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Self-organized magnetization patterns in cold atoms

by Ivor Krešić

This Thesis reports on a realization of self-organized magnetization patterns in a

cloud of cold atoms driven far from equilibrium by a pump laser beam. The exper-

iments are performed in the single mirror feedback configuration, where transverse

ordering occurs due to amplification of fluctuations in the atomic medium at crit-

ical lengthscales via the optical non-linearity and the Talbot effect. For a linearly

polarized pump beam a generation of modulated light with orthogonal polariza-

tion is seen to occur, signaling the presence of a polarization instability. Imaging

of the refractive index modulations at the end of the cloud reveals complementary

regions of the two orthogonal circularly polarized components of the imaged light,

which is related to the ordering of atomic spins. A detailed investigation of depen-

dence of pattern properties on the direction and strength of the applied B-fields

is presented. In addition to this, a theoretical model describing the dynamics and

coupling of atomic magnetic moments and the laser light in the relevant parame-

ter regime is developed and shown to provide good agreement with results of the

experiment.

Non-equilibrium self-organization of atomic degrees of freedom in cold gases can

in some cases be mapped onto phase transitions in condensed matter systems. In

this respect, the single mirror feedback configuration is particularly interesting as

it provides a simple arrangement where ordering breaks the continuous transla-

tional and rotational symmetries of the initial system.
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Chapter 1

Optical pattern formation in the

transverse plane

In this introductory Chapter the theoretical background required to understand

the main results of the rest of the Thesis is given. An introductory outline of the

study of light-induced self-organization of atomic degrees of freedom is given first.

This introduction is followed by a heuristic discussion on the particular system

studied in this Thesis, the single feedback mirror (SFM) setup. Some remarks

are made on the nature of the non-linearity employed in the pattern formation

process. In the last Section of this Chapter an introduction of some of relevant

the concepts of dynamical systems theory is made, and shown how it relates to

the results of this Thesis.

1.1 Introduction

In this Section an overview of the results on self-organization in optical systems

is presented. The first part is devoted to the work on transverse patterns in non-

linear systems, discussing the pioneering studies performed in the 1990s and the

modern implementations of these ideas. The second part describes the more recent

work done in cold atoms, commonly referred to as cold atom simulations. Some

1



Chapter 1. Optical pattern formation in the transverse plane 2

important results are outlined, along with potential connections to the field of

quantum technologies.

1.1.1 Transverse patterns in non-linear optics

The term transverse optical instability describes the instabilities occurring in the

orthogonal plane of optical systems laser driven along a single axis. The study

of transverse instabilities in optical media driven by counter-propagating (CP)

beams started in the late 1980s with e.g. work concerning oscillatory instabilities

in atomic vapors by Grynberg et. al. [1] and Gauthier et. al. [2] and static

instabilities in a Kerr medium by Firth et. al. [3]. In 1990 a scheme called

the single feedback mirror configuration (SFM) was devised by Firth [4] which

was a simplification with respect to the CP arrangement and allowed for better

experimental control of pattern lengthscales than in the CP case. This scheme

was subsequently employed for experimental observations of pattern formation in

liquid crystals [5, 6, 7, 8], thin organic films [9], photorefractives [10, 11] and alkali

vapors [12, 13, 14].

In the SFM scheme, as will be explained in more detail in Section 1.2, the patterns

form due to the feedback provided by the mirror reflection and the optical non-

linearity of the medium. Even in a single type of medium, several kinds of optical

non-linearities can exist. The non-linearities utilized in the early pattern formation

experiments in atomic vapors were based on optical pumping into dark Zeeman

sublevels, which do not couple to the light [13]. More recent experiments, this time

using thermal cold atomic clouds as the medium, utilized different kinds of non-

linearities. The experiments of Gauthier et. al. [15, 16, 17] in the CP configuration

used optical non-linearities based on pumping into the stretched (maximum spin

projection number |m|) Zeeman states, simultaneously cooling and polarizing the

atoms. These experiments reported on a formation of lattices (gratings) along

longitudinal and transverse directions causing modulations of the atomic densities

to occur. Another set of experiments was done in the group of G. Labeyrie at

INLN, where the optomechanical [18] and the saturable two-level non-linearities
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[19] were used to observe patterns in cold atoms in the SFM configuration. A

polarizing beam splitter (PBS) was inserted inside the feedback loop to make

sure that the light polarization is preserved in the pattern formation process and

the patterns can be understood in the scalar framework. The optomechanical

non-linearity [20, 21] is based on bunching of the atoms in regions of minimum

intensity (for a detuning ∆ > 0) by the optical dipole force [22]. In steady state

this results in modulations of atomic density in the transverse plane.

In this Thesis, the SFM configuration is used to create self-organized patterns

in the magnetic sublevels of the optical transition used. The difference in the

setup with respect to the experiments of Ref. [18, 19] is in removing the PBS

from the feedback loop, allowing the polarization degree of freedom of the light to

participate in the pattern formation process. The resulting polarization instability

is similar to the one observed in the group of W. Lange [23], however there are some

differences in the physics of these two systems. The experiments of e.g. Ref. [13]

use hot vapors with Doppler broadening due to atomic motion on the level of ∼ 1

GHz, which is avoided in the experiments reported here by using a magneto-optical

trap to reduce the Doppler width below the transition linewidth. The Doppler

broadening is related to the Doppler effect, due to which the frequency of the light

seen by the moving atom either increases (for atoms moving toward the direction

of the light beam) or decreases (for atoms moving away from the direction of the

light beam). The other difference is in the level structures of the Na atoms used in

[13] and the Rb atoms used in this Thesis. The J = 1/2→ J ′ = 1/2 transition of

the Na line allows only for dipole (spin) physics, whereas the F = 2→ F ′ = 3 can

in principle allow even the quadrupole terms to play a role (for a discussion of the

meaning of the magnetic multipole nomenclature in this context see Chapter 2).

The quantum numbers J and F denote the total angular momentum of the valence

electron and the sum of the nuclear spin and total electron angular momentum,

respectively. The transition F = 2 → F ′ = 3 is modeled in this Thesis by the

minimal model capturing all the relevant physics, which is the F = 1 → F ′ = 2

transition, and the main physical effects leading to self-organization are shown to

be dipolar in origin.
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1.1.2 Self-organization in cold atomic gases: simulating

condensed matter physics

The idea of using cold atomic gases to study condensed matter phenomena in a

more controlled setting has an almost 20 year history [24, 25, 26]. The study

of self-organization, where the ordering occurs in the atomic degrees of freedom

not confined to fixed regions of space by an external potential, is one branch

of this kind of research [27]. One notable example of an experiment studying

self-organization in a Bose-Einstein condensate (BEC) placed in a transversely

pumped single mode Fabry-Perot cavity is reported in Ref. [28], where a Dicke

phase transition of the atomic motional degrees of freedom is observed. A Dicke

phase transition occurs in systems described by the Dicke Hamiltonian [29], where

the cavity photons coherently excite the collective atomic modes, in this particu-

lar experiment given by discrete eigenstates of the momentum operator [28], when

both the cavity mode and the collective atomic modes reach a macroscopic oc-

cupation. The initial experiment was based on the atomic ordering into odd or

even wells of the generated cavity potential thus breaking only a discrete sym-

metry, however a recent modification of the experiment reports on a formation of

a supersolid-like phase by breaking of a continuous symmetry [30]. A supersolid

phase occurs spontaneously when matter possesses both the quantum phase and

crystalline order, breaking the continuous translational spatial symmetry in the

process [31]. A wealth of thermodynamical phases is also predicted to occur for

a BEC trapped in a multimode cavity [32, 33, 34, 35]. Other innovative ideas

concern using photonic crystal waveguides to trap the atoms by evanescent fields,

and engineer the waveguide dispersion relation to control the light-mediated atom-

atom interactions [36, 37]. Self-organized phases were predicted to occur in BECs

in the single feedback mirror configuration [38, 39] and in free space [40], with

realizations in ring cavities [41]. Current experiments in thermal cold atoms used

single mode cavities to achieve cavity cooling and self organization [42, 43] and

also the counter-propagating [15] and single feedback mirror [44, 18] beam config-

urations. A wealth of theoretical proposals has been put forward in recent years
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to study the dissipative dynamics of thermal ensembles in Fabry-Perot cavities

pumped transversely [45, 46].

In addition to the potential use in studying analog condensed matter systems,

some intriguing technological prospects exist for the patterns of the kind studied

in this Thesis. The theory of Grynberg and Lugiato [47] showed how squeezing

of either the difference between the intensities or the phases of two opposite side-

bands can occur for transverse patterns in the single-mirror feedback configuration.

Squeezing of light [48] and the atomic spin [49] has been shown to be useful for

precision measurements near the quantum limit. Another effect with potential use

in e.g. photonic quantum circuits is the high fifth order non-linearity observed by

Greenberg and Gauthier in a cloud of cold atoms pumped in the CP configuration

[50]. A proposal for realizing dissipative solitons in a thermal ensemble in a ring

cavity, potentially useful for quantum memory applications, has been considered

by Tesio et. al. [51].

1.2 Single mirror feedback configuration

1.2.1 Pattern formation mechanism

A particularly fruitful system for transverse pattern formation was first considered

in 1990 by William J. Firth [4]. In this work a nonlinear medium is optically

excited by a laser beam which is then reflected from a planar feedback mirror. The

refractive index fluctuations inside the medium cause a phase grating to form in the

beam at the end of the cloud, and interference patterns to emerge due to Talbot

diffraction [52] during the propagation from the mirror and back. The mirror

provides positive feedback which increases the refractive index modulations via the

optical non-linearity of the medium only to fluctuations with critical wavevectors of

modulus |qc| determined by the Talbot effect and mirror distance. Self-organized

patterns can thus arise spontaneously from the homogeneous initial state, breaking
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both translational and rotational symmetries of the initial system in the plane

transverse to the pump beam.

Figure 1.1: Principle of single-mirror feedback mechanism. The plane wave
input beam impinges on the cold atomic cloud used as the optically non-linear
medium. The initial refractive index fluctuations in the optically nonlinear cloud
of cold atoms are converted into amplitude modulations only for modulations
with lengthscales of Λc =

√
4λd in the self-focusing medium. The backward

propagating beam EB with a modulated amplitude is a result of interference of
the sidebands with the zero order beam.

Using atoms as the nonlinear medium, first considered experimentally in Ref. [13]

adds another interesting layer to the problem. In case when the optical nonlinearity

is based on light interacting with magnetic sublevels of the atoms, diffractive

coupling of spatially separated regions inside the atomic cloud mimics magnetic

interactions. This type of interaction can be said to be mirror mediated, and

provides an alternative to the cavity mediated interactions used in many setups

with cold and ultracold atoms [43, 28, 53, 32]. The study of bifurcations occurring

in such systems may provide insight into magnetic phase transitions in condensed

matter.

The basic principle of pattern formation in the SFM configuration is illustrated in

Fig. 1.1, in a one-dimensional system. The plane wave laser beam with flat phase
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and amplitude enters a medium with a fluctuating refractive index. It is assumed

the fluctuations occur at all wavenumbers q, due to e.g. the random nature of

atomic motion in an atomic cloud. At high detuning ∆ � Γ1 (where Γ1 is the

natural linewidth of the optical transition), the absorption coefficient, decaying as

∆−2, can be neglected with respect to the refractive index, decaying as ∆−1 [22].

The influence of the medium on the plane wave field is then to change its phase as

ϕ = χqkL, where χq is the medium susceptibility, k is the longitudinal wavenumber

of the light and L is the length of the medium. The medium susceptiblity is related

to the refractive index nq given by

nq = n0 + ∆n(I) cos(qx), (1.1)

via the relation nq = 1 +χq/2, where n0 is the linear refractive index, while ∆n(I)

is the amplitude of refractive index modulation. The influence of the medium of

longitudinal length L on the beam is given by the equation [54]

∂E(x, z)

∂z
= ikχqE(x, z). (1.2)

It should be noted that, for reasons of convenience, the paraxial and propagation

equations [54] for the electric field used in this Chapter follow the convention

E ∼ exp(i(kx−ωt)) for the electric field, which is not the same as the convention

in Eq. (2.5) followed throughout the rest of the Thesis. The initial amplitude of

the refractive index modulation is small, so the electric field immediately after the

cloud can be Taylor expanded up to the first order in ∆n(I) to get

E(x, z = L) ≈ E0(1 + i∆n′(I) cos(qx)), (1.3)

where ∆n′(I) = 2kL∆n.
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1.2.2 Talbot effect

After the cloud, the beam undergoes free space propagation, governed by

∂E(x, z)

∂z
=

i

2k

∂2

∂x2
E(x, z), (1.4)

which is sometimes referred to as near-field diffraction [23]. This propagation

results in conversion of phase modulation into amplitude modulation over a quarter

of a distance known as the Talbot distance [52]. The transversely modulated term

in the above expression (1.3) propagates to the mirror and back and diffracts

according to Eq. (1.4), causing interference between the zeroth order and the

sidebands generated by the sinusoidal modulation of refractive index. During a

propagation for a distance 2d to the mirror and back this interference results in a

phase shift of Θ = q2d/k in the transversely modulated part of the field [4]. The

backwards propagating electric field EB is now given by

EB(x, z = L) =
√
RE0(1 + ie−i

q2d
k ∆n′(I) cos(qx)). (1.5)

For diffractive phase shifts of Θ = π
2

+ 2mπ (where m is an integer), the initial

phase grating is converted into an amplitude grating, for Θ = π + 2mπ it is

converted into a phase grating shifted by half a period, for Θ = 3π
2

+ 2mπ an

amplitude grating shifted by half a period and for Θ = 2π + 2mπ it is converted

back into the initial phase grating.

The effect of the medium nonlinearity and mirror feedback can now be seen clearly.

Growth of patterns out of a randomly distributed range of lengthscales relies on

amplification of phase gratings with intensity dependent amplitudes ∆n(I) by

conversion into amplitude gratings. In the linear approximation (1.3) a single

wavenumber, often called the critical wavenumber qc = 2π
Λc

(where Λc is the critical

lengthscale), has a much stronger growth amplitude than the other perturbations.

In a self-focusing medium (∆n(I) increases with I), the phase grating is amplified

if an intensity modulation with the same phase and period is reflected onto it,

meaning the critical wavenumber of the growing fluctuation is qSFc =
√

kπ
2d

, which
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has a lengthscale Λc =
√

4λd, for light of wavelength λ and the mirror distance

d. A self-defocusing medium (∆n(I) decreases with I) experiences a growth of

phase modulation if an intensity modulation with a π shifted period is reflected

onto it, and the critical wavenumber is qSDc =
√

3kπ
2d

, with the lengthscale given

by Λc =
√

4
3
λd. For intensities I higher than the threshold intensity Ith, the

nonlinear modulation amplitude ∆n(I) becomes sufficiently high to counter the

thermal fluctuations and a steady state pattern emerges.

1.2.3 Optical pumping nonlinearity

The optical nonlinearity relevant for patterns studied in this Thesis is based on

pumping the atoms into states with maximum magnetic projection quantum num-

ber |m|, often called stretched states. As described in Chapter 2, the minimal

model required to describe the Zeeman sublevels of the experimentally probed

atomic transition is the F = 1→ F ′ = 2 system. In this system, the main driver

of instability is orientation, equal to the difference between populations in the two

stretched states.

The mechanism of nonlinearity is depicted in Fig. 1.2. In case when optical

pumping rate is smaller than the depumping rate, in cold atom experiments set to

γ ∼ 10 kHz mainly by stray transverse B-fields, the populations are spread evenly

between all ground states. The optical response of the medium is then given by

a weighted average between all optical coherences with weights proportional to

Clebsch-Gordan coefficients [22]. When the pump rate P+ is greater than the

depump rate γ, the population of the stretched state increases. If the laser beam

is red detuned from the excited state energy levels, the refractive index n of an

optical transition is n > 1 [22]. The refractive index of an atom pumped into a

stretched state coupling to the light, also called a bright stretched state, will in

the case of the F = 1→ F ′ = 2 transition be increased by a factor of 9/5 (see Eq.

(2.26)).
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Figure 1.2: Kastler diagrams describing optical pumping into the m = 1
stretched state. For pump rate P+ � γ, where γ is the depumping rate, a
transfer of population into the m = 1 stretched state occurs at timescales of a
few scattering rate frequencies. Atoms in stretched states interact more strongly
with the light due to higher Clebsch-Gordan coefficients.

Using linear light, a sum of σ± components with equal weights, as input, produces

a polarization instability. This happens because the two light components have

opposite signs of refractive index for a given population distribution. The feedback

then causes the two light components to spatially separate as is illustrated in

Fig. 1.3. The initial atomic spin fluctuation modulates the phase of the two

light components upon traversing the cloud, via the refractive index modulations

∆n± of σ± light. The phase modulations of the circular light components are

now shifted by π, i.e. peaks of the spin variable w (defined as the difference

between populations in the two stretched states (2.11)) correspond to peaks of

the phase modulation of the σ+ light component ∆ϕ+ and troughs of ∆ϕ−. The

phase to amplitude conversion via the Talbot effect then converts the phase ∆ϕ±

modulations into amplitude modulations ∆P±, reinforcing the initial modulation
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in atomic spin, thus closing the feedback loop. The excess positive (negative) light

in the transverse plane is then effectively localized in regions of positive (negative)

spin, allowing for in-situ imaging of atomic magnetization by simple near-field

imaging of the transverse profile of the circular light polarization components inside

the cloud. Different techniques such as time-of-flight [55] and Bragg diffraction

[56] could also be used to probe the magnetic ordering inside a cloud of ultra-cold

atoms.

Figure 1.3: Ordering of the atomic spins in the single-mirror feedback con-
figuration. (a) a modulation ∆w with a critical wavelength Λc of the spin
variable w = ρ1,1−ρ−1,−1 (where ρ1,1 and ρ−1,−1 are the populations of the two
stretched states, as defined in Sec. 2.1.2) converts to a (b) refractive index ∆n±
modulation which causes a phase modulation ∆ϕ± of the two circular beam
components σ± traversing the cloud. Diffraction to the mirror and back causes
the phase modulation to convert to an (c) amplitude modulation ∆P±.
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1.3 Describing systems driven out of thermody-

namic equilibrium

1.3.1 Dynamical systems theory

Systems driven far from equilibrium exhibit transitions from homogeneous into

non-trivially ordered states, which typically break the symmetry of the initial sys-

tem. The process of self-organization of these ordered states is commonly referred

to as pattern formation. A common way to describe pattern formation is by using

the concepts of the branch of mathematics known as dynamical systems theory.

The main question of this approach is: what happens to a point in phase space

as time progresses? This in practice amounts to writing and solving a set of non-

linear partial differential equations describing the “microscopic” dynamics of the

system. The microscopic equations do not need to model the system down to the

atomic level, as is exemplified in studies of fluid dynamics, where Navier-Stokes

equations are used as the dynamical equations. The basics of dynamical systems

approach are outlined in great detail in numerous introductory textbooks, such

as the ones by Strogatz [57], Guckenheimer and Holmes [58], and review articles,

such as the one by Cross and Hohenberg [59].

As non-linear differential equations are in most cases impossible to solve analyti-

cally, techniques of dynamical systems theory can provide some understanding of

the system properties, e.g. stability of the homogeneous solutions to perturbation

[59, 60]. Another great advantage of the approach is the universality of techniques

and approximations used to solve the dynamical equations. This however often

comes at a cost of obfuscating the physical mechanisms at play, and insight can

be gained by augmenting the dynamical analysis with a description based on non-

equilibrium statistical physics, or even simple phenomenological approaches. In

addition to that, dynamical systems modeling relies greatly on use of computer

simulations, which means the behavior of larger systems with stronger interactions

is in general more computationally expensive to model.
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Dynamical systems can be divided into two classes: conservative (Hamiltonian),

where the available phase space volume is conserved during temporal evolution

and dissipative, where the available phase space contracts to zero during temporal

evolution. The work presented in this Thesis deals with an example of a driven

dissipative system, where a steady state is reached when the input (driving) energy

exactly compensates for the energy dissipated by the decay processes inside the

system.

1.3.2 Attractors

Although closed form solutions of coupled non-linear differential equations are

rare, the qualitative understanding of the nature of the steady state solutions

and system dynamics is in many cases readily achievable. Starting from given

initial conditions, a dynamical system evolves towards an attractor, constituting

a portion of the phase space. A regular attractor has a simple geometrical shape,

typically a fixed point, limit cycle or a torus, whereas a chaotic attractor possesses

unusual geometric properties [38].

A stable fixed point attractor is an equilibrium point in phase space stable to

small disturbances [57], which is why it is sometimes referred to as the steady

state solution. In addition to stable fixed point attractors, a system can possess

an unstable fixed point attractor, which is a point in phase space away from which

the system tends to move. An example of a system evolving towards a stable

fixed point attractor is an overdamped oscillator, which at long timescales evolves

towards a stationary state of lowest energy. Limit cycles constitute closed orbits

in phase space, and are characteristic solutions of periodically oscillating systems,

with the paradigmatic example being the non-damped harmonic oscillator.

Systems driven out of thermodynamic equilibrium, such as the one studied in this

Thesis, commonly tend towards stable fixed point attractors. One example of such

solutions are the aforementioned patterned states, appearing commonly in driven

systems with dissipation. The first study of pattern formation was performed by
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Turing in 1952 [61], in a paper modeling reaction-diffusion processes relevant for

biological stucture formation. Pattern formation has since been studied under

various names such as dissipative structures formation [62], synergetics [63] and

self-organization [64]. The range of systems where pattern formation was observed

is exceptionally broad, including, among others, hydrodynamical, chemical, optical

and biological systems [59]. This point conveniently illustrates the fact of universal

applicability of dynamical systems theory. The universality of pattern formation

processes allows for using optical systems as testbeds for studying the general

properties of driven systems dynamics in a well controlled setting [60].

1.3.3 Bifurcations

Behavior of a dynamical system often depends critically on its parameters. An

important element in studying driven systems is the concept of a bifurcation,

which can be defined as a qualitative change occuring due to a change in one or

more system parameters. The said change most commonly constitutes a creation,

destruction or a change in the stability of the fixed points of the system.

There are three kinds of most commonly occurring bifurcations: saddle node,

tricritical and pitchfork. A saddle node bifurcation is characterized by a creation

or a destruction of a fixed point above a critical parameter value. In a tricritical

bifurcation, a given fixed point changes stability at the critical parameter value. An

example of a tricritical bifurcation occurs in the simple model of a solid state laser,

where a non-zero photon (i.e. lasing) solution is found after the pump parameter

exceeds the critical value [57]. The bifurcation most relevant for the system in

this Thesis is the pitchfork bifurcation. A pitchfork bifurcation commonly occurs

in systems possessing symmetries, and is characterized by a creation of multiple

fixed points upon exceeding the critical parameter value.

There are two qualitatively different kinds of pitchfork bifurcations: supercritical

and subcritical. In a supercritical bifurcation, at a critical point two stable and

one unstable fixed points arise from a single stable point. Supercritical phase
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transitions are known to occur in statistical models of magnetization [57], and in

some cases analogies can be found with the second order phase transitions familiar

in thermodynamics [59]. Typically, subcritical bifurcations are characterized by

an existence of one stable and two unstable solutions below threshold, and a single

unstable solution above it.

The two types of bifurcations relevant for the pattern forming system studied

in this Thesis are depicted in Fig. 1.4. The first figure shows a supercritical

bifurcation, with its two symmetric stable branches with a finite order parameter,

which can be loosely defined as a measure of order in the system and is the state

variable of interest in the present description, and an unstable branch arising

continuously from the zero amplitude stable branch as the critical parameter ε

(for definition see next Section) crosses its zero value. Below threshold the system

is in the state with zero order parameter, whereas above threshold, the system

selects a solution with a finite order parameter. The order increases continuously

with increasing the control parameter, as is the case for the zero longitudinal B-

field results of Chapter 4. The order parameter in this case is the diffracted light

power, while the control parameter is the pump beam intensity.

Figure 1.4: Dependence of the order parameter β on the control parameter
ε for the (a) supercritical and (b) subcritical bifurcation. Solid lines indicate
stable fixed points and dashed lines indicate unstable fixed points. The Figure
is modified from Ref. [57].

The second figure shows a variant of subcritical bifurcation with a saddle point

bifurcation. The saddle point bifurcation occurs at the point ε = εs, where two
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new stable fixed points with finite order parameters appear from a single stable

fixed point. The subcritical bifurcation occurs at ε = 0, where the zero order

parameter stable fixed point disappears, and the system selects a stable fixed

point with finite order parameter. The behavior of this type of systems is highly

dependent on the direction of the change of the control parameter. For increasing

ε, the system stays in the zero order parameter state until ε = 0, and then abruptly

jumps into a finite order parameter state. For decreasing ε, the system stays in

the finite order parameter state until ε = εs, and then jumps into the zero order

parameter state. This type of phenomenon is called hysteresis, and produces

discontinuous jumps of the order parameter upon scanning the control parameter

in a single direction, as seen in the finite longitudinal B-field case of Chapter 4.

