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Abstract 

The integration of domestic electric heat pumps at LV (low-voltage) level forms a key 

component of the UK’s heat and buildings decarbonisation strategy. However, the traditional 

constraints of distribution power networks – limited communication and control, with low 

system visibility – imposes several challenges when attempting to quantify future network 

impacts of increased heat pump adoption at LV level. Electrical heat load is sensitive not only 

to temperature, but locally variable parameters such as building construction and occupant 

demographics. This work builds on previous research by developing novel methodologies for 

the localisation of electrical heat load from trial and operational data augmented by 

supplemental datasets, overcoming the limitations of using pure trial data when aiming to 

quantify local electrical heat load and consequent network effects. This addresses the need to 

quantify potential LV network impacts in the absence of complete data and enhances the 

potential observability of distribution network assets without the need for investment in 

additional monitoring hardware.  
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1.1 Overview 

The ambitious decarbonisation targets set to achieve Net Zero by 2050 in the UK demands 

change to the Great Britain (GB) energy system at a rate and scale that is unprecedented in 

recent history. At present, there are many policy, technical and sociological barriers to 

achieving target heat pump uptake within the UK that will act as headwinds with respect to 

achieving target levels. In a power networks context, the rapid connection of new low carbon 

technologies at the low voltage (LV) level - both generation and load types - necessitate new 

tools and methodologies for network planning, design and decision making. Within the UK, 

the LV network facilitates the last-mile of electricity distribution to end-users at 240V [1]. 

 The aggressive push to electrify domestic heating presents many specific technical 

challenges in terms of how additional load can be accommodated on existing networks whilst 

optimising investment and minimising physical intervention. In the presence of ongoing 

uncertainty surrounding which decarbonisation pathways will become dominant, non-network 

solutions which minimise physical network interventions become particularly attractive for 

utilities. 

The principal challenges for distribution network operators can broadly categorised as 

uncertainty surrounding future electrical heat pump uptake, and uncertainty surrounding how 

specific penetrations of electrical heat pump will impact distribution network assets in terms 

of voltage and current effects. Combined, the uncertainty surrounding penetration levels and 

the corresponding shape and time of use characteristics of electrical heat load must be managed 

by distribution network operators’ (DNO’s) seeking to optimise investment and maintain 

security of supply to customers.   

As an alternative to physical models, data-driven solutions are currently widespread for 

power systems applications. This approach is particularly attractive for power distribution 

networks which feature low levels of visibility, communication, and control in combination 
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with a very high number of physical assets. However, maximising the value of data-derived 

insights poses an additional series of challenges.  

In order to quantify the network voltage and current impacts of increased electrical heat 

pump penetration, there have been numerous trials undertaken within the UK [2] [3] [4] in  

order to capture electrical heat load for households installed with electrical heat pumps. This 

serves to inform possible time of use patterns combined with electrical heat load magnitudes, 

however there are key limitations associated with trial data. Each trial captures electrical heat 

pump usage for a limited subset of customers for a specific geographic location and for a 

specific period of time. Unlike other low carbon technologies, such as wind and solar 

generation, or EVs, electrical heat load is sensitive to a range of parameters in addition to the 

rating of the hardware itself. Electrical heat load is proportional to the physical characteristics 

of the household being heated, in addition to the thermal comfort and occupancy routines of 

the household occupants. The geospatial variance in these parameters serves to introduce a 

delta between trial data results and potential network impacts in a target area.  

Corresponding with limited availability of trial data, there is presently a significant gap 

between the number of households fitted with electric heat pumps, and the levels necessary in 

order to achieve decarbonisation. For the modelled Further Ambition scenario, the CCC 

recommends the installation of 19 million heat pumps [5] At the 2019 installation rate of 1.5 

installations per 1000 households [6], this would take 700 years to achieve. Therefore, there is 

additionally a very limited availability of operational electric heat pump data to draw on to 

inform future network effects.  

The limitations of data availability for facilitating the uptake of low-carbon technology at 

the LV level has been highlighted by [7]. These limitations are systemic and are likely to 

remain in place for the near future. The cost and effort of implementing trials alongside with 

the low operational observability of LV networks, combined with the legal obligation for data 

anonymisation means that load data is typically highly aggregated or lacking in geospatial 
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context. Localisation of electrical heat load impacts for LV networks in the presence of limited 

trial data and operational data then becomes a key issue. Due to the scale of the aggregated 

UK distribution network – over 500,000 substations and millions of kilometres of cabling – 

any localisation approach must be sufficiently robust to work over a range of areas. 

This work seeks to develop novel data-driven methodologies to reduce the uncertainty 

surrounding the bulk network voltage and current effects due to the increase of increased 

electrical heat pump penetration at LV level. This thesis therefore proposes a novel electrical 

heat load model that draws load magnitude and shape information from existing trial datasets, 

with further scale localisation through the use of geospatially linked supplementary datasets 

to better inform future electrical heat load across the entire power distribution network of the 

UK. This overcomes the limitations of standalone trial data as highlighted previously in [8] , 

where trial data only provides average or indicative results and can lack translatability from 

the area of original data capture. A series of case studies using the developed methodologies 

are used to demonstrate the effects of load localisation. This thesis demonstrates how findings 

from costly trial data can be augmented in order to extract improved insights and minimise the 

need for additional investment in monitoring or physical network intervention. Whilst this 

work focuses on electrical heat load modelling, these concepts similarly apply in an LV 

networks context for other low-carbon technologies such as EV’s and distributed generation, 

where limited trial data forms core insights for prediction of LV network impacts at increased 

penetration. 
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1.2 Principal research contributions 

The contributions of this thesis are summarised as follows: 

• A novel probabilistic electrical heat load relation model is developed from trial 

datasets, building on previous works which have focused on modelling highly 

aggregated heat pump load at winter extremes rather than across the entire range of 

temperature conditions. This methodology is sensitive to local ambient temperature as 

well as number of customers.  

• A novel localisation electrical heat load model is developed, overcoming the 

limitations of highly aggregated electrical heat load profiles in order to develop load 

profiles that are sensitive to geospatially variable factors such as building physical 

parameters and individual demographics. The impact of localisation is demonstrated 

via calculation of localised after diversity maximum demand (ADMD) and through a 

feeder case study. 

• A new approach for disaggregation of electrical heat load from aggregated LV 

transformer load data is demonstrated, facilitating the extraction of electrical heat load 

from existing LV sensors without the need for additional monitoring capability. This 

improves network situational awareness with respect to electrical heat load. 

• A unified methodology incorporating previously developed electrical heat load 

models combined with the electrical load disaggregation methodology in order to 

augment locally extracted data and provide feeder specific insights. This overcomes 

the limitations of static models which are dependent on standalone trial data. 

1.3 Thesis Outline 

This thesis is dedicated to enhancing the modelling and localization of electrical heat load 

amidst the UK's drive towards heat electrification. Initially, it establishes the contextual 

backdrop and reviews existing methodologies, followed by the introduction of the proposed 
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approach, which includes data-driven heat load prediction, geospatial localization, and 

electrical load disaggregation. The structure of the thesis is presented below: 

Chapter 2 reviews the context for the electrification of heat within the UK, provides an 

overview of uncertainty in a distribution networks context and presents a general overview of 

existing research in this problem area. 

Chapter 3 develops a novel data-driven approach for predicting future electrical heat load 

shapes in the absence of detailed metadata, sensitive to local temperature conditions and 

number of customers. This builds on previous approaches for modelling increased domestic 

heat pump at the LV level, which incorporate only worst-case extremes rather than temperature 

sensitive approaches. 

Chapter 4 presents a methodology for the localisation of the electrical heat load shapes 

developed in Chapter 3, whereby the effects of geospatially variable physical and demographic 

effects are incorporated into the final electrical network load. This contributes another 

development beyond using standalone trial data without localisation of building and 

demographic effects. 

Chapter 5 proposes a novel disaggregation of electrical heat load from aggregated LV 

transformer load, facilitating the extraction of electrical heat load from existing LV sensors 

without the need for additional monitoring capability. This couples the load and time of use 

insights provided by existing trial data, with geospatially sensitive heat localisation for the 

specific LV feeder. This provides a methodology for extracting locally specific heat load 

without the need for additional network monitoring, that can be coupled with the heat models 

presented in Chapters 3 and 4  

Chapter 6 unifies the contributions into an end-to-end demonstration of the developed 

electrical heat load models, combined with the electrical heat load disaggregation used 

together in order to augment local load data which may be limited, poor quality and incomplete. 
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Chapter 7 summarises the contributions and the implementation of the research. 

Furthermore, future work, such as developing associated measurement devices and a data 

processing platform, are discussed. 
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This chapter presents the wider contextual background for the motivations behind this 

research project, outlines the technical context surrounding load uncertainty at LV level and 

reviews the current state of the art with respect to electrical heat load modelling and uncertainty 

management for network operators. Ongoing industry projects and the current capabilities of 

DNO’s are outlined. 

2.1 Background 

In recent years, climate change has been established as the greatest single threat faced by 

humanity and global ecosystems [9]. In their latest report, the IPCC (Intergovernmental Panel 

on Climate Change) state is that it is now unequivocal that humanity’s greenhouse gas 

emissions are linked to more-frequent, more intense extreme weather events [10], with serious 

consequences for international economic, political and societal stability. 

The modern age has seen the effects of human-induced climate change shift towards both 

increased geographic scale and increased severity. The air pollution of the Industrial 

Revolution in the 19th century contributed to a massive increase in respiratory disease and 

increased mortality in factory towns as well as surrounding areas [11]. In the US the Dust 

Bowl of the 1930s, caused by over intensive farming, resulted in drought and erosion over an 

area of 100,000,000 acres. Over 500,000 individuals were left homeless as the affected area 

become uninhabitable, and a further 3.5 million people were displaced. More recently, extreme 

winter storms in Texas in February of 2021 caused the worst energy infrastructure failure in 

Texas state history, leading to shortages of water, food and heat for 4.5 million homes due to 

unprecedented weather conditions [12]. 

Today, the tangible effects of climate change are not constrained to individual cities, 

regions, or even continents. The six years leading up to 2021 were the hottest years on record, 

and 2021 itself saw over 400 weather stations around the world beat their all-time highest 

records. Rises in sea levels contributed by ice-mass loss and thermal expansion of the ocean 

[13] encroach on coastal areas, with up to 630 million people presently living below the 
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modelled 2100 flood levels [14]. Ongoing environmental destruction through man-made 

processes has resulted in a global species loss of 68% in less than 50 years, signalling an 

ongoing loss of biodiversity that threatens to collapse already fragile ecosystems. [15].  

The impact of human-induced climate change therefore now presents an existential threat 

to humanity, with profound implications for international relations, resource security and 

quality of life for individuals living today as well future generations. 

A challenge of this scale necessitates a global response, and recent years have seen 

increasing levels of awareness and cooperation between nations in attempt to mitigate the 

effects of climate change. The Kyoto Protocols adopted in 1997 was ultimately ratified by 192 

countries, representing the first time binding GHG (greenhouse gas) reduction targets were set 

for industrialised countries. Whilst not a total success (partially derailed by the US refusing to 

participate), it is estimated that the Kyoto Protocols resulted in an emissions reduction of 7% 

compared to no action being taken [16]. Further to this, in 2015 the Paris Agreement was 

ratified. This treaty formally recognised the requirement to reduce the increase in to well below 

2 °C above pre-industrial levels and to pursue efforts to limit the temperature increase to 1.5 °C 

above pre-industrial levels, recognizing that this would significantly reduce the risks and 

impacts of climate change [17]. 

In turn, these international efforts drive policy decisions and long-term government 

strategy at the national level. Within the UK, the 2008 Climate Change Act made the legal 

commitment to ensure that net UK carbon accounts for all six Kyoto greenhouse gases for the 

year 2050 were at least 100% lower than the 1990 baseline [18]. As of 2019, the UK became 

the first major economy to make a legally binding commitment to net-zero greenhouse gas 

emissions by 2050 [18]. Reducing emissions to target levels necessitates a multi-faceted 

approach that encompasses the decarbonisation of multiple sectors including industry, 

transportation and agriculture as well as the power system as a whole. This will ultimately 
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require technological innovation and adaptation from industry, academia, regulators and 

government, as well as behavioural shifts within society as a whole. 

It is against this backdrop of increasing political commitment to carbon emissions 

reduction that the UK’s energy sector is facing a time of unprecedented change. Supported by 

the falling cost of photovoltaic technology and government subsidies, solar generation has 

grown from zero to over 13.5MW of capacity in the last ten years alone [19] . Along similar 

lines, wind generation has grown from contributing 1% of the UK’s electricity use in 2008 to 

24.8% in 2020 [20], having surpassed coal in 2016 and nuclear in 2018 [21]. This was 

supported in part by the Renewables Obligation (RO), designed to encourage generation of 

electricity from eligible renewable sources in the UK. In tandem with the increasing proportion 

low-carbon generation, in 2015 UK coal usage fell to the lowest level seen since mid 19th 

century [22]. In 2012, coal accounted for 40% of the UK’s power generation and had collapsed 

dramatically to only 1.8% in 2020 [21]. 

 Whilst significant gains have been main regarding the decarbonisation of generation in 

the UK, significant further effort remains in order to reduce the carbon emissions of other 

sectors. In 2021, more than 60% of power generation came from low-carbon sources [21], 

whereas less than 5% of total buildings heat demand in the UK came from low-carbon sources 

[23]. Therefore, in comparison to the generation sector, the decarbonisation of the UK’s heat 

and transport sectors are currently in their early stages compared to the UK’s long term 

strategic ambitions. National Grid Future Energy Scenarios (FES) suggest that the UK’s stock 

of EV’s could reach between 2.7 and 10.6 million by 2030 and as high as 36 million by 2040 

[21].  

Unconstrained, the National Grid estimates this could contribute an additional 19GW of 

demand through electric-vehicle (EV) charging by 2040 [21]. Similarly, for the heating sector, 

existing GB winter peak heat demand is estimated to be approximately 170GW [24]; more 

than double when contrasted with the current network electricity peak demand of 59.GW [25]. 
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Shifting this gas demand to the electricity network within the necessary time frames poses an 

enormous effort for the UK’s energy system, especially when considering the broader context 

of decarbonisation. The transfer of energy of these sectors from fossil fuel-based systems to 

fully electrified sectors will significantly alter the UK’s aggregate energy demand, as well as 

modify patterns of energy consumption at the household and consequently LV asset level. 

2.1.1 Decarbonisation of Heat  

The decarbonisation of heat in the UK forms one of the main, and arguably the most 

difficult [26], obstacles to achieving the country’s Net Zero targets by 2050. At present, 

heating accounts for over a third of the UK’s greenhouse gas emissions [27], most of this heat 

being supplied by fossil fuel derived natural gas. These emissions are jointly contributed by 

domestic space heating, hot water and cooking usage as well as industrial processes. 

Representing 0.87% of the world’s population, the UK consumes 2% of the world’s total 

natural gas consumption [28]. The UK’s outsized reliance on natural gas is a reflection of 

multiple factors; high levels of industrialisation and development and a cold winter climate 

combined with historically low gas prices and the comparatively low upfront costs and 

efficiency of gas boilers [26]. The discovery of natural gas deposits in the North Sea in the 

1960s kick-started the transition away from town gas to natural gas for heating within the UK, 

supported heavily through government-led programmes [29]. By 1999, during the peak of UK 

North Sea natural gas production, natural gas accounted for 40% of the UK's total inland 

energy consumption [21]. 

At present 23 million households, or 85%, of residential buildings in the UK use gas-fired 

boilers to meet domestic heating requirements [30]. This is in contrast with other nations in 

Western Europe where there is less reliance on gas for central heating; in Germany only 50% 

of homes are heated with natural gas [31] , and similarly in France, 35% of homes are heated 

with natural gas [32]. Alongside the heavy reliance on natural gas for domestic heating, UK 

housing stock represents one of the oldest and in Europe, with only around 15% of existing 
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stock built since 1990 [33] and a UK home’s average gas consumption over double the EU 

average [34]. As well as reducing building heating efficiency, this has negative consequences 

for quality of life; in 2007, the Royal Commission on Environmental Pollution concluded that 

even in the 21st century, cold was the main factor underlying the UK’s higher annual death rate 

between December and March [35], with vulnerable groups such as older people and young 

children at particular risk [36]. 

The decarbonisation of heat in the UK is contingent on a series of different measures to 

achieve reduction of carbon emissions generated from the UK’s heating sector to target levels. 

The CCC defines the main decarbonisation solutions for UK homes as: (i) heat pumps, (ii) 

hydrogen and (iii) heat networks, alongside the complementary work of increasing energy 

efficiency through improved insulation [23]. These low-carbon heating technologies exist in 

contrast to existing conventional heating technologies, such as gas boilers and oil-fired heaters, 

which are dependent on fossil fuels as a means of heat generation. 

The electrification, and subsequent decarbonisation of heating, through conversion of 

fossil-fuel fired heating to electric heat pumps forms one key aspect of the UK’s overall heat 

decarbonisation strategy. The suitability of specific low-carbon heating solutions will be 

dependent on existing constraints of the housing stock, as well as existing heating system and 

feasibility of retrofitting for different low-carbon heating types. The CCC projects that by 

2050, 52% of homes will be heated by heat pumps, 42% by district heating, 5% by hydrogen 

boilers and a further 1% by alternative sources [37]. Therefore whilst there is no single solution 

for the decarbonisation of heat within the UK, heat pumps will form a key component of 

achieving target emissions reductions. 

Domestic heating lies at the convergence of many economic and societal issues, whilst 

also being a core component of the UK government’s decarbonisation strategy, as well having 

a fundamental impact on individual day to day wellbeing and comfort. In order to meet Net 

Zero, virtually all heat in buildings will need to be decarbonised [38]. It is anticipated that this 
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will be achieved through a range of measures, encompassing energy efficiency improvements, 

hydrogen and bioenergy solutions as well as further adoption of electric heat pump technology. 

A transformation of this scale necessitates the strategic input of industry and government at 

the highest level, as well as support from grassroots organisations, small businesses and local 

authorities. This represents a complex interplay of dependencies and institutional cooperation, 

and in this context, there remains significant uncertainty about how the decarbonisation of heat 

will evolve in both the short and long term. 

2.1.2 Distribution Network Operators, Low Voltage Networks, and the Transition to Net 

Zero 

As a result of the ongoing drive to Net Zero and decarbonisation of the UK economy, 

Distribution Network Operators (DNO’s) find themselves at the forefront of facilitating the 

decarbonisation of the presently carbon intensive transport and heat sectors.  

By their nature, the transformation of these sectors presents a difficult challenge in contrast 

to accommodating the transition of large-scale generation from fossil fuels to renewable 

sources. Large scale generation in the UK is managed by a comparatively small handful of 

commercial institutions, reducing the number of stakeholders and simplifying the process of 

change. Alongside this, large scale generation represent very high value assets and therefore 

there is corresponding capital investment in the upkeep, monitoring, and ongoing maintenance 

of these systems as well as planning for the future. Whether these systems are fossil fuel or 

renewables based has no material impact to the experience of the customer at the point of use.  

In contrast, the UK’s transport and heat sectors represent are intrinsically linked with the 

immediate needs and routines of almost every member of the population. Over 77% of UK 

households own a car [39] and 95% of households are equipped with central heating [40]. 

Decarbonisation of these sectors raises the potential for a world where a majority of individuals 

are reliant on their home’s electricity supply for meeting their transportation and heating needs. 

This represents a radical shift in both the possible energy throughput on the distribution 
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network, as well as the time of use and peak power characteristics of typical domestic 

customers. The increasing penetration of small-scale generation such as roof mounted solar 

panels [41] and domestic energy storage alongside EV’s further increases the uncertainty 

surrounding future network conditions. 

As the entity responsible for the electrical interface between the transmission network, and 

the distribution network up to the point of connection with a home, DNO’s are therefore in the 

position of needing to facilitate this transformation through appropriate investment in 

infrastructure alongside technical guidance and policy support. Historically, DNO’s have been 

responsible for the maintenance and upkeep of a largely passive infrastructure. The 

predictability of domestic consumption meant that network assets could be sized via simple 

metrics such as ADMD, with a fit and forget approach, where modelled voltage and thermal 

ratings could be anticipated to remain appropriate for the operational lifetime of the assets. 

Power flows could be assumed to be unidirectional due to the lack of LV-connected 

generation. As a result of this the physical distribution network of the present day is a reflection 

of the historical status quo; the power distribution network features very low levels of 

communication and control, with a corresponding poor level of observability. Geographic 

information systems (GIS) have improved some aspects of asset management, but in many 

cases the cable type was not recorded at the point of installation and is unknown even to the 

network operator [42].  

Traditionally, the steps to design an LV network can be broken down into an evaluation 

of the total load requirement, an evaluation of the supply capacity of the existing network, 

followed by appropriate provision of substations, cable layout and sizing [43]. Cable sizing, 

or cross-sectional area design, will be driven by the aggregated ADMD estimated for the 

aggregated customer types served by a feeder. The network segment under design would be 

sized with sufficient headroom to accommodate worst-case scenarios with minimum 

intervention from the network operator [44]. Historically, users connected to 400V feeders 
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have been consumers of energy, with unidirectional load, and load magnitude and growth 

stable over long time horizons.  

The future electrical distribution network presents a more complex operational and 

planning challenge. The adoption of several new technologies stands to radically shift how 

households consume and use energy. The uptake of rooftop solar [45] in the UK means that 

on particularly sunny days, feeders with high rates of rooftop solar could result in reverse 

power flow from low-to-high voltage on a network. With insufficient load, this could result in 

voltage exceedances and therefore breach of upper voltage limits; a scenario not traditionally 

accounted for with the ADMD-driven design philosophy. The mainstream adoption of EV’s 

and home lithium-ion batteries introduces an energy storage component to households that did 

not previously exist. Households with energy storage have the capability to source or sink 

power to a feeder. Energy storage could potentially be utilised in demand response type 

programs to help balance demand and supply, but unmanaged could result in significant 

amounts of low-diversity load being applied to a feeder such as during periods of overnight 

charging. Finally, the adoption of EHP’s introduces a new electrical load that which has an 

energy consumption highly proportional to external air temperature. Whilst ADMD-sizing 

could be appropriate for rating assets subject to worst-case winter conditions, the inherent 

temperature dependency would result in underutilisation of network assets for most days 

where temperatures are not at winter extremes. 

The electrical distribution network of the future therefore sees the transition of LV load-

types from simple, unidirectional loads to a complex interplay of conventional load, stochastic 

generation, energy storage and temperature dependent electrical heat load. Conventional 

ADMD-sizing methodologies are still valid for LV network design, but simple application of 

an aggregated ADMD without taking into account the energy-mix on a feeder introduces the 

risk that a network will be under or oversized over its intended operational lifetime.   
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This increased complexity in energy consumption places additional pressure on DNO’s to 

ensure that they maintain their obligation to their licence conditions in the presence of 

increasing planning and operational uncertainties.     

In the UK DNO’s are responsible for delivery of electricity to over 26.6 million homes 

and businesses [46] , covering a geographical area encompassing almost the entirety of the 

UK, along with corresponding switchgear, protection, and other associated devices. They 

provide the last mile of electricity to almost every home and business in the UK in both rural 

and urban settings. In part due to the passive nature of the distribution network, in the past 

DNO’s have been institutionally inert with respect to technological change and innovation. In 

the aftermath of deregulation in the GB electricity sector in the early nineties, innovation 

spending fell to all-time lows, falling from £14m in 1990 to less than £1m in 2001 [47]. Thanks 

to various incentives and the introduction of matched innovation funding, DNO capital 

investment in innovation has recovered to pre-deregulation levels in recent years [48]. 

Decarbonisation necessitates the transformation of DNO’s from passive industry 

incumbents to active participants in a rapidly evolving technological landscape, responsible 

for engaging with market participants, and active management of network assets. Alongside 

investment in innovation and development of new hardware solutions, DNO’s must be 

equipped with the appropriate skills at every level of their business in order to support the 

integration of low carbon technology as cost effectively as possible without compromising 

quality or security of service.  
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2.2 Distribution Network Load Uncertainty 

 

Figure 2-1 Load and generation modelling suitable for active distribution network 

planning with high shares of renewable energy systems, reproduced from [49]  

Uncertainty is a component of any complex system as well as being part of everyday life. 

It is a fact that even for a simple system, it is not possible to have perfect knowledge of all 

system conditions and therefore the relationship between system inputs and outputs. In 

practice, there is generally a trade off between the cost to appropriately monitor a system and 

the need to actually do so [50]. Therefore, uncertainty arises from the need to infer possible 

outcomes or operating conditions from limited input data.  

The GB power system is in a continuously evolving state, with generation and load shifting 

moment by moment through the combined actions of literally millions of independent actors. 

In addition to being in a constant state of change, even network operators do not have full 

visibility of the systems they manage. Distribution network operators typically have limited 
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real time and historical visibility of network conditions. Whilst 11kV substations will feature 

some level of monitoring, most day-to-day operations on 415V LV feeders will occur with no 

external monitoring or human intervention until a fault is reported. Whilst potentially featuring 

hundreds of elements and customers in a single distribution network area, the potential 

complexity of the power system at the distribution level has historically been offset by the low 

uncertainty associated with LV-connected load types. 

Accommodating new load types at the LV network level poses one of the fundamental 

problems on the path to decarbonisation for DNOs. These low-carbon technologies include 

battery-based technologies such as energy storage and electric vehicles, as well as small-scale 

generation capabilities including solar photovoltaic systems and wind turbines. Battery-based 

solutions are capable of both charging and discharging via the electricity grid. Generation in 

the electricity network has conventionally flowed from high-voltage to low-voltage, but small-

scale wind and solar generation presents the possibility that conventional load flows can be 

reversed at times of high generation. 

In the presence of an uncertain future, how can low carbon technologies be maximally 

facilitated, accommodated, and optimally managed whilst remaining cost effective? DNO’s 

are responsible for ensuring that network infrastructure remains fit for purpose and mandated 

by their licence conditions to ensure that voltage and thermal limits remain sufficient in order 

to accommodate continuing quality of service to customers. Unlike traditional LV-connected 

loads which historically have been highly predictable over long periods of time, the 

contribution of low carbon load types can vary greatly depending on local weather conditions 

or behavioural routines. Non-network solutions that facilitate demand management through 

intelligent load shifting or other techniques are particularly attractive for DNO’s as these 

solutions can defer the need for costly physical reinforcement until the development of more 

dominant technologies becomes clearer. 
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The combined lack of observability combined with new low carbon load and generation 

types creates an opportunity for the application of data-driven techniques, including machine 

learning methods, which can support decision making in the absence of complete information 

in order to support network decision making given the unique constraints of LV network 

applications.  

Conventionally, monitoring is only available at the point of the LV transformer, typically 

with 30 minute resolution at best due to the half-hourly settlement periods of the electricity 

markets [51], and often subject to poor or low quality data [52]. Each LV transformer can be 

responsible for supplying electricity on the order of tens to hundreds of households, and 

therefore whilst the aggregate voltage and current characteristics can be known, the underlying 

contributions from each household and their corresponding dependencies are not visible. 

Load modelling comprises a range of functions for DNOs and associated stakeholders. It 

is primarily of interest to be able to appropriately predict future LV loads with sufficiently 

robust confidence such that network operators as well as other stakeholders can be supported 

with making intelligent, cost-effective decisions for future network development. 

The advent of LV-connected low-carbon technologies over a relatively short span of time 

stands to rapidly alter conventional load profiles, with corresponding threats to voltage and 

thermal limits. As previously discussed, the electrification of heat and transport will be 

fundamentally reliant on shifting demand from fossil fuel-based systems to the electricity 

network [27] [53]. Domestic applications such as space heating, cooking and hot water 

contributed 26% of all UK CO2 emissions in 2016 [27]. It can therefore be implied that in 

order to decarbonise heat, significant changes must be made to household heat generation and 

usage. 

Similarly, the electrification of transport will be reliant on supporting the adoption of EV 

technology through the provision of an appropriate charging infrastructure. Whilst this 

infrastructure may range from single home chargers to privately managed larger installations 
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[54], fundamentally the advent of EV’s will further contribute to load at the LV level as well 

potentially offer a new reserve of energy storage.  

The rise of distributed generation imposes further changes to the magnitude and shape of 

existing load profiles. Areas with high levels of domestic photovoltaics (PV) may experience 

voltage rises during sunny periods of low demand due to an excess of generation [55]. Wind 

generation is stochastic in nature and therefore can be challenging to forecast, depending on 

the time horizon and availability of appropriate data [56]. Figure 2-1 illustrates example 

idealised probability bands for domestic load alongside idealised wind and PV generation [49]. 

Renewable generation and low-carbon load is not homogenous. Each of these technology 

types features their own characteristics and dependencies, drawing on a range of 

environmental and behavioural factors that ultimately imposes an influence on load conditions. 

Even within a load type, there exists significant potential for load variation and therefore 

network impact. Modern EV’s represent a range of battery sizes; the best-selling Tesla Model 

3 features a 75kWhr battery [57], whereas Toyota plans to release an ultra-compact 8kWhr 

model [58] to support last-mile mobility in the near future. This variation translates into 

different network impacts through variation in charge time, current and user behaviours. 

Furthermore, the adoption of LV-connected renewables will not be homogenous at the 

distribution level due to variations in levels of urbanisation, demographics and climatological 

factors – therefore there is a need to incorporate localised predictions into future planning 

decisions.  

2.2.1 Distribution Network Uncertainty Stack 

It therefore is known that renewable integration will have an impact on load profiles at LV 

levels; the difficulty then becomes appropriately quantifying the extent of this impact in order 

to support network decision making. The challenge is to develop decision support approaches 

that can systematically deal with uncertainty, incorporating technical as well as practical 

knowledge [52]. Figure 2-2 represents an uncertainty stack concept for distribution networks 



23 

 

which has been developed as part of this research project. Here uncertainty is the contribution 

of multiple functional layers, with “uncertainty” increasing as we infer information further 

from the physical layer of the network itself. Whether we wish to make decisions for the 

present day or future network, these decisions will be inevitably by supported by information 

drawn from the network in the past or present day. 

 

Figure 2-2 Generic uncertainty stack for distribution network studies 

The component layer represents the physical network and associated assets; this could 

incorporate connected customer devices as well as DNO managed assets. It is this layer at 

which the truth occurs – whether a voltage exceeds a certain value on a feeder, or whether a 

tree falls on a line and causes an outage. However, whilst distribution networks are equipped 

with devices that can make autonomous decisions locally without human intervention (such 

as circuit breakers), there exist several layers of inference between the component layer of the 

network and the layer at which decision making occurs. The monitoring layer represents the 

sensor network and data collection infrastructure that is handled by the DNO; due to the need 

to balance sensor placement with capital costs this monitoring layer only offers a limited view 

of local network conditions at any one time [50]. The modelling layer exists to bridge the gap 

between the available data provided by the monitoring infrastructure and the inputs required 
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by decision makers. This could be conditioning raw load data from the substation in order to 

project when load growth might necessitate reinforcement. This insight is represented as the 

visibility layer, where raw data has been combined with specialist knowledge and processing 

in order to infer a prediction about some part of the system. This prediction will incorporate 

some level of error or uncertainty, which must be considered as part of the final decision-

making process, whether autonomous or human.  

