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Abstract

Ultrasonic inspection is a key part of condition-based maintenance in

the nuclear power industry, and it is widely used for flaw detection

and characterisation in critical components. The analysis of ultrasonic

inspection datasets is a time-consuming and complex task commonly

carried by expert analysts. The need for robust and efficient interpre-

tation of inspection data is especially important now that advance-

ments in ultrasonic hardware enable the capture of high-resolution

data in far greater rates and volumes than in the recent past, driving

research efforts to create automated procedures for signal classification

and flaw detection. This thesis provides new data-driven approaches

for analysing large volumes of ultrasonic inspection data in an un-

supervised manner, without requiring individually labelled ultrasonic

signals. The first method utilises the DBSCAN clustering algorithm

at its core, and along with the proposed subsampling method, two-

stage clustering procedure, and automated parameter estimation pro-

cedure, it provides efficient flaw detection without a pre-defined state

of normality. The analysis is then extended to large-scale ultrasonic

inspection datasets that offer challenges both in terms of size, but

also heterogeneity across the different neighbourhoods of the inspected

surface. The proposed method utilises a neighbourhood-based trans-

formation of the signals’ variability measures as a means of creating

a more homogenous feature space that allows for distance metric that

is relevant across the surface, offering significant computational ben-

efits. The application of the proposed methods is focused on pressure

tubes, a critical reactor asset of CANDU reactors, and is tested across

a large number of real-world datasets showing satisfactory detection

rates and efficient performance.
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Chapter 1

Introduction

1.1 Motivation for the Work

Ultrasonic non-destructive testing is widely used for flaw detection and character-

isation in critical components within industries such as nuclear power, oil & gas,

and aerospace, with key applications including examination of reactor pressure

vessels [1], offshore oil pipeline inspection [2], and health monitoring of aircraft

wings [3].

Ultrasonic inspection is a broad category of methods which enable the examina-

tion of materials with the use of high-frequency sound signals. Commonly, the

ultrasonic pulses are transmitted into the object of interest and their echoes are

captured for further analysis which can reveal potential flaws in the material [4].

However this can be a complex procedure because a received signal is comprised of

all the reflections that occurred within the material, resulting in complex signals

that carry both important structural information and noise [5, 6].

1



1. INTRODUCTION

Besides the extensive research on noise suppression techniques for ultrasonic flaw

detection signals [7, 8, 9, 10], traditionally analysing ultrasonic data for flaw

detection is a task carried manually by expert analysts due to its complexity.

This is a time-consuming approach and studies have shown that although manual

ultrasonic inspection can be accurate, it can also produce variability , depending

on the inspection skills, training and emotional status or fatigue of inspectors

[11, 12].

Furthermore, modern ultrasonic testing equipment is increasingly capable of cap-

turing larger volumes of high-resolution data, which introduces additional chal-

lenges, and further accentuates the need for assisting the manual analysis of

ultrasonic data with reliable and efficient automated methods.

Several researchers have approached the problem of automated ultrasonic analysis

through model-based finite element methods [13, 14, 15, 16, 17, 18] that compare

simulated signal responses with the received signals and evaluate the discrepan-

cies. However, modelling the physical and mechanical characteristics of a system

requires many assumptions and approximations [4], especially in an environment

where the behaviours of surface corrosion and foreign material follow a random

behaviour [19].

An alternative approach for analysing ultrasonic inspection datasets is data-

driven methods which algorithmically identify patterns within the available data

and allow for the health evaluation of the inspected system [20, 21]. This thesis

explores data-driven ultrasonic analysis methods, in order to identify limitations

and challenges, and to develop methods for the automated assessment of ultra-

2



1. INTRODUCTION

sonic datasets. The thesis was inspired by, and uses, existing real-world inspection

datasets of core components of CANDU (CANada Deuterium Uranium) reactors

called pressure tubes. These are critical components as they contain the nuclear

fuel and the coolant. Manufacturing flaws, as well as flaws developed during in-

service operation, facilitate Delayed Hydride Cracking (DHC) which can lead to

coolant leakage and can potentially damage the reactor [22].

Current inspection processes utilise multiple ultrasonic probes that inspect sub-

sets of pressure tubes during planned statutory plant shutdowns. The datasets

are then manually assessed by expert analysts who report the position, size, and

type of any detected flaws. This is a laborious work that depends upon expert

judgement and a level of subjectivity, due to large volumes of data and complex

decision-making required by the diverse surface conditions. As the ultrasonic

health assessment lies on the critical path to restarting the reactor, it constitutes

a crucial activity with significant financial effects following the principal safety

objectives. Providing a means of automatically supporting this assessment in a

reliable, repeatable, and rapid manner would be of significant benefit.

Existing expert-system research focuses on the development of a decision sup-

port tool for the analysis of ultrasonic inspection data for the CANDU reactors

through a knowledge-based approach [23]. Although that work has presented

analysis results comparable to human analysts, the significant recent increases in

data resolution and volumes, as well as the difficulty of replicating human ex-

pert operation in highly complex cases, has generated the need for an alternative

parallel procedure to support this analysis process.

3



1. INTRODUCTION

The data-driven methods presented in this thesis are tested as a means of support-

ing the health assessment of pressure tubes. Typically, data-driven approaches to

ultrasonic health assessment require individually labelled signals, as they utilise

supervised machine learning algorithms. However, the existing pressure tube in-

spection process does not directly generate individually labelled signals that can

be used in a supervised machine learning setting. Although bounding boxes of

rectangular areas known to contain flaws are provided, the individual signals are

not accompanied by the information of whether their location is within or outside

the often irregularly shaped flawed area. Furthermore, available verified flaw re-

ports do not always reflect the precise state of the available data, as they can be

influenced by resources unavailable to this research, i.e. older inspection datasets

and historical results.

This thesis therefore presents unsupervised methods that explore the structures

and patterns within the ultrasonic inspection datasets while maintaining compu-

tational times and generalisation ability at levels that enable their applicability

to real-world datasets. These methods involve integrated processes focused on

transforming and reducing the large amount of available information to levels that

facilitate the discovery of potential underlying meaningful groups; i.e. groups of

healthy and abnormal areas.

Reducing the information space is important for computational reasons but also

for lessening the effects of the ‘curse of dimensionality’ that appears in high-

dimensional spaces [24] and allowing easier interpretation. The techniques pro-

posed in this thesis attempt to accommodate this through feature selection aimed

to serve the purpose of each of the analyses, a subsampling/remapping method
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for reducing the search space without adversely affecting subsequent analyses,

and clustering procedures that group the transformed inspection data by operat-

ing without strictly predefined states of normality. This presented subsampling

method is specific to the DBSCAN (Density-Based Spatial Clustering of Appli-

cations with Noise) clustering algorithm [25], which is utilised to offer an efficient

automated clustering approach that locates surface flaws within high resolution

ultrasonic inspection datasets captured by different inspection probes.

Furthermore, this thesis considers the problem of efficiently detecting anomalous

areas within large-scale inspection datasets where the application of computa-

tionally demanding algorithms is challenging. As it is shown, within the scope of

the entire population of features of a large-scale inspected area there can be var-

ious levels of heterogeneity across different parts of the surface as it is an active

environment affected by imperfect geometry and surface conditions. Effectively

this means that two healthy areas could appear different, when compared to each

other, or, a healthy signal obtained from a noisy area could appear similar to

a signal obtained by a noise-free defective area. This could occur as signals of

different sections could be affected by different neighbourhood-specific causes,

such as poorly focused signals due to probe misalignment caused by sagging [26].

The proposed approach is seeking to create a feature transformation process that

enables intuitive inferences that are relevant across the surface. This feature

transformation is based on the idea of tracking changes of the feature values lo-

cally, instead of investigating the relationship of each feature value within the

entire feature space. This can be approached by representing each signal by some

distance function of its feature values and its immediate physical neighbours’ fea-
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ture values only, thus reducing drastically the size of the feature space that each

sample has access to and creating a metric that is relevant across the large-scale

surface.

1.2 Contributions to Knowledge

� Subsampling method that reduces the clustering search space of the DBSCAN

algorithm.

The proposed subsampling method selects a representative input subset

which participates in the clustering procedure and re-maps the generated

clustering labels back to the original input data. This reduces the search

space of the DBSCAN clustering algorithm while ensuring that the results

are not adversely affected. The method is effective for large volumes of low-

cardinality input data containing multiple repeating unique sets of features

values. The method acts as a wrapper for the DBSCAN algorithm, and to

the best of the author’s knowledge, this direction has not been previously

explored.

� Flaw detection through a two-stage clustering method of ultrasonic inspec-

tion data.

This method compartmentalises the clustering of the feature space from

the location-based clustering offering computational benefits and allows for

groups of flawed signals that are spatially disassociated. Following the

feature-based clustering, only the location properties of the minority groups
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are analysed. This distinction is not based on strictly pre-defined normality

conditions, but only on the assumption that the datasets are intrinsically

imbalanced, thus the group of healthy samples should be the most populous.

� DBSCAN parameter estimation method for ultrasonic inspection datasets.

This approach provides an estimation of the effect that the DBSCAN pa-

rameter of local radius has on the cluster formation datasets captured by

different ultrasonic inspection probes, without utilising explicit knowledge

of the probes characteristics.

� Feature transformation method for normalising large-scale heterogeneous ul-

trasonic inspection data.

The transformation method acts across ultrasonic inspection data of large-

scale environments which present heterogeneity due to neighbourhood-specific

surface conditions and distortion. This generates a more homogenous fea-

ture space that allows for a distance metric that is relevant across the in-

spected surface, offering a computationally effective method for detecting

areas of abnormal behaviour.
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1.4 Structure of Thesis

The remainder of the thesis is organised as follows:

� Chapter 2 provides the background necessary for the understanding of the

inspection datasets and setup that inspired this thesis. The chapter provides

an overview of nuclear plant maintenance strategies, and focuses on the

pressure tube inspection process, the challenges involved in the assessment

of the inspection datasets, and current research towards automating this

process. It is argued that the challenges of this process generate a need

for automated data-driven inspection analysis processes that can provide

support in a rapid and robust manner.

� Chapter 3 reviews existing research efforts concerned with the automated

analysis of ultrasonic data for health assessment purposes. Having recog-

nised that a data-driven approach would be more appropriate for the pur-

poses of this thesis, this chapter focused mainly on supervised and unsu-

pervised data-driven methods and explores their applicability in datasets

containing a diverse set of flaws and surface conditions.

� Chapter 4 proposes a novel unsupervised data-driven approach to auto-

matically analyse collections of ultrasonic signals by individually charac-

terising each signal and producing 2D maps that flag potentially flawed

areas.
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The analysis consists of multiple steps that consecutively reduce and trans-

form the search space. The chapter introduces a subsampling method that

allows for more efficient density clustering, and a two-stage clustering pro-

cedure designed to efficiently utilise the DBSCAN clustering algorithm for

grouping and noise reduction. Furthermore, a DBSCAN parameter estima-

tion method is presented, which can be applied across datasets captured by

different ultrasonic inspection probes without utilising explicit knowledge

of the probes characteristics. The proposed procedure is tested by utilis-

ing an automated evaluation procedure across a large number of real-world

datasets captured from sections of pressure tubes containing flaws, showing

satisfactory results.

� Chapter 5 extends the unsupervised ultrasonic analysis to large-scale ul-

trasonic inspection datasets which are problematic for current memory in-

tensive algorithms. The chapter presents an anomaly detection method tar-

geting datasets that also exhibit various levels of heterogeneity across differ-

ent neighbourhoods of the inspected surface. The proposed method utilises

a neighbourhood-based transformation of the signals’ variability measures

as a means of creating a more homogenous feature space that allows for

distance metric that is relevant across the surface, offering significant com-

putational benefits.

Finally, the chapter presents the outcome of the method application to

real-world large-scale datasets that shows promising results, as the trans-

formation allows isolation of surface anomalies, including threatening flaws.
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� Chapter 6 concludes the thesis by summarising and discussing the key

outcomes of this work and suggesting possible directions for future research.
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Chapter 2

Background

2.1 Introduction

Nuclear power is currently the second largest source of low-carbon energy world-

wide, after hydroelectricity. As of 2021, there are 443 operational reactors globally

[27], and 51 under construction, primarily in China, India, and Korea [28].

A key driver for the nuclear industry is the long-term supply of electricity in

a safe, reliable, clean and cost-effective manner. With safety being the highest

priority, the situational awareness of the state of nuclear power plant (NPP)

systems, structures, and components (SSCs) is crucial, especially considering the

unique characteristics of the harsh service conditions that they are exposed to.

Thus, effective maintenance, through the assessment, management, and mitiga-

tion of asset degradation is a necessary requirement of both the operators and the

regulatory bodies, as it ensures the safe and continuous operation of NPPs while

enabling the assessment of NPPs’ life extension applications. Condition monitor-

ing of the key components is an essential activity of plant ageing management

[29], ensuring safe continued operation and minimising unplanned outages [30].
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In the case of Canada Uranium Deuterium (CANDU) reactor, ultrasonic non-

destructive examination has been utilised routinely during planned outages for

the health assessment of pressure tubes, a crucial component of the reactor as it

contains the nuclear fuel and the pressurised coolant.

This chapter provides an overview of nuclear plant maintenance strategies, and

focuses on the pressure tube inspection process, the challenges involved in the

assessment of the inspection datasets, and current research towards automating

this process.

2.2 Maintenance Strategies in the Nuclear Power

Industry

The earliest and simplest approach to general machinery maintenance involved

corrective or replacement interventions during breakdowns. This maintenance

approach (referred to as run-to-failure, or run-to-maintenance) is a source of un-

planned downtimes and is suitable only for simple non-critical components of

which the consequences, risks, and costs of failure are within acceptable margins.

However, the uniquely low risk tolerances of nuclear industry result in perfor-

mance standards that are essentially the same for both critical and non-critical

SSCs. This generates expectations of no failures during all SSCs’ operational life

and rendering the run-to-failure approach non-viable.
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Figure 2.1: Maintenance strategies.
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Contemporary maintenance approaches follow mainly proactive preventive strate-

gies that aim to mitigate the shortcomings of corrective approaches. The concept

of preventive maintenance was introduced by time-based maintenance (TBM)

which involve periodic maintenance based on estimated component failure cycles

[31]. These cycles can be either Calendar Based, where the degradation intervals

are determined regardless of the operational overhead of the SSC (e.g. lubricant

change and replacement of contact sealings), or Operational Time Based, where

the operational period is considered to be a significant factor. Typically, the his-

tory of failures or incidences of unsatisfactory component behaviour is utilised,

and the calculated frequency is determined through the expected mean period

between failures.

Compared to corrective maintenance, TBM can reduce unplanned maintenance

activities and downtimes, while establishing improved SSC reliability and in-

creased safety-related confidence. However, due to the high uncertainty involved

in the estimated failure frequencies [32] and as the majority of failure modes is in-

dependent of equipment working age [33], TBM can significantly increase the cost

of operation due to unnecessary maintenance activities and replacement of well

functioning equipment, while potentially initiating early failures through regular

disassembly and reassembly of equipment.

Enabled by the advancement of technology, and driven by the need to reduce

the significant maintenance costs that can arise from TBM approaches, the fo-

cus across industries has been shifted towards the development of more cost-

effective approaches to preventive maintenance, such as condition-based mainte-

nance (CBM) [34, 35] (Figure 2.1).
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2.2.1 Condition-Based Maintenance

CBM is a maintenance strategy that determines preventive maintenance actions

through the analysis of collected data related to the condition or performance of

the SSCs, rather than through scheduled preventive maintenance intervals. This

approach allows the operators to significantly reduce the number of unnecessary

maintenance operations and enforces better situational awareness of the health

of the assets.

The importance of efficient maintenance is especially evident in NPPs, as op-

erations and maintenance (O&M) costs contribute about 60-70% of the cost of

generation [30], thus directly affecting the offered price of electricity. At present,

CBM is playing a key role in the nuclear industry as well as industries such as

aerospace, chemical and military.

A CBM implementation strategy is comprised of acquisition, integration and

analysis of diagnostic and performance data to support timely decisions regarding

maintenance regimes of critical assets [36]. At its core, CBM is concerned with

monitoring and diagnosing the condition of the assets, which can be performed

either in a continuous online manner, by utilising real-time surveillance data, or

off-line during regularly performed non-destructive inspections.
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2.2.2 Condition Monitoring

Condition monitoring (CM) activities aim to enhance the knowledge of the state

of a system by measuring and analysing parameters related to that system. CM

covers a wide range of activities which can be performed either manually or

automatically through the use of intelligent systems. Examples of manual con-

dition monitoring within the nuclear sector include direct visual inspection of

AGR (Advanced Gas-cooled Reactor) [37], the extraction of thin slivers from

CANDU pressure tubes to determine their deuterium and hydrogen content [38],

and manual analysis of ultrasonic inspection data of pressure tubes [39]. Manual

inspection can provide direct and detailed information regarding the condition of

an asset, but can be a time-consuming and laborious work that depends upon

expert judgement and a level of subjectivity. As this process often lies on the

critical path of resuming operation [23], it constitutes an activity with significant

financial impact.

