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Synopsis

Quantum signals have intriguing properties and a characteristic feature of them is
their intrinsic noise. This results in uncertainty relations restricting our ability to
measure conjugate variables with absolute precision simultaneously. In the context of
amplification, this noise forbids an unknown quantum signal to be amplified perfectly
in a deterministic manner.

In the first part of this thesis we propose a method to amplify coherent states
probabilistically. Our method is based on coherent state comparison and photon
subtraction. We found that for an input chosen at random from a binary set of
states, under certain circumstances the fidelity can reach 100%. The probability of
success is very high (∼ 10− 40%) and it increases with gain.

We tested the experimental performance of our protocol for a gain of g2 = 1.8
and verified that the experimental results were in line with the theoretical predictions.
For an input state chosen from a binary set the fidelity was > 98% and the success
rate of our amplifier was > 26000 amplified states per second.

In the second part of the thesis we propose a new form of orbital angular momentum
and angle states. These states consist of a sum of overlapping Gaussians in the angular
position representation. We calculated both the uncertainty product and the entropic
uncertainty relation for orbital angular momentum and angle. We found that in both
cases our new states have a lower uncertainty than the intelligent states.

Bringing all results together, our proposals have implications in quantum com-
munications: as our amplification protocol gives a perfect fidelity while maintaining
a high success probability it can find application as a quantum optical repeater,
and as our overlapping Gaussian states are well-defined for any value of the angular
uncertainty and have lower uncertainty relations than the intelligent states, they could
find applications in protocols exploiting the high-dimensional basis of orbital angular
momentum states.
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CHAPTER 1

Introduction

Signal amplification is often a necessary process in order to compensate for
the attenuation of signals along long transmission distances. Amplifiers, devices
that receive a weak signal and output a stronger signal, are placed either upon

transmission, or upon reception of a signal, and in-between long transmission lines so
that the signal is maintained at a practical level for detection.

Communication always attracted interest because of its ubiquity in everyday life.
However, the interest in quantum communications and quantum technologies in
general is at its peak these years. The unique properties that are inherent on
quantum signals, open exciting new prospects for applications that never seemed
feasible before. First and foremost, quantum key distribution promises to provide
unconditional security that cannot be surpassed even by the most efficient classical
supercomputers. Teleportation of information is possible for longer distances as years
go by. Quantum digital signatures, quantum dense coding and a myriad of other
applications will be accessible due to advances in quantum computing and quantum
communications.

This thesis deals with two questions related to quantum communications. Both
questions arise because of the characteristic intrinsic noise present in quantum signals.

The first part considers the amplification of quantum signals. Any device that
amplifies a quantum signal deterministically, also amplifies the quantum noise and
adds some noise as well. The amplification of the noise is not desirable as it swamps
the quantum properties of the signal. However, it is possible to amplify a quantum
signal with the amount of noise kept at its minimum, only if the amplification is
non-deterministic. This means that the device will not always work, but when it
works the resulting amplified signal will have the same amount of noise it had before
amplification.

There are two main quality factors that characterise non-deterministic amplifiers:
the fidelity of the amplified state with the desired amplified state that does not have
any added noise and the success probability of the device. These measures compete.
Current protocols either amplify with high fidelity and low probability of success, or
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compromise on the fidelity for higher success rates. In addition, most current protocols
rely on quantum resources and they do not amplify states with high amplitude or high
gain.

These challenges lead us to the first research question: how can we amplify
quantum optical states with a high fidelity and a high probability of success? In
addition, can we do so without the use of quantum resources, with high gain, or for
high input state amplitudes?

The second part of this thesis is related to the precision with which we can measure
incompatible observables. Uncertainty relations govern quantum mechanics, limiting
our ability to measure incompatible observables with absolute precision simultaneously.
One possible observable is the orbital angular momentum of light. This provides a
high-dimensional basis for encoding information. The conjugate variable of orbital
angular momentum is angular position (or angle). Notably, the properties of light
are correlated in orbital angular momentum and the angular position. This means
that states carrying orbital angular momentum could be used extensively in quantum
communication protocols based on entanglement.

The uncertainty relation for orbital angular momentum and angle observables
has a state-dependent lower bound. Consequently, the states that minimise that
uncertainty relation for linear position and linear momentum, the intelligent states,
do not necessarily minimise the uncertainty relation for angular position and orbital
angular momentum. Additionally, the constrained minimum uncertainty product
states that minimise the uncertainty relation are complex and they are not well-defined.

The need for a better form of states leads us to the second question: are there
any orbital angular momentum and angular position states that have are well-defined
and minimise the uncertainty relation?

1.1 Aims and objectives

This thesis aims to answer both questions, with more emphasis given to the topic of
amplification. The main achievements are as follows:

We present a new protocol that amplifies quantum optical states probabilistically,
using the techniques of coherent state comparison and photon subtraction

It provides a high fidelity and high success probability

It does not use complex quantum resources
and it is easy to implement experimentally

We realise our amplification protocol experimentally

It provides high fidelity and high success rate, in agreement with theory

We present a new form of orbital angular momentum and angle states

They are well-defined for all values of the angular uncertainty

They have a lower uncertainty product than the intelligent states

They have a lower entropic uncertainty relation than the intelligent states

They have no significant difference to numerically optimised states
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1.2 Thesis structure

Original contributions:

Chapter 4 Quantum Optical State Comparison Amplifier

The theoretical protocol for quantum optical state comparison amplification.

Physical Review Letters 111, 213601
[Eleftheriadou, Barnett, and Jeffers, 2013]

Chapter 5 Experimental implementation of the state comparison amplifier

The experiment was
planned by John Jeffers, Robert J. Collins and Gerald S. Buller,
designed by Ross. J. Donaldson, R.J.C. and G.S.B.,
and analysed and the design enhanced by Electra Eleftheriadou.
The experimental implementation was assembled and operated by
R.J.D., R.J.C. and G.S.B. at Heriot-Watt University, Edinburgh, U.K.
Analysis of the experimental data was performed by E.E. and J.J.

A peer-reviewed version of this work has been accepted for publication
in Physical Review Letters.

Chapter 6 Gaussian Entropy-Minimising States (GEMS)

The new form of orbital angular momentum and angle states
that improve upon previous bounds of uncertainty relations.

The numerical optimisation algorithm was written by
Prof. Miles J. Padgett at the University of Glasgow, U.K.

Journal of Optics 16, 105404
[Yao, Brougham, Eleftheriadou, Padgett, and Barnett, 2014]

Background

Chapter 2 The basics
The tools in quantum optics.

Chapter 3 Amplification of quantum optical states
The existing protocols for quantum state amplification.

The end

Chapter 7 Conclusion
The summary of the main results.
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PART I

Quantum optical state comparison amplification
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CHAPTER 2

The basics

Common tools that are used in quantum mechanics, such as state vectors,
operators, phase space distributions, etc, are introduced in this first chapter
with the intention to set the ground for the rest of this thesis.

2.1 Preliminaries: States, operators and observables

2.1.1 State vectors

We express all the information we have about a physical system in what we call the
state of the system. The states live in a complex vector space, the Hilbert space,
so they can be described by vectors, usually referred to as state vectors. One of the
nice properties of the Hilbert space is that we can define an inner product (or scalar

product) between two vectors, say ~φ, ~ψ,

〈~φ, ~ψ〉 = 〈~ψ, ~φ〉∗ = c (2.1)

where c is a complex number. Dirac wrote the inner product as 〈φ|ψ〉 which became
known as the “Dirac bracket notation”. We can think of the “bracket” as a combination
of the “bra” 〈φ| and “ket” |ψ〉, where the ket |ψ〉 is another notation for the vector
~ψ. Therefore the state vector |ψ〉 is defined as a superposition of some basis states,
say |ψn〉,

|ψ〉 =
∑

n

cn|ψn〉, (2.2)

where cn is a complex number. It follows that the bra 〈φ| must live in the dual
space of |ψ〉, in order for their inner product be a complex number. The Hilbert
space is isomorphic to its dual (by Riesz Lemma), therefore there is a one-to-one
correspondence between the bras and the kets. The bra is thus defined as,

〈φ| =
∑

n

〈φn|c∗n, (2.3)
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where c∗n is the complex conjugate of cn and in this notation the inner product (or
overlap) between two states is

〈φ|ψ〉 = 〈ψ|φ〉∗. (2.4)

The inner product of a state with itself is real and positive,

〈ψ|ψ〉 > 0, (2.5)

and in particular when it is equal to one,

〈ψ|ψ〉 = 1, (2.6)

we say that the state is normalised. For states that are both orthogonal, 〈ψm|ψn〉 =
0 and normalised, 〈ψn|ψn〉 = 1, such as the basis states, we say that they are
orthonormal. It follows that the amplitudes cn are given by the overlaps

〈ψn|ψ〉 = cn = 〈ψ|ψn〉∗. (2.7)

If we set a normalisation condition and require that the probability amplitudes |cn|2
sum to one,

∑

n

|cn|2 = 1, (2.8)

we can interpret |cn|2 as the probability that a measurement of the state |ψ〉 in the
ψn basis would yield |ψn〉.

2.1.2 Operators

Operators are applied to a state to give another state,

Â|ψ〉 = |φ〉, (2.9)

where we will use the symbolˆto indicate that a function is an operator. The adjoint
of an operator is defined as

〈φ|Â|ψ〉 = 〈ψ|Â†|φ〉∗ (2.10)

in Dirac notation and has the following properties:

(Â†)† = Â (2.11)

(λÂ)† = λ∗Â† (2.12)

(ÂB̂)† = B̂†Â† (2.13)

(Â+ B̂)† = Â† + B̂†. (2.14)

Sometimes it is more convenient to express the operators in their matrix form. An
operator acting on an N -dimensional Hilbert space can be described by an N × N
square matrix. A vector is equivalent to a single column matrix and so the kets can
be expressed as column vectors and the bras as row vectors.

A very important class of operators are the self-adjoint operators. An operator is
self-adjoint if it is equal to its adjoint, Â = Â† and so 〈φ|Â|ψ〉 = 〈ψ|Â|φ〉∗.
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Eigenvalue equation

We say that |ψn〉 is an eigenstate (or eigenvector) of Â with eigenvalue αn if the
following equation is satisfied

Â|ψn〉 = αn|ψn〉, (2.15)

known as an eigenvalue equation (or 〈ψn|Â† = 〈ψn|α∗n), where αn is a complex
number in general. A function of an operator f(Â) is also an operator and

if Â|ψn〉 = αn|ψn〉,
then f(Â)|ψn〉 = f(αn)|ψn〉. (2.16)

If Â is a self-adjoint operator, Â = Â†, then the eigenvalues are real. Consequently,
one of the postulates of quantum mechanics states that physical observables are
represented by self-adjoint operators. Additionally, it can be shown that the eigenstates
corresponding to different eigenvalues must be orthogonal. Therefore the eigenstates
of a self-adjoint operator form a complete orthonormal basis and any state in the
Hilbert space can be expanded uniquely as a linear combination of the eigenstates,
as in (2.2).

Mean and Variance

The expectation value (or mean) of measuring an observable A associated with the
(self-adjoint) operator Â acting on the eigenstate |ψ〉 is given by

〈Â〉 = 〈ψ|Â|ψ〉 (2.17)

or more generally

〈Â〉 =
〈ψ|Â|ψ〉
〈ψ|ψ〉 , (2.18)

if the state is not initially normalised, or if the operator, when applied to the state,
results in a change of its magnitude. The expectation value 〈Â〉 is equivalent to
the average of the measurements of identically prepared systems. The spread of the
results from the mean is given by the variance,

(∆A)2 = 〈Â2〉 − 〈Â〉2

= 〈ψ|Â2|ψ〉 − 〈ψ|Â|ψ〉2.
(2.19)

The square root of the variance is known as the uncertainty or standard deviation,
∆A.
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Commutators

Another fundamental operator in quantum mechanics is the commutator. The com-
mutator of two self-adjoint operators, Â and B̂, is given by the following relation,

[Â, B̂] = ÂB̂ − B̂Â, (2.20)

whilst the anti-commutator is given by

{Â, B̂} = ÂB̂ + B̂Â. (2.21)

The adjoint of the commutator of two self-adjoint operators is equal to the negative
of the commutator:

[Â, B̂]† = (ÂB̂ − B̂Â)†

= B̂†Â† − Â†B̂†

= B̂Â− ÂB̂
[Â, B̂]† = −[Â, B̂]. (2.22)

We say that if

[Â, B̂] = 0, Â and B̂ commute (2.23)

[Â, B̂] 6= 0, Â and B̂ do not commute. (2.24)

Commutators indicate how a measurement of one observable influences the other or
whether we can measure both observables simultaneously with absolute precision. In
particular, when observables do not commute, then a measurement of one observable
will introduce noise to the measurement of the other. This has as a consequence an
uncertainty principle relating the standard deviations of two quantities A and B to
the commutator of their operators by

∆A∆B ≥ 1

2
|〈[Â, B̂]〉|, (2.25)

of which the most well-known is Heisenberg’s uncertainty principle

∆x∆p ≥ h̄

2
, (2.26)

where ∆x,∆p are the uncertainties in position, x̂ and momentum, p̂ and h̄ = h/(2π)
where h is Planck’s constant.

Baker-Campbell-Hausdorff formula

According to (2.13) the adjoint of the operators eÂeB̂ is

(eÂeB̂)† = eB̂
†
eÂ
†
. (2.27)

However, if we wish to add the exponents there is a general formula we must use
that involves the commutator of Â and B̂, known as the Baker-Campbell-Hausdorff
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formula. If we consider the specific case where the commutator of two operators
commutes with each of them,

[Â, [Â, B̂]] = 0 = [B̂, [B̂, Â]], (2.28)

then the following relation is true,

eÂeB̂ = eÂ+B̂+ 1
2
[Â,B̂]. (2.29)

Ordering

It is evident that the order in which operators appear is very important. We group
the operators depending on the position an annihilation operator, â, has with respect
to a creation operator, â† [Barnett and Radmore, 2002]:

Normal order (indicated by the symbols ::):
All creation operators are to the left of the annihilation operators,
e.g. : ââ†â†â := â†â†ââ

Anti-normal order (indicated by the symbols
...
...):

All creation operators are to the right of the annihilation operators,

e.g.
...ââ†â†â

... = âââ†â†

Symmetric order (indicated by S(.)):
is the average of all possible orderings of the operators
e.g. S(ââ†â†â)
= 1

6

(
â†â†ââ+ â†ââ†â+ â†âââ† + ââ†â†â+ ââ†ââ† + âââ†â†

)

Operators in these specific orderings are used to define different quasiprobability
distributions of the phase space. For example, the P -function, Q-function and Wigner
function, are the distributions that can be defined when the operators are in normal,
anti-normal and symmetric ordering, respectively [Schleich, 2011].

Unitary operators

A unitary operator is the operator whose adjoint is equal to its inverse,

Û † = U−1. (2.30)

It follows that

Û †Û = 1̂ = Û Û †, (2.31)

where 1̂ is the identity operator. The eigenvalues of a unitary operator are in general
complex numbers of modulus one and the eigenstates corresponding to different
eigenvalues are orthogonal. This follows from the fact that unitary operators preserve
the scalar product of the states under transformation,

〈φ|ψ〉 = 〈Ûφ|Ûψ〉 = 〈φ|Û †Ûψ〉 = 〈φ|ψ〉, (2.32)

and also they preserve the norm of a state. This makes the act of a unitary operator
analogous to the rotation of vectors. Unitary operators appear in the description of
the evolution of a quantum state, in systems with time-reversal symmetry and others.
We will use to them describe the state transformation at a beamsplitter.
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2.1.3 Mixed states and density operators

Sometimes we may not have all the information we need to express the quantum
state in its state vector form, (2.2), but instead we may know only the probabilities
Pn that the system is in a normalised state |ψn〉. Therefore the average value of some
observable A associated with the operator Â is the ensemble average

〈Â〉 =
∑

n

Pn〈ψn|Â|ψn〉. (2.33)

The statistical mixture of states is represented by the density operator ρ̂, that we
define as

ρ̂ =
∑

n

Pn|ψn〉〈ψn|. (2.34)

We require that the probabilities Pn sum to unity,
∑

n Pn = 1, but if one of them is
equal to one, Pn = 1, then the density matrix ρ̂ reduces to

ρ̂ = |ψn〉〈ψn|, (2.35)

which is the corresponding description of (2.2) in the density operator formalism. The
density operator in (2.34) is said to represent a mixed state, while the density operator
in (2.35) is said to describe a pure state. Operators represent the outer product of
two states, |ψ〉〈φ|.

Completeness relation

If we sum over a set of basis states and obtain the identity,

1̂ =
∑

m

|φm〉〈φm|, (2.36)

we say that this set of states is complete. Equation (2.36) is a very useful tool known
as the completeness relation or the resolution of the identity. Often it is used in order
to change the basis of a function. For example, we can use the completeness relation,
(2.36), to express the ensemble average, (2.33), as

〈Â〉 =
∑

n

Pn〈ψn|Â1̂|ψn〉

=
∑

n

Pn〈ψn|Â
(∑

m

|φm〉〈φm|
)
|ψn〉

=
∑

m

〈φm|
(∑

n

Pn|ψn〉〈ψn|
)
Â|φm〉

=
∑

m

〈φm|ρ̂Â|φm〉

= Tr{ρ̂Â}, (2.37)

where Tr is the trace operation that, as we have shown, can be evaluated in any
basis.
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2.2 The phase space

It’s not easy to visualise something as abstract as a quantum state, but with the aid
of the so-called phase space we can gain some insight into the structure of the density
operator describing a quantum state [Schleich, 2011]. We will introduce the phase
space depicting the properties of a classical system and then we will see how we can
use the phase space to describe the properties of a quantum system.

2.2.1 Classical harmonic oscillator

Let’s consider a simple harmonic oscillator, such as the periodic motion of a mass
on a spring. From Newton’s second law of motion the force acting on the mass
is proportional to ẍ, F (x) = mẍ. As this force is restoring, it is derivable from a
potential F (x) = −dV (x)/dx. Here the potential is V (x) = (1/2)mω2x2, where
ω =

√
k/m is the natural frequency of oscillation and k is the spring constant. By

deriving the force, F (x) = −mω2x, we arrive to the relation

ẍ = −ω2x. (2.38)

This is a second order differential equation and it is advantageous to define ẋ = v in
order to get a pair of coupled first order differential equations:

ẋ = v

v̇ = −ω2x. (2.39)

By specifying the initial conditions, x(0) and ẋ(0), we get a unique solution. The
phase space of this system is the plot of the velocity, ẋ(t), as a function of position,
x(t). The initial conditions x(0), ẋ(0) give the first point on this plane. This point
changes as a function of time and it traces a trajectory called the phase trajectory.
We use an arrow on the phase trajectory to show how the system evolves in time.
A closed phase trajectory describes a periodic motion, though note that the phase
trajectory does not intersect itself and in this sense classical systems are deterministic.

We can either solve the two equations in (2.39) and use the initial conditions to
get a unique solution, or we can find a general solution by evaluating the slope of the
phase trajectory. Let’s find the general solution first. If we divide the two equations
in (2.39) and rearrange,

dv

dx
= −ω

2x

v
vdv + ω2xdx = 0, (2.40)

and then integrate (2.40), we find

1

2
v2 +

1

2
ω2x2 = C (2.41)

where C is a constant. We can multiply this by m to get the total energy, E, of the
system:

1

2
mv2 +

1

2
mω2x2 = E, (2.42)
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Figure 2.1: Each point on the phase space, (xi(t), vi(t)) or (Xi(t), Pi(t)), determines
the state of the system completely at any instant of time. The arrow on the phase
trajectory shows how the system evolves in time.

For periodic motion the phase trajectory is a closed loop and in particular for a
harmonic oscillator the phase trajectory is an ellipse. We can rescale the axes to get

circular phase trajectories.

where the first term on the left hand side of (2.42) is the kinetic energy and the
second term is the potential energy. In the phase space, of v vs x, this is an ellipse
(Figure 2.1). An oscillator with a slightly higher or lower energy will be a concentric
ellipse to this one. Like with any oscillatory motion, the time period is independent
of the amplitude. If we wish we can multiply (2.42) by m to get the ellipse on the
momentum vs position phase space,

1

2m
p2 +

1

2
mω2x2 = E. (2.43)

We have seen how we can use the phase space to study a system, without the
need to find the solutions to the equations of motion. This can be very useful if the
system is more complex than a simple harmonic oscillator.

On the other hand, if we solve the equations of motion, we will get the following
solutions,

x(t) = A cos (ωt+ φ)

v(t) = −ωA sin (ωt+ φ) (2.44)

and

p(t) = −mωA sin (ωt+ φ) (2.45)

for the momentum. We can define a function that represents position and momentum
in the complex phase space. We choose the real axis to represent the position and
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the imaginary axis to represent the momentum of the oscillator and so we define

α(t) = x(t) + ip(t). (2.46)

The axes of the phase plane can be rescaled, by multiplication of position by
√
mω

and momentum by 1/
√
mω,

α(t) =
√
mωA cos (ωt+ φ) + i

(−1)√
mω

mωA sin (ωt+ φ)

α(t) =
√
mωAe−i(ωt+φ)

α(t) = X(t) + iP (t) (2.47)

to guarantee circular, rather than elliptical, phase trajectories (Figure 2.1). X(t) and
P (t) are the rescaled x(t) and p(t) axes and now they have the same dimensions.
The evolution of this function in time is

α̇(t) = −iωα(t). (2.48)

In this notation, the energy of the oscillator is equal to

E =
1

2
mω2A2 sin2 (ωt+ φ) +

1

2
mω2A2 cos2 (ωt+ φ)

E =
ω

2

(
P 2 +X2

)

E =
ω

2
|α(t)|2, (2.49)

and we know that it is constant in time.

2.2.2 Normal modes as harmonic oscillators

In this subsection we briefly state the form of the normal modes of an optical system
in order to appreciate their mathematical equivalence to the harmonic oscillator. A
detailed discussion of these points can be found in Grynberg et al. [2010].

It is known we can define a new field A(x, t) called the vector potential that
describes both the electric, E(x, t) and magnetic, B(x, t), fields in free space. It
turns out that we can express the vector potential as a sum of functions, αi(t),

A(x, t) =
∞∑

i=−∞

ei√
ωi
Ci
[
αi(t)e

ikix + α∗i (t)e
−ikix

]
, (2.50)

where ei are transverse polarisation vectors, the multi-index i = (k, s) contains three
indices for the components of the k-vector and one index for the two polarisation
directions of each k, ωi = c|ki| = cki and Ci is a constant. The normal modes αi(t)
are defined as

αi(t) =
1

2Ci

[√
ωiÃi(t) +

i√
ωi

˙̃Ai(t)

]
, (2.51)
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where Ãi(t) are the scalar plane wave amplitudes. We find that the evolution of a
normal mode in time is

α̇i(t) = −iwiαi(t), (2.52)

which shows that each normal mode evolves independently from other modes. In
fact, the real and imaginary parts are coupled,

∂

∂t
Re(αi) = wiIm(αi)

∂

∂t
Im(αi) = −wiRe(αi). (2.53)

As time passes by, the real part of αi(t) becomes the imaginary part and the imaginary
part becomes a negative real. Equations (2.52) and (2.53) have the same form as
those describing the harmonic oscillator, (2.48) and (2.39). Hence we reach an
important conclusion: mathematically, a normal mode is equivalent to a harmonic
oscillator, with the real part of αi(t) interpreted as the position and the imaginary part
as the momentum of a harmonic oscillator. As each normal mode evolves on its own,
(2.52), we can treat them independently; in fact, we can treat the electromagnetic
field as a sum of independent harmonic oscillators.

With this observation we note that we can use the phase space to plot the
properties of the normal modes in the same way as we do for harmonic oscillators.
We find the energy of the radiation field

H =
ε0
2

∫

V

d3r
(
|E|2 + c2|B|2

)
, (2.54)

by expressing the electric, E(x, t) and magnetic, B(x, t), fields in terms of normal
modes:

E(x, t) = −Ȧ =
∞∑

i=−∞

iei
√
ωiCi

[
αi(t)e

ikix − α∗i (t)e−ikix
]

(2.55)

B(x, t) = ∇×A =
∞∑

i=−∞

ie′i
√
ωiCi

[
αi(t)e

ikix − α∗i (t)e−ikix
]
, (2.56)

where e′i = 1/ki(ki × ei) and eventually we arrive at the expression that the total
energy in the radiation field is

H = 4ε0V
∑

i

C2
i

ωi
2
|αi(t)|2. (2.57)

As it is expected, the energy of a each mode has the same form as the energy of the
complex function we defined in (2.47) for the harmonic oscillator, (2.49).

In this subsection we mentioned the important analogy that one can draw between
the normal modes of light and harmonic oscillators. Mathematically they are equivalent:
the real and imaginary parts of a normal mode are coupled like the velocity (or
momentum) and position of a harmonic oscillator. By convention, we keep the
“position” and “momentum” labels in the phase space. It follows that the quantised
normal modes behave like quantised harmonic oscillators. In the next subsection we
will see that the “position” and “momentum” axes on the phase space give their way
to the “position” and “momentum” operators.
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2.2.3 Quantum harmonic oscillator

In this subsection we present the procedure to quantise the classical harmonic oscillator.
Firstly, we find the positions, xi and momenta, pi, of our system, as in subsection
2.2.1 or equivalently by using Hamilton’s equations:

ẋi =
∂H

∂pi

ṗi = −∂H
∂xi

, (2.58)

where the Hamiltonian, H = T + V , is the sum of the kinetic, T and potential, V ,
energies. Then we replace the positions and momenta by the operators x̂i and p̂i.
Lastly, we require that these position and momentum operators obey the following
commutation relations:

[x̂i, p̂j] = δijih̄, (2.59)

[x̂i, x̂j] = [p̂i, p̂j] = 0, (2.60)

known as the canonical commutation relations. From this we can find the famous
uncertainty relation,

∆x∆p ≥ 1

2
|〈[x̂i, p̂i]〉|

∆x∆p ≥ h̄

2
, (2.61)

where ∆x,∆p are the uncertainties (or standard deviations) in position and momentum
respectively.

