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 I 

 

Abstract 

 

Probabilistic risk analysis aims to assess the safety risk of a system so that actions 

can then be taken to improve safety. Uncertainty however always exists in modelling. 

For more informed decision making, uncertainty in the outputs of the model must be 

assessed through uncertainty analysis. 

 

This research focuses on parameter uncertainty of a risk model composed of fault 

trees and event trees. Research questions include: (1) how to model the subjective 

uncertainty in the basic events and the consequences; (2) how to propagate the 

uncertainty in the input parameters through fault trees and event trees to obtain 

uncertainty in the output. 

 

Structured approaches are developed to elicit the covariance matrix of the basic 

events and to model dependence among the consequences. To calculate the 

uncertainty propagation, a model is developed to mimic fault trees and event trees; 

an analytical solution and a simulation-based method are developed for assessing the 

uncertainty propagation, which are implemented independently and therefore cross-

check each other. 

 

The developments can be used for subjective uncertainty assessment of Fault-tree 

and Event-tree models. With the developed methods, a reasonable elicitation 

workload is required to model the subjective uncertainty in the input parameters; the 

assessments can be monitored during the elicitation process. The methods for 

assessing the uncertainty in the output can work efficiently for large fault trees and 

event trees. 

 

Two case studies have been conducted with the Safety Risk Model (SRM) developed 

by Rail Safety and Standard Board (RSSB), UK. In the two case studies, the 

developed methods are deployed and experts were confident in making the required 

assessments. The feasibility of the developments is validated by the case studies. 
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Notation 

 

( )E  mean of a random variable 

( ),r  correlation coefficient between two random variables 

( )var  variance of a random variable 

ip  the i
th

 input parameter 

iµ  mean of ip , i.e. ( )ii pE=µ  

iε  residual of the i
th

 parameter ip  in the linear factor model 

i
w  coefficient associated with iε  

iσ  standard deviation of iε , ( )ii εσ var2 =  

kiX ,  an uncertainty factor of ip  

,i k
λ  coefficient associated with kiX ,  

kC  a factor class of ,i k
X  and ,j k

X  when ( ), ,, 0
i k j k

r X X ≠  

kX  a common factor of ,i k
X  and ,j k

X  when , ,i k j k
X X=  

,E i
L  set of indices for exclusive factors of ip  

C
L  set of indices for factors belonging to a factor class 

X
L  set of indices for common factors 

i
q  proportion of ( )var ip  explained by the associated uncertainty factors 

zf  the z
th

 parameter family 

( )zI f  set of the invariant factors of the family zf  

( )zfV  set of the variant factors of the family zf   

m n×
R  real matrix composing of m rows and n columns 

i
E  an escalation event 

( )iEW  set of outcomes of 
i

E  

,i j
ω  the thj  outcome of 

i
E , ( ),i j iEω ∈W  



 V 

ℓS  the th
ℓ  accident sequence 

( )ie ,ℓ  outcome of iE  associated with ℓS , ( ) ( )iEie W∈,ℓ  

( )mπℓ  individual injury probabilities associated with ℓS , where 4,,1⋯=m  stand 

for no injury, minor injury, major injury, and fatality respectively 

ℓN  mean of the number of people exposed to the risk scenario ℓS  

( )mcℓ  consequence at level m associated with ℓS  

jT  the j
th

 hazard type 

( )j
TE  subset of escalation events that affect jT  

jH ,ℓ  hazard of the type jT  specified by ℓS  

ℓR  rule set, ( )
Dj HHHR ,,1, ,,,, ℓℓℓℓ ⋯⋯=  

( )kmA ji ,,  hazard jiH , ’s transition probability from m level to k level 

( )mA ji ,  transition probability from m-level injury to all higher levels of injuries 

( ), ,i j m kϕ  mean of ( ), ,i jA m k  

jA  injury atom associated with jT  

j
γ  mean of jA  
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Chapter 1  

 

Introduction 

 

 

1.1 Outline 

The goal of this research is to develop methods to support the assessment of 

subjective uncertainty in the output of a risk assessment model composed of fault 

trees and event trees. In this chapter, we start with an introduction to risk and 

probabilistic risk analysis. We continue to an introduction to fault trees and event 

trees as they are widely used in probabilistic risk analysis. We then continue to 

describe how decisions are made based on the probabilistic risk analysis to reduce 

risk. We can not however assess with certainty the input parameters of a probabilistic 

risk analysis model. Consequently we introduce uncertainty and its important role in 

the risk assessment context. We then identify three research aims forming the 

research goal. An overview of this thesis is then given at the end of this chapter. 

 

1.2 Probabilistic Risk Analysis 

As defined in [HSE(Health & Safety Executive) 2001], a hazard is the potential for 

harm arising from an intrinsic property or disposition of something to cause 

detriment. Some hazards are summarized in [Modarres 2006] as: 

• Chemical (e.g., toxins, corrosive agents, smoke) 

• Biological (e.g., viruses, microbial agents, bio-contaminants) 

• Thermal (e.g., explosion, fire) 

• Mechanical (e.g., impact from a moving object, explosion) 

• Electrical (e.g., electromagnetic fields, electric shock) 

• Ionizing radiation (e.g., x-rays, gamma rays) 
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• Nonionizing radiation (e.g., microwave radiation, cosmic rays) 

 

A hazard therefore is a source of danger. When people are exposed to hazards, they 

suffer the chance to be adversely affected by the hazards, which is called risk in 

[HSE(Health & Safety Executive) 2001]. Some people argue that the adverse impact 

on the unlucky people caught in an accident cannot be completely measured [Adams 

2001]. It is however the potential injuries and fatalities that primarily concern us; 

hence, we usually mean safety risk when we refer to risk. When a system is subject 

to hazards, the associated risk can be measured qualitatively or quantitatively. In a 

qualitative way, the risk is assessed on several levels from low to high. In a 

quantitative way, the risk may be measured as the number of the potential injuries 

and fatalities over a unit of time. 

 

Probabilistic risk analysis (PRA) is a systematic procedure for assessing the 

quantitative risk of a system [Bedford and Cooke 2001; Abrahamsson 2002; 

Jonkman, Van Gelder et al. 2003; Dennis 2006; Modarres 2006]. It is also called 

quantitative risk analysis or probabilistic safety analysis (PSA). To conduct a PRA, 

we need to answer three questions as given in [Kaplan and Garrick 1981] as 

 

i. What can go wrong? 

ii. How likely is it to happen? 

iii. Given that it occurs, what are the consequences? 

 

To answer the first question we need to identify the risk scenarios of the system. The 

risk scenario is defined at the end of an accident sequence [Bedford and Cooke 2001] 

Usually the risk scenarios are modelled with event trees that we are going to 

introduce in the next section. To answer the second question, the frequency of each 

risk scenario can be estimated. To answer the third question on the above list, the 

consequences of a risk scenario are defined as the numbers of the injuries sometimes 

including minor injuries, major injuries and fatalities. We denote a risk scenario as 

iS ; we denote by if  and ic  the frequency and the consequence of iS  respectively. 
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The risk is then defined by a set of triplets iii cfS ,, , ni ,,1⋯= , [Kaplan and 

Garrick 1981]. Associated with each risk scenario, the risk may be defined as 

 

 iii cfr ×=  (1.1) 

 

and the risk of the system defined as 

 

 ∑
=

=
ni

irr
,1

 (1.2) 

 

This is the expected value of the consequences. 

 

According to Equations 1.1 and 1.2, probabilistic risk analysis consists of three 

elementary parts including: (1) identifying the risk scenarios; (2) estimate the 

frequencies of the scenarios; (3) estimate the consequences of the scenarios. Fault-

tree and Event-tree models are the most popular tools for these tasks [Bedford and 

Cooke 2001; Abrahamsson 2002]. We are going to give an introduction to Fault-tree 

and Event-tree models in the next section. 

 

1.3 Fault-tree for Event-tree Models 

Fault-tree and Event-tree models have been used extensively in PRA [Kumamoto 

and Henley 1996; Bedford and Cooke 2001; Abrahamsson 2002]. Associated with 

the system of interest, we can identify an initiating event, or several such events, 

which has the potential to cause a series of hazards. After the initiating event we can 

identify a sequence of escalation events, for which the outcomes affect the final 

consequence. Following a “forward logic”, an Event-tree model begins with the 

initiating and continues with the sequence of escalation events. Each event is 

represented by a node in the event tree; the outcomes of an event are represented by 

the branches following the associated nodes. A path from the initiating event through 

all the escalation events is called accident sequence; the risk scenario is defined at 

the end of an accident sequence [Bedford and Cooke 2001]. An example of event 
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tree is extracted from [Kumamoto and Henley 1996]. Shown in Fig. 1.1 is the 

schematic diagram of a pressure tank system. After the pressure gas in the tank is 

discharged, the pump is started to recharge the tank. The tank is protected from 

overpressure initially by a timer that cuts off the current by opening the contact. The 

system includes two more protections. One is the operator who opens the manual 

switch when he reads a high reading of the pressure gauge. The other protection is 

the relief valve that is designed to open automatically when the tank pressure reaches 

a preset height. With such a system, the failure of the timer is identified as an 

initiating event; the two extra protections are identified as the escalation events. The 

event tree of the example is demonstrated in Fig. 1.2, where three risk scenarios are 

defined. 

 

 

 

 

Fig. 1.1 Schematic diagram of pressure tank system as a risk analysis example (reproduced with 

permission from [Kumamoto and Henley 1996]) 
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Fig. 1.2 Demonstration of the Fault-tree and Event-tree models (reproduced with permission 

from [Kumamoto and Henley 1996]) 
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The frequency of the scenario is calculated in terms of the frequency of the initiating 

event and the probabilities of the outcomes of the escalation events. The frequency 

and probabilities can be estimated directly for some events. These events can also be 

broken down to the basic event with fault trees. Following a “backward logic”, a 

fault tree decomposes a particular failure, called the top event, into the basic events 

that by different combinations lead to the failure. With the probabilities of the basic 

events estimated, the frequency or the probability of the top events is calculated 

through the Fault-tree models [Kumamoto and Henley 1996; Bedford and Cooke 

2001]. The basic events are sometimes called precursors [Abrahamsson 2002; Dennis 

2006]. With a fault tree, we can investigate further the causes of the failures and the 

connections between the events. As shown in Fig. 1.2, the initiating event pump 

overrun and the failure of operator shutdown are broken down into the basic events 

through events trees. 

 

With PRA in conjunction with Fault-tree and Event-tree models, we can 

quantitatively investigate the risk of a system and the major sources. Actions can be 

taken accordingly to reduce the risk with the limited resources. We now give an 

introduction to the F-N curve and how it can be made for decision making. 

 

1.4 F-N Curve and Decision Making 

Risk cannot be eliminated and resources required to reduce risk are limited. The aim 

of studying risk is to reduce the risk efficiently with limited resources. The risk as 

defined in Equation 1.2 offers a measure of the risk level over all the risk scenarios. 

It however hides the difference between two types of incidents: one of low frequency 

but high impact consequences; the other one of high frequency but low impact 

consequences. In fact, people have different attitudes toward these two types of 

incidents [Health and Safety Executive 1992]. It is therefore of interest to include the 

frequency and the severity profile in the risk assessment. It can be represented by the 

F-N curve, where N stands for the fatalities in one incident; F stands for the yearly 

frequency of the incidents causing N or more fatalities. As the F-N curves were 

firstly made by Farmer in 1967, they are also called Farmer curves. The F-N curve 
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can be built based on the frequencies and the consequences of the risk scenarios iS , 

ni ,,1⋯= . We at first order the risk scenarios to satisfy ii cc <−1 . We can then plot 

the cumulative frequency ∑
=

=
nik

ki fF
,

 against ic  for ni ,,1⋯= . Because both F and N 

can range across several orders of magnitude, we usually draw the F-N curve on 

logarithmic scales. For examples, the F-N curves are made for road transport, rail 

yards, and airports etc as shown in Fig. 1.3. 

 

 

 

Fig. 1.3 Example of F-N Curves (reproduced with permission from [Bedford and Cooke 2001]) 

 

 

We can also set up the risk tolerability criteria on the F-N Curves. As shown in Fig. 

1.4, two F-N lines partition the positive quadrant into three areas marked as 

unacceptable, ALARP and acceptable respectively. The acronym ALARP stands for 

"as low as reasonably possible". If any part of a system’s F-N curve enters the 

unacceptable area, the associated risk is regarded as intolerable. Safety actions must 

be taken to lower the F-N curve accordingly. If a system’s F-N curve is confined to 

the acceptable area, the associated risk can be regarded as tolerable. In other cases 
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when a system’s F-N curve completely or partly lies in the ALARP area, safety 

actions can be pursued based on the cost-benefit analysis. We need to analyze how 

much extra safety can be gained with extra money because the resource is always 

limited. 

 

 

 

 

Fig. 1.4 Demonstration of the risk tolerability criteria defined by F-N curves (reproduced with 

permission from [Haugom, Rikheim et al. 1990]) 

 

 

The F-N curves have been used in risk assessment in various contexts in several 

countries for about three decades [Evans 2003]. In the literature, we can see two risk 

tolerability criteria that are defined by the F-N curves. One is recommended by HSE 

[Health and Safety Executive 1992]; the other is recommended by Netherlands 

Planning Department [Versteeg 1988]. Both criteria are defined by two parallel 

straight lines. The HSE criterion however has the slope -1; while the Dutch criterion 
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has the slope -2. Therefore Dutch criterion has stronger aversion to accidents with 

multiple fatalities. 

 

With the PRA and the criteria on the F-N curves, we can judge whether more actions 

are needed to improve the safety of a given system. However, we cannot assess with 

certainty the probabilities of the basic events and the consequence associated with 

each risk scenario. This uncertainty plays an important role in decision making 

[Morgan and Henrion 1990]. Therefore we need to study the uncertainty in the input 

parameters and then assess the uncertainty in the output. The next section will 

introduce uncertainty. 

 

1.5 Uncertainty Analysis 

1.5.1 Uncertainty Classes 

Typically uncertainty is classified into aleatory uncertainty and epistemic uncertainty. 

Aleatory uncertainty describes natural variability. Therefore aleatory uncertainty is 

also called stochastic uncertainty. Aleatory uncertainty can be quantified by 

measurements and statistical estimations, or by expert judgement. Epistemic 

uncertainty represents the lack of knowledge. Therefore it is also called knowledge-

based uncertainty. Epistemic uncertainty can be quantified by expert opinion 

[Bedford and Cooke 2001]. In practice, it depends on both the current knowledge and 

the measures we use to assess uncertainty. The uncertainty of a complex system 

usually is affected by many factors and therefore is difficult to classify. It can be 

decomposed into more understandable and manageable sources. The system 

uncertainty can then be classified into epistemic parts and aleatory parts. This 

classification is very helpful in practice [Winkler 1996; Bedford and Cooke 2001]. 

Firstly it makes clear that what kinds of methods can be used to model the 

uncertainty. Secondly the classification helps design suitable ways to quantify the 

uncertainty. Thirdly, the classification informs the decision maker about the effects 

of the epistemic uncertainties on the model output that could be reduced by more 

learning. 
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1.5.2 Importance of Modelling the Uncertainty and Dependence of 

the Input Parameters 

To conduct PRA, we need to evaluate the basic events and the consequences 

associated with the scenarios. In the context of risk analysis, generally there are not 

sufficient risk occurrences from which we can estimate the values of the input 

parameters. Consequently these values are mainly elicited from expert judgement 

[Cooke 1991; Iman and Helton 1991; Bedford and Cooke 2001; Abrahamsson 2002]. 

Due to the lack of the knowledge, however, we cannot assess with certainty the 

values of these input parameters. Consequently uncertainty is introduced in 

implementing the probabilistic risk analysis due to imperfect knowledge of the input 

parameters [Winkler 1996; Abrahamsson 2002; Lauridsen, Kozine et al. 2002]. This 

uncertainty belongs to epistemic uncertainty as discussed above. An example of the 

uncertainty in the PRA input parameters can be found in the project ASSURANCE 

(ASSessment of Uncertainty in Risk Analysis of Chemical Establishments) 

[Lauridsen, Kozine et al. 2002]. In this project, seven teams from different European 

countries were asked to assess the frequencies and the consequences of 11 scenarios 

related to an ammonia storage facility. As summarized in Table 1.1 and Fig. 1.5, the 

results show a wide spread for both the frequencies and the consequences. 

 

 

Table 1.1 Example of the variability in the assessed frequencies of the reference scenarios, 

reproduced with permission from [Lauridsen, Kozine et al. 2002] 
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Fig. 1.5 Example of the variability in the consequence assessment of the 11 reference scenarios, 

reproduced with permission from [Lauridsen, Kozine et al. 2002] 

 

The uncertainty in the input parameters consequently causes the uncertainty in the 

output of a PRA model. This is demonstrated with the example regarding the project 

ASSURANCE. Based on the assessments of the input parameters as summarized in 

Table 1.1 an Fig. 1.5, one F-N curve is drawn based on each team's assessments. As 

shown in Fig. 1.6, the F-N curves show a considerable spread. For instance, the 

frequency of events leading to 100 or more fatalities ranges over two orders of 

magnitude among the different teams’ assessments. Consequently, the risk level 

could be judged to be tolerable or unacceptable depending on which assessment we 

choose for the decision making. 

 

The above example shows the uncertainty in the output F-N curve that is caused by 

the uncertainty in the input parameters due to multiple teams. The uncertainty also 

exists, however, when the input parameters are elicited from one expert. It can also 

cause the uncertainty in the expectation of risk, which is to be studied in this research. 
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To make a more informative decision, we therefore must study the uncertainty in the 

input parameters and its impact on the uncertainty in the output [Morgan and 

Henrion 1990; Kumamoto and Henley 1996; Winkler 1996; Saltelli, Chan et al. 2000; 

Bedford and Cooke 2001; Abrahamsson 2002; Kurowicka and Cooke 2006]. It has 

has become a major concern to decision makers, especially those in the public arena 

[Morgan and Henrion 1990; Kurowicka and Cooke 2006]. Consequently intensive 

studies on uncertainty analysis have been seen in literature. Nuclear industry sees the 

earliest applications of PRA and the uncertainty analysis. A series of papers have 

been published related to the reactor safety [Helton, Johnson et al. 1995; Helton, 

Johnson et al. 1995; Helton, Johnson et al. 1995; Helton, Anderson et al. 1996; 

Helton, Bean et al. 1996; Helton, Bean et al. 1997; Helton 1999; Helton, Anderson et 

al. 2000; Helton, Martell et al. 2000; Kraan and Cooke 2000]. Other applications of 

the uncertainty analysis of PRA include chemical industry [Lauridsen, Kozine et al. 

2002], offshore transport [Nilsen, Gudmestad et al. 1998], food safety [Frey and Patil 

2001], and natural disaster analysis [Iman, Johnson et al. 2002; Bazzurro and Luco 

2005; Li and Ellingwood 2006] etc. Uncertainty analysis is also used in other sectors 

such as cost analysis of engineering Project [Duffey and Van Dorp 1998] and 

production planning [Mula, Poler et al. 2006]. 

 

 

 

Fig. 1.6 Demonstration of the uncertainty in the estimated risk by F-N curves (reproduced with 

permission from [Abrahamsson 2002]) 
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In addition to the uncertainty in the individual input parameters, dependence often 

exists among the input parameters. When two input parameters hold a strong positive 

dependency, they take either a high value or a low value simultaneously. Ignorance 

of such dependence can result in the significant underassessment of the uncertainty 

in the output. As a result, dependence among the input parameters has a strong 

impact on the uncertainty in the output. Therefore modelling the dependence among 

the input parameters holds an important role in uncertainty analysis [Duffey and Van 

Dorp 1998; Ferson and Hajagos 2005; Kurowicka and Cooke 2006] 

 

With dependencies involved, we usually set up the uncertainty model of the input 

parameters in two steps [Kurowicka and Cooke 2006]. First, the uncertainty in each 

individual input parameter is usually assumed to follow a parametric distribution; the 

governing parameters of the distribution are then elicited through expert judgement. 

These parametric distributions are called the marginal distributions of the input 

parameters. Second, the dependence is modelled with the correlations or rank 

correlations that are elicited from experts as well. When the marginal distributions 

are assumed to be normal, the uncertainty model of the input parameters, i.e. a 

multivariate normal distribution, can be defined by further eliciting the correlation 

matrix. For other types of marginal distributions, the joint distribution cannot be 

defined by further eliciting the correlations or the rank correlations. In this case, the 

joint distribution is usually defined with the one of the minimum arbitrary 

information [Bedford and Cooke 2001]. An example of modelling the input 

parameters’ uncertainty including the dependence can be found in [Helton, Johnson 

et al. 1995]. For the 34 input parameters in a reactor accident consequence model, 

each marginal distribution is assumed as either Uniform or Log-Uniform. Rank 

correlations between some pairs of input parameters are assessed for modelling the 

dependence. Another example can be found in [Helton, Anderson et al. 2000; Helton, 

Martell et al. 2000]. For the 57 input parameters in a PRA model WIPP (Waste 

Isolation Pilot Plant), each individual marginal distribution is assumed as either 

Uniform, or Log-Uniform, or Triangular, or Student’s respectively. Rank correlations 

between some pairs of input parameters are assessed for modelling the dependence. 
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Modelling the dependence among the random variables is also an important issue in 

other application areas such as project risk analysis [Duffey and Van Dorp 1998; Van 

Dorp 2005], decision analysis [Clemen and Reilly 1999] and actuarial modelling 

[Frees and Valdez 1998]. 

 

1.5.3 General Procedure of Uncertainty Analysis 

Suppose a mathematical model ( )XfY = , where X is a vector of the input 

parameters. Uncertainty analysis aims to assess the uncertainty in Y that is driven by 

the uncertainties in X [Morgan and Henrion 1990; Cooke 1997]. The uncertainty in X 

is usually represented by a joint probability distribution. The uncertainty in Y is then 

calculated by propagating the uncertainty in X through the model ( )XfY = . The 

general procedure for uncertainty analysis is shown in Fig. 1.7. In the example, the 

variable G is a function of three random variables with the distribution denoted as 1f , 

2f  and 3f . Not shown in the diagram is the possible dependence among the three 

input parameters. The distribution of G is then derived through the model 

corresponding to the distributions of the input parameters. For a complex model, the 

distribution of the output is generally built by Monte Carlo simulations and therefore 

called simulated distribution. This procedure is also called probabilistic uncertainty 

analysis. With the strong foundations given by probability and statistics theories, 

probabilistic uncertainty analysis is by far the most widely used method 

[Abrahamsson 2002]. 

 

As a summary, the uncertainty analysis is composed of two steps. First, we build the 

uncertainty model in the input parameters. In the risk analysis context, it is usually 

done through the elicitation of expert judgement. Second, we calculate the 

uncertainty propagation through the model. Accordingly, we are going to identify our 

research aims for uncertainty analysis in the next section. 
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Fig. 1.7 Demonstration of uncertainty analysis of a mathematical model (reproduced with 

permission from [Abrahamsson 2002]) 

 

1.6 Research Aims 

1.6.1 Overview 

This research is founded by the Rail Safety and Standard Board (RSSB), UK. The 

goal is to develop methods for assessing the subjective uncertainty in the output of a 

PRA model. A PRA model usually is built up with three layers as demonstrated in 

Fig. 1.8. As we have discussed above, a PRA model is usually composed of fault 

trees and event trees. The fault trees and event trees are generally built up with 

computer software tools such as Isograph FT+. Therefore these fault trees and event 

trees are represented as computers codes that lie on the inner layer as shown in Fig. 

1.8.  

 

The fault trees and event trees are then parametralized usually through a combination 

of empirical data and expert judgement. Therefore the database of the parameters of 
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the fault trees and event trees form the parameter layer of the PRA model as shown 

in Fig. 1.8. 

 

The experts usually make some common assumptions to assess the parameters. The 

narratives regarding the assumptions form the outside layer as shown in Fig. 1.8. 

 

 

 

 

Fig. 1.8 Three layers of a PRA model. 

 

 

We conduct the uncertainty analysis at the parameter layer. As discussed above, 

uncertainty analysis includes two steps: (1) build uncertainty models of the input 

parameters; and (2) compute the uncertainty propagation through the model. 

Generally there are three areas where input parameters are required in fault trees and 

event trees, including: 

(1) the basic events or precursors of the fault trees; 

(2) the consequences of the event trees; and 

(3) the escalation events. 

 

These three types of input parameters have different properties. At the first stage, we 

focus on studying the uncertainty in the basic events and the consequences; we treat 

as constants the probabilities of the escalation events. 

 

Accordingly we identify three aims for this research:  

Narrative on how the parameters are assessed 

Parameters of the fault trees and event trees 

Fault trees & Event trees 
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(1) develop new methods for modelling the subjective uncertainty in the basic 

events; 

(2) develop new methods for modelling the subjective uncertainty in the 

consequences; 

(3) calculating the uncertainty in the output of the PRA, i.e. calculating the 

propagation of uncertainty of the input through the model. 

 

We will discuss in details the above three research aims. 

 

1.6.2 Modelling Subjective Uncertainty in Basic Events 

There are many input parameters. States of knowledge uncertainties about these 

parameters are correlated. Consequently we have to model a high dimensional joint 

distribution that requires much elicitation time. It is essential to keep the elicitation 

time reasonable to the experts. We usually use parametric marginals for the 

uncertainty of the individual parameters and model the dependences among the input 

parameters separately. The most popular model is the multivariate normal 

distribution [Kurowicka and Cooke 2006]. Even assuming this model, there are still 

two issues however when we have many input parameters. Suppose we have n input 

parameters. Besides the means of all the input parameters, we need to elicit n 

standard deviations to define the marginals and ( ) 21−nn  correlations to fill the 

correlation matrix. It is too much to do in practice when n is large. The second issue 

is that the outcome correlation matrix derived from elicitation must be positive semi-

definite. It is a challenge if we fill in the correlation matrix cell by cell from 

elicitation [Bedford and Cooke 2001; Van Dorp 2005; Kurowicka and Cooke 2006]. 

 

Our aim is to develop a procedure for building the covariance matrix through expert 

judgement elicitation. The procedure should require reasonable time from experts. 

The procedure should be able to guarantee that the outcome covariance matrix is 

positive semi-definite. 
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1.6.3 Modelling Uncertainty in Consequences 

The consequences of a risk scenario are defined here as the mean numbers of injuries, 

that is the product of the number of people exposed to the risk scenarios and the 

individual injury probability. In this research, the numbers of the people exposed to 

the risk scenarios are set as the point-estimates. These numbers are of course subject 

to uncertainty as well. For this research, however, we do not study the uncertainty in 

these numbers. Therefore we study the way that the uncertainty in the consequences 

is influenced by the uncertainty in the individual injury probabilities. 

 

A study of typical fault tree models shows that individual injury probabilities are 

often decided by the outcomes of a subset of the escalation events. A combination of 

the outcomes of the escalation events in the subset that decides the individual injury 

probabilities is defined here as a rule set. Multiple risk scenarios can be associated 

with the same rule set. Once the individual injury probabilities are assessed for a rule 

set, they can be used for all the associated risk scenarios. Therefore modelling the 

consequences on the rule sets typically leads to a reduction of elicitation workload. 

 

There are three difficulties in modelling the uncertainty in the rule sets. First, the rule 

sets are intensively interwoven to each other through the shared escalation events. It 

makes it very difficult to assess the correlation among rule sets. Second, the number 

of the rule sets increases exponentially with the number of the escalation events, 

which implies too many rule sets to assess separately for a large event tree. Third, the 

rule sets should satisfy the monotonicity property, i.e. a rule set associated with 

worse conditions should always have larger individual injury probabilities than 

another associated with better conditions. Such a monotonicity property cannot be 

modelled simply by defining the correlations among the rule sets. 

 

In order to model uncertainty in the consequences, we must therefore develop 

suitable methods for modelling the uncertainty in the rule sets. The method should 

require reasonable elicitation time from the experts and be able to keep the 

monotonicity property among the rule sets. 
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1.6.4 Calculating Uncertainty Propagation through Fault-tree and 

Event-tree Models 

Usually Fault-tree and Event-tree models are built with commercial software tools 

such as Isograph FT+. Consequently these fault trees and event trees are defined as 

the computer codes that are not very transparent to the users. For such a PRA model, 

it is difficult to manipulate the database underlying the model for calculating the 

uncertainty propagation. Furthermore, a large Fault-tree and Event-tree model can be 

composed of as many as thousands of input parameters. We need efficient methods 

for calculating the uncertainty propagation through such a large model. 

 

Our aim is to select or develop efficient methods to conduct uncertainty propagation 

through a large PRA model. The methods should be able to work on the computer 

fault trees and events models built with commercial software tools. The methods 

should also be able to work efficiently on a large Fault-tree and Event-tree model. 

 

1.7 Thesis Overview 

The remainder of this thesis is organized as follows. 

 

In Chapter 2, literature review is made on the following topics: (1) methods for 

eliciting the marginal probability distribution of the individual variables; (2) methods 

for eliciting the dependence between two input parameters; (3) architectures for 

modelling high dimensional dependence; and (4) methods for propagating the 

uncertainty through mathematical models. The gaps in the literature are then 

highlighted at the end of the chapter. 

 

In Chapter 3, a procedure is developed for building the correlation matrix for 

multiple input parameters through elicitation on uncertainty factors. The input 

parameters are then partitioned into families by their definitions. A method is 

developed for deriving the variance of the input parameters within the associated 

families. Included at the end of the chapter are a method for eliciting the correlation 
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between two random variables and a method for eliciting the variance of an input 

parameter family. 

 

In Chapter 4, a method is developed for modelling the uncertainty in the rule sets 

through injury atoms. An injury atom is defined for a hazard source. Once defined 

the injury atoms can be used for all the rule sets. The rule sets are then defined by the 

combination of the injury atoms. 

 

In Chapter 5, a method is developed for building a mimic Excel model of the fault 

trees and event trees. With the mimic model, we can manipulate the data 

conveniently for conducting uncertainty analysis. We then select a linear 

transformation to define the correlated normal random variables on a set of 

independent standard normal random variables. The transformation is suitable when 

the covariance matrix is positive semi-definite and standard deviations are very small. 

An analytical solution of the variance is then developed. The software designs are 

then developed for calculating the analytical solution of the variance and for 

conducting the simulations based on the mimic Excel model. 

 

In Chapter 6, two case studies are made with RSSB-SRM HET10 and HET12. The 

case studies validate the practical performance of the elicitation procedure and 

methods developed in this thesis. The case studies also validate that the methods for 

calculating the uncertainty propagation through a large Fault-tree and Event-tree 

model are efficient. 

 

In Chapter 7, the aims of the research are reviewed first. The developments of this 

research are then summarized and discussed. At the end of the chapter some future 

research is proposed. 

 

In Appendix A, we propose a set of methods for building the distribution of the sum 

of products of continuous random variables. More work however is needed to 

measure and control the approximation errors. Once this is done, these methods can 
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be used to calculate the analytical approximate distribution of output of a Fault-tree 

and Event-tree model. 

 

In Appendix B, tables giving complete information relating to the cases considered in 

Chapter 6 are presented. 

 

In Appendix C, some theories on positive definite matrix and positive semi-definite 

matrix are presented. These theories are referred to in Chapter 3. 
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Chapter 2  

 

Literature Review 

 

 

2.1 Introduction 

As stated in Chapter 1, this research focuses on the subjective uncertainty analysis of 

a mathematical model, which mainly involves two tasks: (1) modelling the subjective 

uncertainty in the input parameters through expert judgement elicitation; and (2) 

propagating uncertainty through the mathematical model. 

 

In the literature, expert judgement is often used for building the distributions for 

individual variables, i.e. the marginal distributions. Due to the difficulties of 

assessment, dependence was initially ignored in building the uncertainty of multiple 

input parameters [Smith, Ryan et al. 1992]. It was found, however, that dependence 

had a strong effect on the probability distribution of the output and therefore must be 

modelled for most applications [Clemen and Winkler 1985]. By the divide-and-

conquer strategy, the elicitation of dependence can be separated from the elicitation 

of the marginal probability distributions of the individual variables [Clemen, Fischer 

et al. 2000]. Theoretically the dependence can be modelled by the elicitation of 

conditional distributions. The elicitation of the conditional distribution is however 

difficult even for two variables. It is practically impossible to elicit the conditional 

distributions for a set of variables [Ravinder, Klenmuntz et al. 1988]. A feasible way 

is to model the dependence between two variables with the correlation coefficient or 

rank correlations. For multiple variables, the dependence between each pair of 

variables can be elicited. The pairwise dependencies are then organized to define the 

dependence among the multiple variables. The structure used to organize the 

pairwise dependencies is called dependence structure  [Clemen, Fischer et al. 2000; 
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Kurowicka and Cooke 2006]. The correlation matrix, for example, is a common 

dependence structure. 

 

As shown in Fig. 2.1, the literature review is made to cover four parts: (1) the 

methods for eliciting the marginal probability distribution of the individual variables; 

(2) the methods for eliciting the dependence between two input parameters; (3) the 

dependence structures for modelling high dimensional dependence; and (4) the 

methods for propagating the uncertainty through mathematical models. In this 

literature review we compare the existing methods for elicitation from a practical 

perspective. The aim is to select suitable elicitation methods and/or to find where we 

can put our efforts to improve the methods for the use in our project. Rather than 

investigating the psychological and behavioural theories underlying the elicitation 

methods, we compare the elicitation methods based on the current knowledge of 

behavioural theories and the applications in elicitation practices so far. At the end of 

the chapter, we highlight the gaps that we find in the literature. 

 

 

 

 

Fig. 2.1 Demonstration of the literature review scope 

 

 

1. Eliciting the probability 

of individual variables 

2. Eliciting the 

dependency 

3. Dependence 

structures 

Modelling subjective 

uncertainty in multiple 

input parameters 

4. Uncertainty 

propagation through 
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Subjective 

uncertainty analysis 
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2.2 Modelling Subjective Uncertainty in Multiple Input 

Parameters 

To assess the uncertainty in the output of a mathematical model, we need to build a 

uncertainty model for the input parameters [Morgan and Henrion 1990]. In the risk 

analysis context, we usually build the subjective uncertainty in the input parameters 

through expert judgement. The subjective uncertainty represents the experts’ 

knowledge and beliefs about the uncertainty in the input parameters. Elicitation is the 

process by which we formulate the experts’ knowledge and beliefs into probability 

distributions [Garthwaite, Kadane et al. 2005]. It is admitted that there is a limit in 

experts’ ability to perceive abstract variables. With the great effort in improving the 

elicitation, however, expert judgement is increasingly employed for input in 

quantitative uncertainty modelling [Kurowicka and Cooke 2006; O'Hagan, Buck et al. 

2006]. 

 

A sound process is essential to implement a good elicitation. The elicitation process 

proposed by SRI International for eliciting the probabilities [Merkhofer 1987] is 

composed of seven stages. In line with the SRI International process, a new process 

is developed to cope with bias caused in the elicitation [Walls and Quigley 2001]. 

The process includes five main stages. Another process with five stages is 

summarized via the transcript of a real elicitation interview [Shephard and Kirkwood 

1994]. Another elicitation process with seven steps is recommended in [Clemen and 

Reilly 2001]. Broadly these proposed processes cover the same tasks. Some tasks 

may be split into two in some processes; the order in which the tasks should be 

carried out may be slightly different. At a high level, four basic stages for 

implementing an elicitation are summarized as: Set up, Elicit, Fit, and Evaluate 

[Garthwaite, Kadane et al. 2005]. The Set up stage consists of the preparation for the 

elicitation. Specifically it includes: selecting the experts, training the experts, 

identifying what aspects of the problem to elicit. The Elicit stage is the 

implementation of elicitation. The experts are asked to answer the properly designed 

questions. In the Fit stage the elicited information, i.e. the experts’ answers, is 

transferred into the mathematical models such as the distributions or joint 

distributions. In the Evaluate stage, we need to judge whether the elicitation outcome 
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is adequate or not. We need to emphasize that an elicitation is well done if the 

elicited information accurately represents the expert’s belief and knowledge. It is not 

related to how good that knowledge is [Cooke 1991; Garthwaite, Kadane et al. 2005]. 

 

From the description of the elicitation process, one important issue about the 

elicitation is what kinds of variables can be elicited from the experts. As a guiding 

principle, experts should be asked the questions about quantities that are meaningful 

to them. This suggests that questions should generally concern observable quantities 

rather than unobservable parameters [Garthwaite, Kadane et al. 2005; O'Hagan, Buck 

et al. 2006]. In some applications, it is also possible that the particular statistical 

model is so familiar to the experts that their parameters have acquired well-

understood scientific meaning. In this case it is also appropriate to ask experts 

directly about such parameters [Kadane 1980; Winkler 1980]. For instance, the 

probability of the basic event of a fault tree has a well understood meaning and 

therefore is not an abstract model parameter. Therefore it can be elicited from the 

experts [Bedford and Cooke 2001]. 

 

2.3 Eliciting Marginal Distributions 

2.3.1 Overview  

The uncertainty about an unknown continuous variable is generally expressed by its 

probability distribution, called marginal distribution. The marginal distribution is 

usually inferred from the elicitation of some summary statistics of the unknown 

variable [Garthwaite, Kadane et al. 2005; O'Hagan, Buck et al. 2006]. The summary 

statistics widely found in the literature include probabilities, quantiles, intervals, the 

modes and the medians [Garthwaite, Kadane et al. 2005; O'Hagan, Buck et al. 2006]. 

Details on these summaries will be discussed later. 

 

In practice we can only elicit a few summary statistics from the experts. The 

marginal distribution can then be built by fitting the elicited summary statistics based 

on some assumptions. For example, we can assume that that the cumulative 

distribution function (CDF) is continuous and smooth. Consequently a nonparametric 
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marginal distribution can be fitted with the elicited summary statistics. A good 

summary of the methods for doing such fitting can be found in [O'Hagan, Buck et al. 

2006]. To get a reasonably good representation of the distribution, quite a few 

summary statistics are required. The marginal distribution can also be assumed to 

follow a parametric distribution family. It mainly has three advantages: (1) fewer 

assessments of the summaries are required; (2) expert judgement can be checked and 

adjusted by a few extra assessments; (3) parametric distributions are easy to analyze. 

 

2.3.2 Summary Statistics 

The cumulative probabilities of an unknown variable are valuable summaries. 

Suppose that X is an unknown variable. We can set a series of values of ixX = , 

ni ,,1⋯=  and ji xx <  for ji < . The probabilities ( )ixX ≤Pr  are then elicited from 

the experts. Alternatively, we can set a series of probabilities spreading over the 

interval [ ]1,0  that are denoted as ip , ni ,,1⋯= . The values ( )ipx  satisfying 

( )( ) ii ppxX =≤Pr , called quantiles or percentiles, are then elicited from the experts. 

The most used quantile is the median, which is obtained by setting 5.0=ip . Starting 

with the median, a method of bisection is often used to elicit a number of quantiles 

[O'Hagan, Buck et al. 2006]. By the bisection method, the expert is firstly asked the 

question: 

 

Q1. Can you determine a value such that it is equally likely that X is less than or 

greater than this value? 

 

The elicited value from this question is the median, i.e. ( )5.0x . We will then ask the 

expert the two more questions: 

 

Q2. Suppose that X is below ( )5.0x . Can you now determine a new value such 

that it is equally likely that X is less than or greater than this value? 
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Q3. Suppose that X is above ( )5.0x . Can you now determine a new value such 

that it is equally likely that X is less than or greater than this value? 

 

The answers to the above two questions give the experts' assessments of ( )25.0x  and 

( )75.0x . This can continue with more bisections, although it becomes more difficult 

for the expert to assess. A good example of the bisection method can be found in 

[Peterson, Snapper et al. 1972]. 

 

The quantile elicitation can also be carried out on the so-called credible interval 

[Garthwaite, Kadane et al. 2005; O'Hagan, Buck et al. 2006]. Associated with a 

probability [ ]1,0∈p , the central credible interval is defined by 

( ) ( )[ ]25.0,25.0 pxpx +− , where ( )25.0 px −  and ( )25.0 px +  are the two 

quantiles that satisfy 

 

 ( )( ) 25.025.0Pr ppxX −=−≤  

 

and 

 

 ( )( ) 25.025.0Pr ppxX +=+≤  

 

For example, the central credible interval associated with 5.0=p  is the interval 

defined by the lower and upper quartiles. 

 

In elicitation, the expert is advised with the definition of the central credible interval 

and then is asked to assess ( )25.0 px −  and ( )25.0 px +  corresponding to the 

probability p. Many experiments have demonstrated that the experts perform 

reasonably well in assessing credible intervals. However there is a clear tendency for 

experts to give a short central interval, which is called overconfidence [Peterson, 

Snapper et al. 1972; Schaefer and Borcherding 1973; Lichtenstein and Fischhoff 

1980]. 
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So far there is still no conclusion on whether eliciting cumulative probability or 

eliciting quantiles leads to better performance. Eliciting the probability is reported as 

giving better performance in [Seaver, Von Winterfeldt et al. 1978], while eliciting 

the percentiles is reported as giving better performance in [Murphy and Winkler 

1974]. More recently an adaptive fixed interval method is reported as giving better 

performance in [Winman, Hansson et al. 2004], while eliciting the percentile 

including the median is recommended in [Soll and Klayman 2004]. 

 

As an alternative to eliciting the probabilities and the quantiles, the ratios of the 

probabilities can be elicited in the method termed the analytic hierarchy process 

(AHP)[Saaty 1977; Saaty 1980; Hughes 1993; Cagno, Caron et al. 2000; Monti and 

Carenini 2000]. To elicit a set of probabilities nppp ,,, 21 ⋯ , the expert is asked to 

assess the relative probabilities ii pp  for ji ≠ . The probabilities ip , ni ,,1⋯=  can 

be derived by eliciting the minimum set of ( )1−n  ratios, e.g. 1ppi , ni ,,2⋯= . 

When more ratios are elicited, the inconsistency among the assessments can be 

identified and used to adjust the expert judgment [Saaty 1980; Basak 1998]. Rather 

than eliciting the absolute value, the ratios are assessed using a scale from 1 to 9, 

where the points on the scale are associated with verbal descriptions. For example, 

the ratio ( ) ( ) 5PrPr =BA  is described as “A is strongly more probable than B”. 

Therefore we can see that AHP is based on relative verbal assessments that are 

believed easy to implement in practice [Clemen, Fischer et al. 2000; Garthwaite, 

Kadane et al. 2005; O'Hagan, Buck et al. 2006; Park and Lee 2008]. The AHP 

methods are still under development with the enhancement by other techniques. A 

Bayesian paired comparison approach is developed for assessing the accident 

probability in [Szwed, Van Dorp et al. 2006]. A new method for eliciting human 

error probabilities is developed as a combination of AHP and the success likelihood 

index method (SLIM) [Park and Lee 2008]. 

 

Psychological scaling models utilize paired comparisons to implement elicitation as 

AHP does [Cooke 1991]. A set of events are pairwise compared in terms of their 

likelihood. The elicited data are then analyzed with a psychological model. Based on 

different assumptions, three psychological scaling models are developed including: 
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the Thurstone model, the Bradley-Terry model, and the NFL(negative exponential 

lifetime) model [Cooke 1991]. Compared with AHP, the Psychological scaling 

models use clear statistical assumptions. 

 

Besides the summaries related to probability, an expert’s ability to estimate the 

location measures including the mean, the median and the mode has been 

investigated in some experiments [Spencer 1961; Spencer 1963; Peterson and Miller 

1964; Beach and Swenson 1966]. The experiments show that the expert can give 

good estimation for all three location estimators for an approximately symmetric 

distribution [Spencer 1961; Beach and Swenson 1966]. However for highly skewed 

variable, the experiment shows that the expert has good performance in assessing the 

median and the mode while the mean is biased towards the median [Peterson and 

Miller 1964]. 

 

2.4 Methods for Eliciting Dependence between Two Random 
Variables 

2.4.1 Overview 

As presented before, the dependence between two variables is modelled practically 

by eliciting the correlation coefficient. In this section, we start with a brief 

description of the three correlation coefficients that are commonly used to measure 

the dependence between two variables. As for eliciting the marginal distributions of 

the individual variables, the correlation coefficients need to be derived by eliciting 

some summary statistics regarding the dependence. The correlation itself is one of 

the summaries that can be elicited. Six elicitation methods found in the literature are 

reviewed. 

 

2.4.2 Classification of Correlations 

The three types of correlations defined for two random variables are product-moment 

correlation, rank correlation and Kendall’s τ . Product-moment correlation is also 

called Pearson’s correlation. For two random variables X and Y, with finite 
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expectations ( )XE , ( )YE  and finite variance 2

Xσ , 2

Yσ , the product-moment 

correlation is defined as: 

 

( ) ( ) ( ) ( )

YX

YEXEXYE
YXr

σσ

−
=,  

 

Product-moment correlation defined above is a measure of the linear relationship 

between the random variables and ( ) 1, ±=YXr  if and only if baXY +=  for some 

0≠a . 

 

Rank correlation is also called Spearman rank correlation. Suppose that X and Y are 

two random variables. Suppose further that XF  and YF  are the cumulative 

distribution functions of X and Y respectively. Define the quantile variables 

 

( )XFU X=  

 

( )YFV Y=  

 

By the above definition, U and V are two random variables with the support defined 

on [ ]1,0 . The rank correlation of X and Y is then defined as 

 

( ) ( ) ( ) ( ) ( )

VU

r

VEUEUVE
VUrYX

σσ
ρ

−
== ,,  

 

Therefore rank correlation is defined on the quantile variables. As a result, rank 

correlation is invariant with respect to strictly increasing transformations of the 

random variables, as all such transformations have the same quantile variables. 

 

Suppose that X and Y are two random variables of the cumulative distribution 

function XF  and YF  respectively. Let ( )11,YX  and ( )22 ,YX  be two independent pairs 

of samples of ( )YX , . Kendall’s τ  of X and Y is defined as 
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( )( )[ ] ( )( )[ ]0Pr0Pr 12121212 <−−−>−−= YYXXYYXXτ  

 

For two random variables X and Y, the above three correlations can be derived 

through the elicitation methods discussed below. When X and Y are assumed to 

follow normal distributions, the joint normal distribution can then be defined with the 

product-moment correlation. For the general marginal distributions, the joint 

distribution of X and Y can be derived with a suitable copula that is to be discussed 

later on. 

 

2.4.3 Main Methods for Eliciting Correlations 

Six main methods for eliciting the correlations have been well investigated in the 

literature. As summarized in [Clemen, Fischer et al. 2000] the six methods include: 

• the correlation strength, called the S method; 

• direct elicitation of the correlation coefficient, called the R method; 

• conditional fractile elicitation, called the CF method; 

• concordance probability elicitation; called the CNC method; 

• joint probability elicitation, called the JP method; 

• conditional probability elicitation, called the CP method 

 

With the S method, a continuous line scale is presented; and the left and right ends 

represent being independent and perfect correlation respectively. The expert is asked 

to mark on the line with the location representing his belief of the dependence 

between the two variables. The location of the mark is then linearly transformed to a 

correlation between 0 and 1. In addition, the expert is asked whether the two 

variables are positively or negatively correlated.  

 

With the R method, the expert is asked to assess directly the correlation coefficient 

between the two random variables. 
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Suppose the random variables X and Y have marginal distributions ( )xF  and ( )yG  

respectively and the joint density ( )yxf YX ,, . With the CF method, the expert is 

informed that a pair of sample ( )yx,  is drawn randomly from ( )yxf YX ,, . The expert 

is then informed about the probability ( )yY ≤Pr , i.e. ( )yG . In the case studies in 

[Clemen, Fischer et al. 2000], it is set as ( ) 9.0=yG . The expert is then asked to 

assess probability ( )yYxX ≤≤Pr . The correlation between X and Y can then be 

derived through non-parametric regression: 

 

( ) ( ) ( )( ), 0.5 0.5
X Y y

E F r X Y G y
≤

= − +  

 

In the above formula, ( )yG  is preset; ( )X Y y
E F

≤
 is obtained from the elicitation; and 

the Spearman’s rank correlation ( )YXr ,  can then be solved in terms of ( )yG  and 

( )X Y y
E F

≤
. We can see that ( )yG  has to be taken not equal to 0.5. 

 

With the CNC method, the expert is informed that two pairs of samples ( )11, yx  and 

( )22 , yx  are drawn randomly from ( )yxf YX ,, . The expert is then informed that 

12 xx >  and is asked to assess the probability of 12 yy > . It is the concordance 

probability that is actually elicited by the CNC method. Naturally Kendall's τ  is 

employed to model the elicited probability as defined as 

 

12 −= CPτ  

 

where the CP  stands for the elicited probability; τ  is the estimate of Kendall's τ . 

 

The derived Kendall's τ  can be used directly to define the joint distribution 

( )yxf YX ,,  by selecting a suitable copula [Bedford and Cooke 2001; Kurowicka and 

Cooke 2006]. When the bivariate normal distribution is assumed for X and Y, the 
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Pearson product-moment correlation and the Spearman's rank correlation can also be 

derived from the Kendall's τ  as defined in [Kruskal 1958] as 

 

( ) ( )
2

sin, πτ=YXr  

 

( ) 





=

6
sin2, rYXr

πρ
 

 

where ( )YXr ,  and rρ  stand for the Pearson's correlation and Spearman's rank 

correlation respectively. 

 

With the JP method, the expert is asked to assess the probability of a random sample 

falling in a specific area, i.e. the probability ( )LL yYandxX ≤≤Pr , where Lx  and 

Ly  are preset values such as the 30 percentile [Clemen, Fischer et al. 2000]. 

 

With the CP method, the expert is told that sample ( )yx,  is drawn randomly from 

( )yxf YX ,, . The expert is then informed x falls into the lower [ ]1,0∈P  part of X, i.e. 

Pxx ≤ , where Px  is the P×100  percentile of X. The P is set as 60% in the case 

studies in [Clemen, Fischer et al. 2000]. The expert is then asked to assess the 

probability ( )
PP xXyY ≤≤Pr , where Py  is the P×100  percentile of Y. With the 

elicited joint probability from the JP method or the conditional probability from the 

CP method, the Pearson correlation between X and Y can then be calculated by 

assuming bivariate normal distribution for X and Y. 

 

The above six methods are compared with two case studies in [Clemen, Fischer et al. 

2000]. The research demonstrates that the R method and the S method give the best 

performance in terms of accuracy. They are also considered the easiest to implement. 

This conclusion seems controversial since the R method was reported as a poor one 

in the earlier research [Gokhale and Press 1982; Morgan and Henrion 1990; Kadane 

and Wolfson 1998]. For the S method, it seems a strong assumption to linearly 

transform the mark location to the correlation. The good performance of the R 
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method and the S method in [Clemen, Fischer et al. 2000], however, can be attributed 

to the two aspects: (1) the respondents in the experiments are very familiar with the 

statistical correlations; (2) the training method is very efficient. The training was 

done in the same way as the software Crystal Ball does [ORACLE 2008]. For a pair 

of bivariate normal random variables, the samples are drawn on a preset correlation 

and then the scatter plot is presented on the screen. Based on the scatter plot, the 

expert is asked to assess the correlation by the S method and R method. The expert is 

then informed with the true correlation to adjust their judgment. The investigation in 

[Clemen, Fischer et al. 2000] demonstrates that the good assessment of the 

correlations can be obtained by the S and R method when the expert knows well 

about the statistical correlations and has an efficient training process. 

 

2.5 High Dimensional Dependence Modelling 

2.5.1 Overview 

Considering the difficulties and the cost in elicitation, the uncertainty model for 

multiple input parameters in practice is usually built by parametric marginal 

distributions of the individual variables plus the correlations among the parameters. 

Consequently, the uncertainty model can be built in two stages: (1) building the 

marginal distribution of the individual parameters; (2) modelling the dependences 

among the parameters [Kurowicka and Cooke 2006]. After the review of the methods 

for eliciting the marginal probability distributions and the correlations between a pair 

of random variables, the methods for defining the correlations for high dimensional 

input parameters are to be reviewed in this section. 

 

2.5.2 Multivariate Normal Distributions 

When the individual input parameters can be assumed to follow normal distributions, 

the uncertainty in the input parameters can be completely defined by the means, the 

variances, and the correlation matrix. The multivariate normal distribution is one of 

the best choices for modelling the uncertainty in the input parameters. It requires less 



 35 

elicitation than other parametric joint distributions do. It is also easy to conduct 

analysis [Ghosh and Henderson 2003; O'Hagan, Buck et al. 2006]. 

 

For n random variables, there are ( ) 21−nn  correlation coefficients needed to elicit 

to build the correlation matrix. For very high dimensional input parameters, however, 

elicitation work for building the correlation matrix is still too time intensive. The 

situation becomes worse since we have to keep the outcome matrix positive definite 

or positive semi-definite. Different methods have been developed to obtain a positive 

semi-definite correlation matrix by adjusting the outcome matrix from elicitation. 

Usually some assumptions have to be made for this purpose [Ghosh and Henderson 

2002; Ghosh and Henderson 2003; Kurowicka and Cooke 2006]. 

 

2.5.3 Copula Trees and the Copula Vines 

For two random variables with general marginal distributions rather than normal 

distributions, the joint distribution cannot be defined completely by defining the 

correlation matrix. This difficulty can be dealt with by introducing copulas that are 

defined on the quantile variables. 

 

Suppose that the random variables X and Y have cumulative distribution functions 

( )xFX  and ( )yFY  respectively. Define ( )XFU X=  and ( )YFV Y= . Therefore U and 

V are random variables of uniform marginal distributions. The copula of X and Y is 

defined as the joint distribution of ( )VU ,  and denoted as ( )vuC YX ,, . Every 

continuous bivariate distribution can be completely determined by the copula and the 

marginal distributions as ( ) ( ) ( )( )yFxFCyxF YXYXYX ,, ,, =  [Clemen and Reilly 1999]. 

For a given copula ( )vuC YX ,, , Spearman’s rank correlation coefficient and Kendall’s 

τ  can be calculated as in [Nelsen 2006]. We know that the transformation by the 

cumulative distribution function does not change Spearman’s rank correlation or 

Kendall’s τ . Therefore we can design the copula ( )vuC YX ,,  to satisfy the rank 

correlations that are elicited for X and Y. As a result, the outcome joint distribution 

that is defined by the ( )xFX , ( )yFY  and ( )vuC YX ,,  has the rank correlation as 
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elicited from the expert [Jouini and Clemen 1996; Clemen and Reilly 1999; Bedford 

and Cooke 2001; Kurowicka and Cooke 2006; O'Hagan, Buck et al. 2006]. Case 

studies using copulas to define dependence can be found in [Clemen and Reilly 

1999]. 

 

Based on the specific characteristics, different copulas can be defined. A good 

general review of the copulas can be found in [Bedford and Cooke 2001; Kurowicka 

and Cooke 2006; Nelsen 2006]. 

 

For high-dimensional input parameters, Markov trees and copula vines can be used 

to define the joint distributions on the rank correlations or conditional rank 

correlations [Bedford and Cooke 2001; Bedford and Cooke 2002]. The outcome joint 

distribution can satisfy exactly the rank correlations elicited from the experts. Many 

case studies using Markov trees and copula vines have been found in the literature 

such as [Yi and Bier 1998; Clemen and Reilly 1999; Kurowicka and Cooke 2006]. 

 

Markov trees cannot be used to represent any joint dependence structure. Copula 

vines however can be constructed to model any given rank correlation matrix exactly. 

 

2.5.4 Modelling Dependence through Common Factors 

The method for modelling the dependence through common factors was initially 

developed on a single common factor in a risk analysis model in [Duffey and Van 

Dorp 1998]. It was further extended to multiple factors in [Van Dorp 2005]. As 

demonstrated in Fig 2.2, the iU 's in the left side circles represent common factors to 

the input parameters jX 's in the right side circles; the variable jY  in the middle box 

is a surrogate variable aggregating the effects of the iU 's on the jX 's. 

 



 37 

  
Fig. 2.2 A model for defining the dependence among multiple random variables on the common 

factors, extracted from [Van Dorp 2005] 

 

 

The common factors iU  are assumed to be uniformly distributed on the interval [ ]1,0 . 

The lowest and highest risk level of iU  are set to 0 and 1 respectively. To one input 

parameter jX , the factors iU , mi ,,1⋯=  can have different importance. To measure 

the relative importance of the factors to jX , the weights ijw , , mi ,,1⋯= , are 

defined. To derive the weights, the m factors can be compared pairwise in terms of 

their importance to the input parameter jX . For each pair of factors ( )1iU  and ( )2iU , 

( ) ( ) mii ,,11,1 ⋯= , the elicited information is how many times ( )1iU  is more important 

to jX  than ( )1iU . With the elicited information, the weights can be derived and 

normalized to keep 

 

 1
1

, =∑
=

m

i

ijw , 10 , ≤≤ ijw  
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Therefore the weights measure the relative importance of a factor to one input 

parameter. We can say that ( )1iU  is 
( )

( )2,

1,

ij

ij

w

w
 times more important to jX  than ( )2iU . 

 

Based on the elicited weights, the aggregated factor is defined as a weighted linear 

combination 

 

∑
=

=
m

i

iijj UwY
1

,  

 

At the next step, the bivariate dependence between jY  and jX  needs to modelled. It 

can be implemented with a copula ( ) ( )( )
jj XFYFC , . 

