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Abstract

Matrix factorisations such as the eigen- (EVD) or singular value decomposition (SVD)

offer optimality in often various senses to many narrowband signal processing algo-

rithms. For broadband problems, where quantities such as MIMO transfer functions

or cross spectral density matrices are conveniently described by polynomial matrices,

such narrowband factorisations are suboptimal at best. To extend the utility of EVD

and SVD to the broadband case, polynomial matrix factorisations have gained momen-

tum over the past decade, and a number of iterative algorithms for particularly the

polynomial matrix EVD (PEVD) have emerged.

Existing iterative PEVD algorithms produce factorisations that are computation-

ally costly (i) to calculate and (ii) to apply. For the former, iterative algorithms at

every step eliminate off-diagonal energy, but this can be a slow process. For the latter,

the polynomial order of the resulting factors, directly impacting on the implementa-

tion complexity, typically grows with every iteration of a PEVD algorithm. The work

presented in this thesis helps to reduce both computational complexities.

To address algorithmic complexity and convergence speed, this thesis firstly pro-

poses a multiple shift approach, which can eliminate more off-diagonal energy at every

iteration compared to existing methods. Equally applicable to the second order se-

quential best rotation (SBR2) algorithm, the idea here is applied to the family of

sequential matrix diagonalisation (SMD) algorithms, for which a convergence proof is

presented. Maximum energy transfer requires a very laborious parameter search; it is

demonstrated that a very significant reduction of this search space can be gained while

retaining almost all of the transfered energy.
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Chapter 0. Abstract

In addition a number of techniques have been developed which improve the efficiency

of these PEVD algorithms. With each PEVD algorithm iteration the lengths of the

polynomial eigenvectors and eigenvalues increase. To lower the order of the polynomial

eigenvectors a novel truncation technique was developed which takes advantage of an

ambiguity in the eigenvalues. A drawback of the multiple shift algorithms is the faster

growth of the polynomial eigenvectors and eigenvalues; to mitigate this the search step

has been analysed and modified to reduce the growth. The SMD algorithm suffers from

a performance bottleneck in its EVD step. Here a cyclic-by-row Jacobi approximation

is developed that significantly reduces the computational cost of the SMD algorithm

with almost no impact on numerical performance.

The impact of these algorithmic advances is studied in a number of applications.

Firstly, based on a source model, it is investigated how the conditioning of the input

data affects algorithm performance. Secondly, to highlight the benefit of the better

converging multiple shift SMD algorithm it is compared to the SBR2 algorithm for

broadband angle of arrival estimation, where the proposed multiple shift versions can

achieve a more accurate subspace decomposition and hence a more accurate AoA es-

timation. Lastly, its demonstrated how PEVD algorithms can be utilised to extend

other linear algebraic techniques to polynomial matrices. The example used here is the

extension of the generalised eigenvalue decomposition (GEVD) to a polynomial matrix

GEVD.
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Chapter 1

Introduction

1.1 Motivation

The scalar eigenvalue decomposition (EVD) is of great importance to many narrowband

digital signal processing (DSP) problems. More generally scalar EVD is key to a large

variety of DSP applications from angle of arrival estimation [1] to facial recognition [2]

in image processing. For narrowband array processing situations specifically, phase

shifts can be used to synthesise the time delays experienced between array elements.

Data is then stored in a scalar covariance matrix consisting of complex gain factors;

this is known as the instantaneous mixing model. Extending this idea to broadband

signals, one could utilise the independent frequency bin (IFB) approach, whereby the

broadband problem is split into a number of narrowband problems using the DFT or

FFT. Using the IFB approach does however lose the correlations and phase-coherence

between frequency bands [3, 4].

The scalar matrices used in the instantaneous mixing model are not particularly

suitable in the case of broadband sensor arrays. Instead the mixing is better modelled

by a matrix of finite impulse response (FIR) filters, this is termed the convolutive mix-

ing model. The sensor outputs from the convolutive mixing model will generally be

correlated with one another and this can no longer be decorrelated using the scalar

EVD. The scalar EVD can only remove instantaneous correlation which is the correla-

tion between signals sampled at the same time instant. With convolutive mixing the
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signals will generally be correlated on more than one time instant and therefore the

signals should be decorrelated over a suitable range of time delays [3]. This type of

decorrelation is often referred to as strong decorrelation [5]. An added benefit of the

convolutive mixing model is the ability to model the effects of multipath propagation,

which is particularly important in many sensor array signal processing applications [3].

In broadband array processing the time delays between elements can be modelled as

polynomials, similar to an FIR filter. The scalar covariance matrix from the narrowband

case is then replaced with a polynomial space-time covariance matrix; which consists of

auto- and cross-correlation sequences. Like the traditional signal processing notation

the polynomials are in terms of z−1; multiplication by z−1 is therefore often referred

to as applying a delay. The addition of the polynomial (or lag) dimension means

that the scalar EVD used in narrowband problems is no longer suitable to diagonalise

this three dimensional structure. An alternative polynomial-matrix EVD (PEVD) is

therefore required to diagonalise the space-time covariance matrix and achieve strong

decorrelation.

One of the original PEVD algorithms is the second order sequential best rotation

algorithm (SBR2) [3]. The SBR2 method was introduced in 2007 by McWhirter et. al [3]

is based on the classical Jacobi algorithm for scalar EVD; the origins of which date

back to Jacobi’s original paper in 1846 [6], with a full description of the classical Jacobi

algorithm is given in [7]. The algorithm aims to systematically reduce the off-diagonal

energy using a series of Jacobi transformations. The classical Jacobi algorithm consists

of two main steps:

1. locate the maximum off-diagonal element;

2. apply a Jacobi transformation to bring the energy from maximum off-diagonal

element onto the diagonal.

In the classical Jacobi method outlined above, at each step the scalar matrix is brought

closer to a diagonal matrix. After a sufficient number of steps the diagonal matrix will

approximate the eigenvalues of the original matrix. The eigenvectors are then simply

the product of the Jacobi transformations used to diagonalise the matrix.

2
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In [3] McWhirter et. al extend the Jacobi algorithm for use in computing a PEVD.

As the PEVD is applied to polynomial matrices – which have a lag (polynomial) di-

mension – an additional step is needed to bring the maximum off-diagonal element onto

the (central) zero lag. The general algorithm becomes:

1. find the maximum off-diagonal element;

2. if required bring the maximum element onto the zero lag using a time delay or

advance operation;

3. apply a Jacobi transformation to eliminate the maximum off-diagonal element.

In SBR2, like the classical Jacobi method, at each step the off-diagonal energy of

the polynomial matrix is reduced and with sufficient steps it will approximate the

polynomial eigenvalues. The polynomial eigenvectors are then the product of the ad-

vance/delay operation and the Jacobi transform in each step. In both of these algo-

rithms the stopping criterion is either when the off-diagonal energy or the maximum

off-diagonal element falls below a predefined threshold, as a failsafe the number of

iterations can also be limited. SBR2 with its added advance/delay step means that

the polynomial matrices containing the approximate eigenvalues and (paraunitary –

explained in Chapter 2) approximate eigenvectors grow in lag dimension at each itera-

tion.

In addition to SBR2, a number of other iterative PEVD algorithms have been

developed:

• Approximate PEVD (APEVD) [8, 9] is similar to the SBR2 approach but the

polynomial/lag dimension is fixed by limiting the values that can be diagonalised

at each iteration; however APEVD has not been proven to converge so will not

be considered any further in this thesis.

• Sequential Matrix Diagonalisation algorithm (SMD) [10] differs from SBR2 as

it replaces the Jacobi transform with a full scalar EVD of the zero lag at each

iteration. SMD also comes in two variants:

3
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1. the standard SMD approach uses column norm to select the rows/columns

to be brought onto the zero lag;

2. the Maximum Element SMD (ME-SMD) uses the same maximum element

search as SBR2 to reduce the computational expense of the SMD algorithm.

Polynomial matrices have been used for some time in control applications [11] and

have more recently found their way into DSP applications. Some of the DSP applica-

tions include: direction of arrival estimation [12–14], beamforming [15–17], filterbank

based channel coding [18–22], MIMO communications [23–28], broadband subspace de-

composition [29] and optimal subband coders [30, 31]. This thesis focusses primarily

on PEVD algorithms but polynomial matrix decompositions have also been developed

for the singular value [32, 33] and QR [32, 34] decompositions. Most recently the idea

of the polynomial singular value and QR decompositions has been extended to a range

of different algebras in [35].

Distinct to the iterative methods mentioned above, two DFT domain approaches

to calculate the PEVD are introduced in [36] and [37]. Both [36] and [37] implement

a strict limitation on the polynomial order of the eigenvalues which results in accuracy

issues. In [38] the polynomial EVD is solved on the unit circle so is similar to [37]

but does not provide directly an implementable time domain solution. In addition the

DFT domain approach requires some relaxations in the properties defined in [31] and [3]

meaning that the PEVD obtained is not necessarily equivalent [10].

1.2 Objectives and Contributions

The objective of this research is to further develop the knowledge and understanding of

polynomial-matrix eigenvalue decompositions. This work can be subdivided into three

main parts:

• development of new powerful PEVD algorithms;

• reduce inefficiencies associated with new and existing PEVD algorithms;

• investigation of PEVD algorithms applied in a variety of different scenarios.
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The main contributions from this research can be subdivided into the following four

sections.

1. Multiple Shift PEVD Algorithms [39–42]

All pre-existing iterative PEVD algorithms share a common feature in that they

only ever bring energy from one row/column pair at each iteration. An impor-

tant part of this thesis is the development of multiple shift PEVD algorithms

which aim to maximise the energy transfer at each algorithm iteration. The first

multiple shift search technique introduced uses an exhaustive search on every

possible shift combination to guarantee that the maximum amount of energy is

transferred. Although the exhaustive search transfers the maximum amount of

energy the implementation cost (due to the vast number of shift possibilities)

makes it far too costly for any practical application. As a lower cost alternative

the Multiple Shift Maximum Element (MSME) search technique which transfers

slightly less energy than the exhaustive search is proposed. Although less effec-

tive than the exhaustive search the MSME search method outperforms all single

shift algorithms. The MSME search method also lends itself well to a causal

implementation which generates a paraunitary matrix that consists of only de-

lays. A causal paraunitary matrix is desirable when a PEVD algorithm is utilised

in multichannel spectral factorisation. The idea of multiple shifts has also been

adapted to create the Multiple Shift (MS) SBR2 algorithm.

2. Complexity Reduction in PEVD Algorithms [43–45]

Through the development of the exhaustive multiple shift search method an inter-

esting row-shift ambiguity in the paraunitary matrices was uncovered. Tradition-

ally a delay ambiguity has been used in the truncation of paraunitary matrices

however using the row-shift ambiguity results in a lower error. Based on the

lower error, a more aggressive truncation can be applied resulting in truncated

paraunitary matrices with a lower polynomial dimension. A drawback identified

with the multiple shift methods is the growth in their polynomial matrices. After

investigating the worst case growth for the MSME-SMD algorithm a minor mod-

ification has been identified which can significantly reduce the polynomial growth
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and with it the overall implementation cost. Based on the position of the initial

maximum element at each iteration, the modification sees subsequent searches

restricted to lags no further from the zero lag than the initial maximum element.

Despite transferring more energy at each iteration the SMD based algorithms have

always been more computationally expensive than the SBR2 algorithm; meaning

the SBR2 algorithm converges faster in real time. The performance difference

comes down to the cost of applying a non-sparse EVD modal matrix to all lags

of the parahermitian matrix. Based on the cyclic-by-rows Jacobi algorithm for

scalar matrices a technique has been developed that replaces the full EVD step

with a series of sparse Jacobi transformations. Using the cyclic-by-rows based

EVD step the computational complexity of the SMD based PEVD algorithms is

significantly reduced to the point where they outperform the SBR2 method in

real time convergence.

3. Applications of PEVD Algorithms [13, 46,47]

In addition to the developments around PEVD algorithms listed in the two items

above various applications of PEVD algorithms have been considered. When

testing PEVD algorithms one of the important criteria is the properties of the

polynomial matrices fed into the algorithms. Varying the properties of the input

polynomial matrices can have a significant impact on algorithm performance;

here a number of parameters are varied and the results are analysed. An example

use for PEVD algorithms is in a broadband angle of arrival estimation scenario.

Previously the SBR2 algorithm has been incorporated into a polynomial version

of the well known MUSIC algorithm. Now the MSME-SMD algorithm is brought

into the polynomial MUSIC framework and compared to the implementation

with SBR2. Besides direct EVD applications, the PEVD can also be utilised to

implement a wider class of linear algebraic operations on polynomial matrices.

This includes the polynomial SVD, and in this thesis has specifically targeted a

polynomial version of the generalised eigenvalue decomposition. The generalised

eigenvalue decomposition (GEVD) provides a powerful tool in the narrowband

domain for low rank approximation of covariance matrices. Whereas the EVD
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is applied to a single covariance matrix the GEVD is applied to two (or more)

covariance matrices and creates generalised eigenvectors which diagonalise both.

Here the Cholesky-based approach for calculating the GEVD of scalar matrices

is extended for polynomial matrices.

4. Matlab Based PEVD Toolbox http://pevd-toolbox.eee.strath.ac.uk/

[48]

An additional contribution that is not discussed in this thesis has been the de-

velopment of a Matlab based PEVD toolbox. The toolbox includes functions to

visualise and manipulate polynomial matrices, plus the SMD and SBR2 PEVD

algorithms. The aim of the toolbox is to provide a starting point for anyone

interested in applying the PEVD to new applications.

1.3 Overview

To elaborate on these contributions this thesis is laid out as follows: Chapter 2 pro-

vides background material upon which the following three contribution chapters will

build. First scalar matrices and the scalar EVD are reviewed and some of their key

characteristics are highlighted. Next polynomial matrices and some of their properties

are introduced before discussing the PEVD and some of the details associated with it.

Chapter 2 is concluded with a detailed look at the SBR2 and SMD PEVD algorithms

followed by some of the ambiguities associated with the PEVD.

Chapter 3 investigates multiple shift PEVD algorithms. First an exhaustive search

is developed which brings the maximum amount of energy onto the diagonal at each

PEVD iteration. Due to its brute force approach, the exhaustive search is too compu-

tationally expensive for most PEVD applications. Using the idea of shifting multiple

row/column pairs a significantly lower cost maximum element search based method is

developed. The maximum element search means the search technique can be easily

adapted to a causal method which generates a paraunitary matrix consisting of only

delays. This chapter primarily focusses on multiple shift SMD algorithms but the idea

has also been extended to the SBR2 algorithm to form MS-SBR2. The algorithms are

7
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then tested in a variety of scenarios and the results are analysed. Two main issues

arise, the rate of growth in the polynomial matrices (particularly for multiple shift al-

gorithms) and the higher computational cost associated with the more powerful SMD

type algorithms.

Given the issues that arise in Chapter 3, Chapter 4 aims to address these. First

a new method for paraunitary matrix truncation is introduced based on one of the

PEVD ambiguities highlighted in Chapter 2. The ambiguity means that row shifts can

be applied to the paraunitary matrix without affecting the overall PEVD. The new

truncation algorithm is then compared to its predecessor which it can outperform both

in terms of reconstruction error and paraunitary matrix order. Next a simple modi-

fication to the multiple shift algorithm is proposed which can significantly reduce the

growth in the polynomial matrices. Results show that the modification has a minimal

impact on diagonalisation performance yet a significant reduction on the growth of

the polynomial matrices produced. A side effect of lower growth is that the algorithm

takes less time to complete as it is being applied to smaller matrices. The final part

of Chapter 4 proposes an approximation for the costly full EVD step in the SMD al-

gorithm. The approximation is based on the cyclic-by-rows Jacobi algorithm and is

used to diagonalise the zero lag at each iteration. Results show that the approximation

has almost no impact on the convergence of SMD based algorithms yet the real time

performance is significantly improved.

Chapter 5 investigates the application of PEVD algorithms to various different sce-

narios. First the effects of variations in the input polynomial matrices is investigated.

Here input polynomial matrices are generated using a source model that can be con-

trolled to produce matrices with different dynamic ranges and spectral characteristics.

Results are presented which show the impact of dynamic range and spectral charac-

teristics on the SBR2, SMD and MSME-SMD algorithms. Next a broadband angle of

arrival estimation scenario is considered, which has been addressed in the past using

a polynomial version of the MUSIC algorithm. The polynomial MUSIC algorithm has

previously used the SBR2 algorithm at its heart. In Chapter 5 the SBR2 algorithm is

replaced with the MSME-SMD algorithm and their MUSIC results are compared for a
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simple scenario. The final part of Chapter 5 introduces the scalar generalised eigenvalue

problem for which a number of scalar approaches have been developed. Here one of

the existing scalar methods is extended to a broadband, polynomial version using the

SMD PEVD algorithm. Initial results show that the polynomial method can be used

to diagonalise two parahermitian matrices in a similar fashion to the scalar approach.

Finally Chapter 6 presents conclusions for the thesis as a whole and discusses some

potential future work.
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Chapter 2

Background

This chapter covers the background material on the scalar EVD and its properties

in Sec. 2.1, polynomial matrices and the polynomial EVD in Sec. 2.2 and Sec. 2.3.

Ambiguities in the PEVD and truncation methods that exploit them are covered in

Sec. 2.5 and a summary is given in Sec. 2.6. To introduce the concepts and properties

associated with the scalar and polynomial EVDs an intuitive example is the multiple

sensor array. Fig. 2.1 shows an array set up with a far field signal coming into the array

at an angle. The signals xm[n],m = 1 . . .M are the signals received from each sensor

in the array and x[n] is a vector containing the output from all sensors at sample index

n.

x1[n]

x2[n]

x3[n]

xM [n]

.

.

.

.

.

.

.

.

.

Figure 2.1: Far field signal arriving at sensor array from an angle, with sensor outputs
xm[n],m = 1 . . .M .
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2.1 Scalar Matrices

2.1.1 Covariance Matrix

The M ×M covariance matrix, R, for the scenario in Fig. 2.1 is calculated as

R = E
{
x[n]xH[n]

}
(2.1)

where x[n] is a vector containing the output from the array sensors at sample index n

and {·}H is the conjugate or Hermitian transpose which combines the complex conjugate

and transpose operations. The covariance matrix R is a Hermitian matrix i.e. equal

to its Hermitian transpose such that R = RH, which for a real matrices results in a

matrix that is symmetrical about the diagonal. In addition Hermitian matrices also

have real eigenvalues, orthogonal eigenvectors, and can be diagonalised by a unitary

matrix [49].

2.1.2 Scalar EVD

Taking the eigenvalue decomposition of the covariance matrix R results in

R = QDQH , (2.2)

where Q is a unitary matrix containing the eigenvectors, and D is a diagonal matrix

containing the eigenvalues. A unitary matrix is often referred to as an energy preserv-

ing matrix and when combined with its Hermitian transpose it gives the identity i.e.

QQH = I, where I is the M ×M identity matrix.

Various algorithms for computing the eigenvalue decomposition exist [7] but two

of the simplest (iterative) approaches generate the unitary Q matrix through a series

of orthogonal similarity transformations [7]. Each similarity transformation is used

to selectively zero an off-diagonal element of the Hermitian matrix. The similarity
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transformation used is the Jacobi transformation

Q(i) =














I1

cosϕ(i) . . . ejϑ
(i)

sinϕ(i)

... I2
...

−e−jϑ(i)
sinϕ(i) . . . cosϕ(i)

I3














(2.3)

where the dimensions of the identity matrices (I1, I2 and I3) are determined by the

location of the elements to be zeroed. Starting from S(0) = R, at each iteration S(i) is

computed as S(i) = QH(i)S(i−1)Q(i). The rotation parameters ϕ(i) and ϑ(i) are based

on the off-diagonal elements s
(i−1)
np and s

(i−1)
pn to be eliminated, and on the diagonal

elements s
(i−1)
nn and s

(i−1)
pp [3, 7]. To zero the off-diagonal elements the parameters are

set to

ϑ(i) = arg(s(i−1)
np ) , (2.4)

and

ϕ(i) =
1

2
tan−1

(
2|s

(i−1)
np |

s
(i−1)
nn − s

(i−1)
pp

)

, (2.5)

where ϕ(i) is chosen to be the four quadrant arctangent as it generally leads to the

eigenvalues being ordered in decreasing power [3]. The unitary matrix containing the

eigenvectors, Q, is then simply the product of each of the I Jacobi transformations

used

Q = QI . . .Q1 . (2.6)

The number of Jacobi transformations, I, depends on which of the following algorithms

is used.