Intelligent systems can support condition monitoring activities by automating the

complex decision-making involved in analysing inspection data in a reliable, re-

peatable, and rapid manner. Strategies for automated condition monitoring vary

depending on the availability of data, the complexity of the acting degradation

mechanisms, and the extent and quality of the available knowledge. The follow-

ing section describes different approaches to creating intelligent systems which

include expert systems, model-based, data-driven, and hybrid systems.
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2.2.2.1 Expert Systems

Expert systems is a branch of Artificial Intelligence (AI) designed to simulate

the reasoning and judgement of qualified specialists within a particular field [40].

Expert systems rely on the assumption that experts generate single pieces of

knowledge which can be combined in an appropriate sequence to derive a solution

to a problem. By formalising both the domain knowledge and the problem solving

strategy they can be represented and incorporated into an expert system that

emulates the decision making process of an expert [41]. A differentiating factor

between expert systems and conventional programs is their ability to provide an

explanation of their behaviour and the clear separation of knowledge and methods

which enables expert systems to provide easily amendable dynamic knowledge

bases.

A critical step in implementing an expert system, which often is the most difficult

[42], is the knowledge acquisition process. This can involve knowledge extraction

from sources such as reports and databases, but often the primary source is do-

main experts [42, 43]. The elicitation, interpretation, and organisation of the

information are realised by practitioners, called knowledge engineers, in conjunc-

tion, to some level, with a knowledge acquisition module that aims to automate

the process [44]. The knowledge engineer interacts with the expert through ob-

servation and a series of interviews where expected problems are analysed and

discussed. The product of these interviews is formalised protocols and problem
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solving mechanisms that can be derived either by the introspection of the ex-

pert on his problem solving steps, or by the analysis of the transcribed interview

records by the knowledge engineer [42].

Figure 2.2: Typical expert system components [45].

Typically an expert system (Figure 2.2) consists of the following components:

� Knowledge base: The container of the rules resulted from the formalisation

of the domain expertise.

� Working storage: The container of information related to the specific in-

stance of a problem.

� Inference engine: The processing core of an expert system which directs the

problem solving decision process that controls the flow of information and

acts on the current knowledge base and working storage to derive problem-

specific recommendations.
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� Knowledge acquisition module: An important role of the knowledge acqui-

sition module is to facilitate the interpretation and formalisation process of

the domain expertise into usable rules. Furthermore, it enables the trans-

fer of the discovered knowledge into the system through the population,

update, and expansion of knowledge bases.

� User interface: It provides the means for a user-friendly interaction between

the end-users and the expert system through graphical interfaces, menus etc.

A user interface is responsible for accommodating the user to present the

specifics of a problem to the expert system, as well as enabling the system

to present the underlying rules and reasoning in human-understandable way

and convey the outcome of the analysis to the end-user.

A major benefit of the knowledge-based approach is that its outputs are auditable

as the reasoning behind them is transparent. Moreover, future re-evaluations

of the inspection and condition monitoring processes can be incorporated into

the system through updating of the knowledge base. These advantages enabled

knowledge-based expert systems to be widely applicable in the industrial setting

[46]. Garcia et al. [47] presented a failure mode and effects analysis of nuclear

safety systems utilising the opinion of five experts to identify potential failure

modes and to formalise them into a set of logical inferences. Murray et al. [48]

developed a visual inspection processing software that significantly reduces the

in-core inspection times of AGR nuclear power plants. This approach uses do-

main expert knowledge that reduces the complexity and computational effort and

currently being tested to assess the feasibility of replacing the existing manual

image processing method by a leading energy company [49].
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West et al. [50] developed a rule-based expert system that extracts information

related to the health of AGR cores through the analysis of data related to the

frictional interface between the fuel assembly and the fuel channel (Fuel Grab

Load Trace data). This system has been deployed within the nuclear operator in

the UK and is used to support the analysis of refuelling events of AGR stations.

2.2.2.2 Model-Based

Closely related to knowledge-based expert systems, are the model-based systems

which incorporate available expert knowledge into explicit mathematical models

that emulate the physical behaviour of the system of interest. Often researchers

approach this problem through finite element methods [13, 14, 15, 16, 17, 18] that

compare received inputs and outputs of a system with simulated responses and

evaluate the discrepancies.

The development and calibration of such models is a sophisticated procedure that

aims to closely match the behaviour of the numerical model to the behaviour of

reference states of a real asset [51]. The application of a model that is well

calibrated to healthy reference states to new test cases can reveal legitimate

discrepancies that indicate the presence of damage. Solving the inverse problem

of identifying the model parameter values that generate the observed responses,

can potentially inform the location of a flaw and quantify the damage levels.

Verification and validation of the numerical models are crucial processes that build

credibility in the models and enable them to produce predictions with quantifi-

able confidence. The definitions given by the Los Alamos National Laboratory
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are: ”Verification is the process of determining that a model implementation ac-

curately represents the developer’s conceptual description of the model and its

solution. Validation is the process of determining the degree to which a model

is an accurate representation of the real world from the perspective of the in-

tended uses of the model.”. Therefore, verification is primarily concerned with

the mathematical aspect of assessing the accuracy between the model outputs

and known solutions. On the other hand validation is concerned with whether

the simulated physical representation of the model is sufficient to represent the

real world physical behaviour of the model [52].

Model-based methods have demonstrated their applicability to nuclear reactor

condition monitoring through control rod vibration analysis, loose part localisa-

tion, identification of core barrel material degradation [53], and three-dimension

sizing of stress corrosion cracking of stainless steel used in recirculating pipe and in

shroud in Boiling Water Reactor nuclear plants [54]. Commonly, monitoring pro-

cedures relying on physical models of an asset, operate in a hybrid mode where an

advanced statistical or signal processing algorithm is required as a pre.processing

step to transform the raw data into the appropriate input [55, 54].

Although a model-based approach can provide a complete condition monitoring

system that is based on first-principles, developing such a complex approach can

be challenging as the availability of detailed knowledge and representative data

required for robust parameter estimation can be scarce [56]. Therefore, in the

case of complex systems modelling the physical and mechanical characteristics of

a system may require assumptions and approximations of the physical relations

[57].
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2.2.2.3 Data-Driven

An alternative to knowledge-driven expert systems and model-based systems is

the use of data-driven approaches which categorise inspection data through the

identification of learned patterns within features extracted from the data. In

a condition monitoring setting operational and inspection measurements can be

analysed by a model and infer the condition of an asset by either classifying its

state as one of the known healthy or faulty states, or by determining whether the

observed measurements suggest a state that is sufficiently similar, or dissimilar,

to the expected “healthy” state.

The machine learning (ML) field emerged out of traditional statistics, data min-

ing, and artificial intelligence communities and offers a large pool of algorithms

that are currently widely used in condition monitoring applications across mul-

tiple industries [58, 59]. ML algorithms rely heavily on the analysis of historical

data to identify patterns that can be later used to analyse new data.

In the case where the historical data are accompanied by labels that describe

the class of each instance of observations, the algorithm can be automatically

trained to learn useful patterns through the process that is called supervised

learning. A common training approach performs gradual self-improvement of

a model by iteratively updating the model’s parameter values guided by the

comparison of the model’s predictions to the ground truth labels. This training

approach is prevalent in artificial neural network models which consist of multiple

layers containing neuron-inspired nodes that act as a mapping between the inputs

and the target class labels.
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If the class labels are unknown, the data can be analysed using unsupervised learn-

ing algorithms which aim to extract meaningful patterns from the data without

guidance from a ground truth. An example of unsupervised learning subcate-

gories is clustering analysis, where the data is partitioned into groups such that

individual observations in the same group are more similar to each other. A hy-

brid approach, commonly used when there is an abundance of unlabelled data

but only limited related training data, is semi-supervised learning which com-

bines principles from both unsupervised and supervised learning methods [60]

and utilises both categories of data to improve performance.

Data-driven methods have recently gained widespread popularity due to display-

ing significant capabilities in analysing sequential data and performing computer

vision tasks. Furthermore, advances in sensor technology are enabling the gen-

eration of large amounts of data, while enhanced computational efficiency and

computing power are enabling the rapid digestion of data from the algorithms.

A challenge of effectively training an ML model is that although training proce-

dures automatically handle the tuning of the algorithm’s internal weight values,

e.g. through backpropagation [61], the tuning of a model’s hyperparameters which

explicitly direct the structure of a model relies on heuristic approaches. Selecting

the appropriate hyperparameters can have a significant effect on the performance

and behaviour of the model, and it is generally aimed towards maintaining a bal-

ance between overfitting the training data and underfitting the data. Overfitting

happens to models that are high capacity relative to the size and noisiness of the

training data [62]. A consequence of this can be that a model learns the input

data, and not its abstraction, thus performing well in the training data, while

24



2. BACKGROUND

underperforming in new unseen data due to lack of generalisation capabilities.

This is especially prevalent in large machine learning models when the number

of trainable model parameters significantly outnumbers the number of available

training examples. Underfitting is the opposite effect of overfitting which hap-

pens when a model is too simple, or restricted, compared to the complexity of the

training data, resulting in poor predictive performance both in training and new

data. Therefore, a heuristic approach towards the optimal hyperparameter setup

is to identify the hyperparameter values that maintain reasonably good model

performance in known training data, but also to maximise the performance for

data previously unseen by the model.

An additional challenge of data-driven methods is the limited explicability of

the results due to the black-box nature of complex models, i.e. the inability to

provide an interpretable reasoning behind a decision. Nevertheless, data-driven

methods offer a unique flexibility that allows them to be used in a wide array of

condition monitoring applications.

Earlier work has demonstrated the feasibility of both supervised [63, 64] and un-

supervised [65] data-driven monitoring and fault diagnosis applications in nuclear

energy sector. More recently, data-driven methods have become widely used for

the health management of nuclear power plants across a variety of applications

and types of inspection data [66, 67].

Chen et al. [68] implemented a crack detection method applied on inspection

videos of underwater metallic surfaces of nuclear power plants. The method is

based on Convolutional Neural Networks (CNNs) and showcased high hit rate
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against low false positives per frame, however its applicability is determined

by the availability of large amounts of training data as well as computational

power. Chae et al. [69] utilised Long Short-Term Memory (LSTM) networks for

the detection of pipe thinning due to flow accelerated corrosion. The analysis

was performed on vibration data and it was shown that LSTMs outperformed

other machine learning algorithms, such as SVMs (Support Vector Machines)

and CNNs, as LSTMs are more well-suited towards the analysis of sequences of

data. Berry [60] expanded on previous work on the detection of cracked graphite

bricks in AGRs [70, 50, 37] by applying semi-supervised learning techniques. This

allowed for the combination of infrequent labelled data, derived from detailed in-

spections of the core, with abundant unlabeled monitoring measurements taken

during refueling operations, which improved the classification of graphite brick

health states. Wang [71] used a combination of the unsupervised and supervised

approaches kernel principal component analysis, similarity clustering and SVM

for fault diagnosis in the reactor coolant system of pressurised water reactor.

This enabled a highly accurate fault diagnosis process that also allows for visual

illustration of the results leading to enhanced interpretability.

2.3 Pressure Tubes Health Assessment

2.3.1 CANDU Reactor
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Table 2.1: CANDU and CANDU-Derived reactors globally [72]

Facility Units Net Capacity (MWE)

Bruce Power (Canada) 8 CANDU reactors 6,288
Darlington (Canada) 4 CANDU reactors 3,512
Pickering (Canada) 6 CANDU reactors 3,094

Point Lepreau (Canada) 1 CANDU reactor 660
Wolsong (South Korea) 4 CANDU reactors 2,576

Qinshan (China) 2 CANDU reactors 1,354
Cernavoda (Romania) 2 CANDU reactors 1,300
Emblase (Argentina) 1 CANDU reactor 600
Karachi (Pakistan) 1 CANDU reactor 90
Tarapur (India) 2 CANDU-derived reactors 980
Rajasthan (India) 1 CANDU reactor 187

4 CANDU-derived reactors 808
Kaiga (India) 4 CANDU-derived reactors 808

Kakrapar (India) 2 CANDU-derived reactors 404
Madras (India) 2 CANDU-derived reactors 410
Narora (India) 2 CANDU-derived reactors 404

CANDU reactor is a type of pressurised heavy water reactor (PHWR) that utilises

natural uranium to generate electric power. CANDU reactors were first designed

in Canada and currently there are 30 operable reactors globally in Canada, Ar-

gentina, China, India, Pakistan, Romania, and South Korea. Furthermore, the

majority of nuclear reactors in India are PHWR-type based on CANDU reactors.

Table 2.1 lists the currently operational CANDU-type reactors, which constitute

about 11% of the nuclear power reactors in use today globally [72].
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Similar to other nuclear power plant types, the reactor is the heat source that

enables the generation of electricity. To facilitate that, the CANDU nuclear power

plant consists of interconnected units that control the flow of energy (Figure 2.3);

from the generation and regulation of thermal heat, to its transformation into

mechanical energy and finally electrical energy.

The key units of a CANDU nuclear plant include [73]:

� The nuclear reactor generates the heat through nuclear fission.

� The primary heat transport system is responsible for transferring the heat

from the reactor to the steam cycle.

� The steam generator is part of the secondary heat transport system, where

light water is converted to steam.

� The steam turbine converts the pressurised steam to mechanical energy.

� The electrical generator converts the mechanical energy into electrical en-

ergy.

The design of CANDU reactors enables high neutron economy, as this is critical

for achieving fission through a sustained chain reaction, given that natural ura-

nium has low fissile content. Some of the unique features of the CANDU reactors’

design that enable this process are [73, 75, 76]:

� Use of heavy water (deuterium oxide D2O) as both coolant and moderator,

which has a reduced tendency to absorb neutrons, compared to light water.
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Figure 2.3: Schematic of a CANDU plant (Adapted from [74]). Primary heavy-
water loop: Hot, Cold. Secondary light-water loop: Hot, Cold. 1) Fuel
bundle, 2) Calandria (reactor core), 3) Adjuster rods, 4) Heavy water pressure
reservoir, 5) Steam generator, 6) Light water pump, 7) Heavy water pump, 8)
Fueling machines, 9) Heavy water moderator, 10) Fuel channel, 11) Steam going
to steam turbine, 12) Cold water returning from turbine, 13) Reinforced concrete
containment.
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� The core structural components consist of low neutron absorbing materials

(zirconium alloys).

� Online refuelling. This minimises the neutron absorption by the control

materials and results into low core excess reactivity, eliminating the need

for burnable neutron absorbers.

� The reactor design facilitates lower resonance absorption rates and better

neutron thermalisation.

The reactor consists of a low-pressure stainless steel tank, called calandria, which

contains the moderator. Around 480 fuel channels run across the length of the

calandria tank. Each fuel channel (Figures 2.4, 2.5) consists of a thin zircaloy

tube (calandria tube) that contains another, thicker, zircaloy tube called pressure

tube. The two tubes are separated by the annulus garter-spring spacers that

create a gap allowing the flow of an insulating gas called annulus gas. The

fuel bundles are located inside the pressure tubes and they are cooled by the

hot (≈300°C) pressurized (≈10MPa) heavy water coolant that runs through the

pressure tubes. This configuration enables the insulation of the cool (≈70°C)

unpressurised moderator from the hot pressurized coolant.

2.3.2 Pressure Tubes

Pressure tubes are one of the critical components of pressurised heavy water

reactors as they contain the nuclear fuel bundles and the pressurised coolant.

During their operating life they are required to operate reliably in an extremely
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harsh environment of high pressure, temperature and neutron flux. Although the

extensive quality controls and monitoring of the pressure tubes have ensured a

good overall performance [38], pressure tubes are subjected to some degradation

mechanisms facilitated by the severe conditions, which could lead to their failure.

One of the principal degradation mechanisms that pressure tubes experience

is concentration of hydrogen/deuterium at areas of large tensile stresses. This

can precipitate hydrides that initiate a process called Delayed Hydride Cracking

(DHC) that can cause coolant leakage potentially damaging the reactor. There-

fore there is a need to closely monitor any pressure tube tensile stress concen-

trations, such as flaws and defects created during tube manufacture, installation,

commissioning, or operation. Examples of such flaws include refuelling scratches,

fuel fretting, crevice corrosion, and debris fretting.