 

As a summary, the dependence between jX , nj ,,1⋯=  is modelled by the common 

factors iU , mi ,,1⋯= , the weights, the aggregated factor jY 's and the copulas 

( ) ( )( )
jj XFYFC , . Modelling through common factors offers a flexible framework 

that does not require a special structure among the parameters. Exploring and ranking 

the common factors iU 's offer the insight into the dependence mechanism in a 

structured way. To populate the model, mn ×  weights ijw , 's and n copulas 

( ) ( )( )
jj XFYFC ,  need to be elicited. For high-dimension models, it requires much 

less elicitation workload than directly eliciting the ( ) 21−nn  correlations among the 

n parameters. Since no correlation matrix of the parameters is required, there is no 

difficult in keeping it positive definite. 

 

In this method, if the factors iU  were independent normal random variables, the 

aggregated factors jY  would be correlated normal random variables. From this 

perspective, the method is close to the idea of a normal copula. 
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2.6 Uncertainty Analysis Methods 

2.6.1 Overview 

There are two types of uncertainties: model uncertainty and parameter uncertainty 

[Morgan and Henrion 1990]. Model uncertainty arises from the fact that any model is 

a simplification of the reality. It is not covered in this research. We focus on 

parameter uncertainty. 

 

Suppose there is a mathematical model ( )XfY = , where Y is a scalar output; 

[ ]nXX ,,1 ⋯=X  is a vector of the input parameters of the dimension n . Parameter 

uncertainty analysis aims to assess the uncertainty in y that is caused by the 

uncertainties in X [Rabitz 1989; Cooke 1997; Saltelli, Chan et al. 2000]. It is also 

called uncertainty propagation in [Morgan and Henrion 1990; Iman, Johnson et al. 

2002]. The uncertainty in X is represented by a joint probability distribution. The 

uncertainty in Y is then calculated as the propagation of the input uncertainty through 

the model, and called probabilistic uncertainty analysis [Abrahamsson 2002; Helton, 

Johnson et al. 2006]. There are also some other types of uncertainty representations 

such as interval analysis and fuzzy theory [Helton, Johnson et al. 2004]. We focus on 

probabilistic uncertainty analysis in this research. 

 

In this section, a literature review is made on the methods for probabilistic 

uncertainty analysis, including analytical methods, and simulation-based methods. 

 

2.6.2 Analytical methods 

With the joint distribution of the input parameters, the distribution of the output 

should ideally be derived as the distribution of the function of the random variables 

[Ross 2003]. This is called the analytical method. The exact analytical distribution of 

the output however can be derived only for simple models such as linear models of 

normal variables. Generally the original model needs to be approximated with its 

Taylor series. The mean, the variance and the higher order moments can then be 

calculated based on the approximate model. Since only the moments of the output 
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can be derived, the method is also referred to as the “method of moments” [Morgan 

and Henrion 1990; Robinson 1998; Abrahamsson 2002]. 

 

We can see that the “method of moments” only represents an approximation of the 

original model. When the variance in the input is large, higher order terms in the 

Taylor expansion must be included. This introduces much more complexity of the 

algebra especially for the complex original models, as is the case in risk analysis. 

 

2.6.3 Simulations-based Methods 

2.6.3.1 Overview 

Given the limitation of the analytical methods, simulation-based methods are the 

most popular ways to carry out probabilistic uncertainty analysis. This trend has been 

enhanced further by the rapid development of the computer and software 

technologies. 

 

Suppose that the joint distribution of [ ]nXX ,,1 ⋯=X  is known. A sample of X  is 

denoted as [ ]
nkkk xx ,1, ,,⋯=x , where ikx ,  is a sample of iX . By the joint distribution 

of X , we can generate a set of independent and identically distributed samples of X , 

denoted as kx , snk ,,1⋯= , where sn  stands for the size of the samples. The sample 

kx , can then be fed into the model )(Xf  and a sample of Y can be calculated as 

( )kk fy x= . Such a process is called Monte Carlo simulation. Based on the simulated 

ky , snk ,,1⋯= , the mean, the variance and the empirical distribution of Y can then 

be estimated. This is called a simulation-based method. [Helton and Davis 2002] 

 

From the above description, the core of the simulation-based method is to generate 

samples of the input parameters that satisfy the pre-specified joint distribution. The 

two most important sampling methods are random sampling and Latin hyper-cube 

sampling [Helton and Davis 2000; Helton, Johnson et al. 2006].  
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2.6.3.2 Random Sampling 

Random sampling is associated with Monte-Carlo simulation [Sobol 1974]. Suppose 

a random variable X  has the CDF ( )xFX . By the random sampling method, the 

samples of X is generated using ( )xFX . Define the random variable U  as uniformly 

distributed in [0, 1]. At the first step, a set of independent and identically distributed 

samples of U , denoted as 
Snuu ,,1 ⋯ , are generated through a algorithm, called 

random number generator. The most common algorithm is the multiplicative 

congruential method. Starting with a seed 0s , a sequence of numbers are generated 

by the multiplicative congruential method as 

 

( ) ( )mass kk mod1−= , ⋯,2,1=k  

 

where a  and m  are preset integers; ( )mod  is the function returning the remainder 

after 1−kas  is divided by m . 

 

Therefore ks  takes a value in { }1,,0 −m⋯ . The samples of U  are then calculated by 

 

m

s
u k

i = , snk ,,1⋯=  

 

With large a  and m , 
Snuu ,,1 ⋯  are approximately independent and identically 

distributed samples of U . The IBM System/360 Uniform Random Generator is built 

on the multiplicative congruential method taking 1231 −=m  and 57=a . It has been 

used in many mathematical software packages and gives good results. 

 

We can see that the 
Snuu ,,1 ⋯  are not really random; they are decided by the preset 

seed 0s  and the preset integers a  and m . Therefore 
Snuu ,,1 ⋯  are called pseudo-

random numbers. More discuss on generating the pseudo-random numbers can be 

found in [L'Ecuyer 1998].  
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At the second step, the samples of X  can be generated based on 
Snuu ,,1 ⋯  as 

 

 ( )kXk uFx
1−= , snk ,,1⋯=  

 

where 

 

 ( ) ( ){ }uxFxuF XX ≥=− :inf1  

 

is the inverse function of ( )xFX . 

 

When the multiple input parameters [ ]nXX ,,1 ⋯=X  follow a joint normal 

distribution, the sampling can be done through the Cholesky decomposition [Scheuer 

and Stoller 1962; Law and McComas 1999]. Suppose 

 

 ( ) ( ) ( )T

n

T

nXXEE µµ ,,,, 11 ⋯⋯ ==X  

 

 ( ) ( ) xX Σ== nXX ,,covcov 1 ⋯  

 

When xΣ  is positive semi-definite, it can be factored by the Cholesky decomposition 

as 

 

 TLL=Σx  

 

where nnRL ×∈  is a lower triangular matrix. 

 

The input variables [ ]nXX ,,1 ⋯=X  can then be rewritten as 

 

 ( ) ( ) ( )T

n

T

n

T

n ZZLXX ,,,,,, 111 ⋯⋯⋯ ⋅+= µµ  

 

where ( )1,0~ NZ j , nj ,,1⋯=  are independent standard normal variables. 
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The samples of jZ , nj ,,1⋯=  can be generated independently by the process 

discussed above. The samples of X  can then be calculated based on the samples of 

jZ , nj ,,1⋯= .  

 

When [ ]nXX ,,1 ⋯=X  follows a general joint distribution other than joint normal, in 

principle the samples can be generated based on conditional distributions. It is 

however difficult to implement in practice for high dimensional input parameters. 

The joint normal transform method, called NORTA(NORmal To Anything), is a 

more realistic alternative when the uncertainty in X  is modelled by the marginal 

distributions and the rank correlations [Kurowicka and Cooke 2006]. 

 

Suppose that the marginal distribution of iX  is iF , ni ,,1⋯= , and the dependence 

among the iX ’s is modelled by the rank correlation matrix XΣ . We need to generate 

the samples of the iX ’s that satisfy both the marginals iF  and the XΣ . We start with 

defining a set of standard normal random variables [ ]nYY ,,1 ⋯=Y , i.e. ( )1,0~ NYi , 

ni ,,1⋯= . Suppose the correlation matrix of Y is YΣ . Consequently we have defined 

( )YN Σ0,Y ~ . Then the samples of X can be generated by: 

• Generate the k
th

 sample of ( )YN Σ0,Y ~ , denoted as nkk yy ,1, ,,⋯ ; 

• Calculate the sample of iX  by ( )( )
ikiik yFx ,

1

, Φ= − , ni ,,1⋯=  

 

The function ( )Φ  stands for the cumulative probability function of the standard 

normal distribution. The samples of X  generated by this procedure will have the 

preset marginal distributions. To show this, note that each iY  has a standard normal 

distribution, so that ( )iYΦ  is uniformly distributed on (0, 1). Therefore 

( )( )iii YFX Φ= −1  has the preset marginal distribution. The preset rank correlation 

matrix XΣ  can be obtained by setting the correlation matrix YΣ  accordingly. 

However, there is no general closed-form expression that gives YΣ  in terms of XΣ . 

Indeed, determining the right YΣ  is perhaps the most difficult step in implementing 
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the NORTA method. More properties of the NORTA methods are investigated in 

[Ghosh and Henderson 2002; Ghosh and Henderson 2003] 

 

Random sampling is easy to implement and provides unbiased estimates of the 

means, variance and the distribution of the model output. It suffers however large 

variance. In practice we need to generate a large number of samples to reduce the 

variance [Ghosh and Henderson 2003; Kurowicka and Cooke 2006]. It is therefore 

preferred when sufficient samples are possible and the computation of the model is 

not costly. As a complement, Latin hyper-cube sampling is developed for the 

situation when a large number of samples are impossible for computationally costly 

models. 

 

2.6.3.3 Latin Hyper-cube Sampling 

Latin hyper-cube sampling (LHS) is designed to ensure the full coverage of the input 

space [McKay and Beckman 1979] and therefore reduce the variability associated 

with the random sampling. Suppose that X  has the CDF ( )xFX . To get sn  samples 

of X , the support of X  is partitioned into sn  contiguous intervals iχ , Sni ,,1⋯=  

of equal probability. Within iχ , a sample ix  is generated by the random sampling 

method following the conditional distribution ( )xF
iXX χ∈

. Following this process for 

iχ , Sni ,,1⋯= , we have Sn  samples X . 

 

For independent multiple input parameters [ ]nXX ,,1 ⋯=X , the LHS samples can be 

generated for jX , nj ,,1⋯=  separately at the first step. Denote the samples for jX  

as jix , , Sni ,,1⋯= . The LHS samples of X can then be generated by combining jix ,1
 

and kix ,2
, Snii ,,1, 21 ⋯= , nkj ,,1, ⋯=  randomly and without replacement [Helton 

and Davis 2000]. 

 

The LHS samples for dependent [ ]nXX ,,1 ⋯=X  can be generated by the restricted 

pairing technique proposed in [Iman and Conover 1982]. The LHS samples are 
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generated for the input parameters separately at the first stage as for the independent 

input parameters. At the second step, the samples are combined together with 

specified selection procedure to obtain the preset rank correlations. A drawback to 

restricted pairing technique is that adding new samples to the existing samples will 

destroy the rank correlations in the samples. It means that the sample size cannot be 

increased by simply adding more samples as for the random sampling method. To 

solve this problem, an extension of the restricted pairing technique has been 

developed in [Sallaberry, Helton et al. 2006]. 

 

The LHS method can reduce the variance of the uncertainty analysis and so requires 

much less samples than the random sampling method [Stein 1987]. It however has 

poor coverage in the both ends of the input parameters. It is therefore preferable 

when a large number of samples are infeasible for computationally expensive models. 

Detailed comparisons between random sampling and LHS can be found in [McKay 

and Beckman 1979; Helton and Davis 2002; Helton and Davis 2003; Helton, Davis 

et al. 2005; Helton, Johnson et al. 2006]. 

 

2.6.4 Uncertainty Analysis of Fault-tree and Event-tree Models 

For a Fault-tree model of independent basic events, the analytical solution of the 

variance of the top event is developed in [Rushdi 1985]. The analytical solution of 

the variance of the top event is also derived when the basic events follow a joint 

normal distribution [Der Kiureghian 1987]. 

 

For general applications, however, the uncertainty analysis with Fault-tree and 

Event-tree models is mainly conducted through simulations. Many examples of this 

type of uncertainty analysis can be found in the reactor safety field [Helton, Johnson 

et al. 1995; Helton, Johnson et al. 1995; Helton, Johnson et al. 1995; Helton, 

Anderson et al. 1996; Helton, Bean et al. 1996; Helton, Bean et al. 1997; Helton 

1999; Helton, Anderson et al. 2000; Helton, Martell et al. 2000; Kraan and Cooke 

2000]. More examples can also be found in chemical industry [Lauridsen, Kozine et 

al. 2002], offshore transport [Nilsen, Gudmestad et al. 1998], food safety [Frey and 
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Patil 2001], and natural disaster analysis [Iman, Johnson et al. 2002; Bazzurro and 

Luco 2005; Li and Ellingwood 2006] etc. 

 

2.7 Conclusion 

A good elicitation method should have strong foundations that are defensible in 

terms of probability and statistics theory. It should be as general as possible to apply 

in a wide variety of situations. It should also be able to be linked directly to the 

modelling procedure. The elicitation quantity should have a clear interpretation so 

that the assessors can view it as easy and credible [Clemen, Fischer et al. 2000]. 

Furthermore, for high dimensional input parameters, the method should require 

reasonable elicitation time from the experts. By these criteria, methods for eliciting 

the marginal probabilities are applicable in practice. The methods for eliciting the 

correlations between two random variables can also satisfy most of the applications. 

There is still a gap however in building high dimensional dependence by elicitation. 

 

It has been agreed that uncertainty for high dimensional input parameters should be 

modelled on parametric marginal distributions plus a framework for modelling the 

correlations [Kurowicka and Cooke 2006; O'Hagan, Buck et al. 2006]. The 

correlation matrix or the rank correlation matrix offers the straightforward 

framework that is easy to understand and can be dealt with by the well developed 

algorithms for matrices. It however requires assessing ( ) 21−nn  pairwise 

correlations for the n input parameters, which means too much elicitation workload 

when n is large. Furthermore, by eliciting pairwise correlations it is very difficult to 

keep the outcome matrix positive definite or positive semi-definite as required for a 

correlation matrix. Copula trees offer an efficient and consistent framework when the 

input parameters hold suitable structure patterns [Bedford and Cooke 2001; Bedford 

and Cooke 2002]. Copula vines can be used for all kinds of input parameters. The 

elicitation for populating the model is quite difficult to implement in practice. The 

method for building the dependence on the factors is an efficient and flexible way 

that also offers a structured exploration of the underlying dependence causes [Van 

Dorp 2005]. No correlation or covariance matrix however has been developed with 
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the method. Therefore it cannot be applied when we do need a covariance matrix for 

modelling the uncertainty in the input parameters. 

 

The uncertainty analysis of Fault-tree and Event tree models can be efficiently 

conducted by simulations-based methods in conjunction with analytical analysis of 

the moments. In the literature, however, there are still no methods found for 

calculating the mean and the variance when both the basic events of the Fault-tree 

models and the consequences of the Event tree models are treated as correlated 

random variables. As we have discussed in Chapter 1, fault trees and event trees are 

usually built with commercial software packages such as Isograph FT+ and stored as 

computer codes in the internal database. For uncertainty analysis, we need to access 

these computer models. In Isograph FT+, an interface is developed for users to set 

the input parameters, to run the fault trees and event trees, and to obtain the results. 

By this interface, we can conduct simulations of the fault trees and event trees for 

uncertainty analysis. However, the interface is developed as dynamic link libraries 

(DLLs). It requires high level of programming skills to utilize this interface. 

Furthermore, we cannot do any analytical analysis of the uncertainty of fault trees 

and event trees though that interface. There is still no discussion on how to 

implement the analysis on a large model built with a commercial software package. 

 

In this research, we aim at first to develop a method for building the correlation 

matrix through elicitation on uncertainty factors. The method is expected to have two 

features: (1) significant reduction of the elicitation workload compared with direct 

elicitation of the correlation matrix; (2) guaranteed positive definite or positive semi-

definite correlation matrix. Secondly, we aim to develop a method to reduce the 

elicitation for deriving the variance of the input parameters. Thirdly we aim to 

develop a method to model the dependence among the rule sets associated with the 

consequences of the Event-tree models. Fourthly, we aim to select or develop a set of 

methods for conducting the uncertainty analysis of the Fault-tree and Event-tree 

models built on the software package Isograph FT+. 
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Chapter 3  

 

A New Procedure for Building the Covariance Matrix 

of Input Parameters through Elicitation 

 

 

3.1 Overview 

For a large group of input parameters, it is difficult to build the uncertainty model 

through elicitation of expert judgment. In practice, it is split into two tasks: (1) 

building the marginal distributions for all the individual parameters; and (2) building 

the dependence among all the parameters [Kurowicka and Cooke 2006]. When the 

normal distribution is assumed as the marginal for each single parameter, the 

uncertainty in a group of input parameters can be completely defined by the means 

and the covariance matrix. In this chapter, a procedure is developed for building the 

covariance matrix through the elicitation of expert judgement. 

 

Uncertainty factors have been employed as an efficient way in modelling the 

uncertainty in the input parameters. The elicitation workload can be reduced 

significantly by modelling the uncertainty factors [Van Dorp 2005]. In this chapter, 

the uncertainty factors are used to structure the input parameters’ uncertainty through 

a linear model [Cheng, Bedford et al. 2007]. The correlation matrix of the input 

parameters is then developed based on the elicitation of the correlations regarding the 

uncertainty factors. The outcome correlation matrix can be guaranteed to be positive 

semi-definite as required. 

 

We continue then to develop the method for deriving the variance of the input 

parameters through expert judgement elicitation. The input parameters that are 



 49 

defined physically in a similar way are defined to be a family. When input 

parameters are occurrence rates of a Poisson process, the sum of the family members 

is the occurrence rate of the family. The variance of the family occurrence rate, 

called the variance of the family, is then meaningful and can be derived by eliciting 

the percentile of the waiting time [Garthwaite, Kadane et al. 2005]. A method is then 

developed to derive the family covariance matrix based on the family variance and 

the family correlation matrix. This method at first features a significant reduction of 

the elicitation workload. Furthermore some experts may be more confident in giving 

their assessment on higher level events, as was the case with the experts in RSSB in 

the case studies for this research. 

 

To implement the above method for building the correlation matrix, the correlation 

between two random variables must be elicited. The qualitative assessment plus 

benchmark method is adopted because it is easy for experts to make the judgement 

[Clemen, Fischer et al. 2000] and has been widely used in the Excel Add-in Crystal 

Ball [ORACLE 2008]. The method is presented and discussed later in this chapter. 

 

A method is then developed for deriving the family variance based on the elicitation 

of the percentile of the waiting time for the next occurrence. 

 

At the end of this chapter, we include an example for demonstrating the procedure 

for building the covariance matrix of an input parameter family. 

 

3.2 Research philosophy and Methodology 

3.2.1 Introduction 

This research focuses on uncertainty analysis of a risk assessment model. The 

uncertainty can arise from two perspectives. First, a model is always an approximate 

representation of reality [Pidd 2003]. Consequently when assessment is made based 

on a model, uncertainty is caused by the unknown approximation. This uncertainty is 

called model uncertainty. Second, with a given model, we usually cannot know for 

sure the values of the input parameters. The uncertainty in the input parameters 
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propagates through the model and causes the uncertainty in the output. This is called 

parameter uncertainty. 

 

This research focuses on the parameter uncertainty analysis. We need to model the 

uncertainty in the parameters at first and then assess the resulting in uncertainty in 

the output. To quantitatively assess the uncertainty, we must define a mathematical 

representation of it. Probability theory offers a rigorous framework for this and has 

been well accepted in the literature [Lindley 2000]. Kolmogorov’s axioms states that 

probability is a positive normalized measure over a field of “possible worlds” or 

“possible states of nature”. This axioms has been widely accepted as the most 

appropriate framework for uncertainty assessment. Within the field of uncertainty of 

PRA, however, strong debate exists over the actual meaning of probability 

[Apolostolakis 1988; Winkler 1996; Nilsen and Aven 2003]. There are two main 

interpretations of probability: the frequentist and subjectivist views. The choice of 

the interpretation depends on the way the researcher observes the world, and acts 

within it. Consequently it defines the methodology: i.e. the ways for date collection 

and the data analysis. We are going to discuss the philosophy standpoint and justify 

the adopted methodology regarding this research. Specifically we will discuss three 

questions: the ontology, the epistemology and the methodology. 

3.2.2 Ontology 

Ontology concerns the form and nature of reality. Positivists believe that there is 

only one true reality; interpretivists accept that the reality depends on one’s 

experience and perceptions and therefore is subjective [Ponterotto 2005]. 

Frequentists and subjectivests of probability hold completely different ontological 

positions. On one hand, frequentists believe that a true reality exists independent to 

observers. To a frequentist, probability is a natural characteristic of the world. For a 

specific event, there is a true probability. On the other hand, subjectivists believe that 

probability is a degree of belief in the occurrence of an event that is decided by the 

observer’s knowledge [De Finetti 1974]. Correspondingly, subjective probability is a 

mode of judgment made by an observer based on his/her knowledge and background 

information. As a result, uncertainty is not an objective characteristic of an event 
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existing in the real world independently of the analyst as frequentists believe [Parry 

1996]. 

 

As stated before, this research aims to assess the uncertainty in the output driven by 

the uncertainty in the input parameters. We study the epistemic uncertainty that 

represents the lack of the experts’ knowledge. Different experts may have different 

knowledge about the input parameters that result in different definitions of the 

probabilities. Therefore we adopt the subjectivist view of probability; 

correspondingly we take the interpretivists’ view of ontology. 

3.2.3 Epistemology 

Epistemology concerns the process of knowledge acquisition and defines the 

relationship between the knower and what can be known. 

 

For a frequentist, probability learning is integrally related to the concept of relative 

frequencies. Because probability is believed as a characteristic of the objective world, 

in order to assess this probability, one needs to perform a series of repeatable 

experiments in which this event occurs. The probability of the event is then set as the 

relative frequency of the outcomes of this event. When the number of the 

experiments is large, the relative frequency converges to the true probability of the 

event. Mathematically, we can define a sequence of independent random variables 

{ }1, , ,nX X⋯ ⋯  and 
i

X  is the outcome of the ith experiment defined as 

 

1,  the event happens

0,  otherwise
i

X


= 


 

 

The probability of the event can then be inferred by 
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Associated with point estimation of the probability, a confidence interval can also be 

estimated representing a level of acceptability for the estimation. As a summary 

frequentists’ epistemology is to use the historical data to estimate probability that is 

believed to be an objective true value. 

 

For an interpretivist, the probability represents one’s degree of belief of an event of 

interest. In order to assess the probability we need to explore one’s knowledge and 

beliefs and formulate them into probability. This process is commonly called expert 

judgement elicitation [Garthwaite, Kadane et al. 2005; O'Hagan, Buck et al. 2006]. 

Expert judgement elicitation has been used in many fields including risk and 

uncertainty assessment for decades [Cooke 1991]. With continuous effort in 

improving the elicitation, it is increasingly employed for uncertainty assessment 

[Kurowicka and Cooke 2006; O'Hagan, Buck et al. 2006]. 

 

A sound process is essential to implement a good elicitation. Broadly an elicitation 

process covers four basic stages: Set up, Elicit, Fit, and Evaluate [Garthwaite, 

Kadane et al. 2005]. In the set up stage, we select the experts, training the experts, 

identifying what aspects of the problem to elicit. The Elicit stage is the 

implementation of elicitation. In the Fit stage the experts’ answers are transferred 

into the mathematical models to derive probabilities. In the Evaluate stage, we 

evaluate whether the elicitation outcome is adequate or not. We need to emphasize 

that an elicitation is well done if the elicited information accurately represents the 

expert’s belief and knowledge. It is not related to how good that knowledge is 

[Cooke 1991; Garthwaite, Kadane et al. 2005]. 

3.2.4 Methodology 

Methodology concerns how the data are obtained in a research. It depends on the 

ontology and epistemology adopted for the research. From the frequentist’s view of 

probability, we need occurrence data of an event to estimate its probability as 

discussed above. To obtain data, one way is to observe the event and record the 

historical occurrences. Another way is to conduct controlled experiments in a 

sufficiently identical way. It is sometimes a faster and cheaper way to obtain data. 
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From the subjectivist’s view of probability, as stated before, we elicit information 

from experts and then formulate the information into probabilities. Therefore 

elicitation is the main way for subjectivist’s to obtain data. It can be implemented 

through questionnaires, interviews, workshop etc [Creswell 2009]. One important 

task for conducting elicitation is to design a sound mathematical framework for 

formulating the elicited results. It is intrinsically related to the questions that we used 

to elicit experts’ knowledge and beliefs [Cooke 1991; Bedford and Cooke 2001; 

O'Hagan, Buck et al. 2006]. 

 

As stated before, in this research we take the subjectivist’s interpretation of 

probability in line with the interpretivists’ view of ontology. Correspondingly we 

adopt expert judgement elicitation to evaluate probabilities for uncertainty 

assessment. We first chose and develop proper mathematical frameworks for 

information fusion. Accordingly we design questions for experts to answer. 

 

Experts are chosen from RSSB for three reasons. First, it is the RSSB that builds the 

safety risk model. The RSSB now is concerned with their uncertainty in the model. 

The experts are likely to have a positive attitude towards this exercise. Second, the 

experts know how the RSSB-SRM is built and how it is used in practice. As such, 

they are knowledgeable about the uncertainty sources. Third, the experts have at least 

basic understanding of statistics. Therefore they can understand well elicitation 

questions. Before starting elicitation, training was given for experts to understand the 

mathematical framework. Documents regarding the mathematical framework were 

first offered to experts. After experts finished reading, a two-day’s workshop was 

organized and a mock elicitation was conducted to make sure that experts gained 

understanding of the relevant issues. 

 

In this research, we conducted two case studies. For Case I, elicitation was 

implemented through questionnaires. Four forms were designed for benchmark, 

family identification, family definitions respectively. Eight families were identified 

by experts for Case I. For each family, three forms were designed to elicit 
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information regarding the uncertainty factors. The whole elicitation lasted for 2 

months as experts worked part-timely for the elicitation. During the elicitation 

process, the researcher and the experts communicated through both email and phone 

talk. Case study II was conducted through a five-day’s workshop. The researcher and 

the experts worked together to elicit the information. It turns out that face-to-face 

workshop is a more productive way to eliciting. 

 

Following the subjectivist’s view of probability, there is not a real probability that 

can be used to validate the elicited information. A good elicitation is done when it 

catches properly the knowledge and beliefs of experts [Cooke 1991; Garthwaite, 

Kadane et al. 2005]. Accordingly, the validation was conducted at two stages in this 

research. First, we derive an indicator to monitor the elicited information during the 

elicitation process. The information given by experts can be guaranteed to be 

consistent once the indicator is satisfied. The case studies demonstrate that the 

indicator works very efficiently. Second, we need to make sure that the elicited 

information represents the knowledge of all experts in the institute, rather than the 

individual experts participating in the elicitation. For this end, the experts 

participating in the elicitation were asked to communicate with the experts in the 

institute during the elicitation process. At the last step of the elicitation, a review 

meeting was arranged for the relevant experts to check the elicited information and 

the derived results. The case studies demonstrate that the review meeting is an 

efficient way. 

 

3.3 Linear Model on Uncertainty Factors 

Assume that the uncertainty in a parameter is affected by a set of independent factors. 

Assume further that the uncertainty is defined with a linear model of the factors as 

 

 iiKiKiiiiiii wXXXp
ii

ελλλµ ++++=− ,,2,2,1,1, ⋯  (3.1) 

 

where ip  stands for an input parameter; iµ  is the mean of ip ; kiX ,  is the k
th

 factor 

that is normalized such as ( ) 1var , =kiX  and ( ) 0, =kiXE ; ki,λ  is the loading of kiX , ; 
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iK  is the number of the factors of ip ; iε  stand for the residual uncertainty of ip , 

which is normalized such as ( ) 1var =iε , ( ) 0=iE ε ; iε  is assumed to be independent 

to all the factors, i.e. ( ) 0,cov , =ikiX ε , iKk ,,1⋯= ; iw  is the loading of iε . 

 

We assume that ip  and kiX ,  in Equation 3.1 follow a normal distribution. Rather 

than for prediction of ip , the linear model of Equation 3.1 aims to structure the 

uncertainty of the input parameter into the factors. Correlations between two 

parameters can then be derived through the shared uncertainty factors. 

 

Based on Equation 3.1, the variance of ip  can be derived as 

 

 ( ) 22

,var i

k

kii wp +=∑λ  (3.2) 

 

Similarly if we can define another parameter jp  in the same form as in Equation 3.1, 

then the covariance between ip  and jp  is 

 

 ( ) ( ) ( )
jiji

K K

k

kjikjiji wwXXrpp
i j

εελλ ,cov,,cov
1 1

,,,, +⋅=∑∑
= =ℓ

ℓℓ  (3.3) 

 

where ( ),r  stands for the correlation between the two variables. 

 

The correlation ( )
kji XXr ,, ,ℓ  is included in Equations 3.3 because the factors from 

two different parameters could be identical or correlated while the factors associated 

with one parameter are assumed to be independent. By rearranging the sequence of 

the factors and adding zero coefficients ki ,λ  when needed, the relations among the 

factors are demonstrated in Fig. 3.1. In a horizontal oval, the factors kiX , , 

Kk ,,1⋯= , { }max i
i

K K= , are associated with ip  and are assumed to be 

independent. In a vertical oval, the factors kiX ,  and kjX ,  can be correlated or even 
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identical. Consequently, two factor ( )1,kiX  and ( )2,kjX , where ( ) ( ) Kkk ,,12,1 ⋯= , 

( ) ( )21 kk ≠ , are independent. We will discuss the classifications of the factors so that 

suitable definitions can be made accordingly. 

 

 

Fig. 3.1 Relations among the factors associated with multiple parameters 

 

3.4 Factor Categories 

For deriving the correlation between the input parameters, the factors associated with 

ip  and jp  are partitioned into three categories: common factors, correlated factors 

and exclusive factors, as demonstrated in Fig. 3.2. 

 

 

 

Fig. 3.2 Classifications of the uncertainty factors 

Kjkjj

Kikii

XXX

XXX

,,1,

,,1,

,,,,

,,,,

⋯⋯

⋯⋯

 
Independent 

Independent 

Correlated or identical Correlated or identical 

Correlated or identical 

kC  

 
Parameter 

ip  

Exclusive 

factor kiX ,  

Common 

factor kX  

Correlated 

factor kiX ,  

Correlated 

factor kjX ,  

Exclusive 

factor kjX ,  

 
Parameter 

jp  



 57 

 

As shown in Fig. 3.1, suppose that kiX ,  and kjX ,  are two factors from ip  and jp  

respectively. When 0, ≠kiλ , 0, ≠kjλ , kiX ,  and kjX ,  define a common factor when 

they are identical. It is denoted by kjkik XXX ,, == . 

 

When 0, ≠kiλ , 0, ≠kjλ , kiX ,  and kjX ,  define a factor class when they are correlated. 

It is denoted by kjkik XXC ,, ,= . 

 

When 0, =kjλ , kiX ,  is associated with ip  and has nothing to do with jp . 

Consequently kiX ,  is called exclusive factor of ip . Accordingly, when 0, =kiλ , kjX ,  

is an exclusive factor of jp . 

 

To exemplify the above classifications, we take a group of RSSB-SRM precursors 

that are defined as road vehicle (RV) driver error causing RV struck by train on level 

crossing L, where L denotes one of the eight types of level crossings (LCs) [RSSB 

2004]. These precursors are defined as a collective event for all the level crossings of 

the same type. The eight types of LCs are homogenously deployed across the Britain 

railway mainline [Dennis 2006]. The eight precursors are then exposed 

homogenously to the weather over Britain. We think bad weather condition can 

cause more road vehicle drivers’ errors causing RV struck by train on level crossings. 

When the weather over Britain deviates consistently from the historical average, the 

eight precursors are expected to have a deviation of the occurrence rates consistently. 

Because weather affects the eight precursors in the same way, it is a common factor 

for all the eight precursors. 

 

One of the eight level crossings is the User-Worked Crossing with Telephone 

(UWC-T). The user is required to use the phone to call the signaller in order to obtain 

permission to use the crossing. When the crossing is clear for railway use, the user is 

required to use the phone to inform the signaller. If the reliability of the phone-
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communication system is considered as a factor, it is exclusive to UWC-T because 

no other level crossings are equipped with it. 

 

The eight types of LCs can be put into two groups defined as: User Worked 

Crossings (UWCs) and non-UWCs. The level crossings in each group have the same 

user populations and the two populations are different to some extent [RSSB 2004]. 

Therefore, two factors can be defined according to the two groups of usage 

population respectively. The two factors are correlated because there is still an 

overlap of the two user populations. Based on the above definition, these two factors 

form a factor class. As we can see, the factor class actually composes of the two 

correlated factors, each of which is a common factor to a subset of the eight 

precursors. To populate the model, we need to assess only one correlation for this 

correlated factor class. Such a class is called thin class. A thin class makes it feasible 

to model the correlated factors by elicitation. In practice, we can always keep a factor 

class thin by agglomerating some correlated factors in the class. 

 

According to the above classifications, the input parameter’s linear model defined in 

Equation 3.1 can be rewritten as 
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,
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,,,,,

,,,,,

 (3.4) 

 

where XL , CL  stand for the sets of indices for the common factors and the correlated 

factors respectively; iEL ,  and jEL ,  stand for the sets of indices for the exclusive 

factors associated with ip  and jp  respectively. 

 

Any two input parameters are connected through their common factors and the factor 

classes. In the next section, the correlation between two parameters is to be derived 

based on the model defined in Equation 3.4. 



 59 

 

3.5 Correlation between Two Input Parameters 

We assume that the residual uncertainty of different parameters are independent i.e., 

( ) 0,cov =ji εε . According to the classifications of the factors, and recalling that all 

the factors associated with one input parameter are independent, the covariance 

between ip  and jp  can be derived from Equations 3.3 and 3.4 as 

 

 ( ) ( )∑∑
∈∈

⋅+=
CX Lk

kjkikjki

Lk

kjkiji XXrpp ,,,,,, ,,cov λλλλ  (3.5) 

 

For subjective uncertainty analysis, we rely on the elicitation of the expert judgement 

to assess the loadings ki,λ . It is however difficult for experts to assess ki,λ  because it 

involves both the correlation and the variance [Garthwaite, Kadane et al. 2005; 

O'Hagan, Buck et al. 2006]. Consequently the covariance in Equation 3.5 cannot be 

derived directly from the loadings. As an alternative, the correlation between ip  and 

jp  is to be derived based on elicitation of the correlations between the factors. The 

variance of the parameter is to be derived through elicitation separately. 

 

For a factor kiX ,  of ip , we have 
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Recalling that ( ) 1var , =kiX , from the above formula we have 

 

 ( ) ( )ikiiki pXpr var, ,, =λ  (3.6) 

 

Applying Equation 3.6 with Equation 3.5 we obtain 
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varvar,cov ,, ⋅









+= ∑∑

∈∈

 (3.7) 

 

where  

 

 ( ) ( )
kjki

k

ji XprXprh ,,, ⋅=  (3.8) 

 

 ( ) ( ) ( )
kjkikjjkii

k

ji XXrXprXpro ,,,,, ,,, ⋅⋅=  (3.9) 

 

By the definition of correlation, we have 

 

 ( ) ( )
( ) ( ) ∑∑

∈∈

+==
CX Lk

k

ji

Lk

k

ji

ji

ji

ji oh
pp

pp
ppr ,,

varvar

,cov
,  (3.10) 

 

In Equation 3.10, the term k

jih ,  and k

jio ,  are the contributions from the common 

factors and factor classes respectively. The calculation of k

jih ,  and k

jio ,  is based on the 

correlations regarding the factors, which can be reasonably elicited as well discussed 

in the literature [Clemen, Fischer et al. 2000; Garthwaite, Kadane et al. 2005; 

O'Hagan, Buck et al. 2006]. The correlation coefficients that need to elicit are 

summarized as: 

• ( ),i kr p X : the correlation between a common factor and each input 

parameter 

• ( ),,
i i k

r p X : the correlation between a classed factor and its associated input 

parameter 

• ( ), ,,
i k j k

r X X : the correlation between two factors of the same class 

 

We have assumed that all the factors associated with the same input parameter are 

independent, therefore are uncorrelated; correspondingly no correlations among them 

need to elicit. Based on the assumption, two classed factors ,i k
X  and ,j k

X  are 
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uncorrelated with all the other factors ,n m
X , m k≠ . It does not however mean 

necessarily that ,i k
X  and ,j k

X  are uncorrelated. Their correlation needs to be elicited. 

 

Through the above method, a positive semi-definite correlation matrix can be 

guaranteed for multiple parameters as will be shown in the next section. 

 

3.6 Correlation Matrix for Multiple Parameters 

3.6.1 Overview 

Suppose that there are N parameters arranged in a vertical vector as defined as 

 

 [ ]T

Nn ppp ,,,,1 ⋯⋯=p  (3.11) 

 

The correlation matrix of p is denoted by 
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Nnn
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pprppr

pprppr

pprppr

r p  (3.12) 

 

The matrix ( )pr  can be built with each cell ( )
ji ppr ,  calculated separately from 

Equation 3.10. We are however going to define ( )pr  in a compact form as the sum of 

a series of matrices associated with the common factors, correlated factors, the 

exclusive factors and the residual terms. We will prove that those summand matrices 

can be kept positive semi-definite and as a result ( )pr  is positive semi-definite. For 

this end, related definitions and theories on positive definite or positive semi-definite 

matrices are included in Appendix C. 
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3.6.2 Decomposition of the Correlation Matrix of Multiple Input 

Parameters 

For developing the correlation matrix of p  as denoted in Equation 3.11, we are going 

to redefine the linear uncertainty model in Equation 3.4 in a compact format with 

matrices. For this purpose, we need to define the column vectors of the factors 

associated with the common factors, the factor classes, and the exclusive factors as 

defined before. We denote a column vector of the factors as kX , 1×∈ N

k RX , where 

N is the number of the input parameters included in p . Associated with each kX , we 

need to define the matrices of the loadings, which is denoted by kλ , NN

k

×∈Rλ . 

 

Associated with a common factor, kX , XLk ∈ , we define the column vector of 

factors as 

 

 ( )T

kkk XX ,,⋯=X  (3.13) 

 

Accordingly we define the matrix of loadings as 
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Therefore kλ  is a diagonal matrix with all the off-diagonal cells filled with zeros. 

 

Associated with a factor class kC , CLk ∈ , we define the column vector of factors as 

 

 ( )T

kNkikk XXX ,,,1 ,,,, ⋯⋯=X  (3.15) 

 

Accordingly we define the matrix of loadings as 
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Hence kλ  is a diagonal matrix with all the off-diagonal cells filled with zeros. 

 

Associated with an exclusive factor kiX , , iELk ,∈ , we define the column vector of 

factors as 

 

 ( )T

kikik XX ,, ,,⋯=X  (3.17) 

 

Accordingly we define the matrix of loadings as 
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The matrix kλ  in Equation 3.18 contains only one non-zero value on the i
th

 diagonal 

cell. 

 

We define the column vector associated with the residual iε , Ni ,,1⋯= , as 

 

 ( )T

iii εε ,,⋯=ε , 1×∈ N

i Rε  (3.19) 

 

Accordingly we define the matrix of loadings associated with iε  as 
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The matrix iw  contains only one non-zero value on the i
th

 diagonal cell. 

 

Based on the definitions in Equations 3.13-3.20 and the linear model in Equation 3.4, 

we can define the linear model of the N input parameters in terms of the matrices as 
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k k k k k k i i
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Recall that we assume that the factors, except of the factors of the same class, and the 

residuals are mutually independent. As given in [Van Kampen 1992], we have 
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Suppose that ( )T

NVV ,,1 ⋯=V , 1×∈ N
RV , NM ×∈RU , as given in [Dillon and 

Goldstein 1984] we have 

 

 ( ) ( ) TUVVUUVUV ,cov,cov =  (3.23) 

 

Therefore from Equation 3.10 we have 
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We can derive the covariance matrix ( )kk XX ,cov  following the definitions of kX . 

When kX  is associated with a common factor, i.e. XLk ∈ , from Equation 3.13 we 

have 
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Recalling ( ) ( ) 1var,cov == kkk XXX , we have 
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where [ ] NN×1  is called ones-matrix of dimensions NN × . 

 

When kX  is associated with a factor class kC , CLk ∈ , from Equation 3.15, we have 
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  (3.26) 

 

We define 

 

 ( )
kjkiji XX ,,

2

, ,cov=σ  (3.27) 

 

Recalling ( ) 1var , =kiX , we have 
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and  
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Applying Equations 3.27 - 3.29 with Equation 3.26, we have 
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When kX  is associated with an exclusive factor, i.e. iELk ,∈ , from Equation 3.17 we 

have 
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Recall ( ) ( ) 1var,cov ,,, == kikiki XXX . As defined in Equation 3.25 we have 

 

 ( ) [ ] NNkk ×= 1,cov XX , iELk ,∈  (3.31) 

 

Corresponding to the vector of the residuals, following Equation 3.19 we have 
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Recall ( ) ( ) 1var,cov == iii εεε . As defined in Equation 3.25 we have 

 

 ( ) [ ] NNii ×= 1,cov εε  (3.32) 

 

Applying Equations 3.25, 3.30, 3.30 and 3.32 and with Equation 3.24, we have 
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We define the diagonal matrix containing the variance of the input parameters as 

 



 68 

 

( )

( )

( )





















=

N

i

p

p

p

var00

0var0

00var 1

2

⋯⋯

⋮⋱⋮⋮⋮

⋯⋯

⋮⋮⋮⋱⋮

⋯⋯

pσ  (3.34) 

 

Accordingly we define 
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and 
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From Equations 3.34 - 3.36, we have 

 

 2

ppp σσσ =⋅  (3.37) 

 

 NIσσ pp =⋅−1  (3.38) 

 

where NI  stands for the NN ×  dimensional identity matrix. 
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By Equations 3.12, 3.67 and 3.36, we have 

 

 ( ) ( ) 11 ,cov −− ⋅⋅= pp σppσpr  (3.39) 

 

By applying Equation 3.33 with Equation 3.39, we have 
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  (3.40) 

 

By Equation 3.36, we have 

 

 ( )T11 −− = pp σσ  (3.41) 

 

By Equations 3.14, 3.16 and 3.18, the matrix of the loadings associated all the types 

of the vectors of factors are diagonal. Consequently we have 

 

 T

kk λλ =  (3.42) 

 

From Equations 3.41 and 3.42, we have 
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TT

k

T
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By Equation 3.20, we have also 

 

 T

ii ww =  (3.44) 
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From Equations 3.41 and 3.44, we have 
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Applying Equations 3.43 and 3.45 with Equation 3.40, we have 
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  (3.46) 

 

From Equation 3.46, we can decompose ( )pr  into the correlation matrices associated 

with the common factors, the factor classes, the exclusive factors and the residuals. 

When kX  is associated with a common factor kX , i.e. XLk ∈ , we define 

 

 ( ) ( ) [ ] ( )TkNNkX k
r λσλσp pp

11 1 −
×

− ⋅⋅=  (3.47) 

 

When kX  is associated with a factor class kC , i.e. CLk ∈ , we define 

 

 ( ) ( ) ( ) ( )TkkkC Crr
k

λσλσp pp

11 −− ⋅⋅=  (3.48) 

 

When kX  is associated with an exclusive factor kiX , , i.e. iELk ,∈ , we define 

 

 ( ) ( ) [ ] ( )TkNNkX ki
r λσλσp pp

11 1
,

−
×

− ⋅⋅=  (3.49) 

 

According the vector of the residual iε , we define 
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 ( ) ( ) [ ] ( )TiNNii
r wσwσp pp

11 1 −
×

− ⋅⋅=ε  (3.50) 

 

Using the notations established in Equations 3.47-3.50, we express Equation 3.40 as 
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We call ( )
kXr p , ( )

kCr p , ( )
kiXr

,
p  and ( )

i
r εp  the correlation matrix of p associated 

with the common factor, the factor class, the exclusive factor and the residual 

respectively. We are going to show how these correlation matrices can be defined by 

the elicitation of expert judgement. We will also prove that these correlation matrices 

are positive semi-definite. 

 

3.6.3 Correlation Matrix Associated with a Common Factor 

The correlation matrix of p associated with a common factor kX  is defined in 

Equation 3.47. From Equations 3.14 and 3.36, we have 
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From Equation 3.6, we have 
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where ( )ki Xpr ,  represents the correlation between ip  and kX . 

 

Applying Equation 3.53 with Equation 3.52, we have 
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 (3.54) 

 

The diagonal matrix ( )kXr ,p  is called the correlation matrix between the input 

parameter vector p and the common factor kX . 

 

Applying Equations 3.54 with Equation 3.47, we have 
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By analogy with k

jih ,  defined in Equation 3.8, ( )
kXr p  represents the correlation 

matrix of p driven by the common factor kX . We are going to prove that ( )
kXr p  is 

positive semi-define. For this purpose, we define the square-root of [ ] NN×1  as 

 

 [ ]( ) [ ]
NN

NNNN
NN

×

×× 







≡⋅=

1
1

1
1

21
 (3.56) 

 

Therefore we have 
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and 
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Applying Equations 3.58 and 3.57 with Equation 3.55, we have 
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As defined in Equation 3.54, ( )kXr ,p  is a diagonal matrix and therefore we have 

 

 ( ) ( )( )T

kk XrXr ,, pp =  (3.60) 

 

Based on Equations 3.59 and 3.60, we have 
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By Theorem C.2 in Appendix C, the matrix ( )
kXr p  in Equation 3.61 is positive 

semi-definite. This property of ( )
kXr p  is to be used later to prove that ( )pr  is 

positive semi-definite. 

 

3.6.4 Correlation Matrix Associated with a Factor Class 

The correlation matrix of p associated with a factor class kC  is defined in Equation 

3.48. From Equations 3.16 and 3.36, we  
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Applying Equation 3.53 with Equation 3.62, we have 
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 (3.63) 

 

The diagonal matrix ( )kCr ,p  is called the correlation matrix between the input 

parameter vector p and the factor class kC . This matrix needs to be built through 

elicitation of expert judgement. 

 

Applying Equation 3.62 with Equation 3.48, we have 

 

 ( ) ( ) ( ) ( )( )T

kkkC CrCrCrr
k

,, ppp ⋅⋅=  (3.64) 

 

By Theorem C.3 in Appendix C, ( )
kCr p  defined in Equation 3.64 is semi-definite 

when ( )kCr  in Equation 3.20 is kept positive semi-definite. 

 

As discussed in Section 3.4, a factor class in practice is kept “thin” by agglomerating 

the included factors into a few factors each of which is common to a subset of the 

input parameters. For a thin factor class, it is feasible to build a positive semi-definite 
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( )kCr  through elicitation of expert judgement [Ghosh and Henderson 2003]. The LC 

users in the example in Section 3.4, for example, are agglomerated into the users of 

UWC, denoted by ( )U

kC , and the users of non-UWC, denoted by ( )N

kC . Five of the 

eight input parameters are associated with ( )U

kC  and the other three are associated 

with ( )N

kC . The associated ( )kCr  can then be defined as 
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Therefore ( ) ( )( )N

k

U

k CCr ,  is the only one that needs to be elicited. The outcome ( )kCr  

is automatically positive definite. 

 

3.6.5 Correlation Matrix Associated with an Exclusive Factor 

The correlation matrix of p associated with an exclusive factor is defined in Equation 

3.49. From Equations 3.18 and 3.36, we  
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Applying Equation 3.53 with Equation 3.65, we have 
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Corresponding to the matrix of loadings kλ , iELk ,∈  as defined in Equation 4.N6, 

the matrix ( )kiXr ,,p  contains only one non-zero ( )kii Xpr ,,  that needs to be elicited 

from the experts. 

 

Applying Equation 3.66 with Equation 3.49, we have 
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By the calculations of the matrices we have 
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The ( )
kiXr

,
p  has 0 for all the cells except the i

th
 diagonal one. Apparently ( )

kiXr
,

p  is 

associated only with ( )ii ppr ,  in ( )pr . It is consistent with the definition that the 

exclusive factor impacts only the associated input parameter and therefore does not 

contribute to the correlation among the parameters. Because of ( ) 0, ,

2 ≥kii Xpr , 

( )
kiXr

,
p  is positive semi-definite by Theorem C.1 in Appendix C. 
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3.6.6 Correlation Matrix Associated with the Residual 

The correlation matrix of p associated with a residual is defined in Equation 3.50. 

From Equations 3.20 and 3.36, we  
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Therefore the matrix iwσp

1−  contains only one non-zero cell on the diagonal 

corresponding to the associated residual iε . Different from all the factors, the matrix 

iwσp

1−  is not to be derived based on the elicitation regarding the associated residual 

iε . Rather, we will derive 
( )i

i

p

w

var
 from the elicitation regarding the factors. 

 

Recalling Equation 3.2, ( ) 22

,var i

k

kii wp +=∑λ , and Equation 3.6 

( ) ( )ikiiki pXpr var, ,, =λ . Applying Equation 3.6 with Equation 3.2, we have 

 

 ( ) ( ) ( ) ( ) ( ) 2

,

2

,

22

,

,,,varvar i

Lk

kii

Lk

kii

Lk

kiii wXprXprXprpp
iECX

+













++= ∑∑∑

∈∈∈

 (3.69) 

 

We then have 
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The four terms on the right side of Equation 3.70 represent the four parts of ( )ii ppr ,  

corresponding in the sequence to: (a) kX  the common factors kX , XLk ∈ ; (b) the 
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correlated factors kiX , , CLk ∈ ; (c) the exclusive factors kiX , , iELk ,∈ ; and (d) the 

residual uncertainty iε . Parts (a), (b) and (c) can be defined by the elicitation of the 

correlations between the input parameter and the associated factors. From Equation 

3.70, we define 
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Because 
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w
, by Equations 3.70 and 3.71, we must have 
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Applying Equation 3.71 with Equation 3.70, we have 
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We can see that iq  stands for the proportion of ( )ipvar  that is explained by all the 

factors associated with ip . Inequality 3.72 offers a constraint to monitor the experts' 

assessments during the elicitation. With iq  derived by Equation 3.71 through 

elicitation, applying Equation 3.73 with Equation 3.68 we have 
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Applying Equation 3.74 with Equation 3.50, we have 
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  (3.75) 

 

By Theorem C.1 in Appendix C, ( )
i

r εp  is positive semi-definite when 10 ≤≤ iq  is 

satisfied. For all the residuals iε , Ni ,,1⋯= , a correlation matrix can be defined in a 

compact form as 
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Applying Equation 3.75 with 3.76, we have 
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By Theorem C.4 in Appendix C, the ( ) εpr  is positive semi-definite when all ( )
i

r εp , 

Ni ,,1⋯=  are positive semi-definite. 
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3.6.7 Correlation Matrix as Sum of Correlation Matrices 

Associated with the Various Types of Factors 

With the definitions given in Equations 3.55, 3.64, 3.67, 3.75, 3.77 and 3.76, the 

overall correlation matrix of N input parameters can be derived from Equation 3.51 

as 
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In Equation 3.78, the matrices ( )
kXr p  and ( )

kCr p  are the correlation contribution of 

the common factors and factor classes respectively; ( )
kiXr

,
p  and ( ) εpr  are matrix 

associated with the exclusive factors and the residual terms respectively. As 

developed above, these matrices can be built based on the elicitation of the 

correlations between the input parameters and the associated factors and the 

correlations among the factors in a class. Following the above procedure, these 

correlation matrices can be kept positive semi-definite. As a result the correlation 

matrix ( )pr  can be kept positive semi-definite by Theorem C.4 in Appendix C. 

When 1<iq  for some Ni ,,1⋯= , then ( ) εpr  is positive definite and as a result ( )pr  

is positive definite by Theorem C.4 in Appendix C. 

 

From Equation 3.78, all exclusive factors associated with one input parameter can be 

represented by a single one. From operational perspective, however, we don not do 

that way. Elicitation starts with identifying all the major factors for each input 

parameter. At the second step, factors are then classified. Therefore, we don’t know 

if a factor belongs to the exclusive category or not until we identify all the major 

factors. Furthermore, with all the major factors identified, experts are more confident 

with assessing the associated correlations. 
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3.7 Definition of an Input Parameter Family 

3.7.1 Motivation 

The primary motivation for establishing the parameter family concept is to reduce 

the elicitation workload regarding the variance. With the correlation matrix of a set 

of input parameters built, we need the variance of input parameter to build the 

covariance matrix. It can be done through elicitation of the expert judgement [Cooke 

1991; Garthwaite, Kadane et al. 2005; Kurowicka and Cooke 2006; O'Hagan, Buck 

et al. 2006]. For a large set of input parameters, it requires much elicitation workload 

however. We therefore need to develop a way to reduce the workload. A group of 

input parameters can be defined as physically similar events. For example, a group of 

RSSB-SRM precursors are defined as road vehicle (RV) driver error causing RV 

struck by train on level crossing L, where L denotes one of the eight types of level 

crossings (LCs) [RSSB 2004]. We can see that this group of the precursors are 

defined as the same event associated with different types of level crossings. We are 

going to define such a group of input parameters to be a family. When input 

parameters are occurrence rate of a Poisson process, their sum is the occurrence rate 

of the family. The idea is to elicit the variance in the occurrence rate of the family 

and derive the variance of the precursors in the family. By eliciting on the family 

instead of individual parameters, the elicitation workload is reduced significantly. 

 

The second motivation is to facilitate the assessment. Experts are more confident in 

giving their assessment on higher level events, as shown in the case of RSSB-SRM. 

By eliciting on the family level rather than individual parameters, we can make the 

elicitation easier to experts. 

 

3.7.2 Definition 

We define a group of input parameters to be a family, when: (1) the input parameters 

have physically similar interpretation for which a basic event can be defined; (2) a 

set of differences can be identified among the input parameters; (3) affected by some 

differences, each individual parameter derives from the basic event. Therefore, after 

the effect of the differences is accounted, the input parameters can be treated as the 
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basic event. The family members therefore share a common part of uncertainty due 

to the basic event. The factors associated with the basic event are invariant factors; 

the factors associated with variations are variant factors. 

 

We are going to develop the mathematical definition of the family based on the 

uncertainty model as defined in Equation 3.4. We denote a family by f . Suppose 

two input parameters ip  and jp  belong to the family f , denoted by fpp ji ∈, . 

Recall that the uncertainty in ip  and jp  can be defined on their factors of three 

categories as in Equation 3.4 as 
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We define the common factors that are associated with the basic event as the 

invariant factors of the family, i.e.  

 

( ) { } is associated with the basic event
k k

I f X X=  

 

We define the other factors that are associated with the differences among the family 

as the variant factors, i.e.  

 

( ) { }

{ } { }, , ,

 is not associated with the basic event
k k

i k E i i k C

V f X X

X k L X k L

=

∈ ∈∪ ∪
 

 

We can see that the common factors are split into ( )fI  and ( )fV  depending on if 

they are associated with the basic. The uncertainty model of the family can then be 

defined based on Equation 3.4 as 
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 (3.79) 

 

For some families, the members can also share the same residual term that is not 

affected by any difference across the family. In this situation, we call the residual 

term family residual that is an invariant factor. The uncertainty model of the family 

correspondingly becomes 
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where fε  stands for the family residual. 

 

Therefore the uncertainty model of the family can be defined in two situations 

depending on the property of the residual uncertainty terms in the family. 

 

Based on Equations 3.79 and 3.80, the variance of the family members can be split 

into the common part due to the invariant factors and the part due to the variant 

factors as defined as 
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where  

 

 ( )


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=
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factorinvariant an  is residualwhen ,1
fεδ  

 

 

By Equation 3.2 we have 

 

 ( ) ( ) ( ) ( )
( )fVifIii ppp varvarvar +=  (3.83) 
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for the family. Therefore we have 
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From Equations 3.84, we have 
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=  (3.85) 

 

When the input parameters are occurrence rate, the sum of the family members is the 

occurrence rate of the family. The variance of the family occurrence rate, called the 

variance of the family, is then meaningful and can be derived by eliciting the 

percentile of the waiting time [Garthwaite, Kadane et al. 2005]. The variance of the 

family members can then be derived from the family variance. 
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Once a whole set of input parameters are partitioned into families, the covariance 

matrix can be partitioned into blocks correspondingly as to be discussed next. 

 

3.7.3 Covariance Matrix Partitioned by Families 

Suppose that there is a group of parameters denoted by [ ]TNn ppp ⋯⋯ ,,,1=p . The 

parameters are partitioned into Z families denoted by zf , Zz ,,1⋯= . Accordingly, 

the overall correlation matrix ( )pr  is partitioned into blocks as 
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where ( )zfr  stands for the correlation matrix of zf ; ( )yz ffr ,  stands for the 

correlation block between families zf  and yf . 

 

The diagonal blocks represent correlations within families; the off-diagonal blocks 

represent the correlations between families. The methods developed previously can 

be used to build the correlation matrix. 

 

The variance of the parameters ( )ipvar  will be derived within the associated family 

zf . The method is going to be developed next. Given ( )ipvar , Ni ,,1⋯= , recall the 

definition in Equation 3.35, 
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Consequently the covariance matrix is 

 

 ( ) ( ) ( ) ( )pΛppΛp 2
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2
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cov ⋅⋅= r  

 

Because ( )pr  can be guaranteed to be positive semi-definite, ( )pcov  is positive 

semi-definite by Theorem C.3 in Appendix C. 