This illustrates that uncertainty in a distribution networks context is a composite of 

multiple interdependent factors spanning an entire cross-section of a DNO’s responsibility, 

even when making simple predictions. The frameworks, paradigms, and goals of data 

collection and use have a significant impact on how data is gathered, analysed, managed, and 

understood [59]. Therefore when attempting to manage uncertainty in a decision making 

context it is necessary to develop tools that are sensitive to these influences.  

Whilst challenging, the greater uncertainty prevalent on future networks also creates 

opportunity. Where previously static conditions were the norm, greater network uncertainty 

creates opportunities for new applications, services, and markets to fill the gaps in current 

capabilities.  

2.2.2 Data Driven Solutions for Distribution Networks 

The growth of data has been exponential in recent years, with growth of data continuing 

to exceed forecast expectations year on year. For instance, between 2002 and 2009 data traffic 

grew 56-fold globally, compared to computing power which only showed a 16-fold increase 

[60]. In turn, this massive growth of data compared to the growth of processing power has 

driven the uptake of a wide range of data analytic and data-driven machine learning techniques 

which now permeate a wide range of commercial sectors, from healthcare transport to social 

media and the internet of things.  
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The term data analytics encompasses a very broad definition but can generally be 

understood to mean the process of analysing raw data in order to draw useful insights. For 

modern data analytics, the expectation is that there is some level of automation or algorithmic 

conditioning involved to process the data into a format that will be ultimately interpreted by a 

human user [61]. Machine learning techniques fall under this term, and more specifically 

include models that can make predictions independent of the dataset they have been trained 

on. In both cases the benefit is the ability to rapidly reduce the time required to make decisions, 

if not entirely automate the process, or to draw insights from extremely large datasets that 

would be otherwise uninterpretable by human users. In order to support use of data analytics 

in a commercial environment, there must be appropriate IT infrastructure in place to support 

data collection, management and storage [62]. 

In contrast to growth elsewhere, the energy sector, and specifically distribution network 

operators, have not been so quick to adopt data-driven techniques into their commercial 

processes. In the post-privatisation period from 1990, until Ofgem introduced new 

mechanisms to incentivise innovation in the 2005 - 2010 price controls [63], DNO research & 

development spend had steadily declined to less than 0.1% of revenue [64]. 

This lack of investment has been driven by a number of factors. At transmission level, 

assets are traditionally high-value with a corresponding advanced level of communication and 

control capabilities. In contrast the historically passive function of distribution networks 

combined with the typically low value of assets has resulted in a modern-day system which 

offers limited or often zero data collection capability. For many power system sensors, 

including many emerging and state-of-the-art devices, the majority of data is either not logged, 

or is quickly overwritten [7], inhibiting the potential for data analysis.  

Even when data collection is present for LV network assets, data sources can be 

fragmented with poor quality of data [65], further degrading the insights offered by already 

limited datasets. Furthermore, with limited profit margins, it can be difficult for distribution 
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network operators to undertake technology upgrades and new analysis techniques when the 

returns are uncertain. Additionally, even the associated costs of gathering, storing, and 

analysing data can represent significant investment [66], necessitating a strong commercial 

justification prior to investment in novel data analytics techniques.  

Despite the existing barriers to deployment of data analytic techniques for distribution 

networks, there remains significant interest in the potential value that can be offered through 

novel data-driven methods. The additional load posed by the electrification of heat and 

transport as well as the wider uncertainty contributed by distributed generation is driving 

DNO’s to seek alternative solutions to physical network reinforcement, which can be costly 

as well as disruptive to customers. The high number of low-value assets managed by DNO’s 

poses a further difficulty due to the decision-making overheads involved. The influence of 

renewable integration has an impact across every function of a DNO’s portfolio; from real 

time operational tasks to planning decisions over a twenty-year period. At present there is a 

correspondingly wide range of data-driven techniques developed for distribution network 

applications through research as well as innovation projects. Key areas include [67]:  

Technique Applications 

Load forecasting from input 

data 

• Prediction of future energy demand for 

infrastructure planning [68] 

Fault detection • Reducing downtime through predictive maintenance 

[69] 

Information extraction from 

existing load data 

• Analysing consumption patterns for customer 

segmentation [70] 

Condition monitoring • Monitoring transformer health to extend lifespan 

[71] 
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 Table 2-1 Data-driven techniques and applications for distribution networks 

Regardless of the final application, the challenge becomes to appropriately integrate data 

analytics techniques in a way is complementary to future power system growth. Data analytic 

techniques will not be the solution for all issues faced by network operators and needs to be 

considered alongside the constraints of the power system and commercial environment. The 

relationship between potential applications, monitoring infrastructure, data processing and 

data visualisation must be considered if data analytic techniques are to be fully exploited in a 

distribution network context [67]. 

2.3 Existing Work 

Renewables integration in the UK has been an increasingly important topic for both 

academia and industry since the commitment to emissions reduction made by the Climate 

Change Act 2008 [18]. In 2023, the UK government expected it’s goal to decarbonise the UK 

power system by 2050 to require £275-375 billion of public and private investment, alongside 

£50-150 billion of investment from electricity network operators [72]. Since then there have 

been a range of approaches developed in order to predict and manage future network load 

conditions as a product of greater renewable penetration, new markets and services as well as 

changing consumer behaviour.  

2.3.1 Trial Data and Industry Studies 

To date, the analysis of potential impact to LV networks contributed by new renewable 

load types has been supported through a variety of Ofgem supported innovation projects which 

has resulted in a pool of disaggregated renewable load data to draw on. Concluding in 2015, 

the UK Power Networks (UKPN) led Low Carbon London trials recruited customers for EV 

and heat pump trials in order to collect data and gain insights on possible future load profile 

impacts [73]. The heat pump component of these trials were fairly small scale, representing 

19 households fitted with a mix of air and ground source heat pumps in the UKPN licence area. 
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In a similar vein, the My Electric Avenue project recruited clusters of households to trial EV’s 

over an 18-month period in order to gain insight into realistic EV usage patterns [74] . In both 

cases the aim was to collect disaggregated load data in order to support predictions of future 

potential load conditions for increased renewable penetration. Other works have focused on 

examining aggregated substation load data in order to provide predictions of future low-carbon 

profiles. The LV Network Templates project developed an approach for predicting load at 

unmonitored substation, on the basis of developing template load profiles derived from 

monitored assets [75].  

More recently, the larger scale Renewable Heat Premium Payment (RHPP) scheme 

collected electrical heat load data from 700 sites with 2-minute heat and electricity data 

collected from 31st October to 31st March 2015 [8]. This offered a significantly larger sample 

size of domestic heat pumps (HPs) combined with increased temporal resolution of data, which 

provided the source data for the GB-scale analysis of increased electrical heat pump 

penetration performed in [76]. However, due to the anonymisation of individual households 

and lack of supporting metadata, it is not possible to directly infer a relationship between 

electrical heat load and geospatially linked parameters. Therefore, whilst the RHPP trial data 

is suitable for modelling large populations of heat pumps, it is not directly suitable for the very 

low populations and low levels of aggregation found typically found at LV level. 

At present the UK government-led Electrification of Heat Demonstration project is also 

underway, which will monitor 750 homes fitted with electric heat pumps over the project 

duration [77]. A key objective is to capture electrical heat load for a comprehensively 

representative range of UK building types beyond what has been captured in previous trials. 

More recent innovation projects have seen distribution network operators’ trend towards 

more sophisticated techniques. 
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2.3.2 Predictive Models 

Alongside industry studies, there has been extensive development of predictive models 

that model possible network impacts given a certain level of renewables penetration, taking 

some consideration of LV-level specific issues. In order to accommodate the uncertainty 

associated with predictions, probabilistic approaches have been popular. [78] probabilistically 

models potential heat pump impact on low voltage networks using limited combined heat and 

power (CHP) data as a stand in for electric heat pump (EHP) data, quantifying expected 

network impacts with a defined standard deviation. The usefulness of this approach is 

constrained by the relatively narrow dataset used for training the model. Similar approaches 

have been developed for other renewable load types; [79] quantifies the impact of EV’s on LV 

networks using a Monte-Carlo approach. EV load profiles are drawn from My Electric Avenue 

[80]; whilst this consists of 18 months of high-quality EV load data for over 100 customers, 

the relatively small sample size and constraints when recruiting customers create the potential 

for demographic bias in this approach.  

Despite the high data requirements necessitated by the probabilistic approach, any real-

world study will be composed of probabilistic as well as deterministic elements. Therefore, 

there remains the question how to incorporate these techniques effectively in a real world 

decision making environment. For models developed using trial data, there is the difficulty of 

ensuring that the training data remains applicable for the target population under study. For 

LV networks where there may be a low diversity of customer load profiles, these effects cannot 

be neglected. Even within the relatively small geographic area of the UK, there exists a wide 

range of demographic, socioeconomic and climatological variation amongst households. As 

has been illustrated by the examination of smart meter data coupled with ACRON 

demographic information [81], demographic influences can play a role in determining load 

magnitudes. The uptake of domestic PV in the UK demonstrates [82] the strong localisation 

of uptake, rather than latitude being the primary factor in number of installations. Physics 
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based models, whilst less common, are also subject to this concern. Whilst a physical model 

can capture a system in great detail, when designing a system where load is dependent on 

human behaviour, there is a need to draw on external sources in order to determine how these 

behavioural factors will influence load.  

Whilst difficult to quantify, the expectation that the utilisation of data analytic and machine 

learning methods in industry is low compared to the wealth of techniques available in the body 

of research. There exist several barriers to adoption; some of these barriers will be institutional, 

posed by the historic low investment in energy innovation, particularly for DNO’s [83]. 

Machine learning models have been highlighted as opaque, non-intuitive and difficult for 

people to understand [84]. Therefore, there exists an opportunity to develop probabilistic 

methods for supporting LV network decision making, where the contributions of uncertainty 

are treated in a systematic way, if not quantified. 

2.4 Heat Pumps as a Decarbonisation Pathway 
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Figure 2-3 Intra-day heat pump electrical demand for nine sample customers on same 

winter weekday from Renewable Heat Premium Payment (RHPP) dataset. 

Heat accounts for over one-third of the UK’s greenhouse gas emissions [27], and the 

decarbonisation of domestic heating forms a key part of UK government strategy for reducing 

carbon emissions to target levels. To support this, the Sixth Carbon Budget delivered by the 

Climate Change Committee (CCC) in December 2020 has recommended the installation of 

over one million heat pumps annually by 2030 in order to meet decarbonisation goals [37]. 

From a power systems perspective, the additional low-voltage (LV) network loads imposed 

by rapid heat pump uptake will need to be accommodated by distribution network operators 

without breaching existing network limits or quality of service. Conversely, the introduction 

of significant electrified heat resource presents opportunities to support network flexibility or 

new distribution network-based services.       

Reducing the contribution of heat to the UK’s greenhouse gas emissions presents one of 

the largest challenges in achieving long-term emissions targets set by government policy. The 

contribution of domestic heating is estimated to average a third of household emissions [85]. 

In order to achieve 2050 Net Zero goals this must be reduced by a further 95% from 2017 

levels [85]. Decarbonisation of the UK’s heating sector will require a radical shift in the current 

status quo, expected to necessitate widespread adoption of low carbon heating with improved 

efficiency measures. Electric Heat Pumps (EHP) offer one potential low carbon alternative, 

reducing CO2 emissions of up to 25% per unit of heat generated [86]. In combination with a 

fully renewable electricity source, this can reduce the effective household heating CO2 

emissions to zero. Advantages include acting as a low-regret option for off-gas grid households 

[30], and as a low-cost option for newer well-insulated builds. The growth of heat pump 

technology has been supported by UK government policy [87] and industry trials [8] but 

despite this, overall deployment remains low – 72,000 new domestic heat pumps were installed 

in the UK by the end of 2022 [88]. In contrast, the UK advisory body the Committee for 
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Climate Change (CCC) has recommended the installation of one million heat pumps annually 

by 2030 in order to meet decarbonisation targets [30]. This level of growth presents a major 

challenge for distribution network operators as heat pump loads at maximum output are 

significant both in terms of energy and power compared to existing domestic Low Voltage 

(LV) network loads. 

2.5 Electrification of Heat for Distribution Networks 

Distribution network infrastructure provides the “last-mile” of electricity supply to utility 

customers. Historically, this role has been a passive one. LV network assets would be sized 

using simple metrics such as ADMD [89], with low risk of the initial design constraints ever 

being exceeded due to the relatively static and predictable nature of LV-connected load over 

time. Power flows could be assumed to be unidirectional with no requirement to design for 

reverse power flow conditions. 

     The electrification of heat therefore imposes several immediate challenges for LV 

network operation and planning tasks. There is the fundamental difficulty of accommodating 

additional load on existing network infrastructure. Heat pump load is significant both in terms 

of energy and power compared to conventional domestic loads; peak load of a single heat pump 

is similar to existing peak domestic load [8]. Similarly, the energy consumption of a heat pump 

on a cold winter’s day is on the same order of domestic energy consumption as charging an EV 

[2].  Furthermore, heat pump electrical load magnitude and shape characteristics are seasonal 

due to the positive correlation with domestic heating demand [76].  

Whilst distribution networks are typically composed of primarily passive low value assets, 

the high volume of assets combined with the high heterogeneity of distribution networks across 

a given licence area presents further challenges for network operators. This variation can 

manifest in network topology, as well as customer demographics, local weather conditions and 

levels of urbanisation – all of which can influence direct electrical load as well as the long-term 

uptake of new load and generation sources on a feeder. As an example, the growth of domestic 
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solar PV in the UK has been highly localised, as opposed to purely distributed with respect to 

geographic solar yields [90]. Therefore, there is a need to incorporate the local physical and 

demographic context when modelling heat pump electrical load for distribution network impact 

assessment. 

2.5.1 Heat Pump Technology for Domestic Heating 

Heat pumps offer a relatively new form of domestic heating for UK households, but the 

technology has been in use for decades prior to the recent resurgence of interest driven by 

decarbonisation strategy. An early concept for the technology was proposed by Lord Kelvin 

in 1854 [91], but this did not feature the closed cycle that is characteristic of modern systems. 

In the UK, the first major installation may have been a system that heated a group of buildings 

in Norwich [92]. This system achieved a coefficient of performance (COP) of 3.45 averaged 

over two winter heating seasons.  

The oil crises of the 1970s triggered increased interest in EHP technology as an alternative 

means of heating buildings versus contemporary methods which were reliant on fossil fuels. 

In 1974 Denmark’s Ministry of Trade initiated an energy research programme to explore the 

feasibility of the technology as an alternative form of building heating [93]. By 1985, as much 

as 15% of Sweden’s housing stock was heated via heat pumps, increasing from basically 0% 

in 1980 [94]. Across Europe, similar developments were occurring in Germany [95] and 

Norway [96]. 

Today, heat pumps are part of a global market. In Europe, the top four countries with the 

highest proportion of household heat pump penetration are Norway (60%), Sweden (45%), 

Finland (41%) and Estonia (34%) [97]. In contrast, there were only 72,000 installations in the 

UK as of 2022 [98]. With an estimated 28.2 million households in the UK [99], these 

installations represent less than < 0.5% of UK households. The technology therefore forms a 

established part of the domestic heating sector for many European nations and further afield, 

but within the UK heat pump type systems do not have the same maturity as elsewhere. 
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2.5.1.1 Basic Principles of Operation 

 

Figure 2-4 Basic principles of heat pump operation, reproduced from [100]  

The underlying principle of a heat pump’s operation is the reverse of a heat engine: 

mechanical work is used to move heat against its natural gradient from a cold location to a 

hotter one. For instance, from the outdoors into a home. A refrigerant such as CO2, or 

hydrofluorocarbon, is used to transport this heat, exploiting the physical properties of 

evaporation and condensation [101]. Through these principles, a heat pump is able to provide 

more heat per unit of electricity consumed. A typical COP of 3.0 would produce three units of 

heat of electricity consumed [102]. In contrast, a gas boiler might only product 0.85 units of 

heat for every unit of gas consumed [103]. 

2.5.1.2 Air Source and Ground Source Heat Pumps 

Heat pumps can be divided into two main categories depending on the placement of the 

outside heat exchanger, either drawing heat from the air or from below ground [101]. 

Air source heat pumps (ASHP) extract energy from the air external to a household. Air/water 

systems use a hydronic system to distribute heat via wall radiators or underfloor pipes. Air/air 

heat pumps distribute the heat energy through a building via ducts [104]. This form-factor can 

be suitable for high-density housing where the installation of ground source heat pumps would 
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be impractical [105]. However, the exposed location of the outdoor unit can result in 

performance reduction during particularly cold events. 

Ground source heat pumps (GSHP) exploits the energy naturally stored in the ground as a heat 

source. This form-factor costs more to install than an ASHP type system [106], with a typical 

cost for an ASHP system estimated at £14,000 and cost for a GSHP at £28,000. The GSHP 

type form-factor is additionally more demanding of space due to the requirement to install the 

exchanger within trenches. However, despite the trade-off in cost and space, a GSHP system 

has a key advantage over ASHP system – improved COP at cold extremes. This is due to the 

fact that ground temperature is persistently higher than external air temperature during winter 

conditions. 

Within the context of this work, the developed methodologies are not specifically ASHP or 

GSHP dependent. Where COPs have been selected in further sections, they have been selected 

to be representative of ASHP-type systems. However, with appropriate selection of COP, the 

model outputs can be tailored to be representative of ASHP or GSHP systems. 

2.6 Existing Heat Pump Demand Modelling Approaches 

The primary challenge when evaluating the impact of heat pumps on a distribution 

network is accurately quantifying the magnitude of additional electrical load contributed by 

the connection of heat pumps. The current low uptake of heat pump technology in the UK 

results in a general lack of operational demand data that could be used to facilitate heat pump 

effects analysis and general evaluation of network impacts. Excessive additional load will 

result in a significant impact on voltage and reduction in thermal headroom on a network, 

potentially resulting in a breach of operational limits. The difficulty surrounding heat pumps 

is that while their heat output is broadly proportional to outdoor air temperature on a seasonal 

time frame, at a daily and hourly level the demand profile for a single customer is determined 

by a broader range of factors.  
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The electrical demand required to meet a target heating demand for a household is 

influenced by several parameters including building type, heat pump type and building 

efficiency as well as the behavioural patterns of the individual household. In extreme cases, a 

small, poorly insulated building may require more input electrical energy to reach a heating 

setpoint than a large, very well insulated property. This heating demand primarily consists of 

the seasonally dependent component that is dependent on external air temperature, but heat 

demand for a household can also include demand for hot water. The methodologies developed 

in this work will primarily be focused on modelling the relationship between external 

temperature and the electrical demand required to fulfil a space heating requirement, but a base 

level of demand will be allocated to hot water consumption.  

 Therefore, for a single point in time, the additional electrical load presented to a 

distribution network due to heat pumps is a function of parameters specific to each household 

in addition to the common local outdoor air temperature conditions and time of day. This 

contrasts significantly with conventional domestic loads on distribution networks which are 

highly static and predictable in nature. The instantaneous electrical demand of a typically sized 

domestic heat pump can be equivalent or in excess of current daily domestic demand peaks 

[107]. In terms of energy, the average heat pump electricity consumption of 8kWh per day 

[108] is roughly equivalent to the existing average electricity consumption for a UK household 

of 8.5kWh per day [109]. Each additional heat pump connected to an LV network is roughly 

equivalent to the connection of an extra household and therefore is a serious consideration for 

network headroom at higher levels of penetration. Analysis and prediction of heat pump 

electrical demand modelling within the UK is currently constrained in the literature primarily 

to either small-scale physical models which require a high-level of specific system knowledge 

to make predictions [110], or methods which rescale existing heat pump trial data to achieve 

a deterministic outcome [76]. There are currently three fundamental approaches for modelling 

heat pump load profiles that have been used in the literature:  
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• Physical model that captures a detailed heat pump/ heating system but with limited 

capture of time of use effects across a population [110] [111] 

• Use of existing gas or heating demand data, making assumptions about building type, 

building insulation and population information, [112], [113]  

• Use of electric heat pump trial data; examine and rescale for time periods of interest 

[108], [76], [78] 

These approaches all feature their own specific advantages and disadvantages depending 

on the specific area of study. 

 Existing physical approaches are well-suited for simulating highly defined models that 

clearly characterise one heating system; this makes them ideal for modelling highly specific 

behaviours such as fast start-up transients. Underwood et al. [110] developed a compressor-

based parametric model for capturing seasonal performance of different manufacturer’s heat 

pumps, which was able to achieve good results when comparing actual and modelled heat 

output. Other works further incorporate building parameters across a population when 

considering heat pump demand [111], but the approach lacks real demand data to support the 

full validation of results and it is therefore not possible to quantify the associated error. Heat 

pump electrical load and therefore its immediate impact on an electrical network is a function 

of several parameters that will vary from household to household; these include relatively 

fixed characteristics such heat pump type, building and insulation characteristics but are also 

strongly linked to ambient temperature conditions and behavioural routines which will vary 

seasonally. Furthermore, it can be expected there will be diversity in heat pump type, building 

characteristics and behavioural routines even within a local neighbourhood [114]. Figure 3-2 

illustrates sample daily load profiles for nine different households on the same winter’s day 

from the Renewable Heat Premium Payment (RHPP) dataset [115]. All households are based 

in England and therefore are exposed to similar daily temperature profiles and magnitude. 

Each customer load profile clearly features a distinctive shape and there is limited 
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commonality from customer to customer. This combination of physical, seasonal and 

behavioural characteristics makes it very challenging to develop a fully representative physical 

heat pump model that can translate these population-variable parameters into an aggregated 

load profile that accurately reflects the energy, power and time of use characteristics of a real 

heat pump load. 

For DNO’s, both the power and time of use characteristics of electrical heat load are areas 

of concern for optimising network investment and operation. Simplistically, network assets 

must be sufficiently rated to ensure that thermal and voltage limits are not exceeded during 

periods of maximum load; for instance, during a cold winters day when electrical heat load 

would be at its highest. ADMD is a well-established network planning tool for sizing assets, 

which makes estimations on the peak power contributed by individual customers and then 

incorporates the effects of diversity to produce a diversity-sensitive overall peak load for a 

group of customers [116]. However, for load types such as heat pumps, electrical heat load is 

strongly linked to building occupancy and occupant routine, with periods of maximum demand 

centred around morning and evening peaks. Therefore, the time-of-use for electrical heat load 

is of interest for network capacity planning, as this will dictate whether additional electrical 

heat load will exacerbate existing electrical peak load and potential negative or beneficial 

interactions with other load types such as solar and electric vehicles. Finally, whilst daily 

energy demand does not have the same direct relationship to determining required asset ratings 

as peak power, it offers several useful insights. The expected electrical energy consumption 

per day can support capacity planning activities and optimisation of asset utilisation, either 

through planning or demand side management activities. As the load-mix connected to 

households becomes increasingly complex – potentially including electric vehicles, solar 

generation, heat pumps as well as novel tariff structures – it becomes more important than ever 

for DNO’s to assess potential adverse interactions between these new load-types as well as 

identify opportunities for more efficient utilisation of existing assets and infrastructure.    
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 A more straightforward approach to modelling heat pump demand is to take existing gas 

or heating demand data and rescale this the equivalent electric heat pump demand based on an 

appropriate Coefficient of Performance (COP) figure. This method has been applied for 

showing large scale effects for the transition to greater levels of heat electrification in the UK 

[112], whereas elsewhere electrical demand profiles have been derived from ambient 

temperature and heating demand profiles with an hourly resolution [113]. Whilst strongly 

linked to the true heating demand characteristics, this method has limitations when applied to 

LV networks on daily or hourly resolutions. Current gas demand magnitude is partially shaped 

by equipment type (i.e. combi versus condensing boiler) as well as home characteristics and 

behaviour. Alteration of the heating system will reshape heating demand according to EHP 

characteristics. This may potentially also alter pre-existing behavioural thermal routines, such 

as when occupants choose to enable household heating [114]. Due to lower flow temperatures 

than conventional boiler-based systems the time of use characteristics of heat pumps can be 

anticipated to be different compared to existing profiles and will potentially be spread more 

widely across the day. In contrast to physical models and heating demand-based approaches, 

methods that utilise existing EHP demand data from trials are able to mitigate the requirement 

to fully characterise the heating system in order to define the electric demand. The primary 

restriction with this approach is that due to the limited number of heat pumps active within the 

UK there is sparse operational data from which to draw conclusions about heat pump network 

impact. Consequently, the level of detailed heat pump analysis involving large populations is 

limited and generally features linear rescaling or averaging of the aggregated profiles in order 

to assess heat pump demand magnitude for a given time window.  

Models based on real heat pump demand data have been developed in the literature, 

circumventing the need to fully characterise a physical heating system. A high-resolution 

probabilistic model drawing on operational data from 72 micro-CHP (combined heat and 

power) units during field trials in 2011 was developed for electrical heat pump demand 

prediction [78]. The probabilistic approach of this study enabled the definition of a range of 
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possible demand values with respect to heat pump penetration. However, this study is reliant 

on the fact that micro-CHP technology represents a good approximation of EHP demand 

patterns and does not draw on real EHP operational data. Recent UK trials have greatly 

improved the availability of domestic demand EHP data [115], [2], however limited analysis 

has been performed to date. At present the majority of heat pump demand modelling studies 

only focus on averaged profiles at operational extremes. As the kinds of loads connected to 

LV networks become more diverse, with a mix of PV, EV, wind and low carbon heating 

technologies, there is a strong need for the capability to model realistic heat pump demand 

profiles alongside the interactions of other technologies. The methodology described in this 

paper will define a composite approach between a fully physical demand model that requires 

detailed inputs and can be difficult to validate, and data-dependent approaches that primarily 

rescale existing demand data. The concept of synthetically generating demand profiles from 

real data has been used in other domains as a way of facilitating system analysis for 

applications where real data may be sparse or difficult to obtain [2], [117]. At present there 

has so far been limited use of these techniques for heat pump demand applications. 

Synthetically generated demand profiles derived from real operational data present an 

opportunity to develop a model that characterises the difficult to capture elements of a 

physically defined heat pump model that can be validated against operational data. This 

maximises the value that can be drawn from limited real-world data that is typically costly and 

practically difficult to obtain. 
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2.6.1 Modelling Electrical Heat Load at Geographical and Temporal Scales Suitable for 

LV Network Impact Assessment 

 

Figure 2-5- Common heat pump modelling approaches versus relevance to scale 

of approach. 

Assessment of additional electrical heat pump penetration at the distribution network level 

is concerned with quantifying heat pump electrical load shapes and magnitudes, such that their 

effects on existing asset voltage and current limits versus increasing penetration can be assessed 

for network operators. However, this modelling context represents a middle ground compared 

to established heat pump electrical load modelling techniques and this necessitates the 

development of a modelling approach that is sensitive to these constraints. 

 Presently there are two main established branches of heat pump electrical load modelling; 

the highly detailed physical approach that features high individual system detail, and the data-

driven approach which draws on real-world data but is often unsupported by sufficient 

underlying information to explain why and how the real-world electrical heat load manifests as 

it does. The basic premise of both approaches will be outlined and contrasted to the specific 

requirements of LV network load modelling in this context. 

2.6.1.1 Established Heat Pump Electrical Load Modelling Approaches 

Physics based models are ideal for small-scale for individual household studies, where the 

heating system is highly parameterised and well-defined by the model designer. The physical 
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parameters may be representative of a ‘real-world’ system or drawn from manufacturers 

datasheets or inferred otherwise from available datasets. The primary observation to be made 

here for this modelling approach is that the output of the model can be directly related and 

understood to be a function of the model inputs and structure. This approach is well suited for 

modelling transient electrical effects with degrees of high fidelity. However, whilst the 

relationship between model inputs and outputs is clear, the transferability of the model inputs 

and model assumptions on a wider scale is less secure. For instance, the physical building 

characteristics may be defined in great detail for a physics-based model. However, how well 

the selected building characteristics represent larger populations of interest is unknown. 

Therefore, physics-based approaches need to be supported with quality supplementary data in 

order to be usable at scales beyond the individual household level. 

In contrast, data-driven approaches bypass the need for detailed parameterisation of 

physical systems by drawing on load data recorded from households fitted with heat pumps. 

This kind of approach is well suited for making observations about potential heat pump 

electrical load effects at scale, as individual effects can be averaged out due to the aggregation 

of load shapes for high numbers of customers [3]. However, due to the existing legal obligation 

for anonymisation of data, often there is poor or limited metadata associated with individual 

customer load profiles. This makes it very challenging to correlate load shapes and magnitudes 

observed to specific model inputs such as housing type, size or local climate conditions. 

Therefore, whilst results are broadly indicative for customer groups of hundreds upwards, there 

remains the difficulty of translating the trial data from the original sample set to new target 

areas of interest for low customer numbers. 

For both physics based and data-driven approaches, the primary difficulty is in the ability 

to translate the outputs of these models to areas outside of the original model. This becomes 

key when dealing with distribution network analysis [118].  
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2.6.1.2 Heat Pump Electrical Load Modelling Requirements for Distribution Networks 

In the UK, there are approximately 230,000 LV substations and 350,000 pole mounted LV 

transformers, with each transformer on average servicing 120 customers or less in an urban 

setting [119]. This represents over half a million discrete geographic areas of interest for 

consideration, with each area representing a unique grouping of building, demographic and 

climatological characteristics as well as network topology that ultimately determine electrical 

heat demand with respect to local temperature conditions.  

 

Administrative  

Region 

Median Number of 

Households 

Number in United 

Kingdom 

Household 1 28,200,000 

Unit 14 1,790,000 

Sector 3,035 12,463 

District 10,244 3,118 

Area 215,165 124 

Table 2-2 Median number of households per postcode geographic code-type versus 

number of unique code-types within UK 
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Figure 2-6 Normalised Shape Aggregation Effects on Total Load; Total Electrical Heat 

Load for Household (a), Unit (b) and Sector (c)-scale administrative regions 

Table 2-2 outlines administrative regions of the UK with respect to median number of 

households [120] and the number of unique postcode geographic code-types versus increasing 

area scale [121]. For distribution network studies concerned with conditions on a specific LV 

feeder or network, the geographic scale and number of households is typically from the sector-

scale downwards.  Figure 2-6 demonstrates the effect of aggregation on the total load imposed 

through a network node using a randomised set of customers from the RHPP dataset with 

respect to these geographic scales. For very low levels of aggregation in the Household to Unit-

scale, as defined in Table 2-2,  the magnitude and shape characteristics are highly specific to 

the localised physical and behavioural parameters of the specific households. For high levels of 

aggregation, such as at the Sector level, the effects of localised magnitude and shape 

characteristics are lost and converge on the same average solution. Therefore, for low levels of 

customer aggregation, load modelling must consider how to incorporate the locally specific 

shape and magnitude characteristics that are otherwise averaged out for high customer numbers. 

To summarise, an electrical heat model for LV network impact assessment aiming to 

incorporate the effects of localisation must be able to incorporate: 

• Geospatial heterogeneity; the specific physical and behavioural context of the distribution 

network segment under analysis, versus the average context for the entire DNO licence 

area. Physical factors incorporate building construction, age and type as well as local 

climate. Behavioural context includes householder demographics and thermal routines.   

• Geospatial granularity/low levels of customer aggregation; the ability to incorporate the 

effects of local model inputs down to the low hundreds of households or less.  

• Temporal granularity; capturing the effects of electrical heat load at a temporal scale 

relevant for LV networks analysis; typically hourly or half-hourly for broad network 

impact assessment. 
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2.6.2 Heat Demand Load Components 

 

Figure 2-7- Components that contribute to the electrical load imposed on the network by 

a heat pump (not exhaustive). 