2.3.3 Inspection Setup

The current inspection process is performed during planned outages on data ob-

tained by tools employing multiple ultrasonic inspection probes [39]. The avail-

able ultrasonic inspection tools that facilitate the scanning process are known

as CIGAR (Channel Inspection Gauging Apparatus for Reactors) and ANDE

(Advanced NDE).

The more recently introduced system ANDE offers advanced hardware capabili-

ties and productivity rates over the CIGAR system. However, the basic operating

principles of these systems are similar, allowing them both to perform ultrasonic

inspection of pressure tubes and deliver data compatible to some degree with
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Figure 2.4: CANDU reactor fuel channel arrangement [75].

Figure 2.5: CANDU reactor fuel channel arrangement 3D [77].
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Figure 2.6: Ultrasonic inspection probe orientations.

existing software. The tools consist of a combination of normal incidence probes

(NB), operating in pulse-echo mode at 10 MHz (NB10) and 20 MHz (NB20), and

pairs of axial pitch-catch probes (APCs) and circumferential pitch-catch probes

(CPCs) operating at 10 MHz via full skip propagation. The orientation of the

probes is such that any point of the pressure tube is inspected from multiple

directions (Figure 2.6).

The data acquisition process of CIGAR is carried out in two stages. During

the first stage a general low resolution NB and shear wave general helical (GH)

scan is performed across the two halves of the tube. This provides indications of

potential flaws based on gated amplitude responses, and serves as the main flaw

sizing path. At the second stage, the scanning of the flagged abnormal areas by
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Figure 2.7: Typical examples of ultrasonic signals captured by different probes
of the CIGAR tool. The signals are from the same, randomly selected, position
of a pressure tube.

the two NB probes, along with the APC and CPC pairs, provides more detailed

3D datasets that serve primarily as a depth assessment source. As all four beams

meet at the same position of the pressure tube internal diameter, any potential

flaw can be examined from four different directions. Examples of high-resolution

ultrasonic signals obtained at the same position of a flagged area by the NB20,

APC, and CPC probes can be seen in Figure 2.7. Given the sub-millimetre

scanning increment, the resulting dataset for a region or interest is a collection of

thousands of signals per cm2. These individual signals are known as A-Scans and

each signal is the captured time-amplitude waveform of one transmitted pulse.

Further possible representations of the captured signals include the B-Scans and

C-Scans, which provide different functionalities. B-Scans are stacked A-Scans

along a certain axis, and therefore assist the task of flaw depth estimation as

they provide a 2-dimensional cross-section view. On the other hand, C-Scans can

assist the localisation of potential flaws as they provide a top-down 2-dimensional

overview of the scanned surface through single value representation (e.g. maxi-

mum amplitude) of each signal.
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This assessment process is also followed for datasets acquired by the ANDE sys-

tem, however the improved capabilities of ANDE enable the acquisition of de-

tailed 3D data from multiple (12) probes across the full length of the pressure

tube during the initial scanning, eliminating the need for the tool to revisit areas

of interest. This, in combination with the increased resolution of the acquired

signals, result in datasets around 1000 times larger than those of CIGAR, posing

a great overhead for any existing analysis process.

2.3.4 Existing Analysis Process

The extracted ultrasonic inspection datasets are first streamed from the inspec-

tion tools to a local data storage at the equipment site before being transferred

to a dedicated analysis centre where trained analysts inspect the data and char-

acterise any flaws detected.

The analysis is performed manually with the use of a proprietary software which

is called FLAW. The first stage of the analysis consists of an automated flagging

process, offered by the FLAW software, which indicates regions that potentially

contain flaws and is based on preset signal amplitude thresholds [78].

Two analysts are provided with a detailed set of information on the history of

the pressure tube in question, and are then tasked with independently reviewing

the data based on the flagged regions. The analysts complete their review of

the available C-Scans (2-dimensional top-down view of the entire channel) and
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B-Scans (high resolution slices of stacked A-Scans extracted from the flagged

regions) and summarise their findings in a common format, reporting measured

locations, sizes, depths and types of flaw.

A third analyst then acts to consolidate these results and performs a resolution

of any conflicting interpretations. The length of time required for the complete

analysis process of a pressure tube depends on the number and complexity of the

flaws identified. When a finalized set of flaws have been agreed, they are compared

with a set of criteria developed to determine if any single flaw poses significant

structural risk to the pressure tube. The key characteristic in determining this

is the depth and root radius of the flaw, which are modelled using a separate

analysis software.

In occasions where specific flaw criteria exceed permissible limits, a polymer

replica is recorded of the flaw in order to make a direct measurement of the

geometry of the flaw, rather than the inferred ultrasonic measurement. This pro-

cess is complex and time consuming and often requires multiple attempts in order

to capture a complete replica. At the end of the analysis process, when all flaws

have been analysed and classified, a judgement is made of the integrity [79] of

the pressure tube and the ability of the tube to return to service. This process

is repeated across all inspected tubes and forms part of the critical path during

outage in returning the reactor to power.
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2.3.4.1 Existing Process Issues

The large volume of data, intensive analysis process and time pressures of the

inspection regime require a number of human analysts to support each outage,

often analysing only sections of particular pressure tubes as part of the process

described earlier. Despite the use of a multi-pass analysis and a resolution analyst,

the process introduces a level of subjectivity and variability in the results. An

increased volume of inspection data generated by new tools, combined with ageing

plant and a potential increase in the number and complexity of flaws, is likely to

drive a requirement to increase the efficiency of analysis. Currently only a subset

of the highest resolution inspection data is utilised, for specific regions of tube,

but if the complete set of data were to be analysed in the future, new analysis

processes would be required [80].

2.3.5 Expert-System Analysis of Pressure Tube Ultrasonic

Inspection Data

The challenges of the existing manual analysis process of ultrasonic data gath-

ered from the CANDU pressure tubes led to the development of an automated

expert system aiming to save time on the critical path, reduce human subjec-

tivity within the process, and increase the repeatability of measurements [23].

The prototype software system, known as ADAPT (Automated Data Analysis

for Pressure Tubes), has been implemented in MATLAB and provides end-to-
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end defect detection and characterisation. Testing analysis on historical data

demonstrated the viability of a decision support tool which can aid the existing

analysis process [80].

ADAPT is based on the principles of expert systems and it integrates rule bases

and analysis algorithms derived from experts in the analysis of ultrasonic in-

spection data of CANDU pressure tubes to replicate and automate the existing

analysis process, as shown in Figure 2.8. The process followed by experts is repro-

duced by adopting the CommonKADS approach to knowledge representation [6].

KADS (Knowledge Acquisition and Documentation Structuring) defines a struc-

tured methodology for knowledge-based systems design and this methodology

matured into the CommonKADS approach [81].

Figure 2.8: A conceptual overview of ADAPT [80].

One benefit of the knowledge-based approach is the ability for the analysis results

and the decisions made by the system at each stage to be fully explicable and

auditable. Moreover, future extensions or changes of the current understanding

of the inspection analysis process can be incorporated into the system through

updating of the knowledge base.
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The system prototype has been developed to provide decision support for different

stages of the analysis process. Figure 2.9 depicts the major modules that enable

the ‘end-to-end’ processing of the ultrasonic inspection data. The input to the

system consists of the same ultrasonic inspection datasets that a human analyst

would receive, and the output is a set of reports in format readable by the software

currently in use by the analysts, FLAW.

The individual analysis steps are examined below.

Figure 2.9: ADAPT: A high-level flowchart of the major modules comprising the
automated analysis process [23].

2.3.5.1 Pressure Tube Feature Detection

The first stage of the analysis (Step 1 of Figure 2.9) involves the localisation of

three mechanical features that are located at each end region of a pressure tube.

These features are the burnish mark, three rolled joints, and the end of pressure

tube. The burnish mark and the rolled joints (depicted in Figure 2.10) result

from the process of mechanically fitting the pressure tubes to the reactor core.

These features are normally located by analysts by identifying bands of equal

amplitude along the radial dimension of the 20MHz normal incidence datasets.

This procedure is replicated in ADAPT’s feature detection module by calculating
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the mean value of the amplitudes across the axial positions and identifying the

peaks and troughs that comply with the expected characteristic properties and

distances.

Identifying these features enables the determination of the boundaries of the

critical area, where the presence of DHC is more common due to the non-uniform

stresses present in this area [39].

Figure 2.10: An annotated outline [82] of the end region of the pressure tube.
The localisation of the three rolled joints and burnish mark is the first analytical
step of the assessment process.

2.3.5.2 Flaw Detection

Following the pressure tube feature detection ADAPT processes the available GH

datasets to locate any potential flaws (Step 2 of the flowchart in Figure 2.9). The

locations of potential flaws are identified by applying different amplitude drop

thresholds depending on the area of pressure tube and the inspection tool used.
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The flagged sections are examined to determine whether they should be con-

sidered as noise, based on processes defined within the inspection specification

documentation. However, at this stage only a basic noise classification algorithm

is applied, as although relative operating procedures exist, there is still scope for

subjectivity regarding what would constitute noise. Therefore the noise classifica-

tion is not finalised until further characteristics of the flagged areas are also taken

into consideration, such as length, width, and B-scan response. Subsequent sys-

tem modules accommodate that by providing the ability to classify flagged areas

as noise if their properties satisfy the noise conditions.

2.3.5.3 Flaw Sizing

The third step of the automated process (Figure 2.9) is concerned with the sizing

and depth of the flagged areas.

The goal of the sizing stage is to measure the length and width of a flagged region

and is accomplished through the examination of the 10MHz normal incidence

probe datasets.

For this process a threshold amplitude value is calculated based on the expert an-

alysts‘ operating procedure, which is related to the neighbourhood of the flagged

section. This value serves as the threshold that the amplitudes of the normal

incidence responses must exceed in order to be characterised as non-defective.

The areas that fall below that threshold, and intersect with the corresponding

flag, are incorporated by the flag and the dimensions of this area along the axial

and radial axes represent the length and width of the flaw.
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The depth assessment of the potential flaws within flagged areas requires de-

tailed examination of B-scan datasets obtained from the corresponding pressure

tube region. The knowledge model for this process is a combination of informa-

tion extracted from inspection specification documentation and formal domain

knowledge capture sessions with expert analysts. The algorithm operates on A-

Scans obtained from the 20MHz normal incidence probe, as well as the two pairs

of pitch-catch probes. During the first processing stage each A-Scan within the

anomalous area is examined to identify signal features that can potentially act

as depth measurement points. Each signal feature is assigned with a confidence

measure that is adjusted by applying a set of domain rules. Following the con-

fidence assignment, the feature with the highest confidence within each signal is

selected to represent the depth measurement of the corresponding position. This

procedure generates a depth-map of the area that allows for the variations of

depth to be examined. This enables the identification of steep depth gradients

that pose a risk for hydride build-up and DHC due to the increased mechanical

stress at the tip.

2.3.5.4 Flaw Classification

The final step of the automated process (Step 4 of Figure 2.9) is responsible for

classifying the detected flaws based on the characteristics measured at the earlier

steps, i.e. location, length, width, and depth. Currently the available knowledge

base of the system differentiates only between the most common classes of flaws,

such as debris frets, scrapes, and fuel bundle bearing pad frets.
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2.3.5.5 Capabilities and Limitations

The ADAPT prototype has been tested against a large volume of historical data

and the satisfying results demonstrate the viability of decision support tool that

can assist the current analysis process [80]. However, it has been highlighted that

certain complex tasks within the existing assessment procedures cannot be repli-

cated exactly through formalised rules and partly rely on expert human judge-

ment and intuitive visual interpretation.

An example of such case is the examination of the B-Scan datasets which apart

from enabling the depth measurement of flaws, also constitute sources for the

detection of potential flaws. While the amplitude response flagging of the GH-

produced C-Scans is responsible for the detection of the bulk of flaws, expert

analysts also review areas of the high-resolution B-Scans to detect anomalous

areas potentially undetected by the initial detection process. This requires signif-

icantly more subjective visual examination of a variety of data in either B-Scan

or A-Scan formats obtained from a variety of sources (NB, APC, CPC). Further-

more, the recent deployment of the ANDE tool introduced additional inspection

probes that deliver greater volumes of higher resolution signals across the entire

pressure tube.
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2.4 Discussion

This chapter has provided an overview of the importance of pressure tube health

assessment through ultrasonic non-destructive evaluation and the challenges of

performing this task in a robust and timely manner. Although current research

efforts have demonstrated the viability of an automated system that can sup-

port this process, there is still a need for tackling the problems and procedures

that cannot be formalised into exact knowledge and strategy required by expert

systems to emulate the subjective actions of an expert.

Introducing analysis methods that are driven by the structure of the underly-

ing ultrasonic inspection data should enable the highly subjective task of de-

tecting and measuring flaws through the examination of high-resolution B-Scan

datasets. Moreover, it is a step towards providing a more thorough assessment of

the entirety of a pressure tube through the analysis of newly introduced multi-

probe full-body high-resolution scans and understanding the challenges that such

a large-scale environment poses. To support the discussion about the feasibility of

such methods, the following chapters provide an overview of available data-driven

techniques, as well as a review of their application to relevant problems.
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Chapter 3

Overview of Automated Ultrasonic

Analysis Methods

3.1 Ultrasonic Non-Destructive Evaluation

Ultrasonic non-destructive evaluation has become a key technology in advanced

diagnostics and monitoring [83]. The earliest patented practical application

of ultrasonic evaluation, following important foundational work of Sokolov and

Muhlhauser [84], can be considered to be Dr Firestone’s (1898–1986) 1942 ‘Flaw

Detecting Device and Measuring Instrument’ – a single quartz transducer used

in what became known as pulse-echo technique [83, 85], which was later applied

to the inspection of air force bomber landing gears. The technology was rapidly

employed and developed, and further advancements in the understanding of the

interactions between ultrasonics and materials led to more advanced inspection

systems that can now provide health assessment support across a wide range of

industries in their inspection tasks.
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Ultrasonic inspection uses high-frequency (greater than 20kHz) acoustic waves

for the detection of surface and subsurface anomalies in materials. The sound

waves are fed into the material and by assessing the changes in their propagation

characteristics it is possible to infer information about possible flaws [4, 86]. The

changes that can occur in a propagating wave can be summarised as [87]:

� Reflections at material interfaces/boundaries or material discontinuities

� Time of transit discontinuities

� Attenuation by absorption and scattering

� Changes in the spectral response

As the signal is shaped by the properties of the material, it can contain echoes not

only from a defect but also from insignificant imperfections in the structure of the

material (e.g. porosity and inhomogeneity). These echoes can be characterised

as noise, as they can potentially mask flaw echoes in the received signal, i.e. they

reduce the signal-to-noise (SNR) ratio [5].

3.2 Automated Ultrasonic Evaluation

The need for robust interpretation of large volumes of inspection data and min-

imising errors and variability due to human factors [11, 12] is the drive behind the

extensive research efforts to create automated procedures for signal classification

and automatic detection of defects.

46



3. OVERVIEW OF AUTOMATED ULTRASONIC ANALYSIS
METHODS

Intelligent systems can support the automated evaluation of ultrasonic inspection

signals by automating the complex decision-making involved in identifying and

sizing material defects. As ultrasonic nondestructive evaluation is a subset of con-

dition monitoring, the implementation of ultrasonic analysis intelligent systems

can be broadly approached through any of the strategies described in Section

2.2.2, i.e. knowledge-based expert systems, model-based, and data-driven.

Although both knowledge-based expert systems (Section 2.3.5) and model-based

approaches [13, 14, 15, 16, 17, 18] can offer valuable automated analyses given

sufficient expert specialised knowledge, the scope of this thesis is to provide a

more system-agnostic approach that relies on data-driven methods.

3.2.1 Data-Driven

3.2.1.1 Supervised Approaches

Similarly to various condition monitoring applications, data-driven methods have

also gained popularity as effective means of analysing collections of ultrasonic in-

spection data, as their flexibility allows them to be applied across multiple envi-

ronments and for different tasks. Supervised methods are a subset of data-driven

methods and are based on machine learning techniques that algorithmically ex-

plore datasets of signals and infer knowledge through gradual self-improvement of

their performance (training). One of the most extensively used machine learning

technique is the Artificial Neural Networks (ANNs).
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ANN is a machine learning paradigm inspired by the biological nervous systems,

consisting of several highly interconnected processing units (neurons) (Figure 3.1)

working in unison to solve specific problems [88]. ANNs infer knowledge through

a learning process that adjusts the inter-neuron connection weights, and their

success derives from their ability to solve complex non-linear problems [89].