 

In the next section, the correlation matrix of an input parameter family is to be 

developed based on Equations 3.79 and 3.80 respectively. After that, we continue to 

develop the method for eliciting the variance of input parameters within the family. 

 

3.8 Correlation Matrix of a Parameter Family 

3.8.1 Family with Independent Residuals 

When the family members have independent residuals iε , the linear model is defined 

as in Equation 3.79. This model is the same as defined in Equation 3.4 except that the 

common factors are split into two parts for invariant factors and variant factors 

respectively. Correspondingly the correlation matrix of the family f  therefore can 

be adapted from Equation 3.78 as 
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where ( )fr  stands for the correlation matrix of f ; ( )
kXfr , ( )

kCfr , ( )
kiXfr

,
 and 

( ) εfr  are the contributions from the common factors, factor classes, exclusive 

factors and the residuals as defined in Equations 3.55, 3.64, 3.67 and 3.76 

respectively. 

 

3.8.2 Family Residual as an Invariant Factor 

When the family has the family residual as an invariant factor, the linear model is 

defined as in Equation 3.80. The family’s correlation matrix can be derived from 

Equation 3.86 as  
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where ( )
f

fr ε  stands for the correlation matrix associated with the family residual 

fε . 

 

We can see that the only difference between Equations 3.86 and 3.87 is the 

replacement of ( ) εfr  with ( )
f

fr ε . Because fε  is a common factor, we are going 

to derive the matrix ( )
f

fr ε  based on Equation 3.55. 

 

Based on Equation 3.73, we have 
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where iq , as defined in Equation 3.71, is the proportion of ( )ipvar  that is explained 

by the factors. 
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Based on Equation 3.54, we define the correlation matrix between p  and fε  as 
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  (3.88) 

 

where m stands for the size of f , i.e. the number of the input parameters in f . 

 

By Equation 3.55, the correlation matrix of the family associated with fε  can then 

derived as 

 

 ( ) ( ) [ ] ( )
fmmf rrfr

f
εεε ,1, pp ⋅⋅= ×  (3.89) 

 

The correlation matrix of f  with the family residual fε  can then be defined by 

Equation 3.87 with ( ) εfr  replaced with ( )
f

fr ε . As a summary, the process for 

building the family correlation matrix is demonstrated in Fig. 3.3. 
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Fig. 3.3 Flow chart for building the family’s correlation matrix and the variance of parameters 

in the family through elicitation 
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3.9 Deriving Variance of Parameters in a Family 

In this section, we will develop the method for deriving variance of family members 

based on elicitation of the family variance. 

 

By applying Equation 3.6 with Equations 3.81 and 3.82 we have 
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where iq  is defined as in Equation 3.71. 

 

Based on Equations 3.90 and 3.91, we define 
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Analogous to iq , iIq ,  and iVq ,  stand for the proportion of ( )ipvar  explained by the 

invariant factors and the variant factors respectively. Based on Equation 3.83 we 

have 
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 1,, =+ iViI qq  (3.94) 

 

For fpp ji ∈, , from Equations 3.90 and 3.92 we have 
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By applying Equation 3.85 with Equation 3.95, we have 
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In Equation 3.96, iIq ,  and jIq ,  can be calculated from the elicitation on the factors by 

Equations 3.92 and 3.71. The means iµ  and jµ  can be elicited from expert 

judgement [Clemen, Fischer et al. 2000; Garthwaite, Kadane et al. 2005; O'Hagan, 

Buck et al. 2006]. Therefore the ratio of the variance between two family members 

can be derived by Equation 3.96 through elicitation. If we select a family member as 

the reference denoted by rp , we can define ( )ipvar , fpi ∈  in terms of ( )rpvar  

based on Equation 3.96 as 
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When the input parameters are occurrence rates, their sum is meaningful as the 

occurrence rate of the family as defined as  
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From Equation 3.98, we have 
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In Equation 3.99, the family variance ( )
fpvar  is to be elicited. We can then derive  

( )ipvar  for fpi ∈  from ( )
fpvar . 

 

By applying Equation 3.97 with Equation 3.99, we have 
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From Equation 3.100, ( )rpvar  can be solved in terms of ( )
fpvar . The ( )ipvar  for 

fpi ∈  can then calculated by Equation 3.97. 

 

As a summary, the process for building the family correlation matrix and calculating 

the variance of the family members is shown in Fig. 3.3. We can see a significant 

reduction of the elicitation workload when we elicit the variance within the family 

rather for the input parameters separately. Furthermore, the discussion with the 

experts in RSSB shows that the experts are more confident in giving their assessment 

on higher level events. 

 

3.10 Qualitative Assessment and Benchmark of Correlations 

Elicitation of the correlations between two random variables is the basic input for 

building the correlation matrix of a group of input parameters based on the methods 

developed in the previous sections. Six types of methods for eliciting dependence 

between two random variables have been summarized and discussed in [Clemen, 

Fischer et al. 2000]. Three desirable characteristics of a good elicitation method are 

summarized in the paper. Firstly, a good elicitation method should have rigorous 

foundations that are defensible in terms of probability theory. Secondly a good 

method should be a general one that can be used in a wide variety of situations. 
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Thirdly a good method should be easy to implement and be able to be linked directly 

to the modelling procedure.  

 

Two of the six types of elicitation methods summarized in [Clemen, Fischer et al. 

2000] present the correlation with a continuous line. Two numbers are marked on the 

both ends of the line. The smaller one on the left side represents the weakest 

correlation, i.e. 0; while the larger one on the right side represents strongest 

correlation, i.e. 1. The experts are asked to mark on the line a point of which the 

distance from the both ends represents the belief of the correlation strength between 

two random variables. A numerical measure of the correlation is then mapped 

linearly from the mark position. Because the experts actually are asked to compare 

the correlations between different pairs of random variables rather than making 

quantitative assessment directly, these two methods can be categorized as qualitative 

assessment. They are ranked as the easiest way to implement. However, the linear 

numerical mapping implies a strong assumption and makes the two methods less 

rigorous. The mapping however can be done in another way as employed in the 

Excel Add-in Crystal Ball [Clemen, Fischer et al. 2000]. For a given pair of random 

variables of preset correlation, the scatter plot is made on the samples and presented 

on the screen. The experts are then asked to draw a position on the continuous line to 

shown their belief of the correlation strength. By repeating this process many times, a 

map can be made between the positions and the underlying correlations. By 

assuming that the experts can perceive the correlations in a way consistent with their 

subjective correlation perception, we think this map can be used as benchmark in the 

qualitative assessment of the correlations. 

 

A combination of the qualitative assessment and the benchmark as defined above is 

both easy to implement and rigorous in term of probability theory. It is therefore 

believed to be a good method by the standards summarized in [Clemen, Fischer et al. 

2000]. We continue to define the procedure in details. Rather that using the 

continuous line to represent the correlation, we use finite qualitative correlation 

levels as agreed with the experts for our case studies. 
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At the first step, the correlations are elicited from the expert in qualitative levels 

defined as: Very weak (VW), Weak (W), Moderate (M), Strong (S), Very strong 

(VS). The number of the levels can be made based on the expert’s distinguishing 

ability with reference to the literature [Clemen, Fischer et al. 2000]. 

 

At the second step, benchmark is conducted to map the qualitative assessments into 

numerical intervals. Take a pair of normal random variables defined as 
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So X and Y are standard normal with correlation coefficient XYρ . By setting XYρ  

randomly between 0 and 1, samples of X and Y can be generated. As demonstrated in 

Fig. 3.4, the scatter plot is then made on the samples and presented on the screen. 

The expert is then asked to assess the correlation in terms of the same qualitative 

levels as used in the elicitation at the first step. The underlying correlation coefficient 

and the expert’s qualitative assessment are recoded for benchmark. 
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Fig. 3.4 Demonstration of benchmark of the quantitative correlation assessments 

 

 

By repeating the second step many times with different XYρ , a table can be built 

containing the preset correlation coefficient and the expert’s qualitative assessment 

as demonstrated in Table 3.1. The benchmark data are expected to be grouped by the 

associated qualitative levels as displayed in Fig. 3.5. Statistics such as the mean, the 

median and the boundaries can then be calculated and used for benchmark of the 

qualitative assessment of the correlations that are used to build the correlation matrix 

of a group of input parameters. 

 

 

Table 3.1 Benchmark table containing the preset correlations and the correlation level assessed 

by the expert. The qualitative levels are defined as Very weak (VW), Weak (W), Moderate (M), 

Strong (S), Very strong (VS). 

No. Correlation of the samples on 

the scatter plot 

Qualitative level given by the 

Expert 

1.  0.2 VW 

2.  0.8 VS 

……   
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Fig. 3.5 Demonstration of benchmark data grouped by the associated qualitative levels. The two 

extreme levels Extremely Weak (EW), Extremely Strong (ES) are defined as 0 and 1 for the 

boundary. 

 

 

3.11 Define Variance of Occurrence Rate by Eliciting on 

Waiting Time 

Based on the methods developed in the previous sections, assessment of the variance 

of the input parameter family is required to build the family’s covariance matrix. In 

this section, the method for deriving the variance based on the elicitation is to be 

developed. 

 

We denote by λ  the occurrence rate. We assume that λ  follows a truncated normal 

distribution for 0>λ , which is defined as 

 

 ( ) ( ) 0,,
1

1
>

−
= λσµλπ λNorm

A
 (3.101) 
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where µ  and λσ are the mean and standard deviation of λ  respectively; ( )⋅Φ  stands 

for the standard normal cumulative probability function. 

 

Apparently the term 1-A in Equation 3.101 works as a normaliser of the probability 

density function. It is believed that A is a small number. 
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At the stage of uncertainty analysis, the best estimate of the parameters generally has 

already been done and generally used as the means [Morgan and Henrion 1990]. This 

is the case with the risk RSSB-SRM with which our case studies will be made. We 

therefore assume the means are known and focus on the elicitation of the variance. 

 

People’s ability to assess the statistical percentiles has been proven in psychological 

research [Garthwaite, Kadane et al. 2005]. The variance of λ  can be derived through 

eliciting the percentiles of λ . The occurrence rate λ  is not observable however. A 

general principle for elicitation is that we should always elicit an observable variable 

[Garthwaite, Kadane et al. 2005; O'Hagan, Buck et al. 2006]. Based on this principle, 

the percentile of the waiting time between two successive occurrences is to be 

elicited to derive the variance of λ . 

 

Given the occurrence rate λ , the events are assumed to follow a homogeneous 

Poisson process. Denote the travel miles between the two successive occurrences as 

T. Based on the assumption of homogeneous Poisson process, T is exponentially 

distributed as 

 

 ( ) tetf λλλ −=;  (3.103) 

 

From Equation 3.103 the cumulative probability of T given λ  can be derived as 

 

 ( ) ( ) ( )tdssftF
t

λλλ −−== ∫ exp1;;
0

 (3.104) 

 

From Equation 3.101 and 3.104, the predictive cumulative probability of T can be 

derived as 

 

 ( ) ( ) ( )∫
+∞

=<
0

;Pr λλπλ dtFtT  (3.105) 

 

Substituting Equation 3.105 with Equation 3.101 and 3.104 we obtain 

 



 98 

 

( ) ( )

A

B

A

B

A

A

dNorme
A

dNorm
A

d
A

Norm
etT

t

t

−
−=

−
−

−

−
=

−
−

−
=

−
−=<

∫∫

∫
∞+

−
∞+

+∞
−

1
1

11

1

),(
1

1
),(

1

1

1

),(
1Pr

00

0

λσµλσµ

λ
σµ

λ
λ

λ

λλ

 (3.106) 
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where 

 

 2

λσµλ tE −= . 

 

Define the percentile of the waiting time cpt  by 

 

 ( ) ( )1,0,Pr ∈≤= cptTcp cp   

 

Based on Equation 3.106 and 3.107, λσ  is a monotonic function of cpt  for a given 

( )1,0∈cp . The function curve can be solved numerically and used to define λσ  

through eliciting cpt . As generally recommended in the literature, 95 percentile 95.0t  

is to be elicited from the experts [Pearson and Tukey 1965; Keefer and Bodily 1983]. 
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As an example, the precursor family of road vehicle (RV) incorrectly on LCs and 

struck by train due to environmental factors is taken to demonstrate the above 

method. The family occurrence rate is evaluated as 09-1.18e=µ  per train travel 

mile [Dennis 2006]. The occurrence rate per year can be derived through the yearly 

travel miles, i.e. yearmilesM /275242062= . The curve of 95.0t  against the 

candidate λσ  is plotted in Fig. 3.6. It demonstrates that when λσ  varies from 0 to 

8.3µ , 95.0t  varies from 111 months to 126 months. The experts are asked to give 

their belief of 95.0t  within this interval. 
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Fig. 3.6 Percentile 95.0t  versus the candidate standard deviation λσ . 

 

 

3.12 An Example of Building Family Covariance Matrix 

In this section we make an example to show the procedure developed above for 

building the covariance matrix of an input parameter family. In RSSB-SRM version 

5, the hazardous event HET-12 is defined as the derailment of passenger trains 

[Dennis 2006]. As summarized in Table 3.2, four precursors related to HET-12, 

denoted by ip , 4,,1⋯=i , are the yearly occurrence rates related to different types 

of train drivers’ errors. Following the procedure defined above, we are going to build 

the covariance matrix of the four precursors. 
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Table 3.2 Precursors related to train derailment caused by the train drivers’ errors 

Precursors 

Code 

Denoted 

by Description 

POSL----PH 
1p  Overspeeding leading to PT derailment 

PSNT----PF 
2p  Severe braking/snatch leading to PT derailment 

PSPD----PH 
3p  SPAD at S&C leading to PT derailment 

UTRN----UE 
4p  Running into train derailed while in depots/sidings 

leading to train derailment 

 

Step 1:Define  the precursor family and the factors 

As summarized in Table 3.2, the four precursors are related to train drivers’ errors of 

different causes. They are also related to the group of the train drivers. By the 

definition given above, the experts believe that these four precursors form one family 

and their variance can be derived through the elicitation regarding the four precursors 

as a group. 

 

One major factor affecting the occurrences of the train drivers’ errors is elicited as 

the drivers monitoring and training program (DMTP). Because all the four precursors 

are related to the same group of drivers who are given the same monitoring and 

training program, DMTP is identified as a common factor denoted by 1X . Because 

there is no difference regarding the DMTP among the four precursors, DMTP is 

further defined as an invariant factor of the family. The residual uncertainty terms 

associated with the four precursors are believed to be independent. Therefore, the 

uncertainty of this family can be defined by the linear model defined in Equation 

3.79. We are going to build the family correlation matrix and the covariance matrix 

according to the procedure developed above. 

 

Step 2:Elicit correlations regarding the factors 
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We start with eliciting the qualitative correlation assessment between DMTP and the 

family members, denoted by ( )1, Xpr i , 4,,1⋯=i . All these correlations are positive. 

The qualitative assessment are then be transformed to the numerical correlations by 

the benchmark technique described in Section 3.11. The elicited qualitative 

correlation assessments and the associated numerical correlations are summarized in 

Table 3.3. 

 

 

Table 3.3 Correlations between the family members and the invariant factor driver monitoring 

and training program 

Precursor 

Codes 

Qualitative Correlation 

Assessment 

Correlation 

number 

Denoted by 

POSL----PH VS 0.939 ( )11, Xpr  

PSNT----PF S 0.776 ( )12 , Xpr  

PSPD----PH S 0.776 ( )13 , Xpr  

UTRN----UE S 0.776 ( )14 , Xpr  

 

 

Step 3:Build the correlation matrix 

By the procedure developed above, we will build the family correlation matrices 

associated with the common factor DMTP and the residual terms respectively. The 

family correlation matrix can then be assembled by Equation 3.86. 

 

By Equation 3.11, we denote the vector of the precursors in the family by 

[ ]Tpppp 4321 ,,,=p . Based on the correlations given in Table 3.3, the correlation 

matrix of between the family members and DMT can be defined by Equation 3.54 as 
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
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where 1X  stands for the invariant factor DMTP. 

 

We can then build the correlation matrix associated with DMTP by Equation 3.55 as 

 

( ) ( ) [ ] ( )
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where [ ] 441 ×  is a ones-matrix as defined in Equation 3.25 as 
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


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1111
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We continue to build the family correlation matrix associated with the residual terms. 

For this purpose, we need to calculate iq , 4,,1⋯=i , where iq  is the proportions of 

the i
th

 member’s variance that is explained by the uncertainty factors. By Equation 

3.71, we have 

 

( ) ( ) 882.0,, 11111 =⋅= XprXprq  

 

( ) ( ) 602.0,, 12122 =⋅= XprXprq  

 

( ) ( ) 602.0,, 13132 =⋅= XprXprq  

 

( ) ( ) 602.0,, 14142 =⋅= XprXprq  

 

By Equation 3.75, we have 
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By Equation 3.76, we then have 
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The family correlation matrix can then be assembled by Equation 3.78 as 
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Step 4: Derive the standard deviation of the members within the family 

We can continue to derive the family covariance matrix through elicitation of the 95 

percentile of the waiting time of the family, which is denoted by 95.0t . The means of 

the occurrence rates of the precursors in the family are summarized in Table 3.4. The 

mean of the family occurrence rate is calculated as 

 

934.2 −= eµ  

 

As developed in Section 3.12, we denoted the standard deviation of the family 

occurrence rate as λσ . We calculate 95.0t  corresponding to two values of λσ  for the 

experts’ reference when making their assessment. When 0=λσ , the family 

occurrence rate is fixed at the mean and 95.0t  is calculated by the pure exponential 

distribution as 55.8 months. When 8.3µσ λ = , 95.0t  is calculated as 65.3 months. 

The experts assess 95.0t  as 59.5 months. The standard deviation of the family 

occurrence rate can then be derived as 4.69e-10. Consequently the standard 

deviations of the four precursors can be derived by the procedure developed in 

Section 3.9, which are summarized in Table 3.4. 

 

Table 3.4 Means and the standard deviations of the precursors in the example 

Precursors Mean iµ  STD iσ  

1p  3.060E-10 5.480E-11 

2p  1.801E-10 3.906E-11 

3p  1.836E-09 3.982E-10 

4p  1.836E-11 3.982E-12 
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Step 5: Build the family covariance matrix 

With the standard deviations of the precursors derived, by Equation 3.35 we have 
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Using Equation 3.100, the family covariance matrix can be calculated as 

 

( ) ( )cov

3 21 1.56 21 1.59 20 1.59 22

1.56 21 1.53 21 9.36 21 9.36 23

1.59 20 9.36 21 1.59 19 9.54 22

1.59 22 9.36 23 9.54 22 1.59 23

r

ee e e e

e e e e

e e e e

e e e e

= ⋅ ⋅

− − − − 
 − − − − =
 − − − −
 

− − − − 

p pp σ p σ

 

 

With the means and the covariance matrix built through elicitation of expert 

judgement, the joint normal distribution of the precursors is then completely defined. 

 

3.13 Conclusion 

In this chapter, a procedure is developed for building the covariance matrix of a 

group of parameters through elicitation of expert judgement. In a factor analysis, a 

set of factors are identified as the underlying dependence structure in a correlation 

matrix. The proposed procedure works as an inverse procedure of the factor analysis. 

We start with the factors that construct the dependence structure; we then elicit on 

the factors and derive the correlation matrix. 

 

Through a linear model, the uncertainty in a parameter is structured into the 

contributions of its uncertainty factors. The correlation between a pair of input 

parameters is brought by the common factors and the factors in the same class that 

therefore are correlated. A method has been developed in this chapter to build the 

correlation by eliciting the correlations regarding the common factors and the 
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correlated factors. An indicative value is derived as the proportion of the parameter's 

variance that is explained by the factors. This indicative value cannot exceed 1, 

which can be used to monitor the assessment during the elicitation. The experts have 

to compare between the factors and give the consistent assessment that satisfies this 

constraint. As a result, a positive semi-definite correlation matrix can be guaranteed 

for multiple input parameters, which is a big feature of this method. Suppose there 

are n parameters having m common factors. The number of elicitation parameters is 

mn × . Compared with directly filling in the correlation matrix of ( ) 21−nn  cells, 

this method also features much less elicitation workload. 

 

When a group of parameters have physically similar interpretation, the concept of a 

parameter family is defined. In risk and reliability analysis most of the input 

parameters are defined as the occurrence rate of the basic events [Kumamoto and 

Henley 1996; Modarres 2006]. The sum of the input parameters can therefore be 

defined as occurrence rate of the family which is meaning to assess the variance. A 

method is then developed to derive the variance of the input parameters through 

eliciting the variance of the family occurrence rate. The first benefit of the method is 

the reduction of the elicitation workload regarding the variance. Secondly the 

assessment of higher level events is more reliable as is the case with RSSB-SRM. 

 

As the support technique, we select the combination of the qualitative assessment 

and the benchmark for eliciting the correlation between two random variables. This 

combination makes the method both easy to implement and rigorous in terms of the 

probability theory. 

 

At the end of this chapter a method is developed to derive the variance of the 

occurrence rate by eliciting the percentile of the waiting time between two successive 

occurrences. The waiting time is an observable variable and people’s ability in 

assessing the statistical percentile has been proved in psychological research and 

many elicitation practices. Therefore this method is feasible to implement. 
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From this chapter, we have some work left for future as well. First, we assume a 

truncated normal distribution for the occurrence rate λ . The assumption is made 

together with RSSB. We need to investigate if other distributions such as a Gamma 

distribution are suitable. Furthermore, we need to investigate the possible 

consequences of adopting a different distribution. 

 

Second, the proposed benchmark method depends on the assumption that experts are 

able to percept the correlations by observing the scatter plots. For other distributions 

than normal, the scatter plots may show more complex patterns and mislead experts. 

Therefore it will be difficult to apply the proposed benchmark method for other types 

of distributions. This difficult however can be overcome or mitigated by a proper 

training process. Experts can understand well the patterns associated with a new 

distribution through the training. With an efficient training procedure, the proposed 

benchmark method can be used for other distribution. Similarly, the proposed 

benchmark method can be used for rank correlations as long as an efficient training 

procedure can be made. We can continue to find some efficient training methods. 
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Chapter 4  

 

Modelling Uncertainty in Rule Sets of a Safety Event 

Tree  

 

 

4.1 Introduction 

Event-trees are widely used for modelling the risk scenarios in safety risk analysis. 

An event tree starts with an initiating event that has the potential to cause safety risk. 

A set of events follows the initiating event. These events can take different outcomes 

and affect the final safety risk. Therefore they are called escalation events. A path 

from the initiating event through all the escalation events is called an accident 

sequence. The distinct combinations of the outcomes of the escalation events define a 

finite number of accident sequences of an event tree. A risk scenario is specified at 

the end of each accident sequence. Associated with each risk scenario, a number of 

people are supposed to be exposed to the risk of getting injured. The numbers of the 

people exposed to the risk scenarios are subject to uncertainty. In this research, 

however, we don’t study the uncertainty in these numbers. We focus on studying the 

uncertainty in the individual injury probabilities associated with the rule sets of the 

event tree, which is to be discussed next. 

 

The injuries are usually classified into four levels including: no injuries, minor 

injuries, major injuries and fatalities [Dennis 2006]. Each individual exposed to the 

risk suffers a probability of getting injured at one of the four levels. We assume that 

all the individuals exposed to one risk scenario get injured independently. The 

consequences associated with one risk scenario are defined as the means of injuries 

at the four levels. Consequently the consequences are calculated as the product of the 
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number of people on scene and the individual injury probabilities. The escalation 

events that affect the individual injury probabilities form a subset of the escalation 

events. A rule set is defined when each escalation event in the subset takes a specific 

outcome. Multiple risk scenarios can be associated with the same rule set. Once the 

individual injury probabilities of the rule set are defined, they can be used for all the 

associated risk scenarios. Therefore the workload for populating the risk model can 

be reduced by modelling on the rule sets. 

 

There are still difficulties in modelling the uncertainty in the rule sets of an event tree 

composing many escalation events. First, the rule sets are intensively interwoven to 

each other through the escalation events. It makes it very difficult to directly assess 

the correlations among rule sets. Second, the number of the rule sets increases 

exponentially with the number of the hazards, which implies too many pairwise 

correlations to assess for a large Event-tree model. Third, the individual injury 

probabilities should have a monotonicity property: a rule set associated with worse 

outcomes of all the escalation events should have individual injury probabilities not 

less than another rule set associated with better outcomes. For instance, two rule sets 

in [Dennis 2006] are defined for the collision of a passenger train and a road vehicle 

with high and low approach speeds respectively. By considering the physical forces 

involved, when all the other situations are the same, the individual injury 

probabilities due to the collision associated with high approach speed should not be 

less than those associated with low approach speed. Such an order relationship 

cannot be modelled purely by the pairwise correlations among the rule sets. 

 

Aimed at the above difficulties, we identify along the sequence of the escalation 

events the hazard types that are the materials or activities with potential to cause 

injuries. Depending on the outcomes of the escalation events associated with a risk 

scenario, one hazard type is defined at a specific level, which is called a hazard. As a 

result, a rule set is defined by a sequence of hazards decided by the outcomes of the 

escalation events associated with each risk scenario. These concepts are 

demonstrated with an example regarding the risk of the possible rupture of a tank 

containing compressed natural gas (CNG). As summarized in Table 4.1, five distinct 
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rule sets are defined by the combinations of the hazards that are defined on the 

outcomes of the escalation events. This example is to be discussed in details later on 

in this chapter. 

 

 

Table 4.1 Example of the rule sets decided by the outcomes of the escalation events 

 Outcomes of the escalation events Hazards 

No. Release Mode 
Ignition 

Mode 

Dispersion 

Type 
Explosion Fire 

1. Instantaneous Immediate N/A Explosion I Fireball 

2. Instantaneous Delayed Dense cloud Explosion II Flash fire I 

3. Instantaneous Delayed Buoyant  Explosion III Flash fire II 

4. Instantaneous No N/A No No 

5. Gradual Immediate N/A No Jet flame 

6. Gradual Delayed Dense cloud Explosion II Flash fire I 

7. Gradual Delayed Buoyant  Explosion III Flash fire II 

8. Gradual No N/A No No 

 

 

We continue to define the injury probabilities of a rule set through the definitions of 

the hazards. We assume that, given the sequence, the hazards are independent in 

terms of causing the injuries to the people exposed to the risk scenario. When an 

individual person caught in the risk scenario is not lucky enough to escape all the 

hazards, the person becomes part of the consequence. After each hazard in the 

sequence, an individual exposed to the risk scenario either keeps the same level of 

injury or suffers a higher level injury. We assume that the transition probabilities 

associated with a hazard depend only on the person’s injury level before the hazard. 

Consequently, the individual injury probabilities of a rule set can be defined on the 

associated hazards by a Markov Chain model [Ross 2003]. To build up the Markov 

Chain model, we need to elicit the transition probabilities associated with each 

hazard. Once the transition probabilities are elicited for one hazard, they can be used 
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for all the rule sets containing the same hazard. Therefore, modelling on the hazards 

can significantly reduce the elicitation work. 

 

For modelling the uncertainty in the rule sets, we can then model the uncertainty in 

the transition probabilities. We assume that the transition probabilities associated 

with different hazard types to be independent. It means that a given transition 

probability of one hazard does not tell any information on the transition probability 

of the hazards of another type. We assume that the transition probabilities associated 

with the same hazard type are proportional. By the assumption, an injury atom is 

defined for each hazard type associated with the worst hazard level. All the transition 

probabilities associated with the same hazard type are then defined on the injury 

atom. The individual injury probabilities of the rule sets can then modelled on the 

injury atoms. The dependences among the rule sets are modelled automatically 

through the injury atoms. The order relationship can also be kept between two rule 

sets associated with general worse and better hazards respectively. 

 

In most of the cases, we are more concerned with the major injuries and the fatalities 

than with the minor injuries. We need also to keep the elicitation work and time 

reasonable to the experts. For these two purposes, we develop a model of two levels 

of injuries as a simplified case of the model of four levels of injuries. A 

demonstration example of the model of two levels of injuries is then made on three 

rule sets of RSSB-SRM [Dennis 2006]. 

 

4.2 Risk Scenarios and Consequences 

An Event-tree starts with an initiating event that has the potential to cause the safety 

risk. Shown in Fig. 4.1 is an event-tree example that is extracted from [Modarres 

2006]. The initiating event in the example is the rupture of the tank containing 

compressed natural gas (CNG). After the initiating event, there can be many other 

events that can have different outcomes and affect the final consequence. These 

following events are accordingly called escalation events [Marsh and Bearfield 2008]. 

In the event tree shown in Fig. 4.1, five escalation events are included as (1) gas 
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release mode; (2) expansion and ignition; (3) dispersion type: (4) fire type; and (5) 

fire location. Each escalation event is represented by a node; the outcomes of an 

escalation event are represented by the branches following the node. Given the 

outcomes of the previous events, the outcomes of one event may not affect the final 

consequence. In this case, the event is set as not applicable (N/A) that is a special 

outcome; and there is one branch following the node. Such cases can be found in the 

example shown in Fig. 4.1. 

 

 

 

 

Fig. 4.1 An Event-tree example extracted from [Modarres 2006]. 

 

 

We denote the escalation events in the same sequence as in the event tree by 

Li EEE ,,,,1 ⋯⋯ , where L  represents the number of the escalation events. We 

denote the outcomes of the event iE , typically yes or no, as 
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 ( ) { }
jiiE ,ω=W , iKj ,,1⋯=  

 

where iK  stands for the number of the outcomes of iE . 

 

Following [Papazoglou 1998], the set ( )iEW  is called the outcome space of the 

event iE . All the possible combinations of the outcomes ji ,ω , Li ,,1⋯= , define the 

outcome space of the escalation events Li EEE ,,,,1 ⋯⋯ , which is denoted by 

 

 ( ) ( ) ( ) ( )LiLi EEEEEE WWWW ⊗⊗⊗⊗= ⋯⋯⋯⋯ 11 ,,,,  (4.1) 

 

where ⊗  stands for the Cartesian multiplication. 

 

With each escalation event having a specific outcome, a path from the initiating 

event through all the escalation events resulting in the final consequence is called an 

accident sequence. A finite number of accident sequences of an event tree are 

defined by the distinct combinations of the outcomes of the escalation events. For 

instance, there are 18 scenarios defined in the example shown in Fig. 4.1. A specific 

risk scenario is defined at the end of each accident sequence. We denote the risk 

scenario associated with the th
ℓ  accident sequence as ℓS . We denote the outcome of 

iE  associated with ℓS  as ( )ie ,ℓ  

 

 ( ) ( )iEie W∈,ℓ  (4.2) 

 

Consequently the risk scenario ℓS  can then be defined as 

 

 ( ) ( ) ( )( )LeieeS ,,,,,,1, ℓ⋯ℓ⋯ℓℓ =  (4.3) 

 

By Equation 4.1, we have  

 

 ( ) ( ) ( )( ) ( )Li EEELeiee ,,,,,,,,,,1, 1 ⋯⋯ℓ⋯ℓ⋯ℓ W∈  
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Therefore each risk scenario corresponds to an element of the outcome space of the 

escalation events. 

 

With the outcomes of all the escalation events defined, the consequence due to a risk 

scenario can then be defined. Usually the injuries are classified into four levels 

including: no injury, minor injury, major injury, and fatality. When an individual is 

exposed to a risk scenario, the probabilities of the individual getting injured at the 

four levels are called the individual injury probabilities. We denote the individual 

injury probabilities associated with ℓS  as ( )mπℓ , where 4,,1⋯=m  stand for no 

injury, minor injury, major injury, and fatality respectively. Therefore we have 

 

 ( ) 1
4

1

=∑
=m

mπℓ , ( ) 0≥mπℓ  (4.4) 

 

In addition to the individual injury probabilities, a number of people are supposed to 

be exposed to a risk scenario. The number of people exposed to the risk scenario is 

affected by the outcomes of associated escalation events. For instance, the event Fire 

Location as shown in Fig. 4.1 has five outcomes including: Urban (0.2), Rural (0.2), 

Tunnel (0.02), Station (0.08), and Garage (0.5). The numbers in the parenthesis are 

the probabilities of the associated outcomes. The mean of the number of the people 

exposed to the scenario is set for each location. Another example can be found in 

RSSB-SRM [Dennis 2006]. According to the time intervals during a day, the loading 

type of the passenger trains in the RSSB-SRM has four outcomes including Night 

loading (0.1), Off-peak loading (0.72), Peak loading (0.135), and Crush loading 

(0.045). The mean of the number of the passengers onboard is set for each loading 

type. In summary, the mean of the number of people exposed to the risk scenario is 

decided by the outcomes of the associated escalation events. We denote the mean of 

the number of people exposed to the risk scenario ℓS  as ℓN . 

 

The consequences associated with the risk scenario are defined as the numbers of the 

injuries at the four levels. We assume that all the individuals exposed to one risk 
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scenario get injured independently. We denote the consequences associated with ℓS  

as ( )mcℓ , where 4,,1⋯=m  stand for no injury, minor injury, major injury, and 

fatality respectively. The consequences of a risk scenario are defined as the means of 

injuries at the four levels as 

 

 ( ) ( ) ( )mPNmc ℓℓℓ π×= , 4,,1⋯=m  (4.5) 

 

By applying Equation 4.4 with application 4.5, we have 

 

 ( ) ℓℓ Nmc
m

=∑
=

4

1

 (4.6) 

 

By Equation 4.5, the uncertainty in ( )mcℓ  is driven by: (1) the uncertainty in ℓN , i.e. 

the number of the people exposed to ℓS ; and (2) the uncertainty in ( )mℓπ , i.e. the 

individual injury probability. In this research, we concentrate on developing the 

methods for modelling the uncertainty in ( )mℓπ  and treat ℓN  as a constant. 

 

4.3 Rule Sets 

A hazard type is either a material or activity that has the potential to cause injuries to 

the people exposed to the risk scenario. Some common hazard types in industry 

sectors include explosion, fire, and toxic releases etc as summarized in [Andrews and 

Moss 2002]. On the railway system three common hazard types are identified as the 

mechanical impact, the fire, and the toxic release [Dennis 2006]. Along the 

escalation event sequence ( )Li EEE ,,,,1 ⋯⋯ , we can identify a sequence of hazard 

types, which is defined as 

 

 ( )
Dj TTT ,,,,1 ⋯⋯=T  (4.7) 

 

where jT  represents the j
th

 hazard type; D stands for the number of the hazard types. 
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Each hazard type is affected by a subset of escalation events. We define the subset of 

escalation events affecting jT  as 

 

 ( ) { }
jiij TEET  of level hazard  theaffects=E  (4.8) 

 

For example, the first hazard type included in RSSB-SRM [Dennis 2006] is the 

mechanical impact in the collision of a passenger train with a road vehicle. By 

considering the physical forces involved, the approach speed of the train affects the 

individual casualty probability due to the mechanical impact. One escalation event 

included in RSSB-SRM [Dennis 2006] is the type of the level crossing. Different 

limits of the approach speed are imposed on the train on different types of level 

crossings [RSSB 2004]. Therefore the level crossing type is one escalation event that 

affects the mechanical impact hazard type. Another hazard type included in RSSB-

SRM [Dennis 2006] is fire. It is affected by the escalation event defining whether 

there are extra flammable materials involved in the accident. The third hazard type in 

RSSB-SRM is the toxic goods, which is affected by the escalation events defining 

the amount of the toxic released in the accident. 

 

As defined in Equation 4.3, a risk scenario ℓS  is defined as a sequence of outcomes 

of the escalation events along the event tree. The hazard types defined in Equation 

4.7 are accordingly defined at the specific levels. We define a specific level of a 

hazard type as a hazard. We denote by jH ,ℓ  the hazard of the type jT  specified by 

the risk scenario ℓS . Corresponding to ( )
jTE  defined in Equation 4.8, we define the 

set of the outcomes associated with jH ,ℓ  as 

 

 ( ) ( ) ( ){ }jij HEieH EO ∈= ,, ℓℓ  (4.9) 

 

where ( ) ( )iEie W∈,ℓ  stands for the outcome of iE  associated with ℓS . 
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Associated with ℓS , a sequence of D hazards corresponding to the D hazard types in 

T  is defined as 

 

 ( )
Dj HHHR ,,1, ,,,, ℓℓℓℓ ⋯⋯=  (4.10) 

 

We assume that the sequence of the hazards define the individual injury probabilities 

of an individual exposed to the risk. Consequently ℓR  is called a rule set [Dennis 

2006]. 

 

Based on the definition in Equation 4.10, when ( ) ( ) jj HH ,2,1 ℓℓ = , Dj ,,1⋯= , the rule 

sets ( )1ℓR  and ( )2ℓR  are identical, which is denoted by 

 

 ( ) ( )21 ℓℓ RR =  (4.11) 

 

Therefore multiple risk scenarios can be associated with the same rule sets. 

 

We have assumed that the sequence of the hazards define the individual injury 

probabilities of a rule set. Therefore, the identical rule sets ( ) ( )21 ℓℓ RR =  have the same 

individual injury probabilities, which are denoted as 

 

 ( )( ) ( )( )mm 21 ℓℓ ππ = , 4,,1⋯=m  (4.12) 

 

Once the individual injury probabilities of the rule set are assessed, they can be used 

for all the other risk scenarios associated with the same rule set. It represents an 

important benefit of defining the consequences through the rule sets by Equation 4.5. 

 

We continue to demonstrate the above definitions regarding the rule sets with an 

example. We use the system on the rupture of the tank containing compressed natural 

gas as shown in Fig. 4.1. In this system, two hazard types are identified as: 1H : 

explosion; and 2H : fire [Modarres 2006]. The levels of 1H  and 2H  are decided by 
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the outcomes of three escalation events including: (1) 1E : gas release mode; (2) 2E : 

ignition model; (3) 3E : dispersion type. The escalation event 1E  has two outcomes 

defined as: (1) 1,1ω : instantaneous release; (2) 2,1ω : gradual release. The escalation 

event 2E  has three outcomes defined as: (1) 1,2ω : immediate ignition; (2) 2,2ω : 

delayed ignition; (2) 3,2ω : no ignition. The escalation event 3E  has two outcomes 

defined as: (1) 1,3ω : dense cloud; (2) 2,3ω : buoyant. Associated with one risk 

scenario, the three escalation events take the specific outcomes and consequently 1H  

and 2H  take the specific hazard. The corresponding hazards and the associated 

outcomes of the escalation events are summarized in Table 4.1. Associated with 1H  

there are three hazards defined as: (1) Explosion at Level I; (2) Explosion at Level II; 

and (3) Explosion at Level III. Associated with 2H , there are four hazards defined as: 

(1) Fireball; (2) Flash fire at Level I; (3) Flash fire at Level II; and (4) Jet blame. 

 

As summarized in Table 4.1, we can see that there are five distinct rule sets defined 

by the combinations of the hazards as 

1R : explosion at Level I, fireball 

2R : explosion at Level II, flash fire at Level I 

3R : explosion at Level III, flash fire at Level II 

4R : no explosion, Jet flame 

5R : no explosion, no fire 

 

This example shows that all the risk scenarios can be associated with the five rule 

sets, and hence that the rule set concept offers potential for a significant reduction of 

the elicitation work. 

 

In this section, we have defined the rule sets for the risk scenarios. We have shown 

that multiple risk scenarios can be associated with the same rule set. Once the 

individual injury probabilities of a rule set are assessed, they can be used for all the 

associated risk scenarios. Therefore defining the consequences through the rule sets 
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by Equation 4.5 requires less elicitation work than assessing the risk scenarios 

directly. However for a large event tree of many hazard types, there are still too 

many rule sets to assess through elicitation. As discussed above, the rule sets are 

defined on a sequence of hazards decided by the outcomes of the escalation events. 

Consequently there are three difficulties in modelling the uncertainty in the rule sets 

as described above as: (1) the difficulty in directly assessing the correlations among 

intensively interwoven rule sets; (2) too many pairwise correlations to assess for a 

large Event-tree model; (3) the difficulty in keeping the monotonicity property in the 

individual injury probabilities. Due to the construction process of the event trees, the 

above difficulties are generic when we need to model the uncertainty in the rule sets. 

To solve the difficulties, we are going to define the individual injury probabilities of 

a rule set on the associated hazards by a Markov Chain model [Ross 2003]. 

Therefore once a hazard is assessed, it can be used in all the other rule set containing 

the hazard. 

 

4.4 Definition of Rule Sets on Hazards 

As described before, a rule set is defined by a sequence of hazards decided by the 

outcomes of the escalation events. We assume that, given the sequence, the hazards 

are independent in terms of causing the injuries to the people exposed to the risk 

scenario. When an individual caught in the risk scenario is not lucky enough to 

escape all the hazards, the person becomes part of the consequence. After each 

hazard in the sequence, an individual exposed to the risk scenario is either kept at the 

existing level of injury or moved to a higher level injury, as shown in Fig. 4.2. We 

assume that the probabilities of a hazard moving a person to higher levels of injuries 

depend only on the person’s existing injury level before the hazard. Consequently, 

the individual injury probabilities of a rule set can be defined on the associated 

hazards by a Markov Chain model [Ross 2003]. 
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Fig. 4.2 Diagram of the Markov Chain model of the individual injuries 

 

 

As shown in Fig. 4.2, we denote by ( )kmA ji ,,  the hazard jiH , ’s transition probability 

from m level to k level, where 41 ≤≤≤ km  stand for the four levels of injuries as 

defined before. Clearly we have 

 

 ( ) 1,0 , ≤≤ kmA ji , 41 ≤≤≤ km  (4.13) 

 

We denote the individual injury probabilities of the rule set iR  before and after jiH ,  

as ( )mji 1, −π  and ( )mji ,π  respectively, where 4,,1⋯=m  stand for the four levels of 

No injury 

(1) 

Minor injury 

(2) 

Major injury 

(3) 

Fatality 

(4) 

( )1,1, jiA  

( )3,1, jiA  

( )4,1, jiA  

( )2,1, jiA  

( )2,2, jiA  

( )3,2, jiA  
( )4,2, jiA  

( )4,3, jiA  

( )3,3, jiA  
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injuries respectively. The individual injury probabilities ( )mji 1, −π  and ( )mji ,π  are 

connected by the transition probabilities ( )kmA ji ,,  as shown in Fig. 4.3. 

 

 

 

Fig. 4.3 Individual injury probabilities connected by the transition probabilities 

 

 

As shown in Fig. 4.3, to have no injury after the hazard jiH , , the individual must 

have no injury before jiH ,  and follow the transition ( )1,1, jiA . Therefore we have 

 

 ( ) ( ) ( )1,111 ,1,, jijiji A⋅= −ππ  (4.14) 

 

In the same way, we have 

 

 ( ) ( ) ( ) ( ) ( )2,222,112 ,1,,1,, jijijijiji AA ⋅+⋅= −− πππ  (4.15) 

 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )3,333,223,113 ,1,,1,,1,, jijijijijijiji AAA ⋅+⋅+⋅= −−− ππππ  (4.16) 

 

( )mji 1, −π  Transition 

probability 
( )mji,π

 

( )1,1, jiA  

( )2,1, jiA  

( )3,1, jiA  

( )11, −jiπ  

( )4,1, jiA  

( )1, jiπ  

( )2,2, jiA  

( )3,2, jiA  

( )21, −jiπ  

( )4,2, jiA  

( )2, jiπ  

( )3,3, jiA  ( )31, −jiπ  

( )4,3, jiA  

( )3, jiπ  

( )41, −jiπ  ( )4,4, jiA  

 

( )4, jiπ  

 

∑ 

∑ 

∑ 

∑ 
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 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )44,334,224,114 1,,1,,1,,1,, −−−− +⋅+⋅+⋅= jijijijijijijiji AAA πππππ  

 

  (4.17) 

 

The above four equations can be summarized in one as 

 

 ( ) ( ) ( )∑
=

− ⋅=
m

k

jijiji mkAkm
1

,1,, ,ππ , 4,,1⋯=m  (4.18) 

 

We call ( )mmA ji ,,  the dummy transition probability at the m level of injury. We will 

elicit the transition probabilities ( )kmA ji ,, , km < , and determine the dummy 

probabilities using 

 

 ( ) ( )∑
+=

−=
4

1

,, ,1,
mk

jiji kmAmmA , 4,,1⋯=m  (4.19) 

 

Applying Equation 4.19 with Equation 4.18, we have 

 

 ( ) ( ) ( ) ( ) ( )
1 4

, , 1 , , 1 ,

1 1

, 1 ,
m

i j i j i j i j i j

k j m

m k A k m m A m jπ π π
−

− −
= = +

 
= ⋅ + ⋅ − 

 
∑ ∑  (4.20) 

 

We assume that the people exposed to the risk scenario are initially uninjured. 

Therefore we have 

 

 ( ) 110, =iπ ,   ( ) ( ) ( ) 0432 0,0,0, === iii πππ  (4.21) 

 

By Equations 4.20 and 4.21, the individual injury probabilities of a rule set can be 

defined when the transition probabilities are assessed for all the hazards associated 

with the rule set. Suppose that the rule set has D hazards in sequence, the individual 

injury probabilities of the rule set iR  are then defined by 
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 ( ) ( )mm Dii ,ππ = , 4,,1⋯=m  (4.22) 

 

We have so far defined the individual injury probabilities of the rule set through a 

Markov Chain model. Once the transition probabilities associated with the hazard 

( ) jiH ,1  are assessed, they can be used for any other rule set ( )2iR  when ( ) ( ) jiji HH ,2,1 = . 

It means a significant reduction of the elicitation work in populating the model. We 

will continue to model the uncertainty in the individual injury probabilities of the 

rule sets. 

 

4.5 Uncertainty in Individual Injury Probabilities of Rule Sets 

4.5.1 Uncertainty in Transition Probabilities 

We have so far define the individual injury probabilities of the rule set on the 

transition probabilities of the associated hazards. The transition probabilities 

however cannot be assessed with certainty. Therefore the transition probability 

( )kmA ji ,,  is defined as a random variable. We denote the mean of ( )kmA ji ,,  by 

 

 ( ) ( )[ ]kmAEkm jiji ,, ,, =ϕ ,  41 ≤<≤ km  (4.23) 

 

Clearly, we have 

 

 ( ) 1,0 , ≤≤ kmjiϕ  (4.24) 

 

The uncertainty in ( )kmA ji ,,  belongs to epistemic uncertainty category. It needs to 

be elicited from experts. After that, the uncertainty in individual injury probabilities 

of the rule set can be derived. 

 

To model the uncertainty in the transition probabilities, we need to discuss the 

relations among them. A given transition probability associated with one hazard type 

does not tell the expert any information about the transition probabilities associated 
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with other hazard types. Therefore we assume that the transition probabilities 

associated with different hazard types are independent. 

 

Toward the same hazard type, however, experts are either too optimistic or too 

pessimistic. If an expert gives an assessment larger than the mean of one transition 

probability, he will do the same to another transition probability of the same hazard 

type. This has been agreed with the experts in RSSB. The Dirichlet distribution is not 

able to keep such a property; consequently it is not suitable for modelling the 

uncertainty in the transition probabilities associated with the same hazard type. 

 

For simplification, we assume that the expert's assessments of the transition 

probabilities of the same hazard type deviate from the associated means 

proportionally. Based on the assumption, the transition probabilities associated with 

the hazard type jT  have the form: 

 

 
( )
( ) j

j

ji

ji A

km

kmA

γϕ
=

,

,

,

,
, for all ni ,,1⋯= , 41 ≤<≤ km  (4.25) 

 

where n stands for the number of the rule sets; jA  is a random variable; ( )
jj AE=γ  

is the mean of jA . 

 

In Equation 4.25, we set 41 ≤<≤ km  to exclude dummy transition probabilities 

from the assumption of proportional transition probabilities. After the uncertainty in 

the real transition probabilities ( )kmA ji ,, , 41 ≤<≤ km , are elicited, the uncertainty 

in the dummy transition probabilities is automatically defined by Equation 4.19. 

 

Based on Equation 4.25, the uncertainties of two transition probabilities associated 

with the same hazard type can be modelled with copulas [Bedford and Cooke 2001]. 

As a more convenient way for multiple transition probabilities associated with the 

same hazard type, however, we are going to define the injury atom for each hazard 

type. 
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Equation 4.25 shows that all the transition probabilities associated with jT  can be 

defined when jA , jγ  and ( )kmji ,,ϕ 's are elicited. Therefore jA  works as a reference 

and is called the injury atom associated with jT . The injury atom jA  however does 

not have a meaning definition so that it can be elicited. It needs to be associated with 

some meaningful parameter for elicitation. By Equation 4.25, any transition 

probability ( )kmA ji ,,  seems a choice for the injury atom jA . Unfortunately it is not 

because the injury atom jA  must be defined to satisfy two constraints. First, by the 

inequality 4.13, we have 

 

 ( ) 1,0 , ≤≤ kmA ji , 41 ≤<≤ km  

 

Second, we define 

 

 ( ) ( )∑
+=

=
4

1

,, ,
mh

jiji hmAmA , 41 <≤ m  (4.26) 

 

We can see that ( )mA ji ,  measures the transition probability from the m-level injury 

to all the higher levels of injuries. We call ( )mA ji ,  the general transition probabilities 

from the m-level injury. Clearly we have 

 

 ( ) 10 , ≤≤ mA ji , ni ,,1⋯= , 41 <≤ m  (4.27) 

 

The injury atom jA  must be defined to satisfy these two constraints. 

 

4.5.2 Injury Atom 

Based on Equation 4.25, the injury atom jA  needs to be defined so that the 

uncertainty in the transition probabilities of the same hazard type jT  can be defined. 
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We need to associated jA  with some meaningful parameters so that it can be elicited. 

Furthermore, the definition of jA  must satisfy two constraints as imposed by the 

inequalities 4.13 and 4.27. 

 

We start with discussing the transition probabilities associated with one rule set iR . 

From Equation 4.25, the transition probabilities from the m-level injury satisfy 

 

 
( )
( )

( )
( )

( )
( ) j

j

ji

ji

ji

ji

ji

ji A

m

mA

km

kmA

mm

mmA

γϕϕϕ
=====

+

+

4,

4,

,

,

1,

1,

,

,

,

,

,

,
⋯⋯  (4.28) 

 

From Equation 4.28, we have 

 

 
( )
( )

( )

( ) j

j

mh

ji

mh

ji

ji

ji A

hm

hmA

km

kmA

γ
ϕ

ϕ
==

∑

∑

+=

+=
4

1

,

4

1

,

,

,

,

,

,

,
, 4,,1⋯+= mk  (4.29) 

 

Corresponding to the definition in Equation 4.26, we define 

 

 ( ) ( )∑
+=

=
4

1

,, ,
mh

jiji hmm ϕγ  (4.30) 

 

By Equations 4.26, 4.23 and 4.30, we have 

 

 ( )( ) ( )( ) ( )mhmAEmAE ji

mh

jiji ,

4

1

,, , γ== ∑
+=

 (4.31) 

 

Therefore ( )mji,γ  is the mean of ( )mA ji , . 

 

By applying Equations 4.26 and 4.30 with Equation 4.29, we have 
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( )
( )

( )
( ) j

j

ji

ji

ji

ji A

m

mA

km

kmA

γγϕ
==

,

,

,

,

,

,
,  (4.32) 

 

By Equation 4.32, the injury atom jA  can be associated with the general transition 

probability ( )mA ji ,  that can be elicited and can keep the inequalities 4.13 and 4.27. 

The injury atom jA , however, needs to be defined to for all the rule sets. We will 

discuss the situation of multiple rule sets next. 

 

Suppose that ( )1iR  and ( )2iR  are two rule sets, where ( ) ( ) nii ,,12,1 ⋯= . Associated 

with the hazard type jT , the two hazards defined for ( )1iR  and ( )2iR  are denoted as 

( ) jiH ,1  and ( ) jiH ,2  respectively. Suppose ( ) ( )11,1 ,kmA ji  and ( ) ( )22,2 ,kmA ji  are two 

transition probabilities associated with ( ) jiH ,1  and ( ) jiH ,2  respectively, where 

41 11 ≤<≤ km , 41 22 ≤<≤ km . Using Equations 4.32, we have 

 

 
( ) ( )

( ) ( )
( ) ( )

( ) ( ) j

j

ji

ji

ji

ji A

m

mA

km

kmA

γγϕ
==

1,1

1,1

11,1

11,1

,

,
 (4.33) 

 

and 

 

 
( ) ( )

( ) ( )
( ) ( )

( ) ( ) j

j

ji

ji

ji

ji A

m

mA

km

kmA

γγϕ
==

2,2

2,2

22,2

22,2

,

,
 (4.34) 

 

Therefore, we have 

 

 
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( ) j

j

ji

ji

ji

ji

ji

ji

ji

ji A

km

kmA

m

mA

m

mA

km

kmA

γϕγγϕ
====

22,2

22,2

2,2

2,2

1,1

1,1

11,1

11,1

,

,

,

,
 (4.35) 

 

It shows that the general transition probabilities are proportional as well when all the 

transition probabilities associated with the same hazard type are assumed to be 
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proportional. From Equation 4.35, we continue to develop the definition of the injury 

atom jA  for the hazard type jT . 

 

From Equation 4.35, we then have 

 

 ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )2,2

2,2

1,1

1,1 mA
m

m
mA ji

ji

ji

ji
γ

γ
=  (4.36) 

 

Suppose 

 

 ( ) ( ) ( ) ( ) 10 2,21,1 ≤≤≤ mm jiji γγ  (4.37) 

 

Consequently we have 

 

 
( ) ( )

( ) ( )
1

2,2

1,1 ≤
m

m

ji

ji

γ

γ
 (4.38) 

 

Applying the inequality 4.38 with Equation 4.36, we have 

 

 ( ) ( ) ( ) ( )2,21,1 mAmA jiji ≤  (4.39) 

 

Recalling that ( ) 1,0 , ≤≤ kmA ji . By Equation 4.26, we have 

 

 ( ) ( ) ( ) ( )1,111,1 , mAkmA jiji ≤  (4.40) 

 

Applying the inequality 4.40 with the inequality 4.39, we have 

 

 ( ) ( ) ( ) ( ) ( ) ( )2,21,111,1 , mAmAkmA jijiji ≤≤  (4.41) 
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Because ( ) ( )11,1 ,kmA ji  and ( ) ( )22,2 ,kmA ji  can be any two transition probabilities 

associated with the hazard type jT , we can safely generalize the above equations and 

inequalities to all the transition probabilities associated with jT . According to the 

inequality 4.37, we define 

 

 ( ) ( ) ( )mm ji

m
ni

MjMi ,

3,,1
,,1

, max γγ
⋯
⋯

=
=

=  (4.42) 

 

where n stands for the number of the rule sets of the event tree; ( )Mi  and Mm  are 

the indices of the rule set and the injury level associated with the maximum general 

transition probability respectively. 

 

According to the inequality 4.41, we have 

 

 ( ) ( ) ( ) ( )MjMijiji mAmAkmA ,,, , ≤≤ , for all ni ,,1⋯= , 41 ≤<≤ km  (4.43) 

 

Based on the inequality 4.43, the inequalities 4.13 and 4.27 can be satisfied when jA  

is associated with ( ) ( )MjMi mA , . Therefore, we define 

 

 ( ) ( )MjMij mAA ,=  (4.44) 

 

and  

 

 ( ) ( )MjMij m,γγ =  (4.45) 

 

By Equations 4.44 and 4.45, we have 

 

 ( )
jjAE γ=  (4.46) 

 



 130 

By Equations 4.42 and 4.44, the injury atom jA  can be associated with ( ) ( )MjMi mA , , 

which is called the worst general transition probability. Therefore, the uncertainty in 

the transition probabilities associated with jT  can be built in three steps. First, we 

elicit the means of all the transition probabilities, i.e. ( )kmji ,,ϕ , ni ,,1⋯= , 

41 ≤<≤ km . Second, we search for the worst general transition probability, i.e. the 

one of the maximum mean ( ) ( )MjMij m,γγ = . Third, we elicit the distribution of 

( ) ( )MjMij mAA ,= , for which the method will be discussed later on. All the transition 

probabilities associated with jT  can then be defined by Equation 4.32. In this way, 

the inequality 4.13 and 4.27 can be satisfied. 

 

4.5.3 Uncertainty in Individual Injury Probabilities through Injury 

Atoms 

With jA  and jγ  elicited, using Equation 4.32, we have 

 

 ( )
( )

j

j
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ji A
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γ
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, = , ni ,,1⋯= , 41 ≤<≤ km  (4.47) 

 

According to Equation 4.47, we define 

 

 ( )
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j
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γ

ϕ ,
,

,

, =  (4.48) 

 

From Equations 4.47 and 4.48, we have 

 

 ( ) ( ) jjiji AkmzkmA ⋅= ,, ,,  (4.49) 

 

We call ( )kmz ji ,,  the weight of the transition probability ( )kmA ji ,,  relative to the 

injury atom jA . By Equation 4.49, we can define the individual injury probabilities 
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of the rule set in terms of the injury atoms. Applying Equations 4.48, 4.49 and 4.30 

with Equation 4.19, we have 

 

 ( )
( )

j

j
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ji A
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γ ,

, 1, −= , 4,,1⋯=m  (4.50) 

 

Applying Equations 4.49 and 4.50 with Equation 4.20, we have 
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By Equation 4.51, the individual injury probabilities of the rule set are defined on the 

injury atoms. The dependence among the rule sets can be modelled automatically 

through the injury atoms. We continue to discuss the order relationships among the 

rule sets. 