The phase space plot of quantum states reflects the effect of the uncertainty
principle. Let’s look, for example, how the equilibrium point for a classical system
and, analogously, the vacuum state for a quantum system are represented. For a
classical system, the equilibrium point corresponds to the total energy being equal to
zero.Thus on the phase space the equilibrium state is a point at the origin (Figure
2.2). However, we cannot pinpoint the state of a quantum system on the phase space
in the same way as we can for a classical one. Heisenberg’s uncertainty principle limits
our ability to determine conjugate variables with absolute precision. Each point on
the phase space becomes a circle of minimum uncertainty. The vacuum state is
centred at the origin, with the quantum fluctuations symmetrically distributed around
the centre (Figure 2.2). We will justify the last statement and see what different
quantum states of light look like on the phase space in the following sections.
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Figure 2.2: On the phase space, the equilibrium state of a classical system is
represented by a single point at the origin. For a quantum system, the vacuum
state is represented by a blob of uncertainty centred at the origin of the phase space.

The minimum quantum fluctuations are due to Heisenberg’s uncertainty principle.

2.2.4 Creation and annihilation operators

Recall the function we defined for the normal mode, αi = Xi + iPi. According to
the rules of quantisation, we need to replace the “position” and “momentum” by
their corresponding operators, which obey the canonical commutation relations. We
choose to rescale the real and imaginary parts of αi by 1/

√
2h̄ and so we define the

operator for the normal mode:

âi =
1√
2h̄

(x̂i + ip̂i) , (2.62)

with adjoint

â†i =
1√
2h̄

(x̂i − ip̂i) . (2.63)

They have the following commutation relations,

[âi, â
†
j] =

1

2h̄
(x̂i + ip̂i) (x̂j − ip̂j)−

1

2h̄
(x̂j − ip̂j) (x̂i + ip̂i)

=
1

2h̄
(x̂ix̂j − ix̂ip̂j + ip̂ix̂j + p̂ip̂j − x̂jx̂i − ix̂j p̂i + ip̂jx̂i − p̂j p̂i)

=
−i
h̄

[x̂i, p̂j]

= δi,j, (2.64)

and [âi, âj] = [â†i , â
†
j] = 0. (2.65)
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Their anti-commutator is

{âi, â†j} =
1

2h̄
(x̂i + ip̂i) (x̂j − ip̂j) +

1

2h̄
(x̂j − ip̂j) (x̂i + ip̂i)

=
1

2h̄
(x̂ix̂j − ix̂ip̂j + ip̂ix̂j + p̂ip̂j + x̂jx̂i + ix̂j p̂i − ip̂jx̂i + p̂j p̂i) , (2.66)

therefore

{âi, â†i} =
1

h̄

(
x̂2i + p̂2i

)
. (2.67)

It follows that the Hamiltonian operator for a mode of the quantum harmonic
oscillator is

Ĥi =
ωi
2

(
x2i + p̂2i

)

=
ωi
2
h̄
(
âiâ
†
i + â†i âi

)

= h̄ωi

(
â†i âi +

1

2

)
, (2.68)

and the Hamiltonian operator of the radiation field is then the sum of all contributions.
Given the Hamiltonian, we can determine the eigenvalues of the energy eigenstates.

Let us give a special name to the operator â†iai appearing in the Hamiltonian,

n̂i = â†iai, (2.69)

and let’s suppose that the state |ni〉 is an eigenstate of n̂i, such that

n̂i|ni〉 = ni|ni〉, (2.70)

with eigenvalue ni. With the help of n̂i we can show how â†i and âi act on the state
|ni〉:

n̂iâ
†
i |ni〉 = â†iaiâ

†
i |ni〉

= â†i (1 + â†iai)|ni〉
= â†i (1 + n̂i)|ni〉
= (ni + 1)â†i |ni〉 (2.71)

n̂iâi|ni〉 = â†iaiâi|ni〉
= (ââ†i − 1)âi|ni〉
= (n̂i − 1)âi|ni〉
= (ni − 1)âi|ni〉. (2.72)

The state â†i |ni〉 is an eigenstate of n̂i with eigenvalue (ni + 1) and âi|ni〉 is an
eigenstate of n̂i with eigenvalue (ni − 1) and so

â†i |ni〉 = c1|ni + 1〉, (2.73)

âi|ni〉 = c2|ni − 1〉. (2.74)
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Hence, the operator â† is called the creation (or raising) operator and the operator
â is called the annihilation (or lowering, destruction) operator. The states |ni〉 are
normalised, 〈ni|ni〉 = 1 and the constants c1, c2 are found to be

〈ni|âiâ†i |ni〉 = 〈ni + 1|c∗1c1|ni + 1〉
〈ni|(1 + â†i âi)|ni〉 = |c1|2
〈ni|(1 + n̂i)|ni〉 = |c1|2

(1 + ni) = |c1|2, (2.75)

〈ni|â†i âi|ni〉 = 〈ni − 1|c∗2c2|ni − 1〉
〈ni|n̂i|ni〉 = |c2|2

ni = |c2|2. (2.76)

As â and â† are the conjugate of each other, the phases of the constants c1, c2 must
be conjugate too,

â|n〉 = e−iφn
√
n|n− 1〉, (2.77)

â†|n〉 = eiφn
√
n+ 1|n+ 1〉, (2.78)

where we include the possibility that the phases could depend on n. By using the
commutation relation [â, â†] = 1, we have that

[â, â†]|n〉 =
(
eiφn
√
n+ 1â|n+ 1〉 − e−iφn√nâ†

)
|n− 1〉

=
[
ei(φn−φn+1)(n+ 1)− ei(φn−1−φn)n

]
|n〉 = |n〉 (2.79)

and so the quantity in the square brackets must be equal to one for every n. For
n = 0 we have that

ei(φ0−φ1) = 1 (2.80)

⇒ φ0 = φ1. (2.81)

Similarly for n = 1 we have that

2ei(φ1−φ2) − 1 = 1 (2.82)

ei(φ1−φ2) = 1

⇒ φ1 = φ2 (2.83)

and so on. Therefore that all the phases must be equal. However, as this phase is
global it is physically insignificant, therefore we can choose the phase to be zero.

Quadrature operators

It may be useful to express the “position” and “momentum” operators in terms of
the normal mode operators, by rearranging (2.62) and (2.63),

x̂i =

√
h̄

2

(
â†i + âi

)
(2.84)

p̂i = i

√
h̄

2

(
â†i − âi

)
. (2.85)
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We can rescale them at our convenience, by multiplying by 1/
√

2h̄,

X̂i =
1

2

(
â†i + âi

)

P̂i = i
1

2

(
â†i − âi

)
, (2.86)

so that âi = X̂i + iP̂i and â†i = X̂i − iP̂i. The operators X̂i and P̂i are called
the quadrature operators and as they are self-adjoint they correspond to observables.
Their commutator is

[X̂i, P̂j] =
i

4

[(
â†i + âi

)(
â†j − âj

)
−
(
â†j − âj

)(
â†i + âi

)]

=
i

4

(
â†i â
†
j − â†i âj + âiâ

†
j − âiâj − â†j â†i − â†j âi + âj â

†
i + âj âi

)

=
i

4

(
[âi, â

†
j] + [âj, â

†
i ]
)

=
i

2
[âi, â

†
j]

=
i

2
(2.87)

and the uncertainty product is

∆Xi∆Pi ≥
1

4
. (2.88)

Electric and magnetic field operators

One can find the operators for the vector potential, (2.50), the electric, (2.55) and
magnetic fields, (2.56), through the transformation αi(t)→ âi,

Â(x, t) =
∞∑

i=−∞

ei

√
h̄

2ε0V ωi

[
âie

ikix + â†ie
−ikix

]
, (2.89)

Ê(x, t) =
∞∑

i=−∞

iei

√
h̄ωi

2ε0V

[
âie

ikix − â†ie−ikix
]
, (2.90)

B̂(x, t) =
∞∑

i=−∞

ie′i
c

√
h̄ωi

2ε0V

[
âie

ikix − â†ie−ikix
]
, (2.91)

It is useful to define the electric field quadrature operators as

Êxi =

√
h̄ωi

2ε0V

(
â†i + âi

)
(2.92)

=

√
h̄ωi

2ε0V

√
2

h̄
x̂i,

Êpi = i

√
h̄ωi

2ε0V

(
â†i − âi

)

=

√
h̄ωi

2ε0V

√
2

h̄
p̂i, (2.93)
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that are a rescaled version the “position” and “momentum” quadrature operators x̂i
and p̂i defined above. Their commutator is

[Êxi, Êpj] =
h̄ωi

2ε0V

2

h̄
[x̂i, p̂j]

=
h̄ωi

2ε0V

2

h̄
ih̄

= 2i
h̄ωi

2ε0V
, (2.94)

and the uncertainty product is

∆Êxi∆Êpi ≥
h̄ωi

2ε0V
. (2.95)

2.3 The quantised modes of light

We have shown that the quantised modes of light are given by the annihilation and
creation operators,

âi|ni〉 =
√
ni |ni − 1〉

â†i |ni〉 =
√
ni + 1 |ni + 1〉. (2.96)

The creation operator, â†i , acts on a state to reach states with higher energies
indefinitely, but the annihilation operator, âi, must satisfy the equation

âi|0〉 = 0, (2.97)

as there can be no state with lower energy than the ground state. Also we have found
that the Hamiltonian operator for the quantised radiation field is

Ĥ =
∑

i

h̄ωi

(
n̂i +

1

2

)
, (2.98)

where n̂i = â†â is known as the number operator. The eigenstates of the number
operator are the states |ni〉, n̂i|ni〉 = ni|ni〉 and consequently they are the energy
eigenstates, Ĥ|ni〉 = E|ni〉. These states form a complete orthonormal basis, i.e.
the following relations hold 〈ni|nj〉 = δi,j and

∑∞
ni
|ni〉〈ni| = 1̂.

2.3.1 Number states

It follows that the nth eigenstate, |ni〉, can be reached by applying the creation
operator on the vacuum state a certain number of times and normalising appropriately,

|ni〉 =
(â†i )

ni

√
ni!
|0〉. (2.99)
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The eigenvalue equation

Ĥi|ni〉 = Eni |ni〉 (2.100)

yields,

Ĥi|ni〉 = h̄ωi

(
n̂i +

1

2

)
|ni〉

= h̄ωi

(
ni +

1

2

)
|ni〉, (2.101)

showing that the energy eigenvalue is proportional to the number of quanta (or
excitations, or photons). These eigenstates, (2.99), are known as the number states
(or Fock states).

We can find some of their properties by examining the uncertainty in the photon
number, the electric field and quadrature operators. By using the eigenvalue equation
(2.70) we find that the variance in the photon number is zero,

(∆ni)
2 = 〈n̂2

i 〉 − 〈n̂i〉2
= 〈ni|n̂2

i |n〉 − 〈ni|n̂i|ni〉2
= n2

i − n2
i

= 0. (2.102)

In other worlds, these states have a well-defined number of photons. The orthonormality
condition 〈ni|nj〉 = δi,j forces the following relations to be equal to zero:

〈ni|â|ni〉 =
√
ni〈ni|ni − 1〉 = 0

〈ni|â†|ni〉 =
√
ni + 1〈ni|ni + 1〉 = 0, (2.103)

and consequently we find that the average electric field vanishes,

〈ni|Êi|ni〉 = 0. (2.104)

However, the variance of the electric field, given by

(∆Ei)
2 = 〈Ê2

i 〉 − 〈Êi〉2

≡ 〈ni|Ê2
i |ni〉 − 〈ni|Êi|ni〉2, (2.105)

is not zero, but instead it is proportional to the number of quanta:

〈ni|Ê2
i |ni〉 = − h̄ωi

2ε0V
〈ni|â2i − âiâ†i − â†i âi + â†

2

i |ni〉

= − h̄ωi
2ε0V

〈ni|â2i + â†
2

i − (1 + 2â†i âi)|ni〉

=
h̄ωi

2ε0V
〈ni|1 + 2n̂|ni〉

=
h̄ωi

2ε0V
(1 + 2ni). (2.106)
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This means that the electric field fluctuates, but on average it has zero fluctuations.
This is true even for the vacuum state (Figure 2.2). Similarly, we can find the
uncertainty in the quadratures, where the expectation values of the quadrature operators,
X̂i, P̂i, (2.86), are

〈ni|X̂i|ni〉 = 0,

〈ni|P̂i|ni〉 = 0, (2.107)

(2.108)

but the variance is

〈ni|X̂2
i |ni〉 =

1

4
(1 + 2ni) ,

=
1

2

(
ni +

1

2

)
,

〈ni|P̂ 2
i |ni〉 =

1

2

(
ni +

1

2

)
. (2.109)

Therefore, the uncertainty product reads

∆Xi∆Pi =
1

2

(
ni +

1

2

)
, (2.110)

which means that it increases with the number of quanta. Once again we note that
the variance of the quadrature operators is not zero for the vacuum state and the
uncertainty product is equal to 1/4 which is the minimum possible value that the
uncertainty product in the quadrature operators allows, (2.88). This means that the
vacuum is a quadrature minimum - uncertainty state.

We will describe a number state in the representation used so far but we note
that this plot must be taken with caution in this special case. The representation is
accurate in the limit of large quantum numbers [Schleich, 2011]. The two quadratures
have the same properties, (2.109) and the zero average fluctuations, (2.107), imply
that the phase of the number states is completely undefined (Figure 2.3).

2.3.2 Coherent states

From the definitions for the creation and annihilation operators, (2.96), we note that
the creation operator cannot have eigenstates, i.e. satisfy the eigenvalue equation

â†|ψ〉 ?
= λ|ψ〉. (2.111)

For an arbitrary state |ψ〉 defined in the number state basis, |ψ〉 =
∑∞

n=0 cn|n〉, we
have

â†
∞∑

n=0

cn|n〉 =
∞∑

n=0

cn
√
n+ 1|n+ 1〉, (2.112)
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X̂

P̂ p
n + 1/2

Figure 2.3: The number state has a well-defined energy, n + 1/2 and a completely
undefined phase.

but this does not contain the vacuum state. Therefore equation (2.111) cannot be
valid. However, the annihilation operator does have eigenstates,

â|ψ〉 = α|ψ〉

â
∞∑

n=0

cn|n〉 =
∞∑

n=1

cn
√
n|n− 1〉 = α

∞∑

n=0

cn|n〉 (2.113)

and by equating the coefficients of the last two terms we get

cn =
α√
n
cn−1. (2.114)

We can express the nth term in terms of the first one,

cn =
αn√
n!
c0, (2.115)

and by normalising,
∑

n |cn|2 = 1, we get the 0th term,

|c0|2
∑

n

|α|2n
n!

= |c0|2e|α|
2

= 1

⇒ |c0| = e−
|α|2
2 . (2.116)

Therefore the annihilation operator has eigenstates

â|α〉 = α|α〉, (2.117)

Chapter 2. The basics 23



where the states |α〉 are known as the coherent states (or Glauber states) [Glauber,
1963] and can be expressed as a linear superposition of number states:

|α〉 = e−
1
2
|α|2

∞∑

n=0

αn√
n!
|n〉. (2.118)

The annihilation operator is not self-adjoint so the eigenvalues α are complex: α =
|α|eiθ, where |α| is referred to as the amplitude and θ as the phase of the coherent
state (Figure 2.4). Coherent states are the left eigenstates of the creation operator,

x̂

p̂

✓﹜⤵
|↵| = hn̂i1/2

�x =
1p
2

�p =
1p
2

Figure 2.4: The coherent state as a displaced vacuum state, at a complex amplitude
|α| from the origin and at a angle θ to the real axis of the phase space.

Coherent states are the minimum uncertainty states.

〈α|a† = 〈α|α∗. (2.119)

From the definition of a coherent state as a superposition of number states,
(2.118), we can show that coherent states are normalised

〈α|α〉 = e−
1
2
|α|2e−

1
2
|α|2

∞∑

n,m=0

α∗m√
m!

αn√
n!
〈m|n〉

= e−|α|
2
∞∑

n,m=0

α∗m√
m!

αn√
n!
δm,n

= e−|α|
2
∞∑

n=0

|α|2n
n!

= e−|α|
2

e|α|
2

= 1, (2.120)
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but they are not orthogonal,

〈α|β〉 = e−
1
2
|α|2e−

1
2
|β|2

∞∑

n,m=0

α∗m√
m!

βn√
n!
〈m|n〉

= e−
1
2
|α|2e−

1
2
|β|2

∞∑

n,m=0

α∗m√
m!

βn√
n!
δm,n

= e−
1
2
|α|2e−

1
2
|β|2

∞∑

n=0

(α∗β)n

n!

= e−
1
2
|α|2− 1

2
|β|2+α∗β

(2.121)

or

|〈α|β〉|2 = e−|α−β|
2

. (2.122)

States that are complete but not orthogonal form an over-complete set. Coherent
states are an example of such a set. They resolve the identity in the following way:

∫
d2α|α〉〈α| =

∞∑

n,m=0

|n〉〈m|√
n!m!

∫
d2α αnα∗me−|α|

2

(2.123)

where the integration is over the real and imaginary parts of α, d2α = dαRdαI . The
integral is therefore equal to

∫
d2α αnα∗me−|α|

2

=

∫
dαR

∫
dαI (αR + iαI)

n(αR − iαI)me−(α
2
R+α

2
I)

=

∫ ∞

0

|α|d|α|
∫ 2π

0

dθ|α|neinθ|α|me−imθe−|α|2

=

∫ ∞

0

d|α| |α|n+m+1e−|α|
2

∫ 2π

0

dθ ei(n−m)θ

= 2πδn,m

∫ ∞

0

d|α| |α|n+m+1e−|α|
2

= 2πδn,m

∫ ∞

0

d|α| |α|n+m+1e−|α|
2

= 2πδn,m

∫ ∞

0

dx

2
√
x
x(n+m+1)/2e−x

= πδn,m

∫ ∞

0

dxx(n+m)/2e−x

= πδn,mΓ

(
n+m

2
+ 1

)

= πn!δn,m (2.124)

where we introduced the integration variable x = |α|2 and used the Gamma function
Γ defined as

Γ(n+ 1) =

∫ ∞

0

dxxne−x = n!. (2.125)
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Therefore,
∫

d2α|α〉〈α| =
∞∑

n,m=0

|n〉〈m|√
n!m!

πn!δn,m

= π

∞∑

n

|n〉〈n|

= π1̂ (2.126)

and so for the coherent states the identity is resolved as

1̂ =
1

π

∫
d2α|α〉〈α|. (2.127)

Now that we have a definition for the completeness relation, we can use it twice
to write a general density operator ρ̂ in the coherent state representation,

ρ̂ =
1

π

∫
d2α|α〉〈α| ρ̂ 1

π

∫
d2β|β〉〈β|

=
1

π2

∫
d2α

∫
d2β 〈α|ρ̂|β〉|α〉〈β|. (2.128)

One can find the diagonal representation of a coherent state,

ρ̂ =

∫
d2αP (α)|α〉〈α|, (2.129)

by defining the function P (α) known as the P-function (or the Glauber-Sudershan
P-distribution),

P (α) ≡ 1

π

∑

n,m

ρn,mα
nα∗m, (2.130)

where ρn,m are the matrix elements of an anti-normally ordered density operator. The
P-function is not a true probability distribution. This can be seen from the following
example: for the coherent state |ᾱ〉, represented by the density operator

ρ̂ = |ᾱ〉〈ᾱ|, (2.131)

the P -function in equation (2.129) must be given by a Dirac delta function

P (ᾱ) = δ2(α− ᾱ), (2.132)

where δ2(α) = δ(αR)δ(αI).
Furthermore, by using the definition for a number state, (2.99), we can write the

coherent states, (2.118), as

|α〉 = e−
1
2
|α|2

∞∑

n=0

αn√
n!

(â†)n√
n!
|0〉

= e−
1
2
|α|2

∞∑

n=0

(αâ†)n

n!
|0〉

= e−
1
2
|α|2eαâ

†|0〉. (2.133)
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The operator e−
1
2
|α|2eαâ

†
is not particularly useful (nor physically meaningful) because

it is not unitary: ideally we would like its adjoint to take the vacuum state into state
| − α〉, instead of e−

1
2
|α|2(eαâ

†
)†|0〉 = e−

1
2
|α|2eα

∗â|0〉 = e−
1
2
|α|2 |0〉. By multiplying it

on the right by e−α
∗â, it becomes unitary,

e−
1
2
|α|2eαâ

†
e−α

∗â|0〉 = e−
1
2
|α|2eαâ

†|0〉
= |α〉

(e−
1
2
|α|2eαâ

†
e−α

∗â)†|0〉 = e−
1
2
|α|2e−αâ

†
eα
∗â|0〉

= e−
1
2
|α|2e−αâ

†|0〉
= | − α〉. (2.134)

By using the Baker-Campbell-Hausdorff formula, introduced in the first section (2.29),
we simplify this operator to

e−
1
2
|α|2eαâ

†
e−α

∗â = e−
1
2
|α|2eαâ

†−α∗â+ 1
2
[αâ†,−α∗â]

= e−
1
2
|α|2eαâ

†−α∗â+ 1
2
|α|2

D̂(α) ≡ eαâ
†−α∗â, (2.135)

which is known as the displacement operator D̂(α). By using the same formula again
we can show that the adjoint of the displacement operator is

e−
1
2
|α|2e−αâ

†
e+α

∗â = e−
1
2
|α|2e−αâ

†+α∗â+ 1
2
[−αâ†,+α∗â]

= e−
1
2
|α|2e−αâ

†+α∗â+ 1
2
|α|2

D̂(α)† = e−αâ
†+α∗â, (2.136)

and easily verify that it is unitary, D̂(α)† = D̂(−α). Therefore we have that

|α〉 = D̂(α)|0〉, (2.137)

and so we introduced the coherent state as a displaced vacuum state (Figure 2.4).
This is further justified by examining the noise properties of a coherent state.

The expectation value of the quadrature operators are the real and imaginary
values of α in X̂ and for P̂ respectively,

〈X̂〉 = 〈α|X̂|α〉

=
1

2
〈α|â† + â|α〉

=
1

2

(
〈α|â†|α〉+ 〈α|â|α〉

)

=
1

2
(α∗ + α)

=
1

2
(Re(α)− iIm(α) + Re(α) + iIm(α))

= Re(α), (2.138)
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〈P̂ 〉 = 〈α|P̂ |α〉

=
i

2
〈α|â† − â|α〉

=
i

2
(α∗ − α)

=
i

2
(Re(α)− iIm(α)− Re(α)− iIm(α))

=
i

2
(−2iIm(α))

= Im(α). (2.139)

The spread is

〈X̂2〉 =
1

4
〈α|
(
â†

2

i + â2i + 2â†i âi + 1
)
|α〉

=
1

4

(
α∗

2

+ α2 + 2|α|2 + 1
)
, (2.140)

and

〈P̂ 2〉 = −1

4
〈α|(â†2i + â2i − 2â†i âi − 1)|α〉

= −1

4

(
α∗

2

+ α2 − 2|α|2 − 1
)

(2.141)

and consequently the variances are

(∆X)2 = 〈X̂2〉 − 〈X̂〉2

=
1

4

(
α∗

2

+ α2 + 2|α|2 + 1
)
− 1

4

(
α∗

2

+ 2|α|2 + α2
)

=
1

4
. (2.142)

(∆P )2 = 〈P̂ 2〉 − 〈P̂ 〉2

= −1

4

(
α∗

2

+ α2 − 2|α|2 − 1
)

+
1

4

(
α∗

2 − 2|α|2 + α2
)

=
1

4
(2.143)

Therefore the uncertainty product is

∆X∆P =
1

4
, (2.144)

and like the vacuum state, (2.110), the coherent state is also a quadrature minimum
- uncertainty state, with symmetric fluctuations in X̂ and P̂ .

The average number of photons in a coherent state is

〈n̂〉 = 〈α|n̂|α〉
= 〈α|â†â|α〉
= |α|2. (2.145)
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As

〈n̂2〉 = 〈α|n̂n̂|α〉
= 〈α|â†ââ†â|α〉
= 〈α|â†(1 + â†â)â|α〉
= |α|2 + |α|4, (2.146)

the variance in a coherent state is equal to the average number of photons

(∆n)2 = 〈n2〉 − 〈n〉2
= |α|2 + |α|4 − |α|4
= |α|2. (2.147)

2.4 The beamsplitter

We can analyse the structure of a quantum state by looking at the outcome of its
interference with another wave. Most interference techniques rely on an optical device
known as the beamsplitter. As the name suggests, this device takes an incident beam
and splits it, by reflecting some of the light and transmitting the rest. If the device
is lossy then it absorbs some of the incident light. Here we will describe the simplest
model of a beamsplitter, that is, a beamsplitter that exhibits no loss.

The action of a (lossless) beamsplitter on the modes of the incoming field is
unitary, (2.30) and we can represent it by a matrix Û , known as the beamsplitter
transformation matrix [Loudon, 2000]. For a beamsplitter with two input and two
output modes for example, the beamsplitter transformation matrix relates the output
modes to the input modes in the following way:

(
âout
b̂out

)
= Û

(
âin
b̂in

)
. (2.148)

In general, an asymmetric beamsplitter has different beamsplitter coefficients on each
side (Figure 2.5), so that

(
âout
b̂out

)
=

(
t2 r1
r2 t1

)(
âin
b̂in

)
, (2.149)

or equivalently,

âout = t2âin + r1b̂in

b̂out = r2âin + t1b̂in. (2.150)

The transmission and reflection coefficients are complex, tj = |tj|eiθj , rj = |rj|eiφj
and the transmitted and reflected intensities are given by |tj|2 and |rj|2, respectively.
We can rearrange (2.148) in order to express the input modes in terms of the output
modes,

(
âin
b̂in

)
= Û †

(
âout
b̂out

)

=

(
t∗2 r∗2
r∗1 t∗1

)(
âout
b̂out

)
. (2.151)
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t1, r1

t2, r2
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input

output

output
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b

b

Figure 2.5: Two input modes interfere at a beamsplitter to create two output modes.

For an asymmetric beamsplitter the transmission and reflection from one side of the
beamsplitter is different than the transmission and reflection from the other side.

