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Abstract

We obtain fully computable constant free a posteriori error bounds on simplicial meshes for:
a nonconforming finite element approximations for a Stokes problem and a low-order conform-
ing and low-order stabilized conforming finite element approximations for Poisson, Stokes and
Advection-Reaction-Diffusion problems. All the estimators are completely free of unknown con-
stants and provide guaranteed numerical bounds on natural norms, in terms of a lower bound for
the inf-sup constant of the underlying continuous problem in the Stokes case. These estimators
are also shown to provide a lower bound for the natural norms of the error up to a constant
and higher order data oscillation terms. In the Stokes problem, the adaptive selection of the
stabilization parameter appears as an application. Numerical results are presented illustrating

the theory and the performance of the error estimators.
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Chapter 1

Introduction

The finite element method is a numerical procedure that allows one to obtain an approximation to
the solution of an ordinary or partial differential equation under appropriate initial and boundary
conditions. The finite element method has a solid theoretical foundation (see [40, 43,52, 69, 74,
93,95]) and has become one of the most used techniques in the approximation of differential
equations. The efficiency of the finite element method relies on two distinct ingredients: the
approximation capability of finite elements and the ability of the user to approximate his model
in a proper mathematical setting.

At the very beginning, the analysis of the finite element method was developed in the frame-
work of a priori analysis, which implies existence and uniqueness of a solution, regularity es-
timates and rate convergence estimates for sequence of approximations (cf. [52]). This process
only gives information on the asymptotic behaviour of the approximation error. This draw-
back opened the door for new type of error estimation, called a posteriori error analysis and
adaptive solution algorithms. The basic idea was to apply a mesh-adaptive procedure that mod-
ifies the finite dimensional space in order to control and reduce the error. Since the pioneering
work of Babuska and Rheinboldt [26], the a posteriori error estimates technique together with
related topics such as mesh refinement and adaptivity for standard conforming finite element
approximation has reached a degree of maturity, as is shown in the following books and sur-
veys [11,28,30,68,96,103]. The literature on a posteriori error estimation for finite element
approximation is vast, so in what follows we will present primarily the key references and work

having a direct influence on our exposition.
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Let us suppose our problem is posed on a domain 2, in which a conforming regular partition
P is given. The aim of an adaptive finite element scheme is to identify the elements of P in which
the solution is poorly resolved, and then derive an appropriate procedure to refine such elements.
A key ingredient in an adaptive finite element algorithm is the availability of an posteriori error
indicator ng for the error over an individual element K. The analysis of adaptive methods is
based on two main properties of the indicator. Firstly, the sum of the local indicators should
provide a reliable upper bound for the total error ||efl, measured in a user-specified norm. This

mean that there exists a positive constant C' which is independent of any mesh size, such that
lells, < Cw* = C > ik (1.1)

KeP

Secondly, the error indicator should be efficient in the sense that there exists a positive constant

¢, again independent of any mesh size, such that

e < el & (1.2)

where K denotes a patch consisting of the element K together with neighbouring elements
sharing a common node with it. In practice however, it is not always possible to show that the
indicator is less than some positive constant multiple of the norm of the error since the data from
the differential problem may belong to an infinite dimensional space. Instead we settle for the
indicator being less than a positive constant multiple of the norm of the error plus terms which
are expected to decrease at a rate faster than the error, provided that the data is sufficiently
smooth, as the mesh is refined.

One of the most common types of error indicators are residual-based indicators. Residual-
based indicators involve residuals of the discrete solution on the element and edges of the par-
tition. From the early works in [26,27] a wide variety of analysis has been performed to derive
residual-based a posteriori error indicators for finite element approximations of two and three-
dimensional problems. A great disadvantage of many of the available error estimators so far is
that they present an unknown constant in the upper bound (like in (1.1)) on the error. Even
when estimates (1.1) and (1.2) are sufficient to guarantee robust convergence of the adaptive al-
gorithm (see [65,89,101]), the error estimator is often called upon to provide a stopping criterion
for the adaptive procedure for which knowledge of the actual value of the constant C' appearing

in the upper bound is required. Ideally, we would like to have a fully computable upper bound



CHAPTER 1 3

of the form
lel* < n*:= Y ni- (1.3)
KeP
If the error indicator n is known to provide an estimate for the error of this type, then we shall
say that n is an a posteriori error estimator.

Among all the different problems in which the a posteriori finite element analysis is being
applied, one of the most challenging are the ones where the phenomena can be modeled as an
advection-reaction-diffusion problem. One of the most representative examples in this area are
the Navier-Stokes equations. In the quest of obtaining realistic error estimates for this problem,
the first objective is to develop a discretization technique that is able to handle its two major
difficulties, namely: (1) singular behaviours, and (2) saddle point structures.

The analysis of the full non-linear problem is a daunting task. Therefore, we treat each of
these two difficulties separately. Namely, the study shall be conducted for the incompressible

Stokes problem,

—vAu+Vp = f inQ,
(1) V-ou = 0 inQ, (1.4)
u = 0 on 09,
and the advection-reaction-diffusion problem,
—vAu+a-Vu+rku = [ in,
(2) (1.5)
v = 0 on 9.

The numerical approximation of the Stokes problem (1.4), generally follows one of two com-
plementary approaches. The first consists of using discrete velocity-pressure spaces satisfying a
discrete inf-sup condition (cf. [42]). Many such methods are available in the literature (see [10,
20] for extensive reviews).

In the family of inf-sup stable nonconforming approximations to (1.4) the first order Crouzeix—
Raviart [58] and the second order Fortin—Soulie [71] finite element schemes have become very
popular. One of the first works to address a posteriori estimation for the first order nonconforming
Crouzeix—Raviart scheme was the important paper of Dari et al. [60] who obtained two sided
bounds on the error measured in an broken energy norm up to generic constants using a technique
based on a Helmholtz decomposition. These ideas were later extended to nonconforming mixed

finite element approximation of Stokes flow [59], not only obtained for the Crouzeix—Raviart
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finite element approximation but for the second order nonconforming Fortin—Soulie finite element
approximation as well. Subsequently, it was shown in [2] and [66] how computable upper bounds
can be derived for the Crouzeix—Raviart scheme for a linear second order elliptic problem and a
Stokes flow, respectively. More recently, in [13] and [14] the authors provide a fully computable
a posteriori error bound on the broken energy norm of the error in the nonconforming finite
element approximation on triangles of arbitrary order of a linear second order elliptic problem.
As a first result is this work, in Chapter 3, which is based on [6], we combined all the previous
reference techniques to obtain a fully computable a posteriori error estimator for a Fortin—Soulie
finite element approximation for the Stokes flow.

One perceived drawback of the inf-sup stable approach is the well known fact that low-
order combinations of finite element spaces do not satisfy the inf-sup condition. To eliminate
this constraint so that more natural finite element spaces can be used, one may add so-called
stabilizing terms to the discrete formulation. These stabilizing terms can depend on residuals
of the equation at the element level, or can simply be based on compensating for the inf-sup
deficiency of the pressure approximation. In the last two decades, a few residual-based a posteriori
error estimator have been developed for different conforming and conforming stabilized methods
for the Stokes problem (see [20,83,108]).

In a counter intuitive manner, deriving computable error bounds for conforming finite element
approximations needs to follow a totally and more involved different approach from the one of
nonconforming schemes. One choice to derive computable error estimator for conforming methods
is the equilibrated residual method [10,11]. In this method edgewise contributions, which sum
up to zero, are added to the residual equation such that the residuals are in equilibrium over
each element. The estimator then is given explicitly as the solution of a local Neumann problem,
which allows one to obtain a fully computable a posteriori error estimator. This technique, has
been applied to linear second order elliptic, singularly perturbed reaction-diffusion, and linear
elasticity problems in [5,9,12, 15-17].

As a second part of this work, in Chapters 5 and 6, which are based on [8], we provide
an actual computable numerical bound on the error in a natural norm for the Stokes problem,
which can be applied to a wide family of conforming stabilized finite element methods. This
estimator was obtained by combining the Helmholtz decomposition from the nonconforming
setting and the equilibrated residual method in conjunction with an explicit solution of the

related local Neumann problem. We also present a procedure to compute near-optimal values for
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stabilization parameters presented in stabilized methods. We mention that similar results were
obtained in [75], where a unified framework to obtained computable a posteriori error estimators
was given for a Stokes flow, but in the case of low-order conforming stabilized finite element
methods the authors only consider three stabilized methods with stabilization only in the mass
conservation equation with fixed stabilization parameters.

The advection-reaction-diffusion problem (1.5) is much more complicated. Since the standard
Galerkin finite element formulation usually yields inaccurate approximate solutions to this prob-
lem, due to loss of stability and it can not approximate solutions inside layers, many different
finite element schemes have been proposed in order to achieve robustness with respect to the
physical parameters, which guide the behaviour of the solution. Finite element schemes such
as mixed, discontinuous Galerkin, nonconforming and stabilized methods are a few of the many
available techniques in the literature. We mention [98] as representative of the work. Now, from
the a posteriori point of view, for mixed and discontinuous Galerkin approximations in [106]
and [70], the authors developed fully computable error bounds for the error measured in an
energy norm, being semi-robust in the sense that local lower error bounds depends on the local
Péclet number and they achieved robustness if the error is measured in an augmented norm
consisting of the energy (semi)norm and a dual norm. For nonconforming and stabilized finite
element approximations a posteriori error estimators have been proposed in [19,24, 36,99, 105],
but, as far as we are aware of, the majority of these estimators are not actually computable since
they involve either a generic unknown constant in the upper bound on the error or they are based
on the solution of local infinite-dimensional problems.

As a third part of this work, following the same steps as in [8] and based on the generalization
of the equilibrated residual method for the three dimensional case in [16], in Chapter 7 we pro-
vide a fully computable a posteriori error estimator for the advection-reaction-diffusion problem
approximated using a stabilized SUPG (cf. [46]) finite element method in two and three space
dimensions.

A crucial step in the development of fully computable error estimators is to rewrite the
residual functional related to the equation that is satisfied by the errors in the finite element

approximation (the error equation) as the following local Neumann problem,

—diveog = px on K
(1.6)

O N = Py K inaK,
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for given data px and p, i, being polynomial functions defined on the element and each edge of
the element, respectively, being related to element and edge residuals of the equation. As we will
show in later sections, this rewriting of the residual functional can be used for a Poisson, Stokes
and Advection-Reaction-Diffusion problems, using nonconforming and conforming (conforming
stabilized) finite element approximations. In order to guarantee the existence of a solution to
(1.6), it is well known that the problem data need to satisfy a compatibility condition. To
ensure that this condition is satisfied, for nonconforming schemes a suitable projection operator
can be constructed which can be incorporated into the error equation leading to the desired
compatibility. For conforming schemes the construction in the equilibrated residual method for
the edge contributions is done to guarantee this compatibility (cf. [11]). Finally, following the
ideas from [94] explicit solutions can be obtained for such problem.

The aim of this work is to obtain fully computable a posteriori error estimator, first for a
Stokes problem using a second order nonconforming Fortin-Soulie finite element approximation
and also using low-order stabilized finite element approximations. The analysis will be developed
only in the two dimensional case for the Stokes case. Later, we will provide a fully computable a
posteriori error estimator for the advection-reaction-diffusion problem, but now the analysis will
be given in the two and three dimensional case. In the latter case our error estimator is not fully
robust with respect to the physical parameters of the equation, but is still useful for practical
computations.

The remainder of this thesis is organised as follows. In Chapter 2 we define some notation
of the partitioning of the domain over which the model problems are posed, then define the
common notation and present some standard results which we use throughout this thesis. The
chapter is concluded with an important result which will allow us to obtain explicit solutions to
the Neumann problem (1.6). In Chapter 3 we perform the a posteriori error analysis which will
provide a fully computable a posteriori error estimator for the Stokes problem using a second order
nonconforming Fortin-Soulie finite element approximation. In Chapter 4 we provide a review of
the equilibrated residual method from [11], in order to clarify how the edge contributions, that
allows one to satisfy the compatibility condition of the Neumann problem, can be obtained for
conforming methods on regular partitions of the domain. In Chapter 5 we perform the a posteriori
error analysis which will also provide a fully computable a posteriori error estimator for the
Stokes problem using now a wide family of conforming stabilized finite element approximations

and in Chapter 6 we present a procedure to approximate the optimal value of the stabilization
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parameter for also a wide variety of conforming stabilized methods. Finally in Chapter 7, we
present a generalization of the a posteriori analysis for a stabilized finite element approximation

of a three-dimensional advection-reaction-diffusion problem.



Chapter 2

Preliminaries.

The aim of this section is to introduce notation and present some standard results, which will be
used throughout the manuscript, for which we follow the standard theory of finite element analysis

as described in the books of Brenner and Scott [40], Ciarlet [52] and Ern and Guermond [69].

2.1 Notation.

Let G C R? where d = 1,2, be a bounded open domain. We denote by G the closure of G.
The Lebesgue space of square integrable functions over G is denoted by L*(G), L3(G) represents
functions belonging to L?(G) with zero average in G and L*°(£2) denotes the space of essentially

bounded functions, i.e.

26 ={v: [ 1@)Pds = ol < oo

Li(G) = {v € L*(G) : / vdr = O},
€]
and
L>®(G) = {v: esssup,eq [v(z)] = [|[v]|1(c) < 00} .

For any two scalar functions u, v € L?*(G) or vector-valued functions w,v € L?(G)? or matrix-

2X2

valued functions w,v € L*(G)**?, we choose (-, )¢ to denote:
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(u,v)g = / uv dx the inner product in L*(G) x L*(G),

G

(u,v)g = / u-vdr the inner product in L?(G)? x L?(G)?,
G
2
(w,v)g = / w:vde = Z / wijvij dr  the inner product in L?(G)%**? x L*(G)?*2.
G —~ Ja
i,j=1

For scalar functions v = v(z,y), we let the gradient and curl operators to be defined by

ov Ov ov 0Ov
== = o= 22 22
Vo (&T’ ay) and curl v (8y’ 81') ,

respectively. For vector valued functions v = [vi(x,y), v2(x,y)], we let the divergence, gradient

and curl operators be defined by

. 81)1 81)2
divvo=V.-v=—+—,
ox dy
Qv vy Oui vy
Vo= | % % and curlv= | % or |
Quy  duy Qua vy
ox oy dy ox

respectively. For a matrix valued function A = [A;;(x,y)]

9o, the divergence of A is the vector

valued function

0A 0A12 0A 0A
u, 94w 21, Oh2

iv A= .
div 4 Ox oy = Ox oy

We shall constantly use Lebesgue and Sobolev spaces (cf. [1,86,90]): The space H(G) is the
usual Sobolev space, H}(G) denotes the subspace of H'(G) consisting of functions whose trace
is zero on the boundary of G and H~1(2) denote the dual of Hg(£2) with respect to the L*(Q)
inner product. The space H (div,G) denotes the space of square integrable vector fields whose
divergence is also a square integrable function.

The norm of the space H'(G) is denoted by || - || g1 (g while | - |g1(¢y is used to denote the
semi-norm.

We use bold letters to denote the vector-valued counterparts of the Sobolev and Lebesgue
spaces, e.g., Hy(G) = HY(G) x H}(G), and use an extra under accent to denote their matrix-

valued counterparts, e.g. QQ(G) = L?(G)**2

2.1.1 Finite element nomenclature.

For convenience, we shall summarise all the notations used throughout the manuscript related

to the triangulation of the domain.
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Let Q C R? be an open simple polygonal domain with boundary I'. Let {P} be a family of
regular triangulations of Q, in the sense described in Ciarlet [52].

For a fixed triangulation P let:

e & denote the set of all edges;

e & C & denote the set of internal edges;

o & C &£ denote the set of boundary edges;

e V index the set {x,},,, of all element vertices;

e N denote the set of all element vertices and edge midpoints;

e AT denote the element vertices and midpoints located on the boundary T';

e Gy index the set {x,, } neg, consisting of the two Gauss—Legendre points on each edge v € &;

e Gr index the set {x,, }neg,. consisting of the two Gauss—Legendre points that lie on an edge

v € €r;

e 0, ={KecP: z, € K forafixed n € V} is the patch consisting of elements for which

T, is a vertex;
e &y={y€e€&: x, €7 for afixed n € V};

e )\, denote the function which is piecewise linear on P and vanishes at all the vertices in P,

except a,, where it takes the value one, i.e.
A () = O n,m €V where 6y, denote the Kronecker symbol,
and we also define the vector-valued counterpart as follows

AL =\, 0], A2 =10, \,].

For the fixed partition P let H'(P) = {v: v|x € H'(K)} denote the broken space which consists
of functions whose restriction to an individual element K are locally H'(K).

For an element K € P let:
e P, (K) denote the space of polynomials on K of total degree at most n;

e &y denote the set containing the individual edges of the element K;
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e Vi index the set {x,}, ), of all vertices of the element K;

e N denote the set of all element vertices and edge midpoints of the element K;
« Q= {K'eP: BNE +0};

e O ={K' €P: ExN&x #0};

e | K| denote the area of K;

e hx denote the length of the longest edge of element K;

° fzf denote the unit exterior normal vector to edge v € £k.

o U = ﬁ f P dx denote the mean value of v on the element K and for a vector-valued

function v = [v1, v2], then Vi = [U1 g, Vag]-

e vk denote the restriction of v to the element K.

1
1€EVEK
For an edge v € &€ let:
e P, () denote the space of polynomials on v of total degree at most n;
eV, ={neV: z, €7} denote the set of endpoints of an edge ~;
e O, ={KeP: veéx}

e |v| denote the length of ~;

° T, = ITl\ f,y v ds denote the mean value of v on the edge v and for a vector-valued function

v = [v1, V2], then U, = [ﬁv,v_g,y}.
e s, denote the arc length parameter on the edge +;

e 1, denote a unit normal vector to the edge vy, oriented such that, in case of an exterior
edge v € &r the vector 1, is always taken to be the unit exterior normal on I', denoted by

nr;

° i,, denote the corresponding unit tangent vector associated with 7., rotated ninety degrees

anti clockwise with respect to 7;



CHAPTER 2 12

e v, denote the restriction of v to the edge .

The normal and tangent vectors for an element satisfy the identities n = |y|n and tf = |’y|iff .
Finally, in the rest of the manuscript we denote by ¢ or C' any constant which does not depend
on any mesh size or any physical parameter related to any of the problems that we will present

and I will denote the two by two identity matrix.

2.1.2 Some preliminary results.

In this section we will present some standard results, that we will frequently use through all the
manuscript.

Let I : L?(K) — P1(K) be a projection operator, characterized as

(¢ —lk(9),p)g =0  VpePi(K). (2.1)
Now, ITx will denote its vector counter-part. We will also frequently use the following result.

Theorem 2.1.1. (Optimal Poincaré inequality for conver domains, see [33,92]).
Let K € P. Then

_ d
v =Tkl p2x) < ;HVUHLz(K) for allv € H'(K). (2.2)
where d is the diameter of K.

An important role will be played by locally supported, nonnegative functions that are com-
monly referred to as bubble functions, and it will be useful to consider the effect of choosing these
functions as a test function on equations related to the error in the finite element approximation.

The next result shows that and interior bubble function Sx = H A\ € HJ(K), preserves

neVi
the norm up to a constant.

Theorem 2.1.2. Let fx = H A\ € HY(K). Then for any p € P, (K) with n > 0, there exists

neVg
a constant C' such that

1/2
1812l ey < Ipllzaiey < C (|81

L2(K)’

and

IV (BrP) |2y < ChiH Ipll 2,

where the constant C' is independent of p and hy.
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The following result is to extend quantities defined on v € & (element interfaces), to the pair
of elements sharing the interface by using edge bubble functions and state that the extension
preserves norms, again up to a constant.

Theorem 2.1.3. Let 3, = H A\, € HY(KUK') and By € Hi(7y) with v being an edge share

neV,
by elements K, K' € P. Then, for any p € P, (v) with n > 0, there exists a constant C' such that

By 217‘

18,0l < WPl < 8%,

and

—1/2 1/2
B 21832l ey + Bl IV (B ae) < Cllpll 2y,
where the constant C' is independent of p and hg .

More details about these results can be found in Section 2.3.1 in [11], Section 10.1.1 in [69]
and Section 1.1 in [103]. Each one of the three previous results has an obvious extension to the
vector-valued case.

For K € P, throughout we shall make use of the following formula:

2(I'mln!)
Aamar ) = K 2.3
(z] k> )K (l+m+n+2)'| |’ ( )

for I,m,n > 0 and Vi = {4, j, k} and, with V, = {l,r}, for m,n > 0,

mln!

P A), = el (2.4

(m+n+1
The following result presents a basis to polynomial functions of degree one defined on edges

of the partition.

Lemma 2.1.4. Any polynomial function p € P1(7y) can be written as

2 (2N = N\p), (2.5)

2
(2)\l - )‘r) + (pa )‘T)»y m

p=(p,\), il

where {l,7} =V,.

Proof. Let p = ay\j+ ;-\, where a; and «,- are constants to be determined. Now, the unknowns

satisfy the conditions

(At Ay 4 (AN, A )ya = (p, M)y (2.6)

()\’I‘a )\l)'yal + ()\Ta )\r)war = (P, )‘T)'y (2'7)
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Equally well,

« JA
M l _ (P l)v

¥
Qe (pa )\T)'y
where M is the mass matrix for the basis functions on the edge v. A simple computation using

(2.4) shows that

and hence

o= 22 M)y — (), and a, = (25, M)y — (A5

o] o]
Finally the actual function can be written as
2
p= m ( (2(]7; )‘l)V - (pa )\’I‘)’Y) )‘l + (2(17; )\T)’Y - (pa )‘l)w) )\7‘)
2 2
= (p7 )\l)'y <_(2)\l - )\T)> + (p7 )\T)’Y <_(2>\T - Al)) )

v o]

and the result follows. O

In trying to obtain a fully computable quantity being equivalent to the error (up to higher
order terms), in different problems, we will frequently need to solve, for each K € P, a local

Neumann problem of the form: Find o such that,

—divoxg = px in K
(2.8)
o’;«ﬁff = py,x oneachye &g,

for given px € P1(K) and p, i € P1(7y). This problem was first studied in [94], where a solution
is given in terms of a Raviart—Thomas space, also in the scalar case, but in here we will present
a different construction of such a function. To be able to obtain such solutions, the following
functions will be useful. Let the edges, vertices, tangent vectors and unit normal vectors of an
element K € P be labelled as in Figure 2.1. The normal and tangent vectors for the element K

satisfy, for i € Vg = {1,2, 3},

ti Ny = 07
ti- my = ta-my3 = t3-np = 2|K|, (2.9)
tl Ny = tg"n,l = tg"l’LQ = —2|K|,
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Figure 2.1: The labelling and orientation of the edges, vertices, tangents and unit normal vectors

of elements K.

with n; = |yi|n,, |[t;| = |7i|t: and the linear functions \. restricted to the element K and on

edges of K satisfy

doNo= 1L, DAy = L
1€EVK 1 1€V, 1 (210)
i = e s LA = 7=t
VA 2|K|n cur 2K
For the element K, let
1
PV = BT ((2A3 = 3X2 — A1) Asta + (4h2 — Az — TA1) dats),
—1
¢(’Y1 = 2K ((4)\3 Aoy — 7)\1))\3152 + (2)\2 — 33 — )\1))\2133) R
|1 | (2.11)
P = 7K (223 + 3X3(A2 — A1 ))t2 + (4ha + 3ha( Az — A\1))t3),
-1
P = BTl ((4X3 + 3X3(A2 — M1 ))t2 + (2ha + 3Xa( Az — A\1)t3) .

with ¢('r2 , 1&/\'12), 1/}&-13 , 1/)&13 , 1&/\12), 't,bg\'f , ,(/)(73) and ’l/) 73) being defined by permuting the

indices in an anticlock wise sense, i.e.

${? = a7 ((2A1 — 3A3 — A2)Aits + (4hs — Ay — TAa)Asty) (212)
PP = 2|Ii| (401 — As — TA2)Aits + (223 — 3A\1 — Ao)Asty) | .
ete. Also let
Vi = 2|i{| (e Z At (s = At (2.13)
2) = %0\3@ — Aat3), |

with ’l/)g) and 'zb(;) being defined permuting the indices. Now, if we adopt the convention that

A4 = A1 and A5 = g, then for 4,5,k € Vi = {1,2,3} using (2.3), (2.4), (2.9) and (2.10), we
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deduce that

(v4) - _ l o ) (vi) | o _ s )
( )\i+1) |’Yk c Ny = |ryZ| (3)\Z+1 1)51k, ( )\i+1 ng, A‘]),yk — 51 k(S’LJrl VEI
(74) - _ ) (74) N S T
( )\i+2)|7k ng = |721| (3Xit1 — 1)din, ( PP (7% /\j)'m = 0 k0it2 j,
7 (vi) 5 _ ) 7)o ) — S
( )\i+1) e ng | 2Z| (3)\7,4-1 )(Slk, ( Nit1 ng, )\])’Yk 57, k61+1 VR
(~ E\’sz) hp = (BAit1 — 1)dik, ({Z’E\QZ Mg, A ) = 0i kli+2 5,
2 il ' E (2.14)
(’ItbK)h/k ﬁ/k - 05 ( (I?)"Yk ﬁ’k = 05
. 5 (i 1 i
—div (1&5\131) = —W, (—dlv ¢E\'V+)l,)\ ) = dit1 4,
. y (3 1 (3
—div (¢E\j+)2) - 7@7 (7d1V ’l,b(kvgz,A )K = 5i+2 je
. . i 1 1
—div (¢g) = 0, —div ( (K)) = K] <)\Z- — g) ,
and
(’Yz < C ’ (Vw H (Vw ‘ (’Yz < C 2 15
H’I’DMJA L2(K) wz\wz L‘Z(K) 1’0/\1+1 LZ(K) T’D)\erZ L2(K) — ’ ( ’ )
9 <C
"¢K LK)~

where the constant C' do not depend on any size of the element K. With these functions we can
give some explicit solutions to the Neumann problem (2.8), if the element and boundary data
satisfy the following compatibility condition

(pr,€)y + Z (py,x,¢) =0 for any c € R. (2.16)

yEEK

In certain cases the data will also satisfy

(p D+ Y (Prx,q) =0 for any g € Py(K). (2.17)

YEEK

The next result provide some particular solutions to (2.8) based on the functions previously

presented.

Theorem 2.1.5. Let px € P1(K) and py.x € P1(7y) for each v € Ek be given. Then, if px and

Dy, i Satisfy (2.16),
3
oK =) <(p%7Ka)‘i+1) PO+ (s Miga),, o0+ K|V (pk) - (i — Tc)) g?) (2.18)

is a solution to (2.8) and

loxll 2oy < O { hcllprclizeie + > by xllzeey | - (2.19)

YEEK
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If px and py Kk satisfy (2.17), then

3
:Z ((p’Yi,K’ 1+1) ¢A i1 (p’Yi,Ka l+2) ¢/\1+1> (2'20)
i=1
is a solution to (2.8) and
1/2
lowll 2oy < C | Do hi 2Pz, (2.21)
YEEK

where i € Vi = {1,2,3}, the indices are to be understood module 3 and the constant C is
independent of hi, pr and P k.