Their learning process initially requires the quantification of the difference be-

tween the target and predicted output values (loss function). Subsequently, the

gradient of the loss function with respect to the network’s weights guides the up-

date of the weights, aiming towards reaching the minimum of the loss function.

Specifically, the computation of the gradients is commonly performed by an ef-

ficient implementation of the chain-rule, called back-propagation algorithm [90],

whereas an optimisation algorithm (e.g. Stochastic Gradient Descent [91, 92],

or Adam [93]) is numerically reaching the minimum loss, through the informed

update of the model weights, which is guided by the calculated gradients [94].

This iterative process repeats for either a specified number of cycles, or until a

stopping criterion is satisfied, e.g. the loss is sufficiently low.
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Figure 3.1: A typical architecture of an Artificial neural network (ANN) with
a single hidden layer [95]. The interconnected groups of artificial neurons are
updated during the training phase, guided by the gradient of the loss function
which quantifies the difference between the outputs of the last layer and the
expected outputs.

ANNs have been extensively applied to automated ultrasonic evaluation applica-

tions. Margrave et. al [96] presented an evaluation of various types and configu-

rations of neural networks in regards to supporting ultrasonic flaw detection and

classification in steel plates. The results showed promising classification rates on

real or simulated defects with minimum pre-processing. D’Orazio et. al [97] fur-

ther demonstrated the capabilities of ANNs by applying them into the analysis

of ultrasonic inspection data of composite materials. Following a simple normali-

sation procedure, and no advanced signal processing method for signal denoising

and feature extraction, their model demonstrated the ability to perform effective

classification of signals and defects in materials of varying thickness and textures.
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Iyer et. al [98] presented a comprehensive ANN-based signal classification method

of signals obtained from a concrete pipe that uses a different signal feature ex-

traction method. The overall approach consisted of three major steps: signal

preprocessing, feature extraction and ANN classification. During the preprocess-

ing stage the signals were processed by the discrete wavelet transform (DWT),

passing them through a series of filters to decompose them into their detail and ap-

proximate signals. DWT is an analysis technique able to construct time-frequency

representations of a signal [99, 100], a property that is not provided by Fourier

transform (FT) [101], but it can also be obtained through Short-Time Fourier

Transform (STFT) [102]. Then a set of coefficients of representative signals from

the entire spectrum of defect classes were clustered to identify the frequency

bands that were considered to contain the most information. These clusters were

then converted into feature vectors by taking the energy of each cluster as a single

feature. The feature vectors were then fed into the NN model for training it into

classifying signals to their appropriate defect classes. Furthermore, the ANNs

were compared to a statistical classifier (Linear Discriminant Analysis) revealing

ANNs’ ability for significantly more accurate classifications.

Although ANNs have proven their effectiveness throughout an extensive range

of applications, research has presented examples of Support Vector Machines

(SVMs) (Figure 3.2) providing better classification results than ANNs [103, 104].

This should cause caution when the classification problem involves a small sample

and high dimensional feature spaces [105] which can lead to ANNs overfitting the

training data, resulting in poor generalisation capabilities (Section 2.2.2.3).
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Figure 3.2: Support vector machine (SVM) [106]: Find the hyperplane (red) that
maximises its distance from the nearest data point on each side. The data points
that define these distances are called ‘support vectors’.

SVMs iteratively try to find the hyperplane within the labelled feature space that

best separates the different classes. The best dividing plane is considered to be

the plane that maximises the distance of group points that are closest to points

from different groups [107, 108]. Given the SVMs’ performance in classification

accuracy they are a popular choice as a means to automatically classify ultrasonic

signals. However, they have been found to perform poorly in the presence of noisy

signals [109], therefore available applications use pre-processing techniques for

denoising purposes. Lee et al. [110] performed SVM automatic classification of

ultrasonic shaft inspection data showing that its performance was superior when
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used DWT as denoising and feature extraction tool, than when used Fast Fourier

Transform. Hassan et al. [109] further showed that applying Kalman filter as a

preprocessing technique provides better SVM classification accuracy, than DWT.

Recent advances in computing power, GPU-accelerated back-propagation [111,

112] and regularisation techniques to decrease overfitting, such as dropout [113],

have allowed for deeper learning networks able to outperform traditional machine

learning algorithms in various tasks, including time series data [114] and computer

vision tasks [115]. Deep neural networks (DNNs) rely on multiple stacked layers

that perform consecutive non-linear transformations to their inputs driven by the

goal of minimising the loss between the predicted labels and the actual labels.

This deep hierarchical learning architecture enables the construction of high-level

feature representations that utilise the lower-level feature representations of the

earlier layers [94].

Munir et al. [116] trained a single-layer ANN and a multi-layer DNN on datasets

containing A-Scans captured from different artificial flaws within weldments. The

comparison of these models showed no significant improvement in performance of

the DNN over the ANN for a dataset containing single-frequency samples. How-

ever, the DNN model outperformed the ANN when used on a mixed-frequency

dataset. More recently, Munir et al. [117] augmented their original mixed-

frequency dataset, which contained a small number of mainly noise-free signals, by

introducing Gaussian noise and shifting the A-Scans in the time domain. These

increased the size of the dataset by generating new signal instances contain-

ing different levels of signal to noise ratio (SNR) and different simulated defect
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Figure 3.3: Convolutional neural network (CNN): Typical architecture [121].

depths. A DNN model, analogous to the [116], was then evaluated against a

Convolutional Neural Network (CNN), showing that the CNN model performed

significantly better than the DNN model.

CNNs (Figure 3.3) are well-suited for structured data and are frequently used

in domains such as computer vision [118, 119] where multi-dimensional (2 face

dimensions and variable depth) filters are convoluted with the input image to

generate high-level convolved features that preserve local pixel relations. The

convolution layers are the core building blocks of CNNs and are usually period-

ically complimented by pooling layers that serve as down-sampling layers that

help reduce the computational footprint and reduce overfitting. Finally, the out-

put layer of a CNN architecture consists of a classifier layer that generates the

predictions that serve the loss function that drives the back-propagating training

process [120].

Munir et al. [117] utilised 1D filters convolved with the augmented A-Scans to

train a CNN, connected to a fully connected neural network. The CNN outper-

formed the DNN and proved to be more robust towards low SNR instances.
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Meng et al. [122] have also demonstrated an automatic ultrasonic signal classifi-

cation system utilising CNNs. Here, instead of directly feeding the raw signals to

the CNN, the signals were first individually transformed into a 2D representation

consisted of their wavelet transform coefficients. Furthermore, a linear SVM was

utilised as a top layer to facilitate the signal classification task. The experimental

results demonstrated improved performance over ANN and SVM classifiers with

manually generated features.

Medak et al. [123] applied more complex CNN-based architectures that specialise

in image object detection, to automatic defect detection in B-Scan images. Specif-

ically they used popular one-stage detector architectures that rely on predefined

anchored rectangles, such as EfficientDet [124], YOLOv3 [125] and RetinaNet

[126]. Several variants of each model were applied to ultrasonic inspection data

of six stainless steel blocks containing artificially created defects. The results

showed that the base model of EfficientDet (EfficientDet-D0) outperformed the

more complex variants (EfficientDet-D1 to EfficientDet-D7), as well as all the

variants of YOLOv3 and RetinaNet.

Furthermore, [123] highlighted that the performance of the best performing model

(EfficientDet-D0) varies based on several factors. First, the generalisation error

of the model can be reduced by following the commonly [127] used practice of

augmenting the available data in order to force the model to learn invariant

feature embeddings [128]. Second, it was shown that larger input image resolution

(512× 512) increased the model’s performance, compared to image resolution of

384 × 384. The third configuration that had a positive impact was initialising
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the model weights using the weights of a model pre-trained on a large dataset

of common objects (COCO dataset [129]), instead of randomly initialising the

weights.

The last important factor is relevant to single-shot object detection models and is

concerned with the selection of informed priors for the pre-defined dense grid of

bounding boxes (called anchors) that is used by the models to locate objects. As

the shape and scale of these anchors are directly affecting a model’s efficiency and

accuracy, it is important to further investigate these hyperparameters, instead of

using the publicly available default values. This holds especially true for domains

such that ultrasonic inspection, where the typical objects of interest (e.g. defects)

have more extreme aspect ratios than typical objects found in large publicly

available datasets used in deep learning research. Redmon and Farhadi [130]

introduced the idea of identifying good anchor priors by using clustering on the

training, and it was further shown by [123] that this approach yields better defect

detection performance on ultrasonic inspection images, compared with utilising

default anchors.

More recently, Posilović el al. [131] focused on deep learning-based anomaly

detection methods for the analysis of ultrasonic inspection B-Scans. The followed

approach is categorised as semi-supervised as the detection models were trained

using only images that do not contain defects. This enables the models to ‘learn’

the expected state of normality, allowing them to flag outliers during inference

as potential defects.
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3.2.1.2 Unsupervised Approaches

A significant drawback of the previous data-driven ultrasonic signal analysis

methods for defect detection is the requirement of labelled data, i.e. class def-

inition for each individual signal for the training stage. There is notably little

research in the area of unsupervised signal analysis for the detection of flaws

where the obtained signals have no accompanying label.

The majority of existing research has focused on the analysis of low frequency

guided-waves and outlier analysis to determine the presence of a defect on large

structures. Zhu et al. [132] utilised guided-waves and outlier analysis to diagnose

an artificial defect in a truss. The waves were processed to generate a set of

relevant damage sensitive features used to construct a uni- or multi- dimensional

damage index. The damage index was then fed to an outlier analysis based

algorithm aiming to detecting anomalous conditions. However, the experimental

data were collected in a controlled environment and a selected number of waves

were selected to represent the baseline. The damage indices were assumed to

follow a Gaussian distribution and a threshold of 3σ was set to indicate the

outlier threshold. It was found that several combinations of features outperform

other combinations, depending on the setup of actuator-sensor pairs relative to

the defect. Therefore, the results associated with the data from the experiment

cannot necessarily be extended to other situations where damage is located in

another position or the truss type is different.
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You et al. [133] utilized a clustering algorithm (K-Means) and illustrated the

feasibility of the method on polymer specimen containing artificial defects. How-

ever, three crucial issues make this method unsuitable for our purpose. The first

two are related to the K-Means clustering method (Figure 3.4).

K-Means is a popular clustering algorithm [134] that operates by randomly ini-

tialising centres and iteratively assigns each data point to its nearest centre until

the recomputed centres do not change positions between two consecutive rounds

[135].

This process requires a pre-defined number of expected clusters; a requirement

that cannot be satisfied by our task which is concerned with analysing datasets

that generally will contain unknown number of flaws. Furthermore, the objective

of K-Means, which is the minimisation of the sum of Euclidean distances of data

points from its cluster centres, serves well only (hyper)spherical shapes of clusters

[136]; again, an assumption that cannot be guaranteed by the multi-dimensional

noisy datasets.
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Figure 3.4: K-Means clustering algorithm: Partition dataset into a pre-defined
number of clusters (here: 5), such that the within-cluster variance (within cluster
sum of squares) is minimised.

Secondly, the assumption of point-to-point consistency between the signals, a

requirement for the applied pre-processing step, cannot be guaranteed by the

current pressure tube inspection process. This is due to the time shift that can

occur in the received echoes due to slight inspection probe misalignment caused

by small deformities and sagging of the pressure tubes.

3.3 Discussion

This chapter presented an overview of existing research efforts concerned with

the automated analysis of ultrasonic data for health assessment purposes. Hav-

ing recognised that a data-driven approach would be more appropriate for the
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purposes of this thesis, this chapter focused mainly on supervised and unsuper-

vised data-driven methods. As it has been discussed current research utilises

assumptions and methods that are not appropriate for the datasets of this work.

Specifically, the major issue limiting the applicability of supervised methods to

pressure tube ultrasonic inspection datasets is the requirement for individually

labelled signals, i.e. information regarding whether each signal (A-Scan) is part

of a flaw or not. Although currently there is available information in form of flaw

locations and bounding boxes, using this to make claims about each individual

A-Scan would introduce label uncertainty issues because:

� Flaws are irregularly shaped and the available information is in form of

rectangular bounding boxes containing both healthy and flawed areas.

� Some datasets suffer from misalignment issues causing bounding box shift-

ing which leads in some flaws extending outside the flagged area.

This label uncertainty will generate noise in the training dataset as several healthy

signals will be labelled as abnormal and vice versa.

Regarding the unsupervised approaches it is observed that they mainly utilise

small samples that enable the determination of well-defined states of normality. In

the case of guided waves, the lower frequencies of these signals have long-distance

propagation that allows the binary assessment of the structural integrity of large

structures, but it differs from our datasets and goal of precisely locating and sizing

multiple flaws within the same inspected area. Furthermore, current research in-
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vestigating higher frequencies pulse-echo and pitch-catch methods are performed

on small-scale controlled environments that also enable the pre-definition of the

normal state.

These reasons generate the need for new approaches that allow for flaw location

and pixel-wise segmentation of complex-shapes. These approaches should be

able to operate across large-scale real-world noisy datasets captured by probes

from various surface conditions and geometric imperfections. This exploration

of the structures and patterns within the ultrasonic inspection datasets should

also maintain computational times that enable their applicability to real-world

datasets, as well as interpretability

One potential direction, that has not yet been adopted by the ultrasonic analysis

research, could be based on current deep learning image segmentation state-of-

the-art methods that utilise Vision Transformers (ViT) [137]. Specifically, the

models STEGO [138] and Leopart [139] currently lead the unsupervised seman-

tic segmentation tasks related to cityscapes [140] and object recognition [141]

respectively.

However, modern Deep Learning methods are, at the current stage, incompatible

with the main goal of this thesis, which is to minimise the friction in the adop-

tion of ultrasonic analysis data-driven decision support methods in real-world

industrial settings. Firstly, DL methods are computationally intensive and re-

quire GPUs for optimal performance [142]. This is a requirement that cannot be

guaranteed by the computers commonly used for the analysis of pressure tube

ultrasonic inspection data. Secondly, as this thesis is aiming to aid expert an-
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alysts who are responsible for the health assessment of critical assets through

the interpretation of inspection data, it is important to favour interpretable and

transparent methods, both for the feature extraction and modelling, over more

black-box approaches.

The new methods should involve interpretable processes focused on transforming

and reducing the large amount of available information to levels that facilitate

the discovery of potentially anomalous areas that could contain flaws. Finally, as

the most important issue encountered in observed complex real-world ultrasonic

data is the lack of a precisely defined state of normality that is universally true

across large scale assets such as pressure tubes, the proposed methods should be

able to generalise across a diverse set of inspected areas which can potentially

differ in the characteristics of their healthy/unhealthy subregions.

Overall, by introducing approaches that respect the presented requirements, it

should facilitate the introduction of data-driven approaches to real live testing,

concurrently running along with manual assessment. This would be an especially

important step, as extensive testing of data-driven methods in existing industrial

environments should reveal potential inefficiencies, establish potential benefits,

and eventually gain the trust as a useful decision support tool.
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Chapter 4

Automated Ultrasonic Cluster

Analysis for Flaw Detection

4.1 Introduction

This chapter proposes a novel unsupervised data-driven approach to automati-

cally analyse collections of A-Scans by individually characterising each A-Scan

and producing 2D maps (C-Scans) that flag potentially flawed areas. This ap-

proach operates across unlabelled signals and requires no explicit predefinition of

normal state. As established in Chapter 3, the thesis will follow unsupervised ap-

proaches that do not require specialised computer equipment, aiming to provide

methods that can be directly used with on-premises computers.

The analysis consists of multiple steps that consecutively reduce and transform

the search space, focusing on cluster analysis methods. The main contributions

of this chapter consist of a subsampling method that allows for more efficient

density clustering, and a two-stage clustering procedure designed to efficiently

utilise the DBSCAN clustering algorithm for grouping and noise reduction. Fur-
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thermore, a DBSCAN parameter estimation method is presented, which can be

applied across datasets captured by different ultrasonic inspection probes without

utilising explicit knowledge of the probes characteristics.

The proposed procedure was tested across a large number of real-world datasets

captured from sections of pressure tubes containing flaws utilising an automated

evaluation procedure showing satisfactory results.

4.2 Ultrasonic Inspection Data

The datasets involved in the following analysis contain the inspection ultrasonic

waveform data obtained by the 20MHz NB, the APC and the CPC probes of the

CIGAR tool from sections of the inside surface of several pressure tubes. The tool

scans the area of interest in axial and rotary increments effectively providing a set

of three waveforms for each of the individual positions. The recorded waveforms

consist of sampled echo amplitudes in the time domain and are presented in the

form of A-Scans.

