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Abstract

This thesis primarily concerns control and identification of FPSO and Shuttle
Tanker vessels, where nonlinear hydrodynamics raise the associated issue of non-
linear control. A 3-DOF model is presented for investigating Dynamic Positioning
control, a problem where directional thrusters maintain ship position and head-
ing against environmental disturbances. The coupled, multivariable dynamics are
controlled using rapid tuning techniques to decouple the plant, yielding successful
multivariable PI feedback designs. Identification of a coupled FPSO and Shuttle
Tanker is achieved using an MLP neural network. Initially, the network is trained
with simulation data for proof of concept, before employing real data from a Mit-
subishi Heavy Industries scale model. Identification is successful, but performance
degrades with increasing wave height. Two adaptive controllers are developed,
based on polynomial LQG and LQGPC optimal control theory. The first uses
a standard stochastic cost, approximated to produce a restricted structure con-
troller that permits optimisation across several plant models at once, yielding a
multiple model controller. Augmenting linearised ship models with online identifi-
cation produces adaptive control giving interesting trade-offs between robustness
and performance. The second adaptive controller is very similar, but based on a
multi-step predictive cost function. Both controllers are applied to FPSO surge
axis velocity control, where the LQGPC version produces better performance for
a wave-induced reference. A multivariable nonlinear controller is examined for
"sandwich” systems consisting of a linear transfer function ”sandwiched” between
input and output nonlinearities of a particular form. This system description is
substituted into the solution of a time-varying polynomial optimal control prob-
lem, where the assumption of a frozen plant at each sampling instant requires
slowly-varying plant signals in practice. The controller is successfully applied to
a 2 x 2 plant with deadzone input and backlash output, with a demonstration

that the performance is superior to a well-tuned linear controller.
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Preface

Original Contributions of the Thesis

The original contributions of the thesis can be summarised as follows:

1. Successful demonstration that existing multivariable techniques due to Davi-
son, Penttinen and Koivo, and Maciejowski can be applied to the ship dy-

namic positioning (DP) problem for rapid preliminary tuning.

2. It is established that a neural network has the capability to successfully
learn and generalise the dynamics of a coupled-ship system from real data

provided by a Mitsubishi Heavy Industries 1/50th scale model.

3. A new kind of adaptive controller is proposed based on polynomial optimal
LQG theory, which combines the robustness of multiple models and the
performance of standard adaptive control with the simplicity of a restricted

structure controller. A successful ship DP example is given.

4. A novel adaptive predictive controller is proposed based on polynomial op-
timal LQGPC theory, which combines the robustness of multiple models
and the performance of standard adaptive control with the simplicity of a
restricted structure controller. A successful ship DP simulation example is

given, where the performance is better than in the earlier LQG case.

5. A nonlinear control design idea based on time-varying control is extended
to the multivariable case, where a MIMO example shows that superior

performance over a fixed linear controler is possible.
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Outline of the Thesis

Chapter One presents a short introduction to control theory applied to ma-
rine systems, followed by a discussion of the background and motivation for the
forthcoming ideas in the thesis, in the areas of Dynamic Positioning (DP), ship

identification and nonlinear control.

Chapter Two is an investigation of simple multivariable tuning techniques ap-
plied to the ship Dynamic Positioning (DP) problem. A non-linear ship model
is detailed and linearised to form the basis of much of the work in the thesis.
Four candidate tuning methods are introduced, each one decoupling the plant in
a different range of frequencies. The control system structure is then given before
applying each technique in turn to a linearised model. The results show that it is
possible to rapidly tune a true multivariable controller for the DP problem, which
will satisfy the constraints on thruster input demand and produce low positioning

error.

Chapter Three is an application of neural networks to the problem of identify-
ing coupled ship dynamics. The initial identification is performed on the model
used in Chapter Two, in order to confirm that the technique is feasible for use
with a real ship. The results are positive in this case, hence data supplied by
Mitsubishi Heavy Industries from a 1/50th scale model is used in place of simu-
lation data. It is found that the network is able to learn the dynamics, although

the results are operating point dependent and are best when wave disturbances

are small.

Chapter Four develops an adaptive controller of restricted structure. The tech-
nique is based on a multiple model optimal control solution for a system stated

in polynomial form. A frequency domain cost is minimised across a set of linear
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models, to produce a controller in PI form. The set consists of several linearised
models at common operating points, and the adaptive aspect is introduced by
updating the set of linear models with another one that is identified via recursive
least squares. At each sample step, the previous identified model is discarded
and replaced by the latest data. In this way, the controller provides robustness
via optimisation across a known set, and performance gains by incorporating the

latest information.

Chapter Five builds on the previous Chapter by including a multi-step pre-
dictive cost criteron in the algorithm. This linear quadratic Gaussian predictive
control (LQGPC) problem is initially stated in state-space form, with stochastic
disturbance and reference generating models. Optimising over the future control
signals allows the cost to be posed in a standard LQG form, thus leading once
more to an adaptive multiple-model restricted structure controller. The example
in both Chapters Four and Five is the ship DP control problem, allowing com-

parisons to be drawn between predictive and non-predictive controllers.

Chapter Six introduces a multivariable nonlinear controller that is based on
the solution to a time-varying optimal control problem. The nonlinear plant is
stated as a linear transfer function with input and output non-linearities, a so-
called "sandwich” system. These non-linearities are posed in a particular form
such that they act as a time-varying multiplier of their input signals. By freezing
the time-varying description at each sampling instant, the infinite-time optimisa-
tion problem becomes tractable, hence a solution is obtained by calculating the
controller online using nonlinearity-dependent polynomials. This approximation
is not too great provided that the plant input and output signals vary slowly.
The controller is simple to implement and a 2 x 2 system example is simulated,

which yields results demonstrating that the achievable performance is superior to

a fixed linear controller.



Chapter Seven provides a summary of the previous Chapters and presents new

directions for research leading on from the current work.

See Appendix A for the notation used throughout the thesis.
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Chapter 1

Introduction

1.1 Control and marine applications

Feedback control ideas have been applied to marine vessels for almost a century
now, with the first known example being an automatic ship steering mechanism
constructed by Elmer Sperry in 1911. This contraption, known affectionately as
”Metal Mike” (www.sperry-marine.com), used the gyrocompass patented by H.
Anschutz, in combination with automatic gain adjustments, to compensate for
changing sea states. Over a decade later, Nicholas Minorsky had been studying
the behaviour of expert ship pilots, culminating in the creation of a position feed-
back controller with three terms operating on the heading error. The detailed
analysis in Minorsky (1922) was responsible for the now widely-used Proportional-

Integral-Derivative (PID) controller.

This development preceded the so-called Classical Control period, where lumi-
naries such as Nyquist (1932), Black (1934), Bode (1940) and Evans (1950) de-
veloped a framework for analysis and design of feedback control systems. Within
this framework, it became possible to tune the response of a Minorsky course-
keeping controller with quantifiable stability margins and an understanding of

the behaviour of each PID term. Subsequent applications of control to marine
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vessels include forward speed regulation, where a hierarchy of control loops is
implemented such that propellor pitch, engine speed and thrust are controlled to
achieve a desired speed with optimal propulsion efficiency. Track-keeping systems
combine course-keeping and speed regulation with lateral sway control to guide

a ship along a route between way points.

Turning controllers allow the response of a heading change to be determined, often
using a model ‘reference scheme, rather than relying on the regulatory dynamics
of a course-keeping controller. Roll stabilisation is an important application, as
it provides comfort for crew and passengers, prevents cargo damage and assists
operations such as aircraft take-off and landing. The actuation is achieved by the
rudder, adjustable fins or a combination of the two, where controller design has
been carried out with a range of classical and modern control techniques. All of

the above applications are described in more detail in Fossen (1994).

1.2 Dynamic ship positioning

The marine application in this thesis is known as Dynamic Positioning (DP),
where the problem is to maintain a fixed vessel position and heading against en-
vironmental disturbances by using directional thrusters. The ship model in ques-
tion is for a Floating Production, Storage and Offloading (FPSO) vessel belong-
ing to Mitubishi Heavy Industries (MHI) of Japan. The model is multivariable,
highly coupled and nonlinear, but is linearised at several operating points for use
during the thesis. The vessel is subject to current forces and a standard distur-

bance spectrum due to wind and waves, all described in more detail in Chapter 2.

The DP controller is used for drilling and offloading activities and is essential
for safe operation, often in harsh conditions. The majority of previous con-

trol designs are linear, ranging from the early independent PID loop control of
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Schneider (1969), through the LQG designs of Balchen et al. (1976) and Grimble
et al. (1980a), with a H, approach recently by Katebi et al. (1997). Fossen and
Grovlen (1998) have introduced nonlinear observers and observer backstepping to
DP, while Yamamoto et al. (1998) have investigated fuzzy logic control with some
success. In Chapters 2, 4 and 5 of this thesis, some new control ideas are applied
to the DP problem, beginning with linear multivariable decoupling techniques to
facilitate rapid multivariable PID tuning for early ship trials or academic com-
parisons. PID control for DP has largely been ignored after the introduction of
LQG designs, thus the simple ideas in Chapter 2 are an original contribution and

form the basis for the remainder of the ship applications in the thesis.

After this consideration of the multivariable aspect of DP, Chapter 4 addresses
the nonlinearities to some extent. A restricted structure polynomial LQG idea is
extended to the multiple-model adaptive case, where linear representations of the
ship at different operating points form the set of multiple models. An on-line op-
timisation is performed across this set, augmented by an identified linear model,
so that the controller combines knowledge of potential ship descriptions with a
representation at a given sampling instant. Although not rigorously shown, it is
believed that such a control scheme provides a combination of robustness, via the
fixed set of models, and performance enhancement, via the inclusion of an identi-
fied model. The structure of the controller is PI, giving the benefits of simplicity

of implementation and transparency of operation.

The controller in Chapter 5 is similar to the above, but the optimisation is instead
performed on a multi-step predictive cost function. Both controllers suffer with
numerical problems and hence are applied to a SISO element of the overall ship.
The controllers give a novel contribution, both in terms of extending restricted
structure control techniques to a multi-model adaptive case and applying them

to the DP problem.
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1.3 Ship identification

As an adjoint to the main investigation of DP control, Chapter 3 of this the-
sis looks at identification of ship dynamics with a neural network. This study
was motivated by a problem encountered by MHI of Japan, where two ships are
coupled together with a metal hawser when oil is offloading from an FPSO to
a Shuttle Tanker. This problem has been investigated analytically in Morishita
et al. (2001) using hydrodynamical equations. The authors concluded that the
dynamics are complicated and there are numerous modes, stable and unstable
operating points present. The dynamics of such a coupled system are complex
and liable to modelling errors using first principle derivations, hence it was de-

cided to explore the potential of a "black-box” technique in this thesis.

Neural networks have a limited history of application to marine vessel motion
identification, with Haddara and Xu (1999) being one of the few examples, al-
though with a focus on heave and pitch dynamics. The only published research
known to this author on identifying motion relevant to DP with neural networks
is by Hardier (1995), who uses a multilayer perceptron (MLP) with tapped-delay
lines to learn the surge, sway, yaw and roll dynamics of a 1/12th scale model of

the Charles de Gaulle aircraft carrier.

In Chapter 3 an MLP is also used, but without the recurrence of the tapped-delay
lines. This is a simpler approach than Hardier, as the mapping is from the forces
on the ship to body accelerations, hence integrators are introduced to give velocity
and position signals. This method does produce cumulative errors in velocity
and position, but in practice these errors would be cancelled by a controller with
integral action. The contribution of Chapter 3 comes from demonstrating the
potential of a non-recurrent MLP for ship identification and from an application

to a coupled-ship system.
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1.4 Nonlinear control

The thesis has a theme of nonlinearities running through it as a consequence of
the ship application. Chapter 3 details true nonlinear identification, whilst Chap-
ters 4 and 5 address the problem through an optimisation across multiple linear
models. Practical techniques are in short supply for control system design applied
to a nonlinear plant, thus the final Chapter attempts to make a modest contribu-
tion in the area of nonlinear multivariable system control. In general, nonlinear
analysis and design approaches require approximations, complex mathematics or
are rather impractical. Methods such as Describing Functions, Geometric Con-
trol and Lyapunov theory fall respectively into these categories. In Chapter 6,
the controller has a rigorous foundation, yet is practical and simple to apply,

although some approximations are inevitably made.

The nonlinear control idea is based on the theory of time-varying linear systems,
where the behaviour of the nonlinearity is captured by a linear "snapshot” of the
system at a given sampling instant. A time-varying polynomial optimal control
problem is solved, which is then adapted for use with a so-called nonlinear ”sand-
wich” system. This system description comprises a linear transfer function block
sandwiched between input and output nonlinear functions of a particular form,
thus encompassing a considerable set of possible nonlinear plants. The polynomi-
als representing the nonlinear plant are substituted into the time-varying solution
and, assuming that the plant changes slowly, an approximate LQG type of solu-

tion is arrived at.

The plant in the example of the final Chapter is not a ship, unlike the previous
Chapters, as the algorithm is not numerically robust for multivariable systems of
order greater than one. Therefore, a fictitious 2 x 2 plant with deadzone input and

backlash output nonlinearites is used to demonstrate the value of the controller.



Chapter 2

Ship Modelling and Multivariable
Controller Tuning

This Chapter introduces the ship Dynamic Positioning (DP) control problem, de-
tails a nonlinear multivariable simulation model for a Floating Production, Stor-
age and Offloading (FPSO) vessel and presents four model-free linear methods for
rapid tuning of a multivariable PID controller. Controller structures are discussed
and the methods are applied to the simulation model at an operating point, thereby
justifying the use of linear tuning techniques. It is shown that some of the methods
are appropriate and that it is straightforward to produce a controller of acceptable
performance within the thruster input constraints of the ship. Simulation results

are presented and analysed at the end of the Chapter.

2.1 Introduction

This Chapter investigates the application of simple multivariable controller tun-
ing techniques to the Dynamic Positioning (DP) of a Floating Production, Stor-
age and Offloading (FPSO) vessel. The problem is described in van Calcar and
Morgan (1975) as follows: "Dynamic Positioning (DP) of a vessel refers to the

process of automatically controlling the vessel’s thrusters and/or main screws to
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maintain the vessel at a fixed position and heading and/or at a precise speed along
a selected track”. Fossen (1994) offers the definition: ” A dynamically positioned
vessel is a vessel which maintains its position (fixed location or predetermined
track) exclusively by means of active thrusters”. In this Chapter, DP will be

interpreted in the more modern sense, where speed control is neglected.

Published research in this area dates back over thirty years to early papers such
as Schneider (1969) and Harbonn (1971). Schneider (1969) discusses DP in a
very general sense, detailing the sonar position measurement system and gen-
eral aims of the feedback control law, and gives results taken from the Glomar
Challenger drilling vessel. There is no mathematical analysis of the vessel or
controller in the paper, but the Glomar Challenger control inputs are described
as a bow and stern side thruster in addition to a main screw, and the controller
is some form of Proportional, Integral and Derivative (PID) control in three in-
dependent loops. It is stated in the paper that position variations of less than 6
metres are "normal” in 1.1km water depth with sea state 1 and a variable wind
of 3.5 — 4.5m/s. The water depth is significant here because the accuracy of
sonar position measurement decreases with increasing depth, and the maximum
vessel deviation limit is stated as 3% of depth. In this case, deviations are less

than 0.5%. Also, notably, filtering of the position measurements is not mentioned.

The work of Harbonn (1971) details a five year study carried out with Terebel,
a French floating platform. An inclinometer, a taut wire to the ocean bed with
angle sensor, is used as position sensor for this 9007 onne vessel. The accuracy
of measurement with this system is also dependent on water depth. Fore and aft
pivot-type propellors with a thrust maximum of 2.7Tonnes are used as control
inputs. Again, three independent PID loops are used for control, and the tuning
is carried out by trial and error - A controller frequency response is given in

the paper, and wave-filtering of the derivative term is included. Station-keeping



2.1. INTRODUCTION 8

accuracy is quoted as better than 15 metres when drilling at a depth of 2.6km,
0.5% as with the Glomar Challenger, although the weather conditions are not

mentioned.

van Calcar and Morgan (1975) and Morgan (1978) review the state-of-the-art in
DP at that time. PID control is still in use, with the addition of a feedforward
term acting on the sensed wind speed and direction. A digital adaptive wave fil-

tering technique, used by the authors’ company, is also mentioned in van Calcar
g q

and Morgan (1975).

Shortly after this state-of-the-art, a modern control approach was taken for the
first time by Balchen et al. (1976). Until then, control had always consisted of
separate PID loops tuned in a heuristic fashion. The new approach was to model
the ship in state-space, and to split the state vector into separate low and high
frequency components. The low frequency component is based on ship dynamics,
wind, current and low frequency wave motion and the high frequency component
is based on a model of expected high frequency wave conditions. An extended
Kalman filter is then utilised to predict overall ship motion as the sum of the two
components, but only the low frequency state is used for control. By doing so,
wave filtering is effectively carried out within the Kalman filter, and the need to
introduce notch wave filters, with associated phase lag, is removed. The controller
is a state-feedback controller with proportional and integral action, designed us-

ing standard Linear Quadratic Gaussian (LQG) theory.

A whole series of papers based on the Kalman filtering technique followed, notably
Grimble et al. (1980a) use a steady-state Kalman filter, Grimble (1980b) investi-
gates combined state and state-estimate feedback, Grimble et al. (1980c¢) discuss
extended and steady-state Kalman filter designs and compare notch filtering with

Kalman filtering of ship position. Fotakis et al. (1982) compare controller designs
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using the characteristic locus and multivariable root locus with optimal methods
of design, where a Kalman filter is used to provide state and output estimates
in both cases. Selid et al. (1983) introduce a new low frequency model and a
wave frequency adaptation algorithm, and Fung and Grimble (1983) describe a

self-tuning Kalman filter which adapts to the high frequency wave disturbance.

Recently, other modern control techniques have been applied to the DP problem.
Sgrenson et al. (1996) describe an LQG design incorporating a reference model
for calculating feasible trajectories of vessel motion, a wind feedforward controller
and a model reference feedforward controller. Katebi et al. (1997) use H, ro-
bust control theory to produce a design for a linearised ship model which can
cope with perturbations in the operating point whilst retaining stability. Fossen
and Grovlen (1998) introduce a nonlinear observer to avoid the necessity of a
set of linearised models, and nonlinear feedback control using observer backstep-
ping. Global exponential stability is then proven using Lyapunov stability theory.
Strand et al. (2001) bring together several of these recent ideas and review mod-
elling, observer and control design. Yamamoto et al. (1998) describe a fuzzy logic
controller based on a nonlinear programming algorithm, and compare the results

favourably with conventional PID control.

The use of PID for DP has fallen out of favour due to the development of the
more advanced control strategies above. However, for preliminary ship sea trials
and for academic studies giving comparisons of modern controllers with PID, it
is always useful to be able to quickly tune a simple controller of reasonable per-
formance. Model-free design methods in the spirit of Ziegler and Nichols (1942)
or the Stability Limit, Cohen-Coon and Tyreus-Luyben methods in Kiong et
al. (1999) are suitable for such tuning. Limited information about the plant
from a step response, or frequency response at one frequency, is used to pro-

duce acceptable closed-loop behaviour with little effort. These simple methods
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are intended for single-input single-output (SISO) systems, but in this Chapter
a nonlinear multi-input multi-output (MIMO) ship model will be presented and
18 different operating points found. Hence, a quick method of tuning a MIMO
PID controller at each operating point is desirable, so that gain scheduling could

be used for overall control.

It would of course be possible to use Ziegler-Nichols or one of the other methods
on each input and output of the ship separately, in order to produce independent
PID controllers as with Schneider (1969) and Harbonn (1971). However, a ship
exhibits significant interactions between the various loops, thus a true multivari-

able strategy is preferable.

Maciejowski (1989) details several model-based off-line MIMO design techniques,
including Sequential Loop Closing, the Characteristic Locus method, Nyquist-
arrays, and Quantitative Feedback Theory. The Sequential Loop Closing method
is simple and involves designing SISO controllers and closing the loops one at
a time, where the effects of previously closed loops are taken into account.
An extension to this is the Sequential Return-Difference method proposed by
Mayne (1979), whereby a decoupling matrix is added before designing the indi-
vidual controllers. Maciejowski (1989) suggests a choice of this matrix which will
be discussed in Section 2.3 of this Chapter. The idea of the Characteristic Locus
method is to select the compensator structure so that each characteristic function
of the cascaded plant and compensator, G(s) K (s), is the product of an individual
plant, G(s), and compensator, K (s), characteristic function. It is then possible to
design a compensator for each plant characteristic function using SISO Nyquist

loci.

Nyquist-array methods involve the use of an array of graphs, where each graph

is the Nyquist plot of an element of a transfer function matrix. With the In-
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verse Nyquist-array (INA) method, neighbourhoods of the inverse Nyquist loci
known as Ostrowski Bands are treated as if they are SISO inverse Nyquist loci
for the purposes of control design. The Direct Nyquist-array (DNA) method uses
neighbourhoods of the normal Nyquist loci known as Gershgorin Bands to predict
closed-loop stability, but does not take into account the effect of loop coupling
as with INA. In both cases, the return difference, I + G(s)K(s), must possess
the property of Diagonal Dominance, where the union of Gershgorin Bands must
exclude the origin. This requirement coupled with extensive inspection of the

Nyquist arrays during design produces a rather involved design technique.

Quantitative Feedback Theory (QFT) is based on the premise that the amount
of uncertainty of a plant, and the precise specification of tolerable closed-loop
behaviour given the uncertainty, may be quantified by bounds on the frequency
response at each frequency. The design technique involves selecting a diagonal
controller and a reference pre-filter so that the frequency responses satisfy these
bounds. Maciejowski (1989) also describes the multivariable case of the well-

known LQG and H,, optimal design techniques.

In addition, there is the Biggest Log Tuning (BLT) method of Luyben (1986).
Tuning begins by calculating the Ziegler-Nichols (Z-N) settings for each loop and
introducing a tuning factor, F', which scales the Z-N gains. The value of F is then
varied until the maximum of a log function of the plant characteristic equation
equals some empirically decided value. This value is 2NdB for an N x N sys-
tem. Reasonable performance is shown in the results for several process control

examples.

Internal Model Control (IMC) was introduced by Garcia and Morari (1982) and
the method of obtaining PID parameters for this structure is described in Rivera

et al. (1986). The basic idea is that the closed-loop system contains a model
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of the plant in parallel with the actual plant, and the signal which is fed back
to the comparator is the difference between the outputs of this internal model
and the real plant. The controller is then the inverse of the model ignoring any
time delays and right half-plane zeros. The PID controller structure is found to
follow naturally from the IMC design procedure for many simple transfer func-
tion models in process control. An extension of IMC to robust multivariable PID
control is given in Dong and Brosilow (1997), where a PID structure is obtained
by expanding the controller transfer function with a Maclaurin series to the first
three terms. The controller parameters are then a function of the internal model

and filters.

None of the aforementioned methods really satisfy the desire for a quick and
easy way to tune a multivariable controller in the manner of the SISO techniques
mentioned above, however. Katebi et al. (2000) survey the various MIMO PID
tuning methods within the control literature and suggest some techniques which
are more appropriate for simple designs. The model-based methods above are re-
viewed and some model-free on-line "autotuning” techniques are given, so-called
because it is possible to automate them to the extent of simply pushing a but-
ton, indeed their SISO counterparts are widely used in industry. Zhuang and
Atherton (1994) have used a MIMO extension of the Ziegler-Nichols method for
autotuning of two-input two-output (TITO) systems. Loh et al. (1993) extend
the relay feedback idea of Astrém and Higglund (1995) by tuning one loop at
a time in the manner of Sequential Loop Closing. Palmor et al. (1995) also
use relay feedback, but tune both loops of a TITO process together. Wang et
al. (1997) describe a method for autotuning fully cross-coupled multivariable PID
controllers from decentralised relay feedback. A thorough review of the state of

PID autotuning is given by Yu (1999).

The model-free off-line methods given by Davison (1976), Penttinen and Koivo
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(1980) and Maciejowski (1989) are the focus of this Chapter, however, as they re-
quire little design effort and are based on step tests or frequency responses at a sin-
gle point. The robust servomechanism problem was introduced by Davison (1976)
to provide a general controller design method with guarantees of asymptotic sta-
bility and asymptotic tracking given disturbances of a particular form, and plant
model perturbations that did not result in closed-loop instability. More per-
tinently, a detailed mathematical model of the plant is not necessary and the
controller may be constructed based on simple open-loop tests. Penttinen and
Koivo (1980) suggest a way to diagonalise the plant at very low and very high fre-
quencies, which is in fact an extension of Davison’s work. The decoupling matrix
at a particular bandwidth frequency, suggested in Maciejowski (1989) with regard
to the Sequential Return-Difference method, is also investigated, as an interme-
diate approach to that of Penttinen and Koivo (1980). These three techniques,
and a simple new combination of all three, will be described in more detail in

Section 2.3.

In the following Sections of this Chapter, a novel contribution to DP control
design will be made via the application of the multivariable PID design methods
above. Before discussing these ideas further, the ship simulation model to be

utilised during the thesis will be presented.

2.2 Ship modelling

Mathematical modelling of the motion of ships, underwater vehicles, and high
speed craft is an extended exercise in the classical mechanics of Newton, Lagrange,
Euler and Kirchhoff. This exercise is superbly summarised in the work of Fossen
(1994), in which a complete analysis of a 6 degree-of-freedom model is given. The
six different components of motion are surge, sway, heave, roll, pitch, and yaw.

Two different coordinate frames are used, one is the body-fixed frame which moves
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with the ship, the other is the earth-fixed frame, which is an inertial reference.

The motion components and coordinate frames are shown in Figure 2.1.

Figure 2.1: Ship and coordinate frames, from Fossen(1994)

For the purposes of dynamic position control, only the surge, sway, and yaw
motions are of interest. Heave, pitch, and roll control are important for a com-
fortable ride on high speed vessels but are ignored here, where the objective is
to keep the ship at a particular longitude, latitude and heading regardless of the
crew’s stomach. The nonlinear model and parameters used throughout the thesis
are the result of a case study carried out for Mitsubishi Heavy Industries Ltd. A
list of parameters and their values is to be found in Appendix A. The general
model is applicable to a range of vessels, given the correct parameters, but in this

thesis will apply to FPSOs and Shuttle Tankers, such as pictured in Figure 2.2.

2.2.1 Equations of motion

If the origin of the body-fixed coordinate system coincides with the ship centre
of gravity, the Coriolis effect is ignored, and taking into account the sea kinetic

energy, the equations of motion are as follows:



2.2. SHIP MODELLING 15

(m+mz)ll = Xp+Xr+Xa+Xw

132006 = Xg+ Xp+ X4+ Xw (2.1)
(m+my)t = Ye+Yr+Ya+Yw
207000 = Yy + Yo+ Y4+ Yy (2.2)

(Izz+Jz)7: = ]VH+NT+NA+NW
940000007 = Ng+ Np+ Njy+ Ny (23)

where each m denotes mass, and I and J denote ship inertia. u, v, and r are the
surge, sway and yaw body-fixed velocities respectively. X, Y, and N stand for
surge, sway and yaw forces and moments, and the subscripts g, 7, 4, and y stand

for hydrodynamic forces, thruster forces, and wind and wave forces respectively.

&
1
.
K
&

Figure 2.2: MODEC Venture 1 FPSO - Picture taken from www.mes.co.jp
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The vessel under investigation possesses three azimuth thrusters - stern left and
right with a maximum of 1707 force each, as well as a bow thruster with 130T
maximum. Thruster location is illustrated in Figure 2.3. The mathematical
model of the ship, however, does not take into account the independence of these
thrusters. Forces are simply lumped into surge and sway direction forces, and
an overall moment, Np. It is assumed that a thruster allocation algorithm pro-
vides the inputs to each thruster. Therefore, it is not possible to check the three
thrusters separately, so the vector magnitude of surge and sway forces is instead
calculated in the simulation later to ensure that it is less than 4707 - the max-
imum possible force from all three engines. In addition, the maximum rate of
change of the thrust vector is 507°/s and the moment may not exceed 10°Tm.

X
4 Waves Current  Wind

P

Xr : longitudinal force

Yr : lateral force

NF : yaw moment

v :yaw angle, vessel heading

T : thrust force
§: thrust direction

CP : control point

NE \G o-Xy : body fixed coordinate system
y O-XY : earth fixed coordinate system

Figure 2.3: Plan view of the ship with thrusters illustrated

2.2.2 Hydrodynamic forces

The hydrodynamic forces due to the damping effect of the water are:
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Xy = %pLd(X;vvz) + %pLQd(LX;,rz + X, vr — AWTulul)
= —1.11v% — 2470007 — 3310vr — 24.5u|u| (2.4)
1 ! ! !
Yy = Yy, + §pL2d(Y, Ur + LY, r|r| + Y, v|r|)
= Yy, + 3280Ur + 13000007 |r| — 19500v|r| (2.5)
1 ! ! !
Ny = Ny, + §pL3d(N,Ur + LN,,r|r| + N,,v|r|)
= Ny, — 432000Ur — 1210000007 |r| + 18800000 |r| (2.6)
When |fc — V| < 7/4
1 ; ,
’Hv = §pLd(),v vU + vav|v|)
= —42.40U - 177v|v| (2.7)
Ny, = gpLAd(NpU +Npyolol)
= —7390vU + 36200|v| (2.8)
When |Bc — V| > 7/4
’ . 1 2
Y, = —0.7sm(uc)§pLdU
= —136sin(uc)U? (2.9)
T . 1 2 2
Ny, = ——0.1szn(2uc)§pL dU
= —4980sin(2uc)U? (2.10)
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U = (u? + v?)1/? (2.11)
_1,V
pe = tan (a) (2.12)

where p is water density, L is ship length, and d is ship draught. U is the mag-
nitude and pe is the angle of the total ship velocity vector in the body-fixed
coordinate system. All X', Y', and N' are constant hydrodynamic derivatives,

W is the ship heading and ¢ is the angle of current in the earth-fixed coordinates.

The environmental disturbances acting on the ship are waves, wind and current,

described in the next three subsections.

2.2.3 Wave forces

The effect of wave disturbances is split into two components, slowly varying wave
drifting forces and rapidly varying wave exciting forces, also known as 1st and
2nd order waves respectively. The parameters in the following mathematical
description are found by fitting forces and moments to data based on the spectrum

of Pierson and Moskowitz (1963).

Wave drifting forces

The wave drifting forces span the frequency range 0.02 to 0.49rad/s with peak
values in the surge, sway and yaw direction of 507" (uw ~ 0), 200T (puw =~ £7/2),
and 4000Tm (puw =~ £m/4) respectively for heavy seas. They are zero mean
and tend to slowly push the ship off position in one direction then another. A
successful dynamic position control system is able to reject these disturbances.

The mathematical description follows:
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N N
Xwp = Z Z —0.0475aanc08(pw ) pgLeos{(wm — wp)t
m=1 n=1
+(Km —

m — kn)(XcosBw + Ysinfw) + (em — €a)} (2.13)

N N
‘Wp = Z Z —0.225,,a,51n° (w ) pg Leos{ (wm — wn)t

m=1 n=1

+(Km — Kn)(XcosPw + Ysinfw) + (em — €n)} (2.14)

N N
Nwp = Z Z —0.015ama,5in(2uw ) pgL*cos{(wm — wy)t

m=1 n=1

+(Km — Kn)(XcosBw + YsinBw) + (em — €n)} (2.15)

pw = Bw — ¥ (2.16)

where every a denotes a wave amplitude component, yuy is the incident angle of
waves in the body-fixed coordinates, g is the gravitational constant and ¢ is time.
All w are frequencies of wave components, all K = w?/g are wave numbers, and
all € are wave phase angles. In the earth-fixed coordinate system, 3y is the angle

of waves, and X and Y denote ship position.

Wave exciting forces

The expressions for these forces are given below:

N
Xwg = Z an fxwe(pw)cos(wnt + K, (XcosBw + YsinBw) + en + exwe(pw))

n=1

(2.17)

N
Ywe = Z anfywe(pw)cos(wat + K, (Xcosfw + YsinBw) + en + eywe(pw))

i (2.18)
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N
Nwg = Z an fawe(pw)cos(wnt + kn(XcosPw + YsinBw) + e, + 5NWE(yw))

" (2.19)
fxwelpw) = 500sin?(2pw) + 110(cos(6uw) + 1) (2.20)
fywe(pw) = 3800sin®uw (2.21)
fywe(pw) = 140000sign(sin(pw))sin®(2pw) (2.22)
exwe(pw) = 1.8sin(L.5uw) + 0.6(1 + cos(uw)) (2.23)
we(pw) = 2.5sin*(1.5uw) — 0.45c08*(0.5uw ) (4 + cos(3pw)) (2.24)
enwe(pw) = 3.2sin(1.5pw) — 0.7(1 + cos(puw)) (2.25)

where all f are wave force functions and all € are wave phase angle functions.

The wave exciting forces span the frequency range 0.45 to 1.08 rad/s with peak
values in the surge, sway and yaw directions of 16007 (uw =~ +n/4), 100007
(mw =~ %7 /2), and 4000007'm (pw =~ £m/4) respectively for heavy seas. Due
to their large magnitude and high frequency, it is a waste of control energy to
attempt to counteract these disturbances as they are zero mean and do not af-
fect the average ship position. Therefore, feedback controllers require position
measurement filters for the wave exciting forces, as detailed in Section 2.4. Fur-
thermore, even with filtering it is possible to saturate the ship thrusters if the
angle, puw, between the waves and ship heading is too large. The dynamic posi-
tion control system is usually activated when the ship heading is close to being

directly into the waves, to minimise thruster activity and energy consumption.

Total wave force

The total force exerted on the ship due to waves is the sum of the drifting and

exciting forces.
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Xw = Xwp + Xwe (2.26)
Yw =Ywp+ Ywe (2.27)
Nw = Nwp + Nwg (2.28)

2.2.4 'Wind forces

Wind consists of an average plus a fluctuating velocity component. The wind

forces are functions of the velocity as follows:

» . 1
X4 = —1.1ssm(1.4uA+7r/3)5pAAATV,§
= ——0.0633._91'11(1.4;1,4+7r/3)VA2 (2.29)
e S 1 2
)A = -0-93271(#A)§PAAALVA
= —0.283sin(pa)V;i (2.30)
, 1
Ny = —0.087szn(2pA)§pALAALV,f
= —Tsin(2ua)V3 (2.31)
-1,%A
pa =tan™' (=) (2.32)
ua
V2= 40} (2.33)

ug = Ugps + Ug(t)cos(8s — V) (2.34)
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vA = Vaps + Ua(t)sin(Ba — V) (2.35)
Ua(t) = Uao + uao(t) (2.36)

N
u0(t) = Z aaicos(wait + €ai) (2.37)

i=1
where j1,4 is the angle and V4 is the magnitude of the total wind velocity vector
in body-fixed coordinates. 3,4 is the angle of wind in earth-fixed coordinates, p,
is the density of air, A 47 is the transverse wind area, and A4y, is the lateral wind
area. u,y and vy are the surge and sway components of wind velocity and ugp,
and v, are absolute ship velocities in the body-fixed directions. The absolute
velocities are simply the surge and sway body-fixed velocities minus that of the
current in the opposite direction. This is an assumption which is valid only in the
steady state when the current has had enough time to act on the ship, but the
assumption is made nevertheless. U4(t) is the wind velocity relative to the earth
and consists of a constant average component, Uy, and a fluctuating component
uao(t). aai, wai, and €4; are the amplitude, frequency and phase respectively of

the fluctuating component.

In high winds of 20m/s (or 45mph), the peak values in surge, sway and yaw di-
rections are 257", 1407, and 25007'm respectively. A successful dynamic position

control system is able to reject these disturbances.

2.2.5 Coordinate systems and transformations

The ship model detailed so far has only taken account of acceleration and ve-
locity with respect to body-fixed coordinates. The ship position which we wish
to control is with respect to a set of earth-fixed coordinates, (X,Y, V). The

transformation between the two coordinate systems is defined by:
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X '= /(uabscos\ll — VapsSINW)dt (2.38)

Y = /(uabssin\ll + VapscosW)dt (2.39)

U o= / rdt (2.40)
Uabs u Ue

y = |vas |=2—c=]v|-]| 0w (2.41)
Tabs r 0

with transfer function matrix:

X cosV —sin¥ 0 Ugbs
1 1
Y(s)=|Y | = ;TBEQ(S) 5" sin¥  cos¥ 0 Vabs (2.42)
v 0 0 1 Tabs

for constant ship heading, ¥, at an operating point. The effect of the current
is included in this formulation by defining the absolute ship velocity to be the
body-fixed velocity minus the velocity of the current in the opposite direction, as

already stated.

The reference signal of the controller will be in the earth-fixed coordinate scheme,

therefore another transformation is required for the thrusters as follows:

€r cosV  sin¥ 0 Ex
e(s)=| e, | =TeBE(s) = | —sin¥ cos¥ 0 | | Ey (2.43)
€y 0 0 1 Ey

where e and E are the vectors of position error in the body-fixed and earth-
fixed coordinates respectively. In Section 2.4, Figures 2.7, 2.8 and 2.11 show the
location of the transformations for feedback control. Figure 2.3 in Section 2.2.1
illustrates the various forces acting on the type of ship in question, as well as the

body and earth-fixed coordinate systems.
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2.2.6 Model linearisation

Although the controller tuning techniques to be investigated in this Chapter are
not model-based, the linearised ship model is now described and later used for
control design. The tuning techniques require only step tests and the determina-
tion of frequency responses at a single frequency. If the nonlinear ship simulation
settles at a stable operating point and these simple tests are applied, the corre-
spondence between the simulation and linearised model results is almost exact.
Hence, throughout this Chapter, when linear model results are given, it is as-
sumed that exactly the same results could have been obtained from the nonlinear

simulation.

The nonlinear model is linearised using a 1st order Taylor expansion about an
operating point, z,. This consists of body-fixed ship velocities, heading, thruster
forces and current angle, z = (u,v,r, ¥, B¢, X1, Yy, Nr), with wave and wind
forces equal to zero. Manipulating equations (2.1) to (2.12) to give expressions

for acceleration:

O hut Ynv+ P ar s X ax, (249)

U= f(2) = o+ At = f(z) + 5~ e ot Xy

@Au + @AU -+ g‘q.&r + 9

v=ﬂ@=ﬂm+szg@d+au 50 3 oY;

AYy  (2.45)

OB OBy OB OB A )

T = h(2) = 7o + A7 =~ h(zy) + Bu ov or ONr

At the operating point, g, %o, 7o, f(25), 9(2,) and h(z,) are all equal to zero and

so we have the state space model:

&= Az + Bu+ Ed (2.47)
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y=Cz (2.48)
where
af of of |
% = o =L g 0
_ | a¢g 89 o — =
A=|2 & 4| ,B=F= 0 - e (2.49)
dh  8h  Bh
oo ], SRR~ -
1 0 0 A’U AXT XA + XW
O = 010 y L= Av y U= AYT ) d = YA + YW (250)
001 Ar ANT NA + ]VW

and the expressions for the partial derivatives are given in Appendix B. Manip-

ulating into transfer function form:

(s) = (sI —A)'Bu(s)+ (sI — A)"'Ed(s)
= Gy(s)u(s) + Ga(s)d(s) (2.51)

1=

where Gy and Gy are actually identical as d(s) is just another force input. When
under closed-loop control, the ship reference position is given in the earth-fixed
coordinate system of equation (2.42). At an operating point, the ship velocity and
current velocity cancels so that ugs = ug+Au—u, = Au, vy = vo+Av—1. = Av
and rqps = o + Ar — ro. = Ar. The final transfer function, using equation (2.42),

from thruster force to earth-fixed positions is:

Y)= | v | = Tas{Gu(s)uls) + Ga(s)d(s)) (2.52)

When there are no thruster force changes from the operating point, ¥Y'(s) =
1TpEGa(s)d(s), and the earth-fixed position simply depends upon the wind and

waves. This is a disturbance, and is independent of feedback control.
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2.2.7 Operating point selection

Operating points exist where the ship has settled to a steady state, meaning that
no acceleration is occurring. He.nce, given (ug,vo, 7o), the objective is to find
(X0, Y70, N1o) such that equations (2.44) to (2.46) are equal to zero. There are
potentially infinite permutations of z, so a finite set of representative points must
be chosen. The maximum magnitude of the ship thrust vector in the (Xr,Yr)
plane is 470T and Ny may takes values in the interval [—10°, 10°|Tm. Therefore,
values of velocity, ug, vg and rg, can be selected to produce an evenly distributed
subset of thrust vectors from the possible (X7, Yr) disc, such as those illustrated

in Figure 2.4, and moments from the Np interval.

Figure 2.4: Possible ship thrust vectors

A trivial solution occurs when (ug, vo, 70) = (0,0, 0) and (X7, Yo, Nro) = (0,0,0).

In this case the A matrix in equation (2.49) equals zero, and therefore:

z(s) = (sI)"'Bu(s)+ (sI)"'Ed(s)
mimde 0 0
= | 0 w0 |@e+ds) @)
0 U

and
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("H"ln:)si 0 0
X(S) =TgEe 0 m 0 (y_(s) =+ C_i(S)) (254)
0 ) 0 (1::+b::)52

It will be shown in Section 2.4 that Tgp can be ignored for controller design,
thus the system in equation (2.54) is simply one of diagonal double integrators.
Clearly, this is not a difficult multivariable problem as there is no interaction
between the three loops. A design can easily be carried out by examining each
loop separately as a Single-Input Single-Output problem, and this case will be

ignored henceforth.

Otherwise for this system, locating the zeros of (f(z),g(z),h(2)) is not easy.
The ship model is highly nonlinear and coupled, so matrix techniques for solving
linear simultaneous equations are not applicable. Therefore, a nonlinear search
routine, namely Matlab’s fsolve algorithm, is utilised. This algorithm solves non-
linear equations by a least squares method given an initial guess, (Xr, Yy, Ny).
A unique zero for each (X0, Y70, N1o) is not guaranteed regardless of (ug, vo, ),
and sensitivity to initial conditions, local minima and slow convergence may be
encountered. In practice, however, the fsolve algorithm seems to converge to the

same minimum regardless of the initial value of (X7, Y7, N7).

Table 2.1 lists eighteen different operating points, intended to cover some of the
thrust vectors shown in Figure 2.4, including maximums around the circumference
of the circle. The operating points are a function of the incidént current, in that
a useful steady state is reached when the body-fixed velocities exactly cancel the
opposing current velocities. Hence, there is no resultant acceleration or velocity

in the earth-fixed coordinates.



2.2. SHIP MODELLING 28
Table 2.1: Stable operating points
Current Velocity | Angle Ship Velocity Thruster Forces
Uc Be—T| wuo Vo ro | X1o | Yro | Nro
(m/s) (°) [ (m/s) | (m/s) | (°/s) | (T) | (T) | (Tm)
1 0 1 0 0 24.5 0 0
2 0 2 0 0 98.0 0 0
3 0 3 0 0 220 0 0
4 0 4 0 0 392 0 0
1 20 0.940 | 0.342 0 21.8 | 35.2°|' 2110
1 40 0.766 | 0.643 0 14.8 | 100 | 3260
1 60 0.500 | 0.866 0 6.96 | 118 | 4310
1 80 0.174 | 0.985 0 1.82 | 134 | 1700
1 100 | -0.174 | 0.985 0 10.338| 134 | -1700
1 120 | -0.500 | 0.866 0 |[-529 | 118 | -4310
1 140 -0.766 | 0.643 0 -13.9 | 87.6 | -4900
1 160 | -0.940 | 0.342 0 ]-21.5 | 46.6 | -3200
1 180 -1 0 0 -24.5 0 0
0 any 0 0 0.5 18.8 | -99.1 | 9220
0 any 0 0 1 75.2 | -396 | 36892
4.38 0 4.38 0 0 470 0 0
1.87 80 0325 | 1.84 0 6.35 | 470 | 5960
0 any 0 0 1.08 | 87.8 | -462 | 43000
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Operating points 1 to 4 are for the ship pointing directly into current of different
velocities, and produce thruster excitation in the surge direction only. Operating
points 5 to 13 are for fixed current velocity but varying angles of incidence. As
the angle passes through 90°, the surge and yaw thrust signals change in sign,
and when the angle reaches 180° the signals are of equal magnitude but opposite
sign to the 0° case. Operating poixits 14 and 15 are an attempt to find a non-
accelerating state when the ship is rotating. The current velocity has to be set
to zero in this case, because u and v will not settle to constant non-zero values
for non-zero rg. The 16th and 17th operating points give maximum thrust in the
surge and sway directions respectively, and the final operating point drives Np

as high as it will go before the (X7, Y7) thrust vector hits the maximum.