 

4.6 Order Relationships among Rule Sets 

Suppose that there are two rule sets ( )1iR  and ( )2iR . We call that the hazards 

associated with ( )1iR  are generally worse than those associated with ( )2iR  when 

 

 ( ) ( ) ( ) ( )11 ,2,1 jiji γγ ≥ , Dj ,,1⋯= . (4.52) 

 

As defined in Equations 4.26 and 4.30, ( ) ( )1,1 jiγ  and ( ) ( )1,2 jiγ  are the means of 

( ) ( )1,1 jiA  and ( ) ( )1,2 jiA  that are the general transition probabilities. By Equation 4.51, 

we have 
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Recalling ( ) 110, =iπ , we have 
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Based on the inequality 4.52 and recalling 10 ≤≤ jγ , 10 ≤≤ jA , we have 
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We then have 
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It follows 
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By Equation 4.53, we then have 

 

 ( )( ) ( )( )11 21 ii ππ <  (4.54) 

 

By Equation 4.1, we have 
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Applying Equation 4.55 with the inequality 4.54, we have 
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We call ( )( )∑
=

4

2

1

m

i mπ  and ( )( )∑
=

4

2

2

m

i mπ  the general injury probabilities of the rule set 

( )1iR  and ( )2iR  respectively. The inequality 4.56 shows that, when ( )1iR  has generally 

worse hazards than ( )2iR  does as defined in the inequality 4.52, the general individual 

injury probability of ( )1iR  is not less than that of ( )2iR . It is called the order 

relationship between ( )1iR  and ( )2iR . 

 

4.7 A Simplified Model of Two Injury Levels 

For uncertainty analysis, we always need to keep the elicitation workload reasonable 

for the experts. Usually we are more concerned with the major injuries and the 

fatalities than with the minor injuries. Therefore the minor injuries can be excluded 

in the uncertainty analysis. To reduce the elicitation work further, the major injuries 

and the fatalities can also be put into one category called casualties. 

 

Accordingly, the model of the individual injury probabilities defined in Equation 

4.51 can be simplified to accommodate only two levels of injuries: no injuries and 

casualties. We can exclude the minor injuries and the major injuries from the model 

defined in Equation 4.51 by setting  

 

 ( ) ( ) 03,12,1 ,, == jiji zz , Dj ,,1⋯=  (4.57) 

 

By Equations 4.21 and 4.51, we then have 

 

 ( ) ( ) 032 ,, == jiji ππ , Dj ,,1⋯=  (4.58) 

 

Therefore by Equation 4.22, we have 
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 ( ) ( ) 032 == ii ππ  (4.59) 

 

Consequently the minor injuries and the major injuries are excluded from the model. 

We then denote by ( )4, jiπ  the individual casualty probability. Applying Equation 

4.57 with Equation 4.53, we have 
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By Equation 4.4, we have 

 

 ( ) ( )114 ii ππ −=  (4.61) 

 

Applying Equation 4.60 with Equation 4.61, we have 
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The Equation 4.62 defines a simplified model including only two levels of injuries: 

no injury and casualty. Such a model requires much less elicitation workload than the 

model of four injury levels. It is especially suitable when our concern is on the 

uncertainty of the major injuries and the fatalities. It has been used in some 

applications such as RSSB-SRM [Dennis 2006]. 

 

4.8 Distribution of an Injury Atom 

As developed before, the injury atom measure the transition probability 

corresponding to the worst safety condition. Usually we assume that a random 

variable measuring the probability follows a Beta distribution on the interval [0,1]. 

Accordingly we assume 
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 ( )jjj BetaA βα ,~ , [ ]1,0∈jA  (4.63) 

 

where jα  and jβ  are the definition parameters of the Beta distribution. 

 

The distribution of the injury atom can be built through expert judgement elicitation 

[O'Hagan 1998; O'Hagan, Buck et al. 2006]. We assume further that the injury atom 

has a unimodal probability distribution. Accordingly we impose the constraint that 

the definition parameters α  and β  are greater than 1 [Evans, Nicholas et al. 2000]. 

Consequently, the density probability and the cumulative probability of the injury 

atom jA  can be defined as 
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and 
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where [ ]1,0∈ja ; 1>jα ; 1>jβ ; ( )
jjB βα ,  is a Beta function; ( )jja j

B βα ,  is the 

incomplete Beta function. 

 

We continue to develop a method for deriving jα  and jβ  through the expert 

judgement elicitation. Based on Equations 4.64 and 4.65, the parameters jα  and jβ  

can be derived through the elicitation regarding jA  [O'Hagan, Buck et al. 2006]. By 

Equation 4.64, we have 
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Recall that 

 

 ( )
jjAE γ=  

 

We consequently have 

 

 j

j

j

j α
γ

γ
β

−
=

1
 (4.67) 

 

For ( )1,0∈P , we denote the P×100  percentile of jA  as Pja , . Suppose the percentile 

Pja ,  has been elicited. By Equation 4.65, we have 

 

 ( ) PjjjPjj aaAF ,, ,; == βα  (4.68) 

 

By applying Equations 4.65 and 4.67 with Equation 4.68, an equation of jα  can be 

derived. Numerical algorithm can then be employed to solve jα  through the 

software package such as MATLAB or MS Excel. The parameter jβ  can then be 

solved straightforwardly by Equation 4.67. 

 

4.9 A Demonstration Example 

4.9.1 Rule Sets and Injury Atoms 

To demonstrate the methods for modelling the uncertainty in the rule sets through the 

injury atoms, an example is made on the risk assessment model RSSB-SRM [Dennis 

2006]. In this model, the major injuries and the fatalities are put into one category 

called casualty. At the first stage of the uncertainty assessment, the minor injuries are 

concerned as much as the major injuries and the fatalities. Therefore, the model of 

two levels of injuries is employed for the uncertainty assessment. 
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In the demonstration example, we use three rule sets in RSSB-SRM including: T10-

LCPRO-3, T10-LCPRO-4 and T10-LCPRO-7. The three rule sets are defined as: 

 

T10-LCPRO-3: Train strikes large road vehicle above buffer height (low loader, 

JCB, etc. ) on AHB, FP, MB/MCB/CCTV & all UWC (incl. MWL + T & UWC), no 

fire 

 

T10-LCPRO-4: Train strikes large road vehicle above buffer height (low loader, 

JCB, etc. ) on AHB, FP, MB/MCB/CCTV & all UWC (incl. MWL + T & UWC), with 

fire 

 

T10-LCPRO-7: Train strikes HGV carrying flammable hazardous goods on AHB, FP, 

MB/MCB/CCTV & all UWC (incl. MWL + T & UWC) crossing, with fire 

 

In the definitions of the three rule sets, the acronyms AHB, FP, MB/MCB/CCTV, 

and UWC stand for the different types of level crossings that are the outcomes of one 

escalation event [RSSB 2004; Dennis 2006]. From these three rule sets, we can 

identify two hazard types including: the mechanical impact and the fire. As discussed 

previously, the hazard type of mechanical impact is affected by the train’s approach 

speeds that are associated with the types of the level crossings. A similar approach 

speed however is set for the level crossings included in the above three rule sets. 

Therefore the three rule sets have the same hazard associated with the mechanical 

impact. Depending on whether there are extra flammable goods carried in the 

involved road vehicle, two hazards associated with the fire are defined. The three 

hazards are summarised in Table 4.2. For each hazard, the mean of the casualty 

probability is elicited from experts and included in Table 4.2 as well. 

 

Table 4.2 Hazards at different levels associated with the demonstration example 

Code Hazards Mean of the casualty 

probability 

MIPRO Mechanical impact with the train approach speed 

on the other non-automotive level crossings 

7.543% 
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Fire Fire without extra flammable goods 2.857% 

FireFGs Fire with extra flammable goods carried in the 

involved road vehicle 

14.2857% 

 

4.9.2 Definition of Injury Atoms 

As summarized in Table 4.2, one hazard associated with mechanical impact is 

defined, which is defined as the associated injury atom accordingly. Two hazards 

associated with fire are defined corresponding to whether there are extra flammable 

goods or not respectively. Between the two hazards associated with fire, the one with 

extra flammable goods represents the worse case and therefore is defined as the 

associated injury atom. 

 

Within the RSSB-SRM, the upper bounds of the two injury atoms have already been 

elicited in addition to the means. As agreed with the experts of the RSSB-SRM, the 

upper bound is interpreted as the 99 percentile. The means and the 99 percentiles of 

the two injury atoms are summarized in Table 4.3. We assume the injury atoms 

follow Beta distributions. The definition parameters α  and β  of the two injury 

atoms can then be calculated by the above procedure and are summarized in Table 

4.3. 

 

Table 4.3 Definitions of the injury atoms for the demonstration example 

Code The Mean 99 percentile α  β  Std 

MIPRO 7.543% 15.09% 7.09 86.93 0.027 

FireFGs 14.28% 28.57% 6.27 37.62 0.052 

 

4.9.3 Definition of Rule Sets on Injury Atoms 

The three rule sets in the example can then be defined on the two injury atoms by 

Equation 4.49. The weights associated with the injury atoms are calculated by 

Equation 4.48 and are summarized in Table 4.4. The means of the rule sets are 

calculated by Equation 4.68 and are included in Table 4.4 as well. 
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Table 4.4 Definitions of the rule sets on the injury atoms for the demonstration example 

Rule Sets MIPRO FireFGs The mean 

T10-LCPRO-3 1 0 0.07543 

T10-LCPRO-4 1 0.2 0.10185 

T10-LCPRO-7 0 1 0.14286 

 

 

With the injury atoms defined, we can continue to investigate the dependence and the 

order relations among the rule sets. For this purpose, we employ the Monte-Carlo 

simulations. At first, we generate independently the samples of the two injury atoms 

by the definitions as summarised in Table 4.3. The individual casualty probability of 

the three rule sets are then calculated by Equation 4.62 based on the weights 

summarized in Table 4.4. Based on 6000 samples of the three rule sets, the scatter 

plots are made pairwise to demonstrate the dependence and order relationship among 

the three rule sets. Demonstrated in Fig. 4.4 is the scatter plot between the rule sets 

T10-LCPPRO-4 and T10-LCPPRO-7. By Table 4.4, the two rule sets share the injury 

atom FireFGs. For T10-LCPPRO-4, however, the injury atom MIPRO is more than 

twice stronger than the injury atom FireFGs in terms of the mean of the individual 

casualty probability. Consequently a moderate dependence is introduced for the two 

rule sets as shown in Fig. 4.4. There is no order relation demonstrated between the 

rule sets T10-LCPPRO-4 and T10-LCPPRO-7. 
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Scatter plot showing dependency
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Fig. 4.4 Scatter plot between T10-LCPPRO-4 and T10-LCPPRO-7 

 

 

Demonstrated in Fig. 4.5 is the scatter plot between T10-LCPPRO-4 and T10-

LCPPRO-3. As summarized in Table 4.4 the two rule sets share the injury atom 

MIPRO. The rule set T10-LCPPRO-4 has an extra injury atom FireFGs. Because the 

injury atom MIPRO is more than twice stronger than the injury atom FireFGs in 

terms of the mean of the individual casualty probability, the rule sets T10-LCPPRO-

4 and T10-LCPPRO-3 have a stronger common injury atom than T10-LCPPRO-4 

and T10-LCPPRO-7 do. As a result, a stronger dependence is induced between T10-

LCPPRO-4 and T10-LCPPRO-3 than that between T10-LCPPRO-4 and T10-

LCPPRO-7 as shown in Fig. 4.5. Due to the extra injury atom FireFGs, T10-

LCPPRO-4 should have an individual casualty probability always larger than T10-

LCPPRO-3 does. This order relationship is also demonstrated in Fig. 4.5 where the 

all sample points fall under the 45-degree line. 
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Scatter plot showing dependency
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Fig. 4.5 Scatter plot between T10-LCPPRO-4 and T10-LCPPRO-3 

 

4.10 Conclusion 

In this chapter, we have developed a method for modelling the uncertainty in the rule 

sets of an event tree. Usually the experts make their assessments of consequences of 

risk scenarios by thinking of the included hazards separately and then aggregating 

them together, as is the case with RSSB-SRM. We try to construct a model of the 

correlations between the parameters and reconstruct the reasoning implicit behind the 

calculation. 

 

Along the sequence of the escalation events of an event tree, we identify the hazard 

types that are the materials or activities with potential to cause injuries. Depending 

on the outcomes of the escalation events associated with a risk scenario, each hazard 

type is defined at a specific level, which is called a hazard. The individual injury 

probabilities of the rule set are then defined in terms of the hazards. 

 

We assume that, given the sequence, the hazards are independent in terms of causing 

the injuries to the people exposed to the risk scenario. When an individual person 
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caught in a risk scenario is not lucky enough to escape all the hazards, the person 

becomes part of the consequence. After each hazard in the sequence, an individual 

exposed to the risk scenario either keeps the same level of injury or suffers a higher 

level injury. We assume that the transition probabilities associated with a hazard 

depend only on the person’s injury level before the hazard. Consequently, the 

individual injury probabilities of a rule set can be defined on the associated hazards 

by a Markov Chain model [Ross 2003]. To build up the Markov Chain model, we 

need to elicit the transition probabilities associated with each hazard. Once the 

transition probabilities are elicited for one hazard, they can be used for all the rule 

sets containing the same hazard. Therefore, modelling on the hazards can 

significantly reduce the elicitation work. 

 

For modelling the uncertainty in the rule sets, we need to model the uncertainty in 

the transition probabilities that belongs to epistemic uncertainty category as well. We 

assume that the transition probabilities associated with different hazard types to be 

independent. It means that a given transition probability of one hazard does not tell 

any information on the transition probability of the hazards of another type. We 

assume that the transition probabilities associated with the same hazard type are 

proportional. By the assumption, an injury atom is defined for each hazard type. All 

the transition probabilities associated with the same hazard type are then defined on 

the injury atom. Consequently the individual injury probabilities of the rule sets are 

modelled on the injury atoms. 

 

In most of the cases, we are more concerned with the major injuries and the fatalities 

than with the minor injuries. We need also to keep the elicitation work and time 

reasonable to the experts. For these two purposes, we develop a model of two levels 

of injuries as a simplified case of the model of four levels of injuries. 

 

By the above methods, we elicit the uncertainties regarding the hazards; the 

uncertainty in the rule sets are then defined in terms of the hazards. The number of 

the hazards is much smaller than that of the rule sets. Therefore, the above methods 

require reasonable elicitation time from experts. By the above method, the 
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dependences among the rule sets are modelled automatically through the injury 

atoms. The monotonicity property of the rule sets can also be kept between two rule 

sets associated with general worse and better hazards respectively. 

 

For future research work, we can investigate the possible application of the ordered 

Dirichlet distribution on modelling transition probabilities. 
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Chapter 5  

 

Uncertainty Assessment of Fault-tree and Event-tree 

Models  

 

 

5.1 Overview 

Fault trees and event trees are widely used in probabilistic risk analysis. The 

uncertainty in the output of the Fault-tree and Event-tree model is driven by: (1) the 

uncertainty in the basic events of the fault tree; (2) the uncertainty in the probabilities 

of the outcomes of the escalation events; and (3) the uncertainty in the consequences 

of the risk scenarios. In this research, we confine the Fault-tree and Event-tree model 

as follows. The subjective uncertainty of the basic events is assumed to follow a joint 

normal distribution. The probabilities of the escalation events’ outcomes are set as 

the best-estimated values; the uncertainty in these probabilities is not studied in this 

research. The consequence of a risk scenario is defined as the means of equivalent 

fatalities counting both the fatalities and the scaled-down major injuries, which is the 

product of the number of the people exposed to the risk scenario and the individual 

casualty probability of the associated rule set. The uncertainty in the rule set is 

modelled on the injury atoms by the simplified model of two injury levels as 

developed in Chapter 4. The numbers of people exposed to the risk scenarios are set 

with the best-estimated values; the uncertainty in these numbers is not studied in this 

research. Focusing on the fault trees and event trees as described above, we are going 

to develop the methods for conducting the subjective uncertainty analysis. 

 

At the first step, we develop a mimic model of the fault tree and event tree model. 

Fault trees and event trees are usually built with commercial software packages such 
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as Isograph FT+. The software packages usually offer a graphic interface for the 

users to build up the models. The software then transfers the graphic model into 

computer codes and data that are stored in the internal database. After a run of the 

model, the generated results are also stored in the internal database. The internal 

databases, however, are usually not transparent to the users. To access the internal 

database, users must utilize the dedicated interface software tools that are developed 

associated with the commercial software packages. Associated with Isograph FT+, 

for example, we need to program with the dynamical link library (DLL) to access the 

internal database and to run the models [Isograph 2004; Isograph 2005]. These limits 

on accessing and manipulating the internal database cause difficulties in conducting 

uncertainty assessment in two aspects. Firstly, for conducting simulations, we need 

to set the input parameters, run the model and obtain the results. It is very difficult if 

possible given the limits on accessing the database of the fault tree and event tree 

computer model. Secondly, the computer model consisting of the codes and data 

stored in the internal database is completely a “black-box” to the analysts. It is 

impossible to do any analytical analysis with such a computer model. Therefore we 

need a mimic model of the original computer model. 

 

The top event of a fault tree is broken down into the basic events, also called 

precursors. A cut set is a collection of the basic events that together certainly cause 

the top event. A minimum cut set is one that is no longer a cut set when any of its 

basic events is removed. The basic events are called rare events when they have very 

small occurrence probabilities. For two minimum cut sets composed of rare events, 

the simultaneous occurrence probability is an order of magnitude smaller than the 

occurrence probability of either minimum cut sets. Based on this idea, the occurrence 

probability of the top event can be approximated as the sum of the occurrence 

probabilities of all the minimum cut sets, which is called rare event approximation 

[Bedford and Cooke 2001]. Once the fault trees and event trees are built with a 

commercial software tool such as Isograph and the input parameters are set, the 

minimum cut sets can be generated and associated with a risk scenario. The codes of 

the events composing the risk scenarios can then be output into a plain text file such 

as MS Excel. We can then program with MS Excel VBA on the events composing 



 146 

the risk scenarios to mimic the original computer model [Jelen and Syrstad 2004]. 

MS Excel is a very popular software tool that offers easy access to the data. It is 

therefore easy to conduct simulations of the mimic model for uncertainty assessment. 

The mimic model also offers a transparent structure so that we can calculate the 

variance of the mimic model through algebraic operations. 

 

For conducting the uncertainty analysis, the dependent basic events need to be 

expressed as the linear transformation of a set of independent standard normal 

variables. We select a linear transformation that is suitable for the context of risk 

analysis. Usually we implement the linear transformation through the Cholesky 

decomposition of the covariance matrix [Scheuer and Stoller 1962]. The Cholesky 

algorithm requires that the covariance matrix must be positive definite [Scheuer and 

Stoller 1962]. In the context of risk analysis, however, the covariance matrix can be 

positive semi-definite. To solve this issue, we select the linear transformation 

through the decomposition vectors and eigenvalues, which is called eigen-

decomposition. Furthermore, in the context of risk analysis, the variance of the input 

parameters can be very small. The variance of the precursors related to the hazardous 

event HET-12 in the RSSB-SRM, for example, spreads over 2419 10~10 −−  [Harrison, 

Griffin et al. 2008]. For such a covariance matrix, the calculation of the eigenvalues 

and eigenvectors is more expensive and large errors can be incurred [Wilkinson 1965; 

Watkins 1991]. To solve this problem, we implement the linear transformation 

through the eigen-decomposition of the correlation matrix instead of the covariance 

matrix. 

 

Based on the linear transformation, we then develop Monte-Carlo simulations to 

build the empirical distribution of the output. We also develop the analytical solution 

for the variance through algebraic operations. The two methods are implemented 

independently and therefore can be used for cross check for each other. The whole 

scheme of the uncertainty assessment of a Fault-tree and Event-tree model is 

demonstrated in Fig. 5.1. Blocks 1, 2 and 3 represent the procedures for building the 

Excel mimic model, which are to be developed in Section 5.2. Block 5 represents the 

procedure for building the uncertainty model in the precursors through elicitation, 
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which is related to Chapter 3. Block 7 represents the procedure for building the 

uncertainty model in the rule sets, which is related to Chapter 4. The uncertainty 

model in the precursors and the uncertainty model in rule sets are represented in 

Block 4 and Block 6 respectively, as the outcomes of Block 5 and Block 7. Block 8 

and 9 represent the procedures for uncertainty assessment, for which a set of methods 

are to be developed in this chapter. The software design for implementing the mimic 

model, the simulations and the analytical solution of the variance is developed in 

Section 5.7. 

 

 

 

 

Fig. 5.1 Scheme for conducting the uncertainty assessment of a Fault-tree and Event-tree model 

 

 

In Appendix A, a set of new methods are also proposed. These methods need to be 

developed further especially with techniques for error control. Consequently they are 

2. Output the existing 

point values of the 

precursors 

4. Precursor uncertainty model including: 

(1) covariance matrices; (2) the samples 

6. Rule set uncertainty model including: (1) the means of the rule sets and 

means of the products of two rule sets; (2) the samples. 

5. Building the covariance 

matrix of the precursors 

through elicitation 

7. Building the uncertainty model of 

the rule sets through elicitation 

3. Output the map from the 

consequences to the rule sets 

8. Simulations of the 

output 

9. Analytical solution of the variance 

of the output 

1. Output the cut sets; identify 

the codes of the precursors 

and consequences 
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not applied in this research. These methods, however, have the potential to calculate 

the uncertainty propagation and are worth more effort in the future. 

 

5.2 Mimic Model with MS Excel 

Usually we use an event tree to model the risk scenarios. A path from the initiating 

event through all the escalation events is called an accident sequence. At the end of 

an accident sequence, the risk scenario is defined. The initiating event of the event 

tree can be further broken down into the basic events with a fault tree. A cut set is a 

collection of the basic events that together certainly cause the top event of the fault 

tree. A minimum cut set is one that is no longer a cut set when any of its basic events 

is removed. When the rare event approximation is applied, the occurrence of the top 

event can be approximated by the sum of the occurrences of the minimum cut sets 

[Bedford and Cooke 2001]. Consequently a finite set of risk scenarios can be defined 

by the combinations of the minimum cut sets and the outcomes of the events along 

the event tree. 

 

The frequency of the risk scenario ℓS  can be calculated as 

 

 ( )( )
( )
∏∏

∈∈

⋅=
ℓℓ ℓ

ℓ ℓ
SieSp

i iepf
i ,

,Pr  (5.1) 

 

where ip  stands for a basic event; ( )ie ,ℓ  stands for the outcome of the escalation 

event iE  associated with ℓS ; ( )( )ie ,Pr ℓ  stands for the probability of ( )ie ,ℓ . 

 

Suppose that the consequence associated with ℓS  is ℓc , the risk associated with ℓS  is 

calculated as 

 

 ℓℓℓ cfr ⋅=  (5.2) 

 

The overall risk associated with the fault-tree and event tree can then be defined as 
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( )

∑
=

⋅=
SN

cfr
1ℓ

ℓℓ  (5.3) 

 

where ( )SN  is the number of risk scenarios of the fault tree and event tree. 

 

Using Equations 5.1-5.3, we can define a mimic model of the fault tree and event 

tree when we obtain for each risk scenario: (1) the codes of the basic events; (2) the 

codes of the outcomes of the escalation events; and (3) the code of the consequence. 

These codes are referred to as the risk scenario definition codes. Once the fault tree 

and event tree are built with the commercial software, the risk scenario definition 

codes can be generated and then output in plain text or MS Excel etc. The software 

Isograph FT+, for example, can output the risk scenario definition codes into an 

Excel worksheet. An example of this is demonstrated in Fig. 5.2.a. On the top row 

are the titles of the fields as summarized in Table 5.1; underneath the top row, each 

row defines a risk scenario. While most fields are output for explanation or cross-

checking, the fields Cut Set and Consequence Name are the two key fields containing 

the risk scenario definition codes. 

 

The field “Cut Set” consists of a character string that is composed of the codes of the 

basic events and the codes of the outcomes of the escalation events defining the risk 

scenario [Isograph 2005]. An example of the Cut Set string is extracted as 

 

“OPEN-TRACK*. EL-N----PI. ELCDAOCSPP. -ELFS----PP. PABCLOVSTH”. 

 

The character string can be parsed by programming into the individual codes. These 

codes can then the stored separately in the following columns as shown in Fig. 5.2.b. 

By the codes of the events and the outcomes, we can link the mimic model to the 

uncertainty model of the input parameters. 

 

The filed “Consequence Name” contains the code of the consequence. As explained 

in Chapter 4, a consequence is associated with a rule set and the number of the 

people exposed to the risk scenario. The rule set defines the individual injury 
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probabilities, of which the uncertainty model can be built on the injury atoms as 

developed in Chapter 4. Therefore by the code of the consequence, we can link the 

mimic model to the uncertainty model of the rule sets. 

 

As a conclusion, we can mimic the Fault-tree and Event-tree model by Equations 

5.1-5.3 with the risk scenario definition codes. MS Excel is a very popular software 

tool and we can easily manipulate the data within Excel. With the mimic model, we 

can conveniently conduct simulations and calculate the analytical solution of the 

variance of the output risk. We will continue to develop these methods by starting 

with the linear transformation of the normal random variables. 

 

 

Table 5.1 Summary of the fields defining the risk scenarios in the mimic model 

No Code Description 

1. Risk The risk associated with the associated risk scenario 

2. Frequency The frequency of the risk scenario 

3. Weight The consequence, i.e. the number of the fatalities 

associated with the risk scenario 

4. Cut Set Character string composing the codes of the basic events 

and the codes of the outcomes of the escalation events 

5. ID A unique index code of the risk scenario 

6. Event 

Description 

Description regarding to the risk scenario 

8. Consequence 

Name 

Index code of the consequence associated with the risk 

scenario 

9. Consequence 

Description 

Description of the consequence 
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Risk Frequency W eight Cut Set ID Event DescriptionsFussell-Vesely ImportanceConsequence Name Consequence Description

2.3E-05 0.003258 0.007059 OPEN-TRACK*. EL-N----PI. ELCDAOCSPP. -ELFS----PP. VAOCLDRRTHT12-OFN-1.1Number of train miles3.42E-05 T12-OFN-1 OPEN-TRACK*. EL-N----PI. ELCDAOCSPP. -ELFS----PP. VAOCLDRRT

6.09E-06 0.000862 0.007059 OPEN-TRACK*. EL-N----PI. ELCDAOCSPP. -ELFS----PP. VAOCLDELTHT12-OFN-1.2Number of train miles9.05E-06 T12-OFN-1 0.007 (10)

6.76E-07 9.58E-05 0.007059 OPEN-TRACK*. EL-N----PI. ELCDAOCSPP. -ELFS----PP. VAOCLDRTTHT12-OFN-1.3Number of train miles1.01E-06 T12-OFN-1 0.007 (10)

4.17E-07 5.9E-05 0.007059 OPEN-TRACK*. EL-N----PI. ELCDAOCSPP. -ELFS----PP. VABCLDRRTHT12-OFN-1.4Number of train miles6.2E-07 T12-OFN-1 0.007 (10)

3.29E-07 4.66E-05 0.007059 OPEN-TRACK*. EL-N----PI. ELCDAOCSPP. -ELFS----PP. VAOCLSUIXPET12-OFN-1.5Number of train miles4.89E-07 T12-OFN-1 0.007 (10)

1.86E-07 2.63E-05 0.007059 OPEN-TRACK*. EL-N----PI. ELCDAOCSPP. -ELFS----PP. WAOCLENVTET12-OFN-1.6Number of train miles2.77E-07 T12-OFN-1 0.007 (10)

1.75E-07 2.48E-05 0.007059 OPEN-TRACK*. EL-N----PI. ELCDAOCSPP. -ELFS----PP. VABCLSUIXPET12-OFN-1.7Number of train miles2.6E-07 T12-OFN-1 0.007 (10)

1.55E-07 2.19E-05 0.007059 OPEN-TRACK*. EL-N----PI. ELCDAOCSPP. -ELFS----PP. VABCLDELTHT12-OFN-1.8Number of train miles2.3E-07 T12-OFN-1 0.007 (10)
1.35E-07 1.92E-05 0.007059 OPEN-TRACK*. EL-N----PI. ELCDAOCSPP. -ELFS----PP. VAOCLSTRTET12-OFN-1.9Number of train miles2.01E-07 T12-OFN-1 0.007 (10)

1.33E-07 1.89E-05 0.007059 OPEN-TRACK*. EL-N----PI. ELCDAOCSPP. -ELFS----PP. VABCLSTRTET12-OFN-1.10Number of train miles1.99E-07 T12-OFN-1 0.007 (10)

5.68E-08 8.05E-06 0.007059 OPEN-TRACK*. EL-N----PI. ELCDAOCSPP. -ELFS----PP. WABCLENVTET12-OFN-1.11Number of train miles8.45E-08 T12-OFN-1 0.007 (10)

2.11E-09 2.99E-07 0.007059 OPEN-TRACK*. EL-N----PI. ELCDAOCSPP. -ELFS----PP. LAOCLLSETFT12-OFN-1.12Number of train miles3.14E-09 T12-OFN-1 0.007 (10)

2.11E-09 2.99E-07 0.007059 OPEN-TRACK*. EL-N----PI. ELCDAOCSPP. -ELFS----PP. PAOCLOVSTHT12-OFN-1.13Number of train miles3.14E-09 T12-OFN-1 0.007 (10)

2.03E-09 2.88E-07 0.007059 OPEN-TRACK*. EL-N----PI. ELCDAOCSPP. -ELFS----PP. PABCLOVSTHT12-OFN-1.14Number of train miles3.03E-09 T12-OFN-1 0.007 (10)

2.03E-09 2.88E-07 0.007059 OPEN-TRACK*. EL-N----PI. ELCDAOCSPP. -ELFS----PP. LABCLBLETFT12-OFN-1.15Number of train miles3.03E-09 T12-OFN-1 0.007 (10)

1.64E-09 2.32E-07 0.007059 OPEN-TRACK*. EL-N----PI. ELCDAOCSPP. -ELFS----PP. PAOCLSPDTH. PSPDDRECPHT12-OFN-1.16Number of train miles2.44E-09 T12-OFN-1 0.007 (10)

1.58E-09 2.24E-07 0.007059 OPEN-TRACK*. EL-N----PI. ELCDAOCSPP. -ELFS----PP. PABCLSPDTH. PSPDDRECPHT12-OFN-1.17Number of train miles2.35E-09 T12-OFN-1 0.007 (10)

2.11E-10 2.99E-08 0.007059 OPEN-TRACK*. EL-N----PI. ELCDAOCSPP. -ELFS----PP. PAOCLSPDTH. PSPDMISCPHT12-OFN-1.18Number of train miles3.14E-10 T12-OFN-1 0.007 (10)

2.04E-10 2.89E-08 0.007059 OPEN-TRACK*. EL-N----PI. ELCDAOCSPP. -ELFS----PP. PABCLSPDTH. PSPDMISCPHT12-OFN-1.19Number of train miles3.03E-10 T12-OFN-1 0.007 (10)  

 

Fig. 5.2.a MS Excel mimic model of the Isograph FT+ Fault-tree and Event-tree models 

 

Number Events C1 C2 C3 C4 C5 C6

5 OPEN-TRACK EL-N----PI ELCDAOCSPP -ELFS----PP VAOCLDRRTH

5 OPEN-TRACK EL-N----PI ELCDAOCSPP -ELFS----PP VAOCLDELTH

5 OPEN-TRACK EL-N----PI ELCDAOCSPP -ELFS----PP VAOCLDRTTH

5 OPEN-TRACK EL-N----PI ELCDAOCSPP -ELFS----PP VABCLDRRTH

5 OPEN-TRACK EL-N----PI ELCDAOCSPP -ELFS----PP VAOCLSUIXPE

5 OPEN-TRACK EL-N----PI ELCDAOCSPP -ELFS----PP WAOCLENVTE

5 OPEN-TRACK EL-N----PI ELCDAOCSPP -ELFS----PP VABCLSUIXPE

5 OPEN-TRACK EL-N----PI ELCDAOCSPP -ELFS----PP VABCLDELTH
5 OPEN-TRACK EL-N----PI ELCDAOCSPP -ELFS----PP VAOCLSTRTE

5 OPEN-TRACK EL-N----PI ELCDAOCSPP -ELFS----PP VABCLSTRTE

5 OPEN-TRACK EL-N----PI ELCDAOCSPP -ELFS----PP WABCLENVTE

5 OPEN-TRACK EL-N----PI ELCDAOCSPP -ELFS----PP LAOCLLSETF

5 OPEN-TRACK EL-N----PI ELCDAOCSPP -ELFS----PP PAOCLOVSTH

5 OPEN-TRACK EL-N----PI ELCDAOCSPP -ELFS----PP PABCLOVSTH

5 OPEN-TRACK EL-N----PI ELCDAOCSPP -ELFS----PP LABCLBLETF

6 OPEN-TRACK EL-N----PI ELCDAOCSPP -ELFS----PP PAOCLSPDTH PSPDDRECPH

6 OPEN-TRACK EL-N----PI ELCDAOCSPP -ELFS----PP PABCLSPDTH PSPDDRECPH

6 OPEN-TRACK EL-N----PI ELCDAOCSPP -ELFS----PP PAOCLSPDTH PSPDMISCPH

6 OPEN-TRACK EL-N----PI ELCDAOCSPP -ELFS----PP PABCLSPDTH PSPDMISCPH  

Fig. 5.2.b Codes of the events composing the risk scenario. 

 

 

5.3 Linear Transformation of Dependent Normal Random 

Variables 

5.3.1 Overview 

Suppose a column vector of N normal random variables is defined as 

 

 [ ]TNpp ,,1 ⋯=p  (5.4) 
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We define the means and the covariance matrix of p  as 

 

 ( ) ( ) ( )[ ]T

NpEpEE ,,1 ⋯=p  (5.5) 

 

 ( ) pΣp =cov , NN×∈RpΣ  (5.6) 

 

The joint distribution of p  is then completely defined by ( )pE  and ( )pcov . It is 

however difficult to sample or to conduct other calculation directly on the dependent 

normal random variables. Therefore we prefer to define p  in terms of a linear 

transformation of a set of independent normal random variables. Suppose there are N 

independent standard normal random variables that are defined as 

 

 ( )1,0~ NZ i , Ni ,,1⋯=  (5.7) 

 

 ( ) NIZ =cov  (5.8) 

 

where NI  is an NN ×  dimensional identity matrix. 

 

Accordingly we define the column vector 

 

 ( )T

NZZ ,,1 ⋯=Z  (5.9) 

 

We search for a linear transformation from Z  to p  of the form 

 

 ( )pZLp E+⋅=  (5.10) 

 

where NN×∈RL  stands for a linear transformation matrix. 
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We know that the joint normal distribution of p  can be completely defined by the 

means ( )pE  and the covariance matrix pΣ . The transformation matrix L  can be 

derived in terms of ( )pE  and pΣ . Based on Equation 5.7, we have 

 

 ( ) 0Z =E  (5.11) 

 

Consequently we have 

 

 ( ) ( ) 0ZLZL =⋅=⋅ EE   

 

Therefore the mean vector ( )pE  is automatically preserved by the linear 

transformation. By Equation 5.10, we have 

 

 ( ) ( ) ( ) TLZLZLp ⋅⋅=⋅= covcovcov  

 

Based on Equations 5.6 and 5.8, we then have 

 

 TLLΣp =  (5.12) 

 

Therefore once the transformation matrix L  is built to satisfy Equation 5.12, the 

linear transformation in Equation 5.10 will preserve the covariance matrix pΣ  as 

required. We know that the covariance matrix pΣ  must be symmetrical and positive 

semi-definite. When pΣ  is positive definite, L  can be solved through Cholesky 

decomposition [Scheuer and Stoller 1962; Herstein and Winter 1988; Law and 

McComas 1999], where the outcome L  is a lower triangular matrix. 

 

In risk analysis context, however, the covariance matrix pΣ  can be positive semi-

definite. The Cholesky cannot be used in this situation [Scheuer and Stoller 1962; 

Law and McComas 1999]. To solve this problem, we are going to implement the 
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linear transformation through eigen-decomposition as used in principal component 

analysis [Krzanowski 1988; Jolliffe 2002]. 

 

5.3.2 Linear Transformation through Eigen-decomposition 

We know that the covariance matrix pΣ  must be symmetric matrix and positive 

semi-definite. Therefore, associated with pΣ , there exist N non-negative real 

eigenvalues 0≥iλ  Ni ,,1⋯= , [Burden and Faires 1997]. Corresponding to each 

0≥iλ , there exists an eigenvector 1×∈ N

i RU  that satisfies 

 

 iii UUΣp λ= , Ni ,,1⋯=  (5.13) 

 

We define the eigenvalue matrix as 

 

 

















=

Nλ

λ

⋯

⋮⋱⋮

⋯

0

01

Λ  (5.14) 

 

Therefore Λ  is a diagonal matrix with all the eigenvalues on the diagonal. 

According to Λ , we define the eigenvector matrix as 

 

 [ ]NUUU ,,1 ⋯= , NN×∈RU  (5.15) 

 

By Equations 5.13, 5.14 and 5.15, we have 

 

 UΛUΣp =  (5.16) 

 

Usually the eigenvectors are normalized so that 

 

 1=⋅ i

T

i UU  (5.17) 
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The eigenvectors iU , Ni ,,1⋯= , are mutually orthogonal [Burden and Faires 1997]. 

Consequently we have 

 

 0=⋅ j

T

i UU , ji ≠  (5.18) 

 

By Equations 5.17 and 5.18, we have 

 

 N

T
IUU =⋅  (5.19) 

 

Therefore the eigenvector matrix U  is orthogonal. By the definition of the inverse 

matrix, we have 

 

 T
UU =−1  (5.20) 

 

where 1−
U  stands for the inverse matrix of U . 

 

Therefore we have 

 

 N

T
IUU =  (5.21) 

 

where NI  stands for the NN ×  dimensional identity matrix as defined before. 

 

Based on Equation 5.21, by right-multiplying T
U  on both sides of Equation 5.16 we 

have 

 

 TT UUΣUUΣp Λ==  (5.22) 

 

From Equation 5.14, we define 
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

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



=

Nλ

λ

⋯

⋮⋱⋮

⋯

0

01

2

1

Λ  (5.23) 

 

Therefore we have 

 

 2
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1

ΛΛΛ ⋅= ,   2

1
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1
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 (5.24) 

 

Based on Equations 5.22, 5.23 and 5.24, we have 
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UΛUΛUΛUΛΣp  (5.25) 

 

Based on Equations 5.12 and 5.25, we can define 

 

 2

1

ΛUL ⋅=  

 

Since L  is defined by the eigenvectors and the eigenvalues, the decomposition 

defined in Equation 5.25 is called eigen-decomposition [Dillon and Goldstein 1984]. 

Based on Equations 5.10, we can define the linear transformation as 

 

 ( )pZΛUp E+⋅









⋅= 2

1

 (5.26) 

 

where ( )T

NZZ ,,1 ⋯=Z  is a column vector of independent standard normal random 

variables as defined in Equations 5.7-5.9. 
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The linear transformation through Eigen-decomposition can be used when the 

covariance matrix pΣ  is positive semi-definite; while the linear transformation 

through the Cholesky decomposition can be used only when pΣ  is positive definite. 

 

In the uncertainty analysis of risk assessment models, the variance of the input 

parameters can be very small. The variance of the precursors related to the hazardous 

event HET-12 in the RSSB-SRM, for example, spreads over 2419 10~10 −−  [Harrison, 

Griffin et al. 2008]. We have 

 

 ( ) ∑∑
==

==
N

i

i

N

i

i

11

2tr λσpΣ  (5.27) 

 

where ( )
pΣtr  is the trace of pΣ ; iσ  stands for the standard deviation of ip . 

 

Because pΣ  is positive semi-definite, we have 0≥iλ , Ni ,,1⋯= . By Equation 5.27, 

we have 

 

 ∑
=

≤≤
N

i

ii

1

20 σλ  

 

When all the standard deviations are very small, the eigenvalues of pΣ  cluster in the 

small interval 







∑

=

N

i

i

1

2,0 σ . For such a covariance matrix pΣ , the calculation of the 

eigenvalues and eigenvectors is more expensive while large errors are incurred 

[Wilkinson 1965; Watkins 1991]. To solve this problem, we are going to develop the 

linear transformation through the eigen-decomposition of the correlation matrix. 

 

5.3.3 Linear Transformation based on the Correlation Matrix 

Suppose the correlation matrix of p  is defined as 
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The correlation matrix ( )pr  is symmetric and positive semi-definite. Therefore ( )pr  

can be decomposed with the eigenvalue matrix and the eigenvector matrix as 
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where V  and M  stand for the eigenvector matrix and the eigenvalue matrix and of 

( )pr  respectively. 

 

We define 
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where iσ  stands for the standard deviation of ip . 

 

Therefore pσ  is a diagonal matrix and we have 

 

 T

pp σσ =  (5.29) 

 

Consequently we have 
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 ( ) ppp σpσΣ ⋅⋅= r  (5.30) 

 

By applying Equation 5.28 with Equation 5.30 we have 
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 (5.31) 

 

Based on Equations 5.12 and 5.31, we can define 

 

 2

1

MVσL p ⋅⋅=  

 

Correspondingly we can define the linear transformation by Equation 5.10 as 

 

 ( )pZMVσp E+⋅









⋅⋅= 2

1

 (5.32) 

 

where ( )T

NZZ ,,1 ⋯=Z  is a column vector of independent standard normal random 

variables as defined in Equations 5.7-5.9. 

 

Based on the linear transformation, we can generate independently the samples of the 

standard normal random variables ( )1,0~ NZk , Nk ,,1⋯= , by the standard 

algorithms [Kurowicka and Cooke 2006]. The samples of p  can then be generated 

by Equation 5.10 based on the samples of Z . 

 

Based on the linear transformation, we can also develop the analytical solution of the 

mean of the product of the correlated normal random variables. It will then be used 
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for calculating the analytical solution of the variance of the mimic model of the 

Fault-tree and Event-tree model. 

 

5.4 Mean of Product of Correlated Normal Random Variables 

Suppose that a set of normal random variables are defined as in Equations 5.4-5.6. 

We want to calculate the mean of the product ∏
= Ni

ip
,1

, which is to be used for 

calculating the variance of the mimic model of the Fault-tree and Event-tree model. 

We are going to develop the analytical solution based on the linear transformation as 

defined in Equation 5.10. 

 

We define the th
i  row vector of the transformation matrix L  as 

 

 [ ]Nikiii ,,1, ,,,, ℓ⋯ℓ⋯ℓ=L  (5.33) 

 

Therefore we have 
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Based on Equations 5.10 and 5.33, we have 

 

 ( ) ( )i

N

k

kkiiii pEZpEp +⋅=+⋅= ∑
=1

,ℓZL  (5.34) 

 

Consequently we have 
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Therefore the product ∏
= Ni

ip
,1

 can be defined as a polynomial expansion as 

 

 ∑∏ =
= j

j

Ni

i Tp
,1

 (5.36) 

 

and 

 

 Njkjj

Nkjj ZZZT ,,1,

1

βββ
α ⋯⋯=  (5.37) 

 

where jα  is the coefficient; kj ,β 's are the integer exponents. 

 

In Equation 5.37, jT  is the product of N terms, one and only one of which is either 

kki Z,ℓ  or ( )ipE  that is associated with each ip  as defined in Equation 5.34. We 

define the index 
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,

,ℓ
 (5.38) 

 

Therefore we have ( ) [ ]Nijs ,0, ∈ . We define the delta function 

 

 ( )


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=
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 if ,1
,

ck
kcδ  (5.39) 

 

Based on Equations 5.35-5.39, we have 

 

 ( )( ) ( ) ( )( )( ) ( ) ( )( )∏
=

⋅⋅−+⋅=
Ni

ijsijsiij ZijspEijsT
,1

,,,,,01,,0 ℓδδ  (5.40) 

 

Applying Equation 5.40 with Equation 5.37, we have 
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and 
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kj ijsk
1

, ,,δβ  (5.42) 

 

By Equation 5.39, we have 

 

 Nkj ≤≤ ,0 β  

 

With jα  and kj ,β  defined in Equations 5.41 and 5.42, we continue to derive the 

mean of ∏
= Ni

ip
,1

. Based on Equation 5.36, we have 
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Recalling that NZZ ,,1 ⋯  are independent, we have 
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In Equation 5.43, ( )kj

kZE ,β
 represents the kj ,β -order moment of kZ . Because kZ  is a 

standard normal random variable, this moment can be calculated as given in 

[Johnson and Balakrishnan 1994] as: 

 

 ( ) ⋯2,1,012 ==−
iZE

i

k  (5.44.a) 
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 ( ) ( )( ) ⋯⋯ 2,1,1332122 =⋅−−= iiiZE
i

k  (5.44.b) 

 

The moment ( )kj

kZE ,β
 can also be calculated through an iterative process [Johnson 

and Balakrishnan 1994] as 

 

 ( ) 10 =kZE  (5.45.a) 

 

 ( ) ( )( ) ( ) ⋯2,1,12122 =−=−
iiZEZE

i

k

i

k  (5.45.b) 

 

We have ( )2 1 0i

k
E Z − =  because the normal distribution is symmetric. 

 

Some moments of a standard normal random variable are calculated and summarized 

in Table 5.2. Therefore Equation 5.43 offers a way to calculate the mean of the 

product of correlated normal random variables. This formula is to be used in 

calculating the variance of the mimic model of the Fault-tree and Event-tree model. 

 

 

Table 5.2 Moments of a standard normal random variable 

Order i Moment ( )iZE  

0 1 

1 0 

2 1 

3 0 

4 3 

5 0 

6 15 

7 0 

8 105 
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5.5 Mean of Product of two Correlated Normal Random 

Variables 

Suppose that ip  and jp  are two correlated normal random variables. The mean of 

the product of ip  and jp  can be calculated directly rather than through the linear 

transformation as developed above. 

 

The correlation between ip  and jp  is defined as 

 

 ( )
( )

( ) ( )
ji

ji

ji
pp

pp
ppr

varvar

,cov
, =  (5.46) 

 

where the covariance is defined as 

 

 ( ) ( ) ( ) ( )
jijiji pEpEppEpp ⋅−⋅=,cov  (5.47) 

 

Applying Equation 5.47 with Equation 5.46, we have 

 

 ( ) ( ) ( ) ( ) ( ) ( )jijijiji pppprpEpEppE varvar,+=  (5.48) 

 

Based on Equation 5.48, the mean of the product of two correlated normal random 

variables can be calculated based on the means, the variance and correlation. This 

analytical solution will be used to calculate the analytical solution of the variance of 

the mimic model. 

 

5.6 Analytical Solution of the Variance of the Mimic Model 

5.6.1 Overview 

When rare event approximation is applied [Bedford and Cooke 2001], the mimic 

model of a Fault-tree and Event-tree model can be approximated as in Equations 5.1-

5.3. Based on Equation 5.3, we have 
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where ( )SN  is the number of the risk scenarios. 

 

We know that the variance of the risk r can be calculated by 

 

 ( ) ( ) ( ) ( )rErErEr ⋅−= 2var  (5.51) 

 

Therefore to calculate ( )rvar , we need to calculate ( )ℓrE  and ( ) ( )( )21 ℓℓ rrE ⋅ . We 

assume that the occurrence frequency ℓf  and the consequence ℓc  are independent. 

Consequently from Equation 5.2 we have 

 

 ( ) ( ) ( )ℓℓℓ cEfErE ⋅=  (5.52) 

 

 ( ) ( )( ) ( ) ( )( ) ( ) ( )( )212121 ℓℓℓℓℓℓ ccEffErrE ⋅⋅⋅=⋅  (5.53) 

 

From Equations 5.52 and 5.53, to calculate ( )rvar , we need to calculate ( )ℓfE , 

( )ℓcE , ( ) ( )( )21 ℓℓ ffE ⋅  and ( ) ( )( )21 ℓℓ ccE ⋅ . The methods are to be developed later on. 

 

5.6.2 Calculation of ( )ℓcE  and ( ) ( )( )21 ℓℓ ccE ⋅  

When a simplified model of two injury levels is applied, the individual casualty 

probability is calculated for each rule set as developed in Chapter 4. Within the 
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casualties, a ratio of the fatalities to the major injuries can be set. The consequence 

can then be calculated as the equivalent fatalities that counts both the fatalities and 

the scaled-down major injuries. We denote by φ  the proportion of the fatalities in he 

casualties. We suppose that W  major injuries are counted as one equivalent fatality. 

The equivalent fatalities of ℓS  can then be defined as the mean as 

 

 ( ) ( )( )WNc i φφπ −+××= 14ℓℓ  (5.54) 

 

where ℓN  stands for the mean of the number of people exposed to the risk scenario 

ℓS ; ( )4iπ  stands for the individual casualty probability of the rule set iR  that is 

associated with ℓS . 

 

Because a rule set can be associated with multiple consequences, the subscript of the 

rule set is not necessarily equal to the subscript of the consequence in Equation 5.54. 

 

As discussed previously, in this research, we don't study the uncertainties in ℓN , φ , 

and W . The uncertainty in the consequence ℓc  is then driven by the uncertainty in 

the associated rule set only. Consequently based on Equation 5.54, we have 

 

 ( ) ( )( ) ( )( )41 iEWNcE πφφ ×−+×= ℓℓ  (5.55) 

 

In Equation 5.55, the individual casualty probability ( )4iπ  has been defined on the 

injury atoms as in Equation 4.67 as 
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where iA  stands for the i
th

 injury atom; D  stands for the number of the injury atoms. 
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The injury atoms jA  have been assumed to be independent. Consequently by 

Equation 5.56, we have 
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We have assumed that the uncertainty in the injury atom jA  follows a Beta 

distribution as defined in Equation 4.71. The mean of the injury atom ( )
jAE  can then 

be calculated by 

 

 ( )
jj

j

jAE
βα

α

+
=  (5.58) 

 

The definition parameters jα  and jβ  can be derived for jA  through elicitation by 

the method developed in Chapter 4. Applying Equations 5.58 and 5.57 with Equation 

5.55, we can calculate the mean of the consequence ℓc . We continue to derive the 

mean of the product of two consequences. 

 

Suppose there are two consequences ( )1ℓc  and ( )2ℓc  that are associated with rule set 

( )1iR  and ( )2iR  respectively. By Equation 5.54, we have 

 

 ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )( )441 21

2

2121 iiEWPNPNccE ππφφ ⋅⋅−+⋅⋅=⋅ ℓℓℓℓ  (5.59) 

 

We need to calculate the mean ( )( ) ( )( )( )44 21 iiE ππ ⋅ . By Equation 5.56, we have 
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  (5.60) 

 

Applying Equation 5.56 with Equation 5.60, we have 
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  (5.61) 

 

Each injury atom is defined for one hazard type as given in Chapter 4. The injury 

atoms have also been assumed to be independent, i.e. a known transition probability 

of one injury atom does not tell any information on the transition probability of 

another injury atom. Therefore, we have 

 

 

( )( ) ( )( )( )

( )( )( ) ( )( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∏
=














⋅

⋅
+⋅

+
−+

−+=

⋅

D

j

j

j

jiji

j

j

jiji

ii

ii

AE
zz

AE
zz

EE

E

1

2

2

,2,1,2,1

21

21

4,14,14,14,1
1

144

44

γγ

ππ

ππ

 (5.62) 

 

In Equation 5.62, the mean of the injury atom ( )
jAE  can then be calculated by 

Equation 4.72 as discussed above. Because the injury atom jA  is assumed to follow 
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a Beta distribution as defined in Equation 4.71, we can calculate the variance of jA  

by 
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where jα  and jβ  are the definition parameters of jA . 

 

Based on Equations 5.58 and 5.63, we have 

 

 

( ) ( ) ( ) ( )

( ) ( )

2

2

2

1

var















+
+

+++
=

⋅+=

jj

j

jjjj

jj

jjjj AEAEAAE

βα

α

βαβα

βα

 (5.64) 

 

By applying Equations 5.62, 5.58 and 5.64 with Equation 5.59, we can calculate the 

mean of the product of two consequence, i.e. ( ) ( )( )21 ℓℓ ccE ⋅ . The means ( )ℓcE  and 

( ) ( )( )21 ℓℓ ccE ⋅  can then be used to calculate the mean and the variance of the output of 

the Fault-tree and Event-tree model by Equations 5.49-5.53. 

 

We continue to develop the calculation of ( )ℓfE  and ( )kffE ⋅ℓ  for calculating the 

analytical solution of the variance of the output of Fault-tree and Event-tree models 

by Equations 5.52 and 5.53. 

 

5.6.3 Calculation of ( )ℓfE  and ( ) ( )( )21 ℓℓ ffE ⋅  

As defined in Equation 5.1, the frequency of a risk scenario is the product of the 

associated basic events and the probabilities of the associated outcomes of the 

escalation events. As stated in Chapter 4, in this research we study the uncertainty of 

the means of the basic events and treat the probabilities of the outcomes of the 

escalation event as constant. Therefore based on Equation 5.1, we have  
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where ip  stands for a basic event; ( )( )ie ,Pr ℓ  stands for the probability of the 

outcome ( )ie ,ℓ  of the escalation event iE  associated with the risk scenario ℓS . 

 

For the product of the frequencies of two risk scenarios, we have 
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We have assumed that the basic events ip ’s follow a joint normal distribution. 

Therefore 
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The means ( )ℓfE  and ( )
21 ℓℓ ffE  can be calculated consequently. 

 

Suppose that in Equation 5.66, all the basic events ( )1ℓSpi ∈  are independent and all 

the basic events ( )2ℓSp j ∈  are independent. Consequently one basic event ( )1ℓSpm ∈  

can be correlated with at most one basic event ( )2ℓSpn ∈ . Accordingly 

( ) ( )













∏∏
∈∈ 21 ℓℓ Sp

j

Sp

i

ji

ppE  can be expressed of the form 

 

 
( ) ( )

( ) ( )
( )

( )

∏∏∏∏
∈
∈∈∈

=














2

121

ℓ

ℓℓℓ

Sp

Sp

nmk

Sp

j

Sp

i

n

mji

ppEpEppE  (5.67) 

 



 171 

where mp  and np  stand for a pair of dependent basic events one from each risk 

scenario; kp  stands for an independent basic event that can be from either risk 

scenario. 

 

Consequently, the mean ( )nm ppE  can be calculated by Equation 5.48 that represents 

a simpler way than that represented by Equation 5.43. As a result, the mean 

( ) ( )













∏∏
∈∈ 21 ℓℓ Sp

j

Sp

i

ji

ppE  can also be calculated in a simpler way. 

 

As a summary, after ( )ℓfE , ( )ℓcE , ( ) ( )( )21 ℓℓ ffE ⋅  and ( ) ( )( )21 ℓℓ ccE ⋅  are calculated, the 

variance ( )rvar  can be calculated by Equations 5.49-5.53. 

 

5.7 Software Design 

5.7.1 Overview 

The whole mission is carried out with three Excel workbooks designated for: (1) 

building the uncertainty model in the rule sets; (2) building the uncertainty model for 

the basic events; and (3) calculating the analytical variance and conducting 

simulations. Based on the methods developed in the previous sections, the software 

design for calculating the variance of the mimic models is divided into three major 

procedures: (1) the console procedure; (2) the procedure for calculating the mean of 

the consequence and the mean of the product of two consequences; (3) the procedure 

for calculating the mean of the frequency and the mean of the product of two 

frequencies. The three procedures are implemented by programming with Excel 

VBA associated with the three Excel workbooks. We then discuss the methods for 

validating the software. 

 

5.7.2 Console Procedure 

The console procedure is designed based on Equations 5.50-5.51 to calculate the 

variance of the mimic model of the Fault-tree and Event-tree models. It is 
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implemented by the function outputVar(). As shown in Fig. 5.3, the function 

outputVar() is implemented with two loops. The outer loop is designed to go through 

all the risk scenarios included in the mimic model as demonstrated in Fig. 5.2. The 

loop variable i changes from 1 to N(S) that stands for the risk scenario number. For 

each risk scenario, the mean of the consequence EFi is calculated by Equations 5.55 

and 5.24; the mean of the frequency EFQi is calculated by Equations 5.65 and 5.43. 

The product of EFQi and EFi represents the mean of the equivalent fatalities 

associated with the current risk scenario as defined in Equation 5.52, which is added 

up to the variable ESCS standing for the expectation of the sum of the risk scenario. 

The value of ESCS after the loop conveys the mean ( )rE  as defined in Equation 5.49. 

 

For each risk scenario, the mean of the square of the consequence EFii is calculated 

by Equations 5.59 and 5.62; the mean of the square of the frequency EFQii is 

calculated by Equations 5.66 and 5.43. The product of EFQii and EFii represents the 

mean of the square of the equivalent fatalities associated with the current risk 

scenario, which is added up to the variable ESCSS standing for the expectation of the 

sum of the risk scenario square. 

 

As shown in Fig. 5.3, the inner loop is designed to calculate the mean of the product 

of two different risk scenarios. The loop variable j changes from i to CN. Within the 

loop, the mean of the product of the i
th

 risk scenario frequency and the j
th 

risk 

scenario frequency, denoted as EFQij, is calculated based on Equations 5.66 an 5.43; 

the mean of the product of the i
th

 risk scenario consequence and the j
th 

risk scenario 

consequence, denoted as EFij is calculated based on Equations 5.59 and 5.62. The 

product of EFQij and EFji represents the mean of the product of the i
th 

risk scenario 

risk and the j
th 

risk scenario risk as defined in Equation 5.53, which is doubled and 

then added up to ESCSS. The value of ESCSS after the both loops conveys the mean 

( )2rE  as defined in Equation 5.50. 

