
 

 

UNIVERSITY OF STRATHCLYDE 
STRATHCLYDE INSTITUTE OF PHARMACY AND BIOMEDICAL SCIENCES 

 

Informing the Next Generation of Auditory Midbrain 

Implants: Neuronal Population Dynamics in the 

Auditory Cortex and Midbrain, and the Potentials of 

Optogenetic Stimulation 

 

Aimee Bias 

 

A thesis submitted in partial fulfilment of the requirements for the 

degree of Doctor of Philosophy 

 

March 2020 

 

 

 

 

 

 



i 
 

Candidate’s Declaration 

 

I, Aimee Bias, certify that this thesis is the result of my original research, and has been 

composed by me. This work of approximately 80000 words has not been previously 

submitted for examination which has led to the award of a degree. 

 

The copyright of this thesis belongs to the author under the terms of the United 

Kingdom Copyright Acts as qualified by University of Strathclyde Regulation 3.50. 

Due acknowledgement must always be made of the use of any material contained in, 

or derived from, this thesis. 

 

Signed: 

Date:  02/03/2020 

 

 

 

 

 

 

 

 

 

 

 

 



ii 
 

Acknowledgments 

I would first like to extend my sincere thanks to Dr Shuzo Sakata for his wisdom and 

expertise throughout this project. His continuous availability and patience for 

questions (of which there were many!) was very much appreciated. Thank you also 

to my secondary supervisor Prof. Keith Mathieson for his advice and assistance with 

posters and reports, and to Ruaridh Winstanley who maintained the µLED probes and 

with whom I collaborated on to create the µLED control system. 

I would also like to thank Action on Hearing Loss for their financial support of my PhD 

project and for the opportunity to share my work and meet other auditory PhD students 

at their annual PhD Student Day. 

I would also like thank Dr Daniel Lyngholm for all of his help, and his extreme patience 

when teaching me experimental techniques and data analysis. An extra special thank 

you goes to Amisha Patel for her constant support since day 1 – we made it! Thank 

you also to the other members of Sakata Lab throughout the years, in particular Mirna 

Merkler – your support was truly invaluable.  

Many thanks also to the staff of the BPU unit – Linda, Carol, Lee, Kevin, Pete and 

Brian – for taking such excellent care of my animals. Thanks go also to my colleagues 

on level 4 for all the coffee, cake and chat, and to all the good dogs I saw while walking 

to and from the office.  

Final thanks to my family and in particular to Jonathan Failes for his love and support 

throughout. 

 

 

 

 

 

 



iii 
 

Abstract 

The performance of current generation central auditory neuroprosthetics lags behind 

the cochlear implant. As these new devices utilise speech processing algorithms 

based on the cochlea, more information may be required regarding the neuronal  

population activity  ofpotential prosthetic sites, in order to optimise stimulation to mimic 

the area’s natural inputs and achieve useful sound perception. Additionally, electrode-

based devices afford poor spatial resolution, which optogenetics may solve. 

Simultaneous silicon probe recordings were performed in the inferior colliculus (IC) 

and auditory cortex (AC) of awake, head-fixed mice, and repetitions of natural sound 

stimuli played. The two areas are different in their general cell population metrics, 

levels of inter-trial LFP coherence, and neuronal entrainment, with the AC favouring 

entrainment frequencies below 30Hz and the IC apparently entraining over a wider 

range of 2-200Hz. The proportion of putative AC narrow-spiking interneurons is higher 

during natural sounds as opposed to spontaneous activity alone.  

Using linear classification analysis, a spike rate code was generally found to be 

sufficient for distinguishing between natural sound stimuli, in both the AC and IC. 

However, the IC achieved comparable performance to the AC using fewer single or 

multi units. This could be due to the lower trial-trial variability (Fano factor) of the IC 

cell population. Dimensionality reduction revealed, qualitatively, the presence of 

distinct cell populations in both brain areas, responding to different aspects of the 

natural sound  

A viral injection protocol for expression of the Chronos opsin through the depth of the 

mouse ICC was optimised, and light activation confirmed. A control system for a µLED 

device was created and used in a pilot experiment, which served to highlight the 

importance of artefact-reducing device design. 

The findings indicate that IC neurons tend to fire in the same way (i.e. more reliably) 

to successive repetitions of natural sound when compared to the auditory cortex, and 

that AC narrow-spiking interneurons may have different functions between 

spontaneous and evoked activity. Optogenetics is a promising approach to improving 

auditory implant resolution, given well designed light delivery devices and 

accompanying software. 
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Chapter 1 Introduction 

1.1 Project Motivations 

Hearing loss is unfortunately both an increasingly common and potentially debilitating 

health condition. Effectively communicating with family, friends and society in general 

is incredibly important for a person’s health and wellbeing, and disruption to this has 

huge potential to impact on a person’s quality of life. Its effects are particularly 

applicable to the aging population, with hearing loss recently linked to an increased 

risk of Alzheimer’s (Livingston et al., 2017).  

While a large variety of devices and treatments exist, these are not always suitable 

for the individual’s situation. Devices which activate auditory neurons and replace the 

function of auditory areas of our brain are a relatively new technology, and as such 

are not fully optimised. Several avenues of research are seeking to improve upon 

these issues for the next generation of implants. These include improving the 

performance of the devices by developing more efficient or more selective 

technologies to stimulate cells – for example, improving the spatial resolution of 

devices has the potential to increase frequency resolution. Additionally, work is 

ongoing to better understand how auditory information is being transferred and 

processed in the brain, so that speech translation algorithms can be better designed. 

This project was born of an attempt to address both areas of concern – better 

understanding of auditory coding on the neuronal level and improving the spatial 

resolution of auditory midbrain-based stimulation devices. The work presented 

compares and contrasts neuronal activity recording simultaneously from in the inferior 

colliculus and the auditory cortex during natural sound stimuli, and explores an 

alternate stimulation method with the potential to improve device resolution. 

The first three results chapters focus on the first of these challenges, presenting 

analysis of neuronal spiking data recorded simultaneously from the auditory cortex 

(AC) and inferior colliculus (IC) of mice, during presentation of natural sound stimuli. 

Chapter 3 seeks to confirm and identify general differences in neuronal properties 

during both spontaneous neuronal activity, and during natural sound. Continuing 

directly from Chapter 3, Chapter 4 looks specifically at decoding of natural sound 

stimuli, using basic mathematical prediction models.  In Chapter 5, the dimensionality 

of the neuronal data is examined, with the aim of identifying distinct but dynamic 

neuronal populations and linking these to function during presentation of sound.  
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To address the issue of frequency resolution, Chapter 6 looks to the field of 

optogenetics, and the use of µLED (micro-LED) technology as a viable, high spatial 

resolution alternative to electrical stimulation. 

1.2 Scope of the Review 

This literature review will cover a wide variety of topics in order to provide context to 

the remainder of the thesis. The review will begin with an overview of the auditory 

system (with a primary focus on the central pathway), with details on connections, 

anatomy, cell morphology and function. The auditory cortex and inferior colliculus will 

be given particular focus, in order to highlight differences in anatomy and cell 

morphology. 

Following on from this, the general principals of neural coding will be explained, 

including the most common strategies employed by neurons, and the potential effects 

of global brain state. The focus will then shift to specifically the auditory system, with 

dedicated sections on spatial and temporal coding of sound - both general principals 

and specifically in the auditory cortex and inferior colliculus. An understanding of the 

underlying coding mechanisms of the auditory system will prove imperative to 

identifying potential functional differences between the AC and IC and forming 

hypothesis, and inform the choice of analysis as used in results Chapters 3, 4 and 5. 

With the principals of neuronal activity laid down, the use of silicon probes will be 

justified through a thorough examination project requirements and a breakdown of the 

features of both silicon probes and other available measurement technology and 

techniques. An understanding of electrophysiology techniques will provide context to 

Materials and Methods. 

Moving from the neuron scale, pathology in the auditory system is briefly summarised 

(with a focus on Neurofibromatosis II) – serving to outline the original motivation for 

the thesis project. With the issues clearly established, the currently available devices 

for sensorineural hearing loss are reviewed – namely, the cochlear, brainstem and 

midbrain neuroprosthetics, including their history and current drawbacks. This will 

also include a brief summary of speech processing algorithms, for better identification 

of where improvements might be made in future iterations. 

The remainder of the review deals with optogenetics and its potential in auditory 

implants. Beginning with a history and definition of optogenetics, the review will 

discuss important variables to consider when choosing an opsin and an expression 
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method. It will conclude with details on the current situation regarding optogenetics in 

the auditory system, discuss the likely future of the technology, and review currently 

available optogenetic tools and justify the choice of tools for the project. The relevant 

results chapter here will be Chapter 6. 

1.3 Auditory System Overview 

1.3.1 Auditory System Basics 

The Pathway 

To put the presented work into context, an understanding of the general structure and 

complexity of the auditory system is imperative. The auditory pathway (Figure 1.1) is, 

at its most simplistic, a means of transferring of acoustic information from the outside 

world to higher order brain structures, where the sound is perceived. While ascending 

through the many “stops” or “stations” in the auditory pathway, information is 

transformed, integrated and split in a multitude of ways along this and many other 

ascending, descending and commissural pathways, as well as reflexive pathways to 

the spinal nerves and spinal cord. 

The first distinction to make is a split into the peripheral and central pathway. The 

peripheral pathway consists of the outer, middle and inner ear, whose principal role 

is to transform sound vibrations into electrical signals in neurons. From here, electrical 

impulses generated by the hair cells of the cochlear are passed via the auditory nerve 

to the cochlear nucleus of the brainstem, where they ascend through each stage of 

the pathway (Figure 1.1).  
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Sound Vibrations 

The phenomenon of “sound” is caused by vibrations of the air, and sound vibrations 

are themselves caused by vibration of the source object. Sound waves are 

longitudinal, consisting of areas of high and low pressure.  Various properties of the 

wave determine how it is perceived – because the speed of the sound is constant, 

perceived frequency is a function of wavelength. A shorter wavelength (distance 

between peaks/troughs of pressure) results in a higher pitched sound, with longer 

wavelengths perceived as lower in pitch (Figure 1.2). Higher amplitude vibrations are 

perceived as louder. In addition, sound waves are usually complex (such as speech, 

Figure 1.1. Schematic of the central auditory pathway including major ascending and descending 
connections. Some connections are omitted to maintain clarity Adapted from (Pujol, 2016, Saldaña, 

2015, Winer and Schreiner, 2005)  
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music etc) and consist of many overlapping/nested components. The overarching 

outline, or envelope of the sound, determines its temporal structure, while the fine 

detail is important for pitch.. 

The human auditory system is capable of perceiving sounds between 20-20 kHz, 

though the upper limits of this decrease quickly with age and chronic exposure to loud 

sounds, such as concerts and factory workplaces. 

A highly important feature that the auditory system uses to transfer sound information 

is tonotopy. Throughout stages in the system, neurons are often arranged into what 

is termed a tonotopic gradient, where the preferred frequency of that neuron (i.e., the 

frequency to which it responds most strongly to) changes through the structure. In the 

principal branch of the central auditory pathway, tonotopy is conserved from the 

cochlea, all the way to the cortex, though exact representations/patterns vary to some 

degree.  

Figure 1.2: Sound waves. (A) Top: Example distribution of air particles creating a “sound wave”, 
showing areas of rarefaction and compression. Bottom: Sinusoidal wave representing the distribution 
of particles, with important measurements highlighted. (B) Relationship of speed and wavelength that 

generates the frequency of the sound wave. Note, speed of sound is constant (in a given medium) and 
thus changes in the wavelength affect frequency. (C) Example complex sound wave showing important 

components. Red: sound envelope, or periodicity of the sound. Black: fine temporal structure that 
conveys the frequency/pitch heard 
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A Note on Natural Sound 

The term “natural sound” or “naturalistic sound” will be mentioned throughout this 

review and thesis – referring to sound that is natural in origin, such as vocalisations 

and environmental noises (running water, rustling leaves).  In comparison, artificially 

generated sounds such as pure frequency tones, and trains of clicks at a specific 

temporal frequency, do not hold both the spectral and temporal complexity as well as 

the behavioural relevance that natural sound usually has.  

In this literature review, the general principals by which the brain codes both spectral 

and temporal information of sounds will be discussed. However, as accurate 

perception of, and reaction to, these sounds is often critical for the animal (and may 

be dependent on other sensory systems), the brain’s encoding of natural sounds is 

understood to contain additional layers of complexity, particularly in the higher 

processing centre of the auditory cortex. These mechanisms will be explored in the 

relevant review sections, and in Results Chapters 3 and 4. 

1.3.2 The Peripheral Auditory Pathway 

Purpose of the Peripheral Pathway 

The auditory system begins with the peripheral auditory pathway. The principal role 

of this pathway is to collect sound waves from the environment and transform them 

into a pattern of electrical impulses, which the brain can then perceive as sound. 

Figure 1.3 outlines the key components 

External Ear Canal and Middle Ear 

Environmental sound waves are first funnelled into the external ear canal by the outer 

pinna. The waves then vibrate the tense tympanic membrane. The tympanic 

membrane is connected to the oval window of the cochlea through a series of 

minuscule bones (ossicles), the malleus, incus and stapes, which further amplify the 

vibrations. Due to their arrangement, the movement of the bones amplifies the 

vibrations and passes them into the fluid of the cochlea (the ‘footplate’ of the stapes 

rests against the oval window of the cochlea).  
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Figure 1.3: Peripheral auditory system, showing the outer, middle and inner ear. (A) Colour-coded 
diagram (see Key, (B) of main components and configurations of the outer, middle and inner ear. 
Also indicated is the sound representation at each point – from mechanical pressure changes to 

electrical impulses. Image adapted from (HearingSolutions, 2020) 
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Cochlea (Inner Ear) 

The cochlea is a coiled, fluid filled tube, containing many structures crucial for 

translation of sound waves into electrical signals (Figure 1.4). Several membranes 

partition this tube lengthways into separate fluid filled chambers. The scala media is 

the middle cochlear chamber, filled with endolymph fluid. It also contains the Organ 

of Corti, which in turn lies upon the basilar membrane. It is using the basilar membrane 

that the auditory system is first able to distinguish different frequencies of sound.  As 

detailed in Figure 1.4, the membrane (in blue) is narrower and stiffer at its base at the 

oval window, but wider and less stiff (by around 100x) at the apex. Incoming sound 

waves produce vibrational peaks in the membrane (by movement of the endolymph) 

determined by their wavelength. Shorter wavelength, high frequency sounds do not 

travel far up the membrane before their energy is expended, whereas lower 

wavelengths travel in the direction of the apex. In this way, the anatomy is designed 

to distinguish between sound frequencies, and the first instance of tonotopy is 

created.  

The Organ of Corti also contains the hair cells (inner and outer), and tectorial 

membrane, surrounded by endolymph fluid, which has a unique ionic composition, 

with high potassium levels inferring a highly positive potential. Hair cells are attached 

at their base to the basilar membrane, while the tectorial membrane lies along their 

top side, across their many stereocilia (similar to the microvilli of the digestive system, 

but for the purposes of mechanosensing). Movement of the basilar membrane causes 

lateral movement (and a resulting shearing force), bending the stereocilia of the inner 

hair cells. In response to this mechanical bending, potassium channels are opened, 

resulting in depolarisation as potassium floods in (endolymph is particularly rich in 

potassium ions). This in turn results in neurotransmitter release from the base of the 

cell, innervating the dendrites of spiral ganglion neurons.  

Bundles of spiral ganglion axons make up the auditory nerve (a portion of cranial 

nerve VIII, vestibulocochlear). Different inner hair cells positioned along the basilar 

membrane are thus activated by different incoming frequencies, meaning the auditory 

nerve branches they supply maintain tonotopy. As we will see, many of the higher 

auditory structures also show and continue this tonotopy to some degree (though it 

becomes far more spatially complex than the linear basilar membrane).   

The outer hair cells provide mechanical amplification of sound, in a mechanism known 

as the “cochlear amplifier”. In response to electrical stimulation, the hair cells rapidly 
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change their length and stiffness, referred to as “electromotility”. This alters the 

sensitivity of the cochlea and produces amplification and sharpening frequency tuning 

(Ryan and Dallos 1975, Dallos and Harris, 1978). Movement of the OHC has to be 

incredibly fast in order to match the animal’s frequency hearing limits – this rapid 

motility is achieved by the protein prestin (Ashmore, 2008, Zheng et al., 2000). The 

OHC are innervated by neurons from of the olivocochlear system, originating in the 

superior olivary complex of the in the brainstem and whose nerves form part of cranial 

nerve VIII (Spoendlin, 1969). 

 



10 
 

 

 

1.3.3 The Central Auditory Pathway 

What is termed the central auditory pathway is split into two – the lemniscal and non-

lemniscal/lemniscal adjunct.  These pathways are essentially parallel but visit different 

regions of each brain area as they ascend. The lemniscal pathway, ending in the 

primary auditory cortex, is the primary pathway for transmission of sound information. 

In general, neurons along the lemniscal pathway tend to be sharply tuned, and 

maintain a tonotopic connection from area to area. In the non-lemniscal pathway, 

exact functions tend to be less well understood, but are likely complimentary in nature 

to the lemniscal conveyance of accurate auditory information. 

A common neuron arrangement in the auditory system is the frequency band 

lamina/sheet (occasionally referred to – albeit overly simplistically - as an 

isofrequency sheet).  Such a “sheet” consists of several 1000s flattened neurons, with 

each sheet responding to a narrow frequency range. The sheets are then arranged 

into a tonotopic gradient. (Fekete et al., 1984).  Very often, this representation is not 

exactly linear, and will differ between species, with preference assigned to biologically 

useful frequency ranges (vocalisation, for example) (Suga and Jen, 1976, Winer and 

Schreiner, 2005, Garcia-Lazaro et al., 2015). 

Auditory Nerve 

The auditory nerve (part of the vestibulocochlear cochlear nerve/cranial nerve VIII) 

carries the electrical impulses from the cochlear spiral ganglion neurons (SNG) and 

the hair cells to the cochlear nucleus (CN) of the brainstem. The fibres of the nerve 

are arranged tonotopically, making isofrequency connections between the cochlea 

and the CN, and are short and well myelinated - information transfer is far quicker. 

Cochlear Nucleus 

The Cochlear Nucleus (CN) is the first stage of the central auditory pathway and one 

of the first areas of the auditory system to develop.  

Figure 1.4: Anatomy of the cochlea and basilar membrane. (A) Cross section through the cochlea 
tube, showing the relative positions of internal structures. Adapted from: (Wikipedia, 2010) (B) 
Simplistic view of cochlea tube and basilar membrane, indicating the changing tonotopy of the 

membrane. (C) Top down view of uncoiled basilar membrane, showing wide and floppy apex (low 
frequencies) and thin, stiff based (high frequencies)  
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The two constituent nuclei (dorsal CN and ventral CN) are tonotopic, but process 

sound in different ways due to a difference in their prominent cell type (Brawer et al., 

1974, Cant and Morest, 1979). The DCN contains mainly fusiform cells with a wide, 

branching dendritic tree. Inputs must then be summed for the response to be 

significant, resulting in the integration of incoming signals. The VCN meanwhile, is the 

opposite, consisting of mainly bushy cells where the auditory nerve synapses directly 

onto the soma of the cell. This means that inputs from the nerve are largely preserved 

from the original signal, allowing for easier binaural comparisons when the signal 

reaches the SOC. (Rhode and Greenberg, 1992). 

As well as the leminscal connection to the SOC, there exist direct projections of the 

cochlear nucleus to both the contralateral IC and MGB, non-lemniscal pathways 

which may represent some form of non-auditory processing, given that the two target 

areas have multimodal inputs (Malmierca et al., 2002, Schofield et al., 2014). 

The primary auditory cortex feeds back, bilaterally, to the CN (Feliciano et al., 1995). 

Cholinergic cells of the SOC also project back to the CN, likely providing feedback in 

sound processing (Mellott et al., 2011). Interestingly, cholinergic projections to the CN 

were also seen from the pedunculopontine tegmental nucleus (PPT) and laterodorsal 

tegmental nucleus (LDT) (Mellott et al., 2011). Given the role of these areas in sleep 

and arousal, it is likely these connections represent a system to modulate sound 

processing during different states of the brain. 

The CN is also the first instance of a the frequency band lamina cell arrangement, 

further arranged as a tonotopic gradient as can be seen throughout the lemniscal 

auditory pathway.  

Complex signal processing takes place in the cochlear nucleus, with local CN circuity 

filtering and lowering signal noise through inhibition, amplifying weak signals, and 

disinhibiting certain inputs, which sharpen/broaden cell responses as required by the 

environmental context (Berrebi and Mugnaini, 1991, Winer and Schreiner, 2005).  By 

the time the signals leave the CN, they have been decomposed into several temporal, 

spectral and spatial streams, each to be processed by specific higher order areas.   

Superior Olivary Complex 

The next stage in the pathway is the Superior Olivary Complex (SOC). The number 

and size of sub-nuclei in the complex is dependent on species (4-9) (Moore and 

Moore, 1971), as is their relative representations, due to the different sound 
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processing requirements of different species.   Like the CN and other stages, the 

whole complex can be generally subdivided further – in this case into the Medial 

Nucleus of the Trapezoid Body (MNTB), a Lateral SO, and a Medial SO, all of which 

are tonotopic (Winer and Schreiner, 2005). As a whole, the SOC is responsible for 

processing incoming sound from both areas to provide localisation cues, with 

evidence to suggest that high and low frequency sounds are localised by different 

mechanisms -  differences in sound amplitude and by relative timings, respectively 

(Tollin, 2003). 

The MSO is responsible for processing interaural time differences (ITD) to localise 

sound (Yin and Chan, 1990), It does this by integrating excitatory inputs from the 

ventral cochlear nucleus and more local inhibitory inputs from the MNTB, with relative 

timings providing information as to the sound source’s location in space (Brand et al., 

2002, Couchman et al., 2010). The LSO is also involved in sound localisation, but 

uses differences in sound amplitudes, or interaural level differences, to help localise 

the sound (Tollin, 2003). 

The SOC, though also having ascending outputs to the LLN and IC (Cant and Benson, 

2006, Schofield, 2005), also projects backwards to the cochlea and cochlear nucleus 

to control the properties of hair cells and neurons and thus modulate incoming signals 

as required, through negative feedback  (Spangler et al., 1987, Warr, 1992). 

Lateral Lemniscal Nuclei 

The Lateral Lemniscal Nuclei (LLN) are the next stage in the central auditory pathway, 

located in the pons (Winer and Schreiner, 2005). Like the SOC, there are wide species 

differences. There are 3 nuclei, the dorsal, intermediate and ventral, which all contain 

neurons of specific neurotransmitters – while the dorsal nuclei has >85% GABAergic 

neurons, this percentage is only around 18% in the intermediate nucleus (Saint Marie 

et al., 1997). In the ventral nucleus, most neurons (around 65-90%) are inhibitory, with 

a histological study indicating extensive co-localisation of both GABA and glycine 

(Riquelme et al., 2001, Saint Marie et al., 1997). . Each nucleus may have a slightly 

different function and set of connections, but all project up to the inferior colliculus with 

predominantly inhibitory action (Shneiderman et al., 1988, Zhang et al., 1998). 

The Ventral LLN (VNLL) represents an important source of inhibition to the inferior 

colliculus with the ipsilateral VNLL being an important source GABAergic inputs to the 

central nucleus. (Zhang et al., 1998, González-Hernández et al., 1996). The VLNN is 

known to receive significant input from octopus cells of the cochlear nucleus, cells 
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which respond excellently to the onset of sound; this pathway in turn controls the 

inhibitory action of the VNLL (Schofield and Cant, 1997, Nayagam et al., 2005). 

Together, the evidence suggests the VNLL is responsible for encoding the precise 

onset of sound, and thus controlling spike timing in higher auditory centres (Covey 

and Casseday, 1991).  

The dorsal LLN (DNLL) is slightly different from the ventral and intermediate nuclei, 

in that it primarily receives inputs from the SOC rather than the cochlear nucleus (as 

well as commissural connections - likely inhibitory- from the contralateral DNLL), 

suggesting an involvement in the further processing and conveyance of 

binaural/sound localisation information (Shneiderman et al., 1988, Oliver and 

Shneiderman, 1989, Huffman and Covey, 1995).  

The intermediate LLN is also an important source of inhibition to the IC, itself receiving 

and integrating excitatory inputs (cochlear nucleus) and inhibitory inputs (including 

the ipsilateral MGTB) (Huffman and Covey, 1995). Studies on the function of this area 

are not extensive, but due to the area’s prominence in the echolocating bat, it may be 

involved in the types of sound processing associated with echolocation (Covey and 

Casseday, 1991).  

Inferior Colliculus 

General Properties of the Inferior colliculus 

The inferior colliculus (IC) in the midbrain (Figure 1.5) is one of the largest auditory 

nuclei, and is considered a “hub” or main integration station in the auditory pathway. 

Inputs and outputs are numerous and multi-directional,– taking inputs from the CN, 

SOC, LLN and from all over the auditory cortex, as well as local and commissural 

connections  (Oliver, 1987, Glendenning et al., 1992, Saint Marie et al., 1997, Winer 

et al., 1998). In its role as an auditory hub, the inferior colliculus takes in and integrates 

input from all these sources, then processes and passes the information on to the 

appropriate stations – either further up the primary pathway or feeding back to 

modulate the activity of previous nuclei. Glutamate and GABA are the principal 

neurotransmitter types for excitatory and inhibitory cells, respectively (Oliver et al., 

1994, Merchán et al., 2005). Both excitatory and inhibitory neurons project to the 

contralateral IC (Chen et al., 2018).  The commissural connections to the contralateral 

IC are important to the processing of sound; there is evidence for their involvement in 

modulating neuronal response gain, interaural level differences and the frequency 
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receptive fields of neurons (Malmierca et al., 2005a, Orton and Rees, 2014, Ono and 

Oliver, 2014). 

A very recent publication has revealed that cortical input to the IC is not limited to the 

auditory system, with retrograde tracing in rats revealing some degree of connections 

from the visual, somatosensory, motor, and prefrontal cortexes (Olthof et al., 2019). 

These connections appear to target both excitatory and inhibitory neurons in the IC, 

and speak to the apparent variability of cortical feedback origin, even before the 

thalamic nuclei. Most likely, their purpose is to inform the IC of visual information, self-

generated sounds, and modulate the IC’s responses during certain 

tasks/behaviours.In a continuing trend, the IC can be further split into 3 main 

functional/anatomical zones – the central nucleus ICC/CNIC, lateral nucleus (LNIC, 

sometimes called the external cortex) and Dorsal Cortex (DCIC) – see Figure 1.5 for 

a coronal slice through the mouse IC.  Both areas predominantly receive ascending 

inputs (Chen et al., 2018). 

A goal of neuroscience research is to classify neuronal types throughout the brain; 

doing so can shed light on mechanisms and circuitry underlying brain functionality 

and connectivity. Cell properties such as morphology, neurotransmitter expression, 

biochemical properties, and synaptic organisation are commonly used to define cell 

classes. With this information, we can start to determine the underlying circuitry and 

functional roles of the IC. 

Figure 1.5: Mouse inferior colliculus (coronal view). 5.07cm anterior to bregma reference point. The 
direction of the tonotopic gradient of the ICC (Stiebler and Ehret, 1985). DN:  dorsal nucleus. EC:  

external cortex (lateral nucleus) 
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Cell Types of the Inferior Colliculus: Biophysical Properties 

Neurons can be categorised by their electrical response properties, in turn determined 

by the nature of their ion channels. The firing properties of these neurons will 

determine their ability to respond to, pass on, and integrate incoming excitatory or 

inhibitory information.  

Sivaramakrishnan and Oliver in the early 2000s did extensive work on the rat IC, and 

separated IC neuronal types in 6 distinct patterns based on their firing appearance 

and ion channel diversity on injection of a depolarising/hyperpolarising current 

(mimicking excitatory/inhibitory input respectively) (Sivaramakrishnan and Oliver, 

2001). The study does not distinguish between IC areas. The vast majority of work in 

this area has been done in the rat (Li et al., 1999, Peruzzi et al., 2000), with some 

confirmation of similar patterns in the mouse (Reetz and Ehret, 1999, Basta and Vater, 

2003). The properties of each neuronal type are summarised in the Table 1.1 table 

and Figure 1.6. A rebound spike is a phenomenon whereby a cell fires an action 

potential following termination of a hyperpolarising current. 

Table 1.1 and Figure 1.6 are adapted from the aforementioned work by 

Sivaramakrishnan et al in 2001, based on 104 neurons in the rat, and is a good point 

of reference.  While cells do appear nicely categorised, these exact cell types have 

not been confirmed in every species, nor their properties fully linked to morphology or 

other cell metrics. These studies do however serve to highlight the heterogenicity of 

IC biophysics. It may be that to some degree, the biophysical properties of auditory 

neurons are linked to dendritic complexity  - it was observed that buildup-pauser 

neurons had relatively simple dendritic branching compared to other types, leading to 

an interesting avenue of research into causality (Peruzzi et al., 2000). 
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Table 1.1: Biophysical cell classifications in the inferior colliculus. Table adapted from 

Sivaramakrishnan and Oliver 2001.   

Behaviour Prevalence 
Spike train 

appearance 

Response to 

hyperpolarisation 

Morphological 

links (relative 

to other cells) 

Sustained-

regular  

(S-R) 

19.2% 

Sustained 

response, 

regular ISI 

Rebound spike  

Rebound 

regular  

(R-R) 

10.6% Regular ISI 
Rebound spike and 

rebound 

Somatic area > 

BP 

Rebound 

adapting  

(R-A) 

25% 
Non-uniform ISI 

(increasing) 

Rebound spike and 

rebound 

Somatic area > 

BP 

Rebound 

transient  

(R-T) 

21.1% 
Transient 

response  

Rebound spike and 

rebound 

Somatic area > 

BP 

Buildup-

pauser (B-P) 
15.4 

Pause before 

spike train, or 

after initial spike 

Slower build-up to 

resting potential, no 

rebound spike 

Somatic area 

<R, simplicity 

of dendritic 

branches <O, 

R 

Onset (O) 8.6 Single spike Rebound spike  

 

 

 

 

Figure 1.6: Classes of spiking behaviour after a depolarising current. Black: neuronal spike Grey: 
Injected depolarising current. Red: resting membrane potentials. Adapted from Sivaramakrishnan 

2001, showing effects of depolarising current only (Sivaramakrishnan and Oliver, 2001) 
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In 2005, the biophysical properties of specifically GABAergic (inhibitory) IC neurons 

were investigated, with two principal types emerging (each with two subtypes)(Ono et 

al., 2005). “Tonic type” neurons displayed repetitive firing activity on depolarisation 

(similar to the “sustained” category from Sivaramakrishan et al). One subtype shows 

this behaviour with a slight adaptation, while the other displays the repetitive firing, 

but only after a prolonged delay. The other subtype (“transient”), match the transient 

class described previously – firing 2-3 spikes after the start of the depolarisation and 

then ceasing activity. Transient neurons either showed a depolarising afterpotential 

(hump) immediately after spiking, or hyperpolarised after the spike. While not 

matching exactly to the previous 6 classes system, there are similarities between the 

systems. As GABAergic neurons are decidedly less numerous than their 

glutamatergic counterparts, previous non-specific studies may have missed some 

smaller subclasses. An extensive study across multiple animals, using tagging 

techniques to determine cell type, may reveal a potential classification system based 

on biophysical properties alongside neurotransmitter type. This information would be 

highly useful in determining the mechanisms behind the functionality of each cell type. 

Cell Types of the Inferior Colliculus: Morphology 

In terms of cell morphology, there are generally two clearly identifiable types – though 

these can differ a little in exact definition between species. The first of these is the  

disc-shaped cell (Oliver and Morest, 1984). As the name suggests, their dendritic 

fields spread out into only 2 of 3 dimensions (see Figure 1.7A, left), so that sheets of 

these cells form the characteristic layers of the ICC (Figure 1.7B). These cells have 

been observed in most species studied, such as the mouse (Meininger et al., 1986), 

the rat (Faye-Lund and Osen, 1985) and the cat (Oliver et al., 1991).  

The remaining percentage of cells are generally termed “stellate cells”, having a more 

spherical, rounded dendritic field (Figure 1.7B, right) that spans multiple layers of disc-

shaped cells and are thus likely involved in interlayer communication and integration 

(Oliver and Morest, 1984, Meininger et al., 1986, Oliver et al., 1991).  

Despite the (relatively) clear morphological distinction, this property does not 

correspond to a particular neurotransmitter profile, nor with their biophysical 

responses.(Peruzzi et al., 2000).  
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Cell Types of the Inferior Colliculus: Neurochemical expression 

IC neurons can also be categorised based on their neurotransmitter synthesis. 

Approximately 20-25% of IC neurons are GABAergic and thus have an inhibitory 

action (Oliver et al., 1994, Merchán et al., 2005). These are of particular interest and 

are the focus of most research in this area, as inhibition will prove to be an important 

element of sound tuning. The remaining 75% are excitatory, glutamatergic neurons, 

expressing VGLUT2 (Ito et al., 2011). GABAergic and glutamatergic populations 

display similarly heterogeneous responses to pure tone sound, but may differ in their 

responses to amplitude modulated sounds; GABAergic cells also display higher 

spontaneous firing rates (Ono et al., 2017). 

 Of the GABAergic neurons, there is evidence to suggest 2-4 distinct classes (Ono et 

al., 2005, Ito et al., 2009, Geis and Borst, 2013, Beebe et al., 2016). One of the most 

commonly recognised distinctions is between the Large (LG) and small (SG) neurons. 

LG cells (diameter >16.5µm) were found to contain VGLUT2 axosomatic endings (Ito 

et al., 2009). Their smaller counterpart (diameter <10.7µm) lack the VGLUT2 endings 

Figure 1.7: Two principal inferior colliculus cell morphologies. (A) Shape of dendritic fields in a disc 
shaped (left) and stellate cell (right), images from (Oliver et al., 1991)  (B) Arrangement of disc shaped 

(blue) and stellate (green) cells that create frequency band lamina in the ICC. Frequency tuning 
changes with successive layers (f, downward arrow). 
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(Ito et al., 2009). These types exist in different proportions in each area of the IC, and 

dendritic morphology (stellate or disc) does not predict which type a cell will be (Oliver 

et al., 1994). 

Studies have shown that the majority of GABAergic neuron projecting forward to the 

medial geniculate body are of the LG type, suggesting they play an important role 

conveying sound information along primary auditory pathway. The evidence suggests 

an integrating function; the cells are large, have a relatively low input resistance, 

receive short-latency excitatory inputs, and have short first spike latencies (Geis and 

Borst, 2013). The feedforward inhibition they generate (potentially reaching before 

any excitatory signals) could be a potential mechanism of filtering and shaping sound 

signals as required.  

A recent study sought to further classify GABAergic neurons, and found 4 classes 

based on the presence of VGLUT2 and perineural nets (PN) [Beebe, 2016]. 

VGLUT2+, PN+ neurons are thought to correspond with the LG neuron class, with 

perineural nets exerting a neuroprotective effect and restricting plasticity, essentially 

“locking in” these cells to the circuit, which speaks to an essential and consistent role 

in conveying sound signals. Additional classes were VGLUT2+/PN-, VGLUT2-/PN+ 

and GABA only – it is speculated that these are the “true interneurons” of the IC, 

having only local connections (Beebe, 2016). 

In short, cells in the IC can be categorised based on a number of properties, which 

also speak to different aspects of their functionality. However, as of yet there is no 

single, unified classification system that incorporates all variations and categorises all 

cells into distinct types with distinct functions.  Such research would require a great 

amount of multi-dimensional data, and if properties continue to exist on a spectrum 

(size etc), the task also requires agreement on thresholding   

Central Nucleus 

The central nucleus of the inferior colliculus (ICC) is by far the most studied sub-

nucleus of the inferior colliculus. Being a key component of the central auditory 

pathway, it is highly tonotopic (Figure 1.5), with frequency band lamina the most 

striking cellular feature (Schreiner and Langner, 1997).  It primarily receives 

ascending input from the brainstem auditory nuclei,– the dorsal and ventral cochlear 

nuclei and the lateral lemnisci nucleus (monoaural information) and the SOC (binaural 

information) (Brunso-Bechtold et al., 1981, Malmierca et al., 2005b, Loftus et al., 

2010). These inputs are not distributed evenly however, and appear to be dependent 
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on the frequency of the sound (Aitkin et al., 1985, Maffi and Aitkin, 1987). The wealth 

of connections from sub-collicular auditory nuclei (each with demonstrated 

information specialities), supports the role of the ICC as an integrator, processing 

multiple dimensions of auditory information and feeding this forward to the thalamus. 

LG neurons are more numerous here than in other IC parts, further supporting the 

importance and relevance of their tectothalamic connections to the ICC’s functionality. 

These cells are randomly distributed throughout the structure (Ito and Oliver, 2012). 

The ICC is comprised of frequency band lamina, composed of disc-shaped cells. 

Stellate cells, with their wider profile, cover multiple layers with their dendritic field and 

provide a means of communication between layers. 

In terms of frequency tuning, the majority of ICC neurons are frequency tuned, being 

part of a frequency band lamina – but the exact characteristics or “sharpness” of this 

tuning is variable. A gradient of tuning sharpness exists across frequency band lamina 

– sharper tuned neurons are found in the centre, with neurons responding to a wider 

range of frequencies as we move outwards (Ehret et al., 2003). Gradients are also 

seen in onset latency (time to respond to the sound), threshold needed for a neuron 

to respond, and periodicity (preferred sound modulation frequency) (Langner et al., 

1987, Schreiner and Langner, 1988).  

Current literature on the central nucleus and its responses to sound is extensive, 

methodical and has been instrumental to our understanding of the auditory system as 

a whole – spectral and temporal processing will be covered in a later section. 

However, the role of the lateral and dorsal nuclei has been somewhat neglected, and 

as such a lot of the subtleties of the area’s function in auditory coding may not be well 

understood.  

Lateral Nucleus/External Cortex 

The lateral nucleus (or external cortex) is distinguished from the central nucleus by 

the lack of an isofrequency layered cellular structure, and overall lower cell density. It 

does not contain disc shaped cells, and instead has two to three layers – a fibrous 

outer layer, and at least one inner layer of small cells (Faye-Lund and Osen, 1985, 

Oliver, 2005). The lateral nucleus receives input primarily from the medullary dorsal 

column nuclei, and the trigeminal system of the pons, as well as the LLN and 

descending projections from the auditory cortex. (Aitkin et al., 1981, Winer et al., 1998, 

Bajo et al., 2007). Unlike the ICC, the area is not strictly tonotopic, and neurons have 

long latencies and broad spectral tuning (Aitkin et al., 1975, Aitkin et al., 1981). 
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Evidence from the guinea pig and the owl suggests the area is involved in localising 

sound with respect to our body (Binns et al., 1992, Singheiser et al., 2012). Future 

literature may shed further light on the role of the lateral cortex within the IC and the 

auditory system as a whole. 

Dorsal Cortex 

The DCIC comprises of a layered structure similar to the lateral cortex (Morest and 

Oliver, 1984), though recent literature in the mouse suggests the DCIC is far smaller 

and that the IC extends further than previously believed (Barnstedt et al., 2015) This 

is not yet observed in other species. Layer V of the auditory cortex has significant 

projections to the DCIC - thought to modulate learning-induced auditory plasticity 

(Bajo et al., 2007, Bajo et al., 2010) - as well as a number of commissural and local 

connections (Saldana and Merchan, 2005).The dorsal cortex appears to be involved 

in speech/vocalisation, with its broadly tuned neurons very receptive to vocal stimuli 

over other noises (Aitkin et al., 1975, Aitkin et al., 1994). Frequency gradients have 

also been observed to some degree, and the area is likely to have a modulatory effect, 

due to auditory cortical feedback (Barnstedt et al., 2015)  Similar to the lateral cortex 

however, the frequency range covered by the DCIC is incomplete, lacking higher 

frequency representations (Romand and Ehret, 1990). Literature has also 

demonstrated that the area supresses responses to frequently heard sounds while 

enhancing novel stimuli, suggesting a role of the DCIC in aiding the detection of novel 

environmental sounds (Lumani and Zhang, 2010, Patel et al., 2012). Though the 

picture is incomplete, the DCIC would appear to play a supporting, modulatory role in 

the auditory pathway. 

Notes on The Non-Lemniscal Components of the IC 

In general, the lateral and dorsal cortexes are less well understood in terms of their 

spectral and temporal coding. There are several potential reasons for the lack of 

literature on these structures as compared to the ICC. Firstly, they are not part of the 

central pathway, which tends to be the focus of most research. Secondly, the non-

lemniscal components do not follow the clear tonotopic gradient as seen in the ICC, , 

and at least in the dorsal cortex, may actually bleed into the ICC’s gradient – so 

identification of patterns may be inconsistent between studies. Thus, the area does 

not present a particularly attractive or easy area of study. 
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Medial Geniculate Body 

After the inferior colliculus, auditory signals travel to the thalamus. The mammalian 

thalamus contains many different nuclei, each dealing with a specific area of neural 

processing (sensory, motor, association or interlaminar). The Medial Geniculate Body 

(MGB, the last “stop” before the AC) deals with audition, with its counterpart the 

Lateral Geniculate Nucleus dealing with vision. Its inputs are primarily from the inferior 

colliculus, thalamic reticular nucleus, and the auditory cortex, though as we will see, 

the exact nature of these inputs is dependent on the MGB subdivision (Calford and 

Aitkin, 1983, Crabtree, 1998, Winer et al., 2001). In humans, the MGB’s primary 

function is to modulate sound encoding to aid speech recognition, based on external 

inputs from cortical and limbic systems (Winer et al., 2001, von Kriegstein et al., 2008). 

Similarly to the CN, evidence has been found for PPT/LDT connections to the MGB, 

and so across species the area likely modulates perception of sound during various 

brain states (Motts and Schofield, 2010). 

The proportion of GABAergic neurons varies between subdivision. In the cat, the 

proportion of GABAergic neurons is 33% in the ventral division, 26% in the dorsal, 

and 18% in the medial, suggesting differences in sound processing and the role of 

thalamic inhibition in their respective targets (Huang et al., 1999, Huang and Winer, 

2000). Cortical input is much stronger here than in the inferior colliculus (Winer and 

Schreiner, 2005). The dominant cell type is variable between subdivisions, of which 

there are three. Differing from the inferior colliculus, the MGB has fewer descending 

inputs, having mainly ascending and ipsilateral projections, and also has a variety of 

cell types/morphologies (Winer, 1992). Once again, there is a high degree of species 

variability in size, with the MGB being largest in carnivores, and the exact internal 

circuitry also varies (Winer and Schreiner, 2005).  

The Ventral MGB is the primary nucleus and part of the lemniscal pathway, containing 

a tonotopic gradient as is typical of other nuclei on the primary pathway (Imig and 

Morel, 1985). As the next stage in the lemniscal auditory pathway, it receives 

tonotopic input from the ICC, and is fact somewhat similar to the IC aside from an 

increased cortical input and more varied local response (Andersen et al., 1980, Winer 

and Schreiner, 2005, Hackett, 2011). The bushy tufted neuron is the prominent 

neuronal type in this division, whose dendritic fields are aligned to create a laminar 

structure similar to the layers of the ICC (Clerici and Coleman, 1990, Clerici et al., 
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1990). Smaller stellate cells have been observed in varying proportions between 

species (Morest, 1971, Winer et al., 1999, Clerici et al., 1990). 

The vMGB projects primarily to layer IV and lower layer III of the primary auditory 

cortex and other tonotopically organised areas of the AC, continuing the lemniscal 

pathway (Lee et al., 2004, de la Mothe et al., 2006, Smith et al., 2012). Research in 

the mouse vMGB has revealed the presence of two sub compartments of the vMGB, 

finding that axons from the medial vMGB (tonotopically organised along the medio 

lateral axis) project to the anterior auditory field (AAF), while those in the lateral part 

(tonotopic along the dorso-ventral axis) projected to the A1 (Horie et al., 2013). These 

results strongly suggest parallel thalamic inputs of sound information to A1 and AAF 

(at least in the mouse), and a distinct functional role for these cortical areas and the 

thalamic areas these connections arise from. 

There is evidence of gradients for synchronisation to repetitive stimuli, responses to 

broad band stimuli and general temporal response properties (Rodrigues-Dagaeff et 

al., 1989).  

The dorsal MGB’s primary inputs are the dorsal cortex of the IC, and the lateral 

tegmental area (Calford and Aitkin, 1983). The dMGB is essentially the parallel to the 

dorsal IC – having long latencies and broad tuning curves (Winer and Schreiner, 

2005). The dMGB has more diverse functional and spatial cortical targets, projecting 

to cortical layers III and IV like the ventral division, but instead to secondary auditory 

areas, a connection potentially involved in auditory spatial processing (Kimura et al., 

2003, Kimura et al., 2004, Smith et al., 2012).  It may also be involved in attention and 

more general, global thalamic control of cortical excitability (Winer et al., 2005). This 

division also contains bushy cells like the ventral division, but these are not arranged 

in layers, and medium stellate cells are numerous (Clerici et al., 1990, Winer et al., 

1999).  

The medial division of the MGB appears unique amongst auditory nuclei. It has only 

a very coarse tonotopic gradient, and receives input from a variety of non-auditory 

areas, plus the lateral IC (Rouiller et al., 1989). It has a diverse range of neurons 

morphologies,  including magnocellular neurons (small soma, few thick dendrites in a 

stellate-type arrangement), medium stellate cells, and bushy cells (Clerici et al., 1990, 

Winer et al., 1999). They also have a wider size range than other divisions and vary 

in their dendritic branching and physiological properties (Smith et al., 2006). The MGB 

also  has the largest diversity of projections in the MGB – connecting a broad range 
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of tonotopic and non-tonotopic cortical areas, and interestingly terminating in layer I 

(and layer VI), unlike the classical thalamic target of layer IV observed in other 

divisions (Rouiller et al., 1989, Huang and Winer, 2000, Jones, 2003, Lee and Winer, 

2008a, Lee, 2015). Via a further connection to the amygdala, the mMGB becomes 

involved in autonomic learning related to auditory cues (Iwata et al., 1986, LeDoux et 

al., 1991). There is good evidence for a direct, high speed, non-lemniscal inputs from 

the CN, thought to be involved in priming the auditory cortex for rapid decision making, 

given this area’s connections to various non-auditory areas (Anderson et al., 2006, 

Schofield et al., 2014). Given the high heterogenicity of the mMGB’s cell types and 

connections, further research into its functionality would be an interesting point of 

research for expanding our knowledge of the non-lemniscal auditory system. 

As a whole, the MGB appears to be more related/involved in higher level processes 

associated with sound (learning, speech processing etc) (Edeline, 2003, von 

Kriegstein et al., 2008). This is logical, given its proximity and multitude of connections 

to the final stage in the pathway, the auditory cortex. The mMGB and dMGB appear 

to augment the function of the auditory thalamus beyond the traditional 

thalamocortical relay of sound information (i.e. the vMGB). With the wealth of 

experimental techniques now available, their exact functions can be explored further 

to enhance our understanding of the subtleties of the auditory pathway and its position 

and role within the brain as a whole. 

Auditory Cortex 

The auditory cortex (AC) is a cortical structure comprised of many subdivisions, and 

the highest level of the auditory pathway. With its position as the highest point in the 

auditory pathway, and in its multiple connections with non-auditory areas, the auditory 

cortex appears responsible for the processing and perception of sounds, decoding 

the information within and contextualising within the animal’s environment. The wealth 

of descending connections to sub-cortical auditory areas represent ongoing feedback 

mechanisms, modulating how incoming sound is received based on the current 

environment. 

As with other cortical structures, the auditory cortex is arranged in 6 layers (though in 

the mouse, layers II and III are indistinguishable, and are referred to as layer II/III). 

Each layer is distinct in its neuronal and neurotransmitter type, and inputs/outputs 

(thalamic, commissural, cortical, corticofugal projections). Descriptions of each layer 
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can be derived from Figure 1.8  and summarised in Table 1.2 (with A1 specific 

connections noted in bold).  

 The two main cell classes in the cortex are the excitatory pyramidal/principal  neurons 

(around 85%)and interneurons (generally inhibitory, around 15%). (DeFelipe and 

Fariñas, 1992, Kanari et al., 2019).  

 

 

 

 

 

 

 

 

Figure 1.8: Cortical layers. Relative size, shape and distribution of cells (black) are indicative of cellular 
makeup of layers. Smaller, round cells: granule cells. Larger/shaped cells: pyramidal 
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Table 1.2: Layers of the auditory cortex. Primary AC specific inputs and outputs are noted in bold. 
References: (Kelly and Wong, 1981, Huang and Winer, 2000, Smith and Populin, 2001, Read et al., 

2002, Winer, 2006, Lee and Winer, 2008c, Wallace and He, 2010). 

 

 

The diversity of auditory cortical neurons is vast. In a recent study of the mouse visual 

cortex, single cell transcriptomics revealed 42 different types of neuronal cells (23 

GABAergic and 19 glutamatergic)  - and this is a single species (Tasic et al., 2016).  

Studies are still ongoing in an attempt split these groups neurons and gain more 

knowledge of cellular circuit and information processing. A recent study identified 17 

different kind of pyramidal cells in the rat somatosensory cortex, based significantly 

on their dendritic arborisation (Kanari et al., 2019). Neuron classes may also be layer-

specific - in just layer V of the visual cortex, a recent study revealed 3 types of 

pyramidal neuron, receiving different inputs, and having different functions (Kim et al., 

2015). 

Layer Cell types Cell density Inputs Outputs 

I GABA Very sparse mMGB, AC L II 

II Pyramidal (s), GABA Sparse  L II/III/V, 

cortex 

III Pyramidal (m), GABA Dense vMGB, cortex Commissural 

IV Pyramidal (L), GABA Dense vMGB Commissural 

V Pyramidal (L), GABA Medium density L I/III/IV MGB, IC, 

Pons 

VI Pyramidal (several 

types), GABA (several 

types) 

Low-medium 

density 

LI, mMGB MGB 

Layer Cell types Cell density Inputs Outputs 

I GABA Very sparse mMGB, AC L II 

II Pyramidal (s), GABA Sparse  L II/III/V, 

cortex 

III Pyramidal (m), GABA Dense vMGB, cortex Commissural 

IV Pyramidal (L), GABA Dense vMGB Commissural 

V Pyramidal (L), GABA Medium density L I/III/IV MGB, IC, 

Pons 

VI Pyramidal (several 

types), GABA (several 

types) 

Low-medium 

density 

LI, mMGB MGB 
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Interneurons are a diverse class of cell with many sub-types, though the vast majority 

are inhibitory in nature, using the neurotransmitter GABA (Markram et al., 2004).  

Spiny stellate cells are a known class of excitatory (glutamatergic) interneuron that 

are seemingly specialised to process thalamic input. They are found only in layer IV 

and relay thalamic input to layers II/III (Feldmeyer et al., 2002). Based solely on 

morphology, there are many identified types of interneurons, including basket (large, 

small and nest), chandelier, Martinotti, bipolar, double bouquet, bitufted, and 

neurogliaform cells (Markram et al., 2004). Further classifications are possible based 

on electrical, ion-channel, molecular, and synaptic properties, with such a diverse 

range of neurons speaking to a dynamic and variable role of inhibition within different 

cortical circuits (Markram et al., 2004). 

Inhibitory interneurons can be classified based on their expression of certain proteins, 

here, three well known and non-overlapping classes are Parvalbumin (PV), 

Somatostatin (SOM) and Vasointestinal Peptide (VIP), accounting for the majority of 

inhibatory interneurons (Xu et al., 2010, Rudy et al., 2011). PV+ neurons comprise 

around 40% of the GABAergic neuron population (Xu et al., 2010, Rudy et al., 2011). 

These are generally of the basket and chandelier morphology and make powerful 

inhibitory synapses with pyramidal and other PV+ cells – in the context of sensory 

systems, they are thought to provide gain control by pooling their local input and 

feeding it back. (Xu et al., 2010, Kubota et al., 2016, Moore and Wehr, 2013). SOM 

neurons make up around 30% of the GABAergic population and are usually of the 

Martinotti cell type (Lee et al., 2010). They have high levels of spontaneous activity, 

and being wired to both receive and provide strong inhibition, they are thought to 

modulate fine scale up and down regulation of overall inhibition levels in the cortex 

(Fanselow et al., 2008, Urban-Ciecko and Barth, 2016) . VIP+ cells are the least 

numerous type, but appear to inhibit both PV+ neurons (weakly) and SOM+ neurons 

(strongly) – this disinhibition would appear to be important in specific behavioural 

conditions  (Pi et al., 2013, Lee et al., 2013, Fu et al., 2014, Karnani et al., 2016) 

As a general rule, pyramidal and interneurons may be classified in neural recordings 

based on the shape of their waveform and their temporal firing properties. This has 

led to pyramidal cells being referred to as “broad/regular spiking” cells, with 

interneurons, having a narrower waveform and faster spiking often known as 

“narrow/fast spiking” (McCormick et al., 1985, Connors and Gutnick, 1990, Frank et 

al., 2001).This classification will be used in the upcoming results chapters of the 
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thesis. The interaction of pyramidal cells and interneurons creates the complex 

circuits throughout the cortex and its layers. Together, they maintain a balance of 

excitability and inhibition within the cortex and shape neuronal responses (such as 

dynamic frequency tuning). 

The auditory cortex is not a single homogenous area – it can be split into areas based 

on structure and function. Areas can be grouped into central (or core) regions and 

secondary (often termed belt, or parabelt) regions, generally grouped around the core 

(Hackett, 2011). The number of sub-areas identified, as well as their core/belt 

classification, can vary between species, though the primary auditory cortex A1 is 

always present in some form as a core area Figure 1.10 (Hackett, 2011).  

Defining a core auditory region is dependent on a number of features (outside of 

spatial arrangements) such as: good, low latency responses to pure tones, narrowly 

tuned, with a “best” frequency; dense thalamic inputs from the vMGB, and dMGB (i.e. 

the lemniscal pathway), architecture matching other sensory cortexes (such as well-

developed layer 4), and characteristic chemical expression (i.e. cytochrome oxidase, 

acetylcholinesterase, and parvalbumin) (Kaas and Hackett, 2000). They are also 

tonotopically organised, though this is not a feature restricted to core areas. 

The core areas appear to function in parallel, receiving parallel inputs from the 

thalamus, however, they are all densely interconnected, and can be serially 

connected with belt regions (input tends to flow outwards from the core) (Kaas and 

Hackett, 1998).  
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While the majority of inputs to the AC come from the MGB, not all areas of the MGB 

connect to all areas of the AC, and as a general rule, the vMGB projects 

predominantly to tonotopically organised core zones such as the A1, the dMGB to 

secondary areas, and the mMGB to all (Huang and Winer, 2000, Hackett, 2011, Smith 

et al., 2012). 

The AC also contains many commissural and local connections – a study in the cat 

found that each of 13 primary and secondary auditory areas studied received varied 

input from 3-6 contralateral AC areas and 5-8 ipsilateral areas. (Lee and Winer, 

2008c, Lee and Winer, 2008b). Such commissural connections are important for 

creating a unified perception of the auditory space. 

Figure 1.9: Maps of primary and core auditory cortical areas. Primary areas are grey shaded. “H” and “L” 
indicate high and low frequency ends of a tonotopic gradient, respectively. A1, primary auditory cortex; 
A2, secondary auditory cortex; IAF, insular auditory field; DP, dorsal posterior field; AAF, anterior auditory 
field; VAF, ventral auditory field; PAF, posterior auditory field; SRAF, suprarhinal auditory field; D, dorsal 
(field); VP, ventroposterior (field); V, ventral (field); AV, anterioventral (field); DC, dorsocaudal (area);  
DCB, dorsocaudal (belt area); VCB, ventrocaudal (belt area); DRB, dorsorostral (belt area); VRB, 
ventrorostral (belt area); ADF, anterior dorsal field; PDF, posterior dorsal field; PPF, posterior 
pseudosylvian field; PSF, posterior suprasylvian field; EP, posterior ecosystem gyrus; Te, temporal 
cortex; RM, rostromedial area; RTM, rostrotemporal medial area; RTL, rostrotemporal lateral area, RPB, 
rostral parabelt area; CL, caudolateral (belt area); CM, caudomedial (belt area); MM, middle medial (belt 
area); AL, anterolateral area; CPB, caudal parabelt area; Tpt, temporal parietotemporal area; STG, 
superior temporal gyrus. Mouse map adapted from (Guo, 2012), remaining Image from (Hackett, 2011) 
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The AC has a great many descending connections to various subcortical auditory 

nuclei. This feedback is responsible for modulation of neuronal properties in order to 

augment sound perception dynamically.  

The corticothalamic tract originates from layer VI, and connects back to the MGB in a 

matter similar to the ascending systems – A1 connects tonotopically to the vMGB, 

while secondary fields such as the AAF project to both the vMGB and d/mMGB 

(Budinger et al., 2000). Recent evidence suggests the A1-vMGB connection 

connected to accurate detection of harmonics, and important feature for perception of 

sounds from distinct sources within a complex auditory scene (Homma et al., 2017). 

Most corticocollicular connections arise from the A1 (layer V), with a form of tonotopy 

– projections from high frequency A1 areas connect onto the ventromedial IC, while 

those from low frequency connect to dorsolateral areas, both contra and ipsilateral 

(ipsilateral more numerous). (Winer and Prieto, 2001, Bajo et al., 2007). Connections 

from secondary/belt auditory areas also exist, though are less strong and more 

variable than those from the A1 (Herbert et al., 1991).  The existence of direct cortical 

connections to the ICC is still debated, with some studies showing no connections, 

but others indicating the opposite (Herbert et al., 1991, Saldana et al., 1996, Bajo et 

al., 2007). It is possible the differences are due to the exact definition of each IC 

subdivision – inputs may be arriving at the IC area borders. 

It would appear that the corticocollicular connections function to modulate responses, 

either directly in the IC, or by contacting cells in the IC which further project up and 

down to other auditory areas such as the superior olive (Groff and Liberman, 2003). 

Experimentally, it has been found that activation of these A1 projections 

sharpens/amplifies responses to that A1s area frequency (Zhang and Suga, 1997, 

Gao and Suga, 1998). There is also evidence for the connections being involved in 

sound localisation (Nakamoto et al., 2008). This is a useful feature of the auditory 

system, allowing the animal to focus in on contextually/behaviourally relevant sounds 

– for example, speech, or predictor calls. One of the auditory cortex’s roles thus 

appears to be the provision of feedback appropriate to the current context, into order 

to increase the effectiveness of sound perception for any given situation. As such, 

there is recent evidence demonstrating the corticofugal connection mediates a sound-

induced, instinctive “flight” behaviour in mice (Xiong et al., 2015) 

There evidence that the auditory cortex also connects via layer V bilaterally with the 

SOC, specifically to the ventral nucleus of the trapezoid body and the LSO, the former 
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of which is clearly tonotopic, speaking to a potential feedback function in the control 

of incoming binaural information (Feliciano et al., 1995, Budinger et al., 2000). As the 

SOC also innervates the cochlea outer hair cells, the auditory cortex may have an 

indirect effect on cochlea amplification (Spoendlin, 1969). 

Again from layer V, the auditory cortex (primarily A1), has connections with the 

cochlear nucleus – to the dorsal region and extensively to the granule layer domain 

surrounding the ventral area (Feliciano et al., 1995, Schofield and Coomes, 2005, 

Meltzer and Ryugo, 2006). A1 connections to the brainstem can modulate the 

incoming information close to the source, aiding in the perception of behaviourally 

relevant sounds. Evidence from mice has shown that A1 modulation of the DCN 

results in changes to the best frequencies of its neurons, a possible mechanism for 

enhancing perception of certain sounds (such as predatory calls or important  species-

specific vocalisations) (Kong et al., 2014) 

The auditory cortex also projects to a number of non-auditory areas, such as the 

amygdala (LeDoux et al., 1991), superior colliculus (Paula-Barbosa and Sousa-Pinto, 

1972, Druga and Syka, 1984) and basal ganglia (Reale and T.J, 1983) implying a role 

in autonomics, animal behaviour and other systemic effects. Crucially, the AC is 

plastic, and can learn and be modified, with this plus extensive interconnectivity 

making it difficult to truly define distinct, strict and unmoving zones. 

1.4 Principles of Neuronal Coding 

1.4.1 Neuronal Coding Mechanisms 

Decoding and Encoding of Stimuli 

If organisms perceive and respond to various external stimuli in distinct ways, it stands 

to reason that each stimulus was represented differently in the brain. Evidently, the 

information will be represented by neuronal activity (i.e. action potentials and resultant 

“spiking” of electrical activity), and exactly when, where, how, and with “who” a neuron 

responds makes up the study of neural coding.  

Decoding describes how researchers (in the form of an artificial computer-based 

decoder), or a part of the living brain, can determine the nature of a presented stimuli 

or resultant behaviour, when provided with a set of neuronal responses. The response 

of a neuron can be highly complex and multi-dimensional, but it may be that some 

variables (e.g. the average firing rate) are more important for determining the stimuli. 

Knowing which parameters of a neuron/neuronal population response are important 
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for decoding a sound stimulus will be crucial information for creating a midbrain 

implant – where neurons should be stimulated to replicate the same pattern.  

Encoding refers to the opposite concept - how the neurons generate their responses 

to stimuli.  A population of neurons activating together, as opposed to a single neuron, 

is likely to contain more information about a stimulus, or can encode a range of stimuli, 

due to the inherent higher dimensionality in their potential responses. 

Basic Coding Mechanisms 

There are several basic methods whereby a neuron can change its output to represent 

a stimulus. The explanations below are adapted from the 2015 review by Panzeri et 

al, (Panzeri et al., 2015), with Figure 1.10 providing graphical representations of the 

concepts described.  Note that the concepts described below are merely building 

blocks in generating the incredible complexity involved in the translation and coding 

of stimuli by neuronal populations, throughout the brain’s pathways. 