Proof. Let i,k € Vk = {1,2,3}, then for any v, € €k, let us restrict ok, given by (2.18) or

(2.20), to the edge 7 to then be multiplied by n , then

TK|y ﬁ’IY(k
3

=> <(p%,K,Az+1) o\ (py i ig2) BN RS )
zzl

= Z <(PW,K, Aiv1),, Q/J&’Y;l fof + (P> Ait2)., 1/’&712 ﬁf;)
i=1

3
2 2
=> <(Pwi,K7 Ai+1).,, m(3/\i+1 = Dbir + (Pyi. ks Aiv2).,, m(3/\i+2 - 1)5ik>
! 2
= (p'yk7K) )\k+1)7k B |(3)\k+1 (Ak1 + Arg2))
+ (Pyi > Aki2).,, B |(3>\k+2 (A1 + Akt2))
2 2
= (Pye.rs Akt1)., " |(2)\k+1 Aet2) + (Pye. ks Akrz)., " |(2)\k+2 Akt1)

= Py, K

upon using (2.14), the fact that (Ax+1 + Ary2)},, = 1 and Lemma 2.1.4, where the indices are
to be understood modulo 3. Regarding the divergence, if ok is given by (2.18), again using the

properties of the functions {bf\) and ’Q/Jg() it follows that

( - % (P, 1),, + V(K) - (@ — 5K)>

NE

—div o =
i=1
3

i=1

= e Ok i+ Vi) (- T

= PK,
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upon using (2.16) and the fact that px is an affine function. Now, if ok is given by (2.20) it

follows that

(—diV oK, )‘j)K

3
= Z ((p’yiyK, Ai+1)7i ( div /l»b(kvlla ) + (p’Yi,Ka Ai+2)—ﬁ ( div ";bg\%“v ) )
1=1
3

= Z (p’Yi,K’)‘j)%. = (pK,)\j)K for allj € Vi = {1,2,3},

i—1

N

upon using (2.17) and (2.14), hence —div o x = px. Now, for the norm of ok, we obtain

HUKH2L2(K)
3
< OY IKPIV(ox) Pl —Zxl® + il lp k12,
i=1 ,
<C (IKI2 K] IV )l Z2 iy h3c + D Imllpvi,Klizm)
1=1

3
(IKI2 K] piclZ2acyhc + D P Dy, i1, )

i=1

3
<o (h%apKn;(K) + thnp%,Kn;(%)) |

i=1
upon using the regularity of the mesh, (2.15), the Cauchy—Schwarz inequality and an inverse

estimate (see Lemma 1.138 in [69]). Hence, (2.19) and (2.21) follow. O
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Computable error bounds for
nonconforming Fortin—Soulie
finite element approximation of

the Stokes problem.

In recent years considerable interest has been shown in the development of computable a pos-
teriori error estimates for the finite element method. The papers referenced in [51] provide a
recent overview of the state of the art in a posteriori error estimation for nonconforming finite
element approximations. However, such estimates almost always contain generic (i.e. unknown)
constants and as such do not provide actual computable error bounds. In particular, for the low-
est order Crouzeix—Raviart [58] finite element approximation of a second order elliptic problem,
a technique was presented in [60] which allowed the derivation of two error estimators equivalent
up to generic constants to the error. Subsequently, it was shown in [2] how computable upper
bounds can be derived for this nonconforming element where such unknown constants are absent.
Moreover, the bounds are not only quite accurate, but also easy and cheap to compute.

The second order nonconforming Fortin—Soulie finite element [71] offers a number of advan-
tages over the first order Crouzeix—Raviart element, perhaps the most important of which being

that it satisfies a discrete Korn inequality. Recently, the ideas developed that led to computable

19
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bounds for the Crouzeix—Raviart finite element approximation in [2], were extended to the non-
conforming Fortin—Soulie finite element approximation of a second order scalar elliptic problem
in [14]. Since the structure of the second order nonconforming element is quite different from
that of the Crouzeix—Raviart element, it is perhaps not surprising that the a posteriori error
estimators for the two elements exhibit important differences.

The structure of the spaces related to the mixed formulation of the Stokes problem considered
here is different from the two cases mentioned above. A reliable a posteriori error estimator was
presented in [10] for a nonconforming Crouzeix—Raviart finite element approximation of the
Stokes flow. The purpose of the present chapter is to extend the techniques used in [14] and [10]
to the case of a Stokes flow involving the nonconforming Fortin—Soulie space.

We make use of a result from [59] to decompose the gradient of the velocity error, into what we
called conforming and nonconforming parts, each of which must be bounded. The treatment of
the conforming part of the error is based on a concrete expression (given in terms of the residuals
in the finite element approximation and in terms of the so-called data oscillation) that delivers
a fully computable bound on the conforming part of the error. The key to the construction only
involves an H (div) lifting of the residuals similar to the ideas in [2,13,66,94], in conjunction
with the observation that the lifting g x is not required per se, only the value of its norm. The
significance of this observation is that we obviate the need to solve a local problem, which leads
to a much simpler and efficient implementation of the error estimator.

The estimator for the nonconforming part of the error entails the construction of an appropri-
ate conforming approximation of the velocity. The usual approach consists of a local smoothing of
the nonconforming velocity approximation. Whilst at first glance such a simple approach might
lead one to suspect that the corresponding estimator might perform quite poorly, we find that
the performance is, in fact, almost as good as what would be obtained using the best possible
smoothing (but at a fraction of the cost).

The error estimator for the pressure error follows from the analysis of the error estimate for
the velocity, but has a factor involving a lower bound for the inf-sup constant for the underlying
continuous problem, for which there are available some specific values and bounds for such a
constant, in the two-dimensional case (see [102] and [63]).

The results that we will present in this chapter are based on [6], but with an improvement

on the estimation in the velocity and pressure errors, based on the analysis presented in [8].
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3.1 The model problem.

For f € LQ(Q). We are interested in the following Stokes problem: Find a velocity u and a

pressure field p such that

—Au+Vp = f in(Q,
V-u = 0 in, (3.1)
v = 0 onl.

The first equation is called the momentum equation and the second is the mass conservation
equation.

We begin by restricting our attention to a homogeneous boundary condition, but this as-
sumption will be relaxed in Section 3.8. To establish the weak formulation of problem (3.1), we
introduce two continuous bilinear forms, a(-,-) : Hy(Q) — R and b(-,-) : Hp(Q) x L3(Q) — R,

defined by
a(u,v) :=(Vu,Vv)e  and  b(v,p) :=—(p,V - v)a.
The weak formulation of the Stokes problem then reads: Find (u,p) € H{(Q) x L3(Q) such that

a(u,v) +b(v,p) = (f,v)g VvecHQ), (3.2)
b(u,q) = 0 v q € L§(Q),
The well-posedness of problem (3.2) is a consequence of two facts: the bilinear form (Vu, Vv)q

is coercive on H(f2) owing to Poincaré’s inequality (see Corollary 1.2-1 in [95]), and hence is

also coercive on the subspace
X={veH{Q): V-v=0}; (3.3)

and, there exists a constant 5 > 0 such that

Lo % > Bllgllz@y for all g € LE(9). (3.4)
The constant 5 is known as the inf-sup constant for the domain €. For more details concerning
the well-posedness of problem (3.2), see Chapter 4 in [74], Chapter 4 in [69] or Chapter 12 in [40].

We are interested in a nonconforming finite element approximation of the Stokes problem.

Nonconforming finite element functions are not differentiable at element boundaries, but it is

possible to define an elementwise gradient V}, as follows

Viv(x) :=Vo(z), zcint(K), VK eP.
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In a similar way an elementwise divergence (V) can also be defined. Let v € & with v =
Ex N &k and set v|i to be the restriction of v € H(P)? to the element K, then the jump in

the trace of v across v is defined to be
[[’U]] = ’U|K — ’U‘K/,

where the elements are ordered so that the edge normal 7., points from K to K.

3.2 Nonconforming finite element approximation.
To approximate the velocity field we will use the Fortin-Soulie finite element space, defined by
V= {v ;v € Py(K)? for all K € P, ([v],w), = 0 for all w € Py(7)? with € 51}.
We will also need the following subspace of Vj,:
VP = {v €Vy: (v,w), =0 forall w € Py(y)* for y € EF}.

Remark 3.2.1. Note that this definition seems to differ from the one used in [71]. However,
it is easy to see that they are equivalent [14]. For example, the condition ([v], w)y = 0, for all
w € P1(7)? on interior edges, is equivalent to v being continuous at the two points indezed by Gr

(the Gauss-Legendre points) which lie on the edge 7.
We will use the following discontinuous polynomial space to approximate the pressure field
Py ={q€ L§(Q): qx €Pi(K) for all K € P}.

The nonconforming finite element approximation of problem (3.1) then reads: Find (up,pn) €

VP x P, such that

an(wn, vp) + bp(vn,pr) = (fivn)o Yo, € V),

bh(uhv(Ih) = 0 th GPha

where the bilinear forms ap(-,-) : Vi, x Vi, = R and by(+, ) : Vi, X P, — R are given by
ap(u,v) = (Vyu, Viv)g and  by(v,q) = —(¢, Vi - v)a.

These forms are continuous with respect to the broken semi-norm [|V,v||12(q) and |gallz2(q)-
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Every v, € V), satisfies V- v, € Py. In fact, since vy, € VhD is continuous at the two
Gauss—Legendre points on each v € £; and is zero at the two Gauss—Legendre points on each
v € &r, integration by parts yields

Vi-vpdo= Y Z/vhw}fds:Z/%[[vh-ﬁ.y]]vdsqLZ/vh~ﬁpds:0,
Q

KePye€x’7 ve&r v veer VY

where we have made use of the fact that v, - 22 € Py(7), and consequently Vy, - vj, € L§(Q).

Let X}, denote the subspace of V', defined by
XhZ{’UhEVh: V-’Uh|K=0, VKEP}.

It follows that problem (3.5) is well-posed since the bilinear form ap(,-) is coercive on X and

the discrete version of the inf-sup condition (3.4) holds (for more details see [71]).

3.2.1 A Projection Operator.

In what follows it will be useful to parametrise an edge v € Ex by :B(S,IY() =x + (S,}f + 7)

where

g i
i = |—2| (A — ) € (—'2—|%) :
with the tangent vector if and normal vector fzf to edge v of element K oriented as shown in

Figure 3.1. Then it is easy to see that for all p € P;()? there holds,

— op
v

Let TIrg : H'(Q) — V7, be the interpolation operator

Hps(’v) = Z Vbl + 25797, (37)
KeP ye€
where for any K € P, the functions 0k and 0, are given by
4—6 Z )\i on K,
9[{ = neVk

0 elsewhere,

and for v € &k,

1—6<1— Z)‘"> > A onK,
97 = neVy neVv,

0 elsewhere.

The scalar functions 6 and 6., belong to the scalar version of the spaces V,? and Vj,, respectively.
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Figure 3.1: Location of the endpoints and orientation of the unit tangent and unit normal vectors

on an edge 7y of element K.

Remark 3.2.2. Notice that the operator Ilpgs maps functions from Hé(Q) mto Vf.

The following result is a generalization to the vector-valued case of Lemma 2.1 from [14]. The

operator ITpg has the following properties:

Lemma 3.2.3. For allv e H (Q), K € P and v € £k, the operator M pg satisfies

| (0= Trs(o)dz —o.

(v —Hps(v),p)y = (v,p—D,)y VpePi(v)?
v —Trs(v)l|L2 (k) < CKHV”Hy(K)
V(v — HFS(”))Hy(K) < C’K”V’UH£2(K)7

[v —Tps(v)|[L2(y) < C§(||V”|\£2(K)a

where for v, v being distinct edges in Ey,

hi hix (hi / ek
Cx = — — =
S +Z <57T<7T +71'nea5);(<|7| ’
K

veE
/2
A Y| (hr (hK AN
Cx=1+v3 S DL (2K (2K
et 3 g (F ()

and for ~', " being distinct edges in Ex,

b2 1 bl hic (b )
cy |K|1/2 Z 20y + 3m(1 — Gyy1) el R R 17"l :

Y EEK

(3.13)

(3.14)

(3.15)
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Proof. From the definition of the operator IIrs and noticing that (0x,1)x =1 and (6,1)x =0,

it follows that for v = [vq, v2]

/ v—Hpg(v)de = [/ v — 1Ok dw,/ vy — Vo Ok dx} = [0, 0]
K K K

then (3.8) follows. Likewise, noticing that (6x,p), = 0 and (6,p), = |V[p, 6y, for any p €
Py () and all 7,7’ € &, then (3.9) follows by using the definition of the operator Ilpg.

Using property (3.8) it follows that
v —=Tps()lL2) = v =Pk — Mrs(v = V)l g2y < 10 = Ol g2y + [Hrs(v = Vi)l 2k »
and
IV (v = ps(v))lL2 ) < IVOllg2 ) + 1VIes (v = V)| 22 k) -
From the definition of the operator Ilpg we obtain

HFS('U_EK): Z (’U—’UK ’Y— Z | |1/2||’U_§KHL2('V)9W3

vYEEK YEEK
hence
Hl_‘[FS('U_EK)HL2 Z | |1/2||v_EKHLQ(V)HGWHLQ(K)
VEEK
IVTrs(v = vx))llg2(x) < > " |1/2||v—5K|\L2(7)|\V97||L2(K),
VEEK

Now (3.10) and (3.11) follows upon applying the following estimate (see [4]),

_ [v] hx [ hi
lv=DKllL2(y) < (m7 —

Lemma 2.1.1 and evaluating ||0, | r2(x) and [|[V0,||p2(k). Finally (3.12) follows applying similar

1/2
F e 1)) 190l (3.16)

™ v EEK

arguments. O

3.3 The error equation.

We let ey = u—up, € X + X, and ep = p — pi € L3(Q) denote the errors in the velocity
and pressure, respectively. From (3.5) and (3.2), integration by parts, the fact that v =0 on T,
allows us to conclude that the errors satisfy the identity

ap(ey,v) + b(v,ep) = Z ((f,v)K — (Vup, Vo) + (pn, V - ’U)K) (3.17)
KeP

= 3 (Tk(f) + Aup = Vo w)ic + (f ~ T (F),0)ic) = S (Vi - 7y — pras ] 0)s,

KeP YEET
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where

R R (Vuh‘K — Ph\K)'ﬁf + (Vuh|K/ — Ph\K’)ﬁff/ if Y= 5}( N 5}(;,
[Viun -7y —pufry] = )
(Vup g — pujg)nr if v € &r.

Noting that TIps(v) € V7 for v € H(2), where TIgg is the operator defined in (3.7), then

0= (fMps(v))g — (Vrun, Vir(IIrs(v)))g + (or, Vi - (Tps(v)))q -

Inserting the previous equality in (3.17), then integrating by parts in conjunction with (3.9)

yields

ah(ev, ’U) + b(’U, ep)

= Z (I (f) + Aup — Vpp,v —Ips(v)x + (f — g (f),v —ps(v))x
KeP

=Y ([Vaun - Ay = ppivy ], v = Tps(v)),

vEET
=Y (Mk(f) + Aup — Vpn,v = Ops () + (f = Tk (f),v = Mps(v)
KeP
-y ([[thh vy — puitn] — ([Vatn - 7oy — phm]])v,v) . (3.18)
YEES v

Using the fact that Au, — Vp, € R? and a Taylor expansion of the projection of the datum Ff,

(3.8) leads to
(I (f) + Aup — Vpp, v — Hps(v)) k. = (VI (f))(@ — zx),v — ps(v))k, (3.19)

where o denotes the centroid of the element K.

Now, we use (3.6) to rewrite the boundary terms on each element K as

3 ([[thh vy — privy] — ([V nttn - 7y — ph'fzv]])v,v)v (3.20)

yEET

= Z Z oy ([[thh “Ny — phﬁ]]v — ([Vrup -1, _phﬁvﬂ)wv)’y

KeP~€e€EK
9 A 1K
Y (o LI o)
KeP~€e€lKk Y ~
where the parameter o is defined by
1/2 ifyeé&y,
oy = / (3.21)

0 ifveé’p.
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Hence, using (3.19) and (3.20) we can rewrite (3.18) as
ah(ev, ’U) + b(v, ep)

=> ((V(HK(f))(m — i), v —Hps(v)k + (f =g (f),v - ps(v))x

KeP
_ Z (Ozva K[[thh TL»Y phnvﬂsv, ) )
Y

YEEK
The following result will be used to deal with the first term in the previous equality.
Lemma 3.3.1. Let K € P and Vi = {1,2,3}. Then,

K] o
10|%

(VI (F)@ — wx), Hps)x = (

i=1

(T ()@~ ). o)

Vi

Proof. First notice that for any i € Vi = {1, 2,3}, from the definition of §x we see that

_ K]
(N, 0K ) ¢ Z)\J,HK 3(1 bi)K = 5
K

hence (\; — %, Ox)rx = 0. Now, for 7; € €k and the definition of 6, a simple calculation gives
(A — %,9%)1{ = *@ and (A, — %,97].)1( = |— if i # 7, and hence

(VI (f) (@ —zk), Hrs(v))x

3
= V(HK(f))(:B—:BK),EKGK—FZEWGW
Jj=1 K
— (v Y (3 - ) oo+ Yw0,
=1 J=1 K
3
=1 = K
= IS ()@ - 2w,
i=1
3
K
-3 (K v - w).v)
10}
=1 Vi
which proves the result. O
Using the previous Lemma, we can rewrite the error equation as
ap(ey,v) +b(v,ep) (3.22)

=3 [Reo)e+ S (RV,K,U)WJr(ffHK(f),foFS(v))K ,

KeP YEEK
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where the element residual R € P1(K)? and the boundary residuals R j € P1(v)? are defined

by
R =V(IIg(f)) (x —xk), (3.23)

and

K]

v, K = WV(HK(f))(wV —TK) -«

W%[[thh STy — phﬁv]]sff, (3.24)
where @, denotes the vertex opposite to the edge v, respectively.

Now, the right hand side of (3.22) can be represented in a more convenient way in terms of
a solution g € H(div, K) of a local Neumann problem with residuals as data:

(0K, Vv) . = (Ri,v)c+ Y, (Ryk,v), forallve H(Q), (3.25)

YEEK

This problem will have a solution if and only if the element and edge residuals satisfy the following
compatibility condition

(Ri,€)x + > (Ryk,¢), =0 forallceR” (3.26)

YEEK

To see that this condition does hold, from (3.23), (3.24), Lemma 3.3.1, (3.19),(3.9) and (3.6), it
follows that for all v € H'(K),

(Rr,v)K + Z v, K5V (3.27)
VEEK

= (VIk(f)) (. —zK),v)x

£y (Joih"wnf((f))m - 2x) —av%uvhuh = pui 5§ w)

yeEK el

= (Vg (f)) (@ - zx) v — Hps () x

- ([[thh Ay — iy ] = ([Vaun - 2y — prns]),, v)7

YEEK

= (Tx (f) + Aup = Vpp,v = Tps(v))x — Y (ay[Vun -7y = ppny ], v — Hes(v)),
VEEK

then (3.26) follows since Ilpg(c) = ¢ for all ¢ € R?.
Finally, using (3.25) we can rewrite the error equation as follows

ap(ey,v) +b(v,ep) = Z ((gK, V’U)K + (f —Ig(f),v— HFS('U))K) , (3.28)

KeP

from which we will obtain an upper bound for velocity and pressure errors.
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3.4 Solution of the Neumann problem.

Suppose that we have a matrix field g, satisfying

—divgx =Rk inkK, (3.29)

gKn =R,k oneach~ye &k, (3.30)

then clearly g will satisfy (3.25).
The following result provides a solution to (3.29)-(3.30), which is a simple extension to the
matrix-valued case of Theorem 2.1.5 and is based on the orientation of the edges, vertices,

tangents and normal vectors in Figure 2.1.

Lemma 3.4.1. The following matriz-valued function is a solution to (3.29)-(3.30),

1
g
K (3.31)

2Q
=
I

2
Ok

where for | = 1,2 and i € Vi = {1,2,3}, letting Rk = [R},R%] and Ry x = [R}Y,K,REY,K],

each component is given by

lK :Z ( vi K> z+1) 1#5\%31 ( i, K z+2) 'l,b(;/:)z + (|K|V(RIK) . (.’Bz — fK)) g?),

(3.32)
where the functions 1,b() and 1,bK are given in (2.12) and (2.13), respectively, and there exist a
constant C' independent of any size of the element K such that

HUKHL2(K) < C<hK HRKHL2 )+ Z h}(/Q |R%K|L2(w)>' (3.33)

YEEK

Proof. Since the element residual R x and the edge residuals R x satisfy (3.26), i.e. a condition
like (2.16), then taking px = RY and p, x = Rl%K in (2.18) and (2.19) in Theorem 2.1.5, the

result easily follows. [l

Remark 3.4.2. Notice that
TK — curl(8y)

also satisfy (3.25), where By belongs to Hé(K), since curl(,@K) = 0 for any v € Ex and
div(curl(B)) = 0.
From [85] we know that if we take v € X in (3.25), then

ogrx — (kI + curl(Bg))
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will also satisfy (3.25), for any Vg € L*(K) since (g, Vv)g = (U, V -v)g = 0. Hence,

from now on we denote

gk (Ui, Br) = ax — (VI + curl(Bg)).

3.5 An orthogonal decomposition of the error.

Following an idea of [60], we have the following orthogonal Helmholtz-type decomposition to the

gradient of the velocity error.

Theorem 3.5.1. For ey = u — uj,, we can decompose its gradient as
Vyiey = Ve. + ene, (3.34)
where e. € X is uniquely defined by
(Ve.,Vv.), = (Viey,Vv,), YVv.eX, (3.35)
whilst the remainder part e belongs to the closed subspace

Y = {wne € LAQ) : (wne, Vo), =0 forall v, € X } (3.36)

of 52(9) and is given by

enc=—ql +curl s
with ¢ € L3(Q) and s € H*(Q).

Proof. This decomposition can be obtained as follows. Let (e.,q) € HS(Q) x L3(Q) be the

solution of the following Stokes problem, with right hand side —div(Vey) € H 1(Q), i.e.,

—Ae.+Vq = —div(Vyey) inQ,
—dive, = 0 in €,

Notice that the first equation can be rewritten as
div (—Vec +ql + Vhev) =0. (3.37)

From (3.37), it follows that [ (~Vec+ ¢l + Viey) ar = 0, then from Theorem 3.1 in [74]

there exists a function s € H'(Q) such that

Ve, —ql +curl s = Vyey. (3.38)
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From the previous equality, it follows that
(Vee, Vo), = (Vec —ql +curl s, V'vc)Q = (Vyey, Vo), Vwo.eX,

since

(qg’ VUC)Q = (Qa \E UC)Q =0

and

(curl s, Vv.), = — (div(curl s),v.)q + (curl s - nar, v.)p =0,
upon using the fact that v, € X. Now taking
enc = —ql + curl s, (3.39)
the result follows. O

The following result is a key ingredient to obtain an upper bound for the nonconforming part

of the velocity error.

Lemma 3.5.2. For e, € Y, given in the previous theorem, there exist a function w € L3(Q),

such that

(enc, VV), = (w, V- v)g YV veHIQ), (3.40)

Q
i.e., V- ene=Vw , which satisfies the estimate

lellzoio) < Flgnel oo,
where the constant 8 is the inf-sup constant from (3.4).

Proof. From (3.37), (3.38) and (3.39) we know that for e, € Y, given in the previous theorem,
there exist w € L§(Q) such that V - e,. = Vw. Denoting by D(Q) the space of infinitely

differentiable functions with compact support in €, then taking v € D(2)?, it follows that
(gnm VU)Q = <V : gn67v>D/,D = (Vuw, U>D’7D =(w,V- v)Q )

where (-,-)p/ p denotes a duality pairing, then equation (3.40) follows by the density of D(Q2)?
in Hy(Q) (cf. Section 9.4 in [41]). The validity of the inf-sup condition means that we may pick
v € Hy(Q) such that V - v = w (see Lemma 12.2.12 and Lemma 11.2.3 from [40]), and

1
Vol g2 o) < BHw”L?(Q);
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hence

(w0, V-v)g _ (w,V-v)g (€nc, VU)Q
ﬂ wi| 2 - ﬂ > = S €nc )
el = 5y = ool — Vol ~ 1€z

upon applying the Cauchy—Schwarz inequality, which completes the proof of the assertion. O

3.6 A guaranteed upper bound for the error.

We will derive a computable upper bound for the velocity error. Notice that an immediate

consequence of Theorem 3.5.1 is the following orthogonal decomposition
2 2 2
||Vh€VH£,2(Q) = Hvec”y(g) + HgncHy(m . (3.41)

Now, we will first find an upper bound on the norm of the gradient of the conforming part of
the error e, and then an upper bound for the norm of the nonconforming error e;. defined in
equations (3.35) and (3.36), respectively.

To obtain an upper bound for the conforming part of the error, we will use equation (3.28)
satisfied by the total errors ey and ep, and then apply the definition of the conforming error e..

Using (3.28), the definition of the conforming error (3.35), the fact that b(v,ep) = 0 for all
v € X and with the aid of Remark 3.4.2; we can write the equation for the conforming error in
the velocity field as

alec,v) = Z (0% (ﬂK,BK),Vv)K + (f —Ig(f),v—Mps(v))xg forallve X. (3.42)

KeP

Next, applying the Cauchy-Schwarz inequality and (3.10) then yields

o\ 1/2
alecrv) < (Z (Igic s 810 s, + el ~ TPl ) 1920

KeP
Now letting v = e, in the above expression and dividing through by [[Ve,| 12(q) we obtain an
upper a posteriori error bound for the conforming part of the velocity error, namely
2
IVecllZz ) < Y <||g?< W Bi)|| oy + Cx I f = HK(f>|L2<K>) L (343
B KeP ~
To obtain an upper bound for the nonconforming part of the error €., by using the definition

of the nonconforming error (3.36), choosing an arbitrary function u* € H é(Q) and applying
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(3.40), it follows that

HQ”CHZ%Q) == (Vh(eV - ec);gnc)g = - (thhygnc)g (344)

(Va(u" —un), enc), — (Vu*, enc),,

(Vh(u* - uh)agnc)Q - (w, A\ U*)Q .

Using the the Cauchy—Schwarz inequality and the bound for w in Lemma 3.5.2, in the last

equation, yields
* 1 *
lenellzz(@) < IVa(u” —un)llg2@) + BHV “u"|| L2 (- (3.45)

The quality of the estimator for the nonconforming part of the velocity error (3.45) depends
on making a good choice for w*, which will make the local error indicator for the adaptive
algorithm more or less efficient. One possibility was given in [2], where u* is constructed by
post-processing the finite element approximation u;. Considering this result, we begin taking
u* to be the continuous piecewise quadratic interpolant of wj, on P whose values at the nodes
are given by

1
_— / m f N ,
Zm card (@) W (o) form & A (3.46)

0 for m € Nr,

where card(2,,,) denotes the cardinality of the set Q,,.

*
man’

Alternatively with the aim of minimising ®,,., u* could be taken equal to u where u;, .

minimises
* 2 1 * 2
190 = w5519 15— wn)? o (3.47)
Q

over Po(P)?, where P2(P)? is the set of piecewise continuous quadratic polynomial functions
constructed over the partition P. Of course, determining the minimiser of (3.47) involves the
assembly and solution of a global system of equations, and as such far exceeds the cost of the
simple scheme given in (3.46). In the numerical results, we solved this problem in each iteration
in order to compare the efficiency of the local indicator for the adaptive algorithm using both
choices S(uyp) and w’ . for u*. The results obtained show that the choice of the piecewise

quadratic interpolant S(wy) is sufficient to achieve good performance of the estimator, and is in

*
man’

fact almost as good as the optimal choice u
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It remains to give the upper a posteriori error bound for ep. Splitting the gradient of the
test function Vv = Vv, + v, as in (3.34) in the error equation (3.28), remembering that
Vv =tr(Vve + Une) = tr(vne) (since v. € X), where tr denotes the trace of a matrix and in

conjunction with Remark 3.4.2, we obtain

((VeC7 Vue)a + (gncvgnC)Q) — (ep,tr (E"C))sz =

> ((@k0x.Br), Vo) + (@50, 85) wac) i + (F = Tk (F),v = Mis(0))ic) - (3.48)
KeP

Now, let ¢j- € Vi be a solution of the local problem
(Vor, V) = (f —Ikg(f),v —ps(v)), VveVg, (3.49)

where Vi = {v e H'(K): v=0on & NEk}. Notice that from (3.49) and the properties of

the projection operator IT it easily follows that

HV¢KH£2(K) < Cklf =Tk (f)llL2x)- (3.50)

Since (3.49) is also valid for any v. € X, applying the orthogonal decomposition (3.34) to v in

(3.49) allows us to rewrite the right hand side of (3.48) at the element level as
(g;((ﬁKa ﬁK)a VUC)K + (.f - HK(f)a Ve — HFS(vc>>K (351>
+ (g%(ov B ) EnC)K =+ (V¢Ka gnc)K .