Additionally, it may be useful to express the beamsplitter transformation using the
creation operators, therefore from (2.148) we get

(
âout
b̂out

)†
=

[
Û

(
âin
b̂in

)]†

(
â†out, b̂

†
out

)
=
(
â†in, b̂

†
in

)(t∗2 r∗2
r∗1 t∗1

)
(2.152)

and from (2.151) we get

(
âin
b̂in

)†
=

[
Û †
(
âout
b̂out

)]†

(
â†in, b̂

†
in

)
=
(
â†out, b̂

†
out

)(t2 r1
r2 t1

)
. (2.153)

2.4.1 Relations among the beamsplitter coefficients

The output and input modes obey the commutation relations

[âout, â
†
out] = [b̂out, b̂

†
out] = 1 = [âin, â

†
in] = [b̂in, b̂

†
in], (2.154)

[âout, b̂
†
out] = [b̂out, â

†
out] = 0 = [âin, b̂

†
in] = [b̂in, â

†
in], (2.155)
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where equation (2.155) reflects the fact that the two output fields, as well as the two
input fields, are assumed to be independent. We expand the commutators in (2.154)
and find

[âout, â
†
out] = (t2âin + r1b̂in)(t∗2â

†
in + r∗1 b̂

†
in)− (t∗2â

†
in + r∗1 b̂

†
in)(t2âin + r1b̂in)

= |t2|2âinâ†in + t2r
∗
1âinb̂

†
in + r1t

∗
2b̂inâ

†
in + |r1|2b̂inb̂†in

− |t2|2â†inâin − t∗2r1â†inb̂in − r∗1t2b̂†inâin − |r1|2b̂†inb̂in
= |t2|2[âin, â†in] + t2r

∗
1[âin, b̂

†
in] + r1t

∗
2[b̂in, â

†
in] + |r1|2[b̂in, b̂†in]

= |t2|2 + |r1|2, (2.156)

and similarly

[b̂out, b̂
†
out] = |r2|2 + |t1|2, (2.157)

[âin, â
†
in] = |t2|2 + |r2|2, (2.158)

[b̂in, b̂
†
in] = |r1|2 + |t1|2. (2.159)

We substitute (2.156) – (2.159) into (2.154),

|t2|2 + |r1|2 = |r2|2 + |t1|2 = 1

|t2|2 + |r2|2 = |r1|2 + |t1|2 = 1, (2.160)

and we see that the transmission and reflection coefficients from one side of the
beamsplitter are equal in modulus to the corresponding coefficients from the other
side,

|t2| = |t1|,
|r2| = |r1|. (2.161)

Then we expand the commutators in (2.155) and get

[âout, b̂
†
out] = (t2âin + r1b̂in)(r∗2â

†
in + t∗1b̂

†
in)− (r∗2â

†
in + t∗1b̂

†
in)(t2âin + r1b̂in)

= t2r
∗
2âinâ

†
in + t2t

∗
1âinb̂

†
in + r1r

∗
2 b̂inâ

†
in + r1t

∗
1b̂inb̂

†
in

− r∗2t2â†inâin − r∗2r1â†inb̂in − t∗1t2b̂†inâin − t∗1r1b̂†inb̂in
= t2r

∗
2[âin, â

†
in] + t2t

∗
1[âin, b̂

†
in] + r1r

∗
2[b̂in, â

†
in] + r1t

∗
1[b̂in, b̂

†
in]

= t2r
∗
2 + r1t

∗
1, (2.162)

[b̂out, â
†
out] = r2t

∗
2 + t1r

∗
1, (2.163)

[âin, b̂
†
in] = t∗2r1 + r∗2t1, (2.164)

[b̂in, â
†
in] = r∗1t2 + t∗1r2. (2.165)
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A substitution of (2.162) – (2.165) into (2.155) yields the relations

t2r
∗
2 + r1t

∗
1 = r2t

∗
2 + t1r

∗
1 = 0

t∗2r1 + r∗2t1 = r∗1t2 + t∗1r2 = 0. (2.166)

By writing the explicit form,

|t2|e−iθ2|r1|eiφ1 + |r2|e−iφ2|t1|eiθ1 = 0, (2.167)

and rearranging

|r1|
|t1|

= −|r2||t2|
ei(θ1+θ2−φ1−φ2), (2.168)

we arrive at the following condition:

ei(θ1+θ2−φ1−φ2) = −1. (2.169)

This equation holds when (θ1 + θ2−φ1−φ2) is an odd multiple of π, or as it is more
commonly expressed,

θ1 + θ2 = φ1 + φ2 ± π. (2.170)

In summary, for an asymmetric beamsplitter the two transmission coefficients and
the two reflection coefficients can be equal in magnitude, (2.161) and the sum of
the transmission coefficient phases differs from the sum of the reflection coefficient
phases by π, (2.170).

2.4.2 Special cases and conventions

Real beamsplitter coefficients

We choose to set the sum of the transmission coefficient phases equal to zero,

θ1 + θ2 = 0, (2.171)

so that the reflection coefficient phases sum to π,

φ2 = π − φ1 (2.172)

(or φ2 = −(π + φ1)). If we set φ2 = 0 then φ1 = π and the reflection coefficient r1
becomes

r1 = |r1|eiπ = −|r1|. (2.173)

In fact, one can set the transmission coefficients to be real too, i.e. θ1 = θ2 = 0, so
we can have the following beamsplitter transformation matrix,

Û =

(
t2 −r1
r2 t1

)
, (2.174)

where all coefficients are real.
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Symmetric beamsplitter

We have introduced the asymmetric beamsplitter, that is a beamsplitter with different
transmission and reflection coefficients from each side, (Figure 2.5). A symmetric
beamsplitter is one where the two transmission and two reflection coefficients are
equal (both in phase and amplitude) from each side of the beamsplitter. Therefore
we can drop the subscripts “1, 2” from the equations above and have instead

(
âout
b̂out

)
=

(
t r
r t

)(
âin
b̂in

)
, (2.175)

where the output and input mode commutators yield,

|t|2 + |r|2 = 1, (2.176)

tr∗ + rt∗ = 0. (2.177)

From (2.177) we find that the transmission and reflection coefficient phases differ by
π/2,

θ = φ± π

2
. (2.178)

Traditionally, we choose the transmission coefficient to be real (θ = 0) and the
reflection coefficient to be imaginary (φ = ±π/2). The beamsplitter transformation
matrix then is

Û =

(
t ir
ir t

)
(2.179)

where t and r are real in this case.
Otherwise, we can get real coefficients by setting θ = 0, φ = 0. Then for

(2.177) to hold, one of the coefficients must be negative. Similarly to (2.174), the
beamsplitter transformation matrix is

Û =

(
t −r
r t

)
, (2.180)

where all coefficients are real. We choose to use (2.180) throughout this thesis. It’s
convenient to use because all coefficients are real, but we need to remember that
there will be a phase change of π upon reflection from one side of the beamsplitter
only.
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2.5 Coherent state comparison

The coherent amplitudes behave like classical field amplitudes at a beamsplitter.
Consider, for example, two independent coherent states |α〉 and |β〉, that are input
at the modes a and b, respectively, of a 50/50 beamsplitter (Figure 2.6). We take

input

input

output

output

50 : 50

a a

b

b

Figure 2.6: The state comparison set-up

It requires only a 50/50 beamsplitter and a detector.

the beamsplitter transformation matrix to be

Û =
1√
2

(
1 −1
1 1

)
, (2.181)

i.e. there is a phase change of π upon reflection from one arm of the beamsplitter
(the lower arm in Figure 2.6). The density operator describing the input states is

ρ̂in =

∫
d2α

∫
d2βP (α)P (β)|α〉a〈α| ⊗ |β〉b〈β|, (2.182)

where the subscripts a and b indicate the mode that each state is input at, the tensor
product indicates that the states are independent from each other and the probability
distributions P (α) and P (β) are the delta functions

P (α) = δ2(α− ᾱ)

P (β) = δ2(β − β̄). (2.183)

The beamsplitter transformation is

ρ̂in → Û ρ̂outÛ
†

=

∫
d2α

∫
d2βP (α)P (β)

∣∣∣∣
α− β√

2

〉

a

〈
α− β√

2

∣∣∣∣⊗
∣∣∣∣
α + β√

2

〉

b

〈
α + β√

2

∣∣∣∣ (2.184)
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and so the output state is

ρ̂out =

∣∣∣∣
ᾱ− β̄√

2

〉

a

〈
ᾱ− β̄√

2

∣∣∣∣⊗
∣∣∣∣
ᾱ + β̄√

2

〉

b

〈
ᾱ + β̄√

2

∣∣∣∣. (2.185)

The states in the output arms remain independent of each other.
Andersson et al. [2006] suggested that in the example above on can tell after a

single measurement whether the states |α〉 and |β〉 are different. One needs to place
a photodetector in one of the beamsplitter output ports, say output a (Figure 2.6).
The detector indicates whether there are any photons present in that port or not,
without resolving them. The probability for the detector to fire, P (S), is given by
[Kelley and Kleiner, 1964]

P (S) = 1− P (0)

= 1− Tr{ρ̂outπ̂0}
= 1− Tr{ρ̂out : e−ηâ

†â :} (2.186)

where P (0) is the probability of detecting the vacuum state, the colons : : indicate
that the operator is normally ordered and η is the detector quantum efficiency. If the
states are identical then the measured beamsplitter arm contains the vacuum and the
detector will not fire. If the states are different in either phase or magnitude then the
photodetector fires with probability P (S), which in our example is found to be

P (s) = 1− e−(1/2)η2|α−β|2 . (2.187)

The bigger the difference |α− β| the higher the success probability of distinguishing
the states. In fact, Andersson et al. [2006] show that P (S) approaches 1, while
the universal comparison strategy has a probability of success below 1/2. The
technique described above is known as coherent state comparison. It has higher
success probability than other comparison methods because it uses the additional
knowledge that the states are coherent. It can also be generalised to compare more
than two states, but more importantly it can find application in quantum public key
distribution schemes (with and without a trusted sender) or in a quantum “lock and
key” scheme [Andersson et al., 2006].
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2.6 Photon subtraction

In this section we show how the beamsplitter transformation, for a beamsplitter with
very low reflectivity r2 � 1, coupled with detection, provides an approximate photon
subtraction.

input

input

output

output

a

b

t ⇡ 1

1d

c

Figure 2.7: A beamsplitter with very high transmissivity coupled with a detector
approximates photon subtraction.

We consider a two-mode state incident on the beamsplitter, where one state is as
general as possible and the other one is vacuum state,

ρ̂
(2)
in =

∞∑

m,n=0

λm,n|m〉b〈n| ⊗ |0〉d〈0|

=
∞∑

m,n=0

λm,n√
m!n!

(b̂†)m|0, 0〉〈0, 0|(b̂)n. (2.188)

We assume that the beamsplitter has a very small reflectivity, |r| � 1. Such
assumption leads us to the following approximation for the two-mode output state,

ρ̂
(2)
out =

∞∑

m,n=0

λm,n√
m!n!

(tĉ† − râ†)m|0, 0〉〈0, 0|(t∗ĉ− r∗â)n

=
∞∑

m,n=0

λm,n√
m!n!

[(tĉ†)m −m(tĉ†)m−1râ†]|0, 0〉〈0, 0|[(t∗ĉ)n − n(t∗ĉ)n−1r∗â]

+O(r2), (2.189)

where we have omitted terms of order O(r2). By post-selecting on the detection of
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a photon in mode a we find that the conditional state in mode c is given by

ρ̂(1)c =
〈1a|ρ̂(2)out|1a〉

Tr[〈1a|ρ̂(2)out|1a〉]

=
1

N

∞∑

m,n=1

λm,n
√
mn tm(t∗)n|m− 1〉〈n− 1| (2.190)

where N =
∑∞

m=1 λm,mm |t|2m.
A photon-subtracted state is given by

ρ̂subtr =
1

N ′

∞∑

m,n=0

λm,nĉ|m〉〈n|ĉ†

=
1

N ′

∞∑

m,n=1

λm,n
√
mn|m− 1〉〈n− 1|, (2.191)

where N ′ =
∑∞

m=1 λm,mm. By comparing the two states, (2.190) and (2.191) we
see that

lim
|t|→1

ρ̂(1)c = ρ̂subtr, (2.192)

which means that a very high transmissivity beamsplitter implements an approximation
of the annihilation operator. This technique also applies to coherent states, despite
their properties. In the following chapters we will explain how this technique can help
to “purify” a mixture of coherent states.
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CHAPTER 3

Amplification of quantum optical states

Amplification is an integral operation on the transport of information.
Amplifiers take a weak input signal and give a strong output signal that it is
easier to detect and handle for practical purposes. However, this process is

not as straightforward for quantum signals as it is for classical ones. In this chapter
we see why this is the case and we overview the techniques that were developed in
order to overcome this issue. Finally, we discuss any challenges that remain in order
to build a high performance optical amplifier.

3.1 Deterministic amplification

3.1.1 Conventional linear amplifiers

A classical linear amplifier multiplicatively increases the power of an input signal, Si,

So = g2Si (3.1)

where So is the output signal power and g2 is the intensity gain (or photon number
gain), g2 > 1. The quality of the output signal is determined by the ratio of the
signal power to the noise power,

Signal to noise ratio = So/No (3.2)

and the overall figure of merit is the “noise figure” of the amplifier, which is the signal
to noise ratio of the input signal divided by the signal to noise ratio of the output
signal,

Noise figure =
(Si/Ni)

(So/No)
. (3.3)

The amplifier noise, Na, is additive [Haus and Mullen, 1962],

No = g2Ni +Na (3.4)
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and so the noise figure is given by

Noise figure =
Si
Ni

No

So

=
Si
Ni

(g2Ni +Na)

g2Si

= 1 +
Na

g2Ni

. (3.5)

It follows that the excess noise caused by the amplifier is

Excess noise figure = Noise figure− 1

=
Na

g2Ni

. (3.6)

3.1.2 Quantum signal amplification

As with classical signals, we would expect a linear amplifier to increase the amplitude
of an arbitrary quantum signal multiplicatively,

|α〉 → |gα〉, (3.7)

where |g| > 1 is the amplification gain. However, the above map, (3.7), is not
physical. Consider two arbitrary states |α〉 and |β〉, with overlap

|〈α|β〉|2 = e−|α−β|
2

. (3.8)

If an amplifier were to increase the amplitude of both states according to (3.7), then
their overlap would be

|〈gα|gβ〉|2 = e−g
2|α−β|2 . (3.9)

In that case, the overlap of the amplified states would be smaller than the overlap of
the initial states,

e−g
2|α−β|2 < e−|α−β|

2

; (3.10)

in other words, the distinguishability of the two states would have increased (Figure
3.1). The no-cloning theorem clearly forbids this [Wootters and Zurek, 1982].

It follows that the amplification of quantum signals must introduce noise [Caves,
1982],

âout = gâin + L̂†, (3.11)

where L̂† is the added noise operator satisfying [L̂, L̂†] = g2 − 1. This addition of
noise destroys the quantum properties the signal initially had (Figure 3.1).

However, it is possible to implement the transformation (3.7) approximately in a
non-deterministic way. We describe such methods in the following section.
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Noiseless 
amplifier

Quantum 
limited

amplifier

Classical 
amplifier

x̂

p̂

Figure 3.1: Ideally, a noiseless amplifier would not increase the minimum amount of
noise in a coherent state. A quantum limited amplifier amplifies the minimum noise
and adds some more. A classical amplifier adds even more noise than the quantum
amplifier.

|↵i |
p

2↵i

|↵i

|↵i

amplifier beamsplitter
50 : 50

Figure 3.2: A coherent state cloner, i.e. a perfect linear amplifier of an arbitrary state
followed by a beamsplitter, would violate the no-cloning theorem. It is possible only
if the amplifier is implemented non-deterministically.
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3.2 Probabilistic amplification

The concept of non-deterministic noiseless linear amplification was introduced by
Ralph and Lund [2009]. Soon different protocols followed. In this section we review
the main techniques of non-deterministic amplification of quantum states.

3.2.1 Quantum Scissors-based devices

The first method for non-deterministic amplification was proposed by Ralph and Lund
[2009], based on the quantum scissors device of Pegg et al. [1998]. The quantum

50 : 50

D0

0

1
D1

|0i

|1i

|ini

|outi

t > r

Figure 3.3: In the quantum scissors device a one photon state entangles itself with
the vacuum in the lower beamsplitter. One share of this EPR state interferes with a
weak coherent state, |in〉 = a0|0〉+a1|1〉+a2|2〉+ . . . , for a Bell state measurement.
Post-selection on the measurement results that give one count at detector D1 and
zero counts at detector D0, results in an output state that is a truncated version of
the input state, |out〉 = a0|0〉+ a1|1〉.

In the context of amplification, the gain is defined as g = t/r > 1 and so the output
state is equal to |out〉 = r|0〉+ tα|1〉 = |0〉+ gα|1〉 ≈ |gα〉, for small α.

scissors is a device closely related to teleportation [Bennett et al., 1993]: it can
teleport a weak coherent state, |in〉 = a0|0〉 + a1|1〉 + a2|2〉 + . . . , by truncating it
to contain only the vacuum and the one photon state, |out〉 = a0|0〉+ a1|1〉. As the
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contributions of two photons and higher are “cut off”, this device was given the name
quantum scissors.

The quantum scissors device exploits the non-locality of a single photon state
after a beamsplitter and uses this state as the EPR pair required for teleportation
(Figure 3.3). The quantum scissors device was realised experimentally by Babichev
et al. [2003]. They found that the teleportation fidelity is very high, (99%), for small
coherent states and that the fidelity drops significantly with increasing input state
amplitude.

The proposal of Ralph and Lund [2009] incorporates many quantum scissors
devices that run in parallel (Figure 3.4). The input state is split evenly N times
and each path becomes the input to a quantum scissors device. When the individual

50 : 50
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0

1 D1

|0i

|1i

|ini

|outi

r, t

50 : 50
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Figure 3.4: The coherent state to be amplified, |α〉, is split into N paths that become
the inputs to the quantum scissors devices, |in〉 = |α/

√
N〉. Given the successful

operation of each quantum scissors device, the amplified output states are recombined
in an N -splitter where all but one paths are measured. If none of the detectors fires,
the output state is accepted.
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quantum scissors devices work properly, their outputs are recombined in an N -splitter.
The final output state is accepted if no detector fires in the N − 1 measured ports.

This scheme produces an output state that is a very good approximation of the
target amplified state, but it has a very low probability of success (Table 3.1). Both
the fidelity and the probability of success decrease with gain, g2.

Table 3.1: The (theoretical) fidelity of the output state with the target state is
very high for the quantum scissors based device, especially for input states with
small mean photon numbers, |α|2. In order to improve the fidelity for higher mean
photon numbers, N must increase. However, an increasing number of N reduces the
probability of success. This table is for N = 5.

Gain Fidelity Probability of success (%)

|α|2 = 0.2 |α|2 = 0.5

g2 ≈ 2 > 0.999 ≈ 0.99 0.5
g2 ≈ 6 > 0.999 < 0.97 0.01

The quantum scissors based amplifier was realised experimentally by Xiang et al.
[2010] and Ferreyrol et al. [2010]. In both experiments the probability that the input
state has more than one photons is negligible.

In the Xiang et al. [2010] experiment a spontaneous parametric down conversion
(SPDC) source is required to generate the photon pairs; one photon is attenuated to
form the input state and the other photon is used as the single photon ancilla in the
quantum scissors device. The pair production rate is at < 2500s−1. The probability
of success of the device is ∼ 1% and so the success rate is around 25 counts per
second. For very small mean photon numbers, |α|2 = 0.02, the measured visibilities
are above 90% for gains smaller than about g2 ≈ 4 (Table 3.2).

The quantum scissors based amplifier can be extended to amplify states with two
photon numbers [Jeffers, 2010].

Table 3.2: In the experimental implementation of the quantum scissors based amplifier
the visibilities for an input state of |α|2 = 0.02 are very high [Xiang et al., 2010].

Gain Visibility

g2 = 2.05 0.929
g2 = 2.97 0.910
g2 = 3.85 0.936
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3.2.2 Photon addition and photon subtraction devices

Marek and Filip [2010] were the first to proposed that the application of the creation
and annihilation operators, ââ†, on a weak coherent state,

|α〉 ≈ |0〉+ α|1〉, (3.12)

results in the amplified state

ââ† (|0〉+ α|1〉)→ â
(
|1〉+

√
2α|2〉

)

→ |0〉+ 2α|1〉
≈ |2α〉. (3.13)

Kim et al. [2012] studied further the effects of multiple photon addition operations,
â†

m
, photon subtraction operations, âm and the coherent superposition of the two,

tâ + râ†, on weak coherent states of magnitude, |α| = 0.2. The target intensity
gain was g2 = 2 and they found that the optimum operation in terms of the highest
effective gain is given by the photon addition operation. On the other hand the
photon subtraction operation gives the highest fidelity. The probability of success
decreases approximately exponentially with the number of photon additions and
photon subtractions.

In theory, a single photon addition and a photon subtraction give an amplified
state that has a fidelity with the target state that exceeds 0.95 and for two such
operations the fidelity is > 0.986 [Fiurášek, 2009]. These results correspond to a gain
of g ≤ 1.5 and for a coherent state of |α| ≤ 1.

Zavatta et al. [2011] realised the single photon addition and photon subtraction
operation experimentally. The photon required for the photon addition was produced
by stimulated parametric down conversion in a non-linear (LBO) crystal. The single
photon is injected to the initial coherent state in another non-linear (BBO) crystal.
One part of the resulting beam was measured and the other was subject to photon
subtraction. Coincidences between the two detectors herald the amplified output
state. They found that the fidelity was > 90% for states with |α| ≤ 0.65, for an
effective gain of geff ≈ 1.6.

3.2.3 Noise addition devices

Marek and Filip [2010] suggested an amplifier that is based on thermal noise addition
and photon number resolving detection, also known as phase concentration scheme.

Thermal noise, i.e. phase and amplitude modulation, is applied to the input state.
The input state is then described by a probabilistic mixture of coherent states which
is slightly displaced in the direction of the initial state. Then the state is subject to
a photon subtraction measurement which uses a photon number resolving detector.
The photon subtraction measurement picks out the higher energy states, thereby
displacing the input state towards the higher energies in phase space. The detector
heralds the amplified state when a certain threshold number (N=1-4) is surpassed.

The protocol was realised experimentally by Usuga et al. [2010]; Müller et al.
[2012]. As the threshold for subtraction increases the gain increases and the probability
of success decreases (Table 3.3).
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Table 3.3: In the noise addition and photon subtraction amplifier the probability of
success decreases with the number of photon subtractions. The gain, on the other
hand, increases. This table is for an input state |α|2 = 0.186 [Usuga et al., 2010].

Subtraction threshold, N Probability of success Gain

1 0.044 g2 ≈ 1.25
2 0.0015 g2 ≈ 1.50
3 4.3× 10−5 g2 ≈ 1.72
4 1.1× 10−6 g2 ≈ 2

The fidelity increases as the photon subtraction threshold increases [Müller et al.,
2012].

Table 3.4: In the noise addition and photon subtraction amplifier the fidelity decreases
with the threshold for photon subtraction increases. This table is for an input state
|α|2 = 1.0 [Usuga et al., 2010].

Subtraction threshold, N Fidelity

1 ∼ 0.875
2 ∼ 0.910
3 ∼ 0.935
4 ∼ 0.950

The noise addition and photon subtraction scheme can be improved slightly if the
initial noise is provided by a standard optical amplifier [Jeffers, 2011].

3.3 Challenges and problems

In all schemes there is a significant trade-off between the fidelity of the output state
with the target state and the probability of success of the device. Furthermore, when
the fidelity is high the scheme requires a complex implementation based on quantum
resources.

There is a need to find an alternative amplification scheme that balances the
performance in fidelity and the probability of success better, while being simple to
implement experimentally. Our proposed scheme does not require quantum resources
and it amplifies with high gain, high fidelity and high probability of success.
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CHAPTER 4

Quantum Optical State Comparison Amplifier

Motivated by the ease of generating coherent states, we propose
a scheme for non-deterministic amplification of these states. We explain
how a combination of the mature experimental techniques of coherent

state comparison and photon subtraction results in a device that can amplify known
sets of coherent states with high fidelity and high success probability.

A peer-reviewed version of this work can be found at Physical Review Letters 111,
213601 [Eleftheriadou, Barnett, and Jeffers, 2013].

This chapter is organised as follows,

Proposed protocol We divide this section into two parts, a special case and the
general case, depending on the gain of amplification and the set of input states.

We start introducing our protocol through a special example, where we consider
that the input state is chosen from a binary alphabet and we perform the state
comparison technique with a 50 : 50 beamsplitter (Subsection 4.1.1). We show
that by conditioning the output state on a photon subtraction measurement we
get a perfect amplified version of the input state. The gain of amplification
is g = t

√
2, where t is the transmission coefficient of the photon subtraction

beamsplitter. The higher the value of the transmission coefficient, t, the less
likely the photon subtraction.

In the next subsection, we extend the scheme so that we can achieve a higher
gain of amplification (Subsection 4.1.2). This is possible by using a beamsplitter
with general coefficients at the state comparison stage, in which case the gain is
g = t2/r1, where r1 is the reflectivity of the state comparison beamsplitter and
t2 the transmissivity of the photon subtraction beamsplitter. This allows us to
introduce a more intense state in the system, which is the source of the energy
that is necessary to achieve higher gain of amplification. The performance of
this generalised scheme depends on the set of input states chosen, which we
study in detail in its own section.
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Findings We present the results of the proposed (general) scheme for two sets of
input sets: a binary set and a phase symmetric set (Subsections 4.2.1 and 4.2.2,
respectively). We calculate the fidelity of the output state with the ideal target
state and the probability of success of the amplifier. They both increase with the
mean photon number and detector quantum efficiency. A perfect fidelity can
be achieved when we reproduce the conditions of the special case example. The
probability of success increases with intensity gain but decreases with increasing
transmissivity of the photon subtraction beamsplitter, as a successful photon
subtraction is less likely. We find that the quantum optical state comparison
amplifier outperforms other non-deterministic amplification schemes in terms
of fidelity and success probability.

Discussion Finally, we summarise the main results and discuss the advantages and
limitations of our proposed protocol.