The controller tuning methods to be used are only applicable to stable linear
systems, hence this Chapter will be focussed on the stable operating points given
in Table 2.1. A more extensive list could easily be compiled, but the eighteen

shown serve to demonstrate general ship behaviour.

The most straightforward linear ship representations are found when u, € [—4.38,4.38]
and (vo,m9) = (0,0). A specific example of this simple case is (ug,vo,70) =
(2,0,0), with resulting thruster forces X7o = 98.0, Y7o = 0, and Nyg = 0. The

open-loop transfer function matrix at this point is:

7.6x10-5
1 s(5+40.0075) 0 0
= , = 4.8%10~%(5+0.0092) 3.4%10~°
STBEG‘ (s) 0 5(s+0.0067%70.0066)  s(s+0.0067+;0.0066) (2.55)
0 -7.6x10~° 1.1x10~8(5+0.0041)

5(540.0067£;0.0066)  5(s+0.0067+0.0066)
There is no interaction of the surge direction with the sway and yaw forces, but a

most definite coupling between sway and yaw as depicted in the Bode magnitude
plot of Gy (s) in Figure 2.5. Clearly, the sway thruster has more effect on the

yaw output than the yaw thruster itself for frequencies below 1rad/s. For other
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operating points where vy and 7 are non-zero, the open-loop transfer function
matrix contains no zero elements, hence coupling and interaction is more of an

issue, and is dealt with in the next Section on tuning methods.

Bode Magnitude Diagram
From Sway Thruster From Yaw Thruster
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Figure 2.5: Bode sway and yaw magnitude response

2.3 Tuning methods

The techniques of tuning to be covered in this Chapter include the Davison

method, the Penttinen and Koivo method, the Maciejowski method, and a new

combination of all three.
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2.3.1 Davison method

The approach outlined in the Davison (1976) paper is taken with the only assump-
tions on the plant being that it is linear, time-invariant and open-loop stable. It
is not necessary to know the plant model or even the order of the plant model.
It is shown that conditions for a feedforward and robust feedback controller to
exist, as well as the controller structure itself, can be expressed in terms of the
steady-state gain parameters of the plant. Also, experiments to find the response
to plant inputs and disturbances, which satisfy a p'* order linear differential equa-
tion, are sufficient to find a controller so that asymptotic tracking occurs in the

presence of these disturbances.

In this Chapter, the plant is a ship under dynamic position (DP) control, where
the aim is to keep the mean position of the ship and ignore periodic disturbances.
Therefore, it is only necessary to consider the case where disturbances are con-
stant or at least slowly varying. Also, in the DP problem the disturbances are
not easy to measure, thus the feedforward controller is neglected. With these
conditions in mind, Davison’s method reduces to finding the steady-state gain
matrix of the plant for a step input. The feedback controller is then the inverse
of this matrix, provided that it is of full rank, multiplied by the error signal inte-
gral. Note that there is no proportional term in this case and a multiplier, €, is

included for tuning the resulting closed-loop system.

The expression for the controller is:

u(s) = Kive(s), Ki = €G™(0) (2.56)

where K; is essentially an integral feedback gain, G(s) is the square open-loop
transfer function matrix, and the scalar, €, is the tuning parameter. The pro-

cedure for determining € is known as "tuning the regulator on-line” and simply
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consists of making adjustments, starting with a very small positive value, and in-
creasing so the output response of the closed-loop plant for a step function input
has a maximum speed of response. Note that each of the multivariable loops is

adjusted simultaneously.

The product of G(s) with K; approaches €l as frequency approaches zero, result-
ing in a diagonalised cascaded plant and controller at steady-state/low frequen-

cies. The closed-loop transfer function is then

m(HGK)-‘GK: Pt 1| =1 (2.57)
) I

~

where K = ﬁsl From this, it is obvious that non-zero € will produce zero steady-

state error.

This approach has been applied successfully to chemical processes, where step
tests can be used to find G(0). In the DP case, the ship is simply moved to an
operating point before applying step inputs. The deviation from the operating

point thruster input and velocity output values is used to find the G(0) matrix.

2.3.2 Penttinen-Koivo method

The Penttinen and Koivo (1980) technique alters the Davison method slightly to
achieve a diagonalised plant at very low and very high frequencies. The expression

for the controller is:

WS K.é)g(s), K, = (CB)™\, K; = ¢G-\(0) (2.58)

The CB matrix comes from the state-space plant model, or in the absence of
a model it is possible to perform tests to quickly determine the value of CB.

Observe that §j = Ci = CAz + CBu. If 2 = 0 or the plant is at an operating
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point, then y = CBu or Ay = CBAu at the instant an input is applied. Thus,

by applying a unit step to each input in turn and measuring the gradient of each

output immediately after:

cB=[y 4, - i, | (2.59)

where m is the number of plant inputs and y, is the output gradient in response

to the k" input step.

The reasoning behind this choice of matrix can most easily be seen using an
argument given in Mayne (1979) as follows. Given a plant in state-space form,

the Laurent series expansion of the transfer function:

G(s)=C(sI—A)'B (2.60)
is:
CB CAB CA’B
= + e e s

s s2 s3

Therefore, at high frequencies, G(s) = CB/s , and G(s)K, — I/s.

G(s)

(2.61)

The proportional gain matrix can be selected as K, = (CB)~!p, where p is a
constant scalar tuning parameter. To ”tune the regulator on line”, p is increased
from a small positive value until the closed-loop response for a step-input ref-
erence signal is acceptable. p is then reduced slightly and € is increased from a

small positive value until the maximum speed of closed-loop response is achieved.

The product of G(s) with K, and K;/s approaches pI/s and CBeG(0)™!/s?
respectively at high frequencies. The K;/s term will generally be negligible com-

pared to K, at high frequencies, resulting in a closed-loop transfer function:
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(s+0)7'p, o 0
(I +GK)"'GK = : : (2.62)
0 P e s+ p)~1
(b I)) p (s large)
where K = (K, + K;/s). From this, it is evident that properly selected p and €
will produce good high and low frequency tracking. A brief proof of robustness

for stable open-loop plants is given in the Penttinen and Koivo (1980) paper.

2.3.3 Maciejowski method

The approach adopted by Maciejowski (1989) can be interpreted as an interim
version of the previous two methods. The technique proposed is to diagonalise
the system in the vicinity of bandwidth, w, then to introduce separate controllers
in each of the loops of the multivariable system. In keeping with the earliér P+I
controller tuning ideas, this yields proportional, integral and derivative matrix

terms:

Ky, = pG~' (jwp), Ki = €G! (jws), Kqg = 6G~* (juwy) (2.63)

where p, € and J are scalar tuning parameters.

If a plant model is available then this method requires the frequency response at
a single point. Otherwise, experimental application of sinusoidal inputs to the
actual plant at the desired frequency will give values for gain and phase. In the
case of a nonlinear system, this experimental approach is not strictly valid, but
low amplitude sinusoidal excitation about the operating point yields a very close

approximation to the linearised result.

Clearly, G~ (jws) will produce complex gains, but to realise such a controller, the

gains must be real. Hence, the " Align” algorithm of MacFarlane and Kouvaritakis
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(1977) is used to produce a real approximation of the inverse of G(jw). This

algorithm finds a constant real gain matrix, M, such that

J(M,0) = (G(jus) M — &°)T(G(jws) M — ¢®), © = diag(6,, ....0,) (2.64)

is minimised. The product of G(jwy) and M is then as close as possible to a
diagonal matrix with elements of unity magnitude. If we let K, = M, this
produces desirable properties in a multivariable system as each loop will be almost
decoupled. To illustrate the effect of using this algorithm, we look at the ideal
case where J(M,0) = 0. The closed-loop transfer function of this system at

w = wy will be:

eJal e]()n
T+ e T4 eion)

(I + G(jws) Kp) "' G (jws) Kp = diag( (2.65)

From this, it is possible to comment on the gain and phase of the ideal open-loop

system, and therefore on the closed-loop system stability.

The gain of the open-loop system at wy is unity. The closed-loop gain depends
solely on the open-loop phase and is infinite if § = 7 £ 2n7,n € Z. The idea of
Maciejowski’s method is that the closed-loop bandwidth is wy. This occurs when
0 = —mw/2 £ nm,n € Z. Here, lj;j;:—:),—) = 0.5+ 0.5j and the closed-loop gain is
7‘5. Of course, as the open-loop phase is —7/2 £ n, the closed-loop system will
be stable for # = 47 /2 with negative feedback and unstable for all other n, by

Bode plot phase margin considerations.

In summary, this method aims to create nearly-decoupled unity gain open-loop
transfer functions from a coupled transfer function matrix. If the open-loop
phase is close to —m/2 , then the bandwidth will be close to w, and the closed-
loop system will be stable. Of course, this is the ideal case and if the open-loop

phase is greater than —=/2, the bandwidth will be less than w,. Conversely,
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open-loop phase lower than —7 /2 will result in a higher bandwidth. If the open-
loop phase is —7 or less, the system will be unstable. This analysis applies to
proportional control only, as M is a constant gain matrix. Fine tuning may be
achieved with the addition of the integral or derivative terms in equations (2.63).
Again, following on from the preceding methods, the p, € and § parameters should
be increased from small positive values until the desired closed-loop performance

is achieved.

2.3.4 Combined method

A simple logical extension to the three methods above is to use the Maciejowski
diagonalisation in K, the steady state gain inverse in Kj, and Penttinen and

Koivo’s idea for proportional gain in K4. Therefore:

K, = pG™'(jw), Ki = eG™(0), K4 = 6(CB) ™" (2.66)

The motivation is that each gain is suited to each PID term as a consequence
of frequency domain characteristics. The integrator is dominant over the other
terms at zero frequency, where K; produces complete decoupling. The derivative
is dominant at very high frequencies and K, removes coupling there. K, is

midway and attempts to remove interaction around the bandwidth.

2.3.5 Tuning methods - Discussion of limitations

The four methods detailed are limited as design tools in that Davison and Penttinen-
Koivo depend upon a stable open-loop plant for their robustness and stability
proofs. There is no such proof for Maciejowski’s method - The fact that |GK|
can be set close to the identity matrix, I, at or near the selected bandwidth does
not give any guarantees. However, for individual design cases the methods may
still be applied and stability and robustness assured by inspection. In the case

of multivariable plants, the Generalised Nyquist Stability Criterion (GNSC), see
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Maciejowski (1989), is the favoured design aid. The idea of the GNSC is that
knowing the number of open-loop unstable poles of det[G(s)K(s)] allows us to
decide whether the closed-loop will have unstable poles based on the Character-
istic Loci. These Loci are the graphs of the eigenvalues of G(s)K (s) as s goes
around the Nyquist contour. If the number of clockwise encirclements of the -1
point equals the number of unstable open-loop poles of det|G(s)K (s)], then the

closed-loop system is stable.

Another limitation of the design methods is in the process of ” tuning the regulator
on line”. Increasing the various scalar tuning parameters from zero until the
desired response is achieved does not take into account input constraints or cross-
coupling of the multivariable loops. Hence, in the design investigation, it is
necessary to trade off the speed of response, disturbance rejection, decoupling,

and actuator constraints against each other.

2.4 Ship control

Before applying any of the tuning methods it is necessary to examine the partic-
ular characteristics of the ship control problem that are likely to influence and
constrain any final design. The forces incident on a vessel due to the environ-
ment - wind, waves, current - can be considerably greater than the available force
from the ship’s thrusters. Thus, it is necessary to both avoid actuator saturation
and to save fuel by ignoring disturbances which cannot be effectively cancelled.
To this end, filters can be employed to attenuate non-essential components of
the spectrum of measured variables. To be specific, notch filtering of position
measurement at the frequency of dominant wave exciting forces, w, = 0.6rad/s,
produces good steady-state tracking, whilst removing high-frequency zero-mean

forces that do not affect the average position of the ship.
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The transfer function matrix of the filters to be used in the design is:

. §% + 0.2wy,s + w?

N(s) = n
82 + 2wps + w2

with the Bode plot for n(s) given in Figure 2.6. The ‘depth‘ of the notch depends

2an—mls)l (2.67)

on the relation between the coefficients of w, s in the numerator and denominator.
T16 x 2 = 0.2, so the notch is —20dB. A numerator coefficient equal to 0.02, or

1 . ,
105 ©f 2 gives a notch of —40dB, and so on.

Bode Diagram

Magnitude (dB)
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e g ) : RO
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Figure 2.6: Notch filter Bode plot

The resulting closed-loop ship control with transfer function:

}_,_(S) = (SI -1 TBEG‘:’KPTEBN)_ITBEG\/KPTEBE(S)
-+ (SI + TBEG\/KPTEBN)_ITBEGdd(S) (268)

is shown in Figure 2.7.
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l d(s)

Gy(s)

Rs)  E) e(s) u(s) *i ¥(s) )
,:_.?_. T Ke(s) Gy(s) — Ve ol T Xie),

N(s)

Figure 2.7: Control scheme with output notch filter

However, noting that TgeTep = I and performing suitable block diagram ma-
nipulations, the simplified equivalent closed-loop system shown in Figure 2.8 may

be expressed as:

Y(s) = Tpe(sl +GvKpN) 'GyKpTgpR(s)

+ Tpe(sI + GvKpN)™'Gd(s) (2.69)
ld(S)
Gy(s)
RO [ LN e O g ﬁl SO/ PO e O}
N(s)

Figure 2.8: Rearranged control scheme with output notch filter

The coordinate transformations do not appear within this equivalent system
closed loop and it is clear that their effect can be ignored for control design. A

final block manipulation of N(s) produces the equivalent unity feedback system

in Figure 2.9, neglecting the coordinate transformations.
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l d(s)

Gy(s)
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s) e(s) | u(s £ ¥(s) (s)
[(f 1/N(s) —:O%—O N(s) — Ke(s) ) Gy(s) x /s . >

Figure 2.9: Unity feedback control scheme

N(s) is diagonal and hence interchangeable with Kp(s) or Gy (s) in the loop,

hence the open-loop plant to be compensated is N(s)Gy(s)/s.

Limitation of position feedback scheme

There is a problem, however, with the closed-loop response of this system. This
can be demonstrated by examination of transfer function matrix (2.55). This
expression is for W = 0 and therefore is equal to Gy (s)/s. It is necessary only to
investigate the transfer function in the top left corner from surge thruster force
to surge body-fixed position to demonstrate the system problem. The Bode plot

of this transfer function cascaded with a notch filter is depicted in Figure 2.10.

The gain margin is 30dB and the phase margin is 42 degrees. The correspond-
ing closed-loop system with unity negative feedback has a bandwidth of 1.1 x
10~?rad/s, producing a painfully slow rise time of around 3 minutes and 30%
overshoot. It is possible to increase the proportional gain, k,, to 33 in an attempt
to increase the bandwidth, but the closed-loop response becomes marginally sta-
ble. At this point derivative action, kg, may be introduced in an attempt to
stabilise the system and decrease the overshoot. k; = 100 increases the band-
width to 7.2 x 10~*rad/s but results in a highly oscillatory response. Reducing ,

to 1 gives an overshoot of 3% but slow response once again. Removing the propor-
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Bode Diagram
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Figure 2.10: Bode plot of top left element of %V-N

tional gain altogether and increasing k4 to 1000 produces a rise time of around 1
minute, but with 17% steady-state error. Introducing integral gain is simply not
possible, as the extra phase shift removes any possibility of satisfactory response.
From this quick investigation it becomes clear that the phase shift introduced by
notch filtering invariably leads to undesirable response or destabilisation of the

closed-loop system, as has been noted before in Grimble et al. (1980a).

Position and velocity feedback

One solution to this problem without abandoning PID control completely is to
introduce a velocity feedback loop as illustrated in Figure 2.11. If the gain Ky (s)
is sufficiently large, then the inner loop can provide enough phase margin such

that notch filters can be introduced while closed-position-loop performance and
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stability is maintained. Much lower gains in the position loop set the bandwidth

of the position control, and keep actuator activity to acceptable levels. Note that

filters are needed in both loops as the wind, wave force and current disturbances

affect both velocity and position. Also note that N(s) can be moved as in Figure

2.9 to produce unity feedback loops, with N(s) in the forward path.

o,

|
|

+
r(s) _ep(s) (s)  eus) u(s) ~ui¥(5) (s)
Tes + s J: K(s) V(+’?_—. Ky(s) Gy(s) e I/s e

___J - I—J‘ —
1 1—— N(s)

l d(s)

Gy(s)

Y(s)
—

Figure 2.11: Control scheme featuring velocity and position feedback

N(s)

The closed-loop transfer functions of note in the velocity loop are:

y (s) =

Zs

u(s) =

where

Sv(s)
Ty (s)
Uy(s)
Vi (s)

Ty (s)ry(s) + Sv(s)Ga(s)d(s)
Uy (s)ry(s) = Vv (s)Ga(s)d(s))

I

= ;(I'*‘ C;'VI{V‘N')_1
I
= -S-(I+ GvaN)_leKv
= (T KNG Ky
= (I+KyNGy)"'KyN

In the position loop, the closed-loop transfer functions of note are:

(2.70)
(2.71)

(2.72)

(2.73)
(2.74)
(2.75)
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Y(s) = Tp(s)R(s) + Sp(s)Gals)d(s) (2.76)
u(s) = Up(s)R(s) — Vr(s)Ga(s)d(s) (2.77)

where
Sp(s) = Tpe(I+ TvaN)_ISV (2.78)
Tp(S) = TBE(I +TvaN)_1TvaTEB (279)
Up(S) = (SI -+ U\,'KP.NGv)_ISUvKPTEB (280)
VP(S) = (SI + U\"KPNG‘,')-I(UVKPN + SVV) (281)

The design trade-offs for this system are interesting. When selecting feedback
gains for both loops, characteristics such as speed of response, disturbance rejec-
tion, decoupling, and actuator constraints must all be taken into account. High
gains may produce fast responses and good disturbance rejection but with unnac-
ceptable actuator activity. Reducing the gain may bring thruster forces to within
the constraints, but the system will respond slowly and be pushed away from the
setpoint more easily. The problem of coupling may also appear, whereby control
energy is expended on one input to cancel the effect of another control input.
This interaction is clearly undesirable and gives an inefficient overall control sys-
tem, but may have to be tolerated to some extent given other possibly opposing

design issues.

Now that the requirements of the control are clear, the tuning methods can be
applied to test their utility. Once again, the linearised system of equation (2.55)

at (ug, vo, 7o) = (2,0,0) will be under investigation.
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2.4.1 Velocity loop design
Davison method

Beginning with velocity loop design and the Davison method, values for (N (0)Gy(0))~!

are required. Noting that N(0) = I, therefore:

1 99.0 0 0
; K, Gyv(0)7! 1
Ky(s)=—=ev . (S) =-| 0 8.6 6630 (2.82)
0 14900 872000

ey=1

This method does produce a stable closed-loop system with zero steady-state
error as stated in Section 2.3.1 - The Characteristic Loci of Gy (s)Ky(s)N(s)
shows that the closed-loqp system is stable for 0 < €y < 0.012. However, integral
action only is included here, so the problem of excessive phase lag remains. The
Bode plot of the top left element of Gy (s)Ky(s)N(s) is identical to Figure 2.10
but for the scaling factor, 99¢y. As noted in Section 2.4, the performance of such
a system in closed-loop is unacceptable. No advantage would be gained, in terms
of greater phase margin for a notch filter, by using velocity feedback with this

controller, hence the Davison method is of no use in this case.

Penttinen-Koivo method

With the Penttinen-Koivo method, (CB)~! corresponding to NGy is required.

N(8)s—00 = I, so this yields:

K(s) = Kot 2= py(CB) +os 2O
13100 0 0 99.0 0 0
= 0 20700 0 R % 0 856 —-6630
0 0 94500000 ] 0 14900 872000 A

(2.83)
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The problems with the Davison method may be overcome using the above con-
troller. In fact, bearing in mind that the velocity loop was introduced in order
to create extra phase margin for the position notch filter, it may seem wise to
use proportional-only control. However, removing the Gy/(0)~!/s term from the
controller by setting €, = 0 raises the issue of interaction between the sway and
yaw directions, as ilustrated by the Bode plot of Gy Ky N in Figure 2.12. High-
frequency interaction is not a problem when py = 1,€ey = 0, as the off-diagonal
elements roll-off at 40d B /decade compared to 20d B /decade for the diagonals, but
the system is coupled at low frequencies. Introducing a small amount of integral
action produces steady state decoupling without much penalty in phase margin,
therefore a non-zero value of €, will be used.

Bode Magnitude Diagram
From Sway Velocity Error From Yaw Velocity Error

To Sway Velocity

~50 — Py=1,6,=244

Magnitude (dB)
g8 8

To Yaw Velocity

0 2 -4 2
10" 107 10 10° 10 10 10° 10°
Frequency (rad/sec)

Figure 2.12: Bode sway and yaw magnitude response with notch filter

Setting py = 1 and adding the integral term, the closed-loop system is stable for

values of €y from 0 to 24.4. Selecting e, = 2.44, or 10% of the unstable value,
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is a good starting point for tuning and provides robustness to uncertainty of the

ship frequency domain characteristics.

Maciejowski method

The Maciejowski method involves selecting a desired bandwidth for the system
and attempting to decouple the sway and yaw directions using the Align algo-
rithm, which finds an approximate plant inverse. The bandwidth in this case is
selected to be 0.2rad/s, so that the system responds faster than the position-
feedback-only case in Figure 2.10, but does not attempt to reject high frequency

wave exciting forces. This gives:

3280 0 0
K=| 0 5160 -107 [=(Gv(j0.2)N(j0.2))"" (2.84)
0 385 6630000
where
Ky(s) =K, + K,é + Kgs =py K + evK% + 6y Ks (2.85)

However, the nature of the Align algorithm, which is to find a real approximation
to a complex matrix inverse, precludes exact inversion. The consequence of this is
that the product of Gy(j0.2)N(j0.2) and the rough inverse, K, is fairly coupled

as shown below:

—-0.506 — 0.862j 0 0
Gv(j0.2)KN(j0.2) = 0 —0.521 — 0.8547  —0.384 + 0.234j

0 0.000684 — 0.000394; —0.140 — 0.244;
(2.86)

The gain from sway input to sway output is twice that from the yaw input, and
the gain from yaw input to yaw output is much greater than from the sway input.

However, the gain magnitude from yaw input to sway output is 60% greater than
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the gain to the yaw output. Therefore, the sway thruster will have to work to
compensate sway errors due to the yaw thruster. It is possible for the system
to be more decoupled if a higher bandwidth is chosen. However, the reason for
choosing 0.2rad/s bandwidth is that this will produce good disturbance rejection

below 0.2rad/s and avoid excessive thruster forces.

Like the Penttinen-Koivo method, it is possible to include integral action without
destabilising the closed-loop system. Setting py = 1 and adding the integral term,
the closed-loop system is stable for values of €y from 0 to 0.31, hence the 10%
value, €y = 0.031, is used as an initial value for controller tuning. Non-zero ey is
unsuccessful in low frequency decoupling, unlike the Penttinen-Koivo approach,

by inspection of Figure 2.13. This is likely to result in an inefficient controller.

Bode Magnitude Diagram

From Sway Velocity Error From Yaw Velocity Error
100
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Figure 2.13: Bode sway and yaw magnitude response with notch filter
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dy is set to zero for the ship example, in order to keep actuator excursion low.

This also applies to the next method.

Combined method
In the combined case, equation (2.84) is used in the K, term and equation (2.82)
in the K; term. Thus:

’ i 5 (0)7!
I\\-(s) = Iip + I\’.‘; =pvK + 61/% (2.87)

Setting py = 1 and considering the integral term, the closed-loop system is stable
for values of €y from 0 to 1.53, suggesting €y = 0.153 as a first value for tuning
the controller. Again, non-zero €y will be used for decoupling at low frequencies,

producing a Bode plot of Gy Ky Ny similar to Figure 2.12 rather than Figure 2.13.

In Section 2.4.2 on position loop design, the velocity loop created with each
method will be embedded into the position loop. The analysis will continue in
the simulation Section 2.5, where the final tuned values of py and €, depend upon
stability, speed of response, control input magnitude, disturbance rejection and
loop interaction. The magnitude of thruster forces is determined to a great ex-
tent by the selection of bandwidth in the position loop, which can be understood
by inspection of equations (2.77), (2.80) and (2.81) relating to Up(s) and Vp(s).
The velocity loop also exerts some influence, however, due to Uy (s). This trans-
fer function, given in equation (2.74), depends on Ky (s) and affects the spectral
characteristics of Up(s) and Vp(s) above the position loop bandwidth. Much of
the disturbance spectrum occurs above this bandwidth, hence varying the gain
of Ky (s) not only allows the introduction of notch filters, but is also useful for

tuning thruster demand and disturbance rejection.

The improvement over a system without velocity feedback can be demonstrated

by examining the left upper transfer function of 7y (s). A frequency response
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plot when cascaded with a notch filter is shown in Figure 2.14 with the indicated
gains. Clearly, contrasting this with the Bode plot for the ship with no velocity
feedback in Figure 2.10, it is immediately obvious that the phase response roll-off

occurs at a higher frequency. Similar results are seen for the sway and yaw loops.

Bode Diagram
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Figure 2.14: Plant Bode plot, Ty N with velocity feedback

2.4.2 Position loop design
Davison method

Moving to the position loop control, it is evident that the Davison method will
produce zero gains, due to the integrators in Ty(s). Therefore, the method is of

no value in this case either.



2.4. SHIP CONTROL 50

Penttinen-Koivo method

The Penttinen-Koivo method presents another difficulty because there is no read-
ily available state-space representation for 7y (s). Hence the method of identifying
C B from step tests is utilised. However, when the Penttinen-Koivo, Maciejowski
or combined design methods are used in the velocity loop, the result is CB = 0.
This result is confirmed by inspection of Ty (s), because every transfer function
element has relative degree between numerator and denominator of at least 2.
Therefore, a step appearing at any input will not instantaneously produce an

output.

The inverse of C'B is infinite in this case, and the Penttinen-Koivo method is of

no further interest.

Maciejowski method

The initial selection of bandwidth is 0.02rad/s, because reference filters with this
bandwidth are to be employed in order to keep actuator excursion low and to
give a smooth transition from one position reference to another. Therefore there
is little point in designing a faster ship controller than this. The bandwidth
selected will, in addition, be sufficient to reject any low frequency disturbances
encountered. For the Penttinen-Koivo design method in the velocity loop (py =

1, ey = 2.44):

0.0199 0 0
K= 0 0.0198  —0.00125 | = (Tv(j0.02)N(j0.02))""  (2.88)
0 0.000000652 0.0185

where

, i o | . | 1
Kp(s) = (K, + ]\,‘; + Kys) = (ppK + GPK; +0pKs) (2.89)
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Ty (j0.02) N (j0.02) K =

—0.0144 — 0.999; 0 0
0 ~0.0143 — 0.999;  —0.254 + 0.00362; (2.90)
0 0.000135 — 0.00000133j —0.00927 — 0.931;

The system is clearly well decoupled at this frequency, and once again the Char-
acteristic Loci is plotted to provide stable values for pp and ep. When pp = 1,

the integral action scaling may take values 0 < ep < 0.91.

For the Maciejowski design method in the velocity loop (py = 1,€y = 0.031):

0.0194 0 0
K=| 0 00193 —0.0065 | = (Tv(j0.02)N(j0.02))""  (2.91)

0 0.0000127  0.0138

Ty (70.02)N(j0.02)K =

—0.0367 — 0.999; 0 0

0 —0.0308 — 0.999; 0.428 — 0.01325 (2.92)
0 —0.00113 + 0.0001755 —0.115 — 0.7495

The system is also fairly well decoupled at this frequency, and the Characteristic

Loci indicates stability for pp =1 and 0 < €p < 0.08.

Using the combined design method in the velocity loop (py = 1, ey = 0.153):

0.0202 0 0
K=| o 0.0202  0.00857 | = (Tv(j0.02)N(j0.02))""  (2.93)
0 0.00000713 0.0106
Ty (j0.02)N(j0.02) K =
—0.0826 — 0.997y 0 0
0 —0.0780 — 0.997j  —0.493 + 0.0385] (2.94)

0 —0.000580 + 0.000128; —0.124 — 0.562;
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The system is decoupled, although the magnitude of the bottom right element
is only 24% greater than the element above. The Characteristic Loci indicates

stability for pp = 1 and 0 < ep < 0.073.

The top left transfer function of Vp(s)Ga(s), from equation (2.77), and corre-
sponding Bode plot, in Figure 2.15, demonstrates the presence of a notch in the
frequency response from wave disturbances to the thruster input at 0.6rad/s.
The three plots are for different tuning methods in the velocity loop and with the

gains indicated. Similar plots may be obtained for the sway and yaw loops.

Bode Diagram
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Figure 2.15: Disturbance-to-control-input Bode plot

Combined method

As with the Davison method, the K; gains will be zero, hence this is just a special

case of the Maciejowski method where ep = 0.
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For each position loop controller, §p = 0 to avoid large thruster forces, and ep is
chosen to be 10% of the upper limit of stable values as a first guess for controller
tuning. The final values of pp and €p will depend on stability, control input
magnitude, overshoot, settling time and decoupling as given in the next Section

on simulation.

2.5 Controller tuning and simulation

Having assessed the tuning methods for suitability in the dynamic position control
scheme in terms of applicability and stability at an operating point, the control
design must be evaluated. The linearisation at (ug,vo,70) = (2,0,0) has been
examined in preceding Sections, and the responses of equations (2.78) to (2.81)
at this point will be used to expedite the tuning process. To check the validity
of the linear design, a Simulink simulation is also utilised based on the nonlinear
plant model detailed in equations (2.1) to (2.43) and control scheme depicted in

Figure 2.11.

Bearing in mind that the Davison method was not applicable to the system under
investigation, there are three permutations of controller - A Penttinen-Koivo,
Maciejowski or combined velocity loop design with a Maciejowski position loop

design. The results and subsequent tuning of each control design now follow.

2.5.1 Transfer function responses

To make a quick initial assessment of each controller, responses from equations
(2.78) to (2.81) are required. These transfer functions are linear representations
of the system at an operating point, so provided that the ship remains in the
neighbourhood of this point, the responses should closely agree with the nonlinear
simulation. In Section 2.4.2 it was noted that reference filters of bandwidth

0.02rad/s are to be employed to keep actuator excursion low and to give a smooth
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transition from one position reference to another. In the simulation, first order

lags with transfer function, Fg(s), are used to achieve this:

1 1

: 1
E(S) = FR(S)B demand(s) = dlag{sos + 1’ 505 + 1’ 503 + 1}Edemand(s)

(2.95)

Figure 2.16 shows the multivariable responses of Tp(s)Fg(s) to unit step reference
demands on each input, with zero disturbance. For the Pentinnen-Koivo velocity
loop case, the parameters are (py = l,ey = 2.44,pp = 1,ep = 0.091). In the
Maciejowski velocity loop case, the values are (py = 1,ey = 0.031,pp = 1,¢ep =

0.008), and in the combined case, (py = 1, €y = 0.153,pp = 1, ep = 0.0073).
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Figure 2.16: Responses of Tp(s)Fg(s) to filtered step reference demand
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Cross-coupling is not a problem, judging from the Y response to a step in ¥ and
vice versa. However, the diagonal elements exhibit considerable overshoot and
long settling times for all three cases, and oscillation in the Penttinen-Koivo case.
Increasing pp in fact improves the responses in all three cases. Letting pp = 3
and altering ep to the new 10% value of the upper limit of stability provides the
plot in Figure 2.17. For the Pentinnen-Koivo velocity loop case, the parameters
are now (py = l,ey = 2.44,pp = 3,ep = 0.225). In the Maciejowski velocity
loop case, the values are (py = 1,ey = 0.031,pp = 3,ep = 0.016), and in the

combined case, (py = 1,€y = 0.153, pp = 3,€ep = 0.0175).
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Figure 2.17: Responses of Tp(s)Fg(s) to filtered step reference demand

Overshoot and settling times are now reduced and the performance is acceptable

for this application.
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Figure 2.18 shows the corresponding surge and sway thrust responses of Up(s) Fg(s)
with the parameters given on the previous page, and a bias of 987 added to the
surge plot to account for the operating point. In the nonlinear simulation, there
would also be a slight offset on the right hand plots due to the current acting at
1° to the ship heading when the reference point is reached. All peaks are well
within the thruster maximum force of 4707 and moment of 10°7T'm, and the rate

limit of 507°/s is not violated.
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Figure 2.18: Thruster responses of Up(s)Fr(s) to step reference demand
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In the simulation later, the average wind velocity, U 4o, is set to 20m/s at an angle
4 = Wg + 7/4, and the waves are for heavy seas at an angle Sy = Vg + 7/12,
where Wy is the heading reference. Figure 2.19 depicts typical wind and wave

environmental forces in each direction during the simulation.
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Figure 2.19: Typical wave and wind environmental forces

Comparing the magnitude of these forces and moments with the thruster re-
sponses of Vp(s)G4(s) in Figure 2.20 it is clear that the notch filter and band-
width selection prevents total rejection of the disturbance, instead focussing on

the low frequency components.
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Figure 2.20: Thruster responses of Vp(s)Gy(s) to disturbances

The high frequency zero mean disturbances are allowed to influence the ship

motion, as depicted in the responses of Sp(s)Gq(s) in Figure 2.21.
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Figure 2.21: Position responses of Sp(s)Ga(s) to disturbances

The surge thrust reaches peaks of greater than 4707 in the Penttinen-Koivo
linear responses and the rate of change peaks at 2007'/s, so clearly some tuning
is required. Unfortunately, simply reducing pp does not reduce the thruster
magnitude as desired. This can be seen by setting pp = 0.25,ep = 0.024 and
plotting the frequency response from wave disturbances to the thruster input in
Figure 2.22. Comparing this with Figure 2.15 where pp = 1,ep = 0.091, the
only difference is a very small resonant peak at 0.02rad/s. The characteristics
above 0.17ad/s are the same, hence the response to disturbances above this point
is the same. In addition, pp has already been increased from 1 to 3 in order to
improve the step reference response, so it would be counterproductive to decrease

pp again.
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Bode Diagram
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Figure 2.22: Disturbance-to-control-input Bode plot

As mentioned in Section 2.4.1, adjusting Ky (s) affects the spectral characteristics
of the position loop above the bandwidth frequency. To proceed, py must be
reduced in the velocity loop and a new gain matrix, K, found in the position
loop. The thruster peaks are in excess of the 4707 maximum by around 15%,
but the rate of change is four times larger than the acceptable 507"/s. Decreasing
py from 1 to 0.3, €y from 2.44 to 0.155 and recalculating K at 0.02rad/s for the

Penttinen-Koivo velocity loop produces:

0.0202 0 0
o=l o 0.0201  —0.094 (2.96)
0 0.00000479 0.0197
By comparison with equation (2.88), the off-diagonal elements show an increase

due to greater velocity loop interaction between the sway and yaw directions.
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Hence, thruster forces are likely to increase slightly so that one input can cancel
the effect of the other control input. The reduction of py should produce smaller
thruster forces overall, however. Maintaining pp = 3 and reducing ep to 0.03, the
new frequency response from wave disturbances to the thruster input is given in

Figure 2.23.
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Figure 2.23: Disturbance-to-control-input Bode plot

The attenuation of frequencies above 0.2rad/s is now much greater, and appears

similar to the responses in the Maciejowski and combined cases in Figure 2.15.

2.5.2 Simulation results

Having tuned the controller based on linearised models, the Simulink simulation
results are now presented. The simulation is initialised so that the ship remains

near to the operating point. From Table 2.1, when the body-fixed ship veloc-
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ity is 2.0m/s in the surge direction and zero in the other directions, the surge
thruster is at 98.07". Therefore, if the ship is regulated near to a slowly-changing
or constant setpoint in the simulation, R = [Xg, Yg, ¥g]7, and the current in the
surge direction, u., is set to 2.0m/s, B¢ = W, the value of Xt and ug should be
98.07 and 2.0m/s on average in order to counteract the fixed current. Average
wind velocity, U g, is set to 20m/s at an angle 84 = ¥p + 7/4, and the waves
are for heavy seas at an angle 3y = WUg + m/12. The wave angle is close to Up
to account for the fact that dynamic position control must be activated so that
wave forces do not saturate the thrusters, as mentioned in Section 2.2.3. Also,
the current and waves will naturally tend to be in similar directions. The tuning
parameters are: Pentinnen-Koivo (py = 0.3,ey = 0.155, pp = 3,€ep = 0.03), Ma-
ciejowski (py = 1,ey = 0.031,pp = 3,€p = 0.016), and combined (py = 1,ey =
0.153, pp = 3, €p = 0.0175).

Figure 2.24 depicts the response to a filtered unit step on the X coordinate and

zero reference on the other coordinates.
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Figure 2.24: Position response of simulated ship

The corresponding plot of surge versus sway position is shown in Figure 2.25.
Mean radial position error is 0.147m for Penttinen-Koivo in the velocity loop,
0.151m for Maciejowski, and 0.171m for the combined method. The heading
error standard deviations are 0.222° (Penttinen-Koivo), 0.104° (Maciejowski), and

0.264° (combined).
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Figure 2.25: Overhead view of simulated ship position

Figures 2.26 and 2.27 depict the (X7, Y7) thrust vector magnitude and its rate of
change during the simulation. The vector has a mean of 1537 (Pentinnen-Koivo),
1537 (Maciejowski) and 1527 (combined) and reaches peaks of 3287 (Pentinnen-
Koivo), 3327 (Maciejowski), and 3277 (combined), well within the limit of 4707
For the rate of change, the standard deviation is 11.17'/s (Pentinnen-Koivo),
12.87/s (Maciejowski) and 11.07/s (combined) and the maximum magnitude
is 37.3T/s (Penttinen-Koivo), 45.87 /s (Maciejowski), 35.97'/s (combined), well

within the limit of 507/s.
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Figure 2.26: Magnitude of thrust vector of simulated ship
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Figure 2.27: Rate of change of thrust vector magnitude of simulated ship
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Figure 2.28 portrays the thruster moment applied during the simulation, with
standard deviation of 20707m (Penttinen-Koivo), 50307m (Maciejowski), and
18707'm (combined). The turning moments peak at 97107'm (Penttinen-Koivo),
207007'm (Maciejowski), and 92507'm (combined), well within the limit of 10°7'm.
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Figure 2.28: Moment plot for simulated ship

The results in this Section are for a single operating point, (u, vo,7) = (2,0, 0),
where there is cross-coupling only between the sway and yaw axes. In normal
usage, a dynamically positioned ship will point towards the current flow in order
to produce the most hydrodynamically and energy efficient control. Therefore,
this operating point is representative of a great amount of ship usage. At other
points there will be cross-coupling between all three axes, but the fact that the
model-free multivariable tuning methods are successful for interaction between

sway and yaw suggests that little difficulty would be encountered in other cases.
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2.6 Discussion

Having produced three different multivariable dynamic ship positioning designs
satisfying the thruster constraints and achieving acceptable performance and dis-

turbance rejection, a comparison is given in Table 2.2,

Table 2.2: Comparison of results for the three designs

Method - Velocity/Position Loops
P-K/Mac | Mac/Mac | Com/Mac
Radial Position Error Mean (m) 0.147 0.151 0.171
Thrust Vector Mean (T') 153 153 152
Thrust Vector Peak (T') 328 332 327
Thrust Vector Rate Std. Deviation (7'/s) 11.1 12.8 11.0
Thrust Vector Rate Peak (7'/s) 37.3 45.8 35.9
Heading Error Std. Deviation (deg) 0.222 0.104 0.264
Thrust Moment Std. Deviation (T'm) 2070 5030 1870
Thrust Moment Peak (T'm) 9710 20700 9250
pv | 0.300 1.00 1.00
€v 0.155 0.03100 0.153
pp 3.00 3.00 3.00
ep 0.0300 | 0.0160 0.0175

Outright performance is not the only criterion of success for a "quick and easy”
multivariable tuning technique, although performance figures are an important
medium of assessment. The mean and peak of the thrust vector is almost identical
in each case, but the Mac/Mac radial position error mean is 2.72% greater than
for P-K/Mac and the Com/Mac error is 16.3% greater. However, the thrust vec-

tor rate peak is least in the Com/Mac case, although only by 3.8% from P-K/Mac.
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The thrust vector rate standard deviations are almost identical for P-K/Mac and
Com/Mac. From this evidence it could be argued that the P-K/Mac technique

is superior, but first examine the heading error and thruster moment results.

The Mac/Mac case exhibits the smallest heading error standard deviation, but
also the largest thrust moment standard deviation and peak. The P-K/Mac
controller has a heading error standard deviation 2.13 times greater, but thrust
moment standard deviation 2.43 times smaller and thrust moment peak 2.13
times smaller. Therefore, if it is acceptable to allow a larger heading error by a
particular multiple, the control energy expended is smaller by a: greater propor-
tion. The Com/Mac controller has a heading error standard deviation 2.54 times
greater than the Mac/Mac case, but thrust moment standard deviation 2.69 times
smaller and thrust moment peak 2.24 times smaller. Again, the control energy
is decreased by a greater amount than the error is increased, although the peak
thrust shows the opposite trend. The Mac/Mac method is perhaps suffering from
the cross-coupling indicated in Figure 2.13, producing a less efficient controller

for sway and yaw than is possible.

The heading error standard deviation of 0.222° in the P-K/Mac case is entirely
acceptable, added to the low expenditure of control energy. Thus, again it ap-
pears that the P-K/Mac method is preferable and, in fact, delivers the best
overall performance of the three controllers under inspection. This is perhaps
slightly surprising given the fact that the Penttinen-Koivo method is intended
for decoupling at high frequencies and the ship operates at low frequencies. It
was necessary to reduce the scalar tuning gain for the P-K tuned velocity loop
in order to achieve this performance, so it could be argued that more tuning was
involved for the P-K/Mac method during the comparison of so-called "rapid tun-
ing” techniques. Without any adjustment of py, Penttinen-Koivo is clearly the

worst method, as the thrust magnitude and rate limits are violated.
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It is not certain that the performance of the Mac/ Mac and Com/Mac controllers
cannot also be improved with further tuning. The integral action scaling gains
were chosen fairly arbitrarily to be 10% of the stable value and the decoupling
bandwidth of 0.2rad/s could be increased until the P-K gain matrix resulted at
the upper limit. Decreasing the bandwidth is also a possibility, although stability
will become a problem as the gain matrix approaches the Davison gain at the

lower limit.

In summary, all three methods produce acceptable multivariable performance
with little effort, although the P-K/Mac controller requires slightly more tuning
from the initial unity proportional scalar gain in the velocity loop. Achieving
ultimate performance was not the aim of this Chapter, but an interesting piece of
further work would be to vary the decoupling bandwidth and scalar tuning gains
for each method. It is possible that one method would yield clearly superior
performance, although the results of this Chapter suggest that any advantage
would be small and would involve an interplay between tracking error, control

energy, bandwidth selection and decoupling.

2.7 Conclusions

This Chapter began by introducing the ship Dynamic Positioning (DP) control
problem, where the objective is to maintain the position and heading of a vessel
in the sea by using active thrusters only. This problem has been the subject of
research for over thirty years and the design tools have ranged from heuristic PID
tuning to modern LQG and Hy. The problem is multivariable in nature due to
interactions between the surge, sway and yaw directions of movement, and the
mathematical model may not be known. However, the problem of rapid prelimi-
nary tuning has never previously been addressed whilst taking these factors into

account. The main contribution of this Chapter was to investigate four potential
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techniques for addressing this particular problem.

A nonlinear multivariable model for a Floating Production, Storage and Offload-
ing (FPSO) vessel was presented, which encompasses the hydrodynamic forces in
addition to disturbances due to wind, waves and current. This model and the
parameters used throughout the thesis were the result of a case study carried out

for Mitsubishi Heavy Industries Ltd.

Four methods for rapid tuning of a multivariable PID controller were given. These
methods are model-free and intended for easily producing an initial controller de-
sign based on step tests or application of sinusoidal inputs at a single frequency.
Although a model was used for simulation, it is straightforward to apply these
tests in reality where no model is known. Controller structures were discussed
and the four methods were applied to the linearised ship model at an operating
point. The Davison method proved to be of little use, as the ship model in ques-
tion possesses frequency domain characteristics such that the technique cannot
be applied. Penttinen and Koivo, Maciejowski and the combined approaches,

however, produced control schemes with a few short, simple steps.