 

At the end of the procedure, the variance of the mimic model output can be 

calculated as ESCSESCSESCSS ×−  by the Equation 5.51. 
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As shown in Fig. 5.3, the function outputVar() calls two functions CutSetMean(i,j) 

and consequencesMean(i, j). The function CutSetMean(i,j) calculates the mean of the 

product of two risk scenario frequencies. By setting 0=j , the mean of the i
th 

risk 

scenario frequency can be calculated by the same function. The function 

consequencesMean(i, j) calculates the mean of the of the product of two risk scenario 

consequences. By setting 0=j , the mean of the i
th 

risk scenario consequence can be 

calculated by the same function. The flowcharts of the two functions are to be 

defined separately as follows. 
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Fig. 5.3 Flowchart of Function outputVar() for calculating the variance of the mimic model of 

the Fault-tree and Event-tree models 

 

Set N(S) with the number of 

the risk scenarios 

For i=1 to N(S) 

For j=i+1 to CN 

EFi=consequenceMean(i,0) 

Set ESCS=0, ESCSS=0 

ESCS+=EFQi*EFi 

EFQi=CutsetMean(i,0) 

EFii=consequenceMean(i,i) 

EFQii=CutsetMean(i,i) 
EFij=consequenceMean(i,j) 

EFQij=CutsetMean(i,j) 

ESCSS+=EFQii*EFii 

ESCSS+=2*EFQij*EFij 

j=N(S) 

i=N(S) 

Variance=ESCSS-

ESCS*ESCS 

Yes 

Yes 

No 

No 
i=i+1 

j=j+1 
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5.7.3 Procedure for Calculating the Mean of the Consequence and 

the Mean of the Product of two Consequences 

As shown in Fig. 5.3, the console procedure calls the function consequenceMean(i, j) 

for calculating the mean of the consequence and the mean of the product of two 

consequences. The flowchart of the procedure is demonstrated in Fig. 5.4. When 

0=j  the procedure consequenceMean(i, j) calculates the mean of the consequence 

associated with the i
th

 risk scenario by Equation 5.55. When 0>≥ ij , the procedure 

consequenceMean(i, j) calculates the mean of the product of the two consequences 

associated with the i
th

 risk scenario and the j
th

 risk scenario by Equation 5.59. The 

procedure consequenceMean(i, j) requires two the inputs: (1) the means of the rule 

sets, defined RSMeans(1 To RSN); (2) the means of the products of a pair of rule sets 

RSCPMeans(1 To RSN, 1 To RSN), where RSN stands for the number of the rule sets; 

RSMeans(1 To RSN) is defined as a one-dimensional data vector; RSCPMeans(1 To 

RSN, 1 To RSN) is defined as a two-dimensional data matrix. The two values 

RSMeans and RSCPMeans are calculated in the procedure consequenceMean(i,j) as 

illustrated in Fig. 5.5. 

 

As illustrated in Fig. 5.5, the procedure RuleSetsMeans() start with reading in three 

data sets: RSIA(1 to RSN, 1 to IAN), IADef(1 to IAN, 1 to 2) and IAMeans(1 to IAN, 1 

to 2), where IAN stands for the number of the injury atoms. The data set RSIA is a 

two-dimensional matrix comprising the definition information of the rule sets on the 

injury atoms. Analogous to Table 4.3, the matrix RSIA composes of the weight 

coefficients jkz ,  and each row of RSIA corresponds to one rule set defined by 

Equation 4.9. The data set IADef is a two-dimensional matrix of the definition 

parameters of the injury atoms. Analogous to Table 4.2, each row of RSIA 

corresponds to one injury atom; and the two columns contain the parameters α  and 

β  of a Beta distribution respectively. The data set IAMeans is a two-dimensional 

matrix. With each row corresponding to one injury atom, the two columns of 

IAMeans contain the mean of the injury atom and the mean of the square of the 

injury atom that can be calculated by Equations 5.58 and 5.64 respectively. 
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The function RuleSetsMeans() then goes into the first loop to calculate the means of 

the rule sets by Equation 5.58. The results are stored in the one-dimensional matrix 

RSMeans(1 to RSN), with the cell RSMeans(RSi) contains the mean of the RSi
th

 rule 

set. The function then enters into an embedded loop to calculate the means of the 

product of two rule sets by Equation 5.64. The results are stored in the two-

dimensional matrix RSCPMeans(1 to RSN, 1 to RSN), with the cell RSCPMeans(RSi, 

RSj) contains the mean of the product of the RSi
th

 and the RSj
th

 rule set. The data sets 

RuleSetsMeans and RSCPMeans are then called in the function consequenceMean(i, 

j) to calculate the means of the consequence and the product of two consequence. 
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Fig. 5.4 Flowchart of Function consequenceMean(i,j) for calculating the mean of the i
th

 risk 

scenario consequence when 0=j  or the mean of the product of the i
th

 risk scenario 

consequence and the j
th

 risk scenario consequence when 0>≥ ij  
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EFij=Npi*Npj*RSCPMeans(

COLi, COLj) 

No 

Read in Cut Set number i and 

Cut Set number j 

COLj=the rule set number 

associated with the j
th

 cut set 

Npj = number of the people 

exposed to risk associated with 

the j
th

 cut set 

theEFMean=EFij 
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Fig. 5.5 Flowchart of the function RuleSetsMeans() for calculating the means of the rule set and 

mean of the product of two rule sets through injury atoms 

Read in RSIA(,) and IADef(,) and IAMeans(,) 

For IAj=1 to IAN 

RSMeans(RSi)*=(1-RSIA(RSi, IAj)*IAMeans(IAj,1)) 
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MT2*=(1-RSIA(RSi, IAj)*IAMeans(IAj,1)) 

IAj=IAj+1 

For RSi=1 to RSN 

RSMeans(RSi)=1;  RSCPMeans(RSi,RSi)=0;  MT1=1;  MT2=1 

RSMeans(RSi)=1-RSMeans(RSi) 

RSCPMeans(RSi, RSi)=1+MT1-2*MT2 
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+RSMeans(RSj)-1+MT1 

RSCPMeans(RSi,RSj)=RSCPMeans(RSj,RSi) 
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5.7.4 Procedure for Calculating the Mean of the Frequency and 

the mean of the Product of two Frequencies 

The procedure for calculating the mean of the frequency and the mean of the product 

of two frequencies is implemented in the function CutsetMean(i, j). It is called in the 

function console procedure outputVar() as illustrated in Fig. 5.3. 

 

In the case studies [Harrison, Griffin et al. 2008] of this research, all the basic events 

composing one risk scenario are independent. Accordingly the procedure 

CutsetMean(i, j) is designed based on Equation 5.67. As illustrated in Fig. 5.6, the 

procedure CutsetMean(i, j) has two input parameters i and j that are the number of 

the risk scenarios in the mimic model as shown in Fig. 5.2. The procedure starts with 

reading in the codes of the basic events composing the i
th

 risk scenario and, when 

0≠j , those codes associated with the j
th

 risk scenario. These event codes are stored 

in the vector ECodes(1 to EN), where EN stands for the number of the read-in events. 

Corresponding to the events defined in ECodes(1 to EN), the correlation matrix, the 

standard deviation and the means are then read into corr(1 to EN, 1 to EN), std(1 to 

EN) and EMeans(1 to EN) respectively. 

 

The procedure CutsetMean(i, j) with initializes theMean=1 and Done(1 to EN)=0. It 

then enters into the loop for Ei=1 to EN. When Done(Ei)=0, the mean EMeans(Ei) is 

recorded. The procedure then goes into the embedded loop for Ej=Ei+1 to EN. The 

correlation corr(Ei,Ej) is checked. When corr(Ei,Ej)≠0, the event ECodes(Ej) is the 

only one correlated with the event ECodes(Ei). The mean of the product of 

ECodes(Ej) and ECodes(Ei), i.e. ( )
ji ppE , is calculated by Equation 5.48. The 

procedure CutsetMean(i, j) then marks the event ECodes(Ej) as having been dealt 

with by setting Done(Ej)=1. After that, the procedure jumps out of the embedded 

loop. Depending if there exists a correlated event ECodes(Ej), the output mean 

theMean is multiplied by EMeans(Ei) or ( )
ji ppE . 
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Fig. 5.6 Flowchart of the procedure CutsetMean(i, j) for calculating the mean of the frequency 

and the mean of the product of two frequencies 
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5.7.5 Software Implementation 

5.7.5.1 Overview 

Based on the mimic model as illustrated in Fig. 5.2, the software for calculating the 

variance can be developed with MS Excel. According to Fig. 5.1, the software can be 

partitioned into three parts defined as: (1) Part 1 for building the uncertainty model in 

the rule sets corresponding to Block 6; (2) Part 2 for building the uncertainty model 

of the precursors corresponding to Block 4; and (3) Part 3 for conducting uncertainty 

analysis corresponding to the rest blocks. Parts 1 to 3 are implemented in three Excel 

workbooks named as rulesetsUM.xls, precursorsUM.xls and UAnalysis.xls 

respectively. When needed, the data stored in the three workbooks can be accessed 

from any other ones by programming with Excel VBA [Jelen and Syrstad 2004]. 

 

5.7.5.2 Workbook rulesetsUM 

Workbook rulesetsUM.xls composes of 4 parts including: 

• the definition of the injury atoms;  

• the definition of the rule sets on the injury atoms; 

• the means of the rule sets and the products of two rule sets; 

• the samples of the rule sets 

 

As demonstrated in Fig. 5.7, the injury atoms are defined with the code, the 

definition parameters Alpha and Beta, the mean and the standard deviation. The 

codes are uniquely defined and used to access to the injury atoms. The definition of 

the rule sets on the injury atoms is demonstrated in Fig. 5.8. Based on these two 

definitions, the means of the rule sets and the means of the products of two rule sets 

can be calculated by programming with VBA. It is implemented by the function 

RuleSetsMeans() as illustrated in Fig. 5.5. The outcome means of the rule sets and 

the means of the products of two rule sets can be stored in a worksheet in Workbook 

'rulesetsUM.xls'', which can then be accessed by the function consequenceMeans(i,j) 

for calculating the means of the consequences and the means of the products of the 

consequences, as illustrated in Fig. 5.4. 
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The samples of the rule sets can also be generated by programming with Excel VBA 

in Workbook rulesetsUM.xls. The samples are stored in a worksheet of Workbook 

rulesetsUM.xls and to be accessed from Workbook UAnalysis.xls for conducting 

simulations. 

 

 

Injury Atom Code Alpha Beta mean std

DERTNL 7.9486 1846.6 0.004286003 0.001516552

CARONSTNL 5.025 15.676 0.242741897 0.092035306

STROnTNOS 4.9327 14.798 0.250001267 0.095103037

SecCollTNL 5.3845 19.743 0.214287136 0.080275137

FireTNL 20.309 2.2566 0.899998227 0.061799566

ToxicTNL 20.309 2.2566 0.899998227 0.061799566

Onbridge 6.2706 37.624 0.142855841 0.052225052  

 

Fig. 5.7 Excel worksheet layout of the definition of the injury atoms 

 

 

Rule Sets DERTNL CARONSTNL STROnTNOS SecCollTNL FireTNL ToxicTNL OnBridge

T12-BG-1 0 0 0 0 0 0 1
T12-OF-01 0.333333333 0 0 0 0 0 0

T12-OF-02 0.333333333 0 0 0 0 0 0

T12-OF-03 0.333333333 0 0 0.045684307 0 0 0

T12-OF-04 0.333333333 0 0 0.045684307 0.031746032 0 0

T12-OF-05 0.333333333 0 1 0.045684307 0 0 0

T12-OF-06 0.333333333 0 1 0.045684307 0.031746032 0 0

T12-OF-07 0.333333333 0.54096812 0 0 0 0 0

T12-OF-08 0.333333333 0.54096812 0 0 0.031746032 0 0

T12-OF-09 0.333333333 0.54096812 0 0.133333333 0 0 0

T12-OF-10 0.333333333 0.54096812 0 0.133333333 0.031746032 0 0

T12-OF-11 0.333333333 0.54096812 0.657142857 0.133333333 0 0 0

T12-OF-12 0.333333333 0.54096812 0.657142857 0.133333333 0.047619048 0 0  

 

Fig. 5.8 Excel worksheet layout of the definition of the rule sets on the injury atoms 

 

5.7.5.3 Workbook precursorsUM 

Workbook precursorsUM.xls contains the covariance matrix and the means of the 

precursors. As shown in Fig. 5.9 the codes of the precursors are put on the top row of 

the worksheet. These codes are uniquely defined and are used to access the variance. 

The map from the precursor codes to the associated column numbers can be built by 

programming. Suppose that there are two precursors PC1 and PC2 and the associated 
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column numbers are NPC1 and NPC2 respectively. The covariance between PC1 and 

PC2 can be accessed by either Cells(NPC1+1, NPC2) or Cells(NPC2+1, NPC1) for 

the symmetric covariance matrix [Jelen and Syrstad 2004]. 

 

The samples of the precursors can be generated by the methods developed in Section 

5.3. These samples are stored in a separate worksheet in Workbook 

precursorsUM.xls, which are accessed during simulations. 

 

 

POSL----PHPSNT----PFPSPD----PHUTRN----UEBTRE----UERLNS----UFRQAK----UERSLP----PFWFLD----UEWSNO----UEWWIN----UE

3E-21 1.56E-21 1.59E-20 1.59E-22 0 0 0 0 0 0 0

1.56E-21 1.53E-21 9.36E-21 9.36E-23 0 0 0 0 0 0 0

1.59E-20 9.36E-21 1.59E-19 9.54E-22 0 0 0 0 0 0 0

1.59E-22 9.36E-23 9.54E-22 1.59E-23 0 0 0 0 0 0 0

0 0 0 0 6.11E-20 1.68E-19 0 2.65E-20 7.08E-24 1.38E-20 8.42E-23

0 0 0 0 1.68E-19 5.5E-19 0 7.94E-20 2.13E-23 4.14E-20 2.53E-22

0 0 0 0 0 0 5.19E-27 0 0 0 0

0 0 0 0 2.65E-20 7.94E-20 0 1.36E-20 3.34E-24 6.5E-21 3.97E-23
0 0 0 0 7.08E-24 2.13E-23 0 3.34E-24 1.32E-27 1.61E-24 1.06E-26

0 0 0 0 1.38E-20 4.14E-20 0 6.5E-21 1.61E-24 4.08E-21 2.07E-23  

 

Fig. 5.9 Excel worksheet layout of the covariance matrix of the precursors 

 

 

5.7.5.4 Workbook UAnalysis 

Workbook UAnalysis.xls contains the definitions of the mimic models as 

demonstrated in Fig. 5.2. The three functions outputVar(), consequenceMean(i, j) 

and CutSetMean(i,j) are implemented by programming with Excel VBA in this 

workbook for calculating the mean and variance of the mimic model. These 

functions access Workbook precursorsUM.xls and Workbook rulesetsUM.xls for the 

uncertainty models of the precursors and the rule sets respectively. 

 

The simulations process is also implemented on Workbook UAnalysis.xls. The 

samples of the precursors and the rule sets are fetched from Workbook 

precursorsUM.xls and Workbook rulesetsUM.xls respectively. 
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5.8 Methods for Validating the Software 

At the first stage, the mimic models need to be validated. We need to prove that the 

mimic model is set up correctly and therefore can be used for uncertainty analysis. 

This can be done by comparing the result from the mimic model with that from the 

original model. Given the same values of the input parameters, we run the original 

Fault-tree and Event-tree model and the mimic model separately. The outcome 

results are compared to see if the difference is less than the required precision. 

 

At the second step, we need to test the methods and the software codes for 

calculating the variance of the mimic model. This can be done through a small mimic 

model of a few risk scenarios. For such a small mimic model, the analytical solutions 

of the mean and the variance can be calculated manually. The results can then be 

used to check the outcome results from running the mimic model. Although the 

mimic model composes of only a few risk scenarios, all the methods and the software 

codes have to be run in the same way as for a large real mimic model to calculate the 

mean and the variance. Therefore a small mimic model is efficient to test the 

methods and the software codes for calculating the variance. 

 

At the third step, we need to test that the methods and the software codes can work 

robustly with large real mimic models. We know that unbiased estimations of the 

mean and the variance of the mimic model can be obtained from the Monte-Carlo 

simulations [Helton and Davis 2000; Kurowicka and Cooke 2006]. We can then 

compare the analytical solutions with the simulation results. Consistent results 

demonstrate that the methods and the software for analytical solutions are robust for 

large real mimic models. 

 

5.9 Conclusions 

In this chapter, a set of methods are developed for conducting uncertainty analysis of 

Fault-tree and Event-tree models built on the commercial software such as Isograph 

FT+. It is generally difficult to access and manipulate the data of such Fault-tree and 

Event-tree models [Isograph 2004; Isograph 2005]. It causes the problem in 
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conducting simulations for uncertainty assessment. Because the computer models of 

the Fault-tree and Event-tree models are the “black-box” to the user, it is impossible 

to conduct any kind of analytical analysis of the uncertainty in the output. To solve 

these problems, we develop a mimic MS Excel model for the original Fault-tree and 

Event-tree model. The first benefit is that the MS Excel models are completely 

transparent. The simulations on the mimic models are therefore easy to implement. 

We can also calculate the analytical variance of the mimic model. The second benefit 

of developing the mimic models is associated with the popularity of MS Excel 

especially in business related analysis. An Excel mimic model can be used easily by 

more analysts for various purposes. 

 

Based on the mimic models, we use simulations to build up the empirical distribution 

of the risk. We also develop the method for calculating the analytical solution of the 

variance of the risk. These two methods are implemented independently and 

therefore can be used for cross check to each other. In these two methods, we need to 

cope with the dependent basic events which uncertainty is assumed to follow a joint 

normal distribution. As usually, the dependent basic events are expressed in terms of 

a set of independent standard normal random variables by linear transformation. In 

risk analysis context, however, there are two issues that affect the implementation of 

the linear transformation. First, the covariance matrix can be the positive semi-

definite, to which the Cholesky decomposition is not suitable. To solve this issue, we 

select the linear transformation through eigen-decomposition. Second, the basic 

events may have very small standard deviation [Harrison, Griffin et al. 2008], which 

makes the calculation of the eigenvalues and the eigenvectors more expensive and 

exposed to larger errors. To solve this issue, we select the linear transformation 

through the correlation matrix. 

 

We then design the software to implement the above methods. The software is 

implemented on MS Excel workbooks and therefore can be conveniently installed 

and run in applications. The software is validated at three stages including: (1) 

validate the mimic model; (2) validate correctness of the methods and the software; 

(3) validate the robustness of the methods and the software. 
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For future research work, we can compare the Eigen-decomposition of the 

correlation matrix to the factors elicited for building the correlation matrix. We can 

also continue to investigate the method for calculating the distribution of the sum of 

products of lognormal random variables, which can be used in the future. 
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Chapter 6  

 

Case Studies with RSSB-SRM HET10 and HET12 

 

 

6.1 Overview 

In this chapter, we will conduct two case studies to assess the uncertainties in the 

output of a Fault-tree and Event-tree model. Through these case studies, we will test 

the practical performance of the procedure and the methods for uncertainty analysis 

that are developed in the previous chapters. For each case study, at the first step, we 

will build the covariance matrix of the basic events of the fault tree by the procedure 

developed in Chapter 3. We then build the uncertainty model in the rule sets of the 

event tree by the method developed in Chapter 4. With the uncertainty models in the 

basic events and the rule sets, we then assess the uncertainties in the output by the 

methods developed in Chapter 5. 

 

The case studies are made on the Safety Risk Model (SRM) developed by the Rail 

Safety and Standards Board (RSSB). RSSB was established on 1 April 2003, as the 

implementation of one of the core recommendations from the second part of Lord 

Cullen’s public inquiry into Ladbroke Grove train accident. The prime objective of 

RSSB is to lead and facilitate the railway industry’s work to achieve continuous 

improvement in the safety performance on the Great Britain mainline railways. As a 

part of the efforts, RSSB has built the SRM to measure the risk and the underlying 

causes [Harrison 2004]. 

 

The RSSB-SRM is composed of a series of Fault-tree and Event tree models 

corresponding to the 125 hazardous events respectively. Currently the “best-

estimated” values are set to the input parameters; consequently a point estimation of 
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the yearly equivalent expected fatalities can be obtained by running the model 

[Dennis 2006]. To support decision making, the assessment of the uncertainty in the 

output is needed. It therefore offers good case studies to test the procedure and the 

methods developed in the previous chapters. Our case studies are to be conducted on 

the hazardous events HET10 and HET12 as they are the two largest contributors to 

the safety risk in RSSB-SRM [Dennis 2006]. The acronym HET stands for 

Hazardous Event related to Train. More details on the two hazardous events are to be 

included later in the case studies. 

 

6.2 Elicitation Process 

In line with the processes summarized in [O'Hagan, Buck et al. 2006], we design the 

elicitation process for building up the uncertainty model of multiple input parameters. 

The major development of the process is on the development of the structures to 

model the dependency of high dimensional input, which is the most complex and 

difficult part of building uncertainty model of multiple input parameters [Kurowicka 

and Cooke 2006; O'Hagan, Buck et al. 2006]. 

 

As shown in Fig. 6.1, the whole elicitation process consists of 6 stages. At Stage 1, 

we develop models describing the uncertainty in the basic events of the fault trees 

and the uncertainty in the consequences. As developed in Chapter 3 and Chapter 4 

respectively, the models require reasonable elicitation workload that makes the 

models practical for the stakeholders. 

 

At Stage 2 we choose the experts for the elicitation. The experts are chosen from 

RSSB for three reasons. First, it is the RSSB that builds the safety risk model. The 

RSSB now is concerned with their uncertainty in the model. The experts are likely to 

have a positive attitude towards this exercise. Second, the experts know how the 

RSSB-SRM is built and how it is used in practice. As such, they are knowledgeable 

about the uncertainty sources. Third, the experts have at least basic understanding of 

statistics. Therefore they can understand elicitation questions. 
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At Stage 3, we train the experts with the procedures and models for modelling the 

uncertainties in the basic events and the consequences respectively. At the first step 

of the training, the experts read the documents on the models. After that, a meeting 

was organized on which the models are discussed and demonstration examples were 

made. After the training process, the experts understand the types of information to 

be elicited and how the elicited information is used to assess the uncertainty of the 

input parameters. 

 

At Stage 4: we conduct the elicitation to build up the uncertainty models for the basic 

events and the consequences respectively. At the first step, we develop a software 

tool with MS Excel to build up the benchmark of the qualitative correlation 

assessment by the method described in Chapter 3. The details of the benchmark are 

included in Section 6.3. 

 

For each case study, we elicit the experts’ judgement to build the covariance matrix 

of the basic events of the fault tree. The inconsistent assessments regarding the 

correlations between the basic events and the uncertainty factors can be identified 

during the process by the method developed in Chapter 3. For each case study, we 

also build up the uncertainty model of the consequences of the event tree through 

elicitation. The details of the elicitation are included in the case studies. 

 

At Stage 5: we build up the uncertainty models in the input parameters based on the 

elicited information. For each case study, we build up the covariance matrix of the 

basic events of the fault tree by the procedure developed in Chapter 3. We build up 

also the uncertainty model of the consequences by the method developed in Chapter 

4. 

 

At State 6 the whole elicitation work is reviewed. The experts check the elicited data 

and make sure that no important factors are missed. The experts also check the 

outcome correlations among the basic events and the plots of the samples of the rule 

sets. When the experts find any outcomes inconsistent with their judgement, the 
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associated assessments are then adjusted and the uncertainty models in the inputs are 

updated accordingly. 

 

 

 

 

Fig. 6.1 The elicitation process for the case studies 

 

6.3 Benchmark of the Qualitative Correlation Assessment 

Following the methods developed in Chapter 4, qualitative assessment plus 

benchmark is used for the elicitation of the correlations. Based on the literature and 

the discussion with the experts, we use five correlation levels including: Very Weak 

(VW), Weak(W), Medium(M), Strong(S), and Very Strong(VS). The benchmark 

exercise is conducted with 200 samples of the preset correlation XYρ . These preset 

correlations are then pooled into five groups based on the expert assessment. The 

minimum, average and the maximum of the correlations associated with the five 

Stage 1: Build up the structures for modelling 

the dependence elicit from the experts 

Stage 2: Recruit the experts 

Stage 4: Conduct elicitation 

Stage 5: Build up the uncertainty models in the 

input parameters based on the elicited data 

Stage 6: Review the elicitation 

Stage 3: Train the experts 
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levels are summarized in Table 6.1. The average values are to be used for the case 

studies. 

 

 

Table 6.1 Summary of the statistics of the qualitative correlation levels 

Correlation Levels Minimum Average Maximum 

VW 0.007322779 0.179473026 0.387266054 

W 0.039863085 0.330255985 0.565863759 

M 0.34533765 0.563091162 0.711791892 

S 0.683938713 0.775600499 0.843917637 

VS 0.848889018 0.939226752 0.999453956 

 

6.4 Case Study with HET10 

6.4.1 Elicitation process for building the covariance matrix of the 

precursors 

The hazardous event HET10 is defined as passenger train collision with road vehicle 

on level crossings [Dennis 2005]. On the British mainline railways, there are eight 

types of level crossings (LC) called: ABCL, AHB, AOCL, MG/B, OC, UWC, UWC, 

MWL and UWC(T) [RSSB 2004]. The basic events of the fault tree are called 

precursor in the RSSB-SRM. There are 52 precursors related to HET10. Each 

precursor is associated with one type of level crossings. Therefore a group of 

precursors can be defined on the same event except being associated with the 

different types of level crossings. For instance, a group of precursors are defined as 

road vehicle (RV) driver error causing RV struck by train on level crossing L, where 

L denotes one of the eight types of LC. The experts believe that such a group of 

precursors form a family. The variant factors of the family are the uncertainty factors 

that are related to or affected by any differences among the eight types of level 

crossings. After the effect of the variant factors is accounted, the residual 

uncertainties of the family members form an invariant factor. Therefore the linear 

model of the family is defined as in Equation 3.80. The experts believe as well that 

there is no common factor between the families and, as a result, the precursors from 

different families are independent. Accordingly the elicitation process for building up 
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the covariance matrix of the precursors is made as shown in Fig. 6.2. The elicitation 

process starts with identifying the families by the definitions of the precursors. 

Secondly the differences among the different types of level crossings are elicited. 

Accordingly, the variant factors are identified for each precursor family.  

 

For the elicited variant factor classes, the correlations between the precursors and the 

variant factors are elicited as shown in Block 4a. The explanation coefficient iq  as 

defined in Equation 3.71 is calculated for each member as shown in Block 6. The 

value of 1>iq  indicates that the experts over estimate some variant factors and 

therefore need to adjust their judgement as shown in Block 7. When the coefficient 

iq  is very small for all the family members, the correlations within a factor class 

have insignificant impact on the family correlation matrix. Therefore they are 

assumed to be zero. Otherwise, the correlations within a factor class need to be 

elicited as shown in Block 5. 

 

For some families related with HET10, no significant variant factors can be elicited. 

In this case, the proportion of the variance due to the family commonality, i.e. iq−1 , 

is elicited as shown in Block 4b. The marginal variance is attributed to an 

unspecified exclusive factor for each member precursor as shown in Block 9. 

 

With the elicitations regarding the variant factors, the family correlation matrix can 

be derived in Block 10. The variance of the family is elicited in Block 2 and the 

family covariance matrix can then be derived in Block 11 by the methods developed 

in Chapter 3. 

 

We will continue to discuss elicitation in details. To make the elicitation easy to 

follow, the following subsections are headed according to the structure of Fig. 6.2. At 

the beginning of each subsection, we also locate the subsection with reference to the 

blocks in Fig. 6.2. 
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Fig. 6.2 Flow chart for building covariance matrix of the precursors 

 

1. Identify the families by the definitions of the precursors 

3. Identify for each family the variant factors related to 

the differences between the types of level crossings 

5. Elicit correlations 

between variant factors 

of the same class 

4a. Elicit correlations 

between the precursor 

and its variant factors. 

10. Derive family 

correlations matrix 

4b. Elicit the proportion of the 

variance due to the family 

commonality for each 

precursor member. 

9. Attribute the marginal 

variance to an unspecified 

exclusive factor 

Yes 

No 

6. For each family member, 

calculate the proportion 

of the variance explained 

by the variant factors 

Yes 

No 

4. Any major variant factors 

found for this family? 

7. Do the variant factors 

account for more than 100 

percent of the variance of 

member precursors? 

 

8. Do the variant factors 

contribute only marginally 

to the variance of the 

member precursors? 

Y
es

 –
 c

o
rr

ec
ti

o
n

 n
ee

d
ed

  

11. Derive the family 

covariance matrix  

2. Elicit the variance 

of the family 

No – Need more 

information 



 194 

 

6.4.2 Precursor Families 

This subsection is referred to Block 1 in Fig. 6.2. We will identify the precursor 

families. 

 

The 52 precursors related to HET10 are put into nine groups by the definitions. The 

experts believe that the group of “RV Driver error causing RV struck by train on 

various types of LCs” and the group of “RV driver deliberate action causing RV 

struck by train on various types of LCs” are identical. The two groups are therefore 

combined. As a result, eight precursor families are identified as summarized in Table 

6.2. Within each family, the precursors are defined on various types of level 

crossings. As summarized in Table 6.3, a tick indicates that the precursor family in 

the most left column has a precursor defined on the type of level crossing as titled on 

the top row. 

 

Table 6.2 Precursor families identified for RSSB-SRM HET10 

No. Family Code Description 

1 RVSTRENV  RV incorrectly on various types of LCs and struck by train due to 

environmental factors 

2 TOVRSPD  Train over-speeding causes RV struck by train on various types of LCs. 

3 RVSTRAN  RV stranded and struck by train on the various types of LCs 

4 SPADPROT  RV struck by train due to SPAD at signal protecting the various types of 

LCs 

5 SIGERR  Signalman or Crossing keeper error causes RV struck by train on various 

types of LCs.  

6 RVDRVERR RV driver error causing RV struck by train on various types of LCs and; 

RV driver deliberate action causing RV struck by train on various types of 

LCs 

7 RVDRVSUI  RV stuck by train due to RV driver suicide on various types of LCs.  

8 LTBRFAI  RV stuck by train due to Lights/Barriers fail to operate on various types of 

LCs  

 

Table 6.3 Precursor families and the associated types of level crossings 

Family Code ABCL AHB AOCL MG/B OC UWC 

UWC 

MWL 

UWC 

(T) 

1 RVSTRENV √ √ √ √ √ √ √ √ 

2 TOVRSPD √ √ √ √     
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3 RVSTRAN √ √ √ √  √ √ √ 

4 SPADPROT √  √ √     

5 SIGERR  √  √    √ 

6 RVDRVERR √ √ √ √ √ √ √ √ 

7 RVDRVSUI √ √ √  √ √ √ √ 

8 LTBRFAI √ √ √ √     

 

6.4.3 Variance of Families 

This subsection is referred to Block 2 in Fig. 6.2. We will elicit the variance of each 

of the eight precursor families as identified in the subsection 6.4.2. 

 

The occurrence rate of a family, denoted as λ , is the sum of the occurrence rates of 

the precursors in the family. It is assumed that λ  follows normal distribution. The 

mean of λ  is, denoted as µ , is set as the sum of the existing point values of the 

family members. Given λ , the waiting time between two successive occurrences, 

denoted as T , is assumed to be exponentially distributed. Subsequently, the 

predictive distribution of T  can be developed by Bayes theorem. The waiting time T 

is an observable variable and the expert’s ability in assessing the percentiles has been 

well proven [Pearson and Tukey 1965; Keefer and Bodily 1983; Cooke 1991; 

Garthwaite, Kadane et al. 2005; Kurowicka and Cooke 2006; O'Hagan, Buck et al. 

2006]. As developed in Chapter 3, we will elicit the 95 percentile of the waiting time, 

denoted as 95.0t , and consequently derive λσ , i.e. the standard deviation of λ . 

 

As summarized in Table 6.4, the value of 95.0t  is elicited within a reference interval 

for each family. The minimum 95.0t  is calculated on with the pure exponential 

distribution when λ  is fixed to µ . The experts agree that λσ  has a maximum 

boundary at 8.3µ , based on with the possible maximum 95.0t  is calculated 

accordingly. The experts then are asked to give their belief of 95.0t  within the given 

interval. The elicited 95.0t  and the derived λσ  for the eight families related to HET10 

are presented in Table 6.4. These standard deviations are to be used in developing the 

family covariance matrix. 
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Table 6.4 Elicited 95 percentile of the waiting time, i.e. 95.0t , and the outcome standard 

deviation of the occurrence rate of the families related with HET10 

Family Code Minimum 95.0t  Maximum 95.0t  

Assessment of 

95.0t  

Standard 

Deviation 

λσ  

RVSTRENV  111 months 126 months 118 months 2.36E-10 

TOVRSPD  93 years 106 years 100 years 2.33E-11 

RVSTRAN  42 months 47 months 44 months 6.28E-10 

SPADPROT  197 years 224 years 210 years 1.10E-11 

SIGERR  110 months 125 months 118 months 2.36E-10 

RVDRVERR 78 days 89 days 83 days 1.02E-08 

RVDRVSUI  70 months 80 months 75 months 3.71E-10 

LTBRFAI  93 years 106 years 100 years 2.33E-11 

 

 

Based on the variance elicited above, we are going to derive the covariance matrix of 

each precursor family. For this purpose, we need to elicit for each family the variant 

factors and the information on the variant factors. The elicitation starts from Block 3 

in Fig. 6.2. The choice of the following route depends on the answer to Block 4 in 

Fig. 6.2. When there is a variant factor, we follow the route through Block 4a, Block 

5, Block 10 to Block 11. When there is no variant factor, we follow the route through 

Block 4b, Block 10 to Block 11. Each of the following eight subsections is dedicated 

to one of the eight precursor families summarized as Table 6.2. 

 

6.4.4 Covariance Matrix of the Precursor Family RVSTRENV 

6.4.4.1 Variant Factors 

This subsection is related to Block 3 in Fig. 6.2. We will elicit the variant factors for 

the precursor family RVSTRENV. 

 

The precursor family RVSTRENV is defined for “RV incorrectly on various types of 

LCs and struck by train due to environmental factors”. As summarized in Table 6.5, 

one variant factor class is elicited as “RV drivers' ability to respond to the prevailing 
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weather conditions”. The level crossings are put into two categories: user worked 

crossings (UWC) and non-UWC [RSSB 2004]. The two categories of LCs have their 

own users. Accordingly the two groups of users are defined as UWC users and non-

UWC users. 

 

Table 6.5 Elicited factor class for the family RVSTRENV 

Family RVSTRENV – RV incorrectly on various types of LCs and struck by train due to 

environmental factors 

No. Variant Class 

1.  RV drivers' ability to respond to the prevailing weather conditions. 

 

6.4.4.2 Correlations between the Precursors and the Associated 

Variant Factors 

This subsection is related to Block 4a in Fig. 6.2 because one variant factor class has 

been elicited for the family RVSTRENV. We will elicit the correlations between the 

precursors and the associated variant factors. 

 

A medium correlation is elicited between the precursors on UWC LCs and the UWC 

users; a medium correlation is also elicited between the precursors on non-UWC LCs 

and the non-UWC users. The elicited results are summarized in Table 6.6. Because 

the elicited correlations are positive in this case study we do not mark the correlation 

sign explicitly. 

 

Table 6.6 Elicited correlations between the variant factors and the associated precursors of the 

family RVSTRENV 

Precursor Family RVSTRENV – RV incorrectly on LC and struck by train due 

to environmental factors 

Variant Class RV drivers' ability to respond to the prevailing weather 

conditions. 

NO. Variant Factors Associated precursor Correlation 

1. Concerning UWC LCs RVSTRENV on UWC LCs M 

2. Concerning Non-UWC LCs RVSTRENV on Non-UWC LCs M 
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6.4.4.3 Correlations within the Variant Factor Class 

This subsection is related to Block 5 in Fig. 6.2. We will elicit the correlations within 

the factor class of "RV drivers' ability to respond to the prevailing weather 

conditions". 

 

A medium correlation between UWC users and non-UWC users is elicited as 

summarized in Table 6.7. 

 

Table 6.7 Correlations within the factor class for the family RVSTRENV 

Family name RVSTRENV – RV incorrectly on LCs and struck by train due to 

environmental factors 

Variant class RV drivers' ability to respond to the prevailing weather conditions 

Variant factor 1 On UWC LCs 

Variant factor 2 On Non-UWC LCs 

The correlation between the 

above two variant factors 

M 

 

6.4.4.4 Family Correlation Matrix 

This subsection is related to Block 10 in Fig. 6.2. We will derive the family 

correlation matrix based on the elicitations on the variant factors. 

 

The above qualitative correlations regarding the variant factors are then mapped to 

the benchmark averages as summarized in Table 6.1. The correlation matrix of the 

family RVSTRENV can then be derived. As summarized in Table 6.8, the family 

correlation is divided into two blocks corresponding to the UWC users group and the 

non-UWC users group. 

 

Table 6.8 Correlation matrix of the family RVSTRENV 

 ABCL AHB AOCL MG/B OC UWC UWC-
MWL 

UWC+T 

ABCL 1 1 1 1 1 0.86 0.86 0.86 

AHB 1 1 1 1 1 0.86 0.86 0.86 

AOCL 1 1 1 1 1 0.86 0.86 0.86 

MG/B 1 1 1 1 1 0.86 0.86 0.86 
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OC 1 1 1 1 1 0.86 0.86 0.86 

UWC 0.86 0.86 0.86 0.86 0.86 1 1 1 

UWC-
MWL 

0.86 0.86 0.86 0.86 0.86 1 1 1 

UWC+T 0.86 0.86 0.86 0.86 0.86 1 1 1 

 

6.4.4.5 Family Covariance Matrix 

This subsection is related to Block 11 in Fig. 6.2. We will derive the family 

covariance matrix.  

 

Based one the family variance as summarized in Table 6.4 and the above elicitations 

on the variant factors, the family covariance matrix is derived by the method 

developed in Chapter 3. The outcome family covariance matrix is summarized in 

Table 6.9. 

 

Table 6.9 Covariance matrix of the precursor family RVSTRENV 

WABCL
ENVTE 

WAHB-
ENVTE 

WAOCL
ENVTE 

WMG/B
ENVTR 

WOC--
ENVTE 

WUWC-
ENVTE 

WUWCM
ENVTE 

WUWCT
ENVTE 

5.48E-24 4.73E-23 1.41E-23 8.69E-23 6.04E-24 1.99E-22 1.34E-23 1.4E-22 

4.73E-23 4.08E-22 1.22E-22 7.5E-22 5.21E-23 1.71E-21 1.16E-22 1.21E-21 

1.41E-23 1.22E-22 3.62E-23 2.24E-22 1.55E-23 5.1E-22 3.45E-23 3.6E-22 

8.69E-23 7.5E-22 2.24E-22 1.38E-21 9.58E-23 3.15E-21 2.13E-22 2.22E-21 

6.04E-24 5.21E-23 1.55E-23 9.58E-23 6.65E-24 2.19E-22 1.48E-23 1.54E-22 

1.99E-22 1.71E-21 5.1E-22 3.15E-21 2.19E-22 9.69E-21 6.56E-22 6.84E-21 

1.34E-23 1.16E-22 3.45E-23 2.13E-22 1.48E-23 6.56E-22 4.44E-23 4.63E-22 

1.4E-22 1.21E-21 3.6E-22 2.22E-21 1.54E-22 6.84E-21 4.63E-22 4.83E-21 

 

6.4.5 Precursor Family TOVRSPD 

The precursor family TOVRSPD is defined as “Train over-speeding causes RV 

struck by train on various types of LCs”. For this family, no significant variant factor 

is identified by the experts. As proposed previously, the proportion of the variance 

due to the family commonality is elicited for each family member as presented in 
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Appendix B. The family correlation matrix and the family covariance matrix are 

derived as presented in Table 6.10 and Table 6.11 respectively. 

 

Table 6.10 Correlation matrix of the precursor family TOVRSPD 

 ABCL AHB AOCL MG/B 

ABCL 1 0.9 0.9 0.9 

AHB 0.9 1 0.9 0.9 

AOCL 0.9 0.9 1 0.9 

MG/B 0.9 0.9 0.9 1 

 

Table 6.11 Covariance matrix of the precursor family TOVRSPD 

PABCLOVSTH PAHB-OVSTH PAOCLOVSTH PMG/BOVSTH 

5.61E-25 5E-24 1.49E-24 9.2E-24 

5E-24 5.51E-23 1.48E-23 9.11E-23 

1.49E-24 1.48E-23 4.89E-24 2.71E-23 

9.2E-24 9.11E-23 2.71E-23 1.86E-22 

 

6.4.6 Precursor Family RVSTRAN 

The precursor family RVSTRAN is defined as “RV stranded on LC causes RV struck 

by train on various types of LCs”. For this family, two variant factor classes are 

identified as summarized as: 

• FC1: Propensity for there to be blocking back on a crossing, i.e. where you get 

traffic jams extending back over level crossings 

• FC2: Profile of the RV drivers using the crossing, i.e. the propensity of certain 

drivers to violate rules 

 

The elicited data regarding the two variant factors are presented in Appendix B. The 

family correlation matrix and the family covariance matrix are derived as presented 

in Table 6.12 and Table 6.13. 

 

Table 6.12 Correlation matrix of the precursor family RVSTRAN 

 ABCL AHB AOCL MG/B UWC UWC-MWL UWC+T 

ABCL 1.00 0.62 0.86 0.85 0.72 0.72 0.72 
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AHB 0.62 1.00 0.41 0.40 0.46 0.46 0.46 

AOCL 0.86 0.41 1.00 0.94 0.65 0.65 0.65 

MG/B 0.85 0.40 0.94 1.00 0.67 0.67 0.67 

UWC 0.72 0.46 0.65 0.67 1.00 1.00 1.00 

UWC-MWL 0.72 0.46 0.65 0.67 1.00 1.00 1.00 

UWC+T 0.72 0.46 0.65 0.67 1.00 1.00 1.00 

 

Table 6.13 Covariance matrix of the precursor family RVSTRAN 

VABCLST
RTE 

VAHB-
STRTE 

VAOCLST
RTE 

VMG/BST
RTE 

VUWC-
STRTE 

VUWCMS
TRTE 

VUWCTST
RTE 

5.39E-23 2.64E-22 1.1E-22 6.69E-22 1.5E-21 1.02E-22 1.06E-21 

2.64E-22 3.38E-21 4.14E-22 2.49E-21 7.64E-21 5.17E-22 5.39E-21 

1.1E-22 4.14E-22 2.99E-22 1.74E-21 3.18E-21 2.15E-22 2.25E-21 

6.69E-22 2.49E-21 1.74E-21 1.14E-20 2.02E-20 1.37E-21 1.43E-20 

1.5E-21 7.64E-21 3.18E-21 2.02E-20 8.01E-20 5.41E-21 5.65E-20 

1.02E-22 5.17E-22 2.15E-22 1.37E-21 5.41E-21 3.67E-22 3.82E-21 

1.06E-21 5.39E-21 2.25E-21 1.43E-20 5.65E-20 3.82E-21 4E-20 

 

6.4.7 Precursor Family SPADPROT 

The precursor family SPADPROT is defined as “SPAD at signal protecting the LC 

causes RV struck by train on various types of LCs”. One factor class is identified by 

the experts as “the effectiveness of the signal protecting the LCs”. The elicited data 

regarding the variant factors are presented in Appendix B. The family correlation 

matrix and the family covariance matrix are derived as presented in Table 6.14 and 

Table 6.15. 

 

Table 6.14 Correlation matrix of the precursor family SPADPROT 

 ABCL AOCL MG/B 

ABCL 1.00 0.97 0.97 

AOCL 0.97 1.00 0.97 

MG/B 0.97 0.97 1.00 

 

Table 6.15 Covariance matrix of the precursor family SPADPROT 

PABCLSPDTH PAOCLSPDTH PMG/BSPDTH 
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2.34E-25 6.96E-25 4.3E-24 

6.96E-25 2.19E-24 1.31E-23 

4.3E-24 1.31E-23 8.34E-23 

 

6.4.8 Precursor Family SIGERR 

The precursor family SIGERR is defined as “Signalman or Crossing keeper error 

causes RV struck by train on various types of LCs”. One factor class is identified as 

“Complexity of operating the crossing”. The elicited data regarding the variant 

factors are presented in Appendix B. The family correlation matrix and the family 

covariance matrix are derived as presented in Table 6.16 and Table 6.17. 

 

Table 6.16 Correlation matrix of the precursor family SIGERR 

 AHB MG/B UWC+T 

AHB 1.00 0.74 0.93 

MG/B 0.74 1.00 0.74 

UWC+T 0.93 0.74 1.00 

 

Table 6.17 Covariance matrix of the precursor family SIGERR 

LAHB-SKPTH LMG/BSKPTH VUWCTSKPTH 

2.2E-21 2.47E-21 5.8E-21 

2.47E-21 5.07E-21 7.02E-21 

5.8E-21 7.02E-21 1.78E-20 

 

6.4.9 Precursor Family RVDRVERR and RVDRVDEL 

The experts believe that the precursors “RV Driver error causing RV struck by train 

on LCs” and the precursors “RV driver deliberate action on various types of 

crossing” are identical on the same level crossing in terms of the uncertainty 

modelling. Correspondingly these two groups of precursors are defined within in one 

family RVDRVERR and RVDRVDEL. One factor class is identified by the experts 

as “the quality of the users”. The elicited data regarding the variant factors are 

presented in Appendix B. 
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The correlation matrix for the family RVDRVERR and RVDRVDEL is then derived 

as presented in Table 6.18. The correlation matrix composes eight rows and eight 

columns corresponding to the eight LCs because the RV Driver error and the RV 

driver deliberate action on the same LC are combined together. Denote this 88×  

correlation matrix as cr , where the subscript c stands for combination. The 

correlation matrix for the 16 precursors related to RVDRVERR and RVDRVDEL 

respectively can then be defined as 

 

 ( ) 







=

cc

cc

rr

rr
r EDLERR,  

 

Table 6.18 Correlation matrix of the precursor family RVDRVERR and RVDRVDEL 

 ABCL AHB AOCL MG/B OC UWC UWC-MWL UWC+T 

ABCL 1.00 1.00 1.00 1.00 1.00 0.84 0.84 0.84 

AHB 1.00 1.00 1.00 1.00 1.00 0.84 0.84 0.84 

AOCL 1.00 1.00 1.00 1.00 1.00 0.84 0.84 0.84 

MG/B 1.00 1.00 1.00 1.00 1.00 0.84 0.84 0.84 

OC 1.00 1.00 1.00 1.00 1.00 0.84 0.84 0.84 

UWC 0.84 0.84 0.84 0.84 0.84 1.00 1.00 1.00 

UWC-MWL 0.84 0.84 0.84 0.84 0.84 1.00 1.00 1.00 

UWC+T 0.84 0.84 0.84 0.84 0.84 1.00 1.00 1.00 

 

Denote the covariance matrix for the combined family as: 

 

 [ ]2

, jic σ=Σ , 8,,1, ⋯=ji  (6.1) 

 

where c stands for the combination of RVDRVERR and RVDRVDEL. 

 

The covariance matrix cΣ  can be derived as presented in Table 6.19. From cΣ  the 

covariance matrix for the 16 precursors related to RVDRVERR and RVDRVDEL 

can be defined as 
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 ( )
( ) ( )

( ) ( ) 







=

DELcovERRDEL,cov

DELERR,covERRcov
DELERR,cov  (6.2) 

 

where ( ) [ ]2

,ERRcov jiE=  and ( ) [ ]2

,DELcov jiD=  are the covariance matrix related to 

RVDRVERR and RVDRVDEL respectively; ( ) [ ]2

,DELERR,cov jiED=  is the 

covariance matrix between RVDRVERR and RVDRVDEL; ( )ERRDEL,cov  is the 

transposition of ( )DELERR,cov . 

 

Based on Equation 6.2, we are going to derive 2

, jiE , 2

, jiD  and 2

, jiED . Because the RV 

Driver error and the RV driver deliberate action on the same LC are believed 

identical, they can be defined by the same random variable with different factors. 

The factors are defined by the associated means as summarized in Table 6.20. We 

define 

 

 
iDiE

iE

iEc
,,

,

,
µµ

µ

+
=  (6.3) 

 
iDiE

iD

iDc
,,

,

,
µµ

µ

+
=  (6.4) 

 

where iE ,µ  and iD,µ  stand for are the mean of the i
th

 precursor corresponding to 

RVDRVERR and RVDRVDEL respectively. 

 

Based on Equations 6.3 and 6.4, we have 

 

 2

,,,

2

, jijEiEji ccE σ⋅⋅=  (6.5) 

 2

,,,

2

, jijDiDji ccD σ⋅⋅=  (6.6) 

 2

,,,

2

, jijDiEji ccED σ⋅⋅=  (6.7) 
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By Equations 6.5-6.7, the matrix ( )ERRcov , ( )DELcov  and ( )DELERR,cov  can be 

calculated from cΣ  and are presented in Tables 6.21-6.23 respectively. 

 

Table 6.19 Covariance matrix of the precursor family RVDRVERR and RVDRVDEL 

ABCL AHB AOCL MG/B OC UWC UWC-
MWL 

UWC+T 

9.20E-21 8.38E-20 2.5E-20 1.54E-19 1.07E-20 3.44E-19 2.33E-20 2.43E-19 

8.38E-20 7.64E-19 2.28E-19 1.4E-18 9.76E-20 3.14E-18 2.12E-19 2.22E-18 

2.50E-20 2.28E-19 6.78E-20 4.19E-19 2.91E-20 9.35E-19 6.33E-20 6.6E-19 

1.54E-19 1.4E-18 4.19E-19 2.58E-18 1.79E-19 5.77E-18 3.91E-19 4.07E-18 

1.07E-20 9.76E-20 2.91E-20 1.79E-19 1.25E-20 4.01E-19 2.71E-20 2.83E-19 

3.44E-19 3.14E-18 9.35E-19 5.77E-18 4.01E-19 1.81E-17 1.23E-18 1.28E-17 

2.33E-20 2.12E-19 6.33E-20 3.91E-19 2.71E-20 1.23E-18 8.31E-20 8.67E-19 

2.43E-19 2.22E-18 6.6E-19 4.07E-18 2.83E-19 1.28E-17 8.67E-19 9.05E-18 

 

Table 6.20 Means of the precursors related to RVDRVERR and RVDRVDEL 

 ABCL AHB AOCL MG/B OC UWC UWC-MWL UWC+T 

ERR 2.42E-10 7.45E-09 1.33E-08 3.92E-10 1.96E-09 5.10E-09 2.75E-09 1.02E-08 

DEL 8.97E-11 2.66E-09 3.53E-09 3.92E-10 2.28E-14 1.17E-09 2.38E-10 1.34E-09 

 

Table 6.21 Covariance matrix related to RVDRVERR 

VABCLD
RRTH 

VAHB-
DRRTH 

VAOCLD
RRTH 

VMG/BD
RRTH 

VOC--
DRRTH 

VUWC-
DRRTH 

VUWCM
DRRTH 

VUWCT
DRRTH 

4.89E-21 4.51E-20 1.44E-20 5.62E-20 7.81E-21 2.04E-19 1.56E-20 1.57E-19 

4.51E-20 4.15E-19 1.33E-19 5.18E-19 7.19E-20 1.88E-18 1.44E-19 1.44E-18 

1.44E-20 1.33E-19 4.24E-20 1.65E-19 2.3E-20 6.01E-19 4.6E-20 4.61E-19 

5.62E-20 5.18E-19 1.65E-19 6.46E-19 8.97E-20 2.35E-18 1.8E-19 1.8E-18 

7.81E-21 7.19E-20 2.3E-20 8.97E-20 1.25E-20 3.26E-19 2.5E-20 2.5E-19 

2.04E-19 1.88E-18 6.01E-19 2.35E-18 3.26E-19 1.2E-17 9.19E-19 9.21E-18 

1.56E-20 1.44E-19 4.6E-20 1.8E-19 2.5E-20 9.19E-19 7.04E-20 7.06E-19 

1.57E-19 1.44E-18 4.61E-19 1.8E-18 2.5E-19 9.21E-18 7.06E-19 7.07E-18 

 

Table 6.22 Covariance matrix related to RVDRVDEL 

VABCLD
ELTH 

VAHB-
DELTH 

VAOCLD
ELTH 

VMG/BD
ELTH 

VOC--
DELTH 

VUWC-
DELTH 

VUWCM
DELTH 

VUWCTD
ELTH 

6.73E-22 5.96E-21 1.41E-21 2.09E-20 3.37E-26 1.74E-20 5.02E-22 7.62E-21 
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5.96E-21 5.28E-20 1.25E-20 1.85E-19 2.98E-25 1.54E-19 4.45E-21 6.75E-20 

1.41E-21 1.25E-20 2.97E-21 4.38E-20 7.08E-26 3.66E-20 1.05E-21 1.6E-20 

2.09E-20 1.85E-19 4.38E-20 6.46E-19 1.04E-24 5.39E-19 1.55E-20 2.36E-19 

3.37E-26 2.98E-25 7.08E-26 1.04E-24 1.69E-30 8.71E-25 2.51E-26 3.81E-25 

1.74E-20 1.54E-19 3.66E-20 5.39E-19 8.71E-25 6.33E-19 1.83E-20 2.77E-19 

5.02E-22 4.45E-21 1.05E-21 1.55E-20 2.51E-26 1.83E-20 5.27E-22 8E-21 

7.62E-21 6.75E-20 1.6E-20 2.36E-19 3.81E-25 2.77E-19 8E-21 1.21E-19 

 

Table 6.23 Covariance between RVDRVERR and RVDRVDEL 

 VABCLD
ELTH 

VAHB-
DELTH 

VAOCLD
ELTH 

VMG/BD
ELTH 

VOC--
DELTH 

VUWC-
DELTH 

VUWCM
DELTH 

VUWCTD
ELTH 

VABCLD
RRTH 

1.82E-21 1.61E-20 3.81E-21 5.62E-20 9.08E-26 4.69E-20 1.35E-21 2.05E-20 

VAHB-
DRRTH 

1.67E-20 1.48E-19 3.51E-20 5.18E-19 8.37E-25 4.32E-19 1.25E-20 1.89E-19 

VAOCLD
RRTH 

5.34E-21 4.73E-20 1.12E-20 1.65E-19 2.67E-25 1.38E-19 3.98E-21 6.05E-20 

VMG/BD
RRTH 

2.09E-20 1.85E-19 4.38E-20 6.46E-19 1.04E-24 5.39E-19 1.55E-20 2.36E-19 

VOC—
DRRTH 

2.9E-21 2.56E-20 6.08E-21 8.97E-20 1.45E-25 7.48E-20 2.16E-21 3.28E-20 

VUWC-
DRRTH 

7.58E-20 6.71E-19 1.59E-19 2.35E-18 3.79E-24 2.76E-18 7.95E-20 1.21E-18 

VUWCM
DRRTH 

5.8E-21 5.14E-20 1.22E-20 1.8E-19 2.9E-25 2.11E-19 6.09E-21 9.25E-20 

VUWCTD
RRTH 

5.82E-20 5.15E-19 1.22E-19 1.8E-18 2.91E-24 2.12E-18 6.11E-20 9.27E-19 

 

6.4.10 Precursor Family RVDRVSUI 

The precursor family RVDRVSUI is defined as “RV driver suicide causes RV struck 

by train on various types of LCs”. For this family, no significant variant class is 

identified by the experts. As proposed previously, the proportion of the variance due 

to the family commonality is elicited for each precursor as presented in Appendix B. 

The family correlation matrix and the family covariance matrix are derived as 

presented in Table 6.24 and Table 6.25. 

 

Table 6.24 Correlation of the precursor family RVDRVSUI 

 ABCL AHB AOCL OC UWC UWC-MWL UWC+T 

ABCL 1 0.95 0.95 0.95 0.95 0.95 0.95 
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AHB 0.95 1 0.95 0.95 0.95 0.95 0.95 

AOCL 0.95 0.95 1 0.95 0.95 0.95 0.95 

OC 0.95 0.95 0.95 1 0.95 0.95 0.95 

UWC 0.95 0.95 0.95 0.95 1 0.95 0.95 

UWC-
MWL 

0.95 0.95 0.95 0.95 0.95 1 0.95 

UWC+T 0.95 0.95 0.95 0.95 0.95 0.95 1 

 

Table 6.25 Covariance matrix of the precursor family RVDRVSUI 

VABCLSU
IXPE 

VAHBSUI
XPE 

VAOCLSU
IXPE 

VOC--
SUIXPE 

VUWCSU
IXPE 

VUWCLS
UIXPE 

VUWCTS
UIXPE 

1.32E-23 1.28E-22 3.82E-23 1.64E-23 6.24E-22 4.23E-23 4.41E-22 

1.28E-22 1.37E-21 3.89E-22 1.67E-22 6.36E-21 4.3E-22 4.49E-21 

3.82E-23 3.89E-22 1.22E-22 4.96E-23 1.89E-21 1.28E-22 1.34E-21 

1.64E-23 1.67E-22 4.96E-23 2.24E-23 8.11E-22 5.49E-23 5.73E-22 

6.24E-22 6.36E-21 1.89E-21 8.11E-22 3.26E-20 2.1E-21 2.19E-20 

4.23E-23 4.3E-22 1.28E-22 5.49E-23 2.1E-21 1.49E-22 1.48E-21 

4.41E-22 4.49E-21 1.34E-21 5.73E-22 2.19E-20 1.48E-21 1.63E-20 

 

6.4.11 Precursor Family LTBRFAI 

The precursor family LTBRFAI is defined as “That Light/barriers fail to operate 

causes RV struck by train on various types of LCs”. One factor class is identified by 

the experts as “the technical workings of the lights and barriers and their failure 

rates”. The elicited data regarding the variant factors are presented in Appendix B. 