A firing rate code means that the information is conveyed in the average firing rate of 

a neuron, and does not depend on the exact pattern of the spikes (Shadlen and 

Newsome, 1998). The window for this averaging may also be important. A temporal 

spike code, on the other hand, conveys information in the exact timing pattern of the 

spikes (Ince et al., 2013). Somewhat related to this, information can be conveyed by 

the delay between the stimuli and the neuron response, known as a latency code – 

this is used in the auditory system in the context of intensity and stimuli localisation 

(Eggermont, 1998, Panzeri et al., 2001).  

All these concepts are combined, and expanded, within a neural population. The 

heterogenicity of coding of the constituent single units lends itself well to expanding 

the range of information that can be conveyed. As well as utilising the concepts 

described above, the pattern and timing in which neurons in a population fire may be 

important to convey stimulus information (Havenith et al., 2011) (Figure 1.10A), and 

gaps in firing (silent periods) may indicate the absence of that neuron’s preferred 

stimuli (Schneidman et al., 2011).  

Neuronal coding is also influenced by global oscillations in the LFP (Local Field 

Potentials - lower frequency electrical activity of the brain), which can modulate the 

neurons’ excitability, or susceptibility to firing, adding further layers of complexity 

(Figure 1.10E). This is a highly important and influential mechanism in the auditory 

cortex, and will be expanded upon in a later section. 
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The concept of a spectrum of dense to sparse neural coding strategies (Barlow, 1972, 

Olshausen and Field, 2004) is also of interest, see Figure 1.10D. Dense coding means 

that a range of information is encoded by the varying firing of an entire population of 

neurons. It is thus highly efficient in terms of space, and while a lot of the capacity is 

Figure 1.10: Mechanisms of neural coding. Vertical black lines indicate a hypothetical spike (A) From 
top to bottom: Rate coding, temporal pattern, Latency, Relative timings. (B) Pairwise Noise correlation. 
(C) Pairwise signal correlation. (D) Sparse and dense spatial coding. (E) Modulation of excitability by 

LFP phase 
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redundant, this makes this strategy better at dealing with faults or noise within the 

population. In a sparse coding strategy, an item of information is encoded by a specific 

set of highly tuned neurons. It is thus energy efficient, easier to decode, and stimuli 

are represented distinctly and without overlap. Indeed, current literature suggests it to 

be the predominant strategy in a number of sensory modalities (Vinje and Gallant, 

2000, Hromadka et al., 2008, Dodds and DeWeese, 2019). However, space can 

become an issue as more neurons to are required to convey the same amount of 

information as a corresponding dense coding population.  

Neuronal Correlations 

Within a neural population, noise and of signal correlation are also important to 

consider (Figure 1.10B and C). The following description of these concepts is largely 

derived from the 2011 Nature Neuroscience review by Cohen and Kohn (Cohen and 

Kohn, 2011). Correlation in this context refers to a measure of how similar two or more 

neurons are, in terms of their firing responses. The noise correlation of a pair of 

neurons refers to the level of firing correlation that is unrelated to the stimuli, implying 

there is a shared input to some degree. As an example, if a neuron fires differently 

during 3 identical stimuli presentation (say 10, 2 then 6 spikes), a neuron with which 

it has high noise correlation will also display a similar, stimuli independent fluctuation 

(say, 12, 3 and 7 spikes). The exact temporal properties of these fluctuations are 

variable– modulating spike rate on potentially longer timescales of seconds (Smith 

and Kohn, 2008, Ecker et al., 2014), but generally on shorter timescales of 

milliseconds to 100s of milliseconds (Bair et al., 2001, Mitchell et al., 2009). Research 

into correlationsis generally conducted on the scale of behavioural trials (100s of 

milliseconds). 

Some facts about noise correlations are generally agreed upon. At least in the cortex, 

they tend to be small, and overall positive (Kohn and Smith, 2005), with neuronal pairs 

closer together being more strongly correlated (Constantinidis and Goldman-Rakic, 

2002, Smith and Kohn, 2008). Values of between 0.1-0.2 are most common – while 

clearly small, these can still have substantial effects on neuronal coding.  

However, as with most measures of neuronal activity, there are several factors that 

will influence the strength, patterns and overall contribution of correlations to 

information encoding. For example, different cortical areas, and different layers of the 

cortex, have been shown to have different levels of correlation (Cohen and Kohn, 
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2011). Motor cortex correlations are also consistently less strong than sensory areas 

(Maynard et al., 1999). 

Signal correlations are another type of correlation, these refer to how well correlated 

the neurons responses are, when responding to a specific stimulus (essentially how 

similarly “tuned” are they).  As an example, a neuron may respond at 90% of its 

maximum firing rate for a 1 kHz stimuli, but only 10% for a 3 kHz stimuli – a neuron 

with high signal correlation with the first would respond similarly to these same stimuli. 

These are generally less well studied than noise correlations. 

The methodology behind the calculation of correlations is in itself a potentially 

contentious issue and may explain some of the variability observed across studies. 

Again, the Cohen and Kohn 2011 review provides an excellent overview of the 

subject, with the main points summarised below. Aside from the biological influence 

on the correlations which are the subject of the analysis, the experimenter may 

introduce artificial biases or influencing factors into the calculations. Exactly how spike 

trains are derived can be influential, as there is a tendency for higher correlations with 

higher spike rates (de la Rocha et al., 2007). Higher spike rates should be purely 

biological, but could also be the result of low data quality, inaccurate spike sorting, or 

the exact threshold used to define a spike. 

Following on from this, the window used to define correlations is also influential – as 

stated previously, the timescales over which correlations exist is likely to be variable, 

and stimuli/state dependant. The brain is coding and integrating information over 

different time scales, and so the window size, and the definition of a window’s start 

point will clearly influence what is seen. For example, windows can be locked to the 

stimulus presentation (most common) or to the underlying brain oscillations, and each 

gives slightly different results (Kayser et al., 2012). Smaller window sizes also 

generally result in smaller values of correlation (Cohen and Kohn, 2011). 

Other potential influences on correlation strengths could include cell type 

(Constantinidis and Goldman-Rakic, 2002), population sizes, or the exact 

environment or task being run. 

Exactly how noise and signal correlations influence stimuli coding is a highly 

interesting topic of discussion. The general question seems to be if correlations 

enhance, inhibit, or give additional information about the coding of information. 

Currently, there is some evidence and theory for all. One perspective is if a neuronal 
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population is less heterogenous (i.e., responses are similar due to noise or signal 

correlations), it will be unable to represent as many dimensions of data as one without 

this property, given a maximum firing rate. Considering the trial-trial variability in 

neurons, this variability can be worked around by averaging a population response (a 

task the brain can perform). However, given a high level of positive correlations (i.e. 

a low signal-to-noise ratio), after a certain number of neurons in the population, this 

averaging won’t help as the response saturates. In this way, noise correlations can 

be limiting to the information transferred by a population of neurons. An interesting 

paper in 2014 proposed an additional layer of complexity – it is in fact the pattern of 

correlations that is the deciding factor, and depending on the situation, correlations 

can indicate, more, less or no change in the information being coded (Moreno-Bote 

et al., 2014).  

Another school of thought suggests that noise correlations themselves are coding 

mechanisms – on top of the general mechanism of spike rate.  A 1999 study by 

Panzeri et al suggested that noise correlations are actually a separate mechanism of 

coding information (outside of simple firing rate), if they are modulated by the stimulus 

itself (Panzeri et al., 1999). Another interesting proposition is that levels of neuronal 

noise correlation represent the level of uncertainty surrounding a stimuli – if the 

neurons are all “in agreement” they will be positively correlated – “disagreements” 

would be represented by a negative correlation (Fiser et al., 2010). Noise correlations 

are also thought to in some way reflect or influence the outcome of an animal’s 

perceptual choice. It is frequently observed that fluctuations in individual neurons are 

predictive of a perceptual decision, and that this is easily observable suggests many 

neurons are fluctuating so (and thus have higher noise correlations) (Nienborg and 

Cumming, 2010). 

Clearly, the importance of correlations to the encoding of information in the brain 

cannot be understated, however, the exact appearance and underlying mechanisms 

of these patterns would appear to be highly situationally dependant. For any given 

experiment, the potential influences are likely to be different, and should be explored 

on a case-by-case basis in order to get the fullest picture of neuronal coding.  

Correlations have also been studied primarily in cortical area, with their influence in 

other regions still being a largely open question. 

Understanding the influence and extent of correlations and each of the preceding 

coding strategies is imperative to understanding the dynamic relationships between 
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this study’s target brain areas, and to formulate stimulation/encoding strategies for 

the hypothetical midbrain implant. Thus, the influence of correlations on sound 

encoding in both the cortex and the colliculus is examined within this thesis. 

1.4.2 Global Brain State and its Influence on Sensory Processing 

Clearly, raw sensory input is the primary modulation of cortical and subcortical activity, 

but there is another more subtle and dynamic influence on neuronal activity – brain 

state. Brain state is can be recognised by changes in EEG, with these changes then 

influencing neuronal population activity (Harris and Thiele, 2011). Unlike action 

potentials, brain state is generally observed to change on the scale of seconds-

minutes, not milliseconds. Traditionally, the definition of brain state is tied to our 

definitions of sleep. Non-REM (NREM) sleep, also known as “slow-wave sleep” is 

characterised by slow, synchronised activity of neurons (strong fluctuations) and 

increases in low frequency EEG activity (Davis et al., 1937), while waking, and/or 

REM sleep sees more desynchronised activity and a shift from low to high frequency 

in the LFP, and smaller overall fluctuations (Aserinsky and Kleitman, 1953, Jouvet, 

1962). A graphical representation of this is shown in Figure 1.11. 

 

 

In actuality, cortical state is a continuum, with “desynchronization” and 

“synchronisation” being opposite ends. Desynchronization is associated with 

Figure 1.11: Cortical states. (A) Synchronised state, with neurons firing together, generating slow 
frequency waves in the LFP. (B) Desynchronised state, with neurons less synchronised and LFP 

having more high frequency activity. Image adapted from (Harris and Thiele, 2011) 
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alertness (except in REM sleep) state, generally associated with decreases in low 

frequency power (delta, theta) and increases in higher (alpha, beta, gamma) (Steriade 

et al., 1996) . In the synchronised state, low frequency (delta/theta) power is high, and 

neuronal population firing rate is strongly and slowly modulated on these scales (see 

Figure 1.10 and 1.11) (Steriade et al., 1993).  Pupil diameter is a known correlate of 

brain state, with small diameter indicated more synchronised state/sleep, and dilation 

corresponding to synchronous states/attention (Reimer et al., 2014, Reimer et al., 

2016). 

Common ways to assess cortical state include examination of the relevant frequency 

spectrum, and more specifically the “delta ratio” – the ratio between delta wave power 

and power over the rest of the spectrum (exact ways of calculation vary between 

researcher, but the principle of assessing low frequency power fluctuations is the 

same). If possible, the researcher should measure pupil diameter – as previously 

stated, this correlates with state. EMG can also help too, to identify periods where the 

animal is active. Between these metrics, reasonably accurate estimations can be 

made of the ongoing brain state, which can be used to add depth to analysis of stimuli 

responses or behavioural experiments. 

Global modulation is known to influence co-fluctuations and pairwise correlations 

between neurons, with the synchronised state eliciting higher correlations (Cohen and 

Kohn, 2011, Ecker et al., 2014, Noda and Takahashi, 2015). This in turn can result in 

an increased trial-trial variability in responses, with neuronal firing fluctuating with little 

relation to the stimuli itself. 

The exact origin of the global fluctuations is currently under debate. Investigation of 

sleep states has led to identification of certain brainstem nuclei as origin points. Nuclei 

such as the  pedunculopontine tegmentum (PPT) and laterodorsal tegmentum (LdT), 

exhibit clear changes in cholinergic neuron activity during, and in the transitions 

between, different attentional/sleep stages (Datta and Siwek, 1997, Sakai, 2012, 

Boucetta et al., 2014, Van Dort et al., 2015). It is thus reasonable to assume their 

influence on brain states, although the true mechanism is likely to be much more 

complex. Though the areas are not directly connected to the cortex, they may 

influence brain state by way of thalamic nuclei (such as the reticular nucleus) 

(Fuentealba and Steriade, 2005). 
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The exact effect of brain state on the encoding and processing of sensory stimuli is 

dependent on the sensory modality. In a later section of the thesis, the potential 

effects of brain state on auditory coding are very briefly examined. 

1.5 Spectral Processing in the Auditory Pathway 

1.5.1 Overview and Basic Principles 

Incoming sound is composed of both spectral and temporal information. In the review 

of auditory pathway anatomy and physiology, one of the principal methods of 

encoding sound frequency is observed. This is a spatial code, in the form of a 

tonotopic gradient of neurons that is maintained throughout the stages of the primary 

pathway. However, even within these gradients there exists additional complexity to 

the spectral coding of sounds. 

Conveyance of spectral information begins in the cochlea, which can be thought of as 

a filter bank. Incoming sound waves are “filtered” into bands due to varying vibrational 

qualities of the basilar membrane and transmission of signals to distinct groups of hair 

cells. The cells, through patterned spiking, then convey the timing and amplitude 

information about that frequency, which is passed on up the auditory pathway.  

The ability to distinguish between frequencies is determined by critical bands in 

hearing, which are defined in the cochlea. Critical bands are essentially the filters of 

the cochlea; incoming frequencies lying within the same band are integrated, and 

can’t be distinguished in the other’s presence. Critical bands thus are an important 

consideration in the design and functioning of cochlear implants (as well as central 

auditory implants). 

Particularly in the central pathway, neurons are arranged in such a way as to have a 

spatial pattern for spectral information (the tonotopic gradient). Figure 1.12 provides 

a simplistic representation of tonotopic gradient appearance in two example brain 

areas - the AC and IC.  

That neurons simply have a “preferred frequency” is a fairly simplistic explanation of 

spectral coding – the response of a neuron to a given frequency can vary with the 

intensity of the sound, and also with environmental context or the type of sound, and 

it may also show preferences along these gradients. 
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The subtleties of neuron’s response to the spectrum of sound frequencies can be 

defined using a number of parameters. The Best Frequency (BF) of a neuron is the 

frequency which elicits the largest response, regardless of the intensity. Similar to this 

is the Characteristic Frequency (CF), the frequency that the neuron responds to at 

the lowest sound intensity – this can differ from the BF. This lowest sound intensity is 

known as the minimum threshold. A response bandwidth refers to the range of 

frequencies over which the neuron will respond. To further assess tuning, the quality 

factor is the relative sharpness of tuning, at a given intensity/dB level (i.e. Q10dB, 

Q20dB), while the slope can be calculated in dB/octave. 

To derive these properties, the Frequency Response Area (FRA) of a given audiory  

neuron can be calculated. (Figure 1.13). The FRA indicates how strongly a neuron 

responds to the range of available frequency, across a range of intensities. FRAs can 

be assessed by presenting a range of pure tones, and can be single (i.e. V-shaped) 

or multi-peaked, if the neuron has multiple BFs – as well as a few other shapes. (Sutter 

and Schreiner, 1991, Recanzone et al., 2000), see Figure 1.13.  

In practice, a V-shaped FRA indicates there is a reaction to a broad range of 

frequencies at a high intensity, narrowing to the best/preferred frequency. 

Alternatively, there may be no response at all, as some neurons don’t show responses 

to pure tones and are instead responsive to complex sound features. Using FRAs, we 

can build a map of neuronal responses in an area. 

Figure 1.12: Simplistic representations of tonotopic maps in the primary AC and central IC nucleus. 
These are merely examples to show how gradients can be in different structures, and are not to-scale 

representations and do not incorporate non-linearities 
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It is worth noting that in terms of spectral processing, the FRA is still fairly simplistic, 

and can mask intricacies in the time course of a neuron’s response. Neurons are 

capable of showing a varied timescale of responses to a tone, which can in itself 

contain information. For example, the latency between the tone and the response can 

vary for different intensities of sound, or can indicate how close a frequency is to that 

cells BF. To capture these responses, a Spectro-Temporal Receptive Field (STRF) 

can be derived, using move complex time-and-frequency varying stimuli, as opposed 

to the pure tone. Briefly, this looks at the time course of the stimuli before each spike 

of a cell, and averages this to display the neuron’s response in two dimensions of 

frequency and time. The STRF can be used as the input to a number of mathematical 

models of spike train prediction , though there are questions as to its relevance to all 

kinds of input as the stimuli (for example, pure tones vs naturalistic sound) used to 

generate the STRF can actually have an effect on the final map–(Eggermont, 2011). 

For example, it has been found that STRF derived from artificial stimuli often differed 

from those derived using natural stimuli in terms of their latency, bandwidth and best 

frequency (Laudanski et al., 2012). Thus, the stimuli used to generate the STRF, plus 

the context in which it will be applied, must be carefully considered when making 

conclusions. 

Spectral processing is also heavily modulated by intrinsic and extrinsic inputs to an 

area (such as feedback mechanisms), balancing excitation and inhibition by 

interneurons as needed contextually, to sharpen or broaden tuning (Zhang et al., 

1997, Wenstrup and Leroy, 2001, Wu et al., 2008). The effect of inhibition on 

frequency tuning is apparent when applying the two-tone paradigm. In these 

experiments, a secondary, variable tone is presented just before or after the pure tone 

of interest (Egorova et al., 2001). This secondary tone can cause an enhanced 

response to the tone, can supress it, or can have no effect at all. These effects are 

crucial for shaping tuning curves, particularly in the IC. 

Figure 1.13: Simplistic FRA examples. To illustrate intensity /frequency relationships. Left: V-shaped, 
Right: Multi-peaked 
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When discussing spectral tuning properties in the IC and AC in this Review, 

explanations will be limited to generalisations and common observations. There are 

extensive interspecies and sub-area differences, occasionally with 

weak/conflicting/missing evidence, and so the information provided will be enough to 

give a general overview of each area and to link to function and the potential 

influences on sound coding – though more details and background may be found in 

the relevant results chapters. It will also serve to identify gaps in knowledge that the 

thesis will attempt to address. In the vast majority of cases, experiments in the AC 

and IC are performed separately – thus the approach of simultaneous recordings 

presented in this thesis may offer additional insight these studies do not. The 

approach has the potential to provide more direct comparisons of neuronal 

behaviours – data is obtained under very similar (if not the same) experimental 

conditions. 

1.5.2 Spectral Processing in the IC 

Central Nucleus 

Almost all ICC neurons are tuned to some degree (Ehret and Schreiner, 2005). The 

ICC has a very prominent tonotopic gradient, with cells in a single frequency band 

lamina  responding to very similar frequencies. (Poon et al., 1990, Romand and Ehret, 

1990, Schreiner and Langner, 1997). One layer roughly corresponds to one critical 

band (Schreiner and Langner, 1997). The exact mapping of frequencies depends on 

the animal, with frequencies involved in species-specific vocalisations (i.e natural 

sounds) more strongly represented in the IC (Suta et al., 2003, Malmierca et al., 2008, 

Portfors et al., 2009). There is also evidence for a secondary, shallow frequency 

gradient from dorsomedial (low CF) to lateral/ventrolateral (high CF) within a single  

frequency band lamina (Schreiner and Langner, 1997). GABAergic and glutamate 

cells have demonstrated similar responses to pure tones in terms of thresholds, 

response latencies and frequency tuning (Ono et al., 2017). 

The range of quality factors across the IC (i.e. the sharpness of tuning and overall 

frequency resolution) is invariably large, with some interspecies differences, inferring 

a behavioural role (Kelly et al., 1991, Syka et al., 2000, Egorova et al., 2001). In 

addition, neurons can have inhibitory response (i.e. the two tone-paradigm), further 

shaping the neuron’s response – a given frequency may excite or inhibit the cell. 

There are different ways of classifying each cell based on its frequency response 

profile. Egorova et al in 2001 provide an excellent breakdown of putative ICC cell 
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classes, which is summarised below. They classify 4 cell types, based on their 

patterns of excitation and inhibition frequency responses (Egorova et al., 2001). Class 

I neurons are generally excitatory, with steep high frequency slopes and shallow low 

frequency sloping. Inhibition either side of the CF is asymmetrical (higher thresholds 

below the CF). Class II neurons are largely shaped by inhibition. Inhibitory side bands 

are near symmetrical, and result in very steep, sharply tuned slopes in the excitatory 

response. Class III neurons show weak, symmetrical inhibition, resulting in shallow, 

broad excitatory responses. Class IV are complex, and usually have multiple CFs and 

inhibitory areas. There is evidence to suggest that these cells types are arranged in a 

gradient of tuning width within single isofrequency layers. Class II neurons with high 

resolutions and sharp tuning are found in the centre of the sheet, with the overall 

proportion of broadly tuned class III neurons increasing as we move outwards (Ehret 

et al., 2003) 

A secondary classification defines cells on the relative shapes of the response. Thus, 

a type “I” is narrowly tuned, with inhibitory side bands, a type “V” is broadly tuned, and 

a type “O” is generally inhibitory, save a small area of excitatory responses around 

the CF (Ramachandran et al., 1999).  

As both of these studies have overlapped to some degree, and thus regardless of the 

exact classification, there is strong evidence for the existence of cells with differing 

frequency responses within the IC, resulting in a heterogenous population capable of 

coding and encoding the vast range of sound in our environments. 

Tuning curves are also dynamically shaped by external input, particularly corticofugal, 

and in a manner specific to the previously described class of ICC neuron (Jen and 

Zhang, 1999, Yan et al., 2005).  

Dorsal and Lateral Cortex 

Current literature does not extensively cover tonotopic arrangements in the dorsal and 

lateral/external cortex.  Overall, they do not seem to cover the entire tonotopic range 

seen in the ICC (Stiebler and Ehret, 1985) and neurons in generally are more broadly 

tuned than their ICC counterparts (Aitkin et al., 1975, Syka et al., 2000). 

The nature of the tonotopic gradient in the dorsal cortex is currently under debate. 

While a few studies suggest an arrangement distinct from the ICC, most seem to 

support the continuation of the ICCs gradient into the dorsal cortex (Serviere et al., 

1984, Stiebler and Ehret, 1985, Schreiner and Langner, 1988). It is possible that a 
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true functional distinction of the DC and ICC in smaller species is harder, despite 

anatomical borders.  

In the lateral/external nuclei, tonotopy appears more distinct from the ICC, though the 

exact directional layout varies between species (Aitkin et al., 1978, Roth et al., 1978, 

Stiebler and Ehret, 1985). 

1.5.3 Spectral Processing in the AC 

Being the highest auditory area, spectral processing in the AC is complex. 

Primary/core areas of the AC tend to have simple V-shaped FRAs, and can contain 

the full range of cochlea frequencies (albeit with biased representations) (Sally and 

Kelly, 1988). The core areas tend to have both local tonotopy (neighbouring neurons 

have similar CF) and a global/area wide gradient (Merzenich et al., 1975), with primary 

areas having the smoothest gradient.  Frequency-responsive neurons also change 

the temporal profile of their responses depending on the stimuli and its context – the 

“preferred” stimuli will elicit a sustained response throughout the stimuli whereas other 

stimuli will elicit an onset response followed by a transient response (Bar-Yosef et al., 

2002, Wang et al., 2005). 

There is also evidence of tuning bandwidth gradients interleaved within the tonotopic 

map, resulting in a wide, complex map of spectral turning and integration (Schreiner 

et al., 2010). At least in core areas, evidence suggests that best/characteristic 

frequency tuning is largely conserved across cortical layers, though deeper layers 

exhibit broader tuning (Phillips and Irvine, 1981, Shen et al., 1999, Wallace and 

Palmer, 2008). The range of quality factors, or tuning sharpness, is highly variable as 

in the ICC, resulting in a wide range of bandwidths for frequency integration 

(Recanzone et al., 1999, Schreiner et al., 2000, Imaizumi and Schreiner, 2007). 

Though only a tendency, sharpness of tuning in primary areas seems to increase with 

increasing frequency, and overall the tuning selectivity is more narrow in primary 

areas (Phillips and Irvine, 1981, Cheung et al., 2001), There is also some evidence to 

suggest that pyramidal cells in primary auditory areas have a narrower bandwidth 

than interneurons within the same cortical layer (Atencio and Schreiner, 2008). 

Outside of primary areas, there is a the tendency for tonotopic gradients to be weaker 

(no local clustering of CFs, but evidence of a global gradient), or there to be no 

tonotopy at all (Schreiner and Cynader, 1984, Redies et al., 1989, Loftus and Sutter, 

2001). There may also be under or over representations of some frequency ranges, 
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potentially a behavioural adaptation as similarly to the inferior colliculus, the effect is 

species dependant (Redies et al., 1989, Thomas et al., 1993, Bizley et al., 2005, 

Schreiner and Winer, 2007). 

1.6 Temporal Coding in the Auditory Pathway 

1.6.1 Overview and Basic Principles 

As well as the spectral information, sound also has a complex temporal structure. This 

is generally broken down into two streams of information – the fine detail or texture, 

and the outer contour or envelope (Figure 1.14), or the periodicity of the sound – how 

it changes in time. Correct representation of this periodicity is essential in particular 

to the perception of naturalistic sound, such as speech, animal vocalisations and 

sounds produced by the environment. 

Any given sound envelope is essentially composed of many underlying sinusoidal 

varying signals. Fluctuations in the envelope are often referred to as Amplitude 

Modulation, or the periodicity of the sound.  

The auditory system directly encodes this information with two main strategies: 

synchronisation/phase locking, and mean firing rate. Synchronisation refers to the 

phenomena of neurons firing precisely at the frequencies of a stimulus envelope, the 

upper frequency of which decreases as we move up the auditory system (Joris et al., 

2004, Panzeri et al., 2010). In the cochlea, the exact upper limit is widely debated, 

with upper limits of at least 10000Hz seemingly possible (Verschooten et al., 2019). 

By the primary auditory cortex, this upper limit has fallen to  around 30Hz, indicating 

a gradual change in temporal coding strategy through the central auditory pathway 

(Liang et al., 2002, Zeng, 2002).  For frequency information above this, information is 

instead encoded as a function of the average firing rate of the neuron.  

Figure 1.14: Temporal components of a sound wave. Fine (black) and outer contour (red) of a segment 
of natural sound comprised of animal calls and water sounds (around 2s) 
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Neurons often display preferential tuned to a particular modulation rate, with their 

degree of phase locking decreasing to either side of this (Langner, 2004), or are 

simply most sensitive to slow modulation rates, and will decrease their degree of 

phase locking as frequency increases.  As with spectral tuning, these response 

profiles can take many shapes, including multi-peaked. 

Though it was not analysed to the fullest potential in the thesis, the simultaneously 

recorded data obtained from large populations of IC and AC neurons has the potential 

to provide an excellent opportunity to examine the representations of temporal sound 

components between the IC and AC, and in the future may provide information on 

relative timings of the two areas under different sound stimuli. 

1.6.2 Temporal Coding in the IC 

The inferior colliculus employs both synchronisation and rate codes for encoding 

temporal information of sound. IC neurons are known to have a variety of biophysical 

properties and temporal responses to stimuli, as we have seen, and so temporal 

encoding is brought about through variations in these responses. Most work on 

periodicity does not currently differentiate between IC subdivisions and so properties 

are generic unless specified. GABAergic and glutamatergic neurons differ in their 

responses to amplitude modulation, with more glutamatergic neurons showing 

synchronisation to the sound as the temporal frequency increases – suggesting this 

cell type might better follow fast temporal changes in the sound envelope (Ono et al., 

2017). 

Similar to spectral tuning, the neurons often show preferred amplitude modulation 

frequencies, creating periotopic gradients. A logarithmic gradient of periotopy existing 

orthogonal to the frequency band laminae of the central nucleus (Schreiner and 

Langner, 1988), but the exact spatial arrangement and starting point of the gradient 

varies across species (Schreiner and Langner, 1988, Pinheiro et al., 1991). 

Interestingly, in the ICC there would appear to be a trade-off between amplitude 

modulation and spectral modulation, that shifts with the tonotopic gradient. For 

example, neurons with a low spectral BF were sensitive to fast changes in amplitude, 

and slow changes in frequency. Moving through the tonotopic gradient, this 

relationship flips over (Rodriguez et al., 2010). The authors speculate that this may 

be highly significant to the IC’s efficient coding of natural sound, which itself often 

shows the same trade-off in properties (frequency modulation is slow when temporal 

modulation is high, and vice versa) (Singh and Theunissen, 2003). 



47 
 

In terms of phase locking, IC neurons generally synchronise to envelope frequencies 

~100-200Hz (Schuller, 1979, Rose and Capranica, 1985, Rees and Moller, 1987, 

Muller-Preuss et al., 1994, Zheng and Escabi, 2013) , though significantly higher 

numbers (600Hz+) have been observed in some neurons (Langner et al., 2002). If not 

employing a synchronisation code, IC neurons will represent frequencies with rate 

modulation as previously described.  

Given that the IC displays both coding mechanisms varying degree, it is speculated 

that the IC, as a hub of auditory processing, may be the switching point for all but the 

lowest temporal frequencies high frequencies – from a synchronisation based code 

prominent in lower auditory areas, to the rate based code favoured by the auditory 

cortex. The increased reliance of the IC on a rate-based code rather than 

synchronisation (which is the preference earlier in the pathway), may be a potential 

influence on the success of auditory midbrain implants, whose algorithms have been 

designed for stimulation of the auditory nerve. As such, additional layers of complexity 

may be required to ensure the most accurate representation of sounds, particularly 

those with complex temporal components such as natural sounds. 

Thus far, research into the IC’s responses to sounds with complex periodicity (i.e. 

naturalistic sounds such as speech) is generally carried out using artificially generated 

Amplitude Modulation stimuli, specific animal vocalisations, or is focused on the of 

mapping gradients and thresholds. As such, research into the more generalised 

behaviour of neurons of the ICC during natural sound is not as extensive, but may be 

important when designing robust stimulation strategies for the auditory midbrain 

implant – naturally and as a whole, what are the characteristics of IC neural responses 

to natural sound (including successive repetitions of the same stimuli)? This is 

something this thesis attempts to answer, with direct comparisons to cortical 

responses providing additional context. More details on the current literature will be 

provided in results Chapters 3 and 4. 

1.6.3 Temporal Coding in the AC 

General Mechanisms 

Dual coding strategies for temporal information within the sound have been touched 

upon previously – namely, rate and phase locking. Progressing through the system, 

the balance of which frequencies are represented by each strategy changes/swaps. 

While phase locking is employed for the majority of frequencies in the auditory nerve, 

in the auditory cortex, a rate code is favoured to represent modulation frequencies 
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above approximately 50Hz (Joris et al., 2004) with phase-locking used only for 

relatively slow frequencies below this. This is speculated to be due to the increasing 

complexity of the time-varying signal as we progress through the auditory system, and 

by the time we reach the final station, phase-locking alone is not sufficient to represent 

the potential range and depth of temporal information (Wang, 2007). As in the 

colliculus, this limit can be exceeded in rare cases – synchronisation was seen up to 

250Hz in the monkey (Steinschneider et al., 1980). 

Like spectral coding, neurons can be arranged periodotopically – having a preferred 

temporal frequency (referred to as the Best Modulation Frequency, BMF) to which 

they respond most strongly and sustainably to (Wang et al., 2003, Wang et al., 2005). 

In fact, neurons in both the primary and secondary/belt auditory cortex show their 

strongest responses when stimulated by their preferred frequency being modulated 

in time, as opposed to a simple pure tone (Liang et al., 2002), perhaps indicative of 

an increased relevance of amplitude modulated sounds as opposed to (usually 

unnatural) pure tone stimuli. 

Despite the lowered reliance on phase-locking to convey temporal information, the 

auditory cortex displays an interesting, similar behaviour termed “entrainment”, where 

responses are locked instead to the underlying cortical LFP, which in turn is 

modulated to match important temporal features of the sound.  

Entrainment 

In cortical areas, entrainment appears to be a key mechanism in the coding of natural 

sounds with complex/semi-periodic sound envelopes. Slow oscillations (for example, 

in the delta/theta range), are a common observation in cortical LFP. Somewhat 

similarly to the brain states described previously, it is believed that these oscillations 

also change the excitability of neurons, but on the time scale of 100s of milliseconds, 

rather than seconds. Looking closely at the synchronisation coding of the auditory 

cortex, what is observed is that neuronal spiking is synchronised specifically to these 

underlying oscillations in LFP, which in turn reflect slow temporal aspects of the sound 

being presented. This phenomenon, known as entrainment (Figure 1.15), would 

appear to be a way by which the brain creates an ongoing frame of reference for 

neuronal firing to follow, and create a stronger temporal code as opposed to 

synchronisation to sound alone. It adds robustness and enhanced perception of 

relevant sound features on important time scales (Kayser et al., 2015, O'Connell et 

al., 2015). Entrainment is not an auditory-specific mechanism. Entrainment to periodic 
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visual stimuli has been well documented (Williams et al., 2004, Schroeder et al., 

2008).  

Entrainment is particularly associated with enhancement of naturalistic or 

behaviourally relevant sound features (such as speech and calls) (Giraud and 

Poeppel, 2012). More generic periodic stimuli (such as click trains with no associated 

behavioural task) are more likely to use the simple synchronisation code. Because of 

this relationship with higher order sound stimuli, it is generally assumed that 

entrainment occurs principally in the cortex – though in this thesis, the same analysis 

is applied to the IC data, resulting in some interesting observations. 

A lot of recent literature focuses on the specific functions and mechanisms of 

entrainment in the animal kingdom.  In the monkey, oscillations aligned with the 

temporal structure of the task and stimuli, so that periods of high neuronal excitability 

began to accompany behaviourally relevant sound features - resulting in response 

enhancement (O'Connell et al., 2015). 

A previous 2009 study by Kayser et al. (again in monkeys), found that by including 

the current LFP phase of each neuronal spike, the amount of information regarding 

the stimuli was significantly enhanced over spike rate alone, seeming to confirm that 

Figure 1.15: Entrainment. From top to bottom: Representative LFP trace with phase bins marked. 
Purple “spikes” underneath indicate a preference for firing in phase 1 (red), this is further represented 
by a histogram of  spike phases (i). In ii) Spikes are evenly distributed across LFP phases, and thus 

entrainment is not present. Phase is given in degrees 
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entrainment to LFP enhances the coding of complex sound stimuli (Kayser et al., 

2009). This effect was limited to slower timescales (<30Hz LFP). A 2005 study in the 

macaque provided evidence for nested entrainment – theta modulating delta, and 

gamma modulating theta – promoting the idea of a hierarchical, nested modulation 

system (Lakatos et al., 2005). 

Though the majority of animal work in this area is done in monkeys, a recent study in 

rats incorporated phase information into mathematical models of neuronal activity, 

finding that models built with this information better replicated the recorded neuronal 

responses (in silence and during natural sound stimuli). For sound stimuli, this effect 

was most prominently seen at low LFP frequencies (2-12Hz) (Kayser et al., 2015). 

Additionally, there may be a cell type specific behaviour during entrainment – narrow 

spiking cortical interneurons were found to favour entrainment to higher LFP 

frequencies (Yague et al., 2017). This additional dimension to the phenomenon has 

yet to be fully explored, and investigation is likely to yield interesting conclusions 

regarding cortical circuits and dynamic functionality of cell types. 

Entrainment is also able to be observed to some degree in humans, and due to its 

apparent importance in speech perception, it is a common avenue of investigation. 

Due to technological limitations in resolution (deriving from a difficulty in recording 

directly from brain tissue), studies in humans are usually not accompanied by 

neuronal spiking activities, instead they look closely at the first stage of LFP/sound 

stimulus coupling. Speech is constructed from building blocks of different time scales 

– syllables make up words, which in turn make up sentences. Comprehension of 

syllables (4-8Hz range) is essential for accurate speech perception, and thus 

generally the range of interest in human studies (Elliott and Theunissen, 2009). For 

example, human cortical entrainment during stimuli was shown to be enhanced at the 

4-7Hz – the range at which the envelope of the stimuli (intelligible sentences) had 

highest spectral power (Peelle et al., 2013). LFP/sound coupling at this frequency 

range (and the importance of this range to speech intelligibility) is confirmed by many 

studies, with some showing that disruption of speech at this scale had the effect of 

decreasing intelligibility and levels of cortical entrainment at the theta scale (Luo and 

Poeppel, 2007, Ding et al., 2014, Doelling et al., 2014). It has also been implicated in 

dyslexia (Leong and Goswami, 2014).  

The focus here and in literature is generally at the theta timescale, however, with 

observations of theta-nested delta and gamma-nested theta LFP, perception of 
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speech components are enhanced in a time-hierarchical manner (Lakatos et al., 

2005, Canolty et al., 2006, Panzeri et al., 2010, Di Liberto et al., 2015). 

Further evidence of this phenomenon in animals was observed in a 2012 study where 

time bins were carefully selected (both in their duration and to be either phase or 

stimuli locked) and linear classification analysis revealed a theta timescale reference 

frame to be most successful in decoding analysis (Kayser et al., 2012). 

However, the fact that speech is more quasi-periodic than a true periodic signal may 

complicate the reality. The slew of evidence does at least suggest a strong role for 

entrainment in successful speech comprehension, but may not be the only 

mechanism (Alexandrou et al., 2018). Literature is also lacking as to the origin of the 

entraining LFP, be it cortical, thalamic or otherwise. Thus, the exact mechanisms and 

origins of entrainment and speech perception in general should be topics of future 

research.  

It is also not known if entrainment of this kind occurs to any degree in subcortical 

structures. Understanding the mechanisms of entrainment has implications in the 

improvement of speech processing algorithms for auditory implants and is thus a topic 

of analysis in this thesis. 

1.7 Additional Sound Coding Principles 

1.7.1 Intensity Coding in the Auditory Pathway 

After the pitch and temporal structure, another main property of sound to be coded is 

intensity – i.e. how loud a sound is perceived. This thesis does not look extensively at 

the topic of intensity coding, and so all that will be covered is one of the more important 

mechanism that is also highly relevant to auditory implants – dynamic range (Figure 

1.16).  

In the context of neuronal activity, the dynamic range is the intensity range over which 

a neuron can represent the intensity with a linear increase in its firing rate. Above and 

below this, the response saturates. Within this dynamic range small changes in 

intensity are able to be distinguished more clearly. After saturation, this becomes near 

impossible.  As with most other sound features, neurons can also prefer a selected 

intensity. A low dynamic range is crucial drawback of a lot of auditory implants. The 

elicited response from neurons quickly saturates within a very small range of electrical 

current, meaning a full representation of intensities with good resolution is often 

impossible. 
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1.7.2 Frequency Modulation 

Another way sound can vary and can be coded is in in frequency modulation – i.e. 

how fast does the sound change pitch? In auditory research, this is usually explored 

by playing frequency sweeps, where the pitch of sound moves from one to another.  

Neuronal responses to frequency sweeps (and their functional significance) have 

been extensively investigated in the echolocating bat, whose calls are comprised of 

them (Bodenhamer and Pollak, 1981, Ferragamo et al., 1998, Sanderson and 

Simmons, 2000). In one study, some neurons appear tuned to frequency sweeps that 

are involved distinguishing between calls from other bats (Andoni and Pollak, 2011), 

suggesting a role of these selective neurons in animal communication. The direction, 

velocity and context of the sweep are all important variables to consider.  As in 

amplitude modulation, neurons can also have a preferred FM frequency, with neurons 

often having higher responses to modulated versus unmodulated sounds, or even 

exclusively responding to the modulated sounds (Liang et al., 2002). 

1.7.3 Binaural Coding 

Most species of animal have two ears, one on either side of the head. In this way, 

animals are able to pinpoint the location of sound, by using the inter-aural time 

difference, or the time between the onset of sound in one ear, and then the other. 

Extensive study of binaural coding does not fall within the project’s remit, particularly 

as much of this processing is done in the SOC (Schwartz, 1992), and the protocol 

Figure 1.16: Dynamic range of an auditory neuron. Segment enclosed by red dotted lines is the 

“dynamic range”, during which the neuron’s response is not saturated 
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used in the presented research does not incorporate any interaural differences – in 

fact, the speaker is placed directly in front of the animal. 

1.7.4 Effect of Global Brain State on Sound Coding 

Brain states are well known to affect the encoding of sensory stimuli, including 

auditory. In the auditory cortex, a state of alertness results in more broad frequency 

tuning (Lin et al., 2019), and by actively listening during a variety of auditory attention 

tasks, responses to relevant stimuli (i.e. specific tones) are stronger (Fritz et al., 2005).  

On the opposite end of the spectrum, anaesthesia has been observed to cause 

significant changes in the auditory response of the auditory cortex compared to the 

awake state, meaning that older studies that commonly utilised anaesthetised 

presentations should be interpreted carefully. It is a common observation that the 

number of responding single units is decreased when compared to the awake state, 

and although the characteristic frequency remains similar, the bandwidth/tuning has 

been observed to narrow in a number of studies. (Gaese and Ostwald, 2001, Noda 

and Takahashi, 2015). Overall, the strength and duration of neuronal responses, 

particularly to brief stimuli, is reduced under anaesthesia compared to the awake 

condition (Wang, 2007). 

Changes in properties between wakefulness and anaesthesia should be compared to 

that during sleep as far as possible, being a more natural change in brain state. During 

NREM sleep, some responses similar to the anesthetised condition are observed, 

although the changes do not appear in all cells, suggesting that to some degree, the 

normal auditory response may be preserved during natural sleep –the exact effects 

of sleep on auditory processing are likely to be complex and dynamic. 

In a 1998 study, approximately half of neurons displayed a decrease in evoked and 

spontaneous firing rates that was linked to brain state (i.e. sleep) (Pena et al., 1999). 

A later study observed a sharpening in the receptive field during slow wave sleep in 

guinea pigs, but only in cells that displayed a decreased activity overall during the 

sleep state (again, close to half the population at 48%) - plus, their response latency 

was increased (Edeline et al., 2001). Other cells in the population had either increased 

responses, or were seemingly uninfluenced.   

Overall, slow wave sleep is linked to a suppression of quiet sounds but a maintenance 

of response to louder sounds (Issa and Wang, 2011). There is more evidence that 

particularly loud, unexpected stimuli are processed the same regardless of cortical 
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state, whereas lower level, repetitive stimuli are adapted to faster in the 

desynchronised state as compared to synchronised (Castro-Alamancos, 2004, Otazu 

et al., 2009). This likely has an evolutionary basis – unexpected sounds are probably 

something important (predator, alarm etc), but we can “zone out” background noise 

when sleeping in the manner of a filter (Harris and Thiele, 2011). 

There is also evidence for a decrease in trial-trial variability between the synchronised 

and desynchronised state (Curto et al., 2009, Marguet and Harris, 2011, Pachitariu et 

al., 2015). A 2011 study by Marguet and Harris used urethane anaesthesia to examine 

sound representation during both synchronised and desynchronised states (Marguet 

and Harris, 2011). Though anaesthesia generally causes synchronisation, urethane 

is a common and desirable anaesthetic agent as it is possible to observe both 

synchronised and desynchronised states. They identified clear differences in reliability 

of neuronal responses to repeated stimuli – in the desynchronised state, responses 

were more predictable trial-trial - with the opposite found in the synchronised state. In 

the synchronised state, spiking responses were also predictable from the LFP itself 

(a measure of global activity), but not from the stimulus amplitude, suggesting the 

synchronised state neurons are acting in response to modulation outwith purely the 

stimuli. Another study based in the AC and MGB (Sakata, 2016) saw similar results. 

They found an increased reliability of firing in both the AC and MGB during the 

desynchronised state.  Interestingly, they also observed some cell type and layer-

specific responses during each state, also recorded in a cortex only study in 2012 

(Sakata and Harris, 2012) .  

How brain state affects non-cortical structures is an interesting subject, but not one 

that has been explored completely. Focusing on the auditory midbrain, it has been 

established in a few studies that in the central nucleus, frequency tuning was 

unchanged between awake and anesthetized animals (Langner et al., 2002, Portfors 

and Felix, 2005).  

However, a recent paper focusing on the non-lemniscal pathway components of  the 

IC (specifically the shell L1) found evidence of state-dependant effects on tuning. 

(Chen and Song, 2019). Tuning selectivity under isoflurane anaesthesia was found to 

be broader/less specific than tuning of the same cells during the awake behaving 

state.  Locomotion is also known to modulate brain activity – in the auditory cortex, 

gains are decreased, while they are increased in the visual cortex, with the exact 

mechanisms and functions still being relatively unclear. In this work, they interestingly 
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found that inhibitory neuron activity was correlated with locomotion, and moreover, 

tuning sensitivity of excitatory neurons was also increased during movement, 

compared to when the animal was stationary, meaning that the locomotion “state” was 

also able to affect this non-lemniscal pathway. There is far less research done into 

the non-lemniscal pathway, and is thus a very interesting avenue to explore in relation 

to brain state. 

In relation to the current project, the effect of brain state is not a specific focus (except 

as a small analysis in results Chapter 5), but is instead a potential explanation for trial-

trial variability – as examined in results Chapters 3 and 4. Anything affecting basic 

frequency tuning will in turn affect coding of natural sounds too – thus the influence of 

global brain state is an important factor to consider in the analysis of data. Additionally, 

the relevance of the sound to the animal may have a subsequent effect on its overall 

arousal/attentional state. 

1.8 Mathematical Modelling of Neuronal Activity 

1.8.1 Basic Principles 

The growing trend for mathematical models of biological systems is highly relevant in 

a neuroscience context. By building various classes of model, neuronal systems can 

be systematically examined and perturbed in an attempt to unravel fundamental 

mechanisms of the brain. Results can then be validated (or not) in vivo. This project 

will touch on various kinds of models, generally most simplistic ones, and this section 

will highlight briefly the principles of some major kinds, and the relevance of each 

(particularly to auditory coding and auditory neuroprosthetics). 

Firstly, what is a model? Fundamentally, a model is a function describing a 

relationship between an output variable(s) and an input or range of inputs. If the model 

accurately reflects the real system on some level, given a new set of inputs, it will be 

able to generate the output expected from the real system. By manipulating inputs 

and model architectures, questions can be asked far more easily and quickly than 

doing a set of in vivo experiments. Of course, the model is highly unlikely to truly mimic 

the intricacies of the animal brain, and so the outputs must be carefully interpreted. 

The practical uses of models are easily apparent – for example, in neuroprosthetics. 

The choice of inputs and outputs to models is highly dependent on the question being 

asked, and on the data available. Spike rate of single neurons, and LFP power, are 

common examples. 
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Looking specifically at the field of neuroscience, broadly, there are two forms of 

modelling. Decoding models take existing neural activity, and try to work out what 

stimulus elicited the reaction, essentially decoding the information held within the 

neural activity. For example, in Chapter 4 neurons are presented with natural sound 

stimuli, a model built using some of the recorded data, then remaining data inputted 

to assess if the model can successfully decode or predict which stimuli was applied. 

Encoding models operate in the opposite way – taking an input stimulus and 

predicting the neurons’ response. These are typically more complex. To construct 

them, extensive knowledge of neuronal activity over the range of stimuli is required. 

Additional complexity/realism can be added by integrating potential sources of noise, 

and the statistics of a typical spike train. This is essentially how auditory implants 

operate – the responses to stimulation at each electrode is mapped, then used to 

generate the appropriate stimulation pattern given a novel sound stimulus.   

This thesis will focus almost exclusively on decoding models, though the potential 

benefits of using encoding models (particularly in the context of auditory implants) will 

be discussed. Decoding models are simpler to implement and can still provide a 

wealth of information about neuronal activity depending on our input parameters and 

careful interpretation. 

1.8.2 Decoding Models 

When making decoding models, there are two potential pitfalls – over and underfitting 

(Figure 1.17). In overfitting, the model becomes too specialised to the data used to 

train it, and may begin to also predict the noise of a training dataset. Thus, when data 

of a similar format (perhaps recorded on a separate day) is input, the model performs 

poorly, as it is not truly describing the underlying, fundamental relationship of two or 

more variables. Accuracy on an individual dataset may have to be sacrificed for 

overall robustness of results on other data. Underfitting is a similar issue, where the 

model is too simplistic to fully represent the variable. This could be due to a low range 

or amount of input data, or a solving method involving too few iterations.  

To evaluate models, a subset of the data is used to train the model, then the remaining 

data used to test the model’s accuracy – this is known as cross validation. This can 

be applied with different numbers of “folds”. For example, in 10-fold cross validation, 

90% of the data to trains the model, and the remaining 10% to test. This is then 

repeated for an additional 9 subsections of data, and the average error taken. A fairly 
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typical metric for model performance is the “mean squared error”, but others exist 

depending on the researcher’s needs.  

 

Classification Models 

In a classification model (Figure 1.18), the general principle is to determine to which 

discrete group, or class, some data belongs. The model itself is trained using existing 

data from each class, to give the spread of typical responses for that class. The model 

is created by solving a series of equations to arrive at the unifying relationship 

between the input and output – and there are a vast number of ways to do this, 

depending on the input data, computational power available, etc. Within 

neuroscience, a typical use for classification models is with behavioural responses – 

for a very simple example, determining if the neuronal activity of a particular group of 

cells can predict if the animal performed the task correctly, or incorrectly. Another 

example might be (taking EMG and EEG as inputs) is the animal in REM, NREM or 

awake state?  

Figure 1.17: Common terminology in mathematical modelling. (A) Graphical representation of the 
concepts of under, good and overfitting data. Single dots are hypothetical datapoints, solid line 
represents the line described by the equations of the model. (B) Basic diagram illustrating cross 
validation. At each “fold” a portion of the data is used for training, and another for testing – this is 

repeated with different segments. The example shows 4-fold – 75% data used to train, remaining 25% 
to test. 
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Regression Models 

Another type of model is the regression model (Figure 1.18). They differ from 

classification models in that they describe a continuous variable (for example, sound 

amplitude). As with classification, these models can have multiple inputs and multiple 

outputs, resulting in a regression equation describing the relationship between the 

inputs and outputs, with each input typically being given a “weighting” depending on 

its contribution to the output. A simple example of this in neuroscience (and indeed in 

this project) would be trying to predict the amplitude of a sound wave, based on the 

ongoing spike rate of a neuronal population. 

The “goodness of fit” or accuracy of a regression model may be assessed by using 

the R2 metric. 

1.8.3 Encoding Models and Adding Additional Complexity 

Given appropriate time, computational power, and researcher experience, it is easy 

to expand the scope and of mathematical models to describe and predict highly 

complex data in an accurate and/or robust manner. Non-linearities can be 

incorporated into the equations, which is often beneficial in models of neuronal 

responses, (usually non-linear to some degree) and thus may help to better capture 

the intricacies of the data. Generalised Linear Models (GLM), a common model type, 

are flexible models that can describe non-linear aspects of data in a linear fashion, by 

deriving linking functions. This is but one type of model – the list is extensive.  In 

recent years, machine learning is emerging as an excellent tool to efficiently create 

robust models describing highly complex data.  

Figure 1.18: Classification vs Regression models. Dots indicate hypothetical datapoints. Axis are generic 
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Though encoding models are somewhat beyond the scope of this review and the 

thesis, it is worth describing one typical example/building block – the linear-nonlinear 

Poisson model (LNP) (Figure 1.19). 

 

Figure 1.19: Simple linear non-linear Poisson model (schematic). An example stimulus is a burst of 
sound, the resulting response is a spike train 

As the name suggests, these models consist of a linear filter (such as the STRF of a 

neuron) to filter the incoming stimuli. A non-linearity is then incorporated to better 

mimic neuronal responses and ensure non-negativity, and finally, a spike train is 

generated, based on known spike train statistics (i.e. Poisson process). The 

complexity of such models can be very easily increased by the addition of more 

neurons (with their own linear filters), which in turn can feedback and influence 

responses of other neurons in the model. Spiking history, additional noise, or state 

information (to name a few typical examples) can be slotted into the model to affect 

spike patterns and probability, adding additional layers of complexity mimicking real 

neuronal networks. Tweaking these factors systematically can then help glean 

additional information about influences and balances within populations. Two 

excellent reviews (Paninski et al., 2007, Aljadeff et al., 2016) provide clear 

explanations of the building blocks and concepts behind encoding models. It is 

important to consider that as the model increases in complexity, so too does the 

computational power required. Though, with the recent advent of machine learning, it 

is becoming easier to efficiently solve highly complex neuronal network models. 

The field of mathematical models of neurons and neuronal populations is a complex, 

interesting, and rapidly expanding field. Open-source software and online tools (such 

as 2019’s Open Source Brain (Gleeson et al., 2019)) are opening up the field to 

neuroscientists with minimal mathematical or computing experience and even 

providing access to supercomputers to solve particularly complex models. This is sure 

to result in the emergence of exciting neuroscientific theories across a spectrum of 

topics.  
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1.9 Electrophysiology 

1.9.1 History of Electrophysiology 

Electrophysiology is, at is most basic, the capture of electrical signals from the body, 

such as the heart, muscle, and - the focus of this thesis - neurons. As charged ions 

pass in and out of neurons, there is a difference in electrical potential (voltage) 

between the inside and outside of the membrane. This results in the generation 

electrical fields, the measurement of which is the focus of electrophysiological 

techniques. Depending on the technique used, this electrical activity can be observed 

across a range of timescales and spatial resolutions. The electric field recorded will 

be the superposition of field changes in all areas of a neuron - and of the surrounding 

neurons, depending on the resolution of the technique employed. In the majority of 

techniques, the activity is recorded from outside neurons, termed an extracellular 

recording.  

The origin of electrophysiology can be traced back to the 1700’s and the work of Luigi 

Galvani on the concept of “Animal Electricity” (Piccolino, 1998). The field then 

progressed through the development of new devices and techniques, such as the 

extensive work of Edgar Adrian, who (among a great many other things) developed a 

way to amplify the neural signal – a crucial step to truly examine the data (Adrian, 

1926). In the 1950’s Hodgkin and Huxley proposed their mathematical principles and 

recording methods for the generation and propagation of action potentials in neurons 

– the theory of which is still very pertinent today (Hodgkin and Huxley, 1952, Hodgkin 

et al., 1952). 

The late 1950s through to the 70s saw the development of tungsten microelectrodes 

(Hubel, 1957, Baldwin et al., 1965), patch clamping (Neher and Sakmann, 1976, 

Sigworth and Neher, 1980), , and the basic concept of electrode microarrays. After 

this point, due to discoveries in microfabrication, the potential for smaller and smaller, 

and better, recording devices became a reality, leading to the miniaturisation of 

devices and manufacture from flexible, biocompatible materials. In this project, 

electrophysiology refers almost exclusively to the activity of neurons in the mouse 

brain. 

The major goal of this project is to record the activity of neurons in two brain areas 

simultaneously.  There exists a wide variety of recording techniques for neural activity 

– however, there are some specific requirements related to the desired outcomes that 

will guide the current choice. 
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1.9.2 Project Requirements for Electrophysiology Method 

The current project requires a high temporal resolution to probe neuronal firing activity 

in the form of individual spiking events (the high resolution voltage deflections 

resulting from action potentials). This means the recording device should have a 

sampling frequency reaching or exceeding 10 kHz. LFP (low frequency activity) is 

also of interest, so the method used must have a way of sampling this. 

For the project, there is a requirement to record many neurons throughout the area of 

interest, in order to sample enough cell types and examine population activity. This 

means the method should have the capacity to both record many neurons, but also 

have spatial coverage appropriate to the area of interest. The ICC for example, is 

approximately 2 mm deep in mice and this should be covered as much as possible, 

and the A1 stretches  around 1 mm anterior-posterior (Paxinos and Franklin, 2012).  

Ideally, to make layer/depth specific analysis easier, the device would be linear. The 

spacing of recording sites needs to be appropriate to the area, and allow easy 

effective spike sorting of single units (it should not have spacing that will potentially 

miss neurons). However, the electrodes should also not be spread out over too much 

of a depth, as it needs to fit within the brain area of interest. 

The recordings will be acute, with the animal head-fixed, and recordings will be done 

over two separate days to gather as many neurons as possible. Any device must thus 

be suitable for an in vivo environment and be able to be inserted multiple times with 

minimal damage to tissue and/or risk of breakage. Similarly, multiple areas will be 

probed simultaneously, meaning the device needs to be easy to use and its 

associated hardware reasonably compact. 

The search is further narrowed by defining what is not required. Chemical or in-depth 

membrane properties of neurons and their synapses are not required, similarly, 

extracellular recordings are more than adequate for the project’s needs. Cell type 

specificity (such as through genetically coded indicators) is not required. The method 

does not need to be wireless, as recordings can be completed in head-fixed animals 

due to the passive, acute nature of the recordings. Additionally, wireless solutions 

typically have limitations on data transfer, and the channel count and sampling rate 

should be as high as possible. Incorporating wireless power can also result in a 

significant weight increase (batteries, coils etc). Similarly, the device does not need 

to be implanted chronically. With acute recordings, multiple neuronal populations can 

be sampled, and chronic tissue responses to the device are not applicable. 
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1.9.3 Non-Electrophysiological Methods 

There are other methods to examine neuronal activity, aside from the direct 

measurement of electrical activity (electrophysiology). Such methods measure 

quantities related to electrical activity of neurons, such as blood flow (BOLD fMRI - 

(Ogawa and Lee, 1990, Ogawa et al., 1990)), magnetic fields (MEG - (Cohen, 1968, 

Cohen, 1972)), and calcium transients (genetically encoded calcium indicators i.e. 

GCamP6 - (Chen et al., 2013)). These methods can be non-invasive, but on the whole 

are lacking in both spatial and/or temporal resolution and may require prohivitley 

expensive equipment. As such, only electrophysiology methods are considered. 

1.9.4 Potential Electrophysiology Options 

EEG 

EEG involves recording electrical signals from the surface of the scalp, and is thus 

non-invasive. It is commonly used for application such as human BCI and non-verbal 

communication machines. The signal being recorded is the summation of neuronal 

activity over a relatively large area, at frequencies up to ~1000Hz.  Depending on the 

questions being asked, the activity and power of specific frequency bands can be 

examined. These have been associated with attentional levels, memory (for example) 

(Klimesch et al., 1998, Klimesch, 1999, Jasper and Andrews, 2010), and 

abnormalities are associated with neuropathologies such as epilepsy (Noachtar and 

Remi, 2009). For this project however, it is not suitable by itself. It is non-invasive and 

painless, but these are not important features for this experiment. The crucial issues 

are that of spatial resolution and strengths of signals, both of which are reduced due 

to signals needing to pass through the scalp, skull and brain membranes (Nunez et 

al., 1994). Higher frequencies in particular are attenuated by the skull (Jackson and 

Bolger, 2014). While lower frequency (<1000Hz) neuronal signals will be examined, 

these can be obtained more directly from the brain using other methods. 

ECoG 

Electrocorticography is very similar in principle to EEG but recorded from the surface 

of the brain. Signals are thus of better quality but are not recording the specific signals 

desired – namely, individual spiking of neurons at depths, simultaneously but 

distinctly. ECoG of some degree is incorporated into the headcap design. By 

recording with a simple screw on the surface of the brain, brain states are potentially 

monitored. 
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Patch Clamping 

With patch clamping, a tight, high impedance seal is created around a small portion 

of the cell membrane, to accurately measure membrane properties including current 

flow/action potentials (Neher and Sakmann, 1976). While capable of giving excellent 

information about that neuron and its connections, it is difficult to do in vivo and once 

again does not fit the remit of recording at depths simultaneously. 

Microelectrodes (single) 

Microelectrodes are immediately a more attractive option for recording, as they are 

sized on a similar scale to neurons and can directly record extracellular activity from 

individual neurons.  

Single microelectrodes are generally made from insulated metal wires  (i.e. tungsten) 

or glass micropipettes filled with high molar potassium chloride (Ling and Gerard, 

1949, Hubel, 1957), though more exotic materials such as carbon fibre can also be 

incorporated (Armstrong-James and Millar, 1979). A sharp tip is imperative to 

minimise tissue damage and increase resolution. Single wires are common, as is a 

configuration known as the tetrode, consisting of 4 tightly wound fibres resulting in 4 

recording sites in close spatial proximity at the tip of the device (McNaughton et al., 

1983). The main issue with these types is again depth coverage and the number of 

neurons able to be recorded simultaneously (realistically, only a handful). They are 

well suited for functional mapping studies, as wires/pipettes can be steadily advanced 

through a structure to record from multiple neurons, and this has been well employed 

in inferior colliculus studies (Schreiner and Langner, 1988, Langner et al., 2002).  

Microelectrode Arrays 

With the advent of microfabrication and silicon wafers came the creation of 

microelectrode arrays. Arrays of microscopic electrodes and their associated wires 

can be patterned onto 3D silicon substrates with high accuracy and in a variety of 

configurations (Bai and Wise, 2001, Csicsvari et al., 2003, Blanche et al., 2005), or 

shaped into arrays of fine tips through microfabrication processes (Campbell et al., 

1991). Microelectrode arrays can and have taken a variety of forms in recent years, 

with commercial companies such as NeuroNexus, Cambridge Neurotech, and 

Blackrock Microsystems providing a vast array of different configurations 

(NeuroNexus, 2019, NeuroTech, 2019, Microsystems, 2018), some of which are 

displayed in Figure 1.20. Due to their high temporal and spatial resolution and 

capacity for highly simultaneous recording of neurons throughout a structure’s depth, 
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they are an excellent choice for the current application. Microarrays are generally 

either 2D or 3D, with each having applications to which they are best suited. 

2D Silicon Microelectrodes 

2D microarrays (Figure 1.20B) generally take the form of a thin silicon-based shank, 

containing microelectrodes in various configurations, coated with a biocompatible 

material for stability. Design features to consider include number of electrodes, 

electrode spacing, electrode configuration (linear etc), length and number of shanks 

– and often there are trade-offs between these.  There is the potential for excellent 

depth coverage, and anterior-posterior coverage with multi-shank configurations. 

Typically, a single shank can contain between 4 and 32 channels. Devices are 

suitable for acute recordings, provided the researcher takes care with insertion and 

cleaning of the probe after use. Chronic-specific devices are also available. 

One of their current issues with silicon microelectrode arrays include their inflexibility. 

Silicon is able to bend, but the discrepancy between the Young’s Modulus of tissue 

and probe is large (105-107 Pa (Polanco et al., 2016)) and still causes tissue damage 

over time. Great care must thus be taken when inserting. Effects may be mitigated by 

habituating animals well, and by using sturdy equipment unsusceptible to movement. 