Classical Jacobi Algorithm

The classical Jacobi algorithm uses a maximum element search to find the next element

to be zeroed using the Jacobi transformation from (2.3). The maximum element search

identifies the row and column indices of the desired element and these are used to

12



Chapter 2. Background

1 2 3 4

5 6 7

8 9

10

Figure 2.2: Cyclic-by-row Jacobi sweep of a 5× 5 matrix

determine the parameters in (2.3). The classical Jacobi algorithm continues until either

the maximum off-diagonal element or the off-diagonal energy falls below a pre-defined

threshold [7]. Although each Jacobi transformation is designed to zero the target

element some energy will be moved into the adjacent row and column. It will therefore

be necessary to perform multiple passes in order to sufficiently suppress the off-diagonal

energy of the entire matrix. The SBR2 PEVD algorithm extends the classical Jacobi

algorithm to polynomial matrices [3], and will be discussed further in Sec.2.4.

Cyclic-by-Rows Jacobi Algorithm

Rather than using a maximum element search the cyclic-by-rows algorithm performs

a sweep of all off-diagonal elements. The sweep consists of (M2 −M)/2 Jacobi trans-

formations, which are systematically applied to the off-diagonal elements in a row-wise

fashion as shown in Fig. 2.2. Like the classical approach it will be necessary to perform

multiple sweeps of the matrix to sufficiently reduce the off-diagonal energy. Mitigating

the maximum element search means that the cyclic-by-rows approach is lower cost than

the classical Jacobi algorithm however it may require more Jacobi transformations [7].

Due to the added lag dimension in the polynomial matrices the number of sweeps would

increase quite dramatically and therefore the cyclic-by-rows algorithm has not been di-

rectly extended to a PEVD algorithm. Rather than applying it to the entire polynomial

matrix a method is developed in Chapter. 4 which utilises the cyclic-by-rows algorithm

on part of the polynomial matrix.
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2.2 Polynomial Matrices

Polynomial matrices arise in a number of different situations, a pertinent example is

the case of broadband sensor arrays. Polynomial matrices can be envisaged as either a

matrix with polynomial entries or a polynomial with matrix valued coefficients. In this

case the polynomials are Laurent polynomials which include both positive and negative

powers [50,51].

2.2.1 Space-Time Covariance Matrix

The (broadband) space-time covariance matrix, R[τ ], for the scenario in Fig. 2.1 is

obtained as

R[τ ] = E
{
x[n]xH[n− τ ]

}
, (2.7)

rather than a single time instant as in 2.1, R[τ ] is evaluated at multiple time lags.

Therefore R[τ ] is a matrix of auto- and cross-correlation sequences with a symmetry

such that R[τ ] = RH[−τ ].

z-Transform

From the matrix R[τ ] the polynomial matrix, R(z), is obtained by taking the z-

transform,

R(z) =

t2∑

τ=t1

R[τ ]z−τ , (2.8)

which is a Laurent polynomial in z. In the z-domain filtering and convolution operations

are simplified to the product of two polynomials. The Fourier transform can be obtained

by evaluating the z-transform on the unit circle, i.e. when z = ejΩ.

2.2.2 Properties of Polynomial Matrices

Order and Degree

The dimension of R(z) is M×M , with the polynomial order dependent on the support

of the auto- and cross-correlation sequences contained within it. For the example in

(2.8) the order is (t2 − t1), in this particular scenario |t1| = |t2| however in general this
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is not the case. The degree of the polynomial matrix is defined as the number of delay

elements required to implement it as an FIR filter therefore it is only defined for causal

polynomial matrices [5]. The degree is quite different to the order of a polynomial

matrix and to avoid confusion degree will not be discussed any further in this thesis.

Parahermitian Transpose

Also referred to as the paraconjugate, the parahermitian transpose is the extension

of the Hermitian transpose from scalar matrices to polynomial matrices. In addition

to the transpose and complex conjugation the parahermitian transpose also involves

a time reversal of the polynomial elements, i.e. R̃ = RH(1/z∗) where {̃·} is used to

represent the parahermitian transpose. In the case where the polynomial matrix is of

order zero the parahermitian transpose is equivalent to the Hermitian transpose.

Parahermitian Property

The parahermitian property is the polynomial matrix equivalent of the Hermitian prop-

erty from scalar matrices. A polynomial matrix is parahermitian if it is equal to its

parahermitian transpose, i.e. R̃ = RH(1/z∗) = R(z). An implication of this is that

from (2.8) |t1| = |t2| i.e. it must have the same number of positive and negative lags.

Again in the case of an order zero polynomial matrix the parahermitian property is

equivalent to the scalar Hermitian property. Taking the z-transform of a space-time

covariance matrix, with its time reversed conjugate symmetry, results in a parahermi-

tian matrix.

Paraunitary Property

When the idea of unitary, energy preserving, matrices is extended to polynomial matri-

ces they are referred to as paraunitary matrices [5]. Extending the meaning of unitary

matrices to the polynomial domain, a polynomial matrix is paraunitary if when applied

to its parahermitian transpose it gives the identity, i.e. Q(z)Q̃(z) = I where I is an

M ×M (scalar) identity matrix. As with the two preceding properties, an order zero

paraunitary matrix is a unitary matrix.
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2.3 Polynomial EVD

Like in the narrowband case the eigenvalue decomposition (EVD) provides a powerful

tool for analysis of such a system. In the case of a broadband, parahermitian, system

we must use a polynomial-matrix EVD (PEVD) [3]:

R(z) ≈ Q̃(z)D(z)Q(z) , (2.9)

whereQ(z) and D(z) contain the approximate polynomial eigenvectors and eigenvalues

respectively. The polynomial matrix Q(z) is paraunitary and D(z) is diagonal

D(z) = diag{D0(z) D1(z) . . . DM−1(z)} . (2.10)

In addition to being diagonal the polynomial eigenvalues in D(z) are ordered such that

Dm+1(e
jΩ) ≥ Dm(ejΩ), ∀ Ω, m = 1 . . .M − 1 . (2.11)

This strict ordering of the eigenvalues at every frequency is referred to as spectral

majorisation [5]. Two examples of spectral majorisation are shown in Fig. 2.3. The

first scenario in Fig. 2.3 (a) shows the case of non-overlapping sources and the spectra

of the eigenvalues are nice and smooth. In the second example, Fig. 2.3 (b), the sources

are overlapping but the polynomial eigenvalues still enforce the spectral majorisation

property resulting in the sharp corners in the spectra. In an array processing context,

the spectra of the eigenvalues is directly influenced by the spectrum of each of the

source signals impinging on the array. Even if the source signals are not spectrally

ordered, as in (2.11) and Fig. 2.3 (b), the PEVD algorithms described in the following

section will generally achieve spectral majorisation in their decompositions. A second

important property of the source spectra is the dynamic range or the difference between

the highest and lowest power spectral densities (PSDs). In both Fig. 2.3 (a) and (b) the

dynamic range is 10 dB. The first part of Chapter 5 investigates the impact of applying

PEVD algorithms to sources with different types of majorisation and dynamic ranges.
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Figure 2.3: Examples of spectral majorisation for (a) non-overlapping sources and (b)
overlapping sources.

2.4 PEVD Algorithms

The ith iteration of each of the established iterative PEVD algorithms [3, 10] starts

with a search step that is algorithm-dependent and returns a column and lag index,

k(i) and τ (i) respectively. Based on the parameters k(i) and τ (i) the shift matrix Λ(i)(z)

is constructed as

Λ(i)(z) = diag{1 . . . 1
︸ ︷︷ ︸

k(i)−1

z−τ (i) 1 . . . 1
︸ ︷︷ ︸

M−k(i)

} , (2.12)

which will delay the k(i)th row of a polynomial matrix by τ (i) samples. Applying

Λ(i)(z) to the partially diagonalised parahermitian matrix from the previous iteration,

S(i−1)(z), gives

S(i)′(z) = Λ(i)(z)S(i−1)(z)Λ̃
(i)
(z) , i = 1 . . . I , (2.13)

where S(i)′(z) is used to denote an intermediary parahermitian matrix. The final step

of each PEVD algorithm iteration transfers off-diagonal energy from the zero lag onto

the diagonal using

S(i)(z) = Q(i)S(i)′(z)Q(i)H . (2.14)

where Q(i) is a unitary matrix based on the off-diagonal energy of the zero lag and gets

applied to all lags of S(i)′(z).
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The stopping criterion for these PEVD algorithms can either be a predetermined

number of iterations, I, or based on the energy found in the search step. Once the algo-

rithm has completed I iterations, the diagonal matrix D(z) from (2.9) is approximated

as

D(z) ≈ S(I)(z) . (2.15)

The paraunitary matrix in (2.9) can be assembled via a series of simpler paraunitary

matrices,

Q(z) ≈ G(I)(z) . . .G(1)(z) , (2.16)

where the simple paraunitary matrix G(i)(z) is constructed from the delay and unitary

operations from the ith step,

G(i)(z) = Q(i)Λ(i)(z) . (2.17)

Thus, the PEVD is approximated with (2.15) and (2.16).

2.4.1 SBR2

Based on a modified column vector ŝ
(i)
k [τ ] ∈ C

M−1 containing all elements in the k(i)th

column of S(i)[τ ] except for the diagonal element, the SBR2 parameter set for (2.12) is

determined by the maximum off-diagonal element search

{m(i), k(i), τ (i)} = arg max
m,k,τ

‖ŝ
(i−1)
k [τ ]‖∞ , (2.18)

where in addition to k(i) and τ (i) the row index, m(i), of the maximum element is also

obtained. For the SBR2 algorithm the unitary matrix, Q(i), from the diagonalisation

step in (2.14) is constructed from a scalar Jacobi rotation matrix in (2.3), where the

rotation angles ϕ(i) and ϑ(i) are determined by the maximum element identified by

the search in (2.18). The identity matrices Ij, j = 1, 2, 3, in (2.3) have dimensions

(min{m(i), k(i)}−1), (|m(i)−k(i)|−1) and (M −max{m(i), k(i)}+1), respectively. The

resulting unitary matrix Q(i) has to be left- and right-multiplied to every lag matrix

S(i)′[τ ] according to (2.14). No full matrix multiplication is required, due to the sparse
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structure of (2.3) only two rows and columns in S(i)′(z) will be affected.

The convergence of SBR2 has been proven in [3] by showing that the paraunitary

operations do not alter the total energy in S(i)′(z), while in every step the off-diagonal

energy is further minimised. The algorithm stops after I iterations, once the maximum

off-diagonal element

max
k,τ
‖ŝ

(I)
k [τ ]‖∞ < ρ (2.19)

falls below a predetermined threshold ρ. Most recently SBR2 has been proven to enforce

spectral majorisation of the polynomial eigenvalues as in (2.11) [52].

2.4.2 SMD Algorithms

Different from SBR2, in the ith iteration the SMD approach will not just eliminate

the largest off-diagonal element but fully diagonalises S(i)[0]. In addition the SMD

approach uses the initialisation

S(0)[0] = Q(0)R[0]Q(0)H , (2.20)

with Q(0) the modal matrix obtained from the scalar EVD of R[0], every subsequent

iteration brings one row and column to S(i)′[0], whose energy is then transferred onto

the diagonal by a scalar EVD.

As the SMD algorithm can diagonalise more than a single element the search step

has been modified to make the most of the energy transfer. To maximise the reduction

in off-diagonal energy, the SMD parameter selection in the ith iteration is

{k(i), τ (i)} = argmax
k,τ
‖ŝ

(i−1)
k [τ ]‖2 , (2.21)

which differs from (2.18) in the use of the l2 instead of the l∞ norm. To achieve

complete diagonalisation of the zero lag, like the initialisation step Q(i) is the modal

matrix obtained by the scalar EVD of S(i)′[0].

The convergence of SMD is proven in [10], with a stopping criterion similar to (2.19)

but based on the l2 norm according to (2.21). SMD has been shown to diagonalise
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parahermitian matrices with a lower number of iterations than SBR2, because more

energy is transferred from off-diagonal to on-diagonal elements. However, an EVD has

to be calculated at every iteration, and the modal matrix Q(i) no longer has the sparse

structure of the Jacobi transformation in (2.3); requiring a full matrix multiplication at

every lag. Despite this the SMD algorithm will generally produce paraunitary matrices

of lower order than SBR2. Therefore, for applications such as those requiring broadband

signal subspace decompositions, SMD permits better performance with lower order

paraunitary filter banks than SBR2.

The column norm search used by SMD transfers more energy than a maximum

element search; in Chapter. 3 a new multiple shift search method is developed which

aims to maximise the reduction in off-diagonal energy at each iteration. One of the

fundamental drawbacks of the SMD algorithm is the additional time required to apply

the non-sparse Q(i) at each iteration. In Chapter. 4 the SMD approach is modified by

substituting the EVD step for a number of sparse Jacobi transformations applied in a

cyclic-by-rows fashion.

ME-SMD

An alternative version of the SMD algorithm, also introduced in [10], utilises the max-

imum element search in (2.18) and is termed the maximum element (ME) SMD algo-

rithm. All other steps follow those of the SMD algorithm above with the intention of

ME-SMD being a lower cost alternative. The maximum element search means that

ME-SMD will transfer less energy at each iteration than SMD with its column norm

search. Compared to SBR2 the ME-SMD algorithm will generally transfer more energy

for a given iteration but like SMD each iteration will be more computationally costly

than SBR2.

2.5 PEVD Ambiguity

The polynomial eigenvalue decomposition and the algorithms for calculating it intro-

duced in Sec. 2.3 and Sec. 2.4 have within them a number of different ambiguities which
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(a) (b)

Figure 2.4: Initial parahermitian matrix (a) and result of delaying row 1 (b).

are discussed in the following subsections.

2.5.1 Shift Matrix Ambiguity

In the case of single shift algorithms discussed in Sec. 2.4 the ambiguity in the shift

matrix Λ(i)(z) is not particularly useful however it is a key part of the multiple shift

algorithms in Chapter 3. The ambiguity in the shift matrix allows an arbitrary delay,

such as z−τ , to be applied to the shift matrix without affecting the resultant paraher-

mitian matrix; in short Λ(i)(z) = z−τΛ(i)(z).

Fig. 2.4 (a) shows a visual representation of a 5 × 5 × 5 parahermitian matrix

with the diagonal elements shown in black. A simple example of the shift matrix

ambiguity is that delaying the first row of the parahermitian matrix in Fig. 2.4 (a) by

2 (using Λ(i)(z) = diag
{
z−2 1 1 1 1

}
), shown in Fig. 2.4 (b) gives the exact same result

as advancing all other rows by 2 (using z2Λ(i)(z) = diag
{
1 z2 z2 z2 z2

}
), shown in

Fig. 2.5 (a) – (d). Therefore Λ(i)(z) has an infinite number of equivalent shift matrices,

z−τΛ(i)(z) ∀ τ . Although all shift matrices will be equivalent, many of them will add

redundancy to the resultant paraunitary matrix as its order will be higher than is

required e.g. zτΛ(i)(z) = diag
{
zτ−2 zτ zτzτ zτ

}
for τ > 2 or τ < 0.
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(a) (b)

(c) (d)

Figure 2.5: Results of advancing rows: 2 (a), 3 (b), 4 (c) and 5 (d).

2.5.2 Paraunitary Ambiguity

Assuming that for a parahermitian R(z), (2.9) holds with equality, we ask whether a

second decomposition

R(z) = Q̃(z)D(z)Q(z) = ˜̄Q(z)D̄(z)Q̄(z) (2.22)

can be found. With diagonalisation and spectral majorisation ofD(z) providing unique-

ness [31], it follows that D̄(z) = D(z). Hence, writing Q̄(z) = Γ(z)Q(z), the modifying

matrix Γ(z) must be paraunitary, diagonal and contain allpass filters in order to not

affect D(z). While for general allpass filters either Γ(z) or Γ̃(z) can be unstable, a

simple selection

Γ(z) = diag
{
z−τ1 z−τ2 . . . z−τM

}
(2.23)

is possible. This shifts the mth row of Q(z) by τm samples, where m = 1 . . .M and

M is the spatial dimension of R(z). A similar paraunitary ambiguity has been stated

in [53] and [32] but has never been exploited.
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Therefore, even if the diagonal D(z) is unique, a paraunitary matrix is ambiguous

as a Q(z) of minimum order can be modified by row-shifts to Q(z) applied by Γ(z) to

yield a factorisation with identical {R(z),D(z)}. The case where τ1 = τ2 = . . . = τM

has previously been used for truncation in [3,54] and is a natural extension of the shift

matrix ambiguity in Sec. 2.5.1 – this will be discussed further in Sec. 2.5.3 and Sec. 4.1.

The following example shows how the delays affect a diagonal matrix with M = 3 and

Γ(z) = diag{zτ1 zτ2 zτ3}

R(z) = ˜̄Q(z)D̄(z)Q̄(z)

= Q̃(z)Γ̃(z)D̄(z)Γ(z)Q(z)

= Q̃(z)diag
{
z−τ1 z−τ2 z−τ3

}
diag

{
D̄1(z) D̄2(z) D̄3(z)

}
diag{zτ1 zτ2 zτ3}Q(z)

= Q̃(z)diag
{
z−τ1D̄1(z)z

τ1 z−τ2D̄2(z)z
τ2 z−τ3D̄3(z)z

τ3
}
Q(z)

= Q̃(z)D̄(z)Q(z) .

(2.24)

Despite being in the background chapter, this is one of the contributions of this thesis

and will be utilised in a novel paraunitary truncation approach [43] in Chapter 4.

2.5.3 Truncation Methods

The growth in polynomial order can be curtailed using appropriate parahermitian [55]

and paraunitary [54] truncation functions. Both methods are permitted to remove up

to a predefined threshold of energy, µ, from the outer lags of the polynomial matrices.

For a parahermitian matrix the truncation is done symmetrically taking advantage of

its parahermitian nature the outer most lags contain the same energy. The paraher-

mitian property is preserved after the truncation function has been applied. In the

case of paraunitary matrices the truncation function is applied to either end of Q(z)

asymmetrically because the outer lags of a paraunitary matrix will have different en-

ergies. As a result of removing small values the paraunitary property is replaced by

near-paraunitarity after the truncation function is applied; assuming µ > 0. Removal

of the lower order lags in the paraunitary matrix is possible due to the paraunitary
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ambiguity where Γ(z) sees the same delays applied to all rows i.e. τ1 = τ2 = . . . = τM

in (2.23).

To reduce computational costs of the PEVD algorithms the parahermitian trun-

cation can be carried out at the end of every iteration, the resulting maximum total

loss in energy after I iterations is I × µPH . As the paraunitary matrix is only ever

calculated when the PEVD is complete the truncation function is only applied once

and so the resulting energy loss has a maximum of µPU . In Chapter 4 a new method

is proposed where the delays (τ1, τ2, . . . , τM ) can take on different values; taking full

advantage of the ambiguity from (2.24).

2.6 Chapter Summary

This chapter has introduced much of the background material required for the remain-

der of this thesis. Starting from the well known scalar EVD this chapter has shown

how scalar concepts have been extended to polynomial matrices. Next the polynomial-

matrix EVD (PEVD) was introduced followed by two of the established iterative PEVD

algorithms. The SBR2 algorithm is a polynomial matrix extension of the classical Ja-

cobi algorithm, and the SMD algorithm is a refinement upon SBR2 with modified

search and diagonalisation steps. From the discussion on SMD two key areas for im-

provement were identified. The first area for improvement was the amount of energy

being transferred at each iteration; for SMD this is better than SBR2 but it can be im-

proved further using a novel method in Chapter 3. Another area for improvement was

the cost of applying the non-sparse EVD modal matrix to the parahermitian matrix;

in Chapter 4 this step is replaced with a cyclic-by-rows based approximation which

results in a dramatic reduction in execution time. As the iterative PEVD algorithms

proceed the polynomial dimension of the parahermitian and paraunitary matrices in-

crease, within these decompositions some ambiguities have been identified which can

impact the growth of the paraunitary matrix in particular. Based on the paraunitary

matrix ambiguity identified in this chapter a new paraunitary matrix truncation algo-

rithm is proposed in Chapter 4. In general the new truncation method has been shown
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to truncate paraunitary matrices to a lower order and with a smaller error than its

predecessor introduced at the end of this chapter.
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Chapter 3

Multiple Shift PEVD Algorithms

This chapter aims to enhance the existing SMD algorithm by transferring more energy

at each algorithm iteration. Rather than applying a single row/column shift, methods

are developed here to shift multiple row/column pairs which will diagonalise more

energy at each iteration. Here the main PEVD steps from Sec. 2.4 remain the same

but the shift matrix, Λ(i)(z), is modified to

Λ(i)(z) = diag{1 z−τ (i,1) . . . z−τ (i,M−1)
} . (3.1)

To obtain (3.1) the search stage of the PEVD algorithms is modified to identify multiple

row/column pairs that can be brought onto the zero lag. In the SMD algorithm all zero

lag energy is transferred onto the diagonal at each iteration, therefore a search method

that maximises the energy transfer is advantageous. The aim of the following methods

is to increase the energy transfer achieved by the PEVD methods and thereby speed

up their real time convergence. First an exhaustive search for the SMD approach is

proposed followed by approximations that have been shown to achieve a similar energy

transfer with greatly reduced computational cost. In addition a multiple shift version

of the SBR2 algorithm is also discussed which is based on the multiple shift SMD.