The family correlation matrix and the family covariance matrix are derived as 

presented in Table 6.26 and Table 6.27. 

 

 

Table 6.26 Correlation matrix of the precursor family LTBRFAI 

 ABCL AHB AOCL MG/B 

ABCL 1.00 0.98 0.79 0.88 

AHB 0.98 1.00 0.79 0.88 

AOCL 0.79 0.79 1.00 0.88 

MG/B 0.88 0.88 0.88 1.00 
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Table 6.27 Covariance matrix of the precursor family LTBRFAI 

LABCLBLETF LAHB-BLETF LAOCLLSETF LMG/BLSETF 

7.43E-25 6.29E-24 1.5E-24 1.04E-23 

6.29E-24 5.54E-23 1.3E-23 9E-23 

1.5E-24 1.3E-23 4.91E-24 2.68E-23 

1.04E-23 9E-23 2.68E-23 1.87E-22 

 

6.4.12 Uncertainty Models in the Rule Sets 

6.4.12.1 Identification of hazards 

As summarized in Appendix B, there are 12 rule sets defined for the consequences 

related to HET10 [Dennis 2005]. Three hazard sources are identified as mechanical 

impact, fire, and toxic goods. For the mechanical impact, the train approaching speed 

is the major factor. The trains’ approaching speeds are put into two levels associated 

with the automotive LCs (ABCL and AOCL) and the other level crossings 

respectively [RSSB 2004]. Accordingly two hazards are defined related to the 

mechanical impact as summarized in Table 6.28. 

 

The fire hazard is affected by whether there are extra flammable goods involved in 

the accidence. Toxic goods are believed flammable and therefore cause extra 

casualties due to fire. As a result, three hazards related to fire are defined as fire 

without extra flammable goods, fire with flammable goods carried in the involved 

road vehicle, and fire with toxic goods as a flammable goods carried in the involved 

road vehicle as summarized in Table 6.28. 

 

The toxic hazard source is specified for the toxic goods carried in the involved road 

vehicle only. Consequently one hazard related to toxic is defined as summarized in 

Table 6.28. 

 

The five hazards identified above are to be defined on the injury atoms next. 
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Table 6.28 Hazards identified for HET10 

Hazard Code Hazard Source Description 

MIPAU Mechanical 

impact 

Mechanical impact with train approaching speed on 

automotive level crossings 

MIPRO Mechanical 

impact 

Mechanical impact with train approaching speed on the 

other non-automotive level crossings 

Fire Fire Fire without extra flammable goods or toxic goods carried 

in the involved road vehicle 

FireFGs Fire Fire with extra flammable goods carried in the involved 

road vehicle 

FireTGs Fire Fire with toxic goods as a flammable goods carried in the 

involved road vehicle 

ToxicGs Toxic goods Toxic goods carried in the involved road vehicle 

 

6.4.12.2 Definitions of Injury Atoms 

The injury atoms are defined for each hazard source at the worst level. The injury 

atom associated with the mechanical impact is defined on the hazard associated with 

non-automotive level crossings. The injury atom associated with fire is defined on 

the hazard associated with extra flammable goods. The injury atom associated with 

toxic is defined on the only hazard with toxic goods carried in the road vehicle. 

 

The injury atoms are assumed to follow Beta distributions that are derived by the 

methods developed in Chapter 4. As summarized in Table 6.29, the means and the 99 

percentiles of the three reference injury atoms can be derived from the description of 

RSSB-SRM [Dennis 2005]. Accordingly the definition parameters of the Beta 

distribution, i.e. α  and β , are derived for the injury atoms as presented in Table 

6.29. The standard deviation is also included in Table 6.29. The hazards are then 

defined relative to the associated injury atoms as summarized in Table 6.30. 

 

Table 6.29 Definitions of the injury atoms related to HET10 

IA Code The Mean 99 

percentile 

α  β  Std 

MIPRO 7.543% 15.086% 7.09 86.93 0.027 

FireFGs 14.2857% 28.571% 6.27 37.62 0.052 
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ToxicGs 21.428% 42.856% 5.38 19.74 0.0803 

 

Table 6.30 Definitions of the hazards on the associated injury atoms related to HET10 

 MIPRO (7.543%) FireFGs (14.2857%) 

MIPAU (1.103%) 0.1462 n/a 

Fire (2.857%) n/a 0.2 

FireTGs (7.14285%) n/a 0.5 

 

6.4.12.3 Definitions of Rule Sets 

The 12 rule sets related to HET10 are defined by the sequences of hazards as 

summarized in Table 6.31. A number 1 indicates that the rule set on the left column 

includes the hazard titled on the top row. Based on Table 6.30, the rule sets are then 

defined on the three injury atoms as summarized in Table 6.32. The 12 rule sets can 

be simulated by sampling the three injury atoms. Demonstrated in Fig. 6.3 are the 

smoothed density probability curves of the 6 rule sets related to the automotive level 

crossings. By Table 6.32, the other 6 rule sets have the similar patterns of the injury 

atoms and should have the similar shapes as demonstrated in Fig. 6.3 

correspondingly. 

 

Table 6.31 Definition of the rule sets related to HET10 on the hazards 

Rule Sets MIPAU MIPRO Fire FireFGs FireTGs ToxicGs 

T10-LCPAU-2 0 0 1 0 0 0 

T10-LCPAU-3 1 0 0 0 0 0 

T10-LCPAU-4 1 0 1 0 0 0 

T10-LCPAU-5 0 0 0 0 0 1 

T10-LCPAU-6 0 0 0 0 1 1 

T10-LCPAU-7 0 0 0 1 0 0 

T10-LCPRO-2 0 0 1 0 0 0 

T10-LCPRO-3 0 1 0 0 0 0 

T10-LCPRO-4 0 1 1 0 0 0 

T10-LCPRO-5 0 0 0 0 0 1 

T10-LCPRO-6 0 0 0 0 1 1 

T10-LCPRO-7 0 0 0 1 0 0 
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Table 6.32 Definitions of the rule sets related to HET10 on the injury atoms 

Rule Sets MIPRO FireFGs ToxicGs The mean 

T10-LCPAU-2 0 0.2 0 0.02857 

T10-LCPAU-3 0.1462 0 0 0.01103 

T10-LCPAU-4 0.1462 0.2 0 0.03929 

T10-LCPAU-5 0 0 1 0.21429 

T10-LCPAU-6 0 0.5 1 0.27041 

T10-LCPAU-7 0 1 0 0.14286 

T10-LCPRO-2 0 0.2 0 0.02857 

T10-LCPRO-3 1 0 0 0.07543 

T10-LCPRO-4 1 0.2 0 0.10185 

T10-LCPRO-5 0 0 1 0.21429 

T10-LCPRO-6 0 0.5 1 0.27041 

T10-LCPRO-7 0 1 0 0.14286 

 

 

0.0 0.02 0.04 0.06 0.08

0
1
0

2
0

3
0

Density plot of the simulated Rule Set T10-LCPAU-2

 

Fig. 6.3.a Density probability curve of the rule set T10-LCPAU-2 
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Fig. 6.3.b Density probability curve of the rule set T10-LCPAU-3 
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Fig. 6.3.c Density probability curve of the rule set T10-LCPAU-4 
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Fig. 6.3.d Density probability curve of the rule set T10-LCPAU-5 
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Fig. 6.3.e Density probability curve of the rule set T10-LCPAU-6 
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Fig. 6.3.f Density probability curve of the rule set T10-LCPAU-7 

 

The scatter plots are then drawn to demonstrate the dependence between the rule sets. 

Shown Fig. 6.4 is the scatter plot between the rule sets T10-LCPPRO-4 and T10-

LCPPRO-7. By Table 6.31, T10-LCPPRO-4 is defined by the sequence of the 

hazards MIPRO and Fire; T10-LCPPRO-7 is defined by the hazard FireFGs. The two 

rule sets are connected by the fire-related hazards Fire and ToxicFGs. The hazard 

MIPRO is however more than twice stronger than the hazard Fire in T10-LCPPRO-4. 

Consequently a moderate dependence is shown for the two rule sets. 

 

Shown in Fig. 6.5 is the scatter plot between T10-LCPPRO-4 and T10-LCPPRO-3. 

By Table 6.31, the two rule sets share the hazard MIPRO. T10-LCPPRO-4 has the 
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extra hazard Fire. By Table 6.29 and Table 6.30, the hazard MIPRO is more than 

twice stronger than the hazard Fire. As a result, a much stronger dependence is 

shown for the two rule sets than that for T10-LCPPRO-4 and T10-LCPPRO-7 as 

shown in Fig. 6.4. Due to the extra hazard Fire, T10-LCPPRO-4 always has a higher 

individual casualty probability than T10-LCPPRO-3. This order relationship is 

demonstrated in Fig. 6.5 where all the samples fall under the 45-degree line. 

 

Shown in Fig. 6.6 is the scatter plot between T10-LCPPRO-5 and T10-LCPAU-6. 

Based on Table 6.31, the two rule sets share the toxic-related hazards ToxicGs. The 

rule set T10-LCPPRO-6 has the extra hazard FireTGs. By Table 6.29 and Table 6.30, 

the hazard ToxicGs is three times stronger than the injury atom FireTGs. As a result, 

the stronger dependence is shown for the two rule sets than that for T10-LCPPRO-4 

and T10-LCPPRO-3 as shown in Fig. 6.5. Due to the extra hazard FireTGs, the rule 

set T10-LCPPRO-6 has always larger individual casualty probability than the rule set 

T10-LCPPRO-5 does. This order relationship is demonstrated in Fig. 6.6 where all 

the samples fall above the 45-degree line. 
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Fig. 6.4 Scatter plot of the two rule sets T10-LCPPRO-4 and T10-LCPPRO-7 
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Fig. 6.5 Scatter plot of the two rule sets T10-LCPPRO-4 and T10-LCPPRO-3 
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Fig. 6.6 Scatter plot of the two rule sets T10-LCPPRO-5 and T10-LCPAU-6 

 



 216 

6.4.13 Uncertainty Assessment 

We have built the covariance matrix of the precursors and the individual casualty 

probabilities of the rule sets related to HET10. We can then assess the uncertainty in 

the output of HET10 by the methods developed in Chapter 5. 

 

At the first step, the mimic model is built on MS Excel. The mimic model is 

composed of 12,425 risk scenarios. With the mimic model, the analytical solutions of 

the mean and the standard deviation of the output are calculated as summarized in 

Table 6.33. The calculated analytical mean differentiates from the result from the 

SRM FT+ model by 0.0001 that means a relative error as small as 57.2 −e . Monte-

Carlo simulations are then conducted with 6000 sets of samples of the precursors and 

the rule sets. With the simulated outputs of HET10, the empirical mean and standard 

deviation are calculated as shown in Table 6.33. The relative errors compared with 

the calculated analytical solutions are 0.22% and 3.7% for the mean and the standard 

deviation respectively. The calculated analytical solutions and the simulations-based 

empirical solutions coincide very well and therefore verify each other. With the 

simulated outputs of HET10, the empirical density probability curve is drawn as 

shown in Fig. 6.7. The five vertical dash lines mark five percentiles as summarized in 

Table 6.34. 

 

 

Table 6.33 Summary of the uncertainty assessment of HET10 

Method Mean Standard Deviation 

SRM FT+ 3.7328 n/a 

Analytical Solution 3.7327 0.7974 

Monte-Carlo Simulations 3.7399 0.8271 

Relative error 0.22% 3.7% 

 

Table 6.34 Percentiles of the simulations of HET10 

 5% 25% 50% 75% 95% 

Percentile 2.344 3.181 3.734 4.285 5.060 
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Fig. 6.7 Empirical density probability curve from the simulations of HET10 

 

6.5 Case Study with HET12 

6.5.1 Elicitation process for building the covariance matrix of the 

precursors 

The hazardous event HET12 is defined as the derailment of passenger trains. It is the 

second largest contributor to the over all risk in RSSB-SRM [Dennis 2006]. There 

are 52 precursors related to HET12. To build up the covariance matrix of the 

precursors, we designed the elicitation process as shown in Fig. 6.8. At the first step, 

the precursor families are identified by the experts. After that, we elicit the 

uncertainty factors of all the precursors. The experts are then asked to identify the 

invariant factors for each precursor family. At the fourth step, the correlations 

regarding the uncertainty factors are elicited with the qualitative assessment plus the 

benchmark as designed in Chapter 3. The elicited correlations are monitored during 

the process by the indicator parameter iq  as defined in Chapter 3. As a result, the 

correlation matrix can be derived for the precursors. At the last step, the variance of 

each family is derived through elicitation by the method developed in Chapter 3. The 
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standard deviation of the precursors can then be derived within the families and the 

covariance matrix can then be derived. 

 

We will continue to discuss the elicitations in details. To make the elicitation work 

easy to follow, the following subsections are headed according to the structure of Fig. 

6.8. At the beginning of each subsection, we also locate the subsection with reference 

to the blocks in Fig. 6.8. 

 

 

 

 

Fig. 6.8 Elicitation process for building up the covariance matrix for HET12 precursors 

 

1. Identify the parameter families 

4. Elicit the correlations regarding 

the uncertainty factors 

9. Derive the covariance matrix 

8. Elicit and derive the 

variance of each family 

7. Derive the 

correlation matrix 

5. Calculate variance proportion 

explained by the factors iq  
6. 1<iq ? 

Yes 

No: adust the elicitation 

accordingly 

2. Identify the uncertainty factors 

3. Identify the invariant factors for each family 
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6.5.2 Precursor Families 

This subsection is referred to Block 1 in Fig. 6.8. We will identify the precursor 

families. 

 

The experts partition the 52 precursors related to HET12 by the definitions into 7 

families that are related to: drivers' errors; environment issues; infrastructure defects; 

rolling stock defects; RV faults; staff errors; and track defects. The family codes, the 

associated precursors, and the descriptions of the precursors are summarized in the 

first three columns in Fig. 6.9. 

 

6.5.3 Uncertainty Factors 

This subsection is related to Block 2 in Fig. 6.8. We will elicit the uncertainty factors 

of the precursors. 

 

For all the 52 precursors, 13 uncertainty factors are elicited as: 

• Driver monitoring training; 

• Extreme climate conditions; 

• Network Rail performance; 

• Signalling failures; 

• Structural failure; 

• Road vehicle driver error; 

• Train maintenance; 

• Vandalism; 

• Public errors; 

• Shunter training; 

• Signaller error; 

• Track maintenance; 

• S&C maintenance. 
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6.5.4 Invariant Factors 

This subsection is related to Block 3 in Fig. 6.8. We will elicit the invariant factors 

for each precursor family. 

 

From the 13 uncertainty factors elicited in Subsection 6.5.4, the invariant factors for 

each family are elicited as summarized in Table 6.35. 

 

Table 6.35 Invariant factors of the precursor families related to HET12 

No. Family Code Invariant Factor 

1.  Driver Error Driver monitoring training 

2.  Environment Extreme climate conditions 

3.  Infra Network Rail 

4.  Rolling Stock Train maintenance 

5.  RV RV driver error 

6.  Staff Error Residual uncertainty 

7.  Track Defect Network Rail 

 

6.5.5 Elicitations on the Uncertainty Factors 

This subsection is related to Block 4 in Fig. 6.8. We will elicit the correlations 

between the precursors and the uncertainty factors. 

 

The qualitative correlations between the precursors and the factors are elicited as 

summarized in Fig. 6.9. All these correlations are positive. 
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Driver Error POSL----PH Overspeeding leading to PT derailment V S

Driver Error PSNT----PF Severe braking/snatch leading to PT derailment S W

Driver Error PSPD----P H SPAD at S &C leading to PT derailment S

Driver Error UTRN----UE Running into train derailed while in depots/sidings leading 

to train derailment
S

E nvironment BTRE----UE Running into trees leading to train derailment S M

E nvironment RLNS----UF Running into landslip leading to train derailment S M

E nvironment RQAK ----UE Structural damage due to earthquake leading to train 

derailment
M S

E nvironment RSLP----PF Subsidence/ landslip under track leading to PT derailment S M

E nvironment WFLD----UE Running into flooding lea ding to train derailment S W

E nvironment WSNO----UE Running into snow/ice leading to train derailment M S

E nvironment WWIN----UE High  winds leading to train derailment S M

E nvironment RSCR----UE Rail  bridge collapse - scour leading to train derailment S M

Infra RBGD----UF Running into to debris from overbridges leading to train 

derailment
W W S

Infra RBGS ----UF Rail  bridge structural failure leading to train derailment M M

Infra RBLD----UF Running into debris from lineside structures/buildings 

leading to train derailment
M M

infra RDRN----UF Drainage culvert/pipework collapse leading to train 

derailment
M M

Infra ROHL----UF Running into debris from OHLE structures leading to train 

derailment
S M

Infra RSIG----UF Running into debris from signalling gantries leading to train 

derailment
S M

 

Fig. 6.9.a Elicited uncertainty factors of the precursors related to HET12, Part 1 
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Infra RTUNWALLU

F

Running into debris in the tunnel leading to train 

derailment
M M

Infra RWAL----UF Running into debris from retaining walls leading to train 

derailment
M M

Infra SWRG----PF Wrongside signal failure at S&C leading to PT derailment M M

Rolling Stock PAXB----PF Seized axle box bearing leading to PT derailment S

Rolling Stock PAXL----PF Axle failure leading to PT derailment S

Rolling Stock PBUF----PF Buffer locking leading to PT derailment M

Rolling Stock PCUP----PF Coupl ing failure leading to PT derailment M

Rolling Stock PSUS ----P F Suspension system/bogie failures leading to PT derailment S

Rolling Stock PTRA----PF Running into objects fallen from trains leading to PT 

derailment
M

Rolling Stock PWHF----PF Wheel flats or wheel/tyre wear beyond limits leading to PT 

derailment
ES

Rolling Stock PWHL----PF Wheel failure leading to PT Derailment S

RV RBSHCO L-UE Rail  bridge collapse - bridge bashing leading to train 

derailment
S

RV RBSH----UE Bridge bashing leading to bridge displacement (not 

collapse) and train derai lment
S

RV VBGV----UE Running into vehicles fallen from overbridge leading to 

train derailment
M M

RV VBND----UE Running into vehicles through boundary fence leading to 

train derailment
M M

S taff Error BBLD----UE Running into objects from buil ding site leading to train 

derailment
VW M M

S taff Error MMAT----UE Running into Engineers materials left foul leading to train 

derailment
W W S

 

Fig. 6.9.b Elicited uncertainty factors of the precursors related to HET12, Part 2 
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S taff Error PCATDR--PH Cat D SPAD or runaway leading to PT derailment M M M

Staff Error PCRW----PH Other driver/train crew error at S&C leading to PT 

derailment
VS

Staff Error PSHN----PH Shunter errors leading to  PT derailment VS

Staff Error TTKD----UE Track damage from other undetected derailment leading to 

train derailment
M S

Staff Error VMVE----UE Running into maintenance vehicles leading to train 

derailment
M S

Staff Error XPRD----PH Track maintenance staff errors leading to PT derailment W S

Staff Error XSCO----PH Incorrect scotch and clip of points leading to PT derailment
VW VS

Staff Error XSGM----PH Signaller/ crossing keeper error leading to PT derailment M M

Track Defect TBCK----PF Buckled rail leading to PT derailment M S VW

Track Defect TBKR----PF Broken rail leading to PT derailment M M

Track Defect TFSH----PF Broken fishplate leading to PT derailment M M

Track Defect TSPG----PF Gauge spread (assumed always slow speed) leading to 

PT derailment
M M

Track Defect TTUNBKR-PF Broken rail in tunnel leading to PT derailment M M

Track Defect TTWS----PF Track twist leading to PT derailment M M

Track Defect XDSC----PF Defective S&C leading to PT derailment M M

Track Defect XPOS----PF Points in the wrong position and not detected leading to 

PT derailment
M M VW

Track Defect XSCM----PF Movement of points under train (equipment faults) leading 

to PT derailment
M VW M

 

Fig. 6.9.c Elicited uncertainty factors of the precursors related to HET12, Part 3 
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6.5.6 Correlation Matrix 

This subsection is related to Block 7 in Fig. 6.8. We will derive the correlation 

matrix of all the 52 precursors based on the elicitations regarding the uncertainty 

factors. 

 

By the benchmarks given on Table 6.1, the qualitative correlations are mapped to 

numbers. The correlation matrix can then be built for the as shown in Fig. 6.10. For 

presentation, the correlation matrix is split into two 4 blocks as: 

 

( ) 







=

2,21,2

2,11,1
HET12

rr

rr
r  

 

The block 1,1r  represents the correlation matrix of the first group of 26 precursors as 

shown in Fig. 6.10.a. The block 2,2r  represents the correlation matrix of the second 

group of 26 precursors as shown in Fig. 6.10.b. The block 2,1r  represents the 

correlation matrix of between the two groups as shown in Fig. 6.10.c. The block 1,2r  

is the transposition of 2,1r . 
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POSL----PH 1.00 0.73 0.73 0.73 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

PSNT----PF 0.73 1.00 0.60 0.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.26 0.26 0.19 0.19 0.26

PSPD----PH 0.73 0.60 1.00 0.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

UTRN----UE 0.73 0.60 0.60 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

BTRE----UE 0.00 0.00 0.00 0.00 1.00 0.92 0.44 0.92 0.79 0.87 0.92 0.92 0.19 0.32 0.32 0.32 0.44 0.44 0.32 0.32 0.32 0.00 0.00 0.00 0.00 0.00

RLNS----UF 0.00 0.00 0.00 0.00 0.92 1.00 0.44 0.92 0.79 0.87 0.92 0.92 0.19 0.32 0.32 0.32 0.44 0.44 0.32 0.32 0.32 0.00 0.00 0.00 0.00 0.00

RQAK----UE 0.00 0.00 0.00 0.00 0.44 0.44 1.00 0.44 0.44 0.32 0.44 0.44 0.26 0.44 0.44 0.44 0.44 0.00 0.44 0.44 0.00 0.00 0.00 0.00 0.00 0.00

RSLP----PF 0.00 0.00 0.00 0.00 0.92 0.92 0.44 1.00 0.79 0.87 0.92 0.92 0.19 0.32 0.32 0.32 0.44 0.44 0.32 0.32 0.32 0.00 0.00 0.00 0.00 0.00

WFLD----UE 0.00 0.00 0.00 0.00 0.79 0.79 0.44 0.79 1.00 0.69 0.79 0.79 0.11 0.19 0.19 0.19 0.26 0.26 0.19 0.19 0.19 0.00 0.00 0.00 0.00 0.00

WSNO----UE 0.00 0.00 0.00 0.00 0.87 0.87 0.32 0.87 0.69 1.00 0.87 0.87 0.26 0.44 0.44 0.44 0.60 0.60 0.44 0.44 0.44 0.00 0.00 0.00 0.00 0.00

WWIN----UE 0.00 0.00 0.00 0.00 0.92 0.92 0.44 0.92 0.79 0.87 1.00 0.92 0.19 0.32 0.32 0.32 0.44 0.44 0.32 0.32 0.32 0.00 0.00 0.00 0.00 0.00

RBGD----UF 0.00 0.00 0.00 0.00 0.92 0.92 0.44 0.92 0.79 0.87 0.92 1.00 0.19 0.32 0.32 0.32 0.44 0.44 0.32 0.32 0.32 0.00 0.00 0.00 0.00 0.00

RBGS----UF 0.00 0.00 0.00 0.00 0.19 0.19 0.26 0.19 0.11 0.26 0.19 0.19 1.00 0.37 0.37 0.37 0.44 0.26 0.37 0.37 0.19 0.00 0.00 0.00 0.00 0.00

RBLD----UF 0.00 0.00 0.00 0.00 0.32 0.32 0.44 0.32 0.19 0.44 0.32 0.32 0.37 1.00 0.63 0.63 0.75 0.44 0.63 0.63 0.32 0.00 0.00 0.00 0.00 0.00

RDRN----UF 0.00 0.00 0.00 0.00 0.32 0.32 0.44 0.32 0.19 0.44 0.32 0.32 0.37 0.63 1.00 0.63 0.75 0.44 0.63 0.63 0.32 0.00 0.00 0.00 0.00 0.00

ROHL----UF 0.00 0.00 0.00 0.00 0.32 0.32 0.44 0.32 0.19 0.44 0.32 0.32 0.37 0.63 0.63 1.00 0.75 0.44 0.63 0.63 0.32 0.00 0.00 0.00 0.00 0.00

RSCR----UE 0.00 0.00 0.00 0.00 0.44 0.44 0.44 0.44 0.26 0.60 0.44 0.44 0.44 0.75 0.75 0.75 1.00 0.60 0.75 0.75 0.44 0.00 0.00 0.00 0.00 0.00

RSIG----UF 0.00 0.00 0.00 0.00 0.44 0.44 0.00 0.44 0.26 0.60 0.44 0.44 0.26 0.44 0.44 0.44 0.60 1.00 0.44 0.44 0.75 0.00 0.00 0.00 0.00 0.00

RTUNWALLUF 0.00 0.00 0.00 0.00 0.32 0.32 0.44 0.32 0.19 0.44 0.32 0.32 0.37 0.63 0.63 0.63 0.75 0.44 1.00 0.63 0.32 0.00 0.00 0.00 0.00 0.00

RWAL----UF 0.00 0.00 0.00 0.00 0.32 0.32 0.44 0.32 0.19 0.44 0.32 0.32 0.37 0.63 0.63 0.63 0.75 0.44 0.63 1.00 0.32 0.00 0.00 0.00 0.00 0.00

SWRG----PF 0.00 0.00 0.00 0.00 0.32 0.32 0.00 0.32 0.19 0.44 0.32 0.32 0.19 0.32 0.32 0.32 0.44 0.75 0.32 0.32 1.00 0.00 0.00 0.00 0.00 0.00

PAXB----PF 0.00 0.26 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.60 0.44 0.44 0.60

PAXL----PF 0.00 0.26 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.60 1.00 0.44 0.44 0.60

PBUF----PF 0.00 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.44 0.44 1.00 0.32 0.44

PCUP----PF 0.00 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.44 0.44 0.32 1.00 0.44

PSUS----PF 0.00 0.26 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.60 0.60 0.44 0.44 1.00  

Fig. 6.10.a Correlation matrix of the precursors related to HET12: Part 1 
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PTRA----PF 1.00 0.56 0.44 0.00 0.00 0.00 0.00 0.00 0.00 0.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

PWHF----PF 0.56 1.00 0.78 0.00 0.00 0.00 0.00 0.00 0.00 0.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

PWHL----PF 0.44 0.78 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.44 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

RBSHCOL-UE 0.00 0.00 0.00 1.00 0.60 0.44 0.44 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

RBSH----UE 0.00 0.00 0.00 0.60 1.00 0.44 0.44 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

VBGV----UE 0.00 0.00 0.00 0.44 0.44 1.00 0.63 0.32 0.19 0.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

VBND----UE 0.00 0.00 0.00 0.44 0.44 0.63 1.00 0.32 0.19 0.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

BBLD----UE 0.00 0.00 0.00 0.00 0.00 0.32 0.32 1.00 0.49 0.44 0.20 0.20 0.27 0.27 0.37 0.20 0.45 0.14 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10

MMAT----UE 0.00 0.00 0.00 0.00 0.00 0.19 0.19 0.49 1.00 0.28 0.15 0.15 0.91 0.91 0.94 0.18 0.44 0.40 0.62 0.62 0.62 0.62 0.62 0.19 0.19 0.19

PCATDR--PH 0.32 0.56 0.44 0.00 0.00 0.32 0.32 0.44 0.28 1.00 0.60 0.08 0.06 0.06 0.12 0.06 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

PCRW----PH 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.15 0.60 1.00 0.12 0.10 0.10 0.18 0.10 0.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

PSHN----PH 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.15 0.08 0.12 1.00 0.10 0.10 0.18 0.10 0.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

TTKD----UE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.27 0.91 0.06 0.10 0.10 1.00 1.00 0.94 0.18 0.49 0.58 0.75 0.75 0.75 0.75 0.75 0.32 0.32 0.32

VMVE----UE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.27 0.91 0.06 0.10 0.10 1.00 1.00 0.94 0.18 0.49 0.58 0.75 0.75 0.75 0.75 0.75 0.32 0.32 0.32

XPRD----PH 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.37 0.94 0.12 0.18 0.18 0.94 0.94 1.00 0.22 0.51 0.40 0.62 0.62 0.62 0.62 0.62 0.19 0.19 0.19

XSCO----PH 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.18 0.06 0.10 0.10 0.18 0.18 0.22 1.00 0.28 0.14 0.10 0.10 0.10 0.10 0.10 0.63 0.27 0.63

XSGM----PH 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.45 0.44 0.13 0.21 0.21 0.49 0.49 0.51 0.28 1.00 0.44 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32

TBCK----PF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.40 0.00 0.00 0.00 0.58 0.58 0.40 0.14 0.44 1.00 0.54 0.54 0.54 0.54 0.54 0.44 0.44 0.44

TBKR----PF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.62 0.00 0.00 0.00 0.75 0.75 0.62 0.10 0.32 0.54 1.00 0.63 0.63 0.63 0.63 0.32 0.32 0.32

TFSH----PF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.62 0.00 0.00 0.00 0.75 0.75 0.62 0.10 0.32 0.54 0.63 1.00 0.63 0.63 0.63 0.32 0.32 0.32

TSPG----PF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.62 0.00 0.00 0.00 0.75 0.75 0.62 0.10 0.32 0.54 0.63 0.63 1.00 0.63 0.63 0.32 0.32 0.32

TTUNBKR-PF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.62 0.00 0.00 0.00 0.75 0.75 0.62 0.10 0.32 0.54 0.63 0.63 0.63 1.00 0.63 0.32 0.32 0.32

TTWS----PF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.62 0.00 0.00 0.00 0.75 0.75 0.62 0.10 0.32 0.54 0.63 0.63 0.63 0.63 1.00 0.32 0.32 0.32

XDSC----PF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.19 0.00 0.00 0.00 0.32 0.32 0.19 0.63 0.32 0.44 0.32 0.32 0.32 0.32 0.32 1.00 0.42 0.63

XPOS----PF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.19 0.00 0.00 0.00 0.32 0.32 0.19 0.27 0.32 0.44 0.32 0.32 0.32 0.32 0.32 0.42 1.00 0.52

XSCM----PF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.19 0.00 0.00 0.00 0.32 0.32 0.19 0.63 0.32 0.44 0.32 0.32 0.32 0.32 0.32 0.63 0.52 1.00  

 

Fig. 6.10.b Correlation matrix of the precursors related to HET12: Part 2 
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POSL----PH 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.53 0.88 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

PSNT----PF 0.19 0.33 0.26 0.00 0.00 0.00 0.00 0.00 0.00 0.62 0.73 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

PSPD----PH 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.44 0.73 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

UTRN----UE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.44 0.73 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

BTRE----UE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.19 0.00 0.00 0.00 0.32 0.32 0.19 0.10 0.32 0.87 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32

RLNS----UF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.19 0.00 0.00 0.00 0.32 0.32 0.19 0.10 0.32 0.87 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32

RQAK----UE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

RSLP----PF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.19 0.00 0.00 0.00 0.32 0.32 0.19 0.10 0.32 0.87 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32

WFLD----UE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.11 0.00 0.00 0.00 0.19 0.19 0.11 0.06 0.19 0.69 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19

WSNO----UE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.26 0.00 0.00 0.00 0.44 0.44 0.26 0.14 0.44 0.92 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44

WWIN----UE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.19 0.00 0.00 0.00 0.32 0.32 0.19 0.10 0.32 0.87 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32

RBGD----UF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.19 0.00 0.00 0.00 0.32 0.32 0.19 0.10 0.32 0.87 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32

RBGS----UF 0.00 0.00 0.00 0.60 0.60 0.44 0.44 0.06 0.11 0.00 0.00 0.00 0.19 0.19 0.11 0.06 0.19 0.26 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19

RBLD----UF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.19 0.00 0.00 0.00 0.32 0.32 0.19 0.10 0.32 0.44 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32

RDRN----UF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.19 0.00 0.00 0.00 0.32 0.32 0.19 0.10 0.32 0.44 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32

ROHL----UF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.19 0.00 0.00 0.00 0.32 0.32 0.19 0.10 0.32 0.44 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32

RSCR----UE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.26 0.00 0.00 0.00 0.44 0.44 0.26 0.14 0.44 0.60 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44

RSIG----UF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.26 0.00 0.00 0.00 0.44 0.44 0.26 0.14 0.44 0.60 0.44 0.44 0.44 0.44 0.44 0.44 0.75 0.54

RTUNWALLUF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.19 0.00 0.00 0.00 0.32 0.32 0.19 0.10 0.32 0.44 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32

RWAL----UF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.19 0.00 0.00 0.00 0.32 0.32 0.19 0.10 0.32 0.44 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32

SWRG----PF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.19 0.00 0.00 0.00 0.32 0.32 0.19 0.10 0.32 0.44 0.32 0.32 0.32 0.32 0.32 0.32 0.63 0.42

PAXB----PF 0.44 0.78 0.60 0.00 0.00 0.00 0.00 0.00 0.00 0.44 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

PAXL----PF 0.44 0.78 0.60 0.00 0.00 0.00 0.00 0.00 0.00 0.44 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

PBUF----PF 0.32 0.56 0.44 0.00 0.00 0.00 0.00 0.00 0.00 0.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

PCUP----PF 0.32 0.56 0.44 0.00 0.00 0.00 0.00 0.00 0.00 0.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

PSUS----PF 0.44 0.78 0.60 0.00 0.00 0.00 0.00 0.00 0.00 0.44 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00  

Fig. 6.10.c Correlation matrix of the precursors related to HET12: Part 3 
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6.5.7 Variance of Each Family 

This subsection is referred to Block 8 in Fig. 6.8. We will elicit the variance of each 

of the seven precursor families as elicited in Subsection 6.5.2. 

 

By the method developed in Chapter 3, the 95 percentile of the waiting time is 

elicited for the seven families as summarized in Table 6.36. The standard deviations 

are then derived as summarized in Table 6.36. 

 

Table 6.36 Elicited 95 percentile of the waiting time, i.e. 95.0t , and the derived standard 

deviation of the occurrence rate of the families related to HET12 

Family Code 

Minimum 95.0t  

(Months) 

Maximum 95.0t  

(Months) 

Assessment of 95.0t  

(Months) 

Std 

λσ  

Driver Error 55.8 63.5 59.5 4.69E-10 

Environment 23.0 26.0 24.5 1.14E-09 

Infra 10.0 11.3 10.6 2.62E-09 

Rolling Stock 37.6 42.8 40 6.95E-10 

RV 77.0 87.6 82 3.40E-10 

Staff Error 24.0 27.3 25.5 1.09E-09 

Track Defect 8.1 9.2 8.7 3.22E-09 

 

6.5.8 Covariance Matrix 

This subsection is related to Block 9 in Fig. 6.8. We will derive the standard 

deviations of the precursors and consequently derive the covariance matrix of all the 

52 precursors. 

 

Based one the family variance as summarized in Table 6.36 and the elicitations 

regarding the uncertainty factors, the standard deviations of the precursors are 

derived within the associated families as summarized in Table 6.37. 
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With the standard deviations summarized in Table 6.37 and the correlation matrix 

presented in Fig. 6.10, the covariance matrix of the 52 precursors can be built 

straightforwardly and therefore is not presented here. 

 

Table 6.37 Standard deviation of the 52 precursors related to HET12 

Family Precursors Mean STD 

Driver Error POSL----PH 3.060E-10 5.480E-11 

Driver Error PSNT----PF 1.801E-10 3.906E-11 

Driver Error PSPD----PH 1.836E-09 3.982E-10 

Driver Error UTRN----UE 1.836E-11 3.982E-12 

Environment BTRE----UE 1.224E-09 2.472E-10 

Environment RLNS----UF 3.672E-09 7.417E-10 

Environment RQAK----UE 3.602E-13 1.002E-13 

Environment RSLP----PF 5.771E-10 1.166E-10 

Environment WFLD----UE 1.801E-13 3.638E-14 

Environment WSNO----UE 2.295E-10 6.385E-11 

Environment WWIN----UE 1.836E-12 3.708E-13 

Infra RBGD----UF 2.295E-10 3.502E-11 

Infra RBGS----UF 7.205E-12 2.582E-12 

Infra RBLD----UF 2.295E-10 4.824E-11 

infra RDRN----UF 1.836E-10 3.859E-11 

Infra ROHL----UF 1.836E-12 3.859E-13 

Infra RSCR----UE 9.006E-11 1.374E-11 

Infra RSIG----UF 1.836E-13 2.802E-14 

Infra RTUNWALLUF 1.191E-08 2.504E-09 

Infra RWAL----UF 3.672E-11 7.718E-12 

Infra SWRG----PF 3.846E-10 8.084E-11 

Rolling Stock PAXB----PF 4.246E-10 8.616E-11 

Rolling Stock PAXL----PF 2.123E-10 4.308E-11 

Rolling Stock PBUF----PF 2.123E-10 5.934E-11 

Rolling Stock PCUP----PF 3.602E-11 1.007E-11 

Rolling Stock PSUS----PF 2.123E-10 4.308E-11 
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Family Precursors Mean STD 

Rolling Stock PTRA----PF 1.801E-09 5.034E-10 

Rolling Stock PWHF----PF 1.201E-10 1.890E-11 

Rolling Stock PWHL----PF 4.503E-10 9.137E-11 

RV RBSHCOL-UE 2.161E-11 3.621E-12 

RV RBSH----UE 2.202E-10 3.689E-11 

RV VBGV----UE 2.295E-10 5.296E-11 

RV VBND----UE 1.224E-09 2.824E-10 

Staff Error BBLD----UE 7.344E-12 1.748E-12 

Staff Error MMAT----UE 2.295E-10 7.432E-11 

Staff Error PCATDR--PH 2.295E-10 1.429E-10 

Staff Error PCRW----PH 5.771E-10 2.311E-10 

Staff Error PSHN----PH 2.295E-10 9.189E-11 

Staff Error TTKD----UE 7.205E-11 3.473E-11 

Staff Error VMVE----UE 1.836E-11 8.849E-12 

Staff Error XPRD----PH 5.771E-10 1.475E-10 

Staff Error XSCO----PH 4.328E-10 2.033E-10 

Staff Error XSGM----PH 3.060E-09 6.955E-10 

Track Defect TBCK----PF 1.154E-09 2.217E-10 

Track Defect TBKR----PF 1.154E-09 3.054E-10 

Track Defect TFSH----PF 5.662E-10 1.498E-10 

Track Defect TSPG----PF 3.060E-09 8.097E-10 

Track Defect TTUNBKR-PF 5.771E-09 1.527E-09 

Track Defect TTWS----PF 6.755E-10 1.787E-10 

Track Defect XDSC----PF 3.060E-09 8.097E-10 

Track Defect XPOS----PF 4.328E-10 1.145E-10 

Track Defect XSCM----PF 2.164E-10 5.726E-11 
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6.5.9 Uncertainty Models in the Rule Sets 

6.5.9.1 Hazards 

There are 123 rule sets associated with the consequences in HET12. The rule sets are 

summarized in Appendix B. Seven injury sources are elicited as: (1) train derailment; 

(2) carriage on its side; (3) structure collapsed onto the train; (4) secondary collision 

after derailment; (5) fire; (6) toxic goods; (7) train falling down the bridge. The 

injury sources related to HET12 are mainly affected by the locations on the track. 

Different locations of the track are associated with different derailment speeds and 

the different equipment structures. The locations are classified into: Bridge (BG), 

Open Fast (OF), Open Slow (OS), Single Track Tunnel (ST), Twin Track Tunnel 

(TT), and Station Fast (SF). The injury source of fire is also affected by whether 

there are extra flammable goods. Depending on the locations on the track and 

whether there are flammable goods, the hazards related to HET12 are defined as 

summarized in Table 6.38. 

 

Table 6.38 Hazards related to HET12. 

Hazard Types Hazard specification Weight 

Falling down bridge Falling down bridge 1 

On open track 0.333 Derailment 

In tunnel 1 

On open slow track 0.303 

On open fast AUTO track with the average speed of 

derailment assumed as 50mph 

0.356 

On open fast track with the average speed of derailment 

assumed as 55mph. 

0.541 

Carriage on its side 

after derailment 

In twin track tunnel 1 

On open slow track 0.4 Structure collapsed 

onto train following 

the collision 
On open fast track 1 

Carriage hitting line side structure when train not on its side; 

on open slow track 

0.010 

Carriage hitting line side structure when train not on its side; 

on open fast AUTO track with the average derailment speed 

assumed as 50mph 

0.028 

Second collision after 

the derailment 

Carriage hitting line side structure when train not on its side; 

on open fast track with the average derailment speed 

assumed as 55mph 

0.046 
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Hazard Types Hazard specification Weight 

Carriage hitting line side structure when train on its side; on 

open slow track 

0.020 

Carriage hitting line side structure when train on its side; on 

open fast track  

0.133 

Carriage in contact with tunnel wall  0.181 

In collision with platform at a station 0.067 

In collision with another train; on open track 0.667 

In collision with another train; at a station 0.767 

In collision with another train; in twin track tunnel 1 

Either in collision on line side structure or with carriage on 

its side; open slow track 

0.016 

Either in collision on line side structure or with carriage on 

its side; open fast track 

0.032 

The structure in collision collapsed onto the train on open 

slow track 

0.016 

The structure in collision collapsed onto the train on open 

fast track 

0.032 

Fire at a station 0.008 

In collision with a train without flammable goods on open 

track 

0.040 

In collision with a train without flammable goods at a station 0.048 

With flammable goods released from the freight train in 

collision on open track 

0.159 

With flammable goods from the freight train in collision at a 

station 

0.254 

Fire 

In tunnel 1 

Toxic goods release from the freight train in collision on 

open track 

0.238 

Toxic goods release from the freight train in collision at a 

station 

0.317 

Toxic goods 

Toxic goods release from the freight train in collision in twin 

track tunnel 

1 

 

6.5.9.2 Definitions of the Injury Atoms and the Rule Sets 

For each hazard source, the injury atom is defined by the hazard with the worst 

hazard level. The weights of the hazards relative to the associated injury atoms are 

included in Table 6.38. We have assumed that the injury atoms follow Beta 

distributions. By the methods developed in Chapter 4, the definition parameters of 

the seven injury atoms are derived as summarized in Table 6.39. 
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On the injury atoms defined in Table 6.39, the 123 rule sets related to HET12 are 

then defined as summarized in Table 6.40. 

 

Table 6.39 Definitions of the injury atoms related to HET12 

Injury Source Code The 

Mean 

99 

percentile 

α  β
 

Std 

Derailment DERTNL 0.0043 0.0086 7.95 1846 0.002 

Carriage on side CARONSTNL 0.2427 0.4855 5.02 15.7 0.092 

Structure collapsed 

onto the train 

STROnTNOS 0.25 0.5 4.93 14.8 0.095 

Second collision SecCollTNL 0.2143 0.4286 5.38 19.7 0.080 

Fire FireTNL 0.90 0.99 20.31 2.26 0.062 

Toxic goods ToxicTNL 0.90 0.99 20.31 2.26 0.062 

Falling off a bridge onBridge 0.1429 0.2857 6.27 37.6 0.052 

 

Table 6.40 Definitions of the rule sets related to HET12 on the injury atoms. 

Rule Sets DER 
TNL 

CARON
STNL 

STRO
n 

TNOS 

SecColl
TNL 

FireTNL Toxic 
TNL 

On 
Bridge 

T12-BG-1 0.000 0.000 0.000 0.000 0.000 0.000 1.000 

T12-OF-01 0.333 0.000 0.000 0.000 0.000 0.000 0.000 

T12-OF-02 0.333 0.000 0.000 0.000 0.000 0.000 0.000 

T12-OF-03 0.333 0.000 0.000 0.046 0.000 0.000 0.000 

T12-OF-04 0.333 0.000 0.000 0.046 0.032 0.000 0.000 

T12-OF-05 0.333 0.000 1.000 0.046 0.000 0.000 0.000 

T12-OF-06 0.333 0.000 1.000 0.046 0.032 0.000 0.000 

T12-OF-07 0.333 0.541 0.000 0.000 0.000 0.000 0.000 

T12-OF-08 0.333 0.541 0.000 0.000 0.032 0.000 0.000 

T12-OF-09 0.333 0.541 0.000 0.133 0.000 0.000 0.000 

T12-OF-10 0.333 0.541 0.000 0.133 0.032 0.000 0.000 

T12-OF-11 0.333 0.541 0.657 0.133 0.000 0.000 0.000 

T12-OF-12 0.333 0.541 0.657 0.133 0.048 0.000 0.000 

T12-OF-13 0.333 0.000 0.000 0.667 0.000 0.000 0.000 

T12-OF-14 0.333 0.000 0.000 0.667 0.040 0.000 0.000 

T12-OF-15 0.333 0.000 0.000 0.667 0.000 0.000 0.000 

T12-OF-16 0.333 0.000 0.000 0.667 0.040 0.000 0.000 

T12-OF-17 0.333 0.000 0.000 0.667 0.000 0.238 0.000 

T12-OF-18 0.333 0.000 0.000 0.667 0.040 0.238 0.000 

T12-OF-19 0.333 0.000 0.000 0.667 0.000 0.000 0.000 

T12-OF-20 0.333 0.000 0.000 0.667 0.198 0.000 0.000 

T12-OF-21 0.333 0.000 0.000 0.667 0.000 0.000 0.000 

T12-OF-22 0.333 0.000 0.000 0.667 0.040 0.000 0.000 
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T12-OF-23 0.333 0.000 0.000 0.667 0.000 0.000 0.000 

T12-OF-24 0.333 0.000 0.000 0.667 0.040 0.000 0.000 

T12-OFAUTO-01 0.333 0.000 0.000 0.000 0.000 0.000 0.000 

T12-OFAUTO-02 0.333 0.000 0.000 0.000 0.000 0.000 0.000 

T12-OFAUTO-03 0.333 0.000 0.000 0.028 0.000 0.000 0.000 

T12-OFAUTO-04 0.333 0.000 0.000 0.028 0.032 0.000 0.000 

T12-OFAUTO-05 0.333 0.000 1.000 0.028 0.000 0.000 0.000 

T12-OFAUTO-06 0.333 0.000 1.000 0.028 0.032 0.000 0.000 

T12-OFAUTO-07 0.333 0.356 0.000 0.000 0.000 0.000 0.000 

T12-OFAUTO-08 0.333 0.356 0.000 0.000 0.032 0.000 0.000 

T12-OFAUTO-09 0.333 0.356 0.000 0.133 0.000 0.000 0.000 

T12-OFAUTO-10 0.333 0.356 0.000 0.133 0.032 0.000 0.000 

T12-OFAUTO-11 0.333 0.356 0.657 0.133 0.000 0.000 0.000 

T12-OFAUTO-12 0.333 0.356 0.657 0.133 0.048 0.000 0.000 

T12-OFAUTO-13 0.333 0.000 0.000 0.667 0.000 0.000 0.000 

T12-OFAUTO-14 0.333 0.000 0.000 0.667 0.040 0.000 0.000 

T12-OFAUTO-15 0.333 0.000 0.000 0.667 0.000 0.000 0.000 

T12-OFAUTO-16 0.333 0.000 0.000 0.667 0.040 0.000 0.000 

T12-OFAUTO-17 0.333 0.000 0.000 0.667 0.000 0.238 0.000 

T12-OFAUTO-18 0.333 0.000 0.000 0.667 0.040 0.238 0.000 

T12-OFAUTO-19 0.333 0.000 0.000 0.667 0.000 0.000 0.000 

T12-OFAUTO-20 0.333 0.000 0.000 0.667 0.198 0.000 0.000 

T12-OFAUTO-21 0.333 0.000 0.000 0.667 0.000 0.000 0.000 

T12-OFAUTO-22 0.333 0.000 0.000 0.667 0.040 0.000 0.000 

T12-OFAUTO-23 0.333 0.000 0.000 0.667 0.000 0.000 0.000 

T12-OFAUTO-24 0.333 0.000 0.000 0.667 0.040 0.000 0.000 

T12-OS-03 0.000 0.000 0.000 0.010 0.000 0.000 0.000 

T12-OS-04 0.000 0.000 0.000 0.010 0.016 0.000 0.000 

T12-OS-05 0.000 0.000 0.400 0.010 0.000 0.000 0.000 

T12-OS-06 0.000 0.000 0.400 0.010 0.016 0.000 0.000 

T12-OS-07 0.000 0.030 0.000 0.000 0.000 0.000 0.000 

T12-OS-08 0.000 0.030 0.000 0.000 0.032 0.000 0.000 

T12-OS-09 0.000 0.030 0.000 0.020 0.000 0.000 0.000 

T12-OS-10 0.000 0.030 0.000 0.020 0.032 0.000 0.000 

T12-OS-11 0.000 0.030 0.400 0.020 0.000 0.000 0.000 

T12-OS-12 0.000 0.030 0.400 0.020 0.016 0.000 0.000 

T12-OS-13 0.000 0.000 0.000 0.667 0.000 0.000 0.000 

T12-OS-14 0.000 0.000 0.000 0.667 0.040 0.000 0.000 

T12-OS-15 0.000 0.000 0.000 0.667 0.000 0.000 0.000 

T12-OS-16 0.000 0.000 0.000 0.667 0.040 0.000 0.000 

T12-OS-17 0.000 0.000 0.000 0.667 0.000 0.238 0.000 

T12-OS-18 0.000 0.000 0.000 0.667 0.040 0.238 0.000 

T12-OS-19 0.000 0.000 0.000 0.667 0.000 0.000 0.000 

T12-OS-20 0.000 0.000 0.000 0.667 0.198 0.000 0.000 

T12-OS-21 0.000 0.000 0.000 0.667 0.000 0.000 0.000 

T12-OS-22 0.000 0.000 0.000 0.667 0.040 0.000 0.000 

T12-OS-23 0.000 0.000 0.000 0.667 0.000 0.000 0.000 
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T12-OS-24 0.000 0.000 0.000 0.667 0.040 0.000 0.000 

T12-ST-1 1.000 0.000 0.000 0.000 0.000 0.000 0.000 

T12-ST-2 1.000 0.000 0.000 0.181 0.000 0.000 0.000 

T12-ST-3 0.000 0.000 0.000 0.000 1.000 0.000 0.000 

T12-TT-1 1.000 0.000 0.000 0.000 0.000 0.000 0.000 

T12-TT-2 1.000 0.000 0.000 0.181 0.000 0.000 0.000 

T12-TT-3 0.000 0.000 0.000 0.000 1.000 0.000 0.000 

T12-TT-7 1.000 1.000 0.000 0.000 0.000 0.000 0.000 

T12-TT-8 0.000 0.000 0.000 0.000 1.000 0.000 0.000 

T12-TT-13 0.333 0.000 0.000 1.000 0.000 0.000 0.000 

T12-TT-14 0.000 0.000 0.000 0.000 1.000 0.000 0.000 

T12-TT-15 0.333 0.000 0.000 1.000 0.000 0.000 0.000 

T12-TT-16 0.000 0.000 0.000 0.000 1.000 0.000 0.000 

T12-TT-17 0.000 0.000 0.000 0.000 0.000 1.000 0.000 

T12-TT-18 0.000 0.000 0.000 0.000 0.000 1.000 0.000 

T12-TT-19 0.333 0.000 0.000 1.000 0.000 0.000 0.000 

T12-TT-20 0.000 0.000 0.000 0.000 1.000 0.000 0.000 

T12-TT-21 0.333 0.000 0.000 1.000 0.000 0.000 0.000 

T12-TT-22 0.000 0.000 0.000 0.000 1.000 0.000 0.000 

T12-TT-23 0.333 0.000 0.000 1.000 0.000 0.000 0.000 

T12-TT-24 0.000 0.000 0.000 0.000 1.000 0.000 0.000 

T14-SF-1 0.333 0.000 0.000 0.000 0.000 0.000 0.000 

T14-SF-2 0.333 0.000 0.000 0.067 0.000 0.000 0.000 

T14-SF-3 0.333 0.000 0.000 0.112 0.000 0.000 0.000 

T14-SF-4 0.333 0.000 0.000 0.112 0.040 0.000 0.000 

T14-SF-7 0.333 0.541 0.000 0.067 0.000 0.000 0.000 

T14-SF-8 0.333 0.541 0.000 0.067 0.040 0.000 0.000 

T14-SF-9 0.333 0.541 0.000 0.200 0.000 0.000 0.000 

T14-SF-10 0.333 0.541 0.000 0.200 0.040 0.000 0.000 

T14-SF-13 0.333 0.000 0.000 0.767 0.000 0.000 0.000 

T14-SF-14 0.333 0.000 0.000 0.767 0.048 0.000 0.000 

T14-SF-15 0.333 0.000 0.000 0.767 0.000 0.000 0.000 

T14-SF-16 0.333 0.000 0.000 0.767 0.048 0.000 0.000 

T14-SF-17 0.333 0.000 0.000 0.667 0.000 0.317 0.000 

T14-SF-18 0.333 0.000 0.000 0.667 0.040 0.317 0.000 

T14-SF-19 0.333 0.000 0.000 0.767 0.000 0.000 0.000 

T14-SF-20 0.333 0.000 0.000 0.767 0.254 0.000 0.000 

T14-SF-21 0.333 0.000 0.000 0.767 0.000 0.000 0.000 

T14-SF-22 0.333 0.000 0.000 0.767 0.040 0.000 0.000 

T14-SF-23 0.333 0.000 0.000 0.767 0.000 0.000 0.000 

T14-SF-24 0.333 0.000 0.000 0.767 0.008 0.000 0.000 

T10-LCPAU-2 0.000 0.000 0.000 0.000 0.032 0.000 0.000 

T10-LCPAU-3 0.000 0.000 0.000 0.051 0.000 0.000 0.000 

T10-LCPAU-4 0.000 0.000 0.000 0.051 0.032 0.000 0.000 

T10-LCPAU-5 0.000 0.000 0.000 0.000 0.000 0.238 0.000 

T10-LCPAU-6 0.000 0.000 0.000 0.000 0.079 0.238 0.000 

T10-LCPAU-7 0.000 0.000 0.000 0.000 0.159 0.000 0.000 
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T10-LCPRO-2 0.000 0.000 0.000 0.000 0.032 0.000 0.000 

T10-LCPRO-3 0.000 0.000 0.000 0.352 0.000 0.000 0.000 

T10-LCPRO-4 0.000 0.000 0.000 0.352 0.032 0.000 0.000 

T10-LCPRO-5 0.000 0.000 0.000 0.000 0.000 0.238 0.000 

T10-LCPRO-6 0.000 0.000 0.000 0.000 0.079 0.238 0.000 

T10-LCPRO-7 0.000 0.000 0.000 0.000 0.159 0.000 0.000 

 

6.5.10 Uncertainty Assessment 

We have built the covariance matrix for the precursors and the uncertainty model of 

the rule sets. We can then assess the uncertainty in the output of HET12 by the 

methods developed in Chapter 5. 

 

At the first step, the mimic model is built on MS Excel. The mimic model is 

composed of 28132 risk scenarios. The analytical solutions of the mean and the 

standard deviation are calculated as summarized in Table 6.41. The calculated 

analytical mean differentiates from the result from the FT+ model by 0.008 that 

means a relative error as small as 37.2 −e . Monte-Carlo simulations are then 

conducted with 6000 sets of samples of the precursors and the rule sets. With the 

simulated outputs of HET12, the empirical mean and standard deviation are 

calculated as shown in Table 6.41, of which the relative errors compared with the 

calculated analytical solutions are 0.31% and 0.56% respectively. The calculated 

analytical solutions and the simulations-based empirical solutions coincide very well 

and therefore verify each other. With the simulated outputs, the empirical density 

probability curve of HET12 is drawn as shown in Fig. 6.11. The five vertical dash 

lines mark the five percentiles as summarized in Table 6.42. 

 

 

Table 6.41 Summary of the uncertainty assessment of HET12 

Method Mean Standard Deviation 

SRM FT+ 3.136422777 n/a 

Analytical Solution 3.127937928 0.623461051 

Monte-Carlo Simulations 3.11814552 0.619988727 

Relative error 0.31% 0.56% 
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Table 6.42 Percentiles of the simulations of HET12 

 5% 25% 50% 75% 95% 

Percentile 2.19 2.68 3.06 3.51 4.21 
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Fig. 6.11 Empirical density probability curve from the simulations of HET12 

 

6.6 Conclusion 

In this chapter, we have conducted two case studies on the RSSB-SRM hazardous 

event HET10 and HET12 respectively. We build the covariance matrices for the 

precursors by the procedure developed in Chapter 3. The case studies show that the 

experts are satisfied to use uncertainty factors as a structure to define the correlations 

among a set of input parameters. The experts feel also confident to make the 

qualitative assessment of the correlations regarding the uncertainty factors. In 

conjunction with the benchmark technique as used in Crystal Ball [ORACLE 2008], 

qualitative assessment proves an efficient way for eliciting the correlations regarding 

a large number of uncertainty factors. By the procedure developed in Chapter 3, the 

assessments of the correlations regarding the uncertainty factors are monitored 
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during the process. The case studies show that such a monitoring scheme can help 

the experts to adjust their assessment. With the monitoring scheme, the outcome 

correlation matrix can be guaranteed to be positive semi-definite. For each family, 

the percentile of the waiting time is elicited for deriving the variance. The standard 

deviations of the precursors are then derived within the associated family. The case 

studies demonstrate that the experts are confident to make the assessment on the 

waiting time percentile of a precursor family rather than the individual precursors. 