Inserting (3.51) into (3.48), and then using (3.42) yields

— (ep,tr (gm))Q (3.52)
=~ (enestn) g + O ((@5(0.81),0ne) o + (Vi vnc) )
KeP
o\ 1/2
= HSncHy(sz) + <Z (Hg*K(OﬁK)Hy(K) +Cr llf _HK(f)|L2(K)) )
= KeP =

x HE"CHE(Q) ’
upon applying the Cauchy—Schwarz inequality and (3.50).

Finally, thanks to the inf-sup condition, we have

—(ep, V- v)q
Bllepllr2y < sup —ler, V- v)a <
orvery@) IVlL2@ 0#vaceY  Pnellz2()

—(ep, t1(¥nc))n (3.53)

Hence, from (3.53) and (3.52), the orthogonal decomposition of the gradient of the velocity error
in conjuntion with the bounds for the conforming and nonconforming parts of the velocity error

we obtain the following result.
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Theorem 3.6.1. Define the following natural norm
I(ev,er)lle = ||V‘3VH22(Q) + 8 llep 720 -
Then, the velocity and pressure errors can be bounded above as
l(ev,er)lg <, (3.54)
where the error estimator n is given by
1 = B0, Bi)” + Prc(u”)’ + (20, B) + Prc(u®))?, (3.55)

with the conforming estimator ®. given by

(Ui, Br)* = Y (Pex (P, Br))”, (3.56)
KeP
where

and g (Ui, Br) = ax — (VI — curl(Bg)), being gk the solution of (3.29)-(3.30) given in
Lemma 8.4.1, 9 € L*(Q) and By € Hy(K) are chosen to minimize ek Wk, Br)llL2(xy and

the constant Ck is given by (3.13). The nonconforming estimator @, is given by
* * 1 *
e (u”) = [[Vi(u” —un)llpzq) + BHV ‘U 20, (3.58)

where the function u* is given by

S(up) given by (3.46),
u = or
uh .. giwen by (3.47).
Remark 3.6.2. Notice that in order to obtain a guaranteed upper bound, any choice for U and

Bk are valid in (3.57), but to obtain an efficient error estimator we need to choose the ones that

are zero or the ones that minimize || (Vx, Bg)llL2(x)-

3.7 Efficiency of the estimator.

Since the error estimator 7 is written in terms of the conforming estimator ®. and the noncon-
forming estimator ®,,., we first focus on bounding the conforming estimator.
In order to obtain the efficiency of the conforming estimator, the following results will be

useful, which are based on bubble function arguments, used in [11,103].
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Lemma 3.7.1. The element and edge residuals satisfy for all K € P

h IRkll2 (k) < C<hK Tk (f) + Aun — Vil 25

1/2 ~ ~
£ i IV a, —phnwﬂan)’
VEEK

and for v € &k,

h}(/Q IRy il g2y < C<hK Tk (f) + Aun — Vpall g2 )

1/2 A ~
+ > ayhil ||[[vhuh-nwphnwﬂmm).

v EEK

Proof. First of all, we recall equation (3.27), which states that for all v € H'(K),

(Ri,v)k + » (Ryk,0)y (3.59)
YEEK
= (ke (f) + Aup — Vpp,v = Mps(0))x — Y (ay[Vup - foy — paiy ], v — T (v))., -
YEEK

Let Bx = [ An € Hj(K). Taking v = Bx R in (3.59), we obtain

neVg

e

;(K) = (g (f) + Aup — Vpn, Bc Rk — Hps (BcRK)) K

- Z (ay[Vup -1y — ppn, ], Bk Rk — pg (ﬁK’RfK)),Y

YEEK

< Tk (f) + Aun — Vpnll gz g (HBKRK —ps (5KRK)||L2(K))

+ Z oy [[[Vuy -7y *phﬁ'y]]HL%.y) Bk Rk — s (ﬂK’R'K)”LE(W) )

yEEK
upon applying the Cauchy—-Schwarz inequality. Now, using Lemma 3.2.3, with the fact that

Cg < Chg and Cf < Ch%Q, the mesh regularity and Theorem 2.1.2, it follows that

IR~ Thrs (95 R0y < Coc IV (G R gy < € 91 Ra

LK)’

18R — s (3Rl < O IV (B R | sy < i H@(MRKI

LK)

Hence,

Jem

L (LT

—1/2 . .
+ hye / Z oy [[[Vun - 7y phnvﬂle(7)>

YEEK
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and the first inequality follows by using the fact that |R||p2() < C Hﬂ;(p’RKH . (again
L2 (K
using Theorem 2.1.2).

Now, for v € Ex let B, = H A\, € HY(K). Taking v = ,R, i in (3.59), we obtain
neV,

2

ﬂ$/2R'y,K‘

‘ L?(v)

= (HK(.f) + Auy, — vthﬂ'yR'y,K —Ilps (ﬂ’Y’R'%K))K - (,R'Kvﬂ'YR’Y»K)K

- Z (ay [Vun - Aoy — ppiry ], By Ry x — Ilps (ﬂ'yRmK))—Y/
v EEK

< ||HK(f) + Auyp, — Vph”[,2(K) ||57R%K —ps (ﬂ'YR%K)HLQ(K) + ||RK||L2(K)Hﬂ'yR'y,KHLz(K)

+ Z Qyr TV - Ty — phﬁ'y’ﬂ”[ﬂ(y) ||ﬂ'v’R%K —Ips (ﬂ'YR%K)HLQ(»Y/) )
v EEK

upon applying the Cauchy—Schwarz inequality. Now, using Lemma 3.2.3, with the fact that

Cg < Chg and Cg < Ch}(m, the mesh regularity and Theorem 2.1.3, it follows that

18R e = TLies (B R 1) g2 < Coc I (B Rl gaey < Cil? [[83/2R |

L3(y)’

18R i = Thies (B kRt gy < O IV (85 Ryl gy < €|

ﬁi/Q,R'%K‘

L2(y)

Using the fact that | Ry k||, < C ’ again using Theorem (2.1.3)), we obtain

B$/2Rw,K‘

L2(v) (

IR il < C(h}f 1Tk (F) + Ay — Fpnl g

+ 0 v [1Vun -y = pri Dl e )
V' EEK

and the second inequality follows. [l
Now, we can state the lower bound for the conforming estimator.

Lemma 3.7.2. There exists a positive constant c, independent of the size of the elements in the
mesh, such that
c k(i Br) < Y (||Vhev||y(1<f) + BllepllLz(xry + hicr | f — HK/(f)”L?(K’)) :
K'eQg -
Proof. Applying the estimate C'x < Chg, due to the mesh regularity, to the expression for @, x

given in (3.57) leads to

Deic Vi, Bc) < C(llgxcl o ey + hcllf = Tae(F) ey )-
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Now, (3.33) state that

HgKHL2 K <C | hx ||RK||L2(K) + Z h}</2 ||R7,K||L2 7)
L*(K) (

YEEK
Applying similar bubble arguments as the ones used in the previous Lemma, but now to (3.17),

we obtain for all K € P,

hic [Tk (f) + Aun — Vpnll g2 (k)

< C (IVnevlligeo + Bller |l + hrclf = (£ 2 )

and for v € &r,

2 NIV nuntey = pres]ll 2

<C Y (IVnevligaue + Bllerllzue + bl f = Wac(Hll 2 ) -
KeQ,

Combining the above inequalities, the definition of o, and Lemma 3.7.1, gives the claimed

result. O

In order to obtain a lower bound for the nonconforming part of the error, we take u* = S(uy),

and first observe that since uy, € Xy,

Ppe(S(un)) = [Va(S(un) —un)lr2 (o) + %HV - S(un)llz2 (3.60)
1/2 i 1/2
= (Z V(S (un) _uh)”i,Z(K)) + (Z @HV'S(UUH%%K))
KeP - KeP

1/2
<V2 (Z IV(S (wn) = wn)llgz () + %IIV - (S(un) — uh)||2L2(K)>

KeP

1/2
<o X 19t -l )

KeP -
The definition of N and the fact that S(us) and u, are polynomials of degree two on each
element give
S(un)k —un = > (Swn)(@m) = wnjx (@m))Pm,
meNk

where {¢,,} with m € N, is the usual nodal basis for Po(K) which satisfies ||V | L2k < C.
Hence,

IV (S(un) = un)lfze) < C Y 18n)(@m) = unjx (@m)|. (3.61)
- meNk
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To obtain the lower bound we need the following result to bound the terms appearing on the

right hand side of the above inequality.

Lemma 3.7.3. Let m € Ni. There exists a positive constant C, independent of the size of the

elements in the mesh, such that

|S(Uh)($m) - uh|K(wm)| < C Hgncng(Qm) )
where O, = {K € P: x,,, € K for a fived m € Nk }.

We defer the proof of this result temporarily. From the above inequality we can obtain a local

lower bound on the nonconforming part of the error.

Lemma 3.7.4. There exists a positive constant ¢, independent of the nonconforming error and

the size of the elements in the mesh, such that

¢ ne(S(un))ix < Z ||§"CHL2(K/)'
K'eQp =

Proof. The result follows from (3.60), (3.61) and Lemma 3.7.3. O
In order to prove Lemma 3.7.3, the following result will be useful.

Lemma 3.7.5. Let K € P and v € k. Define B = 60N (A — \i) where V(v) = {l,r} and

edge v is oriented as in Figure 3.1. Then for any vector ¢ € R? and p € P1(7)?,

op

K.\ (a2 )

(p.B5e), =l 5ik

Proof. The result is a simple consequence of Lemma 3.7 in [14]. O

Proof of Lemma 3.7.3. Let K, K’ € P be distinct elements sharing a common edge v = Ex N

Exr €& Lety € Hé (©), then integration by parts allows us to say

(enc curl(y))Q = —(Vhup, curl(y)) ko = ([Vaun - ], y),- (3.62)

where

’

[Vrup i'Yﬂ = V’u,hu( i,jf + Vuh‘K/ . i,jy( .

Note that curl(y) € Y since integration by parts yields

(curl(y), Vv)q = (div(curl(y)),v)o =0 forallv e X.
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In order to relate (3.62) with the quantity S(us) — upx let us first consider the case when

@, ¢ I'. From the definition of S(uy) in (3.46) and since ) c(, 5 =1, there holds

m card(Q

St (@) — (@) = | 2 (ni () — ung (@) (3.63)
MK eQ\K

<C Z [up i (Tm) — W g (Tm)]-
K'eQm\K

For an edge v = &k N Ek/, up g — up i vanishes at the two Gauss-Legendre points, then

using the arc length parameter s,y ,

it follows that wyjx — upx = 71 (( 5)2 — l|’y|2) with
r1 € R2. We can then differentiate this expression twice to obtain 2r; =
p

letting sff =1l o sK =0 for an endpoint or midpoint, respectively, we see that

BtK[[VUh t.]. So,

2 ¥
2| 0 ;
[up i (Tm) — wp g (Tm)| = C|Y| 5iK [Viun-t] (3.64)
¥
< On [ |=2 1V hun - 1] - 85| + | =2 [Vaun - 1] - 2
> |’Y| ai,ly([[ h’U/h',y]]-,Y +%[{ huh"yﬂ'n»y )

if @, is an endpoint or midpoint of edge . Let the vector-valued function ﬁw(iv) take the
value ﬂK tK on K, ﬂK tK on K’ and zero everywhere else with the function 55 having been
defined in Lemma 3.7.5. Now, defining 3,(n,) in a similar way, we can take y = ﬁ,y(i,y)
and y = B,(n,) in (3.62) and apply the Cauchy-Schwarz inequality followed by the estimates

chrlﬁv(iv)HLz(K) < C and [[curlB,(n,)| L2kx) < C to obtain

0
y[? oiF [Viun-8,] -5 < CHe”CHLZ(Q )’
o2 | [Vhun - 11| < C e
T g LYt Bl By | = Slignellpea,)
Substituting these bounds into (3.64) then gives
‘uh|K(mm> — Un|K’ (mm)‘ <C Hgnc||L2 R (3.65)
L2 (2,)

This relation is valid for pairs of elements sharing a common edge ~. If the closure of elements
K and K' consists of only the common point x,, then we can write |(wp| g (Zm) — wpx/ (Tm))]
as a telescoping sum of the jumps in uj across neighbouring edges, which we can bound using

(3.65) to obtain

[wp i (Tm) — wp ()| < C HgncHy(Qm) : (3.66)
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We defer the proof of the case when a point x,, is a vertex or an edge midpoint of an edge
v € Er until we treat the case of non-homogeneous Dirichlet data, for which the present result is

a special case (see Lemma 3.8.3). O

3.8 Nonhomogeneous boundary data.

In this section we consider the case of nonhomogeneous boundary conditions in which the Stokes
problem reads: Find a velocity w and a pressure field p such that
—Au+Vp = in €,
V-au =0 1inQ, (3.67)
u =d onl,

where the Dirichlet datum d € H'(T")? satisfies the usual compatibility condition

T

The associated weak formulation of problem (3.67) then reads: Find (@,p) € H'(2) x LE(Q)

such that

) Vove HNQ),
(f.v)e () (3.68)
b(it,q) = 0 ¥ q € L3(Q),

and u=donlT.

Let J(d) be the piecewise quadratic interpolant defined as follows: for an edge v € & with

endpoints x; and @,
j(d)h = @1\ + sy + azi Ao (369)
We take a; = d(x;) for i = 1,2 and as is fixed by requiring that

/hﬂmfdwm:o (3.70)

Note that from the two conditions above it follows that [ J(d)-nr ds = 0.
The nonconforming Fortin—Soulie finite element approximation of problem (3.68) consists of

finding a pair (@, pn) € Vi, X Py, such that

a(@n,vy) +b(vn,pn) = (f,vn)a Yo, eV}, (3.71)

b(@n,qn) =0  Vaqn€ P,
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subject to the boundary conditions
up () = J(d)(xy,) for all m € Gr. (3.72)
Note that this problem is well-posed since by construction the compatibility condition
Oz/j(d)~nds:/11h~nds for all v € &,
v gl

holds.
Similarly to the homogeneous case we decouple the gradient of the velocity error ey := u—uy,
into a conforming and a nonconforming part denoted by é. and énc’ respectively. We define the

estimator for the velocity and pressure as

~ 5 2
7~7‘2/ = q)c(ﬂKa ﬁK)2 + (1)721c and 77123 = (@C(Ov IBK) + q)nc) ’ (373)

where the conforming estimator ®.(J, B ) is given by (3.56) and the nonconforming estimator

D,,. is given by

1/2 1 1/2
= <Z ‘Picm) +3 (Z <I>mg|K> (3.74)
KeP KeP
with
bueric = Vo (Stan) —an)|| |, + ST IVEk(d— ) g
LA YEEKNET -
and

(i)nCQ,K = HV . S(ﬁ’h)‘

ot 2 IV Brd= T (@) e

yEEKNED
The smoothing S(@y,) is defined in (3.81) and the extension function E, r(d — J(d)) is defined
n (3.82). In the next section we prove the following bounds for the velocity error é and the

pressure error €p,
~ ~ 2 ~ ~
I(ev,ép)lig < i + b, (3.75)

and

¢ (i +ip) < l@v.ep)lo+ D il f —Tr(Hlzeao + Y D osc(dr), (3.76)

KeP KeP {ye€ExNér}

where for an edge v € & N Ek, we define the oscillation of the Dirichlet datum as

ose(d,y) = |V E, x(d — T (d))]| = o) (3.77)
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3.8.1 A posteriori analysis for the nonhomogeneous problem.

Noting that the errors ey and ép satisfy the same equation as in (3.22), then e. = e., i.e. &, will
provide the same computable upper bound and local lower bound obtained in the previous sec-
tions. Hence, we only need to modify the nonconforming estimator to take the nonhomogeneous

Dirichlet datum into account.

Lemma 3.8.1. The nonconforming part of the error gnc satisfies

IN

P,

€
~nc LQ(Q)

with ®pe given by (3.74).

Proof. Let @* € H' () with @* = d on I. For w, € Y, it follows that

~nc’ ~

(é wnc)Q = (Val(ey — &)swne), = (Vi(@ — an), wae),, (3.78)

then taking wp. = gnc in the previous equality and using (3.40), yields

2

le

~nc

oy = (vh(ﬂ* - ﬁh),gm)g — (0, V@), (3.79)

We next take u* as
@' =San)+ Y, > Eyx(d-J(d)), (3.80)
KeP~eExNEr

where the quadratic interpolant S (@) is defined by

Z ﬁﬁhm/(xm) for m ¢ N,

S(an) (@) = Kiem, 4 (3.81)
J(d)(z) for m € N,
for m € N and B, x(d — J(d)) € H'(K)? is any function satisfying
d—J(d) on~,
Eyk(d—J(d)) = ( (3.82)
0 oné&k\7,

Inserting (3.80) into (3.79) the result follows on applying Lemma 3.5.2 and the Cauchy—Schwarz

inequality. O
Remark 3.8.2. In practical computations we use the extension operator E. i from [88], given
by

_ y y \VB [TYVE )
E, i (v) = (1 - \/g) (1 Yo \/g) 35 ) T ds, (3.83)
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where the element K has vertices at (0,4/3), (=1,0) and (1,0) and edge ¥ lies on the x—awis,

and satisfies

2 (a- g(a)

[VEy k(d—T(d)|L2x) < Cly|'? P
= Sy

: (3.84)
L2(v)

with s being the arc length parameter on edge v and C denoting a positive constant which is

independent of the size of the elements in the mesh.

Now, in order to prove the lower bound, we first observe that from the definition of the
nonconforming estimator it follows that

~ ~ ~ 2
(1)7210 S C Z (q)ncl,K + (I)m:Q,K) .
KeP

Using the same argument as in the homogeneous case then yields
Ppet, i + Prezic < CIVa(S(@n) —wn)llgzey + Y, [VE, k(d—T(@d)ll32 )
- yEEKNED h
This inequality allows us to prove the following result which confirms the local efficiency of the

nonconforming estimator.

Lemma 3.8.3. There exists a positive constant ¢, independent of the nonconforming error and
the size of the elements in the mesh, such that
2

b X e,

~eE(K)NEr

~ ~ 2
c ((I)ncl,K+(I)n02,K) < Z ’6

=nc
K'eQk

where E(K) is the set of edges which have an endpoint lying on a vertex of element K.

Proof. As in the proof of the homogeneous case we have to bound ’ﬁh‘K(mm) — S(@p)(2)|, for
m € Nk. The same arguments used in the proof of the homogeneous case hold if x,, does not lie
on the boundary I'. Therefore, it only remains to study the case when the point x,, is a vertex
or an edge midpoint of an edge v € &, i.e. we take x,, € I'. In such a case, it is easy to see that
e @n) = S@)@n)| < Y @@ — S(@n)@n)| .
{r€érixmer}
where S(uy) is given by (3.81). Now the right hand side can be bounded as

> Y @) - Stw)(@n)

{ve€rwmeT} {K'€Q,}

= Z Z (”ah\K’(mm) - j(d)(“"m)’ + "&h\K(iL’m) - ﬂh\K’(iL’m)’) .

{v€érxmev} {K' €, }
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The last term in the preceding inequality can be bounded using (3.66). Now we will bound the
first term.
From (3.72) it follows that if v € & then @), — J(d) vanishes at the two mapped Gauss—

Legendre points on the edge . Reasoning as in (3.64), we can conclude that

|Un i/ (®m) = T (d)(2m)]|

0 (Oupg  0J(d)
— 2 _
= 05 ( 05 0s

0 (Ouprx  0T(d)\ x 0 (du, 0J(d)\ _ g
< 2= — K — Ak ).
=Chl (‘857( 0sy 0sy BT 0sy 857 0sy el

Let the vector-valued function 3., (iv) take the value ﬁf /if "on K’ and zero everywhere else with
the function ﬁf " having been defined in Lemma 3.7.5. Now, defining B, (1) in a similar way,

then taking w,. = curl(ﬁ,y(i,,)) and w,,. = curl(8,(n,)) in (3.78) and integrating by parts

yields
(8,0 cul(B, 1) = — (o~ T () + (T () — hngrc), B, () (3.85)
=nc’ ~y\by K 387 857 h|K")y P~y\ly ’Y; .
and
(2, curl(8, () = (F0(d— T(d)) + (T (d) — ). B () (3.56)
~ne’ TN K D5~ 05 K25 BTy - '
From the properties of the functions 3, (t,) and B, (7)) it follows that
9 o 3 _2 (0 (0J(d) DUy Lk
(e~ p)) =pr (5 (P50~ ) ). e
and
i o~ . a2 i a2J(d) . af‘hlv oK'
(a uh|K/)5B'y(nW))’y - |’Y| (887 ( 857 887 n, . (388)
By using (3.16), (3.84), the Cauchy—Schwarz inequality and integration by parts, it follows that
0 . 0 .
G- T@)5,4)) = (Bactd - T@) - e -6 (E) (3.80)
ol 0 ol 0
1/2 0 N
< IV E, (- T @) e | B )
N Sy L2(v)

< CIIVE, 0 (d ~ T (d)) | e,

where ¢ € R? is chosen so that [|E, g/ (d — J(d)) — ¢|[r2(,) < Ch%?HVE%Kr(d - j(d))Hy(K/)

and we used the estimate i,@,y(i.y) < Chy /2 In a similar way we obtain
8y L2(v)
0 .
(5t T(@).6,(3)) < CIVE, wold - T@)lgeie (3.90)
N £

~
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Now inserting (3.87) and (3.89) into (3.85) and (3.88) and (3.90) into (3.86) it follows that

o (aj(d) —~ %) <o <’

ik

+IVE,y k(d — j(d))|y(1«)> ;

0s 0s 0sy Ene L*(K’)
9 (0J(d) Ouy,
2 v
2\ T T A ) < (d— 2o |
h 0s, ( 0sy 05+ ¢ an L (k) +IVE, ki (d j(d))H% (K")

Upon combining Lemma 3.7.3, the above inequalities and the definition of the Dirichlet oscillation

(3.77), the result follows. O

Finally (3.75) follows replacing the bound for the new nonconforming error given in Lemma
3.8.1 in Section 3.6. The efficiency of the estimator in (3.76) follows using Lemma 3.7.2 and

Lemma 3.8.3.

3.8.2 The extension operator F (d — J(d)) is an oscillation.

We finally remark that the extra term coming from the non-homogeneous boundary datum might

be seen as an oscillation term. To this end, we first give the following result:

Lemma 3.8.4. Foralld € HQ(F) and all v € &Er,

lora-aw)| - <pl|fsa-s@)|
* L2(3) L3(3)
and there exists a positive constant C' such that
H 82 2
(d—J(d)) <Cinf |=5 —¢
0s3 ey 105 i,

Proof. Noting that v — J(v) € H{(v), then integrating by parts and applying a Poincaré in-

equality we obtain

v))

)

L2(y)

<) Hf—(v ~ T@)

H aSV L2(y)

and the first claim follows. In order to prove the second inequality, we work on the reference

element (—1,1), where the interpolant 7 : H!(—1,1)? — Py(—1,1)? is defined by
1 1
J(d)(£1) = d(+1) and / J(d)ds = / d ds.
-1 -1

Then J(d)(s) = 3(1 — s)d(—1) + 3(1 + s)d(1) + a(1 — s?) with o given by

a%(/ldds(d(l)er(l))).
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Since % = —2q, the Peano Kernel theorem (cf. [61]) leads to
?gd)| 3| ! 0*d
=2 K624
0s? 2 /,1 () 952 “°
where K (s) = (s> — 1)/2. Applying the Cauchy—Schwarz inequality, yields
o) ol
0s? — V5] 0s2
L2(~1,1) L2(—1,1)
Now, let ¢ € R? be given and define g = $¢(s? — 1) so J(q) = g. Hence
0’d  9*J(d) 0? 0?
e 12 (d-ag) - 2 7(d—
0s? 0s? 852( 9) 852j( a)
L2(—1,1) L2(—1,1)
3 02
<(1+/2) [ & (@-
< ( + \/; ) 5:2(@— )
L2(~1,1)
(7 |2
N 5 0s? ’
L2(—1,1)

and the claim follows using standard scaling arguments.

Combining the previous result with (3.84), it follows that if d € H*(T) then
82
G—S%(d - J(d))

)

L3(v)

IVE, k(d—=T(d)lg2x) < Cly|¥?

which is a higher order term.

3.9 An explicit formula to compute the norm of the solu-
tion of the Neumann problem.

In terms of practical applications, the following result will be useful.

Lemma 3.9.1. Denote by tr the trace of a matriz. Then

OK — %tr (gK) g (391)

o) L ‘

Proof. We only need to prove that %tr (g K) is the orthogonal projection of gk over the space

of functions of the form pI for any p € L?*(K). In fact, if gk = [0i j]2x2 then for any p € L*(K)

it follows that
0=(gx —VxI.pI),

o1 — VK 012 1 0
= / :p dr = (011 + 022 — 2VK, D) K,
K 0921 099 —19[( 0 1
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(011 + 022), and the result follows. O

which implies that Jx = %

Now, to compute the error estimator n given in Theorem 3.6.1, we replace the conforming

estimator ®.(Vx, By) by

P, (%tr (ok) ,,BK)2 =) Pk (%tr (ok) ,,BK)Q, (3.92)

KeP

where the local conforming estimator is given by

7ic (50 (2) Bic)

where in this case we take the solution of (3.29)-(3.30) to be

+ Okl f — T (F)ll 22y (3.93)
L (k)

D K (%tr (gK) ,,BK) =

gk (%tr (gK) ,,BK) =0K — %tr (gK) I (curl(,@K) + %tr (curl(Bg)) g) , (3.94)

and By € [Hj(K) NP3(K)]? is chosen to minimize ||} (3tr (gk) ’ﬁK)HLZ(K)'
In the case where ¥ = 0, we take the conforming estimator as
(I)c (Oa/GK)2 = Z (I)C,K(Oa/@K)Qa (395)
KeP

where the local conforming estimator is given by

and in this case the solution of (3.29)-(3.30) is g (0, 8x) = gk —curl(B) and By € [Hy(K)N
P3(K)]? is chosen to minimize Hg% (0, ﬁK)HLZ(K).

To evaluate the effect in all the minimization processes, we define
0, (0,0 = > x(0,0)%, (3.97)
KeP

where the local conforming estimator is given by

In all the previous cases, g is given in Lemma 3.4.1.
To compute the norm of g} (Vx,Bx) for all the different minimization processes, for i €
Vi = {1,2,3} define
t;

1—1(.1) = . I and 1'(-2) = Ly I, (3.99)
~ 0 2 ~ 2 ' =
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with ¢ = 0 for g5 (0,8x) and ¢ =1 for gk ({x, B ). Now, let

o) - 1 ((,l))T A g(m)

("%K"’%K K 6480 |K]| 5i7) MTS:
and

(am a<m>) _ 1 (Sa))T Aptm) g(m)

1B K ) e 6480 | K|\ ~u
where

(’R”quK? Aél))
71
s = R o AD

1 ( Y1,K 5 N3 )71
[K|V(RY) - (21— Tk)
with Sél) and Sgl) being defined by permuting the indices and

L,m
Mgl =
1242 —2322 54 1647 —945 —36

92322 4482 126 (gé“:gé’”))Jr 9889 1647 72 (@ :gg)
54 —126 8 72 36 4

1647 —2880 72 4482 —2322 —126
+| —o45 1647 —36 (zé“:zé’"))+ 2322 1242 54 (gé”:gé’"’)
36 T2 -4 126 548

with M ™) and M (™) being defined by permuting the indices and
l,m
M §2 =
459 —-837 36 1998 —-918 —-90

1161 2079 72 (g;l>:g§,m>)+ 4158 1998 162 (gg%ggm)

90 —-162 4 162 -90 —4

675 —1593 126 2079 —837 —162
+| =207 675 —54 (gé”:gé’”’)+ 1161 459 90 (gé”:gﬁ’"’)
54 126 -8 72 36 4

with M élém) and M gll’m) being defined by permuting the indices. Also, let

l m 1 l m l m
(o8- o0%) « =525 K] (1152 (28 s 247) + 576 (2 : 37)

+576 (28 70") + 1152 (2 : 707
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and
o _m) _ 1 0) (1,m)
(O-'Y'UK, O,K) - 6480 |K| (S’L ) MzO
where
432 648
M = | —az2 | (18 8) + | —r0s0 | (80 28™)
48 0
1080 432
+ ] —eas | (28 T8) + | —as2 | (2 28)
0 48

with M élo’m) and M élo’m) being defined by permuting the indices. Also, define

(o) (o8ikoolh)

2 1 2 2
(okootii) . (ofkolll)

KN

and

2 3
S5 (ot

B=| I=ti=1

2 3
S5 (ot

=1 1i=1

The following result provides a simple formula to compute the norm of the solution of the

Neumann problem, which includes all the minimization procedures.