Silicon probes are also not inexpensive ($400-$1000 depending on the configuration) 

and so require very careful handling and cleaning to get the most use. 

High Density Microarrays 

Very recently, the Neuropixel probe has arrived on the market (Figure 1.20C). 

Compared to traditional silicon probes, these have an incredibly high number and 

density of channels over a long shank, resulting in incredible potential for 

simultaneous recording of 100s of single units from many brain areas. This is possible  

through the use of CMOS technology, allowing for incredible fast switching of the 

active channel far higher than the sampling frequency, so that data is still read in 

simultaneously from all channels at a rate of 20 kHz. Amplification and filtering is done 

at the probe base, resulting in very clean data transmission (Jun et al., 2017).  
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This project does not utilise them for the following reasons. Firstly, they were only 

released towards the end of the project. Secondly, they cannot record the full AC and 

IC depths simultaneously, and so for this particular study, they are not suited. 

Potentially, two probes could be used (and record simultaneously from the auditory 

thalamus), but this adds needless complexity and cost. However, the potential of 

these devices for exploring the brain (including chronically) has already proved 

exceptional. A recent study utilised Neuropixel probes to record, overall, 24 000 

neurons in 34 brain regions (not simultaneously) during behavioural tasks, identifying 

new connections and regions involved which had not been considered (Allen et al., 

2019). 

3D Microelectrode Arrays 

Traditional 3D Arrays 

3D microarrays were created to provide good surface spatial coverage, particularly 

for larger animals (including humans). They consist of a bed of multiple penetrating 

shanks arranged in a grid, with a single recording site at the end of each tip. The most 

ubiquitous of these is the Utah array as seen in Figure 1.20D (Campbell et al., 1991), 

Figure 1.20: Microelectrodes. (A) Electrode configurations for NeuroNexus silicon probes (adapted from 
design catalogue, (NeuroNexus, 2019)) (B) NeuroNexus silicon probe. (C) Neuropixels high density 

probe (IMEC, 2020) (D) Utah 3D array (electron micrograph, from (Kim et al., 2006)) 
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which sees most use in the field of human and monkey neuroprosthetics (Schultz and 

Kuiken, 2011). These forms of microarray are excellent in their chosen application, 

but for acute recordings they would be inconvenient in terms of size, lack of 

simultaneous depth recording and high acute tissue damage.  One potential (but 

somewhat time consuming) solution to these issues was demonstrated by Ogawa et 

al in 2011, where they manually created a 2x4 (i.e. 8 shank) array by gluing together 

two Neuronexus probes (4x8 electrodes) (Ogawa et al., 2011). This created a 3D 

array with depth recording for investigating sound coding across a large area of the 

primary auditory cortex in rats – something which Utah arrays cannot provide. 

Super-Flexible Arrays 

At the cutting edge of 3D microarrays (in a sense) are electrode nets and meshes. 

These are very likely to be the future of chronic recordings in humans, and usually 

consist of thin, highly flexible (comparable to tissue) ribbons arranged as 

meshes/grids, containing electrodes of the same scale as neurons (Yang et al., 2019). 

These are injected into the relevant brain area and cover a wide range of depths. 

They are inherently suitable for chronic recordings as, while the initial surgery is 

complex, due to their high flexibility and biocompatibility/biomimicry they can remain 

within the brain for long periods of time without causing damage (Fu et al., 2017). 

Their complexity means they are not a viable solution for the current application, but 

they may be a potential technology when creating new generations of auditory 

implants. 

1.9.5 Choice of Device and Strategy 

Considering the options above, in this instance, 2D silicon microarrays are an 

excellent choice, offering high temporal resolution for spiking and LFP activity, depth 

of recording, appropriate electrode spacing and overall electrode count, and ease of 

use for acute recordings. In the future, should the species or functionality required 

change, other forms of electrophysiology recording may be considered.  The 2D 

microarray also allows relatively easy simultaneous recording from two brain areas, 

which is a crucial feature that will add weight and context to observations. 

Simultaneous recording from many brain regions at once is fast becoming the 

standard for electrophysiological research, particularly since the advent of the high 

density Neuropixel probe, thus it is important to take this approach to ensure 

relevance in the systems neuroscience sphere.  
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1.9.6 The Mouse as a Model for Hearing Research 

Because of the high resolution activity to be examined, recording electrical activity 

from humans is not feasible (this is to say nothing of the ethical, time and monetary 

considerations) – thus, as in common in scientific research, animal models are used. 

This project is based in the mouse, and the next section will discuss the rationale for 

this choice. 

In general, mice are excellent animal models. They (and their brains) are relatively 

small, meaning pathways have been well mapped and the main circuitry is well 

understood. Genetic modifications can be easily introduced, and the animals breed 

quickly, meaning less reliance on viral injections and thus a simplification of 

experiments. From a neuroscience standpoint, mice are easy to headfix due to their 

small size, and thus neural recording probes can be easily inserted during acute 

recordings. They also share most of the same basic neuronal types (pyramidal, 

interneurons etc) as humans as well as displaying the stereotypical layered cortex - 

with slight differences in separability of the layers. 

Specifically, why should mice be used for hearing studies (pioneering work has been 

done generally in the cat and guinea-pig) - and what are the potential limitations? 

Usefully, the common c57 mouse line displays progressive hearing loss, starting 

around the age of 6 months, making it a model for sensorineural age related hearing 

loss (Henry and Chole, 1980). The structure of their cochlea and middle ear is the 

same as humans, plus tonotopy is conserved throughout the central auditory 

pathway, paralleling our assumptions on the human pathway. The pathway itself is 

largely the same, though there are some interspecies differences in, for example, the 

relative size of certain nuclei.  

One of the main differences between human and murine hearing is the difference in 

range of hearing. For humans, this is 20 Hz-20 kHz, whereas mice start and end 

higher (3 kHz- around 100 kHz). They also have a smooth brain, though for our 

purposes of passive listening experiments, extensive cognition potential is not 

required. As mentioned, there are also differences in relative sizes and shapes of the 

auditory nuclei, though the fundamental pathway and basic functions remain the 

same. 
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1.10 The Curse of Dimensionality 

In recent years, the focus of neuroscience research is shifting from analysis of single 

units and correlated pairs, to the dynamic activity of neuronal ensembles and their 

function, particularly in the sensory cortexes.  Data is encoded not just in the spiking 

of individual units, but in the ways they interact together as a population (Panzeri et 

al., 2015). 

Advancements in silicon probe technology (such as Neuropixels (Jun et al., 2017)) 

and chronic preparations), fluorescent imaging techniques, and the optogenetic 

toolbox have provided unprecedented opportunities observe and manipulate large 

numbers of neurons simultaneously, on a variety of timescales and during a vast array 

of multi-modal stimuli and behavioural paradigms. After appropriate analytical 

techniques have been applied, the dynamics of neuronal population activity can be 

observed, with hypotheses then formed on their function and potential influences. 

A potential bottleneck in analysis of these large datasets is the so-called “curse of 

dimensionality”. A recording from a single Neuropixel probe contains both the high 

and low frequency activity of hundreds of neurons (of multiple cell types), across 

several brain areas. Depending on the configurations, hundreds of trials of multiple 

stimuli types may be applied, over several hours, days or even weeks – plus there is 

an ongoing influence of attentional state. As such, robust hypotheses and efficient 

analytical pipelines are required in order to make relevant and useful conclusions from 

the data.  

To help with this, dimensionality reduction may be employed. With these techniques, 

the number of dimensions required to explain the variance in the data is reduced, by 

condensing a high number of dimensions into a smaller number of new, relevant 

dimensions (comprised of co-variations of the original dimensions). Dimensions are 

unlikely to be combined in a purely linear manner – instead, each component of the 

new dimension will be weighted according to its contribution.  Consider a hypothetical 

situation involving 10 neurons. After applying dimensionality reduction, it may be that 

neurons 1, 2, 3 and 4 are not contributing at all to the variance seen in the output data 

– they may be untuned to the current stimuli, for example, and output only 

spontaneous activity. As such, these “dimensions” can be given minimal attention. 

Conversely, 70% of the variance may be explained by the activity of neurons 5, 7 and 

9, with the remaining 30% explained by 6, 8, and 10. As such, 10 dimensions has 

been reduced (essentially) to only 2. 
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In conjunction with its obvious application in reducing complexity of calculations, the 

ways in which researchers apply and interpret the raw results of the dimensionality 

reduction can themselves be highly informative as to the structure of neuronal 

population activity.  Hypothetical neurons 5, 7 and 9 may turn out to be excitatory, and 

spaced closely together, while 6, 8 and 10 may be interneurons having a secondary, 

supporting role. Through inspired interpretation of dimensionality reduction outputs, it 

may be possible to gain insight into the character and dynamics of neuronal 

populations. An excellent review by Cunningham and Yu in 2014 talks extensively 

about the principles, motivations and applications of dimensionality reduction to 

neural data, and should be referred to as expansion of this short review (Cunningham 

and Yu, 2014). The applicability of dimensionality reduction, and the available 

techniques, will be expanded upon in the Chapter 5. 

1.11 Pathologies of the Auditory System  

1.11.1 Types of Hearing Loss 

As should be apparent from the review so far, the auditory system is incredibly 

complex. Unfortunately, this often means there are more places to go wrong - 

pathologies are common throughout the hearing pathway, resulting in varying 

degrees of hearing loss. Hearing loss can be broadly split into two categories – 

conductive and sensorineural. Conductive hearing loss derives from issues with the 

conductive portion of the pathway (tympanic membrane, ossicles etc), and generally 

results in sounds being muffled and speech hard to follow. This could arise through 

infection, damage (e.g. perforated ear-drum), fluid/wax build up, or abnormal growth 

of middle ear bones (Bansal, 2013a). 

Sensorineural hearing loss involves the neuronal/cellular portion of the pathway, and 

tends to present in a more complex manner (difficulties understanding speech, 

disruption to hearing certain frequencies, issues with sound localisation, as well as 

muffled sounds and/or tinnitus). Common causes include trauma of the cochlea 

and/or auditory nerve (e.g. a car accident), as well as various infections and 

congenital abnormalities in the cochlea and/or auditory nerve (Bansal, 2013b). The 

causes of these conditions are generally more difficult to treat than conductive loss. 

1.11.2 Neurofibromatosis Type II 

One specific cause of sensorineural hearing loss is Neurofibromatosis Type II (NF2). 

NF2 is a severe, but rare (1 in 25000 (NINDS, 2019)) genetic disorder, typically 
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characterised by the presence of benign tumours around the patient’s nerves and 

brain, particularly bilateral tumours on either side of the brainstem and 

vestibulcochlear nerve (known as acoustic neuromas) (Evans, 2015). Though benign, 

the placement of these tumours and the resulting pressures on key nerves causes a 

variety of neurological symptoms, such as balance issues, tinnitus, headaches, 

gradual hearing loss and limb weakness. Current surgical interventions unfortunately 

require the transection of the vestibulocochlear nerve - usually resulting in permanent 

and irreversible hearing loss, and no benefit to be gained from a cochlear implant (CI) 

(Evans, 2009). 

1.12 Auditory Neuroprosthetics  

1.12.1 Principles of Neuroprosthetics 

Neuroprosthetics are devices made to augment, repair or replace lost nervous 

function in the body. In the context of auditory pathologies, this refers to devices 

involving a set of electrodes that are inserted into the cochlea or appropriate area of 

the brain. Environmental sound is picked up by an external microphone, and a sound 

processing algorithm transforms this into spectral and temporal patterns of electrical 

stimulation. Applied to the area, this would then ideally restore some level of sound 

perception. 

1.12.2 Cochlear Implants 

If the pathology lies in the cochlea itself, but the auditory nerve/spiral ganglion cells 

are still intact, restoration of some degree of hearing may be possible with a cochlear 

implant (CI) - arguably the most successful neuroprosthetic to date.  CIs work on the 

principle of activating the remaining nerves with electrical pulses to induce hearing 

sensation – placing electrodes to replicate/replace hair cells’ input along the tonotopic 

gradient of the cochlea. Incoming sound is digitised by a unit on the outside of the 

skull, then transmitted to an internal processor for translation into electrical stimulation 

patterns (Rubinstein and Miller, 1999). These patterns are then relayed to the 

electrode, which is implanted into the cochlea (Figure 1.21). 
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The CI has been implanted in over 300 000 patients (NIDCD, 2015) since 1957, and 

its current, multi-channel form means good to excellent restoration of speech 

recognition is very much a reality. However, noisy rooms often cause problems with 

speech recognition – despite increasingly complex speech transformation algorithms 

(Moser, 2015) . Additionally, while modern devices by companies such as MED-EL 

have up to 24 individually addressable electrodes (MED-EL, 2017b), the reality is that 

far fewer distinct spatial locations are individually addressable. The cochlea is bathed 

in electrolytic fluid, and so electricity spreads outwards from the intended site of 

stimulation, overlapping with the fields of neighbouring electrodes (Weiss et al., 2016). 

In addition, with the increased field of activation, it becomes more likely that axons 

(and so upstream neurons) are inadvertently activated.  

The CI is also not a solution for all hearing pathologies. Even if the cochlea and hair 

cells are functioning as normal, or their function can be replaced by the CI, a damaged 

or lost auditory nerve means the signals cannot be transferred to the brain, and sound 

is not perceived. This can arise from many things, such as congenital aplasia of the 

cochlea or auditory nerve, or ossification following meningitis (Sennaroglu and Ziyal, 

2012). It is also a side effect of the tumour removal surgery in NF2 (Evans, 2009). 

1.12.3 Auditory Brainstem Implants 

With NF2 in mind, the first Auditory Brainstem Implants (ABI) were designed 

(Edgerton et al., 1982). Taking its cue from the CI, the ABI has many of the same 

parts, but the electrodes are instead laid over the surface of the cochlear nucleus to 

cover the tonotopic gradient (see Figure 1.22 for a modern example) (Wong et al., 

2019) .They can be implanted at the same time as the tumour removal surgery, 

eliminating the need for additional, risky surgeries.  

Figure 1.21: Cochlear implant (electrodes). Modern implants can cover the full range of the cochlea. 
Source: (MED-EL, 2017a) 
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The first multi-channel ABIs were implanted in the early 90s (Laszig et al., 1991, 

Nevison et al., 2002). Since then, there have been additional cohorts and follow up 

studies in patents of all ages and conditions – with mixed results (Schwartz et al., 

2008, Goffi-Gomez et al., 2012, Colletti et al., 2014). Potential reasons for 

disappointing results include the difficulty of surgery and tumour removal (and the 

long-term mechanical pressure exerted by tumours themselves), and the resulting 

damage to the surrounding structures (McCreery, 2008, Matthies et al., 2014). Colletti 

and colleagues, after their study of both NF2 and non-tumour patients, speculate that 

the surgical area may contain other important auditory structures or essential 

pathways, which are then damaged during surgery (Colletti et al., 2009). Even in those 

patients where the device is “successful”, performance still lags behind that of the CI, 

which was unexpected.  

Many of the reasons put forward are common to both NF2 and non-tumour patients, 

mainly the surgical difficulty, and electrode misalignment or migration (Behr et al., 

2014). CI based processing and stimulation strategies continue to be used, despite 

the increased coding complexity higher in the auditory pathway (Lenarz et al., 2006). 

Current spread (an inadvertent activation of more neurons) remains an issue.  An 

alternative, penetrating ABI provided better selectivity, but produced no significant 

differences in speech understanding when compared to the traditional surface 

electrode (McCreery, 2008, Otto et al., 2008). 

1.12.4 Auditory Midbrain Implants 

The ABI, in its current and future iterations, would appear to be a potential solution for 

some sensorineural hearing loss pathologies, but looks less promising for NF2, the 

condition it was originally created to treat.  Auditory researchers revisited the central 

auditory pathway, and identified a potential new site for an auditory implant: the 

inferior colliculus. Several criteria were outlined (Lim et al., 2007, Lim et al., 2009, Lim 

and Lenarz, 2015), which the inferior colliculus was identified as meeting:  

Figure 1.22: 21 electrode surface auditory brainstem implant. Source: (McCreery and Otto, 2011, 
Berndt and Deisseroth, 2015) 
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• Surgical accessibility (a more surface structure) 

• A defined neurological organisation - i.e. tonotopy 

• A reasonably low level of auditory coding complexity 

Higher structures, such as the medial geniculate nucleus and auditory cortex, were 

discounted due to their less consistent tonotopy, increased coding complexity, and 

potential for plasticity (Lim et al., 2011). A penetrating Auditory Midbrain Implant (AMI) 

was designed in the early-mid 2000’s by Thomas and Minoo Lenarz (and colleagues), 

Figure 1.23. The device is similar in principle, and in several components, to existing 

CI and ABIs – but instead of the surface array, the electrode array is arranged on a 

single penetrating shank, to be implanted into the tonotopic gradient of the ICC 

(Lenarz et al., 2006).  

The results from the first human clinical trials (of 5 patients) were first reported in 

2007, and reviewed in 2009 (Samii et al., 2007, Lim et al., 2007, Lim et al., 2009). The 

authors note the difficulty (and importance) of correct electrode placement. The 

device was implanted fully into the central nucleus in only 1 of 3 cases, and 

predictably, this patient showed the most favourable results (Lim et al., 2009). The 

authors attribute the misplacement to a number of things, principally the fact that the 

surgery was developed and tested in fresh cadavers, whose tissue did not shift and 

settle in the same way as live tissue, leading to misplacement of the electrode enough 

to miss the central nucleus (Lim et al., 2009).  

All three patients saw some improvement. Mis-implanted patients saw least benefit, 

with improvements limited to lip reading boosts and environmental awareness (Lim et 

al., 2009). In a follow-up paper in 2015, the first patients are discussed further, noting 

the device’s long term (6 year) safety record, and the continued benefits of 

environmental sound awareness, and basic speech perception, which are 

Figure 1.23: Penetrating single shank auditory midbrain implant. Source: Lenarz et al, 2006 
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comparable to NF2 ABI patients (Lim and Lenarz, 2015). The second, ongoing clinical 

trial uses a two shank AMI, as it was discovered that this has the potential to vastly 

improve the device’s potential for speech replication (Lim and Lenarz, 2015). This trial 

has 5 participants, and is expected to release first results in early 2021 (Hannover 

Medical School - NCT02984202, 2016).  

However, as discussed, the continued use of CI based stimulation strategies could be 

limiting the abilities of central auditory devices.  Ideally there should be new strategies 

developed around the coding of the inferior colliculus.  

1.12.5 Speech Processing Algorithms 

Each of the implants described above relies on a sound processing algorithm. This 

part of the device is responsible for translating the sound in the environment into a 

spatiotemporal pattern of electrical impulses. The majority of the work presented here 

is on the cochlea implant – but as ABIs and AMI employ the same processing 

strategies, the review below is still highly applicable (Lim et al., 2009). Keeping these 

processing strategies in mind when interpreting data may offer up areas for their 

improvements/fine-tuning. 

The basic principle of these devices is the idea of a “filter bank”.  The device filters 

the incoming broadband sound into a series of narrow band signals.  The envelope of 

these signals is then extracted and rectified, non-linearly mapped, and used to 

modulate a pulse train. The signal is mapped to the dynamic range of that electrode 

site (Loizou, 2006, Wouters et al., 2015). In this context, the dynamic range is the 

range between the stimulation amplitude that elicits a threshold response (edge of 

hearing) and that which results in uncomfortable/painfully loud sound. This mapping 

between dB level and stimulation level is generally non-linear, and specific for each 

electrode and each patient.  Thus, the incoming sound is translated into a spatial-

temporal-amplitude pattern electrical stimulation. This is somewhat similar to the 

principle of the cochlea – the basilar membrane and its locational frequency specificity 

basically acts as filter bank, with spiral ganglion neurons then generating the “pulse 

train”. 

The rate of stimulation is also important – in theory, the higher the pulse rate, the more 

distinctive that sound component will be, and the better speech recognition the patient 

will show. The issue of stimulation rate did, until recently, restrict the use of 

optogenetic stimulation, in auditory implants for a long time. It is obviously important 
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to obtain a good temporal resolution – otherwise, intricacies in speech may not be 

properly conveyed, resulting in poor recognition. A typical range for modern CIs is 

~800-2500 pulses per second (Loizou, 2006, Arora, 2012), with similar strategies 

used in ABI and AMIs.  While in general, it appears that high stimulation rates increase 

performance, this is not a hard and fast rule, and the actual effect would seem to be 

dependent on a number of variables such as the encoding strategy and the patients 

themselves (Loizou et al., 2000, Kim et al., 2000, Plant et al., 2007, Weber et al., 

2007, Shannon et al., 2011). Additionally, increasing the pulse rate comes at a 

drawback of increasing channel cross talk (Middlebrooks, 2004).  

There are several different strategies for stimulating the electrode channels/frequency 

band in an auditory prosthetic device. Electrodes can be stimulated entirely 

independently, in small groups (pairs, quartets), or simultaneous activation of all 

electrodes (plus hybrid approaches of these). The two main strategies are highlighted 

below, though it should be noted that optimisations and hybrids of these (often 

proprietary) are common in order to get the best speech reproduction possible, and 

are still a subject of research and a distinguishing features between manufacturers. 

As well as utilising the on-device electrodes, it is also possible to employ current 

steering to generate additional, “virtual channels” between each regular channel, in 

order to increase resolution (Koch et al., 2007, Choi and Hsu, 2009). 

Continuous interleaved sampling (CIS) is a strategy which stimulates all electrodes in 

sequence, in a non-overlapping (interleaved) pattern, so as to avoid electrode 

interactions (Wilson et al., 1991). Stimulation rate employed is variable (250pps to 

several thousand) (Loizou, 2006). 

The “n-of-m” strategy is another type – originally known as SPEAK (spectral peak 

coding) (McDermott et al., 1992) and now existing in a more advanced form as ACE 

- Advanced Combination Encoders - (Vandali et al., 2000), incorporating higher 

stimulation rates than SPEAK (e.g. 250pps vs 900 pps) (Psarros et al., 2002). The 

principle of this strategy is that it continually monitors the filter output and selects the 

highest of these for stimulation, rather than stimulating all electrodes as in CIS, with 

the range and the exact electrodes changing dynamically as the sound input spectrum 

changes.   

As with simulation rate, preferences vary but in general, the ACE strategy is preferred, 

and gives better results in speech recognition tests than CIS or the similar SPEAK 

(Kiefer et al., 2001, Psarros et al., 2002, Skinner et al., 2002). This may be due to its 
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selectivity and the theoretical benefits of higher stimulation rate – as it is only trying to 

replicate the louder (and presumably more important) sounds, there may be less 

confusion with background noise. 

Given that these algorithms will naturally work better when given both more channels 

(either physically, or by increasing the resolution of existing ones), there exists an 

opening for a new method of stimulation that meets this requirement.  Having 

stimulation that is more delicate or sensitive may also increase the dynamic range at 

each site, meaning each frequency can be better represented. It is worth noting that 

a stimulation rate of at least 250Hz is needed to match SPEAK, and ideally even 

higher, given the success of ACE and CIS. This has for a long time been a “sticking 

point” in the search for new stimulation methods. 

It may also be that these strategies, though employed successfully in the CI, may 

need refinement or adaptation to the different architecture and environment of the 

brainstem and midbrain. Additionally, electrical stimulation, either by its nature or the 

slight mis-positioning of the original implant, can spread into neighbouring, non-

auditory areas when used in the brain – for example, the superior colliculus in the 

midbrain. This has resulted in a number of non-auditory side effects, including vertigo, 

nausea, and visual disturbances, and often leads to patients stopping the use of 

devices – making the fitting of the device a waste of time, money, and a highly 

disappointing experience for the patient.  By recognising the requirements for new 

devices or stimulation strategies (i.e. stimulation rate), other stimulation 

methodologies can be examined, such as optogenetics. 

1.12.6 Optogenetics for Auditory Neuroprosthetics 

Planned improvements to the AMI do not solve one of the original issues with 

electrically-based stimulation devices – the number of independently activatable 

channels is still limited by current spread, which in turn limits the frequency resolution. 

No matter the speech processing algorithm used, this is a fundamental problem.  

Optogenetics may now offer a potential solution (Figure 1.24). By inducing neurons 

in a particular area, or of a particular type, to express light activated proteins, they can 

instead be activated by light. Only cells containing the necessary protein (opsins) will 

be activated – and coupled with the overall lower spread of light in tissues, this is 

theoretically translated into an improved spatial (and thus spectral) resolution – a long 

term goal of auditory implant development (Deisseroth, 2011, Moser, 2015). It may 

also help reduce side effects caused by current spread into neighbouring brain areas, 
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such as facial tingling, headaches and vertigo (Moser, 2015, Lundin, 2016). The next 

section of this literature will be dedicated to setting down the principles of optogenetics 

and choice of opsins, the viability of optogenetics as an electrode alternative. 

1.13 Optogenetics 

1.13.1  History and General Principles 

Optogenetics has been defined as:  “the combination of genetic and optical methods 

to achieve gain or loss of function of well-defined events in specific cells of living 

tissue” (Deisseroth, 2011). Since 2005, the depth and breadth of its use has 

undergone a veritable explosion, with the technique being instrumental in a vast 

number of discoveries about neurological circuits and their functions.  By inducing the 

expression of light sensitive proteins using a variety of techniques, the cells can thus 

be activated/deactivated with light as desired, allowing us to probe neural circuits. 

In the majority of cases, the light sensitive protein will be one of the “microbial opsins”.  

Of the entire family of microbial opsins, three of these make up the majority of 

available optogenetic tools: bacteriorhodopsins, halorhodopsins, and the most 

ubiquitous, channelrhodopsins.  Their basic mechanisms are detailed in Figure 1.25.  

All work on the principle of exciting or supressing cell membranes through 

transportation of charged particles. 

 

 

Figure 1.24: Electrical vs optogenetic stimulation. Only the neuron containing opsins (blue) can be 
activated by light. Adapted from (Deisseroth, 2011) 
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Since the original descriptions of channelrhodopsin (ChR) 1 and 2 in 2002 and 2003 

respectively (Nagel et al., 2002, Nagel et al., 2003),  and bacterohodopsins (BR) and 

halorodopsins (HR) some 30 years prior (Oesterhelt and Stoeckenius, 1971, 

Matsuno-Yagi and Mukohata, 1977), new microbial opsins have been discovered and 

engineered, continually expanding the range of temporal kinetics (i.e. latency and 

refractory periods), excitation wavelengths, and light sensitivity.  Table 1.3 below 

contains some examples of commonly used opsins. This is NOT an exhaustive list – 

many of the opsins in the table are variations on a base molecule (such as NpHR, or 

Chrimson) that improve upon important variables as stated above, or trafficking to 

membrane (generally denoted by an “e” at the start of the name). Additionally, values 

stated as usually best estimates, as different groups can report slight changes in 

values, based on differing experimental setups. Generally, there are trade-offs 

between variables (i.e. red shifted opsins will be slower) – but this is becoming less 

of a reality through targeted engineering. Additionally, while a peak wavelength is 

stated, the actual bandwidth that can elicit a response is usually wider. In Table 1.3, 

a number of well known (but potentially) older opsins are presented, in order to 

illustrate the breadth of properties available. As previously mentioned, work is 

constantly ongoing to engineer and discover new and improved opsin types – there 

are a great many of these, offering improvements to the base opsin in terms of basic 

Figure 1.25: The three main families of microbial opsin. Bacteriorhodopsins pump protons out of the 
cell, while halorhodopsins pump chloride ions in – having an inhibitory effect on the cell. 

Channelrhodopsin (ChR) is principally an excitatory opsin and light gated ion channel, allowing flow of 
ions through the membrane, causing depolarisation. Inhibitory ChRs, allowing inward flow of chloride 

ions, have also been engineered and later discovered in nature.  (Berndt et al., 2014, Berndt and 
Deisseroth, 2015, Deisseroth, 2015) 
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qualities such as of sensitivity, kinetics and membrane expression levels. For 

example, ChETA opsins were mutated from ChR2, but provide much faster, cleaner 

kinetics at the expense of lowered maximum photocurrents (Gunaydin et al., 2010).  

ChR2, as essentially the first opsin to be used in neuroscience extensively, is usually 

cited as a benchmark/comparison for describing new opsin variations. 

Table 1.3: Range of common opsins. ChR: Channelrhodopsin, BR: Bacteriorhodopsin, HRL 
Halorhodopsin. Table partially adapted from (Yizhar et al., 2011) 

Opsin 

Name 
Class Effect 

Wavelength 

(peak, nm) 

Sensitivity 

(mW/mm2) 

Off 

Kinetics 

(ms) 

Ref. 

ChR2 ChR Excitatory 470 0.1-1 11 

(Nagel 

et al., 

2003, 

Boyden 

et al., 

2005) 

eNpHR3.0 HR Inhibitory 570 5.42 4.2 

(Gradina

ru et al., 

2008, 

Gradinar

u et al., 

2010) 

Chronos ChR Excitatory 470 0.05 3.6 

(Klapoet

ke et al., 

2014) 

ChrimsonR ChR Excitatory 590 0.02 15.5 

(Klapoet

ke et al., 

2014, 

Hight et 

al., 

2015)  

VChR1 CHR Excitatory 535  133 

(Zhang 

et al., 

2008) 

ArchT3.0 BR Inhibitory 540 ~1 5 

(Chow 

et al., 

2010, 

Han et 

al., 

2011, 

Mattis et 

al., 

2011) 
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1.13.2  Opsin Selection 

There is a huge breadth of opsins available beyond Table 1.3, and so for any given 

application, researchers should select the most suitable tool. Important features and 

points of consideration are discussed below. 

The choice of light wavelength is highly dependent on the experimental protocol. 

Blue/Green light, while the most common activating wavelengths for opsins are more 

damaging to cells, and do not travel as far through tissue (Mager et al., 2018b, Yizhar 

et al., 2011). This has driven the search for more “red-shifted” opsins – not only can 

they reach further into the tissue, but it also opens up the possibility of dual colour 

excitation/inhibition of different cell classes in the same area, with a smaller risk of cell 

damage in chronic experiments (Klapoetke et al., 2014, Moser, 2015). Using highly 

sensitive opsins can be useful – by reducing the level of light required to activate the 

opsins, the power requirement of devices is reduced, a crucial step for the eventual 

creation of optogenetic based implants (Moser, 2015), Additionally, lower light 

intensity could help prevent any effects of long-term stimulation.  

Off-kinetics, and kinetics in general, are often a crucial variable. After a certain 

threshold of pulse frequency, cells will not be able to maintain time-locking to the 

stimuli. Having a fast recovery time has been one of the major hurdles for 

optogenetics’ use in auditory applications - the SPEAK algorithms requires a 

stimulation rate of at least 250Hz (McDermott et al., 1992, Moser, 2015, Jeschke and 

Moser, 2015).  

Opsins are also available as both excitatory and inhibitory (Deisseroth, 2015). 

Depending on the questions being asked, the researcher may wish to either excite or 

inhibit a cell group or type, to examine its influence in a circuit or behaviour. 

1.13.3  Inducing Opsin Expression 

There exist a number of methods to express opsins in cells, of varying degrees of 

difficulty and suitability to a given experiment. 

The easiest way to do this is through (principally murine) transgenic lines, where is 

opsin is expressed in all cells, or specific brain areas or cell types (Fenno et al., 2011, 

Zhang et al., 2010). While these are easy to work with, this approach is not particularly 

feasible in animal models beyond mice and rats. Additionally, as neuroscience begins 

to probe highlight specific brain areas, pathways, and cell types, there is a 

requirement for greater freedom in choosing the specifics of opsin expression. 
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A common approach to introduce expression of opsins in a species is through 

targeted viral injections.  The simplest way of doing this is packaging the desired opsin 

with a virus, usually an adeno-associated virus (AAV)(Monahan and Samulski, 2000). 

A fluorescent marker (such as GFP, YFP or mCherry) can be combined with the opsin 

for later histological evaluation of targeting success (Guo et al., 2015, Hight et al., 

2015). By optimising the viral injection location, volume and characteristics, the cells 

in a given brain area can be targeted (Yizhar et al., 2011). A useful tool in some 

circuitry investigation are retroviruses (e.g. rabies) – their use can induce opsin 

expression in targets downstream from the injected area (Callaway, 2008). To obtain 

cell-type specificity, the virus can be altered to contain a promoter specific to the cell 

type of interest (e.g. cholinergic cells) – this would work in a wild type animal (Yizhar 

et al., 2011). Alternatively, recombinases can be used (e.g. Cre recombinase) to allow 

opsin expression only when both parts of a structure are present (Gong, 2007, Yizhar 

et al., 2011). Commonly, a Cre recombinase coupled virus is injected into a transgenic 

animal containing the recombinase driver in only the target cells, leading to cell-

specific opsin expression (Tsai, 2009, Zhang et al., 2010, Yizhar et al., 2011). A dual 

viral injection of a Cre recombinase coupled virus with the opsin, and a cell-targeted 

recombinase driver, may also be the best approach depending on the desired 

outcome (Yizhar et al., 2011). Any method involving viral injections, though it can offer 

excellent specificity for probing highly specific mechanisms in the brain, comes with a 

number of caveats. These include mistargeting during surgery (missing the desired 

area and hitting an unwanted one), tissue damage to overlying structures, and overall 

added costs (viral purchase and animal costs during incubation period). Oftentimes, 

the researcher will not know exactly where the virus has expressed, and will need to 

confirm correct (or incorrect) targeting with histology after the conclusion of the 

experiments.   

The current project uses a stereotaxically targeted viral injection approach in wild-type 

animals, as we are aiming not for cell type specificity, but coverage of a relatively 

large brain area in the mouse – to which this technique is suited. 

1.13.4  Chronos 

There is a constant search for opsin with better qualities (faster, more sensitive etc), 

either through genetic engineering, or through extensive genetic sequencing of 

natural species. One such search was very fruitful - Chrimson was discovered in 2014, 
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when researchers de novo sequenced 127 algal species (Klapoetke et al., 2014).  

Discovered along with Chrimson was a blue activated opsin known as Chronos. 

Compared to other well-known opsins (see Table 1.3), Chronos is currently one of the 

best choices for central auditory applications. It has very fast kinetics, can be 

stimulated with high fidelity up to 200-250Hz, which is the minimum required for the 

SPEAK algorithm (Hight et al., 2015).  This property of Chronos to produce spikes 

with high temporal fidelity has been extensively explored. A pair of papers were 

released from collaborations in Massachusetts, looking at the temporal properties of 

Chronos in the cochlear nucleus, and in the inferior colliculus. 

Comparing the responses of both ChR2 and Chronos in the cochlear nucleus, the 

neuronal firing induced by Chronos was found to synchronise significantly more than 

ChR2 to light pulse trains of 56, 168 and 224 pulses/s (Hight et al., 2015). Additionally, 

in the mouse inferior colliculus, Chronos was found to produce robust, consistent 

spike trains in response to high frequency pulses, which could be used in linear 

classifier models to correctly determine the parent pulse rate that produced a given 

spike train (Guo et al., 2015).  This accuracy extended to higher frequency pulse trains 

than ChR2, indicating Chronos’s potential for use in auditory implants. Interestingly, 

this robust coding was not translated into the auditory cortex, appearing to have been 

reformatted along the way, so as to be indistinguishable from trains produced by 

ChR2 at the same light frequency (Guo et al., 2015). This poses some interesting 

questions about exactly how auditory information is transformed through the auditory 

pathway – specifically between the IC and AC.  How are simple sounds (such as trains 

of pure tones) encoded by neuronal populations, as compared to more complex, 

naturalistic sounds – can optogenetics be used to replicate the IC neuronal activation 

patterns? Answering these is crucial for proving the viability of any optogenetic based 

auditory implants. 

The requirement for blue light is, for the immediate future, acceptable, as a good 

spatial resolution is desired over a large depth of tissue – though potential effects of 

phototoxicity should be considered and appropriately mitigated. This is explored in 

later sections. The high sensitivity is also good, meaning Chronos can be activated 

with low power (good for miniaturisation of medical devices), with less chance to 

damage cells. In 2018, an updated version of Chronos (Chronos ET/TS) with 

improved membrane trafficking was published, after researchers encountered issues 

with low levels of membrane expression (Keppeler et al., 2018). 
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Chronos, at the time of writing, is now available in a genetic mouse line (Daigle et al., 

2018) – when this project was begun, it was not. As this project does not require 

particular cell type specificity, only to cover as much of the IC as possible (avoiding 

other areas), a simple targeted viral injection (AAV5) into the inferior colliculus of wild 

type mice is sufficient for the project.  

1.13.5  Optogenetics in Humans  

The advent of Chronos has made the use of optogenetics in auditory implants a real 

possibility. However, while faster, Chronos cannot match the temporal precision of 

electrical stimulation, and we have the additional hurdle of expressing opsins in 

humans. 

Retrosense Therapeutics were the first organisation to run clinical trials (currently 

Stage I/II for safety and tolerability studies) for optogenetic gene therapy in the human 

retina, with an optogenetic promotor termed RST-001 (Allergan - NCT02556736, 

2015). Companies such as GenSight Biologics have then, alongside new gene 

therapies, developed custom goggles for use with ChR2 transfected tissue – they filter 

the incoming light so that it is at ChR2’s activation wavelength, allowing more 

extensive activation of the transfected retina (GenSight-Biologics, 2018). However, 

as the technologies are still emerging, the safety and ethics of viral expression in 

humans should continue to be closely monitored.  

1.13.6  Light Delivery Systems for High Spatial Resolution Optogenetics 

In order to obtain the spectral resolution benefits offered by optogenetics, the light 

supply itself is of critical importance. Optical fibres are often used to deliver light to 

surface structures, or implanted chronically to hit deeper ones, but the resolution of 

these is not sufficient for auditory implant purposes. Tissue damage is common when 

implanting larger fibres (200-400µm diameter) or when trying to reach deeper 

structures from the surface, requiring high light intensities that can excessively heat 

the tissue. 

Thus, a light delivery system for a chronically implanted auditory implant has several 

requirements. In defence of neural cells, the device must have a thin profile, and not 

heat excessively. Conversely, the light must be bright enough able to provide light of 

sufficient brightness for the chosen opsin.  In order to fully utilise the tonotopic gradient 

and achieve the best spectral resolution, the light emitting points should be as small 

and focused as possible (ideally close to a cellular scale), and the amount of these 
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should be scalable to target as much of the structure as possible.  A less important 

issue in early development (but nonetheless important) is that of manufacture – the 

implant should be manufacturable on a large scale and for an acceptable price. If not, 

the implant may never be a viable choice. Current light delivery technologies can be 

loosely split into two main categories. 

External Light Sources 

Considerations for External Light Sources 

The defining feature of the first category of devices is that they have the light source 

away from the stimulated area (i.e. further up the probe), and light is delivered down 

to emission points on the probe. They include waveguides (where light is coupled into 

a devices and “guided” to emission points, see Figure 1.26), and multi-point emitting 

optical fibres, where the fibres have been shaped and modified to have multiple points 

of emission (though the light source remains external) (Wu et al., 2013, Pisanello et 

al., 2014). These devices have good tissue compatibility, and less potential for light-

based recording artefacts, as well as reduced heating. However, increasing the 

number of individually addressable channels exponentially increases the complexity 

of device manufacture.  

To provide the light, both lasers and LEDs may be considered. These sources, 

particularly lasers, may also be bulky, limiting freely moving experiments (Moser, 

2015). Looking forward to the future of human prosthesis, the device must be wireless 

and not bulky, meaning laser based methods are basically off the table – though LED 

based devices are still an option. For example, researchers have recently combined 

µLEDs onto the top of glass Utah arrays for high resolution in a planar space (Scharf 

et al., 2018). These are unsuitable for midbrain and cochlear auditory prosthetics but 

Figure 1.26: Waveguide device. Optical fibre sits in the groove and light transmitted down the 

waveguide. Source: Wu et al, 2013 
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this technology may yet prove fruitful for brainstem implants, whose tonotopic gradient 

lies parallel to the surface of the structure. It may be that external light devices are 

excellent in a purely research environment (where bulky light sources and lower 

channel count can be worked around), but for the future of neuroprosthetics, a more 

adaptable approach may be required. They present a better option for integrated 

recording/stimulation devices as wiring and light source is held away from recording 

wires.  

Examples of External Light Devices 

A recently presented device offered 6 stimulation sites and 40 recording sites, and 

was validated in the awake mouse cortex (Li et al., 2018).  Dual-colour devices 

(Kampasi et al., 2018), that may be interesting from an excitation/inhbition shaping 

frequency tuning angle, might also be a good avenue for research. 

From a research perspective, it is worth noting that other laser-based techniques can 

be ultilised, such as two-photon optogenetics (based on two-photon microscopy), 

where cells are stimulated in highly specific patterns and with excellent spatial and 

temporal resolution (Szabo et al., 2014). Simultaneous imaging and activation is also 

possible (Packer et al., 2015), and with holography techniques (Hernandez et al., 

2016) becoming the new standard, these patterns can be 3D. While unsuitable for 

auditory implants, these techniques are neverthless excellent for probing the function 

and mechanisms of specific brain circuits. Submillisecond control in vivo is possible 

through the use of Chronos (Ronzitti et al., 2017), and the technique has proven 

excellent for probing and imaging zebrafish motor circuits and identifying individual 

neurons involved in behaviours (Dal Maschio et al., 2017). 

Internal Light Sources 

Considerations for Internal Light Sources 

The other approach is to have the light sources directly beside the cells to be 

stimulated.  This increases the complexity of manufacture as the lighting sources and 

their circuits must be incorporated onto a thin device. There is also the potential for 

adverse heating effects as the lights will emit heat, and the base shank must be as 

low-profile as possible to make it suitable for insertion. The thermal conductivity 

properties and overall engineering of such devices are thus extremely important. 

Adding recording electrodes further increases this complexity, and as such, few dual 

devices exist and will have a low channel count. Not only is the complexity increased, 

but having electronics/metal in dense arrangements, and fast delivery of pulses, 
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results in large artefacts in the recording, when the lights are turned on – the source 

of these will be discussed in Chapter 6. Coupling losses found in external devices are 

largely eliminated however, potentially reducing the overall power requirements.  

µLED Devices 

Micro-LED (µLED) devices are currently considered one of the best options for use in 

optogenetic-based neuroprosthetics (Moser, 2015). These devices incorporate 

µLEDs onto traditional electrode materials/configurations, generally as penetrating 

shanks (e.g. silicon probes). The development of micro transfer printing (µTP), has 

significantly aided this endeavour (Meitl et al., 2005). µLEDs cannot be manufactured 

directly on all materials, and their “on-board” creation also adds significant complexity 

to design and manufacturing approaches. By creating components (µLEDs) and 

shanks separately, then placing the components later through µTP, there is greater 

freedom in material choice (i.e. for improved thermal properties or flexibility), and 

increased flexibility in circuitry design. The process is also more efficient and cost 

effective, as many LEDs can be manufactured at once. 

Though previously sapphire was used for the ease by which LEDs can be directly 

manufactured onto it , this material is not ideal for in vivo recordings as it is brittle and 

difficult to thin down to a suitable thickness (Moser, 2015).  Devices are now generally 

manufactured from silicon wafer (Wu et al., 2015). µLED devices are reasonably 

scalable, sufficiently bright, and eliminate potentially bulky external lights, making 

them more suitable for implantation. However, these benefits come at the expense of 

potential for tissue heating, and complexity when trying to combine them with 

recording electrodes. Most currently existing devices incorporate Gallium Nitride 

(GaN) based µLEDs onto silicon substrates, with an excellent channel counts 

available. When choosing a light delivery device for auditory implants, a key goal is to 

stimulate at a high frequency resolution - thus channel count is a very important 

consideration. With internal light devices being more reliant on active electronics, it is 

very feasible to be able to illuminate the LEDs in rich spatiotemporal patterns. As most 

are based on existing silicon probe designs, devices have the potential for easy 

incorporation into existing hardware setups (e.g. wireless/freely moving experiments). 

A typical example of a µLED probe was presented by Scharf et al in 2016 (Figure 

1.27), following promising intensity and temperature characterisation of a proof-of-

concept/prototype GaN µLED sapphire-based device (5 LED sites), and a full 

sapphire device validated in vivo (McAlinden et al., 2013, McAlinden et al., 2015, 
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Scharf et al., 2016). By incorporating LEDs onto a more traditional silicon probe 

substrate, more desirable dimensions to be reached – the shanks could be 

manufactured to 100 µm wide (tapering to 1µm) and only 40 µm thick, down from 150 

µm x 100 µm in sapphire. µLEDs are 25 µm wide, with 50 µm spacing, bringing them 

to a cellular level and offering potential for excellent spatial resolution. The device is 

inherently scalable, with a 96 channel, 6 shank version to be used in this project, with 

each LED individually addressable.  

Brightness is unlikely to be an issue, with intensity at a single LED able to be 150 

mW/mm2 at its surface, which is more than sufficient for all opsins. However, as 

temperature increases are a common concern for internal light systems, temperature 

modelling was employed to determine a viable range of operation. Using a protocol 

of 2.8 Hz, 50 ms pulses up to the full 150 mW/mm2 irradiance, the average 

temperature at cells immediately adjacent to the LED was ~0.5°C, which is within 

safety parameters. It should be noted however that short periods of rising to 2-4°C 

were experienced at these parameters, and so careful consideration should be taken 

in designing chronic stimulation patterns (150 mW/mm2 is in fact a very high irradiance 

for most opsins).  

The probe was validated in vivo through depth specific activation of the neocortex of 

the mouse – successive LEDs were illuminated alongside an inserted recording 

probe, where separate LEDs elicited depth specific CSD and spiking in GABAergic 

cells expressing ChR2. However, at present, the device does use blue light, which is 

falling out of favour among auditory prosthetic researchers in favour of red shifted 

wavelengths, which should be considered in future iterations. It is also not currently 

Figure 1.27: µLED probe. 6 Shank prototype, showing illuminated LEDs on each shank. Source: Scharf 
et al., 2016 
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wireless, but as with red-shifting, this is becoming a focus of research now the 

feasibility of the devices in generally has been demonstrated. 

Since 2016, many labs are seeking to design new and improved µLED devices, since 

their potential usefulness as both a research and a medical device is clearly apparent. 

In Section 1.13.7, the focus will be on µLED based devices designed with medical 

(i.e. auditory implant) applications in mind. Oftentimes, improvements are engineered 

to some properties, while neglecting others that would make the device viable (i.e. 

exceptionally high channel counts but excessively thick shanks) – but the technology 

is now at the stage where engineering and medical/biological sciences are truly 

beginning to converge to create useful devices for medical applications. 

1.13.7  Progress Towards an Optogenetic Auditory Implant 

Improvements to µLED Devices 

The µLED device described above marked a turning point in this technology due to 

the manufacturing method on silicon wafers, and crucially contains significantly more 

LEDs than previous device iterations (such as the 2015 device from Wu et al, which 

had 3 sites per shank (Wu et al., 2015)). µLEDs appear well placed to become the 

integral stimulation device for future optogenetic auditory implants. However, to be 

fully realised as a stimulation device for humans, there are a number of hurdles still 

to be jumped, and research is ongoing simultaneously on a number of fronts. 

The current focus is on µLED devices for auditory implants, but we must often look to 

innovations in other applications with different priorities, to find technological 

advancements to incorporate into auditory specialised devices. Wireless technology 

is currently the focus for stimulation of the peripheral nervous system, such as in 

humans for medical interventions (e.g. sacral nerve control for overactive bladders), 

or pure research purposes (e.g. to probe the spinal cord and associated circuitry) 

(Samineni et al., 2017, Mickle et al., 2019, Sivaji et al., 2019). Battery size and 

capacity are crucial considerations for a viable device, and so it is hoped that 

progression in these fields will spill over into µLED probe technology. Incorporation of 

recording technology adds an additional need for fast, wireless, data transfer. 

In order to increase intensity and spatial reach of the light within tissues, a recent 

device has incorporated micro-reflectors into a 32 channel µLED device, with the aim 

of achieving intensity and thus enhancement of depth stimulation capacity of devices. 

With a reported 65% intensity increase over an unmodified LED, and an acceptable 
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temperature increase, this may be a promising approach for applications where 

stimulation at depth is required, or exceptionally low power is needed. It has, however, 

not been validated in vivo (Wasif et al., 2019). Similarly, by moulding PDMS micro-

lenses (potentially down to 10s of µm in diameter) and attaching them over the µLEDs, 

Klein et al were able to increase peak light intensity in water by 95% over an 

unmodified µLED (Klein et al., 2019). Stimulating more of a given isofrequency layer 

in the ICC, for example, may turn out to be advantageous for obtaining a robust 

response.  

A crucial hurdle of these devices before they can be used in humans (or indeed 

chronically in animals) is flexibility. Silicon is an improvement over the early use of 

sapphire, but is still not the ideal material as its flexibility does not match that of brain 

tissue, by several orders of magnitude (Polanco et al., 2016). As such, flexible devices 

that can maintain dense channel count are attractive for minimising tissue damage 

and making chronic implantation in humans fully viable. The state of the art in this 

area use cochlear implants as a motivation, and take similar approaches, placing 

µLEDs on thinned, flexible polymer substrates such as Paralyne C or polyimide, while 

still maintaining high (32 and 144) µLED count (Klein et al., 2018, Reddy et al., 2019). 

Modelling of thermomechanical properties indicates the devices to be suitable for their 

intended purpose, but with only the 2019 device being tested in living tissue (brain 

slices) it remains to be seen what issues may arise from their use.  Given sufficient 

advances in microfabrication technology, it is possible that devices intended for the 

brain may take their cues from the state-of-the-art in flexible/mesh recording probes, 

switching out electrodes for cellular scale µLEDs. 

There may be occasions, particularly for research purposes or seizure detection, 

where combining stimulation with recording electrodes would be beneficial. This is 

one of the major variables where µLED devices suffer compared to waveguide-based 

devices. Having both the LEDs and the wiring for LEDs in close proximity to the 

recording wires can cause complex electromagnetic/photoelectric effects, the 

outcome of which is large artefacts in recorded data as LEDs are switched on and off. 

These issues will be explored in more depth in Chapter 6, but have the real potential 

to constrict device use and operating limits. Mitigating these artefacts is thus a major 

focus. Though yet to be published and fully peer-reviewed, a recent in-progress 

publication sets out to minimise these artefacts, through multi-layer metal shielding, 

doping of silicon substrates and careful shaping of the input signals (Kim et al., 2019). 
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A single shank of this optoelectrode has 8 recording electrodes and 3 stimulation 

µLEDs, and was validated in vivo in the mouse hippocampus and found to greatly 

reduce the various forms of artefact. 

As it stands so far, µLEDs offer an excellent option for optogenetic stimulation of 

auditory neurons. Compared to external light-based devices, they currently have 

increased channel counts, brightness, multiple site configurations and spacing, and 

better options for wireless communication. Incorporation of recording electrodes 

poses an issue, but may be overcome with considered probe design. As the focus of 

the field shifts to red shifted opsins for cochlea implants, there is expected to be a 

surge in publications for devices offering high resolution, flexible, red-shifted µLED 

probes. This technology is highly applicable to the brainstem and the midbrain implant 

also. 

Development of Viable Opsin Approaches 

Now that temporal properties have been, to a degree, solved, concern in the 

optogenetic implant community has shifted to other concerns. It would be first 

advantageous to prove the hypothetical increased frequency resolution of optogenetic 

devices. One of the first studies to examine this came from Dieter et al, 2019. By 

stimulating the cochlea optogenetically and recording within the ICC, they found 

optogenetic stimulation often produced comparable spectral selectivity excitation to 

auditory pure tones, especially when compared to electrical stimulation (Dieter et al., 

2019). However, it may be a concern that the stimulation strategies taken were not 

directly comparable (different number of electrodes, different distances along the 

cochlea length) and so while this study provides an excellent starting point, more work 

should be done to validate the results (across multiple auditory centres, if possible). 

Another major concern for a chronic optogenetic devices is the use of blue light and 

its phototoxicity in cells. The lab of Tobias Moser has recently engineered super-fast 

variants of the Chrimson opsin. They are comparable, and perhaps faster, than 

Chronos, whose properties have been described previously– at temperatures of 34 

degrees celcius, the lab quotes a time off of 1.6ms for the vf (very fast) variant, which 

is excellent for use in auditory implants (Mager et al., 2018a). Presented alongside 

the engineering of the Chrimson variants was its validation in vivo – specifically in the 

mouse cochlea. SGN were transfected via AAV, and cells could then be stimulated 

with an optical fibre, producing high fidelity spikes up to 200Hz stimulation rate, which 

is very promising. (Mager et al., 2018b). As it has only become a priority recently, as 



91 
 

of yet there are no µLED devices incorporating yellow/red µLEDs, though the use of 

micro-transfer printing will facilitate their incorporation onto a variety of substrates. 

This is likely to be the focus over the next few years, especially for cochlear implants, 

but will require additional material considerations and optimisation.   

 

1.14 Project Aims and General Hypotheses 

1.14.1 Identified Aims 

In this introductory chapter, the current state of auditory system research has been 

reviewed, with a focus on auditory implants for hearing loss.  There have been several 

areas in which knowledge has been identified as lacking or would benefit from 

variations in the experimental/analytical approaches. 

Firstly, though research is extensive in both the AC and the IC individually, examining 

both areas simultaneously, during complex stimuli and under the same experimental 

conditions, has the potential to increase our understanding of sensory processing as 

a whole, even outwith the context of auditory implants. By continually making direct 

comparisons under similar experimental conditions, results can be viewed more in the 

context of an interconnected system, rather than individual/distinct stages in a 

sensory pathway. 

Comparing the relative response of IC and AC neurons, across multiple trials, time 

bins, and during non-specific natural stimuli, key differences are more starkly 

highlighted, and in turn can either solidify or expand existing knowledge of these 

areas’ coding strategies. The performance of IC implants currently lags behind that of 

cochlear implants, and so any new insights into sound processing in the IC may 

augment speech processing algorithms and stimulation techniques, while also 

supporting or discrediting the use of the AC as a future implant site.   

In particular, the research should focus on natural sound. This has been explored in 

terms of synthetic AM/FM modulated sounds, vocalisations, and entrainment (in the 

cortex at least), but the field may benefit from a general overview and direct 

comparison of each area’s responses on a dynamic, trial-trial basis, using real natural 

sounds comprising of multiple sources (animals, environmental noise etc). Natural 

and multi-layered sound stimuli are the most relevant sound for auditory implants. It 

would also be interesting to compare the behaviour of different cortical cell types 

during the stimuli, to gain more knowledge of their dynamic functions. 
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For improving the spatial resolution of devices, µLEDs have been identified as the 

most promising new technology, with super-fast opsins such as Chronos being 

attractive options. However, their implementation in vivo on such a large scale (i.e. 96 

channel probes), or their use in the auditory midbrain, has not yet been established.  

Thus, the thesis aims to take a two-pronged approach to solve the existing issues with 

auditory midbrain implants, while simultaneously expanding on knowledge of auditory 

and sensory neuroscience. Specifically, the two overarching aims are to: 

• Investigate and directly compare relevant properties of the auditory cortex and 

inferior colliculus during natural sound stimuli, using simultaneous silicon 

probe recordings of neuronal spiking and Local Field Potentials 

• Investigate the viability of an optogenetic approach to auditory midbrain 

implants, through the use of the fast Chronos opsin and a state of the art µLED 

device 

1.14.2 General Hypotheses  

Given existing knowledge of the auditory system’s anatomy and physiology, general 

hypotheses resulting from the thesis aims can be established. 

• AC and IC neurons and neuronal populations will have fundamentally different 

properties. This is well established so many results may be replications 

• The AC and IC will vary in their approaches to encoding natural sound  

Validation of the above hypotheses will be attempted using a variety of analytical 

techniques. The most basic of these includes waveform analysis and Fano factor 

(Chapter 3), but in Chapter 4 will extend to linear classification analysis using spike 

rate and subsequent analysis of these inputs (Fano factor, firing rate, frequency tuning 

etc). In Chapter 5, dimensionality reduction is used in the form of Non-Negative Matrix 

Factorisation to qualitatively compare dynamic population activity in both areas. 

Brain rhythms on the delta and theta scale have been proven to strongly influence 

sound coding in the auditory cortex, particularly for contextually relevant, natural 

sounds. In this thesis, analytical methods are employed to examine the relative 

strengths of LFP in the AC and IC during natural sound, and to look for evidence of 

entrainment at a wide variety of timescales. Global brain state also has a role, at 

longer timescales, and while this is by no means a focus of thesis, some small 
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observations regarding its influence are made. Knowing the influence of brain rhythms 

will also help to new approaches to accurate sound replication by auditory implants. 

From this knowledge, it is hypothesised that: 

• Entrainment to LFP is an important cortical mechanism and will be confirmed 

in the auditory cortex during natural sound. Entrainment in the IC is not well 

supported at present, and given that it is a non-cortical area, observation of 

the phenomenon entrainment is not expected to any significant degree 

• The timescale on which auditory coding takes place is highly important  

These hypotheses are tested by calculating the inter-trial coherence across 

successive trials of the same stimulus in both brain areas (Chapter 3). Entrainment of 

neuronal spiking to LFP is then examined (frequencies 2-200Hz) during both silence 

(spontaneous) and natural sound stimuli in both brain areas (Chapter 3). Briefly, in 

Chapter 5, the potential influence of global brain state is examined. 

In Fano factor analysis (Chapter 3) and linear classification (Chapter 4), trial-trial 

variability and decoding success are examined using a spike rate code over a variety 

of timescales from 10-1000ms, with expected peak performance around 200ms (theta 

range).  

Through employing optogenetics and µLED probes, the project aims provide evidence 

for the viability of an optogenetic approach in fixing the issue of low frequency 

resolution in electrode-based devices. As will become evident, experiments in this 

area did not progress as far as desired, but results can still be explored in the context 

of the original hypotheses: 

• µLED probes, combined with a fast-responding opsins such as Chronos, can 

improve spatial (and thus spectral) resolution of auditory implants. The focus 

will be on the auditory midbrain implant, which is promising but currently 

limited by this and other factors. 

• µLEDs can be employed successfully in the research laboratory, combining 

with existing electrophysiology equipment and utilising easy to use hardware, 

software and providing recognisable outputs to be easily incorporated into 

existing analysis pipelines. 

Chapter 6 is dedicated to exploring these hypotheses and goals. Viral injections are 

optimised to obtain expression of the Chronos opsin throughout the depth of the 
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mouse ICC, in preparation for future µLED experiments. Optical activation is 

confirmed via a surface optical fibre.  A pilot study with µLED probes then, while 

unsuccessful in terms of obtaining data, was nevertheless imperative in establishing 

the system in the lab, with many improvements in hardware, software and analysis 

highlighted for the future. 

1.14.3 Summary of Results 

The main results of each chapter are summarised and linked to the above 

hypotheses. 

Chapter 3 examines both the basic properties of AC and IC neurons, and the 

phenomenon of entrainment. AC and IC neurons are confirmed to be fundamentally 

different in terms of their waveform metrics, spontaneous firing rates and (though the 

evidence was less strong in this chapter) trial-trial variability. AC neurons are clearly 

split into two putative populations, as previously described in literature – broad 

spiking, pyramidal neurons and narrow spiking interneurons. IC neurons are almost 

all “narrow spiking” and cannot be split further. The IC also has a higher spontaneous 

firing rate overall. Cortical narrow and broad spiking cells often differ in their 

properties, which will be discussed in more detail in the relevant chapters. There is a 

tendency for IC neurons to have a lower trial-trial variability during natural sound when 

compared to the AC, though this effect was most strongly seen using channel MUA. 

The Fano factor is generally fairly variable, overall, and also increases with increasing 

time bin. 

Both the AC and IC displayed evidence of inter-trial coherence, though like the Fano 

factor, this was fairly variable across recording channels. Interestingly, the IC displays 

stronger ITC, and for longer, than the AC – possible interpretations of this are 

described in Chapter 3. ITC in the cortex is limited to frequencies less than 20-30Hz 

(as expected), but ITC in the colliculus appears to extend to at least 100Hz. There is 

also a slight influence of channel depth on cortical ITC, with channels closer to the 

putative sink/input layers displaying stronger values. 

Entrainment appears to be present in both the AC and IC, conflicting with the original 

hypothesis. The AC follows expected trends, showing entrainment predominantly at 

frequencies >20Hz (and peaking at 8-10Hz), while like ITC, the IC shows evidence 

up to 200Hz. This is an unusual result, and will be explored in detail in Chapter 3. 
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Entrainment is also lower in strength than expected and seen in less of the neuronal 

population than previous literature has suggested. 

In Chapter 4, linear classification is used as a method of comparing coding strategies 

in the AC and IC, on a range of timescales. Despite a lower number of inputs overall, 

the IC is capable of achieving comparable classification success to the AC.  In 

subsequent analysis, this does not appear to be due to the frequency range covered 

by the population, but potentially by the lower trial-trial variability of IC neurons as 

compared to AC. High noise correlations were indicative of exceptionally poorly 

performing sets, which is logical given the type of analysis. Despite previous evidence 

in the literature, there was no significantly higher classification performance using 

delta/theta time bins, though there was a slight trend. 

Chapter 5 is a largely exploratory chapter, utilising dimensionality reduction in the 

form of Non-Negative Matrix factorisation to identify dynamic populations of neurons 

within the dataset, and to see how, when and how reliably each responds to natural 

sound stimuli.  Datasets were reliably split into a small number of distinct populations, 

responding to different segments of the sound. IC populations appears to be 

tonotopically organised, but other than this, there were no real quantitative differences 

between the areas. Using a single dataset, there was slight evidence for state 

transitions to be visible in the power of some populations, and it was found that the 

putative desynchronised state resulted in better cortical classification performance 

(using linear classification as before). This was not evident in the IC, though state 

determination here was overall less distinct. 

Chapter 6 focused on optogenetics and µLED probes. Coordinates and viral injection 

number/volumes were optimised to express the Chronos opsin throughout the depth 

of the mouse ICC. Optical responses could be elicited with a surface optical fibre, with 

the strength of response decreasing with depth. A µLED control system was 

developed in conjunction with a collaborator at the Institute of Photonics, allowing for 

a range of customised protocols to be run on a 96 channel µLED device (as described 

in the literature review). After designing protocols, a pilot experiment using a ChR2 

mouse and µLEDs in the cortex was run. The experiment was a success in terms of 

the surgery and animal remaining viable, and for the running of the software, but due 

to large electromagnetic/photoelectric artefacts, the data could not be analysed. 