The Penttinen-Koivo technique involves applying a unit step to each input in turn
and measuring the initial gradient of the output response and the steady state
gain. The values of gradient are then incorporated in a square matrix to form a
proportional control term, and the steady state values are arranged in another
square matrix to produce the integrator term, both with multiplicative scalar
tuning parameters. The Maciejowski technique involves applying a sinusoidal in-
put to each input in turn and measuring the magnitude and phase response at
the outputs. The frequency of the sinusoid is chosen to be the desired bandwidth
of the closed-loop system. The magnitude of the sinusoid is small to provide an

almost linear response at the operating point. The response is expressed as a
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matrix of complex numbers, for which a real approximate inverse is found. The
resulting matrix is used as proportional and integral controller terms, also with
scalar tuning parameters. For the combined method, the real approximate in-
verse matrix is used for the proportional controller term and the steady state
gain inverse is used for the integral term. The Pentinnen-Koivo technique pro-
vides decoupling at very low and very high frequencies, the Maciejowski method
provides approximate decoupling at the chosen bandwidth, whereas the combined

method decouples at the selected bandwidth and very low frequencies.

The control scheme consists of velocity and position feedback loops, tuned in
that order. The generalised Nyquist stability criterion was used to find a range
of suitable values for the tuning parameters. This would be not be an option
where a model is not available, but served to expedite the investigation rather
than having to “tune the regulator on-line”. The controllers were easily tuned
to meet design criteria of stability, speed of response, disturbance rejection, de-
coupling and avoidance of actuator saturation. Simulation results were presented
and it was concluded that using the Penttinen-Koivo method in the velocity loop
and Maciejowski method in the position loop provides the best performance, by

a small margin only, although with slightly more tuning.

The main flaw of the design methods detailed in this Chapter is the dependence
on a point where decoupling can take place in the frequency range of interest.
The Davison method is of no use where integrators are present in the plant, and
the Pentinnen-Koivo method requires that high frequency motions are desirable
in a system. Maciejowski's approach can produce decoupling through a large
range of frequencies, but selection of the wrong bandwidth can result in strong
interaction between one or more of the system modes, and therefore an ineffective

control system.
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The main advantage of the design approaches given is the speed and ease with
which an effective multivariable PID controller can be produced. The advantage
to industry is that money can be saved on design effort, and also on commission-
ing time. A benefit for academics is that a MIMO PID controller can easily be
obtained when making comparisons with more advanced techniques. Of course,
further fine-tuning of individual loops can take place after using these methods,

but the initial design can serve as a useful starting point.

One extension of this work could be to try alternative bandwidths for the velocity
loop and to experiment more with the scalar tuning gains. It is conceivable that
the control system performance with the ship example could be improved with
experimentation. Another extension would be to try a large number of operating
points to confirm the wide applicability of the techniques, then to apply gain

scheduling as the overall control scheme.



Chapter 3

Neural Network Ship

Identification

This Chapter describes an examination of techniques for identifying the dynamical
behaviour of a ship from input and output data. The situation when two ships
influence each other’s motion via a hawser is studied in particular, and a neural
network 1s applied to the task. The concept of a neural network is described
and the elements of the mathematical model additional to the previous Chapter
are detailed. An experiment is carried out using data from a simulation, which
produces results to encourage further investigation using real data. This data
is obtained from a 1/50th scale model in a tank with controllable environment.
The subsequent results of neural network training for different wave heights and
excitation are satisfactory, although deterioration is seen as disturbances increase.
Network performance is analysed at the end of the chapter, and use of neural nets

for control applications is discussed.

3.1 Introduction

Modelling of vessels for DP control generally involves deduction of the equations

of motion from first principles, see Fossen (1994) for example, and quantifica-

73
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tion of parameters from physical knowledge. This will produce a model as given
in the previous Chapter. Another approach is to perform system identification,
whereby a mathematical model is created using data from observations of sys-
tem behaviour. Ljung (1999) deals with a broad range of such techniques in
some depth, beginning with simple linear single-input single-output (SISO) time-
invariant systems with clear structure based on physical insight. A range of
system complexity is then covered, up to nonlinear multivariable time-varying

systems with "black-box” internals.

The ship identification problem is towards the complex end of that range, as it is
certainly nonlinear and multivariable. Time-variation may also be a factor as the
ship encounters changes in its environment which affect the dynamics. The ship
is more "grey box” than "black box” because physical laws can be used to analyse
likely behaviour influenced by known parameters. However, the model given in
equations (2.1) to (2.37), for example, is subject to various modelling approxi-

mations and uncertainty over quantities such as the hydrodynamic derivatives.

Fossen (1994) and Fossen et al. (1996) deal with parameter estimation of a DP
ship model using a state-augmented extended Kalman filter, see Gelb et al. (1988).
Lack of persistent excitation is noted as a significant impediment to identification
in the DP problem, hence the procedure is performed off-line and is broken into
a number of manoeuvres. Firstly, the ship is excited in the surge direction alone
using the main propellors to identify three important parameters in the model.
These parameters are frozen and used in the next stage where sway and yaw ex-
citation are applied together via bow and aft tunnel thrusters to identify another
six quantities. The final stage involves freezing the nine known parameters so far
and exciting the bow azimuth thruster only, to determine one more parameter.
The Kalman filter is presented with several data sets from different manoeuvre

sequences in order to improve identifiability and reduce parameter drift. The
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estimated model behaviour is compared with experimental results from the real

ship and produces good agreement.

The identification of DP ship dynamics is clearly not a simple problem, further
complicated by lack of persistent excitation and coupling between the three de-
grees of freedom. Ljung (1999) suggests that it is usually preferable to work with
state-space models in the multivariable case, but still gives the generalisation
of various SISO polynomial methods to multi-input multi-output (MIMO) mod-
els. Subspace identification for state-space is covered, this is in more detail in
Van Overschee and DeMoor (1996), but the method is supposed to be used with
linearly behaving systems. The ship is also not suited to the nonlinear Wiener
(output nonlinearity) or Hammerstein (input nonlinearity) models, so attention
must unavoidably turn to a more general system representation. Ljung (1999)
refers to basis function expansions or networks for this purpose, of which neural

networks are a good example.

Neural networks are well suited to identification of arbitrary highly nonlinear
systems, when used as a mathematical mechanism for "learning” a quite general
mapping from an r-dimensional real space to an s-dimensional real space. Their
other function is pattern recognition, not of interest here, which involves a differ-
ent structure and mode of learning. A neural network consists of a large number
of individual processing units called neurons, which may be arranged in parallel
within layers and interconnected in such a way that every neuron in one layer
can influence the input to every neuron in the next layer. This is known as a
feedforward network, and if the outputs from neurons may also feed back to in-
fluence neurons in the same or previous layers, this is called a recurrent network.
These basic issues are well covered in Pham and Liu (1995) and Narendra and

Parthasarathy (1990).
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In order for a neural network to approximate a desired mapping, it must go
through a supervised learning process, see Haykin (1994). An input is presented
to the network and the output from the final layer is compared with a desired tar-
get output. The error between the two is used to update the network connections
to give more accurate results. The process repeats until satisfactory performance

is achieved.

In Page et al. (1993), a recurrent modified Elman network is able to identify SISO
systems of up to third order. In Pham and Liu (1995), feedforward networks are
used to identify SISO systems of arbitrary order using tapped-delay-lines i.e.
input and output signals from the past and present. The drawback of feedfor-
ward nets for representing dynamical systems is that they do not have dynamic
memory, so tapped-delay-lines become necessary although the system order and
number of delays required may not be known. However, in the ship model of
Chapter 2, a linear state-space model is derived where accelerations are a non-
dynamic nonlinear multivariable function of force and velocity. Hence, dynamic

memory is not necessary to characterise the system.

In this Chapter, with the above consideration in mind, the most commonly used
feedforward network, the multilayer perceptron (MLP), is applied to a ship iden-
tification problem. The Chapter details an investigation into the use of a neural
network for modelling the motions of a Shuttle Tanker when coupled to a Floating
Production, Storage, and Offloading (FPSO) vessel via a hawser, as represented
by Figure 3.1. The circled numbers are (1) Hawser Angle with FPSO, (2) Rel-
ative Position of FPSO and Shuttle Tanker, and (3) Hawser Angle with Shuttle
Tanker. A turret towards the front of the vessel anchors the FPSO, and control
comes from a stern azimuth thruster. The shuttle tanker is pulled away from the
FPSO by a tugboat, hence keeping the hawser in tension, and control comes from

a bow azimuth thruster. The shuttle tanker also has a rear propeller and rudder,
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but these are not used when the hawser couples the two ships. This configuration
is used by Mitsubishi Heavy Industries (MHI) Ltd. when an FPSO is offloading
oil. The parameters of the simulation model in Section 3.4 and subsequent real

tank test data in Section 3.5 are supplied by MHI.

Figure 3.1: Plan view of coupled ships

Neural networks have previously been used in marine systems identification and
control, but a survey of the literature indicates that control has been the pre-

dominant area of research. This will be discussed in Section 3.6. The potential
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of neural networks for identification has been explored in aspects of the overall
ship system, such as diesel engine modelling in Roskilly and Mesbahi (1996b) and
Xiros and Kyrtatos (2001), but there is only a small body of research into the
identification of ship motion. Haddara and Xu (1999) look at ship coupled heave-
pitch motions, modelled by two so-called "random decrement” equations. Two of
the parameters in these equations are found by measuring the period of damped
free oscillations in heave and pitch. Two functions must then be identified to
represent the remainder of the model, which is achieved using a neural network.
The method is validated by comparing results of a numerical simulation with ex-
.perimental data from an icebreaker ship model. It is found that the predictions
by the neural network are of high fidelity when the ship is lightly damped. Of
course, heave and pitch motions are ignored in the DP problem, so this work is

not entirely relevant to the aim of this Chapter.

A directly relevant investigation is that of Hardier (1995), who uses an MLP with
tapped-delay lines to learn the surge, sway, yaw and roll dynamics of a 1/12th
scale model of the Charles de Gaulle aircraft carrier. A network is trained using
fin and rudder deflection as inputs, with one-step-ahead roll angle, roll, yaw and
sway rate as outputs. The outputs are delayed by one time step and fed back into
the network to improve representation of the low frequency dynamics. A second
network is trained using the same inputs as the first, plus propellor rotation rate,
yaw rate and surge velocity. The output is one-step-ahead surge velocity, which
is delayed and fed back to the network input. The first network is applicable at a
fixed surge velocity only, hence three versions are trained at 15, 20, and 25 knots.
The second network is used to create a prediction of surge velocity, which inputs
to an interpolation law acting on the outputs of the three velocity-dependent
networks. Training occurs for 2.5m wave height and the results are described as

"satisfactory”.
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The contribution of this Chapter is to identify ship dynamics for use in DP of
coupled ships, using a neural network. This problem has been investigated ana-
lytically in Morishita et al. (2001) using hydrodynamical equations. The authors
concluded that the dynamics are complicated and there are numerous modes,
stable and unstable operating points present. The aim of the following is to dis-
pense with analysis and simply look at the viability of learning an input-output
model. This is not an entirely original idea, as the work of Hardier (1995) de-
scribed above is clearly similar. However, the fact that no recurrence is involved
in the network and that the dynamics are for a coupled-ship system provides a

problem of a slightly different nature.

The Chapter is divided into several Sections. Section 3.2 explains the mathe-
matics behind neural networks and the manner in which they are used. Section
3.3 describes the mathematical model used to both analyse ship motion and to
produce a computer simulation, and explains how this model suggests the in-
puts and outputs to be used with the neural net. Section 3.4 details an initial
attempt at training neural networks based on data from the computer simula-
tion. Results and Figures are given to illustrate the effectiveness of producing

acceleration, velocity, and position signals for three degrees of freedom of the ship.

Section 3.5 then gives results using data supplied by Mitsubishi from their 1/50th
scale model tank tests. These results are the most important as they give an idea
of the realistic potential of neural networks for ship identification, which appears
to be fairly high. Section 3.6 discusses the results given in the main body of the
Chapter, describes the use of neural networks for control, and suggests ideas for

further work. Conclusions are drawn in Section 3.7.
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3.2 Neural networks

The individual processing units of a neural network are called neurons, and the
output of each neuron, see Figure 3.2, is a function of the weighted sum of the

neuron inputs, as detailed in the following equation:

B, s ﬂthmm+w
= fw"p+0) (3.1)

where a is the output, p(i) is the i** input, w(i) is the weight on the i** input, b

is a bias term, and f is known as the activation function.
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Figure 3.2: Neuron

A layer of neurons is arranged as in Figure 3.3 so that it obeys:

a=f(Wp+b) (32)

where a is the vector of outputs from all neurons in a layer, W is the weight
matrix, p is the vector of inputs to all neurons in a layer, b is the bias vector,
and f is the activation function which is the same for every neuron in a given
layer. The activation function can take the form of a step, a straight line, a log-

sigmoid, hyperbolic tangent or radial basis function depending on the application.
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Figure 3.3: Layer of neurons

Using several of these layers in series, it is possible to construct a network called

a Multi-Layer Perceptron (MLP) as in Figure 3.4. Notable features of MLPs,

proved by Cybenko (1989) and Funahashi (1989), are that a two-layer network

can exactly represent every Boolean function, every bounded continuous function

can be approximated with arbitrarily small error by two layers, and any function

can be approximated to arbitrary accuracy by three layers.

1 l 2 ¥ 3 2
n'(1) (0 - Wi(1,1) ) n’(1) £0) a'(l)
a'(1)

p(1) ]‘b:(,)
p'(2) n'(2) f) 2@ b3 n’(2) £0) a’(2)

Tb’(Z)
'(R) el :Su a0 a2

p n'(S) 0 a( }) - Z n'(S) 80 | a(s)
W(S’,S")
' bl(sl) Tbl(sl)

Figure 3.4: Multi-layer perceptron
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In order for a neural network to approximate a desired mapping, it must go
through a learning process. In general, the network is initialised with a random
weight on every element in the W matrix and a random bias on every neuron.
An input is then presented to the network and the output from the final layer
is compared with the desired target output, t,. The error between the two is
then incorporated into a formula to produce the amount by which the network
weights and biases should be altered to give more accurate results. The network
is trained using a set of ) input-output pairs, (;1_)k, t;), where the subscript k is the
index, k = {1,2,...,Q}. Further inputs from the set are presented to the network
and the process of updating weights and biases continues. Each presentation of
an input/output pair and alteration of weights and biases is known as an epoch,
and the algorithm continues until the maximum number of epochs is reached, or

the error between target and actual output satisfies a predefined criterion.

3.2.1 Notation

The superscript A will be used as the index for the network layers, A = {1, 2, ..., A},
and n* will denote the vector of values after the summing junction in the A\** layer,
as in Figure 3.4. It will be assumed that the biases have been incorporated into
the weight matrices. This is achieved by adding an extra column to the end of
W containing the values of b and by adding an extra input to the bottom row of

p equal to 1. Therefore, for each layer:

ﬂ'\ — “r,\g/\—l (33)
or
sk—l
(i) = D WA(ij)a*~'(5) (3.4)
J=1

where W(ij) is the i'* row and j column of the weight matrix for the A layer.

SA-1 is the number of neurons in the (A — 1) layer. Also note that a*~! = p.
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The output of each layer is:

or

a’(i) = f(n*(3)) (3.6)

where f*(.) is the transfer function used in the A** layer.

3.2.2 The backpropagation learning rule

The process of learning for MLP neural networks adjusts the weights and biases
one layer at a time working backwards from the output layer, hence the name

"backpropagation”. The cost function for backpropagation is:

Q
1
J=5 It - al"lte - o (3.7)
k=1

where t, is the k'™ target output and g;? is the output from the final network

layer in response to the k** training input vector.

The method of steepest descent is used to calculate the change in the (i, j)"
element of W after each presentation of the training data to the network. The

expression for this change is:

i S5
Taw(iy)

where 7 is called the learning rate. The idea behind this method is to find values

AWA(ij) = (3.8)

of W that minimise J by moving along the line where 0J/0W is a maximum.
The solution is iterative and the weights will be updated at each training step

until a global minimum for J is reached.
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An implementable expression for 9J/0W?*(ij) is therefore required. This will be
given in the following derivation. Defining J; as the contribution to the cost from

the k' training error:

1
Je = §[§k — ap]" [t — ai] (3.9)
so that
Q
J= Z Ji (3.10)
k=1
allows us to work with 8.J;,/0W*(ij) rather than 8J/0W?*(ij). Returning to (3.4)
see that:
SA—X
np(i) = D WA(iz)ap™'(j) (3.11)
j=1
and
ai(i) = f(ni()) (3.12)

Using the chain rule, split 8.J;,/0W?*(ij) into a product:

e _ 0 9ny(i)
OWA(ij) — Onp(i) IWA(ij) (3.13)
From (3.11)
anp(i) i
oy — % U (3.14)
so an expression for the first term in the product is required, defined as:
aJ,
6Mi) = ———e
0 =50 (3.15)

so that
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Q
AWA(ig) =n)_ 6 ()ay(j) (3.16)
k=1
Again using the chain rule, express —d; (i) as:
BJk (A8 aJk Baﬁ(z)
ond() ~ 9a)i) Bnd() )
From (3.12), see that:
da (i af*
i) O (3.18)

onp(i) — ong(d)

and so an expression for 8.J;/da} (i) is needed. There are two cases to be covered

here, one is for the output layer (A = A) and the other is for the remaining layers

(A=1,...,A—1). For the output layer, recall that:

1
Jp = —[bc — ap] [t — ap]
= Z[tk — ai(i
Therefore:

ey = {1~ 0]

and the delta vector for the output layer is constructed from:

A . OfA
2) = [te(i) - a;}(z)]%jk{(—z.)

For the remaining layers:

SA+1

0Jk Z BJk 6n'\+1( )

da}(i) ~ & anyT(1) 9ad(i)

From (3.11):

(3.19)

(3.20)

(3.21)

(3.22)
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A+l Z “/z\+1 l] ) (323)
leading to
ani“(l) — YA+,
PaG) W (1) (3.24)
From (3.15):
0J
ana\+l( ) —6I’c\+1(l) (3.25)

Substituting (3.24) and (3.25) into (3.22) gives:

SA+1

Ji
0 i Z 6A+1 H/z\+1(ll) (326)

)
dap(i)
and the delta vector for the remaining layers is constructed from:

SA+1

Z 6A+1 l)uz,\+l (ll) aaf

0 (3.27)
=1

3.2.3 Training algorithm

The theory necessary to construct an algorithm for training an MLP has been

derived above. The steps are as follows:

1. Initialise the network with random weights and biases

2. Propagate each training input p, forward through the network, using the

current weights and recording the p; A vectors for each layer

A

3. From the output of the last layer, calculate the training error ty —ap

4. Use the training error to calculate the delta vector for the output layer

5. Calculate the delta vectors for all of the hidden layers, moving backwards

from the output layer
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6. Repeat steps 2-5 for each input-output pair in the training set. Use the

accumulated delta vectors and input vectors to update the weight matrices

7. Repeat steps 2-6, known as an epoch, until either a pre-determined number
of epochs have been completed or the cost J decreases to a pre-determined

value

When the algorithm is finished, it is desirable to check the standard of learning of
the network. This is achieved using a set of validation data which is different from
the training data but was produced by the same mapping to be learned. This

also consists of inputs and target outputs. The validation steps are as follows:

1. Propagate each validation input P, forward through the trained network
2. From the output of the last layer, calculate the validation error t, — a?
3. Repeat steps 1-2 for each input-output pair in the validation set

4. Calculate the cost J

This cost will indicate that training has been successful if is not much greater
than the training cost. Of course, visual inspection of the network output com-
pared with the desired output should also be carried out, to ensure that there are

not anomalous spikes which are having little effect on the cost.

The validation data set allows the user to observe how successfully the network
generalises the learnt function to previously unencountered data points. If the
generalisation is good, then the user can be confident that the function has been
well approximated by the network. If not, it may be necessary to use another

training data set, so that the unknown features of the function can be learnt.



3.3. MATHEMATICAL SHIP MODEL 88

3.3 Mathematical ship model

Although Mitsubishi Heavy Industries have a working 1/50th scale replica of the
coupled FPSO and shuttle tanker, there has also been development of a simulation
based on a nonlinear mathematical model, given in equations (2.1) to (2.37). The
two ships use the same model with different mass and hydrodynamic parameters,
plus the X7, Y7 and N7 signals are augmented by forces due to the turret, hawser

and tugboat.

3.3.1 Turret forces

The turret anchors the FPSO to the ocean floor via four steel cables, nominally
acting at heading angles of 0, 7/2, # and —7/2 from the turret. The distance

from turret to anchoring for each cable is given by:

di = V(Le— Xppso + di(1 — c0sVEpso))? + (=Yrpso — diesin¥ ppso)?

dta2 — \/(dto(l - (,‘OS\I’Fpso) s ‘\’ppso)‘z + (Lc i },FPSO i dto*‘sin\I’FPSO)2

dia3 = \/(_Lc — Xppso + dio(1 — c0s¥rpso))? + (=Yrpso — dipsinUppso)?

dus = Vdio(1 — cosVrpso) — Xppso)? + (—Le = Yrpso — diesin¥ ppso)?

(3.28)

and the angle at which each cable acts is given by:

o =Yrpso — disin¥ppso

01 = tan -

tal Lc - AFPSO + dgo(l - COS\I’FPSO)
02 = tan™’ Le — Yrpso — dwsinVrpso

’ dlo(l - COS\IIFPSO) - ‘\’FPSO

- —Yrpso — dypsin¥

Oz = tan™! : to FPSO

ta3 —'Lc o 4\FPSO + dto(l el COS‘I’FPSO) (3-29)
s = tan™' —Lc = Yrpso — dipsinVepso

dw(l — COS\I/ppso) s «\’FPSO
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where dyq; is the distance and 6,,; is the angle for the jth cable. Xgpgo and
Yepso are the earth-fixed X and Y coordinates of the FPSO and ¥gpgp is the
heading. L. = 1714m is cable length and d;, = 29.75m is the distance from the
turret to the origin of the body-fixed coordinates. Each cable produces a tension

force of:

43(diaj — 1701) ,d > 1701
T; = (3.30)
0 ,d < 1701
where Tj is tension in the jth cable. The forces experienced by the ship via the

turret are finally described by:

4 4
Xt = Z Tjcosb,5c08¥ ppso + Z Tjsinbyejsin¥ ppso (3.31)
j=l J:l
1 4
Yir = O TjsinfijcosUrpso — 3 Tjcosbiajsin¥ rpso (3.32)
j=1 j=1
4 4
Nyt = d,,,(z Tjsinby,jcosVrpso — E Tjcosb4,j5in¥Y ppso) (3.33)
i=1 i=1

where Xy, Yire and Ny are the surge, sway and yaw components.

3.3.2 Hawser forces

The hawser attaches the FPSO to the shuttle tanker. The distance from the stern

of the FPSO to the bow of the shuttle tanker is given by:

d = ((Xppso— Xst —0.5(Lrpsocos¥rpso + Lsrcos¥sr))?

+(Yepso — Yst — 0.5(Lrpsosin¥ppso + Lspsin¥sr))?):  (3.34)
and the angle of the hawser is given by:

=1 }F}’SO - Ysr — O-D(Lppsosin‘pppso + Lsrsin\IIST)

0 = tan™" — -
Xrpso — Xst — 0-5(14,:}:50003\111:';)50 + LSTCOS\I’ST)

(3.35)



3.3. MATHEMATICAL SHIP MODEL 90

where Xgr and Ysr are the earth-fixed X and Y coordinates of the shuttle tanker,
Ugr is the heading, and Lppso = 255.7m and Lgy = 230.0m are the lengths of

each ship. The tension in the hawser is governed by the following:

4

0 ,d < 48.34

3.6425d — 176.09 ,d < 58.545

T ={ (3.36)
12.813d — 712.98 ,d < 59.545

] 21.39d — 1223.7 ,d > 59.545

Resolving the tension into X and Y components:

Tx = Tcosb, Ty = Tsinf (3.37)

the forces experienced by each ship via the hawser are then described by:

Xnwskpso = —TxcosVppso — Tysin¥ppso
Yiwserso = Txsin¥ppso — Tycos¥rpso (3.38)
Nuwsepso = 0.5Lppso(Tycos¥rpso — TxsinVppso)
Xiwsst = TxcosVsr + TysinVgr
Yiwsst = Tycos¥Wsr — Txsin¥sr (3.39)
Niwsst = 0.5Lsr(Tycos¥sr — Txsin¥gsr)

where X.. Y. and N, are the surge, sway and yaw components.

3.3.3 Tug boat forces

The tug boat is attached to the stern of the shuttle tanker and creates a force of
307 onnes at a heading of 7 radians. This produces surge, sway and yaw forces

as follows:
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‘\’mg = —30008‘1’51'. Ygug = 303in\IIST, Ntug = —ISLSTSiR\IIST (340)

3.3.4 Neural network teaching function

The model is useful for control design, but it also gives an idea as to the true
relationship between the system variables, provided that the model is a good
representation of the real ships. The significance of this is that the model can
be used to decide which inputs and outputs are the best choice for the neural
network. As noted earlier, a feedforward neural network does not have dynamic
memory so it is necessary to rearrange the equations of motion of a ship into a
form such that integration and differentiation are avoided. This rearrangement
was performed earlier in equations (2.44) to (2.46), but now the full order model

is required rather than a first order expansion. This is stated below:

i = Xu+Xp+Xa+Xw

m+m; = f(v,r,u,¥V, B, Xp, Xa, Xw) (3.41)
_ Ya+Yet+YatYw ;
= SEEIRT YAT W Gt 40 Be, Yo Y, o) (3.42)
m+my,
. _ Ny + Np+ Na+ Ny
=t T FT AT W — h(r,u,v, ¥, Bc, Nr, Na, Niw) (3.43)

I?.Z + Jll
where "\’I" = .\"1' + -\’trt = -\’hwa - e 4\'tug1 YT — YT o Ytrt + ths + Ytug and
Nrp = Nr+ Nyt + Npws + Niwg. Hence, f, g, and h are nonlinear coupled functions

with eight inputs and three outputs, to be learnt by the neural network.

Both ships use the same model with different parameters, as stated earlier, so to
demonstrate the effectiveness of neural networks for identification it is only really
necessary to identify one ship at a time. Later, the networks could be joined to

form a complete system.
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3.4 System identification using Simulink data

Having decided upon the inputs and outputs of the neural network, the next step
is to attempt to identify the ship dynamics using data from the Simulink simu-
lation. This is to establish confidence in the network and eliminate any minor

problems in the process, before moving on to real data.

For simplicity, the current is set to Uc = 1m/s at S¢ = 0, producing an operating
point of (ug,vo,70) = (1,0,0) when ¥ = 0. No wind or wave forces are applied.
The two-ship system is then excited using a simple control law to apply square
waves to the yaw and sway inputs of both shuttle tanker and FPSO, dependent
on the FPSO heading only. The setpoint begins at 10°, with Y7(rpso) = —8.45,
Nrrpsoy = 1080, Yr(s1) = —10.0, Nr(st) = —1070. When ¥ppgo reaches 107,
the setpoint flips to —10° with Yrrpso) = 8.45, Nrrpso)y = —1080, Yr(sty =
10.0, Ny(s) = 1070. This sequence repeats until sufficient data has been gath-
ered. The hawser is kept in tension throughout by 18 Tonnes of forward thrust
from the FPSO, Xr(rpso) = 18, and 30 Tonnes of reverse thrust from the tug-
boat. The combination of all of these controlled inputs also produces reactive

force inputs from the FPSO turret and the hawser itself.

The shuttle tanker is chosen as the ship to identify, where the neural network
input is a 7 x 1 vector consisting of u, v, r, ¥ — B¢, the sum of thruster, turret,
hawser and tug forces in the surge direction, the sum in the sway direction and
also the yaw torques. The output is a vector consisting of u, v and 7. The
simulation is run for 6000 data points, and the middle 2000 points are used for
neural network training. The validation data is the entire set of 6000 points and,
as a means of comparison, the network is implemented in Simulink such that the
validation output may be compared with the network output (as shown in later

Figures).
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The neural network is a three-layer MLP with seven inputs and three outputs,
but the internal structure is not completely defined by this description. A deci-
sion must be taken on the number of neurons and the activation function in each
layer, although this is not an exact science and is open to trial and error. The
number of neurons in the output layer must be three, as there are three outputs,
but the first and second layers can be adjusted. Increasing‘ the number of neurons
will improve the accuracy of network function approximation to a point, beyond
which the network begins to learn noise and idiosyncrasies of the data. This will
lead to poor generalisation to other data sets, so a balance must be found when
selecting the number of neurons. After experimentation, it is found that 14 input
layer neurons and 7 hidden layer neurons, twice and the same as the number of
inputs respectively, produce acceptable results. As for the activation function,
this does not seem to noticeably influence the results in this application, so a

standard log-sigmoid is used.

For the first attempt at network training, the number of epochs is 500 and the
mean square error (MSE) between target and actual outputs is 1.4 x 107> at
the end of training. The results are not good, however, as the network output
contains large numbers of spikes and generally fails to match the validation data.
The mean square output (MSO) is only 2.5 x 107° so by comparison with the
MSE it is evident that the training is unsuccessful. After some experimentation
with number of epochs, it appears that ill-conditioned data is the reason for poor
performance of the neural network - The acceleration in the surge direction is
almost three orders of magnitude greater than the yaw acceleration. Normalising
all of the data such that the maximum of every signal is equal to unity eases nu-

merical problems within the neural net, as noted by Roskilly and Mesbahi (1996a).

The training algorithm is run once again with 500 epochs and normalised data
)

yielding a mean square error of 3.1 x 10~* for MSO of 0.69. Clearly, this is a
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great improvement, although the MSE gradient is still high enough after 500
epochs to justify a longer training period. Hence, the algorithm is ruﬁ for 1000
epochs, giving a MSE of 2.5x 10~* and results as depicted in Figures 3.5, 3.6, and
3.7. These Figures show the comparison between 6000 seconds of output data
recorded from Simulink, and the output of the neural net that has been trained
on only the middle third. The only significant errors occur in the first third where
the ship oscillations are beginning to build. The performance of the neural net is

satisfactory in these examples.
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Figure 3.5: Surge acceleration validation data and neural net approximation
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Figure 3.6: Sway acceleration validation data and neural net approximation
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Figure 3.7: Yaw acceleration validation data and neural net approximation

Recall that the object of the ship simulation is to provide position and velocity
measurements for use in feedback control. However, the network as described so
far maps from various inputs, including applied forces, to acceleration outputs
as a consequence of the mathematical laws of motion. Therefore, to achieve a
mapping to position or velocity requires integration of the output terms in equa-
tions (3.41), (3.42) and (3.43). To confirm the accuracy of the integration steps,
a comparison is made, as in Figures 3.5, 3.6, and 3.7, between the integrated

output validation data and the integrated neural network output data.

This comparison exhibits an offset in the velocity data and an increasing offset
in the position data due to the accumulation of small errors in acceleration of
Figures 3.5/3.6/3.7. Nonetheless, the "shape” of these neural net responses ap-
pear to be almost identical to the desired shape, so it is felt that the non-DC

system dynamics are well approximated and the offset is not a great concern.
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The responses are open-loop, and given feedback control the two systems would

behave in the same way with sufficient gain to remove steady-state errors.

To check that the system dynamics are indeed learnt satisfactorily by the net-
work, the offset is removed by replacing the integrators with filters possessing
integrator characteristics except at very high and very low frequencies. Instead
of infinite gain at zero frequency, the filters have 56dB gain, and instead of zero

gain at infinite frequency, the filters have -56dB gain, as in Figure 3.8.

The results using this filter, shown in Figures 3.9 to 3.14, demonstrate the ac-
curacy with which the neural network can approximate the ship‘s motions, but

mainly in the region from 2000 seconds onwards.

Bode Diagram

Magnitude (dB)

Phase (deg) -

10° 10' 10° 10° 10°
Frequency (rad/sec)

Figure 3.8: Filter frequency response used to approximate an integrator
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Figure 3.9: Surge velocity validation data and neural net approximation
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Figure 3.10: Surge position validation data and neural net approximation
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Figure 3.12: Sway position validation data and neural net approximation
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Figure 3.13: Yaw velocity validation data and neural net approximation
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Figure 3.14: Yaw angle validation data and neural net approximation
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Figures 3.9 to 3.14 exhibit a distinct trend in the comparison between the valida-
tion data and neural network outputs. There is a growing offset initially, which
then decays until the two plots match one another more closely. To see why,
observe the mismatch which occurs in the first 1000 seconds of the acceleration
plots in Figures 3.5 to 3.7. Were these neural network plots to be integrated, the
velocity plots would retain a constant offset after the first 1000 seconds. How-
ever, the transfer function corresponding to the filter in Figure 3.8 is %ﬁ‘—;,
which has a decaying exponential natural response with time constant of 667
seconds. Thus, the velocity offset in Figures 3.9, 3.11 and 3.13 has disappeared
after 1500 seconds, leaving the higher frequency behaviour which matches the
validation data well. Similarly, the neural network position plots would retain a

constant offset after 1500 seconds using an integrator, but the filter in Figure 3.8

has removed the DC offset after 2500 seconds in Figures 3.10, 3.12 and 3.14.

3.5 System identification using tank test data

Having established the efficacy of the neural network with mathematical simula-
tion data, the final stage is to attempt to identify the real-world dynamics of a
ship. This is achieved using a scale model of the FPSO/Shuttle Tanker system
in a large tank, where environmental forces can be applied with measurable di-
rection and magnitude. The engineers at Mitsubishi Heavy Industries Ltd were
responsible for executing various tests on the scale model and recording the data
in spreadsheet format. Table 3.1 shows the operating conditions for the tests

carried out.

The recorded data includes values for shuttle tanker position, velocity, and accel-
eration in the surge, sway, and yaw directions. Also recorded are the forces on
the shuttle tanker due to the bow thruster, hawser tension, and tugboat in the

surge, sway and yaw directions. The wave height and FPSO angle are the other
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variables to be recorded. It is noted the shuttle tanker’s stern propeller provides

no force and the rudder is kept at zero degrees.

Table 3.1: Operating conditions for tank tests

FPSO Shuttle Tanker
Exp. | Current | Wave Heading | Thruster | Thruster Bow Tug
No. Vel. Ht. | Change | Angle Force | Thruster | Force
(knots) | (m) (deg) (deg) (tons) Force | (tons)
(tons)
61871 2 0 15 90 30 0 30
61877 2 2.0 15 90 30 0 30
61875 2 3.0 15 90 30 0 30
61879 2 4.0 15 90 30 0 30
61827 2 0 0 0 0 0—20 30
61828 2 0 0 0 0 0—20 30
61837 2 0 0 90 0—30 0 30
61855 2 3.0 0 90 0—30 0 30
61862 2 4.0 0 90 0—30 0 30

In terms of neural network training, it is assumed that a real ship follows the time-

invariant mathematical laws stated in equations 3.41, 3.42, and 3.43. Therefore,

the inputs and outputs used are almost the same as for the Simulink data in

Section 3.4. Namely, the neural network input is an 8 X 1 vector consisting of

u, v, r, y, the sum of thruster, hawser and tug forces in the surge direction, the

sum in the sway direction, the yaw torques, and wave height. The output is

a vector consisting of i, ¢ and . The significant difference here is that waves

have been incorporated, whereas in the Simulink case the ships are operating in a

completely calm environment. Again, the shuttle tanker is chosen as the ship to

be identified. The number of neurons is 16 in the first layer, 8 in the second layer
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and 3 in the output layer. These values are twice and equal to the number of
inputs and equal to the number of outputs respectively. The activation functions

are log-sigmoids in each layer.

The first attempt at network training is made using the first half of the data set
from experiment 61871 in Table 3.1. Once again, the data is normalised to the
maximum values for each variable, and a 500-epoch training run is attempted.
The mean square error (MSE) is 3.1 x 10~* given a mean square signal of 0.53.
Using the whole data set for verification demonstrates good generalisation by the
network in the surge and sway directions, but rather more significant errors for
yaw. Hence, it is decided to re-train using the first three quarters of the data set.
This time, the MSE is 6.3 x 10~* for a mean square signal of 0.64. This result
appears to be slightly worse numerically, but the yaw errors are significantly
reduced. Figures, 3.15, 3.16, and 3.17 demonstrate the effective generalisation by

the network after 3470 seconds, where the data is outside of the training set.
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Figure 3.15: Surge acc. validation data (61871) and neural net approximation
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Figure 3.16: Sway acc. validation data (61871) and neural net approximation
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Figure 3.17: Yaw acc. validation data (61871) and neural net approximation

Similarly high quality results are obtained using the other eight data sets in
Table 3.1, but only individually. Figures 3.18 to 3.20 illustrate the effectiveness

of network training when 3m waves are used in the tank test.
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Figure 3.18: Surge acc. validation data (61877) and neural net approximation
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Figure 3.19: Sway acc. validation data (61877) and neural net approximation



3.5. SYSTEM IDENTIFICATION USING TANK TEST DATA 107

—— Neural Network
- | —— Validation Data

Yaw acceleration / rad/é
o

-0.2
O |k it e i oA S Ul S os R R S S | B L R S | R
-0.6
-0.8}
£ L 1 L L i \ L | I
(o} 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Time / Secs

Figure 3.20: Yaw acc. validation data (61877) and neural net approximation

Unfortunately, the results are not so good in Figures 3.21 to 3.23, where the waves
are 4m high. This trend of degradation in results for increasing wave height is

repeated for all of the data.
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Figure 3.22: Sway acc. validation data (61879) and neural net approximation
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Figure 3.23: Yaw acc. validation data (61879) and neural net approximation

The next step is to train a single network using each of the data sets in turn, in
order to generate a network capable of providing an approximation to each of the
sets. However, this does not yield good results, as re-training an existing network
with another set tends to degrade the performance of the network when acting on
the previous set. Training the network with all nine sets only manages to provide
poor performance in all nine cases. This problem is demonstrated in Figures 3.24
to 3.26, where the network is trained using data sets 61871, 61877, and 61879
consecutively. For validation, data set 61875 is used, as it is intermediate to the
three training sets. The performance in the surge direction is satisfactory, but

clearly unacceptable for sway and yaw.
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Figure 3.24: Surge acc. validation data (61875) and neural net approximation
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Figure 3.25: Sway acc. validation data (61875) and neural net approximation
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Figure 3.26: Yaw acc. validation data (61875) and neural net approximation

A further problem, so far unresolved, is that of providing velocity and posi-
tion signals as in Section 3.4. The data supplied by Mitsubishi corresponds to
earth-fixed measurements, and it is necessary to perform a transformation as in
equation (2.42) in order to obtain these measurements from the acceleration data.
However, use of this transformation has not led to the desired results and some
further effort will be required with respect to filtering and numerical integration

algorithms.

3.6 Discussion

Judging from the results of Section 3.5, it would appear to be possible to use
a neural network to approximate the nonlinear multivariable motion dynamics
of a shuttle tanker or FPSO when coupled via a hawser. One problem which is

evident by examination of Figures 3.15 to 3.23 is that neural net performance ap-
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pears to decrease with wave height. Of course, the environmental forces acting on
the ship will increase with wave height, so it is to be expected that large, poorly
modelled disturbances will produce performance deterioration. It was hoped that
the underlying dynamics could still be learnt and that the network would act as a
kind of filter, giving a smoothed version of the wave-disturbed data. This may be
true of Figure 3.21 for example, but does not appear to be the case with Figures
3.22 and 3.23. A wave height of four metres is indicative of a rough sea state,
however, so this would suggest that the neural network approach is suitable only
for calm seas. A limited amount of data was obtained from the Mitsubishi Heavy
Industries tank tests, so further test and validation would require extensive data

collection to build on this preliminary study.

Ideally, the wave forces would be measurable and could be incorporated into the
input data vector. In reality, it is not possible to isolate and directly measure the
ship forces due to waves only, so there are two possibilities to augment the input
vector, using knowledge of the wave spectrum and the plant respectively. Waves
are often modelled according to Pierson and Moskowitz (1963) and produce forces
as in Section 2.2.3. Given the amplitude, frequency, phase and incident angle of
the fundamental wave components, it is reasonable that the neural network could
infer the force components due to waves. The problem would then be to select
sensors to measure the relevant signals. The second possibility would be to utilise
values of ship translational and rotational inertia, and a simple Newtonian model,
to give a rough estimate of wave forces in each of the three degrees of freedom.
The known thruster forces, ship inertia and accelerations could be used to predict
ship behaviour, with any errors attributed to the incident waves. In this way, an
estimator of wave forces could be constructed and used in neural network training.
Of course, this transfers some of the modelling effort from the neural network to
the engineer, but ship inertias are usually known quite accurately and the wave

estimator would be simple, see Martin (1999) for example.
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Another problem is that the network experiences difficulty in learning to approx-
imate more than one data set simultaneously. This may be due to the nine data
sets representing rather disparate operating conditions, giving the network con-
flicting dynamics to learn. The investigation was carried out with the assumption
that the ship dynamics do not change greatly over time and with environmental
differences, so an idea to make progress with this problem is to use several net-
works, one for each likely operating point, then to train each network extensively
using data from each point. The ship’s motions could then be obtained from one
network corresponding to the present operating conditions, or from a weighted
sum of the various network outputs. Such an approach was suggested in Eikers

and Karim (1999).

The final problem encountered in Section 3.5 is the transformation from acceler-
ation outputs to earth-fixed velocity and position signals. Further examination
of the processes used in producing the tank test data is required, and examina-
tion of the use of integrators leading to offsets, similarly to Section 3.4. The use
of feedback control should mean that offsets are unimportant provided that the

remaining ship dynamics are an accurate representation of the real ship.

As mentioned in Section 3.1, neural networks have predominantly been explored
for their application to control of marine systems rather than identification, hence
a discussion of possible further work on the DP control problem with neural net-
works now follows. There are various approaches to control which exploit the
ability of neural networks to learn arbitrary non-linear mappings. The following

examples are discussed in Warwick et al. (1992).

Supervised control involves learning the actions of a human when it has proven
difficult to design an effective automatic controller using accepted classical or

modern control techniques. If the control task is particularly arduous or repeti-
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tive, then replacing the human operator with a neural network is clearly advan-
tageous. Direct Inverse control involves learning the plant inverse, which is then
used in series with the plant to create an overall identity mapping. Of course, this
technique suffers from sensitivity to model uncertainty and may not be used with
an unstable plant. In Model Reference control, the closed-loop system is expected
to follow the output from a reference model generating the desired response. The
error between the actual system and the reference is used to train the network,

which acts as the controller.

Internal Model control is another possibility, where the closed-loop system con-
tains an internal neural network model of the plant in parallel with the actual
plant. The signal which is fed back to the comparator is the difference between
the outputs of this internal model and the real system. The controller is then the
inverse of the neural network model, with the property that the closed loop is sta-
ble given that both plant and controller are stable. Further, under the assumption
that the inverse is exact, then the system output will perfectly follow the reference
- with no steady-state offset. If this assumption is invalid, then robustness to model

uncertainty may be attained by introducing a filter in cascade with the controller.

One more application of a neural network is to produce a form of predictive
control. In this case, the network learns to predict the next plant output as a
function of previous inputs and current and previous outputs. This prediction
is used when minimising a performance cost function in order to compute the
optimal control signal. The prediction is only one step ahead but, for a non-
linear system, will be more accurate than that obtained from a linear ARMA

(AutoRegressive Moving Average) model, for example.

Burns (1995) has used a neural network as ship autopilot at various forward

speeds. An optimal state-feedback controller is tuned for a set of velocities, then
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the network must learn to approximate the correct gain with varying speed. The
results show that the network performs in a slightly sub-optimal manner, but
has the advantage that it does not have to re-compute controller parameters as
velocity varies. Vukic et al. (2000) combine two neural networks with conventional
PID velocity and position control loops on a six degree-of-freedom underwater
vessel. The scheme is adaptive in that the network attempts to minimise the
error signal from each loop through continual training. The networks produce
control input signals in addition to the PID controllers and results show that
tracking performance is improved, plus the controller is robust to large changes

in plant dynamics.

Unar and Murray-Smith (1999) use radial basis function (RBF) networks and lo-
cal model networks (LMNs) to investigate the autopilot problem. RBF network
function approximation is superior to that of MLPs, although the number of basis
functions must be equal to the number of data points, which may be large. An
LMN is a set of RBFs weighted by some activation function, so that the overall
output is a weighted sum of RBF outputs. The advantages are that the structure
is transparent and a priori knowledge may be incorporated. Each type of network
is trained via supervision by PID controllers, which have themselves been tuned
for different operating speeds. Simulation results show that the neural networks
provide performance improvements compared with a single PID controller oper-

ating over a range of conditions.