Each dataset is obtained from separate areas of interest that are known to con-

tain surface flaws of debris fretting type. However, the available A-Scans are

unlabelled, i.e. the individual signals are not accompanied by the information of

whether their location is within or outside the irregularly shaped flawed areas.

The locations of the flaws, as well as the dimensions of their bounding boxes, have

been verified manually by independent analysts, and provide the ground truth

necessary for the performance assessment of the proposed data-driven approach.
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4.3 Feature Selection

As the aim of this chapter is to identify and isolate groups of signals, it is useful

to condense the information contained in each signal (average of 490 data points

of amplitude-time pairs) into small subsets of representative features which act as

the input to the learning process. Driven by the requirement to provide a general

system that is able to adapt to the diverse surface pressure tube conditions and the

irregularly shaped flaws, the features are selected based on a set of characteristics

that aims to facilitate the formation of a non-system-specific procedure.

The basis of the proposed selection is that the features should be descriptive char-

acteristics of the individual signals that do not require explicit threshold-based

assumptions about the signal, nor are parameter-sensitive. Therefore, descriptive

statistical measures that quantitatively summarise the entire signal were chosen

instead of methods based on the detection of explicitly defined signal characteris-

tics. Furthermore, the signals are not filtered through signal transformation pro-

cedures, such as Fourier Transform (FT), Short-Time Fourier Transform (STFT)

or Discrete Wavelet Transform (DWT). These techniques are known to be effec-

tive [143], however they would increase the computational effort, as well as the

complexity of the system, as they require careful parameter selection [144, 145].

Therefore, since the main scope of this thesis is the introduction of system agnos-

tic analysis methods, the feature selection process has been focused on features

that are commonly used by the experts due to their effectiveness [143], easy to

interpret, and require no parameter tuning. Nevertheless, the general methods

presented on this thesis can be seamlessly applied to any extended set of features.
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The extracted features from each N -sample discrete signal x are:

� Sample variance:

σ2 =
1

N − 1

N∑
i=1

(xi − x̄)2, (4.1)

where x̄ is the sample mean:

x̄ =
1

N

N∑
i=1

xi, (4.2)

� Maximum amplitude:

peak(x) = max (x), (4.3)

� Minimum amplitude:

trough(x) = min (x), (4.4)

� Index of maximum amplitude:

imax(x) = argmax(x), (4.5)

� Index of minimum amplitude:

imin(x) = argmin(x), (4.6)
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These features, although simple, are showing promising capabilities of carrying

information about the condition of the pressure tube surface and potential flaws.

A way of illustrating this information is a two-dimensional top view presentation

(C-Scan) of the dataset where each pixel represents the physical position of a

signal, and its intensity represents the value of the corresponding signal’s feature

(e.g. Figure 4.1).

Figure 4.1a illustrates an example where the condition of the inside surface of

the pressure tube enables each feature to produce a clear view of the location

and shape of the flaw. However, this is not the general case as the presence of

various factors, such as foreign material or/and accumulated oxide on the surface

of pressure tubes and within the flaw, can cause additional signal scattering and

reflections creating noisy patterns that are more challenging to be addressed by

the features (e.g. Figure 4.1b). The random behaviour of these factors poses a

problem for modelling and predicting the degree to which they affect the per-

formance of the features on each unique pressure tube environment. Therefore,

the proposed methodology utilises the full set of equally weighted features to

represent the signals in the unsupervised learning process.
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(a) Example flagged area 1: The clean con-
dition of the surface allows for a clearer view
of the flaw.

(b) Example flagged area 2: The presence of
foreign material, or/and oxide, on the sur-
face, interferes with the signals, resulting in
noisy patterns that make the distinguishing
between flaw and surface more difficult.

Figure 4.1: Examples of C-Scans generated for two areas containing flaws, utilis-
ing the values of individual features.
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4.4 Unsupervised Signal Analysis

4.4.1 Selection of Clustering Algorithm

The problem of grouping together unlabelled ultrasonic signals is being approached

through unsupervised clustering, which acts as the backbone of the multi-step

analysis presented in this chapter. Specifically, this chapter focuses on the utili-

sation of the machine learning algorithm called DBSCAN (Density-Based Spatial

Clustering of Applications with Noise) [25]. DBSCAN clustering has proven to

work in practice and has been awarded the 2014 Special Interest Group on Knowl-

edge Discovery and Data Mining (SIGKDD) test of time award.

In addition to DBSCAN’s core advantages which are presented below, DBSCAN

was selected because it is well suited for the novel subsampling/remapping process

introduced on Section 4.4.3, which enables further computational improvements.

DBSCAN utilises a density-based notion of clusters where a cluster of data points

is considered to be a high-density region which is separated from the other clusters

by low-density regions.

This approach allows DBSCAN to detect arbitrarily shaped clusters [146], and

differs from other popular clustering algorithms, such as K-Means [147] and Mean

Shift [148], where the clusters are defined by their centres and causes them to

underperform when processing non-spherical shaped clusters.
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Another important advantage of DBSCAN within the application area of this the-

sis is that it operates without requiring a predefined number of expected clusters.

On the other hand, algorithms such as K-Means and Gaussian Mixture Models

[149] require to the number of clusters as a parameter. Although it is possible to

heuristically estimate the optimal number of clusters in a dataset [150], it is not

computationally efficient for the large number of datasets used in this thesis as

a separate analysis would be required for each dataset. Therefore, since the pro-

posed application is aimed at handling inspection signals, the utilised algorithm

should be able to determine the different (a priori unknown) number of groups

and not forcing the data to fit the assumptions about the dataset.

DBSCAN requires two input parameters (Eps: Maximum local radius of the

neighbourhood of a point, MinPts: Minimum number of points in the Eps-

neighbourhood of a point) that operate as a measure of minimum density level

estimation and operates by iteratively distinguishing each data point as one of

the following types (Figure 4.2):

� Core point: a point with a dense neighbourhood

� Border point: a point that belongs to a cluster but its neighbourhood is

not dense

� Noise point: a point that does not belong to any cluster
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DBSCAN calculates the density around the user-specified Eps-neighbourhood of

each data point, and applies the MinPts threshold to assign a type (i.e. core,

border, noise) to that data point. Then, core points with overlapping Eps-

neighbourhoods (called density reachable points) are joined a cluster, followed

by the assignment of border points to their corresponding clusters.

Figure 4.2: Example of DBSCAN clustering with parameters MinPts = 3 and
Eps = radius

An illustration of its capabilities is presented on Figure 4.3 which shows how

different popular clustering algorithms handle arbitrarily shaped clusters, as well

as the ‘null’ dataset that represents one homogeneous cluster, with the corre-

sponding computational efficiencies summarised on Figure 4.4. The comparison

additionally includes the algorithms BIRCH [151], OPTICS [152], Agglomerative

Clustering [153], Ward hierarchical clustering [154], Spectral Clustering [155, 156],

and Affinity Propagation [157].

As it is presented on Figure 4.4, the computational efficiency of DBSCAN is com-

petitive when the datasets under consideration are of moderate size (n ≤ 5 000).

However, as the sample size scales up, DBSCAN experiences a decline in perfor-

mance relative to the top performing algorithms. To illustrate the computational

performances on large sample sizes, an additional comparison test was conducted

on a single-cluster artificial dataset of sample size nlarge = 150 000. As evidenced
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(a) n = 500

(b) n = 2500

(c) n = 5000

Figure 4.4: Computational time comparison of popular clustering algorithms on
publicly available artificial datasets [158], for different sample sizes. The com-
putational times are compared to the baseline time of DBSCAN, showing that
DBSCAN offers competitive processing times, while providing advantageous clus-
tering characteristics shown on Figure 4.3.
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by the plots of Figure 4.5, given a larger sample size, the computational overhead

of DBSCAN is significantly higher than that of the rest of the popular cluster-

ing algorithms. Therefore, it is important to derive a procedure that preserves

the useful clustering characteristics of DBSCAN, while maintaining more efficient

time and space complexities.
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(a) Generated clusters.

(b) Computational time.

(c) Memory usage.

Figure 4.5: Comparison of popular clustering algorithms on a single-cluster ar-
tificial dataset [158], for large sample size nlarge = 150 000. The computational
overhead of the DBSCAN algorithm is significantly higher compared to the other
algorithms.
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4.4.2 Feature Standardisation

Following the feature extraction step, each signal is represented by its correspond-

ing set of feature values. This enables greater computational efficiency during the

subsequent clustering procedure due to the inherent reduction of the search space.

Preceding the clustering procedure is a pre-processing step which reformats the

features onto the same scale (feature rescaling). This is required by algorithms

which use distance metrics (such as the Euclidean distance) as the rescaled values

of the features will ensure that features with intrinsically large numeric values will

not dominate the computed distances. Two common approaches to rescaling are:

normalisation and standardization.

Normalisation is often approached as a case of ‘min-max’ rescaling where the

feature values are rescaled to fit within fixed intervals such as [0, 1] or [−1, 1]. To

map each sample feature value x(i) in [0, 1] the following linear transformation

(Equation 4.7) can be used:

x(i)′ =
x(i) − xmin

xmax − xmin

(4.7)

where xmax denotes the maximum value of the corresponding feature sample

values and xmin the minimum value. This transformation can be extended to any

interval [a, b], a, b ∈ R as follows (Equation 4.8):

x(i)′ = (b− a)
x(i) − xmin

xmax − xmin

+ a (4.8)
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However, this approach is very sensitive to outliers [159] as the presence of a single

extreme outlier is sufficient for the remaining sample values to be significantly

compressed within a small range of values for the requirement of strict range

boundaries to be satisfied [62].

An alternative approach to rescaling is the transformation of the feature values so

that they are re-centred around zero with standard deviation 1. This procedure

is called standardisation and the calculation of the new standardised value x
(i)
std

of a sample x(i) is expressed by Equation 4.9:

x
(i)′

std =
x(i) − x̄

σ
(4.9)

where x̄ = average(x) is the sample mean of the particular feature, and σ is the

corresponding standard deviation. The effect of normalisation and standardisa-

tion have on the distribution of the feature values is illustrated in Figure 4.6.

In contrast to normalisation, standardisation does not map the feature values

within a fixed interval, thus being less sensitive to outliers. Naturally, extreme

values will still affect the transformed values of the main body of data, as they

participate in the calculation of the sample mean and sample standard deviation.

However this effect is dependant on sample size and, given the high axial and

rotational scanning resolution that enables large number of samples per scanned

area, it is expected to be less significant than when performing minmax nor-

malisation where even the most extreme sample values are forced within a fixed

interval.
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(a) Example dataset 1

(b) Example dataset 2

Figure 4.6: Examples of feature values (variance, maximum, minimum, position
of maximum) distributions for different datasets obtained by the Normal Beam
probe. The left column presents the distributions of the raw feature values, the
middle column shows the effect of linearly rescaling the feature values within a
fixed range (here [0, 1]), and the right column shows the effect of standardising
the feature values to a distribution of sample mean x̄ = 0 and standard deviation
σ = 1.
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The significance of outlier sensitivity of the feature rescaling techniques for this

body of work lies on the fact that the detection of samples that are ‘abnormally’

distant from the main body of samples (assumed to represent the ‘healthy’ part of

the scanned pressure tube surface) constitutes its main objective. As the methods

of this research do not assume a priori knowledge of the boundaries between

‘healthy’ and ‘unhealthy’ subspaces of the feature space, but instead explore

the inter-sample Euclidean distances (distance matrix), it is important that the

relative expected difference between ‘healthy’-to-‘healthy’ sample distances and

‘healthy’-to-‘unhealthy’ sample distances does not fluctuate significantly between

inspection datasets of different pressure tube areas or different pressure tubes.

This allows for a narrower range of clustering parameter values that are relevant

across different datasets and enable consistent grouping of the main body of

‘healthy’ samples present within the datasets.

The following comparative test (Figure 4.7) is designed to examine the consistency

of clustering results across different datasets depending on the feature rescaling

method used as a pre-processing step. This process starts with manually selecting

sets of clustering parameters that generate similar results (Table 4.1) on a small

sample of inspection datasets for both feature rescaling methods.
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Figure 4.7: Process for generating comparative clustering results from two rescal-
ing methods for variation comparison.

Table 4.1: Clustering parameters used for the two feature rescaling
techniques and coverage of the largest clusters.

minimum radius coverage radius coverage
samples minmax minmax standardisation standardisation

3 0.08045 0.984 1 0.983
6 0.055 0.992 0.7 0.991
9 0.04463 0.973 0.6 0.974

The manual selection of clustering parameters was performed by selecting a fixed

value for the DBSCAN parameter related to minimum number of neighbours

(integer data type) for a sample to be considered as a core point and adjusting

79



4. AUTOMATED ULTRASONIC CLUSTER ANALYSIS FOR
FLAW DETECTION

the neighbourhood radius (float data type) parameter until the coverages1 of

the largest clusters generated from normalised and standardised features were

matched up to the second decimal.

Each of the fixed (three) sets of clustering parameters was generated using a

different randomly selected dataset, and these manually selected sets of cluster-

ing parameters were applied to grouping together samples within nsample = 500

randomly selected datasets.

Figure 4.8 illustrates the variability of the ratio between the sample population of

the largest group identified within each dataset and the total sample population

of the corresponding dataset, for different clustering parameter values (DBSCAN

parameter expressing the minimum number of neighbours for a sample to be

considered as a core point) and the two rescaling methods (minmax for the interval

[0, 1], and standardisation by re-centering such as x̄ = 0 and σ = 1). It can be

observed that standardisation offers transformed values that enable the clustering

algorithm to sustain smaller (compared to minmax) variability within its results

when applied to different datasets using the same clustering parameter values.

This becomes more apparent (Figure 4.9) for larger ‘minimum samples’ values

that utilise smaller radius values that decrease the clustering algorithm’s ‘reach’

resulting in greater variability within the clustering results.

1Coverage refers to the ratio of number of samples belonging to the largest cluster, versus
the total number of samples.

80



4. AUTOMATED ULTRASONIC CLUSTER ANALYSIS FOR
FLAW DETECTION

Figure 4.8: Boxplots illustrating the variabilities of the ratio between the sample
population of the largest group identified within each dataset and the total sample
population of the corresponding dataset, for different clustering values and the
two rescaling methods. The plots consist of the following elements: the box
illustrates the interquartile range (IQR), the horizontal coloured line represents
the median, the whiskers extend up to 1.5∗(IQR) from the corresponding quartile,
and the points outside the area defined by whisker plot ends are considered as
outliers.
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Figure 4.9: For a fixed neighbourhood radius value, by increasing the ‘minimum
samples’ values during the manual parameter selection process, smaller cluster-
ing radius values were required to maintain similar initial clustering coverages,
reducing the clustering algorithm’s ‘reach’ and generating more variable results.

4.4.3 Subsampling DBSCAN Wrapper

Prior to introducing and applying the two-stage clustering procedure, a novel

subsampling method, is presented that wraps DBSCAN and reduces the com-

putational effort of the clustering procedure. It is effective for large volumes of

low-cardinality input data containing multiple repeating unique sets of feature

values. This method subsamples a representative input subset which partici-

pates in the clustering procedure. The generated clustering labels can then be

re-mapped back to the original input data.

82



4. AUTOMATED ULTRASONIC CLUSTER ANALYSIS FOR
FLAW DETECTION

4.4.3.1 Rounding Step

The initial step of this procedure is based on the assumption that the transfor-

mation of the feature values during the rescaling step introduced insignificant

decimal digits that can be viewed as a source of false precision. Therefore, there

should exist decimal positions that the transformed values can be rounded up to

without significantly altering the properties of the underlying distribution.

To identify potential appropriate decimal positions, n = 20 sample datasets were

randomly selected and their standardised feature values were rounded up to dif-

ferent test decimal positions and their new distributions were compared to the

original distribution of the scaled feature values (x̄ = 0, σ = 1). Figures 4.10a and

4.10b show that the values of the observed means and standard deviations of the

test datasets’ rounded feature values for the decimal positions 0 (integer), 1, 2,

3, 4, 5, and 6, do not deviate significantly from x̄ = 0, σ = 1. Furthermore, given

the small number of features, by reducing the available decimal points within

the feature values the number of unique sets of feature values is also significantly

reduced. Figure 4.10c illustrates the percentage reduction between the initial

number of unique sets of scaled feature values and the number of unique sets of

scaled feature values after the rounding.
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(a) Observed means of the test datasets’
rounded scaled feature values.

(b) Observed standard deviations of the test
datasets’ rounded scaled feature values.

(c) By reducing the available decimal points,
and given the small number of features, sig-
nificantly fewer unique sets of feature values
are available.