In general, subcritical transitions can be mapped to first order phase transitions

of thermodynamical systems.

1.3.4 Linear stability analysis

Linear stability analysis is a useful technique for analysing the stability of dynam-

ical systems. The approach is based on analysing the stability of a homogeneous

(steady state) solution of the dynamical system of equations to small perturba-

tions, for a given value of the parameters. As was noted above, the occurrence of

an instability (bifurcation) is parametrized by a control parameter λ, setting the

strength of external driving, exceeding a critical value λc. For this purpose one

can introduce a dimensionless quantity ε

ε =
λ− λc
λc

(1.6)

and a transition is predicted to occur for ε ≥ 0.

In a generic case, the evolution of the system variables E(r, t) (vector) is described

by the equation
∂E

∂t
= G[E, ∂r, ∂

2
r , ε], (1.7)
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where the functional G depends on the system variables E, its derivatives and a

parameter ε. In general G is a functional of orders higher than the first in E, i.e.

the dynamical system is non-linear.

Figure 1.5: Growth rates Im(ω) vs. pattern wavevector q for three types of
instabilities, see text. The ε variable is defined as in Eq. (1.6). The Figure is
modified from Ref. [59].

Linear stability analysis consists of perturbing the homogeneous solutions Ej =

Ej
0 with small perturbations e(r, t), putting the perturbed system variables to

E(r, t) = E0 + e(r, t) into the evolution equations and keeping only linear terms

in the perturbation. The perturbation modes have a generic form

ej(r, t) = e0
je
iq·r−iωt, (1.8)

where q is the transverse perturbation wavevector, Re(ω) determines the per-

turbation frequency and Im(ω) its growth rate [59]. The subject of this Thesis

are stationary patterns, for which Re(ω) = 0. Upon the said linearization, the

dynamical equations have the form

∂E

∂t
= A · E, Ai,j =

δGi

δej

∣∣∣∣
E=E0

j

, (1.9)

with a set of eigenvalues ωi(q). From this set one can select a particular branch

ω(q), e.g. the one with the highest growth rate, and study the threshold properties

for pattern formation. Typically, the threshold properties are studied with respect

to varying the control parameter ε, as defined in (1.6).
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As depicted in Fig. 1.5 for a 1D case where q ≡ q, varying the control parameter ε

changes the shape of the imaginary part of ω(q). The critical parameter λc in (1.6)

is the lowest λ value for which the curve Im(ω) crosses the zero of the y axis. The

critical wavevenumber qc is defined as the wavenumber for which this happens.

As the perturbations depend on time as ej ∼ exp(−iωt), Im(ω(q)) determines

the stability condition of the patterns at a given wavenumber q, by determining

whether the the perturbations will exponentially decrease (Im(ω(q)) < 0), increase

(Im(ω(q)) > 0) or be marginally stable (Im(ω(q)) = 0), i.e. neither grow nor decay

in time. Below a critical point (ε < 0), the perturbations decay to zero. At ε = 0,

the perturbations are marginally stable. For ε > 0 there is a region of q values

where Im(ω) > 0, and perturbations grow exponentially with time.

Depending on the value of the critical wavevector qc, three different types of insta-

bility can occur. If the dispersion curve for ε = 0 crosses the the zero of the y-axis

at a finite value qc, the instability is said to be type-I. The threshold solutions

of type-I are patterns with symmetries determined by the amplitude equations

(see Sec. 4.2). The patterns studied in this Thesis are indeed instabilities of the

type-I. This is indicated in the fact that the wavenumber the with highest gain

has a finite value, meaning that the patterns, i.e. modes with finite wavenumber,

are the preferred solutions of the dynamical system of equations for ε ≥ 0. For

type-II instabilities the lowest wavenumber for which the curve crosses the zero of

the y-axis is qc = 0. The maximum gain for ε = 0 is thus for the non-patterned

solution. However, for increasing the control parameter to values ε > 0 there is a

bounded region where patterned solutions have the highest gain, and therefore are

preferred solutions. For type-III instabilities, the maximum growth rate for all ε

values and the crossing of the zero of the y-axis both occur at qc = 0. In type-III

instabilities the patterns thus do not form as the maximum gain always favours

the growth of a non-patterned state.
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1.3.5 Pattern symmetry selection

In addition to enabling the prediction of threshold conditions for pattern forma-

tion, dynamical systems theory allows for prediction of symmetries of the patterned

states. In two-dimensional non-linear systems, wave mixing determines the growth

of a superposition of Fourier modes ∼ eiqi·r, also called roll states or rolls, with

a critical wavevector radius q = qc. At intensities slightly above threshold, only

the lowest order (in amplitude) wave mixing terms are relevant, and the total field

variable E can be written as a superposition of three roll states with different

amplitudes Ai and wavevectors qi

E = E0

(
3∑
i=1

Ai(r, t)e
iqi·r + c.c.

)
, (1.10)

where the wavevectors lie on a circle of radius qc, i.e. |qi| = qc. The wave-mixing

equations close to threshold have been derived for the SFM configuration in a

rigorous manner (for a Kerr medium) by D’Alessandro and Firth in Ref. [65].

Concentrating on the driving of a particular roll state with the label i = 1, the

equation is [65], [66]

∂tA1 = µA1 + η123A
∗
2A
∗
3 −

3∑
l=1

(γ1l(θ1l)|Al|2)A1 + ... (1.11)

A simple heuristic reasoning leads to the same equations. This is because the three

terms on the RHS are the only possible way to have wave-mixing of three rolls

and satisfy the phase matching condition for the two sides of the equation, for all

three wavevectors having a length of qc. As illustrated in Fig. 1.6, for the second

term on the RHS of Eq. (1.11), describing three wave mixing, these conditions

lead to the equation q1 = −q2 − q3. This equality fixes the angles of the roll

wavevectors at 120◦, causing a pattern with hexagonal symmetry to grow out of

the background noise at threshold. Turning the attention to the first and third

term, one sees that the phase matching condition is always satisfied, and a pattern

with rolls at any angle, with the probability determined by the function γij(θij),

can grow at threshold.
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The question of which symmetry patterns does the system choose at threshold is

thus determined by the existence of inversion symmetry in the non-linear system.

It is shown, e.g. in Sec. 5.3 of Ref. [66], that in practice the inversion symmetry

is determined by the condition that the equations of montion are invariant to the

transformation of the perturbation of the field variable δE: δE → −δE. This

then implies that the term η123 in Eq. (1.11) vanishes for systems with inversion

symmetry, and does not vanish for systems with broken inversion symmetry. It

is shown in Ref. [66] how the inversion symmetry is then broken if a longitudinal

B-field is applied to the optical medium, for an optical transition with a spin 1/2

ground state.
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Figure 1.6: Selection of pattern symmetries. (a) the case of broken inversion
symmetry of the system. (b) the case of preserved inversion symmetry of the
system. Red arrows indicate the modes that participate in the amplitude equa-
tion for A1 (1.11), green arrows indicate the modes that do not participate in
the amplitude equation for A1.



Chapter 2

Modeling the atom-light

interaction

In this chapter the model of atom-light interaction between the pump laser and

the Zeeman sublevels of the atomic medium is presented. The approach is based

on Liouville equations for density matrix dynamics under a semiclassical Hamil-

tonian representing the action of laser driving. As was exemplified by discovery of

the Bloch vector picture [67], one advantage of using the density matrix formalism

in laser driven systems is that visualizing the dynamics of both diagonal and non-

diagonal matrix elements can be done in an intuitive way. In two-level systems

the problem is well understood, since the laser field only acts by rotating the 3

component vector made of all the independent density matrix elements. Under-

standing the dynamics in situations where the atomic Zeeman sublevel structure

becomes relevant is a more involved task. For cases when the saturation parame-

ter of the transition is very small, one can neglect the populations and coherences

in the excited states and focus only on the dynamics of the ground level density

matrix elements. An example of this is the J = 1/2→ J ′ = 1/2 transition, which

can be simplified to a two level system in the low saturation limit [68, 69, 70].

A common approach used in magnetooptics is the expansion of the ground level

density matrix into tensor components with same symmetries as the elements of

the electrostatic multipole expansion [71]. The atom-light interaction is then seen

22



Chapter 2. Modeling the atom-light interaction 23

to be a consequence of the coupling of the multipole density matrix terms to the

electric fields, e.g. spin in the J = 1/2 example. The system studied experimen-

tally in this Thesis is the F = 2→ F ′ = 3 transition of the D2 line of 87Rb atoms

in the single-mirror feedback configuration. A minimal model of this transition

is the F = 1 → F ′ = 2 transition, which in the low saturation limit leads to a

three ground level system, with multipole expansion terms up to the quadrupolar

order. The model will be shown to capture all relevant physics of the magnetiza-

tion patterns in the single mirror feedback configuration in Chapters 5 and 4. In

this Chapter the equations of the F = 1 → F ′ = 2 system are presented for the

first time. The first Section deals with laying down the theoretical framework of

semiclassical light-atom coupling in the density matrix approach and outlines the

approximations used for deriving the equations. In the second Section the equa-

tions are presented and discussed for cases of only longitudinal B-field present

(four equations), and the three-dimensional B-field case (eight equations). The

expressions for atom-light coupling to the multipole terms are presented and dis-

cussed as well. In the final Section the results of numerical simulations of the full

system (with excited state populations and coherences included) are shown to give

good agreement to the results of the reduced system of equations for the relevant

parameter region.

2.1 Theoretical framework

2.1.1 Semiclassical atom-light interaction

Atom-light interaction is modeled in the semiclassical limit where atomic energy

levels are quantized and the laser electric field is classical. A density matrix

approach is used to describe the system whose dynamical evolution the Heisenberg

picture is described by a Liouville type equation for the density matrix ρ̂ ≡ ρ with

phenomenological decay and repopulation rates, given by Γ̂ and Λ̂ respectively,

i ~
dρ̂

dt
= [Ĥ, ρ̂]− i ~ 1

2
(Γ̂ ρ̂+ ρ̂ Γ̂) + i ~ Λ̂. (2.1)
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The decay matrix is a diagonal matrix with elements proportional to the ground

and excited state decay and decoherence rates. The decay rates parametrize the

decay of populations, while decoherence rates describe the decay of the off-diagonal

(coherence) terms of the density matrix. The repopulation matrix describes the

repopulation of the ground level populations and coherences by the decay of the

excited levels. Written in this way, following Ch. 3 of Ref. [71], the repopula-

tion matrix Λ̂ consists of terms proportional to the decay or decoherence rates

multiplied by the excited state density matrix elements. The equations for the

density matrix elements derived from (2.1) are in the context of atom-light in-

teraction called the optical Bloch equations. The density matrix ρ is a matrix

with ((2F + 1) + (2F ′ + 1))2 elements, where F, F ′ are the quantum numbers of

the ground and excited state hyperfine angular momenta, so the equation (2.1)

turns into a set of ((2F + 1) + (2F ′ + 1))2 coupled equations for as many density

matrix elements (not all independent due to the density matrix being hermitian).

The Hamiltonian H includes the electromagnetic dipole interaction between the

classical electromagnetic field and the atoms. The level structure of the system is

shown in Fig. 2.1, along with optical and magnetic couplings. The optical cou-

plings are denoted by the Rabi frequencies of σ± circularly polarized light Ω± and

the magnetic couplings by the Larmor frequencies Ωx,y,z.

The total Hamiltonian can be divided into three parts

Ĥ = Ĥ0 − µ̂E · Ê− µ̂M · B̂, (2.2)

where Ĥ0 is the internal atomic part of the Hamiltonian, E,B are electric and

magnetic field operators, respectively and

µE = µxx̂ + µyŷ, µM = µM(x̂ + ŷ + ẑ) (2.3)

are the electric and magnetic dipole operators (with ê± ≡ ê±1 = ∓(êx ± iêy)/
√

2

and êx = −(ê+ − ê−)/
√

2, êy = i(ê+ + ê−)/
√

2), where µx,y can be expressed as
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Figure 2.1: Hyperfine level structure of the simplified level system. Red
dashed arrows: Optical coherences with relevant Clebsch-Gordan coefficients,
blue dashed arrow: ground state coherences generated by transverse B−fields.
Notation: Ω± - Rabi frequencies, Ωx,y,z - Larmor frequencies.

combinations of transition operators of σ± transition µ± by

µx = − 1√
2

(µ+ − µ−) , µy =
i√
2

(µ+ + µ−) . (2.4)

It is convenient to write the electric field components E± in terms of on-resonance

Rabi frequencies Ω± =
µdipE±

2
√

5~ where µdip is the reduced dipole matrix element.

The absolute values of Rabi frequencies are related to the intensities of the σ±

beam components as |Ω±| = Γ2

√
I±

10Isat
where Γ2 = Γ1

2
is the optical decoherence

rate related to the population decay rate Γ1 = 2π × 6.066 MHz and Isat = 1.669

mW/cm2 for circular light probing the F = 2 → F ′ = 3 transition of the D2 line

of 87Rb for all atoms in the stretched state |m| = 2 [22, 72]. The total electric

field is given by [68]

E(t) =
1

2

∑
q=±1

(−1)qEq(t)ê−qe
iωt + c.c. (2.5)
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Noting that the scalar product of vectors with complex components a and b is

(a,b) = a∗ · b, the relationship between the linear and circular electric field com-

ponents is now given by

Ex = ê∗x · E = − 1
2
√

2
(E+ − E−) + c.c., Ey = ê∗y · E = i

2
√

2
(E+ + E−) + c.c.

(2.6)

The normalized Hamiltonian Ĥ/~ of the system in the rotating wave approxima-

tion [22], with both quantization axis and the B−field in z−direction, is then



ggΩz 0 0 −Ω− 0 −Ω+√
6

0 0

0 0 0 0 −Ω−√
2

0 −Ω+√
2

0

0 0 −ggΩz 0 0 −Ω−√
6

0 −Ω+

−Ω∗− 0 0 2geΩz −∆ 0 0 0 0

0 −Ω∗−√
2

0 0 geΩz −∆ 0 0 0

−Ω∗+√
6

0 −Ω∗−√
6

0 0 −∆ 0 0

0 −Ω∗+√
2

0 0 0 0 −∆− geΩz 0

0 0 −Ω∗+ 0 0 0 0 −∆− 2geΩz


(2.7)

where gg, ge are Landé g−factors of the ground and excited levels, respectively.

The Hamiltonian for the transverse field case is presented in A.2. Inserting the

above Hamiltonian and the decay and repopulation rate matrices calculated by

the AtomicDensityMatrix Mathematica package [71] into Equation (2.1) gives a

system of 64 coupled differential equations for all of the density matrix elements.

In Sections 2.2.1, 2.2.2 it will be shown how this reduces to systems of 4 (for only

longitudinal B-field), and 8 (for a B-field with all three components) differential

equations, in the low saturation approximation (see (2.14)).

2.1.2 Multipole decomposition of the density matrix

The description of atom-light interaction can be simplified by decomposing the

density matrix in an appropriate basis. In the low saturation parameter limit (see
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(2.14)), this basis commonly consists of components of irreducible tensor opera-

tors T κq with rank κ [71]. The operators have rotational symmetries of real and

imaginary parts of spherical harmonic functions with angular momentum numbers

l = κ and projection numbers m = q. Formally, the decomposition of a density

matrix ρ describing a state with angular momentum F is written as

ρ =
2F∑
κ=0

κ∑
q=−κ

ρκqT qκ, (2.8)

where ρκq (scalar in Hilbert space) are called state multipoles of the density matrix

and T qκ is the contravariant [73] irreducible tensor operator. It is shown in Sec.

2.3.1 of Ref. [71] that the state multipoles are superpositions of density matrix

elements ρm′m written in the basis of eigenvectors of the Bz-field operator given

by

ρκq = Tr(ρT κq ) =
∑
mm′

(−1)F−m
′〈F,m;F,−m′|κ, q〉ρm′m, (2.9)

which gives a convenient way to construct the state multipoles. The covariant

T κq and contravariant [73] tensor operators are related via the formula T κ†q =

(−1)qT κ−q = T κq [71]. For F = 1 Zeeman ground sublevel system, the terms are:

rank-0 (one component), rank-1 (three components) and rank-2 (five components).

The tensors are commonly referred to in analogy with electrostatic multipole ex-

pansion terms as [71]: monopole (or population), dipole (or orientation, related to

ρ1
q) and quadrupole (or alignment, related to ρ2

q), respectively. The rank zero ten-

sor is the sum of ground state populations which is equal to 1 in the low saturation
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approximation. The components of the rank 1 and rank 2 tensors are

ρ1
−1 = − 1

2
√

2
(y1 + z1 + i(y2 + z2)),

ρ1
0 = 1√

2
w,

ρ1
+1 = 1

2
√

2
(y1 + z1 − i(y2 + z2)),

ρ2
−2 = 1

2
(u+ iv),

ρ2
−1 = 1

2
√

2
(z1 − y1 + i(z2 − y2)),

ρ2
0 = 1√

6
x,

ρ2
+1 = 1

2
√

2
(y1 − z1 + i(z2 − y2)),

ρ2
+2 = 1

2
(u− iv),

(2.10)

where the atomic variables used throughout this Thesis are

u = ρ−11 + ρ1−1,

v = i(ρ−11 − ρ1−1),

w = ρ11 − ρ−1−1,

x = ρ11 + ρ−1−1 − 2ρ00,

y1 = ρ−10 + ρ0−1,

z1 = ρ01 + ρ10,

y2 = i(ρ−10 − ρ0−1),

z2 = i(ρ01 − ρ10).

(2.11)

The terms most relevant for pattern formation studies performed in this Thesis

are the orientation w, alignment x and coherences u and v.

For comparison, components of the F = 2 ground state system can now be calcu-

lated. Using the formula (2.8), the reduced density matrix components of F = 2
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system up to quadrupole term are now

ρ1
−1 = − 1√

5
(ρ−1−2 +

√
3
2
ρ0−1 +

√
3
2
ρ10 + ρ21),

ρ1
0 = − 1√

10
(2ρ22 + ρ11 − 2ρ−2−2 − ρ−1−1),

ρ1
+1 = 1√

5
(ρ−2−1 +

√
3
2
ρ−10 +

√
3
2
ρ01 + ρ12),

ρ2
−2 =

√
2
7
(ρ0−2 +

√
3
2
ρ1−1 + ρ20),

ρ2
−1 = − 3√

7
(ρ−1−2 +

√
1
6
ρ0−1 −

√
1
6
ρ10 − ρ21),

ρ2
0 =

√
2
7
(ρ−2−2 − 1

2
ρ−1−1 − ρ00 − 1

2
ρ11 + ρ22),

ρ2
+1 = 3√

7
(ρ−2−1 +

√
1
6
ρ−10 −

√
1
6
ρ01 − ρ12),

ρ2
+2 =

√
2
7
(ρ−20 +

√
3
2
ρ−11 + ρ02).

(2.12)

An inspection of expressions (2.12) and (2.10) shows that the corresponding den-

sity matrix multipole expansion elements are equivalent, in the sense that each

multipole element is equal to the F = 1 term but with extra terms added due to

higher number of levels in the F = 2 case, and the numerical prefactors resulting

from the different Clebsch-Gordan coefficients in the two cases.

The usefulness of density matrix decomposition in irreducible tensor basis is ev-

ident when one considers the angular momentum probability surface, defined as

the probability of finding the system in the maximum projection state along axis

with angles (θ, φ) with respect to the z-axis

ρFF (θ, φ) = 〈FF (θ, φ)|ρ|FF (θ, φ)〉. (2.13)

Using the above expression with (2.8), and recalling that the symmetry of the ma-

trix element 〈FF (θ, φ)|T qκ|FF (θ, φ)〉 is determined by real and imaginary parts of

spherical harmonic functions Y κ
q (θ, φ), one can visualize the atomic polarization for

a system described by a given state multipole ρκq (or a superposition thereof). The

symmetries are important as they determine the anisotropy of optical properties

such as absorption and refractive index.
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Figure 2.2: Spherical harmonics determining the symmetry of irreducible
tensor components related to the indicated state multipoles. Red: positive,
blue: negative values.

Spherical harmonic functions related to corresponding state multipoles of the F =

1 system are shown in Fig. 2.2. The dipole terms (orientation) are in the first row,

while the quadrupole (alignment) terms are in the second. From the graphical

representation it is evident that the dipole terms have both preferred axes and

directions, whilst quadrupole terms have only preferred axes. Neglecting multipole

terms in derivation of the system dynamics, described in Sec. 2.1.3 can now be

explained from symmetry considerations. For the case when only B-field in the

z-direction is present, optical pumping can drive w and x but cannot drive y1± z1

and y2 ± z2. The moments u and v are then not equal to zero because they are

not driven directly by optical pumping but by the Raman-like two-level transition

(in case of linearly polarized light). When either or both x and y B−fields are

present, terms y1 ± z1 and y2 ± z2 can not be neglected because atoms polarize

along other directions than z.

2.1.3 Deriving the equations

Patterns are observed in the low saturation limit where the detuned saturation

parameter is

s(∆) =
I

Isat

1

1 +
(

∆
Γ2

)2 � 1, (2.14)

where Isat is the saturation intensity of the transition, ∆ is the beam detuning and

Γ2 is the optical decoherence rate. In the experiments, low saturation is achieved
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for high intensities by detuning the beam by |∆| > 10 Γ2 from resonance. As the

excited state population of each of the two-level transitions is given by ρee = 1
2

s
1+s

[22], this means that in first approximation the excited state populations can

be neglected relative to ground state populations. Additional simplification comes

from the fact that the optical coherences between excited and ground states created

by the laser evolve on much faster timescales than the ground state populations and

coherences, meaning that they can be adiabatically eliminated [68]. The adiabatic

elimination is a way of reducing the number of temporally varying degrees of

freedom in a system with multiple characteristic timescales.

The apparent difference of the system used in experiments with the theoretical

model is the simplification from F = 2 → F ′ = 3 to F = 1 → F ′ = 2 transition.

This however has proven not to be relevant, and even good quantitative agreement

of simulation and experimental results is seen. The practice of using simplified

models not exactly matching the experimental atomic transition is well known

in atomic physics, with the most notable example being the work of Ref. [74]

describing Sysiphus cooling. An advantage of using the simplified F = 1→ F ′ = 2

system is in reducing the number of coupled differential equations from 24 to 8,

which in turn reduces the computation time. This is important since e.g. in 2D

simulations one deals with grids of 128×128 sites which are mutually interacting

via mirror feedback. The reasons why even simpler models were not used are the

following. The non-linearity in F = 2 → F ′ = 3 is based on optical pumping

into bright stretched states, and is therefore self-focusing, as is revealed by the

lengthscale vs. mirror distance scan (see Fig. 6.2). This excludes models such as

F = 1/2 → F ′ = 1/2 and F = 1 → F ′ = 0 for which pumping into dark state

occurs. The simplest model where a pumping into the bright state occurs is F =

1/2→ F ′ = 3/2. This model was used e.g. in investigations of the Gauthier group

to explain the atom bunching induced optical non-linearity simultaneously cooling

and polarizing the atoms [16, 17]. The emphasis of these papers was however on

studying the effects of cooling of the atoms in a self-organized lattice, and no

systematic investigation of polarization of the light scattered off the patterns was

performed. The model has proved insufficient to explain some of the properties
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of the patterns reported in this Thesis, such as e.g. the Bz scan displayed in

Fig. 4.8 of Ch. 4, so the next simplest model was needed. This is indeed the

F = 1→ F ′ = 2 transition.

Figure 2.3: Schematics of optical driving of (a) orientation w, (b) align-
ment x and (c) ground state coherence terms u, v. The thickness of the arrows
represents schematically the strength of the optical coupling of the ground and
excited states. The dots represent schematically the populations in the stretched
ground states, which is higher in the m = 1 state in case (a), equal in case (b)
and not relevant in case (c). The orientation and alignment are driven by dif-
ference and sum of intensities, respectively, whereas the ground state coherence
is driven by a phase sensitive multiplication of the electric fields of the form
|E+||E−| exp i(ϕ− − ϕ+), where |E±| are amplitudes and ϕ± are phases of the
circular components of the laser field.

There are three main quantities describing the atomic system: stretched state

population difference (orientation w), stretched state and m = 0 state population

difference (alignment x) and ∆m = 2 ground state coherence (with real part

u and imaginary part v), which couple to the light directly and determine the

optical properties of the beam after the cloud. The mechanisms of optical driving

of these multipoles are depicted in Fig. 2.3. The orientation is driven by the

difference in the intensities of + and - circularly polarized light components ∼

|E+|2−|E−|2, while alignment is driven by the sum of the + and - light components

∼ |E+|2 + |E−|2 i.e. either of them. The ground state coherence is on the other
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hand driven by real and imaginary parts of a phase sensitive multiplication of

electric fields E∗+E−.