Some other examples include Yuh (1990), Fortuna and Muscato (1996), and
Zhang et al. (1996), but Hardier (1997) is most relevant to the ships dealt with
in this Chapter, as it is an extension of Hardier (1995) discussed in Section 3.1.
Hardier (1997) trains a controller network to minimise a cost function of weighted
output errors and inputs, using the identified ship neural network as a predictor

of the real ship behaviour. The controller is recurrent and consists of a number
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of stages intended to implement filtering, gain matrices and control constraint
handling. The gain stage is acted on by a subnetwork as a function of the oper-
ating condition. The controller is trained for several hours in high sea conditions
and the performance is again described as "satisfactory”. No comparison is made
with a classical controller or a combined Kalman filter and state estimate feed-
back scheme, so it is not known whether the network presents any significant

performance advantage.

No research publications have been found which investigate DP control of a cou-
pled ship system specifically. Hence, future work could concentrate on classical
or neural controllers to regulate the position of each ship individually and to

maintain separation jointly.

3.7 Conclusions

This Chapter began by discussing the problem of ship modelling and identification
of parameters for use in DP control. A suitable ship model must be nonlinear and
multivariable, so the number of appropriate techniques is actually fairly limited.
In the past, this problem has been approached by deriving a simplified model
and finding the relevant parameters approximately, or with more sophistication
by using an extended Kalman filter. Neural networks are a valuable technique for

approximating nonlinear, multivariable functions, and clearly also have potential.

The particular problem addressed in this Chapter was to investigate the use of
a multilayer perceptron feedforward network for identifying ship dynamics of a
coupled FPSO and shuttle tanker. The main contribution of the Chapter was to
demonstrate that the network could learn and generalise the dynamics from real

data provided by a Mitsubishi Heavy Industries 1/50th scale model.
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The theoretical principles of neural networks and their mode of learning were
presented, in addition to a mathematical model to describe the forces acting on
the ships due to a turret, hawser and tugboat. The coupled ships were modelled
in Simulink using the equations from Chapter 2, plus the additional forces men-
tioned. Data from this simulation was then used to check the viability of using a
neural network for the problem. The differential equations describing each ship
were rearranged to state acceleration in terms of velocities, angles and forces,
thereby removing the need for memory in the network. A ship could therefore be

expressed as a function with eight inputs and three outputs.

The simulation data was gathered by implementing a simple control law to yaw
the ships back and forth. This was sufficient to excite the various dynamics and
forces due to thrusters, turret, hawser and tugboat. The data from the shuttle
tanker was assembled into a training set for the neural network. With normalised
data, it was discovered that the dynamics were learnt well and generalised from
the small training set to the complete validation set. Integrating to generate
velocity and position signals also demonstrated that the network was successful
in learning, although a filter was required to remove steady-state offset. The
non-DC performance was otherwise encouraging, so it was possible to progress to

using real data from Mitsubishi‘s scale model.

Here, input and output signals were as in the simulation case, but with the addi-
tion of wave height as an input. Mitsubishi conducted several tests to excite the
coupled ships in a tank with controllable environment. The first network train-
ing procedure was conducted with data from a still environment, that is with no
waves applied. Again using normalised data, the network outputs were found to
match the data with little error. Further training with a wave height of two me-
tres yielded acceptable results, but with four metre wave height, the errors were

not insignificant. The network was also trained using all of the data together
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from the previous three cases, before being validated with data from three metre
wave height. In this case, the results were of poor quality. Indeed, any attempt
to train the network with more than one data set at a time resulted in significant

errors, even for validation with a data set used in training.

The main flaw in the use of neural networks is that approximating more than
one data set simultaneously does not appear to be easily achievable. In further
work, several networks could be used, one for each likely operating point, with
each network trained extensively using data from each point. Ship motion could
be produced by one network corresponding to the present operating condition, or
from a weighted sum of the various network outputs. A further, less fundamental
flaw is the transformation from acceleration outputs to earth-fixed velocity and
position signals. It may be necessary to use a different process in production of
the tank test data, and to take care in the use of integrators for velocity and

position signals.

The main advantage of the neural network approach is that it is not necessary
to know the precise structure of the equations of motion or to identify particular
parameters. The multivariable character of the problem does not present a dif-
ficulty either, as the interconnected nature of the network is well-suited to cope
with this. The ship is simply an input-output mapping which can behave in a

highly nonlinear manner with no loss of accuracy in signal reproduction.



Chapter 4

Restricted-Structure

Multiple-Model Adaptive Control

This Chapter describes the application of a novel adaptive controller to the ship
DP control problem, where multiple linear models are used to describe the nonlin-
ear ship, and the controller is of restricted structure. The adaptive controller is
introduced by detailing the underlying polynomial-based optimal control theory for
a single model, before approrimating the cost integral so that a restricted-structure
solution across multiple models may be found. Augmenting a set of representative
linear models with an identified ship model in the online optimisation completes
the adaptive control algorithm. The properties of the restricted-structure solution
are presented with a single model example, before applying the adaptive controller
to the surge velocity loop of the ship problem in Chapter 2. Successful simulation
results are presented and analysed at the end of the Chapter, and related problems

of algorithm convergence and simultaneous stabilisation are discussed.

4.1 Introduction

The multivariable PID controller tuning idea for DP developed in Chapter 2 is

limited by the fact that each controller design applies at only one operating point.

119
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This fact presents difficulties from the control theoretic perspective. A controller
which is well tuned or optimal at one linearised operating point may have poor

performance or even be unstable at another.

The problem of poor performance may be addressed by analysing the system
nonlinearities and producing a fixed nonlinear control law, or by varying linear
controller parameters, known as adaptation. The theory of nonlinear control is
less well developed and understood than that for linear systems, so by assuming
that the plant is simply shifting from one linear operating point to another, the
more developed linear theory may be used. The problem of instability is un-
derstood in terms of robustness to unmodelled dynamics, and has been studied
using H,, control theory, introduced by Zames (1981). H, control design tends
to produce poorer performance, as the controller is detuned in order to avoid
instability when plant gain varies unpredictably. The two problems are related
by the common thread of uncertain model variation. In the past, attempts have
been made to address the difficulties by the use of multiple models and adaptive

control.

Multiple-model solutions date back to the 1970s and significant early works in-
clude Lainiotis (1976) and Athans et al. (1977). In the work of Lainiotis (1976),
multiple Kalman filters are employed to improve the accuracy of the state esti-
mate in control problems. Athans et al. (1977) control an F-8C aircraft using
the MMAC (Multiple-Model Adaptive Control) method. This involves finding
models of 16 different equilibrium flight conditions and carrying out a complete
LQG (Linear Quadratic Gaussian) design, see Burl (1999) for example, for each
one. During operation, the actual control signal for the aircraft is applied to each
of the 16 Kalman filters created during the LQG design. Each LQG controller
then produces an optimal control signal for the flight condition to which it cor-

responds. Additionally, each Kalman filter generates a residual vector that is
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used to produce conditional probabilities that the model in question is the true
one. The control signal which actually drives the aircraft is then computed as
the weighted sum of the 16 LQG ‘optimal* control signals, where the weighting
is the probability for the corresponding model. Simulation results show that the
MMAC approach is potentially applicable to adaptive aircraft control, although
the authors note that careful tuning of the Kalman filters is important in order
that identification of the "true” model and subsequent control are not adversely
affected. The authors also point out that a persistent excitation signal is nec-
essary for identification and that, overall, a theoretical basis for the approach is
lacking, due to the highly nonlinear nature of the plant and control scheme. In
this regard, it is stated that extensive simulation results must be relied on to
judge the performance of the algorithm, in the absence of a suitable analytical

framework.

During the 1990s, K. S. Narendra has been particularly active in the field of
multiple models and, in Narendra et al. (1995), gives an accessible account of
a general approach, including switching and tuning. The use of multiple mod-
els is justified by the fact that the input-output characteristics of a system will
generally change when operating in different environments. A single model may
change too slowly during identification, leading to transient errors, or be unable
to adequately represent the plant across the range of operating conditions. Thus,
a control scheme similar to Athans et al. (1977) is proposed. In the linear case,
the plant is represented by a transfer function with time-varying parameters. A
finite set of possible parameter vectors is selected, then a controller is designed
for each vector such that tracking error is smaller than a certain constant. These
parameter vectors are also used to generate output estimates at each time step
and some measure of identification error is computed to determine the model
which best represents the plant. The controller pre-designed for the best model

is then applied to the real plant, but an alternative is to use some sort of learning
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control if the identification error is particularly large and the plant is operating in
a previously unencountered region. Adaptation then occurs until the steady-state
error is smaller than some constant. This new model and controller is stored in
memory by the control algorithm for later use. Issues such as controller structure,
the model switching scheme and the use of fixed or adaptive models are then dealt
with, and it is noted that fixed models produce a more computationally efficient
algorithm, but an adaptive model gives desired steady-state accuracy. Narendra
suggests using one adaptive model along with several fixed models to yield an

efficient control architecture.

In contrast to Athans et al. (1977), there is more of a theoretical underpin-
ning to the work, and stability is proved in Narendra and Balakrishnan (1994a)
and Narendra and Balakrishnan (1994b) in the linear continuous time case and
Narendra and Xiang (2000) in the linear discrete time case. Novel switch-
ing and tuning schemes are explored in Narendra and Balakrishnan (1997) and
the stochastic case is described in Narendra and Driollet (2001). Ippoliti and
Longhi (2004) take these ideas and apply them to several examples of real sys-
tems, using minimum variance as the control design algorithm, and employing
n + 1 linear models, with n fixed and 1 identified model. Proofs of stability
are given and the examples demonstrate reduced tracking error for the multiple-
model case compared to an adaptive-only case of minimum variance control.
The concept of multiple models has also been developed for applications in sys-
tem identification, controller design using fuzzy techniques and even control of a

chaotic system. These ideas are all presented in Johansen and Foss (Eds.) (2001).

Adaptive controllers date back to the 1950s, with Kalman (1958) and Gregory
(Ed.) (1959), for example. The field is quite mature now, with Astrom and
Wittenmark (1995) providing a fairly comprehensive introduction dealing with

four main types of adaptive systems: Gain scheduling, model-reference adaptive
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control, self-tuning regulators and dual control. Gain scheduling is a scheme by
which the controller parameters are varied according to changes in a particular
operating condition. In practice, this takes the form of a look-up table that spec-
ifies gains corresponding to operating point. In model-reference adaptive control,
desired closed-loop behaviour is determined by a reference model. The error be-
tween plant and model output forms the input to an adjustment mechanism that
alters the controller parameters in order to minimise the square of the error. These
first two strategies alter the control gains directly without recourse to the plant
parameters. A self-tuning regulator, however, uses parameter estimates within
a design algorithm to update the control. Strictly speaking, self-tuning refers
only to plants with unknown constant parameters where an initial ”tuning-in”
mechanism is required, but in the present discussion the wider sense of continual
tuning to track parameter variation is used. The certainty equivalence principle
is invoked here, where it is assumed that the estimates are perfectly equal to the
true plant. This may often be a reasonable assumption, but the final adaptive
scheme, dual control, incorporates uncertainty into the design. Unfortunately,
the approach is complicated and does not yield practicable results without ap-

proximations.

The multiple-model adaptive schemes discussed earlier essentially fall into the
self-tuning regulator set of adaptive controllers. The approach to multiple-model
adaptive control in this Chapter is also within the self-tuning regulator class, but
differs from previous approaches in that a controller is not designed for each fixed
model in advance but is incorporated into an online optimisation. The strategy
followed is to minimize an LQG criterion across n+1 separate linear models, where
n are fixed and 1 is identified. This approach is novel in itself, but additionally the
controller is restricted to a desired low-order structure. A simple analytic solution
cannot be obtained, as in the case where the controller structure is unconstrained,

but a relatively straightforward optimisation problem can be established which
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provides the desired solution. The algorithm depends upon recent advances in
restricted-structure optimal control, Grimble (1999a), and in control of multiple-
model systems, Grimble (1999b), first combined in Grimble (2000). The aim is to
provide a degree of robustness to parameter uncertainty by optimising across a
set of possible models, whilst attempting to produce good performance by incor-
porating an estimate of the current system parameters. In this way, the problems
highlighted at the beginning of the Chapter, of poor performance and possible

instability due to changing system parameters, are addressed concurrently.

The reasons for creating restricted-structure controllers were highlighted in a
Bode prize lecture, transcripted in Anderson (1993). Practising engineers want
controllers that are low complexity, discrete-time and free of numerical problems.
Unfortunately, modern optimal design methods such as LQG and H, give con-
trollers with order equal to or greater than the plant. Hence, complex plant
descriptions inevitably yield optimal but undesirably complex control designs.
There are three routes to a low order controller in this situation. Firstly, a high
order design may be produced from a high order model, followed by controller re-
duction. Secondly, the model may be reduced, see Gugercin and Antoulas (2000),
before carrying out a design on the outcome of this reduction. Finally, there are
direct design methods, taking the high order plant and generating a low order
controller without an intermediate step, see Hyland and Bernstein (1984). The
second route tends to produce a poor controller, as the approximation step oc-
curs first in the process and any errors are carried through to the design. The
third route is problematic because it is hard to understand the procedure intu-
itively and gain convergent results. The first route seems to hold most promise,
as the approximation step occurs last, after an optimal design is known, and the

restricted-structure algorithm in this Chapter follows this route.

Early work in this area focussed on reducing the controller order without paying
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attention to the structure, PID or lead-lag for example. Anderson and Liu (1989)
emphasise that controller reduction must take into account closed-loop behaviour,
as an open-loop procedure does not necessarily respect stability, bandwidth and
robustness. Hence, a frequency-weighted model problem is presented and solved
using truncation of an internally balanced realisation, Hankel norm approxima-
tion and g-cover approximation. Additionally, the controller solution of an LQG
problem is given in a transfer function fractional representation, before the so-
lution schemes above are applied and compared. The authors conclude that
different methods are superior dependent upon control objectives, and whether
the controller is open-loop unstable or not. The structure of the controller is not

discussed.

Hjalmarsson et al. (1994) present a numerical optimisation approach to an LQG
type problem, where the plant and controller are stated in discrete-time transfer
function form, and the desired response is given by a reference model. The
cost is given as a function of the controller parameters, then a gradient descent
procedure is used to find the minimum, with stochastic approximation to the cost
gradient. This gradient is computed from measured closed-loop data and so the
approach is not model-based. A proof of convergence is given and an example
with a specified extended-PID controller structure is examined. The restricted-
complexity controller converges to a good approximation of the desired response
after 14 iterations. A drawback of this method is that it involves three separate
experiments in order to gather the data, thus the optimisation cannot be carried

out online.

Landau, Karimi and Hjalmarsson (Eds.) (2003) deals with solutions to an active
suspension system benchmark problem using controllers of restricted complexity,
of which Chable et al. (2003) is the only paper to deal with reduction of controller

order from a full-order design. The approach taken is known as robust modal con-
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trol and involves the solution of a QP (Quadratic Programming) problem, where
the quadratic to be minimised is the frequency response error between the full and
reduced order controllers. The equality constraint is used to specify the structure
of the reduced controller and the inequality constraint places restrictions on the
gain at particular frequencies. The full-order design for the benchmark problem is
carried out using the mixed H,, method, producing a 25th order controller. The
robust modal algorithm produces a 4th order controller, providing good results in
comparison with the H design. This approach is successful, but does not take
closed-loop behaviour into account as part of the algorithm. Thus, this method

may not be wholly reliable, for the reasons given by Anderson and Liu (1989).

In this Chapter, a novel contribution is made to the field of adaptive control via
the application of a multiple-model restricted-structure algorithm to the ship DP
problem. The theory behind this approach is now developed, beginning with a

statement of the LQG problem.

4.2 LQG problem formulation

State-space form

This problem was first posed in state-space, following developments by Kalman

(1960a) and Kalman (1960b). The discrete-time problem is as follows:

z(t +1) = Az(t) + Bu(t) + w(t) (4.1)
y(t) = Cx(t) + v(t) (4.2)

where state z(t) € R"™!, input u(t) € R, process noise w(t) € R"*!, output
y(t) € R, and measurement noise v(t) € R. The constant matrices are A € R™",
B € RV and C € R"™". The noise signals are assumed to be white, zero mean,

Gaussian and uncorrelated, with covariance:
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E[ww™] = Qy, E[vv"] = R, (4.3)

The standard discrete-time steady-state LQG stochastic control problem involves

finding the minimum of the time-domain performance index:

J=lim E (2" ()Qi(t) + u” (t)Ru(t)] (4.4)

where lim,_,o E [.] denotes the steady-state expected value operation and &(t)
is the optimal state estimate from a Kalman filter. @ is a symmetric, positive
semi-definite real matrix and R is a symmetric, positive definite real matrix. To
minimise the index, the algebraic Riccati equation must be solved to find the
optimal state feedback gain and the filter algebraic Riccati equation must be

solved to find the optimal estimator gain.

Polynomial form

The related polynomial problem was first solved by Shaked (1976) and is detailed
along with related developments in Grimble and Johnson (1994). The equations

for the system shown in Figure 4.1 take the form:

y(t) = Wu(t) +d(t) = A~ Bu(t) +d(2) (4.5)
d(t) = Wak(t) = A7'Ca(1) (4.6)
r(t) = Wi((t)= AT E((2) (4.7)

where W is the plant, Wy is the disturbance model, W, is the reference model
and all signals are real scalars. The external white noise sources, £(t) and ((t),
are zero mean and mutually statistically independent. The covariances for these
signals are without loss of generality taken to be unity. The plant is assumed to
be free of unstable hidden modes and the reference, W, , and disturbance, Wy,

subsystems are assumed to be asymptotically stable.
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Z-W, r#e.Co u.W m;@.y’

Figure 4.1: Closed-loop system

Tracking error and control input are given by:

e(t) = r(t) -y (4.8)
u(t) = Coe(t)-:C&ilCo,;e(t) (49)

A, B, Cy, E, Cyq and Cy, are polynomials in z~!, which is the unit delay operator
or complex number, e~*7, dependent on context. The various polynomials are
not necessarily coprime but the system elements are assumed to be free of unsta-

ble hidden modes. For notational simplicity, the z~! arguments are often omitted.

The steady-state LQG stochastic control time-domain performance index for this

system is:

J = lim E [(gee(t)* + (reu(t))?]
- :l_if?o E [chz(t) + Rcu"’(t)] (4.10)

where Q., R, > 0. Using Parseval’s theorem, equation (4.10) may be equivalently

stated in the z-domain as:
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}{{Qc ee(27") + Re®uu(2 “)}— (4.11)

|z]=1

27r_;

where ®,, and ®,, are the power spectra of the error and input signals respec-

tively.

An advantage of stating the problem in polynomial form is that it is straight-
forward to use dynamic instead of constant weights. Let g. and r. in equation
(4.10) be time-dependent functions convolved with e(t) and u(t) respectively, see

Shaked (1976) and Grimble and Johnson (1988):

J = limE [(ge(t) * e(t))* + (re(t) * u(t))?] (4.12)

In the z-domain:

J = 27” f{(h _1 eg(z_l)QC( 1)+Tc(z 1)(1)_““(2—1) :(z"l)}d;

|z|=1

- f (Que)Barle™) + ez a2} 2 (4.13)

Izl

T Qn E il Ry
where Q.(z7') = A;(z").-iq(z“)' Rz )= L) A, () and Q, = Q},

R, = R;,. Here, we define z*(27!) = z7(2).

In this way it is possible to exert a finer influence over the costed signals. The
frequency domain problem can be viewed as weighting the power spectra ®..(27")

and @y, (z7") with the filters Q.(z7"') and R.(z7!) respectively.
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4.3 LQG problem solution

In order to minimise equation (4.13), expressions for the spectra are required.

From Figure 4.1, it is straightforward to obtain the following relationship:

y(z7!) = WMr(z™!) + Sd(z™!) (4.14)

where the control sensitivity function is M = Co(1 + WCy)™!, and S = (1 +

WCp)~! is the sensitivity function.

From Grimble and Johnson (1988), ®,,(27') = W(27")®yu(27)W*(27!) when
y(z~") = W(z"")u(z""). Hence:

Boe(z7") = (1=WM,(27")(1 = WM)* + S®gq(27")S"
= 1-WM®,: )1 =-WM)*+ (1 -WM)®u(2"")(1 - WM)*
= (1=-WM)®,:"")(1-WM) (4.15)
and

Guu(z7h) = MO, (27 )M + MPyy(2")M*
= Moy ()M (4.16)

where ®//(z7") = ®,,(z7") + ®ga(27") and 7 and d are uncorrelated.

1

Dropping the dependence of signals on 27" where obvious, the minimisation of

the cost function proceeds as follows:
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Shy -1 2 1, A2
J = o f Q™) eela™) + Rl )z}

- 21(} f {Qc(1 = WM)®yy(2 (1= WM)* + R(z7 )M®; (27 ) M* }d_zZ_

= 2 f { W QW + R, )beuM' QC<I>”(WM W*M* + 1)}d—Z
] A
|2]=

Vi b Y' dz
s MY;)(YaMY))' — Qe (WML — WM =S e
2”1 f{ ci j ) Q ff( AIYCY - W*M*— Y'Yj 1)} -
(4.17)

ok JDAD; D;D;

where W* QW + R, = Y'Y, = A =isids y Ac=AAA, , Oy =Y/ Y = AI*A'

Later on, it is necessary to solve:

D:D. = B'A;QnA;B+ A"A R, AA (4.18)
D;Dy = EE* +C3Cy (4.19)

for D, and D;. This is known as spectral factorisation.

Using a completing the squares argument on equation (4.17):

W Rspy e, QW P,
f{ m,—Q, Dy, - =5ty +2)Z (420)

W WQ:Q. P,y
Y:Y.Y;Y,

where &y = — + QcPyy.
The cost function is now in a form such that the terms in ®; are independent
of the feedback controller, Cy. The remaining difficulty is that the product in J

must be split into guaranteed stable and unstable components. This splitting can
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be achieved using two Diophantine equations, but first the terms in the product

must be expanded into desired form:

_Co Dy yuiDsDsCln

Y. MY, D
T A T1+WCy A  A(ACo+ BCon)

(4.21)

QW*dy B Qn Yy B QnDyA; B'QnDjA'A;A; _ B*Q.D;A;

VY] AAA Yy AAAD: .  AAAAD: T DiAA,
Tk (4.22)
Thus, Y.MY; — —T)—” is equivalent to:
c’f
D:D.D;Con B*Q.D/A:;

D:A(ACos + BCon)  D:AA,
(B*A;QuA, B + A" A; Ry A, A)DCon  B*A;QnDy

D:A.(ACoq + BCoy) D:AA,
- (B*A;QnDy)BA:Con + (A" AR, D) AA(Con _ B*AQnDy 4
D:A(ACoq + BCon) D:AA, k-2
Substituting the Diophantine equations:
D:Gyz™% + FoAA; = B*'A;QnDy2* (4.24)
D:Hopz™® — FhBA, = A"A R, D279 (4.25)

it is then trivial to show that:

Q‘-'“-.(b/f i CO"II()Aq — CodGoA, Fyz9
Y:Y; A.(ACy + BCy,) D

where the first term is strictly stable and the second term is strictly unstable.

Y.MY; -

=Tr+T  (4.26)

Now:

1
= 2— f {(T + IO )T +170)" + <1>0}%‘3 (4.27)
|zl=
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The T, and @, terms are independent of the controller, Cy, hence the optimal

control problem reduces to finding C, such that

1 o 42
o= 5= §ATITINE (4.29)
|z]=1

is minimised. In the optimal case, simply set 7" to zero. That is, let:

_ G Gods
Cua HyA,

To summarise, solving the optimal control problem involves finding the solution

Co

(4.29)

to two spectral factors and two Diophantine equations:

D:D. = B'AlQ.A.B+ A"A}R,AA
D}D; = EE'+C;Cy

D:Goz™% + RAA, = B'A!Q,D;z*

D:Hy:® — FoBA, = A"A;R.D;z™*

where the unknowns are D., Dy, Fy, Go and Hy. There are, in fact, an infinite
number of spectral factors, but the solutions D, and Dy in the form dy+d 2! +
dyz~%+ ... are used. The solution to the Diophantine equations is unique provided
that Fy is of smallest degree, ng, and the shift g > ng. The procedure is
detailed in Kucera (1979) and is implemented in numerous mathematical software

packages. The package adopted throughout this thesis is Matlab.

4.4 Numerical algorithm for restricted-structure

solution

By setting T," = 0, the order of the optimal controller is determined by the order

of the various system polynomials and weightings, and the structure is simply a
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rational function. Constraining Cy to be of a certain order and structure, PID
for example, means that 7;" cannot simply be set to zero, and the solution will
be sub-optimal. To minimise J in this case requires a method for minimising 77"

with respect to Cp, and Cyq, as follows.

It is clear that 7)" can be written in the form:

o ConLy — CoaLo
ConL3 + CoaLs4

where L, = HyA,, Ly = GoA,, Ly = A,B, and Ly = A,A. Now assume that

T (4.30)

C, has a PI structure, although this is by no means the only viable structure, so

that:

Con = Kp(1—27") + K; (4.31)

and

Coa=(1-271) (4.32)

Con includes the unknown gains to be optimised and Cyq is known. However, T}
will be nonlinear in K, and Kj, rendering equation (4.28) particularly difficult to
minimise directly. Nevertheless, if the values of K, and K; are assumed known in

the denominator of 7., an iterative solution is possible, as will be shown later.

To proceed, T)" must be split into real and imaginary components, where z~!
is now interpreted as e *T. Let the superscripts 7 and i denote the real and

imaginary parts of a complex function, so that:

Con = Cgp + jCpp and Coq = Cfy + jCi, (4.33)

The numerator term may be split into components, through comparison with

(4.31):
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Con = Kpao(27') + Kian(27') = Cg,, + §Co, (4.34)

where:
a=01-z1),a=1 (4.35)

and hence

C;, = Kpaf + Kiaf , Cy, = Kpap + Kia} (4.36)

The denominator in 7" is assumed known, thus let:

T1+ = Co"L,u e Lﬂz (437)

where L,, and L, are therefore assumed known and defined as:

N L, pecat CoaL
Coals +Coala ' ™ = Conls +Coala

Substituting from (4.33):

Lnl (438)

Tf = (Ch+iCon)(Lny +3Lu) = (Lig + L)
= Ch Lty — ConLny = Ly + §(ConLny + ConLni — Lyg)  (4.39)
and after substitution from (4.36), obtain:
T} = KpojLl, + KialLy, — KpopLy, — Kia{ Ly, — LY, (4.40)
+ (Kpap Ly, + Kiad Ly + Kpaf Ly, + Kioi Ly, — Lyo)

A vector form of the above equation that will enable the optimisation to be
performed for the single-model case, with respect to the unknown gains, r =

(K, Ki), is:
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T} K,
| =F —~L=Fz-1L (4.41)
T} K

G Lt —abLi,) (afLh, —oiL} ) 44
F=[(Oo 1 0 1) (1 1 1 1):| ,L=|: 2] (4.42)

(@pLpy +agLlny) (@iLy, +aiLly,) n2

where

Setting z = e/*T, where w is angular frequency and T is sample time, note the
result (7,77)2+(T,")? = T} (e 7“T)T;" (7). Now recall that we wish to minimise

equation (4.28), which can be restated as follows:

1 dz

= — g bR

Jul 2”1 3 =1
[z]=1

2x/T
= 2% / T} (e 7T T} (€T ) dw
0

2

T 2x/T
= o [ @y
0

2x/T
= 2% (Fx — L)T(Fz — L)dw (4.43)
0

This cost function can be optimised directly, but a simple iterative solution can
be obtained if the integral is approximated by a summation with a sufficient
number of frequency points, {wy,...,Wk,...,wx}. wy is the Nyquist frequency.
The optimisation is then carried out by minimising the summation, in the manner

of Yukitomo et al. (1998), where the new cost is:

N

Jo = Y (Fz-L)T(Fz-L)
k=1

(b— Az)"(b - Az) (4.44)
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and

F(w) L(w)
A= : 0= : y T = (4.45)
F(wy) L(wy)
The multiple-model solution can be found by minimising the weighted sum of the

costs of each individual system model, Jy; , as below:

Jo = ) pid;
i=1

= Y pilb; — Az)" (b — Ajz)

j=1
_ (b= A0)TP(b— A2) (4.46)
where
. i 1 - A -
b= b2 A= £ , P = diag{py,...,pa} (4.47)
p ba | | An |

Assuming the matrix AT PA is not singular, the least squares optimal solution,

see Ljung (1999) for example, follows as:

z=(ATPA)ATPb (4.48)

Of course, as the assumption was made that the solution z was already known in
the denominator of 7}", this is a case where the method of successive approxima-
tion, as in Luenberger (1969), can be used. This involves a transformation T such
that 4 = T(z,). Under appropriate conditions, the sequence {x,} converges
to a solution of the original equation. Since this optimisation problem is non-

linear there may be not be a unique minimum. The following algorithm, with a
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system identification algorithm incorporated, does always appear to converge to
an optimal solution in many industrial examples and can be used to compute the

restricted-structure LQG adaptive controller.

Algorithm 4.4.1 (Adaptive restricted-structure control algorithm) .

1. Define N (number of frequency points), w,...,wy, Ny (number of fized
models), and P (model probabilities)

2. Initialise K, = K; = 1 (arbitrary choice)
8. Define ag(z1), ay(271) (using (4.35))
4. Compute Con(27") = Kpao(27!) + Kiay (271)

Compute Cog(z7") = ap(z71)

&

6. Forj =1 to Ny

(a) Using Aj, Bj, Cy4j, Ej, Qc and R., solve for the spectral factors D,;
and Dy;, and the Diophantine equations for Goj, Hoj, and Fy,.

(b) Create Lyj, Laj, Lsj, Laj, Ln1j, and Lpy;.

(¢) For all chosen frequencies, calculate Ly, ;(wT), Lf;1j(WT), L, (wT),
Lyo;(wT), af(wT), ay(wT), af(wT), ai(wT), Cgy(wT), Cy(wT).

Fj(w) Lj(w))
(d) Assemble Aj = : and b; =

Fj(ww) Lj(wn)
7. Estimate current A, B, and Cq polynomials using a recursive least squares

algorithm.

8. Repeat steps 6(a) to (d) for the identified polynomials.
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9. Stack the Ny + 1 A and b matrices to form A and b
10. Calculate the restricted-structure controller gains, x = (ATPA)~'AT Pb

11. If the cost is lower than the previous cost, repeat steps 8 to 10 using the new
Con. Otherwise, use previous controller gains to compute the feedback con-

troller Con(27") = Kpao(z™')+Kia1(27!) and Co(27!) = Con(271)/Coa(27}).

12. Implement controller in feedback loop and go back to step 7.

4.5 A remark on numerical difficulties

The controller calculations are performed to double precision using Matlab, or in
practice most industrial processors operate to double precision also. This mean
that numbers are stored in a quantised fashion within the computer using 64 bits.
52 of the bits are used for the mantissa, 11 bits for the exponent and 1 bit for
the sign. The mantissa stores binary numbers of decimal magnitude less than
1, which are then multiplied by two to the power of the exponent to produce a
number. The number in the mantissa may range from 27°2 up to 1 — 2752 byt
any number less than 2-%2 is ignored and considered to be zero. The consequence
of this is that calculations carried out in Matlab are subject to rounding errors

such that:

€ k e gt
k(1 + '2‘) E (4.49)

k+ki ,e>2%
This is not such a problem in general use, but when successive multiplications,
divisions or cancellations are required in a calculation, the rounding errors can
become significant. This is found to be the case when performing spectral factori-
sation and solving Diophantine equations for polynomials of "high order”. This

effect is difficult to predict and can also occur for "low order” polynomials where

the coefficients are of very different orders of magnitude. Hence, in the following
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example, efforts are made to reduce the order of polynomials and make simpli-
fications where this can be done with limited effect on the outcome. Numerical
issues are often overlooked during academic exercises, so it is encouraging to see
attention drawn to them in a recent special section of the IEEE Control Systems

Magazine, Varga et al. (2004).

4.6 Application to dynamic ship positioning

Algorithm 4.4.1 will now be applied to the ship DP problem described in Chapter
2, where the mathematical model is given in equations (2.1) to (2.37) and Figure
2.3 depicts the forces acting on the ship. The theory above may be extended to
the multivariable case in a fairly straightforward manner, but due to the numeri-
cal inadequacies of double precision arithmetic and the fact that a SISO example
is enough to demonstrate the algorithm, only the surge axis of the ship will be
considered. Hence, the plant is described by ‘the top left transfer functions of
equations (2.48) and (2.51), and the overall control system for the surge axis is

depicted in Figure 4.2.

The notation in this Figure does not indicate whether the system is continuous
or discrete. The ship problem has been dealt with in continuous time until now,
but the nature of Algorithm 4.4.1 requires that the problem be transformed to
discrete time. Introducing a zero order hold at the input of gy and assuming that
X 1 + Xy is constant between samples, the discrete description for the surge axis

becomes:

Au(t) = gv(z7)AXT(t) + 9a(27") (X a(t) + Xw(t)) (4.50)

The argument, z~', denotes the unit-delay operator or the z-transform complex
number depending on interpretation. The argument, ¢, denotes a sampled signal.

The relevant closed-loop transfer functions are:
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Au(t) — t‘-(z'l)r.mb,(t) + Sv(Z_l)gd(Z—l)(XA(t) -+ Xw(t)) (451)
AXT(t) = uv(27)ruass(t) — v (27 ga(z7)(Xa(t) + Xw(t)) (4.52)
where
sy(27) = (1+gvkyn)™ (4.53)
tv(z™') = (1+gvkvn)'gvky (4.54)
up(27Y) = (1+kvngy) tky (4.55)
w(z™") = (1+kvngy) kyn (4.56)
lmxw
&
SO W I SRR SR N AX, ++ Au X

Figure 4.2: Scalar control scheme for surge axis

The adaptive controller will be applied to the velocity loop with the position loop

fixed, as the effect of ky is to desensitise sy, ty, uy and vy to changes in gy. The

consequence of this effect is that controlling ¢y is not an interesting problem for

adaptation due to change in system parameters. kp may be fixed with negligible

change in performance.

For motion in the surge direction only, gy is a first order transfer function, and

when sway and yaw motion is included, gy acquires an extra two poles and zeros
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However, these poles and zeros are not dominant or unstable and are close to
cancelling each other, so the transfer function may still be assumed first order.
This assumption also helps to avoid numerical problems. Further, the notch fil-
ter, n, is ignored for control design as it only affects the frequency response close
to 0.6rad/s. The bandwidth of the velocity loop will be tuned to be in the region
of 0.2rad/s as in Chapter 2, so n will act at above the crossover frequency where
the impact on stability is reduced. Designing the controller for gy rather than
gyn keeps the plant order low, but additionally prevents the optimal controller
from cancelling the effect of n. A —20dB notch in gyn at 0.6rad/s would tend to
produce a frequency response peak in ky at 0.6rad/s. This is clearly undesirable

as the intention is to reduce control action at wave frequencies.

Equation (4.50) in transfer function form is:

b|Z_l bl o

Au(t) = I—IF;—\\'TU) T

— (Xa(t) + Xw (1)) (4.57)

The disturbances X4 and Xy are unmeasured and cause low frequency oscilla-
tions of Au. The optimal control theory in Section 4.2 demands that disturbances
be defined as unit variance white noise passed through a filter, W,. Furthermore,
the system identification theory in the next Section describes the disturbance in
terms of current and past estimation errors. For these reasons, equation (4.57) is

now restated as the approximation:

bl’_l d1(1+012_1)

e s Al e e

£(t) (4.58)

where £(t) is normalised estimation error and d, is the amplitude of the estimation

error. In the form of equations (4.5) and (4.6) for the optimal control problem:

Au(t) = WAXp(t) +d(t) = A" BAX¢(t) + d(t)
d(t) = Wak(t) = A7'Cué(t)
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where A = (14a,27")(1=271), B= bz} (1-z71) and Cy = d;(1+c;271) (1-271).
Furthermore, if E = 1 4+ a;27! in equation (4.7), then:
A 1
r(t) = Wil(t) = ——=<(?)

T 1=zt
Defining W, as an integrator produces a simple and justifiable representation of
the reference. Theoretically, £(¢) and ((¢) are assumed to be mutually statistically
independent white noise sources of zero mean and unity covariance. In practice,
the reference and disturbance signals are mutually statistically independent and
both d(t) and r(t) may contain DC and low frequency components. This is

consistent with the use of an integrator as the white noise filter.

4.6.1 Single model example

To demonstrate the mechanism of the optimisation and illustrate the properties of
full order and restricted-structure controllers, an example for a single realisation

of W, W4 and W, is presented. At an operating point where u, = uy = 2m/s:

7.60 x 107°
s+ 0.00750

Cascading with a zero order hold and z-transforming with a sample time of 1

gv(s) = (4.59)

second:

.00 1079~
1-0.9932"!

The sampling period of 1 second gives a sampling frequency of 2 = 6.28rad/s

v(z) =W =

(4.60)

and therefore a Nyquist frequency of 3.14rad/s. This is sufficient to prevent
aliasing, see Franklin et al. (1998), because the Nyquist frequency is over three
times greater than the highest component in the system signal spectrum, which

ranges from DC up to lrad/s for high frequency disturbances.



4.6. APPLICATION TO DYNAMIC SHIP POSITIONING 144

Letting:

0.01(1+27Y) 1
1 —0.9932"! 1 —2z1

therefore A = (1 — 0.993z71)(1 — z7!), B = 7.57 x 107%27!1(1 — 27!), C; =
0.01(1 + 2~!)(1 = 2z7!) and E = (1 — 0.993271).

Wa(z1) = , We(z7) =

(4.61)

Let the error and control weightings be:

5000
Q= (1-2z"1)(1-2)
Solving equations (4.18) and (4.19) yields:

, Re=10"° (4.62)

D. = 0.0423 —0.10327" +0.0839z72 — 0.0235273
D; = 1.00-0.9932"" - 0.000100z*

The Diophantine equations give:

Fy 0.831 — 0.853z7! — 1.49272

Go = 35.4+0.269z7! — 35.1272
Hy = 0.0423 - 0.0208z"" — 0.00000217z2

Therefore the controller is:

Con _ GoAr _ 35.4 + 0.2692~! — 35.122
Coa  HoA,  0.0423 - 0.06312-T + 0.0208z~2 + 0.000002172z3
(4.63)

The restricted-structure algorithm is executed for a PI controller where N = 15,

Cof =

w; = 107%, wy = 7 and the frequency points are logarithmically spaced. The
iteration begins with z = (K}, K;) = (1,1) as the initial guess, and Table 5.1

shows the convergence of the algorithm to a minimum after five iterations, where
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the cost, Jy, is calculated using the previous value of z in the denominator of Ly,

and L.

Table 4.1: Restricted-structure algorithm iterations

Iteration Number z=(K;, Ky) Cost, Jy
0 (1,1) -
1 (3236.064 , 24.876) | 2.837 x 108
2 (3235.885 , 24.876) | 8.523 x 10°
3 (3235.887 , 24.874) | 8.713 x 10°

The cost increases on the third iteration, hence the algorithm ceases. Clearly, the
first iteration almost gives the final answer, because only the units and decimal
places change thenceforth. In practice, the algorithm can produce greater fluctu-
ations in z from one iteration to the next and take more or less steps to converge
dependent on the system and the restricted controller structure. However, given a
range of frequency points that cover pertinent features of the full-order controller
and a restricted structure which is sufficiently ‘rich® in degrees of freedom, the

iterative algorithm always seems to converge to a solution.

The restricted-structure controller in this case is:

249 3261 - 3236271
o 1-2"1

Figure 4.3 shows a comparison between the Bode plots of Cy; and Co,. The mag-

Cor = 3236 + (4.64)

nitude plots are identical up to 10~'rad/s and the phase plots are identical up
to 10~ 2rad/s. Above these frequencies, the full-order plots "roll off” where the
restricted-structure plots do not, but the restricted-structure closed-loop perfor-

mance is not greatly affected.
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Figure 4.3: Bode plots of full order and PI structure controllers

Recall that the notch filter was neglected in the plant description, as the con-
troller was to be designed so that the cross-over frequency occurred at below
the notch frequency. Figure 4.4 shows a comparison between the Bode plots of

Cos(z71)(Wn)(271), Cor(271)(Wn)(271), Cop(2~)W(27!) and Cor(271)W (271).
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Bode Diagram
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Figure 4.4: Open loop Bode plots

Here, the frequency response is similar for all four plots up to 2 x 10~'rad/s, at
which point the gain is roughly 0dB. Figures 4.5, 4.6 and 4.7 show the corre-
sponding comparisons between the Bode plots of ty(27') and the step responses

of ty(z~') and uy(z71).
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Bode Diagram
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Figure 4.5: Closed-loop Bode plots
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Figure 4.6: Closed-loop ty step responses
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Figure 4.7: Closed-loop uy step responses

Interestingly, the PI controller is sub-optimal as expected for the designed case
without a notch filter, but the performance is significantly better than the full-
order controller when a notch is introduced. Evidently, the higher gain and lesser
phase lag of the PI controller at high frequencies in Figure 4.3 is more desirable
when n(s) is inserted. A full-order controller is superior when n(s) is included
in the plant description, but at the expense of increased gain for vy at wave
frequencies. For this reason, control design is carried out ignoring the notch filter
and. fortuitously, tracking performance is improved in the restricted-structure

case.

4.6.2 A remark on number of models and frequency points

There are a number of factors to consider when the optimisation is extended from
the single model to the multiple-model case. Firstly, the AT PA matrix in equa-

tion (4.48) is N x N in the single model case, where N is the number of frequency
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points, but is Nn x Nn in the multiple-model case, where n is the number of
models. Increasing N or n or both will lead to increased calculation time and
greater risk of ill-conditioning and numerical errors when inverting the matrix.
The former is undesirable for online implementation, where processing speed lim-
its the calculation time, and the latter is undesirable due to decreased accuracy
of the controller gain solution. Conversely, decreasing N or n will shorten the
calculation time and lessen the likelihood of numerical problems occurring, but

at the expense of plant knowledge in the optimisation.

Hence, it is informative to examine the effect of the N and n terms. Refer-
ring to the example in the previous subsection, the optimisation is executed for
N = 15, w; = 107" and wy = 7 with logarithmically spaced frequency points.
wy is selected as the crossover frequency and w; need not be lower than 107,
as the full-order controller simply approaches infinite gain when zero frequency
is approached. A feature of the restricted structure algorithm is selecting this
frequency window to suit a particular problem. In the example, the Bode plot
content of interest occurs at higher frequencies around the crossover point at
0.2rad/s. Other examples tend to support the view that a window around the
crossover point is generally a good choice, see Grimble (1999b) for corroboration.

After choosing a window, comes selection of N.

In the preceding example, it is acceptable to decrease N without loss of fidelity
because the frequency domain behaviour of the full-order controller is simple. For
a higher order controller, however, N must be sufficiently large that any roll-on
or roll-off behaviour is captured by the N points. The situation may not be en-
tirely straightforward as N increases, although the preceding example is affected
little, because there is a risk of "overfitting”. In that case, the restricted structure
controller may attempt to compensate for plant dynamics which have little effect

on performance, resulting in idiosyncratic behaviour. Conversely, a restricted
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structure controller that cannot account for important plant characteristics may
in fact be of too low an order and incapable of good performance. To summarise,
N can be small for full-order controllers with simple dynamics, i.e. few Bode plot
minima and maxima, and a low order restricted controller, but would be expected
to increase with controller complexity and order. However, too large an N may
see the reduced order controller attempting to make unnecessary frequency do-
main compensation and will slow down the optimisation for online applications.
A deeper investigation of the relationship between full and restricted controller

order and the value of N would be an interesting area for further work.

Analagously to choosing N to suit plant and controller order, the choice of n
is dictated by the severity of plant nonlinearities. In subsection 4.6.4 to follow,
the ship simulation example uses three fixed models and one identified model to
capture the ship nonlinearities. The ship surge axis with different velocities is an
example of a relatively gentle nonlinearity, where the pole moves slightly from
one operating point to the next, see Table 4.2. Thus, a small set of models is
sufficient to describe the general behaviour of the ship in the example. Performing
the multiple-model optimisation for models j = 1 to 3 in the Table, with equal
probability weighting on each model, produces the restricted structure controller
Bode plot in Figure 4.8, where the 3 full-order optimal controller Bode plots
are shown for comparison. The restricted structure controller is, in a sense,

intermediate to the 3 full-order controllers.
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Figure 4.9: Individual full-order and restricted structure controller Bode plots
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Increasing n to 20 models, where the models are an equally spaced continuum
from model j = 1 to j = 3 in Table 4.2, yields the Bode plot in Figure 4.9. Again
the probability of each model is equally weighted and again the restricted struc-
ture plot, in black asterisks, is intermediate to the 20 full-order controllers. Thus
it appears that simple nonlinearities do not require large numbers of models for
their description in the multiple-model algorithm. Also, altering the weights to
bias in favour of particular models simply shifts the restricted structure controller

Bode plot towards the most heavily weighted full-order plot, as seems reasonable.