Theorem 3.9.2. Let

gk @Bz =2 3

) (m) U] (m) ) (m)
< (0-717K’ U’YlyK)K + (0-’72-,1(’ UVQ’K)K + (0-’73-,1(’ U’YzaK)K
=1 m=1

W (m) o _(m) o _(m)
2 ((UWvK’ U'VSVK)K + (U’Y&K’ U’Yl’K)K * (U’“*K’ U’Y?=K) K) )
-~ BTA'Bs. (3.100)

~ . « (1 . ~

where ¢ € {1,0}. Then, we obtain HQK (§tr (gK) ’ﬁK)Hy(K) by taking 0o = 1 and o = 1 and
g0, Bx)llL2(k) by taking o = 0 and g = 1, in the previous process, and they are minimized
over By € [H}(K)NPs(K)]? and finally we obtain ||g7 (0,0

)||£2(K) by taking 0 = 0 and 9 = 0.

Proof. Just for simplicity, let us consider the case when ¢ = 0 and ¢ = 1. From Lemma 3.4.1
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and (2.12), taking I = 1,2 and i € Vg = {1, 2,3} defining

1
o-Eyll),K = m < ('Rﬂyl’}(, Az(l)) ((2)\3 + 3)\3()\2 — )\1))132 + (4)\2 + 3)\2()\3 — )\1))132
71

- (’R%K, A3<”) ((4>\3 £ 300 — A ))te + (200 + 3 (N3 — Al))t2>
Y1

%(V(RZK) . (.’131 75[{)) )\1 ()\3t2 — )\th),
()

x being defined by permuting the indices and also defining

(l)7 and o,

with 0., K

o = —curl(A A2 )s)

1

2|K| ((A2A3 — Az A1)ta + (A2ds — A A2)ts)
1

2|K| ((AsA1 — M A2)ts + (AsA1 — A2 ds)tr)
1

2|K| ((MA2 = A2 A3)ts + (A1 A2 — AzAi)ta).

it is relatively straightforward to show that

O]

oK n. = Rfyij(Sjk on vy; for all j,k =1,2,3;

K

ot
o0 KT ,IY( =0 on~j;forall j=1,2,3;
and

3
—div <Z UEY?K> =Rl and —div(eox)=0 in K.
i=1

Then it follows that

3 3
1 1 1 1 1
Z agﬁ?K - 4(0(1) 0(1) ) Z(O’EY )K, O'E) ;()Ka(()}(
* 1= ) K i=
g (0 BK) = 31 0.5 "0, K 31 )

2 1 2 2 2
ZU( )K - (2) 2) Z(Ufy )K’UE)}()KU(();(
00,K:00, KK =1

satisfies (3.29)-(3.30). We can then obtain an expression for ||g% (0, B)|lL2(x) Which can
be manipulated into the above form, where the value of BTAle@ has been chosen so that
g% (0, B )l L2 (k) is minimised over the space of cubic bubbles. The minimization process when

we take o =1 and ¢ = 1 follows by using similar arguments and (3.94). O

3.10 Numerical Results.

In this section we illustrate the performance of the error estimator with two representative

problems.
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In the numerical experiments we calculate the exact and the estimated error in the natural
norm |[|(+,-)[l, on a sequence of uniformly and adaptively refined grids, respectively. For each
marked triangle a longest edge bisection step [103] was performed. As a local error indicator for

the adaptive algorithm we used

2

P2 i (Ui, Bre) + Pre. e (u*)? + (P k (0, Bg) + Pre,ic(u*))”  for homogeneous

Dirichlet data,
(3.101)

- . 2
D2 j (U, Bre) + o ¢ + (‘PC,K (0,8f) + @nc,K) for nonhomogeneous

Dirichlet data,

where @, i is given by (3.93), (3.96) or (3.98), depending on the minimization process, @, x (u*)
is given by (3.58) and ®,,. x is given by (3.74), and triangles are marked using the maximum

strategy (mark K if ng > Nmax/2). We summarize the adaptive algorithm in Table 3.1.

Adaptive mesh refinement algorithm [AMRA-S-FS].

1:  Set ¢ =0 and construct a mesh P;).
2: For each element K in P(;), compute:
- Hg;((ﬂK,ﬁK)Hy(K) using formula (3.100).
- [If = Tk (f)ll 2k using an appropriate quadrature formula.
- O, k (Ui, Bg) using (3.93), (3.96) or (3.98), depending
on the minimization process.
- @,k (u*) using (3.58) for homogeneous Dirichted data or
CIDMVK using (3.74) in conjunction with the extension operator
E, k given by (3.83) for nonhomogeneous Dirichted data.
- nx using the previous two steps and (3.101).
3: Triangle K is marked for refinement if
K > %Knelf;gﬁ) {nx}-
4: From step 3 deduce a new mesh using longest edge bisection refinement.

5:  Set i <7+ 1 and return to step 2.

Table 3.1: Adaptive mesh refinement algorithm for the Stokes problem using the Fortin—Soulie

finite element.

The global error estimate is, according to (3.92), (3.95) or (3.97), depending on the mini-
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mization process, (3.58), (3.73) and (3.75), is given by

2 (Y, Br) + Prc(u*)? + (e (0, B ) + Pre(u*))®  for homogeneous
Dirichlet data,

= - . N2
2 (Ui, By ) + P2, + ((I)C 0,8f) + (IDM) for nonhomogeneous

Dirichlet data,

When reporting numerical results, we denote by Ndofs the number of degrees of freedom and we

n

~ lev,er)lq
Notice that in the error indicators and as well in the error estimator we have present the

denote by © the effectivity index.

inf-sup constant S related to the well-posedness of the continuous problem (see (3.4)), but what
is really present is the inverse of this constant, i.e. 1/8, then in terms of real applications we
only need a lower bound for g, which for some polyhedral domains, accurate bounds are given

in [102] and a procedure to estimate it is given in [63].

Example 1: The exact velocity and pressure fields for (3.1) are given by

u = [2*(z —1)%y(y — )2y — 1), —y*(y — D)’x(z — 1)(2z - 1)),

1

p::cy(lfw)(lfy)*%,

where Q = (0,1)? is the unit square. A lower bound of 0.38 for the value of the inf-sup constant

[ was obtained in [102].

Example 2: We consider the Stokes flow over a T-shaped domain, where a quadratic inflow and
outflow are imposed on x = +1.5 and no-slip conditions are imposed elsewhere on the boundary
I", as shown in Figure 5.1. A lower bound of 0.1 for the inf-sup constant S was also obtained
in [102].

The initial meshes Sy and 7g), for example 1 and 2, respectively, are shown in Figure 3.3
for the regular or adaptive refinement.

First of all, we will see the effect on the different minimization processes on the conforming
and nonconforming estimator. In Table 3.2 we present three different minimizations on the
conforming estimator, which are, minimize with respect to 9 € Po(K) and B, € [HH(K) N
P3(K)]?, just bubble minimization which is taking 9 = 0 and By € [H}(K) NP3(K)]? and no
minimization at all which is Jx = 0 and B, = 0. We also present the two different alternatives

that we have for the nonconforming estimator, which are taking u* = S(uj) and u* = u,

min*
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(—1.5,1) up = (0,0) (1.5,1)
wp = (y(1 —y),0) up = (y(1 —y),0)
(—1.5,0) (1.5,0)
up = (0,0) up = (0,0)
(—0.5,-2) (0.5, -2)
up = (0,0)

Figure 3.2: Domain and boundary conditions for Example 2.

1 T T T T 1
0.9}
05
0.8}
0.7} o
0.6
05 -0.5} 1
0.4f
)
0.3}
0.2 150
0.1}
0 -2
0 0.2 04 06 0.8 1 15 -1 -05 0 05 1 15
S T
(0) (0)

Figure 3.3: Initial mesh Sy and T\ for Examples 1 and 2, respectively.

From Table 3.2, we can see that for a smooth solution, the L*(K) and [HJ(K) N P3]? mini-
mization procedures do not have much impact in the accuracy of the conforming estimator, and
in the case of the nonconforming estimator, also the best possible choice, which is u* = u} .,
does not have much impact in the accuracy.

From Figure 3.4 and 3.5, we can see that the actual error estimator is very accurate and from

Figure 3.6 and 3.7 we can see that most of the refinement is taking place in the two reentrant

corners, where the pressure presents a singular behaviour and the error estimator converges with
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Ndofs . (btr (k). Br) D(0.8x)  2(0,0)  Bucluhy,) Buc(S(un)
608 0.0055848 0.0060239 0.0061888  0.0026317 0.0037594
2368 0.0011475 0.0012821 0.0013429 0.0008174 0.0010502
9344 0.0002525 0.0002900 0.0003074  0.0002344 0.0002730
37120 0.0000584 0.0000682  0.0000728  0.0000630 0.0000686
147968 0.000014 0.0000165 0.0000177  0.0000164 0.0000171

55

Table 3.2: The different minimization processes on the conforming and nonconforming estimator

based on regular refinement using mesh S(g) from Figure 3.3, for Example 1.

0

10
—=—|l(ey,ep)llg
467
1077
107
-6
10 :
10° 10" 10
Ndofs

6
—e— 0 =1n/|l(ev,ep)lq

5.5

5,
4.5

4 .

10° 10 10

Ndofs

Figure 3.4: Accuracy (left) and effectivity index (right) for Example 1, using regular refinement

over the mesh S from Figure 3.3.

optimal order.

3.11 Conclusions

In this chapter we present a computable a posteriori error estimator, providing two-sided bounds

on the true error measure in a natural norm. More remarkable is the fact that the error estimator

actually provides a guaranteed upper bound. The analysis to obtain the guaranteed upper bound

was carried out by and orthogonal decomposition of the gradient of the velocity error and was

also based on the inf-sup condition related to the continuous problem, and more importantly

by the properties of the nonconforming space in which we approximate the velocity field, which
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Figure 3.5: Accuracy (left) and effectivity index (right) for Example 1, using the AMRA-S-FS

algorithm (Table 3.1) over the mesh Sy from Figure 3.3.
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Figure 3.6: Accuracy using adaptive refinement over the mesh 7(gy from Figure 3.3, based on the

AMRA-S algorithm in Table 3.1, for Example 2.

allowed the construction of an appropriate projection operator enabling to express the typical
residual functional, related to the error equation, as a Neumann problem for which we have an

explicit solution.
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Figure 3.7: Piecewise continuous smoothing of the pressure, for Example 2.



Chapter 4

A review of the equilibrated
residual method applied to a

simple Poisson problem.

The previous chapter was mainly concerned with the approximation of the solution of a Stokes
problem using a nonconforming finite element space, where a vital step was the construction of an
appropriate projection operator. Now, if we approximate its solution by using conforming finite
element spaces we do not have at hand a projection operator satisfying similar properties. Then,
a completely different approach has to be considered in order to achieve the same goal. In order
to illustrate the basic idea we will devote this chapter to the introduction of an equilibrated
residual method applied to a simple Poisson problem, proposed by Ainsworth and Oden (cf.
Chapter 6 in [11]), in which the construction of a special set of functions call the boundary fluxes
and a H(div) lifting, related to the solution of a local Neumann problem, makes it possible to
obtain a two-sided bounds on the error by approximating the solution using conforming finite
elements. More remarkable is the fact that we can obtain the desired guaranteed upper bound
which follows after the construction of a fully computable error estimator. This chapter presents
a more detailed version of the analysis given in [3,5,12], restricted to the homogeneous Dirichlet
case.

Our model problem is a simple Poisson problem with homogeneous Dirichlet boundary con-

58
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dition on a domain 2 C R? with Lipschitz boundary T, i.e.: Find u such that

—Au=f on{} and u=0 inT. (4.1)

4.1 The error equation.
The weak formulation associated with problem (4.1) is: Find u € H(Q) such that
B(u,v) = L(v) VY wve H}Q), (4.2)

where the bilinear form is given by B(u,v) = (Vu, Vv)q and the linear functional is given by
L(v) = (f,v)q. This Problem is well-posed due to the Lax-Milgram Theorem (see Chapter 2
in [40]).

Now, suppose that V;, € H} () is a finite element subspace constructed on a regular partition
‘P of the domain 2 into triangular elements by using piecewise continuous polynomials of degree

one. The finite element approximation of this problem is: Find u;, € V}, such that
B(uh,vh) = E(’Uh) YV o € Vi (43)

Now, let e = u — uj, € HE(S) be the error in the finite element approximation, then from (4.2)

and (4.3) the error satisfies
B(e,v) = B(u,v) — Blup,v) = L(v) — B(up,v) Y v e Hy(Q). (4.4)

The next step is to decompose the residual functional appearing in the right hand side of the
previous equation, which we call the error equation, into contributions from the individual ele-
ments.

Let {gy,x : v € €k for all K € P} be a set of boundary fluzes on the elements that notionally

approximate the actual flux of the true solution on the element boundaries
G,k = Vup |k nf
Since the trace of the true fluxes are continuous on the interelement boundaries,
Vg f?fy( + Vu g ’fL,IY( =0 onvye€xNEk,

and so, by analogy, the approximated fluxes are required to satisfy the condition

gy K TGy k=0 onvyeExNEkr. (4.5)
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This condition expresses the requirement that flux should not be generated on the actual interface.
Clearly, the previous condition implies that

> (grkov), =0 forallve Hy(Q). (4.6)

KePrelk

Using (4.6), we can now decompose the right hand side of the error equation into contributions
from the individual elements

B(e,v) = ‘C(U) - B(uhav) = Z (faU)K - BK(uha'U) + Z (g%KaU)v

KeP YEEK
where Bg (up,v) = (Vup, Vo)
Integration by parts allows us to rewrite the right hand side of the error equation as

B(e,v)zz (f + Aup,v K+Z Gy, — Vp|g - ,IY( )’Y

KeP YEEK

Z(RK’ )i+ Y (Ryxov), + (f =Tk (f), )K), (4.7)

KeP YEEK

where the element residual R and the edge residual R, x are given by

Ri =k (f) +Aup and Ry kx = gy,x — Vup g -7 nk (4.8)

v

respectively, and Ik is defined in (2.1).
Let us assume for the moment that there exists a vector field o x € H(div, K) satisfying the
following Neumann problem

(0K, V) = (Ri, )k + Y, (Ryx,0).,, (4.9)
YEEK

for all v € H'(Q). Then we can rewrite the right hand side of the error equation as

Ble,v) = Y (o, Vo) + (f =Tk (f),v)K) .- (4.10)

KeP

Notice that in order to be able to write the error equation in the form of (4.10), the main two
hypotheses were the existence of the set of boundary fluxes {g, x} and the H(div, K) lifting
o k. Now, in order to construct such boundary fluxes, it seems that the only requirement is to
satisfy (4.5), a condition that we call a consistency condition, but in order to be able to construct
the lifting o -, we need to solve a Neumann problem on each element K, like in (4.9), for which a
compatibility condition needs to be satisfied. In fact, taking 1 = v in (4.9), the Neumann problem
will have a solution if and only if the interior residuals satisfy the equilibration condition

RK7 K+ Z ’y,K7 07 (411)

YEEK
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a condition that we call zero-order equilibration condition with respect to the boundary fluxes.
In the next two sections we detail the procedure to obtain a set of boundary fluxes satisfying
the consistency and the zero-order equilibration conditions and also we will give an explicit

solution to the Neumann problem.

4.2 Equilibrated fluxes on regular partitions.

This section is devoted to summarising the procedure for constructing sets of boundary fluxes
satisfying the zeroth-order equilibration condition (4.11) and the consistency condition (4.5),
extracted from [11], Chapter 6.
We recall that {\, : n € V} is the Lagrange basis for the space V},, then it follows that the
Lagrange basis functions on the element K satisfy
> A=1 inK and Y Ay, =1 onn. (4.12)
neVk nev,
The procedure that will be presented produces sets of fluxes {g,,x } satisfying the following two
conditions:

Consistency:
gy, K + Gy, =0 onvyeExNEx. (4.13)
Full first-order equilibration:
(Mg () An) K = Bic(un, An) + D (945, An)y =0 forall m € Vg, (4.14)
yEEK
which in terms of the element and edge residuals (4.8), can be rewritten as
(Ric: M)+ Y, (Ryi,An), =0 foralln € Vg, (4.15)
yEEK
This condition actually imposes stricter requirements on the fluxes than the zero-order equili-
bration condition, but (4.11) is a direct consequence of (4.14) by using (4.12).
The fluxes g,k are selected to be linear functions such that they belong to the span{A, : n €

Vy} for all v € £ and a key decision is to choose the two degrees of freedom as the moments of

the fluxes weighted against the basis functions on the edge -, this is

Hin = (9y.1, An)ys 1 E V. (4.16)
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Now we can rewrite the consistency and the first-order conditions in terms of the moments as

follows:
Z B —=Ar(\,) forallne Vg,
e (4.17)
Picn + Mo =0 for all n € Vs, 7= Ex N Excr,
where

Ax(An) = Br (un, An) = (f, An) &
The condition (4.17) takes one of two distinct structures depending on the location of the

node x,,.

1. Interior Vertex: The elements and edges are labelled as shown in Figure 4.1. The mo-

ment equilibration conditions (4.17) for the element K € €, assume the form

il = Al) [l + 1y, =0

with constraints

Inserting the constraints into the system we obtain

11 0 o] i R IRV NTOW
0 1 -1 : 132, As(Ny)
0 : = : : (4.18)
0 1 -1 I An_1(\n)
-1 0 -+ 0 1| p 1 L AvOw)

Since the rank of the matrix associated to the linear system is N —1, the solutions are not unique.

2. Boundary Vertex: The elements and edges are labelled as in Figure 4.2. The moment equili-

bration conditions (4.17) become

I
o

M1n+u = Al()\n) :u’2n+:u’

with constraints

MNn‘f'M’YNJrl = AN()‘n)a :uNn+lu’N 1n 0,
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Figure 4.1: The patches €, and &, of elements and edges influenced by the basis functions A,

associated with an interior vertex at x,,.

and on exterior edges 7, and 41, where a Dirichlet condition is applied, then there are no
constraints on the fluxes moment, i.e.

YN+1

"Yl . . . .
pi), = unconstrained and iy ," = unconstrained.

Arguing as before, in this case we can obtain the following linear system

11 o o[ A R IV NTO W
0 1 -1 1135, Az(An)
0
-1 “7VN:11.,n An-1(An)
0 1 HNm ] An(An)

and now since the rank of the associated matrix to the linear system is IV, we obtain a unique

solution.

4.2.1 Procedure for the resolution of the boundary fluxes.

Due to the nonuniqueness of the patch system (4.18), the flux moments are selected so that

The role of these conditions is to remove any possible nonuniqueness by seeking flux moments

that minimize the objective

Y Y (k) (4.20)

KeQ, yeEKNER



CHAPTER 4 64
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Figure 4.2: The patches €, and &, of elements and edges influenced by the basis functions A,

associated with a vertex x, located on the boundary of the domain.

To obtain the optimal solution, Lagrange multipliers can be introduced associated with the

constraints (4.17). The Lagrangian is given by

L{pien}s {21 {8k }) =

% Z Z (:LL’IY(,n - ﬂ’ly(,n)Q + Z gK,n AK()\n) - Z M}Y(,n

KeQ, yeExNER KeQy, YEEKNEnR

FY )

YEEKNEKINEy

Since the flux moments are unconstrained on the boundary of the domain, due to the Dirichlet
condition, the value of the Lagrange multiplayer is set to zero. With this convention, the Euler
conditions for a stationary point are then given by (4.17) supplemented with the additional

conditions

'u’}(,n - ﬂ’ly(,n - €K,n + )"y,n =0 (421)

and

An=0 on~vyel. (4.22)

These conditions may be used in conjunction with the second part of (4.17) to obtain the following

formula for the edge multipliers:

1 ~ ~
N B (5K,n+§K’,n+Hx¥(,n+M’}(;7n) vE€EKNEKR NEy,
vn =

0 v e ExNE&r.



CHAPTER 4 65

If this expression is substituted back into (4.21), then one arrives at the following expression for
the flux moments:
(gK,n_gK’,n‘i‘ﬁ}Y(’n_ﬂ}Y(/yn) ’YEEK ﬂgK/ ﬂgn,

§K,n+ﬂ}(7n veEx NEr.

N =

v —

Wi = (4.23)

Finally, inserting this information into the first equation in (4.17) leads to the following set of

conditions for the Lagrange multipliers {{x ., : K € Q,}:

1 _
5 2 (Cka—fowm)t Y bkn=Ak0w) VEEQ, (4.24)
K'eQrNQy, yEEKNEL,NED
where
Ar (M) = B (un, An) = (fA)x = D ((Vun - ad) x| (4.25)
YEEK
and
1 K
—n. - (Vup g+ Vup ) on g NEKr,
(Vup -2y ={ 27 (Vnire + Vunixc) s (4.26)

Vuh‘K-fL,}f on £ NEr.
The above system consists of f£2,, equations for {¢2,, unknowns, where f§ denotes the cardinality
of ,. The specific form of the systems identified earlier is given below.

1. Interior Vertex: The equations for the interior patch in Figure 4.1 are given by

[ 2 1 [ an | | Aw) |
12 1 .. 0 Ea.m As(An)
1 . . .
5 : : = : (4.27)
0 e —1 2 -1 §N71,n AN71(>\n)
| -1 —1 2| &a | | Ax(Ow)

Although, the linear system (4.27) is singular with a null space given by a vector of ones [1, 1, .., 1],
then a solution will exist if and only if the sum of the component on right hand side data vanish,
ie.,

> Ax(M\)=0 forallneVandw, ¢T, (4.28)
KeQ,

but this condition follows at once on using (4.25) and taking v = A, in (4.3). Now, choos-
ing always the least square solution, we have as a consequence that this solution will depend
continuously on the data

DG, <0 A (4.29)

KeQ, KeQ,
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1. Boundary Vertex: The equations for the exterior patch in Figure 4.2 are given by

| ol [ an 1 [ A |
12 -1 .- 0 E2n Az ()
1 .
! _ : (4.30)
0 e —1 2 -1 §N71,n AN71(>\n)
L 0 —1 3 1L gN.,n 1 L AN()\n)

and in this case we have a unique solution and clearly the continuous dependency (4.29).

4.3 Solution of the Neumann problem.

The full first order equilibration condition implies (4.11), hence there exists a o € H(div, K)

satisfying (4.9). Suppose that we have a vector field o i satisfying

—div o = RK on K,
(4.31)

UK-ﬁf = R,k ineach~ye&gk.

then this ok will satisfy (4.9).
The following result provides a solution to (4.31), based on the orientation of the edges,

vertices, tangents and normal vectors in Figure 2.1.

Lemma 4.3.1. The following function is a solution to (4.31),

3
ok =Y ((Rw,Ka Ait1),, 1/’(;31 + (Ryi.k, Ait2),, @b(ﬂi)a (4.32)

i=1
where i € Vi = {1,2,3} and the functions 1,b§\) are given in (2.12). Moreover, exists a constant
C independent of any size of the element K such that
loicle ) < C(hK IRicll iy + 32 L2 ||R%K||L2m>- (433)
vEEK
Proof. Since the element residual R and the edge residuals R, i satisfy (4.15), i.e. a condition
like (2.17), then taking px = Ri and p, x = R+ k in (2.18) and (2.19) from Theorem 2.1.5, the

result easily follows. [l

Remark 4.3.2. Notice that from (4.32) there is no need to reconstruct the real boundary flux

g~, K since the construction of ok involves only the moments of the flures weighted against the
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basis functions on the edge v, i.e. we only need puj ., given by (4.16), since

(RV,K; An).y = (g’Y,K - VU}”K ! ﬁrly(; )\n),y = /’L’]Y(JL - (vuh‘K ' 'flﬁ(, An),y .

Remark 4.3.3. Let us finally note that
OK — Curl(b[{),

where bg € H(K), is also a solution of (4.31), since div(curl(bg)) = 0 and curl(bg)nt =0

for any v € Ex. Hence, from now on we denote by

o (bg) = ok — curl(bg).

4.4 A guaranteed upper bound for the error.

From the properties of the orthogonal projection (2.1) and with the aid of the Poincaré inequality

(Theorem 2.2), we get
(f = Ok (f),v)k = (f —lk(f),v —VK)K
h
< = TR g V0] 22 - (4.34)

Since we constructed an explicit solution to the Neumann problem, applying the Cauchy—Schwarz

inequality and (4.34) in the error equation (4.10) in conjuction with Remark 4.3.3, we obtain

, o\ 1/2
B(e,v) < (Z (||0*K(bK)||L2(K) + 7K IIf —HK(f)|L2(K)) ) [Vl L2 (q)-

KeP

One immediate consequence of this result is a guaranteed upper bound on the true error, in fact

B(e,v
Vellrz() =  sup _Ble,y)
o£verd (@) IVllLzo)

h o\ 1/2
< (Z (1o sy + 2017 = M (Dl ) ) -
KeP

Summarizing all the previous findings, we have the following upper bound for the error.

Theorem 4.4.1. The error can be bounded above as

2 2
||V€HL2(Q) =, (4.35)
where the error estimator is given by n? = Z n%, and the error indicators nx are
KeP

. hk
N =105 (bx) |2 (x) + 7|\f — T (f)llz2(x) (4.36)
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where ok (b)) = ok — curl(by ), ok is given by (4.32) and bx € H}(K) is chosen to minimize

o5 (0 ) L2 k)

4.5 Efficiency of the estimator.

Theorem (4.4.1) shows that the error estimator 7 obtained by solving the Neumann local problem
(4.31) with the introduction of a set of equilibrated boundary fluxes {g-, x } provides a guaranteed
upper bound on the error. The purpose of this section is to show that the procedure presented
in the previous section, actually leads to an estimator that provides a two-sided bounds on the
erTor.

We first state the following stability result for the procedure described in Section 4.2.