Improvements for protocol and hardware as identified by this pilot experiment are 
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discussed in detail, including the addition of extra shielding, pulse shaping, and 

minimising use of high currents and voltages. 
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Chapter 2 Materials and Methods 

2.1 Breakdown of Auditory Experiments 

This section will detail the materials and methods used within this project. As there 

were both auditory and optical experiments, plus data analysis, the techniques will be 

grouped generally (i.e. “surgical procedures”, “data analysis” etc). Please refer to 

Figure 2.1 and 2.2 that detail which sections of this chapter are relevant for other 

chapters. Auditory experiments were always chronic, typically involve a recovery 

surgery to place a headpost, followed by habituation, craniotomy and awake 

recordings. 

 

Figure 2.1: Flow diagram of auditory experiments. Analysis relevant to each chapter is listed within the 
bottom boxes 
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2.1 Breakdown of Optical Experiments 

Chronos optogenetic experiments could be acute (recording is done anesthetised) or 

chronic (recording is done awake). These involve viral injection surgery (with or 

without headpost) followed by habituation (if appropriate) and optical recording 

experiments. 

µLED experiments were performed on only 1 mouse (plus one for optimisation of 

equipment). Both surgery and recording were performed under urethane anaesthesia. 

2.2 Animal Maintenance 

2.2.1 Ethical Approval 

All animal experiments were performed in accordance with the UK Animals (Scientific 

Procedures) Act of 1986 Home Office regulations and approved by the Home Office 

Figure 2.2 Flow diagram of optical experiments 
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and University’s Ethical Committee.  Specifically, the project was performed under 

Project License PPL70/883, Protocol 2. 

2.2.2 Animal Details 

For simultaneous recording, mice between the ages of 21-55 weeks and of both 

sexes, with a CBA/Ca or a C57BL/6 background. A total of 26 mice were prepared for 

chronic recordings (see Chapter 3 for a breakdown of fates) 

For viral injections, the animals were aged between 8-10 weeks at the time of 

injection, and were of a wild type c57/BL6 background. The mice were majority male 

(3:1) due to the limited availability of mice at specific ages. 8 animals were used to 

characterise the viral expression, with a further 9 used for general optogenetic 

experiments. 

Two mice were used for µLED experiments (one wild type C57BL/6 for optimisation, 

one PV-ChR2, CBA). 

2.2.3 Animal Housing 

Animals were held in cage racks in the University of Strathclyde Biomedical 

Procedures Unit (BPU), in a room with a 12hr/12hr light/dark cycle. 

Animals were housed cages with high cage tops. Food and water were provided ad 

libetum. Animals were group housed as same sex littermates (pairs or triplets) as 

animal availability permitted, with surgeries for all animal in a cage performed on the 

same day if possible. All experiments were performed in the light period. 

2.3  Headcap Manufacture 

Headcap components for later head-fixation of the mouse, and recording of EEG, 

EMG (plus a ground wire) were created manually before surgeries. These were 

sterilised along with surgical equipment. 

The connections between the brain and the ground, EEG and EMG wires of the 

recording rig were realised using a handmade electrical connector/headcap piece. 

Three pins of a black connector strip were cut, and the long pins cut using wire cutters. 

Two pieces of thin single core wires were cut to size (EEG – 1.2cm, Ground – 1.0cm) 

and the insulation stripped from the last 0.5cm and 0.1mm from the opposite end. For 

the EMG recording, a thicker, multicore wire was cut to size (1.0cm), and half of the 

insulation stripped to leave the cores free (plus a small area was exposed on the 

opposite end). For the EEG and Ground wires, the uninsulated 0.5cm was coiled 
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around a small stainless steel skull screw, loose enough so the screw could still rotate. 

Flux was applied to the cut pin side of the connector to aid soldering, and the wires 

soldered onto their individual connection (for arrangement, see Figure 2.3). The 

structure was then covered with dental cement for robustness. The headcap was 

sterilised along with surgical equipment. 

The headpost itself was created by threading two M2.5 nuts onto a screw, and gluing 

together with dental cement, ensuring the resultant two nuts could be removed fully 

from the screw later. The screw aided with positioning and holding during cementing 

procedure, and was then removed at the end of the surgery once cement had fully 

set. 

2.4 Surgical Techniques  

2.4.1  Headpost Surgery 

Chronic Condition 

Animals were anesthetised with isoflurane (1.5%, 0.5-1% maintenance O2 between 

0.8-1l/min), then their head/ear area shaved with an electric razor. The animals were 

then transferred to in a stereotaxic apparatus (SR-5M-HT, Narishige) with mandibular 

or ear bars and breathing apparatus. Breathing and pinch reflexes were monitored 

throughout the surgery and levels of anaesthetic were adjusted accordingly. Body 

temperature was maintained at 37°C by a heat mat and sensor (40–90–8C, 392 FHC). 

Local and long-term analgesia was administered subcutaneously before beginning 

aseptic surgery (Lidocaine 0.05 mL, 2%, on skull surface and Rimadyl, 0.05 mL of 

5%, on the animal’s back). 0.5 mL of warm saline was also administered 

subcutaneously. Eyes were kept moist by administering ointment (Lacri-Lube, 

Allergan). The remainder of the surgery was completed under aseptic conditions 

Figure 2.3: Headcap components. (A) Headcap connector piece. Recording wires are later inserted 
into the metal lined holes on top of the connector. The top screw is EEG, middle is ground and final 

connector is the EMG wire. Exposed metal fibres are fanned out and inserted into the neck muscle. (B) 
Headcap nut – consists of two nuts held together by dental cement (ivory). Screw is used for initial 

manufacture and during the cementation process to the animal’s skull, after which it is removed 
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(autoclaved gown, drapes and surgical tools, plus sterile gloves), and with a 

microscope (SZ51, Olympus). Before placing drapes, work areas (including 

microscope) were sterilised with successive applications of antibacterial spray 

(Trigene), and ethanol (70%). The shaved area was cleaned briefly with ethanol, and 

antibacterial liquid (Betazyne). The skull was exposed with a vertical scalpel incision 

and cleaned with successive applications of ethanol (70%) and H2O2 (3%, to dissolve 

periosteum membrane).  

 Positions for anchor, cerebellar ground and frontal EEG screws were marked using 

callipers and pencil, relative to bregma reference point, then holes drilled with a small 

dental drill, and stainless steel skull screws inserted (see Figure 2.4) and fixed in place 

with dental cement (Simplex Rapid Powder + Liquid, Kemdent), along with a set of 

nuts for later head fixation. The EMG wire was inserted into upper trapezius muscle. 

Figure 2.4: Location of anchor and recording screws for headpost surgery. Small green circle marks 
reference point bregma, dotted black lines indicate skull suture lines. Grey circles indicate position of 

anchor screws. Red circle indicates EEG recording screw, blue circle indicates ground screw. 
Rectangle containing three circles of colours shows the position of the headcap connector, with colours 
indicating to which screw it is connected. The pink connector is connected to the muscle (pink oval) at 

the back of the neck. The large unfilled circle at the front indicates the position of the headpost nut. 
Grey colouring on the skull indicates the rough extent of dental cement coverage. All measurements of 

screw locations are shown relative to bregma and in mm 
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Exposed skull was covered in Kwik-Sil polymer (World Precision Instruments), and 

animal was allowed to recover for at least 5 days before habitation.  

Acute Surgeries 

Headpost surgeries could also be performed acutely, under terminal anesthesia (such 

as for the Chronos pilot study). These were identical to the chronic condition, apart 

from the anesthesia protocol. Please see section 2.3.4 at the end of this surgical 

techniques section for details on urethane anesthesia. 

2.4.2  Viral Injection Surgeries 

Preparation 

Before surgery, glass micropipettes were formed by pulling glass tubes (World 

Precision Instruments) to the correct width with a heating device (Narishige, PC-10) 

and were then filled with mineral oil. Before beginning surgery, the pipette was fitted 

into the microinjector and attached pump (World Precision Instruments, Sys-Micro4), 

held by a motorised stereotaxic manipulator (Narishige, SR-5M-HT). Aliquots of 

rAAV8-syn-Chronos-GFP virus (titre 5.8x10e12 vg/mL, dot blot, Gene Therapy Center 

Vector Core, University of North Carolina) were mixed with fast green dye for 

visualisation during surgery.  

Recovery Surgery 

The animal and skull surface were prepared as described previously for headpost 

fixation, and equipment is set up as in Figure 2.5. Viral injections were performed 

before drilling any holes for headpost fixation. Under sterile surgical condition, 

measurements were made using the stereotaxic manipulator. A small craniotomy was 

made at -5.1mm anterior, -0.9mm lateral from bregma, over the inferior colliculus. 

Sufficient virus for the injection(s) was withdrawn into the micropipette during sterile 

surgery. After confirmation of injection coordinates, the micropipette was lowered over 

to touch the surface of the brain. The equipment was then normalised to 0µm depth. 

The micropipette was then advanced slowly to the deepest injection site and left for 

5-10 minutes at its final depth. The virus was injected at a rate of 30 nL/min, with the 

pipette left in place for 10 minutes after virus had been injected to minimise leakage. 

The pipette was then slowly removed/moved to second injection site and the second 

injection (if being performed) was done in the same way as the first. After both 

injections, the pipette was removed fully, and either the incision stitched up (pilot 
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study, for later acute surgery and recording) or headpost implanted (chronic 

recording). 

Figure 2.5 Viral injection surgery. (A) Schematic of surgery setup. 1 – Motorised manipulator 
base, distances can be manipulated from here. 2 – injector holder. 3 – micro-injector (connected 
to 5), connected to glass pipette. 4 – Light. 5 - micro-injector control unit. 6 – earbars for holding 

mouse in place. 7 – Mouse. 8 – heat mat (controlled by a central unit, not shown). (B) Viral 
injection locations, inferior colliculus. Measurements are given relative to midline. Light blue 

shows locations of duel injections, dark blue is single injection. 
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Conditions for Pilot/Optimisation Study 

Table 2.1 details the 4 injection conditions that were investigated. Animals were left 

to incubate for at least 4 weeks. 

Table 2.1: Optimisation of viral injection coordinates and locations. Table details number of animals, 
injections, volumes and locations. Locations are given in millimetres relative to bregma or midline 

(anterior-posterior/depth/medial-lateral) 

Condition 
# 

Animals 

# 

Injections 

Injection 

Volumes (µl) 
Injection Location(s) 

1 2 1 0.5 -5.1/0.9/-1.0 

2 2 1 0.3 -5.1/0.9/-1.0 

3 2 2 0.4 
-5.1/0.9/-1.3 + -

5.1/0.9/-0.6 

4 2 2 0.2 
-5.1/0.9/-1.3 + -

5.1/0.9/-0.6 

 

2.3.3  Craniotomy for Recording 

Either a day before recording (chronic condition) or during/following non-recovery 

headpost surgery (acute condition), craniotomies were performed to give access to 

the brain surface. 

Chronic Condition 

A day before recording, mice were anesthetised as before and given local and long-

term anaesthesia, and 0.5 mL warm saline subcutaneously as before.  Full sterile 

environment was not required as animal would be perfused within 2-3 days of the 

surgery, however, surfaces and equipment were cleaned thoroughly with ethanol.  

Acute Condition 

After headpost surgery was complete, animals were fixed in place using said 

headpost and equipment turned to allow better access to the appropriate side of the 

skull. 

General Procedure 

After removing the Kwik-Sil layer, the skull was cleaned with saline and ethanol. For 

access to the auditory cortex, a flap of skin and muscle was retracted on the left hand 

side. The desired edges of the craniotomies were pencilled onto the skull (see Figure 

2.5 and Table 2.2). 
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Table 2.2: Craniotomy Locations. All distances are given in millimeters. Ant-Pos: anterior-posterior 
axis, coordinates are relative to bregma. Med-Lat: Medial-Lateral position. Except in µLED, 

craniotomies were performed over the left hemisphere 

Location 

Top Medial Corner 

Ant-Pos/Med-Lat 

(mm) 

Width - Med-Lat 

(mm) 

Length - Ant-Post 

(mm) 

Auditory Cortex -2 / 4 2 2 

Inferior Colliculus -5 / 0 2 1-2 

Cortex (µLED) 0 / 0 2 5 

 

Using a small drill bit, the pencilled edge was slowly worn away, then the flap of bone 

removed with fine craniotomy tweezers.  Note, in later surgeries, the inferior colliculus 

craniotomy was extended forwards across the back suture (see diagram in Figure 2.6, 

grey dotted outline) so that the front edge of the craniotomy was not located along a 

large sinus. This was found to reduce the occurrence of excessive bleeding during 

and after surgery, with the drawback of exposing more of the brain than is strictly 

Figure 2.6: Craniotomy locations for auditory experiments. Grey circles indicate positions of existing 
screws (anchor and otherwise). Black rectangle indicates headcap connector, frontal circular outline is 

position of headcap nut. Grey indicates both new an additional dental cement coverage after this 
secondary surgery. Red dotted rectangles show locations and sizes of craniotomy windows. 

Measurements are given in mm relative to bregma (green circle). Grey dotted outline on posterior 
craniotomy site indicates the size of the window in later surgeries. 
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necessary. Exposed skull and brain were re-covered with Kwik-Sil, 0.5 mL warm 

saline delivered subcutaneously, and the animal removed from anaesthesia and 

allowed to recover (chronic) or moved to a heated cage for transport to recording rig 

(acute).  

2.3.4  Acute Anesthesia 

In the first 8 animals for viral injection (pilot study) and for µLED experiments, 

headpost surgery was performed under terminal anaesthesia (urethane). 

Craniotomies were also performed at this time. 

Animals were terminally anesthetised with urethane (20% in PBS, 1.5g/kg) in a series 

of 3 intraperitoneal injections, spaced 20 minutes apart. After injections, animals were 

prepared for headpost surgery and craniotomy as described previously. Isoflurane 

was usually administered alongside urethane, but at a lower rate (0-0.5l%) and 

breathing rate very closely monitored. 

2.3.5  Post Surgical Care 

After a recovery surgery ended, animals were administered an additional 0.5 mL of 

warm saline (subcutaneous), weighed, and allowed to recover in their home cages, 

with a heat mat heating one half of the cage. Animals were monitored closely during 

and just after recovery from anaesthesia, to ensure there were no signs of excessive 

pain or stress, unexpected mobility issues, and that the animal was able to eat and 

drink. Soft food (baby food) was provided alongside normal pellets in a plastic dish in 

easy reach of the animal. 

Following headpost/viral injection surgery, animals were inspected and weighed at 

least once per day until weight had stabilised (3 days minimum). Close monitoring for 

signs of post-surgical infection continued until the recording stages. 

Following craniotomy, there was an increased risk of bleeding due to the location of 

the IC craniotomy, thus, animals were closely monitored for a few hours post-surgery. 

Animals were recorded from the following day and monitored for signs of pain 

throughout recording. 

2.4 Recording Procedures 

2.4.1  Habituation 

Habituation to head fixation and sound presentation took place for a minimum of 5 

days, in increasing time increments (from 5 minutes up to 1 hour).  Mice were head-
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fixed using the previously implanted nuts and placed in a solid plastic tube (eyes and 

ears free) within a soundproof box, with auditory stimuli played by a speaker directly 

in front of the animal, 10cm away. The habituation/recording setup is detailed in 

Figures 2.8 and 2.9. 

2.4.2 Probe Layout 

For simultaneous recordings, two silicon probes were used (Neuronexus 

Technologies). Details can be found in Table 2.3 and Figure 2.7. The initial 2 animals 

(3 recordings) were completed with 25µm spacing IC probes.  In µLED experiments, 

the 16x4 linear probe was used. Details of the silicon µLED probe will be provided in 

a later section. 

Table 2.3: Silicon probe information. “Area to be recorded” indicates the usual area 

Area to be 

recorded 
Arrangement Name 

Shank 

Spacing 
Shanks 

Electrodes 

per shank 

Electrode 

spacing 

Auditory 

Cortex 
Linear 

A4x16-

6mm-

50-200-

177-A64 

200 µm 4 16 (64) 50µm 

Inferior 

Colliculus 
Linear 

A1x32-

10mm-

50-177-

A32 

N/A 1 32 (32) 50µm 

 

Figure 2.7: Silicon probes (with no shank). Connection pins are located on the reverse side of the 

probe, and plug into amplifier cards. 6 mm and 10 mm refers to the length of the shank 
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2.4.3 Simultaneous Silicon Probe Recordings from Auditory Cortex and 

Inferior Colliculus 

Position of Equipment for Habituation and Recording during Auditory Stimuli  

Sound Calibration 

Figure 2.8: Auditory recording schematics and protocol. (A) Layout of recording equipment. 1 – 
Mouse. 2 – Plastic tube. 3 – Amplifier card for probe. 4 – Connector site for 1x32 linear probe.5 – 

Manipulator for 1x32 probe. 6 – Infrared camera. 7 – EEG/EMG and ground connectors. 8 – Light. 9 
– LED driver. 10 – Speaker. 11 – Camera. 12- grounding wire to equipment. 13 – Connection site for 
4x16 linear probe. (B) Schematic of probe insertion locations. Left – IC, Right – AC. Black = probe. 

(C) Typical timeline of auditory stimulation 
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Calibration files were generated before each recording using a custom program. A 

microphone was placed in the same position as the mouse, and a series of broad 

band noise and puretones of varying intensities played to generate the calibration file. 

This file was then used by the LabVIEW auditory stimuli programs to provide the 

appropriate voltages to the TDT box (Figure 2.9). 

Probe Insertion 

Mice were head-fixed as in habituation (Figure 2.8), and the Kwik-Sil removed. 

Exposed brain surface was kept moist using saline. Neuronal activity in the auditory 

cortex and inferior colliculus was recorded simultaneously with a 64 channel or 32 

channel silicon probe (NeuroNexus Technologies), described above. Probes were 

inserted manually using a micromanipulator (Narishge) under microscope (SZ51, 

Olympus), at a rate of approximately 10µm/s until all electrodes were within the brain. 

Details of equipment location can be seen in Figure 2.8. Probes were then left for 30 

minutes before beginning recording, to allow tissue to settle and spikes to stabilise. 

Mice were monitored with webcams (Baslar/Logitec) transmitting to an external 

computer, and pupil recordings taken if possible. 

Finding Auditory Responses 

As the probe was being inserted, auditory responses were checked to verify the probe 

was recording from the correct area. In brief, after the probe was partially inserted, 

loud broad band noises were played and the output traces examined. Auditory 

responses were characterised by a consistent, strong downward deflection in the LFP 

immediately after stimuli was played. Ideally, this would be seen across all shanks 

(cortex) and along the full depth of the probe (colliculus). 

Data Acquisition 

Broadband signals from the probes were amplified (RHD2132 Amplifier board and 

RHD2000 System, Intan Technologies, LLC) relative to the cerebellar ground skull 

screw, and digitized at 20 kHz (RHD2000, Intan Technologies, LLC). Sync channels 

were output by a DAQ Board (NI USB 6211, National Instruments) into the digitisation 

board. Recordings were supervised by a custom Labview VI (National Instruments). 

For histological verification of probe position, both probes were dipped in DiI 

(Invitrogen, D-282, ~10% in ethanol) before insertion. In total, recordings consisted of 
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98-100 channels (1-2, optical and auditory sync, 3:98 probes, 99-100 EEG screw and 

EMG wire). 

Presentation of Acoustic Stimuli 

After a 20-30 minute period of silence and darkness (for spontaneous activity), 

acoustic stimuli were presented. Acoustic stimuli were generated digitally (sampling 

rate 97.7 kHz, RZ6 Multi I/O Processor, Tucker-Davis Technologies) and delivered in 

free-field through a calibrated electrostatic loudspeaker (ES1, Tucker-Davis 

Technologies) located 10 cm in front of the animal, in a single-walled soundproof box 

(Industrial Acoustics Company) with the interior covered by 2 inches of acoustic 

absorption foam. A typical stimulation protocol is summarised in Table 2.4. 

Figure 2.9: Neural data recording and stimulation equipment. 1- NI DAQ box. 2 – Heat mat controller 
for anesthetised recordings, 3. Intan Amplifier Board.4 – RZ6 Sound Generator box. 5 – LED driver 



 
 

Table 2.4: Typical auditory stimulation protocol 

 

 

 

 

 

 

 

Stimulation 
Sound 

ON time 
Intensity Frequency Reps Duration Description 

Spontaneous N/A N/A N/A N/A 20-30 mins 

No stimulation – dark. For 

assessing spontaneous activity 

of cells 

Broad band 

noise 
100 ms 0-80 dB 

Broad band white 

noise 

0-48 kHz 

50 5 mins 

Bursts of “white noise” containing 

all frequencies. Determining 

hearing threshold 

Pure tones 100 ms 30-70 dB 
3-48 kHz, 1/8 

octave steps 
50 40 mins 

Tones of a single pitch.  

Assessing frequency response of 

cells 

Natural Sound 10 s 65 dB 3-48 kHz, varying 100 20 mins 

Natural sound (animal calls, 

water, leaves…). More natural 

responses to sound 

Click Trains 

5 ms,10 s 

train 

2,4,8,16,3

2,64 Hz 

65 dB 

Broad band white 

noise 

0-48 kHz 

30 20 mins 
Fast clicks of broad band noise. 

For temporal properties 

1
0
0
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Typically, 2 recordings were performed per animal, over 2 consecutive days. The 

craniotomy site was covered with fresh Kwik-Sil between recording sessions. 

A single, 10 second segment of natural sound was used. The stimulus sounded like 

an “auditory snapshot” of a noisy jungle – consisting of overlapping sounds from 

nature (such as rushing water and animal calls). It was not spectrally homogenous or 

periodic, as the sound components could be heard distinctly, were usually transient, 

and were of different intensities (e.g. sudden loud animal call or slow increase in 

leaves rustling). The sound envelope and scalogram of the sound can be found in 

Chapter 3. 

Though several different sound stimuli are applied, not all were used for analysis due 

to time constraints and a strong focus on natural sounds. However, this data (broad 

band noise, click trains) represents a potential source of information for future studies. 

2.4.4 Optogenetic Stimulation of Virally Injected Animals (Inferior 

Colliculus) 

Optic Fibre Positioning 

A modification to the auditory only protocol was made by introducing an optical fibre 

(200 µm core, 0.39 NA, Thorlabs) coupled to a blue LED (465 nm, Plexon). The fibre 

was positioned to be almost parallel with the 32 channel silicon probe, around 100 µm 

above the recording electrodes, so as to illuminate the area of the brain from which 

the probe would be recording from. It was secured to the probe with blutack. 

Probe Insertion 

As described in section 2.4.3, the probe was inserted slowly, and left for 30 minutes 

to settle. Position of the optic fibre was monitored under the microscope – if the fibre 

shifted away from the centre of the probe, the probe was removed and the fibre 

repositioned. Probe was dipped in DiI to facilitate histological evaluation. 

Finding Optical Responses 

Similar to searching for an auditory response, before recording, an optical response 

was searched for. The exposed inferior colliculus surface was systematically probed 

with the silicon probe/optic fibre. The probe was inserted slowly as described, to bring 

the fibre close to the brain surface. The LED was then flashed at a high intensity  

(3-5 V power, for the experiment presented in Chapter 6, approximately 50 mW/mm2 

at 5V, with exact intensity dependant on optical fibre at time of recording), and the 

recorded responses checked by eye for a true optical response (i.e. not an artefact), 
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generally seen as an increase in the firing rate (the trace gets “noisier”) that decreased 

with depth. Light artefacts presented as an upward shift in the LFP for the duration of 

the light. If and when a true optical response was reliably observed, the 

auditory/optical stimulation protocol began. 

Optical Stimulation Protocol 

A protocol similar to the auditory only stimulation previously described was presented, 

with the addition of blue light pulses separately and/or simultaneously with auditory 

stimulation (Figure 2.10). Light stimulation is controlled by an LED Driver (LD-1, 

Plexon), driving the 465 nm LED module outputting to a 200 µm patch cable coupled 

to the optical fibre described previously. The exact protocol is outlined in Table 2.5 

below, with pulse widths being given first for optical stimulation, then auditory. LED 

steps is used to determine a voltage that causes a strong response without excessive 

light artefacts, this shall be termed best V. Stimulations that include auditory and 

optical contain both an auditory only set, then an auditory + optical set, to assess the 

effect of light stimulation on the normal response.  

LED steps presented random combinations of duration (10,25,50,100 ms) and voltage 

(steps of 0.2 from 0.2-1 V, then steps of 0.5 from 1-5 V). Light intensity at the fibre tip 

is calculated in mW/mm2, by taking the surface area of the optical fibre and the power 

emitted at the tip, measured for each voltage by an optical power meter (PM100A, 

ThorLabs).  In the analysis presented in Chapter 6, only the range of 0-1 V is 

Figure 2.10: Optogenetic recording schematic and protocol. (A) Position of recording probe (black) and 
optic fibre (grey, blue light path). Green indicates ideal viral coverage of the ICC. Distances are given 
in mm. (B) Typical stimulation protocol. Single black line = auditory only, blue – optical only, blue on 

black – auditory stimulation is accompanied by simultaneous optical stimulation (see Table 2.5). 
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examined. This gave reasonably responses and sufficient intensity to give some 

depth expression, but with minimal optical artefacts in the recorded data. How this 

intensity increases with voltage in the presented experiment is seen in Figure 2.11. 

 

 

 

 

 

Figure 2.11: Representative relationship of voltage vs intensity at tip of the optic fibre. 0.2-1 V only are 
displayed (each step – small circle), as values above this were generally not used in analysis due to 

artefacts. Relationship is approximately linear, shown by a best fit line 



 
 

Table 2.5: Typical optogenetic stimulation protocol. In trace insets, black – sound, blue – LED illumination 

Stimulation Pulse Width Intensity Frequency Reps Time Description 

LED 100 ms Best V N/A 100 1 min For tagging optically activated cells 

Spontan- 

eous 
N/A N/A N/A N/A 

20-30 

min 

No stimulation – dark, silence. For assessing 

the spontaneous activity of the cells 

LED Steps 10-100 ms 0-5 V N/A 50 25 min 
Varying light intensities – checking 

activation intensity 

Broad band 

noise/LED 
100 ms 

0-

80dB/best 

V 

Broad band 

0-48 kHz 
50 5 min 

Bursts of “white noise” containing all 

frequencies, with simultaneous 

LED. Determining hearing 

threshold 

Click/Light Pulse 

Trains (Slow) 

5 ms (1 s train) 

2,4,8,16,32,64 Hz 

 

65 dB 
Broad band 

0-48 kHz 
30 20 min 

Short bursts of broad band noise, LED light or 

both simultaneously 

Click/Light Pulse 

Trains (Fast) 

1 ms (1s train) 

2,50,100,150,200,250,300 

Hz 

 

65 dB 
Broad band 

0-48 kHz 
30 20 min 

Short bursts of broad band noise, LED light or 

both simultaneously. Assessing Chronos 

properties 

Pure tones/ LED 
100 ms/ 

200 ms 

30-70 

dB/0.6 

3-48 kHz, 1/8 

octave steps 
50 40 min 

Tones of a single pitch.  

Frequency response of cells 

Natural Sound 10 s 65 dB 
3-48 kHz, 

varying 
100 20 min 

Natural sound clips (animal calls, water, 

leaves…). More natural responses to sound 

1
0
3
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2.4.5  µLED Pilot Experiment in the ChR2 Mouse Cortex  

External Hardware and Software Configurations 

As the development of external hardware and software to operate the probe was part 

of the project itself, details of it and its optimisation can be found in Chapter 6. 

µLED Probe Insertion  

The µLED experiment was performed under urethane anaesthesia (20% in PBS, 

1.5g/kg, see Section 2.3.4). Both probes were dipped in DiI. The animal (PV-ChR2, 

CBA) was secured with mandibular bars in the recording rig, as both earbars and a 

normal headcap would have not allowed for µLED insertion, due to the wide probe 

PCB. 

A 64 channel silicon probe (as used previously for the auditory cortex) was inserted 

vertically, on the far left edge of the craniotomy. The µLED probe was inserted at a 

20 degree angle, 400 µm lateral to the recording probe insertion. The final 

configuration can be seen in Figure 2.12. Both probes were left for 30 mins to settle. 

Surface was kept moist with saline. Details of insertion positioned can also be see in 

Figure 2.12. 

Optical Stimulation 

Two protocols were run using µLED probes, as detailed in Table 2.6. A repetition 

includes all available µLEDs. Each intensity (with n repetitions) was run separately 

from high to low intensities. Within each intensity, the order of µLED illumination was 

pseudorandomised at each repetition. 

Figure 2.12: µLED experiment probe configurations. (A) Location of 4x16 channel linear recording 
probe (purple) and 6 shank µLED probe (grey). Distances are given in mm. (B) Side view of planned 

probe insertion distances, colours corresponding to (A). 
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Table 2.6: µLED experimental protocols 

Type of 

stimulation 
Intensities 

Time 

ON (ms) 

Time OFF 

(ms) 

Repetitions 

(each 

intensity) 

Approx. 

Time 

Spontaneous Activity (10 mins) 

Checkerboard 
0, 15, 25, 

50, 100 
5 5 500 ~30 mins 

Spontaneous Activity (5 mins) 

Intensity 
125, 100, 

75,50, 30 
50 150 100 ~1hr 

Spontaneous Activity (10 mins) 

 

2.5 Post Recording Procedure 

2.5.1 Transcardial Perfusion 

After all recordings of any kind, animals were deeply anesthetised with a 50:50 mix of 

lidocaine and pentobarbital, 150µl, injected intraperitoneally. Once reflexes had 

disappeared, animals were perfused transcardially first with room temperature PBS, 

followed by ice cold PFA (4% in PBS).  

Brains were removed and fixed in PFA (4% in PBS) overnight, then transferred to a 

30% sucrose solution for cryoprotection. 

2.5.2 Brain Preparation and Staining 

Brains were sectioned to 80 µm thickness coronal sections using a microtome 

(SM2010R, Leica), after fixing to the stage by covering with embedding matrix (OCT, 

CellPath) and freezing with dry ice (CO2) in the surrounding tray). Sections were 

transferred to 0.1 M PBS, then washed in PBST (1x, 0.1% Triton X, 10 minutes) and 

PBS (x2, 0.1 M, 5 minutes). For both probe track verification, and Chronos expression, 

sections were stained with DAPI (1/5000, Invitrogen) and washed with PBS once 

more. For assessing viral injection spread, anti-GFP staining to enhance the signal 

was not required as the expression was (usually) strong enough to be seen by eye. 

Sections were mounted on glass microscope slides in 1% gelatine and dried 

overnight.  
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Coverslips were covered in Fluromount (Invitrogen) and placed over the slices, left to 

dry and then sealed with nail polish. 

2.5.3 Epifluorescence Microscopy 

Slices were viewed with an epifluorescent microscope (Eclipse E600, Nikon) using 

x4, x10 and x20 objective lenses, and pictures taken with WinFluor (University of 

Strathclyde) and various filters for different colours for each stain (see Table 2.7). 

Images were pseudo-coloured and stacked in ImageJ.  

Summary figures (single slice) of viral expression were obtained by overlaying the 

viral expression pattern at the target coordinate (-5.07 mm from bregma) from each 

animal onto an image of the coronal slice at that coordinate. Multi-slice summary 

figures (showing expression anterior and posterior to the target) were created in a 

similar manner, but for each animal individually, and using only a rough outline of the 

viral expression. 

Table 2.7: Microscope filter and excitation wavelength combinations 

Filter 
Filter Wavelength 

(nm) 

Excitation 

Wavelength (nm) 
Colour 

Measured 

Properties 

TRITC 605-655 530-635 Red DiI 

FITC 515-555 470 Green GFP-Chronos 

DAPI 435-485 364 Blue DAPI 

 

2.5.4 Data Inclusion Criteria - Histological 

After histological analysis,  an animal’s datasets could be excluded from data analysis 

if the probe(s) were clearly not in the target brain area(s) – and so the data was not 

recorded from the correct area. Criteria for dataset inclusion at this stage was that the 

majority of the DiI (i.e. putative probe position) was in the relevant brain area, with the 

area of highest intensity (i.e. the most likely probe location) well within the boundaries. 

For the auditory cortex, the boundaries were the anterior-lateral boundaries of the 

primary auditory cortex (-2.15 mm to 3.63 mm from bregma).  The probe also had to 

be inserted at a suitable angle to hit the full depth of A1, this was judged largely by 

eye by comparing slice features and the atlas. For the inferior colliculus, the dye had 

to be present within the anterior-lateral boundaries of the central nucleus (-4.95 mm 

to 5.31 mm), ideally centred at 5.07 as the ICC fades out quickly on either side. For 

the ICC, the probe also had to be located within the medial-lateral spread 
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(approximately 0.5-1.5 mm). Some deviation from the vertical was allowed, as long 

as the majority of the probe remained within the central nucleus. These coordinates 

were found using a mouse brain atlas (Paxinos and Franklin, 2012) and examining 

the stained brain slices for prominent features in order to find the correct location. 

Medial-lateral measurements for the ICC were completed after taking the image, in 

ImageJ. 

Chapter 3, Figure 3.3 summarises the histology results. One AC dataset was removed 

as the probe was far outwith boundaries, and an IC set was removed as the probe 

was placed too medial. In general, IC anterior-posterior location was good, and 

centred around 5.07 mm as expected. Overall, some leeway was given to positioning, 

as DiI spread is not always consistent/linear (particularly if there were multiple 

insertions) and position was occasionally hard to identify as slices did not fully 

resemble atlas pages (due to unaligned brain cutting, damage during brain removal, 

etc). 

2.6 Data Analysis 

2.6.1 Basic Data Preparation 

Analysis Code 

Unless otherwise stated, the MATLAB scripts used to analyse the neural data were 

developed or used historically within the Sakata Lab. Bespoke scripts to apply core 

functions to the current data were largely written by the researcher. Code can be 

provided upon request. Any relevant native MATLAB functions are provided in italics. 

Raw neurological data was viewed in the Neurotrace program, where all channels 

could be viewed simultaneously. 

Data Inclusion Criteria 

After recording and histology, some datasets were excluded as their quality was too 

low. A low quality recording was one in which there was very little/low amplitude/no 

spiking activity, situations easily identified after spike sorting due to the lack of 

identified units.  This was generally accompanied by “flat” LFP. Recordings with 

excessive muscle noise were also excluded, depending on their severity and success 

of filtering to remove. In general, only datasets containing simultaneous data were 

included, though one high quality AC only, and one high quality IC only, were also 

included. Please see Chapter 3, Figure 3.1 for a breakdown of animals. 



120 
 

Required Files 

All data analysis was performed offline. In MATLAB (Mathworks) sync channels 

(generated during the neural recording in order to record the exact time stimuli were 

presented, relative to the neural activity) were extracted, downsampled to 5 kHz from 

20 kHz, and event files for each stimulus type derived, which contained the exact 

timing information of each stimuli (termed an “event”), relative to the probe data. LFP 

signals were extracted from the probe data with a low pass filter (800Hz) and 

downsampled to 1 kHz.  

Data Structure 

All files relating to each recording were stored in a separate folder. Details of these 

can be found in Table 2.8. Timings (on and off) of each kind of event were extracted 

from the data using the appropriate (auditory or optical) syncchannel , and the order 

and label files (see Figure 2.13). 

Table 2.8: Key data files 

Data File Contents 

Main Folder  

Meta file 
Animal (weight, sex, age etc) and recording details (time of 

recording, probe information, stimuli information) 

dat file 
Main data file containing entire recording, all channels, all 

frequencies, 20 kHz sampling rate 

EEG file Downsampled Data file (1 kHz) 

spikeStruct Contains cluster information, particularly single units 

muaStruct 
Contains spiking information for each recording channel of 

the probe 

Event subfolder  

BBN/Natural 

Sound/Puretones 

– event file 

Timings of each stimulus (ms). Created by using label, order 

and sync pulses. 

BBN/Natural 

Sound/Puretones 

– label file 

Details of each stimulus (frequency, dB, time on etc) 
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BBN/Natural 

Sound/Puretones 

– order file 

Order in which the stimuli were presented 

Sync file 
Corresponds to .dat file, square pulses indicate timing of 

stimuli 

 

2.6.2 General Neuronal Data Analysis 

Spike Sorting 

Spike detection and sorting was performed offline using Kilosort (Pachitariu et al., 

2016) with manual curation performed using the Phy template GUI (Rossant  et al., 

2017). The Kilosort program generates groups (“clusters”) of spikes that it has 

identified as being related to each other. either The user is then required to manually 

classify these clusters as either Single Units (i.e. all spikes are assumed to come from 

the same cell), Multi Units (spikes come from multiple cells) or Noise (“spikes” are not 

from neurons, are instead artefacts). Within the phy template GUI, the user can sort 

through the identified clusters, with the GUI displaying the autocorrelograms, a 

selection of the spikes in context on the recording channels, and the Principal 

Figure 2.13: Event detection schematic. (A) Applied stimuli with detected on/off times (yellow stars, 
denoted t1 etc). (B) Label and order examples. The label file describes each type of unique stimulus, 
then the order files says which stimulus was applied in what order. (C) Applying the known order of 
stimuli to “name” each stimulus that was applied. The created event file has the order of the stimuli 

applied, label number, and on/off time in ms (relative to the start of the data file). 
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Components of that cluster, among other useful metrics. Graphical representations of 

these views can be found in Figure 2.14. 

Single units were defined as displaying a clear, high amplitude waveform 

predominantly on a single channel (spreading to 1-2 channels/50-100 µm on either 

side), having a clear refractory period in the autocorroleogram, and being densely 

clustered and well separated from other units in principal component space 

(representing each spike in terms of its fundamental variables) – see Figure 2.14, red 

and blue. If this was not the case, but activity was clearly not noise (for example, low 

or multiple amplitudes, unclear refractory period, or evidence of >1 cluster in PC 

space), it was sorted as a multi unit (see Figure 2.14, purple).  Partial clusters (e.g. 

single units with abrupt reductions in spiking due to animal movement) were left 

“unsorted” but included in channel MUA, see later. 

Clusters often require merging or splitting due to under or over clustering. The user’s 

classification of each cluster (including any merging or splitting they have done), are 

saved alongside the spike information generated by Kilosort, and can be read, 

converted to MATLAB format, analysed, and further visualised with a combination of 

custom MATLAB code and open source functions, and saved in an appropriate and 

easily accessible format (CortexLab, 2019). Spike waveforms could be extracted and 

averaged from the raw data using recorded spike times for each cluster, and various 

metrics computed and added to the other spike information.  

Single units identified by manual spike sorting were then further judged automatically 

on a variety of cell quality metrics, via a dedicated MATLAB script. The principal metric 

was mahalanobis distance/isolation distance (Schmitzer-Torbert et al., 2005) which is 

Figure 2.14: Principles of spike sorting. (A) Blue and red show single units (well separated spatially). 
Purple shows a cluster composed of at least two units. Black (third column) is noise – present in all 
channels, symmetrical. (B) autocorrelogram of red/blue cells. Note the clear refractory period. (C) 

Coloured cells represented in Principal Component space (red and blue, well separated). Purple is 
clearly composed of two clusters. 
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a measure of how close together spikes in a cluster are – how close spikes are to the 

cluster mean. This was calculated using freely available MATLAB code from the 

Cortex Lab’s GitHub (CortexLab, 2019). An additional measure to find very high 

quality clusters was the contamination rate. This is an estimate of proportion of spikes 

inside the cluster boundary that are not from the cluster (false positive rate).  

Definition and Inclusion Criteria of Single and Multi Units 

For the purposes of this analysis, single units are defined as well clustered units with 

all spikes putatively originating from a single neuron. Single units whose activity did 

not continue for the entire recording (i.e. partial units) were excluded from the single 

unit grouping. To be included in analysis, single units required a mahalanobis distance 

of >=20 and have a spontaneous firing rate of >0.1 Hz. 

Following the spike sorting definition, a multi unit in this analysis within this thesis 

consists of all the multi units (identified by manual sorting), single units (with no quality 

threshold) and partial units on a single channel, essentially defining a small population 

around each channel. Except in a very small minority of cases, multi units as identified 

by manual sorting were localised to a single channel. They were only included in the 

channel that recorded their highest amplitude, which could be extracted from the data 

generated by Kilosort so the spikes were not included on multiple channel MUA. Thus, 

for a 16 channel recording, approximately 16 (channel) multi units were expected.  

This definition of multi units was created in order to have more units in the inferior 

colliculus – all the units around each channel would be being stimulated in auditory 

implants and so it was a logical way of defining population activity. Multi units were 

defined in the same way as the cortex, as it proved to be a good and logical way to 

define a population (in the context of implants and layers) and to utilise as many as 

the recorded spikes as possible. Units created in this way would also be more 

consistent and easier to analyse than regularly defined multi units, which were often 

of low quality. 
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Spike Waveform Quantification 

To compute the properties of each putative cell, up to 200 waveforms were extracted 

at random from the raw data. These were averaged into a single waveform, from 

which various metrics were assessed with a custom MATLAB script. Figure 2.15 

shows the metrics computed. 

Cell Type Classification 

To decide on thresholds for classification into with narrow or broad spiking cells, 

histograms of the following waveform measurements were plotted as histograms to 

look for biomodalities; Peak to Trough Amplitude, 20% width, 50% width, amplitude, 

spontaneous firing rate.  Biomodalities were exhibited in Peak to Trough, 20% and 

50% width (as predicted by literature). Examples will be shown in Chapter 3. Scatter 

plots of P2T vs 20% width, and P2T vs 50% width, were plotted, and basic, two group 

k-means clustering (MATLAB kmeans) was applied to help separate groups. Though 

two clusters were observed for both comparisons, it was slightly clearer in the 

P2T/20% width, and so thresholds for each (0.4, 0.35) were determined and used to 

categorise cells. 

Spontaneous Firing Rate 

The general spontaneous firing rate (i.e. in the absence of auditory and visual stimuli) 

was derived from a 20 minute segment before or after the sound stimuli presentations, 

depending on the dataset (some recordings had less spontaneous activity at the 

beginning). The number of spikes belonging to each neuron/multi unit was divided by 

the time in order to give a spike rate in Hertz. In other instances such as z-scoring, 

spontaneous activity was chosen to be the period of time directly before the stimulus 

was applied, of a length ideally matching that of the stimulus in assessment. Rate was 

calculated by dividing by this time period, as before. 

Figure 2.15: Cell Waveform metrics. Figure shows a typical waveform and what measurements are taken 
to describe it (red lines). P2T is the Peak to Trough time. Metrics are generally reported in mV and ms 
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Assessment of Firing Rate Over Time (PSTH) 

Spikes across all trials of a stimulus (including a period of time before and after, 

relative to the stimulus) were sorted into 5 ms bins to create a Peri-Stimulus Time 

Histogram (PSTH) of activity over the time course of the stimulus. Spike counts were 

then smoothed with a Gaussian kernel (sigma = 5) to obtain a smooth trace of firing 

over time for visualization.  

“Barcodes” of groups of cells/MUA, showing time points of common activity during the 

natural sound stimulus, were also generated. A z-score was obtained for each time 

point, using a baseline firing rate from a period of time preceding each repeat of the 

stimulus.  

If it was >2 (a standard threshold), the value at this time point was incremented by 1. 

After all datasets were included, this resulted in an array where the number at each 

time point indicated how many clusters had an evoked response at that point. This 

was converted into a % of total clusters and displayed.   

2.6.3 Assessment of Best Frequency and Frequency Range 

Due to the limited range of stimuli applied, the characteristic frequency of a neuron 

could not be reliably determined. Thus, best frequency was used in assessing tuning 

characteristics. This was calculated by determining a z-score for each combination of 

frequency and intensity (dB). The z-score represents how far away from the baseline 

firing rate the measurement is, in terms of standard deviations from the baseline. 

𝑧𝑠𝑐𝑜𝑟𝑒 =  
(𝑥−𝑚𝑒𝑎𝑛)

𝜎
                        (2.1)          

Where x = the mean firing rate of the neuron during the presented stimulus/stimulus 

segment, mean is the mean spontaneous firing rate preceding the stimulus 

(determined by averaging the firing rate across each segment of silence preceding 

each repetition of the stimulus) and σ is the standard deviation of the baseline.  

The baseline used was the 100 ms immediately preceding each stimulus. To get a 

better assessment of evoked responses, particularly with brief responses, the spiking 

activity 10 ms-50 ms after the stimulus was taken. Spontaneous and evoked activity 

was translated into spikes/s for comparison despite differences in the lengths of time 

being analysed, and the z-score calculated from this. 

Generally, a z-score threshold of 2 is used to define a neuron as responsive to a 

stimuli (i.e. the neuron’s activity during a stimulus is increased over its spontaneous 
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activity by at least 2 standard deviations of said spontaneous activity).  In the case of 

this analysis, a cell was only assigned a best frequency if at least one stimulus gave 

a z-score of 1.5. This is slightly lower than the standard threshold of 2 but the threshold 

was revised downward after frequent observations of clear (but very brief, around 5 

ms) evoked responses. When averaging this 5 ms response across 40 ms, the 

average spike rate became low and based on z-scoring, the neuron would appear to 

have had no significant response. The lowered threshold allowed for more neurons 

responding this way to be “caught” and included in frequency analysis.  Without 

including a response threshold, including untuned neurons where the “best frequency” 

may be fairly random is risked. The best frequency was then defined as the frequency 

at which the strongest (i.e. highest z-score) was observed. 

Frequency Range 

With the best frequency of each unit calculated, the frequency range of a dataset was 

calculated by looking at the range of frequencies covered by the component cells. It 

was computed in octaves by taking the minimum and maximum best frequency (fmax 

and fmin) found in a dataset’s units, and using the equation: 

𝑜𝑐𝑡𝑎𝑣𝑒 𝑟𝑎𝑛𝑔𝑒 = 𝑙𝑜𝑔2
𝑓𝑚𝑎𝑥

𝑓𝑚𝑖𝑛
             (2.2) 

2.6.4 Current Source Density 

Current source density analysis identifies both current sinks (incoming neuronal 

connections) and current sources (neuronal output) (Freeman and Nicholson, 1975, 

Nicholson and Freeman, 1975). After identifying sinks and sources, and applying 

knowledge of the cortex’s functional arrangement, true depth estimations can be 

made for silicon probe channels.  

EEG data was lowpass filtered at 300 Hz. The following equation was then applied to 

each channel: 

𝐶𝑆𝐷 =
(𝑉𝑎+𝑉𝑏)−2𝑉𝑜

𝑑2                (2.3) 
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Where Vb and Vo are one and two channels away from Va, respectively, and d is the 

spacing between channels. The resultant data had 2 less channels, and no spatial 

filtering was applied beforehand.  

Of particular interest was the main sink channel, cortical layer III/IV (thalamorecipent 

layers, lemniscal central pathway). The strongest sink channel was identified by 

finding the channel with the largest value in the first 50 ms following presentation of a 

stimulus. By setting this channel as depth 0, other channels can be assigned relative 

depths. Following on from this, knowing the strongest channel of each single and multi 

unit, a depth relative to layer III/IV can be assigned. 

Figure 2.16: Current Source Density example. Figure shows a colour scaled CSD over 16 channels, -
50 ms before and 150 ms after an applied stimulus. Red Areas indicate current sink, while blue are 
current sources. ERP traces are overlaid onto the coloured image, with a simple probe schematic 

indicating the probe layout. Putative cortical layers and depths are indicated. 
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2.6.5 Fano Factor 

Calculation of Fano Factor 

The Fano factor is a measure of spike count reliability across trials and was calculated 

thus. 

𝐹𝑎𝑛𝑜 𝐹𝑎𝑐𝑡𝑜𝑟 =  
𝜎2

𝑢
               (2.4) 

Where σ2 is the variance (standard deviation2) of spike rate across trials, and u is the 

mean across trials. The time bin used for the analysis varied – it will be stated in any 

results regarding the Fano factor. 

Correlations between MUA and Fano Factor 

PSTH was calculated across trials (generally, 100), using a range of bin widths. To 

accompany the binned spike rate, the Fano factor was computed for each time bin. 

This resulted in two arrays: MUA over time course of the stimulus (spikes/s), and Fano 

factor over the time course of the stimulus. The Pearson’s correlation coefficient 

between the arrays was then calculated (MATLAB corr). Smoothing generally resulted 

in stronger correlations. A p-value indicating the significance of the correlation was 

calculated simultaneously and used to exclude some values (p < 0.01). 

2.6.6 Natural Sound Decomposition 

The sound envelope was derived using the MATLAB envelope function (Hilbert filter 

length of 500 samples/5 ms). This was then downsampled to 1000 Hz, from 96.4 kHz. 

For visualisation purposes only, the signal was further smoothed with a moving 

average filter (MATLAB, smooth). 

Time/frequency variation of both the sound and sound envelope (scalogram) were 

derived using MATLAB’s cwt function – a wavelet transformation.  Frequency 

components were derived using the Chronux toolbox (Mitra and Bokil, 2008, 

http://chronux.org, 2018). 

2.6.7 Inter-Trial Coherence 

Calculation 

Inter-trial coherence (ITC) was measured as a way of assessing the degree of LFP 

synchrony across successive sound trials. For each LFP channel, data was 

decomposed into frequency components using a wavelet transformation with the 

resulting complex data containing both amplitude and phase information. Wavelet 

data could then be further split into frequency bands as required. To compute the ITC, 
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a bin of 5 ms with a 2 ms overlap was used. For each time bin, data was averaged 

across the bin (1 kHz sampling rate). The complex/phase information was then 

divided by the absolute value of the data, and then summed across trials. This 

absolute value of this summation was divided by the number of trials, resulting in a 

value between 0 and 1 for ITC. If the accompanying phase was not uniformly 

distributed across trials (assessed using Rayleigh’s test), the ITC was said to be 

significant for that time bin. 

𝑏𝑖𝑛 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =
∑ 𝐿𝐹𝑃𝑖

𝑠
𝑖=1

𝑠
       (2.5) 

Where LFP at each sample in the bin (current sample = i) is summed and divided by 

the total number of samples (s).  

𝐼𝑇𝐶𝑏 =  
∑

𝑐𝑜𝑚𝑝𝑙𝑒𝑥(𝑏𝑖𝑛 𝑎𝑣𝑒𝑟𝑎𝑔𝑒)𝑡
𝑎𝑏𝑠(𝑏𝑖𝑛 𝑎𝑣𝑒𝑟𝑎𝑔𝑒)𝑡

𝑇
𝑡=1

𝑇
       (2.6) 

Where T is the number of trials (current trial = t), and ITC is the inter trial coherence 

at that given time bin. This is repeated for all time bins to make a single array, and 

repeated for each LFP frequency band to give the value of ITC over the period of 

sound presentation, for each given LFP frequency band. Code for calculating ITC was 

adapted from EEGLAB (Delorme and Makeig, 2004). 

ITC Depth Distribution 

For the purposes of this analysis, “sink” channels were at -50 µm, 0 µm and 50 µm 

depths relative to the CSD derived sink channel. This is to account for small 

discrepancies in calculated sink channel. 

ITC Metrics 

Two main features of ITC were examined – the mean ITC over sound presentation, 

and the % time spent significant. Note that calculations for the mean ITC did not 

include time points where the coherence was non-significant (Rayleigh’s criterion).  

The metric is thus a measure of the typical strength of the ITC, not its 

pattern/appearance in time.  Data is displayed as medians +/- median absolute 

deviation  

2.6.8 Spike Entrainment 

Base Calculation 

Neurons are known to entrain to LFP oscillations, particularly in the cortex. This 

means that they fire at particular phases of a specific frequency/small range of 
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frequencies (see Figure 2.17). This can be assessed by examining the entrainment 

of isolated single units or our self-defined multi units (i.e. the single units) to a channel 

of LFP at various frequencies. 

Entrainment is assessed for both spontaneous activity (20 minutes at the start or end 

of the recording) and during natural sound stimulation (around 20 minutes with the 1 

second inter-trial intervals removed to make a continuous signal). Entrainment is not 

examined at specific time points of the stimulus presentation, instead, the continuous 

signal is treated as “evoked” data. 

For each unit, the comparison LFP channel is chosen to be +/-8 channels away (i.e. 

400µm) to avoid any interference from spiking on that channel. This LFP is filtered 

into 17 narrow bands of frequencies between 2 and 200 Hz, with the width of these 

bands gradually increasing with increasing frequency (i.e. first band is 2-3 Hz, last 

band is 180-200 Hz). In analysis, bands are defined by their starting frequency.  Filters 

are designed using MATLAB’s designfilt function, specifying “bandpassFIR”, defining 

pass and stop band frequencies using predefined band widths, a stopband 

attenuation of 50 dB, Passband Ripple of 0.01 Hz and a Kaiser Windowing design 

method. 

The phase at each point in the filtered LFP is derived using a Hilbert Transform 

(MATLAB hilbert), and separated into real (amplitude) and complex (angle) 

components. The angle component is converted to degrees. 

The phase in degrees of each spike in a unit is derived using knowledge of spike 

timings relative to the extracted LFP. Spikes are then assigned into 1 of 4 phase bins, 

as detailed in Figure 2.17 and Table 2.9. If the distribution of spikes in each bin is not 

uniform (i.e. most spikes fall into one bin, see Figure 2.17 i), it is deemed a significant 

modulation, as assessed by using Rayligh’s circular stats criterion.  

As well as by the percentage of a unit’s total spikes in each phase, entrainment was 

quantified as “rate difference”. Spikes have been previously sorted into their firing 

phase, and if there is no entrainment/phase preference, 25% of the spikes will fall in 

each phase (see Figure 2.17). The rate difference is then the difference between the 

phase with the highest firing minus the phase 180° away. Thus, if one phase has 40% 

of all spikes, and the opposite bin has 10%, there is a 30% rate difference. 
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Table 2.9: Binning of LPF Phases 

 

 

 

 

 

2.6.9 Decoding Analysis 

Linear Classification 

Linear classification can calculate how well groups of predictors (such as the firing 

patterns of several neurons) can predict which of a range of stimuli was presented. 

Natural sound was used as the stimulus, and was treated in a manner similar to 

Kayser et al, 2012, where a longer natural sound stimulus was cut into 10 random 

sections, of length based on the timescales of various cortical oscillations (Kayser et 

al., 2012). The goal was to compare prediction performance between the AC and IC. 

The general procedure is outlined in Figure 2.18. 

Bin Colour  Start (deg) End (deg) 

1 Red 135 -135 

2 Yellow -135 -45 

3 Green -45 45 

4 Blue 45 135 

Figure 2.17: Entrainment. Top, LFP trace, dotted lines and coloration indicates “bin”. (i) Schematic of 
entrained cell. Purple dots denote hypothetical spikes, underlying histogram indicates the relative spike 
count (fewer spikes shown for clarity). (ii) Schematic of un-entrained cell. Spikes are distributed evenly 

in all 4 bins, as indicated by flat underlying histogram. 
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Firstly, the start and end times of 10 sub-stimuli were selected pseudo-randomly from 

the 10 second presentation of natural sound; these timings were relative to time 0 and 

could occur between 0 and 10. Rarely, there was slight overlap in segments, 

particularly for longer stimuli lengths. As there were usually 100 repetitions of natural 

sound, the selected timings were normalised to the start of each 10 second sound 

Figure 2.18: Prediction of natural sound stimuli through linear classification. (A) Chunking of each 10s 
segment into 10 "stimuli", 10% used to train and 90% to test. (B) Using the single unit or channel 

spikes counts, a matrix is formed and used to train and test the classifier. (C) Chance level is given as 
0.9 – 10% of the time, the classifier is right (i.e. by random chance).  (D) Errors over repetitions show 
a normal distribution. Negative controls are formed by shuffling rows, and give chance level error. (E) 

Positive controls created from a “spontaneous” and an “evoked” stimuli. Bars indicate that the 
classifier could not distinguish between spontaneous (black) and stim 1 (purple), with a 50% error, but 

that it could tell the difference between stim 2 and spontaneous, and was able to predict the correct 

“stimuli” more than 50% of the time 
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stimulus repetition, to in term generate repetitions of the sub-stimuli. These relative 

timings could then be used to extract the neural data for analysis. The following was 

then done separately on each recorded brain area, and for each set of 10 stimuli in 

turn. 

The number of spikes occurring in each of the 10 stimuli, for each repetition, was 

extracted for each of the single units in the area, or the MUA activity on each channel.x 

A “prediction matrix” of (nTrials*nStimuli) x nClusters was thus derived for each 

dataset. 

Linear classification with 10-fold cross validation (MATLAB cp) was then performed 

on the created prediction matrixes (see Figure 2.18). With this approach, 90% of the 

data (i.e. 90 of 100 trials) is used to “train” the classifier, with the remaining 10% used 

to test how well it performs. This gives the decoding performance of the classifier – 

i.e., using the data provided in training, how well can the classifier correctly classify 

the test data? This performance is measured as a Prediction Error. An error of 0 

means the classifier predicted each stimulus perfectly (best performance), while 1 

(100% error), meant it was never correct (worse possible performance). A value of 

90% error (0.9) is chance level – with 10 stimuli, the classifier will choose the correct 

stimulus 10% of the time by chance. 

The process was repeated 150 times with negative/positive controls, and with 

different “stimulus” lengths. 

Negative Controls  

The relationship between predictor and stimulus was disrupted by random stimulus 

and trial shuffling (Fig 2.18D) – i.e. the rows of the prediction matrix were shuffled. 

The expectation was that prediction error would rise to chance level in these controls. 

Positive Controls 

Positive controls were used to ascertain whether or not spontaneous (silent period) 

and evoked data (natural sound) was distinguishable, see Figure 2.18E. Each of the 

10 stimuli of each of the 10 lengths was compared, in binary classification, to an equal 

length of spontaneous activity before the stimulus began. An error of 50%/0.5 

indicates that particular stimulus is indistinguishable from spontaneous activity. 

Positive controls were further quantified for each dataset by examining how many of 

the 10 stimuli were indistinguishable from spontaneous activity 
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Dimensionality Reduction - PCA 

To better compare the two brain areas (each of which had varying numbers of cells), 

Principal Component Analysis was performed to reduce the dimensions of the input 

data. The input data is highly multi-dimensional (a dataset with 20 units has 20 

dimensions over which the data is varying), but it is likely that the variability seen in 

the data can be explained by a few of these.  

In principal component analysis, the original data is transformed into a new set of 

dimensions that are independent from each other, with each dimension (or Principal 

Component) explaining a portion of the variability within the original data. PCs are 

returned in order of their explained variance. Data is also normalised before this 

process so as to be on the same scale – otherwise there is likely to be skewing.  In 

this case of neuronal spiking, variation in the spike trains is explained using weighted 

combinations of the recorded units, essentially defining a population.  

As a conceptual example, 70% of the spike train variation seen in a dataset of 20 units 

may be caused/explained by a combination of units 3, 10 and 16, with 20% explained 

by a combination of units 4 and 12. PCA always returns the same number of PCs as 

original dimensions, but the general approach is to use the PCs needed to explain 

>=80% of the variance. While a small amount of information is lost, the benefit gained 

from having fewer dimensions in computations is desirable. One drawback with the 

basic PCA approach is that it can return negative values, and these are difficult to 

interpret in the context of spike trains and neurons. 

PCA was performing using the MATLAB function pca, using the default “Singular 

Value Decomposition” algorithm. Alongside values for each identified Principal 

Component, there is an accompanying value of explained variance - i.e. how much of 

the variability in the data can be explained by the PC. This variability data is also 

saved, and principal components are sorted in order of high to low explained variance. 

For the purposes of the analysis, both 3 and 5 PCs are used as predictors for 

classification analysis as described above (i.e. the PCs that should explain most of 

the data variance), for direct comparison with the use of all predictors vs the 

dimensionally reduced dataset. 

2.6.10 Pairwise Neuronal Correlations in Natural Sound  

Signal and noise correlations were computed in a pairwise fashion, between all 

possible pairs of units in a dataset. Correlation was computed using the MATLAB corr 
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function, to derive Pearson’s Correlation Coefficient. The correlation for each cell pair 

was then pooled across datasets for each kind of data (i.e. AC SUA, AC MUA, IC 

SUA, IC MUA). 

Signal Correlations 

Signal correlation was calculated by averaging the unit’s response to each stimulus 

across trials, creating an array of 1 x nStimuli to be correlated against that of other 

units. 

Noise Correlations  

Noise correlations during the natural sound stimulus were generally calculated using 

the input matrix to the classification analysis, with each column being one cell and 

each row being the spike rate during one trial of one stimulus (of 10 total). For each 

of the 10 stimuli, the mean spike rate across trials was removed from all trials of this 

stimulus, leaving an estimation of the non-evoked “noise”. This was repeated for all 

10 stimuli, and then the results concatenated together to form a single array for each 

cell/multi-unit, which could be correlated against another unit. 

Pair Characterisation 

Neuronal pairs and their correlations were also split into subgroups for some analysis  

– both location based and cell type based. These are outlined in Table 2.10 and Figure 

2.19.  

Figure 2.19: Cell pairing nomenclature for pairwise correlations. Image shows 4 shank probe schematic. 
Coloured channel pairings and key indicate the naming of cell pairs of which there is a cell on each 

indicated channel. Upper pink background channels are superficial (above and including sink channel) 
and lower blue background channels are deep (below 0) – note the exact sink channel, and thus these 

definitions, will changed based on the dataset 
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Some analysis also involved simple distance measurements – these were calculated 

using relative depth and shank spacing (hypotenuse of the triangle).  

Table 2.10: Definition of cell pair groupings. Relative depth refers to the sink channel identified by CSD. 