The geospatially variable factors that contribute to direct heat demand, and therefore heat 

pump electrical load can be defined in two categories: 

• Physical, or technical components; the parameters that define the heat pump and 

building characteristics. 

• Behavioural, or non-technical components; thermal routines and comfort levels of 

the occupants which are primarily behaviourally driven. 

The energy required to heat an individual household to a target level can be expressed 

generically as shown in (1) using the standard specific heat capacity equation [122] , where ∆𝑇 
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represents the difference in external versus internal temperature, 𝐶 represents the specific heat 

capacity of the overall household J/(kg·°C), 𝑚 represents the mass of the overall household in 

kilograms (kg) and 𝑄 represents the input energy required to achieve the target temperature 

change in joules (J).  

𝑄 =  𝑚𝐶∆𝑇 (1) 

𝑄 =  δ𝑚𝐶∆𝑇 (2) 

This expression can be further modified to include the behavioural component. A duty cycle 

factor, δ, is added to (1) in order to create the relationship expressed by (2) This factor ranges 

between 0 and 1 and represents the proportion of time the heating system is in the on-state 

during a time period; a δ of 1 is equivalent to heating being constantly on whereas a δ of 0 

represents heating being continually in the off-state. In practice, this factor will be somewhere 

between these two extremes. By varying the behavioural δ  component, and the physical 

components 𝑚𝐶  and ∆𝑇  the impact on 𝑄  can be considered. 𝑚𝐶  encompasses the 

aggregate effect of a building’s construction, size, insulation and physical parameters whereas 

δ reflects the aggregate effect of a residents age, economic status and personal preferences that 

otherwise modulate the behaviour of the heating system.  

This equation (2) however, is based on several simplifications and reliant on several 

assumptions. A uniform specific heat capacity 𝐶 is assumed for the entire household, when 

pragmatically a dwelling will consist of different structural materials, as well as furnishings, 

insulation, water and air. Similarly, as single value is assumed for 𝑚 to represent the overall 

mass of the household, which assumes that all mass will be uniformly affected by a heating 

process. ∆𝑇 simplifies the relationship between external and internal temperature, assuming 

that temperatures are uniform both within and external to the household. In reality, there will 

be natural temperature gradients across a household due to shading, layout and construction. 

Finally, the duty cycle parameter δ incorporates the behavioural component of the heating 
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system but does not account for any effects from thermal inertia and any non-linearities in 

transitioning between the two on-off states. 

Therefore, these expressions do not incorporate time to reach target temperature or account 

for heating losses but demonstrate the basic relation between physical and behavioural 

components and their contribution to overall heat demand. 

2.6.3 Limitations of Existing Datasets for Informing Physical and Behavioural Load 

Components 

As has been described previously, electrical heat load can be expressed as the combination 

of the load shape and load magnitude. Both load shape and load magnitude functions will vary 

on the basis of geospatially variable parameters that contribute to electrical heat load, such as 

building type and construction. 

The actual values of δ and 𝑚𝐶 that drive an individual’s specific thermal comfort level, 

the equivalent heat demand and the necessary electrical energy to achieve this is difficult to 

quantify due to the behavioural elements as well as the granularity of the physical parameters 

required. This interplay necessitates an appropriate level of detail for model inputs which can 

be challenging to obtain. 

For studies incorporating high numbers of customers, e.g. at a regional or national level, 

these effects can be neglected due to the effects of aggregation for high populations [76]. 

However, for LV-scale applications where the number of households and corresponding heat 

pump population is small their influence is of greater relevance. 

Previous works have already identified a relationship between occupant demographics, 

building type and overall household energy use, where details about the occupants and building 

are inferable from smart meter data [123]. For EVs, demographic effects have been shown to 

result in different probability distributions for EV usage [124] which translates into 

demographically influenced changes in network load. Similarly, it has been demonstrated that 



48 

 

household energy consumption patterns are sensitive to householder demographic and 

affluence [81] [125]. 

In practical terms, this may translate into higher electrical demands for groups of houses 

with poorer standards of insulation, or conversely more affluent households with larger interior 

volume. Like many domestic load types, heat pump usage is also behavioural; identically rated 

heat pump and building systems may impose radically different electrical loads due to the heat 

comfort preferences and routines of the individual resident [114].  

Existing works [76] [126] have highlighted the dependency on limited samples of heat 

pump load data for constructing load models. This introduces the risk that modelled load 

profiles do not capture the local influence of building and behavioural parameters, and 

therefore do not capture the corresponding delta between heat load inferred from trial datasets 

versus heat load for the target area. Recent works have tried to address this problem by 

developing parameter based predictions on how heat demand can vary versus building type and 

size [111], whilst the variability of heat demand versus individual behaviour has also been 

documented [114]. Predictions are constrained by availability of locally appropriate data in the 

public domain and are reliant on oblique parameters that may not be recorded reliably for all 

properties.  

Energy Performance Certificates (EPCs) capture property floorspace and nominal efficiency 

though are only published when a property is sold or rented [127]. Therefore, in many parts of 

the UK there are regions with partial or very low EPC coverage. Metadata such as number of 

rooms and occupants is captured in UK census data, but this can be insufficient to capture the 

inherent variability in residential property due to age, construction techniques as well as local 

demographic factors [128]. Furthermore, it is difficult to validate the output of these models 

with a specific value that can be directly correlated and validated versus demand. 

Within the UK and worldwide, significant diversity exists across building types, behavioural 

profiles as well as commercial heat pump type and configuration [128]. The absence of 
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sufficiently granular and comprehensive datasets capturing these parameters at appropriate 

resolutions for physical thermal models, combined with the potential diversity of these 

parameters, creates a need to develop alternative methodologies for robustly modelling locally 

granular heat demand at geospatial and temporal scales appropriate for LV network analysis. 

 

 



50 

 

2.7 Contributions of this Research in the Context of Prior Work 

  

Figure 2-8 Contribution of this Research in the Context of Prior Work  
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This chapter has outlined the wider context of this work, with respect to the ongoing 

climate crisis and the concurrent efforts of international and national organisations to reduce 

and mitigate the effects of greenhouse gas emissions. Within the UK, significant focus is 

allocated to the decarbonisation of heat, and correspondingly, the electrification of domestic 

heating through the adoption of low-carbon heating solutions. 

The rapid adoption of electrical heat pumps at the distribution network level presents a 

series of technical obstacles for network operators and asset owners for both planning and 

operational tasks. Against the wider backdrop of LV network LCT integration, the technical 

difficulties introduced by greater electrification of heat are in many ways common with the 

challenges faced by increased adoption of electric vehicles and LV-connected solar and wind 

generation. Unlike historical domestic load profiles which exhibit fairly static shape and 

magnitude characteristics, these new load types are sensitive to geospatially variable effects 

such as weather, demographics and building stock characteristics. The influence of these local 

factors has already been demonstrated to manifest in different voltage and current effects 

specific to the feeder under analysis. Given the scale of the entire distribution network, this 

represents over half a million specific sets of geospatially grouped parameters that can 

influence local electrical heat load. Therefore, whilst this work focuses on the specific problem 

of modelling electrical heat load appropriately at distribution network level, the higher 

concepts are universally applicable for modelling new load types at distribution network level. 

The increased complexity of the energy-mix connected to LV feeders – stochastic solar 

PV generation, energy storage and additional electrical load contributed by EHP’s and EV’s – 

imposes additional pressure on DNO’s to maintain quality of service and security of supply 

without incurring significant increases in expenditure. DNO’s face transitioning from 

managing a passive network that requires minimal operational intervention, where primary 

functions can involve fault isolation and service restoration, online power flow and switch-

order management [129]. Instead, the integration of LCT’s creates new opportunities for a 
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DNO to take a more active role in network management as a distribution system operator, or 

DSO. DSO’s functions can be broadly summarised as taking an active stance for several 

functions that were not previously required: local balancing of generation and load, facilitating 

uptake of LCT’s within a licence area by simplification and expedition of connections 

processes as well as acting as a facilitator for new market structures amongst various energy 

stakeholders [130].  

To date previous works have focused on examining electrical load profiles on a highly 

aggregated scale, suitable for national or regional analysis. These efforts have been naturally 

constrained by availability and quality of trial data. This work aims to build on previous 

electrical heat load modelling efforts, by developing electrical heat load profiles that are 

sensitive to local building and demographic parameters, in addition to weather conditions. 

Understanding short-term and longer-term impacts of electrical heat load within a licence area 

is key for DNO’s seeking to optimise network utilisation. 

 In the short-term, existing electrical heat load on a feeder is predominantly sensitive to 

external air temperature; this temperature dependency therefore results in periods of very high 

or very low electrical heat load depending on the time of year. The ability to predict electrical 

heat load with confidence throughout the year enables DNO’s to procure flexibility when 

required or encourage demand response participation when balancing electrical heat load 

usage with other load-types on a feeder. Over the longer term, the rate of uptake of EHP-type 

heating on feeders will evolve, generally resulting in increased electrical heat load across a 

licence area, with the potential for areas of concentrated EHP uptake to emerge. Ultimately, 

even in acting in a DSO-type role, future network operators will need to ensure that investment 

is suitably applied to reinforce the network appropriately for future load conditions.  

The methodologies in this work offer additional capabilities to DNO’s over both the short 

and long-term in terms of predicting electrical heat load with respect to localised external air 
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temperature, for customer groups of low diversity, with additional heat demand localisation 

capabilities specific to existing gas demand usage in an area.  

Furthermore, this work aims to step beyond the standalone modelling approach that is 

prevalent in the literature, towards methodologies that contribute to network decision making 

in a real environment. The reliance on pure trial data or isolated physical models inhibits the 

final usefulness of a model for real network applications; there is still a gap between modelled 

outputs and how a network operator or user should apply these findings for decision making 

in a network’s context. However, there is still a need for these approaches in the absence of 

complete visibility at the LV level. Therefore, this work will demonstrate an integrated concept 

that aims to augment modelled electrical heat load with live data disaggregated from the LV 

transformer using a novel approach. This represents an effort to overcome the limitations of 

static models based on limited data or physical approaches, by supporting the models with 

inferred contextual information drawn from the specific network of interest. 

 

Figure 2-9 Research Overview  

The high-level contributions of this work are illustrated in Figure 2-9. Chapter 3 will 

introduce a novel methodology for deriving electrical heat load shapes sensitive to external air 

temperature, and suitable for examining networks with low customer numbers and therefore 

low levels of diversity. This is in contrast to previous works which have focused on electrical 
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heat load shapes at winter extremes, and averaged results for customer group sizes greater than 

those found on typical LV feeders. 

Chapter 4 builds on the work in Chapter 3 by outlining a methodology for further 

localisation of the electrical heat load shapes derived from trial data. Chapter 4 introduces a 

method for scaling electrical heat load with respect to existing measured annual gas demand 

for a postcode, allowing for the prediction of electrical heat load not only with respect to local 

external air temperature, but geospatially variable factors such as building type, construction 

and household demographics. 

Combined, Chapter 3 and Chapter 4 therefore offer a methodology for predicting the shape 

and scale of electrical heat load with respect to external air temperature, existing annual gas 

demand, and number of customers. This approach is fundamentally dependent on the 

parameters derived from static trial datasets, and Chapter 5 seeks to overcome these limitations 

by demonstrating an approach for informing shape and scale parameters from operational 

transformer data rather than static datasets. 

Finally, Chapter 6 draws the methodologies together in a unified concept that seeks to use 

the scale and shape information encoded in static trial datasets, supported by the locally 

specific insights that can be derived from the aggregated load of a real world LV transformer. 
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Predictive Thermal Relation Model for 

Synthesizing Low Carbon Heating Load 

Profiles on Distribution Networks 
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This chapter describes the limitations of existing electrical heat load modelling 

methodologies and presents a novel probabilistic electrical heat load model developed from 

trial datasets. This builds on previous works which have focused on modelling highly 

aggregated heat pump load at winter extremes rather than across the entire range of outdoor 

air temperature conditions. This methodology is sensitive to local outdoor air temperature as 

well as number of customers.  

3.1 Summary 

The introduction of electric heat pumps as a low carbon option for space heating offers a 

potential pathway for reducing the carbon emissions resulting from domestic heating demand 

in the UK. However, the additional power demands of heat pumps over conventional domestic 

loads have the potential to significantly erode network headroom, particularly at the 

distribution level. The uptake of this technology within the UK is currently limited and the 

effects of widespread adoption on distribution networks are not well characterized due to the 

sparse availability of operational heat pump demand data. This chapter outlines a methodology 

for quantifying the demand impact of heat pumps on Low Voltage networks sensitive to local 

outdoor air temperature by deriving fundamental thermal relationships from real heat pump 

electrical demand data. These relations can then be applied to predict demand for new studies 

independent of the geographic specifics of the original dataset. The strength of this model is 

in the ability to predict an aggregated hourly heat pump electrical demand profile that reflects 

local outdoor air temperature and intra-day usage as well as population size, thereby also 

accounting for diversity effects that are difficult to capture in physics-based models. This work 

augments the usability of limited existing data by facilitating demand analysis sensitive to 

local outdoor air temperature, rather than blanket rescaling of existing customer data as has 

been performed in previous studies. This creates future opportunities for examining heat pump 

demand sensitivity for different geographic locations against existing heat pump assessments, 
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as well as performing studies which incorporate multiple low carbon technologies connected 

to a Low Voltage network. 

3.2 The Challenge around Heat Pump Demand Modelling 

The increase in network load contributed by heat pumps presents a serious threat to the 

existing thermal and voltage limits of LV network assets. In order to maintain quality of 

service for customers whilst minimising the need to incur costly network reinforcement, 

network operators require a clear view of how heat pumps will impact networks at a local level. 

For this purpose, predictive demand models that use operational demand data have an 

advantage over conventional physical demand models, in that they can capture individual 

household behavioural and diversity effects that are difficult to parameterize in physical 

models. However, there is currently very limited availability of UK-based operational heat 

pump data to draw on for examining heat pump network effects. Furthermore, heat pump 

demand is highly sensitive to local outdoor air temperature ; conditions can be highly divergent 

even within a limited geographical area due to factors such as local topography and level of 

urbanization. This necessitates a model that captures the full temperature to demand 

relationship rather than relying on operational maximums. Traditionally, load prediction at LV 

level has been limited to modelling peak annual demand and rating physical assets 

appropriately in order to ensure there is sufficient headroom to meet this modelled peak [131]. 

The need to decarbonize the energy sector necessitates the further uptake of LV-connected 

low carbon technologies such as heat pumps, alongside wind, PV and EVs. The inherent 

stochasticity of these load types with potential for new failure modes demands new prediction 

approaches beyond the historic method of modelling bulk aggregations. On this basis, the 

contribution of this chapter is a methodology for quantifying the impact of heat pump demand 

on LV networks sensitive to local weather conditions by deriving fundamental thermal 

relationships from real heat pump electrical demand data. These relations can then be applied 

to predict heat pump electrical demand for new studies independent of the original dataset, 
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thereby maximising the utility of sparsely available heat pump demand data. The cost and 

complexity of capturing useful heat pump demand data at scale limits the availability of quality 

datasets for future EHP impact research; by offering a generalised model this work seeks to 

offer a transferable method that can be tailored for impact studies beyond the original dataset 

sample population.  

 This methodology extracts electrical demand versus hour of day and electrical demand 

versus outdoor air temperature relationships from individual customers in an operational 

dataset and translates these relationships into a format that can be then used to probabilistically 

predict heat pump demand through a black-box type approach. Linear scaling factors are 

derived from the operational dataset to act as a proxy for the variation in building type, heat 

pump type and system efficiency that would be seen in a typical UK population. By directly 

modelling these relationships versus electrical demand, the need to transform a heating 

demand into an electrical demand is circumvented. The majority of previous heat pump 

demand impact studies have focused on predicting demand for extreme cold temperatures 

rather than fully capturing the temperature/demand relationship [108], [76]. A key strength of 

this model is the ability to generate a heat pump demand profile that is sensitive to local 

outdoor air temperature conditions, hour of day and population size, thereby accounting for 

diversity effects as well as temperature. Furthermore, by incorporating the full electrical 

demand versus outdoor air temperature and time of day relationship, this model facilitates the 

study of heat pump demand impact alongside other low carbon technologies on an LV network 

for conditions other than extreme cold days. The mean error and standard deviation of this 

model are tested versus two heat pump demand datasets, with consistent results versus 

population size and outdoor air temperature for both cases. This indicates that the developed 

approach will be generally applicable for UK based heat pump populations, facilitating 

analysis of LV networks with demand profiles tailored to local weather conditions. In section 

3.3 of this chapter, the selected methodology for modelling heat pump demand is described. 

Section 3.4 presents the validation results as well as primary model results. Section 3.5 
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discusses the results, section 3.6 outlines potential applications and a basic case study and 3.7 

concludes the chapter with further possible work. 

3.3 Probabilistic Prediction of Localised Heat Pump Demand 
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Figure 3-1 Localized Heat Pump Demand Model Overview showing in sample training 

and out of sample testing/prediction procedures. 

This section contributes a method for quantifying the demand impact of increased heat 

pump uptake for population sizes typical of LV networks, sensitive to local ambient 

temperature. This is performed by extracting the fundamental relationships between heat pump 

electrical demand, temperature, and time of day from a training dataset such that it can be 

applied to a new target application. A one hour-resolution is selected for the synthetic demand 

profiles as a trade-off between achievability and utility. This one hour-resolution has been 

selected to focus on examining the steady state effects of electrical heat demand versus 

external air temperature. One hour is the highest available sampling rate for open-source UK 

temperature data [132], and examining the effects of electrical demand versus external air 

temperature change at higher sampling rates would therefore not provide a meaningful result.  

This steady state analysis contrasts with examining transient electrical effects such as the 

start-up current contributed by multiple devices turning on in quick succession and how this 

might impact network stability.  

This model will utilise UK domestic heat pump data coupled with historical weather data 

in order to characterise the fundamental relationship between daily electrical demand and 

temperature for heat pumps. This will enable generation of heat pump demand profiles 

sensitive to local temperature using only the local temperature information and limited inputs 

to seed the heat pump sizes within the population. The three primary relationships versus 

ambient temperature this study will characterise are:  

• Daily Energy; heat pump electrical demand over the course of a day  

• Daily Average Duty Cycle; average heat pump state for a single day  

• Hourly Duty Cycle; hourly heat pump state within a single day  
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Models capturing these relationships are used with local weather observations at a target 

site to produce a EHP demand for that site; this facilitates modelling hourly heat pump demand 

for cases independent of the original sample dataset. The interrelationships between model 

data, characterization and model tests for this work are defined in Figure 3-1. The datasets 

used for developing this model are described in more detail in section 3.3.1. The model will 

be validated with multiple datasets, both to prove the concept but also to quantify the error 

associated with the model. 

3.3.1 Case Study Datasets 

 

Figure 3-2 Implied joint distributions of daily demand (kWh– x axis) versus daily 

average temperature (◦C – y-axis) for target data set heat pump loads #1 - #9, taken from [2]. 

This work makes use of three datasets to model the relationships between demand, 

temperature, and population size. There is presently no large-scale heat pump dataset available 
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that sufficiently captures all of these parameters; therefore, different data sources are combined 

in order to define the relationship between heat pump electrical demand and temperature. The 

reference heat pump demand used for model training is the Renewable Heat Premium Payment 

(RHPP) dataset [115] features 2-minute resolution electrical demand data collected from 418 

air source and ground source heat pumps in the UK from October 2013 to March 2015. This 

dataset does not feature location data or local weather measurements. The electricity usage 

monitored in this dataset does not include domestic hot water use which will not be modelled 

as part of this study. Due to the lack of corresponding local weather data available for 

individual customers in the RHPP dataset, historical weather data from a climatically average 

location in the UK is paired with the existing RHPP demand data to complete the reference 

data set. Historical weather data from the Centre for Environmental Data Analysis (CEDA) 

for the Central England weather station at Pershore [132] is aligned with the RHPP demand 

data. Due to the anonymisation process for RHPP customers, it is not possible to link 

specifically localised weather data to each customer’s dataset.  

In order to allow for a generalised relationship of local outside air temperature versus 

electrical demand to be generated, the Pershore weather series is used to give an average view 

of UK temperature for the corresponding dataset sample period. Pershore weather station is 

based at an inland, low-lying location in central England and is therefore roughly 

representative of weather for the majority of the UK population. [133] analysed the 

relationship between 24 individual meteorological stations throughout the UK and found the 

correlation between CET monthly temperature means was highly significant (p < 0.001), 

justifying the use of the CET as a benchmark for UK-based climate studies. 

Finally, the operational demand data collected during the Low Carbon London (LCL) heat 

pump trials [2] is used as the target data set for validation purposes. This dataset features 

electrical heat pump demand and associated local temperature measurements for nine 

customers; this dataset is used to test that the learned model characteristics produce an accurate 
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predicted heat pump demand from a local temperature measurement. In LCL, customers 1 to 

5 and 7 feature two years’ worth of data; the remaining customers 6, 8 and 9 only feature 60 

days of data. All customers have air-source heat pumps installed with heat pump sizes ranging 

from 8 to 16kW in rating. 

3.3.2 Daily Demand versus Temperature Characterisation 

Electric heat pump daily demand is broadly proportional to ambient temperature: lower 

ambient temperatures translates into higher heat pump daily demand, and vice versa for high 

ambient temperatures. The influence of parameters such as heat pump rating, efficiency, 

building insulation type and most importantly occupant routine behavioural parameters result 

in a range of possible values given a single daily average temperature measurement rather than 

a single possible value. This is directly observable in the LCL dataset shown in Figure 3-2, 

with a particularly wide band of possible demand values for 10 ◦C. Customers 6, 8 and 9 are 

reduced datasets only featuring 60 days of data and therefore only show a partial illustration 

of this characteristic – they do not capture the full operational variation due to seasonal changes. 

This relationship is presumed to exist in the RHPP dataset, however is masked by the lack of 

available corresponding temperature data. This range of possible demand values for a single 

daily average temperature is the basis for taking a probabilistic approach in this study. In order 

to create the basis for the model, the hourly demand measurements for each RHPP customer 

are converted from an hourly advance to daily total in kWh. In order to allow for comparison 

across the entire dataset, the total daily demand for each customer is normalised with respect 

to a reference population maxima using the formula: 

𝐷𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 =  
𝐷𝑘𝑊ℎ
𝐷𝑚𝑎𝑥

 (3) 

where DkWh is the daily demand for a specific day and Dmax is the maximum daily demand 

for the customer dataset being normalised. This scales all customer data on a range from 0 to 

1; 0 representing zero demand and 1 representing maximum demand. The normalised 
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customer demand is mapped to the CEDA Pershore weather station ambient temperature data 

for the same time period as the training dataset. The training customer demand data and 

weather data is then unified and plotted in the heatmap shown in Figure 3-3. The aggregated 

demand data has been split into 1 ◦C intervals and the distribution plotted in Figure 3-3. This 

clearly illustrates the same characteristic shape as the Low Carbon London data in Figure 3-2; 

a narrow tail for ambient temperatures above 15 ◦C and a widening band of higher demand for 

lower temperatures. Datapoints for lower temperatures are sparse in the overall dataset and the 

increased granularity of the distribution at very low temperatures is visible. The standard 

deviation and mean is calculated for each of the 1 ◦C dataset intervals, 

 

Figure 3-3 Joint histogram showing implied dependency structure of normalized daily 

heat pump demand against daily average temperature (◦C) from training dataset. 

translating the raw data into a Gaussian distribution for each temperature band. This provides 

a plausible range of normalised demand values for each 1 ◦C interval. This is represented as: 
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𝑓𝑡(𝑥)  =
1

𝜎√2𝜋
𝑒
−
1
2
(
𝑥−𝜇𝑡
𝜎𝑡

)
2

  (4) 

(4) represents the standard form of a Gaussian distribution, with a temperature specific 

mean 𝜇𝑡  and standard deviation 𝜎𝑡, which is obtained for each temperature band in the 

Normalised Daily Demand versus Daily Average Temperature ◦C relationship illustrated in 

Figure 3-3. The derived mean and standard deviation parameters are provided in Table 8-1 

for reference.  Therefore when making a demand prediction the daily average temperature 

is first identified, and then the demand value is generated based on a distribution determined 

by the corresponding standard deviation and mean for that temperature that has been derived 

from the data in Figure 3-3. This represents the conditional distribution as a lookup table 

consisting of mean and standard deviation, thus removing the need for a fitting a complex 

functional relation.  

𝐷𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 is constructed by obtaining a random sample from the normal distribution 

defined by the appropriate mean 𝜇𝑡 and standard deviation 𝜎𝑡 parameters for the 

temperature-band. This random sampling is represented in (5), where N represents normal 

distribution. The obtained random sample 𝐷𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 is scaled into kWh using the formula 

shown in (5) , where 𝐷𝑚𝑎𝑥 is the maximum daily kwh demand for the particular EHP. 

𝐷𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 = ∼ N(𝜇𝑡 , 𝜎𝑡
2) (5)  

𝐷𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑(𝑘𝑊ℎ) = 𝐷𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 × 𝐷𝑚𝑎𝑥 (6) 
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3.3.3 Daily Duty Cycle 

 

Figure 3-4 Conceptual operating envelope for daily average demand versus daily average 

duty cycle 

A model for predicting daily heat pump energy has been derived however it is still 

necessary to characterise how this energy is used throughout the day. For this purpose, the 

modelled duty cycle will be disassociated from time-of-day characteristics. The purpose of 

this section is to derive the proportion of on and off durations for a particular day, not how 

heat pump activity is distributed throughout the day. Heat pump outputs can be one of two 

types: fixed output or inverter based variable output. Fixed output heat pumps operate by 

cycling on and off between maximum power during the required heating period. Inverter based 

heat pumps can modulate their output to any intermediate point between zero and full power 

as required to meet heating demand. Typical fixed output heat pumps operating periods range 

from 9 to 40 minutes [134], therefore over a time period of one hour the power characteristics 

of a fixed output versus inverter based output will average to the same profile in order to meet 

the same heating demand for the majority of cases if conversion efficiencies are assumed to 

be identical.  
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Conceptually, therefore the daily average demand is directly proportional to the amount 

of time the heat pump spends in the ‘‘on’’-state. The ratio of time spent in the on-state versus 

the off-state will be represented as a duty cycle measure. On this basis this work will develop 

a two-state model for linking the previously derived daily heat pump energy in section 3.3.2 

to an hourly demand figure. The modelled duty cycle δAV is calculated from the ratio of the 

predicted daily demand DPredicted (kWh) over the real maximum demand Dmax for the 

customer profile. This is further scaled by duty cycle population data through the value δmax 

as shown in (7). Each customer profile has their own fixed value of δmax, representing the 

maximum time the heat pump spends on at the cold operational extreme. The theoretical upper 

limit for δmax is 1 (representing always on) however the mean δmax obtained from the 

training population is 0.68, representing a heat pump that is on 68% of the time at its upper 

operational extreme. The values of δmax are derived from the RHPP population dataset for 

validation purposes. For an instantaneous sample period heat pumps of any output type can be 

assumed to be in one of two states: on or off. Under steady state conditions the on-state can be 

assumed to be fixed, although ramping to steady state will introduce intermediate values of 

demand. Therefore the daily heat pump demand is directly proportional to the amount of time 

a heat pump spends on the on-state. Figure 3-4 and (7) illustrate the conceptual relationship 

between the maximum daily demand Dmax, the maximum daily duty cycle δmax scaling 

factors, the predicted daily demand DPredicted(kWh) and the derived duty cycle δAV . 

𝛿𝐴𝑉 = 
𝐷𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 (𝑘𝑊ℎ)

𝐷𝑚𝑎𝑥
× 𝛿𝑚𝑎𝑥 (7) 

The duty cycle δAV therefore represents the average heat pump state for the daily time 

period. Once the daily demand DPredicted(kWh) and the daily average duty cycle δAV is 

known the on-time ton, off-time toff and on-power Pon can be determined. For a single day 

this is then used to derive the toff, ton and Pon for the heat pump as shown in (8), (9) and (10). 

This makes the assumption that the heat pump is either fully on or fully off with no 

intermediate values. 
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𝑡𝑜𝑛 = (𝑡𝑜𝑛 + 𝑡𝑜𝑓𝑓) × 𝛿𝐴𝑉  (8) 

𝑡𝑜𝑓𝑓 = 
𝑡𝑜𝑛 × (1 − 𝛿𝐴𝑉)

𝛿𝐴𝑉
 (9) 

𝑃𝑜𝑛 = 
𝐷𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑(𝑘𝑊ℎ)

𝛿𝐴𝑉
 (10) 

Figure 3-5 illustrates the relationship between the original observed demand and the 

modelled demand Pon derived from (8), (9) and (10). The left-hand figure shows the original 

observed demand over the course of a day; the right hand figure shows the same observed 

demand dataset but sorted by magnitude rather than plotted versus time. Whilst the observed 

demand modulates between the on/off state, the actual observed value of Pon varies roughly 

between 1.5kW to 3.8kW. The simplified modelled demand assumes a fixed kW figure for 

Pon, that is proportional to the maximum daily demand 𝐷𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑(𝑘𝑊ℎ) and daily average 

duty cycle 𝛿𝐴𝑉 . For the case in Figure 3-5, this modelled demand Pon is calculated as 2.4kW 

and is plotted alongside the observed Pon, illustrating how derivation of 𝛿𝐴𝑉  from 

𝐷𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑(𝑘𝑊ℎ) can be used to model a good approximation for the proportion of time a heat 

pump spends in either the on or off state. The distribution of the modelled on/off states for a 

single day are derived in the next section. 
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Figure 3-5 (left) Observed Demand (kW), (right) Modelled Demand (kW) and Observed 

Demand (kW) for single day. 

3.3.4 Hourly Duty Cycle 

The remaining aspect of the model is to develop a method for determining heat pump 

hourly demand profile from the daily average energy and daily average duty cycle. As 

illustrated in Figure 3-2 the shape of a daily electrical demand profile can vary significantly 

from household to household due to heat pump and building parameters, as well as behavioural 

routines. The primary concern around heat pump type loads is that without a storage element 

to buffer or shift time of use, heat pump loads can be anticipated to be needed at similar times 

of day for most households, in combination with their high energy and high-power 

characteristics. Therefore, the specific time of day for heat pump activity becomes of critical 

interest – a load that is distributed evenly throughout the  

 

Figure 3-6 Real demand (kW, blue), modelled duty cycle (green) and average real 

demand (red) 
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day will not pose the same risks to voltage and thermal limits as a load that tends to be clustered 

around existing the domestic load peaks in the morning and evening. The time of use patterns 

across the entire RHPP dataset will be characterised and then fed back into a validation model. 

Ideally power would be modelled as an instantaneous value, however due to the variability in 

heat pump type and operation, it is not possible to develop a high-resolution predictive model 

that is fully applicable for the entire dataset. The approach here is to therefore develop a 

practical method for characterising sub-daily demand magnitudes to a reasonable resolution 

for network-based analysis and validation. The aim of this model is not to detect or characterise 

fast transients (which are better predicted by physics-based models), but rather steady state 

network conditions and how they contribute to network limits. This work will therefore model 

hourly demand magnitude rather than instantaneous power. Further work would be possible 

to reduce this time resolution further for specific applications. It has been shown in section 3.3 

that modelling a linear relationship between the daily demand and daily average duty cycle 

δAV through (7) allows for derivation of the ton, toff and Pon values for a particular day. This 

section will outline a framework for linking the derived daily average duty cycle to a set of 

hourly duty cycle values determined by ambient temperature. This set of hourly duty cycles 

will retain the overall predicted ton, toff and Pon values determined by the δAV for a particular day. 