Just as a high order controller may need larger N, a plant with more severe
nonlinearities may need larger n to fully encapsulate the plant behaviour. Selec-
tion of frequency window, number of frequency points and number of models is
a matter of engineering judgement, where the aim is to minimise N and n for
algorithmic speed, but using large enough values to cover for the order of control

and extremity of the nonlinearities.

4.6.3 Linear SISO system ship identification

Having demonstrated a design example in the single model case, a multiple-model
adaptive example now follows. Online parameter estimation of equation (4.58) is
required for the adaptive algorithm, for which Recursive Least Squares (RLS) is

used, as in Ljung (1999). In recursive form:

Au(t) = —a,Au(t = 1) + HAXr(t = 1) +&(t) + gt — 1) (4.65)

where £(t) is the true estimation error before normalisation. The difference sig-
nals, Au and AXy, represent deviations from the operating point values, ug and
Xro, and are an outcome of the linearisation in Chapter 2. In reality, u(t) is
measured and X7(1) is the control signal. Hence, for identification, the structure

of equation (4.65) is maintained but the real signals are used instead:
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u(t) = —ayu(t = 1) + by Xp(t — 1) + £(t) + c1é(t — 1) (4.66)

Of course, any model identified with this form will only ever be an approximation
to the true nonlinear plant, but the approximation using equation (4.66) becomes
progressively better than finding a, and b, analytically, as Xrg increases. To see
this, recall that u = ug + Au and X7 = X794+ AXp, so the identified parameters

in equation (4.66) would be the same as the analytically derived versions if:

up + Au(t) = —ai(ug+ Au(t — 1)) + by (X70 + AXr(t — 1)) +£(t) + cié(t - 1)
= u(t) = —au(t—1)+bXp(t—1)+&(t) +cié(t-1) (4.67)

However, this requires that the steady-state gain of the non-linear plant obeys:

ug = —auo+bXrpo
Gighe! th b
,\’1‘0 ¥ 1+a (468)

Compare the steady-state gains of the non-linear and linearised plants. From

equations (2.1) and (2.4) at an operating point, (ug, vg, 7o) = (o, 0,0), note that:

g _PL(L\’uu‘uO'

e =0=
5 2(m + m,) SEm T My X0 (4.69)
Hence:
Up i 2
Xro . pLAX walt0] (4.70)
From equations (2.44) and (B.1), note that:
1 —pLd X, |ug| 1
A - —_——
u(t) (i) Au(t) + gy AXr(t) (4.71)

Laplace-transforming:
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1
(m 4 mg)s + pLd X |uo|

Au(s) = AXr(s) (4.72)

Hence, the steady-state gain is:

Au (e 1 e bl
AXt  pLdXulul  1+a;

If a zero order hold is introduced to equation (4.72) then z-transformed, the

(4.73)

steady-state gain is unchanged, so the steady-state gain of the non-linear plant is
twice that of the linearised plant, by comparison of equations (4.70) and (4.73).

In conclusion, it has been shown that the non-linear plant obeys:

Up il 2b1
X1o T a
=>u = =—-0a U+ 2by X0 (4.74)

rather than equation (4.68). Thus, when up = 0 and Xp¢ = 0, the parameters
identified using equation (4.66) are the same as the analytically derived param-
eters. However, increasing Xpo produces an increasing disparity between the
identified and derived parameters. Hence, a controller based on identified pa-
rameters has potentially better performance and robustness than that based on
a linearisation, due to lower mismatch between the actual plant and the model.
This result is true in simulation, and is strengthened in reality where the mis-

match between analytical and identified models is likely to be even greater.
In matrix-vector notation, equation (4.66) is:

u(t) = 2" (1) + £(1) (4.75)

where
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() = [ue=1) Xrt-1) €t-1)]
.QT [-01 by Cl]

The aim of least squares is to find:

min(u(t) - X()8)" (u(t) - X(t)8) (4.76)
where
u(1) z7(1)
ut)=| : |, X()= : (4.77)
u(t) zT(t)
The solution is:
0 = (XT()X (1) ' XT (t)u(t) (4.78)

Clearly, this is unsuitable for online identification, because the X7 (t) matrix and
u(t) vector would grow over time without limit. For this reason, recursive least
squares is used, and the data vector is updated at each time step. The algorithm

in this case is:

Algorithm 4.6.1 (Recursive least squares algorithm) .

., Form z(t) using new data

~

<)

. Form e(t) = u(t) = 7 (1)Q(t - 1)

__z®)z" ()Pt -1)
A+ 2T (t)P(t)z(t +1)

L)

, Form P(t) = -}{P(f -1) [1

. Update B(t) = O(t = 1) + P(t)z(t)e(t)

-

L

. Repeat for next time step
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) is a so-called "forgetting factor”, meaning that the effect of past data on the
current estimate decreases with time. As a rule of thumb, the algorithm ”remem-

data points.

bers =y

4.6.4 Simulation results

The example in this Section is based on the simulation in Chapter 2, but the
surge axis velocity loop is to be controlled by the multiple-model adaptive con-
troller. The surge position loop, and sway and yaw loops, have fixed controllers
designed using the techniques in Chapter 2. The simulation runs for 1600 sec-
onds, with initial reference signals of (X, Y, W) = (0,0,60°) and current condition
(Ue,Be) = (1,0°). The ship is held at this reference for 400 seconds before
turning into the current, so that (X,Y,¥) = (0,0,0°) after 800 seconds. See
Figure 4.20 later. This manoeuvre produces a change in operating point for the
surge axis from uy = Ugcos(7/3) = 0.5 to ug = Uccos(0) = 1. The reference
then changes to (X,Y,¥) = (1,0,0°) to test the reference following capability
at this operating point. So far, the manoeuvre is representative of realistic DP
ship operation. After 1000 seconds, the current velocity increases linearly up to
(Ue, Be) = (3,0°) on 1400 seconds, then remains constant until the end of the
simulation. See Figure 4.17 later. Such a change in current is not particularly
realistic, but does serve to demonstrate the adaptive controller performance for

further changes in operating point.

The multiple-model adaptive controller utilises four linear models to represent
the ship at various operating points, where j € {1,2,3,4} is the model index for
the transfer functions and polynomials given in equations (4.5) - (4.7), restated

below:

. bl,:“(l—:")
W=

(1 4+ay;271)(1 = 271)
The disturbance transfer function is:

= Aj'B; (4.79)
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_dy(1+ey27Y)(1 =271

- A=l
We =" Fayz)(1-2"1) A7 Cy (4.80)
The reference transfer function is:
’ 1+ ay27"
Wigm i T L Lo 4ot (4.81)

(1+ay;z71)(1 =271
The A; and B; polynomials are time-invariant for j € {1,2,3}, and the parame-
ters are obtained as in the single model case of Section 4.6.1, for linearised gy (271)
at ug = 0m/s, ug = 1.5m/s, and ug = 3m/s. These operating points span the
range of velocities to be used in the simulation. Again, the sampling period is 1
second. The identified parameters, A; and By, are used to complete the set of

models in the optimisation.

The parameter ¢; in Cy is set to 1 and d, is set to 0.0175 for the time-invariant
models, in order to match the disturbances encountered in the simulation. To un-
derstand this, note that the white noise filtered by Wy is assumed to have unity
covariance and standard deviation, and that the wind and wave disturbances
have a standard deviation of 460. Further note that the disturbances add onto
the thruster input in the Chapter 2 model, justifying the common denominator
for plant and disturbance. Thus, if by in equation (4.57) is 7.60 x 107, then the
effect of the waves can be approximated by (7.60 x 107%) x 460 = 0.035 multiplied
by a unity standard deviation signal. As there are two terms in the numerator of
equation (4.80), it is assumed that this value can be divided by two to give d,.
In the simulation Figure 4.12, the identified ¢, in Cyy tends to oscillate around
1 and the estimation error, d, standard deviation is around 0.01, so these are
clearly reasonable assumptions for the fixed models. Table 4.2 shows the values

of the parameters for each j.

1
1—21 A7'E for all j. Inte-

grated white noise represents the generally low frequency drifting nature of the

The reference transfer function is set to W, =




4.6. APPLICATION TO DYNAMIC SHIP POSITIONING 159

Table 4.2: Polynomial parameters

j| o ay by C1j dy;

1 0 -1.00 | 7.601 x 105 1 0.0175
2| 1.5 | -0.9944 | 7.580 x 10-3 1 0.0175
3 3 -0.9889 | 7.559 x 10~% 1 0.0175
41053 | RLSID RLS ID RLSID | RLS ID

velocity reference signal, rya,.

The error weighting in the LQG cost function is:

5000
Qe = i _:_1)(1_2) (4.82)

This weights the error power spectrum, ®,,, heavily at low frequencies and lightly

at high frequencies. This produces desirable closed-loop characteristics of zero
steady-state error and good low frequency tracking, without the ship trying to re-
ject high frequency disturbances. The control weighting in the LQG cost function

is:

Re=10"* (4.83)

Here, the input power spectrum, ®,,, is weighted equally at all frequencies.

The controllers used for the sway and yaw velocity and position loops are taken
from Chapter 2 (P-K/Mac case), where the linearisation is performed for (ug, vy, 79) =
(2,0,0). Clearly, the ship only operates at this point after 1200 seconds of the
simulation, but the focus of this example is on the surge velocity loop, so tuning
of other loops is not an important consideration. During the simulation, the sway

and yaw controllers produce stable closed-loop behaviour and acceptable perfor-
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mance, which is sufficient to meet the requirements here. Hence, the controller

design in Chapter 2 is clearly robust to changes in operating point.

It is assumed that the surge loops are decoupled from the sway and yaw loops,
then the controller for the surge position loop is also taken from Chapter 2. As
noted in Section 4.6, the gain ky- tends to produce minimal variation in transfer
functions sy, ty, uy and vy, Therefore, a fixed controller in the surge position

loop will be acceptable in this application.

Figure 4.10 portrays the operation of the adaptive controller.

Update Fixed
Gains Models

it
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; r—* W,W,

J' X, +Xy

|
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50 :
Dirsossp R R SRR | o
i FC%

Figure 4.10: Adaptive control scheme

The recursive least squares algorithm 4.6.3 uses a forgetting factor of A = 0.95.
This produces a memory of approximately 20 data points. A shorter memory than
this can make the identified parameters rather ‘twitchy, making large changes
from one sample time to the next and possibly producing instability. A longer
memory tends to smooth out the change in identified parameters, but also leads

to slower responsiveness to variations and hence to poorer control based on ”out
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of date” parameters.

The changes in ky are made every 4 samples. It is acceptable to make the adapta-
tion every 4 seconds because the ship parameters do not change appreciably from
one sample to the next. Simulation trials have been carried out for shorter peri-
ods of adaptation, but there is no performance advantage and the computational
load is much greater. Longer periods do exhibit a degradation in performance,

so 4 seconds is the best choice.

The wind disturbances in the simulation are the same as in Chapter 2, but the
wave disturbances are for calmer seas and carry half the force of those used in
Chapter 2. This is partly to avoid saturating the thrusters when the ship is
at 60° to the current, but also to improve parameter identifiability in the pres-
ence of disturbances, Recall that the second order wave exciting disturbances
are of such large force that the controller is unable to reject them. Therefore,
the variations in surge velocity, u, are significantly influenced by Xy, which is
unmeasurable. To successfully identify the ship parameters, u and X1 must be
well correlated. The presence of Xy tends to worsen this correlation, and so the
adaptive controller must operate in calmer seas and in addition a dither signal
is introduced. This dither signal is random and adds onto the X7 demanded
by the controller. It is found that a random signal with standard deviation of
25T onnes passed through a filter with bandwidth 0.1rad/s improves the param-
eter identification. The bandwidth is selected as 0.1rad/s because the dominant

activity of both X7 and u is above this frequency, due to the wave exciting forces.

To establish the properties of the control scheme under investigation, it is neces-
sary to run the simulation with an assortment of weighting values for probability
pj in equation (4.46). Starting with zero weight on the identified model and in-

creasing by 0.1 for each simulation run, with the remaining weight shared equally
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among the fixed models, it is possible to see the effect of the adaptation. By eval-
uating equation (4.12) for each probability weighting, where lim,_, is ignored,
the graph in Figure 4.11 is produced, depicting total cost versus identified-model
weighting. Figure 4.11 shows that the cost is highest for the pure multiple-model
case, py = 0, decreasing monotonically to py = 0.9, but increasing again for the

pure adaptive solution, py = 1. py = 0.7 and p; = 0.8 are also superior to the

pure adaptive case.
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Figure 4.11: Cost versus identified model weight

The following Figures are for the p; = 0.9 case. The first 200 seconds of the
simulation are with a fixed controller from the p; = 0 case. This is because the
recursive least squares algorithm begins with estimated (a1, by, ¢;) = (0,0, 0) and,
whilst the estimated a; and b; converge fairly quickly to sensible values, the ¢;
parameter is much slower, taking over 150 seconds. Figure 4.12 shows how the

parameter estimates evolve during the simulation.
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Figure 4.12: System parameters

Figures 4.13 and 4.14 show the detail of the a, and b, estimates after 200 seconds.
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Figure 4.14: Numerator parameter
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Figure 4.15 depicts the variation in PI gains for the restricted-structure controller.
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Figure 4.15: Control parameters

Figure 4.16 portrays the thruster forces in the surge direction. Figures 4.17 and

4.18 show the body-fixed and absolute velocities in the surge direction.
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Figure 4.17: Surge velocity
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Figure 4.18: Absolute surge velocity

For completeness, Figure 4.19 shows the plot of Y versus X position, and Figure

4.20 gives the ship heading during the simulation
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Figure 4.20: Heading of simulated ship
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4.7 Discussion

The multiple-model adaptive controller example above displays some character-
istics worthy of discussion. With reference to Table 4.2, it would be expected
that the gradual increase in surge \'elocit}; shown in Figure 4.17 should produce
a plant pole that gradually moves inward from the unit circle and a numerator
gain that gradually decreases. Figure 4.14 tends to support this view, but Figure
4.13 is not so conclusive. Whilst the ship is at 60° to the current, and during
the transition to a 0° heading, parameter identifiability appears to be problem-
atic, even using the dither signal. The explanation seems to be related to the
underlying constant components in the Xp and u signals, as it is known that
identifiability is poor when the ship is at a heading of 90° where uy = 0. As
u increases in Figure 4.17, the DC component of X7 in Figure 4.16 increases,
leading to parameter results closer to that expected by extrapolation from Table
4.2. Reducing the wave disturbances improves identifiability, but at the expense
of realism in the operating conditions. Of course, as shown in Section 4.6.3, the
discrepancy between the identified parameters and the analytical prediction will
grow with Xrg and ug. Nevertheless, after 600 seconds, the parameters begin to

behave in the expected manner.

Adaptation "switches on” after 200 seconds, at which point the K, gain in Fig-
ure 4.15 drops to 2100 from 3250, the pure multiple-model solution, and the K;
gain does not change. On inspection, it appears that the peaks in the K, gain
correspond to troughs in the plot of b; and vice versa. The same characteristic is
observed for the K, gain and the a;, parameter. Intuitively, this behaviour makes
sense. When the plant acts more like an integrator, with a; close to 1, the inte-
gral gain must be decreased to preserve stability, but when the plant displays a
shorter time constant, after 500 seconds for example, the integral gain may be in-

creased. Correspondingly, when the numerator gain, by, is large, a large K, gain is
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not required, but when b, is small, K, must be increased to preserve performance.

Figure 4.18 depicts the velocity reference following capability of the controller,
which demonstrates good performance and disturbance rejection properties. Fig-
ure 4.19 portrays the position reference following capability when combined with
fixed controllers in the surge position loop and the sway and yaw loops. Unfor-
tunately, this result is not comparable with the results in Chapter 2, because the
wave disturbance forces are lower and the operating point is different during the

step response in this Chapter.

Figure 4.11 raises interesting issues regarding robustness, performance and sta-
bility. The performance figures are clear for each value of py, but robustness and
stability margins of the controller are unknown. Such issues could potentially be
addressed via the theory of simultaneous stabilisation (SS), whereby a single con-
troller is able to simultaneously stabilise a number of plants. Vidyasagar (1985)
has shown that the problem of stabilising a nonlinear plant, which is linearised
about n + 1 operating points, is equivalent to simultaneously stabilising n plants
with a stable compensator. This problem is unsolved except when n = 1 and little
has appeared towards a general solution. Ghosh (1986) has found sufficient condi-
tions for SS of 3 different plants and Blondel et al. (1991) have presented necessary
conditions for simultaneous stabilisability of more than 2 plants. There are other
results of this type, but most lead to further unsolved problems. Blondel (1994)
in fact concludes that the problem is undecidable by rational operations for more
than two plants. Abdallah et al. (1994) restrict the class of plants to those with
the same relative degree and right half-plane zeros, before providing sufficient

conditions for SS and a method for computing a rational compensator.

Djaferis (1995) gives results on SS in terms of a family of polynomials with un-

certainties. It is shown that stability of a family of polynomials can be proven
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from stability of a finite number of polynomials. However, this result requires the
use of overbounding whereby a larger set of polynomials, containing the family
of interest, must be considered. Several examples of controllers produced from
the solution of an H, problem are shown to provide SS, but this does not sug-
gest a general technique for establishing the existence of a controller with the SS
property. Nevertheless, the method is of interest and provides scope for further
work on stability and robustness of the multiple-model approach in this Chapter.
Fernandez-Anaya et al. (2001) and Muramatsu et al. (1999) approach SS using
interpolated controllers. That is, the system is described by linear interpolation
of proper stable coprime factorisations of the plant models, and the controller is
a linear interpolation of coprime factorisations of stabilising controllers for these
representative models. Muramatsu et al. (1999) apply this idea to two models
and give necessary and sufficient condition for the plant to be stabilisable by the
interpolated controller. This stability is shown to depend upon SS of the two
linear models. Fernandez-Anaya et al. (2001) further this work by introducing
nonlinear perturbations into the plant parameters and obtain sufficient conditions
for SS using interpolated controllers. Again, this work may be of interest if it can
be shown that the multiple-model controller in this Chapter may be expressed
as an interpolation of controllers for individual plant models. Clearly, this is a

fertile area for research.

In Section 4.4, the problem of convergence of the iterative restricted-structure
algorithm was mentioned. This may not be easy to establish, but is obvi-
ously desirable to bring rigour to the algorithm. Knowing from Section 4.4 that
(Kpy Ki)nst = Tns1 = T(xn) = (AT(x,,)PA(zn))-IAT(xn)pQ(xn), a8 sequence
{z,} is produced. Convergence could be proved by showing that {z,} is a Cauchy
sequence i.e. for any £ > 0 there exists N such that m,n > N = ||z, — z,|| < &.
However, the nonlinear nature of T renders this a non-trivial problem and a

possibility for further work.
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For the simulation example in Section 4.6.4, the probability weightings are dis-
tributed equally among the fixed models and the remainder goes to the identified
model. This is rather a broad assumption, hence another avenue of develop-
ment could be to allocate realistic probabilities based on some algorithm as in
Athans et al. (1977), mentioned in the Introduction. In that paper, the Kalman
filter residuals for each linear model were used to generate weightings so that
a weighted sum of the different optimal control signals could be applied to the
plant. A neural network could perhaps be trained to produce probability weight-
ings for each fixed linear model in the multiple-model optimisation. In this way,
the optimisation would be performed across a more representative model set than

simply assuming all models are equally likely to describe the true plant.

In the Introduction to this Chapter, whilst discussing adaptive control schemes,
the technique of gain scheduling was described. Gain scheduling is a scheme
where several linear control designs are carried out at different operating points
of a nonlinear system. In practice, as the plant nears a particular operating
point, a look-up table is consulted to retrieve the appropriate pre-designed gain.
This is "switched in” and the gain from the previous operating point is ”switched
out”. Shamma and Athans (1992) warn that this technique is susceptible to
loss of stability and introduction of right half-plane zeros, but nevertheless gain
scheduling is widely used in industry and seems suited to the example in this
Chapter. Rugh (1991) and Shamma and Athans (1990) have created a theoretical
framework for gain scheduling, previously a method used heuristically due to the
simplicity of implementation. Astrom and Wittenmark (1995) give an example of
a gain-scheduled ship autopilot, but it would be informative to apply the method
to the ship DP in this Chapter, for comparison with the multiple-model adaptive
approach. This could produce further interesting work, particularly if the recent

theoretical framework is used for performance, stability and robustness analysis.
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4.8 Conclusions

This Chapter began by highlighting the fact that the ship controller design in
Chapter 2 is applicable at only one operating point. The potential for instability
and poor performance from this controller at other operating points is due to the
effect of changing plant dynamics combined with an invariant controller. Solu-
tions to this problem have previously involved nonlinear, robust, multiple-model
or adaptive control theories. The nonlinear approach suffers from the fact that
system analysis is more complicated and the theory is not so well developed,
whereas robust solutions tend to produce poorer performance than might other-

wise be possible.

The idea developed in this Chapter was to combine the benefits of a multiple-
model and adaptive controller into one scheme, where the structure of the con-
troller is restricted to a particular form. Unlike previous multiple-model schemes,
the technique in this Chapter does not involve designing separate controllers for
each model in the set, but instead performs an optimisation across the whole
set. The multiple-model theory in question is based on standard optimal con-
trol theory, which is introduced in both state-space and polynomial form. The
optimisation in polynomial form is then approximated by performing the cost
minimisation at a finite set of frequencies, where the cost is restated in matrix-
vector form and minimised using a least squares solution. This matrix-vector
form introduces a further approximation whereby the controller is restricted to
be of a particular structure. It is necessary to include a guess at the correct
controller gains in order to produce the least squares solution. Thus, an iterative
algorithm results that uses functions of the previous solution to produce the next

answer.

The algorithm is extended to the multiple-model case by "stacking” matrices for



4.8. CONCLUSIONS 174

each model, before computing the least squares solution across the whole set.
At this point, the adaptive aspect of the algorithm is introduced by using plant
parameters identified online from input-output data to add to the ”stack” of ma-
trices. Every time the optimisation is performed, the previous identified model
is discarded and replaced with the latest version. This adaptive multiple-model
controller is applied to the ship DP problem from Chapter 2, but first a single
model example is detailed to illustrate features of the restricted-structure con-
troller. It is seen that only four iterations are required to produce gains for PI
control of the ship’s surge velocity loop. The full-order controller is 3rd order,
whereas the PI controller is only 1st order, yet the frequency responses between
DC and 0.1rad/s are identical. The notch filter is ignored in order to keep the
plant model order low. This is desirable to avoid numerical errors due to the
use of 64 bit arithmetic, and is justifiable because the notch occurs at above the
crossover frequency. Fortuitously, the step response of the restricted-structure
controller is actually superior to the optimal controller when the notch filter is
included in the plant but not in the model. Without a notch in the plant, the

restricted-structure response is only marginally inferior to the full-order control.

Use of the recursive least squares algorithm is detailed, before a full DP example
is described. The 3 degree of freedom simulation from Chapter 2 is used, but
the adaptive multiple-model controller is only applied to the surge velocity loop.
The other velocity loops take gains from the Penttinen-Koivo method in Chap-
ter 2, and the position loop gains are produced with the Maciejowski technique.
Linearised models are taken from three representative operating points, and the

fourth model uses parameters identified with recursive least squares.

The ship executes a manoeuvre over 1600 seconds with calmer wave disturbances
than in Chapter 2, to avoid thruster saturation when the ship heading points well

away from the direction of the incident waves. The performance of the restricted-
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Pl-structure controller is evaluated for various probability weightings on each
linear model. It is observed that performance is worst when the identified model
is not included in the optimisation and only linearisations from three represen-
tative operating points are taken into account. As the probability weighting on
the identified model is increased, the performance gradually improves to a peak
when the probability is 0.9. The "pure” adaptive case, where the identified model
probability equals 1, exhibits poorer performance than when the probability is

0.7, 0.8 or 0.9.

Hence, it is believed that the technique presented in this Chapter provides a com-
bination of the benefits of adaptive and multiple-model optimal controller designs
in one scheme. An adaptive controller is able to adapt to changing system param-
eters at the expense of possible instability, as the present controller depends upon
an estimate of the current plant model only. A multiple-model optimal controller
gives greater assurance of stability over a wide range of operating points with
the expense of conservative performance. A multiple-model adaptive controller
is intermediate to these two schemes. It provides a certain amount of confidence
in stability, due to the weighted effect of fixed known models in the optimisation,
plus a performance enhancement due to the incorporation of system identifica-
tion knowledge from one sample point to the next. The restricted structure of
the control law provides simplicity of implementation, and transparency of the
solution to those acquainted with much-used classical control laws. Thus, the
main contribution of this Chapter was to propose a new kind of adaptive con-
troller which combines the benefits of existing control schemes, and also to apply

this to the ship DP problem.

A flaw in this technique is lack of stability or robustness proofs for the multiple
models and also the convergence of the restricted-structure algorithm needs to

be established. Simultaneous stabilisation theory is suggested as an approach to
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the first problem, and empirical evidence suggests that convergence is likely to be
assured if a suitable procedure can be found. Establishing these two results would
also reinforce the perceived advantages of the adaptive controller, which could be
further improved by allocating realistic probability weightings for the fixed models
in some manner. It is also suggested that a gain scheduling example could be
used for comparison with the controller in this Chapter, as there are similarities
between the two approaches in that a set of linearised models is required in both

cases.



Chapter 5

Restricted-Structure
Multiple-Model Adaptive

Predictive Control

In this Chapter, linear quadratic Gaussian predictive control (LQGPC) theory
is developed in a similar manner to Chapter 4, yielding a restricted-structure
adaptive predictive controller. The problem statement involves a multi-step cost
function, where the system ts described in state-space with stochastic disturbance
and reference generating models. An optimisation is performed over the future
control signals, leaving the cost in a standard LQG form. An approzimation
to the cost integral is made and a restricted-structure solution across multiple
models is described. The online optimisation is performed across a set of several
linearised models with one identified model, to produce an adaptive algorithm.
The example is again the ship DP control problem, allowing comparisons to be
drawn between predictive and non-predictive controllers. Successful simulation
results are presented and analysed at the end of the Chapter, and it is found that
the predictive controller outperforms the standard LQG controller of Chapter 4

when the reference signal approzimates filtered white noise.
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5.1 Introduction

In the previous Chapter, the solution to an LQG optimal control problem was
approximated so that the optimisation could be performed across a set of mul-
tiple models for a controller of restricted structure. More recently, the LQG
solution methodology, outlined in Section 4.2, has been applied to polynomial-
form predictive control problems, known as linear quadratic Gaussian predictive
control (LQGPC), in Grimble (1990) and Grimble (1995). The state-space so-
lution of LQGPC followed in Ordys and Grimble (1996) and was extended to
a restricted-structure form in Grimble (2001a). In this Chapter, the restricted-
structure LQGPC method will be furthered to the multiple-model adaptive case,

as in Chapter 4, then applied to the ship DP problem for comparison.

To put the LQGPC approach and the aims of this Chapter into context, it is in-
formative to look at the background of predictive control. The use of prediction
in control engineering problems dates back to Wiener (1949), who showed how to
optimally predict the future values of a signal given a current observation of that
signal corrupted with noise. The prediction is optimal in the sense that a mean
square error criterion is minimised. The solution of the problem was considered
impractical by engineers, however, and it was Kalman (1960b) who offered the
first truly practical prediction and filtering of noisy signals using the now familiar
state-space approach. Another early use of prediction in control theory was the
Smith predictor in Smith (1959), for time-delay systems. This controller contains
an internal model of the plant minus the delay, d, hence the plant output is ef-
fectively predicted d seconds into the future. The overall effect is to remove the

delay from the closed loop for feedback control design.

Prediction was further utilised in the minimum variance (MV) regulator algo-

rithm of Astrom (1970) for stochastic systems, where the mean square output
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error is minimised at k steps in the future. The introduction of input and ref-
erence terms in the cost produced the generalised minimum variance (GMV)
controller, see Clarke and Gawthrop (1975). Although these algorithms use a
model of the plant when computing the control signal, the first example of mod-
ern model-based predictive control (MPC), known as model predictive heuristic
control (MPHC), was given in Richalet et al. (1978). The common features of
MPC algorithms are that a multi-step, generally quadratic, cost function is min-
imised given a finite future reference trajectory, a plant model and predictions
based on that model, to produce an optimal control signal. The plant inputs
and outputs, plus states with a state-space approach, are predicted over a finite
horizon that always begins at the current time step - This is known as ”receding-
horizon control”. The optimisation generally involves solution of a least squares
problem, or a quadratic programming (QP) problem for constrained MPC. Con-
straints on plant variables are straightforward to handle for most MPC methods
and this is one of the main advantages over other control techniques. These ad-
vantages include ease of understanding for the operator, straighforward extension
to the multivariable case, operation close to or at the constraints, and ability to

easily deal with dead-time and nonminimum phase characteristics.

The early MPHC algorithm was improved upon in the DMC method of Cutler
and Ramaker (1980). Further advances include de Keyser and van Cauwenberghe
(1981), Peterka (1984) and Ydstie (1984), but it was not until Clarke et al. (1987)
that a general MPC controller could cope with a nonmininum-phase, open-loop
unstable plant of unknown order with time-delay. This generalised predictive
control law (GPC) was extended to cope with input constraints in Tsang and
Clarke (1988) and both input and output constraints in Camacho (1993). GPC
is popular in the process industries and has since been extended from the poly-
nomial to the state-space setting in Ordys and Clarke (1993). This was not

the first example of state-space MPC, early examples being Li et al. (1989) and
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Ricker (1990), although state-space is relatively recent in this regard. In fact,
predictive control was first addressed using step or impulse response data, fol-
lowed by a transfer function or polynomial approach, but it is the state-space
setting which is now considered most general, in Maciejowski (2002) for example,

as it includes the other approaches and naturally describes multivariable systems.

LQGPC was introduced in Grimble (1990) in an attempt to combine the stabil-
ity properties and intuitive tuning of polynomial LQG with the future reference
knowledge of MPC. Two forms of controller are investigated, the first using the
standard LQG cost but with knowledge of p future setpoint values, and the sec-
ond including prediction error terms in the cost. For an example plant with large
input delay and a nonminimum phase characteristic, improved output response is
demonstrated for LQGPC over standard LQG. In Grimble (1995), the cost func-
tion and system description is similar to that used in GPC, but the solution again
follows the polynomial LQG route. For each step in the cost function, a differ-
ent controller transfer function generates the predicted control action, unlike in
Grimble (1990) which is sub-optimal by comparison. The stability and robustness
properties are the same as for an LQG optimal controller. This time, the output
response of a submarine heading control example is superior to a non-predictive
controller. Additionally, it is shown how the problem can be stated in matrix-
vector form under the assumption of an ideal predictor, so that the constrained
solution may be found using a QP solver. The disadvantage of both LQGPC
schemes compared to standard MPC lies in the potential numerical problems of
solving spectral factors and Diophantine equations associated with polynomials,
and in the fact that the reference signal is filtered white noise rather than a known

deterministic trajectory.

The aforementioned MPC literature deals exclusively with linear plant descrip-

tions, but inevitably nonlinear systems are now being explored, in Gattu and
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Zafiriou (1992), Doyle et al. (1995), Bemporad et al. (1997), Gawthrop et al.
(1998) and Kouvaritakis and Cannon (Eds.) (2001), for example. The most el-
ementary solution to nonlinear MPC is simply to replace the linear prediction
model with a nonlinear one. The consequence of this is that optimisation convex-
ity is lost, linear least squares and QP are redundant, and it is necessary to exploit
nonlinear programming (NLP) algorithms to find the optimal control signal. For
example, Sutton and Bitmead (1998) use Lagrange multipliers and a nonlinear
state-space model, whereas Piché et al. (2000) use a feasible path reduced gra-
dient solver and a neural network model. However, with NLP techniques, it is
difficult to estimate the duration of an optimisation or even if termination will
occur, so the major disadvantage is the unreliability for on-line predictive con-
trol. Of course, the accuracy of predicted signals depends upon a model that
matches well with the true plant, so a linear model will not produce good MPC

performance with a nonlinear or time-varying linear plant.

At present, it is therfore most practical to implement MPC for a nonlinear plant
using some linear approximation. Yu et al. (1992) describe the response of a heart
patient’s mean arterial pressure and cardiac output to inputs of dopamine and a
vasodilator with 36 linearised models. The controller is based on GPC and the
multiple-model adaptation is based on the MMAC method of Athans et al. (1977)
described in Section 4.1. Gopinathan et al. (1998) describe a multiple-model pre-
dictive scheme used to control an F/A-18A aircraft carrier landing manoeuvre
subject to actuator failures. The switching and tuning ideas from Narendra and
Balakrishnan (1997) are used to choose the linear model closest to the present
plant dynamics, where the main aim is to produce fault-tolerant MPC in the
presence of hard constraints. Huzmezan and Maciejowski (1998) use a quasi
linear-parameter-varying (LPV) missile model, where the parameters depend on
the system state rather than some exogenous variable. Again the emphasis is

on fault detection, where failures adjust the constraints in the MPC algorithm.
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The quasi-LPV model may be used in one of two ways, where predictions are
obtained either by freezing the parameters at one point for the whole horizon, or
updating the parameters at each step according to the system state. The results

demonstrate that the updating strategy potentially yields higher performance.

In this Chapter, a novel contribution is made to the field of adaptive control in
the form of a multiple-model restricted-structure adaptive predictive controller,
although with many similarities to Chapter 4. Again, the multiple models and
adaptation are used to deal with plant uncertainty, with a restricted structure
controller implemented for simplicity and numerical reliability. A further paral-
lel with Chapter 4 is that the optimisation occurs across the whole set of linear
models, rather than for an individual model in the manner of Yu et al. (1992) and
Gopinathan et al. (1998) above. Sunan et al. (2002) present GPC controllers with
a PI structure where the plant must be of first-order-plus-delay form, and PID
structure where the plant must be in second-order-plus-delay form. This is not
as general as the rest ricted-structure method in this Chapter. Sunan et al. (2002)
also describe an adaptive predictive controller, whereby recursive least squares
plant identification is combined with GPC. A stability proof is given in the pres-
ence of model uncertainty for a particular class of SISO nonlinear systems. No
such proof exists for the adaptive predictive controller in this Chapter, but it ap-

plicable to quite general MIMO nonlinear plants over a range of operating points.

The controller is, in a sense, a hybrid of state-space and polynomial LQGPC,
as the initial formulation is in state-space, but the restricted-structure solution
requires a polynomial LQG cost function. A state-space optimisation is carried
out for the control signal from 1 to H, — 1 steps ahead, which then reduces the
problem to a standard LQG problem without prediction, solved using polynomial
methods. The theory behind this approach is now developed, beginning with a

statement of the stochastic MPC problem.
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5.2 Predictive control problem formulation

In a conventional non-predictive optimal control problem, it is standard practice
to define a cost function such that the present tracking error and control input
are penalised to some degree. However in the predictive problem definition, the
penalty includes both present and estimated future values of tracking error and
control input. For a multivariable system with white noise input signals, the
performance index to be minimised can be defined in the time domain as in

Grimble (2001b):

J = {lgx;o-)—fz.l.}

Hy Hy,—1
Joo= Y Qi(ralt+3) — m(t+4))+ D Ryu(t+j)? (5.1)
j:l 1=0

where E{.} is the unconditional expectation operator and y, and r, are gener-
alised output and reference signals respectively. The error and control weightings,

Q; and R;, need not remain fixed over the sequence of j’s.

5.2.1 Plant model

The yx(.) and u(.) signals to be costed in (5.1) are contained in the linear, time-

invariant, discrete-time state-space system representation given below:

T (t +1) = ApZm(t) + Bnu(t) + Dnén(t) (5.2)
Zm(t) = CaZm(t) + vm(t) (5.3)
yh(t) - }{mxvrx(t) (54)

The state Zm(t) € R", control input u(t) € R', disturbance &,(t) € R, obser-

vation zn(t) € R™, output noise v, (t) € R™, and generalised output y, € R™.
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Also, cov[vp(t), vm(7)] = Rpder > 0 and cov[§m(t), {m(7)] = &r. The reason for
introducing a generalised output is that H,, is able to cost a linear combination

of states in addition to the actual plant output.

Having established the plant equations, an estimator is required to predict the
inferred output for j steps ahead. This can be derived by repeatedly shifting (5.4)
forward in time and substituting (5.2) into the equation obtained. The estimator

is stated below:

Yy = Hzp(t) + GU + NW (5.5)
un(t +1) HpAp ut) |
t+2 Hede t
},h = yh( i ) ‘ 1 n : ; T ’U( j"l)
| un(t+ H,) | | HnAm' | | u(t+H, - 1)
[toee 2 BE 0 7 0 ]
Hyp A B Hy, B :
G = . .
: : 0
| HnAm'™'Bm HmAw' 'Bm - HaAor g
T D 0 Lt oo | & et
Hyp Ay Dy H Diitis e B f
N = ; g Em(t +1)
: : i 0 :
L Hy, s ""'r-le I[m-4:"l'—2Dm +«+ HpDy L gm(t + Hp -1)

where u(t + j) is assumed zero for j > H,, because these inputs do not appear
in the cost function. The vectors and matrices have dimensions as follows: Y}, €

lel,. H e lel,xn‘ Ge le!,xll!.‘ Ue Ru:..’ Ne RmH,, xH,,, W e RH".
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5.2.2 Reference model

The rj(.) signals in (5.1) are obtained from a separate linear, time-invariant,
discrete-time state-space system representation, described analogously to the

plant as:

Te(n,)(t + 1) = Arra,)(t) + Dy (2) (5.6)
2(t) = Crar(m,)(t) + ve(t) (5.7)
ra(t + Hp) = H,-.’L‘r(Hp)(t) (5.8)

The state z,(y,)(t) € R™, driving white noise input & (t) € R, output z,(t) € R™
and generalised reference rj(t) € R™. Also, cov[v(t), vr(T)] = Rpobyr > 0 and
cov[&:(t), & (7)) = bir.

To create the reference signals at {t + 1,t + 2,...,t + H, — 1}, further state

‘variables are introduced by delaying z,(u,)(t). The state equation hence created

is:

Ee oo+ | FAs st e} o[ o
Tr(H,-1)(t+1) H. 0 - : Tp(r,-1)(t) 0
: = e : + 177075 &:(F)
Tyt +1) : : Tr(2)(t) :
gra(t+1) - | SEUEERER IO aan(®) | L0
zr(t+1) = Apxr(t) + Dgé&, () (5.9)

:,(f)=[C, 0]In(f)‘*'vr(t)=CRICR(t)+Ur(t) (5.10)
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where the terms in equations (5.9) and (5.10) are interpreted in the obvious man-

ner.

The vector z is the "wrong way up” to use as a reference. Hence, to give the

same orientation as Y}, the following matrix-vector product is formed:

R TR IO I B e 8 e e B
ralt +2) 07420 s RO [t )
=] : : : (5.11)
ra(t + Hy — 1) 0 ST s 000 Zria) (1)
| omH) | [ Ho0 00| ae
R, = Hpg(t) (5.12)

again with an obvious definition of terms in (5.12). R € R™», Hp € R™HexmHy 5 ¢

lel,,AR € lel,,xmll,,. DR € Rm"’.

5.2.3 Total system model

The total system, shown in Figure 5.1, can be represented in state-space form by

T
using an enlarged state vector X(t) = [ zr(t) Tm(t) ] € R(mHp+n)x1.

AR 0 | 0 Dp 0 & (t)
< = X u(t) + 5.13
X(t+1) { p ‘} (t) + [ B,,.] (t) ; Dm} [Em(t)} (5.13)

X(t+1) = AX(t) + Bu(t) + DE(t) (5.14)
[ (1) } = [CR g X(t) + or(8) (5.15)
Zm(t) 0 Cn Um(t)

Z(t) = CX(t) + vm(t) (5.16)
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The matrices C' and D are partitioned to give Cy; = [ Og"0 ] € Rmx(mHp+n)

Dpg

Cn = [ 0 Cp ] € Rmx(mll,#-n)‘ Dy, = = RmH,,+n, and Dyp = |: 0 ] e

D,,
R™H»+n These partitions are used later, in the definition of the system transfer

function matrices.

v(t)
‘f.'(‘___.) \ D, ' Xow(t*1) z' X (1) C z(1)
+
H rh(t+p)

l A, ___j—’ H, Yn(tz

&0 oL
e 37 | val®)
—e + | +
u(t) y X (tH1) | (1)
o o el 1]
e
i ™ |
X

Figure 5.1: Plant Model and Reference Generator

5.2.4 Cost function manipulation

At this point, the system description is in a form where the optimal control crite-

rion (5.1) can be used. Defining Q = diag{Q;, ... Qu,}, R= diag{Ro,... Ry, -1},

J; can be stated more simply in terms of matrices:

Jo= (Ra = Ya)TQ(Ry - Y3) + UTRU (5.17)
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Using the definitions in (5.5) and (5.12), the reference error can be stated as:

E=Ri-Yy = [Hp —H|X(t)-GU-NW
HX(t)+GU+W (5.18)

where H = [ H, —-H ] G =-G,and W = —NW.

Substituting (5.18) into (5.17) and expanding the matrix product, the cost (5.1)

becomes:

T
J= { lim -—11-, =Z— TH)Q.X(t) + UTR.U + 2XT ()G, U}+Jpg (5.19)

where:

Q.= H"QH,R. = G"QG + R, Gc H'QG (5.20)

The term outside of the brackets, Jyo = E{ lim — Z WTQW}, is indepen-
T—o0 2T =27

dent of the vector of control inputs, U. This follows from the fact that future

white noise disturbance signals cannot be predicted, hence W can have no influ-

ence on the U vector calculated at time t.

The mimimisation of the predictive control criterion can be simplified by noting
that only u(t) in U is required for the feedback control law. Therefore, par-
o S . f T
titioning the controls vector into u(t) and U' = | u(t+1) -+ u(t + H, — 1)]
components allows separate calculations for current and future inputs. To achieve

this result, begin by partitioning G and R in accordance with U:

Ry 0

(3:[—6‘ —Gz]'R= 0 Ry
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where Ry = diag{R,,...,Ry,-1}. The definitions of R, and G, can now be

expressed in terms of these partititions:

) [nﬂ na] . [G{QGwRo GTQG,

X £ Z N 5.21
R, Re G3QG, GIQG, + Ry 2L
G.=[6a Ga|=|-H7Gc, -H7GG, ] (5.22)

Denoting the summand in (5.19) with /(t) and using the new terms in (5.21) and
(5.22):

It) = XTQX + u'Rgu+2XTG4u
+ (UTRQU! + 2uTR3U/ + 2XTG o UY) (5.23)

To find the minimum of I(¢) with respect to U !, the gradient of I(t) is required:

aI(t :
35% = (U’ Rey + " (8)Res + XT()Ge2) (5.24)

The optimal solution occurs when this gradient is zero. Equating (5.24) with

zero, the optimal controls vector is:

U! = —Ra(RGu(t) + GRX (1)) (5.25)

Substituting (5.25) into (5.23) eliminates U/, leaving I(t) in the desired form:

I(t) = XT()Q X (t) + uT (t) Reu(t) + 2XT ()G ou(t) (5.26)

where Q. = Qc ~ GaRaGl, Re = R~ RaR3 RY, Ge = G - GaR3 Y and
Qc € R(vnll,+n)x(mll,+vl)‘ Rc e R and (;c € R(mHp+n)xl
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5.3 Predictive control problem solution

In the previous Section, the cost criterion (5.1) was manipulated to provide an
expression in terms of the defined system matrices. Also, the solution to the
optimal control problem was derived for the vector of future controls. Thus, a
predictive optimal cost criterion has been created such that the current state
vector and current control input are weighted in the time domain. In order to
find the minimum of this cost for a restricted-structure controller, a frequency

domain version of the cost produces a solution. Thus, using Parseval’s relation:

T o0

J = { lim ﬁ Z XT(1)QcX (¢ (t)Rcu(t)+2XT(t)ch(t)}

1 - -
= trace{Q.Pxx(z7") +2GPux(z7!) + Rc®Dy, (2 _1)}— (5.27)
|z|=1

where the total cost is J = J, + Jyo. Hence, to begin the solving the frequency
domain problem, expressions for ®xx, ®,,, and ®,x in terms of the various ex-

ternal inputs are derived below.