Before we proceed with the introduction of our protocol, let us briefly review the
coherent state comparison technique which is central to our amplifier. As we have
seen in Chapter 2, section 2.5, when two coherent states, |α〉 and |β〉, are incident
on a 50 : 50 beamsplitter, they result in the output state

ρ̂out =

∣∣∣∣
α− β√

2

〉

a

〈
α− β√

2

∣∣∣∣⊗
∣∣∣∣
α + β√

2

〉

b

〈
α + β√

2

∣∣∣∣. (4.1)

We place a detector at the outport port a, (Figure 4.1), and if it registers a count

input

input

output

output

50 : 50

a a

b

b

Figure 4.1: The state comparison technique requires only a (50 : 50) beamsplitter
and a detector. A detection event signifies that the input states were different.

we can infer that the input states were different (assuming there are no dark counts)
[Andersson et al., 2006]. If the input states are identical, then they interfere such
that they create the vacuum state in output a and a state that is twice as big as the
input states in output b,

ρ̂out =

∣∣∣∣
α− α√

2

〉

a

〈
α− α√

2

∣∣∣∣⊗
∣∣∣∣
α + α√

2

〉

b

〈
α + α√

2

∣∣∣∣ = |0〉a〈0| ⊗ |
√

2α〉b〈
√

2α|. (4.2)

Chapter 4. Quantum Optical State Comparison Amplifier 47



If the detector in output a does not fire, then we have an imperfect indication that all
the light is in output b. We exploit this technique to built an amplifier for coherent
states.

4.1 Proposed scheme

It is common practice to use the fictional characters Alice and Bob in the description
of quantum information protocols. In our protocol, Alice has a set of coherent states
that she would like to have amplified. Bob has the device for amplification. Alice
selects randomly one of her states and sends it to Bob and based on certain criteria,
Bob accepts the output of his device and gives back to Alice the amplified version of
her state.

The key element of Bob’s amplifier is a state comparison measurement. We relabel
the beamsplitter ports in Figure 4.1 to reflect the role of each port (Figure 4.2). This

“output state”

“guess state”

“input state”
0
“D0”

input

input

output

output

50 : 50

a a

b

b

Figure 4.2: Alice’s input state interacts with Bob’s guess state at a 50/50
beamsplitter. The output state is accepted if detector D0 does not fire.

is the nomenclature that we will be using to describe our protocol:

input state: is the pure coherent state that Alice wants to have amplified,
denoted by |α〉.
guess state: is the pure coherent state that Bob uses in order to achieve
amplification of Alice’s input state, denoted by |β〉.
target state: is the desired amplified version of the input state. For example,
for the input state |α〉 the target state is |gα〉.
output state: is the state that the device produces, ρ̂out. In general, this will
not be the pure target state, but rather a probabilistic mixture of the target
state and some other state (the wrong state).
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4.1.1 A very special case:

perfect amplification for a gain of g = t
√

2

Bob does not know what the input state is, but he knows the set that it was chosen
from. Let’s assume that Alice’s set contains only two states: states that are equal in
magnitude but are opposite in phase, {|α〉, | − α〉} (Figure 4.3). Alice chooses each

Re(↵)

Im(↵)

Re(↵)

Im(↵)

Re(↵)

Im(↵)

Figure 4.3: Examples of Alice’s 2-state sets.

In each set the states have the same magnitude but opposite phase. Bob must know
which set Alice chooses, or he must determine this from a prior set of measurements.

state from the set randomly, with equal probability, i.e.

P (ᾱ) =
1

2

[
δ2(ᾱ− α) + δ2(ᾱ + α)

]
. (4.3)

For the amplification to be successful Bob’s guess state must be the same as the input
state. The best Bob can do, is to choose the guess state from the set {|α〉, | − α〉}
too, with the same probability distribution as Alice,

P (β̄) =
1

2

[
δ2(β̄ − α) + δ2(β̄ + α)

]
. (4.4)

The system is symmetric: Bob amplifies Alice’s input state |α〉 with his guess state
|α〉 and input state | − α〉 with his guess state | − α〉. We will explain only the case
where Bob chooses |α〉, i.e.

P (β̄) = δ2(β̄ − α), (4.5)

and a similar approach follows for the other case. For the probability distributions
given by (4.3) and (4.5), the two-mode output state from the beamsplitter

ρ̂
(2)
out =

∫
d2ᾱ

∫
d2β̄P (ᾱ)P (β̄)

∣∣∣∣
ᾱ− β̄√

2

〉

a

〈
ᾱ− β̄√

2

∣∣∣∣⊗
∣∣∣∣
ᾱ + β̄√

2

〉

b

〈
ᾱ + β̄√

2

∣∣∣∣, (4.6)

becomes
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ρ̂
(2)
out =

1

2

∣∣∣∣
α− α√

2

〉

a

〈
α− α√

2

∣∣∣∣⊗
∣∣∣∣
α + α√

2

〉

b

〈
α + α√

2

∣∣∣∣

+
1

2

∣∣∣∣
−α− α√

2

〉

a

〈−α− α√
2

∣∣∣∣⊗
∣∣∣∣
−α + α√

2

〉

b

〈−α + α√
2

∣∣∣∣

=
1

2
|0〉a〈0| ⊗ |

√
2α〉b〈

√
2α|+ 1

2
| −
√

2α〉a〈−
√

2α| ⊗ |0〉b〈0|. (4.7)

Half of the times the output port b has the target state, |
√

2α〉 and half of the times
it has the vacuum. The state comparison measurement changes these proportions.

For a successful coherent state comparison measurement we require that the
detector D0 will not fire (Figure 4.2). However, detectors in reality may yield a
click without the presence of an actual photon. These events are called dark counts
and they might adversely affect the outcome of an experiment. Nevertheless, if the
dark count rate is low enough they can be neglected. Such is the case in the scheme
that we propose, where gated detection can make the dark count rate insignificant.

The probability that detector D0 does not fire, P (0), is given by [Kelley and
Kleiner, 1964]

P (0) = Tr{ρ̂(2)out : e−ηâ
†
aâa :}, (4.8)

where 0 < η ≤ 1 is the quantum efficiency of detector D0, : e−ηâ
†
aâa : is a normally

ordered operator describing the detection of the vacuum in mode a and ρ̂
(2)
out is the

unconditioned output state of the beamsplitter, (4.6). By inserting (4.7) into the
definition (4.8), we find that the probability that detector D0 does not fire is

P (0) =
1

2
+

1

2
e−η|−

√
2α|2

=
1

2
+

1

2
e−2η|α|

2

. (4.9)

Equation (4.9) has two terms: the first is due to the detection of vacuum in mode a
and the second, smaller term, is due to the presence of state | −

√
2α〉 in mode a.

Most of the times detector D0 will fire in the presence of | −
√

2α〉, in which case we
expect Bob to discard the output state as the amplification is not successful. Less
frequently though, the detector may “not see” the state |−

√
2α〉, not (only) because

the detector has a limited quantum efficiency, η < 1, but because of the nature of
coherent states. By expressing coherent states as a linear superposition of number
states [Glauber, 1963]

|α〉 = e−
1
2
|α|2

∞∑

n=0

αn√
n!
|n〉, (4.10)

we note that they have a vacuum component; the photon numbers start from n = 0.
Consequently the detector may project on a coherent state’s vacuum component,
with probability e−η|α|

2
for state |α〉. The bigger the mean photon number, |α|2, the

smaller the second term in P (0). The detector is less likely to register an incorrect
measurement when a big state is present.
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It follows that the output state conditioned on D0 not firing is not a pure state
but the mixed state

ρ̂output =
Tra{ρ̂(2)out : e−ηâ

†
aâa :}

Tr{ρ̂(2)out : e−ηâ
†
aâa :}

=
1

P (0)

[
1

2
|
√

2α〉b〈
√

2α|+ 1

2
e−2η|α|

2|0〉b〈0|
]
, (4.11)

where 1/P (0) acts as the normalisation. In other words, given that detector D0 did
not fire, the output state is more likely to be the state |

√
2α〉, but there is a small

probability that it is the vacuum state.
The output state ρ̂output, (4.11), is a good approximation of the target state

|
√

2α〉. The fidelity of the output state with the target state is defined as

Fidelity =

∫
d2ᾱP (ᾱ)〈

√
2ᾱ|ρ̂output|

√
2ᾱ〉. (4.12)

This definition holds for a pure or mixed ρ̂output, while the target state must be pure.
Therefore we need to solve (4.12) from Alice’s point of view where, instead of the
probability distributions (4.3) and (4.5), we have that

P ′(ᾱ) = δ2 (ᾱ− α) , (4.13)

Q′(β̄) =
1

2

[
δ2
(
β̄ − α

)
+ δ2

(
β̄ + α

)]
. (4.14)

Therefore Alice finds the two-mode output state to be

ρ̂
(2)
out =

∫
d2ᾱ

∫
d2β̄P ′(ᾱ)P ′(β̄)

∣∣∣∣
ᾱ− β̄√

2

〉

a

〈
ᾱ− β̄√

2

∣∣∣∣⊗
∣∣∣∣
ᾱ + β̄√

2

〉

b

〈
ᾱ + β̄√

2

∣∣∣∣,

=
1

2

∣∣∣∣
α− α√

2

〉

a

〈
α− α√

2

∣∣∣∣⊗
∣∣∣∣
α + α√

2

〉

b

〈
α + α√

2

∣∣∣∣

+
1

2

∣∣∣∣
α + α√

2

〉

a

〈
α + α√

2

∣∣∣∣⊗
∣∣∣∣
α− α√

2

〉

b

〈
α− α√

2

∣∣∣∣

=
1

2
|0〉a〈0| ⊗ |

√
2α〉b〈

√
2α|+ 1

2
|
√

2α〉a〈
√

2α| ⊗ |0〉b〈0|, (4.15)

which, when conditioned on detector D0 not firing, becomes

ρ̂Aoutput =
1

P (0)

[
1

2
|
√

2α〉b〈
√

2α|+ 1

2
e−2η|α|

2|0〉b〈0|
]
. (4.16)

In this example, the output state found by Alice, ρ̂Aoutput, is the same state as the one
found by Bob, (4.11), but this is not generally true. By substituting ρ̂Aoutput into the
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definition (4.12), we find that the fidelity of the output state with the target state is
equal to

Fidelity = 〈
√

2α|ρ̂Aoutput|
√

2α〉

=
1

P (0)

[
1

2
|〈
√

2α|
√

2α〉|2 +
1

2
e−2η|α|

2|〈
√

2α|0〉|2
]

=
1

P (0)

[
1

2
+

1

2
e−2η|α|

2

e−2|α|
2

]
. (4.17)

The second term in the expression reflects the imperfect nature of post-selection.

⌘ = 1.0

⌘ = 0.5

Figure 4.4: The fidelity of the output state with the target state, where the
output state is conditioned on the state comparison measurement (only), is very
high. It degrades with limited quantum efficiency of the detector involved in the
state comparison measurement, η, as coherent light is not detected and we falsely
post-select on this result. The higher the mean photon number, |α|2, the higher the
fidelity as it is less likely for the detector to project on the coherent’s state vacuum
component (this holds for mean photon numbers higher than about |α|2 = 0.15).

The input state is selected randomly from the set {|α〉, | − α〉}
and a 50 : 50 beamsplitter is used for the state comparison technique.

The fidelity depends on the mean photon number of the input state, |α|2 and on
the quantum efficiency, η. For the greatest range of mean photon numbers, the
higher mean photon number the smaller the second term in the fidelity measure, so
overall the higher the fidelity (Figure 4.4). This is also true for the detector quantum
efficiency, η. The higher it is, the smaller the fraction of incorrectly accepted output
states, so the higher the fidelity.

The state comparison stage is the part of our amplifier which determines the
strength of amplification. For a higher quality output state we require a photon

Chapter 4. Quantum Optical State Comparison Amplifier 52



subtraction measurement. The photon subtraction stage consists of a beamsplitter
with relatively high transmissivity coupled with a detector in the reflected output port
and the measurement is considered successful when the detector fires (see Chapter 2,
Subsection 2.6). In our particular example the effect of the photon subtraction is to
adjust the probabilities in the mixture, (4.11), so that it increases the probability for
the target state and decreases the probability for the wrong state. Due to the non-unit
transmissivity, t2 < 1 and an imperfect detector, η < 1, in this measurement, the
probability of success of the device reduces.

In this example a photon subtraction measurement following the state comparison
measurement results in a pure (final) output state1, the desired target state . By
inspection of the output state ρ̂output, (4.11), which now is incident at the photon
subtraction stage,

ρ̂output =
1

P (0)

[
1

2
|
√

2α〉b〈
√

2α|+ 1

2
e−2η|α|

2|0〉b〈0|
]
,

we notice that a count at the detector could not have been caused by the vacuum
state. Therefore, the resulting output state is the pure state ρ̂output = |t

√
2α〉b〈t

√
2α|.

In fact, in this particular example it suffices to condition the output state on the photon
subtraction measurement only. If the input state was chosen from a set that included
more than two states, then by conditioning the output on the state comparison and
photon subtraction measurements improves the fidelity of the output state with the
target state.

In summary, we propose that a state comparison measurement involving a 50 :
50 beamsplitter followed by a photon subtraction measurement can achieve perfect
amplification of a coherent state chosen at random from the set {|α〉, |−α〉}, (Figure
4.5). The three-mode input state is

ρ̂
(3)
in =

∫
d2ᾱ

∫
d2β̄ P (ᾱ) P (β̄) |ᾱ〉a〈ᾱ| ⊗ |β̄〉b〈β̄| ⊗ |0〉c〈0|, (4.18)

which transforms to the three-mode output state

ρ̂
(3)
out =

∫
d2ᾱ

∫
d2β̄ P (ᾱ) P (β̄)

∣∣∣∣
ᾱ− β̄√

2

〉

a

〈
ᾱ− β̄√

2

∣∣∣∣

⊗
∣∣∣∣
t(ᾱ + β̄)√

2

〉

b

〈
t(ᾱ + β̄)√

2

∣∣∣∣⊗
∣∣∣∣
−r(ᾱ + β̄)√

2

〉

c

〈−r(ᾱ + β̄)√
2

∣∣∣∣, (4.19)

when we consider a 50 : 50 beamsplitter at the state comparison stage, (Figure 4.5).
For the probability distributions

P (ᾱ) =
1

2

[
δ2(ᾱ− α) + δ2(ᾱ + α)

]
,

P (β̄) = δ2(β̄ − α), (4.20)

1From now on we call “output state” the final state that exits the device and was conditioned
on both the state comparison and photon subtraction measurements (Figure 4.5).
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50 : 50

“input state”

“guess state”

“(final) output state”
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Figure 4.5: Coherent amplitude transformation at the (50 : 50) state comparison
beamsplitter and photon subtraction beamsplitter.

The output state is accepted when D0 does not fire and D1 does.

the three-mode output state is

ρ̂
(3)
out =

1

2
|0〉a〈0| ⊗

∣∣t
√

2α
〉
b

〈
t
√

2α
∣∣⊗
∣∣− r

√
2α
〉
c

〈
− r
√

2α
∣∣

+
1

2

∣∣−
√

2α
〉
a

〈
−
√

2α
∣∣⊗ |0〉b〈0| ⊗ |0〉c〈0|. (4.21)

Probability of success

The device operates successfully when the detector at the state comparison stage
does not fire and the detector at the photon subtraction stage does. We define
the probability of success, P (S), as the joint probability of these two successful
measurements,

P (S) = P (0D0 , 1D1)

= P (0D0) P (1D1|0D0), (4.22)
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where Di denotes the detector involved in the measurement (as in Figure 4.5). It is
equal to

P (S) = Tr
{
ρ̂
(3)
out : exp

{
−η0â†aâa

} (
1− exp

{
−η1â†câc

})
:
}
, (4.23)

where ηi is the quantum efficiency of detector Di and ρ̂
(3)
out is the three-mode output

state given in (4.19),

P (S) = Tr
{
ρ̂
(3)
out : exp

{
−η0â†aâa

} (
1− exp

{
−η1â†câc

})
:
}
,

=

∫
d2ᾱ

∫
d2β̄ P (ᾱ) P (β̄) exp

{
−η0

∣∣∣∣
ᾱ− β̄√

2

∣∣∣∣
2
}

×
(

1− exp

{
−η1

∣∣∣∣
−r(ᾱ + β̄)√

2

∣∣∣∣
2
})

. (4.24)

By substituting the probability distributions given in (4.20) we find that the probability
of success is

P (S) =
1

2

(
1− exp

{
−2η1r

2|α|2
})

+
1

2
exp

{
−2η0|α|2

}
× (1− 1)

=
1

2

(
1− exp

{
−2η1r

2|α|2
})
. (4.25)

It depends on the subtraction beamsplitter transmissivity t2, (r2 = 1 − t2), on the
photon subtraction detector quantum efficiency η1 and on the mean photon number
|α|2 (Figure 4.6). As the transmissivity decreases, the probability of success increases.
As we would like to have a gain as close to

√
2 as possible and a high probability

of success, we suggest that a value of t2 = 0.9 compensates well between the two.
The higher the quantum efficiency of the detector involved in the photon subtraction
measurement and the higher the mean photon number, the higher the probability of
success as the probability for subtraction and to herald a successful photon subtraction
increases.

Conditional output state

The output state conditioned on the state comparison detector not firing and the
photon subtraction detector firing, is given by

ρ̂output =
Tra,c

{
ρ̂
(3)
out : exp

{
−η0â†aâa

} (
1− exp

{
−η1â†câc

})
:
}

Tr
{
ρ̂
(3)
out : exp

{
−η0â†aâa

}(
1− exp

{
−η1â†câc

})
:
} ,

=
Tra,c

{
ρ̂
(3)
out : exp

{
−η0â†aâa

} (
1− exp

{
−η1â†câc

})
:
}

P (S)
. (4.26)
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⌘ = 1.0

⌘ = 0.5

Figure 4.6: The probability of success, which is about 10%, (> 0.09), for a state
of mean photon number |α|2 = 1 and an intensity gain of g2 = 1.8, is high for
non-deterministic amplification. It increases with the mean photon number, |α|2 and
detector quantum efficiency, η, as the probability for successful photon subtraction
increases.

The input state is selected randomly from the set {|α〉, | − α〉}
and a 50 : 50 beamsplitter is used for the state comparison technique.

This plot is for photon subtraction beamsplitter transmissivity t2 = 0.9.

In our example this is equal to

ρ̂output =
1

P (S)

∫
d2ᾱ

∫
d2β̄ P (ᾱ) P (β̄)

∣∣∣∣
t(ᾱ + β̄)√

2

〉

b

〈
t(ᾱ + β̄)√

2

∣∣∣∣

× exp

{
−η0

∣∣∣∣
ᾱ− β̄√

2

∣∣∣∣
2
}(

1− exp

{
−η1

∣∣∣∣
−r(ᾱ + β̄)√

2

∣∣∣∣
2
})

, (4.27)

ρ̂output =
1

P (S)

1

2

(
1− e−2η1r2|α|2

) ∣∣t
√

2α
〉
b

〈
t
√

2α
∣∣

=
∣∣t
√

2α
〉
b

〈
t
√

2α
∣∣. (4.28)

This is indeed the target state (Figure 4.7). In this particular example we would get
the same result without the conditioning on the state comparison measurement.

The gain of amplification is g = t
√

2. The higher the transmission coefficient of
the photon subtraction beamsplitter, the higher the gain. However, the higher the
transmission coefficient the less likely the photon subtraction, (4.25). So there is a
trade-off between the highest gain and a non-zero success probability of the device. In
our graphs we use a transmissivity of t2 = 0.9 which gives a reasonably high success
probability and a gain of g2 = 1.8.
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Figure 4.7: The fidelity of the output state with the target state, where the output
is conditioned on the photon subtraction measurement, is 1. It is independent of the
mean photon number, |α|2, the detector quantum efficiency, η and the subtraction
beamsplitter transmissivity, t2. The gain of amplification is g = t

√
2. For a realistic

photon subtraction we take t2 = 0.9 and so the gain is g2 = 1.8.

The input state is selected randomly from the set {|α〉, | − α〉}
and a 50 : 50 beamsplitter is used for the state comparison technique.

The gain does not depend only on the transmission coefficient of the photon
subtraction beamsplitter. The

√
2 term is a result of our choice to use a 50 : 50

beamsplitter at the state comparison measurement (Figure 4.5). We explain how
we can extend this scheme to get a much higher amplification gain in the following
section.

4.1.2 General scheme

The system we proposed is easily extensible to higher gains: we replace the 50 :
50 state comparison beamsplitter with a beamsplitter with the general beamsplitter
coefficients t1, r1 (Figure 4.8). Then the three-mode output state is transformed as
follows:

ρ̂
(3)
out =

∫
d2ᾱ

∫
d2β̄ P (ᾱ) P (β̄) |t1ᾱ− r1β̄〉a〈t1ᾱ− r1β̄|

⊗ |t2(r1ᾱ + t1β̄)〉b〈t2(r1ᾱ + t1β̄)| ⊗ | − r2(r1ᾱ + t1β̄)〉c〈−r2(r1ᾱ + t1β̄)|,
(4.29)

where t2, r2 are the beamsplitter coefficients for the photon subtraction beamsplitter
(Figure 4.8). For the input state ᾱ→ α and the guess state β̄ → t1/r1α, the target
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Figure 4.8: The quantum optical state comparison amplifier.

The output is accepted on no detection events at the state comparison measurement
(D0) and a detection event at the photon subtraction measurement (D1).

state is

t2
(
r1ᾱ + t1β̄

)
→ t2

(
r1α +

t21
r1
α

)

=
t2
r1

(
r21α + t21α

)
=
t2
r1
α (4.30)

Therefore the nominal gain is g = t2/r1.

Probability of success

The probability of success is the joint probability that the state comparison measurement
gives no counts at D0 and the photon subtraction measurement gives a count at D1.
It is given by
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P (S) = Tr
{
ρ̂
(3)
out : exp

{
−η0â†aâa

} (
1− exp

{
−η1â†câc

})
:
}
,

=

∫
d2ᾱ

∫
d2β̄ P (ᾱ) P (β̄) exp

{
−η0

∣∣∣∣t1ᾱ− r1β̄
∣∣∣∣
2
}

×
(

1− exp

{
−η1

∣∣∣∣− r2(r1ᾱ + t1β̄)

∣∣∣∣
2
})

. (4.31)

where we used the three-mode output state ρ̂
(3)
out defined in (4.29) and ηi is the

quantum efficiency of detector Di.

Conditional output state

The output state conditioned on the state comparison detector not firing and the
photon subtraction detector firing, is given by

ρ̂output =
Tra,c

{
ρ̂
(3)
out : exp

{
−η0â†aâa

} (
1− exp

{
−η1â†câc

})
:
}

Tr
{
ρ̂
(3)
out : exp

{
−η0â†aâa

}(
1− exp

{
−η1â†câc

})
:
} ,

=
Tra,c

{
ρ̂
(3)
out : exp

{
−η0â†aâa

} (
1− exp

{
−η1â†câc

})
:
}

P (S)
. (4.32)

Fidelity

We introduced the definition of the fidelity of the output state with the target state
as (4.12)

Fidelity =

∫
d2ᾱP (ᾱ)〈gᾱ|ρ̂output|gᾱ〉,

where g = t2/r1 in general, which holds for a pure target state |gᾱ〉. Alice knows
what the input state is (4.13), so from her point of view the target state is pure.

Another way of defining the fidelity, that can be evaluated by either Alice or Bob,
is the following: the fidelity of the output state with the target state is the probability
of passing a measurement test, T , given that the device operated successfully, S,

Fidelity = P (T |S)

=
P (T, S)

P (S)

=

∫
d2ᾱ

∫
d2β̄ P (ᾱ) P (β̄) P (T |S, ᾱ, β̄) P (S|ᾱ, β̄)∫
d2ᾱ

∫
d2β̄ P (ᾱ) P (β̄) P (S|ᾱ, β̄)

, (4.33)

where we define P (S|ᾱ, β̄) as

P (S|ᾱ, β̄) ≡ exp
{
−η0|t1ᾱ− r1β̄|2

}
×
(
1− exp

{
−η1r22|r1ᾱ + t1β̄|2

})
(4.34)
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and

P (T |S, ᾱ, β̄) = P (T |ᾱ, β̄) ≡ |〈gᾱ|t2(r1ᾱ + t1β̄)〉|2 (4.35)

is the overlap of the output state with the target state given that Alice’s state was ᾱ
and Bob’s state was β̄. Therefore P (T, S) is equal to

P (T, S) =

∫
d2ᾱ

∫
d2β̄ P (ᾱ) P (β̄) |〈gᾱ|t2(r1ᾱ + t1β̄)〉|2 P (S|ᾱ, β̄). (4.36)

In this section we introduced the quantum optical state comparison amplifier,
which is based on the techniques of coherent state comparison and photon subtraction.
The output state is accepted conditioned on no counts from the state comparison
measurement and a count from the photon subtraction measurement. The nominal
gain is g = t2/r1. We defined the conditional output state and the measures of
the probability of success and the fidelity of the output state with the target state
|t2/r1α〉.

In the following section we present the results of these measures for two particular
sets on input states. Furthermore, we compare the performance of the quantum
optical state comparison amplifier to other schemes of non-deterministic amplification.

4.2 Findings

In this section we present the results for the figures of merit of our device. We group
them in two sections based on the set of states from which Alice chooses the input
state. Of particular interest are the following two sets (Figure 4.9):

2-state set: contains two states of equal magnitude that are positioned opposite
on the phase space, for example {α,−α},

Phase symmetric set: contains states of equal magnitude but unknown phase
on the phase space, for example {|α|eiθ}, 0 ≤ θ < 2π.

We assume that Alice selects the input state randomly from her set of states, with
equal probability for each state. The probability distributions associated with the two
sets are

P (ᾱ) =
1

2

[
δ2(ᾱ− α) + δ2(ᾱ + α)

]
(4.37)

for the 2-state set and

P (ᾱ) =
1

2π|α|δ(|ᾱ| − |α|) (4.38)

for the state symmetric set. Bob chooses his set of states based on Alice’s set. In all
scenarios we assume that Bob can measure the magnitude of Alice’s input states but
not their phase. We demonstrate the scheme for Bob’s choice (t1/r1)α,

P (β̄) = δ2
(
β̄ − t1

r1
α

)
. (4.39)
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Phase symmetric set2-state set

Re(↵)

Im(↵)

Re(↵)

Im(↵)

Figure 4.9: We consider two examples of sets from which Alice chooses the input
state: the 2-state set and the phase symmetric set.

4.2.1 Amplification for a set of 2 coherent states

Probability of success

By using the probability distributions for the 2-state system, (4.37) and (4.39), into
(4.31), we find that the probability of success is equal to

P (S) =
1

2

[
1− exp

{
−η1g2|α|2

(
1/t22 − 1

)}]

+
1

2
exp

{
−4η0|α|2

(
1− t22/g2

)}

×
[
1− exp

{
−η1g2|α|2

(
1/t22 − 1

) (
1− 2t22/g

2
)2}]

. (4.40)

The first part of (4.40) corresponds to Bob having made the correct guess (the input
state was α) and the second part corresponds to the incorrect guess (input state −α).
The probability of success increases with intensity gain (Figure 4.10), as well as with
input state amplitude, as photon subtraction is more probable. Furthermore, higher
quantum efficiency, η, ensures that successful photon subtractions are less likely to
be missed.