The individual time of day versus temperature relationships for all RHPP customers will be 

aggregated into a single framework that can be used to generate synthetic demand profiles. 

Figure 3-6 illustrates a sample raw demand profile translated into daily and hourly duty cycle 

for a single customer. 
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Figure 3-7 Conditioning of raw heat pump electrical demand profile into time of use profile 

versus temperature 
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3.3.5 Heat Pump Demand from Temperature Translation Model 

This section describes the process for translating the daily average duty cycle δAV into a 

corresponding set of hourly duty cycle values, allowing for shaping of an overall daily demand 

profile. Building on the relationship between daily demand and daily duty cycle defined in 

section 3.3.4, for all daily customers the raw load profile is translated into an hourly duty cycle 

and temperature profile relation. Due to the direct relationship between heat pump energy 

consumption and ambient temperature, the time of use characteristics for a particular heat 

pump will also vary with temperature – heat pump activity during the day reduces with warmer 

temperatures and vice versa for cold temperatures. The output of this conditioning stage is that 

for each unique customer there exists an aggregated duty cycle profile for each hour of the day 

and temperature combination dataset The data conditioning process to transform the raw 

demand data into a daily average temperature versus hourly duty cycle profile is outlined 

graphically in Fig.8. For each customer, the raw demand profile for each 1◦C slice is converted 

to instantaneous heat pump state as shown in (11), where Emax represents the maximum 

instantaneous demand magnitude for the day. This is then converted to hourly duty cycle. The 

process to convert the raw kWh/2mins measurements 𝐸(𝑡) into the averaged hourly duty 

cycle is given in (9). The factor of 30 is the number of measurements required to sample a 

one-hour period due to the two-minute sampling rate in the raw trial data. Finally, all profiles 

belonging to the same customer and 1◦C temperature set are averaged to create an aggregated 

profile of hourly duty cycle versus temperature through (13), where n represents the number 

of datasets available for a particular customer and 1 °C temperature combination. This final 

figure 𝛿ℎ  then provides a single average hourly duty cycle 𝛿ℎ  for a customer, drawn from the 

aggregate of a customer’s raw data and corresponding 𝛿ℎ_𝑛  for a particular hour of day 

ranging from 0 to 23. This process does not make any distinction between weekend, weekday, 

or any exceptional days such as holidays or bank weekends. The impact of the 

weekday/weekend distinction on modelling strategies has been assessed in [135], which 

identifies clear changes in load routines during weekdays versus weekends. The aim of this 
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work however is to first develop a generalised model that can then be tailored to suit specific 

analysis tasks. 

𝐸(𝑡) =  {
1 𝑡 > 0.1 (𝐸𝑚𝑎𝑥)
0 𝑡 < 0.1 (𝐸𝑚𝑎𝑥)

 (11) 

𝛿ℎ_𝑛 = 
1

30
∑ 𝐸(𝑡)

𝑡+29

𝑡

 
(12) 

𝛿ℎ = 
1

𝑛
∑𝛿ℎ_𝑛

𝑛

1

 
(13) 

Each customer therefore has a 24 x 20 array where there is a row associated with each 

hour of the day and a column associated with each 1°C temperature slice, with each cell 

representing an hourly duty cycle δh that reflects the heat pump activity for those conditions. 

The array is defined as follows for each customer: 

𝛿ℎ =  𝑓(𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, ℎ𝑜𝑢𝑟 𝑜𝑓 𝑑𝑎𝑦) (14) 

The final output of this process is shown at the bottom of Figure 3-7 as the hour of day 

versus temperature plot. This shows an example of a time versus temperature relationship for 

a single customer. Figure 3-8 shows a further selection of temperature versus time of use 

profiles for nine additional customers: this clearly illustrates the diversity in time versus 

temperature relationships for multiple customers. From this limited selection it can be seen 

that customers tend to retain heat pump behaviours across the temperature range. Customers 

that do not enable heating during the day for cold extremes tend not to enable heating for any 

other temperature. Similarly, customers that have heating operating continuously at cold 

extremes still exhibit this behaviour at warmer temperatures. 
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3.3.6 Daily to Hourly Demand Relation Learning 

 

Figure 3-8 Selection of nine customer temperature versus time of use profiles from training 

dataset 

This section will further condition the data in order to link sets of hourly duty cycles to a 

single daily average duty cycle figure and therefore shape a demand curve based on a single 

daily average duty cycle value. Each of the 418 temperature versus time of day profiles derived 

from the RHPP dataset and defined in (14) are combined into a three-dimensional array 

defined as: 

𝛿ℎ = 𝑓(𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, ℎ𝑜𝑢𝑟 𝑜𝑓 𝑑𝑎𝑦, 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟) (15) 

The customer axis is transformed into a numeric δav value by computing the average daily 

duty cycle for each customer and temperature set of 24 δh values: 

𝛿𝑎𝑣 = 
1

24
∑𝛿ℎ

23

0

 
(16) 
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The array in (15) is now modified with the customer axis being replaced with the δav 

corresponding figure calculated in: 

𝛿ℎ = 𝑓(𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, ℎ𝑜𝑢𝑟 𝑜𝑓 𝑑𝑎𝑦, 𝛿𝑎𝑣) (17) 

Finally, this array sorted by average daily duty cycle. This sorts the array by heat pump 

activity for the entire population sorted by most active to least active. Figure 3-9 shows the 

0◦C slice of this array. This array shows the distribution of heat pump activity across the entire 

RHPP population versus time of day. Clear morning and evening peaks are visible, but there 

are also customers with very high and very low heat pump activity at either extreme. This 

array clearly illustrates that heat pump activity exists on a continuum rather than there being 

clearly defined repeating profiles. It is theorised that this characteristic will be true for all UK 

based heat pump populations over a certain size that feature a certain level of diversity. The 

subsequent temperature slices in Figure 3-10 clearly show the reduction in heat pump activity 

with temperature. The onset of the  

 

Figure 3-9 Heat Pump Hourly Duty Cycle (0 to 24 hours, x-axis) versus Average Duty Cycle 

(y-axis) 
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Figure 3-10 RHPP Heat Pump Hourly Duty Cycle Distribution - (0 to 24 hours, x-axis) 

versus Average Duty Cycle (y-axis) for 0◦C, 5◦C, 7◦C, 10◦C, 15◦C and 19◦C 

morning demand peak at 6am and drop off at 10pm correlates closely with the December 

averaged profiles obtained from the Customer Led Network Revolution heat pump study, 

which consisted of 89 customers [108]. It is now possible to generate an hourly demand 

estimate using only a daily average temperature input combined with the demand and duty 

cycle linear scaling factors. The daily demand is generated as per the relationship shown in 

Figure 3-2. From this an hourly duty cycle can be obtained through the relationship between 

hour of day and daily average duty cycle shown in Figure 3-10. Finally the daily average duty 

cycle is paired with the closet matching set of hourly duty cycles for the appropriate 

temperature in (14). The predicted hourly demand Dpredicted_h for each hour of the day being 

calculated is obtained though (15): 

𝐷𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_ℎ = 𝛿ℎ ×
𝐷𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑(𝑘𝑊ℎ)

24
 (18) 
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where Dpredicted_h (kWh) is the predicted daily power and δh is the predicted hourly duty cycle. 

Fig.12 illustrates the final load profile output of the process for a single theoretical customer 

and range of temperature values. 

 

Figure 3-11 Daily demand profiles for a single customer for 0◦C, 5◦C, 10◦C, 15◦C and 20◦C 

3.3.7 Training Dataset – Customer Profiles 

 

Figure 3-12 Distribution of RHPP Customers by mean heat pump daily demand (kWh) 
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Figure 3-13 (left) Maximum duty cycle versus customer # (right) Distribution of maximum 

duty cycle for RHPP customer dataset (kWh) 

The RHPP training dataset acts as the source of scaling factors for daily demand Dmax and 

duty cycle δmax in this study in (23) and (7). The structure of this model is such that the model 

may be seeded with scaling factors from other populations or datasets as required for specific 

analysis. This section describes the general population characteristics of the scaling factors 

used within this study. The limitations of using the RHPP dataset method have been identified 

in previous works – customers in the RHPP dataset are predominately local authority landlords 

rather than private tenants [76]. Additionally, heat pump technology has advanced since the 

installation of the sample population hardware in 2013 and therefore this may not fully be 

representative of a modern population due to improvements in achievable COPs and building 

efficiencies. The normalised demand generated in section 3.3 is multiplied from the scaling 

factor Dmax derived from the RHPP population demand magnitude. Figure 3-12 illustrates the 

mean daily demand for each customer across the RHPP dataset. The population predominately 

features customers at the lower end of the mean daily demand. 

The maximum duty cycle δmax per customer in the RHPP dataset is shown in Figure 3-13. 

This shows that apart from customers with very low heat pump demand, maximum duty cycle 

is not strongly correlated to heat pump demand and is distributed normally throughout the 
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dataset. The right-hand side of Figure 3-13 shows that maximum duty cycle is approximately 

normally distributed throughout the RHPP dataset. 

3.4 Validation of Predicted Demand Profiles 

The developed model is validated against the observed demand data in the RHPP training 

dataset and the LCL target dataset. The model is fundamentally derived from training dataset 

characteristics and therefore the tests versus the LCL dataset validate how well the method 

works versus unseen data. Large scale population testing is performed with the training dataset, 

using the user profiles and demand shapes generated from the training dataset. The inputs used 

to generate a demand prediction are for a single day are the daily average demand, and the 

customer scaling factors: maximum daily demand Dmax and maximum daily duty cycle δmax. 

These inputs are then fed into the thermal relations derived in this paper in order to generate 

daily and hourly demand predictions. Random populations of customers ranging from 1 to 160 

are used; with the error being assessed as a simple mean absolute percentage error from 0◦C 

to 15◦C. Heat pump behaviour below 0◦C is beyond the scope of this model due to the lack of 

data for this condition in the used datasets; beyond 15◦C is not examined as beyond this point 

heat pump activity becomes minimal in the real data in terms of energy as shown in Figure 

2-1Figure 3-3.  

3.4.1 Daily Demand Testing 

 0°C 5°C 

# MAPE (%) σd (%) MAPE(%) σd (%) 

1 38.6 43.3 82.9 285.9 

5 23.7 23.1 21.4 18.6 

10 17.0 13.8 18.7 13.7 

20 15.1 11.4 15.1 8.9 

40 12.1 7.2 13.9 8.8 

https://en.wiktionary.org/wiki/%CF%83
https://en.wiktionary.org/wiki/%CF%83
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80 12.6 4.6 13.2 4.9 

160 12.6 3.2 12.3 3.2 

 

 10°C 15°C 

# MAPE (%) σd (%) MAPE (%) σd (%) 

1 82.8 230.0 68.3 109.4 

5 20.8 18.6 24.6 20.6 

10 16.3 10.8 18.5 13.3 

20 13.2 8.9 12.5 8.8 

40 13.0 8.1 11.0 7.9 

80 12.3 4.5 8.4 4.8 

160 12.8 3.4 7.6 5.5 

Table 3-1 Daily demand prediction mean absolute percentage error (MAPE) and 

its standard deviation for 0, 5, 10, 15◦C and aggregations of 1, 10, 20, 40, 80, 160 

customers using training dataset. 

 

 Target Local Weather Pershore CEDA Weather 

# MAPE  

(%) 

σd 

(%) 

MAPE 

(%) 

σd 

(%) 

9 14.4 8.1 18.6 11.1 

Table 3-2 Daily demand MAPE and its standard deviation for target customer dataset 

using target local weather and Pershore CEDA weather observations 

https://en.wiktionary.org/wiki/%CF%83
https://en.wiktionary.org/wiki/%CF%83
https://en.wiktionary.org/wiki/%CF%83
https://en.wiktionary.org/wiki/%CF%83
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Figure 3-14 Real Demand, Predicted Demand (Target Local Weather) and Predicted 

Demand (Pershore CEDA Weather) for 9 aggregated LCL customers from 7/01/2014 to 

20/03/2014. 

The real versus predicted daily demand is calculated for randomly selected groups of 1, 5, 

10, 20, 40, 80 and 160 customers. For each size group, a random selection of customers is 

selected from the training dataset and the real daily demand versus predicted daily demand 

calculated. This process is replicated 100 times for each group size in order to obtain a mean 

and standard deviation for error, with a new random selection of customers generated each 

time. 100 runs per customer group is chosen as a trade-off between computing time and 

accuracy. From this the mean absolute percentage error for each customer in each group is 

calculated as shown in, where Dreal_d is the real daily demand and Dpredicted_d is the 

predicted daily demand as derived from (5) . This process is then repeated for the temperature 

points 0◦C, 5◦C, 10◦C, and 15◦C. The final MAPE for each temperature/group number 

combination is simply the average MAPE obtained for each set. The percentage standard 

deviation σ is calculated as per (20). The results for this process are shown in Table 3-1. 

𝑀𝐴𝑃𝐸 = ∑|
𝐷𝑟𝑒𝑎𝑙_𝑑 − 𝐷𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑑

𝐷𝑟𝑒𝑎𝑙_𝑑
| × 100 (19) 
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𝜎𝑑 = √
∑(𝐷𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑑 − 𝜇)

2

𝑛
 

(20) 

For the target dataset there are nine customers and the maximum overlap in time for the 

overall dataset is a 60-day period ranging from 17/01/2014 to 20/03/2014. The aggregated 

customer demand from this period is used to evaluate the training dataset derived model for 

predicting demand for other customer datasets. Two temperature profiles are used to 

synthesise the daily demand: one is the Pershore weather dataset used for the training dataset, 

the second is the averaged local temperature data from the target dataset. Figure 3-14 shows 

the real versus predicted daily demand for the aggregated target data profile over a two-month 

winter period. Table 3-2 demonstrates MAPE = 14.4% with σd = 10.8% for the 9 LCL 

customer winter case, whereas Table 3-1 for 10 RHPP customers on a 0°C day resulted in 

MAPE = 17.0% with σd = 13.8% . This can be attributed to the fact that the Pershore weather 

data does not reflect the local ambient temperature conditions for the target dataset customers, 

which are distributed throughout the south-east of England. However, this result does illustrate 

that the normalised demand versus temperature relationship derived from the training dataset 

shown in Figure 3-3, combined with a simple scaling factor is able to achieve good results for 

daily demand for small heat pump population even with a non-local temperature series. The 

MAPE and σ modelled using the Pershore weather dataset in Table 3-2 align well with the 

corresponding training dataset error values in Table 3-1 for population sizes of 10. 

3.4.2 Hourly Demand Testing 

There are several features of interest when examining the shape of a daily demand profile 

for network design and operations. The magnitude of the demand peak, the time of the demand 

peak, in addition to maximum rates of change are all of interest when assessing network impact, 

however this list is not exhaustive. The MAPE method used in the previous section is not 

suitable for measuring the shape quality; small values feature heavily in the dataset at higher 

temperatures and large errors in small hourly demands which can skew the whole figure. In 
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order to overcome the skew that would exist with a conventional MAPE, a weighted MAPE 

is used. This WMAPE is weighted by the sum of total real demand for a given day and is 

calculated as shown in (21), where Dreal_h is real hourly demand, and Dpredicted_h is the 

corresponding predicted value of demand for the same hour generated from (18). The WMAPE 

gives a general metric of predictive accuracy but does not explicitly assess the predicted 

demand peak or the predicted time of the demand peak versus the real values as part of this 

study. 

𝑊𝑀𝐴𝑃𝐸 = 
∑ |𝐷𝑟𝑒𝑎𝑙_ℎ − 𝐷𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_ℎ|
23
ℎ=0

∑𝐷𝑟𝑒𝑎𝑙_ℎ
 (21) 

𝛿ℎ = √
∑(𝐷𝑟𝑒𝑎𝑙_ℎ − 𝐷𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_ℎ)

∑𝐷𝑟𝑒𝑎𝑙_ℎ
 

(22) 

Table 3-3 Hourly demand WMAPE and its standard deviation for 0, 5, 10, 15◦C and 

aggregations of 1, 10, 20, 40, 80, 160 customers using training dataset. 

 0°C 5°C 

# WMAPE  

(%) 

σh 

(%) 

WMAPE 

(%) 

σh 

(%) 

1 66.1 14.7 68.5 16.8 

5 37.4 7.7 37.7 6.9 

10 27.0 5.8 31.2 5.3 

20 20.1 3.7 29.7 4.1 

40 15.6 3.1 17.4 3.9 

80 13.1 2.2 14.6 4.7 

160 11.6 2.0 13.6 2.1 

 

 10°C 15°C 

https://en.wiktionary.org/wiki/%CF%83
https://en.wiktionary.org/wiki/%CF%83
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# WMAPE  

(%) 

σh 

(%) 

WMAPE 

(%) 

σh 

(%) 

1 81.3 13.7 87.1 9.0 

5 50.2 7.3 69.9 7.0 

10 38.3 5.6 58.1 6.6 

20 31.2 4.1 47.7 5.1 

40 24.0 4.0 38.2 3.7 

80 17.9 4.7 32.3 2.9 

160 14.6 2.2 27.2 2.2 

 

 Target Local Weather Pershore CEDA Weather 

# WMAPE  

(%) 

σh 

(%) 

WMAPE 

(%) 

σh 

(%) 

9 35 13.1 37 15.6 

Table 3-4 Hourly demand WMAPE and its standard deviation for target customer dataset 

using target local weather and Pershore CEDA weather observations 

 

3.5 Model Performance Evaluation 

The proposed model in this study has outlined a simple approach for predicting daily and 

hourly heat pump demand profiles for a user-defined sample population, using only daily 

average temperature and linear scaling factors as inputs. The performance of the model against 

two independent datasets have been examined in order to evaluate the wider applicability of 

this model for UK based heat pump population, with consistent results across both the training 

RHPP and target LCL datasets. Whilst constrained by the lack of further available heat pump 

https://en.wiktionary.org/wiki/%CF%83
https://en.wiktionary.org/wiki/%CF%83
https://en.wiktionary.org/wiki/%CF%83
https://en.wiktionary.org/wiki/%CF%83
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demand data to examine this point further, these initial results do indicate that the derived 

model will be applicable in general for UK customers. As illustrated in Figure 3-11 and Figure 

3-14 the model offers good capability for predicting the magnitude of daily demand for heat 

pump populations for operating conditions ranging from 0◦C to 15◦C. The mean daily demand 

error reduces as temperature increases; this is in line with the dependency relationship plotted 

in Figure 3-3 which features a smaller band of possible values for higher temperatures when 

compared to cold temperatures. In contrast, the mean error for hourly demand increases with 

temperature. This can be attributed to the greater diversity in demand shape at warm 

temperatures as users are more likely to transition to only operating heating for limited time 

windows. The general error characteristics for both the daily and hourly demand tests reflect 

findings of previous LV studies which observed strong scaling relationships between the 

number of households and MAPE of a forecast method [136]. Whilst there are no directly 

comparable heat pump studies using MAPE that the results of this work can be compared 

against, it can be broadly compared with existing LV studies forecasting other load types. 

Previous works forecasting LV substation loads using have achieved MAPE’s in the region of 

11%–16% utilising ARIMA methods [137] [138]. While the model contributed here is a 

predictor of load from temperature, it could offer a forecasting capability if used in conjunction 

with a temperature forecast from a numerical weather prediction model. Typically forecasting 

temperature yields lower errors than demand so the anticipated heat pump demand forecast 

error would be broadly aligned with this figure. The demand activity peaks shown in Figure 

3-8 and Figure 3-10 are in agreement with the demand peaks of averaged heat pump demand 

data from a comparable but geographically separate trial [108]. Whilst limited in size 

compared to the overall training dataset, the results for the target population show consistent 

error results when compared with the RHPP error for groups of a similar size. This does 

suggest that the RHPP derived characteristics for the demand and demand shape model will 

be widely applicable for UK households. As has been shown, heat pump electrical demand 

magnitude is highly sensitive to temperature. Whereas existing works tend to focus on the 



86 

 

demand impact of heat pumps for the extreme cold case [87] [113] [78], this work facilitates 

the generation of representative heat pump demand profiles ranging from 0◦C up to 20◦C. 

Given the increased penetration of low carbon technologies (LCTs) on LV networks, it 

becomes of increased importance to model the combined effects of LCTs alongside 

conventional loads rather than study the extreme case for one technology type in isolation. The 

future LV power system will need to be safely rated to incorporate the effects of photovoltaics, 

wind, and electrical vehicles in addition to low-carbon heating. The temperature sensitivity of 

this model allows for generation of demand profiles for any seasonal condition rather than the 

extreme case, enabling study of heat pump effects alongside other technologies. Table 3-4, 

which uses local weather data, illustrates a noticeable effect on the final error of a demand 

forecast. A typical winter day is therefore expected to be different in shape and magnitude 

depending on the local climate extremes – the model presented can generate locally specific 

demand profiles alongside a quantified error, rather than using an extreme winter case not 

tailored to local conditions. Whilst this model captures the behavioural time of use relationship 

that is typically absent from physical models, there are certain pre-requisites to consider when 

using this method to predict electric heat pump demand. In particular, this model is dependent 

on source user profiles in order to seed appropriate scaling factors when performing demand 

normalisation and a proxy for these on de-normalisation. The scaling factors used in this study 

are contemporary to the capabilities of heat pump technology at the time of the original study. 

In order to revise these scaling factors for future generations of hardware, these values would 

have to be adjusted in taking into account typical COP’s and critical physical parameters for 

new hardware. Scaling factors will inevitably be a function of building parameters such as 

floor area, building layout and insulation efficiency as well as heat pump rating, itself related 

to the latter parameters. Building floorspace has been shown to have the greatest influence on 

household heating demand [139]; a potential opportunity for further work would be to derive 

building characteristics including floorspace from remote imagery or aerial lidar data in order 

to automatically define scaling factors tailored to a local area [140]. It has not been possible 
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to model the effects of heat pump demand below 0◦C due to the very limited availability of 

data from this extreme operating region. Below 0◦C the COP of conventional EHP’s drops off 

significantly, greatly reducing conversion efficiency [141]. The typical mitigation strategy to 

counter this behaviour is to install secondary resistive heating to supplement the heat pump 

output for extreme cold cases. This raises the threat of yet higher demand peaks that are driven 

by outdoor air temperature and would require a second model to incorporate the load 

characteristics of this behaviour. 

The developed model is constructed and tested using a combination of RHPP [115] and 

Low Carbon London [2] trial data, which concluded with data collection in 2017 and 2015 

respectively. In addition to being reflective of domestic EHP technology at the time, the 

recorded electrical heat pump demand will reflect the characteristics and the severity of the 

cold weather conditions during the trial sampling periods. Neither trial overlapped with the 

extreme weather events of the 2018 British Isles cold wave [142], or the less recent 2008 

‘Beast from the East’ which saw temperatures of -14.2°C in parts of south-east England [143]. 

In contrast to these more extreme winter events, the Met Office provisionally declared 2023 

as the warmest year ever for the UK for minimum temperature [144]. On top of these climatic 

considerations, the exceptionally high cost of energy has seen estimated drops in household 

gas and electricity consumption by 10.8% and 8.4% respectively [145].  

Therefore, the raw trial data does not provide insight into how domestic EHP’s may 

respond at the coldest winter extremes, but consideration must be additionally given to the 

ongoing drift and rapidly evolving changes in the climate of the United Kingdom as well as 

the economic context in which households use energy. The climatological and economic 

context of the original trial data should be considered when seeking to apply this methodology 

to further EHP impact studies. 
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3.6 Applications and Case Study 

 

Figure 3-15 Distribution network feeder load for 0%, 25%, 50%, 75% and 100% EHP 

penetration on 40 customer residential network during five day winter period (a-top) and 

corresponding daily average outdoor air temperature (b-bottom) 

Through the development of a EHP-specific load model, this work facilitates the further 

analysis of EHP impact on LV networks both in isolation, and alongside the effects of other 

low-carbon technologies. The method could be used for a range of applications including 

examining EHP penetration network impact, as part of a demand response analysis or as part 

of mixed-energy network studies. The probabilistic approach allows for confidence intervals 

to be defined alongside a load prediction; these could be derived from the relevant MAPE and 

σ in Table 3-1 and Table 3-3. This complements existing probabilistic approaches for other 

LV-connected low carbon technologies [146]. It is therefore envisioned that this heat pump 

specific model could be used alongside other probabilistic load types in order to 
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thoroughly examine possible network conditions in the presence of load and generation 

uncertainty. The main challenge EHPs present is the effect at scale at the last mile of 

distribution networks. Underground cables at this part of the network accounts for a significant 

volume of the assets of a network owner and replacement or reinforcement of these to 

accommodate EHP load may require an investment beyond their capabilities. As an example 

application, the predictive model is used to model a simple power flow scenario for a single 

LV feeder with 40 connected households and varying levels of EHP penetration. Smart meter 

data from the Low Carbon London trials [147] is used to create a base domestic load and 

combined with increasing levels of EHP penetration on the feeder. Heat pump electrical 

demand is then predicted for an artificial five-day winter period; Figure 3-15 illustrates the 

output of this study.  

 

Figure 3-16 Uncertainty versus Time of Day versus Number of Customers 
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Figure 3-17 Mean demand and standard deviation for 1, 10, 25 and 100 customers 

The fundamental shape of the overall load profile does not significantly change between 

the 0% and 100% penetration cases; the morning and afternoon peaks are roughly concurrent 

for all levels of penetration however the morning peaks additionally get wider. However, the 

magnitude of the daily load peaks can be seen to significantly increase in value, with the 

evening peak approximately doubling in value for the 100% case. This agrees with the 

expectation outlined at the outset of this paper that full heat pump penetration is roughly 

equivalent to doubling the number of households on a network. 

Figure 3-16 and Figure 3-17 demonstrate the effects of uncertainty versus time of day for 

groups of 1, 10, 25 and 100 customers. For each customer group of n size, 100 random 

selections have been made from the load profiles developed in 3.3.5 for the °C case and the 
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average standard deviation from the mean demand calculated. For Figure 3-16 there is 

increased confidence, or reduced standard deviation from mean demand, for an increasing 

number of customers. The two lowest troughs of uncertainty roughly correspond to the 

morning and evening spans of time where heating activity is typically highest for a household. 

Figure 3-17 demonstrates the same results but plotted versus kWh rather than % standard 

deviation from mean. Each of the customer group cases displays a roughly similar load shape 

throughout the day, but the uncertainty for any time of day rapidly diminishes for increased 

number of customers.  

These results are drawn from the load profiles generated from the RHPP dataset therefore 

these profiles provide an average view of electrical heat demand and uncertainty. For a real-

world feeder with several households of similar construction, occupant demographics and 

thermal routines, there may be reduced diversity versus the averaged RHPP case. 

3.7 Conclusion 

This chapter has defined a model for quantifying the demand impact of increased uptake 

of electric heat pumps for population sizes representative of typical LV network applications 

using demand relationships derived from existing operational datasets and sensitive to local 

weather conditions. A generic relationship between heat pump electrical demand and outdoor 

air temperature has been identified from real customer data and validated on two independent 

datasets. This model facilitates the analysis of heat pump demand that is sensitive to local 

outdoor air temperature conditions, rather than blanket rescaling of existing customer data as 

has been performed for previous studies, augmenting the utility of sparsely available demand 

data. By using a probabilistic approach, the distribution of prediction error has been quantified. 

This creates future opportunities for examining heat pump demand sensitivity for different 

geographical locations against existing heat pump assessments, as well as performing studies 

which incorporate multiple low carbon technologies connected to a LV network. The main 

priority for further work would be to relate the magnitude of electrical demand to an estimated 
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COP and nameplate heat pump rating, such that the scaling factors used for the model could 

be modified to accommodate improvements in heat pump efficiency. It would additionally be 

of interest to examine the variation in weekday, weekend, and exceptional events. 
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This chapter presents a novel localisation electrical heat load model, overcoming the 

limitations of highly aggregated electrical heat load profiles in order to develop load profiles 

that are sensitive to geospatially variable factors such as building physical parameters and 

individual demographics. The impact of localisation is demonstrated via ADMD and through 

a feeder case study. 

4.1 Introduction  
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Figure 4-1 Basic relational structure between geographic boundary, geospatially linked 

physical and behavioural components, heat load and final electrical heat load imposed on the 

distribution network 

In the last decade electric heat pumps (EHP) have transitioned from a fringe solution for low-

carbon heat [148] to a key component of the UK government’s strategy to decarbonize the 

domestic heating sector [27] [149]. Alongside this, the sophistication of heat pump load 

modelling techniques has progressed in recent years in step with the increasing relevance and 

maturity of the technology as well as the needs of the energy sector. The earliest efforts to 

assess heat pump network effects in the UK were constrained by a total absence of data, 

limiting assessments to user surveys to capture non-technical information  [148] and small 

scale trials [150] [151]. Improvements in availability of load data through industry trials have 

facilitated the development of methodologies for modelling highly aggregated load on national 

scales, typically under winter-worst case conditions [76] [152]. Studies performed at the 

household-level modelled the relationship between detailed physical building parameters, 

occupant routines, heat pump activity and therefore heat pump electrical load [126].  

However, modelling heat pump electrical load with the geospatial granularity appropriate 

for distribution networks imposes unique constraints not fully addressed by existing 

techniques. In addition to the ratings of the heat pump used, electrical heat demand is 

proportional to the physical characteristics of a building, such as construction type and 

insulation materials, as well as the behavioural routines of the occupant [114] and 

climatological conditions [153]. 

These parameters are subject to local variation due to different geospatial distributions of 

housing types [128], customer demographics and other influences such as levels of 

urbanisation; this geospatial variability has not been addressed by existing works which to date 

have focused on highly aggregated load profiles. 
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This chapter seeks to address the issue of electrical heat demand localisation by developing 

an approach for locally scaling electrical heat demand predictions from pre-existing annual gas 

meter data. Whilst this work draws on UK-specific datasets, this method demonstrates the use 

of supplementary data to leverage improved insights where distribution-network type impact 

studies are typically data constrained. 

The contribution of this chapter is therefore as follows: 

• To develop a heat demand scale localisation mode appropriate for distribution network 

analysis that can scale heat demand (and consequently electrical heat demand) sensitive 

to geospatially variable parameters such as building construction and demographics 

• Coupling of the heat demand scaling model with the previously developed heat demand 

shape model [153] to provide an end-to-end conversion of annual gas demand to half 

hourly electrical heat demand suitable for LV network impact studies. 

• To demonstrate the value of using localised heat demand predictions for LV network 

impact studies, as opposed to blanket application of pre-existing trial data. This is 

performed by a demonstration of After Diversity Maximum Demand (ADMD) versus 

local heat demand, and through a network case study that quantifies the impact of 

increasing HP penetration. 

 

UK gas meter data is freely available at annual resolution down to the postcode level for 

all gas-connected households. 86% of UK properties use gas as the source for their primary 

heating system [154]. This translates into a potential data source with greater geographic 

granularity and breadth than existing heat pump trial data or parameter-based models, that can 

complement existing works and leverage future analysis as part of isolated heat pump effects 

analysis or as part of multi low-carbon technology (LCT) studies. 

