basis functions φj for fractal generation level n = 1
of the SG(3) graph.
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j a b c d

1 1 0 0 − 1
h2

2 0 2
h

0 − 1
h2

3 0 1
h

√
3
h

− 1
h2

4 -3 4
h

0 − 1
h2

5 -8 6
h

0 − 1
h2

6 -6 5
h

√
3
h

− 1
h2

7 -3 2
h

2
√
3

h
− 1

h2

8 -6 4
h

2
√
3

h
− 1

h2

9 -8 3
h

3
√
3

h
− 1

h2

A 0 1
h2

B −9
7

1
7h2

C −9
7

1
7h2

Table A.4: Coefficients of the basis functions φj for fractal generation level n = 2
of the SG(3) graph.

A.2 Geometrical and basis function details for

fractal generation levels of the SG(3,4) graph

Adjacent vertices to (xj , yj)
j (xj , yj) (xj+1, yj+1) (xj+2, yj+2) (xj+3, yj+3) (xj+4, yj+4)

1 (0, 0) A 2 3 4
2 (h, 0) 1 3 B 4

3 (h
2
,
√
3h
2
) 1 2 C 4

4 (h
2
, h
2
√
3
) 1 2 3

A (−h, 0) 1
B (2h, 0) 2

C (h,
√
3h) 3

Table A.5: Coordinates of the vertices and a list of the adjacent vertices to vertex
(xj , yj) for fractal generation level n = 1 of the SG(3,4) graph. The vertex labelling
is given in Figure 3.3.
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Adjacent vertices to (xj , yj)
j (xj , yj) (xj+1, yj+1) (xj+2, yj+2) (xj+3, yj+3) (xj+4, yj+4)

1 (0, 0) A 2 3 4
2 (h, 0) 1 3 5 4

3 (h
2
,
√
3h
2
) 1 2 9 4

4 (h
2
, h
2
√
3
) 1 2 3

5 (2h, 0) 2 6 7 8
6 (3h, 0) 5 7 B 8

7 (5h
2
,
√
3h
2
) 5 6 10 8

8 (5h
2
, h
2
√
3
) 5 6 7

9 (h,
√
3h) 3 10 11 12

10 (2h,
√
3h) 7 9 11 12

11 (3h
2
, 3

√
3h
2

) 9 10 C 12
12 (3h

2
, 7h
2
√
3
) 9 10 11

A (−h, 0) 1
B (4h, 0) 6

C (2h, 2
√
3h) 11

Table A.6: Coordinates of the vertices and a list of the adjacent vertices to vertex
(xj , yj) for fractal generation level n = 2 of the SG(3,4) graph. The vertex labelling
is given in Figure 3.4.

j a b c d f g

1 1 0 0 − 1
h2

3
h2 −4

√
3

h2

2 0 2
h

−4
√
3

h
− 1

h2
3
h2

4
√
3

h2

3 0 − 5
h

3
√
3

h
5
h2 − 3

h2 0

4 0 3
h

√
3
h

− 3
h2

5 0 − 2
h

0 − 1
h2

6 -3 4
h

0 − 1
h2

7 -3 2
h

2
√
3

h
− 1

h2

Table A.7: Coefficients of the basis functions φj, j = 1, . . . , 4 (see equations
(3.2.26), (3.2.27), (3.2.28) and (3.2.35)) and ψj , j = 5, 6, 7 (see equations (3.2.29),
(3.2.30), (3.2.31) and (3.2.36)) for fractal generation level n = 1 of the SG(3,4)
graph.
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j a b c d f g