Conditional output state

Having calculated the probability of success, we calculate the normalised density
operator for the output state, (4.32):

ρ̂output =
1

P (S)

(
1

2

[
1− exp

{
−η1g2|α|2

(
1/t22 − 1

)}]
|gα〉〈gα|

+
1

2

[
1− exp

{
−η1g2|α|2

(
1/t22 − 1

) (
1− 2t22/g

2
)2}]

× exp
{
−4η0|α|2

(
1− t22/g2

)}
|gα
[
1− 2

(
t22/g

2
)]
〉〈gα

[
1− 2

(
t22/g

2
)]
|
)
.

(4.41)
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|↵|2 = 0.5, ⌘i = 1.0

|↵|2 = 0.1, ⌘i = 1.0

|↵|2 = 0.5, ⌘i = 0.5

|↵|2 = 0.1, ⌘i = 0.5

|↵|2 = 1.0, ⌘i = 1.0

Figure 4.10: The probability of success is not limited by the mean photon number,
|α|2, or the intensity gain, g2, but in fact increases with these two parameters. Higher
detector quantum efficiencies, ηi, result in higher probability of success.
(Not shown: the plots for |α|2 = 1, ηi = 0.5 and |α|2 = 0.5, ηi = 1 are identical.)

The input state is selected randomly from the set {|α〉, | − α〉}.
This plot is for photon subtraction beamsplitter transmissivity t22 = 0.9.

Fidelity

We find that the numerator of the fidelity is

P (T, S) =
1

2

[
1− exp

{
−η1g2|α|2

(
1/t22 − 1

)}]

+
1

2
exp

{
−4η0|α|2

(
1− t22/2

)}

×
[
1− exp

{
−η1g2|α|2

(
1/t22 − 1

) (
1− 2t22/g

2
)2}]

× exp
{
−4g2|α|2

(
1− t22/g2

)2}
. (4.42)

The state comparison amplifier performs better, in terms of the fidelity of the output
state with the target state, as the mean photon number increases (Figure 4.11). The
fidelity decreases with intensity gain, apart from a region between 1 < g2 ≤ 2, where
it increases until it reaches unity at g = t2

√
2.

Decreasing detector quantum efficiency, ηi degrades the fidelity, as it corresponds
to accepting incorrectly identified zero counts at D0 (Figure 4.11). It also corresponds
to fewer recorded events of successful photon subtraction at D1, although this is a
determining factor in the probability of success rather than the fidelity directly (Figure
4.12). Higher quantum efficiency improves the fidelity more significantly for states
with higher mean photon numbers, e.g. |α|2 = 1.0, compared to states with smaller
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|↵|2 = 0.5, ⌘i = 1.0

|↵|2 = 0.1, ⌘i = 1.0

|↵|2 = 0.5, ⌘i = 0.5

|↵|2 = 0.1, ⌘i = 0.5

|↵|2 = 1.0, ⌘i = 1.0

Figure 4.11: The fidelity of the output state with the target state increases with
higher mean photon numbers, |α|2 and higher detector quantum efficiencies, ηi.
(Not shown: the plots for |α|2 = 1, ηi = 0.5 and |α|2 = 0.5, ηi = 1 are identical.)

The output state is identical to the target state for a gain of g = t2
√

2,
i.e. when a 50 : 50 beamsplitter is used at the state comparison stage.

The input state is selected randomly from the set {|α〉, | − α〉}.
This plot is for photon subtraction beamsplitter transmissivity t22 = 0.9.

mean photon numbers, e.g. |α|2 = 0.1 (Figure 4.12). When a 50 : 50 beamsplitter
is used at the state comparison stage, the fidelity is independent of the detector
quantum efficiency (subsection 4.1.1, Figure 4.7).

The fidelity and probability of success would degrade if we took into account any
dark counts present in the system. Darks counts have the opposite effect compared to
detector quantum efficiency: we would throw away any correctly amplified states when
the state comparison detector fires and we would mistakenly accept any unamplified
states when the photon subtraction detector fires. Recent experiments have very low
dark count rates and we can assume that they are not present in our system [Clarke
et al., 2012].

Noise figure

As an additional figure of merit for the performance of our amplifier, we calculate the
noise figure which we define as the signal to noise ratio of the output signal to the
signal to noise ratio of the input,

Noise figure =
SNRoutput

SNRinput
. (4.43)
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|↵|2 = 0.1
|↵|2 = 0.5

|↵|2 = 1.0

|↵|2 = 0.1

|↵|2 = 0.5

|↵|2 = 1.0

Figure 4.12: The fidelity of the output state with the target state increases with
detector quantum efficiency, η and with mean photon number, |α|2.

The quality of the detector at the state comparison stage, η0, is the determining
factor in the fidelity, rather than the efficiency of the detector at the photon
subtraction stage, η1. (The top plot is for η = η0 = η1.)

The input state is selected randomly from the set {|α〉, | − α〉}.
All plots are for t22 = 0.9 and intensity gain g2 = 4.

We take the signal to noise ratio, SNR, to be the ratio of the mean to the standard
deviation for the X̂ quadrature,

SNR =
〈X̂〉√
(∆X)2

(4.44)
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where X̂ = (â† + â)/2. For the output state ρ̂output, (4.41), the mean is equal to

〈X̂〉output = Tr{ρ̂outputX̂}

= Tr

{
1

2
(â† + â)× 1

P (S)

×
(
P (α|S)|gα〉〈gα|+ P (−α|S)

∣∣gα
[
1− 2

(
t22/g

2
)] 〉〈

gα
[
1− 2

(
t22/g

2
)] ∣∣)}

=
1

2P (S)
{P (α|S)(gα∗ + gα)

+ P (−α|S)
(
gα∗

[
1− 2

(
t22/g

2
)]

+ gα
[
1− 2

(
t22/g

2
)])}

=
1

2P (S)
gα∗

{
P (α|S) + P (−α|S)

[
1− 2

(
t22/g

2
)]}

+
1

2P (S)
gα
{
P (α|S) + P (−α|S)

[
1− 2

(
t22/g

2
)]}

=
1

P (S)
g|α|

{
P (α|S) + P (−α|S)

[
1− 2

(
t22/g

2
)]}

, (4.45)

where P (±α|S) is the conditional probability that the input state was ±α given that
the device operated successfully:

P (α|S) =
1

2

[
1− exp

{
−η1g2|α|2

(
1/t22 − 1

)}]

P (−α|S) =
1

2

[
1− exp

{
−η1g2|α|2

(
1/t22 − 1

) (
1− 2t22/g

2
)2}]

× exp
{
−4η0|α|2

(
1− t22/g2

)}
. (4.46)

Therefore

〈X̂〉2output =
1

P (S)2
g2|α|2

{
P (α|S) + P (−α|S)

[
1− 2

(
t22/g

2
)]}2

. (4.47)

Next, we calculate 〈X̂2〉output,

〈X̂2〉output = Tr{ρ̂outputX̂
2}

= Tr

{
1

4

(
â†

2

+ â2 + 2â†â+ 1
)
× 1

P (S)

×
(
P (α|S)|gα〉〈gα|+ P (−α|S)

∣∣gα
[
1− 2

(
t22/g

2
)] 〉〈

gα
[
1− 2

(
t22/g

2
)] ∣∣)}

=
1

4P (S)

{
P (α|S)(g2α∗

2

+ g2α2 + 2g2|α|2 + 1)

+ P (−α|S)
(
g2α∗

2 [
1− 2

(
t22/g

2
)]2

+ g2α2
[
1− 2

(
t22/g

2
)]2

+2g2|α|2
[
1− 2

(
t22/g

2
)]2

+ 1
)}

(4.48)
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〈X̂2〉output =
1

4P (S)
g2α∗

2
{
P (α|S) + P (−α|S)

[
1− 2

(
t22/g

2
)]2}

+
1

4P (S)
g2α2

{
P (α|S) + P (−α|S)

[
1− 2

(
t22/g

2
)]2}

+
1

4P (S)
2g2|α|2

{
P (α|S) + P (−α|S)

[
1− 2

(
t22/g

2
)]2}

+
P (α|S) + P (−α|S)

4P (S)

=
1

4P (S)
g2
{
P (α|S) + P (−α|S)

[
1− 2

(
t22/g

2
)]2}(

α∗
2

+ α2 + 2|α|2
)

+
1

4

=
1

P (S)
g2|α|2

{
P (α|S) + P (−α|S)

[
1− 2

(
t22/g

2
)]2}

+
1

4
, (4.49)

and so we find that the variance is equal to

(∆X)2output = 〈X̂2〉output − 〈X̂〉2output

=
1

P (S)
g2|α|2

{
P (α|S) + P (−α|S)

[
1− 2

(
t22/g

2
)]2}

+
1

4

− 1

P (S)2
g2|α|2

{
P (α|S) + P (−α|S)

[
1− 2

(
t22/g

2
)]}2

. (4.50)

Therefore the signal to noise ratio for the output state is

SNRoutput =
1

P (S)
g|α|

{
P (α|S) + P (−α|S)

[
1− 2

(
t22/g

2
)]}

×
[

1

P (S)
g2|α|2

{
P (α|S) + P (−α|S)

[
1− 2

(
t22/g

2
)]2}

+
1

4

− 1

P (S)2
g2|α|2

{
P (α|S) + P (−α|S)

[
1− 2

(
t22/g

2
)]}2

]−1/2
. (4.51)
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For the input state ρ̂input = |α〉〈α| the signal to noise ratio is SNRinput = 2|α|, as

〈X̂〉input = Tr{ρ̂inputX̂}

= Tr

{
1

2
|α〉〈α|(â† + â)

}

=
1

2
(α∗ + α)

= |α|

〈X̂2〉input = Tr{ρ̂inputX̂
2}

= Tr

{
1

4
|α〉〈α|

(
â†

2

+ â2 + 2â†â+ 1
)}

=
1

4

(
α∗

2

+ α2 + 2|α|2 + 1
)

=
1

4

[
(α∗ + α)2 + 1

]

=
1

4

[
(2|α|)2 + 1

]

= |α|2 +
1

4

(∆X)2input = 〈X̂2〉input − 〈X̂〉2input

= |α|2 +
1

4
− |α|2 =

1

4
.

Therefore the noise figure reads

Noise figure =
SNRoutput

SNRinput

=
1

2|α| ×
1

P (S)
g|α|

{
P (α|S) + P (−α|S)

[
1− 2

(
t22/g

2
)]}

×
[

1

P (S)
g2|α|2

{
P (α|S) + P (−α|S)

[
1− 2

(
t22/g

2
)]2}

+
1

4

− 1

P (S)2
g2|α|2

{
P (α|S) + P (−α|S)

[
1− 2

(
t22/g

2
)]}2

]−1/2
. (4.52)

The noise figure is higher than one (for gains > g2 = 1.5), as expected, and there is
a clear improvement with increasing gain, (Figure 4.13). It is relatively insensitive to
the mean photon number, |α|2 and detector quantum efficiency, ηi.
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|↵|2 = 0.1

|↵|2 = 0.5|↵|2 = 1.0

Figure 4.13: The noise figure increases with intensity gain, g2, for gains greater than
about g2 > 1.8. It increases slightly with the mean photon number, |α|2.
(Not shown: the noise figure is relatively insensitive to detector quantum efficiency,
ηi. This plot is for ηi = 1.)

The input state is selected randomly from the set {|α〉, | − α〉}.
This plot is for photon subtraction beamsplitter transmissivity t22 = 0.9.

4.2.2 Amplification for a phase symmetric set of states

It may be the case that Alice can choose the input state from a set where there
are many states, all equal in magnitude but with different phase, {|α|eiθ}, for all
0 ≤ θ < 2π (as in Figure 4.9). We assume that the states are equally distributed
around the phase space and Alice chooses her state at random. The probability
distribution associated with Alice’s input state is given by equation (4.38) and we
demonstrate the scheme for Bob’s choice given by (4.39).

In this subsection we study the performance of our amplifier for an input state
chosen from the phase symmetric set of states. We verify that the detector quantum
efficiency, ηi and the photon subtraction beamsplitter transmissivity, t22, play the same
role (for the same reasons) as in the case where the input state is selected from a
binary alphabet (Subsection 4.2.1).

The dependence of the fidelity and the probability of success with the mean photon
number shows more clearly the competing nature between these two measures: the
higher the mean photon number the higher the probability of success but the lower
the fidelity.

Chapter 4. Quantum Optical State Comparison Amplifier 68



Probability of success

The probability of success, (4.31), becomes

P (S) =

∫
d2ᾱ

∫
d2β̄ P (ᾱ) Q(β̄) P (S|ᾱ, β̄)

=

∫
|ᾱ|d|ᾱ|

∫ 2π

0

dθ

∫
d2β̄

1

2π|α|δ (|ᾱ| − |α|) δ2
(
β̄ − t1

r1
α

)

× exp

{
−η0

∣∣∣∣t1ᾱ− r1β̄
∣∣∣∣
2
}
×
(

1− exp

{
−η1

∣∣∣∣− r2(r1ᾱ + t1β̄)

∣∣∣∣
2
})

=
1

2π

∫ 2π

0

dθ exp

{
−η0

∣∣∣∣t1|α|eiθ − t1α
∣∣∣∣
2
}

×
(

1− exp

{
−η1

∣∣∣∣− r2
(
r1|α|eiθ + t21/r1α

) ∣∣∣∣
2
})

. (4.53)

We note that, in general, the phase of Bob’s state is different from the phase of
Alice’s state, therefore

t1|α|eiθ − t1α = t1|α|eiθ − t1|α|eiφ 6= 0. (4.54)

For simplicity, we assume that Bob’s state is on the positive real axis and the relative
phase between Alice’s and Bob’s states is given by θ. Then the probability of success
is equal to

P (S) =
1

2π

∫ 2π

0

dθ exp

{
−η0

∣∣∣∣t1|α|eiθ − t1|α|
∣∣∣∣
2
}

×
(

1− exp

{
−η1

∣∣∣∣− r2
(
r1|α|eiθ + t21/r1|α|

) ∣∣∣∣
2
})

=
1

2π

∫ 2π

0

dθ exp
{
−2η0|α|2t21 (1− cos θ)

}

×
(
1− exp

{
−η1|α|2

(
r22/r

2
1

) [
1− 2r21

(
1− r21

)
(1− cos θ)

]})
,

P (S) = exp
{
−2η0|α|2

(
1− t22/g2

)}
I0
[
2η0|α|2

(
1− t22/g2

)]

− exp
{
−2η0|α|2

(
1− t22/g2

)}

× exp
{

2η1|α|2
(
1− t22

) (
1− t22/g2

)
− η1|α|2g2

(
1/t22 − 1

)}

× I0
[
2η0α

2
(
1− t22/g2

)
− 2η1|α|2

(
1− t22

) (
1− t22/g2

)]
, (4.55)

where I0 is a modified Bessel Function of the zeroth order [Watson, 1995]. The
probability of success has the same trend as for the 2-state system: it increases with
intensity gain and increasing mean photon number, because the photon subtraction
probability becomes higher (Figure 4.14). Decreasing quantum efficiency, ηi, lowers
the probability of success, as the probability for successful photon subtraction decreases.
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|↵|2 = 0.5, ⌘i = 1.0

|↵|2 = 0.1, ⌘i = 1.0

|↵|2 = 0.5, ⌘i = 0.5

|↵|2 = 0.1, ⌘i = 0.5

|↵|2 = 1.0, ⌘i = 1.0

Figure 4.14: The probability of success increases with mean photon number, |α|2,
detector quantum efficiency, ηi and intensity gain, g2.
(Not shown: the plots for |α|2 = 1, ηi = 0.5 and |α|2 = 0.5, ηi = 1 are identical.)

The input state is selected randomly from the phase symmetric set.
This plot is for photon subtraction beamsplitter transmissivity t22 = 0.9.

Fidelity

The numerator of the fidelity, P (T, S), (defined in (4.33)), for the phase symmetric
system is equal to

P (T, S) =

∫
d2ᾱ

∫
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∣∣∣∣
2
})

,

(4.56)
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|↵|2 = 0.1, ⌘i = 1.0

|↵|2 = 0.5, ⌘i = 1.0

|↵|2 = 0.5, ⌘i = 0.5

|↵|2 = 0.1, ⌘i = 0.5

|↵|2 = 1.0, ⌘i = 1.0

|↵|2 = 1.0, ⌘i = 0.5

Figure 4.15: The state comparison amplifier produces a better version of the target
state for states with smaller mean photon numbers. The fidelity is higher for higher
detector quantum efficiencies, ηi.

The input state is selected randomly from the phase symmetric set.
This plot is for photon subtraction beamsplitter transmissivity t22 = 0.9.
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1
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. (4.57)

We assume that the relative phase between Alice’s and Bob’s states is θ, therefore

P (T, S) =
1

2π

∫ 2π

0

dθ
∣∣〈g|α|eiθ

∣∣t2
(
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2
}

×
(

1− exp

{
−η1
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(
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) ∣∣∣∣
2
})

, (4.58)

which is equal to
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|↵|2 = 0.5

|↵|2 = 1.0

|↵|2 = 0.1

|↵|2 = 0.5

|↵|2 = 1.0

Figure 4.16: The fidelity of the output state with the target state is relatively
insensitive to detector quantum efficiency, η, especially for small mean photon
numbers, |α|2. The quantum efficiency of the detector at the photon subtraction
stage, η1, has almost no effect on the fidelity.

The input state is selected randomly from the phase symmetric set.
All plots are for t22 = 0.9 and intensity gain g2 = 1.8.
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(4.59)
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The phase symmetric system performs better, in terms of the fidelity of the output
state with the target state, for states with small mean photon numbers (Figure 4.15).
The fidelity is almost insensitive to the detector quantum efficiency (Figure 4.16).
A limited detector quantum efficiency will have the greater effect in decreasing the
fidelity for higher mean photon numbers. A state with a high mean photon number
(around |α|2 = 1.0) in the measured beamsplitter arm ought to be detected and not
pass for a zero result at the state comparison measurement.

4.2.3 Comparison with other schemes

Every amplification scheme proposed works well for the purpose that it was built to
serve. Some were built to work with single photons as input, others with coherent
states. Some care about the quality of the output state, for others a “working”
probability of success is more important. For some the gain is a crucial factor, others
emphasise on the range of states to amplify. However, it is instructive to compare
different schemes. There is no right measure in order to make comparisons; inevitably
some schemes are more or less favoured depending one’s priorities.

In this subsection we compare the fidelity of the quantum optical state comparison
amplifier with the noise addition [Marek and Filip, 2010; Usuga et al., 2010] and
quantum scissors protocols [Ralph and Lund, 2009; Xiang et al., 2010; Ferreyrol
et al., 2010]. We amplify an input coherent state of mean photon number |α|2 = 0.5

2-state set

Phase symmetric set

Quantum scissors              

Noise addition

SCAMP

SCAMP

Figure 4.17: The state comparison amplifier (SCAMP) produces a higher quality
output state compared to other non-deterministic amplification schemes over a wide
range of amplifier gains.

This plot is for an input state of mean photon number |α|2 = 0.5
and for an ideal photon subtraction (i.e. transmissivity t22 = 0.99).
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(Figure 4.17). The quantum scissors device has a high fidelity for small amplitude
states; for a state with mean photon number |α|2 = 0.5 the fidelity quickly degrades
as the gain increases. The noise addition scheme and the phase symmetric set of the
quantum optical state comparison amplifier have a very similar behaviour. In our plot
we consider an ideal photon subtraction for both schemes and one photon subtraction
for the noise addition scheme. When we consider an input chosen from the 2-state
set, the quantum optical state comparison amplifier has a clear advantage over the
other methods, as it achieves a fidelity equal to one at a gain of two and it maintains
a high fidelity, (> 0.9), for all other gains.

4.3 Discussion of results

In this chapter we proposed a method for non-deterministic amplification of coherent
states. Our method is based on coherent state comparison followed by photon
subtraction (Figure 4.8). The device operates successfully when there are no detection
events at the state comparison measurement and a detection event at the photon
subtraction measurement.

The gain of amplification is determined at the state comparison measurement,
mainly. Alice’s “weak” coherent state interferes with Bob’s “stronger” state such
that when their phases are matched appropriately, the output at this stage is an
amplified version of Alice’s input state. (We assume that Bob knows/can measure the
magnitude of Alice’s state. The phase, on the other hand, is completely unknown.) It
follows that given a successful state comparison measurement, the gain of amplification
is inversely proportional to the beamsplitter reflection coefficient, r1.

Post-selection after the state comparison measurement results in a mixed output
state. The photon subtraction measurement “purifies” the output from incorrect
guesses. A successful photon subtraction reinforces the probability that we have the
desired target state in our output. Under certain circumstances, we can be 100%
certain that we have the desired target state (Figure 4.7).

The transmissivity of the beamsplitter used in the photon subtraction measurement
needs to be high so that it won’t degrade the gain significantly. The nominal
gain, therefore, is equal to g = t2/r1, where t2 is the transmission coefficient of
the beamsplitter at the photon subtraction measurement and r1 is the reflection
coefficient of the beamsplitter at the state comparison measurement.

On the other hand, the higher the transmission coefficient of the beamsplitter
involved in the photon subtraction technique, the lower the probability for a successful
photon subtraction. However, the less likely the photon subtraction the higher fidelity
of the output state with the target state. For a realistic photon subtraction, a
transmission intensity of t22 = 0.9 compensates well between the two.

We found that the successful operation of our device increases with intensity
gain, g2 and mean photon number, |a|2. This is because the probability for photon
subtraction approaches one, P (1|0)→ 1, in the high gain limit.

Our most striking result, is the perfect fidelity our device can achieve for an
intensity gain of g2 = 1.8 when the input state is chosen from a binary alphabet
(Figure 4.7). Otherwise, the general trend is that the fidelity of the output state

Chapter 4. Quantum Optical State Comparison Amplifier 74



compared with the target state increases with the mean photon number, |α|2 and
decreases with intensity gain, g2.

The quantum efficiency of the two detectors causes imperfections in the scheme,
but the “opposite” roles of the two detectors in our conditioning seem to counterbalance
the effect. A limited quantum efficiency of the detector involved in the state comparison
measurement would mean accepting more incorrect states, thus degrading the fidelity
of the output state with the target state and increasing the probability of success. On
the other hand a limited quantum efficiency of the detector at the photon subtraction
measurement does not affect the fidelity of the output state; the detector is less likely
to herald a correctly amplified state, thereby decreasing the probability of success.

We assume that there are no dark counts present in our system. This is the major
assumption for successful coherent state comparison [Andersson et al., 2006]. Clearly
this is not the case in practice, but gated dark count rates can be very low. We shall
see that this is a reasonable assumption for our experiment.

In order to put our amplifier into context, we compare the fidelity of the output
state with the target state to other non-deterministic amplification schemes (Figure
4.17, for a mean photon number of |α|2 = 0.5) [Ralph and Lund, 2009; Xiang et al.,
2010; Ferreyrol et al., 2010; Marek and Filip, 2010; Usuga et al., 2010]. For an input
state chosen from a binary set our amplifier has a very high fidelity ranging between
1 to 0.9 for all gains. For an input state chosen from a phase symmetric set of states
our amplifier has higher fidelity than the noise addition and quantum scissors schemes,
though it’s performance is very similar to the noise addition scheme.

The gain of our amplifier does not depend on the mean photon number of the input
state and in fact the fidelity and probability of success increase with the mean photon
number, in contrast to the other schemes. Furthermore, our scheme does not require
any complex equipment for its implementation (like parametric down conversion as in
scissors-based devices, or the photon number resolving detectors that are used in the
noise addition scheme) and it is straightforward to realise experimentally. In the next
chapter we show the results of the practical implementation of our proposed protocol.

The key result is the perfect fidelity we can achieve with the quantum optical state
comparison amplifier. This means that the device has the potential to find application
as an optical repeater in a quantum communications scheme. Furthermore, in situations
where Alice and Bob do not share a phase reference, they can use the state comparison
amplifier to establish one [Bartlett et al., 2007].
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CHAPTER 5

Experimental implementation of the

Quantum Optical State Comparison Amplifier

Practical tests provide quantitative data that shed light on the
suitability of a theoretical protocol for real life implementation. This chapter
is dedicated on the experimental implementation of the quantum optical state

comparison amplifier. We describe the experimental set-up and analyse the results
for sets of two, four and eight input states.

The analysis of the experimental data presented in this chapter is my work. The
experimental implementation was assembled and operated by Ross. J. Donaldson,
Robert J. Collins and Gerald S. Buller at Heriot-Watt University, Edinburgh, U.K.

A peer-reviewed version of this work has been accepted for publication in Physical
Review Letters

This chapter is organised as follows,

Implementation This section describes the experimental set-up and the methods
used to collect the experimental data for an input state chosen from a set of
two, four and eight coherent states.

Findings We group the results of analysing the data in three subsections: the 2-state,
4-state and 8-state system (Subsections 5.2.1, 5.2.2 and 5.2.3, respectively).
We calculate the success rate of the amplifier and the fidelity of the output state
with the ideal target state. We find that, despite experimental imperfections,
both measures are very high for all sets. Furthermore, we show that the
quantum optical state comparison amplifier increases significantly the fraction
of the target state in the output when it works properly. Additionally, we find
a very high interferometric visibility and we show that the amplifier does not
add any significant noise to the signal, when the input is chosen from a binary
alphabet of coherent states.

Discussion Finally, we summarise the main results and compare the experimental
performance of our protocol with others from the literature.
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5.1 Implementation

We test the quantum optical state comparison amplifier for a fixed gain and a varying
magnitude of the input states. We use a 50 : 50 beamsplitter for the state comparison
measurement and a 90 : 10 beamsplitter for the photon subtraction measurement,
which provide a nominal gain of amplification of g2 = 1.8. In this configuration the
input states and the guess states have the same magnitude, |α|.

We test the device for different sets of input states*, equally spaced around the
phase space (Figure 5.1):

2-state set: {|α|,−|α|},

4-state set: {|α|, |α|eiπ/2,−|α|, |α|ei3π/2},

8-state set: {|α|, |α|eiπ/4, |α|eiπ/2, |α|ei3π/4,−|α|, |α|ei5π/4, |α|ei3π/2, |α|ei7π/4}.