This chapter has been organised as follows. Section 4.2 documents the methodology 

developed in this work. Section 4.3 describes datasets used in the model development and 
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application process in this work. 4.4 outlines the theoretical foundation for the conversion of 

annual gas demand to daily electrical demand in the presence of limited data, and demonstrates 

and tests the outlined methodology versus the training data, quantifying the error associated 

with this approach. Section 4.5 provides the developed conversion model, and Section 4.6 

demonstrates application of the developed model in a network context performing an ADMD 

and network impact case study, deriving local heat demands and assessing the effects of 

increased heat pump penetration on real LV network feeders. Section 4.7 discusses the results 

of the methodology combined with the network impact assessment and identifies opportunities 

for future work.  
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4.2 Methodology Overview 

 

Figure 4-2 Detailed Methodology Overview for Scale Localisation of Electrical Heat 
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This work constructs a process for providing localised electrical heat load predictions, by 

drawing on previous electrical heat demand shape modelling work combined with a novel 

methodology for appropriately scaling the magnitude of electrical heat demand sensitive to 

local physical, behavioural and climatological parameters. 

For electrical heat load, there are two primary components of interest: 

• load magnitude; the scale of electrical heat load during active periods, proportional to 

the physical parameters of a household such as construction and insulation type. 

• load shape; the time of day activity of the electrical heat load, linked to behavioural 

patterns of household occupants and thermal routines. 

This work couples the load shape model developed in [153] with a novel methodology for 

determining the appropriate scaling for load magnitude through use of existing gas demand 

data. These components are then combined in a conversion model which performs the end-to-

end translation of localised annual gas type demand into localised half hourly electrical heat 

demand suitable for LV network type studies. Figure 4-2 demonstrates the relationship 

between the existing demand shape model, combined with the novel scaling and end-to-end 

conversion model developed in this work. This conversion model is then used to quantify LV 

network impact for two case studies, demonstrating the sensitivity to the geospatial variability 

of electrical heat. A brief overview of each component is outlined below. 

4.2.1 Heat Demand Scaling 

   In order to provide the magnitude localisation for heat demand shapes, this work draws 

on geospatially granular gas demand data to inform localised heat demand. Due to the annual 

resolution of this dataset, a model is developed to translate the data into predicted daily demand 

that can then be coupled to the load shape model.  

    This work exploits two fundamental theoretical relationships: the sinusoidal variation 

of seasonal temperature variation in high latitude environments, combined with direct 

proportionality of heating demand to daily average temperature [153].  By inferring that 
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seasonal heat demand is directly proportional to the sinusoidally variable seasonal temperature, 

heat demand itself may be assumed to be primarily sinusoidal at a seasonal level. This 

sinusoidal characteristic is held to be applicable regardless of the specific heat demand type, 

but will naturally be subject to daily random variation due to temperature fluctuations and 

human activity such as public holidays and other routines. Furthermore, this proportionality 

will exist regardless of customer magnitude – a small household will have lower overall heat 

demand, but will still vary in a sinusoidally proportional manner to local temperature in the 

same way a large energy inefficient household would.  

     It is therefore hypothesized that each customer’s seasonal demand variation can be 

represented as a sinusoid of fixed frequency and phase regardless of heat demand type or 

customer size, with each customer featuring their own unique amplitude and offset values that 

form the aggregate representation of the individual customers geospatially linked physical and 

behavioural parameters.  Therefore, if the annual energy consumption (area under the 

sinusoid) is known, the unique amplitude and offset values for the customer can be inferred.  

In order to define the sinusoidal function that approximates daily demand for each 

individual customer, the amplitude and offset parameters are extracted from the training 

demand datasets by linearizing the raw data and performing a simple linear regression. The 

output of this regression is to extract the unique amplitude and offset parameters that defines 

each customer’s seasonal demand curve. These unique offset and amplitude values are then 

fitted to a generic probabilistic model that translates annual to daily demand with common fit 

parameters for all three heat demand types tested in this methodology; gas-type demand, 

electrical heat-type demand and direct-heat-type demand. This model is then validated versus 

the training datasets, with mean absolute percentage error (MAPE), mean absolute error (MAE) 

and Pearson’s correlation coefficient (R) calculated versus the daily error and the peak error.  
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4.2.2 Heat Demand Shape 

On half hourly timescales, electrical heat demand shape has been demonstrated to vary in 

accordance with the time of day, behavioural patterns, and occupancy routines of the user in 

addition to temperature [76]. Furthermore, it has been demonstrated that these load shapes are 

applicable regardless of the size of household being heated. This methodology uses load shape 

model developed in [153] in order to provide the time-of-day activity for the heat demand 

model; the load shape model probabilistically generates forty-eight half-hourly normalised 

load shapes sensitive to daily average temperature, daily total normalised demand, and level 

of customer aggregation. These normalised load shapes provide the base normalised electrical 

heat demand that is then scaled by the novel methodology developed in this paper. 

4.2.3 Conversion Model 

In order to transform the daily electrical heat demand into a series of sub-daily shapes, the 

electrical heat shape conversion model from [153] is applied combined with the electrical heat 

scaling methodology derived in this work. Through the use of linear thermal conversion 

efficiencies, gas demand is translated into heat demand, and then into equivalent electrical heat 

demand. 

4.2.4 LV Network Impact 

The developed model is then applied to the target temporal low-resolution, geospatially 

high-resolution dataset of interest, in this case the geographically granular BEIS (Department 

for Business, Energy & Industrial Strategy) Postcode Gas Demand dataset [155]. The derived 

model and global fit parameters are applied to the annual gas demand figure for the postcode 

or geographic area of interest, with daily electrical heat demand as an output.  

Two case studies are performed to demonstrate this methodology in an LV networks 

context; an examination of localized ADMD versus number of customers and heat pump 

coefficient of performance (COP), and a network impact assessment performed on a real 
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distribution network feeder. An average, high and low electrical heat demand case are 

examined in order to demonstrate the effects of localisation on average minimum endpoint 

voltage for a range of heat pump penetrations. Together these case studies demonstrate the 

utility of the developed model and allow localized comparisons to be made versus the averaged 

results in existing trial datasets.  

4.3 Case Study Datasets 

 

 

(a) 

 

 

(b) 

 

 

(c) 

 

 

(d) 
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Figure 4-3 Plotting 30-day average demand for RHPP – Heat (a), RHPP – 

Electric (b) and Energy Demand Research Project (EDRP) - Gas (c) datasets for full 

duration of data capture. 

 

 

Dataset EDRP [15] RHPP [10] RHPP [10] 
Postcode BEIS 

[16] 

Heat Demand 

Type 
Gas Electric Direct Heat Gas 

Model Function Training Training Training Target 

Number of 

Customers/ 

Entities 

4000 700 700 3 million 

Sampling 

Frequency 
30 minutes 2 minutes 2 minutes Annual 

Geographic 

Resolution 
N/A N/A N/A 

Average 15 

households 

[156] 

Date of 

Collection 
2010 2012 - 2015 2012- 2015 2015 – Present 

Table 4-1 Dataset overview for annual-daily winter peak demand translation 

The datasets used within this study consist of the training datasets used to construct and 

test the relationship between annual and daily heat demand, alongside the target dataset where 

the daily heat demand will be predicted in the absence of data using the developed predictive 

model. Testing is performed versus the training dataset. Due to the legal obligation for 

sufficient anonymisation of data [157], there is generally a trade-off between the geographic 

granularity and temporal resolution of publicly available demand datasets. Generally, high 
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temporal resolution demand data has been geographically anonymised or aggregated [115], 

whilst various government published datasets provide high geographic granularity with poor 

temporal resolution. Studies at the LV level necessitate access to data with high temporal and 

geographic resolution. This study uses three heat-type demand datasets with high temporal 

resolution that will be used to construct and test a model that then can be applied to the low 

temporal resolution, geographically granular dataset. These are tabulated in Table 4-1, 

showing the number of customers per dataset and sampling frequency versus heat demand 

type. 

Samples of these three heat-type demand datasets are plotted in Figure 4-3, with 

conditioning of the raw demand data for clarity. For each heat-type demand (electrical heat 

(a), gas heat (b), and direct heat (c)), twenty random customers that have a full year of 

continuous demand data from each heat-type demand dataset are sampled. The 30-day rolling 

average for each customer is then plotted. For further context to demonstrate the seasonal 

variation of heat demand versus temperature, the daily average temperature [132] from the 

2015 Central England dataset is plotted in (d). 

4.3.1 Training Data 

Three datasets are used to construct and test the relationship between annual and daily 

heating demand from existing heat-type demand data where both the annual and daily demand 

is known, such that the methodology may then be applied to low temporal resolution datasets 

where only the annual demand is known.  

The first dataset; the Energy Demand Research Project (EDRP) dataset  [158] consists 

of gas meter data collected in 2010 in order to provide improved insights into UK energy 

consumption at the time. Collected at 30-minute intervals with several thousands of customers, 

this dataset offers great breadth of individual behavioural variation but due to the 

anonymisation process there is no associated granular geographic information that can support 
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correlation of metadata to directly measured demand. This forms the training gas demand 

dataset for this study. 

Alongside this is the Renewable Heat Premium Payment (RHPP) dataset which consists 

of data collected from 700 [115] household heat pumps during the period 2013 – 2015 at a two 

minutely resolution. At the time this formed the largest European field trial of domestic heat 

pumps. Similar to the EDRP data, no associated geographic information is published with this 

dataset. The RHPP dataset forms the training electrical and direct heat demand datasets for 

this study.  

4.3.2 Target Data 

 

Figure 4-4- Distribution of Annual Gas Demand 2017, 2018 and 2019 per Postcode 
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The target dataset for this study is the BEIS Postcode Gas Demand dataset [155]. This 

features annual gas meter information for 1.1 million postcodes in the UK, with each postcode 

representing an average of 15 households. This dataset therefore features high spatial 

granularity but very low temporal resolution. This dataset has been released in annual editions 

every year since 2015 to the present day and therefore represents an up-to-date view of UK gas-

provided heat demand. For this work the release from 2019 is used; 2020 was not used due to 

the exceptional circumstances caused by the outbreak of Covid-19 and the consequent 

disruption to normal heating routines and data collection. The inherent value of this dataset is 

therefore due to several complementary factors; in contrast to trial data [2] [115], the dataset 

is a contemporary representation of gas demand as opposed to being several years old, in 

addition to being geographically granular, geographically comprehensive and reflecting the 

demand characteristics of a mature heating technology. The postcodes provided in the dataset 

provide gas demand for 119 unique postcode area codes, and 2524 unique postcode district 

codes. Using the total known codes for each geographic level provided in [156], the coverage 

in the dataset constitutes of 95.9% of all postcode area codes, and 80.95% of all postcode 

district codes within the UK. 

4.4 Scaling of Electrical Heat Demand 

4.4.1 Theoretical Relationship between Annual and Daily Demand 

This section will demonstrate the fundamental theoretical components between annual heat 

demand and daily heat demand that the core predictive model will be constructed with using 

the training heat demand type datasets. The key goal of this section is to demonstrate that an 

individual household’s daily heat type demand is periodically proportional to annual total heat 

type demand, regardless of local climate, geography, behavioural factors or the specific heat 

demand type. This sinusoidal proportionality can then be exploited in order to derive a peak 

winter demand or intermediate daily demand from a single annual total demand figure. 
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⬛ Direct Heat Demand (kWh) ⬛ Daily Average Temperature (ºC) 

Figure 4-5  Demonstration of inverse relationship between seasonal mean daily 

temperature (°C) and seasonal mean daily demand (kWh) for single customer from 

direct heat training dataset. 

 

Figure 4-6 Theoretical demand composition illustrating temperature dependent (𝐷𝑡𝑒𝑚𝑝)  

and non-temperature dependent (𝐷𝑏𝑎𝑠𝑒) components. 

   Heating demand for an occupied property is primarily linked to the ambient external 

air temperature, the desired internal temperature [3] and the physical parameters of the 

https://fsymbols.com/signs/square/
https://fsymbols.com/signs/square/
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property that determine the input energy required to bring the building to a comfortable steady 

state condition for the occupant. Whilst the physical parameters and desired internal 

temperature remain more or less static on seasonal timescales [159] [160], the external air 

temperature varies seasonally in accordance with the local climate of the property. For non-

equatorial locations this translates into large variation between the seasonal minimum and 

seasonal maximum demand and therefore an equivalent large variation on electrical network 

conditions.  At a seasonal level, behavioural effects such as daily usage patterns are 

minimized and that on a daily or longer time scale demand is fundamentally proportional to 

temperature rather than behavioural components [76]. Due to the sinusoidal characteristic of 

seasonal temperature variation [161] mean daily heating demand can therefore be 

approximated as a fixed frequency sinusoid. This can be further deconstructed as follows, with 

the mathematical relationship shown in (23) and visually in Figure 4-6. 

• 𝐷𝑡𝑒𝑚𝑝  determines the maximum magnitude of the temperature dependent demand 

component.  

• 𝐷𝑏𝑎𝑠𝑒 represents the positive offset from the x-axis and therefore the non-temperature 

dependent component of the overall demand.  

• 𝐷𝑜𝑓𝑓𝑠𝑒𝑡 represents the total offset of the sinusoidal function.  

• Frequency f is determined by the length of the year.  

• Phase 𝜙 is constant and is used to offset the lag between the Gregorian calendar and 

seasonal temperature minimum and maximums. 

  

𝑓 (𝐷) =
𝐷𝑡𝑒𝑚𝑝
2

sin(2𝜋𝑓 + 𝜙) + 𝐷𝑜𝑓𝑓𝑠𝑒𝑡 
(23) 

𝐷𝑏𝑎𝑠𝑒 = 𝐷𝑡𝑒𝑚𝑝 − 𝐷𝑜𝑓𝑓𝑠𝑒𝑡 (24) 

𝐷𝑡𝑒𝑚𝑝 ≥ 𝐷𝑏𝑎𝑠𝑒 (25) 

𝐷𝑚𝑎𝑥 = 𝐷𝑡𝑒𝑚𝑝 + 𝐷𝑏𝑎𝑠𝑒 (26) 
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This definition allows the idealized sinusoid to be decomposed into the temperature 

dependent and non-temperature dependent components. By assuming the function as a sinusoid 

plus fixed offset 𝐷𝑜𝑓𝑓𝑠𝑒𝑡  , overall demand may therefore be represented as a fixed non-

temperature dependent load plus varying temperature dependent sinusoid. This is key as while 

household gas demand in the UK is primarily heating, non-temperature dependent components 

such as cooking and water heating contribute a continuous seasonal load that is largely 

insensitive to temperature and minimal in scale to peak heating demand [162]. Additionally, 

due to local climate or personal preference, some households may maintain a heating baseload 

throughout the year [114]. Assuming that the temperature dependent component is the most 

significant portion of the overall gas demand and that the overall demand function closely 

approximates an ideal sinusoid, it is therefore possible to model the daily demand using the 

annual consumption as a single input. For a pure sine wave, the area under the curve is 

proportional to the maximum amplitude. In this case the area under the curve represents the 

total annual gas consumption 𝐷𝑎𝑛𝑛𝑢𝑎𝑙 for a particular customer, which is then related to the 

maximum demand 𝐷𝑡𝑒𝑚𝑝.  

𝐷𝑎𝑛𝑛𝑢𝑎𝑙 = ∫
𝐷𝑡𝑒𝑚𝑝

2
sin(2𝜋𝑓 + 𝜙)

2𝜋

0

 + 𝐷𝑜𝑓𝑓𝑠𝑒𝑡 
(27) 

This may then be used to extrapolate the daily winter demand peak that will be experienced 

at the minimum seasonal temperature as well as intermediate daily demand figures throughout 

the year. This relationship will be used to derive a predicted daily winter peak demand from a 

measured annual demand, supporting network analysis on seasonal and daily timescales in the 

presence of low temporal resolution demand data. 

4.4.2 Application of Sinusoidal Approximation to Demand Datasets 

This section outlines the process used to extract the customer specific sinusoidal amplitude 

and offset fit parameters from raw heat-type demand data. Beyond this the sinusoidal 



110 

 

parameters are used to fit the training datasets such that predictions can be made for the target 

dataset using a single unified model that is insensitive to heat demand type. 

The methodology can broadly be split into initial conditioning of the data, parameter 

extraction and dataset fitting. 

4.4.2.1 Data Conditioning 

A common process was applied to all three training datasets in order to cleanse, condition 

and format the data prior to forming the annual to winter peak demand model. Users from the 

RHPP and EDRP datasets with less than 12-month continuous demand data were discarded and 

the time period was resampled from 2-minutely to daily for the RHPP dataset and from 30-

minutely to daily for the EDRP dataset. Customers with periods of zero data were intentionally 

retained as this could reflect household absence rather than communications errors. 

4.4.2.2 Parameter Extraction 

As has been described previously, daily heat demand may be represented as a sinusoidal 

function at a seasonal level due to its proportionality with seasonal temperature variation. Each 

customer therefore features a unique amplitude and offset value that reflects demand magnitude 

and ratio of temperature dependent to non-temperature dependent load. These unique amplitude 

and offset values are extracted from the conditioned training datasets through application of a 

univariate linear regression. (28) is used to convert the x-axis in the original time series data for 

each customer from day of the year to day angle, where day of year ranges from 1 to 365 and 

day angle ranges from -1° to 1°. This folds the sinusoidal function into a linear function as 

shown in Figure 4-7, allowing representation in the generalised linear form provided in (30). In 

the linear form 𝛽0 forms the y-intercept and is equivalent to 𝐷𝑏𝑎𝑠𝑒 in the sinusoidal form (24) 

(31). 𝛽1  forms the gradient of the linear regression and is equivalent to 𝐷𝑚𝑎𝑥  in the 

sinusoidal form (26) (32). 𝜀 represents the general error function of the solution.  
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The output of this process is to derive from the raw demand data for gas, electrical and 

heating types, the unique set of 𝛽0 and 𝛽1 values for each customer that can then be related 

to the annual demand figure. Using the fully visible training dataset the relationship between 

real annual and real peak demand is examined alongside the predicted peak demand; this 

process is performed in the next section.  

 

Figure 4-7 Transformation of Sinusoidal Function (left) to Linear Form and Linear 

Regression (right) for example customer 

𝑓 (°) = sin(
𝐷𝑎𝑦 𝑜𝑓 𝑌𝑒𝑎𝑟

365
 2𝜋 + 𝜙) (28) 

𝜙 =  1.1 (29) 

𝑓 (𝐷) =  𝛽0 + 𝛽1 × 𝑓 (°) + 𝜀 (30) 

𝛽0 = 𝐷𝑏𝑎𝑠𝑒 (31) 

𝛽1 = 𝐷𝑚𝑎𝑥 (32) 

Table 4-2– Sinusoidal and Linear Forms for Daily Demand 

Parameter Sinusoidal Form Linear Form 



112 

 

Total Daily Demand 
𝑓 (𝐷) =  

𝐷𝑡𝑒𝑚𝑝

2
sin(2𝜋𝑓 + 𝜙) 

+(𝐷𝑡𝑒𝑚𝑝 − 𝐷𝑏𝑎𝑠𝑒) 

𝛽0 + 𝛽1 × 𝑓 (°) 

Temperature Dependent 

Component 

𝐷𝑡𝑒𝑚𝑝
2

sin(2𝜋𝑓 + 𝜙) 𝛽1 ×  𝑓 (°) 

Non-Temperature 

Dependent Component 
𝐷𝑏𝑎𝑠𝑒 β0 

4.4.2.3 Dataset Fitting 

 

Figure 4-8  𝛽1_𝑆𝑐𝑎𝑙𝑒𝑑 distribution (top) and 𝛽0_𝑆𝑐𝑎𝑙𝑒𝑑 distribution (bottom). 

This section outlines the methodology for translating the individual customer sets of 𝛽0 

and 𝛽1 values extracted in the previous section from the gas, electric and direct heat training 

 0       

 1       
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datasets into representative probability distributions that will reflect the fitted amplitude and 

offset values extracted for each of the demand datasets. This relies on two basic assumptions 

that will be tested: 

• Heat demand is fundamentally sinusoidal regardless of heating technology type. 

• Therefore, an individual customers amplitude and offset are intrinsically proportional to 

the same individual’s total annual demand, regardless of customer size. 

For all customers in the heat, gas and electrical training datasets an 𝛽1  (amplitude) and 

𝛽0 (offset) value have been derived through the previously described parameter extraction 

section. In order to transform all customer values to a common scale, the unique 𝛽0 and 𝛽1 

values for each customer are normalized with respect to each individual customers unique 

annual demand, as illustrated in (33) and (34). 

𝛽0_𝑆𝑐𝑎𝑙𝑒𝑑 =
𝐷𝐴𝑛𝑛𝑢𝑎𝑙
𝐾𝑤ℎ

𝛽0
 (33) 

𝛽1_𝑆𝑐𝑎𝑙𝑒𝑑 = 
𝐷𝐴𝑛𝑛𝑢𝑎𝑙
𝐾𝑤ℎ

𝛽1 
 (34) 

The probability distributions of the normalized 𝛽0_𝑆𝑐𝑎𝑙𝑒𝑑 (33) and 𝛽1_𝑆𝑐𝑎𝑙𝑒𝑑  (34) values 

for the training datasets are illustrated in Figure 4-8. As per Table 4-2, β0 reflects the offset 

or non-temperature dependent component of the load profile. 𝛽1 represents the amplitude, or 

temperature dependent component of the load profile that varies seasonally. The three 

probability distributions derived from the heat-type demand datasets are then averaged [163] 

in order to construct global probability distributions for 𝛽0_𝑆𝑐𝑎𝑙𝑒𝑑 and 𝛽1_𝑆𝑐𝑎𝑙𝑒𝑑 as per (35) 

and (36), which are also plotted in Figure 4-8. A normal distribution will be used in order to 

provide a general fit.  

Two primary observations can be made. The 𝛽1_𝑆𝑐𝑎𝑙𝑒𝑑  distribution for all datasets 

features a very closely aligned mean; 387 for gas, 394 for electric and 391 for heat. This 

confirms that the amplitude (𝑚) for all heating types is fundamentally proportional to annual 

demand through the sinusoidal assumption. Furthermore, this illustrates that even for real 
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demand data this sinusoidal characteristic remains dominant. The offset of the P(𝛽0_𝑠𝑐𝑎𝑙𝑒𝑑
𝑔𝑎𝑠

) 

distribution with respect to the P(𝛽0_𝑠𝑐𝑎𝑙𝑒𝑑
𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙) and P(𝛽0_𝑠𝑐𝑎𝑙𝑒𝑑

𝑑𝑖𝑟𝑒𝑐𝑡 ℎ𝑒𝑎𝑡) illustrates that, on average, 

gas type demand features a higher slightly 0 offset value than electrical and direct heat type 

demands. This is to be expected due to gas type demand incorporating non-heat type functions 

such as cooking [164] and therefore contributing a higher baseload. 

𝑃(β0_scaled
𝑔𝑙𝑜𝑏𝑎𝑙

) =
𝑃(β0_scaled

𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙) +  𝑃(β0_scaled
𝑔𝑎𝑠

) + (β0_scaled
𝑑𝑖𝑟𝑒𝑐𝑡 ℎ𝑒𝑎𝑡) 

3
 

(35) 

𝑃(β1_scaled
𝑔𝑙𝑜𝑏𝑎𝑙

) =
𝑃(β1_scaled

𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙) +  𝑃(β1_scaled
𝑔𝑎𝑠

) + (β1_scaled
𝑑𝑖𝑟𝑒𝑐𝑡 ℎ𝑒𝑎𝑡) 

3
 

(36) 

𝑃(βn_scaled
𝑔𝑙𝑜𝑏𝑎𝑙

) =
1

𝜎√2𝜋
𝑒
−1
2
(
𝑥−𝜇
𝜎
)2 (37) 
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4.4.3 Model Validation 

 

Figure 4-9 Real raw demand profiles (top) versus synthetically generated demand 

profiles (middle), and aggregated real versus predicted demand (bottom) 

Modifying the generalized linear form presented initially in (10), the daily demand for any 

day of the year for any heat type demand can now be predicted using only the known annual 

demand 𝐷𝐴𝑛𝑛𝑢𝑎𝑙
𝑘𝑊ℎ  and the global probability distributions  𝑃(𝛽0𝑔𝑙𝑜𝑏𝑎𝑙

𝑠𝑐𝑎𝑙𝑒𝑑)  and 𝑃(𝛽1𝑔𝑙𝑜𝑏𝑎𝑙
𝑠𝑐𝑎𝑙𝑒𝑑) 

constructed in pervious sections. This output is presented in (38) and demonstrated visually in 

Figure 12 for customer sets of  varying population sizes. 
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𝑓 (𝐷𝑝𝑟𝑒𝑑) =  
𝐷𝐴𝑛𝑛𝑢𝑎𝑙
𝑘𝑊ℎ

𝑃(𝛽0𝑔𝑙𝑜𝑏𝑎𝑙
𝑠𝑐𝑎𝑙𝑒𝑑)

+
𝐷𝐴𝑛𝑛𝑢𝑎𝑙
𝑘𝑊ℎ

𝑃(𝛽1𝑔𝑙𝑜𝑏𝑎𝑙
𝑠𝑐𝑎𝑙𝑒𝑑)

× 𝑓 (°) 
(38) 

Two general tests are performed to assess the quality of the model output and assess the 

sensitivity of this methodology to heat demand type: 

• Daily Error testing: Calculation of MAPE and coefficient of determination for general 

daily error case. 

• Winter Peak Error testing: Calculation of MPE for Daily Winter Peak demand. 

General daily error is of interest to assess the quality of the predictive model for 

applications where continuous time series load profiles are applied, such as in studies 

incorporating multiple low carbon technologies. Peak error is of interest as this is an indication 

of the worst-case network conditions, and in itself influences ADMD which is an established 

metric for LV network planning [89]. 

Figure 4-10 illustrates the workflow for computing the model error. The developed model 

will be tested versus populations of customers to assess the error at a typical LV network scale. 

For each heat demand type, random customers are selected from the global training dataset 

pool to generate customer group sizes of 1, 5, 10, 25, 50, 75 and 100. For each customer group 

size 100 random samplings are performed, with the error for each sampling being calculated 

and averaged. 
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Figure 4-10 Workflow for predicting peak daily demand from annual demand and 

validation 

4.4.3.1 Daily Error Testing 

The 𝑓 (𝐷𝑝𝑟𝑒𝑑) function for a continuous 365-day period is computed for each individual 

customer in a customer set and the daily mean absolute percentage error and coefficient of 

determination R2 (39) with respect to the measured values are calculated. For all heat demand 
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types, the R2 converges on greater than 0.95 for customer group sizes of 25 or above. Similarly, 

the MAPE converges on less than 10% for all heat demand types for customer group sizes of 

25 or greater. 

𝑅2 = 1 − 
∑(𝑦𝑖 − 𝑦�̂�)

2

∑(𝑦𝑖 − �̅�)
2

 (39) 

𝑀𝐴𝑃𝐸 (%) =  
1

𝑛
∑ |

𝑓 (𝐷𝑟𝑒𝑎𝑙)  −  𝑓 (𝐷𝑝𝑟𝑒𝑑) 

𝑓 (𝐷𝑝𝑟𝑒𝑑) 
|

𝑛

𝑖 =1

 
(40) 

4.4.3.2 Winter Peak Error Testing 

The sum total of the predicted winter peak versus the real winter peak for each group is 

calculated as per (21), where the value of 𝑓 (°) is set to the maximum day-angle of 1° to obtain 

the annual peak.  Mean percentage error is calculated as per (42). 

𝐷𝑑𝑎𝑖𝑙𝑦 = (
𝐷𝑎𝑛𝑛𝑢𝑎𝑙
𝑘𝑊ℎ

𝑃(𝛽0𝑔𝑙𝑜𝑏𝑎𝑙
𝑠𝑐𝑎𝑙𝑒𝑑)

+ 
𝐷𝑎𝑛𝑛𝑢𝑎𝑙
𝑘𝑊ℎ

𝑃(𝛽1𝑔𝑙𝑜𝑏𝑎𝑙
𝑠𝑐𝑎𝑙𝑒𝑑)

) × 1 
(41) 

 

𝑀𝑃𝐸 (%) =  
100%

𝑛
∑

𝐷𝑟𝑒𝑎𝑙 − 𝐷𝑝𝑟𝑒𝑑
𝐷𝑟𝑒𝑎𝑙

𝑛

𝑖=1

 
(42) 

Figure 4-11 shows the mean percentage error and standard deviation for each of the group 

size and heat demand type combinations. This illustrates that for all three heating types the 

error converges on a low mean percentage after approximately 25 customers, despite the 

inherent offset associated with each case. For distribution network forecasting applications, 

errors of 11% to 16% have been achieved elsewhere [137]. 
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Figure 4-11 R2, Daily Mean Percentage Error and Daily Winter Peak MAPE for Model 
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4.5 Conversion Model 

 

Figure 4-12 Gas, Direct Heat and Electrical heat type demands and their associated 

conversion factors η (gas to heat conversion efficiency) and COP (coefficient of performance, 

heat to electrical heat conversion efficiency) 

This section outlines the process for transforming input annual gas demand into half hourly 

electrical heat demand using the annual to daily demand relation developed in this work and 

the daily to half hourly demand relation developed in [153]. The conversion model provides 

the link between a geographic area, input gas demand and the translation into a half hourly 

electrical heat demand suitable for LV network impact analysis. 

     The workflow for this process is shown visually in Figure 4-13. Beginning with the 

input annual gas demand 𝐷𝐺
𝑎𝑛𝑛𝑢𝑎𝑙, this is converted into the peak winter value 𝐷𝑝𝑟𝑒𝑑 as per 

(41). The input n represents the number of customers that corresponding 𝐷𝑝𝑟𝑒𝑑  values are 

generated for. Gas, direct heat, and electrical heat type demands are all expressions of the input 

energy required to bring a household to a target temperature level. Using appropriate 

conversion efficiencies, translation between heat type demands can be performed as shown in 

Figure 4-12.  To translate daily gas demand into the equivalent electrical demand, two 

conversion efficiencies must be considered. The first 𝜂 accounts for the gas to heat efficiency 

of the gas boiler system, typically 80% to 90%. [103]. More recently, the Boiler Plus Standards 

introduced in England in 2018 mandate a minimum efficiency standard of 92%, but this is 

only applicable to new installations [165]. For this study a single gas-to-heat efficiency of 85% 

is used in order to approximate average boiler efficiency rather than specifically modelling 

older or newer boiler efficiencies. Therefore, in order to transform the predicted direct heat 

demand from gas the equation in (43) is applied. The second efficiency 𝐶𝑂𝑃 (coefficient of 
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performance) represents the efficiency of the electrical to heat conversion for the heat pump 

system, typically 2.5 to 3 for modern systems [28]. This is applied as shown in (24) in order to 

derive the equivalent daily electrical heat daily demand 𝐷𝐸
𝑑𝑎𝑖𝑙𝑦. 

 



122 

 

Figure 4-13 Workflow for conversion of Annual Gas Demand to Half Hourly Electrical 

Heat Demand 

Each of the application case studies uses a common process for transforming 𝐷𝐺
𝑎𝑛𝑛𝑢𝑎𝑙 

into equivalent half-hourly electrical heat demand 𝐷𝐸
ℎℎ load profiles suitable for localized 

distribution network analysis. 

The workflow for this process is shown visually in Figure 4-13. Beginning with the input 

annual gas demand 𝐷𝐺
𝑎𝑛𝑛𝑢𝑎𝑙, this is converted into the peak winter value 𝐷𝑝𝑟𝑒𝑑 as per (41). 