The |∆m| = 1 ground state coherences are neglected in cases when there is no

transverse B−fields present, contrary to |∆m| = 2, which can have large values

due to presence of Raman coupling. This coherence |∆m| = 2 is driven by phase

sensitive pump rates which also regulate the coupling with orientation w and

alignment x, as will be shown in Sec. 2.2. The driving term for w is O(Bz) for

|E+| = |E−| (linear input light), whereas the driving terms of other variables are

O(1) in Bz field. The fact that the driving terms operate on zero background

means the atomic variables are sensitive to small changes in them. The influence

of Bz thus cannot be neglected for w equations, but can for the others. For

reasons of mathematical convenience, Bz is neglected only for |∆m| = 2 ground

state coherence, while w and x keep the dependence. The decay terms of the

excited states, giving a transfer of population from excited to ground states, also

operate on zero background so excited state populations and coherences cannot be

neglected when they drive the ground state variables, and are thus adiabatically

eliminated. The final approximation is in the Landé g-factors of ground and

excited levels. In Refs. [23, 70], best quantitative agreement with experiment was

seen when g-factors of the simplified system were equal to the g-factors of the

transition excited in the experiment. For D2 line of 87Rb this would mean the

F = 2 ground state factor would be gg = 1/2, and the excited state F ′ = 3 one

would be ge = 2/3. For simplicity reasons the g-factors of the ground and excited

levels are set to gg = ge = 1. This induces error on the Faraday rotation phase

shift, but the change can only be quantitative as the signs of g−factors are equal

in the two cases and their difference in the physical transition is ge − gg ≈ 0.17.

A short summary of approximations used in deriving the equations is listed below:

• Excited state populations and coherences are neglected except when on zero

background , in which cases they are adiabatically eliminated

• Optical coherences are adiabatically eliminated
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• |∆m| = 1 ground state coherences are neglected except when transverse

B−fields are present, |∆m| = 2 ground state coherences are never neglected

• Larmor frequencies are neglected compared to laser detuning only in the

Raman transition pump rates

• Landé g-factors of excited and ground states are taken to be equal to 1

It will be shown that the equations written in this approximation provide good

agreement with numerical results of the full system of equations, in the low satu-

ration parameter regime.

2.2 Medium equations

In this Chapter the equations governing the dynamics of the atomic medium and

its interaction with the laser field are presented. The details of the derivation can

be found in A.1, and the approximations used are shown in 2.1.3.

2.2.1 Longitudinal B−field

The only quantities coupling directly to the light in the lowest order approximation

are orientation w, alignment x and coherences u and v. Those are also the only

quantities that are non-negligible in the case of only Ωz present. The equations of

medium dynamics are the following

u̇ = −Γcu+ (2Ωz + 5
6
D∆̄)v + 1

6
PΛ−∆̄w − 1

9
PΛ+x+ 5

18
PΛ+,

v̇ = −Γcv − (2Ωz + 5
6
D∆̄)u+ 1

6
PΛ+∆̄w + 1

9
PΛ−x− 5

18
PΛ−,

ẇ = −Γww − 1
6
PΛ−∆̄u− 1

6
PΛ+∆̄v − 1

9
Dx+ 5

18
D,

ẋ = −Γxx− 1
3
PΛ+u+ 1

3
PΛ−v + 1

3
Dw + 5

18
S.

(2.15)
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The detuning is written in units of coherence decay rate Γ2 as ∆̄ = ∆
Γ2

. The pump

rates are given by

P+ = 1
Γ2

|Ω+|2

1+
(∆−Ωz)2

Γ2
2

, P− = 1
Γ2

|Ω−|2

1+
(∆+Ωz)2

Γ2
2

, (2.16)

Driving terms are then given by

S = P+ + P−, D = P+ − P−
PΛ+ = 1

Γ2

1

1+
(

∆
Γ2

)2

(
Ω∗+Ω− + Ω+Ω∗−

)
, PΛ− = i

Γ2

1

1+
(

∆
Γ2

)2

(
Ω∗+Ω− − Ω+Ω∗−

)
.

(2.17)

Finally, the decay rates of the atomic variables are

Γc = γ1 +
7

6
(P+ + P−)− 1

3Γ2

1

1 +
(

∆
Γ2

)2 (|Ω+|2 + |Ω−|2),

Γw = r + 1
6
(P+ + P−), Γx = r + 11

18
(P+ + P−), (2.18)

where γ1 is the ground state decoherence rate and r is the ground level depumping

rate. The two rates will in general be taken to be equal in simulations. The origin

of the decay rates γ1 and r in hot vapors is the motion of atoms out of the laser

beam, however in a typical cold atomic setup the rates are limited by the stray

transverse B-fields (γ1, r ∼ 2π× 14 kHz for a field of Bx,y ∼ 10 mG, as calculated

from Eq. (2.25)). Observing the form of Eq. (2.15), there are immediately some

similarities to the J = 1/2→ J ′ = 1/2 system described in [69]. Firstly, the decay

rates of coherences u and v, alignment x and orientation w are proportional to γ1,

r and S, while the driving of w is proportional to D. Also, u and v transiently

rotate with frequencies proportional to the Larmor frequency Ωz and light shift

D∆̄, analogously to the precession of the ∆m = 1 ground state coherences in the

J = 1/2 ground level system. This precession in the steady state amounts to a

decay with a constant proportional to Ωz and D∆̄. The differences with respect to

the J = 1/2 system arise from coupling of the four atomic variables. The w variable

couples to x, u and v via terms proportional to D, PΛ−∆̄ and PΛ+∆̄, respectively.

The x variable is always driven positively by w, whereas the converse is true for the
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w variable as is clear from their definitions. The couplings of w to the u and v are

mediated by terms with the form of light shift with phase sensitive Raman-type

pump rates, whereas for x the couplings are proportional only to phase sensitive

pump rates, i.e. without ∆̄. Real part of the ground state coherence is driven by

PΛ+, proportional to the real part of Ω∗+Ω−, whereas the imaginary part of ground

state coherence is driven by PΛ−, proportional to imaginary part of Ω∗+Ω−. An

intuitive explanation of the driving terms PΛ+ and PΛ− can be given by recalling

that E± = ∓(Ex ± iEy). This means that PΛ+ = 2Re(Ω∗+Ω−) ∼ (E2
x − E2

y)

and PΛ− = −2Im(Ω∗+Ω−) ∼ 4ExEy. The driving of the u variable will thus be

strongest for light linearly polarized along the x or y axis, whereas the driving of

the v variable will be strongest for light polarized at 45◦ to these axes. This is in

accordance with Fig. 2.2 where it is shown that the u variable is aligned along the

x and y axes whereas the v is aligned at an angle of 45◦ with respect to the two

axes.

2.2.2 Transverse B−fields

In order to fully account for behavior of the patterns the full three dimensional

B−field needs to be included into the model. In this case, the system of equations

(2.15) is augumented by four additional equations, meaning all multipoles of the

irreducible tensor decomposition depicted in Fig. 2.2 are taken into account. The

Hamiltonian is too involved to be written here and is instead given in Section A.1

of the Appendix by eq. (A.3). From (A.3) it is evident the field parallel to the

linear light polarization (Bx) and the one orthogonal to it (By) are not treated

on the same footing, namely there is a π/2 phase difference between the Larmor

frequencies of the two fields. The equations when all three B−field components
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are present are then

u̇ = −Γcu+
(
2Ωz + 5

6
D∆̄

)
v + 1

6
PΛ−∆̄w − 1

9
PΛ+x+ 5

18
PΛ+ − Ωx√

2
(z2 − y2) + Ωy√

2
(z1 − y1),

v̇ = −Γcv −
(
2Ωz + 5

6
D∆̄

)
u+ 1

6
PΛ+∆̄w + 1

9
PΛ−x− 5

18
PΛ− + Ωx√

2
(z1 − y1) + Ωy√

2
(z2 − y2),

ẇ = −Γww − 1
6
PΛ−∆̄u− 1

6
PΛ+∆̄v − 1

9
Dx+ 5

18
D − Ωx√

2
(y2 + z2)− Ωy√

2
(y1 + z1),

ẋ = −Γxx− 1
3
PΛ+u+ 1

3
PΛ−v + 1

3
Dw + 5

18
S + 3 Ωx√

2
(y2 − z2) + 3 Ωy√

2
(y1 − z1),

ẏ1 = −Γyy1 + (Ωz + ∆̄Dy)y2 +
(
P ′−
6

+ 1
12

(
∆̄PΛ− − PΛ+

))
z1

+
(

∆̄P ′−
6

+ 1
12

(
∆̄PΛ+ + PΛ−

))
z2 + Ωx√

2
v + Ωy√

2
(w − x+ u),

ẏ2 = −Γyy2 − (Ωz + ∆̄Dy)y1 −
(

∆̄P ′−
6
− 1

12

(
∆̄PΛ+ + PΛ−

))
z1

+
(
P ′−
6

+ 1
12

(
PΛ+ − ∆̄PΛ−

))
z2 + Ωx√

2
(w − x− u) + Ωy√

2
v,

ż1 = −Γzz1 + (Ωz + ∆̄Dz)z2 +
(
P ′+
6
− 1

12

(
∆̄PΛ− + PΛ+

))
y1

−
(

∆̄P ′+
6

+ 1
12

(
∆̄PΛ+ − PΛ−

))
y2 − Ωx√

2
v + Ωy√

2
(w + x− u),

ż2 = −Γzz2 − (Ωz + ∆̄Dz)z1 +
(

∆̄P ′+
6
− 1

12

(
∆̄PΛ+ − PΛ−

))
y1

+
(
P ′+
6

+ 1
12

(
∆̄PΛ− + PΛ+

))
y2 + Ωx√

2
(w + x+ u)− Ωy√

2
v.

(2.19)

The newly introduced pump rates and differences are now

P ′+ = 1
Γ2

|Ω+|2

1+
(∆−2Ωz)2

Γ2
2

, P ′− = 1
Γ2

|Ω+|2

1+
(∆+2Ωz)2

Γ2
2

,

Dy = P ′+ − 7
12
P ′−, Dz = 7

12
P ′+ − P ′−,

(2.20)

whereas the rest are given by Eqs. (2.16), (2.17), (2.18). The decay rates of

|∆m| = 1 ground state coherences are

Γy = γ1 + P ′+ + 7
12
P ′−, Γz = γ1 + 7

12
P ′+ + P ′−. (2.21)

Orientation in z direction w is coupled to orientations in x direction y1 + z1 and y

direction y2 +z2 by fields By and Bx, respectively. The alignment x and coherences

u, v are in turn coupled only to quadrupole moments y1 − z1 and y2 − z2 via

transverse B-fields. The structure of equations for y1,2 and z1,2 are reminiscent of

the structure of coherences in the two-level J = 1/2 system described e.g. in [69].

Using the substitution for dipolar magnetization components: mx = u→ (y1+z1),

my = v → −(y2 + z2), mz = w → w one recovers the form of equation (10)
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in [69]. The discrepancies arise due to presence of Raman transition and non-

equal Clebsch-Gordan coefficients in the J = 1 case. The classical equation for

dipole evolution in external B-field proportional to Ω: ṁ = m × Ω agrees as

well with the B-field interaction terms of Eq. (2.19). Comparison with equations

for J = 1 → J ′ = 0 system, published e.g. in [75] yields similar agreement

with quadrupolar terms, giving only discrepancies in numerical prefactors due to

different Clebsch-Gordan coefficients.

2.2.3 Optical response

Optical response of the medium is determined by the polarization components P±

P(z, t) =
1

2

∑
q=±

(−1)qPq(z, t)ê−qe
iωt−ikz + c.c. (2.22)

These components are calculated in A.3 to be given by

P± = ε0χ
±
l

((
1± 3

4
w +

1

20
x

)
E± +

3

20
(u∓ iv)E∓

)
, (2.23)

where the linear susceptility χ±l = 2α±l /k is often parametrized via

α±l = −b0Γ2

2L

iΓ2 + (∆∓ Ωz)

Γ2
2 + (∆∓ Ωz)2

. (2.24)

The first term on the RHS of the optical response equations (2.23) describes light

absorption and phase shift, whereas the second term generates light of opposite

circular polarization if a finite |∆m| = 2 ground state coherence exists. Generation

of light of opposite circular polarization by ground state coherences is known to

occur in systems exhibiting effects like electromagnetically induced transparency

(EIT) and coherent population trapping (CPT) [76]. The input polarization of

the experimental pump beam is linear, i.e. with equal amplitudes of σ+ and σ−

light. The observed patterns are however complementary, i.e. the regions of ex-

cess σ+ and σ− are spatially separated. The x and u variables treat both circular

polarizations the same way, meaning the patterned beam for linear input is still
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linearly polarized at every point. This means that the instability arising from a

modulation in these variables is not a polarization instability since there is no gain

in the polarization component orthogonal to the input light. As will be discussed

in Chapter 5, the main driver of patterns is the spin w instability. The particular

dependence of optical response on w is equal (up to the factor 3/4) to the one of

Ref. [70], however with the opposite signs due to optical pumping into bright as

opposed to dark states. With this response, the two opposite circular polariza-

tions receive phase shifts of equal magnitude but opposite signs which via Talbot

diffraction in the SFM configuration converts to complementary modulations of

P± pumping and leads to a polarization instability (as outlined in Chapter 1).

2.3 Numerical results

In this Section the steady state numerical solutions of the full system of 64 equa-

tions for the F = 1 → F ′ = 2 transition are compared to the solutions of the

reduced system (2.19) with the goal of checking the validity of the approximations

used in their derivations. An excellent agreement is found in the experimen-

tal region of interest of |∆| > 5 Γ1, |Bx,y,z| < 2 G and I = 0 − 600 mW/cm2

(Ω0 = 0 − 4 Γ1). Throughout this Section the Rabi frequencies of σ± light Ω±

are expressed in units of two-level Rabi frequency Ω0 and the B-fields Bx,y,z are

parametrized via the Larmor frequencies Ωx,y,z. These units are related to the

experimentally measured quantities Bx,y,z and I± as

Ω0 = Γ1

√
I±

2Isat
, Ωx,y,z = 0.23×Bx,y,z

Γ1

G
, (2.25)

where the value Isat = 1.669 mW/cm2 for circularly polarized light [72] of the

F = 2→ F ′ = 3 transition in stretched states was used.

2.3.1 Longitudinal B-field
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Figure 2.4: Steady state atomic variables: (a) real part of ground state coher-
ence u, (b) orientation w, (c) imaginary part of ground state coherence v and
(d) alignment x. Inset: total excited state population. Full lines: solutions of
the full system of equations. Dashed lines: solutions of the approximate sys-
tem of equations (2.15). Red: Ωz = 10−4 (Bz = 0.4mG). Green: Ωz = 0.01
(Bz = 43.4mG). Blue: Ωz = 0.1 (Bz = 434mG). Black: Ωz = 0.5 (Bz = 2.17G).
The x axis is the Rabi frequency Ω0 related to the circular components of (2.7)
as Ω+ = Ω− = Ω0/

√
20, corresponding to total beam intensity range I = 0−1.5

W/cm2. The beam detuning is ∆ = −7Γ1, the ground state decoherence and
depopulation rates are γ1 = r = 10−3Γ1.

Plots of solutions of the full system of 64 equations and the reduced system (2.15)

are shown in Figs. 2.4, 2.5 for linear and elliptical light, respectively. Different

colors correspond to different longitudinal B-fields, ranging from 0.0004− 2.17 G.

The insets show total population in the excited states, given by ρ2′,2′ + ρ1′,1′ +

ρ0,0 + ρ−1′,−1′ + ρ−2′,−2′ , which provides a good estimation of departure from the

low saturation approximation. From the two plots it is evident that the departure

from low saturation begins when total excited state populations exceed 5% but

the approximation is still reasonably valid for values up to 10%. The agreement

is very good in the experimental region of interest, i.e. I = 0 − 150 mW/cm2,

∆ = −10 − −5Γ1 and moderately good up to ∼ 1.5 W/cm2.
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Figure 2.5: Steady state atomic variables: (a) real part of ground state co-
herence u, (b) orientation w, (c) imaginary part of ground state coherence v
and (d) alignment x. Full: solutions of the full system of equations. Dashed:
solutions of the approximate system of equations (2.15). Red: Ωz = 10−4 Γ1

(Bz = 0.4 mG). Green: Ωz = 0.01 Γ1 (Bz = 43.4 mG). Blue: Ωz = 0.1 Γ1

(Bz = 434 mG). Black: Ωz = 0.5 Γ1 (Bz = 2.17 G). Inset: total excited state
population. The x axis is the Rabi frequency Ω0 related to the circular compo-
nents of (2.7) as Ω+ = Ω0/

√
20, Ω− = (1 + i)Ω0/

√
20, corresponding to beam

intensity range I = 0−1 W/cm2. The beam detuning is ∆ = −7 Γ1, the ground
state decoherence and depopulation rates are γ1 = r = 10−3 Γ1.

Fig. 2.4 shows the influence of detuned linearly polarized light on the atoms. Two

mechanisms govern the steady state solutions: the Raman process and optical

pumping. For effectively zero B-field (red curves), the optical pumping is virtually

non-existent, due to linear polarization of the beam, as is evident from the fact that

w = 0 in this regime. The alignment x is however in this case not equal to 0, but

saturates at x ≈ 0.3. The driver of x is the parameter S. For small longitudinal

B-field the value of the imaginary part of coherence v is low, due to the input

light being polarized linearly along the x-axis (see discussion in Subsection 2.2.1).

Increasing the longitudinal B-field to positive values introduces optical pumping

into m = −1 state due to Zeeman shift causing a stronger coupling of the σ− light.

The increase of |w| however peaks at a certain value ∝ Ωz after which |w| starts

decreasing again. For higher Bz-fields the steady state values of u decrease and

stronger w variable pumping occurs, indicating that a competition between the
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two variables may exist in this system. The peaks in v are caused by the coupling

to w, which is positive since both couple more strongly to light not polarized along

the x-axis. The x is driven positively by w, and features a “bump” corresponding

to the w increase after which it saturates to a finite value with increasing Ω0.

The elliptically polarized light case with Ω+ = Ω0, Ω− = (1 + i)Ω0 is shown in

Fig. 2.5. The most notable difference with respect to the previous Fig. 2.4 is the

increase of the value of v variable. The rise in v is a consequence of the departure

of light polarization away from x-axis, and for the same reason the u is decreased.

Strong pumping of w now exists even for effectively zero Bz field because the

intensity of the σ− beam is twice that of the σ+.

Figure 2.6: Steady state atomic variables: (a) real part of ground state co-
herence u, parallel Larmor frequency scan, (b) alignment x, parallel Larmor
frequency scan, (c) real part of ground state coherence u, orthogonal Larmor
frequency scan and (d) alignment x, orthogonal Larmor frequency scan. Full
lines: solutions of the full system of equations. Dashed lines: solutions of the
approximate system of equations (2.19). Red: Ω0 = 0.5 Γ1 (I+ = I− = 0.84
mW/cm2). Blue: Ω0 = 1 Γ1 (I+ = I− = 3.3 mW/cm2). Black: Ω0 = 1.5 Γ1

(I+ = I− = 7.5 mW/cm2). The beam detuning is ∆ = −7 Γ1, ground state
decoherence and depopulation rates are γ1 = r = 10−3 Γ1 and the Larmor fre-
quencies of the fields not scanned are equal to zero. Imaginary part of ground
state coherence v and orientation w are equal to zero for the given parameters.
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2.3.2 Transverse B-fields

The dependence of atomic variables on the transverse fields is depicted in Fig. 2.6.

The field parallel to input light polarization (Bx) causes a decay of the central

feature in u and x, caused by population trapping in stretched states, whereas

the orthogonal field (By) does not induce such a decay. The fact that the effect

of the scan of the two B-fields are not equal was expected from inspection of the

Hamiltonian (A.3). The v and w variables are zero for parameters of Fig. 2.6.

The agreement between full theory and the reduced equations is again very good.

To confirm the validity of Eqs. (2.19) under different conditions, the parallel and

Figure 2.7: Steady state atomic variables: (a) real part of ground state coher-
ence u, (b) orientation w, (c) imaginary part of ground state coherence v and
(d) alignment x. Full lines: solutions of the full system of equations. Dashed
lines: solutions of the approximate system of equations (2.19). Red: Ωz = 0.01,
Ωy = 0.01 (Bz = 43.4mG, By = 43.4mG). Blue: Ωz = 0.01 Γ1, Ωy = 0.1 Γ1

(Bz = 43.4 mG, By = 434 mG). Black: Ωz = 0.1 Γ1, Ωy = 0.01 Γ1 (Bz = 434
mG, By = 43.4 mG). Orange: Ωz = 0.1 Γ1, Ωy = 0.1 Γ1 (Bz = 434 mG,
By = 434 mG). The x axis is the parallel Larmor frequency Ωx. The beam
component intensities are I+ = I− = 13.4 mW/cm2, detuning is ∆ = −7 Γ1,
the ground state decoherence and depopulation rates are γ1 = r = 10−3 Γ1.

orthogonal B-field scans for linear light polarized along x-axis are shown in Figs.

2.7, 2.8. The agreement of approximate equations (dashed lines) with full theory
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Figure 2.8: Steady state atomic variables: (a) real part of ground state coher-
ence u, (b) orientation w, (c) imaginary part of ground state coherence v and
(d) alignment x. Full lines: solutions of the full system of equations. Dashed
lines: solutions of the approximate system of equations (2.19). Numerical and
plot parameters are the same as in Fig. 2.7 with substitution Ωx → Ωy.

(full lines) is again very good, especially for low B-fields and light intensities. The

general consequence of both Bx and By fields is the decay of the central features of

all the atomic variables. The presence of B-fields with all three components causes

asymmetries and complicated features to arise, however a deeper investigation of

these complicated features is beyond the scope of this Thesis.

2.3.3 Optical properties

Phase shift and absorption are calculated by inserting the expression (2.23) into

the paraxial wave equation [54]. For purely circular input polarization, the optical

properties of the medium are governed by the quantity α±, which depends on the

atomic variables w and x as

α± = − b0

2L

iΓ2 + (∆∓ Ωz)

Γ2
2 + (∆∓ Ωz)2

(
1± 3

4
w +

1

20
x

)
, (2.26)
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Figure 2.9: Real and imaginary parts of −α±L (2.26) for: (a) σ+ transition,
real part, (b) σ+ transition, imaginary part, (c) σ− transition, real part and
(d) σ− transition, imaginary part. Horizontal dashed line: linear susceptibility
for Ωz = 0. Full lines: solutions of the full system of equations. Dashed lines:
solutions of the approximate system of equations (2.15). Red: Ωz = 10−4

Γ1 (Bz = 0.4 mG). Blue: Ωz = 0.25 Γ1 (Bz = 1.1 G). Black: Ωz = 0.5 Γ1

(Bz = 2.17 G). The x axis is the Rabi frequency Ω0 related to the circular
components of (2.7) as Ω+ = Ω0/

√
20 (a and b) and Ω− = Ω0/

√
20 (c and

d), corresponding to beam intensity range I = 0 − 335 mW/cm2. The beam
detuning is ∆ = −7 Γ1, ground state decoherence and depopulation rates are
γ1 = r = 10−3 Γ1.

where b0 is the on-resonance optical thickness and L is the length of the optical

medium. The beam with electric field E0 is then modified to E0 exp(−iα±L) af-

ter traversing the atomic cloud. The factors ∆ ∓ Ωz describe the linear Faraday

rotation, giving phase shifts of opposite signs for a same longitudinal B-field to

the two circular components [77]. The factor “±” in front of the w variable also

gives an opposite phase shift for same value of w. The term ±3
4
w is the non-linear

Faraday rotation, an effect generally more sensitive to the longitudinal B-field

than linear Faraday rotation, for the optimal parameter values [78]. The effect is

used for minimizing the stray B-fields in the experiment, as shown in Chapter 3.

Fig. 2.9 shows the real and imaginary parts of the factors −α±L (normalized to

b0) for both circular polarizations, giving phase shift and absorption, respectively.