2-state set 4-state set 8-state set

Figure 5.1: The input state is selected from a set that contains either two, four or
eight coherent states equally spaced around the phase space. In each set the states
have the same magnitude and they are selected at random with equal probability.

*Notice: Strictly speaking and according to the nomenclature we introduced in
the previous chapter, we test the state comparison amplifier from Alice’s point of
view: i.e. the input state is always |α〉, and the guess state is chosen at random
from either the 2-state, 4-state or 8-state set. We use this implementation as we are
restricted to engineer only the target state |gα〉 for the analysis measurement.

The protocol yields the same results whether we test it from Bob’s point of view
(as in the theory chapter) or Alice’s point of view (as in this chapter). Due to this
equivalence, in the following sections we do not emphasise again that Bob chooses
at random the guess state but instead we refer to this guess state with the general
term “ the input state” to the amplifier.
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5.1.1 Experimental set-up

Figure 5.2 shows the experimental set-up for the state comparison amplifier. Subsection
5.1.2 has the detailed characteristics of the components.

For the purposes of the experimental implementation, the input and guess states
originate from the same source and they are split at a 50 : 50 beamsplitter before
they are input into the quantum optical state comparison amplifier.

The guess state encounters the phase modulator in its path, which induces a
phase change on the guess state. The phase modulator produces a known repeated
sequence of phase shifts, with duration 1 µs for each phase. The sequence of the
phase shifts is:

2-state set: (0, π)

4-state set: (0, π, π/2, 3π/2)

8-state set: (0, π, π/2, 3π/2, π/4, 5π/4, 3π/4, 7π/4).

An air-gap in the path of the input state establishes the highest mean fringe
visibility of the interference between the input and guess states. For the 2-state
system, for example, the counts at detector D0 are minimised when the phase
modulator produces the phase θ = 0 (say) and are maximised for θ = π. For
the 4- and 8-state systems we can also test the symmetry of the device: the air-gap is
adjusted so that additional opposite states, say with phases θ = π/2 and θ = 3π/2,
give the maximum and the minimum of counts at detector D0. (In the analysis of
the data in Section 5.2 we present the average of all results, i.e. we average over the
two possible ways to test the 4-state system and the four possible ways to test the
8-state system.) The state comparison measurement is crucial in order to determine
the relative phase between the input and guess states and set in this way a phase
reference.

An outer interferometer is set up in order to analyse the output state of the
quantum optical state comparison amplifier. Two 50 : 50 beamsplitters are used: one
to separate the target amplified state with the one that will be split into the input
and guess states later and another that combines the target and output states for
the analysis measurement at DA and DB. The target state has the same phase as
the input state. A computer controlled air-gap is used to ensure the highest mean
fringe visibility between the target and output states, by minimising and maximising
the counts at DA and DB in a similar manner as it is used in the inner interferometer.

5.1.2 Technical Methods

In this subsection we provide the technical details of the experimental implementation.

The interferometric visibilities in our set-up are:

Inner interferometer: 92.41%

Outer interferometer: 92.24% (before conditional filtering [see below])
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Figure 5.2: For the experimental set-up we require:

Vertical Cavity Surface Emitting Laser (VCSEL) launches coherent states

Free-space linear polariser polarises signal

Single-mode fibre couples signal to fibre

In-fibre linear polariser polarises signal

Polarisation maintaining fibre transfers signal to destination

Computer controlled attenuator sets the mean photon number per pulse

Computer controlled air-gaps adjust relative path lengths of interferometers

Lithium niobate (LiNbO3) phase modulator establishes phase encoding

Beamsplitters

50 : 50 beamsplitters (×4) input/guess, state comparison, analysis (×2)

90 : 10 beamsplitter for photon subtraction

Detectors (×4) for state comparison, photon subtraction, analysis (×2)
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Key features of components and operation

Vertical Cavity Surface Emitting Laser (VCSEL)

temperature stabilised

central wavelength: 850.38 nm

spectral bandwidth: 0.37 nm

central wavelength stability: ±0.8 pm

pulse repetition frequency: 1 MHz

Single-mode fibre: core diameter 5 µm

Polarisation maintaining fibre [Kumar and Ghatak, 2011]

“panda eye” polarisation maintaining fibre

core diameter: 5 µm

final polarisation extinction ratio: 1200 : 1

Computer-controlled attenuator

based on stepper motor controlled knife-edge spatially intercepts beam

Computer-controlled adjustable length air-gaps

contain manual knife-edge attenuators balance optical loss in fibres

can adjust path lengths at ∼ 15 nm steps over a 1.5 µm range

Lithium niobate (LiNbO3) phase modulator

clocked at 1 MHz

phase-locked to the laser

requires 6 V to cause a phase change of π rad

variance with the desired state: ±1.6× 10−3 rad

Detectors

commercially available

free-running

thick-junction [Clarke et al., 2011]

Geiger mode Silicon single photon avalanche diodes (Si-SPADs) [Spinelli
et al., 1996; Buller and Collins, 2010]

mean1 quantum efficiency: 40.5% (at a wavelength of 850 nm) [Collins
et al., 2010]

1This is the mean of all four detectors. The quantum efficiency of each detector is: D0 = 41%,
D1 = 0.38%, DA = 0.43%, and DB = 0.40%.

Chapter 5. Experimental implementation of the state comparison amplifier 80



mean raw dark count rate: 296 counts per second

mean gated dark count rate: 8 counts per second

Computer-controlled time-stamping electronics [Wahl et al., 2008]

phase-locked to the laser: rubidium (Rb) reference clock
(common to laser driver, phase modulator driver and time-stamping electronics)

recording with time intervals of 1 ps

maximum event rate recording: ∼ 4 MHz
(combination of computer, custom software and time-stamping electronics)

receive all events caused by an individual laser pulse simultaneously: electrical
delays were used on the outputs of the detectors

Custom software [by Robert J. Collins]

Gating process:

event filtering: ±2 ns window of expected arrival time

mean event retention: 96.5% of events

non-time-correlated background events (laser disabled): discarded
97%

Conditional filtering (for output state analysis)
(Condition: no detection events at D0 and a detection event at D1)

±2 ns window of event expected arrival time

accounts for detector temporal response with varying photon flux
[Gordon et al., 2005]

non-time-correlated background events (laser disabled): 0 (zero)
(600 individual 1 s duration measurements)
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5.2 Findings

In this section we present the results of analysing the experimental data that were
obtained using the set-up described in the previous section (Section 5.1). The analysis
of the data is my work.

5.2.1 Amplification for a set of 2 coherent states

In this subsection we present the results for the amplification of an input chosen at
random from a set of two coherent states (Figure 5.1).
For the analysis measurement, we interfere the output state of the quantum optical

state comparison amplifier with the target state at a 50 : 50 beamsplitter with a
detector in each output arm, DA and DB, (Figure 5.2). We assume that the quantum
optical state comparison amplifier produces one of the following output states: either
|gα〉 when it works correctly or |0〉 when it does not work, both a priori equally likely
(Figure 5.3). We expect to see the following trends:

output

50 : 50

p
2g↵

g↵p
2

g↵p
2

DA

0

target
g↵

DB

output

50 : 50

DA

target
g↵

DB

g↵

0

Figure 5.3: We assume that the quantum optical state comparison amplifier produces
either state |gα〉 or |0〉. The output state is interfered with the target state, |gα〉,
for an analysis measurement.

When the quantum optical state comparison amplifier works, the output state
|gα〉 interferes with the target state |gα〉, creating the vacuum state in the
beamsplitter arm where DA is placed and the state |

√
2gα〉 in the other arm.

Therefore DB fires and DA does not.

When the quantum optical state comparison amplifier does not work, i.e.
produces the output state |0〉, the target state |gα〉 is halved at the 50 : 50
beamsplitter. We expect DA and DB to register the same number of counts.

In other words, as the phase of the guess state alternates between 0 and π, the events
recorded at each detector will accumulate into two peaks:
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for detector DA, one peak will be of intensity 0 and the other of intensity
1/2|gα|2, whereas

for detector DB, one peak will be of intensity 2|gα|2 and the other of intensity
1/2|gα|2.

Visibility

In order to determine how close the output state is to the ideal target state, we can
do a visibility calculation. We define the visibility as the difference between the two

State comparison and 
photon subtraction

No conditioning

State comparison only

Figure 5.4: The visibility at the outer interferometer is progressively increased as
the output state is not conditioned on any measurement result, it is conditioned
on the state comparison measurement only, and then it is conditioned on both the
state comparison and photon subtraction measurements, in which case it is almost
100% (∼ 96%). The average standard error is ±0.05. The solid lines are theoretical
predictions based on experimental parameters.

Note that in this and any other occurrences of “standard error”, we mean the
root mean square (RMS) error, which gives an indication of the quality of the
average value of the corresponding quantity.

intensities in each detector divided by their sum,

VisibilityA =
|IAmax − IAmin|
IAmax + IAmin

. (5.1)

where for example IAmax corresponds to the highest intensity in detector DA, and
IAmin to the lowest intensity, and in the same way we can define it for detector DB.
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Alternatively, we can define a visibility across both detectors, as

Visibility =
|IBmax − IAmin|

IBmax + IAmin + IAmax + IBmin

, (5.2)

where the numerator gives the maximum difference in intensity between the four
peaks and the denominator takes into account all the intensities.

Theoretically, the visibility is given by the trace of the state in the output arms
of the beamsplitter used for the analysis measurement, Û |gα〉〈gα| ⊗ ρ̂outputÛ

†, with
the number operator n̂ = â†â,

VisibilityTh = Tr
{(
Û |gα〉〈gα| ⊗ ρ̂outputÛ

†
)
â†â
}
, (5.3)

where Û represents the beamsplitter transformation, |gα〉 is the target state and
ρoutput is the output of the state comparison amplifier. The detectors in our experiment
do not resolve the number of photons, but simply indicate that there some photons
present. Therefore the detection is described by the operator π̂ = 1 − π̂0, where π̂0
is the projection on the vacuum, π̂0 = |0〉〈0|. We want to account for the limited
quantum efficiency at the detector, ηj, therefore we take π̂0 =: e−ηj â

†â :, and so the
visibility for the theoretical prediction is given by

VisibilityTh = Tr
{(
Û |gα〉〈gα| ⊗ ρ̂outputÛ

†
)(

1− : e−ηj â
†â :
)}

. (5.4)

We find that the visibility at the outer interferometer is very close to 100%
(∼ 96% on average) when the device operates successfully (Figure 5.4). If we
relax the conditioning, for example post-selecting the output on the state comparison
measurement result only, the visibility degrades (∼ 68%). However, the experiment
confirms the theoretical prediction: for an input chosen from the 2-state set and for
a fixed gain of g2 = 1.8, by conditioning the output state on the photon subtraction
measurement, guarantees a(n almost) perfect visibility which implies an (almost) ideal
output state.

Estimation of the output state density operator

For an input state chosen from a binary alphabet of states, the density operator for
the output state has the following form

ρ̂output = Pgα|gα〉〈gα|+ P0|0〉〈0|, (5.5)

where Pgα is the normalised probability that the output state is |gα〉 and P0 is the
normalised probability that the output state is the vacuum.

We calculate these probabilities given the photo counts at detectors DA and DB

from the analysis measurement (Figure 5.3). We assume that the state comparison
amplifier produces either |gα〉 or |0〉, that a priori are equally likely. We take into
account the possibility that the output and the target state may not be identical due
to experimental set-up imperfections, by introducing the quantities δ and ε (Figure
5.5). Later we find that these quantities are not necessary for the fidelity estimation.
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Furthermore, we take into account a loss factor, `, before the detectors. We determine
the loss by comparing the counts at detector D0 with the theoretical prediction when
the input state is |−α〉 and the counts at detector D1 with the theoretical prediction
when the input state is |α〉. For an ` varying from 0 to 1, where 1 means that there
is no loss, we found that the loss in this system was 0.33.

output
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Figure 5.5: We introduce the quantities δ and ε to take into account interferometric
misalignments.

The probability that detector DB fires and detector DA does not fire, given that
the output of the state comparison amplifier is state |gα〉, is given by

P (1, 0|gα) =
(

1− e−η`|
√
2gα−δ|2

)
e−η`|

√
ε|2

= e−η`ε − e−η`(|
√
2gα−δ|2+|

√
ε|2)

= e−η`ε − e−η`2g2|α|2

≈ 1− e−2η`g2|α|2 − η`ε, (5.6)

which holds to the first order approximation in ε and where we used the relation we
obtain by equating the input and output photon numbers (Figure 5.5):

g2|α|2 + g2|α|2 = |
√

2gα− δ|2 + |√ε|2. (5.7)

Similarly, we find that the probability that detector DB does not fire and detector DA

does, given that the output of the state comparison amplifier is state |gα〉, is given
by

P (0, 1|gα) =
(
1− e−η`ε

)
e−η`|

√
2gα−δ|2

=
(
eη`ε − 1

)
e−η`|

√
2gα−δ|2e−η`ε

≈ η`ε e−2η`g
2|α|2 . (5.8)
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The probability that both detectors fire, given that the output state is |gα〉, is

P (1, 1|gα) =
(

1− e−η`|
√
2gα−δ|2

) (
1− e−η`ε

)

= 1− e−η`ε − e−η`|
√
2gα−δ|2 + e−2η`g

2|α|2

= 1− e−η`ε − e+η`εe−2η`g2|α|2 + e−2η`g
2|α|2

= 1− e−η`ε + e−2η`g
2|α|2 (1− e+η`ε

)

≈ 1− (1− η`ε) + e−2η`g
2|α|2 (1− 1− η`ε)

= η`ε+ e−2η`g
2|α|2 (−η`ε)

= η`ε
(

1− e−2η`g2|α|2
)
. (5.9)

We use the notation ngαA and ngαB to indicate the number of counts at DA and
DB, respectively, when the output is |gα〉. We want to find the number of pulses,
Ngα, that generated these counts. The number of pulses is related to the number of
counts in the following way:

ngαA = [P (0, 1|gα) + P (1, 1|gα)]Ngα

=
[
η`ε e−2η`g

2|α|2 + η`ε
(

1− e−2η`g2|α|2
)]
Ngα

= η`εNgα (5.10)

and similarly for the number of pulses that generated the counts at DB:

ngαB = [P (1, 0|gα) + P (1, 1|gα)]Ngα

=
[
1− e−2η`g2|α|2 − η`ε+ η`ε

(
1− e−2η`g2|α|2

)]
Ngα

=
[
1− e−2η`g2|α|2 − η`εe−2η`g2|α|2

]
Ngα

=
[
1− e−2η`g2|α|2

]
Ngα − ngαA e−2η`g

2|α|2 . (5.11)

Therefore the number of pulses that generated the counts at DA and DB when the
output state is |gα〉, is given by

Ngα =
ngαA e

−2η`g2|α|2 + ngαB
1− e−2η`g2|α|2 . (5.12)

We follow the same procedure to find the pulses, N0, that generated the counts at
the detectors DA and DB when the output state is the vacuum. The probability that
detector DB does not fire and detector DA does is equal to probability that detector
DB fires and detector DA does not (Figure 5.3), and it is given by

P (1, 0|0) = P (0, 1|0) = e−
1
2
η`g2|α|2

(
1− e− 1

2
η`g2|α|2

)
. (5.13)

The probability that both detectors fire when the output is the vacuum, is equal to

P (1, 1|0) =
(

1− e− 1
2
η`g2|α|2

)2
. (5.14)
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n0
A and n0

B indicate the number of counts at DA and DB, respectively, when the
output is the vacuum. It follows that

n0
A = n0

B =
(

1− e− 1
2
η`g2|α|2

)
N0

and by solving for N0 and taking the average of both equalities we have that

N0 =
n0
A + n0

B

2
(

1− e− 1
2
η`g2|α|2

) . (5.15)

We express the probabilities Pgα and P0 of the density operator, (5.5), in terms
of the number of pulses, as

Pgα =
Ngα

Ngα +N0

,

P0 =
N0

Ngα +N0

. (5.16)

Therefore the output state operator is equal to

ρ̂output =
Ngα

Ngα +N0

|gα〉〈gα|+ N0

Ngα +N0

|0〉〈0|. (5.17)

Success rate

We define the success rate of our amplifier as the probability of success, P (S),
multiplied by the frequency of operation of the laser,

Success rate = P (S)× clock-ratelaser (5.18)

where the clock-rate in our experiment is at 1 MHz. The probability of success is
the joint probability that the state comparison measurement gives no counts and the
photon subtraction measurement results in a detection event,

P (S) = P (0D0 , 1D1) = P (0)D0 P (1|0)D1 . (5.19)

We evaluate the success rate by adding the actual counts collected at detector
D1, given that D0 had not fired, when the input state was either |α〉 or | − α〉,

Success rate = nα1 + n−α1 . (5.20)

Due to the straightforward relation between the success rate and the probability
of success, (5.18), the success rate has the same dependance with the input state
magnitude, |α|, as the probability of success, P (S): the higher the input state
magnitude is, the more probable a successful photon subtraction and thus a higher
probability of success (Figure 5.6). The simple way we use to generate our input
states, i.e. through a laser, is a determining factor to the success rate: a higher pulse
repetition frequency of the laser will result in an even higher success rate. We selected
a pulse repetition frequency of 1 MHz to avoid any damage to the detectors due to
too high energy at large mean photon numbers. At 1 MHz we get more than 26000
successfully amplified states of mean photon per pulse |α|2 = 1.0, (Figure 5.6).
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Figure 5.6: The success rate is very high (up to 26544 s−1 at |α|2 = 1.0, by a
1 MHz laser) and it increases with the mean photon number per pulse, |α|2, as
photon subtraction becomes more likely. The solid line is the theoretical prediction
based on experimental parameters. A higher pulse repetition frequency increases the
success rate multiplicatively.

Fidelity

The quality of the output state is determined by its overlap with the target state, or
in other words, the fidelity of the output state with the target state,

Fidelity = 〈gα|ρ̂output |gα〉, (5.21)

where |gα〉 is the target state and ρ̂output is the output state given in (5.33). Therefore
the fidelity of the output state with the target state is equal to

Fidelity = 〈gα|
(

Ngα

Ngα +N0

|gα〉〈gα|+ N0

Ngα +N0

|0〉〈0|
)
|gα〉

=
Ngα

Ngα +N0

+
N0

Ngα +N0

e−g
2|α|2 . (5.22)

The state produced by the quantum optical state comparison amplifier has a high
fidelity with the target state (Figure 5.7). The fidelity decreases slightly with higher
mean photon numbers because of the detectors used: the SPAD detectors operate
in Geiger mode, i.e. they give a standard output electrical signal that is unrelated to
the intensity of the incident optical field.
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Figure 5.7: The state produced by the quantum optical state comparison amplifier
has a very high fidelity with the target state. The average standard error is ±0.0003.
In theory the fidelity is perfect (solid line).

Target State Fraction

The output of the quantum optical state comparison amplifier is the mixed state

ρ̂output =
Ngα

Ngα +N0

|gα〉〈gα|+ N0

Ngα +N0

|0〉〈0|,

although in theory for this particular gain, g2 = 1.8, N0 = 0 and the output is
the pure target state |gα〉, given that the amplifier worked, (Chapter 4, Subsection
4.1.1)). However, from the fidelity and visibility calculations we find that this mixed
state is very close to the desired target state.

It follows that the output state is mainly the target plus a small fraction of the
wrong (i.e. vacuum) state. In order to appreciate the proportion of the target state
in the mixture, we plot the “target state fraction”, where

Target state fraction =
Ngα

Ngα +N0

. (5.23)

The target state was produced over 96% of times, (Figure 5.8). This means
that conditioning the output state on the successful operation of the device, i.e. no
counts at the state comparison measurement and a count at the photon subtraction
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State comparison and 
photon subtraction

Photon subtraction only

Figure 5.8: The quantum optical state comparison amplifier produced the desired
amplified state about 97% of times, when it was conditioned on both the state
comparison and photon subtraction measurements; without the conditioning on
photon subtraction this percentage would be 50%. Post-selecting on the photon
subtraction measurement only results in a very high target state fraction also (∼ 96%),
however the conditioning on coherent state comparison is important for high mean
photon numbers per pulse. The solid lines are theoretical predictions based on
experimental parameters.

The standard errors on the first three points are ±0.0069, ±0.0058, and ±0.0016,
respectively, and the errors progressively decrease so that the average standard error

is ±0.0007.

measurement, increases the probability to have the desired target state in the output
from 50% to almost 100%. For small mean photon numbers per pulse we can relax
the conditioning on the state comparison measurement, but for higher mean photon
numbers the conditioning on the state comparison measurement is necessary in order
to detect and discard not amplified states.

Equivalent input noise

We calculate the equivalent input noise, which determines the amount of noise that
must be added to the input signal in order to get the same output noise, if the
amplifier were noiseless. It is defined as [Ferreyrol et al., 2010]

Neq =
(∆X̂)2output

g2
− (∆X̂)2input , (5.24)

where the X̂i quadrature is X̂i = (â† + â)/2, and the variance is (∆X̂i)
2 = 〈X̂2

i 〉 −
〈X̂i〉2.
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The equivalent input noise is positive for deterministic amplifiers but it can be
negative for non-deterministic ones. For example for the input state |α〉 which has a
variance (∆X̂)2input = 1/4, a perfect amplifier would produce the output state |gα〉
with the same variance. Therefore the equivalent input noise for an intensity gain of
g2 = 1.8 is equal to Neq = −1/9.

In our case, we need to define an effective gain,

geff =
〈X̂〉output

〈X̂〉input

, (5.25)

because of the vacuum state in the output state, ρ̂output ,

ρ̂output = Pgα|gα〉〈gα|+ P0|0〉〈0|.
Therefore the definition for the equivalent input noise, (5.24), becomes

Neq =
(∆X̂)2output

g2eff

− (∆X̂)2input ,

=
(∆X̂)2output〈X̂〉2input

〈X̂〉2output

− (∆X̂)2input . (5.26)

For our output state we find,

〈X̂〉output = Tr{ρ̂outputX̂output}

=
1

2
Tr{(Pgα|gα〉〈gα|+ P0|0〉〈0|)

(
â† + â

)
}

=
1

2
Pgα (gα∗ + gα) = Pgα g|α|, (5.27)

thus

〈X̂〉2output = P 2
gα g

2|α|2, (5.28)

and

〈X̂2〉output = Tr{ρ̂outputX̂
2
output}

=
1

4
Tr{(Pgα|gα〉〈gα|+ P0|0〉〈0|) (â†

2

i + â2i + 2â†i âi + 1)}

=
1

4

[
Pgα

(
g2α∗

2

+ g2α2 + 2g2|α|2 + 1
)

+ P0 (1)
]

=
1

4

[
Pgα

(
4g2|α|2 + 1

)
+ 1− Pgα

]

= Pgα g
2|α|2 +

1

4
. (5.29)

Therefore the variance is equal to

(∆X̂)2output = Pgα g
2|α|2 +

1

4
− P 2

gα g
2|α|2

= Pgα g
2|α|2(1− Pgα) +

1

4
. (5.30)
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Figure 5.9: The equivalent input noise for the quantum optical state comparison
amplifier is negative and compares very well with the ideal value −1/9 (solid line)
when the intensity gain is g2 = 1.8.

Then the equivalent input noise is equal to

Neq =
(∆X̂)2output〈X̂〉2input

〈X̂〉2output

− (∆X̂)2input

=

(
g2|α|2Pgα(1− Pgα) + 1

4

)
|α|2

P 2
gα g

2|α|2 − 1

4

=
4g2|α|2Pgα(1− Pgα) + 1− P 2

gαg
2

4P 2
gα g

2
. (5.31)

The equivalent input noise increases slightly with the mean photon number per
pulse, but remains negative and very close to the ideal value −1/9 for all mean photon
numbers (Figure 5.9). This means that the quantum optical amplifier does not add
any significant noise to the signal.
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5.2.2 Amplification for a set of 4 coherent states

In this subsection we show the results for amplifying an input chosen at random
from a set of four coherent states (Figure 5.1). Technical limitations restricted

the maximum mean photon number per pulse to be around |α|2 = 0.6. We found
the loss factor ` to be 0.19.

Estimation of the output state density operator

For an input state chosen at random from a set of four coherent states, the density
operator for the output state has the following form

ρ̂output = Pgα|gα〉〈gα|+ P0|0〉〈0|

+ P 1
2
gα(1+i)

∣∣∣∣
1

2
gα(1 + i)

〉〈
1

2
gα(1 + i)

∣∣∣∣

+ P 1
2
gα(1−i)

∣∣∣∣
1

2
gα(1− i)

〉〈
1

2
gα(1− i)

∣∣∣∣, (5.32)

where all the probabilities are normalised. The probabilities to have the states
|1
2
gα(1 ± i)〉 in the output are equal, P 1

2
gα(1+i) = P 1

2
gα(1−i). These probabilities

are greater than the probability to have the vacuum state in the output and smaller
than the probability to have the target state, P0 < P 1

2
gα(1±i) < Pgα.

We calculate these probabilities following a similar procedure to the one we used
for an input chosen from a set of two coherent states (Subsection 5.2.1). Appendix
5.A.1 shows explicitly the derivation of the output state density operator, which in
terms of the numbers of pulses we find to be equal to

ρ̂output =
Ngα

Ngα +N0 + 2Ngα(1+±i)/2
|gα〉〈gα|

+
N0

Ngα +N0 + 2Ngα(1+±i)/2
|0〉〈0|

+
Ngα(1+±i)/2

Ngα +N0 + 2Ngα(1+±i)/2

∣∣∣∣
1

2
gα(1 + i)

〉〈
1

2
gα(1 + i)

∣∣∣∣

+
Ngα(1+±i)/2

Ngα +N0 + 2Ngα(1+±i)/2

∣∣∣∣
1

2
gα(1− i)

〉〈
1

2
gα(1− i)

∣∣∣∣. (5.33)

Success rate

We evaluate the success rate by adding the counts registered at detector D1, given
that detector D0 did not fire,

Success rate = nα1 + n−α1 + niα1 + n−iα1 . (5.34)

We find that the success rate is very high, 14211 s−1 at around |α|2 = 0.6. A
higher pulse repetition frequency of the laser would increase this further. The success
rate increases with higher mean photon numbers per pulse as the probability for
photon subtraction increases.
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Figure 5.10: The success rate is very high (14211 s−1 at around |α|2 = 0.6 and
1 MHz pulse repetition frequency) and it increases with the mean photon number
per pulse, |α|2, as photon subtraction becomes more likely. The solid line is the
theoretical prediction based on experimental parameters.