The input n represents the number of customers that corresponding 𝐷𝑝𝑟𝑒𝑑  values are generated 

for. Gas, direct heat and electrical heat type demands are all expressions of the input energy 

required to bring a household to a target temperature level. Using appropriate conversion 

efficiencies, translation between heat type demands can be performed as shown in Figure 4-13.  

To translate daily gas demand into the equivalent electrical demand, two conversion 

efficiencies must be considered. The first 𝜂 accounts for the gas to heat efficiency of the gas 

boiler system, typically 80% to 90%. [103]. Therefore, in order to transform the predicted direct 

heat demand from gas the equation in (23) is applied. The second efficiency 𝐶𝑂𝑃 (coefficient 

of performance) represents the efficiency of the heat to electrical conversion for the heat pump 

system, typically 2.5 to 3 for modern systems [102]. This is applied as shown in (24) in order 

to derive the equivalent daily electrical heat daily demand 𝐷𝐸
𝑑𝑎𝑖𝑙𝑦. 

𝐷𝐻
𝑑𝑎𝑖𝑙𝑦

=
𝐷𝐺
𝑑𝑎𝑖𝑙𝑦

𝜂
 

(43) 

 

𝐷𝐸
𝑑𝑎𝑖𝑙𝑦

=
𝐷𝐻
𝑑𝑎𝑖𝑙𝑦

𝐶𝑂𝑃
 

(44) 

 

In order to perform the final transformation between daily electrical heat demand 𝐷𝐸
𝑑𝑎𝑖𝑙𝑦 

the probabilistic electrical heat load shape model from [153] is used in order to relate the input 
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daily demand magnitude 𝐷𝐸
𝑑𝑎𝑖𝑙𝑦 to a set of 48 half hourly demand magnitudes. An input 

temperature of 0°C and the input duty cycle function derived from the RHPP dataset from 

[153] was used. 

4.6 LV Network Impact 

Having derived the methodology for transforming input annual heat type demand into half 

hourly electrical heat type demand, this section demonstrates the application of the derived 

approach in an LV network context through the following case studies: 

• ADMD versus input annual gas demand and COP; estimating localized ADMD 

contributed by electrical heat load for a range of COPs 

• LV network impact assessment versus increased electrical heat pump penetration. 

     ADMD remains a useful metric for DNOs in order to assess and size the physical 

ratings of network assets with respect to the maximum expected load conditions [89].  High 

penetrations of heat pumps stands to significantly alter existing design assumptions and it is 

therefore of interest to estimate locally specific ADMD from localised electrical heat load. 

Through these case studies the utility of the localized heat demand model will be demonstrated 

with respect to specific LV network impact assessment. 

4.6.1 ADMD Study 

     This section will examine the variation in predicted ADMD due to electrical heat 

load, given the normal variation in annual gas demand in the BEIS dataset. ADMD is 

calculated as per the equation below (45), with the input variables listed in (46). 𝑛 defines the 

number of customers, 𝜂 is the gas-to-heat conversion efficiency, and 𝐶𝑂𝑃 is the heat-to-

electrical heat conversion efficiency. 

𝐴𝐷𝑀𝐷 =
1

𝑛
∑𝑃𝑖

𝑁

𝑖=1

 
(45) 
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𝑖𝑛𝑝𝑢𝑡𝑠𝐴𝐷𝑀𝐷 =   

{
 

 
𝐷𝐴𝑛𝑛𝑢𝑎𝑙
𝑘𝑊ℎ = {−𝜎,𝑚𝑒𝑎𝑛,+𝜎

𝑛 = {1, 5, 10, 25, 50, 75, 100}
𝜂 = {0.85}

𝐶𝑂𝑃 = {2, 2.5, 3}

 

 

(46) 

Using the previously developed electrical heat shape model in chapter 3 [153], and the 

localized gas to daily electrical demand model derived in this work, a localized ADMD model 

can be constructed in order to predict a local ADMD contributed by electrified heating, 

sensitive to local building parameters and demographics. The mean, plus and minus one 

standard deviation with respect to the mean annual gas demands from the 2019 BEIS dataset 

are used as inputs for this study, whilst model inputs η, COP and number of customers n are 

varied in order to demonstrate the variation of ADMD with respect to number of customers, 

and heat conversion efficiency.  Figure 4-14 demonstrates the output of this workflow. The 

sensitivity of final ADMD with respect to COP is clear; due to improvements in technology 

COPs have been improving in recent years [102]. The lower the number of customers and 

COP the more severe the potential network impact. 

 Figure 4-15 demonstrates the relationship between COP, ADMD and the variation with 

respect to the annual gas demand dataset. A one-standard deviation from mean input annual 

gas demand translates into approximately a 20% deviation in terms of predicted ADMD. This 

highlights that households that fall in postcodes with extremely low or high gas demands may 

be expected to have correspondingly low or high electrical heat load. Elsewhere, the ADMD 

curve obtained from the raw RHPP dataset in [76] falls between the mean case for a COP of 2 

to 2.5. This suggests that the RHPP household sample set is broadly representative of the 

average housing stock of the UK reflected in the BEIS annual gas postcode dataset. Similarly, 

in the CLNR study, the ADMD of electrical heat pumps converged on 1.5kW for customer 

populations of 50 or greater [89]. For both the RHPP and CLNR studies, the advancements in 

typical HP COP with respect to when the trial data was originally collected will result in a 
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shift in final estimated ADMD with respect to the original trial data. This work offers the 

capability to localize ADMD beyond the previously existing average representations into 

predictions sensitive to local parameters as well as the continual improvements in COP.    

 

Figure 4-14 Localized ADMD (kW) for RHPP dataset 
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Figure 4-15 Variation in modelled ADMD versus variation in input Annual Gas 

Demand with respect to population mean. 

4.6.2 LV Network Impact versus Increased Heat Pump Penetration 

 

Figure 4-16 Aerial geospatial image of modelled feeder 

To demonstrate the local heat demand methodology derived in this paper in a general 

network impact context, the approach is applied a real network 415V feeder. A low and high 
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feasible postcode heat demand are taken from the 2019 distribution shown in Figure 4-4, 

converted into equivalent electrical demand through the workflow in Figure 4-13, and applied 

to the corresponding feeder, examining the potential impact of increased HP penetration. The 

impact of these demands is contrasted versus the electrical demand figure from the pre-existing 

RHPP dataset. Alongside this, the equivalent population average heat demand from the RHPP 

dataset is used. 

The feeder is modelled in OpenDSS from GIS network data made available by SSEN (1 

of 6 DNOs in GB). The feeder consists of 54 loads connected with an unbalanced phase 

distribution and has a total length of approximately 1600 metres; note that impedance and 

maximum current data for the cabling was matched to GIS cable type information based on  

[166] [167] [168]. An aerial geospatial image of the modelled feeder is provided in Figure 

4-16 where Bing Aerial [169] and QGIS [170] are used for visualisation.  

4.6.2.1 Network Impact Assessment Methodology 

A 48 half-hourly daily Monte-Carlo style approach is taken to model the impact of 

increasing load growth due to HP uptake on the developed feeder for each postcode demand, 

where Exelon’s demand profile for a winter’s day [171] is used for the base load to represent 

a ‘worst’ case scenario. HP penetrations are then increased from 0% to 100% in 10% 

increments. The model developed in [153] is used to generate the daily behavioural profiles. 

For each penetration, HP loads are randomly distributed across the feeder loads and results are 

stored for a number of profiles and load locations per penetration. The minimum feeder 

endpoint voltage is used as a metric to quantify the operational consequence of the results. 

Therefore for each penetration step, the minimum feeder endpoint voltage represents the 

minimum voltage obtained across multiple random allocations of profiles and load locations. 
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4.6.2.2 Results 

Figure 4-17 presents the results of the Monte-Carlo style impact assessment. A three-

dimensional plot that shows average minimum feeder endpoint voltage for across the sample 

vs time vs HP penetration is presented where Figure 21(a)-(c) represents each individual 

postcode annual gas demand; 9000 kWh (low), 14,000 kWh (RHPP-mean) and 19,000 kWh 

(high) respectively. In comparison of Figure 21(a) and Figure 21(b) the low postcode demand 

scenario yields a higher average minimum endpoint voltage across the day as HP penetrations 

increase than compared with the RHPP-mean. This indicates that the impact from HP uptake 

is less severe, particularly in relation to the impact from the early morning space heating 

demand which sees the minimum endpoint voltage drop below 216 V at around 50% 

penetration in the RHPP-mean scenario compared with at 80% in the low scenario. The impact 

on the traditional evening peak is also reduced. In contrast, in comparison of Figure 4-17 (b) 

and Figure 4-17 (c), the impact of HP uptake on the minimum endpoint voltage is evidently 

more severe as a lower average minimum endpoint voltage across the day as HP penetrations 

increase is evident than compared with the RHPP-mean. The number of minimum voltage 

violations for the three 100% penetration scenarios are demonstrated in Table 4-3; for the low 

postcode annual gas demand case there are no minimum endpoint violations, whereas this rises 

to three hours for the high annual gas demand case. As both scenarios are modelled with 100% 

penetration, this clearly demonstrates the impact of how locally-specific gas demand can result 

in different outcomes for an LV feeder when converting the existing gas demand to electrical 

heat demand. 
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Figure 4-17 Average minimum endpoint voltage vs time vs penetration. (a) 9000 kWh (low) 

(b) 14000 kWh (RHPP – mean) and (c) 19000 kWh (high) 

(a) 

(b) 

(c) 
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 9000kWh (low) 14000 kWh (RHPP – 

mean) 

19000 kWh (high) 

Number of violations 

(hours) 

0 1 3 

Table 4-3 Number of violations (hours) for 9000 kWh (low), 14000 kWh (RHPP – 

mean) and 19000 kWh (high) cases at 100% penetration 

As demonstrated in Figure 4-17, the variations in heat demand have the potential to influence 

at what penetration of HPs voltage violations are likely to occur and the subsequent severity. 

Therefore, in using the standard RHPP-mean approach, as is currently common practice, the 

true scale of HP impact may be heavily over/under-estimated which would feed into DNO 

network planning and management decision making. This may translate to an over/under-

estimation in the scale and cost of the solution necessary to support HP uptake and ensure 

reliable network operation. This also may influence decision making with regards to the 

appropriate solution and when it should be deployed i.e. adopting a flexible management 

approach in the interim with a view of reinforcing in the future or deploying a fit for purpose 

flexible solution for the long-term. Fundamentally, the results presented emphasise the scale 

of impact from variations in heat demand on the network and the value of this methodology in 

its ability to capture these variations. 

4.7 Discussion 

The chapter has demonstrated a robust and easily scaled methodology for deriving a local 

heat demand, and therefore local electrical heat load, from a single annual gas demand figure, 

enabling the calculation of localized daily winter demand for temporally sparse datasets. The 

core annual to daily demand translation methodology was tested using a common process and 

fit parameters for three heat-type demands, and a range of customer population sizes, with a 

MAPE below 10% for population sizes of 25 and greater. 
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This work circumvents the requirement to obtain detailed building, demographic, and 

behavioural parameters in order to construct a bottom-up model of local heat demand. This 

approach has been shown to be insensitive to size of customer or specific heat demand type. 

By drawing on a geographically granular dataset, combined with the developed methodology 

for improving temporal resolution of heat-type demand data the existing reliance on pure heat 

pump trial data for modelling electrical heat load at LV scale can be reduced and instead 

augmented with locally sensitive demand data.  

A key strength of this model is its insensitivity to specific heating system type. Therefore, 

this approach can be adapted to predict future local electrical heat demand for air source heat 

pumps, ground source heat pumps or even electrical combi boilers as long as appropriate 

model inputs for conversion efficiencies are used. 

In the case of the RHPP dataset, at the time of writing it is now approaching nine years 

since the initial trial data was captured [115]. Trial data remains essential to examine and 

validate population level effects that are difficult to model using conventional physical 

approaches – this will be supported by the upcoming BEIS Electrification of Heat 

Demonstration Project which will collect demand data from a further 750 domestic heat pumps 

[77]. However, even the most up to date trial data represents a limited geospatial and temporal 

view of locally variable demand influences and the methodology offered in this paper presents 

a way of complementing the value provided by heat pump trial data. 

This work directly builds on the heat pump modelling approaches outlined in [76] [153] 

[78], which all construct averaged demand profiles from limited trial datasets. As has been 

highlighted by the authors in [76], a key outstanding issue with these approaches was the 

difficulty of rescaling findings to new target areas. This issue is not constrained to electrical 

heat load modelling and reflects a wider issue in the literature for modelling new load types at 

distribution network level, where modelling efforts are often constrained by limited and aging 

trial data.  
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Through the ADMD and network impact assessment case studies, the variation in final 

electrical heat load due to local heat demand has been demonstrated. From a pure ADMD 

perspective, a one standard deviation shift in input local annual gas demand has been shown 

in this chapter to translate into a 20% shift in predicted local ADMD. Therefore, whilst existing 

datasets provide an average view of potential electrical heat load, they do not reflect the real 

diversity of potential electrical heat loads present in the overall population. 

Similarly, the network impact case study demonstrates the variation in average endpoint 

voltage versus time of day and penetration level of heat pumps. The average case from the 

RHPP dataset alongside example high and load gas demand cases are plotted, with average 

minimum endpoint voltage shown to strongly correlate with the three electrical heat scenarios 

shown. This demonstrates the potential variation from the mean when comparing highly 

aggregated electrical heat pump load obtained from geographically distributed trial data, as 

opposed to localised results for specific geospatial clusters of physical and behavioural 

parameters. 

The developed conversion model is dependent on the core assumption that annual mean 

gas consumption at a postcode level can be translated into an equivalent hourly electrical heat 

load using the use of simple linear conversion efficiencies. Whilst a gas central heating system 

and electric heat pump driven system both are designed to output heat to achieve the desired 

room temperature for occupants, the switch from fossil-fuel fired to electrically supplied 

heating can have behavioural implications that impact final energy consumption. [172] 

explored the concept of a rebound effect for households introducing improved energy 

efficiency measures, and whether decreased costs to achieve a nominal thermal comfort level 

resulted in a corresponding increase in energy usage as occupants made use of increased 

savings. More recently, [173] estimated that economy-wide rebound effects could erode more 

than half of anticipated energy savings gained from efficiency improvements. The evidence 
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base for this phenomenon is still developing however, with limited specific understanding of 

how this effect would manifest for households adopting heat pumps.  

Within the UK, many residential premises do not have a connection to a domestic gas grid 

(off-gas) [174] and therefore the developed method cannot be directly applied to derive a local 

demand due to the lack of gas data for off-gas households. However, there are modifications 

that can be made to this approach to facilitate examination of local heat demand for off-gas 

networks in order to assess LV network impact. Off-gas postcodes could be paired to gas 

postcodes with similar physical and demographic features, or similarly off-gas heat demand 

could be estimated based on regional or sub-regional magnitudes.  Whilst the specific 

approach would be subject to the availability, quality, and relevance of supporting datasets, 

this would provide further insight into localised electrical heat load where presently only 

highly averaged estimates exist. 

4.8 Conclusion 

  This work develops a composite model that harnesses the information encoded in the 

geographically granular postcode level annual gas demand published by the UK Department 

for Business, Energy & Industrial Strategy (BEIS) [16] and leverages existing relationships in 

more temporally detailed but less geographically granular gas, direct heat and electrical demand 

datasets. This enables the use of existing geographically granular, temporally low-resolution 

datasets to scale electrical heat demand magnitude sensitive to local conditions. This scaling 

methodology may then be coupled with existing heat demand models or trial datasets which 

provide heat demand shape information. This supports distribution network operators with 

optimising network investment and identifying risks in the presence of uncertainty 

surrounding EHP uptake. 

At present, gaining LV network load insights sensitive to geospatially variable parameters 

is a key issue for DNO’s, as evidenced by the current emphasis of industry innovation projects 

focusing on improving distribution network visibility at the 11kV level and below [175] [176]. 
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By exploiting the periodic nature of seasonal heat demand, a regression model has been 

contributed here from three sources of heat demand data and used to construct a predictive 

relationship between annual and seasonally variable daily demand. This relationship enables 

the use of temporally low-resolution, geographically high-resolution datasets such as the BEIS 

Postcode Level Gas Demand for localised heat demand prediction, leveraging the 

geographically granular physical and behavioural information encoded in the dataset. This 

demonstrates a hybrid approach that uses the high temporal granularity of exemplar data 

combined with the geographical scale granularity of a target dataset in order to maximise the 

usability for LV specific applications where localised sub-daily temporal resolution is required. 

From the examination of annual to daily demand for gas, heat and electric demand, the 

expectation is that this regression model can be applied to any heating technology that is 

proportionally sensitive to ambient temperature. Beyond the specific context of this work, the 

developed methodology demonstrates the value in synthesising geodemographic data from 

multiple sources in order to obtain localised insights for distribution network load under 

various scenarios for hypothesised LCT penetration scenarios. 

  



135 

 

 

 

 

 

 

 

 

 Chapter 5 

 

 

Disaggregation of Electrical Heat Load 

from LV Substation Load 
  



136 

 

This chapter presents an approach for disaggregation of electrical heat load from aggregated 

LV transformer data, facilitating the extraction of electrical heat load from existing LV sensors 

without the need for additional monitoring capability. This improves network situational 

awareness with respect to electrical heat load. 

5.1 Summary 

Whilst efforts are underway in order to forecast heat pump uptake and the consequent load 

and magnitude effects on existing distribution network assets, the limitations of using trial data 

and supplementary datasets means that there will always be a differential between the 

electrical heat demand as modelled and the actual electrical heat demand on a specific feeder. 

The transition to target levels of heat pump uptake will take time and tools will be required in 

order to support the intermediate period of early and mid-technology uptake. This chapter 

seeks to overcome this difficulty by developing a methodology for the disaggregation of 

electrical heat load from LV substation data in order to extract locally specific electrical heat 

demand. This facilitates the examination of heat pump electrical demand and penetration on a 

feeder without the need for additional hardware monitoring capability. In turn, this then 

enables possibility of flexibility type assessment for the additional heat pumps on a network. 

A disaggregation technique to extract electrical heat load from aggregated heat and non-heat 

load is tested and applied on test data synthesised from electrical heat pump and smart meter 

trial data with the error quantified.  

5.2 Introduction  

Within the UK, electrical heat pump uptake is only a fractional part of the long-term 

strategic target imposed by the UK government’s Heat and Buildings Strategy. The ambition 

for 2028 is to support the installation of 600,000 heat pumps per year [38], whilst in 2019 less 

than 1% of English housing stock had a heat pump for space and/or water heating [177]. There 

has been extensive work performed to date on the subject of electrical heat load modelling 

with sensitivity to various parameters, both as featured earlier in this thesis as well as in the 
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wider literature. This has encompassed modelling the effects of increased domestic electrical 

heat pump penetration on distribution networks drawing on existing trial datasets or 

constructing physical models that reflect parameters of typical households and associated 

heating systems. 

Whilst these works provide indicative predictions for future electrical heat load, the reality 

is that there will inevitably be a gap between the heat load forecasted by a model developed 

from generic datasets and the actual electrical heat load imposed on a specific feeder due to 

increased heat pump penetration. As the progression to high penetrations of heat pump 

technology will not be instantaneous, distribution network operators will require tools to 

support with the ongoing adoption of heat pumps at the LV level.  

LV networks are traditionally designed with very low levels of communication and control, 

which was complementary to the needs and function of the historic LV network. Typically, 

the substation transformer is the only point of visibility on the distribution network, and this 

represents an aggregated view of the voltage and current characteristics of all of the 

downstream loads. Historically this level of monitoring has been sufficient for day-to-day 

management and future network planning. However, the increased uncertainty associated with 

heat pumps and new LV connected low carbon technologies in general presents the risk that 

lack of visibility surrounding increased electrical heat load presents a threat to existing and 

future network assets. 

This work seeks to develop and demonstrate a methodology for disaggregating electrical 

heat load from the aggregated load at the point of the LV transformer, facilitating improved 

understanding of the connected load characteristics and future decision making. The presence 

of partial heat pump presence on a network presents several opportunities for improving 

decision making at both the planning and operational level. By enabling access to locally 

specific electrical heat load, future impacts due to increased local heat pump penetration can 

be improved whilst being supported with the generically developed electrical heat load models. 
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Similarly, by understanding the dependencies of the connected electrical heat pumps, 

participation in a flexibility type scheme can be addressed for that specific feeder. Finally, 

there is also the opportunity to extract local electrical heat load from neighbourhoods with 

more advanced levels of penetration to support estimation of network impacts elsewhere. 

5.3 Aims and Objectives 

On this basis, the contribution of this chapter is to address the gap presented by generic 

development of electrical heat load and develop a methodology for extracting locally specific 

electrical heat load from aggregated LV transformer data. This enables the future coupling of 

generically developed models with locally specific insights in order to support the future 

planning and operation of power distribution networks. 

5.4 Literature Review  

Load aggregation and disaggregation techniques have been applied extensively in the 

wider research literature for a variety of applications, including signal processing and other 

data conditioning tasks where level of detail is traded off versus ease of model computation 

[178]. In an energy specific context, disaggregation has been the subject of research for 

developing various techniques to support non-intrusive load monitoring for power system 

applications [179]. For power distribution networks, significant research focus has been 

applied to the problem of disaggregation of household appliances from smart meter data [180].  

This has in part been driven by the increasing uptake and availability of smart meter data 

[46], combined with increasing levels of interest in characterisation of household energy usage 

alongside increased future uncertainty surrounding low carbon technology uptake and usage 

[21]. Non-intrusive appliance load monitoring (NIALM) techniques have been developed to 

differentiate household appliances from aggregated smart meter data, facilitating higher 

fidelity analysis of household energy consumption without the need for additional monitoring 

capability [181]. Additionally, monitoring of household energy usage through a single 
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household meter as opposed to appliance specific meters is more palatable for stakeholders.  

A range of NIALM techniques have been developed in order to take raw household smart 

meter data and disaggregate this into constituent household appliance loads in order to provide 

improved insight onto time of use and power contributions of various domestic appliances. 

Initial works were based on simple edge detection methodologies to indicate whether known 

appliances were in the “on” or “off” state [182]. Increased sophistication and data-processing 

capabilities has led to more advanced disaggregation methodologies. [183] utilised hidden 

Markov Models with segmented integer quadratic constraint programming to disaggregate 

household power at an average frequency of 0.3Hz into the appliance level. However, the 

utility of these insights has been limited by lack of practical implementations. In order to 

exploit knowledge of household-level appliance usage in a networks context, computational 

overheads combined with complexity of integration compared to the yet to be quantified 

benefits of appliance-level knowledge must be overcome. 

In contrast, disaggregation of load types at the substation level has not yet extensively 

been examined. Despite the high rates of smart meter deployment at the distribution network 

level within the UK, with household adoption at 51% as of March 2022 [46], DNO system 

observability is presently constrained by default to substation-level or higher monitoring. 

Whilst energy suppliers have access to smart meter data for billing purposes, DNO’s do not 

have equivalent access due to the legal separation of DNO and energy supplier functions 

within the UK [184]. This situation is evolving however, with Office of Gas and Electricity 

Markets (Ofgem) approval of UKPN [185] and SSE [186] proposals for use of anonymised 

smart meter data, with further recommendations to treat smart meter data as “presumed open” 

[187].   

Therefore, LV asset monitoring is typically performed at the point of the LV transformer, 

providing a single set of voltage and current measurements that represents the aggregation of 

up to hundreds of households.  This has been suitable for historic DNO function, but the 
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uptake of new load types such as electrical heat pumps combined with electric vehicles and 

rooftop solar will impose changes on LV network energy and power profiles. The integration 

of these new low carbon technologies will also be accompanied by the introduction of more 

sophisticated network operation and control techniques, to facilitate the planning and operation 

of the future LV distribution network. In order to minimise physical network intervention in 

the presence of uncertain future technology uptake, it is desirable to develop techniques for 

maximally understanding present and future network conditions without the need for 

significant additional hardware monitoring. 

[188] demonstrated the case for developing disaggregation techniques for MV distribution 

networks, characterised by higher levels of monitoring and control in comparison to LV 

networks. 

5.5 Problem Overview 

Due to the nature of LV transformer load in a distribution networks context, there are 

several constraints to be accounted for when developing a disaggregation methodology for this 

application. These can be grouped as constraints determined by the LV transformer as well as 

constraints imposed by the specific problem of electrical heat load disaggregation. These 

constraints inherent to the LV network and are not specific to the selected aggregation 

methodology. 

The LV transformer places limitations on the observability of the overall network and, in 

turn, the observability of connected electrical heat load. Typically sampling frequency is in 

the region of half hourly due to alignment with the 30-minute settlement period for electricity 

markets [189], therefore whilst bulk demand trends can be observed, high frequency events or 

load switching is not visible and therefore cannot be exploited as model input features. A 

typical LV transformer is responsible for supplying on the order of one to a few hundred 

households, which therefore means the operating region spans from the very low to the 

moderately high levels of aggregation [190] . With reference to the ADMD curve in Love [76] 
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and in previous chapters, LV network operation exists along the knee of the ADMD curve 

where the rate of change versus number of customers is highest.  This necessitates the ability 

to be able to sufficiently disaggregate electrical heat load for aggregated demands with low 

diversity as well as high diversity. 

 

Figure 5-1  Normalised heat and non-heat daily load shapes for high and low 

penetration cases; (a) 5 customers, 100 and 1% penetration (b) 15 customers, 100% and 1% 

penetration (c) 25 customers, 100% and 1% penetration (d) 5 customers, 75% and 25% 

penetration (e) 15 customers, 75% and 25% penetration (f) 15 customers, 75% and 25% 

penetration 

The behaviour of electrical heat type load with respect to non-heat load places further 

restrictions on the problem approach. Figure 5-1 demonstrates the seasonal variation for heat, 

non-heat and aggregated load for a group of 25 customers. Broadly it can be observed that 

whilst the heat load features a stronger seasonal dependency, both heat and non-heat load 
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follow the same general seasonal trends. Similarly, Figure 5-4 demonstrates the time of use 

characteristics for heat and non-heat load over a ten-day winter period. Again, the time of use 

characteristics for heat and non-heat load exhibit a strong correlation. This is to be expected 

due to the positive correlation with household activity for both heat and non-heat appliance 

usage; appliance and heating usage will be at its highest during hours when residents are at 

home. 

Therefore, any disaggregation technique to be applied must be able to extract features 

specific to electrical heat demand whilst overcoming the similarity of time of use and seasonal 

variation of non-heat load, as well as the diversity difficulties when operating in an LV type 

environment. This functionality must take into account the range of number of customers 

typically connected to a LV feeder, the range of possible electrical heat pump penetrations 

ranging from zero to one hundred percent and the feasible range of local temperatures for the 

target area in question. This must also be able operate with the limited observability constraints 

of an LV transformer. 

 

Figure 5-2 Axes of dependencies 

Furthermore, there are the difficulties associated with the time of use similarities for heat 

and non-heat load types. Figure 5-1 demonstrates the similarity between normalised half 
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hourly shapes for a range of customer group sizes and penetration cases. It can be observed 

that for the 25% and 75% penetration cases demonstrated, there is a very close similarity in 

half hourly load shapes. For the 1% and 100% cases, there is a slight deviation in normalised 

half hourly magnitude but there otherwise remains a close similarity in load shapes. Therefore, 

when attempting to infer the electrical heat penetration on an LV feeder through data-driven 

techniques, then additional input features beyond half hourly shape must be exploited in order 

to provide a result with sufficiently small error and translatability outside of the original 

training datasets. 

Therefore, to summarise, the model design must be able to accommodate for the following 

constraints: 

• Sampling Frequency: Suited for use with data of 30 minute sampling frequency 

• Low to High Diversity: The methodology must be adaptable to a wide range of 

customer diversity, typical of LV network applications, encompassing scenarios 

form extremely low to high diversity.  

• Low to High Penetrations: Need to be able to manage robust disaggregation for 

varying penetrations of heat pumps; low penetrations versus high penetrations will 

have significantly different impacts. Low penetrations with limited impacts will 

be of lesser interest compared to high penetration feeders, but the ability to 

differentiate between different penetrations is required.  

• Temperature Range: Heat pump usage and demand magnitude varies on a 

seasonal basis; therefore the disaggregation methodology must be able to differing 

usage profiles for the same equivalent penetration  

• Shape Insensitive: High similarity between heat and non-heat load shapes means 

the designed approach needs to exploit other features rather than load shape and 

magnitude. 
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On this basis, any selected methodology must be able to overcome the similarities in shape 

and time of use activity for heat and non-heat load in order to accommodate a broad range of 

conditions associated with LV networks. The selected limits are defined in Table 5-1. The 

possible EHP penetrations of interest are bounded from 0% to 100%, capturing the range 

between no EHP uptake on a feeder and full EHP uptake for all households. The temperature 

range of interest has been bounded between 0°C and 25°C. The lower 0°C limit is constrained 

by the range captured between electrical daily demand and external daily average air 

temperature in Figure 3-3, derived from RHPP data [115] and the Central England daily 

temperature series [132]. Below 0°C is an operational zone of interest due to the decrease in 

achievable COPs in this region, but the lack of EHP trial data for this region limits the 

validation and analysis that can be performed. Finally, the numbers of customers of interest 

has been defined as ranging from 1 to 75. The lowest bound has been set at 1 as the lowest 

practicable number of customers on a feeder, whereas the upper limit has been set at 75 to 

reflect point at which the ADMD curve has been observed to stabilise in the RHPP dataset via 

[76]. This represents the number of customers required for the effects of diversity to result in 

the aggregated electrical heat load shape to converge. 

Parameter Minimum Maximum 

EHP Penetration (%) 0 100 

Temperature (degC) 0 25 

Number of Customers 1 75 

Table 5-1 Parameter minimum and maximum limits for disaggregation study design 
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Figure 5-3 Twenty customer feeder with 100% electrical heat pump penetration; one 

year period with half hourly resolution 

 

Figure 5-4 20 Customer feeder with 100% electrical heat pump penetration; 10 day 

winter period with half hourly resolution 

 

5.6 Methodology  

This work describes a methodology for disaggregating electrical heat load from the 

aggregated load data collected at the point of an LV transformer within the distribution 

network. The overall work can be broken down as follows: 
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• Construction of synthesised training datasets in order to form the aggregated LV 

transformer load for model testing 

• Definition of disaggregation methodology and accompanied features for applying 

to constructed aggregated load 

• Test and cross-examination of disaggregation methodology with respect to 

temperature, penetration and number of customers 

Existing smart meter and electrical heat pump data is used to construct synthesised test 

data that forms the aggregated LV transformer load for test. The disaggregation methodology 

is tested versus sensitivity to temperature, number of customers and heat pump feeder 

penetration. 

 

Figure 5-5 Methodology overview for disaggregation of electrical heat load from 

transformer load 
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5.6.1 Training Datasets and Aggregated Load Synthesis 

This work makes use of two datasets in order to synthesise the aggregated LV transformer 

load, prior to application of the developed disaggregation techniques in order to extract 

electrical heat from non-heat load. Due to the lack of a comprehensive dataset featuring 

domestic load combined with electrical heating, two datasets as used to synthesise an 

aggregated load. The first dataset consists of smart meter data obtained from the EDRP dataset 

[158]. This dataset is used to provide the domestic non-heat load for the study. The second 

dataset consists of the electrical heat pump demand data from the RHPP dataset and is used to 

provide the electrical heat demand data for the study. The RHPP dataset was selected as it 

remains the largest publicly available electrical heat pump dataset within the UK. The 

relationship of these datasets is illustrated in Figure 5-5; for a feeder with a given number of 

connection’s, electrical heat is paired with smart meter data for each customer and then 

summed in order to provide an aggregated LV transformer load for test. For simplicity 

technical losses including resistive and reactive losses are not included in this study. 