1 1 0 0 − 1
h2

3
h2 −4

√
3

h2

2 0 2
h

−4
√
3

h
− 1

h2
3
h2

4
√
3

h2

3 0 − 5
h

3
√
3

h
5
h2 − 3

h2 0

4 0 3
h

√
3
h

− 3
h2

5 -3 4
h

8
√
3

h
− 1

h2
3
h2 −4

√
3

h2

6 -8 6
h

−12
√
3

h
− 1

h2
3
h2

4
√
3

h2

7 30 −25
h

3
√
3

h
5
h2 − 3

h2 0

8 -18 15
h

√
3
h

− 3
h2

9 -3 14
h

−2
√
3

h
− 1

h2
3
h2 −4

√
3

h2

10 30 − 8
h

−14
√
3

h
− 1

h2
3
h2

4
√
3

h2

11 -8 −15
h

9
√
3

h
5
h2 − 3

h2 0

12 -18 9
h

7
√
3

h
− 3

h2

13 0 − 2
h

0 − 1
h2

14 -15 8
h

0 − 1
h2

15 -15 4
h

4
√
3

h
− 1

h2

Table A.8: Coefficients of the basis functions φj , j = 1, . . . , 12 (see equations
(3.2.32), (3.2.33), (3.2.34) and (3.2.35)) and ψj , j = 13, 14, 15 for fractal generation
level n = 2 of the SG(3,4) graph.
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A.3 Geometrical and basis function details for

fractal generation levels of the SG(3) graph

Adjacent vertices to (xj , yj)
j (xj, yj) (xj+1, yj+1) (xj+2, yj+2) (xj+3, yj+3)

1 (0, 0) A 2 3
2 (h(1), 0) 1 3 B

3 (h(1)/2,
√
3h(1)/2) 1 2 C

A (−h(1), 0) 1
B (2h(1), 0) 2

C (h(1),
√
3h(1)) 3

Table A.9: Coordinates of the vertices and a list of the adjacent vertices to vertex
(xj , yj) for fractal generation level n = 1 of the SG(3) graph. The vertex labelling
is given in Figure 4.3.

Adjacent vertices to (xj , yj)
j (xj , yj) (xj+1, yj+1) (xj+2, yj+2) (xj+3, yj+3)

1 (0, 0) A 2 3
2 (h(2), 0) 1 3 4

3 (h(2)/2,
√
3h(2)/2) 1 2 7

4 (3h(2), 0) 2 5 6
5 (4h(2), 0) 4 6 B

6 (7h(2)/2,
√
3h(2)/2) 4 5 8

7 (3h(2)/2, 3
√
3h(2)/2) 3 8 9

8 (5h(2)/2, 3
√
3h(2)/2) 6 7 9

9 (2h(2), 2
√
3h(2)) 7 8 C

A (−h(2), 0) 1
B (5h(2), 0) 5

C (5h(2)/2, 5
√
3h(2)/2) 9

Table A.10: Coordinates of the vertices and a list of the adjacent vertices to vertex
(xj , yj) for fractal generation level n = 2 of the SG(3) graph. The vertex labelling
is given in Figure 4.4.

229



A.4 The material properties of PZT-5H and poly-

mer HY1300/CY1301 hardset

The material properties of PZT-5H [2,3,8,156]

cTpq =

































12.6 7.95 8.41 0 0 0

7.95 12.6 8.41 0 0 0

8.41 8.41 11.7 0 0 0

0 0 0 2.3 0 0

0 0 0 0 2.3 0

0 0 0 0 0 2.325

































× 1010N/m2,

eip =













0 0 0 0 17 0

0 0 0 17 0 0

−6.5 −6.5 23.3 0 0 0













C/m2,

εTij =













1700ε0 0 0

0 1700ε0 0

0 0 1470ε0













C/(Vm),

where ε0 = 8.854× 10−12 C/(V m). The density is ρT = 7500 kgm−3.
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The material properties of polymer HY1300/CY1301 hard-

set [146,157]