Group name Description 

Locational 

Superficial-Local Both cells >0 relative depth, same shank 

Superficial-Distal Both cells >0 relative depth, different shank 

Deep-Local Both cells <=0 relative depth, same shank 

Deep-Distal Both cells <=0 relative depth, different shank 

Superficial-Deep-Local One cell >0, other <=0 relative depth, same shank 

Superficial-Deep-Local One cell >0, other <=0 relative depth, different shank 

Local Any depth, same shank 

Distal Any depth, different shank 

Cell Type 

Broad-Broad-Local Both broad spiking, same shank 

Narrow-Narrow-Local Both narrow spiking, same shank 

Broad-Narrow-Local One broad, one narrow – same shank 

Broad-Broad-Distal Both broad spiking, different shanks 

Narrow-Narrow-Distal Both narrow spiking, different shanks 

Broad-Narrow-Distal One broad, one narrow – different shanks 

Broad-Broad Both broad spiking 

Narrow-Narrow Both narrow spiking 

Broad-Narrow One broad, one narrow 

 

2.6.11 Delta Ratio 

The delta ratio is a metric used to quantify the power of the delta LFP band 

compared to the rest of the LFP spectrum, which is in turn is an indication of global 

brain state (higher delta power ratio – synchronised state). The exact definitions of 

these bands can change, but in this case the ratio between the 0.1-3 Hz band and 

the 0.1-40 Hz band was calculated. The ratio was calculated on a single probe 

channel. The power at each frequency for a given time bin was derived using the 

Chronux toolbox function mtspectrum (Mitra and Bokil, 2008, http://chronux.org, 

2018), and divided to calculate the ratio. 
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2.6.12 Non-Negative Matrix Factorisation 

Pre-Processing of Data 

The base code for the decomposition was very kindly provided by Dr Arno Onken 

(University of Edinburgh). In order to apply the code to the project’s data, additional 

code was written to arrange the data in the required format, with minor adaptations 

made to the base code to facilitate this.With NMF (Lee and Seung, 1999, Onken et 

al., 2016), the aim is to decompose neuronal population activation into “modules” and 

the activation strengths of said modules in time (i.e. time bins during natural sound) 

and space (i.e. individual single/multi units). Spiking timings were discretized into 100 

ms bins, and sorted into trials, so that each trial had 1000 equally spaced bins locked 

to the start of the stimulus. This information could then be shaped into various 

matrices, in order to obtain the desired outcomes. This is another form of 

dimensionality reduction, but unlike PCA, outputs cannot be negative and so it is 

easier to interpret from a neuronal population standpoint. 

Spatial Decomposition 

The aim with spatial decomposition was to gauge the influence of each cell on a 

module, and how that modules changes in time. A matrix of spike counts was created, 

of the size N x T, where N = number of units (variable), and T is the time point 

(trials*number of time bins in a trial, data was concatenated). This then resulted in two 

matrices of N x M, where N = cell and M = modules, and M x T, where the T dimension 

was split back up into trials* time points in a trial to clearly show the activation of each 

module at each point in time, across multiple trials. A graphical representation of this 

is displayed in Figure 2.20A. 

Spatiotemporal Decomposition 

The desired output in this case was to see specifically how each cell contributed at 

any given time point, in more detail than simple spatial patterns. Input was a (N x Tp) 

x Tr matrix, where N = units, Tp = time points in a trial and Tr = trials. This decomposed 

into a M x Tr matrix and a (N x Tp) x M matrix, which was further split into M N x Tp 

matrixes to show the general activation strength of any given cell during each time 

point and in each module, which the M x T shows the variation of this across trials. A 

graphical representation of this is displayed in Figure 2.20B. 
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2.6.13 Optically Evoked MUA Activity 

To obtain a measure of optogenetic activation, raw probe data was filtered with a high 

frequency band pass filter (750-5000 Hz) to exclude low frequency oscillation/some 

light artefacts and keep high frequency spiking activity. This data was then half-wave 

rectified (to make all values positive).  To obtain a single value for MUA activity during 

stimulation, the baseline activity (average activity 50 ms before stimulation) was 

subtracted from the average activity (µV) in the middle of the stimulation (exact time 

dependant on stimulus length). The middle was taken as the start still shows some 

influence of the light artefact. To create the graphs of intensity versus MUA activity for 

each channel, a 3rd order polynomial (polyfit) was fitted to the data and plotted on a 

log x scale.  

Figure 2.20: Input and output matrices in spectral and spectrotemporal decomposition. Arrows 
indicates dimensions of a 2D MATLAB matrix, lengths are provided. Colours denote different 

quantities, secondary colours indicate a combined length of two sub-quantities (i.e. a dimension 
containing trials (red) and stim time (blue) in a single dimension is denoted purple. (A) Spatial 

decomposition. (B) Spatiotemporal decomposition 
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2.6.14 Statistical Analysis 

Data was, in general, non-normal. Data was tested for normality by using a one-

sample Kolmogorov-Smirnov test (kstest, p < 0.05). As such, non-parametric tests 

were usually used, unless otherwise stated. All statistical analysis was performed in 

MATLAB with existing statistical functions (these are listed in italics after their 

associated test). 

For comparisons of two variables of non-normal, unpaired data, a Wilcoxon rank-sum 

test (ranksum) was used. For paired data, the Wilcoxon rank-sign test was used 

(signrank).  For between group comparisons (i.e. comparison of time bins within AC), 

a Kruskal Wallace test was used (kruskalwallis). Multiple comparison post-hoc 

statistics were derived using Bonferroni method (multcompare). P values of < 0.05 

were taken to be significant, unless otherwise stated in the results. 

For comparisons of two variables of normal, unpaired data, a two sample t-test was 

used (ttest2). For paired data, the paired t-test was used (ttest). Threshold was set at 

p < 0.05. 

To compare distributions of data, a two sample Kolmogorov-Smirnov test was 

employed (kstest2), with p values of < 0.05 being significant unless otherwise stated. 

In instances where 2-way comparisons were desired, the data was not normal. The 

2-way ANOVA equivalent, the Friedman test, could be employed, but does not offer 

information on interaction effects.  It is therefore not strictly possible to make 

conclusions regarding interaction effects when examining 2-way data. As an 

alternative, analysis will employ multiple statistical tests with limitations made on 

conclusions. In an example from Chapter 4, Kruskal-Wallis was used to examine the 

effect of time bin within each individual brain area (AC or IC), with individual Wilcoxon 

rank-sum or Wilcoxon rank-sign tests performed for each time bin individually to 

observe the effect of brain area for that time bin only. Conclusions must be carefully 

worded. 

For phase/entrainment analysis information, Rayleigh’s test for circular uniformity was 

employed. A p value of < 0.01 indicated that the phase distribution was not uniform – 

i.e. was biased/skewed, and some level of phase entrainment or phase synchrony 

exists. 

The employed test and p value thresholds will be stated alongside each set of results, 

for confirmation. 
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Chapter 3 Characterisation of Single Neuron and 

Population Activity During Natural Sound, in the AC 

and IC 

Chapter 3 discusses the results of initial analysis of the auditory cortex and inferior 

colliculus during spontaneous activity and natural sound. Section 3.1 provides an 

introduction to the chapter aims, existing literature, and hypothesis. Section 3.2 

provides an overview of data recorded, including surgical success, histology and 

waveform metrics. Section 3.3 looks at the basic appearance of neuronal activity 

during natural sound, including example MUA, a spectral breakdown of the natural 

sound stimulus, and a short study of trial-trial variability during natural sound. Section 

3.4 looks at the inter-trial coherence of LFP during natural sound, comparing between 

areas and cortical depths. Section 3.5 examines evidence of entrainment to LFP 

during spontaneous activity and natural sound . It compares activity between the 

auditory cortex and inferior colliculus, and across several frequency bands, plus cell 

type specific effects. In the final section 3.6, results are briefly outlined and then then 

discussed in the context of existing literature and potential novelty. Finally, limitations 

in the current approach are identified, and future work discussed. 
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3.1 Introduction 

3.1.1 Aims of the Chapter 

This chapter aims primarily to compare and contrast properties of the auditory cortex 

and inferior colliculus (specifically A1 and ICC) during their responses to natural 

sound, in order to inform future analysis and identify functional differences. The focus 

is on lemniscal areas as this is where auditory implants will be inserted. Properties 

relating to natural cell behaviours, particularly during natural sound coding and 

processing, are important for designing and troubleshooting future auditory implants. 

The analysis presented here will primarily focus on comparing general properties such 

as cell metrics, trial-trial variability and levels of entrainment, with comparisons 

strengthened by the simultaneous nature of the recordings. Results from this chapter 

have guided later hypothesises and analysis direction, while also confirming the 

general hypotheses and providing an introduction to the datasets. The paragraphs 

below will set out the rationale behind each analysis, and the resulting hypothesis. It 

should be noted that, at least in the first half, the chapter is meant to serve as an 

introduction to the data, so the questions asked are fairly generalised. The aims of 

this chapter are as follows: 

• To adequately summarise the multi-dimensional data, along with highlighting 

common problems with experiments of this type.  

• To compare the basic properties of neurons in both areas (including spike 

rates and waveform features) 

• Investigate metrics of trial-trial variability in the data, in two brain areas. In 

particular, if the trial-trial variability in the IC is relatively high, this would have 

implications in auditory implant research – implants are unlikely to be able to 

replicate this variability in real time, resulting in potentially less naturalistic 

sound encoding. 

• As a highly important feature of natural sound coding in the auditory cortex, 

entrainment in the AC and IC is investigated during both natural sound and 

spontaneous activity, with the aim to identifying differences 

3.1.2 Relation to Previous Literature 

Trial-Trial Variability 

The variability of brain responses from trial to trial was selected as a subject for 

analysis. A low trial-trial variability indicates a reliability in neuronal responses of that 
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area across successive trials of the same stimulus, while a high variability may 

indicate the presence of external factors or additional, ongoing features on different 

timescales that are being coding simultaneously. The analysis in this Chapter will be 

limited to merely describing any immediate differences between the AC and the IC, 

but Chapter 4 will begin to dissect the underlying mechanisms and functionality. 

Fano factor is a well-established method for examining the trial-trial variability in 

neuronal spike rates, though it is difficult to find literature describing it fully in the 

current context. It has been well investigated with regards to attentional state, with 

synchronisation increasing variability and thus Fano factor (Sakata, 2016, Lombardo 

et al., 2018).  In the presented work, Fano factor is calculated throughout the 10 

seconds of the natural sound stimulus, using a range of time bins, given the multi-

timescales of the natural sound stimulus and the effect of time bin selection on coding 

(Panzeri et al., 2010, Kayser et al., 2012). If natural sound is being coded on particular 

timescales, trial-trial variability is expected to be reduced over these scales. 

Inter-trial coherence quantifies the extent of LFP coherence at different frequency 

bands, between successive trials of a stimulus (Tallon-Baudry et al., 1996, Makeig et 

al., 2004). It is a common marker for auditory neuropathology – as sensorineural 

hearing loss progresses, cortical phase synchrony (as quantified by the ITC) 

decreases (Nash-Kille and Sharma, 2014).  Given the involvement of LFP in the 

phenomena of entrainment, monitoring consistency of LFP is across trials seems 

logical and will offer further insight into coding mechanisms on additional timescales.  

Entrainment 

Entrainment is an important feature of the cortex’s response to naturalistic stimuli, 

enhancing perception of periodic features. Evidence of this is searched for in both the 

AC and IC, and during natural sound and spontaneous activity.  In the AC, current 

literature suggests that entrainment occurs predominantly at frequencies less than 

30Hz, (Kayser et al., 2015), which is logical given the AC’s limit for a phase locking 

temporal code (Zeng, 2002). Given the general acceptance of entrainment as a 

cortical feature, entrainment has yet to be observed in the IC. 

As entrainment is a mechanism of enhancement of sound perception, it is expected 

for it to be prominent at relevant frequencies – this is well established using created 

stimuli/tasks and in human speech (Lakatos et al., 2008, Peelle et al., 2013). In this 

case, the interest is in prominent frequencies of the sound envelope (<30 Hz). 

Currently, most evidence suggests a conservation of levels of entrainment between 
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spontaneous and evoked conditions, at least up to ~20-30 Hz (Szymanski et al., 2011, 

Kayser et al., 2015) .  In this analysis however, frequency bands are extended up to 

200 Hz, which may identify differences.  

By splitting up the cortical cell population into narrow and broad spiking cells, 

differences in levels of entrainment are expected, as putative inhibitory neurons are 

important for contextual adjustment of frequency selectivity (Li et al., 2014, Kato et 

al., 2017). 

Inferior Colliculus Responses to Natural Sound 

The inferior colliculus is well mapped in terms of tonotopic gradient, frequency tuning, 

AM and FM modulation, and periodicity (Schreiner and Langner, 1988, Krishna and 

Semple, 2000, Egorova et al., 2001, Hage and Ehret, 2003, Morrison et al., 2018). 

Natural sound coding in the IC is generally investigated in the context of vocalisations. 

Species-specific vocalisations are strongly represented by specially tuned cells or by 

non-linearities in the tonotopic gradient in several species (Suta et al., 2003, Portfors 

et al., 2009), however, general information about the area’s responses during 

naturalistic stimuli is lacking. A 2017 study examined temporal jitter across trials of 

speech sounds and speech-in-noise in the guinea pig ICC, and found that timing 

differences in the ICC were very low during clear speech, but substantially more 

variable trial-trial when noise was included (White-Schwoch et al., 2017). Unlike in the 

auditory cortex, the effect of brain state on sound coding of the IC is not fully 

understood; while spectral and temporal tuning in the central nucleus is seemingly the 

same in awake animals as it is in the anethetised condition (Alkhatib et al., 2006, 

Langner et al., 2002), there is recent evidence to suggest modulation of neuronal 

activity in the non-leminscal areas of the IC, with spectral tuning selectiviy of excitatory 

neurons being decreased under isoflurane anesthesia (Chen and Song, 2019). With 

these studies however, it must be noted that properties are compared between the 

awake state and anaesthesia, which may not be representative of activity during more 

natural synchronised states (i.e. sleep). As such, the question of IC modulation by 

global brain state remains a largely open question, especially given the multitude of 

non-lemniscal, modulatory connections to the IC from other auditory areas such as 

the MGB and CN that have connections to brain nuclei assisted with state changes 

(Motts and Schofield, 2010, Mellott et al., 2011).  

With the present study, basic properties of the area are examined, such as trial-trial 

variability (in spike rate and in LFP), and any evidence of entrainment.  
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Auditory Cortex Responses to Natural Sound 

The auditory cortex, as a higher processing centre, is more explored in terms of its 

responses to natural sound, with entrainment and phase information proving 

important to encoding of naturalistic sound stimuli as discussed in the literature 

review. One aspect in which this work adds novelty is in the different conditions it 

compares. Previous work compares spontaneous and natural sound (Kayser et al., 

2015) and cell types (Sakata and Harris, 2012, Sakata, 2016), but in the current study, 

all these conditions are investigated simultaneously, with the additional comparison 

of single unit vs population/channel MUA activity and direct comparisons to the IC. 

Interneurons of the AC are responsible for shaping frequency tuning as required, and 

so cells of the AC will often be split into putative excitatory and inhibitory populations 

for further analysis. (Wang et al., 2000, Wu et al., 2008).  

 

3.1.3 Hypotheses 

The auditory cortex and inferior colliculus are fundamentally different structures, both 

in terms of their anatomy, their connections, and their known functionality regarding 

sound processing. These differences should infer variations in the basic properties of 

recorded neurons, and in their properties regarding mechanisms known to be 

important to naturalistic sound processing. This chapter attempts to demonstrate this 

by applying a range of analytical techniques to data recorded simultaneously from 

both areas, and comparing this between brain areas and with results from previous 

literature. The focus is on neuronal behaviour during natural sound, as accurate 

conveyance of this type of sound is crucial for the long-term success and widespread 

adoption of any auditory implant. It is hoped that the properties of IC neurons 

observed here will support the ICC as a promising implant site.  

• AC and IC neuronal population will differ in their basic metrics, including 

spontaneous spike rate, and ability to distinguish distinct cell types 

• Given the clear influence of attentional states on AC excitability and sound 

processing, and existing evidence suggesting that tuning in the ICC is 

unaffected, it is hypothesised that the inferior colliculus neurons will 

demonstrate lower trial-trial variability than the auditory cortex. However, it 

must be acknowledged that IC activity during the spectrum of natural global 

brain states is not yet fully characterised  
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• Literature supports LFP entrainment for frequencies <30Hz, the data is 

expected to confirm that AC entrainment occurs mainly at frequencies less 

than 30 Hz. Observing and confirming true entrainment in the IC will be difficult 

given a lack of previous literature, and would be unexpected, given the areas 

subcortical position  

3.1.4 Main Findings 

• IC neurons have a significantly higher spontaneous firing rate compared to AC 

neurons. A bimodality (indicating both broad and narrow spiking sub 

populations) was present only in the cortex 

• Fano factor and continuous firing rate during natural sound are negatively 

correlated. This correlation increases in strength with time bin, but the overall 

number of units showing the correlation decreases 

• IC Fano factor has a tendency (particularly with MUA units) to be lower than 

comparable AC units 

• ITC is present in both brain areas, being less consistent and weaker in the AC 

and predominantly at frequencies less than 30 Hz. IC ITC appears to be 

present up to 200 Hz 

• Entrainment appears to be visible in both brain areas during both natural 

sound and spontaneous activity. There are no clear or significant differences 

between strength or dominant frequency bands between spontaneous and 

natural sound 

• AC displays entrainment predominantly at frequencies less than 30 Hz. This 

would appear to reach 200 Hz in the IC 

• Narrow spiking cells show a tendency to entrain LFP to natural sound, as 

opposed to during spontaneous activity 

3.2 Basic Properties of Recorded Data 

The data recorded is highly dimensional, comprising of multiple separate recordings 

during which a variety of auditory stimuli were presented. Each recording then 

contains nearly 100 channels of neural data from two brain areas, comprised of the 

activity of hundreds of neurons (each with varying properties) The first step to 

successful in-depth analysis is to first examine the appearance and scope of the data, 

through quantification of basic parameters. More specifically, this serves the purpose 

of introducing the researcher and reader to the range of data obtained. 
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3.2.1 Dataset and Recording Summaries 

The data was first summarised in terms of its very basic properties, surgical success, 

animals, and single units obtained. Understanding the basics of the data may prove 

important later for explaining the analysis techniques chosen (and their relative 

successes). These are presented in Figures 3.1 and 3.2. 

 

 

Figure 3.1: Summary of animals used for simultaneous recordings (A) Age (left, blue) and weight (right, 
green) of all animals whose recordings are used in the present study (N = 15). (B) Pie charts showing 
balance of gender (top) and strain (bottom). Note the grey section indicates a mouse for whom data 

could not be found. (C) Total number of single units isolated from each brain area over 23 recordings. 
A “good unit” (dark green) is defined as having an isolation distance of >= 20, while a “very good unit” 

(light green) also has a contamination rate of < 0.2 
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Figure 3.2: Flow chart of surgeries and experiments. The chart indicates the process of taking each 
animal from initial surgery till analysis of data. Yellow ovals = start or end point, Blue squares indicate a 
procedure, Green diamonds indicate a threshold/decision, pink rectangles indicate data. N = number of 

animals passing each threshold, n = number of datasets  
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A reasonable range of weights is observed across the animals in the study. Higher 

weights are attributable to older CBA animals. It should be noted that older (6 months 

+) c57 mice could not be used, due to the onset of age-related hearing loss – this is 

not present in CBA animals (which were favoured because of this). There is 

approximately a 50:50 gender balance in animals. A total of 451 good units were 

isolated for the AC (an average of 20 per recording), an acceptable number. Far fewer 

units were isolated from the colliculus, despite the channel count being only half that 

of the AC probe. Potential reasons for this will be noted in the discussion section. 

Initial headpost surgery was 100% successful, in that all 28 animals recovered from 

surgery and had no serious post-surgical complications or infection that would require 

culling of the animal (Figure 3.2). The most common cause of no recordings (N = 5) 

was headcap failure, which generally occurred within the first few habituation 

sessions. Failure was usually linked to either screws being inserted to an insufficient 

depth, or dental cement not adhering well (generally due to insufficient cleaning of the 

skull). It should be noted that headcap surgery protocol was altered after 

approximately a third of the recordings were taken, to include an extra anchor screw 

on the far right – this appeared to greatly increase stability and removed headcap 

failure entirely. Another animal loss was due to the animal becoming completely deaf 

following incorrect ear-barring and failed healing of the ear drum. 

More recordings were taken than ultimately used, with some being discarded before 

post recording analysis – sometimes, neither recording from an animal was suitable 

for analysis. The reasons for this were primarily instability, particularly of the colliculus 

recording site. The underlying reasons for this, and measures taken to mitigate, will 

be outlined in the discussion. Low quality datasets were characterised by low numbers 

of single units/spiking activity. Some recordings were also removed from further 

analysis due to persistent high muscle noise, presenting as strong high frequency 

noise that disrupted both spiking and LFP. Analysing these recordings would prove 

difficult due to their inconsistency and would introduce non-biological trial-trial 

variabilities. In total, 23 recordings were obtained, originating from 15 animals 

(including 1 set from a colleague). 

3.2.2 Histological Evaluation 

For the purposes of hypothesis validation and project aims, data was only included if 

a reasonable assumption could be made that it came from the target areas of the 

brain – the primary AC and IC central nucleus.   
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 for traces of DiI which was used to coat the probe. Figure 3.3 displays the estimated 

position and spread of DiI (and so, the probe) in all datasets, with a representative 

image shown for each brain area. 

Due to the spread of DiI, the exact anterior-posterior position could not be determined 

exactly, so was assumed to be roughly in the middle of the spread/where the DiI was 

strongest. The spatial limits of each target area (A1 and ICC) were determined from 

a mouse brain atlas, with probe position measured relative to the midline of the slice 

(Paxinos and Franklin, 2012). Anterior-posterior position was determined by matching 

the slice containing the strongest DiI signal to positions in the atlas, based on visible 

anatomical features (Paxinos and Franklin, 2012). Cortex datasets were included if 

the DiI spread fell well within the limits of the primary auditory cortex – only one 

dataset was removed due to being very anterior (IC recording quality was also poor 

and so the whole simultaneous set was discarded). A colliculus recording was 

discarded due to the probe being too medial and entirely missing the central nucleus. 

In general, IC datasets were included if the majority of the probe appeared to be in 

the central nucleus. Some leniency was granted due to DiI spread and imprecise brain 

slicing, leading to slight discrepancies in feature identification and measurement (this 

explains some included datasets being slightly anterior, Figure 3.3B and C).  
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3.2.3 Comparison of Cell Metrics in the AC and IC 

Particularly in the AC, in which pyramidal cells and interneurons are differentiable by 

their waveform shapes, a summary of single unit properties is the next logical step in 

summarising the recorded data. By measuring properties of the average waveform 

for each single unit (see Materials and Methods), single units in the cortex were split 

into broad and narrow spiking cell types. This classification is utilised in later analysis. 

Spontaneous firing rate is also briefly examined. 

A clear visual bimodality in cortical cells is observed in three of the displayed metrics 

– peak-to-trough (P2T), 20% and 50% width (Figure 3.4A), and non-normality of the 

data was determined using the one-sample Kolmogorov-Smirnov test. Due to the 

clearer distinction, and past literature, peak-to-trough and 20% width were chosen as 

thresholding metrics (Sakata and Harris, 2012, Yague et al., 2017). After observation, 

2 group k-means clustering, and a review of the literature, thresholds of 0.4 (P2T) and 

0.35 (20%) were chosen to separate narrow and broad spiking cells. This resulted in 

a general proportion of 72:28 broad:narrow. This is slightly different from literature, 

which generally reports around 10-15% narrow spiking cells (Sakata and Harris, 2009, 

Yague et al., 2017). In Figure 3.4C,high values of peak-to-trough are due to a bug 

within the MATLAB code that meant peak-to-trough amplitude could very occasionally 

not be calculated correctly – despite considerable time put into investigating the 

cause, the issue could not be adequately resolved.  

The spontaneous firing rates of narrow spiking (NS) cells trend/skew towards higher 

values (Figure 3.4D), and are significantly different from broad spiking cells (p = 

0.0096, Wilcoxon rank-sum test, Median and interquartile ranges: BS – 

7.57/3.41/1.14, NS – 15.39/4.92/1.10).  

Figure 3.3: Summary of probe position (histology). (A) - Anterior-posterior spread of DiI in AC datasets 
passing data quality threshold. Dark blue indicates a dataset that was removed after this evaluation. 
“Error bars” indicate the approximate anterior-posterior spread of DiI. (B) As (A) but for the inferior 

colliculus (C) Medial-Lateral coordinates of DiI appearance in the inferior colliculus. Dark blue indicates a 
dataset that was removed from further analysis (D)Two typical histological images within the given 

coordinates, left: AC, right: IC. Blue: DAPI, red: DiI (probe). Scale bars = 500 µm 
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The inferior colliculus cell population did not display any bimodalities, instead heavily 

trending towards very narrow waveforms. In terms of spontaneous firing rate, the IC 

cell population has a higher spontaneous firing rate (though the AC has lots of outliers) 

– this is seen in Figure 3.4B (median of 3.86 vs 8.42, p = 1.36e-4, Wilcoxon rank-sum 

test).  

Figure 3.4: Cell metrics summary. (A) Distributions of various waveform metrics for cortex cells (top, n= 
451) and colliculus cells (bottom, n = 71). Dotted lines indicate presence of bimodalities (narrow/broad 

split). Insets indicate the measurement on a typical waveform (B) Boxplots of spontaneous firing rate for AC 
vs IC, difference is significant, p = 1.36e-4, Wilcoxon rank-sum test. (C) Scatter plot of cortex and colliculus 
cells showing the presence of two groups. Grey box indicates decided thresholds for narrow (n = 127) and 

broad spiking cells (n – 324). Purple – narrow cortex cells, green = broad cortex cells, black – colliculus 
cells. Inset: pie chart showing proportions of broad/narrow spiking cells in the general cortex population. (D) 
Spontaneous firing rate distribution for broad and narrow spiking cells, star indicates a significant difference 

(p = 0.0096, Wilcoxon rank-sum test). 
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3.3 General Appearance and Variability of Neuronal Spiking 

During Natural Sound 

After summarising the very basic properties of the data, attention is turned to how 

neurons generally behave during naturalistic sound stimuli – as this will be the focus 

of most analysis. After presenting an overview of data appearances, important 

properties are recognised that may explain later results. First, the raw data (MUA 

traces over time) is examined, followed by the trial-trial variability in neuronal 

responses. MUA is chosen as the focus for the majority of this analysis for several 

reasons. There are far more MUA units, capturing more of each areas response that 

individual single units can alone (while still including their contribution). Practically, 

use of MUA means more units in the IC, making analysis of this area a lot easier.  

More generally, it is channel MUA activity that will be elicited using auditory implants, 

and so it has a direct relevance in this regard. The aim of giving an overview of activity 

is better met with the more data is included. 

3.3.1 Natural Sound is Composed of Many Simultaneous Frequency 

Components 

Sound (particularly complex sounds such as environmental noise, wildlife calls and 

human speech), contain variations in both time and frequency domains. Taking a 

typical sound trace, it can be split into the fine detail and the “envelope” of the sound 

(periodicity). Each can then be split further into constituent frequency components, 

changing over time. The brain is known to encode information regarding both 

components of sound, and so a good initial step is to examine the appearance of the 

naturalistic sound stimulus used, so that key time periods or increases in frequency 

band strength can be identified for comparison with later results. 

Figure 3.5 presents scalograms of the sound fine detail and envelope of the 10 second 

natural sound stimuli presented in experiments (previously described in Materials and 

Methods). There are few low frequency components in the fine detail of the natural 

sound. Some transient increases are observed around 64 and 125 Hz, as well as 

patterns in frequencies above this. These increases match nicely with the increasing 

amplitude of the sound envelope (black), as expected. The sound envelope (Figure 

3.5C and D, black outline) contains many low frequency components, again varying 

in strength with the sound envelope. There is almost constant 0-8 Hz activity, with 

some distinct increases in higher frequencies at specific time points (e.g. 4-5 
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seconds). This is likely then to be an interesting timescale to examine in our future 

analysis. 

Figure 3.5: Appearance of natural sound stimuli in time and frequency domains (A) Scalogram of 
sound fine detail, up to 32 kHz. Grey shading within the scalogram indicate sections of the data that 
may be affected by edge artefacts introduced during frequency calculations – data within should be 

treated  as suspect  (B/D) Sound stimuli trace. Fine detail (blue) and smoothed envelope (black), over 
the 10 second stimuli. (C) Scalogram of low frequency sound envelope (sampling rate 1 kHz), up to 

500 Hz  
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3.3.2 Qualitative Correlations of Multi Unit Activity and Sound Envelope  

In an initial analysis of the neural data, the general appearance of high frequency 

(spiking) activity, over the time course of the natural sound stimulus, is displayed. As 

there are peaks and troughs in the sound envelope/amplitude, similar time locked 

increases/decreases in spiking activity are expected. To examine this, a barcode is 

created (see Materials and Methods and Figure 3.6A) of the evoked activity of all multi 

units recorded in each brain area, to highlight any areas of the sound to which the 

majority of neurons are responsive. Alongside this, a small snapshot of individual 

MUA is presented (Figure 3.6C) to highlight similarities and variability. 

 

Figure 3.6: General MUA changes during natural sound stimuli. (A) Brief graphical explanation on how 
barcode was derived from the activity of all units in a population – see also Materials and Methods (B) 

“Barcode” of MUA activity (see Methods) giving an indication of what time points neurons are 
responsive to. Bin size was 5 ms. Colour strength – percentage of all MUA units responding. Top – AC, 

Bottom – IC. (C) Example MUA PSTH over 100 trials, presented as single trace, for 4 example AC 
neurons (1-4) (D) Natural sound fine detail (blue) and envelope (black). 
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From the barcode summary, there are clearly identifiable time periods of neuronal 

activation – as expected, they line up with increases in sound amplitude. Interestingly, 

examining the individual population traces (Figure 3.6B), each responds slightly 

differently. For example, example 2 has a strong (visual) correlation with the envelope, 

whereas example 4 appears to be responding only to specific features of the sound 

(perhaps sharp amplitude increases).  Barcodes of single unit activity show similar 

patterns. This analysis serves to identify the differences in neuronal responses with 

regards to natural sound and is indicative of the presence of dedicated neuronal 

populations. 

3.3.3 The Trial-Trial Variability of Neurons During Natural Sound  

The above analysis provides (essentially) an average response of all the neuronal 

units. However, as the hypothesis is that each brain area is differently affected by 

external factors, it is also beneficial to look at the underlying trial-trial variability to tell 

us more of the story. This is examined over various time bins and includes single units 

as a direct comparison. 

Fano Factor and Trial Averaged Spike Rate are Often Negatively Correlated 

First, it is beneficial to confirm a known phenomenon that in general, as spike rate 

increases, the Fano factor or variability decreases (Mitchell et al., 2007, Qi and 

Constantinidis, 2012). The windowed Fano factor (at 7 bins of increasing size) is 

correlated with the similarly windowed spike rate (PSTH) across the 10 seconds of 

natural sound (Figure 3.7A). A negative correlation is expected, that as the spike rate 

increases, Fano factor decreases. 

It is found that units generally had either no significant correlation, or a negative 

correlation – positive correlations were rare (red bars). The strength of correlations is 

examined further in Figure 3.8, but there are no significant differences in the overall 

distributions shown in Figure 3.7 for no or negative correlations between AC and IC 

(p = 0.8827, 0.1287, Kolmogorov–Smirnov 2-sample), but there was for positive (p = 

0.0275, Kolmogorov–Smirnov 2-sample test), although the overall number was very 

low and likely due to inhibition of a small number of cells. Essentially, AC and IC show 

the same pattern of cells having each type of correlation, over increasing time bins. 

Generally, as the time bin increases, so too does the number of negative correlations. 

At larger time bins in particular, the colliculus sees more negative correlations than 
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the cortex. There are no differences in distribution between MUA or SUA (p > 0.05, 

Kolmogorov–Smirnov 2-sample test).  
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Strength of Negative Fano Factor/Spike Rate Correlations is Variable, but 

Stronger at Longer Time Bins  

Next, overall strength of the significant negative correlations is examined (p < 0.05, 

Pearson’s correlation coefficient), over 6 time bins (Figure 3.8). 

Figure 3.7: Type and number of SUA/MUA and Fano factor correlations. (A) Graphic of how windowed 
activity and Fano factor are obtained (B) Example scatter plot of plot of binned Fano factor against 

binned spike rate (normalised) from a typical cortical multi unit, 200ms bin. Pearson correlation 
coefficients (shown) for each unit are used to derive panel C,D and Figure 3.8 (C) Percentage of AC/IC 
SUA channels (n = 955/177) showing either no (grey), negative (blue) or positive (red) correlations, with 
non-overlapping time bins for MUA and Fano factor calculations. Left – cortex, right – colliculus. (D) As 

above, but for multi units AC/IC (n = 385/66). 

 

Figure 3.8: Strength of negative correlations between PSTH and Fano factor, with increasing time 
window. Top graph, time bins 10, 25, 40, bottom graph time bins 50 100, 200. Significance stars 
indicate significant difference between values (p < 0.025, Bonferroni after Kruskal Wallis. Effects 

between area and unit (i.e. AC SUA vs IC MUA, are not shown). 



159 
 

Correlation strength is quite variable, particularly in small time bins, but this variability 

decreases as bin increases. There is a significant effect of time bin at all input 

conditions (p < 4.51e-24, Kruskal-Wallis). The general trend is that as time bin 

increases, correlation strength increases (with some differences in number of 

overlapping groups depending on the input condition). This is interestingly 

accompanied by an overal decrease in the number of correlations (Figure 3.7). 

There is no significant effect of brain area until later time bins (100 ms+), after which 

the colliclus consistency has a higher correlation, with both single and multi units (p < 

0.025, Bonferroni after Kruskal-Wallis). Regarding single and multi units, the effect of 

these only seems to exist for the cortex, and then only at shorter time windows 

<=50ms (p < 0.025, Bonferroni after Kruskal-Wallis). 

Overall, negative correlations are dominant over positive ones. Correlations are 

variable in strength, but this variability decreases with increasing time window. The 

median correlation strength increases with increasing time bin, but at the same time, 

the overall number of correlations decreases. At longer time bins, the colliclus has 

significantly higher correlation strengths than the cortex, while at shorter bins, cortical 

multi units have a slightly lower correlation than correponding single units. 

This evidence suggests an increase in spike rate is associated, at least with natural 

sound stimulation, with a decrease in overall variability. In particular, it seems that the 

inferior colliclus has a stronger relationship in this regard, indicating a propensity for 

more consistent responses between trials. 

Mean Fano Factor During Natural Sound is Skewed to Values <1 

Next, the Fano factor values themselves are investigated, along with their relationship 

to the sound. Values of <1 might be expected during natural soundindicating a spiking 

distribution less variable than a Poisson process, as neurons as a general rule 

increase their firing above spontaneous activity (often assumed to be a Poisson 

process) in predictable ways during repeated presentations of the same stimulus . 

This is not a hard and fast rule however, and values should be compared relative to 

each other when calculated in the same way. 
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The mean Fano factor was calculated across the whole 10 seconds for all units in 

each condition, in order to show a skewing towards/around 1 and lower, as expected 

(Figure 3.9).  The majority of units lie around or below 1, indicating the decrease in 

variability during the 10 seconds.  Some units show outliers, likely due to a low firing 

rate, overall low evoked response rate, or noisy trials. The proportion above this 

(those with high variability) tends to increase with the size of the time bin as might be 

expected, indicating variability of response is smaller at smaller time bins, but 

increases as bin increases. Thus, overall, Fano factors reduce below 1, indicating a 

decrease in variability associated with the sound stimulus. In addition, as neuronal 

Figure 3.9: Mean Fano factors of single and multi units during natural sound, with increasing time 
window  (A) Histograms of mean Fano factor calculated for each single unit in Top-AC n = 385, 

Bottom-IC n = 66. Pink shaded area indicates Fano factors below 1. (B), as A, but for MUA (cortex n = 
955, IC n = 177). 
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spike rate approaches the refractory period and reaches a saturation point, a 

decrease in variability is expected. 

The range and median of Fano factor are visualised with boxplots in Figure 3.10, as 

well as the proportion of the 10 seconds where the Fano factor was below the baseline 

(usually very close to 1, calculated during spontaneous activity).  

Comparison of Fano Factors between AC and IC Reveal Significant Differences 

in Strength and Time Spent Below Baseline Variability 

Figure 3.10 examines both the raw value of the Fano factors, and the overall time 

spent below baseline (as previously mentioned, this was close to 1). The focus here 

is on the differences between cortex and colliculus, so multi and single units are split 

up and are not directly compared at the present time. 

In Figure 3.10, it is seen that, in general, and particularly for small time bins, single 

units and for the inferior colliculus, median Fano factors sit below 1. There is a trend 

of decreasing variability across the population with time bin size. For MUA, the AC is 

quite commonly at and around 1 rather than below (indeed, much higher at larger time 

bins). This might be due to the higher Fano factors from very few units skewing the 

data, or perhaps a constituent single unit was lost part way through the recording. 

Other potential explanations will be mentioned in the discussion. 

IC Multi Units have Significantly Lower Fano factors than AC Multi Units 

For single units, there is only a single bin where the median value of the Fano factor 

is significantly different higher in the IC compared to the AC (10 ms, p = 0.0297, 

Wilcoxon rank-sum test). From this point, it is hard to identify a clear trend, but it may 

be that the IC Fano factor is generally slightly higher than AC data. 

However, for MUA, IC Fano factor is always lower, and clearly less variable than in 

the auditory cortex (p < 0.0003, Wilcoxon rank-sum test). It can thus be said that the 

evidence for IC activity to be less variable is stronger than the alternative. 

IC Fano Factors Remain Below Baseline Levels for Significantly Longer Periods 

than in the AC 

The time spend below baseline sits around 50-60% for both single and multi units, 

with a reasonably high variability. In single units, all but the first time bin (10 ms) show 

that the Fano factor remains below the baseline for slightly longer than the AC (p 

value < 0.011212, Wilcoxon rank-sum test). In multi units, this relationship is seen for 

all time bins (p < 4.32e-7, Wilcoxon rank-sum test). However, due to the high 
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variability, it may not be appropriate to make strong conclusions about differences 

between AC and IC % time.  

Figure 3.10: Median Fano factor and proportion of time spent below the baseline for single and 
multi units, with increasing time window. (A) Single unit median values in the cortex (red) vs the 

colliculus (blue). (B) Percentage of time spent below Fano factor baseline. (C) As (A), but for MUA 
cortex (purple), and colliculus (green) (D) As (B), but for multi units. Significance stars indicate 

significant differences between AC and IC (p < 0.01, Wilcoxon rank-sum test). 
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3.3.4 Summary of Observations of Neuronal Activity During Natural 

Sound 

The results reported in Section 3.3 are briefly summarised. Firstly, natural sound is 

clearly composed of multiple frequencies, over a wide range. Most neurons displayed 

a sound evoked response to varying degrees, though slight differences in “preferred” 

sections of the sound by individual units may indicate the presence of tuned units or 

populations.  

PSTH traces are often negatively correlated with trial-trial variability (Fano factor), with 

the number of units being correlated decreasing with time bin even as negative 

correlation strength increases. A higher percentage of IC units showed this negative 

correlation, as opposed to the AC. Trial-trial variability during natural sound stimuli 

decreases to varying degrees across single, multi and AC/IC units, with the average 

value across the 10 seconds skewing towards <1 (a Poisson process). It is observed 

that that, at least in multi units, IC units have both a smaller, and a less variable, Fano 

factor than AC units, indicating a trend towards IC neuronal responses being more 

reliable, matching previous observations of negative PSTH/Fano factor correlations . 

3.4 Inter-Trial Coherence of LFP During Natural Sound 

3.4.1 Introduction 

It has just been observed that neurons change their response patterns throughout a 

given natural sound stimulus, and there is generally an accompanying reduction in 

variability. As discussed briefly in the introduction to this chapter, and more 

extensively in the introductory literature review chapter, underlying brain rhythms as 

observed in LFP can, by entraining themselves to sound shape, act as a frame of 

reference for neurons to phase lock their responses to, improve sound encoding and 

thus being a crucial factor in the perception of natural sounds.  As conductors of the 

neural responses, these rhythms are likely to be having direct effects on the variability 

of the neuronal response. To our knowledge, entrainment to LFP is not something 

which has been documented in the inferior colliculus to the same degree as the cortex, 

and so observations will have to be carefully considered. 

Firstly, the inter-trial coherence of channels will be investigated, describing phase 

synchronisation in time across successive trials of the stimulus – does the LFP 

response in a predictable way? The immediate question is of volume conductance 
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skewing the results, and so although data is presented using channel LFP, it was 

repeated for CSD, with only minor differences (to be discussed).  

ITC in the cortex is also investigated at depths, where, working on the current 

assumption that the entraining LFP is not itself generated in the cortex and instead 

comes from external areas, it is expected that this effect to be seen most strongly at 

sink/cortical input channels. For this analysis, CSD was principally used (the effect 

seen was still present using LFP, but weaker). 

3.4.2 ITC can be Observed in Raw LFP Phase Plots 

By plotting raw LFP phase (Figure 3.11), the across trial phase synchrony can be 

observed (to then be quantified by ITC). These can be seen by “stripes” of a single 

phase across all (or most) channels. Breaks are likely due to movement or potentially 

brain state changes (see Discussion). ITC appears sharper in IC, this is a trend 

observed in most datasets showing ITC. AC has a tendency to “break up” and be 

patchy over the trials, despite a general trend for coherence.  There is also a time 

dependency, with the synchrony appearing to correspond to the sound 

amplitude/areas of activity, and particularly at the initial sound presentation. This 

higher variability in response in the AC has parallels in previous Fano factor results. 



165 
 

 Figure 3.11: Example plot of phase across time (two frequency bands). (A) Representation of how  
LFP phase is sorted into 4 bins. (B) Examples of phase coherence at two frequency bands. Top 1-

2Hz frequency band, bottom 2-3 Hz band. Left column - cortex, right - column colliculus. White lines 
indicate start and end of sound stimuli. Orange boxes indicate some sections where LFP trial-trial 

coherence is particularly visible Y axis – trials (1-100). (C) Strength of ITC over time in each shank of 

an example dataset. Shank 1-4 AC, 5 IC 

1 
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3.4.3 ITC is Observed at Different Frequencies and for Varying Periods of 

the Stimulus between AC and IC 

Observation of the raw data would suggest differences between the AC and IC, and 

so next, where the ITC becomes significant is quantified. This includes for how long it 

is significant, and what values it takes during this time (Figure 3.12). 
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The barcodes summarise what has been seen previously, that activity clearly lines up 

with particular segments of the sound. Lower frequency ITC seems less precise, and 

more spread out in time, than those at higher frequencies, which may be responding 

to specific features of the sound (i.e. the three pronged shaped at the start). The ITC 

shown before and after the sound at low frequencies is likely a combination of phase 

resetting effects, and a slight filtering artefact. Figure 3.12B displays the median ITC 

of the LFP from all probe channels, after filtering into a series of frequency bands – 

though these are discrete data points they have been connected together as the 

frequency bands directly neighbour each other. The shaded area indicates the 

interquartile range of the ITC at each given frequency band. The median ITC is 

significantly higher in the inferior colliculus for all time bins, though does show more 

variability (p < 1.79e-32, Wilcoxon rank-sum test).  This difference is especially 

apparent at frequencies above ~20 Hz, where it appears stronger than at lower 

frequencies. A similar effect is seen for time spent significant, shown in Figure 3.12C. 

The percentage of the 10 seconds of stimulus time that the calculated ITC is 

significant (p<0.05) is calculated for each LFP channel (and each filtered frequency 

band), and the median plotted with the interquartile ranges as the shared area. The 

figure shows that colliculus phases are coherent for a larger percentage of the time 

(though the high variability across channels, in actual strength should be noted). 

Though not shown, similar effects are visible if CSD is used as an input, again 

showing a significant difference between areas, but having overall lower strengths 

and larger p values. 

Quantifying the strength of ITC, increased and maintained values are seen in the IC 

over the AC, though it is fairly variable. This will be addressed in the discussion, but 

the exact mechanism/reason behind this is not yet clear. 

Figure 3.12: ITC in the auditory cortex and inferior colliculus during natural sound (A) “Barcode” of % of 
LFP channels at those time points showing significant ITC of any strength (p <= 0.01, Rayleigh’s test 
for circular uniformity). (B) Top – median ITC over 10 seconds of natural sound, for all LFP channels. 
Blue – AC, Green – IC. Bounded lines are shown median+/- interquartile ranges. Significance stars 

indicate significant trends across stimuli length (some omitted for clarity). Points grouped together by 
grey lines and a significance star are significantly different from all other points, but not from each other 
– Bonferroni after Kruskal-Wallis for each brain area. There is always a significant difference between 

AC and IC for all stimuli lengths (not shown, p < 1.79e-32, Wilcoxon rank-sum tests) and are calculated 
for each time bin individually. (C) As above, but detailing the % of time spent significant ITC (p < 4.57e-

30, Wilcoxon rank-sum test).  AC n = 1408, IC n = 672. 
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3.4.4 Cortical ITC Displays a Tendency for a Depth Dependency 

When looking at the example data in Figure 3.11, there is a depth dependence on the 

ITC in the cortex, with an apparent focal point roughly corresponding to the sink 

channel. Using CSD as an input, LFP channels are separated into superficial (above 

sink), sink and deep (below sink) as detailed in Materials and Methods. Sink channels 

are assumed to include those directly above and below the CSD derived sink (i.e. +/-

50 µm). Other distances have also been tested (i.e.100 µm either side) but gave very 

similar results. Results are displayed in Figure 3.13.  
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Again, the ITC (and the proportion of the stimuli for which this is significant) is 

calculated for each channel (and each frequency band) and the median taken of each 

group of channels (classified based on their estimated depth). 

Though interquartile ranges are large, there is a significant effect of channel depth at 

all stimuli lengths (p < 0.05, Kruskal-Wallis). After multiple comparisons, this 

difference is primarily between sink and superficial channels and deep and superficial 

channels (all stimuli significant, p < 1.12e-6, Bonferroni after Kruskal-Wallis). 

Superficial channels have lower ITC. There is only one case where sink and deep 

channels are significantly different (p = 0.0016, otherwise p > 0.1631). 

There is also an effect (p < 0.01, Kruskal-Wallis) for the time spent significant, with 

post hoc comparisons noting that both deep and sink channels are significantly 

stronger than superficial channels (p < 4.83e-8, Bonferroni after Kruskal-Wallis), but 

indistinguishable from each other (p > 0.092) Similarly to the above, ITC occurs less 

often in superficial channels. There is also a trend shown with multiple comparisons 

tests that levels of ITC drop with increasing frequency, something observed in AC 

data previously.  

3.5 Entrainment of Neurons to LFP during Spontaneous 

Activity and Natural Sound  

3.5.1 Introduction  

As discussed in the introduction, LFP is reflective of local network activity, and in a 

phenomena known as entrainment, neuronal spiking is often seen to be oscillatory or 

phase locked to this activity (i.e. the spikes occur predominantly in one LFP phase, of 

a given frequency).  This phenomenon is thought to enhance perception of temporal 

features of the sound – the “up” phase of the LFP reflects an increase in excitability 

of the cells, and these short state changes are lined up with temporal features of the 

sound.  

Figure 3.13: ITC in the auditory cortex over depths relative to cortical sink layer/channel (A) 
Barcodes of ITC for superficial (top), sink (middle), and deep (bottom) channels. (B) Median ITC 
over sound stimulus. Banded lines show median +/- interquartile range). The superficial channels 

are always significantly different from the deeper (p < 1.12e-6 ) and from sink (p = < 7.71e-6). 
Significant star at 2Hz indicates where sink and deep channels are different (p = 0.0016). All stats 
are Bonferroni after Kruskal Wallis. (C) As B, but for time spent coherent. Deep and sink are never 
significantly different. The superficial channels are always significantly different from deeper (p < 
3.25e-10) and from sink (p < 4.82e-8). Number of channels are unbalanced: Superficial – 501, 

Deep – 565, Sink - 182 
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In this section, levels of cellular entrainment to various frequency bands of LFP are 

assessed, in both the AC and the IC, and during both spontaneous activity and natural 

sound. As in previously described literature, it is expected to see entrainment 

occurring preferentially to frequencies relevant to the temporal properties of the 

stimulus (the sound envelope, < 30 Hz) (Szymanski et al., 2011, Kayser et al., 2015).  

Expectations for inferior colliculus data were unclear. What will be presented may be 

the result of strong phase locking (rather than specifically entrainment in the LFP 

sense) in the IC, given than it will be observed up to higher frequencies than 

entrainment has been seen at. This will be discussed further later. 

3.5.2 Illustrative Examples of Entrainment  

The example in Figure 3.14 shows two typical cells - from the AC (top) and another 

from the IC (bottom). Entrainment has been calculated and visualised from data taken 

during the presentation of the natural sound stimuli used in previous analysis – the 

silence between each 10 second stimuli is removed to give continuous data for 

analysis. In both the raw phase distribution plots (grey, left) and the rate difference 

Figure 3.14: Entrainment (illustrative examples). (A) Distribution of spikes with continuous LFP phase 
(Grey histograms), across frequencies 1-80Hz. Green highlights the frequency with highest entrainment 
– i.e. the highest preference for a particular phase. (B) Rate differences at each frequency between high 
and low phases for the example cell in (A) Colour bar indicates proportion of spikes in each phase (C) 
as (A), but for a colliculus cell showing more entrainment and to higher frequencies. (D) As (B), but for 

the colliculus cell shown in (C)  
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plots (right), there is a clear effect of frequency band on the preferred phase. It is the 

rate difference (the differences between % spikes at strongest phase and 180 degrees 

opposite) that is quantified and compared in the coming analysis. 

3.5.3 Summary of Entrainment in the Auditory Cortex and Inferior 

Colliculus 

First, the overall strengths of entrainment are summarised, in order to highlight 

fundamental properties of the data. These are displayed in Figure 3.15. 

Figure 3.15: Proportions of cell populations displaying significant neuronal entrainment (p < 0.01, 
Rayleigh’s test for circular uniformity). (A) Proportion of single unit population (cortex – red, colliculus – 

blue) displaying significant entrainment to during either spontaneous activity or natural sound, at 
specified frequency bands. (B) Breakdown of population showing any entrainment to both spontaneous 

and natural sound (darker colour), spontaneous only (middle colour) and natural sound only (lightest 
colour), for cortex (top, red shades) and colliculus (bottom, blue shades). (C) as (A), but for multi units 
(cortex – purple, colliculus, green). (D) as B), but for multi units (cortex, top, purple shades, colliculus, 

bottom, green shades). (E) Colour key 
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AC cells appear to entrain more often to lower frequencies (< 30Hz), while a similar 

proportion of colliculus cells is entrained at all frequencies. This is consistent with the 

observed limits of synchronisation coding in the AC. Patterns are similar in single and 

multi unit graphs, save that cortical multi units show a higher proportion of population 

entrainment when compared to colliculus at the same frequencies. 

Looking at entrainment to specific categories of LFP, around half (50% SUA, 56% 

MUA) of units recorded show a significant entrainment to at least one form of LFP. 

These proportions are changed in the colliculus, with 71% of IC single units displaying 

entrainment. Overall, slightly more cells are entrained solely to natural sound vs 

entrained solely to spontaneous activity.  

3.5.4 Summarising Entrainment Strength Reveals Differences in Data 

Groups  

Levels and strengths of entrainment are now examined in more detail, quantified as 

rate differences. There is also an interest in the differences between the cortex and 

the colliculus (Figure 3.16). Only the significant modulations (p < 0.05, Rayleigh’s test 

for circular uniformity) are included. 



173 
 

Entrainment is Not Present in All Cells, and is Usually Low Strength 

Overall, less than 40-50% of a population will show any entrainment to a given 

frequency band. Most entrainment appears to be low level (<5%), though at some 

frequencies in the AC (2-10 Hz), this can approach 40%. Entrainment appears overall 

higher in the colliculus, and up to higher frequencies. 

AC Entrainment is Most Dominant at Frequencies <30Hz, While IC Remains 

Consistent Across All Bands  

One distinct trend in the data is for AC entrainment to peak at around theta 

frequencies (~8 Hz), then fall to almost 0 after about 30 Hz. The colliculus, however, 

is reasonably stable across all frequencies. Comparing the distributions, a 2-sample 

Kolmogorov–Smirnov test reveals a significant difference in AC and IC entrainment 

distribution in both single units and multi units (p < 0.035).   At higher frequency bands 

(25 Hz+), entrainment strength matches the distribution and is significantly stronger 

in the IC (see Table 3.1 for exact bands). 

There are No Observable Differences in Entrainment Between Natural Sound 

and Spontaneous Activity 

Between natural sound and spontaneous activity, there are no significant differences 

in distribution.  There is little evidence of a consistent pattern differences at specific 

frequencies or frequency ranges.  

Multi Units have Stronger Entrainment in the Cortex, but not the Colliculus 

Comparing single and multi units, in the cortex, multi units typically have a higher rate 

of entrainment at the cortex relevant frequencies (i.e. < 30 Hz). In the colliculus, there 

were no observable differences between single and multi unit analysis (p > 0.115, 

Wilcoxon rank-sum test). 

Statistical Summary of Differences and Brief Summary 

Table 3.1 states in which frequencies the various conditions displayed significant 

differences, using the appropriate statistical test for the given comparison. All bands 

are included together. 

 

Figure 3.16: Rates of entrainment during spontaneous activity and natural sound stimuli, in the 
auditory cortex and inferior colliculus (A) Single unit cortex (left, n = 225), colliculus (right, n = 50) 

rates of entrainment, during spontaneous activity (top) and natural sound (bottom). Bars show 
levels of entrainment in % of total cell population, for each frequency band. Blue - <5% rate 

difference, Yellow 5-10%, Red 10%+. (B) as A), but for multi units in cortex (n = 580) and colliculus 

(n = 122) 
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Table 3.1: Breakdown of frequency bands showing significant differences between conditions 

Comparison Fs significant differences (Hz) p-values (significant) 

Nat vs Spon   

AC SUA N/A All >0.15 

IC SUA 30,120,140 0.0203, 0.0251,0.0170 

AC MUA 2 4.45e-5 

IC MUA 2,160 0.0039,0.0395 

AC vs IC   

SUA Nat 6, 30-180 0.002 – 0.0459 

SUA Spon 25-40,100-180 7e-5 – 0.0361 

MUA Nat All except 2, 10, 15 1e-11 – 0.018 

MUA Spon All except 10-20 2e-8 – 0.011 

SUA vs MUA   

AC Nat 4-20 2e-6 – 0.0029 

AC Spon 2-20 0.0001 – 0.0231 

IC Nat N/A All >0.115 

IC Spon N/A All >0.138 

 

In summary, entrainment generally occurs in ~40-50% of a given cell population, is 

low level, and see the cortex favouring lower frequencies unlike the colliculus. There 

are no apparent differences in strength between entrainment at spontaneous or 

during natural sound, at any frequency band. Multi units in the cortex have stronger 

entrainment than single units – this is not observed in the colliculus. Table 3.1 reveals 

no particular pattern to differences between conditions (except some general trends 

that were previously described), and so conclusions regarding specific frequency 

dependant effects are difficult. 

3.5.5 Entrainment Properties in Two Cortical Cell Types 

Narrow Spiking Cells are More Likely to be Entrained, but Strength of 

Entrainment is Generally Equal between Cell Types 

As cortical cells can be sorted into one of two types (broad spiking, putative pyramidal, 

versus narrow spiking, putative PV-positive fast spiking interneurons), and that these 
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types have different firing properties and functions, the following analysis examines 

cell type specific differences in entrainment (Figure 3.17). 

Something which is immediately apparent from Figure 3.17 is that, as a population, 

narrow spiking cells are more likely to show entrainment to natural sound or to natural 

sound and during spontaneous activity. In Figure 3.17A, the frequency distribution 

patterns of broad and narrow spiking cells were common only for spontaneous 

activity, and not for natural sound (p = 0.0305, 2-sample Kolmogorov–Smirnov test). 

Despite this, there were no significant differences in entrainment strength for any 

frequency bands, for any condition, between broad and narrow spiking cells (p > 0.05, 

Wilcoxon rank-sum test). 

Figure 3.17: Levels of entrainment across narrow and broad spiking cell groups in the auditory cortex. 
(A) Rate difference bar graphs for each frequency band, for cortex (left) and colliculus (right) during 

spontaneous (top) and natural sound (bottom).  Blue - <5%, Yellow – 5-10%, Red – 10+% rate 
difference. (B) Pie charts showing proportions of entrainment property groups comprising of broad and 

narrow spiking cells. Broad – light purple, Narrow – dark purple 
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Narrow Spiking Cells are Unlikely to Entrain to Spontaneous Activity Alone 

The importance of entrainment in narrow spiking cells is further emphasised in Figure 

3.17B. The general population of cells has a 72:28 balance of broad to narrow spiking.  

However, for the entrained populations, this balance is shifted. For populations 

showing any entrainment, paired entrainment (natural sound and spontaneous) and 

to natural sound only, narrow spiking cells make up a larger proportion. However, 

looking only at cells entrained to spontaneous activity, the proportion of narrow spiking 

shrinks dramatically, especially when compared to natural only (15% vs 40%) This 

would tend to suggest that any given narrow spiking cells is more likely to be entrained 

than a broad spiking counterpart, and that they will favour entrainment to natural 

sound over spontaneous activity. 

3.6 Discussion  

3.6.1 Summary of Results 

In this chapter, the basic properties of the recorded neuronal data were examined, 

followed by comparing and contrasting properties important to natural sound 

encoding. In this way, fundamental differences between the AC and IC have been 

highlighted. 

The initial hypothesis that the AC and IC will differ in the distribution of their basic cell 

metrics was confirmed – though this was entirely expected. There is also some 

evidence of the IC having lower trial-trial variability during natural sound, than the AC 

– and on both and spiking and an LFP timescale. 

In terms of frequency patterns, entrainment in the AC matches literature as expected 

by not being present to any great degree at frequencies greater than 30Hz, but differs 

to a significant degree in terms of overall numbers and strength (Kayser et al., 2015). 

Narrow spiking cells displayed a preference for entrainment to natural sound over 

spontaneous activity alone, not reflected by broad spiking cells. Multi units tended to 

show stronger entrainment than single units, perhaps due to higher and/or more 

consistent spiking. Entrainment in the IC is different, as hypothesised, however, 

results should be interpreted carefully. Single and multi units here were 

indistinguishable. 
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3.6.2 Comparisons to Previous Literature 

Cell Type Proportions 

The bimodality in cell waveform metrics that observed in the auditory cortex data 

mirrors a number of past publications, though the percentage of narrow spiking cells 

(putative narrow-spiking interneurons) observed is almost double that observed in 

studies using similar classification strategies (28% vs 14% (Sakata, 2016)  , 15% 

(Yague et al., 2017) , 10% (Sakata and Harris, 2012) and 8.2% (Sakata and Harris, 

2009)).  The same metrics were used to classify (20% width and peak to trough), 

though thresholds for 20% width were slightly different, and so this may account for 

some of the differences. Some of the cells in the other studies were also recorded 

during anaesthesia, which may have affected results. Additionally, one study used an 

isolation distance of 50, rather than 20as used here, so units were of far higher quality.  

One difference in this study has compared to previous is in the spike sorting software 

used. This chapter uses the newer Kilosort, compared to the older Klusta or 

KlustaKwik. Potentially, this newer software is better at isolating fast spiking neurons. 

Aside from this, there may be additional, unknown biases in the recording or analysis 

procedure which has resulted in the higher proportion, such as consistent over or 

under clustering affecting proportions of certain cell types/appearances. A 

significantly higher spontaneous firing rate is observed in the putative interneuron 

population, suggesting that the classification is to some degree correct. 

As expected, there was no bimodality in ICC cells based on their width – the cell types 

in the ICC are fundamentally different to the AC, and are difficult to differentiate 

without in depth frequency response mapping, or morphological staining.  

Trial-Trial Variability 

Generally, the auditory cortex has a higher trial-trial variability than the inferior 

colliculus, at least for multi units. The recordings were ~20 minutes long, which is long 

enough to observe changes in attentional state, known to affect the trial-trial variability 

in the auditory cortex (Marguet and Harris, 2011). Thus, the relatively higher values 

observed, plus their variability, may be explained by this phenomenon. To the best of 

our knowledge, there are is no existing literature on IC single and multi unit trial-trial 

variability during presentation of natural sound, and no studies directly compare them 

to the auditory cortex during the same stimulus. This is further explored in Chapter 4, 

where this is related to spike rate coding. 
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Inter-Trial Coherence 

Inter-trial coherence has proved, at least in humans, to be an important variable in 

encoding natural sound – thus it is logical that we have observed it in this context, and 

that it is strongest during periods of sound. The cortical ITC is seen predominantly at 

lower frequencies, fitting with what was expected from the literature on LFP 

entrainment and phase locking limits (Zeng, 2002, Kayser et al., 2015). As the ITC at 

the sink channel and below was significantly stronger than in superficial channels, this 

would weakly suggest that the LFP originates from the cortical sink channel and/or 

the layers below this (IV-VI)(with a possible origin thus being the thalamus, given that 

it inputs to layer IV and VI. Again,this researchercould not identify any literature 

discussing ITC in the IC. Care must be taken when interpreting the strong results 

observed in the IC – that coherence is strong in every frequency band up to the 180-

200 Hz band does not have a good explanation. Interestingly, there is slight trend for 

the strength of coherence in lower frequency bands (containing <10 Hz) to be lower 

than that of higher bands. Also, both the strength and time spent coherence is highly 

variable across IC channels. In any case, IC ITC is stronger and clearer than that in 

the cortex, indicating more consistency in the LFP across successive trials and further 

supporting the argument of lower variability during natural sound for the inferior 

colliculus.  