Using the z2-transform of (5.14), it is straightforward to obtain the following

relationship:

X(z™"') = ®(")Bu(z"') + ®(z7")Dg(z7)
Wu(z™') + W& (271) + Wabm(271) (5.28)

where

o
—_—
t2

I
~
Il

(2 = A)' = (I - A7)~ 17t = A
W(z™') = ®B=A4;'2"'B = A;'B, = Bj,A}}

—
—
-
—_
e
I
—
S—
Il

@D\, = A;'27' Dy, (5.29)
Wa(z™!) = ¢Dl2=-‘i;]~’-_lD12
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Substituting (5.28) into (5.16), obtain:

z2m(z7Y) = Wu(z™?) + Wabm(z™) + v (27Y) (5.30)
%(z7Y) = W& (z7Y) +v.(27Y) (5.31)
where
W = Cy®B= A;’Bp = Bl,,Al‘,,,1
W, = Cu®Dy = A,‘,‘C,, (5.32)

“"d = Cg]d’Du — A;;Cdp

The optimal control with a single degree of freedom is:

u(z™") = =Kz )2m(z™) = =Ko K7 2 (27Y) (5.33)

Following an argument similar to that in Chapter 4, J, may be minimised with

respect to K. The derivation is rather lengthy and may be found in Appendix C.
To summarise, the solution involves solving two spectral factors:

D;,Dey = Bi,QeByy + AjpRe Ay + Bj,G oAy + AL G By (5.34)

deD.;p = C@C.;p + AdpRﬂA:ip (535)

two regulating Diophantine equations:

29 D3,G5, + fAp = (B1,Q. + A}, G:)z9 (5.36)

29 DL HY, - F,B, = (A}, R: + B},G.)z ™9 (5.37)
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and two filtering Diophantine equations:

29G{, D}, + A F}, = D;,C} 2% (5.38)
2" H{ D}, — Co27'Ff, = R A} (5.39)

The controller is then:
K = l\’c(;’.‘ip + [\’!1021 + BKC)—IKH (540)

'lp
¢ € Pxmiptn Gl g RmHptnxm I e R™*m and Ff, € Priytnxm,

where K. = H{,;'Gf, and K, = GLH:, . T CIRIPDIN L H e R,

An interesting property of the solution is that the controller order does not nec-
essarily increase with lengthened prediction and input horizons. The Q, and G,
matrices increase in dimension with lengthening prediction horizon, but R, is
unnaffected. None of these three matrices are altered dimensionally by length-
ening input horizon. Hence, the dimension and polynomial order of the spectral
factors, Dy, and Dy, are unchanged. To see this, note that A,,, 44, and Cyp are

unaltered by horizons and B,, only acquires extra zero elements.

The dimension of the Diophantine equation solutions is changed, but the polyno-
mial order is not. Again, this is due to unaltered A,,, Cy4p, and unchanged order of
Dy, and Dy, 131,, and B,, have extra zero elements, and fi,, gains unity elements
which are multiplied by extra elements in Fy, and Ff;~ Thus the Diophantine

equation solutions change with horizons, but not the polynomial order.

In the controller, the structure of .-i,,. K7 Cy and BK, is such that the order of
the determinant of (:A, + K Ca + BK,), which forms the denominator of K, is

unchanged by prediction and control horizons. Of course, K is affected in some
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manner by these horizons, but the change is seen in the frequency domain. This

will be illustrated later in Section 5.6.1.

5.4 Numerical algorithm for restricted-structure

solution

The optimal solution to the predictive optimal control problem simply requires
T, in equation (C.31) to be set to zero. The order of the controller is then
determined by the system and cost weightings, and the structure is a matrix of
rational functions. In the case of a restricted-structure control law, it is necessary
that equation (C.34) be minimised with respect to the parameters of the given
controller structure. The following is similar to that detailed in Section 4.4, and

it will again be assumed that K is a PI controller.

Making the appropriate substitutions in equation (C.31), as in equation (C.38),

obtain:

TH = HE (I +KSBIK - K.S;Kp)(Ay + BpK) ™ Dy
= Hy([I + K.StB|K, — K.S; K Ka)(ApKa + B,K,) ' Dy
= (LiKn— L2Ka)(LsKy + LiKa) ™' Dap (5.41)

where Sy = A,z (I +1\’[l-“;l€2p)_‘ = (24,+KpnCn)7 ! Ly = HS I+ K .S¢B),

L, = 111',,1\'r5/’\'/1~ Ly = By, Ly = A, and K is the matrix fraction:

K = K.K;' = (Kpao + Kiay)og? (5.42)

K, K € R*™ ap = diag{l —2"'}and oy = I.

T; is non-linear in K, and K;, meaning that (C.34) is difficult to minimise

directly. However, an iterative solution is possible, as in Chapter 4, if the values
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of K, and K; in the denominator of T, are assumed known. It is possible to
solve for the controller gains in the multivariable case, but the examples dealt
with later are SISO. In that case, defining L, = L,Dy,/(L3sK, + L4K,) and
Lpy = LaK4Dayp/(L3s K, + LyKy), T; becomes linear in Ky:

T; = LmKn — L,.z (543)

This is analogous to equation (4.37) and the restricted-structure solution is identi-
cal to that in Section 4.4 with L,,; and L, as above and Td+ instead of 7}". Hence,
using the multiple-model solution, the following adaptive restricted-structure pre-

dictive control algorithm is created.

Algorithm 5.4.1 (Adaptive restricted-structure control algorithm) .

1. Define N (number of frequency points), wy,...,wn, Ny (number of fired
models), and P (model probabilities)

2. Initialise K, = K; =1 (arbitrary choice)
3. Define ag(z7"), ay(z™!

4. Compute Ky(27) = Kpao(z™") + Kian(z7)
5. Compute Kq(z7') = ag(27")

6. Forj=1to Ny

(a) Solve for the spectral factors Dey; and Dy, and the Diophantine equa-

He. F¢.and G!.., H! . F!

tions for G 1pj* L1pj 1pjr Hipjr Lipye

3
ipy?

(b) Create Lyj, Laj, Laj, Lsj, Ln1j, and Lya;.

(¢c) For all chosen frequencies, calculate Fj(e~%T)), L;(e~3wT)),
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FJ(C-J““T)) Lj(e—jwlT))
(d) Assemble A; = : and b; =
Fj(e-)\d.\"")) Lj(e'j“""T))
7. Estimate current Ay, By, Ayp, By, Agy and Cyp, polynomials by calculation

from the identified parameters of a recursive least squares algorithm.
8. Repeat steps 6(a) to (d) for the identified polynomials.
9. Stack the Ny +1 A and b matrices to form A and b
10. Calculate the restricted-structure controller gains, x = (ATPA)~"'AT Pb

11. If the cost is lower than the previous cost, repeat steps 8 to 10 using the new
Con. Otherwise, use previous controller gains to compute the feedback con-

troller Kpp(27') = l\‘pQO(:_l)-*-]"ial(z_l) and K(27') = Knr(27Y) [ Kar(z71).

12. Implement controller in feedback loop and go back to step 7.

5.5 A remark on numerical difficulties

The algorithm above also suffers from numerical errors caused by double precision
arithmetic in Matlab, as explained earlier in Section 4.5. Thus, it is prudent to
repeat the example of Chapter 4, where efforts were made to reduce the order
of polynomials and make simplifications where this could be done with limited

effect on the outcome.

5.6 Application to dynamic ship positioning

In Section 4.6, a discrete-time polynomial description was derived for the surge
axis of the Chapter 2 ship model. There now follows a repeat of that example
using the restricted-structure adaptive predictive controller for comparison and

contrast.
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5.6.1 Single model ship example

The linear ship model was originally derived in continuous-time state-space, see
equations (2.47) to (2.50), so it is straightforward to state the necessary system

matrices for this example. At an operating point where u. = uo = 2m/s:

A=-0.00752,B="1760x10"%C=1,E=760x10"° (5.44)

Discretising for a sampling period of 1 second:

1
An = et =0.9925, B,, = :(e"—l)B =7.57x10"%,Cn=C =1, D,, = 7.57x10~3
(5.45)
yielding:

7.57 x 107521
(zDN=W z—l —
gvia = WiEns =g p0az1

The predictive control formulation does not naturally include the integral action

(5.46)

which is desired in this example, so one solution is to introduce a fictitious inte-
grator to the plant, carry out the control design, then take the integrator out and
put it into the controller. Furthermore, recall from Section 4.6 that the wind and
wave disturbances are approximated by unit variance white noise passing through

a filter, Wy

sie 0.01(1 +z71)
"4(: l) = W (5.47)

The state space description with input disturbance does not permit this transfer

function, but a one-step delayed version can be implemented so that:

09925 0| | 0.0925(7.57x 10%)
g T | | 7.57 x 10°5
0.01(0.9925 + 1 0.0199
Cm = [() 1 ] Dm - ) = (5.48)

0.01 0.0100



5.6. APPLICATION TO DYNAMIC SHIP POSITIONING 197

Thus:

7.57 x 1078271
(1—-0.993z-1)(1 — 271)

0.01(1+27%)z7t
(1—0.993z-1)(1 — 21

w(z") = Wiz = (5.49)

The introduction of a fictitious integrator is equivalent to weighting Au in the
cost function rather than u, although it would still be necessary to include an
integrator in the disturbance model to achieve integral action in the controller.
In Chapter 4, time dependent weightings were convolved with the error and input
signals to create dynamic weights. However, applying this idea to @; and R; in
equation (5.1) would remove the simplicity of the solution, so it is not clear that

the restricted structure problem is tractable with such an approach.

Matlab suffers with the numerical problems highlighted in Section 4.5. when W,
has a pole at z = 1, hence a near integrator, A, = 0.990, is used instead of the

integrator in Section 4.6:

0.990 0 1 01
y D= Cr=[1 0],Ha= (5.50)
QR 0 140
-1
W,(z"1) = z
(27) = 10990 (5.51)
Hence, when H, =2, H, =2
- -1 [ -
1-0.990:"" 0 0 0 0
3 ...;;‘l 1 0 0 - 0
Ap = » Bp =
0 0 1-1.9932"! 0 7.51 x 10521
0 0 -2 1-271 | 7.57 % 107521

(5.52)
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A, = 1-2983:7" +2.97:7% - 0.98327°

0
B 0
B, = | _ Iy (5.53)
7.51 x 1075271 — 0.000150z2 + 7.43 x 10~523

7.57x 1073271 = 7.49 x 1075272

Agy = 1-2.983271+2.97:77-0.98327%, Cy, = 0.010027"+0.0001002~2-0.00992~2
(5.54)

Let the error, control weightings and output noise covariance be:

Q, = 1000,Q, = 1000, Ry =0.01,R, =0, Ry, = 10~* (5.55)

Also let H,, = C,,, so that the usual plant output is penalised. Increasing Q,
and decreasing R, tends to increase the controller gain throughout the frequency
spectrum and vice versa, as expected. However, it is interesting to note that Q,
and R, have virtually no effect at all on the solution, even with extreme values.
An increase in plant output noise, Ry, tends to decrease the gain throughout the

frequency spectrum and vice versa, but particularly at high frequencies.

Solving equations (5.34) and (5.35) yields:

D, = 0.113 - 031427 +0.29027% — 0.08992~3

Dy = 0.0266 — 0.036427" + 0.0139272 — 0.003832~3 (5.56)

The Diophantine equations give:
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- T -
0 ! guet
0 0
Fllp = b G{p -
0.000125 + 0.000395z~" — 0.0005272~2 —0.0197
| —0.0000605 + 0.000648>"" — 0.0005932"2 —0.0421
W T o 2T E A
2.59 — 5.73z7! + 3.15272 28.7
: 0.0612 — 0.198z~" +0.137272 A 0.681
34 _25.2+536:1—28422 | 17 | -281
| —2.84+6.3427" - 35027 | —31.6
Hf, = -0.11,H{, = -0.0261 (5.57)

Therefore the controller is:

K = I\-c(-'-’.’ip + K—jlcgl + BKC)_lK“
i 20100 — 182002~"
= 8.50-1.43z-! +1.00z~2 (5.58)

or, when the fictitious integrator is taken out of the plant and moved into the

controller:

¥ 20100 — 18200z}
~ 8.50—9.942"! 4+ 2.432-2 — 1.002-3

Before executing the restricted-structure algorithm, it is important to note that a

K (5.59)
difference term, A = (1 = z7'), must multiply the statement of the PI restricted
structure so that the effect of the fictitious integrator is removed from the plant.
In practice, this involves multiplying K, in L,; and L,, and also in ap and o
by A, when stepping through Algorithm 5.3.1. The controller structure therefore
becomes PD, but the P term becomes I and the D term becomes P when the

integrator is removed from the plant and placed into the controller.
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The restricted-structure algorithm is executed for a PI controller where N = 15,
w; = 107", wy = 7 and the frequency points are logarithmically spaced. The
iteration begins with z = (K, K;) = (1,1) as the initial guess, and Table 5.1
shows the convergence of the algorithm to a minimum after four iterations, where
the cost, Jy, is calculated using the previous value of z in the denominator of Ly,

and an.

Table 5.1: Restricted-structure algorithm iterations

Iteration Number z=(K,, K Cost, Jy
0 (1,1) :
1 (2444.06016 , 229.86171) | 2.69907 x 10°
2 (2284.68162 , 229.24553) 3.25219
3 (2284.58918 , 229.23029) 3.23177
4 (2284.58874 , 229.23031) | 3.23171
5 (2284.58870 , 229.23028) 3.23173

The cost increases on the fifth iteration, hence the algorithm ceases. Clearly, the
second iteration almost gives the final answer, because only the decimal places
change thenceforth. In practice, the algorithm can produce greater fluctuations
in z from one iteration to the next and take more or less steps to converge de-
pendent on the system and the restricted controller structure. However, given a
range of frequency points that cover pertinent features of the full-order controller
and a restricted structure which is sufficiently ‘rich® in degrees of freedom, the

iterative algorithm always seems to converge to a solution.

The restricted-structure controller in this case is:

229 2514 — 22852~

Ky = 2085+ 7 = ———

(5.60)
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Figure 5.2 shows a comparison between the Bode plots of K and K, where the
magnitude and phase plots are identical up to 0.5rad/s. Above this frequency,
the full-order plots "roll on” slightly then "roll off” with respect to the restricted

structure, but the closed-loop performance is almost identical in the two cases.

Bode Diagram
110 v —————r—r v 1

100

~— Full Order

bad ~—— Restricted Structure | - - - 3 4

Magnitude (d8)
g
14

2 45 y : TSR o
mL—-»;w-——*"A i L e

T w? 10" 1°

Frequency (rad/sec)

Figure 5.2: Bode plots of full order and PI structure controllers

Recall that the notch filter was neglected in the plant description, as the con-
troller was to be designed so that the cross-over frequency occurred at below
the notch frequency. Figure 5.3 shows a comparison between the Bode plots of

K(z")(Wn)(z™"), K:(z7)(Wn)(z™1), K(z")W(27!) and K, (271 )W (7).
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Bode Diagram
8o . v ————— ——

~— Full order with notch :
~ Restricted structure with notch | - -
~ Full order no notch P
-~ Restricted structure no notch 3

Magritude (98)
»
o ©

136 =

180
10

Figure 5.3: Open-loop Bode plots

Here, the frequency response is similar for all four plots up to 2 x 10~'rad/s, at
which point the gain is roughly 0dB. Figures 5.4, 5.5 and 5.6 show the corre-
sponding comparisons between the Bode plots of ¢/(27!) and the step responses

of ty(z~") and uy(z71).
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Figure 5.4: Closed-loop Bode plots
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Figure 5.5: Closed-loop step responses
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Figure 5.6: Closed-loop uy step responses

Comparing with the results of Section 4.6.1, the step responses are poorer in
terms of greater overshoot, settling time and control action, despite attempts to
improve the tuning in the above example. This is difficult to explain, although
there are two probable explanations - The reference input is a step, although the
theory stipulates filtered white noise in the optimisation for LQG and LQGPC.
Also. the use of a model augmented by an integrator may account for the dif-
ference because, in effect, the input costing is on Awu rather than u. Thus, in
both cases, the controller performance is not strictly comparable between the

two Chapters.

Despite this, it is worth noting that the prediction and control horizons selected
are both only 2 steps, hence the predictive nature of the controller is barely ex-
ploited. To see how H, and H, influence the controller, the same example is

carried out for H, = 30 and H, = 5. H, is lengthened much more than H, as the
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controller solution is less sensitive to H,, hence it is not worth increasing matrix
sizes and computational load due to H,. In the previous case, it was observed
that {Q;|j # 1} and {R;|] # 0} made very little difference to the controller, but
this is not the case for longer horizons. Here, increasing Q; and decreasing R;
throughout the range of j tends to increase the controller gain throughout the
frequency spectrum and vice versa, as seems intuitively reasonable. Again, an
increase in plant output noise, Ry, tends to decrease the gain throughout the

frequency spectrum and vice versa, but particularly at high frequencies.
Let the error, control weightings and output noise covariance be:

Q; =100, R; =005, Ry = 107" (5.61)

Again, H,, = Cpn. Now, Ay, By, By and the Diophantine equation solutions
have grown in dimension with the prediction horizon and are too large to sensibly
display here. However, the controller order is unchanged, as stated earlier. The

controller is now:

o 25400 — 24100271
= 9.15—10.22"! 4+ 2.092-2 — 1.002-3

when the fictitious integrator is taken out of the plant and moved into the con-

K

(5.62)

troller. The restricted-structure algorithm yields:

142 2830 — 26902~
1-271 " 1-2-1

after six iterations. Figure 5.7 shows a comparison between the Bode plots of K

K, = 2690 + (5.63)

and K,. Comparing with Figure 5.2, it is clear that the controller with longer
horizons exhibits lower low frequency gain and higher high frequency gain. This
translates to a larger proportional gain and smaller integral gain in the restricted-

structure controller.
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Figure 5.7: Bode plots of full order and PT structure controllers

Figures 5.8 and 5.9 show the corresponding step responses of ty(z71) and uy (271).
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Figure 5.9: Closed-loop uy step responses
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The overshoot in Figure 5.8 is smaller in all cases than in Figure 5.5, and the
settling time is shorter when the notch filter is included, thus there is a perfor-
mance improvement using longer prediction and control horizons. Of course, the
notch filter is not included in the plant model during the optimisation, so a true
comparison can only be made from the plots without a notch filter. Although
the overshoot is smaller in Figure 5.8, the settling time is slightly longer. The
use of surge thuster force in Figure 5.9 is slightly more efficient than in Figure
5.6 in terms of deviation from the steady state value, but the overall performance
improvement is not great for increased horizons. Again, it is believed that the
use of a stochastic reference signal in the optimisation and a step in the above

Figures may account for the inconclusive results.

5.6.2 Linear SISO system ship identification

In Section 4.6.3, a recursive least squares algorithm was detailed for use in the
multiple-model adaptive example. That example will be repeated for the predic-
tive controller in the next Section using the same system identification algorithm,
but with the a,, b, and ¢, parameters incorporated into the state-space system

description as follows:

dl (—(11 + Cl)

d
(5.64)

where d, is the amplitude of the estimation error.

5.6.3 Simulation results

The statement of the example in this Section is almost identical to that in Sec-
tion 4.6.4, but the ship DP surge axis velocity loop is to be controlled by the

restricted-structure adaptive predictive controller. To recap, the surge position
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loop, and sway and yaw loops, have fixed controllers designed using the tech-
niques in Chapter 2. The simulation runs for 1600 seconds, with initial reference
signals of (X,Y,¥) = (0,0,60°) and current condition (Ue, Be) = (1,0°). The
ship is held at this reference for 400 seconds before turning into the current,
so that (X,Y,¥) = (0,0,0°) after 800 seconds. This manoeuvre produces a
change in operating point for the surge axis from uy = Uccos(m/3) = 0.5 to
uo = Uccos(0) = 1. The reference then changes to (X,Y,¥) = (1,0,0°) to test
the reference following capability at this operating point. After 1000 seconds, the
current velocity increases linearly up to (Ue, Bc) = (3,0°) on 1400 seconds, then

remains constant until the end of the simulation.

The multiple-model adaptive controller utilises four linear models to represent
the ship at various operating points, where j € {1,2,3,4} is the model index for

the matrices given in equations (5.2), (5.3), (5.6) and (5.7), restated below:

—ay; 0 —ay by
A = yBmj = aCm'= 0 1
J 1 1 J le J [ ]
dyi(—ay; + ¢j)
/70 o ey Y1 ,4,5=0990,C,; =1,D,; =1 (5.65)

dyj

The corresponding transfer functions are:

le:_l Wa = d]j(l a5 CIJ'.Z_I),Z_1 W — 21
Q+ayz)(1-21) ¢ @Q+eyz)1-271)"""7 " 1-A4y27)
(5.66)

The matrices are time-invariant for j € {1, 2,3}, and the parameters are obtained

”'j =

as in the single model case of Section 5.6.1, for linearised gv(z71) at ug = Om/s

’
ug = 1.5m/s, and ug = 3m/s. These operating points span the range of veloci-
ties to be used in the simulation. Again, the sampling period is 1 second. The

identified parameters, ay4, by, €14 and dy4, are used to complete the set of models
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in the optimisation.

The parameter ¢, is set to 1 and d, is set to 0.0175 for the time-invariant models,
in order to match the disturbances encountered in the simulation. Table 5.2 shows

the values of the parameters for each j.

Table 5.2: Polynomial parameters

J| u ay; by; C1j dy;

1 0 -1.00 | 7.601 x 10~ 1 0.0175
2| 1.5 |-0.9944 | 7.580 x 10~° 1 0.0175
3 3 -0.9889 | 7.559 x 1073 1 0.0175
4/0.5-3 | RLSID RLS ID RLSID | RLS ID

The error, control weightings and output noise covariance are:

Q; =100, R; =0.05, Rpy =107* (5.67)

where j is the time step in the prediction and control horizons, not the model

index. H,,; equals Cl,;, so the standard output is penalised.

Figure 4.10 portrays the operation of the adaptive predictive controller. The
recursive least squares algorithm uses a forgetting factor of A = 0.95 and the
changes in ky are made every 4 samples, for the same reasons as given in Sec-
tion 4.6.4. The wind and wave disturbances in the simulation are the same as in
Section 4.6.4, as is the dither signal. To establish the properties of the control
scheme under investigation, it is necessary to run the simulation with an assort-
ment of weighting values for probability p; in equation (4.46). Starting with zero
weight on the identified model and increasing by 0.1 for each simulation run,

with the remaining weight shared equally among the fixed models, it is possible
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to see the effect of the adaptation. By evaluating equation (5.1) for each proba-
bility weighting, where the average over infinity is ignored, the graph in Figure
5.10 is produced, depicting total cost versus identified-model weighting. Figure
5.10 shows that the cost remains roughly equal for the pure multiple-model case,
ps = 0, up to py = 0.8. The lowest cost occurs at p; = 0.9, and interestingly is

highest for the pure adaptive solution, py = 1.
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Figure 5.10: Cost versus identified model weight

The following Figures are for the py = 0.9 case. The first 200 seconds of the
simulation are with a fixed controller from the p; = 0 case. This is because the
recursive least squares algorithm begins with estimated (ay, by, ¢;) = (0,0, 0) and,
whilst the estimated a; and b, converge fairly quickly to sensible values, the ¢,
parameter is much slower, taking over 150 seconds. Figure 5.11 shows how the

parameter estimates evolve during the simulation.
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Figure 5.11: System parameters

Figures 5.12 and 5.13 show the detail of the a; and b, estimates after 200 seconds.
Figure 5.14 depicts the variation in PI gains for the restricted-structure controller
and Figure 5.15 portrays the thruster forces in the surge direction. Figures 5.16

and 5.17 show the body-fixed and absolute velocities in the surge direction.
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For completeness, Figure 5.18 gives the plot of ¥ versus X position. The ship

heading during the simulation is the same as depicted in Figure 4.20.
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Figure 5.18: Overhead view of simulated ship position

5.7 Discussion

The restricted-structure adaptive predictive controller example above behaves
similarly in many ways to the non-predictive controller in Chapter 4. Once more
it appears that the peaks in the K, gain correspond to troughs in the plot of
b, and vice versa. However, the correspondence between the K; gain and the a,
parameter is not clear. In fact, the shape of the K; gain plot seems to follow K,
but with smaller amplitude. The likely explanation for this stems from the fact
that the restricted structure optimisation is carried out for a plant augmented
with a fictitious integrator. The controller structure must then be PD, so that

the integrator can be moved from the plant after the optimisation to create a PI
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controller. Hence, when the numerator gain, by, is small, larger P and D gains are
required to preserve performance and vice versa. In this way, both gains follow
the behaviour of b, rather than a,. This would also explain the poorly damped
step responses in Figures 5.5 and 5.8, where less integral action would have been

desirable.

The alternative, however, is to cost Au in equation (5.1), which would give equiv-
alent results, or to introduce dynamic cost weightings as in Grimble (1995), pro-
ducing a more complex solution with multiple spectral factors and Diophantine
equations. However, it is not known whether it is possible to approximate this
complex solution in the manner previously employed for the restricted structure
optimisation. Hence, an avenue for future work suggested by this situation is to
investigate an approximation to a multi-step cost with dynamic weights. Also
in Grimble (1995), a constrained LQGPC solution was given, prompting another
possible line of inquiry. A constrained restricted-structure controller would be
particularly valuable, but the challenge is to find an approximation to the cost in

terms of both the controller gains and the plant input, outputs and states.

In Section 5.6.1, it was noted that the step responses for the single model exam-
ple are poorer than in Section 4.6.1, in terms of greater overshoot, settling time
and control action. One explanation offered for this was that the theory actually
stipulates a filtered white noise reference in both cases, hence the results are not
strictly comparable. Therefore, it is very interesting to note that the error be-
tween Tyaps and 1(8) X ugs, in Figure 5.17 has a standard deviation of 0.0196m/s,
yet the the corresponding error standard deviation of Figure 4.18 is 0.0224m/s,
an increase of 14.3%. This is achieved with X7 standard deviation in Figure 5.15
being 130T onnes, and the corresponding value for Figure 4.16 being 121Tonnes,
a decrease of only 6.9%. Furthermore, the mean radial error in Figure 5.18 is

0.0381m, but 0.0579m in Figure 4.19. The best explanation for this is that the
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T'uabs Signal more closely approximates the filtered white noise in the optimisa-
tion. hence the predictive controller is now able to outperform the standard LQG

controller.

Figure 5.10 raises interesting issues regarding robustness, performance and sta-
bility, as in Chapter 4. The fact that the best performance is seen for py = 0.9
reinforces the idea that the multiple-model adaptive controller gives a combina-
tion of the benefits of adaptive and multiple-model optimal control designs in
one scheme. However, the poorest performing controller is for the pure adaptive
case. hence it is believed that the predictive version is more sensitive to parame-
ter variations and plant-model mismatch than the non-predictive version. Figure
5.19 shows the plot of controller gains when py = 1. The variation is clearly
much more "violent” than in Figure 5.14, for p; = 0.9, hence it is reasonable to

conclude that this rapid fluctuation actually worsens performance.
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Figure 5.19: Control parameters when p; = 1
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Furthermore, the variation in controller gains for p; = 0.9 and p; = 1 in the
non-predictive case is considerably smoother than in this Chapter, supporting
the belief that the predictive controller is more sensitive to parameter variations.
The reason for this is not known, although a possible explanation is that any er-
ror in system identification is propagated forward through the prediction horizon.
Hence, the controller is trying to control a plant which shows mismatch with the

model not only at present, but several steps into the future.

With regard to robustness and stability, the discussion of simultaneous stabili-
sation in Chapter 4 is also applicable here, as is the suggestion that a proof of
convergence of the restricted-structure algorithm would be desirable. Further-
more, a method of allocating realistic probabilities to each of the linear models
would be beneficial, discussed in more detail in Chapter 4 also. The idea of com-
parison with gain scheduling would again be interesting, although in this case, a

scheduled predictive controller as in Yu et al. (1992) would be appropriate.

5.8 Conclusions

This Chapter began by introducing the concept of linear quadratic Gaussian pre-
dictive control (LQGPC), an extension to standard LQG where predicted future
plant inputs and outputs are incorporated into the cost function. A synopsis of
the history of model-based predictive control (MPC) was then given, in order
to put the LQGPC technique into context. The motivation for an extension to
the restricted-structure multiple-model adaptive case is, as in Chapter 4, to at-
tempt to create a single controller that combines the benefits and removes the
weaknesses of multiple-model and adaptive schemes. To be specific, an adap-
tive controller is able to adapt to changing system parameters at the expense
of possible instability, because the present controller depends upon an estimate

of the current plant model only. However, a multiple-model optimal controller
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gives greater assurance of stability over a wide range of operating points with
the expense of conservative performance. A multiple-model adaptive controller is
intended to provide a certain amount of confidence in stability, due to the effect
of fixed known models in the optimisation, but with increased performance due to
the inclusion of identified system parameters. The fact that the controller is re-
stricted structure and predictive adds to the potentially interesting properties of
the solution. The simplicity of the controller provides easy implementation, and
the effect of prediction horizons, cost weightings and noise covariance is readily
seen in the variation of control parameters. A further motivation for the exten-
sion to the restricted-structure multiple-model adaptive case is to compare results

with the non-predictive version in Chapter 4.

The LQGPC problem is initially posed in state-space, with the plant and ref-
erence models and predictor in this form. An optimisation is carried out over
the future input signals, leaving the cost in a form where only the current error
and input is penalised. At this point, the system is converted to a polynomial
description in order to complete the optimisation using the usual spectral factor
and Diophantine equation route. After this, the solution has much in common
with the previous Chapter, where the cost is approximated by a matrix-vector
form and minimised with respect to the restricted-structure controller parame-
ters. Stacking matrices for each linear model once more gives the multiple model
solution, which is augmented with on-line identified parameters to produce the
final adaptive algorithm. The example dealt with is the ship DP problem also
addressed in Chapter 4, but it is necessary to make some alterations before exam-
ining the single model case. LQGPC does not incorporate dynamic cost weights
without increasing the complexity of the solution, but it is desirable to include
integral action. The plant is therefore augmented with an integrator, so that low
frequency errors are penalised. The one-step delay built into the state-space de-

scription prevents the disturbance from taking the same form as in Chapter 4, so
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a delay is tolerated. Additionally, the numerical fragility of Matlab does not al-

low the reference model to include an integrator, hence the pole is moved to 0.990.

A single model example is detailed where the prediction and input horizons are
both two steps long. The restricted structure optimisation terminates after five
iterations, giving PI gains to approximate a third-order full-order controller. It
is necessary to in fact make the controller structure PD, so that the additional
integrator can be moved from the plant description after the optimisation. The
closed-loop performance is satisfactory, although not as good as the standard
LQG case in Chapter 4. It is noted that increasing the control weighting and de-
creasing the input weighting increases controller gain across the frequency spec-
trum and vice versa. The weights for the first time step of the predictions have
greatest effect, with very little noticed for the other weightings. The solution
is also quite sensitive to output noise, where an increase produces a decrease in

controller gain at all frequencies.

This initial single model example is followed by a repeat with longer prediction
and input horizons, 30 steps and 5 steps respectively. The main effect on the con-
troller is to reduce low frequency gain and raise high frequency gain. This seems
reasonable when it is observed that derivative action gives prediction of future
error in a sense and, significantly, acts at high frequencies. The error and control
weightings for several steps into the future have more influence on the solution’
than in the previous example, and the overall performance is slightly better with
longer horizons. Notably, the closed-loop step responses are still inferior to the
standard LQG case, but it is believed that this is due to the specification of a
random reference in the optimisation, but the actual use of a step in the example.
Also, for both single model examples, there is very little difference in performance

between the full-order and the restricted-structure controller.
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The application of the identified plant parameters to the state-space model is de-
tailed, before a full DP example is investigated as in Chapter 4. The 3 degree of
freedom simulation from Chapter 2 is used again, but the multiple-model adaptive
predictive controller is applied to the surge velocity loop. The other velocity loops
take gains from the Penttinen-Koivo method in Chapter 2, and the position loop
gains are produced with the Maciejowski technique. Linearised models are taken
from three representative operating points, and the fourth model uses parame-
ters identified with recursive least squares. The ship manoeuvre and disturbances
are the same as in Chapter 4, and the performance of the restricted-Pl-structure
controller is evaluated for various probability weightings on each linear model.
Unlike in Chapter 4, it is observed that performance is worst for the pure adap-
tive case, but again best performance is seen at p; = 0.9. Thus, it is concluded
that the adaptive controller is indeed exhibiting better performance than the pure
multiple-model case, whilst presumably benefiting from increased robustness due
to the fixed linear models. A flaw mentioned in Chapter 4 is a lack of stability
or robustness proofs, so at present the robustness benefit is conjectured. The
poor performance in the pure adaptive case is apparently due to sensitivity of the
predictive controller to parameter variations and plant-model mismatch. This is

supported by the great variation in PI gains in the p; = 1 example.

One very positive outcome from the full DP example is improved performance
over the standard LQG controller in Chapter 4. The error standard deviation
of the controlled absolute velocity is 14.3% greater with standard LQG, but the
control action is only 6.9% smaller. The best explanation for this is that the
reference signal approximates the filtered white noise in the optimisation fairly
well, in contrast with the single model examples where the reference employed is
a step. Hence, the predictive nature of LQGPC is better exploited. A significant
contribution of this Chapter is therefore a demonstration that restricted-structure

adaptive LQGPC can lead to better performance than equivalent LQG control.
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The flaw in this technique, in addition to the lack of stability or robustness proofs
for multiple models and unproven convergence of the restricted-structure algo-
rithm, is an inability to address constraints, unlike many other MPC controllers.
A suggestion for further work is to look for an approximation to the cost in terms
of both the controller gains and the plant input, outputs and states. Hopefully,
a QP solver could then be employed to perform the constrained minimisation.
Another suggestion is to look for a method of incorporating dynamic weights into
the restricted-structure solution, so that the augmented plant is not required and
the input weighting is truly on u, rather than effectively on Au. As with Chapter
4, simultaneous stabilisation theory is suggested as an approach to the stability
and robustness problem, and performance improvement may be achieved by al-
locating realistic probability weightings for the fixed models in some manner. It
is also suggested that a scheduled predictive controller could be used for compar—i
ison with the results in this Chapter, as there are similarities between the two

approaches in that a set of linearised models is required in both cases.



Chapter 6

Multivariable Sandwich
Nonlinear System Control from

Time-Varying Systems Theory

This Chapter considers the control of multivariable nonlinear "sandwich” sys-
tems, consisting of a linear discrete-time dynamic block with input and output
nonlinear functions. The solution of a time-varying linear optimal polynomial
control problem is presented, which involves time-varying equivalents of spectral
factorisation and Diophantine equations. The sandwich nonlinear plant is ma-
nipulated into time-varying format by assuming that the nonlinear functions are
in a particular rational form. By freezing the time-varying description at each
sampling instant, the infinite-time problem becomes tractable, hence a solution
is obtained by calculating the controller online using the nonlinearity-dependent
polynomials. This controller s simple to implement and a 2 x 2 system example
is simulated, which yields results demonstrating that the achievable performance

is superior to a fized linear controller.
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6.1 Introduction

In previous Chapters, plant nonlinearities have been dealt with by designing the
controller at a particular linearised operating point (Chapter 2), or by optimising
across a set of linearised models (Chapters 4 and 5). In both cases, a Taylor
expansion approximation to the true system is used, allowing mature and well-
understood linear control techniques to be applied. The pre-eminence of linear
analysis and control methods is based on a single principle, that of superposition,
now illustrated by a linear operator, f. Given two inputs to the operator, u; and

uy, and a real scalar, a, then by superposition:

f(uy) + f(ua) = flur +uz) , flow) = af(w) (6.1)

This single principle simplifies a great deal of mathematical systems theory, but
when it fails, the system is classified as nonlinear and the supporting theory is
fragmented and far from complete. The superposition principle means that it
is possible to state a general solution for linear time-invariant systems described
by differential or difference equations, but this is not so in the nonlinear case.
In general, it is very difficult or impossible to solve the dynamic equations of
a nonlinear system, hence numerical methods must be used to give a particu-
lar solution. Control engineers would like to have generally applicable design
techniques for nonlinear plants, but at present only approximate or restricted
approaches have been developed. The techniques available to deal with nonlinear
systems range from making simple approximations to nonlinearities, such as the
Describing Function method, to quite mathematically intensive methods, such as

Geometric Nonlinear Control theory and Lie brackets.

Although it is not possible in general to find the solution of nonlinear dynamic
equations, methods do exist for establishing stability. The describing function

method was developed simultaneously in different countries during the 1940s, see
Y
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Atherton (1982), as a method of approximating the response of nonlinear func-
tions to a sinusoidal input. The output of the function is represented by a Fourier
series which is truncated to the fundamental frequency terms. This is justified
by the observation that physical systems are always low pass, so high frequen-
cies produce negligible output. For a static (memoryless) nonlinearity, a single
fundamental Fourier series coefficient describes an amplitude-dependent gain, the
describing function, acting on the input to produce the output sinusoid from the
function. If the nonlinearity is dynamic, then both fundamental Fourier series
coefficients are used to give a gain dependent on both amplitude and frequency,
with attendant phase shift. A Nyquist plot of both describing function and linear
plant is then able to predict fairly accurately when limit cycles will occur. The
technique is limited to systems described by a cascaded nonlinearity and linear
transfer function and is not entirely accurate, but has been used widely in indus-

try due to its simplicity and transparency.

Two other early stability techniques are the Small Gain Theorem, see Zames
(1966a), and the related Circle Criterion of Zames (1966b). Essentially, the Small
Gain Theorem states that, if the elements of a feedback loop are all stable and the
product of the gains of the elements is always less than one, the closed loop will
be stable. The Circle Criterion is stated for a linear transfer function cascaded
with a nonlinearity in the loop, where the nonlinearity belongs to a particular
"sector”, [a, ). The closed-loop is stable when the Nyquist plot of the linear
transfer function does not intersect or encircle the disc centred on the real axis

and passing through the points (—=1/a,0) and (-1/5,0).

Perhaps the most powerful approaches to analysing nonlinear system stability
are known as Lyapunov’s direct and indirect methods, developed from Lyapunov
(1892), but unknown in the West until the 1960s. The direct method is generally

used in favour of the indirect method and, in essence, depends on showing that
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the energy in a physical system is always being dissipated. The method can be
applied to an abstract mathematical system, where energy is not defined, but
this serves to illustrate one of the drawbacks of Lyapunov theory in general. A
Lyapunov function, V, of the system state, x, must be selected that is positive-
definite, continuous in r, that equals zero when x = 0, and so that the change
in V() is negative-definite. Finding such a function may be difficult, but with a
physical system, the energy function is always a good candidate. The method is
not so useful for control design, however, as no information on performance can be
obtained other than stability. Hence, the Lyapunov function could indicate sta-
bility, but the system could take a huge amount of time to settle. Some progress
towards addressing this problem via Recursive Lyapunov Design has been made
in Freeman and Kokotovié¢ (1993), however, and the problem of robustness is ad-

dressed using Lyapunov Redesign, as in Khalil (1992).

Another well-known technique, for analysing second-order systems only, is phase-
plane analysis, originally developed by Poincaré (1892). This method proceeds
by plotting the behaviour of the two system states against one another on a graph
and classifying the various "fixed points”, where both states are stationary. This
classification is achieved by linearising the nonlinear equations at the fixed points
and looking at the eigenvalues of the corresponding Jacobian matrix. Knowing
whether the system is stable or unstable in a small region around the fixed points
is a significant result in the theory of nonlinear systems. The drawback of using
the phase-plane is that, while useful for stability analysis, it is not easy to use for
actual control design. Hence, a method known as variable structure sliding-mode
control has been developed, see Utkin (1992) or Edwards and Spurgeon (1998),
so called because the feedback control law varies by switching between gains in
order to maintain the state (phase) trajectory on a particular surface. The state
trajectory then "slides” along this surface for all time, under the influence of the

switching controller. This technique has been quite successful, but the switching
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can excite undesirable oscillation, and the design is rather involved.

The application of results in differential geometry has led to the powerful but com-
plex Geometric Nonlinear Control theory, exemplified by Sussman and Jurdjevic
(1972) and Jurdjevic and Sussman (1972). Unfortunately, the heavy mathe-
matical content of this theory places the results beyond the grasp of the aver-
age engineer and is not of great practicality. A rather more pragmatic use of
differential-geometric methods is in the use of feedback on a nonlinear system to
produce linear behaviour, known as feedback linearisation. This is achieved by a
change of coordinates with nonlinear feedback, see Vidyasagar (1993) or Marino
and Tomei (1995) for example, but a limitation of this technique is that it is only
applicable to a limited class of nonlinear systems. Also, stability is not assured
when there are unstable zero dynamics, analogous to linear nonminimum phase

systems.

Among the more practical nonlinear control techniques are Neural Control and
Fuzzy Logic Control. Chapter 3 has already dealt with the application of a neural
network to system identification, and a discussion of Neural Control is found in
Section 3.6. It will suffice to say here that Neural Control is based on the ability
of a neural network to learn an arbitrary nonlinear characteristic, which can then
be used with feedback to compensate a nonlinear plant in some way. Fuzzy Con-
trol emerged from the description of human, heuristic knowledge and reasoning
with Fuzzy Sets, see Chen and Pham (2001). To elaborate, a norrﬁal "crisp” set
contains elements with particular characteristics, and every element not within
that set does not have those characteristics. In a "fuzzy” set, the elements have
gradations of membership of the set, such that concepts such as "fairly cold” or
"quite hot” can be described rather than simply "cold” and "hot”. Using these
human descriptions of system variables, it is then possible to build an "If-Then”

rule base and make a decision on the best control signal to apply under the cur-
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rent circumstances. The advantages of Fuzzy Control are that expert knowledge
can be incorporated into a controller, the overall operation can be understood
in terms of human language, and a complex, interacting plant can be controlled
without extensive modelling. The disadvantages are that the standard analysis
tools of feedback control, such as frequency response and stability margins, are
not available, and that the technique relies on the human to cover every possible
system state with a corresponding rule. Fuzzy Control would not be suitable for

safety-critical systems such as an aircraft or nuclear power station, for example.

Given the difficulties and limitations associated with nonlinear control, either
through the necessary use of approximations, complex mathematics or lack of
practicality, the realistic aim of this Chapter is to present a nonlinear control
technique that is practical, but has a rigorous basis, with approximations intro-
duced as the theory is developed. Section 6.2 presents the solution of a linear
time-varying polynomial control problem. This is an extension to the optimal
time-invariant polynomial problems addressed in Kucera (1979). The analysis
and synthesis of time-varying linear state-space systems is quite well understood,
see D'Angelo (1970) for example, so it is worthwhile looking at the polynomial
equivalent. The interesting property of a time-varying linear description is that
superposition, as in equation (6.1), still holds, but instead the valuable property
of shift-invariance during convolution is lost. As a consequence, the frequency
domain results of time-invariant linear systems no longer hold, removing a great
deal of useful supporting control theory. The advantage of a time-varying de-
scription, however, is that it can be used to describe a nonlinear system as a

linear system with time-varying coefficients.

In Section 6.3, the time-varying optimal control solution is adapted to the special
case of so-called "sandwich” system models, where a nonlinear plant is represented

by a linear system with input and output nonlinearities, the ”outer sandwich”.
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This representation is a natural extension of the Hammerstein model, a linear
system with nonlinear input block, and the Wiener model, a linear system with
nonlinear output block. A recent book, Taware and Tao (2003), deals exclu-
sively with "sandwich” nonlinear dynamic systems, where the common sensor
and actuator nonlinearities of interest include dead-zone, hysteresis, saturation,
friction and backlash. The hybrid framework for control used throughout the
book consists of a discrete-time inner loop and a continuous-time outer loop,
combined with a nonlinearity inverse to cancel the nonlinear effect. The authors
work through designs incorporating an exact inverse, an adaptive inverse for an
unknown nonlinearity, and a neural controller using networks to represent the
nonlinearity and as a compensator. Simulations are utilised to illustrate the ef-
fectiveness of the hybrid control designs. Subsequently, friction compensation
is addressed for a friction nonlinearity sandwiched between two linear dynamic
blocks, an "inner sandwich”, where the control methodologies are Model Refer-
ence Adaptive Control (MRAC) and feedback linearisation. Control of sandwich
systems with actuator failures is examined, before a MIMO example of gun turret
control with sandwiched backlash. Again, simulation studies demonstrate suc-

cessful control when using the developed sandwich system control techniques.