The absorption is seen to increase by a factor ∼ 9/5 for high beam intensities, a

well known consequence of pumping into bright stretched states [22]. The phase
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shift (∝ refractive index) also increases with intensity, which is due to the medium

non-linearity being self-focusing. For the detuning of |∆| = 7 Γ1, the phase shift

Figure 2.10: Real and imaginary parts of −α±L (2.26) for: (a) σ+ transition,
real part, (b) σ+ transition, imaginary part, (c) σ− transition, real part and
(d) σ− transition, imaginary part. Horizontal dashed line: linear susceptibility
for Ωz = 0. Full lines: solutions of the full system of equations. Dashed lines:
solutions of the approximate system of equations (2.15). Red: Ωz = 10−4

Γ1 (Bz = 0.4 mG). Blue: Ωz = 0.25 Γ1 (Bz = 1.1 G). Black: Ωz = 0.5 Γ1

(Bz = 2.17 G). The x axis is the Rabi frequency Ω0 related to the circular
components of (2.7) as Ω+ = Ω0/

√
20 (a and b) and Ω− = Ω0/

√
20 (c and

d), corresponding to beam intensity range I = 0 − 335 mW/cm2. The beam
detuning is ∆ = −7 Γ1, ground state decoherence and depopulation rates are
γ1 = r = 10−3 Γ1.

is enhanced by a factor of ∼ 7 with respect to absorption, justifying the neglect

of absorption in the qualitative treatment of pattern formation. The gray dashed

lines are the linear phase shift and absorption for zero B-fields. Changing the lon-

gitudinal B-field to positive values illustrates the linear Faraday rotation, reducing

the phase shift of σ+ light and increasing it for σ− light. Fig. 2.10 shows the ef-

fect of transverse fields on −α±L. The pumping effects decay to the linear value

(gray line) with both the parallel (Bx) and orthogonal (By) fields, a consequence

of destroying the optical pumping by transverse field Larmor precession.
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Experimental setup

In this Chapter the experimental setup used to study the formation of magneti-

zation patterns in a cold atomic medium is described. The first part is devoted

to the description of the setup and mechanism of magneto-optical trapping, used

to prepare the optical medium for the pattern formation experiment. The second

part deals with the details of the pattern formation experiment. Some relevant

points regarding the study of magnetization patterns such as polarization sensi-

tive near- and far-field imaging of the patterned light, monitoring of pump pulse

intensity fluctuations and control of the external B-fields are described.

3.1 Preparation and characterization of the op-

tical medium

In this Section the basics of preparation and characterization of the cold atomic

medium used in the non-linear pattern formation experiments are outlined.

3.1.1 Laser cooling and trapping of neutral atoms

Using photon momentum to “push” matter is an idea dating back to the end of the

19th century with the development of classical electromagnetic theory by Maxwell

47
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[79]. First experiments performed by Lebedev [80] and Nichols and Hull [81]

measured the radiation pressure of incoherent light on small pieces of reflective

metal, which was followed by R. Frisch’s experiments with atoms [82]. After

Ashkin’s pioneering demonstration of atom trapping and acceleration by laser

light [83], the conventional molasses cooling was devised by Hänsch and Schawlow

[84]. In recognition of many useful and interesting subsequent developments in the

field of laser cooling of thermal (non-degenerate) atoms the Nobel Prize in 1997

was awarded to S. Chu, W.D. Phillips and C. Cohen-Tannoudji for their work

concerning magneto-optical trapping (MOT) and sub-Doppler cooling reported

e.g. in Refs. [85, 86, 87, 88, 74].

The technique of MOT is in recent times often utilized in initial stages of produc-

ing bosonic [89, 90, 91, 92] and fermionic [93, 94, 95] quantum gases. Thermal

cold atomic ensembles prepared by the technique of MOT however still constitute

a platform for studying novel physics in state of the art experiments. Recent years

have seen thermal cold atoms being used in a number of experiments studying

collective and cooperative effects arising due to optical dipole-dipole interactions

in ground level and Rydberg excited atoms [96, 97, 98, 99, 100]. Another use is

found in the fields of quantum information and measurements, where e.g. quan-

tum memories [101, 102], quantum repeaters [103], and spin squeezing [104, 105]

were demonstrated in the free space configuration, and spin entanglement [106]

and single photon switching [107] for thermal ensembles confined inside an opti-

cal cavity by a far detuned dipole beam. More closely related to the subject of

this Thesis, the experiments performed in the group of D. Gauthier have studied

pattern formation in elongated MOT clouds pumped by two counterpropagating

beams [15, 16, 17]. Progress has also been made towards using MOT clouds in

plasma and astrophysical simulations [108, 109]. In addition to these and many

other examples, miniaturized MOT setups hold promise for increasing the sensi-

tivities of magnetic and rotational sensors while optical clocks based on cold atoms

could in the future be used for more precise navigation [110, 111].
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3.1.2 Principle of magneto-optical trapping

The physics of magneto-optical trapping is explained in great detail in myriad

research articles, review papers and textbooks [22, 112, 113, 114, 115]. Briefly,

laser cooling is achieved through imparting the photon momentum to the atoms

via their relatively narrow optical transitions. For producing localized clouds of

atoms, typically six laser beams are used, counterpropagating along the three

orthogonal space directions. To successfully cool the atoms, a laser frequency

lower than the atomic transition frequency is needed. Along a single axis, the

atoms moving towards one direction will then preferentially absorb photons coming

towards it, and have a lower probability of absorbing the photons traveling in the

same direction as the atoms, due to Doppler shift. This will produce a cloud with

the slowest atoms localized at the intersection of the six cooling beams.

Figure 3.1: Principle of magneto-optical trapping in a simplified J = 0 →
J ′ = 1 system. The quadrupole coils provide the B-field gradient required
to spatially engineer the absorption probabilities of right and left propagating
beams.

Atoms can then be trapped by using a technique called magneto-optical trapping,

outlined in Fig. 3.1. The technique is based on spatially engineering the absorp-

tion probabilities of photons coming from different directions via spatially varying
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Zeeman shifts. For the two counterpropagating oppositely circularly polarized

beams, the linear magnetic field gradient causes Zeeman shifts which bring the

atoms in the positive (negative) part of the quantization axis closer to resonance

with the σ+ (σ−) photons coming from the left (right), resulting in a restoring

scattering force with a linear dependence on distance from cloud centre [22]. This

force is of dissipative nature and the cooling temperature of the cloud is limited

to the Doppler temperature TDoppler = ~Γ1/2kB [22], where Γ1 is the excited state

population decay rate, by random motion of the atoms after spontaneous photon

emission. If the B-field gradient is sufficiently low, an effect known as Sisyphus

cooling can take place to cool the atoms down to single photon recoil limit [86].

3.1.3 Laser system

The schematics of the hyperfine transitions of the 87Rb D2 line is depicted in Fig.

3.2a. Two diode lasers with emission wavelengths of λ = 780 nm are used in the

experiment. The MOT laser is locked to the F = 2 → F ′ = 3 transition and

detuned by ∆ = −2.8 Γ1 with a pair of acousto-optical modulators (AOMs) to

allow for efficient cooling and trapping. The beam used for pattern formation with

single mirror feedback is derived from the same laser, but higher detuned (typically

∼ −7 Γ1). The repumper laser is locked to a crossover F = 1 → F ′ = 0, 2

transition and detuned by ∆ = 114.6 MHz into resonance with the F = 1→ F ′ = 2

line. In general, a repumper laser is needed in laser cooling setups to repump the

atoms into the bright (in this case F = 2) ground state due to the fact that

there is a finite probability of atoms decaying into the dark (in this case F = 1)

ground state. The repumper optically pumps the atoms back into the bright state

by exciting the atoms into the excited state (in this case F ′ = 2) with a finite

probability of decaying into the bright ground state.

The diodes have free running linewidths of ∼ 10 MHz [116]. To efficiently cool the

atoms close to the Doppler limit the frequency of the laser needs to be stable to

temperature and mechanical fluctuations and the linewidth needs to be below the

natural atomic linewidth Γ1 of the cooling transition. In the case of the cooling
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transition used in this Thesis, this value is 2π × 6.066 MHz. This means some

form of active stabilization of laser frequency is required to successfully perform

the cooling of the atoms and pumping of the patterns.

Figure 3.2: Details of the laser setup. (a) hyperfine levels of the D2 line of
87Rb with cooling/pump and repumper transitions indicated. (b) saturation
spectroscopy setup and locking mechanism. HPF: high-pass filter, ×: demod-
ulator, ∆Φ: phase shifter, ∼: 50 kHz modulation,

∫
: integrator, +: adder,

PZT: piezoelectric transducer, ECDL: external cavity diode laser. (c) photodi-
ode and error signal for scanning ramp applied to the PZT, linearly ramping
the frequency of the laser.

The method commonly used for 87Rb laser cooling applications is saturation spec-

troscopy [117]. It is based on pumping the atoms inside a room temperature vapor

cell, with full width at half maximum (FWHM) Doppler broadening of ∼ 0.5 GHz,

and probing the saturated transitions. Due to the Doppler effect, the pump (fre-

quency ω, wavevector k) is resonant with atoms moving with velocity v satisfying

the relation

ωat + k · v = ω (3.1)
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where ωat is the frequency of the optical atomic transition. The same beam, when

reflected (frequency ω, wavevector −k), will be resonant with atoms moving with

velocity −v, satisfying the same relation, and out of resonance with all other

atoms, including ones moving with v. The signal for such frequencies ω results

in the wide Doppler broadened (∼ 500 MHz) absorption dips seen as the slowly

varying background in the frequency peaks of Fig. 3.2c. The locking however

relies on atoms moving at velocities v ≈ 0. Those atoms are pumped when laser

is at frequency ω = ωat. The pump beam has powers of ∼ 100 µW and waist of

w = 1 mm, translating into relatively high intensities of I = 26 mW/cm2. Such

high intensities are needed because the pump beam has to deplete the ground

state populations to reduce the absorption of the reflected probe by “bleaching”

the atoms to the probe light. As seen in Fig. 3.2c, the reduced absorption results

in photodiode signal peaks. In addition to peaks at ω = ωat, additional, crossover

peaks are present. Crossover peaks appear at frequencies for which (ω
(1)
at +ω

(2)
at )/2 =

ω, where ω1
at, ω

2
at are frequencies of two atomic hyperfine levels. In this case

the pump light is resonant with atoms moving at v and satisfying the relation

ω
(1)
at + k · v = ω, whereas the probe light is resonant with the same velocity class

of atoms satisfying the relation ω
(2)
at − k · v = ω.

The locking signal is given by the saturation spectroscopy peaks, and the locking

itself is performed electronically by a lock-in amplifier and a servo loop sending

feedback to the piezo-electric transducer (PZT) of the external cavity diode laser

(ECDL). The ECDL consists of a 780 nm laser diode and a grating in Littrow

configuration [118]. The zeroth order of the grating is sent to the experiment and

the first order is reflected back to the laser diode, serving as laser feedback. For a

constant diode current, the angle of the grating can be varied by a PZT to slowly

scan the laser frequency for fine adjustments. To get an error signal, which is in

this case proportional to the derivative of the saturation spectroscopy peaks, a

fast modulation of νm = 50 kHz is applied to the PZT. The modulation around

frequency ν with amplitude ∆ν results in a photodiode signal

V (ν + ∆ν sin(νm)t) = V (ν) + ∆ν
dV

dν
sin(νmt) +

(∆ν)2

2!

d2V

dν2
sin2(νmt) + ... (3.2)
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Multiplying this voltage by sin(νm)t gives terms oscillating at harmonics of νm,

which is known as demodulation. The higher harmonics are subsequently filtered

by an integrator serving as a low pass filter. Demodulating the terms oscillating

at νm, one gets [116]

V (ν + ∆ν sin(νm)t) ≈
(
V (ν) + ∆ν

dV

dν
+

∆ν3

8

d3V

dν3
+

∆ν5

192

d5V

dν5
+ ...

)
sin(νmt)

(3.3)

If V (ν) is a saturation spectroscopy peak, its shape is Lorentzian, meaning the i-th

derivative terms decay as
(

∆ν
Γ1

)i
and for ∆ν � Γ1 it is justified to neglect terms

with higher order than i = 1. The resulting signal is then proportional to a deriva-

tive of the voltage V (ν) and can be used as an error signal for frequency locking.

The schematics of the locking circuit is depicted in Fig. 3.2b and more details

can be found e.g. in Ref. [119]. The error signal, which is an inverted derivative

of the saturation spectroscopy peaks, is integrated and sent to the piezoelectric

transducer. The main source of noise in the ECDL are the drifts in diode tem-

perature and grating angle, both thermal effects with sub-Hertz bandwidth. The

slope of the error signal, related to the height of the peaks, is crucial for stable

locking and in general some effort is required to optimmize the circuit parameters,

e.g. modulation amplitude and circuit gain. Using the described locking method

both the cooling and repumper laser linewidths were reduced to FWHM of 1.2

MHz with the frequency locks lasting for several hours.

The laser diodes output a beam with a maximum power of 50 mW, a value that

would reduce to ∼ 20 mW after the beam passes through all optical elements: two

AOMs and a single mode fiber. The number of atoms N in a magneto-optical trap

scales as N ∼ V 1/3 with trapping volume V [119], and cooling beam intensities

higher than Isat are needed to reach optimal N values. Increasing the cooling

beam power is then a necessary step for producing a large and optically dense

cloud of cold atoms. For this purpose a tapered amplifier (TA) diode, of model

0780-2000-DHP is used in the setup. The TA diode amplifies the seed beam with

22 mW power to the power of ∼ 2 W at current I = 3.6 A. The available cooling

beam power is then reduced to 360 mW after losses due to passing through an
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AOM in the double-pass configuration and coupling to a single mode fiber. The

measured intensity of each of the 2 inch diameter beams is ∼6.5 Isat, which is

enough to saturate the number of atoms in a MOT.

Figure 3.3: Schematics of the MOT and pattern formation setup. The 6
trapping beams overlap at the center of the coil pair in the anti-Hemholtz con-
figuration, inside the glass cell. The repumper beam copropagates along one
axis of the cooling beam setup. The linearly polarized pump beam is in the
double pass configuration. The pump beam forms an 8◦, and the cooling beam
in the image plane a -17◦ angle with the cell normal. PBS: polarizing beam
splitter. QWP/HWP: quarter/half wave plate. PD: photodiode. FM: feedback
mirror.

3.1.4 Setup for laser cooling and trapping

The schematics of the MOT and pattern formation setup is shown in Fig. 3.3.

To achieve spatial filtering the beam is coupled to a single mode fiber with a

mode radius of 5 µm. After exiting the fiber the beam is collimated to a waist

radius of ≈ 1 mm and passed through a PBS (polarizing beam splitter) to remove

the influence of temperature induced polarization noise of the beam exiting the
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fiber on the intensity noise creating the intensity imbalance between the cooling

beams. In this way shot-to-shot fluctuations in atom number are greatly reduced.

The beam power after the first PBS is 360 mW. The beam is then split into 6

beams of equal power by an array of PBSs and half-wave plates (HWPs) which are

transformed from linear to circular polarizations by quarter-wave plates (QWPs)

prior to entering the cell. To increase the trapping volume, the beam waists are

increased by pairs of divergent (f = −16 mm) and convergent (f = 240 mm)

lenses to a diameter of 2 inches. In spite of the rather large beam diameters, the

effective trapping volume is 1.5 × 1.5 × 1.5 cm3, limited by the small glass cell

dimensions. The Rb atoms are then dispensed into the cell by running a current

of Igetters = 4.3 A through the solid state getters.

The repumper is made to copropagate with the cooling beams by a PBS, splitting

the power into two equal intensity parts, counterpropagating along one of the

cooling axes indicated in Fig. 3.3. The power of the repumper beam is ≈ 15 mW,

which is sufficient to provide pumping into the bright F = 2 state of the 87Rb

D2-line [119].

The pump beam has a waist with 1/e2 radius of w ≈ 800 µm and powers ranging

from 0− 1.5 mW. This translates into intensities of 0− 150 mW/cm2 by formula

I = 2P0

w2π
. To ensure complete horizontal linear polarization, the pump beam is sent

through a PBS. The beam intensity after the PBS is monitored by a calibrated

photodiode (PD) outputting to a NI-6251 DAQ card. The beam is then sent to

the cloud and reflected from a feedback mirror with reflectivity of R = 0.95. In

between the feedback mirror and the glass cell, there is a pair of lenses with focal

lengths of f = 125 mm in the 4f configuration. As explained in Ref. [120], in this

setup the mirror is effectively imaged at a distance d ≶0 from the cloud center,

given by the mirror distance from the focal point of the lens closest to it.

The cooling beam enters the cell at a -17◦ angle to normal. The chosen deviation

from complete orthogonality of the cooling axes is a consequence of the rectangular

shape of the cell, allowing only for highly non-normal incidence for the pattern

pump beam if all cooling beams are orthogonal. Initial experiments were done



Chapter 3. Experimental setup 56

with all cooling axes orthogonal and the pump at ∼ 50 ◦ angle to the normal.

This caused astigmatism in the pattern wave vectors, causing the Talbot rings to

deform into ellipsoids with stronger ellipticities for mirror distances close to the

center of the cloud. To prevent this, a smaller pump beam angle to cell normal of

8◦ was used, therefore one of the cooling axes needed to be rotated. A non-zero

pump beam angle was chosen due to high intensity of the pump beam (up to 100

mW/cm2), causing ∼3.4% of the 780 nm light to reflect from each facet of the

quartz glass cell [121], which can “seed” the patterns. This resulted in a complete

pinning of hexagons at Bz 6= 0 and rhombs at Bz ≈ 0, inhibiting the spontaneous

rotational symmetry breaking inherent in the single-mirror setup and limiting the

investigation of allowed symmetries in the four wave mixing case. The s and p

reflection coefficients of quartz at 8◦ angle are Rs = 0.035 and Rp = 0.033 for

vacuum to glass interface and Rs = 0.036 and Rp = 0.032 for glass to vacuum

interface. For the σ+ electric field component E+, this will generate a small σ−

component when passing through the interfaces, with intensity I− =
(
ts−tp
ts+tp

)2

I+.

Considering the transmission coefficients above are given for the electric fields, the

generated σ− intensity in vacuum to glass interface will be I− = 2.68× 10−7× I+,

and I− = 1.07×10−6× I+ in glass to vacuum interface. As discussed in Ch. 4, the

slight polarization asymmetry is too small to cause a noticeable effect on diffracted

powers in the two circular polarization channels.

3.1.5 Optical thickness optimization and measurements

The main property of the atomic cloud determining the threshold and contrast

of the magnetization patterns studied in this thesis is the on-resonance optical

thickness b0. The optical thickness is limited by the atomic density which is in

turn limited by multiple scattering of the photons inside the cloud [122]. The

process of multiple scattering consists of one atom absorbing and spontaneously

emitting a photon which is then absorbed by another atom in the cloud, causing

a recoil away from the first atom. The force one atom exerts on the other can

be calculated to decay with distance as 1/r2 [122], which saturates the density
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of atoms at cloud center. This can be mitigated by using the MOT compression

technique [123], and ODs of ∼ 100 can be reached in a non-elongated MOT cloud

[98]. The basic idea of the technique is sketched in Fig. 3.4. Initially, a steady

state MOT (sMOT) is loaded from vapor, with most of the atoms in the bright

state F = 2. Reducing the repumper power, the atoms have higher probabilities

of being in the dark F = 1 state after scattering the cooling photons. This reduces

the multiple scattering and causes the cloud to compress, however the atoms in the

cloud center are lost from the trap due to light assisted and hyperfine changing

collisions [123]. To mitigate this, the MOT detuning is increased, causing the

effective trap volume to increase which then traps more atoms to replenish the

loss at cloud center. Experimental parameters of the cMOT stage are given in

Sec. 3.2.1.

Figure 3.4: Schematics of the MOT compression technique. (a) In the steady
state MOT (sMOT), the majority of the atoms are in the bright state. For a
dense cloud, this means there is a high probability of multiple scattering of pho-
tons, causing an effective repulsive force between the atoms. (b) Reducing the
repumper power, many atoms are pumped into the dark state after scattering
the cooling photons, reducing the repulsive multiple scattering force.

The optical thickness and atom number in a MOT is routinely measured via ab-

sorption imaging, where a weak probe beam irradiates the cloud and creates a

shadow image of it on a CCD [89]. Direct measurement of on-resonance optical

thickness b0 in samples with b0 ≥ 5 is difficult due to the finite spectral width

of the probe laser and finite signal to noise, so measurement is done by fitting

a Lorentzian to measurements of off-resonance optical thickness b∆ at different
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detunings ∆ [124]. Detuned transmission coefficient T∆(x, y) at a pixel with cen-

ter located at point (x, y) (where x and y in this and the next Section mark the

horizontal and vertical axes of the imaging plane) is given by Beer’s law

T∆(x, y) =
I(x, y)

I0

= exp (−b∆(x, y)) , (3.4)

where I(x, z): beam intensity after the cloud, I0 : input probe beam intensity,

b∆(x, y): off-resonance optical thickness at point (x, y) and detuning ∆. In exper-

iments, the optical thickness varies over the area of the cloud due to its Gaussian

shape. To get the b0 one then averages the transmission T∆(x, y) over the ex-

perimental region of interest, which is determined by the pattern pump beam

waist with radius of w ≈ 800 µm. Off-resonance optical thickness depends on the

detuning ∆ as a Lorentzian

b∆ =
b0

1 +
(

∆
Γ2

)2 . (3.5)

The optical thickness b0 is proportional to the integral of the atomic density dis-

tribution n(x, y, z) along line of sight [124]

b0 = σ0

∫
n(x = 0, y = 0, z)dz, (3.6)

where σ0 is on-resonance scattering cross section. Assuming a Gaussian density

distribution with variances σx, σy, σz, the number of atoms can be calculated

from peak density n0 as N = (2π)3/2σxσyσzn0. The on-resonance optical thickness

b0 can then be related to number of atoms as

N =
2πσxσyb0

σ0

. (3.7)

Assuming the cloud has the same dimension along x and z axes, σx = σz, the peak

atomic density can also be calculated from

n0 =
b0√

2πσ0σx
(3.8)
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Fig. 3.5a shows the optical thickness measurements of the MOT. The mea-

surements were performed by shining a weak P = 7 µW probe beam pulse for

t = 250 µs and integrating for τ = 300 µs by a CCD. The cMOT properties after

a waiting time of ∆t = 0.5 ms are: N = 9× 108, b0 = 31.6, n0 = 1.8× 1011 cm−3.

In Figs. 3.5b and 3.5c it is seen how both the peak density n0 and the optical

thickness decay due to cloud expansion, leaving b0 = 27.4 at the time of flight

point ∆t = 3.5 ms after turning off the gradient coil.

Figure 3.5: Properties of the compressed MOT (cMOT). (a) comparison of
transmission of the MOT (red) and cMOT (black) clouds. The MOT cloud has
an on-resonance optical thickness b0 = 19.4 and the cMOT cloud has b0 = 31.6.
The decay of (b) peak atom density and (c) on-resonance optical thickness for
a cMOT upon a time-of-flight interval after the gradient field is switched off.

3.1.6 Temperature measurements

Time of flight (TOF) technique is a widely used method for measuring the tem-

perature of a thermal cold atom cloud [86]. It is based on measuring the rate

of cloud expansion and fitting it to temperature using the equipartition theorem

to relate the cloud kinetic energy with the temperature associated with its mo-

tion. Temperatures related to cloud expansion in x and y directions, Tx,y, are then

calculated via

σx,y(∆t) =

√
σ2
x,y(0) +

kBTx,y
m

∆t2. (3.9)

In Fig. 3.6 a TOF measurement of the atomic cloud expansion after the cMOT

stage is presented. The 1D profiles in x and y direction are calculated by binning



Chapter 3. Experimental setup 60

the near field images, resulting in smoothed out curves. The Gaussian shape of

the fluorescence is a consequence of detuning the beam to −2.8 Γ1 and a waiting

time of 6 ms after the release of the cloud.

Figure 3.6: Time of flight measurement of cMOT cloud temperature. The
images are averaged over ten realizations and the horizontal (x) and vertical
(y) profiles are calculated by binning the 2D fluorescence image. The binned
fluorescence signal with a Gaussian fit are shown in the first two plots from
the left. Third plot shows the evolution of σ radii of the 1D Gaussian fits and
a temperature fit calculated via the equipartition theorem. Black: σx radius
(circles) and a temperature fit (line) yielding Tx = 118 µK, red: σy radius
(circles) and a temperature fit (line) yielding Ty = 123 µK. The drift of the
center of the Gaussian in the middle picture is due to gravity, and the center
moves in positive direction due to the image inversion by the imaging telescope.

