Novel N-heterocyclic activations mediated by magnesium reagents having sterically hindered ligands By Zoe Livingstone

A thesis submitted to the Department of Pure and Applied Chemistry, University of Strathclyde, in part fulfillment of the requirements for the degree of Doctor of Philosophy

2012

This thesis is the result of the author's original research. It has been composed by the author and has not been previously submitted for examination which has led to the award of a degree.

The Copyright of this thesis belongs to the author under the terms of the United Kingdom Copyrights Acts as qualified by the University of Strathclyde Regulation 3.49. Due acknowledgements must always be made to the use of any material contained in, or derived from, this thesis.

To my mum and dad, just a small thank you.

Acknowledgements

I would like to take this opportunity to first and foremost thank my supervisor Dr Eva Hevia, for allowing me the wonderful opportunity to carry out a project in such an interesting and exciting area of research. Her constant encouragement, dedication and support will never be forgotten. Her own enthusiasm for the chemistry was infectious and supplied me with constant motivation, even on the days when things were difficult. Eva has been a fantastic supervisor and mentor throughout the project and hopefully now a friend for life.

I next owe thanks to the rest of the Hevia team past and present, Vicky, Matt, Sharon, Emma, Thomas, and Alberto. Special mention must go to Sharon, Matt and Vicky who provided me with support when I needed it and also made me laugh every day of my PhD. My holiday (I mean conference) in America was one of the best trips I have ever been on, and has left me with ample hilarious stories to tell. I would also like to mention a summer student Tyne, for her important contribution to the project and being great fun to work alongside.

I would like to thank the academics in the group, Professor Robert Mulvey, Dr Charlie O'Hara and Dr Jan Klett for their contribution and ideas to the project. The rest of R5-26, all of who were an amazing bunch of people to work with, and have left me with lasting fond memories. I will particularly remember the Christmas trips to Rothesay, the conferences in Durham, London and Liverpool (my t-shirts to match), our summer outing in Arran and the group bonding day at Go Ape. I can only hope to work with a team half as nice as this group in the future. A special mention must go to Elaine and Jenny, both of whom were a great support and comfort when I needed them, their friendship will never be forgotten.

I must also thank those who have contributed directly to this research project; the Xray crystallographers, Dr Alan Kennedy, Professor William Clegg, Dr Luca Russo, Dr Ross Harrington and Dr Stuart Robertson, Vicky and Sharon. Professor Eva Rentschler and Luca Carella, for their magnetism studies. I would also like to thank Dr David Armstrong, for carrying out theoretical calculations.

Last, but by no means least, I must pay thanks to my family. I would like to thank my parents in particular for their continual support and belief in my ability, not just throughout the PhD, but in my entire academic career so far. Their own dedication and hard work ethic has proven invaluable in guiding me to the success in my own studies. I can never thank them enough for keeping me laughing when times got tough and always providing me with the encouragement and support I needed. I must also thank my sisters Chelsea and Taylor and extended family too, for being my biggest champions and keeping me sane when things got difficult. Finally I would like to thank my partner Sam, who has listened to all my talks, poster presentations and worries about reactions not working without ever complaining, even though he never understood a word of what I was saying.

Abstract

Building on recent advances on the synthesis of homometallic Mg compounds bearing highly sterically demanding ligands, but going significantly beyond the state-of-theart, this thesis report focuses on the synthesis of new sodium magnesiates and magnesium reagents supported by bulky *N*-chelating ligands $\{Ph_2Si(NAr^*)_2\}^2$ and $\{Ar^*N=C(Me)CH(Me)NAr^*\}^-$ (nacnac) as well as their exploitation within the areas of deprotonative metallation, heterocyclic activation and catalytic application in hydroamination reactions of organic heterocumulenes.