cPpq =

































0.71976 0.404985 0.404981 0 0 0

0.40498 0.71976 0.40498 0 0 0

0.40498 0.40498 0.71976 0 0 0

0 0 0 0.15739 0 0

0 0 0 0 0.15739 0

0 0 0 0 0 0.15739

































× 1010N/m2,

and

εPij =













4ε0 0 0

0 4ε0 0

0 0 4ε0













C/(V m),

where The density is ρP = 1150 kgm−3.
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A.5 Parameter values for the front and back me-

chanical loads and the electrical load

Design Parameter Symbol Magnitude Dimensions
Parallel electrical impedance load ZP 1000 Ohms
Series electrical impedance load Z0 50 Ohms
Length of SG L 1 mm
Mechanical impedance of the front load ZL 1.5 MRayls
Mechanical impedance of the backing layer ZB 2 MRayls
Wave speed in the front load cL 1500 ms−1

Wave speed in the backing layer cB 1666 ms−1

Density of the front load ρL 1000 kgm−3

Density of the backing layer ρB 1200 kgm−3

Shear modulus of the front load µL 2.25× 109 Nm−2

Shear modulus of the backing layer YB 2.78× 109 Nm−2

Thickness of the piezoelectric material
in the standard (Euclidean) design dE 10 mm

Table A.11: Parameter values for the front and back mechanical loads and the
electrical load [19,157].
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A.6 Nomenclature

The tables below provide a full nomenclature of terms used within the thesis. It

is worth noting that, as far as notation concerned, the literature is not consistent

and care should be taken when comparing with other work.

Notation Description
A,B,C The boundary vertices in the fractal graph

A
(n)
ji One of the matrices used to construct G

(n)
ji (see equation (4.2.8))

Â
(n)
ji A

(n)
ji /h

(n)

¯̂
A(n) The block diagonal matrix consisting of 3 copies of Â

(n)
ji

Ar The cross-sectional area of each edge of the fractal graph Ar = ξL/2n

AL Amplitude of pressure wave incident on the transducer during reception mode
AB The amplitude of the wave transmitted into the backing material
AE The area occupied by the electrode in the standard design
AF 2A

′

F , the total area of two capacitors in the fractal design
A

′

F dFh
(n), the area of one electrode in the fractal design

AT 2ZL/(ZL + ZT ), dimensionless constant (see equation 2.5.15)
a ZP/(Z0 + ZP )

a
−−→
OP1 −

−−→
OP3 (vector)

BL The amplitude of the transmitted wave (transmission mode)
or reflected wave (in reception mode)

BB The amplitude of the incoming wave into the backing material

B̂
(n)
ji One of the matrices used to create G

(n)
ji (see equation (4.3.26))

b Z0ZP/(Z0 + ZP )

b
(n)
j A vector arising from the boundary conditions (see equation (4.2.7))

b
−−→
OP2 −

−−→
OP3 (vector)

C(n) The set of vertices that are incident to the longest edge (see equation (4.3.5))
C0 The capacitance of the transducer
C0E The capacitance of the standard design
C0F The capacitance of the fractal design
cijkl The stiffness tensor of the piezoelectric material
cT The (piezoelectrically stiffened) shear wave velocity in the fractal graph
cP The polymer shear wave velocity in the fractal graph
cL Wave speed in the front load
cB Wave speed in the backing layer
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Notation Description
Di The electrical displacement tensor
D(n) The set consist of pairs of vertices that are incident to a common longest

edge (see equation (4.3.5))
dE The thickness of piezoelectric material in the standard design
dF The thickness of piezoelectric material in the fractal design
Ei The electric field vector
ekij The piezoelectric tensor of the piezoelectric material
e An element (edge) in fractal graph
F The force in the transducer
FE The force produced at the front face of the standard transducer
FF The force produced at the front face of the fractal transducer
FL The force in the mechanical load

F
(n)
ji (G

(n)
ji )