Theorem 4.5.1. Let {g ik} be the set of equilibrated boundary fluzes satisfying the consistency

and the full-first order equilibration conditions, described in Section 4.2. Then, for each element

K,
Z hix Hg'Y»K B <Vuh ﬁ5>||L2(—y) (437)
VEEK
<SS (e Rellpagen + 032 Y 1IVun 2yl agy | |-
neV, K'eQy, YEERINER
where

%’fL,IY( : (Vuh|K — Vuh‘K/) Zf’7 eEx NEK

[Vup, - n,] = (4.38)
0 if vy €&k Nér.
Proof. For an edge v with V,, = {l,r}, let
fijem = (94,5 = (Vun - n5> ,)\n)V ; (4.39)
since gy, x — (Vup, - ﬂ5> € Py (7), using Lemma 2.1.4 it follows that
K N 2 iy 2
g%K7<V’uh~TL,Y > :MK71_(2>\Z7>\T) /’LK7T_(2)\T7>\I)'
[l [l
Therefore,
~ K Ly 2 oy 2
gy, = (Vun - 7y >HL2(V) < MK,Z‘ T (2A = A) + || |57 (A = N)
17l L2(5) [l L2(v)
and since
2 ? 2 ? c
H—(Q)\l—)\r) = H—(Q)\T—)\l) < —,
17l L2(v) vl L2(v) vl
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it follows that

V] |9y, = (Vun - R HLZ(7 <C Z (4.40)
(2%

With the aid of (4.19) and (4.26), we conclude that

1~ 7 /
(Vup - 7y) , An)., = 2 (NK,n MK/m) on~y €€ NEx

v
ﬂ}y(’n onvye&ExgNEr

and hence, thanks to (4.23),
1 (Exn —Exrm) ony € ExNER
€K,n onvyeExNEr

where {{x ,} are determined by (4.24) and satisfy (4.29). Hence,

Y 80,0 Y A (4.41)

K'eQ, K'eQy

fic.n
Integration by parts in (4.25), gives

Agrn) = = (Racs M) = 30 ([T 1y M),

YEE K

Finally applying the Cauchy-Schwarz inequality, it follows that

‘AK’O\H

< 1Rir e allzzaen + 32 119un - 2l Il oy
YEE Kt

<C e IR lpeeny + D WV IVun -2l |
’YGSK/ﬁgn
and then the result follows upon inserting the previous bound into (4.41), the resulting one into

(4.40) and by the mesh regularity. O

Integration by parts in (4.4) and using (4.8) and (4.38), allows us to rewrite the error equation

as

S Rev)e = 3 (Van-0].0), | = (Ve, Vo) — S0 (F ~ k() 0)i.  (442)

KeP YEEK KeP
Now we will apply standard bubble arguments used in [11,103] and Section 3.7 to the previous

error equation. We include the details for completeness.

Lemma 4.5.2. The element residual Ry satisfies

hic IRkl 2 sy < C (IVellLz(x)y + hicll f = e () 22(x)) (4.43)
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Proof. Letting S = H A, and extending by zero in the region Q\ K we obtain Sx € H}(Q).

neVi
Taking v = Sk R in (4.42), we obtain

kR

2

L2(K)

= (Ve,V(BxRK)) i — (f =k (f): Bk R ) ¢

< 19l gm0, IV BRI gy + 17 = T Pl gases IRl o

< C (B I19elpa + 1 = e (Dllaqae) ) |81 Re]

LK)’
upon using the Cauchy—Schwarz inequality and Theorem 2.1.2. Now the result follows using the

fact that |Rrllp2x) < C Hﬂ}(pRKHLQ(K) (again using Theorem 2.1.2). O

Lemma 4.5.3. The jump discontinuity in the approximation of the normal fluzes at interelement
boundaries satisfies

iy IVun - Al 2y < C< > IVellz e +hK'|f—HK(f)||L2(Kf>> ;o (444)

YEEK K'eQx

Proof. For v € Ex N&r, let By = H An, and extending by zero in the region Q2 \ 2, we obtain
neEV~
By € H}(Q). Taking v = —f, [Vuy, - iy] in (4.42), we obtain

2 Hﬁim un ]|

L2(v)
= Z (7 (Ve, V(ﬂ’y [Vuh ) 'ﬁ"v]))K + (f - HK(f)a ﬂ'y [Vuh : ﬁ'y])[{ + (RKvﬂ’Y [Vuh : 'ﬁ"v])K)
Keq,
< 3 (IVellpagre 98, [Van - Dl oy + 1Rl oy 185 [Van -2
KeQ,

I = T () ey 18 [T 2]y )

< c( > (e IVellarey + b 1F = (Dl a(ac) ) ) |

Kef,

6}/2 [v“h : ﬁv]

L2(y)’

upon using the Cauchy—Schwarz inequality, Theorem 2.1.3 and (4.43), with a similar bound for
the remaining two edges. Now the result follows upon using the fact that ||[Vuy, - 14]

’5’17/2 [Vup, - ﬁ'y]’

20

<C (again using Theorem 2.1.3) and summing over the remaining edges.

L2 (K)

O

Notice that from (4.8), (4.26) and (4.38) it follows that

Ry = gy, — (Vun fl5> - [Vup -n,]. (4.45)
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Using (4.33) in Lemma 4.3.1 with Remark 4.3.3 and (4.36), we get

M <O (W IRkl o) + RS = (P2
YEEK

= C( > (B g = (Fun I3+ B N1 233 )

YEEK

+hi | f =T (A7) |-

Using Theorem 4.5.1 in conjunction with (4.43) and (4.44) and the previous bound for ngk,

we just proved the following result.

Theorem 4.5.4. Let i be given by (4.36). Then, there exists ¢ > 0, independent of any mesh

size, such that

i< Y (IVelagen + Hollf = (Do)
K'eQp

4.6 An explicit formula to compute the norm of the solu-
tion of the Neumann problem.

In terms of practical applications, we will take by € H}(K)NP3(K) in Theorem 4.4.1, for which

it follows that

(oK, curl (5K))§<

llewrl (Bx) |z xc)

2
i (b _ 2 B
(i okl ) = ol

where Sx = [I,cp, An- In fact, since Hg(K) NP3(K) = span (Bx) we can take bx = afk for

some « € R, then

o — curl(@Bie) | ey = ol ey + 0 lleurl (Bx) 2 ) — 20 (05, curl (Bi)

and minimizing with respect to o we obtain

_ (ok,curl (Br)) g

lleurl (Bx) |22 k)

Let the edges, vertices, tangent vectors and unit normal vectors of an element K be labelled
as in Figure 2.1. Then, for i € Vi = {1, 2,3} define
13 =21 -9 -5 57 =21

My = to-to + toy -tz + t3 - t3,
—21 57 -5 -9 —21 13
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with Mo and M 33 being defined by permuting the indices and

6 18 -29 =25 —4 18
Mo = ti -t + t1-to + to - o,
-8 4 —55 =29 —21 13

with M3 and M 3; being defined by permuting the indices and

—1 4 3
My = ty -ty + ty 13+ t3 - i3,
-3 —4 1

with Moy and M 3¢ being defined by permuting the indices and

S, = (R’YLKa )‘2)71 ’

(R’YLK’ )‘3)’71

with S5 and S3 being defined by permuting the indices. Now, let

g o — 1 T
(e W’K)K ~ 360(K]| Klsi M;;S;,
1
T T0.K) ¢ = STM,
( Vi K 07K)K 360| | i 0,

1 5 ’
OK = (— (Z(U'yi,KaUO,K)K> >

00,K:00,K) =1
where

1

=——(t; - t to -t ts-t to-t t3-t t1-to).
360|K|(1 1+te-to+ts-ts+ta-ts+1ts-t1 +t1-t2)

(00, 00,K) i

The following result provides a simple formula to compute the norm of the solution of the

Neumann problem (4.31), minimized over a cubic bubble space.

Theorem 4.6.1. The following equality holds,

2
(bKEHéI(%?)lﬂIF’g(K) ||U§((bK)|L2(K)) = (o'%aK’ O'V17K)K + (0-7271(’ U’Y?uK)K + (0-’731[(’ 0V27K)K

(4.46)
+2 ((U'YzyK’ U'Ys,K)K =+ (U’quKv U’n,K)K + (U'YlyK’ U'Yz,K)K)

— O0K-

Proof. From Lemma 4.3.1 and (2.14), taking Vx = {1,2,3} define

1

70K = 3R]

(Roviies Ao, (22 =83 = M)Agts + (4he = A = A1) ot

- (R'yl,Ka )\3)71 ((4)\3 - )\2 - 7)\1))\31?2 + (2)\2 — 3)\3 — )\1))\2153),
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with 04, k and o, k being defined by permuting the indices. Also, define

00K = 7Cur1(>\1>\2>\3)
1
= M(O\z)\s — A3A1)t2 + (A2d3 — A A2)ts)
1
= m((&)\l — A A2)ts + (AsA1 — AaA3)tr)
1

= m((h)@ — AA3)t1 + (A1 A2 — AzAq)t2).

Now, it is relatively straightforward to show that

O P =Ry kb, ony forall Ik =1,2,3;

ook -nh =0 on~y foralll=1,23;

and

(07,5 VD) e = (00,5, VD) =0 forall p e Pi(K) for k=1,2,3.

Then it follows that

(0, KO0, K)KT0, K

3
=1

00,K:00,K)K 4

3
. 1
o (bk) == ZU’W,K - (
i=1
satisfies
o (bi) ﬁfk =R,k on~yfork=1,23

and

(ok(bk),Vp) =0 forall peP(K),

73

which in conjunction with the full first order equilibration condition (4.14), Lemma 4.3.1 and

Theorem 4.4.1 implies that this 0% (bx) is a solution to the Neumann problem. We can then

obtain an expression for ||o} (bx )| 2 (k) Which can be manipulated into the above form, where

the value of gr has been chosen so that |0} (bx)| L2 (k) is minimised over the space of cubic

bubbles.

4.7 A numerical result.

O

We illustrate the performance of the error estimators for a representative problem in this section.

In the numerical experiments we calculate the exact and the estimated error in the H'(Q)

semi-norm on a sequence of uniformly and adaptively refined grids, respectively. For each marked
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triangle a longest edge bisection step [103] was performed. As a local error indicator for the

adaptive algorithm we used (cf. Section 4.4)

h 2
e = (1) gy + 515 = Dl ) (4.47)

and triangles are marked using the maximum strategy (mark K if g > nmax/2). To summarize,

we present the adaptive refinement algorithm in Table 4.1.

Adaptive mesh refinement algorithm [AMRA-P].

1:  Set ¢ = 0 and construct a mesh P;).
2:  For each element K in P(;), compute:

- ok (b )| 25 using formula (4.46).

- If =Hx(f)||L2(x) using an appropriate quadrature formula.

- i using the previous two steps and (4.47).
3: Triangle K is marked for refinement if

1
> — .
e 2 g da, ned

4: From step 3 deduce a new mesh using longest edge bisection refinement.

5:  Set i <— ¢+ 1 and return to step 2.

Table 4.1: Adaptive mesh refinement algorithm for a simple Poisson problem.

The global error estimate is, according to (4.35), given by

n= (Z n%)lm-

KeP

When reporting numerical results, we denote by Ndofs the number of degrees of freedom and we

n

denote by © = ————
HV‘?HLZ(Q)

the effectivity index.
Example 1: Let Q = (0,1)? denote the unit square. The exact solution for (4.1) is given
by
u=uzy(l—2x)(1—1y).
The first mesh P, that we will use to perform the uniform or adaptive refinement procedures,
is shown in Figure 4.3.
From Figure 4.4 and 4.5 we can see that the error estimator provides a very accurate guar-

anteed upper bound.
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Figure 4.3: Initial mesh P(g) for Example 1.

10 ; ; 1.4
—&— || Vel 12
L2(Q)
Ndofs=1/2 138
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1.36¢
e— 0 = 77/||V€||L2(Q)
107 1.34)
1.32¢
10°%
1.3¢
10740 ‘2 ‘4 6 1280 ‘2 ‘4 6
10 10 10 10 10 10 10 10
Ndofs Ndofs

Figure 4.4: Accuracy (left) and effectivity index (right) for Example 1, using regular refinement

over the mesh P(gy from Figure 4.3.

4.8 Conclusions

In this chapter we presented an error estimator providing two-sided bounds on the error up
to higher order terms, based on the equilibrated residual method proposed in [11], where the
most notorious difference is that in [11] the construction of the error estimator requires the
approximation of a local residual problem, which in our case was changed into a Neumann
problem in which case we provide an analytical solution, which is not needed per se, as we
provide a simple formula for its norm.

This chapter can be seen as a different alternative to existing error estimators for conforming

methods for the Poisson problem like the ones in [62,87,97,107].
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Figure 4.5: Accuracy (left) and effectivity index (right) for Example 1, using the AMRA-P

algorithm (Table 4.1) over the mesh P from Figure 4.3, based on the Adaptive mesh refinement

algorithm.



Chapter 5

Application of the equilibrated
residual method to the Stokes
problem using stabilized
conforming finite element

approximations.

The numerical approximation of the Stokes problem generally follows one of two complementary
approaches. The first consists of using discrete velocity-pressure spaces satisfying the discrete
inf-sup condition. Many such methods are available in the literature (see [38,74] for extensive
reviews). However, one perceived drawback of this approach is the fact that the discrete spaces
cannot be of the same polynomial order in both variables whilst maintaining stability. The second
approach, which is our main interest in this chapter, consists of adding so-called stabilizing terms
to the discrete formulation using an equal (or more general non inf-sup stable) order velocity-
pressure combination. These stabilizing terms can depend on residuals of the equation at the
element level, or can simply be based on compensating for the inf-sup deficiency of the pressure.

For extensive reviews on different alternatives for stabilized finite element methods see [32,98].

7
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The development of our a posteriori error estimator follows the same basic structure presented
in Chapter 3, i.e., we will decompose the gradient of the velocity field into conforming and
nonconforming parts, each of which must be bounded. The treatment for the conforming part, is
now based on a generalization of the equilibrated residual method to the vector-valued case, which
allows to rewrite the residual functional as a Neumann problem, for which we have an explicit
solution. The estimator for the nonconforming part can be easily obtained by using Lemma 3.5.2,
and finally the error estimation for the pressure error can be obtained using similar arguments
as the ones of Section 3.6, i.e., using the inf-sup condition related to the continuous problem.

We continue the study of the Stokes problem, which is: For given data f € L* (Q), find a

velocity w and a pressure field p such that

—vAu+Vp=f, V-u=0 inQ and u=0 onl, (5.1)
where v > 0 is the fluid viscosity.
To simplify the notation trough the chapter we rewrite the weak formulation as follows: Find
(u,p) € Hy(Q) x L2(Q) such that
B(u,p;v,q) = L(v,q) for all (v,q) € Ho(Q) x L§(9), (5.2)
where

B(u,p;v,q) =v(Vu,Vv)g — (p,V-v)a+(¢,V-u)g and L(v)=(f,v)q. (5.3)

and as we stated in the first Chapter 3, problem (5.2) is well-posed.
The results that will be presented in this and the next chapter are based on [8], but the
analysis of the a posteriori error estimation will consider a wider family of low-order stabilized

methods.

5.1 Stabilized finite element methods.

Given a conforming subspace V), C H{(Q2) and Q) C L2(Q), a stabilized finite element approx-

imation of the Stokes problem reads: Find a pair (up,pn) € Vi X Qp such that,

B(uhaph; v, Q) +a (Smo(uhvphv .fa U) =+ Sma(uhvpha f7 Q)) = ‘C(Uv Q)a (54)

for all (v,q) € Vi X Qp, where S™°(up, pn, f;v) and 8™ (up, pr, f;q) are stabilization terms
related to the momentum and mass conservation equations, respectively, and the parameter « is

a positive constant usually referred to as the stabilization parameter.
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Many stabilized finite element methods are available, and below we give examples of stabilized
finite element methods which can be used to approximate the solution of the Stokes problem.
We shall employ various combinations of discrete velocity-pressure spaces, depending on the
particular choice of stabilization (see Table 5.1), constructed using standard piecewise polynomial

spaces on the partition P
X} ={veLl*Q): vg € P(K)forall K € P},

for a non-negative integer [.

Method Velocity Space V), — Pressure Space Qp,
P2 — Py Py = X?NL3(Q)
P? — Pt P? = X; N H(Q) Pt = X} n HY(Q) N L3(Q)
P2 — Pfis Pdis = X1 N L3(Q)

Table 5.1: Discrete velocity-pressure space combinations used in conjunction with the stabilized

formulations.

5.1.1 Pressure-Stabilization.

The following stabilized finite element methods only present stabilization related to the mass
conservation equation, i.e.,

Sme (uh,ph, f; ’U) =0.
e Galerkin Least—Squares-type (GLS) or Petrov-Galerkin Pressure stabilization [79,
80,84,98]: The stabilizing term is given by:

S tun e 1) =~ 3 B (Vi Vo) + Y0 Dl fal)s,

KeP YEET

or
ma - S Mk ol
S (uhapha.f7q)_ Z 7(vph7Vq)K+ Z 7([[1%]}7[[(1]})77
KeP YEET
and may be used in conjunction with a P? — P§ts, P? — P{is or P2 — Py pair. Se also [67] for a

local variant.
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e Brezzi and Pitkédranta (BP) [45]: The stabilizing term reads:
hic
S (uhvphvf;q): Z T(VphaVQ)Ka
KeP

for a P? — P§** pair.

e Local Projection methods (LPS) [34]: The stabilizing term is:
h?, —_
S (uhaphvf;Q): Z~7<Vph7(vph)j(av{])f(a
KeP
where (up,pr) and (v, q) belong to the space V1, x Qp constructed on a partition P built by

subdividing each element K of P into three sub-elements (for details, see [34]).

e Polynomial pressure methods (PPS) [37,64]: The stabilizing term reads:
§™ (wnopn F10) = 3 (1~ Wy, (1~ W)
KeP

and the operator II may be taken as II(v)|x = Dk for the PT — P{** pair or a Clément-like
interpolator for the P? — Py pair (see Section 6 in [37] for more details about the operator II).
See also [31] for a consistent variation of the method.

All of the previous methods constitute stable and convergent schemes. However, alternative
methods exist based on discretizing a regularization of the basic Stokes problem. Such methods,
whilst stable, are inconsistent and non-convergent in general, but can nevertheless deliver useful

approximations.

e Penalty pressure-type methods (PEPS) [50]: The stabilizing term reads:

sme (uhvphv .faq) = Z (phv(I)Ka

KeP

and may be used in conjunction with a P? — P§ts P2 — P%s or a P2 — Py pair.

5.1.2 Pressure-Velocity-Stabilization.

The following stabilized finite element methods present stabilization, in both, the momentum

and mass conservation equations:
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e Galerkin Least—Squares-type (GLS) or Streamline Diffusion methods (SDS) [98]:
The stabilizing term reads:

Smo(uhaphaf;v) = Z V(V'uh,V'”l})K,

KeP

and

S (wn e F10) = 3 K (f V0. Va) + Y0 2 (ol D),

KeP yeET
and may be used in conjunction with a P? — P{**, P2 — P%¢ or a P? — P, pair.
e Edge-residual methods (ABV) [21,22]: The stabilizing term reads:

§" (wpn, £:0) = 32 2L (1w, -y~ ] [V 0]),
YEES

and

h2
S™ (wn,pn, £10) = Y TK (f = Vp,Va)g
KeP

T
ye€r

where for v € Eg NEx N E,

K ~ K’ K’
vy

. . . A K N
[Vup -1ty — ppfiy] = Vuy g -0y — prgfy + Vuy g -y —ppiofe

and may be used in conjunction with a P? — P§ts, P2 — P%s or a P2 — Py pair.

In order to be able to apply our a posteriori analysis, we will need to establish some as-
sumptions, but only over the stabilization term related to the momentum equation. The two
properties that we will assume are:

Assumption 1: Localization over elements,

8™ (wn, pr, £;0) = Y SR (wn, pn, £50),

KeP
where
mo h%{
SK° (wn,pn, f;v) =v (V- up, D1(v)) , + D (f + vPh\KaD2(”))K
¥ . R
+ Z % ([[VUh c Ny _phnv]] 7D3(’U)),ya (55)
vEEK
where
V’U,th-’fLﬁ(—ph‘K’ﬁ,}Y( ifyeExgNER NEr
[Vun -7y — puity] = Jrvuh\K’ 'ﬁfl *ph|K'ﬁ5/ (5.6)

0 ifyeEx NEK NEP
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and Dy : P}(K) — P1(K), Dy : P3(K) — P3(K), D3 : P2(y) — P2(v) are linear operators, such
that
Di(c) =0 VeeR?* and [[Di(p)llpzx) <C forall p € PI(K),
Dy(c) =0 YeceR® and [[Da(p)pepy <O forall p e PY(K), (5.7)
Ds(c) =0 VceR? and [D3(p)lg2¢,) <C forallpe P?(K).

Assumption 2: Restriction over the patches,

§mo (uh,ph,f;A;i)) =3 spe (uh,ph,f;)\g)) foralln € V, and i =1,2.
KeQ,

Remark 5.1.1. Notice that all the previous stabilized methods satisfy our assumptions, but only
when they are decomposed in an appropriate way. For example, in the ABYV method, if we take

S . o)=Y I ([Vup - hy - gy [V -,]),

YEEKNET

then we will be violating Assumption 1 and 2, but taking

SR (wn,pn, fiv) = 'lV' ([Vun - 7oy = privs ], Vo -0l
yEEKNET

then both assumptions will be satisfied.
Finally, we note that all of the results remain valid in the case of non-homogeneous Dirichlet
datau = up onT in (5.1), for given up € V3. From now on ¢ or C will denote positive constants

which are independent of any mesh size, the viscosity v and the stabilization parameter .

5.2 The error equation.

If (u,p) is the solution of (5.2) and (wup, pp) is the solution of (5.4), we denote by ey = u—uy, €
H(l)(Q) and ep = p — p, € LE(Q) the errors in velocity and pressure, respectively. Thanks to
(5.2) and (5.3), the errors satisfy for all v € H(Q) and ¢ € L3(Q),

Blev,eriv,q) = > ((f,0)x = v(Vun, Vo) + (o0, V- 0)x = (0, V - un)ic ).
KeP

which, as usual, we call the error equation.
Following the same ideas of Chapter 4, to propose an a posteriori error estimator we start
by defining a set of equilibrated boundary fluxes {g., x} that notionally approximate the normal

fluxes over the element boundaries,

~ AsK K
gy x vVu-ng —pn..
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Since the traces of the true fluxes are continuous on the interior edges, we will require that the

flux functions g., j satisfy the following condition
g%K+g%K/:0 if y=E&kN&Ek for K,K’EP. (58)

Using the fact that v € H é (Q), we can incorporate the boundary fluxes into the error equation

and integrate by parts to yield

B(ev,ep;v,Q) = (5-9)

Z (Rik,v K“I‘Z Ryx,v), +(F—Mg(f),v) — (¢, V -un)k |,

KeP YEEK

where the element residual R is given by
Rix =Mx(f)— Vp, inK, (5.10)
and the boundary residuals R, x are given by
Rk =Gy 5k —VVUp - ﬁff +ph‘Kﬁ5 on each v € &k. (5.11)

The right hand side of (5.9) can be represented in a more convenient way in terms of a

solution g € H(div; K) of a local Neumann problem with the residuals as data:

(g, Vv),. = (Ri,v)k+ Y, (Ryk,v), VveH(Q), (5.12)

YEEK

7
We already stated in previous chapters that this problem will have a solution if and only if the
interior and boundary residuals satisfy the compatibility condition

(Ri, )k + », (Ryk,¢), =0 VceR?, (5.13)
YEEK

which is called a zeroth-order equilibration condition in terms of the fluxes.
By taking into account the previous remark and also using the properties of the orthogonal
projection we can rewrite (5.9) as

Blev,epiv,g) = Y ((gK,Vv)KJr(ffHK(f),vfﬁK)Kf (q,V-uh)K). (5.14)

KeP

5.3 Construction of the equilibrated boundary fluxes.

We now describe the procedure to develop a set of boundary fluxes {g., ; } satisfying (5.8) and
(5.13), which is the extension of the procedure described in Section 4.2 to the vector-valued case.

From (5.10) we have that Ry € P1(K)? and we choose 9,k €P (7)?%, leading to R, x € P1(7)%.
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We want to define g ;r € P1(7)? with v € £k to satisfy the conditions:

e Consistency:

9k t9, k=0 if y=ExkNEk for K,K'eP. (5.15)
e Full first order equilibration:
0= (Ix(f)— Vpn 0)x + Z (g%K —vVup kg flf +Ph\Kﬁfy{,9)7
VEEK
- O“S‘EO (uh7pha .f7 0)
(5.16)

(RKaG)K + Z (R’y,Kae)v - O“S‘EO (uhapha f70)7
vEEK

for all @ € P1(K)? and all K € P.

Since the flux g., f is a linear function on each edge, it is uniquely determined by the moments

i = (9,00A0)  withn eV, (5.17)
Y

We briefly outline the main steps to obtain all the moments u}(’m, which appear as a slight
variation of the method presented in Section 4.2.

Let

L,k —J,x) ifye&xnNé&x,
<J>%K _ 2( v, K 'y,K) K K (518)
J%K ifye g Nér,
with
Jyx =vV S — punlt
vk = VvV -G —pp gy for y € Ek (5.19)

We look for the moments 3" of g, x in the form

(60 = 6) + (D XP) iy esenge,

2 (e AD) ity € Ex N Er,

~

where the parameters f%)n are obtained by solving a system of equations analogous to (4.24):

1 i i i i
5 > (G- g+ Y @=ac(A) vieaq, (5.21)
K'eQ, Nk YEEKNErNE,

with
Ax ()‘"i)) -V (Vuh,V)\Sf))K B (ph’ v )‘S))K B (‘f’/\g))}( B Z (<J>%K”\g))v
YEEK

+ aSpe (uh,ph, f; Agp) , (5.22)
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where « is the stabilization parameter and S¢ is a stabilization term related to the momentum
equation, satisfying Assumptions 1 and 2.

The above system consists of £€2,, equations for #£2,, unknowns, where €2,, denotes the car-
dinality of Q,. As was stated in the previous chapter, the linear system (5.21) fails to have a
unique solution, but a solution which depends continuously on the data {A K (/\S)) , K € Qn}

can always be found provided that the following compatibility condition holds:

3 Ax (A;“) =0 forallneV and z, ¢ T, (5.23)
KeQ,

which follows at once on using the definition (5.22), taking v = AY) and ¢ = 0 in (5.4) and by

n

Assumption 2.

5.4 Solution of the Neumann problem.

The solution of (5.12), will be carried out by solving the following problem
—divgr =Rk inK, (5.24)
gKfL,If =R,k oneach~ye g, (5.25)
which clearly implies (5.12). The following result provides a solution to (5.24)-(5.25), which is a

simple extension to the matrix-valued case of Theorem 2.1.5 and is based on the orientation of

the edges, vertices, tangents and normal vectors in Figure 2.1.

Lemma 5.4.1. The following matriz valued function is a solution to the Neumann-type problem

(5.24)-(5.25),

1
OK

K — )
2
Ok

2Q

where for | = 1,2, i € Vg = {1,2,3}, letting Rk = [Rk,R3%] and R x = [RaK,R%’K], each

component is given by
3
oi=) ((Rzi,K, Nivr) )+ (R e hiwn) )+ (IK|V(RY) - (w0 — %)) «p&z)),
i=1

(5.26)
when a Pressure-Velocity-Stabilization method is applied. In the presence of only Pressure-

Stabilization, each component is given by
3

o=y ((Ra,K, ). B9+ (R e hesa), &z:L), 21

i=1
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where the functions 1}&"), 'zbf\") and 'zb(l'() are given in (2.12) and (2.13). Also, for both stabilization
methods, there exist a positive constant C' independent of any mesh size, such that

lgxl pere) < C(hK IRkl o)+ D hi |R7,K|L2m>. (5.28)

- vEEK

Proof. First notice that when a Pressure-Velocity-Stabilization is applied, then (5.16) and As-
sumption 2 imply that the element residual Rx and the edge residuals R, g satisfy only a
compatibility condition like in (2.16). Then, taking px = RY% and p, x = Rl%K in (2.18) and
(2.19) in Theorem 2.1.5, the result easily follows. Now, when a Pressure-Stabilization method
is applied, since there is no stabilization terms in (5.16), we have that the element and edge
residuals satisfies a condition like (2.17), hence taking px = RY% and p, x = RZ%K in (2.20) and

(2.21) in Theorem 2.1.5, the result easily follows. O

Remark 5.4.2. To conclude the discussion of the Neumann problem, based on Remark (3.4.2),

we have that g ik —curl(By) also satisfy (5.12), where B belongs to H}(K), since curl(By)nk =

0 for any v € &k and div(curl(Bg)) = 0. And, we also know that if we take v € X
in (5.12) then ax — (VxI + curl(By)) will also satisfy (5.12) for any 9 € L*(K) since
(19K£,VU)K = (Vk,V -v)g = 0, where I denotes the two by two identity matriz. Hence,

from now on we denote

ok (Vk,Bk) = ax — (VI + curl(By)).