Furthermore the idea of shifting multiple row/column pairs has been extended to a
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polynomial QR decomposition in [34] and a similar concept is employed in the divide

and conquer PEVD in [56].

3.1 Maximum Energy SMD

Idea

The maximum energy SMD approach finds the set of shifts for the delay matrix Λ(i)(z)

in (3.1) such that the maximum amount of off-diagonal energy is transferred onto the

zero lag, S(i)′[0], of the parahermitian matrix, S(i)′(z), at the ith iteration. Below

we focus on the ith iteration, and assume that S(i−1)(z) ∈ C
M×M has a support of

2L + 1, i.e. S(i−1)[τ ] = 0 ∀ |τ | > L where S(i−1)(z) is the z-transform of S(i−1)[τ ].

The optimum Λ(i)(z) can be determined via an exhaustive search which considers all

possible shift combinations. An added complication of dealing with multiple shifts is

the interaction between the row and column shifts which may move some energy away

from the zero lag.

Exhaustive Search

An exhaustive search must consider the amount of energy brought onto the zero lag

with every possible shift. In the single shift case this is fairly straightforward and is

effectively what the SMD algorithm does with its column norm search strategy. When

a multiple shift approach is used the only technique to measure the energy brought onto

the zero lag is to apply every different shift combination; the number of combinations

depends on both the matrix width M and polynomial dimension L.

In the case of a single shift algorithm, the maximum shift length, ∆max, is L.

Under multiple shifts the movement of one row/column pair will affect other rows

and columns and so the maximum shift, ∆max, becomes ⌈(M − 1)L/2⌉. The origin of

∆max = ⌈(M − 1)L/2⌉ will be explained in detail in Sec. 4.2

Varying each of the M diagonal elements of Λ(i)(z) in (3.1) over the interval τ ∈

[−∆max,∆max] will lead to (2∆max+1)M possible shift combinations. This is visualised

in Fig. 3.1 for the simple case where M = 4 and L = 1, with the mth row representing
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Figure 3.1: Visualisation of possible delay matrices for M = 4 and L = 1; each top-
bottom path in the (2∆max + 1)×M trellis defines the parameters of a possible delay
matrix; one specific matrix is highlighted in red, with redundant matrices for horizon-
tally shifted paths.

all possible values for τ (i,m) in (3.1). Each path from top to bottom represents one

particular combination of shifts, with a total number of (2∆max + 1)M possibilities.

For larger values of M or L, the diagram in Fig. 3.1 expands vertically or horizontally,

respectively.

Of the established (2∆max + 1)M possible shift combinations a number of combi-

nations are redundant; as explained in Sec. 2.5.1 z−τΛ(i)(z) with τ chosen arbitrarily

will implement a shift that is identical to Λ(i)(z). As an example for the case of

S(i−1)[τ ] ∈ C
4×4 with L = 1, Fig. 3.1 highlights three redundant combinations that

yield the same results as Λ(i)(z) = diag
{
[z2 z2 z z2]

}
. Selecting one path, its re-

dundant copies can be identified by strict horizontal shifts within the trellis, which

correspond to an overall delay or advance encapsulated by z−τ .

Defining S as the set of shift combinations, the following theorem states its cardi-

nality:

Theorem 1 (Cardinality of S). For a parahermitian matrix S(i−1)(z) ∈ C
M×M of

order 2L, such that S(i−1)[τ ] with a support of 2L + 1, the set S of independent shift

combinations that an exhaustive search algorithm has to evaluate has the cardinality

|S| = (2∆max + 1)M − (2∆max)
M . (3.2)
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m = 1
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Figure 3.2: Trellis of paths representing possible shift matrices. Redundant shift ma-
trices according to the definition of (3.4), which do not involve the left-most column
with τ = −L, have (2∆max)

M paths confined to the shaded area.

Proof. We define a redundant delay matrix Γ(i)(z) as one that can be obtained by

delaying a genuine delay matrix Λ(i)(z) ∈ S, such that Γ(i)(z) = z−∆Λ(i)(z) with

∆ > 0. W.r.t. the sample trellis in Fig. 3.1, the path belonging to the parameter set

of Λ(i)(z) has to include at least one node in the left-most column of the trellis, i.e. if

Λ(i)(z) is constructed according to (3.1),

Λ(i)(z) ∈ S ←→ min
m

τ (i,m) = −∆max . (3.3)

Therefore, a redundant matrix Γ(i)(z) — also constructed according to (3.1) — is

characterised by not reaching any node in the left-most column, or

Γ(i)(z) /∈ S ←→ min
m

τ (i,m) > −∆max . (3.4)

Since any path fulfilling (3.4) has to lie entirely within the shaded area in Fig. 3.2, occu-

pying the 2∆max right-most columns of the trellis, there are (2∆max)
M paths belonging

to redundant delay matrices. With a total possibility of (2∆max + 1)M combinations

within the trellis, (3.2) is proven.

The cardinality |S| in (3.2) is important, as it restricts the exhaustive search and

therefore limits its implementation cost. The definition of an independent delay matrix

according to (3.3) is somewhat arbitrary, and its place in the set S could also be taken
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Figure 3.3: Number of shift combinations that an exhaustive search algorithm has to
evaluate for S(i−1)[τ ] ∈ C

M×M for M = 3, 5, 7 with support 2L+ 1.

by one of its redundant copies z−∆Λ(i)(z). This has no impact on S(i)′(z) in (2.13) and

therefore does not affect D(z) in (2.15). However, selecting a copy with minimum order

in z−1 will influence the order of the paraunitary matrix Q(z) in (2.16), and a search

algorithm would therefore have to operate with care to either keep the order increase

low w.r.t. Q(z), or to ensure that any growth by trailing zero matrices is curtailed.

The size of the search space for delay matrices applicable to S(i−1)[τ ] ∈ C
M×M is

shown in Fig. 3.3 for the cases M = 3, 5, 7 and over a range of maximum lag values

L. Both the number of possible as well as the independent number of shifts — those

belonging to S — are detailed. Even for a relatively small range of values of both M

and L the number of shift combinations increases dramatically.

Implementation

The implemented algorithm first finds the list of all (2∆max + 1)M possible shifts,

which is then pruned to remove the redundant (2∆max)
M delay operations to obtain

S. Within S, the best possible shift combination for S(i−1)[τ ] (∈ C
M×M with support

2L+ 1) is then identified by applying each of the independent shifts to S(i−1)[τ ].

According to Fig. 3.3, the complexity of the exhaustive search grows very fast for

an increase in the spatial matrix dimensionM , but also raising the lag dimension L has

significant impact. In general the complexity is such that it is not possible to calculate

a full maximum energy SMD algorithm, as it may reach large values of L during its
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execution. Therefore, the maximum energy is only ever used as a benchmark for other

PEVD search strategies.

3.2 Multiple Shift Maximum Element SMD

Although optimal in terms of energy transfer the maximum energy search is very com-

putationally expensive and therefore impractical to implement as part of a full SMD

algorithm. In this section we propose an approximation which relies on a significantly

cheaper search method but maintains a similar high energy transfer through multiple

shifts.

3.2.1 Idea

Rather than testing every possible shift combination this approach uses multiple (low

cost) maximum element searches to generate the shift matrix in (3.1). The algorithm is

therefore referred to as the multiple shift maximum element (MSME) SMD algorithm.

Like the exhaustive search above the MSME-SMD algorithm aims to take advantage

of the full EVD step in the SMD algorithm to transfer more energy at each iteration.

3.2.2 Algorithm

The initialisation of the proposed algorithm follows the SMD family with (2.20). At

the ith iteration, (2.18) is first used to identify the maximum off-diagonal element, and

time-shift it with its column onto the lag zero slice, resulting in the sparsity structure

shown in Fig. 3.4 (a). By permuting this matrix to the structure in Fig. 3.4 (b), any

subsequent operations within the ith iteration will not affect this maximum off-diagonal

element as long as the upper 2 × 2 matrix remains untouched. Different strategies to

identify and time-shift further columns within the ith iteration exist; the next three

subsections outline three such approaches.
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Figure 3.4: Sparsity structure of lag zero matrix S(i)′[0] after ith iteration of (a) the
SMD algorithm, indicating the maximum off-diagonal element in position m(i) of the
k(i)th row, and (b) after permutation.
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Figure 3.5: Best case scenario for the Naive “Greedy” method.

Naive “Greedy” Approach

Using a so-called “Greedy” approach the number of elements found is variable between

M − 1 and ⌈M/2⌉, which is determined by the rows and columns that the elements

are in and the order in which they are found. Fig. 3.5 shows the best case scenario

for this method in a 5× 5 example, neglecting the lag dimension i.e. elements in these

positions can be taken from any lag. Assuming the first element pair is found in (or

permuted to) the upper left off-diagonal position like Fig. 3.5 (a). The ‘C’s and ‘R’s

indicate these elements must be shifted in their columns and rows respectively, the ‘A’s

stand for ‘any’ and can be shifted either as rows or columns without affecting the first

(or any previous) element. A best case scenario then finds the second element pair in

the positions indicated by 2 and 2∗ in Fig. 3.5 (b) — some but not all elements can be

permuted into this position. The ‘X’s now indicate elements that cannot be moved at

all as they would in turn move either element 1 or 2. The third element pair is found

in the positions (permutable to) 3 and 3∗ in Fig. 3.5 (c) and a final fourth element can

be found in the remaining ‘C’ and ‘R’ positions.

Using the same annotations the worst case scenario is shown in Fig. 3.6. Again

starting from the first element pair in the upper left most off-diagonal positions Fig. 3.6
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Figure 3.6: Worst case scenario for the “Greedy” method.

2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

Matrix Dimension M

N
u
m
b
er

o
f
E
le
m
en

ts

 

 
Best Case
Worst Case

Figure 3.7: Difference between best and worst case multiple shift scenarios.

(a). This time a second element is chosen from one of the ‘A’ locations which cannot

be permuted into the position of 2 in Fig. 3.5 (b). After the second element has been

chosen only one further element can be picked from Fig. 3.6 (b), giving a total of 3

rather than 4 elements. For the simple 5×5 example shown there is only a difference of

1 element but as M grows this difference becomes more significant as shown in Fig. 3.7.

Maximum Number of Shifts

The only restriction of the “Greedy” approach is that previous elements are not moved

by future shifts, this leads to a variable performance in terms of the number of shifts.

From Fig. 3.5 and Fig. 3.6 it is possible to see that at certain stages some elements make

better choices than others. To guarantee that the algorithm achieves the maximum

number of shifts as in Fig. 3.5 the search spaces can be further restricted, using a

mask, such that the mth element chosen can be permuted to the upper left m + 1

dimensional sub-matrix. The masking process is shown in Fig. 3.8 (a) where the ‘A’s

from Fig. 3.5 (a) are replaced with ‘M’s to indicate that they are now masked from this

search step. The algorithm is now forced to choose the better elements and the masking

works such that no elements are missed in the course of one iteration i.e. any elements
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Figure 3.8: Masking used in the method that maximises the number of shifts.

masked during one search step will be available in future search steps (within the same

iteration). Now any element found in either of the ‘C’ or ‘R’ sections in Fig. 3.8 (a)

can be permuted into the upper left 3× 3 sub-matrix (positions of the 2, 2∗, or ‘X’s) in

Fig. 3.8 (b); the same is true between Fig. 3.8 (b) and Fig. 3.8 (c). Using this masking

procedure guarantees that M − 1 elements will be brought onto the zero lag at each

iteration.

With the permutations used in Fig. 3.8, (3.1) can be redefined as a more complex

delay & permutation matrix

Λ(i)(z) = diag{1 z−τ (i,1) . . . z−τ (i,M−1)
} P(i) (3.5)

whereby the permutation matrix P(i) accumulates all the column shift operations dis-

cussed above. The delays τ (i,m), m = 1 . . . (M − 1) are the lag values at which the

maximum elements for the different columns in Fig. 3.8 have been found.

In reality the permutations described in Fig. 3.8 and (3.5) are not required, they are

only used here to better illustrate the search and masking procedure so (3.1) can also

be used without modification, only the search and masking procedure will be slightly

different. This is the approach that is utilised in the multiple shift maximum element

(MSME) SMD algorithm. As with the SMD algorithm in Sec. 2.4.2 the ith iteration

of the MSME-SMD approach is completed with a full EVD of the zero lag matrix.

Causality Constrained MSME-SMD

In some cases, such as spectral factorisation [53,57] causality of the paraunitary matrix

is important. Therefore this section discusses the causality constrained extension of the

MSME-SMD algorithm. So far the causality of the (maximum element based) PEVD
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algorithms has not been considered, as τ (i) in (2.12) can be positive or negative. Note

however, that if the maximum element is identified in column k(i) and row m(i) at lag

τ (i), the parahermitian nature of S(i−1)(z) = S̃
(i−1)

(z) implies that a corresponding

value sits in column m(i) and row k(i) at lag −τ (i). Therefore, the same maximum

element pair shifted by (2.12) can also be brought onto the zero lag matrix by

Λ(i)(z) = diag{1 . . . 1
︸ ︷︷ ︸

m(i)
−1

zτ
(i)

1 . . . 1
︸ ︷︷ ︸

M−m(i)

} . (3.6)

This alternative can be invoked to pick a causal operation from either (2.12) or (3.6)

at the ith iteration, such that the overall paraunitary matrix in (2.16) consists of only

causal elements. The two operations, although shifting the same two target elements,

will however result in different parahermitian matrices S(i)′(z). The SMD algorithm

with its column norm based search cannot be made causal as the column norm search

space doesn’t have any symmetry.

Applying the idea of causal shifts to the MSME-SMD algorithm, the initial search

is restricted to the first half of the parahermitian matrix (with no other restrictions),

and the element found must be shifted in its row. Once the first element is brought

onto the zero lag and permuted into the upper left off-diagonal position it will be akin

to Fig. 3.9 (a). Although the elements 1 and 1∗ could be the same between Fig. 3.8 (a)

and Fig. 3.9 (a) the non-causal method has the choice of whether 1 is brought on to

the zero lag in its column or row where as C-MSME-SMD is restricted to only delay

rows. Otherwise Fig. 3.9 (a) is identical to Fig. 3.8 (a) but the following steps differ.

Selecting the elements from the first half of the parahermitian matrix in the ‘C’

locations in Fig. 3.9 (a) would require an anti-causal row shift onto the zero lag therefore

the C-MSME-SMD algorithm must choose elements from the ‘R’ positions only. With

the causal restriction it is obvious to see that the search space is now halved compared

to MSME-SMD. Fig. 3.9 (b) is very similar to Fig. 3.8 (b) apart from 2 and 2∗ have been

switched meaning for C-MSME-SMD 2 was found in an ‘R’ element but for MSME-

SMD it was found in one of the ‘C’ elements. If elements 2/2∗ and 2∗/2 are the same

between MSME-SMD and C-MSME-SMD, the other elements brought onto the zero
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Figure 3.9: Masking used in the method that maximises the number of shift for the
causal MSME-SMD algorithm.

lag will be the same because they are restricted to shift in terms of columns or rows

to protect the previous elements. With a larger search space however, it is likely that

MSME-SMD will bring different elements onto the zero lag. The remaining shifts to

get Fig. 3.9 (c) and beyond follow the same routine as the second element i.e. only

choosing from the locations marked ‘R’ and from the front half of the parahermitian

matrix.

Like the MSME-SMD algorithm, this can either be done with the permutations

shown in Fig. 3.9 and (3.5) or without permutations using a slightly different search

method and (3.1) although τ (i,m) ≥ 0 in both cases. As with all other SMD based

algorithms the ith iteration is completed with a full EVD of the zero lag being applied

to all lags of the parahermitian matrix.

3.3 Multiple Shift SBR2

In this section the multiple shift idea is applied to the SBR2 algorithm. The primary

advantage of the SBR2 algorithm is its low cost; with the multiple shift technique

the diagonalisation performance will improve leading to a powerful, low cost PEVD

algorithm. The multiple shift second order sequential best rotation algorithm (MS-

SBR2) [42] was based on [39–41] and developed in collaboration with J. G. McWhirter’s

group from Cardiff University.

3.3.1 Idea

This approach was influenced by the MSME-SMD method described above however

the search is modified such that the Jacobi transformations applied to each maximum
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Figure 3.10: Masking used in the MS-SBR2 algorithm.

element do not affect any other chosen element i.e. no maximum element can share a

row or column with another. The modification restricts the number of elements that

can be brought onto the zero lag to be only ⌊M/2⌋.

3.3.2 Algorithm

The MS-SBR2 algorithm must take into account that the Jacobi transforms affect the

row and column of the pair that they are applied to. The MS-SBR2 search must choose

elements that do not share a common row or column so that no element is affected by

the Jacobi transform of another element. The MS-SBR2 search is similar to the worst

case scenario of the “Greedy” search shown in Fig. 3.6; although here we now avoid the

elements that share a row or column with previous maximum elements. In Fig. 3.10

(a) the ‘C’s and ‘R’s from Fig. 3.6 are replaced with ‘X’s (to indicate they cannot be

chosen) and we can only now choose from the elements marked with an ‘A’. As one

may expect, limiting the search in this way also reduces the number of elements that

can be found. In Fig. 3.10 (b) a total of only 2 elements are found and in general it is

⌊M/2⌋ elements i.e. about half the number found by MSME-SMD.

As with the multiple shift algorithms above the shifts can be applied using (3.5)

or (3.1) depending on whether the permutations shown in the diagrams are used or

not. The ith iteration of the MS-SBR2 is completed by eliminating each of the selected

elements in turn with the Jacobi transform from (2.3).

3.4 Proof of Convergence

Theorem 2 (Convergence of the Multiple Shift Algorithms). With a sufficiently large

number of iterations I, the multiple-shift PEVD algorithms approximately diagonalise
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R(z) and decrease the power in off-diagonal elements to an arbitrarily low threshold

ǫ > 0.

Proof. A number of norms are required to prove Theorem 2. With s
(i)
m,m[0] the mth

diagonal element of S(i)[0],

N1{S
(i)(z)} ,

M∑

m=1

|s(i)m,m[0]|2 (3.7)

is invariant to shifts and permutations, i.e.