Entrainment 

The results of entrainment in the cortex follow the literature – to a degree. The 

frequencies at which it is strongest, and the overall limit, roughly match what is seen 

in Kayser et al 2015, however, the overall strength of entrainment is far lower (results 

were usually very small, 0-10%, whereas rates of 30% to 60% were commonly 

observed Kayser et al’s study) (Kayser et al., 2015). Additionally, in the auditory cortex 

only 50% (SUA) or 56% (MUA) of units showed entrainment – in a 2017 study, this 

number in single units was 87% (Yague et al., 2017). There is also no appearance of 

a narrow spiking cell preference for higher frequencies as was observed in the same 

study (Yague et al., 2017) – however, it is observed that far more of the narrow spiking 

cell population is entrained, when compared to the broad spiking, and also that they 

are more likely to be active with natural sound alone, or to both natural and 

spontaneous, rather than be spontaneous specific. This is a novel and logical 

observation, and also can be said to extend upon the 2017 observations. 
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Exactly what causes the observed discrepancies is not fully understood. As the  

filtering protocol was identical to the 2015 paper, it may be simply that either the LFP 

or spiking data (or both) is not of consistent quality, resulting in observations being 

harder to make. To determine a significant entrainment, a more conservative p value 

threshold of 0.01 is used, however, 0.05 was also tried and did not add many more 

units. 

Similarly to the ITC, entrainment results in the IC should be interpreted carefully. The 

raw data does appear to be clearly entrained, and an examination of filtered data 

reveals filtering to be working correctly, at least to some degree. A discussion of what 

could be done to improve the reliability of results is found in Section 3.6.3. 

3.6.3 Limitations and Considerations 

Lack of IC Single Units 

One of the main limitations in this analysis, and one that continues in the remaining 

chapters, is the lack of single units recorded from the inferior colliculus – this prompted 

the use of multi units. This has meant that comparison, particularly directly between 

simultaneously recorded neurons, is difficult. The lack of units is thought to be a 

combination of both experimental and analytical factors. From a brief review of the IC 

literature, single channel microelectrodes would even now seem to be the method of 

choice to record single units (Grana et al., 2017, Herrmann et al., 2017), and from IC 

studies using silicon probes, it is found that multi unit analysis is favoured over single 

units (Miyakawa et al., 2013, Schnupp et al., 2015).  A few quotes from the literature 

suggest strongly that the isolation of single units in IC recordings is a common issue, 

or at least inconsistent - though no paper offers an explanation. 

“At most recording sites, multiunit activity was observed, but less frequently the 

responses of well isolated single neurons could be studied” (Malmierca et al., 2008) 

“During most recordings, only 2-4 channels contained single-units. The majority of 

channels contained 0 or 1 well-isolated single units, but some channels contained up 

to 2 single units.” (Shaheen and Liberman, 2018) 

From observation of the current data, a few explanations can be offered. The ICC 

usually has a very strong and sharp evoked response in the LFP, accompanied by 

lots of spiking activity (more so than the AC). It is possible that isolation of single units 

from within this burst of activity is very difficult. There may also be a lot of high 

frequency multi unit noise caused by the background activity, that low pass filtering 
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would not remove – again making isolation of clean single units difficult. During 

manual spike sorting, it was observed that IC clusters were very often strongly 

contaminated in their refractory period. 

Another issue may be more experimental. The IC is located at the back of the skull, 

and was sometimes found to be unstable due to the lack of cement coverage (due to 

muscle directly behind) and nearby anchor screws, plus proximity to the neck muscles 

and shoulders. This could easily result in probe movement, damaging IC tissue and 

cells. An additional anchor screw was added to the contralateral side in later 

experiments, but very medial (~3-4 mm) and also close to the Lamba landmark so as 

to add general stability to the area. This improved stability and eliminated head cap 

failure, but issues with IC data were still somewhat present. 

Fano Factor Discrepancies 

A Fano factor of 1 indicates a Poisson process, or a generally accepted model of 

spontaneous neuronal firing. It was observed that the Fano factor recorded is not 

always around or below 1, and can in fact reach much higher values. As comparisons 

are generally relative, rather than focusing on comparison to specific literature values, 

this is somewhat acceptable for the current chapter, though care must take care when 

comparing results to previous literature. It is most likely due to some single or multi 

units being of lesser quality (missing spikes, for example), or animal movement during 

the period of natural sound. This would lead to some trials having vastly different (i.e. 

lower) spike rates than most, skewing and increasing the variability of the Fano factor. 

It would also have been beneficial to have a reliable way of determining brain state, 

but as pupil monitoring was not done, this additional layer cannot be added. 

ITC in the Inferior Colliculus 

As previously mentioned, caution must be taken in the interpretation of results in the 

ICC. One explanation for the spread of ITC across many frequencies, and its strength, 

may simply be the low quality (or generally less oscillatory nature) of LFP in the ICC. 

As phase analysis will assign phases regardless of relative amplitude of that 

frequency band, it may be that the actual LFP bands are nearly flat, but coincidently 

their phases line up.  The high variability of the ITC in the IC is likely due to firstly, 

some low quality datasets and secondly, some channels not being fully in the ICC so 

having slightly different evoked responses.  
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Entrainment  

As covered, the observations of entrainment differ from recent literature in overall 

number and strength, particularly in the auditory cortex. A small part of this may be 

attributable to a more conservative threshold for significant rate modulation (0.01), but 

this does not explain it all. Other factors may include animal movement during some 

trials, and a low quality LFP in some datasets. The analysis would have perhaps 

benefited from examining each dataset individually, to determine if some were 

skewing results. A threshold for removing “noisy” or bad trials, perhaps determined 

by a relatively lowered spike rate or high power in low LFP may also have cleaned 

results. 

Similarly to the ITC, interpretation of entrainment results in the ICC should be made 

cautiously. While more neurons are entrained, this entrainment is of a similar strength 

and proportion across all frequency bands observed, with any one neuron often 

“entrained” to the majority of bands – this last point in particular may not make sense 

alongside known properties of the ICC, as its neurons appear to have preferred 

amplitude modulation frequencies  (a somewhat related property) (Schreiner and 

Langner, 1988)  Admittedly, entrainment in the ICC has not been investigated and so 

neurons may behave differently in this regard. There are several methods of 

increasing the reliability of results in the future. Firstly, cross validation should be 

introduced to some degree. Secondly, optimisation of filtering so that frequency bands 

are clearly distinguished – currently, there is a very slight overlap in the bands, which, 

while not a strong issue in the cortex, may mean that exceptionally strong ICC evoked 

responses are persisting across many frequency bands as they aren’t being fully 

removed. Thirdly, the number of phase bins could be increased to 8, prioritising 

stronger phase locked responses. 

The entrainment analysis does not look at relationships (i.e. correlations or 

coherence) between LFP and ongoing sound envelope. MUA, spiking variability and 

ITC react during particular periods of the sound stimulus, but the exact nature and 

strength of the relationship has not really been explored. Such analysis would have 

helped to strengthen the claims of entrainment being present (or not), particularly in 

the inferior colliculus. Without fully breaking down the temporal aspects of the sound, 

it may be difficult to distinguish between true entrainment and phase locking. While 

selecting an LFP channel far away from the cell may mitigate this, in the inferior 

colliculus the LFP can be strong in all channels. 
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3.6.4 Functional Implications 

Much of the work in this chapter was confirmatory, thus there are few new implications 

on area functionality to identify. Additionally, due to the lack of data from the inferior 

colliculus, and the unexpected nature of the results, there should be hesitation in 

making strong conclusions or implications at this stage.  

However, there are multiple pieces of evidence that point to the inferior colliculus 

having a lower trial-trial variability during the presentation of natural sound, when 

compared to the auditory cortex (a conclusion further supported by Chapter 4). This 

supports the evidence  presented in the introduction to this chapter and in the 

literature review that the ICC is less influenced by brain state, and maintains reliable 

spike rates despite these shifts in global brain state. Favouring a reliable coding 

mechanism at this crucial auditory processing stage is highly logical – neurons should 

represent the raw sound as faithfully as possible for as long as possible, so that the 

auditory cortex and higher processing centres can together process the data largely 

unbiased. This has implications for the success of IC implants – if sound information 

is conveyed in a predictable way each time, the stimulation pattern of the implant has 

no need to change dynamically. 

Interestingly, the IC has slightly weaker ITC at the lower frequencies that the AC 

favours. Precisely what this means is difficult to assess without further investigation, 

but perhaps the IC has a focus on these higher frequencies for some as yet unknown 

reason. 

Entrainment in the AC was observed, but not to the same degree as previous literature 

(Kayser et al., 2015, O'Connell et al., 2015). That results are not as strong as in 

previous papers may be due to the choice of stimulus and the contextual environment 

for the mouse. Not being required to attend to the stimulus for the purposes of a 

behavioural task, and the sounds not being from mice or specific predators, may have 

reduced the need for entrainment for perception enhancement, particularly as the 

stimulus is repeated for 20 minutes. This supports the idea that the function of 

entrainment is to enhance perception of behaviourally/contextually relevant sounds 

over background noise. In noisy environments (e.g. the “cocktail party”) entrainment 

in the auditory cortex focuses on the most relevant and important stimuli of the current 

context (Zion Golumbic et al., 2013). 
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One of the more interesting observations was the propensity for the narrow spiking 

interneuron population to be entrained to specifically natural sound, or at least not to 

spontaneous activity alone. This speaks to the presence of an interesting dynamism 

in the activity and function of interneuron populations during different levels of sensory 

input, and solidifies their importance for encoding natural sound stimuli. The influence 

of inhibition is apparent during both spontaneous activity (to balance increased 

excitability (Haider et al., 2006)) and auditory evoked activity (i.e. frequency tuning 

(Wu et al., 2008)), but given results observed here, their mechanism of action and 

interaction with other features (i.e. LFP) may differ between conditions.  

3.6.5 Further Work 

Improvements to the Current Research 

Gathering more single and multi units from the inferior colliculus, through further 

improvements to surgery procedure, recording protocols, and spike sorting, would be 

highly beneficial for all aspects of current and future analysis. It would allow more 

robust and statistically significant conclusions to be made. 

The existing analysis may benefit from optimisation, to reduce the effect of artefacts 

and spike identification inconsistencies on the variability of results. This maybe be 

done by designing thresholding systems or ways to identify noisy trials or inconsistent 

single units caused by external processes. More filters may also be incorporated 

along with additional methods to ensure robustness of results, such as cross-

validation.  

Expansions on the Current Research 

One interesting avenue of research is the influence of brain state on the properties 

examined in this chapter. With a reliable method of determining state (i.e. pupil 

monitoring), the effect of state on ITC and entrainment may be investigated. Learning 

more of the effects of brain state on sensory perception would have widespread 

functional implications both for the auditory system and systems neuroscience in 

general. Of particular interest would be the effect of state on broad and narrow spiking 

population activity. 

The trial-trial variability (Fano factor and ITC) may be further characterised by altering 

the definitions of the time bins used. In the presented research, these were locked 

definitively to the stimulus and to each other, but as will be discussed in the Chapter 

4 introduction, it may be that time bins should be dynamic and locked to different 
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aspects of the envelope, or the underlying entraining LFP. An improved performance 

of mathematical models incorporating these dynamic time bins would imply functional 

importance of the phenomenon, and results from such analysis may shed further light 

on the underlying rhythms on which stimuli are encoded. 

The entrainment results presented were generalised to simply “evoked activity”. By 

calculating entrainment at - for example - specific segments of sound, during different 

attentional states, and for new and behaviourally relevant sound stimuli, a clearer 

picture of entrainment’s dynamic role in sound processing may be obtained. 
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Chapter 4 Linear Classification of Natural Sounds 

using Spike Rate in the AC and IC 

In Chapter 4, the analysis of Chapter 3 is expanded, using linear classification to 

decode stimuli from neuron responses in the auditory cortex and inferior colliculus. 

Section 4.1 introduces aims, relevant literature and hypothesis for the chapter. 

Section 4.2 explores the results of linear classification. An overview is first given, 

including an analysis of positive and negative controls, followed by the relationship 

between success and number of input predictors, and how this differs between the 

brain areas. Further analysis in the form of frequency ranges, Fano factor and 

pairwise correlations are also presented in an attempt to explain the classification 

results seen. Finally, in section 4.3, results are related to hypotheses and previous 

literature, current limitations are noted, functional implications are speculated upon 

and suggestions are made for further investigations. 
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4.1 Introduction 

4.1.1 Aims of the Chapter 

In the previous chapter, a broad number of neuronal properties have been examined, 

characterising and contrasting each brain area and linking results to previous 

literature and in the context of auditory implants. While clear differences are noted, 

particularly in ITC and entrainment, their function in neuronal coding is only 

speculated. In this chapter, there are two main aims: 

• Investigate the effectiveness of a simple spike rate code at differentiating 

between natural sound stimuli, in both the AC (A1) and IC (ICC). This will be 

done with simple linear classification, with relative successes being indicative 

of variations in sound encoding strategies and general properties between the 

brain areas, as per the initial hypothesis. 

• Investigate and identify potential mechanisms for any observed differences 

and similarities in model performance, through analysis of model input data 

Knowing this information is important both in the context of auditory implants and 

systems neuroscience in general. If success rates are low using a simple rate code 

and stimulus-locked time bins, it may be that to be most effective, devices in the IC 

will need to diversify or dynamically adapt methods of stimulation, or ideally record 

and incorporate additional information from the brain (i.e. LFP) in order to guide 

stimulation patterns to effectively replicate naturalistic sound in a way that is 

accurately interpreted by higher processing centres. In general, knowing more 

regarding each area’s responses during typical sound stimuli will be beneficial for 

designing the most effective and natural stimulation protocols. 

4.1.2 Relation to Previous Literature and Results 

LFP Influences on Sound Coding  

The evidence is clear that the brain encodes sound using patterns of neuronal activity 

on a range of time scales, each conveying some layer of the information (Panzeri et 

al., 2010). Precisely what governs the neurons on this time scale is still somewhat 

under debate, but as detailed in the literature review and entrainment analysis in 

Chapter 3, underlying LFP rhythms during naturalistic sound (or indeed other forms 

of stimuli) “conduct” the neuronal excitability to enhance encoding. In any case, 

timescales are important. 
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A highly interesting paper on the topic was published by Kayser et al in 2012. In this 

paper, they performed decoding (namely, classification analysis) on a series of 10 

randomly selected epochs of a spike train generated during a 52 second naturalistic 

sound stimulus. The information in these epochs was either left as a simple spike rate, 

or partitioned – either into equal time bins locked to the epoch, or by the underlying 

phase of LFP at various frequencies. Incorporating this extra information (particularly 

phase) resulted in better classification performance, adding weight to the hypothesis 

that LFP is imperative for guiding neuronal spiking. A theta reference frame proved 

most effective. In this chapter, a similar (albeit simpler) approach is taken to examine 

IC responses alongside AC and perform additional analysis on inputs to explain 

results. 

It is also known from the literature review that the brain has a range of encoding 

mechanisms for frequency and periodicity information outside of entrainment, 

including phase locking, rate codes, and tonotopy/periodtopy, spike latencies, and 

population patterns/interactions. Without recording electrodes and feedback loops 

within stimulation devices, this cannot be replicated at present.  

In auditory implants, the aim is to convey as much of the sound information with as 

little latency and as much accuracy as possible. At the very least, for devices to be 

functional, contextually relevant stimuli should be clearly differentiable. In this 

Chapter, another aim is to ask how effective a simple spike rate code is at 

differentiating between naturalistic stimuli. Instead of time or phase partitioning the 

data, the simple spike rate of units is used, during the 10 randomly selected epochs 

from the 10 seconds of sound. Only basic linear classification is used, as a baseline 

for future analysis, and to avoid the excessive computation time other methods may 

require. A range of stimuli lengths is examined, between 25 ms and 1000 ms, given 

the apparent importance of certain frequencies. 

Where the study matches and expands upon previous analysis is in the comparison 

of results across time bins, input data types (i.e. SUA and MUA) and brain areas, and 

in the subsequent analysis of the input data in an attempt to highlight the various 

mechanisms and approaches at play. Focusing on the auditory cortex, there is the 

opportunity to split data in broad and narrow spiking cells and compare their results. 

Classification Analysis 

Classification (linear or otherwise) is a commonly used decoding technique to identify 

distinct neuronal responses are between discrete stimuli, and by changing input types 
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and timescales, different aspects of coding can be examined.  In auditory research, it 

has proven to be a good tool for examining the brain’s response to different natural 

sounds, such as auditory scene analysis (Staeren et al., 2009), speech phonemes 

(Mesgarani et al., 2008), speech/music versus other natural sounds (Zuk et al., 2019), 

letters (Wang et al., 2018), sound envelope shapes (Osman et al., 2018), and in 

segmenting a single segment of natural sound, as has been discussed (Kayser et al., 

2012). These studies can utilse both high (spiking) and low (LFP/EEG/MEG) 

frequency activity. More generally, classification-based methods have been used to 

look at memory (Dong et al., 2016), distinguish responses using µLED probes (Scharf 

et al., 2016), and in automated “scoring” of the current sleep state (Rytkonen et al., 

2011) – to name but a few examples. Thus, given the extensive history of 

classification methods for this kind of data and questions being asked, it seems a 

highly appropriate analysis for this chapter. 

Influences of Trial-Trial Variability 

Given what was observed in Chapter 3, and in the literature review, trial-trial variability 

in the cortex appears to be larger than subcortical areas (e.g. IC), and is known to be 

modulated by brain state (Marguet and Harris, 2011, Sakata, 2016). The effect of 

brain state on IC activity is less clear, as described in the introduction of Chapter 3 – 

briefly, while ICC frequency tuning is seemingly unaffected by state, this is not the 

case in the non-lemniscal areas (Chen and Song, 2019, Alkhatib et al., 2006, Langner 

et al., 2002). In addition, current literature is based on awake versus anaesthesia and 

not more natural brain states, and the IC is connected to other auditory nuclei with the 

potential for brain-state dependant modulation. In the current task of passive listening 

to natural sounds, it is expected that brain state will change over the time of 

presentation, influencing cortical trial-trial variability. In Chapter 3, a trend for the IC 

to have lower variability than the cortex is seen and is thus something expected here. 

Logically, it is also expected that a higher trial-trial variability will negatively influence 

classification analysis, and so this may be a potential explanation for any results 

observed. As such, trial-trial variability is a key analysis of this Chapter. 

Influence of Correlations on Sound Coding 

As previously mentioned in the literature review, pair-wise neuronal correlations are 

thought to influence neuronal coding in a variety of ways, potentially decreasing or 

themselves carrying additional information about a given stimulus (Panzeri et al., 

1999, Fiser et al., 2010, Moreno-Bote et al., 2014).  In the context of the current 
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analysis, the investigation into correlations is not extensive. Logically, given the type 

of model being used, higher signal correlations are expected to result in poorer 

performance, as they eliminate difference between stimuli that model success is 

dependent on. Noise correlations in this context are likely to influence the trial-trial 

variability of the neurons, potentially negatively affecting the overall success of the 

analysis. Correlations between pairs of narrow spiking cells have been observed to 

be higher than equivalent broad spiking pairs in the in prefrontal cortex of the monkey, 

and so this is another expected observation in the data (Constantinidis and Goldman-

Rakic, 2002). 

4.1.3 Hypotheses 

There is extensive evidence that cortical neuronal activity is modulated by ongoing 

brain state - in turn, this could influence the trial-trial variability of the cortical 

responses to repeated stimuli (Lin et al., 2019, Fritz et al., 2005, Curto et al., 2009, 

Noda and Takahashi, 2015) . Indeed, there is evidence that trial-trial variability of 

cortical neurons increases in the desynchronised state (Marguet and Harris, 2011, 

Sakata, 2016). The central nucleus of the inferior colliculus, a subcortical auditory 

processing “hub”, thus far shows little evidence of being as affected by global state 

modulations  - though non-lemniscal portions do exhibit effects (Chen and Song, 

2019, Alkhatib et al., 2006). In its role as a integration site and key thalamic relay, the 

IC may benefit from an increase reliability of response to ensure accurate encoding 

of sound information – this was observed to some degree in Chapter 3 with IC MUA 

in particular having a lower trial-trial variability during natural sound. Decoding stimuli 

from a simple (spike rate) code is likely to have varying levels of success in each area, 

which will be observable using simple classification analysis. Success of a simple rate 

code in decoding natural sounds in the IC bodes well for the future of auditory 

implants, for which the creation of precisely timed spike patterns may prove a 

challenge. That natural sound is clearly coded on specific timescales (i.e. theta) 

suggests that the integration window will further affect classification results. The 

specific hypotheses of this chapter are thus that: 

• The inferior colliculus will perform better or comparably to the auditory cortex 

overall when using simple spike rates as an input, due in part to the 

expectation of a lower trial-trial variability. This will be especially apparent 

when using MUA given results from Chapter 3, and that there is more data 

overall to work with in these sets 
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• Stimulus length will influence results, given the varying timescales of neuronal 

encoding. Lengths around 150-300 ms, corresponding with theta frequencies, 

are expected to be best 

• Any observed differences in performance between AC and IC will be 

accompanied by differences in trial-trial variability and/or correlations of 

contributing neurons 

• Neuronal correlations have the potential to affect classification performance, 

by flattening activity across all examined stimuli and limiting the stimulus-

specific variability. As such, these will be investigated alongside the primary 

results, and it is hypothesized that high noise and signal correlations will be 

indicative of a poorly performing dataset, as stimuli are distinguished less 

clearly 

4.1.4 Main Findings 

• The inferior colliculus performed comparably (overall, with all data combined) 

to the auditory cortex – but with fewer input neurons. This was the same for 

both SUA and MUA 

• Stimulus length did not have a strong effect on performance 

• If the neurons of a dataset covered a wider frequency range  thisgenerally 

indicated classification better performance. IC frequency ranges were 

significantly smaller than AC, not explaining the previous results 

• Overall, IC neurons trial-trial variability was both significantly smaller, and less 

variable, than the AC. This was the case for 17 stimuli lengths between 25 and 

1000 ms (overall variability increased with increasing length) 

• Positive and negative controls explained exceptionally poor performing 

datasets, as stimuli were indistinguishable from spontaneous activity 

• High signal and noise pairwise correlations indicated exceptionally poorly 

performing datasets 

The linear classification approach used here, while informative as a starting point, is 

limited. With the approaches taken here, it is difficult to say exactly what neuronal 

pattern results from what aspect of the sound – as the dimensionality of the stimulus 

has been considerably reduced. Options for examining this properly will be explored 

in the discussion. 
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This chapter also provides an excellent stepping-stone into discussions on further 

types of analysis that would utilise the simultaneous aspect of the data – such as 

predicting AC activity from IC. 

4.2 Success of Linear Classification using Spike Rate 

Linear classification was performed as detailed in Materials and Methods and the 

above introduction. 

4.2.1 Methodology  

As detailed in Materials and Methods, 10 random stimuli are selected from the natural 

sound segment. 10 stimuli are derived for each time bin, resulting in 17 stimuli sets 

total.  An example of how these are derived is displayed in Figure 4.1; briefly, 

segments of the 10 s natural sound stimulus are randomly selected, 10 of equal length 

for each stimulus length examined. Additionally, 4 “runs” of these configurations are 

run, with different stimulus locations. 

4.2.2 Overall Success of Linear Classification  

The analysis is run comparing the 17 stimuli sets, and 4 “runs”. Classification error is 

derived from the average of 100 repetitions of the analysis. In each repetition, 10-fold 

cross validation, where 90% of the data is used to train a model and the remaining 

10% used to test – repeated a total of 10 times with different segments of the data 

(see Materials and Methods 2.6.9). 

Figure 4.1: Schematic of sound segments selected for classification analysis. Top – 10 second natural 
sound trace. Coloured vertical lines indicate the start and end of each of the 10 segments (for run 2). 

Bottom row displays the colour coded segments. 
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Linear Classification Success does not Vary between Stimulus Sets 

There are no differences observed between “runs”, for any type of input or at any 

stimulus length (p >> 0.05, Kruskal-Wallis), except in a single stimulus for AC MUA (p 

= 0.0194, Bonferroni after Kruskal-Wallis). However, as this is a very isolated 

occurrence, it is assumed that there are no significant differences between the runs 

and so run 1 is used for the remainder of our analysis unless otherwise stated.  

Chance level (i.e. the classification success level that would be obtained from random 

guessing by the model) is 0.9, or 90% error. 

Summary of Linear Classification Outcomes  

First, classification results from a single run are summarised, during all lengths of 

stimulus/frequency bands (Figure 4.2). Results of using AC and IC data, single and 

multi units are examined. The spike rate data is also run through Principal Component 

Analysis (see Materials and Methods), and both 3 and 5 PCs are used in addition to 

“all” raw units. 

Dimensionality Reduction Does Not Adequately Capture Variability of Datasets 

The Friedman’s test compares conditions to identify between group values, as data 

is technically paired across three groups. Results from using all predictors, 3PCs and 

5PCs are compared. If success is comparable between groups, these PCs may have 

adequately captured the variability of the data. The following examines the success 

of using PCs for each type of dataset. 

AC SUA – At all stimulus lengths, there is a significant effect of predictor (Friedman’s 

test, p < 4.34e-4). After post hoc analysis (Bonferroni), using All predictors, versus 3 

PCs, always gives a significantly better response (p < 0.0004). Between All and 5PCs, 

10 of the 17 stimulus lengths show significant differences, with All predictors 

performing better/having a lower error (significant p values < 0.0378).  Occasionally, 

differences are observed between 3 and 5 PCs, with 5PCs performing better (6 of 17, 

significant p < 0.0345). 

IC SUA – there is no effect of predictor type on this data, except for two stimulus 

lengths (p = 0.011 and p = 0.030, Friedman’s test). After applying Bonferroni 

correction however, there are no between group differences identified. 
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Figure 4.2: Summary of classification results from Run 1. (A) Boxplots showing the range of 

performances across 21-23 datasets (each dataset calculated from the mean of 100 repetitions 
of the same stimuli set). Top Row – Using all available predictors, AC (left) IC (right), Second 

row, 3 principal components only, Third row, 5 principal components only. Dotted red line 

indicates 0.9 or 90% error (i.e. chance level). (B) As in A but using multi units as inputs. 
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AC MUA – These follow similar pattern as for AC single units (p < 1.26e-5, Friedman’s 

test). At all stimulus lengths there is a difference between All and 3 (p < 1.26e-5, 

Bonferroni correction), and for all stimulus lengths between All and 5 (p < 0.0164). No 

between group differences are apparent for 3PCs vs 5PCs in this case. 

IC MUA – there are between group differences visible for 15 of 17 stimulus lengths 

(significant p values < 0.0085). After post hoc analysis, between All and 3PCs, the 

median error of the All condition is significantly lower that 3PCs in 15 of the 17 lengths 

(significant p values < 0.0107).  Between All and 5PCs is significant in only 2 lengths 

(p = 0.018 and p = 0.049). 

In summary, there is a tendency in the AC for significantly better performance using 

All predictors, as opposed to only 3PCs. This would suggest that 3PCs are not 

sufficient to fully encapsulate the data. 5PCs is likely also not sufficient in the majority 

of cases, though the evidence is slightly less strong. In the inferior colliculus, there 

are no apparent differences between using any of the three inputs. This may be due 

to the overall lack of units (i.e. around 3-5), and the removal of datasets with fewer 

units than these for this comparative analysis, resulting in a low number of datasets 

for comparison (i.e. 16 out of 23 for single units). The overall low success of 3 or 5 

PCs is indicative of the neural datasets being highly dimensional – 3-5 dimensions is 

not sufficient to fully encapsulate and describe the activity of the neuronal populations 

recorded. 

Classification Success is Comparable Between AC and IC, but IC Achieves this 

with Fewer Inputs 

For each individual stimulus length, and for single and multi units, the effect of brain 

area is examined. Given the relatively low performance of 3 and 5 PCs, these are not 

included in this analysis. 

For every length, using single units, there are no significant differences when using 

“all” predictors (p >> 0.065, Wilcoxon rank-sum test). This is the same for multi units 

(p > 0.0783, Wilcoxon rank-sum test). Examining the raw data, the IC has a higher 

range across all stimulus lengths, possibly due to some datasets having very poor 

performances (this will be discussed later). In summary, there appears to be no 

difference in performance between brain areas, despite datasets having varying 

numbers of input predictors. Ideally here, a paired test would be performed, but as 

simultaneous AC/IC data was not available for every set and every stimulus length, 

this reduced the numbers of sets available to be paired and so an unpaired test might 
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give a more trustworthy result at the expense of additional considerations during 

interpretation.  Excluding all non-paired sets gave 16 datasets overall, and a Wilcoxon 

rank-sign test on these revealed no significant inter-area differences (p > 0.958). 

There were no differences for MUA either (20 datasets, p > 0.179). 

There is No Strong Effect of Stimulus Length on the Success of Linear 

Classification 

For all types of input (AC/IC single and multi units), there was an attempt to identify a 

trend of performance across time bins, since this was observed in previous literature. 

Even before multiple comparisons, there is no significant effect of time bin except for 

AC MUA (p values AC SUA: 0.4149, IC SUA: 0.9936, AC MUA: 0.0045, IC MUA: 

0.2076, Kruskal-Wallis). After multiple comparisons (Bonferroni), this effect is not 

seen in any case. There is perhaps a slight tendency for middle lengths (around 

250ms) to have a slightly lower median classification error (but also a wider range) – 

but this is purely observational. 

Use of Multi Units Results in Higher Classification Success 

For AC and IC, the difference between using single units or multi units as inputs is 

examined, for All predictors only. In the auditory cortex, using multi units results in 

lower performance error (significant p < 0.0236, Wilcoxon sign-rank test) for 14 of 17 

stimulus lengths. In the colliculus, this difference is significant for all lengths (p < 0.04). 

A conclusion may be that the use of multi units results in better classification, most 

likely a result of an increase in the number of predictors. 

Summary of Observed Results 

In this section, median performance levels of all datasets are examined, looking for 

variables that have affected the classification result.  

Using different sections of sound (i.e. different runs/stimulus sets) has resulted in no 

statistical differences, indicating that the effects are purely due to the number/type of 

inputs, or length of time examined.  

As expected, using all of the available data results in the best performance, though in 

some cases, 5PCs can be sufficient to match this performance. 3PCs is likely not 

enough to fully encapsulate the variability of auditory cortex data – as explained later, 

this “explained variability” is in itself quite variable. There appears to be no differences 

between using AC or IC data, despite AC having in general, far more input predictors. 

This is something that will be examined later. Using multi units also improves 
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performance in both areas, again possibly because of the increased number of inputs. 

Evidence is lacking, but there is a slight trend for middle stimulus lengths (around 

250ms) to perform better, albeit with higher ranges. There would appear to be a large 

variability in classification success across datasets, which is examined in the following 

analysis. 

4.2.3 Explained Variance using Principal Components 

As data is high dimensional, it would be beneficial if the activity/variability could be 

reduced down to a few components. This can give information about the underlying 

data, in terms of population structure and overall complexity. This also means models 

are easier to implement computationally (though results and correlates to brain 

functionality must be carefully considered).  It has been previously seen that 3 PCs 

was not sufficient to represent the data – 5 was sometimes acceptable. Thus, the 

“explained” variance of each PC is plotted in Figure 4.3 below, for 4 example stimulus 

lengths.   Note, this analysis did exclude some IC datasets that did not include 5 PCs 

(SUA 7, MUA 17). 

The explained variance in the auditory cortex, especially for the first component, is 

highly variable, in all shown stimulus lengths. This variabilty decreases with 

successive principal components. In the IC, there is slightly less variance, and overall 

higher explained variance in the first component (not significant for single units, p > 

0.0846, but is significant for multi units, p < 0.0096, Wilcoxon rank-sum test). Given 

the high variability, it is possible that in some datasets, 5PCs is not sufficent to explain 

more than 80% of the variance, which is the threshold aimed for with this kind of 

dimentionality reduction. 
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Figure 4.3: Explained variance in first 5 Principal Components. (A) Explained variance for each 
principal component, 25 ms stimuli length. (B) as (A), but 250 ms. (C) As previous, but 600 ms. (D) 
As previous, 1000 ms. Significance stars indicate a significant difference in the explained variance 

between the AC and IC in either SUA or MUA condition. Significant p values < 0.04, Wilcoxon rank-
sum test. Data is unbalanced, particularly for IC SUA. n: SUA 18 vs 7, MUA 17 vs 17 
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4.2.4 Positive and Negative Controls Reveal Reasons for Poor 

Performances 

Poorly Performing Datasets 

Summary analysis revealed that while good performance was possible, a lot of 

datasets were very close to chance level. One potential reason is that the data was 

indistinguishable from baseline (i.e. spontaneous firing) – this could happen if there 

were not many cells, or there were not many spikes. The spike rate during a given 

stimulus would then appear very low, potentially similar in appearance to the 

associated spontaneous activity. Therefore, the differences between each condition 

would be small, and accurate classification made difficult. Alongside the main 

analysis, negative and positive controls were also run.  

Negative Controls Reveal Some Datasets are Indistinguishable from Chance 

Level 

As outlined in methods, for negative controls, data is row shuffled, maintaining the 

overall spike rate but destroying the relationship between spiking and specific stimuli 

instances. Classification success is then expected to be ~0.9, or chance level, and 

this is indeed the case for all data. This is summarised for run 1 in Figure 4.4, and in 

Table 4.1, where cells indicate for each dataset how many classification sets (of 17 

stimulus lengths) were indistinguishable from row shuffled data. 

Figure 4.4: Negative control summary. Each column contains all stimuli of a single dataset, and plots 
their prediction performance. (A) Single units (B) multi units 



 
 

 

Table 4.1: Negative control summary. Numbers indicate the number of stimulus lengths (max 17) that are indistinguishable from the associated chance level, for that 

dataset. Light grey shading indicates all stimuli were distinguishable (error < 0.9). Dark grey shading – no data for this set. The final column summarises the number of 

datasets where 1 or more time bins shows poorer performance than chance level, for each of 4 runs and 4 conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

Run AC SUA 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Total 

1    7       15             2 

2    6       14             2 

3    4       14             2 

4    7       16             2 

 IC SUA 

1    11       9       6 2  12   5 

2    13       8       9   13   4 

3    7       7       5 3  9   5 

4    12       11       7 2  13  1 5 

1
8
3

 



 
 

 

Table 4.1 Continued 

Run AC  MUA 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Total 

1    4                    1 

2    7                    1 

3    6        1            2 

4    3        1            2 

 IC  MUA 

1           1      1 8   2   4 

2                  7   2   2 

3               1   6   5   3 

4           1       9   4   3 

1
8
4
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This summary plot has helped identify a potential issue. Comparing normal results to 

negative controls, in certain datasets (x-axis), most stimulus lengths (each blue circle) 

are greater than or equal to that dataset’s negative control (black). This is also seen 

in Table 4.1 – across all the runs, it is generally the same datasets whose runs are 

equal or worse than shuffled controls. Thus, the reason these datasets perform badly 

in classification is that a significant portion of stimulus length sets are indistinguishable 

from each other, resulting in poor classification. MUA generally sees less of these 

situations. 

Positive Controls Indicate Some Stimuli May be Indistinguishable from 

Spontaneous Activity 

This issue is examined further using positive controls. In these, for each individual 

stimulus in a set (i.e. 10 total), a binary classification analysis is run, to see if the 

stimulus is distinguishable from a period of spontaneous activity (of equal length) 

directly before the sound starts. In this case, chance level will be 50% 

Due to the high number of repetitions, even if numbers were very close together, the 

stats indicated significant differences. Thus, for clarity, positive control results are 

quantified by how many of the binary classifications (out of 10) gave an error of < 0.5, 

in Figure 4.5. 

In some cases, results were returned as NaN – this was because the classification in 

some repetitions could not be performed due to very few/no spikes and thus trials 

being indistinguishable from each other. As this could be partially due to low 

spontaneous activities, these sets were not strictly considered as being 

“indistinguishable from spontaneous” – while indeed they might be, a more 

conservative estimate is taken. If NaNs are included, the overall conclusion from 

positive controls does not change, it simply increases the number of indistinguishable 

sets. 

Looking at the three example time bins in Figure 4.5, there is a clear trend between 

number of indistinguishable stimuli, and error – if more stimuli are indistinguishable, 

the error tends to increase. It is most obvious at the lowest performances – before 

~0.8, there is not much of a relationship. Thus, this may be one of the factors having 

an effect for particularly poorly performing datasets.  
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4.2.5 Number of Predictors has Effects on Classification Performance 

Brief Summary 

The above can partly explain low performances, but sheds no light on the underlying 

mechanistic reason behind classification performances.  It has been observed that 

using multi units, and more predictors (All vs PCs) tends to result in higher 

performance levels. This is logical as there is more data to cover the variability. In this 

next section of analysis, the relationship between number of predictors and prediction 

performance is summarised. Figure 4.6, contains scatter plots of the number of 

predictors in a dataset versus its classification outcome, and overlays simple linear 

regression lines. 

What is apparent from the example lengths in Figure 4.6, from boxplots summarising 

the lines of best fit, and previous summary comparisons in Section 4.4.2 is that the IC 

is able to reach comparable performance levels to the AC, but with fewer predictors. 

It should be noted that this relationship is not necessarily seen within a single dataset, 

and is more of a generally trend or potential, though what little paired data (i.e. an 

animal having a both a high quality AC and IC dataset, with a high number of single 

Figure 4.5: Number of stimuli indistinguishable from chance, against classification error of the dataset, 
for three selected stimuli lengths. (A) SUA (B) MUA. Red – AC, Blue – IC. 
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units for direct comparisons) exists at least suggests this relationship exists within 

simultaneous datasets.  
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Number of Predictors and Classification Success are Linearly Correlated (R 

Squared) 

Examining the adjusted R squared values across all stimulus lengths (Figure 4.6), the 

strength of the linear relationship between performance and number of predictors is 

described. There are differences between all groups except IC SUA and MUA (p = 1) 

and IC SUA and AC MUA (p = 0.0847). Otherwise, p values are all < 8.1332e-4 

(Bonferroni after Kruskal-Wallis). 

Overall, the AC multi units have the strongest relationship (R2 = 0.433), closely 

followed by IC SUA (0.3582) and IC MUA (0.3215). In AC single units, there is a trend, 

but the relationship is not very strong (R2 = 0.1681). In general, there appears to be a 

strong relationship between the number of predictors and the performance level. 

IC Can Achieve Comparable Results to AC but with Fewer Inputs (x-Intercept)  

To quantify how many predictors are needed to attain good performance, the x-

intercepts of the data are examined, including all stimulus lengths (Figure 4.6B). 

Differences between single and multi units cannot be distinguished in either the AC 

(p = 1), or the IC (p = 0.0732, Kruskal-Wallis), despite the visual differences in best fit 

lines in Figure 4.6 In AC vs IC comparisons, AC x-intercepts were significantly larger 

(AC SUA vs IC SUA p = 4.1587e-10, AC MUA vs IC SUA p = 1.11e-8, AC SUA vs IC 

MUA p = 3.5573e-4, AC MUA vs IC MUA p = 0.0028, Bonferroni correction after 

Kruskal-Wallis).  

These comparisons reveal clear differences between AC and IC intercepts. As the x-

axis displays the number of predictors, this indicates that theoretically, the IC would 

be able to achieve “perfect” performance using fewer inputs than the AC. This means 

that there is something fundamental about the IC data that makes it more 

successful/more efficient at representing sound when partitioning it in this way. 

Assuming no plateau within the data, and that the overall potential of each area has 

not been reached, it can be stated that there is a clear difference between areas – 

while performance levels are comparable/indistinguishable between areas, these 

levels are able to be reached with differing numbers of predictors. The issue of 

plateauing will be discussed later. 

Figure 4.6:  Number of predictors vs performance for example 4 time bins, for single/multi units in the 
auditory cortex and inferior colliculus. (A) Clockwise from top left: 25 ms, 250 ms, 1000 ms, 600 ms. 
Straight lines indicate line of best fit (MATLAB fitlm), circles are individual data points (datasets). (B) 

Boxplots of values derived from best fit lines. Significance stars indicate a p value < 0.0028, 
Bonferroni after Kruskal-Wallis). 



205 
 

IC Can Achieve Comparable Results to AC but with Fewer Inputs (0.6 Intercept) 

As further quantification, the intercept of the best fit line with a performance level of 

0.6 is plotted in Figure 4.6B. 

AC single units were not different from AC multi units (p = 0.3260), but both had 

significantly higher intercepts than IC single and multi units (AC SUA vs IC SUA p = 

7.6755e-7, AC MUA vs IC SUA p = 3.4752e-12, AC SUA vs IC MUA p =0.0281, AC 

MUA vs IC MUA p = 1.2092e-5, Bonferroni after Kruskal-Wallis). IC SUA and MUA 

can also not be distinguished (p = 0.0847). Thus, the same differences between AC 

and IC seen using the x-intercept measurement are confirmed. 

Summary of Predictor Number Results 

This analysis leads to potentially interesting avenues to explore – what is it about IC 

data that makes it better for classifying natural sound segments? In the next analysis, 

data is not partitioned into individual datasets and is collated as all cells/multi units 

together, to focus on fundamental neuronal population differences. 

The preceding section is summarised by saying that there is a clear (but not strict) 

relationship in each set of data between number of predictors and overall classification 

performance – this is expected, by simple virtue of having more information to work 

from. By examining details of this relationship however, it is also seen that statistically, 

the inferior colliculus may be able to reach comparable classification performance to 

the cortex (using both paired and unpaired data), despite having a fewer number of 

predictors. These apparent differences provide motivation for examining the input to 

the classification further. The following section looks for potential differences and 

variables that may be causing the previous observations, and speculate as to what 

results mean for neuronal population coding overall. 

4.2.6 Dataset Frequency Range May Affect Classification Performance  

Rationale 

Natural sound is composed of many frequencies. Naturally then, if the neurons 

recorded cover more of the tonotopic gradient, a hypothesis is that distinct responses 

for different stimuli are more likely. This is quantified by calculating the frequency 

range for each dataset. As outlined in Materials and Methods, this involves finding the 

best frequency of all tuned units (to prevent false data skewing range), then taking 

the maximum and minimum frequency to find the range. This is expressed in octaves. 
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Frequency Range Increases with Number of Predictors 

First, how the frequency range changes with varying numbers of predictors is 

considered. Here, the frequency range is defined as the number of octaves between 

each dataset’s highest frequency tuned cell and its lowest. It is viable to suggest that 

sets with low numbers of units may not cover the full range (particularly in the ICC 

which is strongly tonotopic across the depth of recording). This potential relationship 

is quantified frequency range against the number of predictors is plotted in Figure 4.7, 

with lines of best fit plotted across data points to visualise the strength of any linear 

relationships. 
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Particularly for the IC, as expected, there is a strong relationship between the number 

of predictors and the resultant frequency range, for both single and multi units (R2 = 

0.7038, 0.5965). AC single units show the same trend (0.3129), but multi units do not 

(0.0693). The lack of a relationship for multi units is logical – within a single shank, 

cortical layers do not have a laminar tonotopy so adding more cells doesn’t 

necessarily increase the tonotopic range. In the ICC, more electrodes indicate that 

more of the tonotopic range is covered, resulting in a stronger relationship. Also of 

note from this summary and in particular Figure 4.7B is that the IC ranges are not 

larger than the AC ones. 

Figure 4.7: Relationship between frequency range and number of predictors. (A) Scatter plots and best 
fit lines indicate the relationships between frequency range and number of predictors for each type of 
data input. (B) Frequency ranges as boxplots for all conditions, significance stars indicate p < 0.0089, 

Bonferroni after Kruskal-Wallis). 
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Frequency Range May be Linearly Correlated with Classification Success 

Next, frequency range against performance is plotted to see if the range has a direct 

influence on the dataset performance. This is seen in Figure 4.8, for 4 example 

stimulus lengths (all are included in Figure 4.8B). 

In the example figures, there are rough trends of performance increasing as frequency 

range increases, with no clear differences between AC and IC. The median R2 are 

not particularly high, but support the visual trend.  

Looking to Figure 4.8, there is evidence of some linear relationship between frequency 

range and performance, except in IC SUA (R2 = 0.211,0.202,0.076,0.375 

Figure 4.8: Frequency range and prediction error of all datasets. (A) Frequency range against error for 
single units, 4 example stimuli lengths. Red = AC, Blue = IC (B) As (A), but for multi units (purple = AC, 
green = IC) (C) Boxplots of r-squared values summarising all stimuli lengths. All groups are significantly 

different (p < 0.0027) except AC SUA vs AC MUA (p = 0.9286, Bonferroni after Kruskal-Wallis). 
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respectively). It is particularly strong for inferior colliculus multi units at 0.375. The 

relationship strengths are all significantly different (p < 0.0027, Bonferroni after 

Kruskal-Wallis), except between AC SUA and MUA. 

With this evidence, it can be said that having a high range of frequencies covered 

(and in turn, a generally higher number of predictors) results in better performance, 

and that the IC often has comparable frequency ranges to the AC, indicating it may 

be a slight influence for IC datasets performing better, with fewer inputs. 

4.2.7 Trial-by-Trial Spike Count Variability (Fano Factor) 

Use of Fano factor 

In this analysis, the neural data provided (i.e. multiple trials of the same stimuli) is 

used to create a model that best represents this data overall. If any one trial is a good 

representation of all trials (i.e., if there is a low trial-trial variability), the classification 

is expected to perform better. Thus, in the next series of analysis, trial-trial variability 

of units is quantified using the Fano factor metric (see Materials and Methods).  The 

Fano factor is calculated for each of the 10 stimuli, then a median taken to represent 

that cell. The data displayed and the stats use the median, as the data was skewed. 

It should also be noted that outliers are omitted in the figures for clarity but are 

included in the calculation of medians and in statistical tests.  

Summary of Fano Factors Reveals Differences between Brain Areas 

In Figure 4.9, boxplots of Fano factors in each brain area and across stimulus lengths 

are displayed. 

Figure 4.9: Summary of Fano factor in single and multi units in the auditory cortex and inferior 
colliculus, for increasing time window. Not all stimuli lengths are shown, for clarity.  (A) Fano factor 
comparisons between AC and IC for single units (n= 436 and n = 67). Significance stars indicate p 

values < 0.01, Wilcoxon rank-sum tests for each stimuli length. (B) as A, but for multi units (n = 973, n= 
201). Red dotted line indicates a Fano factor of 1 for comparison purposes 
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Fano Factors are Smaller and Less Variable in the IC Compared to AC 

Comparing the Fano factors between AC and IC single units, separately for each 

stimulus length, the IC is significantly lower, for all stimulus lengths (p < 0.0067, 

Wilcoxon rank-sum test). This is also seen in MUA data (n = 973 vs n = 201, p < 

3.97e-18).  Despite the very unbalanced data, it appears that overall, IC Fano factors 

are smaller during all the natural sound sub-stimuli presented. 

Cortical Multi Units Display Significantly Smaller Fano factors 

For each stimulus time individually, and for each brain area, the Fano factor 

differences between the single unit and multi unit populations is examined. For the 

auditory cortex, there is a significant difference, with multi units having lower variability 

(p < 0.02, Wilcoxon rank-sum test). This is not seen in the inferior colliculus (only in 

the first stimulus, p = 0.033), otherwise, p > 0.098. A reason for this may be the overall 

low numbers of IC units – potentially, a given IC multi unit may be made of only one 

or two single units, so will be more directly comparable. 

There is a Trend of Increasing Fano factor with Increasing Stimulus Length 

There is a general trend of Fano factor increasing with stimulus length, with there 

being a significant effect of stimulus length for all situations examined (p << 0.01, 

Kruskal-Wallis).  Post hoc comparisons confirm this trend. Summarising briefly, in the 

AC single units, each stimulus is indistinguishable from 2-3 stimuli on either side but 

is significantly different from all others (p < 0.01, Bonferroni after Kruskal-Wallis). For 

multi units, this group overlap is smaller (0-2 stimuli). The IC shows the same general 

trend, but with far higher overlaps (4-6 stimuli at least, on either side).  
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Fano Factor is Linearly Correlated with Classification Success in Most Cases 

These results are promising – there is a clear inter-area difference that can account 

for the better performance we see. If each individual cell is less variable, there is less 

variability to negatively affect classification performance, meaning a stimulus can be 

represented by a smaller number of reliable units. Now, the effect of Fano factor is 

performance can be directly assessed and represented in Figure 4.10. 

The median Fano factor is taken for the units in each dataset, and used to assess the 

strength of a linear relationship. 

In Figure 4.10, 4 example stimuli are displayed, in which the influence of Fano factor 

is visible in most cases. In general, there is evidence of a linear relationship (R2: 0.351, 

Figure 4.10: Relationship of Fano factor and prediction error. Each point represents a single dataset, 
median Fano factor of the unit in that dataset (A) Scatter plots and best fit lines for 4 example stimuli 

lengths. Red – AC, Blue – IC. (B) As in A, but for multi units. Purple – AC, Green – IC. (C) Adjusted R 
squared values of best fit lines across all stimuli lengths. All relationships are significantly different 
except AC SUA vs IC SUA, other p value range: 3.77e-13-0.0027, Bonferroni after Kruskal-Wallis) 
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0.287, 0.215, 0.3279 for AC SUA, AC MUA, IC SUA and IC MUA respectively). The 

R2 values are summarised in Figure 4.10C, with medians reasonably similar, but 

some stimulus lengths appearing to have a bad relationship, especially in the IC single 

units. Middle stimulus lengths appear to have the best relationships. 

In summary, Fano factor is an influencing factor on the performance – and with the 

Fano factor of the IC cell population being significantly smaller than the AC, it can be 

surmised that this is a further contributing mechanism to the ICs comparable 

performances. 

Narrow Spiking Cells Display Higher Trial-Trial Variability  

Given a previous observation of cell type specific differences, Fano factor between 

cell types in the AC is also explored. The cortex appears more variable - it may be 

that one cell type is particularly influential.  

A tentative hypothesis is that narrow spiking cells, being heavily involved in  tuning, 

and having a tendancy to be faster spiking, will be less variable. As shown in Figure 

4.11, this was not the case.  

 

For the majority of stimulus lengths, narrow spiking cells have a significantly higher 

Fano factor (p < 0.031, Wilcoxon rank-sum tests) than broad spiking, though the data 

is variable. This is interesting, as the opposite was expected given narrow spiking are 

also generally fast spiking. It is a possibility that, due to the long recording time, the 

Figure 4.11: Fano factor differences between narrow and broad spiking cells in the auditory cortex. 
Selection of stimuli shown for clarity. Broad, dark grey, n = 297, Narrow, light grey, n= 297. 

Significance stars note a p value of < 0.031, Individual Wilcoxon rank-sum for each stimulus length. 
Red line indicates a Fano factor of 1 
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cortex experiences state changes, which in turn affects frequency tuning - in which 

narrow spiking cells are important.  

As with the general data, there is a trend for higher stimulus lengths to be significantly 

more variable trial-trial. With broad spiking cells, using Bonferroni comparisons, there 

are 3-4 groups overlapping on either side of each stimulus. This is the same for narrow 

spiking cells (but with slightly less of an overlap) 

4.2.8 Relationship of Spike Rate versus Classification Performance 

A potential influencing factor may also be spike rate – lower spike rates, either 

biologically or due to spike sorting errors, may adversely affect the prediction 

performance by having less information to work with. The spike rate for each single 

or multi unit was derived as a single average over the ~20 minutes of natural sound. 

 

Figure 4.12: Relationship between spike rate and prediction error. (A) example 4 stimulus lengths 
with scatter plots and best fit lines, illustrating the relationship for single units. Red – AC, Blue – IC. 
(B) as A, but for multi units. (C) Boxplots summarising R-squared values of the best fit line for each 
stimulus. Significance stars indicate p values < 0.045 after Kruskal-Wallis, Bonferroni corrections. 
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There is no clear relationship for the auditory cortex (median R2, -0.05237, -0.04949). 

For IC, the relationship is slightly stronger and is more visible in Figure 4.12A. (R2 = 

0.15207, 0.15394). It may be the low numbers of predictors is influencing the results 

– as more predictors are added, there is a natural chance of increasing the range of 

spike rates. Thus, it can be said that in the IC, spike rate may be influencing 

performance, but not to a high degree. 

The relationship of median spike rate against number of predictors is also briefly 

examined (not displayed graphically). There was only a relationship for IC single units 

and AC multi units (R2 = 0.4321, 0.2972, vs -0.0320, 0.015 for AC single and IC multi 

units).  

4.2.9 Noise Correlations and Classification Success  

Noise correlations are known to effect or be a part of neural coding, and so may be 

contributing to the performance. If a pair of neurons are noise correlated, this means 

their firing shows a high level of correlation that is unrelated to any ongoing stimuli – 

implying a potential shared input. If noise correlation is high among neuron pairs, it 

may be likely that the actual signal evoked changes are “getting lost” among high 

noise, and responses to individual stimuli are very similar.  Characterisation of these 

fluctuations is desirable, to then look at their potential contribution to performance. 

First, pairwise noise correlations are plotted to simply observe any potential 

differences, in Figure 4.13. 

Figure 4.13: Summary of pairwise noise correlations across increasing time windows, for single and 
multi units in the auditory cortex and inferior colliculus. (A) Mean signal correlations at each stimulus 
length (25-1000 as previous) – blue = negative, pink = positive. Black line indicates the median. (B) 
Proportion of each type of noise correlation. Pink/red – positive, Light blue/blue – negative. Lines 

indicate the proportion of significant correlations at each stimulus length p< 0.05. Stimulus lengths not 
shown, go from 25-1000 ms 
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Average Pairwise Noise Correlations are Small and Positive, Positive 

Correlations Dominate, Correlations Increase with Stimulus Length 

Taking the median correlation at each stimulus length (black line, Figure 4.13) overall, 

correlations are positive. This is confirmed by observing that positive correlations 

(pink) are generally higher than negative (blue). Considering proportions, overall, in 

the auditory cortex, ~60% of the calculated correlations are positive, while 40% are 

negative. This value includes all correlations, not only significant ones (p < 0.05). 

Looking purely at significant correlations, in the AC, the proportion of both positive 

and negative correlations increases steadily from ~0 for 25ms length, up to ~50%/30% 

by 1 second (red and blue lines, Figure 4.13B). In the inferior colliculus, more of the 

correlations are positive (~70%), with slightly more being significant compared to AC. 

The relationships are very similar in multi units, except that they reach overall higher 

correlations. 

It is also seen that the strength of correlations increases with time bin, both positive 

and negative, and for both areas. Overall, taking the median (black), there is a small, 

increasing positive correlation. In general, positive correlations have a higher 

amplitude than negative.  Again, this is the same in multi units, but with the larger 

amplitudes overall when compared to single units. 

The above relationships are similar in multi units, except that the proportion of positive 

correlations has increased, as has the proportion of significant correlations. Inferior 

colliculus multi units seem to have both smaller and less noise correlations than the 

corresponding cortex. 

IC Pair-Wise Noise Correlations are Higher than AC 

For single units, there is a significant effect of area on all correlations, with the IC 

having higher correlations at 16 of 17 stimulus lengths (p < 0 .0286, Wilcoxon rank-

sum test). For positive only, this is the same (p < 0.0012), but there are only two 

lengths that show differences when looking solely at negative correlations (p = 0.0422, 

p = 0.0014, Wilcoxon rank-sum test).  

For multi units, the AC now has higher noise correlations than the IC, at all stimulus 

lengths, for all correlations, (p < 4.03e-29) and positive only (p < 7.66e-24), but for 12 

of 17 for negative (p < 0.046). 
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AC Multi Units have Higher Noise Correlations than Single Units, with the 

Opposite True in the IC 

In the AC, multi units consistently have a higher correlation than corresponding single 

units, when all correlations are considered at all stimulus lengths (p < 2.17e-161), and 

also for positive only (p  < 2.08e-50) and negative (p < 0.0181, Wilcoxon rank-sum 

tests). 

In the IC, single units are higher using all correlations for 12 of 17 lengths (p < 0.047), 

16 lengths of positive (p < 0.044) and 10 for negative (p < 0.0166, Wilcoxon rank-sum 

tests). 

Summary of Pairwise Noise Correlation Strengths 

In summary, there is a clear effect of area on correlation strengths (particularly if all 

or only positive correlations are included), but this effect reverses if using single or 

multi units. This reversal is also observed between AC and IC - with the AC, multi 

units have higher correlations, with the opposite in the IC. This may be due to 

fundamental differences between cortical and colliculus multi units/populations, but 

due to the very unbalanced nature of the comparisons in a lot of cases, this conclusion 

should be taken with caution. There is no particular pattern to which stimuli show 

significant differences (or do not). 

Exceptionally Poor Classification Performance is Accompanied by High Noise 

Correlation 

Now that correlations are observed to be present in the data, a potential relationship 

between these correlations and the performance of our datasets is explored. Scatter 

plots (Figure 4.14) of a run’s average correlation are created (median of all constituent 

pairs) versus the dataset’s performance, for a selection of 4 stimulus lengths.  

Through the examples in Figure 4.14, generally, there is no linear relationship 

between median correlation strength and performance, as most correlations are 

small, the line is nearly vertical.  In some instances, there is a slight suggestion of a 

relationship, due to one or two datasets low performing datasets having particularly 

high median correlations. Given the remainder of the data however, it cannot be said 

there is a particularly linear relationship here, and particularly high correlations may 

just be a potential indicator for especially bad performance. It would be expected that 

high noise correlations would cause this by blurring the lines between stimuli and 

making them indistinguishable from one another. Table 4.2 shows the relationships 
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for each condition and each type of correlation – displayed as a table for clarity due 

to low values. 

In the case of AC MUA (bold, Table 4.2), all and positive correlations, there is slight 

evidence of a relationship, but this is not seen across all bins (see the high standard 

deviation).  

 

 

 

 

Figure 4.14: Relationship of pairwise noise correlations and prediction error. Rows, top to bottom 
show different input types, columns are 4 example stimulus lengths. R-squared values are 

summarised in Table 4.2 
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Table 4.2: Relationships (R squared) between pairwise noise correlations and prediction performance. 

Bold numbers indicate some evidence of a relationship 

Condition 

(mean (STD)) 
All Correlations Positive Only Negative Only 

AC SUA 0.056 (0.061) 0.085 (0.059) -0.045 (0.040) 

IC SUA 0.005 (0.052) -0.004 (0.045) -0.036 (0.080) 

AC MUA 0.133 (0.042) 0.127 (0.042) 0.069 (0.079) 

IC MUA -0.020 (0.022) 0.048 (0.034) 0.025 (0.057) 

 

In summary, it can be said that for either brain area, noise correlations do not have a 

linear relationship with prediction performance, but that particularly high correlations 

may be indicative of a poorly performance (i.e. near chance level) dataset. Because 

of this poor relationship, and reasonably similar strengths between AC and IC it is 

probably not worth directly comparing the two brain areas directly, and instead the 

focus is put on analysing the differences within each area 

Proximity of Neurons in a Pair may have an Effect on Levels of Noise 

Correlation 

Because some area differences are observed, and at least an observational 

relationship, it would be interesting to confirm a mechanism for the correlations seen. 

It is known that correlations are higher the closer neuronal pairs are together, but a 

simple distance calculation between pairs did not reveal such a relationship. Literature 

also suggests that the layer location, as well as the true physical distance, has an 

effect on the strength of correlations. Thus, in the cortex, cell pairings were split into 

6 groups, as seen in Figure 4.15 – see also Materials and Methods for a graphical 

explanation of pairing naming conventions. Briefly, local (L) in the first half of the 

pairing name means both cells of the pair are on the same shank, distal (D) means 

they are on different shanks. Superficial (Su) indicates both cells are on or above the 

sink channel, deep (De) are below this, and pairing may also contain a superficial and 

a deep cell (SD). Firstly, the correlation strengths for each of these groups is plotted, 

as all correlations, then positive and negative only. Only the highest time bin (1000ms) 

is selected, though relationships for other stimulus lengths are summarised and 

confirmed in Figure 4.15C and E. 
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In the left-hand side of Figure 4.15, the longest stimulus is presented (as the strongest 

correlations were seen here). For single units, there is no significant effect of pair 

grouping in All/negative correlations (p = 0.31/0.6712, Kruskal-Wallis). However, 

there was a significant effect of grouping for positive correlations (p = 0.013, Kruskal-

Wallis). This was not present after post hoc analysis (Bonferroni). Looking at other 

stimulus lengths, some smaller stimuli had evidence of group differences for all 

correlations, but again these disappeared after Bonferroni correction. As a summary, 

most stimuli had significant effects of grouping (p << 0.04, except time bin 13, p = 

0.095, Kruskal-Wallis), but was not evident after correction. 

For multi units (Figure 4.15) there were significant effects in the All, and positive 

groups (p = 6.51e-60/1.8e-47), but not for negative (p = 0.194). This persisted across 

all stimulus lengths. Examining multiple comparison outputs, there was a clear 

Figure 4.15: Effect of cortical depth on pairwise noise correlations . Key – L = local/both cells on the 
same shank, D = deep/each different shanks, Su = both Superficial, De = both deep, SD one 

superficial, one deep. (A) Key (B) All (purple), Position (red) and negative (correlations) for different 
kinds of cell pairs. See text for stats breakdown. (C) As (B), but split only into local and distal pairings. 
Coloured significance stars indicate a significance for all stimulus lengths at that type of correlations, p 
< 0.05, unless otherwise stated, for Wilcoxon rank-sum tests (D) as (B), but multi units. (E) as (C), but 

for multi units. p  < 0.01). 
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condensing of six groups into three, based mainly on shank position of each cell in 

the pairing: (L-Su, L-De; D-Su, D-De; L-SD, D SD, p < 0.01 Bonferroni after Kruskal-

Wallis). It may be that this type of analysis has struggled to identify subtle differences 

related to relative depths of cell pairings.  

Thus, given the multi unit evidence for depth dependence, the single and multi units 

data is further condensed into local and distal pairing, leaving two groups, and in here, 

more differences are observed.  

For single units, there is no significant difference between local and distal pairings if 

comparing all or negative correlations (p >> 0.05 at all stimulus lengths), but again, 

there is an effect for positive correlations (p < 0.042 for 12 of 17 stimuli), with local 

pairings having higher correlations. For multi units, all and positive correlations are 

significantly higher in local pairs at all lengths, while negative correlations show no 

differences (all p < 6.26e-14, positive p < 13-1.03e-6, negative p > 0.08, Wilcoxon 

rank-sum tests). 

Distance Between IC Cell Pairs may not be Indicative of Noise Correlation 

Strength 

The influence of distance between IC cell pairs and the strength of correlations is 

briefly examined in Figure 4.16. 