5.5 A guaranteed upper bound for the errors.

In order to obtain an upper bound for the velocity error, we make use of the orthogonal de-
composition presented in Section 3.5, i.e., for ey = uw — uy, we can decompose its gradient

as
Vey = Ve, + en, (5.29)
where e. € X is uniquely defined by
(Ve., Vo), = (Vey, Vo), Yo .eX, (5.30)
whilst the remainder part e,. belongs to the closed subspace

Y = {wue € LX®) : (wne, Vo), = 0 forall v € X } (5.31)
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of QQ(Q), hence we obtained
2
HVEV”zZ(Q) = HV66||2£2(Q) + ||§nCHLZ(Q) . (532)

Remark 5.5.1. Fven though we are just dealing with conforming approximation to the solution
of the Stokes problem, the fact that we are decomposing the error still using a nonconforming

part, is to take into account how well the incompressibility condition is being approximated.

From the definition of e. in (5.30), taking ¢ = 0 in (5.14) and Remark 5.4.2, it follows that,

for all v € X,
v(Ve., Volo = 3 ((@k(Vi. Bx) Vo), + (f ~Tk(fl v -T) ). (5.33)
KeP
Hence,
2| Vee||2 20 < (9 hi I i 5.34
VlIVeclpa () < > [ lgkl & B ey + I = TPz ) (5.34)
KeP =

upon applying the Cauchy—Schwarz inequality and the optimal Poincaré inequality (see Lemma
2.1.1).
In order to obtain an upper bound for the nonconforming part of the error, from Lemma

3.5.2, we obtain

2
H§n5||£2(9) ( )’EHC)Q == (Vuh’gnc)g =—(w, V- up)q
1
BIIV un 2@ ll€nellL2()
and then we arrive at the following upper bound for the nonconforming error
1
||g"CH£2(Q) < BHV “unl 2 (@) (5.35)

Hence, from (5.32), (5.34) and (5.35) we can bound the velocity error as follows

2
v ||V6VH1~;2(Q)

IN

« hK 2 1/2
5 (k0B + 17 = TPl )+ 519 - wnle

KeP
It remains to give the upper a posteriori error bound for ep. Splitting the gradient of the
test function Vv = Vv, + v, as in (5.29), noticing that V- v = tr(Vv. + vne) = tr(vn.) (since

v, € X)), where tr denotes the trace of a matrix and taking ¢ = 0 in the error equation (5.14),
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we obtain

v ((Vec, Vve)a + (S"C’Q"C)sz) — (ep,tr (i’"c))sz -

S (g5 @i B0, Voo) . + (@5 (0, Brc)s vne) o + (f ~Txe(F) v —Trc)ic) . (5.36)

KeP

Now, let ¢j € Vi be a solution of the local problem
(V(bK,V’U)K:(f*HK(f),’UfiK)K VveVg, (537)

where Vi = {v = Hl(K) cv=0o0nérnN EK}. Notice that from (5.37) and Theorem 2.1.1 it

easily follows that

hi
HV¢KH£2(K) < 7”]c — T (Fllz2x)- (5.38)

Since (5.37) is also valid for any v. € X, applying the orthogonal decomposition (5.29) to v in

(5.37) allows us to rewrite the right hand side of (5.36) at the element level as

(g*K(ﬂKw@K)a VUC)K + (.f - HK(f)’vC - (vC)K)K (539)

+ (g*K(Oa/@K)agnc)K + (Vd)Ka gnc)K .

Inserting (5.39) into (5.36), and then using (5.33) yields

~ (ertr (),
= v (enestne) + O ((€5(0.850) vnc) . + (Vi vne) )
Ke&
) ) o\ 1/2
< (Newel i + (z (.80l )+ 218~ TPl ) )

KeP

X ||g"CH£,2(Q) ’ (5.40)

upon applying the Cauchy—Schwarz inequality, (5.38) and the definition of the conforming and
nonconforming estimators.

Finally, thanks to the inf-sup condition, we have

— V- —(ep, tr(vne
Bleplprm < s — Ve oo Z(enid)e (5.41)
0#£vEH () ||V”||y<m 0#vnc€Y ||£nc|\£2(9)

Hence, from (5.41) and (5.40), the orthogonal decomposition of the gradient of the velocity error
in conjunction with the bounds for the conforming and nonconforming parts of the velocity error

we obtain the following result.
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Theorem 5.5.2. Define the following natural norm

ol

2 2 2
(ev.ep)lle = v* [ Vev i) + B llerlzz(o) -

Then, the velocity and the pressure errors can be bounded above as
ltev, ep)lls, < n?, (5.42)
where the error estimator n is given by
0= Pe(Vrc, B)? + B + (De(0,B) + Buc)” (5.43)

with the conforming estimator ®. given by

(I)c(ﬁKaﬁK)2 = Z q)c,K(ﬁKwBK)25 (544>
KeP
where
h
e (0, Brc) = [ @ic Wi Bio)ll o ey + — IF = e (F)ll 2 ey (5.45)

and g (Ui, Br) = ax — (VI — curl(Bg)), being gk the solution of (5.24)-(5.25) given in

Lemma 5.4.1 and 9 € L*(Q) and By € Hy(K) are chosen to minimize Hg*K(ﬂK,,BK)H

L*(K)"
The nonconforming estimator ®,. is given by
v
(I)nc = B ||V . uhlle(Q). (546)

Remark 5.5.3. Notice that the error estimator n and the velocity and pressure errors (ey,ep)
actually depend on the selection of the stabilization parameter, so to be more precise we should
write n = n(a) and (ev,ep) = (ey,ep)(a), but for the moment we will skip this notation for

simplicity.

5.6 Efficiency of the estimator.

Since the error estimator 7 is written in terms of the conforming estimator ®. and the noncon-
forming estimator ®,,., we first focus on bounding the conforming estimator.

Defining

%(J%KJFJ%K/) ifvye g NEx,

o

if’yEgKﬂgr,
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from (5.18) it follows that R x = g,  — (J)~,x — [J],. From Theorem 5.5.2 and Lemma 5.4.1
it follows that

Ok (Vi,Bx)” < C | B Ricllzeciy + hic D 1Ryl T2gy) + b NS = Mr ()72,
YEEK

< c(@amnim +huc 3 (900 = Dhrc 3y + 111 0s))

YEEK
+ Wil f - HK(f)Hi?(K))- (5.47)
To obtain a lower bound, each term on the right hand side of (5.47) should be bounded by the
errors. In fact, first notice that we can write the error equation (5.2) for any v € H{(Q), as
follows

3 ((RK,U)K 3 ([J]W,v)7> (5.48)

KeP YEEK

=v(Ve,Vv),+ (ep, V- -v)q — Z (f Ik (f),v)k.

KeP

Now applying similar bubble arguments, to the ones presented in Sections 3.7 and 4.5, using the

error equation (5.48), it can be proved that, for all K € P,

h IRkllp2(xy < C (V”VeVHy(K) + BllepllLzxy + bl f — HK(f)HLZ(K)) ; (5.49)
and
1/2
3 hyl H[J]V‘ e (5.50)
o (v
<C < Z vIVev | g2xn + Bllepllrzxry + i || f — HK/(f)||L2(K’)> :
K'eQg -

Following the same arguments as in Theorem 4.5.1, we deduce that

1/2 i
W N9y = Dl oy <€D 0 |ax (A (5.51)

neVy KeQ,
with Ag (/\S)) given by (5.22). Integration by parts in (5.22), using the definition of the

stabilized term (5.5) and the fact that vVuy gnt — ppnlt = (J), k + [J],, yields

‘AK (Aiﬁ)’ _ ‘ - (RK,AS>)K +WEZSK ([J]7 ,)\S))’Y + v (v s D ()‘S)))K
+ af;% ( (R, D (,\5;>))K +(f - Tk (£), D, ()\59))]()

o 3 o m (0)), |

YEEK
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Now each term of the previous equality can be bounded as follows

(RK,AS)) < Chxk HRKHL2(K) )

3 ([J]V,)\ﬁf)) <cy h1/2H ’

YEEK YEEK

v(Vuni D (AP)) = av (Vunk = Vow D (AP))

L2(y)’

< CQI/HV . (uh‘K — u)||L2(K)

< CO{V||V6V||£2(K),

alj (RK,DQ (A())) s O—=hk [IRxll2 (k) »

%(f_nK(f),DQ(ATj))) <CO‘h—KhK||f I (F)ll g2 iy »

3 DL (,.00 (), <0 3 |

YEEK YEEK

L2(y)’

upon applying the Cauchy—Schwarz inequality, /\g)

< ChKa

L>(K) —

L2(y)
Ch}(/Q, (5.7), the fact that the true solution w € X and the definition of the velocity error. From

all the previous bounds it follows that

‘AK ()‘SZ))’ < C( <1 + ah_K) hk ||RK||L2(K) + (

ah
+ oeVHVe\/HLz(K) + —KhK If — g (f )HL2(K) ) (5.52)

MLz (y)

) 55

YEEK

Inserting the previous bound into (5.51) to then use (5.49) and (5.50) and (5.47) and also noticing
that for Pressure-Stabilization methods all the terms related to stabilization in the momentum

equation disappear on the previous analysis, yields to the following result.

Theorem 5.6.1. Let . x(Vx,By) be given by (5.44). Then, there exists ¢ > 0, independent

of any mesh size, the viscosity v and the parameter «, such that

¢ B, B < Y Mios (Iev,er) Ko+ ol f = T (N)acr))

K'eQg
where
ahl/?
max{ 14+ —L— 14+« for Pressure-Velocity-Stabilization,
Mg = v (5.53)

1 for Pressure-Stabilization.
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The lower bound for the nonconforming estimator easily follows upon noting that, since the

solution u of (5.2) belongs to the space X, then
1 1 V2
P,k = E”V “up kL) = EHV (un i — w2k < 5 IVeviig k- (5.54)
From Theorem 5.6.1 and (5.54), we have the following result.

Theorem 5.6.2. Define the local error indicator N as

77%( = q)?z,K (ﬁKa ﬁK) + (I)ic,K + ((I)CJ( (07 /BK) =+ ®nC7K)2 )
where ®. i is given by (5.45) and Ppe i given by (5.54). Then, there exists a constant c,
independent of the viscosity v and the stabilization parameter o, such that

e <0 Y Mios (Il tevier) I+ ol ~ T (H)3ager) (5.55)
K'eQx

with My s given by (5.53).
Remark 5.6.3. Notice that for the Pressure-Stabilization methods the two-sided bounds on
the error measured in the natural norm are completely robust with respect to the viscosity v and
the stabilization parameter o, which leaves some room to improvement, in terms that we can
search for an optimal value for the stabilization parameter hopefully leading to a tighter upper
bound, which will be the topic of the next chapter.

Unfortunately for the Pressure- Velocity-Stabilization methods the lower bound is not ro-

bust since it depends on the viscosity v and the stabilization parameter «, in the form

ah}(/Q
maxq 1+ —— 14+a,.
v

5.7 An explicit formula to compute the norm of the solu-
tion of the Neumann problem.

In terms of practical applications, following similar argument to the ones presented in Sections
3.9 and 4.6, letting the edges, vertices, tangent vectors and unit normal vectors of an element K
be labelled as in Figure 2.1, then:

Formula for Pressure-Stabilization methods: To compute and minimize the norm of

i (UK, Bk), for i € Vi = {1,2,3} define

t; t;
7;1(-1) = — gtr and 17 = — gtr
0 0 t; t;

-
-

(5.56)
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with ¢ = 0 for g% (0,Bx) and ¢ = 1 for g% (Y, Bk ). Now, let

(enottn) = i (1) st
and

o _m) _ 1 O\ 5 pm) glm)
("Kaw"KaW)K’720|K| (Si ) M8,

where
(R 2)
(R )

with Sél) and Sgl) being defined by permuting the indices and

l
s =

71

71

26 —42 -9 7
Im l m l m
M = (gé):gé ))+ (zé):zé ))
—42 114 —17 -9
-9 -17 D om 114 —42 b om
+ (27 + (" 2)
7 -9 42 26

with M élém) and M élg;m) being defined by permuting the indices and

-5 =5 54 =22
L,m l m l m
M™ = (:é):zé ))+ (zé):ﬁ ))

15 =25 —78 54

—13 31
+ (=8 :28™) +
-1 -13 15 =5

—-25 =5
(")

with M élém) and M gll’m) being defined by permuting the indices. Also, let

l m 1 l m l m
() =r (2 (7)o () 227)

# () e (o) )

and
o _m) _ 1 O\ A ptm)
(UK"“,UK’O)K ~ T20|K] (s17)" n
where
—92 1
Mig"™ = (8 24m) + (85 ™)
—6 —7
7 6
+ (28 m) + | ] (28 87)

93
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with M élo’m) and M élo’m) being defined by permuting the indices. Also, define

(0'%)07 U%,)o) X (0%)0, "g,)o) X

A=
) (o'g)m U%,)o) X ("g)m "g,)o) X
and
2 3
S (ol o)
B— 131 i§1 K
; g (o8, o%0)
Then,
) 2 2
= =1 m=1
ca((oai) (i) (o )))
- BTA7'B. (5.57)

Now, Hg*K(ﬁK’ﬁK)HIP(K) is minimized over ¥ € Po(K) and B € (HI(K)NP3(K))? when we
take o = 1 in the previous process, and to obtain minimization over just 8, € (Hg(K)NP3(K))?,
simply take o = 0 and repeating the same procedure we obtain ||g}( (0, BK)HiZ(K)'

Formula for Pressure-Velocity-Stabilization methods: To compute and minimize the

norm of g3 (Vk, By), for i € Vi = {1,2,3} define

with ¢ = 0 for gk (0, 8x) and ¢ = 1 for gk ({x, Bk). Now, let

(o) = iy (51) st
and

(o) = e (51) 2075
where

(Rovse )

71

Sgl) _ (R%Kv )\gl))
71

[KIV(R) - (x1 — Tk)
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with Sél) and Sél) being defined by permuting the indices and
lm
]\451 )=
1242 —2322 54 1647 —945 —36

2322 4482 —126 (gé”:gé’"))+ 2889 1647 T2 (zél):zém))
54 126 8 72 —36  —4

1647 —2889 72 4482 2322 126
+ | —945 1647 —36 (zé”:gém))+ 2322 1242 54 (gé”:gé””)
36 72 -4 _126 548

(I,m) (I,m)

with M5 and M 337 being defined by permuting the indices and

l,m
MG™ =
459 —837 36 1998 —918 —-90

1161 2079 72 (gé“:;-ém))+ 4158 1998 162 (thzgm)
90 —162 4 162 —90 -4

675 —1593 126 2079 —837 —162
+| =207 675 —54 (gé”:gé’"))Jr 1161 459 90 (gé”:zim))
54 126 -8 72 36 4

with M élém) and M gll’m) being defined by permuting the indices. Also, let
l m 1 l m l m
(o), b (20287 0 )

+9(28: 7f) +18 (2 i) )

and
(04) = o7y (517) 267
where
54 81
MiG™ = s | (18 r8) + | s | (2 d)
—6 0
135 54

st | (2 ) | s | (28 2)

0 6
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(I,m) (I,m)

with My, and M, ~ being defined by permuting the indices. Also, define

(0'(1;)0, 0'%)0) P (0'(1;,)(), ‘7(1?,)0) e

A=
~ 2 (1) (2 _(2)
(GK,O’ UK,o)K (GK,O’ "K,O)K
and
2 3
1 1
>3 (of o)
B = 131 1§1
1 2
>3 (of o)
=1 i=1
Then,
2
2 l m l m l m
HgK(ﬂK’ﬁK)HLZ(K) = Z Z ( (O-(K)Nl’agﬂ’)Yl)K + (Ug()ﬂz’ Ug(f)Yz)K + (Ug()ﬂs’ Ugﬂ’)Ys)K
= =1 m=1
(1) (m) (1) (m) (1) (m)
2 ((UKW’ UKW')K + (UKW" UK"“)K + (UKV'“’UK*'VZ)K) )
- BTA7'B. (5.59)

Now, Hg}(ﬁK,ﬁK)HLQ(K) is minimized over Vi € Po(K) and By € (H}(K)NP3(K))? when we

take o = 1 in the previous process, and to obtain minimization over just 85 € (Hg(K)NP3(K))?,

2

simply take ¢ = 0 and repeating the same procedure we obtain ||g§( (0, ﬁK)HLZ(K)'

5.8 Numerical results.

In this section we illustrate the performance of the error estimator with two representative
problems.

In the numerical experiments we calculate the exact and the estimated error in the natural
norm ||(+,-)[l, on a sequence of uniformly and adaptively refined grids, respectively. For each
marked triangle a longest edge bisection step [103] was performed. As a local error indicator for

the adaptive algorithm we used

ng =2 (U, Br) + 02, i + (Peic (0,Bx) + Prc,ic)? (5.60)

where ®.  is given by (5.45) and @, i is given by (5.54), and triangles are marked using the
maximum strategy (mark K if nx > fmax/2). We summarize the adaptive algorithm in Table
5.2.

The global error estimate is, according to (5.43), given by

1/2
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Adaptive mesh refinement algorithm [AMRA-S].

1:  Set ¢ = 0 and construct a mesh P;).
2:  For each element K in P(;), compute:

- Hg}(ﬁK,,@K)Hy(K) using formula (5.57) when Pressure-Stabilized

methods are used or (5.59) when Pressure-Velocity-Stabilized
methods are used.
- |[f = Ik (f)|l 2 (k) using an appropriate quadrature formula.
- O, k(Vk, Bg) using (5.45).
- Qe k (Ui, By ) using (5.54).
- i using the previous two steps and (5.60).
3: Triangle K is marked for refinement if

> 1 )
M= g max {nx}

4: From step 3 deduce a new mesh using longest edge bisection refinement.

5:  Set i <7+ 1 and return to step 2.

Table 5.2: Adaptive mesh refinement algorithm for the Stokes problem.

When reporting numerical results, we denote by Ndofs the number of degrees of freedom and we
Ui

Itev,er)lle
the Stokes problem we use the ABV method with a P — Py combination.

denote by © = the effectivity index and for the approximation of the solution of

Example 1: The exact velocity and pressure fields for (5.1) are given by

uw=[2*(z—1)%y(y— 12y — 1), —y*(y — 1)’z(z — 1)(2z — 1)),

1

p:xy(lfw)(lfy)*%,

where Q = (0,1)? is the unit square. We take v = 1 and, as we stated before, we take a lower

bound of 0.38 for the value of the inf-sup constant S.

Example 2: We consider the Stokes flow over a T-shaped domain, where a linear inflow and
outflow are imposed on x = 1.5 and no-slip conditions are imposed elsewhere on the boundary
T except on the top of the boundary, where we impose a fixed velocity w = (1,0), as shown in

Figure 5.1. We take v = 1 and, as we stated before, we take a lower bound of 0.1 for the value
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of the inf-sup constant .

(~1.5,1) up = (1,0) (1.5,1)
up = (y,0) up = (y,0)
(=1.5,0) (1.5,0)
up = (0,0) up = (0,0)
(—0.5,-2) (0.5,-2)
up = (0,0)

Figure 5.1: Domain and boundary conditions for Example 2.

The initial meshes S(g) and 7(q), for example 1 and 2, respectively, are shown in Figure 5.2

for the regular or adaptive refinement.

1 1

0.9]

0.8]

0.7]

0.6]

0.5 -0.5

0.4]

0.3|

0.2

0.1

0 -2
[ 0.2 0.4 0.6 0.8 1 -15 -1 -0.5 0 05 1 15

Figure 5.2: Initial mesh Sy and oy for Examples 1 and 2, respectively.

For example 1 we depict the accuracy and effectivity indices using the ABV (P? — Py)
method in Figures 5.3 and 5.4. We can observe that the error estimator provide a very affective
guaranteed upper bound. Now, for the second problem, we can see from Figures 5.5 and 5.6
that the error estimator decay with optimal order and also in the adaptive procedure all the
refinement is taking place in the two re entrant corners, which is where the pressure present a

singular behaviour.
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10 5
—8— |l(ev,ep)llq
—S—
o - —1/2
Ndofs 45
1072}
4
3 —— 0 =1n/|l(ev,er)lqy
10}
35
-4
10 : 3 :
107 10* 10° 10 10* 10°
Ndofs Ndofs

Figure 5.3: Accuracy (left) and effectivity index (right) for Example 1, using regular refinement
over the mesh S(o) from Figure 5.2, with a ABV (P§ — Py) method.

10 : w 3.8
—E—|l(ev.ep)l
5 . 37
Ui
---- Ndofs™/? 3.6

© 0 =n/ll(ev,er)lly

3.5

3.4

3.3

107}

3.2

3.1

10° : : 3 : :
10° 10° 10* 10°  10° 10° 10* 10°

Ndofs Ndofs

Figure 5.4: Accuracy (left) and effectivity index (right) for Example 1, using adaptive refinement
over the mesh S(g) from Figure 5.2, based on the AMRA-S algorithm in Table 5.2 with a ABV
(P? — Py) method.

5.9 An alternative guaranteed upper bound for the error.

The following alternative approach can be applied to the nonconforming Fortan-Soulie and the
stabilized finite element approximations to the Stokes problem. For simplicity, we consider the

case when v = 1 and homogeneous Dirichlet boundary conditions. From Lemma 3.1 in [75], we
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—o—1

---- Ndofs™'/2

Figure 5.5: Accuracy (left) and adaptive refinement over the mesh 7,y from Figure 5.2, based

on the AMRA-S algorithm in Table 5.2 (right) with a ABV (P? — Py) method, for Example 2.

10 10
Ndofs

XX

<=4
<&k

<

4
S

W<~

=
N/
VN
X
N

N
VAN%
N/
i
o
NA
KN
N

ANZANZNZ( NN
SENS OO
ISERRREPKEK

0N N
SN

Figure 5.6: A piecewise continuous smoothing elevation of the pressure, for Example 2.

have the following computable upper bound

V541
I(ev,er)llg <

2

sup

(0,0)#(v,q)€H(2) x LE ()

B (EV, ep;va q)

I, )l

100
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and then using (5.14) (or (7.17)), the Cauchy—Schwarz inequality and the definition of the con-

forming and nonconforming estimators given in Section 5.5 (or Section 3.6), we obtain

1/2
Blev,ep;v,q) < (9:(0,8x)° + ®2,) / (v, D)l

As an immediate consequence we obtain the following alternative computable upper bound for

the error

Iev,ep)I3 < (“gj 1) (20(0,85)° + 92,) . (561)

Notice that if we were just interested in the estimation of the velocity field, then the estimation
using the orthogonal decomposition (5.29) leads to a tighter upper bound, i.e. from Theorem

5.5.2 (or Theorem 3.6.1) we obtain

V5 +1
2

2
IVevlZa < e, Br)* + P, < ( ) (®c(0,85)% + Pnc) -

Likewise, if one wishes to estimate the pressure error only, a superior upper bound again follows

by using the orthogonal decomposition, i.e. from Theorem 5.5.2 (or Theorem 3.6.1) we obtain

V5 +1
9

2
lepl32q) < (2e(0, Br) + Bne)® < ( ) (9.(0,8) + @3, -

If one wishes to estimate the combined error, Theorem 5.5.2 (or Theorem 3.6.1) and (5.61) yield:

I(ev,ep)llo <5 = ®c(Vr, Bi)® + e+ (Be(0, Bx) + Pnc)?,

1)
I(ev,ep)llg < nis = ( 5 ) (.0, B)? + ®2,)

which in turn gives

2 0 2
0.618 = <20 _To V3 1.07,
14+v5 ~0rs  nms ~ 14456
where 0o = M0 and Ors = __MS ___ are the effectivity indices. Hence,
I(ev,ep)llq I(ev,ep)llq

1<b0p <1.07 05 and 1 <075 <1.618 0o,

leading to the conclusion that the estimator 7o is in general a sharper bound when we used the

orthogonal decomposition of the gradient of the velocity field.

5.10 Conclusions

In this chapter we introduced a fully computable a posteriori error estimator for the Stokes

problem using a wide family of low-order stabilized finite element methods. The analysis was
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mainly based on the orthogonal decomposition for the gradient of the velocity error, the inf-
sup condition related to the continuous problem and the equilibrated residual method. Now, the
generalization of the equilibrated residual method to the vector-valued case allows to cover a wide
family of methods and also to rewrite the residual functional as a Neumann problem. For the
latter problem we provide an explicit formula to compute its norm with different minimization

procedures, improving the accuracy of the error estimator with no extra cost.



Chapter 6

On the adaptive selection of the
parameter in stabilized finite

element approximations.

One characteristic feature of stabilized methods is the presence of a positive constant multiply-
ing the stabilization term. Naturally, the question of the selection of the actual value of the
stabilization parameter in practical computation arises which, although not affecting the rate
of convergence, can have a significant impact on the absolute value of the error. Considerable
effort has been expended in the quest to avoid having to make an ad hoc decision about the
specific choice of the parameter. Variational multiscale methods (including RFB’s and, recently,
PGEM methods [29,31,44,78]) may be regarded as a systematic approach to the selection of an
explicit, closed form of the value of the stabilization parameter, thereby rendering the methods
parameter-free.

In this chapter we continue the study of the a posteriori error analysis for the Stokes problem
using low order stabilized finite element methods, since as was mentioned in Remark 5.6.3, when
the stabilized method only consider stabilization in the mass conservation equation, then the
developed error estimator provide a two-sided bounds on the error being completely robust with
respect to viscosity v and the stabilization parameter . Hence, our guaranteed upper bound

given in (5.42) can hopefully be improved, in the sense that choosing an appropriate value for

103
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the stabilization parameter it may lead to a tighter upper bound, which clearly will improve the
efficiency in the estimation.

In this chapter our approach is based on the premise that the best parameter is the one
for which the error is minimal. Of course, the true value of the error is generally unknown.
However, since we have at hand a computable quantity n(«), which depends on the value « of
the stabilization parameter, which delivers a two-sided bounds on the true error (ey,ep)(«),
also depending on the stabilization parameter, in the natural norm [[(ey,e,)()||¢, up to higher
order terms (see Theorems 5.5.2 and 5.6.2), i.e. there exists a constant ¢ > 0 independent of «

and v, such that

c¢na) +hot. < l(ev,ep)(@)llq < nle), (6.1)

then what is really needed is the value of a for which n(«) is a minimum to coincide with
the value of « at which the true error has a minimum. Then the developed method, from the
previous chapter, for defining such a computable quantity n(«), satisfying (6.1) up to higher
order oscillation terms, is a key component of our approach.

The search for the optimal value of the stabilization parameter has been considered before. For
example, in [35] a residual based a posteriori error estimator was also minimized in order to obtain
a value for the stabilization parameter (see also [82] for convection-diffusion problems), whilst in
[100] the value is chosen by minimizing the condition number of the associated Schur complement
system for the pressure field, but non of them gives a fully computable error estimator.

The development of the measure 7(«) is only one part of the story and we must also select an
algorithm for approximating its minima. The expression for n(«) depends on the stabilized finite
element approximation obtained using a particular value « for the stabilization parameter. Thus,
each evaluation of n(«/) entails the computation of a finite element approximation. Furthermore,
one does not have ready access to derivative information. These considerations suggest the use
of a derivative free optimization approach (cf. [55] for an extensive review of the DFO method),
to search for the value a,p; for which 7 is minimized.

From Section 7.3, we can see that often the developers of a particular stabilized method give
a recommendation, which it will denote by .c., for the value of the stabilization parameter to
be used in practical computations, but in some cases no such value is identified, in which case,
in the absence of further information, we select the parameter equal to one. In Table 6.1, we

summarize, for each Pressure-Stabilization method the recommended value of the stabilization
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parameter.
Pressure-Stabilization Methods Qrec
1
Galerkin least—Squares-type [GLS] 21
Brezzi and Pitkédranta [BP)] 1
Local Projection methods [LPS] 1

Polynomial pressure methods [PPS] 1

Penalty pressure-type [PEPS] 1

Table 6.1: Recommended value for the stabilization parameter for the Pressure-Stabilization

Methods.