N1{S
(i)′(z)} = N1{Λ

(i)(z)S(i−1)(z)Λ̃
(i)
(z)}

= N1{S
(i−1)(z)} . (3.8)

The energy of the lag zero matrix

N2{S
(i)(z)} , ‖S(i)[0]‖2F (3.9)

is invariant under any unitary operation,

N2{S
(i)(z)} = N2{Q

(i)S(i)′(z)Q(i)H}

= N2{S
(i)′(z)} . (3.10)

Further,

N3{S
(i)(z)} , N2{S

(i)(z)} − N1{S
(i)(z)} (3.11)

N4{S
(i)(z)} ,

∑

τ

‖S(i)[τ ]‖2F (3.12)
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where ‖ · ‖F denotes Frobenius norm and the total energy N4{·} is invariant under the

application of a paraunitary G(i)(z) such that

N4{S
(i)(z)} = N4{G

(i)(z)S(i−1)(z)G̃
(i)
(z)}

= N4{S
(i−1)(z)} . (3.13)

For the off-diagonal norm at the ith iteration,

N3{S
(i)′(z)} ≥ 2‖ŝ

(i−1)

k(i)
[τ (i)]‖2

∞
= 2γ(i) . (3.14)

In the following diagonalisation step with Q(i), this energy is transferred onto the main

diagonal such that N3{S
(i)(z)} = 0. With

N1{S
(i)(z)} > N1{S

(i)′(z)} + 2γ(i)

= N1{S
(i−1)(z)} + 2γ(i) (3.15)

and γ(i) > 0, N1{S
(i)(z)} increases monotonically with iteration index i. Since

N1{S
(i)(z)} ≤ N4{S

(i)(z)} ∀ i , (3.16)

with the overall energy, N4{S
(i)(z)}, remaining constant, N1{S

(i)(z)} must have a

supremum S,

S = sup
i

N1{S
(i)(z)} . (3.17)

It follows that for any ǫ > 0 there must be an iteration number I for which S −

N1{S
(I)(z)} < ǫ and so the increase 2γ(I+i), i ≥ 0, at any subsequent stage must

satisfy

2γ(I+i) ≤ S −N1{S
(I)(z)} < ǫ . (3.18)

Hence, for any ǫ > 0, there must be an iteration I by which γ(I+i), i ≥ 0, is bounded

by ǫ.
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3.5 Search Complexities

The following subsections investigate the computational complexities associated with

each of the search techniques. The complexities are derived for the general case where

the parahermitian matrix, at the ith iteration has a matrix dimension M , and support

of 2L+ 1.

3.5.1 Maximum Element Search

Both the SBR2 and ME-SMD PEVD algorithms use the l∞ norm from (2.18). Due

to the parahermitian symmetry the maximum element search can be carried out in

a search space of only M2(L + 1). In each iteration, the maximum element can be

identified without any explicit norm calculation but requires a search over a set of

O(M2(L+ 1)) elements; this can be simplified to O(M2L) because as L grows the +1

becomes insignificant [58].

3.5.2 Column Norm Search

The original SMD algorithm in its ith iteration inspects the vectors ŝ
(i−1)
k [τ ], which are

the columns of S(i−1)[τ ] but modified by removing its on-diagonal elements. Using the

column norm search from (2.21), a total of M(2L+1) column norms of the parahermi-

tian matrix have to be calculated. Each norm requires a squaring of elements, but the

square root operation can be omitted as only a comparison of norms but no explicit

values are required. Thus, with each column vector having length M , the norm compu-

tation is O(M2(2L+ 1)) followed by a search over O(M(2L+ 1)) elements. Like with

the maximum element search these can be simplified to O(M2(2L)) and O(M(2L))

respectively.

3.5.3 Multiple Shift Searches

MSME-SMD

The search method used in the MSME-SMD algorithm initiates every iteration by

scanning the parahermitian matrix for its maximum off-diagonal element similar to
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Table 3.1: Order comparison of SMD search methods.

method norm calc. comparisons total

SMD O(M2(2L)) O(M(2L)) O(M2(2L))
ME-SMD O(0) O(M2L) O(M2L)
(C-)MSME-SMD O(0) O(M3L) O(M3L)
MS-SBR2 O(0) O(⌊M/2⌋M2L) O(⌊M/2⌋M2L)

SBR2 andME-SMD, employing the l∞ instead of the l2 norm. Like before the symmetry

can be exploited such that only half of the parahermitian matrix needs to be searched.

This approach requires no norm evaluations but the complexity of the search is

O(M3L) because each iteration involves the O(M2L) maximum element search a total

of M − 1 times (where for asymptotic analysis M − 1 is simplified to M [58]). The

search space for the C-MSME-SMD algorithm is the same number of elements as that

of MSME-SMD; therefore the complexity is the same however more of the elements are

masked in C-MSME-SMD for the causal restriction.

Multiple Shift SBR2

As with the MSME-SMD algorithm the MS-SBR2 algorithm utilises the l∞ norm from

(2.18). Like before the search is repeated however with MS-SBR2 it is only a total of

⌊M/2⌋ times. With the MS-SBR2 search because the number of elements found is only

⌊M/2⌋ the complexity goes down to O(⌊M/2⌋M2L). Like the other maximum element

based search methods MS-SBR2 does not require any additional norm calculations.

3.5.4 Comparison

An overall order comparison of the four search methods is provided in Tab. 3.1, with a

total search order provided on the basis that one comparison for the maximum search

is about as expensive as one multiply-accumulate operation. Note the value of L grows

at each iteration and the rate of growth also varies between algorithms.
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3.6 Results

In this section a number of different scenarios are considered each of which requires

specific performance metrics which are introduced below. The first experimental results

compare each of the search methods to the exhaustive search for a small range of

matrix sizes. Next the energy transfer of the various sub-optimal searches is tested

for larger parahermitian matrix dimensions. Finally the search methods are put into

PEVD algorithms and they are evaluated in terms of convergence, paraunitary order

and computational complexity.

3.6.1 Performance Metrics

Each of the energy transfer experiments requires a slightly different performance metric.

The initial set of experiments in this section concentrate on the energy that a particular

search method can bring onto the zero lag at a given iteration i. To compare the

different approaches we record the energy that is on the zero lag after the shift matrix,

Λ(i)(z), has been applied,

E =
M∑

k=1

‖ŝ
(i)′
k [0]‖2 , (3.19)

where ŝ
(i)′
k [τ ] is the modified (off-diagonal) column after Λ(i)(z) has been applied. The

energy transfer for each algorithm is then compared to that of the exhaustive, maximum

energy search and shown as a percentage.

For the second set of tests the proportion of shifted energy, E
(M,L)
shift , is calculated as

E
(M,L)
shift =

∑M
k=1 ‖ŝ

(M,L)′
k [0]‖22

∑

τ

∑M
k=1 ‖ŝ

(M,L)
k [τ ]‖22

, (3.20)

where ŝ
(M,L)
k [τ ] is the modified column vector for an M ×M × 2L + 1 parahermitian

matrix. The numerator in (3.20) is the the off-diagonal energy brought onto the zero

lag and the denominator is the off-diagonal energy in the entire parahermitian matrix.

The algorithm that shifts most energy onto the zero lag consequently produces the

highest E
(M,L)
shift .
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Finally the overall convergence is measured using a suitable normalised metric

from [10] is

E(i)
norm =

∑

τ

∑M
k=1 ‖ŝ

(i)
k [τ ]‖22

∑

τ ‖R[τ ]‖2F
(3.21)

based on the definition of ŝ
(i)
k [τ ] in (2.18). In the ideal case (3.21) should reduce to zero

but in reality it tends to only approach but not reach zero.

Execution time is used to measure the computational complexity of the search meth-

ods in Matlab 2014a with the following system specification: Ubuntu 14.04 on a Dell

Precision T3610 with Intel® Xeon® E5-1607V2 3.00 GHz x 4 cores and 8 GB RAM.

The order of the paraunitary matrices are also recorded at each algorithm iteration; as

all algorithms start with the same input parahermitian matrix the paraunitary order

is directly related to the growth of the parahermitian matrix.

3.6.2 Energy Transfer

The first part of this section benchmarks the energy transfer of the various PEVD

search algorithms as a percentage of the exhaustive search from Sec. 3.1. Due to the

large computational cost of the exhaustive search the comparison is only carried out

over a small range of matrix sizes. In the second part the exhaustive search is omitted

and the PEVD search algorithms are compared using their relative performance over

a larger range of matrix dimensions. These tests were originally developed for SMD

based algorithms in [41,59] so make the following two assumptions:

1. all energy shifted onto the zero lag gets diagonalised;

2. prior to the search taking place no energy is on the zero lag.

Although the SBR2 family of PEVD algorithms does not fit the two assumptions above

the MS-SBR2 search algorithm is included here to give an idea of its performance

relative to the other search methods. The inclusion of MS-SBR2 also highlights the

importance of the masking steps in MSME-SMD search which guarantee the transfer

of M − 1 elements.
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Percentage Energy Transfer

Simulating the ith iteration of an SMD algorithm, S(i−1)(z) is set as S(z) but with

zeroed off-diagonal elements on the zero lag. Fig. 3.11 compares the values of E, from

(3.19), as a percentage of that obtained by maximum energy SMD algorithm forM = 3

andM = 4 over a range of values for the maximum lag L. ForM = 3, where the MSME

algorithms are shifting 2 rows there is a significant difference between them and the

single shift algorithms. WhenM = 3 the MS-SBR2 search can only shift 1 element and

therefore performs the same as the single shift maximum element search. Increasing

M to 4 the performance of the single shift algorithms begins to degrade compared to

the multiple shift algorithms; this time the MSME algorithms shift 3 elements and MS-

SBR2 shifts 2 elements. When the values of L are small the number of shift possibilities

are reduced and it is more likely that the single shift algorithms will pick a near optimum

shift. In general from Fig. 3.11, the performance of the algorithms as a percentage of

the exhaustive search tend to deteriorate and level off as the lag dimension increases

and the number of possible shifts increase.

The same situation is shown in Fig. 3.12, but for a fixed value of L = 1, the

matrix dimension M is varied. Like Fig. 3.11 the MSME search algorithms perform

very closely to the exhaustive search over the range of M values. As M increases the

performance of the single shift algorithms deteriorates to the point where atM = 7 the

maximum element search is transferring less than half of what can be achieved with the

exhaustive search. The MS-SBR2 search initially follows the maximum element search

until M > 3; at which point the algorithm allows more than one element to be brought

onto the zero lag.

The major drawback in the exhaustive search algorithm is its extremely high com-

putational cost, for example the simple case where M = 7 and L = 1 has 823, 543

possible combinations of which 543, 607 are independent and must be tested for each

different parahermitian matrix. Due to this extremely high computational cost in the

exhaustive search, the MSME search algorithms become a very attractive alternative.

In the simulations shown in Fig. 3.11 and Fig. 3.12 the MSME search algorithms con-

sistently perform at around 90% of the exhaustive search but at a fraction of the cost.
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Figure 3.11: Percentage of maximum off-diagonal energy transferred by search algo-
rithms in the ith iteration for (a) S(i)(z) ∈ C

3×3 for different maximum lag values L
and (b) S(i)(z) ∈ C

4×4 for different maximum lag values L.

Relative Energy Transfer

Although the exhaustive search is far too costly for larger matrices the relative perfor-

mance of each of the algorithms can be compared for a larger range of matrix dimen-

sions. The relative energy transfer for the various algorithms, calculated using (3.20),

is shown in Fig. 3.13 for a selection of parahermitian matrices where M = 4, 6, 10 and

L = 50, 100 . . . , 500 over an ensemble of 1000 instantiations.

Like the scenarios in Fig. 3.11 and Fig. 3.12 the MSME search methods are superior

to the rest, especially the single shift algorithms. The performance gap between the

multiple and single shift algorithms gets significantly larger as M is increased due to

the fact that the multiple shift algorithms start to bring even more energy onto the

zero lag. The MS-SBR2 search algorithm also performs very well compared to the

single shift algorithms but loses out slightly to the MSME search methods which allow

more elements to be shifted. Comparing the single shift algorithms, the column norm

search comes out better than the maximum element due to the fact that it considers
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Figure 3.12: Percentage of maximum off-diagonal energy transferred by search algo-
rithms in the ith iteration for S(i)(z) ∈ C

M×M with L = 1 for variable M .

all elements brought onto the zero lag by a shift rather than just one. As mentioned

in Sec. 3.1 the column norm search is effectively an exhaustive algorithm for the single

shift case.

To give an idea of the cost of extending the exhaustive search simulations above to

the size of matrices considered here, for the case of M = 10 and L = 500 there are

approximately 3.41×1036 possible shift combinations from which around 7.6×1033 are

independent and would need to be tested. The reason that the plots in Fig. 3.13 do

not plateau like those in Fig. 3.11 is that the overall energy in the matrices (i.e. the

denominator in (3.20)) increases with L where as the energy that can be brought onto

the zero lag remains similar. In short the exhaustive search energy (which the other

algorithms are compared to) in Fig. 3.11 is close to constant whereas the denominator

for the performance metric in Fig. 3.13 increases with L.

3.6.3 Diagonalisation

Due to the large range of different sized matrices investigated the previous two ex-

periments have used randomly generated parahermitian matrices. For the remainder

of this thesis a source model based on the one described in [10] is used to carefully

control the majorisation and dynamic range of the source signals. The source model is

explained in full detail in Chapter. 5. The experiment for this section is carried out over

an ensemble of 1000 different matrices produced by the source model from [10]. The

initial dimensions of the matrices are all M = 6 and L = 59 and the average dynamic
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Figure 3.13: Average energy transferred for varying matrix size and search algorithm.

range of the ensemble is approximately 20 dB.

Fig. 3.14 shows the reduction in off-diagonal energy calculated using (3.21) against

algorithm iterations. As expected, based on the results in the previous subsections, the

the two MSME-SMD PEVD algorithms have a superior energy transfer compared to

the PEVD algorithms using the other search methods. Likewise MS-SBR2 outperforms

the single shift SBR2 algorithm. Despite only shifting one row/column pair the SMD

algorithm with its column norm search performs reasonably well compared to the other

PEVD algorithms. Although it starts off well the diagonalisation performance of the

ME-SMD algorithm gets relatively worse as the algorithm iterations increase.

3.6.4 Real Time Convergence

The results from Fig. 3.14 do not take into account the time required to compute each

iteration of the various PEVD algorithms. Fig. 3.15 shows a real time convergence

example for M = 4, 6 & 10 where the initial value for L is 59 and the average dynamic

range is approximately 20 dB based on an ensemble of 1000 different parahermitian

matrices for each value of M .

Despite the more complex search step the MSME-SMD algorithms converge faster
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Figure 3.14: Diagonalisation vs. algorithm iterations for the SMD algorithm and the
two MSME-SMD varients.

in real time than the relatively simpler ME-SMD and SMD algorithms. In reality the

search step is only a small part of the overall execution time for the SMD algorithms.

The execution time is dominated by the step which applies the EVD modal matrix

to all lags of the parahermitian matrix. Therefore transferring more energy at each

iteration outweighs the slight increase in complexity.

The results for the SBR2 based algorithms confirm the statements from Chapter. 2;

i.e. in real time the SBR2 algorithm converges faster. Comparing the single vs. multiple

shift algorithms for SBR2 we see that the simpler maximum element search is marginally

faster i.e. in this case the search complexity has a larger impact on the execution time.

The trends are very similar for all values of M used in Fig. 3.15.

3.6.5 Order Increase

Fig. 3.16 shows how the paraunitary matrices grow as the off-diagonal energy in the

parahermitian matrix is reduced. One of the inherent downsides of shifting multiple

row/column pairs onto the zero lag is the growth in the paraunitary (and as a conse-

quence, parahermitian matrices). Most of the single shift algorithms, in particular the

column norm based SMD, show a minimal growth in the paraunitary matrix order. As
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Figure 3.15: Reduction in off-diagonal energy vs. mean execution time over 100 algo-
rithm iterations.

M is increased the paraunitary matrices for SBR2 and SMD stay relatively constant;

in the case of SMD they slightly reduce in order as M is increased. For the multiple

shift algorithms the growth gets larger with the matrix dimension M as they are al-

lowed to shift more elements. Despite having the same search step as SBR2 and the

same diagonalisation step as SMD, the ME-SMD algorithm performs worst of all; the

matrices even grow significantly as M is increased.

3.7 Chapter Summary & Conclusions

This chapter first introduced the idea of shifting multiple rows and columns during one

PEVD algorithm iteration. Based on the idea of multiple shifts, the possibility of an

exhaustive search was outlined which would try every independent shift combination

in order to determine the one which transfers the most energy onto the zero lag. As

the parahermitian matrix grows in both width (M) and length (L), the number of

independent shifts — and therefore the cost — grow significantly. In reality the ex-

haustive search approach is far too costly to implement as part of a PEVD algorithm;

the multiple shift maximum element (MSME) search was therefore developed as an

alternative. After investigating different search and masking approaches a method was
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Figure 3.16: Length growth of paraunitary matrix during the ith iteration for
S(i−1)(z) ∈ C

M×M with maximum lag L = 1 and variable M .

developed that is guaranteed to bring M − 1 maximum elements onto the zero lag at

each iteration. Based on the MSME method a causal approach has been developed and

the multiple shift idea has influenced the development of the MS-SBR2 algorithm.

Although costly, the exhaustive search has been used as a benchmark to gauge

the relative performance of each of the different search methods over a small range of

matrix sizes. The results showed that the MSME search performs on average within

90% of the maximum energy approach. A similar test was then carried out for a

larger range of matrix sizes and the absolute performance was recorded. These results

confirmed the results from the previous test showing the higher energy transfer of the

multiple shift algorithms. When incorporated into full PEVD algorithms the multiple

shift methods were then shown to also transfer more energy at each iteration and

therefore diagonalise parahermitian matrices in fewer iterations. Both the SBR2 and

the MS-SBR2 algorithms converge significantly faster in real time than the SMD based

algorithms; this issue which is inherent to all SMD based algorithms will be investigated

in the next chapter. Despite the more complex search step the MSME-SMD algorithms

have actually been shown to converge faster in real time than the single shift SMD

algorithms. The final set of results highlighted an unwanted side effect of the MSME
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search, which is the polynomial eigenvalues and eigenvectors grow faster than any of

the other algorithms. In the next chapter methods to limit this polynomial growth

will be explored along with a new method of truncating paraunitary matrices which is

applicable to all PEVD algorithms.
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Efficient Implementations

In the results section of Chapter 3, three main performance metrics were investigated,

namely:

• diagonalisation,

• polynomial matrix order growth, and

• real time execution.

While Chapter 3 mainly focused on improving the diagonalisation, this chapter intro-

duces methods which target the other two performance metrics. First the row-shift

method for paraunitary truncation is introduced; this allows a further reduction in the

paraunitary matrix order compared to the current state-of-the-art. Next the restricted

search (RS) MSME-SMD is discussed which limits the lags in which elements can be

found. RS-MSME-SMD aims to reduce the polynomial matrix growth in the MSME-

SMD algorithm. An added benefit of the RS-MSME-SMD algorithm is that the real

time execution is reduced as the algorithm works on a lower number of coefficients. The

final section of this chapter introduces the cyclic-by-rows based SMD approximation.

The cyclic-by-rows approximation is intended to improve the real time execution of the

SMD based algorithms by removing the costly EVD step.

52



Chapter 4. Efficient Implementations

4.1 Row-Shift Truncation

The truncation of paraunitary matrices in [54] follows the idea for trimming paraher-

mitian matrices expressed in [3,55]. Below, the approach in [54] is reviewed, before the

proposed approach [43] is outlined, followed by a numerical example. Any truncation

of paraunitary matrices results in a loss of the paraunitary property, which will be

discussed further in the results section.

4.1.1 State-of-the-Art Truncation

The truncation method in [54] discards outer lags of a paraunitary matrix and can

remove up to a predefined proportion of energy µ from Q(z) •—◦ Q[n]. If truncation

is written as a non-linear operation flag(·), then the proportion of removed energy is

given by

γlag = 1−

∑

n ‖flag(Q[n])‖2F
∑

n ‖Q[n]‖2F

= 1−
1

M

∑

n

‖flag(Q[n])‖2F , (4.1)

where ‖ · ‖F is the Frobenius norm. The energy is removed by omitting the leading N1

and trailing N2 matrices from Q[n] of length N , such that

flag(Q[n]) =







Q[n+N1] 0 ≤ n < N −N2 −N1

0 otherwise
.

This leads to the following constrained optimisation problem to perform the truncation:

maximise (N1 +N2) (4.2)

s.t. γlag ≤ µ . (4.3)

In practice, this approach can be implemented by sequentially removing leading or

trailing matrices of Q[n] — whichever has the smallest Frobenius norm — as long as

the constraint (4.3) remains satisfied.
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4.1.2 Proposed Row-Shift Truncation

The proposed method takes advantage of the paraunitary matrix ambiguity from Sec. 2.5,

that allows us to modify Q(z) with Γ(z) to create an equivalent paraunitary matrix

Q̄(z). The goal of the row-shift truncation is to introduce a modifying matrix Γ(z)

which lowers the order of the paraunitary matrix. Defining Q(z) with its constituent

row vectors qm(z), m = 1 . . .M ,

Q̃(z) = [q1(z) . . . qM (z)] , (4.4)

note that q̃i(z)qj(z) = δ(i − j). Therefore each vector qm(z) has unit energy, and it

appears sensible to truncate the same proportion of energy from every vector. With a

vector-valued truncation frow(qm[n]), the proportion of removed energy is

γrow,m = 1−
∑

n

‖frow(qm[n])‖22 . (4.5)

Based on the truncation definition

frow(qm[n]) =







qm[n+N1,m] 0 ≤ n < Tm

0 otherwise
, (4.6)

with Tm = N−N2,m−N1,m, the optimum truncation based on the row-shift ambiguity

is given by the constrained problem

maximise min
m

(N1,m +N2,m) (4.7)

s.t. γrow,m ≤
µ′

M
∀ m = 1 . . .M , (4.8)

where µ′ is the threshold of energy shed. With this, the row-shifts τm = N1,m, m =

1 . . .M , correcting the truncation are identified and can be applied via Γ(z) in (2.23) .