Fidelity

The fidelity of the output state with the target state is equal to

Fidelity = 〈gα|
(

Ngα

Ngα +N0 + 2Ngα(1+±i)/2
|gα〉〈gα|

+
N0

Ngα +N0 + 2Ngα(1+±i)/2
|0〉〈0|

+
Ngα(1+±i)/2

Ngα +N0 + 2Ngα(1+±i)/2
|1/2gα(1 + i)〉〈1/2gα(1 + i)|

+
Ngα(1+±i)/2

Ngα +N0 + 2Ngα(1+±i)/2
|1/2gα(1− i)〉〈1/2gα(1− i)|

)
|gα〉. (5.35)
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Figure 5.11: The state produced by the quantum optical state comparison amplifier
has a high fidelity with the target state. The average standard error is ±0.0022. The
solid line is the theoretical prediction based on experimental parameters.

Fidelity =
Ngα

Ngα +N0 + 2Ngα(1+±i)/2

+
N0

Ngα +N0 + 2Ngα(1+±i)/2
e−g

2|α|2

+ 2
Ngα(1+±i)/2

Ngα +N0 + 2Ngα(1+±i)/2
e−

1
2
g2|α|2 . (5.36)

The state produced by the quantum optical state comparison amplifier has a high
fidelity with the target state (Figure 5.11). The fidelity drops (to the lowest value
0.8) with higher mean photon numbers.

Target State Fraction

The target state fraction is equal to

Target state fraction =
Ngα

Ngα +N0 + 2Ngα(1+±i)/2
. (5.37)

Post selecting on the photon subtraction measurement increases the probability
to have the target state in the output from 25% to 48% (Figure 5.12).
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Figure 5.12: The quantum optical state comparison amplifier produced the desired
amplified state about 50% of times, which is twice as many times compared to the
case where the conditioning on the photon subtraction measurement is not taken into
account. The solid line is the theoretical prediction based on experimental parameters.

The standard errors on the first four points are ±0.1336, ±0.0594, ±0.0217 and
±0.0154, respectively, and the errors progressively decrease so that the average

standard error is ±0.0201.

5.2.3 Amplification for a set of 8 coherent states

In this subsection we show the results for amplifying an input chosen at random
from a set of eight coherent states (Figure 5.1). Technical limitations restricted

the maximum mean photon number per pulse to be |α|2 = 0.21. The loss factor ` is
equal to 0.07.

Estimation of the output state density operator

For an input state chosen at random from a set of eight coherent states, the density
operator for the output state has the following form:
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ρ̂output = Pgα|gα〉〈gα|+ P0|0〉〈0|

+ P 1
2
gα(1±i)

∣∣∣∣
1

2
gα(1 + i)

〉〈
1

2
gα(1 + i)

∣∣∣∣

+ P 1
2
gα(1±i)

∣∣∣∣
1

2
gα(1− i)

〉〈
1

2
gα(1− i)

∣∣∣∣

+ P 1
2
gα

(√
2

2
(1+i)+1

)∣∣∣∣12gα
(√

2

2
(1 + i) + 1

)〉〈
1

2
gα

(√
2

2
(1 + i) + 1

)∣∣∣∣

+ P 1
2
gα

(√
2

2
(1−i)+1

)∣∣∣∣12gα
(√

2

2
(1− i) + 1

)〉〈
1

2
gα

(√
2

2
(1− i) + 1

)∣∣∣∣

+ P 1
2
gα

(√
2

2
(−1+i)+1

)∣∣∣∣12gα
(√

2

2
(−1 + i) + 1

)〉〈
1

2
gα

(√
2

2
(−1 + i) + 1

)∣∣∣∣

+ P 1
2
gα

(√
2

2
(−1−i)+1

)∣∣∣∣12gα
(√

2

2
(−1− i) + 1

)〉〈
1

2
gα

(√
2

2
(−1− i) + 1

)∣∣∣∣,

(5.38)

where the last four states are due to the input states |
√
2
2
α(1± i)〉 and |

√
2
2
α(−1± i)〉.

It follows that

P 1
2
gα

(√
2

2
(1+i)+1

) = P 1
2
gα

(√
2
2
(1−i)+1

),
P 1

2
gα

(√
2

2
(−1+i)+1

) = P 1
2
gα

(√
2
2
(−1−i)+1

), (5.39)

and

P0 < P 1
2
gα

(√
2

2
(−1±i)+1

) < P 1
2
gα(1±i) < P 1

2
gα

(√
2

2
(1±i)+1

) < Pgα. (5.40)

We follow the same procedure as in the previous subsections (see Subsection
5.2.1) to find these probabilities in terms of the numbers of pulses that generated the
counts in our detectors:

Pgα =
1

P (S)
Ngα

P0 =
1

P (S)
N0

P 1
2
gα(1±i) =

1

P (S)
Ngα(1+±i)/2

P 1
2
gα

(√
2

2
(1±i)+1

) =
1

P (S)
N 1

2
gα

(√
2

2
(1±i)+1

)
P 1

2
gα

(√
2

2
(−1±i)+1

) =
1

P (S)
N 1

2
gα

(√
2

2
(−1±i)+1

),
(5.41)
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where the normalisation is equal to

P (S) = Ngα +N0 + 2

(
N 1

2
gα(1+±i) +N 1

2
gα

(√
2

2
(1±i)+1

) +N 1
2
gα

(√
2

2
(−1±i)+1

)) .
(5.42)

Success rate

Figure 5.13: The success rate is very high (5101 s−1 at |α|2 = 0.21 and 1 MHz pulse
repetition frequency) and it increases with the mean photon number per pulse, |α|2,
as photon subtraction becomes more likely. The solid line is the theoretical prediction
based on experimental parameters.

We evaluate the success rate by adding the counts registered at detector D1,
given that detector D0 did not fire,

Success rate = nα1 + n−α1 + niα1 + n−iα1

+ n

√
2

2
α(1+i)

1 + n

√
2
2
α(1−i)

1 + n

√
2

2
α(−1+i)

1 + n

√
2

2
α(−1−i)

1 . (5.43)

The success rate has the same trend is in the previous two sets. We find that
the state comparison amplifier produces 5101 amplified states per second of mean
photon number |α|2 = 0.21 (Figure 5.13).
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Fidelity

The fidelity of the output state with the target state is given by

Fidelity = 〈gα|ρ̂output |gα〉

= 〈gα|
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Ngα
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(5.44)
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(5.45)

The state produced by the quantum optical state comparison amplifier has a high
fidelity with the target amplified state (Figure 5.14). The fidelity drops (from 0.99
to 0.92) with higher mean photon numbers.

Target State Fraction

The target state fraction is equal to

Target state fraction =
Ngα

P (S)
, (5.46)

where the probability of success, P (S), is given in (5.42). Post-selecting on the
photon subtraction measurement increases the probability to have the target state in
the output from 12.5% up to 24% (Figure 5.15).
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Figure 5.14: The state produced by the quantum optical state comparison amplifier
has a high fidelity with the target state. The average standard error is ±0.0013. The
solid line is the theoretical prediction based on experimental parameters.

Figure 5.15: The quantum optical state comparison amplifier produced the desired
amplified state about 25% of times, which is twice as many times compared to the
case where the conditioning on the photon subtraction measurement is not taken
into account. The average standard error is ±0.0173. The solid line is the theoretical
prediction based on experimental parameters.
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5.3 Discussion

5.3.1 Comparison with other schemes

Table 5.1: Comparison of the experimental performance of the state comparison
amplifier (SCAMP) with other non-deterministic amplifiers.
(For each scheme the top line shows the range (or maximum value) of capabilities,
subsequent lines show the performance for specific |α|2 or g2 values.)

Protocol Gain |α|2 Fidelity Success rate
(source rate) g2 (s−1)

SCAMP
(pulsed diode
laser at 1MHz)

1.8 in
this exp.

0.01 - 1.0 N=2 N=4 N=8 N=2 (4,8)

0.25 >0.99 ∼0.9 ∼0.9 > 6 000
0.30 0.985 0.86 - > 7 000
0.50 0.980 0.80 - > 11 000
0.94 0.975 - - > 26 000

Q. Scissors
(SPDC 2.5 s-1)
[Xiang et al., 2010]

2 - 4 <0.1 <93.6% ∼25
2.05 0.02 92.9% -
3.85 0.02 93.6% -

Photon addition
and subtraction
(mode-locked
laser at 82MHz)

≤4 ≤1.4 ∼1 max. ∼20 - ∼70
(↓ with |α|2) (↑ with |α|2)

∼2.56 ≤0.65 >90% -
[Zavatta et al., 2011] ∼2.56 1.0 70% ∼70

Random
thermal noise
(cw diode laser
at 100kHz)

>1 0.4 - 2.1 <1 P (S) = 20%
(↑ with no. (↑ with no. (↓ with no.
of photons of photons of photons
resolved) resolved) resolved)

0.5 ∼0.96 3.5%
[Müller et al., 2012] 1.0 ∼0.88 10%

5.3.2 Summary

In this chapter we described the experimental implementation for the quantum optical
state comparison amplifier. We examined the performance of the device for a fixed
gain, g2 = 1.8, and varying mean photon number per pulse. The input coherent state
was chosen at random from a set of two, four and eight coherent states (Figure 5.1).

We used a laser of pulse repetition frequency 1 MHz to launch the coherent states.
We attenuated them to a maximum mean photon number per pulse of |α|2 = 1.0
to avoid damaging the detectors. Experimental imperfections reduced this number
further, to |α|2 = 0.6 for the four state system and |α|2 = 0.21 for the eight state
system.
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For the two state system the state comparison amplifier has an outstanding
experimental performance. The fidelity of the output state with the target state is
very high (> 0.98), (Figure 5.7). We found that the desired target state was produced
about 97% of the times (Figure 5.8). The state comparison amplifier adds very little
noise to the signal: we found a negative equivalent input noise which compares very
well with the ideal value for a noiseless non-deterministic amplifier (Figure 5.9). The
state comparison amplifier produced more than 26000 amplified states per second
for an input of mean photon number of |α|2 = 1.0, a rate which is remarkably high
(Figure 5.6).

The behaviour of the state comparison amplifier for the four state and eight
state systems is similar to the theoretical performance of the phase symmetric system
(Chapter 4, Subsection 4.2.2). The state comparison amplifier produces an output
state with high fidelity which decreases slightly with increasing mean photon number
per pulse (Figures 5.11, 5.14). As with the two state system, post-selecting the
output on the photon subtraction measurement doubles the probability to have the
target state in the output, e.g. it increases from 25% to almost 50% for the four state
system, and from 12.5% to almost 25% for the eight state system. The success rate
is also similar to the two state system; the state comparison amplifier produces more
than 14000 amplified states per second for a mean photon number near |α|2 = 0.6
for the four state system and more than 5000 amplified states at |α|2 = 0.2 for the
eight state system (Figures 5.10, 5.13).

Despite the experimental imperfections, the experimental results verify that the
quantum optical state comparison amplifier produces an output with very high fidelity
with the target state in agreement with the theoretical predictions. The simplicity in
the experimental set-up gives the state comparison amplifier a further advantage over
other non-deterministic amplifiers. As the state comparison amplifier does not rely
on complex quantum resources, it can achieve very high success rates (Table 5.1).
Based on these qualities, the state comparison amplifier makes a good candidate for
a trusted quantum repeater to increase the transmission distance of signals used in
quantum communications systems with known phase alphabets, such as quantum
key distribution [Lütkenhaus and Shields, 2009] or quantum digital signatures [Clarke
et al., 2012; Collins et al., 2014].
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5.A Input chosen from a set of 4 coherent states:

derivation of formulae

5.A.1 The output state density operator

For an input state chosen at random from a set of four coherent states, the density
operator of the output state has the following form

ρ̂output = Pgα|gα〉〈gα|+ P0|0〉〈0|

+ P 1
2
gα(1+i)

∣∣∣∣
1

2
gα(1 + i)

〉〈
1

2
gα(1 + i)

∣∣∣∣

+ P 1
2
gα(1−i)

∣∣∣∣
1

2
gα(1− i)

〉〈
1

2
gα(1− i)

∣∣∣∣, (5.47)

50 : 50

input

guess

output

D0

0

0

1
D1

↵

±i↵

t2 ⇡ 1

↵ (1 � ±i)p
2

↵ (1 + ±i)p
2

�r2↵ (1 + ±i)p
2

g↵ (1 + ±i)

2

Figure 5.16: Coherent amplitude transformation through the quantum optical state
comparison amplifier for the guess state | ± iα〉.

The nominal gain is given by g = t2/r1, where r1 = 1/
√

2 in this implementation.

where the last two states are due to the input states | ± iα〉, (Figure 5.16), and
all probabilities are normalised.
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Figure 5.17: The states output states |1
2
gα (1 +±i)〉 are interfered with the target

state |gα〉 for an analysis measurement.

The probability that detector DB fires and detector DA does not fire, given that
the output of the state comparison amplifier is state |1

2
gα (1 +±i)〉, is given by

P (1, 0|gα (1 +±i) /2) =
(

1− e−ηg2|α|2 1
2
|1+ 1

2
(1+±i)|2

)
e−ηg

2|α|2 1
2
|1− 1

2
(1+±i)|2

=
(

1− e−ηg2|α|2 5
4

)
e−ηg

2|α|2 1
4 , (5.48)

Similarly, we find that the probability that detector DB does not fire and detector DA

does, given that the output of the state comparison amplifier is state |1
2
gα (1 +±i)〉,

is given by

P (0, 1|gα (1 +±i) /2) = e−ηg
2|α|2 1

2
|1+ 1

2
(1+±i)|2

(
1− e−ηg2|α|2 1

2
|1− 1

2
(1+±i)|2

)

= e−ηg
2|α|2 5

4

(
1− e−ηg2|α|2 1

4

)
. (5.49)

The probability that both detectors fire, given that the output state is |1
2
gα (1 +±i)〉,

is

P (1, 1|gα (1 +±i) /2) =
(

1− e−ηg2|α|2 1
2
|1+ 1

2
(1+±i)|2

)(
1− e−ηg2|α|2 1

2
|1− 1

2
(1+±i)|2

)

=
(

1− e−ηg2|α|2 5
4

)(
1− e−ηg2|α|2 1

4

)
. (5.50)

We use the notation n
gα(1+±i)/2
A and n

gα(1+±i)/2
B to indicate the counts at DA and

DB, respectively, when the output is |1
2
gα (1 +±i)〉. We want to find the number
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of pulses, Ngα(1+±i)/2, that generated these counts. The number of pulses is related
to the number of counts in the following way:

n
gα(1+±i)/2
A = [P (0, 1|gα (1 +±i) /2) + P (1, 1|gα (1 +±i) /2)]Ngα(1+±i)/2

=
(

1− e−ηg2|α|2 1
4

)
Ngα(1+±i)/2 (5.51)

and similarly, for the number of pulses that generated the counts at DB,

n
gα(1+±i)/2
B = [P (1, 0|gα (1 +±i) /2) + P (1, 1|gα (1 +±i) /2)]Ngα(1+±i)/2

=
(

1− e−ηg2|α|2 5
4

)
Ngα(1+±i)/2. (5.52)

Therefore the number of pulses that generated the counts at DA and DB when the
output state was |1

2
gα (1 +±i)〉, is given by

Ngα(1+±i)/2 =
n
gα(1+±i)/2
A

1− e−ηg2|α|2 1
4

=
n
gα(1+±i)/2
B

1− e−ηg2|α|2 5
4

. (5.53)

Finally, we take weighted averages for Ngα(1+±i)/2, so that

Ngα(1+±i)/2 = wA
n
gα(1+±i)/2
A

1− e−ηg2|α|2 1
4

+ wB
n
gα(1+±i)/2
B

1− e−ηg2|α|2 5
4

, (5.54)

where

wA =
n
gα(1+±i)/2
A

n
gα(1+±i)/2
A + n

gα(1+±i)/2
B

,

wB =
n
gα(1+±i)/2
B

n
gα(1+±i)/2
A + n

gα(1+±i)/2
B

. (5.55)

We express the probabilities in the density operator, (5.47), in terms of the number
of pulses, as

Pgα =
Ngα

Ngα +N0 + 2Ngα(1+±i)/2
,

P0 =
N0

Ngα +N0 + 2Ngα(1+±i)/2

P 1
2
gα(1+i) = P 1

2
gα(1−i) =

Ngα(1+±i)/2

Ngα +N0 + 2Ngα(1+±i)/2
(5.56)

Therefore the output state operator is equal to

ρ̂output =
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|gα〉〈gα|

+
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1

2
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〉〈
1

2
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∣∣∣∣. (5.57)
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5.A.2 Equivalent input noise

We define the equivalent input noise as

Neq =
(∆X̂)2output

g2eff

− (∆X̂)2input ,

=
(∆X̂)2output〈X̂〉2input

〈X̂〉2output

− (∆X̂)2input . (5.58)

For our output state we find,

〈X̂〉output = Tr{ρ̂outputX̂output}
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(5.59)

where we used the relation P 1
2
gα(1+i) = P 1

2
gα(1−i). Therefore

〈X̂〉2output =
(
Pgα + P 1

2
gα(1+i)

)2
g2|α|2. (5.60)
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Then
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Therefore the variance is equal to

(∆X̂)2output =
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(5.62)

Then the equivalent input noise is equal to
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Let Pgα ≈ 2× P 1
2
gα(1+i),

Neq ≈
(
Pgα + 1

2
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For g2 = 1.8, the equivalent input noise becomes

Neq ≈
5|α|2
9Pgα

+
5

81P 2
gα

− |α|2 − 1

4
, (5.65)

and for the probability Pgα ≈ 0.5, it is equal to

Neq ≈
10|α|2

9
+

20

81
− |α|2 − 1

4

≈ 1

9
|α|2 − 1

324
. (5.66)

Therefore the equivalent input noise is negative for values |α|2:

1

9
|α|2 − 1

324
< 0

|α|2 < 1

36
≈ 0.03. (5.67)

In our experiment the smallest mean input photon number per pulse is |α|2 = 0.05

Figure 5.18: The equivalent input noise is positive and very close to zero (0.06 on
average)

(Figure 5.18).

Chapter 5. Experimental implementation of the state comparison amplifier 108



PART II

Information content in optical states

109



CHAPTER 6

Gaussian Entropy-Minimising States (GEMS)

The orbital angular momentum of light provides an effectively unlimited
basis for encoding information. Beams carrying orbital angular momentum
(OAM) have the potential to be used extensively for the transmission of

information.
The challenge remains to extract this information with the highest precision

possible. Uncertainty relations provide the fundamental limits on measurements of
incompatible observables, such as orbital angular momentum and angle. Observables
that satisfy the lower bound of an uncertainty relation yield more accurate measurement
results.

The intelligent states satisfy the lower bound of the usual Heisenberg uncertainty
relation in terms of position and linear momentum, making them the minimum
uncertainty states [Aragone et al., 1974]. However, the intelligent states do not
satisfy the lower bound of the uncertainty relation for angular position and orbital
angular momentum variables, because in this case the lower bound is state dependent.
The states that satisfy this bound are the constrained minimum uncertainty product
(CMUP) states [Pegg et al., 2005]. However, these states are very complex and they
are not practical to produce and handle.

We propose a new form of orbital angular momentum and angular position states,
which have a Gaussian distribution in the orbital angular momentum basis and a
distribution of overlapping Gaussians in the angle basis. These states are well-defined
throughout the whole range of angular uncertainty and they provide a lower uncertainty
product than the intelligent states. Furthermore, we study their properties in terms
of their entropic uncertainty relation and we compare their values to numerically
optimised states. We find that our proposed states have a lower entropic uncertainty
than the intelligent states and they are a practical approximation of the minimum
uncertainty states.

A peer-reviewed version of this work can be found in the Journal of Optics 16,
105404 [Yao, Brougham, Eleftheriadou, Padgett, and Barnett, 2014].
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This chapter is organised as follows,

Introduction We start by introducing the orbital angular momentum of light and
then we introduce the uncertainty product for angular position and orbital
angular momentum. We introduce the states that satisfy the equality in the
uncertainty product, the intelligent states, and the states that minimise the
uncertainty product, the constrained minimum uncertainty product (CMUP)
states.

Gaussian Entropy-Minimising States (GEMS) In this section we propose a new
form of angular position and orbital angular momentum state. We show that
these states provide a lower uncertainty product than the intelligent states and
are well-defined throughout the whole angular uncertainty range in contrast to
the CMUP states. Furthermore, we introduce the entropic uncertainty relation
for angular position and orbital angular momentum states. We find that our
proposed states give a lower entropic uncertainty than the intelligent states.
Finally, we compare the entropic uncertainty of our states with numerically
minimised states and we find that for all practical purposes our states have the
minimum entropic uncertainty.

Conclusion We summarise the main results and the properties of our proposed states.

6.1 Introduction

This section serves as an introduction to the concepts we mentioned at the beginning
of the chapter, before we proceed to introduce the Gaussian-Entropy-Minimising-States
(GEMS) in the following section.

6.1.1 The orbital angular momentum of light

Light as an electromagnetic wave can have different polarisations, such as linear or
circular. Associated with the circular polarisation is the spin angular momentum:
light has a spin angular momentum equal to ±h̄ per photon; the sign depending on
whether the light is right or left circularly polarised. Linearly polarised light does not
have spin angular momentum.

Distinctly different and independent of the spin angular momentum is the orbital
angular momentum (OAM) of light. Light beams can have helical phase fronts and
associated with the rotation of the phase fronts is the orbital angular momentum of
light: light carries an OAM equal to mh̄ per photon, where m is an integer; the phase
fronts rotate clockwise or anti-clockwise depending on the sign of m (Figure 6.1).
Plane waves (m=0) do not have orbital angular momentum.

Allen et al. [1992] realised that any beam with an azimuthal phase dependence, of
the form u(r, ϕ, z) = u0(r, z)eimϕ, carries orbital angular momentum. In particular,
such a beam is best described by Laguerre-Gaussian (LGpm) modes where p is
the number of concentric dark rings (in addition to the central singularity when
m 6= 0) (Figure 6.2). Furthermore, any arbitrary beam can be described by a linear
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m = �2

m = 2m = 1

m = 3

Figure 6.1: Helically phased beams have an orbital angular momentum (OAM) of
±mh̄ per photon. Positive m corresponds to clockwise rotating phase fronts, while
negative m corresponds to anti-clockwise rotation.

superposition of Laguerre-Gaussian modes or a combination of Hermite-Gaussian
modes [Beijersbergen et al., 1993; Tamm and Weiss, 1990].

Helical beams can be generated in a number of ways [Allen et al., 2003; Yao
and Padgett, 2011]: either they are produced directly inside the laser [Harris et al.,
1994] or mode converters transform Hermite-Gaussian modes into Laguerre-Gaussian
modes. Allen et al. [1992] used mode converters formed from cylindrical lenses
[Beijersbergen et al., 1993]. They work by first decomposing a Hermite-Gaussian
mode into a set of Hermite-Gaussian modes, which when rephased and recombined
they give a particular Laguerre-Gaussian mode. The advantage of this technique is
that it converts higher order Hermite-Gaussian modes into pure Laguerre-Gaussian
modes with high efficiency.

Another type of mode converter is the spiral phase plate [Beijersbergen et al.,
1994; Turnbull et al., 1996]. This is an optical element with one planar surface
whose thickness progressively increases with the angle around the centre, also known
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Figure 6.2: Laguerre-Gaussian (LGpm) modes, and a linear superposition thereof,
carry orbital angular momentum. The top row shows the normalised intensity profiles
and the bottom row the phase profiles. p corresponds to the number of concentric
rings (in addition to the central singularity if it exists).

as the azimuthal angle, so that the other surface of the element is helical. The
Hermite-Gaussian mode that is incident on the planar surface of the phase plate
covers different path lengths inside the medium. Consequently, as it exits the spiral
phase plate, the phase profile of the resulting wavefront varies with the azimuthal
angle. The phase dislocation leads to destructive interference along the beam axis,
and thus the helical wavefront has a phase singularity in the centre. The step height
of the spiral phase plate must be an integer number of wavelengths for this to happen,
so these devices must be designed with very high precision.

However, helical beams are generated with more flexibility when using diffractive
optical elements, such as computer generated holograms [Bazhenov et al., 1990;
Heckenberg et al., 1992]. These holograms are usually forked diffraction gratings
which are constructed by adding the phase profile of the helical beam to be generated
and a linear phase ramp. The widespread availability of spatial light modulators
(SLMs), which can be easily programmed to act as holograms, makes this method
for generating helical beams very practical.

More interesting, though, is the generation of helical beams by spontaneous
parametric down conversion (SPDC) [Mair et al., 2001; Leach et al., 2010]. Down
converted photon pairs are entangled in orbital angular momentum and angular
position. As orbital angular momentum spans a high-dimensional state space, a
greater amount of information can be encoded on each photon compared to encoding
information on the two-dimensional state space of its polarisation. This opens up
the possibility to use OAM carrying beams in quantum information protocols [Vaziri
et al., 2002; Molina-Terriza et al., 2004].
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6.1.2 Angular uncertainty relation

Orbital angular momentum and angular position are conjugate variables and so there is
an uncertainty principle associated with the precision with which they can be measured
simultaneously. For linear position, x, and linear momentum, p, which are continuous
and unbounded conjugate variables, the uncertainty relation is given by [Heisenberg]

∆x∆p ≥ h̄/2. (6.1)

On the other hand, the angular position is periodic and bounded and the orbital
angular momentum is discrete. When we have an orbital angular momentum eigenstate,
∆m = 0, the angular position is completely undefined: it can take any value between
0 and 2π with equal probability. In this case, the variance in angular position takes
its maximum value

(∆ϕ)2 =

∫ π

−π
dϕ ϕ2P (ϕ)

=
1

2π

[
ϕ3

3

]π

−π
=
π2

3
, (6.2)

and so the uncertainty is ∆ϕ = π/
√

3. An uncertainty relation of the form of (6.1)
fails for small ∆m, as it must be equal to zero, ∆m∆ϕ = 0. Therefore, we require a
different form of the uncertainty relation for orbital angular momentum and angular
position variables.