6.1 An algorithm for selecting the stabilization parameter
on a given mesh.

Although the a priori rate of convergence of a stabilized method is independent of the value of
the stabilization parameter (provided the discrete problem is well-posed), the absolute value of
the error varies depending on the choice of the parameter. In order to illustrate this point we
consider the two simple examples given in Section (5.8).

We shall present results for Examples 1 and 2 obtained by using meshes S-(a) to S-(d) and
T-(a) to T-(d) shown in Figures 6.1 and 6.2, respectively.

The values of the norm of the error obtained for various stabilized schemes and various values
of the stabilization parameter on fixed meshes are illustrated in Figures 6.3 and 6.4. It is clear
that in some cases the choice of the parameter « can significantly affect the error. In particular,
an inappropriate choice can result in a loss of a factor of two, or sometimes much more, in the
accuracy compared with a more judicious choice. In terms of practical computation this means
that a careful choice of o can sometimes be at least as effective as a global mesh refinement.

Occasionally, we shall omit the « dependency and write n in place of n(a) and (ey,ep) in
place of (ey,ep)(a), but it should be borne in mind that the estimator is computed using the
finite element approximation obtained using the value « as the stabilization parameter.

The values of the quantity n(«) are also shown along with the true error in Figures 6.3 to

6.5. We observe that the a-dependency of both the exact error and the estimator are in good
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Figure 6.1: Uniform mesh S-(a) with 2048, S-(b) with 4096, S-(c) with 8192 elements and distorted

mesh S-(d) with 412 elements, for Example 1.

both exhibit minima at roughly the same locations. This

agreement (Example 1). Significantly,

correlation suggests selecting the stabilization parameter « to minimize the upper bound 7n(«)

for the true error. Whilst the values of the estimated and true errors may differ, the proximity

of the minimizers means that the resulting choice of o will be near optimal.

It remains to select an appropriate method for obtaining the minimizer of 7. We propose

to use the Trust-Region Derivative Free Optimization algorithm (DFO, see [56] and references

For the readers convenience, we give a brief

therein) to approximate the minimiser of n(a).

description of the method which is described in full detail in [57] and [54].

We begin by choosing constants ep, A, Apar > 0, 0 < tolp < tol; < 1,0 < wg <1 < wy

Construct a fully-quadratic model (in the sense of

and a trust-region radius Ag € (0, Apaz]-

{a1, @2, a3} to obtain

Section 3 in [54]), by evaluating n(«) at a set of three sample points o
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Figure 6.2: Mesh T-(a) with 2560, T-(b) with 5076, T-(c) with 7108 and T-(d) with 11006

elements, for Example 2.
a quadratic interpolant, given by
mo(a) = co + ago + o Hy,

where ¢, go, Ho € R. Denote by Dy(a) = max{|go + 2acHy|, |2Ho|} and choose any initial point
Xo from the sample points, which in our case we take the one with minimum value of n(«). If
there are two such choices for x(, then choose the one maximizing Dy (xo) and if there are still two
choices, either is used at random. If there are three such choices then use a model-improvement
algorithm (Algorithm 6.2 from [54]), based on moving the sample points in order to obtain a
fully-quadratic model. Set k = 0.

If Di(xx) < ep call a model-improvement algorithm (Algorithm 6.2 from [54]) to obtain a

new quadratic model, otherwise compute the step s, that sufficiently reduces the model my ()
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by solving the trust region problem

min m + s).
s€(—Ag,Ar) (Xk )

Compute n(xx + sx) and define

n(xx) = n(xk + sk)
m(xk) —m(xx + sk)’

Pk =

If pr, > toly orif both p; > toly and the model is fully-quadratic, then the new iterate xx+1 = xr+
sk replaces the sample point with the largest value of 7, resulting in a new sample set ;1 from
which we obtain a new fully-quadratic model my41(); otherwise use the model-improvement
algorithm (Algorithm 6.2 from [54]) and define my1(a) to be the (possibly improved) model.

Update the trust-region radius as follows. Set

{min{wi Ak, Aaz}} if pr > toly and Ay < ADk(xx),

[Ak, min{wlAk, Amaz}] if Pk = tol; and A, > ADy (Xk),
Apyr €

{woAy} if pr < toly and my is fully-quadratic,

{AL} if pr, < toly and my is not fully-quadratic.
Take aop = arg min{n(a) : @ € ag41}, increment k and repeat the algorithm.

In Figures 6.6 and 6.7 the DFO search is presented for just the GLS (P? — P§**) and PEPS
(P? — Pp) methods, using the fixed meshes S-(c) and S-(d) from Figure 6.1 and mesh T-(d) from
Figure 6.2, where for each iteration we show the upgraded sample set until it has converged to
the best approximation of the optimal value of the stabilization parameter, which later will be
denoted by aop:-

Finally for Examples 1 and 2, we perform the DFO algorithm on meshes S-(a) to S-(d) and
meshes T-(a) to T-(d) from Figure 6.2 (which we obtained by refining about the re-entrant
corners), respectively. We measure the gain using the best approximation c,p; of the optimal
value for the stabilization parameter compared with the recommended value o, by calculating

the percentage gain, i.e.

G = 100"0ree) = Mopt) gy
n(arw)
All the findings of performing the DFO search on fixed meshes are shown in Table 6.2, where we

present the percentage gains G and the approximations of the optimal value for the stabilization
parameter Qopt.
Notice that the optimal value of « in general differs from the recommended a priori choice

Qrec- Moreover we can see that the optimal value can be quite different from one problem to
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PPS BP GLS GLS PEPS PEPS
(PP -Pf*)  (PE-P{*)  (PI-Pf*) (PP-Po) (PE-P{*) (PP-T)
Qlpee = 1 Apee = 1 Qpee = 1/24 Qlpee = 1/24 Qpee = 1 Qlpee = 1

Mesh g Qlopt g Qlopt g Qiopt g Qlopt g Qlopt g Qlopt

S-(a) 21 32176 164 0.0648 0.19 0.0308 5.1 02052 479 0.1336 434 0.1234
S-(b) 002 12938 14 0.0325 08 00176 0.1 0.061 673 0.036 70.6 0.0019
S-(c) 1.025 442 109 0.0636 107° 0.0423 0.83 0.1781 69.14 0.0752 65.9 0.0752
S-(d) 85 76146 9.6 01781 107* 0.0413 185 0.6649 19 0.7005 0.55 1.3519
T-(a) 83 01953 50.75 0.0025 15.7 0.0032 14.2 0.0089 729 0.0217 79.9 0.0188
T-(b) 15 03189 56.6 0.005 39 0.005 857 0.0129 841 0.0146 84.8 0.0149
T-(c) 0.78 04039 56.89 0.0074 2.32 0.0055 8.2 0.0133 84.2 0.015 85.03 0.0146
T-(d) 094 04219 579 0.0062 3.25 0.0062 9.5 0.0127 84.6 0.0146 851 0.0153

Table 6.2: Percentage gain G and oy, for Examples 1 and 2 using fixed meshes S- and T-,

respectively.

another and that we always gain by searching for the optimal value, particularly when the mesh

is irregular or the true solution is non-smooth.

6.2 Selection of the stabilization parameter on a sequence
of adaptively refined meshes.

The results in the previous section are concerned with fixed meshes. We now apply the approach

in the context of an adaptive mesh refinement procedure, driven using the local error indicator
2
77?((04) = (I)E,K (W, Bk) + VQ(PELC,K +(Pe,x(0,Bk) +vPrc k)", (6.2)

where ®. (-, ) is given by (5.45) and @, x is given by (5.54).

Ideally, one would optimize over a on every mesh constructed throughout the adaptive refine-
ment procedure. In practice, the cost of such a procedure would be prohibitive and, fortunately,
is unnecessary. Instead we propose to optimize the choice of a once on the initial mesh, and then
retain this value on all the subsequent adaptively refined meshes. In Figures 6.8, 6.9 and 6.10
we present the results obtained using both the Idealised algorithm and the proposed Practical

algorithm from Table 6.3, to approximate the same examples considered in the previous section.
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Idealised algorithm:
Adaptive mesh refinement and DFO search [IA-AMR-DFO-S].

1:  Construct mesh Pg. Set i = 0.

(@)

2:  Performing the DFO algorithm on the fixed mesh P(;), compute aO;,t.

(1) )

3:  For each element K in P(;), compute a local error indicator ng (o,

using the AMRA-S algorithm from Table 5.2.

4: Triangle K is marked for refinement if

(1) 1 (1)
nK(aopt) > 2 Kng’]a?)(i) K (aopt)'

5: From step 4 deduce a new mesh using longest edge bisection refinement.

6: Set i< i+ 1 and return to step 2.

Practical algorithm:.
Adaptive mesh refinement and DFO search [PA-AMR-DFO-S].

1:  Construct mesh P.

2:  Performing the DFO algorithm on the fixed mesh P(g), compute ozg%)t
and set ¢ = 0.

(0) )

3: For each element K in P;), compute a local error indicator ns (a;

using the AMRA-S algorithm from Table 5.2.
4: Triangle K is marked for refinement if
0 0
nic(rgr) = 4 nax nic ().
5: From step 4 deduce a new mesh using longest edge bisection refinement.

6: Set i< i+ 1 and return to step 3.

Table 6.3: Idealised and practical algorithms for adaptive mesh refinement and DFO search for

the Stokes problem.

For Examples 1 and 2, we obtain the accuracy and effectivity indices, starting the algorithms
using mesh Sy and T{g) from Figure 5.2, respectively.

The results obtained show that the performance of both algorithms is virtually identical,
indicating that the optimal choice of o changes little from the value obtained based on the initial

coarse mesh.
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6.3 Conclusions

A systematic approach was developed for the selection of the stabilization parameter for stabilized
finite element approximation of the Stokes problem, whereby the parameter is chosen to minimize
a computable upper bound for the error in the approximation. The approach is applied in the
context of both a single, fixed, mesh and for an adaptive mesh refinement procedure. The
optimization is carried out by a derivative free optimization algorithm (DFO) and is based on
minimizing a new fully computable error estimator. Numerical results were presented illustrating

the theory and the performance of the estimator together with the optimization algorithm.
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Application of the equilibrated
residual method to an
Advection-Reaction-Diffusion

problem.

The numerical solution of an advection-reaction-diffusion equation using a standard Galerkin
formulation usually yields inaccurately approximated solutions. This disappointing behaviour
occurs because such methods lose stability and cannot adequately approximate solutions inside
layers. For over more than two decades, a variety of finite element approaches have been pro-
posed to overcome such situations. In general these methods add mesh-dependent terms to the
weighting functions with the aim of getting an oscillation-free solution (see [18,19,39,46, 48,49,
53,72,73,76,81,98] and the references therein). More recently, many a posteriori error estimator
are being developed for different numerical schemes (see [19,23-25,47,91,99,104]). However, the
majority of these estimators obtained are not actually computable since they involve either a
generic unknown constant or the solution of (local) infinite dimensional Dirichlet or Neumann
problems (which cannot be solved exactly). In [36,105] a posteriori error estimators were devel-
oped which are robust with respect to the physical parameters, but as with the previous cited

references, they do not provide a guaranteed upper bound and the norm used to estimate the

120
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error is in a norm that incorporates the standard energy norm and a dual norm of the convective
derivative or depend strongly on the physical parameters of the equation, respectively. More
recently, in [106] a fully computable a posteriori error estimator was derived in the framework
of a nonconforming finite element approximation, where the local efficiency depends on the local
Péclet number in two and three dimensions and similar results were obtained in [70] but in the
framework of discontinuous Galerkin finite element approximations.

This chapter is devoted to the application of the equilibrated residual method, discussed in
the previous three chapters, to an advection-reaction-diffusion problem using a conforming finite
element approximation, for which our main interest is in low-order residual-based stabilized finite
element approximations (cf. Section 3, Part III in [98]), in which case we will develop a fully

computable a posteriori error estimator in the two and three-dimensional cases.

7.1 Preliminaries.

Let Q C R?, be a simple polygonal domain when d = 2 and a polyhedral domain when d = 3, with
boundary I'. Consider a family of partitions P of the domain into the union of nonoverlapping,
shape-regular triangular (d = 2) or tetrahedral (d = 3) elements in the sense of Ciarlet (cf. [52]).

When d = 3, for scalar functions v = v(z, y, z), we let the gradient operator to be defined by

ov Ov Ov
Vv = (%,a—y,&) .

For vector valued functions v = [vi(z,y, 2), v2(x,y, 2),v3(x,y, z)], we let the divergence and

gradient operators be defined by

Ovy vy Ouy

o P P ox Jy 0z
vy = gy 20l G2 OUs _| @ P o
divv=V v78x+8y+6z and Vv = ﬁ 6#; ﬁ ,

dvz  Ovs  Qug
ox oy 0z
respectively.

Trough this chapter, in the case of a polygonal domain, we keep the notation related to the

triangulation of the domain from Section 2.1.1. In the case d = 3, for a fixed partition, let:
e F denote the set of all faces;
e F; C F denote the set of internal faces;

e Fp C F denote the set of boundary faces;
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V index the set {x,},,, of all element vertices;

0, ={KeP: x, €K for a fixed n € V} is the patch consisting of elements K for which

x, is a vertex;
Fr denotes the set of faces that have x,, as a vertex;
nr denote the unit outer normal vector to I';

A, denote the function which is piecewise linear on P and vanishes at all the vertices in P,
except @, where it takes the value one, i.e. A, (2,,) = dpm with n,m € V and 0,,,,, denote

the Kronecker symbol.

For a tetrahedron K, let:

P, (K) denote the space of polynomials on K of total degree at most n;

Vi index the set {z,} of all the vertices of the element K;

neVk
Qg denotes the set of elements that share a face with element K

Q) denotes the set of elements that share a face or a vertex with element K
Fk denote the set containing the individual faces of element K;

| K| denote the volume of the element K;

hx denote the length of the longest edge of element K

ﬁff denote the unit exterior normal vector to the face v € Fx C 0K

vk denote the restriction of v to the element K;

EK:iZmi'

1€VK

For a face v € F, let:

P,.(y) denote the space of polynomials on v of total degree at most n;
V, index the set {a:n}nva of all the vertices of the face v;
Q,={KeP: yeFr}

|7| denote the area of the face ~;
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e v, denote the restriction of v to the face 7.

Remark 7.1.1. Notice that we keep a very similar notation as the one use in the two-dimensional
case, and the reason to do that is just because the analysis, that will be just presented in the
three-dimensional case, follows very similar arguments and constructions from all the previous

chapters.

Notice that the projection operator Ilx is defined in the three-dimensional case as the one in
(2.1) and Theorem 2.1.1 also holds when d = 3.

For K € P, throughout we shall make use of the following formula:

6(alblcldl)

MXEXEAE 1) =
(AN 1) ¢ (a+b+c+d+3)!

|K, (7.1)
for a,b,c,d > 0 and Vi = {1,7, k,1} and, with V, = {i, 4, k}, for a,b,c > 0,

(NN ), = el (72

v (a+b+c+2

The following result presents a basis to polynomial functions of degree one defined on faces

of the partition.
Lemma 7.1.2. Any polynomial function p € P1(7y) can be written as

5 (35 — At — Ao), (7.3)

3
(B2 — A1 — A3) + (p, A3)., Al

3
(BA1 = A2 = A3) + (p, A2), I

"l

where Vy = {1,2,3}.

b= (pa )‘1)

Proof. Let p = a1 A\1 + as X2 + asAs, where ay, as and ag are constant to be determined. Now,

the unknowns satisfy the conditions
(A1, A1 )yar + (A2, Ad1)yaz + (A3, A1) yaz = (P, A1)y,

(A1, A2)yar + (A2, Ad2)yan + (A3, A2)yaa = (P, A2),

(A1, Az)yar + (A2, Az)yaz + (A3, Az) a2 = (p, A3).
Equally well,

a1 (p7>\1>’7
My as | =] (p,X2)y |-

a3 (pa )‘3)’)’



CHAPTER 7 124

where M, is the mass matrix for the basis functions on the face . A simple computation using

(7.2) shows that

2 1 1
= % 12 1/,
1 1 2
and hence
3
o= (3(p, A1)y — (P, A2)y — (P, A3))
02 = 7 (30 da)y = (2. M)y — (2. Xa))
a5 = 77 (3. 39, = () = (1 da)y).
which prove the result. O

Also notice that for the bubble function arguments, Theorems 2.1.2 and 2.1.3 hold unchanged.
In trying to obtain a fully computable quantity being equivalent to the error (up to higher
order terms) in the three-dimensional case, for each element K € P, a Neumann problem also

need to be solved, i.e, we will need the solution of the following problem: Find o i such that,

—div o = in K
Koo (7.4)

UK-nf = pyx oneachyé€ Fg,

for given pr € P1(K) and py x € Pi(y). To be able to obtain such solutions, the following
functions will be useful. Let the vertices, faces and unit normal vectors of an element K € P be
labelled as in Figure 7.1.

Let ¢,7,k,l € Vi = {1,2,3,4} be distinct and define

tij = xj — x4,
then the normal vectors for the element K satisfy,
|’7i|’fLi 'tij = 3|K|, |’yl|’le . tji = —3|K| and ’fbi 'tjk = 0, (75)

and the piecewise linear functions \. satisfy

B 7 ol
Z i =1, Z )‘ih =1 and V) = —3|K|m-. (7.6)
i€VK i€V,
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Figure 7.1: The labelling and positioning of the vertices, faces and unit normal vectors of element

K. The face v; of a tetrahedral element K lies opposite to the vertex ; and n; is the outer unit

normal vector to face v;, for i € Vi = {1,2,3,4}.

For the element K, let

1
i = T (122 + 190 + 197 — 2X) A5t

+ (BN — 4 — 4N — 11)\j))\ktik

(3N — A — 4N — 11)\j))\ltu),
and

V= i()\jtij + Aptin + )\ltiz)-

——\
4K

(7.7)
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Then, for m,n € Vg = {1,2,3,4}, using (7.1), (7.2), (7.5) and (7.6), we deduce that

- _ L
—div "bu = |K|a
div 9, ;, A 1 =0 —div g, = 1 /\-71 (7.9)
1,79 7\ 4 X ) K,i |K| 1 4 )
(¢i,j ' ﬁmv >\n) [V 5im5jna ('IPKJ' : ﬁm) Vi 0,
and
il oy < Chx"? Incillpoey < CHE. (7.10)

where the constant C' does not depend on any size of the element K. With these functions we
can give some explicit solutions to the Neumann problem (7.4), if the element and boundary
data satisfy the following compatibility condition
(PK,C) e + Z (py,i,¢) =0 for any c € R. (7.11)
YEFK
The next result provides some particular solutions to (7.4) based on the functions previously

presented.

Theorem 7.1.3. Let px € P1(K) and py,x € P1(y) for each v € Fi be given. If px and py k
satisfy (7.11), then

4
OK = Z ( (P k5 )‘i+1)% Y1+ (Pyk, )\i+2)% Yiiy2 + (Prx, )‘i+3)% Yiits (7.12)

+ (KIV(px) - (2 — Tk )) ¢K,i>,

is a solution to (7.4) and

1/2
oz < C | hrcllprcllzge + > hilIpssclzacy | - (7.13)
YEFK

where i € Vi = {1,2,3,4}, the indices are to be understood module 4 and the constant C is

independent of hi, pr and P k.

Proof. Let i,m,n € Vg = {1,2,3,4}, then for any v, € Fg let us restrict ok, given by (7.12),

to the face v, to then be multiply by fz,[y(m and then integrated against a barycentric coordinate
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An, over the face A,,. Then using (7.9), it follows that

—~

oK
oK ~n7m,)\n)'ym

4
(i s Aig1).,, (V4,541 - D5, An)vm + (v, k5 Ait2)., (Vs,i40 - D5 An)vm

=1

+ (p%',Ka )‘i+3)% ("/’i,i+3 : ,ﬁ"jy(m’)‘")ym + (|K|v(pK) : (mi - EK)) ("/’K,i : 'f”fy(m’ )\")'ym )
= (p’meK’ /\m+1)7m 5m+1,n + (p'ym,Kv )‘m+2)7m 5m+2,n + (p’meK7 )\m+3)7m 5m+3,n7

hence

(O'K ~ﬁ£, /\n) = (D K5 /\”)'ym forany neV,,,

TYm

then o - X =p,  x in y,. Now, regarding the divergence, again using (7.9), we obtain

—div ok
B il <% (Pyioics 1), + VipK) - (i —ZK) </\i - i) )
= %(mﬁ Vx + Vpx) - (x — Tx)
.

upon using (7.11) and the fact that px is an affine function. Now, for the norm of o x we obtain

2
H0'K||L2(K)

4
< CZ ||p%7KH2L2(%-) (”)‘H-l”i?(%) ‘¢i,i+1Hi2(K) + H)‘i-l-QHi?(»yi) ‘¢i,i+2Hi2(K)

i=1

2 _ _
Geissll 7o ) + KNV @20 |2 — T2

4
2
<C (hi(HpK@Z(K) + D hx Hp%KHLQ(%)) ’

i=1

2
+ [ Xitsll 2y,

upon using the Cauchy—Schwarz inequality, (7.1), (7.2) and the mesh regularity. Hence, (7.13)
follows. O
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7.2 The model problem.

We are interested in the following advection-reaction-diffusion problem. For given data f €

L3*(Q): Find u such that

—vAu+a-Vu+ru=f inQ,
(7.14)

u=0 onl,

where v > 0 is a constant diffusion coefficient, a is a L (Q2) solenoidal field and x > 0 corresponds
to a constant dissipation coefficient.

The weak formulation of (7.14) then reads: Find u € HJ () such that
B(u,v) = L(v) for all v € H3(Q), (7.15)

where

B(u,v) =v(Vu,Vv)q + (a - Vu,v)g + k(u,v)q and L(v) = (f,v)q. (7.16)
We consider the energy norm

ully, = VI Vel 2y + llulZa,
defined on H'(€2). Noticing that (a - Vv,v)q = 0 for all v € H}(Q), since a is solenoidal, then
B(v,v) = V||VU||2L2(Q) + “HU”%?(Q) for all v € Hy(9),

and it is not difficult to see that B(v,w) < Cllv|gllwlg for any v,w € H}(2). Hence, the

well-posedness of the problem follows by the Lax—Milgram Theorem (see Chapter 3 in [69]).

7.3 A Stabilized finite element method (SUPG).

To approximate the solution of this problem we will consider a stabilized finite element approx-

imation, which reads as follows: Find up € Vi such that
B(up,v) + S(up, f;v) = L(v) for all v € Vp, (7.17)

where B(-,-) and £(-) are given in (7.16), S(-, ;) is a stabilizing term and V}, is a finite element
space constructed using piecewise continuous polynomials of degree one, based on P.
Many stabilized finite element methods are available, but here we focus on a Streamline

Upwind-Petrov Galerkin stabilized finite element method (SUPG), which was first introduced by
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Hughes and Brooks [77] for the numerical solution of convection-dominated convection-diffusion
problems (see also [46,72]).
For the SUPG method the stabilizing term is given by

S(un, fiv) = Z Sk (unx, f3v), (7.18)

KeP

where
Sk (un, f;v) = (~Rk,Tka - Vv) ,
and the residual operator R is given by
R = f—a- - Vuy g — kup k- (7.19)

We will always assume that the stabilization parameter 75 satisfies

hx

17| oo (1) < for all K € P. (7.20)

C—2

lall=(x)
The choice 7 = 0 yields the standard Galerkin formulation; the choice 7x > 0 corresponds to
the SUPG-discretizations (see [46,72]).

Here and in what follows the local mesh Péclet number is defined by

llall Lo xyhx

Per —
K 2v

(7.21)

7.4 The error equation.

Let e = u — uy, denote the error in the stabilized finite element approximation, then from (7.17)
and (7.16) it follows that the error satisfies
B(e,v) = Z ((f.v)x —v(Vup ik, Vo) ik — (@ Vug ik, v)k — 6(Up| i, v) k)
KeP

> (Mx(Ri),v)x = v(Vunjx, Vo) + (¥ = g (¥),0)k) , (7.22)
KeP

where Ry is given by (7.19) and
U=f—a- Vu, (7.23)

In the following, we will introduce the equilibrated boundary fluxes, but just for the three-
dimensional case following [16], since the equilibrated fluxes in two dimensions can be easily

obtained from Sections 4.2 and 5.3.
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Let us suppose for the moment that there exists a set of boundary flures {gy.x : v € Fx} on
the elements K € P satisfying g x + g,k = 0 on Fx N Fg+ for K, K’ € P. Then, using the

fact that v € Hg(2) and integration by parts, yields

B(e,v) = Z Ik (Ri),v)k + Z Ryx,0), + (V=g (¥),0)k |,
KeP VEFK

where the face residual is given by

K

Ryk = gy,k —VVup|k -0

Let us assume for the moment that there exists a vector field ox € H(div, K) satisfying the

following Neumann problem

(0k,VV) i = (Mx(Ri),v)k + Y, (Ryx,v), forallve H(Q). (7.24)
VEFK

As was mentioned before this problem will have a solution if and only if the residuals satisfy the

compatibility condition

0=(Mk(Rx),)x + > (Ryx,c), forallceR. (7.25)
YEFK

Hence, we can finally rewrite the error equation as

Ble,v) = > (0K, Vv) + (¥ =g (¥),0)x) . (7.26)
KeP

7.5 Construction of the equilibrated boundary fluxes in

3D.

In order to obtain a guaranteed upper bound for the error, we need to construct an appropriate
set of equilibrated boundary fluxes g, x € P1(7) which, based on [16], need to satisfy:
Consistency: If v = Fx N Fg for K, K’ € P, then

g'y,K + g,ny/ = 0 (727)
Full first order equilibration: For all n € Vi,

0= (HK(f)a)‘ )K_BK(utha ) SK(uhaf A ) Z (g%K’)‘n)'ya (7'28)
yEFK
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where Bx (up|i, An) = V(Vup i, VAn)k + (@ Vg, An)k + K(up g, An) i, for all K € P. In
terms of the residual, (7.28) can be written as
(Mg (Ri), An)k + > (Ryi, An) = Sic(un, f50,) =0 for all n € V. (7.29)
YEFK

Since the flux g, i is a linear function on each edge, it is uniquely determined by the moments

M}Y(,n - (g’y,K; An)yv ne V’y' (730)

We briefly outline the main steps to obtain all the moments yJ; ,,, which is virtually identical to

the one described in Section 4.2. Let

L —Jy k) ifye FxNFgr,
(J)o i = 5 (Jy i y.K") v K K (7.31)
K if v € Fx N JFp,

S~

with
Jyx =vVup i -0l for v € Fi. (7.32)
We look for the moments iz, of g, x in the form

1 .
Wen = 2 (gK,n - fK/,n) + (<J>7,K, /\n),y itye FxNFgr, (7.33)
Ekn + (Jyi5 An)., if v € Frx N JFr,

where the parameters {k ,, are obtained by solving a system of equations analogous to (4.24):
1 -
5 Z (Erxm —Exrn) + Z Ern =Ax (M) VK €Q,, (7.34)
K'eQ, Nk YEFrNFrNF,

where

A (/\n) :BK(UMKa /\n) + SK(uhvf; /\n) - (fv AH)K - Z (<J>7,K7>\n)
YEFK

. (7.35)

As we stated before, (7.34) represents a system of #(2,, equations for ££2,, unknowns, but we
already know that we can always find a solution which depends continuously on the data
{A k(An), K€ Qn} provided that the following compatibility condition holds:
Z Ag (M) =0 forallneVand e, ¢T, (7.36)
KeQ,

which follows at once on using the definition (7.35), (7.18) and taking v = A, in (7.17).
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7.6 Solution of the Neumann problem.

The Neumann problem to be solved in this case is

7diV0‘K = HK(RK) OHI{7 (737)
O'K-’fL,IY( = Ryk in each v € Fk.

The following result provides a solution to (7.37), based on the orientation of the vertices and

normal vectors in Figure 7.1 in the three-dimensional case.