The developed methodology is tailorable to number of customers, and percentage level of 

EHP penetration amongst the total customer group. The aggregated load at the point of the 

transformer can be represented as in (47), where 𝐿𝑜𝑎𝑑𝑇𝑋  is the aggregated load at the 

transformer which is the summation of the total customer loads n connected on the feeder. 

This can be expressed further as in (51), where the aggregated load at the transformer is the 

summation of customer heat-type electrical load and non-heat type electrical load present on 

the feeder. The addition of a penetration factor ∅ in (49) which varies from 0 to 1, reflects 

the corresponding EHP penetration level from 0% to 100% for the feeder under consideration 

(50).  

𝐿𝑜𝑎𝑑𝑇𝑋 =∑𝐿𝑜𝑎𝑑𝑖

𝑛

𝑖=1

 
(47) 
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𝐿𝑜𝑎𝑑𝑇𝑋 =∑𝐿𝑜𝑎𝑑ℎ𝑒𝑎𝑡 + ∑𝐿𝑜𝑎𝑑𝑛𝑜𝑛−ℎ𝑒𝑎𝑡

𝑛

𝑖=1

𝑛

𝑖=1

 
(48) 

𝐿𝑜𝑎𝑑𝑇𝑋 = ∅∑𝐿𝑜𝑎𝑑ℎ𝑒𝑎𝑡 + ∑𝐿𝑜𝑎𝑑𝑛𝑜𝑛−ℎ𝑒𝑎𝑡

𝑛

𝑖=1

𝑛

𝑖=1

 
(49) 

𝑃(%) = ∅ × 100 (50) 

 When constructing an aggregated load consisting of a defined number of customers 𝑛 

with defined EHP penetration level 𝑃(%)  the following process is applied. 𝑛  random 

samples are obtained from the non-heat type electrical load EDRP dataset, with a further n x 

∅ samples obtained from the heat-type electrical load RHPP dataset, rounded up to the nearest 

whole number. RHPP customer data is resampled from 2-minute to 30-minute intervals so that 

the sampling frequency is consistent with the 30-minute sampling frequency of the EDRP 

dataset. As sampling windows vary across as well as within the RHPP and EDRP datasets, the 

randomly sampled profiles are aligned by day of year so that the seasonality of both load types 

are aligned. The obtained heat and non-heat electrical load profiles are then summed for each 

24-hour period over a 365-day period beginning on January 1st and ending on December 31st 

in order to provide the synthesised aggregated transformer load 𝐿𝑜𝑎𝑑𝑇𝑋. Whilst the number 

of customers n and penetration level 𝑃(%)  will be varied as model inputs for the 

disaggregation process, the methodology for constructing the synthesised aggregated load will 

remain the same for any variation in model inputs. 
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5.6.2 Disaggregation Theory 

 

Figure 5-6 Overview of synthesised load data coupled at point of LV transformer 

Figure 5-6 diagrammatically shows a synthesised aggregated transformer load for four 

customers, each consisting of a heat-type and non-heat type load profile obtained from the 

RHPP and EDRP datasets respectively. This section will discuss the process for disaggregation 

of the summed heat-type electrical load from the aggregated heat-type and non-heat type load 

at the point of the LV transformer.  

5.6.2.1 Base Summer Load Subtraction 

The Base Load Subtraction feature is constructed on the basis of two assumptions. Firstly, 

that domestic non-heat load is largely static in contrast to temperature-sensitive, and 

consequently seasonally variable heat-type load. Heat-type load for this study will only include 

electrical heat load used for space heating and does not include electrical heat load used for 
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hot water. Typical household energy consumption has been estimated at 4.3kWh per day by 

the Energy Saving Trust [191], whereas the median maximum energy consumption due to 

EHP load from the RHPP dataset is measured at 35.25kWh per day [115]. The RHPP dataset 

measures hot water energy consumption distinct from heating, but only 22 of the 700 

customers actually return nonzero values for this field. Given the limited hot water energy 

consumption in the RHPP dataset, combined with the unknown contribution to energy 

consumption in the EDRP dataset [158],  and that hot water energy consumption this method 

does not attempt to account for the effects of hot water heating. For winter extremes the 

contribution of hot water heating will be relatively small compared to space heating, but this 

does mean that for warmer cases the effects of hot water will not be accounted for. 

Non-heat domestic load incorporates a range of loads including domestic appliances, 

lighting and entertainment devices. Secondly, that heat-type load usage during summer months 

is functionally zero. The load at the LV transformer 𝐿𝑜𝑎𝑑𝑆𝑢𝑚𝑚𝑒𝑟
𝑇𝑥  can be expressed 

generically as shown in (51), where the aggregated load is a function of the simultaneous heat 

and non-heat load applied to the transformed. During summer months where heat load is at its 

seasonal minimum, the heat-load may be assumed to be zero as per (52) and the remaining 

measured load at the transformer is equivalent to the connected non-heat load on the network. 

𝐿𝑜𝑎𝑑𝑆𝑢𝑚𝑚𝑒𝑟
𝑇𝑥 = 𝐿𝑜𝑎𝑑𝑆𝑢𝑚𝑚𝑒𝑟

𝑁𝑜𝑛−𝐻𝑒𝑎𝑡 + 𝐿𝑜𝑎𝑑𝑆𝑢𝑚𝑚𝑒𝑟
𝐻𝑒𝑎𝑡  (51) 

𝐿𝑜𝑎𝑑𝑆𝑢𝑚𝑚𝑒𝑟
𝑇𝑥 = 𝐿𝑜𝑎𝑑𝑆𝑢𝑚𝑚𝑒𝑟

𝑁𝑜𝑛−𝐻𝑒𝑎𝑡 +  0 (52) 

During the Winter months, the 𝐿𝑜𝑎𝑑𝑁𝑜𝑛−𝐻𝑒𝑎𝑡
𝑆𝑢𝑚𝑚𝑒𝑟  value obtained during the Summer case may 

then be utilised as per (53). This posits that the aggregated transformer winter load 

𝐿𝑜𝑎𝑑𝑊𝑖𝑛𝑡𝑒𝑟
𝑇𝑥  minus the measured summer non-heat load 𝐿𝑜𝑎𝑑𝑆𝑢𝑚𝑚𝑒𝑟

𝑁𝑜𝑛−𝐻𝑒𝑎𝑡 

𝐿𝑜𝑎𝑑𝑊𝑖𝑛𝑡𝑒𝑟
𝐻𝑒𝑎𝑡 = 𝐿𝑜𝑎𝑑𝑊𝑖𝑛𝑡𝑒𝑟

𝑇𝑥 − 𝐿𝑜𝑎𝑑𝑆𝑢𝑚𝑚𝑒𝑟
𝑁𝑜𝑛−𝐻𝑒𝑎𝑡 (53) 

Whilst simplistic, this methodology is advantageous as it provides a transformer specific 

estimation of heat-load from the obtained 𝐿𝑜𝑎𝑑𝑆𝑢𝑚𝑚𝑒𝑟
𝑁𝑜𝑛−𝐻𝑒𝑎𝑡  parameter without the need for 
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external training data of unknown translatability. However, this technique is constrained by 

the fact that non-heat load is not truly static on seasonal timescales due to increased household 

occupancy and appliance usage during Winter months. Therefore, this will result in a 

limitation for the minimum achievable error using this technique.  

5.6.3 Model Inputs 

As has been discussed earlier in 5.5, the developed disaggregation methodology is 

designed to facilitate the estimation of electrical heat load for a range of EHP penetrations and 

customer group sizes relevant to the typical quantities found on an LV feeder. The model 

inputs consist of the number of customers on a feeder 𝑛, alongside the defined percentage 

penetration of how many customers on that feeder are equipped with EHPs. 𝑃 (%) =

100 represents all customers on the feeder for a defined group size being equipped with an 

EHP, whereas 𝑃 (%) = 0 would reflect zero penetration of EHP’s on an LV feeder. 

𝑖𝑛𝑝𝑢𝑡𝑠 =    {
𝑛 = {5,10,25,50,75,100}

𝑃 (%) = {1,25,50,75,100}
 

 

(54) 

5.6.3.1 Test Matrix 

The following penetration and total number of customers connected to a transformer in 

Table 5-2 are applied to test the disaggregation methodology for a range of scenarios. This 

spans the possible range of penetrations and encompasses customer group sizes from low to 

high levels of aggregation.  

Customers Penetration (%) 

5 1 25 50 75 100 

10 1 25 50 75 100 

25 1 25 50 75 100 
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50 1 25 50 75 100 

75 1 25 50 75 100 

Table 5-2 Test Matrix for Number of Customers 𝑛 and Penetration 𝑃 (%) 

5.6.4 Validation  

5.6.5 Metrics 

A number of standard and custom metrics will be used for this work. Standard metrics 

allow for comparisons between this work and others. Custom metrics are useful for 

demonstrating model functionality in accordance with its specific strengths. Due for the need 

to compare model effectiveness across a range of penetrations and customer numbers, with 

consequently different seasonal minimum and maximum amplitudes, scale invariant metrics 

such mean absolute percentage error are preferred.  

Additionally, a novel metric capturing how well the relationship between the time of year 

and heat load is represented is described. 

 

5.6.5.1 Peak Daily Percentage Error (Median) (%) 

The percentage error 𝛿 between the expected electrical heat load for a point in time 𝑣𝑒 

and actual electrical heat load for a point in time 𝑣𝑎 is expressed as in (55).  

𝛿 (%) =  |
𝑣𝑎 − 𝑣𝑒
𝑣𝑒

| ∙ 100% (55) 

For each combination of n and 𝑃 (%), heat and non-heat electrical load profiles are 

randomly sampled as required from the RHPP and EDRP datasets. Further to this, for each 

combination of n and 𝑃 (%), multiple random samplings are obtained to construct multiple 

aggregated loads. The peak daily percentage error 𝛿𝑝𝑒𝑎𝑘
𝑑𝑎𝑖𝑙𝑦 is for each result set is calculated as 

per (56), where 𝑣𝑎,𝑡  reflects the actual electrical heat load at time t, and 𝑣𝑒,𝑡  reflects the 
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estimated disaggregated electrical heat load at time t.  Then the overall median 𝑀𝛿 (%) for 

a n,𝑃 (%) input of 50 random samplings obtained as per (57). 

𝛿𝑝𝑒𝑎𝑘
𝑑𝑎𝑖𝑙𝑦

(%) = 𝑚𝑎𝑥𝑡∈𝑇  |
𝑣𝑎,𝑡 − 𝑣𝑒,𝑡
𝑣𝑒,𝑡

| ∙ 100% (56) 

𝑀𝛿(%) =  
𝛿[
𝑛

2
]+𝛿[

𝑛

2
+1]

2
   

(57) 

5.6.5.2 Day Angle Rate of Change and Intercept 

Rather than use direct historical temperature as a model input, this work uses day angle as 

a proxy to reflect the seasonal temperature variation. As has been discussed in Chapter 3 the 

relationship between daily average demand and daily average temperature can be represented 

as a linear relationship with non-linear behaviour at the extremes. The linear region for heat 

pump demand can be modelled as shown below, where (58) is the generic form for a linear 

relationship, and (59) shows the specific form for the relation between daily demand and 

temperature. Due to the lack of historical temperature unity for the paired heat and non-heat 

datasets, the relationship between day angle and daily demand will instead be modelled as an 

equivalent function.  

𝑦 = 𝑚𝑥 + 𝑐 (58) 

𝐷𝑎𝑖𝑙𝑦 𝐷𝑒𝑚𝑎𝑛𝑑 (𝑘𝑊ℎ) = 𝑚 × 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒(𝑑𝑒𝑔𝐶) + 𝑐 (59) 

𝐷𝑎𝑖𝑙𝑦 𝐷𝑒𝑚𝑎𝑛𝑑 (𝑘𝑊ℎ) = 𝑚 × 𝐷𝑎𝑦 𝐴𝑛𝑔𝑙𝑒(°) + 𝑐 (60) 

The day angle derived metrics therefore correspond to how well the disaggregated heat 

aligns with the true heat-load rate of change and intercept. The rate of change directly 

corresponds to how much heat load will vary on a seasonal basis, and the intercept determines 

the maximum expected load under extreme conditions. 
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𝑚𝑒𝑟𝑟 (%) =
1

𝑛
∑|

𝑚𝑎 −𝑚𝑝

𝑚𝑎
|

𝑛

𝑡=1

 
(61) 

𝑐𝑒𝑟𝑟 (%) =
1

𝑛
∑|

𝑐𝑎 − 𝑐𝑝
𝑐𝑎

|

𝑛

𝑡=1

 
(62) 

As an alternative to pointwise metrics, this metric performs a comparison of how well the 

disaggregated data follows the real temperature dependent relationship of the actual data. 

5.6.5.3 Estimated number of heat pumps and Penetration 

Finally, a metric that reflects penetration level versus number of meters is proposed. Using 

the heat localisation model developed previously, an estimation of the required heat pump size 

can be made. Using an estimated average heat pump rating, once the heat load is disaggregated 

then an estimation of number of heat pumps installed on the network can be made. This 

provides an alternative to numerical comparisons, and offers a more interpretable estimate of 

predicted heat pump penetration versus estimated penetration. (63) illustrates the relationship 

between the maximum disaggregated demand 𝐷𝑚𝑎𝑥, the defined maximum heat pump rating 

maximum and its relationship to the number of estimated heat pumps installed on the network. 

This can be then translated to an estimation of penetration as per (64).  

𝑛𝐻𝑃 =
𝐷𝑚𝑎𝑥

𝑅𝑎𝑡𝑖𝑛𝑔 𝑀𝑎𝑥
 (63) 

𝑃(%)𝑒𝑠𝑡 =
𝑛𝐻𝑃
𝑛𝐶

 (64) 

5.7 Results 

5.7.1 Peak Daily Percentage Error (Median) (%) 

 Penetration P (%) 

1 10 25 50 75 100 
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Customers 

(n) 

5 1831.5 5907.9 746.8 501.5 386.8 130.4 

10 7632.4 7043.4 707.2 287.5 111.9 48.3 

25 23804.2 2212.4 685.7 130.2 63.2 17.9 

50 28606.4 1365.4 303.9 90.3 32.2 14.6 

75 105729.3 759.4 217.1 78.2 29.5 1.4 

Table 5-3 Peak Daily Percentage Error for Number of Customers and Penetration (%) 

The results obtained for the Peak Daily Percentage Error (median) 𝑀𝛿(%) process as 

described in  5.6.5.1 is tabled in Table 5-3. There are some clear observations to be made. 

Low input values for n and 𝑃 (%)  result in excessively high values of 𝑀𝛿(%) . As an 

example case, for the 1% penetration 5 customer scenario, a 1831% for 𝑀𝛿(%) could occur 

when actual electrical heat load is approximately 180kWh and estimated is close to zero. This 

is a natural weakness when using percentage error type metrics to compare actual versus 

expected values. For the 1% cases for customer groups between 5 to 75, this percentage error 

roughly scales proportional to customer group size, indicating that for extremely low EHP 

penetration cases there is a tendency to underestimate electrical heat load. Given the very low 

ratio of electrical heat load compared to non-electrical heat load, this results in a high error as 

anticipated using the methodology in 5.6.2.1. 

At the other extreme, the 𝑃 (%) = 100 , n =  75 scenario demonstrates a very low 

𝑀𝛿(%) of 1.4. This has several implications; for high penetration cases such as this one, 

electrical heat load will be dominant compared to non-heat electrical load. Using the base 

summer load subtraction methodology used to estimate 𝐿𝑜𝑎𝑑𝑊𝑖𝑛𝑡𝑒𝑟
𝐻𝑒𝑎𝑡  in (53) then is a good 

approximation of aggregated electrical heat load on a feeder. Intermediate values for 𝑃 (%) 

and n see increased percentage errors compared to the high 𝑃 (%), n case result in a consistent 

under-estimation of electrical heat load. 
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5.7.2 Day Angle Rate of Change and Intercept 

Figure 5-7 displays the results for the error metrics 𝑚𝑒𝑟𝑟 (61) and 𝑐𝑒𝑟𝑟 (62). These have 

been computed for customer group sizes 5, 10, 25 and 50 for the penetration (%) cases 1, 10, 

25, 50, 75 and 100. Each customer group size and penetration combination has been 

constructed via random sampling of EDRP/RHPP non-heat/heat load pairs. Fifty random 

samplings are performed for each group size and penetration combination in order to provide 

an averaged result. Finally, for each group size/penetration combination, the error is calculated 

for each of the fifty random samplings. The peak 𝑚𝑒𝑟𝑟 (%) for each set is plotted, along with 

the standard deviation. 

The day angle error, 𝑚𝑒𝑟𝑟 (%) ,reflects how well the slope, or seasonal rate of change, of 

the predicted electrical heat load matches the real electrical heat load. In Figure 5-7 (c) the 

𝑚𝑒𝑟𝑟 (%) converges close to zero for the 100% penetration, 50 customer case. This indicates 

that for customer groups that feature sufficiently high levels of diversity and where electrical 

heat load is dominant during winter worst case conditions, the disaggregation methodology is 

able to represent an appropriate slope that reflects the seasonal variation of electrical heat load. 

However, for low penetration/low customer number cases the quality of the slope estimation 

becomes particularly poor. 

Figure 5-7 (a) represents the offset error 𝑐𝑒𝑟𝑟 (%). This is a measure of how well the offset 

parameter captures the seasonal maximum of the estimated electrical heat load versus real 

electrical heat load. For the high-penetration/high -customer case, the error (%) converges on 

approximately 20 %. For 50 customers, this would equate to estimating the presence of 60 

EHPs connected to the feeder rather than the true value of 50. However the offset error 

𝑐𝑒𝑟𝑟 (%) is relatively stable for penetrations of 20% and higher for all customer group sizes – 

this indicates there is a parameter that scales proportionally with customer group size that is 

contributing to a fixed percentage error. This potentially could be the contribution of energy 
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consumption due to hot water heating that is imposing a fixed percentage error between the 

predicted and real electrical heat load. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5-7 Peak Daily Percentage Error (a), Peak Daily Standard Deviation (b), Day 

Angle Percentage Error (c) and Day Angle Percentage Error (d) for customer group sizes of 

5,10,25 and 50 for penetrations of 1%, 10%, 25%, 50%, 75% and 100% 
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5.7.3 Estimated number of heat pumps and Penetration 

The equivalent estimated number of heat pumps for each 𝑃 (%), n case is tabled below in 

Table 5-4. Given the disproportionately high percentage errors obtained by the metric using 

5.6.5.1, this offers an alternative EHP penetration specific metric that demonstrates the 

estimated number of EHP devices connected on a feeder versus the actual configured value for 

the aggregated dataset. In this case, the predicted number of EHP devices tends to overestimate 

the true number of devices. However, as a very rough order of magnitude it provides a 

qualitatively closer indication of EHP penetration than the percentage-type metric. 

Number of 

Customers 

5 10 25 50 

True 

Mean 

Predicted 

Mean 

True 

Mean 

Predicted 

Mean 

True 

Mean 

Predicted 

Mean 

True 

Mean 

Predicted 

Mean 

Penetration 

(%) 

        

1 0 0 0 0 0 0 1 0 

10 1 2 1 1 3 3 5 6 

25 1 1 3 4 6 8 13 17 

50 4 4 5 7 13 16 25 31 

75 3 5 8 11 19 24 38 46 

100 5 7 10 13 25 31 50 60 

Table 5-4 Estimated number of HPs connected on LV feeder for customer group sizes 5, 

10, 25 and 50 at penetrations of 1%, 10%, 25%, 50% and 100% 

5.8 Discussion 

This work has outlined several of the challenges associated with electrical heat load 

disaggregation at the point of the LV transformer and tested a methodology for performing 

disaggregation of electrical heat load.  
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Despite the simplicity of the disaggregation methodology, the estimated number of heat 

pumps presented via Table 5-4 provides a relatively close estimation of true EHP penetration 

on a feeder sensitive to the variation in penetration and customer group size for each scenario. 

This is in contrast to the percentage type metrics in Table 5-3 which result in extremely high 

peak percentage errors for low penetration/low customer group size type cases due to low 

estimated values being penalised disproportionately. 5.7.2 demonstrated that daily estimated 

electrical heat load could be approximated via the linear function provided in (60), however 

for the high-penetration/high customer group cases there remains a fixed offset in estimated 

versus actual electrical heat load. This will be a result of estimating peak electrical heat load  

𝐿𝑜𝑎𝑑𝑊𝑖𝑛𝑡𝑒𝑟
𝐻𝑒𝑎𝑡  as the function of 𝐿𝑜𝑎𝑑𝑊𝑖𝑛𝑡𝑒𝑟

𝑇𝑥  and 𝐿𝑜𝑎𝑑𝑆𝑢𝑚𝑚𝑒𝑟
𝑁𝑜𝑛−𝐻𝑒𝑎𝑡 . In actuality, 

𝐿𝑜𝑎𝑑𝑁𝑜𝑛−𝐻𝑒𝑎𝑡 will not be static over a full seasonal period; as this encompasses device usage 

such as lighting, entertainment systems and appliances, all of which will see greater utilisation 

during darker and colder winter months when occupancy will be higher. 

There are naturally limitations with this approach that is imposed by the test data. As the 

household smart meter and electrical heat pump data is obtained from separate customers at 

separate times, the test data as synthesised does not fully represent the concurrent demand 

relationships that might be seen in a household paired with a heat pump. For future applications 

it may be possible to make better use of day of week and locally specific temperature features 

in order to differentiate between heat and non-heat load. Similarly, the adoption of electrical 

heat pumps in a neighbourhood may impact non-heat load shapes and time of use 

characteristics – therefore care should be taken to understand the consequences of this. 

Whilst electric heat pumps form a key component of the UK heat decarbonisation strategy, 

they do not form the only source of electric heat. Resistive electrical heating is well established 

in UK rural households and similarly common in urban environments [177]. Due to the 30-

minute sampling frequency and levels of customer aggregation it is not possible to distinguish 

between electrical heat pump load and resistive electrical heat load; therefore, this work is 
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reliant on the fact that resistive heating is not particularly widespread in UK households and 

is trending to be phased out in future in favour of more efficient solutions such as heat pumps.  

5.9 Further Work 

This section describes a methodology that would be desirable to develop as a further piece 

of work. This disaggregation technique seeks to overcome the static limitations of the 

previously described technique and exploits the fact that heat-load and non-heat load both vary 

on seasonal timescales in phase with the orbit of the earth around the sun and corresponding 

variation in seasonal temperature due to axial tilt for high latitude countries [192]. The 

common phase of heat-load and non-heat load poses a difficulty when attempting to 

decompose the two load types.  

This methodology will examine the variability of the aggregated transformer load on days 

where the daily temperature deviates from the seasonal average daily temperature. For this 

case, the aggregated transformer load can be considered as the sum of multiple components; 

the seasonal average components and the deviation from mean components. For each degree 

deviation from the seasonal average temperature, there is a corresponding change in heat and 

non-heat load. However, heat and non-heat load will demonstrate different proportional 

responses with respect to temperature. 

𝐿𝑜𝑎𝑑𝑀𝑒𝑎𝑛
𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟 

+ 𝐿𝑜𝑎𝑑𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟  = 𝐿𝑜𝑎𝑑𝑀𝑒𝑎𝑛

𝑁𝑜𝑛−𝐻𝑒𝑎𝑡  + 𝐿𝑜𝑎𝑑𝑀𝑒𝑎𝑛
𝐻𝑒𝑎𝑡  + 𝑇𝑁𝐻 ∗

𝐿𝑜𝑎𝑑𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
𝑁𝑜𝑛−𝐻𝑒𝑎𝑡 + 𝑇𝐻 ∗ 𝐿𝑜𝑎𝑑𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

𝑁𝑜𝑛−𝐻𝑒𝑎𝑡) 

(65) 

By examining the daily demand deviation from seasonal average temperature from time series 

data, the heat-content of an aggregated load can be estimated and therefore the electrical heat 

pump penetration connected to a specific LV transformer. Due to time constraints, this has 

been left as further work. 
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5.10 Conclusion  

This chapter has demonstrated and tested a methodology for performing the 

disaggregation of electrical heat load from aggregated LV transformer load, facilitating locally 

specific understanding of electrical heat load without the need for additional hardware 

monitoring or infrastructure. In turn, this enables the extracted locally specific electrical heat 

load to be applied in future network impact studies, for other areas of interest or to support the 

assessment of flexibility on the feeder. 

This methodology offers an alternative to traditional NIALM techniques which are 

primarily designed to disaggregate load on an appliance level with high-fidelity data, and 

therefore might struggle with the conventional sampling frequency of LV transformers. 

Looking forward, the primary objective would be to validate the developed methodology 

with real-world aggregated LV transformer data, incorporating a genuine heat and non-heat 

load component alongside contemporaneous weather data, instead of relying solely on 

synthesised heat and load data. This validation with real-world data would help refine the 

methodology further, improve its accuracy, and potentially make it more adaptable for various 

scenarios. 
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This chapter provides the unified concept for the work presented in preceding chapters, 

presenting an implementation that combines generic electrical heat load models with a 

methodology for deriving feeder specific electrical heat load. 

6.1 Introduction 

The previous chapters in this work provided standalone methodologies for the modelling 

and prediction of electrical heat load. The first two chapters presented methods for electrical 

heat load prediction by deriving models from existing trial data and subsequently augmented 

by supplementary datasets. The previous chapter presented a process for deriving an electrical 

heat load model from operational LV substation data, bypassing the requirement for trial data 

to develop electrical heat load predictions. 

As increasing levels of renewables penetration is achieved, with correspondingly 

increased operational complexity, DNO’s will seek to move beyond the standalone predictions 

provided by historic trial data in order to maximally optimise network decisions. Conversely, 

due to data quality issues, limited sensor capability, and the pragmatic difficulties of data 

processing in a live operational environment, raw LV transformer data necessitates further 

conditioning in order to be robust enough for decision making purposes. Alongside this, whilst 

it is the DNO’s responsibility to ensure security of supply at the LV level, this responsibility 

is complemented by the particular needs and plans of commercial, residential and civic 

organisations connected to a specific feeder or present in a locality. This chapter presents a 

unification of the previously developed concepts.  

6.2 Rationale 

As has been previously discussed in this work, there is a heavy reliance on trial data in 

order to inform potential future LV network effects due to the impact of increased renewables 

integration. Due to the cost and effort of implementing large scale trials, the number of datasets 

to draw on is limited, with the RHPP trial providing the only large-scale heat pump dataset 
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publicly available in the UK. Monitoring for this trial concluded in 2015 [8], presenting a eight 

year gap between close of the trial and the present day. The gap between initial trial design 

and equipment commissioning is even larger, with RHPP heat pumps installed between 2009 

and 2014. To put this in perspective, the proportion of UK energy supplied from low carbon 

sources in 2010 was 10.1% - a figure largely unchanged from 2000 [21]. Since the Climate 

Change Act of 2008, this proportion increased to 21.5% in 2020, with corresponding changes 

in the energy landscape at the commercial and individual level. The last ten years have resulted 

in more changes to the generation and distribution of electrical energy in the UK since the 

initial development of a unified electricity system [193]. These timescales are typical for large 

scale trials which require up front design effort to ensure alignment with long term strategic 

needs, household recruitment and installation as well as ongoing monitoring and analytical 

outputs. 

  Therefore, while trial data provides population-level insights into potential future 

electrical heat load, the following informational lags should be taken into consideration: 

• Time; length of time elapsed between trial data capture and target area of study. 

Corresponding changes in building construction, heat pump performance, 

household energy consumption and user behaviours due to the passage of time. 

• Space/spatial variability; the geospatial distance between the area of trial data 

capture and the target area of study. Climatological differences, demographic 

differences, urban/rural variation. 

Work in previous chapters has sought to reduce the temporal and spatial differentials 

between trial data and a target feeder, through scale localisation of trial data derived models 

using contemporary gas demand datasets. However, there are inevitably limitations with this 

approach. Due to the limitations of trial data for the model construction, temporal and spatial 

differentials cannot be fully eliminated. Furthermore, developed methods inform potential 
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electrical heat load across a range of penetrations, but cannot provide information about 

notional future penetration. 

 Whilst there is a wide body of literature surrounding the modelling and prediction of 

future renewables penetration, this literature in itself remains demonstrative of future 

penetration versus various parameters rather than providing definitive outcomes. In an analysis 

of Chile’s electricity system, scholars found that optimizing across uncertain fuel prices lead 

to greater renewables and storage, and note that “failing to appropriately upgrade [capacity 

expansion] models may lead to a significant underestimation of [renewable] integration costs 

and risks, misleading relevant decisions in policy, regulation, [and] market design” [194]. 

 As has been demonstrated through recent events, the status quo for energy consumption 

and production cannot be relied upon to continue indefinitely. The impact of recent price 

shocks has yet to be fully quantified, but early indications within the UK show that households 

had cut gas and electricity usage more than 10% heading into the 2022 winter season due 

surging costs [195]. In parallel, plug- in electric vehicle sales increased by 26% year-over-year 

in October 2022. The fragmented nature of the PV, domestic energy storage and EHP market 

makes it difficult to assess trends in the near-term but the 404% increase in wholesale gas 

prices and 346% in wholesale electrical prices from 2021 to 2022 [196] will inevitably drive 

consumers to seek renewable alternatives to their existing electrical and gas grid-fed supplies. 

Therefore, whilst renewables penetration studies can forecast uptake on the basis of 

demographic, geospatial and climatological factors, renewables uptake at the LV level is still 

ultimately subject to wider macroeconomic dependencies which can disrupt previous adoption 

trends. 

To summarise, the limitations of static trial data coupled with underlying economic and 

behavioural assumptions required for penetration studies alongside macroeconomic 

dependencies present a need for overcoming these constraints. Trial data remains essential as 

a method of capturing population-level effects that cannot be robustly modelled through 
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traditional methods such as physics-based buildings models. For example, a hi-fidelity model 

of a building plus heating system can be constructed to explore the relationship between heat 

and electrical demand, but this requires additional assumptions regarding occupant behaviour 

and local factors such as weather. Similarly, penetration studies are key for supporting the 

examination of feeder-specific impacts with respect to increased renewables penetration, but 

there remains the difficulty of validating what is a reasonable penetration level. 

As a countermeasure to the uncertainty surrounding technology penetration, the magnitude 

and pattern of electrical heat load, a novel concept is proposed. This concept seeks to exploit 

the existing body of insights provided by generic trial data and augment it with the depth of 

locally specific insights obtainable from operational data extracted from the existing LV feeder 

monitoring infrastructure. 

6.3 Concept 

 

Figure 6-1 Unification Concept Overview 

To overcome the limitations of demand models derived from trial data coupled with the 

limitations in renewables penetrations studies, a concept for drawing on the previously 

developed electrical heat disaggregation methodology combined with the generically derived 

electrical heat load models is proposed.  Figure 6-1 provides a top-level view of how the 

existing concepts described previously in this work link together. Through the use of 

disaggregated electrical heat load from LV transformer data, a locally specific electrical heat 
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load model that overcomes the temporal and spatial limitations of generic heat load can be 

derived. Due to the disaggregation methodology drawing on existing sensor outputs, there is 

no requirement for additional hardware monitoring for this implementation. Table 6-1 

provides an overview of the pros and cons for trial versus operational data when aiming to 

predict electrical heat load on an LV network. Although not a full digital twin implementation, 

this work seeks to create a digital twin type relationship between electrical heat load and an 

LV feeder that could then feasibly be scaled to encompass all LV load types. 