Firstly, a series of novel sodium magnesiates bearing the sterically demanding bis(amido)silvl ligand $\{Ph_2Si(NAr^*)_2\}^{2-}$ (Ar*= 2,6-*i*-Pr₂-C₆H₃) has been prepared. Thus alkyl derivatives $[{Na(THF)_6}^+{(Ph_2Si(NAr^*)_2)Mg(R)(THF)}^-]$ (R= Bu, 2; CH₂SiMe₃, 5) have been synthesised and isolated as crystalline solids by reacting bis(amine)silyl [Ph₂Si(NHAr*)₂] 1 with the relevant sodium magnesiate NaMg(Bu)R₂ (prepared in situ by co-complexation of BuNa with the relevant magnesium alkyl MgR₂). In addition, compound 5 has been used as a precursor for of the synthesis a new series of amido sodium magnesiates $[{Na(THF)_6}^+{(Ph_2Si(NAr^*)_2)Mg(NR_2)(THF)_x}^-]$ (NR₂ = HMDS, x=1, 6; NR₂= NPh₂, x=1, 7; NR₂ = NⁱPr₂, x=1, 8; NR₂ = DMP, x=1, 9; NR₂ = TMP, x=0, 10). The reactions of NH₂Ar* and pyrrole with complex 5 led to the formation of mixed-metal complexes $[{Na(THF)_6}^+{(Ph_2Si(NAr^*)(NHAr^*))Mg(NHAr^*)_2(THF)}^-]$ 11 and $[{(Ph_2Si(NAr^*)(NHAr^*))Mg(NC_4H_4)_2(THF)Na(THF)_2}]$ 12 respectively.

Reactivity studies disclosed that TMP derivative **10** was able to carry out the α -magnesiation of thiophene to yield [{Na(THF)₆}⁺{Ph₂Si(NAr*)₂)Mg(C₄H₃S)(THF)}⁻] **13**. In moving to reactivity studies with 1,3 benzoazoles complex **2** promotes the chemeoselective magnesiation of methylbenzimidazole (MeBIm) to yield [{Na(THF)₅}₂⁺{(Ph₂Si(NAr*)₂)Mg(MeBIm*)}₂⁻] **14** (MeBIm* = methylbenzimidazolyl), analysis of bond parameters, NMR data and DFT studies suggest that N-methylbenzimidazolyl ligand displays a metal carbene character. The reaction of **2** with benzothiazole (Btz) promotes a unique activation process of this heterocycle initiating an unprecedented cascade of reactions, where the initial magnesiation of Btz is followed by an intricate sequence of C-C coupling, ring opening, benzothiazolyl insertion into a C=N bond and intramolecular deprotonation leading to the ring opening and functionalisation of three Btz molecules resulting in novel sodium magnesiate $[L_2Mg_2Na_2(THF)_5]$ **15**. Extending these studies to the diazine molecule quinoxaline allows the synergic entrapment of radical anion (Qox[•]) in the form of dimer $[{Na(THF)_6}_2^+{(Ph_2Si(NAr^*)_2)Mg(Qox[•])}_2^-]$ **20** resulting from the homoleptic cleavage of Mg-C bond in the alkyl precursor **2**. EPR studies show that **20** is diamagnetic in the solid-state dimeric structure.

[(^{Dipp}nacnac)Mg(Bu)(THF)] Homometallic magnesium species 22 and [(^{Dipp}nacnac)Mg(TMP)] 23 were prepared and structurally defined and their reactivity towards 1,3-benzoazoles has been assessed. Reactions of 22 and 23 with benzoxazole allowed the isolation in both cases of $[(^{Dipp}nacnac)Mg{O(o-C_6H_4)NC}(THF)]$ 24 resulting from ring cleavage of benzoxazolyl anion. Benzothiazole (Btz) was magnesiated at the C2 position by the amido derivative to form $[\{(^{Dipp}nacnac)Mg(Btz^*)\}_2]$ 25 (Btz^*= 2-benzothiazolyl), however when 22 was reacted with Btz a novel activation of Btz occurred in a cascade reaction involving magnesiation, C-C coupling and ring opening resulting in $[(^{Dipp}nacnac)Mg\{(Btz^*)C(H)=N(2-C_6H_4-1-S)\}]$ 26. Complex 23 when reacted with nitrogen derivative methylbenzimidazole (MeBIm) promotes the magnesiation at the C2 position to yield $[{(^{Dipp}nacnac)Mg(MeBIm^*)}_2]$ 27. In contrast alkyl derivative 22 only coordinated to MeBIm through the lone pair on the N to yield [(^{Dipp}nacnac)Mg(Bu)(MeBIm)] 28.