Figure 4.10: Characteristics of the scaled feature values that have been rounded
up to different decimal positions.
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4.4.3.2 Representative Participating Subsamples

The proposed approach of reducing the computational effort of the clustering

procedure is taking advantage of the decreased number of unique sets of values

produced by the rounding step and is supported by the fact that one of the

requirements for DBSCAN to consider a data point as a core point is that the

number of data points within its neighbourhood must be greater or equal to a

defined minimum number.

The decreased number of unique sets of values could result in increased counts of

duplicated members that are uniquely described by these feature values. Thus,

by involving in the computation only enough representative members to satisfy

the ‘minimum number of samples’ parameter of DBSCAN, the clustering results

should be sufficiently similar to the clustering results involving all the available

samples, while the computational effort could potentially be decreased.

Figure 4.11 illustrates the steps involved in utilising the minimum representatives

subsampling method for clustering a feature space with the DBSCAN clustering

algorithm. The process splits the rounded feature values into two groups; a non-

participating subset and a participating subset, the members of which act as

representatives of the non-participating members. The clustering step uses stan-

dard DBSCAN Python libraries [158] and requires no alterations to the existing

implementation. Following the grouping of the participating feature subset the

labels are then mapped to the corresponding non-participating members.
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Figure 4.11: Flowchart of subsampling method.

4.4.3.3 Assertions Testing

This section is concerned with demonstrating that the proposed subsampling

process is both correct and useful. This is approached by testing two important

assertions:

(i) The process of assigning core points by DBSCAN is deterministic and order

invariant, i.e. given the same clustering parameters, a cluster will always

have the same core points regardless of the order the samples are pro-

cessed. However, the cluster labelling of a border point approachable by
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more than one clusters is non-deterministic and will get assigned the label

of the first cluster to approach it. Therefore, if the random state of the

involved computational processes is fixed, the groups obtained when apply-

ing the subsampling/mapping pre/post-processing step should be identical

to the groups generated when DBSCAN is directly applied to the feature

space.

(ii) The computation time of the pre/post-processing step, along with the clus-

tering step, should be less or equal to the clustering time of the original

feature space. It is expected that the computational benefit will be greater

for larger differences between the size of the set of unique sample values

against the sample size of the dataset. This also implies that when every

sample of the dataset is unique there will be no computational benefit, i.e.

the method will perform exactly as a vanilla DBSCAN.

To compare the clustering operations between the two methods, two-dimensional

datasets were generated as test examples. The datasets consist of randomly

generated neighbourhoods of points with some level of overlap (illustrated at

Figure 4.12a. The datasets were processed with and without subsampling using

identical DBSCAN parameter values which were selected such that they allow for

more than one cluster.

To enable the comparison of the groups, since the order of DBSCAN groups is

not deterministic, the resulted groups were sorted according to number of group

members. The comparison showed that the groups are exactly identical (Figures

4.12b and 4.12c).
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(a) Generated example dataset.

(b) Clustered with DBSCAN.

(c) Clustered with DBSCAN using the
proposed subsampling method (DBSCAN
Clipped).

Figure 4.12: Scatter plots of randomly generated example dataset. The clustering
results of DBSCAN combined with the subsampling method are identical to the
original DBSCAN clustering results. The clusters’ labelling is reordered by sample
size.
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To explore potential computational time benefits of subsampling, the two clus-

tering approaches were timed for generated 2D datasets of various sample pop-

ulations and decimal point accuracies. Figure 4.13 illustrates that the benefits

become more evident as the population increases and the decimal point accuracy

decreases, i.e. when the ratio of number of unique sets of feature values over the

size of population decreases.

Figure 4.13: Computational time comparison between DBSCAN clustering and
DBSCAN clustering wrapped with the subsampling method (labelled here as ‘DB-
SCAN Clipped’). The benefits become more evident as the population increases
and by decreasing the decimal point accuracy, i.e. when the ratio of number of
unique sets of feature values over the size of population decreases.

To further demonstrate the efficiency of the proposed method, Figures 4.14 and

4.15 summarise its performance relative to DBSCAN and the algorithms that

participated in the large sample size comparison of Figure 4.5. The results indi-

cate that the proposed method exhibits competitive efficiency, while maintaining

the useful clustering characteristics of the DBSCAN algorithm.
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(a) Generated clusters.

(b) Computational time.

(c) Memory usage.

Figure 4.14: Comparison of DBSCAN clustering wrapped with the subsampling
method (‘DBSCAN Clipped’), DBSCAN and other popular clustering algorithms
on a 2-cluster artificial dataset [158], for large sample size of nlarge = 150 000
rounded at 2 decimal places.
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(a) Generated clusters.

(b) Computational time comparison.

(c) Memory usage.

Figure 4.15: Comparison of DBSCAN clustering wrapped with the subsampling
method (‘DBSCAN Clipped’), DBSCAN and other popular clustering algorithms
on a single-cluster artificial dataset [158], for large sample size nlarge = 150 000,
rounded at 1 decimal place.
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Finally, the two methods were compared for a sample of B-Scan datasets (n =

73 ≈ 10% of total datasets, each containing data from three probes) to examine

the behaviour under more noisy and multi-dimensional datasets. The compar-

ison was repeated for three sets of DBSCAN parameters that were empirically

evaluated to provide different levels of ‘rigidity’; from ‘strict’ neighbourhood re-

quirements that result into more clusters and more data points classified as noise,

to more meaningful and ‘inclusive’ neighbourhoods that tend to generate a single

major cluster followed by a small number of smaller clusters and noise.

The usage of subsampling consistently decreased the total computational time

required by the clustering process and the difference was more pronounced for

parameter values that allowed for larger clusters (Table 4.2). The clustering re-

sults were identical for all (657 =(73 datasets)×(3 probes)×(3 tested parameters))

the tested cases.

Table 4.2: Comparison of computational time required for clustering sample B-
Scan datasets (n = 73, each containing data from three probes) with and without
subsampling.

Radius Time (mins) Time (mins) Time difference
DBSCAN with subsampling no subsampling (%)

0.2 9.583 11.78 -19%
0.6 14.58 18.75 -22%
1.0 12.43 20.35 -39%
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4.4.4 Two-Stage Clustering

Having established the pre-processing approach, this section introduces the two-

stage clustering process that takes as input the standardised features and outputs

the final segmentation of the data. The process separates the feature values

from their spatial information and each participates in separated linked clustering

stages. Following is a description of the stages and a summary of the benefits

that arise from the separation of the clustering process into two stages.

The first stage involves an exploration of the feature space and aims at reducing

the size of the sample by eliminating the majority of “healthy” signals, and isolate

signals of ambiguous nature. The output of this clustering is a label attached to

each unique feature set, indicating the class/group that it belongs. This stage

is the most computational intensive of the two stages, as it involves multiple

feature values of the entire population of the dataset. However, it utilises the

subsampling method which, as is shown in Section 4.4.3, has the potential to

decrease the computational time.

Given the unbalanced nature of the datasets, i.e. the healthy section of the tested

area is larger than the flawed section, an assumption is made that the group with

the larger number of members belongs to the healthy section, thus the remaining

groups contain potentially flawed areas or noise. Therefore, only the smaller

groups of samples will proceed to the next clustering stage.
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The samples that proceed at the second stage of the clustering procedure are

being represented only by their location properties, i.e. axial position and rotary

position, and are all considered as potentially “flawed” signals. The dual purpose

of this stage is to:

� Eliminate outliers/noise by identifying samples that are not members of the

“healthy” group and are located in a sparse neighbourhood

� Group together samples that are not members of the “healthy” group and

are located in a dense neighbourhood

This step is essential for formulating the final group comprising of samples which

are members of the flaw. It provides the means to group together signals that

although obtained from a flawed region, might not be initially grouped together; a

consequence of the diverse characteristics that constitute a flaw and their different

impact on the reflected signals. Therefore, the location-based clustering is aiming

at re-grouping those signals together, utilising the fact they should be located in

close proximity.

The output of the location-based clustering is the updated signal labels: Samples

that belong to a group are classified as part of the flawed region, and samples

that were labelled as noise/outliers are discarded as being members of the healthy

region. Figure 4.16 provides a high-level flowchart that summarizes the steps

taken by the clustering procedure. This process can be applied to the different

datasets obtained by each of the ultrasonic probes (APC, CPC and 20 MHz NB).
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Figure 4.16: Flowchart of the clustering procedure.

95



4. AUTOMATED ULTRASONIC CLUSTER ANALYSIS FOR
FLAW DETECTION

The main benefit of not including the location indices within the initial clustering

and instead utilising a two-stage clustering approach is decreased computational

time due to:

� Decreased search space during the most computationally demanding step

as two uniformly distributed feature vectors (location indices) are omitted.

Instead, the location indices are participating only in the second clustering

stage, where, by design, the number of participating members should be

less to the number of the samples contained within the original dataset.

� Facilitation for the existence of multiple data points that share the same

rounded feature values. This enables the subsampling method (Section

4.4.3) to offer potentially decreased computational time as some of the re-

peated data points will be omitted from the clustering procedure. This

would never be the case if the location indices are included, as they are

strictly not repeating combination of values.

4.4.5 DBSCAN Parameter Selection

As mentioned earlier (Section 4.4.1) the DBSCAN clustering algorithm requires

two initial input parameter values, the local cluster radius and the minimum

members required to form a cluster, which are referred to as Eps and MinPts

respectively, and both have a significant influence on the clustering results [160].
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For the purposes of this work, during the first stage of the clustering procedure

(feature-based) the minimum members parameter was kept constant at a low

MinPts= 3 while a range of radius (Eps) values were applied across a sample of

datasets. For each clustering outcome two quantities were measured to assist the

evaluation of the parameters’ suitability:

1. Ratio of sample size classified as noise over the population size of the

dataset.

2. Ratio of sample size of the largest cluster over the population size of the

dataset.

The purpose of this heuristic approach is to provide an estimation of the ef-

fect that the local radius has on the cluster formation on the type of inspection

data that this work investigates, without utilising explicit knowledge of the flaw

characteristics contained within each dataset.

Figures 4.17 illustrate the extracted median and mean of the calculated quantities

for each of the sampled ultrasonic probes. These elbow plots are used as guides for

estimating minimum local cluster radius values that potentially balance between

‘too strict’ radius requirements that tend to discard many data points as ‘noise’,

and very ‘inclusive’ parameters that tend to capture all of the data points into

one cluster.
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(a) Flaw 1

(b) Flaw 2

(c) Flaw 2

Figure 4.17: Median and mean of the ratios nnoise

npopulation
and

nlargest cluster

npopulation
of the sample

ultrasonic probes. These elbow plots are used as guides for estimating minimum
local cluster radius values that potentially balance between ‘too strict’ radius
requirements that tend to discard many data points as ‘noise’, and very ‘inclusive’
parameters that tend to capture all of the data points into one cluster.
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As currently there is no commonly accepted automated method for a priori se-

lection of DBSCAN parameters, this work’s selection method is utilising soft

assumptions related to the given type of inspection data. These assumptions

include that the captured inspected area contains mainly ‘healthy’ regions and

that some of the datasets will not present informative feature values regarding

the underlying flawed area as not all types of probes are suitable for all types of

flaws.

Based on the aforementioned assumptions and requirements the initial Eps values

selected for the NB probe (Figure 4.17a) and APC probe (Figure 4.17c) are 0.9

and 0.5 respectively.

However, Figure 4.17b shows a long discrepancy between the mean and the me-

dian of the largest cluster ratio, indicating the presence of additional significantly

large clusters that persist the merging into the main cluster. Upon visual inspec-

tion of the abnormal results it has been identified that in the case of CPC, the

feature argmin, i.e. the position of the minimum amplitude, can be significantly

sensitive to certain surface texture, resulting in the generation of large false posi-

tive clusters (an example case is illustrated at Figure 4.18). These resulted in the

feature being excluded from the feature space of CPC for any further testing.

Figure 4.19 plots the mean and median of the largest cluster ratio and noise

ratio that were re-generated for the CPC datasets excluding the feature argmin,

showing faster convergence. The Eps value selected for the CPC datasets is 0.6.
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(a) Flaw 1:
Maximum.

(b) Flaw 1:
Minimum.

(c) Flaw 1:
Variance.

(d) Flaw 1:
Position of maximum.

(e) Flaw 1:
Position of mininum.

(f) Flaw 1: Clustered.
Noise patterns match the
patterns showing in the C-
Scan of the position of min-
imum (Figure 4.18e).

(g) Flaw 2:
Maximum.

(h) Flaw 2:
Minimum.

(i) Flaw 2:
Variance.

(j) Flaw 2:
Position of maximum.

(k) Flaw 2:
Position of minimum.

(l) Flaw 2: Clustered. Noise
patterns match the patterns
showing in the C-Scan of
the position of minimum
(Figure 4.18k).

Figure 4.18: C-Scans of features and processed segmented binary labels (bright:
anomalous area, dark: healthy area) from two example CPC datasets exhibiting
large false positive areas. The patterns indicate that the position of minimum of
CPC A-Scans might be inappropriate as a feature as it can be sensitive to surface
conditions that are not considered as ‘flawed’. The red box shows the expected
position and size of the flaws based on analysts’ reports.
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Figure 4.19: The mean and median of the largest cluster ratio and noise ratio
that were re-generated for the sample CPC datasets excluding the feature argmin,
showing faster convergence. The Eps value selected for the CPC datasets is 0.6.

4.5 Results

The proposed clustering methodology was applied on 766 datasets, each contain-

ing data from 3 ultrasonic probes (NB, CPC and APC) utilising the parameter

values determined in Section 4.4.5. The task was completed in 2 hours and 39

minutes, on an Intel(R) Core(TM) i5-8400 CPU 2808 Mhz 6 Cores processor,

with 32GB of RAM.

Figure 4.20 presents examples of resulted C-Scans for three different datasets

and for each ultrasonic probe. Each pixel represents the label assigned to the

corresponding A-Scan: “bright” represents signals classified as “healthy” and the

dark represents “flawed” signals. The red boxes represent areas where expert

analysts have verified the presence of a flaw. Small deviations from the exact
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(a) Flaw 1 (NB) (b) Flaw 1 (CPC) (c) Flaw 1 (APC)

(d) Flaw 2 (NB) (e) Flaw 2 (CPC) (f) Flaw 2 (APC)

(g) Flaw 3 (NB) (h) Flaw 3 (CPC) (i) Flaw 3 (APC)

Figure 4.20: Examples of C-Scans resulted from the A-Scan clustering procedure
(bright: classified as anomalous areas, dark: classified as healthy areas).

position are expected as there can be misalignment between the primary tool

(GH scans) used by analysts to perform the initial flaw analysis and the tool

extracting the detailed A-Scans.

Figures 4.20g and 4.20h further include examples of false positives, where loca-

tions of the healthy section are indicated as “flawed”. This is a result of the dif-

ferent conditions of the pressure tube and the area surrounding the flaw, affecting

heavily the propagating signals. However, the diversity of the probe configuration

should enable future work to eliminate the noisy clusters by fusing the results of

the different probes.

In total, the examined datasets contained 809 flawed areas, of which 93% were

detected by the proposed clustering procedure within at least one of the three

different probe datasets. Table 4.3 provides an overview of the detection rates

achieved by each probe individually. The fact that the individual detection rates
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for each probe are lower than the overall detection rate shows that the probes

can supplement each other during the flaw detection task. As it was discussed on

Section (Inspection Setup) the orientation of the probes is such that any point of

the pressure tube’s internal diameter can be inspected both directly from above

(NB probe) and below through full skip propagation (CPC and APC). The longer

travel paths through the material of the pitch-catch beams (APC and CPC)

suggest that they are expected to carry echoes with lower SNR, resulting into

poorer results, compared to NB, if all flaws are taken into account. Nevertheless,

both the experience of the ultrasonic inspection experts, and the results of the

data-driven analysis, confirm that pitch-catch beams enhance the overall flaw

detection rate as they complement the NB probe on cases where straight normal

beam inspection of a flaw is not feasible.

Table 4.3: Detection rates per probe.

Probe Detected Percentage

NB 680 84%
CPC 507 63%
APC 564 70%

Total detected: 93%
(out of 809)

Figures 4.21 show the distribution of sizing differences between the flagged ar-

eas and the sizes measured by expert analysts. The performance regarding the

‘length’ sizing is lower than the ‘width’ sizing performance as it involves the sizing

of flaw tails which is a heavily subjective task.

103



4. AUTOMATED ULTRASONIC CLUSTER ANALYSIS FOR
FLAW DETECTION

(a) Length (NB) (b) Width (NB)

(c) Length (CPC) (d) Width (CPC)

(e) Length (APC) (f) Width (APC)

Figure 4.21: Sizing results (size(flag)-size(verified)).
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However, although the ‘width’ sizing performance is satisfying, the accumulation

of outliers near the 30 degrees position of the Figures 4.21d and 4.21f indicate

the existence of a factor that contributes towards the flagging of large areas that

overlap with the position of the flaw.