The truncated matrix after row correction will have length maxm(Tm).

In practise, every row vector of Q(z) is treated individually like the matrix in

the previous approach of [54] and Sec. 4.1.1. Note that the main complexity of both
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truncation approaches lies in the calculation of norms; therefore, the proposed approach

has only little overhead compared to [54].

Naturally some of the truncated rows will come out shorter than others; one ap-

proach to dealing with this is to simply zero pad them to the length of the longest. Zero

padding gives good results however the overall error can be reduced by identifying the

shorter rows and replacing them with a version (from the paraunitary matrix prior to

truncation) that has been truncated to the same length as the longest row. Replacing

the shorter rows in this way increases the complexity of the trim function and can in

the worst case (when there are M − 1 shorter rows) almost double the computational

complexity of the row-shift truncation compared to zero padding. Although the zero

padding is computationally simpler than the two stage approach the paraunitary matrix

is only ever truncated once the PEVD algorithm is complete (i.e. not at each algorithm

iteration); therefore the truncation step is a small portion of the overall complexity

in generating the paraunitary matrix. The previously published results for row-shift

truncation in [43] use the zero pad method but the results in this thesis will use the

technique with the additional step.

4.1.3 Truncation Example

To demonstrate the potential benefit of the proposed truncation, a simple example is

considered here. By generating a CSD matrix R(z) ∈ C
4×4 through a source model de-

tailed in [10], we know that an exact decompositionR(z) = Q̃source(z)Dsource(z)Qsource(z)

exists. The matrix Dsource(z) is diagonal and of order 8; it is also spectrally majorised

as shown by the shaded curves in Fig. 4.1. The paraunitary matrix Qsource(z) is of

order 4.

Running SBR2 for 100 iterations yields a well-diagonalised matrix D(z), whose

power spectral densities very closely match those of Dsource(z), as demonstrated in

Fig. 4.1. This accuracy is not met by the paraunitary matrix Q(z), which, when

left untrimmed, has an order of 137. Even though this matrix has many very small

trailing coefficients, its order is significantly larger than that of the ground truth matrix

Qsource(z).
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Figure 4.1: Power spectral densities of the source model Dsource(z) and of the extracted
matrix D(z) using SBR2.

Using a standard truncation as introduced in [54] with µ = 10−4 removes 0.1‰ of

the total energy of Q(z). The resulting flag(Q[n]) is shown in Fig. 4.2, and now only

has order 29. Removing small trailing coefficients therefore has significantly reduced

the order of flag(Q[n]), and therefore the computational complexity that is required to

implement such a system.

In Fig. 4.2, it is noticeable that the rows of flag(Q[n]) are shifted with respect to each

other: particularly the last row exhibits an advance compared to the remaining three,

which is an indication of the manifold w.r.t. row shifts established during the analysis in

Sec. 2.5. Therefore, with the proposed row-corrected truncation algorithm and the same

shedding of 0.1‰ energy from Q[n], the resulting frow(Q[n]) of only order 12 is shown

in Fig. 4.2 (in red). Here the modifying matrix Γ(z) is set to diag
{
z−7 1 z−1 z−20

}
.

Even though the diagonalised matricesDsource(z) andD(z) are similar, the parauni-

tary matrix Q(z) differs substantially from Qsource(z), and frow(Q[n]) only approaches

Qsource[n] ◦—• Qsource(z) in order but not appearance. Similar effects are known from

the EVD, where small disturbances result in similar energies being extracted by eigen-

values, but much larger differences can emerge in the eigenvectors [60]. Irrespective of

this, the proposed truncation approach appears very worthwhile in reducing the order

of Q(z), which will be more exhaustively demonstrated in the following section.
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Figure 4.2: Paraunitary matrix truncated with µ = 10−4 using the lag based truncation
and the proposed row based approach.

4.1.4 Results

To benchmark the proposed truncation approach, this section first defines performance

metrics before setting out a simulation scenario, over which the performance metrics

will be recorded. Initial experiments are carried out on the SBR2 algorithm before

being extended to MS-SBR2, SMD and MSME-SMD.

Performance Metrics

In addition to the off-diagonal energy from (3.21) in Sec. 3.6.1 we record the length

of the truncated paraunitary matrices at each iteration and the reconstruction error

defined below.

Reconstruction Error. By truncatingQ(z), its paraunitarity is lost. If interpretingQ(z)

as a filter bank, the loss manifests itself as reconstruction error [5], and the difference

to a paraunitary system can be assessed as

E(z) = IM×M −QT(z)Q̃T(z) . (4.9)

where QT(z) is the truncated matrix, and with E[τ ] ◦—• E(z) the reconstruction error
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is given by

ξ =
1

M

∑

τ

‖E[τ ]‖2F . (4.10)

Simulation Scenario

The simulations below have been performed over an ensemble of 103 instantiations of

R(z) ∈ C
4×4 based on the randomised source model in [10]. In this source model, the

order of Dsource(z) is 30 and the order of Qsource(z) is 30, such that the total order

of R(z) is 119. The dynamic range of the source model is constrained to ensure that

in the ensemble the average is around 20 dB. First the two truncation methods are

applied to paraunitary matrices produced by only the SBR2 algorithm to fine tune the

truncation parameters. Using the parameters selected with the SBR2 experiments the

truncation approaches are then applied to paraunitary matrices produced by the SMD,

MS-SBR2 and MSME-SMD PEVD algorithms.

Reconstruction Error

The experiments have been carried out for three different truncation parameters µ =

{10−5, 10−4, 10−3} for flag(·) with the resulting reconstruction error ξ shown in Fig. 4.3

(a). With low iteration numbers, Q(z) is still of low order and there is limited choice

for trimming, but with increased i, the truncation performs asymptotically to trim

Q(z) by exactly µ. From Fig. 4.3 (a) the reconstruction error of the proposed row-shift

truncation is significantly lower than the lag based method; meaning the truncation

parameter µ can be increased to achieve a similar error.

With the proposed approach, it was found that µ can be scaled up by a factor

of 6 to reach a similar error metric as the standard truncation, as shown in Fig. 4.3

(b). This more aggressive trimming for the same error metrics can be justified since in

the standard truncation to remove whole matrix coefficients at the ends of Q(z) leads

to larger errors ξ. In contrast, the proposed approach will truncate small coefficients

evenly across rows and balance the overall error in ξ.
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Figure 4.3: Ensemble reconstruction error E{ξ} vs. SBR2 iterations for the different
truncation approaches and varying µ (a) µ′ = µ and (b) µ′ = 6 · µ.
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Truncated Order and Diagonalisation

Using the different truncations µ = {10−5, 10−4, 10−3} for the standard flag(·); the order

of the truncated matrices flag(Q̂[n]) and frow(Q̂[n]) are shown in Fig. 4.4 (a) for µ′ = µ

and (b) for µ′ = 6 · µ in the proposed frow(·). As indicated in the example in Fig. 4.2,

the proposed approach achieves a significant reduction in the order of the paraunitary

matrices after truncation; particularly when µ′ = 6 · µ. In Fig. 4.4 (a) the paraunitary

order for the row-shift truncation is less than the lag based truncation despite having a

lower error in Fig. 4.3 (a). When the truncation parameter is compensated and µ′ = 6·µ

the smaller truncation parameters (µ′ = 6 · 10−5 µ′ = 6 · 10−4) actually outperform the

lag based method with larger truncation parameters (µ = 10−4 µ = 10−3) despite a

significantly smaller error in Fig. 4.3 (b).

Row-Shift Truncation for Other PEVD Algorithms

The previous sub-sections have discussed the benefits of row-shift truncation when used

with the SBR2 algorithm, here it is applied to MS-SBR2, SMD, and MSME-SMD. To

simplify the plots with the additional algorithms the simulations are shown for µ = 10−3

only.

The reconstruction error for each of the different algorithms is shown in Fig. 4.5.

Despite the different PEVD algorithms used to produce the paraunitary matrices the

reconstruction error is very similar for the different truncation schemes. Fig. 4.5 (a)

shows the case where µ′ = µ and Fig. 4.5 (b) shows the same plot for µ′ = 6 · µ. The

plots follow a similar trend to those in Fig. 4.3 with the compensation of µ′ = 6 · µ

giving a similar error. Comparing the different PEVD algorithms in both Fig. 4.5 (a)

and (b), the more powerful PEVD algorithms (MSME-SMD, SMD & MS-SBR2) tend

to reach their ‘error quota’ slightly faster than SBR2.

Given that each algorithm transfers a different amount of energy at each iteration

it is most appropriate to show the cost, in terms of paraunitary matrix order, against

diagonalisation measure. Fig. 4.6 shows the ensemble averaged paraunitary filter bank

order vs. diagonalisation measure for each of the PEVD algorithms for (a) µ′ = µ and

(b) µ′ = 6 · µ. Contrary to Fig. 4.4 (a) for the PEVD algorithms other than SBR2
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Figure 4.4: Average order after truncation of Q(z) vs. SBR2 iterations for the different
truncation approaches and varying µ (a) µ′ = µ and (b) µ′ = 6 · µ.
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Figure 4.5: Ensemble reconstruction error E{ξ} vs. PEVD iterations for the different
truncation approaches and PEVD algorithms (a) µ′ = µ and (b) µ′ = 6 · µ.
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the row-shift truncation performs worse than the lag based truncation; particularly for

the SMD algorithms. With µ′ = 6 · µ in Fig. 4.6 (b) the performance of the row-shift

truncation improves and is able to out perform the lag based approach for all PEVD

algorithms, now replicating the results Fig. 4.4. It is interesting to note that for a set

level of diagonalisation the SBR2 algorithm benefits most from the row-shift truncation.

The extra benefit is likely due to the simple nature of the SBR2 row shifts and Jacobi

rotations tending to leave outliers in the paraunitary matrix which are easily corrected

with the row based truncation.

4.2 Restricted Search Algorithms

In both Chapter. 3 and Sec. 4.1 the high order growth of the multiple shift algorithms

has been shown to be an issue. In this section the aim is to explain why the polynomial

matrices in these algorithms grow faster and develop methods to slow their growth.

4.2.1 Polynomial Order Growth

This section analyses the worst case polynomial order growth for PEVD algorithms.

The analysis below assumes we have a parahermitian matrix, S(i−1)(z), at the i-th

iteration with a size of M ×M ×2L+1, i.e. the maximum lag in either direction is |L|.

Visual examples are also included for the case where S(i−1)(z) has a size of 5 × 5 × 5

i.e. M = 5, L = 2.

The growth in order of the parahermitian, S(i−1)(z), and paraunitary, Q(i−1)(z),

matrices is determined by the order of the shift matrix, Λ(i)(z). To help analyse the

problem the minimum shift that can bring any non-zero element onto the zero lag is

defined as ∆max. Based on the shift length ∆max the highest possible order for the shift

matrix is defined as Λmax. Larger shifts than ∆max can be applied to the parahermitian

matrix but these will either be outside the initial range of L or can be synthesised by

a shift matrix with shifts no larger than ∆max.

A visual example for a 5×5×5 parahermitian matrix shown in Fig. 4.7; the diagonal

elements are all shown in black to indicate that they are not included in any of the
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Figure 4.6: Diagonalisation metric vs. average order of Q̂(z) after truncation for dif-
ferent PEVD algorithms (a) µ′ = µ and (b) µ′ = 6 · µ.
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Figure 4.7: Initial 5× 5× 5 parahermitian matrix.

search steps. In the following subsections the current search space is denoted by yellow

elements, elements outside the current search space are indicated in white and the

elements that cannot be searched due to a conflict are shown in red. It is unlikely that

the algorithms will ever result in their worst case order growth but these do give an

insight into how the matrices grow with the row/column shift interactions which is not

always easily visualised.

Single Shift Algorithms

For the (single shift) SBR2, ME-SMD and SMD algorithms the growth is simply deter-

mined by the lag location, τ (i), of the element/column found in (2.18)/(2.21). The lag

parameter τ (i) can have a maximum value of L, therefore ∆max = L. With ∆max = L

the maximum shift matrix length is Λmax = L. When Λ(i)(z) of order Λmax is applied

to S(i−1)(z) it’s order will increase by 2Λmax or in this case 2L. The parameter Λmax

is doubled because it is used to advance/delay a column and delay/advance a row onto

the zero lag which grows the polynomial order in both directions. The parahermitian

matrix, Q(i−1)(z), will grow by Λmax or in this case L as the delay matrix is only applied

once to Q(i−1)(z).

As a visual example the worst case scenario occurs when the element or column of

interest is located on the outermost lag e.g. element ‘a’ in Fig. 4.8 (a) for the maximum

element case. The effect of moving element ‘a’ is shown in Fig. 4.8 (b) where the

resulting parahermitian matrix is 5×5×9 i.e. the matrix has grown by 2L, as indicated

in the analysis above.
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Figure 4.8: The first (a) and second (b) steps of a single shift algorithm.

M − 1 Multiple Shift SMD Algorithm

For the MSME-SMD algorithm each of the (M − 1) shifts can potentially interact such

that the maximum shift length, ∆max is ⌈((M − 1)L)/2⌉. The multiple shift algorithm

can both delay and advance elements onto the zero lag in a single iteration using Λ(i)(z)

therefore the maximum shift matrix order, Λmax, is 2⌈((M − 1)L)/2⌉. As with single

shift algorithms, when Λ(i)(z) of order Λmax is applied to the parahermitian matrix,

S(i−1)(z), its order will increase by 2Λmax. For the MSME-SMD algorithm the worst

case parahermitian order growth is 4⌈((M − 1)L)/2⌉. Applying Λ(i)(z) of order Λmax

to the paraunitary matrix results in an order growth of 2⌈((M − 1)L)/2⌉. Even with

reasonably small increases of M , the multiple shift algorithm can result in a significant

increase in the worst case polynomial order growth.

For the MSME-SMD algorithm a worst case scenario occurs when theM−1 elements

are aligned just above the diagonal as shown by elements ‘a’-‘d’ in Fig. 4.9 (a). As with

the single shift example above the first element found is ‘a’ and like before this is shifted

onto the zero lag as in Fig. 4.9 (b). In Fig. 4.9 (b) the elements that share a (length

wise) fibre with ‘a’ are shown in red and excluded from the search as any further shifts

on these would result in ‘a’ being pushed off the zero lag. To guarantee that we achieve

the maximum quota of M −1 shifts we then have to search the elements in yellow (this

includes ‘b’). Searching outside the yellow elements would mean that the maximum

quota of shifts would not be achieved. Care must be taken when element ‘b’ is shifted
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Figure 4.9: The first (a) and second (b) steps of the MSME search algorithm.
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Figure 4.10: The third (a) and fourth (b) steps of the MSME search algorithm.

as a row shift would result in displacing ‘a’; therefore ‘b’ must be delayed column-wise

- this is equivalent to advancing the 3rd row.

Fig. 4.10 (a) shows the result of moving element ‘b’ onto the zero lag. As we can

see in Fig. 4.10 (a) the red exclusion has grown to include those elements that would

affect ‘b’. The yellow search area has now moved over a new set of elements which

again ensure M − 1 shifts can be done. Unfortunately the column delay of element ‘b’

has resulted in the next element ‘c’ actually being shifted further away from the zero

lag. In order to get ‘c’ onto the zero lag its column must be delayed by 4, whereas

both previous shifts were only by 2. The result of moving ‘c’ onto the zero lag is shown
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Figure 4.11: The fifth and final step of the MSME search algorithm.

in Fig. 4.10 (b). Again the exclusions shown in red have increased in number and the

yellow search space now includes all other elements. As with element ‘c’, the previous

shift has resulted in the next element ‘d’ being pushed away from the zero lag and so it

now requires a delay of 6 elements. The result of this final shift is shown in Fig. 4.11.

The overall length of the parahermitian matrix has now grown (by 4⌈((5−1)2)/2⌉ = 16)

from 5 to 21 i.e. L has increased (by 2⌈((5 − 1)2)/2⌉ = 8) from 2 up to 10.

For the example in Figs. 4.9 – 4.11 the largest shift required is τ = 6, which seems

to contradict ∆max = ⌈((5 − 1)2)/2⌉ = 4. However, the shifts in this example are

predominantly due to advancing rows 3, 4 and 5 i.e. Λ(i)(z) = diag
{
z−2 1 z2 z4 z6

}
.

Using the delay matrix ambiguity from Sec. 2.5.1 these shifts can be balanced such

that there is the same number of advances as delays. Multiplying by z−2 then we get

z−2Λ(i)(z) = diag
{
z−4 z−2 1 z2 z4

}
whose ∆max is now only 4 but provides exactly the

same parahermitian matrix as is in Fig. 4.11.

⌊M/2⌋ Multiple Shift SBR2 Algorithm.

In the multiple shift SBR2 algorithm the masking of the shifts is done in such a way

that the shifts will not interact with one another so the maximum shift length is the
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Figure 4.12: The first (a) and second (b) steps of the MS-SBR2 search algorithm.

same as the single shift algorithms i.e. ∆max = L. As the multiple shifts can potentially

consist of both advances or delays the maximum shift matrix length, Λmax is 2L. As

with all the algorithms the growth in the parahermitian matrix, S(i−1)(z), is twice Λmax

and therefore 4L. The growth of the paraunitary matrix is simply the same as Λmax,

which is 2L.

Graphically a worst case scenario for the multiple shift SBR2 search method is

similar to that of the MSME-SMD scenario but only two elements can be moved in

the 5 × 5 × 5 case. The diagram in Fig. 4.12 (a) shows the worst case scenario for

multiple shift SBR2. Like the previous algorithms the first search, Fig. 4.12 (a), has

no restrictions and upon finding element ‘a’ and shifting it onto the zero lag we end up

with Fig. 4.12 (b). The search space is restricted by the fact that the Jacobi transforms

interact with the rows and columns of element ‘a’ and so future elements must not

occupy these locations. The restriction for the next multiple shift SBR2 element is

then the lower right sub-matrix from which element ‘b’ is chosen. Using the original

specification of the multiple shift SBR2 algorithm element ‘b’ can be shifted either in

its column or row. The worst case growth happens when the row/column choice is the

opposite of ‘a’ - in this case delaying the column of ‘b’. Fig. 4.13 shows the overall

worst case scenario for the multiple shift SBR2. In this case the matrix has grown to

13 lags, although this can be improved with careful shift selection.
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Figure 4.13: The final step of the MS-SBR2 search algorithm.

4.2.2 Restricted Search Algorithms

From Sec. 4.2.1 above, the examples of the worst case polynomial order growth have

highlighted one of the problems with the multiple shift strategies. This section in-

troduces two simple modifications that can be implemented to reduce the polynomial

order growth in both multiple shift algorithms.

Restricted Search MSME-SMD

In the restricted search (RS) MSME-SMD we impose an extra condition on the standard

MSME-SMD search spaces in Fig. 3.8 to control the polynomial order growth in both

S(i−1)(z) and Q(i−1)(z). Rather than allowing every search to select elements from any

lag, we restrict it to elements closer to the zero lag than the global maximum, found

during the first search of each iteration. The new approach still uses (2.18) but now

once the first search of the ith iteration finds a maximum element on τ
(i)

k(i)
, the lag

parameter, τ , in (2.18) is restricted such that |τ | ≤ |τ
(i)

k(i)
| for the remaining searches of

the ith iteration. Using this method the worst case maximum shift (∆max) is L, the

maximum order for the shift matrix (Λmax) is 2L and the parahermitian order growth

is 4L; crucially these parameters no longer include the matrix dimension M .