Studies assessing the catalytic ability of sodium magnesiates to promote the hydroamination of isocyanates and carbodiimides, show that homoleptic $[NaMg(CH_2SiMe_3)_2]$ **32** can effectively catalyse at room temperature the reactions of HNPh₂ with several aliphatic isocyanates to yield the relevant ureas $[(NHR)C(=O)(NPh_2)]$ (R = ^tBu, **29**, R = Cy, **39**, R = Et, **43**) in yields ranging from 99 to 100%. Similarly tris(amido) complex $[NaMg(NPh_2)_3]$ **30** catalyses the trimerisation of aryl isocyanates under mild reaction conditions. The isolation of key intermediates

of the stoichiometric reactions provided important information to propose a possible catalytic cycle. Guanidines [(NHR)C(=NR)NPh₂] (R =Cy, **48**, R = ⁱPr, **49**) could be prepared in good-moderate yields (64-65%) by reacting NHPh₂ with RN=C=NR using **30** as a catalyst.

Publications

- "Magnesium-Mediated Benzothiazole Activation: A Room Temperature Cascade of C-H Deprotonation, C-C Coupling, Ring-Opening, and Nucleophilic Addition Reactions"; V. L. Blair, W. Clegg, A. R. Kennedy, Z. Livingstone, L. Russo and E. Hevia, Angew.Chem.Int.Ed., 2011, 50, 9857.
- "Isomeric and chemical consequences of the direct magnesiation of 1,3 benzoazoles using β-diketiminate stablised magnesium bases"; S. E. Baillie, V. L. Blair T. D. Bradley, W. Clegg, J. Cowan, R. W. Harrington, A. Hernan-Gomez, A. R. Kennedy, Z. Livingstone, S. D. Robertson and E. Hevia, (manuscript submitted).

Publications out with this work

 "New Insights into Addition Reactions of Dialklylzinc Reagents to Trifluoromethyl Ketones: Structural Authentication of a β-hydride Elimination Product Containing a Tetranuclear Zinc Chain"; E. Hevia, A. R. Kennedy, J. Klett, Z. Livingstone and M. D. McCall, Dalton Trans., 2010, 39, 520.

Oral Presentations

- 1. "Novel N-heterocyclic activations via a sodium magnesiation with a steric support"; University of Strathclyde, Inorganic Research Day, June 2011
- "New Sodium Magnesiates with Bulky Bis(amido) Ligands: Structural Tailoring for Deprotonation and Addition Reactions"; Universities of Scotland Inorganic Conference, Durham University, Durham, July 2010.

Poster Presentations

- "Magnesium Mediated Benzothiazole Activation: a Room Temperature Cascade of C-H Deprotonation, C-C Coupling and Ring-Opening Reactions"; North West Organic Conference, Liverpool University, Liverpool, July 2012.
- "Magnesium Mediated Benzothiazole Activation: a Room Temperature Cascade of C-H Deprotonation, C-C Coupling and Ring-Opening Reactions"; Universities of Scotland Inorganic Conference, Glasgow University, Glasgow, July 2011. Awarded judge's choice in poster competition.
- "Magnesium Mediated Benzothiazole Activation: a Room Temperature Cascade of C-H Deprotonation, C-C Coupling and Ring-Opening Reactions"; RSC Dalton Division Meeting on Main Group Chemistry, London Imperial College, London, July 2011. Awarded 1st prize in poster competition.
- 4. "Magnesium Mediated Benzothiazole Activation: a Room Temperature Cascade of C-H Deprotonation, C-C Coupling and Ring-Opening Reactions"; International American Chemical Society Meeting, Aneheim, March 2011.