The temperatures are calculated from the fit to be Tx = 118 µK and Ty = 123 µK,

giving a mean temperature of 〈T 〉 = 120.5 µK. The mean temperature is lower

than the Doppler limit for the 87Rb D2 line, TD = 146 µK. The reason for this is

the cMOT stage, where the cloud radius is lowered (σx ≈ 1 mm, σy ≈ 0.7 mm),

and the cooling beam detuned to −6 Γ1. This allows for a significant fraction of

the atoms to be cooled below the Doppler limit [86]. The images of the cloud

compression are shown in Fig. 3.7.
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Figure 3.7: Fluorescence images of the MOT cloud at various stages. The
steady state MOT (sMOT) is compressed in two stages: 15 ms of MOT detuning
ramp (δ = −2.8 Γ1 → ∆ = −6 Γ1) and 15 ms of reduced repumper power
(P = 14.5mW → P = 5mW). The compressed MOT (cMOT) images are
taken at 0.5 and 3.5 ms after turning off the cooling beam and B-field gradient,
and the size of the MOT is seen to increase during the time of flight of 3 ms,
decreasing the effective atomic density and consequently the optical thickness.

3.2 Pattern measurements

In this Section the methods and procedures of the pattern formation experiment

are outlined. The first Subsection 3.2.1 describes the experimental sequence of the

optical medium preparation and pattern formation. The succeeding Sections deal

with near- and far-field imaging techniques used for monitoring the patterns and

their properties, monitoring the fluctuations of pattern pump beam intensity and

the B-fields inside the cloud. This provides an introduction to the next Chapter

in which results of the experimental measurements of the magnetization patterns

are described.

3.2.1 Experimental sequence

A typical experimental sequence is comprised of three stages: MOT loading, MOT

compression and pattern formation measurement. The atoms loaded into a MOT

are compressed by pumping into dark states (as described in Sec. 3.1.5) to increase

the OD of the medium. After 3.5 ms of time-of-flight waiting time after the

MOT beam and the quadrupole coils are switched off, required for the B-field to
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relax to the set value (see Sec. 3.2.4), the pump beam is turned on and pattern

formation stage begins. Depending on the beam intensity, the patterns reach

optimum contrast, i.e. steady state, at pump time of tp ≈ 200 µs. The patterns

are then imaged in a polarization sensitive way for 5 − 60 µs, depending on the

desired signal range and whether the imaging is done in the near or far field. After

the imaging stage, MOT loading stage begins again and the experimental sequence

restarts.

The experiment is controlled by outputting voltages via two National Instruments

Data acquisition (NI-DAQ) card models NI-6713 and NI-6251. To interface with

the NI-DAQ cards a MATLAB code written by Nicolas Mercadier at INLN was

used. The experimental sequence, along with the parameters used, is outlined in

Fig. 3.8.

Figure 3.8: Typical experimental sequence of pattern formation measure-
ments. A 3 s trap loading stage is followed by a 30 ms compression stage to
reach higher optical thickness, after which the cooling beams and the gradient
B-field is switched off. After a 3.5 ms of B-field relaxation time, the prepared
optical medium is irradiated by the pump beam and patterns are imaged on the
charge-coupled devices.

During the MOT stage, each of the six cooling beams have an intensity of I = 6.5

Isat and detuning of ∆ = −2.8 Γ1. The repumper beam with power of 14.5 mW
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copropagates with the two MOT beams along one of the axes. After the 3 s

MOT stage, a 30 ms cMOT stage ensues, where the repumper beam is reduced to

approximately a third of its initial value to enable the pumping of atoms into the

dark F = 1 ground state, and the MOT beam is detuned to increase the effective

trapping volume and replenish the lost atoms. The repumper beam power and

cooling beam detuning in the first part of the cMOT stage are 5 mW and −6 Γ1,

respectively. Due to the low AOM efficiency at high detunings, the cooling beam

intensity also drops to ≈ 3.3 Isat. In the second part of the cMOT stage, the

repumper intensity is ramped back to its original value, to prevent the loss of

atoms. After a cloud with an optimal OD of b0 ≈ 30 is prepared, the MOT beam

and quadrupole coils are turned off. A constant external B-field of up to 2 G

is then turned on to facilitate the study of the magnetization patterns. After a

3.5 ms B-field relaxation period, a cloud with an OD of b0 ≈ 25 is prepared for

pattern formation experiments. The pump beam is then turned on and patterns

are observed. After acquiring the pattern images, the sequence repeats for up to

500 iterations, depending on the number of scanned parameters and averages.

3.2.2 Near and far field imaging

Just as the pattern formation itself, the observation of patterns is based on Talbot

effect. The magnetization patterns, resulting in phase modulation (neglecting here

the amplitude modulations due to “thick medium” effects [125]) at the end of the

cloud, produce a fully amplitude modulated image in a plane zT/4 from the end

of the cloud, where zT is the Talbot length defined in Ref. [52] as the distance

after which a phase/amplitude grating reproduces itself due to diffraction. The

intensity modulated image transmitted through a R = 95% mirror and imaged

on a CCD is equivalent to the feedback intensity modulation the cloud receives.

This means the near field images correspond to images of phase modulation of the

beam at the end of cloud, which are in turn a consequence of the distribution of

population in Zeeman sublevels. Information about the magnetization profile is

obtained by imaging the two linear or circular photon polarizations simultaneously
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by using either a half- (HWP) or quarter-wave plate (QWP), respectively, and

spatially separating the two components with a polarizing beam-splitter (PBS).

For simultaneous near- (NF) and far-field (FF) imaging this requires using four

charge-coupled devices (CCD) triggered by the same source.

The CCDs used in the experiments are PointGrey Chameleon cameras with a

USB interface and 8- or 16-bit pixel depth. The triggering is done by sending four

pulses of 5 V from the DAQ card breakout box to the triggering pins of GPIO

connectors. The images are then sent to the computer via USB interface and saved

by the PointGrey FlyCap software.

Schematics of the NF imaging setup is depicted in Fig. 3.9a. The intensity mod-

ulated image of the beam phase after the cloud (C) is transmitted through the

virtual mirror (M) with reflectivity of R = 95%. After that a telescope is placed,

with lenses L1 (focal length f1 = 50 mm) and L2 (f2 = 125 mm) in telescope

configuration with total magnification of M = 2.5. In between the two NF imag-

ing lenses, due to spatial constraints, a Newport model 10B20NP.27 50:50 non-

polarizing beam splitter is placed (not shown) to split the beam for simultaneous

FF imaging. The beam splitter is specified to have s- and p-polarization com-

ponents matched to within 5 %, which is accounted for when taking quantitative

data, as explained in the description of FF imaging. The linear/circular polariza-

tion components are then spatially separated by a HWP/QWP and a PBS and

imaged onto two CCD cameras. The exposure time of NF imaging ranges from

20-60 µs with gain ranging from G = 0-20.

Fig. 3.9b shows an example of NF imaging of σ+ light for a hexagonal pattern

(HX+) with long range order. No noise subtraction has been performed on the

image and the image has been rotated to make the peak rows parallel to the plot

axes. Cross sections through the center of the image along dashed lines in 3.9b are

shown in Figs. 3.9c and 3.9d. Long range order of patterns is confirmed by cross

section scans. The y cross section is along the direction orthogonal to qi, and the

spatial period of the peaks is half the spatial period of the x cross section. The

intensity of the image ranges from 3-72 in arbitrary units.
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Figure 3.9: Schematics (not to scale) and example of near field imaging.
(a) Schematics of near field, polarization selective imaging of the patterns. C:
end of atomic cloud, M: virtual mirror, AM: amplitude modulation, L1: lens
1, f1 = 50 mm, L2: lens 2, f2 = 125 mm, QWP/HWP: quarter and half-wave
plates, PBS: polarizing beam splitter, CCD: charge-coupled device. (b) example
near field image, (c) scan through the horizontal line indicated in (b), (d) scan
through vertical line indicated in (b).
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Near-field imaging is used only for observation of pattern symmetries, and quan-

titative data such as diffracted power is extracted via far-field images.

Pure electric field Fourier transforms, i.e. FF images, provides a more accurate

representation of the spatial spectrum than numerical Fourier transforms of NF

images. This is because the NF images are an intensity profile, given by Eq.

I(x, y) = |E(r)|2 = |E0(1 + ∆n(cos(q1 · r) + cos(q2 · r) + cos(q3 · r)) + ...)|2 (3.10)

where E0 is the electric field amplitude at the end of the medium, ∆n is the refrac-

tive index modulation and the ellipsis denotes the h.o.t. in ∆n and consequently in

qi. Keeping only the first order terms, the numerically calculated Fourier spectrum

will already have both pure (exp(2iqi · r)) and mixed (exp(i(qi + qj) · r)) second

order terms (harmonics). This is a misrepresentation of the Fourier spectrum both

in peak position and total diffraction intensity.

Figure 3.10: Schematics (not to scale) and example of far field imaging. (a)
Schematics of polarization selective FF imaging. I - NF image plane, L - lens,
f = 50 mm, QWP/HWP - quarter and half-wave plates, PBS - polarizing beam
splitter, CCD - charge-coupled device. (b) definition of angle θ, wavevectors: k
- beam exiting the atomic medium, k′ - input light, q - transverse wave vector.
(c) example FF image, (d) example azimuthal integration of 10 images for same
parameters.

The schematics of FF imaging setup and an example result for a hexagonal pattern

is depicted in Fig. 3.10. The schematics shows an imaging lens L (with focal length

f = 50 mm) with its focus placed in the NF imaging plane. The FF images of the

two polarization components are then projected on the CCD in the same way as in
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the NF case. Fig. 3.10b defines the angle θ between the input beam propagation

direction k′ and the beam direction after the cloud k = k′ + q. A horizontal

distance x′ in the CCD image is converted to an angle θx′ via the relation θx′ = x′

f
.

The angles in the horizontal and vertical directions θx, θy are related to the cone

angle θ via θ =
√
θ2
x + θ2

y. The pattern periodicity Λ is then calculated from the

conical θ, determining the radius of the Talbot ring, and the relation θ = λ/Λ.

Figs. 3.10c and 3.10d shows an example of a FF image for a hexagnoal pattern.

The CCD exposition time is τ = 40 µs and background noise with pixel height

≤ 2 is subtracted. Longer sampling time serves to increase the signal to noise

ratio by factor of
√
τ [126]. Subtracting the background is important in order to

remove the linear increase of intensity with r in the radial profile, an artifact due

to azimuthal integration of random noise. The diffracted power is then calculated

by integrating under the peak in the radial profile.

The following procedure was used to account for birefringence imperfections of the

non-polarizing and polarizing beam splitters. A HWP was put into the setup in

front of a PBS (depicted in Fig. 3.10). An angle of the HWP for which the beam

is horizontally linearly polarized was determined by finding the orientation at 45◦

angle from the two HWP angles that minimize the transmission. After this, a

QWP was put into the setup, and incrementally varied. For each QWP angle, two

sets of data were taken, one with light polarized horizontally and the other with

the light polarized vertically to the table. The QWP angle which splits the light

into circularly polarized components was then determined as the one for which

the powers in the reflecting and transmitting PBS channels exchange place after

rotation of the input polarization from horizontal to vertical. For horizontal light,

one of the PBS channels (subsequently determined to be σ−) has 45% and the

other (σ+) has 55% of the total beam power. To account for this asymmetry, the

power in the σ− channel was multiplied by 1.1, and the power in the σ+ channel

was multiplied by 0.9.
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3.2.3 Monitoring pump intensity

Due to the fact that pattern formation is based on optical non-linearity of the

system, fluctuations in the input light intensity will introduce significant noise in

measured signal, i.e. diffracted power. As shown in Fig. 4.6, the total diffracted

power varies linearly with input intensity, with a discontinuity at threshold for

Bz 6= 0.

In the setup, the pump beam is derived from the cooling beam, which passes

through a tapered amplifier (TA). After the TA, the beam passes through an

AOM in double pass configuration, and the first diffracted order is coupled to a

Thorlabs single-mode optical fiber with a 5 µm mode radius. The AOM and TA

introduce a pointing instability in the mode profile of the beam, causing intensity

fluctuations of the pattern pump beam exiting the fiber. The time scale of the

fluctuations is thermal (νfluct ∼ 1 Hz) whereas the pump time of the pattern

formation and imaging is ∆tpump ∼ 300 µs, meaning the main contribution to the

noise is due to shot-to-shot fluctuations, as the duration of MOT loading stage is

∆tMOT = 3 s.
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Figure 3.11: Monitoring shot-to-shot intensity fluctuations of the pump
beam. (a) photodiode signal read by the analog input of the NI-DAQ device,
(b) average intensities per shot for a sequence of N = 200 shots. Solid lines:
average intensities I = 14 mW/cm2 (blue), I = 19 mW/cm2 (green), I = 24
mW/cm2 (red), dashed lines: cut-off intensities for a tolerance of 5 %.
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The input beam intensity is measured by a photodiode, with calibration I =

((〈V 〉 − 0.026 × V ) × 63.4
V

+ 0.98) mW/cm2, and read by an analog input of the

NI-DAQ 6713 device. For each experimental realization a set of 65 samples with

duration 10 µs is taken and then averaged over a section of 550 µs duration.

The effective integration time of 550 µs is longer than beam pumping time due

to limitation caused by bandwidth of the photodiode, and is justified by the fact

that thermal noise is not a relevant factor at these timescales.

In Fig. 3.11a raw output of the photodiode read by the DAQ card is shown. The

acquisition is triggered simultaneously with the pump pulse lasting 650 µs in the

displayed case. Each pulse is then averaged and displayed in Fig. 3.11b. The

initial noise (first N ∼ 30 pulses) is due to thermal effects in the AOM and all

the points with N < 30 are discarded, and the solid lines represent a mean of the

remaining data points. As active stabilization of ∼ 300 µs pulses proved to be a

relatively involved task, reduction of the diffracted power errors was achieved by

discarding the data points with high input intensity fluctuations, and the dashed

lines in Fig. 3.11b represent intensities with tolerance 5 % of the mean, a cut-off

value for this procedure.

3.2.4 B-field control and measurements

The B-fields in the experiment are controlled by sending a control voltage to the

4 circuits controlling the current through the Helmholtz and anti-Helmholtz coils

around the MOT cell. The schematics of the circuit is depicted e.g. in Fig. D.6 of

Ref. [119]. The circuit consists of a differential amplifier and an integrator, which

outputs to the gate pin of a current controlling MOSFET. The voltage drop across

a resistor in the coil circuit is sent to the non-inverting input of the differential

amplifier. In this way, the inductance spikes arising from rapid switching of the coil

current are filtered out by a low pass filter of an integrator, using a feedback loop

sensing the current through the coils. The field is ramped on/off in the period of 1

ms. However, the presence of eddy currents lasting up to 3 ms after the switch-off

start was detected by Gaussmeter measurements (see Fig. 3.12). As is seen in Fig.
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3.12, a waiting time of 3.5 ms is a sufficient waiting time for the B-field to reach

steady state. The Gaussmeter is expected to provide accurate measurements of

the B-fields in the center of the cloud due to relatively narrow dimensions of the

cell, allowing for placing the device near the cell center. Subsequent measurements

of non-linear Faraday rotation at different points of time after B-field switching

confirmed this conclusion.

Figure 3.12: B-field switching. The fields in x (parallel), y (orthogonal), and
z (longitudinal) directions are measured by a Gaussmeter with conversion factor
of 10 V/G. Blue: pump beam detected by a photodiode, which marks the start of
the pump process (rising edge). Green: MOT beam detected by a photodiode,
marking the start of the B-field switching process (falling edge). Magenta:
longitudinal B-field (Bz). Red: parallel B-field (Bx). Cyan: orthogonal B-field
(By). During the switching process the anti-Helmholtz coil was turned off and
a B-field in the orthogonal direction added via one of the Helmholtz coils, to
illustrate the behavior for a typical experimental run.

The complex Zeeman sub-level structure of the F = 2 → F ′ = 3 transition

offers myriad mechanisms for measuring the B-field via polarization sensitive atom

excitation and light detection [71, 127]. However, as only the zero of the field was

needed, the simple non-linear Faraday effect [78] could be used to minimize the

field. Using the coil current values for cancelling the external B-fields, the absolute
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value of the B-field inside the atomic cloud was determined by calibrating the bias

coils with a Gaussmeter placed near the cell.

Figure 3.13: Simulations of the non-linear Faraday effect used to find the
minimum of the B-field. (a) schematics of atom-light coupling of the σ± tran-
sitions and the population imbalance, caused by the asymmetry in the effective
detuning of the two circular light components. (b) orientation, as defined in Sec.
2.1.2, vs. the Bz field. Simulation parameters: Bx = By = 0. Red: ∆ = −8Γ1.
Orange: ∆ = −7Γ1. Blue: ∆ = −6Γ1. Black: ∆ = −5Γ1. (c) absolute value
of rotation angle θ. Simulation parameters: I0 = 70 mW/cm2, Bx = By = 0.
Colors same as in (b). (d) rotation vs. the two transverse B-field components.
Simulation parameters: Bz = 0.15 G, ∆ = −5 Γ1. For all plots transient re-
laxation and repopulation rates r = 0.001 Γ1, optical thickness b0 = 30 and the
input beam intensity I0 = 70 mW/cm2.

Fig. 3.13 shows the mechanism of measuring the Bz field. For high pump inten-

sities I > Isat, the horizontally linearly polarized detuned light pumps predomi-

nantly into one of the stretched states of the F = 2 ground level when Zeeman

splitting by the Bz field is present. For a red detuned beam (∆ < 0) and positive
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Bz > 0, the detuning for the positive circular component is higher than the de-

tuning for the negative circular component. For small Bz fields of |Bz| = 0− 500

mG, the Zeeman shifts are Ωz = 0 − 0.115 Γ1 and the linear Faraday rotation is

small due to Ωz � Γ2,∆ [77]. Due to the asymmetry caused by the small Bz,

the high intensity beam pumps the atoms preferentially into m < 0 states for

Bz > 0 and m > 0 for Bz < 0, creating a population imbalance, which will result

in an asymmetry of phase shifts ϕ+ 6= ϕ−, and ultimately a rotation of the linear

polarization.

To see how the difference in phase shifts causes a rotation of the beam polarization,

one can write the linear components of the light as Ex = 1
2
(E+ + E−) and Ey =

i
2
(E+ − E−) (using now the electric field convention where E+ = (Ex − iEy)/

√
2

and E− = (Ex + iEy)/
√

2), their initial field amplitudes for horizontally linearly

polarized light are E+ = E− = E0. The phase shifts of the two circular components

acquired by passing through the medium are then E0e
iϕ± . The parallel (Ex) and

orthogonal (Ey) beam components, analyzed by a PBS and measured by a detector

are then Ix,y = |Ex,y|2 = |E0|2
2

(1± cos(ϕ+−ϕ−)). The difference in effective phase

shifts caused by population asymmetry is now seen to cause the field to rotate and

acquire a component Ey in the axis orthogonal to the input light, and Fig. 3.13c

shows the variation of absolute value of the rotation angle θ = arctan(Ey/Ex)

with the Bz field. The depumping of orientation caused by the transverse fields is

shown in Fig. 3.13d to cause a decay of the rotation feature, and the fields were

minimized by measuring this decay in experiment.

The experimental measurements of the Faraday rotation angle are depicted in

Fig. 3.14. The maximum rotation angle is |θ| ≈ 22.5◦, which agrees well with

the simulation results of Fig. 3.13, for the depumping rate r = 0.001 Γ1 (free

parameter) chosen. The width of the rotation dip of the longitudinal field scan is

slightly higher than expected from the theory curves at the detuning ∆ = −5 Γ1,

which is likely a result of stray B-field gradients due to the ferromagnets in the ion

pump, located ≈ 50 cm from the MOT chamber. The stray gradient B-field can

not be canceled in the present setup, where the current through the coil pairs of the

bias coils in the Helmholtz configuration is varied. The cancellation of the gradient
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would require the current in each coil of the pair to be varied independently. The

transverse fields increase the depump rate of the spin, which reduces the steady

state w and consequently the rotation angle.

Figure 3.14: Absolute value of the polarization rotation angle θ, rotated by
the non-linear Faraday effect. Lines are guide to the eyes. Scans of: (a) parallel
B-field Bx, (b) orthogonal B-field By, (c) longitudinal B-field Bz. Experimental
parameters (common to a, b, c): ∆t = 300 µs, b0 = 25, I = 70 mW/cm2,
∆ = −5.34 Γ1. (a) By = 0, Bz = 0.15 G, (b) Bx = 0, Bz = 0.36 G, (c)
Bx,y = 0.

Non-linear Faraday rotation provides a simple and convenient means to minimize

the B-fields in the experiment. The procedure was applied routinely to deter-

mine the minima of the B-fields, required for both optimal MOT preparation and

controlled pattern formation experiments.



Chapter 4

Experimental results

In this Chapter the results of the magnetization pattern formation experiments

are presented. The properties of the magnetization patterns are dependent on

the direction and strength of the applied external B-field. The B-field affects

the dynamics of the atomic magnetic moments through the interaction part of

the Hamiltonian, which in turn affects their optical properties. For the system

with feedback this means that the pattern properties will also depend on the B-

field. The switching between pattern formation based on four-wave mixing and

three-wave mixing is demonstrated to be a result of the applied longitudinal field,

breaking the inversion symmetry of the system. A wealth of pattern symmetries is

observed in the four-wave mixing case. Application of the longitudinal B-field also

breaks the symmetry between the diffracted power in the two circular polarization

channels, while the transverse B-fields cause the diffracted power to decay. The

magnetization pattern phase space with respect to beam detuning and intensity is

mapped, and its properties compared to that of the patterns with optomechanical

and two-level non-linearities.

74
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4.1 Region of instability

The region of existence of the polarization instability is shown in Fig. 4.1. This

plot shows the diffracted power in the polarization channel orthogonal to input

polarization, normalized to maximum, for parameters: d = −4.16 mm (distance

from the center of the cloud to the mirror), Bx,y,z = 0, ∆t = 300 µs and b0 = 27.

The patterns are seen to exist for detunings of ∆ < −4 Γ1 with the lower limit

of intensity in the ∼ 5 mW/cm2 range. For an input beam with lower detuning

the absorption prevents the pattern formation by decreasing the transmission and

consequently the amount of light in the mirror feedback loop. The contrast peaks

at detunings of −12 < ∆ < −8 Γ1 and intensities 50 < I < 200 mW/cm2. At the

intensities of I > 450 mW/cm2 the contrast again decays due to bleaching of the

atoms by saturation, while the decrease of contrast at detunings of ∆ < −12 Γ1 is

a consequence of the decrease of the linear refractive index, reducing the atom-light

interaction and thus reducing the amplification of fluctuations inside the cloud by

the single-mirror feedback loop.

The observed threshold intensities of the magnetization patterns on the order of 5

mW/cm2 are lower than the ones for optomechanical instabilities reported in Ref.

[18]. In this paper the threshold for a cloud with b0 = 20 was measured to be 457

mW/cm2 at detuning of ∆ = +6 Γ1. The instabilities based on the saturable non-

linearity have even higher thresholds, with appreciable pattern contrast starting

for an optical thickness of b0 = 90 for a fixed input intensity of I = 457 mW/cm2

and detuning ∆ = +6 Γ1, as reported in Ref. [18]. At fixed b0 = 210 the

lowest threshold intensities of I = 100 mW/cm2 were observed, as reported in Ref.

[19]. The threshold properties support the conclusion that the optomechanical

and saturable non-linearities are not expected to be the primary drivers of the

instability observed in this Thesis.
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Figure 4.1: Diffracted power in the orthogonal polarization channel (nor-
malized to maximum) for parameters: mirror distance d = −4.2 mm, B-fields
Bx,y,z = 0, pump time ∆t = 300 µs and on-resonance optical thickness b0 = 27.

4.2 Breaking of inversion symmetry

As explained in Chapter 1, the allowed symmetry of a patterned state depends

on whether the inversion symmetry is present or not in the system. In the lowest

order approximation (i.e. near threshold), the hexagons are the only allowed

patterns if the inversion symmetry is broken, whereas any pattern can occur in a

system where inversion symmetry is preserved [23]. The near-field (NF) images

of patterns at various B-fields are shown in Fig. 4.2. The first column shows

images of pattern realizations for Bz = −80 mG, the second for Bz ≈ 0 (where

the “≈” symbol means the B-field was minimized to the experimentally available

limit, as described in Sec. 3.2.4) and the third for Bz = 120 mG. The first row

shows σ+ light, the second σ− light and the third a subtraction of σ+ and σ−.

For Bz < 0 the σ− light forms positive hexagonal patterns (HX+) and the σ+

light forms negative hexagonal patterns or honeycombs (HX−), and the situation
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is reversed for Bz > 0. In the realization shown in Figs. 4.2b, e, h for Bz ≈ 0 the

patterns have a rectangular (RC) symmetry, however it needs to be noted that for

Bz ≈ 0 other symmetries can also appear near threshold, as shown in Fig. 4.4.