 

The uncertainty in the rule sets is modelled on the injury atoms by the methods 

developed in Chapter 4 for the two case studies. The case studies demonstrate that 

the experts are confident in identifying the hazard types and structuring the rule sets 

into the injury atoms. The case studies demonstrate also that modelling on the injury 

atoms is an efficient way to model the uncertainty in the rule sets including the 

dependence and the order relationship among the rule sets. 

 

Based on the uncertainty models in the precursors and the rule sets built previously, 

the uncertainty of the output is assessed by the methods developed in Chapter 6 for 

HET10 and HET12 respectively. The case studies demonstrate that the Excel mimic 

model is a reliable and efficient way to representing the Fault-tree and Event-tree 

models. With the case studies, the analytical solutions of the variance match the 

results from the simulations very well. It shows that the analytical solution is a robust 

way even for a large mimic model of tens of thousands of risk scenarios. The case 

studies also show that the software tools are correct and reliable. 

 

As the RSSB-SRM HET10 and HET12 represent typical Fault-tree and Event-tree 

models, the case studies demonstrate that the procedure and the methods developed 

in Chapters 3, 4 and 5 are efficient for conducting the subjective uncertainty analysis 

of Fault-tree and Event-tree models. 
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Chapter 7  

 

Conclusion 

 

 

7.1 Review of the Aims of the Research 

7.1.1 Overview of the Context of This Research 

The goal of this research is to assess the subjective uncertainty in the output of a 

PRA model composed of fault trees and event trees. As shown in Fig. 1.8, a PRA 

model is usually built up on three layers. In the inner layer are the fault trees and 

event trees that are generally built up with computer software tools such as Isograph 

FT+. Therefore these fault trees and event trees are represented as computers codes. 

The fault trees and event trees are then parametralized; the database of the input 

parameters forms the parameter layer around the inner layer of the fault trees and 

event trees. In the context of risk analysis, the parameters are usually assessed 

through expert judgement elicitation. The experts usually make some assumptions 

from where to assess the parameters. The assumptions are narrated outside the 

parameter layer. 

 

The uncertainty analysis in this research is conducted at the parameter layer. We 

cannot assess with certainty the value of each input parameters. Our uncertainty in 

the parameters is due to the lack of knowledge and therefore is categorized into 

epistemic uncertainty [Bedford and Cooke 2001]. For uncertainty analysis, we need 

firstly to model the uncertainty in the input parameters. In this research we focus on 

studying the uncertainty in the basic events and the consequences while we treat as 

constants the numbers of people exposed to risk scenarios and the probabilities of the 

outcomes of the escalation events. After building up the uncertainty in the input 
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parameters, we need to compute the uncertainty in the output, which is the 

uncertainty propagation of the uncertainty in the input parameters through the PRA 

model. 

 

According to the above procedure, we identify three aims for this research as to be 

discussed in details. 

 

7.1.2 Aim 1: A Procedure for Building the Covariance Matrix 

through Expert Judgement Elicitation 

For a large group of input parameters, it is difficult to build the uncertainty model 

through expert judgment elicitation. In practice, it is usually split into two tasks: (1) 

building the marginal distributions for all the individual parameters; and (2) building 

the dependence among all the parameters [Kurowicka and Cooke 2006]. When the 

normal distribution is assumed as the marginal for each single parameter, the 

uncertainty in a group of input parameters can be completely defined by the means 

and the covariance matrix. 

 

It is however a challenge to build up the covariance matrix for a large group of input 

parameters through expert judgement elicitation. Mainly there are two major issues. 

First, it requires too much elicitation workload from the experts. For n random 

variables, there are ( ) 21−nn  correlation coefficients needed to elicit to build the 

correlation matrix. We need also to elicit the variance of each input parameter to 

build up the covariance matrix from the correlation matrix. Second, it is even more 

difficult to keep the outcome correlation matrix positive definite or positive semi-

definite. Different methods have been developed to obtain a positive semi-definite 

correlation matrix by adjusting the outcome matrix from elicitation. For this purpose, 

however, arbitrary information has to be introduced [Ghosh and Henderson 2002; 

Ghosh and Henderson 2003; Kurowicka and Cooke 2006]. 

 

According to the above issues, we aim to develop a procedure for building the 

covariance matrix through expert judgement elicitation. The procedure should 
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require reasonable elicitation time from experts. The procedure should also be able to 

guarantee that the outcome covariance matrix is positive semi-definite. 

 

7.1.3 Aim 2: Methods for Modelling the Uncertainty in the 

Consequences of an Event Tree 

An event tree starts with an initiating event that has the potential to cause safety risk. 

A set of events follows the initiating event. These events can take different outcomes 

that affect the final consequences. Therefore they are called escalation events. A path 

from the initiating event through all the escalation events is called an accident 

sequence. The risk scenario is specified at the end of each accident sequence. Each 

individual exposed to the risk suffers a probability of getting injured at one of the 

four levels including: no injuries, minor injuries, major injuries and fatalities. We 

assume that all the individuals exposed to one risk scenario get injured independently. 

The consequences associated with a risk scenario are defined as the means of injuries 

at the four levels, i.e. the product of the number of people exposed to the risk 

scenario and the individual injury probabilities. Consequently the uncertainty in the 

consequences can be modelled on the uncertainty in the number of the people 

exposed to the risk scenario and the uncertainty in the individual injury probabilities. 

In this research, we don’t study the uncertainty in the number of people exposed to 

the risk scenario as presented before. We focus on modelling the uncertainty in the 

individual injury probabilities. 

 

The escalation events that affect the individual injury probabilities form a subset of 

the escalation events. A rule set is defined when each escalation event in the subset 

takes a specific outcome. Multiple risk scenarios can be associated with the same 

rule set. Once the individual injury probabilities of a rule set are defined, they can be 

used for all the associated risk scenarios. Therefore the workload for populating the 

risk model can be reduced by modelling on the rule sets. 

 

There are still difficulties in modelling the uncertainty in the rule sets of an event tree 

containing many escalation events. First, the rule sets are intensively interwoven to 
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each other through the escalation events. It makes it very difficult to directly assess 

the correlations among rule sets. Second, the number of the rule sets increases 

exponentially with the number of the escalation events, which implies too many pair-

wise correlations to assess for a large event tree. Third, the individual injury 

probabilities should have a monotonicity property: a rule set associated with worse 

outcomes of all the escalation events should have individual injury probabilities not 

less than another rule set associated with better outcomes. 

 

According to the above difficulties, we aim to develop suitable methods for 

modelling the uncertainty in the rule sets of an event tree. The methods should 

require reasonable elicitation time from the experts. Furthermore, the methods should 

be able keep the monotonicity property among the rule sets. 

 

7.1.4 Aim 3: Efficient Methods for Conducting Uncertainty 

Analysis of a Large Fault Trees and Event Trees 

As described above, the fault trees and event trees are usually built with commercial 

software packages such as Isograph FT+. They are represented as the computers 

codes and data that are stored in the internal database of the software tools. The 

internal databases, however, are usually not transparent to the users in terms of the 

limits on accessing and manipulating the internal database. It results in difficulties in 

conducting uncertainty assessment in two aspects. First, for conducting simulations, 

we need to set the input parameters, run the model and obtain the results. It is very 

difficult if possible given the limits on accessing the database of the fault tree and 

event tree computer models. Second, the computer model composed of the codes and 

data stored in the internal database is completely a “black-box” to the analysts. It is 

impossible to do any analytical analysis with such a computer model. This is the first 

problem with conducting uncertainty analysis of fault trees and event trees. 

 

For conducting the uncertainty analysis, usually we can do simulations of the model 

and build up the empirical distribution based on the simulations. We can also try to 

calculate the analytical solution of the variance of the output. For both, we need to 
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deal with the dependences among the input parameters, which is usually very 

difficult. 

 

According to the above problems, we aim to select or develop the efficient methods 

to conduct uncertainty propagation through a large PRA model. The methods should 

be able to cooperate with the commercial software tools. The methods should also be 

able to work efficiently on a large Fault-tree and Event-tree model containing as 

many as thousands of correlated input parameters. 

 

7.2 Summary of the Development of this Research 

7.2.1 A New Procedure for Building the Covariance Matrix 

through the Expert Judgement Elicitation 

A new procedure has been developed for building the covariance matrix through the 

elicitation of expert judgement. The procedure is composed of three developments 

including: (1) the procedure for building up the correlation matrix of a group of input 

parameters; (2) deriving the variance of the input parameters within a family; (3) a 

new way for assessing the correlation between two random variables, which is a 

combination of qualitative assessment and benchmark. 

 

7.2.1.1 The Procedure for Building up the Correlation Matrix of a 

Group of Input Parameters 

The procedure is developed based on uncertainty factors that have been employed as 

an efficient way to model the uncertainty in input parameters. The elicitation 

workload can be reduced significantly by modelling on the uncertainty factors [Van 

Dorp 2005]. We use uncertainty factors to structure the uncertainty of the input 

parameters through a linear model [Cheng, Bedford et al. 2007]. The uncertainty 

factors of one input parameter are assumed independent. Two uncertainty factors 

from different input parameters can be correlated or identical. Consequently the 

uncertainty factors are put into three categories: (1) exclusive factors that belong to 

one input parameters only; (2) common factors that belong to all the input parameters; 



 244 

and (3) a factor class composed of correlated factors one and only one from each 

input parameter. The input parameters are correlated through the common factors 

and the factor classes. The correlation matrix of the input parameters is derived based 

on the elicitation of the correlations regarding the uncertainty factors. 

 

An indicative value is derived to measure the proportion of the parameter's variance 

that is explained by the factors. This indicative value cannot exceed 1, which can be 

used as a constraint to monitor the assessment during the elicitation. The experts 

have to compare between the factors and give the consistent assessment that satisfies 

the constraint. As a result, a positive semi-definite correlation matrix can be 

guaranteed for multiple input parameters, which is a big feature of this method. 

Suppose there are n parameters having m common factors. The number of elicitation 

parameters is mn × . Compared with directly filling in the correlation matrix of 

( ) 21−nn  cells, this method requires fewer values to be elicited. 

 

7.2.1.1.1 Deriving the Variance of the Input Parameters within a Family 

When a group of parameters are defined physically in a similar way, the concept of 

parameter family is defined. A common factor that is not affected by any differences 

across the family is defined as an invariant factor of the family. The set of invariant 

factors is called the family commonality, of which the contribution to the standard 

deviation of the family members is assumed to be proportional to the members’ 

means. In the context of risk and reliability analysis, most of the input parameters are 

defined as the occurrence rate of the basic events [Kumamoto and Henley 1996; 

Modarres 2006]. The sum of the input parameters can therefore be defined as 

occurrence rate of the family which is meaning to assess the variance. We elicit the 

variance of the family from which we derive the family members’ standard deviation 

by the invariant factors and the correlation matrix. 

 

The method has two main features. First, the method requires less elicitation 

workload regarding the variance. Second, the assessment of a high level event is 

more reliable as agreed by the experts. 
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7.2.1.2 Qualitative Assessment plus Benchmark for Assessing the 

Correlation between Two Random Variables 

As a supporting technique, we select the combination of the qualitative assessment 

and benchmark for eliciting the correlation between two random variables. 

Qualitative assessment is believed to be an easy way for experts to assess the 

correlation between two random variable [Clemen, Fischer et al. 2000]. The 

assessments however need to be mapped into numbers for conducting numerical 

analysis. Usually the qualitative assessments are mapped linearly into the interval 

between 0 and 1 [Clemen, Fischer et al. 2000]. The linear numerical mapping 

however implies a strong assumption and makes the qualitative assessment method 

less rigorous in terms of probability theory. We do the mapping in another way as 

employed in the Excel Add-in Crystal Ball for training the experts. For a given pair 

of random variables of preset correlation, the scatter plot is made on the samples and 

presented on the screen. The experts are then asked to draw a position on the 

continuous line to shown their belief of the correlation strength. By repeating this 

process many times, a map can be made between the positions and the underlying 

correlations. Based on the assumption that the experts can perceive the correlations 

in a way consistent with their subjective correlation perception, we think this map 

can be used as benchmark in the qualitative assessment of the correlations. This has 

proven in the case studies in this research. 

 

The combination of the qualitative assessment and benchmark as defined above 

holds the threes features for a good elicitation method that are summarized in 

[Clemen, Fischer et al. 2000]. First, it has rigorous foundations that are defensible in 

terms of probability theory. Second, it is a general one that can be used in a wide 

variety of situations. Third, it is easy to implement and be able to be linked directly 

to the modelling procedure. 
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7.2.2 A New Method for Building the Uncertainty in the Rule Sets 

of an Event Tree 

Along the sequence of the escalation events of an event tree, we identify the hazard 

types that are the materials or activities with potential to cause injuries. Depending 

on the outcomes of the escalation events associated with a risk scenario, each hazard 

type is defined at a specific level, which is called a hazard. The individual injury 

probabilities of the rule set are then defined in terms of the hazards. 

 

We assume that, given the sequence, the hazards are independent in terms of causing 

the injuries to the people exposed to the risk scenario. When an individual person 

caught in a risk scenario is not lucky enough to escape all the hazards, the person 

becomes part of the consequence. After each hazard in the sequence, an individual 

exposed to the risk scenario either keeps the same level of injury or suffers a higher 

level injury. We assume that the transition probabilities associated with a hazard 

depend only on the person’s injury level before the hazard. Consequently, the 

individual injury probabilities of a rule set can be defined on the associated hazards 

by a Markov Chain model [Ross 2003]. To build up the Markov Chain model, we 

need to elicit the transition probabilities associated with each hazard. Once the 

transition probabilities are elicited for one hazard, they can be used for all the rule 

sets containing the same hazard. Therefore, modelling on the hazards can 

significantly reduce the elicitation work. 

 

For modelling the uncertainty in the rule sets, we can model the subjective 

uncertainty in the transition probabilities. We assume that the transition probabilities 

associated with different hazard types to be independent. It means that a given 

transition probability of one hazard does not tell any information on the transition 

probability of the hazards of another type. We assume that the transition probabilities 

associated with the same hazard type are proportional. By the assumption, an injury 

atom is defined for each hazard type. All the transition probabilities associated with 

the same hazard type are then defined on the injury atom. Consequently the 

individual injury probabilities of the rule sets are modelled on the injury atoms. 
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In most of the cases, we are more concerned with the major injuries and the fatalities 

than with the minor injuries. We need also to keep the elicitation work and time 

reasonable to the experts. For these two purposes, we develop a model of two levels 

of injuries as a simplified case of the model of four levels of injuries. 

 

The above methods require reasonable elicitation time from experts. The 

dependences among the rule sets are modelled automatically through the injury 

atoms. The monotonicity property of the rule sets can also be kept between two rule 

sets associated with general worse and better hazards respectively. 

 

7.2.3 Suitable Methods for Conducting Uncertainty Analysis of 

Fault-tree and Event-tree Models 

At the first step, we develop a mimic model of the fault trees and event trees that are 

built with a commercial software tool. The top event of a fault tree is broken down 

into the basic events, also called precursors. A cut set is a collection of the basic 

events that together certainly cause the top event. A minimum cut set is one that is no 

longer a cut set when any of its basic events is removed. The basic events are called 

rare events when they have very small occurrence probabilities. For two minimum 

cut sets composed of rare events, the simultaneous occurrence probability is orders of 

magnitude smaller than the occurrence probability of either minimum cut sets. Based 

on this idea, the occurrence probability of the top event can be approximated as the 

sum of the occurrence probabilities of all the minimum cut sets, which is called rare 

event approximation [Bedford and Cooke 2001]. Once the fault trees and event trees 

are built with a commercial software tool such as Isograph and the input parameters 

are set, the minimum cut sets can be generated and associated with a risk scenario. 

The codes of the events composing the risk scenarios can then be output into a plain 

text file such as MS Excel. We can then program with MS Excel VBA on the events 

composing the risk scenarios to mimic the original computer model. MS Excel is a 

very popular software tool that offers easy access to the data. It is therefore easy to 

conduct simulations of the mimic model for uncertainty assessment. The mimic 
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model also offers a transparent structure so that we can calculate the variance of the 

mimic model through algebraic operations. 

 

As assumed above, in this research we study the uncertainty in the basic events of the 

fault trees and the uncertainty the consequences of the event trees; we then calculate 

the uncertainty propagation through the fault trees and event trees. The uncertainty in 

the basic events and the uncertainty in the consequences are assumed to be 

independent. However the uncertainty in the basic events is assumed to follow a joint 

normal distribution. For conducting the uncertainty analysis, the basic events need to 

be expressed as the linear transformation of a set of independent standard normal 

variables. We select a linear transformation that is suitable for the context of risk 

analysis. Usually we implement the linear transformation through the Cholesky 

decomposition of the covariance matrix [Scheuer and Stoller 1962]. The Cholesky 

algorithm requires that the covariance matrix must be positive definite [Scheuer and 

Stoller 1962]. In the context of risk analysis, however, the covariance matrix can be 

positive semi-definite. To solve this problem, we select the linear transformation 

through the decomposition vectors and eigenvalues, which is called eigen-

decomposition. Furthermore, in the context of risk analysis, the variance of the input 

parameters can be very small. The variance of the precursors related to the HET-12 

in the RSSB-SRM, for example, spreads over 2419 10~10 −−  [Harrison, Griffin et al. 

2008]. For such a covariance matrix, the calculation of the eigenvalues and 

eigenvectors is more expensive and large errors can be incurred [Wilkinson 1965; 

Watkins 1991]. To solve this problem, we implement the linear transformation 

through the eigen-decomposition of the correlation matrix instead of the covariance 

matrix. 

 

Based on the linear transformation, we then develop Monte-Carlo simulations to 

build the empirical distribution of the output. We also develop the analytical solution 

for the variance through algebraic operations. The two methods are implemented 

independently and therefore can be used for cross-check for each other. 
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We then design the software to implement the above methods. The software is 

implemented on MS Excel workbooks and therefore can be conveniently installed 

and run in applications. The software is validated in three stages including: (1) 

validate the mimic model; (2) validate the correctness of the methods and the 

software; (3) validate the robustness of the methods and the software. 

 

As a summary, the methods developed in this research can be applied directly with 

the computer models of the fault trees and event trees that are built with commercial 

software tools. The methods for assessing the uncertainty in the output is able to 

work efficiently even for a large model containing tens of thousands of risk scenarios. 

 

7.2.4 Case Studies 

As a validation of the developed methods, in this research we conduct two case 

studies of assessing the uncertainties in the output of a Fault-tree and Event-tree 

model. 

 

The case studies are made on the Safety Risk Model (SRM) developed by the Rail 

Safety and Standards Board (RSSB). The RSSB-SRM is composed of a series of 

Fault-tree and Event tree models corresponding to the 125 hazardous events 

respectively. Currently the “best-estimated” values are set to the input parameters; 

consequently a point estimation of the yearly equivalent expected fatalities can be 

obtained from the model [Dennis 2006]. To support decision making, the assessment 

of the uncertainty in the output is needed. It therefore offers good case studies to test 

the procedure and the methods developed in this research. Our case studies are 

conducted on the hazardous events HET10 and HET12 as they are the two largest 

contributors to the safety risk in RSSB-SRM [Dennis 2006]. 

 

For the both case study, we build the covariance matrices for the precursors by the 

procedure developed in Chapter 3. The case studies show that the experts are 

satisfied to use uncertainty factors as a structure to define the correlations among a 

set of input parameters. The experts feel also confident to make the qualitative 
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assessment of the correlations regarding the uncertainty factors. In conjunction with 

the benchmark technique as used in Crystal Ball [ORACLE 2008], qualitative 

assessment proves an efficient way for eliciting the correlations regarding a large 

number of uncertainty factors. By the procedure developed in Chapter 3, the 

assessments of the correlations regarding the uncertainty factors are monitored 

during the process. The case studies show that such a monitoring scheme helps the 

experts to adjust their assessment. With the monitoring scheme, the outcome 

correlation matrices are guaranteed to be positive semi-definite. The standard 

deviations of the precursors are derived within the associated families. The case 

studies also demonstrate that the experts are confident to make the assessment on the 

waiting time percentile of a precursor family rather than the individual precursors. 

 

For the both case studies, the uncertainty in the rule sets is modelled on the injury 

atoms by the methods developed in Chapter 4. The case studies demonstrate that the 

experts are confident in identifying the hazard types and structuring the rule sets in 

terms of the injury atoms. Modelling on the injury atoms is demonstrated as an 

efficient way to model the uncertainty in the rule sets including the dependence and 

the order relationship among the rule sets. 

 

Based on the uncertainty models in the precursors and the rule sets built above, the 

uncertainty of the output is assessed by the methods developed in Chapter 6 for the 

both case studies respectively. The case studies demonstrate that the Excel mimic 

model is a reliable and efficient way to representing the Fault-tree and Event-tree 

models. With the case studies, the analytical solutions of the variance match the 

results from the simulations very well. It shows that the analytical solution is a robust 

way even for a large mimic model of tens of thousands of risk scenarios. The case 

studies also show that the corresponding software tools developed in this research are 

correct and reliable. 

 

As the RSSB-SRM HET10 and HET12 represent typical Fault-tree and Event-tree 

models, the case studies demonstrate that the procedure and the methods developed 
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in Chapters 3, 4 and 5 are efficient for conducting the subjective uncertainty analysis 

of Fault-tree and Event-tree models. 

 

7.3 Validation of the Development 

The developments are validated in three stages. In the first stage, all the assumptions 

taken in this research are well discussed and agreed with the experts in RSSB. RSSB 

is dedicated to achieving continuous improvement in the safety performance on the 

Great Britain mainline railway. RSSB has built the SRM to measure the risk and the 

underlying causes, which has been updated to its 5
th

 version by 2006. During the 

process, the experts in RSSB have gained substantial knowledge and experience in 

risk analysis and expert judgement elicitation. All the assumptions taken in this 

research have been validated by the experts in RSSB. 

 

In the second stage, the developments based on assumptions are made based on 

mathematical and statistical methods and theories. The developments therefore are 

validated automatically. 

 

In the third stage, we use case studies to validate the practical performance of the 

developments of this research. The developed procedure and methods work smoothly 

with the case studies. The experts are confident with making assessments following 

the procedure and the methods developed in this research. The methods for 

calculating the uncertainty propagation through the fault trees and event trees work 

efficiently even when tens of thousands of risk scenarios are included [Harrison, 

Griffin et al. 2008]. 

 

7.4 Future Research 

7.4.1 The Method for Modelling the Uncertainty in the Numbers of 

the People Exposed to the Risk Scenarios 

As discussed before, a number of people are supposed to be exposed to each risk 

scenario. The number needs to be elicited from the experts for each risk scenario. In 
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this research, the number is set as the best-estimated value. However, we cannot 

assess this number for sure as for the basic events and the rule sets. We therefore 

need to model the subjective uncertainty in the numbers of people exposed to the risk 

scenarios and include it in the uncertainty analysis of the fault trees and event trees. 

 

For epistemic uncertainty analysis, we model the uncertainty in the means of the 

numbers of people exposed to the risk scenarios and the possible dependence. As we 

usually do in modelling high dimensional dependence [Kurowicka and Cooke 2006], 

we can assume parametrical marginal distributions for the means of the numbers and 

then model the dependence separately. The means, however, can have monotonicity 

property: the mean of the number of people exposed to one risk scenario is always 

larger than that to another risk scenario. It brings more difficulties in modelling the 

uncertainty in the means of the numbers of people exposed to the risk scenarios. 

 

7.4.2 The Methods for Building the Uncertainty in the Outcome 

Probabilities of the Escalation Events 

In an event tree, the escalation events can take different outcomes that affect the final 

consequences. Each outcome is associated with a probability that needs to be elicited 

from the experts. However, we can not assess the probability for sure as for others 

input parameters. The subjective uncertainty in the probabilities therefore needs to be 

modelled and included in the uncertainty analysis of the fault trees and event trees. 

 

Typically the escalation events take two outcomes: yes or no. For such an escalation 

event, we can assume that probability of one outcome, say “yes”, follows a Beta 

distribution and the distribution can be built through expert judgement elicitation. 

When an escalation event has multiple outcomes, the uncertainty of the probabilities 

can be assumed to follow a Dirichlet distribution. We need to select or develop a 

method for building the distributions through expert judgement elicitation. 
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7.4.3 Sensitivity Analysis 

After the uncertainty analysis, sensitivity analysis can be conducted to identify the 

most important input parameters in terms of the contributions to the uncertainty of 

the risk assessment model. More efforts can then be exerted to reduce the uncertainty 

in these important input parameters so that uncertainty of the output can be reduced 

most efficiently. Many methods have been developed for conducting sensitivity 

analysis [Saltelli, Chan et al. 2000; Saltelli 2004]. We need however to choose the 

suitable ones for a large risk assessment model composed of fault trees and event 

trees. 

 

7.4.4 Approximate Probability Distribution of the Sum of Products 

of Continuous Random Variables 

As discussed before, the fault trees and event trees can be approximated by the sum 

of products of the input parameters corresponding to the risk scenarios. For 

uncertainty analysis, it is desirable to derive the analytical distribution function of the 

output of such a model. However, the analytical probability distribution has not been 

developed for the product of two random variables except for some special cases. 

 

As presented in Appendix A, we propose an approximate analytical solution of the 

probability distribution of the product of two random variables of a general joint 

distribution. Because normal random variables are used in the case studies of this 

research, we implement as an example the approximate probability distribution for 

two normal random variables. For two independent standard normal random 

variables, the approximate distribution is compared with the analytical distribution 

that has already been derived. For two correlated normal random variables, the 

approximate distribution is compared with the simulations. 

 

The approximate analytical solution is further expanded for the product of multiple 

random variables and for the sum of the products of random variables. The random 

variables are dealt with sequentially and only one random variable is discretised at 

each step. The method is therefore suitable for large models while it is very difficult 
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if possible to cope with the all random variables simultaneously. We test the 

expanded approximate distribution model with the product of three correlated normal 

random variables. The approximate distribution is compared with the simulations and 

shows high accuracy. 

 

The approximate analytical solutions have shown their potential to be used for 

uncertainty analysis of fault trees and event trees. However they are still not 

applicable in practice. More efforts are needed to measure and control the 

computation error. Once it is achieved, we can build the approximate analytical 

distribution function of the output of a risk assessment model composed of fault trees 

and event trees. The approximate probability distribution has the promising features 

compared with building the empirical distribution based on the simulations. 
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Appendix A  

 

Approximate Probability Distribution of the Sum of 

Products of Continuous Random Variables 

 

 

A.1 Introduction 

When the rare event approximation is applied with the Fault-tree [Bedford and 

Cooke 2001], the Fault-tree and Event-tree models can be expressed as the sum of 

products of the input parameters as 

 

 ( ) ∑∏
∈

==
ℓ ℓ

⋯⋯
Rp

ini

i

ppppfr ,,,,1  

 

where ℓR  stands for a risk path composing of the input parameters ip .  

 

For probabilistic uncertainty analysis, it is desirable to obtain the analytical 

probability distribution of the output. Building the distribution of the product of 

random variables has also a wide range of applications such as radio propagation 

[Salo, El-Sallabi et al. 2006], Bioinformatics [Brown and Alexander 1991] and 

finance engineering [Nadarajah and Ali 2006] etc. 

 

Suppose X and Y are two random variables with the joint probability distribution 

( )yxf YX ,, . The distribution of XYA =  can be expressed through their joint 

distribution as 
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( ) ∫ ⋅







=

X
YXA dx

xx

a
xfaf

1
,,  

 

From this equation, the analytical solution of ( )af A  can be obtained only for some 

specific cases such as independent ( )1,0~ NX  and ( )1,0~ NY , and independent 

( )1,0~ UX  and ( )1,0~ UY  [Glen, Leemis et al. 2004]. 

 

Efforts have also been exerted to derive the analytical solution to ( )af A  through 

Mellin transform [Fox 1961; Springer 1979]. The method based on Mellin transform 

can be extended for the product of n independent identical normal variables, negative 

exponential variables, Weibull variables, and Gamma variables respectively 

[Springer and Thompson 1966; Lomnicki 1967; Springer and Thompson 1970]. The 

method is recently extended for independent Rayleigh random variables as well [Salo, 

El-Sallabi et al. 2006]. The analytical solution of ( )af A  can also be developed when 

X and Y are distributed by Lawrance Lewis’s bivariate exponential distribution 

[Nadarajah and Ali 2006]. 

 

We can see, however, the analytical solution of ( )af A  has not been derived for many 

other cases especially for dependent variables. In this chapter, we are going to 

propose a new way to build an approximate analytical solution of ( )af A . The 

approximate analytical solution can be applied for two random variables of a generic 

joint distribution. The approximate solution is then extended for the product of 

multiple random variables and is extended further to the sum of products of random 

variables of a generic joint distribution. Some examples of the approximate 

analytical solutions are included for demonstration. 

 

The approximate analytical solutions however are still not applicable in practice. 

More efforts, for example, are still needed to measure and control the computation 

error. We are going to show that the approximate analytical solutions potentially 

offer a new way to cope with a difficult task. We do not claim that these approximate 

analytical solutions have been soundly developed. 
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A.2 Mixture Distribution Model 

A finite mixture distribution model is defined in [Titterington 1985; Bishop 1995; 

Mclachlan and Peel 2000] as  

 

 ( ) ( ) ( )xfxfxp KKλλ ++= ⋯11  (A.1) 

 

where  

 

0>kλ Kk ,,1⋯= ; 1
,1

=∑
= Kk

kλ  

 

( ) 0≥xf k , ( ) 1=∫X k dxxf  

 

Following [Titterington 1985; Bishop 1995; Mclachlan and Peel 2000], the 

parameters kλ  are called mixing weight and ( )xf k  the component densities of the 

mixture. 

 

When the all component densities belong to the same parametric family, the mixture 

distribution model defined in Equation A.1 becomes 

 

 ( ) ( )∑
=

⋅=
Kk

kk θxfxp
,1

λ  (A.2) 

 

where kθ  denotes the parameter occurring in the k
th

 component associated with kλ . 

 

The mixture weights ( )Kλλλ ,,1 ⋯=  can also be thought of as a discrete prior 

distribution on the parameters kθ  [Titterington 1985]. When the parameter θ  is 

defined on a continuous domain, the mixture weight is defined by the weight 

distribution ( )θλ  that satisfies 
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( ) 0>θλ ; ( ) 1=∫θ θθλ d  

 

Correspondingly a continuous mixture distribution model can be defined as in 

[Gelman, Carlin et al. 2003] as 

 

 ( ) ( ) ( )∫=
θ

θθλ dθxfxp  (A.3) 

 

From the above mixture distribution models, an analytical solution of the distribution 

of the product of random variables is to be derived. 

 

A.3 Distribution of Product of Two Random Variables 

A.3.1 Mixture Distribution Model for Product of Two Random 

Variables 

Suppose X and Y are two continuous random variables with the joint distribution 

( )yxf YX ,, . The joint distribution can be expressed as [Ross 2003]: 

 

 ( ) ( ) ( )yfxfyxf
xXYXYX =

⋅=,,  (A.4) 

 

where ( )xf X  is the marginal distribution of X and ( )yf
xXY =

 is the distribution of Y 

conditional on xX = . 

 

Suppose 

 

 YXA ⋅=  (A.5) 

 

We need to derive the distribution of A denoted as ( )af A . From Equation A.5, the 

distribution of A conditional on 0≠= xX  can be derived by standard transformation 

of variables as 
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 ( ) 







=

==
x

a
f

x
af

xXYxXA

1
 (A.6) 

 

We can then treat ( )af
xXA =

 as the component and ( )xf X  the weight density of a 

mixture distribution model as defined in Equation A.3. Subsequently, ( )af A  can be 

defined as a mixture distribution model as 

 

 

( ) ( ) ( )

( )dxxf
x

a
f

x

dxxfafaf

X
X xXY

X
X xXAA

⋅







=

⋅=

∫

∫

=

=

1  (A.7) 

 

Equation A.7 defines the distribution function ( )af A  as integral over X. For some 

types of ( )yf
xXY =

, a closed form of ( )af A  can be derived from the integration. For 

general conditional distribution ( )yf
xXY =

, the integral can be approximated with the 

summation based on a discretisation of X. We have shown that ( )af
xXA =

 is a 

parametric function of a, which can be derived from the parametric function 

( )yf
xXY =

 given xX =  by Equation A.6. An approximate analytical function to 

( )af A  will be derived as the sum of the parametric functions of the form ( )af
xXA =

 

accordingly. 

 

A.3.2 Approximate Distribution Function 

Based on Equation A.7, the support of X can be partitioned into K  intervals by 

setting 1+K  borders kBx , , Kk ,,0⋯=  , where KBkBB xxx ,,0, <<<< ⋯⋯ . The two 

terminal borders 0,Bx  and KBx ,  are set as the bounds of X. When X is defined on 

( )+∞∞− , , 0,Bx  and KBx ,  can be defined by 

 

( ) TPBxF BX =0, , ( ) TPBxF KBX −= 1,  
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where ( )xFX  represents the cumulative probability of X; TPB represents the truncated 

probability bound and should be a small positive real number. 

 

Denote the interval [ ]
kBkB xx ,1, ,−  as kIX , . The probability of kIXx ,∈  is defined as 

 

 ( ) ( ) ( )1,,,Pr −−=∈= kBXkBXkIk xFxFXxm  (A.8) 

 

For each interval kIX , , a point kIk Xx ,∈  can be chosen as the representative. For 

instance, the representative can be simply set as the middle point as 

 

( ) 2,1, kBkBk xxx += −  

 

The continuous random variable X is now discretised as 

 

 ( ) kk mxX ==Pr , Kk ,,1⋯=  (A.9) 

 

We have shown that ( )af
xXA =

 is a parametric function of a, which can be derived 

from the parametric function ( )yf
xXY =

 given xX =  by Equation A.6. 

Corresponding to the discretisation of X, the component ( )af
xXA =

 can be 

approximated with ( )af
kxXA =

 for kXx ∈ . The integral in Equation A.7 can then be 

approximated with the following summation 

 

 ( ) ( ) ∑∑
=

=
=

= 







⋅==

Kk k

xXY

k

k

Kk

xXAkA
x

a
f

x
mafmag

kk

,1,1

1
 (A.10) 

 

When the parametric function ( )yf
xXY =

 is known, the distribution function ( )ag A  is 

defined by Equation A.10 as an approximation to ( )afA  that itself cannot be derived 

explicitly for X and Y of a general joint distribution. The definition of ( )ag A  is 

demonstrated in Fig. A.1. We can see that ( )ag A  is an approximate analytical 
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solution that is a function of a. It therefore is different from the traditional numerical 

integral that calculates a discrete probability density of A =a. Therefore the 

traditional integration methods as summarized in [Burden and Faires 1997] are not 

suitable to generate the approximate distribution ( )ag A  defined in Equation A.10 

from the original integral defined in Equation A.11. Based on the mixture probability 

model defined in Equations A.3 and A.2, we actually propose a way to discretised X 

by the marginal distribution ( )xf X , the conditional distribution ( )yf
XY 1=

 and the 

inverse curve x1 . We are going to discuss the method for discretising X in more 

details. 

 

 

 

 

Fig. A.1. The illustration for building the approximate parametric function of the 

distribution of the product of two continuous random variables 

 

 

By comparing Equation A.7 and A.10, we can see that the computation errors are 

incurred when partitioning X into the intervals kIX , . Define 1,, −−=∆ kBkBk xxx . Firstly 

the component weight density in Equation A.7 is defined by ( )xfX  while it is 

approximated with kk xm ∆  for kXx ∈  in Equation A.10. Secondly the scaling 

coefficient in Equation A.7 is defined by x1 ; while it is approximated with kx1  for 

kXx ∈  in Equation A.10. Thirdly the conditional distribution in Equation A.7 is 

( ) ( )









=

≡

=

=⋅==⋅=

k

xXY

k

xXYxAxXYXA

x

a
f

x

afaf

k

kkk

1

kx X 

( )xf X
( ) ( )

1,, −−=
kBXkBXk xFxFm

( )yf
kxXY =

Probability 

Density 

( ) ( )∑
=

=⋅=⋅= ⋅=
K

k

xXYXAkYXA afmaf
k
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defined by ( )yf
xXY =

; while it is approximated with ( )yf
kxXY =

 for kXx ∈  in 

Equation A.10. By properly setting 0,Bx , KBx ,  and kx  for Kk ,1=  the variability of 

( )xfX , x1  and ( )yf
xXY =

 can be controlled for kIXx ,∈ . Subsequently the overall 

error can be controlled within an acceptable level. Some general principles include: 

• Keep smaller kx∆  where there is a larger absolute value for ( )xf
dx

d
X , ( )x

dx

d
1  

or ( )yxf
xy

YX ,,
∂

∂

∂

∂
; 

• When the jump discontinuity points of ( )xfX  and ( )yxf YX ,,  exist, they have to 

be set as a border kBx , ; 

• For unbounded X, the borders 0,Bx  and KBx ,  must be set to ensure the 

probability [ ]( )
KBB xxX ,0, ,Pr ∈  is large enough and the impact of the truncated 

probability has to be accounted properly. 

• A singular point of Equation A.7 exists at 0=X . In case of [ ]
KBB xx ,0, ,0∈ , 

three successive borders must be set at δ− , 0 and δ  where 0>δ  is a small 

real number specified for the expected accuracy. 

 

We are going to test the above methods by building the distribution of two normal 

random variables because they are used popularly for many applications including 

RSSB-SRM on which the case studies are to be carried in this research. We will test 

the impact of the different settings of TPB, kBx , , kx  on the approximation accuracy 

of the mixture model defined in Equation A.10. 

 

A.3.3 Distribution of the Product of two Normal Random Variables 

A.3.3.1 Approximate Probability Distribution Function 

The analytical solution of the distribution of the product of two independent standard 

normal variables can be built based on Bessel function [Weisstein ; Springer 1979; 

Glen, Leemis et al. 2004]. For two general normal random variables, however, no 
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analytical solution has been found in the literature. We develop the approximate 

distribution function of the product of two general normal variables by Equation 

A.10. This approximate function is then implemented with two independent standard 

normal variables, and two correlated normal variables respectively. 

 

Suppose that X and Y are two normal random variables denoted as ( )XXNX σµ ,~  

and ( )YYNY σµ ,~ , where Xµ  and Yµ  are the mean of X and Y respectively; Xσ  

and Xσ  are the standard deviation of X and Y respectively. Denote the correlation 

between X and Y as ( )YXr , . The joint distribution of X and Y is completely defined 

by Xµ , Yµ , Xσ , Xσ  and ( )YXr , . 

 

The conditional distribution of Y given xX =  is still a normal distribution that is 

defined as given in [Tong 1990] as 

 

 ( ) ( )
xXYxXYxXY

Nyf
===

= σµ ,  (A.11) 

 

where 

 

 ( ) ( )X

X

Y
YxXY

xYXr µ
σ

σ
µµ −+=

=
,  (A.12) 

 

 ( )YXrYxXY
,1−=

=
σσ  (A.13) 

 

Based on Equation A.5, the product A given xX =  is normally distributed as well 

[Ross 2003]. The conditional distribution of A in Equation A.6 can be defined as 

 

 ( ) ( )
xXAxXAxXA

Naf
===

= σµ ,  (A.14) 

 

where 
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 ( ) ( )







−+⋅=⋅=

== X

X

Y
YxXYxXA

xYXrxx µ
σ

σ
µµµ ,  (A.15) 

 

 ( )YXrxx YxXYxXA
,1−⋅=⋅=

==
σσσ  (A.16) 

 

Based on Equation A.10 the approximate distribution of A can be derived as 

 

 ( ) ( )∑
=

==
⋅=

Kk

xXAxXAkA
kk

Nmag
,1

,σµ  (A.17) 

 

Equation A.17 defines the approximate analytical distribution of the product of two 

normal random variables as a mixture model of a set of normal distributions. Three 

examples are made by using the software package MATLAB to demonstrate the 

performance of this mixture model. The simulation samples of X and Y are generated 

directly by using MATLAB function mvnrnd() 

 

A.3.3.2 Example 1: Uncorrelated Standard Normal X and Y  

Suppose that X and Y are standard normal random variable denoted as ( )1,0~ NX  

and ( )1,0~ NY . Suppose also ( ) 0, =YXr . The analytical solution of ( )af A  has been 

derived based on Bessel function in [Weisstein; Springer 1979; Glen, Leemis et al. 

2004] as 

 

 ( )
( )

π

aK
af A

0= , 0≠a  (A.18) 

 

where ( )0K  is a modified Bessel function of the second kind. 

 

We are going to derive the approximated distribution ( )ag A  as defined in Equation 

A.17. We then compare the approximate distribution with the analytical solution. 

 

Because X and Y are independent, we have 
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 0==
= YxXY

µµ  

 

 1==
= YxXY

σσ  

 

As defined in Equations A.15 and A.16, the component mean and standard deviation 

are calculated as 

 

 0=⋅=
== xXYxXA

x µµ  

 

 xx
xXYxXA

=⋅=
==

σσ  

 

We start with setting the TPB as 1e-8 and discretise X by keeping the same value of 

( ) ( )1,, −− kBXkBX xfxf . The representative point is set as ( ) 21,, −−= kBkBk xxx . Based 

on Equation A.17, two mixture models are built with 16 and 200 components for 

comparison. The weight, the mean and the standard deviation of the 16 components 

are defined in Table A.1. For this example, we can see that the components are 

symmetrically defined corresponding to the symmetric samples of X. Therefore the 

approximate distribution can actually be defined by 8 components and 100 

components respectively. 

 

 

Table A.1 Normal-components of the approximate distribution of the product of two 

independent standard normal random variables 

No. Mixing Weight Component Mean Component Std 

1. 5.00E-11 0 12.934 

2. 0.024261 0 3.2891 

3. 0.032463 0 1.7462 

4. 0.039774 0 1.4284 

5. 0.048544 0 1.1712 

6. 0.060971 0 0.93255 
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7. 0.083349 0 0.68178 

8. 0.21064 0 0.26696 

9. 0.21064 0 0.26696 

10. 0.083349 0 0.68178 

11. 0.060971 0 0.93255 

12. 0.048544 0 1.1712 

13. 0.039774 0 1.4284 

14. 0.032463 0 1.7462 

15. 0.024261 0 3.2891 

16. 5.00E-11 0 12.934 

 

 

For comparison, the 8-component approximate distribution and the 100-component 

approximate distribution are plotted together with the analytical distribution in Fig. 

A.2 (a) and (b) respectively. To demonstrate the difference further, we plot the ratio 

of the analytical distribution to the approximate distribution, i.e. 
( )

( )ag
af

A

A , in Fig. 

A.3 (a) and (b) for the two approximate distributions respectively. The plots 

demonstrate that the approximate distributions coincides with the analytical 

distribution very well except in a small area around 0=A . The reason is that the 

approximate distribution has a finite density value for 0=A  while the analytical 

distribution has an infinite definition for 0=A . We can however gain higher 

accuracy by including more components in the approximate distribution. 
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(a) for the approximate distribution of 8 components 

 

 

(b) for the approximate distribution of 100 components 

 

Fig. A.2 The analytical distribution and the approximated distribution of the product 

of two independent standard normal random variables 
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(a) for the approximate distribution of 8 components 

 

 

(b) for the approximate distribution of 100 components 

 

Fig. A.3 The ratio between the analytical distribution and the approximate 

distribution of the product of two independent standard normal random variables  
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A.3.3.3 Example 2: Uncorrelated non-standard Normal X and Y 

We design this example to demonstrate the performance of the approximate 

distribution of the product of two independent normal variables that have non-zero 

means. We consider X~N(12, 0.4), Y~N(3, 0.2) and ( ) 0, =YXr . For such a case, the 

analytical distribution ( )af XYA=  has not been found in the literature. The analytical 

mean and the standard deviation however can be calculated by 

 

( ) ( ) ( ) ( ) 36=== YEXEXYEAE  

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )YXXEYYEXXYA varvarvarvarvarvar
22

⋅+⋅+⋅==  

 

( ) ( ) 7692.68447387var == AAσ  

 

We define the relative errors as  

 

( ) ( ) ( )( ) ( )AEAEAE ag A
−=Eerr  

 

( ) ( ) ( )( ) ( )AAA ag A
σσσσ −=err  

 

where ( ) ( )ag A
AE  and ( ) ( )ag A

Aσ  stand for the mean and standard deviation that are 

calculated from the approximate distribution ( )ag A . 

 

The relative errors are used to measure the performance of the approximate 

distribution model with different implementation settings. As summarised in Table 

A.2, three implementation cases are defined with the combinations of the ways to 

delimit the borders kBx ,  and the ways to treat the truncated probability. For all the 

three cases, the representative kx  is set by equally dividing km , i.e. by satisfying 

 

( ) ( ) ( ) ( ) 21,, kkBXkXkXkBX mxFxFxFxF =−=− −  
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For all the three cases, the random variable X is discretised into 300, 500, 800, 1000, 

1600 and 2000 points respectively; and TPB is set as 1e-5, 1e-6, 1e-8, and 1e-10 

respectively. 

 

 

Table A.2. The cases of Example 1 for building the distribution of A=XY 

 Treatment of the truncated 

probabilities 

Delimiting borders 

kBx , , for 11 −= Kk ⋯   

Case 1 

Fig. A.2  

(a), (b) 

Attributed to a representative 

20,Bx  for [ ]0,, Bx∞−  and KBx ,2  

for [ ]+∞,,KBx  respectively. 

Set kBx ,  by equally dividing the 

density curve, i.e. keep constant 

( ) ( )1,, −− kBXkBX xfxf  

Case 2 

Fig. A.2  

(c), (d) 

Attributed to a representative 

20,Bx  for [ ]0,, Bx∞−  and KBx ,2  

for [ ]+∞,,KBx  respectively. 

Set kBx ,  by equally dividing the 

inverse curve, i.e. keep constant 

kBkB
xx ,1,

11
−

−

 

Case 3 

Fig. A.2 

(e), (f) 

Attributed to 1x  for [ ]1,0, , BB xx  

and Kx  for [ ]
KBKB xx ,1, ,−  

respectively 

Set kBx ,  by equally dividing the 

inverse curve, i.e. keep constant 

kBkB
xx ,1,

11
−

−

 

 

 

In Fig. A.4 (a)-(f), we plot the relative errors against TPB and the discretisation 

number for the three cases respectively. For all the three cases, it shows that TPB and 

the discretisation number can change the accuracy subject to the pattern defined by 

the other two factors. The minimum relative errors given under the diagrams 

demonstrate that the approximate distribution can achieve very high accuracy with 

affordable computation load. 
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We now compare the performance of the three cases based on the relative errors that 

are illustrated in Fig. A.4. By comparing Fig. A.4 (a) and Fig. A.4 (c), we can find 

that Case 1 shows higher accuracy on the mean of A. By comparing Fig. A.4 (b) and 

Fig. A.4 (d), however, we can find that Case 1 shows poorer accuracy on the 

standard deviation of A than Case 2. As summarized in Table A.2, Case 1 and Case 2 

have the same way to attribute the truncated probabilities. The borders kBx ,  are set 

by uniformly dividing the density curve in Case 1; while the borders kBx ,  are set by 

uniformly dividing the inverse curve in Case 2. Therefore we cannot see either way 

for setting the borders kBx ,  in Case 1 and Case 2 is better. 

 

By comparing Fig. A.4 (c) with Fig. A.4 (e) and comparing Fig. A.4 (d) with Fig. 

A.4 (f), we can see that Case 2 has higher accuracy on both the mean and the 

standard deviation of A than Case 3 does. Case 2 and Case 3 have the same way to 

set the borders kBx , . In Case 2 the truncated probabilities are attributed to two extra 

samples 20,Bx  and KBx ,2  on the both sides respectively. In Case 3, however, the 

truncated probabilities are attributed to the two terminal samples 1x  and Kx  

respectively. It shows that the treatment of the truncated probabilities can make a 

significant difference and Case 2 represent a set of implementation settings of better 

performance. 

 

Fig. A.5 illustrates the approximate distribution ( )ag A  that is built by Case 2 with 

2000 discretisation points of X and TPB set as 1e-10. The Q-Q plot of ( )ag A  against 

60000 simulations of A is also drawn on Fig. A.5. We can see that the Q-Q plot 

coincides with the Q=Q line very well. It shows that ( )ag A  is a good approximation 

to the real distribution ( )af A . The relative errors of the mean and standard deviation 

are about 8.0e-9 and 7.4e-7 respectively. 
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Fig. A.4. The illustration of the relative errors of Example 1. The cases are defined in 

Table A.2. 

 

 



 273 

25 30 35 40 45 50
25

30

35

40

45

50

p
e

rc
e

n
ti
le

 f
ro

m
 A

 s
a

m
p

le
s

percentile from density of: A

25 30 35 40 45 50
0

0.1

0.2

d
e

n
s
it
y
 o

f:
A

 

 

Fig. A.5. This diagram illustrates the approximate probability distribution of A=XY 

where X~N(12, 0.4), Y~N(3, 0.2) and ( ) 0, =YXr . The green solid curve represents 

the approximate probability distribution ( )ag A  that is built from Case 2 in Table A.2. 

The blue dash-dot curve represents the Q-Q plot against the 60000 simulations of A. 

The magenta dash line stands for Q=Q line. 

 

 

A.3.3.4 Example 3: Strongly Correlated X and Y 

In this example, we test the performance of the approximate probability distribution 

( )ag A  for correlated normal variables X and Y. As in Example 2, we set X~N(12, 0.4) 

and Y~N(3, 0.2). We set the correlation as ( ) 99999.0, =YXr . The borders kBx , , the 

representative kx  and the truncated probabilities are set in the same as in Case 2 of 

Example 2. The TPB is set as 1e-10. We build the approximate probability 

distribution ( )ag A  with 600 and 3000 discretisation points of X respectively. The 

probability distributions are plotted in Figs A.6 (a) and (b) respectively. The Q-Q 

plots against 60000 simulations of A are added in Fig. A.6 as well. 

 

As illustrated in Fig. A.6 (a), the approximate probability distribution corresponding 

to 600 discretisation points of X shows lots of spikes; and correspondingly the Q-Q 
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plot demonstrates lots of very small waves apart from the Q=Q. Comparatively, as 

illustrated in Fig. A.6 (b), the approximate probability distribution corresponding to 

3000 discretisation points of X is very smooth and the Q-Q plot shows little diversion 

from the Q=Q line. It implies huge error of the approximate probability distribution 

corresponding to 600 discretisation points of X. We will show that the reason is due 

to the strong correlation between X and Y, which causes large change in ( )yf
xXY =

 for 

[ ]
kBkB xxx ,1, ,−∈ . 

 

The bivariate joint distribution of X and Y is defined as 

 

 ( ) ( ) 


























−+

−

−

−
=

yx

xy

yxxyxyyx

YX

xyyx
yxf

σσ

ρ

σσρρσπσ

2

12

1
exp

12

1
,

2

2

2

2

22
,  (A.19) 

 

where yx,ρ  is the correlation coefficient between X and Y. 

 

The partial derivative of the joint distribution is derived as 
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 (A.20) 

 

Equations A.20 shows that the derivative is more than 51025.6 ×  times the density 

when ( ) 99999.0, =YXr . It means huge variability of ( )yf
xXY =

 and requires high 

discretisation number of X as discussed previously. This fact can be demonstrated by 

Equations A.12 and A.13 as well, from which we have 

 

 
( ) ( )

( )( )XY

X

X

Y
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 ( ) xYXrx YxXA
⋅×=−⋅= −

=

41032.6,1σσ  

 

When X changes from x  to xx ∆+ , 0>∆x , we have the offset 

 

( )( ) ( ) xxxx
xXAxxXA

∆−+∆∆=−
=∆+=

35.0µµ  

 

When we set TPB as 1e-10, we have 4.90, =Bx , 6.14, =KBx . Because KBB xxx ,0, << , 

we have 

 

3103.9 −

=
×<

xXA
σ  

 

x
xXAxxXA

∆⋅>−
=∆+=

4.6µµ  

 

When we use 600 discretisation points of X, the average width x∆  is 

( ) 3

0,, 107.8600 −×=− BKB xx . Therefore we have 2105.5 −

=∆+=
×>−

xXAxxXA
µµ , 

which is 5.9 time the 
xXA =

σ . As defined in Equation A.14, ( )af
xXA =

 is the 

probability distribution of a normal variable of the mean 
xXA =

µ  and the standard 

deviation 
xXA =

σ . Therefore a huge error is encountered when we use ( )af
kxXA =

 as a 

representative of ( )af
xXA =

, for [ ]kBkB xxx ,1, ,−∈ . It explains why the approximate 

probability distribution built with 600 discretisation points of X shows many spikes 

in Fig A.6 (a). When we increase the discretisation points of X to 3000, we have 

2101.1 −

=∆+=
×>−

xXAxxXA
µµ , which is 1.17 time the 

xXA =
σ . The error in 

representing ( )af
xXA =

, for [ ]kBkB xxx ,1, ,−∈  by ( )af
kxXA =

 is therefore much less than 

that with 600 discretisation points of X. A smooth approximate probability 

distribution is then obtained as shown in Fig A.6 (b). 
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As a summary, this example demonstrates that the approximate probability 

distribution as defined in Equation A.17 is able to deal with the strongly correlated 

normal random variables. It shows also that we need to much more discretisation 

points of X for strongly correlated X and Y to achieve acceptable accuracy. More 

generally it exemplifies the principle for discretising X regarding a large derivative of 

the joint distribution, i.e. ( )yxf
xy

YX ,,
∂

∂

∂

∂
. 
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(a) for 600 discretisation points of X 

 

20 30 40 50
20

25

30

35

40

45

50

p
e

rc
e

n
ti
le

 f
ro

m
 A

 s
a

m
p

le
s

percentile from density of: A

20 30 40 50
0

0.02

0.04

0.06

0.08

0.1

0.12

d
e

n
s
it
y
 o

f:
A

 

(b) for 3000 discretisation points of X 
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Fig. A.6. These diagrams illustrate the approximate probability distributions of 

A=XY, where X~N(12, 0.4), Y~N(3, 0.2) and ( ) 99999.0, =YXr . The green solid 

curve represents the approximate probability distribution. The blue dash-dot curve 

represents the Q-Q plot against 6000 simulation of A. The magenta dash line stands 

for Q=Q line. 

 

 

A.4 Approximate Probability Distribution of the Product of 

Multiple Random Variables 

A.4.1 A Sequential Process 

A product of multiple random variables is defined as 

 

 ni
ni

XXX ⋯1
,1

=∏
=

 (A.21) 

 

where 2>n ; nXX ,,1 ⋯  are random variables. 

 

We suppose that the joint distribution of nXX ,,1 ⋯  is defined as 

 

 ( ) ( ) ( ) ( )nXXXXXXnXX xfxfxfxxf
nnn 111211 ,211, ,,
⋯⋯ ⋯⋯

−
⋅=  (A.22) 

 

For reference convenience, the right sides of Equations A.21 and A.22 are called 

random variable chain (RVC) and the associated conditional distribution chain (CDC) 

respectively. As illustrated in Fig. A.7, the RVC and the associated CDC are put side 

by side to define the product. We start from the first row. The idea is to replace 1X  

and 2X  with 212 XXA =  that is called surrogate. For this purpose, we need to build 

the approximate marginal distribution ( )22
ag A  and, correspondingly, to update the 

CDC with ( ) ( ) ( )nAXXXAXA xgxgag
nn 231232 ,32 ⋯

⋯
−

⋅⋅⋅ . After finishing these two tasks, 
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the original product i
ni

X
,1=

∏  can be approximated by i
ni

XA
,3

2
=
∏⋅  as defined on the 

second row. We then continue going down by defining iii XAA 1−=  for ni ,,3⋯=  

and repeating the above process. The last surrogate nA  approximates the original 

product i
ni

X
,1=

∏ . To implement the algorithm, the approximate marginal distribution 

( )iA ag
i

 needs to be built firstly, which can be implemented with the mixture model 

for two random variables as defined in Equation A.10. Secondly the associated CDC 

needs to be updated with iA  replacing 1−iA  and iX  at each stage, for which a new 

algorithm is to be developed based on Bayes' theorem. 
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Fig. A.7. The illustration of the process for building the approximate probability 

distribution of the product of multiple random variables nXX ,,1 ⋯ . 

 

 

A.4.2 Method for Updating the Conditional Distribution Chain 

Following the definitions given by Equations A.21 and A.22, the first surrogate A is 

defined as 

 

 21XXA =  (A.23) 

 

By substituting Equation A.23 with Equation A.21 we get a new RVC nXXA ⋯31 . 

We will build the CDC for nXXA ⋯31  based on the CDC defined in Equation A.22. 
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The random variable 1X  is discretised as defined in Equation A.9 as 

 

( ) ( ) ( ) kkBXkBXk mxFxFxX ,11,1,1,11 11
Pr =−== −  

 

where kx ,1  and km ,1  stand for a discrete point and the associated mess probability of 

1X  respectively. 

 

The approximate distribution ( )ag A  can then be built as a mixture model by 

Equation A.10. By Bayesian theorem [Bishop 1995], the probability of kxX ,11 =  

given aA =  can be derived as 

 

 ( )
( )

( )ag

afm
aAxX

A

xXAk

k

k,11
,1

,11Pr
=

⋅
===  (A.24) 

 

As discussed previously, three successive borders are set at δ− , 0 and δ , 

where 0>δ , to avoid the singular point 0,1 =kx  of Equation A.10. As a result, it is 

guaranteed that 0,1 ≠kx , Kk ,,1⋯=∀ . Subsequently based on Equation A.24 we 

have 

 

 1,Pr ,11

,1

2 =




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

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=== k

k

xXaA
x

a
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Based on Equation A.24-A.25, we have 

 

 
( )

( )ag

afm
aA

x

a
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⋅
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The conditional distribution ( )3
3

xf
aAX =

 can be approximated as a mixture model as 

defined in Equation A.2 as 
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By the same way, we have the approximate conditional distribution defined as 
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( )n
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XxXXKk A
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  (A.28) 

 

Equations A.27 and A.28 define the CDC associated with RVC nXXA ⋯31 . 