The restricted search multiple shift maximum element search algorithm follows a

similar approach to the original multiple shift maximum element method and so the
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Figure 4.14: The first (a) and second (b) steps of the RS-MSME search algorithm.
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Figure 4.15: The third (a) and fourth (b) steps of the RS-MSME search algorithm.

first step, Fig. 4.14 (a), is identical to that in Fig. 4.9 (b). The restriction occurs

once element ‘a’ has been shifted and the parahermitian matrix has increased to 9 lags

as shown in Fig. 4.14 (a). Now the elements shown in brown, which are outside the

original footprint of the parahermitian matrix, are no longer included in the search

space. In the case of Fig. 4.14 (a) we can still select element ‘b’ so this is no different

to the original MSME-SMD choice. The result of shifting ‘b’ for the RS-MSME-SMD

method is shown in Fig. 4.14 (b). The shift of element ‘b’ means that element ‘c’ now

resides in one of the brown sections therefore it can no longer be selected; instead an

alternative element, ‘c2’, is chosen from the remaining yellow elements. The result

of shifting element ‘c2’ is shown in Fig. 4.15 (a). Like the previous step we see that
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element ‘d’ has been moved outside the footprint of the original parahermitian matrix

so element ‘d2’ is chosen from the yellow search area. When ‘d2’ is brought onto the

zero lag we get the scenario shown in Fig. 4.15 (b). Clearly the elements now on the

zero lag will be lower values than what could have been achieved however the length

of the parahermitian matrix is significantly less at 13 rather than 21 lags.

Ultimately limiting the search space to lower lags will result in missing some el-

ements and slow the algorithm’s convergence slightly but these missed elements are

likely to be found by searches during future iterations. The reduced search space will

benefit the real time performance in two ways; first the searches during one iteration

where the restriction, |τ | ≤ |τ
(i)

k(i)
|, is applied will be on fewer elements and second the

slower growth in parahermitian matrix means searches and matrix operations in future

iterations will also be over fewer elements.

Order Controlled MS-SBR2

The ideas from the RS-MSME-SMD algorithm have also been employed in MS-SBR2

to create the order controlled (OC) MS-SBR2 algorithm [61]. For the standard MS-

SBR2, with no consideration on polynomial growth, the maximum order growth is 4L

at each iteration. By simply restricting subsequent shifts to follow the initial shift at

each iteration the maximum order growth is reduced to just 2L. As an added benefit

the OC-MS-SBR2 approach does not restrict the elements which can be selected so

the same energy can be transferred at each iteration. For reference the OC-MS-SBR2

algorithm has been used throughout this thesis so no results or analysis for the (non

order controlled) MS-SBR2 algorithm are presented.

The OC-MS-SBR2 is almost identical to the standard MS-SBR2 method described

above however when element ‘b’ is shifted from Fig. 4.16 (a) the row/column selection

must follow that used in ‘a’. The result of the OC-MS-SBR2 is shown in Fig. 4.16 (b).

The matrix now only has 9 lags (rather than 13) and so the general worst case scenario

for OC-MS-SBR2 is 2L which is the same as the single shift SBR2 algorithm.
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Figure 4.16: The first (a) and second (b) steps of the OC-MS-SBR2 search algorithm.

Table 4.1: Summary of worst case polynomial order growth for the different PEVD
algorithms.

∆max Λmax PH Growth

Single Shift L L 2L

MSME-SMD ⌈((M − 1)L)/2⌉ 2⌈((M − 1)L)/2⌉ 4⌈((M − 1)L)/2⌉
MS-SBR2 L 2L 4L

RS-MSME-SMD L 2L 4L

OC-MS-SBR2 L L 2L

Comparison

For comparison the maximum shift, shift matrix order and parahermitian order growth

are summarised in Tab. 4.1 for all five variants. The worst case scenario sees the RS-

MSME-SMD order grow twice as fast as SMD but this is significantly lower than the

original MSME-SMD, especially when the matrix width M is increased. For the MS-

SBR2 algorithm the worst case order growth has gone from 4L to only 2L, i.e. the same

as the single shift algorithms.

4.2.3 Results

To illustrate the performance of the different MSME-SMD algorithms first the perfor-

mance metrics are introduced, followed by the simulation set up. Finally the results
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are presented and the performance of the PEVD algorithms is analysed.

Performance Metrics

To confirm that the RS-MSME-SMD shifts a similar amount of energy at each iteration

as the original MSME-SMD; the first test will measure diagonalisation performance

using (3.21). The main objective of the search space restriction is to limit the order

growth in the polynomial matrix. With this in mind the order of the parahermitian

and paraunitary matrices are recorded after each iteration.

An added benefit of the reduction in parahermitian matrix order is a reduction

in the computational cost of calculating the PEVD. Here execution time is used as

a measure of the computational complexity of the PEVD algorithms implemented in

Matlab 2014a with the following system specification: Ubuntu 14.04 on a workstation

with Intel® Xeon® E5-1607V2 3.00 GHz x 4 cores and 8 GB RAM.

Simulation Set Up

The results were obtained using an ensemble of 103 parahermitian matrices produced

using the source model from [10] where the source model has an average dynamic range

of approximately 20 dB. The source model is randomised so that the parahermitian

matrices produced are unique for each instantiation. The parahermitian matrix, R(z),

is R(z) ∈ C
6×6 with the initial number of lags set to 119. Each of the PEVD algorithms

was run for 100 iterations with the performance metrics recorded after each iteration.

The simulations are first run using µPH = µPU = 0, i.e. only removing zero filled lags,

then repeated over the same ensemble for µPH = µPU = 10−4.

Algorithm Convergence

Fig. 4.17 shows the reduction in off-diagonal energy vs. algorithm iterations for SBR2,

MS-SBR2, SMD, and the two versions of MSME-SMD. The amount of energy trans-

ferred by both MSME-SMD algorithms is significantly higher than the SMD and SBR2

methods. Despite its search space restriction the RS-MSME-SMD algorithm actually

marginally outperforms the original MSME-SMD. The performance improvement is
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Figure 4.17: Diagonalisation vs. algorithm iterations for the SMD algorithm and the
two MSME-SMD varients.

likely due to the RS-MSME-SMD algorithm selecting elements in a more systematic

order then MSME-SMD.

Paraunitary/Parahermitian Matrix Order

This section investigates the main goal of the RS-MSME-SMD algorithm which is to

reduce the growth in polynomial order of the parahermitian and paraunitary matrices.

Figs. 4.18 (a) & (b) show the order growth of the parahermitian and paraunitary

matrices for each of the selected PEVD algorithms for the case where only zero filled

lags are removed and where the matrices have been truncated (shown with triangle

markers). Here we can see in both Fig. 4.18 (a) & (b) that the matrices produced

by RS-MSME-SMD are significantly shorter than their MSME-SMD equivalent and

are a similar level to SMD and SBR2. Even when a truncation algorithm such as

those described in [55] and Sec. 4.1 are applied to the parahermitian and paraunitary

matrices the reduced search method still out-performs the original MSME-SMD as

shown in Fig. 4.18 (a) & (b) although it does lose out slightly to SMD and SBR2.
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Figure 4.18: Reduction in off-diagonal energy vs. growth in (a) parahermitian matrix
and (b) paraunitary order.
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Figure 4.19: Real time convergence of PEVD algorithms, diagonalisation measure
vs. mean execution time.

Real Time Execution

Fig. 4.19 shows the time taken for each of these algorithms to carry out 200 iterations

alongside the diagonalisation measure at each point. When no truncation is used the

new reduced search MSME method is more efficient than the original MSME search,

in fact the new method takes on average around 15 seconds less than its predecessor

to complete 200 iterations. When the parahermitain truncation methods are included

both MSME-SMD variants obtain a significant performance improvement, whereas the

same change in SMD has a lesser effect. The performance benefits of the reduced search

MSME-SMD are not as obvious when the parahermitian truncation is used but it still

performs better than the original MSME-SMD. Although RS-MSME-SMD performs

better than the other SMD algorithms it still converges significantly slower than the

SBR2 based algorithms.

4.3 Cyclic-by-Row PEVD Approximation

Sec. 2.4 identified the computational cost to compute an approximate PEVD via SMD

algorithms as a potential obstacle. In experiments using the Matlab profiler, the cal-

77



Chapter 4. Efficient Implementations

culation and application of an EVD per iteration step was singled out as the major

contributor to this high cost. Therefore, this section proposes an inexpensive numer-

ical approximation of the EVD by a Jacobi sweep consisting of a limited number of

Jacobi transformations in a cyclic-by-row approach [7, 62]. Below, Sec. 4.3.1 reviews

the cyclic-by-row Jacobi algorithm and Sec. 4.3.2 outlines the general procedure, which

is then applied to a number of SMD algorithms in Sec. 4.3.3 with results presented in

Sec. 4.3.4.

4.3.1 EVD Approximation

As discussed in Sec. 2.1 a number of iterative (scalar) EVD algorithms exist. One of

the simplest is the cyclic-by-row Jacobi algorithm which systematically zeros the off

diagonal elements in what is termed a Jacobi sweep. Each Jacobi sweep consists of

(M2 −M)/2 Jacobi transformations applied in the sequence shown in Fig. 2.2. Each

Jacobi transformation as defined in (2.3) will transfer the energy of an off-diagonal

element onto the diagonal while undoing some of the work of previous Jacobi trans-

formations. However, over the course of one Jacobi sweep, the off-diagonal energy is

reduced. By performing more Jacobi sweeps, the accuracy of the EVD approximation

is improved.

4.3.2 PEVD Approximation

Iterative approximate PEVD algorithms such as SBR2 and SMD minimise off-diagonal

energy until a predefined threshold ρ is reached, as described by (2.19). Therefore,

within one iteration step of SMD, a full EVD with a suppression of off-diagonal energy

to the numerical equivalent of zero appears to be an overkill, and a lower precision with

a limited number of Jacobi sweeps will very likely suffice to achieve the task of reducing

off-diagonal energy below the value ρ.

Experimentation has shown that for the approximation of the SMD algorithms

detailed below, a single cyclic-by-row Jacobi sweep proved sufficient and provided the

best cost-performance trade-off, as we will detail in Sec. 4.3.4. With this approach,

the unitary Jacobi transformation matrix Q(i) from SBR2 in (2.3) now becomes the
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product of N = (M2 −M)/2 Jacobi transformations,

Q(i) =

N∏

n=1

Q(i,n) , (4.11)

where Q(i,n) is the nth Jacobi transformation used in the ith iteration of an iterative

PEVD algorithm using the single sweep cyclic-by-row approach.

4.3.3 Cyclic-by-Row SMD Algorithms

The cyclic-by-row single Jacobi sweep approximation of the EVD can be embedded in

all algorithms of the SMD family. It may be argued that the term sequential matrix

diagonalisation is no longer appropriate, as the approximate EVD also results in only

an approximate diagonalisation, and algorithms will therefore share some properties of

SBR2, where only part of the off-diagonal energy of the zero lag matrix is transferred

onto the diagonal. However, we assume that the approximation is within the bound ρ

for off-diagonal energy, and that therefore the term diagonalisation is justified within

the SMD family’s limited, pre-defined accuracy of decomposition.

All SMD algorithms perform an initial diagonalisation by an EVD according to (2.20),

which in the cyclic-by-row version is approximated by a single Jacobi sweep. The EVD

in subsequent iterations is also replaced by a single Jacobi sweep, and the unitary

matrix (4.11) as applied in (2.14) can be implemented as a sequence of Jacobi trans-

formations rather than a full matrix multiplication. The specific SMD family versions

therefore consistently apply the single Jacobi sweep approach, and only differ in the

way columns and rows are identified for transfer to the lag zero matrix using (2.13) at

the ith iteration:

• SMD [10]: in its original form, the sequential matrix diagonalisation algorithm

transfers the column with the largest off-diagonal column norm onto the lag zero

matrix;

• MSME-SMD (Sec. 3.2): the un-restricted multiple-shift version that transfers

(M − 1) columns identified by their maximum elements;
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• RS-MSME-SMD (Sec. 4.2.2): the restricted multiple-shift version, which still

transfers (M − 1) elements.

The cyclic-by-row approximations of these algorithms will be compared to their stan-

dard versions as well as SBR2 and MS-SBR2 in the next section.

4.3.4 Results

Performance Metrics

The key performance criteria when evaluating the cyclic-by-row approximations of SMD

algorithms are the execution time, measured on the same computer set up as Sec. 4.2.3,

and the diagonalisation measure from (3.21) that has been used in most of the experi-

ments so far.

Simulation Scenario

Like other results sections an ensemble of 103 parahermitian matrices have been pro-

duced using the source model from [10] with the dynamic range restricted to approxi-

mately 20 dB. Each parahermitian matrix is generated as R(z) ∈ C
6×6 with the initial

number of lags set to 119. Each of the PEVD algorithms was then run on the ensem-

ble for 100 iterations and the performance metrics recorded after each iteration. The

parahermitian matrix truncation parameter was set as µPH = 10−4. In addition to

the SMD based algorithms and cyclic-by-row based equivalents the simulations include

both SBR2 and MS-SBR2

Algorithm Convergence

The diagonalisation performance versus iterations is shown in Fig. 4.20 for the various

algorithms. The SMD family generally transfers more energy at each iteration than

SBR2, as also highlighted in [10], with the multiple-shift versions performing best.

Interestingly, the cyclic-by row single Jacobi sweep approximations of the EVD lead

to no noticeable performance degradation for the SMD family of algorithms, thereby

confirming the single sweep selection in Sec. 4.3.2.
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Figure 4.20: Normalised remaining off-diagonal energy E
(i)
norm according to (3.21) for

various iterative PEVD algorithms versus iterations.

Real Time Performance

The computation time required for 100 iterations of the different iterative PVD algo-

rithms is plotted in Fig. 4.21 (a). Compared to SBR2, the SMD algorithms require

much more processing time. However, a significant reduction in cost can be noticed for

the cyclic-by-row approximations of SMD algorithms. These are still more costly than

the SBR2 algorithm, which only requires a single Jacobi transformation per iteration

and therefore is guaranteed to have a lower complexity.

More interesting than the cost per iteration is the required execution time to reach

a specific level of diagonalisation. Fig. 4.21 (b) shows the normalised remaining off-

diagonal energy as a function of the time taken to calculate this specific decomposition.

This graph is obtained by merging the information of Fig. 4.20 and 4.21 (a). Using a

full EVD, the SMD family of algorithms are inferior to SBR2 when a limited diagonali-

sation suffices. For the best levels of diagonalisation, SBR2 cannot provide the required

diagonalisation (within 100 iterations), and the computationally expensive SMD fam-
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Figure 4.21: Execution times for PEVD algorithms (a) for 100 iterations and (b) against
off-diagonal energy.
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ily is the only option, with particular benefit for multiple-shift versions as established

in [39, 40] and the previous results sections. Using the cyclic-by-row approximation,

the actual cost to reach a specific level of diagonalisation is reduced below even what is

required for SBR2. With the lower cost EVD step in the cyclic-by-row algorithms the

simpler search of the single shift SMD converges slightly faster than the MSME-SMD

methods.

4.4 Chapter Summary & Conclusions

The aim of this chapter was to improve the efficiency of PEVD algorithms and their

resulting decompositions. First the truncation of paraunitary matrices was investigated.

A new method was introduced that takes advantage of the paraunitary ambiguity

outlined in Sec. 2.5 and is applicable to all PEVD algorithms (and more generally

paraunitary matrices). Results show that the SBR2 algorithm gains the most from the

new truncation approach, this is likely due to the fact that the single row/column shift

and Jacobi transform on a single element encourage outliers that are easily corrected

with this approach. With all algorithms the new truncation approach results in a

significantly lower error compared to the existing approach when the same truncation

parameters are used. The lower error characteristic allows the truncation parameters to

be increased by six times whilst still maintaining a similar error. When the truncation

parameters have been increased the benefit for the SBR2 algorithm is increased and

the new approach becomes beneficial for all other PEVD algorithms.

Results from Chapter 3 show that the order growth of the polynomial matrices in the

MSME-SMD algorithm is significantly higher than other algorithms. Through analysis

of the polynomial order growth of the SMD and MSME-SMD algorithms a new search

method which can significantly reduce the polynomial order growth of the MSME-SMD

algorithm has been proposed. With the new search space restriction the maximum

polynomial growth is decoupled from the spatial dimension of the parahermitian matrix,

M ; this makes a significant difference as M is increased. Experiments have shown that

the new method leads to a reduction in polynomial matrix order growth even when

83



Chapter 4. Efficient Implementations

truncation methods are used. The reduced search spaces and resulting lower order

parahermitian matrices also result in an improved real time convergence.

As indicated in Chapter 3 the major contributing factor to the cost of SMD based

algorithms is the application of the full EVD to the entire parahermitian matrix. Here

a new approach which approximates the EVD step using a series of Jacobi transfor-

mations is introduced. The EVD is approximated in a cyclic-by-row fashion which

significantly reduces the computational cost. Despite the cyclic-by-row method being

an approximation there is almost no difference in terms of algorithm convergence and

the SMD based algorithms retain their superior energy transfer. The major difference

comes in execution time where the cyclic-by-row methods take only a fraction of the

time required for the SMD algorithms. Using the cyclic-by-row approach all SMD

algorithms now converge faster in real time than the SBR2 based algorithms.

The efficient implementations presented in this chapter have brought the perfor-

mance metrics of the current PEVD algorithms much closer together. Previously the

SMD algorithm was able to produce the lowest order paraunitary matrices for a set

level of diagonalisation however with the row-shift corrected truncation the SBR2 al-

gorithm can match this. With a simple modification to the MSME-SMD algorithm

there has also been a significant reduction in the order growth of its paraunitary and

parahermitian matrices. For real time convergence the SBR2 algorithm, with its low

complexity, has traditionally given the best results. However, employing the cyclic-

by-row method introduced in this chapter all SMD based algorithms presented in this

chapter outperform SBR2.
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Chapter 5

Applications of Iterative PEVD

Algorithms

The previous two chapters have investigated algorithmic aspects of the PEVD, in partic-

ular developing a better converging algorithm and methods that improve algorithm ef-

ficiency. In this chapter PEVD algorithms are used in three different scenarios. Sec. 5.1

investigates how the properties of the input data, given by a source model, impact the

performance of the different PEVD algorithms [46]. Sec. 5.2 introduces the polynomial

MUSIC algorithm and illustrates the benefits of using the new MSME-SMD algorithm

over the SBR2 algorithm for the PEVD step [13]. In Sec. 5.3 the PEVD is used to

extend the scalar generalised eigenvalue decomposition (GEVD) to polynomial matri-

ces. The polynomial-matrix generalised eigenvalue decomposition (PGEVD) mimics

the Cholesky method for the scalar generalised eigenvalue decomposition (GEVD) but

in the polynomial matrix domain [47].

5.1 Implications of Source Model Conditioning

For the analysis and simulations in this section, we assume that the parahermitian

matrices have a known ground truth decomposition. This enables us to control the

condition of the problem that is addressed by the various PEVD algorithms, and also

assess and compare the solution that is reached.
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A(z)

u1[n]

u2[n]

uJ [n]

F1(z)

F2(z)

FJ(z)

x1[n]

x2[n]

xM [n]

...
...

...

Figure 5.1: Source model with J unit variance zero mean uncorrelated complex Gaus-
sian excitations uj[n], innovation filters with transfer functions Fj(z), j = 1 . . . J , fol-
lowed by a paraunitary convolutive mixing system A(z) generating M measurements
xm[n], m = 1 . . .M .

5.1.1 Source Model Conditioning

The general model is depicted in Fig. 5.1. A total of J independent source signals

with individual power spectral densities (PSDs) Fj(z)F̃j(z), j = 1 . . . J , are generated

by exciting innovation filters Fj(z) with unit variance zero-mean uncorrelated complex

Gaussian sources uj [n] [63]. The order of the innovation filters Fj(z) is P , and careful

control of the filter gain and the maximum radius of zeros can determine the dynamic

range of the source and whether they e.g. are spectrally majorised as in [10]. Con-

volutive mixing of the source signals is performed by a random paraunitary matrix

A(z) ∈ C
M×J of order K, with M ≥ J . This matrix is determined by extracting J

columns from

A′(z) =

K∏

k=1

(I− vkv
H
k + vkv

H
k z

−1) , (5.1)

which is a product ofK elementary paraunitary matrices [5], with vk ∈ C
M , k = 1 . . . K,

being random unit norm vectors.

The space-time covariance matrix constructed from the output vector xT[n] =

[x1[n] . . . xM [n]] is therefore given as

R(z) =
∑

τ

E
{
x[n]xH[n− τ ]

}
z−τ (5.2)

= A(z)F (z)F̃ (z)Ã(z) . (5.3)

The diagonal matrix F (z) = diag{F1(z) . . . FJ(z)} contains the J innovation filters.
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Figure 5.2: PSDs of unmajorised sources, and after frequency-reassignment using pa-
raunitary matrices based on Haar [64] and 32C filters [65].