In this figure, IC distance against correlation strength is plotted to look for any distance 

dependant effects. As there are relatively few single unit pairs, there is no apparent 

relationship at any stimulus length (absolute values of adjusted R2 are < 0.0398 for all 

stimulus lengths).  However, looking at MUA, there could be said to be a slight trend 

Figure 4.16: Relationship between Distance between IC cells and correlation strength for a single time 
bin. (A) SUA (B) MUA. Insets, boxplots of overall strengths of correlation 
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for the highest correlation values being at smallest depths, though this is by no means 

a strong relationship (absolute values of Adjusted R2 are < 0.0468 for all stimuli). 

Pairs of Narrow Spiking Cells Show Higher Noise Correlations than Pairs of 

Broad or Broad-to-Narrow Pairs 

Previously, it was observed that differences between narrow and broad spiking cell 

properties, and so pairwise correlations are examined in this context. To focus on cell 

type differences, local and distal pairs are combined to create 3 groups sorted only 

by cell type. In Figure 4.17, correlations for the longest stimulus, 1000 ms, are 

compared. There are three classifications of neuronal pairs in this analysis: BS (both 

cells of the pair are broad spiking) NS (both cells are narrow spiking) and BS-NS (one 

cell is broad spiking and the other is narrow). 

Looking at “all” correlations, there is a significant effect of cell pair typing, across all 

stimulus lengths (p < 2.94e-27, Kruskal-Wallis).  This is the same for positive 

correlations (p < 4.99e-23) and in some stimuli for negative (significant p values < 

0.029). 

After applying post hoc comparisons to all stimulus lengths, not only the example 

1000ms, pairs of narrow spiking cells showed significantly higher correlations than 

pairs of broad spiking (p < 1.07e-27, Bonferroni after Kruskal-Wallis), or pairs of 

broad-narrow (p < 0.840e-21). Broad spiking pairs showed significantly lower 

correlations than broad-narrow pairs also (p < 7.57e-3). It can thus be said that pairs 

Figure 4.17: Pairwise noise correlation strengths for cortical cell types, 1000ms example figure.  
Purple – all, Red – positive, Blue – negative. Significance stars indicate p < 0.029 Kruskal-Wallis with 

Bonferroni post hoc comparison 
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of narrow spiking cells have higher correlations than broad spiking, or broad-narrow 

pairs. 

Positive correlations show the same trend, with narrow spiking pairs being 

significantly stronger at all stimulus lengths than broad spiking pairs (p < 2.11e-23) 

and broad-narrow pairs (p < 1.29e-16). Broad spiking pairs had significantly smaller 

correlations than broad-narrow pairs, except at 1000ms (p < 6.55e-2). 

There is rarely a difference for negative after multiple comparisons. Between broad 

and narrow pair groups, there are 5 stimuli where narrow is stronger i.e. more negative 

(p < 0.04), whereas all other comparisons have a single stimulus where there is a 

significant difference (p > 0.0588). 

In summary, it can be said that in general, for all and for positive correlations, pairs of 

narrow spiking cells have significantly higher correlations than equivalent broad 

spiking pairs. Considering that narrow spiking cells have a higher Fano factor, but 

narrow pairs have higher correlations, it can be said that cell responses are variable 

across trials but the narrow spiking cells are varying as a population (or as pairs). 

4.2.10 Signal Correlations 

Pairwise signal correlations were also briefly examined. This will not be an extensive 

analysis, as there are only 10 stimuli. Signal correlations (Figure 4.18) are plotted in 

the same way as noise correlations previously, to examine their range.  
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General Appearance of Signal Correlations 

In Figure 4.18, it is observed that, although there are some strong negative 

correlations, in most cases the strength of positive correlations is enough to pull the 

overall correlation more positive than observed with noise. The trace is also more 

“jagged” across stimuli and doesn’t rise smoothly as with noise correlations. Overall, 

there are generally slightly more positive correlations when compared to noise 

correlation (60-70% vs ~60%), although proportions are generally similar. For MUA, 

there seems to be a particular stimulus length causing a peak in strength and 

significance of the correlations. The general upwards trend of correlations strength is 

not as clear here as it is with noise, being almost flat in SUA. 

Pairwise Signal Correlations Show Little Dependence on Brain Area 

Looking at single units, combining all correlations, only 8 of 17 stimulus lengths have 

IC correlations significantly higher than AC (p < 0.0369, Wilcoxon rank-sum tests). 

For positive only, this is the same (p < 0.048). There are no differences in negative 

correlation strength (but then these are very small in general, and fewer). There is 

also no particular pattern in significances/non-significance related to stimulus lengths. 

For multi units, 13 of 17 lengths with all correlations show colliculus multi units being 

higher (p < 0.0129). Positive only, again 13 of 17 (p < 0.0254), 10 of 17 for negative 

(p < 0.0052).  

Multi Unit Pairs have Significantly Higher Correlation Strength in Both the AC 

and IC 

For the cortex, multi units are always significantly higher strength for all correlations 

(p < 2.81e-55, Wilcoxon rank-sum test), positive (p < 0.0065), and 12 lengths for 

negative (p < 0.0071). In the colliculus, at all stimulus lengths the overall correlation 

is higher for multi units (p < 0.022), and only 9 of 17 for positive (p < 0.0256) and only 

2 for negative (p = 7.35e-5, p = 0.0249). 

In summary, it can be said that both single and multi units, colliculus correlations are 

higher, not quite the same as with noise correlations. Multi units are also the highest 

signal correlations in both brain areas, again differing from noise correlations. 

Figure 4.18: Summary of pairwise signal correlations across increasing time windows, for single and 
multi units in the auditory cortex and inferior colliculus. (A) Mean signal correlations at each stimulus 
length (25-1000 as previous) – blue = negative, pink = positive. Black line indicates the median. (B) 
Proportion of each type of signal correlation. Pink/red – positive, Light blue/blue – negative. Lines 

indicate the proportion of significant correlations at each stimulus length p< 0.05. Stimulus lengths not 

shown, go from 25-1000 ms 
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High Pairwise Signal Correlations May Accompany Poor Classification 

Performance 

As with noise, signal correlations are plotted against performance, in Figure 4.19. 

 

 

 

Figure 4.19: Relationship of pairwise signal correlations and prediction error. Rows, top to bottom 
show different input types, columns are 4 example stimulus lengths. R-squared values are 

summarised in Table 4.3 
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Table 4.3: Correlations between pairwise signal correlations and prediction performance. Bold numbers 

indicate some evidence of a relationship 

Condition 

(mean (STD)) 
All Correlations Positive Only Negative Only 

AC SUA 0.035 (0.0850) -0.001 (0.041) 0.026 (0.108) 

IC SUA -0.057 (0.019) -0.056 (0.037) -0.080 (0.051) 

AC MUA 0.107 (0.092) 0.051 (0.066) 0.087 (0.113) 

IC MUA 0.058 (0.0821) 0.101 (0.010) -0.005 (0.061) 

 

As the data is skewed, the median of each dataset is taken, to provide a more 

conservative estimate. 

Once again, there is very little evidence of a relationship, except in AC MUA and a 

few examples. As with noise correlations, it appears that high signal correlations may 

correlate with low performance. Again, across stimulus lengths, standard deviation is 

high and generally, R2 is close to and around zero (Table 4.3), so this relationship is 

by no means consistent at all. 

Effect of Proximity on Pairwise Signal Correlations is Less Apparent than for 

Noise Correlations 

Depth grouping is applied to the cell pairs as described previously. This is plotted in 

Figure 4.20. 

Considering single units, for all correlations, 11 of 17 stimuli showed no evidence 

between group differences (p < 0 .0216 for the significant groups, Kruskal-Wallis). For 

positive correlations, this number was 10 of 17 (p <0.0381). There was no evidence 

of differences for negatives (p > 0.124). Multiple comparisons did not reveal any clear 

trends or relationships regarding cell positions, for any type of correlation – unlike 

noise. 

For MUA, an effect of cell grouping was observed for the “all” correlations, at all 

stimulus lengths (p < 3.64e-24, Kruskal-Wallis) and positive (p < 3.37e-7). This is not 

seen for negatives (except at two time bins, p = 0.0103, p = 0.0169, otherwise p > 

0.114).  As with single units, multiple comparisons (Bonferroni) did not reveal the 

same trend as with noise, with no clear split between local and distal pairs. 
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However, as with noise correlation, the 6 groups are condensed to compare only local 

and distal pairs. As expected from the 6 group comparisons, for single units, only 2 of 

17 stimuli showed a significant effect for All correlations (p = 0.0014, p = 0.02, 

Wilcoxon rank-sum test), with 4 for positive correlations (p < 0.016). One stimulus 

showed significance for negative (p = 0.0103).  

In multi units, there is a significant effect of pair grouping, with distal pairs having an 

overall lower correlation for all (p < 1.40e-4) and positive correlations (p < 6.35e-4), 

at all stimuli lengths. Only two stimuli see a difference in negative (p = 0.035 and p = 

0.0068). Visually though, this is difficult to see in Figure 4.20, as these differences are 

very small.  

In general, compared to pairwise noise correlations, there is less evidence for a clear 

local-distal pair split, particularly with single units. In multi units, though significance, 

the differences is relatively very small. 

Figure 4.20: Signal correlations with cell pairs grouped by depth and relative distance, for one example 
stimulus (1000ms). (A) Key. (B) signal correlations for all cell pair groups. Purple – all, red – positive, 
blue – negative. (C) Local and distal pairs only. (D) as (B), but for multi units, (E) as (D), but for multi 
units. Significance stars of colours indicate p values at all stimulus length < 0.05, Wilcoxon rank-sum  

tests. 

 



227 
 

Signal Correlations in the IC are not Related to Distance between Cells in a Pair 

As with noise correlations, IC signal correlations using distances between cell pairs is 

briefly examined (Figure 4.21). 

It is somewhat difficult to distinguish a relationship in this data. There may be an 

argument to be made for longer distances in fact resulting in correlations closer to 

zero. But for both single (absolute values of adjusted R2 < 0.0501) and multi units 

(absolute values of adjusted R2 < 0.0805), there is no quantifiable evidence of a 

relationship at any stimuli length. 

Narrow-Spiking Cell Pairs Show Higher Signal Correlations than other 

Groupings 

As with noise correlations, signal correlations are split into cell type pairings, displayed 

in Figure 4.22. For the All correlations condition, there is usually a clear effect of cell 

grouping in all (all but 1 stimuli, p range < 0.0285, Kruskal-Wallis), positive (11 of 17 

stimuli, p < 0.0443), but less so for negative (three stimuli, p = 0.026, 0.029 and 0.04, 

otherwise p > 0.061). 

For within group differences, looking at all correlations, narrow spiking pairs have 

significantly stronger correlations than broad spiking, except at a single stimuli length 

(p value < 0.0235, p = 0.0733). 13 of 17 stimuli lengths show narrow spiking pairs 

having stronger correlations than broad-narrow pairs (p < 0.0026). Broad spiking pairs 

show no differences to broad-narrow pairs (p > 0.083). 

Figure 4.21: Relationship between Distance between IC cells and signal correlation strength for a 
single stimulus length (1000ms) (A) Distance between single units of a cell pair against the signal 

correlation of the pair. (B) as (A), but for multi units. Insets left and right – overall strength of IC signal 
correlations. All – purple, Red – positive, Blue – negative 
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For positive correlations, narrow pairs have significantly stronger correlations than 

broad spiking in 10 of 17 stimuli (p < 0.0499).  12 of 17 stimulus lengths show narrow 

spiking to be higher than broad-narrow (p < 0.0441). There are no differences 

between broad and broad-narrow groups (p > 0.0927). 

For negatives, the only differences are in three stimulus lengths for narrow pairs and 

broad-narrow (p = 0.0387, p = 0.0249, p = 0.0489), and between narrow and broad 

groups for one stimulus (p = 0.029), otherwise, p > 0.075. 

In general, while not as clear as in noise correlation, there is some evidence for a 

difference between strength of correlation between broad and narrow spiking cell 

pairs, with narrow spiking being higher.  

 

 

 

 

 

 

 

Figure 4.22: Signal correlations in type specific cell pairs, for example 1000ms stimulus length. 
Significance stars indicate p < 0.028 in the vast majority of stimul lengths for that set of correlations 

(see text, Bonferroni after Kruskal-Wallis) 
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4.3 Discussion and Conclusions  

4.3.1 Summary of Results 

The results described in this chapter have to some degree both met the aims of the 

chapter and opened interesting avenues for discussion and future work.  

Classification was generally possible using simple rate codes in both brain areas – 

with some caveats to be discussed. The number of predictors used was an influencing 

factor on the classification performance. Though there were no statistical differences 

in overall performance between the colliculus and cortex, it is notable that when 

combining the data and examining trends in the data (e.g. x-intercepts with predictor 

axis), the colliculus seems capable of achieving these performances with a 

significantly fewer number of input variables.  This spoke to a fundamental difference 

in the spiking activity of AC and IC neurons. The hypothesis of stimulus length having 

an effect was confirmed to some degree, but with no clear trend observed which was 

unexpected given previous literature. 

The frequency range covered by a dataset was found unlikely to be causing the 

differences between cortex and colliculus. Comparing measures of trial-trial 

variability, it was found that the inferior colliculus population had significantly lower 

values, which is a viable explanation for the results seen, matching the hypothesis put 

together from previous chapters.  Conclusions regarding noise and signal correlations 

were somewhat weaker than from other analysis, but high values were indicative of 

very poorly performing datasets. Correlations (of both types) between cell pairs on a 

single shank were slightly stronger than pairs spread across several probe shanks. 

Narrow spiking cell pairs displayed stronger correlations than broad spiking ones. 

4.3.2 Comparisons to Previous Literature 

In the paper on which the classification protocol was based on, there was limited 

success using only spike rate, with most results being just above chance level (Kayser 

et al., 2012). This was the case in some of the datasets, but better results were 

observed in many cases. This is most likely due to this paper looking at neurons 

individually – in this thesis, all available neurons were included into a single 

calculation, which should increase the amount of information available. However, it 

also opens results up to the influence of particularly noisy units. It was also expected 

that an effect of stimulus length be seen, at least in the cortex, given that the literature 

(including the study above) in both auditory and visual systems suggests that certain 

timescales of coding (e.g. delta, theta) are most important (Lakatos et al., 2008, 
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Kayser et al., 2015). There was a slight trend towards this, but it was not backed up 

by statistics, not was the trend as clear as seen in Chapter 3. At this time, it is not 

entirely sure what is causing this discrepancy – it may be a lack of data, high variability 

of data or our dependence on stimulus-locked time bins, rather than locking to LFP 

phase, as was done in Kayser 2012. 

As previously alluded to, this study is somewhat unique in the number of different 

groups it is analysing and comparing at the same time (SUA, MUA, AC, IC). In 

particular, there is to our knowledge no literature comparing AC and IC on exactly the 

same stimuli.  

That trial-trial variability is higher in the presented auditory cortex data is in keeping 

with current theories of cortical activity modulation (Marguet and Harris, 2011, Sakata, 

2016). There are no studies directly comparing AC and IC under the same conditions 

– however, it is reasonable to assume that the IC will be less affected by global brain 

state in this way. This is seen in literature already, with frequency tuning of awake 

neurons matching those in the anesthetised state (Portfors and Felix, 2005, Alkhatib 

et al., 2006). This also builds on and supports the trend seen in Chapter 3 for IC Fano 

factors to be smaller. 

It is difficult to make conclusions as to what the noise and signal correlations mean in 

this case – there was no strong relationship between correlation and performance, 

except that very high correlations led to poor performance, which is logical given how 

classification analysis works. Work on relative positions of cells in a pairing did not 

show particularly strong effects, with differences only observed between local and 

distal shank pairings. Given that the relative distances between pairs in the cortex 

were not directly calculated, it cannot be said for sure that correlations decrease with 

distance as the literature suggests (Smith and Kohn, 2008), though this relationship 

is observed weakly in the inferior colliculus. Within the current scope of the results it 

is not believed that the presented data can support any particular argument as to the 

role of correlations (Panzeri et al., 1999, Fiser et al., 2010, Moreno-Bote et al., 2014). 

The trend observed for pairs of narrow spiking cells to have higher correlations than 

pyramidal cells pairs is something seen in previous literature in the prefrontal cortex 

of the monkey, which is promising (Constantinidis and Goldman-Rakic, 2002). 
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4.3.3 Limitations and Considerations 

Much of the same limitations from Chapter 3 are carried over – namely, the lack of IC 

single units. This unfortunately meant that direct comparison between simultaneously 

recorded AC and IC data was difficult, without introducing biases associated with low 

unit numbers. For this reason, options for paired statistics were limited, and it was 

required to combine data from multiple datasets. This means the differences observed 

are less robust, and should be interpreted carefully. Fano factors of greater than 1 

were often seen – but as data is being directly comparing, this is acceptable.  Again, 

incorporation brain state information was not possible – this would have been highly 

informative. 

As was brought to light by positive and negative controls, the methodology in picking 

segments was fairly simplistic. Segments were picked randomly to avoid biasing 

results, but this also resulted in some segments being taken from “quiet” periods and 

thus were indistinguishable from spontaneous activity. In the future, it may be 

beneficial to pose a more direct/specific question to the data, and manually select 

segments (for example, based on sound envelope powers, amplitude or relative 

position within the 10 second stimulus). This increases the kinds of questions that can 

be asked. Phase information may also be incorporated, as has been previously done. 

It is also a consideration that the AC may be able to perform maximally but with fewer 

predictors – a form of saturation that is biasing AC results. This would result in shifting 

of the intercepts and bringing best fit lines closer to those of the IC. Ideally, there 

would be a comparable number of predictors for both areas, a systematic analysis 

would be performed by slowly increasing the number of predictors for the 

classification. The main reason this style of analysis was not attempted (aside from 

low numbers of IC units) was the complexity of choosing which predictors to include. 

If every possible combination was computed in increasing numbers to avoid bias, the 

analysis would simply take too long. Adding in predictors based on some system (i.e. 

in decreasing order of spike rate) would require a clearer question. In short, in order 

to do the analysis justice and search over several datasets, more time/computer 

processing power than was available would be required.  

While saturation is possible, there are a few things that suggest it is not the case – or 

least is not a major influence. Firstly, the gap between IC and AC intercepts is large 

– the AC would need to saturate very early for this to be bridged. Secondly, no 

datasets reach exceptional performances, suggesting there is still potential for better 
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performance (with more predictors) in all types of data. Secondly, after moving 

forward with the assumption, potential features of the data that would viably cause 

the observed difference were found. It cannot be said definitively without systematic 

analysis, but signs would point to this being a real and significant effect. 

The individual contributions of each cell type have also not been examined. As seen 

in Chapter 3, different cell types (i.e. pyramidal vs narrow-spiking interneurons) may 

be contributing in different ways. Though not essential, the study would benefit from 

analysing dimensionality reduction outputs and finding out which cells contributed 

what. This would allow for even more in-depth analysis of the functional mechanisms 

at play. 

The independence of the variables was also examined for interaction effects or other 

interesting variables to look at. If such effects are strongly visible in the data, it would 

restrict the strength of conclusions being made. Apart from the relationship with the 

number of predictors and frequency range, performance versus spike rate, and spike 

rate versus number of predictors were both examined. There is no convincing 

evidence of a relationship between firing rates over the natural sound period and 

overall performance, suggesting the impetus is on the spiking behaviour at finer 

timescales, and not that a raw increase in spikes automatically equals better 

performance. There is a small evidence for a relationship in IC, but not for all stimulus 

lengths, and it is not strong. A strong relationship for number of predictors vs median 

spike rate was then seen in IC single units and AC multi units. IC single units 

somewhat makes sense, as again, in datasets with small numbers of predictors, any 

increase is just more likely to add to the range. It is unclear why a trend exists for AC 

MUA. As such, the conclusions of this Chapter would benefit from having additional, 

higher quality data. 

4.3.4 Functional Implications  

As a higher cortical area, the AC (particularly A1) is responsible for high level 

processing and interpretation of sound stimuli. It has a complex layered structure, with 

constant communications to and from other cortical areas (including other auditory 

areas) that put the sound into context, connect it to memory, and cause behavioural 

changes. All of these factors influence spike rates outside of the raw spectrotemporal 

components of a stimulus, increasing trial-trial variability compared to sub-cortical 

sensory areas. The results presented here thus support the general function of the 

AC as the highest level of auditory processing, responsible for ongoing interpretation 
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and contextualisation of sound stimuli within the organism’s multimodal environment 

– as opposed to a simple auditory information relay. 

Sparse coding strategies are emerging as the dominant (but not sole) strategy in the 

auditory cortex and the cortex in general (Hromadka et al., 2008), where specific 

stimuli are represented efficiently by the activity of a few neurons. Thus, an additional 

interpretation of the AC’s higher variability is that most neurons are not involved in 

coding every one of the 10 stimuli or are not particularly active. A given neuron may 

have a highly distinct response for 1 or 2 stimuli, but reverts to low activity (or a brief, 

transient response) for the less preferable stimuli. As the variability across all the 

stimuli was essentially averaged during this analysis, this may account for the higher 

and (more variable) variability. In particularly poorly performing datasets, it may that 

the silicon probe has not sampled enough sparse neuron populations to distinctly 

represent all the stimuli. Sparse coding lends itself well to the efficient representation 

of a huge variety of information, fitting the auditory cortex’s function as the final, 

perceptual stage of sound processing (as opposed to simply conveying the 

spectrotemporal appearance of sound). The results presented here thus support the 

AC’s use of a sparse coding strategy for natural sounds. 

That narrow spiking cells showed slightly stronger noise (and to an extent, signal) 

correlations during natural sound than equivalent broad spiking pairs has interesting 

implications, alongside supporting the existing knowledge that inhibition is important 

for shaping tuning curves. The Fano factor of narrow spiking cells was also observed 

here to be higher than broad spiking counterparts. If these results can be solidified 

and confirmed further, they suggest that this cell type is influenced by global changes 

as a whole population. Their particular function is performed as a population rather 

than as individual cells. These implications match those discussed in Chapter 3. 

IC cells are observed to have a more reliable spike rate response to repeated trials of 

the same stimulus, when compared to the auditory cortex in similar situations. In its 

role as a hub, it is logical that the IC have robust and reliable encoding patterns, to 

ensure that the details of the sound is passed on effectively and accurately. The 

results, when compared alongside the auditory cortex, continue to support the 

functional role of the IC as a hub for integration of raw sound information, rather than 

for higher perception purposes. That the spike rate code can usually distinguish 

stimuli even with very few units further speaks to coding robustness and reliability. 
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The results from Chapter 4 regarding trial-trial variability and the relative success of a 

spike rate code, alongside knowledge of the ICs  role as an auditory information 

integration hub, point to a dense coding being more favoureed. With sound stimuli 

being represented by variations in the spike rate of each isofrequency layer,  the 

system would benefit from incorporating redundancy to better deal with noise or 

missing information at this crucial stage in the auditory pathway. Literature on the 

subject is currently somewhat patchy, with evidence for both strategies available as 

discussed below. 

Sparse coding models of the IC have proved successful in the representation of 

human speech (Zhang et al., 2019, Carlson et al., 2012), and a 2012 study in cats 

made a strong case for the importance of a sparse strategy in the ICC (Chen et al., 

2012a). In mice too, a heterogeneity in ICC neuronal responses was observed to be 

important for efficient coding of vocalisation (Holmstrom et al., 2010). 

However, there is also evidence supporting a mechanistic switch from dense to 

sparse coding, reducing redundancy as the information ascends to the auditory cortex 

(Chechik et al., 2006). Work in the midbrain of the electric fish indicates (at least in 

this species), both methods exist very much in parallel (Vonderschen and Chacron, 

2011, Sproule et al., 2015).   

More research is clearly required in this area for further clarification on the role, 

interactivity and relative importance of each coding strategy. For the success of 

auditory implants, a propensity for a dense model (with a degree of spatial 

localisation) may be most desirable, given that many cells around the site will be 

stimulated – though this may become less of a hurdle with advanced optogenetic 

techniques and technologies. 

4.3.5 Future Work 

Now that the baseline results have been obtained, the future of the research lies in 

posing further questions relevant to auditory neuroscience and implants. 

Firstly, the complexity of the mathematical modelling should be increased. The choice 

of algorithms and the operating parameters can be optimised to the (often non-linear) 

spiking of neurons by using non-linear or partially non-linear solving methods (such 

as Support Vector Machines). It may also be beneficial to apply different kinds of 

models such as regression, to look specifically at the coding of a certain variable of 

the sound (sound envelope amplitude, phase, delta power etc). This kind of analysis 



235 
 

is a powerful tool for asking more specific questions about various aspects of the 

sound are encoded that are not possible with the current data. 

Neuronal data is highly multi-dimensional, and future work should try to incorporate 

this further. Additional dimensions may include phase information (as in Kayser 2012) 

or additional time binning. Depending on the questions being asked, it may also be 

beneficial to create bespoke “populations” of different cell types and cell type 

proportions in order to see the relative influences of each type and reveal how 

population act together. Given the functional implications discussed, investigating the 

degree of coding sparseness in both the AC (where it is well established as a primary 

mechanism) and the IC, may prove interesting, providing more insight into how the 

representations of sounds change through each stage in the auditory pathway. More 

applicable dimensionality reduction may also provide benefits, such as NMF to 

identify functional populations. The potential of this technique is explored in Chapter 

5. 

Analysis utilising the simultaneous aspect of the data would be novel, and highly 

informative for systems neuroscience and auditory implants. One potential study 

could be predicting AC population activity from the activity of IC neurons, then 

comparing this predicted activity with that already recorded. The relative success of 

this, and the methods used to do it, would have implications for the brain’s methods 

of information transfer through the auditory system – what is the best way to “package” 

the IC activity to get the most naturalistic AC response? This is excellent information 

to provide for the development of future auditory implants. 

Randomly picking stimuli from 10 seconds of natural sound has provided baseline 

results. By preselecting segments of the sound to be stimuli, based on variables of 

interest such as amplitude, frequency power and slope/shape of the sound envelope, 

functional neuronal populations may be revealed.  By applying classification analysis 

to more varieties of auditory stimuli (vocalisations, puretones, background noise etc), 

stimulus specific coding mechanisms and dynamic population activity can be 

investigated further. 

With the link between brain state and trial-trial variability in mind, investigating global 

brain state and its subsequent effect on classification success would be very 

informative.  Levels of pair-wise correlations during spontaneous activity in the evoked 

and resting state and illuminate any changes in neuronal relationships between 



236 
 

conditions.  A more in-depth look into the effect of the relative positions of cells in a 

pair may better reveal depth or other spatial-based effects. 
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Chapter 5 Non-Negative Matrix Factorisation for 

Characterisation of Neuronal Populations During 

Natural Sound 

In this chapter, preliminary results from non-negative matrix factorisation are 

presented. Analysis was performed on auditory cortex and inferior colliculus data 

taken during presentation of natural sounds. Section 5.1 provides an introduction to 

the aims, relevant literature and hypotheses for the analysis. Section 5.2 presents the 

main qualitative results for spatial modules in both brain areas. In Section 5.3 the 

outputs of spatiotemporal decomposition are examined, with a single example dataset 

used to try and determine if cortical state can be derived from module strength. 

Splitting trials into putative states, linear classification is performed as in Chapter 4 

and look for any effects. This is repeated for inferior colliculus data, but with minimal 

success. Finally, in Section 5.4 the discussion reflects on the potentials of the 

technique for furthering knowledge of functional neuronal populations, and the 

limitations of the study. Future research directions are then proposed. 
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5.1 Introduction 

5.1.1 Aims of the Chapter 

Neuroscience research has begun a shift from single unit analysis to the consideration 

of neurons as functional populations. As detailed in the literature review, the advent 

of silicon probe and advanced imaging technologies has made the simultaneous 

recording of multitudes of neurons a reality. Analysis of neurons on the level of 

populations has thus become a popular and highly informative approach in recent 

years, with new analysis techniques emerging to manipulate the data in useful ways. 

To conclude the thesis’ analysis of cortex and colliculus responses during natural 

sound, dimensionality reduction is employed in an effort to identify populations and 

their activity during natural sound. The aims of this exploratory chapter are to: 

• Successfully decompose cortical and colliculus data into spatial and 

spatiotemporal modules of activity (putative populations), using Non-Negative 

Matrix Factorisation (NMF) 

• Make observations about the components (neurons) of modules and how 

modules change relative to each other, during successive trials of a natural 

sound stimulus  

• Identify qualitive differences between the AC and IC and hypothesis as to their 

origin 

• Determine if the strength of particular NMF modules is in some way indicative 

of brain state transitions 

• Highlight the suitability of NMF for investigating populations of auditory 

neurons 

5.1.2 Relation to Previous Literature 

By treating the auditory (and other sensory) systems as populations instead of as 

individual neurons, over recent years, researchers have gained insight into the multi-

layered mechanisms underlying sound encoding, and identified new intricacies in 

previously mapped systems. For example, with 2-photon calcium imaging, it was 

confirmed that local neuron populations in the primary auditory cortex are often 

heterogenous in terms of their frequency tuning, despite a larger global gradient – but 

despite these differences, neurons in these population exhibited shared 

fluctuations/noise correlations, indicating their cooperation on some level (Rothschild 

et al., 2010). An extensive study using Neuropixels probes in multiple brain areas and 

two-photon calcium imaging grouped neurons into rough populations based on spatial 
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distance, then quantified their multi-dimensionality using peer-prediction (Stringer et 

al., 2019). In peer-prediction analysis, the activity of a given neuron is predicted by 

using the activity of other simultaneously recorded neurons (Harris et al., 2003). By 

repeating this for different neurons, a detailed picture of which, and how, neurons are 

working together as population is derived, including putative population numbers and 

how they alter between spontaneous and various types of evoked activity (Stringer et 

al., 2019). Currently, inferior colliculus neurons have not been subject to these sorts 

of analysis, not being a higher brain area, though in a general sense, isofrequency 

layers in the ICC tend to be treated as “populations”. 

As became apparent in the literature review, increasingly simultaneous recordings are 

often struck with the “curse of dimensionality”.  Datasets are becoming huge in both 

storage size and in number of dimensions, as recording from hundreds of neurons 

simultaneously from multiple brain areas becomes possible, during various stimuli 

and attentional states. Dimensionality reduction is thus becoming an important tool, 

both from a computational timing standpoint, and in capturing the activities and 

functions of underlying populations. At the present time there are several 

dimensionality reduction techniques available, which will be applicable to different 

varieties of data. For further explanations, the author refers the reader to the 2014 

Cunningham and Yu review: “Dimensionality reduction for large-scale neural 

recordings” (Cunningham and Yu, 2014). 

Some common dimensionality reduction techniques include (but are not limited to) 

Principal Component Analysis (PCA), Factor Analysis (FA), and Non-Negative Matrix 

Factorisation (NMF). The use of PCA to identify and characterise cell populations in 

ensembles is well established (Chapin and Nicolelis, 1999, Peyrache et al., 2010). 

However, it may not differentiate well between the variance caused by stimuli, and 

the variance caused by noise or excitability fluctuations – thus, extensive pre-

processing may be required to minimise their influence.  In addition, depending on the 

implementation, it may produce components with negative weightings, and in the 

context of neuronal spiking, this is difficult to interpret (Cunningham and Yu, 2014). In 

the present thesis (Chapter 4), success using PCA for classification analysis was 

limited – potentially due to noisy or low-quality data skewing results. Factor Analysis 

is a technique somewhat similar to PCA, but can remove variance specific to single 

neurons (to which PCA is sensitive) while preserving shared “population” variance 

(Cunningham and Yu, 2014) – so may be more applicable to the study of neuronal 
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populations. In any case, both techniques are limited in that they tend to only use 

spike rate (losing the fine spike patterns) or use trial averaged data to circumvent 

issues with noise. 

Non-Negative Matrix Factorisation is becoming increasingly population as a versatile 

way to examine population activity.  Materials and Methods has previously outlined 

the data pre-processing requirements and how to interpret the output data. 

Essentially, this method decomposes neuronal activity into modules which describe 

the data in space and time. It is easily interpretable in terms of neuronal populations 

– depending on how data is input, it will assign cells to separate modules (read here 

“populations”), with the second matrix detailing how the cell’s strength changes over 

time or during each trial. It thus theoretically gives us detailed information regarding 

dynamic population activity 

Due to the non-negative requirement for input and output, it is directly relatable to 

spike rate, and so is perhaps more easily interpreted than other methods.  More 

specific details on the technique can be found in Lee 1999 (Lee and Seung, 1999).  

A common usage in neuroscience up to this point is the transformation of 

simultaneous neural calcium imaging data to identify populations (Pnevmatikakis et 

al., 2016). Additionally, the technique has been used to identify important neural 

spiking patterns in the context of improving BMI (Kim et al., 2005). The technique has 

also been used extensively outwith neuroscience for processing of images, text, 

music, etc. 

NMF is, in theory, an excellent technique to examine the intricacies of auditory coding 

at a spiking timescale. A 2016 study on retinal cells used the technique to look at 

millisecond timescales, finding that stimulus information was encoded in the first spike 

latencies which was not visible from spike rates alone (Onken et al., 2016). A further 

study by some of the same authors in 2017 used NMF to identify the subunits 

composing visual receptive fields in the salamander retina, during white noise 

stimulation (Liu et al., 2017). Furthermore, a very recent publication derived NMF 

modules from brainstem neuronal populations. Module activation strengths were 

found to reflect state dependant activity in distinct populations, and could also predict 

sleep state transitions (Tsunematsu et al., 2020). 

In this chapter, NMF is used in an exploratory sense, as to the best of our knowledge, 

it has not been used to look at auditory cortex and inferior colliculus activity during 
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natural sound stimuli – or indeed neuronal auditory signals in general. Given the 

differences between the AC and IC in cell metrics (e.g. firing rate) and trial-trial 

variability that have been presented, and the different cell types and anatomical 

structure areait is hypothesised that some between-area differences to be visible at  

on a very basic level – such as in the number of modules and in the appearance trial-

trial. It is also expected that activity will be modulated strongly by the sound – and 

given frequency tuning of cells, perhaps modules/populations will be strongest at 

certain points of the sound. Given recent and past literature, it is theoretically possible 

to observe these fluctuations in the cortex by examining module strengths. Any 

technique which can offer additional insight into the auditory system is beneficial both 

for the goals of this project (in supporting the development of the next generation of 

midbrain implants) and for the field of neuroscience in general. 

5.1.3 Hypotheses 

Due to the exploratory nature of this analysis, hypotheses are quite generalised and 

mainly aim to confirm the potential of the technique for population-based analysis. 

This technique of dimensionality reduction has shown promise in recent years in 

characterising large amounts of neuronal data into (functionally) distinct cell 

populations (including any state dependencies), and so interesting results are 

expected here, especially in the auditory cortex. In addition, previous thesis chapters 

have demonstrated quantitative differences between the auditory cortex and inferior 

colliculus (including trial-trial variability), and presented qualitative observations about 

neuronal preference for sound (such as the example MUA traces in the beginning of 

Chapter 3), both of which are theoretically visible or extractable from NMF data. As 

such, the following general hypotheses can be made: 

• The preferences shown by neuronal populations (i.e. our modules derived 

from NMF) for specific features of the sound will be clearly visible in a simple 

representation of module activity over time 

• Cortex and colliculus modules will visibly differ – for example in trial-trial 

variability 

o Evidence for state transitions may be evident in cortical data  

5.1.4 Main Findings 

• High dimensional input can be represented by a handful of modules at most 

•  Artefacts are generally confined to one module, meaning they are easily 

identified and removed from any further analysis 
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• Different modules appear to be important for different parts of the stimulus – 

with the activity of different modules appear to “slot together” to form 

continuous activity   

• In the inferior colliculus, modules would appear to be tonotopic in nature, with 

the principal cells in each module being arranged in a depth gradient  

• There is some preliminary evidence of state transitions in a single examined 

dataset, telegraphed by shifts in strength in a particular module and 

accompanied by changes in the delta ratio of LFP 

5.2 Qualitative Analysis of Spatiotemporal Modules 

5.2.1 Spatial Module Examples and Initial Thoughts 

In Figure 5.1 and 5.2 on the following pages, some exemplary examples of spatial 

modules are shown. The spatial modules derived from NMF can be thought of as 

neuronal populations, with each cell having a different level of importance to the 

overall activity of said population, compared to the other cells. This relative importance 

can be observed in the left-most images in Figure 5.1 and 5.2, where the contributing 

cells are also sorted by CSD-derived depth. The module/population’s changes in 

activity over individual time points can then be observed in the right-most images of 

Figure 5.1 and 5.2 – trials have been visually stacked on top of each other to create 

a stimuli length by trial matrix of neuronal activity. .  

The plots are typical, good quality examples of some of the features observed in this 

analysis. What is commonly seen is that each module is fairly consistent in each trial 

(though sometimes a slow increase in power was observed across the trials, perhaps 

after an animal movement). The auditory cortex also appears to have more modules 

overall, especially MUA. This makes sense given the data - IC has less cells to work 

with. It could not be said at this time that this is a purely biological phenomenon. 

Each module displays a slightly different pattern, and seems to be responding to 

different parts of the sound – as one decreases in power, another is taking its place. 

This split is generally within a few samples (i.e. not a slow change over time), with 

some transitions sharper than others. 

Cells were also split up by shank, depth and type. For the auditory cortex, 

spatial/depth patterns are not easily observed. In general, it may be said that that 

each module tends to be dominated by either a narrow or a broad spiking cell, but this 

is simply a by-eye observation.  
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In the IC, there is evidence of some depth dependency. In the example shown in 

Figure 5.1, the first module is the shallower cells, while the second then transitions 

into the other cells. This is a common pattern among other sets, and is likely explained 

by the tonotopic gradient of the IC depth – each module represents a population of 

cells coding a small range of frequencies. We are less likely to observe this in the AC, 

as there will be fewer frequencies represented - with the 4 probe shanks, we are 

essentially only sampling four locations in the AC’s tonotopic gradient.   
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In terms of the number of modules (Figure 5.3), datasets with most units (i.e. AC MUA) 

tended to have more modules. In general, the number of modules rose roughly linearly 

with the exception of IC single units and particularly for multi units (AC SUA/IC 

SUA/AC MUA/IC MUA R2 = 0.143/0.038/0.318/0.263) 

5.3 Identification of State Through Spatiotemporal Modules 

5.3.1 Initial Evidence for Brain State Differences 

Spatiotemporal analysis was also run. With this analysis, how the strength of a module 

changes each trial (not bin by bin) can be derived. As touched upon in the introduction, 

it is thought that this analysis will reveal potential changes in state, as the activation 

of a modules changes across trials. Ideally, a bimodality in module strength (with 

some interim values) would be observed. From the range of datasets, a potential 

candidate set is selected. 

To search for evidence of state transitions, module strength over trial is plotted, then 

modules are sorted by strength (Figure 5.4A). The delta ratio is also calculated (see 

Materials and Methods), this is sorted by the same indexing obtained for module 

strength (Figure 5.4B). 

 

Figure 5.3: Number of resulting modules from spatial decomposition 
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The focus is on module 2 (Figure 5.4A, top, unsorted modules). There are clearly 

“strong” and “weak” trials, and the delta ratio would also indicate this. When sorting 

delta ratio (Figure 5.4B, bottom, 2nd row), though it is not a perfect split, it appears that 

delta ratio for the “weaker” trials is stronger, fading out in the “stronger” half. 

Speculatively, it could be said that these are indicative of synchronised (high delta 

power, lower module strength) and desynchronised (lower delta power, higher module 

strength) trials. 

5.3.2 Classification Analysis using Two States 

Classifiying Natural Sound Trials into States 

Module strength was then used as a basis for sorting trials into state 1 (high delta 

ratio, low module strength, putative synchronised), and state 2 (low delta ratio, high 

module strength, putative desynchronised). The bottom 40 trials are taken as state 1, 

top 40 as state 2, and the middle 20 as a transition zone (not to be used).  Note, these 

thresholds were not set in a quantitative way, but were merely done by eye, with some 

small confirmation of differences. 

Figure 5.4: Identification of changes in cortical state from spatial module strength in the auditory cortex 
(A) Top: module strength in each sequential trial, for each module. Bottom: above plot but sorted by 

module strength. (B) Top – delta ratio calculated using deep LFP channel. Bottom, delta ratio sorted to 

same indexes as in (A), bottom. 
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In separating in this way, clear strength differences are observed, with a generally 

even middle set. State 1 trials also have a significantly increased delta ratio.  Thus, 

there would seem to be some evidence for NNMF revealing states. 

Putative Desynchronised Trials Give Better Classification Performance 

As state is known to affect sound coding, each set of 40 trials is used for classification 

analysis, to look for differences in prediction error. The desynchronised state is 

expected to perform better given a lowered trial-trial variability. Three different 

stimulus lengths are examined (down from 17 in Chapter 4). 

In each of the three stimulus lengths examined, the set of “desynchronised/State 2” 

trials (right box plots, Figure 5.6) provided significantly better classification 

performance than “synchronised/State 1” (p < 1.978e-131, Wilcoxon rank-sum test). 

This is in keeping with expectations. 

 

 

 

Figure 5.5: Classification of natural sound trials into putative synchronised and desynchronised states. (A) 
Power of State 1 (first 40), State 2 (last 40) and middle (middle 20) trials. (B) Mean delta power in state 1 

and state 2 trials. Error bars indicate SEM. Values are significantly different (p value 2.7462e-9, ttest) 
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5.3.3 Effect of Fano Factor and Spikes Per Bin on Classification 

Having previously observed potential influence of Fano factor on the classification 

outcome, and potential effects of spike rate, these are examined during the trials of 

each state, where slightly unexpected results are seen. These are displayed in Figure 

5.7 on the following page. 

Taking the median of the Fano factor across all 10 stimuli, no significant differences 

in the Fano factor for lengths 250 and 600 are seen, unlike 1000. Overall, there is a 

trend for state 2 to have a higher (and more variable) Fano factor across trials. 

Splitting this into each of the 10 stimuli, some (i.e. 2-6) stimuli show the state 2 having 

a higher Fano factor. This is in conflict with what was observed in Chapter 4, where 

the comparable classification with fewer predictors was attributed to the lower Fano 

factor. Potential reasons for the discrepancy will be touched on in the discussion. 

Splitting by cell strength/module contributed was also attempted in a very basic 

Figure 5.6: Classification error for states 1 and 2 in auditory cortex (three stimuli lengths). Each colour 
represents a different stimuli length, with the left-hand boxplot as state 1, and right hand as state 2 
results. Significances are between states, for each stimuli length. p values for 250/600/100 0ms:  

1.9781e-131/ 1.1872e-307/ 4.6745e-278, Wilcoxon rank-sum test. 
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manner, and saw similar results. There are no significant differences in spikes per bin 

between states, for any stimulus. 

 

5.3.4 Noise and Signal Correlations and their Effect on Classification 

Another potential contribution to performance is now examined – noise and signal 

correlations. 

Looking at correlations, the median pairwise noise correlations of the population (all 

and positive only) in state 2, the better performing state, was significantly lower for 

most conditions (p < 0.0143, Wilcoxon rank-sum test). It is slightly more complex for 

signal correlations, which were significantly different when not splitting into positive 

and negative (p < 0.0016), but this difference was less obvious after a split into 

positive and negative. Overall, noise correlations in state 2 are significantly smaller 

than state 1. 

 

 

 

Figure 5.7: Fano factor and spikes per bin in each state (three stimuli lengths). (A) Fano factor. 
Significant differences seen only in 1000 ms. p values 250/600/1000 – 0.2861/0.1290/0.0102, Wilcoxon 
rank-sum test (B) Spikes per bin (across all 10 stimuli) for each stimuli length and between states. No 

significant differences (p values 0.9778/0.8661/0.8165, Wilcoxon rank-sum test). 
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Figure 5.8: Pairwise noise and signal correlations in each state (three stimuli lengths). Mid colour 
boxplot – all correlations combined. Pale plots – positive correlations only, dark plots – negative 
correlations. (A) Noise correlations. Significant differences seen in all correlation condition, for all 
stimuli lengths (p values: 2.081e-23/4.8085e-14/2.39e-16, Wilcoxon rank-sum test). Significant 
differences also seen in positive correlations, p values 2.6475e-11/0.0143/0.0012). Negative 

correlations were not significant, p values 0.1601/0.0738/0.1469. (B) Signal correlations, these were 
significantly different between states for the “all” condition – p values 0.0016/4.755e-11/3.1458e-14, 

and significant for 2 of 3 for positions (p values 0.0347/0.0874/2.2167e-6). They were significant for 1 of 
3 for negatives, p values 0.2117/0.0008/0.9577, Wilcoxon rank-sum test 
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5.3.5 Inferior Colliculus – Determining State from Module Strength 

As the recordings are simultaneous, it may be that splitting the IC activity in the same 

trials as cortex will produce different and interesting results.  Multi unit activity is used 

as this contained more units than the corresponding single unit data. We have 

previously sorted trials of auditory cortex activity from low to high strength – in this 

analysis, IC activity trials are arranged in this same order (i.e. based on AC activity 

strength, not IC). Using the indexes of the previously sorted the auditory cortex trials, 

the module strength of both IC modules is rearranged, and the delta ratio calculated 

at a middle channel (16). These are displayed in Figure 5.9. 

The visual results here are less obviously bimodal than the auditory cortex. In Figure 

5.9B, trial strength of each module is sorted according to auditory cortex strength, and 

unlike in the cortex, there is no split into predominantly high or low strength. A 

difference in in the delta ratio is still observed, where state 2 has a significantly smaller 

Figure 5.9: Classification of inferior colliculus natural sound trials into putative synchronised and 
desynchronised states, using auditory cortex results (A) Top, Module strength over consecutive trials. 

Bottom, delta ratio calculated with middle channel. (B) Module 1 (top) and module 2 (bottom) trial 
strength sorted using same order as in auditory cortex analysis. (C) Delta ratio in state 1 and state 2, 

as sorted by auditory cortex trials. Data presented as mean +/- SEM, p = 0.0041, t-test. 
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average ratio than state 1, though the difference itself is small. Despite the unclear 

differences, the same classification analysis using these trial subsets was performed. 

IC Classification with State Splits Reveals Unexpected Results 

The results from the IC analysis are less clear. There are very few cells (5) and 

performance is near or exceeding chance level error. In Figure 5.10, it is seen that for 

2 of 3 stimulus lengths, there is still a smaller error for state 2, but this is reversed for 

the mid length stimulus (600 ms). Overall, the differences are very small (0.855 vs 

0.845), and so the argument of state 2 performing better is weaker, particularly as the 

600 ms length shows the opposite relationship. 

 

Figure 5.10: Classification error for states 1 and 2 in inferior colliculus (3 time bins). 250 and 1000 ms 
have state 2 with significantly smaller classification errors (p values, 5.302e-21, 6.3073e-36). 600 ms 

has a higher error (p value 3.0655e-41, Wilcoxon rank-sum test). 
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Fano Factor and Spikes per Bin Change Little Between States 

There are no significant differences in Fano factor or spikes per bin between states 

(p > 0.3125, Figure 5.11). It should be noted that there is a low number of cells in this 

dataset, making comparisons more difficult. As before, correlations are also 

examined. 

 

 

 

 

 

 

 

 

 

Figure 5.11: Fano factor and spikes per bin in each (three stimuli lengths) (MUA units, n= 5) (A) Fano 
factor. There are no significant differences between state 1 and state 2 for any stimuli length (p = 

0.3125/1/0.3125, rank sum test). (B) Spikes per bin. There is no significant difference between state 1 
and state 2 for any stimuli length (p = 0.7348/0.8389/0.9033, Wilcoxon rank-sum test). 
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There is Limited Evidence for Differences in Pairwise Noise Correlation 

Between State 1 and State 2 for the IC 

Except in one isolated instance (p = 0.0285), there are no significant differences in 

correlations (p > 0.1143), unlike what was observed in the auditory cortex. Given this 

and the low cell numbers, it thus cannot be concluded at this time that global brain 

state is affecting the inferior colliculus populations, especially as the initial 

classification differences were not consistent. 

 

 

Figure 5.12: Pairwise noise and signal correlations in IC multi units (three stimuli lengths: blue, red, 
green), between states. State 1, left, single longer boxplot with smaller light and dark coloured boxplots. 

State 2, as 1, but right hand group. Middle shade – all correlations. Light shade – positive only. Dark 
shade – negative only. (A) Noise correlations. There are no significant differences between states, 

except for 250ms in negatives (p values: All – 0.7337/0.7913/0.6776, Pos – 0.6991/0.5368/0.1636, Neg 
– 0.0285/0.2857/0.9048, Wilcoxon rank-sum test). (B) Signal correlations. There are no significant 

differences between states at any stimuli length (p values: All – 0.4727/0.7913/0.7913, Pos – 
0.2468/0.2810/0.1143, Neg – 0.7302/0.8/0.2571, Wilcoxon rank-sum test). 
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5.4 Discussion 

5.4.1 Brief Summary of Results 

As expected from looking at multi unit activity and other related variables of neuronal 

activity (in previous chapters), and from what is known of the functionality of 

dimensionality reduction techniques in this area, the observations in spatial 

decomposition were expected – multi-dimensional activity was reduced down to a 

handful of smaller populations. These populations appeared to be responsible for 

different aspects of the sound and worked in harmony, in keeping with the exploratory 

hypothesis.  

Although it was not fully quantified, IC modules were often sorted by depth (i.e. 

module one cells were shallow, module two cells were in the middle of the shank and 

so on). In this largely exploratory analysis, there was no obvious trend or pattern of 

cells within cortical modules – as cells within a single cortical columns are generally 

tuned in a similar way, observing the same depth dependency seen in the IC was not 

possible . There was little else qualitatively distinguish between brain areas, despite 

the hypothesis. 

Something also seen is that noise (a single trial with all the activity, unmodulated 

across 10 seconds, or single overactive cells), tends to be isolated to a single, easily 

identifiable module that could then be removed.  

State transitions were only examined in a single data set. In one of 4 spatiotemporal 

modules, a clear difference in module strength and associated delta ratio was 

observed, which was taken as being the synchronised and unsynchronised states. 

Use trials from each “state”, it was found that the synchronised state performed better 

in classification analysis, but that noise correlations were unexpectedly higher. Similar 

analysis in the inferior colliculus saw very limited evidence. 

5.4.2 Comparisons to Previous Literature and Results 

As mentioned in results, when decomposing into spatial modules, a “shifting” of 

activity between modules is seen.  This is similar to what was observed qualitatively 

in multi unit activity in Chapter 3, where different neurons responded to different 

sections of the sound. Seeing IC modules arranged in a tonotopic gradient is also in 

keeping with what is known of IC tonotopy, each group of cells is responsible for a 

band of frequency. To our knowledge, this is the first time in which both spatial and 

spatiotemporal modules have been derived from auditory evoked data using NMF. 
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Though the work here is largely exploratory, the insight dimensionality reduction can 

and has provided into the dynamics, function and components of neuronal 

populations is exciting – and it is hoped the work presented here will be an excellent 

stepping-stone to posing more pointed questions. 

While the work is novel, it was largely exploratory and is yet to provide new knowledge 

of auditory coding to compare to recent literature on the subject. In this instance, 

comparisons are thus made to previous literature utilising the NMF technique, in order 

to highlight the potentials of the technique as a whole. The most relevant literature of 

comparison (currently) is the 2017 paper by Lui et al, in the retina. Though they based 

inputs on Spike Triggered Averages (rather than spike rates alone, as was done here), 

and performed more in-depth analysis, in principle, the spatial decomposition may 

have identified sub-populations in a larger neuronal population that were responsible 

for different aspects of the sound, with limited initial constraints or assumptions. Both 

the current study and Lui et al’s study highlight the suitability of NMF for analysing this 

kind of data. 

In the literature review (and also in Chapter 4) trial-trial variability was linked to better 

decoding performance when using a single spike rate code. In the cortex, there will 

be less variation between trials when in a desynchronised state: therefore, if this is 

indeed the case, in applying classification analysis it is expected desynchronised state 

to perform better. While this was the case, unexpectedly, there were no significant 

differences in Fano factor between states – and in fact, it appeared as if state 2 had 

a tendency to be more variable. This does not match either the previous results of this 

thesis, or the literature, considering state 2 to be desynchronised.  

Noise correlations were, however, significantly lower in the “desynchronised state”, 

which better matched previous results. It is possible that a portion of the cells in this 

particular dataset are variable across trials, but are similarly variable across all stimuli 

and are not necessarily contributing to sound coding. By not aiding in the 

differentiation of stimuli, these neurons contribute less to the classification accuracy 

(they are background noise). 

Overall, these results suggest the capacity of NMF to catch variations in attentional 

state, something which has only been observed very recently (Tsunematsu et al., 

2020) and may prove useful for population analysis. Not unexpectedly, evidence of 

different states in IC modules was not at all clear, with classification success very low 

overall.  
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5.4.3 Limitations and Considerations 

The main limitation of this results chapter is its exploratory nature, meaning the extent 

to which data was analysed is limited. Specific questions relating to auditory 

population activity were not posed in this instance, but instead (as the analysis has 

never been done in these brain areas), the analysis aimed to provide a general picture 

of potential outputs. In this regard, it was reasonably successful, though it was 

unfortunate that there was no time to take the analysis further. 

As with previous chapters, there was a continuing lack of IC units, which may have 

skewed IC decompositions to low module numbers – without larger datasets, it cannot 

be said if this is due to the biology or a simple lack of data. 

Analysis of state transitions was very brief (a single dataset) and relied on delta ratio 

recorded from the probe itself as EEG screw data was not clean.  Ideally, this analysis 

would be performed with pupil recordings to get an accurate assessment of state. 

Classification analysis was performed with fairly few (20) trials in each condition – 

more would be desirable to increase robustness of observations. Certainly, as the 

Fano factor results were contradictory to previous work on linear classification, it 

would be desirable to confirm or deny the observed relationship in other datasets. 

5.4.4 Functional Implications  

At this exploratory stage, it is difficult to link the results shown here to new implications 

for functionality of the auditory system – other than general statements regarding the 

behaviour of populations. To do this, more specific questions should be posed, and 

the components of each module examined fully. In any case, the analysis has 

revealed the presence of multiple, seemingly functionally distinct populations of cells 

with the brain areas, paving the way for further research into their exact function, 

components, and dynamics. 

Though only shown in one dataset, the apparent ability of NMF to at least partially 

identify different attentional states has implications for the field of auditory research – 

it may be a new tool to effectively link state and population activity. That trial-trial 

variability was not lower, despite previous literature and previous results, either 

speaks to a dataset specific effect or to an interesting avenue of discussion by itself. 

More analysis (for example, further restricting the focus to the cells most active in the 

state dependent module) is required before a statement can be made on precisely 

what is going on in these cell populations. 
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5.4.5 Future Work 

The future analysis to be performed with this technique is potentially endless. Firstly, 

the component units of each module should be examined at length, to identify 

trends/patterns in cell type, firing rate, tuning properties, cortical layer, etc. This will 

provide a wealth of information as to how cells interact with each other, and for what 

purpose. The work presented on brain states should be expanded upon – it may be 

that the effect of global brain state is variable between populations. 

Another avenue would be to alter the time bin used to bin the data. 100 ms was used 

here, but given the importance of timescale on sound coding, a systematic analysis 

and comparison different time bins (similar to Chapter 4) is likely to reveal interesting 

and dynamic patterns in module activity, which may in turn be linked back to their 

underlying function. 

With putative populations derived from natural sound evoked activity, the details of 

modules created during different types and lengths of sound stimuli should also be 

examined. This would serve to identify if population constituents and characteristics 

are carried over between stimuli - and if not entirely, how and why do they change? 

NMF modules are also very suitable as input variables to mathematical models of 

encoding and decoding – their use would expand upon the results of Chapter 4 and 

the associated literature. The simultaneous aspect of the recording could be well 

utilised to explore dynamic functional connections between the IC and AC in various 

contexts, perhaps employing further prediction analysis to predict AC populations 

from IC ones, as was proposed in Chapter 4. 
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Chapter 6 Optogenetics for Auditory Implants 

Chapter 6 is the first and only optogenetics results chapter, presenting the work done 

using the Chronos opsin and µLED probes. The main results section of this Chapter 

is split into two distinct sections for different sides of the optogenetic research – 6.2 

and 6.3. In Section 6.1, the Aims of this Chapter are stated, and motivations are 

explained by reintroducing the issue of poorly performing auditory midbrain implants, 

and the recent move towards optogenetics as part of the solution. Goals and 

hypotheses are then presented, including an explanatory figure as to how the two 

results sections cohere. Section 6.2 primarily deals with the optimisation of Chronos 

expression in the mouse inferior colliculus, and subsequent validation of an optical 

response in vivo. Section 6.3 introduces the work done with the µLED technology, 

including GUI and protocol design, in vivo experimentation, and issues arising from 

subsequent analysis of the data. Finally, Section 6.4 presents a discussion of both 

experiments and how they are relevant to the field of optogenetic auditory implants.  

Extensive space is devoted to discussing the issues identified through µLED pilot 

experiments, with future improvements to the technology and recording procedures 

suggested. 
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6.1 Introduction 

6.1.1 Aims of the Chapter 

Since the discovery of the Chronos opsin in 2014, it is theoretically possible to 

stimulate neurons with the frequency required for speech processing algorithms. As 

such, the auditory and optogenetic research communities have begun to consider the 

application of optogenetics in the auditory system as replacement for electrical 

stimulation in brain and cochlea neuroprosthetics. Alongside fast opsin kinetics, there 

is an additional need for high spatial resolution light delivery devices, with µLEDs 

emerging as a prominent tool.  

In this final chapter, the overarching goal is to prove the feasibility of combining 

Chronos and µLEDs as the basis for auditory midbrain implant. However, this was a 

lofty goal, and only the initial questions were able to be addressed. As such, the 

realistic aims in this Chapter are to: 

• Optimise of Chronos expression through targeted viral injections in the mouse 

ICC 

• Confirm optical responses from excitation of Chronos opsin, using a surface 

optic fibre 

• Design an experimental pipeline for the use of a µLED probe (including 

communication software and providing relevant outputs for analysis) 

• Perform a pilot study with µLEDs 

• Address identified shortcomings in µLED experiments  

6.1.2 Relation to Previous Literature 

Channelrhodopsin-2 (ChR2), while ubiquitous in the field of optogenetics, does not 

have sufficiently fast recovery times to be considered for auditory applications – 

implants require control of stimulation to at least 300 Hz, whereas ChR2 can only 

reliably time-lock to pulses up to ~50 Hz. Recent work in the cochlear nucleus and 

inferior colliculus has shown Chronos may be able to provide this high frequency 

temporal fidelity, displaying time-locking to 250-300 Hz light pulses (Guo et al., 2015). 

Additionally, by stimulating the cochlea and recording through the ICs tonotopic 

gradient, optogenetic stimulation has been shown to achieve better spatial/spectral 

resolution than electrical stimulation, and be comparable to auditory stimulation itself 

(Dieter et al., 2019).   
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Though much of the focus has shifted to the use of red light, predominantly in the 

context of cochlear implants (Hight et al., 2015, Mager et al., 2018b), to date, Chronos 

has not been expressed in the inferior colliculus for the purposes of testing frequency 

resolution – the motivation for this part of the project. 

Histological evidence from past literature indicates limited dorsal-ventral spread of 

opsin expression using existing protocols (Guo et al., 2015), and so the first task in 

this chapter was to establish a viral injection protocol that gave sufficient and accurate 

coverage of the ICC, specifically assessing the medial-lateral, dorsal – ventral and 

anterior-posterior expression range, as well as any optogenetic activation that was 

possible from the surface. Though there now exists transgenic, cre-dependant 

Chronos transgenic mice, this is a very recent publication (Daigle et al., 2018) and so 

in this project, viral injections continue to be used. Any results from optimisation of 

these injections may be useful for future, similar viral injection of new opsins. 

The other consideration when examining optogenetics as an option for auditory 

implants is the device used to apply light. The history and state-of-the-art in 

optogenetic devices and combination optoelectrodes is covered extensively in the 

literature review. To work as an auditory implant, any device would have to match the 

configuration of electrical devices as much as possible, immediately discounting bulky 

and low channel count optical fibre based devices these are still being used in basic 

research to test opsins and establish basic feasibility of the optogenetic stimulation.  

µLEDs are emerging as the dominant technology for auditory neuroprosthetic 

applications (currently focused on the cochlea) (Klein et al., 2018, Reddy et al., 2019). 

As such, potential issues in the creation and implementation of optoelectrodes should 

be addressed. When combining recording electrodes and light stimulation, recording 

artefacts are almost unavoidable, and so efforts are ongoing to minimise these 

through clever device design (Kim et al., 2019). This is explored more in the 

discussion. 

For the auditory midbrain implant, while material flexibility would be desired in a final 

product to minimise tissue damage, the need for this property is less pressing than 

for the cochlear implant, which must be bent and curved through the spiral shape of 

the cochlea. Thus in this project, channel count and resolution are prioritised, utilising 

the silicon µLED devices developed recently at Strathclyde University (Scharf et al., 

2016). The control and communication system for the presented probe, while suited 

for the 1 shank device and pilot in vivo experiments, is not suitable for the most recent 
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6 shank version. In the previous software, each LED must be set manually, and data 

size of protocols was limited due to where instructions were stored (Scharf, 2016). 

Thus, there is a need for more flexible communication software for creating long, 

complex protocols. 

In the presented experiments, optical fibres are used to test for optical activation of 

Chronos, and a consideration must be that the intensity of light from optical fibres also 

decreases quickly in tissue in accordance of established equations (Stanford 

University, 2018)  

6.1.3 Aims and Hypotheses 

This chapter presents preliminary work regarding the combinational use of Chronos 

opsin, and µLED devices, as hypothetical AMIs. The initial goals of the project 

summarised in diagram below: 

As much of the chapter was in the end more technical (optimisation, software design 

etc), and did not incorporate the Chronos/µLED combinatorial experiments previously 

envisioned creation of true scientific hypotheses posed a challenge. As an alternative, 

the expectations about how the pilot experiments and experimental optimisation 

Figure 6.1: Goals of the proposed optogenetic experiments. Blue indicates the virus optimisation 
experiments, while yellow boxes focus on µLEDs, with the combination occurring for the green box. 