Abbreviations

Å	Ångström	
Ad	adamantyl	
AMMM	alkali-metal mediated metallation	
AMMMg	alkali-metal mediated magnesiation	
Ar	aryl	
Ar*	$2,6^{-i}Pr_2-C_6H_3$	
b	broad	
bipy	bipyridine	
Boz	benzoxazole	
Btz	benzothiazole	
Btz*	benzothiazolyl	
Bu	butyl	
^t Bu	<i>tert</i> -butyl	
Bz	benzyl	
C_6D_6	dueterated benzene	
CIPE	complex-induced proximity effect	
COSY	¹ H- ¹ H correlated NMR spectroscopy	
Ср	cyclopentadienyl	
CSD	crystallographic structure database	
Су	cyclohexyl	
DA(H)	diisopropylamine	
DFT	density functional theory	
Dipp	diisopropylphenyl	
DoM	directed ortho metallation	
DMAP	4-dimethylaminopyridine	
DMP(H)	dimethylpiperididne	
dpq	2,3-bis(2-pyridyl)quinoxaline	
en	ethylenediamine	
EPR	electron paramagnetic resonance	
Et	ethyl	

fc	ferrocenyl	
g	grams	
HMDS(H)	hexamethyldisilazane	
HSQC	heteronuclear single quantum coherence	
ⁱ Pr	isopropyl	
IPr	1,3-bis-(2,2-diisopropylphenyl)imidazol-2-ylidene	

S´

-C ⊖ ⊖

Ņ

S O

т	
L	

I	*
T	-

N O	
Bu - C N H ^{NN/V} S	
	 ۳

_	
T	1
T	-

L'	S' H
m	multiplet
Me	methyl
MeBIm	methylbenzimidazole
MeBIm*	methylbenzimidazolyl
Mes	mesityl
ml	millilitre
nacnac	$[\{2,6^{-i}Pr_2C_6H_3)N(Me)C\}_2CH]$
NHC	N-heterocyclic carbene
NMR	nuclear magnetic resonance
PEPPSI	pyridine-enhanced precatalyst preparation, stabilization, and
	initiation

 \mathbb{N}

Ph	phenyl	
ppm	parts per million	
q	quartet	
Qox	quinoxaline	
S	singlet	
TEMPO	(2,2,2,6,6-tetramethyl-1-piperidinyloxy)	
d ₈ -THF	deuterated tetrahydrafuran	
THF	tetrahydrafuran	
TMEDA	tetramethylethylenediamine	
TMP(H)	tetramethylpiperidine	