5.1.2 Polynomial Eigenvalue Decomposition

Given that the parahermitian matrix in (5.3) is factorised into paraunitary and diagonal

parahermitian matrices, it bears close relation with the PEVD (2.9) of R(z). If F (z)

is spectrally majorised, then indeed the PEVD R(z) = Q̃(z)D(z)Q(z) exists with

equality and is given by Q̃(z) = A(z) and D(z) = F (z)F̃ (z).

If F (z) is not spectrally majorised, then a PEVD satisfying both diagonalisa-

tion and spectral majorisation could be derived by re-assigning spectral components

of F (z) via a paraunitary matrix U(z) such that U(z)F (z) is spectrally majorised.

For this, the filters in U(z) would ideally implement a binary mask. Then D(z) =

U(z)F (z)F̃ (z)Ũ (z), and U(z) can be absorbed into A(z) to yield the polynomial

modal matrix Q̃(z) = A(z)Ũ (z). Since an ideal U(z) providing a binary spectral mask

will require infinite support, the order of the factors Q(z) and D(z) is likely to be much

higher than in the case where F (z)F̃ (z) is already spectrally majorised by virtue of

the source model.

Example. Let J = M = 2 with a diagonal F (z) = diag
{
1 + z−1; 1− z−1

}
gener-

ating the unmajorised PSDs in Fig. 5.2. If Uhi(z), h, i ∈ {1, 2}, are the elements of a

matrix U(z) to enforce spectral majorisation, then U11(z) and U22(z) must be halfband

lowpass and U12(z) and U21(z) halfband highpass filters. If selected as quadrature mir-

ror filters with U21(z) = −Ũ12(z) and U22(z) = Ũ11(z), the condition of paraunitarity

87



Chapter 5. Applications of Iterative PEVD Algorithms

−2 0 2

0

1

2

3

−2 0 2

0

1

2

3

−2 0 2

0

1

2

3

−2 0 2

0

1

2

3

U
1
(z
)F

(z
)F̃

(z
)Ũ
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Figure 5.3: Approximately diagonalised matrices for paraunitary systems based on (a)
Haar [64] and (b) 32C filters [65].

reduces to demand power complementarity [5],

U11(z)Ũ 11(z) +U 22(z)Ũ 22(z) = 1 . (5.4)

For U(z)F (z)F̃ (z)Ũ (z) to retain a diagonal structure, it can be shown that

U11(z)U12(z)F1(z)F̃1(z) = U11(z)U12(z)F2(z)F̃2(z) (5.5)

is also required. This can be achieved only if U11(z)U12(z) = 0, i.e. they are ideal,

complementary, infinite length halfband lowpass and highpass filters.

Using a Haar filter [64] of order 1 to construct U 1(z), the PSDs along the di-

agonal are now spectrally majorised as evident from Fig. 5.2. However, inspecting

U1(z)F (z)F̃ (z)Ũ 1(z) in Fig. 5.3 (a), (5.5) is violated resulting in off-diagonal terms.

Using the filter 32C from [65] to construct an approximately paraunitary U2(z), the

higher order of 31 now results in an approximately diagonalised U2(z)F (z)F̃ (z)Ũ 2(z)

as demonstrated in Fig. 5.3 (b), which is also spectrally majorised according to Fig. 5.2.

Therefore if sources contributing to R(z) are not spectrally majorised, a PEVD of R(z)

in the sense of the definition in (2.9)–(2.11) requires higher order polynomial matrix

factors than for a case where sources are spectrally majorised. Also as highlighted in

Fig. 5.2 the sharp corners required by the spectrally majorised version can only ever

be approximated with finite length filters.
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5.1.3 Eigenvalue Spread

Since PEVD algorithms have a stopping criterion that is tied to a threshold for off-

diagonal values, the resolution of sources depends on the dynamic range of the source

signals. This dynamic range can be defined as the ratio between the maximum and

minimum value across all source PSDs and frequencies,

γ =
maxΩ,j |Fj(e

jΩ)|2

minΩ,j |Fj(ejΩ)|2
. (5.6)

ForM = J , even in the case where sources are not spectrally majorised, (5.6) represents

a polynomial matrix condition number,

γ =
maxΩD1(e

jΩ)

minΩDM (ejΩ)
, (5.7)

as after re-assigning frequency bands between channels, the minimum and maximum

PSD values remain unaltered as demonstrated in Sec. 5.1.2.

5.1.4 Results

The following subsections present the details of the simulation scenario followed by the

performance metrics used to compare the different source models and PEVD algorithms.

The final three subsections present and analyse the results of the simulations.

Performance Metrics

To assess the impact of source model conditioning on PEVD performance the following

metrics are used. First the convergence of the PEVD algorithms is monitored via the

normalised off-diagonal energy at the i-th iteration, E
(i)
norm from (3.21). In addition to

E
(i)
norm for every iteration, the order of the truncated paraunitary matrices is recorded to

show how the source model affects the growth of the paraunitary matrix, which directly

represents the implementation cost of this lossless filter bank. To compare the diagonal

matrices produced by the PEVD to the ground truth of the source model the power

spectral densities (PSDs) are used. Ideally the PSDs extracted by PEVD algorithms
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should match those of the source model, bar any frequency-reassignments in the case

of spectrally unmajorised sources.

Simulation Scenarios

The first two sets of simulations present the results from 500 iterations of the SBR2,

SMD, and MSME-SMD PEVD algorithms outlined in previous chapters for the spec-

trally majorised and ummajorised examples over an ensemble of 102 random instantia-

tions. With J = 4 sources acquired byM = 4 sensors, for each instantiation the source

model produces a distinct parahermitian matrix, R(z) ∈ C
4×4. With P = K = 30,

the order of R(z) is 119. For each ensemble, restrictions on the radii of zeros in the

innovation filters create an average dynamic range of either 10 or 20 dB.

The final set of results demonstrate example PSDs, produced after 100 SMD iter-

ations, compared to the original spectrally majorised and unmajorised source models.

The final simulations use a single source model for each combination of majorisation

and dynamic range rather than being averaged over an ensemble.

Algorithm Convergence

Figs. 5.4 (a) and (b) show how the different algorithms converge for the two source mod-

els identified in Sec. 5.1.1 for a dynamic range of 10 dB and 20 dB respectively. In both

Figs. 5.4 (a) and (b) all algorithms initially converge faster for the unmajorised source

but as the number of iterations increases, these curves slow down and are overtaken by

the strictly majorised sources. The reason for the unmajorised source initially converg-

ing faster is that the parahermitian matrices generated from the unmajorised source

tend to have larger valued off-diagonal elements leading to more energy transfer. After

500 iterations there is a noticeable difference between the two source models, with the

strictly majorised converging better; this is apparent for both dynamic ranges and all

three PEVD algorithms. The better convergence is likely due to the majorised source

PSDs being simpler and easier to model with the PEVD. With the higher dynamic

range in Fig. 5.4 (b) the curves all appear worse than their counterparts in Fig. 5.4 (a)

and end up closer together. Typically the PEVD algorithms have difficulty resolving
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Figure 5.4: Reduction in off-diagonal energy for both majorisation types with a dynamic
range of (a) 10 dB and (b) 20 dB for a selection of PEVD algorithms.

the lowest eigenvalues, with a higher dynamic range the lowest eigenvalues are smaller

and this may indicate why the algorithms don’t converge as well on larger dynamic

ranges.

Paraunitary Order

The growth in paraunitary order for the PEVD methods using the unmajorised and

strictly majorised sources at 10 dB is shown in Fig. 5.5 (a) with the larger dynamic

range of 20 dB depicted in Fig. 5.5 (b). In both Figs. 5.5 (a) and 5.5 (b) the SMD and

SBR2 algorithms perform similarly but the multiple shifts of the MSME-SMD algorithm

cause the paraunitary order to grow faster. The paraunitary order for the MSME-SMD

algorithm is also affected more when the dynamic range of the source increases. For

all the algorithms over both dynamic ranges we see that the paraunitary orders for the

unmajorised sources tends to be higher than for the strictly majorised sources. The

main exception to this is the MSME-SMD with the strictly majorised (20 dB) source

where for the most part it performs worse than its unmajorised equivalent. These

results support the example given in Sec. 5.1.2 whereby the frequency reassignment in

the unmajorised case results in a higher paraunitary order.
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Figure 5.5: Paraunitary matrix order for both majorisation types with a dynamic range
of (a) 10 dB and (b) 20 dB for a selection of PEVD algorithms.

Power Spectral Densities

This section investigates four example source models which have had the SMD algo-

rithm applied for only 100 iterations each. PSDs of the source models are shown in

Figs. 5.6 (a), & (b), 5.7 (a) & (b), first showing a 10 dB dynamic range for the strictly

majorised source then the unmajorised equivalent followed by the same sources with a

20 dB dynamic range. Like the simple example in Fig. 5.3, the unmajorised sources in

Figs. 5.6 (b) and 5.7 (b) are approximately majorised by channel permutations. Com-

paring Figs. 5.6 (a) and (b) both appear to quite accurately model their respective

sources with only small deviations around the angular frequency 1.2π. For the 20 dB

examples in Figs. 5.7 (a) and (b) there are some quite large deviations from the source

model particularly in the strictly majorised example.

The performance metrics studied in the previous subsections are shown in Tab. 5.1

for the source decompositions in Figs. 5.6 & 5.7. It is interesting to note that for the

20 dB majorised source the SMD PEVD has a better diagonalisation measure yet the

source representation appears worse. The performance metrics in Tab. 5.1 are recorded

after 100 iterations which corresponds to the points in Figs. 5.4 & 5.5 where the curves

for the majorised and unmajorised sources are close to one another. The fact that for

10 dB the unmajorised case has better diagonalisation and paraunitary order and for

20 dB has worse diagonalisation and paraunitary order is not surprising. Running the
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Figure 5.6: PSD shown for (a) majorised and (b) unmajorised source models with
dynamic range of 10 dB overlaid with SMD decomposition after 100 iterations.
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Figure 5.7: PSD shown for (a) majorised and (b) unmajorised source models with
dynamic range of 20 dB overlaid with SMD decomposition after 100 iterations.

simulations over 500 iterations yields the results in brackets in Tab. 5.1 which match

the final trends shown in Figs. 5.4 & 5.5. After 500 iterations of the SMD algorithm

the PSDs shown in Figs. 5.6 and 5.7 appear to exactly match the source models apart

from the frequency reassignment in the unmajorised case.

5.2 Angle of Arrival Estimation using Polynomial MUSIC

This section will investigate the performance improvement achieved when the MSME-

SMD algorithm is used in an example compared with SBR2. The example here is

broadband angle of arrival estimation using the polynomial version of the well known
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Table 5.1: Performance metrics for different source models after 100 (and 500) SMD
iterations

Source Model Diag. Meas. (dB) PU Order

Strict 10 dB −13.11 (−29.90) 88 (123)

Unmajorised 10 dB −14.69 (−22.35) 80 (151)

Strict 20 dB −13.31 (−25.40) 66 (100)

Unmajorised 20 dB −12.81 (−20.18) 84 (138)

MUltiple SIgnal Classification (MUSIC) [1] algorithm, Polynomial-MUSIC or P-MUSIC

[12].

5.2.1 MUSIC Algorithm

The multiple signal classification (MUSIC) algorithm has been around since the 1980s

[1] and it relies on the (scalar) eigenvalue decomposition of a covariance matrix R =

E
{
x[n]xH[n]

}
in order to determine the angle of arrival of sources. The M -element

array collects data at time n in the vector x[n] which consists of contributions from J

far-field sources, sj[n], plus noise, v[n]

x[n] =
J∑

j=1

sj + v[n] . (5.8)

The projection of the j-th source, sj[n], onto the array is given by the vector sj [n],

taking the first sensor signal as reference the relative delays to the M sensors can be

characterised as

sj[n] =











sj[n]

sj[n−∆τj,1]
...

sj[n−∆τj,M−1]











. (5.9)

The time delay term ∆τj,m is simply the time difference of arrival between the first

sensor and m-th sensor i.e. ∆τj,m = τj,m − τj,0. In the narrowband case these time
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delays can be synthesised with phase shifts. If the narrowband source has a normalised

angular frequency Ω and the reference signal sj [n] = ejΩn then (5.9) becomes

sj [n] =











1

e−jΩ∆τj,1

...

e−jΩ∆τj,M−1











ejΩn = aΩ,ϑj
ejΩn , (5.10)

where aΩ,ϑj
is referred to as the narrowband steering vector for the angle of arrival ϑj.

Using the narrowband steering vector notation (5.8) can be rewritten as

x[n] =

J∑

j=1

aΩ,ϑj
sj[n] + v[n] . (5.11)

Taking the EVD of R = E
{
x[n]xH[n]

}
and applying a threshold to the eigenvalues

such that those close to the noise floor are contained in Dn, and eigenvalues in Ds are

associated with the strongest sources, gives

R = QDQH (5.12)

= [Qs Qn]




Ds 0

0 Dn








QH

s

QH
n



 . (5.13)

Where the signal-plus-noise subspace is contained in Qs, and the noise-only sub-

space is Qn. The MUSIC algorithm then scans the noise-only subspace with a set of

steering vectors, aΩ,ϑ. If the vector Q
H
naΩ,ϑ is close to zero then it indicates that aΩ,ϑ is

a steering vector for the orthogonal signal-plus-noise subspace, Qs. The MUSIC spec-

trum, PMU(ϑ), is generated by evaluating the reciprocal of the steering vectors applied

to the noise subspace

PMU(ϑ) =
1

aHΩ,ϑQnQH
naΩ,ϑ

. (5.14)
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5.2.2 Polynomial MUSIC Algorithm

The broadband polynomial MUSIC algorithm follows a very similar procedure to the

narrowband method in the previous section. The space-time covariance matrix is con-

structed as

R[τ ] = E
{
x[n]xH[n− τ ]

}
, (5.15)

where R(z) •—◦ R[τ ]. Similar to the narrowband MUSIC algorithm we can calculate

the PEVD of R(z) and threshold the polynomial eigenvalues to those near the noise

floor, Dn(z), and the signal-plus-noise eigenvalues, Ds(z)

R(z) = [Q̃s(z) Q̃n(z)]




Ds(z) 0

0 Dn(z)








Qs(z)

Qn(z)



 . (5.16)

Whereas steering vectors in the narrowband MUSIC algorithm can be implemented

using phase shifts, in the broadband scenario fractional delays must be used. Here the

fractional delay is implemented by an appropriately sampled sinc function

aj,m[n] = sinc(nTs −∆τj,m) . (5.17)

Taking the z-transform of the fractional delay, aj,m[n] ◦—• Aj,m(z), the broadband

steering vector can be constructed as

aϑ(z) =








Aj,0(z)
...

Aj,M−1(z)








, (5.18)

where aϑ is dependent on the angle of arrival, ϑ, due to the delay parameter ∆τj,m

from (5.17).

As with the narrowband MUSIC algorithm the noise subspace, Qn(z), is tested

with various broadband steering vectors

γϑ(z) = ãϑ(z)Qn(z)Q̃n(z)aϑ(z) . (5.19)

96



Chapter 5. Applications of Iterative PEVD Algorithms

Now γϑ(z) is a power spectral density rather than the norm that is the result of nar-

rowband MUSIC; the power spectral density leads to two versions of the P-MUSIC

algorithm. The first version, spatial polynomial (SP) MUSIC takes the zero lag term

γϑ[0] of the autocorrelation like sequence, γϑ[τ ] ◦—• γϑ(z), which is related to the en-

ergy in Q̃n(z)aϑ(z). The energy in γϑ[0] is only dependent on the angle of arrival and

will be at a minimum in the direction of source signals so the reciprocal is used

PSP−MU(ϑ) =
1

γϑ[0]
. (5.20)

The second version of polynomial MUSIC is called spatio-spectral polynomial (SSP)

MUSIC which can indicate both the angle of arrival and the frequency range over which

the source is active

PSSP−MU(ϑ,Ω) =

(
∞∑

τ=−∞

γϑ[τ ]e
−jΩτ

)
−1

. (5.21)

5.2.3 Results

This section compares the impact of using two different PEVD methods – SBR2 and

MSME-SMD – on the results of the spatio-spectral polynomial MUSIC algorithm. The

PEVD methods achieve different levels of diagonalisation and so the subspaces identi-

fied will also differ in accuracy. The simulation scenario considered comprises of two

broadband sources with partially overlapping spectra and different angles of arrival:

• source 1 — located at ϑ1 = −20◦, and active over a frequency range Ω1 ∈

[15/32π, 30/32π],

• source 2 — located at ϑ2 = 30◦ , and active over a frequency range Ω2 ∈

[10/32π, 25/32π].

These sources are used to illuminate an M = 8 element sensor array, where the source

signals are corrupted by uncorrelated independent and identically distributed complex

Gaussian noise at 20 dB SNR. Each of the PEVD methods were run for 100 iterations

on the same space time covariance matrix to obtain the respective noise-only subspaces.
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(a)

(b)

Figure 5.8: Performance of SSP-MUSIC based on (a) SBR2 and (b) MSME-SMD for
PEVD for a scenario with two independent broadband sources located at ϑ1 = −20◦

and ϑ2 = 30◦respectively.
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The two noise-only subspaces are then used to create the spatio-spectral polynomial

MUSIC spectrum from (5.21). The results for SSP-MUSIC are shown in Fig. 5.8 (a)

and Fig. 5.8 (b) for SBR2 and MSME-SMD respectively. The accuracy of the decom-

position is related to the width (in terms of AoA) and (colour) intensity of the sources

indicated in Fig.5.8 (a) and (b). Numerically, for this example the MSME-SMD PEVD

approach reduces the off-diagonal energy of R(z) by approximately an additional 2.5

dB compared with SBR2. The P-MUSIC algorithm and results presented here are also

discussed in more detail in [12,13]. In addition P-MUSIC has been benchmarked against

a number of other schemes: coherent signal subspace (CSS) methods, which apply a

presteering in the direction of a suspected source, such that narrowband techniques can

be applied [66–68], and another presteering approach in [69, 70], which presteers the

data until the principal eigenvalue of the narrowband covariance matrix is maximised.

The CSS method is powerful but requires some prior knowledge of the source to be

detected, the latter is never able to detect more than a single source.

5.3 Polynomial Generalised Eigenvalue Decomposition

This section gives an example of the extension of a well established linear algebraic tech-

nique to polynomial matrices. The linear algebraic technique chosen is the generalised

eigenvalue decomposition (GEVD) which is extended to the polynomial domain using

the PEVD, forming the polynomial-matrix GEVD (PGEVD). In a multi-microphone

scenario with M sensors, the generalised eigenvalue decomposition has been utilised to

enable a low rank approximation of a multichannel Wiener filter (MWF) [71,72]. This

MWF is meant to separate a desired signal from K−1 interfering signals, with K < M .

The MWF Ŵ used in [71] is calculated as

Ŵ = R−1
yy RssÊd , (5.22)

where Ryy is the signal-plus-noise covariance matrix, Rss is the estimated signal-only

covariance matrix, and Êd is used to select the signal of interest.

In scenarios such as the audio processing examples in [71] and [72], the signal-plus-
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noise covariance matrix is easily calculated from the received signals, but the signal-only

covariance matrix cannot be obtained in this way. Instead, the signal-only covariance

matrix must be estimated from the signal-plus-noise and noise-only covariance matrices;

during this estimation process, the rank of the matrix is artificially increased. To avoid

using matrices with an artificially high rank, the estimated covariance matrix is replaced

by a low-rank approximation [71]. Methods using both the scalar EVD and GEVD have

been explored in [72] with results indicating the GEVD based low-rank approximation

performs better as it effectively selects the modes with the highest SNR.

In brief, the GEVD jointly diagonalises two separate covariance matrices using a

common set of generalised eigenvectors. Since the audio application area is inherently

broadband, while both the covariance matrix and the GEVD factorisation are defined

for the narrowband case, a broadband extension of the GEVD is required. In [71], this

is addressed by a frequency domain approach which solves independent narrowband

problems in DFT bins. In order to exploit the spectral coherence of e.g. audio signals,

the aim of this section is to find a broadband signal processing approach based on

polynomial space-time covariance matrices. In this section, the PEVD is extended to a

polynomial version of the GEVD (PGEVD) in order to directly address the broadband

MWF problem. Wiener filters have previously been formulated using polynomial matrix

techniques [73] but initially could not be solved due to an absence of tools. Here the

polynomial Wiener filter solution in [19] is complimented by a PGEVD approach.