Figure 4.2: Breaking of the inversion symmetry by Faraday rotation. The
near field imaging is done in the plane a quarter of the Talbot distance from
the end of the cloud, where beam phase modulations are fully converted into
amplitude modulations. Columns: images for Bz = −80 mG (first) Bz ≈ 0
mG (second) and Bz = 120 mG (third). Rows: σ+ polarization channel (first),
σ− polarization channel (second) and the difference between the two channels
(third). Experimental parameters: I ≈ 10 mW/cm2, ∆ = −7 Γ1, d = −2.88
mm (first and third columns), d = 2.2 mm (second column), ∆t = 250 µs.
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The subtracted images in the last row of Fig. 4.2 show clearly the complementarity

of the regions of dominant σ± light. The complementary modulation of σ± light

is a consequence of the instability being based on the spin variable w, as will be

discussed in Chapter 5. The feedback, maximizing the spin modulation, forms two

sublattices, one for the σ+ light, and one for the σ− light. The difference of the

near field images of σ± light patterns, shown in Figs. 4.2g, h, i, is proportional to

the driving term D of the spin variable w, as defined in Chapter 2. These images

can then be interpreted to be proportional to the atomic spin variable w, and

the transverse pattern symmetries related to the phases of atomic magnetization.

For Bz > 0 the modulation depth of the σ+ hexagonal lattice is greater than the

modulation depth of the σ− hexagonal lattice, while the converse is true for Bz < 0.

For Bz ≈ 0, the modulation depths of the two lattices are approximately equal.

The Bz 6= 0 phase is thus analogous to the antiferromagnetic phase, while the

Bz < 0 and Bz > 0 phases are analogous to the ferrimagnetic phase in condensed

matter systems. By definition, the antiferromagnetic ordering has two magnetic

sub-lattices with spins of equal magnitude and opposite orientation, while the

magnetization sub-lattices in a ferrimagnetic ordered system have spins of opposite

orientation and unequal magnitude [128]. One notes that both the interpretation

and the analogy of the patterns with magnetic phases does not change for the

Bz = 0 case for symmetries other than rectangular or square.

To estimate the number of atoms in each peak of the near-field image one can first

estimate the total number of transverse peaks to & 100 (see Fig. 3.9). The depth

of field of the 2.5× magnifying imaging setup (with a numerical aperture of ∼ 0.1)

is ∼ 100 µm. The total number of atoms in the cloud is ∼ 109, and the length

of the cloud is 1 mm. From these numbers one calculates the upper estimate of

∼ 106 atoms per peak.
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Figure 4.3: Far-field images taken simultaneously as near-field images of Fig.
4.2. The parameters and the image ordering are the same as in Fig. 4.2.

Figure 4.3 shows far-field (FF) data of the same patterns observed simultaneously.

The FF images show the zero order peak of the transmitted Gaussian envelope,

and the well defined sideband peaks with the three axes at angles of 60◦ for HX±

and the two axes at 75◦ for RC. As was explained in Chapter 1, the interference of

the zero order and the sidebands causes the amplitude modulation of the beam at

the quarter of the Talbot distance. The amplitude of the sidebands (proportional

to the diffracted power) of the σ+ lattice is higher than the amplitude of the σ−

lattice for Bz > 0, while the converse is true for the Bz < 0 case. For Bz ≈ 0

the amplitudes are approximately equal. The axis angles of a few other pattern

realizations at B ≈ 0 are denoted in Fig. 4.4, where squares (SQ), rectangles

(RC), rhombs (RB) and stripes (ST) are shown. The angles of the sideband axes

fluctuate randomly from shot to shot, and a wide range of angles has beed observed

experimentally, implying that the factors gil(θil) in the threshold equations of the

type (1.11) vary weakly on the angles θil.
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Figure 4.4: Examples of observed pattern symmetries for the inversion sym-
metric case (Bz = 0): (a) squares (SQ), (b) rectangles (RC), (c) rhombs (RB),
(d) stripes (ST). All images are in the far-field of the σ+ polarization channel.
The experimental parameters for this data are: d = −3.5 mm, I = 7 mW/cm2,
Bx,y,z = 0, ∆ = −7 Γ1, ∆t = 300 µs, b0 = 27.

The presence of a longitudinal B-field provides a mechanism for breaking the

inversion symmetry of the system. This is done by changing the optical response

of the atomic medium (i.e. its refractive index) for σ+ and σ− light components. As

will be discussed in Section 4.5, the previous experiments in hot vapours reported

in Refs. [129, 130] used less direct ways of breaking the inversion symmetry.

4.3 Instability onset

Fig. 4.5 shows the diffracted power against pump time for three different input

beam intensities. Each data point corresponds to a single realization of the pattern,

without accounting for input beam intensity noise. The pumping time required

for reaching the patterned steady state is dependent on the input intensity, as is

expected for a non-linearity based on optical pumping into magnetic sublevels,

where a certain number of photons needs to be absorbed and spontaneously emit-

ted for pumping to occur. The timescales of 10 − 100 µs are consistent with the

interpretation that the non-linearity is based on Zeeman sublevel optical pumping.

The scattering rate of photons by a single atom is given by [22]

Γscatt = Γ2
s(∆)

1 + s(∆)
(4.1)

where Γ2 = Γ1/2 = 19.06 MHz [72] is the optical coherence decay rate and s

is given by Eq. (2.14). For a circularly polarized beam with intensity of I = 5
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mW/cm2 (Isat = 1.669 mW/cm2 [72]) and detuning |∆| = 14 Γ2, a photon will on

the average be scattered each τ = 1/Γscatt = 3.5 µs. Considering that the number

of photons scattered to reach steady state is on the order of 5− 10, the timescales

are on the order of 17.5− 35 µs, which is consistent with the results shown in Fig.

4.5, where for the beam of total intensity I = 9.3 mW/cm2 (meaning each circular

component has I± = 4.65 mW/cm2) noticeable diffraction starts around t ≈ 25 µs

of pumping time.
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Figure 4.5: Dependence of the total diffracted power (normalized to max-
imum) on pump duration ∆t for parameters: d = −4.2 mm, ∆ = −7 Γ1,
Bx,y,z = 0 and b0 ≈ 27. Red: I = 3.6 mW/cm2. Black: I = 6.8 mW/cm2.
Blue: I = 9.3 mW/cm2.

In the previous work with optomechanical [18] and saturable [19] non-linearities,

the timescales were on the order of 0.1 ms and ∼ 100 ns, respectively. In these

experiments the timescales of pattern onset and decay were crucial in providing

the signatures used to determine the types of non-linearities responsible for the

pattern formation. In the Zeeman non-linearity case, the origin of the non-linearity

is clear from the start. One reason for this is because both of the competing

non-linearities (i.e. optomechanical and saturable) are insensitive to the light

polarization, meaning that the vectorial aspect of the electric field can be ignored.

In addition to the absence of modulated light at the polarization orthogonal to
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the input polarization, another reason for this was the complete independence of

pattern properties on the applied B-fields, as reported in Refs. [18, 19], which is

not the case for patterns observed in this Thesis.

Figure 4.6: Total diffracted power for varying input beam intensity. Red:
Bz ≈ 0. Blue: Bz = 130 mG. Experimental parameters: mirror distance d =
−2.9 mm, detuning ∆ = −7 Γ1, B-fields Bx,y = 0, pump time ∆t = 300 µs,
and on-resonance optical thickness b0 ≈ 27.

In spite of the fact that the optomechanical non-linearity most likely plays a negli-

gible role in the self-organization procedure, there is no reason to a priori exclude

the existence of atomic density modulations in the transverse plane. However,

probing the interplay between cooling of the atomic motional degrees of freedom

and spin self-organization is beyond the scope of this Thesis.

Fig. 4.6 shows the total diffracted power for Bz = 130 mG (blue) and Bz ≈ 0

(red) and the measured far-field images at the denoted intensities. Each data

point represents a single realization (shot) of the patterns, and the input beam

intensity is monitored by a photodiode. The gain is seen to be slightly higher for

the Bz = 130 mG case and the thresholds roughly coincide. The Bz = 130 mG

patterns show a discontinuity at I ≈ 12 mW/cm2, whereas the Bz ≈ 0 patterns

show a more continuous increase. This is an indication that the bifurcation for the
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Bz = 130 mG is subcritical, whereas the Bz ≈ 0 patterns are supercritical, and

also a confirmation that the wave mixing process in the Bz ≈ 0 case is four-wave

and in the Bz = 130 mG case it is three-wave. In Fig. 4.7 the diffracted power

divided by the input power (normalized to maximum) is plotted for the same data

as in Fig. 4.6. The displayed quantity is now anticipated to be proportional to the

order parameter, and the curves are reminiscent of the curves for first and second

order phase transitions [131].
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Figure 4.7: Total diffracted power normalized to the input power. Red:
Bz ≈ 0. Blue: Bz = 130 mG. Experimental parameters are the same as in Fig.
4.6.
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4.4 Scanning the B-fields

Fig. 4.8 shows a scan of theBz field up to |Bz| ≈ 150 mG for three input intensities.

To minimize the noise induced by fluctuations of the pump intensity, for each shot

the intensity was measured, and subsequently the data point discarded if the value

deviated by more than 5% from the mean intensity value, as was described in Sec.

3.2.3. The points in the plot correspond to the mean values of diffracted power,

averaged typically for more than 5 shots. An excess of σ+ (σ−) diffracted light

for Bz > 0 (Bz < 0) is observed, along with the decay of diffracted power in both

channels at higher Bz (i.e. |Bz| ≈ 150 mG, for I = 14 mW/cm2).
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Figure 4.8: Scan of the longitudinal field Bz for small values around Bz = 0.
(a) I = 24 mW/cm2. (b) I = 19 mW/cm2. (c) I = 14 mW/cm2. Full circles:
σ+ light, empty circles: σ− light. Experimental parameters: mirror distance
d = −2.9 mm, detuning ∆ = −7 Γ1, B-fields Bx,y = 0, ∆t = 300 µs and
on-resonance optical thickness b0 ≈ 27.
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The error bars of the hexagonal (|Bz| ≥ 30 mG) phase typically are larger than the

error bars of the stripe/rectangle phase. This is in accordance with data shown

in Fig. 4.6 where a discontinuity was observed for a finite Bz. The Bz field scan

shows a clear asymmetry in the diffracted power for the case of |Bz| & 15 mG,

and a symmetry for the Bz < 15 mG case.
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Figure 4.9: Difference of the diffracted powers in the σ± polarization channels.
Experimental parameters are the same as in Fig. 4.8.

The diffracted power asymmetry is further illustrated in Fig. 4.9, where the differ-

ence of diffracted power in the two circular polarization channels is plotted against

Bz, for the same data as in Fig. 4.8. The difference in the diffracted power ini-

tially grows for small Bz fields, and then starts dropping. The width of the pattern

existence region increases with the input pump power, which will also be the case

for the simulation results of Ch. 5. The plot shows a clear imbalance between the

diffracted power in the two channels for an applied Bz field, with σ+ light being

dominant for Bz > 0 and the σ− dominating for Bz < 0. The quantity can be

related to the total dipolar magnetism in the transverse plane of the cloud, where

a presence of an excess modulation of the spin δw > 0 (δw < 0) sublattice for

Bz > 0 (Bz < 0) can be inferred from this data. This supports the conclusion that

the magnetism in the Bz 6= 0 case is ferrimagnetic, while in the Bz = 0 case it is

antiferromagnetic (see Sec. 5.3.1).
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The total diffracted power is plotted against Bz field in Fig. 4.10. The maximum

diffracted power for the given parameters is at Bz = 0. The diffracted power

decays completely at |Bz| = 0.4 G and then starts increasing again for higher |Bz|

values. The maximum Bz field in the negative direction is limited by the fact that

the Helmoholtz coil pair used to set the field is also used to minimize the stray

B-fields, so the range is fixed by the current direction.
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Figure 4.10: Total diffracted power normalized to maximum. The experimen-
tal parameters are: pump intensity I = 17 mW/cm2, mirror distance d = −4.2
mm, detuning ∆ = −7 Γ1, B-fields Bx,y = 0, ∆t = 300 µs and on-resonance
optical thickness b0 ≈ 27.

The transverse field scans are shown in Fig. 4.11. The effect of both of the

transverse B-fields in the directions parallel and orthogonal to the input beam

polarization are seen to be roughly equal. As can be inferred for the scans at

different input powers, the fields work to reduce the diffracted power and increase

the threshold intensity. It is expected that the transverse field reduces the optical

pumping by spin flips which can then prevent the pattern formation driven by

the orientation. The results of Fig. 4.11 are then a further confirmation of the

conclusion that the patterns are indeed in the magnetic dipole (spin) degree of

freedom of the atoms inside the cloud.
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The measured pattern properties will be reproduced by the simulations, as pre-

sented in simulation results shown in Chapter 5.

Figure 4.11: Total diffracted power vs. transverse B field scans. (a) Bx scan
and (b) By scan. Red: I = 7 mW/cm2. Black: I = 10 mW/cm2. Blue:
I = 12 mW/cm2. The experimental parameters are: mirror distance d = −4.2
mm, detuning ∆ = −7 Γ1, B-fields zero unless indicated, ∆t = 300 µs and
on-resonance optical thickness b0 ≈ 27.

From the variation of the diffracted power at fixed input power with the Bz-field

(Fig. 4.10) one can expect that also the thresholds for pattern formation will vary

with the Bz-field. These results are shown in Fig. 4.12. The threshold intensity

rapidly increases until Bz = 0.23 G, after which it starts decreasing and reaches a

constant value of Ith ≈ 4 mW/cm2 for Bz > 0.7 G.

As noted before, the pattern symmetries also depend on the applied Bz-field. The

red shading in Fig. 4.12 indicates the phase where rectangles, squares and stripes

are a typical solution, going from Bz = 0 to Bz = 0.04 G. For Bz fields in the

range 0.04 < Bz < 0.23 G (blue) the solutions are hexagons with the diffracted

power from the σ+ sublattice being clearly greater than the diffracted power in the

σ− sublattice, as is shown in Fig. 4.9. For even higher Bz-fields (magenta), until

the maximum Bz value applied (Bz = 1.33 G), the typical solutions are rectangles

and stripes. The diffracted power of σ− light is now greater than the diffracted

power of σ+ light, opposite to the case of moderate Bz-field (blue). The theoretical

investigation of this high Bz phase is still ongoing.
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Figure 4.12: Pattern threshold intensities for varying the Bz-field. The
shaded regions indicate the regions of symmetry of the patterns with the insets
showing the typical FF data in the σ± polarization channels of the pattern
realizations in the given region, for the denoted values of beam intensity and
longitudinal B-field. The experimental parameters are: mirror distance d = 1.28
mm, detuning ∆ = −7 Γ1, transverse B-fields Bx,y = 0, pump time ∆t = 300
µs and on-resonance optical thickness b0 ≈ 27.

4.5 Relation to previous work

Previous experimental work on Zeeman instabilities in hot Na vapours was per-

formed with both circular [13, 14] and linear input light [129]. In the case of

circular light, the inversion symmetry of the system is broken by the input light,

and the pattern symmetries are hexagonal. As there is no generation of modulated

light with a polarization mode orthogonal to that of the input light, the physics

can in this case be treated in a quasi-scalar framework. This also means that the

interpretation of the patterns as magnetization patterns is not plausible.

In the case of linear input light polarization, the quasi-scalar treatment fails, as the

vectorial nature of the light in the feedback loop becomes important. The breaking
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of the inversion symmetry causing squares (rectangles) to switch to hexagons is

done in a less direct way. One way of breaking the inversion symmetry is by

increasing the ellipticity of the input light. The change of polarization of the

input light from linear to elliptical results in a finite homogeneous solution for the

spin variable wh, which breaks the inversion symmetry of the system [129].

Another way of breaking the inversion symmetry of the system is by light shift

or Zeeman splitting. This was done by adding a transverse B-field to the system.

The transverse field flips the spins more strongly for a beam close to the resonance

of the transition. Adding the light shift or Zeeman splitting (for a fixed detuning

∆), one of the σ± light components can be brought closer to resonance, increasing

the rate of the spin flips by transverse fields. Since the individual circular light

components pump into the dark states, the component for which the spin flipping

is stronger will couple more strongly to the light, thus breaking the inversion

symmetry of the system.

Additional difference from the previous experiments in Na vapours arises from the

fact that the previous experiments were done with a J = 1/2 → J ′ = 1/2 transi-

tion, which allows only dipole physics. The preliminary simulations of the dipole

model (i.e. with only w variable included) indicate that the model is insufficient

to reproduce the experimental results of Section 4.4, indicating that the influence

of the quadrupolar terms on the steady state pattern solution is not completely

negligible.

In the experiments performed with hot Na vapors the intensity was scanned across

the threshold in both positive and negative directions [132]. For the square phase

the scan was shown to fall on a single continuous line, as expected for a supercrit-

ical bifurcation, while the hexagons showed a hysteresis, as is characteristic for a

subcritical bifurcation. The cold atom experiment described in this Thesis could

in the future be modified to detect such a hysteresis, e.g. by inserting a photo-

diode to continuously measure the sideband power during a millisecond ramp of

the input beam intensity. One limiting factor for cold atom experiments with re-

spect to hot vapor experiments is that the scan time is limited by cloud expansion,
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meaning that (i) the optical thickness is reduced and (ii) the cloud center falls due

to gravity for time of flight times on the order of 10 ms. An experimental challenge

is then to balance the pump time duration to reach steady state of the patterns on

the order of 50 µs (see Fig. 4.5 and discussion thereof) with the transient decay

of optical thickness on scales of a few milliseconds. One way to calibrate the ramp

time would be to measure first the curve for Bz ≈ 0, and modify the ramp time

to reach lowest hysteresis, and then do the same scan for Bz 6= 0 to see the area

under hysteresis curve get larger.



Chapter 5

Simulating the magnetization

patterns

Single feedback mirror self-organization theory for hot atoms with spin 1/2 was

written by Scroggie and Firth in 1996 [133] to provide the framework for the

experiments in alkali vapors of Refs. [12, 13] and the simulation results of Le

Berre [134]. In the work of Ref. [129] a linearly polarized beam, i.e. possessing

equal weights of the circular σ± components, was used as the input. A symmetry

breaking instability occurs in the system when a fluctuation in the spin of the

medium, which induces an opposite spatial modulation of the phases of the two

circular light components exiting the medium, is strongly amplified by the feedback

via phase to amplitude conversion of the Talbot effect.

In the first part of this Chapter the framework of linear stability analysis is em-

ployed to illustrate how the spin w drives the instability in the 1D case. It is also

explained how the results of the experiment would change in case the instability

were a result of maximizing the mirror feedback upon fluctuations of the other

atomic variables. In the second part, the results of numerical simulations are pre-

sented for the 1D and 2D cases. The scans of the B-fields reproduce well the

experimental results of Ch. 4. The symmetries of optical patterns and the atomic

variables are also shown and discussed.

91
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5.1 Linear stability analysis

5.1.1 Self-organization via mirror feedback

In the slowly warying amplitude and thin medium approximations, the light prop-

agating through an atomic cloud experiences the medium polarization P(r⊥, z)

via the paraxial wave equation [54]

∂

∂z
E(r⊥, z) = −ikP(r⊥, z), (5.1)

where k = |k| is the length of the longitudinal wavevector of the incoming pump

beam. In circular polarization components σ±, the above equation can, with the

aid of Eqs. (2.23), be cast into the form ∂
∂z
E+(r⊥, z) = −iα+

l

((
1 + 3

4
w + 1

20
x
)
E+(r⊥, z) + 3

20
(u− iv)E−(r⊥, z)

)
,

∂
∂z
E−(r⊥, z) = −iα−l

((
1− 3

4
w + 1

20
x
)
E−(r⊥, z) + 3

20
(u+ iv)E+(r⊥, z)

)
.

(5.2)

For the sake of simplicity, absorption and linear Faraday effect are neglected in

the following discussion (but not in the simulations presented in Sections 5.2 and

5.3.1) due to ∆/Γ2,∆/Ωz � 1. The linear susceptibilities α±l = kχ±l from (2.23)

are now both equal to

α = − b0

2LΓ2

∆

1 + ∆2

Γ2
2

, (5.3)

where b0 is the on-resonance optical thickness as measured in experiment, ∆ is

the beam detuning and Γ2 is the decoherence rate. The dynamical equations for

the atomic variables (2.19) are solved at the end of the medium of length L. The

electric fields E±(r⊥, z = L) ≡ E± in the Rabi frequencies Ω± are a superposition

of the forward (F±(r⊥, z = L) ≡ F±) and backward (B±(r⊥, z = L) ≡ B±)

propagating fields [133]

E± = F± +B±. (5.4)

The fields E± enter the atomic equations of motion only via terms proportional

to |E±|2 and E∗+E−. The treatment described in this Chapter neglects the terms



Chapter 5. Simulating the magnetization patterns 93

proportional to cos 2kL, i.e. terms F ∗+B−, F
∗
−B+, in the transverse pattern for-

mation community reffered to as the longitudinal or reflection grating terms (see

Sec. 6 and Ref. [125] for a treatment of a Kerr medium including the reflection

gratings). The dynamical equation terms including the total fields are now

|E±|2 = |F±|2 + |B±|2, and E∗+E− = F ∗+F− +B∗+B−. (5.5)

The first expression in Eq. (5.5) is the intensity and therefore phase-insensitive,

while the second expression contains the interference terms of the two circular

components of the forward and backward propagating beams, respectively. This

interference is a consequence of the two beam coupling of the two ∆m = 2 ground

levels via a single excited state. Free space propagation of an electric field E±(r⊥, z)

in +z direction after the cloud is governed by

∂

∂z
E±(r⊥, z) = − i

2k
∆⊥E±(r⊥, z), (5.6)

where − sign on the RHS changes to + if propagation is in the −z direction, ∆⊥

is the Laplace operator in the plane transverse to the input beam propagation

direction and k = 2π/λ is the longitudinal wavenumber of the pump laser.

To express more formally the mechanism of single-mirror feedback, one can con-

sider the effect of a modulation in the atomic variables on the backward prop-

agating field. The total forward field exiting the medium is modulated with an

amplitude f±(r⊥) by the atomic modulations, and can be separated into homoge-

neous and inhomogeneous parts as

F±(r⊥, z = L) = F 0
±(1 + f±(r⊥)). (5.7)

This field is propagated to the mirror and back, solving the equation (5.6). Moving

to the Fourier space of the transverse coordinate r⊥ → q one gets

∆⊥ → −|q|2, and f(r⊥)→
∫
f(q)eiq·r⊥dq. (5.8)
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Propagating the above equation (5.7) a distance z after the medium via the diffrac-

tion equation (5.6) results in

F±(q, z) = F 0
±(1 + f±(q)ei

|q|2z
2k ). (5.9)

The backward fields reentering the medium can now be easily calculated by prop-

agating Eq. (5.9) to the mirror with reflectivity R and back. The field reentering

the medium at z = L, which is a result of propagation to the mirror and back by

a distance lpr = 2d (where d is in this Chapter the distance from the end of the

medium to the mirror), is equal to

B±(q, z = L) = B0
±(1 + f±(q)ei

|q|2d
k ), (5.10)

where B0
± =
√
RF 0
±. In the linear stability analysis the sideband amplitudes f±(q)

are for pump intensities near threshold related to the atomic variable modulations

with wavevector q. For the application of this framework to the J = 1/2→ J ′ =

1/2 system see e.g. [133]. The phase factor of the sidebands is in the transverse

pattern formation community known as diffractional phase shift and denoted by

Θ(q) =
|q|2d
k

. (5.11)

The above equation (5.10) makes apparent how the interference of the zero order

and the sidebands influences the atomic variable modulations by mirror feedback.

The atom variable fluctuations are random, i.e. they appear at every lengthscale

Λ = 2π
|q| or, more precisely, wavevector q. The Talbot effect converts a phase

grating with a period Λ into an amplitude grating with same period at a quarter

of the Talbot distance zT = 2Λ2/λ [52]. For the patterns to start growing out

of random fluctuations, a positive feedback is needed. Positive feedback in the

optically non-linear medium with refractive index n(I) means the refractive index

modulation ∆n is reflected back to the medium as an intensity modulation with

the same pattern and phase (self-focusing medium) or shifted by half a period

(self-defocussing medium). Due to the fact that the diffraction length is fixed by
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the mirror distance d, positive feedback is received only by patterns with critical

wavelength Λc =
√

4λd (self-focusing case) or Λc =
√

4λd/3 (self-defocussing

case), calculated by setting Θ = π/2 for a self-focusing and Θ = 3π/2 for a

self-defocussing medium. A more formal way of stating this for a system with

2 transverse dimensions is to say the Fourier spectrum of patterns growing at

the critical point will be localized on a ring with radius given by the critical

wavenumber qc = 2π/Λc. The symmetry of the patterns is based on wave mixing

of waves with various wavevector q orientations inside the medium. A detailed

treatment of this process can be found in the well known paper by D’Alessandro

and Firth [65], and an outline is provided in the introductory chapter of this Thesis.