Boxes with solid outlined were achieved, dotted outlined were not completed at the present time 
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would progress (given previous literature and existing work within the lab) are 

presented: 

• A single injection of Chronos is expected to not be sufficient for full coverage 

of the ICC depth given limited medial-lateral spread observed in the histology 

of previous literature – thus, two injections are likely required 

• Chronos should be activatable using optical fibres, and the elicited activity 

recordable. However, it is likely that the full depth of the ICC will not be able 

to be activated with a surface optical fibre, particularly the useable intensity 

may be limited by artefacts. Exactly what depth will be determined by surface 

intensity and tissue dispersion calculation 

• Software/hardware for the in vivo implementation of µLEDs should be 

integratable into current electrophysiology equipment and analysis pipelines, 

potentially with significant optimisations required 

• The µLED probe will elicit optically evoked responses, but artefacts may be 

present 

6.1.4 Main Findings 

• A pilot study of 8 animals found two injections of 0.4 µL of rAAV8-syn-Chronos-

GFP are most effective at covering the ICC depth 

• In chronic preparations, neuronal responses can be elicited using optic fibres 

and Chronos injected animals – however, this was a rare occurrence due to 

experimental issues 

• Stimulation depth in the ICC roughly matches the predicted values 

• µLED experimental pipelines can be designed and communicated to the probe 

using a newly designed system in common electrophysiological software, and 

hardware combined into existing electrophysiology set up 

• Stimulation-induced artefacts were incredibly large, and meant that data from 

a pilot study was not able to be analysed 

• Artefacts were dependant on the intensity of stimulation, and may be mostly 

explained by electromagnetic interference 

Though a true proof of concept could not be established (due to hold ups in technology 

and reasons described above, see discussion), the necessary preliminary stages 

have been completed to lead into more extensive experiments. 
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6.2 Expressing the Chronos Virus in the Mouse Inferior 

Colliculus  

6.2.1 Pilot experiment 

Summary of Expression 

In order to optimise viral injection, 8 mice were used in a pilot study to investigate 

virus spread in 4 different injection conditions (see Materials and Methods). 

Coordinates were chosen based on existing literature (Guo et al., 2015), and through 

logical coverage of the full depth. 

Except in one case, viral expression was confirmed (7/8), and was evident in cell 

bodies (Figure 6.2B). Figure 6.2A, shows an example animal for each of the 4 

conditions, plus a summary figure of expression and evidence of localisation to cell 

bodies. Note that only 10x images are shown for the first condition.  

 

 

 

Figure 6.2: Optimisation of Chronos expression in the mouse inferior colliculus central nucleus. (A). 
Example histology images from each of the 4 injection conditions. The first image is 10x (don’t have 
4x), while others are 4x, scale bar: 250 µm (10x), 1 mm (4x). Green – GFP. Red – DiI. (B) 20x image 
of viral spread, showing cell localisation. (C) Summary of viral expression patterns of all 7 successful 

pilot animals. Dark green outline indicates the strongest overlap area. 
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Table 6.1 Summary of initial 8 animals used in optimisation of Chronos expression. Condition 1: 1x0.5 
µL, Condition 2: 1x0.3 µL, Condition 3: 2x0.4 µL, Condition 4: 2x0.2 µL. Leak: indicates if some level of 

injected liquid leakage out of the injection site was observed during the surgery. Express.: Indicates 
expression (or not) of GFP, particularly in cell bodies. Widest profile: the anterior-posterior location of 
the largest area of GFP expression. Full depth: did expression covered the full depth of the ICC. Med-

lat: how well was expression centred on the ICC middle? Optical: Was an optical response observed? 

Animal Condition Leak Express. 
Widest 

Profile 

Full 

depth 

Med-

Lat 
Optical? 

1 1 Yes Yes 5.07 No,800 Ok No 

2 1 Yes Yes 
Can’t 

tell 

No, 

700 
Ok No 

3 2 Some Yes 4.95 
Yes, 

1800 
Medial No 

4 2 Some No N/A N/A N/A No 

5 3 No Yes 5.07 
No, 

1100 
Ok No 

6 3 Some Yes 5.19 
Yes, 

1800 
Ok Yes 

7 4 Yes Yes 5.07 
Yes, 

1600 
Ok N/A 

8 4 Some Yes 4.95 
Yes, 

1900 
Medial No 

 

 

What is obvious from the images is that patterns of expression were variable, across 

conditions and across anterior-posterior gradient. The “best profile” of expression was 

never more than 0.1mm anterior/posterior from the target coordinate of -5.1 mm – in 

this regard, the anterior-posterior coordinates were confirmed as valid. However, 

while anterior-posterior coordinates were correct, medial-lateral was not accurate in 

all cases, with GFP appearing more medial. Viral leakage was a common issue, 

resulting in the strong expression at the surface as seen in Figure 6.2A, condition 1. 

 

It was observed that smaller volume injections generally (Figure 6.2A, condition 4) 

resulted in narrower expression patterns. Ideally, if viral injection, probe and optical 

fibre were all on target, this would be workable, but more realistically, it is desirable to 

have as large a volume as possible, ensuring a good medial-lateral spread to 

maximise chances of finding an optical response.  
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From Table 6.1 and Figure 6.2, it is apparent that conditions 3 and 4 (2 injections) 

were more likely to result in expression over the full depth of the IC as desired. To 

fully investigate the entire IC with optical fibres on the surface and µLED probes later, 

it is preferable to cover as much as the structure as possible, and so a 2 injection 

protocol was selected. To ensure adequate medial/lateral coverage, and to mitigate 

the effects of leakage, the higher injection volume was chosen (condition 3). Condition 

3 was also the only one to result in optical evoked responses – a full histological 

summary of this is given in Figure 6.3.  

 

Optical stimulation was observed this example animal, but this will be covered 

alongside the chronic recordings. Optical responses could not be obtained in the 

remaining animals due to a number of reasons, generally expression being too deep 

for the optic fibre to reach, or expression being off target (usually medial). 
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6.2.2 Chronic Optical Recordings and Further Viral Expression 

Brief Summary 

After selected the most optimal viral injection protocol, a further 9 animals were 

injected, adding headcaps during the initial surgery. Awake optical recordings were 

then attempted. Unfortunately, due to a number of variables, this was not entirely 

successful. From acute and chronic experiments, a total of 4 animals displayed an 

optical response – with analysable data obtained in only one case due to a 

combination of technological, software and animal issues (see later discussion). The 

following text will explore the issues observed with the experiment, and then present 

some optically evoked data using a dataset obtained from animal 6 in the acute 

experiments.  

Histology Reveals Spatial Mismatch in Probe Location and Viral Expression 

Figure 6.4 shows a selection of typical histological images, to illustrate the potential 

reasons for no optical responses. 

From the summary Figure 6.4A (with comparisons to Figure 6.2C), it can be observed 

that, compared to the pilot study, viral expression patterns were more consistent, and 

tended to cover the full depth. However, despite using the higher volume, there was 

occasionally an unexpected lack of medial-lateral coverage (Figure 6.4B ii & iii). 

Surface expression also was sometimes not present (Bi). These discrepancies are 

most likely attributable to issues encountered during the injection of the virus (leaking 

etc). Because of these narrow patterns, the probe often missed the viral expression 

(Figure 6.4B i). On instances when it appears to overlap (Figure 6.4B iii & iv), it is 

highly possible that the optical fibre had moved and was not properly illuminating the 

surface.  

Another potential factor limiting optical responses was the level of blood/tissue on the 

brain surface. As the skull had sometimes only partially healed, the area was often 

softer and/or less consistent in thickness around the target area. Attempting to create 

a craniotomy window in these situations increased the inherent risk of sinus bleeding 

in the IC area.  
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In the majority of cases however, probe mispositioning was deemed responsible for 

not observing an optical response. The next most common issue was the probe and 

fibre being on target, but then having a lack of expression on the surface or a narrow 

expression pattern. Issues with accurate/successful probe insertion may be attributed 

to the difficulty of the experiment (see discussion). 

Opsin Activation Decreases with Increasing Tissue Depth 

Optical responses were rarely present (4 animals total from 16 tested for optical 

responses), for a variety of reasons (see Discussion). The recordings taken have not 

been analysed further than the LED steps, to assess the strength of the optical 

response with depth. In addition, the last batch of 3 animals, while all displaying an 

Figure 6.4: Viral expression in chronic recording experiments. (A) Summary figure of expression 
patterns at 5.07 mm from bregma (the target area). Expression patterns are overlapped. (B) Example 

viral expression patterns for 4 of 9 animals, illustrating common issues. Green: GFP/Chronos. Red: DiI 
(probe insertion). Scale bars all 1 mm 
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optical evoked response, have lower quality/less data due to a combination of 

software, hardware and animal issues. Thus, the data displayed will be a successful 

acute experiment. Chronos is quoted to respond to intensities as low as 0.05 mW/mm2 

(Klapoetke et al., 2014). The profile of intensity dissipation through tissue is calculated 

using an online tool – the Optogenetics Resource Centre (Stanford University, 2018). 

From here, an estimate of how deep responses will be observed can be made (Figure 

6.5A).  In reality, estimations are likely to be slightly off, due to, for example, blood on 

the brain surface and the optic fibre being slightly misaligned. From the intensity graph 

and the knowledge of minimum Chronos activation intensity (0.05 mW/mm2), it is 

estimated that activation would be visible down to 1.05 mm (1050 µm). Alongside this 

information, the (background subtracted) MUA activity is plotted, as detailed in 

Materials and Methods, on each channel and for each stimulation intensity. Only 

100ms stimulation was analysed for this figure, and only voltages equal to or less than 

1V were utilised (maximum intensity at 1 V = 11.65 mW/mm2). Voltages higher than 

this resulted in large artefacts in the recording that were problematic to deal with. 

 

With paired stats, baseline values (directly before the light stimulation) are compared 

with the MUA in the centre (middle 50ms) of the trace, so as to avoid any light evoked 

artefacts influencing values (Figure 6.5B). MUA values in each channel with intensity 

are shown in Figure 6.5A. For the highest intensity used (11.65 mW/mm2) there is a 

significant difference between baseline and “evoked” activity for the first 24 channels 

(p range 5.2804e-14 at channel 1, up to 0.0177 at channel 24, Wilcoxon sign-rank 

test). Significance decreases with depth increase). For other intensities, the number 

of significantly different channels gradually decreases (for example at the middle 

intensity, effect is significant up to channel 11). In general, the deeper the channel, 

the less evoked activity is seen, and the less intense the light is, the less deep it 

reaches overall. 

 

Referring back to the theoretical activation graph with was calculated based on an 

intensity of 11.65 mW/mm2 at the surface (Figure 6.5C), Chronos activation is 

expected up to 1050 µm of tissue. It is seen up to channel 24, corresponding to a 

depth of 1250 µm, so interestingly a deeper activation than was anticipated. The 

discrepancy is not large at 200 µm, and due to the nature of the experimental setup, 

it’s likely that there may be a slight error in the calibration, or the fibre has shifted 

during the experiment. 
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Despite the overall dependancy on depth, a sequential decrease in MUA through 

decreasing channels is not observed (i.e., channel 1 does not show the strongest 

MUA, Figure 6.5C). This discrepancy may be explained if the optic fibre it is not 

pointing directly down, as illustrated in Figure 6.5D. Stronger light in the centre of the 

beam may hit lower channels, explaining the highest MUA being at channels a few 

100µm below the surface. This non-linearity could also be due to some degree of 

surface damage (during craniotomy), or other tissue heterogenicities which would 

impact neuronal activity.  

Figure 6.5: Optical activation using Chronos and optic fibre at 0-1 V (A) Average MUA of top 16 
channels of 32 channel linear probe, at intensities from 0 to 11.65 mW/mm2. Lines are best fit 

polynomials, order 3. All channels are significant different from baseline p < 0.01 (B) ii - As (A), but for 
bottom 16 channels. Inset (i) shows a typical trace and initial artefact spike. Middle 50 ms was 

extracted  (C) Estimated depth of penetration using highest light intensity in this experiment (11.65 
mW/mm2) calculated using Optogenetics Resource Centre (Stanford University, 2018). Red vertical 

line denotes 1.05cm, after which intensity is not high enough to activate Chronos. (D) Schematic 

potentially explaining deeper channels activating more than surface channels 
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6.3 µLED Experiments 

6.3.1 Introduction 

As has been previously discussed in both Chapter 1, and the beginning of this Chapter 

6, the µLED was selected as the most promising device for a hypothetical optical 

auditory midbrain implant. As a brief summary of the motivations, µLED devices 

contain tiny µLEDs for excellent spatial resolution; can bring the light source directly 

beside brain tissue; are highly scalable in terms of channel count; can generate 

sufficient brightness for all opsins, and have a high potential for wireless operation. 

Following on from Chronos optimisation, this section was to be done in parallel, and 

then after establishing both protocols, the sections combined together in a proof of 

concept experiment. The initial plans for this section were to optimise the experimental 

setup using a previous iteration of the µLED probe (the 6 shank, 96 channel), in a 

mouse expressing ChR2 in PV cells, to both confirm and briefly explore the probe’s 

ability to evoke neuronal responses, optimise the experimental protocol, and have 

sample data to work with and develop a processing pipeline. The µLED probe would 

be inserted alongside a recording electrode to try and examine optically evoked 

responses. 

Unfortunately, due to a variety of issues that will be explored, while an experiment 

was performed, optical responses from the LEDs could not be confirmed, nor was it 

possible to use the new iteration of the probe in a Chronos injected mouse. Much of 

this section will focus on the reasons for the issue, and how they might be mitigated 

in the future. 

6.3.2 Probe Schematic 

The appearance of the µLED probe can be seen in Figure 6.6. Much of the 

characterisation has been described in the literature review. The probe used in this 

experiment was the 6-shank version, that had not yet been validated in vivo.  
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6.3.3 Hardware and Software Optimisation 

The user should be able to easily and flexibly communicate instructions to the µLED 

probe, and be able to design and run protocols designed to fit the majority of 

experimental questions. Previously, instructions for a protocol were loaded all at once 

onto the Arduino board, which had limited storage space. Thus, a communication 

system was designed by Mr Ruaridh Winstanley (Institute of Photonics, University of 

Strathclyde), whereby instructions were instead sent, via MATLAB, on an LED by LED 

basis to the probe. In this endeavour, the researcher provided extensive design input, 

troubleshooting, and MATLAB code input. The schematic Figure 6.7 shows the basic 

principles of operation – note that some complexity of connections has been removed. 

The main purpose of this system is to ensure: 

• LEDs are activated in the desired order (i.e. pseudo random, or as the 

experiment requires) 

• LEDs are activated for the desired length of time 

• LEDs are supplied with the appropriate current in order to operate correctly 

and at the desired brightness 

• Appropriate meta data is generated to allow post-processing 

Figure 6.6: Schematic of 96 channel µLED probe. (A). 6 shank probe, unilluminated. (B) Wire 
schematic of a single shank, showing wires and LEDs (green). (C) PCB of 96 channel probe, minus 

probe (red square) 
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•  The system is easy to use for a typical electrophysiologist 

The general pipeline of operation is as follows. Via a MATLAB GUI, the user designs 

a protocol for LED illumination, or can load in a pre-created one.  Within the GUI, the 

user can set LEDs to be illuminated, the pattern (i.e. sequentially, pseudorandom), 

the number of repetitions (and whether or not each should be randomised), intensity, 

and the on/off times. Generally, only one value of a variable can be examined in one 

run (for example, if the user wished to examine 3 different intensities, they would have 

to generate three different protocols, to then be run sequentially). It is possible to 

generate more complex protocols, but this cannot not be done via the GUI – the user 

would have to code within MATLAB. 

Another, separate program to interpret commands from the MATLAB program is pre-

loaded onto the microcontroller. The user then activates the system and the 

microcontroller (via either MATLAB or LabVIEW depending on which is most 

Figure 6.7:  Schematic of control software for µLED probe. Blue arrows indicate steps within a 
program, purple indicates communication between two programs. Pale blue rectangles mark separate 

programs, and dotted grey lines show joint program stages. 
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relevant). After initialisation stages, the MATLAB script sends instructions to the 

microcontroller to activate and deactivate the first LEDs. When the protocol is 

complete or terminated early by the user, the MATLAB script generates a report of 

the pattern of LED activations (i.e. order and label files generated from normal 

auditory protocols), plus the total protocol time. This can then be used in 

reconstructing the pattern of stimulation and assigning chunks of neural data to the 

correct stimulation periods. The researcher aided with the design of the µLED control 

software (with Mr Winstanley doing the majority of the actual coding due to his 

extensive knowledge of the LED probe electronics), and then helped with optimisation 

and implementation in in vivo experimental setups.  

The main MATLAB script had an additional purpose - calculating the necessary 

current to activate each LED at the desired intensity. This information was contained 

in mapping arrays generated by Mr Winstanley. Due to manufacturing discrepancies 

and failure over time, not every LED was a) able to be operated at all and b) able to 

be operated in the same range. The mapping told the program which current was 

necessary to activate each individual LED at the desired intensity, and also if an 

intensity was impossible for particular LEDs. 

LED activation patterns can be made pseudorandom. This means that in “random” 

activation, LEDs directly adjacent to each other cannot be activated directly after each 

other. While this might be useful depending on the question, to truly test the basic 

effects of the device at this stage, interaction effects should be avoided as far as 

possible by activating an area further away.  

The system was designed to be as easy as possible to use. The GUI was intuitive, 

and a number of template or genetic protocols were created to either run as tests or 

modify within the GUI. The initial trigger is very simple to modify – an additional 

MATLAB script was the most effective way (given the GUI), but a very simple 

LabVIEW VI was also created for implementation into a larger Vis, if desired. 
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The control system was then integrated into the existing recording setup, and some 

test experiments run before probe insertion. Throughout the optimisation process, 

issues with using the LEDs were discovered. Some of these were fixed or mitigated 

before the final experiments, but some still remain to be worked on for future 

iterations. 

• Not all the µLEDs were working – and those that did often had a limit on their 

operational frequency. This added an extra layer of complexity when 

designing protocols, as not all LEDs could generate all intensities. Information 

within the GUI, plus current mapping arrays in the main MATLAB program, 

ensured the correct LEDs were activated with the appropriate currents 

• GUI was somewhat limiting in the variety that could be examined within a 

single protocol 

• µLED PCB was incredibly wide compared to other probe, requiring extensive 

reorganisation of the recording rig to accommodate  

• There was only a single probe 

Figure 6.8: Screenshot of protocol creation GUI. (A) LED Map – for choosing which intensity to run the 
protocol at. The available LEDs will change. (B) Map of available (light blue) and unavailable (dark 

blue) LEDs at the intensity chosen in (A). (C) Generated order of LEDs to be stimulation. Created by 
“updating table” with (H). (D) display of how many iterations/repetitions of the protocol will be run. 

Repetition 1 is selected, this is the order we see displayed in (C), but it can be changed to view others. 
(E) On time for LED pulse. (F) Off time for LED pulse (G) Set number of repetitions (in this case, 3), 
and indicate if each repetition should have a new pseudorandom order. (H) Updates the table in (C) 

with any new settings/repetition numbers. (I) Generates a data table with the information needed to run 
the protocol – this is then read in by the main MATLAB program which executes the protocol. 
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6.3.4 Further Optimisation and Success of µLED Pilot Experiment  

Experimental Optimisation 

After creating the µLED communication system, the project aimed to test the probe in 

vivo. Before this could be done, the existing electrophysiology recording setup had to 

be optimised (this is separate from the main µLED hardware, and the issue is mainly 

logistical). This illuminated some practical problems with the existing recording setup 

(rather than specifically with the software). Examples of these problems are shown in 

Table 6.2, alongside their solutions (if any). 

Table 6.2: Optimisation of µLED experimental equipment – Problems and Solutions 

Problem Solution 

Normal head-fixation in way of probe 

PCB 

Headfix animal with earbars, not head 

post 

Probe PCB is not long, cannot reach 

brain surface 

Lower probe holder rails, raise animal 

platform 

Microscope is blocked by probe 

manipulators 

Worked within very small field of vision, 

blurry 

Lateral accuracy of normal manipulator 

not sufficient for experiment 

Used motorised manipulator instead – 

bulkier, needed new attachment 

Probe is very wide (4mm) Large craniotomy made 

 

Summary of In Vivo Experiment 

The experimental protocol is listed in Materials and Methods, and was performed with 

a single urethane anesthetised animal. In short, the experiment aimed to successfully 

insert the 6 shank µLED probe into the cortex of an anesthetized, ChR2 mouse, while 

simultaneously recording any optically evoked activity with a 4 shank silicon probe 

(4x16, linear). Predesigned protocols intended to test the effect of µLED stimulation 

at each site, various intensities, and various pulse widths, were then to be run.  

In terms of software, the experiment was successful – protocols were run 

successfully, LEDs were lit inside the brain, and the animal remained anesthetised for 

the duration of the experiment. It was noted that the PCB heated up considerably – 

this information was passed onto collaborators. Unfortunately, there were 

considerable optical artefacts that have prevented the analysis of the recorded data. 
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Histological Confirmation of Probe Insertions 

It was confirmed histologically (Figure 6.9B) that both the µLED probe and the 

recording probe were inserted at the desired depth and angle (Figure 6.9A) along the 

mouse cortex, allowing optically evoked activity to be recorded if present. 

Issues Precluding Data Analysis 

Unfortunately, despite a successful probe insertion, there were several issues in 

analysing the data. The first issue was the overall quality of the recording probe – the 

probe used was not new, and so spikes were not clear and well defined. An increase 

in high frequency noise during stimulation periods was observed also, exacerbating 

this issue. Anecdotally, insertion of the µLED probe actually resulted in a loss of all 

spikes, suggesting pressure within the tissue that damped the spiking response. Post 

hoc, efforts were made to improve signal quality through a variety of filters and 

averaging techniques, such as Common Average Referencing (where signals are 

averaged across all channels and this average then subtracted from all channels, 

essentially removing background activity common to all channels). This did not 

increase data quality. Additionally, as spike sorting was generally unsuccessful, spike 

detection thresholds were shifted both up and down, in an attempt to isolate more 

spikes, but again this did not improve results.   

Figure 6.9: Placement of µLED and recording probes in the mouse cortex. A) Schematic of proposed 
insertion patterns, with dimensions. Blue cones indicate hypothetical paths of µLED illumination B) 

Histological examination of brain tissue after µLED experiment. Scale bar = 50 µm/0.5 cm. Red – DiI 
(both probes painted). Blue – DAPI staining. White lines trace probe insertions, horizontal distance at 

surface was measured as 400 µm 
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The most pressing issue was the large ON/OFF artefacts observed – appearing as 

large, almost instantaneous jumps voltage as LEDs were switched on and off 

Because both the probes and the PCBs/wires of each probe were close together, 

illumination and switching off of the LEDs resulted in particularly large artefacts in the 

recording.  On most occasions, particularly at high intensity operation, these saturated 

the input amplifier, the effect of which can be seen visually in Figure 6.10.  

Saturation in this way is a major issue, as it results in the destruction of any underlying 

neural activity – the neural signalscan never be recovered with filtering or other 

techniques as it was never recorded. Example traces directly from Neuroscope are 

shown in Figure 6.10, to illustrate the extent of the issue.   

 
Figure 6.10: Neurotrace screenshots of recording trace during light stimulation. (A) 1 second of 

recording during 100ms light stimuli. (B) 200 ms of recording during 5ms checkerboard stimulation.  
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6.3.5 Signal Saturation and Characterisation of Artefacts 

Given the pilot nature of this experiment, it was deemed beneficial to examine the 

artefacts within the data, and identify points of improvement for future protocols, or for 

the design new probes (potentially incorporating electrodes). The percentage of 

stimulus repetitions that experienced a degree of input saturation, at three selected 

currents, is plotted in Figure 6.11.  

Figure 6.11: Positive saturation of amplifier and recordings during LED stimulation. (A) % of trials 
where saturation was observed for more than 1 sample. Only problematic LEDs are labelled, for clarity. 

(B) % of trials where saturation exceeded 1 ms (20 samples). (C) % of trials where saturation lasted 

longer than 5 ms (100 samples). 
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Various severities of saturation are also displayed, based on their duration (more than 

1 sample, more than 1 ms (20 samples) and more than 5 ms (100 samples). 

From these summaries the situation appears complex. Artefact strength is at least 

partially influenced by channel, particularly at high intensities, with some channels 

displaying saturation of more than 1 sample in 100% of trials. At lower intensities and 

higher degrees of saturation, artefact strength seems less channel specific, and more 

linked to particular problematic LEDs. This effect is particularly clear in Figure 6.11C 

(5ms, 30mW). It appears that some LEDs (and then certain channels) are particular 

susceptible to causing artefacts. 

Next, instances of negative saturation are plotted, where the input to the amplifier 

exceeded -5 V (Figure 6.12). This data is laid out in a similar manner to Figure 6.11. 

There is overall a higher incidence of negative saturation, and interestingly, it seems 

to increase as the intensity decreases. The exact reason for this is not known, though 

it may be due to a variation in the influence of various artefact-causing factors as 

intensity decreased – this will be discussed later. Also, the LEDs identified as 

problematic for positive saturation are not the same as for negative, and in fact, the 

positively saturated LED numbers show especially weak negative saturation, lending 

some support to the idea of opposing electromagnetic or photoelectric forces in the 

creation of artefacts. 
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Figure 6.12: Negative saturation of amplifier and recording during LED stimulation. A) % of trials where 
saturation was observed for more than 1 sample. Only problematic LEDs are labelled, for clarity. B) % 
of trials where saturation was for more than 1 ms (20 samples). C) % of trials where saturation lasted 

longer than 5 ms (100 samples). 
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6.4 Discussion 

6.4.1 Brief Summary of Results 

Overall, the work presented in this optogenetics was somewhat limited, but several 

initial hypotheses and expectations were confirmed. A new viral injection protocol was 

developed and optimised, optical activation of Chronos confirmed (to some degree), 

and a control system for µLEDs developed (though the resulting experiment was not 

particularly successful due to large saturation artefacts within the data). 

6.4.2 Comparison with Previous Literature 

Previous literature used a single injection of Chronos into the inferior colliculus (Guo 

et al., 2015), which was sufficient for a focus on temporal experiments but not for a 

systematic investigation of frequency resolution through the depth of the ICC, such 

as was envisioned as an expansion to the work presented here. Thus, the protocol 

was altered to optimise expression of Chronos in the area, using two injections of 

similar volume to previous literature (and on the same medial-lateral coordinates). 

This was reasonably successful, and the depth of activation achievable roughly 

matched that predicted by brain tissue properties and surface irradiance (Stanford 

University, 2018). Due to the limitations in this new protocol and general lack of 

success with most optical activation experiments, there are no activation results that 

can be directly compared to the literature at this time. 

For µLEDs, this work was the first instance of the 6 shank version of the µLED probe 

described in 2016 (Scharf et al., 2016) being used in vivo. The single shank probe 

presented in 2016 was controlled with a GUI developed using Visual Basic and C 

programming (Scharf, 2016), which was limited in the size of protocols and the time 

required to program multiple LEDs manually. The system developed for the 6 shank 

probe improved upon the previous software by incorporating bi-directional 

communication with the Arduino board so that instructions could be send on an LED 

by LED basis, thus bypassing the protocol size issue. Additionally, protocols using all 

the LEDs could be created with ease, the program provided an ongoing log while 

running, and output order and label files were generated for data pre-processing. 

This previous paper does not appear to have experienced the same high levels of 

artefacts as described in this Chapter. Their presence was acknowledged, but a 

solution of taking only the middle of the stimulation period (as described in Section 

6.2) seems to have eliminated the issue.  Though following a similar probe layout in 
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the brain, the µLED experiment in this Chapter used a different device (6 shanks vs 

1) and a different recording probe (4 shanks vs a single shank 32 channel probe), and 

so it may be simply that the conditions were more conducive for strong artefacts (the 

mechanisms behind them will be explored in Limitations and Considerations). Also, 

the device had been previously used in characterisation tests (saline), and as a result, 

many µLEDs had broken and the probe coating had degraded – this may have 

reduced the electrical shielding available and further increased artefacts.  

6.4.3 Limitations and Considerations 

Chronos Viral Injections 

The presented work has many limitations but acknowledging them and presenting 

solutions will help to shape future experiments. Due to the combination of the difficulty 

in lining up the optical fibre with the recording probe, and hitting the infected part of 

the brain, confirm optical responses were not confirmed in most of our recordings. 

There have also been reports that Chronos does not traffic well to the cell membrane, 

which has prompted the development of optimised proteins and could partially explain 

the limited results (Keppeler et al., 2018).  

The last 3 recordings, while optical activation was observed by eye, did not have 

sufficient data for further analysis, due to some issues with the animal becoming 

distressed and restless, and technical issues with data saving. The successful 

recording also contained large artefacts at high intensities, limiting the data that could 

be used to optic fibre intensities of 11.56 mW/mm2. While this intensity is more than 

sufficient for most opsins, a full analysis of the exact properties of Chronos cannot be 

done at this time. Using optrodes and/or developing a better skull marking system 

(tattoo pens, for example) may help line up light stimulation, recording electrodes, and 

opsin expressing cells in future experiments. 

µLED Hardware Limitations  

Experiments with the µLED allowed the identification of limitations in the current 

approach and device – which is in itself helpful for future experiments. The PCB was 

not of useful dimensions for the existing experimental setup, being very wide, and its 

use required reshuffling of the recording setup and of the head fixation methods. 

Resigning the PCB to have a similar form factor to conventional probes would aid its 

adoption in both this and other labs. It was also noted that many of the µLEDs had 

failed, or could not be activated at all currents. In general, about 20 of the 96 LEDs 

were available during experiments. This is obviously a major limitation in a full in vivo 
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characterisation of the device – systematic activation and analysis of the resulting 

output was not possible. It also meant direct comparisons at all intensities was not 

completely possible for all LEDs. The lack of LEDs is generally agreed to be the result 

of coating degradation through successive saline characterisation tests, but the 

device’s overall instability is a major avenue for improvement in the future. 

Amplifier Saturation in µLED Experiments 

Perhaps the biggest limitation in these experiments was the large recording artefacts, 

which prevented any analysis of optically evoked responses. As this is clearly an issue 

going forward, the likely origin of these artefacts will now be explored, and solutions 

offered for how to fix them in future experiments and devices. 

Initially, recording while stimulating may seem to be a purely research priority – for 

the hypothetical auditory implant, is this functionality necessary? At present it is 

unlikely, but its benefits in research into this particular topic are huge – for one 

example, the spread of optical stimulation could be assessed directly. Also, in other 

medical uses of brain stimulation (Deep Brain Stimulation for Parkinson’s, for 

example, or indeed directly in seizure monitoring and feedback systems), being able 

to record neuronal activity is more immediately useful (or is in fact required). 

Therefore, this issue will be covered here. 

The saturation observed could be both positive and negative. During positive 

saturation, the number of channels and LEDs affected, and to what degree, is affected 

by the intensity of the illumination, with the effect being stronger for higher intensities. 

Strangely, the opposite appears to be true for negative saturation – it is possible that 

reduction of intensity allows another influence to come into play. At the current time, 

there is no simple explanation for this observation – more work should be done on the 

exact origin of the artefacts. 

It is also observed that not all channels are as strongly affected (though with high 

intensities, most are to some degree). This is potentially due to the lower quality of 

the probe at the time of use, with some channels thus having very high impedances 

and so being affected by the signal differently. It may also be due to the relative 

positioning of wires. Another feature of the data is that illumination of certain LEDs 

induces stronger artefacts. Again, this may be due to the relative positioning of the 

LEDs, or perhaps a manufacturing issue. It did not appear to be the case that 

problematic LEDs were those closest to the recording probe, so the issue again may 

lie in the initial manufacturing, or in previous saline tests. The fact that the problematic 
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LEDs are not necessarily shared between positive and negative saturation suggests 

artefacts are the result of different influences that take hold/interact in different 

situations. 

Causes of artefacts in stimulation/recording dual systems are well explored, meaning 

that in the future, mitigation measures can and should be better implemented. The 

artefacts are caused by interactions between sets of wires – in this case, the 

stimulation wires on the µLED PCB and the recording wires on the silicon probe. Thus, 

simply illuminating the brain with no recording equipment would not have adverse 

effects, and this may be sufficient for optogenetic implants. However, these devices 

are still firmly in the research stage, meaning that electrophysiological recordings will 

generally be desired for validation, either by a separate probe or integrated onto the 

stimulation device. If the two sets of wires are in close proximity inside or outside the 

brain, the interaction effects must be considered. The explanation below will relate 

back to the current experiment – however, the issues raised are also highly applicable 

in the design of dual recording/stimulation devices with closely packed wires. Note, 

this will not explain definitively why artefacts are particularly bad at specific LEDs, but 

it may be assumed that this is due to variations in the reactions described below. As 

to why positive and negative saturations show different trends in intensity, it may be 

that as one effect reduces, the other is allowed to increase – but again, it cannot be 

definitively explained at this time. 

Interaction of the photons with probe materials themselves can be causes of artefacts, 

with the photoelectrochemical effect resulting from electrode emission from metal 

electrons after being hit with high energy photons. Another similar effect is the 

photovoltaic effect, where the material properties of the probe substrate are altered 

by photon illumination. Their mitigation involves alteration of probe materials (such as 

using transparent electrodes (Park et al., 2016)) which can be difficult to implement. 

It is also generally more of a concern in optoelectrodes than in the current 

experimental setup, and thus somewhat outside the scope of this discussion.  

Electromagnetic interference is the most likely cause of the majority of the artefacts 

seen. Electrical and magnetic interactions (coupling) between the stimulation PCB 

and wires (the “aggressor”) and the recording PCB and wires (the “victim”) essentially 

result in the generation of large voltages and currents in the victim wires, which are 

seen as high, saturating voltage artefacts. Exactly how these are generated is again 
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somewhat outside the scope of this project, but there are simple ways to reduce their 

influence. The following two equations are important here: 

𝐼 = 𝐶
𝑑𝑉

𝑑𝑡
                  (6.1) 

𝑉 = 𝐿
𝑑𝐼

𝑑𝑡
                             (6.2) 

Where I and V will be the current and voltage generated in the victim wiring, C -  

Capacitance, dV/dt - change in voltage over time, L -  mutual induction, and dI/dt – 

change in current over time 

One of the easiest ways I and V can be reduced is by altering the dV/dt and dI/dt 

terms. “d” denotes a change in the associated value – so dV/dt is essentially 

describing how fast the voltage is changing. The issue in the current set up is that the 

voltage sent to the µLED device is increasing and decreasing rapidly, therefore there 

is a large dV term and a small dt term, making the resultant term large. Similar effects 

happen for current. Thus, by utilising “pulse shaping” techniques and adding a ramp, 

the resultant current (and thus voltage) can be reduced considerably (see Figure 

6.13). This also explains the upward trend observed in positive saturation as intensity 

(i.e. current, dI) increases (though as mentioned previously, there is no simple 

explanation for the opposite trend in negative saturation). 

Another way of mitigating these is changing the C and L terms. These are both related 

to the materials and separation distance between the aggressor and victim wires. 

Thus, by reducing the distance through various means, or by adding shielding 

materials between the PCBs, these terms can be reduced to in turn reduce the overall 

Figure 6.13: Effect of pulse shaping on generated current. (A) A large current is generated as the 
LED is powered, due to a small rise from zero to peak voltage (dt). (B) By increasing the rise time to 

the maximum voltage, a smaller current is generated when the LED is turned on 
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currents and voltages. Materials such as doped metals (Kampasi et al., 2018) and 

polymers (e.g. PEDOT) (Guo et al., 2019) are typically incorporated as shielding.  

6.4.4 Implications for Future Optogenetic Experiments and Auditory 

Research 

Many of the experimental limitations and issues that arose have been explored in the 

preceding text, including how they might shape future experiments and device design. 

At this point, it is not possible to make any novel conclusions about the Chronos/µLED 

approach to improve frequency resolution, as was previously planned.  

With the injection procedure optimised in the mouse ICC, future auditory experiments 

will progress faster, if and when new technologies are obtained. As previously 

mentioned, future experiments should include updated skull-marking so that probes 

are inserted into the correct area. 

µLED PCBs may need to be redesigned in order to fit into existing electrophysiology 

setups. Using the new control system, a range of intensities and pulse widths could 

be explored. GUIs were designed to help users design their own protocols – and 

MATLAB is a widely available program. There are also lots of options as to the actual 

control/triggering of the device too, as the situation demands – thus, it should be 

reasonably simple to design and run any future protocols. 

6.4.5 Future Work 

Improvements to Injection Procedures 

Any future work involving the Chronos opsin should include additional measures to 

correctly identify the injected area, for probe insertion. Using µLED probes over optical 

fibres should be prioritised (or potentially the use of combined optrodes if further 

validation is desired), as this will eliminate some of the experimental difficulties that 

resulted in the optical fibre and probe not being aligned. 

Improvements to Current Experimental Pipelines 

In the current recording, there is very little that can be done to remove the artefacts. 

Pulse shaping and optimisation of the recording rig in future experiments should be 

considered, in an attempt to mitigate artefacts. 

Using lower intensities overall may also help – 150 mW/mm2 is very unlikely to be 

required in a typical optogenetic experiment. Removal of problematic LEDs from 
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rotation may be an option in future devices, but as it stands, there are already very 

few LEDs. 

Future Experiments and Devices 

High priority should be placed on creating stable µLED devices with sufficient 

shielding to mitigate artefacts to the point where they can be satisfactorily removed. 

PCBs should be designed around the environment of use and resemble currently 

existing neural probes as far as possible. 

The ideal future of this work would be in the combination of Chronos with µLED 

stimulation in the presentation of a viable, hypothetical optogenetic AMI. Future 

experiments should revolve around characterising the potential spatial, temporal and 

activation resolution (i.e. effect of intensities) of the approach, so as to illustrate its 

viability as an implant. Preliminary experiments should involve stimulation of the IC 

through auditory and optical stimulation, with recording in the IC and/or 

simultaneously in the AC, in order to compare the “natural” and the light-evoked 

responses. Ideally, a µLED illumination would activate the same spatial area of 

neurons as a pure tone stimulus. 

To investigate the functionality of the device’s spatial resolution, a frequency 

discrimination task is envisioned. After training the animal to perform a behaviour if 

two successive tones are different in pitch, a two “tone” stimulus can be elicited by 

illuminating pairs of LEDs one after the other. By incrementally decreasing the 

distance between illuminated pairs and monitoring the animal’s response, the 

maximum spatial/spectral resolution of the device can be identified - at what inter-

LED distance can the animal cannot longer distinguish different tones? This 

experiment would be an excellent way to provide the viability of an optogenetic based 

auditory midbrain implant. 
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Chapter 7 General Discussion 

7.1 Brief Summary of Key Results and Relation to Hypotheses 

The initial aims of the thesis were to compare and contrast the auditory cortex and 

inferior colliculus, in terms of their general properties and natural sound coding 

mechanisms.  They were expected to differ due to their positions in the auditory 

pathway, and it was also expected that the timescales on which coding takes place 

would be especially important, given perceptual mechanisms such as entrainment 

that make use of underlying brain rhythms of particular frequencies. Results from here 

would theoretically have a positive effect on the future development of auditory 

midbrain implants, by expanding knowledge of the ICs mechanisms and helping 

design accurate stimulation methods.  They would also be generally informative for 

auditory and systems neuroscience. Additionally, the project aimed to prove that an 

optogenetic approach (using Chronos and µLEDs) was viable for solving the issue of 

low spatial resolution in auditory neuroprosthetics, and to make the first steps in 

creating a hypothetical implant. 

The aim of Chapter 3 was to begin comparisons on a low level, contrasting basic 

properties during the brain’s response to natural sound. Differences were confirmed 

between AC and IC cell populations as expected (cell types, spike rate etc). Both 

Chapter 3 and to a greater extent Chapter 4 also identified the IC’s lower trial-trial 

variability in spike rate in comparison to the AC, fitting previous literature and the 

hypothesis given its subcortical position. 

The apparent differences in ITC and entrainment strength (and frequency range) 

observed between the AC and IC, while difficult to interpret as discussed in Chapter 

3, nevertheless point to functional and mechanistic differences in each area. Results 

in the AC were expected, but observation of strong ITC in the IC was not 

hypothesised. Similarly, observation of entrainment to frequencies up to ~20 Hz was 

expected in the AC, but seeing entrainment of the IC up to 200 Hz was not. 

When splitting AC cells into individual populations, there was a preference for putative 

narrow spiking interneurons to entrain to either natural sound only, or both natural and 

spontaneous – but rarely selectively entrain to spontaneous activity alone.   

Chapter 4 aimed to look more in-depth at differences in neuronal coding mechanisms 

for natural sounds, identifying inter-area differences once again and proposing 

mechanisms behind them. It was found that in both areas, a spike rate code allowed 
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classification of natural sound stimuli to a reasonable extent. Where they appeared to 

differ was in the IC neurons’ capacity to reach comparable performance levels as the 

AC with fewer cells, a likely reason/mechanism for this being the lower trial-trial 

variability of IC cells. This observation matched literature and the Chapter 3 driven 

hypothesis. Frequency range, while important to overall classification success, did not 

explain between-area differences, while strong signal and noise pairwise correlations 

tended to indicate exceptionally low performing datasets. Using different stimulus 

lengths did not reveal a significant trend, or a tendency for theta/delta lengths to be 

best classified, in opposition to previous literature both in humans and other mammals 

which suggests coding on these timescales is important for the accuracy processing 

of natural sounds  (Kayser et al., 2015, Peelle et al., 2013, Kayser et al., 2012, Osman 

et al., 2018). 

Chapter 5 was a largely exploratory chapter, utilising non-negative matrix factorisation 

to reduce population activity into modules of activity in space and time. Qualitative 

differences between AC and IC were not as readily apparent as hypothesised, though 

each IC module appeared to cover a successive part of the tonotopic range. In a novel 

application, module strength was used to identify state differences (in a single 

dataset), a split hypothesised as being possible. Separating trials into putative 

synchronous and desynchronous states then lead to differences in classification 

success, with the desynchronous (and presumably less variable) state giving better 

results. Unlike in Chapter 4 however, there was a weak trend for the neural data to 

be more variable trial-trial in this state, conflicting with the Chapter 4 results which 

saw the higher performance linked with lower trial-trial variability. A trend for lower 

noise correlations may better explain the observed results. There was very limited 

success in applying similar analysis to the IC. 

Chapter 6 was the most technical chapter, aiming to explore the viability of the 

optogenetic approach. A new, 2 injection protocol for full depth expression in the 

mouse ICC was developed from previous literature, and optical responses confirmed 

to a limited degree and depth. µLEDs were, as expected, able to be integrated into 

the existing electrophysiological equipment, though this required additional 

communication software and experimental rig optimisation. Even after this, 

experiments had limited success due to large optoelectrical artefacts, and were 

unable to confirm the hypothesis of increased spatial/spectral resolution. Despite this, 

these experiments were highly informative for the future of the work. 
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7.2 Implications and Relevance of the Project  

7.2.1 Systems Neuroscience and Auditory Coding 

 

As discussed in previous chapters, current evidence points to sparse coding 

strategies being predominant in the auditory cortex of natural sound – by representing 

sound using small, specific groups of neurons, coding is efficient in energy, but not in 

the space required to represent the full spectrum of sounds (Hromadka et al., 2008, 

Dodds and DeWeese, 2019, Terashima and Hosoya, 2009, Zhang et al., 2019). The 

alternative, a dense strategy, codes stimuli based on variations in the combined 

activity of a larger number of neurons, and is more robust to noise. The results 

presented in this thesis support the evidence of a sparse code, particularly Chapter 

4. With the AC having comparative classification performance to an area with fewer 

input variables, this suggests that, for the natural sound stimuli applied, we were not 

sampling all the specific neurons required to decode the sound accurately. The 

intermittent loss of neuronal signals (e.g. through animal movement) is also likely to 

more strongly affect a sparse system, which is inherently less robust than other coding 

strategies. 

The literature review identified the auditory cortex as being the site of sound 

interpretation and contextualisation, as well as having a multitude of descending 

connections to sub-cortical auditory nuclei including the MGB, IC, SOC and CN 

(Feliciano et al., 1995, Budinger et al., 2000, Bajo et al., 2007). These connections 

are strongly suggested to have a role in contextual modulation of incoming sounds; 

the higher trial-trial variability observed in this thesis is supportive of this aspect of 

cortical functionality, as well as the influence of global brain state. While on first listen, 

aspects of the natural sound stimuli may alert the animal, this is likely to subside over 

time, plus, the animal may get drowsy (or indeed, fall asleep) during the stimuli 

repetitions, all of which would affect auditory cortex activity over time and thus its trial-

trial variability. Future experiments in which brain state is recorded alongside spiking 

will likely shed further light on the functionality of the cortex during natural sounds.   

Inhibition can shape the frequency response areas of a given tuned neuron (Wu et 

al., 2008), and the observation that (putative) inhibitory neurons of the cortex are more 

variable trial-trial during natural sound than excitatory neurons means their activity is 

likely dynamic, potentially related to ongoing environmental context or global brain 
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state – without state information and (to give an example) recording of activity from a 

freely moving, exploring animal. 

Results in the inferior colliculus, particularly when compared directly to the auditory 

cortex, speak to their being different mechanisms (or balancing of mechanisms) for 

coding natural sounds. Evidence in the IC tends to point towards a sparse coding 

strategy, but dense and sparse coding may also exist in parallel (Carlson et al., 2012, 

Chen et al., 2012a, Sproule et al., 2015, Zhang et al., 2019).  An existing theory is 

that the IC is the site of a coding strategy switch from dense (predominant in the 

brainstem nuclei) to sparse, favoured in higher processing centres (Chechik et al., 

2006). This is supported by the results from this thesis, with the IC performing 

comparably to the AC but with few inputs, speaking to a more robust mechanism 

(especially if we assume the IC recording was similar affected by animal movement). 

Certainly, more work is required in this area, particularly in differences between 

central, dorsal and lateral nuclei. Additionally, as the IC is a physically smaller area, it 

may make sense for sparse strategies to be supported by dense ones, so that the 

entire spectrum of sound can be accounted for.  

Though the non-lemniscal parts of the IC are apparently modulated by brain state 

(Chen and Song, 2019), as of yet there is no evidence for a similar effect in the ICC, 

a feature supported by the (relative to the AC) lower trial-trial variability in these 

neurons. The IC, relative to the AC, maintains a reliable spike rate when encoding 

successive trials of a stimulus.  If this is true, may mean that the ICC is acting to 

convey exact sound details – integrating multi-sensory information and other higher 

level perception is more likely the job of the auditory cortex and/or thalamus. However, 

as this result was only relative to the AC, we cannot make definitive statements on 

the modulation of the ICC – further data incorporating ongoing brain state is required. 

Additionally, the ICC receives connections from lower nuclei which are known to be 

modulated by the AC, and so it seems unlikely the area is entirely unaffected. What 

cannot be said at this time is if the observed robustness is maintained on the level of 

the exact spiking pattern – something which would be an excellent avenue for future 

research. , speaking to its subcortical position and role as a hub and an accurate 

conveyer of exact sound details.  

As previously mentioned, any optogenetic-based auditory implants will be unable (at 

least at the beginning) to activate single neurons with excellent temporal resolution – 

as such, at least a partial reliance on dense coding in addition to low trial-trial 
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variability of spike rate is promising for the success of midbrain implants. Implants in 

the auditory cortex are unlikely to be as successful as to replicate AC activity in a 

natural manner, it would require extensive coverage of the area to accommodate 

sparse strategies and a feedback mechanism to recording global brain state and 

modulate accordingly. 

Entrainment results from the cortex roughly matched those seen in literature  in that 

it occurs at frequencies <30Hz, albeit with a lower strength (Kayser et al., 2015, Peelle 

et al., 2013, Szymanski et al., 2011), supporting entrainment as a mechanism by 

which the auditory cortex enhances perception of the temporal envelope of natural 

sounds.  

Cell populations are not homogenous – analysing the activity and interactivity of 

different cell types in a population is important to gain a deeper understanding the 

brain. This thesis found evidence to further support differing roles of AC cell types 

during sensory stimuli. That putative inhibitory neurons are also more likely to entrain 

during natural sound than spontaneous activity suggests that during evoked activity, 

these neurons change their activity patterns and may take on different roles within the 

population. Exactly what dictates this modulation is not yet known – brain state is a 

strong potential candidate as the animal is likely attentive to the sound, but the 

question is open for more specific answers. These cell types are conserved across 

other cortical areas, and so observations in the auditory system may be applicable to 

other sensory modalities.  

The apparently high strength of ITC and entrainment in the inferior colliculus central 

nucleus, though difficult to interpret at face value, nevertheless points to differences 

in how neuronal populations are structured and recruited in the IC vs the AC. From 

this and from entrainment analysis, there is clearly rhythmicity to the ICs responses 

to some degree, if the analysis performed is interpreting spikes to be aligned with LFP 

phases.  What this means precisely will be related to where this rhythmicity is 

generated – possibilities include other auditory areas, the IC itself, or as a side 

effect/artefact due to strong synchronous firing of IC layers, but it is difficult to tell 

without larger IC datasets, further analysis of the simultaneous AC data, or by 

repeating the experiments and taking simultaneous recordings from other auditory 

areas (such as the MGB or cochlea nucleus) alongside the IC and AC.. However, if 

entrainment is truly being observed up to these high frequencies, this has interesting 



298 
 

implications with regards to a new level of function of the ICC, and how it, as a 

subcortical structure, is connected within the auditory pathway.  

The simultaneous nature of the recordings could provide direct links between two 

connected brain areas and gave additional weight to comparisons. Such experiments 

are highly likely to be the future of electrophysiology in neuroscience – with individual 

areas often well characterised, the focus is shifting to the functional interactions 

between brain areas. Due to the recent advent of high density Neuropixel probes, 

simultaneous recordings from many brain areas is becoming the common approach.   

 

 

NMF was applied successfully to auditory evoked spiking activity in two brain areas, 

something which to our knowledge has not yet been reported, and supports the use 

of the technique on similar data. It is likely to become highly relevant in future years, 

given the shift in neuroscience towards investigating neurons as populations. Inter-

area differences were not readily apparent, but the data did support the decomposition 

of overall activity into distinct, functionally relevant populations. Though highly 

preliminary, the brief research into cortical state being potentially derived from one 

module (of several) has implications regarding population activity. Are certain 

populations more affected by state transitions? Why, and what kinds of cells are 

involved? What is their function in auditory (or other sensory) processing? How are 

other populations behaving and interacting? 

7.2.2 Optogenetics for Auditory Implants  

The focus of future auditory implants is very much on optogenetics. Though many 

obstacles still exist at the current time, the field has seen several promising 

breakthroughs in the past 5 years. That being said, the existing literature on 

optogenetics in the ICC (for the purposes of auditory midbrain implants) is reasonably 

sparse, and so this thesis is able to add more observations to the discussion. A viral 

injection protocol for depth coverage is developed, which may be used by future 

researchers investigating frequency resolution (should they choose not to use 

transgenic animals). It would also be a starting point for introduction of new, improved 

opsins that do not have transgenic animals.  

In the course of µLED system design and experiments, many issues and 

considerations were brought to light, that will be invaluable to future research on the 
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topic. Feedback on devices was given directly to probe designers, and software was 

developed with significant input from the researcher, a typical end user. As a result, 

there now exists protocol design and communication software for the µLED, which is 

easy to use and should aid planning and implementing in vivo experiments. GUIs and 

MATLAB code for controlling the LEDs will be made available in any publications 

resulting from the device. The project has highlighted the importance of designing 

devices with the end user and their existing experimental rigs in mind, to make a 

product commercially viable.  

7.3 Current Limitations and Potential Improvements 

7.3.1 Inconsistent IC Recordings Led to Limitations in Analysis and 

Interpretation 

Perhaps the most major limiting factor of this research was the overall low quality of 

inferior colliculus recording, in particular the lack of clean single units. In turn, this 

resulted in a low number of good simultaneous datasets. This meant, in a lot of cases, 

more in-depth analysis could not be performed, or that existing analysis was difficult 

to interpret fully. 

The main reasons for this have been explored in Chapter 3, but in brief, it has been 

attributed to headcap instability over the IC, and inability of recording and spike sorting 

methods to clearly distinguish single units. At the time, small additions were made to 

the headcap to improve stability, but it may be that the procedure should be modified 

to a greater degree (perhaps moving the headpost fixation point backwards, or 

redesigning the anchor screw layout further to truly maximise security). It may also be 

possible to refine habituation protocols to reduce overall movement, for example, by 

increasing the length of habituation period and the overall number of sessions, or by 

designing a more comfortable and secure enclosure for the mouse (partially moulded 

to the body shape for example, instead of a simple tube).  Improvements here should 

translate immediately to better quality recordings, but IC data pre-processing should 

also be revisited. Though modification of spike sorting thresholds was attempted (with 

no noticeable improvements), other approaches may be required, such as additional 

filtering or modification of more complex variables within the spike sorting script. At 

this point, it may be worth consulting other labs working with similar data, to 

consolidate experiences and processing approaches. Though tetrodes continue to 

offer excellent isolation of single units and are often used to map responses in the 

ICC (Seshagiri and Delgutte, 2007, Chen et al., 2012b, Dorkoski et al., 2020), their 
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use here would limit the number of neurons able to be recorded simultaneously 

without extensive damage to the area, and restrict the proportions of the tonotopic 

gradient we would have simultaneous access to .  

The lack of single units in the IC meant that conclusions involving comparisons 

between AC and IC cells ultimately carry less weight, unless the differences were very 

significant. Unexpected results were difficult to attribute to any one cause – the effect 

of low sample sized was always a potential variable. Instead, all AC and all IC cells 

were typically combined together, rather than being able to make comparisons 

between individual datasets (i.e. paired statistics). This reduced the weight of some 

results and conclusions, and often made interpretation difficult. 

Some comparisons were simply not possible with the recorded data – for example, 

comparing populations of equal number in classification analysis. Attempted in the 

present state, low IC cells would be a very confounding variable outside of what was 

being examined. It also meant that analysis directly utilising the simultaneous aspect 

of the data was left mostly unexplored. 

7.3.2 Lack of State Information 

As explored in the literature review, the question of global brain state and its effect on 

auditory coding throughout the auditory pathway is still to be explored in detail. Brain 

state was not the original focus, and so the implementation of pupil monitoring was 

afforded limited focus. Due to this (plus some general technical issues) a reliable 

method of determining brain state was available for only a select few recordings. 

Unfortunately, this means that with the current data, few conclusions can be made 

regarding its influence and function. Issues with EEG screw recordings (disconnection 

in chronic preparations) meant that cortical LFP was not a reliable method of 

determining brain state either. Though the lack of this data did not ultimately prevent 

conclusions related to the aims of the project, its inclusion would have been highly 

interesting for systems neuroscience in general. Future work should be sure to afford 

more focus to brain state measurements. 

7.3.3 Technical Difficulties in Optogenetic Experiments 

Some of the technical difficulties encountered in optogenetic experiments have been 

extensively explored in Chapter 6. For Chronos experiments, these centred 

predominantly around lining up recording, stimulation and Chronos infected cells. 

While optical evoked responses were confirmed, the lack of success limited the level 
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of analysis that could be applied – future experiments will probably require additional 

validation and a systematic assessment of responses. Optimisations including use of 

optrodes, and better marking of the injection site, have been suggested as options for 

improvement. Additionally, there now exists an optimised Chronos opsin for improved 

membrane trafficking, after issues relating to this surfaces with the original Chronos 

(Keppeler et al., 2018). 

The µLED probe, in its current form, was not suitable for the experiment in which it 

was used. A lack of shielding, close proximity of stimulation and recording PCBs, and 

no real pulse shaping meant artefacts saturated the input amplifier and made data 

analysis impossible. Thus, this thesis is limited in how it can address the original aims 

of the optogenetic experiments – to assess potential frequency resolution of µLED 

devices. The next iteration of µLED probe has taken the current difficulties and 

limitations into account, and promises to offer a more viable approach to these 

experiments. 

7.3.4 General Limitations 

One of the overarching limitations of the project is its relatively preliminary nature in 

terms of the analysis performed. It has, however, provided a stable analytical and 

experimental base for future work. As will be discussed, the future of the research (at 

least in the context of auditory implants) lies in the asking of more specific questions 

related to the operation of said implants.  

As with most scientific endeavours, additional datasets would help to strengthen the 

conclusions made in this thesis. Given more time, this would be achievable. Though 

it would have added considerable experimental and analytical complexity, and was 

not strictly relevant to the question at hand, having auditory thalamic recordings 

(simultaneously alongside IC and AC) would have allowed us to examine the full 

transition between AC and IC coding strategies, and given a fuller picture of natural 

sound coding overall. 

The final two results chapters were largely exploratory, mainly as a result of time 

constraints and technical issues outwith the researcher’s control. While beneficial for 

the future, the level of functional implications to be made from this work are thus far 

limited. 

The analysis was completed in the mouse only, which must be taken into 

consideration when interpreting results. Though the principles of natural sound coding 
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are conserved somewhat between mammalian species – for example, entrainment 

has  been observed in many species including humans (Kayser et al., 2015, Yague 

et al., 2017, Peelle and Davis, 2012), the results presented here should be confirmed 

in other species as far as possible. 

To some degree, many of the thresholds used for data inclusion or classification were 

subjective. Narrow spiking/broad spiking thresholds were determined by visualisation 

of the data and consultation of the literature, but with the current experimental setup, 

it is impossible to tell exactly which cells are which. Additionally, thresholds for evoked 

activity may be subjective, and may have potentially missed activity that was truly 

evoked, but difficult to pick up due to noise or time binning. Histological analysis was 

also fairly lenient in dataset inclusion, and so it is possible that some cells may be on 

the boundary of, or just outside, the target area. 

7.4 Future of the Work  

7.4.1 Systems Neuroscience and Stimulation Design 

With simultaneous, chronic, high density recordings from multiple brain areas 

becoming the norm, the future of the work should lie in investigating population 

dynamics and long-term functional connectivity/communication between brain areas.  

Analysis should also be focused on features of the coding that are related to auditory 

implants, such as timings, spatial relationships within functional neuronal populations, 

and transformation of the neural code through the pathway. 

Analysis specifically incorporating the simultaneous aspect of the recordings would 

be an excellent place to start. Not only will this provide insight into the auditory 

pathway, research into functional connectivity and transformation of sensory input will 

be highly applicable to other sensory systems. With the inclusion of simultaneously 

recorded auditory thalamic recordings, additional insight may be gained. Determining 

how populations of neurons interact and how data representation changes between 

them would be an excellent use of this data and be highly applicable to auditory 

implants. It may begin by expanding the modelling approaches presented in Chapter 

4 to have AC responses predicted from an IC spiking patterns. Understanding the 

parameters which determine accurate conveyance of auditory information will be 

highly informative for stimulation strategy and device design. By applying the analysis 

to other stimuli, altering time-binning methods and creating multi-dimensional, non-

linear mathematical models, a fuller and more applicable picture of auditory coding 

can be uncovered. 
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That lower trial-trial variability was consistently seen in the IC when compared to the 

AC is a good starting point for additional research into the phenomenon - to what 

extent is this coding reliability maintained? For example, does the robustness and 

reliability extend to the exact spike timing patterns? Some work has been done to 

examine temporal jitter of the ICC during speech and speech in noise (finding it to be 

low and then higher, respectively) (White-Schwoch et al., 2017). With simultaneous 

recording of multiple neurons, temporal and spatial robustness across trials can be 

further assessed in both single neuron and population responses. The relative 

importance of precise spike timing in accurate conveyance of information will again 

support implant design. 

With more global measurements becoming the norm, monitoring the influence of brain 

state throughout the brain is more important than ever in order to stay relevant in the 

systems neuroscience field. Future work should aim to incorporate this information 

and gauge its relative influences and function within sound coding through the various 

stages of the auditory pathway. 

Chapter 5 gave a first, qualitative view on the spatiotemporal breakdown of auditory 

neuron populations during natural stimuli, with NMF proving to be a viable tool for 

population-based research. Systematically altering input variables here would allow 

assessment of the technique’s spatial and temporal limitations, and determine exactly 

to what extent population activity can be viewed with this method. Relevant questions 

can then be posed. 

7.4.2 Viability of the Optogenetic Midbrain Implant 

The other avenue for future work would be proving the viability of a µLED approach, 

specifically for high spatial resolution stimulation. A preliminary experiment might 

involve comparing the responses to auditory pure tone stimuli to those generated by 

spatially constrained optogenetic activations within the tonotopic gradient (aiming to 

generate a perception of pure tone without auditory stimulation) With simultaneous 

recording in the IC and AC, plus illumination of single µLEDs, these optically evoked 

“puretones” can be compared with auditory puretones, in terms of properties like 

latency, adaptation, waveform, number of active units etc, giving a general picture of 

how neurons across the brain might respond to such stimulation. With this 

established, the next aim would be to prove the hypothetical frequency resolution of 

our devices through behavioural tasks, as previously discussed. A far-reaching aim 

may be to attempt the stimulation that will induce the perception of complex sounds 
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(such as vocalisations), proving more definitively the potentials of the optogenetic 

system. 

The research should also seek to keep up to date with technological advancements 

and incorporate them as they become available. Judging by the direction the literature 

is taking, and by the most pressing needs for optogenetic neuroprosthetics, these are 

likely to include dual recording/stimulation devices, more flexible materials, and 

wireless solutions. Results from these should be compared with original results and 

examined for evidence of any trade-offs (in data quality, stimulation flexibility etc). The 

results of the two-shank auditory midbrain implant clinical trial (due to be completed 

in 2021) will also be crucial in determining the direction of research. 

7.5 Final Thoughts 

The initial motivations for this thesis were scientifically sound, and highly relevant 

within the rapidly expanding field of optogenetic auditory neuroprosthetics. Though 

limitations with data quality and technological hold-ups have prevented full and robust 

answers to the questions proposed, the thesis has nevertheless presented an 

extensive review of the relevant topics and the application of a wide variety of relevant 

analytical techniques. The results from these were intriguing and applicable to both 

systems neuroscience and auditory prosthetics.  This thesis thus provides an 

excellent starting point for devising new analytical and experimental approaches to 

eventually answer the fields’ outstanding questions. 
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