Below, Sec. 5.3.1 reviews the (narrowband) GEVD, in particular the Cholesky ap-

proach on which the extension will be based. Sec. 5.3.2 outlines the extension of the

Cholesky approach to polynomial matrices. Inversion of polynomial matrices is covered

in Sec. 5.3.3, with results presented in Sec. 5.3.4.

5.3.1 Generalised Eigenvalue Decomposition

The GEVD solves the problem of R1v = ψR2v, v 6= 0, where v is an eigenvector of

the pencil R1 − ψR2 [7]. In matrix form we can write this as

R1V = R2VΨ , (5.23)
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where the diagonal matrix Ψ contains the generalised eigenvalues and V holds the

corresponding generalised eigenvectors. Applying the generalised eigenvectors to R1

and R2 results in

VHR1V = Ψ , (5.24)

VHR2V = I , (5.25)

where I is the identity. Rearranging (5.23), or (5.24) and (5.25) to

R−1
2 R1 = VΨV−1 , (5.26)

it is evident that R−1
2 R1 is no longer Hermitian and therefore V is not guaranteed

to be unitary, even if — as in the case of MWF [71, 72] — R1 and R2 are Hermitian

covariance matrices.

Among a number of options to calculate the GEVD or joint diagonalisation of

Hermitian matrices R1 and R2 is a Cholesky-based approach [7]. In a first step, a

Cholesky decomposition is used to obtain

R2 = LLH , (5.27)

with L lower left triangular. Next an intermediate Hermitian matrix C is formed using

R1 and L−1,

C = L−1R1L
−H . (5.28)

Finally, an EVD is performed on the intermediate Hermitian matrix,

C = YΨYH , (5.29)

such that Ψ contains the generalised eigenvalues and the generalised eigenvectors are

the columns of V = L−HY.

In both [71] and [72] the GEVD is used to obtain a low-rank approximation of the

signal-only covariance matrix, Rss. Using the GEVD for low-rank approximation, R1
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and R2 would be the signal-plus-noise and noise-only covariance matrices respectively.

R1 is estimated from the array input data during a signal-plus-noise period, and R2 can

either be estimated from a noise-only data segment or come from a-priori knowledge.

Various methods for low-rank approximation of Rss are based around Rss = R1 −R2,

and the GEVD based approach has been shown to give the most reliable estimation of

Rss [72]. Rearranging (5.24) and (5.25) gives

R1 = V−HΨV−1 , (5.30)

R2 = V−HV−1 , (5.31)

which can be used in the estimation of Rss to get

Rss = V−HΨV−1 −V−HV−1 (5.32)

= V−H(Ψ− I)V−1 . (5.33)

If the generalised eigenvalues are ordered, a low-rank estimation can be achieved by

setting the lower diagonal elements of (Ψ− I) in (5.33) to zero.

5.3.2 GEVD Extended to Polynomial Matrices

Extending the GEVD in (5.23) to polynomial, parahermitian, matrices Ri(z), i =

{1, 2}, leads to a joint diagonalisation problem akin to (5.24) and (5.25)

Ṽ (z)R1(z)V (z) = Ψ(z) , (5.34)

Ṽ (z)R2(z)V (z) = I . (5.35)

Here Ψ(z) contains the polynomial generalised eigenvalues. The factorisations in (5.34)

and (5.35) can be shown to exist if the PEVDs of Ri(z), i = {1, 2}, exist [50], and if

R2(z) is invertible. Due to the ambiguities of the PEVD from Chapter 2, the generalised

polynomial eigenvectors in V (z) can at the very least be arbitrarily delayed w.r.t. each

other, leading to a variability in their order.

For the computation of V (z) and Ψ(z), a two-step Cholesky-style approach can be
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performed. The first step starts by calculating the PEVD

R2(z) = Q̃2(z)D2(z)Q2(z) , (5.36)

followed by the spectral factorisation outlined in Sec. 5.3.3. Now the factor L(z) =

Q̃2(z)D
(+)
2 (z) is not lower left triangular but is easily inverted, such that L−1(z) =

(D
(+)
2 (z))−1Q2(z), using the procedure described in Sec. 5.3.3.

The second step is initiated by constructing the intermediate (parahermitian) ma-

trix

C(z) = L−1(z)R1(z)L̃
−1

(z) . (5.37)

Next, using the PEVD, the intermediate matrix is decomposed into

C(z) = Q̃(z)Ψ(z)Q(z) , (5.38)

where Ψ(z) contains the polynomial generalised eigenvalues and the polynomial gen-

eralised eigenvectors are calculated as V (z) = L̃
−1

(z)Q(z), noting a possible order

reduction due to the ambiguity from Sec. 4.1.

5.3.3 Polynomial Matrix Inverse

In this approach spectral factorisation [57, 74] of the polynomial eigenvalues takes the

place of the Cholesky decomposition. The spectral factorisation is carried out on each

of the individual polynomial eigenvalues as in [57, 74] using a method such as sfact()

from [75]. After spectral factorisation the PEVD equation from (2.9) becomes

R2(z) ≈ Q̃2(z)D
(+)
2 (z)D

(−)
2 (z)Q2(z) , (5.39)

where D
(+)
2 (z) and D

(−)
2 (z) = D̃

(+)
2 (z) are the minimum and maximum phase compo-

nents of D2(z) respectively.

Like the scalar method outlined in Sec. 5.3.1, L(z) can be constructed as L(z) =

Q̃2(z)D
(+)
2 (z) and so R2(z) = L(z)L̃(z). It is possible to calculate the inverse of L(z)

by inverting both Q̃2(z) and D
(+)
2 (z) independently. The inverse of a paraunitary
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Figure 5.9: Power spectral density (PSD) of the (a) minimum phase components,

D
(+)
2 (z) and (b) inverted minimum phase components (D

(+)
2 (z))−1.

matrix is simply its parahermitian transpose, i.e. Q2(z)Q̃2(z) = I. The inverse of

D
(+)
2 (z) •—◦ D

(+)
2 [τ ] is calculated in the DFT domain by taking the FFT of each of

the diagonal entries, D
(+)
2,i [τ ] ∀ i = 1 . . .M , where D

(+)
2,i [τ ] is the ith diagonal entry.

The inversion of D
(+)
2 (z) can be illustrated by observing the power spectral densities

of D
(+)
2 (z) in Fig. 5.9(a), and its inverse (D

(+)
2 (z))−1 in Fig. 5.9(b). Typically the

PEVD methods from Sec. 2.3 will resolve the eigenvalue with the highest powerD
(+)
2,1 (z)

better than the eigenvalue with the lowest power D
(+)
2,4 (z); this is important for the

inversion as small errors in D
(+)
2,4 (z) can get significantly amplified in (D

(+)
2,4 (z))

−1.

5.3.4 Results

Performance Metrics

Diagonalisation. Since the goal of the GEVD is to minimise off-diagonal energy of both

R1(z) and R2(z), a suitable normalised metric similar to (3.21) is

E(i)
n,norm =

∑

τ

∑M
k=1 ‖ŝ

(i)
n,k[τ ]‖

2
2

∑

τ ‖Rn[τ ]‖2F
(5.40)

where ŝ
(i)
n,k[τ ] is the modified k-th column vector containing all but the on-diagonal

elements of S
(i)
n [τ ] ◦—• S

(i)
n (z) for n = 1, 2. The partially diagonalised S

(i)
n (z) is calcu-
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lated as

S
(i)
1 (z) = Ṽ

(i)
(z)R1(z)V

(i)(z) , (5.41)

S
(i)
2 (z) = Ṽ

(i)
(z)R2(z)V

(i)(z) , (5.42)

where V (i)(z) is the generalised eigenvectors calculated after i iterations in each of the

PEVD steps of Sec. 5.3.2.

Identity Error. Ideally the generalised eigenvectors in V (z) should turn R2(z) into

an M ×M identity matrix; however, in reality S
(i)
2 (z) only approximates the identity.

Similar to (4.9) and (4.10), to quantify the closeness of S
(i)
2 (z) to the identity the

difference is defined as

E(i)(z) = IM×M − S
(i)
2 (z) . (5.43)

With E(i)[τ ] ◦—• E(i)(z) the identity error is given by the distance metric

ξ(i) =
∑

τ

‖E(i)[τ ]‖2F . (5.44)

Simulation Scenario

As an example, R1(z) ∈ C
4×4 and R2(z) ∈ C

4×4 are generated from the source model

in [10]. The order of both R1(z) and R2(z) from the source model is 89 and the

source model is set up such that R1(z) is rank 1, with the contributing source having a

dynamic range of approximately 10 dB. The matrix R2(z) is full rank and its sources

have a dynamic range of approximately 20 dB. The SMD algorithm in [10] is used to

calculate the PEVD and is run for 500 iterations with the performance metrics recorded

after every 10 iterations.

Joint Diagonalisation

The example PGEVD uses the two parahermitian matrices R1(z) and R2(z), shown

in Fig. 5.10 (a) and (b) respectively. Following the algorithm outlined in Sec. 5.3.2,

with each of the PEVD steps having 500 iterations, we obtain the jointly diagonalised

systems in Fig. 5.11, closely approximating (5.34) and (5.35).
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Figure 5.10: Space-time covariance matrix (a) R1[τ ] ◦—• R1(z) and (b)
R2[τ ] ◦—• R2(z)showing only lags |τ | ≤ 20.
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Figure 5.11: Results of joint diagonalisation for (a) S
(500)
1 [τ ] ◦—• S

(500)
1 (z) and (b)

S
(500)
2 [τ ] ◦—• S

(500)
2 (z), for lags |τ | ≤ 20.
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Algorithm Convergence

Although the PGEVD as such is not iterative, we are able to vary the number of

PEVD iterations and show how performance metrics improve with more iterations.

First we look at the reduction in off-diagonal energy for both Ṽ
(i)
(z)R1(z)V

(i)(z) and

Ṽ
(i)
(z)R2(z)V

(i)(z) in Fig. 5.12. The convergence of S
(i)
1 (z) is heavily influenced by

the initial PEVD of S
(i)
2 (z), and its effect can be beneficial or detrimental on the second

PEVD stage as the number of iterations increases. If the number of iterations for the

first PEVD were fixed, the curve for R1(z) would be smooth; varying the number of

iterations, as done here, causes the fluctuations in the curve for R1(z).

In addition we can examine how close the decomposition Ṽ
(i)
(z)R2(z)V

(i)(z) is

to the identity (delayed by an appropriate amount) at each iteration. Fig. 5.13 shows

how Ṽ
(i)
(z)R2(z)V

(i)(z) converges towards to the identity as the number of PEVD

iterations, i, increase.

5.4 Chapter Summary & Conclusions

This chapter has looked at three different types of PEVD application. First is the

application of PEVD algorithms to parahermitian matrices with different properties.

Next the MSME-SMD algorithm was applied to a broadband angle of arrival scenario in

which the SBR2 algorithm had previously been used. Finally the generalised eigenvalue

decomposition has been extended to a polynomial matrix GEVD by applying the PEVD

in a Cholesky-like fashion.

The first part of this chapter investigated how the conditioning of the parahermitian

matrix can affect the performance of a PEVD algorithm. Using the proposed source

model, properties of the parahermitian matrix can be carefully controlled. A number

of PEVD algorithms have been compared for different source model conditions. The

results show that the speed of convergence is related to the source model used, in partic-

ular the dynamic range and the ordering of the eigenvalues. From the results presented

in this chapter a higher dynamic range will typically cause the PEVD algorithms to

converge more slowly in terms of reducing off-diagonal energy. The dynamic range has
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minimal affect on the paraunitary orders for SBR2 and SMD algorithms, however in

case of MSME-SMD the matrices tend to grow faster. When the ordering of the poly-

nomial eigenvalues is changed, i.e. majorised vs. unmajorised, the majorised version

will converge faster, to a better level of diagonalisation, with a lower order paraunitary

matrix, independent of the PEVD algorithm used.

The second part of this chapter has explored the impact of iterative polynomial

matrix eigenvalue decompositions – in particular the diagonalisation achieved by these

algorithms – on subsequent processing relying on subspace information. Here the well

established SBR2 algorithm is compared with the MSME-SMD implementation which

excels in the suppression of off-diagonal energy. In simulations of a polynomial MUSIC

algorithm for broadband angle of arrival estimation, the better diagonalisation leads to
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a better identification of the relevant signal subspaces. Using MSME-SMD, P-MUSIC

can extract a cleaner estimate with respect to both angle and frequency range of the

estimated sources.

To extend the GEVD to broadband scenarios a polynomial version has been pro-

posed. Since existing polynomial matrix factorisations are based on the parauni-

tary property, which the generalised polynomial eigenvectors do not fulfil, an indirect

Cholesky-style approach has been suggested, which involves two PEVDs and the in-

version of a parahermitian matrix. The effectiveness of this approach has been demon-

strated using an example. Although not covered in this chapter, the numerical robust-

ness of the polynomial matrix inversion can be enhanced by regularisation. Based on

the proposed approach, it is therefore now possible to extend problems such as the

multichannel Wiener filter, which elegantly rely on the GEVD, to the broadband case

by utilising its polynomial extension.
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Conclusions & Future Work

6.1 Thesis Summary

Recently polynomial matrices have become more popular in DSP for their ability to

model broadband systems more accurately than scalar matrices. Conventional scalar

matrix methods have been extended to handle these polynomial matrices, in particular

the EVD and PEVD have been highlighted as a useful tool in the realm of DSP.

Based on two initial iterative PEVD algorithms this thesis has developed new powerful

PEVD algorithms, reduced some of the inefficiencies of the algorithms, and applied

these algorithms in different scenarios. The following three subsections summarise the

main contributions of this thesis.

6.1.1 Multiple Shift Algorithms

In Chapter. 3 the idea of transferring more energy at each algorithm iteration was

realised by shifting multiple rows and columns. An exhaustive approach was developed

but the cost was such that it was not viable for an iterative PEVD algorithm. The

multiple shift idea was tweaked to use a maximum element search and this was shown

to perform very closely to the exhaustive search with only a fraction of the cost. A

search method has also been developed to suit the SBR2 algorithm. Comparing the

performance of the newly developed algorithms with their predecessors they transfer a

significant amount of extra energy at each iteration, especially as the matrix dimension
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is increased. Despite the more complex search step the SMD based algorithms actually

converge faster in real time and the SBR2 method is only slightly slower. The main issue

with the multiple shift algorithms was identified as the excessive polynomial matrix

growth.

6.1.2 Efficient Implementations

To improve the efficiency of the resulting paraunitary filter banks a novel truncation

method was developed that takes advantage of the ambiguity within paraunitary ma-

trices. In general the new truncation method produces truncated paraunitary matrices

which are both shorter and have a lower error metric than the existing approach. To

reduce the order growth in the MSME-SMD algorithm a search space restriction was

proposed that decouples the worst case polynomial matrix order growth from the ma-

trix width. Experiments have shown that the restriction has a minimal impact on

the algorithm convergence but improves both the order growth and with it the real

time execution. The final refinement targets all SMD algorithms, the major cost of the

SMD approach is the application of the non-sparse EVD modal matrix to all lags of the

parahermitian matrix. The cyclic-by-row SMD approximation replaces the non-sparse

matrix with several sparse Jacobi transformations. With only a single sweep of the off-

diagonal elements the cyclic-by-row SMD approximation performs almost identically

to the original SMD. The major difference comes when execution time is considered,

with the cyclic-by-row approximation the SMD algorithms are significantly faster and

even surpass SBR2 in real time convergence.

6.1.3 PEVD Applications

Previously many of the PEVD algorithms have been applied to a random assortment of

parahermitian matrices with limited or no control on the properties of the parahermitian

matrices. An important avenue of investigation was therefore to detail the impact of

varying the properties of the input parahermitian matrix. In general the performance of

the PEVD algorithms have been shown to vary quite dramatically with the properties

of the input parahermitian matrix. To view the benefits of the new MSME-SMD
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algorithm it was applied to a simple angle of arrival estimation example. The example

uses the P-MUSIC framework which was originally developed using SBR2. Substituting

in the MSME-SMD algorithm has been shown to give a cleaner estimate of the sources

both in terms of the angle of arrival and frequency range. Chapter 5 concludes with a

method that extends the generalised eigenvalue decomposition to polynomial matrices.

The method is influenced by the scalar Cholesky based approach, however it does not

include a polynomial Cholesky decomposition as such. The polynomial GEVD has

been applied to a simple example and is able to produce generalised eigenvalues that

diagonalise two parahermitian matrices in a way that mimics the scalar GEVD.

6.2 Future Work

This thesis has centred around polynomial matrix decompositions, in particular algo-

rithms to compute the PEVD as well as a method to calculate a polynomial GEVD.

Based on the contents of this thesis and the experience gained in the wider area possible

items of interest for future work are listed below.

• Lower cost Maximum Energy SMD – Chapter 3 introduced the Maximum Energy

SMD however the current implementation is too costly for any practical applica-

tions. The MSME-SMD algorithm provides a more practical method of achieving

high energy transfer but it poses the question, is there an approach with similarly

low cost that achieves better performance? The Maximum Energy SMD proves

that it is possible to transfer more energy at each iteration but can this be done

in a less costly fashion by a non-exhaustive method?

• Extension of multiple shifts to other iterative algorithms – the polynomial QR

decomposition algorithm follows a very similar routine to the PEVD algorithms

presented in this thesis. It would therefore make sense to extend the idea of

multiple shift algorithms to these types of algorithm.

• Exploit the symmetry of the parahermitian matrix – although not specifically

mentioned the search algorithms in Chapter 3 exploit the symmetry of the para-

hermitian matrix by only searching one half (plus the zero lag). It is almost
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certainly possible that the entire PEVD algorithm could work on a similar basis

with modifications to the shift steps. This would be particularly beneficial for the

SMD algorithm as much of its cost comes from applying the EVD modal matrix

to all lags.

• Further exploitation of the PEVD ambiguity – Chapter 4 utilised a basic allpass

filter to reduce the paraunitary order in the PEVD. This allpass filter is just

one basic approach, other methods such as infinite impulse response (IIR) may

provide further benefits.

• Refining PEVD algorithms to reduce the polynomial matrix order growth – in

Chapter 4 the reduced search space (RS-) MSME-SMD algorithm was introduced,

as a method to control the polynomial order growth in the MSME-SMD al-

gorithm. The RS-MSME-SMD method aims to set a balance between energy

transfer and polynomial matrix growth, an interesting avenue may be to attempt

something similar with the single shift algorithms where perhaps the shift selec-

tion is influenced by the distance from the zero lag. In addition a threshold could

be set on the MS algorithms such that only worthwhile elements are shifted and

the polynomial orders are not increased unnecessarily.

• Lower cost CbR-SMD – The cyclic-by-row SMD approximation could be made

more efficient by using a threshold to determine whether it is worthwhile applying

a Jacobi transformation to each off-diagonal element. If the element is smaller

than the threshold it is simply skipped to reduce computational cost.

• Implementation of state-of-the-art PEVD algorithms and techniques in a high

performance architecture – previously the SBR2 algorithm has been programmed

onto an FPGA. It would be of interest to see how the more advanced algorithms

compare and whether the approaches like the cyclic-by-row approximation and

multiple shift algorithms are still beneficial on parallel architectures.

• Further investigate spectral majorisation – the first section in Chapter 5 inves-

tigated the impact of the source model conditioning. In particular the spectral
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ordering of the source model was shown to affect the performance of the PEVD

algorithms. When the PEVD algorithms have to deal with overlapping spectra

the spectral majorisation they encourage leads to sharp corners in the spectra

of the eigenvalues; typically sharp corners in the frequency domain lead to long

filters in the time domain. It could be possible to avoid spectral majorisation and

by implication reduce polynomial matrix lengths.

• Polynomial GEVD – in Chapter 5 the polynomial GEVD was introduced. The

PGEVD opens several new avenues of research, for instance broadband Wiener

filtering and distributed broadband beamforming to name a few.

• In addition to the work that directly follows on from the contributions presented

in this thesis these contributions can be expected to benefit a number of ap-

plications that use polynomial matrix factorisations. Examples include MIMO

communications such as [76–78] and beamforming [79] to name a few.
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