To further examine the quality of the produced flags each processed dataset was

examined for flags that did not overlap with the verified flaw. Table 4.4 sum-

marises the false positive rates and shows that often additional flagged areas

appear alongside the main flag.

Table 4.4: Percentage of datasets containing additional (possible false positives)
flags.

Probe Additional flags

NB 40%
CPC 35%
APC 22%

Figure 4.22: Confusion matrix showing the number of True Positives, i.e. detected
flaws, False Positives, i.e. additional flags that are possibly not flaws, and False
Negatives, i.e. undetected flaws. Due to the nature of the problem, and the
approach, there is no notion of True Negatives.
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To decrease the effects of false positives, each dataset was re-processed with in-

creased local radius Eps values for each probe: Eps(NB)= 1.0, Eps(CPC)= 0.8

and Eps(APC)= 0.8.

Following are the updated results for local radius parameter value. Table 4.5

shows that detection rates have dropped to 90% as a consequence of elimi-

nating some false positive flags (Table 4.6) due to the decreased requirements

(i.e. increased local radius parameter) for incorporating samples into the main

(‘healthy’) cluster. Here, the term false positive indicates a large flagged area

that happened to overlap with a verified flaw.

Figures 4.24d and 4.24f show that the accumulation of outliers near the 30 de-

grees position has now been eliminated and only scattered low-count outliers are

present.

Table 4.5: Detection rates per probe, after increasing the local radius parameter.

Probe Detected Percentage

NB 658 81%
CPC 413 51%
APC 470 58%

Total detected: 90%
(out of 809)

Table 4.6: Percentage of datasets containing additional (possible false positives)
flags, after increasing the local radius parameter. Decreased values compared to
Table 4.4.

Probe Additional flags

NB 34%
CPC 20%
APC 11%
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Figure 4.23: Confusion matrix after increasing the local radius parameter. Com-
pared to the smaller local radius results (Figure 4.22), there is a decrease in the
false positive counts by n=-106 (-22.5%), however the true positive counts were
also reduced by n=-30 (-4%).

Table 4.7: Evaluation metrics for different local radius (Eps) values. The in-
creased radius increased the coverage of the ‘healthy’ cluster, resulting in higher
precision, at the expense of recall.

Experiment Precision score Recall score F1 score

Small Local Radius 0.62 0.93 0.74
Large Local Radius 0.67 0.90 0.77

4.5.1 Discussion Of Results

The analysis of the results showed satisfying performance for both detection and

sizing. However, this was implemented in an automated way and therefore some

errors should be expected due to the 766 datasets and 809 target flaws not being

curated individually.
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(a) Length (NB) (b) Width (NB)

(c) Length (CPC) (d) Width (CPC)

(e) Length (APC) (f) Width (APC)

Figure 4.24: Sizing results (size(flag)-size(verified)) with increased local radius
parameter value (Eps).
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Specifically, a small number of ‘successful’ detections could be due to a large area

being incorrectly flagged and overlapping with the flawed area. Nevertheless, the

good sizing performance provides additional confidence in the validity of the flaw

detection results.

On the other hand, there can be factors that have adverse effect on the reported

detection rate, i.e. a situation where it would not be possible from the analysis

of a given dataset to detect the associated flaw(s) but due to the automated

assessment procedure not identifying this being the case, the flaw is reported as

undetected by the algorithm.

To further investigate this potential issue, a manual evaluation of undetected flaws

with depth ≥ 0.15mm (‘dispositionable’ flaws) was carried out. This category

of flaws contains 302 flaws of which 280 (93%) were reported as ‘detected’ by

the automated assessment. The manual evaluation of the remaining 22 flaws

showed that only 6 were wrongfully rejected as noise and therefore it is required

to further investigate the causes. The causes of the remaining 18 flaws reported

as undetected were due to problems with either the datasets or the automated

assessment procedure:

� 5 were duplicated versions of already detected flaws. The automated as-

sessment procedure processes the provided verified analysis documents to

extract verified information about the flaws. In these cases it failed to iden-

tify these flaws as duplicated due to slight deviations in their descriptions
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multiple documents. The produced flags are unique instances that are as-

signed to overlapping verified Flaws only once, thus one instance of the

‘duplicated’ flaws is reported as ‘missed’.

� 4 belonged to unsuitable datasets as they are obtained from an outlier

pressure tube with multiple manufacturing flaws.

� 4 were reported as not detected because of large misalignment between the

B-Scans (used by the clustering procedure) and the GH datasets (used by

analysts).

� 2 were due to corrupted B-Scans.

Therefore, the examination of this subset of flaws showed that it is expected that

some of the flaws were erroneously reported as undetected by the clustering pro-

cedure due to miscellaneous causes, such as duplicated reported flaws, misaligned

datasets and data quality. An additional known source of potential errors in

the assessments of the results is that the automated signal analysis operate only

within the given ultrasonic datasets without access to historical results related to

prior inspection data which might had an influence on the final flaw size reported

by the analysts [80].
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4.6 Discussion

This chapter has described the development of a subsampling method and a

prototype two-stage clustering procedure that enables the automated analysis

of datasets containing ultrasonic inspection data captured by different types of

ultrasonic probes.

The pre-processing step showed both qualitative and quantitative approaches for

reducing the search space by selecting and transforming discriminative and infor-

mative signal features. This enables the usage of the subsampling method, which

wraps the DBSCAN clustering algorithm and is able to further reduce the search

space. The main idea behind the subsampling method is to identify just-enough

representative samples to participate in the computationally demanding cluster-

ing task, thus reducing significantly the memory requirements and the computa-

tion time. The efficiency of the subsampling method relative to vanilla DBSCAN,

is strictly dependent on the number of unique samples of the dataset of interest

(i.e. cardinality), relative to the size of the dataset. For datasets that fail to meet

this requirement, a level of reduced cardinality can be enforced by exploring var-

ious grouping routes, e.g. rounding at a certain decimal place or quantisation.

Therefore, the subsampling method introduces an additional analytical aspect

that needs to be tuned accordingly. Nevertheless, as demonstrated in the cur-

rent chapter, it can enable the employment of the useful clustering capabilities of

DBSCAN to larger datasets, that would otherwise be highly impractical or even
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impossible, achieving computational performance comparable to other prevalent

efficient clustering algorithms that exhibit less desirable clustering traits for the

objectives of this chapter.

The two-stage clustering procedure takes advantage of the pre-processing step

and the subsampling method, and is designed to perform efficient groupings of

the signals and noise rejection. This chain of events transforms the original high-

volume 3D data to 2D C-Scans that provide information regarding the location,

shape, and size of potentially flawed areas.

The proposed procedure was tested across 809 datasets and the produced flags

were compared to related historical analysis records showing satisfactory results

both for detection and sizing of the flaws. However, although the analysis of

errors showed that a subset of errors are due to data quality and the quality of

the automated flag assessment procedure, there is still a small percentage of flaws

that the proposed procedure was not able to detect.

A further drawback of the proposed procedure is the selection of the several pa-

rameters involved throughout the analysis. Although this thesis proposed quali-

tative heuristic methods to approach the identification of appropriate parameters,

there is still room for subjective and manual iterative tuning.

The proposed procedure was designed to offer analytical efficiency and completed

the analysis of more than 800 of multi-MB datasets, each containing data from

three types of probes, within less than three hours. However, these datasets

contain information only for segments of pressure tube surface, and the com-
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putationally intensive iterative nature of pre-processing and clustering would be

problematic for the analysis of datasets containing data from the entire surface

of a pressure tube.

Contributions of this chapter:

� Subsampling method that reduces the clustering search space of the DBSCAN

algorithm.

� Flaw detection through a two-stage clustering method of ultrasonic inspec-

tion data.

� DBSCAN parameter estimation method for ultrasonic inspection datasets.
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Chapter 5

Large-Scale Ultrasonic Anomaly De-

tection

5.1 Introduction

This chapter presents a novel large-scale anomaly detection method across high-

resolution unlabelled and unprocessed ultrasonic scans consisting of collections

of A-Scans. The method reduces the size of the data through the extraction

and transformation of signal features independently of the various surface neigh-

bourhoods’ characteristics, allowing for a normalised and consistent view of the

general current state the entire surface that enables the identification of abnormal

areas.

This is demonstrated through its application to complete full-length scans of

pressure tubes acquired by different probes, aiming to provide a fast and robust

automated procedure for supporting the analysts responsible with the health

assessment of the pressure tubes during the planned outages.
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5.2 Analysis overview

Modern ultrasonic inspection tools, such as ANDE, enable the collection of high-

resolution data in volumes that greatly surpass previous generation tools (e.g.

CIGAR), due to their more advanced technical capabilities, as well as possessing

more probes collecting a wider range of data in parallel.

Although this allows for a more detailed examination of large inspected areas, the

computational analysis of large-scale inspection data faces major challenges both

in terms of processing time and memory usage. This can render the processing of

the entire inspection dataset impractical, especially when the completion of the

health assessment is time-sensitive and a requirement for resuming operation.

Chapter 4 addressed the unsupervised computational analysis of smaller sections

of high-resolution ultrasonic data captured from surface areas previously identi-

fied to potentially contain abnormalities. Although the proposed sub-sampling

approach, in conjunction with the dual-stage density-based clustering, enabled

the analysis of those datasets (demonstrated using CIGAR datasets), the current

chapter is concerned with datasets that cover larger inspection areas, resulting in

multi-GB sizes that cannot be similarly processed in memory.

The problem will be approached mainly through an unsupervised data-driven

perspective, however, utilising general soft assumptions about signal behaviour

during feature pre-processing is an essential step towards a more homogeneous

feature space. This section will examine in detail each step of the proposed

analysis process depicted in Figure 5.1.
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Figure 5.1: High-level overview of the proposed transformation process.

5.2.1 Data description

The datasets of interest within this chapter contain collections of ultrasonic in-

spection signals obtained by 15 MHz and 20 MHz NB probes of the ANDE tool

across the main body of the pressure tube, excluding the end-parts where the

tube connects to the reactor core. The length of this area is approximately 6.2

m, covering 95% of the tube’s total length. Given the internal tube diameter

of approximately 105 mm, and the axial and rotary increments of 0.4 mm and

0.1 degrees respectively, the resulting sample sizes are between 55 and 56 million

signals. Depending on the amplitude resolution (8 bit or 14 bit) and the tempo-

ral resolution (3600 to 3750 amplitude samples) of the individual A-Scans, the

resulting file size of a dataset of a single scan ranges between 180 GB to 400 GB,

per probe. This amount of data poses a significant challenge for any automated

procedure which aims to perform an assessment within a reasonable amount of

time that does not adversely extend the analysis period of the the expert analysts

it serves.

116



5. LARGE-SCALE ULTRASONIC ANOMALY DETECTION

(a) Skewness (b) Variance (c) Kurtosis

Figure 5.2: C-Scan of a pressure tube region - Pixel intensities represent the
feature value of the corresponding A-Scans.

5.2.2 Feature selection

As the size of the data is restrictively large for single machine analysis, it is

required to condense part of the information contained within the datasets. This

can be achieved by transforming the individual A-Scans from amplitude-time

pairs into small sets of descriptive features that will act as representatives at any

subsequent analysis.

The selection of the type and number of features is an open-ended problem. Here,

the selection is based on two assumptions: First, that anomalies, such as scratches

and flaws, should generally be comprised, at least partly, of areas of increased
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surface roughness, compared to the surrounding ‘healthier’ areas. Rough surface

topography affects the reflected signal through incoherent scattering [161, 162]

which should result in some change in the shape of the signal.

The second assumption is that the shape alteration should have some effect on the

distribution of the sampled discrete intensities of each signal. Therefore statistical

measures of variability that describe some aspect of the distribution should form

an informative set of features of each signal. Similarly to chapter 4, this chapter

favours parameter-free features to participate in the presented analysis, and uses

a small set of features. Specifically, variance (Equation 5.1) is a measure of how

spread out the distribution is, kurtosis (Equation 5.3) describes the tail shape of

the distribution, and skewness (Equation 5.4) is a measure of asymmetry of the

distribution.

For N -sample discrete signal x these quantities are calculated as:

σ2(x) =
1

N − 1

N∑
i=1

(xi − x̄)2, (5.1)

where x̄ is the sample mean:

x̄ =
1

N

N∑
i=1

xi, (5.2)

Kurt(x) =
1
N

∑n
i=1(xi − x̄)4

( 1
N

∑n
i=1(xi − x̄)2)2

(5.3)

118



5. LARGE-SCALE ULTRASONIC ANOMALY DETECTION

Skew(x) =
1
N

∑n
i=1(xi − x̄)3

σ3(x)
(5.4)

Therefore, instead of explicitly attempting to physically model and predict the

effects of such a highly randomised event on the signal, the relationships be-

tween the signals will be explored through these three descriptive statistics that

quantitatively summarise the entire A-Scan.

After sequentially loading each A-Scan and calculating its sample variance, sam-

ple kurtosis and sample skewness, the data size has been significantly reduced

from the range of 180–400 GB to approximately 1 GB per scan per probe.

Figure 5.2 shows examples of C-Scan sections of a tube created using extracted

features from signals obtained by a pulse echo 20 MHz normal incidence probe.

C-Scans are two-dimensional top-view presentation where the intensity of each

pixel represents the corresponding signal’s feature value, and offer a visual way

of assessing the information that these features are carrying.

As can be seen in the small-scale C-Scans (Figure 5.2), these features show promis-

ing capabilities, as anomalies, such as scratches and machined scrape marks, are

distinguishable enough from the surrounding areas. However, within the scope of

the entire population of a full-length pressure tube (Figure 5.4b and Figure 5.5)

there can be various levels of heterogeneity across different parts of the tube as it

is an active large-scale environment affected by imperfect geometry and surface

conditions. Effectively this means that two healthy areas could appear different,

when compared to each other, or, a healthy signal obtained from a noisy area

to appear similar to a signal obtained by a noise-free defective area. This could
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(a) Skewness (b) Variance

(c) Kurtosis

Figure 5.5: Log-histograms of the three features for each pressure tube.

122



5. LARGE-SCALE ULTRASONIC ANOMALY DETECTION

Figure 5.6: Schematic of exaggerated pressure tube sag.

occur as signals of different sections of the tube could be affected by different

neighbourhood-specific causes, e.g., poorly focused signals due to probe misalign-

ment [163] caused by sagging of the pressure tube (Figure 5.6), or rough surface

area.

5.2.3 Features transformation

The disentanglement of the different behaviours across the tube could be ap-

proached through unsupervised machine learning methods, such as density-based

clustering, as it has shown promising results in the task of grouping together

signals obtained from defective regions [164]. However, these methods are com-

putationally expensive and would require extensive experimentation to mitigate

the effects of any possible varying density levels across large and heterogeneous

datasets [165].

The proposed approach is seeking to normalise the extracted features, fuse them,

and enable intuitive inferences that are relevant across the pressure tube popu-

lation. This feature transformation is based on the idea of tracking changes of

the feature values locally, instead of investigating the relationship of each feature
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value within the whole feature space. This can be approached by representing

each signal by some distance function of its feature values and its immediate

physical neighbours’ feature values only, thus reducing drastically the size of the

feature space that each sample has access to.

The essential property of a dataset that can support this type of operation is that

its members should have strictly defined spatial relationships. The sequentially

captured A-Scans of the datasets of interest are captured by a precise helical mo-

tion which completes a shifted full revolution every N = 3600 samples, enabling

the identification of the indices of the 4-connected neighbours for each sample.

Naturally, any further computations are not valid for the first and last N samples,

as they lack at least one of the four required neighbours. Therefore, they will be

excluded from the population and their role will be limited to participating as

neighbours, when required.