Table of Compounds

[Ph ₂ Si(NAr [*] H) ₂]	1
$[{Na(THF)_6}^+{(Ph_2Si(NAr^*)_2)Mg(Bu)(THF)}^-]$	2
[{Ph ₂ Si(NHAr*)(NAr*)Na} ₂]	3
$[{Na(THF)_6}^+{(Ph_2Si(NAr^*)_2)Al(Bu)_2}^-]$	4
$[{Na(THF)_6}^+{(Ph_2Si(NAr^*)_2)Mg(CH_2SiMe_3)(THF)}^-]$	5
$[{Na(THF)_6}^+{(Ph_2Si(NAr^*)_2)Mg(N(SiMe_3)_2)(THF)}^-]$	6
$[{Na(THF)_6}^+{(Ph_2Si(NAr^*)_2)Mg(NPh_2)(THF)}^-]$	7
$[{Na(THF)_6}^+{(Ph_2Si(NAr^*)_2)Mg(N^iPr_2)(THF)}^-]$	8
$[{Na(THF)_6}^+{(Ph_2Si(NAr^*)_2)Mg(DMP)(THF)}^-]$	9
$[{Na(THF)_6}^+{(Ph_2Si(NAr^*)_2)Mg(TMP)}^-]$	10
$[{Na(THF)_6}^+{(Ph_2Si(NAr^*)(NHAr^*))Mg(NHAr^*)_2(THF)}^-]$	11
$[{(Ph_2Si(NAr^*)(NHAr^*))Mg(NC_4H_4)_2(THF)Na(THF)_2}]$	12
$[{Na(THF)_6}^+{Ph_2Si(NAr^*)_2)Mg(C_4H_3S)(THF)}^-]$	13
$[{Na(THF)_5}_2^+ {(Ph_2Si(NAr^*)_2)Mg(MeBIm^*)}_2^-]$	14
$[L_2Mg_2Na_2(THF)_5]$	15
$[L_2L^*_2Mg_3Na_4(THF)_9]$	16
$[(Ph_2Si(NAr^*)_2)Mg(THF)_2]$	17
$[LMg_2(SH)(THF)_4]$	18
[(Ph ₂ Si(NAr*) ₂)Mg(THF)(PhN(C ₂ N(NPh) ₂)Na(THF) ₄]	19
$[{Na(THF)_6}_2^+ {(Ph_2Si(NAr^*)_2)Mg(Qox^{\bullet})}_2^-]$	20
[(Ph ₂ Si(NAr*) ₂)Mg(TEMPO)Na(THF) ₃]	21

[(^{Dipp} nacnac)Mg(Bu)(THF)]	22
[(^{Dipp} nacnac)Mg(TMP)]	23
$[(^{Dipp}nacnac)Mg\{O(o-C_6H_4)NC\}(THF)]$	24
$[\{(^{Dipp}nacnac)Mg(Btz^*)\}_2]$	25
$[(^{Dipp}nacnac)Mg\{(Btz^*)C(H)=N(2-C_6H_4-1-S)\}]$	26
[{(^{Dipp} nacnac)Mg(MeBIm*)} ₂]	27
[(^{Dipp} nacnac)Mg(Bu)(MeBIm)]	28
$[(^{t}BuNH)C(=O)(NPh_{2})]$	29
[NaMg(NPh ₂) ₃ (THF) ₂]	30
[(THF) ₃ NaMg((^t BuN)C(NPh ₂)(=O)) ₃]	31
$[{NaMg(CH_2SiMe_3)_3}]$	32
[(^t BuNH)C(=O)(NBu ₂)]	33
[(^t BuNH)C(=O)(NBz ₂)]	34
$[(^{t}BuNH)C(=O)(NPy_{2})]$	35
[(^t BuNH)C(=O)(NHAr*)]	36
[(CyNH)C(=O)(NBu ₂)]	37
$[(CyNH)C(=O)(NBz_2)]$	38
$[(CyNH)C(=O)(NPh_2)]$	39
$[(CyNH)C(=O)(NPy_2)]$	40
[(CyNH)C(=O)(NHAr*)]	41
[(EtNH)C(=O)(NHAr*)]	42
[(EtNH)C(=O)(NPh ₂)]	43
$[(EtNH)C(=O)(NPy_2)]$	44

$[{(pTolylN)C(=O)}_{3}]$	45
$[{Na(THF)_6}^+{(Ph_2Si(NAr^*)_2Mg[(CyN)C(=NCy)(NPh_2)]}^-]$	46
$[{Na(THF)_6}^+{(Ph_2Si(NAr^*)_2Mg[(^iPrN)C(=N^iPr)(NPh_2)]}^-]$	47
[(NPh ₂)C(=NCy)(NHCy)]	48
$[(NPh_2)C(=N^iPr)(NH^iPr)]$	49
$[{Na(THF)_5}^+{Mg(NPh_2)[(NCy)C(=NCy)(NPh_2)]_2}^-]$	50