 

 Trial Data Operational Data 

Pros Complete set of time series data 

Controlled data collection environment 

Electrical heat load specific 

measurements 

High sampling frequency 

Temporally and spatially specific to target 

area 

Underlying penetration can be inferred 

Cons Need for translation to target area 

Temporal and spatial differential from 

target area 

No inferable penetration information 

for target area 

No isolated electrical heat load measurement 

Low sampling frequency 

Data quality; sparse/incomplete data 

 

Table 6-1 Overview of Pros and Cons for Trial versus Operational Data in Predictive 

Context for Electrical Heat Load 

The top-level concept coupled with the previously developed work in Chapter 3  and 

Chapter 4 is shown simplistically in Figure 6-1. The physical entity represents the physical 

asset and it’s associated conditions; in this case a LV network transformer and the applied 

electrical load. As has been explored in previous chapters, this load is sensitive to various 

parameters such as time of day, time of year and weather. The load data is then fed to the 
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processing stage. This is where disaggregation of the base LV transformer load occurs via the 

methodology presented in Chapter 5, allowing for the extraction of electrical heat load from 

non-heat load. This disaggregated electrical heat load can now be fed to the digital entity, 

which is a model representation of the LV feeder, transformer and associated loads. The 

generic electrical heat load model developed in Chapter 3 and 4 can now be supplemented 

with the extracted feeder-specific electrical heat load. In turn, this facilitates the modelling of 

outcomes beyond the conditions observed on the feeder.  This can be supplemented with 

auxiliary data sources such as weather and supporting socioeconomic data. 
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Figure 6-2 Detailed Unification of Electrical Heat Load Modelling and 

Disaggregation work 
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In an operational environment, captured operational data may not be as complete or 

sampled at the same high frequencies as trial data [8]. Furthermore, due to the need to 

disaggregate from LV transformer data, the difficulty of not having an isolated electrical heat 

load measurement must be offset. This supports the extension of predictions derived from 

disaggregated heat load beyond the operational range of the recorded measurements. This is 

of particular value when aiming to infer electrical heat load for worst case winter conditions, 

such as those experienced during winter of 2018 when several low temperature records were 

broken in quick succession [142].  

6.4 Applications 

The unification of generic models derived from trial data alongside locally specific models 

derived from more limited operational data present a range of application opportunities for 

DNO’s as they face the facilitation of increased renewables penetration. 

The changes in UK generation and load mix at the LV distribution network level 

necessitate an understanding of the specific electrical network impacts as a result of these 

changes. Whilst large-scale generation poses a simpler problem for characterisation and 

analysis, the distributed nature of small-scale load and generation at the LV network level 

presents a different problem. To date, analysis of future potential network impacts has been 

supported by models based on engineering principles supported by exemplar datasets where 

available. Both engineering assumptions and underlying data used for model construction 

stand to bias results, therefore this chapter has presented an alternative methodology that seeks 

to reduce these effects. 

Feeder-specific load models present several application opportunities in both planning and 

operational type areas, as well as opening up opportunities for decision-making and analytical 

interactions with local stakeholders such as councils and commercial entities as well as 

individual citizens.  
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Practical Implementation for Distribution Network Operators 

The methodologies developed in Chapters 3,4 and 5 outline standalone concepts that draw 

on static trial data or operational transformer data in order to predict electrical heat load. 

Chapter 7 combines this into a unified methodology that leverages the benefits of using 

existing trial data combined with real-time operational aggregated transformer load to provide 

locally specific insights. In the context of DNO’s working towards greater integration of data-

driven solutions for planning and operational tasks, this work contributes several benefits. 

By exploiting information already embedded in transformer monitoring, the 

disaggregation techniques in Chapters 3 offer a way to estimate electrical heat load penetration 

on a feeder without the need for additional monitoring hardware. Given the scale of the 

electricity distribution network, solutions that minimise physical intervention in existing 

infrastructure provide are particularly attractive from an investment perspective. Solutions 

with low requirements for physical intervention enable DNO’s to rapidly test out new 

methodologies with reduced risk to existing infrastructure, and then subsequently scale 

successful trials up to business as usual BAU as required.  

The combined methodologies offer a solution for predicting electrical heat load that is 

directly linked to understandable parameters such as external air temperature, and equivalent 

annual gas demand. This has several benefits for usability in a commercial environment; in 

contrast to a black-box solution, the model outputs described have a clear link to physical 

model inputs and the inputs can be fully linked to the outputs. The transparency of the 

developed approaches therefore allow results to be sense checked or audited by non-expert 

users, increasing the maintainability and dependability of the model for use in future 

applications.  

Finally, the works developed in Chapters 3 and 4 draw on contemporary electrical heat 

pump trial data combined with gas demand data. As has been discussed previously, these 

datasets are subject to becoming less representative with time as technology evolves, building 
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efficiencies improve and household energy consumption evolves. A key strength of these 

models is their adaptability; the models developed are not restricted to being used with the 

existing trial datasets. Future datasets, as long as electrical heat load is captured at a minimum 

of one-hour resolution can be substituted in to refresh the model outputs without requiring any 

fundamental change in approach. Similarly, any daily average temperature series can be used 

as long as it is relevant to the geographic area being studied. This enables model outputs to be 

periodically refreshed as new representative data is forthcoming. 

Planning horizons for distribution networks can span decades, and techniques that remain 

explainable in the midst of changing conditions are key for DNO’s seeking to optimise 

investment in the face of an ever-evolving political, technological and regulatory landscape. 

As standalone models, the work in previous chapters also offer low computation times 

alongside their maintainability. Electrical heat load for a group of 100 customers on an LV 

feeder can be modelled with less than 10 minutes of computation time; this could be further 

reduced with appropriate refactoring; this is less than the 30-minute time settlement interval 

used by energy markets. As part of a larger integrated system, further computation time would 

have to be allowed to permit for the transfer of data, communications and any further new 

system interfaces such as a presentation or visualisation layer at the decision-making interface. 

A conceptual model pipeline would vary depending on the specific architecture and 

constraints of existing systems, but generally would consist of the data collection, processing 

and decision making layers presented in Figure 6-2. A practical implementation would utilise 

the existing monitoring and data handling infrastructure embedded within an LV substation.  

The combined disaggregation and electrical head load prediction model would be hosted 

remotely; with the ready availability of cloud computing, an automated pipeline that ingested 

aggregated transformer load data could be hosted on a remote Amazon Web Services (AWS) 

instance. Compared to an in-house IT solution, the implementation could then benefit from 

several cloud-specific advantages such as auto-scaling, where the hosted instance can be 



173 

 

automatically scaled up or down based on demand, and elastic infrastructure, where computing 

resources can be adjusted with time to optimise cost versus performance. This architecture 

also allows for the ingestion of parallel data streams from multiple LV substations 

simultaneously, facilitating insights at a regional or licence-area specific level. 

The decision-making layer and how this interfaces with model outputs would then be 

tailored to the specific use-case and needs of a DNO. To support planning type decision-

making, automated reports could be generated over monthly or longer time horizons to provide 

an up-to-date view on the adoption of EHP across households in a licence area. Alternatively, 

a digital twin-type model that reflected the existing state of a network could be offered 

alongside the capability to turn-up and turn down parameters such as penetration levels and 

weather conditions to understand how a network segment might react under scenarios of more 

extreme loading. 

On shorter time-scales, decision making tools could be offered for network stakeholders 

making operational decisions. Forecasts for electrical heat load in areas of interest could be 

updated on a rolling basis as weather forecasts are correspondingly updated by forecasters. 

Ten-day weather forecasts are cited as only being right around 50% of the time, whereas a 

five-day forecast can accurately predict the weather in around 90% of cases [197]. Increasing 

weather forecast accuracy over shorter time horizons translates into increased confidence 

intervals for electrical heat load; this can enable network operators to anticipate time periods 

of particularly high or low network utilisation to correspondingly optimise their short-term 

decision making. 
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6.5 Conclusions 

This chapter has presented an integrated concept for extracting a locally specific electrical 

heat load model from LV transformer data, supplemented by generic models derived from 

historic trial datasets. This provides an interface between real world data collection and 

existing predictive models, where the limitations of standalone predictive models are 

overcome with live data.  

To effectively utilize the full potential of the digital twin type technology in the power 

system, a holistic approach is required to address various challenges such as modelling, data 

management, storage, computational requirements, and scalability [127].  Even though high-

performance computing facilities and emerging technologies such as cloud computing could 

serve as a stepping-stone to deal with most of these challenges, the challenges related to 

modelling and data management require more than engineering skills to solve [198]. 

Furthermore, efficiently balancing the trade-off between the accuracy of predictions by digital 

twins and optimizing computational complexity required for various types of models/data will 

be challenging [199]. 

Decarbonisation strategy comes from top level decisions in government but the success of 

UK decarbonisation depends on ability to be responsive and flexible in adapting 

implementations at the local level. Developed solutions must be sufficiently adaptable to 

account for the inevitable step-changes in energy usage patterns as stakeholders drive towards 

Net Zero. In the past, taking a one-size-fits-all approach to infrastructure development has 

often resulted in poor outcomes for local residents and users. The specific needs and challenges 

of different communities can vary enormously. 

 In an environment where DNO’s are increasingly looking to exploit network data for 

operational and planning type tasks, this chapter presents a concept for linking engineering 

models with generic trial data and feeder specific operational data. 
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This thesis has addressed some aspects of the difficulty of modelling electrical heat load 

in a LV distribution network context, which is characterised by low observability, low 

availability of data and high levels of uncertainty with respect to how uptake of the technology 

will proceed over the medium to long term. Building on previous works which focused on 

modelling EHP impacts at operational extremes using standalone trial data, such as a worst-

case winter day case, this work has demonstrated methodologies for supplementing limited 

and aging trial data with complementary weather and geospatial datasets in order to broaden 

the scope of network studies and maximise the value of potential insights. Additionally, the 

future possibility of model integration with live operational data to fill the gap between trial 

data and real-world needs has been explored. 

The chapters presented in this work form a contribution to de-risk accelerated adoption of 

EHP’s at the distribution network level. EHP technology forms a fundamental component of 

reducing UK domestic heating dependency on fossil fuels. However, the integration of EHP 

to existing networks presents a significant planning and operational challenge for DNO’s and 

future distribution system operators’ (DSOs) due to a combination of factors relating to the 

technology itself, as well as the context of the intended application. The significance of EHP 

power and energy characteristics in comparison with existing household usage, combined with 

their seasonal variability, their sensitivity to geospatially variable parameters such as building 

construction and householder routines. This is further compounded by the level of difficulty 

of intervention for existing and future housing stock. As the integration of LV-connected 

renewable technology gains momentum in the coming years and DNO’s seek to balance cost-

driven commercial decisions with technically-driven operational decisions, sufficiently 

understanding the energy mix on a feeder will be key to optimising future investment and 

operational decisions. 
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7.1 Outcomes of Research  

The main observations and results from the work presented in this thesis are summarised 

in this section. Electrical heat load contributed by increasing domestic heat pump penetration 

at the LV distribution network level is a function of residential thermal comfort levels and 

climatological conditions as well as physical building characteristics. The energy and power 

characteristics of domestic heat pumps combined with their temperature sensitivity will alter 

conventional LV load patterns and necessitates sufficient understanding for LV network 

operators to minimise risk to network assets and security of supply. 

Weather Localisation of Electrical Heat Load for Distribution Networks 

As a response to the limitations of building physics-based models and pure aggregated trial-

data for quantifying potential LV network loads, this work has developed a methodology for 

scaling existing trial data sensitive to geospatially variable parameters.   

In order to offer insights beyond the operational extremes presented in existing studies through 

aggregation of existing trial data, a methodology for predicting electrical heat load sensitive 

to local temperature conditions was developed. The RHPP and LCL EHP datasets were paired 

with corresponding temperature data in order to derive an electrical heat load versus 

temperature relationship. The most direct dependency was identified between daily average 

temperature (°C) and normalised daily demand. By expressing both temperature and demand 

at a daily resolution, the inherent variability due to diurnal temperature variation and heat 

pump cycling could be minimised. Through demand normalisation, the range of customer sizes 

in the trial could be observed across a common scale. The outcome of this work was to provide 

a model for electrical heat pump load that was sensitive to both the entire range of operational 

temperatures (as opposed to operational extremes) and number of customers. A key capability 

is the ability to model electrical heat load versus low numbers of customers, as opposed to 

high numbers of customer aggregations. This facilitates examination of increased EHP 

penetration effects for LV customer scales. 
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This model is constructed on the assumption that daily average external air temperature is 

the primary factor in electrical heat load demanded by a household. Linking hourly electrical 

heat load shapes to a single daily average external air temperature will not capture the 

variations or fluctuations of electrical heat load driven by normal temperature variation 

throughout a day. As a measure of purely external air temperature, it does not take into account 

other weather conditions such as snow, ice or wind and their influence on electrical heat load. 

Additionally, this work is dependent on correlating the Central England temperature series to 

RHPP customer loads – this temperature series will be on average representative of customers 

local weather conditions, but locally specific extremes may not be captured using this 

methodology. Future work that is not constrained by anonymised customer locations could 

develop a more refined relationship between electrical heat load and variation in local weather 

conditions. 

Scale Localisation of Electrical Heat Load for Distribution Networks 

A further development was to overcome the scale limitation of the previous chapter by 

developing a methodology for providing geospatially sensitive magnitude scaling. This was 

performed through the unification of geospatially linked annual gas demand data to inform the 

scaling of the normalised magnitudes output by the previously developed model. Three 

different heat-type datasets (gas, electric and direct heat) were used in order to test the 

relationship between annual and daily demand prior to application of the methodology in a 

case study. 

The presented case studies demonstrate the variability in EHP impact sensitive to the range of 

existing gas demands in the UK. The ADMD case study demonstrates the variability in ADMD 

versus a range of plausible COP values, demonstrating the sensitivity of network impacts to 

geospatial influences and COP.  A more extensive case study versus penetration is performed, 

demonstrating the variability in feeder endpoint voltage versus various penetrations and 

geospatially-inferred electrical heat demands. This contribution therefore can be used to 
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support identification and assessment of individual LV network feeders at risk due to elevated 

penetrations of electrical heat pumps.  

As has been discussed previously, this methodology makes the assumption that annual 

average gas demand for a postcode can be converted to heat and subsequently electrical heat 

load through the use of simple linear conversion efficiencies. This model therefore assumes 

that the heat demand required by a household is technology-agnostic, and is not influenced by 

whether the system is fossil-fuel fired or an electric heat pump supplied system. There is the 

risk that as customers shift to new heating types, any corresponding energy and cost savings 

translate into greater energy usage, resulting in a rebound effect and eroding the benefits of 

improved efficiency. Due to the present market penetration of heat pump technology in the 

UK this is a difficult phenomenon to capture, but as an increasing amount of households 

convert from fossil-fuel based heating systems to HP based systems, there is the opportunity 

to examine how the change in heat source impacts the final heat demand of a household. 

 LV Network Heterogeneity and Implications for Renewables Modelling 

This work has examined the heterogeneity present at the LV network level and the implications 

for electrical heat modelling, as well as low carbon technology modelling in a wider context. 

The transmission scale energy network is characterised by a comparably small number of high 

value, well characterised and well monitored assets. In contrast, the distribution network is 

responsible for facilitating the electrical supply for every domestic and commercial user in the 

UK. Electrical load provision is a function of human behaviour and needs; in the most general 

terms this translates to higher energy usage during daylight hours where human activity is 

most concentrated. However, at more granular geographic scales the unique constraints 

imposed by a specific geographic area stands to influence energy usage patterns and therefore 

electrical load imposed on an LV network. These parameters include human behaviour related 

to social and economic demographics, as well as physical effects such as weather, building 

construction and type. Chapter 4 presented the annual gas usage variation inherent at postcode 
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level within the UK. From here, a novel methodology was constructed to demonstrate the same 

variability for equivalent electrical heat load in the case of increased heat pump penetration on 

a feeder. The variability in ADMD given the annual electrical heat load magnitude was then 

modelled and tested for several test cases on an LV feeder.  

This contributes a process for inferring geospatially specific heat demand, and therefore 

electrical heat demand through the use of up-to-date postcode aggregated gas demand. This 

therefore provides a means of locally scaling electrical heat load, where national averages are 

presently used. 

Similarly, whilst the bulk electrical heat load installed in properties on an LV feeder may vary 

geographically, localised weather effects also stand to drive variations in electrical heat load. 

The work in Chapter 3 developed a methodology for modelling electrical heat load with 

respect to temperature, as opposed to the worst-case maximums that are typically used in 

existing works.  

Limitations of Trial Data for LV Network Modelling 

A unifying aspect of this work is the need to overcome the limitations of trial data in an 

LV networks context for EHP modelling. Electrical heat pump modelling is conventionally 

performed through two primary approaches: the physics-based approach, and the data-driven 

approach. The physics-based approach entails detailed physical parameterisation of the 

heating system, allowing for a transparent relationship between EHP activity and 

corresponding load imposed on the LV network. However, whilst the detailed variables can 

be defined, their specific values necessitate some level of assumption or abstraction due to the 

inherent variability in UK housing stock and occupant thermal routines. In order to bypass this, 

data-driven approaches which draw on trial data are used as an alternative. Trial data, which 

captures the actual load of domestic EHP’s, reflecting true time of use activity and sensitivity 

to geospatially variable parameters. However, due to the slow time scales involved with trials 

and restricted sample sizes, trial data in and of itself does not present a complete solution. 
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Presently there is a heavy dependency on trial data to inform the magnitude and time of use 

characteristics of LV-connected electrical heat pumps, and their corresponding impacts on LV 

network assets. In addition to heat pumps, this is a key issue for EV integration, as well as to 

a lesser extent rooftop solar and small-scale distributed generation.  

This is in part driven by the scale of the distribution network; with 27.8 million households in 

the UK it is naturally not feasible to characterise the power consumption of individual 

households and how they might alter with low-carbon technology integration. Alongside this, 

household smart meter data is not presently available to DNO’s due to regulatory restrictions. 

Therefore, representative samples obtained through controlled trials offer insight into potential 

network impacts through increased renewables penetrations. As of 2023, the primary UK 

electrical heat pump dataset is six years old. This therefore means that the reference datasets 

used to model domestic electrical heat load may be dated in terms of the technology and 

consumer usage. 

Future distribution network operation will become more fundamentally proportional to a wide 

range of load and generation types, beyond conventional household energy usage. Therefore, 

as distribution networks proceed through the earliest stages of renewables integration to a more 

mature footing, corresponding methodologies for supporting the understanding of future LV 

network loads must be developed to support this. 

EHP Operation Outside of Trial Data Temperature Ranges: Extreme Cold 

As has been highlighted previously in Chapter 3, the methodology developed in this work is 

inherently dependent on the raw trial data used to construct the relationship between electrical 

demand and outside air temperature. The sampled temperatures present a roughly linear 

relationship between the electrical load of an EHP and the outside air temperature from 

roughly 15 °C down to 0°C as shown in Figure 3-3. Additionally, due to the anonymisation of 

individual customers within their respective datasets, it is not possible to reliably identify 

customers EHP that are operating at cold extremes as the model only infers average 



182 

 

temperature from the Central England weather series, as specific customer location and 

therefore specific customer weather is not known. 

Therefore, the developed method provides limited insight into the relationship between EHP 

electrical load and outside air temperature for operating regions beyond the 0°C daily average 

temperature already modelled. 

[200] illustrates the relationship between COP and outdoor air temperature for a range of 

various commercially available air-source heat pumps. Within the 0°C to 15 °C operational 

band, device COP ranges from approximately 2.5 to 4 – roughly in line with the winter COP 

assumed in Chapter 4. However, beyond 0°C the COP is subject to further reduction, 

approaching as low as 1.6 for one brand of device. 

Figure 4-15 in Chapter 4 has demonstrated the relationship between COP and calculated 

ADMD (kW), with increased COP imposing an increase in calculated ADMD for a feeder. 

For a EHP capable of a 16kW heat output, a change in COP from 2.5 to 1.5 would result in an 

increase in electrical demand from 6.4kW to 10.67kW to meet the same target heat output –

over a 60% increase. 

As EHP’s are intended to replace conventional fossil fuel fired systems as the primary heat 

source in modern households, their performance at cold extremes is a point of critical analysis. 

Future LV networks must be designed to accommodate not only increased uptake of electrified 

low-carbon heating, but also the risks imposed by operating these devices under worst-case 

cold conditions. 

 

 

Disaggregation of Electrical Heat Load for LV Networks 
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As an alternative to trial data, the disaggregation of electrical heat load from aggregated load 

data at the point of the LV transformer was demonstrated in Chapter 6. This was presented as 

a methodology that could circumvent some of the limitations surrounding age and applicability 

of trial data, by using trial data for characterisation of the physical relationship and using feeder 

specific data to refine final estimations of electrical heat load for various cases. This mitigates 

the localisation issues with trial data, providing a feeder-specific quantification of electrical 

heat load. However, the common seasonal phase of heat and non-heat load on a feeder 

necessitates alternative methods for performing reliable disaggregation. 

Through the use of EDRP smart meter and RHPP trial data, this disaggregation process 

emulates feeders that have a mix of conventional household non-heating electrical load and 

the addition of electrical heat load. Data was collected for the EDRP study between 2007 and 

2010 [158], whereas the RHPP data collection concluded in 2015 [8]. Since then, several 

changes have evolved in how households consume and use energy. The number of EV’s in the 

UK has grown more than ten-fold since 2015 to 2023 [201], impacting the energy consumption 

and usage patterns of households that are able to make use of home charging. Similarly, for 

rooftop solar, industry body MCS recorded a cumulative total of 640,883 rooftop installations 

in 2015, which now stands at 1,471,106 as of 2024 [45]. The Covid-19 pandemic saw remote 

working in the UK rise from 5% in 2019 to 38% in June 2020 [202]. Whilst these levels have 

reduced from their pandemic peak, as of 2023 some 25% and 40% of working adults in the 

UK report some level of home working [203]. This situation is still evolving and therefore 

future work attempting to disaggregate electrical heat load from electrical non-heat load should 

be sensitive to these changes. 

Integration of Operational and Trial Data 

The methodologies developed in Chapters 3, 4 and 5 were tied together in a concept that 

unified online operational data that provided locally specific insights into electrical heat load, 

alongside generic heat load models developed from trial data. The approach here therefore 
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leverages multiple sources of data in order to overcome the limitations of standalone 

operational and trial datasets.  

The individual methodologies developed in Chapters 3, 4 and 5 for predicting electrical heat 

load are all fundamentally dependent on the trial data [2] [8] [158] used in order to inform load 

time of use, energy and power characteristics. Whilst electrical heat load usage patterns will 

remain inherently sensitive to external air temperature and prevailing weather conditions, the 

integration of these methodologies in a real-time system presents many opportunities for 

further work. A system drawing on real-time transformer load data will be subject to more 

variability than the pre-screened and pre-selected customer data collected in a controlled and 

designed trial environment. Real world feeders may result in certain customer groups with 

particularly concentrated usage patterns, featuring lower levels of diversity compared to the 

typical levels obtained from the trial data derived results. Data quality issues, such as 

communications failures, or faulty sensors could influence model outputs and therefore would 

need to be handled appropriately without compromising model quality or utility.  

However, these kinds of issues are typical when translating concepts from theoretical studies 

to real-world implementations. Therefore, the specific effects to be compensated for would 

dependent on the requirements of end-user and the existing constraints of their system. 

 

7.2 Future Work  

This work has demonstrated methodologies that further develop electrical heat load 

predictions in the presence of incomplete data and knowledge. However, as discussed in 

Chapter 1, research is still very much constrained by the limitations of trial data when 

attempting to infer future LV network conditions. Whilst trial data is suitable for making 

average or general insights for network impacts, the inherent heterogeneity of the power 

distribution network necessitates the fact that trial data does not capture all of the inherent 



185 

 

variability present at LV level. Potential future work that builds on the existing concepts 

already explored is described below. 

Cross-referencing with data from Electrification of Heat Demonstration BEIS Project 

The BEIS Electrification of Heat Demonstration project, managed by Energy Systems 

Catapult, is currently underway as of 2022. This program is recruiting 750 households for the 

installation and ongoing monitoring of heat pumps for domestic heating, across a 

representative range of housing archetypes and social groups. This is a study very similar in 

size and scope to the previous BEIS program, which monitored domestic heat pumps installed 

via the Renewable Heat Premium Payment scheme. However, as previously discussed in 

Chapter 3, the data collected for the RHPP study was originally collected from 2013 up to 

2015. This means that data collected from the RHPP study inherently features almost ten years’ 

worth of lag between the present day and existing householder routines, building standards as 

well as heat pump technology. 

The renewal of UK-based domestic heat pump trial data therefore presents an opportunity to 

update existing models and cross examine any outputs from the RHPP-derived findings versus 

the more up to date datasets. 

Off-gas correlation pairs with gas postcodes 

The work performed in this thesis has focused on the LV-network level effects of grid-

connected households transitioning from gas-fired domestic heating to EHP-supplied 

heating. However, a specific difficulty is presented by the modelling of off-gas postcodes. 

This is characterised by the following challenges: 

• Off-gas households do not represent the typical UK household and therefore deviate 

from the mean in terms of building construction and type; the majority of off-gas 

postcode are present in remote rural localities in Scotland and Wales. 
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• Existing RHPP study approximates the only mean of UK households and is not 

representative of edge cases such as rural households. 

• The lack of gas-grid connection for off-gas households further reduces the data 

available as no metering is available to draw on for understanding household 

consumption. 

These difficulties are offset by the fact that off-gas households present good candidates for 

EHP installation. Off-gas grid households are reliant on some of the highest-carbon heating 

fuels, including oil and coal [204] and retrofitting existing households to utilise EHPs presents 

an opportunity to reduce the carbon footprint of these households. Under the UK Government 

Heat and Buildings Strategy EHP installation in off-gas homes is categorised as a low-regrets 

solution [38], whilst a BEIS survey found that only 9% of installers reported issues with 

building stock of off-gas-grid homes being a barrier to further UK heat pump deployment 

[205].  

Off-gas postcodes pose a challenge due to comparative lack of heating routines and available 

data. An opportunity exists here for the correlation of unmetered homes with metered homes 

to investigate potential off-gas impacts and better quantify electrical network effects for rural 

feeders with increased electrical heat pump penetration. 

Multi-LCT modelling  

Chapters 3, 4 and 5 have focused on the effects of increased EHP penetration at the LV 

level. However, the future power distribution network will incorporate a mix of electrical low-

carbon technologies, including electric heat pumps, electric vehicles of various sizes as well 

as distributed generation such as rooftop solar, small-scale wind, energy storage and larger 

LV-connected installations. Sufficiently understanding future network loads sensitive to 

magnitude, time of use and specific sensitivities of each LCT-type will be key. Furthermore, 

as DNO’s become more sophisticated there will be a natural transition from using static trial 
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data to provide indicative loads and more active exploitation of operational data in order to 

drive decision making. 

The localisation capabilities offered by the developed methodologies are of particular 

interest for local area energy planning (LAEP) activities. This is a relatively new process 

designed to empower localities to achieve emissions reductions tailored to their unique 

geography, physical infrastructure, natural resources, political and social landscape [206].  

An Innovate UK study [207] compared baseline deployment of two alternative scenarios 

that met the CCC’s Sixth Carbon Budget [37]; a ‘place-agnostic’ deployment, where low 

carbon measures were adopted uniformly across areas, and a ‘place-specific’ deployment, 

where each city-region was enabled to adopt the most socially cost-effective low-carbon 

measures. The place-specific scenario was modelled with requiring less than a third of the 

investment required by the place-agnostic scenario, whilst resulting in an additional £400bn 

of social benefits [207]. 

This represents an extremely powerful opportunity to achieve decarbonisation goals in a 

way that maximally targets the local needs of an area. Targeted action to insulate homes in 

poor housing stock could translate into warmer homes, improved health outcomes and social 

benefits, whereas the same action in a more affluent area may not result in the same returns 

due to an already elevated baseline. Similarly, homes in wealthy areas of rural Surrey may 

present radically different decarbonisation opportunities versus a rural area in the Scottish 

Highlands. 

The developed models have been constructed with sensitivity to external air temperature, 

using the Central England temperature series, but translatable to any Met Office temperature 

series. Similarly, the modelled electrical heat load derived from postcode-specific annual gas 

demand in Chapter 4 is adaptable to any postcode or area-specific gas demand. Therefore, 

when paired with local weather data and existing knowledge of local gas demand, a locally 

specific electrical heat load can be modelled for a range of penetration and existing heat 
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demand assumptions. Whilst subject to the constraints outlined earlier in this section, these 

methodologies create an opportunity for low-cost and rapid assessment of electrical heat load 

impact for local area energy planners. Combined with an appropriate cost modelling 

methodology and existing approaches for modelling other LCTs, planners could work with 

network operators to understand where investment in low-carbon heat solutions such as heat 

pumps could be targeted to maximise social gains for local communities whilst also achieving 

tangible emissions reductions. 

 

 

7.3 Final Thoughts 

The negative impacts of climate change and its wider effects have exceeded scientific 

expectations in recent years, with unprecedented extreme weather events occurring globally 

in 2022 alone. In August, areas in Pakistan received 784% more rainfall than the monthly 

average, contributing to the worst flooding in the country’s history and estimated economic 

losses of over $40 billion as well as untold damage to human life and communities. The 2022 

summer heatwaves across Europe resulted in the worst drought conditions for 500 years, with 

the months of June, July and August measuring as the warmest on record for the continent by 

a substantial margin, breaking the previous record set the previous summer of 2021. 

Colder weather brings its own difficulties, with the UK and Europe facing all-time-high 

wholesale energy prices due to supply-side disruption as the continent headed into the 

2022/2023 winter season. The gas-dependency of UK households for space heating places 

additional cost of living pressures on consumers and energy companies at a time of already 

elevated economic difficulties. 

Due to climatic, political, and economic factors, the balance between the three dimensions 

of the energy trilemma – security, affordability – has come under strain in the aftermath of the 
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Covid-19 pandemic. If not managed effectively, the crisis can compromise the pursuit of 

overarching net-zero emissions targets [208]. However, this also presents an opportunity to 

reassess current strategies, identify areas for improvement, and implement new approaches 

that can more effectively meet the goal of achieving net-zero emissions and preservation of 

the planet for future generations. 
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 Chapter 8 Appendix 
# Temperature (°C) Mean (μ) Std (σ) 
1 -2 0.1 0.002 
2 -1 0.6 0.042 
3 0 0.57 0.042 
4 1 0.58 0.044 
5 2 0.54 0.04 
6 3 0.5 0.04 
7 4 0.52 0.04 
8 5 0.48 0.036 
9 6 0.41 0.034 

10 7 0.35 0.034 
11 8 0.32 0.032 
12 9 0.27 0.03 
13 10 0.24 0.028 
14 11 0.19 0.024 
15 12 0.16 0.022 
16 13 0.11 0.016 
17 14 0.11 0.016 
18 15 0.09 0.014 
19 16 0.08 0.012 
20 17 0.07 0.012 
21 18 0.06 0.01 
22 19 0 0 

Table 8-1 Parameters used for (2), (3) in Chapter 3   
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