 

A.4.3 Numerical Examples 

Following the examples in Section A.3.3, we consider three normal random variables 

X~N(12, 0.4), Y~N(3, 0.2) and Z~N(2, 0.4). The distribution of XYZB =  is to be 

built through one surrogate XYA = . At first stage, X is discretised and the 

approximate probability distribution ( )ag A  is built by Equation A.17. The TPB is set 

as 1e-5, 1e-6, 1e-8, and 1e-10 respectively. As in Case 2 in Example 2, the borders 

kBx ,  are delimited by equally dividing the inverse curve and the representative kx  for 

the interval [ ]
kBkB xx ,1, ,−  is set by 

 

( ) ( ) ( ) ( ) 2,,1, kXkXkBXkBXkX mxFxFxFxF =−=− −  

 

where kXm ,  stands for the mess probability assigned for kx  as defined in Equation 

A.9. 

 

The truncated probability of X is attributed to the two extra points 20,Bx  and 
XKBx ,2 , 

where XK  standard for the discretisation number of X. 
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By the above settings, the approximate probability distribution ( )ag A  is built at first. 

Based on ( )ag A , A is discretised in the same way as for X. The approximate 

probability distribution of B i.e. ( )bgB  is then built. 

 

The examples are implemented by using the software package MATLAB. The 

simulation samples of X, Y and Z are generated directly by using MATLAB function 

mvnrnd(). 

 

A.4.3.1 Example 4: Uncorrelated X, Y and Z 

In this example, we assume that X, Y and Z are uncorrelated. This example aims to 

demonstrate the computation errors of the approximate probability distribution ( )bgB . 

For such a case, the analytical distribution ( )bf XYZB=  has not been found in the 

literature. The analytical mean and the standard deviation of B however can be 

calculated by 

 

( ) ( ) ( ) ( ) 36=== YEXEXYEAE  

 

( ) ( ) ( ) ( ) 72=== ZEAEAZEBE  

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )YXXEYYEXXYA varvarvarvarvarvar
22

⋅+⋅+⋅==  

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ZAAEZZEAAZB varvarvarvarvarvar
22

⋅+⋅+⋅==  

 

( ) ( ) 1844057983889.15var == BBσ  

 

Based on the analytical solution of ( )BE  and ( )Bσ , we define the relative errors as  

 

( ) ( ) ( )( ) ( )BEBEBE bgB
−=EB,err  
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( ) ( ) ( )( ) ( )BBB bgB B
σσσσ −=,err  

 

where ( ) ( )bgB
BE  and ( ) ( )bgB

Bσ  stand for the mean and standard deviation of B that 

are calculated from the approximate distribution ( )bgB . 

 

The relative errors are used to measure the performance of the approximate 

distribution of B corresponding to the different settings of TPB and the different 

discretisation numbers of X and A as summarized in Table A.3. The relative errors 

are linearly represented with the size of the marks in Fig. A.8. The minimum relative 

errors are 2.5e-8 and 1.2e-7 for the mean and standard deviation respectively 

showing a very high accuracy of the approximate probability distribution ( )bgB . 

 

Fig. A.9 illustrates the approximate probability distribution ( )bgB  that is built with 

2000 and 3000 discretisation points of X and A respectively. The TPB is set as 1e-10. 

The Q-Q plot of ( )bgB  against 60000 simulation of B is also drawn on Fig. A.9. We 

can see that the Q-Q plot coincides with the Q=Q line very well. It shows that ( )bgB  

is a good approximation to the real distribution ( )bfB . 

 

 

Table A.3 The discretisation numbers of X and A 

No. Discretisation Number of X Discretisation Number of A 

1 300 300 

2 500 800 

3 800 1000 

4 1000 1600 

5 1600 2400 

6 2000 3000 
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(b) Relative error of the standard deviation 

Fig. A.8. These diagrams illustrate the relative errors of ( )bgB  corresponding to the 

different settings of TPB and the discretisation numbers. The mark size linearly 
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represents the relative errors. The minimum relative errors of the mean and standard 

deviation are 2.5e-8 and 1.2e-7 respectively. 
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Fig. A.9. This diagram illustrates the approximate probability distribution of B=XYZ, 

where X, Y and Z are uncorrelated normal random variable. The green solid curve 

represents the density of B. The blue dash-dot curve represents the Q-Q plot against 

the 60000 simulations. The magenta dash line stands for Q=Q line. 

 

 

A.4.3.2 Example 5: Correlated X, Y and Z 

This example aims to test the performance of the approximate probability 

distribution of B when X, Y and Z are correlated. Correlations are set as 

( ) 75.0, =YXr , ( ) 8.0, =ZXr  and ( ) 7.0, =ZYr . The same settings are used as for 

that illustrated in Fig. A.9 in Example 4. 

 

Fig. A.10 illustrates the outcome ( )bgB  and the Q-Q plot of ( )bgB  against 60000 

simulation of B. We can see that the Q-Q plot coincides with the Q=Q line very well. 

It shows that ( )bgB  is a good approximation to the real distribution ( )bfB . Due to the 

correlations, the distribution curve in Fig. A.10 skews to the right further than that in 
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Fig. A.9 does. The mode of the distribution curve moves leftwards from around 71.2 

in Fig. A.9 to around 68.2 in Fig. A.10. 
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Fig. A.10. This diagram illustrates the approximate probability distribution of 

B=XYZ, when X, Y and Z are correlated normal variables. The green solid curve 

represents the approximate probability distribution of B. The blue dash-dot curve 

represents the Q-Q plot against the 60000 simulations. The magenta dash line stands 

for Q=Q line. 

 

 

A.5 Approximate Probability Distribution of Sum of Products 

of Random Variables 

A.5.1 Approximate Probability Distribution of Sum of Two 

Random Variables 

Suppose 

 

 YXS +=  (A.29) 
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where X and Y are random variable. 

 

We suppose that X and Y have a general joint distribution defined as 

 

 ( ) ( ) ( )yfxfyxf
xXYXYX =

⋅=,,  (A.30) 

 

Given xX =  the conditional distribution of S can be derived by shifting ( )yf
xXY =

 as 

 

 ( ) ( ) ( )xsfsfsf
xXYxXSxXS

−==
===

 (A.31) 

 

Based on the mixture model as defined in Equation A.3, we have 

 

 ( ) ( ) ( ) ( ) ( )dxxfxsfdxxfsfsf X
X xXYX

X xXSS ∫∫ −==
==

 (A.32) 

 

By discretising X as in Equation A.9, we can approximate the ( )sfS  defined in 

Equation A.32 by 

 

 ( ) ( )∑
=

=
−=

Kk

kxXYkS xsfmsg
k

,1

 (A.33) 

 

where km  is the mess probability associated with the discrete point kx . 

 

Equation A.33 can be implemented in the same way as Equation A.10 for the product 

of two random variables. 

 

A.5.2 Approximate Probability Distribution of the Sum of Multiple 

Random Variables 

Suppose 

 

 nXXXS +++= ⋯21  (A.34) 
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where nXX ,,1 ⋯  are random variables of the CDC defined in Equation A.23. 

 

As for the product of multiple random variables, the sum of multiple random 

variables can be dealt with sequentially by replacing the first two random variables 

with their sum. Define the first surrogate random variable A as 

 

 21 XXA +=  (A.35) 

 

The ( )ag A  can be built by Equation A.33. Based on Bayesian theorem [Bishop 

1995], the conditional probability of kxX ,11 =  given aA =  is derived as 

 

 ( )
( )

( )kxXXk

A

k xafm
ag

aAxX
k

,1,1,11
,112

1
Pr −===

=
 (A.36) 

 

From Equation A.35, we have 

 

 ( ) 1,Pr ,11,12 ===−= aAxXxaX kk  (A.37) 

 

Based on Equations A.36 and A.37, we have 

 

 ( )
( )

( )kxXXk

A

kk xafm
ag

aAxaXxX
k

,1,1,12,11
,112

1
,Pr −==−==

=
 (A.38) 

 

From Equation A.38, the mixture model of the distribution of 3X  given aA =  can 

be approximated by Equation A.2 as 

 

 
( )

( )
( )3,,

,1

,1,1

,11,123

,112

3
xf
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xafm
g

kk

k

xXxaXX
Kk A

kxXXk
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=

=
⋅

−
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The approximate conditional distribution 
aAX i

g
=

, ni ,,4⋯=  can be built as a 

mixture model in the same way as in Equation A.39. 

 

By repeating the above process, the sum of multiple random variables can be dealt 

with sequentially in the same way as for the product of multiple random variables. 

 

A.5.3 Process for Building Approximate Probability Distribution of 

Sum of Products of Random Variables 

The sum of products of random variables is defined as 

 

 ∏∏∏
===

+++=
kn

j

j

m

i

i wYXS
111 ℓ

ℓ⋯  (A.40) 

 

where iX , mi ,,1⋯= , jY , nj ,,1⋯=  and ℓW , k,,1⋯ℓ =  are different random 

variable. 

 

According to Equation A.40, S can be defined by the RVC and the associated CDC 

as 

 

 RVC: knm WWYYXX ⋯⋯⋯⋯ 111  (A.41.a) 

 

 CDC: ( ) ( )21
121

xfxf
XXX … ( )1,, 11

yf
XXY m ⋯

… ( )kXWW
wf

kk 11 ,,⋯−
 (A.41.b) 

 

Define 

 

∏
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=
m
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The approximate probability distribution of S can be built by alternatively applying 

the process for the product and the process for the sum of random variables as 

developed in the previous section. The process is defined as follows. 

 

Step 1: substitute the first product A and obtain 

  

 RVC: kn WWYAY ⋯⋯⋯ 11  (A.42.a) 

 

 CDC: ( )ag A ( )1
1

yg
AY

… ( )kAYWW
wg

kk ,, 11⋯−
 (A.42.b) 

 

Step 2: substitute the second product B and obtain 

 

 RVC: kWWAB ⋯⋯ 1  (A.43.a) 

 

 CDC: ( )ag A ( )bg
AB

… ( )kABWW
wg

kk ,,,1⋯−
 (A.43.b) 

 

Step 3: substitute BAS +=1  and obtain 

 

 RVC: kWWS ⋯⋯ 11  (A.44.a) 

 

 CDC: ( ) ( ) ( )kSWWSWS wgwgsg
kk 11111 ,,1, ⋯⋯

⋯⋯
−

 (A.44.b) 

 

Step 4: repeat Step 1 to Step 3 until reaching the last sum representing S.  

 

The Step 1 and Step 2 can be implemented with the algorithm for the product of 

random variables; while Step 3 can be implemented with the algorithm for the sum 

of random variables. 
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A.6 Conclusion 

In this chapter, we propose an approximate analytical solution of the probability 

distribution of the product of two random variables of a general joint distribution. 

The approximate solution is defined by the mixture probability model; the 

discretisation method is investigated regarding the marginal distribution, the 

conditional distribution and the inverse curve x1 . Because normal random variables 

are used in the case studies planned for this research, we implement the approximate 

probability distribution of the product of two normal random variables for 

demonstration. For the product of two independent standard normal variables, we 

compare the approximate distribution with the analytical distribution. The 

comparison shows that the approximate analytical solution can approach the 

analytical distribution with high accuracy when we increase the number of the 

components in the approximate distribution. 

 

By Bayesian theorem, the approximate analytical solution is further expanded for the 

product of multiple random variables and for the sum of the products of random 

variables. The random variables are deal with sequentially and only one random 

variable is discretised at each step. The method is therefore suitable for large models 

while it is very difficult if possible to cope with the all random variables 

simultaneously. We test the expanded approximate distribution model with the 

product of three correlated normal random variables. The outcome approximate 

distribution is compared with the simulations of the product. 

 

As a conclusion, the approximate analytical solutions offer a potential generic way 

for building the distribution of the sum of products of random variables of a general 

joint distribution. They are also easy to implement on computers. The approximate 

analytical solutions are still not applicable. More efforts, for example, need to be 

exerted to measure and control the computation error. 
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Appendix B  

 

Tables Relating to the Case Studies 

 

 

B.1 Elicited Data for the Precursor Families Related to HET10 

B.1.1 Precursor Family RVSTRENV 

B.1.1.1 Variant Factors 

This subsection is related to Block 3 in Fig. 6.2. We will elicit the variant factors for 

the precursor family RVSTRENV. 

 

The precursor family RVSTRENV is defined for “RV incorrectly on various types of 

LCs and struck by train due to environmental factors”. As summarized in Table B.1, 

one variant factor class is elicited as “RV drivers' ability to respond to the prevailing 

weather conditions”. The level crossings are put into two categories: user worked 

crossings (UWC) and non-UWC [RSSB 2004]. The two categories of LCs have their 

own users. Accordingly the two groups of users are defined as UWC users and non-

UWC users. 

 

Table B.1 Elicited factor class for the family RVSTRENV 

Family RVSTRENV – RV incorrectly on various types of LCs and struck by train due to 

environmental factors 

No. Variant Class 

2.  RV drivers' ability to respond to the prevailing weather conditions. 
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B.1.1.2  Correlations between the Precursors and the Associated 

Variant Factors 

This subsection is related to Block 4a in Fig. 6.2 because one variant factor class has 

been elicited for the family RVSTRENV. We will elicit the correlations between the 

precursors and the associated variant factors. 

 

A medium correlation is elicited between the precursors on UWC LCs and the UWC 

users; a medium correlation is also elicited between the precursors on non-UWC LCs 

and the non-UWC users. The elicited results are summarized in Table B.2. Because 

the elicited correlations are positive in this case study we do not mark the correlation 

sign explicitly. 

 

Table B.2 Elicited correlations between the variant factors and the associated 

precursors of the family RVSTRENV 

Precursor Family RVSTRENV – RV incorrectly on LC and struck by train due 

to environmental factors 

Variant Class RV drivers' ability to respond to the prevailing weather 

conditions. 

NO. Variant Factors Associated precursor Correlation 

3. Concerning UWC LCs RVSTRENV on UWC LCs M 

4. Concerning Non-UWC LCs RVSTRENV on Non-UWC LCs M 

 

B.1.1.3  Correlations within the Variant Factor Class 

This subsection is related to Block 5 in Fig. 6.2. We will elicit the correlations within 

the factor class of "RV drivers' ability to respond to the prevailing weather 

conditions". 

 

A medium correlation between UWC users and non-UWC users is elicited as 

summarized in Table B.3. 

 

Table B.3 The correlations within the factor class for the family RVSTRENV 

Family name RVSTRENV – RV incorrectly on LCs and struck by train due to 

environmental factors 
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Variant class RV drivers' ability to respond to the prevailing weather conditions 

Variant factor 1 On UWC LCs 

Variant factor 2 On Non-UWC LCs 

The correlation between the 

above two variant factors 

M 

 

B.1.2 Precursor Family TOVRSPD 

B.1.2.1  Variant Factors 

This subsection is related to Block 3 in Fig. 6.2. We will elicit the variant factors for 

the precursor family TOVRSPD. 

 

The precursor family TOVRSPD is defined as “Train over-speeding causes RV 

struck by train on various types of LCs”. For this family, no significant variant factor 

is identified by the experts. 

 

B.1.2.2  Proportion of the Variance of Each Precursor due to the 

Family Commonality 

This subsection is related to Block 4b in Fig. 6.2 because no variant factor is 

identified for the family TOVRSPD. 

 

As proposed previously, the proportion of the variance due to the family 

commonality is elicited for each family member as summarized in Table B.4. 

 

Table B.4 Proportion of the variance due to the family commonality elicited for each 

precursor in the family TOVRSPD 

Family TOVRSPD – Train over-speeding causes RV struck by train on various types of LCs 

No. Precursor 

Proportion of the variance due to the family commonality 

(100% for a very strong family; 90%   for a less strong family) 

1.  TOVRSPD on ABCL 0.9 

2.  TOVRSPD on AHB 0.9 

3.  TOVRSPD on AOCL 0.9 

4.  TOVRSPD on MG/B 0.9 
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B.1.3 Precursor Family RVSTRAN 

B.1.3.1  Variant Factors 

This subsection is related to Block 3 in Fig. 6.2. We will elicit the variant factors for 

the precursor family RVSTRAN. 

 

The precursor family RVSTRAN is defined as “RV stranded on LC causes RV struck 

by train on various types of LCs”. For this family, two variant factor classes are 

identified as summarized in Table B.5 as: 

• FC1: Propensity for there to be blocking back on a crossing, i.e. where you get 

traffic jams extending back over level crossings 

• FC2: Profile of the RV drivers using the crossing, i.e. the propensity of certain 

drivers to violate rules 

 

Table B.5 Factor classes of the precursor family RVSTRAN 

Family RVSTRAN – RV stranded on LC causes RV struck by train on various types of LCs 

No. Variant Classes 

1.  Propensity for there to be blocking back on a level crossing 

2.  Propensity of the drivers violating the rules when using the level crossing 

 

B.1.3.2  Correlations between the Precursors and the Associated 

Variant Factors 

This subsection is related to Block 4a in Fig. 6.2 because one variant factor class has 

been elicited for the family. We will elicit the correlations between the precursors 

and the associated variant factors. 

 

For the variant factors regarding the propensity for there to be blocking back on a 

crossing, the correlations between the precursors and the associated variant factors 

are elicited and summarized in Table B.6. 
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For the variant factors regarding the propensity of the drivers violating the rules 

when using the level crossing, the UWC user group and non-UWC user group are 

defined as for the family RVSTRENV. The correlations between the precursors and 

the associated variant factors are elicited and summarized in Table B.7. 

 

Table B.6 Elicited correlations between the precursors in the family RVSTRAN and 

the associated variant factors regarding the propensity for there to be blocking back 

on a crossing 

Precursor Family RVSTRAN – RV stranded on various LC 

Variant Factor Class Propensity for there to be blocking back on a crossing 

NO. Variant Factor Associated precursor Correlation 

1.  Propensity for there to be 

blocking back on ABCL 

RVSTRAN on ABCL W (ABCL tend to quite rural 

and hence light use by traffic) 

2.  Propensity for there to be 

blocking back on AHB 

RVSTRAN on AHB S (blocking back seems to 

happen predominantly on AHB 

crossings) 

3.  Propensity for there to be 

blocking back on AOCL 

RVSTRAN on AOCL W (AOCL tend to be quite rural 

and hence light use by traffic) 

4.  Propensity for there to be 

blocking back on MG/B 

RVSTRAN on MG/B VW (manual barriers would 

have to be closed round vehicle) 

5.  Propensity for there to be 

blocking back on UWC 

RVSTRAN on UWC VW (likely to be single use) 

6.  Propensity for there to be 

blocking back on UWC-

MWL 

RVSTRAN on UWC-

MWL 

VW (likely to be single use) 

7.  Propensity for there to be 

blocking back on UWC+T 

RVSTRAN on UWC+T VW (likely to be single use) 

 

Table B.7 Elicited correlations between the precursors in Family RVSTRAN and the 

associated variant factors regarding the propensity of the drivers violating the rules 

when using the level crossing 

Precursor Family RVSTRAN – RV stranded on various LCs 

Variant Factor Class Propensity of the drivers violating the rules when 

using the level crossing 

NO. Variant Factor 
Propensity of the drivers violating 

the rules when using the LC on 

Associated precursor Correlation 

1.  ABCL RVSTRAN on ABCL M 

2.  AHB RVSTRAN on AHB M 

3.  AOCL RVSTRAN on AOCL VW 
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4.  MG/B RVSTRAN on MG/B VW 

5.  UWC RVSTRAN on UWC S 

6.  UWC-MWL RVSTRAN on UWC-MWL S 

7.  UWC+T RVSTRAN on UWC+T S 

 

B.1.3.3  Correlations within the Variant Factor Classes 

This subsection is related to Block 5 in Fig. 6.2. We will elicit the correlations within 

the variant factor classes. 

 

For the variant factor class regarding the propensity for there to be blocking back on 

a crossing, the correlations within the factor class are elicited and summarized in 

Table B.8. 

 

For the variant factor class regarding the propensity of the drivers violating the rules 

when using the level crossing, the correlations within the class are elicited and 

summarized in Table B.9. 

 

Table B.8 Correlations within the variant factor class regarding the propensity for 

there to be blocking back on a crossing 

Family RVSTRAN – RV stranded on various LC 

Variant class Propensity for there to be blocking back on a crossing 

Variant 

factors 

On 

AHB On AOCL 

On 

MG/B 

On 

UWC On UWC-MWL On UWC+T 

On ABCL W M (due to similar 

location of LCs) 

VW W W W 

On AHB  VW VW W W W 

On AOCL   VW VW VW VW 

On MG/B    VW VW VW 

On UWC     VS (due to similar 

UWC usage) 

VS (due to similar 

UWC usage) 

On UWC-

MWL 

     VS (due to similar 

UWC usage) 
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Table B.9 Correlations within the variant factor class regarding the propensity of the 

drivers violating the rules when using the level crossing 

Family RVSTRAN – RV stranded on various LC 

Variant class Propensity of the drivers violating the rules when using the level crossing 

Variant factors On Non-UWCs 

On UWCs M 

 

B.1.4 Precursor Family SPADPROT 

B.1.4.1  Variant Factors 

This subsection is related to Block 3 in Fig. 6.2. We will elicit the variant factors for 

the precursor family SPADPROT. 

 

The precursor family SPADPROT is defined as “SPAD at signal protecting the LC 

causes RV struck by train on various types of LCs”. As summarized in Table B.10, 

one factor class is identified by the experts as “the effectiveness of the signal 

protecting the LCs”. 

 

Table B.10 Elicited factor class of the family SPADPROT 

Family SPADPROT – SPAD at signal protecting the LC 

No. Variant Factor Class 

1.  Effectiveness of signals protecting the LC 

 

The Correlations between the Precursors and the Associated Variant Factors 

This subsection is related to Block 4a in Fig. 6.2 because one variant factor class has 

been elicited for the family. We will elicit the correlations between the precursors 

and the associated variant factors. 

 

The correlations between the precursors and the associated variant factors are elicited 

and summarized in Table B.11. 
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Table B.11 Elicited correlations between the precursors in Family SPADPROT and 

the associated variant factors 

Precursor Family SPADPROT – SPAD at signal protecting the LC 

Variant Class Effectiveness of signals protecting the LC 

NO. Variant Factor Associated precursor Correlation 

1.  Effectiveness of the signals 

protecting ABCL 

SPADPROT on ABCL VW 

2.  Effectiveness of the signals 

protecting AOCL 

SPADPROT on AOCL VW 

3.  Effectiveness of the signals 

protecting MG/B 

SPADPROT on MG/B VW 

 

B.1.4.2  Correlations within the Variant Factor Class 

This subsection is related to Block 5 in Fig. 6.2. We will elicit the correlations within 

the factor class of the effectiveness of the signals protecting LCs. 

 

The correlations within the factor class are elicited and summarized in Table B.12. 

 

 

Table B.12 Elicited correlations within the variant factor class regarding the 

effectiveness of the signals protecting LCs 

Family name SPADPROT – SPAD at signal protecting the LC 

Variant class Quality of the drivers using the LC (propensity of certain drivers to violate rules) 

Variant 

factors On AOCL On MG/B 

On ABCL VW VW 

On AOCL  VW 

Note: 

The physical similarity of the signals 

protecting the different types of level 

crossings is a good clue on the correlation. 
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B.1.5 Precursor Family SIGERR 

B.1.5.1  Variant Factors 

This subsection is related to Block 3 in Fig. 6.2. We will elicit the variant factors for 

the precursor family SIGERR. 

 

The precursor family SIGERR is defined as “Signalman or Crossing keeper error 

causes RV struck by train on various types of LCs”. As summarized in Table B.13, 

one factor class is identified as “Complexity of operating the crossing”. 

 

Table B.13 Elicited factor class of the family SIGERR 

Family SIGERR – Signalman or Crossing keeper error causes RV struck by train on 

various types of LCs 

No. Variant Factor Class 

1.  complexity of operating the crossing 

 

The Correlations between the Precursors and the Associated Variant Factors 

This subsection is related to Block 4a in Fig. 6.2 because one variant factor class has 

been elicited for the family. We will elicit the correlations between the precursors 

and the associated variant factors. 

 

The correlations between the precursors and the associated variant factors are elicited 

and summarized in Table B.14. 

 

 

Table B.14 Elicited correlations between the precursors in Family SIGERR and the 

associated variant factors 

Precursor Family SIGERR – Signalman or Crossing keeper error causes 

RV struck by train on various types of crossing 

Variant Factor Calss complexity of operating the crossings 

NO. Variant Factor Associated precursor Correlation 

1.  complexity of operating the 

crossing on AHB 

SPADPROT on AHB M 

2.  complexity of operating the 

crossing on MGB 

SPADPROT on MG/B M 
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3.  complexity of operating the 

crossing on UWC+T 

SPADPROT on UWC+T M 

 

B.1.5.2  Correlations within the Variant Factor Class 

This subsection is related to Block 5 in Fig. 6.2. We will elicit the correlations within 

the factor class of the complexity of operating the crossings. 

 

The correlations within the factor class are elicited and summarized in Table B.15. 

 

 

Table B.15 Elicited correlations within the factor class regarding the complexity of 

operating the crossings 

Family name SIGERR – Signalman or Crossing keeper error causes RV struck by train on 

various types of crossing 

Variant class complexity of operating the crossings 

Variant 

factors On MG/B On UWC+T 

On AHB VW (different operation) S (both remotely 

operated) 

On MG/B  VW (different operation) 

Note: the similarity of 

operating level crossing 

may be a good clue on 

the correlation. 

 

B.1.6 Precursor Family RVDRVERR and RVDRVDEL 

The experts believe that the precursors “RV Driver error causing RV struck by train 

on LCs” and the precursors “RV driver deliberate action on various types of 

crossing” are identical on the same level crossing in terms of the uncertainty 

modelling. Correspondingly these two groups of precursors are defined within in one 

family RVDRVERR and RVDRVDEL. 

 

B.1.6.1  Variant Factors 

This subsection is related to Block 3 in Fig. 6.2. We will elicit the variant factors for 

the precursor family RVDRVERR and RVDRVDEL. 
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As summarized in Table B.16, one factor class is identified by the experts as “the 

quality of the users”. The UWC user group and non-UWC user group are defined as 

for the families RVSTRENV and RVSTRAN. 

 

Table B.16 Elicited factor class of the family RVDRVERR & RVDRVDEL 

Family DRERRSTR & RVDRVDEL: RV Driver error causing RV struck by train on LCs and 

RV driver deliberate action on various types of crossing 

No. Variant Factor Class 

1.  Quality of the drivers using the crossing (propensity of certain drivers to violate rules) 

 

The Correlations between the Precursors and the Associated Variant Factors 

This subsection is related to Block 4a in Fig. 6.2 because one variant factor class has 

been elicited for the family. We will elicit the correlations between the precursors 

and the associated variant factors. 

 

The correlations between the precursors and the associated variant factors are elicited 

and summarized in Table B.17.  

 

Table B.17 Elicited correlations between the precursors in Family RVDRVERR and 

RVDRVDEL and the associated variant factors 

Precursor Family DRERRSTR & RVDRVDEL 

Variant Factor Class Quality of the drivers using the crossing (propensity of 

certain drivers to violate rules) 

NO. Variant Factor Associated precursor Correlation 

1. Quality of the RV drivers using 

UWC level crossings 

DRERRSTR & RVDRVDEL on 

UWC level crossings 

Very Strong 

2. Quality of the RV drivers using 

Non-UWC level crossings 

DRERRSTR & RVDRVDEL on 

Non-UWC level crossings 

Very Strong  

 

B.1.6.2  Correlations within the Variant Factor Class 

This subsection is related to Block 5 in Fig. 6.2. We will elicit the correlations within 

the factor class of 

 

The correlations within the factor class are elicited and summarized in Table B.18. 
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Table B.18 Elicited correlations within the factor class regarding the quality of the 

users of the LCs 

Family name DRERRSTR & RVDRVDEL 

Variant factor class Quality of the drivers using the crossing (propensity of certain 

drivers to violate rules) 

Variant factors 1 On UWC level crossings 

Variant factors 2 On Non-UWC level crossings 

The correlation between the 

above two variant factors 

(Tip: think of the similarity 

between the two groups of 

drivers) 

M – the reason for this is that the users using the UWC 

crossings will also form part of the driver population who use 

non-UWC crossings.  Therefore information regarding the 

uncertainty of the UWC error rate is likely to inform us of the 

uncertainty in the Non-UWC error rate.  

 

B.1.7 Precursor Family RVDRVSUI 

B.1.7.1  Variant Factors 

This subsection is related to Block 3 in Fig. 6.2. We will elicit the variant factors for 

the precursor family RVDRVSUI. 

 

The precursor family RVDRVSUI is defined as “RV driver suicide causes RV struck 

by train on various types of LCs”. For this family, no significant variant class is 

identified by the experts. 

 

The Proportion of the Variance of Each Precursor due to the Family Commonality 

This subsection is related to Block 4b in Fig. 6.2 because no variant factor is 

identified for the family. 

 

As proposed previously, the proportion of the variance due to the family 

commonality is elicited for each precursor as summarized in Table B.19. 

 

Table B.19 Elicited proportion of the variance due to the family commonality for the 

family RVDRVSUI 

Family Name RVDRVSUI - RV driver suicide on various types of LC 

No. Precursor Proportion of covariance due to the family 



 303 

commonality(Number between 0 and 1) 

1.  RVDRVSUI on ABCL 0.95 

2.  RVDRVSUI on AHB 0.95 

3.  RVDRVSUI on AOCL 0.95 

4.  RVDRVSUI on O 0.95 

5.  RVDRVSUI on UWC 0.95 

6.  RVDRVSUI on UWC-MWL 0.95 

7.  RVDRVSUI on UWC-T 0.95 

 

B.1.8  Precursor Family LTBRFAI 

B.1.8.1  Variant Factors 

This subsection is related to Block 3 in Fig. 6.2. We will elicit the variant factors for 

the precursor family LTBRRAI. 

 

The precursor family LTBRFAI is defined as “That Light/barriers fail to operate 

causes RV struck by train on various types of LCs”. As summarized in Table B.20, 

one factor class is identified by the experts as “the technical workings of the lights 

and barriers and their failure rates”.  

 

Table B.20 Elicited factor class of the family LTBRFAI 

Family LTBRFAI – Light/barriers fail to operate on various types of LC 

No. Variant Class 

1.  Technical workings of the various lights and barriers and their likely failure rates 

 

 

The Correlations between the Precursors and the Associated Variant Factors 

This subsection is related to Block 4a in Fig. 6.2 because one variant factor class has 

been elicited for the family. We will elicit the correlations between the precursors 

and the associated variant factors. 

 

The correlations between the precursors and the associated variant factors are elicited 

as summarized in Table B.21. 
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Table B.21 Elicited correlations between the precursors in Family LTBRFAI and the 

associated variant factors 

Precursor Family LTBRFAI – Light/barriers fail to operate on various types 

of LCs 

Variant Factor Class Technical workings of the various lights and barriers and 

their likely failure rates 

NO. Variant Factor Associated precursor Correlation 

3.  Technical workings and 

likely failure rates on ABCL 

LTBRFAI on ABCL M 

4.  Technical workings and 

likely failure rates on AHB 

LTBRFAI on AHB M 

5.  Technical workings and 

likely failure rates on AOCL 

LTBRFAI on AOCL M 

6.  Technical workings and 

likely failure rates on MG/B 

LTBRFAI on MG/B W (as the crossing is 

under manual control 

 

B.1.8.2  Correlations within the Variant Factor Class 

This subsection is related to Block 5 in Fig. 6.2. We will elicit the correlations within 

the factor class of the technical workings and likely failure rates between the LCs. 

 

The correlations within the factor class are elicited as summarized in Table B.22. 

 

Table B.22 Elicited correlations within the factor class regarding the technical 

workings and likely failure rates between the LCs 

Family LTBRFAI – Light/barriers fail to operate on various types of LC 

Variant class Technical workings of the various lights and barriers and their likely failure rates 

Variant 

factors On AHB On AOCL On MG/B 

On ABCL VS (similar 

lights & barrier) 

W (similar lights – 

barriers are different) 

M (similar lights) 

On AHB  W (similar lights – 

barriers are different) 

M (similar lights) 

On AOCL   M (similar lights) 

The technical 

similarity of the 

equipment of light 

and barrier between 

the level crossing 

types is a good clue 

to assess the 

correlation. 
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B.2 Rule Sets Related to HET10 

 

Table B.23 Rule sets related to HET10 

Rule Set Code Description 

T10-LCPAU-2 Train strikes normal road vehicle (car/HGV) on AOCL or ABCL crossing, 

with fire 

T10-LCPAU-3 Train strikes large road vehicle above buffer height (low loader, JCB, 

etc. ) on an AOCL or ABCL crossing, no fire 

T10-LCPAU-4 Train strikes large road vehicle above buffer height (low loader, JCB, 

etc. ) on an AOCL or ABCL crossing, with fire 

T10-LCPAU-5 Train strikes HGV carrying toxic hazardous goods on AOCL or ABCL 

crossing, no fire 

T10-LCPAU-6 Train strikes HGV carrying toxic hazardous goods on AOCL or ABCL 

crossing, with fire 

T10-LCPAU-7 Train strikes HGV carrying flammable hazardous goods on AOCL or 

ABCL crossing, with fire 

T10-LCPRO-2 Train strikes normal road vehicle (car/HGV) on AHB, FP, MB/MCB/CCTV 

& all UWC (incl. MWL + T & UWC), with fire 

T10-LCPRO-3 Train strikes large road vehicle above buffer height (low loader, JCB, 

etc. ) on AHB, FP, MB/MCB/CCTV & all UWC (incl. MWL + T & UWC), no 

fire 

T10-LCPRO-4 Train strikes large road vehicle above buffer height (low loader, JCB, 

etc. ) on AHB, FP, MB/MCB/CCTV & all UWC (incl. MWL + T & UWC), 

with fire 

T10-LCPRO-5 Train strikes HGV carrying toxic hazardous goods on AHB, FP, 

MB/MCB/CCTV & all UWC (incl. MWL + T & UWC), no fire 

T10-LCPRO-6 Train strikes HGV carrying toxic hazardous goods on AHB, FP, 

MB/MCB/CCTV & all UWC (incl. MWL + T & UWC), with fire 

T10-LCPRO-7 Train strikes HGV carrying flammable hazardous goods on AHB, FP, 

MB/MCB/CCTV & all UWC (incl. MWL + T & UWC) crossing, with fire 

 

B.3 Rule Sets Related to HET12 
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Table B.24 Rule sets related to HET12 

Code Description 

T12-BG-1 Passenger train derailment on rail bridge 

T12-OF-01 PT Fast derailment on open track inside train clearances 

T12-OF-02 PT Fast derailment on open track outside train clearances, towards cess 

side, carriage not on its side 

T12-OF-03 PT Fast derailment on open track outside train clearances, towards cess 

side, carriage not on its side, hits line side structure, no fire 

T12-OF-04 PT Fast derailment on open track outside train clearances, towards cess 

side, carriage not on its side, hits line side structure, with fire 

T12-OF-05 PT Fast derailment on open track outside train clearances, towards cess 

side, carriage not on its side, hits line side structure, structure collapses onto 

train, no fire 

T12-OF-06 PT Fast derailment on open track outside train clearances, towards cess 

side, carriage not on its side, hits line side structure, structure collapses onto 

train, with fire 

T12-OF-07 PT Fast derailment on open track outside train clearances, towards cess 

side, carriage on its side, no fire 

T12-OF-08 PT Fast derailment on open track outside train clearances, towards cess 

side, carriage on its side, with fire 

T12-OF-09 PT Fast derailment on open track outside train clearances, towards cess 

side, carriage on its side, hits line side structure, no fire 

T12-OF-10 PT Fast derailment on open track outside train clearances, towards cess 

side, carriage on its side, hits line side structure, with fire 

T12-OF-11 PT Fast derailment on open track outside train clearances, towards cess 

side, carriage on its side, hits line side structure, structure collapses onto 

train, no fire 

T12-OF-12 PT Fast derailment on open track outside train clearances, towards cess 

side, carriage on its side, hits line side structure, structure collapses onto 

train, with fire 

T12-OF-13 PT Fast derailment on open track outside train clearances, towards adjacent 

line, carriage not on its side, secondary collision with PT, no fire 

T12-OF-14 PT Fast derailment on open track outside train clearances, towards adjacent 

line, carriage not on its side, secondary collision with PT, with fire 

T12-OF-15 PT Fast derailment on open track outside train clearances, towards adjacent 
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Code Description 

line, carriage not on its side, secondary collision with FT carrying non-

hazardous goods, no fire 

T12-OF-16 PT Fast derailment on open track outside train clearances, towards adjacent 

line, carriage not on its side, secondary collision with FT carrying non-

hazardous goods, with fire 

T12-OF-17 PT Fast derailment on open track outside train clearances, towards adjacent 

line, carriage not on its side, secondary collision with FT carrying toxic haz 

goods, no fire 

T12-OF-18 PT Fast derailment on open track outside train clearances, towards adjacent 

line, carriage not on its side, secondary collision with FT carrying toxic haz 

goods, with fire 

T12-OF-19 PT Fast derailment on open track outside train clearances, towards adjacent 

line, carriage on side, secondary collision with FT carrying flammable haz 

goods, no fire 

T12-OF-20 PT Fast derailment on open track outside train clearances, towards adjacent 

line, carriage not on its side, secondary collision with FT carrying flammable 

haz goods, with fire 

T12-OF-21 PT Fast derailment on open track outside train clearances, towards adjacent 

line, carriage on its side, secondary collision with PT, no fire 

T12-OF-22 PT Fast derailment on open track outside train clearances, towards adjacent 

line, carriage on its side, secondary collision with PT, with fire 

T12-OF-23 PT Fast derailment on open track outside train clearances, towards adjacent 

line, carriage on its side, secondary collision with FT carrying non-hazardous 

goods, no fire 

T12-OF-24 PT Fast derailment on open track outside train clearances, towards adjacent 

line, carriage on its side, secondary collision with FT carrying non-hazardous 

goods, with fire 

T12-

OFAUTO-01 

PT Fast derailment on open track inside train clearances 

T12-

OFAUTO-02 

PT Fast derailment on open track outside train clearances, towards cess 

side, carriage not on its side 

T12-

OFAUTO-03 

PT Fast derailment on open track outside train clearances, towards cess 

side, carriage not on its side, hits line side structure, no fire 

T12-

OFAUTO-04 

PT Fast derailment on open track outside train clearances, towards cess 

side, carriage not on its side, hits line side structure, with fire 
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T12-

OFAUTO-05 

PT Fast derailment on open track outside train clearances, towards cess 

side, carriage not on its side, hits line side structure, structure collapses onto 

train, no fire 

T12-

OFAUTO-06 

PT Fast derailment on open track outside train clearances, towards cess 

side, carriage not on its side, hits line side structure, structure collapses onto 

train, with fire 

T12-

OFAUTO-07 

PT Fast derailment on open track outside train clearances, towards cess 

side, carriage on its side, no fire 

T12-

OFAUTO-08 

PT Fast derailment on open track outside train clearances, towards cess 

side, carriage on its side, with fire 

T12-

OFAUTO-09 

PT Fast derailment on open track outside train clearances, towards cess 

side, carriage on its side, hits line side structure, no fire 

T12-

OFAUTO-10 

PT Fast derailment on open track outside train clearances, towards cess 

side, carriage on its side, hits line side structure, with fire 

T12-

OFAUTO-11 

PT Fast derailment on open track outside train clearances, towards cess 

side, carriage on its side, hits line side structure, structure collapses onto 

train, no fire 

T12-

OFAUTO-12 

PT Fast derailment on open track outside train clearances, towards cess 

side, carriage on its side, hits line side structure, structure collapses onto 

train, with fire 

T12-

OFAUTO-13 

PT Fast derailment on open track outside train clearances, towards adjacent 

line, carriage not on its side, secondary collision with PT, no fire 

T12-

OFAUTO-14 

PT Fast derailment on open track outside train clearances, towards adjacent 

line, carriage not on its side, secondary collision with PT, with fire 

T12-

OFAUTO-15 

PT Fast derailment on open track outside train clearances, towards adjacent 

line, carriage not on its side, secondary collision with FT carrying non-

hazardous goods, no fire 

T12-

OFAUTO-16 

PT Fast derailment on open track outside train clearances, towards adjacent 

line, carriage not on its side, secondary collision with FT carrying non-

hazardous goods, with fire 

T12-

OFAUTO-17 

PT Fast derailment on open track outside train clearances, towards adjacent 

line, carriage not on its side, secondary collision with FT carrying toxic haz 

goods, no fire 

T12-

OFAUTO-18 

PT Fast derailment on open track outside train clearances, towards adjacent 

line, carriage not on its side, secondary collision with FT carrying toxic haz 
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goods, with fire 

T12-

OFAUTO-19 

PT Fast derailment on open track outside train clearances, towards adjacent 

line, carriage on side, secondary collision with FT carrying flammable haz 

goods, no fire 

T12-

OFAUTO-20 

PT Fast derailment on open track outside train clearances, towards adjacent 

line, carriage not on its side, secondary collision with FT carrying flammable 

hazardous goods, with fire 

T12-

OFAUTO-21 

PT Fast derailment on open track outside train clearances, towards adjacent 

line, carriage on its side, secondary collision with PT, no fire 

T12-

OFAUTO-22 

PT Fast derailment on open track outside train clearances, towards adjacent 

line, carriage on its side, secondary collision with PT, with fire 

T12-

OFAUTO-23 

PT Fast derailment on open track outside train clearances, towards adjacent 

line, carriage on its side, secondary collision with FT carrying non-hazardous 

goods, no fire 

T12-

OFAUTO-24 

PT Fast derailment on open track outside train clearances, towards adjacent 

line, carriage on its side, secondary collision with FT carrying non-hazardous 

goods, with fire 

T12-OS-03 PT Slow derailment on open track outside train clearances, towards cess 

side, carriage not on its side, hits line side structure, no fire 

T12-OS-04 PT Slow derailment on open track outside train clearances, towards cess 

side, carriage not on its side, hits line side structure, with fire 

T12-OS-05 PT Slow derailment on open track outside train clearances, towards cess 

side, carriage not on its side, hits line side structure, structure collapses onto 

train, no fire 

T12-OS-06 PT Slow derailment on open track outside train clearances, towards cess 

side, carriage not on its side, hits line side structure, structure collapses onto 

train, with fire 

T12-OS-07 PT Slow derailment on open track outside train clearances, towards cess 

side, carriage on its side, no fire 

T12-OS-08 PT Slow derailment on open track outside train clearances, towards cess 

side, carriage on its side, with fire 

T12-OS-09 PT Slow derailment on open track outside train clearances, towards cess 

side, carriage on its side, hits line side structure, no fire 

T12-OS-10 PT Slow derailment on open track outside train clearances, towards cess 
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side, carriage on its side, hits line side structure, with fire 

T12-OS-11 PT Slow derailment on open track outside train clearances, towards cess 

side, carriage on its side, hits line side structure, structure collapses onto 

train, no fire 

T12-OS-12 PT Slow derailment on open track outside train clearances, towards cess 

side, carriage on its side, hits line side structure, structure collapses onto 

train, with fire 

T12-OS-13 PT Slow derailment on open track outside train clearances, towards adjacent 

line, carriage not on its side, secondary collision with PT, no fire 

T12-OS-14 PT Slow derailment on open track outside train clearances, towards adjacent 

line, carriage not on its side, secondary collision with PT, with fire 

T12-OS-15 PT Slow derailment on open track outside train clearances, towards adjacent 

line, carriage not on its side, secondary collision with FT carrying non-

hazardous goods, no fire 

T12-OS-16 PT Slow derailment on open track outside train clearances, towards adjacent 

line, carriage not on its side, secondary collision with FT carrying non-

hazardous goods, with fire 

T12-OS-17 PT Slow derailment on open track outside train clearances, towards adjacent 

line, carriage not on its side, secondary collision with FT carrying toxic haz 

goods, no fire 

T12-OS-18 PT Slow derailment on open track outside train clearances, towards adjacent 

line, carriage not on its side, secondary collision with FT carrying toxic haz 

goods, with fire 

T12-OS-19 PT Slow derailment on open track outside train clearances, towards adjacent 

line, carriage on its side, secondary collision with FT carrying flammable haz 

goods, no fire 

T12-OS-20 PT Slow derailment on open track outside train clearances, towards adjacent 

line, carriage not on its side, secondary collision with FT carrying flammable 

haz goods, with fire 

T12-OS-21 PT Slow derailment on open track outside train clearances, towards adjacent 

line, carriage on its side, secondary collision with PT, no fire 

T12-OS-22 PT Slow derailment on open track outside train clearances, towards adjacent 

line, carriage on its side, secondary collision with PT, with fire 

T12-OS-23 PT Slow derailment on open track outside train clearances, towards adjacent 

line, carriage on its side, secondary collision with FT carrying non-hazardous 
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goods, no fire 

T12-OS-24 PT Slow derailment on open track outside train clearances, towards adjacent 

line, carriage on its side, secondary collision with FT carrying non-hazardous 

goods, with fire 

T12-ST-1 PT Fast derailment in single track tunnel inside train clearances 

T12-ST-2 PT Fast derailment in single track tunnel outside train clearances, carriage in 

contact with tunnel wall, no fire 

T12-ST-3 PT Fast derailment in single track tunnel outside train clearances, carriage in 

contact with tunnel wall, with fire 

T12-TT-1 PT Fast derailment in twin track tunnel inside train clearances 

T12-TT-2 PT Fast derailment in twin track tunnel outside train clearances, towards 

cess side, carriage in contact with tunnel wall, no fire 

T12-TT-3 PT Fast derailment in twin track tunnel outside train clearances, towards 

cess side, carriage in contact with tunnel wall, with fire 

T12-TT-7 PT Fast derailment in twin track tunnel outside train clearances, towards 

cess side, carriage on its side, no fire 

T12-TT-8 PT Fast derailment in twin track tunnel outside train clearances, towards 

cess side, carriage on its side, with fire 

T12-TT-13 PT Fast derailment in twin track tunnel outside train clearances, towards 

adjacent line, carriage not on its side, secondary collision with PT, no fire 

T12-TT-14 PT Fast derailment in twin track tunnel outside train clearances, towards 

adjacent line, carriage not on its side, secondary collision with PT, with fire 

T12-TT-15 PT Fast derailment in twin track tunnel outside train clearances, towards 

adjacent line, carriage not on its side, secondary collision with FT carrying 

non-hazardous goods, no fire 

T12-TT-16 PT Fast derailment in twin track tunnel outside train clearances, towards 

adjacent line, carriage not on its side, secondary collision with FT carrying 

non-hazardous goods, with fire 

T12-TT-17 PT Fast derailment in twin track tunnel outside train clearances, towards 

adjacent line, carriage not on its side, secondary collision with FT carrying 

toxic hazardous goods, no fire 

T12-TT-18 PT Fast derailment in twin track tunnel outside train clearances, towards 

adjacent line, carriage not on its side, secondary collision with FT carrying 

toxic hazardous goods, with fire 
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T12-TT-19 PT Fast derailment in twin track tunnel outside train clearances, towards 

adjacent line, carriage on its side, secondary collision with FT carrying 

flammable hazardous goods, no fire 

T12-TT-20 PT Fast derailment in twin track tunnel outside train clearances, towards 

adjacent line, carriage not on its side, secondary collision with FT carrying 

flammable hazardous goods, with fire 

T12-TT-21 PT Fast derailment in twin track tunnel outside train clearances, towards 

adjacent line, carriage on its side, secondary collision with PT, no fire 

T12-TT-22 PT Fast derailment in twin track tunnel outside train clearances, towards 

adjacent line, carriage on its side, secondary collision with PT, with fire 

T12-TT-23 PT Fast derailment in twin track tunnel outside train clearances, towards 

adjacent line, carriage on its side, secondary collision with FT carrying non-

hazardous goods, no fire 

T12-TT-24 PT Fast derailment in twin track tunnel outside train clearances, towards 

adjacent line, carriage on its side, secondary collision with FT carrying non-

hazardous goods, with fire 

T14-SF-1 PT Fast derailment at station inside train clearances 

T14-SF-2 PT Fast derailment at station outside train clearances, towards cess side, 

carriage not on its side 

T14-SF-3 PT Fast derailment at station outside train clearances, towards cess side, 

carriage not on its side, hits line side structure, no fire 

T14-SF-4 PT Fast derailment at station outside train clearances, towards cess side, 

carriage not on its side, hits line side structure, with fire 

T14-SF-7 PT Fast derailment at station outside train clearances, towards cess side, 

carriage on its side, no fire 

T14-SF-8 PT Fast derailment at station outside train clearances, towards cess side, 

carriage on its side, with fire 

T14-SF-9 PT Fast derailment at station outside train clearances, towards cess side, 

carriage on its side, hits line side structure, no fire 

T14-SF-10 PT Fast derailment at station outside train clearances, towards cess side, 

carriage on its side, hits line side structure, with fire 

T14-SF-13 PT Fast derailment at station outside train clearances, towards adjacent line, 

carriage not on its side, secondary collision with PT, no fire 

T14-SF-14 PT Fast derailment at station outside train clearances, towards adjacent line, 
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carriage not on its side, secondary collision with PT, with fire 

T14-SF-15 PT Fast derailment at station outside train clearances, towards adjacent line, 

carriage not on its side, secondary collision with FT carrying non-hazardous 

goods, no fire 

T14-SF-16 PT Fast derailment at station outside train clearances, towards adjacent line, 

carriage not on its side, secondary collision with FT carrying non-hazardous 

goods, with fire 

T14-SF-17 PT Fast derailment at station outside train clearances, towards adjacent line, 

carriage not on its side, secondary collision with FT carrying toxic hazardous 

goods, no fire 

T14-SF-18 PT Fast derailment at station outside train clearances, towards adjacent line, 

carriage not on its side, secondary collision with FT carrying toxic hazardous 

goods, with fire 

T14-SF-19 PT Fast derailment at station outside train clearances, towards adjacent line, 

carriage on its side, secondary collision with FT carrying flammable 

hazardous goods, no fire 

T14-SF-20 PT Fast derailment at station outside train clearances, towards adjacent line, 

carriage not on its side, secondary collision with FT carrying flammable 

hazardous goods, with fire 

T14-SF-21 PT Fast derailment at station outside train clearances, towards adjacent line, 

carriage on its side, secondary collision with PT, no fire 

T14-SF-22 PT Fast derailment at station outside train clearances, towards adjacent line, 

carriage on its side, secondary collision with PT, with fire 

T14-SF-23 PT Fast derailment at station outside train clearances, towards adjacent line, 

carriage on its side, secondary collision with FT carrying non-hazardous 

goods, no fire 

T14-SF-24 PT Fast derailment at station outside train clearances, towards adjacent line, 

carriage on its side, secondary collision with FT carrying non-hazardous 

goods, with fire 

T10-LCPAU-2 Train strikes normal road vehicle (car/HGV) on AOCL or ABCL crossing, with 

fire 

T10-LCPAU-3 Train strikes large road vehicle above buffer height (low loader, JCB, etc. ) 

on an AOCL or ABCL crossing, no fire 

T10-LCPAU-4 Train strikes large road vehicle above buffer height (low loader, JCB, etc. ) 

on an AOCL or ABCL crossing, with fire 
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T10-LCPAU-5 Train strikes HGV carrying toxic hazardous goods on AOCL or ABCL 

crossing, no fire 

T10-LCPAU-6 Train strikes HGV carrying toxic hazardous goods on AOCL or ABCL 

crossing, with fire 

T10-LCPAU-7 Train strikes HGV carrying flammable hazardous goods on AOCL or ABCL 

crossing, with fire 

T10-LCPRO-2 Train strikes normal road vehicle (car/HGV) on AHB, FP, MB/MCB/CCTV & 

all UWC (incl. MWL + T & UWC), with fire 

T10-LCPRO-3 Train strikes large road vehicle above buffer height (low loader, JCB, etc. ) 

on AHB, FP, MB/MCB/CCTV & all UWC (incl. MWL + T & UWC), no fire 

T10-LCPRO-4 Train strikes large road vehicle above buffer height (low loader, JCB, etc. ) 

on AHB, FP, MB/MCB/CCTV & all UWC (incl. MWL + T & UWC), with fire 

T10-LCPRO-5 Train strikes HGV carrying toxic hazardous goods on AHB, FP, 

MB/MCB/CCTV & all UWC (incl. MWL + T & UWC), no fire 

T10-LCPRO-6 Train strikes HGV carrying toxic hazardous goods on AHB, FP, 

MB/MCB/CCTV & all UWC (incl. MWL + T & UWC), with fire 

T10-LCPRO-7 Train strikes HGV carrying flammable hazardous goods on AHB, FP, 

MB/MCB/CCTV & all UWC (incl. MWL + T & UWC) crossing, with fire 
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Appendix C  

 

Definition and Theorems on Positive Definite and 

Positive Semi-Definite Matrices 

 

 

Definition C.1 Any nn×  symmetric real matrix A is positive definite when 0>Axx
T

 

for all nonzero vector 
1×∈ n

Rx . A symmetric real matrix A is positive semi-definite 

when 0≥Axx
T

 for all 
1×∈ n

Rx ; and A is positive definite when 0>Axx
T

 for all 

1×∈ n
Rx . 

 

This definition can be found in the books on linear algebra such as [Strang 1986; 

Herstein and Winter 1988; Zhang 1999]. From this definition, we can develop more 

properties about the positive definite matrix and the positive semi-definite matrix. 

 

Theorem C.1 Suppose that A is a nn×  symmetric real matrix of the eigenvalues iλ , 

ni ,,1⋯= . The matrix A is positive definite when 0>iλ  for ni ,,1⋯= ; the matrix A 

is positive semi-definite 0≥iλ  for ni ,,1⋯= . 

 

Proofs: 

Suppose that 1×∈ n

i Rh  is the eigenvector associated with iλ , i.e iii hAh λ= . Base on 

the linear algebra theory [Strang 1986], ih  ni ,,1⋯=  are orthogonal and normalized, 

i.e., 

 





=

≠
=

ji

ji
hh j

T

i
,1

,0
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Therefore ih  ni ,,1⋯=  define a complete base of the 1×nR  space. Therefore any 

vector 1×∈ n
Rx  can be defined by the linear combination of ih  ni ,,1⋯=  as 

 

∑
=

=
ni

iihcx
,1

 

 

Base on matrix operation rules [Lay 2003], we have 

 

∑∑

∑ ∑

∑∑

= =

= =

==

=

=

=

ni nj

j

T

ijji

ni nj

jjj

T

ii

nj

jj

ni

T

ii

T

hhcc

hchc

AhchcAxx

,1 ,1

,1 ,1

,1,1

λ

λ  

 

By the orthogonality and the normalization of ih , we have  

 

∑
=

=
ni

ii

T
cAxx

,1

2λ  

 

By the above formula, 0≥Axx
T  when 0≥iλ  for ni ,,1⋯= . By Definition C.1, the 

matrix A is positive semi-definite and Theorem C.1 is proven. 

 

Theorem C.2 Suppose that A is a nn×  symmetric real matrix. A is then positive 

semi-definite when A can be factored as UUA
T= , where 

nn
RU

×∈ . 

 

Proofs: 

By the matrix operation rules [Lay 2003], for any vector 1×∈ n
Rx  we have 

 

( ) ( ) ( ) 0≥== UxUxxUUxAxx
TTTT  

 

By the linear algebra theory [Strang 1986], we have 1×∈= nRyUx  and 
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( ) ( ) 02 ≥== ∑
i

i

TT
yyyUxUx  

 

Therefore the matrix A is positive semi-definite and Theorem C.2 is proven. 

 

Theorem C.3 Suppose that nnRBA ×∈, . The matrix ABBT  is positive semi-definite 

when A is positive semi-definite. 

 

Proofs: 

By the matrix operation rules [Lay 2003], for any vector 1×∈ n
Rx  we have 

 

( ) ( ) ( ) ( ) ( )BxABxBxABxxABBx
TTTTT ==  

 

By the linear algebra theory [Strang 1986], we have 1×∈= nRyBx . Because A is 

positive semi-definite, we have 

 

( ) 0≥= AyyxABBx TTT  

 

By Definition C.1, Theorem C.3 is proven. 

 

Theorem C.4 Suppose that there are m positive semi-definite matrices 
nn

i RA
×∈ , 

mi ,,1⋯= . The sum matrix ∑
=

=
mi

iAA
,1

 is positive semi-definite; the sum matrix A is 

positive definite when any iA  is positive definite. 

 

Proofs: 

For any vector 1×∈ n
Rx , suppose that ii

T
xAx α= . By Definition C.1 we have 0≥iα  

for mi ,,1⋯= . By the matrix operation rules [Lay 2003], we can have 

 

0
,1,1

≥== ∑∑
== mi

i

mi

i

TT
xAxAxx α  
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By Definition C.1, the sum matrix A is positive semi-definite. When there exists any 

positive definite iA , i.e. 0>iα  for any 1×∈ n
Rx , we have  

 

0
,1

>= ∑
= mi

i

T
Axx α  

 

By Definition C.1, the sum matrix A is positive definite. Theorem C.4 is proven. 
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