R ¹	R^2	compound
^t Bu	Ph	29
^t Bu	Bu	33
^t Bu	Bz	34
^t Bu	Ру	35
^t Bu	Ar*	36
Су	Bu	37
Су	Bz	38
Су	Ph	39
Су	Рy	40
Су	Ar*	41
Et	Ar*	42
Et	Ph	43
Et	Ру	44

Table of Contents	
Abstract	VI
Publications	IX
Presentations	X
Abbreviations	XI
Table of Compounds	XIV
Table of Contents	XXI
Chapter 1	1
1.1 Introduction	1
1.1.1 Sterically demanding ligand: Generalities	1
1.1.2 Sterically demanding bidentate ligands	2
1.1.3 Sterically demanding monodentate ligands	10
1.1.4 Sterically bulky ligands in magnesium chemistry	13
1.2 Organomagnesium chemistry	18
1.2.1 Grignard reagents	18
1.2.2 Magnesium amides	21
1.3 Mixed-metal mediated (ate) chemistry	22
1.3.1 Historic background	22
1.3.2 Mixed-metal mediated magnesiation (AMMM)	24
Chapter 2	32
2.1 Synthesis of new sodium magnesiates bearing the bis(amido)	
ligand {Ph ₂ Si(NAr*) ₂ } ²⁻	32
2.1.1 Introduction	32
2.1.2 Synthesis of alkyl complex [{Na(THF) ₆ } ⁺ {(Ph ₂ Si(NAr*) ₂)Mg(Bu)(THF)} ⁻]	
2	32
2.1.3 Aluminium contamination: Isolation of [{Na(THF) ₆ } ⁺ {(Ph ₂ Si(NAr*) ₂)Al(Bu) ₂ } ⁻]	
4	40
2.1.4 Synthesis of alkyl complex [{Na(THF) ₆ } ⁺ {Ph ₂ Si(NAr*) ₂)Mg(CH ₂ SiMe ₃)(THF)} ⁻] 5	41
2.2.1 Synthesis of sodium magnesiate amido complexe	S

 $[{Na(THF)_6}^+{Ph_2Si(NAr^*)_2Mg(NR_2)(THF)}^-] (NR_2 = HMDS, NPh_2, N^iPr_2, DMP,$

TMP).

2.2.2	Synthesis	of	Sodium	magnesiate	amido	complex
[{Na(TH	HF) ₆ } ⁺ {(Ph ₂ Si(NA	Ar*)(NH	Ar*))Mg(NHA	Ar*) ₂ (THF)} ⁻] 11 a	ind	
[{(Ph ₂ Si	i(NAr*)(NHAr*)))Mg(NC	4H4)2(THF)Na	a(THF) ₂ }] 12		53
2.3.1 Co	onclusions					60
Chapte	er 3					61
3.1.1 M	etallation reaction	ons				61
3.1.2 M	etallation of thio	phene				62
3.2.1 Re	eactivity studies	of 1,3-be	nzoxazoles			66
3.2.2 M	ethylbenzimidaz	ole meta	llation			67
3.3.1 M	agnesium-media	ited benz	othiazole acti	vation		75
3.3.2 P	roposed mechai	nism for	benzothiazo	le activation: a	room temper	rature
cascade	of C-H deproto	nation, C	C-C coupling,	ring opening and	nucleophillic	
additior	ı reaction					80
3.3.3 Ef	fect of bis(silyl)a	ımido lig	and in activat	ion of benzothiazo	ble	90
3.3.4 Re	eaction with ben	zoxazole				93
3.4.1 Re	eaction with nitr	on: a stal	ble N-heterocy	yclic carbene		94
3.5.1 Re	eaction of 2 with	quinoxa	line: trapping	of a radical anion	l	97
3.5.2 So	lution studies of	complex	20			103
3.5.3 EF	PR studies and D	OFT calcu	ılations			104
3.5.4 Re	eaction of comple	ex 2 with	TEMPO [°]			109
3.6.1 Co	onclusions					112