An instability can also arise due to intensity modulated gratings [135, 136, 137,

138], which will be shown in the next Section when considering the modulations

in the v variable.

5.1.2 Polarization instability

The existence and coupling between the atomic multipole moments via equations

(2.19) is a novel element with respect to the work done on the J = 1/2→ J ′ = 1/2

transition of hot sodium atoms [23]. However, as is indicated from the experimen-

tal results, the main driver of the instability is still the dipole term w. To see

this, one needs to remember the two main ingredients for producing dispersive

steady state patterns supported by spatially separated regions of σ+ and σ− light:

a light polarization selective optical dispersion (i) and feedback (ii). Both of the

requirements are satisfied for the w variable, as can seen from the form of the

susceptibility (5.2) and was outlined for the J = 1/2 → J ′ = 1/2 system in Ref.

[133].

To show explicitly how the spin w drives the instability, one can first write a

homogeneous (non-modulated) solution of the Eqs. (5.2) for fields F± exiting the

atomic medium at point z = L

F± = E0
±e
−iξαL

[
cos(ηαL)∓ i

η

(
3

4
w ± 3

20
(u∓ iv)

)
sin(ηαL)

]
, (5.12)
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where

ξ =

(
1 +

1

20
x

)
, η =

√(
3

4
w

)2

+

(
3

20

)2

(u2 + v2) (5.13)

and w, x, u, v are the solutions of Eqs. (2.15). The form of Eq. (5.12) is more

involved than the simple solution for the J = 1/2 system, where only a phase shift

is acquired for the field by transversing the medium (in the far-detuned limit).

This is a consequence of the off diagonal terms in the equation (5.2), due to u and

v variables.

A polarization instability cannot arise due to modulations in the u or x variables,

as can be seen from the above equations (5.2, 5.12). This is trivially shown by

observing that the response of the medium to modulations in these variables is

equal for both σ± components, which in turn means that light polarization selective

feedback, required for a polarization instability to form in the SFM configuration,

is not possible.

Following the standard procedure of linear stability analysis [133] one can now set

w → w0 + δw, x → x0, u → u0 and v → v0 + δv, where w0, x0, u0, v0 are the

homogeneous solutions and δw, δv are the perturbations. The resulting form of

the variable η (Taylor expanded to the first order in the perturbations δw, δv) is

η ≈ η0 +
1

η0

((
3

4

)2

w0δw +

(
3

20

)2

v0δv

)
. (5.14)

The Eq. (5.14) can be simplified by noting that for Bz ≈ 0 (see Sec. 5.2.1) the

terms
(

3
20

)2
v0δv and

(
3
4

)2
w0δw are � η0 (due to the fact that the homogeneous

solutions w0, v0 ≈ 0), and thus the second term on the RHS can be neglected.

For a linear input polarization with E0
+ = E0

− =
√
I0 the fact that w0, v0 ≈ 0 also

implies |F 0
+|2 = |F 0

−|2 = I0 and |B0
+|2 = |B0

−|2 = RI0. The term multiplying the

sin(ηαL) term in Eq. (5.12) now becomes

1

η

(
3

4
w ± 3

20
(u∓ iv)

)
≈ 1

η0

(
3

4
δw − 3

20
(iδv ∓ u0)

)
. (5.15)
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Due to η0αL, ξ0αL� 1, at the used parameters of |∆| > 10Γ2, b0 ∼ 30, one can

now set sin(η0αL) ≈ η0αL, cos(η0αL) ≈ 1, e−iξ0αL ≈ 1.

Focusing first on a modulation in δw(q) for a wavenumber q and using Eq. (5.10),

one gets the form of the reflected field modulated by δw(q) and entering the atomic

equations of motion (2.15)

B± = B0
±

(
1∓ i3αL

4
eiΘ(q)δw(q)

)
, (5.16)

where the term −i 3
20
u0 was neglected due to 3

20
u0 � 1. The modulation δw can

be chosen to be δw = ε sin(qx) where ε� 1. The positive feedback is achieved for

the modulation with critical wavenumber q = qc, for which the diffractive phase

shift Θ(qc) is such that it maximally reinforces the initial δw modulation. As was

discussed in Ch. 2 the main driver of the spin w variable is the difference of pump

rates D = P+ − P−. This means that the diffractive phase shift Θ(qc) is the one

creating a modulation ∼ sin(qx) of D. The only field containing the feedback is

B±, so it is sufficient to limit the discussion to it. Now, for Ωz � ∆, the prefactors

of the pump rates P± are equal and the spin driving has the form

D ∼ |B+|2 − |B−|2 = 3RI0αε sin(qx) sin(Θ(q)). (5.17)

The diffractive phase shift Θ(q) that reinforces the initial modulation δw(q) =

ε sin(qx) is thus seen to be equal to Θ(qc) = π/2, which is satisfied for the wavenum-

ber qc =
√
πk/2d with period Λc =

√
4λd. In case when the diffraction distance d

is negative (made possible by the virtual feedback mirror [120]) so that Θ→ −Θ,

the diffractive phase shift is equal to Θ(q′c) = 3π/2, with q′c =
√

3kπ/2d and

Λ′c =
√

4λd/3. The field reentering the medium for d > 0 is then

B± = B0
±

(
1± 3αL

4
ε sin(qcx)

)
, (5.18)

and for d < 0 the field is of the same form but with substition qc → q′c. It is useful

to see the feedback to the other variables from the fields of the form (5.18). The

variables x, u, v are driven by S ∼ |B+|2 + |B−|2, PΛ+ ∼ B∗+B− + B+B
∗
− and
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PΛ− ∼ i(B∗+B− − B+B
∗
−), respectively. For the d > 0 case the driving terms for

the atomic variables are

D ∼ 3αLRI0ε sin(qcx)

S ∼ 2RI0

(
1 +

(
3αL

4

)2
ε2 sin2(qcx)

)
PΛ+ ∼ 2Re(B0∗

+ B
0
−)
(

1−
(

3αL
4

)2
ε2 sin2(qcx)

)
PΛ− ∼ −2Im(B0∗

+ B
0
−)
(

1−
(

3αL
4

)2
ε2 sin2(qcx)

) (5.19)

and again the same results are found for d < 0 with substitution qc → q′c. The

amplitudes of PΛ+ and PΛ−, Re(B0∗
+ B

0
−) and Im(B0∗

+ B
0
−), can be calculated from

Eq. (5.18) to be equal to

Re(B0∗
+ B

0
−) = RI0 cos

(
3αL
10
u0

)
Im(B0∗

+ B
0
−) = −RI0 sin

(
3αL
10
u0

)
,

(5.20)

where as in the previous results w0, v0 ≈ 0. Solutions (5.20) show that the

modulation of PΛ− will be small compared to the modulations of the other driving

terms, as 3αL
10
u0 � 1, and consequently the modulation in v will be weaker. This

is confirmed by the simulation results.

In the above calculations it was approximated, as is motivated by the experimental

results, that spin w is the sole driver of the polarization instability. A polarization

instability can however also arise due to the v variable, and repeating the above

analysis for the v variable shows a differend kind of polarization patterns to arise.

Setting now δv = ε sin(qx) and neglecting δw (also assuming all the approxima-

tions used in deriving 5.18) in Eq. (5.15), one gets for the modulated backwards

propagating field

B± = B0
±

(
1∓ 3αL

20
eiΘ(q)δv(q)

)
. (5.21)

As the v variable is now driven as δv̇ ∝ −PΛ−, the feedback is given by −PΛ−.

Inserting (5.21) into the relation for PΛ− now gives

− PΛ− ∝ 2Im(B∗+B−) ≈ 6αL

5
Re(B0∗

+ B
0
−)ε sin(qx) sin(Θ(q)), (5.22)
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where now the term 2Im(B0∗
+ B

0
−) is neglected as explained in the discussion of Eq.

(5.20). As for the δw case, the maximum feedback is received for Θ(qc) = π/2

(d > 0), however the field reflecting back to the end of the medium is now equal

to

B± = B±

(
1∓ i3αL

20
ε sin(qcx)

)
, (5.23)

which is phase modulated, as opposed to the amplitude modulated field in Eq.

(5.18). This results in a completely umodulated D, which further gives a negligible

modulation in w, arising solely due to coupling to the v via the dynamical equations

(2.15).

The experimental results, where a high modulation in the D driving term is

present, indicate that the driver of the instability is the w variable. This is antic-

ipated by inspecting Eq. (5.2), where the prefactor of the w variable is 5 times

greater than the prefactor of the v variable. The results of experiments reported

in Ref. [139], where patterns with a modulation in the far field of the orthogonal

linear polarization channel, but without a near field modulation in the circular

polarization channels, was reported for high transverse B-fields, in a cloud with

b0 = 80. It is likely that these modulations were driven by v, and are not seen

for small transverse B-fields as w variable dominates in this case. The threshold

of these patterns is likely to be too high to be observed in the setup described in

this Thesis, with the available optical thickness of b0 ≈ 27.

5.2 One dimensional model

The code for 1D simulations is based on solving the dynamical equations cou-

pled to the equations of light-atom interaction and free space diffraction. The

code solves numerically the dynamical equations of the atomic medium (2.19) and

couples them with the solutions for forward and the backward fields calculated

from the propagation equation (5.6). The equations are solved for each point in

the real space, discretized to 128 (×128 for the 2D case) points. To simulate the

noise in the atomic cloud a small background noise term was added to the optical
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equations, as a necessary condition for patterns to appear spontaneously above

input intensity threshold. In addition to this, a low pass filter is applied to electric

field modulations in the Fourier space with a radius of 1.5× the critical value qc.

Experimentally, the Fourier filtering occurs as a consequence of “thick medium”

effects, described in Ch. 6 and Ref. [125], i.e. mainly diffraction in the optical

medium. The Fortran codes for both 1D and 2D cases were written by Gordon

Robb. The 1D simulation results were produced by the author, while the 2D sim-

ulation results were done by Gordon Robb. Details on the numerical methods are

presented in the Thesis of Enrico Tesio [38].

5.2.1 Steady state patterns

At zero B-fields, the interaction between the atomic variables is mediated solely

by the driving terms D, S, PΛ+, PΛ−. Noting the form of Eqs. (2.19), this means

the dipole moments y1, y2, z1, z2 can be neglected, as they are not coupling

directly to the light, nor to the remaining atomic variables. The relevant dynamical

equations for describing the system are then given by Eqs. (2.15). Fig. 5.1 shows

typical steady state patterns for Bz = 0. The solutions for the atomic variable

modulations are plotted alongside the solutions for their respective driving terms.

The modulation period of x and u has half the period of w modulation, which is

in direct agreement with (5.19). The x and u modulations are also shifted by half

a period relative to each other. The periodicity of v is mainly equal to the one

of w, with a small peak at the second harmonic, and an amplitude that is nearly

two orders of magnitude smaller than the w modulation amplitude, meaning the

effect causing the shift from periodicity predicted in (5.19) is small. The depth of

modulation in w is ∼ 0.8, nearly an order of magnitude higher than modulations

in x and u, which is in line with the interpretation that w is the main driver of

instability.
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Figure 5.1: Steady state solutions for the atomic variables and their driving
terms at zero B-fields. Simulation parameters: b0 = 25, I± = 7.5Is, ∆ = −14Γ2,
r = 0.001 Γ2, Bx = By = Bz = 0.

Fig. 5.2 shows the patterns for a Bz field of 40 mG. The most notable difference

from the case with Bz = 0 are the asymmetries in the peak heights of x, u and

v modulations for peaks separated by Λc/2. The asymmetry is a result of the

coupling of the spin with the quadrupolar atomic moments by Ωz and the driving

terms, via the dynamical equations.
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Figure 5.2: Steady state solutions for the atomic variables and their driving
terms for moderate longitudinal B-field. Simulation parameters: b0 = 25, I± =
12Is, ∆ = −12Γ2, r = 0.001 Γ2, Bx = By = 0, Bz = 40 mG.

The asymmetry is the most likely cause of the asymmetry in the diffracted powers

of the σ+ and σ− light shown in Fig. 5.3. This is so due to the fact that the Eq.

(5.18) describes the backwards propagating field only in the linear growth regime

[59], and the steady state backwards propagating field is dependent on all of the

atomic variables, which are coupled dynamically by light traversing the cloud and

reflecting from the feedback mirror. This dynamical coupling can then cause the

other variables to couple to w and generate asymmetries of diffracted power.
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Figure 5.3: Total steady state beam intensities at z = L for σ± light. Simu-
lation parameters are same as in Fig. 5.2.

5.2.2 Longitudinal B-field scan

The longitudinal field scans for the field parallel to the input beam direction is

shown in Fig. 5.4. The sum of diffracted powers in the two circular channels

is plotted for the intensities I± = 12 Isat and I± = 20 Isat. An asymmetry in

modulation depth (proportional to the diffracted power) of the σ± components is

seen to occur for 0 < |Bz| < 60 mG for I± = 12 Isat and 0 < |Bz| < 120 mG

for I± = 20 Isat. The width of the pattern existence region is seen to increase

with the input pump intensity, as is seen in the experimental results of Chapter

4. An abrupt decay of diffracted power occurs for higher Bz fields, followed by a

revival of the modulation, which is also seen in the experiments. The details of

the mechanisms of the asymmetry of σ± modulations and the revival of pattern

contrast are both under investigation.
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Figure 5.4: Scan of the longitudinal B-field. Modulation depth of (a) σ+ light
(solid lines) and σ− light (dashed lines), (b) total light. Blue: I± = 12 Isat.
Black: I = 20 Isat. Simulation parameters: t = 86 µs, b0 = 25, ∆ = −10 Γ2,
r = 0.001 Γ2, Bx,y = 0.

5.2.3 Transverse B-field scans

The transverse field scans for the fields parallel and orthogonal to the input beam

polarization are shown in Fig. 5.5. The sum of diffracted powers in the two

circular channels is plotted for the intensities I± = 12 Isat and I± = 20 Isat. The

instability is seen to decay completely for parallel fields > 100 mG at I± = 12 Isat

and > 150 mG at I± = 20 Isat. The orthogonal fields work to reduce the contrast of

patterns and for strong enough values completely preclude the pattern formation.

The reason for decay of contrast with transverse fields is the depumping of the

orientation w which is the main cause of the instability. With beam intensities

higher above threshold it is therefore possible to achieve pattern formation for

stronger transverse fields. The shape of the parallel B-field scan curve agrees with

the experimental result shown in Fig. 4.11. The shape of the orthogonal scan

curve is however slightly different than the experimental one. The reason for this

slight discrepancy is currently still unknown.
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Figure 5.5: Scan of the B-fields parallel and orthogonal to the input beam
polarization. Blue: I± = 12 Isat. Black: I± = 20 Isat. Simulation parameters:
t = 86 µs, b0 = 25, ∆ = −12 Γ2, r = 0.001 Γ2, Bz = 0.
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5.3 Two dimensional model

5.3.1 Pattern symmetries

The two dimensional simulations use a grid with 128×128 grid points. Figures 5.6

and 5.7 depict the typical pattern realizations for zero and finite Bz, respectively.

The square patterns with complementary peaks of σ± light appear at zero Bz field.

The periodicity in the atomic variables mirrors the 1D results shown in Sec. 5.2.1.

The spin variable w, driven by the difference in the pump rates of σ± light, has

positive peaks (red) at regions of excess σ+ and negative peaks (blue) at regions

of excess σ− light. The x and u variables have half the periodicity of the spin

w, while the v variable has the same periodicity. The modulation depth is again

highest for the w variable (∆w ≈ 1.2), almost an order of magnitude greater than

the modulation for x (∆x ≈ 0.2) and u (∆u ≈ 0.1), while the v variable has the

smallest modulation depth (∆v ≈ 0.01).

Figure 5.6: Square patterns for zero applied Bz field. (a) near field (NF) of σ+

polarization, (b) far-field (FF) of σ+ polarization, (c) NF of σ− polarization, (d)
FF of σ− polarization, (e) atomic spin variable w, (f) alignment x, (g) real part
of ∆m=2 coherence u, (h) imaginary part of ∆m=2 coherence v. Simulation
parameters: b0 = 35, ∆ = −8 Γ2, Bz = 0.
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For hexagons, the positive (HX+) phase appears in the σ+ channel and the negative

(HX−) phase in the σ− channel, at Bz > 0. The w, x and v variables have positive

peaks at positive peaks of σ+ light, while the u variable has negative peaks at

these regions. The modulation depth for the w variable is ∆w ≈ 1, while the

other variables have: ∆x ≈ 0.24, ∆u ≈ 0.2, ∆v ≈ 0.1. The modulation in w is

thus still the strongest.

Figure 5.7: Hexagonal patterns for finite applied Bz field. Image ordering
same as in Fig. 5.6. Simulation parameters: b0 = 35, ∆ = −15.6 Γ2, Bz = 25
mG.
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5.3.2 Spin magnetization

The interpretation of Bz = 0 patterns as spin antiferromagnetic and Bz 6= 0

patterns as ferrimagnetic can be illustrated by looking at 1D cuts along the lines

of the peaks in 2D space.

Figure 5.8: Dipole w magnetization peaks for square patterns (left) and 1D
cuts along dashed lines (right). Simulation parameters are same as in Fig. 5.6.

Figure 5.8 shows the 1D cuts of the spin w variable along two orthogonal direc-

tions for a square pattern realization. The neighbouring spin w amplitudes are

symmetric around w = 0, with the spins pointing in the opposite directions, in-

dicating that the total magnetization in this phase is zero, as is expected from

antiferromagnetic spin ordering.

Figure 5.9 shows the 1D cuts of the spin w variable for a hexagonal pattern re-

alization. The neighbouring spin w amplitudes are now not symmetric around

w = 0, with the upwards pointing sublattice having a higher amplitude than the

downwards pointing lattice, for an external magnetic field of Bz = 25 mG. The

magnetic ordering of the patterns is now ferrimagnetic, as the net magnetization

is non-zero and the neighboring spins are pointing in the opposite directions.
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Figure 5.9: Dipole w magnetization peaks for hexagonal patterns (left) and
1D cuts along dashed lines (right). Simulation parameters are same as in Fig.
5.7.

5.4 Summary

In this Chapter, the simulation results of the SFM were presented. In the first

part of the Chapter it is shown by arguments of linear stability analysis how

the polarization instability observed in the experiments is driven by the spin w

variable. It is also calculated how a polarization instability can in the J = 1

system be driven by the v variable, which is a plausible mechanism underlying

the observations reported in Ref. [139] at high transverse B-fields. In the second

part of the Chapter the results of 1D and 2D simulations are presented. The 1D

longitudinal B-field scans reveal an imbalance between the diffracted power in the

two circular polarization channels for small applied B-fields. The 2D simulations

reveal a presence of antiferromagnetic ordering for zero longitudinal B-field, and

a ferrimagnetic ordering for a finite longitudinal B-field. The simulation results

agree with the experimental observations reported in Ch. 4.



Chapter 6

Thick medium effects

For pattern formation in the SFM configuration, the questions about the occurence

of longitudinal gratings and the finite diffraction inside the optical medium, the

so called thick medium effects, have up to now been discussed only partially. The

cold atoms constitute a convenient platform for studying thick medium effects for

various types of optical non-linearities. As was shown in the experiments with

optomechanical and two-level non-linearities in clouds with high optical thickness

of b0 ≈ 200 [18, 19], to correctly account for both the lengthscale and threshold

dependence on the mirror distance, one needs to include the diffraction and lon-

gitudinal gratings into the description. For this reason a model was developed,

taking into account the said phenomena, and explaining their consequences [125].

The model is outlined in this Chapter, and its predictions, in the Kerr limit, shown

to agree well with the results of the experiments in a cold atomic medium using

the Zeeman non-linearity. The model was developed by William J. Firth, and the

details are published in Ref. [125].

110
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6.1 Theoretical model

6.1.1 Beam propagation through the medium

Restricting to the scalar (single light polarization mode) case, the electric field is

given by E/
√
Is = Aeikz + Be−ikz, where z is the propagation direction, Is the

saturation intensity and A,B are the forward and backward propagating fields.

Maxwell’s equations for propagation of electromagnetic waves in the medium are
∂A
∂z
− i

2k
∇2
⊥A = ik

2
χNLA,

∂B
∂z

+ i
2k
∇2
⊥B = −ik

2
χNLB.

(6.1)

Nonlinear susceptibility χNL of the two-level medium is given by

χNL = −6π

k3
0

na
∆̄

1 + ∆̄2

1

1 + I/Is
= χl

1

1 + I/Is
, (6.2)

where na is the atomic density, I = |E|2, ∆̄ = 2δ/Γ (δ is the beam detuning,

Γ ≡ Γ1 is the transition linewidth) and absorption is neglected due to |∆| � 1.

Writing A = aeiθA , B = beiθB , it can easily be shown that

1

1 + I
Is

=
1

1 + a2 + b2 + hab(e2ike+ + e−2ike∗+)
, (6.3)

where h is the grating parameter, and e+ = ei(θA−θB). The grating parameter h

has been introduced as in [140] to account for washing out of reflection grating

due to atomic and mirror motion. In principle, any value between 0 and 1 can be

used for h as wash-out of coherence of A and B can be partial, and it will later be

shown h = 1 gives a better match with experimental data than h = 0. If we now

introduce a coupling parameter r = hab/(1 + a2 + b2), the part of expression (6.3)

containing r can be Taylor expanded in re+ as

1

1 + r(e2ike+ + e−2ike∗+)
= (1+2r2+6r4+...)−(e2ikei(θA−θB)+e−2ike−i(θA−θB))(r+3r3+10r5+...),

(6.4)
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where higher order terms in e2ik were dropped as they do not lead to phase matched

couplings [125]. Inserting the above expression into (6.1) gives
∂A
∂z
− i

2k
∇2
⊥A = ik

2
χlA( (1+2r2+...)−(br/a)(1+3r2+...)

1+a2+b2
),

∂B
∂z

+ i
2k
∇2
⊥B = −ik

2
χlB( (1+2r2+...)−(ar/b)(1+3r2+...)

1+a2+b2
).

(6.5)

The first term in both equations is responsible for saturation and the second

for cross-coupling between the forward and backward propagating beams. To the

lowest order in light intensity, the numerator in equation for A is 1+a2 +(1+h)b2,

while for B it gives 1 + (1 + h)a2 + b2. This means the full grating case (h = 1)

increases the cross-couplings by a factor of 2 [125].

To prepare the investigation of transverse perturbations in the following Section,

one can write the propagation equations (6.5) in the form
∂A
∂z
− i

2k
∇2
⊥A = −αl

2
(1 + i∆̄)F (a2, b2)A,

∂B
∂z

+ i
2k
∇2
⊥B = αl

2
(1 + i∆̄)F (b2, a2)B,

(6.6)

where αl is the linear absorption coefficient, and the function F describes the

nonlinearity of the atomic susceptibility, as modelled by e.g. (6.5).

6.1.2 Transverse perturbations in the quasi-Kerr limit

The linear absorption coefficient can be written as αl = α0/(1 + ∆̄2), where α0 is

the on-resonance absorption. Formally, in a quasi-Kerr model, one assumes that

|∆̄| is large enough that αlL can be neglected, but with αl∆̄L finite, so that the

nonlinearity is purely refractive. This is justified in the experiments reported in

this Thesis, where α0L (= b0) is on the order of 30, and the detuning is on the

order of |∆̄| ∼ 14.

In the linear stability analysis, one supposes that the solution of the diffraction-

less form of the equation (6.6) (the zero order mode), subject to the appropriate
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boundary conditions, is known, and considers transverse perturbations of the form

A = A0(1 + f), B = B0(1 + g), where ∇2
⊥(f, g) = −Q2(f, g), i.e. the transverse

perturbation has a wavenumber Q, corresponding to a diffraction angle Q/k in the

far field. Assuming now |f |, |g| << 1, one can obtain the linearized propagation

equations: 
df
dz

= −iθf − iαlL∆̄(F11f
′ + F12g

′),

dg
dz

= iθg + iαlL∆̄(F21f
′ + F22g

′).
(6.7)

Here L is the length of the medium, θ = Q2L/2k, f = f ′ + if ′′, g = g′ + ig′′, and

the real quantities Fij are defined as F11 = p∂F (p,q)
∂p

, F12 = q ∂F (p,q)
∂q

, F21 = p∂F (q,p)
∂p

,

F22 = q ∂F (q,p)
∂q

(where p = |A|2, q = |B|2). In the above it was assumed that

the fields are time-independent, which is adequate to calculate the threshold of a

zero-frequency pattern-forming (Turing) instability at wavevector Q. To find the

Hopf instabilities, or to properly account for dynamical behavior of the field-atom

system, one would have to start from the Maxwell-Bloch equations, rather than

the susceptibility model.