In Section 6.3, each non-linearity is represented by a function of the input multi-
plied by the input itself, hence the "outer sandwich” representation allows a plant
to be expressed as a transfer function matrix that varies with time due to the
variation of the non-linearity. The various polynomials in the time-varying the-
ory of Section 6.2 are then substituted with the time-varying polynomials arising
from the nonlinear model. The statement of the time-varying solution actually
requires the solution of time-varving difference equations over infinite-time, so
it is then necessary to "freeze” the plant description at a particular moment in
time to yield a tractable solution. Thus, the controller must be computed online

to track variations in the nonlinearities, prompting comparison with adaptive or
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gain-scheduled controllers. The controller here is strictly neither, as the plant
model is assumed known and the control law is not selected from a pre-computed
set. Instead, the values of the nonlinearities are computed at time, t — 1, for use

in the control computation at time, t.

The theory and an example are given in Grimble (2002) in the SISO case, and
the contribution of this Chapter is to extend the theory to the multivariable case
and demonstrate a successful MIMO application. Unfortunately, the numerical
problems with Matlab highlighted earlier in Chapter 4, Section 4.5, prevent the
use of plant order greater than one. Thus, the ship DP control theme cannot
be continued and the example is a 2-input 2-output system with deadzone input
nonlinearities and backlash output nonlinearities. Simulation results suggest that
the controller performance is superior to a fixed design, and directions for further

work are given in Section 6.6.

6.2 Time-varying linear control problem formu-
lation

The state-space representation of time-varying systems is familiar, for example
in D'Angelo (1970). The equations for the multivariable system shown in Figure

6.1 can be written in polynomial form, however, as:

y(t) = (Wu)(t) +d(t)
= W(t,z""u(t) +d(t)
A(t, 277 B(t, 27 Yu(t) + d(t) (6.2)

i

r(t) = We(2)C(t) = Ac(z7Y) T E(27)¢ (1) (6.3)
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d(t) = Wa(z7")E(t) = Ac(z7") 7 Ca(27E() (6.4)
e(t) = r(t) — y(t) (6.5)
u(t) = (Coe)(t) = Co(t, 27 )e(t) (6.6)

where z~! is the unit-delay operator with the property z~'z(t) = z(t — 1). Note
that the signals are vectors, where u(t) € R',y(t) € R™,((t) € R™ and £(t) € R™.
¢(t) and &(t) are assumed, without loss of generality, to be uncorrelated white

noise of unity variance and zero mean.

Disturbance 0

Wd(z-l)

N Controller Plant ) d)
ROM LI w.(z.l) \r( ) o0 [ ¢t W0 [ ey MO g YO |

Figure 6.1: Time-varying system regulator

This system description is similar to the time-invariant case, the only difference
being that transfer function matrices W and Cp are functions of time. In the

time-invariant case, a suitable cost function would take the form:

J = lim {5 E{Ee ()HT He(t) + o™ (t)HT Hyu(t)}} (6.7)

t=-T

The time-varying analogy to this is provided in Grimble and Johnson (1988):
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J = llm{ E{Z (Hye)" (t)(Hqe)(t) + (Hyu)" (t) (Hyu)(t)}} (6.8)

t==T
where H, and H, are diagonal dynamic weighting operators in 271, The operator
H, is the weighting on the system output and will often be rational so that an

integrator may be included. In this case, Hy = B,,A;I‘l.

6.3 Time-varying linear control problem solu-
tion

To proceed from this point, the notation to be used must be explained. The inner

product of two vectors is denoted as:

T
< z,Y >r= Z a” (t)y(t) (6.9)

t=-T

In the infinite-time case:

<z,Yy>= hm ﬁ Z T (6.10)

With this notation, the terms in the expectation in (6.8) can be written:

Ir =< Hee, He >7 + < Hyu, Hou >p (6.11)

Substituting equations (6.2) and (6.5) into (6.11) gives:

Ir = < Hy—HWu—Hed, Hor — HWu — Hid >r + < Hyu, Hyu >p
= < H,f — HWu, Hof — HgWu >r + < Hyu, Hou >p (6.12)

where f = r —d. It is shown in Appendix D that:
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< I(f). (Zu)(t) >r = < z(t),Z(t,z"l)u(t) >

=< (Z°z)(t),u(t) >r = < Z*(t,z7V)x(t),u(t) >r (6.13)

where the adjoint operator Z*(t,z7') = Z” (¢, z). Therefore:

Ir = <u,(WHHW +HH)u>r — < f,H;HWu >r
— <u,WH Hof >r+ < f,H;Hyf >r (6.14)

Let Y)Y, = W*H; HW + H;H, = W*Q.W + R, where Q. = H;H, and R, =
H: H,. Then, defining Y = D.A7' and H,W = B A7! produces the ”operator

spectral factor” equation:

D;D. = B{B, + A{R.A, (6.15)

The quotation marks are used to signify the fact that, although the expression
takes the form of a standard time-invariant spectral factor equation, this inter-

pretation is not literal due to the time-varying behaviour.

The cost expression may be restated:

Ir =<u,Y,You>r = < f,QWu>r — <u,W'Q.f >r + < f,Qcf >r (6.16)

which is equivalent to:

Ir = <Yu=Y""WQ.f,You—-Y'W*Q.f >r
+ < £,(Qe = QW (YY) 'W* Qo) f >p (6.17)

using a completing-the-squares argument. The second inner product is inde-

pendent of the control action, u, and is of no further importance to the cost
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minimisation. The first inner product requires further manipulation, as given

below:

You-Y'W'Q.f = Yau-Y'W'Q.(Wu +e)
= DAT'u— D; ' AIW*HyHy(Wu + e)
= D.A7'u— D:7'Bi{H,(Wu+e) (6.18)

Substituting the "operator spectral factor” into the above yields:

You- Y 'W*Q.f = D:)(D:D.- B{B\)A{*u— D:"'B{H,e

= D:7)(A}R.u— BlHge) (6.19)

A true spectral factor is needed in the solution below. To derive it, first define f =
r—d= Y= A;'Dye, where ¢ is zero mean white noise with unity covariance.
From Grimble and Johnson (1988), ®,,(27!) = W(z7!)®yu(27})W*(27!) when
y(z~1) = W(z"")u(z""). Therefore:

Yf}'; = WJW;+W,W;:
= D,D} = C4C;+ EE" (6.20)

Substituting the "operator Diophantine equations”:

:9D:Go + FyAy = 279B; Dy (6.21)

:-QD; flo — FOB3 = Z—gA;Rch:; (622)

into equation (6.19), obtain:



6.3. TIME-VARYING LINEAR CONTROL PROBLEM SOLUTION 236

You = Y 'W'Q.f
= D '(D;Ho — 2*FyB;)Dyyu — D; 7 (D;Go + 2 FyA3) Dy, Hye
= (HoDjju— GoDjy Hye) — D;™'2* Fy(A2Djy Hye + B3 D)
= (HoDp3u— GoDj; Hee) — D;™'2* D' (Ae + Bu)
= (HoDjp3u— GoDpy Hee) — D;™'2* D Af
= (HoDjju— GoDjpy Hee) — D;™'2* oDy ' AAT Dye (6.23)

using definitions D!‘IA = AQD;.}H,,, D}'lB = B3D;31.

The signal £(t) is white noise, meaning that the above expression can be split

into two statistically independent components:

6, = (HoDjiu— GoDjy He) , ¢2 = D™ 2 Dy AA' Dye (6.24)

Returning to equation (6.17), I can now be expressed:

It = <¢1—02,01— P2 >
+ < £,(Qc — QW (YY) 'W* Qo) f >r (6.25)

Substituting this back into the cost function, (6.8), and taking advantage of the

statistical independence:

, 1
J = Jlim{7=E{Ir}}
= E{<¢1,01>+<¢202>}+T) (6.26)

where T] = E{< fv (Qc an Qc“!(yc.yc)‘l“th)f >}°

As previously remarked, T; does not influence the cost minimisation. This also

applies to the second inner product above:
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T, = E{< ¢2,¢ >}
= E{< D;"'2’FyD;'AA;'Dse,D;~ 2 FhD;' AA;' Dye >} (6.27)

leaving only the first inner product in the cost. Hence, the optimal control law

is determined by setting the first inner product to zero. This produces:

u= Dy3Hy'GoDp, Hye (6.28)

In summary, the time-varying control problem involves solving an ”operator spec-

tral factor” and a true spectral factor equation:

D:D. = BB+ A{R.A (6.29)
D;D; = C4Cj+ EE’ (6.30)

and two "operator Diophantine equations”:

:—9D;Go + FyAy = Z_yBIDﬂ (6.31)
Z_gD;}{o o FOBS = Z—gA;Rch"l (632)

with Fy of smallest degree, to obtain Gy and Hy in (6.28).

6.4 Non-linear problem

The time-varying linear system formulation in Section 6.2 retains a desirable
property of time-invariant linear systems, namely superposition at a given instant
in time. However, it is also able to describe some nonlinear systems, a particular
class of which will now be described, known as "sandwich” systems. Suppose
that the nonlinear system is modelled by a linear block, G(z71), ”sandwiched”

between nonlinear functions acting on the input and output, as in Figure 6.2.
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F(t)

W(z")

Ty
e e G s Y

*|

Figure 6.2: "Sandwich” system with input and output non-linearities

A time-varving system description of this, corresponding to equation (6.2), is:

y(t) = (Wu)(t) +d(t) = F2(G(z7") Fa(u(t)) +d(t)
W (t, 2" u(t) +d(t) = [f2(mg(t))G(z™") fr(u(t))]u(t) +d(t) (6.33)

assuming the nonlinear functions to be known and of the form:

up(t) = F(u®) = Au®)u(t) (6.34)
m(t) = Fa(mg(t) = falmy(t))my(t) (6.35)

where f, is diagonal. This representation is able to describe a range of static
and dynamic nonlinearities, commonly including deadzone, saturation, backlash,
hysteresis, quantisation, relay, friction and piecewise nonlinearities. Some care
must be taken, however, as it is possible for the nonlinearity to give a non-zero
output to a zero input. In practice, some limits are required on f, and f5, as

demonstrated in the simulation later.

The non-linear input element, fy, is a function of the current control input. How-
ever, in an optimal control problem, the u(t) signal is unknown until after the
control law is calculated. Thus, the assumption is made that u varies sufficiently

slowly that variation in f, is negligible between time ¢ and ¢ — 1, yielding:
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y(t) = [fa(mg(t))G(27") fi(u(t — 1))]u(t) + d(t) (6.36)

It is not necessary to make a similar assumption for F,(my), as there is a delay

of at least one step in G(z7').

Defining G(27') = Ag(z7")"'By(27"), the time-varying plant transfer function

may now be stated:

Witz Alt, 277 Bt =)

= fa(my(t)Ag(z7) ' By(27) fr(u(t — 1)) (6.37)

where A(t,27) = Ay(27") f3 ' (my(t)) and B(t,z7!) = B,y(271) fi(u(t — 1)).

Having arrived at the optimal time-varying solution and stated a sandwich non-
linear system in time-varying form, it remains to be seen how this technique can
be applied to control problems in practice. The "operator spectral factor” and
»operator Diophantine equations” in equations (6.29), (6.31) and (6.32) are time-
varying, multivariable, nonlinear difference equations derived from an infinite-
time cost function. There is no known general method for solving such difference
equations, but even if there was, the solution could only be found over a finite
time. Hence, to render this solution tractable and practical, it is necessary to
assume that the plant is "frozen” at the instant in time when the optimisation is

carried out.

Now consider how the spectral factors and Diophantine equations in the earlier

optimisation will be affected by the assumptions about the nonlinear plant. In

1

Section 6.3, the statement H,W = By A" was made. Substituting (6.37) into

this equation, obtain:
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Hy(27") f2(mg(t))G (=" ) fi(u(t = 1)) = By(t, 271) Ay (¢, 271) ! (6.38)
Recalling that H, and f; are diagonal and "frozen”, not unreasonable for slow

variations in m,, Hy and f, can commute to obtain:

By(t, 2" ") Ay(t,27") " = fa(mg(t)) Ho(271)G(27!) fi(u(t - 1)) (6.39)
At this point, the right coprime form of the weighted linear plant model is intro-

duced:

”q(z-l)G(z_l) = Blg(z_l)Alg(Z_l)_l (6.40)

and substituted into equation (6.39), producing new definitions of B; and A;:

Bl(f.:_l) = f2(7ng(t))Blg(z-l) (6.41)
Ai(t,z7) = filu(t—1))" Az (6.42)

Hence the "spectral factor” equation (6.29) follows:

D:D. = BB+ A{RA,
= Bi f3(mg) fa(mg)Big + Al fy (u) ' Refr(u) 1Ay, (6.43)

Spectral factor (6.30) is unchanged:

DID; = C.,C; + EE* (6.44)

although the assumption is made that Dy = Cq = E = I, in order to simplify

the "Diophantine equations” below.

In Section 6.3, it was stated that D}"A = Ang'leq and D;lB = BaD‘f'al_ Sub-
stituting A and B from above and remembering the assumption that H, and f,

commute:
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A:D;; = Dj'AH;!
= D;'Ayfi'H?
= Df—lAqu—1f2—1
= Dj*A,A.B; (6.45)

BsD;i = Dj'B,fy (6.46)

Assuming that B, = I and defining A2 = AyA; and B3 = By, therefore:

Dpa=fa, Dp3 = fi' (6.47)

Substituting the new expressions for Az, Bs, Ay, By, Dy; and D3 into equations

(6.31) and (6.32) produces the " Diophantine equations” for the non-linear system:

:"9D:Go + FoAgAy = 2B} f3f (6.48)
2D Hy - FoBy, = z79A},fi7'R.fi (6.49)

Upon substitution into (6.28), the controller for the non-linear system is:

u=Coe= fi'Hy'Gofs'A;'e (6.50)

In summary, the non-linear control problem involves solving "spectral factors”:
D;D, = B}, f3(my) fa(mg) Big + Ajgfi (u) ' Refi(u) ™ Ay (6.51)

D;D; = C4C; + EE* (6.52)

. ] oA
and two " Diophantine equations

27 D:Go + FodgAq = 27By, f3(my) fo(my) (6.53)
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:™9D;Hy — FoBy = z79A}, f; (u) "' R.f7 (u) ™! (6.54)

with Fy of smallest degree, to obtain Gy and H, in (6.50). The assumption
that the plant is frozen at a given instant of time allows the ”spectral factor”
equation and "Diophantine equations” to be solved by the normal method for
time-invariant systems. If mg and u are slowly varying these assumptions are not
entirely unreasonable. Furthermore, the solution is simplified by the assumption
that Cy = E = I and, letting A. = (1 — 2711, this is quite reasonable as the

reference and disturbance become integrated white noise.

6.4.1 Illustrative SISO example

Before a multivariable simulation example, it is informative to consider the effect
on Cj in the frequency domain of changing f, and f,. For this, a single-input
single-output example is considered, where the linear plant transfer function,

G(z71), is:

z71(14+0.95271)

G(z™Y) = Ay(z71)71By(z7!) =
(=) o(z7) 7 By(27) =081 = 095 (6.55).
The disturbance and reference models are:
Wu(z7') = Alz7)) 'Ca(z7)
g feca i 1

=We(z7') = A(z7)7E(zT) = =z (6.56)
The error and control weightings are:

- - L Aod - - 1

Q.= HyHy= A7'BiB A = (6.57)

(1=-2"1)(1-2)

Re=HH, =201-2Y1-2) (6.58)
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The weighted linear plant model is:

HG = B,A;'A;'B; = By A7l
il 1+0.95271
- (1-2z"1)(1-0.82"1)(1 - 0.9271) (6.59)
and the linear controller, from equation (6.50), is:
Co = 110—100.4;1
0.581 — 0.77927! + 0.278272
(6.60)

(1 —=2"1)(1+0.1862"1)

The complete expression for Co is Co = fi'Hy'Gof5 ' A;', which suggests that
the nonlinear controller simply consists of a fixed linear part cascaded with an
inversion of the nonlinearities, f; and f,. "Freezing” the time-varying linear
system description at each sample step to perform the controller optimisation
does effectively linearise the nonlinear plant, but note that Gy and Hy do not
vary linearly with f; and f,. To illustrate this, Figure 6.3 shows the frequency
response of Cy, and Figure 6.4 shows the frequency response of WCj for different
fi when f, = 1. Similar plots can be generated for f, when fi = 1. When one
of the f's is small, not only does the overall gain rise, but the controller is more
phase lagging at high frequencies. The opposite is seen when one of the f’s is
large, and the effect is simply accentuated when the f’s are simultaneously small
or large. From the open-loop Bode plot in Figure 6.4, it can be seen that the
stability margins decay with increasing f;. Therefore, a closed-loop system using
the technique in this Chapter will be more prone to oscillation or instability when
a nonlinearity is operating in a high gain region. The consequences of this and of
unlimited f's will be discussed further later, with reference to the multivariable

simulation example.
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Frequency (rad'sec)

Figure 6.4: Bode plot of WCy with different f; (f; =1)
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6.4.2 Controller algorithm

In the simulation to follow, values of fi(u(t — 1)) and fa(my(t)) are calculated at

time step, t — 1. The value, m,(t), is in fact predicted based on the linear plant

model, G(z~'), and previous values of my, uy and f;. The values of f, and f, are

substituted into equations (6.51) to (6.54) and the solutions are then used in the

controller at time step, t. The following nonlinear control algorithm for sandwich

nonlinear systems is created.

Algorithm 6.4.1 (Nonlinear control algorithm) .

&

Define A, and B, (linear plant), Ay, and By, (weighted linear plant), A,
Cy4 and E (disturbance and reference models), A, and By (error weighting),

and H, (input weighting). Calculate Dy.
Define the nonlinear functions Fi(u) and Fa(my).
At time t, calculate fy = Fy/u based on u(t —1).

Predict my(t) using linear plant model, G, and previous values of m,, u,

and f,.
Calculate fy = Faf/mg based on prediction of my(t).

Solve the "spectral factor” and "Diophantine equations” using these values

of fi and f,.

Compute the controller from the "Diophantine equations” solutions.
Apply the controller to the plant.

Repeat steps 3 to 8.
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6.5 Multivariable simulation example

Due to the numerical problems with Matlab highlighted in Section 4.5, it is not
possible to apply the technique in this Chapter to the ship DP problem. Added
to the fact that there is no output nonlinearity associated with ship DP either,
the simulation example in this Section is therefore chosen to be a significantly
cross-coupled 2 x 2 system with deadzone nonlinearities on both inputs and back-
lash nonlinearities on both outputs. This system description has applications
to mechanical systems. Deadzone is often used to represent friction, and back-
lash occurs in mechanical gears, as covered in Lewis et al. (2002). A thorough
survey of controlling mechanical systems with backlash appears in Nordin and

Gutman (2002).

The linear plant transfer function, G(z71), is:

0.5z-1_1 0.12~1 :
GlrY) = AN "'Byz )= (1;2‘:’: ) (1‘0(;:’: ) (6.61)
1-08z-T) [(1-0.8z-1)
where
1-0.9271 0 0.5z~1 0.1z71
WA T ) By ) =
0 (1-0.8271) 0.1z 0i3z7!

The disturbance and reference models are:

Wa(z™") = Ac(z7")7'Ca(z™)

1
1. ewiY 0
=Wz )" = A (R T B (2t = T : (6.62)
0

(1-271)

where
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1—2z27! 0 10
A= | G5 Cy=E=
0 (1-271) 01
The error and control weightings are:
___ll__ 0
Q.= H}H, = A, BB, Ay = | (1757079 (6.63)
S a==ha-n
— 2=1)(1 — 0
R = H'H. — 0.25(1 — z7')(1 — 2) 68
’ 0 0.25(1 — 2~ 1) (1 — 2)
where
Pt 0 0.5(1—27") 0
qu ( ) ,BqZI,H«,-z g
0 (1-271) 0 0.5(1 —z7%)
The weighted linear plant model is:
HG = BqulAngg = BlgA{gl
0.5z~1 0.1271
Ll (1-0.9z-1)(1-271) (1-0.9271)(1-2"1) (6.65)
i 0.1z} 0.3z1
(1=08z-D)(1-z-T) (1-0.8z71)(1-2z"1)
where
0.211z* '0:0397%*
Blg =
l_ 0.0474z7' 0.134z7}
4 0.418(1 — 0.908271)(1 — 271) —0.016(1 — z7%)
19tis= Y
! 0.0188(1 — z71) 0.450(1 — 0.908271)(1 — 0.794z ')

The linear controller, from equation (6.50), is:
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Co = Hy 'GoA,*
1.9(1—0.61271)(1 = 0.21z7Y)  —0.39(1 — 0.662")(1 + 0.012z71)

—0.26(1 — 0.74271)(1 4+ 0.0252"1)  2.3(1 — 0.602~1)(1 — 0.14z71)
(1—21)(1 — 0.224z-1)(1 — 0.130z1)

(6.66)
The input nonlinearities are both deadzones with the following equation:
ult)-U : u(t)>U
ug(t) = Fi(u(t)) =< u(t)+U : u(@)<U (6.67)
0 : |u(t)|<U

T
where the deadzone widths are 2U = [ 04 0.6 ] . Figure 6.5 illustrates the

deadzone characteristic.

3

F(u(®)

U u(t)

Figure 6.5: Deadzone nonlinearity

The output nonlinearities are both backlash with the following equation:

m(t) = Fa(my(t))
mg(t) =V Amy(t) >0 and my(t) -V > m(t - 1)
= § my(t)+V : Amy(t) <0 and my(t)+V < m(t - 1) (6.68)

m(t—1) : otherwise
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T
where Amy(t) = my(t)—m,(t—1) and the backlash widths are 2V = [ 0.1 0.2 ] ’

Figure 6.6 illustrates the backlash characteristic.

A

F(m(1)

=)

A%

/ v m,(;)
-V

RY,

Figure 6.6: Backlash nonlinearity

Steps 1 and 2 of Algorithm 6.4.2 are now complete, but before performing the

online calculations, a discussion of some salient points for the simulation.

In reality, the signals uy(t) and my(t) are unmeasurable, hence the algorithm re-
lies on accurate knowledge of F,, F, and the linear plant dynamics, although it
may be the case that only u(t) and y(t) are measured. Zhu (2002) has recently
described estimation of the sandwich nonlinear system in Figure 6.2 using a least
squares algorithm. The functions F; and JF, are approximated with cubic splines,
and the problem is to estimate parameters of the splines and the linear block,
G(z71), to represent the total nonlinear system. The focus of this Chapter is
on the performance of the controller rather than system identification, hence the
simulation actually incorporates perfect knowledge of the nonlinearities and the
linear block to calculate f, and f,. However, it is assumed that, in principle,
it would be possible to find f; and f, using the algorithm of Zhu (2002) or one

similar. This would be an interesting direction for further work.
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When the nonlinearity inputs are far removed from zero, for both deadzone and
backlash, the nonlinearity functions f; and f, remain close to unity. This does
not produce a challenging control problem, therefore the reference value in the
simulation is chosen to be zero, as this involves operating heavily in the nonlinear
region. Thus, it is possible for f; to be equal to zero or take on very small val-
ues, which tends to produce poor control. The controller, ”spectral factor” and
" Diophantine equations” contain f;"' terms, which can clearly approach infinity.
Hence a limit is imposed given by the inequality, f; > 0.7, which was determined
empirically. Examining the backlash nonlinearity, it is possible for f, to range
from zero to infinity, so the extreme values are constrained by the inequality,
0.7 < fo < 1.3, again determined empirically. These constraints are quite severe,
but it is found that a wider range of values leads to ”jittery” control and poor

performance.

To further understand why unrestricted f; and f, produce poor control, it is nec-
essary to recall the approximations made in the nonlinear control algorithm. Each
polynomial term in the control "spectral factors” and ” Diophantine equations” is
a polynomial in the unit-delay operator, 2!, acting on functions of time, f; and
fo. However, in order to simplify the solution, it is earlier assumed that f; and
fo are "frozen” at the instant in time of the optimisation. Thus, it is desirable to
keep excitation of the plant to a minimum in order to avoid greatly violating the
"freezing” assumption. Not unreasonably, a controller gain which is large would
be considered exciting for the system, but when this gain oscillates the excitation
becomes even more vigorous. Undesirably, the controller in this Chapter is liable

to produce exactly that kind of behaviour, for the following reasons.

Inspect Figures 6.5 and 6.6 and note that f, and f, are gradients of lines from the
origin to the position on the nonlinearity, because f; = Fy/u and f, = Fy/m,.

Therefore, small u will produce very small f; and small m, may produce either
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very small or very large f,. The controller gain in equation (6.50) will grow as f;
or f, decrea_ses, producing exciting plant inputs that are unwanted for this con-
troller. Additionally, the nature of the backlash means that f, can very rapidly
oscillate between large and small values, producing oscillatory gain and unwanted
extra plant excitation. Thus, the solution adopted in this example is to restrict
f1 and f, within limits as shown in Figure 6.13. This is not the most elegant
of solutions, but nevertheless the nonlinear controller is able to produce higher

performance control than a fixed linear controller, as demonstrated in the Figures

below.

A better solution to this problem would be to solve the "spectral factors” and
"Diophantine equations” in their true difference equation form. An interesting
idea for further work would be to investigate whether the limits can be widened
or removed altogether using this kind of solution. In Grimble and Martin (2003),
these difference equations have been solved for a SISO first order state-space sys-
tem with input nonlinearity. The results in Grimble and Martin (2003) rely on
the fact that the plant is SISO and first order, however, so another challenge for
further work would be to extend the approach to high order systems and maybe

find a general solution for a particular class of nonlinearity.

The initial condition for the output is m,(0) = [ 1571 ]T in order to provide a
tracking response when the reference is zero. The disturbance inputs, &(¢) and
&,(t), are normally distributed random signals of standard deviation, o = 0.02.
The simulation runs for 70 seconds and the results give a comparison between the
method presented in Section 6.4 and a linear controller design based on G(z7')
alone using the weightings in equation (6.63) and (6.64). Figures 6.7 and 6.9
contrast the system outputs for the nonlinear and the fixed linear controller, and
Figures 6.8 and 6.10 depict the additive disturbances on each output. The same

disturbance is used for the linear and nonlinear controller simulations.
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Figure 6.7: 1st system output y; - nonlinear controller versus linear
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Figure 6.8: Additive disturbance on lst system output
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Figure 6.9: 2nd system output y, - nonlinear controller versus linear
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Figure 6.10: Additive disturbance on 2nd system output
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Figures 6.11 and 6.12 show the inputs in the linear and nonlinear cases, with
extra plots superimposed to show the effect of deadzone. Figure 6.13 gives the
behaviour of the f, and f; funetions for each input and output, and Figure 6.14
depicts the set of all frequency responses of the controller during the simulation. It
is interesting to note that the variation in gain and phase is greater for off-diagonal
elements than for diagonal elements. This helps to produce the decoupled set of
open loop Bode magnitude plots in Figure 6.15, reminiscent of the multivariable

design in Chapter 2.
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Figure 6.11: 1st input with deadzone - nonlinear controller versus offset linear
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Figure 6.12: 2nd input with deadzone y; - nonlinear controller versus offset linear
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Figure 6.13: Nonlinear functions
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6.6 Discussion

Table 6.1 shows the simulation results for the different controllers. The reference

is zero for both outputs, meaning that the error signals are simply —y; and —ys.

Table 6.1: Comparison of simulation results

Y1 Ugy Y2 Ug2
Variance (nonlinear control) | 0.0554 | 0.0297 | 0.0487 | 0.0536
Variance (linear control) | 0.0592 | 0.0343 | 0.0531 | 0.0637

The non-linear controller has achieved the highly desirable result of both lower
error and control input variances compared to a linear controller. Additionally,
due to the nonlinear nature of the system, it is not true that the error variance
in the linear case can be reduced by simply increasing the gain of the linear

controller. If the input weight is reduced to:

0.1(1—271) 0
0 0.1(1—-271)

H,=

and the simulation is run once more, the results with an unchanged nonlinear

controller are given in Table 6.2.

Table 6.2: Comparison of simulation results

Y1 Ug1 Y2 Ug2
Variance (nonlinear control) | 0.0566 | 0.0324 | 0.0494 | 0.0504
Variance (linear control) | 0.0623 | 0.0962 | 0.0529 | 0.1593

The linear control input variance has clearly increased as expected, but there is
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little change in y,, and y; has actually increased. Conversely, if the input weight

is raised to:

(1-271) 0
0 (1-271

H,=

it seems reasonable to predict the input variance to decrease and the error vari-

ance to increase. In fact, the system becomes unstable with the linear controller.

These results suggest that the nonlinear control is truly superior and it is not sim-
ply a matter of tuning to produce comparable performance. Simulations using
nonlinearities other than deadzone and backlash have produced similarly positive
results, thus it is concluded that this technique has potential for performance

improvements with a variety of multivariable nonlinear plants.

There are disadvantages not seen in these results, however, stemming from the
assumption of a "frozen” plant at each sample step. This assumption requires
that f, and f, are slowly varying, so that the solutions of the ”s_pectral factor”
and ”Diophantine equations” are close to the true solutions - That would require
difference equations in the shift operator, 27!, and knowledge of past and future
signal variations. Also, the commutation of H, and f, in equations (6.39) and
(6.45) relies on slowly varying f, to avoid this operation becoming nonsensical.
The non-linear results in Figures 6.7, 6.9, 6.11 and 6.12 are known to deterio-
rate as the system bandwidth or the disturbance variance increases, or as the
deadzone and backlash widths decrease. The explanation for this is that, in each
case, the non-linearities are excited more. Therefore, f; and f, vary rapidly and
the assumption of constant or slowly-varying fy(m,) and f,(u) is completely vi-
olated, leading to control performance degradation. Of course, if the deadzone
and backlash nonlinearities are operating with large inputs, their behaviour is

relatively linear and f, and f; are both approximately equal to one. In this case,
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there is almost no approximation in the theory, but this is to be expected as the
plant is behaving almost like a fixed linear system. Thus, in order to realise the
potential of the nonlinear controller in this Chapter, the system must be required
to operate slowly and predominantly in the nonlinear region. This technique is
therefore probably suited to slow chemical processes, or even to ship DP if the

numerical issues with Matlab can be overcome.

Figure 6.13 shows that f, remains constaht at the limits for several seconds at
a time and f, remains constant at the lower limit for most of the simulation.
Obviously this situation is not ideal, as it would be desirable to allow f; and f,
to take whatever value is necessary to describe the nonlinear behaviour. How-
ever, widening the range of the f’s simply increases the excitation in the system,
leading to performance degradation for the reasons given above. Also, as noted in
Section 6.4.1, the stability margins of the controller are eroded with increasing f,
or fo, giving further reason to restrict the value of the f’s. If the system becomes
marginally stable or somewhat oscillatory, then the f’s will be excited further,
leading to more extreme values of f; and fs, rendering the system impossible to

stabilise satisfactorily.

An interesting idea for further work, therefore, would be to investigate whether
the limits can be widened or removed altogether when the ”spectral factor” and
"Diophantine equations” are solved as difference equations. In an extension to
this Chapter, Grimble and Martin (2003), these difference equations have been
solved for a SISO first order state-space system with input nonlinearity. How-
ever, saturation was employed in that work and it has been found that limits are
not necessary for such a nonlinearity, even with the controller from this Chapter.
(With regard to saturation, the technique in this Chapter is not particularly suc-
cessful. The problem is that, as the nonlinearity becomes increasingly saturated

the controller gain increases, which simply pushes further into saturation. With



6.7. CONCLUSIONS 260

“smooth” saturation, there is a slight performance advantage, but with ”hard”
saturation, it is better to simply use an anti-windup mechanism). The results in
Grimble and Martin (2003) rely on the fact that the plant is SISO and first order,
thus a challenge for further work would be to extend the approach to higher order

systems and maybe to find a general solution for a particular class of nonlinearity.

Another idea for further work comes from the fact that the simulation incorpo-
rates perfect knowledge of the nonlinearities and the linear block to calculate f;
and fy. Clearly, this will have considerable bearing on the robustness and per-
formance of a practical algorithm. Thus, it would be of interest to investigate
various estimators for f; and f,, including the idea by Zhu (2002) highlighted
earlier. It is possible that poor estimation will cancel any advantage gained by
use of the nonlinear algorithm, hence placing further importance on the need to

develop the difference equation approach mentioned above.

6.7 Conclusions

J

This Chapter began by drawing attention to the superposition principle of lin-
ear systems and the consequence of its failure for nonlinear systems. The lack
of general solutions of nonlinear differential and difference equations leads to a
paucity of analysis and control design procedures. The existing techniques involve
approximations, such as with Describing Functions or Fuzzy Control, complex
mathematical theory, such as Geometric Control, or do not yield obvious design
techniques, in the case of Lyapunov theory. Hence, the stated aim of the Chapter
was to investigate a nonlinear control design technique that is both practical and
with a rigorous theoretical foundation, where inevitably some approximations are
introduced. The main contribution of the Chapter was to demonstrate that the
design technique is applicable to a multivariable nonlinear ”sandwich” system,

and that an improvement over a fixed linear controller is possible.
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The nonlinear controller is built on a foundation of time-varying control, in which
the plant and controller are stated as multivariable transfer functions in the de-
lay operator, z~!, and time, t, with fixed reference and disturbance models. The
cost function employed is analogous to a normal stochastic LQG cost, except
that the weightings and weighted signals are combined into a time-varying form.
The solution to the optimal polynomial problem follows, but in the time domain
rather than the frequency domain normally employed for polynomial LQG. The
frequency domain is not such a useful concept for time-varying systems, but the
solution does involves a kind of "spectral factor” and two ”Diophantine equa-
tions”. These expression cannot be interpreted in the usual manner, but it is

natural to adopt the terminology from time-invariant control.

After deriving the solution to the time-varying control problem, a particular type
of nonlinear system was then defined and manipulated into time-varying form.
This nonlinear system is known as a ”"sandwich” system because it consists of a
linear dynamic block sandwiched between input and output nonlinearities. To
facilitate manipulation of the sandwich system into time-varying form, the non-
linear functions were expressed as the product of a function of the input, f(z(t))
and the input itself, z(t). This form is able to represent many common static and
dynamic nonlinearities, with the exception being those with non-zero output for
a zero input. In practice this is not a problem, as limits are later placed on the
value of f. The polynomial representation of the nonlinear system was then sub-
stituted into the solution of the time-varying optimal control problem, with two
assumptions being made to render the final solution tractable. Firstly, the input
nonlinearity was assumed to be a function of the previous input, u(t —1), so that
the current control signal was not required before it had been calculated. This as-
sumption is reasonable for slowly-varying u. Secondly, at any given sample step,
all system polynomials are "frozen”, so the "spectral factors” and ”Diophantine

equations” can be solved using standard time-invariant techniques.
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A short SISO example was presented to show that the controller does not simply
consist of a fixed linear time-invariant controller cascaded with inverses of the
nonlinearity, as it first appears. It is seen that large f’'s cause the controller to
be have more phase lead with lower gain and vice versa for small f’s. The fact
that this behaviour appears from rigorous theory with some reasonable approxi-
mations introduced builds confidence in the approach, and supports the assertion
that the controller is more sophisticated than simple nonlinearity inversion. As a
rule of thumb, phase lead and lower controller gain increase the stability margin,
phase lag and higher gain decrease stability margins. Hence, the controller is
exhibiting desirable frequency domain properties as a result of this theory. That
is, when the nonlinearity gain is high and liable to destabilise the closed-loop, the
controller acts in a stabilising manner. When the nonlinearity gain is low, the con-

troller pushes up the gain to improve speed of response without risking instability.

An algorithm for the overall control of a multivariable nonlinear sandwich system
is stated, where the values for f; and f, nonlinearities are inferred from perfect
knowledge of the plant behaviour. Such knowledge is unrealistic, but demon-
strates the potential of the controller without the complication of any estimation
or identification. A simulation example, using a cross-coupled 2-input 2-output
system with deadzone on the input and backlash at the output, is presented,
where the reference signal is zero in order to excite both nonlinearities. It is
necessary to limit the magnitude of the nonlinear functions, f; and f;, however,
otherwise the control becomes ”jittery” and the performance is poor. This restric-
tion is required so that rapidly changing signals do not appear, thereby violating
the assumption of a "frozen” plant. If the signals are sufficiently slowly-changing,

then the plant polynomials are close enough to a "frozen” state for the various

approximations to be small.

The results of the simulation demonstrated that improved control is possible in
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comparison with a fixed time-invariant linear controller. The non-linear control
yields output error and control input variances that are smaller than with fixed
linear control, provided that the signals within the system are slowly-varying.
Also, the results were not based on superior tuning in the nonlinear case, as a
decrease in input weighting on the linear controller produces larger input vari-
ance but no improvement in error variance. An increase in input weighting only
results in instability with a linear controller. Hence, the nonlinear technique is

genuinely superior.

There are two ideas for further work. The first is to treat the "spectral fac-
tors” and "Diophantine equations” as difference equations, rather than making
the approximation of a "frozen” plant. This has been attempted in Grimble and
Martin (2003) for the first-order SISO case, but clearly would be more useful if
high order or multivariable systems could be addressed. This idea would also
require reliable prediction of the system variables a few steps in advance, which
leads onto the second idea for further work. The simulation works with perfect
knowledge of the nonlinearities and linear block when calculating /f; and f,. Per-
fect knowledge is impossible, of course, so an investigation of plant estimators is
essential if the nonlinear technique is to be truly practical. Identification of non-
linear sandwich systems has attracted some control engineering interest, however,

so it is envisaged that such an estimator may be available or will be developed.



Chapter 7

Conclusions and Further Work

7.1 Summary of the thesis

This thesis has investigated the application of several new and existing techniques
to marine and nonlinear systems. The particular marine problem is dynamic po-
sitioning (DP), where the aim is to regulate the position and heading of a vessel
by using directional thrusters. The environmental disturbances at sea are power-
ful, hence drilling and offloading ships require effective control to avoid potential
accidents. The main difficulties in the DP problem are that ship motion behaves
nonlinearly in response to thruster forces, the various degrees of freedom are

cross-coupled, the thrusters must not attempt to cancel high power zero mean

wave forces and must not saturate.

Part of the research conducted for this thesis has entailed exploring methods for
dealing with some of these difficulties, as follows. Multivariable cross-coupling
has been dealt with using a set of techniques to quickly produce a PID design for
the DP velocity and position loops. In this case, nonlinearities are not explicitly
dealt with, as the techniques are applied to a linearisation of the ship at an op-
erating point. Notch filters are used to attenuate the high power zero mean wave

forces, requiring the velocity loop to produce enough phase margin to offset the

264
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filter phase lag. Thruster saturation is avoided by adjusting the controller gains

to fall within the rated thruster force for high sea disturbances.

The nonlinearities are later dealt with using a multiple model optimisation ap-
proach. This approach is based on a polynomial LQG control solution using
spectral factors and Diophantine equations, that has been approximated to give
a suboptimal restricted structure controller. The matrix-based suboptimal solu-
tion allows the optimisation to be carried out across several models at once, hence
this is exploited in conjunction with linearisations of the nonlinear ship model.
Several fixed representations of the ship dynamics are included in the set with an
RLS identified model, to produce an online adaptive controller. This is applied
to the surge axis velocity loop only, as the algorithm is numerically incapable
of dealing with multivariable or high order transfer functions. Notch filters are
included, but are not explicit in the ship model in order to again keep the transfer
function order low. This is not a problem, however, as the controller bandwidth
is designed to be lower than the notch frequency. Thruster saturation is avoided

by tuning the weights to give restricted structure PI gains similar to those in the

multivariable study.

The basic adaptive multiple model controller is further developed for the LQGPC
case, where a stochastic reference generator is included and a multi-step cost
function is to be minimised. The problem is initially posed in state-space be-
fore an optimisation is performed over future input signals, leaving the cost in
a more standard LQG form. Using a polynomial description of the system ele-
ments allows the solution to be given in terms of spectral factors and Diophantine
equations as above. A sub-optimal approximation is made once again, which per-
mits construction of another adaptive multiple model controller. The ship surge

axis velocity loop example is then repeated for comparison with the earlier LQG

controller.
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One Chapter of this thesis is concerned with an identification problem related
to DP. Neural networks have seen little application to marine vessel dynamics
identification and have never been considered for describing a coupled ship sys-
tem. The relevant dynamics are highly nonlinear and coupled, thus a universal
approximator such as a neural network seems suitable for the task. In this thesis,
a multilayer perceptron network is trained firstly with data from a coupled-ship
simulation to test the feasibility of the approach. The results are good, hence
further training is carried out using data supplied by Mitsubishi Heavy Indus-
tries from a 1/50th scale model. The available data is for several different wave
heights, thus network training is performed to examine performance when the

data is corrupted by disturbances of differing magnitudes of force.

The remaining component of research in this thesis examines a novel approach
to control of multivariable nonlinear systems. The derivation of the controller
depends upon the theory of time-varying systems, which permits a nonlinear
plant to be described as a succession of linear systems from one sampling instant
to the next. A polynomial time-varying optimal control problem is solved, before
introducing the "sandwich” form of nonlinear plant description. This consists of a
linear transfer function with input and output nonlinearities of a particular input-
dependent form. The sandwich system is then stated in polynomial form and
substituted into the time-varying optimal control solution. Given the assumption
that the system and nonlinearities vary slowly, the result is a suboptimal nonlinear
controller. It is simple to calculate online, as the relevant expressions are of
similar form to time-invariant spectral factors and Diophantine equations, but
with a different interpretation. It is not possible to apply the algorithm to the
ship problem, as it is numerically fragile, but a first order 2 x 2 example with

deadzone input and backlash output is presented instead.
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7.2 Conclusions

The ship DP problem is multivariable in nature due to coupling between surge,
sway and yaw directions of movement, whilst the mathematical model may not
be known. The problem of rapid preliminary tuning has never previously been
addressed whilst taking these factors into account, hence a research contribution

is made in Chapter 2 by examining four methods for rapid tuning of a multivari-

able PID controller.

These model-free methods are intended to straightforwardly produce an initial
controller design based on step tests or application of sinusoidal inputs at a single
frequency. Although a model was used for simulation, it is not difficult to apply
these tests in reality where no model is known. When the four methods were
applied to the linearised ship model at an operating point, the Davison method
proved to be of little use, as the ship model in question possesses frequency domain
characteristics such that the technique cannot be applied. Penttinen and Koivo,
Maciejowski and the combined approaches, however, produce control schemes

']

with a few short, simple steps.

The Pentinnen-Koivo technique provides decoupling at very low and very high fre-
quencies, the Maciejowski method provides approximate decoupling at the chosen
bandwidth, whereas the combined method decouples at the selected bandwidth
and very low frequencies. The control scheme consists of velocity and position
feedback loops, tuned in that order. The controllers were easily adjusted to meet
design criteria of stability, speed of response, disturbance rejection, decoupling
and avoidance of actuator saturation. From simulation results, it was concluded
that using the Penttinen-Koivo method in the velocity loop and Maciejowski
method in the position loop provides the best performance, by a small margin

only, although with slightly more tuning.
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The main flaw of these design methods is the dependence on a point where de-
coupling can take place in the frequency range of interest. The Davison method
is of no use where integrators are present in the plant, and the Pentinnen-Koivo
method requires that high frequency motions are desirable in a system. Ma-
ciejowski‘s approach can produce decoupling through a large range of frequencies,
but selection of the wrong bandwidth can result in strong interaction between one

or more of the system modes, and therefore an ineffective control system.

The main advantage of these design approaches is the speed and ease with which
an effective multivariable PID controller can be produced. The advantage to
industry is that money can be saved on design effort, and also on commission-
ing time. A benefit for academics is that a MIMO PID controller can easily be
obtained when making comparisons with more advanced techniques. Of course,
further fine-tuning of individual loops can take place after using these methods,

but the initial design can serve as a useful starting point.

Multivariable PID designs in Chapter 2 are applicable at only one operating point
and there is potential for instability and poor performance from this controller
at other operating points. This is due to the effect of changing plant dynamics
combined with an invariant controller. The idea developed in Chapter 4 was to
combine the benefits of a multiple-model and adaptive controller into one scheme,
where the structure of the controller is restricted to a particular form. Unlike
previous multiple-model schemes, the technique in Chapter 4 does not involve

designing separate controllers for each model in the set, but instead performs an

optimisation across the whole set.