44

Chapter 4	115
4.1.1 Introduction	115
4.2.1 Synthesis of β-diketiminate magnesium bases	117
4.2.2 Reactivity studies with benzoxazole	122
4.2.3 Deprotonation of benzothiazole: magnesiation vs cascade activation	126
4.2.4 Deprotonation of methylbenzimidazole: magnesiation vs coordination	136
4.3.1 Conclusions	141
Chapter 5 Hydroamination reactions of organic heterocumulenes	
catalysed by sodium magnesiates	143
5.1.1 Introduction	143
5.2.1 Hydroamination of alkylisocyanates	147
5.2.2 Hydroamination of arylisocyanates	165
5.3.1 Hydroamination of carbodiimides	170
5.4.1 Conclusions	181
Chapter 6: General Experimental techniques and procedures	182
6.1 General Experimental techniques	182
6.1.1 Schlenk techniques	182
6.1.2 Glove box	183
6.1.3 Solvent purification	184
6.1.4 Analytical procedures	184
6.1.5 NMR scale experiments	185
6.2 Synthesis of products	185
6.2.1 Synthesis of [Ph ₂ Si(NAr [*] H) ₂] 1	185
6.2.2 Synthesis of [{Na(THF) ₆ } ⁺ {(Ph ₂ Si(NAr*) ₂)Mg(Bu)(THF)} ⁻] 2	186
6.2.3 Synthesis of [{Ph ₂ Si(NHAr*)(NAr*)Na} ₂] 3	186
6.2.4 Synthesis of [{Na(THF) ₆ } ⁺ {(Ph ₂ Si(NAr*) ₂)Mg(CH ₂ SiMe ₃)(THF)} ⁻] 5	187
6.2.5 Synthesis of [{Na(THF) ₆ } ⁺ {(Ph ₂ Si(NAr*) ₂)Mg(N(SiMe ₃) ₂)(THF)} ⁻] 6	187
6.2.6 Synthesis of [{Na(THF) ₆ } ⁺ {(Ph ₂ Si(NAr*) ₂)Mg(NPh ₂)(THF)} ⁻] 7	188
6.2.7 Synthesis of [{Na(THF) ₆ } ⁺ {(Ph ₂ Si(NAr*) ₂)Mg(N ⁱ Pr ₂)(THF)} ⁻] 8	188