−1 = Â
(n)
ji − B̂

(n)
ji (see equation (4.3.26))

f̂ (n) The non-dimensionalised natural frequency

f (n) The dimensionalised equivalent of f̂ (n)

fa The electrical resonant frequency
fr The mechanical resonant frequency

G
(n)
ji The Green’s transfer matrix

Ĝ(n) Ĝ(n) = (Â(n))−1 (see equation (2.4.4))
¯̂
G(n) The block diagonal matrix consisting of 3 copies of Ĝ(n)

h(n) The edge length of the fractal graph L/2n

h(p) The range of edge lengths p = 1, . . . , n in the generation level n SG(3) graph
H1(Ω) Sobolev space of order 1 in domain Ω
H1(∂Ω) Sobolev space of order 1 at the boundary ∂Ω
H1

B(Ω) Sobolev space of order 1 in domain Ω where the functions are zero
on the boundary

H
(n)
ji A matrix used to construct A

(n)
ji (see equation (4.2.9))

Ĥ
(n)
ji H

(n)
ji /h

(n)

¯̂
H

(n−1)
ji The block diagonal matrix consisting of 3 copies of Ĥ

(n−1)
ji

I The set of fictitious vertices of fractal graph
IT The current across the transducer (see equations (2.5.2) and (2.5.9))
J The set of interior vertices of fractal graph
j, k, l,m Vertices in the SG(3) graphs (see Figure 4.6)

K
(n)
ji A matrix used to construct A

(n)
ji (see equation (4.2.10))

K̂
(n)
ji h(n)K

(n)
ji

¯̂
K

(n−1)
ji The block diagonal matrix consisting of 3 copies of K̂

(n−1)
ji

KF , KB The non-dimensional coefficients (see equation (2.5.8))
K(n) see equation 4.5.2
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Notation Description
L Length of transducer

L
(n)
SG nL/2, the overall length of the graph SG

(n)
(3) graph

M The total number of edges in the fractal graph
MJ The set of the interior elements of fractal graph
MI The set of the exterior elements of fractal graph
m The vertex labelled (N + 1)/2
N 3n, the total number of vertices in the fractal graph
n The fractal generation level
n The outward pointing unit normal from the edge element dr
P1, P2, P3 The points in the plane SP (see Figure 4.6)
p, q The adjacent vertices of the longest elements in the fractal graph

(see Figure 4.10)
Q The electrical charge applied to the boundary of the transducer
q Laplace variable

SG
(n)

(3) The complement of the Sierpinski gasket graph of degree 3
Skl The strain tensor
SS The finite dimensional subspace correspondury to H1(Ω)
SP The plane contains the points P1, P2 and P3 (see Figure 4.6)
SB The finite dimensional subspace correspondury to H1

B(Ω)
Sn The area of the main face of the fractal piezoelectric design at generation

level n
s The parameter used in the isoparametric description of each element
s1, s2 The adjacent vertices of element s (see Figure 4.9)
Tij The stress tensor
TF , TB The non-dimensional transmission coefficients (see equation (2.5.8))
t Time
U The approxmate displacement in region Ω (see equation (4.2.3))
Ū The discretised displacement
UB The function that approximates the displacement at the boundary
UBi

The displacement at the boundary vertex Bi

UA, UB, UC The displacement of the boundary vertices {A,B,C}
ui,j The displacement gradients
ui The component of displacement in the direction of the ith basis vector
u The vector of ui
u̇3 The initial condition
u∂Ω The displacement in the boundary of fractal graph
ū∂Ω The laplace displacement in the boundary of fractal graph
uL The displacement of the load material
ū The laplace transform displacement
ūB(0) The laplace transform displacemen of the backing material
ūL(0) The laplace transform displacemen of the load material
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Notation Description

P
(n)
ji The adjacency matrix for the subgraph of SG

(n)
(3) consisting of the edges

that connect each of the three SG
(n−1)