The uncertainty relation for angular position (or angle), ϕ, and orbital angular
momentum, m, is given by [Robertson, 1934; Barnett and Pegg, 1990],

∆m∆ϕ ≥ 1

2
|1− 2πP (θ)| , (6.3)

where P (θ) = |ψ(θ)|2 is the probability density at the boundary of the chosen 2π
angular range. In contrast to the uncertainty relation for linear position and linear
momentum, (6.1), which has a constant lower bound, the lower bound of (6.3) is state
dependent. Consequently, the states that minimise the uncertainty product in linear
position and linear momentum, (6.1), do not necessarily minimise the uncertainty
product in angular position and orbital angular momentum, (6.3). On the other
hand, the contained minimum uncertainty product (CMUP) states have been shown to
minimise the uncertainty product, (6.3), but they are not easy to produce and handle.
We briefly describe these states in the following subsections before we introduce a
new form of states that circumvents these problems.

6.1.3 Intelligent states

The intelligent states are the states that satisfy the equality in an uncertainty relation
[Aragone et al., 1974],

∆x∆p = h̄/2, (6.4)

∆m∆ϕ =
1

2
|1− 2πP (θ)| . (6.5)
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For linear position, x, and linear momentum, p, they are also the minimum uncertainty
states and have Gaussian probability distributions. However, they are not the minimum
uncertainty states for angular position and orbital angular momentum because of the
state dependent lower bound of the uncertainty principle, P (θ).

For angular position and momentum, the intelligent states are given by the angle
wavefunction

ψ(ϕ)Int = (λ/π)1/4
[
erf
(
π/
√
λ
)]−1/2

exp

(
−λϕ

2

2

)
, (6.6)

[Franke-Arnold et al., 2004], where erf is the error function, erf(x) = (2/
√
π)
∫ x
0
e−t

2
dt

[Gradshteyn and Ryzhik, 2007]. Intelligent states have the form of a truncated
Gaussian distribution in this representation, (6.6), (Figure 6.3). Usually we choose the
probability distribution P (θ) that gives the smallest variance, i.e. the angular range
is −π ≤ ϕ < π, and so the Gaussian is centred at ϕ = 0 and it has a discontinuity
at ±π.

��1 ��2

Figure 6.3: The angular probability distribution for the intelligent states is a Gaussian
distribution centred at ϕ = 0 and truncated at±π. We choose the range−π ≤ ϕ < π
to minimise the angular variance, (∆φ2)

2 < (∆φ1)
2.

It follows that the variances in angular position and orbital angular momentum
are [Franke-Arnold et al., 2004]

(∆ϕ)2 =

∫ π

−π
dϕϕ2 |ψInt|2 =

1

2λ
−
√
π

λ

e−λπ
2

erf
(
π
√
λ
)

(∆m)2 =
∞∑

m′=−∞

m2|cm|2 = λ2 (∆ϕ)2 , (6.7)
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Figure 6.4: The uncertainty product for the intelligent state, ∆ϕ∆m, varies between
0.5 for very small angular uncertainty, ∆ϕ, to zero at the maximum angular
uncertainty, ∆ϕ = π/

√
3 ≈ 1.81, in which case we have an OAM eigenstate.

from which we can find the uncertainty product ∆ϕ∆m, (6.5).
As it is expected, the uncertainty product, (6.5), is zero when the uncertainty in

the angle is maximum, at ∆ϕ = π/
√

3 ≈ 1.81, because of P (θ) = 1/(2π) (Figure
6.4). On the other hand, for small uncertainty in the angle ∆φ, the probability
P (θ)→ 0 and the uncertainty product tends to 1/2.

6.1.4 Constrained minimum uncertainty product (CMUP) states

The states which minimise the uncertainty relation for a given ∆m or ∆φ are the
constrained minimum uncertainty product (CMUP) states. The exact solution of their
eigenvalue equation found in Pegg et al. [2005] is expressed in terms of a confluent
hypergeometric function. The first order perturbation solution is

ψ(ϕ)CMUP =
1√
2π

[
1 +

λ

6

(
ϕ4

2
− π2ϕ2 +

7π4

30

)]
, (6.8)

where λ is a Langrange multiplier related to the angular width of the states [Pegg
et al., 2005]. It follows that the uncertainty in the angle, ∆ϕ, to the first order in λ,
is

∆ϕ =
π√
3

(
1− 8π4

315
λ

)
(6.9)

and the uncertainty relation is

∆m∆ϕ =
λπ4

√
3

√
8

945

(
1− 8π4

315
λ

)
. (6.10)
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1st order CMUP

Intelligent state

Figure 6.5: The uncertainty product for the first order CMUP state, ∆ϕ∆m, is
smaller than the uncertainty product for the intelligent states for a big range of
angular uncertainty, ∆ϕ. The CMUP state blows up for small ∆ϕ.

The uncertainty relation for the first order solution of the CMUP states, (6.10), is
smaller than the uncertainty relation for the intelligent states, for the angular range
1 < ∆ϕ < π/

√
3 (Figure 6.5). However, the first (and second) order solution blows

up for small ∆ϕ [Pegg et al., 2005].

6.2 Gaussian Entropy-Minimising States (GEMS)

In this section we propose a new form of orbital angular momentum and angle
states. We compare their uncertainty product, ∆m∆ϕ, to the one for the intelligent
states and the first order solution of the CMUP states. Furthermore, we examine
their entropic uncertainty relation and we compare it numerically with the entropic
uncertainty of the intelligent states. Finally, we compare our states with states
obtained by a minimisation algorithm to determine whether our proposed states are
indeed the minimum states.

6.2.1 Definition

We propose the orbital angular momentum state with a Gaussian distribution in the
angular momentum basis,

|ψ〉 =
∞∑

m=−∞

cm|m〉 =
∞∑

m=−∞

√
N(a)e−am

2|m〉, (6.11)

where a is real and positive. We require this state to be normalised, therefore
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∞∑

m′=−∞

∣∣cm|2 =
∞∑

m′=−∞

∣∣√N(a)e−am
2∣∣2 = 1,

(6.12)

⇒ N(a) =

(
∞∑

m′=−∞

e−2am
2

)−1

=
[
ϑ3

(
0, e−2a

)]−1
, (6.13)

where ϑ3 (u, q) =
∑∞

n=−∞ q
n2
e2inu is an elliptic theta function of the third kind [Cover

and Thomas, 2012]. Put differently, we can write the orbital angular momentum
wavefuction as

ψ(m) = 〈m|ψ〉 =
∞∑

m=−∞

√
N(a)e−am

2

=
1√

ϑ3 (0, e−2a)

∞∑

m=−∞

e−am
2

. (6.14)

The orbital angular momentum and angle are related by a discrete Fourier transform.
It follows that the angle waverfunction is given by

ψ(ϕ) = 〈ϕ|ψ〉 =
1√
2π

∞∑

m=−∞

cm eimϕ

=
1√

2πϑ3 (0, e−2a)

∞∑

m=−∞

e−am
2

eimϕ

=
ϑ3

(
ϕ
2
, e−a

)
√

2πϑ3 (0, e−2a)
. (6.15)

It is not intuitive to extract a physical meaning from the state in this form, (6.15).
By applying the Poisson sum-rule [Cover and Thomas, 2012] we can express the state
as

ψ(ϕ) =
1√

2aϑ3 (0, e−2a)

∞∑

n=−∞

exp

{
− 1

4a
(ϕ− 2nπ)2

}
, (6.16)

which is a distribution of equal overlapping Gaussians (Figure 6.6).
The width of the Gaussians is determined by the parameter a (Figure 6.7). In

particular, the full width at half maximum (FWHM) is equal to 4
√

ln(2)a (see
Appendix 6.A). As a increases, the Gaussian distribution becomes broader in the
angle representation. Consequently the angular uncertainty, ∆ϕ, increases and so the
uncertainty in orbital angular momentum, ∆m, decreases. In fact, when the angular
uncertainty reaches its maximum value ∆ϕ = π/

√
3, we have an orbital angular

Chapter 6. Gaussian Entropy-Minimising States (GEMS) 118



Figure 6.6: The angular probability distribution for the overlapping Gaussian states
is similar to the angular probability distribution for the intelligent states, without a
discontinuous derivative at ±π. This plot is for an angular variance ∆φ = 1.61.

momentum eigenstate with ∆m = 0. This means that the distribution in orbital
angular momentum changes from an almost flat and continuous distribution, for very
small a, to a sharply peaked distribution (an OAM eigenstate) as a increases.

Therefore we expect the uncertainty product, (6.3), for our states to vary between
1/2 and 0 as the angular uncertainty, ∆ϕ, increases.

6.2.2 Uncertainty product, ∆m∆ϕ

In order to find the uncertainty product, ∆m∆ϕ, we need to calculate the variances
in angular position and orbital angular momentum,

(∆ϕ)2 =

∫ π

−π
dϕϕ2P (ϕ) (6.17)

(∆m)2 =
∞∑

m=−∞

m2P (m), (6.18)

where P (ϕ) = |ψ (ϕ)
∣∣2 and P (m) = |cm|2.

For our overlapping Gaussian states the variance in the angular position is given
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Figure 6.7: As a increases, the Gaussians become broader in the angle representation.
On the other hand, the distribution in orbital angular momentum becomes more
peaked with increasing a.

by

(∆ϕ)2 =
1

2πϑ3 (0, e−2a)

∫ π

−π
dϕϕ2

∞∑

m=−∞

e−am
2

eimϕ
∞∑

m′=−∞

e−am
′2
e−im

′ϕ, (6.19)

which we calculate (see Appendix 6.B) to be

(∆ϕ)2 =
π2

3
+

2

ϑ3 (0, e−2a)
×

∞∑

m,m′=−∞
m6=m′

(−1)m−m
′

(m−m′)2 e
−a(m2+m′2), (6.20)

and the variance in orbital angular momentum is equal to
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(∆m)2 =
∞∑

m=−∞

m2|
√
N(a)e−am

2∣∣2,

= N(a)
∞∑

m=−∞

m2e−2am
2

= −N(a)

2

d

da

(
1

N(a)

)

= − 1

2ϑ3 (0, e−2a)

d

da
ϑ3

(
0, e−2a

)
. (6.21)

By taking the square of the variances in (6.20) and (6.21), we calculate the
uncertainty relation ∆m∆ϕ. We found that the overlapping Gaussian states have a
lower uncertainty product than the intelligent states (Figure 6.8). In contrast to the
CMUP states, the overlapping Gaussian states are well-defined throughout the whole
range of angular uncertainty, ∆φ (Figure 6.8).

Gaussian overlap

1st order CMUP

Intelligent state

Figure 6.8: The overlapping Gaussian states have a lower uncertainty product than
the intelligent states and are well-defined throughout the whole range of angular
uncertainty, ∆φ.
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6.2.3 Entropic uncertainty relation, Hm +Hϕ

When we consider angular position and orbital angular momentum observables it
is preferred to express the uncertainty relation in terms of the entropy of these
observables. Entropic relations do not suffer from the issue of angle periodicity and
the lower bound is not state dependent as it is in the uncertainty product (6.5).
Furthermore, entropic relations are used in quantum communications theory as a
measure of information content. In particular, entropic bounds quantify the secure
information capacity per photon or the maximum secure information rate in quantum
key distribution protocols [Leach et al., 2012].

The entropic uncertainty for continuous and unbounded conjugate variables, such
as linear position, x, and linear momentum, p, is given by [Bia lynicki-Birula and
Mycielski, 1975]

Hx +Hp ≥ ln(1 + ln π) = ln (eπ) , (6.22)

where the entropies are defined as

Hx = −
∫ ∞

−∞
dx|ψ(x)|2 ln (|ψ(x)|)2

Hp = −
∫ ∞

−∞
dp|ψ(p)|2 ln (|ψ(p)|)2 . (6.23)

However, the entropic uncertainty of bounded and discrete variables, such as
angular position, ϕ, and orbital angular momentum, m, respectively, has a different
lower bound [Bialynicki-Birula, 1984],

Hϕ +Hm ≥ ln (2π) , (6.24)

where the entropies are defined as

Hϕ = −
∫ π

−π
dϕ |ψ(ϕ)|2 ln

(
|ψ(ϕ)|2

)
(6.25)

Hm = −
∞∑

m=−∞

|cm|2 ln
(
|cm|2

)
. (6.26)

Chapter 6. Gaussian Entropy-Minimising States (GEMS) 122



Entropic uncertainty relation for the overlapping gaussian states

The orbital angular momentum entropy for our Gaussian state is

Hm = −
∞∑

m=−∞

|cm|2 ln
(
|cm|2

)

= −
∞∑

m=−∞

N(a)e−2am
2

ln
(
N(a)e−2am

2
)

= −
∞∑

m=−∞

N(a)e−2am
2 [

ln (N(a))− 2am2
]

= −N(a) ln (N(a))
∞∑

m=−∞

e−2am
2

+ 2aN(a)
∞∑

m=−∞

m2e−2am
2

= − ln (N(a)) + 2a (∆m)2

= ln
[
ϑ3(0, e

−2a)
]

+ 2a (∆m)2 (6.27)

where the variance is given in (6.21).
We have not been able to find an analytical expression for the angle entropy, Hϕ

for the whole range of angular uncertainty, ∆ϕ. However, we can calculate limiting
forms for the minimum and maximum ranges of the angular uncertainty, ∆ϕ.

In the limit of very narrow Gaussian peaks, a → 0, when there is very small
angular uncertainty, ∆ϕ, the orbital angular momentum distribution tends towards a
continuum (Figure 6.7). In this limit we expect the entropic uncertainty to behave
like the one for linear position and linear momentum, (6.22).

As the Gaussian peaks in the angle representation become well separated, we can
approximate the wavefunction so that we consider only the peak centred at ϕ = 0,

ψ(ϕ) ≈
√
N(a)

2a
exp

{
−ϕ

2

4a

}
, (6.28)

where the normalisation becomes
∫ π

−π
dϕ |ψ(ϕ)|2 ≡ 1

N(a)

2a

∫ π

−π
dϕ exp

{
−ϕ

2

2a

}
= 1

N(a)

2a

√
2aπ = 1

⇒ N(a) =

√
2a

π
. (6.29)

Note that in this limit of very small a we can change the limits of the integrals from
{−π, π} to {−∞,∞}. The angle wavefunction is thus given by

ψ(ϕ) ≈ (2aπ)−1/4 exp

{
−ϕ

2

4a

}
. (6.30)
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It is useful to find the variance in angular position,

(∆ϕ)2 =

∫ π

−π
dϕ ϕ2|ψ(ϕ)|2

=
1√
2aπ

∫ π

−π
dϕ ϕ2 exp

{
−ϕ

2

2a

}

=
1√
2aπ

√
2π a3/2

= a, (6.31)

and the one in orbital angular momentum,

(∆m)2 =
∞∑

m=−∞

m2|cm|2

=
∞∑

m=−∞

m2|
√
N(a)e−am

2∣∣2

= N(a)
∞∑

m=−∞

m2e−2am
2

= −N(a)

2

d

da

(
1

N(a)

)

= +

√
a√

2π

√
π√

2 2a3/2

=
1

4a
. (6.32)

The entropy in angular position for this approximated state, (6.25), is equal to

H(ϕ) = −
∫ π

−π
dϕ |ψ(ϕ)|2 ln

(
|ψ(ϕ)|2

)

= −
∫ π

−π
dϕ

1√
2aπ

exp

{
−ϕ

2

2a

}
ln

(
1√
2aπ

exp

{
−ϕ

2

2a

})

= − 1√
2aπ

ln

(
1√
2aπ

)∫ π

−π
dϕ exp

{
−ϕ

2

2a

}
+

(∆ϕ)2

2a

= − 1√
2aπ

ln

(
1√
2aπ

)√
2aπ +

1

2

= ln
(√

2aπ
)

+
1

2

=
1

2
ln (2eaπ) . (6.33)
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The entropy in angular momentum in this limit is equal to

H(m) = − ln (N(a)) + 2a (∆m)2

=
1

2
ln
( π

2a

)
+

1

2

=
1

2
ln
(eπ

2a

)
, (6.34)

and so the entropic uncertainty relation is

H(ϕ) +H(m) =
1

2
ln (2eaπ) +

1

2
ln
(eπ

2a

)

= ln (eπ) , as required. (6.35)

On the other hand, in the limit of very broad Gaussian peaks in angular position,
a→∞, we expect the entropic uncertainty to reach the lower bound of (6.24).

The angle wavefunction becomes

ψ(ϕ) =

√
N(a)

2π

∞∑

m=−∞

e−am
2

eimϕ

=

√
N(a)

2π

[
1 +

∞∑

m=1

e−am
2

cos (mϕ)

]

→
√
N(a)

2π
. (6.36)

The state must be normalised, therefore
∫ π

−π
dϕ |ψ(ϕ)|2 ≡ 1

∫ π

−π
dϕ

N(a)

2π
= 1

⇒ N(a) = 1. (6.37)

The entropy in angular position is

Hϕ = −
∫ π

π

dϕ |ψ(ϕ)|2 ln |ψ(ϕ)|2

= −
∫ π

π

dϕ
1

2π
ln

(
1

2π

)
(6.38)

= − ln

(
1

2π

)
= ln (2π) . (6.39)

As it is expected in this large a limit, the entropy in orbital angular momentum is
zero,

Hm = − ln (N(a)) + 2a (∆m)2

→ − ln (N(a)) = 0. (6.40)
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Therefore the entropic uncertainty relation is equal to

Hm +Hϕ = ln(2π), as required. (6.41)

In this way, we have demonstrated that our states tend towards the two expected
entropic uncertainty bounds, (6.22) and (6.24), at the two limits of angular uncertainty
∆ϕ.

Numerical comparison

Although we do not have an analytical solution for the angular entropy Hϕ, we can still
compare numerically the entropic uncertainty, Hm +Hϕ, of the overlapping Gaussian
states and the intelligent states.

Gaussian overlap
Intelligent state

Figure 6.9: The overlapping gaussian states have a lower entropic uncertainty than
the intelligent states, over a large range of angular uncertainty ∆ϕ.

We found that the overlapping Gaussian states have a lower entropic uncertainty
than the intelligent states over a large range of angular uncertainty, ∆ϕ, (Figure 6.9).
Both the overlapping Gaussian states and the intelligent states tend towards the limits
ln(eπ) = 2.14 and ln(2π) = 1.84, as the angular uncertainty, ∆ϕ, increases.

Entropic minimum

We perform a numerical optimisation to minimise the entropic uncertainty, Hm+Hϕ,
in order to determine the difference in the entropic uncertainty of our overlapping
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Gaussian states and the numerically minimised sum. The numerical optimisation
algorithm was written by Prof. Miles J. Padgett.

The algorithm used is an iterative optimisation of the cost function (the entropic
sum, Hm +Hϕ). We verified that our optimisation is global by running the iteration
many times with a randomised optimisation pathway and confirming that the various
solutions converged to the same answer.

The numerical optimisation showed no significant difference (∼ 0.1%) between the
entropic uncertainty for the overlapping gaussian states and the numerically minimised
sum (Figure 6.10), thus suggesting that the overlapping Gaussian states are the
minimum states.

Figure 6.10: The overlapping Gaussian states have an almost identical entropic
uncertainty to the numerically minimised sum.

The inset shows that the difference in the entropic uncertainty for the overlapping
Gaussian states and the numerically minimised sum is of the order of 0.1%.
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6.3 Conclusion

In this chapter we introduced a new form of orbital angular momentum and angle
states. These states have Gaussian amplitudes in the orbital angular momentum
representation and consist of a sum of overlapping Gaussians in the angle representation.
Our proposed states have a lower uncertainty product than the intelligent states
(Figure 6.8). They are also well-defined throughout the whole angular uncertainty
range, in contrast to the CMUP states (Figure 6.8).

The entropic uncertainty of our overlapping Gaussian states is lower than the
entropic uncertainty of the intelligent states (Figure 6.9). We found no significant
difference between the entropic uncertainty of the overlapping Gaussian states and
the numerically minimised states, suggesting that, for all practical purposes, the
overlapping Gaussian states are the minimum states (Figure 6.10).

As these states are less complex than the CMUP states and have lower uncertainties
than the intelligent states, both in terms of the uncertainty product ∆m∆ϕ and the
entropic uncertainty H(m) + H(ϕ), they have the potential to be used in quantum
communications protocols that exploit the high-dimensional entanglement of the
orbital angular momentum and the angle properties of photons.
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6.A Full width at half maximum

For a Gaussian function given by

f(x) = α exp

{
−(x− b)2

2c2

}
, (6.42)

the full width at half maximum (FWHM) is equal to

FWHM = 2
√

2 ln(2)c. (6.43)

Therefore for our state

ψ(ϕ) =
1√

2aϑ3 (0, e−2a)

∞∑

n=−∞

exp

{
− 1

4a
(ϕ− 2nπ)2

}
, (6.44)

we have that

2c2 = 4a⇒ c =
√

2a, (6.45)

and so the full width at half maximum is equal to

FWHM = 2
√

2 ln(2)
√

2a

= 4
√

ln(2)a (6.46)

6.B Angular variance (∆ϕ)2 for GEMS

For the angle states the variance is given by

(∆ϕ)2 =

∫ π

−π
dϕϕ2|ψ (ϕ)

∣∣2

=
1

2πϑ3 (0, e−2a)

∫ π

−π
dϕϕ2

∞∑

m=−∞

e−am
2

eimϕ
∞∑

m′=−∞

e−am
′2
e−im

′ϕ. (6.47)

We can expand ϕ2 in a Fourier series, such that

ϕ2 =
1

2π

∞∑

n=−∞

αne
inϕ, (6.48)

where the Fourier coefficients are

αn =

∫ π

−π
dϕ ϕ2e−inϕ. (6.49)

It follows that

αn = − d2

dn2

∫ π

−π
dϕ e−inϕ

= − d2

dn2

[
e−inϕ

−in

]

= − d2

dn2

[
2 sin(nπ)

n

]

=
2π

n2
(−1)n, (6.50)
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and so (6.48) becomes

ϕ2 =
∞∑

n=−∞

1

n2
(−1)neinϕ. (6.51)

By substituting (6.51) into (6.47) we get

(∆ϕ)2 =
1

2πϑ3 (0, e−2a)

∫ π

−π
dϕ

∞∑

n=−∞

(−1)n

n2
einϕ

∞∑

m=−∞

e−am
2

eimϕ
∞∑

m′=−∞

e−am
′2
e−im

′ϕ

=
1

2πϑ3 (0, e−2a)

∞∑

n=−∞

∞∑

m=−∞

∞∑

m′=−∞

∫ π

−π
dϕ

(−1)n

n2
e−a(m

2+m′2) einϕei(m−m
′)ϕ

︸ ︷︷ ︸
=2πδn,m−m′

=
1

ϑ3 (0, e−2a)

∞∑

m=−∞

∞∑

m′=−∞

(−1)m−m
′

(m−m′)2 e
−a(m2+m′2) (6.52)

This has a singularity at m = m′ ⇒ m = 0. We note that the zeroth Fourier
coefficient is

α0 =

∫ π

−π
dϕ ϕ2

=

[
ϕ3

3

]pi

−π
=

2π3

3
, (6.53)

and so

ϕ2
0 =

α0

2π
=
π2

3
, (6.54)

which has a variance

(∆ϕ0)
2 =

1

2πϑ3 (0, e−2a)

∫ π

−π
dϕ

π2

3

∞∑

m=−∞

e−2am
2

=
1

2πϑ3 (0, e−2a)
2π
π2

3

∞∑

m=−∞

e−2am
2

,

=
π2

3
(6.55)

where we have used

∞∑

m′=−∞

e−2am
2

= ϑ3

(
0, e−2a

)
, (6.56)

Therefore we can write the variance as

(∆ϕ)2 =
π2

3
+

2

ϑ3 (0, e−2a)
×

∞∑

m,m′=−∞
m6=m′

(−1)m−m
′

(m−m′)2 e
−a(m2+m′2). (6.57)

Chapter 6. Gaussian Entropy-Minimising States (GEMS) 130



CHAPTER 7

Conclusion

In summary, in the first part of this thesis we presented a protocol for probabilistic
amplification of coherent states and its experimental realisation and in the second
part we proposed a new form of orbital angular momentum and angle states. This

chapter is a brief overview of the characteristics and the main results of our proposals.

We proposed a method to amplify coherent states non-deterministically, based
on coherent state comparison and photon subtraction. We post-selected the output
state on no detection events in the state comparison measurement and a detection
event in the photon subtraction measurement. The nominal gain depends only on
the characteristics of the two beamsplitters: it is given by g = t2/r1, where r1 is the
reflection coefficient of the state comparison beamsplitter and t2 is the transmission
coefficient of the photon subtraction beamsplitter. Dark counts were so low as to
allow us to assume that none were there and we found that our protocol is relatively
insensitive to detector quantum efficiency.

We found that the fidelity of the amplified state with the ideal target state is
very high. In particular, for an input state chosen from a binary alphabet, when the
comparison beamsplitter is 50 : 50, the theoretical fidelity of the output state with
the target state is 100%. The gain in this special case is g2 = 1.8, if the photon
subtraction beamsplitter has transmissivity t2 = 0.9. Our protocol does not use any
quantum resources and consequently has a high probability of success. The probability
of success increases with gain (∼ 10− 40%) and it can be increased at a cost to the
fidelity. Both the fidelity and the probability of success increase with the input state
amplitude.

The simplicity of our protocol made it possible to realise it experimentally. We
tested the state comparison amplifier for a fixed gain (g2 = 1.8) and varying mean
photon number per pulse. We ran the experiment for three sets of input states: a
binary set, four and eight coherent states. We found that the performance of the last
two sets is similar to the theoretical performance of the phase covariant set. For all
sets both the fidelity and the success rate were very high. In particular for the two
state set, the fidelity is > 98% and the success rate is > 26000 amplified states per
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second. We found that both the theoretical and the experimental performance of our
protocol compare favourably with other non-deterministic amplification methods.

In the second part of the thesis we proposed a new form of orbital angular
momentum and angle states, that consist of a sum of overlapping Gaussians in the
angle representation. We found that our states are well-defined throughout the whole
angular range, in contrast to the CMUP states. We compared their uncertainty
product and their entropic uncertainty with the intelligent states and we found that in
both cases the overlapping Gaussian states have a smaller uncertainty. Furthermore,
we compared their entropic uncertainty with numerically optimised states and we
found that they do not have a significant difference (∼ 1%), suggesting that, for all
practical purposes, they are the minimum states.

Our findings highlight the potential that the quantum optical state comparison
amplifier offers an option for the development of quantum optical repeaters and
the overlapping Gaussian states are the ideal states to use in protocols involving
high-dimensional entanglement in the orbital angular momentum basis.
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