Lemma 7.6.1. The following function is a solution to (7.37),
4
Z ( v K5 z+1)77_. Y1+ Ry K, )\z‘+2)% V42 + (R K, )\z‘+3).ﬁ Viits (7.38)

+ ([KIV(Ik (Rk)) - (a jK))T,bx,z),

where the functions .. and . are given in (7.7) and (7.8), respectively, i € Vi = {1,2,3,4}
and the indices are to be understood module 4. Moreover, there exists a constant C independent

of any size of the element K such that

1/2
okl acre sc<hK|HK<RK>||Lz<K>+ Y ||R7,K||LW>. (7.39)
YEFK

and the constant C' is independent of hi, px and p, K

Proof. From (7.28), (7.6) and Sk (up, f;1) = 0, implies that the element residual i (Rx) and
the edge residuals R i satisfy (7.25), i.e. a condition like (7.11), then taking px = Rx and
Py, = Ry, x (7.12) and (7.13) in Theorem 7.1.3, the result easily follows. O

In the two-dimensional case the following result holds as a complete analogue to the previous

result.

Lemma 7.6.2. The following function is a solution to (7.37),

3 .
=Z(<RW,K, Nis )y, B+ (Rawrc i), B, + (KIVI(Ric)) - (= Tc)) §?>,
(7.40)

where i € Vi = {1,2,3} and the functions ¢A and ’l/)K are given in (2.12) and (2.13), respec-

tively. Moreover, ezists a constant C' independent of any size of the element K such that

1/2
ol e sc<hK|HK<RK>|L2<K>+ Sy ||R7,K||LW>. (7.41)

yEEK
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Proof. The result follows using exactly the same argument as in the three-dimensional case, but
just restricted to the construction of the boundary fluxes and the properties of the barycentric

functions in the two-dimensional case. O

7.7 A guaranteed upper bound for the error.

In the following we present the analysis to obtaine a fully computable upper bound assuming
that x > 0. From the properties of the orthogonal projection and with the aid of the Poincaré

inequality (see Theorem (2.1.1)), we get

(\If — HK(\I/),’U)K = (\I/ — HK(\I/),’U 75]{)[{

hi
< P o D () a0 90
hK
\/_

and simply applying the Cauchy-Schwarz inequality we obtain

< =V = Tx (W)l 2 vl

(W — g (W), 0) i < (| =g (V)| L2 [0l L2 (x0) \/—H‘I’ g (W) 20 1ol -

Hence

(\IJHK(\m,v)Kgmm{ 2 }}nw e (0) |2y ol (7.42)

Applying the Cauchy—Schwarz inequality with (7.42) in (7.26), then we obtain

B(e,v) = Z ((UK,VU)K + (¥ — Ik (V),0)k)
KeP

Z (oteortiran +min{ 225, 2 19 = @) o )

<§,<I"”K”LZ<K>”““{ v L >IIL2<K>>2>W Iollo

Now taking v = e in the previous bound and then dividing both sides of the inequality by |le]|,,

IN

IN

we obtain the following result.

Theorem 7.7.1. For each element K € P, define a local error indicator as

1

e = ol +mm{ ff}nw e () 1 (7.43)
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where ok given by (7.40) in the two-dimensional case and by (7.38) in the three-dimensional

case. Then

2
lellg < * = > k. (7.44)
KeP

7.8 Efficiency of the estimator.

From Section 7.4 and using the definition of the residual operator Ry, we can rewrite the error

equation as
> | Ri) vk = Y (11, 0) (7.45)
KeP yEFK v

=v(Ve,Vu), + (a-Ve,v), + K (e,v)q — Z (O — g (P),v)k,
KeP

where

l 7’ 1 7’
[J]_Y: 2(J,Y,K+J%K) 1f7€.7:Kﬂ.7:K, (7,46)
0 if v € Fx N Fr,

with J, x given by (7.32).
Now we will apply standard bubble functions arguments, used in all the previous chapters,

to the previous error equation.

Lemma 7.8.1. The orthogonal projection of the element residual Ry satisfies
Wi Mk (R 2 gy < € (MBI + W% — T (0) i) (7.47)
where

_ Vv lallz=x)
MKmaX{hK,i\/; AE . (7.48)

Proof. Letting Bk = H A, and extending it by zero to Q\ K we obtain Bk € Hg(Q). Taking
neVi
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= ﬂKHK(RK> in (745), we obtain

1/2
k(R H
Hﬂ K K) L% (K)

=v(Ve,V(BxIlk(Rk))) i + (a- Ve, Bk (Ri)) i + £ (€, BTl (Ri)) i

+ (U —IIg(¥), Bx Ik (RK)) i

v oz
< VIVl o) 3 1T (R iy + =V Ve BTl (Rl i

+ Vel o Ve Bk (Rl L2 ey + 1 = Tk (9) | 20y 1Bk (R | 2

Yz ||a||L°°(K)
< C(max{m, T, VE (\/;||V€||L2(K) + \/EH€||L2(K))

1/2
+ || — HK(‘I’)”LZ(K)) HﬂK/ HK(RK)HL?(K)

v lallpex
<C (max{h\/—;, #, \/E} el + 1% = T (W) 12 1 ) Hﬁl/z K)‘

NG L2(K)’
upon using the Cauchy—Schwarz inequality and Theorem 2.1.2. Now the result follows using the
fact that [[Ix (R ) 25y < C ﬂ}(/QHK(RK)‘ () (again using Theorem 2.1.2). O
L2 (K

Lemma 7.8.2. The jump discontinuity in the approximation of the normal fluzes at interelement

boundaries, satisfies

S bl ey <€ 30 (Miahdolleler + W ¥ — T () Baen) - (7.49)

YEFK K'eQp
Proof. For v € Fg NFr, let B, = H An, and extending by zero in the region 2\ €2, we obtain

neVsy
By € HY(Q). Taking v = —3,[J], in (7.45), we obtain

263201

ML)

= Z ( —v(Ve,V(By[J]1) g — (@ Ve, By[J]y) e — 6 (€, 851y )

KeQ,
+ (‘IJ - HK(\II)vﬂ’Y[J]’Y)K + (HK(RK>a ﬂ'y[J]'y)K>

lal| oo (10 P L2

ML) Vv

VZIIVellzaqe || B32171,

<C > (\/;HV@HL?(K) 7 Hﬁl/Q

2
KeQ, L2(v)

Vi el ey ViR |82,

132 (I (Ri) ) + 19 = Tae(9) | ey ) || 821011

! LQ(W))

L2(v)
B2 Vv llal L k) 1/2 1/2 ’
<c)d A il Sl €3] - )
CKEQ ( {hK, Vv Vel + hi N =T (W)l ) |85 L2(y)’

upon using the Cauchy—Schwarz inequality, Theorem 2.1.3 and (7.47), with a similar bound for
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the remaining faces. Now the result follows using the fact that [|[J]y[| 2y < C Hﬁ}y/Q[J]»Y‘ .

(again using Theorem 2.1.3) and summing over all the faces in the element. O
Following exactly the same steps as in the proof of Theorem 4.5.1, but now applied to the
fluxes constructed in Section 7.5 in conjunction with Lemma 7.1.2, it follows that

2 ~
e =€ 2 2 ’AK'(A")

neV, K'eQ,

2
)

(7.50)

|9 = ),
where A+ (\,) is given by (7.35). Integrating by parts in (7.35), the definition of the stabilization
term, (7.46) and (7.31), yields

‘AK()\n) (7.51)

= (HK(RK),)\n+7‘Ka'v)\n)1<+(‘I]_HK(‘I])aTKa'V)‘n)K_ Z ([7]45 An)
VEFK

~

Now each term on the right hand side can be bounded as follows,

(HK(RK),)\n +TKka- V)‘n)[( S HHK(RK)HLZ(K) (H)‘HHLQ(K) + HTK(I . V)‘nHL?(K))
3/2 1/2
< Ok (Rl sy (3L + 7l oao lall o= il
< Ch?}(/QHHK(RK)HLZ(K),

upon using the mesh regularity, the Cauchy—Schwarz inequality and assumption (7.20). Similarly

the second term can be bounded as

(\I/ - HK(\I’),TKCL . V)\n)K < C”\I/ - HK(\P)HLZ(K)HTKC" . V)\n”L?(K)

||TK||Loo(K) ||a||L°°(K)
hil?

< Chr||¥ — g (9)]| L2 (k)

< ORI — T (9) 12 (s,

again using the mesh regularity, the Cauchy—Schwarz inequality and assumption (7.20). Finally,

the third term can be bounded as

> W)y < D2 bl

vEFK vEFK
Inserting the previous bounds into (7.50), yields

’ (7.52)

hic Hng B <J>%K’ L2(%)

<C Y Y | el (R 720y + Moo 19 = T (0)[ T2y + Y, b 7041720
nev, K'eQ, NEF s
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Using the result from Lemma 7.8.1 and Lemma 7.8.2, in the previous bound we obtain the

following result.

Lemma 7.8.3. Let {g,.kx} be the set of equilibrated boundary satisfying the consistency and the

full-first order equilibration conditions, described in Section 7.5. Then, for each element K,

<O D Michiollelz +hio ¥ — T (V)| 50

2
L2(v)
K'eQx

3 o0
YEFK
(7.53)

Using Theorem 7.7.1 and Lemma 7.6.1, we can bound the local error indicator ng as follows

1 . hk 1 ’
Nk < C <;||0K|2L?<K> * (mm{w—\/;’ ﬁ}) 1= HK(‘II”%Z(K))

1
< c(;(h%(mx(nxnim b X (el = Dl + il ) )
VEFK

- (min{%,%})QH\IfHK(\I/)|%2(K)>. (7.54)

Now, from Lemma 7.53, Lemma 7.8.2 and Lemma 7.47, we obtain
<o Y Lnzoaliele + (5 y (i { P L Vs (o)
Nk = Y NN 1/ NN K K K’ |-
K'eQg
The above inequality induce the definition of the following constant

1 1 h2
D2 = —h2 M2 4maX{Z,Pe%(,HVK}, (7.55)

14

whose limiting behaviour is given by

1 ifv> ||alpe) and v > &,

% = Pe if [lallpe) > v and ||a L) > k. (7.56)

2
Khye
v

if K> |lal| L~y and K > v.

To summarize, collecting all the results in this section we obtain.

Theorem 7.8.4. The local error estimator ng, given in (7.43), satisfy

h2 hee 1)\
2 ’ . K
me<C ), (@%«manw( % +(m{77}) )”‘I’”‘“K'<‘I’>lliz<m),

K'eQp

where @ is given by (7.55).
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Remark 7.8.5. In the case when k =0, following exactly the same arquments it follows that

2
llell$, := vIVellZoi) < ° =D ni.
KeP

where
= okl + 2w~ T ()]
K = NG KIL2(K) ™ K L2(K)-
In the local efficiency the same result holds, but now defining the constant My as

Vv lallz=x)
hi’ '

MKmax{ Nz,

7.9 An explicit formula to compute the norm of the solu-
tion of the Neumann problem.

In this section we will present formulas to compute the norm of the solution of the Neumann
problem in the two and three-dimensional case.

Formula in the two-dimensional case: First we present an explicit formula for the solu-
tion of the Neumann problem in the two-dimensional case. Let the edges, vertices, tangent vectors

and unit normal vectors of an element K be labelled as in Figure 2.1. Then, for i € Vx = {1, 2, 3}

define
621 -—-1161 27 1647 —1917 18
My =| —1161 2241 —63 |[t2-t2+ | —1917 1647 18 |l2-13
27 —63 4 18 18 —4

2241 —-1161 —63
+ | —1161 621 27 | t3 - ts3,
—63 27 4

with My and M 33 being defined by permuting the indices and

—702 —378 144 405 —1215 144
Mo = 432 108 —T72 |ti-ti+ | —1215 405 18 [ti-t2
9 45 -6 18 144 —14
108 —378 45

+ | 432 =702 9 | t2-to,
—72 144 —6
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with Moz and M 3; being defined by permuting the indices and

27 108 27
M= | —27 |ta-ta+ | —108 |[ta-t3+ | —27 | t3-ts,
-3 0 3

with Moy and M 3¢ being defined by permuting the indices and

(R A2)y,
51 = (Roi 55 A3)m )
|K[V(IIk (Ri)) - 21
with S5 and S3 being defined by permuting the indices. Now, let

1

T
(3006, 3,.0) i = 3330777 S0 MiaSi
1
_ =——8TM;
(o-’Y'uK’o-QK)K 3240|K| (3 0,

1 5 ’
0K = Corioor) . (Z(U—yi,KyaO,K)K> ;

00.K,00,K) g \ =
where

9

=——(t; - t to -t ts-t to-t ts-t t1-ts).
3240|K|(1 14+ta-ta+tz-ts+to-ts+ts-t1 +t1-ta2)

(00,K,00,K) g

Now, following very similar arguments as the ones given in proof of Theorem 4.6.1, we have that
the following formula gives the norm of the solution of the Neumann problem (7.37), minimized

over a cubic bubble space.

2
(bKEHéI(I}gI)lﬂIPg(K) lox — bK||L2(K)) = (091,K, Oy k) ¢ T (072K, 0 K ) ¢ + (O, 10, Oa K ) ¢

+2 ((0'7211(7 UVz,K)K + (U'YsyK’ U'h,K)K + (U'va 0'72,1()1()
— 0K- (7.57)
Formula in the three-dimensional case: Now we present an explicit formula for the

solution of the Neumann problem in three-dimensional case. Let the vertices and unit normal

vectors of an element K be labelled as in Figure 7.1. Then, for i, j, k,l € Vi = {1,2, 3,4} being
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distinct define

12684
—4326
—4326

—140

—5894
—1442
8680
—49

1540
—1442
—1442

42

and
]ylrlﬁj —
—2506
1162

672
14

—1232
1358
—798

—1246
—5600
8190
—63

where

—4326 —4326
1540 1442
1442 1540

42 42

—1442 8680
1540 —1442

—1442 —5894

42 —49

—1442 —1442

—5894 8680
8680 —5894
—49 —49

—2506 —1036

672 182
1162 182
14 84
7658 —1722
672 —14
—9002 1064
0 105

—1246 1148
8190 —1246

—5600 —1246

—63 70

—140
42
42

—49
42
—49

42
—49
—49

504
—168
—168

—-315

tij - tij +

tij - ta+

tip -ty +

tij - tij +

tij -ty +

ti -ty +

tij =I; —

—5894

8680

—1442

—49

1
—4

540
326

1442

1

1

42

540
442

—4326

7
-9

42

658
002
672

—3738

11802

—4032

—182

1246

1442

—4032

56

8680
—5894
—1442

—49

—4326
12684
—4326
—140

1442
1540
—4326
42

—1232
—798
1358

1246
—4032
1442
56

—3738
—4032
11802
—182

—1442
—1442
1540
42

1442
—4326
1540
42

—4326
—4326
12684
—140

—1722
1064
—14
105

1148
—3738
1246
70

1148
1246
—3738
70

—49
—49
42

42
—140
42

42

42
—140
4

—315
427
—56

70
—182
56

70
56
—182

140

tij - tin+

tig - tig+

ty -t

Lij - tin+

tig - tip+

ty - ti,
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Now, define
( %,Ka )% ( vj,Ka)‘k)%
i, >\ Q . s K >\l e
S}ik,z _ ( i KK k)'y and SZ?l,i _ ( Y )’Y
( Vi, K )\l)'}’r ( Vis K )'YJ
| [KIVIk(Rk)) - (#; — Fx) | | [KIV(Ik (Rk)) - (x; — Tk)
and also let
1

(87, ) TMIESY

(0K, O K) ¢ = LN Joksl

13440(K]|

1 i \NT i QY
(U'YivK’a-'Yij)K = 13440|K|(S;:k,l) Nkl JSle 80
Following very similar arguments as the ones given in proof of Theorem 4.6.1, we have that the

following formula gives the norm of the solution of the Neumann problem (7.37)

2
HUKHL2(K) = (7.58)
(o-VhK’o-VhK)K + (0'72,K,0'72,K)K + (0'%71(,0'73,1()1( + (‘774,1("7%,1()1(
+ 2((‘77171("77271()1( + (o'vz,Kao'vs,K)K + (‘77371("77471()1( + (O'M,Kao'vl,K)K

+ (U’n,Kv U'Ys,K)K + (U'YzyK’ 0'7471()1()-

By setting 4, j, k and I to the appropriate values all ten terms on the right hand side of (7.58)

can be calculated:

i=1, =2, k=3, =4 yields and

i=3, j=4, k=1, 1=2 vyields

(
i=2, j=3, k=4, l=1 yields (0, k:;0. K
(
(7.59)
(

) (
)i and (04, K, 04, K
O3 K 05.K) e and
1=4, j=1, k=2 1=3 yields ) and (
i=1, j=3, k=2, =4 yields (04, ,k:0,K)x;

, J=4, k=3, I=1 yields (0y,K,0,K)x-
7.10 Numerical results.

In this section we present two series of numerical examples to illustrate the performance of the
error estimator.
In the extensive literature for stabilized finite element methods for problem (7.4), there exist

many different designs for the stabilization parameter 7. In terms of practical applications and
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following [72] (see Remark 8), we tune the stabilization parameter as follows:
DK pege > 1,
i = ¢ 2laz)| (7.60)
0  if Pex <1,

where the local mesh Péclet number is given in (7.21).
In the experiments we calculate the exact and the estimated error in the energy norm || - ||,
on a sequence of uniformly and adaptively refined grids, respectively. As a local error indicator

for the adaptive algorithm we use (see Section 7.7)
= sl +min § =22, —
— 2 min§ ——=, —
N A NN
hk .
\/—;||0KHL2(K)+m||‘I’—HK(‘I’)HK if K =0.

}”‘I’—HK(\I]”K if:‘i>0,

Nk = (7.61)

where the minimized norm of o i is given by (7.57) in the two-dimensional case, by (7.58) in the
three-dimensional case and W is given by (7.23). The triangles are marked using the maximum

strategy (mark K if g > Nmax/2). We summarize the adaptive algorithm in Table 7.1.

Adaptive mesh refinement algorithm [AMRA-CDR].

1:  Set ¢ =0 and construct a mesh P(;).
2: For each element K in P(;), compute:

- llo k|2 using (7.57) when d = 2 or (7.58) when d = 3.

- [|W — g (V)| 2(k) using an appropriate quadrature formula,

where W is given by (7.23).

- nx using the previous two steps and (7.61).

3: Triangle K is marked for refinement if
K 2> %Kné%ﬁ) {nx}-

4: From step 3 deduce a new mesh.

5: Set ¢ < 7+ 1 and return to step 2.

Table 7.1: Adaptive mesh refinement algorithm for an advection-reaction-diffusion problem.

The global error estimate is, according to (7.44), given by

n= (Z ni)lﬂ-

KeP

n

As before, we denote by Ndofs the number of degrees of freedom and we denote by © = —||| I
€lla

the effectivity index.
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First we illustrate the performance of the error estimator in the two-dimensional case with
two representative examples, where we let the domain Q = (0,1)? be a unit square and the first

mesh P(gy to perform the adaptive algorithm is given in Figure 7.2.

Figure 7.2: Initial mesh Pg) for Examples 1 and 2.

Example 1: For this example we choose v = k = 1 and a = [1,1] and the exact solution for
(7.14) is given by

w=ay(l —a)(1 - y).

Example 2: For this example we let the exact solution for (7.14) be given by

—(1—z)/v _ ,—1/v
e €
u:y(l—y)(ac— 1 _e-1/v )7

where v > 0, k > 0 and we take a = [1,0].

Ndofs 13 39 116 393 1348 2868 6970 13302 33809
S} 24.13 145 943 6.43 449 323 243 1.96 1.51

Table 7.2: Effectivity indices from Figure 7.4 (top).

Ndofs 13 40 119 331 883 2059 6247 12303 30873
S} 26.36 14.33 9.11 6.25 443 32 241 1.95 1.5

Table 7.3: Effectivity indices from Figure 7.4 (bottom).

In Figures 7.3 and 7.4 we present the accuracy and effectivity indices for Examples 1 and
2. For Example 1 in Figure 7.3 we can see that when all the physical parameters are of order

one and the solution is smooth the error estimator is very accurate. For Example 2 in Figures
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10 2.3
o el i
. o= 2.2} —o— 0 =1/l
o |-~ Ndofs—1/2
10"
2.1t
,2 27
107
1.9t
-3
10 1.8
10° ' 10° 10° , 10°
Ndofs Ndofs

Figure 7.3: Accuracy (left) and effectivity index (right) for Example 1, using adaptive refinement
over the mesh P from Figure 7.2, based on the AMRA-CDR algorithm (see Table 7.1).

7.5 and 7.6 we can see that most of the refinement is taking place in the boundary layer at
x = 1 and when the layer is resolved we can see from Figure 7.4 and Tables 7.2 and 7.3 that the
error estimator is very accurate. In Figures 7.7 and 7.8 we present the local contribution to the
error indicators of the norm of the solution of the Neumann problem and the oscillation term for
Example 2, where we can see that the oscillation term is negligible compared with the norm of
the solution of the Neumann problem as expected.

Next, we illustrate the performance of the error estimator in the three-dimensional case, with
two representative examples where we let the domain €2 = (0,1)? to be a unit cube and the first

mesh P(gy to perform the adaptive algorithm is given in Figure 7.9.

Example 4: We choose v = k = 1 and a = [1,1,1] and the exact solution for (7.14) is
given by

u=ayz(l—a)(1 —y)(1—2).

Example 5: The exact solution for (7.14) is given by

67(17I)/u _ 671/1}
1—e /v ’

u=yz(1—y)(1-2) <z

where v = 1073 and we take k = 1 and a = [1,1,1].
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—&—n
®\®\® -~~~ Ndofs~1/2

— 5

eliq

_ 10
Ndofs
—=— |leflg
—e—1
®\®\® ---- Ndofs—1/2
10°

Ndofs

25

20

157

107

30

257

20¢

157

10r

145

1

— \ —o— 0=/l

Ndofs

Ci+9:n/ll

|

o

Ndofs

10

Figure 7.4: Accuracy (left) and effectivity index (right) for Example 2 taking v = 1072 and x = 1

(top) and x = 0 bottom, using adaptive refinement over the mesh Py from Figure 7.2, based

on the AMRA-CDR algorithm (see Table 7.1).

Figure 7.5: A series of adaptive refinements for Example 2 taking v = 1073 and x = 1.
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Figure 7.6: A series of adaptive refinements for Example 2 taking v = 1073 and x = 0.

lo sz /v min{h /(m/v), 1/v/RHIY = T (9)] 2xc)

0.01 0.01
0.008
0.006
0.004
0.002
0

Figure 7.7: Local contribution of norm of o i and the oscillation term to the local error indicator
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for Example 2 taking v = 1072 and k = 1 on a fixed mesh with 1678 elements.

lo w2y / Vv (hic/(my/0)) | ¥ =TIk (9)]| 2k

0.01 0.01
0.008
0.006
0.004
0.002
0

Figure 7.8: Local contribution of norm of o i and the oscillation term to the local error indicator

0.008

0.006

0.004
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3
5
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5
X
5
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%
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for Example 2 taking v = 1072 and x = 0 on a fixed mesh with 1678 elements.
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0.5+

0.5 0.5

Figure 7.9: Initial mesh P(g) for Example 4 and 5.

—= [lellg

2.8

—o—0=1n/[elq

e/ 1/3
o | -~ Ndofs™ /3
2.6

2.4

2.2

-4
10 : : 16 : :
10° 10 o* 10° 10° 107 10* 10°

1
Ndofs Ndofs

Figure 7.10: Accuracy (left) and effectivity index (right) for Example 4, using adaptive refinement
over the mesh P from Figure 7.9, based on the AMRA-CDR algorithm (see Table 7.1).

From Figures 7.10 and 7.11 and Table 7.4 we can see that the error estimators also provides
an accurate guaranteed upper bound for Example 4. This accuracy is also presented in Example

4 whenever the boundary layer is resolved.

7.11 Conclusions.

In this chapter we proposed and analysed a fully computable a posteriori error estimator, pro-
viding a guaranteed upper bound for the advection-reaction-diffusion problem discretized with a
SUPG stabilized finite element method.

The results presented in this chapter are going to be presented and extended to consider
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—5— [lellq,
—©—n
-~ Ndofs~1/3

4

10
Ndofs

10

148

200

150

100

50

—o— 0 =1/[ellg

10
Ndofs

Figure 7.11: Accuracy (left) and effectivity index (right) for Example 5 taking v = 1072, using

adaptive refinement over the mesh Py from Figure 7.9, based on the AMRA-CDR algorithm

(see Table 7.1).

Ndofs (C] Ndofs (C] Ndofs G} Ndofs S}
8 181.97 | 581  25.51 | 12474  6.795 | 130097 3.82
10 172,99 | 771 20.22 | 14238 6.522 | 190479 3.69
13 158.46 | 1160 16.77 | 18230 6.060 | 205717 3.64
15 113.03 | 1219 15.90 | 23542 5.599 | 239152 3.56
24 99.41 | 1780 13.65 | 24783  5.467 | 295470 3.44
38 103.14 | 2339 11.91 | 30190 5.223 | 311214 3.39
47 85.47 | 2432 11.59 | 37654 5.023 | 390755 3.31
71 74.29 | 3360 10.32 | 46831  4.83 | 405401 3.27

108 70.74 | 4262 9.336 | 51533  4.70 | 453903 3.23
131 61.07 | 4950 8.683 | 68225  4.44 | 500134 3.2
157 58.48 | 6200 8.043 | 87535  4.18
283 42.25 | 7249 7.623 | 98462  4.03
419 33.19 | 8344 7.314 | 120094 3.89

nonhomogeneous Dirichlet and Neumann conditions in [7].

Table 7.4: Effectivity indices from Figure 7.11 right.
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Conclusions and future work.

In this manuscript we have presented fully computable a posteriori error estimators, providing
two-sided bounds in errors measured in energy or natural norms, for a Stokes, Poisson and an
Advection-Reaction-Diffusion problems. More remarkably, the error estimators provide guaran-
teed fully computable upper bounds, which allows to establish a stopping criterion for adaptive
refinement algorithms.

The treatment to obtain these error estimators was mainly based on the study of the error
equation. In order to obtain fully computable upper bounds, the key step was to rewrite the error
functionals as a local Neumann problem, for which explicit solutions can be obtained. For the
Fortin—Soulie nonconforming finite element approximation this was achieved by the construction
of a proper projection operator preserving constant functions. For conforming and stabilized
conforming finite element approximations the equilibrated residual method allows such rewriting.
Now, in the case of the Stokes problem, in order to improve the accuracy of the error estimators
the gradient of the velocity field is orthogonally decomposed. Finally the local efficiency of the
error estimators follows by classical bubble function arguments.

In terms of future work we would like to address the following topics:

e A study of the convergence of adaptive algorithms using our a posteriori error estimator,

especially when boundary fluxes are used.
e Extend our results to anisotropic mesh adaptation and curved domains.

e Incorporate nonhomogeneous Dirichlet and Neumann conditions into the a posteriori error

analysis in a more general framework.

149
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In the case of incompressible fluid flow problems, we would also like to achieve:

e Fully computable a posteriori error estimators for Stokes/Oseen/Darcy and coupled Stokes-
Darcy/Oseen-Darcy three-dimensional problems for inf-sup stable conforming and stabi-

lized conforming finite element approximations.
e Study the time-depended version of the previous problems.

In the case of the convection-diffusion-reaction problem, we would like to address the following

topics:

e Obtain a fully computable error estimator being robust in the sense that the ratio of
the upper and lower bounds should be uniformly bounded with respect to the size of the
convection and dissipation coefficient and the error being measured in a pure energy norm.
The method of the minimum energy extension for the equilibrated residual method, first
introduced in [9], already provides a fully computable and robust error estimator for a
singularly perturbed reaction-diffusion problem in [17], and it can be a starting point in

order to obtain the desired robustness.
e Extend the analysis for a wider family of stabilized methods like the ones given in [73,76,81].

Finally we would like to extend the a posteriori analysis for the Navier-Stokes equations.
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