6.2.8 Synthesis of [{Na(THF) ₆ } ⁺ {(Ph ₂ Si(NAr*) ₂)Mg(DMP)(THF)} ⁻] 9	189
6.2.9 Synthesis of [{Na(THF) ₆ } ⁺ {(Ph ₂ Si(NAr*) ₂)Mg(TMP)} ⁻] 10	190
6.2.10 Synthesis of [{Na(THF) ₆ } ⁺ {(Ph ₂ Si(NAr*)(NHAr*))Mg(NHAr*) ₂ (THF)} ⁻]	
11	190
6.2.11 Synthesis of [{(Ph ₂ Si(NAr*)(NHAr*))Mg(NC ₄ H ₄) ₂ (THF)Na(THF) ₂ }] 12	191
6.2.12 Synthesis of [{Na(THF) ₆ } ⁺ {Ph ₂ Si(NAr*) ₂)Mg(C ₄ H ₃ S)(THF)} ⁻] 13	192
6.2.13 Synthesis of [{Na(THF) ₅ } ₂ ⁺ {(Ph ₂ Si(NAr*) ₂)Mg(MeBIm*)} ₂ ⁻] 14	192
6.2.14 Synthesis of [L ₂ Mg ₂ Na ₂ (THF) ₅] 15	193
6.2.15 Synthesis of [L ₂ L [*] ₂ Mg ₃ Na ₄ (THF) ₉] 16	193
6.2.16 Synthesis of [(Ph ₂ Si(NAr*) ₂)Mg(THF) ₂] 17	194
6.2.17 Synthesis of [LMg ₂ (SH)(THF) ₄] 18	195
6.2.18 Synthesis of [(Ph ₂ Si(NAr*) ₂)Mg(THF)(PhN(C ₂ N(NPh) ₂))Na(THF) ₄]	195
6.2.19 Synthesis of $[{Na(THF)_6}_2^+ {(Ph_2Si(NAr^*)_2)Mg(Qox^{\bullet})}_2^-]$ 20	196
6.2.20 Synthesis of [(Ph ₂ Si(NAr*) ₂)Mg(TEMPO)Na(THF) ₃] 21	196
6.2.21 Synthesis of [(^{Dipp} nacnac)Mg(Bu)(THF)] 22	197
6.2.22 Synthesis of [(^{Dipp} nacnac)Mg(TMP)] 23	197
6.2.23 Synthesis of [(^{Dipp} nacnac)Mg{O(o-C ₆ H ₄)NC}(THF)] 24	198
6.2.25 Synthesis of [{(^{Dipp} nacnac)Mg(Btz*)} ₂] 25	199
6.2.26 Synthesis of [(^{Dipp} nacnac)Mg{(Btz*)C(H)=N(2-C ₆ H ₄ -1-S)}] 26	199
6.2.27 Synthesis of [{(^{Dipp} nacnac)Mg(MeBIm*)} ₂] 27	200
6.2.28 Synthesis of [(^{Dipp} nacnac)Mg(Bu)(MeBIm)] 28	200
6.2.29 Synthesis of [(^t BuNH)C(=O)(NPh ₂)] 29	201
6.2.30 Synthesis of [NaMg(NPh ₂) ₃] 30	201
6.2.31 Synthesis of [(THF) ₃ NaMg((^t BuN)C(NPh ₂)(=O)) ₃] 31	202
6.2.32 Synthesis of [{NaMg(CH ₂ SiMe ₃) ₃ }] 32	202
6.2.33 Synthesis of [(^t BuNH)C(=O)(NBu ₂)] 33	202
6.2.34 Synthesis of [(^t BuNH)C(=O)(NBz ₂)] 34	203
6.2.35 Synthesis of [(^t BuNH)C(=O)(NPy ₂)] 35	203
6.2.36 Synthesis of [(^t BuNH)C(=O)(NHAr*)] 36	203
6.2.37 Synthesis of [(CyNH)C(=O)(NBu ₂)] 37	203
6.2.38 Synthesis of [(CyNH)C(=O)(NBz ₂)] 38	204
6.2.39 Synthesis of [(CyNH)C(=O)(NPh ₂)] 39	204
6.2.40 Synthesis of [(CyNH)C(=O)(NPy ₂)] 40	204

6.2.41 Synthesis of [(CyNH)C(=O)(NHAr*)] 41	204
6.2.42 Synthesis of [(EtNH)C(=O)(NHAr*)] 42	205
6.2.43 Synthesis of [(EtNH)C(=O)(NPh ₂)] 43	205
6.2.44 Synthesis of [(EtNH)C(=O)(NPy ₂)] 44	205
6.2.45 Synthesis of [{(<i>p</i> TolylN)C(=O)} ₃] 45	205
6.2.46 Synthesis of [{Na(THF) ₆ } ⁺ {(Ph ₂ Si(NAr*) ₂ Mg[(CyN)C(=NCy)(NPh ₂)]} ⁻] 46	206
6.2.47 Synthesis of $[{Na(THF)_6}^+{(Ph_2Si(NAr^*)_2Mg[(^iPrN)C(=N^iPr)(NPh_2)]}^-]$ 47	206
6.2.48 Synthesis of [(NPh ₂)C(=NCy)(NHCy)]48	206
6.2.49 Synthesis of [(NPh ₂)C(=N ⁱ Pr)(NH ⁱ Pr)]49	207
6.2.50 Synthesis of $[{Na(THF)_5}^+{Mg(NPh_2)[(NCy)C(=NCy)(NPh_2)]_2}^-]$ 50	208
Overview, Conclusions and Future Work	209
References	216
Appendix I	223