The indices for the 4-connected neighbours of each of the signals within the

dataset S = [s1, . . . , sn], where si = [a1, . . . , am], n:number of signals, a:amplitude,

m:number of amplitude samples per signal, are defined by Eq. 5.5:

in = (i−N, i− 1, i+ 1, i+N), i ∈ I, (5.5)

where I: index set of S. Although the periodicity within the 1D dataset allows

for a 2D mapping with indices Ix = (I mod N) representing the rotational index

positions, and Iy = ⌊I/N⌋ representing the axial index positions, it should be

noted that 2D reshaping fails to account for the shifting and continuity of the

helical capture. Therefore, selecting the x indices of the neighbours I
(2D)
nx based
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on Manhattan distance of r = 1 needs adjustments for the extreme cases of

Ìx = {0, N − 1} ⊂ Ix, as shown in Eq. 5.6. The x indices correspond to the

rotational index position, and the order matches the order of the neighbours of

Eq 5.5, i.e. the order the signals are originally captured and stored during the

helical scanning.

i(2D)
nx

=



(ix, ix − 1, ix + 1, ix), for ix =

[1, N − 2]

(0, N − 1, 1, 0), for ix = 0

(N − 1, N − 2, 0, N − 1), for ix = N − 1

(5.6)

After identifying the appropriate neighbours, the next step is concerned with

calculating the Euclidean distances between the variability-based feature vectors

fi and the feature vectors of each of its four neighbours Eq. 5.7:

di = [

√√√√ 3∑
j=1

(f
(j)
i − f

(j)
i,1 )

2, . ..,

√√√√ 3∑
j=1

(f
(j)
i − f

(j)
i,4 )

2],

i ∈ I

(5.7)

However, prior to the calculation of the distances, it is crucial to reformat the

participating data onto the same value range (feature scaling). This is a measure

against features with intrinsically large numeric values dominating the results.
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(a) General 1D (stream) setting.

(b) General 2D setting.

(c) Edge case for 2D setting: Start of ro-
tary position.

(d) Edge case for 2D setting: End of rotary
position.

Figure 5.7: Indices of the 4-connected neighbours (dark background) for different
data layout settings.
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For the proposed approach, instead of the original features, the scaling happens

on the squared features differences per feature type, per neighbour type: δ
(j)
n =

(f (j) − f
(j)
n )2, before the summation across the features. This is driven by the

precondition to identify any possible extreme outliers that might distort the scaled

values heavily if they participate in the calculation of the scaling parameters.

As discussed above, the neighbourhood-based differences are expected to offer a

more homogeneous space, thus facilitating a more intuitive identification of these

outliers.

The output of the distance calculation is four distances associated with each

sample, one for each neighbour. The second step of the transformation is further

reducing the search space by collapsing these four distances into one. A viable

option is extracting the element-wise maximum value (Eq. 5.8), thus representing

each sample/signal by the maximum change of variability across its 4-connected

neighbourhood.

m = [maxd1, . . . ,maxdn] (5.8)

Furthermore, by storing the index of the neighbour that maximises each di, the

direction of change is preserved (Eq. 5.9):

κ(4) ∈ {1, 2, 3, 4} = [argmaxd1, . . . , argmaxdn] (5.9)
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However, κ(4) can be further simplified (Eq. 5.10) by preserving only the orien-

tation of the change: κ = κ(2) ∈ {−1, 1} with:

κ(i) =


1, for κ(4)(i) = 1, 2

−1, for κ(4)(i) = 3, 4

, (5.10)

thus reducing the cardinality from 4 to 2.

By conventionally choosing {−1, 1} to represent horizontal and vertical orienta-

tions respectively, the orientation information κ can be easily incorporated within

the strictly positive m via element-wise multiplication (Eq. 5.11):

m̂ = κ⊙m (5.11)

5.3 Application

To assess the potential of the proposed process as a means towards detect-

ing anomalies across large-scale ultrasonic inspection systems, high-resolution

datasets from two pressure tubes have been utilised as case examples.

The datasets contain data obtained by a 20 MHz pulse-echo normal-incident

probe and a 15 MHz pulse-echo normal-incident probe with stretched focal zone

from the use of logarithmic lens. After extracting the required measures of vari-

ability from each A-Scan, they were input to the neighbourhood-based process

described in Section 5.2.
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Figure 5.8: Log-histogram of transformed features’ distances of a pressure tube.

The resulting maximum changes of variabilitym (Figure 5.10) offer a more homo-

geneous space, making it intuitive to assume that signals from healthier regions

tend to concentrate towards zero, and anomalies with increased surface roughness

diverge monotonically towards +∞.

Furthermore, incorporating the orientation information within m enables the

separate investigation of anomalies that manifest along different axes (Figure

5.9).

To further illustrate the normalising effects of the feature transformation method,

the MiniBatchKMeans algorithm [166] is used to process the features both before

and after their transformation through the proposed method (Figure 5.11). Mini-

BatchKMeans is a variant of K-Means that is designed to be more computation-

ally efficient, particularly for large datasets. Specifically, instead of calculating
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(a) PT#1

(b) PT#2

Figure 5.10: Log-histograms of the transformed distances for each PT. The less
concentrated distributions of (5.10b) indicate that PT#2 contains more rough
surface areas than PT#1.
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the distance between each data point and each centroid for each iteration, Mini-

BatchKMeans randomly selects subsets of data, called mini-batches, to update

the centroids, instead of using the entire dataset.

Given the a priori unknown number of expected clusters the extracted features

are processed by instructing MiniBatchKMeans to form two clusters. In the first

test setting (Figure 5.11a) the features are rescaled through the common stan-

dardisation process (i.e. the features are centred around zero, with a standard

deviation of one; presented in Equation 4.9). In this case, MiniBatchKMeans fails

to cluster the signals in a meaningful way, as a large proportion of the middle

section of the pressure tube is grouped together (red cluster) with the part of the

pressure tube that contains service induced scratches. In contrast, the second

test setting utilises the proposed neighbourhood-specific feature transformation,

which reduces the effects of heterogeneity in the data, resulting in the Mini-

BatchKMeans producing qualitatively more intuitive results: It groups together

(red cluster) the parts of the pressure tube surface that systematically experience

service induced damage, such as fuel bundle scratching during refuelling, and fuel

bundle bearing pad fretting caused by fuel bundle rocking and vibration [38].

Anomalies found on the surface of a pressure tube include scratches, scrapes,

flaws, deposits of foreign material, or erosion/corrosion [19]. Among them, deep

sharp flaws are considered of potential concern for the health of the pressure tube

and are reportable. Therefore, a critical assessment criterion for the proposed

system is its ability to identify areas containing these flaws, while minimising the

amount of reported areas containing minor surface anomalies.
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Using verified measurements from older inspections (CIGAR tool), the locations

of the reportable debris flaws (4 flaws for each PT) have been manually identified

in the C-Scans produced by the proposed process. Overall, for PT#1, all re-

portable debris flaws are visually identifiable in both probes’ C-Scans. However,

for the noisier PT#2, one of the flaws is indistinguishable from the surrounding

noisy area when using the resulted C-Scan from the 20 MHz probe.

By gradually increasing the threshold between ‘healthy’ and ‘abnormal’ (Figure

5.8), the upper bound where at least a part of all the (visually distinctive) flaws is

present can be extracted. Table 5.1 presents the resulted threshold values for each

pressure tube - probe pair, along with the percentage of the eliminated samples.

The remaining samples appear to be members of verified flaws, scratches and

edges of machine-made scrapes. However, since this process acts as a first-pass

anomaly filter, without providing any depth information, it is not possible to

characterise the threat-level of the detected outliers. For this, the reported areas

would act as inputs for depth-specialised algorithms, or be forwarded for further

manual analysis.

Another key aspect of the proposed process is the computational time required

by the transformation process. The bottleneck of this process is the extraction of

features from the 50 to 60 million signals. The required time for this step varies

greatly depending on the underlying system. The worst case for this linear batch-

process is approximately 4 hours for a single medium capacity computer accessing

the data of a network drive. Therefore, this time could be significantly reduced

within a multi-machine industrial environment. Following the feature extraction,
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the remaining steps of the process are implemented based on vectorised operations

[167] enabling the analysis to be performed by a single medium capacity system

using high-level interpreted language within few minutes.

The results of the case examples indicate that the proposed process is a promising

step towards extracting anomalous areas from large-scale high-resolution ultra-

sonic inspection data in a robust and efficient way. The assumptions that this

process was based upon, as well as the interpretable fusion of the features, allow

for a well-informed expectation of its outcomes, limitations, and decision support

role within the pressure tube health assessment process. This should allow future

investigative analyses to extract general a priori parameter estimates that gen-

erate results compliant with the respective industry’s guidelines. Nevertheless, a

conservatively estimated cut-off threshold can provide:

� Visual and statistical information regarding the underlying general current

state of the pressure tubes.

� Standardised comparison of current and future scans: Anomaly evolution

tracking.

� Heavily decreased search space for the depth-specialised algorithms.
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Table 5.1: Upper threshold bounds, with the corre-
sponding percentage of eliminated samples, where
at least a part of all the visually distinctive flaws
is present.

PT Probe (NB) Threshold Eliminated (%)

1 15MHz L 0.8 99.989
1 20MHz 0.75 99.967
2 15MHz L 0.35 99.279
2 20MHz 0.75* 99.908

* 3 out of 4 flaws

5.4 Discussion

This work has introduced an anomaly detection approach for large-scale ultrasonic

inspection datasets achieved through a novel feature transformation. It uses ex-

tracted measures of variability from each A-Scan as potential features carrying in-

formation about surface roughness around defective areas. Next, their neighbour-

based distances are utilised as a means to decrease the effects of neighbourhood-

specific deviations that cause heterogeneity across the features. This approach

is especially relevant for large ultrasonically inspected structures, such as a full-

length pressure tube scan, where the geometric and other neighbourhood-specific

surface conditions can affect the captured signals in distinct neighbourhood-

specific, creating multimodal feature distributions that are not exclusively related

to the actual condition/health of the surface.
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Initial application to real-world CANDU pressure tube inspection datasets show

that the proposed pre-processing transformation allows for more intuitive cluster-

ing results, over pre-processing through the widely used standardisation method,

as it allows for clusters that are related to the service-induced damage, in contrast

to neighbourhood-related properties.

Furtheremore, due to the resulted reduced homogeneity, the transformed fea-

tures can be further reduced into a single metric (e.g. through representing

each individual signal through the maximum variability distance in its neigh-

bourhood) that is relevant across the large-scale surface, thus providing an in-

tuitive anomaly detection approach that, through thresholding, can isolate ar-

eas containing surface wear, including threatening flaws. This provides visual

and statistical information regarding the underlying general current state of the

pressure tubes, as well as a heavily reduced search space for computationally

demanding depth-focused algorithms. As more datasets become available, fur-

ther exploration should enable pattern recognition techniques to a priori separate

threatening flaws from low-risk anomalies.

Contribution of this chapter:

� Feature transformation method for normalising large-scale heterogeneous ul-

trasonic inspection data.
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Chapter 6

Conclusions

6.1 Summary and Discussion of Contributions

This thesis has presented novel unsupervised data-driven approaches to analysing

ultrasonic inspection data for surface flaw detection. The application domain,

necessary from understanding the inspection datasets and inspection setup that

inspired this thesis, is introduced in Chapter 2. This is provided through an

overview of nuclear plant maintenance strategies that leads to the specific main-

tenance and inspection problem of pressure tubes, a critical asset of CANDU

nuclear reactors. Datasets arising from this inspection process offer an applica-

tion setting for testing the system-agnostic methods proposed by this thesis as

they offer a variety of challenges both in terms of complexity and size. The cur-

rent pressure tube health assessment process, along with recent knowledge-based

expert-systems research towards automating this process, are also presented in

Chapter 2, and it is argued that a data-driven approach can provide further

support in a rapid and robust manner.

138



6. CONCLUSIONS

A review of existing research efforts concerned with the automated asset health as-

sessment through the analysis of ultrasonic inspection data is presented in Chap-

ter 3. The review is focusing on supervised and unsupervised data-driven methods

and explores the applicability of these methods in datasets containing a diverse

set of flaws and surface conditions, such as the pressure tube inspection datasets.

The key outcome is that existing solutions require assumptions that cannot be

guaranteed by the datasets that this thesis is focusing on, which drives the need

to further explore data-driven solutions.

A novel automated unsupervised data-driven approach for automatically analysing

collections of ultrasonic signals was introduced in Chapter 4. This method utilises

the density-based clustering algorithm DBSCAN and individually characterises

each signal, producing 2D maps that flag potentially flawed areas. The analy-

sis consists of multiple steps that consecutively reduce and transform the search

space. A key step of the proposed method is a novel subsampling method that

reduces the search space and enables a more efficient density clustering. This

method takes advantage of the way DBSCAN algorithm generates clusters, and

selects only just-enough suitable representative samples to participate in the clus-

tering. However, the main drawback of this method is that the computation

improvements, relative to DBSCAN, are tied to the requirement of a low car-

dinality dataset, or the ability to lower the cardinality of the dataset through

further grouping that might lower the granularity of the results. Furthermore

a two-stage clustering procedure is presented, designed to efficiently utilise the

DBSCAN clustering algorithm for grouping and noise reduction. Furthermore,

a DBSCAN parameter estimation method is presented, which can be applied
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across datasets captured by different ultrasonic inspection probes without util-

ising explicit knowledge of the probes characteristics. The proposed procedure

is tested by utilising an automated evaluation procedure across a large number

of real-world datasets captured from sections of pressure tubes containing flaws,

showing satisfactory results.

Finally, the unsupervised analysis is extended to large-scale ultrasonic inspection

datasets which are problematic for current memory intensive algorithms due to

their multimodal nature, as well as their size. An anomaly detection method

was introduced in Chapter 5 which targets datasets which, apart from the large

size, exhibit various levels of heterogeneity across different neighbourhoods of the

inspected surface. The proposed method utilises a neighbourhood-based trans-

formation of the signals’ variability measures as a means of creating a more ho-

mogenous feature space that allows for distance metric that is relevant across

the surface, offering significant computational benefits. Compared to the popular

standardisation method on a real-world dataset, the proposed feature transforma-

tion method produces a feature space that enables clusters that are less influenced

by local geometric and surface properties, and more relevant to service induced

surface wear. Furthermore, by reducing the transformed feature space into a sin-

gle metric that is relevant to the whole of the surface, it is possible to eliminate

the vast majority of data, resulting in the isolation of surface anomalies, including

threatening flaws. This significant decrease in data size, should be able to pro-

vide more sustainable workload to specialised and computationally demanding

algorithms responsible to calculating the depth of any flagged areas.
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6.2 Future Work

A critical aspect of every data-driven method is the features that represent the

population of available input data to the actual analysis. This thesis followed

the traditional machine learning approach of manually generating a preselected

set of features, which are then fed to a selection process to eliminate potentially

uninformative features. This approach is based on the knowledge/biases of the

analyst and, although it significantly reduces the problem to a state that allows

a traditional machine learning algorithm to be effective, it leaves room for unex-

plored highly informative hidden features that could advance the performance of

the clustering or classification algorithm.

An autoencoder is an unsupervised artificial neural network architecture that

enables purely data-driven feature learning from raw input data (Figure 6.1). This

architecture is capable of learning lower dimensional representations (codings) of

unlabelled input data, while trying to learn to reconstruct the original input data.

By constraining the network through narrow hidden layers, the network is pre-

vented from trivially copying the input to the output and is ‘forced’ to learn

informative representations that can be used as features in a clustering or clas-

sification setting. Combined with 1D convolutional filters [168] to make the net-

work more robust against time shifts present in captures ultrasonic signals, and

a denoising approach that yields better representations [169], an autoencoder ap-

proach could offer a convenient and well-performing feature extraction solution

for highly-populous unlabelled datasets similar to those presented in this thesis.
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Figure 6.1: Autoencoder: The unsupervised artificial neural network architecture
learns a lower dimension representation (codings) of the input data as it tries to
reconstruct it. During this process the narrow hidden layer (bottleneck layer)
captures discriminative signal features.

A way to approach the unsupervised analysis of ultrasonic inspection data is

through the adaptation of deep learning models currently representing the cur-

rent state-of-the-art in pixel-wise image segmentation tasks. These models are

based on recent advances on self-supervised feature learning, a subset of unsuper-

vised learning, where a model learns efficient representations guided by a super-

visory signal related to self-defined pseudo labels [139]. Examples of such models

are STEGO [138] and Leopart [139] which are capable of learning to segment

complex images without utilising labels, and are currently the top performers on

unsupervised segmentation tasks [140, 141].
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6.3 Conclusion

This thesis presented methods for analysing high-resolution ultrasonic inspection

data through unsupervised data-driven approaches, which enable the localisation

of abnormal areas. These methods were tested on real-world inspection datasets

and it was demonstrated that they can identify surface flaws in an efficient manner

across large and heterogeneous datasets. The system-agnostic approach of the

methods allowed their application to datasets captured by inspection probes of

different specifications, without utilising explicit probe characteristics or a pre-

defined a state of normality. This provides a potential step towards automating

aspects of ultrasonic assessment that is a critical part of nuclear power plant asset

health management. With modularity being in the forefront of current nuclear

power plant research, which along with automation aim to increase the economic

competitiveness of nuclear energy, independent and flexible automated inspection

analysis systems which can handle large rates and volumes of data, will become

increasingly important to inspection and maintenance personnel.
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