(3) graphs

V
(n)
ji 1D(n)(j, i) (see equation (4.3.1))
V The voltage applied to the transducer
VE The voltage produced by the standard transducer
VF The voltage produced by the fractal transducer
volE The volume of piezoelectric material in the standard design
volF The volume of piezoelectric material in the fractal design
W The test function in the finite dimensional space SB, W = φj

W
(n)
ji 1C(n)(j, i) (see equation (4.3.1))

w The test function in the infinite dimensional weak formulation
RF , RB The non-dimensionalised reflection coefficients

r r = G
(n)
mN

X̂ X̂ = Ĝ
(n+1)
ii where i ∈ V∂Ωo

n

x The spatial coordinates (cartesian)
xj The spatial location of vertex j in the fractal graph

x x = G
(n)
11

x̂ x̂ = Ĝ
(n)
ii = Ĝ

(n)
jj where i, j ∈ V∂Ωo

n

xL The local coordinate in the mechanical load
xB The local coordinate in the backing material

Ŷ Ŷ = Ĝ
(n+1)
ji where j, i ∈ V∂Ωo

n
, i 6= j

y y = G
(n)
1m = G

(n)
1N

ŷ ŷ = Ĝ
(n)
ik = Ĝ

(n)
hk where j, k, h ∈ V∂Ωo

n
, j 6= k 6= h

ZB Mechanical impedance of backing layer
ZL Mechanical impedance of the front load
ZT Mechanical impedance of the transducer
ZP Parallel electrical impedance load
Z0 Series electrical impedance load
ZE(f ;n) The dimensionalised electrical impedance of the fractal graph

ẐE(f ;n) The non-dimensionalised electrical impedance of the fractal graph
¯̂
ZE(f) The non-dimensionalised electrical impedance of the standard transducer

z z = G
(n)
mm = G

(n)
NN
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Notation Description
α Non-dimensionalised parameter given by equation (4.3.16)
β Non-dimensionalised parameter given by equation (4.3.16)
γj Non-dimensionalised parameter given by equation (4.3.27)
γ̄j ηγj
∆1,∆2 see equation (4.4.3)
δ1, δ2 see equation (4.4.3)
δj Non-dimensionalised parameter given by equation (4.3.28)
δ̄j ηδj
L Laplace transform: θ → q
εik The permittivity tensor
ǫ(n) Non-dimensionalised parameter given by equation (4.3.9)
χ(n) Non-dimensionalised parameter given by equation (4.3.9)
Υ(n) Non-dimensionalised parameter given by equation (4.3.1)
ϑ(n) Non-dimensionalised parameter given by equation (4.3.1)
τ The wave transit time across the device

λ̂ C0/(1 + qC0b) dimensionless constant (see equation 2.5.15)

λ̂∗ qC0b/(1 + qC0b) (see equation (2.6.4))
ζ e24/ε

T
11

η Non-dimensionalised parameter given by equation (4.3.17)
θ The non-dimensionalised temporal variable
µL The shear modulus of the load material
µT The piezoelectrically stiffened shear modulus
ξ Ar/h

(n)

σ1, σ2 see equation (4.5.1)
ρL Density of the front load
ρT The density of the piezoelectric material
φ,i The electric potential
φj The localised basis function at vertex j
eφ

(n)
j The basis function for vertex j in the element e

φF (f ;n) The non-dimensionalised reception sensitivity of the fractal transducer
φE(f) The non-dimensionalised reception sensitivity of the standard transducer
φ∗
F (n) The reception sensitivity of the fractal transducer

integrated over all frequencies
ψF (f ;n) The non-dimensionalised transmission sensitivity of the fractal transducer
ψE(f) The non-dimensionalised transmission sensitivity of the standard transducer
ψ∗
F (n) The transmission sensitivity of the fractal transducer

integrated over all frequencies
Ω The set of points lying on the edges and vertices of fractal graph
∂Ω The region’s boundary
ω̂(n) The nondimensionalised angular frequency
ω(n) The dimensionalised equivalent of ω̂(n)
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