The matrix elements Fi,j can in the quasi-Kerr limit be calculated to be

F̂kerr = −

 p (1 + h)q

(1 + h)p q

 . (6.8)

where the parameters p and q are independent of the longitudinal coordinate z in

the quasi-Kerr approximation [125].

The equations of propagation through the medium are related to the diffraction

equations, describing the beam propagation from the medium and back, via bound-

ary conditions on the perturbations g(1), f(1) at the end of the medium. Here,

a normalized mirror distance D is used, defined as D = (d − L/2)/L, where d is

the mirror distance from the center of the cloud and L is the medium length. The

boundary conditions read g(1) = e−2ψDf(1), where ψD = Dθ, which leads to the

SFM threshold condition for perfect mirror reflection (R = 1) [125]

c1c2 +

(
ψ2

ψ1

c2
D +

ψ1

ψ2

s2
D

)
s1s2 = cDsD (β1s1c2 − β2s2c1) , (6.9)
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where ψ2
1,2 = θ(θ + κφ1,2), κ = αlL∆̄, (φ1, φ2) are the eigenvalues of F̂Kerr, ci =

cosψi, si = sinψi, cD = cosψD, sD = sinψD, and βn =
(
ψn

θ
− θ

ψn

)
. Solving the

threshold condition equation (6.9) will lead to the threshold curves shown in the

next Section. The equation can also be used to calculate the envelope curve [125],

which is a crucial element determining the Talbot radius of the lowest threshold

mode.

6.1.3 Calculating the thresholds

The threshold intensities for the pattern formation at a critical wavenumber Q

can now be calculated from Eq. (6.9). Figure 6.1 shows the threshold curves for

mirror distances D = 1 (orange) and D = 2 (green), where competition between

lengthscales is seen to be mediated by the envelope curve (blue, dashed). At

D = 1, the first Talbot ring (defined by the lowest Q where the threshold touches

the envelope curve) is closer to the minimum threshold allowed by the envelope

curve, at point (I ≈ 0.22, θ ≈ 1.2), than the second Talbot ring. This means

that the first Talbot ring has a lower threshold than the second, and will have a

higher diffracted power at a fixed input beam intensity, as long as this intensity

is not too high above threshold intensity. At D = 2, the situation is reversed,

as both first and the second Talbot rings move towards left, and the second ring

moves closer to the bottom of the envelope curve. This is a consequence of a more

general principle, where increasing the mirror distance D increases the number of

“wiggles” of the threshold curve. This in turn increases the possibility to get near

the minimum of the envelope, and the system can get closer to the lowest possible

threshold.
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Figure 6.1: Threshold intensity (in units of αlL∆̄p/2) vs diffraction parameter
θ = Q2L/2k for a Kerr medium with h = 1. Blue dashed curves: Envelope
curves. Orange solid curves: D = 1.0. Green solid curves (with more wiggles):
D = 2.0. In both cases the threshold curves touch the envelope curves, and are
confined by them.

6.2 Experimental results

Figure 6.2 shows the variation of predicted threshold intensity (normalized as in

Fig. 6.1), diffracted power (in general proportional to the inverse of the threshold

intensity) and pattern lengthscale Λ with the scaled mirror distance D = (d −

L/2)/L, where d is the distance from the cloud center and L = 3.2 mm is the

effective medium thickness, taken to be equal to the FWHM of the cloud. For a

mirror position near cloud center (−1.2 < D < 0.6) the threshold increases and

no patterns are seen at the input beam intensity used. For higher mirror distances

(−2.5 < D < −1.2 and 0.3 < D < 0.5), a regime where the first Talbot ring
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is dominant is seen. This corresponds to the “thin medium” limit and is also

the region where the pattern experiments in Chapter 4 are performed, as in this

regime they can be compared to the theory of Chapters 2 and 5. For the mirror

distances −4.0 < D < −2.5 and 0.5 < D < 2.4, the second Talbot ring dominates

at the fixed input intensity. The extinction of the power in the first Talbot ring

with respect to the power in the second Talbot ring down to a factor of 3× 10−3

is seen.

The solid lines represent the data calculated from Eq. (6.9) with h = 1 for the

first (red) and second Talbot rings (blue). The mirror distance for which the

second Talbot ring “overtakes” the first one can be read off from Fig. 6.2a as the

point where the red threshold curve goes above the blue threshold curve. The

experimental signature of this at the fixed input beam intensity is considered to

be the point where the diffracted power in the second Talbot ring becomes higher

than the diffracted power in the first Talbot ring (as shown in Fig. 6.2b). The two

are in reasonably good agreement, with an error of around L for both the D < 0

and D > 0 cases.

The lengthscale dependence on mirror distance is depicted in 6.2c. The thick

medium curve (red) coincides with the thin medium curve (black) for mirror dis-

tances D < −1.4 and D > 0, indicating that the thick medium framework is

not necessary for predicting the lengthscale behavior. However, the necessity of

the thick medium description becomes apparent when observing the occurrence of

the second Talbot ring, which in cold atoms can not be explained from the thin

medium considerations. The agreement of the lengthscale curves with the data is

good, especially considering that there are no free parameters in this model.
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Figure 6.2: (a) Predicted threshold, (b) measured diffracted power, (c) pat-
tern lengthscale Λ vs. mirror distance D = (d−L/2)/L, where d is the distance
from the cloud center and L is effective medium length. Red solid dots: ex-
perimental data for first Talbot balloon (lowest wavenumber), blue circles: ex-
perimental data for second Talbot balloon (next highest wavenumber excited).
The red and blue curves are the corresponding theoretical predictions and are
calculated for a self-focusing Kerr medium with h = 1 described by F̂Kerr. Ex-
perimental parameters: effective medium length is L = 3.2 mm, beam intensity
I = 18 mW/cm2, B-fields Bx,y,z = 0, on-resonance optical thickness b0 = 27
and detuning ∆ = −14 Γ2.
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To further illustrate the change of diffracted power in the Talbot rings upon chang-

ing the mirror distance, far field pattern data taken in the orthogonal polarization

channel are depicted in Fig. 6.3. For small |D| (6.3a), only the first Talbot ring

is excited. Increasing the mirror distance, the radius of the first ring reduces (Λ

increases) and a second Talbot ring appears (6.3b), and completely takes over

(6.3c). Increasing the distance further (6.3d), another ring with a higher radius

is seen to be faintly excited. For even higher mirror distances (as limited by the

setup) the power in the two rings decays to zero and the pattern formation does

not occur at the used input intensities.

Figure 6.3: The patterns in far field for varying mirror distance D = (d −
L/2)/L. (a) D = −0.128 (d = 1.19 mm). (b) D = 0.497 (d = 3.19 mm).
(c) D = 1.122 (d = 5.19 mm). (d) D = 1.434 (d = 6.19 mm). Experimental
parameters are the same as in Fig. 6.2.

6.3 Discussion

In the experiments in hot Na vapors [23], the thick medium effects can be ne-

glected, as the diffraction within the medium is small with respect to a stronger

effect governing the threshold behavior, the atomic diffusion. The atomic diffu-

sion creates a threshold envelope function, causing the thresholds of the patterns

at higher wavenumber harmonics to increase with q2 (i.e. linearly with the diffrac-

tion parameter Θ = q2d/k). This effect is the main mechanism for lifting the

degeneracy of the higher harmonics in hot alkali vapor experiments.

The main result of this Chapter is the mirror distance scan of Fig. 6.2. This

plot illustrates the competition between the two pattern lengthscales, mediated
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by the envelope curve. A nearly complete extinction of the first Talbot ring is

seen, with the second ring taking over completely. A similar effect was predicted

and observed in photorefractives, in spite of the different optical non-linearity

mechanism [11, 141]. These results however only reported a coexistence of patterns

at two lengthscales, without the extinction of power in the smaller and increase of

power in the larger radius Talbot ring.

It is also shown that the time-independent linear stability analysis in the quasi-

Kerr approximation (which is implicitly written in a scalar framework) works very

well for calculating the pattern lengthscales Λ, and reasonably well for calculating

the thresholds of the magnetization patterns. The reason for this is that the

Zeeman non-linearity for the two circular components depends most strongly on

the spin w variable, and linearly, which is for low powers linear in the pump rate

and consequently also linear in the beam intensity.



Chapter 7

Conclusion and outlook

This Thesis reports on an experimental realization of self-organized magnetiza-

tion patterns in a thermal ensemble of cold 87Rb atoms driven by a detuned laser

beam, in the single feedback mirror (SFM) configuration. The experimental re-

sults are shown to agree well with a theoretical model based on a simplification

of the F = 2 → F ′ = 3 transition to a more tractable F = 1 → F ′ = 2 level

structure. An external B-field is used to control the symmetry of the patterns.

An antiferromagnetic phase is seen to occur for longitudinal B-fields close to zero,

while a ferrimagnetic phase is seen to occur for a finite longitudinal B-field, chang-

ing the sign of magnetization when the sign of the longitudinal B-field is changed.

The relatively localized peaks in the Fourier plane point to a long-range magnetic

ordering.

The self-organized magnetization patterns in the SFM configuration are an exam-

ple of a non-equilibrium phase transition, where the atomic degrees of freedom

organize spontaneously via light mediated interaction. The light degrees of free-

dom can in principle be integrated out, leaving only the dynamical equations for

the atomic degrees of freedom, and the explicit expressions for the atom-atom

interactions could be obtained. The interaction between different magnetic mul-

tipoles could then also be more closely studied, which is a feature not presently

120



Appendix 121

explored in the experiments or theoretical models. The said rewriting of the the-

ory would bring the patterns studied in this Thesis in closer relation with the

theoretical framework used commonly in the quantum simulation community.

Cold atomic gases have in recent years been used to simulate the behavior of

strongly correlated systems with many degrees of freedom, still posing a great chal-

lenge for even a conceptual understanding. The present cold atom self-organization

experiments are however generally performed in single mode cavities, where the

self-organized phase transitions break only discrete symmetries. In the SFM con-

figuration, the initial system is translationally and rotationally symmetric around

the pump axis. The self-organization thus breaks continuous symmetries, which is

an interesting novel feature. In this Thesis the magnetization pattern formation

is studied in a thermal atomic ensemble. The said medium is a middle ground

between the more common magnetic systems studied in condensed matter (solid

state) physics, with high densities and at high temperatures, and e.g. spinor BEC

clouds, with high densities and at low temperatures.

Even though the pattern formation in atomic media has been studied for more

than two decades, questions related to the atom-atom interaction, and the non-

equilibrium thermodynamics of the system are still very little explored. One pos-

sible future direction would thus be to study the dispersion relation of spin density

waves in the ordered system, which would provide direct information about the

mirror mediated interaction between the atomic spins. A relatively simple way of

performing this experiment would be by using a spatial light modulator to induce

perturbations with longer wavelengths than the periodicity of the patterns, and

monitor the way the system relaxes to the equilibrium patterned state. In addi-

tion to this, the interplay between the patterns relying on the Zeeman and the

optomechanical non-linearities is another topic for future studies.



Appendix A

Derivation of the dynamical

equations

A.1 Longitudinal B-field

In this Section of the Appendix the equations for the atomic dynamcs in the

presence of only longitudinal B-field are derived (2.15). The derivation relies on

r transient repopulation 2π×10 kHz
Γ1 e.s. population decay 2π×6.066 MHz
γ1 |∆m| = 2 g.s. coherence decay 2π×10 kHz
γ′1 |∆m| = 2 e.s. coherence decay 2π×6.066 MHz
Γ2 |∆m| = 1 optical coherence decay 2π×3.033 MHz
Γ3 |∆m| = 2 optical coherence decay 2π×3.033 MHz
γ2 |∆m| = 1 e.s. coherence decay 2π×3.033 MHz
Ωz Larmor frequency of longitudinal field 2π×0.1 MHz
Ω± Rabi frequency . 2π×100 MHz

Table A.1: Timescales of evolution of populations and coherences.

the approximations described in Chapter 2 and the adiabatic elimination of the

optical coherences [68]. The timescales of the evolution of the matrix elements are

written in A.1. Inserting the Hamiltonian (2.7) and the decay and repopulation

matrix elements calculated via the AtomicDensityMatrix Mathematica package

[71] into the equation 2.1, one gets a set of the 20 relevant equations for the
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independent density matrix elements:

ρ̇−1−1 = r
3
− rρ−1−1 + Γ1

(
ρ−2′−2′ +

1
2
ρ−1′−1′ +

1
6
ρ0′0′

)
− i
[
Ω′∗+ρ−10′ − Ω′+ρ0′−1

+Ω∗−ρ−1−2′ − Ω−ρ−2′−1

]
,

ρ̇00 = r
3
− rρ00 + Γ1

(
1
2
ρ−1′−1′ +

2
3
ρ0′0′ +

1
2
ρ1′1′

)
− i
[
Ω′′∗+ ρ01′ − Ω′′+ρ1′0

+Ω′′∗− ρ0−1′ − Ω′′−ρ−1′0

]
,

ρ̇11 = r
3
− rρ11 + Γ1

(
1
6
ρ0′0′ +

1
2
ρ1′1′ + ρ2′2′

)
− i
[
−Ω+ρ2′1 + Ω∗+ρ12′ + Ω′∗−ρ10′ − Ω′−ρ0′1

]
,

ρ̇−11 = Γ1

(
ρ−2′0′√

6
+

ρ−1′1′

2
+

ρ0′2′√
6

)
− γ1ρ−11 − i

[
−Ω−ρ−2′1 − Ω′+ρ0′1 + Ω′∗−ρ−10′

+Ω∗+ρ−12′ − 2ggΩzρ−11

]
,

ρ̇10′ = −Γ2ρ10′ − i
[
∆ρ10′ + ggΩzρ10′ + Ω′+ρ1−1 + Ω′−ρ11

]
,

ρ̇−10′ = −Γ2ρ−10′ − i
[
∆ρ−10′ − ggΩzρ−10′ + Ω′+ρ−1−1 + Ω′−ρ−11

]
,

ρ̇−1−2′ = −Γ2ρ−1−2′ − i [∆ρ−1−2′ + (2ge − gg)Ωzρ−1−2′ + Ω−ρ−1−1] ,

ρ̇−2′1 = −Γ3ρ−2′1 − i
[
−∆ρ−2′1 − (gg + 2ge)Ωzρ−2′1 − Ω∗−ρ−11

]
,

ρ̇12′ = −Γ2ρ12′ − i [∆ρ12′ + (gg − 2ge)Ωzρ12′ + Ω+ρ11] ,

ρ̇−12′ = −Γ3ρ−12′ − i [∆ρ−12′ − (gg + 2ge)Ωzρ−12′ + Ω+ρ−11] ,

ρ̇0−1′ = −Γ2ρ0−1′ − i
[
∆ρ0−1′ + geΩzρ0−1′ + Ω′′−ρ00

]
,

ρ̇01′ = −Γ2ρ01′ − i
[
∆ρ01′ − geΩzρ01′ + Ω′′+ρ00

]
,

ρ̇−2′−2′ = −Γ1ρ−2′−2 − i
[
Ω−ρ−2′−1 − Ω∗−ρ−1−2′

]
,

ρ̇−1′−1′ = −Γ1ρ−1′−1′ − i
[
Ω′′∗− ρ−1′0 − Ω′′−ρ0−1′

]
,

ρ̇0′0′ = −Γ1ρ0′0′ − i
[
−Ω′∗+ρ−10′ + Ω′+ρ0′−1 + Ω′−ρ0′1 − Ω′∗−ρ10′

]
,

ρ̇1′1′ = −Γ1ρ1′1′ − i
[
−Ω′′∗+ ρ01′ + Ω′′+ρ1′0

]
,

ρ̇2′2′ = −Γ1ρ2′2′ − i
[
−Ω∗+ρ12′ + Ω+ρ2′1

]
,

ρ̇−2′0′ = −Γ1ρ−2′0′ − i
[
−2geΩzρ−2′0′ + Ω′+ρ−2′−1 + Ω′−ρ−2′1 − Ω∗−ρ−10′

]
,

ρ̇−1′1′ = −Γ1ρ−1′1′ − i
[
−2geΩzρ−1′1′ + Ω′′+ρ−1′0 − Ω′′∗− ρ01′

]
,

ρ̇0′2′ = −Γ1ρ0′2′ − i
[
−2geΩzρ0′2′ + Ω+ρ0′1 − Ω′∗+ρ−12′ − Ω′∗−ρ12′

]
.

(A.1)

where the primed indices of ρij indicate the excited state and the non-primed

indices of ρij the ground state Zeeman sublevel. A shorthand notation was used

for the Rabi frequencies, where Ω′± = Ω±/
√

6 and Ω′′± = Ω±/
√

2. As the optical

coherences, excited state populations and coherences evolve on timescales orders

of magnitude faster than the ground state density matrix elements, they reach a

steady state much sooner than the ground state density matrix elements and can
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be adiabatically eliminated. This procedure results in

ρ10′ =
Ω′−ρ11+Ω′+ρ1−1

iΓ2−(∆+ggΩz)
,

ρ−10′ =
Ω′−ρ−11+Ω′+ρ−1−1

iΓ2−(∆−ggΩz)
,

ρ−1−2′ = Ω−ρ−1−1

iΓ2−(∆+(2ge−gg)Ωz)
,

ρ−2′1 =
−Ω∗−ρ−11

iΓ3+(∆+(2ge−gg)Ωz)
,

ρ12′ = Ω+ρ11

iΓ2−(∆+(gg−2ge)Ωz)
,

ρ−12′ = Ω+ρ−11

iΓ3−(∆−(gg+2ge)Ωz)
,

ρ0−1′ =
Ω′′−ρ00

iΓ2−(∆+geΩz)
,

ρ01′ =
Ω′′+ρ00

iΓ2−(∆−geΩz)
,

ρ−2′−2′ = −i
Γ1

(Ω−ρ−2′−1 − Ω∗−ρ−1−2′) = 2P−
Γ1
ρ−1−1,

ρ−1′−1′ = −i
Γ1

(Ω′′∗− ρ−1′0 − Ω′′−ρ0−1′) =
2P ′′−
Γ1
ρ00,

ρ0′0′ = −i
Γ1

(−Ω′∗+ρ−10′ + Ω′+ρ0′−1 + Ω′−ρ0′1 − Ω′∗−ρ10′),

=
2P ′+
Γ1
ρ−1−1 +

2P ′−
Γ1
ρ11

+ i
Γ1

(
Ω′∗+Ω′−

ρ−11

iΓ2−(∆−ggΩz)

+Ω′+Ω′∗−
ρ1−1

iΓ2+(∆−ggΩz)
+ Ω′+Ω′∗−

ρ1−1

iΓ2−(∆+ggΩz)
+ Ω′∗+Ω′−

ρ−11

iΓ2+(∆+ggΩz)

)
,

ρ1′1′ = −i
Γ1

(−Ω′′∗+ ρ01′ + Ω′′+ρ1′0) =
2P ′′+
Γ1
ρ00,

ρ2′2′ = −i
Γ1

(−Ω∗+ρ12′ + Ω+ρ2′1) = 2P+

Γ1
ρ11

ρ−2′0′ = −i
Γ1

(
Ω′+ρ−2′−1 + Ω′−ρ−2′1 − Ω∗−ρ−10′

)
,

ρ−1′1′ = −i
Γ1

(
Ω′′+ρ−1′0 − Ω′′∗− ρ01′

)
,

ρ0′2′ = −i
Γ1

(
Ω+ρ0′1 − Ω′∗+ρ−12′ − Ω′∗−ρ12′

)
.

(A.2)

Using these relations with the Lande factors gg = ge = 1 and the reduced density

matrix elements defined in (2.11) leads to the equations 2.15.

A.2 Transverse B−fields

The Hamlitonian calculated from the AtomicDensityMatrix Mathematica package

is
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The equations (2.19) are now derived by the same procedure as in A.1, which

results in a more involved calculation, details of which will not be presented here.

A.3 Optical response

In this Section the equations of the medium response are derived by the same

procedure as described in Ref. [68] for the J = 1/2 → J ′ = 1/2 system. The

polarization writes as

P(t) =
1

2

(
P+e

−iωt + P ∗+e
iωt
)
ê+ +

1

2

(
P−e

−iωt + P ∗−e
iωt
)
ê−. (A.4)

The relation connecting the density matrix elements and polarization is [68]

P(t) = N 〈µE〉 = N Tr ( µE ρ̂(t)) , (A.5)

where N is peak density of atoms and µE is the dipole operator. The dipole

operator components of the σ± light can in the basis of eigenvectors of our system

be written as

µ+ = µE(C−10′(|−1〉〈0′|+ |0′〉〈−1|)+C01′(|0〉〈1′|+ |1′〉〈0|)+C12′(|1〉〈2′|+ |2′〉〈1|)),

µ− = µE(C10′(|1〉〈0′|+|0′〉〈1|)+C0−1′(|0〉〈−1′|+|−1′〉〈0|)+C−1−2′(|−1〉〈−2′|+|−2′〉〈−1|)),

(A.6)

where {|m〉, |m′〉} are the ground and excited state vectors, respectively, Cij are

Clebsch-Gordan (C.G.) coefficients and

ρ̃ = ρi,je
−iωt, i = e.s., j = g.s., ρi,j = 〈i|ρ̂|j〉 (A.7)
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are the density matrix elements. The C.G. coefficients can be calculated from the

Wigner-Eckart theorem

〈F ′m′F |µ±|FmF 〉 = (−1)F
′−m′F 〈F ′||µ||F 〉

 F ′ 1 F

−m′F ±1 mF

 (A.8)

and are written in Table A.2. The quantity µE is related to the reduced dipole

matrix element via µE = 〈2′||µ||1〉√
5

. This gives

〈µ+〉 = µE
[
C−10′

(
ρ−10′e

iωt + ρ0′−1e
−iωt)+ C01′

(
ρ01′e

iωt + ρ1′0e
−iωt)

+C12′
(
ρ12′e

iωt + ρ2′1e
−iωt)] ,

〈µ−〉 = µE
[
C10′

(
ρ10′e

iωt + ρ0′1e
−iωt)+ C0−1′

(
ρ0−1′e

iωt + ρ−1′0e
−iωt)

+C−1−2′
(
ρ−1−2′e

iωt + ρ−2′−1e
−iωt)] . (A.9)

The polarization functions of the σ± components are now

P± =
b0

2

−(∆∓ Ωz)− iΓ2

Γ2
2 + (∆∓ Ωz)2

(
3

20
(u∓ iv)E∓ +

(
±3

4
w +

1

20
x+ 1

)
E±

)
, (A.10)

where the relation b0/2 =
√

5Nµ2
E/9~ was used to relate the polarization function

to the experimentally measured quantities.

C12′ = C2′1 1 C10′ = C0′1
1√
6

C01′ = C1′0
1√
2

C0−1′ = C−1′0
1√
2

C−10′ = C0′−1
1√
6

C−1−2′ = C−2′−1 1

Table A.2: Clebsch Gordan coefficients needed to calculate the electric dipole
operator matrix elements via the Wigner-Eckart theorem.
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[99] M. O. Araújo et al. “Superradiance in a Large and Dilute Cloud of Cold

Atoms in the Linear-Optics Regime”. In: Phys. Rev. Lett. 117.7 (2016),

p. 073002.

[100] S. J. Roof et al. “Observation of Single-Photon Superradiance and the Co-

operative Lamb Shift in an Extended Sample of Cold Atoms”. In: Phys.

Rev. Lett. 117 (7 2016), p. 073003.

[101] A. Nicolas et al. “A quantum memory for orbital angular momentum pho-

tonic qubits”. In: Nat. Photon. 8.3 (2014), pp. 234–238.

[102] B. Albrecht et al. “Controlled Rephasing of Single Collective Spin Excita-

tions in a Cold Atomic Quantum Memory”. In: Phys. Rev. Lett. 115 (16

2015), p. 160501.

[103] N. Sangouard et al. “Quantum repeaters based on atomic ensembles and

linear optics”. In: Rev. Mod. Phys. 83 (1 2011), pp. 33–80.

[104] Z. Chen et al. “Conditional spin squeezing of a large ensemble via the

vacuum Rabi splitting”. In: Phys. Rev. Lett. 106.13 (2011), p. 133601.

[105] N. Behbood et al. “Generation of Macroscopic Singlet States in a Cold

Atomic Ensemble”. In: Phys. Rev. Lett. 113 (9 2014), p. 093601.



Bibliography 138

[106] R. McConnell et al. “Entanglement with negative Wigner function of almost

3,000 atoms heralded by one photon”. In: Nature 519.7544 (2015), pp. 439–

442.

[107] W. Chen et al. “All-optical switch and transistor gated by one stored pho-

ton”. In: Science (2013), p. 1237242.

[108] M. Chalony et al. “Long-range one-dimensional gravitational-like interac-

tion in a neutral atomic cold gas”. In: Phys. Rev. A 87 (1 2013), p. 013401.
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