The adaptive multiple-model controller is applied to the ship DP problem from
Chapter 2, but first a single model example is detailed to illustrate features of the

restricted-structure controller. It is seen that only four iterations are required to
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produce gains for PI control of the ship’s surge velocity loop. The full-order con-
troller is 3rd order, whereas the PI controller is only 1st order, yet the frequency
responses between DC and 0.1rad/s are identical. The notch filter is ignored in
order to keep the plant model order low. This is desirable to avoid numerical
errors due to the use of 64 bit arithmetic, and is justifiable because the notch
occurs at above the crossover frequency. Fortuitously, the step response of the
restricted-structure controller is actually superior to the optimal controller when
the notch filter is included in the plant but not in the model. Without a notch

in the plant, the restricted-structure response is only marginally inferior to the

full-order control.

A full DP example is described, where the 3 degree of freedom simulation from
Chapter 2 is used but the adaptive multiple-model controller is only applied to
the surge velocity loop. The other velocity loops take gains from the Penttinen-
Koivo method in Chapter 2, and the position loop gains are produced with the
Maciejowski technique. The performance of the restricted-Pl-structure controller
is evaluated for various probability weightings on each linear model. It is ob-
served that performance is worst when the identified model is not included in the
optimisation and only linearisations from three representative operating points
are taken into account. As the probability weighting on the identified model is
increased, the performance gradually improves to a peak when the probability is
0.9. The "pure” adaptive case, where the identified model probability equals 1,

exhibits poorer performance than when the probability is 0.7, 0.8 or 0.9.

It is believed that the technique presented in Chapter 4 provides a combination
of the benefits of adaptive and multiple-model optimal controller designs in one
scheme. An adaptive controller is able to adapt to changing system parameters
at the expense of possible instability, as the present controller depends upon an

estimate of the current plant model only. A multiple-model optimal controller
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gives greater assurance of stability over a wide range of operating points with
the expense of conservative performance. A multiple-model adaptive controller
is intermediate to these two schemes. It provides a certain amount of confidence
in stability, due to the weighted effect of fixed known models in the optimisation,
plus a performance enhancement due to the incorporation of system identifica-
tion knowledge from one sample point to the next. The restricted structure of
the control law provides simplicity of implementation, and transparency of the
solution to those acquainted with much-used classical control laws. Thus, the
main contribution of Chapter 4 is to propose a new kind of adaptive controller
which combines the benefits of existing control schemes, and also to apply this

to the ship DP problem.

The LQGPC problem in Chapter 5 has much in common with the Chapter pre-
ceding it, where the cost is approximated by a matrix-vector form and minimised
with respect to the restricted-structure controller parameters. Stacking matri-
ces for each linear model once more gives the multiple model solution, which is
augmented with on-line identified parameters to produce the final adaptive algo-
rithm. The example dealt with is the ship DP problem also addressed in Chapter
4, but it is necessary to make some alterations before examining the single model
case. LQGPC does not incorporate dynamic cost weights without increasing the
complexity of the solution, but it is desirable to include integral action. The
plant is therefore augmented with an integrator, so that low frequency errors are
penalised. The one-step delay built into the state-space description prevents the
disturbance from taking the same form as in Chapter 4, so a delay is tolerated.
Additionally, the numerical fragility of Matlab does not allow the reference model

to include an integrator, hence the pole is moved to 0.990.

A single model example is detailed where the prediction and input horizons are

both two steps long. The restricted structure optimisation terminates after five
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iterations, giving PI gains to approximate a third-order full-order controller. It
is necessary to in fact make the controller structure PD, so that the additional
integrator can be moved from the plant description after the optimisation. The
closed-loop performance is satisfactory, although not as good as the standard
LQG case in Chapter 4. It is noted that increasing the control weighting and de-
creasing the input weighting increases controller gain across the frequency spec-
trum and vice versa. The weights for the first time step of the predictions have
greatest effect, with very little noticed for the other weightings. The solution
is also quite sensitive to output noise, where an increase produces a decrease in

controller gain at all frequencies.

This initial single model example is followed by a repeat with longer prediction
and input horizons, 30 steps and 5 steps respectively. The main effect on the con-
troller is to reduce low frequency gain and raise high frequency gain. This seems
reasonable when it is observed that derivative action gives prediction of future
error in a sense and, significantly, acts at high frequencies. The error and control
weightings for several steps into the future have more influence’on the solution
than in the previous example, and the overall performance is slightly better with
longer horizons. Notably, the closed-loop step responses are still inferior to the
standard LQG case, but it is believed that this is due to the specification of a
random reference in the optimisation, but the actual use of a step in the example.
Also, for both single model examples, there is very little difference in performance

between the full-order and the restricted-structure controller.

A full DP example is investigated as in Chapter 4, using the 3 degree of freedom
simulation from Chapter 2, where the multiple-model adaptive predictive con-
troller is applied to the surge velocity loop. The other velocity loops take gains
from the Penttinen-Koivo method in Chapter 2, and the position loop gains are

produced with the Maciejowski technique. Linearised models are taken from three
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representative operating points, and the fourth model uses parameters identified
with recursive least squares. The ship manoeuvre and disturbances are the same
as in Chapter 4, and the performance of the restricted-Pl-structure controller
is evaluated for various probability weightings on each linear model. Unlike in
Chapter 4, it is observed that performance is worst for the pure adaptive case, but
again best performance is seen at p; = 0.9. Thus, it is concluded that the adaptive
controller is indeed exhibiting better performance than the pure multiple-model
case, whilst presumably benefiting from increased robustness due to the fixed
linear models. A flaw mentioned in Chapter 4 is a lack of stability or robustness
proofs, so at present the robustness benefit is conjectured. The poor performance
in the pure adaptive case is apparently due to sensitivity of the predictive con-
troller to parameter variations and plant-model mismatch. This is supported by

the great variation in PI gains in the py = 1 example.

One very positive outcome from the full DP example is improved performance
over the standard LQG controller in Chapter 4. The error standard deviation
of the controlled absolute velocity is 14.3% greater with standard LQG, but the
control action is only 6.9% smaller. The best explanation for this is that the
reference signal approximates the filtered white noise in the optimisation fairly
well, in contrast with the single model examples where the reference employed is
a step. Hence, the predictive nature of LQGPC is better exploited. A significant
contribution of Chapter 5 is therefore a demonstration that restricted-structure

adaptive LQGPC can lead to better performance than equivalent LQG control.

In the past, when modelling marine vessels for DP, the problem has been ap-
proached by deriving a simplified model and finding the relevant parameters ap-
proximately, or with more sophistication by using an extended Kalman filter.
Neural networks are a valuable technique for approximating nonlinear, multi-

variable functions, hence a multilayer perceptron feedforward network has been
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studied in Chapter 3 for identifying ship dynamics of a coupled FPSO and shuttle
tanker. The main contribution is to demonstrate that the network could learn

and generalise the dynamics from real data provided by a Mitsubishi Heavy In-

dustries 1/50th scale model.

The coupled ships were modelled in Simulink using the equations from Chapter
2, plus additional forces from the turret, hawser and tug boat. Data from this
simulation was then used to check the viability of using a neural network for
the problem. With normalised data, it was discovered that the dynamics were
learnt well and generalised from the small training set to the complete validation
set. Integrating to generate velocity and position signals also demonstrated that
the network was successful in learning, although a filter was required to remove
steady-state offset. The non-DC performance was otherwise encouraging, so it

was possible to progress to using real data from Mitsubishi‘s scale model.

Here, input and output signals were as in the simulation case, but with the ad-
dition of wave height as an input. The first network training procedure was con-
ducted with data from a still environment, that is with no waves applied. Again
using normalised data, the network outputs were found to match the data with
little error. Further training with a wave height of two metres yielded acceptable
results, but with four metre wave height, the errors were not insignificant. The
network was also trained using all of the data together from the previous three
cases, before being validated with data from three metre wave height. In this
case, the results were of poor quality. Indeed, any attempt to train the network
with more than one data set at a time resulted in significant errors, even for

validation with a data set used in training.

The main advantage of the neural network approach is that it is not necessary

to know the precise structure of the equations of motion or to identify particular
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parameters. The multivariable character of the problem does not present a dif-
ficulty either, as the interconnected nature of the network is well-suited to cope
with this. The ship is simply an input-output mapping which can behave in a

highly nonlinear manner with no loss of accuracy in signal reproduction.

The aim of Chapter 6 was to investigate a nonlinear control design technique
that is both practical and with a rigorous theoretical foundation, although where
inevitably some approximations are introduced. The main contribution of the
Chapter was to demonstrate that the design technique is applicable to a mul-

tivariable nonlinear "sandwich” system, and that an improvement over a fixed

linear controller is possible.

A short SISO example was presented to show that the controller does not simply
consist of a fixed linear time-invariant controller cascaded with inverses of the
nonlinearity, as it first appears. It is seen that large f’s cause the controller to
be have more phase lead with lower gain and vice versa for small f’s. The fact
that this behaviour appears from rigorous theory with some reasonable approxi-
mations introduced builds confidence in the approach, and supports the assertion
that the controller is more sophisticated than simple nonlinearity inversion. As a
rule of thumb, phase lead and lower controller gain increase the stability margin,
phase lag and higher gain decrease stability margins. Hence, the controller is
exhibiting desirable frequency domain properties as a result of this theory. That
is, when the nonlinearity gain is high and liable to destabilise the closed-loop, the
controller acts in a stabilising manner. When the nonlinearity gain is low, the con-

troller pushes up the gain to improve speed of response without risking instability.

A simulation example was examined, using a cross-coupled 2-input 2-output sys-
tem with deadzone on the input and backlash at the output, where the reference

signal is zero in order to excite both nonlinearities. It was necessary to limit the
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magnitude of the nonlinear functions, f; and f,, however, otherwise the control
becomes "jittery” and the performance is poor. This restriction was required so
that rapidly changing signals do not appear, thereby violating the assumption of
a "frozen” plant. If the signals are sufficiently slowly-changing, then the plant

polynomials are close enough to a "frozen” state for the various approximations

to be small.

The results of the simulation demonstrated that improved control is possible in
comparison with a fixed time-invariant linear controller. The non-linear control
yields output error and control input variances that are smaller than with fixed
linear control, provided that the signals within the system are slowly-varying.
Also, the results were not based on superior tuning in the nenlinear case, as a
decrease in input weighting on the linear controller produces larger input variance
but no improvement in error variance. An increase in input weighting only results

in instability with a linear controller. Hence, the nonlinear technique is genuinely

superior.

7.3 Suggestions for further work

In order to extend the work of Chapter 2, it would be interesting to try alter-
native bandwidths for the velocity loop and to experiment more with the scalar
tuning gains. It is conceivable that the control system performance with the ship
example could be improved with experimentation. Another extension would be
to try a large number of operating points to confirm the wide applicability of the

techniques, then to apply gain scheduling as the overall control scheme.

In Chapter 3, it was found that approximating more than one data set simultane-
ously does not appear to be easily achievable. As further work, several networks

could be used, one for each likely operating point, with each network trained
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extensively using data from each point. Ship motion could be produced by one
network corresponding to the present operating condition, or from a weighted sum
of the various network outputs. A further, less fundamental flaw is the transfor-
mation from acceleration outputs to earth-fixed velocity and position signals. It
may be necessary to use a different process in production of the tank test data,

and to take care in the use of integrators for velocity and position signals.

Stability and robustness proofs for multiple models and convergence of the restricted-
structure algorithm would be valuable directions for advancing the work in Chap-
ter 4. Simultaneous stabilisation theory is suggested as an approach to the first
problem, and empirical evidence suggests that convergence is likely to be assured
if a suitable procedure can be found. Establishing these two_results would also
reinforce the perceived advantages of the adaptive controller, which could be fur-
ther improved by allocating realistic probability weightings for the fixed models
in some manner. It is also suggested that a gain scheduling example could be
used for comparison with the controller in Chapter 4, as there are similarities

between the two approaches in that a set of linearised models is'required in both

cases.

The suggestions relevant to Chapter 4 also apply to Chapter 5, but it is further
noted that the predictive controller does not address constraints, unlike many
other MPC controllers. A suggestion for future work is to look for an approx-
imation to the cost in terms of both the controller gains and the plant input,
outputs and states. Hopefully, a QP solver could then be employed to perform
the constrained minimisation. Another suggestion is to look for a method of in-
corporating dynamic weights into the restricted-structure solution, so that the

augmented plant is not required and the input weighting is truly on u, rather

than effectively on Au.
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Regarding Chapter 6, there are two ideas for further work. The first is to treat
the "spectral factors” and ” Diophantine equations” as difference equations, rather
than making the approximation of a "frozen” plant. This has been attempted
in Grimble and Martin (2003) for the first-order SISO case, but clearly would
be more useful if high order or multivariable systems could be addressed. This
idea would also require reliable prediction of the system variables a few steps in
advance, which leads onto the second idea for further work. The simulation works
with perfect knowledge of the nonlinearities and linear block when calculating f;
and f,. Perfect knowledge is impossible, of course, so an investigation of plant
estimators is essential if the nonlinear technique is to be truly practical. Iden-
tification of nonlinear sandwich systems has attracted some control engineering
interest, however, so it is envisaged that such an estimator may be available or

will be developed.
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Appendix A

Nomenclature
Abbreviations
Acronym | Denotes
ARMA Auto Regressive Moving Average
BLT Biggest Log Tuning
Com Combined
DMC Dynamic Matrix Control
DNA Direct Nyquist Array
DOF Degrees Of Freedom
DP Dynamic Positioning
FPSO Floating Production, Storage and Offloading
GMV Generalised Minimum Variance
GNSC Generalised Nyquist Stability Criterion
GPC Generalised Predictive Control
Hes H Infinity
IMC Internal Model Control
INA Inverse Nyquist Array
LMN Local Model Networks
LQG Linear Quadratic Gaussian
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Acronym | Denotes

LQGPC Linear Quadratic Gaussian Predictive Control
LPV Linear Parameter Varying

Mac Maciejowski

MHI Mitsubishi Heavy Industries
MIMO Multi-Input Multi-Output

MLP Multi Layer Perceptron

MMAC Multiple Model Adaptive Control
MPC Model-based Predictive Control
MPHC Model Predictive Heuristic Control
MRAC Model Reference Adaptive Control
MSE Mean Square Error

MSO Mean Square Output

MV Minimum Variance

NLP Non Linear Programming

PID Proportional, Integral, Derivative
P-K Penttinen-Koivo

QFT Quantitative Feedback Theory

QP Quadratic Programming

RBF Radial Basis Function

RLS Recursive Least Squares

SISO Single-Input Single-Output

SS Simultaneous Stabilisation

TE Transfer Function

TITO Two-Input Two-Output

Z-N Ziegler-Nichols
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Symbols
Symbol | Denotes Value
a Neuron output
a Vector of neuron outputs from a layer
a; Amplitude of wave component
;i Amplitude of fluctuating wind component
a Plant denominator coefficient
A State matrix, Jacobian matrix of partial derivatives
A Plant denominator polynomial
A Total system state matrix
AaL Ship lateral wind area 5040m?
Aar Ship transverse wind area 880m?
A Reference denominator polynomial matrix
Adp Disturbance denominator matrix
A, Linear transfer function block denominator matrix
A Plant model state matrix 4
Ap Plant denominator matrix
A, Error weighting denominator term
A, Input weighting denominator term
A, Reference model state matrix
A,y Reference denominator matrix
Agr Reference generation state matrix
A, Denominator matrix of weighted plant
Ay Denominator matrix of weighted linear TF block
b Bias term
b Vector of bias terms
b, Plant numerator coefficient
B (Total System) Input matrix
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Symbol | Denotes Value
B Plant numerator polynomial

B, Linear transfer function block numerator matrix
B Plant model input matrix

B, Plant numerator matrix

By Dynamic error weighting numerator

B,, Reference numerator matrix

B, Numerator matrix of weighted plant

By, Numerator matrix of weighted linear TF block

c Vector of current velocites relative to ship body
c Disturbance numerator coefficient

C Output matrix

C Total system output matrix

Cy Disturbance numerator polynomial

Cap Disturbance numerator matrix

Cm Plant model output matrix ‘
C, Reference model output matrix

Cr Reference generation output matrix

Cwp(pw) | Wave drifting force coefficients

Co Controller

Coa Controller denominator polynomial

Cos Full-order controller

Con Controller numerator polynomial

Cor Restricted structure controller

C11,Cq Total system output matrix partition

d Ship draught 14.6m
d Distance from FPSO stern to shuttler tanker bow
d Disturbance signal

d Vector of wind and wave disturbances
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Symbol | Denotes Value
dia Distance from ship turret to anchoring

dso Distance from ship turret to body coordinate origin | 29.75m
d, Amplitude of estimation error

D Total system disturbance input matrix

D., D, | Control spectral factor

5 A ”Operator spectral factor”

Dy, Disturbance spectral factor

Dy Filter spectral factor

Dy Plant model disturbance input matrix

D, Reference model disturbance input matrix

Dp Reference generation disturbance input matrix

Dy, Dy, | Total system disturbance input matrix partition

e Error signal

e Vector of position error relative to ship body

€r Surge position error ‘
ey Sway position error

ey Heading position error

E Disturbance input matrix

E Reference numerator polynomial

E Generalised output error

E Vector of position errors relative to earth

E[.] Expectation

E, Position error in earth X coordinate

E, Position error in earth Y coordinate

Ey Heading position error

f Activation function

;3 Difference signal between reference and disturbance
f(2) Surge acceleration function in terms of z |
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Symbol | Denotes Value
forw) Wave exciting force coefficient
fis fo Nonlinear functions
Fpr Position reference filter
F, (Operator) Diophantine equation solution
Fe, Regulating Diophantine equation solution
F ,fp Filtering Diophantine equation solution
Fi,F, Nonlinear functions
g Gravitational constant 9.8m/s?
9(2) Sway acceleration function in terms of z
9d SISO ship TF from disturbances to ship velocity
gv SISO ship TF from thruster force to ship velocity
G Plant transfer function
G Estimator input matrix
G Linear transfer function block
Gy MIMO ship TF from disturbances to ship velocities
Gy MIMO ship TF from thruster forces to ship velocities
Go (Operator) Diophantine equation solution
ip Regulating Diophantine equation solution
G{p Filtering Diophantine equation solution
h(z) Yaw acceleration function in terms of z
H Estimator state matrix
He Generalised plant output matrix
H, Prediction horizon
H, Dynamic error weighting
H Generalised reference matrix
H, Dynamic input weighting
H, Input horizon
Hpg Generalised reference matrix
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Symbol | Denotes Value
H, (Operator) Diophantine equation solution

Hf, Regulating Diophantine equation solution

H{p Filtering Diophantine equation solution

1 Wind component index, Row index, Neuron input index

1 Identity matrix

i Summand of infinite-time cost

I Summand over time 27

! . Ship moment of inertia 73MTm
J Imaginary number V-1
7 Column index, Cable index, Multiple model index

3 Prediction step index

J Value of cost function

Jest Cost function causal on controller

Ji Cost of kth training error

Jinin Minimum cost ,

Jp Cost dependent on control input signal, u

Jpo Cost independent of control inputs vector, U

Ji Cost at time t

J.. Ship added moment of inertia 21MTm
Jo Approximated cost in restricted structure calculation

Joj Approximated cost of jth model

k Data set index

kq Scalar derivative gain

ki Scalar integral gain

kyp Scalar proportional gain

K Controller transfer function

Kq Matrix derivative gain

Ky Controller denominator
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Symbol | Denotes Value
K; Matrix integral gain

K, Controller numerator

K, Matrix proportional gain

K, Restricted structure controller

Kp Controller transfer function matrix in position loop

Ky Controller transfer function matrix in velocity loop

l Row index

l Number of inputs

L Ship length

L¢ Cable length 1714m
Lrpso Length of FPSO 256m
Lsr Length of shuttle tanker 230m
m Ship mass 12400T
m Wave component index

m Number of inputs ,

m Disturbance-free output

mg Input to output nonlinearity

my Surge added mass 727T
my, Sway added mass 8290T
M Constant real gain matrix

M Control sensitivity function

n Wave component index, Notch filter transfer function

n Value after summing junction, Number of neuron inputs

n Number of states

n Index of iteration steps

n Vector of values after summing junction

N Diagonal matrix of notch filter transfer functions

N Number of wave components, Yaw moment
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Symbol | Denotes Value
N Number of fluctuating wind components
N Number of frequency points
N Estimator disturbance input matrix
Nuwsepso | Moment on FPSO due to hawser
NhwssT Moment on shuttle tanker due to hawser
N, Hydrodynamic derivative -0.0339
N, Hydrodynamic derivative -0.0372
Nipe Yaw moment on FPSO due to turret
Niug Yaw moment on shuttle tanker due to tugboat
N, Hydrodynamic derivative -0.1495
Ny Hydrodynamic derivative 0.1486
Ny Hydrodynamic derivative 0.0727
Ny Yaw wind moment
Np Combined moment due to thrusters, turret,
hawser and tugboat )

Ny Yaw hydrodynamic moment
Nr Yaw thruster moment

- Initial guess at Ny for search algorithm
Nr(rpso) | Yaw moment on FPSO
Nr(sT) Yaw moment on shuttle tanker
Nro Yaw thruster moment at operating point
Nw Yaw wave moment
p Scalar tuning parameter, Neuron input
p Vector of neuron inputs to a layer
P Vector of neuron inputs
Pj Probability of jth model
P Diagonal matrix of model probabilities
e Error weighting
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Symbol | Denotes Value
Q Number of input/output pairs

Q State weighting

Q Diagonal matrix of weights on predicted error signal
Q. Error weighting

Qj Error weighting j steps ahead

Qn Error weighting numerator

Oy Process noise covariance

T, Taba Yaw rate

r Reference signal

Ar Change in r from operating point, rb

¥ Input weighting

Th Generalised reference signal

To Yaw rate at operating point

R Input weighting

R Vector of position references relative to earth

R Diagonal matrix of weights on predicted input signal
R, Input weighting

Ry Reference model output noise covariance

Rp Plant model output noise covariance

R, Vector of reference signals

R; Input weighting j steps ahead

Ry Input weighting numerator

R, Measurement noise covariance

R Set of real numbers

s Laplace transform complex number

Sy Velocity loop sensitivity function

S Sensitivity function

Sp Postion loop sensitivity matrix
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Symbol | Denotes Value
Sy Velocity loop sensitivity matrix

52 Number of neurons in Ath layer

t Time, Sample instant

t, kth desired target output

ty Velocity loop complementary sensitivity function

T Hawser tension

T Sample time

T Transformation

Tge Transformation from ship body to earth coordinates
Tep Transformation from earth to ship body coordinates
T; Tension in jth cable

Tp Position loop complementary sensitivity matrix

Tx Tension X component

Ty Tension Y component

Ty Velocity loop complementary sensitivity matrix
T\, T, Control independent cost elements

T\, T} | Stable integrand

¢ i iy Unstable integrand

u Surge velocity relative to ship body

u Input signal

u Vector of inputs, Vector of thruster forces

u Vector of inputs at different time steps

Au Change in u from operating point, ug

Uabs Surge velocity relative to earth

Ue Velocity of current in negative surge direction

Ug Output from input nonlinearity

ua Surge relative wind velocity

U A0 Fluctuating wind velocity
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Symbol | Denotes Value
uy Velocity loop control sensitivity function

Ug Surge velocity relative to ship body at operating point
U Ship translational velocity vector magnitude

U Vector of predicted plant inputs

U Half-width of deadzone

U/ Vector of future input vectors

Ui Wind velocity relative to earth

U o Wind velocity average relative to earth

Ue Magnitude of current velocity

Up Position loop control sensitivity matrix

Uy Velocity loop control sensitivity matrix

v Sway velocity relative to ship body

v Measurement noise signal

Av Change in v from operating point, v

Vabs Sway velocity relative to earth ,

Ve Velocity of current in negative sway direction

Ym Plant model output noise signal

Uy Reference model output disturbance signal

VA Sway relative wind velocity

vy Velocity loop control sensitivity function

Vo Sway velocity relative to ship body at operating point
|4 Half-width of backlash

Va Magnitude of relative wind velocity vector

Vp Position loop control sensitivity matrix

W Velocity loop control sensitivity matrix

w Neuron weighting

w Process noise vector

w

Vector of neuron weightings
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Symbol | Denotes Value
W Matrix of neuron weights

W Plant transfer function

1% Vector of future plant input disturbance signals

W Transfer function from input to total state vector

Wy Disturbance transfer function

Wy Transfer function from disturbance to total state vector

W, Reference transfer function

W, Transfer function from reference to total state vector

T State vector

G Vector of restricted structure controller gains

& Ship velocity vector (or change in) relative to ship body

z Vector of model data for RLS

s State estimate

Tm Plant model state vector

Tp(H,) Reference model state ,

TR Vector of reference model states

X Position in earth coordinate system, Surge force

X Stacked vector of z’s

X Total system state vector

Xpwsrpso | Force on FPSO due to hawser

XhwssT Force on shuttle tanker due to hawser

b . Hydrodynamic derivative -0.0194
Xirt Surge force on FPSO due to turret

Xtug Surge force on shuttle tanker due to tugboat

Xousi Hydrodynamic derivative 0.126

¥, o Hydrodynamic derivative -0.0664
Xow Hydrodynamic derivative -0.0057
Xa Surge wind force
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Symbol | Denotes Value

Xr Combined surge force due to thrusters, turret,
hawser and tugboat

Xrpso FPSO position relative to earth
Xy Surge hydrodynamic force
Xgr Reference position in earth coordinate system

Xsr Shuttle tanker position relative to earth
X7 Surge thruster force
b Initial guess at Xpq for search algorithm
Xr(rpso) | Surge thruster force on FPSO
Xr(sT) Surge thruster force on shuttle tanker
X710 Surge thruster force at operating point
Xw Surge wave force
Y Output signal
y Vector of ship velocities relative to earth
Y Vector of position coordinates relative to earth,
Yn Generalised output signal
Y Position in earth coordinate system, Sway force

Y Vector of predicted generalised plant outputs
Yiwsrpso | Force on FPSO due to hawser
YhwssT Force on shuttle tanker due to hawser
Y Hydrodynamic derivative 0.0659
) Hydrodynamic derivative 0.102
Yirt Sway force on FPSO due to turret

tup Sway force on shuttle tanker due to tugboat
Y Hydrodynamic derivative -0.218
Yor Hydrodynamic derivative -0.391
Hydrodynamic derivative -0.908
Ya Sway wind force
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Symbol | Denotes Value
Yr Combined sway force due to thrusters, turret,
hawser and tugboat
Yrepso FPSO position relative to earth
Yy Sway hydrodynamic force
Yr Reference position in earth coordinate system
Ysr Shuttle tanker position relative to earth
Yr Sway thruster force
) Initial guess at Ypq for search algorithm
Yr(rpsoy | Sway thruster force on FPSO
Yr(sm) Sway thruster force on shuttle tanker
Y7o Sway thruster force at operating point
o Sway wave force
2 Vector of ship body velocities, heading and thruster forces
2 2 vector operating point
Zm Plant model observation signal '
% Reference model output signal
z1 Unit delay operator, Complex number
Z Total system output vector
Z Set of integers
Ba Incident angle of wind
Be Incident angle of current
Bw Incident angle of wave
) Scalar tuning parameter
) Neural network delta term for change in J with n
Oir Kronecker delta

Scalar tuning parameter
RLS estimation error based on previous data

Small positive number
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Symbol | Denotes Value
€ Ai Phase angle of fluctuating wind component
i Phase angle of wave component
E(w) Phase angle of wave exciting force
¢ White noise source
n Learning rate
) Angle
0 Hawser angle
010 Angle of cable from turret to anchoring
C) Diagonal matrix of angles
e Vector of model coefficients for RLS
¢) Estimate of ©
K Wave number of wave component, x; = w?/g
A Neural network layer index
A Forgetting factor
A Number of network layers )
Ha Relative wind direction
e Angle of ship velocity vector relative to ship body
o Angle between incident waves and ship heading
£ White noise source
(Normalised) Estimation error
Total system disturbance vector
Eni Plant model disturbance signal
& Reference model disturbance input signal
p Water density 1.02T/m?
pA Air density 0.00125T /m?
P Error power spectrum
Dy Reference and disturbance power spectrum
Duu Input power spectrum
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Denotes

Value

{0

I

<y

Ship heading angle

FPSO heading angle
Reference ship heading angle
Shuttle tanker heading angle
Frequency

Frequency of fluctuating wind component
Bandwidth frequency
Frequency of wave component
Notch frequency

Sequence

Set

Convolution operator

Norm

Inner product




Appendix B

Linear Ship Model

To design linear controllers for an operating point of a nonlinear system, a linear

model is required which adequately describes the particular operating region. The

partial derivatives corresponding to the linearisation of the ship model in Section

2.2.6 are given below.

Surge axis partial derivatives

Of _ —pLdXuuluo| _ —0.00372] uq|

ou m+ my

b 1oLd(2X vo + LX,,
_f = 2P ( Y TO) = —0.251ry — 0.000169vq
v m + my

f  LpL2d(2LX,,ro + Xypv
of _ 3pL7d( d %) _ —0.251v, — 37.679
or m+ my

g

i 5
0Xr m4+my 7oY. 10

Sway axis partial derivatives (|V — §¢| < 7/4)

Bg - %pLd(Yuvouo + L);TQUO)
u (m +my)Uy
= —0.002041)0110/Uo + 0.1587‘011.0/[}0
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(B.1)

(B.2)

(B.3)
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dg _ 3pLd(Y, (203 + ud) + 2Yy,|vo|Uo + LY;rovo + LYo |ro|Ub)
ov (m + my)Up

= —0.00204(2v2 + u3)/Us — 0.0170|vo| + 0.158rvo/Up — 0.939|r0|  (B.6)
dg 5pL2d(Y,Uy + 2LY,4|ro| £ Yirvo)
or m +m,
= 0.158U, + 126|ro| £ 0.939, (B.7)
% __1 __483x107 (B.8)
oYr m+my
Sway axis partial derivatives (|¥ — 3¢| > 7/4)
dg  0.35pLdUs(vocos(pc) — 2uosin(uc)) + 3pL*dY,rouq
ou (m+my)U,
= 0.00658(vocos(pc) — 2.96ugsin(pc)) + 0.158rqup/Up (B.9)
dg _ —0.35pLdUy (ugcos(pc) + 2vosin(pc)) + 5pL2d(Yerovo + Yor|ro|Us)
v (m +m,)Us
= —0.00658(ugcos(puc) + 2.96vesin(pc)) + 0.158r¢vo /Uy — 0.939)|ro|
(B.10)
dg _  3pLPd(Y;Uo + 2LY,|ro| % Yirvo)
or m+ my,
= 0.158U, + 126|ro| % 0.939v, (B.11)
1
;2 = 4.83 x 107 (B.12)

oYr m+m,



Yaw axis partial derivatives (|V — [¢| < 7/4)

oh 1pL2d(N,vou + LN, rouo)
Bu (Izz + JZZ)UO
= —0.00007821)011,0/[]0 = 000456TOU0/Uo (B13)

oh sPL*d(Ny(2v§ + ud) + 2Ny |vo|Us + LN;rovg + LN,y |16|Us)

aU (Izz + Jzz)UO
= —0.0000782(2v3 + u3)/Up + 0.0000765|ve| — 0.0045679v0/Us + 0.0198|r|

(B.14)
oh _ 3pL*d(N,Up + 2LN,,|ro| £ Nyrvo)
aT. B Izz + Jzz
= —0.00456U, — 2.57|ro| £ 0.0198v, (B.15)
i O X 1.06 x 107° (B.16)

ONr I+ J.,
Yaw axis partial derivatives (|¥ — S¢| > 7/4)

a_h 0.1pL?dUy(vocos(2pc) — wosin(2uc)) + %pL‘"’dN,rouo
ou (Izz + -Izz)UO
0.000105(vocos(2pc) — upsin(2p¢)) — 0.00456r0ue /Uy (B.17)

oh _ —0.1pL?dUp(ugcos(2uc) + vosin(2uc)) + 3pLPd(Nyrvg + Nyp|ro|Up)
v Iz + J22)Up
= —0.000105(ugcos(2pc) + vosin(2uc)) — 0.004567r4vo/ Uy + 0.0198|r¢|

(B.18)

oh 1pL3d(N,Uy + 2LN,|ro| % Nyrvo)
or lzz + Jzz
= —0.00456U — 2.57|ro| % 0.0198v, (B.19)
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o - =1.06 x 1078 B.20
ONr L,+J,, (B.20)




Appendix C

Cost Minimisation for Chapter 5

Substituting (5.30) into (5.33):

u(z™!) = —KWu(z™!) + Wabn(2™)) = Kvp(271)
= S(=KWakn(27") = Kvm(27")) (C1)

where sensitivity function S = (I + KW)™L.

Substituting (C.1) into (5.28):

X)) = W(=SKWyln(z™") = SKvm(27)) + Wi&r(271) + Wabm(27Y)
= Wo&(27Y) + (I = WMCu)Witm(z™t) = W Mup(27}) (C.2)

where M = SK.

From Grimble and Johnson (1988), ®,,(27!) = W(z™!)®y, (27 )W*(2~!) when

y(27') = W (27" )u(z~'). The desired power spectra terms can now be defined as:

Bxx =XX* = (WMCy — D)WW (Cy, M"W* - I)
+ W, W + WMRy M*W* (C.3)
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By, = uu = SKW,W;K*S" + SKR; K*S* (C.4)

O,y = uX" = SKW,W;(CsM*'W* —I) + SKR;y M*W* (C.5)

Expand and simplify to obtain:

dyx = WMWW;MW* = W,W;M*W* — WMW,W;

+ W W; + W, W + WMR; M*W* (C.6)
Oy = M(WaW; + Rpy)M* (C.7)
®ux = MWW M W* — MW, W; + MRy M*W* (C.8)

The integrand in (5.27), denoted I, becomes:

I, = trace{QPxx(z7") +2GPux(27") + Re®uu(z71)}
= trace{Q.(WMWW;M*W* = WWiM*W* — WMW,W; + W,W;
+ W, W, + WMRy M*W*) + 2G (MW, W; M*W* — MW, W;
+ MRjM*W*) + R:M(WyWj + Ry ) M*}
= trace{ MW Wi M*(W*QW + R, + W*G. + G:W)
+ MRy M (W*QW + R+ W*G,+ G:W) — MWW (QW + G.)
— (W*Q; + GL)WWiM*} + trace{Q.(W, W, + W W)} (C.9)

To simplify this expression, the following spectral factors are defined:

Y.Y. = A};' D, DpAyy = W'QW + R+ W*G. + GiW (C.10)
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Ya¥; = Ayl Dy Dy Ay = WaW; + Ry, (C.11)

so that:

I = trace{MY;Y;M*Y:Y, —- MWW} Qy — Q4 WaW; M}
+ trace{Q.(W,W; + W,W;)} (C.12)

where Q, = QW + G,. Following a conventional completing-the-squares argu-

ment, the integrand may be rewritten:

I, = trace{(Y.MYy— Y, 'Q.W W Y; (Y MY, — Y ' WW;QuY, )}
— trace{Y, T 'QLW WY, 'Y, Wi Qu Y, — Qu(W, W) + WaW i)}
= trace{TyT;} — I (C.13)
where I, is independent of the control law. Before the cost can be minimised,

T41; must be split into stable and unstable parts. This is achieved using two

Diophantine equations, but first 7; must be expanded using the polynomials

defined earlier.

Y.MY; = DpA;) MAZ Dy, (C.14)

},c‘—lQ:‘,W/dLVJ)";—I — D;IAIP(A;;lB;pQ_c X G:)/i;lz"lDlgC,;pA;;lA,‘,pD;;l
= DN (Bp,Q.+ A},G)A; 27 D1 Cy, Dy (C.15)

Substituting the Diophantine equation:

9 DLGS, + Fo A, = (B,Qc + A3,G) 27" (C.16)

into (C.15), T, may therefore be denoted as:
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Ty = Y. MYy—Y 7 'Q,WW;Y,; ™!
= (DgAj, MA,' Dy, — D' (B}, Qc + A1,GY) A, 27 DCy, DY)
= (DpAj, MA, Dy — (G5, A," + 2% D Fiy) 2™ D1y Cy, DY)

= (DgAj, MA;' Dy, — G5, A, 27 D1, Cy Dy

-0 D;;lFfpz“DwC;pD;;l) (C.17)
Substituting in a further Diophantine equation:
2 2G{, D}, + A, Ff, = D1,C}2™® (C.18)

produces:

1p*7p
— KL n*—lppe -1 * *—1

Ty = (DopAj, MA; Dy, — G5, AS 27 (G, Dy, + A F27) Dyt

= (DypAMAS Dy, — G$,A527'GY
— G5,z ' Fl,2® Dy — 29 D Ff,2 ' D1nCy DY)
= [DopAi, MA;'Dyy — G, A5 27 G

— (D51 (DG, 27 Fll2% + 29 Ff,2 7' D12C ) DY (C.19)

The above expression is hence split into two parts where T, = T — T;. The
stable part is 7} in square brackets and the unstable part, 7}, is in curly brackets. |
Earlier, M was defined as M = (I + KW)~'K. Noting that (I + KW)K =
K(I+WK), it is also possible to state M = K(I+WK)~'. Hence M+ MWK =
K = MA;'A, + MA;‘B,,K = K, leading to MA;' = K(A, + B,K)™'. The

stable term can now be expressed as:
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Tf = [DupAiMA; Dy — G5AS 27'GY)
= DopA7 K (A + ByK) ' Dyp
- G$,A,'27'GI,D} (A, + B,K)(A, + B,K) ™' Dy,
= (DupA, K - G5,A ' 27'G{,D3} (A, + ByK))(A, + B,K) ™' Dy,
= ((Dapd;, = G54, 27 G, Dy By) K

1pp

- G$,A;127'G1,D3} A,) (A, + B,K) ™' Dyp (C.20)

Multiplying Diophantine equation (C.16) by By,, and a further Diophantine equa-

tion:

29D, Hf, — F{,B, = (A} R. + B},G.)z™% (C.21)

by A;, and adding, obtain the control implied equation:

DG, By, + DL, H)Ayy = (B}, Q.+ A},GY) By, + (A}, R. + B},Go) A,y
= D, (G5, By, + Hi)Ayy) = Bi,Q.By, + AL,GiBy, + A} R.Ayy + B],G Ay
= GfBip + Hi,Ajp = Dg (C.22)

Substituting (C.22) into (C.20), the first two terms become:

DAy, - G5, A5 27'Gf,D; B,

1p*%p

= (G5,ByAy, + Hf, - G5,A>'27'G{ D3 B,) (C.23)

Noting Bl Al—l = A—IB , Bl A_1 =A~1B ’ A1 = Al and 31 = CQ]BI .
P*1p i P 1p P P P p p P

(G, B AL, + H, — GS A-lz-lc{pD;;B,,)

1p*°p

= G54, (ByAy, — z“G{ngplApBl,,)A,'pl + Hf,

I
Q

o ASN(A, - GI, D3} ACnz™") By, AL, + HE,
= G,A;'(I -G, Dy} ACnz"" A1) B, + HE, (C.24)



Multiplying Diophantine equation (C.18) by Cs,, where Cy, = Cb,Dio, and a

further Diophantine equation:

2 H{,D}, — Cyz ' Ff, = Rn Az (C.25)

by A, and adding, obtain the filtering implied equation:

CoGY, Dy, + A H{, D}, = C2,D12Cjj, + A,Rp A,

= (CypGY, + A H)D;, = C4Cj, + ARy Ay,
= Co,GY, + A,HI, = Dy (C.26)

Using (C.26) and the fact that Cy, = A,Cy 27" A", the bracketed term in (C.24)

may be written as:

(I - Gf,D3} A,Co 271 A51)
= (I - G{,(CouGl, + A HI) 7 A,Ca127 A1)
= (I -Gl(CyGY, + A,H])Cyy)

(I - G, (H{; A, Cop G, + NV HYT A1 Cyy) (C.27)

Noting that (G{,H{, " A;1Cop + 1)GY, = G{,(H]; A;1C5,GY, + I), hence:

(I - G{,Dg} A, Cn 27" A1)
= (I-GL,(H{'A;'CyGl, + 1) H{ A5 Cyp)
= (I - (GLHL; ' A;'Cop + DTG HI; A, Cry)
= (GLH'A;'Cyp + D)7V (GLHL A Cop + 1) — G H{ A1 Cy)
= (I+GH{'A;'Cyp) ™! (C.28)

Substituting back into (C.24) obtain:
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DyAL) - GgpA;‘z—lc{,,D;; B,

= G$,A,'(I+ Gl H{,'A;'Cy,) ' B, + HS, (C.29)

From (C.26):

G{pH{p—lA;lé2PG{p + G{pH{p_lA;IAP}]{p = G{PH{P_lA;lDdP
= (GLH{,'A'Cop + GY, = G H['A'Dy, (C.30)
= G,Dg'A, = (I+G{H{'A'Cy,) G H]!

Substituting both (C.29) and (C.30) into (C.20), the final expression is:

T = [DpAy MA; Dy - G A, 271G

P 1p=7p
= ((DaAj, - G5,A4;'27'Gl, Dy, B K
- G5, A 2 G D A (Ay + B,K) ' Dy,
= (G5, A, (I + G, H]; ' A, Cop) ™' By + Hi K
= G,A T (I + GLHL T A Cop) ' G HITY) (A + B,K) ™' Dyp

= Hi,((I + H{; 'G5, AN (I + G H], ' A7 Cop) ' By) K — HEGS, A5 2!

1p*7p

(I + GLH{ ' A71Cop) " G HL ) (A, + BK) ™' Dy (C.31)

Recall that the integrand may be written as:

I. = trace{TyT;} — Io = trace{(T} - T;)(T} —T;)*} - Io (C.32)

To minimise the complex integral of I, it must first be noted that the cross-terms

integrate to zero, allowing (5.27) to be stated as:

. o dz
»= 35 trace{T;T/* +T; T;*} - 100? (C.33)

=1



The T; and I terms are independent of the controller choice, hence the optimal

control problem reduces to minimising:

1 dz
5 ey 92
4= 50 ftrace{Td T, }2 (C.34)
|z]=1

which is achieved when 7] = 0. The minimum cost is therefore:

1 . dz "
Jmin = % f trace{Td Td } == Ic()? (C30)
|z|=1
The expression for the optimal controller is derived by setting (C.31) equal to

zero. Therefore:

(I + H{ G, A (I + GLHTT A1 Cop) ' By)K
= Hi'G,A;'27'(I + G H{ ' A5 Cop) G HI (C.36)

Hence:

K = (I+H'G,A NI+ G{,,H{,,“A;‘C’gp)‘pr)“l

Hi'GLA 27 (I + G HI AL Cy) G HE! (C.37)

Defining K. = Hf,,'lep, Kp = G{,H{;l, and noting that Cy, = A,C‘glz"xi;l,
and B = 2By:

K = (I+KAM+KpCnz AN 'By) KA 27 (T + Kz P AN Ky
= (I + KC(Z"IP - KﬂCm)“lB)‘ch(z/ip + Kflcgl)_lKﬂ (038)

Note that (I+ K (24,+KpnCa) 'B)K, = K. (I+(24,+ K7, C21) ' BK,), hence:

K = KC(I + (Z/ip + Kf]Cm)—lBKc)_l(Zfip + Kflcgl)—ll(ﬂ (039)
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Further, note that (I + (24, + K;Cy) 'BK,) = (24, + K51Ca1) ™} ((24, +
K71 Cy) + BK,), giving:

K = Kc(z.ip + KﬂCm + BKC)_I(ZAP + I\’ﬂCzl)(Zfip + Kflcgl)—.ll\,ﬂ
= Kc(zﬁp + K,1021 + BKC)-IK‘” (C.40)



Appendix D

Adjoint Operator in Chapter 6

For time-invariant discrete-time systems, the output may be calculated from the

convolution sum:

= Y w(t—r)u(r) = W(zu(t) (D.1)

T=-00
where y(t) is the system output, w(t — 7) is the system impulse response and
u(7) is the system input. For a time-varying system, the impulse‘response does
not depend only upon the time elapsed from the input at 7 to the present time,

t. Hence, the convolution sum becomes:
t

y(t) = Y wit, T)u(r) = (Wu)(t) = W(t, 27 u(t) (D.2)

T==00

Therefore, the inner product:

< z(t), (Wu) Z z(t) > w(t,m)u(r) (D.3)

Interchanging the order of summation:

z(t), (Wu)(t) >r= Z[Zw (t, 7)z ()] u(r) (D.4)

==T t=71

then changing the variables of summation:
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T T
DD W (r t)a(n)] u(t)

t==T 7=t

< (W % 2)(t), u(t) >r (D.5)

< z(t), (Wu)(t) >r

In the limit as T — oc, (W*z)(t) = Y22, wT(r,t)z(r) = WT(t,2)z(t), thus

proving the result in equation (6.13).



